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We discuss some recent study on quiver gauge theories in the setting of toric geometry. After men-
tioning some basic geometric and topological properties, we consider some mathematical concepts,
namely the Mahler measure and the dessins d’enfants, in this context. We then focus on the quiver
BPS algebras and their connections to different aspects in physics. We also have a discussion on
the stability of chiral rings for more general geometry. Besides, we make some comments on the
applications of machine learning to relevant topics. This thesis is based on the works [1–16].
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Chapter 1

Introduction

After the great success of relativity, quantum mechanics and then quantum field theories, quantizing
gravity becomes the core of high energy theory. There are quite a few candidates for quantum
gravity, but string theory seems to be the most promising one. Although we cannot find more
evidences from current experiments, string theory already explains many things as postdictions,
which are also important as tests for our theories. Moreover, string theory is mathematically
consistent and has led to many profound discoveries in mathematics. See [17] and the references
therein for summaries on the current status of string theory, ranging from physical mathematics to
possible future experimental evidences.

Superstring theories demand our spacetime dimension to be 10, which means we should reduce
them to an effectively 4-dimensional theory. The standard solution of string compactification, as a
generalization of Kaluza-Klein compactification, renders the extra six dimensions Calabi-Yau (CY).
Thus, the study of Calabi-Yau and algebraic geometry has entered the field of theoretical physics.

For Type II string theory on toric CY threefolds, the 4d N = 1 gauge theories arised therefrom
can be beautifully described by quivers [18, 19]. With various techniques developed in the past
few decades, including brane tilings [20–24], Hilbert series and plethystics [25–40], and crystal
melting [41–45], many salient features of our physical theories have been extensively investigated
and understood. They have also shown deep connections to a vast range of areas in mathematics
such as algebraic geometry and enumerative geometry.

In this thesis, we shall explore some recent progress in these directions. There have been vigorous
interactions with not only geometry but also number theory, quantum algebras and representation
theory. Of course, toric CYs are non-compact. Nevertheless, in principle, we can turn on the
Ω-background so that the theory would be localized at the fixed point under the isometry of CY
threefolds and effectively get compactified. More importantly, there is still little known for the
compact cases, and we hope that our study would shed light on our investigations in the compact
geometry. Broadly speaking, further study on mathematical physics and physical mathematics
should lead us to a more comprehensive picture of the nature of spacetime and more insights of
unification.

1.1 Organization of the Thesis

The thesis is organized as follows. In Chapter 2, we will start with some rudiments of quiver gauge
theories, brane tilings and toric geometry. As an illustration, we shall then consider the cases
associated to convex lattice polygons with two interior points. They serve as the toric diagrams
of certain toric CY3 cones, as well as those of compact base surfaces. In particular, the volume
functions of the Sasaki-Einstein base manifolds can be computed so as to get the R-charges of the
fields via volume minimization. As we will see, there are differences between the non-reflexive cases
and the reflexive cases (with one single interior point) regarding certain geometric and topological
properties.
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More specifically, we shall analyze the minimized volumes in terms of the topological quantities of
the compact toric varieties constructed from the polygons. To obtain the compact varieties, we
need the fans over the polytope followed by complete resolutions. However, unlike reflexive cases,
we have two choices of origins here, which we call zeroth-grade and first-grade points. It turns out
for most of the cases, the Chern numbers and even the Chern classes coincide for the two compact
varieties. For those with first-grade points, they do not have such property, but if we further resolve
the smooth surface with an extra ray added to the fan, we find that the Chern numbers and classes
are again the same for the two varieties. As we will see, whether the two varieties are the same
surface can completely determined by the symmetries of the polygon, namely whether it is axial
symmetric or centrosymmetric.

Similar to the reflexive cases studied in [46], all the relevant topological invariants, including Chern
numbers, Betti numbers and Hodge numbers, are dependent to each other. Hence, all the non-
trivial quantities can be expressed with Euler numbers. Thus, we only need to consider the relation
between Vmin and χ. It turns out that the volume bounds relation from the reflexive cases does
not hold for the non-reflexive ones, and we will raise a generalized conjecture.

In Chapter 3, we will introduce the concept of Mahler measure [47] which originates from number
theory. We will see that Mahler measure enjoys many nice properties in the context of toric quiver
gauge theories. We find that maximizing the Mahler measure at the so-called isoradial point leads
to the correct R-symmetry in the infrared. In other words, maximization of the Mahler measure is
equivalent to the a-maximization.

We will also discuss how the Mahler measure, its logarithmic derivative, and the Ronkin function
behave under Seiberg/toric duality and specular duality. We conjecture that they are all invariant
under Seiberg duality. As a byproduct, this provides ways to treat the non-isoradial brane tilings
and the isoradial ones on an equal footing. It is worth noting that the logarithmic derivative of the
Mahler measure can be viewed as the generating function of the master space in terms of perfect
matchings/gauged linear sigma model fields. As a result, we will see that the Mahler measure have
remarkable features for toric and specular duals.

In Chapter 4, we will discuss the relations of the Mahler measure and the dessins d’enfants [48].
Dessins are essentially collections of black and white nodes connected by edges. However, such
simple graphs actually encode information of rational maps and quadratic differentials due to
Belyi’s theorem [49]. For reflexive polygons, as their Newton polynomials define elliptic curves, we
can consider the so-called modular Mahler measure [50]. We will see that with certain choices of
the coeffcients in the Newton polynomials, there can be a one-to-one correspondence between the
Mahler measure and the dessins. In fact, such choices are different from the ones that are used in
determining the R-charges. Nevertheless, both of them reflect certain aspects of the brane tilings
and the gauge theories. We also hope that the discussions therein would elucidate the study on the
consistency of brane tilings.

As we shall discuss, different complex structures of the torus arised from different contexts are
actually extrapolated by the Mahler flow. In other words, by varying the parameter in the Mahler
measure, we can reach different points for these complex structures. As some further applications,
we will mention how the brane monodromies can be related to the monodromies for dessins in the
context of F-theory. In particular, the 7-branes correspond to not only the faces of the dessins
but also some of the black nodes. On the other hand, we will see that certain expansions in the
Mahler measure can recover the Gromov-Witten (GW) invariants of local vanishing surfaces in the
CY spaces. From enumerative geometry, we learn that they reveal the BPS states from F-theory
compactified on the toric threefolds. We will give a dictionary between the GW and the Mahler
sides.

In Chapter 5, we will focus on the BPS algebras in the Type IIA setting. Studying the BPS spectrum
[51, 52] of particles has been an important topic in quantum field theory and string theory. As
aforementioned, although there is little known for the case of compact CY manifolds, the techniques
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have been greatly developed in the context of non-compact, or local, CYs, especially when they
afford a toric description. As the lattice polygons nicely encode combinatorial information from
the toric CY threefolds, crystal melting and quivers have become extremely useful tools in BPS
counting.

Mathematically, BPS counting has a close relation with Donaldson-Thomas (DT) invariants1, and
are hence also connected to Gromov-Witten and many other geometric invariants. Going one step
further, we would also like to understand more about the Hilbert space of the BPS states, which
can be recast as the cohomology of chain complexes. This then leads to the categorification of BPS
indices and wall crossings [53–56]. Although we will not discuss such categorification in this paper,
they should be intimately related to the algebraic structure of BPS states.

For Type IIA string theory compactified on a general toric CY threefold, the BPS states are the
bound states formed by Dp-branes wrapping holomorphic p-cycles therein. Here, we shall focus
on the following setting: (i) a single D6 wrapping the whole CY3; (ii) D0-branes supported on
points which are trivially compact in the CY; (iii) D2-/D4-branes wrapping either compact or
non-compact 2-/4-cycles. The compact D-branes are then light BPS particles that are dynamical.
In contrast, non-compact D-branes are heavy line operators which become non-dynamical in our
compactified theory.

Recently, the quiver Yangians are introduced as realizations of the BPS algebras in this setup [57].
We will give a definition of these algebras and their trigonometic and elliptic counterparts. We
will discuss various properties for them, including the coproducts, their transformaions under toric
duality etc. Moreover, we shall consider its connections to integrability as well as vertex operator
algebras (VOAs).

Similar to the ordinary Yangian algebras, we can consider the R-matrix formalisms for the quiver
BPS algebras. We will discuss the actions of quiver Yangians on the crystal representations as well
as their coproduct structures. In fact, there are still many interesting directions for future study. For
instance, there are obstructions for the Bethe/gauge correspondence for chiral quivers [58]. Also,
the precise connections to the Maulik-Okounkov (MO) Yangians are still not clear [59]. Moreover,
recent progress on 4d Chern-Simons theory [60–63] could provide more insights as well.

On the other hand, the W-algebras [64–70] should play a crucial role in the tensionless limit of
string theory in AdS3 [71–74]. In particular, the rectangular W-algebra can be realized as the
symmetry algebra of the coset CFT whose holographic dual gives higher spin gravity [75]. Such
vertex algebras have been well-studied in mathematics literature such as [76–78].

Therefore, we shall discuss the BPS/CFT (aka AGT, 2d/4d) correspondence [79, 80] here as well.
The BPS algebras and the VOAs are expected to be contained in a broader picture under the
BPS/CFT correspondence. In the finite cases, the relations between Yangians and W-algebras
have been explored in [81–83]. For ĝl1 whose associated CY is the simplest C3, it was shown
in [84, 85] that the affine/quiver Yangian is isomorphic to the universal enveloping algebra of the
W1+∞-algebra. Moreover, in such case, the AGT conjecture was proven in [86] with a surjective
homomorphism from the quiver Yangian for C3 to the universal enveloping algebra of the principal
W-algebra. Physically, the Nekrasov partition function of the 4d supersymmetric gauge theories can
be identified with the conformal blocks of the corresponding VOAs. From a geometric perspective,
the Verma module of the VOA results from its action on the equivariant intersection cohomology
of the instanton moduli space [87].

Similar to theW1+∞-algebra case whose truncation gives the algebra at the corner [88], the matrix-
extened W-algebra (called WM |N×∞ in [69]) for any generalized conifold is expected to truncate
to VOAs describing certain interface of a 4d supersymmetric gauge theory. We will see that the

1In the usual canonical crystal melting setting, we are working in the non-commutative Donaldson-Thomas
chamber.



Chapter 1. Introduction 4

universal enveloping algebras of the VOAs are indeed the truncations of the BPS algebras, and the
quiver Yangians can in this sense be viewed as some realization of U(WM |N×∞).

In Chapter 6, we will switch gears and consider general varieties including non-toric cases. Whether
a chiral ring describes any CFT was related to the concept of K-stability in [89]. We shall apply
the tools of Hilbert series, plethystics and Gröbner basis to study this. We will illustrate this with
a few examples. In particular, we will see that K-stability does not always imply that the chiral
ring is a ring of some CFT. Nevertheless, it is still natural to conjecture that K-stability gives a
necessary condition.

In Chapter 7, we will mention some recent applications of machine learning in mathematics and
physics. We will consider two examples where the analysis on the machine learning results could
help us find analytic results. In the first example, we will use the Ehrhart polynomials to get the
volumes of the associated lattice polytopes. In the second example, we shall analyze the data for
amoebae in tropical geometry to find the conditions on their genus. Although these examples are
rather simple and the analytic results are already known before, it could be possible that future
developments would be used in numerical analysis and even conjecture formulations. Thus, whether
AI can be a “witness” of our study in physics and mathematics and how we should apply machine
learning properly have become interesting questions in our future research.

In the appendices, we give some supplementary materials as well as more discussions that are not
covered in the main context. In Appendix A, we list all the lattice polygons with two interior points,
along with their volume functions. In Appendix B, we give an explicit example on computing the
Mahler measure and some plots of the amoebae. We discuss some more aspects of the dessins in
Appendix C. In particular, we consider their relations with Seiberg-Witten curves and conformal
blocks. We will give some criteria to determine how dessins could correspond to conformal blocks in
minimal models. In Appendix D, as a comparison with the dessins and Mahler measure in the main
context, more choices on the coefficients in the Newton polynomials are mentioned. In Appendix
E, we review how to construct the quivers associated to the generalized conifolds. In Appendix F,
we discuss possible connections of the BPS partition functions to the Kac polynomials. We give
some more examples on the R-matrices acting on the crystal configurations in Appendix G. A quick
review on rectangular W-algebras can be found in Appendix H. Some comments on the modes of
quiver BPS algebras are mentioned in Appendix I. In Appendix J, we have a recap on the Gröbner
basis. In Appendix K, we derive the conditions on the genus for some (lopsided) amoebae.

1.2 Summary

Although we have mentioned some results of the thesis in the previous section, for clarity, let us
make a brief list of the summary here. More concrete details of the results can be found at the
beginning of each chapter.

Chapter 2 is mainly a review part. Nevertheless, we analyze the relation between the minimized vol-
umes and the topological quantities associated to the toric CYs, extending the previous conjecture
for reflexive polygons to non-reflexive ones.

In Chapter 3,

• We define different “limits” known as the isoradial and tropical limits, and discuss the be-
haviour of the Mahler measure and amoebae in these limits.

• We report the theorem stating that for isoradial dimers, the maximization of the Mahler
measure is equivalent to the a-maximization, and we conjecture this to hold for non-isoradial
dimers as well.

• We study the properties of Mahler measure under Seiberg duality and specular duality. In
particular, it is expected to be invariant under Seiberg duality. A crucial quantity (u0) is

http://the-witness.net/
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shown to encode the master space, and hence lead to how Mahler measure transform under
specular duality.

In Chapter 4,

• We connect the Mahler measure to dessins under modularity. On the Mahler measure/Newton
polynomial side, we find the Hauptmoduln of some congruence subgroup arised from the
parameter thereof. The congruence group of the corresponding dessin is conjectured to be
the subgroup of the one on the Mahler side.

• We argue that the Mahler measure is a period in the sense of Kontsevich and Zagier when
the j-invariant is algebraic. We also write the differential equation of the Mahler measure
with respect to the j-invariant ((4.2.17)).

• We illustrate how the 7-branes can be “placed” on the dessins in the context of F-theory.

• We give the dictionary between the Mahler measure and certain Gromov-Witten invariants.

In Chapter 5,

• We propose the crystal models for different chambers under wall crossing in the study of the
BPS spectra.

• We discuss how one can obtain the Bethe ansatz equations from the BPS algebras via the
R-matrix construction.

• For generalized conifolds, we give the coproduct of the BPS algebras. We also argue that
Seiberg dual theories have isomorphic BPS algebras. Moreover, these BPS algebras can be
truncated to rectangular W-algebras.

• We also report some results for toroidal and elliptic versions of the BPS algebras.

In Chapter 6,

• We discuss how one can determine the K-stabiliity of a chiral ring with illustrations of various
examples.

• We find a counterexample of the conjecture which states that a chiral ring describing a ring
of a CFT is equivalent to it being K-stable.

In Chapter 7, we give some examples of the application of machine learning, including

• how the machine predicts the volumes of lattice polytopes from the Ehrhart series;

• how the machine determines the genus of the (lopsided) amoebae.

Some of the appendices include the supplementary materials and/or some lists of the calculation
results. We also put some results that slightly digress from the discussions in the main context
in the appendices. In Appendix C, we discuss how one can bridge the dessins and conformal
blocks (for minimal models) via their connections to Seiberg-Witten curves. In Appendix D, we
consider a different choice of coefficients of the Newton polynomials and study the relation of the
corresponding Mahler measure and (possible) dessins. In Appendix F, we discuss the relations
of BPS partition functions and Kac polynomials. In Appendix G, we give examples on how to
compute the R-matrix actions on the crystal representations at higher levels.
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Chapter 2

Quivers and Toric Varieties

Let us start with a quick review on toric varieties and their associated quivers. Then we shall
discuss some topological and geometric properties following [2, 8]. In particular, we analyze the
relation between the geometric quantity (minimized volumes) and the topological quantities (Chern
classes and Euler numbers) for (the geometry associated to) the Newton polygons with 2 interior
points. We conjecture that the minimized volume for the Sasaki-Einstein base manifold of any toric
CY satisfies 1/χ ≤ Vmin < mn

∫
cn−1
1 for some number mn, where χ and c1 are the Euler number

and the first Chern class respectively.

2.1 Preliminaries

The worldvolume theory of a stack of D3-branes probing a toric CY cone-type singularity is a 4d
N = 1 supersymmetric gauge theory. Such gauge theories can be represented by quivers in which
the matter contents and the superpotentials are encoded1 [90]. Each toric CY3 corresponds to a
toric diagram which is a 2-dimensional lattice polytope, viz, a lattice polygon. The geometry of
the CY3 can thus be studied via their toric diagrams.

Hence, it is natural to expect that there are some connections between the quivers and toric
diagrams. From one diagram, we can find the other following the approaches in [91, 92]. Given a
quiver diagram, the process of finding the toric diagram is called the forward algorithm. Conversely,
obtaining quivers from a toric diagram is known as the inverse algorithm. Generally speaking, the
correspondence between the two kinds of diagrams is often one-to-many. A toric diagram may give
rise to more than one quivers while many quivers can have the same toric diagram. As a matter of
fact, these quiver theories are related by toric duality, which can be understood as Seiberg duality
in the toric phases [90, 93].

If we consider the back reaction to the geometry from D3s, then we get an AdS near-horizon
geometry. As a result, the gauge/gravity duality [94] gives another point of view to the above
problem. The 4d N = 4 SYM theory is related to the string theory in AdS×S5. If we replace the
5-sphere with a Sasaki-Einstein manifold Y of real dimension 5, then the SUSY is broken down to
N = 1 [95, 96].

In fact, we can use Type IIB brane configurations to study this. Consider D5-branes suspended
between an NS5-brane wrapping a holomorphic surface Σ as tabulated in Table 2.1.1. Then the
Newton polynomial of the toric diagram defines this holomorphic surface. The system is compact-
ified along directions 5 and 7 on a torus T2. After performing a T-duality on each of these two
directions, the D5s would be mapped back to D3s probing the CY 3-fold.

We can draw a 5-brane web diagram on T2. The dual graph of the web diagram is then a bipartite
periodic graph on the torus. Such dual graphs are known as dimers/brane tilings [20–24]. With
the help of brane tilings, we are able to bridge the toric diagrams and the quivers.

1Saying this, we should bear in mind that the superpotential is generally additional data for defining a theory,
unless we are considering periodic quivers for toric theories.
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0 1 2 3 4 5 6 7 8 9

D5 × × × × × ×
NS5 × × × × —– Σ —–

Table 2.1.1

2.1.1 Lattice Polytopes

A lattice polytope ∆ is a convex hull of a finite number of points in Zn, and its vertices form the
set ∆ ∩ Zn. A polytope is said to be reflexive if its dual polyotpe

∆◦ = {v ∈ Zn : u · v ≥ −1, ∀u ∈ ∆} (2.1.1)

is also a lattice polytope in Zn. For n = 2, it is not hard to show that ∆ is reflexive iff there is only
one interior point2. Hence, we can always choose this unique interior point as the origin.

However, in this chapter, we will contemplate 2d polytopes with two interior points. Hence, they
are not reflexive, and we have two choices of origins. This would lead to a different discussion on
the compact toric surface X(∆) in §2.3. Here, we will first focus on the rational polyhedral cone
generated by the vertices of the polytope/toric diagram ∆ in 3d.

The affine toric CY 3-fold We take the origin (0,0,0)∈ Z3 =: M , and let the vertices in the
polygon be u′

i =(ui,1)∈ Z3. Then these vectors generate a cone σ with the origin as the apex to
the vertices of ∆:

σ =

{∑

i

λiu
′
i : λi ≥ 0

}
⊂M ⊗Z R =:MR. (2.1.2)

The dual cone lives in the dual lattice NR where N := Hom(M,Z):

σ∨ = {w ∈ NR : w · u ≥ 0, ∀u ∈ σ} . (2.1.3)

Then we have the algebra C[σ∨ ∩ N ] spanned over C by the points in σ ∩M . We can therefore
define an affine toric variety X to be the spectrum of this ring:

X ∼= SpecC[σ∨ ∩N ]. (2.1.4)

Since the endpoints of σ live on the same (hyper)plane, X is a Gorenstein singularity, and hence
can be resolved to a CY 3-fold, although being co-hyperplanar makes it non-compact [46, 97, 98].

The Higgs-Kibble mechanism The Higgs-Kibble mechanism [99–101] has a natural interpre-
tation in the toric diagrams. As studied in [102], higgsing of a theory corresponds to blowing down
a compact 2-cycle to a point in the toric geometry while unhiggsing blows up a point to a compact
2-cycle. All the 45 toric diagrams with 2 interior points (and their corresponding quiver gauge
theories) can be obtained by higgsing the same parent theory as given in Appendix A.

2.1.2 Brane Tilings

As mentioned above, the junction of N D5-branes and one NS5-brane can be plotted on the torus.
Given a toric diagram, we can draw the outer normal vector to each segment separated by the
perimeter points of the polytope. Then we put these vectors on the torus, which will divide the
torus into different regions. Each region is a bound state of 5-branes, including (N ,0) and (N ,±1)
5-branes. Every time when we move from one region to another, we will cross a vector. If we cross

2This statement (namely the “if” part, in other words, the “⇐” direction) is not generally true when n ̸= 2.
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the vector from left (right) to right (left), then the NS5 charge is increased (decreased) by 1. For
instance, the NS5 cycles of C3/Z5 (1,2,2) is (figure taken from [103, Figure 29]):

. (2.1.5)

Then we can obtain a bipartite graph by taking the (N ,±1) regions to be white/black nodes. The
(N ,0) regions give faces in the tiling. The intersection points of the branes, for which we have
massless open strings, correspond to edges in the tiling. As the open strings are oriented, every
loop surrounding the white/black node is clockwise/counterclockwise, which gives a sign in the
corresponding superpotential term. For instance, the above example leads to the brane tiling in
(2.2.2). Since the bipartite graph is periodic, the fundamental region is in a red box. From fivebrane
diagrams/brane tilings, we can read off the quivers. This is summarized in Table 2.1.2. Readers
are referred to [1, 103] for a detailed discussion.

Fivebrane diagram Brane Tiling Quiver

(N ,1) brane white node superpotential term (+)

(N ,−1) brane black node superpotential term (−)
(N ,0) brane face gauge node/group

open string edge bifundamental

Table 2.1.2

Quivers In our context, the quivers only have two objects: round nodes and arrows. Each round
node corresponds to a gauge group, which is always unitary here. For toric quivers, viz, quivers
in the toric phases, the ranks of nodes in one quiver are always the same. Each arrow connects
two gauge nodes. These arrows correspond to the matter fields transform under fundamental and
anti-fundamental representations under the two gauge groups. We can write a G×E matrix, where
G is the number of gauge nodes3 and E is the number of edges/bifundamentals, called incidence
matrix d to encode the quiver data. If the arrow leaves the node a, viz, the bifundamental Xab,
then the corresponding entry is assigned 1. Likewise, if the arrow comes into the node a, viz, the
bifundamental Xba, then the entry is −1. Otherwise, the entry is 0.

Perfect matchings and charges It is always to possible to find a set pα of bifundamentals that
connect all the nodes in the brane tiling precisely once. This set pα is known as a perfect matching.
A new basis of fields in the language of gauged linear sigma model (GLSM) [104] can be naturally
defined from the bifundamental fields [91]. The number of GLSM fields is the number of perfect
matchings c. Then we can write the PE×c perfect matching matrix P which encodes the relation
between the two sets of matter fields as Xab =

∏
pα for all pα containing Xab.

As the F-terms come from ∂W/∂Xab = 0, one can show that the charges of GLSM fields under the
F-term constraints are given by the F-term charge matrix of size (c−G− 2)× c:

QF = ker(P ). (2.1.6)

3Notice that the number of nodes G is always equal to the number of unit simplices under full triangulation of
the toric diagram. This in turn equals the normalized area of the toric diagram.
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From [104], we know that the D-terms in terms of the bifundamentals XI are

Di = −e2(
∑

A

diA|XI |2 − ζi), (2.1.7)

where e is the gauge coupling4 and d is the incidence matrix. The ζi are Fayet-Iliopoulos (FI) pa-
rameters. In fact, as shown in [90,91], the FI parameters encode the resolutions of toric singularities.
In the matrix form, this reads

δ · |XI |2 = ζ, (2.1.8)

where δ is the reduced quiver matrix of size (G−1)×E. This can be related to the perfect matching
matrix via [91, 105]

δ = QDP
T, (2.1.9)

where QD is a (G − 1) × c matrix. As QD encodes the GLSM charges under D-term constraints,
this is known as the D-term matrix.

In light of GLSM, the F- and D-terms can be treated on an equal footing. Hence, the two charge
matrices can be concatenated to a (c − 3)× c matrix, known as the total charge matrix [91]:

Qt =

(
QF
QD

)
. (2.1.10)

As the F-terms must vanish while the D-terms are adjusted by the FI parameters, the last column
is always in the form (0, ζ)T. Hence, we will always omit the last column. Then taking the kernel
yields

Gt = ker(Qt). (2.1.11)

This matrixGt exactly encodes the information of the toric diagrams. Each column is the coordinate
of a lattice point in the polytope (thus, the last row of Gt is (1,. . . ,1)). Therefore, every point is
assigned to some GLSM field(s). Each corner (aka extremal) point/vertex always correspond to
one GLSM field with non-zero R-charge. On the other hand, non-extremal points correspond to
multiple GLSM fields all with zero R-charges.

Toric/Seiberg duality The toric/Seiberg duality [93, 106,107] is a duality among theories that
have the same IR fixed point under RG flow. As we are always staying in the toric phases in this
chapter, there will be no fractional branes, and hence our theories keep superconformal and the
quivers have nodes of the same rank as aforementioned. The dual quiver gauge theories all have
the same moduli space/Higgs branch, which is exactly the toric CY cone corresponding to the toric
diagram.

Therefore, we can use toric duality to obtain different quivers of the same toric diagram with the
following steps:

1. As Seiberg duality takes SU(Nc) gauge group with Nf fundamentals and Nf bifundamentals
to SU(Nf − Nc) gauge group, in the toric phase, only nodes satisfying Nf = 2Nc can be
dualized5. We first scale the gauge couplings of gauge groups other than the chosen node a
to zero, and the fields not connected to a decouple. Then the bifundamentals connected to
a is reduced to (anti-)fundamentals under the flavour symmetry. Since duality requires the
dual quarks to transform in the conjugate (flavour) representations to the original ones, the
directions of the 2Nf arrows should be reversed. The overall result is that every time we
perform such duality, we reverse all the arrows connected to the dualized node.

2. Then we add an arrow from the flavour node i to the flavour node k for each 2-path i→ j → k
in the original quiver. This is just the quarks-to-meson map QaQ̃

b → M b
a. As the flavours

4In general, the gauge coupling should be ei, but one often sets e = ei for all i in GLSM.
5For simplicity, we shall mainly focus on U(1) gauge groups unless otherwise specified.
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groups will be gauged back at the end, these mesons will be promoted to bifundamentals. In
the superpotential, the factors XijXjk should be replaced with Mik, and termsMikXkjXji

need to be added.

3. There could exist arrows that should be removed. This is checked from the superpotential.
More specifically, quadratic terms in the superpotential should be removed. In physical
parlance, this means that the quadratic terms are mass terms. We need integrate out the
massive fields say X in terms of the F -term relations. As a result, the corresponding arrows
should be discarded in the quiver. Finally, we “gauge back” all the flavour nodes.

In cluster algebra, this is exactly the mutation for quivers (without adjoint loops and 2-cycles)
[108]. In terms of brane tilings, the technique called urban renewal can be applied to obtain
dual tilings. For more details in Seiberg duality in quiver gauge theories, one is referred to, for
example, [21, 109–111].

2.1.3 The Moduli Spaces

The master space F ♭ [28, 112] is a combination of baryonic and mesonic moduli spaces defined as
the symplectic quotient of the perfect matching ring6:

F ♭ = C[p1, . . . , pc]//QF . (2.1.12)

The global symmetry The master space has global symmetry that can be divided into two
parts:

• The mesonic symmetry is U(1)3 or its enhancement with rank 3. It may be enhanced to
SU(2)×U(1)2, SU(2)2×U(1) or SU(3)×U(1). The enhancement is determined by the dupli-
cated columns in Qt. In particular, there is always a U(1) which is the R-symmetry.

• The baryonic symmetry is U(1)G−1 or its enhancement with rank (G− 1). It consists of non-
anomalous and anomalous symmetries. The non-anomalous symmetry is always U(1)NP−3,
where NP is the number of perimeter points in the polytope. The anomalous symmetry
is U(1)2I or an enhancement of rank 2I, where I is the number of interior points. The
enhancement is determined by the repeated columns in QF . The non-abelian enhancement
of anomalous symmetry is also known as hidden symmetry.

Notice that the combination in the baryonic symmetry is actually the Pick’s theorem:

G

2
= I +

NP

2
− 1 = A, (2.1.13)

where A is the (unnormalized) area of the toric diagram.

The mesonic moduli space and Hilbert series The mesonic moduli spaceM is a subspace
of F ♭:

M = F ♭//QD = (Cc[p1, . . . , pc]//QF )//QD. (2.1.14)

We can use the (mesonic) Hilbert series (aka Hilbert-Poincaré series) to desribe the moduli space.
The Hilbert series is a generating function that enumerates the invariant monomials under the
group action. Physically, it counts the gauge invariant operators of each degree in the chiral ring.
As aforementioned, the moduli space coincides with the toric CY 3-fold X . Hence, we can use the
following formula to compute the Hilbert series. The (refined) Hilbert series for a toric CY n-fold
cone can be computed as [113,114]

HS =
r∑

i=1

n∏

j=1

(1− tui,j )−1 . (2.1.15)

6Strictly speaking, this is the largest irreducible component, known as the coherent component, of the master
space rather than F♭ itself. Nevertheless, we will solely focus on the coherent component and make this abuse.
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The number r is the number of (n − 1)-dimensional simplices under triangulation. The index j
runs over the n faces of each simplex. The vector ui,j is an n-vector inner normal to the jth face

of the ith simplex, and t are the fugacities t1,. . . ,tn. Then tui,j =
n∏
k=1

t
ui,j(k)
k , multiplied by the

kth component of u. One can also use Molien-Weyl integral to compute Hilbert series of the Higgs
branch [25]. The two results should be the same under some fugacity map.

