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Abstract 
 

Second Harmonic Generation has traditionally been restricted to crystals; however, 
due to the development of highly sophisticated fabrication technology, poling and 
phase matching techniques, it has now become feasible in glass fibres and 
waveguides which are widely used in nonlinear optics. For instance, silica glass 
based Photonic Crystal Fibres (PCF) exhibit long coherence lengths and controllable 
optical properties such as chromatic dispersion despite low second order 
nonlinearity. Given such benefits, the numerical modelling and analysis of optical 
waveguides accurately and efficiently has become vital for the advancement of 
nonlinear optics. Hence, this thesis focuses on enhancing the Second Harmonic 
Generation in optical waveguides through the use of different structures and different 
materials, and demonstrating the same by numerical simulations. 
 
 
In this thesis, the accurate and numerically efficient Finite Element based Beam 
Propagation Method has been employed to investigate the evolution of Second 
Harmonic Generation in highly nonlinear ܵ57ܨ soft glass Equiangular Spiral PCFs. 
Further, the ࡴ-field based Finite Element Method has been employed for the 
stationary analysis of Photonic Crystal Fibres. It is shown here that the second 
harmonic output power in highly nonlinear ܵ57ܨ soft glass PCF exploiting the 
complex Equiangular Spiral design is significantly higher in comparison with silica 
PCF with hexagonal air-hole arrangements. The effects of fabrication tolerances on 
the coherence length and the modal properties of Equiangular Spiral PCF are also 
illustrated by using the Finite Element Method. Moreover, phase matching between 
the fundamental and second harmonic modes is achieved through the use of the 
Quasi Phase Matching technique: this includes demonstrating the effects of higher 
order Quasi Phase Matching. 
 

In parallel to the aforementioned investigations, a rigorous, full vectorial Finite 
Element based Beam Propagation Method has been developed to study the Second 
Harmonic Generation in planar Zinc Oxide (ܼܱ݊) waveguides where the supported 
modes are hybrid in nature. The investigations on planar ܼܱ݊ waveguides have been 
carried out in order to investigate possibilities of enhancing Second Harmonic 
Generation by optimisation of the planar waveguide. It is shown here that the second 
harmonic output power is significantly improved when the planar waveguide 
structure is optimised. Moreover, Quasi Phase Matching has been implemented in 
order to eliminate the phase mismatch. It has also been established that the 
normalised conversion efficiency ܼܱ݊ optical waveguide devices is significantly 
higher than the reported value of periodically poled Lithium Niobate (ܱܾܰ݅ܮଷ) ones. 
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1 Introduction 
 

This chapter sets the scene for the work described in the thesis and first presents a 

short overview of the evolution of optical waveguides,  followed by a description of 

a number of fundamental issues relevant to the work such as integrated optics 

(Section 1.2), optical nonlinearity (Section 1.4), phase matching (Section 1.5) and 

analytical and numerical approximations to optical waveguide problems (Section 

1.6), all of which are very important in defining the aims and objectives of the work 

which are set out next. This chapter then concludes with an overview of the structure 

of the thesis. 

 

1.1 LIGHTWAVE TECHNOLOGY 

The development of optical communication systems is perhaps best discussed by 

considering the nature of light itself. Historically speaking, communication using 

light started when human beings started exchanging messages through hand signals 

early on in the history of civilisation. Limited in transmission distance and leaving 

room for misinterpretation of information, this was a primitive but effective if slow 

form of optic communication. The rest of this section explores the path from these 
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primitive means of communication to the sophistication of today’s fibre optic 

technologies. 

 

1.1.1 Historical Development 

One form of early communication using light was with smoke signals where 

different messages could be conveyed by varying the pattern of smoke. This system 

required a coding system [1] which was to be understood by the sender and receiver 

of messages and in that sense was similar to modern digital systems that use pulse 

codes. Reflecting mirrors and signalling lamps are two other forms of early optical 

communication. Further, ancient Greeks and Romans who pioneered in glass 

manufacturing technology discovered that light can be guided through a glass rod 

[2]. Similarly, the British experimented by transmitting light through a narrow jet of 

water in the early 19th century [3]. Prior to this, Galileo’s invention of the telescope 

in 1609 [4] and the understanding of what is now known as Snell’s Law in 1626 

greatly contributed towards the development of optical communication systems [5]. 

Other early contributions to this sector include the creation of the reflection telescope 

by Newton in 1668 [6], Maxwell’s prediction of electromagnetic waves in 1873 [7], 

Hertz’s confirmation of the existence of electromagnetic waves and their oneness 

with light [8], analysis of a waveguide by Rayleigh in 1897 [9] and Marconi’s 

invention of the radio detector in 1902 [10]. 

Perhaps the most significant invention in the field of optical communications was the 

invention of a light communication system called the photophone by Alexander 

Graham Bell in 1880 [11]. This invention enabled communication via sunlight and a 

thin voice-modulated mirror. When light was received at the receiving end of a 

message, the modulating sunlight fell on a photo-conducting selenium cell, which 

converted the message to an electrical current.  

The origination of indicator lamps such as blinker lights used in naval 

communications (and indeed automobile turn signals and traffic lights too) are deep 

rooted in optical communication systems. The invention of the LASER (Light 

Amplification by Stimulated Emission of Radiation) in 1960 was a major 

breakthrough in the history of optical communication systems. It provided a narrow-

band source of optical radiation suitable for use as a carrier of information [1]. 
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Intensive research in the United States resulted in the first successful operation of the 

solid-state ruby laser (1960), the helium / neon gas laser (1961) and the gallium 

arsenide semiconductor laser (1962) [12]. 

The 1960s also saw a huge number of experiments in the communications field 

carried out in the United States of America using the xenon lamp as a light source. 

Attempts were also made in Japan at communication through glass fibres at the start 

of this decade. However the breakthrough was in 1966 when Kao and Hockham first 

suggested the concept of using glass fibres as a transmission medium [13]. This was 

followed by the invention of unguided optic communication systems by way of non-

fibre optics and led to the development of low-loss fibre in 1970. 

The 1970s brought about two results of great importance to optical communication 

which are the continuous operation of semiconductor lasers at room temperature in 

America and Japan and further reduction of the transmission loss (i.e. the 150݀ܤ/݇݉ 

achieved in England was reduced to 20݀ܤ/݇݉ in America and Japan [12] which was 

being seen as a threshold for an effective fibre-based communication system). 

Other significant discoveries and inventions impacting the sphere of optical 

communication systems include the invention of liquid-core fibres by Ogilvie and 

Esdaile in 1972 [14], the invention of Gigahertz bandwidth over 1km by Gambling 

et al. the same year [15] and the prediction of zero material dispersion by Payne and 

Gambling in 1975 [16]. 

Pinnow et al. (1978), Van Uitert and Wemple (1978) and Goodman (1978) first 

discussed the possibility of ultra-low loss in infrared materials and these discussions 

motivated the research efforts on non-silica-based infrared optical fibres [17].  

Development of fibre technology, e.g. encompassing other fibre types such as 

polarisation-maintaining fibres as well as glass materials suitable for even longer 

wavelengths in the mid and far infrared regions, has been rapid over recent years. 

This has facilitated the development of reliable optical fibre communication systems 

with high performance in today’s telecommunication networks. A number of 

relevant developments in this area are discussed in Section 1.1.2. 
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1.1.2 Evolution of Optical Fibre 

The interest in optical fibre has grown dramatically over the past two decades as it 

has become a vital part in modern day communication systems. It is also used in a 

variety of other fields such as optical fibre sensor technology. In comparison to other 

methods of telecommunication such as microwave and satellite transmission, the 

introduction of fibre optics in the early seventies caused a complete revolution. This 

new form of communication offered an exciting alternative to the traditional 

mechanisms where, instead of electrons moving through copper wires carrying 

signals, photons were guided by glass fibres. Fibre optics have many advantages 

over conventional copper wires in the context of telecommunication. The fibre optic 

bandwidth (i.e. information carrying capacity) is thousand times greater than the 

bandwidth of conventional coaxial cables and the data loss over long distances is 

minimal. Therefore, it can transfer more information across greater distances, which 

is vital for today’s communications systems.  

In a broader sense, using light for communication purposes has progressed rapidly 

since the invention of the first low-loss fibres and as a result, most countries have 

already established their own optical communication links. Further, nowadays the 

field of fibre optics is receiving great interest from areas as diverse as spectroscopy, 

metrology, biomedicine, imaging, industrial machinery, and military applications. 

For example, according to the latest research developments in bio-medical 

engineering, it has been discovered that the delivery of Neodymium: Yttrium-

Aluminum-Garnet (ܰ݀:  laser light (ଶܱܥ) and Carbon Dioxide (ݎܣ) Argon ,(ܩܣܻ

would be of potential use when treating patients suffering from various types of 

cancer [18]. 

Given the numerous advantages of fibre optics, researchers and engineers are 

actively involved in the research and development of fibre optic components and 

systems. In fact, this revolution has the potential to affect our lives as much as 

computers and IC (Integrated Circuit) equipment once did. 

 

1.2 INTEGRATED OPTICS AND APPLICATIONS 

Integrated optics, also known as planar-optic technology, allows the possibility of 

integrating the three functions transmission, switching and routing of guided optical 
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beams on a plane, on a single substrate in a compact device. A number of optical 

functions such as waveguiding, mirroring, filtering, routing and polarisation-splitting 

etc. have been demonstrated in planar optical waveguides made out of 

semiconductor materials, silica (ܱܵ݅ଶ) and polymer. Further, these optical 

waveguides act as the photonic equivalent of copper circuits in ICs serving as 

interconnects among various discrete components on a chip: this type of circuit is 

known as a Photonic Integrated Circuit (PIC). The refractive index of an active or 

core layer, which is sandwiched between two cladding layers with a lower index of 

refraction, causes total internal reflection which helps continue and route a particular 

wavelength of light. However, for slot waveguides and Hollow-core PCFs, the 

guidance is not via total internal reflection. 

PICs are currently being manufactured by a variety of vendors worldwide as part of 

commercial systems and are the key to advanced transmitters in many fibre-optic 

based devices and applications. The basic devices are based on planar optical 

waveguides, in which light is confined to channels on the substrate surface and 

routed across the chip. These channels are typically less than 10 ݉ߤ and are 

patterned using micro lithography techniques [19]. Furthermore, the invention of 

Photonic crystal structures [20] open the way for such integration and 

interconnection of several optical functions on a single PIC chip. 

Applications of integrated optics have historically been in the analogue, digital, and 

sensor fibre-optic markets; at present, however, major new markets are emerging. 

The largest new market is telecommunications, where IO (Input Output) devices are 

used for multi-gigabit data transmission, signal splitting and loop distribution, and in 

bi-directional communication modules. In a third market, i.e. instrumentation, a 

major application is fibre-optic gyroscopes. High-speed telecommunication and fibre 

gyro applications are common to markets across the world today, and there have 

been high interest in Cable TV (CATV) and other analogue fibre-optic link 

applications of IO technologies [21].  
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Integrated Optics is mainly applied in the following areas: 

- Optical communication systems 

- Optical storage technology 

- Photonic devices and materials 

- Optical sensor technology 

These are briefly discussed below. 

Optical communication systems:  

The ability of optical fibre to transmit data at high rates over long distances has been 

greatly exploited in telecommunications systems including cable TV. One of the 

most notable developments in UK is BT Infinity which expects to deliver broadband 

speeds 8 times higher than the typical average (e.g. 80ݏ݌ܾܯ downstream), initially 

with Fibre-To-The-Cabinet (FTTC) and more recently with Fibre-To-The-Premises 

(FTTP) [22]. Moreover, all-optical routers are becoming popular in providing a “cut-

through-connection”, i.e. eliminating the need to convert between electrical and 

optical signals thereby saving energy and further improving the speed [23]. 

Additional advantages of using optical fibre as the communication medium are 

increased reliability due to immunity to electromagnetic interference and data 

security: it is almost impossible to intercept data transmitted via optical fibre as there 

are no magnetic fields around optical fibres. 

 

Optical storage technology:  

As in all data storage systems, optical disk systems are characterised by their 

capacity, data transfer rate, access time, and cost. The storage capacity of an optical 

disk is a direct function of the spot-size (i.e. minimum dimension of a stored bit) and 

geometrical dimensions of the media. Therefore, developments in optical storage 

devices typically target reducing the spot-size by using lower wavelength light 

sources (see Figure 1.1). Attempts have also been made at increasing rotation speeds 

using higher optical power lasers and improving the efficiency of error correction 

codes. In addition to providing a high storage capacity (e.g. 50 GB with Blu-ray 

disks: see Figure 1.2), optical disks provide a more durable means of storage 

compared to magnetic storage mainly due to its immunity to electromagnetic 

interference. 
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Figure 1.1 Light sources with different wavelengths [24].  

 

 

 

Figure 1.2 Comparison of different storage devices [25].  

 

Photonic devices and materials:  

Photonic devices can be categorised as Light Emitting Diodes (LEDs), lasers, 

semiconductor optical amplifiers, modulators, switches and integrated receivers. 

Further discussions on LEDs and different types of lasers are presented in this 

section as these are important in optical communication systems.  

An LED is an optoelectronic device which generates light via electroluminescence 

and forms the light sources used for many semiconductor-based devices. The 

 material system is widely used in generating highly efficient red lights for ܲ݊ܫܽܩ݈ܣ
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the automobile industry, traffic light systems and low data rate (൏  optical (ݏ݌ܾܯ50

links [26]. 

LEDs do not exhibit laser action although the fundamental process of light 

generation is the same as in laser diodes except that LEDs do not exploit stimulated 

emission, unlike laser devices. 

There are many types of lasers available such as gas lasers (e.g.: ܱܥଶ lasers, with 

typical wavelength of 9.4 ݉ߤ or 10.6 [27]݉ߤ), solid state lasers (e.g.: 

ܰ݀: :݀ܰ ;lasers (neodymium-doped yttrium aluminum garnetܩܣܻ ଷܻ݈ܣହ ଵܱଶ) with 

typical wavelength of 1064 ݊݉ [28] and ݎܧ:  lasers (Erbium-doped Yttrium ܩܣܻ

Aluminium Garnet; ݎܧ: ଷܻ݈ܣହ ଵܱଶ) with typical wavelength of  2940 ݊݉ [29]) and 

semiconductor lasers which are commercially available as laser diodes with typical 

wavelengths ranging from 375 ݊݉ to 3500 ݊݉ (e.g.: ܲ݊ܫ ,ܲܽܩ݊ܫ ,ݏܣܽܩand ݏܣܽܩ݊ܫ). 

Lasers have been widely used in a number of areas such as dentistry, 

ophthalmology, oncology, fluid dynamics, military and defence, laser pumping and 

the automotive industry. ܰ݀:  ,lasers are used for soft tissue surgeries in dentistry ܩܣܻ

:ݎܧ  lasers are used for laser resurfacing of human skin (i.e. reduce ܩܣܻ

facial wrinkles and skin irregularities such as blemishes or acne scars) and ܱܥଶ lasers 

are used for industrial applications such as cutting and welding.  

ܰ݀:  lasers which emit light at 1064 ݊݉ is the most common type of lasers. It ܩܣܻ

also has transitions near 940 ݊݉, 1120 ݊݉, 1320 ݊݉ and 1440 ݊݉. For the 1064 ݊݉ 

fundamental of ܰ݀:  laser, the second harmonic wavelength is 532 ݊݉ 1: these ܩܣܻ

wavelength values are used in this thesis. Another feature is that the ܰ݀:  lasers ܩܣܻ

operate in both pulsed and continuous mode. However optical communications 

systems have been revolutionised by the development of the semiconductor laser as a 

pump source.  

 

Optical sensor technology:  

Optical fibre sensors are now commonly employed in monitoring chemical, 

biological or physical changes in a variety of applications. For example, optical 

sensors can provide a wide range of data about environmental conditions, oil reserve 

                                                            
1 Frequency doubling or second harmonic generation (SHG) is a technique used to produce a 
wavelength that is one-half of the fundamental wavelength. See Chapter 3. 
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levels and quality control or detect changes in the electromagnetic waves as they 

interact with a chemical. Optical sensors also enable the integration of chemical 

sensing to ‘lab-on-a-chip’  devices which bring together multiple chemical processes 

on to a single chip, saving on costs and reducing chemical waste [30]. Other 

advantages of optical sensors are increased sensitivity, geometric versatility in that 

fibre sensors can be configured in arbitrary shapes, low power consumption and 

immunity to electromagnetic interference. 

  

1.3 OPTICAL WAVEGUIDES 

An optical waveguide is a structure that guides a light wave by confining it to travel 

along a certain direction. In optical waveguides, light is trapped to the core region 

which is made from a material with index of refraction  ݊௖௢௥௘   by the surrounding 

cladding region which is made from a material with index of refraction  ݊௖௟௔ௗௗ௜௡௚. 

For the propagation of light the condition  ݊௖௢௥௘ ൐ ݊௖௟௔ௗௗ௜௡௚ must be satisfied. 

The relationship between angles of incidence and refraction for a wave imposing on 

an interface between two media with different refractive indices is defined by Snell’s 

law (i.e. law of refraction). This general relationship is expressed by equation (1.1) ; 

݊ଵߠ݊݅ݏଵ ൌ ݊ଶߠ݊݅ݏଶ (1.1) 

where ݊ଵ is the low refractive index, ݊ଶ is the high refractive index, ߠଵ is the incident 

angle and ߠଶ is the refractive angle. Figure 1.3 shows the light ray refracted from a 

low to high refractive index interface. 

 

Figure 1.3 Light ray refracted from a low to high refractive index interface. 
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The concept of light propagation along an optical fibre is the process of Total 

Internal Reflection (TIR) in which light is reflected between the core/cladding 

interfaces. The TIR is an important principle in optical fibres. For the propagation of 

light within an optical fibre, it is necessary to consider the refractive index of the 

dielectric medium. The refractive index of a medium is defined as the ratio of the 

velocity of light in a vacuum to the velocity of light in the medium. There are two 

requirements for the TIR which are; 

 Light ray must travel from a high optically dense medium to low optically 

dense medium. 

 The angle of incidence must be greater than the critical angle. 

 

The behaviour of the incident light ray on the interface between two dielectrics is 

shown in Figure 1.4. 

 

                            (a)                                        (b)                                          (c) 

Figure 1.4 Light ray incident from a high to low refractive index interface [31]. 

 

In Figure 1.4 (a), the light ray is refracted away from the normal as it travels from a 

higher refractive index medium (݊ଶ) to a lower refractive index medium (݊ଵ); in this 

case the incident angle (ߠଵ) is less than the critical angle (ߠ௖). Figure 1.4 (b) shows 

that further increasing the angle of the incident light ray produces an angle of 

refraction (ߠଶ) of 90଴, which is known as the critical angle and the bent light ray lies 

between the two media. When the ߠଵ is further increased the refraction is not possible 

and the light ray is reflected back into the higher refractive index medium (݊ଶ); this 

is shown in Figure 1.4 (c) which satisfies the condition ߠଵ ൐  ௖. This phenomenon isߠ

known as the Total Internal Reflection (TIR). Figure 1.5 shows TIR in an optical 
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fibre. It can be observed that the light, once it is inside, is trapped and confined in the 

guide and propagates in a zig-zag path along the fibre axis.   

 

 

Figure 1.5 Total internal reflection in an optical fibre. 

 

Waveguides can be categorised as one-dimensional (1-D) or two-dimensional (2-D), 

depending on their geometry. An example of a 1-D waveguide is an asymmetric slab 

waveguide, consisting of a thin film deposited on a dielectric slab. The opposite side 

of the film is usually air. Examples of 2-D waveguides are rectangular channel 

waveguides (a rectangular channel embedded in a dielectric slab) and an optical 

fibre. Further, to achieve the desired features in optical integrated circuits and optical 

communication systems, there are many types of optical waveguides which have 

been used, such as Photonic Crystal Fibres, optical fibres, rib waveguides and 

channel waveguides which follow the same wave guiding principles as mentioned 

above.   

 

1.4 OPTICAL NONLINEARITY 

The basic concept of nonlinearity is that the output result of a system is not directly 

proportional to its input and thus in other words, in a real physical system the 

response is not directly proportional to its stimulus. Nonlinear effects in 

electromagnetism have been known for a long time. Nonlinear optics can be used 

with lasers due to their highly directional nature. The nonlinear optical wave can be 

characterised by defining either one of its electric field or magnetic field (and it is 

possible to relate the electric field to the magnetic field with the use of Maxwell’s 

equations which are discussed in Chapter 3).  
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The relationship between the linear polarisation ܲ and the applied electric field ࡱ can 

be represented as [32]; 

ܲ ൌ  (1.2) ࡱ଴߯ሺଵሻߝ

where ߯ሺଵሻ is the linear susceptibility and ߝ଴ is the permittivity of free-space. 

Nonlinear optical effects were introduced by Rev. John Kerr in the 1870s when he 

demonstrated that the refractive index of a number of solids and fluids varies 

proportionally to the square of the DC field: this phenomenon is known as the Kerr 

effect and is observable in liquids and amorphous solids [33]. In the 1890s, Friedrich 

Pockels discovered that the refractive index change in non-centrosymmetric crystal 

material is directly proportional to the applied DC field. 

Since the first invention of the inherently nonlinear lasers in 1960, nonlinear optics 

became a wider field exploiting the high power of the laser. In 1961, Peter Franken 

et al. discovered the Second Harmonic Generation (SHG). The equation (1.3) shows 

the general relationship between the nonlinear polarisation, ேܲ௅, and the electric 

field, [32] ࡱ;  

ேܲ௅ ൌ ࡱ଴൫߯ሺଵሻߝ ൅ ߯ሺଶሻࡱࡱ ൅ ߯ሺଷሻࡱࡱࡱ ൅ ڮ ൯ (1.3) 

 

where ߯ሺ௡ሻ is the nonlinear susceptibility (݊ ൌ 1, 2, 3, …). 

The optical nonlinearities with an instantaneous response based on the ߯ሺଶሻ and ߯ሺଷሻ 

nonlinearity of a medium is known as parametric nonlinearity. Parametric 

nonlinearities give rise to effects such as optical parametric amplification, sum 

frequency generation and SHG which are described in the rest of this section. 

Materials with a lack of inversion symmetry exhibit higher ߯ሺଶሻ nonlinearity. 

 

Parametric amplification:    

In parametric amplification the signal wave (or beam) propagates through the 

nonlinear crystal together with a pump wave (or beam) of shorter 

wavelength. Photons of the pump wave are then converted into low level energy 

signal photons and the same number of so-called idler photons; the photon energies 

of the idler wave are the differences between the photon energies of pump and signal 

Second order nonlinearity Third order nonlinearity 
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waves. Eventually the pump energy is fully converted (i.e. there is no residual pump 

energy) into the energy of signal and idler beams. This phenomenon is shown in 

Figure 1.6.   

 

Figure 1.6 Optical parametric amplification. 

 

In the case without pump depletion, the signal and idler waves establish themselves 

physically as separate beams. However, there are parametric amplifiers with 

depletion where the signal and idler waves are identical, with the same frequency 

and same polarisation. The output signal frequency then becomes exactly half the 

pump frequency (i.e. second harmonic frequency), and the phase relationship 

between signal and pump determines the direction of energy flow (i.e. whether there 

is amplification or de-amplification of the signal) [34, 35]. 

 

Sum frequency generation: 

A sum frequency can occur where two pump beams generate another beam where 

the frequency is the sum of the optical frequencies of the pump beams. i.e., the two 

input photons at angular frequencies ߱ଵ and ߱ଶ are converted completely to energy 

approximately equivalent to the sum of their energies in another photon with the 

angular frequency of ߱ଷ (i.e. ߱ଷ ൌ  ߱ଵ ൅ ߱ଶ). Figure 1.7 shows the principle of sum 

frequency generation [36]. 

 

Figure 1.7 Sum frequency generation. 
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Second Harmonic Generation (SHG): 

Figure 1.8 illustrates the principle of SHG, which is also known as frequency 

doubling. In this process, two photons with an angular frequency of ߱ are effectively 

combined with each other in a nonlinear material (i.e. material which lacks inversion 

symmetry) producing another photon with twice the energy and angular frequency 

(i.e. 2߱) and thus half the wavelength of the initial photons [37]. 

 

Figure 1.8 Second Harmonic Generation. 

 

According to equation (1.3) there can also exist parametric nonlinearities related to 

߯ሺଷሻ known as third order nonlinearity. It can generate effects such as self-phase 

modulation, Four-Wave Mixing and cross-phase modulation etc. which are described 

below. 

 

Self-phase modulation: 

This is a nonlinear effect where light particles interact with each other. In self-phase 

modulation, an intense optical pulse (i.e. ultra-short pulse) propagates through a 

nonlinear medium while it gains an additional phase as a result of the nonlinear 

change in the refractive index due to the Kerr effect [38].  

 

Four-wave mixing: 

This mechanism refers to the interaction of four waves in a nonlinear medium via 

߯ሺଷሻ. Waves having at least two different frequency components ߱ଵ and ߱ଶ (߱ଵ ൏ ߱ଶ) 

propagating together in a nonlinear medium, leads to a refractive index modulation 

at the difference frequency [39]. Therefore, it will create two additional frequency 

components ߱ଷ and ߱ସ where ߱ଷ and ߱ସ can be identified as follows; 

߱ଷ ൌ ߱ଵ െ ሺ߱ଶ െ ߱ଵሻ ൌ 2߱ଵ െ ߱ଶ (1.4) 

߱ସ ൌ ߱ଶ ൅ ሺ߱ଶ െ ߱ଵሻ ൌ 2߱ଶ െ ߱ଵ (1.5) 
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Cross-phase modulation: 

Cross-phase modulation occurs when two or more waves interact in a third order 

medium while the phase of one wave can be modulated by the intensity of the other 

wave(s). Further, in cross-phase modulation the change in the optical phase of a light 

beam occurs due to the interaction with another beam in a nonlinear medium which 

is known as a Kerr medium [40]. 

Overall, the study of nonlinear optics of the second order (e.g. SHG) is particularly 

beneficial for several reasons such as the continuous improvement in materials and 

the feasibility of implementation with nonlinear response devices, e.g. micro and 

nano scale optical waveguides for quasi phase matching.  SHG and quasi phase 

matching are discussed further in Chapter 3. 

 

1.5   PHASE MATCHING 

Phase matching is an important feature in nonlinear optics, especially in parametric 

processes such as sum frequency generation, parametric amplification, Four-Wave 

Mixing (FWM) and Second Harmonic Generation (SHG), in achieving higher 

efficiency. Phase matching means matching the phase velocities of the required wave 

and its driving nonlinear polarisation wave. The key principle behind phase matching 

is that the direction of energy flow between interacting waves (i.e. fundamental and 

harmonic waves) along the propagation direction is determined by the relative phase 

between the nonlinear polarisation and the harmonic field. To achieve such a 

condition, amplitude contributions from different parts of the nonlinear crystal to the 

harmonic wave needs to be in phase at the end of the nonlinear crystal [41]. 

Furthermore, if the fundamental mode and second harmonic refractive indices of the 

crystal are the same, the energy will keep flowing along the propagation direction 

over a long distance. When there is zero phase mismatch, it is possible to achieve an 

effective nonlinear interaction. However, if there is a phase mismatch, then the 

energy will cycle forwards and backwards between the fundamental and the 

harmonics (i.e. frequently reversing the direction) [42].  As an example, the phase 

mismatch in SHG can be represented by equation (1.6) ; 

∆݇ ൌ ݇ଶ െ 2݇ଵ (1.6) 
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where ݇ଵ and ݇ଶ are the wavenumbers of the fundamental and second harmonic 

waves respectively. In equation (1.6) for the ideal case the phase mismatch should be 

zero (i.e.݇ଶ ൌ 2݇ଵ). However, perfect phase matching cannot be realised in practice 

due to chromatic dispersion and Figure 1.9 shows the general case of SHG phase 

mismatch.  

  

 

Figure 1.9 Phase mismatch of SHG. 

 

There are several different methods that have been used to eliminate phase 

mismatching (i.e. phase matching techniques) and increase the efficiency of 

frequency conversion in practice: some of the widely used techniques are;  

- Angle phase matching. 

- Temperature phase matching. 

- Čerenkov phase matching. 

- Quasi phase matching.  

 

These are discussed briefly below.  

 

Angle phase matching:  

The phenomenon of angle phase matching can be divided into two types which are 

known as scalar and vector angle phase matching. Scalar angle phase matching is a 

very common technique used when the interacting waves propagate collinearly. In 

this case the two pump waves have the same polarisation. On the other hand, vector 

angle phase matching is applied when the waves do not propagate collinearly due to 

the orthogonal polarisation of the pump waves. For example, in the case of SHG, in 

scalar phase matching the pump wave is either ordinary or extraordinary, whereas in 
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vector angle phase matching the pump is polarised and one of its orthogonal 

components is ordinary and the other is extraordinary [43]. 

 

Temperature phase matching: 

Temperature phase matching is also known as non-critical phase matching. In 

temperature phase matching, the phase mismatch can be minimised by adjusting the 

operating temperature (as the refractive index is a function of temperature) of the 

crystal so that the phase velocities of the interacting beams become equal. Further, 

the interacting beams are aligned in order to propagate along the propagation axis of 

the nonlinear crystal [44]. 

 

Čerenkov radiation phase matching: 

The basic concept Čerenkov radiation phase matching is as follows. Consider a 

charged particle is travelling in a medium with a velocity exceeding the phase 

velocity of light. However, because of particular conditions, it is possible to achieve 

the emission of radiation, if a charged particle is moving with a constant velocity 

lower than the phase velocity of light. For example, the SHG can be observed in the 

form of Čerenkov radiation due to the phase matching between the guided mode of 

fundamental wave and the radiation mode of the harmonic wave [45]. Moreover, in 

this technique the generated second harmonic wave in the nonlinear crystal guides 

with a phase velocity faster than in the substrate of an optical waveguide.   

 

Quasi phase matching: 

Quasi phase matching is an attractive technique which works by inverting the 

nonlinear susceptibility at every coherence length in crystals with lack of inversion 

symmetry [46]. This technique allows for a phase mismatch over some propagation 

distance in the optical waveguide and then reverses the nonlinear interaction at 

regular intervals (i.e. coherence length) to avoid the interaction with the wrong 

direction of conversion. Further, it is possible to achieve higher power conversion 

efficiency in SHG by using the quasi phase matching technique. Further details are 

given in Chapter 3. 
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1.6 SOLUTIONS FOR OPTICAL WAVEGUIDE PROBLEMS 

Careful analysis of optical waveguides is essential in order to determine the electric 

or magnetic field distribution of the optical fields or the intensity distribution 

associated with the light propagation constants and field profiles of all the modes 

that the waveguide supports within the waveguide structure. This can be achieved by 

solving the well-known Maxwell’s equations on the electromagnetic fields in a given 

structure and satisfying the boundary condition which defines the waveguide cross-

section. However, analysing optical waveguides to implement Maxwell’s equations 

is challenging due to complex structures, arbitrary refractive index distribution 

(graded optical waveguides), anisotropic and non-linear optical materials as well as 

materials with complex refractive index such as semiconductors and metals. 

Numerous analysis methods have been proposed, which fall into the following two 

broad categories: 

- Analytical Approximations 

- Numerical Approximations 

These are briefly discussed below. 
 

1.6.1 Analytical Approximations 

Exact analytical solutions are not always feasible, e.g. if the waveguide has an 

arbitrary refractive index distribution; hence, analytical approximations are widely 

used. Typical applications are in the modelling of optoelectronic waveguides such as 

buried waveguides, rib waveguides, tapers and directional couplers. This group of 

methods has always been very popular with the optoelectronic circuit designers, 

especially before the advent of modern computers. 

Well-known approximation methods used with 2-D waveguides are the Ray 

Approximation Method (RAM) [47] and the Wentzel, Kramers and Brillouin (WKB) 

method [48]. These methods however, do not handle boundary conditions and are 

therefore not suited for the analysis of 3-D waveguides. 

3-D optical waveguides which are commonly used in PICs, require hybrid mode 

analysis as their fields are of hybrid nature. Marcatili’s Method (MM) and the 

Effective Index Method (EIM) are examples of such methods, which are discussed in 

the rest of this section. These techniques however, do not treat these modes as hybrid 
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but often as purely ܶܧ or ܶܯ modes. Hence, their accuracy deteriorates near the cut-

off frequency. 

 

1.6.1.1 Marcatili’s Method 

Marcatili’s Method can be used to calculate the propagation constants and modal 

fields supported by a rectangular dielectric waveguide (i.e. a dielectric rod with a 

rectangular cross-section, surrounded by four different dielectrics of lower refractive 

indices) by approximating to the fields in two slab waveguides, obtained by 

extending the width and the height of the rectangular core to infinity. The waveguide 

is assumed to support a well-confined mode which means only the regions on either 

side of the dielectric rod contain a considerable field and the problem is reduced to 

two slab waveguides, one vertical and the other horizontal. The field is assumed to 

vary sinusoidally in the core region and exponentially in the four cladding regions. 

The axial propagation constant is determined by simultaneously solving two 

transcendental or eigenvalue equations for each slab waveguide. MM works well in 

the regions far from cut-off, but performs poorly near the cut-off region [49]. 

 

1.6.1.2 The Effective Index Method 

The Effective Index Method (EIM), proposed by Knox and Toulios in 1970 [50] is 

an improvement on MM [51] for the analysis of a rectangular waveguide. In this 

approach, the core of the rectangular dielectric waveguide is replaced by two slabs 

where one depends on the other (unlike in MM where the two slabs are mutually 

independent [52]); i.e. the first step solves the transcendental equation for a vertical 

slab waveguide by applying the appropriate boundary conditions. The effective 

index which is calculated is used as the refractive index of the horizontal slab 

waveguide, and by solving the eigenvalue equation a good approximation of the 

effective index of the original waveguide structure can be obtained. As only the 

solutions for slab waveguides are required, this method is significantly more efficient 

than those methods that solve the rectangular structure directly.  

The EIM can be applied to a wide variety of structures, including ridge waveguides, 

diffused waveguides [53], channel waveguides, strip waveguides and arrays of such 

waveguides [54], also for various types of optical fibres and fibre devices [55, 56]. 



Chapter 1 Introduction 

 

20  
 

The drawback is that, as with MM, it does not work very well near the cut-off 

region. Various improvements of the EIM have been proposed over the years such as 

the EIM based on linear combinations of solutions [57, 58] and the EIM with 

perturbation correction [54]. 

 

1.6.2 Numerical Approximations 

Advances in integrated optics mean that it is often necessary to analyse arbitrarily 

shaped dielectric waveguides, which in many cases are also arbitrarily 

inhomogeneous and/or arbitrarily anisotropic. In most cases, such arbitrariness 

makes it difficult to use analytical solutions: numerical solutions should be employed 

instead. 

Numerical techniques can generally be more computationally complex compared to 

analytical methods; however, they are very powerful. Numerical techniques can 

analyse the entire input geometry without having to make assumptions about which 

field interactions are most important. 

Various factors need to be taken into consideration in the selection of an appropriate 

numerical method for a particular waveguide analysis problem. The key factors are 

summarised below [59-61]: 

- the shape of the cross-section of the structure, whether it is curved or 

polygonal or whether it is convex or non-convex.  

- whether a computer program requiring human intervention or some 

exploratory work is needed. 

- whether the method should be programmable to facilitate a wide range of 

structures or it has to be written especially for each region of the structure 

separately. 

- whether the dominant mode only, or a number of the higher order modes 

are required. 

- whether the field distribution and/or the cut-off frequency is/are needed. 

- the level of accuracy needed for eigenvalues and perhaps eigen functions. 

- the accuracy of the method in modelling the dielectric boundaries and 

regions.     
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- the accuracy of the method in specific frequency ranges, e.g. near the cut-

off frequency.  

- whether the method has a mechanism of generating spurious numerical 

solutions and if so whether the method can identify and/or eliminate 

them.  

- the computational efficiency of the method, including its computer 

storage requirements (both volatile and non-volatile). 

- the assumptions and limitations of the method. 

In practice, each method represents some sort of compromise between the above 

aspects and no specific method is superior to the other in all aspects. A selection 

must be made depending on what would be optimal for the scenario at hand. 

Numerical solutions fall into two main categories, i.e. domain solutions and 

boundary solutions. Domain solutions, also called differential solutions, include the 

whole domain of the optical waveguide structure as the operational area, whereas 

boundary solutions, also called integral solutions, include only the boundaries as the 

operational area. Some examples of boundary solutions are the Boundary Element 

Method (BEM), Point-Matching Method (PMM) and Mode-Matching Method 

(MMM). Examples of domain solutions are the Spectral Index Method (SIM), Finite 

Difference Method (FDM), Beam Propagation Method (BPM) and Finite Element 

Method (FEM). Selected important methods are discussed in the rest of this section. 

 

1.6.2.1 The Boundary Element method 

The Boundary Element Method (BEM) is a combination of the conventional 

boundary integral equation method and a discretisation technique [62]. The BEM can 

be applied as a general technique to solve boundary integral equations. The 

derivation of the integral equations with respect to the unknown fields at boundaries 

is obtained by using the method of weighted residuals or Green’s formula. These 

integral equations are then discretised into a set of linear equations to be solved by 

the numerical methods. The main advantage of BEM is that, discretisations are 

restricted only to the boundaries, therefore, data generation becomes much easier and 

it can be used to analyse problems with infinite domains. Further, it is not necessary 

to truncate the domain at a finite distance and impose artificial boundary conditions: 

this is due to the discretisation of elements being confined to the internal boundaries. 
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The BEM can be used for the analysis of arbitrarily shaped discontinuities similar to 

the FEM, with the BEM using far fewer nodes than FEM does. In 1986 Koshiba and 

Suzuki presented a numerical approach based on the BEM for the analysis of 

discontinuity problems in a dielectric slab waveguide for ܶܧ and ܶܯ modes [63]. 

However, the disadvantage is that the BEM can only be applied to homogeneous 

structures [64] due to the matrices involved being dense matrices unlike those in 

FEM which are sparse and highly numerically efficient. 

