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The life was limited,

the knowledg was unlimited.

It wouldn’t be wise,

if thee trying to conquer the unlimited with the limited.

Chuang Tzu (c. 369-286 BC)
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Abstract

This thesis is focusing on boundary problems for various classical integrable schemes.

First, we consider the vector nonlinear Schrödinger (NLS) equation on the half-

line. Using a Bäcklund transformation method which explores the folding symmetry

of the system, classes of integrable boundary conditions (BCs) are derived. These

BCs coincide with the linearizable BCs obtained using the unified transform method

developed by Fokas. The notion of integrability is argued by constructing an explicit

generating function for conserved quantities. Then, by adapting a mirror image tech-

nique, an inverse scattering method with an integrable boundary is constructed in

order to obtain N-soliton solutions on the half-line, i.e. N-soliton reflections. An

interesting phenomenon of transmission between different components of vector soli-

tons before and after interacting with the boundary is demonstrated.

Next, in light of the fact that the soliton-soliton interactions give rise to Yang-

Baxter maps, we realize that the soliton-boundary interactions that are extracted

from the N-soliton reflections can be translated into maps satisfying the set-theoretical

counterpart of the quantum reflection equation. Solutions of the set-theoretical re-

flection equation are referred to as reflection maps. Both the Yang-Baxter maps and

the reflection maps guarantee the factorization of the soliton-soliton and soliton-

boundary interactions for vector NLS solitons on the half-line.

Indeed, reflection maps represent a novel mathematical structure. Basic notions

such as parametric reflection maps, their graphic representations and transfer maps

are also introduced. As a natural extension, this object is studied in the context

of quadrirational Yang-Baxter maps, and a classification of quadrirational reflection

maps is obtained.

Finally, boundaries are added to discrete integrable systems on quad-graphs.

Triangle configurations are used to discretize quad-graphs with boundaries. Re-

lations involving vertices of the triangles give rise to boundary equations that are

used to described BCs. We introduce the notion of integrable BCs by giving a

three-dimensional boundary consistency as a criterion for integrability. By exploring

the correspondence between the quadrirational Yang-Baxter maps and the so-called

ABS classification, we also show that quadrirational reflection maps can be used as

a systematic tool to generate integrable boundary equations for the equations from

the ABS classification.
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Chapter 1
Introduction

Since the birth of the modern theories of integrability dated back to the late 1960s,

integrable systems have been extensively studied as one of the most attractive fields

in mathematical physics. Probably, the most striking feature of integrable systems is

that certain nonlinear systems can be exactly solved by mathematical methods and

such systems exhibit soliton solutions that are particle-like objects interacting elasti-

cally with themselves. Nowadays, these nonlinear systems are qualified as integrable

and believed to be widely involved in our understanding of natural phenomena. The

appearance of integrable systems has been marked in almost every single branch

of physics, and the impact has reached far to areas ranging from fiber optics, that

engineers the transmissions of information and ensures our everyday communica-

tions, through the experiments in atomic physics, aiming to understand the utter

properties of atoms and molecules, to the attempts of speculating some of the most

fundamental problems in physics using concepts developed around string theory and

conformal field theory. Numerous mathematical methods have also been developed

and found to have deep connections to different areas of pure mathematics. So far,

integrable systems have become a powerful tool to understand physics and develop

new concepts and methods in mathematical physics.

Amongst the very rich topics in integrable systems, boundary problems arise as

one of the fundamental problems in the discipline. Indeed, most of models are

known to be integrable only in the presence of very special boundary conditions

such as periodic boundary conditions. Adding more generic boundary conditions to

integrable systems signifies a better description of physics, since real physical systems

naturally involving boundaries. From the point of view of integrability, deriving

integrable boundary conditions—boundary conditions that preserve the integrability

property—consists of a highly non-trivial task.

The objectives of this thesis are to study boundary problems for certain classical
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integrable models. We start, in this chapter, by giving a general introduction to the

areas of study that are relevant to the thesis.

1.1 2D soliton theories

Two-dimensional (2D) soliton models, namely models possessing soliton solutions,

are 2D—one dimensional space plus time—nonlinear partial differential equations

that can be exactly solved by means of the inverse scattering method.

Historically, the development of soliton theories also marked the birth of the

integrable theories. The story can be traced back to the late 19th century when

the mathematicians in that epoch derived the Korteweg-de Vries (KdV) equation

[30, 80] in the context of fluid dynamics. This equation is in the following simple

form for a real field u(x, t):

ut + uxxx + 6uux = 0 , (1.1)

where the subscripts mean the partial derivatives1. After more than a half-century

of its introduction, the KdV equation was revived in 1965 by Zabusky and Kruskal

[120]. Using a numeric method, they discovered that Eq. (1.1) exhibits particle-like

solutions that interact elastically with themselves. Apparently counter-intuitive, this

particular type of solutions was named as solitons and gave an adequate explanation

to the Fermi-Pasta-Ulam problem [49], a puzzle initiated in numeric experiments.

Mathematical foundations for solitons were soon established notably following the

inventions of the inverse scattering method [61] and the Lax pair [81] which created

an elegant framework to solve the KdV equation. Gradually, soliton solutions were

found in many other models such as the nonlinear Schrödinger equation [123], the

modified KdV equation [116] and the sine-Gordon equation [7]. The notions of

integrability such as infinite conservation laws [90, 81], Hamiltonian structure [60,

122] and Bäcklund transformations [117] were also clarified. Solitons have thus

become a characteristic feature of integrable systems.

One-soliton solution of the KdV equation is the following traveling wave function:

u(x, t) =
1
2

csech2
(√

c
2

(x− ct−a)

)
, c,a ∈ R , (1.2)

where c is a real parameter controlling both the velocity and the amplitude of u(x, t).

This wave maintains its shape while it travels at constant speed. To understand soli-

ton phenomena, let us look back at the form of (1.1). There are two sources of force

1This convention will be adopted for the rest of the thesis
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coexisting: on one hand, the dispersion, coming from the linear term ut + uxxx that

physically tries to extend the wave envelope, and on the other, the dissipation, com-

ing from the nonlinear term 6uux that basically tries to destroy the wave envelope.

Then, the fact that (1.1) exhibits solutions like (1.2) can be understood as a ”magic”

balance between both the dispersion and the dissipation. In other word, to have

wave functions such as (1.2), the nonlinearity is an essential ingredient! Indeed,

observation of such waves had already been reported as ”solitary waves” [102] in

the mid-19th century by the Scottish engineer Russell when he studied the motion

of water. Next, one can ask the following questions: first, do any other physical

system governed by the KdV equation exist in nature? Second, does the ”magic”

balance between dispersion and dissipation exist for any other nonlinear system?

The answers for both questions are yes. Nowadays, we know that the KdV equation

appears in the context of acoustic waves traveling in crystals. Also, a wide range

of soliton models exist. It is argued that soliton models are, in fact, of universal

character and can be widely applied in describing Nature (see for instance [121]). A

powerful method for solving soliton models, known as the inverse scattering method

(ISM) (the ISM will be explained in depth in Chapter 2), exists.

Another universal integrable model is the nonlinear Schrödinger (NLS) equation:

iut + uxx−2λ|u|2 u = 0 , λ =±1 , (1.3)

where u is a complex-valued field depending on x and t. In the case λ = −1, that

is called focusing case for the nonlinear term −2λ|u|2 u with λ = −1 arises as an

attractive ”force”, the NLS equation (1.3) possesses soliton solutions. Its one-soliton

solution can be written in the form

u(x, t) = ae−i(bx+(b2−a2)t+φ0) sech(a(x + 2bt−∆c)) , (1.4)

where a, b are parameters controlling the velocity and amplitude of u(x, t) and φ0, ∆c

are parameters characterizing respectively the initial phase and space position. As a

single integrable model, the NLS equation has a great impact in both mathematics

and physics. In [123], Zakharov and Shabat first gave soliton solutions to the NLS

equation by generalizing the Lax pair [81]. This just built up the basis for the

later development in [7] in which a powerful framework of the ISM to generate and

solve soliton models, known as the AKNS scheme, was derived. Also, Manakov

generalized the NLS equation to a two-component coupled version [87], known as

Manakov system or vector NLS model, aiming at simulating electro-magnetic field

in a nonlinear medium. Thanks to its great relevance, the Manakov system has been
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becoming the governing equation in the filed of fiber optics—solitons were reportedly

observed in experiments [68]—that is of great interest in engineering. The quantum

version of the NLS equation, known as Lieb-Liniger model that is used to describe a

gas of particles moving in one dimension and satisfying Bose-Einstein statistics, was

solved in [84]. This result inspired Yang who gave his famous rational solution of the

Yang-Baxter equation [119] by extending the spinless particles in [84] to particles

with spin. Note that both Manakov and Yang’s ideas lie in adding internal degrees of

freedom to a scalar quantity. In the context of soliton theories, this gives rise to the

multi-component soliton models. The ISM for solving classes of multi-component

soliton models was extensively studied, for instance in [110].

Initial-boundary value problems, initiated in the study of partial differential equa-

tions, appear naturally in soliton theories. Since an early attempt [4] in which the

KdV equation on the half-line was considered, half-line problems for soliton models

have attracted much attention from many researchers. An idea of using Bäcklund

transformation to construct integrable boundary conditions was first proposed by

Sklyanin in [103]. Later, in [25, 26, 66, 109], the Bäcklund transformation method

was applied to the NLS and sine-Gordon equations for deriving integrable bound-

ary conditions. In [50], the NLS model was again treated by using analysis of the

linearized NLS equation. The common result of these two approaches consists in

representing the half-line system by folding a full line system. The vector NLS equa-

tion on the half-line was studied in [67] using an algebraic approach. Recently, a

nice mirror image construction was developed in [27] for the NLS equation, which

led to N-soliton solutions on the half-line.

On the other hand, Fokas has recently developed a powerful method [51, 52,

54], referred to as Fokas method or unified transform method (this method will be

discussed in more detail in Appendix A), for treating boundary value problems for

soliton equations. Roughly speaking, this method is based on a simultaneous analysis

of both parts of the Lax pair, which translates the initial-boundary conditions into

spectral functions in Fourier space. Then the solutions of the original system can be

obtained using certain inverse transforms from the spectral functions. The unified

transform method can be applied to a large class of boundary problems for soliton

equations ranging from half-line problems [52, 32, 57] and to systems defined on an

finite interval [56, 33].
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1.2 Yang-Baxter equation and reflection equation

The (quantum) Yang-Baxter equation, introduced separately by Yang [119] in the

context of quantum field theory and by Baxter [17] in the context of statistical me-

chanics, is at the heart of understanding quantum integrable models. The equation

can be written in the following form:

R 12R 13R 23 = R 23R 13R 12 , (1.5)

where R , commonly known as R -matrix, is a matrix acting on V ⊗V—V is a vector

space—with the understanding that R 12 = R ⊗ I, R 23 = I⊗R and so on. From a

=

Fig. 1.1 : Yang-Baxter equation

physical point of view, as pointed out in [126], the Yang-Baxter equation describes

the factorization of an N-particle scattering, which is a unique feature displayed by

2D integrable systems (see Fig. 1.1). On the other hand from a mathematical point

of view, the algebraic structures underlying the Yang-Baxter equation can be seen as

deformations of the usual Lie algebras or their infinite dimensional extensions: the

Kac-Moody algebras [77]. Such deformed algebraic structures are known nowadays

as quantum groups or quantum algebras [75, 76, 43].

In the context of quantum integrable systems with boundaries, there exists, in

addition to the Yang-Baxter equation, a second equation: the reflection equation,

also known as the boundary Yang-Baxter equation [42, 104], that is used to encode

the interactions of quantum particles with boundaries. The equation is in the form

R 12K 1R 21K 2 = K 2R 12K 1R 21 , (1.6)

where K , also known as K -matrix, is a matrix acting on V . The appearance of

K in the reflection equation (1.6) can be seen as a certain consistency with the

R -matrix. Then, K , that describes the particle-boundary scattering, along with

R , that describes the particle-particle scattering, ensure the integrability of the

underlying quantum system with boundaries. This feature can be viewed in Fig. 1.2
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as the factorization of both the particle-particle and particle-boundary scatterings.

2

1

2

1

=

Fig. 1.2 : Reflection equation

1.3 Yang-Baxter maps

One aspect of the Yang-Baxter equation (1.5) is that the R -matrix is an operator

acting on tensor product of vector spaces, i.e. V ⊗V , which allows the equation itself

to have rich algebraic structures. However, one can ”relax”this property by replacing

V ⊗V by S× S, where S is an arbitrary set and × means Cartesian product. This

gives rise to the set-theoretical version of the Yang-Baxter equation, first suggested

as a subject of study by Drinfeld in [44] (a solution was already obtained earlier by

Sklyanin [105]). Nowadays, solutions of the set-theoretical Yang-Baxter equation are

commonly accepted as Yang-Baxter maps, originating from a suggestion of Veselov

[113]. The name rational set-theoretical R -matrices also exists in the literature.

With the understanding that R is a map acting on S× S, the theoretical Yang-

Baxter equation, which shares the same structure as the usual quantum Yang-Baxter

equation (1.5), is now read as a compatibility condition of two different ways to do

decompositions of maps.

Different aspects of Yang-Baxter maps have been developed and numerous con-

nections have been established with, for example, Poisson-Lie groups and alge-

bras [118, 70, 46, 86, 101], discrete Lax representation [106] and transfer maps

[113]. Yang-Baxter maps also arise in different contexts in mathematical physics,

such as geometric crystals [45], cellular automaton [107, 69, 58], factorization of

multi-component solitons’ scattering [111, 64, 9] and discrete integrable systems

[98, 72, 79]. Note that, although the multi-component soliton theory is a well-

established discipline, it has only been understood, rather recently in [111, 9] for

the vector NLS equation and in [64] for the matrix KdV equation, that an N-soliton
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scattering (or collision) factorizes into

(
N

2

)
pairwise soliton scatterings, that can

be expressed in terms of Yang-Baxter maps. In [14], effort was put into classify-

ing Yang-Baxter maps in the case S = CP1, which led to the important concept of

quadrirational maps. Classifications of quadrirational Yang-Baxter maps were also

exhausted in [14, 97].

1.4 Discrete integrable systems

Recently, there has been an increasing interest in two-dimensional discrete integrable

systems. Practically, an important motivation comes from the use of computer

and numeric analysis which is naturally involved with discrete variables—soliton

solutions [120] of the KdV equations were first found by using numeric method!

Moveover, all the concepts and methods developed in the continuous theories can

be found to have their deep roots in discrete systems. Nowadays, it is believed

that, in many aspects, discrete systems are more fundamental than their continuous

counterpart (see for instance [92]).

Early developments of the discipline lie in discretizing one variable (usually the

time variable) of certain known soliton systems [2, 3, 73, 74]. This corresponds

to semi-discrete systems or differential-difference systems. Discrete equations that

we are considering in this thesis are fully discrete systems or difference-difference

systems, which discretize both the space and time variables. Mainly following [94, 99]

by using the direct linearization method, a number of interesting discrete models

were derived (see also [92]).

On the other hand, it is often possible to pass from a continuous equation to a

discrete equation via Bäcklund transformations. Bäcklund transformations in soliton

theories are transformations which map solutions of a soliton equation into new so-

w

BTλ

BTµ

ŵ

BTµ

w̃

BTλ

˜̂w = ˜̂w

Fig. 1.3 : Bianchi diagram for Bäcklund transformations
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lutions. They are known to satisfy the Bianchi permutability property (see Fig. 1.3).

The most famous example is the discrete potential KdV (dpKdV) equation that can

be obtained using Bäcklund transformations for the KdV equation [117]. The con-

struction is illustrated in Fig. 1.3. The field w is defined as wx = u for u satisfying

the KdV equation. Thanks to the permutability property, ˜̂w and ̂̃w are compatible.

Relation involving w, w̃, ŵ and ˜̂w is in the form

(w− ˜̂w)(ŵ− w̃)+ 4(λ−µ) = 0 , (1.7)

which is the dpKdV equation. In this way, discrete systems can be generated in a

lattice following successive applications of Bäcklund transformation (see Fig. 1.4).

w

ŵ

w̃

˜̃̃w

̂̃̃w

̂̂̃w

̂̂̂w

˜̃w

̂̃w

̂̂w

Fig. 1.4 : Lattice generated by Bäcklund transformations

There exist several notions and tests for integrability of discrete systems. Let

us mention for instance integrable mappings [112], algebraic entropy [23], singular-

ity confinement [65] and three-dimensional consistency [91, 29]. The latter will be

discussed in Chapter 8. In [29, 13], discrete integrable systems were extended to

quad-graphs, i.e. planar graph of cellular decompositions with quadrilateral faces (in

contrast to the square lattice), and a classification of discrete integrable equations

was accordingly given [13]. These laid the foundation for important developments

in discrete integrable systems. Some important results have already been achieved,

such as soliton generations [12, 93], Lagrangian structures [85] and discrete ISM [34],

etc.



1.5. OUTLINE OF THESIS 9

1.5 Outline of thesis

Following the two different types of the underlying integrable systems that we are

considering in this thesis, namely continuous and discrete, this thesis is naturally

divided into two parts. Motivations and notably notions of integrability will be

clarified in each precise context of this presentation.

In Part I—Chapter 2 - Chapter 5—we study the vector NLS equation on the half-

line. Chapter 2 reviews the ISM that is the basic instrument used throughout Part I.

In Chapter 3, classes of integrable BCs are derived. Soliton solutions on the half-line

are also constructed using a mirror image method. In Chapter 4, we introduce reflec-

tion maps that satisfy the set-theoretical counterpart of the reflection equation, in

order to prove the factorization of soliton-soliton and soliton-boundary interactions.

Another approach, called space-evolution method, to solve the vector NLS equation

on the half-line, is proposed in Chapter 5. Part II—Chapter 6 - Chapter 8—deals

with reflection maps and quad-graph systems with boundary. We study in detail

the set-theoretical reflection equation and reflection maps in Chapter 6. Reflection

maps in the context of quadrirational Yang-Baxter maps are considered in Chap-

ter 7. In Chapter 8, boundaries are added to quad-graph systems. In particular, we

propose a three-dimensional boundary consistency as a criterion for integrability for

quad-graph integrable systems with boundary. Concluding remarks are reported in

Chapter 9.



Part I

From the vector NLS equation on

the half-line to reflection maps



Chapter 2
ISM for the vector NLS equation

In this chapter, we review the inverse scattering method (ISM) for the vector NLS

equation, in order to collect results and notations needed in Part I of this thesis. The

main technical complexity of the vector generalization of the NLS model lies in the

computation of the N-soliton scattering data that are encoded in a matrix quantity

a+(k), in contrast to the scalar NLS case where a+(k) is a scalar. To overcome this

difficulty, we use the approach based on the Riemann-Hilbert (RH) formulation. This

leads to a powerful framework, by virtue of the dressing transformations, to compute

a+(k) and the N-soliton solutions in a compact form. In particular, we put our

emphasis on Theorem 2.2.7 which indeed reflects the Bianchi permutativity property

in the context of dressing transformations. This theorem will play an important

role when we study the factorization of an N-soliton interaction in the forthcoming

chapters. We refer readers to [5, 47, 6, 8] for more detailed presentations of the ISM,

and to [124, 125, 47, 16, 62] for the dressing transformations.

2.1 From Lax pair to RH problem

The traditional approach of the ISM consists of three steps: 1) direct scattering

which transforms the soliton equation into a set of scattering data by using the x-

part of the Lax pair; 2) time-evolution which makes the scattering data evolved in

time by using the t-part of the Lax pair; 3) inverse scattering which reconstructs

the solutions of the original soliton equation from the time-evolved scattering data.

With the help of the RH formulation, these three steps can naturally be absorbed

into the RH problem itself.

Let us first define the vector NLS equation. Given an n-component complex-
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valued vector field

R(x, t) =


r1(x, t)

...

rn(x, t)

 , (2.1)

we require that the jth component r j(x, t), j = 1, . . . ,n is a smooth enough function

that vanishes to zero as x→ ±∞ for all t. This requirement corresponds to the

so-called vanishing boundary conditions1. The vector NLS equation is defined as

iRt(x, t)+ Rxx(x, t)−2λ(R† R)R(x, t) = 0 , (2.2)

where R†(x, t) is the transpose conjugate of R(x, t) and λ is the (real) coupling con-

stant which can be normalized to λ = ±1. Define Q(x, t) as the following (n + 1)×
(n + 1) matrix-valued field:

Q(x, t) =

(
0 R(x, t)

λR†(x, t) 0

)
, (2.3)

the vector NLS equation (2.2) can be written as the compatibility condition (Φxt =

Φtx) of the two following linear problems, known as auxiliary problems or Lax pair,

for an (n + 1)× (n + 1) matrix-valued function Φ(x, t,k)2:

Φx + ik[Σ3,Φ] = QΦ , (2.4)

Φt + 2ik2[Σ3,Φ] = QT Φ , (2.5)

where

Σ3 =

(
In 0
0 −1

)
, QT = 2kQ− iQx Σ3− iQ2

Σ3 , (2.6)

with In being the n× n identity matrix. Eq. (2.4) and (2.5) represent respectively

the x-part and t-part of the Lax pair.

Remark 2.1.1 The Lax pair for the vector NLS equation is also widely seen in the

literature as two operators U and V satisfying the zero curvature condition:[
U− ∂

∂x
,V − ∂

∂t

]
= 0 , (2.7)

1This requirement restricts the classes of solutions that we consider in this thesis, and detailed
treatments can be seen for instance in [5, 47].

2From now on, we drop the x, t and k dependence for conciseness unless there is ambiguity.
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where U , V are defined as

U =−ikΣ3 + Q(x, t) , V =−2ik2
Σ3 + QT (x, t,k) . (2.8)

The corresponding auxiliary problems turn out to be

Uψ = ψx , V ψ = ψt . (2.9)

For practical purposes, we work with the auxiliary problems (2.4, 2.5) that are simply

related to (2.9) by specifying

ψ(x, t,k) = Φ(x, t,k)e−i(kx+2k2t)Σ3 . (2.10)

From Eq. (2.3), one can observe that Q satisfies

W QW−1 =−Q† , (2.11)

where

W =

(
−λIn 0

0 1

)
. (2.12)

This implies that, provided that Φ(x, t,k) is a solution of (2.4, 2.5), WΦ†(x, t,k∗)W−1

satisfies the same equations as Ψ(x, t,k)≡Φ−1(x, t,k) does, i.e.

Ψx + ik[Σ3,Ψ] =−ΨQ , (2.13)

Ψt + 2ik2[Σ3,Ψ] =−ΨQT . (2.14)

Following the vanishing boundary conditions, we are able to define two Jost solutions

X(x, t,k) and Y (x, t,k) of (2.4, 2.5) satisfying

lim
x→−∞

eiφ(x,t,k)Σ3X(x, t,k)e−iφ(x,t,k)Σ3 =In+1 , k ∈ R , (2.15)

lim
x→∞

eiφ(x,t,k)Σ3Y (x, t,k)e−iφ(x,t,k)Σ3 =In+1 , k ∈ R , (2.16)

where

φ(x, t,k) = kx + 2k2t . (2.17)

They enjoy the following properties:
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• Volterra integral representations:

X(x, t,k) =In+1 +
∫ x

−∞

e−ik(x−y)Σ3 Q(y, t)X(y, t,k)eik(x−y)Σ3dy , (2.18)

Y (x, t,k) =In+1 +
∫ x

∞

e−ik(x−y)Σ3 Q(y, t)Y (y, t,k) eik(x−y)Σ3dy . (2.19)

• Due to the traceless property of Q(x, t),

detX(x, t,k) = detY (x, t,k) = 1 . (2.20)

• Since both WΦ†(x, t,k∗)W−1 and Φ−1(x, t,k) satisfy (2.13, 2.14), one gets

W X−1(x, t,k)W−1 = X†(x, t,k∗) , W Y−1(x, t,k)W−1 = Y †(x, t,k∗) . (2.21)

• X and Y can be split into the following ”column” vectors3 forms:

X = (X+,X−) , Y = (Y−,Y +) , (2.22)

where X+, Y + (resp. X−, Y−) are analytic and bounded in the upper (resp.

lower) half k-complex plane.

A straightforward calculation shows that if Ψ1 and Ψ2 are two solutions of (2.4, 2.5),

then they satisfy

Ψ1(x, t,k) = Ψ2(x, t,k)e−iφ(x,t,k)Σ3 T (k)eiφ(x,t,k)Σ3 , (2.23)

where the (n + 1)× (n + 1) matrix T depends on the spectral parameter k only.

Therefore, we define the matrix S(k) that relates the Jost solutions X and Y as

X(x, t,k) = Y (x, t,k)e−iφ(x,t,k)Σ3 S(k)eiφ(x,t,k)Σ3 , k ∈ R . (2.24)

It follows from the properties of X and Y that detS(k) = 1, and S(k) can be split into

block matrices of natural sizes4:

S(k) =

(
a+(k) b−(k)

b+(k) a−(k)

)
. (2.25)

3Here, the left ”column” vector is made of the first left n columns and the right one is made
of the remaining column. This column vector representation will be constantly used in the rest of
this thesis.

4For instance, a+ is an n×n matrix and a− a scalar.
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Again, a±(k) are understood to be analytic in C±, where C+ and C− are used to

denote the upper and lower half k-complex planes respectively. Moreover, one has

W S(k)−1W−1 = S†(k∗) . (2.26)

Let S(k)−1 be written in components as

S(k)−1 =

(
c−(k) d−(k)

d+(k) c+(k)

)
, (2.27)

where c∓(k) allow for analytic continuations into C∓. The relation (2.26) can be

explicitly translated into

(a±)†(k∗) = c∓(k) , b±(k∗) =−λ(d∓)†(k) , (2.28)

with the functions defined in the appropriate domains.

Remark 2.1.2 For the scattering system (2.24), there are two equivalent sets: {a±,b±}
and {c±,d±}, known as the minimal set of scattering data [62], which are available

to reconstruct R(x, t) in the inverse part of the ISM. Without loss of generality, we

choose to work with {a±,b±} in the rest of this thesis.

A crucial observation in the development of the ISM, originated from the work

of Manakov [87] and Zakharov and Shabat [124], is that the scattering system (2.24)

can be formulated as an RH problem and this RH problem is equivalent to the ISM

associated with the Lax pair (2.4, 2.5). We state the following propositions which

are well-known in the soliton theory. Proofs can be found, e.g. , in [47, 54].

Proposition 2.1.3 The scattering system defined in (2.24) can be rewritten as the

following RH problem

J+(x, t,k)J−(x, t,k) = e−iφ(x,t,k)Σ3 J(k)eiφ(x,t,k)Σ3 , k ∈ R , (2.29)

and

lim
|k|→∞

J±(x, t,k)→ In+1 . (2.30)

Here J±(x, t,k) are analytic and bounded matrix-valued functions in C±, defined as

J+(x, t,k) =

(
a+(k) 0

0 c+(k)

)
(X+,Y +)−1(x, t,k) , J−(x, t,k) = (Y−,X−)(x, t,k) ,

(2.31)
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and J(k) is the jump matrix defined as

J(k) =

(
In b−(k)

d+(k) 1

)
, k ∈ R . (2.32)

In particular, we have

detJ+(x, t,k) = deta+(k) , detJ−(x, t,k) = a−(k) . (2.33)

Proposition 2.1.4 Assume that the above RH problem (2.29, 2.30) has unique so-

lutions J±(x, t,k) which are sufficiently smooth for all (x, t) ∈ R. Then J+(x, t,k)

(resp. J−(x, t,k) ) satisfies the Lax pair (2.13, 2.14) (resp. (2.4, 2.5)). In particu-

lar, J+(x, t,k) gives a uniquely defined Q(x, t) in the form

Q(x, t) = lim
|k|→∞

−ik[Σ3,J+(x, t,k)] . (2.34)

Eq. (2.34) is called reconstruction formula.