2.1.4 Volume Minimization

As X of complex dimension n is the Kähler cone over the Sasaki-Einstein manifold Y = X|r=1 of
real dimension (2n− 1):

ds2(X ) = dr2 + r2ds2(Y ), (2.1.16)

the volume of Y is then [113, 114]

vol(Y ) = 2n

∫ 1

0
dr r2n−1vol(Y ) = 2n vol(X|r≤1) = 2n

∫

r≤1

ωn

n!
, (2.1.17)

where ω is the Kähler form of X . We are now going to see that the volume of the Sasaki-Einstein
base is closely related to the R-charges of the fields in our theory.

The Reeb vector K := J (r∂/∂r) is the Killing vector of Y , where J is the complex structure of
X . Since the torus action Tn of the toric X leaves ω invariant, we can take the vector fields ∂/∂ϕi
to be the generators of the action with ϕi ∼ ϕi + 2π. Then the reeb vector reads K = bi∂/∂ϕi,
where the components bi’s are algebraic numbers, with the last component bn set to be n.

In [113,114], the volume function of Y , which is shown to be related to the Reeb vector components,
is introduced to be

V (bi;Y ) =
vol(Y )

vol(S2n−1)
(2.1.18)

such that the volume of the (2n− 1)-sphere,

vol(S2n−1) =
2πn

(n− 1)!
, (2.1.19)

is normalized. Then the volume function is related to the Hilbert series of X via7

V (bi;Y ) = lim
µ→0

µn HS(ti = exp(−µbi);X ). (2.1.20)

It is known that V always admits precisely one positive minimum Vmin. Since the Reeb vector is
algebraic, Vmin is also an algebraic number.

For toric threefolds, in [115], it was shown that the a-function, in terms of the volume function,
can be expressed as

a(R) =
1

4V
, (2.1.21)

where R denotes the R-charges of the superconformal theory. A procedure known as a-maximization
can be used to determine the R-charges [116–118]. The central charges a and c of the SCFT in 4d
are

a(R) =
3

32
(3TrR3 − TrR), c =

1

32
(9TrR3 − 5TrR), (2.1.22)

where TrR3 and TrR are ’t Hooft anomalies. In general, as we have flavour symmetries in IR, a
possible candidate is

Rt = R0 +
∑

i

tiFi, (2.1.23)

7If we are taking outer normal vectors to the faces of simplices when computing the Hilbert series, the Hilbert
series would just change by the fugacity map ti → 1/ti. As a result, the volume function would only differ by a minus
sign.
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where Fi’s are the charges of global non-R symmetries and Rt is called the trial R-charge. According
to [116], the U(1) R-symmetry should satisfy

9Tr(R2Fi) = TrFi, Tr(RFiFj) < 0, (2.1.24)

which can be translated into the maximization of a(Rt). When the trial a-function is maximized,
only the R-charge R0 will make contribution. Thus, we see that Vmin plays a crucial role in
determining the R-charges.

In light of quiver diagrams, let XI be the R-charges of the bifundamentals. Then the vanishing
β-function from the theory being conformal yields

∑

I

XI = 2,
∑

I

(1−XI) = 2, (2.1.25)

where the first sum is taken in each superpotential term and the second sum is taken with respect
to each gauge node. Let NW be the number of superpotential terms, then we have (G + NW )
equations for E parameters in all, which in general are not all independent though G+NW = E as
the bipartite graph is embedded on a torus. With these conditions, the a-function can be written
as8

a =
3

32

(
2G+

∑

I

(3(XI − 1)3 − (XI − 1))

)
. (2.1.26)

Anomaly cancellation implies a = c, viz, TrR=0 [119, 120]9. Thus, we have

a =
9

32

(
G+

∑

I

(XI − 1)3

)
. (2.1.27)

As we have seen, this is equivalent to minimizing V , together with (2.1.25), we can solve for the
R-charges of the bifundamentals, and hence the R-charges of GLSM fields as well.

Example Let us consider the abelian orbifold Cn/Zn with orbifold action (1,. . . ,1) as an example.
The Hilbert series reads

HS =



(
1− t−sn

n−1∏

i=1

tsi

)
n−1∏

j=1

(
1− tsj

)



−1

+
n−1∑

i=1



(
1− t−si

)

1− tsni tsn

n−1∏

j=1

tsj




n−1∏

k=1
k ̸=i

(
1− tskt−si

)



−1

,

(2.1.28)
where s = (−1)n. As the limit picks out the leading order of µ, the volume function is

V =
(−1)nnn−1

n−1∏
j=1

(
n−1∑
i=1

bi − nbj − bn
) . (2.1.29)

Then taking bn = n, we find that Vmin = 1/n at b1 = · · · = bn−1 = 0. In quiver gauge theories,
we have a unique toric quiver for each n. The R-charges of all the bifundamentals are 2/n. Hence,
the R-charges of the n GLSM fields corresponding to extremal points are all 2/n, with others
vanishing. Interestingly, the Sasaki-Einstein base of Cn (whose toric diagram is the unit simplex)
is the (2n − 1)-sphere. Hence, the volume function equals 1. As we will see in §2.3.2, it is not a
coincidence to have 1/n = V (S2n−1)/|Zn| here.

8Notice that this expression itself (normalized by N2), which is generally true when we assume all the gauge
groups have the same rank N , does not require that the dimer is embedded on T2.

9The relevant anomalies are the ones of the R-symmetry current with itself or with the stress tensor, namely
⟨RRR⟩ or ⟨RTT ⟩.
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2.2 Example: C3/Z5 (1, 2, 2)

Here, let us consider C3/Z5 with action (1, 2, 2) as a concrete example. The analysis for other
polygons with two interior points can be found in [2]. The polytope is

p1

rsp2

p3

. (2.2.1)

The brane tiling and the corresponding quiver are

1 1

4
5

1

4
5

4
5

1
2

3

5
1

2
3

4
5

1
2

3

4
5

4

1

3

1
2

3

4
5

1
2

3

4
5

2

4
5

;

1

2

3

5 4

. (2.2.2)

The superpotential is

W = X1
12X25X

2
51 +X2

12X
1
23X31 +X2

23X
1
34X42 +X2

34X
1
45X53 +X2

45X
1
51X14

−X2
12X25X

1
51 −X1

12X
2
23X31 −X1

23X
2
34X42 −X1

34X
2
45X53 −X1

45X
2
51X14. (2.2.3)

The perfect matching matrix is

P =




p1 p2 s1 s2 s3 r1 s4 r2 s5 r3 r4 r5 p3
X1

12 1 0 0 0 1 0 1 0 0 0 0 1 0

X2
12 0 1 0 0 1 0 1 0 0 0 0 1 0

X1
23 1 0 0 1 0 0 0 0 1 0 1 0 0

X2
23 0 1 0 1 0 0 0 0 1 0 1 0 0

X1
34 1 0 1 0 0 0 1 1 0 0 0 0 0

X2
34 0 1 1 0 0 0 1 1 0 0 0 0 0

X1
45 1 0 0 1 1 1 0 0 0 0 0 0 0

X2
45 0 1 0 1 1 1 0 0 0 0 0 0 0

X1
51 1 0 1 0 0 0 0 0 1 1 0 0 0

X2
51 0 1 1 0 0 0 0 0 1 1 0 0 0

X31 0 0 1 0 0 1 0 1 0 1 0 0 1
X25 0 0 0 1 0 1 0 1 0 0 1 0 1
X42 0 0 0 0 1 1 0 0 0 1 0 1 1
X14 0 0 0 0 0 0 1 1 0 0 1 1 1
X53 0 0 0 0 0 0 0 0 1 1 1 1 1




, (2.2.4)

where the relations between bifundamentals and GLSM fields can be directly read off. Then we
can get the total charge matrix:

Qt =




p1 p2 s1 s2 s3 r1 s4 r2 s5 r3 r4 r5 p3
2 2 −1 −1 −1 0 −1 0 −1 0 0 0 1
1 1 0 0 −1 0 −1 0 −1 0 0 1 0
1 1 0 −1 0 0 −1 0 −1 0 1 0 0
1 1 −1 0 −1 0 0 0 −1 1 0 0 0
1 1 −1 −1 0 0 −1 1 0 0 0 0 0
1 1 −1 −1 −1 1 0 0 0 0 0 0 0
0 0 −1 1 0 0 1 0 −1 0 0 0 0
0 0 −1 0 −1 0 2 0 0 0 0 0 0
0 0 −2 0 0 0 1 0 1 0 0 0 0
0 0 −1 −1 1 0 1 0 0 0 0 0 0




(2.2.5)

with kernel

Gt =

(
p1 p2 s1 s2 s3 r1 s4 r2 s5 r3 r4 r5 p3
−3 0 −1 −1 −1 0 −1 0 −1 0 0 0 1
5 0 2 2 2 1 2 1 2 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1

)
. (2.2.6)

From Gt, we can get the GLSM fields associated to each point as shown in (2.2.1), where

r = {r1, . . . , r5}, s = {s1, . . . , s5}. (2.2.7)

From Qt (and QF ), the mesonic symmetry reads SU(2)×U(1)×U(1)R and the baryonic symmetry
reads U(1)4h, where the subscripts “R” and “h” indicate R- and hidden symmetries respectively.
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The Hilbert series of the toric cone is

HS =
1(

1− t1
t3

)(
1− t1t2

t3

)(
1− t33

t21t2

) +
1

(1− t2)
(
1− t2

t1

)(
1− t1t3

t22

) +
1(

1− 1
t2

) (
1− t1t22

) (
1− t3

t1t2

)

+
1(

1− 1
t2

)(
1− 1

t1t22

) (
1− t1t32t3

) +
1

(1− t2)
(
1− t1

t2

)(
1− t3

t1

) .

(2.2.8)

The volume function is then

V = − 25

(b1 − 2b2 + 3)(2b1 + b2 − 9)(b1 + 3b2 + 3)
. (2.2.9)

Minimizing V yields Vmin = 1/5 at b1 = 2, b2 = 0. Thus, amax = 5/4. Together with the
superconformal conditions, we can solve for the R-charges of the bifundamentals, which are XI =
2/3 for any I, viz, for all the bifundamentals. Hence, the R-charges of GLSM fields are pi = 2/3
with others vanishing.

2.3 The Toric Variety X̃(∆)

Given a lattice polytope ∆ of (complex) dimension n, besides the (n+ 1)-dimensional Calabi-Yau
cone which is non-compact, we can also get a compact toric variety X(∆) under the construction
of inner normal fan Σ(∆). Here, we only give a quick review on the ingredients that will be used
below. A detailed treatment can be found in [97, 98].

To build X(∆), we choose one interior point as the origin, then the fan Σ(∆) is constructed out of
cones having rays going through the vertices of each face with origin as the apex, viz,

Σ(∆) = {pos(F ) : F ∈ Faces(∆)} , (2.3.1)

where

pos(F ) =

{∑

i

λivi : vi ∈ F, λi ≥ 0

}
(2.3.2)

is the positive hull of the n-cone over face F . For instance, choosing the left interior point as the
origin, the polygon in §2.2 has

u0

u1

u2

u3

σ0

σ1σ2

σ3

(2.3.3)

with the cones σi as affine patches.

Then following the standard construction in [97, 98], we can get the compact X(∆). Here, the
information of the fans suffices for our discussions on the geometric and topological properties.
Such X(∆) may not be smooth. In fact, the toric variety built from (2.3.3) is not smooth. This
can be solved by the following definition:
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Definition 2.3.1. The polytope and the corresponding fan are regular if every cone in the fan has
generators that form part of a Z-basis.

The regularity can be determined by the determinant of all n-tuple vectors of each cone. If all the
determinants are ±1, then we have a regular polytope and a regular fan. With regularity, we have
the following theorem [98]:

Theorem 2.3.1. The toric variety X(∆) is smooth iff ∆ is regular.

For example, in (2.3.3), det(u0,u2)=−2, and therefore the corresponding toric variety is singular.
Nevertheless, we can always resolve the singularities via triangulations of the polytope. For reflexive
polytopes, FRS triangulations are considered [46, 121], where

• “Fine” stands for all the lattice points of the polytope involved in the triangulation;

• “Regular” stands for the polytope being regular;

• “Star” stands for the origin being the apex of all the triangulated cones.

Now that we are dealing with polygons having two interior points, F and S can not be simultaneously
satisfied. Hence, we will drop the condition F, and contemplate RS triangulations. Under such

triangulations, we get a complete resolution, X̃(∆), of X(∆). For instance, (2.3.3) can be resolved
to

u0

u1

u2

u3

u4u5

u6

u7

u8

u9

σ0

σ1σ2

σ3

σ4
σ5

σ6

σ7

σ8

σ9

, (2.3.4)

which is complete and smooth.

2.3.1 The Two Interior Points as Origins

From [122], we know that X(∆) constructed from reflexive polytopes are Gorenstein Fano, i.e.,
its anticanonical divisor KX is Cartier and ample. However, as we have two interior points here,
X(∆) does not hold this property any more. Actually, since we have two choices of the origin, we
can build two compact toric varieties, which may or may not be the same10.

For the two X̃(∆)’s built from ∆ to coincide, it is necessary for them to have the same Euler

number. As we will discuss in §2.3.2, the Euler number of X̃(∆) equals to the number of triangles
under the triangulation, viz, the number of two-dimensional cones. Hence, this can be checked by
counting the numbers of triangles under triangulations. After complete resolutions, we find that

there are only 12 polygons that have X̃(∆)’s with different Euler numbers. In terms of the ordering
in Appendix A, they are (2), (4), (10), (12), (15), (18), (19), (23), (37), (38), (39) and (40).

As the two interior points is connected by a straight line, now for simplicity, let us call this line
the “spine” of the polygon11. Since the Euler number is related to triangulation, it is not hard to
see that when we have zero or two perimeter points lying on the spine, the two Euler numbers are

10Notice that even though we have this choice on the level of the toric 2-fold, the affine 3-fold is the same and
hence the gauge theories are the same.

11This should not be confused with the spines for amoebae in tropical geometry.
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equal12. On the other hand, if there is only one perimeter point on the spine, the two complete
resolutions would yield different Euler numbers. This is because for these three points on the spine,
if the interior point is in the middle (which we will refer to as the “zeroth-grade” point), the fan
will have rays extending to both of the other two points on the spine. For the other interior point
(which we will refer to as the “first-grade” point), the fan will only have one ray on the spine.
Thus, the zeroth-/first-grade Euler numbers will differ by 1:

χ0 − χ1 = 1. (2.3.5)

As will be discussed in §2.3.2, the first Chern numbers will then satisfy C1,1 − C1,0 = 1 where C1,i

denotes the first Chern number of X̃i(∆) from the ith-grade point13.

For the remanining 33 polygons who have two zeroth-grade points, it turns out that not only the

corresponding Chern numbers of X̃(∆), but also the two Chern classes (and hence the two Euler
numbers) are equal. For the 12 polygons with first-grade points, consider the complete resolution
whose fan has the first-grade point as the apex. If we add another ray opposite to the original ray
on the spine, i.e., we further resolve the complete smooth surface, then we will reach a new variety
with Euler number χ′

1 = χ1 + 1 = χ0. As a matter of fact, we find that the total Chern classes of

X̃0(∆) and X̃ ′
1(∆) are equal:

c
(
X̃ ′

1

)
= c

(
X̃0

)
. (2.3.6)

As an example, the different resolutions of (2.2.1) in §2.2 is depicted in Figure 2.3.1.

u0

u1

u2

u3

σ0

σ1 σ2

σ3

(a)

u0

u1

u2

σ0

σ1

σ2

(b)

u0

u1

u2

u3

σ0

σ1 σ2

σ3

(c)

Figure 2.3.1: (a) The complete resolution X̃0 is constructed from the zeroth-grade point.

The Euler number χ0 is 4. (b) The toric variety X1 is already smooth, viz, X1 = X̃1. The
Euler number χ1 is 3. (c) We make a further blow-up on X1 by adding the ray u3 = (1, 0).

The new variety X̃ ′
1 has Euler number χ′

1 = 4.

It is worth noting that all the 12 polygons with first-grade points can be higgsed from a minimal
parent theory which also has a first-grade point (and two zeroth-grade points). This minimal parent
theory is

, (2.3.7)

where the blue lines indicate three of the higgsed polygons each from blowing down three points.
The remaining 9 can be obtained from these three polygons. Notice that the first-grade point

12Hence, none of the hexagons belongs to the 12 polygons as it has been proven in [123] that the two interior
points of a hexagon must lie on the same diagonal.

13For polytopes with arbitrarily many interior points, the zeroth-grade points will be those which give the largest
possible Euler number n while the mth-grade points will give Euler number (n −m).
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in (2.3.7) is always higgsed away, and one zeroth-grade point becomes a first-grade point after
higgsing.

As the first-grade point trivially yields a different X̃1(∆) from X̃0(∆), we will consider X̃ ′
1(∆) which

has an extra step of resolution when comparing the two compact smooth complete varieties built
from each toric diagram. Since the characteristic classes are always the same for the two varieties,
we need a new approach to distinguish them. Our strategy is the same as classifying inequivalent
lattice polygons, that is, checking whether the two fans are related by SL(2,Z) transformations
(along with translations and reflections)14. One way to see this is to tell whether the vectors
ending on the each row/column are properly shifted. Another way is to consider the determinants
since all the transformations have determinant ±1 and all the 2×2 matrices with determinant ±1
is such a transformation. Then if we pick out any corresponding pairs of vectors from the two fans,
the matrices they form should have the same determinant up to a sign.

It turns out that this can be directly read off from the symmetries of the toric diagrams since we
only have one spine (which is a result of always having two interior points). Due to the existence of
the unique spine, the vectors above and below the spine should be shifted along opposite directions.
However, as we are moving from one interior point to the other along the spine, the vectors above
and below the spine would always be shifted along the same direction. An example is illustrated
in Figure 2.3.1(a, c).

Hence, reflection or rotation15 is necessary to make the two varieties coincide. As a result,

Proposition 2.3.2. The two X̃(∆)’s are the same iff the lattice polygon (under certain SL(2,Z)
transformations) satisfies either of the following two: (1) axially symmetric with respect to the
perpendicular bisector of the two interior points; (2) centrosymmetric16.

Therefore, only 8 out of the 45 toric diagrams give rise to two same X̃(∆)’s. In terms of the
ordering in Appendix A, they are (14), (20), (22), (24), (26), (43), (44) and (45).

Before moving on to the next subsection, let us briefly discuss the smoothness of X(∆). Although
it is not always the case, some ∆ still lead to smooth X(∆). There are 9 such polygons. In
terms of the ordering in Appendix A, they are (2), (6), (7), (8), (18), (25), (26), (41) and (42). In
particular, since (2) and (18) have both zeroth- and first-grade points, only the first-grade points
in both of the cases can give smooth varieties directly. The other 7 toric diagrams can all give
rise to two smooth complete surfaces without any further resolutions. It is straightforward that all
the perimeter points need to be corner points for X(∆) to be smooth. If the toric diagram has a
first-grade point as well, then the zeroth-grade point cannot yield a smooth X(∆).

2.3.2 Minimized Volumes and Topological Quantities

As we have obtained the volume data of the 45 cases in Appendix A, we plot 1/Vmin against the
number of lattice points N in Figure 2.3.2. Now we would like to relate the minimized volume

functions of Sasaki-Einstein manifolds to the topological quantities of X̃(∆)’s. From [97, 98], we
have

Theorem 2.3.3. For the smooth projective variety X̃(∆) of (complex) dimension n, the Betti
numbers satisfy

b2k−1 = 0, b2k =

n∑

i=k

(−1)i−k
(
i

k

)
dn−i, (2.3.8)

14More precisely, as the origin is always the apex of the cones, we have no translations here, and thus the
transformations lie in SL(2,Z)×Z2.

15Due to reflection, without loss of generality, rotation can be restricted to inversion, viz, rotation by π.
16These two properties then rule out all the toric diagrams with a first-grade point. Even though we further

resolve them to make the Chern classes match, we still cannot have the same toric varieties.
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Figure 2.3.2: The reciprocals of minimized volumes against the number of lattice points
N . This is bounded by the straight line 1/Vmin = N where the triangles live.

where k = 0, 1, . . . , n and dj is the number of j-dimensional cones in ∆̃. As the Euler number

χ =
n∑
i=0

(−1)ibi, then
χ = dn. (2.3.9)

This verifies our statement that the Euler number is the number of triangles under the triangulation
used in §2.3.1. Then

Corollary 2.3.3.1. For the lattice polygons, we have

b0 = b4 = 1, b1 = b3 = 0, b2 = d1 − 2d0 = d1 − 2 = χ− 2. (2.3.10)

Since bk =
k∑
i=0

hi,k−i, we get

χ =
∑

r,s

(−1)r+shr,s = h2,2 + h2,0 + h1,1 + h0,2 + h0,0 = 2 + 2h2,0 + h1,1. (2.3.11)

In fact, we find that the dimension of the Kähler cone over X̃(∆) is always χ− 2. Thus,

h2,2 = h0,0 = 1, h2,0 = h0,2 = 0, h1,1 = χ− 2. (2.3.12)

The vanishing h2,0 (h0,2) shows that there is no global sections to the (anti-)canonical bundle. Then
the only remaining interesting Hodge number h1,1 is determined by the Euler number. As we are
now going to see, the (first) Chern number is also determined by the Euler number.

For surfaces, we have two Chern numbers: C1 =
∫
X̃
c21 and C2 =

∫
X̃
c2 = χ. In Figure 2.3.3, we

plot 1/Vmin against the first and second Chern numbers respectively, following the strategy of [46].
First of all, putting the two graphs together, we can see that the two sets of points are symmetric
with respect to x = 6. Indeed, we find

Theorem 2.3.4. For a smooth complete toric surface X̃, we have

C1 + χ = 12. (2.3.13)
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Figure 2.3.3: The green points correspond to X̃(∆) built from first-grade points. The
varieties (from zeroth-grade points) of triangles are in orange.

A proof of this can be found in [2, §7.2].

It is conjectured in [46] that the lower bound of minimized volumes is 1/χ, and the bound is
saturated when X is an abelian orbifold of C3 for reflexive polytopes in any dimensions. However,
as we can see from Figure 2.3.3, 1/Vmin can be greater than the Euler number. Furthermore, the
volumes of triangles do not form a lower bound any more17. There are two cases (13 and 17) that
are above the orange curve even if we ignore the green points. Nevertheless, we still find the orange
curve seems to follow some pattern. For reflexive cases, such curve would be χ = 1/Vmin as this is
the bound mentioned above. For the cases with two interior points, the curve is

χ =
1

8

(
14− 1

Vmin

)(
12− 1

Vmin

)
+ 2. (2.3.14)

We suspect that for polygons with arbitrarily many interior points, such curves would follow some
specific pattern.

17However, we should emphasize that such bound may still be true for reflexive polytopes in any dimension, though
we do not have available data to test this.
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On the other hand, the upper bounds of minimized volumes for reflexive cases in any dimensions
are fibrations of dP3 [46]. Here, for polygons with two interior points, we find that the upper bound
is C3/Z5 (1,2,2), which is the only C3 orbifold not on the orange curve.

It is conjectured in [46] that the bounds of the minimized volumes for toric CY n-folds X with
reflexive (n− 1)-dimensional polytopes as the toric diagrams are

1

χ
≤ Vmin ≤ mn

∫
cn−1
1 , (2.3.15)

where m3 ∼ 3−3, m4 ∼ 4−4 and mn > mn+1. We have already seen that the first inequality
does not hold for non-reflexive cases (while the second one still holds here). In Figure 2.3.4, we
plot the χ-1/Vmin diagram again. It is obvious that the area bounded by 1/Vmin = χ/m3 and
1/Vmin = (12 − χ)/m3 is much larger than the region where our data points live. Hence, it is

3 4 5 6 7 8 9 10
4

6
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12

χ

1/
V
m
in

Figure 2.3.4: There are large gaps between red points and others. In other words, the red
points are much closer to the lower bound of volumes.

possible that we may extend the above conjecture to the following18.

Conjecture 2.3.5. For polytopes (either reflexive or non-reflexive), we have

1

χ
≤ Vmin < mn

∫
cn−1
1 . (2.3.16)

It is worth noting that such bounds for 2d lattice polygons in terms of their areas are obtained
in [92]:

1

A
≤ V3,min <

4π2

27A
, (2.3.17)

where A is the normalized area of the polygon. Moreover, the lower bound is saturated for triangles
while the upper bound is the case for ellipses (as limit shapes of polygons) and hence can never be
saturated. If we compare (2.3.17) with (2.3.16) with n = 3, we find that the lower bounds agree: χ
is the Euler number for a complete resolution which corresponds to a fine triangulation, and hence
χ = A. Furthermore, they take equalities under the same condition. For the upper bound, (2.3.16)
becomes m3C1 = m3(12− χ), whose connection to (2.3.17) is more subtle to understand.

We would also like to know whether the minimized volume of Y with an arbitrary polytope ∆ can
be arbitrarily close to 0, viz, unbounded from above in the χ-1/Vmin diagram19. The answer is yes

18There is a typo in [2], but this is corrected in [8].
19For polygons, this can also easily be seen from 2.3.17.
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and can be seen from considering the orbifolds. We know that the volume of an orbifold is the
volume of its parent divided by the order of the quotient group, regardless of the action:

vol(M/Γ) =
vol(M)

|Γ| . (2.3.18)

From [113], we know that the volume of a (finite) cone is proportional to the volume of the Sasaki-
Einstein manifold. Then the minimized volume function should also follow20

V (M/Γ) =
V (M)

|Γ| . (2.3.19)

For instance, this provides a quick way to see that Vmin(Cn/Zn) = 1/n as we have shown in §2.1.4.
Also, this does not depend on the orbifold action. The lattice rectangle of size 2 × 1 and the toric
diagram of F0 are both the conifold quotiented by Z2, but with different actions. However, they
both have Vmin = 8/27.

Outlook In this chapter, we have only considered 2d polygons with two interior points. This
is quite a strict constraint which only gives us 45 inequivalent toric diagrams. For instance, the
classification of 3d lattice polytopes with two interior points has been done in [124], which gives
22673449 of them up to unimodular equivalence. Therefore, a general method needs to be found to
get a more detailed understanding of the geometric and topological properties for any polytopes.
It would also be interesting to randomize over the space of toric diagrams and try volume-topolgy
plots.

For reflexive polytopes of dimension n, besides the affine CYn+1 cone which is non-compact, we
know that compact smooth CYn−1 can be constructed as hypersurfaces in X(∆) from [125–130].
However, for non-reflexive ploytopes, we do not have the defining polynomials any more. It would
be interesting to study the hypersurfaces for such cases.

20As it should be clear, we will use the corresponding orbifold to denote the volume function of Y in our notation.
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Chapter 3

Mahler Measure

In this chapter, we shall mention the statistical aspect of dimer models/brane tilings. In particular,
the crystal melting models [41–43, 131] turn out to be crucial in the study of BPS spectra, which
will be discussed in more detail in Chapter 5. Here, let us consider a concept from number theory,
that is, the Mahler measure [47]. We will see that it enjoys nice properties in the context of quiver
gauge theories and dimer models1:

• We introduce the isoradial and tropical limits that depend on the coefficients of the Newton
polynomials. When the Newton polynomial is restricted to have one single parameter, we
show that when a tropical limit is reached in the large limit of the free parameter. We argue
that the Mahler measure (and the Ronkin function) increases monotonically from the isoradial
limit to this tropical limit. Moreover, we propose that this free parameter could be related to
the (single) FI parameter of the gauge theory with the constraints of the D-term relations.

• We give the asymptotic expressions ((3.2.19) and (3.2.20)) of the areas of the holes in the
amoeba in this tropical limit.

• We find that when the Newton polynomial takes the coefficients with the canonical choice (in-
troduced below), the maximization of the Mahler measure is equivalently to the a-maximization
which determines the R-charges for isoradial dimers. We also conjecture that this holds for
non-isoradial cases.

• We conjecture that with the canonical choice of the coeffcients, the Newton polynomial (and
hence the Mahler measure in the isoradial limit) is invariant under Seiberg duality.

• We will see that the quantity u0 (defined below) appeared in the calculations of the Mahler
measure can be viewed as a generating function of the master space of the gauge theory. One
then find how the Mahler measure transforms under the specular duality ((3.2.58)).

3.1 Prelude

Since we are attempting to connect a multitude of concepts from mathematics and physics, it is
expedient to present an introductory summary here, as much to motivate the reader as to set
notation. Let us start with the Mahler measure. Then we will see how this is connected to dimer
models/brane tilings.

3.1.1 The Mahler Measure

Originating in algebraic number theory, the Mahler measure is a seemingly innocuous object. Given
a Laurent polynomial in n complex variables, the Mahler measure can be considered as an average
on the n-torus:

1A short summary can also be found in [132].
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Definition 3.1.1. For a (non-zero) Laurent polynomial P (z) = P (z1, . . . , zn) ∈ C[z±1
1 , . . . , z±1

n ],
the Mahler measure is

m(P ) :=

∫ 1

0
· · ·
∫ 1

0
log |P (exp(2πiθ1), . . . , exp(2πiθn))|dθ1 . . . dθn. (3.1.1)

By convention, we set m(0) =∞.

We emphasize that the name Mahler measure often means the exponential exp(m(P )) in the lit-
erature. However, since we will exclusively work with m(P ) in this paper, we will always refer to
m(P ) in (3.1.1) as the Mahler measure.

The Mahler measure enjoys many salient features, such as additivity, meaning that m(PQ) =
m(P ) + m(Q) for any two Laurent polynomials P,Q. Furthermore, for a univariate polynomial

P (z) = a
n∏
i=1

(z − αi), we have Jensen’s formula:

m(P ) = log |a|+
n∑

i=1

max{0, log |αi|} . (3.1.2)

However, for more than one variable, the integral in (3.1.1) is already highly non-trivial. Since in
this paper we are mainly considering bivariate Laurent polynomial P (z, w), and already no such
simple formula as Jensen’s is known2.

What we do know about the n variable case is that the Mahler measure is GL(n,Z) invariant
[134, 135]:

Theorem 3.1.1. Let 0 ̸= (Mij)n×n ∈ GL(n,Z). Then

m(P (z)) = m(P (zM )) = m(P (−zM )), (3.1.3)

where zM =

(
n∏
i=1

zMi1
i , . . . ,

n∏
i=1

zMin
i

)
.

Other than the few nice properties mentioned above, perhaps the most extraordinary about the
Mahler measure is that for certain polynomials, it evaluates to special values of zeta and L-functions
[50, 136,137].

