IT City Research Online
UNIVEREIST%( ]OggLfNDON

City, University of London Institutional Repository

Citation: Guizzo, E., Weyde, T., Scardapane, S. & Comminiello, D. (2023). Learning
Speech Emotion Representations in the Quaternion Domain. IEEE/ACM Transactions on
Audio Speech and Language Processing, 31, pp. 1200-1212. doi:
10.1109/taslp.2023.3250840

This is the published version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/30187/

Link to published version: https://doi.org/10.1109/taslp.2023.3250840

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.



City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk



http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

1200

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 31, 2023

Learning Speech Emotion Representations in the
Quaternion Domain

Eric Guizzo ", Tillman Weyde
and Danilo Comminiello

Abstract—The modeling of human emotion expression in speech
signals is an important, yet challenging task. The high resource
demand of speech emotion recognition models, combined with
the general scarcity of emotion-labelled data are obstacles to the
development and application of effective solutions in this field. In
this paper, we present an approach to jointly circumvent these dif-
ficulties. Our method, named RH-emo, is a novel semi-supervised
architecture aimed at extracting quaternion embeddings from real-
valued monoaural spectrograms, enabling the use of quaternion-
valued networks for speech emotion recognition tasks. RH-emo is
a hybrid real/quaternion autoencoder network that consists of a
real-valued encoder in parallel to a real-valued emotion classifier
and a quaternion-valued decoder. On the one hand, the classifier
permits to optimization of each latent axis of the embeddings
for the classification of a specific emotion-related characteristic:
valence, arousal, dominance, and overall emotion. On the other
hand, quaternion reconstruction enables the latent dimension to
develop intra-channel correlations that are required for an effec-
tive representation as a quaternion entity. We test our approach
on speech emotion recognition tasks using four popular datasets:
IEMOCAP, RAVDESS, EmoDB, and TESS, comparing the per-
formance of three well-established real-valued CNN architectures
(AlexNet, ResNet-50, VGG) and their quaternion-valued equiva-
lent fed with the embeddings created with RH-emo. We obtain a
consistent improvement in the test accuracy for all datasets, while
drastically reducing the resources’ demand of models. Moreover,
we performed additional experiments and ablation studies that
confirm the effectiveness of our approach.

Index Terms—Speech emotion recognition, quaternion neural
networks, quaternion algebra, transferable embeddings.

I. INTRODUCTION

UMAN-MACHINE interaction is becoming increasingly
important in our everyday life. Research on speech
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recognition reached near-human performance in recent years.
Nevertheless, besides the mere sequence of words, there is
additional information that the speech can carry, in particular
about emotion. Speech Emotion Recognition (SER) is there-
fore acquiring a growing role in research on human-machine
interaction, since it helps provide a more complete account
of the information conveyed by speech signals. Despite the
impressive success that neural networks have achieved in this
task, SER is still challenging due to the variability of emotional
expression, especially in real-world scenarios where general-
ization to unseen speakers and contexts is required [1], [2]. The
difficulty of this task is partly related to the general scarcity of
emotionally-labelled audio data, which is due to the high cost of
recording and labelling such data. Another well-known difficulty
of SER is that emotional information in speech involves long-
term temporal dependencies that are in the order of seconds [3],
[4], [S]. This forces models to analyze large temporal windows
and, consequently, to use a large number of resources.

This study proposes a joint solution for two main issues in
SER research. Broadly speaking, we propose to map speech
signals into a compact multi-channel latent representation that
permits having different “emotional viewpoints” of the signal,
which are signal representations individually related to different
components of human emotion, namely: valence arousal and
dominance. To this end, we make use of quaternion information
processing, which is a well-established strategy to minimize
models’ resource demand without reducing their performance,
as we discuss in detail in Sections II and III. The resulting
proposed model, named Real to Emotional H-Space (RH-emo),
is a semi-supervised autoencoder architecture that maps input
speech signals to an embedded emotional-quaternion space. The
axes of the embedded space are individually related to different
emotion characteristics, i.e., valence, arousal, and dominance,
which are represented as quaternion components. As we will be
further explored from Section V onward, when used as a feature
extractor that feeds into quaternion neural networks (QNNs),
RH-emo improves the performance in SER tasks while consid-
erably reducing the number of trainable parameters and com-
puting resources, compared to equivalent real-valued models
processing plain spectrograms. This behavior is also consistent
in situations where data is very scarce.

The specific contributions of our work are the following:

® We define anovel method, RH-emo, that draws quaternion-

valued embeddings from speech signals, where each

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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quaternion component is tailored to a specific emotional
characteristic.

® We leverage the capabilities of quaternion emotion em-
beddings and the effectiveness of quaternion convolutional
neural networks (QCNNs) to jointly solve two of the most
significant issues related to speech emotion recognition:
data scarcity and high resource demand.

® We extensively evaluate our approach using 4 popular SER
datasets and 3 widely-used CNN-based architectures.

* We provide open-source code' and pretrained models? that
can be exploited to improve the performance and efficiency
of existing SER models.

The remainder of the paper is organized as follows: Section II
reviews the relevant literature, Section I1I is a brief overview of
quaternion neural networks, Section IV describes our proposed
method in detail, Section V presents our experimental setup and
results, Section VI presents the ablation studies we conduct,
Section VII discusses our outcomes and the properties of our
approach and Section VIII draws the conclusions of this paper.

II. BACKGROUND

In the literature, two main approaches to labeling expressed
human emotions exist. On the one hand, discrete models provide
a set of fixed emotion categories, such as happy, sad, angry, fear-
ful, surprised, disgusted, neutral. On the other hand, continuous
models map emotions into a multidimensional space. The most
common model is a 2D valence-arousal space, where valence
describes the degree of emotional pleasantness and arousal (or
activation) of the intensity of the emotion. Dominance can be
added as a third dimension describing the amount of control of a
person expressing an emotion. This encodes a so-called valence-
arousal-dominance space [6], [7], [8]. Discrete emotions can be
mapped in this continuous space although the exact mapping is
not standardized and different studies can use slightly different
mappings.

A traditional approach to SER is based on two consecutive
stages: hard-coded extraction of affect-salient features followed
by a learning-based classification or regression. Various com-
binations of features and classifier types have been proposed.
The most commonly used features are: base pitch, formant
features, energy/spectral features, and prosody. A wide variety of
classifiers has been proposed: artificial neural networks [9], [10],
[11], Bayesian networks, [12], Hidden Markov Models [13],
[14], support vector machines [15], [16], and Gaussian mixture
models [17]. Nevertheless, in state-of-the-art methods, there is
no default choice of features and classifier type [18]. With the
advent of deep learning, end-to-end learning mostly replaced
hard-coded feature extraction and selection, with models au-
tomatically extracting features from low-level representations
of the input data (usually Fourier-based transforms, wavelet

I[Online]. Available: https://github.com/ispamm/rhemo.