Thanks to Prop. 2.1.3 and 2.1.4, the original problem of solving the vector NLS

equation is now translated into the matrix RH problem (2.29, 2.30). Therefore, the

ISM mainly consists of the following two steps: 1) to formulate an RH problem via

the scattering system (2.24); 2) to solve the RH problem that will lead to the solu-

tions of (2.2) via the reconstruction formula (2.34). Although in general one cannot

solve a matrix RH problem explicitly, a powerful method exists inside such formal-

ism for constructing its singular solutions which will correspond to soliton solutions.

This method is precisely the dressing transformations that will be introduced in the

following section.

2.2 Dressing transformations

In the context of soliton theory, dressing transformations were first introduced by

Zakharov and Shabat in [124, 125]. Here, we present the dressing transformations

and their connections to an RH problem in a general context. The application

to the vector NLS case, which consists of a special reduction, will be treated in

the next section. The main result lies in Theorem 2.2.7 which in fact reflects the

Bianchi permutativity property. A system of notations, that captures this property

is accordingly introduced. We refer readers to [16] for details and in particular for

the proofs of Prop. 2.2.3 and 2.2.4. The study of matrix RH problems in a more

general context is contained in [59, 1].
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Consider the following matrix RH problem with canonical normalizations:

J +(k)J−(k) = J (k) , k ∈ R , lim
|k|→∞

J±(k)→ I , (2.35)

where J (k) is the jump matrix satisfying detJ (k) 6= 0 for k ∈ R. The matrix J +(k)

(resp. J−(k)) is analytic in C+ (resp. C−). This problem has unique regular

solutions J±0 (k), and the term ”regular” means that detJ±0 (k) 6= 0 in the appropriate

domain. By contrast, we specify the term ”singular” in our context by the following

definitions.

Definition 2.2.1 A matrix function M(k) is said to be singular at k = k0 if detM(k0) =

0 and if in the neighborhood of k0

M(k) = M0 +(k− k0)M1 + O(k− k0)2 , M−1(k) =
N0

k− k0
+ N1 + O(k− k0) . (2.36)

Definition 2.2.2 An RH problem with zeros or poles at k±j ∈C
±, j = 1, . . . ,N is an

RH problem as defined in (2.35) where J±(k) are singular at k±j , j = 1, . . . ,N.

Given these two definitions, one can prove the following.

Proposition 2.2.3 Fixing the subspaces V j≡ Im J +(k)|k=k+
j

and U j≡ Ker J−(k)|k=k−j
,

j = 1, . . . ,N determines uniquely the solution of the RH problem with zeroes at

k±j ∈ C±.

In general, there is no known closed-form formula to solve a matrix RH problem.

However, once the regular solutions are known, it is possible to construct singular

solutions from them.

Proposition 2.2.4 Let J±(k) be the singular solutions at k±0 ∈ C± with

ImJ +(k)
∣∣
k=k+

0
= V0 , KerJ−(k)

∣∣
k=k−0

= U0 , (2.37)

and let J±0 (k) be the solution of the same RH problem regular at k±0 . Then J±(k)

can be written as

J +(k) = J +
0 (k)

(
I +

k−0 − k+
0

k− k−0
Π0

)
, J−(k) =

(
I +

k+
0 − k−0
k− k+

0
Π0

)
J−0 (k) . (2.38)

Here Π0 is a projector defined as

KerΠ0 =
(
J +

0 (k+
0 )
)−1 V0 , ImΠ0 = J−0 (k−0 )U0 . (2.39)
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The form of singular solutions (2.38) introduces what are called dressing factors

(of degree 1) which transform J±0 (k) regular at k±0 into J±(k) singular at k±0 . This

gives an algorithm to construct singular solutions J±(k) at distinct k±j ∈ C±, j =

1, . . . ,N from regular solutions J±0 (k). Precisely, let k±j ∈ C±, j = 1, . . . ,N and the

corresponding subspaces V j, U j be given, we can use Prop. 2.2.4 repeatedly to

construct J±(k) singular at k±j recursively from J±0 (k) starting from k±1 , k±2 up to

k±N . Consequently, J±(k) can be written as

J +(k) =J +
0 (k)

(
I +

k−1 − k+
1

k− k−1
Π1

)
. . .

(
I +

k−N − k+
N

k− k−N
ΠN

)
, (2.40)

J−(k) =

(
I +

k+
N − k−N
k− k+

N
ΠN

)
. . .

(
I +

k+
1 − k−1
k− k+

1
Π1

)
J−0 (k) , (2.41)

where, for j = 1, . . . ,N

KerΠ j =

(
J +

0 (k+
j )

(
I +

k−1 − k+
1

k+
j − k−1

Π j−1

)
. . .

(
I +

k−j−1− k+
j−1

k+
j − k−j−1

Π1

))−1

V j , (2.42)

ImΠ j =

(
I +

k+
j−1− k−j−1

k−j − k+
j−1

Π j−1

)
. . .

(
I +

k+
1 − k−1

k−j − k+
1

Π1

)
J−0 (k−j )U j . (2.43)

Now comes a fundamental observation: in the above construction, one can iterate the

construction of J±(k) by using a different order on the k±j . Let SN be the permutation

group on the set {1, . . . ,N} and let σ ∈ SN . Denote the image of (1, . . . ,N) under σ

by (σ(1), . . . ,σ(N)) and introduce κ
±
j = k±

σ( j). Then, the subspaces corresponding to

κ
±
j are Vσ( j), Uσ( j). Repeating the previous procedure, starting from κ

±
1 up to κ

±
N ,

one gets

J̃ +(k) =J +
0 (k)

(
I +

κ
−
1 −κ

+
1

k−κ
−
1

Π
σ
1

)
. . .

(
I +

κ
−
N −κ

+
N

k−κ
−
N

Π
σ
N

)
, (2.44)

J̃−(k) =

(
I +

κ
+
N −κ

−
N

k−κ
+
N

Π
σ
N

)
. . .

(
I +

κ
+
1 −κ

−
1

k−κ
+
1

Π
σ
1

)
J−0 (k) , (2.45)

where, for j = 1, . . . ,N,

KerΠ
σ
j =

(
J +

0 (κ
+
j )

(
I +

κ
−
1 −κ

+
1

κ
+
j −κ

−
1

Π
σ
j−1

)
. . .

(
I +

κ
−
j−1−κ

+
j−1

κ
+
j −κ

−
j−1

Π
σ
1

))−1

Vσ( j) , (2.46)

ImΠ
σ
j =

(
I +

κ
+
j−1−κ

−
j−1

κ
−
j −κ

+
j−1

Π
σ
j−1

)
. . .

(
I +

κ
+
1 −κ

−
1

κ
−
j −κ

+
1

Π
σ
1

)
J−0 (κ

−
j )Uσ( j) . (2.47)

It can be checked by direct calculation that



2.2. DRESSING TRANSFORMATIONS 19

V j = Im J̃ +(k)
∣∣
k=k+

j
, U j = Ker J̃−(k)

∣∣
k=k−j

, (2.48)

j = 1, . . . ,N, so that Prop. 2.2.3 implies that J̃±(k) = J±(k). In turn, this implies

that the product of dressing factors in (2.44, 2.45) is equal to the product of dressing

factors in (2.40, 2.41). This construction introduces the notion of dressing factors of

degree N which transform J±0 (k) into J±(k) singular at k±j , j = 1, . . . ,N. Prop. 2.2.3

also ensures that a dressing factor of degree N factorizes into N dressing factors

of degree 1 and that the order of the factorization is irrelevant. Note that this

fact actually reflects the Bianchi permutativity property (see Fig. 2.1), as dressing

transformations represent a special type of Darboux-Bäcklund transformations.

J±0

D1

D2

D1,{2}

D2,{1}

J±

Fig. 2.1 : Bianchi diagram for dressing transformations

Remark 2.2.5 It is important to realize that this does not mean that the individual

dressing factors of degree 1 in a dressing factor of degree N commute. Indeed, in

general Πσ
j 6= Πσ( j). The message here is that, in the factorization of a dressing

factor of degree N, the explicit forms of J±(k) are obtained by using the equations

governing the projectors as formulated in (2.46, 2.47), and in particular, the order

of adding the singularities, in general, modifies the forms of the individual dressing

factors. With this in mind, we introduce a notation that will help us to formulate

the dressing factors.

Definition 2.2.6 Given J±0 (k) regular solutions of the RH problem (2.35). Let σ ∈
SN be given and write (σ(1), . . . ,σ(N)) = (i1, . . . , iN). Given k±j and V j, U j, j =

1, . . . ,N, a general dressing factor of degree 1 is defined as, for 1≤ `≤ N,

Di`,{i1...i`−1}(k) = I +
k−i` − k+

i`

k− k−i`
Πi`,{i1...i`−1} (2.49)
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where

KerΠi`,{i1...i`−1} =
[
Di1(k+

i` ) . . .Di`−1,{i1...i`−2})(k+
i` )
]−1(

J +
0 (k+

i` )
)−1

Vi` , (2.50)

ImΠi`,{i1...i`−1} =
[
Di1(k−i` ) . . .Di`−1,{i1...i`−2}(k−i` )

]−1
J−0 (k−i` )Ui` . (2.51)

Finally, the dressing factor of degree N is denoted as D1...N(k).

Note that in the case ` = 1, we denote Di1,{}(k) ≡ Di1(k). The indices in the sub-

script specify the order of adding the singularities, and thus determine the forms of

dressing factors. This convention will be adopted in the rest of the thesis for any

quantity involving sets of indices as subscripts. Along with this definition and the

understanding from the above discussion, we have proved the following.

Theorem 2.2.7 A dressing factor of degree N can be decomposed into N! equivalent

products of N dressing factors of degree 1

D1...N(k) = Di1(k) . . .DiN ,{i1...iN−1}(k) , (2.52)

where (i1, . . . , iN) is an arbitrary permutation of (1, . . . ,N).

2.3 N-soliton solutions

In this section, we consider only the focusing case of the vector NLS equation, which

corresponds to λ =−1 in (2.2), for we are only concerned with soliton solutions.

Coming back to the Prop. 2.1.3 and 2.1.4 in which an RH problem and its

relation to the Lax pair are clearly established, there are two more steps needed

to make dressing transformations fully adapted to the vector NLS equation: 1)

taking account of the (x, t)-dependence; 2) making the reduction, as the vector NLS

equation consists of a special reduction of the ISM [89].

As to 1), dressing transformations are still valid for parameter-dependent RH

problems [16]. Precisely, we work with (x, t)-dependent subspaces V j(x, t), U j(x, t),

j = 1, . . . ,N which are simply related to V j, U j, j = 1, . . . ,N by

V j(x, t) = ψ(x, t,k+
j )V j , U j(x, t) = ψ(x, t,k−j )U j . (2.53)

Here, ψ, known as undressed Lax pair solution, is solution of (2.9) with U , V satis-

fying the zero curvature condition, for the solutions of the RH problem, constructed

by the dressing transformations, obey the auxiliary problems (2.4, 2.5).



2.3. N-SOLITON SOLUTIONS 21

As to 2), consider the RH problem defined in Prop. 2.1.3 with zeros at k j ∈ C±,

j = 1, . . . ,N. Because of (2.28), which is a consequence of the reduction symmetry

(2.11), one can get the following relations concerning the singular points k±j and the

corresponding subspaces U j(x, t), V j(x, t), j = 1, . . . ,N:

k+
j = (k−j )∗ ≡ k j ∈ C+ , V ⊥j (x, t) = U j(x, t) , (2.54)

where V ⊥j represents the orthogonal complement of V j.

Then, by evaluating J±(x, t,k) defined in Prop. 2.1.3 at their singular points i.e.

k j and k∗j according to (2.54), one gets

U j(x, t) = span

{
e−iφ(x,t,k∗j )Σ3

(
β j

−1

)}
, (2.55)

where β j ∈ Cn is a nonzero vector. Here, we adopt the following conventions: fixing

k j ∈C+; choosing the nonzero vector β j ∈Cn as the norming constant5 associated to

k j. Note that Eq. (2.55) implies that the projectors involved in the dressing factors

are rank-one orthogonal projectors, which is consistent with the vector nature of the

underlying system.

Having specified these notions, we come to the construction of an N-soliton solu-

tion of the vector NLS equation. Information concerning soliton solutions lies in the

zeros of det a+(k). This is translated into an RH problem with zeros, via Prop. 2.1.3.

The usual assumption is that det a+(k) has a finite number of simple zeros located in

C+. Denote these points k j ∈C+, j = 1, . . . ,N as presented in (2.54). Consequently,

a−(k) has the same number of simple zeros in C−, located at k∗j . We make a fur-

ther assumption that the field R(x, t) in the vector NLS equation (2.2) belongs to

a certain functional space of exponentially fast decreasing functions6 . Then b+(k)

can be analytically continued up to the strip {k ∈C; 0≤ Imk≤ K} where K controls

the decrease of R(x, t), with K ≥max{Imk j; j = 1, . . . ,N}. This applies also to b−(k),

with b−(k) being analytic in the strip {k ∈C;−K ≤ Imk≤ 0}. This allows us to take

the following definitions:

β j ≡ b−(k∗j) , β j(x, t)≡ β je
−2iφ(x,t,k∗j ) , (2.56)

where the vectors β j are the norming constants as introduced in (2.55). Now the

norming constants β j of the system are associated to the scattering functions b−(k),

5Norming constants are the proportionality coefficients between the bound states of the Jost
solutions, and in general are only defined up to certain normalizations.

6Indeed, the soliton solutions belong to this functional space.
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and the space-time evolution of the former is characterized by β j(x, t) as shown on

the right-hand side of (2.56).

We call {k j,β j}, j = 1, . . . ,N a set of N-soliton scattering data. Therefore, N-

soliton scattering data are obtained by specifying the quantities a+(k) and b−(k) at

the singular points. In the pure soliton system i.e. b±(k) = 0, for k ∈R (also known

as reflectionless conditions), the unique regular solutions of the RH problem (2.29,

2.30) are J±0 (x, t,k) = In+1, which correspond to Q(x, t) = 0. Provided that the N-

soliton scattering data {k j;β j}, j = 1, . . . ,N are given, one can completely determine

singular solutions of the RH problem with zeroes at k±j , j = 1, . . . ,N, thanks to

dressing transformations. The resulting N-soliton solution is obtained by using the

reconstruction formula (2.34).

More precisely, given {k j;β j}, j = 1, . . . ,N, it follows directly from the construc-

tion of dressing factors (see Def. 2.2.6) that a dressing factor of degree 1 reads

Di j,{i1...i j−1}(x, t,k) = In+1 +

(
k∗i j
− ki j

k− k∗i j

)
Πi j,{i1...i j−1}(x, t) , (2.57)

and enjoys the property

D−1
i j,{i1...i j−1}(x, t,k) = D†

i j,{i1...i j−1}(x, t,k∗) . (2.58)

Here the index set (i1, . . . , iN) is the image of σ∈ SN acting on (1, . . . ,N) as introduced

in Def. 2.2.6. The projector Πi j,{i1...i j−1} is defined as

Πi j,{i1...i j−1}(x, t) =
ζi j,{i1...i j−1}ζ

†
i j,{i1...i j−1}(x, t)

ζ
†
i j,{i1...i j−1}ζi j,{i1...i j−1}(x, t)

, (2.59)

where

ζi j,{i1...i j−1}(x, t) = D†
i1...i j−1

(x, t,k j)e−iφ(x,t,k∗j )Σ3

(
βi j

−1

)
. (2.60)

In particular, the reconstruction formula (2.34) turns out to be

Q(x, t) =
N

∑
j=1

i(k j− k∗j)[Σ3,Π j,{1,..., j−1}(x, t)] . (2.61)

An N-soliton solution is thus completely determined by Πi j,{i1...i j−1}, j = 1, . . . ,N.

Using an elegant method introduced in [47], one comes to the following proposition

which gives the N-soliton solutions in a compact form.

Proposition 2.3.1 Consider the pure soliton system, i.e. b±(k) = 0 for k ∈ R.
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Given {k j;β j}, j = 1, . . . ,N, and let β j;` be the `th component of β j. Define the

following (n + 1)× (n + 1) matrix:

M`(x, t) =


M(x, t)


β1;`(x, t)

...

βN;`(x, t)

(
1 · · · 1

)
0

 , (2.62)

where M(x, t) is an n×n matrix of entries Mkl(x, t) defined as

Mkl(x, t) =
β

†
l (x, t)βk(x, t)+ 1

k∗k − kl
. (2.63)

Then, an N-soliton solution of the vector NLS equation (2.2) is of the form

r`(x, t) = 2i
detM`

detM
(x, t) , (2.64)

where r`(x, t) is the `th component of R(x, t) as defined in (2.3).

As an illustration, we construct explicitly a one-soliton solution by taking k0 =
1
2(u0 + iv0), v0 > 0 and β0 as scattering data. Applying Prop. 2.3.1 yields

R(x, t) = p0 v0
e−i(u0x+(u2

0−v2
0)t)

cosh(v0(x + 2u0t−∆x0))
≡ p0q0(x, t) , (2.65)

where

∆x0 =
ln |β0|

v0
, p0 =

β0

|β0|
. (2.66)

The main feature here is that a vector one-soliton is simply a vector p0 times a

scalar one-soliton solution q0(x, t). The unit vector p0 is the polarization of the

soliton, −2u0 its velocity, v0 its amplitude and ∆x0 is the position of the maximum

of the envelope of the soliton at t = 0.

The final step aims at determining the matrix a+(k) in the pure N-soliton case.

This can be done by taking the limits x→±∞ of the dressing factor D1,...,N(x, t,k),

and it turns out that a+(k) is a dressing factor of degree N as well. Precisely, given

{k j;β j}, j = 1, . . . ,N, and let (i1, . . . , iN) be image of σ ∈ SN on (1, . . . ,N). Define a

dressing factor of degree N as

di1...iN (k) = di1(k)di2,{i1}(k) . . .diN ,{i1...iN−1}(k) , (2.67)
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where,

di j,{i1...i j−1}(k) = In +

(
k∗i j
− ki j

k− k∗i j

)
πi j,{i1...i j−1} , (2.68)

πi j,{i1...i j−1} =
ξi j,{i1...i j−1}ξ

†
i j,{i1...i j−1}

ξ
†
i j,{i1...i j−1}ξi j,{i1...i j−1}

, ξi j,{i1...i j−1} = d†
{i1...i j−1}(ki j)βi j . (2.69)

Then, a+(k) is in the form

a+(k) = di1...iN (k) , deta+(k) =
N

∏
j=1

(
k− k j

k− k∗j

)
. (2.70)

The left-hand side of (2.70) correspond to the trace formulae that is well-known in

the scalar NLS case. In contrast, due to the matrix nature of a+(k), it can only be

constructed using both the singular points k j and the associated norming constants

β j. This reveals the complexity of vector solitons’ interactions.

It is useful to introduce the matrix A j defined as

A j

deta+(k j)
′ = lim

k→k j
(k− k j)(a+(k))−1 , deta+(k j)

′
=

d deta+(k)

dk

∣∣∣∣
k=k j

. (2.71)

Indeed, the matrix A j contains the information of the residues of (a+(k))−1 at k j

and comes only from the vector nature of the system. It will appear for instance

when taking the transpose conjugate of the norming constants β j as

β
†
j =−b+(k j)A j . (2.72)

We stress that both the form of a+(k) and the matrix A j will play an important role

in the forthcoming chapters in which soliton behaviors will be investigated in detail.



Chapter 3
The vector NLS equation on the half-line

In this chapter, we study the vector NLS equation on the half-line, namely to restrict

the system to x≥ 0 by adding a boundary at the origin. The main objectives are the

following: 1) to derive integrable boundary conditions; 2) to formulate an ISM in the

presence of such boundaries; 3) to obtain N-soliton solutions on the half-line. These

will lay the foundations for a deeper understanding of interactions of vector solitons

with an integrable boundary, which will be the topic of the forthcoming chapters.

As pointed out in Introduction, soliton models on the half-line have been inves-

tigated by various researchers over the years. Here, we generalize the notions and

methods, developed in [50, 26, 27] for the (scalar) NLS case. First, we use a folding

technique [26], which is based on a Bäcklund transformation, to derive two classes of

boundary conditions. Integrability is argued by constructing an explicit generating

function for the conserved quantities. Then, by extending the system to the full

line [50], a (nonlinear) mirror image method [27] is used to put the ISM into use.

Lastly, we construct the N-solion solutions on the half-line. Again severe complexity

appears due to the vector nature of the system, and such a construction is shown in

Appendix C. Interestingly, a phenomenon of transmission between different modes

of polarization is demonstrated.

These results are reported in [37] and partly in [38]. In addition, in Appendix A,

we use the unified transform method developed by Fokas (see e.g. [54]) to construct

the so-called linearizable boundary conditions for the vector NLS equation on the

half-line. Remarkably, we see that this class of boundary conditions coincides with

the integrable boundary conditions that we derived from the Bäcklund transforma-

tion method. In Appendix B, we provide a justification of the use of the mirror

image method as the correct way to ”build up” the integrable boundaries. To the

best of the authors’ knowledge, this argument is lacking in the literature.

Recall the vector NLS equation as defined in (2.2). The vector NLS equation on
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the half-line is precisely the following initial-boundary value problem:

i
∂R
∂t

+
∂2R
∂x2 −2λRR†R = 0 , x, t ∈ [0,∞) , (3.1)

R(x,0) = R0(x) , R(0, t) = g0(t) , Rx(0, t) = g1(t) . (3.2)

Here, we assume that the functions R0, g0 and g1 live in appropriate functional spaces

so as to ensure that the calculations are meaningful1. In particular, we require that

R decays at infinity.

3.1 Deriving integrable boundary conditions

We use the Bäcklund transformation method introduced in [66, 25, 26]. The idea

lies in exploiting the folding transformation R(x, t)→ R(−x, t) which is a (parity)

symmetry of the NLS equation itself. Contrary to the scalar case [26], here it is

important to study both the x-part and the t-part of the auxiliary problem (Lax

pair).

Consider a Bäcklund matrix L(x, t,k) relating the auxiliary problem (2.4, 2.5)

for Φ to the same auxiliary problem for Φ̃, with the potential Q replaced by a new

potential Q̃, by the equation

Φ̃(x, t,k) = L(x, t,k)Φ(x, t,k) . (3.3)

It is well-known that L, also known as a gauge transformation of the auxiliary prob-

lem, satisfies the following equations:

Lx + ik[Σ3,L] = Q̃L−LQ , (3.4)

Lt + 2ik2[Σ3,L] = Q̃T L−LQt , (3.5)

where Q̃T is the new potential written in terms of Q̃ as QT (2.6). We look for a

solution in the following form:

L(x, t,k) = kIn+1 + A(x, t) , (3.6)

under the symmetry constraint Q̃(x, t) = Q(−x, t). Precisely, we write the matrix A

1For details in the scalar case, see for instance the ”rigorous considerations” section in [55]
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in the natural block form2 (
A1(x, t) A2(x, t)

A3(x, t) A4(x, t)

)
. (3.7)

To solve A(x, t), first, we insert (3.6) in (3.4) which comes from the x-part of the

auxiliary problem. This yields

2iA2(x, t) = R(−x, t)−R(x, t) , (3.8a)

−2iA3(x, t) = λ

(
R†(−x, t)−R†(x, t)

)
, (3.8b)

and

A1x(x, t) = R(−x, t)A3(x, t)−λA2(x, t)R†(x, t) , (3.9a)

A2x(x, t) = R(−x, t)A4(x, t)−A1(x, t)R(x, t) , (3.9b)

A3x(x, t) = λ

[
R†(−x, t)A1(x, t)−A4(x, t)R†(x, t)

]
, (3.9c)

A4x(x, t) = λR†(−x, t)A2(x, t)−A3(x, t)R(x, t) . (3.9d)

It follows from (3.8) that

A3(x, t) = λA†
2(x, t) . (3.10)

Combining (3.8) and (3.9b, 3.9c), and fixing x = 0, one gets the following boundary

conditions:

Rx(0, t) =− i(A4(0, t)In−A1(0, t))R(0, t) , (3.11a)

R†
x(0, t) =iR†(0, t)(A1(0, t)−A4(0, t)In) . (3.11b)

The compatibility between (3.11a) and (3.11b) is ensured by

A1(0, t)−A4(0, t)In =−(A1(0, t)−A4(0, t)In)† . (3.12)

Defining a matrix H ≡−i(A1(0, t)−A4(0, t)In), Eq. (3.12) imposes H to be a hermitian

matrix. Now, the boundary condition reads

Rx(0, t)+ HR(0, t) = 0 . (3.13)

Note that at this stage, we have boundary conditions that depend on time a pri-

ori. We remove this time dependence by requiring A1(0, t) and A4(0, t) to be time-

2It means that A1(x, t) is an n×n matrix and A4(x, t) a scalar quantity.
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independent. Thus, H is time independent. It is apparent that Eq. (3.13) is

the vector generalization of the usual Robin boundary condition in the scalar case

(rx(0, t)+αr(0, t) = 0, α ∈R). The fact that H is hermitian is the analog of α being

real. Let us denote A4(0) = β. What we have obtained so far reads

L(0,k) = kIn+1 +

(
βIn + iH 0

0 β

)
, (3.14)

with L independent of t at x = 0.

The hermiticity property of H guarantees that H is diagonalizable by a unitary

matrix V

H = V DV †, (3.15)

where D = diag{d1, . . . ,dn} with d j ∈ R, j = 1, . . . ,n. Note that the transformation

R(x, t) 7→V †R(x, t) = R′(x, t) leaves the vector NLS equation invariant and in the new

basis the boundary condition takes the simple, diagonal form

R′x(0, t)+ DR′(0, t) = 0 . (3.16)

This shows that, in the presence of a boundary described by H, the vector NLS

equation has a preferred polarization basis determined by the boundary. In the

following, we work in this basis and drop the ′. Then,

L(0,k) = kIn+1 +

(
βIn + iD 0

0 β

)
. (3.17)

To complete the characterization of L(0,k), we need to use the t-part of the

auxiliary problem. Inserting (3.14) in (3.5), one gets

Q̃T (0,k)L(0,k)−L(0,k)QT (0,k) = 0 . (3.18)

Due to Q̃T (0,k) = Σ3 QT (0,−k)Σ3, this reads

QT (0,−k)Σ3 L(0,k) = Σ3 L(0,k)QT (0,k) . (3.19)
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Combining Eq. (3.16) with (3.19) yields

(2iβIn−D)DR(0, t) = 0 , (3.20a)

R†(0, t)(2iβIn−D)D = 0 , (3.20b)

RR†(0, t)D = DRR†(0, t) . (3.20c)

The compatibility of the first two equations imposes that β is purely imaginary:

β≡ iα, α ∈R, unless R(0, t) = 0—this Dirichlet boundary condition for all the com-

ponents is formally obtained when all the d j are infinite. Then, the first equation

shows that either d j = 0 or d j =−2α or R j(0, t) = 0. Finally, the last equation reads

d jR jR∗k(0, t) = dkR jR∗k(0, t) , j,k = 1, . . . ,n . (3.21)

In general, this means that d j = dk ≡ d, i.e. D = dIn is proportional to the identity

matrix. The particular case R j(0, t) = 0 for some j requires some attention. In

this case, either R jx(0, t) is also zero and d j = d as before, or in general R jx(0, t) 6=
0, meaning that d j = ∞ is different from the common value d and we must have

d j + 2α = 0. So this case occurs when formally α =−∞.