Here, we will mainly apply the expansion of the integrand and residue theorem to calculate the
integral. Writing z := (z1, . . . , zn), and extract the constant term of the polynomial P as k, i.e.,

P (z) := k − p(z) , (3.1.4)

we have the series expansion (formally in p)

log(k − p(z)) = log k −
∞∑

n=1

pn(z)

n
k−n. (3.1.5)

Since we are integrating on the n-torus, we need the restriction |k| ≥ max
z∈Tn

|p(z)|. This then ensures

the series expansion converges uniformly on the support of the integration path and hence we are
also allowed to exchange the sum and integral in our calculation. Therefore, we may write the
Mahler measure as

m(P ) = Re

(
1

(2πi)n

∫

|zi|=1
log(P (z1, . . . , zn))

dz1
z1

. . .
dzn
zn

)
. (3.1.6)

2By writing P (z, w) as a(w)
n∏

i=1

(z − αi(w)), we can still use Jensen’s formula to compute m(P (z, w)), but the

expression is much more involved [133] and no analytic results are known explicitly.
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By the residue theorem and integrating over |k| > max
z∈Tn

|p(z)|, only the constant term in (3.1.5)

contributes. Therefore, we have that

m(P ) = Re

(
log k −

∫ k−1

0
(u0(t)− 1)

dt

t

)
, (3.1.7)

where

u0(k) =
1

(2πi)n

∫

|zi|=1

1

1− k−1p(z1, . . . , zn)

dz1
z1

. . .
dzn
zn

. (3.1.8)

An example of the above process can be found in Appendix B.

In fact, (3.1.8) means that u0(k) is a period of a holomorphic 1-form ωY on the curve Y defined by
1− k−1P = 0 [50, 138], that is,

∫
γ ωY where γ is a 1-cycle on Y . We shall also refer to this as the

period of the curve Y . Therefore, u0 also satisfies the Picard-Fuchs equation:

A(k)
d2u0
dk2

+B(k)
du0
dk

+ C(k)u0 = 0, (3.1.9)

where A(k), B(k), C(k) are polynomials in k.

We may also extend the definition of Mahler measure.

Definition 3.1.2. The generalized Mahler measure extends definition (3.1.1) to an arbitrary torus
with variable sizes ai:

m(P ; ai) =
1

(2πi)n

∫

|zi|=ai
logP (z1, . . . , zn)

dz1
z1

. . .
dzn
zn

. (3.1.10)

3.1.2 More on Dimer Models

To discuss how P (z, w) and Mahler measures are related to dimer models, we need to introduce
a few more concepts supplementary to the reviews in §2.1.2. Recall that the brane tiling gives a
bipartite graph G, and the dimer model is the study of its (random) perfect matchings. As we shall
always take G to be Z2-periodic, it always constitutes a doubly-periodic tiling of the plane. In other
words, G is embedded in the Z2 lattice3. Now, the plane quotiented by Z2 is a torus, of genus 1, and
we will use G1 := G/(Z2) to denote the fundamental domain of the bipartite graph. More generally,
we use Gn to denote the quotient G/(nZ2), where nZ2 is the n-times enlarged fundamental domain.

Given a perfect matching M , we can define a unit flow ω that flows by one along each edge in M
from white node to black node. Consider a reference perfect matching M0 with flow ω0, and let γ
be a path from face f0 to f1 in the graph. Then for any matching q with flow ω, the total flux of
ω − ω0 across γ is independent of γ and defines a height function of M . The difference of height
functions of any two perfect matchings is independent of the choice of M0. A perfect matching M1

on the fundamental domain G1 gives a periodic perfect matching M on G. The height change of
M1 is defined to be (hx, hy) if the horizontal and vertical height changes of M for one period are
hx and hy respectively.

We can define a real function E(e) on the edges e of G. This is known as the energy of the
edges [139].

Definition 3.1.3. Given a perfect matching (or more generally, any set of edges) M , its energy is
E(M) :=

∑
e∈M
E(e). For any edge e in the graph, its edge weight is defined to be e−E(e). LetM(G)

be the set of perfect matchings on G, then the partition function ofM is Z(G) := ∑
M∈M(G)

e−E(M).

3More generally, one may also consider any 2-dimensional lattice instead of Z2. Indeed, one can consider high-
genus tilings.
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Given the edge weights, one can define the Kasteleyn matrix K.

Definition 3.1.4. A Kasteleyn matrix has rows (columns) representing the white (black) nodes in
G. Its entries are the corresponding edge weights multiplied by ±1 as follows. Around each face
there are an odd number of edge weights multiplied by −1 if the face has 0 (mod 4) edges and an
even number if it has 2 (mod 4) edges.

It was shown in [140] that this construction is always possible, and

Theorem 3.1.2. The absolute value of the determinant is the partition function, that is,

| det(K)| = Z(G) =
∑

M∈M(G)
e−E(M). (3.1.11)

As G1 is embedded on a torus, let γx and γy be paths winding horizontally and vertically around
the torus. Then we can multiply an edge weight by z (or z−1) if the γx crosses the edge with the
black node on its left (or right). Likewise, we multiply an edge weight by w±1 if γy crosses the edge.
This leads to the “magnetically altered” Kasteleyn matrix K(z, w) [139]. We may then construct
a Laurent polynomial from this.

Definition 3.1.5. The Newton or charateristic polynomial of G is P (z, w) := det(K(z, w))
in formal complex variables z, w. It defines a so-called spectral curve P (z, w) = 0, as a Riemann
surface.

For each monomial c(m,n)z
mwn in P (z, w) with coefficient c(m,n), we can associate a point (m,n)

on the lattice. These points form a lattice polygon known as the Newton polygon. In toric
geometry, this is precisely the toric diagram discussed in the previous chapter. In particular, each
vertex/corner point in the polygon is associated with a toric divisor of the Gorenstein singularity.

Example 1. Let us consider the dimer in Figure 3.1.1(a). The fundamental region is the square

1 2

3

4

5 6

7

8

(a) (b)

1

2

3

4

(c)

Figure 3.1.1: (a) The dimer model. (b) The toric diagram. (c) The quiver diagram.

where the numbers are the labels of the edges (rather than weights). Let us take the weight of
each edge to be

√
2 (for the reason to be discussed shortly). Now consider for instance the vertex

correpsonding to the monomial z in the Newton polygon. Its perfect matching is composed of X2, X5

where XI is the arrow dual to edge I [105]. Therefore, this gives rise to (−1) ×
√
2×
√
2z = −2z

in the spectral curve. Overall, one may check that this agrees with the Kasteleyn matrix

K =

(
−
√
2 +
√
2z

√
2−
√
2w

−
√
2 +
√
2w−1 −

√
2 +
√
2z−1

)
, (3.1.12)

where the signs and variables assigned to the edges are {1,−1,−1,−1, z, z−1,−w,w−1} (ordered by
the labelling of edges). The curve is then given by

−2z − 2z−1 − 2w − 2w−1 + (2 + 2 + 2 + 2) = 0, (3.1.13)

or equivalently,
−z − z−1 − w − w−1 + 4 = 0. (3.1.14)

It is straightforward to get the Newton polygon as in Figure 3.1.1(b). The quiver in Figure 3.1.1(c)
is the dual graph of the dimer.
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Isoradial dimers We have introduced some rudiments of dimer models and brane tilings. Of
particular interest is the isoradial embedding of a dimer model.

θI

(a) (b)

Figure 3.1.2: (a) The edge in red has length l. Its dashed dual edge is of length
√
4− l2

which equals the weight of the edge. The rhombus angle is labelled by θI . The corresponding
internal angle 2θI of the rombus gives the R-charge physically. (b) The left plot indicates∑

2θI = 2π which corresponds to each superpotential term while the right plot indicates∑
(π − 2θI) = 2π which correpsonds to (the fields connected to) each node in the quiver.

Definition 3.1.6. A dimer is isoradial if every face is inscribed in a circle of the same radius,
which we can take to be 1. In this paper, we will mostly choose the weight of an edge to be

√
4− l2

for an isoradial dimer where l is the length of the edge.

The reason for this choice is that the edge weight is equal to the distance of the circumcentres of
the two faces adjacent to the edge (i.e., its dual, perpendicular, edge). We illustrate this in Figure
3.1.2(a) in a hexagonal tiling example. As we will see shortly, we can always construct a spectral
curve of certain kind (a so-called genus 0 Harnack curve) from such isoradial embedding of a dimer.
According to [141], this choice of edge weight is critical in the sense that it uniquely maximizes the
(normalized) determinant of Dirac operator. We will also later see that it is closely related to the
Mahler measure for isoradial embeddings.

We can also express this edge weight in terms of the rhombus angle θI , as shown in Figure
3.1.2(a). In our convention, 2θI is the angle of the rhombus at the vertex that has in common
with the edge. It is easy to see that our chosen edge weight is

√
4− l2 = 2 sin(θI). In other words,

l = 2 cos(θI). The energy function associated to this edge eI , recalling that edge weight is e−E , is
then E(eI) = − log(2 sin(θI)).

Now, the internal angle 2θI is essentially the R-charge of the corresponding chiral multiplet in the
dual quiver gauge theory [142]: for a field XI with R-charge RI ,

2θI = πRI . (3.1.15)

Indeed, we have (i), that
∑

2θI = 2π, which is the geometric recasting of the condition on R-charges
from the vanishing β-function, that

∑
RI = 2. Likewise, we have (ii), that

∑
(π−2θI) = 2π. Notice

the difference between the two sums: (i) is a sum over the angles whose edges are connected to
the same black or white node while the (ii) is a sum of angles in the same face. We depict this in
Figure 3.1.2(b), where a coloured rhombus has rhombus angle θI . The left plot represents (i), a
sum over the parts of rhombi surrounding a vertex (drawn as white in the middle). Every such sum
corresponds to a term in the superpotential. The right plot represents (ii), a sum over the part of
rhombi surrounding the (circum)centre of the dimer face. Each contributes an angle of (π − 2θI)
so that

∑
(π − 2θI) = 2π. Every such sum corresponds to arrows attached to a node in the dual

quiver.

Example 2. Recall the dimer in Figure 3.1.1. Since the rhombus angles are all π/4, each edge
weight equals 2 sin(π/4) =

√
2.
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Isoradial spectral curve and GLSM fields It is straightforward to obtain the spectral curve
in terms of the rhombus angles from Kasteleyn matrix. When taking determinant, each term
we get is simply a product of edge weights 2 sin(θI) contributed from the corresponding rhombus
angles/R-charges4. Therefore, we need to figure out which edges contribute to each monomial in
the Newton polynomial. This can be seen from the perfect matching(s) associated to each lattice
point in the Newton polygon. Recall that each perfect matching can be interpreted as a GLSM
field. Every lattice point in the Newton polygon is associated with one or more GLSM fields.

For a vertex/corner point vi, we only have one corresponding GLSM field pi. It can be written as
pi =

∑
I

XI where XI ’s are the arrows in the quiver. Recall that XI ’s are arrows dual to the edges

eI in the dimer. When computing det(K), we would get the monomial corresponding to vi as a
product of these eI ’s. Since they have weights 2 sin(θI), this gives the term

(−1)δ
∏

I

2 sin(θI)z
awb (3.1.16)

where the factor zawb can be directly read off from the Newton polygon, and we will explain what
δ means shortly.

This can be generalized to any lattice point. For interior points and other boundary points, they
correspond to multiple GLSM fields. Suppose one of such points is associated to GLSM fields
q1, . . . , qk, then each qi can be written as qi =

∑
I

XI . As a result, each qi gives rise to a product of

2 sin(θI) from the determinant. Then the corresponding monomial in the spectral curve is the sum
of these products for every qi,

(−1)δ
∑

i

[
weight
of qi

]
zawb = (−1)δ

∑

i

(∏

I

2 sin(θI)

)
zawb. (3.1.17)

Now let us determine δ. Given a reference perfect matching M0, denote the horizontal (vertical)
height change of the perfect matchingM to be hx (hy). Then the above rules of writing the Newton
polynomial should agree with the result in [139]:

P (z, w) =
∑

M

e−E(M)zhxwhy(−1)hxhy+hx+hy . (3.1.18)

It is straightforward to see that the energy of M is consistent with (3.1.16) and (3.1.17), that

is, E(M) =
∑
I

E(eI) = − log

(∏
I

2 sin(θI)

)
. Now different reference M0 may give different signs

for each term, but it would preserve certain properties of the spectral curve (such as its Mahler
measure). Here, we will stick to the perfect matching corresponding to a = b = 0 (i.e. the origin of
the Newton polygon) as the reference M0 so that the powers of variables agrees with (3.1.16) and
(3.1.17) 5. Then the parity of (hxhy + hx + hy) is fully determined by a = hx and b = hy. Thus,
we may write δ as

δ =

{
0, both a and b are even

1, otherwise
. (3.1.19)

Example 3. Recall the example in Figure 3.1.1(a). Let us choose the matching consisting of edges
1 and 2 as the reference perfect matching. As the matching consisting of edges 4 and 7 has height

4Note that so far by R-charges, we mean all possible trial R-charges that satisfy the conformality condition. In
other words, the rhombus angles are still variables in the spectral curve. We will determine their exact values (and
hence exact coefficients for the curve) in §3.2.4.

5Notice that in [139], there is also a total factor zx0wy0 in the front of the right hand side in (3.1.18), where x0
and y0 are the total flows across the horizontal and vertical cycles respectively. This would ensure that the overall
powers zx0+hxwy0+hy is the same as zayb. For simplicity, we remove this factor in (3.1.18) as long as we choose the
one with x0 = y0 = 0 as our reference perfect matching.
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change (0,−1), we have δ = 1 and this gives rise to the term −2w−1. Altogether, we have the
spectral curve

−2z − 2z−1 − 2w − 2w−1 + (2 + 2 + 2 + 2) = 0, (3.1.20)

or equivalently,
−z − z−1 − w − w−1 + 4 = 0. (3.1.21)

This agrees with (3.1.14).

3.1.3 Amoebae and Harnack Curves

Now that we have some familiarity with dimers and Newton polynomials/spectral curves, let us
collect some facts on amoebae and Harnack curves, adhering to the notation of [139, 143].

Definition 3.1.7. An amoeba is the set of points in the real plane, of the logarithmic projection
of the spectral curve P = 0:

AP =
{(

log |z|, log |w|
) ∣∣ P (z, w) = 0

}
. (3.1.22)

The definition of the amoeba can be easily extended to polynomials of more variables, but in this
paper, we will only focus on Newton polynomials in two variables (z, w), and everything will be
planar: the Newton polynomial lives in C2; the amoeba lives in R2 and the toric diagram lives in
Z2. Let us also introduce the spine as a deformation retract of the amoeba. For simplicity, we shall
use the result in [22] as our definition. For the original definition, see [144].

Definition 3.1.8. The spine S of the amoeba is the dual (p, q)-web of the toric diagram associated
to P (z, w).

In parallel, we have

Definition 3.1.9. A real algebraic curve C ⊂ RP2 of degree d is an M-curve if it has the maximal
number of connected components, i.e., (d−1)(d−2)

2 + 1. Following [143], we shall call the connected
components ovals. Ovals that do not intersect the coordinate axes are known as compact ovals.
An isolated real point on the curve is regarded as a degenerate oval. The genus g is the number
of non-degenerate compact ovals. For an M-curve, the genus is also maximal and equals (d−1)(d−2)

2 .

A Harnack curve is a special type of M-curve in the sense that its ovals have the “best” possible
topological configurations (see Figure 2 in [143] for an illustration). The definition of Harnack
curves is quite intricate [145]. Here, we will take the following characterization as the working
definition:

Definition 3.1.10. A Harnack curve C possesses the map

C(C) ∋ (z, w) 7→ (log |z|, log |w|) ∈ AC (3.1.23)

such that it is 2-to-1 from the curve to its amoeba (except for a finite number of real nodes where
it is 1-to-1). The amoeba of Harnack curve with genus g has exactly g holes (i.e., compact com-
plementary regions). Hence, the number of holes for an amoeba is also called the genus of the
amoeba.

From [139], we have a practical way to identify Harnack curves associated with amoebae and dimers.

Theorem 3.1.3. For any choice of non-negative edge weights on a dimer, the spectral curve
P (z, w) = 0 is a Harnack curve of degree d with (d−1)(d−2)

2 compact ovals.

There is another remarkable theorem [146] that will be crucial to us:

Theorem 3.1.4. A curve is Harnack if and only if its amoeba has the maximal possible area for a
given Newton polygon ∆. That is, A(AP ) = π2A(∆) where A(∆) is the unnormalized area of the
Newton polygon.
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In fact, the 2-to-1 feature for Harnack curves leads to the two important propositions [139]:

Proposition 3.1.5. The boundary of the amoeba is the image of the real locus of the spectral curve
P (z, w) = 0. It follows that the amoeba of a Harnack curve can be determined by

∏

n1,n2∈Z2

P ((−1)n1ex, (−1)n2ey) ≤ 0. (3.1.24)

Proposition 3.1.6. Any interior lattice point of the Newton polygon ∆ corresponds to either a
bounded complementary region (i.e., a hole) of the amoeba or an isolated real node in the spectral
curve. In particular, the number of holes of the amoeba is equal to the genus g of the curve.

Finally, we have a theorem from [143] for isoradial dimers:

Theorem 3.1.7. A dimer corresponding to a genus zero Harnack curve is isoradial if and only if
its amoeba contains the origin.

On the log plane, we can always shift the amoeba so that it contains the origin, which corre-
sponds to a rescaling of z and w of the spectral curve. This gives a canonical family of isoradial
parameterizations for any genus-zero Harnack curve.

Example 4. The spectral curve (3.1.14) is Harnack and of genus 0. In fact, −z−z−1−w−w−1+k =
0 is Harnack when k ≥ 4, with g = 0 for k = 4 and g = 1 otherwise.

Ronkin functions Closely related to the amoeba is the so-called Ronkin function. In fact, to
probe different regions of the amoeba, we can use this analytic tool.

Definition 3.1.11. In two dimensions, the generalized Mahler measure (3.1.10) with a1 = exp(x), a2 =
exp(y) defines the Ronkin function R(x, y) := m(P ; ex, ey). In particular, R(0, 0) = m(P ; 1, 1) =
m(P ).

Following [144, 147–149], we have6

Theorem 3.1.8. The Ronkin function R(x, y) is convex. It is strictly convex over AP and linear
over each component of R2\AP . The gradient ∇ = (∂x, ∂y) of the Ronkin function satisfies

• Int(∆) ⊂ ∇R(R2) ⊂ ∆, where ∆ is the Newton polygon for P and Int(∆) is its interior;

• for each component Ei of R2\AP , ∇R(Ei) = (ai, bi), where (ai, bi) is the lattice point in ∆
corresponding to Ei.

Given a Harnack curve with ovals (either degenerate or non-degenerate), we can always shift the
amoeba such that a hole or a critical point7 is located at the orgin. In terms of P (z, w), this is
a rescaling/redefinition of the variables z, w (we will make this more precise in §3.2.1). Since the
Mahler measure is the Ronkin function at (0, 0) (which is always a lattice point in ∆), we have
∇R(0, 0) = (0, 0) following this theorem. Moreover, as the Ronkin function is always convex, we
have

Corollary 3.1.8.1. Given a Laurent polynomial P (with possible rescaling of variables), the Mahler
measure m(P ) is the minimum of R(x, y).

3.1.4 Crystal Melting and D-branes

Another physical system, in contrast to quiver gauge theories of brane tiling, that arise from dimer
models is the so-called crystal melting model, which counts certain BPS bound states [43, 131].

6We are focusing on R2 in this paper, but the discussions on Ronkin functions here can be directly extended to
any Rn.

7By critical point, we mean that this point in the amoeba corresponds to a node in the spectral curve.
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In Type IIA string theory, consider D0- and D2-branes with a single D6 on a toric Gorenstein
3-fold X . More generally, we also include D4-branes [150–152]. Denote the charges of Dp-branes
as Qp, where Q6,4 are magnetic while Q2,0 are electric. In this configuration, the D4s wrap an

ample divisor class [C] =
b2(X )∑
i=1

Q4,i[Ci] ∈ H4(X ,Z) where Ci is a basis of the 4-cycles and b2 = b4.

Likewise, the D2s wrap the 2-cycle [S] =
b2(X )∑
i=1

Q2,i[Si] ∈ H2(X ,Z). Then, the D6-D4-D2-D0 bound

states are counted by the partition function [150]

ZBPS =
∑

Q0,Q2

Ω(Q0,Q2,Q4, Q6)e
−Q0ϕ0−Q2ϕ2 , (3.1.25)

where ϕp are the chemical potentials for Dp-branes and Ω is the degeneracy (Witten index) of the
bound states. In fact, the chemical potentials ϕ0 and ϕ2 can be identified with string coupling gs
and Kähler moduli respectively [131].

The profound results of [41, 43, 131] then relate the BPS states to the crystal models. A crystal is
also a dual diagram of the dimer in the following sense. In the crystal, there are different types of
atoms. Each type corresponds to a node in the quiver, and the chemical bonds between atoms are
represented by the arrows.

Given an initial crystal, one can melt it by removing atoms from the top of it. The BPS degeneracy
is equal to the number of melting crystal configurations with Q0 being the total number of atoms
removed and Q2 the numbers of atoms of different types.

In the thermodynamic limit where a large number of atoms are removed, the shape of the molten
crystal is exactly the (minus) Ronkin function, whose 2d projection is the amoeba of Newton
polynomial P associated to the Gorenstein 3-fold X . Therefore, using saddle point approximation,
we have [131]

Proposition 3.1.9. In the thermodynamic limit,

ZBPS ∼ exp

(∫
dx dy R(x, y)

)
(3.1.26)

(where we have omitted a factor of 4/g2s in the exponential). We may then define the free energy
as F ≡ − logZBPS [139].

In general, (3.1.26) is divergent. Hence, we need to normalize the partition function by Z/Z0 where
Z0 is the partition function of the initial unmolten crystal. Then the volume between the Ronkin
functions for Z and Z0 would remain finite8.

In particular, the phase structures of crystals are given by amoebae.

Definition 3.1.12. An unbounded complementary region of the amoeba corresponds to an unmolten
part in the crystal and is hence called the solid phase. For the parts where atoms are removed in
the crystal, the interior of the amoeba is known as the liquid phase while a bounded complementary
region of the amoeba is known as the gas phase.

With D6-D2-D0 bound states, there would only be liquid and solid phases. Gas phases would
appear when we further add D4 branes.

Following Proposition 3.1.6, the number of gas phases of a dimer/crystal model is equal to the
genus of P (z, w) = 0. In general, every solid/frozen phase corresponds to a boundary point on ∆
and every gas phase corresponds to an interior point (except for degenerate cases).

Example 5. The Ronkin function and amoeba with P = k−z−z−1−w−w−1 (k > 4) are sketched in
Figure 3.1.3. As we can see, the bounded (unbounded) linear facets in a Ronkin function correspond

8Note that this volume is different from the volume under Ronkin function discussed in [143].
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(a) (b)

Figure 3.1.3: The Ronkin function (a) and the amoeba (b) of F0. Figures are taken
from [139] (with slight modifications). The grey part in (a) gives the interior of amoeba
in (b), which corresponds to the liquid phase. The hole in (a)/(b) is the gas phase. The
unbounded white parts in (a) gives the unbounded complementary regions in (b). They

correspond to solid phases.

to the bounded (unbounded) complementary regions in the amoeba while the non-linear part in the
Ronkin function is projected to the interior of the amoeba. The (minus) Ronkin function is the
limit shape of the crystal.

Quiver quantum mechanics Let us think of X as a fibre bundle of T2×R over the R3 base. Then
we can recover the quiver and brane tiling by performing T-dualities along the T2 directions. The
low energy effective 1d quantum mechanics is in fact the dimensional reduction of the 4d N = 1
gauge theory. In the toric diagram, its boundaries specify the singular loci where the T2 fibre
degenrates to a circle. This becomes the NS5-branes under T-dualities, which are (straightened)
zig-zag paths on the brane tiling. The D0s become D2s wrapping the whole torus while the D2s
are still D2s but restricted in certain domains separated by the NS5 branes. In some of these
domains, there would also be NS5s stretched parallel to the D2s. Based on the charges of these
NS5s, different domains correspond to black/white nodes and faces in the dimer model. Thus, we
can also get the quiver as the dual graph of the dimer. Readers are referred to Figure 1 and 2
in [43] for illustrations.

For the single D6 brane, as it fills the whole CY 3-fold, it will become a point on the torus after
T-dualities. Hence, it acts as a flavour brane and there is a flavour node added to the quiver.
Likewise, the D4s will become flavour D2-branes which are again points on the torus. These would
lead to flavour D4-nodes in the quiver diagram [152].

3.2 Mahler Measure in Quiver Gauge Theories

After going over some fundamentals of Mahler measures and dimer models, we can now study
the roles Mahler measures play in quiver gauge theories. As discussed in (3.1.4), we can recast the
Newton polynomials into the form (up to shifting the Newton polygon and/or overall multiplication
of sign)

P (z, w) = k − p(z, w) , k > 0, (3.2.1)

where p(z, w) has no constant terms and no free parameters. When we start to increase k, holes
might appear in the amoeba of P . For any dimer, let us call the weights 2 sin(πRI/2) the canonical
weight choice. Nevertheless, let us start with a more general set-up where all coefficients c(m,n)
depend on k in the following definition.
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Definition 3.2.1. For a spectral curve associated to a dimer with one free parameter k, write it
as P (z, w) =

∑
(m,n)

c(m,n)(k)z
mwn. The isoradial limit is defined to be k = kiso such that c(m,n)(k)

agrees with the coefficients from the canonical choice.

Remark 1. So far, the canonical choice only has special properties for isoradial dimers. As we
will see later, the weights 2 sin(πRI/2) which physically come from R-charges also have interesting
features for non-isoradial dimers. One may then view a non-isoradial dimer as some sort of “isora-
dial dimer” with “zero” or “negative” edge lengths. Therefore, we shall always call it the isoradial
limit as long as the edge weights follow the canonical choice 2 sin(πRI/2) for any dimer regardless
of its isoradiality.

Remark 2. For P (z, w) = k − p(z, w), the amoeba would have g = 0 when k ≤ kiso. If k > kiso,
the holes would emerge in the amoeba. In particular, the number of holes would always be the same
as the number of interior points in the Newton polygon. These holes would evolve simultaneously
when we vary k.

Another interesting limit in the parametrization P = k − p would be the large k limit. First, we
introduce a well-known concept.

Definition 3.2.2. The Hausdorff distance between two closed sets A,B ⊂ Rn is

dH = max{sup
a∈A

(dE(a,B)), sup
b∈B

(dE(b, A))}, (3.2.2)

where dE is the usual Euclidean distance.

We shall define a tropical limit using Hausdorff distance.

Definition 3.2.3. For a Harnack curve associated to a dimer with one free parameter k, write
it as P (z, w) =

∑
(m,n)

c(m,n)(k)z
mwn. Denote its amoeba to be A(k) and the spine to be S. The

tropical limit is k = ktrop such that dH(A(k),S) is minimized at ktrop.

Theorem 3.2.1. For P (z, w) = k − p(z, w), k →∞ is a tropical limit.

A proof of this can be found in [9, §3].

Remark 3. Notice that k → ∞ is a tropical limit, but may or may not be the only tropical
limit. For instance, as illustrated in Appendix B, k = 0 is also a tropical limit for the F0 example.
Nevertheless, throughout, we will mainly focus on the tropical limit at infinity.

Since most of the relevant objects diverge at ktrop =∞, we will mainly discuss sufficiently large k.

Definition 3.2.4. Given an amoeba AP , denote the set of all vertices vi of the spine as V. Let
V ⊂ V be a non-empty proper subset of V. We say that AP is locally an amoeba Aloc around V if
in a neighbourhood of V , P can be approximated by dropping some of its terms. The dropped terms
correspond to the vertices v∗ in the dual graph that are outside the neighbourhood. Moreover, the
approximated Newton polynomial has amoeba Aloc.

Let P(V) ̸= {V} be a non-trivial partition of V. If AP is locally some Aloc for every V ∈ P(V), then
we say k is subtropical. If P(V) = {{v1}, {v2}, . . . , {vn}}, i.e., there is a local amoeba around
every single vertex vi, then we say k is high-subtropical9.

3.2.1 The Mahler Flow

As mentioned above, the Newton polynomials here are constructed by writing down an initial
Piso = kiso − p(z, w) with certain choice of edge weights. Then we simply vary k to get a family of
curves.

9Analogous to the term “tropical”, we also borrow words “subtropics” and “subtropical high” from climate
science.
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When varying k, the Mahler measure changes continuously. We shall refer to this as the Mahler
flow. As discussed before, kmin gives the isoradial limit while a tropical limit is reached when
k →∞.

Recall that when k > max(|p(z, w)|) = p(1, 1), we can compute u0(k) from (3.1.8) using its Taylor
expansion just like m(P ). It is not hard to see that

dm(P )

d log k
= u0(k). (3.2.3)

We may also integrate the Mahler flow equation to get

∫ mk1

mk0

dm(P )

u0(k)
= log

k1
k0
, (3.2.4)

where we shall take k0 = p(1, 1). Then from their Taylor expansions, we can see that u0(k) grows
no faster than m(P ). As a result, both sides would diverge at large k.

For k ≤ p(1, 1), the behaviour of u0(k) could be very different. In fact, the right hand side of
(3.2.3) is not the same u0 as the integral of 1

1−k−1p
any more. This is because the Taylor expansion

has radius of convergence k > p(1, 1). Consequently, the right hand side in (3.2.3) is no longer a
period of the elliptic curve for sufficiently small k. Hence, we shall take (3.2.3) as the definition of
u0(k) for any k.

When k > p(1, 1), it is straightforward to see that the left hand side of (3.2.3) is positive since
u0(k) should be positive as a period. Its positivity can also been seen from its Taylor expansion

u0(k) =
∞∑
n=0

pn(z,w)
kn . Therefore10,

Lemma 3.2.2. The Mahler measure strictly increases when k increases along the Mahler flow,
from k0 = max

|z|=|w|=1
(|p(z, w)|) to k →∞.