2[Online]. Available: https:/drive.google.com/drive/folders/ IBWvbxqns
HK7FyXB1_L_DIO6UFECKNRvz?usp=sharingPretrained models: rhemo/
weights.
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transforms, or raw audio data). This enables a model to fine-tune
the feature extraction for a specific task and, consequently,
often obtain a higher accuracy compared to engineered feature
extraction. A range of deep learning architectures have been
adopted for SER. The most commonly used are convolutional
neural networks [19], [20], [21], recurrent neural networks [22],
[23] and combinations of the two [24], [25], [26] Various studies
directly compare the performance of approaches using end-to-
end learning and hard-coded feature extraction, showing that the
former generally provides a higher classification accuracy on the
same data [27], [28], [29], [30]. Nevertheless, as a drawback,
deep learning models generally require a higher computational
cost and longer training times than traditional machine learning
techniques and the end-to-end learning usually requires a large
number of labelled data [31], [32].

A well-established solution to overcome the data scarcity
in SER is transfer learning by weight initialization: network
weights are initialized with values from a network that was
pretrained with a different task, possibly on a different (usu-
ally large) dataset. Many variants of this method have been
shown to improve the performance of SER models in limited-
data scenarios and even when the task is rather distant from
speech emotion [33], [34], [35]. Also, various data augmen-
tation strategies have been successfully adopted for the same
purpose, e.g. [36], [37]. On the other hand, the application of
dimensionality reduction transformations to the model’s input
data is an established strategy for reducing resource demands
while limiting the loss of useful information carried by the input
data. Among others, autoencoders, PCA-based approaches, and
transformer networks have been used in the field of SER [34],
[38], [39], obtaining improvement both in the model’s efficiency
and classification accuracy.

A recent and increasingly popular strategy to improve the
efficiency and the performance of deep learning models is
the use of quaternion information processing [40], [41], [42],
[43], [44], [45], [46]. Performing operations in the quaternion
domain permits bootstrap intra-channel correlations in multi-
dimensional signals [47], [48], i.e., among the color channels
of RGB-encoded images. Moreover, due to the fewer degrees
of freedom of the Hamilton product compared to the regular
dot product, quaternion networks have a significantly lower
number of parameters compared to the real counterparts [40].
Quaternion-valued neural networks have also been successfully
adopted in the audio domain [49], [50] and specifically for
speech recognition [45] and speech emotion recognition [46].
Nevertheless, an intrinsic limitation of quaternion information
processing is that it requires three or four-dimensional data as
input, where intra-channel correlations exist [41], [42], [43],
[44]. This is necessary to enable the benefits derived from the
use of the Hamilton product instead of the regular dot product, as
further discussed in Section III. In the audio domain, first-order
Ambisonics [51] signals are naturally suited for a quaternion
representation, being four-dimensional and presenting strong
correlations among the spatial channels, and the application of
quaternion networks to problems related to this audio format
has already been extensively investigated [50], [52], [53], [54].
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Nevertheless, in the vast majority of cases, audio-related
machine-learning tasks deal with monaural signals, which are
usually treated as vectors of scalars (time-domain signals), ma-
trices of scalars (magnitude spectrograms), or 3D tensors (com-
plex spectrograms). Hence they can not be naturally represented
as a quaternion entity and additional processing is required to
produce a suitable quaternion representation of these signals.

A number of different approaches have been proposed to
overcome the necessity of having three or four-dimensional
input data with intra-channel correlations. Among others, [45]
use Mel spectrograms, cepstral coefficients, and first and second-
order derivatives as the four axes of the encoded quaternion. In
contrast, [46] convert Mel spectrograms to color-scaled images
and use the RGB channels as axes of the encoded quaternion, fol-
lowing a computer vision-oriented approach. Parcollet et al. [55]
presented two learning-based approaches to map real-valued
vectors into the quaternion domain, by producing through a
network four-channel representations of the input data that
present meaningful intra-channel correlations. On the one hand,
the Real to H-space encoder [55], applied to speech recognition
tasks, consists of a simple real-valued dense layer applied at the
beginning of a quaternion classifier network, which is trained
jointly with the classifier. On the other hand, the Real to H-space
Autoencoder, tested in the natural language processing field
(conversation theme identification) [55] operates in an unsu-
pervised way. Such a method contains a real-valued encoder
and a quaternion-valued decoder, where the latter is expected
to enable both the network’s embeddings and output to present
meaningful intra-channel correlations that can be exploited by
a quaternion-valued classifier network.

In this paper, we introduce RH-emo, a hybrid real-quaternion
autoencoder-classifier architecture that is trained in a semi-
supervised fashion in order to optimize each axis of the embed-
ding dimension to different emotional characteristics: the first
channel is optimized for discrete emotion recognition and the 3
other channels are individually optimized for the classification
of valence, arousal, and dominance (as shown in Fig. 1). RH-
emo is intended to be used as a feature extractor that permits
using QNNs for SER tasks with real-valued signals without
additional preprocessing. This approach has two advantages:
it improves the performance of SER models even in situations
where data is scarce and it drastically reduces the number of
network parameters, consequently reducing the resource de-
mand. We extend the approach of the quaternion autoencoder
in [55] by specializing the learned quaternion representation for
our specific task (SER), where the different axes are optimized
for the detection of different emotional characteristics that are
coherent with the most used criteria of emotion classification.
Moreover, we implement it with a more complex architecture
(deep convolutional autoencoder) and we apply it to a different
domain: emotion recognition from speech audio.