To summarize the results, we have the two following possible boundary condi-

tions: (1) Robin boundary condition

Rx(0, t)−2αR(0, t) = 0 , α ∈ R ; (3.22)

(2) a mixture of Neumann and Dirichlet boundary conditions

R j(0, t) = 0 , j ∈M , (3.23a)

Rkx(0, t) = 0 , k ∈ {1, . . . ,n}\M , (3.23b)

where M is an nonempty subset of {1, . . . ,n}. In fact, either the case that M is empty

or M = {1, . . . ,n} just represents a subcase of the Robin boundary condition (3.22)

as α can vary from 0 to ±∞. In terms of L(0,k), this result is more conveniently

written by considering

L(x, t,k) =
1

k + iα
L(x, t,k) .

Note that L is completely equivalent to L since a Bäcklund matrix is always defined

up to a function of k, but it has the advantage of accommodating the α =−∞ case.
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Then, the previous two cases correspond to

L(0,k) =

(
k−iα
k+iα In

1

)
, or L(0,k) =


σ1

. . .

σn

1

 , (3.24)

where σ j =−1, j ∈M and σ j = 1, j ∈ {1, . . . ,n}\M, M being an nonempty subset of

{1, . . . ,n}. The sign + (resp. −) of σ j corresponds to R jx(0, t) = 0 (resp. R j(0, t) = 0).

Remark 3.1.1 Eq. (3.19) is precisely the relation that is imposed in the unified

transform method to obtain the linearizable boundary conditions (with the identi-

fication Σ3 L(0,k) ≡ N(k) (A.38) as presented in Appendix A). Thus, the class of

linearizable boundary conditions in Fokas’ language is directly connected, in our

context, to the boundary conditions (3.22) and (3.23) via a special Bäcklund trans-

formation.

Having derived these boundary conditions, we now move on to clarify the follow-

ing argument. Although the system that we are considering is restricted to x ≥ 0,

both the fields Q(x, t) and Q̃(x, t) are actually living on the full line. Provided that

Q̃(x, t) = Q(−x, t), the boundary is ”astutely”built up at x = 0 by the presence of both

Q(x, t) and Q̃(x, t), which are related by the Bäcklund matrix L. As shown in the

previous chapter, such a system can be characterized by the scattering system (2.24)

with the appearance of the matrix S(k) relating Jost solutions. Let B(k)≡ Σ3 L(0,k)

where L(0,k) is defined in (3.24), then S(k) satisfies the following relation:

W S†(k∗)W−1 = B(k)S(−k)B(−k) , (3.25)

where W is defined in (2.12). The proof of this relation is establish in Appendix B.

Remark 3.1.2 The proof of the relation (3.25) lies in the fact that L(0,k) can be

regarded as a dressing factor of degree 1 with singular points ±iα, α∈R. Physically,

such dressing factor represents a static soliton located at x = 0 with amplitude pro-

portional to α. Therefore, our system on the half-line in the presence of the boundary

condition (3.22) or (3.23) can be nicely interpreted as a picture of two fields R(x)

and R̃(x) (R̃(x) = R(−x)) living on the full line, plus a static soliton located at the

origin with the amplitude controlled by the real parameter α. Restricting x ≥ 0 by

neglecting the part of x < 0 gives an exact description of a half-line system. The

boundary effect precisely comes from the presence of the static soliton.
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3.2 Check of integrability

Before proceeding to implement the ISM for the vector NLS equation on the half-line,

we comment in this section the use of the term ”integrable boundary conditions”.

The fact that our boundary conditions is derived from a Bäcklund transformation

ensures the existence of an infinite number of conserved quantities. This is what

we mean by integrability in our context. In the following proposition, we construct

explicitly a generating function of the conserved quantities.

Proposition 3.2.1 A generating function for the conserved quantities of the vector

NLS with integrable boundary conditions is given by

i(I(k)− I†(k∗)) , (3.26)

where

I(k) = tr

[∫
∞

0
[R(x, t)(Γ(x, t,k)−Γ(x, t,−k))] dx

]
, (3.27)

and Γ(x, t,k) satisfies the following Ricatti equation:

Γx = 2ikΓ + λR†−ΓRΓ . (3.28)

Proof: The proof follows the idea presented in [36], and is adapted to the present

vector case with a boundary. Recall that we consider two copies of the auxiliary

problem (2.4, 2.5) related by (3.3). Define Γ(x, t,k) = Φ21Φ
−1
11 (x, t,k) and Γ̃(x, t,k) =

Φ̃21Φ̃
−1
11 (x, t,k), where the subscript indices indicate the entries of the 2× 2 block

matrix of natural form, i.e. Φ11 is an n×n matrix whilst Φ21 a 1×n (row) vector.

Then, (2.4) yields (3.28) for Γ and the same equation for Γ̃ with R replaced by R̃.

Also, we can write

Φ11xΦ
−1
11 = RΓ , Φ11tΦ

−1
11 = QT 11 + QT 12Γ , (3.29)

so using (lnΦ)xt = (lnΦ)tx we get (RΓ)t = (QT 11 +QT 12Γ)x where QTi j are the appro-

priate blocks of QT . A similar relation holds for Γ̃. Next, from (3.3) we have

Φ̃11t =[(L11 + L12Γ)Φ11]t

=[(L11 + L12Γ)t +(L11 + L12Γ)(QT 11 + QT 12Γ)] (L11 + L12Γ)−1
Φ̃11 , (3.30)
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which is used to compare with Φ̃11t = (Q̃T 11 + Q̃T 12Γ̃) to get

tr(Q̃T 11 + Q̃T 12Γ̃) = tr(QT 11 + QT 12Γ)+ tr ln(L11 + L12Γ)t . (3.31)

Swapping the roles of Φ and Φ̃ and introducing L̃ = L−1 we can also obtain

tr(QT 11 + QT 12Γ) = tr(Q̃T 11 + Q̃T 12Γ̃)+ tr ln(L̃11 + L̃12Γ̃)t . (3.32)

This allows us to obtain a more symmetric form of the final result. Putting every-

thing together, we get the general result

∂ttr

[∫ 0

−∞

R̃Γ̃(x, t,k)dx +
∫

∞

0
RΓ(x, t,k)dx

]
=

1
2

∂ttr
[
ln(L11(0,k)+ L12(0,k)Γ(0, t,k))− ln

(
L̃11(0,k)+ L̃12(0,k)Γ̃(0, t,k)

)]
(3.33)

Now, for the problem with boundary, note that under the reduction R̃(x, t) = R(−x, t),

we have

Γ̃(x, t,k) =−Γ(−x, t,−k) , and L̃(x, t,k) =
1

k2 + α2 Σ3L(−x, t,−k)Σ3 . (3.34)

Finally, at x = 0, L(0,k) does not depend on t for the class of boundary conditions

we have derived and L12(0,k) = 0, so that the right-hand side in (3.33) vanishes.

Therefore, we have shown

∂tI(k) = 0 . (3.35)

The special form (3.26) is used to get real conserved quantities.

In practice, the conserved quantities are determined recursively by inserting the

following expansion

Γ(x, t,k) =
∞

∑
n=1

Γn(x, t)
(2ik)n , (3.36)

into the Ricatti equation to obtain

Γ1 =−λR† , Γn+1 = Γnx +
n−1

∑
k=1

ΓkRΓn−k , n≥ 1 . (3.37)
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As expected from the presence of the boundary, we see that the conserved quantities

corresponding to even powers of 1/k do not appear. In particular, the momentum

is not conserved.

3.3 Mirror image construction

Following the arguments of Remark 3.1.2, we turn now to use the formalism of the

ISM on the line to describe a half-line problem. It can be done by introducing the

following extended potential [50, 27]:

P(x, t,k) = θ(x)Q(x, t)+ θ(−x)B(k)Q(−x, t)B(−k) , (3.38)

where θ is the Heaviside function—θ(x) = 1 for x≥ 0 and θ(x) = 0 for x < 0—and

B(k)≡

(
B(k) 0

0 −1

)
= Σ3 L(0,k) . (3.39)

From the form of L(0,k) defined in (3.24), the matrix B(k) is in either of the forms

B(k) =
k− iα
k + iα

I , α ∈ R , or B(k) =


σ1

. . .

σn

 , (3.40)

where σ j =−1, j ∈M and σ j = 1, j ∈ {1, ...,n}\M. It satisfies

B†(k∗)B(k) = In = B(−k)B(k) , k ∈ C . (3.41)

We call the matrix B(k) boundary matrix, for it will be used below in the ISM scheme

to represent either the Robin boundary condition (3.22) or the mixed Neumann and

Dirichlet boundary condition (3.23) that we deduced previously. Now, we state the

following proposition which justifies the use of P as an accurate way to describe the

half-line problem we are considering.

Proposition 3.3.1 Let P be the potential defined in (3.38), and perform the ISM for

P. Then the restriction of the solutions for x≥ 0 are solutions of the half-line system

(3.1, 3.2) in the presence of either of the boundary conditions (3.22) or (3.23).

Proof: Half of the proof has already been established following arguments of Sec. 3.1.

Precisely, in light of the ”picture”depicted in Remark 3.1.2, in the ISM scheme, what

we only need to access is that the extended potential P gives the same symmetry
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relation as (3.25). Indeed, such relation exercises a constraint to the scattering data

which are used to reconstruct soliton solutions the half-line system.

It follows from the form of P(x, t,k) and B(k) that

P(−x, t,−k) =−B(−k)P(x, t,k)B(k) . (3.42)

Recall the Jost solutions X(x, t,k) and Y (x, t,k) defined in (2.15) and (2.16) respec-

tively. Using Eq. (3.42), we obtain that Y (x, t,k) and B(k)X(−x, t,−k)B(−k) satisfy

the same Volterra integral equation. Noting that they have the same asymptotic

behaviors as x→ ∞, one gets

Y (x, t,k) = B(k)X(−x, t,−k)B(−k) . (3.43)

From this relation together with Eq. (2.24) and (2.26), we come to

S−1(k) = WS†(k∗)W−1 = B(k)S(−k)B(−k) , (3.44)

which is the same relation as given in (3.25). The fact that both the Bäcklund ma-

trix L and the extended potential P lead to the same relation for the scattering data

ensures the equivalence of these two constructions.

Through the use of the extended potential P, a half-line system is nicely inter-

preted as a full line system with the help of the relation (3.25), which we call mirror

symmetry relation. The boundary condition at x = 0 is precisely represented by the

boundary matrix B(k). The subtle point now is to clarify the effects of this rela-

tion on the scattering data. Since our focus is on soliton solutions, only the soliton

scattering data are considered so that the restriction λ =−1 (corresponding to the

focusing case) is understood. In components, Eq. (3.25) reads

(a+)†(k∗) = B(k)a+(−k)B(−k) , (a−)∗(k∗) = a−(−k) , (3.45)

(b−)†(k∗) =−b+(−k)B(−k) , (b+)†(k∗) =−B(k)b−(−k) . (3.46)

Due to the property B†(k∗) = B(−k), the last two relations are consistent (by the

transpose conjugate). The first relation implies that if k j is a zero of deta+(k) then

−k∗j is also a zero. The same holds true for a−(k). Therefore, we find that the

main observation of [27], that the relevant zeros of deta+(k) to formulate the inverse

problem come in pairs, (k j,−k∗j) is also valid in the vector case. The total number J

of the zeros of a+(k) in C+ is even: J = 2N and there are N zeros in both quadrants

of the upper half k-complex plane.
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Recall the definition of scattering data introduced in Sec. 2.3, a J-soliton solution

can be obtained, provided {kl,βl}, l = 1, . . . ,J where βl is the norming constant

associated to kl. For convenience, the following convention (see Fig 3.1) for kl,

l = 1, . . . ,J as zero of deta+(k) is imposed: let k j, j = 1, . . . ,N be in the first quadrant

of the k-complex plane i.e. Rek j ≥ 0 and Imk j > 0, then the paired zero −k∗j is

labelled as k j+N , i.e.

k j+N =−k∗j , j = 1, . . . ,N . (3.47)

Along with this convention, the following proposition specifies a relation between

the corresponding norming constants.

k jk j+N =−k∗j

k∗jk∗j+N =−k j

Fig. 3.1 : 2N zeros on the k-complex plane with k j+N =−k∗j , j = 1, . . . ,N

Proposition 3.3.2 Consider the pure soliton solution for P (λ = −1, b±(k) = 0)

with the scattering data {kl;βl}, l = 1, . . . ,J where J = 2N. Without loss of generality,

assume that for k j, j = 1, . . . ,N, Rek j ≥ 0 and Imk j > 0, and its paired zero k j+N

is related to k j by Eq. (3.47). Then, the corresponding paired norming constants

(β j,β j+N), j = 1, . . . ,N satisfy the following relation:

β jβ
†
j+N = B(k∗j)A j+N , j = 1, . . . ,N , (3.48)

where the matrix A j+N is defined in Eq. (2.71).

Proof: Taking the forms of the Jost solutions defined in (2.22) and inserting them

into (2.24) and (3.43), letting x = t = 0 for simplicity, one gets

X+(k) =Y−(k)a+(k)+Y +(k)b+(k) , (3.49)

X−(k) =Y +(k)a−(k)+Y−(k)b−(k) , (3.50)
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and (
Y−(k) , Y +(k)

)
= B(k)

(
X+(−k)B(−k) ,−X−(−k)

)
. (3.51)

Evaluating (3.50) and (3.51) at k = k∗j give

X−(k∗j) = Y−(k∗j)b−(k∗j) , X−(k∗j) =−B−1(−k∗j)Y +(−k∗j) . (3.52)

It follows from (3.47) and (3.49) and also the definition of the matrix A j+N in (2.71)

that

X+(−k∗j)A j+N = Y +(−k∗j)b+(k j+N)A j+N . (3.53)

In addition from (3.51), one has

Y−(k∗j) = B(k∗j)X+(−k∗j)B(−k∗j) . (3.54)

Reminding the definition of the norming constant β j in (2.56) and the relation (2.72)

that is: β
†
j+N = −b+(k j+N)A j+N , then the compatibility of (3.52 - 3.54) yields the

relation (3.48). Note that there is another relation in the form

β j+Nβ
†
j = B(−k j)A j , j = 1, . . . ,N , (3.55)

that could be derived by evaluating (3.49 - 3.51) at k = k j and k =−k j. This relation

is compatible (in the sense of transpose conjugate) with (3.48).

The relations (3.47) and (3.48) give a complete characterization of the 2N-soliton

scattering data {kl,βl}, l = 1, . . . ,J, where J = 2N. They are indeed the consequences

of the mirror symmetry relation (3.25). It is worth noting that the appearance of

the matrix A j+N in Eq. (3.48) between the paired norming constants (β j,β j+N),

j = 1, . . . ,N, is a consequence of the vector nature of the system. As defined in

Eq. (2.71) (using dressing transformations), this matrix can be expressed in terms

of all the 2N norming constants i.e. βl, l = 1, . . . ,2N, involved in the system. Hence,

Eq. (3.48) consists of a system of nonlinearly coupled matrix equations that one

has to solve in order to completely characterize the N-soliton solutions on the half-

line. This is technically more challenging in contrast to the scalar case in which

(β j,β j+N) and A j+N are just scalar quantities [27]. In Appendix C, we show an

algorithm to solve recursively (3.47, 3.48), provided that {k j,β j}, j = 1, . . . ,N, are

given. Therefore, N-soliton solutions on the half-line can be obtained.
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3.4 Example of one-soliton reflections

We consider the pure soliton case on the half-line with N = 1, i.e. , one soliton

bounces off the boundary. The scattering data are {k1,k2;β1,β2}, and according to

Prop. 3.3.2 obey

k2 =−k∗1 , β1β
†
2 = B(k∗1)A2 . (3.56)

Here the matrix A2 according to Eq. (2.71) is in the following form:

A2 =

(
k2− k1

k2− k∗1

)
π2,{1}d

−1
1 (k2) , (3.57)

where

d1(k) = In +

(
k∗1− k1

k− k∗1

)
β1 β

†
1

β
†
1 β1

, π2,{1} =
ξ2,{1} ξ

†
2,{1}

ξ
†
2,{1} ξ2,{1}

, ξ2,{1} = d†
1(k2)β2 . (3.58)

Given {k1;β1}, it follows from direct computations (see Appendix C) that the pre-

vious relations determine uniquely {k2;β2} as

k2 =−k∗1 , β2 =
v2

|v2|2
, (3.59)

where

v2 =
k2− k∗1
k2− k1

B†(k1)β1 . (3.60)

Therefore, a one-soliton system on the half-line can be solved using the reconstruc-

tion formula (2.34) for the two-soliton scattering data {k1,k2;β1,β2}.
In the following, we present some numeric results of a two-component (n = 2)

vector soliton on the half-line. The Robin boundary condition does not bring any-

thing new in the vector case as compared to the scalar case in the sense that in any

polarization basis, each component of R always satisfies a scalar Robin boundary

condition. However, in the mixed Neumann and Dirichlet case, if the polarization

basis is different from the preferred boundary basis i.e. if we restore the unitary V

matrix in (3.15), then an interesting phenomenon of reflection-transmission between

the modes appears: the amplitude of the soliton envelope |r j(x, t)| is different before

and after its interaction with the boundary!

As an example, we take

V =

(
cosθeiζ sinθeiξ

−sinθe−iξ cosθe−iζ

)
, (3.61)
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with θ,ξ,ζ ∈ R and consider the boundary matrix BV parametrized by V as

Bθ = V

(
1 0
0 −1

)
V−1 . (3.62)

The parameters θ,ζ,ξ measure the ”deviation” from the natural boundary basis

corresponding to θ = ζ = ξ = 0. Below are plots of |r1| and |r2| in (x, t)-space for

k1 = 1 + i
2 and β1 =

(
2 1

)T
.

First, take θ = ζ = ξ = 0. Fig. 3.2 is a realization of our mirror image construction

as explained in Remark 3.1.2. In Fig 3.2, the real system is defined on the positive

part x ≥ 0 of the axis whilst the negative part x < 0 plays the virtual role which is

in a mirror symmetry to the real system. The boundary conditions are satisfied by

the vector soliton field at x = 0 that are results of both the real and virtual systems.

In Fig. 3.3, by restricting Fig. 3.2 to x ≥ 0, we can see that, as expected, the

first mode satisfies a Neumann boundary condition while the second mode satisfies

a Dirichlet boundary condition. These plots are very similar to those of [27] in each

case. Each mode behaves like a scalar solution seeing its own boundary condition.

Fig. 3.2 : A two-soliton system on the line with its scattering data satisfying the mirror
symmetry relations (3.47, 3.48). The mirror symmetry can be clearly seen as the postive
part (x≥ 0) mirrors the negative part (x≤ 0) for both of the components r1 and r2.

Then, for θ = π

6 and ζ = ξ = 0 (see Fig. 3.4), we clearly see that the amplitude

of each mode before and after the interaction with the boundary is different. Both

modes are reflected but part of mode 1 is transmitted to mode 2.

This shows that the boundary acts as some sort of polarization filter. We em-

phasize though that there is no loss in the transmission process in the sense that

the quantity |r1|2 + |r2|2 is indeed a conserved density. This can be checked using

the formalism developed in the next chapter in which both the incoming (t→−∞)

and outgoing (t→ ∞) soliton solutions are explicitly computed. One may also won-

der whether the boundary could be used to control the amplitudes of the modes by

changing the values of the boundary parameters. This is shown in Fig. 3.5, in which
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Fig. 3.3 : One soliton reflection on the half-line by restricting x≥ 0: the first component of
the soliton on the boundary satisfies Neumann boundary condition, the second component
satisfies Dirichlet boundary condition.

Fig. 3.4 : One soliton reflection on the half-line with θ = π

6 , ζ = ξ = 0: the outgoing mode
of the first component of the soliton has a smaller amplitude than the incoming one, while
for the second component, part of the first mode has been transmitted to the outgoing
mode.

we keep k1 = 1 + i
2 and β1 =

(
2 1

)T
and vary θ from 0 to π

2 by fixing ζ = 1.11 and

ξ = 0.

In our example, we see that the second mode (in blue) can be made vanishingly

small for θ ≈ 1.15. However, the total outgoing amplitude is constant (black line)

and is equal to the total incoming amplitude as expected. This feature is shown in

Fig. 3.6.
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Fig. 3.5 : Amplitudes of the soliton frame as functions of θ in the reference of the
maximal amplitude. The red line is the incoming |r1| amplitude. The blue line is incoming
|r2|. Dashed curves are the corresponding outgoing amplitudes. The black line is the total
amplitude |r1|2 + |r2|2.

Fig. 3.6 : One soliton reflection on the half-line with θ ≈ 1.15, ζ = 1.11 and ξ = 0: the
first component of the soliton is maximally enhanced after interacting with the boundary,
while the second component becomes vanishingly small.



Chapter 4
Factorization of soliton-soliton and

soliton-boundary interactions

Factorization property is at the heart of understanding integrable system, and it is

widely believed that integrability reveals factorization, and vice versa (see e.g. [126]

for the factorization involving in quantum integrable theories). In the context of

soliton models, however, the factorization of a multi-component solitons’ interaction

was fully clarified only recently in [63, 64, 35] for the matrix KdV equation and in

[111, 9] for the vector NLS equation, despite the fact that the ISM for the multi-

component soliton models has been well developed since the early work by Manakov

[87]. As mentioned in the Introduction, such factorization is understood by virtue

of Yang-Baxter maps that are solutions of the set-theoretical Yang-Baxter equation.

In this chapter we study the behaviors of the vector NLS soltions both on the

line and on the half-line, in order to track the factorization of both the soliton-

soliton and soliton-boundary interactions. By considering only soliton solutions, the

focusing case of the vector NLS equation (λ =−1 in Eq. (2.2)) is understood. First,

we discuss the factorization of an N-soliton system. This is followed by representing

soliton-soliton interactions as Yang-Baxter maps as pointed out in [111, 64, 9]. In

addition, in the previous chapter we have completely characterized the vector NLS

solitons on the half-line with an integrable boundary. This strongly suggests that

the factorization property is underlying the half-line soliton system as well. Indeed,

following our (mirror image) construction (see Remark 3.1.2), a soliton-boundary

interaction can be ”unsurprisingly” described as a map, which together with the

Yang-Baxter maps, satisfy the set-theorectical reflection equation that we briefly

introduced in Introduction. These topics comprise the content of the second section

in this chapter. Note that these results are reported in [38].



4.1. FACTORIZATION OF N-SOLITON INTERACTIONS 42

4.1 Factorization of N-soliton interactions

Collecting results of Chapter 2, we are ready here to analyze the factorization of the

interactions of vector solitons. This question has already been addressed in [111, 9]

through two different angles: in [111], such factorization is shown by means of an

involved direct computation from the N-soliton solution; in [9], two-soliton collisions

are characterized by means of a Yang-Baxter map [113]. However, we stress that our

approach differs from [111, 9] in a number of important respects. Indeed, dressing

transformations and, in particular, Theorem 2.2.7 are used in our case to extract

directly soliton interactions from an N-soliton configuration. Such interactions can

be formulated as Yang-Baxter maps and the factorization can be seen as an ”a

priori” consequence of the N-soliton construction itself. This is in contrast with

[9] in which the Yang-Baxter map was only established from a two-soliton solution

and the factorization was then discussed based on the Yang-Baxter property. The

alternative approach of [111] took the N-soliton configuration into account, but the

discussions about factorization can be only seen as ”a posteriori” checks that the

aymptotic N-soliton solutions as t→±∞ obtained with the ISM are consistent.

To make the discussion more concrete, recall the general form of a one-soliton so-

lution as characterized in (2.65). Now, consider the N-soliton solution corresponding

to

k j =
1
2

(u j + iv j) , v j > 0 , j = 1, . . . ,N , (4.1)

with the associated norming constants β j. Let w j ≡−2u j representing the jth soli-

ton, then the following proposition shows that as t→±∞, an N-soliton solution looks

like the sum of N one-soliton solutions up to exponentially vanishing terms.

Proposition 4.1.1 Suppose without loss of generality that u1 < u2 < .. . < uN. De-

note Rin(x, t) (resp. Rout(x, t)) the asymptotic solution R(x, t) corresponding to t→−∞

(resp. t→ ∞). Then,

Rin/out(x, t) =
N

∑
j=1

pin/out
j v j

e−i(u jx+(u2
j−v2

j)t)

cosh(v j(x−w jt−∆xin/out
j ))

+ O(e−vw̃|t|) . (4.2)

Here v = min
j

v j, w̃ = min
l 6= j
|wl−w j|, ∆xin/out

j =
ln |βin/out

j |
v j

and pin/out
j =

β
in/out
j

|βin/out
j |

with p

β
in
j =

(
j−1

∏
`=1

k∗j − k`
k∗j − k∗`

)
d†

j+1...N(k j)β j , β
out
j =

(
N

∏
`= j+1

k∗j − k`
k∗j − k∗`

)
d†

1... j−1(k j)β j , (4.3)

where di1...i`(k) are defined in Chapter 2.
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Proof: We follow the idea of the scalar case [47] which is based on the evaluation

of the projectors Π j,{1... j−1}(x, t) as t → ±∞. To get the result, it is enough to

show that R(x, t) approaches the one-soliton solution following the trajectory of a

particular soliton l i.e. x−w`t = constant, and that it vanishes exponentially for all

other directions in the (x, t)-plane. But here in the vector case, Theorem 2.2.7 is

crucial and allows us to write the dressing factor in the following form

D1...N = D1 . . .D`−1,{1...`−2}D`+1,{1...`−1} . . .DN,{1... ˆ̀...N−1}D`,{1... ˆ̀...N} , (4.4)

where the notation {1 . . . ˆ̀. . . j} means that ` is not listed in {1 . . . j}. This means

that D`,{1... ˆ̀...N} is the last dressing factor added. Then, recalling (2.59, 2.60), one

obtains for x−w`t = constant as t→−∞

D1 . . .DN,{1... ˆ̀...N−1}(x, t,k) =

d`+1...N(k) 0

0 ∏
`−1
j=1

(
k−k j
k−k∗j

)+ O(e−vw̃|t|) , (4.5)

whereas for all other directions, the same calculation yields O(e−vw̃|t|). Consequently,

ζ`,{1... ˆ̀...N}(x, t) =

d†
`+1...N(k`) 0

0 ∏
`−1
j=1

(
k∗`−k∗j
k∗`−k j

)e−iφ(x,t,k∗` )Σ3

(
β`

−1

)
+ O(e−vw̃|t|) ,

(4.6)

and the reconstruction formula (2.61) implies

Q(x, t) = i(k`− k∗` )

Σ3,
ζ`,{1... ˆ̀...N}ζ

†
`,{1... ˆ̀...N}(x, t)

ζ
†
`,{1... ˆ̀...N}ζ`,{1... ˆ̀...N}(x, t)

 . (4.7)

Direct calculation then gives for x−w`t = constant as t→−∞

R(x, t) = pin
` v`

e−i(u`x+(u2
`−v2

` )t)

cosh(v`(x−w`t−∆xin
` ))

+ O(e−vw̃|t|) , (4.8)

with the various parameters being defined in the proposition. The same technique

can be applied as t→ ∞ to obtain Rout(x, t).

In Prop. 4.1.1, the quantity ∆xout
j −∆xin

j represents the total position shift incurred

by soliton j through its collisions with the other solitons. The unit vector pin/out
j

represents the asymptotic polarization vector of soliton j before and after all its

collisions with the other solitons. These quantities are independent of the order of

soliton collisions, and this fact is indeed the factorization property.
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Remark 4.1.2 The order u1 < · · · < uN means that the relative velocity w j−w j+1

of two consecutive solitons is always positive. Consequently, as t→−∞, the solitons

are distributed along the x-axis in the order 1,2, . . . ,N. The picture is reversed as

t→ ∞. The relative positions of the solitons are therefore completely determined as

t→±∞.