In many cases, kiso < k0. In terms of amoeba, this means that the holes would not open up at the
origin. Then we can always shift the amoeba by

(log |z|, log |w|)→ (log |z| − log a, log |w| − log b) (3.2.7)

for some positive numbers a and b such that a node is moved to the origin. This gives a rescal-
ing/redefinition of the variables in P (z, w) 11:

kiso − p(z, w)→ kiso − p(z/a, w/b). (3.2.8)

Since kiso−p(z, w) = 0 is Harnack, the pair (a, b) is unique by the 1-to-1 property between amoeba
and spectral curve at nodes. In other words, there is a unique solution to kiso − p̃(z, w) = 0 where
p̃(z, w) ≡ p(z/a, w/b). As the parametrization of k − p̃ (for fixed p̃) is continuous, we can see that
this unique solution is given by

kiso = max
|z|=|w|=1

(|p̃(z, w)|) = p̃(1, 1) = p(1/a, 1/b). (3.2.9)

10Alternatively, we may also take the derivative of m(P ) with respect to k:

d

dk
m(P ) =

∫ 1

0

∫ 1

0

d

dk
(log |k − p|) dθdϕ. (3.2.5)

Now,
d

dk
log |k − p| = 1

|k − p|
d

dk
((k − p)(k − p̄))1/2 =

k − Re(p)

|k − p|2 . (3.2.6)

This leads to the same result as max(|p|) = max(Re(p)) = p(1, 1).
11As this is just a shift of the amoeba, the 2-to-1 property between the spectral curve and amoeba still holds.

Hence, the curve is still Harnack.
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More importantly, this shows that a hole would now open up at the origin for the amoeba when
k gets increased from kiso, and we have k ≥ max

|z|=|w|=1
(|p̃|) for any k ≥ kiso. Therefore, we can now

rewrite the above lemma as

Proposition 3.2.3. The Mahler measure (with possible rescaling of variables) strictly increases
when k increases along the Mahler flow, from kiso to k →∞.

Remark 4. Although the Mahler measure would vary under the rescaling of z, w, this is essentially
a translation on the xy-plane for the Ronkin function as the amoeba is shifted. The change of
Mahler measure is just indicating different points on R(x, y). Therefore, the physics would not
change. The partition function, which is the volume under R(x, y), remains invariant under the
rescaling of variables.

More generally, we may also consider any k > 0 (without any rescaling of variables) and compute
the integration for Mahler measure numerically. Although the spectral curve is non-Harnack and
hence the correspondence between solid/liquid phases and regions of amoeba is not clear, we find
that m(P ) always increases monotonically for all Newton polynomials P (z, w) we have encountered
along the Mahler flow. Thus, we are led to:

Conjecture 3.2.4. The Mahler measure monotonically increases when k increases along the Mahler
flow, from k = 0 to k →∞.

From the viewpoint of crystal melting in the thermodynamic limit, it is natural to expect the
increasing of Mahler measure when we increase k since more atoms are removed from the crystal.
In terms of amoeba, the size of the hole is controlled by the value of k. When k increases, the hole
would also become larger and larger, which is consistent with the growing gas phases. When k is
(sub)tropical, the gas phase would become dominant. Moreover, kiso is the critical point for the
existence of the holes/gas phases. The holes would open up for k > kiso (even if the holes do not
appear from the origin). For k ≤ kiso (though only kiso gives a Harnack curve), the amoeba is of
genus zero, and its area would become larger when increasing k.

Moreover, the partition function for the crystal melting model should also become larger when
increase k 12. In terms of (3.1.26), this implies that we may extend the above conjecture to Ronkin
functions.

Conjecture 3.2.5. The Ronkin function R(x, y) (for any fixed (x, y)) does not decrease when we
increase k along the Mahler flow for k > 0. More precisely, when k2 > k1,

{
Rk2(x, y) > Rk1(x, y), (x, y) in a non-linear or bounded linear region for k2;

Rk2(x, y) = Rk1(x, y), (x, y) in an unbounded linear facet for k2.
(3.2.10)

Notice that for k2 > k1 ≥ kiso, the non-linear region is the liquid phase and a bounded (unbounded)
facet is a gas (solid) phase.

Since the Ronkin function at (x, y) is essentially the Mahler measure for P (exz, eyw), R(x, y) for
P (z, w) is exactly the Mahler measure for P̃ (z, w) = P (exz, eyw) and shifted amoeba. Hence, we
conclude that

Proposition 3.2.6. Conjecture 3.2.4 and Conjecture 3.2.5 are equivalent.

Remark 5. Notice that the increase of Mahler measure is strict in Proposition 3.2.3 while the
increase is monotonic (i.e., only non-decreasing required) in Conjecture 3.2.4. The reason for non-
strict increasing is more clear in terms of Conjecture 3.2.5: the Mahler measure m(P ) = R(0, 0)
may lie in an unbounded linear facet of the Ronkin function.

12Again, for k < kiso, the physical interpretation of Ronkin functions, in particular for different phases, may not
be clear. Nevertheless, this would still make sense mathematically. More importantly, it is still possible that Ronkin
functions for non-Harnack curves are closely related to crystal melting etc in physics, but in a more subtle way.
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Example 6. For F0 with P = 4− z − z−1 − w − w−1, we have

m(P ) = log k − 2k−2
4F3

(
1, 1,

3

2
,
3

2
; 2, 2, 2; 16k−2

)
, u0(k) = 2F1

(
1

2
,
1

2
; 1; 16k−2

)
(3.2.11)

for k ≥ 4. One may check that they satisfy the Mahler flow equation. At k = kiso = 4, we have

m(P ) =
4K
π

; u0(4)→∞ (3.2.12)

where K is Catalan’s constant. At k → ktrop =∞, we have

m(P )→ log ktrop =∞; u0(ktrop) = 1. (3.2.13)

We can also plot the Mahler flow and u0(k) from kiso to ktrop as follows:

5 10 15 20
k

1.5

2.0

2.5

3.0

m(P)

, 5 10 15 20
k

1.05

1.10

1.15

1.20

1.25

u0(k)

. (3.2.14)

3.2.2 Tropical Geometry of the Mahler Flow

A geometric interpretation of the Mahler flow could be revealed by the holes of the amoeba. In
general, it is hard to determine the area(s) of the holes Ah. However, when k is sufficiently large,
we might be able to calculate Ah using the spines as a tropical limit of the amoeba.

Consider an example, say, Y 2,2 with vertices of ∆ being {(0, 0), (1, 0), (0,−1), (1,−1), (−1,−1)}.
The associated P = −w − z−1w−1 − zw−1 − 2w−1 + k. For very large k, we find that the amoeba
is close to its spine as in Figure 3.2.1(a). As further shown in Figure 3.2.1(b), the spine (in red)
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Figure 3.2.1: (a) The amoeba for the Newton polynomial P (z, w) = −w − z−1w−1 −
zw−1 − 2w−1 + k. As an example, we choose k = e10. (b) The spine (in red) is the dual
of the triangulated Newton polygon ∆ (in black). (c) The internal triangle in the spine is
drawn explicitly in orange in the amoeba. In this example, we can see that the three vertices

of the orange triangle are (20, 10), (−20, 10) and (0,−10) respectively.

is the dual of the triangulation (in black) of the Newton polygon ∆. Of particular interest here is
the red triangle which is the dual of the three internal lines of the triangulation of ∆ as shown.
This is made more clear in Figure 3.2.1(c): the interior of the orange triangle (i.e., the bounded
lines of the spine) consists of the hole and certain parts of the amoeba. At large k here, the hole
approaches to this triangle.

Quantitatively, we observe that the three vertices in the spine are (2 log k, log k), (−2 log k, log k)
and (0,− log k). Note that this is not only true for large k but also for any k since this is the
consequence of the spine. Around each vertex of the spine, the amoeba locally looks like an
amoeba Aloc whose Newton polygon is the corresponding subdivision in ∆. These local parts then
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connect with each other through their thin tentacles. For instance, the upper left part in Figure
3.2.1 is locally a C3-amoeba. For a (global) C3-amoeba, its tentacles would become thinner and
thinner (i.e., asymptotic to the spines) when it goes to infinity. This ensures that the area of the
amoeba remains finite (π2/2).

Now, in the Y 2,2 amoeba, the local C3 part becomes semi-infinite. The thin finite tentacles will
become longer and thinner when k is increased. Therefore, it is natural to conjecture that the area
of the local amoeba would be divided equally by the spine. One may check that the sum of areas
of the local parts is equal to the area of the whole amoeba since they are all proportional to the
areas of the Newton polygons and the local parts correspond to subdivisions of the whole polygon.
Then the area of the hole Ah for large k may be computed as

Ah ≃ A(▲)− 2× 1

3
A(AC3)− 1

3
A(AY 1,1), (3.2.15)

where ▲ denotes the bounded polygon in the spine of ∆ (e.g. the orange triangle here), and Y 1,1

corresponds to the black triangle at the bottom in the tessellation in Figure 3.2.1(b). Therefore,

Ah ≃ 4 log2 k − 2× 1

3
× π2

2
− 1

3
× π2 = 4 log2 k − 2

3
π2. (3.2.16)

If we increase the coefficient for the term w−1, we find that the shape of the amoeba (especially its
tentacles) would change as shown in Figure 3.2.2(a,b). As we can see, the tentacle at the bottom
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Figure 3.2.2: (a) The amoeba for the Newton polynomial P (z, w) = −w−z−1w−1−zw−1−
2ew−1+e10. (b) The amoeba for the Newton polynomial P (z, w) = −w− z−1w−1− zw−1−
2e5w−1 + e10. (c) The spine (in red) is the dual of the triangulated Newton polygon ∆ (in

black).

has now been divided into two. The subdivision of the Newton polygon and its dual spine have
changed as in Figure 3.2.2. Now the bottom local part becomes the triangulated Y 1,1 for (a) and
two C3 for (b).

In general, it turns out that for the canonical choice of coefficients, there is no split in the spines
caused by boundary lattice points that are not at the corner. In the Ronkin function, this means
that the unbounded linear facets would only appear for vertices in the Newton polygon.

We shall make the above discussion more rigorous using the definition for (sub)tropical k. The
amoebae sketched in Figure 3.2.1(a) and Figure 3.2.2(a,b) all have subtropical k. However, only
Figure 3.2.1(a) and Figure 3.2.2(b) have high-subtropical k. Now consider P = −w − z−1w−1 −
zw−1 − 2w−1 + kst in Figure 3.2.1. When |w| is large enough while |z| is small enough such that
log |w| ∼ O(log(kst)), log |z| ∼ O(1/ log(kst)) and 1/|zw| ∼ O(1), the Newton polynomial can be
approximated by −w − z−1w−1 + kst. This corresponds to the local AC3 at the upper left corner
in Figure 3.2.1(a).

For (high-sub)tropical k, we may try to compute Ah for any amoeba using the above method. We
first need to determine the vertices of ▲. Let us consider C3 whose Harnack curve c1z + c2w + k
(for fixed c1,2) as an example. Then by looking at its asymptotic behaviour, we can find its spine
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as follows:

x→ 0 : y = log |w| = log |k/c2|;
y → 0 : x = log |z| = log |k/c1|;

x, y →∞, z/w ∼ O(1) : y =
x+ log |c1|
log |c2|

.

(3.2.17)

Hence, the intersection point of the three lines is (log |k/c1|, log |k/c2|). Now we can use the following
theorem [153, 154].

Theorem 3.2.7. For (α,M) ∈ (C∗)2 ⋊ GL(2,Z) and P (z) ≡ P (z, w) ∈ C
[
z, w, z−1, w−1

]
, the

map Ψ : (C∗)2⋊GL(2,Z)→ Aut
(
C
[
z, w, z−1, w−1

])
defined by Ψ(α,M)(P (z)) = P

(
α · zM

)
is an

isomorphism. Moreover, their Newton polytopes satisfy ∆(Ψ(P )) =M ·∆(P ). Denote the amoeba
of P as AP , then for det(M) ̸= 0, we have AP =MAΨ(P ) − Log(α).

Then for M = (Mij) (and α = (1, 1)), the curve becomes P = c1z
M11wM21 + c2z

M12wM22 + k. The
vertex has coordinates

1

detM
(M22 log |k/c1| −M21 log |k/c2|,−M12 log |k/c1|+M11 log |k/c2|). (3.2.18)

For instance, the local approximation −w− z−1w−1+k is a GL(2,Z) transformation of −z−w+k

given by

(
−1 0
−1 1

)
. This gives the vertex (−2 log k, log k) for Y 2,2 in Figure 3.2.1. For any local

amoebas, the corresponding vertex in the spine can be obtained in this way. Once we know the
coordinates of the vertices, we may compute the area of the hole.

Conjecture 3.2.8. Given a Newton polygon with Newton polynomial P (z, w) = k− p(z, w) and k
high-subtropical, the area of a hole (labelled by i) in the amoeba reads

Ah,i ≃ A(▲i)−
∑

vj∈Vi

1

nj
A(Aloc,j) = A(▲i)−

∑

vj∈Vi

π2

nj
A(∆j), (3.2.19)

where ▲i denotes the corresponding separated polygon in the spine and A(▲i) ∝ log2(k). Moreover,
Vi is the set of spine vertices surrounding the hole i. The local amoeba Aloc,j around the vertex vj
of the spine corresponds to the nj-gon ∆j in the tessellation of ∆.

The total area Ah of the holes is then

Ah ≃ A(▲)−
∑

vj∈V

mj

nj
A(Aloc,j) =

∑

i

A(▲i)−
∑

vj∈V

mjπ
2

nj
A(∆j), (3.2.20)

where mj is the number of ▲i’s that have vj as a vertex, and V is the set of all vertices of the spine.

Example 7. For polygons with a single interior lattice point, we have mj = 1, and there is a single
▲.

Remark 6. It is often more useful to consider the simplification as follows. For Newton polynomials
of form P (z, w) = k − p(z, w) considered in this paper, the (high-sub)tropical k is also the large k
limit. We always have the dominating contribution Ah ∼ log2(k). We may also recast the Mahler

flow equation in terms of the area of the hole dm(P )
dAh

. Then at large k, dm(P )
dAh

∼ 1
2 log k > 0.

Integral approximations As a byproduct, this helps us understand certain integrals in the large
k limit. For instance, for F0, by solving ey + e−y − ex − e−x − 1 = 0, we get part of the boundary
of AF0 (i.e., one solution to the equation) which reads13

y = log

(
1

2
e−x

(
1 + e2x + kex +

√
−4e2x + (−1− e2x − kex)2

))
. (3.2.21)

13Recently, the analytic boundaries for more amoebae were found in [155].
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As we can see, this is the upper right boundary of the amoeba:

2 4 6 8 10

4

6

8

10

, (3.2.22)

where we have used k = 5 to illustrate this and the dashed line indicates the spine. Therefore, the
area of the hole is

Ah = 8

(∫ ∞

0
ydx−

∫ ∞

0
xdx

)
−A(AF0) = 8

∫ ∞

0
(y − x)dx− 2π2. (3.2.23)

In general, it is not straightforward to determine the large k behaviour for such kind of integral
with integrand

I ≡ y − x = log

(
1 + e2x + kex +

√
−4e2x + (−1− e2x − kex)2
2e2x

)
(3.2.24)

because x is also integrated to∞. Nevertheless, from the above analysis, we learn that Ah ∼ log2(k)
for large k. Therefore, ∫ ∞

0
I dx ∼ log2(k) (3.2.25)

in the large k limit.

Higher dimensions It would also be natural to conjecture that similar patterns would happen
for any dimension n.

Conjecture 3.2.9. Let P (z) = k − p(z) be a Laurent polynomial of z ∈ Cn. In the large k limit,
we have Vbdd ∼ logn k, where Vbdd is the volume of a bounded complementary region of the amoeba
A(P ).

3.2.3 The Kähler Parameter

So far, the variable k has not been endowed with any further physical interpretations, except being
the scale of the Mahler flow and controlling the size of the hole in the amoeba. In this subsection,
we shall discuss the physical interpretations of the parameter k in quiver theories.

It is well-known that the variables in the coefficients of P (z, w) are related to Kähler moduli
of the toric CY singularity [156, 157]. In quiver quantum mechanics, these Kähler moduli are FI
parameters. Since every FI parameter is associated with a gauge node in the quiver, or equivalently,
a face in the dimer, they should be related to edge weights/energies and magnetic fluxes on the
dimer model as pointed out in [44].

Hence, it would be natural to relate k to the Kähler/FI parameters. However, there are more
than one FI parameter in general while we only have one variable k in our Newton polynomial.
In fact, the discrepancy between the numbers of parameters are compensated by D-term relations.
Let G be the number of nodes. Recall from Chapter 2 that the D-term charge matrix QD with
(G− 1) rows encodes the GLSM charges under D-term relations. As the coefficients in the Newton
polynomial are obtained from perfect matchings/GLSM fields in the dimer model, there is only one
free parameter left with the constraints from QD. Varying k along the Mahler flow can therefore
be interpreted as varying this free parameter. In general, all the coefficients should be functions
of these FI parameters while we consider a simplification where we only have one variable k as
constant term in this paper.
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General coefficients Let us also make a brief comment on more general choices of coefficients
in P (z, w). Since these coefficients are determined by the FI parameters, they would be related
to wall crossings in the moduli space of the quiver quantum mechanics. Following the 4d/1d
correspondence [158], wall crossing corresponds to Seiberg duality in the 4d N = 1 gauge theories.
As the Ronkin function is closely related to the 4d superconformal index and topological string
partition function (see §3.2.7 and also [158]) which are invariant under Seiberg duality and wall
crossing respectively, we expect that the Mahler measure and Ronkin function would enjoy certain
property under Seiberg duality/wall crossing. We will discuss this explicitly for the isoradial limit
shortly.

Intercepts of Ronkin functions Different coefficients in the Newton polynomial would also lead
to different intercepts of the linear facets in the Ronkin function. When a solid phase corresponds
to a vertex/corner point (m,n) in the Newton polygon, the facet would have slope (m,n) in the
Ronkin function. Besides, the Newton polynomial would contain a term c(m,n)z

mwn. According
to [144],

Theorem 3.2.10. The intercept of this facet is log |c(m,n)|.
As a result, if the coefficients of these linear facets do not equal, their extension would not meet at
the origin in the plot of Ronkin function14. In crystal melting, this means that the unmolten crystal
would not have a point as the tip. Instead, the top of the crystal would be some ridge or face.
In [43], the one-to-one correspondence between crystal melting and dimer model was proven for
the crystal with a single atom at the tip. Nevertheless, different coefficients for crystal melting has
also been considered in various literature, and it would be natural to expect that this one-to-one
correspondence could be extended to such situation for crystal melting15. In light of [139], this
would imply a non-trivial magnetic field.

When Newton polynomials cannot be rescaled to have coefficients 1 for corner points, there are
actually two different types.

Example 8. The Newton polynomial for L1,3,1/Z2 (0, 1, 1, 1) reads

P = −AB
C

(zw + w)− C

AB
(zw−1 + z−2w−1 + 3w−1 + 3z−1w−1)− (2z + 2z−1) + k, (3.2.26)

where

A = sin

(
5−
√
7

12
π

)
, B = sin2

(
5−
√
7

6
π

)
, C = sin3

(
1 +
√
7

12
π

)
. (3.2.27)

Although it does not have same coefficients for the corner points, we can absorb the extra factor by
AB
C w → w so that the four coefficients would all become 1. As we can see, this is a rescaling of
z, w.

However, there is another type whose coefficients cannot be made the same even with such rescaling.
For instance, the Newton polynomial for PdP4a reads

P = −B2
1B

2
2(z + z−1)−B2

2B3B4(zw
−1 + w−1)−B4

5z
−1w2 − 2B1B2B

2
5(z

−1w + w) + k, (3.2.28)

where Bi = sin(πbi/2) and

b1 ≈ 0.427 is a root of 3x3 − 340x2 − 24x+ 72 = 0;

b2 ≈ 0.725 is a root of 3x3 − 134x2 + 228x− 96 = 0;

b3 ≈ 0.298 is a root of 3x3 + 206x2 − 384x+ 96 = 0;

b4 ≈ 0.596 is a root of 3x3 + 412x2 − 1536x+ 768 = 0;

b5 ≈ 0.550 is a root of 3x3 + 250x2 − 124x− 8 = 0.

(3.2.29)

14If these (extensions of) facets meet at the same point but not the origin, we can always rescale the whole Newton
polynomial to make c(m,n) = 1 and hence shift it to (0, 0, 0).

15We should emphasize that the analysis of quiver gauge theories should not be affected since they can be directly
read off from the dimers with different edge weights.
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It turns out that no matter how we rescale the variables, the five vertices z, z−1, zw−1, w−1 and
z−1w2 would not have same coefficients.

3.2.4 Isoradial Limit

Now, let us focus on one of the special points, that is, kiso, in the Mahler flow. When the embedding
is isoradial with 2 sin(θI) as (canonical) edge weights, we shall call m(P ) and R(x, y) the isoradial
Mahler measure and Ronkin function respectively. For a different choice of coefficients in the
Newton polynomial, it is still possible to have an isoradial point k = kiso. Now we will show
that there is a set of θ∗I that maximizes the isoradial Mahler measure and this coincides with the
R-charges in a-maximization. More importantly, after our discussion on Seiberg duality below, we
will find that the followings in this subsection can be applied to any toric quivers and brane tilings
regardless of isoradiality.

Isoradial Mahler measure It is useful to introduce a simple and remarkable formula for isora-
dial Mahler measure obtained in [159]:

m(P ) =
∑

I

(
θI
π

log(2 sin(θI)) +
1

π
Λ(θI)

)
, (3.2.30)

where

Λ(x) = −
∫ x

0
log(2 sin(t))dt

=
i

12
π2 − i

2
x2 + x log(1− e2ix)− x log(sin(x))− i

2
Li2(e

2ix)

(3.2.31)

is the Lobachevsky function. In terms of the energy functions, we may also write (3.2.30) as

m(P ) = − 1

π

m∑

I=1

(
θIE(eI) +

∫ θI

0
log(2 sin(t))dt

)
. (3.2.32)

It is important to notice that
∂m(P )

∂θI
=
θI
π

cot(θI). (3.2.33)

Example 9. Consider our running example of m(4− z − z−1 − w − w−1) for F0. Since θI = π/4
for all I, we get

m(P ) =
1

(2πi)2

∫ 1

0

∫ 1

0

(
log(8− 2z − 2z−1 − 2w − 2w−1)− log(2)

) dz
z

dw

w

= m(8− 2z − 2z−1 − 2w − 2w−1)− log(2)

(2πi)2

∫ 1

0

∫ 1

0

dz

z

dw

w

= 8

(
π

4π
log(2 sin(π/4)) +

1

π
Λ(π/4)

)
− log(2)

=
4K
π
.

(3.2.34)

This agrees with our result in (3.2.12).

Maximization of isoradial Mahler measure When finding R-charges under RG trajectory in
4d, we need to maximize the a-function,

a =
∑

I

(RI − 1)3 =
∑

I

(
2θI
π
− 1

)3

, (3.2.35)
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where we have normalized the coefficient and omitted the part from number of quiver nodes (which
corresponds to faces in the dimer). On the other hand, the isoradial Mahler measure is also
explicitly given in terms of θI by (3.2.30). As θI is a rhombus angle in the dimer model, we have
θI ∈ [0, π/2]. The shapes of the two functions are sketched in Figure 3.2.3, heuristically drawn
against 1 and 2 of the θI angles. The derivatives for the two functions are respectively

0.5 1.0 1.5
θI

0.2

0.4

0.6

0.8

1.0

(a) (b)

Figure 3.2.3: The a-function (blue) and isoradial Mahler measure (orange) plotted as
functions of θI . We can only visualize the (a) 1d and (b) 2d versions while physically there
should be at least 3 θI ’s (RI ’s) in our theory. Notice that we have shifted the a-function
by (a) +1 and (b) +2 for better visualization and comparison. The green region is the

conformal manifold on the θI axis/θI -θJ plane.

∂a

∂θI
=

6

π

(
2θI
π
− 1

)2

> 0 ,
∂miso

∂θI
=
θI
π

cot(θI) > 0 ; θI ∈ [0, π/2] . (3.2.36)

Hence, both of the functions are strictly increasing for any R-charges. For a-maximization, the
rhombus angles are also subject to the conditions

∑
2θI = 2π and

∑
(π − 2θI) = 2π. The region

of rhombus angles/R-charges that satisfy these conditions is the so-called conformal manifold M.
Pictorially, we sketch the conformal manifold in green in the θI -space in Figure 3.2.3, and the dashed
lines cut out the possible values for a and miso. In other words, we need to find the maximum of
a for the set of points {(θ1, . . . , θn) ∈ M}. Suppose that a is maximized at (θ∗1, . . . , θ

∗
n), then the

isoradial Mahler measure would also reach its maximum at (θ∗1, . . . , θ
∗
n) on the conformal manifold

as a and miso are both monotonically increasing. Therefore, we have shown that

Theorem 3.2.11. For toric quiver gauge theories, we have

miso-maximization = a-maximization. (3.2.37)

Remark 7. Following this proposition, we may also conclude that miso-maximization is equivalent
to volume minimization [115] and K-semistability (for product test configurations) [160]. We will
not expound upon this here, and readers are referred to [4, 89, 160, 161] for more details (see also
Chapter 6).

Remark 8. Since the weights for the dimer edges are always non-negative for any trial R-charges,
the spectral curve is always Harnack. Hence, with different trial R-charges, the amoeba is deformed
but its area is invariant. Furthermore, it would always be genus 0.

We emphasize that this theorem is still valid for non-isoradial dimers. Though for the latter we
do not have a well-defined rhombus angle, but we can write the edge weights as 2 sin(πRI/2). In
other words, we replace θI by πRI/2 in (3.2.30). Then (3.2.30), which we shall still call miso for
convenience, again reaches its maximum at R∗

I , where R
∗
I maximizes the a-function. Therefore, it

is always true that miso-maximization is equivalent to a-maximization16.

16Strictly speaking, so far we can only say that maximizing (3.2.30) (rather than miso) is equivalent to a-
maximization as we have not shown that (3.2.30) gives the correct Mahler measures for non-isoradial embeddings
with canonical weight choices. We will come back to this point shortly.
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Example 10. Let us vary the shape of the isoradial dimer for F0 in the following way:

,
(3.2.38)

where we are restricting to rectangles as an illustration. Suppose the two distinct edges have weights

2ν
1/2
1 and 2ν

1/2
2 , then we have νI = sin2(θI) and ν1 + ν2 = 1. The Mahler measure reads

miso =

∫ 2π

0

∫ 2π

0
log |2ν1 + 2ν2 − ν1eis − ν1e−is − ν2eit − ν2e−it|dsdt. (3.2.39)

The isoradial Mahler measure as a function of ν1 and its derivative are plotted in Figure 3.2.4. We

0.2 0.4 0.6 0.8 1.0
ν1

5
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15

miso

(a)

0.2 0.4 0.6 0.8 1.0
ν1

-100
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100

∂miso

∂ν1

(b)

Figure 3.2.4: The plot of (a) miso and (b) ∂miso/∂ν1. Here ν2 = 1− ν1.

can see that the maximum is reached at ν1 = 1/2. Indeed, (3.2.30) yields

miso = 4

(
θ1
π

log(2 sin(θ1)) +
1

π
Λ(θ1)

)
+ 4

(
θ2
π

log(2 sin(θ2)) +
1

π
Λ(θ2)

)
(3.2.40)

with θ2 = π/2− θ1. Its derivatives read

∂miso

∂θ1
=

4θ1
π

cot(θ1) +
4θ1 − 2π

π
tan(θ1),

∂2miso

∂θ21
=

4 cot(θ1)− 4θ1 csc
2(θ1) + 2 sec2(θ)(2θ1 + 2 sin(θ1)− π)

π
.

(3.2.41)

One can find that the first derivative vanishes when θ1 = π/4 (and the second derivative equals
8/π − 4 < 0). Therefore, the Mahler measure is maximized at θ1 = θ2 = π/4 (or equivalently,
ν1 = ν2 = 1/2). This agrees with the result from a-maximization. In general, if the faces in the
dimer are not rectangles but general isoradial quadrilaterals, the Mahler measure should still be
maximized at θ1,...,8 = π/4, that is, R1,...,8 = 1/2.

Seiberg Duality Theories engineered by D-branes on toric Gorenstein singularities enjoy certain
dualities including Seiberg duality and specular duality. In this subsection, we show that the Mahler
measure also exhibits certain properties under these dualities. Let us start with Seiberg duality
[93, 106, 107]. In terms of quivers, this is essentially mutations (plus non-trivial superpotentials).
For brane tilings, this gives rise to so-called urban renewal [21]. Seiberg duals correspond to the
same toric diagram as moduli space. However, there is no reason why the Newton polynomials
for the duals would remain the same since the coefficients are obtained from different brane tilings
whose perfect matchings can change. Nevertheless, we will see that at the isoradial point, the
polynomials are the same.
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Assume that the dimer is embedded isoradially on the torus, then we can use our canonical choice of
edge weights to write down the Newton polynomial. It turns out that for all the duals we checked,
although the total numbers of multiplets/rhombus angles change, the coefficient for every single

monomial, viz,
∑

e−E(M) =
∑(∏

I

2 log(sin(2θI))

)
, is invariant up to a factor of 2n2−n1 for some

integers ni. In fact, n1 and n2 are nothing but the numbers of edges/multiplets in each perfect
matching/GLSM field for the two tilings respectively. Therefore, we can simply cancel the factor
2n1 or 2n2 from every monomial in the two Newton polynomials.

Note that there is a subtlety in the above discussion. In general, a dimer (which is a dual of an
isoradial one) does not admit an isoradial embedding. Nevertheless, let us still use 2 sin(πRI/2)
as the edge weights17. It turns out that the resulting Newton polynomial is again the same as
its Seiberg dual(s). To ensure that this is the desired P (z, w) even though the embedding is non-
isoradial, one may check that in such case the Mahler measure is equal to the value computed from
(3.2.30) using θI = πRI/2 for the physical R-charges RI . In fact, this is because the non-isoradial
dimer has been continuously deformed so that some of the edges shrink to zero (or even negative
lengths). After such deformation, the non-isoradial dimer degenerates to an isoradial dimer with
some of the rhombus angles being π/2 (or even obtuse). Therefore, the formula (3.2.30) for isoradial
Mahler measures would still work in this situation.

Conjecture 3.2.12. Seiberg duals have exactly the same Newton polynomials. Hence, Mahler
measure is trivially invariant under Seiberg duality.

Equivalently, we may keep the two factors 2n1 and 2n2 such that the Newton polynomials are related
by P2(z, w) = 2n2−n1P1(z, w), where ni is the number of edges/multiplets in each perfect match-
ing/GLSM field. Then we can say that the Mahler measure is invariant under Seiberg duality up
to log(2n2−n1), that is, m2 = m1 + log(2n2−n1).