III. QUATERNION CONVOLUTIONAL NEURAL NETWORKS

Operations between quaternion numbers are defined in the
quaternions algebra H. A quaternion Q is a four-dimensional
extension of a complex number, defined as q = qo + ¢17 +
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q2) + g3k = qo + q, where, qo, q1, g2 are real numbers, and 7, j
and k are the quaternion unit basis. In this representation qq is
the real part and ¢17 + ¢2J + g3k is the imaginary part, where
12 = 3> = #? = —1 and ij = —3i. From the latter assumption
follows that the quaternion vector multiplication is not commu-
tative. A quaternion can also be represented as a matrix of real
numbers:

qgo —q¢@1 —q2 —q3
q1 qgo —g3 q2
= . 1
q q2 q3 g0 —q1 M)

q3 —q2 q1 q0

Analogously to real and complex numbers, a set of operations
can be defined in the quaternion space:
* Addition: g + p=(qo+po) + (q1 +p1)i + (g2 +p2)j +
(g3 +p3)i
¢ Conjugation: " = qo — 17 — q2) — @3~
e Scalar multiplication: A\q = Aqy + Aq17 + g2 + Aqsi
¢ Element multiplication (or Hamilton product):

a®Pp = (g + @12+ q2j + q3~) (po + p1i + p2j + p3k)

= (qopo — q1p1 — q2p2 — G3P3)
+ (qop1 + q1po + q2p3 — q3p2) i
+ (qop2 — q1p3 + q2po + q3p1) j
+ (903 + q1p2 — q2p1 + g3po) i 2

The quaternion convolutional neural network (QCNN) is an
extension of the real-valued convolutional neural network to the
quaternion domain. For each input vector of a quaternion layer,
the dimensions are split into four parts to compose a quaternion
representation. In a quaternion-valued fully-connected layerthe
parameters matrices are treated as a single quaternion entity
with four components, even though they are manipulated as
matrices of real numbers [56]. In a quaternion layer, the dot
product operations used in real layers are replaced with the
Hamilton product (2) between the input vector and a quaternion-
represented weight matrix. This allows the processing of all
input channels together as a single entity maintaining original
intra-channels dependencies because the weights submatrices
are shared among the input channels. Consequently, quaternion
layers permit to spare the 75% of free parameters compared to
their real-valued equivalents because, as shown in (2), the same
components are re-used to build the output matrix.

Ina QCNN, the convolution of a quaternion filter matrix with a
quaternion vector is performed as the Hamilton product between
the real-valued matrices representation of the input vector and
filters. A quaternion convolution between a quaternion input
vectorx = xo + 12 + x2) + w3k and a quaternion filter W =
Wo + Wit + Wsj + W3k can be defined as:

Wo Wi Wy —Ws Zo

W Wy =Ws o W 1
Wxx = W, Wy Wy W, * oy | 3)

W3 *WQ Wl WO Z3

The optimization of quaternion-valued networks is identical
to the one of a real network and can be achieved through regular



GUIZZO et al.: LEARNING SPEECH EMOTION REPRESENTATIONS IN THE QUATERNION DOMAIN

backpropagation. This is possible because of the use of split
activation and loss functions, as introduced in [55], [57]. These
functions map a quaternion-like entity back to the real domain,
consequently enabling the use of standard loss functions for the
network training.

IV. THE PROPOSED RH-EMO MODEL
A. Approach

The main aim of RH-emo is to map real-valued spectrograms
to the quaternion domain, building compact emotion-related
quaternion embeddings where each axis is optimized for a
different emotional characteristic. In the embedded dimension,
the real axis of the quaternion is optimized for the discrete classi-
fication of 4 emotions: neutrality, anger, happiness, sadness and
the 3 complex axes are optimized for the prediction of emotion
in a valence, arousal and dominance 3D space. This represen-
tation exploits the natural predisposition of quaternion algebra
to process data where a 4 or 3-channels representation is mean-
ingful. Nevertheless, in most machine learning applications of
quaternion algebra, the input data is naturally organized with
a meaningful shape, as happens for instance with RGB/RGBA
images (where the color/alpha channels are treated as differ-
ent quaternion axes) and first-order Ambisonics audio signals
(where the 4 spatial channels are considered as the quaternion
axes). In our case, instead, such quaternion representation is
created through a semi-supervised learning procedure, where
the different axes are forced to contain information related to
different complementary emotion characteristics. Therefore, in
a certain sense, the axes of this embedded dimension can be
thought of as different “emotional points of view” of an audio
signal.

RH-emoisintended to be used as a pretrained feature extractor
to enable the use of quaternion-valued neural networks for SER
tasks applied to monoaural audio signals. On the one hand,
the emotion-related disentanglement among channels helps to
enhance the performance of SER models, especially under con-
ditions of data scarcity. Whereas, on the other hand, the reduced
dimensionality together with the enabled possibility to classify
the data with quaternion-valued networks permits to spare of a
large number of network parameters, consequently lowering the
resource demand and speeding up the training.

B. RH-emo Architecture

RH-emo is a hybrid real/quaternion autoencoder network.
Its structure is similar to R2Hae [55], nevertheless, RH-emo
is based on a convolutional design and it embraces multiple
classification branches, as opposed to R2Hae. We used a public
PyTorch implementation of convolution layers and operators.?
As Fig. 1 shows, our RH-emo is composed of three components:
an encoder F(X) acting on the (real-valued) input spectrogram,
producing an embedded vector. The output of the encoder is
then fed separately to a (quaternion-valued) decoder D(Z)
to reconstruct the original spectrogram and to a classification

3 [Online]. Available:
Quaternion-Neural-Networks

https://github.com/Orkis-Research/Pytorch-

1203

Input
Magnitues-only
Real-valued
Spectrogram

Parallel Real-valued
Emotion Classifiers
v

2D Convs +
Max-Pooling
Blocks

Real-valued

Encoder
e

I

Discrete
Emotion
Quaternion

Embeddings
Continuous

Emotion A
Space >

Arousal

Quaternion-
valued
Decoder

Output
Quaternion-
valued
Spectrogram

Fig. 1. RH-emo Block Diagram. An input magnitudes-only spectrogram is
first propagated into a real-valued convolutional encoder that generates embed-
dings with a [4x64x64] shape. The network is then split into two branches:
a completely unsupervised quaternion-valued decoder that reconstructs the
input spectrogram projecting it in a four-channel quaternion space and a set
of 4 parallel real-valued supervised classifiers, each connected to one of the
four channels of the embeddings and separately classifying different emotion
characteristics: discrete emotion, valence, arousal, and dominance.

head C(Z) for performing emotion recognition. The classifier
outputs four separate predictions yp, Yy, Ya, and y4 which are,
respectively, a discrete and a continuous (in the valence, arousal,
dominance space) categorization of the emotional content of the
spectrogram. The specific architecture for each of these blocks,
as well as the loss function we optimize and the training strategy
we adopt, is described more in detail in the following paragraphs.