  

1.6.2.2 The Point Matching Method 

The Point Matching Method (PMM) is a boundary solution technique used for the 

analysis of isotropic homogeneous dielectric waveguides. In 1969, J.E. Goell 

described a computer-based analysis of the propagating modes of a rectangular 

dielectric waveguide [65]. An expansion of the electromagnetic field in terms of a 

series of circular harmonics has been derived based on Goell’s analysis, i.e. Bessel 

and modified Bessel functions multiplied by trigonometric functions. Further, a 

system of linear equations can be obtained by matching the tangential fields at 

optimally selected points around the boundary which is known as ‘matching points’. 

A characteristic equation including the propagation constant is obtained and solved 

for the appropriate eigenvalues by applying the condition of nontrivial solutions. 

Then the original matrix equation can be solved for each mode with the use of 

standard matrix techniques.    

 

The PMM is used for many waveguide structures such as dielectric waveguides with 

arbitrary cross-sections, composite structures and for computing coupling 

coefficients between two rectangular rods. Rotating the grid of equiangularly spaced 

matching points in order to place a matching point at the corner of a rectangular 

dielectric waveguide yields improved results for the PMM [66]. A drawback is that 

the PMM is not suitable in the case of 3-D waveguide structures with 

inhomogeneous index distribution, such as graded index fibres. 

 

1.6.2.3 The Mode Matching Method 

The Mode Matching Method (MMM) is a powerful electromagnetic numerical 

modal analysing technique and is broadly used for simulating different dielectric 



Chapter 1 Introduction 

 

23  
 

waveguide problems and the numerical complexity is significantly lower than in 

other methods [67]. It is also known as the Equivalent Network Method (ENM). In 

MMM, the continuous spectra artificially bound the structure with conducting 

planes. The waveguide structures can be viewed in terms of two basic building 

blocks. These building blocks are uniform regions of the dielectric waveguide 

interfaced by the dielectric step discontinuities. Then each block is analysed 

individually and combined together for the desired structure. Characterising the step 

discontinuities as transformers and the representation of the uniform dielectric 

regions as uniform transmission lines leads to a transverse equivalent network of the 

waveguide structure. Further, the dispersion relation can be derived in order to obtain 

the propagation characteristics of the waveguide. 

Initially, the continuous spectrum [67] and ܶܧ to ܶܯ coupling at the sides of the 

waveguide were neglected in the MMM, due to the artificial bounding of the 

structure. In 1986, Dagli and Fonstad presented a modification where the continuous 

spectra are discretised by converting integrals into summations using suitable basis 

function expansions rather than artificially bounding the structure to discretise the 

continuous modal spectrum [68].   

 

1.6.2.4 The Spectral Index Method 

The Spectral Index Method (SIM) was initially used to analyse propagation 

constants and guided modes of semiconductor rib waveguides [69, 70] and 

semiconductor waveguides with multiple ribs [71, 72]. In SIM, the wave equation is 

expressed in terms of the Fourier transform and the Fourier series. This method 

replaces the original rib structure with an effective structure in order to simplify the 

analysis of the rib waveguide. Then in order to model the penetration of the optical 

field into the cladding, it is necessary to replace the actual physical dimensions by 

new ones where the optical field is zero. The SIM has the ability of expanding the 

field in terms of local modes and matching the fields along the base of the rib. 

Further, the field inside the rib of the waveguide can be represented in terms of trial 

functions. Moreover, the Fourier transform can be applied to reduce the problem to a 

1-D structure, whereas in the rib region the wave equation of ࡴ (magnetic) or ࡱ 

(electric) fields are expanded in the form of a Fourier series. Then the transfer 
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relationship is used to link the two solutions; as a result the propagation constant of 

the original rib waveguide can be determined.  

 

1.6.2.5 The Finite Difference Method 

The Finite Difference Method (FDM) is another versatile numerical technique used 

for analysing dielectric waveguide problems. The FDM involves substituting the 

partial derivatives in the partial differential equation describing the physical process 

by an algebraic approximation based on simple relationships between the values of 

the function of the desired system. Due to the small finite distances between 

consecutive values of the function, this method is known as FDM. Further, the FDM 

is an ideal candidate for modelling inhomogeneous media and complicated 

boundaries by discretising a cross-section of the system. In order to apply the FDM 

to a dielectric waveguide, the following steps are needed [73]; 

I. Generate a grid (i.e. mesh) for the desired system. 

II. Substitute the derivatives in an ordinary or partial differential system of 

equations with finite difference schemes. Then the ordinary or partial 

differential equation(s) become(s) a linear or nonlinear system of 

algebraic equations. 

III. Solve the system of algebraic equations. 

IV. Implement and test the computer code. 

Moreover, the accuracy of the FDM depends on the size of the mesh, the order of the 

finite difference scheme used and the nature of the electromagnetic field (scalar or 

vector).  

 

1.6.2.6 The Beam Propagation Method 

The Beam Propagation Method (BPM) is the most powerful technique used for 

investigating linear and nonlinear lightwave propagation phenomena in 

longitudinally varying waveguides and has been first applied in optoelectronics in 

the early 1980s [74]. Initially, the BPM was based on the Fast Fourier Transform 

(FFT) where the wave propagation is analysed only for scalar solutions by 

considering paraxial approximation in weakly-guiding waveguides. In 1996, Tsuji 

and Koshiba presented the unified Finite Element Beam Propagation Method (FE-
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BPM) for the both ܶܧ and ܶܯ modes in strongly-guiding longitudinally varying 

optical waveguides [75]. Then in 2000, Obayya et al. presented a full vectorial BPM 

for 3-D optical waveguides. Further discussions on the BPM and its importance for 

this work are presented in Chapter 2. 

 

1.6.2.7 The Finite Element Method 

The Finite Element Method (FEM) is a versatile and accurate method for the 

stationary analysis of optical waveguides. The FEM is capable of analysing the 

behaviour of the modes in optical waveguides with arbitrary and complicated cross-

sectional geometries. In the FEM, the domain of the problem is discretised into small 

elements. Then the problem is approximated in each element then connected at the 

nodal points to solve the system domain. In 1984 Rahman and Davies introduced the 

FEM for integrated optical waveguides with infinite elements and the elimination of 

the spurious solutions by using a penalty term in the variational expression [76-78]. 

Further discussions, including the derivation of FEM, are presented in Chapter 2.    

 

1.7  AIMS AND OBJECTIVES 

The work undertaken was designed to address a number of the ‘gaps’ in current 

knowledge and was thus motivated by research into more practical implementation 

of SHG optical waveguides. Specifically the focus was on the need to maximise the 

power conversion efficiency and the distance along the waveguide before which the 

SH output power starts to drop (the coherence length). The research showed that 

these two aspects could be enhanced by optimising the optical waveguide structures 

(for example in terms of the nature of the structure and/or its dimensions and the 

materials from which it is made) in order to achieve a better coherence length (i.e. 

distance for which both the fundamental and SH are in phase).  The work has shown 

that however, there is a trade off between these two aspects and hence this leads to 

an optimisation problem where the optimum solution can best be determined by the 

target practical application of the waveguide. 
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In light of the above, the specific objectives of the work carried out were as follows: 

(i) To produce a stationary analysis of different types of optical waveguides 

using different materials by implementing the Finite Element Method 

(FEM) based on the rigorous full vectorial ࡴ-field formulation.  

 

(ii) To develop the scalar and full vectorial Beam Propagation Method (BPM) 

in order to analyse guided wave propagation in hexagonal Photonic Crystal 

Fibres (PCFs), Equiangular Spiral Photonics Crystal Fibres (ES-PCFs) and 

waveguides. 

 

(iii) To investigate Second Harmonic Generation (SHG) in nonlinear materials 

such as ܱܵ݅ଶ, ܵ57ܨ and ܼܱ݊ and their crystal orientations; also to optimise 

second harmonic output power with the use of the Quasi Phase Matching 

(QPM) technique and by adjusting the poling direction.    

 

(iv) To apply the methods developed in (i) and (ii) to study the behaviour of the 

second harmonic output power in optimised structures of hexagonal PCF 

and ES-PCF with ܱܵ݅ଶ and ܵ57ܨ materials and ܼܱ݊ waveguides. 

 

(v) To investigate error tolerances of the coherence length and the fabrication 

errors in the QPM technique. 

 

(vi) To report the results of these investigations to the community through 

papers published in the international journals. 

 

1.8 THESIS OVERVIEW 

The author of this thesis carried out the research presented on the rigorous analysis 

of optical waveguides using ࡴ-field based full vectorial finite element methods 

(FEM) and finite element-beam propagation method (FE-BPM) techniques. The 

work reported in this thesis has been mainly devoted to the study of the nonlinear 

phenomenon of second harmonic generation (SHG) in different optical waveguides 

with dielectric materials.  
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The thesis has been structured as follows.  In Chapter 1 a review of the research 

carried out in the optoelectronics field and reported in the literature is given and 

provides the context for the research carried out by the author. Further, the 

fundamental aspects of the physics of the optical waveguides are presented, followed 

by a brief discussion of the field of integrated optics and their applications. Particular 

emphasis has been given to specific topics such as “optical nonlinearity” and “phase 

matching” due to the importance of their contribution to second harmonic generation 

in optical waveguides. Further, the basics of several important numerical methods 

are discussed, considering both stationary and guided propagation of the optical 

waves. 

In Chapter 2, a detailed derivation of the full vectorial FEM is presented. Further, its 

application to dielectric optical waveguides is given, this being followed by a brief 

background to the method. Further, the elimination of spurious modes by introducing 

the “penalty function” is described. The full vectorial BPM and its origins are 

presented later in this chapter. The derivation of guided-wave formulation and finite 

element approach are also considered. 

Chapter 3 presents results on SHG together with the studies on second order 

nonlinear susceptibility in different materials and with different crystal orientations. 

Thorough discussions of the coherence length, quasi-phase matching and poling 

techniques are also discussed. Following that, a thorough discussion of the 

significance of the poling direction of optical waveguides is presented. Based on 

these, the choices of the poling method and type of material to be used for the 

development of the SHG in optical waveguides are then justified. The last section of 

this chapter derives the scalar BPM for SHG with and without pump depletion and 

also the full vectorial BPM. 

Chapter 4 outlines the considerations that have led to the selection of the novel ES-

PCF design concept which was originated at City University London (CUL) and 

shows how the relevant parameter values were optimised to obtain the maximum 

second harmonic power conversion efficiency. Detailed results obtained are 

compared to those from hexagonal PCF designs. Further, the results of numerical 

simulations using conventional optical fibre are considered and then validated. This 
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chapter also includes numerical studies for the determination of QPM in PCFs and 

ES-PCFs and the effect of fabrication errors is also presented.  

In Chapter 5, SHG in ܼܱ݊ planar optical waveguides is described. In particular the 

implementation of full vectorial BPM for the analysis of second harmonic output 

power is given in this chapter. Further, a comparison between the normalised power 

conversion efficiency of the optimised ܼܱ݊ planar optical waveguide structure and 

that of Lithium Niobate (LN) optical waveguide is also presented. 

Chapter 6 represents a summary of the achievements of the work of the author which 

are presented in this thesis. This chapter also draws conclusions from the research 

carried out and presents suggestions for potential future work, focusing mainly on 

the improvements to achieving better SHG in dielectric optical waveguides. 
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Chapter 2 

 

 

 

 

 

 

 

 

2 Numerical Methods 
                     

Numerical algorithms are widely used to analyse complex engineering systems. The 

Finite Element Method (FEM) and the Beam Propagation Method (BPM) are the 

two major numerical paradigms used in this thesis, the former for the stationary 

analysis of the optical waveguides and the latter for the study of the electromagnetic 

wave propagations. This chapter will describe the FEM and BPM methods in 

Sections 2.1 and 2.2 respectively. This is followed by the power calculation of 

optical waveguides in Section 2.3. 

 

2.1 THE FINITE ELEMENT METHOD 

This section first introduces the Finite Element Method (FEM) in the context of this 

thesis, briefly discussing the evolution and applications of FEM. Following this, the 

relevant basic equations and variational formulations are presented in Sections 2.1.5 

and 2.1.6 respectively. Then the formulation of FEM is discussed in Section 2.1.9.
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2.1.1 Overview of Finite Element Method 

The FEM has been the dominant and arguably the most powerful numerical method 

in computational mechanics for many decades. It has been successfully applied to 

solve problems encountered in many engineering disciplines such as fluid dynamics, 

heat conduction, aeronautical, biomechanical and electromagnetics. 

The FEM is a very powerful numerical technique for solving geometrically 

complicated systems. The basic concept in the FEM is to find a solution for a 

complicated system by replacing it with a finite number of well defined elements or 

sub-regions. The method consists of two distinct features over other numerical 

methods. First, a physical system is identified as a collection of non-intersecting 

simple sub domains or finite elements, and is applied to the main domain to 

approximate the solution which provides a systematic approach to the piecewise 

approximation of the unknown function. Second, the solution of the governing 

equations is approximated over each element by a linear combination of algebraic 

polynomials. The solution of the system is approximated for each element, and 

connected at the nodal points of each element to produce the solution for the system 

in the entire analysis domain. Therefore, FEM is applicable in the analysis of the 

electromagnetic field in complicated domain structures. The behaviour of the field 

variable within a finite element can be approximated by a simple function. These 

approximating functions (also known as interpolation functions) are defined in terms 

of the values of the field variables at each the nodal points of each element in the 

domain structure. Therefore, the unknown variables of the field equations will be the 

nodal values of the field variable. The nodal values will be known by solving the 

field equations in the form of matrix equations, and then all of the element 

contributions to the entire domain are assembled to form the functional. 

Furthermore, it is possible to minimise the possible error in the solution by 

employing more elements and thus reducing the element size in the system. The rest 

of this section presents the evolution, problem-solving steps, applications, equations 

and different methods of the FEM.  
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2.1.2 The Evolution of FEM 

The basic concept originating the FEM dates back to early 1940s. Mathematicians 

and engineers have applied different techniques to solve the governing equations of a 

complicated system through a discretisation process. The FEM was first initiated by 

the German mathematician Richard Courant in 1943  through the use of piecewise 

continuous functions defined over a triangulated domain to approximate numerical 

problems [79]. In 1956, M. J. Turner, R. W. Clough, H. C. Martin, and L. J. Topp 

from the Boeing Aircraft Company established a broader approach to the FEM. They 

utilised FEM to investigate the structural dynamics problems in aircraft models [80]. 

Further, in 1959 J. Greenstadt employed a discretisation technique to divide the 

domain into “cells” instead of points, and assigned a different function to each cell 

by applying the variational principle. The method then reduces a continuous problem 

to a discrete one [81].     

In the 1960s, the FEM was applied to the world of engineering by R. W. Clough 

[82]. Since then the name FEM has become the most versatile analytical method 

among engineers and mathematicians. During this period, the use of FEM in the 

structural analysis method was first demonstrated in solving the stresses and 

displacements in continuous structures. Since the late 1960s the mathematical 

literature on the FEM has received widespread acceptance in engineering.  

 

2.1.3 Problem solving steps in Finite Element Method 

Certain steps can be defined for the formulation of the FEM of a physical system 

common to structural, heat transfer, fluid flow or some other engineering systems: 

these steps are; 

i. Discretisation of the domain structures: the first step is to divide the structure 

or the system into subdivisions or elements. When analysing a complex 

system, it is necessary to consider various factors such as type, size, number 

and the pattern of arranging the elements. 

ii. Selection of interpolation function: the interpolation function analyses the 

variation of the field within each element. The field variable may be scalar or 

vector. The displacement solution of a complex system cannot be predicted 

exactly under any specific load conditions. Therefore, it can be assumed that 
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some suitable solution exists within an element to approximate the unknown 

solution. The assumed solution should satisfy certain convergence 

requirements. In general, polynomials are used as interpolation functions for 

the field variations in order to reduce the complexity of the integration and 

the differentiation.    

iii. Derivation of the matrix equations: once the assumed displacement model 

has been established by employing the interpolation function and the 

elements, it is possible to derive the matrix equation by utilising the 

properties of the individual elements. 

iv. Assemblage of element equations to obtain the overall system equations: The 

element equations for each element in the finite element network (commonly 

referred to as ‘mesh’) are assembled into a set of global equations that model 

the properties of the entire complex system. The behaviour of the matrix 

equations is similar to that of the individual element, except that they consist 

of an extra term to represent all the nodes. 

v. Application of boundary conditions: the global equations have to be modified 

to account for the boundary conditions of the system before obtaining the 

solution. The solution cannot be obtained unless boundary conditions are 

applied. They reflect the known values for certain primary unknowns.   

vi. Computation of system equations: The assembly process produces a set of 

simultaneous equations. Then the simultaneous equations are solved for the 

primary unknown nodal values of the system. Linear or nonlinear ordinary 

differential equations are used to solve the unsteady systems where the 

unknown nodal values are a function of time; whereas linear or nonlinear 

algebraic equations are used to solve steady systems. 

The above steps can be followed in order to numerically analyse one-dimensional 

(i.e. planar) and two-dimensional optical waveguides. 

 

2.1.4 Applications of FEM 

Depending on the nature of the problem, applications of FEM can be categorised into 

three: they are;  
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 Equilibrium (i.e. steady-state) or time-independent problems: For the 

solution of equilibrium problems in the solid mechanics area, it is important 

to calculate the steady-state displacement or stress distribution, and 

temperature or heat flux distribution if it is a heat transfer problem; similarly, 

pressure or velocity distribution if it is a fluid mechanics problem.  

 Eigenvalue problems: These are also time-independent and considered to be 

an extension of equilibrium problems. These are discussed in Section 2.1.6 

for the purpose of numerical analysis and characterisation of optical 

waveguides with one dimensional and two dimensional cross-sections. 

 Propagation or transient problems: These are time-dependent problems. 

Problems of this type are encountered when finding the response of a 

structure under a time-varying force or under sudden heating or cooling 

variations in the field of heat transfer. These problems can be solved by 

applying the time dimension to the first two categories. 

 

2.1.5 Basic Equations for lightwaves 

This section discusses the fundamentals of lightwaves based on Maxwell’s equations 

and the boundary condition, both of which are important aspects when devising 

mathematical solutions to optical waveguide problems. 

 

2.1.5.1 Maxwell’s Equations 

Maxwell’s equations explain the complete behaviour of the electromagnetic fields. 

Maxwell’s equations can be expressed in the form of a differential equation and an 

equivalent integral equation. The FEM is mainly applied by solving the differential 

form of Maxwell’s equations.  

The differential version of Maxwell’s equations in a time-varying electromagnetic 

field is stated in equation (2.1) to equation (2.4) ; 

׏ ൈ ࡱ ൌ െ
࡮߲
ݐ߲

             ሺFaraday′s lawሻ (2.1) 

 

׏ ൈ ࡴ ൌ െ
ࡰ߲
ݐ߲

൅ ሺAmpere′s     ࡶ lawሻ (2.2) 
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.׏ ࡰ ൌ ሺGauss′s                        ߩ lawሻ (2.3) 

 

.׏ ࡮ ൌ 0                        ሺGauss′s law for magneticsሻ (2.4) 

where, 

ࡱ ൌ electric field intensity (Volts / meter) 

ࡴ ൌ magnetic field intensity (Amperes / meter) 

ࡰ ൌ electric flux density (Coulombs / meter2) 

࡮ ൌ magnetic flux density (Webers / meter2) 

ࡶ ൌ electric current density (Amperes / meter2) 

ߩ ൌ electric charge density (Coulombs / meter3) 

By using Ampere’s law (2.2) and Gauss’s law (2.3) , the current continuity equation 

(2.5) can be derived, which explains the local conservation of electric charge; 

.׏ ࡶ ൌ
െ߲ߩ

ݐ߲
 (2.5) 

The electric field ࡱ and the magnetic filed ࡴ vectors are related through the 

constitutive equations, which explain the behaviour of the electromagnetic field in 

materials. The constitutive relations are; 

ࡰ ൌ  (2.6) ࡱߝ

 

࡮ ൌ  (2.7) ࡴߤ

where ߝ is the permittivity (measured in Farad/meter) and ߤ is the permeability 

(measured in Henry/meter) of the medium and can be defined as; 

ߝ ൌ  ௥ (2.8)ߝ଴ߝ

 

ߤ ൌ  ௥ (2.9)ߤ଴ߤ

where ߝ଴, ߝ௥, ߤ଴ and ߤ௥ are the permittivity of the vacuum (8.854 ൈ 10ିଵଶ 

Farad/meter), the relative permittivity of the medium, the permeability of the 
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vacuum (4ߨ ൈ 10ି଻ Henry/meter) and the relative permeability of the medium 

respectively. 

The behaviour of the electric and magnetic fields given time-varying charges and 

current distributions is discussed as follows. Assume a complex time dependence 

through the factor ݁ሺ௝ఠ௧ሻ, where ݆ is the imaginary part, ߱ is the angular frequency 

and ݐ is the time. The differential form of Maxwell’s equations can be written as; 

׏ ൈ ࡱ ൌ െ݆߱(2.10) ࡮ 

 

׏ ൈ ࡴ ൌ ࡰ݆߱ ൅  (2.11) ࡶ

 

׏ · ࡰ ൌ  (2.12) ߩ

 

׏ ൈ ࡮ ൌ 0 (2.13) 

Therefore, the current continuity equation can be written as; 

׏ ൈ ࡶ ൌ െ݆߱(2.14) ߩ 

 

2.1.5.2 Boundary conditions 

Electromagnetic problems often involve media with different physical properties, 

therefore it is necessary to analyse the relationship of the electromagnetic field 

quantities at an interface between two media. Maxwell’s equations are employed to 

study electromagnetic fields and it must satisfy the boundary conditions that are 

applicable at the interfaces between two media.  Figure 2.1 shows the boundary 

between two media, i.e. medium 1 and medium 2. As shown, the unit vector ࢔ is 

normal to the surface and pointing from medium 1 to medium 2. 

 

 
 
 
 
 
 
 
 

 
Figure 2.1 Boundary conditions at the interface between two media. 

,ଶߝ  ଶ         medium 2ࡴ ,ଶࡱ ,ଶߤ

,ଵߝ  ଵ         medium 1ࡴ ,ଵࡱ ,ଵߤ

࢔
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In the interface between medium 1 and medium 2 with no surface charges (ߩ ൌ 0) 

and no surface currents (ܬ ൌ 0), the fields must satisfy the following conditions (also 

known as field continuity conditions); 

i. The tangential components of the electric field ࡱ must be continuous. 

࢔ ൈ ሺࡱ௧ଵ െ ௧ଶሻࡱ ൌ 0 (2.15) 

Therefore the tangential component of the electric field in medium 1 (ࡱ௧ଵ) and the 

tangential component of the electric field in medium 2 (ࡱ௧ଶ) become equal.    

ii. The tangential components of the magnetic field ࡴ must be continuous. 

࢔ ൈ ሺࡴ௧ଵ െ ௧ଶሻࡴ ൌ 0 (2.16) 

Similarly, tangential magnetic fields for both medium 1 and medium 2 become equal 

௧ଵࡴ) ൌ  .(௧ଶࡴ

iii. The normal components of the electric flux density ࡰ must be continuous. 

࢔ · ሺࡰ௡ଵ െ ௡ଶሻࡰ ൌ 0 (2.17) 

Hence, ࡰ௡ଵ ൌ  ௡ଶ are the normal components of the electric fluxࡰ ௡ଵ andࡰ ௡ଶ whereࡰ

densities in medium 1 and medium 2 respectively. From equation (2.6)  ௡ଵࡱଵߝ , ൌ

௡ଵࡱ ௡ଶ. Hence, theࡱଶߝ ്  ௡ଶ. Therefore, the normal components of the electric fieldࡱ

vectors in medium 1 and medium 2 become unequal at the boundary.  

iv. The normal components of the magnetic flux density ࡮ must be continuous. 

࢔ · ሺ࡮ଵ െ ଶሻ࡮ ൌ 0 (2.18) 

Hence, ࡮௡ଵ ൌ  ௡ଶ are the normal components of the magnetic࡮ ௡ଵ and࡮ ௡ଶ where࡮

flux densities in medium 1 and medium 2 respectively. From equation (2.7)  , 

௡ଵࡴଵߤ ൌ  are (௥ߤ) ௡ଶ. In dielectric optical waveguides the relative permeabilitiesࡴଶߤ

equal to one. Therefore the relative permeabilities in medium 1 and medium 2 satisfy 

the condition ߤ௥ଵ ൌ ௥ଶߤ ൌ 1. Hence, the normal components of the magnetic field 

vectors in medium 1 and medium 2 become equal at the boundaries. 
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Further, the boundary condition can be categorised into two sections. Assume in 

Figure 2.1, either medium 1 or medium 2 becomes a perfect electric conductor then 

the boundary condition can be written as; 

࢔ ൈ ࡱ ൌ 0   or    ࢔ · ࡴ ൌ 0 (2.19) 

To satisfy equation (2.19) , the magnetic field vector ࡴ has to be vanishing while the 

normal components of the electric field vector ࡱ become continuous at the boundary. 

This is known as the electric wall boundary condition. 

Similarly, when either of the media becomes a perfect magnetic conductor then the 

boundary condition can be written as; 

࢔ ൈ ࡴ ൌ 0   or    ࢔ · ࡱ ൌ 0 (2.20) 

In the same way, to fulfil equation (2.20)  , the normal components of the magnetic 

field ࡴ must be continuous and the electric field vector ࡱ vanishes at the boundary. 

This is known as the magnetic wall boundary condition. 

 

2.1.6 Variational formulations 

There are two ways to realise the FEM: they are known as Variational Formulation 

and Weighted Residual method. The Weighted Residual method directly utilises the 

differential equation and boundary conditions, whereas Variational Formulation 

utilises a functional related to the differential equation and boundary conditions. The 

Weighted Residual method solutions are intuitive and simple. Variational 

Formulation, while much less intuitive, is more advantageous as the underlying 

theory is more involved. Therefore, Variational Formulation is an ideal technique to 

solve a wide range of electromagnetic problems, if possible. The scalar field 

approximation [83] and the vector field formulation [76, 84, 85] are two types of 

Variational Formulations which are used in FEM in this thesis and are described in 

Section 2.1.6.1 and Section 2.1.6.2 respectively.  

In general Variational Formulation is transformed into a standard eigenvalue 

problem when it is applied in the FEM. This can be written as a matrix eigenvalue 

equation as follows; 
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ሾ࡭ሿሼݔሽ െ ሽݔሿሼ࡮ሾߣ ൌ 0 (2.21) 

where ሾ࡭ሿ and ሾ࡮ሿ are complex, non Hermitian and non symmetric matrices. The 

eigenvalue ߣ may be ݇଴
ଶ (݇଴ free-space wavenumber) or ߚଶ (where ߚ is the 

propagation constant) depending on the Variational Formulation and ሼݔሽ is the 

eigenvector representing the unknown nodal field values. For a rigorous and efficient 

solution, the resulting matrix equation has to be of the canonical form shown in 

equation (2.21)  . It can be solved in many ways to obtain the different modal 

eigenvalues and associated eigenvectors. Furthermore, the assembly of  ሾ࡭ሿ and ሾ࡮ሿ 

matrices are presented in Appendix 2. 

 

2.1.6.1 The scalar field approximation 

Scalar field approximation can be applied in many optical waveguide problems in 

order to obtain a practically acceptable solution. In this approximation method, the 

field components are split into two subcomponents which are known as Transverse 

Electric (ܶܧ) and Transverse Magnetic (ܶܯ) modes. This method can be applied to 

analyse the modes mainly as ܶܧ or ܶܯ modes. Therefore, this method is the simplest 

form of the different Variational Formulations. In 1982, Koshiba et al. described an 

approximate scalar finite element analysis of anisotropic optical waveguides [83]. 

The main advantages of scalar field approximation are, 

 Less computational time 

 No spurious modes 

 The capability of easily computing higher order modes 

 Smaller matrix dimensions 

In 1981, Mabaya et al. described the computation of finite element analysis of 

optical waveguides and the accuracy of the both ܶܧ and ܶܯ modes approximated by 

two different finite element programs [86]. The scalar field approximation for the 

 ;modes is based on the following functional ܯܶ

ሺࣘሻࡶ ൌ ඵ
1

݊ଶ ቈ൬
߲߶
ݔ߲

൰
ଶ

൅ ൬
߲߶
ݕ߲

൰
ଶ

൅ ሺߚଶ െ ݇଴
ଶ݊ଶሻ߶ଶ቉

Ω
 (2.22) ݕ݀ݔ݀

where ߚ, ݊, and ݇଴ are propagation constant, refractive index profile and free-space 

wavenumber respectively.   
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In equation (2.22)  Ω denotes the cross-sectional domain and the integration is carried 

out over the domain Ω. A finite element program based on this functional yield  ߚଶ as 

the eigenvalue of the matrix equation for a given ݇଴. The eigenvector ߶ሺݔ,  ሻ is theݕ

transverse field distribution, i.e. ܪ௫ field component for the quasi- ܶܯ modes.  

Similarly, the scalar field approximation for the ܶܧ modes is based on the following; 

ሻ࣒ሺࡶ ൌ ඵ ቈ൬
߲߰
ݔ߲

൰
ଶ

൅ ൬
߲߰
ݕ߲

൰
ଶ

൅ ሺߚଶ െ ݇଴
ଶ݊ଶሻ߰ଶ቉

Ω
 (2.23) ݕ݀ݔ݀

In equation (2.23) , the eigenvector ߰ሺݔ,  ௫ܧ .ሻ is the transverse field distribution, i.eݕ

field component for the quasi- ܶܧ modes. Similar to equation (2.22) a finite element 

program based on equation (2.23) yields ߚଶ as the eigenvalue of the matrix equation 

for a given ݇଴.  

 

2.1.6.2 The vector field formulation 

Vector field formulation facilitates finding the mode spectrum of an optical 

waveguide in an efficient and robust manner. In the inherently hybrid mode of 

anisotropic or inhomogeneous waveguides, implementation of the scalar field 

approximation is insufficient. The vector field formulation is able to provide all six 

electromagnetic field components [87, 88] in wave propagation problems. The main 

advantage of the vector field formulation is that it generates an enhanced solution 

convergence for some modal types than with scalar field approximation. However, 

when computing some vector formulations, the correct modes can be mixed with 

spurious modes.  

The vector field formulation is used for different types of FEMs, depending on the 

electromagnetic fields (ࡱ and ࡴ) which are used for formulation: these types are; 

i. FEM using the six electromagnetic field components (ࡱ and ࡴ). 

ii. FEM using the three magnetic field components (ࡴ). 

iii. FEM using the three electric field components (ࡱ). 

iv. FEM using longitudinal or axial electromagnetic field components (ܧ௭ ൅  .(௭ܪ

v. FEM using transverse electromagnetic field components (ܶܧ and ܶܯ).    

vi. FEM using transverse electric field components (ܶܧ). 

vii. FEM using transverse magnetic field components (ܶܯ). 
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Because of the flexibility of the vector field formulation, it has been prominent in 

many numerical analyses. The FEM using the longitudinal (axial) electromagnetic 

field components (ܧ௭ and ܪ௭) is one of the first formulations used [89-92]. The 

application of the ܧ௭൅ܪ௭ formulation [86] in general anisotropic problems without 

altering its standard form of the eigenvalue equation (2.21) is not possible. Also, 

satisfying the boundary conditions using the ܧ௭൅ܪ௭ formulation for a waveguide 

with an arbitrary dielectric distribution is not straightforward. However, this method 

is used for microwave guides where ܶܧ or ܶܯ modes can have either ܧ௭ or ܪ௭. 

In 1987, Angkaew et al. introduced the Variational Formulation for FEM in terms of 

 field components [93]. The disadvantage of this method is that the ܯܶ and ܧܶ

computational cost of transverse formulation is very high due to its additional 

complexity in differentiation [94].  

The vector field formulation has been presented in the form of Rayleigh quotients for 

loss free resonators and microwave waveguides in terms of the ࡴ-field, ࡱ-field or a 

combination by Berk in 1956 [95]. A similar vector variational formulation was 

derived by Morishita in 1977 [84].      

A vector ࡱ-field formulation based on the three electric field components has been 

applied in the literature to analyse cylindrical waveguides [88] and optical fibres [96, 

97]. This formulation is only valid for general anisotropic lossless waveguide 

problems. However, one must ensure the continuity of the tangential electric field 

components at the dielectric interface. Further, the natural boundary conditions 

correspond to a magnetic wall in the vector ࡱ-field formulation; therefore, it is 

essential to enforce the electric wall (࢔ ൈ ࡱ ൌ 0) as a boundary condition which is 

difficult to implement for irregular-shaped structures. 

 

2.1.6.3 The vector H-field formulation 

The vector ࡴ-field formulation appears to be the most accurate method for general 

anisotropic optical waveguide problems with hybrid modes and dominant transverse 

components. Further, the literature contains various ways of eliminating spurious 

solutions for this method [76]. 
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The vector ࡴ-field formulation involves terms of all three magnetic field 

components, which gives an advantage over all other formulations. This formulation 

is valid for general anisotropic problems with a non-diagonal permittivity tensor [76, 

77, 98]. The natural boundary conditions correspond to those of the electric wall 

࢔) ൈ ࡱ ൌ .࢔ ,0 ࡴ ൌ 0); therefore, boundary conditions do not require to be enforced at 

the boundaries. Further, in dielectric waveguides, the permeability is always 

assumed to be that of free space; hence, all the components of ࡴ are continuous 

across the dielectric interface which means the variation of the refractive index does 

not need to impose interface boundary conditions.  

The vector ࡴ-field formulation can be written as [78, 95]; 

߱ଶ ൌ
׏ሺ׬ ൈ כሻࡴ · 1

ൗ̂ߝ · ሺ׏ ൈ ሻ݀Ωࡴ

׬ כࡴ · ߤ̂ · ࡴ ݀Ω
 (2.24) 

where ̂ߝ and ̂ߤ are the permittivity and permeability tensors respectively and ߱ is the 

angular frequency. The integration is carried out over the waveguide cross-section Ω. 

In order to solve equation (2.24) the Rayleigh-Ritz procedure can be applied, which 

leads to a similar eigenvalue problem as in equation (2.21) where ሾ࡭ሿ and ሾ࡮ሿ are 

complex, non Hermitian and non symmetric matrices. The Hermitian matrices ሾ࡭ሿ 

and ሾ࡮ሿ can be transformed to real symmetric matrices for a lossless problem. In 

general, the matrices ሾ࡭ሿ and ሾ࡮ሿ are quite sparse. The eigenvector ሼݔሽ represents the 

unknown field components at the nodal points for different modes with ߣ 

(wavelength) as their corresponding eigenvalues and ߣ is proportional to ߱ଶ. In order 

to obtain a solution for a given ߣ, the propagation constant ሺߚሻ has to be changed 

iteratively until the output eigenvalue corresponds to the desired ߣ. However, the 

resulting solution normally tends to be a combination of correct modes and spurious 

ones: Section 2.1.8 discusses ways to address this problem. 

 

2.1.6.4 Natural Boundary Condition 

Natural boundary condition is the boundary condition which, as the name suggests, 

is ‘naturally’ or automatically satisfied by a particular Variational Formulation [99-

101]. The natural boundary conditions of the scalar functional are ሺ1 ⁄ଶ࢔ ሻሺ߲߶ ⁄࢔߲ ሻ 

(for ܶܯ modes) and ሺ߲߰ ⁄࢔߲ ሻ (for ܶܧ modes) according to equation (2.22) and 
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equation (2.23) respectively, where ࢔ is the unit vector normal to the surface of the 

boundary. 

 

The boundary condition in the vector ࡴ-field formulation equation (2.24) has the 

natural boundary condition of an electric wall, i.e. ࢔ · ࡴ ൌ 0. Therefore, imposing a 

boundary condition is not necessary. However, if necessary, it is possible to enforce 

the natural boundary condition, e.g. to reduce the matrix order. In some cases, it may 

even be necessary to alter the natural boundary condition by introducing an 

additional surface integral around the desired boundary. Waveguide symmetry 

should be exploited where possible: it may be necessary to consider complementary 

symmetry conditions in order to obtain all the modes though this exploitation makes 

the process computationally efficient. 

 

2.1.7 Analysis of Optical Waveguides  

Electromagnetic waveguide analysis can be categorised as follows; 

i. one dimensional (1D) 

ii. two dimensional (2D) 

Figure 2.2 (a) shows a 1D waveguide (i.e. planar or axially symmetrical) while (b) 

shows a 2D waveguide (i.e. arbitrary shaped) where ݊ଵ and ݊ଶ are the refractive 

index of material one and material two respectively. 

 

 
 
 
 
 
 
 
 

   (a) Planar Waveguide.                                        (b) Arbitrarily-shaped waveguide. 

Figure 2.2 Optical waveguides. 

The methods used to analyse an optical waveguide can be categorised as follows; 

i. Scalar approximation 

ii. Vector formulation 

n1 

n2 

n1 n1 

n2 

n1 
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The choice depends on the eigenmode property of the waveguide. For 1D 

waveguides, the Scalar approximation is sufficient while for 2D waveguides, the 

Scalar approximation can be applied to analyse one field component at a time (i.e. 

 mode). The Vector formulation can be applied to analyse 2D ܯܶ mode or ܧܶ

waveguides more rigorously, e.g. the modes generated in the waveguide shown in 

Figure 2.2 (b) are hybrid modes; therefore, the Vector Formulation needs to be used 

for precise evaluation of their modal properties.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3 Optical waveguide with arbitrary cross-section with different materials. 