Remark 4.1.3 Using Theorem 2.2.7, we could have performed the proof analogously

but choosing any permutation placing i` at position N hence giving

Di1 . . .Di`−1,{i1...i`−2}Di`,{i1...i`−1} . . .DiN−1,{i1...iN−2}Di`,{i1...iN−1}

instead of (4.4). This corresponds to the possibility that the soliton collisions can

occur in a different order since we do not know their relative positions at an arbitrary

time t. However, the final result for β
in/out
j would be the same. This is the essence

of the factorization property. It turns out that this can be made precise by assigning

an intermediate time polarization vector to each soliton and by considering the effect

of a two-soliton collision within an N-soliton solution on the assigned polarization

vectors. The map between the polarization vectors before and after the two-soliton

collision is a Yang-Baxter map satisfying the set-theoretical Yang-Baxter equation.

The mathematical translation of the factorization property of collisions is therefore

an associativity property of the operation on polarization vectors given by the Yang-

Baxter map.

To complete the argument and finish the proof of the claims in the previous

remarks, we define the following intermediate time polarization vectors. Let

γi j,{i j+1...iN} =

(
i j−1

∏
`=i1

k∗i j
− k`

k∗i j
− k∗`

)
d†

i j+1...iN (ki j)βi j , , (4.9)

and

pi j,{i j+1...iN} =
γi j,{i j+1...iN}

|γi j,{i j+1...iN}|
. (4.10)

So in particular, pin
j = p j,{ j+1...N} and pout

j = p j,{1... j−1} and they can be pictorially

represented as

t→−∞

t→ ∞

p1,{2...N} p j,{ j+1...N} pNpl,{l+1...N}.. . . .. . .

.. . . .. . .pN,{1...N−1} pl,{1...l−1} p1p j,{1... j−1}

N-soliton collision

x
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We can now formulate the following important lemma.

Lemma 4.1.4 Choose k j and kl and assume u j < ul. Write for convenience iρ =

i1 . . . iq for some q ∈ {1, . . . ,N} such that j and l are not in {i1, . . . , iq}. Then

pl,{ j iρ} = Ξ
−1
l j

(kl− k∗j
kl− k j

)(
In +

(k j− k∗j
kl− k j

)
p j,{l iρ}(p j,{l iρ})

†
)

pl,{iρ} , (4.11)

p j,{iρ} = Ξ
−1
l j

(
k∗j − k∗l
k∗j − k∗l

)(
In +

(
k∗j − kl

k∗j − k∗l

)
pl,{iρ}(pl,{iρ})

†

)
p j,{l iρ} , (4.12)

where

Ξ
2
l j =

∣∣∣∣∣
(

k∗l − k j

k∗l − k∗j

)∣∣∣∣∣
2(

1 +

(
(k∗j − k j)(kl− k∗l )

|kl− k j|2

)
|p jl,{iρ}|

2
)
, p jl,{iρ} = p†

l,{iρ}p j{l,iρ} .

(4.13)

Proof: From (4.9), we have

γ j,{iρ} = ∏

(
k∗j − kp

k∗j − k∗p

)
p∈{1...N}\{ j,iρ}

d†
iρ(k j)β j , γ j,{l iρ} = ∏

(
k∗j − kp

k∗j − k∗p

)
p∈{1...N}\{ j,l,iρ}

d†
l iρ(k j)β j , (4.14)

γl,{iρ} = ∏

(
k∗l − kp

k∗l − k∗p

)
p∈{1...N}\{l,iρ}

d†
iρ(kl)βl , γl,{ j iρ} = ∏

(
k∗l − kp

k∗l − k∗p

)
p∈{1...N}\{l, j,iρ}

d†
j iρ(kl)βl . (4.15)

The relation between d†
iρ and d†

jiρ implies that

γ j,{l iρ} =

(
k∗j − k∗l
k∗j − kl

)(
In +

(
kl− k∗l
k∗j − kl

)
pl,{iρ}p

†
l,{iρ}

)
γ j,{iρ} , (4.16)

γl,{ j iρ} =

(k∗l − k∗j
k∗l − k j

)(
In +

(k j− k∗j
k∗l − k j

)
p j,{iρ}p

†
j,{iρ}

)
γl,{iρ} . (4.17)

Introduce

Ξl j =
|γ j,{iρ}|
|γ j,{l iρ}|

. (4.18)

Inserting this into (4.16, 4.17) yields (4.11, 4.12) by direct calculations.

Remark 4.1.5 The relations defined in Lemma 4.1.4 have a natural interpretation

as an intermediate time pairwise collision between soliton j and soliton l. Since

w j > wl (u j < ul), after a certain number of collisions with other solitons (related to



4.1. FACTORIZATION OF N-SOLITON INTERACTIONS 46

the set {iρ}), soliton j with polarization p j,{liρ} overtakes soliton l with polarization

pl,{iρ} and acquires polarization p j,{iρ} while soliton l has then polarization pl,{ jiρ}.

Pictorially, this can be represented as

p j,{l iρ}

pl,{ j iρ}

pl,{iρ}

p j,{iρ}

x

t

We complete the discussion by rewriting the relations in Lemma 4.1.4 in terms of

the following map acting on CPn−1×CPn−1 onto itself (so that the normalizations

in (4.11), (4.12) are irrelevant)

R (k1,k2) : (p(i)
1 ,p(i)

2 ) 7→ (p(ii)
1 ,p(ii)

2 ) , (4.19)

p(ii)
1 =

(
In +

(
k∗2− k2

k∗1− k∗2

)
p(i)

2 (p(i)
2 )†

(p(i)
2 )†p(i)

2

)
p(i)

1 , (4.20)

p(ii)
2 =

(
In +

(
k1− k∗1
k2− k1

)
p(i)

1 (p(i)
1 )†

(p(i)
1 )†p(i)

1

)
p(i)

2 . (4.21)

Then, one finds that the map R (k1,k2) is a reversible (parametric) Yang-Baxter map

[113] i.e. it satisfies

R12(k1,k2)R13(k1,k3)R23(k2,k3) = R23(k2,k3)R13(k1,k3)R12(k1,k2) , (4.22)

and

R21(k2,k1)R (k1,k2) = Id . (4.23)

The rewriting of relations between polarization vectors as a Yang-Baxter map is

the basis of the argument in [9]. However, we obtained the Yang-Baxter maps in

complete generality for arbitrary polarization vectors within a full N-soliton solution

and not just from the two-soliton solution. This is similar in spirit to the approach

by Tsuchida in [111] but again with the importance difference that here, this was

made possible by our a priori derivation of Theorem 2.2.7 about dressing factors,
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instead of an a posteriori derivation from the explicit N-soliton solution. We then

recover the following result originally formulated in [111]

Theorem 4.1.6 An N-soliton collision in the Manakov model can be factorized into

a nonlinear superposition of

(
N

2

)
pairwise collisions in arbitary order.

4.2 Factorization of N-soliton reflections

We are now ready to discuss the factorization of an N-soliton reflection on the half-

line using the arguments of the previous section. Recall our construction of N-soliton

reflections: an N-soliton solution on the half-line can be obtained as the restriction

x ≥ 0 of a 2N-soliton solution of the vector NLS equation on the full line provided

that the norming constants β j and the singular points k j obey the mirror symmetry

relations (3.47, 3.48) depending on the boundary matrix B(k) defined in (3.40, 3.41).

To fix ideas, consider k j = 1
2(u j + iv j), v j > 0, j = 1, . . . ,2N and assume that

u j > 0 , j = 1, . . . ,N and u1 < u2 < · · ·< uN . (4.24)

This corresponds to the situation where solitons 1 to N are the real solitons (on

x ≥ 0) and the solitons N + 1 to 2N are the mirror solitons (on x < 0) as t →−∞.

The real solitons have negative velocities so they evolve towards the boundary where

they meet their ”mirrored” solitons which then become the real solitons. The net

result when restricted to x ≥ 0 is that N solitons interact with the boundary and

bounce back. This looks like

2N , 2N−1 , . . . ,N + 1
∣∣∣1 , 2 , . . . N , t→−∞ ,

N , N−1 , . . . ,1
∣∣∣N + 1 , N + 2 , . . . 2N , t→ ∞ ,

where the vertical bar represents the boundary.

Proposition 4.2.1 Consider 2N polarization vectors as defined in (4.9, 4.10). Let

{i1 . . . iN} be a permutation of {1 . . .N} and {ki j ,ki j+N ;βi j ,βi j+N} j∈{1...N} be the paired

scattering data satisfying the following mirror symmetry relations:

ki j+N =−k∗i j
, βi jβ

†
i j+N = B(k∗i j

)Ai j+N . (4.25)

Then the following relations hold

pi j+N,{i1...iN i1+N...i j−1+N} = B(ki j)pi j,{i j+1...iN} , (4.26)
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with the n×n matrix function B(k) defined as

B(k) =

(
(k− iα) |k + iα|
|k− iα|(k + iα)

)
In , α ∈ R , or B(k) =


σ1

. . .

σn

 , (4.27)

where σp = 1, p ∈M and σq =−1, q ∈ {1 . . .n}\M with M being an nonempty subset

of {1, . . . ,n}. In particular,

p j+N,{1...N} = B(k j)p j,{1... ĵ...N} . (4.28)

Here the matrix B(k) is the normalized boundary matrix. The proof is long and

is given in Appendix D. Let us look at these relations from the soliton collision

viewpoint. As t → −∞, the polarization vectors are ordered as follows along the

x-axis

p2N,{1...2N−1} , p2N−1,{1...2N−2} , . . . ,pN+1,{1...N}

∣∣∣p1,{2...N} , p2,{3...N} , . . . pN , t→−∞ .

By applying (4.26), this becomes

B(kN)pN , . . . ,B(k2)p2,{3...N} ,B(k1)p1,{2...N}

∣∣∣p1,{2...N} , p2,{3...N} , . . . pN , t→−∞ .

In fact, (4.26) shows that this picture extends to all intermediate-time polarization

vectors. Therefore, any pairwise collision between soliton il and i j, described by the

Yang-Baxter map R il i j(kil ,ki j), is accompanied by a simultaneous pairwise collision

between solitons i j + N and il + N described by R i j+N il+N(ki j+N ,kil+N), and vice

versa.

Consider now the situation evolving from t →−∞. After a certain number of

pairwise collisions, soliton j is next to the boundary and the pairwise collision that

is to take place is given by R j+N j(k j+N ,k j). The map R j+N j(k j+N ,k j), which means

the interaction between solitons j and its ”mirrored” counterpart j + N, can be nat-

urally interpreted as a map of soliton j interacting with the boundary. After this

interaction, soliton j + N, now playing the role of the reflected soliton j, under-

goes general pairwise collisions of the form R j+N l(k j+N ,kl) with the remaining real

solitons and R q+N j+N(kq+N ,k j+N) for certain solitons q + N that travel faster than

itself.

Having the picture of how the 2N-soliton system evolving in time as discussed

previously, we are now in the position to characterize the soliton-boundary interac-

tions. They are precisely described by the map R j+N j(k j+N ,k j), j = 1, . . . ,N, which,
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according to (4.20, 4.21), is in the form

p(ii)
j+N =

In +

(
k∗j − k j

k∗j+N− k∗j

)
p(i)

j (p(i)
j )†

(p(i)
j )†p(i)

j

p(i)
j+N , (4.29)

p(ii)
j =

In +

(k j+N− k∗j+N

k j− k j+N

) p(i)
j+N(p(i)

j+N)†

(p(i)
j+N)†p(i)

j+N

p(i)
j , (4.30)

where the states (i) and (ii) are respectively the states before and after the interaction

between the solitons j and j +N. For the sake of simplicity, we drop the complicated

soliton-dependence that is represented by a certain subscript {. . .}. Thanks to the

mirror symmetry (4.25) and its consequence (4.28), one has (p(ii)
j+N ,k j+N), that is the

outgoing soliton bouncing off from the boundary, in the form

p(ii)
j+N =

In +

(
k j− k∗j
k j + k∗j

)
p(i)

j (p(i)
j )†

(p(i)
j )†p(i)

j

 B(k)p(i)
j , k j+N =−k∗j . (4.31)

This relation is in terms of k j and p(i)
j , that represent the incoming soliton before

hitting the boundary with the boundary matrix B(k) being involved. This is the

map of soliton-boundary interactions.

We can now define the following map from CPn−1×(C\ iR) to itself that describes

the change of the polarization vector of a soliton when it interacts with the boundary:

K : (p,k) 7→ (p̆,−k∗) , (4.32)

where

p̆ =

(
In +

(
k− k∗

k + k∗

)
pp†

p†p

)
B(k)p . (4.33)

Clearly, this relation is in a similar form to (4.31). Pictorially, this correspond to

p j,{1... ĵ...N}

R j+N j(k j+N ,k j)

p j+N,{1... ĵ...N}

p j+N,{1...N}

p j,{ j+N1... ĵ...N}

→

p j

K j(k j)

p̆ j

We have (p,k) and (p̆,−k∗) representing the soliton before and after interacting with

the boundary respectively. For convenience, we introduce a parametric notation for
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such map: K (k) acting only on vector p. Its action on a multiplet of vectors can be

seen as

K j(k j) : (p1, . . . ,p j, . . . ,pN) 7→ (p1, . . . , p̆ j, . . . ,pN) . (4.34)

We are now ready to state the following theorem that guarantees the factorization

property of the soliton interactions with a boundary by virtue of the set-thoeretical

reflection equation. We call its solutions reflection maps and such object will be the

focus of Part II of this thesis.

Theorem 4.2.2 Consider the Yang-Baxter map R l j(kl,k j) defined in (4.19 - 4.21)

and K j(k j) in (4.32 - 4.34). Then the following (parametric) set theoretical reflection

equation holds as an identity of maps on CPn−1×CPn−1

K 1(k1)R 21(−k∗2,k1)K 2(k2)R12(k1,k2) =

R 21(−k∗2,−k∗1)K 2(k2)R 12(−k∗1,k2)K 1(k1) . (4.35)

We call K (k) (parametric) reflection map. It satisfies the following involutive prop-

erty:

K (−k∗)K (k) = Id . (4.36)

Proof: The involutive property can be found by direct calculation from the definition

of the reflection map. For the set-theoretical reflection equation, we use the set

theoretical Yang-Baxter equation together with our mirror image construction. Take

k j and k j+2 = −k∗j , j = 1,2. Since pairwise collision occurs simultaneously on each

side of the boundary, there are only 2 possible configurations of collisions and they

are identical using the Yang-Baxter equation

R 31(k1,k3)R 32(k3,k2)R 41(k4,k1)R 42(k4,k2)R 43(k4,k3)R 12(k1,k2) =

R 43(k4,k3)R 12(k1,k2)R 42(k4,k2)R 32(k4,k2)R 41(k4,k1)R 31(k3,k1) .

(4.37)

Consider now the following sequence of pairwise collisions

R 31(k3,k1)R 32(k3,k2)R 41(k4,k1)R 42(k4,k2)R 43(k4,k3)R 12(k1,k2)(p(i)
1 ,p(i)

2 ,p(i)
3 ,p(i)

4 )

=R 31(k3,k1)R 32(k3,k2)R 41(k4,k1)R 42(k4,k2)(p(ii)
1 ,p(ii)

2 ,p(ii)
3 ,p(ii)

4 )

=R 31(k3,k1)R 32(k3,k2)R 41(k4,k1)(p(iii)
1 ,p(iii)

2 ,p(iii)
3 ,p(iii)

4 )

=R 31(k3,k1)(p(iv)
1 ,p(iv)

2 ,p(iv)
3 ,p(iv)

4 )

=(p(v)
1 ,p(v)

2 ,p(v)
3 ,p(v)

4 ) , (4.38)



4.2. FACTORIZATION OF N-SOLITON REFLECTIONS 51

with (p(i)
1 ,p(i)

2 ,p(i)
3 ,p(i)

4 ) being the initial polarization vectors and (p(v)
1 ,p(v)

2 ,p(v)
3 ,p(v)

4 )

the final polarization vectors. Similarly, consider the following sequence of soliton-

soliton and soliton-boundary collisions

K 1(k1)R 21(−k∗2,k1)K 2(k2)R12(k1,k2)(q(i)
1 ,q(i)

2 )

=K 1(k1)R 21(−k∗2,k1)K 2(k2)(q(ii)
1 ,q(ii)

2 )

=K 1(k1)R 21(−k∗2,k1)(q(iii)
1 ,q(iii)

2 )

=K 1(k1)(q(iv)
1 ,q(iv)

2 )

=(q(v)
1 ,q(v)

2 ) . (4.39)

We claim now that if (q(i)
1 ,q(i)

2 ) = (p(i)
1 ,p(i)

2 ), then (q(v)
1 ,q(v)

2 ) = (p(v)
3 ,p(v)

4 ). From

(4.38) and (4.39), we have

p(ii)
1 =

(
In +

(
k∗2− k2

k∗1− k∗2

)
p(i)

2 (p(i)
2 )†

(p(i)
2 )†p(i)

2

)
p(i)

1 , (4.40)

q(ii)
1 =

(
In +

(
k∗2− k2

k∗1− k∗2

)
q(i)

2 (q(i)
2 )†

(q(i)
2 )†q(i)

2

)
q(i)

1 , (4.41)

p(iv)
1 =

(
In +

(
k4− k∗4
k1− k4

)
p(iii)

4 (p(iii)
4 )†

(p(iii)
4 )†p(iii)

4

)
p(iii)

1 , (4.42)

q(iv)
1 =

(
In +

(
k2− k∗2
k1 + k∗2

)
q(iii)

2 (q(iii)
2 )†

(q(iii)
2 )†q(iii)

2

)
q(iii)

1 , (4.43)

p(v)
3 =

(
In +

(
k∗1− k1

k∗3− k∗1

)
p(iv)

1 (p(iv)
1 )†

(p(iv)
1 )†p(iv)

1

)
p(iv)

3 , (4.44)

q(v)
1 =

(
In +

(
k1− k∗1
k1 + k∗1

)
q(iv)

1 (q(iv)
1 )†

(q(iv)
1 )†q(iv)

1

)
q(iv)

1 . (4.45)

First, from (4.40, 4.41) we have p(ii)
1 = q(ii)

1 , since p(i)
j = q(i)

j , j = 1,2. Then, we

have p(iii)
1 = p(ii)

1 and q(iii)
1 = q(ii)

1 . Next, recall that k4 =−k∗2 and p(ii)
4 = B(k2)p(ii)

2 , it

follows from the forms of R 42(k4,k2) and K 2(k2) that p(iii)
4 = q(iii)

2 . Then, Eq. (4.42,

4.43) give p(iv)
1 = q(iv)

1 . Finally, since k3 =−k∗1 and p(iv)
3 = B(k1)p(iv)

1 , Eq. (4.44, 4.45)

imply p(v)
3 = q(v)

1 . In the same way, p(v)
4 = q(v)

2 can be checked as well. The same

argument holds for

R 12(k1,k2)R 43(k4,k3)R 42(k4,k2)R 32(k3,k2)R 41(k4,k1)R 13(k1,k3)(p(i)
1 ,p(i)

2 ,p(i)
3 ,p(i)

4 ) ,

(4.46)
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and

R 21(−k∗2,−k∗1)K 2(k2)R 12(−k∗1,k2)K 1(k1)(q(i)
1 ,q(i)

2 ) . (4.47)

Since (4.38) is equal to (4.46) by (4.37), then (4.39) is equal to (4.47). Note

that (4.36) can be proceed in the same way by considering the unitary property

of R12(k1,k2) defined in (4.23) and the proof is complete.

The previous proof can amount to the following diagram:

4

4

3

3

1

1

2

2

→← =

1

1

2

2

4

4

3

3

1

1

2

2

1

1

2

2

Note that the Yang-Baxter map (4.19) is invariant under the diagonal action

of W , the set of n× n unitary matrices, on CPn−1×CPn−1 and could therefore be

defined on CPn−1×CPn−1/W . However, this is not the case in general for the

reflection map defined in (4.32) except when B is proportional to In. In this case,

the reflection map is proportional to In when acting on the polarization vectors and

thus reduces to the identity map in CPn−1. Otherwise, in the right-hand side of

Eq. (4.27) in which B is composed of ±1 on its diagonal, the action of W results

in a different reflection map. This is the mathematical translation of the physical

effects on the polarizations when the so-called boundary basis does not coincide

with the polarization basis (see Sec. 3.4). Therefore, we have found two classes of

reflection maps on CPn−1: the identity map and a family parametrized by W as

K W (k) : p 7→
(

In +

(
k− k∗

k + k∗

)
pp†

p†p

)
W †BW p , (4.48)
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where

B(k) =


σ1

. . .

σn

 , (4.49)

where σp = 1, p∈M and σq =−1, q∈ {1 . . .n}\M with M being an nonempty subset

of {1, . . . ,n}.



Chapter 5
N-soliton solutions on the half-line using

space-evolution method

So far, the previous chapters have completely characterized N-soliton (vector NLS

solitons) behaviors on the half-line with an integrable boundary. In this chapter, we

demonstrate a conceptually novel approach to treat the same problem, namely the

vector NLS equation on the half-line. For purposes that will be clarified following the

presentation, this new formalism is called space-evolution formalism. Apparently, it

is in contrast to the time-evolution process of the ISM. Indeed, it will be argued

that the space-evolution formalism represents an alternative way to formulate the

ISM, and also provides a natural and powerful framework to study boundary value

problems. Before proceeding to the details, it is necessary to address the following

motivations.

• In [41, 21], an inverse scattering transform for an n×n linear differential system

in the form
∂Φ

∂x
= (A(k)+ B(x,k)) Φ , (5.1)

is considered. Here the matrix B(x,k) playing the role of potential is to be

reconstructed from scattering data. This lays the foundation of an inverse

scattering transform for a generic potential. Recall that the traditional ISM is

based on a time-evolution formalism i.e. one first obtains the scattering data

from the analysis of the x-part of the Lax pair, then makes them evolve in

time through the use of the t-part of the Lax pair. It is clear that both parts

of the Lax pair are of the form (5.1), but differ in the potentials. Therefore,

the understanding of [41, 21] suggests that, provided a Lax pair is given, the

traditional ISM that first considers the x-part of the Lax pair is just of con-

ventional purpose! A formalism in which one first obtains the scattering data
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from the t-part of the Lax pair, then makes them evolve in space using the

x-part is technically conceivable.

• As pointed out in Introduction, Fokas (see e.g. [54]) developed a powerful

method to solve partial differential equations with generic boundary conditions.

This method is referred to as the unified transform method, and a number

of soliton models on the half-line have been investigated using this method

[52, 31, 53, 32, 57] (in Appendix A the vector NLS equation on the half-line is

treated using this method). Its main idea lies in the simultaneous treatments

of both the x-part and t-part of the Lax pair. Precisely, it is understood that

the information of boundary is encoded by the scattering data using the t-part

of the Lax pair evaluated at x = 0.

• Following Fokas’ method, it is hard (almost impossible) to address a rather

simple situation such as N-soliton reflection on the half-line. This is mainly

because a half-line problem using such method is strictly restricted to x ≥ 0,

t ≥ 0, whilst an extended potential in the form of Eq. (3.38) allowing x ∈ R
seems to be more appropriate to track the problem. Therefore, this suggests

that an extension of the space-time domain inside the unified transform method

might be necessary.

In light of the previous discussions, we first attempt to introduce the space-evolution

method as an alternative to the usual ISM for the vector NLS equation. Then, it

will be applied to the space-time domain in which x≥ 0, t ∈R using the linearizable

(integrable) boundary conditions at x = 0. It turns out that this leads naturally to

an N-soliton reflection solution and a great simplification at the level of calculation

also takes place. Note that the content of this chapter, to the best of the authors’

knowledge (and surprise), has not been addressed in the literature and is not available

anywhere else.

5.1 Space-evolution formalism of the ISM

Briefly speaking, the space-evolution formalism of the ISM consists of the following

three steps: 1) direct scattering which transforms the soliton equation into a set of

scattering data by using the t-part of the Lax pair; 2) space-evolution which makes

the scattering data evolve in space by using the x-part of the Lax pair; 3) inverse

scattering which reconstructs the solutions of the original soliton equation from the

scattering data.
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Consider the focusing (λ = −1) vector NLS equation defined in (2.1, 2.2). We

assume that the jth component r j(x, t), j = 1, . . . ,n is a smooth enough function

that vanishes to zero as t →±∞ for all x. This requirement characterizes indeed a

vanishing condition as t→±∞ that is relevant to the class of (soliton) solutions we

are considering.

Following the t-part of the Lax pair defined in (2.5), two Jost solutions X(x, t,k)

and Y (x, t,k) as t→±∞ can be defined as

lim
t→∞

eiφ(x,t,k)Σ3 X(x, t,k)e−iφ(x,t,k)Σ3 = In+1 , k ∈ R , (5.2)

lim
t→−∞

eiφ(x,t,k)Σ3 Y (x, t,k)e−iφ(x,t,k)Σ3 = In+1 , k ∈ R , (5.3)

where φ(x, t,k) = kx+2k2t. Taking the Volterra integral representations evaluated at

x = 0, one gets

X(0, t,k) =In+1 +
∫ t

∞

e−2ik2(t−τ)Σ3 (QT X)(0,τ,k)e2ik2(t−τ)Σ3dτ , (5.4)

Y (0, t,k) =In+1 +
∫ t

−∞

e−2ik2(t−τ)Σ3 (QT Y )(0,τ,k) e2ik2(t−τ)Σ3dτ . (5.5)

Since QT depends linearly on k, the domains of analyticity of the block components

of X and Y defined in (5.4, 5.5) can be completely determined by their associated

exponential (see e.g. [54] for similar treatments in the scalar NLS case). Let k ≡
a + ib, then

φ(0, t,k) = 2i(a2−b2)t−4abt . (5.6)

The real part of this term i.e. −4abt suggests that X and Y can be split into the

block-column vector forms of natural size as

X = (X (24),X (13)) , Y = (Y (13),Y (24)) (5.7)

where X (24), Y (24) (resp. X (13), Y (13)) are analytic and bounded in the union of the

quadrants (2) and (4) or equivalently ab < 0 (resp. in the union of the quadrants (1)

and (3) or ab > 0). The fours quadrant of the k-complex plane is defined in Fig. 5.1.