Remark 9. Since the Newton polynomial P (z, w) = kiso − p(z, w) is invariant, if we leave the
isoradial point and increase k, the resulting P = k − p and its Mahler measure would also be the
same for Seiberg duals.

Example 11. Let us consider L1,3,1/Z2 (0, 1, 1, 1) as an example. It has two toric phases whose
brane tilings are

7 5 7 5 7

3

1
2 3

5

6

7

8

1
2 3

5

6

7

8
5

2 3
6

8

1
2 3

4

5

6

7

8

1
2

4

5

6

7

8

1
2 3

4

6

7

8

1
2 3

4

5

6

7

8

1

4

5 7

8

2
1

2

4

6 1
2

4

6
,

1 3
4

5
6 78

1 3
4

5
6 78

1 4

5
68

1 3
4

5
6 7

1
2

3
4

5
6 78

1
2

3
4

5
6 78

2

3
4

5
7

1
2

3
4

5
6 78

1
2

3
4

5
6 78

2

8

3 1
2

3
4 1

2

3
4 1

2

. (3.2.42)

Using the data including perfect matrices in [105], we find that both of them yield (after cancelling
a common factor of 2n for each case respectively)

P = −AB
C

(zw + w)− C

AB
(zw−1 + z−2w−1 + 3w−1 + 3z−1w−1)− (2z + 2z−1) + 12, (3.2.43)

where A,B,C are given in (3.2.27). The dual theories have 20 and 22 bifundamentals respectively,
but the corresponding edges weighted by their R-charges lead to the same Newton polynomial. In
particular, the second dimer does not admit an isoradial embedding. However, we find that two of
the R-charges in this case become 1. This is equivalent to two of the edges shrinking to zero in the
dimer. One edge e34 is between face 3 and 4 while the other e67 is between face 6 and 7. After such

17We can only write the weights in terms of the R-charges as the concept of rhombus angle is not really well-defined
for non-isoradial embeddings.
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deformation, the dimer degenerates to an isoradial embedding with two rhombus angles being π/2.
One may also check that (3.2.30) in this case agrees with the result from the first dimer and gives
the correct Mahler measure.

It is worth noting that when the two edges shrink in the second brane tiling, it does not degenerate
to the first tiling but instead some dimer that is “partially urban renewed”. More precisely, from
the second tiling to the first one under Seiberg duality, e34,67,64 would vanish while a new edge e73
would be created. In the “partially renewed” dimer, only the removal of e34 and e67 has been done.
In terms of the quivers, Seiberg duality flips node 2 in the quiver. The “partially renewed” dimer
has bifundamentals X34 and X67 removed in the quiver while X64 has not yet been removed and
X73 has not not been added. Therefore, this partially mutated quiver theory is anomalous18.

In fact, one may also check that some of the matter fields have RI > 1 in some toric phases. In
such cases, we find that the above discussion still holds. We may therefore say that the weights
are assigned to be 2 sin(θI) with θ = πRI/2 > π/2. Eqvuialently, we can also regard the edges as
of “negative” lengths, that is, 2 cos(πRI/2) < 0.

Example 12. Let us consider PdP4a as an example. It has three toric phases whose brane tilings
are
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Using the data including perfect matrices in [105], we find that all of them yield (after cancelling a
common factor of 2n for each case respectively)

P =−B2
1B

2
2(z + z−1)−B2

2B3B4(zw
−1 + w−1)−B4

5z
−1w2 − 2B1B2B

2
5(z

−1w + w)

+ 2B2
1B

2
2 + 4B1B2B3B5 + 2B2

2B4B5 +B2
3B

2
5 ,

(3.2.45)

where Bi = sin(πbi/2) are given in (3.2.45). The dual theories have 15, 17 and 19 bifundamentals
respectively, but the corresponding edges weighted by their R-charges lead to the same Newton
polynomial.

In particular, for the second tiling, X67 has R-charge R67 = R, where

R ≈ 1.023 is a root of x3 + 24x2 − 96x+ 72 = 0. (3.2.46)

Therefore, the edge e67 (not to be confused with e76) has “negative” length in the dimer. When
performing Seiberg duality between the second tiling to the first one. Node 2 in the quiver is flipped.
Therefore, the white node where face 2, 6, 7 meet in the second dimer would become black. Then
the edge e67 would have its white and black nodes reversed, and hence of negative length. Notice
that e67 vanishes in the first dimer. This is because the “isoradial” embedding for the second dimer
with negative e67 degenerates to one being “partially urban renewed”.

Likewise, in the third tiling, the fields X37 and X67 would both have R-charge R > 1. Again,
compared to the first dimer, the two edges e37 and e67 would have their white and black nodes
reversed, and hence of negative lengths.

18We should emphasize that when we say the tiling degenerates, it only “looks like” the “partially renewed” dimer
but does not “become” that dimer. The tiling still gives an anomaly-free physical quiver theory. Only the two edges
e34,67 have length 0 (viz, weight 2) due to the R-charges for X34,67 being 1.
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From the above discussion, we have actually found a canonical choice for edge weights regardless
of isoradiality.

Remark 10. For any brane tiling, the canonical choice (in the sense of miso-/a-maximization and
Seiberg duality) for the weight of edge eI is 2 sin(πRI/2). The Mahler measure for the corresponding
Newton polynomial can be computed using (3.2.30).

For isoradial embedding, this edge weight is just the critical choice (in the sense of [141]) 2 sin(θI).
For non-isoradial embedding, we have two equivalent viewpoints:

• The dimer still has the original shape with positive edge lengths, and hence non-isoradial. We
are just assigning the so-called canonical weights to the edges.

• As before, we may also say that the dimer degenerates and becomes isoradial. However, as
we have emphasized, it is different from the dimer that leads to anomalous theory. Some of
the edges are not removed, and they just have zero or negative lengths.

The first point of view emphasizes the universal weight choice for all (both isoradial and non-
isoradial) embeddings. On the other hand, the second one explains why we can always apply
(3.2.30) in the calculations of Mahler measures for any toric quiver theories.

In fact, when computing Mahler measures using (3.2.30) for Seiberg duals, they would imply some
non-trivial mathematical identities. For instance,

Remark 11. In the example for PdP4a above, we have

α log(2 sin(α)) + Λ(α) + β log(2 sin(β)) + Λ(β) = π log(2), (3.2.47)

where

2α

π
= 10− 24(1− i

√
3)

(
1
2(233 + i

√
1007)

)1/3 − (1 + i
√
3)

(
1

2
(233 + i

√
1007)

)1/3

≈ 0.977473,

2β

π
= −8− 24(1− i

√
3)

(
1
2(−233 + i

√
1007)

)1/3 − (1 + i
√
3)

(
1

2
(−233 + i

√
1007)

)1/3

≈ 1.02253.

(3.2.48)

When there are some R-charges equal to 1 (such as the above example for L1,3,1/Z2), we always
have the same identity

Λ(π/2) ≡ −
∫ π/2

0
log(2 sin(t))dt = 0. (3.2.49)

This is expected due to the periodicity of sin(t).

To end this subsection, let us make a comment on the Ronkin functions. Although there is no
simple formula like (3.2.30) for Mahler measures,

Conjecture 3.2.13. The Ronkin function is invariant under Seiberg duality since the Newton
polynomial (with the canonical weight choice) does not change (regardless of the isoradiality of the
dimer).

Remark 12. We mainly focused on k = kiso in this subsection. However, we may also leave
the isoradial point and consider general P (z, w) = k − p(z, w). Since Seiberg duals have the same
starting isoradial point, the Newton polynomials, Mahler measures and Ronkin functions would also
be the same for these dual theories along the Mahler flow.

3.2.5 The Master Space

So far, we have engaged in many discussions on Mahler measures at k = kiso. Let us now leave the
isoradial point and treat k as a general variable. As we are now going to see, this would encode
certain information of the master space.
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Recall that for k > max
|z|=|w|=1

(|p(z, w)|) = p(1, 1), we have the expansions

m(P ) = log k −
∞∑

n=2

fn
nkn

; u0(k) = 1 +
∞∑

n=2

fn
kn
, (3.2.50)

for some expansion coefficients fn. Since the coefficients of p(z, w) come from the perfect match-
ings/GLSM fields, we shall write it as

p(z, w) =
∑

i

riz
miwni , (3.2.51)

where each ri denotes a perfect matching that does not correspond to a constant term in P (z, w).
Likewise, we shall denote the perfect matchings giving a constant term in P as si. Henceforth, we
will refer to them as r-matchings and s-matchings respectively. Note that here we are keeping the
coefficients general (rather than just the canonical choices). Following the multinomial theorem,
we have [50]

fn =
∑

l=(l1,...,lN )∈ZN
≥0

l1+···+lN=n
Ml=0

n!

l1! . . . lN !
rl11 . . . r

lN
N , (3.2.52)

where N is the number of r-matchings and

M =

(
m1 m2 . . . mN

n1 n2 . . . nN

)
(3.2.53)

is the 2 × N matrix of the corresponding lattice points. Notice that there could be duplicated
columns in M since some lattice points can correspond to multiple (r-)matchings. We have that

Theorem 3.2.14. The period u0(k) is a generating function of the master space in terms of F -term
charge matrix.

A proof of this can be found in [9, §3.5].

Remark 13. Since we are working with general coefficients for P (z, w), the canonical choice would
certainly satisfy this proposition. We can simply replace ri with

∏
I

2 sin(πRI/2) for every perfect

matching.

Remark 14. Since we always have D 4-branes as flavour branes in the system when the Taylor
expansion is valid, the superpotential would change from W0 to (W0 +Wflav). Nevertheless, the F-
term relations would still be ∂W0/∂XI = 0 as shown in [152]. Alternatively, QF is only determined
by perfect matchings on the dimer which remain unchanged regardless the existence of D 4-branes.
Therefore, the above theorem should always hold19.

It is best to illustrate the foregoing discussions with an example.

Example 13. Consider Y 2,2 whose Newton polynomial is P = k− (r1w+ r2w
−1 + r3z

2 + r4z
−1 +

r5z
−1). Then

u0(k) = 1 +
2r3r4 + 2r3r5

k2
+

12r1r2r
2
3 + 12r23r4r5 + 6r23r

2
4 + 6r23r

2
5

k4
+ . . . (3.2.54)

The F-term charge matrix is

QF =




r1 r2 r3 r4 r5 s1 s2 s3 s4
0 0 −1 −1 0 1 1 0 0
0 0 −1 0 −1 0 0 1 1
1 1 0 −1 −1 0 0 0 0


 . (3.2.55)

19Incidentally, the moduli space of D4-D2-D0 states is just a subspace of the moduli space of D6-D2-D0 states [152].
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At order two, the coefficients give the first two rows in QF : r3+ r4 = s1+ s2 and r3+ r5 = s3+ s4.
The factors 2 are just equivalent ways of writing the relations, e.g. r3 + r4 and r4 + r3. At order
four, r1r2r

2
3 decodes the third row in QF since

r1 + r2 = r4 + r5 = s1 + s2 − r3 + s3 + s4 − r3. (3.2.56)

Again, the factor 12 is just the number of ways to arrange r1, r2 and two r3’s. The second term
12r23r4r5 reveals the same relation but with r4+ r5+2r3 = s1+ s2+ s3+ s4 instead. The remaining
two terms are (redundant) relations of lower-order relations: 2(r3+r4) = 2(s1+s2) and 2(r3+r5) =
2(s3 + s4).

Specular Duality For toric quiver gauge theories, a duality known as specular duality was
proposed in [105, 162]. In general, specular duality does not preserve the mesonic moduli spaces
(except for self-dual cases) although Hilbert series for duals are the same up to some fugacity map.
Instead,

Definition 3.2.5. Specular duality is a duality that preserves master spaces.

Therefore, a consequence of Theorem 3.2.14 is:

Corollary 3.2.14.1. Given a pair of specular duals a and b, suppose the GLSM fields pai and pbi
are mapped under

pa1 ↔ pb1, pa2 ↔ pb2, . . . , paL ↔ pbL. (3.2.57)

If their Newton polynomials are Pa(z, w) = k − pa(z, w) and Pb(z, w) = k − pb(z, w), then for
k ≥ max

|z|=|w|=1
(|pa(z, w)|, |pb(z, w)|), the two Mahler measures have the series expansions

m(Pa) = log(k)−
∞∑

n=2

fn(p
a
i )

nkn
, m(Pb) = log(k)−

∞∑

n=2

fn(p
b
i)

nkn
. (3.2.58)

Likewise,

u0(Pa) = 1 +
∞∑

n=2

fn(p
a
i )

kn
, u0(Pb) = 1 +

∞∑

n=2

fn(p
b
i)

kn
. (3.2.59)

Here, fn are functions of pa,bi whose variables are ordered as

fn(p
a
1, p

a
2, . . . , p

a
L) and fn(p

b
1, p

b
2, . . . , p

b
L). (3.2.60)

Remark 15. Since the Newton polynomials and Mahler measures are invariant under Seiberg
duality, Corollary 3.2.14.1 is transitive. If a toric phase of polygon ∆1 is specular dual to toric
phase A of ∆2 and a toric phase of ∆3 is dual to toric phase B of ∆2, then the Mahler measures
and u0 for ∆1 and ∆3 would also satisfy Corollary 3.2.14.1.

Example 14. One of the toric phases for F0 is specular dual to the single phase for Y 2,2. Their
Newton polynomials are

PF0 = k − 8(z + w + z−1 + w−1), PY 2,2 = k − 9(z + z−1w−1 + z−1w + 2z−1), (3.2.61)

where the coefficients are taken to be the canonical choice from R-charges, and kiso is reached at
k = 32, 36 respectively. For instance, at order 2, one of the “internal perfect matchings” on 2GF0

1
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is

1

1

2

2 2

2

33 4

1

1

2

2 2

2

33 4

=

1

1

2

2 2

2

33 4

1

1

2

2 2

2

33 4

. (3.2.62)

On the left hand side, we have two external perfect matchings on GF0
1 (in red and orange respec-

tively). Together they form an internal perfect matching on 2GF0
1 . This can be regrouped into two

internal perfect matchings on GF0
1 as shown on the right hand side in blue and green respectively.

Under specular duality, the perfect matchings in different colours are mapped to

1

2

3

4

4

4

4

2

2

1

1

3 3

3

1

2

3

4

4

4

4

2

2

1

1

3 3

3

=

. (3.2.63)

Notice that now the red and orange ones are internal perfect matchings while the blue and green
ones are external on GY 2,2

1 .

Overall, at order 2, we have

f2 =2× 28 sin

(
πRH
2

)
sin

(
πRA
2

)
sin

(
πRB
2

)
sin

(
πRG
2

)

×
(
sin

(
πRK
2

)
sin

(
πRL
2

)
sin

(
πRC
2

)
sin

(
πRD
2

)

+sin

(
πRI
2

)
sin

(
πRJ
2

)
sin

(
πRE
2

)
sin

(
πRF
2

))
,

(3.2.64)

where the subscripts of the R-charges follow the notations in the perfect matching matrices in [162,
§4.2]. One may check that fn for the two theories should match at any order n.

In the above example, if we plug in the R-charge values for the two theories, we find that

m(PF0) = log(k)− 128

k2
− 36864

k4
− 5242800

3k6
− 10276044800

k8
− 34093450395648

k10
− . . . ,

m(PY 2,2) = log(k)− 162

k2
− 59049

k4
− 35429400

3k6
− 52732233225

2k8
− 110712378300552

5k10
− . . .

(3.2.65)
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At different orders, the ratios of the coefficients are

σ2 =
81

64
, σ4 =

6561

4096
, σ6 =

531441

262144
, σ8 =

43046721

16777216
, σ10 =

3486784401

1073741824
, . . . (3.2.66)

One can actually find that

σn =
fY

2,2

n

fF0
n

=

(
9

8

)n
. (3.2.67)

This means that we can rescale/normalize the Newton polynomial by dividing PF0 (PY 2,2) by a
factor of 8 (9):

PF0 = k − (z + w + z−1 + w−1), PY 2,2 = k − (z + z−1w−1 + z−1w + 2z−1), (3.2.68)

where we have absorbed the factor for the constant term under the redefinition k → k/8 (k → k/9).
Then the two normalized Newton polynomials have equal Mahler measures (as well as u0(k)).

More generally, if the duals have Mahler measures

m(Pa) = log(k)−
∞∑

n=1

fnaCn
nkn

, m(Pb) = log(k)−
∞∑

n=1

fnbCn
nkn

(3.2.69)

for Cn, f
n
a,b ∈ C, then we can normalize Pa,b = k − pa,b to be P norm

a,b = k − pnorma,b = k − pa,b
fa,b

such

that the two would have equal Mahler measures. However, this is not true in general, and we
have found several counterexamples. For instance, the third tiling for PdP4a in (3.2.44) is dual
to the single toric phase of PdP4b (see [105, 162] for its details). It turns out that no matter how
we normalize the Newton polynomials, their Mahler measure expansions would not have the same
numerical coefficients though the discrepancies are very small20.

Remarkably, for all the examples whose numerical fn’s are different from their specular duals
(under any normalization), we find that they coincide with polynomials of second type in Example
8. It would be interesting to explore this more deeply in future.

It is also natural to ask how specular duals are related at isoradial point. Since the number of
chiral multiplets is invariant under specular duality, the number of summands in (3.2.30) would
not change. Moreover, a zig-zag path is mapped to a face in the specular dual tiling [162]. A
zig-zag path is a collection of edges that forms a closed path on the brane tiling. It maximally
turns left/right at a black/white node. The winding number (p, q) of the zig-zag path corresponds
to a direction in the dual web of the toric diagram. Physically, zig-zag paths can be interpreted as
gauge invariant operators [163]. On the other hand, a node in the tiling is mapped to a node in
the dual tiling. In terms of superpotentials, this reverses the order of half the terms based on the
convention of untwisting the zig-zag paths. Now that we have the zig-zag ↔ face and node↔ node
mappings, we can write down how Mahler measures would transform.

Proposition 3.2.15. Suppose a brane tiling G has c perfect matchings. Then for the specular dual
tiling G′ with edges eI , the Mahler measure is

m =
∑

I

(
θI
π

log(2 sin(θI)) +
1

π
Λ(θI)

)
, (3.2.70)

where θI (and m) can be obtained by maximizing m subject to the conditions

∑

eI∈I
θI = π,

∑

eI∈Z
(π − 2θI) = 2π (3.2.71)

for all nodes I in G 21 and all zig-zag paths Z in G.

20To avoid any possible confusion, we should emphasize that only the numerical coefficients differ in these cases.
Corollary 3.2.14.1 holds for any polygons.

21In this case, “∈” indicates the edges attached to a node.
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Notice that specular duality, in particular for non-reflexive polygons, may require the dimers to
be embedded on a Riemann surface of any genus g rather than just a torus. Nevertheless, the
discussions in this subsection would still hold for any polygons. This is because Corollary 3.2.14.1
only requires the invariance of the master spaces, and for Proposition 3.2.15, (3.2.30) is always true
for dimers which are (doubly) periodic on general bi-dimensional lattices [159].

3.2.6 Tropical Limit

In this part, we shall focus on another special point in the Mahler flow, that is, ktrop. Recall
that in the large/(sub)tropical k limit, the amoeba tends to its spine and the gas phase becomes
dominant. In particular, in this limit the k−n terms in the Mahler measure tend to zero and we
have m(P ) ∼ log k. Moreover, the area of the hole in the amoeba is Ah ∼ log2 k. Therefore, in the
large k limit, the Mahler measure in the tropical limit follows an area law

m(P ) ∼ A1/2
h . (3.2.72)

Likewise, the Ronkin function would be dominated by the linear facets. More precisely,

R(x, y) ≃ log |c(m,n)|+mx+ ny (3.2.73)

for P =
∑

(m,n)

c(m,n)z
mwn. For each linear facet, this equality is exact. For the liquid phases, it

gives a good approximation as the non-linear regions tends to the spine at large k. In fact, as the
amoeba A in the (sub)tropical limit is a union of local amoebae Aloc, the (local) non-linear part of
R(x, y) for A would be the translations and rotations of the Ronkin functions for Aloc, where the
detailed translations and rotations can be determined by the neighbour linear facets.

From the perspective of crystal melting, (almost) the whole crystal is molten. In other words, the
system becomes a gas of atoms. Since the linear facets of the Ronkin function are sent to infinity,
the partition function would also diverge as expected.

In this large k limit, we may then estimate the free energy in (3.1.26) as

F = − logZ ∼ −Ah log k ∼ − log3 k. (3.2.74)

In other words,
F ∼ −m3(P ). (3.2.75)

Now we shall consider the meaning of tropical limit from the perspective of gauge theories. The
F-term relations are encoded by u0(k) for the master space. In the large k limit, we have u0 → 1.
Therefore, all the constraints on the GLSM fields from QF are lost in the tropical limit. As a result,
the master space would become the trivial Cn, and all the GLSM fields become free.

This is also reflected by the amoeba. In the large k limit, the amoeba is composed of local vertices
in the spine. These vertices are only connected by thin long channels/lines.

3.2.7 Discussions and Outlook

There is a very straightforward implication of the Ronkin functions if we consider the GLSM fields.
From [139], we know that the partition function for perfect matchings (in the thermodynamic limit)
can be determined by Ronkin functions. Therefore,

Proposition 3.2.16. The partition function Z for GLSM fields can be determined via

logZ =

∫
dx dy R(x, y), (3.2.76)

which also defines the free energy of the dimer/GLSM as F ≡ − logZ.
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Of course, such expression would diverge, so we need to normalize it by Z/Z0, where Z0 is the
partition function whose Ronkin function only has linear (solid) facets.

A more non-trivial interpretation would be the connection to 4d superconformal index I4d on
S3×S1. As studied in [158,164], when the radius of S1 goes to 0, I4d would reduce to the partition
function Z3d on the ellipsoid S3

b = {(z1, z2) ∈ C2|b2|z1|2 + b−2|z2| = 1}. By further taking b → 0,
the 3d partition function would give the partition function for 2d N = (2, 2) theory:

Z2d =

∫
dσ exp

(
− 1

πb2
W2d(σ)

)
, (3.2.77)

where σ is the scalar in the vector multiplet. The effective twisted superpotential W2d can then
be identified with the volume of some hyperbolic 3-foldM. This 3-fold can be determined by (the
zig-zag paths on) the dimer model. Moreover, the genus-0 prepotential for topological B-model is

F0 =

∫
dx dy R(x, y) =

∫
dx dyL(vol(M)), (3.2.78)

where L denotes the Legendre transformation. As we can see [158],

Proposition 3.2.17. The 4d superconformal index under dimensional reduction is related to topo-
logical string partition function and Ronkin function via Legendre transformation.

The topological string partition functions are invariant under wall crossing. Its counterpart in
4d, i.e., the superconformal indices, are also invariant under Seiberg duality. This would provide
a further evidence that the Mahler measure/Ronkin function should be invariant under Seiberg
duality. Moreover, it also seems to have some connections to F -theorem in 3d [158]. A more
detailed study would give us a better understanding of the physics for Mahler measure in gauge
theories.

Since the Mahler measure and Ronkin function are related to the degeneracy of D-brane bound
states, it would be possible to define a quiver entropy from this. It would also be important
to study if relation with the surface tension of the crystal model, which is the Legendre dual
of the Ronkin function. In [26, eqn(2.25)], another quiver entropy was defined in terms of the
plethystic exponential of the Hilbert series. How this would be connected to the quiver entropy
from the Mahler measure is still an interesting open question. On the other hand, the famous
OSV conjecture [165] says that ZBH = |Ztopo|2 when the D-brane bound states become black holes
with smooth event horizon. it is worth noting that the black hole entropy in the supergravity
approximation is also the Legendre transformation of the free energy of topological A-model at
genus 0.
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Chapter 4

Dessins d’Enfants

In this chapter, we shall discuss the dessins d’enfants (children’s drawings) which have consti-
tuted a core object in algebraic geometry and number theory since Grothendieck’s Esquisse d’un
Programme (sketch of a programme) [48]. Following Belyi’s theorem [49], these bipartite graphs
can be nicely connected to algebraic curves. The study of dessins has then been led to the vast
areas of Galois theory, modularity, and, more recently, congruence subgroups and monstrous moon-
shine [166–170]. Due to the relationship to polynomial equations defining Riemann surfaces, dessins
appear in the study of Seiberg-Witten (SW) theory, as points in the Coulomb branch [171]. They
have then applied to various aspects in physics, including both N = 1 and N = 2 quivers, conformal
blocks etc [5, 172–174]. See also Appendix C for relevant discussions.

Now, it was demonstrated in [50] that the Mahler measure1 has certain expansion whose building
blocks behave as modular forms. Therefore, it would be natural to expect some deep connection
between Mahler measure and dessins due to the emergence of modularity. In particular, the reflexive
polygons provide a nice playground since their Newton polynomials define elliptic curves.

The family of the elliptic curves defined by these Newton polynomials with parameter k furnishes
the Klein’s j-invariant as a meromorphic function j(k) : P1 → P1. Of particular interest here would
be the so-called tempered families that put certain restrictions on the coefficients of the Newton
polynomials. We find that a subset of these families, which we call maximally tempered, give a
one-to-one correspondence between Mahler measures and dessins.

A priori, there does not seem to be anything special for the maximally tempered coefficients except
that they are non-zero binomial numbers along each edge of a reflexive polygon. However, it has
a salient interpretation in physics. When constructing quiver theories from brane tilings, each
lattice point in the Newton polygon is associated with some perfect matchings/gauged linear sigma
model fields [21, 22, 175]. The maximally tempered coefficients are exactly the numbers of perfect
matchings for the lattice points.

We find that the dessins obtained in such way are invariant under specular duality. On the other
hand, we have discussed how Mahler measures behave under specular duality in the previous
chapter. Here, with the special maximally tempered coefficients, we find that Mahler measures
are invariant for specular duals. Thus, the one-to-one correspondence between Mahler measures
and dessins are automatic. As is known, specular duality preserves the master space of the gauge
theory. However, different toric phases are often not related by such a duality2. Therefore, the
Mahler measure and the dessin should encode some information of the master space.

Calculations of the modular Mahler measure show that certain modular quantities are related to
some congruence subgroups via their Hauptmoduln. In fact, they contain the congruence subgroups
associated to the dessin. Besides, as the Mahler measure is derived from several modular forms
(with singularities), one can naturally apply the results in [176] and study the Mahler measure in

1In this chapter, we shall mainly focus on the expression without “Re” in (3.1.6) and refer to this complex quantity
as the Mahler measure.

2Yet, they have the same Mahler measure and dessin as the Newton polynomial does not change.
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terms of j-invariants. We will also discuss the appearances of dessins and modular Mahler measure
in quiver gauge theories and F-theory in this chapter.

Figure 4.0.1: The 16 inequivalent reflexive polygons (up to SL(2,Z)). Figure taken from
[105] (with slight modifications). The reflexive polygons are arranged such that the dual pairs
are mirror symmetric with respect to the middle line (fourth row), and the four polygons in
the middle line are therefore self-dual. In each row, the polygons have the same number of
boundary points/(normalized) area. In each column, the polygons have the same number of

vertices.
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4.1 Dramatis Personae

In this section, we give a brief review on the relevant conecepts used in this chapter. First, let us
list all the reflexive polygons in Figure 4.0.1.

As shown in [156], the Laurent/Newton polynomial P (z, w) specifies the mirror geometry of the
CY singularity by P (z, w) = W = uv with u, v ∈ C. Hence, it can be viewed as a double fibration
over the W -plane. In particular, P = 0 is known as the spectral curve. See [22] for more details.

Tempered Polynomials Given a Newton polygon, it is easy to construct the Newton polyno-
mial. Nevertheless, we still have the freedom to choose the complex coefficients in P (z, w). In the
previous chapter, we have the canonical choice of the coefficients that specifies the R-charges of the
fields. Here, we consider the so-called tempered families that are of particular interest in number
theory and related study of Mahler measure [50, 136].

Given a Newton polygon P, we obtain the Newton polynomial P (z, w) =
∑
c(m,n)z

mwn with
coefficients c(m,n) for each of the lattice points. Now, consider a bounding edge F of the polygon
P. There might also be lattice points on it (the yellow points in Figure 4.0.1), in addition to the
2 endpoints (the black points in Figure 4.0.1) which are vertices of P. Suppose there are N lattice
points on F , indexed from 0 to N − 1, and we call the associated coefficients c(m,n) as cF,l. Then,
we can create an auxiliary polynomial PF (t) ∈ C[t] as

PF (t) =

N−1∑

l=0

cF,lt
l , (4.1.1)

for each edge F .

Notice that this automatically requires that the boundary point cF1,N−1 to coincide with cF2,0 for
any two adjacent edges F1 and F2. A Laurent polynomial is then said to be tempered if the set
of roots of

∏
F∈P

PF (t) consists of roots of unity only. In other words, each PF in P would only have

roots on the unit circle.

Notice that being tempered only gives restrictions to the coefficients for the boundary points.
For the reflexive polygons considered in this paper, we always take the single interior point as
the origin, corresponding to the constant term k in the Newton polynomial as discussed before:
P (z, w) = k − p(z, w).
Example 15. For F0, P = k−z−z−1−w−w−1 is tempered. For instance, the lattice points (1, 0)
and (0,−1) corresponds to the monomials −z and −w−1 in P . The edge linking them is associated
to the polynomial −1− t which only has one root t = −1. In fact, every one of the 4 edges has the
same polynomial PF = −1− t. Thus, P is tempered.

t0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

t1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 3 3 4

t2 −2 −2 −1 0 0 0 1 1 2 −1 0 0 0 1 1 1 2 0 1 2 2 3 3 4 6

t3 0 0 0 0 0 1 0 0 0 −1 −1 0 1 0 1 1 1 −2 0 1 2 2 1 3 4

t4 1 0 1 −1 1 0 0 1 1 0 −1 0 1 0 0 1 1 −1 0 0 1 1 0 1 1

Table 4.1.1: Each column gives a set of coefficients for PF (t) such that the solutions to
PF (t) = 0 only have roots of unity.