1) Encoder: The input data, a magnitudes-only real-valued
spectrogram in our case, is forward propagated through a real-
valued autoencoder made up of 3 convolution blocks. Each
block contains a 2D convolution layer (ReL.U activations, 3x3
kernels, single-pixel stride, increasing channels number: 1, 2,
4), followed by max-pooling layers of dimension [2x2], [2x1],
[2x1]. Moreover, only between the first and the second block,
a batch normalization layer is present. The encoder produces
an embedded vector that presents a dimensionality reduced by
a factor of 0.25 compared to the input. In our experiments, we
use input spectrograms with a shape of 1x512x128 (channels,
time-steps, frequency-bins) and the embedded dimension cre-
ated by the encoder has a shape of 4x64x64. The embedded
vector is then forward propagated in parallel into four distinct
real-valued classifiers and also into a quaternion-valued decoder.
It is therefore important that the embedded vector contains a
number of elements that is multiple of four, in order to be
properly treated as a quaternion by the decoder section of the
network.

2) Classifiers: Each classifier consists of a sequence of 3
real-valued fully connected layers, where the first 2 contain
4096 neurons and are followed by a dropout layer. In the first
classifier, the output layer contains 4 output neurons (the number
of emotional classes to be classified) and softmax activation.
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Instead, the other 3 classifiers are identical and have one single
output neuron with sigmoid activation, as they are individually
aimed at a binary classification task: the prediction of “high” or
“low” valence, arousal, and dominance, respectively.

3) Decoder: The decoder mirrors the encoder’s structure but
uses quaternion-valued 2D transposed convolutions with a stride
that mirrors the pooling dimensions of the encoder, instead of the
sequence of 2D real-valued convolutions and 2x2 max-pooling
and a quaternion-valued batch normalization layer instead of its
real-valued counterpart. The output of the decoder is therefore a
matrix with the same dimensions as the input, but with 4 channels
instead of a single one.

C. Loss Function

The loss function we minimize during the training of RH-
emo is a weighted sum of the binary crossentropy reconstruction
loss between the input spectrogram and the decoder’s output,
the categorical crossentropy classification loss of the emotion
labels predicted by the supervised classifier in the middle of the
network (discrete, valence and arousal).

The objective function we minimize is, therefore:

L =BCEX,Y;)+ - {CEp,t)

+ a - [BCE(vp, vt) + BCE(ay, a;) + BCE(d,, dt)]}
4)

where BC'E is the binary crossentropy loss, C'E is the categor-
ical crossentropy loss, 3 and « are scalar weight factors, X is
the input spectrogram, Y. is the decoder’s output re-mapped
to the real domain through the split activation function (as
discussed below), p and ¢ are respectively the discrete emotion
prediction and truth label, v,/v;, ap/a; and dp/d; are respectively
the valence, arousal and dominance prediction, and truth labels.

For the reconstruction loss computation, it is necessary to map
the quaternion-valued decoder output back to the real domain, in
order to have the same shape as the input vector. For this purpose
we use a stratagem similar to the “split activation” described
in [55], [57]: we perform an element-wise mean across the
channel dimension of the quaternion output, bringing back the
4-channels vector to a single-channel shape. During the training,
this forces the model to not weigh the intra-channel correlations
among the quaternion axes in the reconstruction term of the loss
(the leftmost term of (4)). Our expectation is that this leaves
room for the emotion recognition term of the loss (the rightmost
term of (4)) for tuning these correlations, making them related
to the emotional information.

D. Training Strategy

For the RH-emo training, we use the Interactive Emotional
Dyadic Motion Capture Database (IEMOCAP) dataset [58],
which includes: 5 speakers, 7529 utterances, 9:32 hours of audio,
10 emotion labels and it is in the English language. We selected
this specific dataset for the following reasons: itis one of the most
popular SER datasets, it contains a large number of datapoints,
it is not limited to a restricted set of sentences, emotions are
expressed by actors with a natural feeling rather than being
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over-emphasized [58] and it is labelled both in the discrete and
continuous (valence, arousal, dominance) emotional domains.

We apply 4 preprocessing stages to the raw data: we first
extract 4-second non-overlapped fragments (or zero-pad if a
datapoint is shorter that this duration). Then, we compute the
short-time Fourier transform (STFT) using 16 ms sliding win-
dows with 50% overlap, applying a Hamming window and
discarding the phase information. After this point, we normalize
the whole dataset between 0 and 1 and, in the end, we zero-pad
the spectrograms to match a shape of 512 (time-steps) x 128
(frequency-bins).

To permit proper convergence, we perform the training in 2
consecutive stages: we first train the network until convergence
with the 3 weight set to 0. This removes the rightmost term
from (4), consequently eliminating the emotion classification
part of the loss. Doing so, we train the network in a completely
unsupervised way only to perform a quaternion projection of
the real input spectrogram, without taking into account any
emotion-related information. After this stage, we re-train the
network adding also the classification term in the loss in order to
specialize the learned representations to the emotion recognition
task, but also maintaining the embedded vector in a quaternion-
compatible shape that is meaningful for the decoder part of the
network. For this stage, we performed a grid search to find
the best combination of the emotion classification weights 3
and « and we ended up using = 0.01 and o = 100. This
means that overall we weigh more the reconstruction error in
the loss function (thanks to the low /), and we weigh more
the dimensional emotion classification compared to the discrete
classification (thanks to the high «).

While for the first, completely unsupervised, training stage we
use all data available with IEMOCAP, in the second supervised
stage we use only a subset of the dataset, including only the
datapoints related to 4 emotions (angry, happy, neutral, sad) and
we merge the classes happy and excited as one single emotion
class happy. This is a standard procedure with IEMOCAP, as the
other labels contained in the dataset are highly imbalanced. For
both training stages, we use subsets of approximately 70% of the
data for training, 20% for validation, and 10% for the test set. We
use a learning rate of 0.001 in the first stage and of 0.000001 in
the second one, a batch size of 20 and the Adam optimizer [59].
We use dropout at 50% in the classification branches for the
second training stage. We apply early stopping by testing at the
validation loss improvement with patience of 100 epochs in the
first stage and 30 epochs for the second one.

After these 2 training stages, we obtain a test reconstruc-
tion loss (the isolated leftmost term of (4)) of 0.00413 and
competitive test classification accuracy: 60.7% for the discrete
classification and respectively 65.4%, 75.3% and 70.2% for the
valence, arousal, and dominance dimensions.