Figure 2.3 shows an optical waveguide with arbitrary cross-sectional shape 

consisting of different materials. These materials can be described by the arbitrary 

permittivity ߝ and ߤ tensors, which could be linear, nonlinear, isotropic, anisotropic 

lossy or lossless. Here ߝଵ could be anisotropic or ߝଷ may be nonlinear or complex and 

,ݔଶሺߝ  ሻ may have a diffused profile. The waveguide is assumed to be uniform alongݕ

the direction of propagation (i.e. ݖ - axis). Assuming the time ሺݐሻ and the ݖ variation 

to be given by ݁ሺ௝ఠ௧ሻ and ݁ሺି௝ఉ௭ሻ functions respectively, the electric and magnetic (ࡱ 

and ࡴ) fields can be written as; 

  

,ݔሺࡴ ,ݕ ,ݖ ሻݐ ൌ ,ݔሺࡴ ሻݕ ݁௝ሺఠ௧ିఉ௭ሻ (2.25) 

 

,ݔሺࡱ ,ݕ ,ݖ ሻݐ ൌ ,ݔሺࡱ ሻݕ ݁௝ሺఠ௧ିఉ௭ሻ (2.26) 

where ߱ is the angular frequency and the ߚ is the propagation constant. 

ଷߝ

 ଵߝ ,ݔଶሺߝ ሻݕ
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2.1.8 Spurious Solutions 

As mentioned earlier, Vector Field Formulation produces non-physical or spurious 

modes in addition to physical or true modes. Spurious modes do not exist in a Scalar 

approximation as the operator is positive definite, which is not the case with a Vector 

Field Formulation: spurious modes can spread all over the eigenvalue spectrum, with 

some of them appearing below any true modes and some in between [76, 78].  

 

For electromagnetic waveguide problems, spurious modes do not arise if the trial 

field precisely satisfies ׏. ࡮ ൌ 0 [86, 102, 103]. In the Vector ࡴ-field formulation, 

this divergence-free condition ሺ׏. ࡮ ൌ 0ሻ is neither implied nor forced [76, 103] 

which may be the cause of these spurious modes. 

 

The identification of spurious modes among the physical modes can be difficult. 

When a set of eigenmodes is computed, sometimes spurious modes can be spotted 

by their eigenvectors, where the field varies in a random way along the cross-section 

of the waveguide. The Penalty Function Method, introduced by Rahman and Davies 

[77], facilitates a way to formally distinguish between physical and spurious modes. 

The scheme works as follows. The value of ׏.  for each eigenvector of interest is ࡴ

calculated over the guide cross-section; only solutions with a low value of ׏.  will ࡴ

be considered as real modes as an eigenvector of a physical mode should satisfy 

ሺ׏. ࡮ ൌ 0ሻ. The values of ׏.  are calculated from the discrete nodal field values ࡴ

obtained after the solution of the eigenvalue equation (2.21) .  

 

In order to eliminate the spurious modes, an additional integral is added to the 

original functional (2.24) which satisfies ׏. ࡴ ൌ 0. The augmented functional can be 

written as; 

߱ଶ ൌ
׏ሺ׬ ൈ כሻࡴ · 1

ൗ̂ߝ · ሺ׏ ൈ ሻ݀Ωࡴ ൅ ቀ α
ε଴

ቁ ׏ሺ׬ · כሻࡴ · ሺ׏ · ሻ݀Ωࡴ

׬ כࡴ · ߤ̂ · ࡴ ݀Ω
 (2.27) 

where ߙ is the dimensionless penalty coefficient. The value of ׏. ࡮ ൌ 0 can be 

estimated to be around 1 ⁄௚ߝ , where ߝ௚ is the dielectric constant of the guide core. It 

is also found that this penalty function method considerably improves the quality of 

the field eigenvectors. Another advantage is that it does not increase the matrix order 

of the eigenvalue problem and the additional computational cost is negligible [77]. 
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The literature also contains alternative ways of eliminating spurious modes, and one 

is the technique of working with scalars which can reduce the amount of 

computation and eliminate spurious modes, albeit at the expense of accuracy. 

Another approach which completely eliminates spurious modes is the use of the ࡴ-

field formulation in terms of the transverse magnetic field components [104]. The ࡴ௫ 

and ࡴ௬ field components are represented in the order of the elemental shape 

functions; however, ࡴ௭ involves a stage of differentiation and is thus more 

approximately represented. 

 

2.1.9 Formulation of FEM 

As discussed in Section 2.1.3, the fundamental concept of the FEM is to find the 

solution to a complicated problem by dividing it into many small elements that can 

be solved in relation to each other. Therefore it is necessary to analyse the 

discretisation of the system domain, the behaviour of the field in each element by 

using the shape functions and the application of the element and global matrices.  

 

2.1.9.1 Finite Element Discretisation 

An appropriate basis of piecewise functions is used in the discretisation process. The 

term ‘element’ generally refers to a set basis functions used in FEM. There are many 

types of elements which can be used in various types of problems such as one, two 

and three dimensional elements. Figure 2.4 shows a one dimensional or linear 

element which can be used if the geometry, material properties and the field variable 

of the problem are described in terms of only one spatial coordinate.  

 

 
 
 
 
 

Figure 2.4 One dimensional element. 

 

The two dimensional elements can be used when the configuration of the problem 

can be described in terms of two independent spatial coordinates.  

 

node 2

node 1
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Figure 2.5 shows some examples of two dimensional elements. The simplest type is 

the triangle linear plane element, which is employed in this thesis: here, each 

triangular element consists of three nodal points. Further, note that the accuracy of 

the approximate solution can be improved by increasing the number of elements 

during the process of discretisation. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.5 Two dimensional elements. 

 

Figure 2.6 shows an example of the finite element discretisation of an optical 

waveguide with an arbitrary cross-section, using triangular elements. As explained 

throughout this thesis, it is very convenient and efficient to analyse the field 

behaviour and material properties in each element of the finite element mesh rather 

than analysing the cross-section as a whole. Therefore, the shape function has been 

utilise in order analyse the behaviour of the field in each triangle and the derivation 

of the shape function is presented in Appendix 2. 
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Figure 2.6 Finite element discretisation of an irregular waveguide cross-section. 

 

 

2.1.9.2 The Infinite Elements 

In general open-type waveguides the problem domain is represented by filling 

orthodox elements up to a chosen boundary. This simple method is susceptible to 

significant errors being generated if the boundary is too close, hence requires the 

consideration of excessively large domains. One solution is to recursively shift the 

virtual boundary wall until a criterion for maximum field strength is satisfied. 

Rahman and Davies [76] presents a rather elegant solution which adds infinite 

elements along the outer boundary of orthodox elements as shown in Figure 2.7: for 

a typical rectangular dielectric waveguide problem, a quarter of the structure is 

discretised into orthodox and infinite elements by assuming two fold symmetry. The 

advantage of this concept comes from the fact that the computational domain is 

extended to infinity without increasing the matrix order, thus causing almost no 

change in the computational complexity.  

element 

x 

y 
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Figure 2.7 Discretisation of a dielectric waveguide with orthodox and infinite 
elements. 

 

The shape functions of the infinite elements should decay exponentially in the 

direction where the field extends to infinity. If an element is extended to infinity in 

the positive ݔ -direction, the following shape function can be considered; 

ܰሺݔ, ሻݕ ൌ ௬ܰሺݕሻ · ௫ܰሺݔሻ ൌ ௬ܰሺݕሻ · ݁ሾି௫ ௅ೣ⁄ ሿ (2.28) 

 

where ܮ௫ is the decay length in the ݔ-direction. ܮ௫ represents the decaying behaviour 

of the field outside the core region and depends on the structure under consideration. 

Further, elements can extend in the ݕ-direction or both directions in a similar pattern 

to equation (2.28) [76]. 

 

2.2 THE BEAM PROPAGATION METHOD 

This section first introduces beam propagation algorithms including their evolution 

in Section 2.2.1. This is followed by the derivation of the Finite Element Approach 

in Section 2.2.3. 

 

2.2.1 Overview of Beam Propagation Algorithms 

The Beam Propagation Method (BPM) is a numerical technique for analysing the 

guided wave propagation of an optical waveguide in the axial direction (i.e. direction 

ݕ

ݔ

Infinite Elements 

Orthodox Elements 
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of propagation). Since the late 1970s, BPMs have been widely used to analyse 

integrated photonic circuits and fibre optics [74, 105].  

Initially a number of assumptions have been made to BPM in order to reduce the 

complexity of its implementation without compromising the accuracy. For instance, 

it is possible to reduce the dimensionality of the partial differential equations to 

minimise the computational resources required. Various numerical techniques have 

been developed to implement BPM such as Fast Fourier Transform BPM (FFT-

BPM), Finite Difference BPM (FD-BPM) and Finite Element BPM (FE-BPM). The 

FFT-BPM was widely used until the FD-BPM was developed [105]. However, in 

FFT-BPM it is assumed that the variation of refractive index in the transverse 

direction is very small. Therefore, the application of FFT-BPM is limited to 

waveguides with small refractive index discontinuities. Further, FFT-BPM can only 

be analysed for scalar wave propagation.  

In 1986, Hendow and Shakir introduced the FD-BPM for the first time [106] in order 

to solve the paraxial scalar wave equation through cylindrically symmetric 

structures. The scalar FD-BPM is computationally efficient and has advantages over 

many numerical implementations [107, 108]. In 1990 Hayata et al. introduced a 

technique called split-step procedure which is a combination of FEM and Finite 

Difference method. In the split-step procedure the FEM is applied to the waveguide 

cross-section, while the Finite Difference method is applied to the propagation 

direction of the waveguide [109]. Hence, the split-step procedure significantly 

enhances the computational efficiency.  

The Finite Difference Crank-Nicolson scheme which is the first approach to analyse 

the vector light wave propagation was introduced in 1991 by Clauberg and Allmen 

[110]. This method has the ability to analyse the vector characteristics that are 

inherent in light wave propagation through inhomogeneous anisotropic media. The 

semi vectorial BPM was introduced in 1993 by Liu et al.[111]. This method can 

distinguish between two orthogonal polarisation modes ܶܧ and ܶܯ. Numerically 

efficient full vectorial Finite Element BPM (FE-BPM) has been introduced by 

Polstyanko et al. in 1996 [112] with electric field formulation. Later in 2000 [113] 

Obayya et al. presented the full vectorial FE-BPM for three-dimensional (3-D) 

optical waveguides by using transverse magnetic field components. In addition, 
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Perfectly Matched Layer (PML) has also been incorporated in the algorithm in order 

to absorb the unwanted radiation out of the computational domain [113-115] which 

is described in Section 2.2.2. 

In this thesis, the FE-BPM algorithms have been used to analyse the scalar and full 

vectorial light wave propagation in photonic crystal fibres, also nano-scale optical 

waveguides.  

 

2.2.2 Perfectly Matched Layer 

In numerical simulations the boundaries must be considered in order to form a 

practical solver. Therefore, the Perfectly Matched Layer (PML) is used as an 

artificial absorbing layer for escaping waves [116]. Generally in the FEM and BPM, 

boundary conditions assign the field to be zero just outside of the region under 

consideration. In the FDM and FEM, the PML is commonly used to truncate the 

computational regions to simulate problems with open boundaries. The PML is 

designed so that the waves incident upon it from a non-PML medium does not 

reflect at the interface, which helps distinguish it from an ordinary absorbing 

material. This also means the PML can strongly absorb outgoing waves from the 

interior of a computational region without reflecting them back into the interior. In 

1994 Berenger formulated the PML by using Maxwell’s equation for the first time. 

Figure 2.8 shows an optical waveguide cross-section with different PML regions. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.8 Optical waveguide cross-section with different PML regions. 
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 In Figure 2.8, ݔ and ݕ are the transverse directions while ݖ is the propagation 

direction. Ωଶ and Ωଵ are the PML along the ݔ and ݕ directions respectively, Ωଷ 

denotes the four corners of the PML region, Ω represents the computational domain, 

 denotes ࢃ are the width and height of the computational domain and ࢟ࡴ and ࢞ࢃ

both the width and height of the four corners of the PML. 

From the Maxwell’s equations (i.e. equations (2.10) and (2.11)  ); the vector wave 

equation based on the magnetic field vector, ࡴ can be derived as follows; 

׏ ൈ ሺ݊ିଶ׏ ൈ ሻࡴ െ ݇଴
ଶࡴ ൌ 0 (2.29) 

where ݇଴ and ݊ are the free space wavenumber (݇଴ ൌ ߱ඥߤ଴ߝ଴ ൌ ߨ2 ⁄ߣ ) and the 

refractive index respectively and the del operator ׏ can be defined as follows;    

ൌ׏ ௫ߙෝ࢞
߲

ݔ߲
൅ ௬ߙෝ࢟

߲
ݕ߲

൅ ௭ߙොࢠ
߲

ݖ߲
ൌ ௧׏ ൅ ௭ߙොࢠ

߲
ݖ߲

 (2.30) 

where ࢞ෝ, ࢟ෝ and ࢠො are the unit vectors in the ݕ ,ݔ and ݖ directions respectively and ߙ௫, 

 ௭ are parameters associated with the PML boundary condition which can beߙ ௬ andߙ

defined as; 

i. region Ω (computational domain)    : ߙ௫ ൌ 1 and ߙ௬ ൌ 1 

ii. region Ωଵ(PML regions normal to ݔ direction) : ߙ௫ ൌ ௬ߙ ௧ andߙ ൌ 1 

iii. region Ωଶ(PML regions normal to ݕ direction) : ߙ௫ ൌ 1 and ߙ௬ ൌ  ௧ߙ

iv. region Ωଷ      : ߙ௫ ൌ ௬ߙ ௧ andߙ ൌ  ௧ߙ

where the parameter ߙ௭ is set to unity. Then the necessary condition for PML can be 

derived as [116, 117]; 

α௧ሺݐ ൌ ݔ ݎ݋ ሻݕ ൌ 1 െ ݆
ଶߩߣ3

ଷ݀݊ߨ4 ݈݊ ൬
1
ܴ

൰ (2.31) 

where ݊ is the refractive index, ߩ is the distance from the inner PML interface, ߣ is 

the wavelength, ݀ is the thickness of the PML which is constant in all directions and 

ܴ is the reflection coefficient. Due to these PML arrangements in different regions, 

the radiation waves from the computational domain are absorbed irrespective of the 

angle they hit the PML.  
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2.2.3 Finite Element Approach 

The first step when numerically analysing an optical waveguide is that the cross-

section of the waveguide is discretised into first order triangular elements. The 

Galerkin’s procedure (Derivation of Guided wave formulation and Galerkin’s 

procedure presented in Appendix 2) has been used to convert the differential 

equation problem into a discrete problem.  

Subsequently, the whole cross-section of the computational window be divided into 

a number of triangular elements. Then the transverse magnetic field envelopes can 

be represented over each element (݁ሻ in terms of the shape functions ( ௜ܰ), which can 

be written as follows;   

߶௫
௘ሺݔ, ,ݕ ሻݖ ൌ ෍ ݄௫௜ሺݖሻ

ଷ

௜ୀଵ

௜ܰሺݔ,  ሻ (2.32)ݕ

߶௬
௘ሺݔ, ,ݕ ሻݖ ൌ ෍ ݄௬௜ሺݖሻ

ଷ

௜ୀଵ

௜ܰሺݔ,  ሻ (2.33)ݕ

where ௜ܰሺ௫,௬ሻ are shape functions (local for each element) and ݄௫௜ሺݖሻ and ݄௬௜ሺݖሻ 

denote the element nodal values of the ݔ and ݕ components of the magnetic field, 

respectively. By substituting equation (2.32) and (2.33) into equations (A2.63) and 

(A2.64) the following equation can be derived; 

ሾࡹሿ
݀ଶሼࢎ௧ሽ

ଶݖ݀ െ 2݆݊଴݇଴ሾࡹሿ
݀ሼࢎ௧ሽ

ݖ݀
൅ ሺሾࡷሿ െ ݊଴

ଶ݇଴
ଶሾࡹሿሻሼࢎ௧ሽ ൌ ሼ0ሽ (2.34) 

where ሼ0ሽ is a column vector with all zero entries, and  

ሼࢎ௧ሽ ൌ ൜
݄௫ሺݖሻ
݄௬ሺݖሻൠ ൌ ෍

ە
ۖۖ
۔

ۖۖ
ۓ

݄௫ଵ
݄௫ଶ
݄௫ଷ
݄௬ଵ

݄௬ଶ

݄௬ଷۙ
ۖۖ
ۘ

ۖۖ
ۗ

௘

 (2.35) 

where ݄௫ሺݖሻ and ݄௬ሺݖሻ are the nodal values of the ݔ and ݕ components of the 

magnetic field over the whole domain. The global matrix ሾࡹሿ can be represented as a 

summation of the corresponding matrices; 
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ሾࡹሿ ൌ ෍ሾࡹሿ௘ ൌ ෍ ቈ
ሾࡹ௫௫ሿଷൈଷ ሾ0ሿଷൈଷ

ሾ0ሿଷൈଷ ௬௬൧ࡹൣ
ଷൈଷ

቉
௘௘

 (2.36) 

similarly, the global matrix ሾࡷሿ can be represented as follows; 

ሾࡷሿ ൌ ෍ሾࡷሿ௘ ൌ ෍ ൥
ሾࡷ௫௫ሿଷൈଷ ௫௬൧ࡷൣ

ଷൈଷ

௬௫൧ࡷൣ
ଷൈଷ

௬௬൧ࡷൣ
ଷൈଷ

൩
௘௘

 (2.37) 

In equations (2.36) and (2.37)  , ∑ ሾࡹሿࢋࢋ  and ∑ ሾࡷሿࢋࢋ  represent the contribution of all 

element matrices into the global matrix. The derivation of the matrices ሾࡹ௫௫ሿ, ൣࡹ௬௬൧, 

ሾࡷ௫௫ሿ, ൣࡷ௬௬൧, ൣࡷ௫௬൧ and ൣࡷ௬௫൧ are presented in Appendix 2. 

Further, a computationally efficient matrix solver based on LU-decomposition is 

used to store the sparse global matrices ሾࡹሿ and ሾࡷሿ. Equation (2.34) can also be 

used as a semi-vectorial magnetic field formulation where the hybrid nature of the 

field and the polarisation coupling is not very strong. Therefore, the global matrix 

ሾࡷሿ can be reduced to two wave equations for ܪ௫ and ܪ௬ by neglecting ൣࡷ௫௬൧ and 

 ௬௫൧ matrices. However, in the cases of weakly guiding waveguides the polarisationࡷൣ

dependence can be neglected, thus, ሾࡷ௫௫ሿ and ൣࡷ௬௬൧ can also be reduced to one 

matrix ሾࡷ௧௧ሿ (see Appendix 2). Hence, the equation (2.34) can be reduced to a scalar 

magnetic field formulation for ܪ௫ and ܪ௬.     

The Padé approximation has been applied to the equation (2.34) by neglecting the 

second order ݖ derivative (߲ଶ ⁄ଶݖ߲ ൎ 0) [118]. The Padé approximation can be 

reduced to a paraxial approximation which is only valid for the cases where the 

propagation of light is very near to the ݖ-axis (propagation axis), which is called zero 

order Padé approximation. In paraxial approximation, it is also necessary to assume 

that the envelope of the electric field changes slowly in the ݖ-direction (propagation 

direction) for accurate approximation. However in the case of optical waveguides 

which guide the light at a large angle in the ݖ-direction (wave propagating off the 

propagation direction), leading to wide-angle approximation (higher order Padé 

approximation). Therefore, ߲ଶ ⁄ଶݖ߲  is required for wide-angle approximation. Hence, 

the computational requirements for wide-angle approximation increase significantly. 

In this thesis, paraxial approximation has been used for simulation experiments. 

Equation (2.34) can be re-arranged in the following form; 
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െ2݆݊଴݇଴ሾࡹሿ
݀ሼࢎ௧ሽ

௜ାଵݖ݀
ൌ െ

ሺሾࡷሿ െ ݊଴
ଶ݇଴

ଶሾࡹሿሻሼࢎ௧ሽ

1 െ 1
2݆݊଴݇଴

݀
௜ݖ݀

 (2.38) 

By assigning ݅ ൌ 0 in equation (2.38)  , ݀ ⁄ݖ݀ ൌ 0, then the recurrence Padé 

approximation can be written as; 

െ2݆݊଴݇଴ൣࡹ෩ ൧
݀ሼࢎ௧ሽ

ݖ݀
൅ ሺሾࡷሿ െ ݊଴

ଶ݇଴
ଶሾࡹሿሻሼࢎ௧ሽ ൌ ሼ0ሽ (2.39) 

 

 

where, 

෩ࡹൣ ൧ ൌ ሾࡹሿ ൅
1

4݊଴
ଶ݇଴

ଶ ሺሾࡷሿ െ ݊଴
ଶ݇଴

ଶሾࡹሿሻ (2.40) 

The paraxial equation can be expressed by substituting ሾࡹሿ into ൣࡹ෩ ൧.    

Applying Finite Difference Method (FDM) to equation (2.39) results in; 

ሾ࡭ሿ௞ሼࢎ௧ሽ௞ାଵ ൌ ሾ࡮ሿ௞ሼࢎ௧ሽ௞ (2.41) 

with, 

ሾ࡭ሿ௞ ൌ െ2݆݊଴݇଴ൣࡹ෩ ൧
௞

൅ ሿ௞ࡷሺሾݖ∆ߠ െ ݊଴
ଶ݇଴

ଶሾࡹሿ௞ሻ (2.42) 

 

ሾ࡮ሿ௞ ൌ െ2݆݊଴݇଴ൣࡹ෩ ൧
௞

൅ ሺߠ െ 1ሻ∆ݖሺሾࡷሿ௞ െ ݊଴
ଶ݇଴

ଶሾࡹሿ௞ሻ (2.43) 

where ∆ݖ is the propagation step size in the ݖ- direction, and the subscripts ݇ and 

݇ ൅ 1 denote the quantities related to the ݇௧௛ and  ሺ݇ ൅ 1ሻ௧௛ propagation steps 

respectively. ߠ is an artificial parameter ሺ0 ൑ ߠ ൑ 1ሻ;  ߠ ൌ 0, 0.5 and 1 for Forward 

Difference, Crank-Nicolson (CN) and Backward Difference schemes, respectively 

[99]. Further, the Forward Difference scheme is conditionally stable whereas the CN 

and Backward Difference schemes are unconditionally stable. For both CN and 

Backward Difference schemes, the exact choice of the parameter value is not crucial 

provided the values are within the range 0.5 ൑ ߠ ൑ 1. In this thesis the CN scheme 
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ሺߠ ൌ 0.5ሻ has been adopted for numerical simulations of unconditionally stable 

systems. 

 

2.3 POWER CALCULATION 

Electromagnetic waves carry energy as they propagate through an optical 

waveguide. Therefore, the electromagnetic waves play a vital role in the transport of 

energy and analysing their power is essential. For instance, when studying the 

Second Harmonic Generation (which will be discussed in Chapter 3), it is crucial to 

analyse the amount of power at the fundamental wavelength that has been transferred 

to the second harmonic wavelength. The rate of energy propagation per unit area (i.e. 

power flow density) is described by the vector ࡿ which is known as Poynting vector 

[53].  

ࡿ ൌ ሺכࡱ ൈ ሻࡴ ܹ ݉ଶ⁄  (2.44) 

From Maxwell’s equations, the transverse electric field components can be derived 

in terms of the magnetic field components as; 

௫ܧ
כ ൌ െ

1
ߝ݆߱

௭ܪ߲
כ

ݕ߲
൅

ߚ
ߝ߱

௬ܪ
 (2.45) כ

 

௬ܧ
כ ൌ

1
ߝ݆߱

௭ܪ߲
כ

ݔ߲
െ

ߚ
ߝ߱

௫ܪ
 (2.46) כ

Then equation (2.45) and equation (2.46) are  applied to the ݖ- component of the 

Poynting vector equation (2.44) in order to calculate the power along the propagation 

direction. Further, the shape function has been used to numerically analyse the power 

inside each triangle of the optical waveguide. The derivation of the power 

calculation is further discussed in Appendix 3. 
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2.4 SUMMARY 

In this chapter, a Finite Element Method (FEM) based approach using the 

Variational Formulation has been presented to create the modal solutions of various 

optical waveguides.  In addition, the derivation of electromagnetic wave equations 

from Maxwell’s equations has been presented. Various aspects of the 

implementation of the FEM including domain discretisation, the use of different 

scalar and vector formulations, the use of boundary conditions, shape functions and 

the assembly of matrices have been discussed. The elimination of spurious fields by 

using the penalty term in the vector ࡴ-field formulation has also been discussed. 

Further, an elegant solution for infinite elements for an open boundary optical 

waveguide has been presented.   

In addition, the BPM has been discussed as a tool for the numerical analysis of the 

electromagnetic wave propagation. The implementation of PML as an artificial 

absorbing layer and incorporated within the guided wave equations has been 

presented. Finally, a calculation of the power of the electromagnetic waves 

considered by using Poynting’s theorem has been discussed. Thus in summary, this 

chapter provides a fundamental basis for the numerical methods that have been 

developed and applied in this research and which are presented in Chapter 3. Here, 

the application of the FEM in conjunction with the BPM is utilised for the analysis 

of the Second Harmonic Generation of optical waveguides in different dielectric 

materials.
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Chapter 3 

 

 

 

 

 

 

 

 

3 Second Harmonic Generation 
 

Guided wave Second Harmonic Generation (SHG) devices implementing compact 

short wavelength coherent light sources are useful across a range of optoelectronic 

applications. SHG is a nonlinear effect that comes into play with the use of 

sufficiently intense electromagnetic fields. This chapter will discuss different 

materials demonstrating SHG and their crystal orientations that would optimise the 

SHG, in Section 3.2 and Section 3.6 respectively. Numerical analysis of SHG with 

Scalar and Full-Vectorial Beam Propagation Methods are explained in Section 3.7 

and Section 3.8 respectively. 

 

3.1 INTRODUCTION 

Second Harmonic Generation (SHG) which is also known as ‘frequency doubling’ 

was first demonstrated in the early 1960s by Franken et al. [119, 120]. SHG is a 

nonlinear process, in which two photons with equal frequencies propagating through 

a nonlinear material which has non-inversion symmetry (i.e. non-centrosymmetric) 

effectively interact with each other and produce a new photon with twice the energy. 

Therefore, the frequency of the new photon is twice that of the original photons (i.e. 

the wavelength is half). In other words, the fundamental pump wave generates 
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nonlinear polarisation in the nonlinear material and radiates an electromagnetic field 

with doubled frequency. Then the pump wave transfers the energy to the second 

harmonic wave and the pump wave becomes depleted. During this process the 

intensity of the second harmonic wave gradually builds up by transferring energy 

from the pump wave: this is called ‘power conversion’. There has been a growing 

interest in this phenomenon in many practical applications. Figure 3.1 shows the 

concept of SHG.  

 

 
 

Figure 3.1 Second Harmonic Generation in a nonlinear material. 
 

SHG in non-inversion symmetric (non-centrosymmetric) materials such as silica 

(ܱܵ݅ଶ) and Zinc Oxide (ܼܱ݊) have been used in many optoelectronic devices. 

Generally, SHG is non-existent in silica due to its inversion symmetry. However, 

early 1980s experiments on ܱܵ݅ଶ-based optical fibres have shown that SHG exists 

when the neodymium-doped yttrium aluminum garnet (ܰ݀:  laser with 1064݊݉ (ܩܣܻ

intense pump pulses is applied [121-123]. In 1986, Osterberg and Margulis 

discovered that the second harmonic power grows considerably by exposing the 

single mode optical glass fibres to pump radiation for several hours (reaching 

saturation in about 10 hours); and the SHG power conversion efficiency is found to 

exponentially grow over more than 4 orders of magnitude. A maximum power 

conversion efficiency of 3% was observed during this process [124]. Since then, 

research on SHG in optical glass fibres such as Photonic Crystal Fibres (PCF) has 

been extensive. SHG in PCF with silica and silica-based materials is presented in 

Chapter 4. 

 

Zinc Oxide is a highly nonlinear non-centrosymmetric material which is used in 

many optical waveguide SHG applications such as thin films [125], nanorods [126] 

and nanowires [127]. Numerical analysis of SHG in Zinc Oxide optical devices is 

presented in Chapter 5. 
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3.2 SECOND ORDER NONLINEAR SUSCEPTIBILITY 

Through SHG, an optical wave of fundamental frequency ߱ propagating through a 

dielectric material is converted to a wave of second harmonic frequency 2߱. This is a 

result of the induced non-linear polarisation caused by the non-inversion symmetry 

of the material [128]. The induced non-linear polarisation ( ேܲ௅) in a crystal can be 

mathematically represented as follows [32, 129]; 

ேܲ௅ ൌ ࡱ଴൫߯ሺଵሻߝ ൅ ߯ሺଶሻࡱࡱ ൅ ߯ሺଷሻࡱࡱࡱ ൅ ڮ ൯ (3.1) 

where ߝ଴ is the permittivity of free space. The second term in equation (3.1) 

represents second order nonlinearity. Therefore, second harmonic ேܲ௅ is proportional 

to the second order nonlinear susceptibility ߯ሺଶሻ and the square of the applied electric 

field (ࡱ) as follows; 

ேܲ௅ ൌ  ൯ (3.2)ࡱࡱ଴൫߯ሺଶሻߝ

In this nonlinear process, electromagnetic fields exchange energy between the 

fundamental and second harmonic frequencies: this represents the phenomenon 

known as SHG. However, only materials possessing non-inversion symmetry have a 

non-vanishing second order susceptibility tensor term. In general, the induced 

nonlinear polarisation can be written in the following matrix form [130]; 

ேܲ௅ ൌ ቎
௫ܲ

௬ܲ

௭ܲ

቏ ൌ ଴ߝ ൥
݀ଵଵ ݀ଵଶ ݀ଵଷ
݀ଶଵ ݀ଶଶ ݀ଶଷ
݀ଷଵ ݀ଷଶ ݀ଷଷ

݀ଵସ ݀ଵହ ݀ଵ଺
݀ଶସ ݀ଶହ ݀ଶ଺
݀ଷସ ݀ଷହ ݀ଷ଺

൩

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ

݁௫
ଶ

݁௬
ଶ

݁௭
ଶ

2݁௬݁௭

2݁௭݁௫
2݁௫݁௬ے

ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (3.3) 

where ௫ܲ, ௬ܲ and ௭ܲ are the components of the nonlinear polarisation, ݀௜௝(݅ ൌ

1 … 3, ݆ ൌ 1 … 6) are nonlinear susceptibility tensors and ݁௫, ݁௬ and ݁௭ are amplitudes 

of the ݕ ,ݔ and ݖ components of the electric fields, respectively. Nonlinear 

susceptibility tensors in equation (3.3) are unique for each material with specific 

symmetry groups.   
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3.2.1 Second order nonlinear susceptibility in Silicon Dioxide 

Silicon Dioxide (ܱܵ݅ଶ or silica) has been used in many photonics applications (e.g. 

Photonic Crystal Fibres) and optical telecommunications because of its superior 

optical properties such as low loss and low fabrication cost. In general silica is a 

centrosymmetric material [32]. However, SH can be induced in silica by applying 

the thermal poling technique which is described in Section 3.5 [131]. Poled silica can 

be considered as belonging to the group symmetry ܥஶ௠௠. From equation (3.3) the 

second order nonlinear susceptibility matrix for silica can be written as follows; 

ேܲ௅ ൌ ቎
௫ܲ

௬ܲ

௭ܲ

቏ ൌ ଴ߝ ൥
0 0 0
0 0 0

݀ଷଵ ݀ଷଶ ݀ଷଷ

0 ݀ଵହ 0
݀ଶସ 0 0

0 0 0
൩

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ

݁௫
ଶ

݁௬
ଶ

݁௭
ଶ

2݁௬݁௭

2݁௭݁௫
2݁௫݁௬ے

ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (3.4) 

According to the Kleinman symmetry condition the number of independent elements 

of the second order nonlinear susceptibility can be reduced [129]. Therefore, the 

second order nonlinear susceptibilities for ݕ ,ݔ and ݖ directions in silica are given by; 

ேܲ௅ ൌ ቎
௫ܲ

௬ܲ

௭ܲ

቏ ൌ ଴ߝ ൥
0 0 0
0 0 0

݀ଷଵ ݀ଷଵ ݀ଷଷ

0 ݀ଷଵ 0
݀ଷଵ 0 0

0 0 0
൩

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ

݁௫
ଶ

݁௬
ଶ

݁௭
ଶ

2݁௬݁௭

2݁௭݁௫
2݁௫݁௬ے

ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (3.5) 

Hence, the nonlinear polarisation for ݕ ,ݔ and ݖ can be written as, 

ேܲ௅ ൌ ቎
௫ܲ

௬ܲ

௭ܲ

቏ ൌ ଴ߝ ቎

2݀ଷଵܧ௫ܧ௭
2݀ଷଵܧ௬ܧ௭

݀ଷଵܧ௫
ଶ ൅ ݀ଷଵܧ௬

ଶ ൅ ݀ଷଷܧ௭
ଶ

቏ (3.6) 

In equation (3.6) the ݀ଷଵ value is ~ 0.07 ݉݌/ܸ and the ݀ଷଷ value is ~ 0.22 ݉݌/ܸ 

[132]. 

 

3.2.2 Second order nonlinear susceptibility in Lead Silicate glass 

Commercially available Lead silicate glass also known as ܵ57ܨ (manufactured by 

Schott) exhibits the highest nonlinearity among the other available lead silicate 
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glasses. ܵ57ܨ has many advantages such as the possibility of fabricating complex 

optical waveguides like Photonic Crystal Fibres (PCFs) with the extrusion technique 

glass is essentially formed by ܱܵ݅ଶ and lead oxide (ܾܱܲ) with a 40% 57ܨܵ .[133] െ

50% lead (ܾܲ) cationic content [134]. Further, large permanent second order 

nonlinear susceptibility values such as ݀ଷଷ~ 0.35 ݉݌/ܸ and ݀ଷଵ~ 0.12 ݉݌/ܸ can be 

achieved by electron-beam irradiation [135]. As with ܱܵ݅ଶ, Silica based ܵ57ܨ also 

belongs to the group symmetry of ܥஶ௠௠. Therefore, the nonlinear polarisations for ݔ, 

  .directions are similar to those of ܱܵ݅ଶ (i.e. equation (3.6) ) ݖ and ݕ

 

3.2.3 Second order nonlinear susceptibility in Zinc Oxide 

In general ܼܱ݊ has a higher refractive index than those of ܱܵ݅ଶ and ܵ57ܨ, allowing 

for a tighter mode confinement. ܼܱ݊ is also a highly nonlinear material with a non-

centrosymmetric structure and has group symmetry of ܥ଺௩. Furthermore, ܼܱ݊ is an 

easy to handle, non-toxic material and SHG in ܼܱ݊ has been widely used in many 

areas such as optical waveguide devices and cell imaging. The second order 

nonlinear susceptibilities of ܼܱ݊ are ݀ଷଷ~ 18.0 ݉݌/ܸ and ݀ଵହ ൌ ݀ଷଵ ൌ  ܸ/݉݌ 2.88

[126]. These values are significantly higher than those of ܱܵ݅ଶ and ܵ57ܨ. Therefore, 

ܼܱ݊ exhibits high SHG compared to other centrosymmetric materials (i.e. ܱܵ݅ଶ and 

After applying Kleinman symmetry conditions, i.e. ݀ଷଵ .(57ܨܵ ൌ ݀ଵହ, the nonlinear 

polarisations for ݕ ,ݔ and ݖ directions are similar to those of ܱܵ݅ଶ (i.e. equation (3.6) 

) where the non-vanishing components are ݀ଵହ, ݀ଶସ ൌ ݀ଵହ, ݀ଷଶ ൌ ݀ଷଵ and ݀ଷଷ. 

3.3 COHERENCE LENGTH 

In this section the coherence length of the optical waveguides is discussed, which is 

an important parameter when it comes to the practical implementation of the SHG in 

optical waveguides. The fundamental and second harmonic waves accumulate a 

phase shift of ߨ over a distance known as the coherence length (ܮ௖) after which the 

power exchange process reverses and the power reaches zero after another ܮ௖. Here 

௖ܮ ൌ ߨ ⁄ߚ∆  and ∆ߚ ൌ ଶఠߚ െ  ଶఠ are the propagation constants ofߚ ఠandߚ ఠ, whereߚ2

the fundamental and second harmonic frequencies respectively. Quasi Phase 

Matching (QPM) is a technique used to prevent this phase mismatch which is 

explained in Section 3.4. 
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3.4 QUASI PHASE MATCHING 

Phase matching is generally defined as a means for maintaining the phase 

relationship between the waves involved in nonlinear interactions which is a key 

contributor to the efficiency of the frequency conversion process. In 1962 Armstrong 

et al. proposed that in a Quasi Phase Matching (QPM) interaction, an accumulated 

phase mismatch (which occurs when waves with different phase velocities propagate 

through a nonlinear material) can be prevented by applying appropriate periodic 

modulation of the nonlinear material properties of an optical waveguide [46]. This 

technique has become one of the dominant techniques proposed in order to 

compensate for the effect of dispersion in nonlinear interactions and is applicable in 

a variety of optical waveguides with different nonlinear materials. Figure 3.2 shows 

the Quasi Phase Matched (QPM) and Non-QPM SH output power variation against 

propagation length. In Figure 3.2, ܮ௖ is the distance for which both the fundamental 

and second harmonic waves are in phase and the SH power will decrease thereafter, 

reversing all the SHG gained and reaching zero after another ܮ௖ (i.e. at 2ܮ௖) unless 

QPM is applied in which case the power will continue to increase. 

 

Figure 3.2 Quasi Phase matched and Non-QPM Second Harmonic output power 

variation with Propagation length. 

The main concept behind SHG is that the phase matched power flow along the 

optical waveguide is constantly transferred from the fundamental to the second 

harmonic wave. Therefore, the second harmonic output power grows quadratically 
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over the distance of the optical waveguide. However, when phase mismatch occurs 

during this process of power transfer, the direction of power flow reverses 

periodically as the relative phase of the fundamental and second harmonic changes. 

This physical mechanism can be explained as follows. The direction of power flow 

between the fundamental and second harmonic waves depends on their relative 

phase of the fundamental and second harmonic waves and hence this changes sign 

for a distance equal to the coherence length (ܮ௖). To overcome this problem, QPM 

technique works by changing the sign of the nonlinear susceptibility (߯ሺଶሻ) at every 

 effectively re-phasing ,ߨ ௖, cause the phase of the polarisation wave to be shifted byܮ

the interaction and leading to a monotonic power flow into the second harmonic 

wave [136]. Changing the sign of ߯ଶ can be achieved by using poling techniques 

which are discussed in Section 3.5.        