For reflexive polygons, all the possible PF ’s that make P tempered have been classified in [50]. We
reproduce it here in Table 4.1.1; there are 25 possibilities. For convenience, given a tempered New-
ton polynomial, if it only has non-zero coefficients for vertices, we shall call such choice minimally
tempered coefficients. If all the boundary points have non-zero coefficients and the coefficients for
every edge are binomial, that is, PF = (t+ 1)N for all F ∈ P, then we shall call such choice max-
imally tempered coefficients. When a polygon has no boundary lattice points other than vertices
(i.e., each edge has exactly the 2 endpoints which are lattice points), the minimally and maximally
tempered coefficients coincide and this is the only set of tempered coefficients.
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Example 16. As we have seen, F0 has only one possible set of tempered coefficients. On the
other hand, for C3/(Z4 × Z2) (1, 0, 3)(0, 1, 1) (No.2 in Figure 4.0.1), there are 2 × 2 × 4 = 16
tempered choices. When all the three faces have PF (t) = −t− 1, P (z, w) is minimally tempered. If
PF1,2 = −t2 − 2t− 1 = −(t + 1)2 and PF3 = −t4 − 4t3 − 6t2 − 4t− 1 = −(t + 1)6, then P (z, w) is
maximally tempered. Notice that the minus sign is just a convention here as it would not change
the spectral curve P = 0. All the maximally and minimally tempered Newton polynomials are listed
in Appendix D.

Elliptic curves Since the reflexive polygons give elliptic curves, we here review some of the
requisites from the geometry and number theory of elliptic curves. In general, any elliptic curve E
can be transformed into Weierstrass normal form

y2 = x3 + fx+ g. (4.1.2)

The curve is non-singular if and only if ∆ ̸= 0, where

∆ = −16(4f3 + 27g2) (4.1.3)

is known as the discriminant. Then the j-invariant is given by

j =
4× (24f)3

∆
. (4.1.4)

This is a crucial concept since isomorphic (isogenous) elliptic curves have the same j-invariant.
Notice that however j-invariant is only able to distinguish elliptic curves over algebraically closed
fields.

Topologically, an elliptic curve E is the torus T2. Hence, it is endowed with a complex structure
specified by the two periods which are integrals along the two cycles A and B of the torus:

∫
A,B

dx
y .

This complex structure should coincide with the τ computed from u0,1 in (4.1.8) up to SL(2,Z). As
a function of τ , j(τ) : E → P1 is a modular function, i.e., invariant under SL(2,Z) transformations.
It is in fact the only modular function in that any meromorphic function which is SL(2,Z)-invariant
is a rational function in j(τ).

Now, because our Newton polynomial always has a parameter k, any reflexive polygon defines for
us a family of elliptic curves. Geometrically, when k ∈ C⊔∞, this defines an elliptic fibration over
P1, giving us a complex surface which is called a modular elliptic surface [166, 177]. In this case,
all the crucial quantities, such as ∆ and j, depend on k. In particular, j(k) can be seen as a map
from P1 with coordinate k to P1. We will make use of this map shortly.

4.1.1 Modular Mahler Measure

In general, the spectral curve P (z, w) = 0 defines a Riemann surface as an algebraic curve Σ. Since
each reflexive polygon has a single interior point, Σ is of genus one. For all but finitely many k,
the curve would be a smooth elliptic curve. For convenience, let us define λ := k−1, then we have
(where we explicitly write out the dependence of the elliptic curve on the parameter λ)

Σλ : 1− λ p(z, w) = 0 . (4.1.5)

As pointed out in [50], u0 is a period of a holomorphic 1-form on Σλ. Hence, it satisfies the
Picard-Fuchs equation

A(λ)
d2u0
dλ2

+B(λ)
du0
dλ

+ C(λ)u0 = 0, (4.1.6)

where A(λ), B(λ), C(λ) are polynomials in λ. As we will see in §4.2.3, this is actually a consequence
of Theorem 4.2.8 [176]. We may then use the Picard-Fuchs equation to find the dual period u1 of
the form

u1(λ) = u0(λ) log(λ) + v(λ), (4.1.7)
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where v is a holomorphic function with v(0) = 0. This defines

τ =
1

2πi

u1
u0
, q = e2πiτ = λ+ . . . . (4.1.8)

As usual, τ gives the complex structure of the elliptic curve P = 0 as a torus. The monodromy
around λ = 0 (i.e., at k infinity) acts as τ → τ +1. This fixes q and we may locally invert it to get

λ(τ) = q + . . . , u0(τ) = 1 + . . . . (4.1.9)

Recall that Mahler flow equation reads

dm

d log λ
= λ

dm

dλ
= −u0(λ), (4.1.10)

where we have used λ = k−1. Using the nome q, we can also express the Mahler flow equation as

q
dm

dq
=

dm

dλ

qdλ

dq
=
u0
λ

qdλ

dq
=: e(τ). (4.1.11)

In fact, λ, u0, e are modular forms (with singularities) of weights 0, 1, 3 respectively under the
monodromy of Picard-Fuchs equation, namely a congruence subgroup of SL(2,Z) acting on τ [50].
We may therefore call (4.1.11) the modular Mahler flow equation.

Write the Fourier series of e(τ) as e(τ) = 1 +
∞∑
n=1

enq
n. Then from (4.1.11), we have

Theorem 4.1.1 (Rodriguez-Villegas [50]). Locally around τ = i∞ (i.e., λ = 0), we have

m(P ) = −2πiτ −
∞∑

n=1

en
n
qn. (4.1.12)

Because of the modularity of e(τ), the Mahler measure for elliptic curves is referred to as modular
Mahler measure though m(P ) itself is not modular.

Example 17. Let us consider P (z, w) = λ−1 − z − z−1 − w − w−1. Since u0 is hypergeometric, it
is easy to see that the Picard-Fuchs equation is

µ(16µ− 1)
d2u

dµ2
+ (32µ− 1)

du

dµ
+ 4u = 0, (4.1.13)

where we have used µ := λ2 for convenience. This leads to [50]

u1 = u0 log(µ) + 8µ+ 84µ2 +
2960

3
µ3 + . . . , (4.1.14)

and

u0 = 1 + 4

∞∑

n=1

∑

d|n
χ−4(d)q

n, e = 1− 4

∞∑

n=1

∑

d|n
χ−4(d)d

2 qn, µ =
1

c2




∞∑

n=1
n odd

∑

d|n
d qn


 , (4.1.15)

where χ−4 is the Dirichlet character/Kronecker symbol satisfying χ−4(n) = 1, 0 when n ≡ 0, 1 (mod 2).
Then, we have

m(P ) =
16 Imτ

π2

∑

n1,n2∈Z
(n1,n2)̸=(0,0)

χ−4(n1)

(n1 + 4n2τ)2(n1 + 4n2τ̄)
, (4.1.16)
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which under modular transformations, we have

τ → −1

τ
: m =

16 Imτ̄

π2

∑

n1,n2∈Z
(n1,n2)̸=(0,0)

χ−4(n1)τ

(4n2 − n1τ)2(4n2 − n1τ̄)
,

τ → τ + 1 : m =
16 Imτ

π2

∑

n1,n2∈Z
(n1,n2)̸=(0,0)

χ−4(n1)

(n1 + 4n2τ)2(n1 + 4n2τ̄)
.

(4.1.17)

Hence, m is invariant under monodromy (τ → τ + 1) at k → ∞ while we have m → 0 as τ → 0.
We expect this to be true in general for reflexive polygons.

4.1.2 Esquisse de Dessins

The discussions on elliptic curves above are initmately related to the profound theorem by Belyi [49]:

Theorem 4.1.2. Let X be a compact, connected Riemann surface. Then X is a non-singular,
irreducible projective variety of complex dimension 1 and can be defined by polynomial equations.
The defining polynomial has algebraic coefficients if and only if there exists a rational map β : X →
P1 which is ramified at exactly three points, that is, has three critical values.

We will be primarily concerned with the case of X = P1, so that the Belyi map is a rational function
p(x)/q(x) : P1 → P1. Now, on the target P1, any three points can be taken to be 0, 1 and ∞ (that
is, [0 : 1], [1 : 1] and [1 : 0] in homogenous coordinates) by linear-fractional Möbius transformations,
so that the three ramified points can be thus chosen. Following Grothendieck [48], a bipartite graph
called dessin d’enfant (or child’s drawing) can be associated to β by

B = β−1(0) = {x ∈ P1 | p(x) = 0}, W = β−1(1) = {x ∈ P1 | p(x) = q(x)},
E = β−1([0, 1]) = {x ∈ P1 | p(x) = tq(x), for some t ∈ [0, 1]},
F = β−1(∞) = {x ∈ P1 | q(x) = 0},

(4.1.18)

where B, W , E and F denote the black, white vertices, edges and faces respectively. As β is
P1 → P1, the graph is embedded on a sphere. Moreover,

Proposition 4.1.3. Let β : P1 → P1 be a Belyi map. Then the associated bipartite graph (V =
B ⊔W,E,F ) is loopless, connected and planar. It has |V | = |β−1({0, 1})| vertices, |E| = deg(β)
edges and |F | = |β−1(∞)| faces, satisfying |V | − |E|+ |F | = 2.

As we will plot the dessin on a plane via stereographic projection, all the bounded faces on the plane
are called internal faces while the face containing k →∞ is known as the external face. As β is a
multi-covering of the target P1, we can consider the monodromy around each vertex in the dessin.
Essentially, each monodromy acting on a vertex permutes the edges connected to that vertex. We
shall denote the set of such permutations around black (white) vertices as σ0 (σ1). Then σ0 and σ1
generate a free group known as the monodromy/cartographic group G of the dessin. In particular,
the monodromies σ∞ around faces can be obtained by σ∞ ◦ σ1 ◦ σ0 = 1. As the dessin has |E|
edges, G is a subgroup of the symmetric group SN where N = |E|!.
In our context, recall that all our elliptic curves E are parametrized by k so that the Klein invariant
j(k) is a function of the parameter k and is thus a map from P1 (instead of E) to P1. We will show
in §4.2.1 that j(k) is actually Belyi for maximally tempered coefficients in the Newton polynomials:

β =
j

1728
. (4.1.19)

Congruence subgroups and coset graphs A coset graph is a graph associated with a group
K generated by elements {xi} and a subgroup H. Then each vertex (drawn in black so as to
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reconstruct the dessin) in the coset graph represents a right coset Hg for g ∈ K. An edge is of
form (Hg,Hgxi) which connects the coset Hg and H(gxi).

As we will see shortly, the dessins associated to reflexive polygons (with maximally tempered
coefficients) are clean, namely that the white vertices all have valency 2. Therefore, the dessins can
be viewed as coset graphs by removing the white vertices. Conversely, we can insert a white vertex
on each edge to get the dessin from the coset graph.

In particular, the dessins we will consider in §4.2 are associated with the modular group (P)SL(2,Z)
and the congruence subgroups. Hence, the generators can be taken as the usual S and T , viz,

S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
s.t. PSL(2,Z) = ⟨S, T |S2 = (ST )3 = 1⟩. (4.1.20)

The congruence groups of level n are defined as

Γ(n) :=

{
M ∈ (P)SL(2,Z)

∣∣∣∣∣M ≡
(
1 0
0 1

)
(mod n)

}
,

Γ1(n) :=

{
M ∈ (P)SL(2,Z)

∣∣∣∣∣M ≡
(
1 b
0 1

)
(mod n)

}
,

Γ0(n) :=

{
M ∈ (P)SL(2,Z)

∣∣∣∣∣M ≡
(
a b
0 d

)
(mod n)

}
.

(4.1.21)

In particular, we have Γ(n) ≤ Γ1(n) ≤ Γ0(n) and Γ0(n2) ≤ Γ0(n1) if n1|n2. The fact that every
congruence subgroup of (P)SL(2,Z) has a coset graph (called Schreier-Cayley graph) which is a
clean trivalent dessin was discussed in [166, 169,178].

Given a congruence subgroup Γ, the quotient space h/Γ (where h is the upper half plane) can be
compactified by adding a few isolated points (aka cusps of Γ). Such compactified curve X(Γ) is
called the modular curve. The genus of Γ is then defined to be the genus of X(Γ). When X(Γ)
is of genus 0, the field of meromorphic functions on X(Γ) is generated by a single element known
as a Hauptmodul of Γ.

4.1.3 Dimers and Reflexive Polygons

Recall that u0(k) is the generating function of the master space in terms of F-term charge matrix
though the F-term relations in higher orders are just redundant. Besides, k → ∞ is known as
a tropical limit when P (z, w) = k − p(z, w). As a result, this is equivalent to q → 0 and hence
τ → i∞. Physically, τ can be interpreted as the complexified gauge coupling in Type IIB string
theory, that is, τ = θ

2π + i
gIIB

. Therefore, this gives the weak coupling gIIB → 0. For the modular
forms (with singularties) introduced before, we have λ → 0, u0 → 1 and e → 1. In particular,
u0 → 1 indicates a free theory in the tropical limit as the master space become trivial. This is
consistent with the weakly coupled gauge theory with τ → i∞.

Moreover, we have m tends to ∞ for tropical k. On the other hand, m would go to 0 in the strong
coupling regime (as τ → 0).

For reflexive polygons, the specular duals are [162]

1↔ 1 , (4.1.22)

2↔ 4d , 3a↔ 4c , 3b↔ 3b , 4a↔ 4a , 4b↔ 4b , (4.1.23)

5↔ 6c , 6a↔ 6a , 6b↔ 6b , (4.1.24)

7↔ 10d , 8a↔ 10c , 8b↔ 9c , 9a↔ 10b , 9b↔ 9b , 10a↔ 10a , (4.1.25)

11↔ 12b , 12a↔ 12a , (4.1.26)

13↔ 15b , 14↔ 14 , 15a↔ 15a , (4.1.27)



Chapter 4. Dessins d’Enfants 59

16↔ 16 , (4.1.28)

where the letters following the number label different toric phases as in Figure 4.0.1. As we can
see, their internal and external perfect matchings get exchanged under specular duality.

Remark 16. The red numbers in the above list contain polygons that are called exceptional cases
due to the following two reasons [9].

• With canonical weights, most of the specular duals can have the same Mahler measure (with
the constant term taken to be k) up to an additive constant, that is, m(P2) = m(P1) + κ.
Hence, by an overall scaling of factor e−κ, we have k− p1 → k− e−κp1 (notice that this does
not change the spectral curve P1 = 0). Thus, m(P2) = m(P1). As a result, for example,
polygons No.2 and No.3 have the same Mahler measure as they are connected by different
toric phases of No.4 even though they are not specular duals. However, it turns out that
No.5, 6, 9 and 11 do not satisfy this property.

• Moreover, with canonical weights (with constant term k), most Newton polynomials can have
equal coefficients for vertices under rescaling of z and/or w. However, this is not possible for
No.5, 6, 9 and 11.

It is worth noting that the exceptions of the above two properties coincide (though the reason why
they coincide is still unclear). It is still not known why No.5, 6, 9, 11 are exceptional. In §4.2.1,
we will see that they are further exceptional regarding a third property.

4.2 Modularity and Gauge Theories

Having introduced all the background, we are now ready to discuss how modular Mahler measures
connected the various different areas in mathematics and physics. From §4.1, the readers may have
already noticed that

Proposition 4.2.1. The maximally tempered coefficients in the Newton polynomials are equal to
the numbers of perfect matchings associated to the exterior lattice points of the toric diagrams.

Hence, we will mainly focus on the maximally tempered coefficients in the following discussions,
and we will see various properties implying potential physical relevance. As listed in [2], all the
non-reflexive polygons with two interior points also have maximally tempered coefficients equal to
the numbers of perfect matchings associated to the boundary points (it would also be interesting
to see what happens for higher dimensional reflexive polytopes [46]). Furthermore, the consistent
brane tilings for all polygons presented in [179] also have maximally tempered coefficients equal to
the numbers of perfect matchings while the remaining inconsistent tilings do not3. Therefore, it is
natural to conjecture that

Conjecture 4.2.2. A brane tiling is consistent if and only if the corresponding toric diagram (either
reflexive or non-reflexive) has maximally tempered coefficients for its boundary points, which are
equal to the numbers of the associated perfect matchings.

It is curious that maximal tempered coefficients appear in two completely different contexts, one
from perfect matching in physics and another from considering Mahler measure in mathematics.

4.2.1 Dessins and Mahler Measure

As mentioned throughout, we will focus on the 16 reflexive polygons with maximally tempered
coefficients. The Newton polynomials are listed in Table D.0.1. Recall that the spectral curve
P (z, w) = 0 for each reflexive polygon is an elliptic curve (except for finitely many k values). We
can transform the spectral curves into Weierstrass normal form y2 = x3 + f(k)x + g(k) (recall

3See [180] for a general discussion on consistency of brane tilings.
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that all our elliptic curves depend on the parameter k). This is computationally rather involved
(Nagell’s algorithm) but can luckily be done with SAGE.

In Table 4.2.1, we list the Weierstrass form of all 16 reflexive polygons with maximally tempered
coefficients, where the coefficients f(k) and g(k) all assume the form

f = − 1

48
k4 + a(k), g =

1

864
k6 + b(k). (4.2.1)

Polygon(s) No.1 No.2, 3, 4

a(k) 9
2k

2 + 36k + 81 5
3k

2 + 8k + 32
3

b(k) −3
8k

4 − 4k3 − 27
2 k

2 + 54 − 5
36k

4 − 2
3k

3 + 8
9k

2 + 32
3 k +

448
27

Singular k −6, 21 −4, 12

Polygon(s) No.5, 6 No.7, 8, 9, 10

a(k) 5
6k

2 + 5
2k +

5
3

1
2k

2 + k

b(k) − 5
27k

4 − 5
24k

3 + 5
9k

2 + 19
6 k +

395
108 − 1

24k
4 − 1

12k
3 + 1

4k
2 + k + 1

Singular k −3, 5
2(1±

√
5) −3, −2, 6

Polygon(s) No.11, 12 No.13, 15

a(k) 1
3k

2 + 1
2k − 1

3
1
3k

2 − 1
3

b(k) − 1
36k

4 − 1
24k

3 + 5
36k

2 + 1
3k +

35
108 − 1

36k
4 + 5

36k
2 + 2

27

Singular k −1, κ1,2,3 0, ±4

Polygon(s) No.14 No.16

a(k) 1
6k

2 + 1
2k − 1

3
1
2k

b(k) − 1
72k

4 − 1
24k

3 + 1
18k

2 + 1
6k +

19
108 − 1

24k
3 + 1

4

Singular k κ5,6,7,8 −3, 3
2(−1± i

√
3)

Table 4.2.1: The data of the elliptic curves for reflexive polygons with maximally tempered
coefficients. We also list the values of k when the spectral curve becomes singular for each
case. Here, κ1,2,3 are the three roots to k3+k2−18k−43 = 0 (κ1 ≈ 4.73, κ2,3 ≈ −2.86±0.94i)
while κ5,6,7,8 are the four roots to k4 + k3 − 8k2 − 36 − 11 = 0 (κ5 ≈ −0.33, κ6 ≈ 3.80,

κ7,8 ≈ −2.23± 1.94i).

We find that specular duals have exactly the same elliptic curve. Notice that this property only holds
for maximally tempered coefficients4. Recall that the maximally tempered coefficients indicate the
number of perfect matchings for each lattice point and that specular duality exchange internal and
external perfect matchings. Again, we see that maximally tempered coefficients are of particular
physical interest.

We also tabulate all the values of k that make each spectral curve P = 0 singular in Table 4.2.1.
They can be obtained by checking whether the discriminant of the curve vanishes. It is worth
mentioning that in many cases, there exists a singular k such that |k| is equal to the minimal
number of internal perfect matchings for the polygon. For instance, No.4 has four toric phases, the
numbers of internal perfect matchings are 12, 12, 14 and 21 respectively. Indeed, there is a singular

4In Appendix D.1, for example, we list the elliptic curves for the same polygons but with minimally tempered
coefficients, and specular duals do not give the same elliptic curves anymore.
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k = |k| = 12. However, five of the reflexive polygons do not obey this observation: No. 5, 6, 11,
14 and 12. We find that the first four polygons coincide with the exceptional cases in Remark 16
while No.12 is the specular dual of (the exceptional) No.11.

Dessins d’Enfants Given the elliptic curves in Table 4.2.1, we can then compute their j-
invariants as in Table 4.2.2. Notice that in terms of the k parameter, this is a map j : P1 →

Polygon(s) No.1 No.2, 3, 4 No.5, 6 No.7, 8, 9, 10

j(k) (k−18)3(k+6)
k−21

(k2−8k−32)3

k2−8k−48
(k4−40k2−120k−80)3

(k+3)5(k2−5k−25)
k3(k3−24k−48)3

(k−6)(k+2)3(k+3)2

Polygon(s) No.11, 12 No.13, 15 No.14 No.16

j(k) (k4−16k2−24k+16)3

(k+1)2(k3+k2−18k−43)
(k4−16k2+16)3

k2(k2−16)
(k4−8k2−24k+16)3

k4+k3−8k2−36k−11
k3(k3−24)3

k3−27

Table 4.2.2: The j-invariants for the elliptic curves.

P1, k 7→ j(k). In particular, the preimage P1 ∼= S2 is the space of k, and hence parametrizes the
Mahler flow. We will discuss this in more details in §4.2.4. By further checking j(k)/1728, we
find that all of them are Belyi. Therefore, we can plot the corresponding dessins as in Figure 4.2.1
based on the Mathematica package from [181].
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(a) No.1: {1131, 22, 1131}, Γ0(3) (b) No.2, 3, 4: {32, 23, 1241}, Γ0(4)

(c) No.5, 6: {34, 26, 1252}, Γ1(5) (d) No.7, 8, 9, 10: {34, 26, 11213161}, Γ0(6)

(e) No.11, 12: {34, 26, 1391}, Γ0(9) (f) No.13, 15: {34, 26, 122181}, Γ0(8)

(g) No.14: {34, 26, 1391}, Γ0(9) (h) No.16: {34, 26, 1391}, Γ0(9)

Figure 4.2.1: The dessins for reflexive polygons with maximally tempered coefficients, their
passports and the corresponding congruence subgroups.

Here, the plots for the dessins are rigid in the sense that the vertices and edges are at the precise
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positions of k = j−1 on S2 ∼= C ⊔ {∞} (except the part in the dashed blue box in (c) where we
have to zoom in since the vertices j−1(0) and j−1(1) are too close to each other). As a result, the
dessins in (e, g, h) have different “shapes” though they are isomorphic graphs5.

As we have checked the reflexive polygons case by case, we conclude that

Proposition 4.2.3. With maximally tempered coefficients for all 16 reflexive polygons, the family
of elliptic curves, depending on k, are modular elliptic surfaces such that the j-invariants j(k) are
Belyi maps. Furthermore, specular dual reflexive polygons, regardless of which toric phases, give
rise to the same elliptic curve, and hence the same j-invariant and dessin.

Remark 17. Different toric phases for a reflexive polygon are often not related by specular duality,
but they would still lead to the same elliptic curve/dessin as these phases would only differ by the
multiplicity of the interior point. Since the master space is invariant under specular duality, this
hints that the corresponding elliptic curve and dessin should encode some common features of the
master spaces in different phases.

Remark 18. In fact, j(k)/1728 being Belyi is generally true only for maximally tempered coef-
ficients. For any other coefficient choices which are not physical in the sense of counting perfect
matchings, the maps may or may not be Belyi. See Appendix D.1 for example.

Although specular duals have the same elliptic curve, this does not directly imply that they should
have the same Mahler measure as the Weierstrass normal form is obtained from the spectral curve
under some bi-rational transformation while Mahler measure is only GL(2,Z) invariant. Of course,
we can compute the Mahler measures for reflexive polygons and likewise check case by case to show
that specular duals have the same Mahler measure. Nevertheless, there is a more general proof
using the Corollary 3.2.14.1, which we recall here for convenience:

Lemma 4.2.4. Given a pair of specular duals a and b, suppose that the perfect matchings are
mapped under Ma

i ↔ M b
i . If their Newton polynomials are Pa,b(z, w) = k − pa,b(z, w), then for

|k| ≥ max
|z|=|w|=1

(|pa|, |pb|), the two Mahler measures have the series expansions

m(Pa,b) = log(k)−
∞∑

n=2

fn(M
a,b
i )

nkn
, (4.2.2)

where fn are functions of Ma,b
i , and we have simply used Ma,b

i to denote the weight for the corre-
sponding perfect matching.

Now we can “unrefine” this by taking Ma,b
i = 1. Then, we get the maximally tempered coefficients

since they give the numbers of corresponding perfect matchings for the lattice points. Therefore,

Proposition 4.2.5. With maximally tempered coefficients, the Mahler measure is invariant under
specular duality.

In particular,

Corollary 4.2.5.1. The reflexive polygons with maximally tempered coefficients have the same
Mahler measure under specular duality.

Remark 19. As Proposition 4.2.5 is a general statement, if two non-reflexive polygons have specu-
lar dual phases, then they would also have the same Mahler measure. Notice however the maximally
tempered coefficients would now also fix all the coefficients for the interior points to be the corre-
sponding numbers of perfect matchings except the origin with coefficient k.

Remark 20. As Mahler measure is GL(2,Z) invariant, equivalent lattice polygons which are clas-
sified up to SL(2,Z) transformations would have the same Mahler measure.

5It is worth noting that as shown in [182], the Coulomb branches of rank-1 En 5d SCFTs, whose brane web
constructions are dual to the (P)dPn polygons, are exactly the modular curves associated to the congruence of the
dessins, except Ẽ1 (No.14) and E2 (No.12). The k parameter is closely related to the U -plane in such context.
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For reference, we list the Mahler measures for reflexive polygons with maximally tempered coeffi-
cients in Table 4.2.3.

No.1 log(k)− 27
k2
− 164

k3
− 4941

2k4
− 31752

k5
− 479940

k6
− 7426080

k7

−482173965
4k8

− 6030521840
3k9

− 171779570802
5k10

− . . .
No.2, 3, 4 log(k)− 10

k2
− 32

k3
− 297

k4
− 2112

k5
− 55720

3k6
− 163200

k7

−3038665
2k8

− 43406720
3k9

− 141433992
k10

− . . .
No.5, 6 log(k)− 5

k2
− 10

k3
− 135

2k4
− 312

k5
− 5675

3k6
− 11100

k7

−280175
4k8

− 1346800
3k9

− 2962386
k10

− . . .
No.7, 8, 9, 10 log(k)− 3

k2
− 4

k3
− 45

2k4
− 72

k5
− 340

k6
− 1440

k7

−27405
4k8
− 96880

3k9
− 794178

5k10
− . . .

No.11, 12 log(k)− 2
k2
− 2

k3
− 9

k4
− 24

k5
− 245

3k6
− 200

k7

−2065
2k8
− 12320

3k9
− 75852

5k10
− . . .

No.13, 15 log(k)− 2
k2
− 9

k4
− 200

3k6
− 1225

2k8
− 31752

5k10
− . . .

= log k − 2k−2
4F3

(
1, 1, 32 ,

3
2 ; 2, 2, 2; 16k

−2
)

No.14 log(k)− 1
k2
− 2

k3
− 3

2k4
− 12

k5
− 55

3k6
− 60

k7

− 875
4k8
− 1400

3k9
− 9576

5k10
− . . .

No.16 log(k)− 2
k3
− 15

k6
− 560

3k9
− . . .

= log(k)− 6k−3
4F3

(
1, 1, 43 ,

5
3 ; 2, 2, 2; 27k

−3
)

Table 4.2.3: The Mahler measure up to order 10 for reflexive polygons with maximally
tempered coefficients. Here, we restrict k ≥ max

|z|=|w|=1
{|p(z, w)|}.

It is then also straightforward to get the expression for u0(k), which reads

u0(k) = 1 +
∞∑

n=2

ncn
kn

, if m(P ) = log(k)−
∞∑

n=2

cn
kn
. (4.2.3)

Remark 21. When the Newton polynomials have maximally tempered coefficients, as both Mahler
measure/u0(k) and the dessins are invariant under specular duality and should encode certain in-
formation of the master space, it would be natural to associate Mahler measures and dessins with
each other.

4.2.2 Hauptmoduln and the k parameter

In this subsection, we shall give more clues on the connection between Mahler measure and dessins,
as well as to congruence groups. Let us consider the modular expansion of Mahler measure and
illustrate this with a few examples.

Example 1: No.15 As reviewed in §4.1.1, the Mahler measure for P = k − z − z−1 − w − w−1

reads

m(P ) =
16Imτ

π2

∑

n1,n2∈Z
(n1,n2)̸=(0,0)

χ−4(n1)

(n1 + 4n2τ)2(n1 + 4n2τ̄)
. (4.2.4)
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Of particular interest here would be the parameter k, where [183]

k2 =
η24(2τ)

η8(τ)η16(4τ)
= q−1 + 8 + 20q − 62q3 + 216q5 − . . . , (4.2.5)

with η(τ) being the Dedekind eta function. This is a Hauptmodul for Γ0(4). In particular, the
congruence subgroup associated to the dessin in this case is Γ0(8), which is a subgroup of Γ0(4).

Example 2: No.16 The Newton polynomial is P = k− z−w− z−1w−1. One can compute that

u0(k) = 2F1

(
1

3
,
2

3
; 1;

27

k3

)
. (4.2.6)

For convenience, we write µ ≡ 1/k3. Then we have [50]

u0 = 1 + 6
∞∑

n=1

∑

d|n
χ−3(d)q

n, e = 1− 9
∞∑

n=1

∑

d|n
d2χ−3(d)q

n,

µ =
1

27

(
1− e

c3

)
= q − 15q2 + 171q3 − 1679q4 + . . . ,

(4.2.7)

where χ−3(n) = 0, 1,−1 when n ≡ 0, 1, 2 (mod 3). The Mahler measure is

m(P ) =
81
√
3Imτ

4π2

∑

n1,n2∈Z
(n1,n2)̸=(0,0)

χ−3(n1)

(n1 + 3n2τ)2(n1 + 3n2τ̄)
. (4.2.8)

Moreover, we have [183]

k3 = 1/µ = 27 +

(
η(τ)

η(3τ)

)12

= 27 +
1

q
− 12 + 54q − 76q2 − 243q3 + 1188q4 − 1384q5 + . . . (4.2.9)

This is a Hauptmodul for Γ0(3). In particular, the congruence subgroup associated to the dessin
in this case is Γ0(9), which is a subgroup of Γ0(3).