Then according to (2.23), X and Y can be related by a matrix T (k) as

X(0, t,k) = Y (0, t,k)e−2ik2tΣ3 T (k)e2ik2tΣ3 , (5.8)
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(1)

(3)

(2)

(4)

Fig. 5.1 : Four quadrants of the k-complex plane

where T (k) can be written in the following 2×2 block-matrix form:

T (k) =

(
A(24)(k) B(13)(k)

B(24)(k) A(13)(k)

)
. (5.9)

Again the superscripts (24) and (13) are understood to indicate the domain of ana-

lyticity. Its inverse can be written as

T (k)−1 =

(
C(13)(k) D(13)(k)

D(24)(k) C(24)(k)

)
. (5.10)

Due to the traceless property of QT , one has detT (k) = 1, and due to the reduction

symmetry (2.11), one has T (k)−1 = T †(k∗). The latter relation specifies in compo-

nents as

(A(24)(k∗))† = C(13)(k) , (B(24)(k∗))† = D(13)(k) . (5.11)

(A(13)(k∗))† = C(24)(k) , (B(13)(k∗))† = D(24)(k) . (5.12)

Remark 5.1.1 As far as we perform direct scattering using the linear Lax pair

equations (2.4, 2.5), similar steps take place both here and in Sec. 2.1. Apparently,

these two approaches differ only in the use of potentials, as QT is the potential ap-

plied here. According to [41, 21], the use of QT as the potential to perform the direct

scattering, and later the inverse scattering, is technically acceptable. Conceptually,

it switches the role of initial condition to boundary condition, i.e. instead of charac-

terizing initial condition data and making them evolve in time, boundary condition

data now are encoded in T (k), for T (k) is obtained at x = 0, and will evolve in space.
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A priori, the matrix T (k) defined in (5.8) is space-dependent, for both the Jost

solutions X and Y depend on x. Its x-dependence can be obtained by inserting (5.8)

into the x-part of the Lax pair (2.4):

∂T (x,k)

∂x
=−ik[Σ3,T (x,k)] . (5.13)

This relation precisely characterizes the evolution of scattering data in space. In

the following, we absorb the x-dependence of the scattering system (5.8) into an

(x, t)-dependent RH problem.

Define the following RH problem as

G(13) G(24)(x, t,k) = e−iφ(x,t,k)Σ3 G(k)eiφ(x,t,k)Σ3 , k ∈ R∪ iR , (5.14)

where

G(13) =

(
C(13)(k) 0

0 A(13)(k)

)
(Y (13),X (13)) , G(24) = (X (24),Y (24)) , (5.15)

and the jump matrix G(k) is defined as

G(k) =

(
In D(13)(k)

B(13)(k) 1

)
. (5.16)

Here G(13) and G(24) are matrix functions living in (13) and (24) of the k-complex

plane respectively with the jump condition (5.14) being defined on the union of the

real and imaginary axes i.e. R∪ iR. This is in contrast to RH problem defined in

(2.29) for the time-evolution ISM in which the contour only lies on R. One can also

show that

detG(13)(x, t,k) = A(13)(k) , detG(24)(x, t,k) = A(24)(k) . (5.17)

Provided that the G(13)(x, t,k) and G(24)(x, t,k) are solutions of such RH problem

(5.14), G(24)(x, t,k) satisfies the Lax pair (2.4, 2.5). As a result, the reconstruction

formula is written as

Q(x, t) = lim
|k|→∞

ik [Σ3,G(24)(x, t,k)] . (5.18)

Finally, we are ready to collect N-soliton scattering data in order to construct N-

soliton solutions. As usual, this step is under the assumption that detA(24)(k) and



5.2. N-SOLITON REFLECTIONS 59

C(24)(k) have a finite number of simple zeros located in the domain (24). Denote

them κ j, j = 1, . . . ,N, κ j ∈ (24). Consequently, A(13)(k) and detC(13)(k) have the

same number N of simple zeros κ∗j , j = 1, . . . ,N. We make a further assumption

that we restrict ourselves only to soliton solutions, so that the scattering functions

B(13)(k) and D(24)(k) (resp. B(24)(k) and D(13)(k)) can be analytically defined at

κ j, κ j ∈ (24) (resp. κ∗j ∈ (13)). This allows us to specify the norming constant β̄ j

associated to κ j as

β̄ j ≡ D(13)(κ
∗
j) . (5.19)

Consider the pure soliton system i.e.

B(24)(k) = D(24)(k) = B(13)(k) = D(13)(k) = 0 , k ∈ R∪ iR . (5.20)

Given the N-soliton scattering data {κ j; β̄ j}, j = 1, . . . ,N, κ j ∈ (24). Let β̄ j;i be the

i-th component of β̄ j and β̄ j(x, t) ≡ β̄ je
−2iφ(x,t,κ∗j). Then, the N-soliton solutions of

the vector NLS equation defined in x, t ∈ R can be expressed as the same form as

that presented in (2.62 - 2.64), with k j being substituted by κ j and β j substituted by

β̄ j. Therefore, an N-soliton solution using the space-evolution method is obtained.

5.2 N-soliton reflections

Having introduced the space-evolution method, we turn now to implement the lin-

earizable (integrable) boundary conditions obtained in Appendix A (see also Sec. 3.1)

to the vector NLS equation on the half-line. Note the system is restricted to x≥ 0,

so that the domain of using the space-evolution method is x≥ 0, t ∈ R.

At the level of the Lax pair, the linearizable boundary conditions are encoded

into the following relation (see Appendix A for details):

V (t,−k)N(k) = N(k)V (t,k) , (5.21)

where V (t,k) =−i2k2Σ3 + QT (0, t,k) and

N(k) =

(
k−iα
k+iα In

−1

)
, or N(k) =


σ1

. . .

σn

(13) −1

 , (5.22)

where σ j =−1, j ∈M and σ j = 1, j ∈ {1, . . . ,n}\M, M being an nonempty subset of

{1, . . . ,n}. Inserting the constraint (5.21) into the scattering system (5.8), one can
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show1 that the matrix T (k) satisfies the following symmetry relation:

T (−k) = N(k)T (k)N−1(k) . (5.23)

Taking the form of the boundary matrix B(k) defined in (3.40), it is clear that B(k)

is precisely the first n× n block matrix of N(k). Then, in components, Eq. (5.23)

reads as

A(24)(−k) = B(k)A(24)(k)B−1(k) , A(13)(−k) = A(13)(k) , (5.24)

B(13)(−k) =−B(k)B(13)(k) , B(24)(−k) =−B(13)(k)B−1(k) . (5.25)

Similar observation to that of Sec. 3.3 can be found using the first relation: the

relevant zeros of detA(24)(k) to formulate the inverse problem come in pairs (κ j,−κ j)

where κ j ∈ (24). The total number J of the zeros of A(24)(k) in (24) is even: J = 2N

and there are N zeros in both the domains (13) and (24) (see Fig. 5.2). In addition,

(1)(2)

(4)(3)

κ∗j

κ∗j+N =−κ∗j κ j

κ j+N =−κ j

Fig. 5.2 : 2N zeros on the k-complex plane with κ j+N =−κ j, j = 1, . . . ,N, κ j ∈ −

from the definition of the norming constant (5.19), the relation between the paired

norming constants (β̄ j, β̄ j+N) can be read directly from (5.25) as

κ j+N =−κ j , β̄ j+N =−B(k∗j)β̄ j . (5.26)

The relation (5.26) constitutes the main result of this chapter. First, an N-soliton

reflexion solution R(x, t) on the half-line can be obtained using the ISM by evolving

the space variable of the 2N-soliton scattering data satisfying (5.26) from 0 to x.

For instance, in the case of the mixed Neumann and Dirichlet boundary condition

1The proof is very similar to that of Prop. 3.3.1 in which the mirror symmetry relation (3.25)
is obtained.
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(3.23), numeric simulations give similar results to what is presented in Sec. 3.4 i.e.

different components of the polarization satisfy either the Neumann (Rx(0, t) = 0) or

the Dirichlet (R(0, t) = 0) boundary conditions. This confirms that the use of the

space-evolution method with a linearizable (integrable) boundary solves the vector

NLS half-line problem. Then, what is highly interesting is the comparison between

(5.26) and the mirror symmetry relation (3.55). The observation that the scattering

data appear in paired forms holds true for both features. The paired zeros in (5.26)

are conjugated by a minus sign i.e. κ j+N =−κ j whilst in (3.55) they are conjugated

by a reflection along the real axis i.e. k j+N = −k∗j . As to norming constants, in

(5.26) the paired norming constants (β̄ j, β̄ j+N) are linearly coupled by the boundary

matrix B(k). This is in sharp contrast to the mirror symmetry relation (3.55) in

which the paired norming constants (β j,β j+N) are nonlinearly coupled. Instead of

performing the rather complicated computations to solve the nonlinear system (3.55)

as presented in Appendix C, a great simplification takes place here! This suggests

that the space-evolution formalism represents a more natural framework to study

half-line problems. Indeed, by restricting the space-time domain to x ≥ 0, t ∈ R,

there is no need to introduce an extended potential on the full line as performed

in Eq. (3.38). The boundary effect comes from the linearizable boundary condi-

tions through the analysis of the unified transform method. In another word, the

space-evolution method for studying half-line problems with linearizable boundary

conditions can be regarded as a modification of the unified transform method by

extending the time variable form t ≥ 0 to t ∈ R.



Part II

Reflection maps: classification and

applications



Chapter 6
Set-theoretical reflection equation and

reflection maps

In the study of N-soliton reflections on the half-line in Part I of this thesis, the

set-theoretical reflection equation is introduced, along with the set-theoretical Yang-

Baxter equation, to guarantee the factorization property of the soliton-soliton and

soliton-boundary interactions. This completes the set-theoretical counterpart of the

quantum reflection equation [42, 104]. In particular, we call its solutions reflection

maps following the use of ”Yang-Baxter maps” proposed by Veselov in [113]. The

purpose of this chapter is to introduce some basic notions of the set-theoretical reflec-

tion equation and reflection maps. This will lay the foundation for the understanding

of the forthcoming chapters.

6.1 Yang-Baxter maps

In this section, we mainly follow the presentation of the review [114] to collect some

well-known facts of the set-theoretical Yang-Baxter equation and Yang-Baxter maps.

Let S be a set and R : S×S→ S×S a map from the Cartesian product of S onto

itself represented as

R (X ,Y ) = (U,V )≡ ( f (X ,Y ),g(X ,Y )) . (6.1)

Let SN = S×·· ·×S be the N-fold Cartesian product of S. Then, R can be extended

to SN by defining Ri j : SN → SN as the map acting as R on the ith and jth copies of
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S in SN and identically on the others. Precisely, for i < j,

Ri j(X1, . . . ,Xn) = (X1, . . . ,Xi−1, f (Xi,X j), . . . ,g(Xi,X j),X j+1, . . . ,Xn) , (6.2)

R ji(X1, . . . ,Xn) = (X1, . . . ,Xi−1,g(X j,Xi), . . . , f (X j,Xi),X j+1, . . . ,Xn) . (6.3)

In other words, Ri j and R ji are related by

R ji = Pi jRi jPi j , (6.4)

where Pi j is the permutation operator acting on the ith and jth copies of S in SN .

Note that for N = 2, one has R12 ≡ R . If R satisfies the following Yang-Baxter

relation

R12R13R23 = R23R13R12 , (6.5)

as an identity on S× S× S, then R is called a Yang-Baxter map. We call the

arguments of Yang-Baxter maps i.e. the variable X ,Y,U,V in (6.1) Yang-Baxter

variables. In addition, if R satisfies

R21R12 = Id , (6.6)

then R is called a reversible Yang-Baxter map.

The class of parameter-dependent Yang-Baxter maps turns out to be of special

importance as the Yang-Baxter maps arising from the study of multi-component

soliton models [64, 9, 111] (see also Sec. 4.1) and the quadrirational Yang-Baxter

maps [14, 97] belong to this class. It is obtained by considering an extension of the

set S to S×Σ where Σ is some parameter set (usually C). The corresponding map

is now defined as

R : (X ,a;Y,b) 7→ ( f (X ,a;Y,b),a;g(X ,a;Y,b),b)≡ ( fab(X ,Y ),a;gab(X ,Y ),b) . (6.7)

This map is usually written as R (a,b) and seen as acting only on S×S:

R (a,b) : (X ,Y ) 7→ ( fab(X ,Y ),gab(X ,Y )) . (6.8)

It satisfies the parametric Yang-Baxter equation

R12(a,b)R13(a,c)R23(b,c) = R23(b,c)R13(a,c)R12(a,b) , (6.9)
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and the corresponding reversibility condition reads

R21(b,a)R12(a,b) = Id . (6.10)

There is a well-known pictorial representation of Yang-Baxter maps (see e.g. [14]).

Indeed, a Yang-Baxter map R can be associated to a quadrilateral (see Fig. 6.1) with

the Yang-Baxter variables and parameters assigned to the edges. The parameters re-

main constant on opposite edges. Then, the parametric set-theoretical Yang-Baxter

(U,a)

(V,b)

(X ,a)

(Y,b)
R

Fig. 6.1 : A parametric Yang-Baxter map R (a,b) : (X ,Y ) 7→ (U,V )

equation (6.9) can be understood as the consistency condition ensuring that the two

possible orders of the action of the map R on (X ,a;Y,b;Z,c), described by both sides

of the equation (6.9), provide the same result. This feature is shown in Fig. 6.2. Note

that the two configurations of Fig. 6.2 can also be regarded as the front and back

sides of a cube respectively, which is specified as the cubic representation.

In [113], Veselov also introduced the notion of transfer maps for reversible Yang-

Baxter maps, by analogy to the transfer matrix that is a central concept in quantum

integrable theories [108, 18]. It is defined as the following. Fix N ≥ 2, and defined

the following maps of SN :

Tj = R j j+N−1R j j+N−2 . . .R j j+1 . (6.11)

where the indices are considered modulo N. Then, as proved in [113], Tj commutes

with Tk :

Ti Tk = Tk Tj , (6.12)

and satisfy the property

T1 T2 . . .TN = Id. (6.13)
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(Y,b)

(X ,a) (Z,c)

(Y ,b)

(X ,a)(Z,c)

R 23

R 13

R 12

(Y,b)

(X ,a) (Z′,c)

(Y ′,b)

(X ′,a)(Z,c)

R 23

R 13

R 12

Fig. 6.2 : Pictorial representation of the set-theoretical Yang-Baxter equation

6.2 Reflection maps

Based on the form of the quantum reflection equation [42] and the example that

was studied in Sec. 4.2, we are now accessing to the following general definition of

reflection maps, that is also reported in [38, 40].

Definition 6.2.1 Given a Yang-Baxter map R , a reflection map K is a solution of

the set-theoretical reflection equation

K 1R 21K 2R12 = R 21K 2R 12K 1 , (6.14)

as an identity on S×S. The reflection map is called involutive if

K K = Id . (6.15)

Here K j is understood to act as K on the jth copy of S in SN and identically on the

others. To introduce the notion of parametric reflection map, we need some extension

of the above discussion for parametric Yang-Baxter maps. Indeed, a parametric

Yang-Baxter map has a trivial action on the parameter set Σ. However, it is shown

in Sec. 4.2 from the example found for reflection maps that a parametric reflection

map can in general have a nontrivial action on the parameter set. This feature

suggests the following form of a reflection map:

K : (X ,a) 7→ (ha(X),σ(a)) , X ∈ S , a ∈ Σ . (6.16)

The maps ha and σ together constitute a reflection map. One can then use the

convenient notation K (a) for a parametric reflection map but keep in mind of the
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nontrivial action of σ when composing a reflection map with other maps. This is

illustrated in the following definition of parametric reflection maps.

Definition 6.2.2 Given a parametric Yang-Baxter map R 12(a,b), a,b ∈ Σ, a para-

metric reflection map K (a), composed of ha and σ as presented in (6.16), is a

solution of the parametric set-theoretical reflection equation

K 1(a)R 21(σ(b),a)K 2(b)R12(a,b) = R 21(σ(b),σ(a))K 2(b)R 12(σ(a),b)K 1(a) ,

(6.17)

as an identity on S×S. The reflection map is called involutive if σ is an involution

in Σ and

K (σ(a))K (a) = Id . (6.18)

Analogous to the quadrilateral description of a Yang-Baxter map, we introduce a

pictorial description of a reflection map as a half-quadrilateral or a triangle shown in

Fig. 6.3. Then, the (parametric) set-theoretical reflection equation can be depicted

(X ,a)

(ha(X),σ(a))

K

Fig. 6.3 : A parametric reflection map K (a)

in Fig. 6.4 with the quadrilaterals representing Yang-Baxter maps.

Note that there are similarities between Fig. 6.4 and half of the figure representing

the tetrahedron equation for interaction round-a-cube [19, 20]. Similar figures also

appeared in [15, 48, 22] as the face representation of the quantum reflection equation.

Indeed, one can glue the two sides of Fig. 6.4 together and make them prolonged

into a three-dimensional configuration. This gives exactly the half of a rhombic

dodecahedron as represented in Fig. 6.5. Then the reflection equation is regarded

as the consistency condition that the quadrilaterals on Fig. 6.5 represent the same

Yang-Baxter map R whilst the triangles the same reflection map K .

Returning back to Fig. 6.4, it can be explicitly put into the following: the left-

hand side represents the following chain of maps

(X ,a;Y,b)
R 12−−−→ (X1,a;Y1,b)

K 2−−→ (X1,a;Y2,σ(b))
R 21−−−→ (X2,a;Y3,σ(b))

K 1−−→ (X3,σ(a);Y3,σ(b))
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(X ,a)

(Y,b)

(Y3,σ(b))

(X3,σ(a))

(Y1,b)

(X1,a)

(Y2,σ(b))

(X2,a)

R 12

K 2

R 21

K 1

(X ,a)

(Y,b)

(Y ′3,σ(b))

(X ′3,σ(a))

(X ′1,σ(a))

(Y ′1,b)

(X ′2,σ(a))

(Y ′2,σ(b))

R 12

K 2

R 21

K 1

Fig. 6.4 : Pictorial representation of the reflection equation

with

X1 = fab(X ,Y ) , Y1 = gab(X ,Y ) , Y2 = hb(Y1) ,

X2 = gσ(b)a(Y2,X1) , Y3 = fσ(b)a(Y2,X1) , X3 = ha(X2) .

Similarly, for the right-hand side, one gets

(X ,a;Y,b)
K 1−−→ (X ′1,σ(a);Y,b)

R 12−−−→ (X ′2,σ(a);Y ′1,b)
K 2−−→ (X ′2,σ(a);Y ′2,σ(b))

R 21−−−→ (X ′3,σ(a);Y ′3,σ(b))

with

X ′1 = ha(X) , X ′2 = fσ(a)b(X ′1,Y ) , Y ′1 = gσ(a)b(X ′1,Y ) ,

Y ′2 = hb(Y ′1) , X ′3 = gσ(b)σ(a)(Y
′
2,X

′
2) , Y ′3 = fσ(b)σ(a)(Y

′
2,X

′
2) .

Therefore, given the same (X ,a;Y,b) for the both sides, Eq. (6.17) ensures the equal-

ity of the final results:

(X3,σ(a);Y3,σ(b)) = (X ′3,σ(a);Y ′3,σ(b)) . (6.19)
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R

R

K

K

K

K

R

R

Fig. 6.5 : Three-dimensional consistency for the reflection equation

Following the discussion of the transfer maps for reversible Yang-Baxter maps

[113], we can define similar objects for reflection maps. This is by analogy to the

construction of transfer matrix in the study of the quantum reflection equation [104].

Fix N ≥ 2 and define for j = 1, . . . ,N the following maps of SN into itself,

T j = R j+1 j . . .RN jK −j R jN . . .R j j+1R j j−1 . . .R j1K +
j R1 j . . .R j−1 j , (6.20)

where K + is a solution of

K 1R 21K 2R12 = R 21K 2R 12K 1 , (6.21)

and K − a solution of

K 1R 12K 2R21 = R 12K 2R 21K 1 . (6.22)

Then one proves by direct (but long) calculations the following result.

Proposition 6.2.3 For any reversible Yang-Baxter map R , the transfer maps (6.20)

commute with each other:

T jT` = T`T j , (6.23)

This result can be easily extended to the parametric case.
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We conclude this chapter with a reminder of the reflection maps that were found

in Chapter 4. We stress that this is the first concrete example of reflection maps.

Precisely, according to the definition of Yang-Baxter maps in Sec. 6.1, one has S ≡
CPn−1 and Σ ≡ C. The parametric Yang-Baxter map, extracted from the vector

NLS solitons’ interactions, is in the form

R j,k(k j,kk) : (p1, . . . ,p j, . . . ,pk, . . . ,pN) 7→ (p1, . . . , p̃ j, . . . , p̃k, . . . ,pN) , (6.24)

where

p̃ j =

(
I +

(
k∗k − kk

k∗j − k∗k

)
pkp†

k

p†
kpk

)
p j , p̃k =

(
I +

(k j− k∗j
kk− k j

) p jp†
j

p†
jp j

)
pk . (6.25)

The Yang-Baxter variables p j, pk, p̃ j, p̃k are in their homogeneous coordinates.

Then, the parametric reflection maps are found in the following form:

K (k) : (p,k) 7→ (p′,σ(k)) , (6.26)

where σ(k) =−k∗ is clearly an involution and

p′ =
(

I +

(
k− k∗

k + k∗

)
pp†

p†p

)
B(k)p , (6.27)

with the matrix B(k) being the boundary matrix defined in (3.40).



Chapter 7
Reflection maps for quadrirational

Yang-Baxter maps

Classification of Yang-Baxter maps in the case where S = CP1 was recently inves-

tigated by Adler, Bobenko and Suris [14]. This led to an important class of maps

that was called quadrirational maps, and also a corresponding classification that

shares a beautiful geometric interpretation in terms of pencil of conics. Later, in

[97], quadrirational maps that satisfy the set-theoretical Yang-Baxter equation were

studied, which resulted in an additional classification. Remarkably, the quadrira-

tional maps classified in both [14] and [97] are Yang-Baxter maps. This represents

a natural field of applications for reflection maps. In this chapter, we present the

results originally reported in [40] where a classification of reflection maps for quadri-

rational Yang-Baxter maps was constructed.

7.1 Quadrirational Yang-Baxter maps

This section reviews the important results obtained in [14, 97] regarding the classi-

fication of quadrirational Yang-Baxter maps.

Let a nondegenerate map R be in the form

R : (X ,Y ) 7→ (U,V )≡ ( f (X ,Y ),g(X ,Y )) , (7.1)

where the variables X ,Y,U,V ∈CP1. Then R is called quadrirational if both R and

the so-called companion map R , defined as

R : (X ,V ) 7→ (U,Y )≡ ( f̄ (X ,V ), ḡ(X ,V )) , (7.2)
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are birational maps of CP1×CP1 into itself. It was concluded in [14] that the

quadrirational maps are in the form

f (X ,Y ) =
a(Y )X + b(Y )

c(Y )X + d(Y )
, g(X ,Y ) =

A(X)Y + B(X)

C(X)Y + D(X)
, (7.3)

where a(Y ), . . . ,d(Y ) and A(X), . . . ,D(X) are polynomials of degree at most 2. There

are three subclasses of such maps, denoted as [1 : 1], [1 : 2] and [2 : 2] corresponding

to the highest degrees of the coefficients of the both fractions in (7.3). For the most

interesting subclass [2 : 2], the authors also proved that any quadrirational map is

(M öb)4-equivalent to one of five families, named as FI−FV , whose explicit forms are

listed in Table 7.1. The action of M öb is precisely the Möbius transformation:

M öb : z 7→ α z + β

γ z + τ
, α,β,γ,τ ∈ C . (7.4)

It is remarkable that the maps FI −FV in their canonical forms in Table 7.1 are

parametric Yang-Baxter maps depending on a,b ∈ C. Moreover, for each family of

the F-families, both its companion map and inverse map coincide with the map itself

i.e. R = R −1 = R = R −1
.

Type fab(X ,Y ) gab(X ,Y ) P

FI aY P bXP (1−b)X+b−a+(a−1)Y
b(1−a)X+(a−b)XY+a(b−1)Y

FII
Y
a P X

b P aX−bY+b−a
X−Y

FIII
Y
a P X

b P aX−bY
X−Y

FIV Y P XP 1 + b−a
X−Y

FV Y + P X + P a−b
X−Y

Table 7.1: F-families of quadrirational maps

Interestingly, this classification can be obtained following a beautiful geometric

construction [14]: consider a pencil of two nondegenerate conics Q1 and Q2—a linear

combination of Q1 and Q2—on the plane CP2, which are rational curves isomorphic
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to CP1. Take two points X̃ ∈ Q1 and Ỹ ∈ Q2, and let ` = X̃Ỹ be the line passing

through X̃ ,Ỹ . Generically the line ` intersects Q1 and Q2 respectively at two other

points Ũ and Ṽ (see Fig. 7.1). Indeed, there are five possible configurations I−V of

X̃
Ỹ

Ṽ
Ũ

Fig. 7.1 : Pencil of conics, configuration I: four simple intersection points

a pencil of two conics (see e.g. [24]):

I: four simple intersection points;

II: two simple intersection points and one point of tangency;

III: two points of tangency;

IV : one simple intersection point and one point of the second order tangency;

V : one point of the third order tangency.

By taking suitable rational parametrizations of the conics, one requires that the

points X̃ ,Ỹ ,Ũ ,Ṽ are parametrized by X ,Y,U,V respectively. Then, equations gov-

erning the line `= X̃ỸṼŨ can be translated into a map from (X ,Y ) to (U,V ) by using

the parametrizations. The five maps constructed from the configurations I−V of

the pencil of conics are exactly equivalent to the maps FI−FV listed in Table 7.1.

A further investigation of quadrirational maps was made in [97] following the

observation that the action of (M öb)4 in general destroys the Yang-Baxter property,

although the maps FI−FV in their canonical forms (see Table 7.1) are Yang-Baxter

maps. The following proposition specifies the Yang-Baxter equivalence which differs

from the quadrirational equivalence i.e. (M öb)4-equivalence.

Proposition 7.1.1 Let ψ(a) be a parameter-dependent bijection in the form

ψ(a) : CP1→ CP1 , X 7→ ψa(X) . (7.5)



7.1. QUADRIRATIONAL YANG-BAXTER MAPS 74

If R (a,b) is a parametric Yang-Baxter maps, then the map R̃ (a,b), defined as

R̃ (a,b) = ψ
−1(a) × ψ

−1(b)R (a,b)ψ(a) × ψ(b) , (7.6)

is also a Yang-Baxter map.

The relation (7.6) is precisely the Yang-Baxter equivalence. For the F-families of

quadrirational maps, it is observed in the literature (see e.g. [98]) that certain sub-

cases of (M öb)4 preserve the Yang-Baxter property. This feature is clarified in the

following proposition [97].

Proposition 7.1.2 Let s(a) be an involutive symmetry of the parametric Yang-

Baxter map R (a,b) satisfying

s(a)2 = Id and s(a)× s(b) R (a,b) = R (a,b) s(a)× s(b) . (7.7)

Then, the map R s(a,b), defined as

R s(a,b) =
(
s(a)× Id

)
R (a,b)

(
Id× s(b)

)
, (7.8)

is also a Yang-Baxter map.

The proofs of Prop. 7.1.1 and 7.1.2 can be easily obtained by direct computations

at the level of the parametric set-theoretical Yang-Baxter equation (6.9). One can

understand that R s defined in (7.8) is not equivalent to R in the sense of (7.6).

For quadrirational maps, the symmetry map s corresponds to Möbius transfor-

mation. In [97], s was carefully considered for each family of FI −FV . This led to

an additional classification of five families, up to the Yang-Baxter equivalence (7.6),

called H-families. Therefore, each family of the H-families is related to that of the

F-families through the use of certain s. Their explicit forms are listed in Table 7.2

[97].

Precisely, the family HI is related to FI by taking s(a)(X) ≡ a
X . The case of HII

is more complicated in the sense that it is an equivalent form of HII (not the form

of HII in Table 7.2) that is related to another equivalent form of FII (again not FII

in Table 7.1) by a certain s(k). The link between FII and HII will be explicitly

shown in Appendix E. There are two families HA
III and HB

III derived from FIII by

using s(a)(X)≡−X and s(a)(X)≡−X
a respectively. No s exists for FIV , thus no HIV .

The map HV is the well-known Adler map [115, 10], here derived from FV by taking

s(a)(X)≡−X .