Further, the ideal condition shown in Figure 3.3 occurs when ݊௘௙௙
ఠ ൌ ݊௘௙௙

ଶఠ  (i.e. 

ߚ∆ ൎ 0), (where ݊௘௙௙
ఠ  and ݊௘௙௙

ଶఠ  are the fundamental and second harmonic effective 

indices (i.e. this is a waveguide)) which cannot be realised in practice due to the 

chromatic dispersion of the material.  

  

 

Figure 3.3 Quasi Phase Matched, Non-QPM and ideal Second Harmonic output 

power variation with Propagation length. 
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The most rapid growth of the SH output power can be achieved by changing the sign 

of ߯ሺଶሻ at every ܮ௖ (which is known as first order QPM) as shown in Figure 3.4. 

However, for some cases changing the sign of ߯ሺଶሻ at every ܮ௖ along the optical 

waveguide can be challenging in practice. Hence, higher order QPMs can be 

considered instead, i.e. ݊௧௛ order phase matching can be achieved by poling with a 

period of ݊ܮ௖. The SHG output power with QPM for the first, third and fifth order 

modulations are compared in Figure 3.4. Note that higher order QPMs need a longer 

propagation distance to reach a given level of SH output power within the optical 

waveguide when compared to lower order ones. However, this difference in the 

micro-metre range is negligible given the length of an optical waveguide in practice 

and in fact, higher order QPMs make the fabrication process easier especially in the 

case of short coherence lengths. 

 

Figure 3.4 Second Harmonic Output power with first, third and fifth order quasi 
phase matching. 

 

 

3.5 POLING TECHNIQUES 

Due to the lack of inversion symmetry and the phase mismatch between the 

fundamental and second harmonic frequencies, the SH conversion efficiency 

becomes limited. Therefore, it is necessary to overcome this problem by using 

different poling techniques. Poling techniques have been introduced as early as 1964 
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by Miller, where it was concluded that multi-domain ferroelectrics could enhance the 

efficiency of nonlinear interactions by changing the sign of second order nonlinear 

susceptibility together with domain reversal [137]. Further research has been done in 

order to achieve QPM interactions in periodically poled media, although this method 

was found to be impractical in long range applications due to the lack of precise 

control [138, 139]. Then, the first lithographic technique which was based on the in-

diffusion of a patterned dopant film [140], or ion exchange through a mask [141] 

was applied to obtain periodic poling on waveguide structures. In the early 1990s 

Matsumoto et al. introduced electric poling, where the electric field is applied to a 

periodic electrode pattern fabricated on the surface of the waveguide, which enables 

the domain penetration through millimetre-thick substrates [142]. Unlike the 

lithographic poling technique, the electric field poling can be applied to both bulk 

crystals and waveguides. Figure 3.5 shows the physical mechanism of electric field 

poling with the sign reversal of the second order nonlinear susceptibility in the 

periodic patterning domain. In general electric field poling, using a periodic pattern 

electrode on one surface of the optical waveguide and applying a voltage results in 

domain reversal in the electrode regions.  

 
 

Figure 3.5 Patterning of a periodic second order nonlinear susceptibility in an 
optical waveguide. 

 

Thermal poling is another technique used to achieve QPM especially in glass fibres. 

In thermal poling a high DC (Direct Current) electric field is applied across the core 

of the glass fibre at a very high temperature, i.e. between 250଴ܥ to 300଴ܥ, for a 

duration of about 10 minutes to several hours. Following this process, the heat 

source is removed in order to cool down the fibre to the room temperature while the 

DC electric field is still applied. If the DC electric field is removed before removing 

the heat source the induced second order nonlinear susceptibility vanishes. Further, 

in order to achieve a constant ߯ሺଶሻ across the entire fibre length the electrodes can be 
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inserted through two holes within the cladding of a fibre (i.e. one hole close to the 

core of the fibre while the other hole placed away from the fibre core). Then the 

anode is inserted to the hole close to the fibre core and the cathode is connected to 

the other. The hole with the anode is responsible for the charge migration and 

ionization process which is a key factor for inducing ߯ሺଶሻ [143].  

 

 

3.6 ORIENTATION OF THE WAVEGUIDE WITH RESPECT TO THE POLAR AXIS 

This section discusses the induced polar axes of poled ܱܵ݅ଶ and ܵ57ܨ. The 

orientation of the polar axis with respect to the waveguide geometry determines the 

efficiency of SHG. For instance, if the polarisation of the electric field of the light is 

perpendicular to the polar axis one can expect a minimum SHG. Furthermore, in the 

case of silica the poling direction determines the polar axis.  After poling, silica 

undertakes a ܥஶ௠௠ symmetry. Hence, required waveguide geometry with respect to 

the poling direction parallel to ݕ ,ݔ and ݖ are presented in Sections 3.6.1, 3.6.2 and 

3.6.3, respectively, where two frames of reference have been used to aid the 

explanation.  

3.6.1 Poling direction parallel to ࢞  

In Fig 3.6,  ܺ, ܻ and ܼ denote the frame of reference (i.e. Cartesian coordinates) for 

the poling directions, while ݕ ,ݔ and ݖ denote the frame of reference of the optical 

waveguide. Figure 3.6 (a) shows the optical waveguide with poling direction ܼ 

parallel to the ݔ axis. Figure 3.6 (b) represents the Cartesian co-ordinates of the 

optical waveguide directions (i.e. shown by ݖ ,ݕ ,ݔ inside the circle) and of the poling 

direction (i.e. shown by ܺ, ܻ, ܼ outside the circle). A rectangular waveguide structure 

is considered in the following analysis; however, it is possible to apply this analysis 

to any arbitrary waveguide structure.     
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(a) (b) 

Figure 3.6 (a) Poling direction ܼ parallel to the ݔ direction of the optical waveguide, 

(b) ݖ ,ݕ ,ݔ for optical waveguide coordinate axes and ܺ, ܻ, ܼ for poling directions. 

By using the above coordinate systems, it is possible to analyse the second harmonic 

nonlinear polarisation in ݕ ,ݔ and ݖ directions. Furthermore, it simplifies the analysis 

of the nonlinear polarisation in ݕ ,ݔ and ݖ directions for both ܶܧ and ܶܯ modes in 

order to find the maximum SHG in the optical waveguide. 

Equation (3.7) shows the non-zero second order nonlinear susceptibilities for ܱܵ݅ଶ 

and ܵ57ܨ for ܶܧ mode. For the quasi-ܶܧ mode, the dominant electric field is in the ݔ 

direction (of the waveguide coordinate system), which is equivalent to the ܼ 

direction for the poling axis. Further, ܼܱ݊ can also be represented in a similar 

manner due to the ܥஶ௠௠ group symmetry.  

ேܲ௅ ൌ ቎
௫ܲ

௬ܲ

௭ܲ

቏ ൌ ଴ߝ ൥
0 0 0
0 0 0

݀ଷଵ ݀ଷଵ ݀ଷଷ

0 ݀ଷଵ 0
݀ଷଵ 0 0

0 0 0
൩

ۏ
ێ
ێ
ێ
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ۍ
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0

௓ܧ
ଶ

0
0
0 ے
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ଶ
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0
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ଶ

൩
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where ܧ௓ denotes the electric field along the poling direction ܼ which is identical to 

the ݁௫ component of the electric field along the ݔ direction of the optical waveguide. 

Equation (3.8) implies that in the present configuration only ௭ܲ is induced due to the 

 mode; this is due to the ݁௫ component of the light generating nonlinear ܧܶ

polarisation in the ܼ direction, resulting in ௭ܲ. Hence, a large SHG is possible as ݀ଷଷ 

is coupled with ݁௫.  

Similarly, in the nonlinear polarisation for the quasi-ܶܯ mode where the ݁௫ 

component is negligible, the polarisation along ݕ and ݖ directions can be represented 

as follows; 

ேܲ௅ ൌ ቎
௫ܲ

௬ܲ

௭ܲ

቏ ൌ ଴ߝ ൥
0 0 0
0 0 0

݀ଷଵ ݀ଷଵ ݀ଷଷ

0 ݀ଷଵ 0
݀ଷଵ 0 0

0 0 0
൩

ۏ
ێ
ێ
ێ
ێ
ۍ ௑ܧ

ଶ

௒ܧ
ଶ
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0
0

ے௬ܧ௫ܧ2
ۑ
ۑ
ۑ
ۑ
ې

 (3.9) 
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݀ଷଵ݁௭
ଶ ൅ ݀ଷଵ݁௬

ଶ
൩

՜צ ݖ
՜צ  (3.10) ݕ

where ܧ௑  and ܧ௒ denote the electric field of ܺ and ܻ respectively (i.e. frame of 

reference for poling) which are equivalent to the ݁௬  and ݁௭ electric field components 

along the ݕ and ݖ directions of the optical waveguide respectively. According to 

equation (3.10) nonlinear polarisation for ݕ and ݖ is zero. Therefore, generation of 

second harmonic ܶܯ mode is not supported by the fundamental ܶܯ mode in this 

orientation. 

Equation (3.11) shows the nonlinear polarisation for the ܶܧ mode in the ݕ direction. 

ேܲ௅ ൌ ቎
௫ܲ

௬ܲ

௭ܲ

቏ ൌ ଴ߝ ൥
0 0 0
0 0 0

݀ଷଵ ݀ଷଵ ݀ଷଷ
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݀ଷଵ 0 0

0 0 0
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ଶ
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0 ے
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 (3.11) 
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ൌ ଴ߝ ൥
0
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݀ଷଵܧ௒
ଶ

൩ ൌ ଴ߝ ൥
0
0

݀ଷଵ݁௬
ଶ

൩ ՜צ  (3.12) ݕ

In equation (3.12) the second harmonic ܶܧ mode is not supported due to the non-

existence of nonlinear polarisation in the ݕ direction of the optical waveguide. 

Analysis of nonlinear polarisation for the ܶܯ mode when the poling direction ܼ is 

parallel to ݔ can be represented in the following matrix form; 

ேܲ௅ ൌ ቎
௫ܲ

௬ܲ

௭ܲ

቏ ൌ ଴ߝ ൥
0 0 0
0 0 0

݀ଷଵ ݀ଷଵ ݀ଷଷ

0 ݀ଷଵ 0
݀ଷଵ 0 0

0 0 0
൩

ۏ
ێ
ێ
ێ
ێ
ۍ ௑ܧ

ଶ

0
௓ܧ

ଶ

0
௑ܧ௓ܧ2

0 ے
ۑ
ۑ
ۑ
ۑ
ې

 (3.13) 

In equation (3.13)  electric fields along ܺ and ܼ poling directions exist for ܶܯ mode. 

ൌ ଴ߝ ൥
2݀ଷଵܧ௓ܧ௑

0
݀ଷଵܧ௑

ଶ ൅ ݀ଷଷܧ௓
ଶ

൩ ൌ ଴ߝ ൥
2݀ଷଵ݁௫݁௭

0
݀ଷଵ݁௭

ଶ ൅ ݀ଷଷ݁௫
ଶ

൩
՜צ ݖ

՜צ ݔ
 (3.14) 

Equation (3.14) shows that the nonlinear polarisations for ݔ and ݖ are non-zero; 

therefore, the generation of second harmonic ܶܯ mode is supported by the 

fundamental ܶܯ mode in this orientation. 

 

3.6.2 Poling direction parallel to ࢟ 

In Figure 3.7 (a) the poling direction ܼ is parallel to the ݕ direction of the optical 

waveguide. Figure 3.7 (b) shows the poling coordinates with respect to the Cartesian 

coordinates of the optical waveguides. A similar pattern to Section 3.6.1 can be seen 

when analysing nonlinear polarisation for ܶܧ and ܶܯ modes.   
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(a) (b) 

Figure 3.7 (a) Poling direction ܼ parallel to the ݕ direction of the optical waveguide, 

(b) ݖ ,ݕ ,ݔ for optical waveguide coordinate axes and ܺ, ܻ, ܼ for poling directions. 
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In this case from equation (3.16) nonlinear polarisation in the ݔ direction is zero. 

Hence, generation of second harmonic ܶܧ mode is not supported by the fundamental 

   .(ݕ i.e. ܼ is parallel to) .mode in this orientation ܧܶ

The following equation can be written in the case of the ܶܯ mode; 

ேܲ௅ ൌ ቎
௫ܲ
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In equation (3.18) generation of second harmonic ܶܯ mode is supported by the 

fundamental ܶܯ mode in this orientation due to ܼ being parallel to ݕ and ܻ being 

parallel to ݖ. 

If the ܶܧ polarisation is parallel to the ݕ axis of the optical waveguide; 
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Nonlinear polarisation for the ݖ direction of the optical waveguide is non-zero; 

therefore, generation of second harmonic ܶܧ mode is supported by the fundamental 

 .mode in this orientation ܧܶ

Arrangement of the Cartesian coordinates of the optical waveguide and the poling 

coordinates for ܶܯ mode can be represented in the following matrix form; 

ேܲ௅ ൌ ቎
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3.6.3 Poling direction parallel to ࢠ 

Figure 3.8 (a) shows an optical waveguide with poling direction ܼ parallel to ݖ. 

Figure 3.8 (b) shows the corresponding Cartesian coordinates for the waveguide and 

the poling. The matrix form of the ܶܧ mode and the ܶܯ mode are represented in 

equations (3.24) and (3.26) respectively.  

 

 

(a) (b) 

Figure 3.8 (a) Poling direction ܼ parallel to the ݖ direction of the optical waveguide, 

(b) ݖ ,ݕ ,ݔ for optical waveguide coordinate axes and ܺ, ܻ, ܼ for poling directions. 

When the ܶܧ mode has its polarisation parallel to the ݔ axis of the waveguide, the 

following equation can be obtained; 
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Equation (3.24) implies that the generation of second harmonic ܶܧ mode is not 

supported by the fundamental ܶܧ mode in this orientation. 
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In a similar manner, when the ܶܧ mode has its polarisation parallel to the ݕ axis of 

the waveguide; 
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In equation (3.26) the poling direction is along the fibre; hence, the generation of 

second harmonic ܶܧ mode is not supported by the fundamental ܶܧ mode in this 

orientation. 

Equations (3.28) and (3.30) represent the matrix form of the nonlinear polarisation in 

the ݕ ,ݔ and ݖ directions of the optical waveguide for the ܶܯ mode. 
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In this case the generation of second harmonic ܶܯ mode is supported by the 

fundamental ܶܯ mode in this orientation as shown in equation (3.28) . 
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In summary, possible generation of SHG with respect to different combinations of 

poling directions and ܶܯܶ/ܧ polarised excitations have been explored. This study 

facilitates choosing a poling direction that is both feasible for fabrication and is able 

to achieve a SHG as high as possible. 

 

Sections 3.6.1, 3.6.2 and 3.6.3 can be summarised as shown in Table 3.1. 

Poling direction ܼ  to צ

Polarisation direction 
along the optical 
waveguide for 

 mode ܧܶ

Polarisation directions 
along the optical 
waveguide for 

 mode ܯܶ

 ݔ

 
 supported -  ݔ
 not supported -  ݕ
 

 
ݕ &  not supported -  ݖ
ݔ &  supported -  ݖ
 

 ݕ

 
 not supported -  ݔ
 supported -  ݕ
 

 
ݕ &  supported -  ݖ
ݔ &  not supported -  ݖ

 ݖ

 
 not supported -  ݔ
 not supported -  ݕ
 

 
ݕ &  supported -  ݖ
ݔ &  supported -  ݖ
 

Table 3.1 Waveguide geometry with respect to the poling directions. 
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3.7 SCALAR BEAM PROPAGATION METHOD FOR SHG 

The scalar Beam Propagation Method (BPM) is used in this thesis to analyse the 

electromagnetic field propagation through optical waveguides. This is an efficient 

method in terms of computational resources. The scalar BPM is applied by splitting 

the field components into two. Therefore, this method facilitates the analysis of the 

Transverse Electric (ܶܧ) field and Transverse Magnetic (ܶܯ) field separately [144, 

145]. It is assumed that the electromagnetic wave propagates near the propagation 

axis. Therefore, the paraxial approximation has been applied in the scalar BPM. The 

derivation of scalar BPM is presented in Appendix 4.  

 

3.8 FULL VECTORIAL BEAM PROPAGATION METHOD FOR SHG 

The full vectorial BPM approach is a basic technique for the precise analysis of 

optical waveguide devices where the nature of the field is hybrid. In full vectorial 

BPM it is assumed that the electromagnetic field propagates near the propagation 

axis of the optical waveguide. The derivation of the nonlinear term (i.e. source term) 

where the SHG is determined, of the coupled wave equation is discussed below.   

 

3.8.1 Derivation of full vectorial BPM 

From Maxwell’s equations; 

׏ ൈ ࡱ ൌ െߤ଴
ࡴ߲
ݐ߲

 (3.31) 

 

׏ ൈ ࡴ ൌ
ࡰ߲
ݐ߲

 (3.32) 

 

Then the electric field and the magnetic field can be written as follows; 

,ݔሺࡱ ,ݕ ሻݐ ൌ ଵ
ଶ
൛݁ఠሺݕሻ ݁ሺ௝ఠ௧ି௝ఉ௭ሻ ൅ ݁ଶఠሺݕሻ ݁ሺ௝ଶఠ௧ି௝ଶఉ௭ሻ ൅ ܿ. ܿൟ (3.33) 

 

,ݔሺࡴ ,ݕ ሻݐ ൌ ଵ
ଶ
൛݄ఠሺݕሻ ݁ሺ௝ఠ௧ି௝ఉ௭ሻ ൅ ݄ଶఠሺݕሻ ݁ሺ௝ଶఠ௧ି௝ଶఉ௭ሻ ൅ ܿ. ܿൟ (3.34) 

 

And the nonlinear electric displacement is; 
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,ݔሺࡰ ,ݕ ሻݐ ൌ ሿߝ଴ሼሾߝ ൅ ሾ݀ሿࡱሺݔ, ,ݕ ,ݔሺࡱሻሽݐ ,ݕ  ሻ (3.35)ݐ

Here, ߱ is the angular frequency of the fundamental wave, ߚ is the propagation 

constant, ߤ଴ is the vacuum permeability, ߝ଴ is the vacuum permittivity, ሾߝሿ is the 

linear relative permittivity tensor (assumed diagonal), ሾ݀ሿ is the second order 

nonlinear susceptibility tensor, ݁ఠ is the electric field component in the ݔ or ݕ 

direction for the fundamental frequency, ݁ଶఠ is the electric field component in the ݔ 

or ݕ direction for the SH frequency, ݄ఠ is the magnetic field component in the ݔ or ݕ 

direction for the fundamental frequency, ݄ଶఠ is the magnetic field component in the 

.ܿ direction for the SH frequency and ݕ or ݔ ܿ. denotes a complex conjugate. Note 

that ሾߝሿ and ሾ݀ሿ depend on the frequency [146]. 

Substituting equation (3.33) into (3.31) yields, 

For Fundamental: 

׏ ൈ ఠࡱ ൌ െ݆߱ߤ଴ࡴఠ (3.36) 

where ࡱఠ and ࡴఠ are the fundamental electric field and magnetic field respectively. 

For Second Harmonic: 

׏ ൈ ଶఠࡱ ൌ െ݆2߱ߤ଴ࡴଶఠ (3.37) 

where ࡱଶఠ and ࡴଶఠ are the SH electric field and magnetic field respectively, where; 

ఠࡱ ൌ ݁ఠ ݁ሺ௝ఠ௧ି௝ఉ௭ሻ (3.38) 

 

ଶఠࡱ ൌ ݁ଶఠ ݁ሺ௝ଶఠ௧ି௝ଶఉ௭ሻ (3.39) 

 

ఠࡴ ൌ ݄ఠ ݁ሺ௝ఠ௧ି௝ఉ௭ሻ  (3.40) 

 

ଶఠࡴ ൌ ݄ଶఠ ݁ሺ௝ଶఠ௧ି௝ଶఉ௭ሻ  (3.41) 

 

Substituting equations (3.34) and (3.35) into (3.32) yields; 

׏ ൈ ఠࡴ ൌ ఠࡱఠሿߝ଴ሾߝ݆߱ ൅ ఠࡱଶఠࡱ଴ሾ݀ఠሿߝ݆߱
כ   (3.42) 

 

׏ ൈ ଶఠࡴ ൌ ଶఠࡱଶఠሿߝ଴ሾߝ2݆߱ ൅ ఠࡱ଴ሾ݀ଶఠሿߝ݆߱
ଶ   (3.43) 



Chapter 3  Second Harmonic Generation

 

77  
 

where an asterisk (‘*’) denotes a complex conjugate, ߝఠ and ߝଶఠ are linear relative 

permittivity tensors for fundamental and SH frequencies respectively and ݀ఠ and ݀ଶఠ 

are second order nonlinear susceptibility tensors for fundamental and SH frequencies 

respectively. 

 

By substituting ࡴఠ and ࡴଶఠ from equations (3.36) and (3.37) into (3.42) and (3.43) 

yields; 

For Fundamental: 

׏ ൈ ׏ ൈ ఠࡱ െ ݇଴
ଶሾߝఠሿࡱఠ ൌ ݇଴

ଶሾ݀ఠሿࡱଶఠࡱఠ
כ  (3.44) 

 

For Second Harmonic: 

׏ ൈ ׏ ൈ ଶఠࡱ െ 4݇଴
ଶሾߝଶఠሿࡱଶఠ ൌ 2݇଴

ଶሾ݀ଶఠሿࡱఠ
ଶ  (3.45) 

where ݇଴ is denotes the free space wavenumber. 

 

Then equations (3.42) and (3.43) can be re-written as follows; 

For Fundamental: 

ఠࡱ ൌ
ሾߝఠሿିଵ

଴ߝ݆߱
ሺ׏ ൈ ఠࡴ െ ݆߱߳଴ሾ݀ఠሿࡱଶఠࡱఠ

כ ሻ (3.46) 

 

For Second Harmonic: 

ଶఠࡱ ൌ
ሾߝଶఠሿିଵ

଴ߝ2݆߱
ሺ׏ ൈ ଶఠࡴ െ ఠࡱ଴ሾ݀ଶఠሿߝ݆߱

ଶ ሻ (3.47) 

 

Substituting equation (3.36) and (3.37) into (3.46) and (3.47) yields; 

For Fundamental: 

׏ ൈ ሾߝఠሿିଵ׏ ൈ ఠࡴ െ ݇଴
ଶࡴఠ ൌ ׏଴ߝ݆߱ ൈ ሾߝఠሿିଵሾ݀ఠሿࡱଶఠࡱఠ

כ  (3.48) 

 

For Second Harmonic: 

׏ ൈ ሾߝଶఠሿିଵ׏ ൈ ଶఠࡴ െ 4݇଴
ଶࡴଶఠ ൌ ׏଴ߝ݆߱ ൈ ሾߝଶఠሿିଵሾ݀ଶఠሿࡱఠ

ଶ  (3.49) 
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It is necessary to consider the nonlinear part (i.e. R.H.S.) of equations (3.48) and 

(3.49) to find the nonlinear components in the ݕ ,ݔ and ݖ directions. Equations (3.60) 

(3.61)  and (3.62) represent the nonlinear components in the ݕ ,ݔ and ݖ directions 

respectively. 

 

By substituting ࡸࡺ࣒ሺݔ, ,ݕ  ; ሻ into the R.H.S. of equation (3.49)ݖ

  

,ݔሺࡸࡺ࣒ ,ݕ ሻݖ ൌ ׏଴ߝ݆߱ ൈ ሾߝଶఠሿିଵሾ݀ଶఠሿࡱఠ
ଶ  (3.50) 

 By replacing ߱ߝ଴ (i.e. ߱ߝ଴ ൌ ݇଴ܿߝ଴ ൌ ݇଴
ଵ

ඥఌబఓబ
଴ߝ ൌ ݇଴

ඥఌబ

ඥఓబ
ൌ

௞బ

௓బ
׶ ; ܼ଴ ൌ

ඥఓబ

ඥఌబ
), equation 

(3.50) can be written as; 

,ݔሺࡸࡺ࣒ ,ݕ ሻݖ ൌ ݆
݇଴

ܼ଴
׏ ൈ ሾߝଶఠሿିଵሾ݀ଶఠሿࡱఠ

ଶ  (3.51) 

By substituting nonlinear polarisation equation ( ேܲ௅) into (3.51) ; 

,ݔሺࡸࡺ࣒ ,ݕ ሻݖ ൌ ݆
݇଴

ܼ଴
׏ ൈ ሾߝଶఠሿିଵ ൤ ேܲ௅

଴ߝ
൨ (3.52) 

  

,ݔሺࡸࡺ࣒ ,ݕ ሻݖ ൌ ݆
݇଴

ܼ଴ߝ଴
׏ ൈ ሾߝଶఠሿିଵሾ ேܲ௅ሿ (3.53) 

 

,ݔሺࡸࡺ࣒ ,ݕ ሻݖ ൌ ݆
݇଴

ܼ଴ߝ଴
׏ ൈ ሾߝଶఠሿିଵሾ ேܲ௅ሿ (3.54) 

 

,ݔሺࡸࡺ࣒ ,ݕ ሻݖ ൌ ݆
݇଴

ܼ଴ߝ଴
׏ ൈ

ۏ
ێ
ێ
ێ
ۍ
1 ௫ߝ

ൗ 0 0

0 1 ௬ൗߝ 0

0 0 1 ௭ߝ
ൗ ے

ۑ
ۑ
ۑ
ې

቎
௫ܲ

௬ܲ

௭ܲ

቏ (3.55) 

 

,ݔሺࡸࡺ࣒ ,ݕ ሻݖ ൌ ݆
݇଴

ܼ଴ߝ଴
׏ ൈ

ۏ
ێ
ێ
ێ
ێ
ۍ ௫ܲ ௫ߝ

ൗ

௬ܲ
௬ߝ

ൗ

௭ܲ ௭ߝ
ൗ ے

ۑ
ۑ
ۑ
ۑ
ې

 (3.56) 
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,ݔሺࡸࡺ࣒ ,ݕ ሻݖ ൌ ݆
݇଴

ܼ଴ߝ଴

ۏ
ێ
ێ
ێ
ۍ

݅௫ ݅௬ ݅௭

߲
ൗݔ߲ ߲

ൗݕ߲ ߲
ൗݖ߲

௫ܲ ௫ߝ
ൗ ௬ܲ

௬ߝ
ൗ ௭ܲ ௭ߝ

ൗ
ے
ۑ
ۑ
ۑ
ې

 (3.57) 

 

Hence the nonlinear part of the coupled wave equation can be written as follows;  

,ݔሺࡸࡺ࣒ ,ݕ ሻݖ ൌ ݆߱ ቊ݅௫ ቈ
߲

ݕ߲
௭ܲ

௭ߝ
െ

߲
ݖ߲

௬ܲ

௬ߝ
቉ െ ݅௬ ൤

߲
ݔ߲

௭ܲ

௭ߝ
െ

߲
ݖ߲

௫ܲ

௫ߝ
൨ ൅ ݅௭ ቈ

߲
ݔ߲

௬ܲ

௬ߝ
െ

߲
ݕ߲

௫ܲ

௫ߝ
቉ቋ (3.58) 

 

For the  ݔ component: 

߰ே௅ሺݔሻ ൌ ݆߱ ቊ݅௫ ቈ
߲

ݕ߲
௭ܲ

௭ߝ
െ

߲
ݖ߲

௬ܲ

௬ߝ
቉ቋ (3.59) 

By substituting ߝ௭ ൌ ݊௭
ଶ , ߝ௬ ൌ ݊௬

ଶ  and  ߲ ݖ߲ ൌ െ2݆ߚ⁄   the following equation can be 

obtained; 

߰ே௅ሺݔሻ ൌ
݇଴

ܼ଴ߝ଴
ቊ݅௫ ቈ݆

߲
ݕ߲

௭ܲ

݊௭
ଶ െ ߚ2 ௬ܲ

݊௬
ଶ቉ቋ (3.60) 

Similarly the ݕ and ݖ components can be written as; 

For the  ݕ component: 

߰ே௅ሺݕሻ ൌ
݇଴

ܼ଴ߝ଴
ቊ݅௬ ቈ2ߚ ௫ܲ

݊௫
ଶ െ ݆

߲
ݔ߲

௭ܲ

݊௭
ଶ቉ቋ (3.61) 

 

For the  ݖ component: 

߰ே௅ሺݖሻ ൌ
݇଴

ܼ଴ߝ଴
ቊ݅௭ ቈ

߲
ݔ߲

௬ܲ

݊௬
ଶ െ

߲
ݕ߲

௫ܲ

݊௫
ଶ቉ቋ (3.62) 

In a similar way the R.H.S. ( ݆߱׏ ൈ ሾߝଶఠሿିଵሾ݀ଶఠሿࡱଶఠࡱఠ
כ ) of equation (3.48) can be 

derived in order to find the nonlinear components of the fundamental frequency in 

the ݕ ,ݔ and ݖ directions. 

 

From equation (3.48) ࡴఠ can be represented as follows; 

ሼࡴఠሽ ൌ ቐ
ఠ௫ܪ
ఠ௬ܪ

ఠ௭ܪ

ቑ ൌ ൜
ࣘఠ
ఠ௭ܪ

ൠ (3.63) 
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where ࣘఠ ൌ ൜
ఠ௫ܪ
ఠ௬ܪ

ൠ  

Equations (3.48) and (3.49) are similar to equation (A2.53) in Appendix 4, the 

difference being the addition of the source term which represents the nonlinear part 

of the equation. Hence BPM can be applied using the split-step procedure as shown 

above. 

 

Let;  

ሼࡴఠሽ ൌ ൜
ࣘఠ
ఠ௭ܪ

ൠ (3.64) 

where ࣘఠ ൌ ൜
ఠ௫ܪ
ఠ௬ܪ

ൠ 

and 

ሼࡴଶఠሽ ൌ ൜
ࣘଶఠ
ଶఠ௭ܪ

ൠ (3.65) 

where ࣘଶఠ ൌ ൜
ଶఠ௫ܪ
ଶఠ௬ܪ

ൠ 

 
Therefore, the propagation model of the fundamental field can be represented in a 

similar manner to equation (2.39) in Chapter 2 but with the R.H.S. nonlinear term 

added and it can be written as follows; 

െ2݆݊଴݇଴ൣࡹ෩ ൧
݀ሼࣘఠሽ

ݖ݀
൅ ሺሾࡷሿ െ ݊଴

ଶ݇଴
ଶሾࡹሿሻሼࣘఠሽ ൌ ሼ࣒ே௅

ఠ ሽ (3.66) 

where ሾࡹሿ and ሾࡷሿ are given in equation (2.36) and equation (2.37) respectively in 

Chapter 2. 

For SHG propagation it is necessary to modify equation (2.39) in Chapter 2 to 

include 2ߚ, hence the following equation can be written;  

െ4݆݊଴݇଴ൣࡹ෩ ൧
݀ሼࣘଶఠሽ

ݖ݀
൅ ሺሾࡷሿ െ 4݊଴

ଶ݇଴
ଶሾࡹሿሻሼࣘଶఠሽ ൌ ሼ࣒ே௅

ଶఠሽ (3.67) 

Then the split-step procedure and CN scheme can be applied to equation (3.66) to 

derive the following; 



Chapter 3  Second Harmonic Generation

 

81  
 

ሾ࡭ሿ௞ሼࣘఠሽ௞ାଵ ൌ ሾ࡮ሿ௞ሼࣘఠሽ௞ (3.68) 

where, 

ሾ࡭ሿ௞ ൌ െ2݆݊଴݇଴ൣࡹ෩ ൧
௞

൅ ሿ௞ࡷሺሾݖ∆ߠ െ ݊଴
ଶ݇଴

ଶሾࡹሿ௞ሻ (3.69) 

 

ሾ࡮ሿ௞ ൌ െ2݆݊଴݇଴ൣࡹ෩ ൧
௞

൅ ሺߠ െ 1ሻ∆ݖሺሾࡷሿ௞ െ ݊଴
ଶ݇଴

ଶሾࡹሿ௞ሻ (3.70) 

Then the following equation can be derived for the fundamental frequency; 

ቄࣘఠ
ሺଶሻቅ

௞ାଵ
ൌ ቄࣘఠ

ሺଵሻቅ
௞ାଵ

൅ ݆
ݖ∆

௥ߝߚ2
ିଵ ሼ࣒ே௅

ఠ ሽ (3.71) 

 

By applying equation (3.68) into equation (3.71) the following can be derived; 

ቄࣘఠ
ሺଶሻቅ

௞ାଵ
ൌ

ሾ࡮ሿ௞

ሾ࡭ሿ௞
ቄࣘఠ

ሺଵሻቅ
௞ାଵ

൅ ݆
ݖ∆

௥ߝߚ2
ିଵ ሼ࣒ே௅

ఠ ሽ (3.72) 

 

Similarly the following equation can be derived for the SH frequency; 

ቄࣘଶఠ
ሺଶሻቅ

௞ାଵ
ൌ

ሾ࡮ሿ௞

ሾ࡭ሿ௞
ቄࣘଶఠ

ሺଵሻቅ
௞ାଵ

൅ ݆
ݖ∆

௥ߝߚ4
ିଵ ሼ࣒ே௅

ଶఠሽ (3.73) 

The equations (3.72) and (3.73) have been used in the numerical analysis of the SHG 

in optical waveguides in this thesis. 

 

 

 

 

 

  

   



Chapter 3  Second Harmonic Generation

 

82  
 

3.9  SUMMARY 

In this chapter two key contributions have been presented, these being fundamental 

to the work described in subsequent chapters of the thesis and are as described 

below. 

The matrix form of the second order nonlinear susceptibilities for materials such as 

ܱܵ݅ଶ, ܵ57ܨ and ܼܱ݊ have been presented at the start of the chapter. The optimisation 

of the SHG has then been introduced by using the polar axis with respect to the 

waveguide geometry, which is a key factor that determines the efficiency of the 

SHG: this represents the first key contribution in this chapter from the work of the 

author.  Further, the coherence length of the optical waveguides has been discussed. 

Here, the Quasi Phase Matching (QPM) technique to eliminate the phase mismatch 

between the fundamental and SH waves has been considered. Moreover, the 

practical implementation of the QPM by applying higher order QPM and enabling 

the SHG in a non-centrosymmetric material, by reversing the second order nonlinear 

sign with different poling techniques, has been discussed. 

Additionally in this chapter, the scalar formulation of the Beam Propagation 

technique to analyse the SHG wave propagation through an optical waveguide, with 

and without the use of pumping, has been discussed. Furthermore, the ࡴ-field based 

full vectorial formulation has been implemented, for the first time, to study the SHG 

wave propagation through an optical waveguide where the modes are of a hybrid 

nature: this represents another key contribution of this chapter by the author. 
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Chapter 4 

 

 

 

 

 

 

 

 

4 Photonic Crystal Fibres 
 

This chapter presents Second Harmonic Generation (SHG) in different Photonic 

Crystal Fibre (PCF) structures, i.e. Hexagonal PCF in Section 4.4 and Equiangular 

Spiral PCF in Section 4.6. The numerical analyses using the Finite Element Method 

(FEM) and Beam Propagation Method (BPM) are employed in order to a) implement 

the Quasi Phase Matching technique (QPM) to prevent phase mismatching between 

the fundamental and second harmonic modes (Section 4.6.2) and b) analyse the 

effects of fabrication error in PCF (Section 4.6.3). 

   

4.1 INTRODUCTION 

Recently, considerable interest has been shown in guided wave Second Harmonic 

Generation (SHG) devices implementing compact short-wavelength coherent light 

sources which are useful across a range of applications such as optical data storage, 

xerography, spectroscopy, photolithography and telecommunication [147]. Practical 

experimentation of SHG is complicated and expensive due to technological 

challenges. Therefore, numerical methods are widely employed in the analysis and 

design optimisation of such nonlinear optical devices. The Beam Propagation 

Method (BPM) is a well known numerical method and has been very attractive due 



Chapter 4  Photonic Crystal Fibres

 

84  
 

to its ability to study a wide range of optical waveguides. In 1995, H. M. Masoudi 

and J. M. Arnold have developed a numerical method by using BPM to model three-

dimensional optical waveguides to analyse the second order nonlinearity [148]. 

Numerical modelling of an optical waveguide also facilitates the analysis of phase 

mismatching in a precise manner. As discussed in Chapter 3, application of the QPM 

technique is used to eliminate phase mismatch where the phase difference between 

the two interacting waves is corrected at regular intervals by means of a structural 

periodicity applied into the nonlinear material in the fabrication process by using 

different poling techniques. In 1997, F. A. Katsriku et al. numerically analysed the 

SHG in ܱܾܰ݅ܮଷ channel waveguides with the QPM scheme by using the Finite 

Element based Beam Propagation Method (FE-BPM) [149].  

PCF is an ideal candidate for SHG due to its unique range of optical properties. For 

example, the effective area of PCFs can be tailored to be as large as nearly three 

times larger or as small as four times smaller than the mode size in conventional 

dispersion-shifted fibres and standard telecommunications fibres: the latter case is 

useful in enhancing nonlinear effects [150]. Other unique properties of PCFs are that 

they are endlessly single mode [151] and can be fabricated to exhibit remarkable 

dispersion characteristics such as broad-band flattened [150] and zero Group 

Velocity Dispersion (GVD) [152]. Further, PCFs can be used in many nonlinear 

applications such as supercontinuum generation [153], soliton generation and 

propagation [154], ultra-short pulse compression [155], soliton lasers [156], four-

wave mixing [157] and Second Harmonic Generation [158]. 
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4.2 STRUCTURE OF THE PHOTONIC CRYSTAL FIBRE 

A typical modelling of the honeycomb configuration of a hexagonal PCF structure 

with circular air-holes is shown in Figure 4.1.  