V. EVALUATION

In order to test the capabilities and properties of RH-emo, we
compare the classification accuracy for SER tasks obtained with
real-valued CNN networks and equivalent quaternion-valued
versions of them (QCNNG). For the quaternion versions we keep
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the same architecture of the real CNNs, but we use quaternion-
valued convolution and quaternion-valued fully connected lay-
ers instead of the canonical real-valued ones, with the exception
of the final layer of the networks, which are real-valued also in
the QCNNGs. For the real networks, we use the magnitudes-only
spectra as input, while for the quaternion networks we use the
embeddings generated with RH-emo pretrained on IEMOCAP.
Moreover, we compare and combine our approach with a stan-
dard transfer learning method performed on the same dataset
(IEMOCAP): pretraining with weight initialization. Therefore
we have two distinct types of pretraining: the pretraining of
the RH-emo network, which we use to compute the emotional
embeddings, and the pretraining of the CNNs that we use to
perform the actual SER task. Both pretrainings are performed
on the IEMOCAP dataset. To avoid confusion, from here on we
will refer to the first as RH-emo pretraining and to the latter as
CNN’s pretraining.

Fig. 2 depicts all cases we include in our experimental setup.
The color coding of Fig. 2 shows the 3 consecutive stages of
our experiments: first, we pretrain RH-emo (yellow), then we
pretrain the CNNs (orange) on IEMOCAP and finally we train
or retrain the CNNs on other datasets. We have two types of
baseline: the first one, shown in the upper row of Fig. 2, is a
standard real-valued CNN with randomly-initialized weights.
As a further baseline, as depicted in the second row of Fig. 2,
we test a standard transfer learning approach applied to the real-
valued CNNs: we pretrain on IEMOCAP (the same dataset used
to train RH-emo) and we then initialize all weights of the SER
CNNss but the ones of the final classification layer. The last two
rows of Fig. 2, instead, show our approach, where we use RH-
emo as a feature extractor to feed quaternion-valued CNNs. In
the third row, only RH-emo pretraining happens, while in the
last row both RH-emo and CNNss pretraining are performed. In
the latter case, we first pretrain RH-emo, then we pretrain the
CNN on IEMOCAP, and finally, we re-train the same CNN on
different datasets.

A. Experimental Setup

We evaluate RH-emo with 3 benchmark SER datasets:

1) RAVDESS, the Ryerson Audio Visual Database of Emo-
tional Speech and Song [60]. 24 speakers, English lan-
guage, 2542 utterances, 2:47 hours of audio, 8§ emotion
labels.

2) EmoDB, a Database of German Emotional Speech [61].
10 speakers, German language, 535 utterances, 25 min of
audio, 7 emotion labels.

3) TESS, the Toronto Emotional Speech Set [62]. 2 speakers,
English language, 2800 utterances, 1:36 hours of audio, 7
emotion labels.

The preprocessing pipeline for these datasets is identical to
the one we applied to IEMOCAP, as described in Section IV,
except for the final normalization step. For the quaternion-valued
networks we normalize data between O and 1 (as required
by RH-emo), and for the real-valued networks we normal-
ize to 0 mean and unity standard deviation to permit proper
convergence.
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Fig. 2. Block diagram of our experimental setup. The yellow-to-blue color
coding reflects 3 consecutive training stages. There are 2 separate pretraining
stages: RH-emo pretraining (yellow) and CNN pretraining (green). The straight
arrows indicate the data flow, while the dotted arrows, accompanied by the
word WI, show where the weights of a pretrained network are used to initialize
the initial weights of an identical network (transfer learning). The real-valued
baseline is a regular CNN with random weight initialization, upper row. The
pretrained real-valued baseline is the same network, but its weights are initialized
with the ones of an identical network pretrained on IEMOCAP (the same
dataset used to train RH-emo), second row. The quaternion-valued network is
a quaternion-valued version of the real-valued baselines, in which (4 channel)
input is generated by forward propagating the input spectrogram in RH-emo’s
encoder, third row. The pretrained quaternion-valued network is identical to the
latter, but the weights of the CNN are initialized with the ones of an identical
network pretrained on IEMOCAP, last row.

We apply this approach to 3 popular CNN architectures
with increasing capacity: VGGI16 [63], AlexNet [64] and
ResNet-50 [65], based on the Torchvision implementations4.
These implementations present an adaptive average pooling

4[Online].
torchvision.html

Available: https://pytorch.org/vision/stable/_modules/
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TABLE I
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PRETRAINING RESULTS ON IEMOCAP TABLE IV
RESULTS FOR TESS
Arch. Method Params Train acc. | Test acc.
RH-emo / 1.3x 108 80.34 60.7 Arch. Method Params [Train acc.|Test acc.[Test UAR
VGG16 Real 1.6 x 10% 74.88 62.87 Real 1.6 x 10%]  99.54 97.62 | 9851
RH-emo+Quat 1 x 107 72.25 71.10 VGG16 RH-emo+Quat 1% 107 98.87 97.62 96.67
AlexNet Real 5.7 % 107 71.02 63.33 Real-Pre 1.6 x 108  99.95 99.52 98.95
RH-emo+Quat | 1 x 107 71.81 70.31 RH-emo+Quat-Pre| 1 x 107 | 98.72 97.85 97.92
ResNet Real 2.3x 10 61.05 57.20 Real 5.7x 10 99.18 98.01 97.03
RH-emo+Quat | 4.9 x 10° 73.03 71.20 AlexNet RH-emo+Quat 1 % 107 99.54 98.56 97.34
Real-Pre 5.7x107| 100.00 98.01 98.95
TABLE II RH-emo+Quat-Pre|1.4 x 107| 99.75 98.81 97.38
RESULTS FOR RAVDESS Real 2.3x10 100.00 97.38 97.84
ResNet | RH-emo+Quat 4.9 10°| 100.00 | 99.76 | 99.58
- Real-Pre 2.3%x107| 59.88 57.53 56.72
Arch. Method Params8 Train acc.|Test acc.|Test UAR RH-emo+Quat-Pre|4.9 x 105 100.00 99.28 97.91
Real 1.6 x 10 47.10 41.06 40.07
vGGle| RH-emo+Quat | 1x 1078 55.50 49.85 | 48.28 TABLE V
Real-Pre 1.6 x 10 67.86 45.30 46.33 TEST ACCURACY RESULTS
RH-emo+Quat-Pre| 1 x 107 67.08 53.79 46.88
Real 5.7 X 1(7)7 54.55 46.36 36.36 Average improvement Best
AlexNet RH;;‘;_’;SHM 517X><1?07 gggi ;‘?(9)2 43&23} Dataset No pret. Pret. Overall improvement
REL : 5 ’ ’ ’ IEMOCAP 9.74 / / 7.87
-emo+Quat-Pre|1.4 x 10 63.16 47.58 41.29 RAVDESS 601 1288 945 7.00
ResNet RH-emo+Quat 4.9 x 10°| 91.29 55.15 46.51 TESS 0.97 13.63 730 0.24
Real-Pre 23x107| 22.16 18.79 13.33
RH-emo+Quat-Pre|4.9 x 10°| 89.54 52.42 44.27