7.2. DERIVING REFLECTION MAPS 75

Type fab(X ,Y ) gab(X ,Y ) P

HI Y P−1 XP (1−b)XY+(b−a)Y+b(a−1)
(1−a)XY+(a−b)X+a(b−1)

HII Y P−1 XP a+(b−a)Y−bXY
b+(a−b)X−aXY

HA
III

Y
a P X

b P aX+bY
X+Y

HB
III Y P−1 XP aXY+1

bXY+1

HV Y −P X + P a−b
X+Y

Table 7.2: H-families of quadrirational maps

Therefore, up to the Yang-Baxter equivalence (7.6), we have ten families of

quadrirational Yang-Baxter maps FI−FV and HI−HV
1, whose canonical forms are

listed in Table 7.1 and 7.2.

7.2 Deriving reflection maps

In this section, we provide a method to classify reflection maps for the ten families

of quadrirational Yang-Baxter maps FI−FV and HI−HV .

Recall Prop. 7.1.2 in which a symmetry map s is used to derive R s(a,b) from

R (a,b). The following proposition states that R (a,b) and R s(a,b) share the same

reflection maps.

Proposition 7.2.1 The map B(a) is a parametric reflection map for the parametric

Yang-Baxter map R (a,b) if and only if it is a parametric reflection map for the

parametric Yang-Baxter map R s(a,b), defined in (7.8).

Proof: The proof of this proposition consists in writing the set-theoretical reflection

equation with R s(a,b) expressed in (7.8). Then, remarking for example that
(
Id×

s(b)
)
K1(a) = K1(a)

(
Id× s(b)

)
and using s(a)2 = Id, one proves that this equation is

equivalent to the set-theoretical reflection equation with R (a,b).

1With the understanding that HIV does not exist and there are two families HA
III and HB

III both
related to FIII .
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(U,a)

(ϕa(U),σ(a))

(X ,a)

(ϕa(X),σ(a))

R = R −1

→

(X ,a)

(ha(X),σ(a))

Fig. 7.2 : Folding

Following the arguments presented at the end of the previous section which relate

the H-families to the F-families by the use of certain s, this proposition implies that

the reflection maps for the families FI−FV are the exactly same as the reflection maps

for HI−HV except for HII. Therefore, in the following, we restrict our attention to

the F-families. The particular case of HII will be the subject of Appendix E.

To proceed, we propose an adaptation of the folding method. Roughly speaking,

the idea is to see a reflection map as a Yang-Baxter map modulo some folding applied

to the Yang-Baxter variables. Taking a quadrirational Yang-Baxter map in the form

R (a,b) : (X ,Y ) 7→ (U,V )≡ ( fab(X ,Y ),gab(X ,Y )) , (7.9)

we impose the following folding conditions:

Y = ϕa(X) , V = ϕa(U) , b = σ(a) , (7.10)

where ϕa is a map depending on a. This can be viewed pictorially in Fig. 7.2

(remind that a Yang-Baxter map is represented by a square as depicted in Fig. 6.1).

For convenience, we assume that σ is an involution as well as ϕa:

σ(σ(a)) = a , ϕσ(a)(ϕa(X)) = X . (7.11)

Considering the folding Y = ϕa(X) and the form of R (a,b), we obtain two possibilities

to express V in terms of X

V = ϕa
(

faσ(a)(X ,ϕa(X))
)

= gaσ(a)(X ,ϕa(X)) . (7.12)

This provides a functional equation constraining admissible functions ϕa and σ. So,

for each such admissible pair (ϕa,σ), there is a well-defined map between V and X
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which we denote ha:

V = ha(X) , (7.13)

and which can be computed using (7.12). The map ha together with σ are the

candidates for the reflection map K .

To complete our set of functional equations, we can also look at the folding

method from the point of view of the inverse map R −1(a,b) which maps (U,V ) to

(X ,Y ) and the companion map R (b,a) which maps (X ,V ) to (U,Y ). As stated in the

previous section, for each Fτ, τ = I, II, . . . ,V , the companion map and inverse map

coincide with the map itself:

R −1(a,b) :(U,V ) 7→ (X ,Y ) = ( fab(U,V ),gab(U,V )) , (7.14)

R (a,b) :(X ,V ) 7→ (U,Y ) = ( fab(X ,V ),gab(X ,V )) , (7.15)

where fab and gab are the same functions as those defined in (7.9).

Now taking the folding V = ϕa(U) with the inverse map R −1 results in

Y = ϕa
(

faσ(a)(U,ϕa(U))
)

= gaσ(a)(U,ϕa(U)) . (7.16)

This gives an equivalent constraint to (7.12). Provided that admissible functions

(ϕa,σ) and the related ha are found, we deduce that Y = ha(U). In turn, given the

folding conditions (7.10), one gets

Y = ha(U) , V = ha(X) , b = σ(a) . (7.17)

Comparing to (7.10), these relations are just folding conditions for the companion

map R (see Fig. 7.3). Due to the fact that R = R , the folding maps ϕa and ha play

→
R = R

(U,a)

(ha(X),σ(a))

(X ,a)

(ha(U),σ(a))

R = R −1

(X ,a)

(ϕa(X),σ(a))

Fig. 7.3 : Duality
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completely dual roles. Precisely, combining (7.17) and R yields

Y = ha
(

faσ(a)(X ,ha(X))
)

= gaσ(a)(X ,ha(X)) , (7.18)

which is the dual form of (7.12).

Having clarified the duality of the folding conditions (7.10) and (7.17), we proceed

to deriving reflection maps. First, the duality implies that given a σ there are two

folding relations ϕa and ha playing dual roles. If ϕa is chosen to be of a certain

form, then ha should be of the same form and vice versa. This is reminiscent of

the properties derived in [14] concerning the quadrirationality—both the companion

map and the map itself are birational. Also, the involution property (7.11) should

hold for both ϕa and ha. Therefore, it is natural to choose both ϕa and ha to be

Möbius transformations with the coefficients being polynomials of degree 1 in a:

ϕa(X) =
p1(a)X + p2(a)

p3(a)X + p4(a)
, ha(X) =

q1(a)X + q2(a)

q3(a)X + q4(a)
, (7.19)

where p j(a) = p0
j + p1

j a and q j(a) = q0
j +q1

j a, j = 1, . . . ,4. This corresponds to 16 free

parameters a priori. We also choose σ to be an involutive Möbius transformation,

which gives 3 additional parameters:

σ(a) =
c1 a + c2

c3 a− c1
. (7.20)

Then, these 19 parameters are inserted into the following constraints as explained

above:

ha(X) = gaσ(a)(X ,ϕa(X)) , ϕσ(a)(ϕa(X)) = X , hσ(a)(ha(X)) = X . (7.21)

These operations have been performed with the help of symbolic computation soft-

ware2. The results lead to a complete characterization of ϕa, ha and σ that will be

reported in the following section.

We conclude this section by specifying the equivalence class for reflection maps.

Proposition 7.2.2 Assume R (a,b) and R̃ (a,b) are two equivalent Yang-Baxter

maps up to the equivalence (7.6). They are related by the bijection ψ(a). If K (a)

and σ constitute a parametric reflection map for R (a,b), then the map K̃ (a), defined

as

K̃ (a) = ψ
−1(σ(a))K (a)ψ(a) , (7.22)

2Here, we use Mathematica
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together with σ constitute a reflection map for R̃ (a,b).

The proof can be easily checked by taking both the forms (7.6) and (7.22) into the

parametric set-theoretical reflection equation (6.17).

7.3 Classification of reflection maps

Solving the 19-parameter systems (7.19 - 7.21) for each family of FI−FV by using the

symbolic computation software gives classes of candidates for the reflection maps.

First, it is straightforward to check that the identity map, i.e. both ha and σ

are the identity map, is a solution for all families. In the following, we only present

nontrivial solutions, i.e. either σ or ha or both are not the identity maps. With the

exception of one solution for the FI family, all the maps satisfying (7.19 - 7.21) are

reflection maps as we found by inspection. Therefore, in the context of quadrirational

Yang-Baxter maps, a classification of involutive reflection maps is obtained.

Proposition 7.3.1 Consider the quadrirational Yang-Baxter maps FI−FV in their

canonical forms. All the involutive reflection maps (ϕa(X),σ(a)) and (ha(X),σ(a)),

which are in the forms (7.19, 7.20) and satisfy the (duality and involution) con-

straints (7.21), are exhausted in Table 7.3, except for the identity map which is

trivial. Moreover, we call these reflection maps quadrirational reflection maps.

Proof: As we mentioned before, the results as well as the proof were obtained using

the symbolic computation software.

Note that we did not find any solution for the FV family other than the identity

map. The duality property is explicitly shown in the table: the roles of ha and ϕa can

be swapped. All solutions depend on an arbitrary parameter µ. In view of discrete

integrable systems, Yang-Baxter and reflection maps can be regarded as discrete

systems defined on quadrilaterals and triangles respectively with the variables and

parameters attached to the edges. Then, the free parameter µ represents an extra

degree of freedom for the lattice parameters.

In the construction of the quadrirational maps FI−FV in [14], singular analysis of

the forms of fab and gab (see Eq. (7.3)) is another approach to classify quadrirational

maps. It turns out that we can make use of these points in our construction to

obtain other reflection maps which are referred to as degenerate. This is achieved by

allowing ϕa(X) in (7.12) to take the singular points of the corresponding family. For

instance, in the most general case FI, the singular points are 0,1,∞,σ(a). Each time

a degenerate case is a solution, the set-theoretical reflection equation is satisfied for
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Type σ(a) ha(X) (resp. ϕa(X) ) ϕa(X) (resp. ha(X) )

µ2

a
µX
a

(X(1+µ)−µ−a)µ
X(a+µ)−(1+µ)a

FI
a+µ2−1

a−1
(a+µ2−1)X

X(a−µ−1)+aµ
a+µ−Xµ−1

a−1

1−a
a(µ2−1)+1

(a−1)X
X(a+µa−1)−aµ

µa+1−Xµ−a
1+a(µ2−1)

µ2

a
a
µ(X−1)+ 1 −aX

µ
FII

−a + 2µ X
2X−1

a−µ−aX
a−2µ

FIII
µ2

a
aX
µ −aX

µ

FIV −a + 2µ −X X−a + µ

Table 7.3: Reflection maps for quadrirational map FI−FIV

any map σ. Note that the duality property still holds for these degenerate cases.

All the degenerate reflection maps are presented in Table 7.4.

According to Prop. 7.2.1, reflection maps for the H-families, except for HII, are

the same as those of F-families. Reflection maps for HII will be shown in Appendix E.

Note that, for each family of the H-families, the companion map does not coincide

with the map itself due to the presence of the symmetry map s. This implies that

the duality between ha and ϕa is destroyed by s. However, thanks to Prop. 7.2.1,

one can still conclude that for each σ, there are two reflection maps for each of the

H-families.
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Type ha(X) (resp. ϕa(X) ) ϕa(X) (resp. ha(X) )

σ(a)(a−1)X
a(X−1)+σ(a)(a−X) ∞

FI
a−X+σ(a)(X−1)

a−1 0

σ(a)
a X 1

X σ(a)

X ∞

FII
a

σ(a)(X−1)+ 1 0

a
σ(a)X 1

X ∞

FIII
a

σ(a)X 0

X ∞

FIV
X−a + σ(a) 0

FV X ∞

Table 7.4: Degenerate reflection maps



Chapter 8
Quad-graph integrable systems with

boundary

Recently, there has been considerable progress in the study of discrete integrable

systems following various publications [28, 11, 29] in which discrete integrable sys-

tems were investigated on a more general framework called quad-graphs—planar

graphs of cellular decompositions with quadrilateral faces—in contrast to the usual

regular square grid Z2. A significant step was made by Adler, Bobenko and Suris

in [13] in which a classification of quad-graph integrable equations was obtained.

The so-called three-dimensional consistency [91, 29] is at the heart of understanding

the Adler-Bobenko-Suris (ABS) classification. Important notions such as discrete

zero curvature representation and link to the discrete systems of Toda type were

accordingly developed [29, 13]. This has laid the foundation for a vast number of

interesting topics, and amongst them, we intend to ask the fundamental question of

adding boundaries to quad-graph integrable systems.

The most striking feature of discrete integrable systems is probably that all

the concepts and methods developed in the continuous theories have their deep

roots in discrete systems. It is widely believed that, in many aspects, discrete sys-

tems are more fundamental than their continuous counterparts (see e.g. [92]). The

generalization of discrete systems to quad-graphs has made the field more promi-

nent, as integrable systems can now be defined on arbitrary graphs thanks to the

quad-graph decompositions [29]. As yet the boundary problems for quad-graph sys-

tems have not been addressed, as only quad-graph configurations without bound-

ary—decompositions of graphs with finite or infinite quadrilaterals—considered in

the literature. Therefore, adding boundaries to quad-graph systems and under-

standing, in particular, the corresponding notions of integrability are problems of

fundamental nature.
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The introduction of reflection maps [38, 40] (see also Chapter 4 and 6) and, in

particular, the classification of quadrirational reflection maps [40] (see also Chap-

ter 7) represent another important motivation. This is because quadrirational Yang-

Baxter maps can be considered as discrete systems with the Yang-Baxter variables

assigned to the edges of quadrilaterals. Then, it turns out that quadrirational re-

flection maps are just integrable boundary conditions for such systems. Under the

common concept of the 3D consistency, a link between quadrirational Yang-Baxter

maps and quad-graph integrable systems have been unveiled from different angles

[98, 72, 79]. This suggests that quadrirational reflection maps are also intimately

linked to integrable boundary conditions for quad-graph integrable systems.

The objectives of this chapter are to discuss some exciting aspects of boundary

problems for quad-graph integrable systems. First, the 3D consistency and the ABS

classification [13] are briefly reviewed. Then, by adding boundaries to quad-graphs,

we introduce carefully the notion of boundary conditions for quad-graph systems.

Next, we propose a three-dimensional boundary consistency as a criterion for in-

tegrability. Integrable boundary conditions are incarnated in the so-call boundary

equations that are also introduced. Following the ideas of [98] in which quadrira-

tional Yang-Baxter maps are linked to quad-graph integrable equations by means

of symmetry analysis, we show that quadrirational reflection maps can be used as

a systematic tool to construct boundary equations that satisfy the 3D-boundary

consistency. Finally, as an illustration, this construction of boundary equations is

carried out for the equation A1δ from the ABS classification. Boundary equations

for other quad-graph equations will be presented in Appendix G

The results presented in this chapter were recently reported in [39]. It is worth

noting that other interesting aspects of the problem such as Bäcklund transforma-

tions and zero curvature representations for the 3D-boundary consistency and link

between boundary equations and the three-leg forms were also demonstrated in [39].

8.1 3D-consistent equations on quad-graphs

This section reviews the 3D consistency [91, 29] and the ABS classification [13].

Equations of the ABS classification can be defined on an elementary quadrilateral

in the form

Q(u00,u10,u01,u11, p,q) = 0 , (8.1)

where the fields u00,u10,u01,u11 ∈ CP1 are assigned on the vertices and the lattice

parameters p,q ∈ C on the edges (see Fig. 8.1). The equation Q = 0 satisfies the

following properties:
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u00 p u10

q

u11pu01

q Q

Fig. 8.1 : Equation Q on an elementary quadrilateral

• it is autonomous, i.e. the parameters p,q on the opposite edges of any quadri-

lateral face are equal.

• It is affine linear with respect to each variable, i.e.

∂ukl Q(u00,u10,u01,u11, p,q) 6= 0 , ∂
2
ukl

Q(u00,u10,u01,u11, p,q) = 0 , (8.2)

where k and l = 0,1. As a result, Q can be solved with respect to each variable

in a fractionally linear form of the other three.

• It is invariant under the group D4 of the square symmetries, i.e.

Q(u00,u10,u01,u11, p,q) =εQ(u00,u01,u10,u11,q, p)

=σQ(u10,u00,u11,u01, p,q) , (8.3)

where ε,σ =±1.

The 3D consistency is the central criterion for integrability for the ABS classification.

Precisely, it means that the equation (8.1) can be embedded into a 3D lattice in a

consistent way so that each face of the 3D lattice represents the same equation Q

(see Fig. 8.2). Given u000, u100, u001 and u010, and p1, p2 and p3, the equation (8.1)

on three different faces gives three values u110, u101 and u001, i.e.

{u000,u100,u010, p1, p2} → u110 ,

{u000,u100,u001, p1, p3} → u101 ,

{u000,u010,u001, p2, p3} → u001 .
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Then, repeat the process on the opposite faces, one gets

{u001,u101,u011, p1, p2} → u111 ,

{u010,u110,u011, p1, p3} → ū111 ,

{u100,u110,u101, p2, p3} → ũ111 .

The consistency means

u111 = ū111 = ũ111 . (8.4)

u000 p1 u100

u110u010p2

u001 u101

u111u011

p3

Fig. 8.2 : 3D consistency

For completeness, we list the equations of the ABS classification as follows:

(Q1) : p(u00−u01)(u10−u11)−q(u00−u10)(u01−u11)+ δ2 pq(p−q) = 0 ,

(Q2) :
p(u00−u01)(u10−u11)−q(u00−u10)(u01−u11)

+pq(p−q)(u00 + u10 + u01 + u11)− pq(p−q)(p2− pq + q2) = 0,

(Q3) :
(q2− p2)(u00u11 + u10u01)+ q(p2−1)(u00u10 + u01u11)

− p(q2−1)(u00u01 + u10u11)−δ
2(p2−q2)(p2−1)(q2−1)/(4pq) = 0,

(Q4) :
sn(p)(u00u10 + u01u11)− sn(q)(u00u01 + u10u11)− sn(p−q)(u00u11 + u10u01)

+sn(p−q)sn(p)sn(q)(1 + K2u00u10u01u11) = 0 ,

(H1) : (u00−u11)(u10−u01)+ q− p = 0 ,

(H2) : (u00−u11)(u10−u01)+(q− p)(u00 + u10 + u01 + u11)+ q2− p2 = 0 ,

(H3) : p(u00u10 + u01u11)−q(u00u01 + u10u11)+ δ2(p2−q2) = 0 ,

(A1) : p(u00 + u01)(u10 + u11)−q(u00 + u10)(u01 + u11)−δ2 pq(p−q) = 0,
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(A2) :
q(p2−1)(u00u01 + u01u11)− p(q2−1)(u00u10 + u01u11)

+(q2− p2)(u00u10u01u11 + 1) = 0 .

We use the same titles (Q, H, A families) and forms as those used in [13] except

for the equation Q4 which is in an equivalent form introduced in [71]. For Q4,

sn(p)≡ sn(p;K) is the Jacobi elliptic function with modulus K. The free parameter

δ appearing for equations Q1, Q3, H3 and A1 can be normalized either to 0 or

either to ±1. Moreover, as proved in [13], the 3D consistency as well as the affine-

linearity and the D4-symmetry properties are preserved for each of the equations up

to common Möbius transformations of the variables u00, u10, u01 and u11.

8.2 Boundary conditions for quad-graph systems

In this section, the notion of quad-graph with boundary is clarified following standard

procedure of discretizing surfaces. In particular, the notion of boundary equations

is introduced that is used to represent boundary conditions of a quad-graph system

with boundary.

Fig. 8.3 : The vertex (white dot in the
center) of V (G∗) dual to the face of F(G)

Fig. 8.4 : The face of F(G∗) dual to the
vertex (black dot in the center) of V (G)

It is well-known that, in the case without boundary, an arbitrary cellular de-

composition G of a two-dimensional oriented surface can be ”discretized” into quad-

graphs [29]. The idea lies in the consideration of both the decomposition G and its

dual decomposition G∗. Denote, respectively, by F(G), E(G) and V (G) the set of

faces, edges and vertices of G . One can construct the dual cellular decomposition

G∗ where V (G), E(G) and F(G) of G are in one-to-one correspondence to the faces

F(G∗), edges E(G∗) and vertices V (G∗) of G∗ respectively. This correspondence is

well illustrated in Fig. 8.3 and 8.41. The quad-graph decomposition of G , called

1These figures are borrowed from [29].
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double D, is obtained as follows:

• the set of the vertices of D is the union of the set of the vertices of both G
and G∗ i.e. V (D) = V (G)∪V (G∗);

• the set of the quad-tuples (v1, f1,v2, f2), where (v1,v2) is an edge of G and

( f1, f2) is its dual edge, constitutes the faces of D.

It is clear that all the faces of D are quadrilateral.

This procedure can be easily generalized to the case with boundary (see e.g.

[88]). Let S be a two-dimensional oriented surface with a boundary. Consider a

cellular decomposition G of this surface with the only restriction that there is no

edge on the boundary. A quad-graph with boundary is a cellular decomposition with

the following additional properties:

• no edges are on the boundary of the surface;

• the faces which contain no points of the boundary are quadrilateral;

• the faces which contain points of the boundary are triangular.

An example of such cellular decomposition is given in Fig. 8.5. Besides the usual

quad-graph decomposition of the bulk of S , the boundary is now characterized by

triangular blocks. A quad-graph with boundary is thus represented by elementary

blocks of quadrilaterals and triangles.
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Fig. 8.5 : Example of a surface with a boundary and its quad-graph decomposition. The
”horizontal” curved line is the boundary of S . The black dots and the thick straight lines
are, respectively, the vertices and edges of the initial cellular decomposition G . The white
dots are the vertices of the dual graph G∗ (the edges of G∗ are not presented). Black and
white dots are the vertices of the quad-graph and the thin straight lines are its edges.
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u00 p u10

q

u11pu01

q Q

Q(u00,u10,u01,u11, p,q) = 0

v01
ρ(p)

v00

p
v10

P

P(v10,v00,v01, p) = 0 , p→ ρ(p)

Fig. 8.6 : Elementary blocks to construct a quad-graph system with boundary

We are now in the position to define discrete systems on quad-graphs in the

presence of boundaries. As presented in the previous section, a quad-graph equa-

tion—equation on the bulk—is represented by Eq. (8.1) with the fields and parame-

ters assigned on the vertices and edges of a quadrilateral (see also the left-hand side

of Fig. 8.6). The new elementary block needed to describe the boundary dynamics

is the following equations defined on a triangle (see the right-hand side of Fig. 8.6):

P(v10,v00,v01, p) = 0 , p→ ρ(p) , (8.5)

where v10,v00,v01 are fields assigned on the vertices and p is the lattice parameter

assigned on one edge. We also require that the other edge of the triangle is associated

to the lattice parameter ρ(p) where ρ is a function of p. In Fig. 8.6, the following

convention for P and ρ is taken: v10,v01 in (8.5), namely the first and third variables

of P, are vertices on the boundary—in Fig 8.6 the dashed line (v10,v01) represents

the boundary —and the parameter p is assigned on the edge (v10,v00) formed by the

first and second variables of P. We will call both P and ρ defined in (8.5) boundary

equation that describe boundary dynamics of the system. Examples of boundary

equations will be shown later in this chapter.

8.3 Integrability: the 3D-boundary consistency

The 3D consistency condition [91, 29] is widely considered to be a working defini-

tion of integrability for quad-graph equations [29, 13]. By analogy, we propose, in

this section, a three-dimensional consistency condition, that takes account of the

the presence of boundaries, to give a criterion for integrability for quad-graph sys-

tems with boundary. This consistency condition is referred to as three-dimensional
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Fig. 8.7 : 3D-boundary consistency around a half of a rhombic dodecahedron

boundary consistency.

This condition is in fact a compatibility condition between the bulk equation

Q defined on a quadrilateral and the boundary equation P and ρ defined on a tri-

angle (see Fig. 8.6). Instead of a cube for the 3D consistency (see Fig. 8.2), the

3D-boundary consistency lies on a half of a rhombic dodecahedron as displayed in

Fig. 8.7. The consistency is that the quadrilateral and triangular faces of Fig. 8.7

are represented by the same equations of motion on the quadrilateral and triangle.

More precisely, following the notations of Fig. 8.8, given u100, u000 and u101 that

are black dots in Fig. 8.8 and the lattice parameters p and q attached to the edges

(u000,u100) and (u000,u001) respectively, first, one has the following three equations:

Q(u000,u100,u001,u101, p,q) = 0 ,

P(u100,u000,u010, p) = 0 , p→ ρ(p) ,

P(u100,u101,u102,q) = 0 , q→ ρ(q) ,

which give respectively the values of u001, u010 and u102 that are white dots in Fig. 8.8.

Then, taking account of the change of p and q through ρ, the equations

Q(u001,u101,u002,u102, p,ρ(q)) = 0 ,

Q(u010,u000,u011,u001,ρ(p),q) = 0 ,
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Fig. 8.8 : 3D-boundary consistency

give respectively the values of u002 and u011 (white squares in Fig. 8.8). Finally, the

three equations

Q(u011,u001,u012,u002,ρ(p),ρ(q)) = 0 ,

P(u102,u002,u012, p) = 0 , p→ ρ(p) ,

P(u010,u011,u012,q) = 0 , q→ ρ(q) ,

provide three ways to compute u012 (black square in Fig. 8.8) which must be com-

patible.

For a given Q, to obtain a boundary equation P and ρ which preserves the integra-

bility, one needs to solve the 3D-boundary consistency condition. We call quad-graph

integrable systems with boundary the data of a quad-graph with boundary as well

as the functions Q, P and ρ which satisfy the 3D consistency and the 3D-boundary

consistency.

It is worth noting that Fig. 8.7 and 8.8 are closely related to Fig. 6.4 and 6.5 that

are the pictorial representation of the set-theoretical reflection equation which also

consists in certain consistency condition between Yang-Baxter maps and reflection

maps. This link will be explored in the following section.
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8.4 From reflection maps to boundary equations

In [98], a nice approach to connect 3D-consistent quad-graph equations to Yang-

Baxter maps was established. The main idea of [98] is to explore the 3D consistency

property of both integrable schemes—quad-graph equations on one hand and Yang-

Baxter maps on the other—by considering a suitable change of variables from the

vertex variables to edge variables. Technically, this connection was concretized by

identifying certain lattice invariants of quad-graph equations through the use of the

Lie point symmetry analysis [95, 96]. In [100], a complete list of Lie point symmetries

for the equations from the ABS classification were obtained. Based on the results

of [98] and [100], in this section, first, a list of Yang-Baxter maps is obtained by

considering the equations of the ABS classification. For the sake of space, this list

will be reported in Appendix F. Interestingly, all the Yang-Baxter maps obtained

belong to the classification of quadrirational Yang-Baxter maps [14, 97] (see also

Chapter 7). Then, motivated by the similarity between the 3D-boundary consistency

and the set-theoretical reflection equation, we show that the quadrirational reflection

maps classified in [40] (see also Chapter 7) can be used as a systematic tool to

generate boundary equations. As a results, a number of boundary equations for the

quad-graph equations of the ABS classification will be presented in Appendix G.