 

By eliminating the middle air-hole as shown in Figure 4.1, it is possible to guide the 

light as is done through the core of a typical optical fibre. Figure 4.1 shows a regular 

array of equal-sized air-holes. The air-hole diameter is taken as ݀ ݉ߤ while the pitch 

length, i.e. the distance between the centres of two adjacent holes, is taken as ݉ߤ ߉. 

The pitch length details in the first ring of the PCF are shown in Figure 4.2 where a 

sample hexagon from the honeycomb configuration has been enlarged to illustrate 

the distance and angles between the air-holes.  

 

Figure 4.1 Schematic diagram of a PCF with hexagonal arrays of air-holes. 
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Figure 4.2 Schematic diagram of the distances between the air-holes from their 

centre in the first ring of hexagonal PCF. 

 

It is possible to tailor the PCF structure as desired. For example, Figure 4.3 shows a 

hexagonal honeycomb configuration with expanded air-holes in the first ring of the 

PCF.  

 

Figure 4.3 Schematic diagram of a hexagonal PCF with expanded air-holes in the 

first ring. 
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4.3   NUMERICAL MODELLING OF THE PHOTONIC CRYSTAL FIBRE 

The quarter structure of a hexagonal PCF is shown in Figure 4.4. It is important to 

assign all the air-holes in a Cartesian coordinate system in order to model such a 

complicated structure numerically.   

 

Figure 4.4 The quarter structure of the hexagonal PCF in Cartesian coordinates. 

 

The following equations represent the values of the ܺ and ܻ coordinates of the 

centres of the air-holes (from number 0 to 18): these relationships are used in the 

computer program to generate a hexagonal PCF structure. 

ܺ଴ ൌ 0, ଴ܻ ൌ 0,          ଵܺ ൌ Λ, ଵܻ ൌ 0,          ܺଶ ൌ 2Λ, ଶܻ ൌ 0,          ܺଷ ൌ 3Λ, ଷܻ ൌ 0,  

ܺସ ൌ 4Λ, ସܻ ൌ 0,       ܺହ ൌ
ஃ

ଶ
, ହܻ ൌ

ஃ√ଶ

ଶ
 ,       ܺ଺ ൌ

ଷஃ

ଶ
, ଺ܻ ൌ

ஃ√ଶ

ଶ
 ,      ܺ଻ ൌ

ହஃ

ଶ
, ଻ܻ ൌ

ஃ√ଶ

ଶ
 , 

଼ܺ ൌ
଻ஃ

ଶ
, ଼ܻ ൌ

ஃ√ଶ

ଶ
 ,   ܺଽ ൌ 0, ଽܻ ൌ Λ√3 ,     ଵܺ଴ ൌ Λ, ଵܻ଴ ൌ Λ√3 ,    ଵܺଵ ൌ 2Λ, ଵܻଵ ൌ Λ√3 , 

ଵܺଶ ൌ 3Λ, ଵܻଶ ൌ Λ√3 ,  ଵܺଷ ൌ
ஃ

ଶ
, ଵܻଷ ൌ

ଷஃ√ଷ

ଶ
 ,  ଵܺସ ൌ

ଷஃ

ଶ
, ଵܻସ ൌ

ଷஃ√ଷ

ଶ
 ,   
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 ଵܺହ ൌ
ହஃ

ଶ
, ଵܻହ ൌ

ଷஃ√ଷ

ଶ
 ,  ଵܺ଺ ൌ 0, ଵܻ଺ ൌ 2Λ√3,  ଵܺ଻ ൌ Λ, ଵܻ଻ ൌ 2Λ√3,   

  ଵ଼ܺ ൌ 2Λ, ଵ଼ܻ ൌ 2Λ√3. 

The analysis and results presented in this thesis have been produced by 

implementing the ࡴ-field based finite element equations in the FORTRAN 

programming language. The version of the FORTRAN program is F77, and it is 

based on the UNIX platform.  

Figure 4.5 represents the full structure hexagonal PCF in the Cartesian coordinate 

system, generated by the FORTRAN program. It is possible to analyse the behaviour 

of the electromagnetic field by assigning Cartesian coordinates to each node or each 

element of the finite element domain.    

 

Figure 4.5 Hexagonal air-hole PCF structure represented on Cartesian coordinates, 

generated by the FORTRAN program. 

 

4.4 SIMULATION RESULTS FOR HEXAGONAL PCF  

This section first validates numerical simulations by comparing results of 

conventional optical fibres using the Finite Element based Beam Propagation 

Method (FE-BPM). Then the simulation results for hexagonal PCF are then 

presented which were obtained by using the scalar BPM.    
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4.4.1 Validation of numerical simulations 

Initially, the accuracy of the FE-BPM is demonstrated by comparing with 

corresponding practical results. In 1997, V. Pruneri and P. G. Kazansky have 

reported the first demonstration of efficient Quasi Phase Matched (QPM) SHG to the 

blue of picosecond pulses in thermally poled fibres, and the experiment is carried out 

to investigate the second order nonlinearity and conversion efficiency of the 

periodically poled silica fibres [159]. The numerical model of the silica fibre has the 

exact dimensions as the fibre used in the experiment, i.e. a core diameter of 5.8 ݉ߤ, 

outer diameter of 150 ݉ߤ and distance between plane surface (flat surface) and core 

region of 5.0 ݉ߤ. Furthermore, in the numerical simulation the fundamental 

wavelength has been used as 840 ݊݉ and the second harmonic wavelength has been 

used as 420 ݊݉ and both fundamental and second harmonic wavelengths are taken as 

Continuous Waves (CW). Figure 4.6 shows the QPM second harmonic output power 

against the propagation length.     

 

Figure 4.6 Variation of the QPM SH output power against the propagation length. 

In Figure 4.6, the QPM SH output power for the ܶܯ-mode is considerably higher 

than that of the ܶܧ-mode. The ܶܯ-mode SH output power is high due to the more 

suitable crystal orientation of ܱܵ݅ଶ. Furthermore, in this experiment the application 
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of thermal poling was considered perpendicular to the propagation axis (i.e. crystal 

axis). Therefore, as discussed in Chapter 3 a maximum SH output power can be 

obtained with the ܶܯ-mode. In Figure 4.6, the results are obtained by using the 

scalar BPM. In this case the fundamental power (i.e. pump power) is 150 ܹ݉. As 

can be observed in Figure 4.6, the SH output power for the ܶܯ-mode after 

propagation of 1.8 ܿ݉ is ~1.47 ܹߤ, which is comparable with the corresponding 

experimental value of ~1.1 [159] ܹߤ. The main reason for the slightly higher SH 

output power in the numerical simulation is that, when applying QPM the coherence 

length can produce an error in practice. 

 

4.4.2 Hexagonal PCF 

Following the numerical validation test carried out in the previous section, a 

hexagonal PCF structure is considered here. The variation of the effective index of 

the ܪଵଵ
௫  mode with the pitch (Λ) at the fundamental wavelengths is shown in Figure 

4.7. The effective index is defined as ݊௘௙௙ ൌ ߚ ݇଴⁄  where ߚ is the propagation 

constant and the wavenumber ݇଴ ൌ ߨ2 ⁄ߣ , where ߣ is the wavelength. The refractive 

indices of ܱܵ݅ଶ as used in Figure 4.7 and Figure 4.8 are taken as 1.4440234 [160] at 

the operating wavelength of 1.55 ݉ߤ (fundamental wavelength) and as 1.4537603 at 

the SH wavelength of 0.775 ݉ߤ.  
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Figure 4.7 Variation of the effective index, ݊௘௙௙ with the pitch, Λ. 

In Figure 4.7, the dashed curve represents Case 1 where ݀ Λ⁄  values of 0.5, 0.5 and 

0.5 are set for the first, second and third rings of air-holes of the hexagonal PCF 

respectively. Similarly, the solid curve represents Case 2 where ݀ Λ⁄  values of 0.5, 

0.4 and 0.4 are set for the first, second and third rings of air-holes respectively. It is 

shown that as the pitch is reduced; the effective index is monotonically reduced. As 

the pitch is decreased the field which is confined inside the core becomes highly 

exposed to the air-holes, resulting in a decrease in the effective index. Furthermore, 

as the pitch is reduced, initially the effective indices of the first order mode of the 

fundamental frequency, ߱ (ܪଵଵ
௫ , ߱), reduces slowly in both cases (i.e. Case 1 and 

Case 2), but these decrease rapidly as the modes approach their cut-off conditions. 

Moreover, it can be noted that as the pitch is increased, the effective index 

asymptotically approaches that of ܱܵ݅ଶ, i.e. when the majority of the field is confined 

in the ܱܵ݅ଶ core. Further, at a given pitch value the effective index of Case 2 is 

higher than that of Case 1. This is due to the reduced ݀ Λ⁄  values of the second (0.4) 

and third (0.4) rings of air-holes and the reduced air-filling fraction in the cladding 

area in Case 2 which results in a higher effective index value. Further, Case 2 

reaches its cut-off condition faster than Case 1 due the less confined field as the 

index contrast (i.e. ∆݊) between core and cladding is smaller.           
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The spot-size (ߪ) is a significant modal property of a guided mode in optical 

waveguides. The rapid expansion of the spot-size in optical waveguides is used to 

analyse the cut-off condition. Figure 4.8 shows the variation of the spot-size with the 

pitch for Case 1 where the ݀ Λ⁄  values of the first, second and third rings are constant 

at 0.5.      

 

Figure 4.8 Variation of the spot-size (ߪ) with the pitch (Λ). 

Here, the spot-size, ߪ is defined as the area where the field intensity is greater than 

1 ݁ଶ⁄  of the maximum intensity (i.e. taking the power intensity values as 1 ݁ଶ⁄ ). In 

Figure 4.8 it can be clearly seen that as the pitch is reduced the fundamental spot-size 

ଵଵܪ) i.e. in first order mode of the fundamental frequency ,(ఠߪ)
௫ , ߱), shrinks. Further, 

at lower pitch values the core size reduces and the air-holes become closer to each 

other, resulting in an increase of the air-filling fraction in the cladding of the 

hexagonal PCF which prevents the mode spreading into the air-cladding. Therefore, 

the mode becomes more confined in the smaller core.  However, the modal cut-off 

condition is approached as the pitch is reduced further and then the spot-size expands 

rapidly. For the second harmonic spot-size (ߪଶఠ), i.e. in the first order mode of the 

second harmonic frequency (ܪଵଵ
௫ , 2߱) in contrast, the cut-off condition appears at a 
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much lower pitch value (not shown in Figure 4.8) compared to that of ܪଵଵ
௫ , ߱ due to 

the stronger confinement of the second harmonic modes.       

Variation of the coherence length (i.e. ܮ௖ ൌ ߨ ⁄ߚ∆  as discussed in Chapter 3) with the 

pitch is shown in Figure 4.9. In this case the ݀ Λ⁄  values of the first, second and third 

rings are 0.5.    

 

Figure 4.9 Variation of the coherence length, ܮ௖ with the pitch, Λ. 

It can be noted that as the pitch is increased the dimensions of the core are also 

increased. Hence, the ܱܵ݅ଶ region expands and ܮ௖ asymptotically approaches the 

value for bulk ܱܵ݅ଶ (~39.8 ݉ߤ). Furthermore, the effective index (݊௘௙௙) increases due 

to the increased area of the solid core at the centre. Further, ߚ increases along with 

݊௘௙௙ as ݊௘௙௙ ൌ ߚ ݇଴⁄ . Therefore, ߚఠ grows faster than ߚଶఠ bringing 2ߚఠ close to ߚଶఠ 

(as 2ߚఠ ൎ  ௖. It can be observed in Figure 4.9 thatܮ ଶఠ) which results in higherߚ 

higher pitch values lead to higher ܮ௖ values. However, when the pitch increases the 

modes in the PCF become multi-mode reducing the power density due to the 

increased core size. 
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4.4.3 Hexagonal PCF with defect air-hole 

By introducing the air hole at the centre it would be possible to lower the 

propagation constant of the mode. Because the field profile of SHG is smaller than 

the fundamental wavelength the effective index of the SHG wavelength should be 

affected more in this case. This could improve the coherence length. The results of 

SHG of defect-core PCF is discussed in this section. Figure 4.10 shows the 

numerical model of a hexagonal PCF with a defect air-hole at the centre of the ܱܵ݅ଶ 

core.  

 

Figure 4.10 Hexagonal PCF structure with a defect air-hole. 

Figure 4.11 and Figure 4.12 present the variation of the effective index and 

coherence length results, respectively, for a defect-core hexagonal PCF with the ݀ Λ⁄  

values of the first, second and third rings set to 0.5, while the operating wavelength 

is 1.55 ݉ߤ. Figure 4.11 shows the ݊௘௙௙ variation with the Λ for different centre hole 

radii. The comparison for with and without centre hole are also discussed.     
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Figure 4.11 Variation of the effective index (݊௘௙௙) with the pitch (Λ). 

The effective indices of the modes reduce with respect to the pitch as explained in 

Figure 4.7. It can be noted that the effective index at a particular pitch reduces when 

the radius of the defect air-hole increases. This is due to the fact that the peak 

intensity of the modal field profile overlaps with the defect air-hole. Further, for the 

fundamental frequency, ݊௘௙௙ reaches the cut-off condition faster than in the case of 

the second harmonic frequency because of less confinement of the mode in the core.  

At a given pitch, when the radius of the defect-core increases for both fundamental 

and second harmonic frequencies, the mode tends to push into the air-cladding 

region decreasing ݊௘௙௙. This is due to the lower refractive index at the core of the 

PCF.   
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Figure 4.12 Variation of the coherence length, (ܮ௖) with the pitch (Λ). 

The coherence length variation with the pitch for different defect-core radii is shown 

in Figure 4.12. It can be observed that at a given pitch, when the defect-core radius is 

increased (i.e. from 0 to 0.1 ݉ߤ) the ܮ௖ goes down due to the increased ݊௘௙௙ 

difference between fundamental and second harmonic modes (as shown in Figure 

4.11). However, at lower pitch values it can be seen that ܮ௖ becomes lightly higher 

for the defect core structure. Furthermore, higher defect core radii lead to lower 

overlap integral values, resulting in less power confinement in the hexagonal PCF 

core and reduced SH output power. This is due to the lower refractive index in the 

core region. Moreover, as the pitch reduces the solid curve (0.1 ݉ߤ) reaches its cut-

off condition faster than in the case of the dotted curve (i.e. without a defect-core) 

because, as the defect-core expands the mode is more exposed into the air-cladding 

and the ݊௘௙௙ difference between fundamental and second harmonic becomes more 

significant.           

4.4.4 Hexagonal PCF with soft glass SF57 

In this section the hexagonal PCF with soft glass ܵ57ܨ is presented in Figure 4.13 

and Figure 4.14 at the operating wavelength of 1.064 ݉ߤ (i.e. fundamental 

wavelength) with the refractive index value of 1.81173. ܵ57ܨ material has unique 
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properties which will be discussed in Section 4.5.1. Further, the results are obtained 

for three different cases where Case 1 has ݀ Λ⁄  values of the first, second and third 

rings as 0.4, Case 2 has ݀ Λ⁄  values of the first, second and third rings as 0.5 and 

Case 3 has ݀ Λ⁄  values of the first, second and third rings as 0.9.   

 

Figure 4.13 Variation of the effective index (݊௘௙௙) with the pitch (Λ). 

Similar to the silica PCF case as discussed in Figure 4.7, when the pitch is reduced 

݊௘௙௙ also reduces. Furthermore, at a given pitch value as the ݀ Λ⁄  value decreases, 

݊௘௙௙ is increased. It can be noted that as the pitch goes up, ݊௘௙௙ asymptotically 

approaches the effective index of ܵ57ܨ material due to the increased material region. 

Further, the refractive index for ܵ57ܨ is higher than that of ܱܵ݅ଶ. Hence, the mode 

confinement in ܵ57ܨ PCF is higher than that of ܱܵ݅ଶ PCF.  

Figure 4.14 shows the variation of the spot-size with the pitch for the three 

aforementioned cases. 
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Figure 4.14 Variation of the spot-size (ߪ) with the pitch (Λ). 

It can be observed that, when the pitch decreases the spot-size also decreases due to 

the reduction of core size of the hexagonal PCF. Further, at a given pitch value the 

spot-size shrinks as the ݀ Λ⁄  value increases, which can be explained as follows. The 

higher the ݀ Λ⁄ , the higher size of the air-holes in the cladding region. Hence, the 

refractive index difference between core and the cladding becomes significant for the 

higher ݀ Λ⁄  values, resulting in a tighter mode in the core region.     

Different PCF structures can improve the power conversion efficiency by enhancing 

the overlap integral between the fundamental and second harmonic modes, which is 

a result of unique air-hole orientation of the PCF structure. Accordingly, a different 

PCF structure is presented in the next section.  

 

4.5 EQUIANGULAR SPIRAL PCF 

An appropriate design of the microstructure of air-holes allows significant flexibility 

in tailoring the modal and dispersion properties of a PCF, for example, in achieving 

small mode area (for high non-linearity), flat dispersion, lower bending loss and the 

ability to optimise performance over more than one parameter simultaneously. 

Recently, A. Agrawal et al. have numerically modelled a PCF with equiangular 
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spirals (or logarithmic spirals) called Equiangular Spiral Photonic Crystal Fibres 

(ES-PCF). ES-PCF provides several design parameters by which the modal 

properties as well as the dispersion can be controlled more easily [161]. The ES-PCF 

provides better confinement of the fundamental mode in the core area compared to 

conventional PCF. For a given material, ES-PCF achieves better overlap between the 

optical fields of the fundamental mode at the frequencies of interest (i.e. of the pump 

and second harmonic) than in conventional PCF. Hence an ES-PCF is an excellent 

choice for nonlinear applications such as SHG, Four Wave Mixing (FWM) and 

Supercontinuum Generation.  

Section 4.5.1 details the choice of material used while Section 4.5.2 provides a 

description of the ES-PCF structure considered. Section 4.6 presents detailed results 

as follows: Section 4.6.1 discusses the effective indices, effective area and overlap 

integral of the fundamental and second harmonic modes; Section 4.6.2 contains 

results and discussion on the coherence length and quasi-phase matching; Section 

4.6.3 discusses the error tolerance in the coherence length and Section 4.6.4 

discusses the power comparison between ES-PCF and PCF for fundamental and 

second harmonic frequencies. 

 

4.5.1 Choice of Material for ES-PCF 

Traditionally, Silica has been the material of choice for the fabrication of PCF due to 

its superior optical and material properties. However, the inversion symmetry of the 

Silica glass implies that its second order nonlinear susceptibility (߯ሺଶሻ) is zero. So 

far, various thermal poling techniques have been implemented to overcome this 

problem [162-165] which can bring the second order susceptibility of Silica glass to 

݀ଷଷ~ 0.22 ݉݌ ܸ⁄  [132]. Alternatively, commercially available lead Silicate glass 

(also called soft glass) of type ܵ57ܨ (manufactured by Schott) can achieve a much 

higher second order susceptibility tensor value (of ݀ଷଷ~ 0.35 ݉݌ ܸ⁄ ) when the 

electron-beam irradiation technique is applied (i.e. Note that electron-beam 

irradiation cannot be applied to pure Silica) [135, 166]. Therefore, ܵ57ܨ which is the 

earliest available single mode non-Silica glass PCF is a promising candidate material 

for SHG. Further, ܵ57ܨ-based PCF has been reported to have the highest 

nonlinearity in optical fibres (640 ܹିଵ݇݉ିଵ) [167]. Also, challenging structures 

such as nano-wires have been fabricated using ܵ57ܨ glass [168]. This glass also 
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possesses a higher thermal expansion coefficient (9.2 ൈ 10ି଺ ିܭଵ [169]) compared to 

that of Silica (~5 ൈ 10ି଻ ିܭଵ [170]) which may allow for higher flexibility in 

adjusting the coherence length of the fibre. 

 

4.5.2 Numerical Modelling of ES-PCF  

The structure of the Equiangular Spiral Photonics Crystal Fibre (ES-PCF) is shown 

in Figure 4.15. The air-hole arrangement of the ES-PCF structure mimics the “spira 

mirabilis” (Equiangular Spiral) which is seen in nature in nautilus shells and 

sunflower heads [161]. This ES pattern of the sunflower head produces the most 

efficient packing of seeds within the flower head without altering the angle or the 

shape of the curve and thus the air-holes in the ES-PCF are arranged in a similar 

pattern.    

 

Figure 4.15 Structure of the Equiangular Spiral-Photonic Crystal Fibre. 

In the ES-PCF, each arm of air-holes forms a single ES where the angle from the 

centre of the core to adjacent holes of a given arm or ES differs by ߠ (e.g. the angular 

increment from hole 1 to hole 2 is ߠ and hole 2 to hole 3 is also ߠ ). The diameter (݀) 

of each air-hole is fixed at 2ݎ where ݎ is the air-hole radius. It should be noted that 
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the equivalent holes of each arm can be considered to form a ring, e.g. the first holes 

of all the arms form the first ring and the second holes of all the arms form the 

second ring and so on. The radius (Λ) of the ES-PCF is defined as the distance 

between the centre of the core and the centre of an air-hole in the first ring. The radii 

drawn to the centre of air-holes on subsequent rings of the same ES, i.e. at intervals 

of ߠ, form a geometric progression. The distance between the air-holes within a ring 

increases with the ring number (e.g. the distance between holes 2 and 2’ is larger 

than the distance between holes 1 and 1’).  

The main advantage of the ES-PCF is the improved field confinement in comparison 

to that of conventional PCF. This is due to the hole-orientation of the ES-PCF, where 

the outer air-holes block the field escaping through the material (i.e. inter-hole 

region) of the previous ring. 

 

4.6 SIMULATION RESULTS FOR ES-PCF  

The results presented in this section show that the SH output power of ܵ57ܨ ES-PCF 

is considerably higher than that of conventional PCF, e.g. ~2.1ܹ in ES-PCF as 

opposed to ~1.6ܹ in conventional PCF after the propagation of 250݉ߤ with a 

fundamental pump power of 1ܹ݇ (continuous wave), operating fundamental 

wavelength of 1.064 ݉ߤ, corresponding second harmonic wavelength of 0.532 ݉ߤ, 

݀ Λ ൌ 0.5⁄  and Λ ൌ  while the ES-PCF design consisted of 6 arms, 4 rings ,݉ߤ 1.0

and ߠ ൌ 30଴. The ES-PCF structure with air-holes arranged in a spiral lattice in the 

cladding is represented in the simulation by an irregular mesh of 28800 triangular 

elements. Further, the results in this section are obtained by using the scalar BPM. 

    

4.6.1 Modal Properties and SHG in the ES-PCF 

The variation of the effective index ݊௘௙௙ with pitch (Λ) has been studied for the first 

order mode at the two frequencies ߱ and 2߱ which is shown in Figure 4.16. The 

dispersion properties of ܵ57ܨ have been considered by using the refractive indices 

for ܵ57ܨ and the Sellmeier coefficients of ܵ[169] 57ܨ. Here, ݊௘௙௙ ൌ ߚ ݇଴⁄  where ߚ is 

the propagation constant and ݇଴ is the wavenumber (݇଴ ൌ ߨ2 ⁄ߣ  where ߣ denotes the 
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wavelength). The first order mode ܪଵଵ
௫  of the fundamental frequency ߱ is indicated 

by ܪଵଵ
௫ , ߱. 

 

Figure 4.16 Variation of the effective index with the pitch for the first order mode at 

߱ and 2߱. 

As can be seen in Figure 4.16, a reduction of the pitch results in a reduction of ݊௘௙௙ 

as the confined mode gets exposed to the first ring of air-holes. Initially the effective 

indices of the modes reduce slowly, but these decrease rapidly as the modes 

approach their cut-off conditions. Moreover the effective index of ܪଵଵ
௫ , 2߱ (i.e. ܪଵଵ

௫  

mode of the second harmonic frequency) is shown to move towards the cut-off 

condition at a lower rate than of ܪଵଵ
௫ , ߱. This is because the first order mode of the 

higher frequency (i.e. of second harmonic) is more confined in the centre than that of 

the lower frequency. Furthermore, as the pitch is increased, the mode becomes more 

confined to the core, resulting in ݊௘௙௙ asymptotically approaching the refractive 

index of ܵ57ܨ (i.e. ݊ఠ ൌ 1.81173 and ݊ଶఠ ൌ 1.85841).  

The mode size, or its effective area (ܣ௘௙௙), is an important modal parameter which 

can be used to evaluate the overlap integral of the pump and the second harmonic 

modes. The definition of  ܣ௘௙௙ is given by [171]; 
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௘௙௙ܣ ൌ
ቀ׭ ௧|ଶܧ| ௦ݕ݀ݔ݀ ቁ

ଶ

ቀ׭ ௧|ସܧ| ௦ݕ݀ݔ݀ ቁ
 (4.1) 

where ܧ௧ represents the transverse electric field vectors and ܵ represents a cross-

section of the fibre. Figure 4.17 shows the variation of the effective area with the 

pitch for the dominant and higher order modes at ߱ and 2߱. 

 

Figure 4.17 Variation of the effective area with the pitch for the first order mode at ߱ 

and 2߱. 

For a given pitch the fundamental wavelength (1.064 ݉ߤ) has higher ܣ௘௙௙ than that 

of the second harmonic wavelength (0.532 ݉ߤ) which can be seen by comparing the 

ଵଵܪ
௫ , ߱ curve with the respective second harmonic case ܪଵଵ

௫ , 2߱. For all the modes, it 

can be observed that ܣ௘௙௙ goes down as the pitch Λ is reduced. However when the 

pitch falls below a certain value, ܣ௘௙௙ starts to increase slowly due to reaching the 

cut-off condition. The cut-off value of Λ is ~0.5 ݉ߤ for the first order mode of the 

fundamental frequency. Further, due to the high confinement of the second harmonic 

mode (i.e. ܪଵଵ
௫ , 2߱), the effective area approach the cut-off region at lower pitch 

values (not shown here) compared to the fundamental mode (i.e. ܪଵଵ
௫ , ߱). The 
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relationship between the effective area of fundamental and second harmonic modes 

is used as a guideline for design optimisation.  

The overlap integral (Γ) between the interacting fundamental and second harmonic 

first order modes (ܪଵଵ
௫ ) directly relates to the efficiency of power transfer between 

these modes, i.e. a higher value of the overlap integral results in a higher conversion 

efficiency and vice versa [32]. The definition of the overlap integral is given by; 

Γ ൌ
׭| ఠܧ

ଶ · ଶఠܧ · ݔ݀ · |ݕ݀

ሺ׭ ఠܧ
ଶ · ݔ݀ · ሻݕ݀ · ሺ׭ ଶఠܧ

ଶ · ݔ݀ · ሻݕ݀
ଵ
ଶ

 (4.2) 

where ܧఠ and ܧଶఠ are the electric field distribution of the fundamental and second 

harmonic waves respectively [172]. Figure 4.18 illustrates how the overlap integral 

of the first order modes ܪଵଵ
௫  for ߱ and 2߱ vary with the pitch (Λ) for three different 

݀ Λ⁄  values.  

 

Figure 4.18 Variation of the overlap integral (Γ) with the pitch (Λ). 

For a given pitch, the overlap integral increases as ݀ Λ⁄  increases. This arises 

because, as ݀ increases, the equivalent index of the cladding decreases, increasing 

the index contrast between core and cladding, which in turn increases the 

confinement of the mode in the ES-PCF. Further, as the pitch decreases for a given 
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value of ݀ Λ⁄  , the overlap integral increases reaching a maximum value (in the 

region 0.7 ݉ߤ ൑  Λ ൑  .then starts to decrease: this can be explained as follows (݉ߤ 1

Reducing the pitch makes ܪଵଵ
௫ , ߱ and ܪଵଵ

௫ , 2߱ more confined which reduces the 

mismatch of their effective areas leading to an increase in the overlap integral. 

However, at very small pitch values the fundamental field reaches its cut-off region 

faster than the second harmonic field. Therefore, even though the second harmonic 

field becomes more confined to the core, the mismatch between fundamental and 

second harmonic fields becomes significant and the overlap integral starts to reduce 

at very small Λ values. 

The overlap integral (Γ) and the Second Harmonic susceptibility tensor values (݀௜௝) 

are key parameters in determining the rate of power conversion. High SH power can 

be gained by ݀௜௝ values which are material properties; indeed the ݀௜௝ values of ܵ57ܨ 

(i.e. ݀ଷଷ~ 0.35 ݉݌ ܸ⁄ ) are high in comparison with that of Silica (i.e. 

݀ଷଷ~ 0.22 ݉݌ ܸ⁄ ). On the other hand, the overlap between the interacting modes 

depends on the fibre design. When the fundamental and second harmonic waves are 

not phase matched, the second harmonic power increases until the waves are out of 

phase and the SH power starts depleting.  

Figure 4.19 shows the variation of the maximum output power ( ௅ܲ௖) with the pitch 

(Λ), for different ݀ Λ⁄  values, where ௅ܲ௖ is the power after the propagation of one 

coherence length (ܮ௖). This value is obtained by FE-BPM which takes into account 

all factors including phase matching. 
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Figure 4.19 Variation of the maximum SH output power ( ௅ܲ௖) with the pitch (Λ). 

It can be observed that a higher ݀ Λ⁄  value yields a higher value of ௅ܲ௖: this is 

because as ݀ Λ⁄  increases, the fraction of air increases in the ES-PCF, and the power 

intensity is more confined in the core. Even though the decreasing of the pitch causes 

the power to be further confined into the core, once it reaches its threshold, the 

power spreads into the air region and dissipates, reducing ௅ܲ௖ and hence creating the 

peak values (in the region 0.9 ݉ߤ ൑  Λ ൑  Further, since the air filling .(݉ߤ 1.1

fraction is higher for larger ݀ Λ⁄  values (e.g. ݀ Λ⁄ ൌ 0.5), the cut-off region is reached 

faster than in the case of lower ݀ Λ⁄  values (e.g. ݀ Λ⁄ ൌ 0.3).  
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4.6.2 Coherence Length and Quasi Phase Matching 

The variation of ܮ௖ with respect to the pitch is plotted in Figure 4.20. 

 

Figure 4.20 Variation of the coherence length (ܮ௖) with the pitch (Λ). 

As ݀ Λ⁄  decreases for a given pitch (Λ), the effective index (݊௘௙௙) increases due to the 

increased area of the solid ܵ57ܨ bridges between the air-holes: this results in an 

increase of ܮ௖. Moreover, as the pitch is increased, the ܵ57ܨ area is further increased 

and ܮ௖ asymptotically approaches the value for bulk ܵ(݉ߤ 5.69 ~) 57ܨ. As the 

effective index increases, the propagation constant (ߚ) also increases. As seen in 

Figure 4.16, for higher Λ values, ߚఠ increases faster than ߚଶఠ bringing 2ߚఠ close to 

ఠߚଶఠ (i.e. 2ߚ ൎ  ௖. Further, the idealܮ ଶఠ) which results in a higher value ofߚ

condition occurs when ݊ఠ ൌ ݊ଶఠ (where ݊ఠ and ݊ଶఠ are the fundamental and second 

harmonic refractive indices respectively) which cannot be realised in practice due to 

the chromatic dispersion of the material.  

The most rapid growth of the second harmonic output power can be achieved by 

changing the sign of ߯ሺଶሻ for every ܮ௖ (which is known as first order QPM) as shown 

in Figure 4.21 (for ݀ Λ⁄ ൌ 0.5 and Λ ൌ  .(݉ߤ 1.0
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Figure 4.21 Generated Second Harmonic power with first, third and fifth order Quasi 

Phase Matching. 

The QPM for the first, third and fifth order modulations are shown in Figure 4.21 

where ܮ௖  ൎ ݀ ,݉ߤ 2.9 Λ⁄ ൌ 0.5 and Λ ൌ  Note that even though higher order .݉ߤ 1.0

QPMs need a longer propagation distance to reach a given level of SH output power, 

higher order QPMs make the fabrication process easier especially in the case of short 

coherence lengths. 

 

 

 

 

 

 

 

 



Chapter 4  Photonic Crystal Fibres

 

109  
 

4.6.3 Error Tolerance in Quasi Phase Matching 

During the fabrication process, an error denoted by Δܮ௖ can occur, which is defined 

as the difference between the desired coherence length and the actual coherence 

length achieved after the fabrication. Assuming that the fundamental frequency 

propagates through ܰ  periodically poled regions, and the second harmonic output 

power builds up along the length of the ES-PCF, the accumulated error in length 

after propagating a distance ܰܮ௖ is given by ܰΔܮ௖. After a distance of propagation 

during which the accumulated length error becomes equal to the coherence length, 

the phase mismatch is equal to ߨ and the power starts to reduce [173]. This 

behaviour can be observed in Figure 4.22 and Figure 4.23 for the first order and the 

fifth order QPM respectively.  

 

Figure 4.22 Effect of fabrication tolerance on Second Harmonic output power with 

first order Quasi Phase Matching. 
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Figure 4.23 Effect of fabrication tolerance on Second Harmonic output power with 

fifth order Quasi Phase Matching. 

It can be seen that with the first order QPM, the maximum SH output power for the 

0% error case (i.e. no fabrication error) reaches a value of ~120ܹ (and ~5.6ܹ with 

fifth order QPM) over a distance of ~2350 ݉ߤ while a 0.2% error reduces the 

maximum power to ~15ܹ (and ~0.7ܹ with fifth order QPM) for the same distance. 

Therefore, once a reasonable coherence length is achieved by using poling 

techniques, it is important to fine-tune ܮ௖ by employing techniques such as 

temperature tuning of the period [174] or strained period of a long period grating 

[175] in order to minimise the error. 

 

4.6.4 Second Harmonic Power Comparison 

Figure 4.24 (a) and Figure 4.24(b) show the second harmonic mode profile for silica 

hexagonal PCF after propagating 100 steps and 25000 steps respectively. As can be 

seen in Figure 4.24 (a), after 100 steps the SH mode magnitude is low (magnitude of  

8 ൈ 10ିସܣ/݉ିଵ and the SH output power of ~4.6 ൈ 10ିହ ܹ); however, after 

propagation of 25000 steps (magnitude of  0.09 ܣ/݉ିଵ and the SH output power of 

~0.65 ܹ) the mode magnitude becomes high due to the power transfer from the 
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fundamental field. Hence, the fundamental mode becomes depleted: this is not 

shown as the pump depletion is not significant.  

 

(a) 

 

(b) 

Figure 4.24 Second Harmonic mode profile for silica hexagonal PCF after (a) 100 

steps, (b) 25000 steps. 

Figure 4.25 shows the mode profiles for the second harmonic frequency in ܵ57ܨ ES-

PCF. The mode profiles behave in a similar manner to the case of silica hexagonal 

PCF for the same reasons explained above. However, the mode magnitudes in both 
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cases, i.e. fundamental (not shown here for the same reasons as above) and second 

harmonic, are significantly higher (magnitude of 0.14 ܣ/݉ିଵ and the SH output 

power of ~3.5 ܹ) in ܵ57ܨ ES-PCF after propagation of 25000 steps due to its unique 

structure and material. 

 

(a) 

 

(b) 

 

Figure 4.25 Second Harmonic mode profile for SF57 ES-PCF (a) after 100 steps, (b) 

25000 steps. 

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

2

4

6

8

10

12

x 10
-4

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

0.02

0.04

0.06

0.08

0.1

0.12

0.14

ݔ ሺ݉ߤሻ

 ݕ
ሺ ߤ

݉
ሻ  

ଵଵܪ
௫ , 2߱

ݔ ሺ݉ߤሻ

 ݕ
ሺ ߤ

݉
ሻ  

ଵଵܪ
௫ , 2߱



Chapter 4  Photonic Crystal Fibres

 

113  
 

Figure 4.26 shows the first order QPM SH output power for ES-PCF (ܵ57ܨ) and 

PCF (Silica and ܵ57ܨ) with varied numbers of air-holes. In all the cases ݀ Λ⁄ ൌ 0.5 

and Λ ൌ   .݉ߤ 1.0

 

 

Figure 4.26 Comparison of QPM SH output power against length for different PCF 

structures and different materials. Inset graph: enlarged version of curves a) and c) 

for the propagation of a single coherence length. 

 

It is clear that as the number of air-holes is increased, the SH power improves for 

both conventional PCF and ES-PCF. The SH power can be further improved by 

employing the ES-PCF structure (instead of conventional PCF) and the ܵ57ܨ 

material (instead of Silica). Considering curves a) and c), i.e. conventional PCF with 

Silica and ܵ57ܨ respectively, both with 40 air-holes it can be seen clearly that the SH 

output power of curve c) is much higher, which is due to the high ݀ଷଷ value of the 

 material. The superiority of the ES-PCF structure is clearly illustrated by curve 57ܨܵ

d), i.e. ES-PCF with 18 air-holes, which has a considerably higher output power 

(~1.9ܹ) than that of curve b) (~1.6ܹ), i.e. PCF with the same number of air-holes 

(and same material); and still higher compared with that of curve c) (~1.8ܹ), i.e. 

PCF with almost twice the number of air-holes (i.e. 40). Moreover, curve e) shows 
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that the SH output power (~2.1ܹ) can be further improved by increasing the number 

of air-holes (i.e. 24 air-holes) in the ES-PCF. This improvement is already seen at a 

propagation length of 250 ݉ߤ and will be much more significant with further 

propagation. The difference between the two structures is a result of the superior 

confinement of the mode in the core region in ES-PCF which results in a better 

overlap integral compared to that of the conventional PCF structure.  

The inset graph shows an enlarged version of curves a) and c) for the propagation 

over a single coherence length. The value of ܮ௖ of Silica is higher than that of ܵ57ܨ 

which is due to the lower material refractive index difference between the 

fundamental and the SH waves (i.e. for ܵ57ܨ ∆݊ ൌ 0.0467, for Silica ∆݊ ൌ 0.0097). 

The inset graph shows clearly that the SH output power is higher in Silica after the 

propagation of a distance equal to one ܮ௖. Nevertheless, as mentioned above, 

observations made at further propagation lengths show that ܵ57ܨ leads to a higher 

level of power compared to Silica while the ES-PCF structure helps further increase 

the power.  
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4.7 SUMMARY 

This chapter provides one of the key contributions by the author which represents a 

novel aspect of this thesis in the numerical analysis of the ES-PCF design in ܵ57ܨ 

soft glass.  Here, for the first time, the approach has included the analysis of SH 

output power, modal properties and error tolerance. The main aspects of the work 

and achievements are summarised below. 