TABLE III
RESULTS FOR EMODB

Arch. Method Params |Train acc.|Test acc.|Test UAR
Real 1.6 x 108] 7274 70.00 58.86
VGGle| RH-emo+Quat | 1x107 | 79.54 50.00 41.73
Real-Pre 1.6 x 108 78.16 52.00 46.95
RH-emo+Quat-Pre| 1 x 107 | 75.00 47.00 40.11
Real 57x 107 63.1 47.00 40.77
AlexNet| RH-emo+Quat | 1x 107 82.3 49.00 41.99
Real-Pre 5.7x107| 7145 67.00 59.93
RH-emo+Quat-Pre|1.4 x 107| 77.63 71.00 63.89
Real 23 %107 99.47 48.00 4276
ResNet | RH-emo+Quat [4.9 x 10°|  99.73 73.00 65.64
Real-Pre 2.3%x107| 100.00 | 72.00 64.04
RH-emo+Quat-Pre|4.9 x 10°| 99.73 46.00 38.34

layer between the convolution-based feature extractor and the
fully-connected classifier. This permits to obtain an identical
output shape from the feature extractor for any input dimension.
We removed this layer from only VGG16, in order to test the
behavior of our approach also in this situation. Doing this, in fact,
the feature extractor presents a reduced output dimensionality
when the networks are fed with the quaternion embeddings (75%
smaller than using the real spectrograms), enabling to spare of
a major number of network parameters.

For all experiments we used a learning rate of 0.00001,
ADAM optimizer, and a batch size of 20 samples, we apply
early stopping with the patience of 20 epochs on the validation
loss and we split the training, validation, and test sub-sets with
approximately 70%, 20% and 10% of the data, respectively.

The main aim of this research is to provide a valid comparison
between the proposed approach (quaternion-valued CNNs fed
with RH-Emo embeddings) and standard equivalent real-valued

architectures, isolating as much as possible the pure difference
between them. We configured our experimental setup in order
to show the performance difference between real and corre-
sponding quaternion CNNs fed with the emotional quaternion
embeddings. Therefore, we paid attention to performing each
experiment in as-close-as-possible conditions, rather than op-
timizing each architecture for each different dataset, in order
to highlight the properties of our approach. State-of-the-art
results for SER tasks usually involve more complex solutions,
as, among others, data augmentation [66], [67], [68], [69],
attention [66], [69], [70], [71], adversarial attacks [72], mul-
timodal processing [70], [73], speaker-aware processing [74],
[75], transformer designs [70], [75]. Moreover, the state-of-the-
art approach can be radically different for each dataset, and
therefore using the best method for each dataset would not
permit having the same configuration for all possible aspects
in both RH-Emo experiments and the baselines. This would add
much more complexity to the setup, consequently making it less
straightforward to isolate and understand the properties of our
approach.

Because of these reasons and the fact that many existing
studies are based on different methods to compute the scores,
different data splits and may use multiple data domains, our re-
sults can not be directly compared to the current state-of-the-art
accuracy for these datasets, which, to the best of our knowledge
are 75.60% for IEMOCAP [71], 87.5% for RAVDESS [73],
88.47% for EmoDb [66] and 99.6% for TESS [67].

B. Experimental Results

Table I shows the pretraining results we obtained on IEMO-
CAP, while Tables II, III, and IV provide the results on
RAVDESS, EmoDB, and TESS, respectively. Table V, shows
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the average and best test accuracy improvement provided by
our approach, among all CNN architectures for each dataset.
Here, average improvement refers to the difference between the
average test accuracy among all real-valued and all quaternion-
valued outcomes, whereas the bestimprovement is the difference
between the best real-valued and the best quaternion-valued
accuracy we obtained. For the core results (Tables IL, III, and IV)
we include also the test set results in terms of Unweighted Av-
erage Recall (UAR). This gives further insight into the model’s
generalization performance with a metric that does not take into
account possible imbalance of the datasets’ labels.

The results clearly show that our approach enhances the
model’s performance while improving its efficiency. For all
datasets, the quaternion CNNs fed with RH-emo embeddings
provide the best test accuracy overall, with an accuracy improve-
ment of 6.01 percentage points (pp) for RAVDESS, 2.34 pp for
EmoDB, and 0.97 for TESS in the case we do not apply CNN
pretraining. The only case where our approach does not improve
the test accuracy is with the EmoDB dataset, applying CNN
pretraining, where we have a performance drop of 9 pp. In the
other cases where we applied CNN pretraining, our approach
provides a strong average improvement of 12.88 and 13.63 pp,
respectively for RAVDESS and TESS. Moreover, the test set
results in terms of UAR metric confirm the overall trend of
the accuracy metric. Nevertheless, in one single case (VGG-16
network on RAVDESS) there is a narrow inconsistency between
the two metrics. Here the pretrained QCNN shows the best
test accuracy, while the best UAR score is given by the non-
pretrained QCNN.

The results computed on IEMOCAP (Table I and first row of
Table V) depict a limit case, where knowledge is not transferred
to different data because the same dataset is used for the RH-emo
pretraining and for SER. Therefore here we did not apply any
CNN pretraining. Also in this special case is evident that models
benefit from the use of quaternion-valued SER CNNs fed with
emotional embeddings, with an average improvement of 9.74 pp
among all CNN designs we tested.

VI. ABLATION STUDIES

In order to further explore the properties of our approach and
to support its foundations, we performed additional experiments
and ablation studies. For these studies we applied the same
experimental setup presented in Section V, altering only specific
details, as described below.

A. Removing RH-emo Components

In this study, we alter the RH-emo structure and test the
emotion recognition accuracy using the embeddings generated
from the modified RH-emo networks. We compared the full
RH-emo, as described in Section IV, to the following altered
versions:

e Real: identical to the regular network, but the decoder

part is real-valued and no split activation is applied to the
reconstructed output in the loss function.
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Ablation Study: removing RH-emo components
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Fig. 3. Ablation study results. The x axis shows the average drop in test
accuracy (among the quaternion-valued VGG16, AlexNet and ResNet-50 for all
corpora) obtained with different variants of RH-emo. Each row refers to a variant
of RH-emo where we removed a specific component, namely: a completely
real-valued network, only reconstruction, only emotion recognition, no valence-
arousal-dominance (vad) estimation, and no discrete emotion classification.

e Reconstruction only: we removed the supervised classi-
fication branch, resulting in a completely unsupervised
real-quaternion hybrid autoencoder.