Example 3: No. 5, 6 The Newton polynomials are P = k− z− z−1w2− z−1w−1−w−1− 2w−
3z−1w− 3z−1 for No.5 and P = k− z −w− z−1w− z−1w−1 − zw−1 − 2z−1 − 2w−1 for No.6. This
has actually been computed in [184, 185]:

u0 = 1 +
1

2

∞∑

n=1

(
(3− i)χ(n) + (3 + i)χ(n)

) qn

1− qn ,

e = 1 +
1

2

∞∑

n=1

(
(2− i)χ(n) + (2 + i)χ(n)

) n2qn

1− qn ,

m(P ) = −2πiτ − 1

2

∞∑

n=1

∑

d|n

(
(2− i)χ(d) + (2 + i)χ(d)

)
nqn,

(4.2.10)

where χ(n) = il when n ≡ 2l (mod 5). Moreover, we have

(k − 3)−1 = q

∞∏

n=1

(1− qn)5(n
5 ) = 3 + q − 5q2 + 15q3 − 30q4 + 40q5 − . . . , (4.2.11)

where
(
n
5

)
= (−1)l when n ≡ 2l (mod 5). This is a Hauptmodul for Γ1(5). In particular, the

congruence subgroup associated to the dessin in this case is Γ1(5).
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Example 4: No.7, 8, 9, 10 This has actually been computed in [184, 185]:

u0 =
η(2τ)η6(3τ)

η2(τ)η3(6τ)
,

e = 1 +

∞∑

n=1

(−1)nχ−3(n)
n2qn

1− qn ,

m(P ) = −2πiτ −
∞∑

n=1

∑

d|n
(−1)dχ−3(d)nq

n,

(4.2.12)

where χ−3(n) is the same as in Example 2. Moreover, we have

k − 2 =
η3(2τ)η9(3τ)

η3(τ)η9(6τ)
=

1

q
+ 3 + 6q + 4q2 − 3q3 − 12q4 − 8q5 + . . . (4.2.13)

This is a Hauptmodul for Γ0(6). In particular, the congruence subgroup associated to the dessin
in this case is Γ0(6).

As we can see, the k parameter is closely related to the Hauptmodul of certain congruence sub-
group6. We may also conjecture that

Conjecture 4.2.6. Let Γa be the congruence subgroup associated to the dessin for the reflexive
polygons (with maximally tempered coefficients). Then kn is a Hauptmodul for some congruence
subgroup Γb, and Γa ≤ Γb. Moreover, Γb is the monodromy group of the corresponding Picard-Fuchs
equation.

We may even give a stronger conjecture.

Conjecture 4.2.7. If Γa = Γl1(r1) and Γb = Γl2(r2) (where l1,2 = 0, 1), then l1 = l2 and r1 =
|n2|r2.
Here, we are focusing on the maximally tempered coefficients. Mathematically, we would also won-
der whether the k parameters could be related to Hauptmoduln for certain congruence subgroups
for any coefficients. In Appendix D.1, we give different types of examples for minimally tempered
coefficients.

4.2.3 Mahler Measure and j-Invariant

As the Mahler measures and dessins are connected to each other, it should be possible to write
m(P ) in terms of j. Let us first start with a rather general definition of periods introduced in [176]:

Definition 4.2.1. A period is a complex number whose real and imaginary parts are values of
absolutely convergent integrals of rational functions with rational coefficients, over domains in R
given by polynomial inequalities with rational coefficients.

As a matter of fact, the set of periods, which is countable, form an algebra under the usual sum and
product operations. Famous constants such as π can be shown to be periods. In particular, when
the Newton polynomial has rational coefficients, the Mahler measure is a period [176]. For those
considered in this paper, i.e., P (z, w) = k − p(z, w) with any tempered coefficients, this means
m(P ) is a period when k ∈ Q.

An important theorem in [176] says that

Theorem 4.2.8. Consider SL(2,Z) or any of its subgroup of finite index. Let f(z) be a modular
form (either holomorphic or meromorphic) of some positive weight w and let t(z) be a modular
function under the action of the group. Then F (t(z)) ≡ f(z), which is multi-valued, satisfies a

6Therefore, the Hauptmoduln, and hence the meromorphic functions on modular curves, should be related to the
(sizes of) gas phases for dimer models and the Mahler flows [9, 139]
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homogeneous linear differential equation of order (w + 1),
w+1∑
n=0

anF
n(t(z)) = 0 with an algebraic

functions of t(z).

Since λ, u0 and e are modular forms of weights 0, 1 and 3 respectively (though with singularities),
and since j(τ) is a modular function, we have

Corollary 4.2.8.1. The modular forms λ(j(τ)), u0(j(τ)) and e(j(τ)) satisfy linear differential
equations (with respect to j) of order 1, 2 and 4 respectively.

Recall that e generates the coefficients of m(P ) in q-series. It would therefore be reasonable to
expect certain relations between Mahler measures and j-invariants.

Another crucial result in [176] says that

Theorem 4.2.9. Let f(z) be a modular form of positive weight w and let t(z) be a modular function,
both defined over Q. Then ∀z0 ∈ h for which t(z0) is algebraic, πwf(z0) is a period.

We may now apply this theorem to the modular forms in our paper.

Corollary 4.2.9.1. When j(τ) is algebraic, λ(j(τ)), πu0(j(τ)) and π
3e(j(τ)) are periods.

Moreover, when j ∈ Q, we also learn that q is transcendental following [186]. Since m(P ) is a
period when P ∈ Q[z±1, w±1] and j is a rational function of k, we learn that m(P ) is a period if j
is rational. In fact, we can extend this to j being algebraic. This is because m(P ) is a sum over
λn/n with integer coefficients7. Now this follows from λ being a period and that periods form an
algebra with countably many elements. Hence, we conclude that

Proposition 4.2.10. The Mahler measure m(P ) is a period if j is algebraic.

Since λ and u0 satisfy certain differential equations, that is,

λ′ = α0λ, u′′0 + α1u
′
0 + α2u0 = 0, (4.2.14)

where f ′ denotes the derivative with respect to j and α0,1,2 are differentiable algebraic functions of
j, we can use the Mahler flow equation

dm

d log λ
= λ

dm

dλ
= −u0 (4.2.15)

to get

λ
dm

dj

1

λ′
=

1

α0
m′ = −u0. (4.2.16)

Plugging this into the Picard-Fuchs equation for u0 (with respect to j) yields

m′′′(j) +
(
α1 −

2α′′
0

α0

)
m′′(j) +

(
α2 −

α1α
′
0

α0
+

2(α′
0)

2

α2
0

− 2α′
0

α0

)
m′(j) = 0. (4.2.17)

Tropical limit Recall that m ∼ log k in the tropical limit where k → ∞. Likewise, we have
j → ∞ as j(k) is a rational function f1(k)

f2(k)
with deg(f1) > deg(f2). More precisely, j ∼ kn in the

tropical limit, where n = deg(f1)− deg(f2) is the power for the external face in the passport of the
corresponding dessin. Hence, in the tropical limit,

m ∼ 1

n
log j. (4.2.18)

One may wonder whether for any j, m(j) can be expressed by further adding a sum of −cl/jl
where l ≥ 2 are integers and cl are some coefficients. However, due to the multi-valuedness of k as
a function of j, this would only be valid on one branch. Indeed, j could still diverge for some finite
k while m(j) would remain finite in this case.

7This can be seen from u0 as its coefficients are integers that count F-term relations.
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Remark 22. Using the Mahler flow equation and the Picard-Fuchs equation (4.1.6), we may also
write m(P ) as a differential equation with respect to λ as λ is of weight 0 (under the monodromy
of Picard-Fuchs equation). Then the differential equation reads

λA
d3m(λ)

dλ3
+ (λB + 2A)

d2m(λ)

dλ2
+ (λC +B)

dm(λ)

dλ
= 0. (4.2.19)

4.2.4 Mahler Flow and the τR,G,B Conjecture

There has been a long puzzle about the nature of brane tilings as bipartite graphs on T2 [8, 109,
173, 187, 188]. On the one hand, they could be interpreted as dessins8 on T2, acquiring a complex
structure called τB (the subscript B indicates its origin from Belyi) which is that of T2 as an elliptic
curve.

On the other hand, the R-charges in the quiver theory obtained from the isoradial brane tiling
correspond to angles of the faces in the tiling9. The R-charges would then determine the complex
structure τR on the torus which supports the tiling. It would be natural to suspect that the two
complex structures would coincide. However, as later discussed in [109,187], counterexamples exist
and this τB = τR conjecture does not hold in general.

Furthermore, there is a third complex parameter called τG coming directly from the geometry of
the CY3 singularity corresponding to the toric diagram. In particular, a U(1)2 subgroup of the
T3-action would leave the Kähler form and the holomorphic 3-form invariant. When the CY space
is viewed as a special Lagrangian fibration, the U(1)2 would then define an invariant part of such
fibration, which turns out to be a torus. The metric on this torus, which is the pullback of the
metric on the CY singularity, leads to the complex structure τG. As studied in [188], τR,G,B may
sometimes be coincident with each other, but they do not always equal in general. Notice that
when we say τR,G,B coincide, this is always up to SL(2,Z) transformation. In practice, we would
always compare j(τR,G,B) as it is modular invariant. The τR,G,B conjecture is then to find when
and how j(τR,G,B) are all equal.

Since j(k) = f1(k)
f2(k)

where f1,2(k) are polynomials of k, the range of j(k) is the whole C ⊔ {∞}.
Therefore, no matter what value j(τR,G,B) takes, there must be at least one k on P1 such that
j(τ) = j(τR,G,B). Thus,

Proposition 4.2.11. The Mahler flow extrapolates τR,G,B.

This is true in general, and not just restricted to the reflexive cases. Since we still have the freedom
to choose the coefficients for the Newton polynomial even if the polygon is fixed, one may wonder
which Mahler flow would be the appropriate choice. As τR originates from R-charges and R-
charges are associated to angles in the isoradial (or even non-isoradial) tilings, instead of tempered
coefficients, we shall always use the coefficients from the canonical edge weights on the tilings10.

Example 18. For (chiral) orbifolds of C3 and of the conifold (C), the three complex structures
coincide [109,173,187,188], due to the hexagonal and square symmetries of the tiling. For instance,

j(k) = k3(k3−24)3

k3−27
for dP0, which is a Z/3-orbifold of C3 and j(τR,G,B) = 0. Solving j(k) =

j(kR,G,B), we find that the τR,G,B complex structure is located at

k = 0, 2
3
√
3, 2

3
√
3e±2πi/3 (4.2.20)

on the sphere.

8They are embedded on T2 instead of P1 compared to the dessins discussed in this chapter so far.
9Recall from the previous chapter that we may also treat non-isoradial tilings as “isoradial” tilings in a similar

manner if we allow zero or negative angles.
10Therefore, in j(k) = f1(k)

f2(k)
, f1,2 have algebraic coefficients.
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As another example, j(k) = (k4−16k2+16)3

k2(k2−16)
for F0, a Z/2-orbifold of C and j(τR,G,B) = 1728. Solving

j(k) = j(kR,G,B), we find that the τR,G,B complex structure is located at

k = ±2
√
2, ±

√
2(4 + 3

√
2), ±i

√
2(−4 + 3

√
2) (4.2.21)

on the sphere.

Example 19. Unlike the above example, the suspended pinch point (SPP) and its orbifolds have
different τR,G,B. For instance, SPP/Z2 with action (0, 1, 1, 1) (No.8 in the list of reflexive polygons)
has Newton polynomial

P (z, w) = −2A2zw2 −A2w3 −A2z2w − 2ABw2 −B2z −B2w + kzw (4.2.22)

for canonical edge weights, where

A = sin2
(

π

2
√
3

)
, B = sin

((
1− 1√

3

)
π

)
sin

(
1

2

(
1− 1√

3

))
. (4.2.23)

Therefore,

j(k) =
256C3k3(−6− 6Ck + C3k3)3

(−3 + Ck)(1 + Ck)3(3 + 2Ck)2
, (4.2.24)

where

C = csc

(
π

2
√
3

)
csc2

(
π√
3

)
. (4.2.25)

As computed in [187],

j(τB) =
132304644

5
, j(τR) = 287496. (4.2.26)

Therefore, the τB complex structure is located at approximately

k =− 1.112, 6.909, −2.898± 5.439i, −6.157, −1.114, −0.752, 2.2260,

− 0.737± 0.009i, 3.635± 5.430i
(4.2.27)

while the τR complex structure is located at approximately

k =− 1.107, 3.677, −1.285± 2.392i, −2.892, −1.112, −0.785, 2.2261,

− 0.721± 0.041, 2.006± 2.351i
(4.2.28)

on the Mahler flow sphere.

Based on the known examples, it seems that the toric diagrams (e.g. C and C) which satisfy the
τB = τR conjecture look more “symmetric” than those (e.g. SPP) do not satisfy the τB = τR
conjecture. It turns out that the coefficients from canonical weights for those more “symmetric”
polygons coincide with the maximally tempered coefficients while those from canonical weights for
the less “symmetric” ones do not agree with the maximally tempered coefficients. Based on the
above examples, it is natural to conjecture that

Conjecture 4.2.12. Up to SL(2,Z), the τB = τR condition holds if and only if the maximally
tempered coefficients of the Newton polynomial coincide with the coefficients from canonical edge
weights on the tiling.

Remark 23. Our observation also agrees with the fact that those less “symmetric” cases have a
more non-trivial a-maximization. In particular, it was shown in [9] that a-maximization is equiv-
alent to maximization of Mahler measure with canonical weights. Therefore, the non-triviality of
a-maximization can be interpreted as the discrepancy between maximally tempered and canonically
weighted coefficients in terms of Mahler measure.
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4.3 Further Connections to String/F-Theory

In this section, we shall briefly discuss some relations with F-theory compactification and its BPS
states/Gromov-Witten invariants. If we consider a sigma model whose target space is one of the
non-compact CY 3-folds from the reflexive polygons, then its mirror is the Landau-Ginzburg theory
with the W -plane W = P (z, w). In particular, the BPS states from D-branes wrapping compact
cycles can be studied via some F-theory background [157].

4.3.1 Dessins and 7-Branes

We recall that given an elliptic fibration over some complex base B with fibre y2 = x3+f(v)x+g(v)
and v ∈ B, the F-theory compactified on it is equivalent to Type IIB compactification on B with
complexified coupling τ . This coupling τ , which serves as the complex structure of the elliptic fibre,
can be exactly identified as τ = 1

2πi
u1
u0

in our modular Mahler measure discussions, and is defined
up to SL(2,Z) transformations.

As mentioned before, the elliptic curve becomes singular and the fibre degenerates when the dis-
criminant ∆ = 4f3 + 27g2 vanishes. These are the positions where (p, q) 7-branes are placed since
τ is transformed by SL(2,Z) transformations under the monodromies around 7-branes in Type
IIB. Here, let us consider the surface that corresponds to a toric diagram, which defines the CY
singularity, or we can think of the geometry as a double fibration over the W -plane with a C∗ fibre
and a punctured Riemann surface W = P (z, w). In particular, the surface is now over the base P1

parametrized by the k parameter with fibre P (z, w).

From Table 4.2.1, we know that in our cases f(k) and g(k) are always of degrees 4 and 6 respectively.
Therefore, one would expect ∆ to be of degree 12. This would agree with the requirement of 12
7-branes in physics. However, it is possible for ∆ to have degree less than 12. The reasons are that
4f3+27g2 may have cancellations of terms. Nevertheless, as we shall now discuss, we are still able
to recover the 12 7-branes, and we can actually put them on the dessin.

As the fibre degenerates at the n zeros of ∆ (counted with multiplicity), there must be n 7-branes
associated to them. It turns out that the remaining (12 − n) 7-branes are compensated by j →∞
at the tropical limit, that is, k → ∞. Indeed, by checking the degree of the numerator minus the
degree of the denominator of j in Table 4.2.2, we find that they are precisely equal to 12 minus the
degree of ∆. This actually makes sense since we are now considering the compact P1 as the space
of k. Therefore, we should also take the singular curve at k tropical into account, which is just a
usual point on the compact sphere.

As the corresponding dessin is parametrized by β = j/1728, one may consider to associate the
7-branes to the faces of the dessin. However, some 7-branes could still not correspond to the faces
(both internal and external), i.e., j → ∞. This is because the numerator and denominator of j
may have some factors being cancelled. Suppose the j-invariant is

j =
4× (24f)3

∆
=

(k − k∗)n1f1(k)

(k − k∗)n2f2(k)
, (4.3.1)

where n1 > n2 and f1,2 do not have any (k − k∗) factor. As a result, k = k∗ is a zero of ∆ which
makes the curve singular, but this information is not encoded by j →∞ since such factors all get
cancelled in the denominator. Nevertheless, as n1 > n2, we find that such 7-branes now correspond
to a black node (pre-image of j = 0) in the dessin.

Notice that we have not considered the possibility of n1 = n2. If so, then such number of 7-branes
would not correspond to a face or a black vertex in the dessin. We shall then write11

f = (k − k∗)2nfa, g = (k − k∗)3ngb, (4.3.2)

11Notice that we do not have any further restrictions on fa and gb, so they could still have common factors.
However, (4.3.2) suffices to complete our argument as we only need to know whether 7-branes could be associated to
places other than faces and black vertices.
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where the subscripts a, b indicate the degree of fa and gb. This is because now the j-invariant looks
like

j = 4× 243 × (k − k∗)6nf3a
4(k − k∗)6nf3a + 27(k − k∗)6ng2b

. (4.3.3)

Since the degrees of f and g are 4 and 6 respectively, n can only be 1 or 2.

Let us first consider the case n = 2. Then a = b = 0. In other words, f3 ∝ g2. In this case,
the j-invariant is trivially a constant, and the dessin is empty. Equivalently, we can think of it as
the external face where all the 7-branes live being the whole sphere with no other elements for the
dessin.

If n = 1, then we can write the elliptic curve as

y2

(k − k∗)3
=

x3

(k − k∗)3
+

f2x

(k − k∗)
+ g3. (4.3.4)

Under the redefinition x/(k − k∗)→ x and y/(k − k∗)3/2 → y, we get the Weierstrass normal form

y2 = x3 + f2x+ g3, (4.3.5)

where f2 and g3 are of degrees 2 and 3. Hence, no matter what value k∗ is, we would only get the
same curve, and we are only left with six 7-branes.

We have therefore shown that

Theorem 4.3.1. On the dessin, all the faces (including both internal and external) and some of the
black vertices (the pre-images j = 0) correspond to 7-branes. A black vertex at k = k∗ is associated
to 7-branes if and only if j(k∗) = 0 and ∆(k∗) = 0.

Example 20. Let us illustrate this with an example whose 7-branes are associated to both faces
and a black vertex. The dessin for the reflexive polygon No.1 is given in Figure 4.2.1(a). Moreover,

∆ = (k + 6)8(k − 21), j =
(k − 18)3(k + 6)

k − 21
. (4.3.6)

Hence, there is a 7-brane located at the centre k = 21 of the internal face. Moreover, since there
is a zero of order 8 for ∆ at k = −6, this would give eight 7-branes on top of each other. As j is
also zero in this case, we find that the eight 7-branes correspond to the leftmost black vertex in the
dessin. So far, we have only found nine 7-branes. The remaining three are placed at the tropical k
in the external face on the sphere. Indeed, we have j → k3 when k →∞.

It is worth noting that when j diverges at say k = k∗, near this point we have j ∼ 1
k−k∗ . This yields

τ ∼ 1
2πi log(k − k∗). When k → k∗, we get τ → i∞. As τ = θ

2π + i
gIIB

, we have gIIB → 0. Notice
that this weak coupling regime is only local due to the SL(2,Z) transformation. In the special case
when f3 ∝ g2, j becomes a constant. In particular, when f3/g2 is −3

41/3
, we have a global weak

coupling [189, 190].

Brane monodromy and dessin monodromy The non-trivial effect of passing the branch cut
of a (p, q) 7-brane is often encoded by the monodromy matrix Mp,q ∈ SL(2,Z) [191]. In fact, we
can relate the monodromy group G of the dessin generated by (σ0, σ1, σ∞) to the monodromies of
the 7-branes.

The general strategy is as follows. First, we choose a reference point on the dessin, just like
what one does for 7-branes. As the monodromy for a 7-brane is analyzed by a loop going around
the branch cut connecting the brane and the reference point, we also go along the loops on the
dessin surrounding the reference point and the internal faces/black vertices where the 7-branes are.
Then these loops would correspond to some permutations σi ∈ G which can be obtained from the
generators (σ0, σ1). Finally, we can determine the permutation for the external face, namely the
tropical limit k →∞, using

∏
σi = 1 as

∏
Mp,q = 1. Notice that this identity also guarantees that

the permutation for the external face must be an element of G.
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Example 21. Let us illustrate this again with the reflexive polygon No.1. In Figure 4.3.1, we
label the edges and plot the monodromies explicitly on the dessin. It is then easy to see that the

1 2

3

4

Figure 4.3.1: The dessin associated to Γ0(3) with passport {1131, 22, 1131}. Here, the
numbers are the labels of the edges, and the orange (purple) cycles indicate the permutations

around black (white) vertices.

monodromy group G is generated by σ0 = {(1), (234)} and σ1 = {(12), (34)}. This is a subgroup of
S4 with |G| = 12. From σ∞ ◦ σ1 ◦ σ0 = 1, we get σ∞ = {(142)}.
Now for instance, let us choose a point on edge 2 as reference point. Then the monodromy for the
7-brane associated to the internal face can be chosen to correspond to the permutation σa = (234)
while the (total) monodromy associated to the leftmost black vertex can be chosen to correspond to
σb = (12). As a result, the (total) monodromy for the 7-branes associated to the external face is
σc = (2143) so that σc ◦ σb ◦ σa = 1. It is obvious that σa ∈ σ0, σb ∈ σ1 and σc = (σb ◦ σa)−1 all
belong to G.

As the choice for (p, q) is not unique, alternatively we may also choose for example σa = (234)(34) =
(23) and σb = (12). Then σc = (213).

A comment on F-theory on elliptically fibred K3 It is well-known that the compactification
of F-theory on an elliptically fibred K3 surface is dual to heterotic string theory compactified on
T2. In this setting, the elliptic fibre is still y2 = x3+f(k)x+g(k) with k ∈ P1, but now the degrees
of f and g become 8 and 12 respectively. Hence, the number of 7-branes is 24. Although the graph
consisting of edges connecting black and white vertices may not be a dessin or even be bipartite
any more, the above discussions should still apply following the similar methods.

4.3.2 Mahler Measure and Gromov-Witten Invariants

When the F-theory is compactified on one of our CY 3-folds, its effective theory is a closed subsector
of the type II compactification. The BPS states of the F-theory compactification should then give
a subsector of those in the full Type II theory. In [192, 193], such instanton expansions were
computed. In particular, the GW invariants of local vanishing del Pezzo surfaces (independently
of the global embedding in the CY spaces where F-theory compactifies) were observed to coincide
with certain modular expansions of Mahler measures from the same toric diagrams later in [185].
It could also be possible that the GW invariants of any vanishing 4-cycles could be recovered from
such modular expansions from the corresponding toric diagrams according to the dictionary of the
two sides.

As an elliptic curve is topologically T2, the periods are given by ϕ̃ and ϕ̃D following the notations
of [193]. Then we shall identify the gauge coupling ∂ϕ̃D/∂ϕ̃ with τ on the modular Mahler measure
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side, that is,

τ ∼ ∂ϕ̃D

∂ϕ̃
. (4.3.7)

The instanton expansions in [193] are worked out at the large complex structure point c = 0, where

c = e2πiϕ̃ + . . . provides a coordinate on the moduli space. This corresponds to the tropical limit
k →∞, or equivalently, q → 0. A natural ansatz for the correspondence would then be

c ∼ qν (4.3.8)

for some ν ∈ Z+.

In order to have the correspondence consistent, our goal is to show that this leads to the corre-
spondence between the Yukawa coupling Cϕ̃ϕ̃ϕ̃ in [193] and d log q

dm in [185]. In particular, they have
the expansions

Cϕ̃ϕ̃ϕ̃ = c0 +
∞∑

n=1

ann
3qn
ϕ̃

1− qn
ϕ̃

,
d log q

dm
= −1 +

∞∑

n=1

ann
3(e−νm)n

1− (e−νm)n
, (4.3.9)

where qϕ̃ := e2πiϕ̃ and ν, c0 are some positive constants depending on different cases. Then an
coincides with the GW invariants an up to the constant c0, that is, an = −c0an.
Following these two expansions, we should have

e−νm ∼ qϕ̃ = e2πiϕ̃. (4.3.10)

Indeed, the expansion for qν is qν = e−νm + . . . , which agrees with c = e2πiϕ̃ + . . . . Now, since
m = −2πiτ − . . . , we have m ∼ −2πiτ . This would yield ϕ̃ ∼ ντ . As u0 ∼ 1, we shall further tune
the constant factor to be

ϕ̃ ∼ −c0τu0. (4.3.11)

The reason is that with

ϕ̃D ∼ −
1

2πi
c0τu1, (4.3.12)

using u1 ∼ u0 log λ ∼ u0 log q = 2πiτu0, we can recover

∂ϕ̃D

∂ϕ̃
=
∂ϕ̃D/∂τ

∂ϕ̃/∂τ
∼ 1

2πi

c0∂u1/∂τ

c0u0
= τ. (4.3.13)

Now we are ready to show that

Cϕ̃ϕ̃ϕ̃ ∼ −c0
d log q

dm
, (4.3.14)

where

Cϕ̃ϕ̃ϕ̃ =
∂2ϕ̃D

∂ϕ̃2
∼ ∂τ

∂ϕ̃
. (4.3.15)

This can be seen as follows. Since λ = q + . . . , we have

− dm

d log q
= − dm

d log λ
= u0. (4.3.16)

On the other hand,
∂ϕ̃

∂τ
∼ ∂(−c0τu0)

∂τ
= −c0u0. (4.3.17)

Thus,

Cϕ̃ϕ̃ϕ̃ ∼ −
1

c0u0
∼ −c0

d log q

dm
. (4.3.18)

Since we are working at the large complex structure point/tropical limit, “∼” can be turned into
“=”. To summarize, the correspondence of quantities between Mahler measure and GW invariants
is listed in Table 4.3.1. This generalizes the observations in [185].
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Mahler −c0τu0 − 1
4πic0τu1 τ qν e−νm −c0 d log q

dm

GW ϕ̃ ϕ̃D ∂ϕ̃D/∂ϕ̃ c qϕ̃ Cϕ̃ϕ̃ϕ̃

Table 4.3.1: The correspondence between Mahler and GW (in the tropical limit).

Outlook Regarding the dictionary in Table 4.3.1, it is natural to expect that the correspondence
between Mahler measure and GW invariants holds for all 16 reflexive polygons. It would be
interesting to have a precise proof of the correspondence. Incidentally, the partition function on
S2 for certain gauged linear sigma model was used to compute genus-0 GW invariants for a 3d CY
variety12 in [194] without the use of mirror symmetry. In particular, this linear sigma model flows
an IR non-linear sigma model with the CY variety as the target space. It would be interesting to see
whether the modular Mahler measures could have any relations to this. Moreover, the dictionary
between Mahler measure and GW invariants can be potentially extended to the topological vertex
formalism.

By virtue of the elliptic curves, the theories discussed in this section would have natural connections
to Seiberg-Witten (SW) theories as pointed out in [157, 193]. It is also worth noting that dessins
have also appeared in the study of SW curves as in [5, 168,171] (see also Appendix C). It could be
possible that the discussions on dessins and (modular) Mahler measures here would give some new
insights to the study of SW theories and topological strings. From the perspective of (modular)
Mahler measure, it would also be interesting to apply this to crystal melting, superconformal index,
knot/quiver correspondence, black holes etc.

12Notice that the CY varieties studied are all compact, though some discussions are made in the large volume
regime.
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Chapter 5

BPS Algebras and Crystal Melting

Recently, the BPS algebras [195,196] in Type IIA on the toric CY threefolds setting, dubbed quiver
Yangians, were constructed in [57,197,198]. In this chapter, we shall study such algebras as well as
their trigonometric and elliptic cousins [199–201]. We will start with the crystal representations.
Then we will discuss their connections to integrability and VOAs.

Before we give the reviews on relevant topics, let us briefly summarize the results of this chapter. It
was well-known that the crystal melting model can be used to count the BPS states of a toric quiver
gauge theory. Such crystal models can be constructed as the 3d uplifts of the periodic quivers. In
particular, the configurations of the molten crystals are in one-to-one correspondence with the BPS
states. These BPS states are the bound states formed by Dp-branes wrapping compact cycles in
the toric CY threefold in the Type IIA setup. We first discuss the construction of the crystal
models for different (cyclic) chambers that are connected to non-commutative Donaldson-Thomas
chamber (with known crystals) under (a series of) wall crossings. In particular, we find the crystal
configurations from the core chamber to the PT chamber for C × C2/Z2, which together with
the finite crystal configurations for the conifold could be served as possible building blocks of the
crystals for more general geometries. Moreover, for the chambers with infinite crystals, we propose
that wall crossing corresponds to “peeling off” the semi-infinite faces of the crystals.

The BPS algebras of the theories, which are known as the quiver Yangians, have the crystal
configurations as their representations. We construct the R-matrix formalism for these algebras.
We give the expressions of the actions of the R-matrices on the Fock modules labelled by (2d)
crystals. We then discuss how one can derive the Bethe ansatz equations from the BPS algebras of
the 4d gauge theories (for non-chiral quivers). This implements the Bethe/gauge correspondence,
and these Bethe ansatz equations should describe certain Hitchin systems.

In the study of integrability, the coalgebra structure often plays an important role. We give the
coproduct of the quiver Yangians for non-chiral quivers here. Moreover, we show that for toric dual
quivers, their BPS algebras are isomorphic by explicitly giving the transformations.

As the BPS algebras for the 4d N = 1 gauge theories, the quiver Yangians should also appear in
the context of 2d/4d (aka BPS/CFT, AGT) correspondence. Indeed, for generalized conifolds, we
show that theW-algebras, which roughly speaking can be realized as the symmetry algebras arised
at the interfaces of brane webs, are truncations of the quiver Yangians. In other words, we give the
surjective homomorphisms from the BPS algebra to the vertex operator algebras.

One may also consider the trignometric and elliptic counterparts of the quiver Yangians, i.e.,
toroidal and elliptic quiver BPS algebras. In short, they can be realized by low energy effective
theories on the worldvolume of the D-branes under dimensional reduction. We have a similar
discussion for these two types of algebras as well. For non-chiral quivers, we give the isomorphic
maps for toric dual algebras. We further show that such algebra for a higgsed theory is a subalgebra
of the one for its parent theory in the case when the algebras have only one free parameter. For
chiral quivers, it is still not clear how to obtain such transformations although it is natural to
conjecture that we still the isomorphisms under Seiberg duality and the subalgebra structures
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under higgsing. Nevertheless, we give a free field realization for the toroidal and elliptic algebras
in the chiral case.