Numerical simulations have first been validated by comparison of the outputs with 

corresponding real experiments on conventional optical fibre. Further numerically 

simulated results show that a significantly higher level of SH output power can be 

achieved by employing the ES-PCF design in ܵ57ܨ soft glass rather than 

conventional Silica PCF. For example, a power increase of 31% was numerically 

demonstrated from conventional PCF (~1.6ܹ) to ES-PCF (~2.1ܹ) for a propagation 

length of 250 ݉ߤ. The higher output power is a result of the higher overlap integral 

arising from the better modal properties in ES-PCF. The Quasi Phase Matching 

technique has also been applied in order to achieve maximum SH output power. It 

has been shown that potential fabrication tolerances can lead to errors in the 

coherence length, which could result in a substantial reduction in the generated QPM 

SH power. However, it may be possible to minimize the fabrication errors by 

temperature or strain tuning. Moreover, the ability of the ES-PCF structure to 

effectively control more than one parameter simultaneously: this is a significant 

advantage over conventional PCF and this has been demonstrated by the work 

carried out by the author in this thesis. 
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Chapter 5 

 

 

 

 

 

 

 

 

5 Zinc Oxide Waveguides 
 

This chapter presents the numerical analysis of Zinc Oxide Waveguides by 

employing the full vectorial Beam Propagation Method (BPM). Section 5.1 gives a 

brief introduction while Section 5.2 provides a description of the ܼܱ݊ waveguide 

structure considered and Section 5.3  presents detailed results of the investigation 

carried out including the validation of the simulation results.  Finally, Section 5.4 

summarises the study. 

 

5.1 INTRODUCTION 

Adaptation of nanotechnology is currently becoming popular in a variety of 

engineering applications. Among various nanoscale devices, nanowires are widely 

utilised in nanophotonics. In such optical devices, SHG continues to play a vital role 

in a wide range of applications such as cell imaging in biology [176]. This is due to 

the fact that in smaller core size of waveguides the power density can be high for a 

given input power and SHG directly depends on power density, i.e. reduced effective 

area (ܣ௘௙௙) results in enhanced SHG efficiency. Currently there is a growing interest 

in nonlinear materials which can be fabricated in nanoscale. ܼܱ݊ is one such 
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material: although ߯ሺଶሻ may be lower than that of ܱܾܰ݅ܮଷ, its overall efficiency is  

expected to be higher.  However for ܼܱ݊ structures with dimensions lower than the 

wavelength, the index contrast becomes high which causes the fields to be of hybrid 

nature. Therefore, a full-vectorial approach is needed for the numerical analysis of 

SHG. This chapter employs a full vectorial FE-BPM analysis of SHG in ܼܱ݊ 

waveguides. 

 

5.1.1 Choice of Material 

Materials with non-inversion symmetry such as ܱܾܰ݅ܮଷ, ܱܾܰܭଷ, ܱ݅ܶܽܤଷ and ܼܱ݊ 

are commonly used to fabricate optical waveguides due to their higher second order 

nonlinear optical response (i.e. second-order nonlinear susceptibility ߯ሺଶሻ). Among 

the various materials available, Lithium Niobate (ܱܾܰ݅ܮଷ) exibits excellent 

properties of second order nonlinearity with the use of periodical poling methods 

[177], which can be utilised in many second order NLO devices [149]. However, it is 

challenging to achieve high second order nonlinearity in nanoscale ܱܾܰ݅ܮଷ 

waveguide structures due to lack of flexibility and the high costs required for their 

practical implementaions, such as is needed in modern crystal growth technology. 

Hence there is a growing demand for alternative NLO (Nonlinear Optical) materials 

in which the waveguide cross-section can be reduced to enhance effective 

nonlinearity. 

Zinc Oxide (ܼܱ݊), a II-VI semiconductor, has many excellent optical and 

photomechanical properties compared to those of other nonlinear materials such as 

 ଷ and ܼܱ݊ has the capability to be deposited on different types of substratesܱܾܰ݅ܮ

[178]. Alternatively, ܼܱ݊ can also be grown on various substrates such as silica 

[179], silicon [180], [181] ݏܣܽܩ, quartz [182], diamond [183], Diamond-Like-

Carbon (DLC) [184, 185], ܱܽܶ݅ܮଷ [186] and ܱܾܰ݅ܮଷ [187]. Therefore, due to their 

positive characteristics in terms of their fabrication potential and ability to be readily 

integrated, ܼܱ݊ nanomaterials are promising candidates for integrated optics devices 

such as solar cells, lasers and transparent transistors and ܼܱ݊-based blue light 

emitting diodes (LEDs) etc. [188]. Furthermore, second order susceptibilies in ܼܱ݊ 

can be enhanced by decreasing the thin film thickness, regardless of the technology 

being used. Further, by varying the growth time in ܼܱ݊ nanorods, it is possible to 

vary the aspect ratio and the second order suceptibilities [126]. Moreover, exploiting 
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SHG in various forms of ܼܱ݊ is becoming popular for a wide range of applications, 

espcially in biophotonics where it is used to understand better some of the biological 

molecules used [189]. Studying induced luminescence is another aspect of the use of 

SHG in ܼܱ݊ [190] and recently, ܼܱ݊ has been employed as hybrid optical material 

for fabricating integrated active optical devices operating in the visible, near-

infrared, mid-infrared and ܶܪ௭ frequency regions, taking full advantage of the highly 

transparent nature of ܼܱ݊ [191]. 

 

5.2 ZINC OXIDE WAVEGUIDE DESIGN 

ܼܱ݊ thin films exhibit significant second-order nonlinear susceptibility ߯ሺଶሻ (i.e. in 

the region of 10 ݉݌/ܸ) across different crystallinities and thicknesses [125]. Another 

advantage of using ܼܱ݊ films is that the well-defined crystal polarity can be 

identified in advance in order to understand the origin of the NLO response in the 

thin film [192]. ܼܱ݊ thin films have been employed for many practical applications 

e.g. nanocrystalline ܼܱ݊ thin film for gas sensor applications [193] and in producing 

ܼܱ݊ thin film transistors (TFTs) [194] for next-generation displays. ܼܱ݊ waveguides 

can also be used to fabricate low power CMOS (Complementary Metal–Oxide–

Semiconductor) compatible ܼܱ݊ nanocomb-based gas sensors.  In this chapter, a 

ܼܱ݊ nanostructure has been considered and it is assumed that the ܼܱ݊ nanowires 

have been grown on a silica/silicon substrate with the crystal axis perpendicular to 

the silica/silicon substrate. 

 
Figure 5.1 ࡻ࢔ࢆ planar waveguide with silica buffer layer on a silicon substrate. 
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Figure 5.1 shows the structure of the ܼܱ݊ planar waveguide with a silica buffer layer 

on a silicon substrate. In Figure 5.1, ܪ and ܹ denote the height and the width of the 

planar waveguide, respectively. In practice, rectangular-shaped ܼܱ݊ crystals have 

been used in the form of fabricated thin films, achieved by using different growing 

techniques, which have shown promising SHG performance. An initial investigation 

was carried out to optimise ܼܱ݊ waveguides with different aspect ratios. The 

refractive indices of ܼܱ݊ and ܱܵ݅ଶ are taken as 1.95494 [195] and 1.54292 [196], 

respectively, at the fundamental wavelength ߣఠ = 1.064 ݉ߤ. The refractive indices of 

the ܼܱ݊ and ܱܵ݅ଶ for the second harmonic wavelength ߣଶఠ= 0.532 ݉ߤ were given by 

2.04651 [195] and 1.55609 [196], respectively. The ܼܱ݊ waveguide with the ܱܵ݅ଶ / 

ܵ݅ substrate and air-cladding was represented by an irregular mesh of 9800 triangular 

elements in this numerical simulation. In this analysis, the fundamental pump power 

is taken as 1ܹ and the ܪ௠௡
௫  (quasi- ܶܯ) and ܪ௠௡

௬  (quasi- ܶܧ) mode notations are 

used.    

 

5.3 SIMULATION RESULTS   

Numerical simulation results are presented in Section 5.3.1 for the periodically poled 

silica fibre which was discussed in Chapter 4 in order to validate the numerical 

results. Section 5.3.2 presents the simulation results for ܼܱ݊ waveguides.  

5.3.1 Validation of numerical simulations  

In Chapter 4, numerical results have been validated by comparing with experimental 

results for the periodically poled silica fibres [159]. The scalar BPM has been used to 

analyse the SHG in Chapter 4 whereas the full vectorial BPM has been implemented 

in order to obtain a numerical analysis for ܼܱ݊ waveguides in this chapter. The 

derivation of the full vectorial BPM and the application of full vectorial BPM for the 

analysis of SHG have been discussed in detail in Chapter 2 and Chapter 3 

respectively. In this section, results of the analysis of SHG in periodically poled 

silica fibre have been used to test the full vectorial approach for SHG. Therefore, a 

structure with a small index contrast, for which both vector and scalar approaches are 

reasonable and acceptable has been considered.   
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Figure 5.2 Comparison of the QPM SH output power of the scalar ܪ௫, vector ܪ௫ and 

full vectorial fields against the propagation length. 

Figure 5.2 shows the comparison of QPM second harmonic output power for the 

scalar- ܪ௫ field (ܶܯ- mode), vector- ܪ௫ field (i.e. only the ܶܯ- mode of the full 

vectorial BPM is used) and full vectorial fields up to a propagation length of 75 ݉ߤ. 

The blue and green curves show the SH output power of ~2 ൈ 10ିଵ଴ ܹ after 

propagation of 75 ݉ߤ and the black curve shows ~1.1 ൈ 10ିଵ଴ ܹ. Further, all three 

curves have the same coherence length of ~13 ݉ߤ. It can be observed in Figure 5.2 

that the SH output power of the full vectorial field is lower than that of scalar- ܪ௫ 

and vector- ܪ௫ fields. The reason for this behaviour is that in full vectorial BPM, all 

the ܪ௫, ܪ௬ and  ܪ௭ components are considered whereas the others consider only the  

 ௫ field component. The crystal orientation in these cases (i.e. in the blue and greenܪ

curves) supports mainly a higher  ܪ௫ field for SHG. This has been further discussed 

under choosing the optimised crystal orientation and poling direction in Chapter 3. 

On the other hand, in the black curve the magnitudes of the other two field 

components (ܪ௬ and  ܪ௭) become very low and contribution to the overall SH power 

becomes lower than in the other two curves. Moreover, the second harmonic output 

power of the scalar- ܪ௫ field component can be represented as follows; 
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ௌܲுீ ሺ௦௖௔௟௔௥ሻ ൌ ቆ
ܼ଴ߚ

݇଴݊ଶఠ
ଶ ቇ

1
2

௫ሺଶఠሻܪ
ଶ  (5.1) 

where ܼ଴ is the free space impedance (ൎ 377Ω), ߚ is the propagation constant, ݇଴ is 

the wavenumber and ݊ is the refractive index of the material. 

In the case of full vectorial the power is equally distributed into ܪ௫ and ܪ௬ 

components and it can be expressed as follows; 

ௌܲுீሺ௙௨௟௟ ௩௘௖௧௢௥ሻ ൌ ቆ
ܼ଴ߚ

݇଴݊ଶఠ
ଶ ቇ

1
2

௫ሺଶఠሻܪ
ଶ ൅ ቆ

ܼ଴ߚ
݇଴݊ଶఠ

ଶ ቇ
1
2

௬ሺଶఠሻܪ
ଶ  (5.2) 

 

ௌܲுீሺ௙௨௟௟ ௩௘௖௧௢௥ሻ ൌ ቆ
ܼ଴ߚ

݇଴݊ଶఠ
ଶ ቇ

1
2

൫ܪ௫ሺଶఠሻ
ଶ ൅ ௬ሺଶఠሻܪ

ଶ ൯ (5.3) 

Equation (5.3) shows the full vectorial SHG power due to the both ܪ௫ and ܪ௬ 

components of the propagating SH field. However, the ܪ௬ component of SH is not 

generated. 

When the fundamental mode is launched, the ܪ௫ሺఠሻ and ܪ௬ሺఠሻ components propagate 

with equal intensities. The relationship between the scalar- ݔܪ and the full vectorial 

field components for the fundamental frequency can be expressed as follows; 

1
2

௫ ሺఠି௦௖௔௟௔௥ሻܪ
ଶ ൌ ௫ܪ ሺఠି௙௨௟௟ ௩௘௖௧௢௥௜௔௟ሻ

ଶ  (5.4) 

 

௫ ሺఠି௙௨௟௟ܪ ௩௘௖௧௢௥௜௔௟ሻ ൌ
௫ሺఠି௦௖௔௟௔௥ሻܪ

√2
 (5.5) 

As can be seen in equation (5.5) the ܪ௫ ሺఠି௙௨௟௟ ௩௘௖௧௢௥௜௔௟ሻ is lower than ܪ௫ሺఠି௦௖௔௟௔௥ሻ for 

a given values of launched power. Therefore, the two conditions from equations 

(5.3) and (5.5) suggest a full vectorial mode produces a lower SHG power as shown 

in Figure 5.2. 

Figure 5.3 shows the QPM second harmonic output power in full and quarter 

structure for periodically poled silica fibres. The results shown in Figure 5.3 were 

obtained by using scalar BPM and full vector BPM. It can also be noted that the 
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scalar and vector BPM results are similar, because the pure ܶܯ mode has been 

launched (i.e. using only the ܪ௫ field component). 

   

Figure 5.3 Comparison of the QPM SH output power of the scalar full structure and 

vector quarter structure fields with different pump powers against the propagation 

length.   

 

Furthermore, it can be observed in Figure 5.3 that the scalar- ܪ௫ second harmonic 

output power is ~2 ൈ 10ିଵ଴ ܹ in the full structure with the input power of 150 ܹ݉ 

(dotted curve) while the vector-ܪ௫ second harmonic output power is ~5 ൈ 10ିଵଵ ܹ in 

the quarter structure with the input power of 37.5 ܹ݉ (dashed curve) which is four 

times lower. Further the solid curve represents the vector-ܪ௫ second harmonic output 

power for quarter structure similar to the dashed curve. However in this case (i.e. 

solid curve) the power values are multiplied by four in order to compare with the SH 

output power of the full structure.  
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The relationship between the pump power and the QPM second harmonic output 

power is shown in Figure 5.4.   

 

Figure 5.4 Variation of the QPM SH output power with different pump power levels. 

The relationship between the SH electric field, magnetic field and the pump power 

( ఠܲ) can be represented as follows; 

ଶఠܧ ן ఠܲ (5.6) 

 

ଶఠܪ ן ఠܲ (5.7) 

 

Then the nonlinear relationship in Figure 5.4 can be expressed as follows; 

For the electric field;  

ଶఠܧ ן ఠܧ
ଶ  (5.8) 

where ܧఠ and ܧଶఠdenote the electric fields for the fundamental and second harmonic 

frequencies respectively.  
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For the magnetic field;  

ଶఠܪ ן ఠܪ
ଶ  (5.9) 

where ܪఠ denotes the magnetic field for the fundamental frequency and ܪଶఠ denotes 

the magnetic field for the second harmonic frequency; 

Squaring both sides of equation (5.8)  yields the following relationship; 

ሾܧଶఠሿଶ ן ሾܧఠ
ଶ ሿଶ (5.10) 

Then the relationship between the fundamental and second harmonic power can be 

expressed as follows; 

ଶܲఠ ן ሾ ఠܲሿଶ (5.11) 

The behaviour of equation (5.11) is represented in Figure 5.4. Furthermore, the linear 

relationship between the maximum ܪଶఠ value (i.e. in this case ܪ௫) and the pump 

power is shown in Figure 5.5 and the relationship is given in equation (5.7)    

 

Figure 5.5 Variation of the maximum ܪ௫ value of the SH output field with different 

pump power levels. 
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Figure 5.6 shows the full structure field profiles for the fundamental and second 

harmonic frequencies after the propagation of 75 ݉ߤ. These field profiles are 

obtained based on Figure 5.2, where the evolution of SHG is shown. 

 

 

 
Figure 5.6 Fundamental and SH field profiles after propagation of 75 ݉ߤ for full 

structure optical fibre. 

It can be observed in Figure 5.6 that the field profiles of ܪ௫, ߱ and ܪ௬, ߱ have similar 

magnitudes in both cases: this is due to the mode degeneration in a circular core. 

Further, the field profiles of ܪ௫, ߱ and ܪ௬, ߱ are in the Gaussian shape and the field 

profile of ܪ௭, ߱ appears as two lobes of opposite polarity. Moreover, the crystal 

orientation and the poling direction have been chosen in order to optimise the ܶܯ-

mode. Therefore, the ܪ௫, 2߱ field profile has a higher magnitude than that of ܪ௬, 2߱.    
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Figure 5.7 shows the quarter structure field profiles for the fundamental and second 

harmonic frequencies after the propagation of 75 ݉ߤ. These field profiles are 

obtained based on Figure 5.3. 

 

 

 
Figure 5.7 Fundamental and SH field profiles after propagation of 75 ݉ߤ for quarter 

structure optical fibre. 

As shown in Figure 5.7 the field profiles (ܪ௫, ߱ and ܪ௬, ߱) behave in a similar 

manner to that of the full vectorial case, albeit with a quarter structure. However, the 

magnitude of the ܪ௫, ߱ field profile is higher than that of ܪ௬, ߱: this is caused by all 

the power being used to excite the ܶܯ-mode while ܶܧ-mode is prohibited by 

imposing the boundary conditions. Further, similar behaviour can be observed in the 

case of  ܪ௫, 2߱ and ܪ௬, 2߱ field profiles as discussed in relation to Figure 5.6 (i.e. 
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magnitude of the ܪ௫, 2߱ is higher than that of ܪ௬, 2߱ due to the chosen crystal 

orientation and poling direction which mostly support the ܶܯ-mode).     

 

Figure 5.8 SH field profile on the Z-axis after propagation of 75 ݉ߤ for quarter 

structure optical fibre. 

Figure 5.8 shows the propagation of the second harmonic vector- ܪ௫ field profile on 

the Z-axis for the propagation length of 75 ݉ߤ. In this case the field profile is 

obtained from Figure 5.7 (i.e. using ܪ௫, 2߱). It can be observed that initially the 

magnitude of the field is zero and then gradually increases along the Z-axis (i.e. 

propagation axis): this is due to the power transfer from the fundamental field to the 

second harmonic field. Further, similar behaviour can be noticed for ܪ௬, 2߱ and 

,௭ܪ 2߱. 
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5.3.2 Analysis of Zinc Oxide waveguides  

The variation of the effective index (݊௘௙௙) with height has been studied for the first 

order mode at two frequencies, ߱ and 2߱, each with different widths, ܹ (i.e. 1 ݉ߤ 

and 2 ݉ߤ), and the results of this are shown in Figure 5.9. The first order mode ܪଵଵ
௫  

of the fundamental frequency, ߱, is indicated by ܪଵଵ
௫ , ߱. 

 

Figure 5.9 Variation of the effective index of the propagating modes with the height 

at the fundamental and second harmonic frequencies for width values of 1݉ߤ and 

 .݉ߤ2

As can be seen in Figure 5.9, a reduction of the height results in a reduction of ݊௘௙௙ 

as the confined mode becomes exposed to the air cladding of the ܼܱ݊ waveguide. 

Initially the effective indices of the modes reduce slowly, but these decrease rapidly 

as the modes approach their cut-off conditions (i.e. height values of 0.3 ݉ߤ െ

ଵଵܪ Moreover, the effective index of .(݉ߤ 0.7
௫ , 2߱ (i.e. ܪଵଵ

௫  of the second harmonic 

frequency) is shown to move towards the cut-off condition at a slower rate than does 

the ܪଵଵ
௫ , ߱ mode. This is because the first order mode of the higher frequency (i.e. of 

second harmonic) is more confined in the centre of the ܼܱ݊ core, in comparison with 

that of the lower frequency. Further, as the height is increased, the mode becomes 

more confined to the core, resulting in the value of ݊௘௙௙ asymptotically approaching 

the refractive index of ܼܱ݊ (i.e. ݊ఠ ൌ  1.95494 and ݊ଶఠ ൌ  2.04651). For very small 
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dimensions the difference between the effective indices of the fundamental and SH 

wavelength is high indicating a deviation from the phase matching in the cut-off 

region. 

 

Figure 5.10 Variation of the spot-size of the ܪଵଵ
௫  mode of the fundamental frequency 

with the height for different width values. 

The spot-size (ߪ) is an important modal parameter which can be used to understand 

better the power confinement and the resulting power density of the pump and the 

second harmonic modes. The spot-size, in this work, has been defined as the area 

where the Poynting vector is more than 1 ݁ଶ⁄  of its maximum value for a given mode 

(or area where field is greater than 1 ݁⁄  of its maximum field value). Figure 5.10 

shows the variation of the spot-size with height for the dominant first order modes 

ଵଵܪ
௫  at the fundamental frequency, ߱, indicated by ܪଵଵ

௫ , ߱ for different widths. For a 

given height, ߪ reduces when the width decreases from 2 ݉ߤ to 1 ݉ߤ. For all the 

width values, it can be observed that ߪ reduces as the height is reduced until the cut-

off condition is reached. However, when the dimensions of the waveguide reduces, ߪ 

also reduces due to the high confinement of the ܪଵଵ
௫ , ߱, and as shown in Figure 5.10, 

a further reduction of the dimensions results in spreading the field into the air-

cladding due to reaching the cut-off condition when the ܪ ൌ  Therefore, the .݉ߤ 0.4
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fundamental mode reaches its cut-off condition when ܹ ൌ  more rapidly than ݉ߤ 1

when ܹ ൌ  ܱܼ݊ and the dimensions of the ߪ The relationship between .݉ߤ 2

waveguide is used as a guideline for design optimization.  

It can be seen that lower height values give smaller spot-sizes leading to a high SHG 

generation.  However it should be noted that when ܪ ൏  the second harmonic ݉ߤ 0.5

generation will deteriorate as the fundamental mode loses it high power density. 

Next, it is necessary to consider the spot-size of the SH wavelength. This is because 

the modal area of both fundamental and SH modes should match spatially to achieve 

efficient power transfer between modes. Hence the overlap integral has been 

analysed as follows.   

 

Figure 5.11 Variation of the overlap integral of the ܪଵଵ
௫  mode (between the 

fundamental and the second harmonic frequencies) against the height for different 

width values. 

The overlap integral (Γ) between the interacting fundamental and second harmonic 

first order dominant modes ܪଵଵ
௫  relates directly to the efficiency of power transfer 

between these modes (equation (4.2)  ), i.e. a higher value of the overlap integral 

results in higher conversion efficiency and vice versa.  



Chapter 5 Zinc Oxide Waveguides 

 

131  
 

Figure 5.11 illustrates how the overlap integral of the first order modes ܪଵଵ
௫  for the ߱ 

and 2߱ varies with the height over a range of width values. For small width values, 

both the ܪଵଵ
௫ , ߱ and the ܪଵଵ

௫ , 2߱ modes are well confined and the overlap integral is 

high, particularly when height is also large. However, as has been mentioned, for a 

smaller waveguide width, its cut-off is reached more rapidly as the height is reduced; 

hence the overlap integral reduces in this operating range. It can be observed that, as 

the height decreases for a given value of width, the overlap integral initially 

increases, reaching a maximum value (in the region 1 ݉ߤ ൑ ൑ ܪ  and then (݉ߤ 1.3

starts to decrease.  This can be explained as follows: by reducing the height, this 

makes ܪଵଵ
௫ , ߱ and ܪଵଵ

௫ , 2߱ more confined which reduces the mismatch of their spot-

sizes, leading to an increase in the overlap integral. However, as illustrated in Figure 

5.10, when the height is very small the fundamental mode reaches its cut-off region 

more rapidly than the second harmonic mode, as shown in Figure 5.9 and Figure 

5.10. Therefore, even though the second harmonic field becomes more confined to 

the core of the waveguide, the overall mismatch between fundamental and second 

harmonic fields becomes significant and the overlap integral starts to reduce at very 

small values of the waveguide heights.  

In the above analysis the spot-sizes of the fundamental frequency were used to 

identify a highly confined mode. Furthermore, the optimized dimensions of the ܼܱ݊ 

waveguide required to achieve the highest SHG has been identified using the overlap 

integral. To complete the analysis, the propagation length should be considered. This 

is because; even though SH power generated is directly proportional to the 

propagation length, this length is limited by a value called coherence length which is 

explained as follows. 
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Figure 5.12 Variation of the coherence length for the quasi-ܶܯ modes against the 

height with different width values. 

Due to material and waveguide dispersions the effective indices (݊௘௙௙) of the 

fundamental and SH modes are not identical. Therefore, the fundamental and second 

harmonic waves accumulate a ߨ radian phase shift over a distance known as the 

coherence length (ܮ௖). Here ܮ௖ ൌ ߨ ⁄ߚ∆  and ∆ߚ ൌ ଶఠߚ െ  ଶఠ areߚ ఠ andߚ ఠ, whereߚ2

the propagation constants of the fundamental and second harmonic waves, 

respectively. The variation of ܮ௖ with the height and width is shown in Figure 5.12. 

Furthermore, a larger ܮ௖ value would allow for a longer interaction between the 

fundamental and SH waves for higher SHG. As waveguide height decreases for a 

given width, the effective index decreases due to the decreased area of the ܼܱ݊ core 

enabling the confined mode to be more exposed to the air cladding. Therefore, the 

propagation constant (ߚ) decreases with ݊௘௙௙, as shown in Figure 5.9. However, 

when the height increases, ߚఠ increases faster than ߚଶఠ bringing 2ߚఠ close to ߚଶఠ 

(i.e. 2ߚఠ ൎ  ௖. The ideal condition is possibleܮ ଶఠ) which results in a higher value ofߚ

if ݊௘௙௙
ఠ ൌ ݊௘௙௙

ଶఠ  (where ݊௘௙௙
ఠ  and ݊௘௙௙

ଶఠ  are the effective indices of the fundamental and 

second harmonic); however, this cannot be realised for this particular material due to 

the chromatic dispersion of the ܼܱ݊. Moreover, as the height is increased, the ܼܱ݊ 

core area is further increased and ܮ௖ asymptotically approaches the value for bulk 
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ܼܱ݊ material (~2.9 ݉ߤ). However, if the core area is increased, the power density of 

the fundamental wave will become smaller and as a result the power transfer rate 

will be reduced. The trade-off between overlap integral and coherence length can be 

seen in Figure 5.13. 

 

Figure 5.13 Variation of the non-QPM SH output power with the propagation length 

for different height values. 

Figure 5.13 shows the non Quasi Phase Matched (non-QPM) second harmonic 

output power for different ܼܱ݊ waveguide heights as a function of the propagation 

length. In all three cases, the ܼܱ݊ waveguide width is fixed at 1 ݉ߤ. It can be 

observed that the conversion rate of the non-QPM SH output power increases as the 

height decreases, over the range from 3 ݉ߤ to 1 ݉ߤ. This arises because of the ܪଵଵ
௫  

mode, which becomes more confined to the core and also increases the overlap 

integral, resulting in high field intensities leading to high power conversion rates. 

For the quasi- ܶܯ mode, the ܪଵଵ
௫  field component is dominant. Reducing the height 

of the waveguide can be use to tailor ܶܯ mode operation. It has been observed that 

when the height is further reduced (i.e. below 1 ݉ߤ) the mode spreads in to the air 

cladding. 
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Figure 5.14 Variation of the non quasi phase matched SH output power against the 

propagation length for different width values. 

In addition to the height, the width of the waveguide has also been considered for the 

optimisation. Accordingly, Figure 5.14 shows the non-QPM second harmonic output 

power along the axial direction for different widths of the ܼܱ݊ waveguide; in this 

case the height is 1 ݉ߤ. The SH output power increases along the axial direction in 

Figure 5.14, reaches its maximum after a distance equal to the first coherence length 

and reduces due to the phase mismatch. As the width decreases from 2 ݉ߤ to 1 ݉ߤ, 

the rate of change increases due to the higher overlap integral. A further reduction in 

the width (i.e. from 1 ݉ߤ to 0.5 ݉ߤ) causes the ܪଵଵ
௫ , ߱ mode to start to spread into the 

air cladding while the ܪଵଵ
௫ , 2߱ mode becomes more confined to the waveguide core, 

resulting in a decreased overlap integral. Therefore, the rate of change reduces for 

ܹ ൌ  It can be observed that the initial rate of .݉ߤ compared to its width 1 ݉ߤ 0.5

change of the ܹ ൌ  curve was greater due to the maximum overlap integral, as ݉ߤ 1

shown in Figure 5.11. Furthermore, the coherence length increases as the width 

increases from 0.5 ݉ߤ to 2 ݉ߤ. In the case of ܹ ൌ  the predicted rate of ,݉ߤ 1

generation of SH output power is higher, but the coherence length is smaller than 

that of ܹ ൌ  Hence, it can be observed that the maximum conversion .݉ߤ 1.5

efficiency can be achieved when the ܹ ൌ  .݉ߤ 1.5
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Figure 5.15 Variation of the non QPM maximum SH output power against the 

height. 

 

As mentioned in Section 5.1.1, ܼܱ݊ can be fabricated with different dimensions in 

order to achieve an optimised structure to produce maximum second harmonic 

output power. First, for each height value of the ܼܱ݊ waveguide, the width value is 

optimised at which the non-quasi phase matched second harmonic output power is 

maximum (the range of width was between (1.3 ݉ߤ െ  these maximum :(݉ߤ 1.6

power values achieved after a propagation length equal to ܮ௖ are shown in Figure 

5.15. As explained in Figure 5.13 and Figure 5.14, when the dimension of the ܼܱ݊ 

waveguide reduces, the SH output power generated increases due to the better mode 

confinement and improved overlap integral (unless the waveguide approaches mode 

cut-off). In Figure 5.15, the maximum SH output power is obtained at a height of 

 It was observed that the .݉ߤ with the corresponding width value of 1.5 ݉ߤ 1.3

dimensions of the maximum point as shown in Figure 5.15 strongly support the ܪଵଵ
௫  

mode for both the fundamental and the second harmonic frequencies.  

In the analysis above, it should be noted that the high SHG power achieved is limited 

by the respective coherence lengths. This limitation can be removed by a technique 

called quasi phase matching, where the sign of the nonlinear susceptibility (߯ଶ) of 
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the core material is inverted periodically at every ܮ௖ as explained in relation to 

Figure 5.16. 

 
 

Figure 5.16 Variation of the QPM SH output power against the propagation length 

with different width and height combinations. 

 

The direction of power exchange between the fundamental and second harmonic 

waves depends on their relative phase difference and this changes sign at a distance 

equal to the coherence length. Furthermore, noting the change of sign of the 

nonlinear susceptibility ( ߯ሺଶሻ) at every ܮ௖, the phase of the polarisation wave will be 

shifted by ߨ, effectively re-phasing the interaction and leading to a monotonic power 

flow into the second harmonic wave [136]. In Figure 5.16 the solid curve shows the 

first order Quasi Phase Matched (QPM) SH output power for a width of 1.5 ݉ߤ and 

height of 1.3 ݉ߤ, i.e. optimised dimensions as per Figure 5.13 and Figure 5.14, 

against the length. In this case (i.e. solid curve) the ܮ௖ is ~1.9݉ߤ. The fabrication of 

the QPM for every sub-micrometer scale ܮ௖ (~1.9݉ߤ) can be achieved in practice by 

using different techniques such as the lithography technique [197]. Figure 5.16 also 

shows the first order QPM SH output power for a core width of 1.0 ݉ߤ and height of 

௡௢௥௠ߟ In this case, the normalised conversion efficiency of .݉ߤ0.6 ൌ 1.0 ൈ

10ି଻ܹିଵି݉ߤଶ. This value was higher than the reported value of ߟ௡௢௥௠ ൌ 0.15 ൈ
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10ି଻ܹିଵି݉ߤଶ for a periodically poled ܱܾܰ݅ܮଷ waveguide device [198]. Although 

power conversion within a single ܮ௖ section was lower for ܪ ൌ ܹ and ݉ߤ 0.6 ൌ

ܪ compared to that for ,݉ߤ 1.0 ൌ ܹ and  ݉ߤ 1.3 ൌ  its overall rate of energy ,݉ߤ 1.5

transfer was higher. Therefore, when QPM was implemented, the overall SHG for 

the first case (i.e. ܪ ൌ ܹ and ݉ߤ 0.6 ൌ   .was higher as shown here (݉ߤ 1.0

 

     (a) ܪ ൌ ܹ and ݉ߤ 1.3 ൌ ܪ (b)                      ݉ߤ 1.5 ൌ ܹ and ݉ߤ 0.6 ൌ  ݉ߤ 1.0

Figure 5.17 The 3-D mode profiles of the QPM SH output mode after propagation of 

a distance of 5.5  .݉ߤ

Figure 5.17 (a) and (b) show the QPM SH output 3-D field profiles of the two curves 

in Figure 5.16, after the propagation of 5.5 ݉ߤ. The field magnitude value in Figure 

5.17 (a) is 50% higher than that of Figure 5.17 (b). Further, in Figure 5.17 (a) the 

spot-size is higher (1.14 ݉ߤଶ) than that of Figure 5.17 (b) (0.35 ݉ߤଶ) due to the 

higher dimensions of the ܼܱ݊ optical waveguide and this difference can be clearly 

seen. 
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5.4 SUMMARY 

This chapter presents another key contribution and novel aspect of the work of this 

thesis carried out by the author in the application of the rigorous full-vectorial FE-

based BPM formulation to the analysis of SHG in optical waveguides with hybrid 

modes. The major aspects and achievements of the work are summarised below. 

In this chapter, a rigorous full-vectorial FE based BPM formulation has been applied 

to determine the mode spectrum of different ܼܱ݊ optical waveguide structures. This 

numerical method has been applied to analyse the modal solutions and to allow 

calculation of the SHG in ܼܱ݊ waveguides where inherently hybrid modes exist. It 

can be noted that by changing the height and width values of the ܼܱ݊ waveguide, it 

is possible to achieve an improved SH output power. The higher output power is a 

result of the higher overlap integral due to the optimised modal properties in the 

waveguide structure. The key finding of the work of the author presented in this 

chapter is that the SHG efficiency in ܼܱ݊ can be higher than in the more widely used 

 ଷ, due to the stronger confinement and the modal overlap integral. The QPMܱܾܰ݅ܮ

technique has been applied in order to obtain higher SH output power and to 

eliminate the phase mismatch between the fundamental and SH waves. Moreover, 

the practical implementation of the fabrication techniques of the ܼܱ݊ waveguides 

and the application of QPM in the waveguide have also been addressed. 
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Chapter 6 

 

 

 

 

 

 

 

 

6 Conclusions and Future Directions 
 

The work presented in this thesis has addressed primarily the generation of SHG in 

several optical waveguides of emerging importance and interest, such as hexagonal 

Photonic Crystal Fibres (PCF), Equiangular Spiral PCF (ES-PCF) and ܼܱ݊ 

waveguides. The prime objective of this thesis, which was to demonstrate enhanced 

SHG in optical waveguides by employing different materials (ܱܵ݅ଶ, ܵ57ܨ and ܼܱ݊) 

and optimised waveguide structures, has been successfully achieved by applying the 

rigorous numerical analysis methods introduced at the beginning of the thesis. 

Section 6.1 presents the conclusions from each chapter and a summary of how the 

contributions made in this work relate the aims and objectives set out in Chapter 1 

drawn while Section 6.2 provides suggestions for potential future research building 

on the work done and results achieved. 

 

6.1 CONCLUSIONS AND CONTRIBUTIONS 

At the outset of this work, in Chapter 1, a number of specific aims and objectives 

were set and the major contributions to knowledge in the field from the work of the 

author can be summarised below (with contributions in each chapter summarised in 

italics): 



Chapter 6 Conclusions and Future Directions 

 

140  
 

(i) To produce a methodology for the analysis of second harmonic generation 

in different types of optical waveguides with different materials by 

implementing the Finite Element based Beam propagation Method (FE-

BPM) based on the rigorous full vectorial ࡴ-field formulation: this 

formulation was developed in Chapter 3. 

(ii)  To investigate Second Harmonic Generation (SHG) in nonlinear materials 

such as ܱܵ݅ଶ, ܵ57ܨ and ܼܱ݊ and their poling orientations; also to optimise 

second harmonic output power with the use of the Quasi Phase Matching 

(QPM) technique and adjusting the poling direction: the details of the 

results obtained from this work were presented in Chapter 3.    

(iii) To employ the scalar Beam Propagation Method (BPM) in order to analyse 

SHG guided wave propagation in optimised conventional PCF and 

Equiangular Spiral PCFs; further, to investigate error tolerances of the 

coherence length and the fabrication errors in the QPM technique: this work  

and its results were reported in Chapter 4.  

(iv) To employ the full vectorial Beam Propagation Method (BPM) in order to 

analyse SHG guided wave propagation in optimised ܼܱ݊ optical 

waveguides: this work and its results were reported in Chapter 5. 

(v) To report findings to the community through papers published in the 

international journals and conferences: The key contributions from the author 

were disseminated to the research community via recognised channels (given 

in the list of Author Publications on page 173). 

The contributions are discussed in detail below.   

The Finite Element based Beam Propagation Method (FE-BPM), which is one of the 

most widely used numerical methods used in the analysis of optical waveguides, has 

been employed in this work in order to analyse the propagation of SHG in optical 

waveguides, while the vectorial Finite Element Method (FEM) has been used to 

analyse the modal solutions of the optical waveguides. Further, for the stationary 

analysis of the modal fields, the finite element formulation with the use of vector- ࡴ 

field, which consists of the penalty function to eliminate spurious solutions has been 

employed. Moreover, it was necessary to consider special boundary conditions at the 
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dielectric interfaces of the optical waveguides. Therefore, the ࡴ field has been 

utilised in this work due to its natural ability to be continuous across the dielectric 

interfaces of the optical waveguides. The scalar BPM has also been utilised to 

analyse the SHG propagation in hexagonal PCF and ES-PCF and the full vectorial 

BPM has been employed to analyse the SHG propagation in ܼܱ݊ waveguides with 

the use of the Quasi Phase Matching (QPM) technique in order to optimise the SHG. 