® Emotion only: we removed the unsupervised reconstruc-
tion branch from the network, obtaining a completely
supervised and real-valued emotion classification CNN. In
this configuration, there are still 4 target outputs, each with
a dedicated classifier (discrete emotion, valence, arousal,
dominance).

¢ Discrete emotion only: we removed the valence, arousal,
and dominance classifiers, keeping only the discrete emo-
tion classification branch. The rest of the network is unal-
tered.

e valence-arousal-dominance only: we removed the discrete
emotion recognition branch, keeping only the branches for
valence, arousal, and dominance. The rest of the network
is unaltered.

Fig. 3 exposes the results of this ablation study. In the figure,
we show the mean test accuracy improvement obtained for
all corpora with the quaternion-valued VGG16, AlexNet, and
ResNet-50 over the real-valued baselines. Each row shows the
results obtained feeding the quaternion-valued networks with
the embeddings created with the above-described variants of
RH-emo. These results consistently confirm the foundation of
our approach. The performance of all variants is inferior to the
full RH-emo. In addition, we recall that the quaternion-valued
CNNs fed with the emotional embeddings use a considerably
lower amount of parameters. The results point out that the
unsupervised branch of RH-emo is fundamental to obtain useful
embeddings, in fact, the emotion-only version, where the de-
coder part of RH-emo is removed, provides the most severe drop
in performance compared to all variants and also the baseline. As
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Ablation Study: removing RH-emo pretraining/backpropagation
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Fig. 4. Ablation study results. The x axis shows the average difference in

test accuracy (among the quaternion-valued VGG16, AlexNet and ResNet-50)
obtained by removing the RH-emo pretraining (blue lines) and backpropagation
(orange lines).

we expected, the quaternion-valued decoder of the actual RH-
emo outperforms the completely real-valued version (by 2.8pp).
This supports our hypothesis that a quaternion-value decoder
is able to create embeddings that present more suitable intra-
channel correlations for the quaternion-valued CNNs. Moreover,
also here, the quaternion approach leads to faster (pre)training
and less memory demand due to the lower amount of parameters.
The completely unsupervised variant (recognition-only) is con-
ceptually similar to R2Hae [55], but it relies on a convolutional
design and it is applied to a different domain. This ablation
study shows that the addition of a classification branch to R2Hae
provides an improvement in performance (by 0.3 pp in our case)
and therefore the semi-supervision can be considered a valuable
extension to R2Hae. This ablation study also shows that the clas-
sification of emotion in the valence-arousal-dominance space
is more influential in the creation of stronger embeddings. In
fact, the RH-emo variant without discrete classification provides
superior accuracy compared to the discrete-only version (by
0.5 pp) This is further supported by the fact that, as a result
of an extensive grid search, we apply a stronger weight to the
valence-arousal-dominance term of the loss function (the a term
in (4)).

B. Removing RH-Emo Pretraining and Backpropagation

We performed an additional ablation study where we alter how
the RH-emo weights are initialized and backpropagated during
the SER training. Fig. 4 depicts the results of this study, showing
the average difference in test accuracy per-dataset among all
CNN designs. On the one hand, we initialized the weights of
RH-emo with random values while we regularly backpropagate
the gradients of the RH-emo’s encoder layers (blue rows). By
doing this, we completely ignore the RH-emo pretraining and
we force the QCNN network to perform end-to-end training,
directly learning how to map the real-valued input spectrograms
into quaternion-compatible representations to feed the QCNNSs.
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Ablation study: reducing training data
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Fig. 5. Ablation study results. The y axis shows the test accuracy drop of

each model, compared to the baselines that use 100% of the training data. Each
point in the line shows the average performance among the real-valued (red,
yellow) and quaternion-valued (blue, green) VGG16, AlexNet, and ResNet-50
architectures for all corpora. The x axis shows the percentage of available training
and validation data used. The data reduction rates shown in the x axis are a
discrete set: we trained only on the data percentage values that are shown and
not on intermediate values. We use the full test set in all cases, in order to have
a consistent performance measure also with.

This approach is conceptually similar to (R2He) [55]. On the
other hand, we regularly initialize the weights of RH-emo with
the pretrained RH-emo network, but we don’t backpropagate
the RH-emo layers (orange rows). The results of this experiment
strongly support the foundation of our approach. The removal of
RH-emo pretraining causes a consistent and substantial decrease
in the QCNNSs test performance, of 29.4, 3.25, and 6.97 pp
for RAVDESS, EmoDB, and TESS, respectively. This confirms
the importance of the prior training of the RH-emo encoder,
as exposed in Section IV, for the development of adequate
quaternion emotional embeddings. On the contrary, the lack of
backpropagation of the RH-emo layers does not provide a con-
sistent performance drop. While the performance decreases for
EmoDB (25 pp) and for TESS (0.22 pp), a narrow accuracy boost
is evident for RAVDESS (0.91 pp). Moreover, the performance
difference is averagely inferior compared to the no-pretraining
case.

C. Reducing Training Data

As a further study, we re-trained all CNNs and QCNNs,
progressively decreasing the amount of training and validation
data. The size of the test set, instead, is kept unaltered, in order
to have a consistent performance measure that can be compared
with the other results presented in this paper. Fig. 5 shows the
outcomes of this experiment. Each line shows the trend of the
average test accuracy among all CNN architectures, at different
reduction rates of the data. Specifically, we trained on 100%,
T5%, 50%, 25%, 10%, 5% and 1% of the available data. The
yellow and red lines are the baselines, respectively with and
without CNN pretraining on IEMOCAP. Instead, the green and
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blue lines show the trend for the QCNNSs + RH-emo, respectively
with and without CNN pretraining.

The results of this ablation study clearly point out that our
method can provide consistent performance improvement even
in conditions with less data. In all cases but one (5% of training
data) our pretrained approach surpasses both real-valued base-
lines. This is a convenient property for SER tasks, considering
the general scarcity of emotion-labelled speech audio data.