We start with a brief review of the method developed in [98] in which Yang-Baxter

maps were derived from 3D-consistent equations. Given a quad-graph equation

Q(u00,u10,u01,u11, p,q) = 0 , (8.6)

let Gε be a connected one-parameter group of transformations acting on the variables

u00, u10, u01 and u11:

Gε : (u00,u10,u01,u11) 7→ (û00, û10, û01, û11) . (8.7)

This transformation is said to be a symmetry of (8.6), if

Q(û00, û10, û01, û11, p,q) = 0 , (8.8)

whenever (8.6) holds. The corresponding infinitesimal action reads

vQ = 0 , (8.9)
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where v is the infinitesimal generator of Gε in the form

v = η00
∂

∂u00
+ η10

∂

∂u10
+ η01

∂

∂u01
+ η11

∂

∂u11
. (8.10)

Clearly here Gε is a Lie group whose group structure can be obtained using the

exponential map. The quantity ηkl, k and l = 0,1, that is characteristic of Gε,

depends precisely on the vertex (kl):

ηkl =
d
dε

Gε(ukl) . (8.11)

This justifies the use of the term ”one-point Lie symmetry” for Gε and v. Methods

to obtain the one-point characteristic η2 for quad-graph equations can be seen in

[82, 83]. Knowing η, the following step is to identify a lattice invariant I satisfying

v I = 0 , (8.12)

and use the lattice invariant to define the edge variables (X ,Y,U,V ) from the vertex

variables (u00,u10,u01,u11) (see Fig. 8.9) by

X = I(u00,u10) , Y = I(u10,u11) , U = I(u01,u11) , V = I(u00,u01) . (8.13)

Here, the form of I can be easily obtained using the method of characteristics. Having

the 3D-consistent equation Q (8.6) and the change of variables (8.13), one can obtain

two relations relating the four edge variables X , Y , U and V . Solving this two

relations gives a map R : (X ,Y ) 7→ (U,V ). In [97], it was shown that if such map is

unique, then it is a Yang-Baxter map. The proof is well illustrated in Fig. F.1 in

which the 3D consistency of Q guarantees the Yang-Baxter property of R .

u00

p

(X ,a) u10

q (Y,b)

u11
p

(U,a)u01

q(V,b)

Fig. 8.9 : Link between quad-equation and Yang-Baxter map

2We drop the subscript kl with the understanding that η depends on its lattice coordinate kl .
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Therefore, in order to derive Yang-Baxter maps from the 3D-consistent quad-

graph equations, it is crucial to have the symmetries of the latter. Study of the

symmetries of the quad-graph equations from the ABS classification was made in

[100]. In contrast to the one-point symmetry (8.11), the authors considered a more

general symmetry called five-point symmetry in which the characteristic η depends

on five points. A complete list of the five-point symmetries for the ABS classifica-

tion was also obtained [100]. For the purpose of linking quad-graph equations to

Yang-Baxter maps, we restrict ourselves to the class of one-point symmetries (8.11)

that is indeed a subclass of the five-point symmetries. Using the corresponding

results exhausted in [100], it is straightforward to obtain the Yang-Baxter maps cor-

responding to the ABS classification. They are reported in Table F.1 in Appendix F.

Interestingly, all the Yang-Baxter maps obtained here belong to the quadrirational

yang-Baxter maps classified in [14, 97] (see also Chapter 7).

Remark 8.4.1 The importance of Table F.1 is that a correspondence between the

two classified integrable schemes: the ABS classification on one hand and the quadri-

rational Yang-Baxter maps on the other, is established. However, the correspondence

is not ”complete” due to the fact that for families Q2, Q3δ=1 and Q4 (K 6=±1) there is

no one-point symmetry [100]3. Similar correspondence was also obtained in [79, 78]4

using an ”inverse” approach that derives 3D-consistent equations from quadrirational

Yang-Baxter maps.

Remark 8.4.2 Several technical difficulties take place here to establish such quad-

graph equation-Yang-Baxter map correspondence. First, the quadrirational Yang-

Baxter maps obtained using the symmetries of the quad-graph equations are in gen-

eral not in their canonical forms as that listed in the Table 7.1 and 7.2. Up to

the Yang-Baxter equivalence (7.6), one needs to find suitable transformations trans-

forming them into their canonical forms in order to identify them with the maps in

Table 7.1 and 7.2. Second, the parameters a,b of the quadrirational Yang-Baxter

maps are expressed in terms of the lattice parameters p,q of quad-graph equations.

A transformation φ : (p,q)→ (a,b) is also needed to recognize the maps with their

canonical forms. These two features will be discussed in the following section and

also in Appendix F when going through the examples.

3In [100], a one-point symmetry was given in the case of Q4 (K = ±1) which would generate
a Yang-Baxter map. However, due to the equivalence between Q3δ=0 and Q4 (K = ±1) (here we
thank A.P. Veselov for showing us such correspondence), Q4 (K = ±1) will give the same Yang-
Baxter map, that is H1, as Q3δ=0 does. Indeed, Q4 (K = ±1) can be obtained from Q3δ=0 by
performing x 7→ x−1

x+1 to the vertice variables and p→ e2p, q→ e2q to the paramters.
4We thank P. Kassotakis and M. Nieszporski for providing us their unpublished paper [78].
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Having established the quad-graph equation-Yang-Baxter map correspondence

(see Table F.1), we now proceed to deriving boundary equations—equations in the

form (8.5) together with a 3D-consistent quad-graph equation satisfying the 3D-

boundary consistency—from the quadrirational reflection maps [40] (see Chapter 7).

Let a quad-graph equation from the ABS classification be in the form

Q(u00,u10,u01,u11, p,q) = 0 . (8.14)

Assume that it possesses some one-point symmetries so that certain quadrirational

Yang-Baxter maps denoted by R (p,q) can be accordingly obtained. Here the pa-

rameters p,q of R are those of Q. Let the reflection maps for R be in the form

K : (X ,a) 7→ (ha(X),σ(a)) , X ∈ S , a ∈ Σ . (8.15)

Then, for each Q in the form (8.14), its boundary equations can be written as

P(u10,u00,u01, p)≡ I(u00,u01)−hp(I(u00,u10)) = 0 , p→ ρ(p)≡ σ(p) . (8.16)

The formula (8.16) is the main result of this section. This states that, for a given

Q, once its associated Yang-Baxter maps R are known, reflection maps K of R
give boundary equations, i.e. P and ρ, which along with Q satisfy the 3D-boundary

consistency. Indeed, the origin of this formula comes from the folding method ex-

plained in Chapter 7 in the aim of constructing reflection maps. When folding a

square in half (see Fig. 7.2), through the corresponding change of variables (8.13),

one gets (8.16). Our construction also ensures that Q and P satisfy the 3D-boundary

consistency property since the corresponding Yang-Baxter and reflection maps sat-

isfy the set-theoretical reflection equation. In other word, besides the quad-graph

equation-Yang-Baxter map correspondence, the formula (8.16) gives rise to the un-

derlying correspondence between boundary equations and reflection maps. Next, we

can put the quadrirational reflection maps classified in Chapter 7 into use. As a

result, a number of boundary equations for various quad-graph equations from the

ABS classification will be shown in Appendix G. Note that we make no claim of

completeness, and a method for a complete classification is in fact an interesting

open problem.
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8.5 Boundary equations for A1δ=0 as an example

In this section, boundary equations for the quad-graph equation A1δ=0 from the ABS

classification are explicitly constructed using the method introduced in the previous

section, in order to illustrate certain technical subtleties.

In order to use the formula (8.16), the main technical obstacle is to find the

corresponding reflection maps for the quadrirational Yang-Baxter maps derived from

the quad-graph equation. To fix notation, we denote a quad-graph equation by

Q(u00,u10,u01,u11, p,q) = 0 , (8.17)

with p,q being the lattice parameters and a (parametric) quadrirational Yang-Baxter

map by

R (a,b) : (X ,Y ) 7→ (U = fab(X ,Y ),V = gab(X ,Y )) , (8.18)

with a,b being the map parameters. Then, the aim is to use the classification of

the quadrirational reflection maps that were presented in Table 7.3. However, as

mentioned in Remark 8.4.2, the quadrirational Yang-Baxter maps obtained from a

quad-graph equation are in general not in their canonical forms, which implies that

the reflection maps from Table 7.3 cannot be directly used. Recall the Yang-Baxter

equivalence (7.6) and the ”reflection equivalence” (7.22). For both of them, a certain

bijection ψ(a) : CP1 → CP1 is evolved. Now, to have correct reflection maps for

(8.16), one needs to find such ψ(a). Moreover, as pointed out in Remark 8.4.2, a

transformation φ transforming parameters p,q to a,b is also required.

Precisely, the equation A1δ=0 is in the form

Q(u00,u10,u01,u11, p,q) = p(u00 + u01)(u10 + u11)−q(u00 + u10)(u01 + u11) . (8.19)

For A1δ=0, three one-point symmetry generators were given in [100]:

η1 = (−1)k+l , η2 = u00 , η3 = (−1)k+lu2
00 . (8.20)

Using the method of characteristics, the corresponding invariants I1, I2 and I3 read

I1(s, t) = s + t , I2(s, t) =
s
t
, I3(s, t) =

1
s

+
1
t
. (8.21)

Note that all these invariants can be defined up to a certain constant which represents

apparently an additional parameter for the associated Yang-Baxter maps. However,

this extra parameter can be easily removed by taking account of the Yang-Baxter
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equivalence (7.6). Thus, without loss of generality, we choose Ii, i = 1,2,3 to be in

its simplest form (8.21).

For I1, the lattice invariants—Yang-Baxter variables—read

X = u00 + u10 , Y = u10 + u11 , U = u01 + u11 , V = u00 + u01 , (8.22)

which satisfy

X−Y = V −U , pVY −qXU = 0 . (8.23)

This yields the relations

fpq(X ,Y ) = pY
(

X−Y
qX− pY

)
, gpq(X ,Y ) = fqp(Y,X) , (8.24)

which represent a quadrirational Yang-Baxter map. To recognize the family to which

this map belongs, one takes the transformation in the sense of the Yang-Baxter

equivalence (7.6) with ψ(p) : X 7→ pX and also a transformation φ : p→ a ,q→ b

acting on the parameters. It is straightforward to check that (8.24) is equivalent to

the FIII quadrirational Yang-Baxter map (see Table 7.1). For this family, we have

the following nontrivial reflection maps (see also Table 7.3):

σ(a) =
µ2

a
, ha(X) =

aX
µ

or ha(X) =−aX
µ

, (8.25)

where µ is a free parameter. Performing the transformation in the sense of the

”reflection equivalence” (7.22) with ψ̃(a)≡ψ−1(a) : X→ X
a and also φ̃ : a→ p ,b→ q,

one obtains the reflection maps for (8.24). They read

σ(p) =
µ2

p
, hp(X) =

µX
p

or hp(X) =−µX
p

. (8.26)

Inserting this into the formula (8.16) yields the boundary equations for A1δ=0:

P(x,y,z, p) = µ(x + y)− p(y + z) , or P(x,y,z, p) = µ(x + y)+ p(y + z) , (8.27)

both valid with ρ(p) ≡ σ(p) = µ2

p . Note that in this case, the two possibilities for

P = 0 are related by the transformation µ→−µ which leaves ρ(p) invariant so that

we only have one boundary equation here.
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Let us perform the same analysis for I2. The Yang-Baxter variables are

X = u00/u10 , Y = u10/u11 , U = u01/u11 , V = u00/u01 , (8.28)

and they satisfy

XY = UV , pX(Y +U)(Y + 1)−qY (X + 1)(U + 1) = 0 , (8.29)

which yields

fpq(X ,Y ) =
qY − pXY + qXY − pXY 2

p + pY −qY −qXY
, gpq(X ,Y ) = fqp(Y,X) . (8.30)

Now, letting ψ : X 7→ −X and φ : p→ a ,q→ b, and performing the transformation

(7.6) with ψ, one obtains from (8.30) the HII quadrirational Yang-Baxter map (see

Table 7.2). For this family, we have the following reflection maps (see Appendix E):

σ(a) =
µ2

a
, ha(X) =

a + µ−Xµ
a

, or ha(X) =
aX

aX + µ−Xµ
, (8.31)

σ(a) =−a + 2µ , ha(X) =−X , or ha(X) =
a +(X−1)µ
aX + µ−Xµ

, (8.32)

where µ is a free parameter. Performing the transformation (7.22) with ψ̃≡ψ−1 = ψ

and φ̃ : a→ p ,b→ q, one gets the following reflection maps for (8.30):

σ(p) =
µ2

p
, hp(X) =− p + µ + Xµ

p
, or hp(X) =

pX
−pX + µ + Xµ

, (8.33)

σ(p) =−p + 2µ , hp(X) =−X , or hp(X) =
p− (1 + X)µ

pX− (1 + X)µ
. (8.34)

Inserting them into the formula (8.16) yields the boundary equations

P(x,y,z, p) = px(y + z)+(x + y)zµ , or P(x,y,z, p) = y(p(y + z)− (x + y)µ) , (8.35)

both valid with ρ(p)≡ σ(p) = µ2

p , and,

P(x,y,z, p) = y(x + z) , or P(x,y,z, p) = p
(
y2− xz

)
− (x + y)(y− z)µ , (8.36)

both valid for ρ(p)≡ σ(p) =−p+2µ. Here the two relations in (8.35) are equivalent,

if we consider P = 0 and the transformation µ→−µ.

Finally, using I3 gives again the relations (8.23) so that we obtain the FIII quadri-

rational Yang-Baxter map. Therefore, we can use the same reflection maps (8.26)
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here. Expressions of boundary equations are in the form

P(x,y,z,a) = ax(y + z)+(x + y)zµ , or P(x,y,z,a) = ax(y + z)− (x + y)zµ , (8.37)

both valid with ρ(a) = µ2

a . These are in fact the same solutions under the transfor-

mation µ→−µ and coincide with the first solutions (8.35) already obtained from

the use of I2.

All boundary equations obtained here for the equation A1δ=0 are summarized

in Table G.3 in Appendix G. One can show by direct computation that all P and

ρ found here together with A1δ=0 satisfy the 3D-boundary consistency. Example

of boundary equations for other equations from the ABS classification will also be

shown in Appendix G.



Chapter 9
Conclusion

This thesis has investigated the fundamental problem of adding boundaries to inte-

grable systems for various integrable schemes. The key contributions are as follows:

• in Chapter 3, classes of integrable BCs for the vector NLS equation on the

half-line were derived. N-soliton reflections in the presence of an integrable

boundary were constructed. An interesting phenomenon of transmission be-

tween different components of vector solitons before and after interacting with

the boundary was demonstrated.

• In Chapter 4, the factorization property of the soliton-soliton and soliton-

boundary interactions, in the context of the vector NLS equation on the half-

line, were fully understood by virtue of the set-theoretical Yang-Baxter and

set-theoretical reflection equations.

• In Chapter 5, N-soliton reflections for the vector NLS equation on the half-line

were constructed using a space-evolution method that we also introduced.

• In Chapter 6, we introduced various aspects of reflection maps, that are solu-

tions of the set-theoretical reflection equation.

• In Chapter 7, a classification of quadrirational reflection maps was obtained.

• In Chapter 8, boundaries were added to quad-graph integrable systems and

BCs were encoded into boundary equations. A criterion for integrability was

established using a three-dimensional boundary consistency. Integrable bound-

ary equations were found for a number of quad-graph equations.

These results can be naturally extended to the following open questions. First,

as to soliton models on the half-line, the method developed for solving the vector
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NLS equation on the half-line can be adapted to other soliton models which also

possess the folding symmetry in space variable i.e. transforming the variable x to

−x. As remarked in the end of Chapter 5, the space-evolution method seems to

be of particular interest to treat half-line problems. It provides a physical way

to transform the nonlinearly coupled system (3.55) to the linearly coupled system

(5.26), although the precise transformation is unknown. It would be interesting to

unveil such a linearization process. In the context of quadrirational reflection maps,

one can also seek their geometric interpretations in terms of pencil of conics as the

constructions of quadrirational Yang-Baxter maps. Also, following the introduction

of the zero curvatures conditions for the 3D-boundary consistency in [39], one can

also look for similar structure for the set-theoretical reflection equation. Finally, the

folding technique presented in various places in this thesis shows how relevant it is

in the integrable theories with boundaries. Again using folding technique seems to

be a good tool to classify boundary equations for quad-graph equations.

We stress that the notions of reflection maps and integrable boundaries for quad-

graph systems consist of novel aspects in the discipline. With the introduction of the

3D-boundary consistency [39] (see also Chapter 8), we believe that a vast amount of

interesting topics has been open, amongst which are: finding a method for classifying

boundary equations for quad-graph equations; tackling the problem of posing the

initial-boundary value problem for a quad-graph system with a boundary; finding

soliton solutions on quad-graphs with boundary; implementing the discrete inverse

scattering method with boundaries in light of Fokas method; taking the continuous

limits of boundary equations, etc.
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Appendix A
Unified transform method and linearizable

boundary conditions

The purposes of this chapter are 1) to adapt the unified transform method to the vec-

tor NLS equation on the half-line; 2) to derive the linearizable boundary conditions

that are equivalent to the integrable boundary conditions obtained in Sec. 3.1.

The unified transform method was developed by Fokas (see e.g. [51, 52, 54])

aiming at solving two-dimensional partial differential equations with generic initial-

boundary conditions. The main idea lies in the simultaneous treatments of both the

x and t-part of the Lax pair. It turns out that the initial and boundary conditions

can be encoded into two scattering systems through the direct scattering processes

of both the x-part and t-part of the Lax pair. Then the solutions of the original sys-

tem with generic boundary conditions are nicely translated into a Riemann-Hilbert

(RH) problem in which the jump matrix contains all the information of the initial-

boundary conditions. Indeed, the unified transform method can be regarded as a

generalization of the usual ISM. It provides an ideal and powerful framework to

study soliton equations on the half-line [52, 53, 32, 57]. In particular, a class of

boundary conditions that are called linearizable boundary conditions are shown to

be of particular interest [52, 53, 54] and consists of the main issues of this chapter.

We follow the standard presentation of the unified transform method to collect

main results needed in this chapter. Details and proofs are referred to [57] in which

the scalar NLS equation on the half-line was investigated in detail.
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A.1 From Lax pair to global relation

To be concrete, let the commutator operator Σ̂3 act as

Σ̂3A = [Σ3,A], eAΣ̂3B = eAΣ3Be−AΣ3 , (A.1)

with Σ3 being defined in (2.6). Define an exact one-form F as

F (x, t,k) = eiφ(x,t,k)Σ̂3(QΦ(x, t,k)dx + QT Φ(x, t,k)dt) , (A.2)

where Q, QT and φ are respectively defined in (2.3), (2.6) and (2.17), then the Lax

pair (2.4, 2.5) can be equivalently formulated as

d(eiφ(x,t,k)Σ̂3Φ(x, t,k)) = F (x, t,k) . (A.3)

For the domain of the space and time variables being

0≤ x < ∞, 0≤ t < ∞ , (A.4)

solutions of (A.3) are in the following form:

Φ(x, t,k) = In+1 +
∫ (x,t)

(x0,t0)
e−iφ(x,t,k)Σ̂3F (ξ,τ,k) , (A.5)

where the two points (x0, t0) and (x, t) identify a path on the domain (A.4). One can
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Fig. A.1 : Paths of X(x, t,k), Y (x, t,k) and Z(x, t,k) on 0≤ x < ∞, 0≤ t < T

define three Jost solutions X(x, t,k), Y (x, t,k) and Z(x, t,k) following three different

paths represented in Fig. A.1. Precisely, they correspond to

X(x, t,k) : (x0, t0) = (0,T ) , (A.6a)

Y (x, t,k) : (x0, t0) = (0,0) , (A.6b)

Z(x, t,k) : (x0, t0) = (∞, t0) . (A.6c)
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It follows from the standard theory of (Volterra) integral equations that X , Y and Z

can be split into two block-column forms as

X = (X (2),X (3)), Y = (Y (1),Y (4)), Z = (Z(−),Z(+)) , (A.7)

where the superscripts (1),(2),(3) and (4) denote respectively the four quadrants

of the k-complex planes (see Fig. A.2), whilst (+),(−) denote the upper and lower

half k-complex planes. The block-column functions are understood to be analytic

and bounded in the domains corresponding to their superscript. Next, we seek the

(1)

(3)

(2)

(4)

Fig. A.2 : Four quadrants of the k-complex plane

following matrices S(k), T (k) relating the Jost solution X , Y and Z as

Z(x, t,k) = Y (x, t,k)e−iφ(x,t,k)Σ̂3S(k) , (A.8)

X(x, t,k) = Y (x, t,k)e−iφ(x,t,k)Σ̂3T (k) . (A.9)

As a direct consequence of the forms of X , Y and Z, one has

detS(k) = detT (k) = 1 , (A.10)

and

S(k) = Z(0,0,k) , T (k) = X(0,0,k) . (A.11)

In contrast to the usual ISM, one needs two scattering systems (A.8) and (A.9) due

to the presence of the three Jost solutions. They complete the direct scattering

processes of a half-line system. In component, S(k) and T (k), and their inverse

matrices can be written in 2×2 block-matrix forms as

S(k) =

(
a(−)(k) b(+)(k)

b(−)(k) a(+)(k)

)
, S−1(k) =

(
c(+)(k) d(+)(k)

d(−)(k) c(−)(k)

)
, (A.12)



A.1. FROM LAX PAIR TO GLOBAL RELATION 105

where a(+) and c(+) (resp. a(−) and c(−)) are analytic and bounded in the upper

(resp. lower) half k-complex plane, and

T (k) =

(
A(24)(k) B(13)(k)

B(24)(k) A(13)(k)

)
, T−1(k) =

(
C(13)(k) D(13)(k)

D(24)(k) C(24)(k)

)
. (A.13)

where A(24) and C(24) (resp. A(13) and C(13)) are analytic and bounded in the union

of the quadrants (2) and (4) (resp. (1) and (3)).

Based on (A.8, A.9), we are ready to construct the RH problem. Define the

following matrix quantities:

G1(x, t,k) =(Y (1)(c(+))−1,Z(+))(x, t,k) , (A.14)

G2(x, t,k) =(X (2)(Λ
(+))−1,Z(+))(x, t,k) , (A.15)

G3(x, t,k) =(Z(−),X (3)(Λ
(−))(−1))(x, t,k) , (A.16)

G4(x, t,k) =(Z(−),Y (4)(c(−))−1)(x, t,k) , (A.17)

where

Λ
(+) = c(+)A(24) + d(+)B(24) , Λ

(−) = c(−)A(13) + d(−)B(13) . (A.18)

Apparently G j, j = 1, . . . ,4 is analytic in the jth quadrant of the k-complex plane.

Let ρ(±) ≡ (a(∓))−1 b(±), then, G1, G2, G3 and G4 satisfy the following RH problem

(see Fig. A.3):

G4(x, t,k) = G1(x, t,k)e−iφ(x,t,k)Σ̂3 J4(k), J4 =

(
I −ρ+

ρ− I−ρ−ρ+

)
, k ∈ R+ , (A.19)

G2(x, t,k) = G1(x, t,k)e−iφ(x,t,k)Σ̂3 J1(k), J1 =

(
I 0

Ξ+ I

)
, k ∈ iR+ , (A.20)

G2(x, t,k) = G3(x, t,k)e−iφ(x,t,k)Σ̂3 J2(k), J2 = J3 J−1
4 J1, k ∈ R− , (A.21)

G4(x, t,k) = G3(x, t,k)e−iφ(x,t,k)Σ̂3 J3(k), J3 =

(
I −Ξ−

0 I

)
, k ∈ iR− , (A.22)

where R+ (resp. R−) represents the positive (resp. negative) real axis and

Ξ
(+) = (a(+))−1B(24)(Λ

(+))−1 , Ξ
(−) = (a(−))−1B(13)(Λ

(−))−1 . (A.23)

One can state that the solutions of the RH problem are solutions of the Lax pair

(2.4, 2.5). This gives rise to solutions of the half-line problem through certain re-
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G1

G3

G2

G4

J4J2

J1

J3

Fig. A.3 : A RH problem with four jump matrices J1, J2, J3 and J4

construction formula [57].

A crucial observation is the following: the matrices S(k) and T (k) containing

scattering data are not independently, indeed they are related by a so-called global

relation. Precisely, from (A.8, A.9), one has

Z(0, t,k) = X(0, t,k)e−iφ(0,t,k)Σ̂3(T−1 S)(k) . (A.24)

In addition, from its definition, Z can also be written as

Z(0, t,k) = I +
∫ 0

∞

e−iφ(ξ,t,k)Σ̂3(QZ)(ξ, t,k)dξ . (A.25)

Combining this two relations together and taking t→ T = ∞ yield

−I +(T−1 S)(k) = lim
t→∞

e−iφ(0,t,k)Σ̂3

∫ 0

∞

e−iφ(ξ,t,k)Σ̂3(QZ)(ξ, t,k)dξ . (A.26)

This is the global relation that is a functional constraint relating the elements of

S(k) to those of T (k). Study of this relation is beyond the scope of this presentation.

In [31] global relation for the scalar NLS case was treated. Although in general one

cannot solve this relation, i.e. express the elements of T (k) in terms of those of S(k),

a particular reduction using the inner symmetry of the system can be used. This

reduction leads to the important concept of linearizable boundary conditions.
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A.2 Linearizable boundary conditions

The argument is the following [57]: under the transformations k→−k and x→−x,

the domains of analyticity of G j, j = 1, . . . ,4 are unchanged. This implies that the

system of G j(−x, t,−k), j = 1, . . . ,4 may also satisfy certain RH problem which gives

solutions to the half-line problem. To extract this information, one introduces a

nonsingular matrix N(k) satisfying

V (t,−k)N(k) = N(k)V (t,k) , (A.27)

where the matrix V (t,k) is defined as

V (t,k)≡−i2k2
Σ3 + QT (0, t,k) . (A.28)

Note that (A.27) is defined at x = 0 due to the form of V (t,k). If such N(k) exists, then

(A.27) leads to an extra reduction relation for the scattering matrix T (k) because

of the definition of T (k) (A.9, A.11). Therefore, a particular class of boundary

conditions, that is referred to as linearizable in Fokas’ language, can be obtained by

solving (A.27).

Precisely, one has

V (t,k) =

(
−2ik2In + iRR†(0, t) 2kR(0, t)+ iRx(0, t)
−2kR†(0, t)+ iR†

x(0, t) 2ik2− iR†R(0, t)

)
. (A.29)

Following the condition

detV (t,k) = detV (t,−k) , (A.30)

one gets either

det
(

(2ik2In− iR†R)− (−2kR† + iR†
x)(−2ik2 + iRR†)−1(2kR + iRx)

)
=det

(
(2ik2In− iR†R)− (2kR† + iR†

x)(−2ik2 + iRR†)−1(−2kR + iRx)
)
, (A.31)

or

2kiR†
x(−2ik2 + iRR†)−1R−2ikR†(−2ik2 + iRR†)−1Rx

=2ikR†(−2ik2 + iRR†)−1Rx−2kiR†
x(−2ik2 + iRR†)−1R , (A.32)

where both R and Rx are evaluated at x = 0. By direct computations, both (A.31)
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and (A.32) can be reduced to

RR†
x = RxR† . (A.33)

The quantity RR†
x is clearly hermitian. Now, suppose that Rx = HR and H is time-

independent, then H is a hermitian matrix. Hence H is diagonalizable. Inserting

Rx = HR into (A.33) yields

HRR† = RR†H , (A.34)

which is the same relation as what we obtained in Sec. 3.1. This justifies our early

claim in Remark 3.1.1 that the linearizable boundary conditions for the vector NLS

equation on the half-line is equivalent to the integrable boundary conditions (3.22,

3.23).

To obtain the form of N(k), it follows from (A.27) that

2ik2[Σ3,N(k)] = QT (0, t,−k)N(k)−N(k)QT (0, t,k) . (A.35)

Recall Eq. (3.5) which is in the form

2ik2[Σ3,L(k)] = Q̃T (0, t,k)L(k)−L(k)Qt(0, t,k) . (A.36)

Here both N(k) and L(k) are time-independent. Observing that

QT (0, t,−k) = Σ3 Q̃T (0, t,k)Σ3 , (A.37)

then this relation together with (A.35) and (A.36) yield

Σ3 L(0, t,k) = N(k) , (A.38)

which was already pointed out in Remark 3.1.1. From the results obtained in Sec. 3.1

for the form of L(k), one can state that N(k) can be written as

N(k) =

(
k−iα
k+iα In

−1

)
, or N(k) =


σ1

. . .