Chapter 2 of this thesis has built the theoretical formulation needed for the use of 

FEM and BPM as a numerical analysis and modelling technique for various optical 

waveguides. Traditionally the scalar field approximation can be implemented by 

splitting the field components into two subcomponents, i.e. ܶܧ mode ܶܯ modes. 

However, the application of the scalar field approximation has not been sufficient for 

the optical waveguides with reduced dimensions and a high index contrast between 

the core and cladding. Therefore, the full vector- ࡴ field formulation has been 

employed where the modes of such optical waveguides are largely hybrid in nature, 

i.e. consist of six components of electric and magnetic fields. Following that a full 

vectorial FE-BPM has been developed by the author (Chapter 3) with the assumption 

of the slowly varying envelope function and the application of the finite element 

approach by applying the Crank-Nicolson scheme.  

A novel optimisation of the SHG optical waveguide structures with respect to polar 

axis in nonlinear materials was undertaken by the author and this work was 

presented in Chapter 3. Further, an extended study was done to identify the axis of 

propagation in the waveguide with respect to the poling direction and for different 

orientation of crystal axes to achieve a higher SH conversion efficiency, while 

choosing the waveguide structure with the fabrication constraints has also been 

considered. The QPM technique has been used to eliminate phase mismatches 

between the fundamental and SH frequencies; the application of the higher order 

QPMs were also studied.  

Chapter 4 enabled a presentation of the results on SHG in PCFs by using the scalar 

BPM (based on the numerical formulation from Chapter 3). This chapter included 

the analysis by the author of two types of PCF structures, i.e. hexagonal PCF and 

ES-PCF. In the analysis of SHG in a conventional silica fibre, the numerical results 

were first validated by comparing with corresponding practical results. The SHG in 
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hexagonal PCF with a defect air-hole was compared with the hexagonal PCF without 

a defect hole and it was proved that introducing a defect hole does not improve the 

overlap integral and results in low SH output power. In this case silica has been used 

as a material. Further, modal solutions in hexagonal PCF with ܵ57ܨ have also been 

studied. The recently introduced ES-PCF structure was studied by using ܵ57ܨ, and 

shown to have significant improvement in producing SH output power compared to 

that of hexagonal silica PCF. Further, the advantages of the ܵ57ܨ material when 

fabricating such a complicated structure by using extrusion methods have been 

identified. In the work demonstrated, the power was increased by 31% in ES-PCF 

with ܵ57ܨ material after propagation of 250 ݉ߤ in comparison with hexagonal silica 

PCF. The hexagonal PCF was employed in order to assess the impact of choice of 

material using silica and ܵ57ܨ on SHG, where hexagonal ܵ57ܨ PCF showed a good 

improvement in the SH output power over the others. QPM was applied in all cases 

to eliminate the phase mismatch between fundamental and SH frequencies. The error 

tolerance in QPM including higher order QPMs were also analysed which are very 

useful factors when it comes to practical implementation of optical waveguide 

devices.  

The investigation of SHG in ܼܱ݊ planar waveguides by using the full vectorial BPM 

was presented in Chapter 5 (based on the numerical formulation from Chapter 3). In 

this chapter ܼܱ݊ planar waveguides were analysed for different width and height 

values. In this study the SH output power was observed while varying the 

dimensions of the ܼܱ݊ planar waveguide. Initially the numerical results were 

validated by comparing with the scalar BPM results presented in Chapter 4 with the 

same conventional silica fibre. Further validation has been done by comparing the 

SH output power with full and quarter structures. The nonlinear relationship between 

the pump power and QPM SH output power and the linear relationship between the 

maximum ܪ௫ and the pump power were also discussed in order to further analyse the 

full vectorial BPM results. Moreover, results were obtained for modal solutions of 

the ܼܱ݊ planar waveguides by using full vectorial FEM for different aspect ratios of 

the ܼܱ݊ planar waveguides. It was also found that the maximum SH output power 

was obtained at a height of 1.3 ݉ߤ with the corresponding width value of 1.5 ݉ߤ of 

the ܼܱ݊ planar waveguide after the propagation of a 5.5 ݉ߤ. Possible fabrication 

techniques to achieve QPM for every sub-micron scale of coherence length values 
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were also discussed. Subsequently, it was shown that the normalised conversion 

efficiency of ܼܱ݊ planar waveguide (i.e. ߟ௡௢௥௠ ൌ 1.0 ൈ 10ି଻ܹିଵି݉ߤଶ) was 

considerably higher than the reported value for a periodically poled ܱܾܰ݅ܮଷ 

waveguide device (i.e. ߟ௡௢௥௠ ൌ 0.15 ൈ 10ି଻ܹିଵି݉ߤଶ).    

Thus the work of this thesis has enabled a major contribution to knowledge by the 

author which was disseminated to the international community through published 

papers and conference presentations. 

6.2 FUTURE DIRECTIONS 

This research work has focused predominantly on the numerical analysis of SHG in 

optical waveguides based on the successful development of the full vectorial BPM 

and identified various design choices that would greatly enhance the SHG in optical 

waveguides. The application of QPM in nonlinear crystals with alternating second 

order nonlinear susceptibility and the use of correct poling direction was also 

identified. This provides the basis for valuable future work which could be carried 

out in order to further optimise and refine the optical waveguide parameters for an 

efficient SHG. Some important future directions are identified below.  

The SHG approach relies mainly on optical waveguide characteristics, nonlinear 

material as well as phase matching techniques. Therefore, it appears sensible to 

consider alternative materials for optical waveguides such as highly nonlinear 

thermally poled chalcogenide glasses (ܽܩହ݁ܩଶ଴ܾܵଵ଴ܵ଺ହ) [199] to overcome the main 

limitations such as second order nonlinear susceptibility and coherence length. 

Furthermore, ܼܱ݊ planar waveguides can be numerically modelled in the nano 

region and analysed with various substrates and claddings such as silica, silicon, 

 ଷ in order to model optical devices such as solar cells, thinܱܾܰ݅ܮ quartz and ,ݏܣܽܩ

film transistors and biophotonics, especially when analysing SHG in nano scale 

optical waveguides where the modes exists in hybrid nature for which the full 

vectorial BPM becomes an ideal candidate.  

Moreover, the full vectorial method developed in this research work can also be 

extended to model and analyse the SHG in PCFs with a seeding SH power. In this 

work, initial SH power is zero and it slowly builds up along the propagation length. 

Therefore, application of seeding SH power can be a useful factor to prevent the 

excessive use of pump powers. The seeding SH power has been applied to reduce the 
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complexity of master oscillator power amplifiers with single stage ytterbium doped 

PCF amplifiers by using continuous wave fibre lasers [200]. Hence, the seeding SH 

power is a potential candidate in optoelectronics for continuous wave fibre lasers and 

can be analysed with the use of full vectorial BPM.        

Another important consideration is the parametric nonlinearities arising from third 

order nonlinear polarisation i.e. ேܲ௅ ൌ  ଷ. Third order nonlinearity is similar toܧ଴߯ሺଷሻߝ

second order processes which involves three waves together although the third order 

processes four waves together. Four-wave mixing is a nonlinear effect arising from 

third order optical nonlinearity which can also be numerically analysed by using the 

full vectorial BPM. The main difference is that third order nonlinearity can exist in 

materials without non-inversion symmetry whereas second order nonlinearity does 

not exist in materials without non-inversion symmetry. Furthermore, four-wave 

mixing can be utilised in a wide range of applications such as real-time holographic 

imaging [201], phase conjunction [202] and real-time image processing [203].    

Overall, the above future directions provide considerable scope for future research 

which would greatly advance the field of photonics. 
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Appendix 1 
 

The evaluation of the element matrix ሾܣሿ௘ from equation (2.60); 

ሾܣሿ௘ ൌ ଵିߝ න ሾܳሿכሾܳሿ݀ߗ
∆

ൌ ଵିߝ න

ۏ
ێ
ێ
ێ
ێ
ێ
ଶሾܰሿ்ሾܰሿߚെۍ ൅

߲ሾܰሿ்

ݕ߲
߲ሾܰሿ

ݕ߲
െ

߲ሾܰሿ்

ݕ߲
߲ሾܰሿ

ݔ߲
ሾܰሿ்ߚ݆ ߲ሾܰሿ

ݔ߲

െ
߲ሾܰሿ்

ݔ߲
߲ሾܰሿ

ݕ߲
െߚଶሾܰሿ்ሾܰሿ ൅

߲ሾܰሿ்

ݔ߲
߲ሾܰሿ

ݔ߲
ሾܰሿ்ߚ݆ ߲ሾܰሿ

ݕ߲

ߚ݆
߲ሾܰሿ்

ݔ߲
ሾܰሿ ߚ݆

߲ሾܰሿ்

ݕ߲
ሾܰሿ

߲ሾܰሿ்

ݕ߲
߲ሾܰሿ

ݕ߲
൅

߲ሾܰሿ்

ݔ߲
߲ሾܰሿ

ݔ߲ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

∆

 ߗ݀

(A1.1)

 

The evaluation of the element matrix ሾܤሿ௘ from equation (2.61); 

ሾܤሿ௘ ൌ ߤ න ሾࡺሿ்ሾࡺሿ
∆

ߗ݀ ൌ ߤ න ቎
ሾܰሿ்ሾܰሿ ሾ0ሿ்ሾ0ሿ ሾ0ሿ்ሾ0ሿ
ሾ0ሿ்ሾ0ሿ ሾܰሿ்ሾܰሿ ሾ0ሿ்ሾ0ሿ
ሾ0ሿ்ሾ0ሿ ሾ0ሿ்ሾ0ሿ ሾܰሿ்ሾܰሿ

቏
∆

(A1.2) ߗ݀

 

The evaluation of the integrations of the shape functions in equation (A1.1) and 

(A1.2) for a triangular element; 

න ଵܰ
௜

ଶܰ
௝

ଷܰ
௞݀ߗ

∆

ൌ
݅! ݆! ݇! 2!

ሺ݅ ൅ ݆ ൅ ݇ ൅ 2ሻ!
௘ (A1.3)ܣ

where ܣ௘ is the area of the triangular element. 

Therefore the following integrals can be obtained; 

න ଵܰ
ଶ݀ߗ

∆

ൌ න ଶܰ
ଶ݀ߗ

∆

ൌ න ଷܰ
ଶ݀ߗ

∆

ൌ
௘ܣ

6
 (A1.4)

න ଵܰ ଶܰ݀ߗ
∆

ൌ න ଶܰ ଷܰ݀ߗ
∆

ൌ න ଵܰ ଷܰ݀ߗ
∆

ൌ
௘ܣ

12
 (A1.5)
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න ߗ݀
∆

ൌ ௘ (A1.6)ܣ

 

From equation (A1.1) some of the elements of the 9 ൈ 9 ሾܣሿ௘ matrix can be written 

as; 

ሾܣሿ௘ሺଵ,ଵሻ ൌ
1
ߝ

න െߚଶ
ଵܰ
ଶ ൅ ൬

߲ ଵܰ

ݕ߲
൰

ଶ

∆

ߗ݀ ൌ
1
ߝ

ቈ
െߚଶܣ௘

6
൅ ܿଵ

ଶܣ௘቉ (A1.7)

 

ሾܣሿ௘ሺଵ,ଶሻ ൌ
1
ߝ

න െߚଶ
ଵܰ ଶܰ

߲ ଵܰ

ݕ߲
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ݕ߲
∆
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1
ߝ

ቈ
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ሾܣሿ௘ሺଵ,ସሻ ൌ
1
ߝ

න െ
߲ ଵܰ

ݕ߲
߲ ଵܰ

ݔ߲
∆

ߗ݀ ൌ െ
1
ߝ

ܿଵܾଵܣ௘ (A1.9)

 

From equation (A1.2) some of the elements of the 9 ൈ 9 ሾܤሿ௘ matrix can be written 

as; 

ሾܤሿ௘ሺଵ,ଵሻ ൌ ߤ න ଵܰ
ଶ

∆

ߗ݀ ൌ ߤ
௘ܣ

6
 (A1.10)

 

ሾܤሿ௘ሺଵ,ଶሻ ൌ ߤ න ଵܰ ଶܰ

∆

ߗ݀ ൌ ߤ
௘ܣ

12
 (A1.11)

 

ሾܤሿ௘ሺଵ,ସሻ ൌ 0 (A1.12)
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Appendix 2 
From equation (2.36), the matrices ሾࡹ௫௫ሿ and ൣࡹ௬௬൧ can be represented as; 

ሾࡹ௫௫ሿ ൌ ௬௬൧ࡹൣ ൌ ௥ߝ
ିଵ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

න ଵܰ
ଶ݀ݏ

௘

න ଵܰ ଶܰ݀ݏ
௘

න ଵܰ ଷܰ݀ݏ
௘

න ଶܰ ଵܰ݀ݏ
௘

න ଶܰ
ଶ݀ݏ

௘

න ଶܰ ଷܰ݀ݏ
௘

න ଷܰ ଵܰ݀ݏ
௘

න ଷܰ ଶܰ݀ݏ
௘

න ଷܰ
ଶ݀ݏ

௘ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (A2.1)

 

From equation (2.37), the matrices ሾࡷ௫௫ሿ and ൣࡷ௬௬൧ can be represented as; 

ሾࡷ௫௫ሿ ൌ ሾࡷ௧௧ሿ ൌ ሾࡷ௫௫ሿ௰೐ (A2.2)

 

௬௬൧ࡷൣ ൌ ሾࡷ௧௧ሿ ൌ ௬௬൧ࡷൣ
௰೐

 (A2.3)

where, 
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ሾࡷ௧௧ሿ ൌ ݇଴
ଶ
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ۑ
ې
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௘
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௘
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௘
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(A2.4)

where ௜ܰ௫ and ௜ܰ௬, ሺ݅ ൌ 1,2,3ሻ denotes the ݔ and ݕ derivatives of the shape function 

௜ܰ, respectively. 

From equation (A2.2) and (A2.3) the matrices ሾࡷ௫௫ሿ௰೐
 and ൣࡷ௬௬൧

௰೐
 can be written as; 

ሾࡷ௫௫ሿ௰೐
ൌ ௥ߝ

ିଵߙ௫
ଶ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
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ۍ

ර ଵܰ ଵܰ௫݊௫݀߁௘

௰೐

ර ଵܰ ଶܰ௫݊௫݀߁௘

௰೐

ර ଵܰ ଷܰ௫݊௫݀߁௘

௰೐

ර ଶܰ ଵܰ௫݊௫݀߁௘

௰೐

ර ଶܰ ଶܰ௫݊௫݀߁௘

௰೐

ර ଶܰ ଷܰ௫݊௫݀߁௘

௰೐

ර ଷܰ ଵܰ௫݊௫݀߁௘

௰೐

ර ଷܰ ଶܰ௫݊௫݀߁௘

௰೐

ර ଷܰ ଷܰ௫݊௫݀߁௘

௰೐ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (A2.5)
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௬௬൧ࡷൣ
௰೐

ൌ ௥ߝ
ିଵߙ௬

ଶ
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ێ
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ێ
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ۑ
ۑ
ۑ
ۑ
ۑ
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 (A2.6)

The matrices ൣࡷ௫௬൧ and ൣࡷ௬௫൧ in equation (2.37) can be written as; 

௫௬൧ࡷൣ ൌ ሾࡷଵሿ െ ሾࡷଶሿ ൅ ௫௬൧ࡷൣ
௰೐

 (A2.7)

 

௬௫൧ࡷൣ ൌ ሾࡷଶሿ െ ሾࡷଵሿ ൅ ௬௫൧ࡷൣ
௰೐

 (A2.8)

where, 
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௘ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
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 (A2.9)
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න ଶܰ௫ ଶܰ௬݀ݏ
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න ଶܰ௫ ଷܰ௬݀ݏ
௘

න ଷܰ௫ ଵܰ௬݀ݏ
௘

න ଷܰ௫ ଶܰ௬݀ݏ
௘

න ଷܰ௫ ଷܰ௬݀ݏ
௘ ے
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ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې
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௫௬൧ࡷൣ
௰೐

ൌ ௥ߝ
ିଵߙ௫ߙ௬
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ێ
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ێ
ۍ

ර ଵܰ ଵܰ௬݊௫݀߁௘

௰೐

ර ଵܰ ଶܰ௬݊௫݀߁௘

௰೐

ර ଵܰ ଷܰ௬݊௫݀߁௘

௰೐

ර ଶܰ ଵܰ௬݊௫݀߁௘

௰೐

ර ଶܰ ଶܰ௬݊௫݀߁௘

௰೐

ර ଶܰ ଷܰ௬݊௫݀߁௘

௰೐

ර ଷܰ ଵܰ௬݊௫݀߁௘

௰೐

ර ଷܰ ଶܰ௬݊௫݀߁௘

௰೐

ර ଷܰ ଷܰ௬݊௫݀߁௘

௰೐ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې
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௬௫൧ࡷൣ
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ൌ ௥ߝ
ିଵߙ௫ߙ௬

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

ර ଵܰ ଵܰ௫݊௬݀߁௘

௰೐

ර ଵܰ ଶܰ௫݊௬݀߁௘

௰೐

ර ଵܰ ଷܰ௫݊௬݀߁௘

௰೐

ර ଶܰ ଵܰ௫݊௬݀߁௘

௰೐

ර ଶܰ ଶܰ௫݊௬݀߁௘

௰೐

ර ଶܰ ଷܰ௫݊௬݀߁௘

௰೐

ර ଷܰ ଵܰ௫݊௬݀߁௘

௰೐

ර ଷܰ ଶܰ௫݊௬݀߁௘

௰೐

ර ଷܰ ଷܰ௫݊௬݀߁௘

௰೐ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (A2.12)

 

The shape function integrals in ሾࡹሿ௘ and ሾࡷሿ௘ matrices can be derived by using the 

following formulae; 

න ଵܰ
௜

ଶܰ
௝

ଷܰ
௞݀ݏ

௘

ൌ
݅! ݆! ݇! 2!

ሺ݅ ൅ ݆ ൅ ݇ ൅ 2ሻ!
௘ (A2.13)ܣ

 

න ଵܰ
௜

ଶܰ
௝݀߁௘

௰೐

ൌ
݅! ݆!

ሺ݅ ൅ ݆ ൅ 1ሻ!
݈ଵଶ (A2.14)

where ܣ௘ is the element area related to the nodal coordinates of the triangular 

element, Γୣ  and ݈ଵଶ are the part and length of the element boundary connecting the 

nodes 1 and 2, respectively. 
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Shape Function 

The shape function can be defined in terms of complete polynomials which are 

normalised over each element. These are also known as interpolation functions. The 

shape function can be applied for a typical triangular element such that it uniquely 

defines the field within the element under consideration. This section will present the 

derivation of the interpolation polynomials for the basic two dimensional elements in 

terms of the global coordinates that are defined for the entire domain. Figure A2.1 

shows a two dimensional first order triangular element where ܽ, ܾ and ܿ are the three 

nodal points of the element and (ݔଵ, ,ଶݔଵ), ሺݕ ,ଷݔଶሻ and ሺݕ  ଷሻ are their coordinatesݕ

respectively.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure A2.1 Diagram of a typical two dimensional first order triangular element. 
 

Inside the triangular element, the field ߶ is interpolated continuously. ௜ܰሺݔ,  ሻ isݕ

defined as the shape function and ߶௠ሺݔ,  .ሻ is defined as the field inside each elementݕ

For ݅ ൌ 1, 2, 3; 

 

߶௠ሺݔ, ሻݕ ൌ ෍ ௜ܰሺݔ, ሻݕ · ߶௜

ଷ

௜ୀଵ

 (A2.15)

݌
ሺݔ, ሻݕ

ܿ
ሺݔଷ, ଷሻݕ

ܽ

ଶ׎

ଷ׎

ଵ׎

ܾ
ሺݔଶ, ଶሻݕ

 ݔ

 ݕ

,ݔ௠ሺ׎ ሻݕ

߶௠ሺݔ, ሻݕ

ሺݔଵ, ଵሻݕ
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where ߶௜ are the nodal field values. Equation (A2.15) can be written in the following 

matrix form; 

߶௠ሺݔ, ሻݕ ൌ ሾ ଵܰ ଶܰ ଶܰሿ ൝
߶ଵ
߶ଶ
߶ଷ

ൡ (A2.16)

Therefore; 

߶௠ሺݔ, ሻݕ ൌ ሾܰሿሼ߶௠ሽ (A2.17)

where ሾܰሿ is the matrix form of the shape function and ሼ߶௠ሽ is the vector 

corresponding to the element nodal field values at the three nodes of the triangular 

element. 

 

Linear approximation of the field inside an element is considered in order to obtain 

the shape function, ௜ܰሺݔ, ,ሻݕ ݅ ൌ 1, 2, 3; 

߶௠ሺݔ, ሻݕ ൌ ଵߙ ൅ ݔଶߙ ൅ (A2.18) ݕଷߙ

where  ߙଵ,  .ଷ are constantsߙ ଶ andߙ

 

Equation (A2.18) can be rewritten to satisfy the following condition; 

߶௠ሺݔ௜, ௜ሻݕ ൌ ߶௜ (A2.19)

Therefore, the three nodal field values ߶௜ can be expressed as; 

߶ଵ ؠ ߶௠ሺݔଵ, ଵሻݕ ൌ ଵߙ ൅ ଵݔଶߙ ൅ ଵ (A2.20)ݕଷߙ

߶ଶ ؠ ߶௠ሺݔଶ, ଶሻݕ ൌ ଵߙ ൅ ଶݔଶߙ ൅ ଶ (A2.21)ݕଷߙ

߶ଷ ؠ ߶௠ሺݔଷ, ଷሻݕ ൌ ଵߙ ൅ ଷݔଶߙ ൅ ଷ (A2.22)ݕଷߙ

 

Further, this can be written in the matrix form as; 

൝
߶ଵ
߶ଶ
߶ଷ

ൡ ൌ ൥
1 ଵݔ ଵݕ
1 ଶݔ ଶݕ
1 ଷݔ ଷݕ

൩ ൝
ଵߙ
ଶߙ
ଷߙ

ൡ (A2.23)

 

 From equation (A2.23), the constants ߙଵ, ߙଶ and ߙଷ can be determined in terms of 

߶௜, ݅ ൌ 1, 2, 3: 
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ଵߙ ൌ
1

௘ܣ2
ሾ߶ଵሺݔଶݕଷ െ ଶሻݕଷݔ ൅ ߶ଶሺݔଷݕଵ െ ଷሻݕଵݔ ൅ ߶ଷሺݔଵݕଶ െ ଵሻሿ (A2.24)ݕଶݔ

ଶߙ ൌ
1

௘ܣ2
ሾ߶ଵሺݕଶ െ ଷሻݕ ൅ ߶ଶሺݕଷ െ ଵሻݕ ൅ ߶ଷሺݕଶ െ ଵሻሿ (A2.25)ݕ

ଷߙ ൌ
1

௘ܣ2
ሾ߶ଵሺݔଷ െ ଶሻݔ ൅ ߶ଶሺݔଵ െ ଷሻݔ ൅ ߶ଷሺݔଶ െ ଵሻሿ (A2.26)ݔ

where ܣ௘ denotes the area of the triangular element which is given by; 

௘ܣ ൌ
1
2

อ
1 ଵݔ ଵݕ
1 ଶݔ ଶݕ
1 ଷݔ ଷݕ

อ ൌ
1
2

ሾሺݔଶݕଷ െ ଶሻݕଷݔ ൅ ሺݔଷݕଵ െ ଷሻݕଵݔ ൅ ሺݔଵݕଶ െ ଵሻሿ (A2.27)ݕଶݔ

 

Substituting equation (A2.24), (A2.25) and (A2.26) into equation (A2.18) yields the 

following; 

߶௠ሺݔ, ሻݕ ൌ ଵܰሺݔ, ሻݕ · ߶ଵ ൅ ଶܰሺݔ, ሻݕ · ߶ଶ ൅ ଷܰሺݔ, ሻݕ · ߶ଷ (A2.28)

Hence, 

߶௠ሺݔ, ሻݕ ൌ ሾܰሿሼ߶௠ሽ 

 

Equation (A2.28) is similar to the equation (A2.17) and ௜ܰሺݔ, ,ሻݕ ݅ ൌ 1, 2, 3; therefore, 

the shape function can be written as; 

ሾܰሿ் ൌ ൥
ଵܰ

ଶܰ

ଷܰ

൩ ൌ
1

௘ܣ2
൥
ଷݕଶݔ െ ଶݕଷݔ ଶݕ െ ଷݕ ଷݔ െ ଶݔ
ଵݕଷݔ െ ଷݕଵݔ ଷݕ െ ଵݕ ଵݔ െ ଷݔ
ଶݕଵݔ െ ଵݕଶݔ ଵݕ െ ଶݕ ଶݔ െ ଵݔ

൩ ൥
1
ݔ
ݕ

൩ (A2.29)

where ܶ denotes the transpose of the matrix ሾܰሿ. The shape function can be 

represented in a similar matrix form, i.e.; 

ሾܰሿ் ൌ ൥
ଵܰ

ଶܰ

ଷܰ

൩ ൌ ൥
ܽଵ ൅ ܾଵݔ ൅ ܿଵݕ
ܽଶ ൅ ܾଶݔ ൅ ܿଶݕ
ܽଷ ൅ ܾଷݔ ൅ ܿଷݕ

൩ (A2.30)

where  ܽ௜, ܾ௜, ܿ௜ ሺ݅ ൌ 1, 2, 3ሻ are the coefficients of the shape function which can be 

determined as follows; 

ܽଵ ൌ
ଷݕଶݔ െ ଶݕଷݔ

௘ܣ2
 (A2.31)

 

ܾଵ ൌ
ଶݕ െ ଷݕ

௘ܣ2
 (A2.32)
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ܿଵ ൌ
ଷݔ െ ଶݔ

௘ܣ2
 (A2.33)

ܽଶ, ܾଶ, ܿଶ and ܽଷ, ܾଷ, ܿଷ can be determined in a cyclic pattern. 

 

As shown in Figure A2.1, a typical point ݌ can be assigned inside the triangular 

element. Therefore, the shape function ௜ܰ can be expressed in terms of the areas of 

the triangles.  

ଵܰ ൌ
ܽ݁ݎܽ ݂݋ ݄݁ݐ ܾݑݏ ݈݁݃݊ܽ݅ݎݐ ሺ݌, ܾ, ܿሻ
ܽ݁ݎܽ ݂݋ ݄݁ݐ ݈݈ݑ݂ ݈݁݃݊ܽ݅ݎݐ ሺܽ, ܾ, ܿሻ

 (A2.34)

 

ଶܰ and ଷܰ can be expressed similarly. Therefore, ௜ܰ has the following property. 

෍ ௜ܰ

ଷ

௜ୀଵ

ൌ 1 (A2.35)

According to the equation (A2.35), the value of the shape function ଵܰ at ܽሺݔଵ,  ଵሻ isݕ

one, and for ܾሺݔଶ, ,ଷݔଶሻ and ܿሺݕ  ଷሻ the value of the shape function ଵܰ is zero. This isݕ

known as the unique first-degree interpolation function for ܽሺݔଵ,  ଵሻ. Similarly theݕ

shape functions ଶܰ and ଷܰ give a value of one at ܾሺݔଵ, ,ଵݔଵሻ and ܿሺݕ  ଵሻ respectivelyݕ

and zero at other nodes.   

 

Assembly of Element and Global Matrices 

The FEM can be expressed as a standard eigenvalue problem as given in equation 

(2.21). The matrices ሾ࡭ሿ and ሾ࡮ሿ are known as the global matrices and consist of 

triangular element matrices of the discretized cross-section of the waveguide. In this 

section the generation of element matrices and assembly of global matrices are 

shown for the vector ࡴ-field formulation. Within each triangular element the 

unknown ࡴ-field components ܪ௫, ܪ௬ and ܪ௭ can be written as; 

,ݔ௫ሺܪ ሻݕ ൌ ሾ ଵܰ ଶܰ ଷܰሿ ൝
௫ଵܪ
௫ଶܪ
௫ଷܪ

ൡ (A2.36)

,ݔ௬ሺܪ ሻݕ ൌ ሾ ଵܰ ଶܰ ଷܰሿ ቐ
௬ଵܪ

௬ଶܪ

௬ଷܪ

ቑ (A2.37)
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,ݔ௭ሺܪ ሻݕ ൌ ሾ ଵܰ ଶܰ ଷܰሿ ൝
௭ଵܪ
௭ଶܪ
௭ଷܪ

ൡ (A2.38)

where, ܪ௫௜, ܪ௬௜ and ܪ௭௜; ݅ ൌ 1, 2, 3, denotes ݕ ,ݔ and ݖ components of nodal magnetic 

fields of each triangular element. From equation (A2.36), (A2.37) and (A2.38) the 

magnetic field vector ሾࡴሿ௘ can be written as; 

ሾࡴሿ௘ ൌ ቎
,ݔ௫ሺܪ ሻݕ
,ݔ௬ሺܪ ሻݕ
,ݔ௭ሺܪ ሻݕ

቏ ൌ ൥
ଵܰ ଶܰ ଷܰ 0 0 0 0 0 0

0 0 0 ଵܰ ଶܰ ଷܰ 0 0 0
0 0 0 0 0 0 ଵܰ ଶܰ ଷܰ

൩

ە
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۓ

௫ଵܪ
௫ଶܪ
௫ଷܪ
௬ଵܪ

௬ଶܪ

௬ଷܪ

௭ଵܪ
௭ଶܪ
௭ଷۙܪ

ۖ
ۖ
ۖ
ۘ

ۖ
ۖ
ۖ
ۗ

 (A2.39)

Equation (A2.39) can also be expressed as in the following form; 

ሾࡴሿ௘ ൌ ሾࡺሿሼࡴሽ௘ (A2.40)

where ሾࡺሿ is the shape function matrix and ሼࡴሽ௘ is the column vector representing 

the three components of the nodal field values in the triangular element. 

From equation (A2.40) the curl of magnetic field vector ሺ׏ ൈ  ሻ௘ can be applied inࡴ

order to define each element and can be written as;  

ሺ׏ ൈ ሻ௘ࡴ ൌ ׏ ൈ ሾࡺሿሼࡴሽ௘ ൌ ቎
0 െ߲ ⁄ݖ߲ ߲ ⁄ݕ߲

߲ ⁄ݖ߲ 0 െ߲ ⁄ݔ߲
െ߲ ⁄ݕ߲ ߲ ⁄ݔ߲ 0

቏ ሾࡺሿሼࡴሽ௘ ൌ ሾܳሿሼࡴሽ௘ (A2.41)

where the matrix ሾܳሿ can be written as; 

ሾܳሿ ൌ ቎
ሾ0ሿ െ߲ሾܰሿ ⁄ݖ߲ ߲ሾܰሿ ⁄ݕ߲

߲ሾܰሿ ⁄ݖ߲ ሾ0ሿ െ߲ሾܰሿ ⁄ݔ߲
െ߲ሾܰሿ ⁄ݕ߲ ߲ሾܰሿ ⁄ݔ߲ ሾ0ሿ

቏

ൌ ቎
ሾ0ሿ ሾܰሿߚ݆ ߲ሾܰሿ ⁄ݕ߲

െ݆ߚሾܰሿ ሾ0ሿ െ߲ሾܰሿ ⁄ݔ߲
െ߲ሾܰሿ ⁄ݕ߲ ߲ሾܰሿ ⁄ݔ߲ ሾ0ሿ

቏ 

(A2.42)
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where, ሾ0ሿ ൌ ሾ0 0 0ሿ, ሾܰሿ ൌ ሾ ଵܰ ଶܰ ଷܰሿ, ߲ሾܰሿ ⁄ݔ߲ ൌ ሾܾଵ ܾଶ ܾଷሿ and 

߲ሾܰሿ ⁄ݕ߲ ൌ ሾܿଵ ܿଶ ܿଷሿ and the ߲ሾܰሿ ⁄ݔ߲  and ߲ሾܰሿ ⁄ݕ߲  are the differentiated form of 

equations (A2.32) and (A2.33). 

The vector ࡴ-field formulation can be expressed for an element by substituting 

equation (A2.40) and (A2.41) into equation (2.24), and can be obtained as follows; 

௘ܬ ൌ න ሼࡴሽ௘
்ሾܳሿכ 1

̂ߝ
∆

ሾܳሿሼࡴሽ௘݀Ω െ ߱ଶ න ሼࡴሽ௘
்

∆

ሾࡺሿ்̂ߤሾࡺሿሼࡴሽ௘݀Ω (A2.43)

where ܶ and כ denote the transpose of a matrix and the complex conjugate 

respectively, and the integration is carried out over the waveguide cross-section Ω. In 

isotropic materials, the permittivity (ߝ) is a scalar value whereas for tensor 

permittivity, the ߝ can be represented in terms of the   3 ൈ 3 inverse matrix format.  

The relationship between total function, ܬ and the summation of the ݊ number of 

individual elements over the waveguide cross-section, ܬ௘ can be written as; 

ܬ ൌ ෍ ௘ܬ

௡

௘ୀଵ

 (A2.44)

By differentiating equation (A2.44) with respect to field nodal values and equating it 

to zero, the relationship can be obtained; 

ܬ߲
߲ሼܪሽ௘

ൌ 0 ݁ ൌ 1, 2, … … , ݊ (A2.45)

 

Therefore the following eigenvalue equation can be obtained; 

ሾ࡭ሿሼࡴሽ െ ߱ଶሾ࡮ሿሼࡴሽ ൌ 0 (A2.46)

where, 

ሾ࡭ሿ ൌ ෍ሾܣሿ௘

௡

௘ୀଵ

ൌ ෍ න
1
ߝ

Ω

௡

௘ୀଵ

ሾܳሿכሾܳሿ݀Ω (A2.47)
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ሾ࡮ሿ ൌ ෍ሾܤሿ௘

௡

௘ୀଵ

ൌ ෍ න ߤ
Ω

௡

௘ୀଵ

ሾࡺሿ்ሾࡺሿ݀Ω (A2.48)

where ሾ࡭ሿ and ሾ࡮ሿ are the global matrices, where as ሾܣሿ௘ and ሾܤሿ௘ denote the element 

matrices. The ሼࡴሽ column matrix consists of all the ࡴ-field nodal values of the 

waveguide cross-section. 

 

Guided Wave Formulation 

The following guided wave formulation can be derived in order to analyse the 

electromagnetic wave propagation of an optical waveguide using BPM.  

By substituting equation (2.7) into (2.10) and equation (2.6) into (2.11), the 

following Maxwell’s curl equations can be derived [118]; 

׏ ൈ ࡱ ൌ െ݆߱ߤ଴ࡴ (A2.49)

׏ ൈ ࡴ ൌ (A2.50) ࡱ௥ߝ଴ߝ݆߱

where 

ൌ׏ ௫ߙෝ࢞
߲

ݔ߲
൅ ௬ߙෝ࢟

߲
ݕ߲

൅ ௭ߙොࢠ
߲

ݖ߲
 (A2.51)

and substituting equation (A2.50) into equation (A2.49) gives; 

׏ ൈ
׏ ൈ ࡴ
௥ߝ଴ߝ݆߱

ൌ െ݆߱ߤ଴ࡴ (A2.52)

Hence; 

׏ ൈ ሾߝ௥
ିଵ׏ ൈ ሿࡴ ൌ ሺ݆߱ߝ଴ሻሺെ݆߱ߤ଴ሻࡴ ൌ ݇଴

ଶࡴ (A2.53)

Equation (A2.53) which is the full vectorial magnetic field equation, consists of three 

magnetic field components. However, by using the zero divergence condition, 

equation (A2.53) can be reduced to two transverse components and by assuming 

݊ଶሺ݅. ݁. 1 ݊ଶ⁄ ൌ ௥ߝ
ିଵሻ varies slowly along the ݖ direction (i.e. direction of propagation); 

then 
డ

డ௭
ሺߝ௥

ିଵሻ ൎ 0; and the coupled wave equation for the ܪ௫ component can be 

derived as;  
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∂
∂z

൬ߝ௥
ିଵ ௫ܪ∂

ݖ߲
൰ ൅ ௬ߙ

߲
ݕ߲

൬ߝ௥
ିଵߙ௬

௫ܪ߲

ݕ߲
൰ ൅ ௥ߝ

ିଵߙ௫
߲

ݔ߲
൬ߙ௫

௫ܪ߲

ݔ߲
൰ ൅ ݇଴

ଶܪ௫

൅ ௥ߝ
ିଵߙ௫

߲
ݔ߲

ቆߙ௬
௬ܪ߲

ݕ߲
ቇ െ ௬ߙ

߲
ݕ߲

ቆߝ௥
ିଵα௫

௬ܪ߲

ݔ߲
ቇ ൌ 0 

(A2.54)

Similarly the coupled wave equation for the ܪ௬ component can be derived as; 

∂
∂z

ቆߝ௥
ିଵ

௬ܪ∂

ݖ߲
ቇ ൅ ௫ߙ

߲
ݔ߲

ቆߝ௥
ିଵߙ௫

௬ܪ߲

ݔ߲
ቇ ൅ ௥ߝ

ିଵߙ௬
߲

ݕ߲
ቆߙ௬

௬ܪ߲

ݕ߲
ቇ ൅ ݇଴

ଶܪ௬

൅ ௥ߝ
ିଵߙ௬

߲
ݕ߲

൬ߙ௫
௫ܪ߲

ݔ߲
൰ െ ௫ߙ

߲
ݔ߲

൬ߝ௥
ିଵα௬

௫ܪ߲

ݕ߲
൰ ൌ 0 

(A2.55)

In equation (A2.54) and (A2.55) the parameter ߙ௭ is set to unity (i.e. ߙ௭ ൌ 1). 