VII. DISCUSSION
A. Resource Savings

RH-emo permits to spare of a considerable amount of pa-
rameters. Compared to the real counterparts, the quaternion
VGG16 uses the ~6% of the parameters, while the quaternion
AlexNet and ResNet-50 use the ~25%. The difference between
the VGG16 and the others is due to the lack of adaptive average
pooling (as described above). Therefore, on the one hand, the use
of quaternion-valued layers instead of real-valued ones permits
to drop in the number of parameters by a factor of 0.25, while, on
the other hand, the smaller feature dimensionality obtained with
the embeddings further cuts down the number of parameters by
afactor of 0.25. This in turn permits the reduction of the model’s
memory requirements and training time. In our implementation,
the embedding computation happens during the training for
every batch and, therefore, both the main network and the
RH-emo feature extractor are loaded into the memory. This
simulates a plausible application scenario of RH-emo, where
the embeddings need to be computed in real-time. Although
it is possible to pre-compute the embeddings as part of the
pre-processing pipeline, further reducing the memory demand
and computation time. As regards the memory demand, in our
setup the quaternion networks require on average 84.2% of
memory, compared to their real-valued equivalents. For the
VGG16 (where we don’t apply average pooling) the memory
demand is approximately 70%, for AlexNet the 89%, and for
ResNet-50 the 93%. Regarding the training time, the epoch du-
ration of our quaternion networks compared to the real networks
is approximately 15.9% for VGG16, 88.1% for AlexNet, and
162.6% for ResNet-50. These outcomes show that the maximum
efficiency in terms of both memory demand and computation
time is obtained for VGG16, where we take advantage of the
reduced dimensionality of the embeddings. On the other hand,
the accuracy improvement for ResNet-50 comes at the cost of
an increased computation time with respect to the real networks,
but still reducing the model’s memory demand.

B. Reconstruction Properties

Fig. 6 shows an example of the decoder’s output of the
pretrained RH-emo model. The Input subplot is the input
magnitudes-only spectrogram and the Output: mean is the
element-wise mean of the quaternion separate axes and, there-
fore, the actual matrix that is compared to the input in the loss
function. The sub-plots labelled as Output: real, i, ), k depict
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Fig. 6. Example of RH-emo quaternion reconstruction of a speech spectro-
gram. Input is the magnitudes-only input spectrogram, Qutput: real, 2, j, k are
the four output matrices of RH-emo, respectively reconstructed from the discrete
emotion, valence, arousal and dominance axes of the embeddings, Output: mean
is the pixel-wise average of Output: real, 7, j, k and is the matrix that is compared
to the input in the loss function.

the separate quaternion axes, which are generated from the emo-
tional embeddings: real from the discrete emotion classification
matrix, and 2, ), & from the valence, arousal, and dominance
channels, respectively.

By comparing the Input and the Output: mean plots, it is ev-
ident that the reconstruction is not perfect. While the time-wise
articulation of the speech seems to be accurately reproduced,
the model is not able to reconstruct in detail the most feeble
harmonics of the signal. Although it is interesting the way the
different quaternion axes are differentiated. In the real axis,
the model seems to perform an operation similar to amplitude
compression (obtainable, for instance, by computing the square
root of the matrix), bringing up the signal’s quietest portions
around the speech region. Instead, in the 3 complex axes (2, j, <)
different aspects of the signal are highlighted, focusing on
different harmonics and/or temporal areas. Our intuition is that
these representations may represent different “emotional points
of view” of the input speech signal.

C. Limitations

Besides the numerous advantages that our approach provides,
there are also some intrinsic limitations. The main constraint
of our approach is that a pretrained RH-emo network can be
used for only a fixed time scale. In this paper, we considered
a temporal window of 4 seconds, which is well suited for most
SER tasks and datasets. If a different time scale is needed, then a
specific RH-emo has to be trained on purpose. Another limitation
is that training with an end-to-end fashion is not possible, as
a pre-trained RH-emo is needed and the omission of the RH-
emo pretraining stage leads to a drastic decrease in the model’s
performance, as shown in Section VI-B.
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D. Applications and Future Work

The advantages provided by the combination of RH-emo
and quaternion-valued networks suggest several application sce-
narios. Due to the substantial saving of trainable parameters,
memory, and training time, our approach is particularly suited for
situations where limited resources are available and performance
can not be sacrificed. Another useful property of RH-emo is that
while the embeddings carry the necessary information to per-
form SER tasks (as proven by our experimental results), they also
provide speaker anonymity, as it is not possible to reconstruct
the input spectrogram without the RH-emo pretrained weights.
This could be exploited in situations where sensible speech data
must be used for SER tasks.

The positive results we obtained justify further investigation
of this approach. An immediate research objective is to test
RH-emo with different datasets, and architectures (including
recurrent networks), with multiple time scales and to different
tasks. In particular, we intend to apply the same principle of
RH-emo (based on a semi-supervised autoencoder where each
embedded channel is optimized for the classification of a dif-
ferent characteristic of an entity) for different tasks, where a
quadral representation of input data can not be directly inferred
from data, as for speech emotion. An example of this is music
genre recognition tasks, where the embedded dimensions of the
autoencoder are optimized for tempo, harmonic key, spoken
words, and instrument type recognition.

VIII. CONCLUSION

In this paper we presented RH-emo, a semi-supervised ap-
proach to obtain quaternion emotional embeddings from real
speech spectrograms. This method enables to perform speech
emotion recognition tasks with quaternion-valued convolutional
neural networks, using real-valued magnitudes spectrograms
as input. We use RH-emo pretrained on IEMOCAP to extract
quaternion embeddings from speech spectrograms, where the
individual axes are optimized for the classification of differ-
ent emotional characteristics: valence, arousal, dominance, and
overall discrete emotion.

We compare the performance on SER tasks of real-valued
CNNs fed with regular spectrograms and quaternion-valued
CNNs fed with RH-emo embeddings. We evaluate our approach
on a variety of cases, using 4 popular SER datasets IEMOCAP,
RAVDESS, EmoDB, TESS) and with 3 widely-used CNN de-
signs of increasing capacity (ResNet-50, AlexNet and VGG16).
Our approach provides a consistent improvement in the test ac-
curacy for all datasets while using a considerably lower amount
of resources. We obtained an average improvement of 6.01 pp
for RAVDESS, 2.34 pp for EmoDB, and 0.97 pp for TESS and
we spared up to 94% of the trainable parameters, up to the 30%
of GPU memory and up to 84.1% of training time. Moreover,
we performed additional experiments and ablations studies that
confirm the properties and foundations of our approach. The
results show that the combination of RH-emo and QCNNs is a
suitable strategy to circumvent the high resource demand of SER
models and that our approach provides consistent performance
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improvement also in scenarios where the available training data
is scarce.

The positive results justify further investigation of this ap-
proach. An immediate research objective is to test RH-emo with
different datasets, architectures (including recurrent networks),
with multiple signal dimensions, and different tasks.
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