σn

−1

 , (A.39)

where σ j = −1, j ∈M and σ j = 1, j ∈ {1, . . . ,n} \M, M being an nonempty subset

of {1, . . . ,n}.



Appendix B
Proof of Eq. (3.25)

Assume, without loss of generality, that all the quantities involved in this chapter

are evaluated at t = 0. Indeed, the time-dependence can be easily added for time

here acts only as a parameter. To proceed, one needs to clarify the following notions.

1. We work with the x-part of the Lax pair which is in the form

Φx(x,k)+ ik[Σ3,Φ(x,k)] = Q(x)Φ(x,k) . (B.1)

where Φ is an (n + 1× n + 1) matrix function and Σ3 and Q(x) are the same

objects as defined in Sec. 2.1. In Sec. 3.1, the symmetry relation

Q̃(x) = Q(−x) (B.2)

was imposed, which led to the following Bäcklund transformation

Φ̃(x,k) = L(x,k)Φ(x,k) , (B.3)

with the Bäcklund matrix L(0,k) being in the form (3.24). Here Φ̃(x,k) is

understood to satisfy the relation (B.1) with Q(x) being replaced by Q̃(x).

2. Considering the relations (B.1) and (B.2), one can show that Φ(x, t) and Φ̃(x,k)

are related by

Σ3 Φ(x,k) = Φ̃(−x,−k)
(

e−ikxΣ3 M(k)eikxΣ3
)
, (B.4)

where M(k) is an invertible matrix depending only on k. The simple way to get

(B.4) is to show that Σ3 Φ(x, t)e−ikxΣ3 and Φ̃(−x,−k)e−ikxΣ3 satisfy the same

auxiliary problem. Then, they must be related by a k-dependent invertible
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matrix function that is denoted by M(k) in (B.4).

3. The matrix S(k) involved in the scattering system (2.24) can be in general

defined as

S(k) = lim
x→∞

(
eikxΣ3 Φ(x,k)e−ikxΣ3

) (
e−ikxΣ3 Φ

−1(−x,k)eikxΣ3
)
, k ∈ R , (B.5)

for all Φ satisfying (B.1).

4. From the points 1 - 3, one can show that for the quantity S̃(k) defined as

S̃(k) = lim
x→∞

(
eikxΣ3Φ̃(x,k)e−ikxΣ3

) (
e−ikxΣ3Φ̃

−1(−x,k)eikxΣ3
)
, k ∈ R , (B.6)

on one hand, through the use of (B.3), one gets

S̃(k) = lim
x→∞

(
eikxΣ3(LΦ)(x,k)e−ikxΣ3

) (
e−ikxΣ3(Φ

−1 L−1)(−x,k)eikxΣ3
)
, k ∈ R ,

(B.7)

on the other, through the use of (B.4), one gets

S̃(k) = Σ3 S−1(−k)Σ3 , (B.8)

with S(k) defined in (B.5).

To prove Eq. (3.25), one needs to compare (B.7) with (B.8). This consists in having

the form of the Bäcklund matrix L(x,k) evaluated as x→±∞, i.e. to obtained L+(k)

and L−(k) defined as

L+(k)≡ lim
x→∞

L(x,k) , L−(k)≡ lim
x→−∞

L(x,k) . (B.9)

One can observe from the the form of L(0,k) (defined in (3.24)) that L(0,k) can be

written up to a scalar factor either as

L(0,k) =

(
In+1 +(

k− iα
k + iα

−1)P0

)
, (B.10)

or as

L(0,k) =

(
In+1 +(

k + iα
k− iα

−1)Q0

)
. (B.11)
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The forms of the matrices P0 and Q0 depend on the boundary condition that one

put at x = 0. Precisely, taking the Robin boundary condition (3.22), one has

P0 =

(
In 0
0 0

)
, Q0 =

(
0 0
0 1

)
. (B.12)

Taking the mixed Neumann and Dirichlet boundary condition (3.23), the forms of

L(0,k) (B.18, B.19) are understood with the limit a→−∞. Thus, in this case

k + iα
k− iα

=
k− iα
k + iα

=−1 , a→−∞ . (B.13)

Then, one has

P0 =

(
Dn 0
0 0

)
, Q0 =

(
In−Dn 0

0 1

)
, (B.14)

where Dn is a diagonal matrix with the entries being either 0 or 1 on its diagonal.

It follows from (B.12) and (B.14) that P0 and Q0 can be considered to be projectors

satisfying

P0 + Q0 = In+1 . (B.15)

One can thus put P0 and Q0 in the following forms:

P0 = β0(β
†
0β0)−1

β
†
0 , Q0 = γ0(γ

†
0γ0)−1

γ
†
0 , (B.16)

where β0 and γ0 are matrices determined by the forms of P0 and Q0 respectively.

The Bäcklund matrix L depends in general on x. Its x-dependence can be obtained

by inserting (B.3) into (B.1):

Lx + ik[Σ3,L] = Q̃L−LQ . (B.17)

Indeed, L(x,k) is a dressing factor of degree 1. It can be written either as

L(x,k) =

(
In+1 +(

k− iα
k + iα

−1)P (x)

)
, (B.18)

or as

L(x,k) =

(
In+1 +(

k + iα
k− iα

−1)Q (x)

)
, (B.19)

with the matrices P (x) and Q (x) being projectors defined as

P (x) = β(β
†
β)−1

β
†(x) , Q (x) = γ(γ

†
γ)−1

γ
†(x) . (B.20)
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Here the matrices β(x) and γ(x) are well defined at x = 0 with

β(0)≡ β0 , γ(0)≡ γ0 . (B.21)

Evaluating (B.17) at k =±iα, one can show that β(x) and γ(x) satisfy

U(x, iα)β(x) = βx(x) , U(x,−iα)γ(x) = γx(x) , (B.22)

where

U(x,k)≡−ikΣ3 + Q(x) . (B.23)

Then, using standard method [47, 62] to evaluate the projectors P (x) and Q (x) as

x→ ∞ and x→−∞ respectively, one has

lim
x→∞

P (x) = P0 , lim
x→−∞

Q (x) = Q0 . (B.24)

This reveals that up to a certain scalar factor

L+(k) = L−(k) = L(0,k) . (B.25)

Substituting this relation into (B.7) and comparing the resulting formula with (B.8),

one has

Σ3S−1(−k)Σ3 = L(0,k)S(k)L−1(0,k) . (B.26)

With the following identification:

WS−1(k)W−1 = S†(k∗) , B(k) = Σ3L(0,k) , (B.27)

one can prove Eq. (3.25).
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Algorithm for constructing paired norming

constants

We provide an algorithm to solve recursively the nonlinearly coupled system (3.48)

of β j and β j+N , j = 1, . . . ,N. The key observation is relying on Theorem 2.2.7. Let

d1...2N(k) = d1d2,{1} . . .d2N,{1...2N−1}(k) , (C.1)

d1...2N(k) is defined in (2.67 - 2.69). Recall also the definition of A j+N in (2.71). The

dressing factor defined in (C.1) leads to the following expression:

A j+N =
2N

∏
i=1,i 6= j+N

(
k j+N− ki

k j+N− k∗i

)(
d−1

2N,{1...2N−1} . . . d−1
j+N+1,{1... j+N}π j+N,{1... j+N−1}

d−1
j+N−1,{1... j+N−2} . . . d−1

1

)
(k j+N) , (C.2)

where

d j,{1... j−1}(k) = In +

(
k∗j − k j

k− k∗j

)
π j,{1... j−1} , (C.3)

π j,{1... j−1} =
ξ j,{1... j−1}ξ

†
j,{1... j−1}

ξ
†
j,{1... j−1}ξ j,{1... j−1}

, ξ j,{1... j−1} = d†
1... j−1(k j)β j . (C.4)

First, take j = N. Inserting (C.2, C.3) into (3.48) implies

βNξ
†
2N,{1...2N−1} = B(k∗N)

2N−1

∏
i=1

(
k2N− ki

k2N− k∗i

)
π2N,{1...2N−1} . (C.5)
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Define an n-vector v2N as

v2N =
ξ2N,{1...2N−1}
|ξ2N,{1...2N−1}|2

=

(
M(k∗N)

2N−1

∏
i=1

(
k2N− ki

k2N− k∗i

))−1

βN . (C.6)

Combining (C.5) and (C.6) together gives

ξ2N,{1...2N−1} =
v2N

|v2N |2
. (C.7)

With the knowledge of ξ2N,{1...2N−1}, we can thus compute d2N,{1...2N−1}(k). Next,

take j = N−1. From (3.48) and (C.2), one gets

βN−1ξ
†
2N−1,{1...2N−2} =M(k∗N−1)

2N

∏
i=1,i6=2N−1

(
k2N−1− ki

k2N−1− k∗i

)
×

d−1
2N,{1...2N−1}(k2N−1)π2N−1,{1...2N−2} . (C.8)

Since the form of d2N,{1...2N−1}(k) is known, define v2N−1 as

v2N−1 =
ξ2N−1,{1...2N−2}
|ξ2N−1,{1...2N−2}|2

=

(
M(k∗N−1)d−1

2N,{1...2N−1}(k2N−1)
2N

∏
i=1,i6=2N−1

(
k2N−1− ki

k2N−1− k∗i

))−1

βN−1 . (C.9)

Combining (C.8) and (C.9) gives

ξ2N−1,{1...2N−2} =
v2N−1

|v2N−1|2
. (C.10)

This implies that the dressing factor d2N−1,{1...2N−2}(k) is known. Recursively, taking

j = N− 2, N− 3 up to 1, we are able to derive ξ j+N,{1... j+N−1} and d j+N,{1... j+N−1}

step by step from j = N−2 to j = 1. Since {k j;β j}, j = 1, . . . ,N are known quantities,

we have thus the access of d j,{1... j−1}(k), j = 1, . . . ,N as well. Therefore, β j+N can

be derived thanks to (C.4).



Appendix D
Proof of Prop. 4.2.1

To prove (4.26), we need the mirror symmetry relations (4.25) and the permutability

property of dressing transformations (Theorem 2.2.7). To avoid tedious notations,

we choose to work with {1 . . .N} instead of {i1 . . . iN}. We need to keep in mind

that {1 . . .N} can be indeed replaced by any permutation of itself but indexed by

the ordered number from 1 to N by taking j → i j. Regardless of any particular

permutation, the relations (4.25) always hold with respect to the index j. Write

d1...2N in the following form:

d1...2N = d1 . . .dN,{1...N−1}dN+1,{1...N} . . .d2N,{1...2N−1} . (D.1)

First, taking j = N in (4.25), then A2N (see Eq. (2.67 - 2.69) and (2.71)) can be

written as

A2N =
2N−1

∏
i=1

(
k2N− ki

k2N− k∗i

)
π2N,{1...2N−1} d−1

1...2N−1(k2N) . (D.2)

Substituting this into (4.25) gives

βNξ2N,{1...2N−1} = B(k∗N)
2N−1

∏
i=1

(
k2N− ki

k2N− k∗i

)
π2N,{1...2N−1} , (D.3)

where ξ
†
2N,{1...2N−1} is defined in (2.69). Taking the definitions (4.9, 4.10) and the

mirror symmetry k j+N =−k∗j , we come to the following identification:

γ2N,{1...2N−1} = ξ2N,{1...2N−1} , (D.4)

γN =
2N−1

∏
i=1

(
k2N− ki

k2N− k∗i

)−1

βN , (D.5)
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Define an n-vector u2N as

u2N =
ξ2N,{1...2N−1}
|ξ2N,{1...2N−1}|2

= B−1(k∗N)γN . (D.6)

Inserting (D.4 - D.6) into D.3 gives

p2N,{1...2N−1} =
u2N

|u2N |
= B(kN)pN . (D.7)

This relation proves (4.26) with j = N. Next, taking j = N−1, one has

A2N−1 =
2N

∏
i=1,i 6=2N−1

(
k2N− ki

k2N− k∗i

)
d−1

2N,{1...2N−1}π2N−1,{1...2N−2} d−1
1...2N−2(k2N−1) . (D.8)

Substituting this into (4.25) implies

d2N,{1...2N−1}(k2N−1)B−1(k∗N−1)βN−1ξ
†
2N−1,{1...2N−2}=

2N

∏
i=1,i6=2N−1

(
k2N−1− ki

k2N−1− k∗i

)
π2N−1,{1...2N−2} .

(D.9)

With (D.7) and k j+N =−k∗j , one gets

d2N,{1...2N−1}(k2N−1)B−1(k∗N−1) =

(
In +

(
k∗2N− k2N

k2N−1− k∗2N

)
p2N,{1...2N−1}p

†
2N,{1...2N−1}

)
B−1(k∗N−1)

= B−1(k∗N−1)

(
In +

kN− k∗N
k∗N−1− kN

pNp†
N

)
= B−1(k∗N−1)d†

N(kN−1) . (D.10)

According to (4.9), it comes to the following identification:

γN−1,{N} =
2N

∏
p=1,p6=N
p6=N−1

(
k∗N−1− kp

k∗N−1− k∗p

)
d†

N(kN−1)βN−1 , (D.11)

γ2N−1,{1...2N−2} =

(
k∗2N−1− k2N

k∗2N−1− k∗2N

)
ξ2N−1,{1...2N−2} . (D.12)

Define now u2N−1 as

u2N−1 =
γ2N−1,{1...2N−2}
|γ2N−1,{1...2N−2}|

= B−1(k∗N−1)γN−1,{N} . (D.13)
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Combining (D.9 - D.13) together gives

p2N−1,{1...2N−2} =
u2N−1

|u2N−1|
= B(kN−1)pN−1,{N} . (D.14)

Recursively, taking j = N−2, N−3 up to 1, the following relation always holds

dq+N,{1...q−1+N}(k j+N)B−1(k∗j) = B−1(k∗j)d†
q,{q+1...N}(k j) , j ≤ q . (D.15)

Then, in the same way, by inserting k j+N = −k∗j , γ j,{ j+1...N} and γ j+N,{1... j+N} into

(4.25), it follows from direct computations that

p j+N,{ j... j−1+N} = B(k j)p j,{ j+1...N} . (D.16)

Now we can add an order to the system by replacing {1, . . . ,N} with {i1, . . . , iN},
i.e. j→ i j. Because of Theorem 2.2.7, the order is indeed irrelevent, we thus come

to prove Eq. (4.26). Note that Eq. (4.28) can be obtained by following the same

reasoning by taking account of the following dressing factor

d1...2N = d1 . . .d j−1,{1... j−2}d j+1,{1... j−1} . . .dN,{1... ĵ...N−1}d j,{1... ĵ...N}d j+N,{1...N}

. . .d j+N−1,{1... j+N−2}d j+N+1,{1... j+N−1} . . .d2N,{1... ĵ+N...2N−1}d j+N,{1... ĵ+N...2N} .

(D.17)

This means that d j,{1... ĵ...N} is the last dressing factor added in the product of the

first N dressing factors, and d j+N,{1... ĵ+N...2N} is the last dressing factor added in the

product of the total 2N dressing factors. Then applying (4.26) yields directly (4.28).



Appendix E
Reflection maps for HII

Both FII and HII, given in Table 7.1 and 7.2, are in their canonical forms up to the

Yang-Baxter equivalence (7.6). Define the bijections ψ and ψ̄ and the symmetry

map s as

ψ(X) : X 7→ 1
X
, ψ̄(X) : X 7→ 1−X , s(X) : X 7→ X

1−X
. (E.1)

Thanks to Prop. 7.1.1 and 7.1.2, one can show that FII is related to HII by

R FII

ψ←→ R̃ FII

s−→ R̃ HII

ψ̄←→ R HII . (E.2)

As to the reflection maps for HII, since reflection maps for F̃II and H̃II are the same

according to Prop. 7.2.1, reflection maps for HII can be obtained using Prop. 7.2.2

in which equivalence class for reflection maps is specified. Precisely, one has

K FII

ψ←→ K̃ FII = K̃ HII

ψ̄←→ K HII . (E.3)

The explicit forms of K HII are shown in Table E.1.

Type σ(a) ha(X) ϕa(X)

µ2

a
aX

aX−µX+µ
a−µX+µ

a
HII

−a + 2µ −X a+µX−µ
aX−µX+µ

Table E.1: Reflection maps for HII



Appendix F
Quad-graph equation-Yang-Baxter map

correspondence

The main idea, presented in [98], which underlies the correspondence between 3D-

consistent equations and Yang-Baxter maps, is the 3D consistency property for both

integrable schemes. This idea can be well illustrated in Fig. F.1.

u000 X u100

u011 u111

u010

Y

u110

Z

u001

u000 X u100

u011 u111

u001 u101

Y

u110

Z

Fig. F.1 : 3D consistency of Yang-Baxter maps and quad-graph equations around a cube

Here, we list the Yang-Baxter maps derived from the ABS classification in Ta-

ble F.1. Interestingly, they are all quadrirational maps (see Table 7.1 and 7.2). As

a follow-up to the discussion made in Remark 8.4.2, we present explicitly here the

construction of the quadrirational Yang-Baxter maps for the equations Q3δ=0.

To proceed, recall the Yang-Baxter equivalence (7.6) and the ”reflection equiva-

lence”(7.22). We also fix the convention that the quad-graph equations are parametrized

by p,q whilst the quadrirational Yang-Baxter maps in their canonical forms are

parametrized by a,b.

For Q3δ=0, through the invariant

I(s, t) = s/t , (F.1)



120

one gets a map R (p,q) : (X ,Y ) 7→ (U = fpq(X ,Y ),V = gpq(X ,Y )) with

fpq(X ,Y ) =
Y (p− pq2 + qX(q−Y )+ p2X(−1 + qY ))

q− p2q + p(p−X)Y + q2(−1 + pX)Y
, gpq(X ,Y ) = fqp(Y,X) . (F.2)

Then performing the transformation (7.6) with ψ(p) : X 7→ X
p and also φ : p2 →

a ,q2 → b transforming parameters p,q to a,b, one can get the HI quadrirational

Yang-Baxter map.

In contrast to the case A1δ=0 in which the transformation φ, transforming the

lattice parameters p,q to the map parameters a,b, is trivial—φ : p→ a,q→ b—for

Q3δ=0, such φ are in more complicated forms, and will affect the search for reflection

maps and boundary equations (see Appendix G).
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Quad-graph Equation Characteristic Invariant Yang-Baxter map

Q1δ=0

η1 = 1 I(s, t) = s− t HA
III

η2 = u00 I(s, t) = s/t HII
η3 = u2

00 I(s, t) = 1/s−1/t HA
III

Q1δ=1 η1 = 1 I(s, t) = s− t HII

Q3δ=0 η1 = u00 I(s, t) = s/t HI

H1
η1 = 1 I(s, t) = s− t HV
η2 = (−1)k+l I(s, t) = s + t FV
η3 = (−1)k+lu00 I(s, t) = st FIV

H2 η1 = (−1)k+l I(s, t) = s + t FIV

H3δ=0
η1 = u00 I(s, t) = s/t HB

III
η2 = (−1)k+lu00 I(s, t) = st FIII

H3δ=1 η1 = (−1)k+lu00 I(s, t) = st FII

A1δ=0

η1 = (−1)k+l I(s, t) = s + t FIII
η2 = u00 I(s, t) = s/t HII
η3 = (−1)k+lu2

00 I(s, t) = 1/s + 1/t FIII

A1δ=1 η1 = (−1)k+l I(s, t) = s + t FII

A2 η1 = (−1)k+lu00 I(s, t) = st FI

Table F.1: Correspondence between the ABS classification and the quadrirational Yang-
Baxter maps



Appendix G
Boundary equations for the ABS

classification

Following the construction of boundary equations, presented in Sec. 8.4, for the 3D-

consistent equations from the ABS classification, we list some results of boundary

equations in the following tables (Table G.1, G.2 and G.3). Indeed, the reason the

construction formula (8.16) is valid is that the 3D-boundary consistency is underlying

both schemes as depicted in Fig. G.1 and G.2. In addition, the equation Q3δ = 0 is

treated in the following to illustrate some technical subtleties.

For Q3δ = 0, as pointed out in Appendix F, its correspondence to the HI quadri-

rational Yang-Baxter map is established by taking the invariant (F.1), which leads

to (F.2). It was also understood in Appendix F that (F.2) is equivalent to HI by

taking the transformation (7.6) with certain bijection ψ. In addition, one needs

to perform a non trivial transformation φ : p2→ a,q2→ b transforming the lattice

parameters p,q of Q3δ = 0 to the parameters a,b of HI. This affects the forms of

reflections maps for the map (F.2), as now one needs to solve the equation

σ(p2) = q2 , (G.1)

for q with σ being defined in Table 7.3 for the FI thus HI families. Solutions of (G.1)

are double-valued. For σ(a) = µ2

a , one has

q = ρ(p) =
µ
p
, or q = ρ(p) =−µ

p
, (G.2)

which is in a ”nice” fractional form and can be used to construct reflection maps for
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(F.2) and then boundary equations for Q3δ=0. For σ(a) = a+µ2−1
a−1 , one has

q = ρ(p) =−

√
1 +

µ2

−1 + p2 , or q = ρ(p) =

√
1 +

µ2

−1 + p2 , (G.3)

which is in a ”ugly” form. ”Ugly” expressions are also obtained for the reflection

maps for (F.2) and boundary equations for Q3δ = 0.

Note that this multi-valued situation happens also for the equations H3δ=1 and

A2. For sake of simplicity and conciseness, in Table G.1, G.2 and G.3, we only list the

results that are in ”nice” forms i.e. excluding the expressions involving square root

or logarithm functions. However, one has to keep in mind that, by construction, the

”ugly” expressions of boundary equations together with their corresponding quad-

graph equations satisfy also the 3D-boundary consistency.

Q

Q

P

P

P

P

Q

Q

Fig. G.1 : 3D-boundary consistency

R

R

K

K

K

K

R

R

Fig. G.2 : 3D consistency for the set-
theoretical reflection equation
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Equations ρ(p) P(x,y,z, p)

Q1δ=0

µ2

p
p(y− z)+(x− y)µ
px(y− z)+(−x + y)zµ

−p + 2µ
y(x + z)
p
(
y2− xz

)
+(x− y)(y + z)µ

Q1δ=1

µ2

p
p(y− z−µ)−µ(x− y + µ)
p(y− z−µ)+ µ(x− y + µ)

−p + 2µ
x− z
p(p−2µ)− (x− y)(y− z)

Q3δ=0
µ
p

y(x + z)
y(x− z)
p2 (y2 + xz

)
+
(
y2 + xz

)
µ− py(x + z)(1 + µ)

p2 (y2− xz
)
−
(
y2− xz

)
µ− py(x− z)(1−µ)

Table G.1: Results for boundary equations (Q family)
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Equations ρ(p) P(x,y,z, p)

H1 −p + 2µ
y(x + z)
y(z− x)+ p−µ

H2 −p + µ
x + 2y + z + µ
z− x

H3δ=0
µ
p

y
(

p2x−µz
)

y(x + z)

H3δ=1
µ
p

y(x + z)
p2 + py(x + z)+ µ
p2− py(−x + z)−µ
y(z− x)

Table G.2: Results for boundary equations (H family)
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Equations ρ(p) P(x,y,z, p)

A1δ=0

µ2

p
µ(x + y)+ p(y + z)
px(y + z)+(x + y)zµ

−p + 2µ
y(x + z)
p
(
y2− xz

)
− (x + y)(y− z)µ

A1δ=1

µ2

p
p(y + z−µ)+(x + y−µ)µ
p(y + z−µ)− (x + y−µ)µ

−p + 2µ
p(p−2µ)+(x + y)(y + z)
z− x

A2
µ
p

y(z− x)
y(x + z)
(p2 + µ)

(
xy2z + 1

)
− py(x + z)(1 + µ)

(p2−µ)
(
xy2z−1

)
+ py(x− z)(1−µ)

Table G.3: Results for boundary equations (A family)
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[66] Habibullin, I.T. The Bäcklund transformation and integrable initial boundary

value problems. Matematicheskie Zametki, 49(4):130–137, 1991.

[67] Habibullin, I.T. and Svinolupov, S.I. Integrable boundary value problems for

the multicomponent Schrödinger equations. Physica D: Nonlinear Phenomena,

87(1):134–139, 1995.

[68] Hasegawa, A. and Tappert, F. Transmission of stationary nonlinear optical

pulses in dispersive dielectric fibers. I. Anomalous dispersion. Applied Physics

Letters, 23(3):142–144, 1973.

[69] Hatayama, G. Kuniba, A. and Takagi, T. Soliton cellular automata associated

with crystal bases. Nuclear Physics B, 577(3):619–645, 2000.

[70] Hietarinta, J. Permutation-type solutions to the Yang-Baxter and other

n-simplex equations. Journal of Physics A: Mathematical and General,

30(13):4757, 1997.

[71] Hietarinta, J. Searching for CAC-maps. Journal of Nonlinear Mathematical

Physics, 12(sup2):223–230, 2005.

[72] Hietarinta, J. and Viallet, C. Integrable lattice equations with vertex and bond

variables. Journal of Physics A: Mathematical and Theoretical, 44(38):385201,

2011.

[73] Hirota, R. Nonlinear partial difference equations. I. A difference analogue of

the Korteweg-de Vries equation. J. Phys. Soc. Japan, 43:1424–1433, 1977.

[74] Hirota, R. Nonlinear partial difference equations. III. Discrete sine-Gordon

equation. J. Phys. Soc. Japan, 43(6):2079–2086, 1977.

[75] Jimbo, M. Aq-difference analogue of U (g) and the Yang-Baxter equation.

Letters in Mathematical Physics, 10(1):63–69, 1985.



BIBLIOGRAPHY 133

[76] Jimbo, M. A q-analogue of U (gl (N+ 1)), Hecke algebra and the Yang-Baxter

equation. Lett. Math. Phys., 11:247–252, 1986.

[77] Kac, V.G. Infinite-dimensional Lie algebras, volume 44. Cambridge University

Press, 1994.

[78] Kassotakis, P. and Nieszporski, M. Systems of difference equations on a vector

valued function that admit 3D space of scalar potentials. In preperation.

[79] Kassotakis, P. and Nieszporski, M. On non-multiaffine consistent-around-the-

cube lattice equations. Physics Letters A, 2012.

[80] Korteweg, D.J. and de Vries,G. On the Change of Form of Long Waves Ad-

vancing in a Rectangular Channel and on a New Type of Long Stationary

Waves. Phil. Mag, 39:422–443, 1895.

[81] Lax, P.D. Integrals of Nonlinear Equations of Evolution and Solitary Waves.

Commun. Pure Appl. Math, 21:467–490, 1968.

[82] Levi, D. and Winternitz, P. Continuous symmetries of difference equations.

Journal of Physics A: Mathematical and General, 39(2):R1, 2006.

[83] Levi, D. Petrera, M. and Scimiterna, C. The lattice Schwarzian KdV equa-

tion and its symmetries. Journal of Physics A: Mathematical and Theoretical,

40(42):12753, 2007.

[84] Lieb, E.H. and Liniger, W. Exact analysis of an interacting Bose gas. I. The

general solution and the ground state. Physical Review, 130(4):1605, 1963.

[85] Lobb, S. and Nijhoff, F. Lagrangian multiforms and multidimensional con-

sistency. Journal of Physics A: Mathematical and Theoretical, 42(45):454013,

2009.

[86] Lu, J.H. Yan, M. and Zhu, Y.C. On the set-theoretical Yang-Baxter equation.

Duke Mathematical Journal, 104(1):1–18, 2000.

[87] Manakov, S.V. On the theory of two-dimensional stationary self-focusing

electro-magnetic waves. JETPh, 65:505–516, 1973.
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