Assume the light wave propagates along the z direction in the one-way wave 

equation. The fields can be separated as a slowly varying field (࢚ࣘ) and a fast 

oscillating term (݁ି௝௡బ௞బ௭): the relationship can be written as;   

࢚ࡴ ൌ ௝௡బ௞బ௭ (A2.56)ି࢚݁ࣘ

where 

ሺ௫,௬,௭ሻ࢚ࡴ ൌ ௫ሺ௫,௬,௭ሻܪොݔ ൅ ௬ሺ௫,௬,௭ሻܪොݕ

࢚ࣘ ൌ ො߶௫ሺ௫,௬,௭ሻݔ ൅ ො߶௬ሺ௫,௬,௭ሻݕ

where ݐ ൌ  ௬ componentsܪ ௫ andܪ are the slowly varying envelopes of the ࢚ࣘ ,ݕ or ݔ

respectively and ݊଴ is a reference index of refraction which should be chosen such 

that the envelope varies slowly in the propagation direction ݖ. Therefore, ݊଴ should 

be chosen very close to the effective index of the guided mode of the optical 

waveguide. Further, in monomode optical waveguides, ݊଴ is equal to the effective 

index of the fundamental mode, whereas in multimode optical waveguides ݊଴ 

approximates the average of the guide and substrate refractive indices [204]. The 

following relationship can be identified by taking the differentiation of the equation 

(A2.56) along the ݖ direction; 

࢚ࡴ߲

ݖ߲
ൌ ൬

࢚߲ࣘ

ݖ߲
െ ݆݊଴݇଴࢚ࣘ൰ ݁ି௝௡బ௞బ௭ (A2.57)

 

Let  డ

డ௭
ቀߝ௥

ିଵ డ࢚ࡴ

డ௭
ቁ ൎ ௥ߝ

ିଵ డమ࢚ࡴ

డ௭మ  and డఌೝ
షభ

డ௭
ൎ 0, then; 
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߲ଶ࢚ࡴ

ଶݖ߲ ൌ ቆ
߲ଶ࢚ࣘ

ଶݖ߲ െ 2݆݊଴݇଴
࢚߲ࣘ

ݖ߲
െ ݊଴

ଶ݇଴
ଶ࢚ࣘቇ ݁ି௝௡బ௞బ௭ (A2.58)

By substituting equation (A2.58) into equation (A2.54) and equation (A2.55); 

௥ߝ
ିଵ ߲ଶ߶௫

ଶݖ߲ െ 2݆݊଴݇଴ߝ௥
ିଵ ߲߶௫

ݖ߲
൅ ௬ߙ

߲
ݕ߲

൬ߝ௥
ିଵߙ௬

߲߶௫

ݕ߲
൰ ൅ ௥ߝ௫ߙ

ିଵ ߲
ݔ߲

൬ߙ௫
߲߶௫

ݔ߲
൰

൅ ݇଴
ଶሺ1 െ ௥ߝ

ିଵ݊଴
ଶሻ߶௫ ൅ ௥ߝ௫ߙ

ିଵ ߲
ݔ߲

ቆߙ௬
߲߶௬

ݕ߲
ቇ െ ௬ߙ

߲
ݕ߲

ቆߝ௥
ିଵߙ௫

߲߶௬

ݔ߲
ቇ

ൌ 0 

(A2.59)

 

௥ߝ
ିଵ

߲ଶ߶௬

ଶݖ߲ െ 2݆݊଴݇଴ߝ௥
ିଵ

߲߶௬

ݖ߲
൅ ௫ߙ

߲
ݔ߲

ቆߝ௥
ିଵߙ௫

߲߶௬

ݔ߲
ቇ ൅ ௥ߝ௬ߙ

ିଵ ߲
ݕ߲

ቆߙ௬
߲߶௬

ݕ߲
ቇ

൅ ݇଴
ଶሺ1 െ ௥ߝ

ିଵ݊଴
ଶሻ߶௬ ൅ ௥ߝ௬ߙ

ିଵ ߲
ݕ߲

൬ߙ௫
߲߶௫

ݔ߲
൰ െ ௫ߙ

߲
ݔ߲

൬ߝ௥
ିଵߙ௬

߲߶௫

ݕ߲
൰

ൌ 0 

(A2.60)

 

Therefore, applying standard Galerkin’s procedure into equations (A2.59) and 

(A2.60) gives; 

න ௥ߝ
ିଵ ߲ଶ߶௫

ଶݖ߲
௘

௜ܰ݀ݏ െ න 2݆݊଴݇଴ߝ௥
ିଵ ߲߶௫

ݖ߲
௘

௜ܰ݀ݏ ൅ න ௬ߙ
ଶ ߲

ݕ߲
൬ߝ௥

ିଵ ߲߶௫

ݕ߲
൰ ௜ܰ݀ݏ

௘

൅ න ௫ߙ
ଶߝ௥

ିଵ ߲ଶ߶௫

ଶݔ߲
௘

௜ܰ݀ݏ ൅ න ݇଴
ଶሺ1 െ ௥ߝ

ିଵ݊଴
ଶሻ߶௫ ௜ܰ݀ݏ

௘

൅ න ௥ߝ௬ߙ௫ߙ
ିଵ

߲ଶ߶௬

ݕ߲ݔ߲
௘

௜ܰ݀ݏ െ න ௬ߙ௫ߙ
߲

ݕ߲
ቆߝ௥

ିଵ
߲߶௬

ݔ߲
ቇ

௘

௜ܰ݀ݏ ൌ 0 

(A2.61)
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න ௥ߝ
ିଵ

߲ଶ߶௬

ଶݖ߲
௘

௜ܰ݀ݏ െ න 2݆݊଴݇଴ߝ௥
ିଵ

߲߶௬

ݖ߲
௘

௜ܰ݀ݏ ൅ න ௫ߙ
ଶ ߲

ݔ߲
ቆߝ௥

ିଵ
߲߶௬

ݔ߲
ቇ ௜ܰ݀ݏ

௘

൅ න ௬ߙ
ଶߝ௥

ିଵ
߲ଶ߶௬

ଶݕ߲
௘

௜ܰ݀ݏ ൅ න ݇଴
ଶሺ1 െ ௥ߝ

ିଵ݊଴
ଶሻ߶௬ ௜ܰ݀ݏ

௘

൅ න ௥ߝ௬ߙ௫ߙ
ିଵ ߲ଶ߶௫

ݕ߲ݔ߲
௘

௜ܰ݀ݏ െ න ௬ߙ௫ߙ
߲

ݔ߲
൬ߝ௥

ିଵ ߲߶௫

ݕ߲
൰

௘

௜ܰ݀ݏ ൌ 0 

(A2.62)

where ௜ܰ (݅ ൌ 1, 2, 3) is the shape function over the first order triangular element, ݁, 

while ׬ ሺ. ሻ݀ݏ௘  denotes the integration over each element. It is also be assumed in 

equation (A2.61) and (A2.62) that the refractive index (݊) and the PML parameters 

 ,are constant within each triangular element. In step index waveguides (௬ߙ ௫ andߙ)

the discontinuity of the refractive index and the associated interface boundary 

conditions will not be considered. Therefore, Green’s theorem has been applied to 

equations (A2.61) and (A2.62) in order to find the line integral around each 

triangular element in the problem domain. Hence, Green’s theorem can be used to 

satisfy interface boundary conditions such as; 

i. Continuity of ܧ௭, ܧ௭ ן ௥ߝ
ିଵ ቀ

డథ೤

డ௫
െ

డథೣ

డ௬
ቁ 

ii. Discontinuity of   ߝ௥
ିଵ డథೣ

డ௫
   and    ߝ௥

ିଵ డథ೤

డ௬
 

By applying Green’s theorem for integration by parts into equations (A2.61) and 

(A2.62) and considering the interface boundary conditions given above; 

න ௥ߝ
ିଵ ߲ଶ߶௫

ଶݖ߲
௘

௜ܰ݀ݏ െ 2݆݊଴݇଴ න ௥ߝ
ିଵ ߲߶௫

ݖ߲
௘

௜ܰ݀ݏ െ න ௬ߙ
ଶߝ௥

ିଵ ߲߶௫

ݕ߲
߲ ௜ܰ

ݕ߲
ݏ݀

௘

െ න ௫ߙ
ଶߝ௥

ିଵ

௘

߲߶௫

ݔ߲
߲ ௜ܰ

ݔ߲
ݏ݀ ൅ ර ௫ߙ

ଶ

௰೐

௥ߝ
ିଵ ߲߶௫

ݔ߲ ௜ܰ݊௫݀߁௘

൅ න ݇଴
ଶሺ1 െ ௥ߝ

ିଵ݊଴
ଶሻ߶௫ ௜ܰ݀ݏ

௘

െ න ௥ߝ௬ߙ௫ߙ
ିଵ

߲߶௬

ݕ߲
௘

߲ ௜ܰ

ݔ߲
ݏ݀

൅ ර ௫ߙ

௰೐

௥ߝ௬ߙ
ିଵ

߲߶௬

ݕ߲ ௜ܰ݊௫݀߁௘ ൅ න ௬ߙ௫ߙ

௘

௥ߝ
ିଵ

߲߶௬

ݔ߲
߲ ௜ܰ

ݕ߲
ݏ݀ ൌ 0 

(A2.63)
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න ௥ߝ
ିଵ

߲ଶ߶௬

ଶݖ߲
௘

௜ܰ݀ݏ െ 2݆݊଴݇଴ න ௥ߝ
ିଵ

߲߶௬

ݖ߲
௘

௜ܰ݀ݏ െ න ௫ߙ
ଶߝ௥

ିଵ
߲߶௬

ݔ߲
߲ ௜ܰ

ݔ߲
ݏ݀

௘

െ න ௬ߙ
ଶߝ௥

ିଵ

௘

߲߶௬

ݕ߲
߲ ௜ܰ

ݕ߲
ݏ݀ ൅ ර ௬ߙ

ଶ

௰೐

௥ߝ
ିଵ

߲߶௬

ݕ߲ ௜ܰ݊௬݀߁௘

൅ න ݇଴
ଶሺ1 െ ௥ߝ

ିଵ݊଴
ଶሻ߶௬ ௜ܰ݀ݏ

௘

െ න ௥ߝ௬ߙ௫ߙ
ିଵ ߲߶௫

ݕ߲
௘

߲ ௜ܰ

ݔ߲
ݏ݀

൅ ර ௫ߙ

௰೐

௥ߝ௬ߙ
ିଵ ߲߶௫

ݔ߲ ௜ܰ݊௬݀߁௘ ൅ න ௬ߙ௫ߙ

௘

௥ߝ
ିଵ ߲߶௫

ݔ߲
߲ ௜ܰ

ݕ߲
ݏ݀ ൌ 0 

(A2.64)

where ݊௫ and ݊௬ denote the direction cosines between the normal element boundary 

ׯ directions, respectively, and ݕ and ݔ and (௘߁) ሺ. ሻ݀߁௘௰೐
 denotes the line integral 

around the triangular element boundary (߁௘). The line integral has been implemented 

in equation (A2.63) and equation (A2.64) in order to consider the interface boundary 

conditions which is also responsible for the coupling and polarisation dependence. 
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Appendix 3 
The Poynting vector for power calculation in the electromagnetic field; 

ࡿ ൌ න ሺכࡱ ൈ ሻࡴ
∆

(A3.1) ߗ݀

The cross product from equation (A3.1) can be written as; 

כࡱ ൈ ࡴ ൌ ቮ

തܽ௫ തܽ௬ തܽ௭

௫ܧ
כ ௬ܧ

כ ௭ܧ
כ

௫ܪ ௬ܪ ௭ܪ

ቮ

ൌ തܽ௫൫ܧ௬
௭ܪכ െ ௭ܧ

௬൯ܪכ െ തܽ௬ሺܧ௫
௭ܪכ െ ௭ܧ

௫ሻܪכ ൅ തܽ௭൫ܧ௫
௬ܪכ െ ௬ܧ

 ௫൯ܪכ

(A3.2)

Consider the Poynting Vector along the propagation direction of the waveguide (ݖ-

direction); 

௭ࡿ ൌ න ൫ܧ௫
௬ܪכ െ ௬ܧ

௫൯ܪכ
∆

(A3.3) ߗ݀

The final expression can be reduced to one variable by establishing a relationship 

between the ࡱ and the ࡴ components. From Maxwell’s equations; 

׏ ൈ כࡴ ൌ כࡱߝ݆߱ ൌ ቮ
ҧݔ തݕ ҧݖ
߲௫ ߲௬ ௭߲

௫ܪ
כ ௬ܪ

כ ௭ܪ
כ
ቮ (A3.4)

Then the following can be obtained; 

௫ܧ൫ߝ݆߱
ҧݔכ ൅ ௬ܧ

തݕכ ൅ ௭ܧ
ҧ൯ݖכ ൌ ቆ

௭ܪ߲
כ

ݕ߲
െ

௬ܪ߲
כ

ݖ߲
ቇ ҧݔ ൅ ൬

௭ܪ߲
כ

ݔ߲
െ

௫ܪ߲
כ

ݖ߲
൰ തݕ ൅ ቆ

௬ܪ߲
כ

ݔ߲
െ

௫ܪ߲
כ

ݕ߲
ቇ ҧ (A3.5)ݖ

By equating terms with corresponding coefficients; 

௫ܧҧݔߝ݆߱
כ ൌ ቆ

௭ܪ߲
כ

ݕ߲
െ

௬ܪ߲
כ

ݖ߲
ቇ ҧ (A3.6)ݔ
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௬ܧതݕߝ݆߱
כ ൌ ൬

௭ܪ߲
כ

ݔ߲
െ

௫ܪ߲
כ

ݖ߲
൰ ത (A3.7)ݕ

Replacing ߲ ⁄ݖ߲  components with –   ;ߚ݆

௫ܧߝ݆߱
כ ൌ

௫ܪ߲
כ

ݕ߲
൅ ௬ܪߚ݆

כ ֜ ௫ܧ
כ ൌ െ

1
ߝ݆߱

௭ܪ߲
כ

ݕ߲
൅

ߚ
ߝ߱

௬ܪ
כ  (A3.8)

 

௬ܧߝ݆߱
כ ൌ

௭ܪ߲
כ

ݔ߲
൅ ௫ܪߚ݆

כ ֜ ௬ܧ
כ ൌ

1
ߝ݆߱

௭ܪ߲
כ

ݔ߲
െ

ߚ
ߝ߱

௫ܪ
(A3.9) כ

Substituting equation (A3.8) and equation (A3.9) into equation (A3.3); 

ܵ௭ ൌ න
1

ߝ߱
∆

൬ܪߚ௬
כ െ ݆

௭ܪ߲
כ

ݕ߲
൰ ௬ܪ െ

1
ߝ߱

൬െܪߚ௫
כ ൅

௭ܪ߲
כ

ݔ߲
൰ (A3.10) ߗ௫݀ܪ

Hence; 

ܵ௭ ൌ න ൤
1

ߝ߱
൫ܪߚ௬

௬ܪכ ൅ ௫ܪߚ
௫൯ܪכ െ

1
ߝ߱

൬݆
௭ܪ߲

כ

ݔ߲
௫ܪ ൅ ݆

௭ܪ߲
כ

ݕ߲
൰ ௬൨ܪ

∆

(A3.11) ߗ݀

The eigenvalue solutions are complex for media with a complex propagation 

constant ߚ ൌ ᇱߚ ൅ ߝ ᇱᇱ  and a complex dielectric permittivityߚ݆ ൌ ᇱߝ ൅  ,ᇱᇱ. Thereforeߝ݆

the resultant complex fields can be represented as; ܪ௫ ൌ ௫ܪ
ᇱ ൅ ௫ܪ݆

ᇱᇱ, ܪ௬ ൌ ௬ܪ
ᇱ ൅ ௬ܪ݆

ᇱᇱ 

and ܪ௭ ൌ ௭ܪ
ᇱ ൅ ௭ܪ݆

ᇱᇱ and similarly the conjugate fields can be represented as; ܪ௫
כ ൌ

௫ܪ
ᇱ െ ௫ܪ݆

ᇱᇱ, ܪ௬
כ ൌ ௬ܪ

ᇱ െ ௬ܪ݆
ᇱᇱ and ܪ௭

כ ൌ ௭ܪ
ᇱ െ ௭ܪ݆

ᇱᇱ.  

Application of the shape functions to analyse the power in each triangular element; 

ࡴ ൌ ሾܰሿሼࡴሽ௘ ܽ݊݀ כࡴ ൌ ሼࡴሽ௘
்ሾܰሿ் (A3.12)

Using equation (A3.12), equation (A3.11) can be expressed as; 

ܵ௭ ൌ න ቈ
ߚ

ߝ߱
ቀ൛ܪ௬ൟ

௘

்
ሾܰሿ்ሾܰሿ൛ܪ௬ൟ

௘
൅ ሾܰሿ்ሼܪ௫ሽ௘

்ሾܰሿሼܪ௫ሽ௘ቁ
∆

െ
݆

ߝ߱
ቆሼܪ௭ሽ௘

் ߲ሾܰሿ்

ݔ߲
ሾܰሿሼܪ௫ሽ௘ ൅ ሼܪ௭ሽ௘

் ߲ሾܰሿ்

ݕ߲
ሾܰሿ൛ܪ௬ൟቇ቉  ߗ݀

(A3.13)
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where shape function derivative డ
ሾேሿ೅

డ௫
ሾܰሿ can be represented as;  

߲ሾܰሿ்

ݔ߲
ሾܰሿ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
߲ ଵܰ

ݔ߲ ଵܰ
߲ ଵܰ

ݔ߲ ଶܰ
߲ ଵܰ

ݔ߲ ଷܰ

߲ ଶܰ

ݔ߲ ଵܰ
߲ ଶܰ

ݔ߲ ଶܰ
߲ ଶܰ

ݔ߲ ଷܰ

߲ ଷܰ

ݔ߲ ଵܰ
߲ ଷܰ

ݔ߲ ଶܰ
߲ ଷܰ

ݔ߲ ଷܰے
ۑ
ۑ
ۑ
ۑ
ې

 (A3.14)

by applying shape function approximation in equation (A2.30) into equation 

(A3.14); 

 

߲ሾܰሿ்

ݔ߲
ሾܰሿ ൌ ൥

ܾଵ ଵܰ ܾଵ ଶܰ ܾଵ ଷܰ
ܾଶ ଵܰ ܾଶ ଶܰ ܾଶ ଷܰ
ܾଷ ଵܰ ܾଷ ଶܰ ܾଷ ଷܰ

൩ (A3.15)

similarly shape function derivative డሾேሿ೅

డ௬
ሾܰሿ can be represented as;   

߲ሾܰሿ்

ݕ߲
ሾܰሿ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
߲ ଵܰ

ݕ߲ ଵܰ
߲ ଵܰ

ݕ߲ ଶܰ
߲ ଵܰ

ݕ߲ ଷܰ

߲ ଶܰ

ݕ߲ ଵܰ
߲ ଶܰ

ݕ߲ ଶܰ
߲ ଶܰ

ݕ߲ ଷܰ

߲ ଷܰ

ݕ߲ ଵܰ
߲ ଷܰ

ݕ߲ ଶܰ
߲ ଷܰ

ݕ߲ ଷܰے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (A3.16)

 

߲ሾܰሿ்

ݕ߲
ሾܰሿ ൌ ൥

ܿଵ ଵܰ ܿଵ ଶܰ ܿଵ ଷܰ
ܿଶ ଵܰ ܿଶ ଶܰ ܿଶ ଷܰ
ܿଷ ଵܰ ܿଷ ଶܰ ܿଷ ଷܰ

൩ (A3.17)

where ܾଵ, ܾଶ, ܾଷ, ܿଵ, ܿଶ and ܿଷ coefficients can be defined as; 

߲ ଵܰ

ݔ߲
ൌ ܾଵ;

߲ ଶܰ

ݔ߲
ൌ ܾଶ;

߲ ଷܰ

ݔ߲
ൌ ܾଷ  

߲ ଵܰ

ݕ߲
ൌ ܿଵ;

߲ ଶܰ

ݕ߲
ൌ ܿଶ;

߲ ଷܰ

ݕ߲
ൌ ܿଷ 
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Therefore, the power calculation for propagation direction ݖ can be written as; 

ܵ௭ ൌ
ߚ

ߝ߱

ۉ

ۈ
ۈ
ۇ

൛ܪ௬ൟ
௘

்

ۏ
ێ
ێ
ێ
ێ
ۍ
௘ܣ

6
௘ܣ

12
௘ܣ

12
௘ܣ

12
௘ܣ

6
௘ܣ

12
௘ܣ

12
௘ܣ

12
௘ܣ

6 ے
ۑ
ۑ
ۑ
ۑ
ې

൛ܪ௬ൟ
௘

൅ ሼܪ௫ሽ௘
்

ۏ
ێ
ێ
ێ
ێ
ۍ
௘ܣ

6
௘ܣ

12
௘ܣ

12
௘ܣ

12
௘ܣ

6
௘ܣ

12
௘ܣ

12
௘ܣ

12
௘ܣ

6 ے
ۑ
ۑ
ۑ
ۑ
ې

ሼܪ௫ሽ௘

ی

ۋ
ۋ
ۊ

െ
݆

ߝ߱
൭ሼܪ௭ሽ௘

் ௘ܣ

3
൥
ܾଵ ܾଵ ܾଵ
ܾଶ ܾଶ ܾଶ
ܾଷ ܾଷ ܾଷ

൩ ሼܪ௫ሽ௘

൅ ሼܪ௭ሽ௘
் ௘ܣ

3
൥
ܿଵ ܿଵ ܿଵ
ܿଶ ܿଶ ܿଶ
ܿଷ ܿଷ ܿଷ

൩ ൛ܪ௬ൟ
௘

൱ 

(A3.18)
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Appendix 4 
Considering two fields propagating at two different frequencies in the material, the 

total optical field (߶) can be written as; 

߶ሺݔ, ,ݕ ,ݖ ሻݐ ൌ ଵ
ଶ
൛߶ఠሺݔ, ሻݕ ݁ሾ௝ሺఠ௧ିఉ௭ሻሿ ൅ ߶ଶఠሺݔ, ,ݕ ሻݖ ݁ሾ௝ሺଶఠ௧ିଶఉ௭ሻሿ ൅ ܿ. ܿ. ൟ (A4.1)

where ߶ఠ is the input field of the fundamental field, ߶ଶఠ is the slowly varying 

amplitude of the SH field, ߱ is the angular frequency and ߚ is the propagation 

constant of the fundamental wave. 

 

From equation (A4.1) and making the assumption that the fundamental field ߶ఠ is 

independent of the direction of propagation (ݖ), with; 

߶ఠ ൌ ൜
௫ܧ ݎ݋݂ ௫ܧ ݏ݁݀݋݉
௫ܪ ݎ݋݂ ௬ܧ ݏ݁݀݋݉

 (A4.2)

where ܧ௫ mode is approximated by ܶܧ௬, ܧ௬ ؠ 0, leading function is ܧ௫ 

where ܧ௬ mode is approximated by ܶܯ௬, ܪ௬ ؠ 0, leading function is ܪ௫. 

 

Second Harmonic Generation without pump depletion 

For the stationary analysis of the fundamental field; 

௫ఠ݌
߲ଶ߶ఠ

ଶݔ߲ ൅ ௬ఠ݌
߲ଶ߶ఠ

ଶݕ߲ െ ଶ߶ఠߚ௭ఠ݌ ൅ ఠ݇଴ݍ
ଶ߶ఠ ൌ 0 (A4.3)

 

For the propagation model of the second harmonic field; 

െ݆4݌ߚ௭ଶ߱
߲߶ଶ߱

ݖ߲
൅ ௫ଶ߱݌

߲ଶ߶ଶ߱

ଶݔ߲ ൅ ௬ଶ߱݌
߲ଶ߶ଶ߱

ଶݕ߲ െ ଶ߶ଶ߱ߚ௭ଶ߱݌4 ൅ ଶ߱݇଴ݍ4
ଶ߶ଶ߱

ൌ ߰ே௅ 

(A4.4)

where subscript ߱ and 2߱ are for the fundamental and SH waves respectively and 

the coefficients ݌௫௝, ,௬௝݌ ,௭௝݌  ௝ and the nonlinear source field ߰ே௅ can be expressed asݍ

follows; 
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TE mode: 

߶௝ ൌ ,௫௝ܧ ௫௝݌ ൌ ݊௫௝
ଶ ݊௬௝

ଶ , ௬௝݌ ൌ 1, ௝ݍ ൌ ݊௫௝
ଶ  ൗ  

 

߰ே௅ ൌ െ
2݇଴

ଶ

଴ߝ
ሺ݅௫. ேܲ௅ሻ (A4.5)

 

TM mode: 

߶௝ ൌ ௫௝݌     ,௫௝ܪ ൌ 1 ݊௬௝
ଶ , ௬௝݌ ൌ 1 ݊௭௝

ଶ⁄ , ௭௝݌ ൌ 1 ݊௬௝
ଶ⁄ , ௝ݍ  ൌ 1 ⁄  

 

߰ே௅ ൌ
݇଴

଴ܼ଴ߝ
ቈ
.൫݅௬ߚ2 ேܲ௅൯

݊௬ଶ߱
ଶ െ ݆

1
݊௭ଶ߱

ଶ

߲ሺ݅௭. ேܲ௅ሻ

ݕ߲
቉ (A4.6)

where ܼ଴ denotes the free space impedance (ൎ 377Ω) and ݆ represents either ߱ or 2߱. 
 

Note that ݊௫௝ ൌ ݊௬௝ ൌ ݊௭௝ for isotropic materials while ݊௫௝ ് ݊௬௝ ് ݊௭௝ for 

anisotropic materials. Further, ߲ ⁄ݔ߲ ൌ 0 for planar optical waveguides where ݅௫, ݅௬ 

and ݅௭ are the unit vectors in the ݔ, -directions respectively, and the second ݖ and ݕ

order nonlinear polarisation ேܲ௅ is given by; 

ேܲ௅ ൌ ቎
௫ܲ

௬ܲ

௭ܲ

቏ ൌ ଴ߝ ൥
݀ଵଵ ݀ଵଶ
݀ଶଵ ݀ଶଶ
݀ଷଵ ݀ଷଶ

݀ଵଷ ݀ଵସ
݀ଶଷ ݀ଶସ
݀ଷଷ ݀ଷସ

݀ଵହ ݀ଵ଺
݀ଶହ ݀ଶ଺
݀ଷହ ݀ଷ଺

൩

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ

௫߱ܧ
ଶ

௬߱ܧ
ଶ

௭߱ܧ
ଶ

௭߱ܧ௬߱ܧ2
௫߱ܧ௭߱ܧ2
ے௬߱ܧ௫߱ܧ2

ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (A4.7)

Note that ேܲ௅
ఠ ൌ ఠܧ2݀

כ ଶఠ and ேܲ௅ܧ
ଶఠ ൌ ఠܧ2݀

ଶ , where ேܲ௅
ఠ  and ேܲ௅

ଶఠ are fundamental and 

SH nonlinear polarisation respectively. An asterisk (‘*’) is used to denote a complex 

conjugate; i.e. the relationship between ݀௜௝ and  ߯௜௝
ሺଶሻ  is   ݀௜௝ ൌ  

ଵ

ଶ
߯௜௝

ሺଶሻ with;  

ఠܧ ൌ ቎
௫ఠܧ
௬ఠܧ

௭ఠܧ

቏ ൌ ଵ
ଶ

൦
,ݔ௫ఠሺܧ ሻ݁ሾ௝ሺఠ௧ିఉ௭ሻሿݕ ൅ ܿ. ܿ
,ݔ௬ఠሺܧ ሻ݁ሾ௝ሺఠ௧ିఉ௭ሻሿݕ ൅ ܿ. ܿ

,ݔ௭ఠሺܧ ሻ݁ሾ௝ሺఠ௧ିఉ௭ሻሿݕ ൅ ܿ. ܿ

൪ (A4.8)

 .ଶఠ can be written similarlyܧ

 



 Appendices

 

168  
 

In equation (A4.4), the Slowly Varying Envelope Approximation (SVEA) 

|߲ଶ߶ଶఠ ⁄ଶݖ߲ | ا ௭ଶఠ߲߶ଶఠ݌ߚ4| ⁄ݖ߲ | has been applied, and the pump depletion has also 

been neglected. Therefore, negligible depletion of the fundamental beam at ߱ is valid 

only for cases where the conversion efficiency is very low, i.e. ߟௌுீ ا 1. 

Furthermore, at low conversion efficiencies the amplitude of the fundamental 

electric field ܧఠ remains essentially constant over the interaction length (as ܧଶఠ ا

 .(ఠܧ

 

The amplitudes of the fundamental electric fields, ܧ௫ఠ,  ௭ఠ areܧ ௬ఠ andܧ

approximated as; 

TE mode: 

௫߱ܧ ൌ ߶߱ (A4.9)

 

௬߱ܧ ൌ 0 (A4.10)

 

௭߱ܧ ൌ 0 (A4.11)

 

TM mode: 

௫߱ܧ ൌ 0 (A4.12)

 

௬߱ܧ ൌ െ
ܼ଴ߚ

݊௬߱
ଶ ݇଴

߶߱ (A4.13)

 

௭߱ܧ ൌ ݆
ܼ଴

݊௭߱
ଶ ݇଴

߲߶߱

ݕ߲
 (A4.14)

 

Applying the Finite Element Method (FEM) to equations (A4.3) and (A4.4) yields; 

For fundamental: 

ሾܭఠሿሼ߶ఠሽ െ ఠሿሼ߶ఠሽܯଶሾߚ ൌ ሼ0ሽ (A4.15)
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For second harmonic: 

െ݆4ߚሾܯଶఠሿ
݀ሼ߶ଶఠሽ

ݖ݀
൅ ሺሾܭଶఠሿ െ ଶఠሿሼ߶ଶఠሽሻܯଶሾߚ4 ൌ ሼ߰ே௅ሽ (A4.16)

Equation (A4.15) is a standard eigenvalue problem whose eigenvalue and 

eigenvector corresponds to ߚଶ and ሼ߶ఠሽ respectively [see Appendix 2].  

In equation (A4.15) and (A4.16); ሾܭఠሿ, ሾܭଶఠሿ, ሾܯఠሿ and ሾܯଶఠሿ  can be expressed as 

follows; 

ሾܭఠሿ ൌ ෍ ඵ ቂݍఠ݇଴
ଶሼܰሽሼܰሽ் െ ௫ఠሼ݌ ௫ܰሽሼ ௫ܰሽ் െ ௬ఠ൛݌ ௬ܰൟ൛ ௬ܰൟ

்
ቃ ݔ݀ ݕ݀

௘௘

 (A4.17)

 

ሾܯఠሿ ൌ ෍ ඵ ሾ݌௭ఠሼܰሽሼܰሽ்ሿ ݔ݀ ݕ݀
௘௘

 (A4.18)

 

ሾܭଶఠሿ ൌ ෍ ඵ ቂ4ݍଶఠ݇଴
ଶሼܰሽሼܰሽ் െ ௫ଶఠሼ݌ ௫ܰሽሼ ௫ܰሽ் െ ௬ଶఠ൛݌ ௬ܰൟ൛ ௬ܰൟ

்
ቃ ݔ݀ ݕ݀

௘௘

 (A4.19)

 

ሾܯଶఠሿ ൌ ෍ ඵ ሾ݌௭ଶఠሼܰሽሼܰሽ்ሿ ݔ݀ ݕ݀
௘௘

 (A4.20)

In aiming to solve (A4.16), it is difficult to analyse the interaction of linear and 

nonlinear mechanisms; therefore the split-step procedure which consists of a 

propagation effect and a nonlinear effect can be applied. The split-step procedure can 

be written as follows [109]; 

By considering the Left Hand Side (L.H.S.) of the equation (A4.16) for the 

propagation effect; 

െ݆4ߚሾܯଶఠሿ
݀ ቄ߶ଶఠ

ሺଵሻቅ

ݖ݀
൅ ቀሾܭଶఠሿ െ ଶఠሿܯଶሾߚ4 ቄ߶ଶఠ

ሺଵሻቅቁ ൌ ሼ0ሽ (A4.21)

Then considering the split-step procedure the Right Hand Side (R.H.S.) of the 

equation (A4.16) can be represented as; 
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ቄ߶ଶఠ
ሺଶሻቅ ൌ ቄ߶ଶఠ

ሺଵሻቅ ൅ න ݆
1

௭ଶ݌ߚ4
ሼ߰ே௅ሽ݀ݖ (A4.22)

where superscript 1 and 2 in equation (A4.21) and (A4.22) denote the field for step 1 

and 2 respectively.  

The following matrix equation can be obtained by applying the Finite Difference 

Method (FDM) to equation (A4.21) for a short interval  Δݖ ൑ ݖ ൏ ሺ݇ ൅ 1ሻ∆ݖ, (where 

݇ ൌ 0, 1, 2, … ) along the propagation direction ݖ.    

െ݆4ߚሾܯଶఠሿ ቀቄ߶ଶఠ
ሺଵሻቅ

௞ାଵ
െ ቄ߶ଶఠ

ሺଵሻቅ
௞

ቁ ⁄ݖ∆

൅ ሺሾܭଶఠሿ െ ଶఠሿሻܯଶሾߚ4 ቂߠ ቄ߶ଶఠ
ሺଵሻቅ

௞ାଵ
൅ ሺ1 െ ሻߠ ቄ߶ଶఠ

ሺଵሻቅ
௞

ቃ ൌ ሼ0ሽ 
(A4.23)

Then equation (A4.23) can be reduced as follows; 

ሾܮሺߠሻሿ ቄ߶ଶఠ
ሺଵሻቅ

௞ାଵ
ൌ ሾܮሺߠ െ 1ሻሿ ቄ߶ଶఠ

ሺଵሻቅ (A4.24)

where; 

ሾܮሺߠሻሿ ൌ െ݆4ߚሾܯଶఠሿ ൅ ଶఠሿܭሺሾݖ∆ߠ െ ଶఠሿሻ (A4.25)ܯଶሾߚ4

where artificial parameter ߠ ൌ 0.5 (i.e. Crank Nicolson (CN) scheme which was 

discussed in Chapter 2). 

The difference version of equation (A4.22) can be represented as; 

ቄ߶ଶఠ
ሺଶሻቅ

௞ାଵ
ൌ ቄ߶ଶఠ

ሺଵሻቅ
௞ାଵ

൅ ݆
ݖ∆

௭ଶ݌ߚ4
ሼ߰ே௅ሽ (A4.26)

Substituting equation (A4.24) into equation (A4.26), the following equation can be 

obtained; 

ሼ߶ଶఠሽ௞ାଵ ൌ ሾܮሺߠሻሿିଵሾܮሺߠ െ 1ሻሿሼ߶ଶఠሽ௞ ൅ ݆
ݖ∆

௭ଶ݌ߚ4
ሼ߰ே௅ሽ (A4.27)

where ሼ߶ଶఠሽ௞ ؠ ቄ߶ଶఠ
ሺଵሻቅ

௞
 and  ሼ߶ଶఠሽ௞ାଵ ؠ ቄ߶ଶఠ

ሺଶሻቅ
௞ାଵ

 are the initial and final SH fields 

within the interval  ݇Δݖ ൑ ݖ ൏ ሺ݇ ൅ 1ሻ∆ݖ respectively.  
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Second Harmonic Generation with pump depletion 

In some cases the power conversion from fundamental to SH can be considerably 

high and the second harmonic becomes significant; therefore it is necessary to 

consider the pump depletion (i.e. more power transferred from fundamental to the 

SH). The total field of two different waves propagating at two different frequencies 

߱ and 2߱, can be written as the coupled wave equation (A4.28). Further, the 

fundamental field ߶ఠ is now dependant of ݖ. 

In consideration of pump depletion the nonlinear part (i.e. R.H.S. or source term) of 

the fundamental wave equation exists. Therefore, the fundamental wave equation 

with the nonlinear term ߰ே௅
ఠ  can be represented as; 

െ݆2݌ߚ௭߱
߲߶߱

ݖ߲
൅ ௫߱݌

߲ଶ߶߱

ଶݔ߲ ൅ ௬߱݌
߲ଶ߶߱

ଶݕ߲ െ ߱߶ଶߚ௭߱݌ ൅ ଴݇߱ݍ
ଶ߶߱ ൌ ߰ே௅

߱  (A4.28)

 

Application of FEM yields; 

െ݆2ߚሾܯଶఠሿ
݀ሼ߶ఠሽ

ݖ݀
൅ ሺሾܭఠሿ െ ఠሿሼ߶ఠሽሻܯଶሾߚ ൌ ሼ߰ே௅

߱ ሽ (A4.29)

where, 

ሾܭఠሿ ൌ ෍ ඵ ቂݍఠ݇଴
ଶሼܰሽሼܰሽ் െ ௫ఠሼ݌ ௫ܰሽሼ ௫ܰሽ் െ ௬ఠ൛݌ ௬ܰൟ൛ ௬ܰൟ

்
ቃ ݔ݀ ݕ݀

௘௘

 (A4.30)

 

ሾܯఠሿ ൌ ෍ ඵ ሾ݌௭ఠሼܰሽሼܰሽ்ሿ ݔ݀ ݕ݀
௘௘

 (A4.31)

The nonlinear part of the equation for TE and TM modes can be written as follows; 

TE mode:  

߰ே௅
߱ ൌ െ

2݇଴
ଶ

଴ߝ
ሺ݅௫. ேܲ௅

߱ ሻ 

 

(A4.32)

 



 Appendices

 

172  
 

TM mode:  

߰ே௅
߱ ൌ

݇଴

଴ܼ଴ߝ
ቈ
.൫݅௬ߚ2 ேܲ௅

߱ ൯

݊௬߱
ଶ െ ݆

1
݊௭߱

ଶ

߲ሺ݅௭. ேܲ௅
߱ ሻ

ݕ߲
቉ (A4.33)

The SH wave equation with pump depletion can be derived in a similar manner 

(without pump depletion). Then the split-step procedure and CN scheme can be 

applied to both the fundamental and SH wave equations. 
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