5.1 Crystal Melting Models

Given a quiver Q with superpotentialW associated to a toric CY, let us denote the sets of nodes and
arrows as Q0 and Q1 respectively. Such quiver theory can be used to describe the supersymmetric
quantum mechanics on the D-branes, where the BPS states arise from the Dp-branes wrapping
holomorphic p-cycles of the CY3 in the type IIA compactification setting. The crystal melting
model can then be thought of as the 3d uplift of the (periodic) quiver, where each atom in the
crystal corresponds to a gauge node in the quiver while the bifundamental/adjoint arrows are
chemical bonds. Moreover, the atoms associated to different gauge nodes have different “colours”.

More concretely, we shall choose an initial atom o in the periodic quiver. All the other atoms are
placed at the nodes in the periodic quiver level by level along the arrows. As the paths connecting
two fixed atoms should be equivalent in the crystal, we have the path algebra defined modulo the
F-term relations, that is, CQ/⟨∂W ⟩.
The molten crystal configurations which correspond to the BPS states are obtained following the
crystal melting rule. An atom a is in the molten crystal C if there exists an arrow I ∈ Q1 such
that I · a ∈ C. This equivalently states that the complement of the molten crystal is an ideal of the
path algebra. As we will review shortly, the generators of the quiver Yangian have natural actions
on the molten crystal configurations.

5.1.1 Crystal Configurations and Wall Crossings

The crystal configuration for a given quiver in the non-commutative Donaldson-Thomas (NCDT)
chamber is well-known. It could be possible that there are certain crystal models describing other
chambers under wall crossings. In the case of the conifold C, we know that the crystal in the
chamber CN the pyramid partition with a ridge of (N + 1) atoms on the top row. The crystal
partition function reads [202, 203]

Zcrystal (q0,N , q1,N ) =M(q0,Nq1,N )
2M

(
−qN−1

0,N qN1,N , q0,Nq1,N

)−1
M∧

(
−q−(N−1)

0,N q−N1,N , q0,Nq1,N ;N
)−1

,

(5.1.1)
where qi,N is the variable for the atom of ith colour in the crystal for CN . The definitions of the
(generalized) MacMahon functions M , M∧ and M∧ can be found in Appendix F. Under q0,N =
qN0 q

N−1
1 and q1,N = q−N+1

0 q−N+2
1 , we obtain

Zcrystal(q0, q1) =M(q0q1)
2M(−q1, q0q1)−1M∧(−q1, q0q1;N)−1. (5.1.2)

This is similar in the C̃N chamber, where the crystal is finite and

Zcrystal (q0,N , q1,N ) =M∧
(
−qN+1

0,N qN1,N , q
−1
0,Nq

−1
1,N ;N

)−1
(5.1.3)

with q0,N = qN0 q
N+1
1 , q1,N = q−N−1

0 q−N−2
1 [204]. More examples on the BPS partition functions

and relevant discussions can be found in Appendix F.

For a general CY, it is still not clear whether there is a crystal for every chamber. We conjecture
that such crystal should exist, at least upon “artificial” constructions. For instance, the crystal for
C̃2 for the conifold is shown in Figure 5.1.1(a). Together with another copy with different colours
in Figure 5.1.1(b), we have a crystal with two disjoint parts as in Figure 5.1.1(c). In other words,
they form a crystal whose white-black part and blue-red part have no chemical bonds between each
other. More generally, for two copies for the chamber C̃N of the conifold, this gives the partition
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(a) (b) (c)

Figure 5.1.1: (a) The crystal for C̃2 for the conifold C. (b) The same copy with different
colours. (c) The crystal which is a disjoint union of (a) and (b).

function

Zcrystal =M∧
(
−qN+1

whiteq
N
black, q

−1
whiteq

−1
black;N

)−1
M∧

(
−qN+1

blue q
N
red, q

−1
blueq

−1
red;N

)−1

=M∧ (−q1, x;N)−1M∧ (−q3, x;N)−1 ,
(5.1.4)

where the second line is obtained under the substitutions

qwhite = qN0 q
N+1
1 qN2 q

N
3 , (5.1.5)

qblack = q−N−1
0 q−N−2

1 q−N−1
2 q−N−1

3 , (5.1.6)

qblue = qN0 q
N
1 q

N
2 q

N+1
3 , (5.1.7)

qred = q−N−1
0 q−N−1

1 q−N−1
2 q−N−2

3 , (5.1.8)

x = q0q1q2q3. (5.1.9)

Notice that however, this partition function does not correspond to any chamber for C/Z2 due to
the constraints on [B] discussed above. To recover the partition function of certain chamber, one
should not only consider such crystal associated to M∧(•, •;N)−1, but also consider the crystal
for C̃N of C × C2/Z2. This is because in general we would also have M∧(•, •;N) in the partition
function.

Here, we propose that the (natural) crystal for the chamber C̃N for C× C2/Z2 has the shape of a
tilted (semi-)infinite “triangular log store” as shown in Figure 5.1.2. The crystal partition function

... ... ...

...

N

N

Figure 5.1.2: The crystal for chamber C̃N for C × C2/Z2. Here we show the cases for
N = 1, 2, 3, 4. We also give a sketch of general N with the orange line as the top row. The

crystal is infinitely long.

is
Zcrystal (q0,N , q1,N ) =M∧

(
qN+1
0,N qN1,N , q

−1
0,Nq

−1
1,N ;N

)
. (5.1.10)
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Under q0,N = qN0 q
N+1
1 , q1,N = q−N−1

0 q−N−2
1 , we recover M∧(q1, q0q1;N) as expected. As an

illustration, we list the perturbative expansion of Zcrystal (q0,N , q1,N ) for some small N :

N = 1 : 1 + q0,1 + q20,1 + q30,1 + . . . ;

N = 2 : 1 + 2q0,2 + (3 + q1,2)q
2
0,2 + (4 + 2q1,2)q

3
0,2 + . . . ;

N = 3 : 1 + 3q0,3 + (6 + 2q1,3)q
2
0,3 + (10 + 6q1,3 + q21,3)q

3
0,3 + . . . ;

N = 4 : 1 + 4q0,4 + (10 + 3q1,3)q
2
0,4 + (20 + 12q1,4 + 2q21,4)q

3
0,4 + . . . .

(5.1.11)

Now, any chamber C̃ for any toric CY without compact 4-cycles could be represented by a disjoint
union of the crystals in Figure 5.1.1 and Figure 5.1.2. For instance, three copies of Figure 5.1.1
and two copies of Figure 5.1.2 (all with distinct colours) yield the chamber with

Zcrystal =M∧ (−q1, x; 1)−1M∧ (−q3, x; 1)−1M∧ (q1q2, x; 1)M
∧ (q2q3, x; 1)M

∧ (−q1q2q3, x; 2)−1

(5.1.12)
for C/Z2. The maps from qi,N to qj should be straightforward from the above discussions1.

In the case of C×C2/Zn or C/Zn, a more natural crystal could be the same as the one for C×C2/Z2

or C but with more colours. Nevertheless, this artificial method allows us to construct the crystal
for arbitrary chamber C̃ for any toric CY without compact 4-cycles.

One may consider a similar construction for a chamber C such that there is a crystal model for each
(M(

∏
qi, x)M∧(

∏
qi, x;N))±1 where ±1 determines the crystal being either pyramid partition or

bicoloured plane partition. Then the union of the crystals would give all the factors in the partition
function. For such constructions, we need to point out the followings:

• There could be more colours qi,∪ of this union than the actual number of variables qi. There-
fore, the map from {qi,∪} to {qi} should reduce such number. This is similar to the case for

C̃.

• Every (sub-)crystal in the union would introduce a factor of M(x)2 in the product. To remove
these extra factors, we need to make identifications of some atoms when gluing the crystals
together. For each factor of M(x), a pair of C3 sub-crystal in the union should “merge” into
one. For some special/simpler cases, one may also consider merging a different sub-crystal.
This is illustrated in Figure 5.1.3 where the CY geometry is not even changed but we have a
different chamber2.

• After merging, the truncations N in the (remaining) factorsM∧(•, •;N) could change. Again,
Figure 5.1.3 provides an example. It could be possible that cancelling the surplus colours in
{qi,∪} would simultaneously correct N in the remaining M∧(•, •;N).

It is not clear whether such construction would give a “natural” crystal description of the BPS
states in different chambers. Nevertheless, if there does exist a natural crystal description, the
2d projection of the crystal shape should coincide with the web diagram of the toric CY. This
is because the thickening of the web would give the 2d projection of the crystal melting in the
thermodynamic limit3. Then the tops of the crystals would be the finite ridges in the webs with
different numbers of coloured atoms for different chambers.

Let us take a closer look at the bicoloured crystals for C×C2/Z2 and the conifold in the chambers
CN . As shown in Figure 5.1.4, we can “peel” one semi-infinite face (in grey) off the crystal for the

1One may check that this indeed corresponds to some chamber. For example, the θ map (see Appendix F) can
be chosen as θ(1/2) = −7/2, θ(3/2) = 3/2, θ(5/2) = 7/2 and θ(7/2) = 9/2.

2Of course, for general CY it would be easier to consider merging its own crystals rather than combining copies of
bicoloured pyramid or plane partition and identifying C3 sub-crystals. However, the premise is to know the crystals
for this general CY in different (or at least a few) chambers.

3The thickening of the web is known as the amoeba [22, 139]. As the (thermodynamic) limit shape of the crystal
and the amoeba are general features for any CY, we expect the discussion here would also work for CYs with compact
4-cycles.
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(a) (b)

Figure 5.1.3: (a) The crystal for C1 for the conifold C. (b) “Merging” two such copies. Here,

we still stay in the case C, but with a different chamber. Each copy gives M(x)2M̃∧(2)
−1

where M̃∧(2) := M(
∏
qi, x)M∧(

∏
qi, x; 2). After merging the shaded pyramid (where the

colours are ignored), we reach the chamber C3 with partition function M2M̃∧(4)
−1 with the

blue (red) colour identified with the white (black) colour.

conifold. This then leads to the crystal for chamber C1. Keep peeling the semi-infinite face on the
same side, and we can reach the crystal for any CN . In the web diagram which corresponds to the

Figure 5.1.4: Peeling off the semi-infinite faces of the conifold crystal. This changes the
length of the top row.

ridges of the crystal, peeling the semi-infinite face is actually changing the length of the internal
line, that is, varying the Kähler moduli. This indicates that removing a factor of (1 − xkQ−1)k in
the partition function corresponds to peeling a semi-infinite face off the crystal. If we peel another
semi-infinite face as in the second row in Figure 5.1.4, we can see that this is going the opposite
direction in the moduli space, and we get back to the NCDT chamber C0 from C1.

Now we propose a similar construction for C×C2/Z2. In Figure 5.1.5, if we peel one semi-infinite
ridge (in grey) off the crystal, we would reach the chamber C1. Then keep peeling the semi-infinite
face on the same side, and we can reach the crystal for any CN . In the web diagram, this is again
changing the length of the internal line, that is, varying the Kähler moduli. This corresponds to
removing a factor of (1 − xkQ−1)−k in the partition function. Similar to the conifold, the crystal
partition function in this case should be given by

Zcrystal (q0,N , q1,N ) =M(q0,Nq1,N )
2M

(
qN−1
0,N qN1,N , q0,Nq1,N

)
M∧

(
q
−(N−1)
0,N q−N1,N , q0,Nq1,N ;N

)
,

(5.1.13)
with q0,N = qN0 q

N−1
1 and q1,N = q−N+1

0 q−N+2
1 .

This peeling process can then be generalized to any toric CY. Every time we cross a wall, a semi-
infinite face (with a ridge being a degenerate face) is peeled off the crystal. This corresponds to
losing/obtaining a factor of (1 − xk∏Q−1

i )±k, where the sign in the power is determined by the
curve (O(−2, 0) or O(−1,−1)) for the internal line in the web, or equivalently, the signs in σ. As
an example, we illustrate several different ways of peeling for C× C2/Z3 in Figure 5.1.6.
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Figure 5.1.5: Peeling off the semi-infinite faces of the C× C2/Z2 crystal.

Figure 5.1.6: Peeling off the semi-infinite faces of the C×C2/Z3 crystal. The dashed brane
webs is composed of the ridges.

In general, the initial atoms are at the intersections of (at least) two semi-infinite ridges. Moreover,
these initial atoms do not have to lie at the same “height” in the crystal.

5.2 Quiver Yangians

Let us first briefly review the concept of the (rational) quiver Yangians as introduced in [57]. Given
a quiver Q = (Q0, Q1) with superpotential W , its quiver Yangian YQ,W is generated by the modes

e
(a)
i , f

(a)
i and ψ

(a)
j (a ∈ Q0, i ∈ N, j ∈ Z)4 satisfying the relations

[
ψ(a)
n , ψ(b)

m

]
= 0, (5.2.1)

[
e(a)n , f (b)m

}
= δabψ

(a)
m+n, (5.2.2)

|b→a|∑

k=0

(−1)|b→a|−kσb→a
|b→a|−k

[
ψ(a)
n e(b)m

]
k
=

|a→b|∑

k=0

σa→b
|a→b|−k

[
e(b)m ψ(a)

n

]k
, (5.2.3)

|b→a|∑

k=0

(−1)|b→a|−kσb→a
|b→a|−k

[
e(a)n e(b)m

]
k
= (−1)|(a)||(b)|

|a→b|∑

k=0

σa→b
|a→b|−k

[
e(b)m e(a)n

]k
, (5.2.4)

|b→a|∑

k=0

(−1)|b→a|−kσb→a
|b→a|−k

[
f (b)m ψ(a)

n

]k
=

|a→b|∑

k=0

σa→b
|a→b|−k

[
ψ(a)
n f (b)m

]
k
, (5.2.5)

4In this thesis, we have the convention N = Z≥0.
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|b→a|∑

k=0

(−1)|b→a|−kσb→a
|b→a|−k

[
f (b)m f (a)n

]k
= (−1)|(a)||(b)|

|a→b|∑

k=0

σa→b
|a→b|−k

[
f (a)n f (b)m

]
k
. (5.2.6)

The notations require some explanation. The bracket [-, -} is the super bracket, that is, anti-
commutator for two fermionic modes and commutator otherwise. In a quiver, the nodes with

(without) adjoint loops are bosonic (fermionic) such that |(a)| = 0 (|(a)| = 1). Then e
(a)
i and f

(a)
i

have the Z2-grading same as the corresponding node a while ψ
(a)
j is always bosonic. We use a→ b

to denote the set of arrows from a to b, and the total number is |a → b|. For each edge I ∈ Q1,
we assign a weight/charge ϵ̃I to it, and σa→b

k is the kth symmetric sum of ϵ̃I for all I ∈ a → b.
Moreover, we have

[AnBm]k :=

k∑

l=0

(−1)l
(
k

l

)
An+k−lBm+l, [BmAn]

k :=

k∑

l=0

(−1)l
(
k

l

)
Bm+lAn+k−l. (5.2.7)

The defining relations for generalized conifolds, along with the constructions of the quivers, are
given in Appendix E. For toric CYs, as the superpotential can be unambiguously determined for a
given quiver, we shall sometimes abbreviate YQ,W as YQ or even Y if it would not cause confusions.

To correctly recover the counting of crystal configurations/BPS states, we need to further mod out
the Serre relations5. For generalized conifolds, the Serre relations read

Symn1,n2

[
e(a)n1

,
[
e(a)n2

, e(a±1)
m

]]
= 0, Symn1,n2

[
f (a)n1

,
[
f (a)n2

, f (a±1)
m

]]
= 0, (5.2.8)

for |(a)| = 0, and

Symn1,n2

[
e(a)n1

,
[
e(a+1)
m1

,
[
e(a)n2

, e(a−1)
m2

}}}
= 0, Symn1,n2

[
f (a)n1

,
[
f (a+1)
m1

,
[
f (a)n2

, f (a−1)
m2

}}}
= 0

(5.2.9)
for |(a)| = 1. The Yangian algebra after the quotient of the Serre relations is also called the
reduced quiver Yangian. However, as we will mainly focus on the Yangian algebra with Serre
relations included, we shall simply refer to it as the quiver Yangian Y.

We can then introduce the currents

e(a)(u) :=
∞∑

n=0

e
(a)
n

un+1
, f (a)(u) :=

∞∑

n=0

f
(a)
n

un+1
, ψ(a)(u) :=

∑

n∈Z

ψ
(a)
n

un+1
. (5.2.10)

In the molten crystal, e(a)(u) (e
(a)
n ) creates atoms in the configuration while f (a)(u) (f

(a)
n ) annihilates

atoms. Moreover, ψ(a)(u) contains all the Cartan modes ψ
(a)
n . It was shown in [57] that for toric

CYs without compact divisors (or more generally, any symmetric quivers), ψ
(a)
n<−1 = 0 and ψ

(a)
−1 = 1.

We may then write the relations in terms of the currents as

[
e(a)(u), f (b)(v)

}
= δab

ψ(a)(u)− ψ(a)(v)

u− v + . . . , (5.2.11)

gba(u− v)ψ(a)(u)e(b)(v) = gab(u− v)e(b)(v)ψ(a)(u) + . . . , (5.2.12)

gba(u− v)e(a)(u)e(b)(v) = (−1)|(a)||(b)|gab(u− v)e(b)(v)e(a)(u) + . . . , (5.2.13)

gba(u− v)f (b)(v)ψ(a)(u) = gab(u− v)ψ(a)(u)f (b)(v) + . . . , (5.2.14)

gba(u− v)f (b)(v)f (a)(u) = (−1)|(a)||(b)|gab(u− v)f (a)(u)f (b)(v) + . . . , (5.2.15)

(5.2.16)

5Recently, the Serre relations for any quivers for the trigonometric versions were obtained in [205]. By taking the
rational limit, we may get the Serre relations for the rational quiver Yangians. Nevertheless, we shall only consider
the cases for generalized conifolds here.
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where

gab(z) :=

|a→b|∏

i=1

(z + ϵ̃ab,i) , gba(z) :=

|b→a|∏

i=1

(z − ϵ̃ba,i) . (5.2.17)

The ellipses indicate the local terms in the sense of [206] as they would not contribute when we
compute the contour integrals to recover most of the mode relations6. For instance, when the toric
CY does not have compact 4-cycles, we have the local terms for the ψe relation as




|b→a|∑

k=0

(−1)|b→a|σb→a
|b→a|−k

k∑

j=0

(−1)j
(
k

j

)
uk−jvj

(
ψ(a)(u)

(
j−1∑

m=0

e
(b)
m

vm+1

)
+

(
k−j−1∑

n=−1

ψ
(a)
n

un+1

)
e(b)(v)

−
j−1∑

m=0

k−j−1∑

n=−1

ψ
(a)
n

un+1

e
(b)
m

vm+1

))
−




|a→b|∑

k=0

σa→b
|a→b|−k

k∑

j=0

(−1)j
(
k

j

)
uk−jvj

((
e(b)(v)

k−j−1∑

n=−1

ψ
(a)
n

un+1

)

+

(
j−1∑

m=0

e
(b)
m

vm+1

)
ψ(a)(u)−

j−1∑

m=0

k−j−1∑

n=−1

e
(b)
m

vm+1

ψ
(a)
n

un+1

))
.

(5.2.18)

By analyzing how the atoms in the molten crystal configuration can be added and removed, we
can write down the action of the currents on any crystal state |C⟩. Consider an atom a of colour
a that can be added to (removed from) the molten crystal according to the melting rule. Then
we shall use the notation a ∈ C+ (a ∈ C−) such that |C⟩ would become |C + a⟩ (|C − a⟩) after the
corresponding action. Suppose the initial atom o in the crystal has colour o = 1. We have [57]

ψ(a)(u)|C⟩ = Ψ
(a)
C (u)|C⟩, (5.2.19)

e(a)(u)|C⟩ =
∑

a∈C+

±
√
−(−1)|(a)|Resϵ̃(a)Ψ(a)

C (u)

u− ϵ̃(a) |C+ a⟩, (5.2.20)

f (a)(u)|C⟩ =
∑

a∈C−

±
√

Resϵ̃(a)Ψ
(a)
C (u)

u− ϵ̃(a) |C− a⟩, (5.2.21)

where

Ψ
(a)
C (u) :=

(
u+ C

u

)δa,1 ∏

b∈Q0

∏

b∈C
ϕb⇒a(u− ϵ̃(b)), (5.2.22)

ϕb⇒a(u) =

∏
I∈a→b

(u+ ϵ̃I)

∏
I∈b→a

(u− ϵ̃I)
, (5.2.23)

ϵ̃(a) =
∑

I∈path[o→a]

ϵ̃I . (5.2.24)

Here, C is some numerical constant known as the vacuum charge7. The ± signs in the actions
depend on the statistics of the algebra. Moreover, the charge assignment ϵ̃I should be compatible
with the superpotential8. Therefore, the coordinate parameters ϵ̃I of the arrows should satify the

6More specifically, when applying the contour integral 1
(2πi)2

∮
unvmdudv with m,n ≥ 0 (or taking the formal

mode expansion), these terms do not contribute as they have zero residues. However, they would affect the results

for relations such as
[
ψ(a)(u), e

(b)
0

]
which has m = −1. See for instance [206] for some explicit examples.

7For toric CY without compact 4-cycles, it can be identified as the central term
∑

a∈Q0

ψ
(a)
0 .

8This means that ϵ̃I can be viewed as charges under a global symmetry of the quiver quantum mechanics, and
this charge constraint is the only role that the superpotential plays in the definition of Y.
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loop constraint ∑

I∈L
ϵ̃I = 0, (5.2.25)

for any closed loop L in the periodic quiver. It turns out that the number of coordinate parameters
is given by

|Q1| − |Q2| − 1 = |Q0|+ 1, (5.2.26)

where Q2 denotes the faces of the periodic quiver, or equivalently, the monomial terms in the
superpotential.

Moreover, as pointed out in [57], there is redundancy associate to each node in the sense that
certain shifts of ϵ̃I would give automorphisms of the algebra. One can then introduce a gauge
fixing condition to get rid of this shift. This is known as the vertex constraint:

∑

I∈a
sgna(I)ϵ̃I = 0, (5.2.27)

where the sign function sgna(I) is equal to +1 (−1) when the arrow I starts from (ends at)
the node a, and 0 otherwise. As an overall U(1) symmetry decouples, the total number of the
vertex constraints is |Q0| − 1. Together with the |Q0| + 1 loop constraints, we are then left with
two independent parameters9 denoted as ϵ1,2. It would also be convenient to introduce a third
parameter ϵ3 such that ϵ1 + ϵ2 + ϵ3 = 0.

5.3 Yang-Baxter Algebras and R-Matrices

As the name suggests, the quiver Yangian should enjoy an R-matrix formalism [59, 207]. The R-
matrix can be defined by considering a set of vector spaces Fi and the operator-valued functions
RFi,Fj (u) ∈ End(Fi ⊗ Fj)(u). Here, u is the spectral parameter and the R-matrix should satisfy
the Yang-Baxter (YB) equation

R12(u)R13(u+ v)R23(v) = R23(v)R13(u+ v)R12(u), (5.3.1)

where R12 := RF1,F2 ⊗ 1F3 . Henceforth, we shall slightly abuse the notation and simply write
RFi,Fj as Rij . Now, consider the tensor product of the Fock spaces, F1(u1) ⊗ · · · ⊗ Fn(un), and
choose an auxiliary space F0 ∈ {Fi}. We can define the operator

T0(u) = R0n(u− un) . . .R01(u− u1). (5.3.2)

The YB equation then implies the RT T relation

Rij(u− v)Ti(u)Tj(v) = Tj(v)Ti(u)Rij(u− v). (5.3.3)

More rigorously, following [59], we should start with an integral domain K ⊃ Q with ⊗ = ⊗K and
End = EndK. Then the Maulik-Okounkov (MO) Yangian acts on Fi(ui) := Fi⊗K[ui] for some free
K-module Fi, or more generally on the tensor product

⊗
i
Fi(ui) =

⊗
i
Fi ⊗ K[u1, . . . , un]. Given a

quiver Q, the modules Fi can be identified with certain equivariant cohomologies of the Nakajima
quiver variety.

The precise relation between quiver Yangians and MO Yangians is still not clear, but they should be

different for the same quiver Q. For C×C2/Zn whose quiver Yangian is Y
(
ĝln

)
, as it is the tripled

quiver10 Q̂ of the affine A-type quiver Q, we conjecture that its quiver Yangian Y
Q̂

is isomorphic

9These two coordinate parameters, along with the R-symmetry, give the U(1)3 isometry of the toric CY threefold.
10Given a quiver Q, its tripled quiver is defined as follows. We first construct its doubled quiver Q = (Q0, Q1⊔Q∗

1)

where an arrow I∗ in the opposite direction is added for each I ∈ Q1. Then the tripled quiver Q̂ is obtained by
adding a self-loop ωa to each node a. It has (super)potential W =

∑
ωa[X,X

∗].
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to the MO Yangian of Q. This is consistent with the conjecture in [208] regarding their positive
parts.

In [206, 209], the MO R-matrices were constructed using the RT T relation and some current
algebras known as the Yang-Baxter algebras for ĝl1 and ĝl2. In this section, we shall first define
the YB algebras for general (non-chiral) quivers.

5.3.1 Yang-Baxter Algebras

Given a quiver Q, the YB algebra YBQ is defined by the generators h
(a)
i , e

(a)
i , f

(a)
i and ψ

(a)
j (a ∈ Q0,

i ∈ N, j ∈ Z) subject to the relations
[
h(a)n , h(b)m

]
=
[
h(a)n , ψ(b)

m

]
= 0, (5.3.4)

[
h(a)n , e(b)m

]
= δabϵ3

n∑

k=0

h
(a)
n−k−1e

(b)
m+k, (5.3.5)

[
f (b)m , h(a)n

]
= δabϵ3

n∑

k=0

f
(b)
m+kh

(a)
n−k−1, (5.3.6)

[
ψ(a)
n , ψ(b)

m

]
= 0, (5.3.7)

[
e(a)n , f (b)m

}
= −δabψ(a)

m+n, (5.3.8)

|b→a|∑

k=0

(−1)|b→a|−kσb→a
|b→a|−k

[
ψ(a)
n e(b)m

]
k
=

|a→b|∑

k=0

σa→b
|a→b|−k

[
e(b)m ψ(a)

n

]k
, (5.3.9)

|b→a|∑

k=0

(−1)|b→a|−kσb→a
|b→a|−k

[
e(a)n e(b)m

]
k
= (−1)|(a)||(b)|

|a→b|∑

k=0

σa→b
|a→b|−k

[
e(b)m e(a)n

]k
, (5.3.10)

|b→a|∑

k=0

(−1)|b→a|−kσb→a
|b→a|−k

[
f (b)m ψ(a)

n

]k
=

|a→b|∑

k=0

σa→b
|a→b|−k

[
ψ(a)
n f (b)m

]
k
, (5.3.11)

|b→a|∑

k=0

(−1)|b→a|−kσb→a
|b→a|−k

[
f (b)m f (a)n

]k
= (−1)|(a)||(b)|

|a→b|∑

k=0

σa→b
|a→b|−k

[
f (a)n f (b)m

]
k
, (5.3.12)

Serre relations. (5.3.13)

As we can see, the relations among e
(a)
i , f

(a)
i and ψ

(a)
j are exactly the same as the ones for their

namesakes in the quiver Yangian YQ except the extra minus sign in the ef relation. Moreover,

similar to ψ
(a)
j , the modes h

(a)
i are Cartan modes and are always bosonic for any node a. Denoting

the subalgebra of YB generated by e
(a)
i , f

(a)
i and ψ

(a)
j as YB0, it is then straightforward to see that

given a quiver Q, the map

ρ : Y→ YB0, e
(a)
i 7→ e

(a)
i , −f (a)i 7→ f

(a)
i , ψ

(a)
i 7→ ψ

(a)
i (5.3.14)

is an isomorphism11. In general, the YB algebra is strictly larger than the quiver Yangian. For

instance, Y
(
ĝl1

)
is the factorization of the YB algebra for C3 over its centre as shown in [206]. In

the remaining of this section (§5.3), we shall always refer to f as the generators for the YB algebra.

We may then write the currents

h(a)(u) = 1 +

∞∑

n=0

h
(a)
n

un+1
, e(a)(u) =

∞∑

n=0

e
(a)
n

un+1
, f (a)(u) =

∞∑

n=0

f
(a)
n

un+1
, ψ(a)(u) =

∑

n∈Z

ψ
(a)
n

un+1
.

(5.3.15)

11The case for C3 was proven in [210].
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In particular, we can define h
(a)
−1 = 1. In terms of currents, the relations read

[
h(a)(u), h(b)(v)

]
=
[
h(a)(u), ψ(b)(v)

]
= 0, (5.3.16)

(u− v − δabϵ3)h(a)(u)e(b)(v) = (u− v)e(b)(v)h(a)(u)− δabϵ3h(a)(u)e(b)(u), (5.3.17)

(u− v − δabϵ3)f (b)(v)h(a)(u) = (u− v)h(a)(u)f (b)(v)− δabϵ3f (b)(u)h(a)(u), (5.3.18)

as well as those for e(a)(u), f (a)(u) and ψ(a)(u) being the same as in quiver Yangians (with minus
signs correspondingly added due to different conventions of f). Again, the terms involving only the
parameter u are called local terms.

Remark 24. Instead of introducing an h(a)(u) for each node a, we could also consider a single

current h(u) such that h(u) :=
∏
a∈Q0

h(a)(u) with mode expansion h(u) =
∞∑

n=−1

hn
un+1 (where h−1 = 1).

This would slightly alter the definition of YB, but the relations would still be very similar. We can
simply remove the factors δab (and of course also the superscripts in h) to get both the mode and
current relations for h.

More generally, especially for CY3 with compact 4-cycles, we may also introduce negative modes for
h(a)(u) (or h(u)) in the definition of YB algebras just like ψ(a)(u). This might be more convenient
when discussing the relations between YB and Y. However, for our purpose here (especially for

symmetric quivers without negative ψ
(a)
j modes), it suffices to consider h(a)(u) with modes n ≥ −1.

As the quiver Yangians have crystal representations, we may also find how YB, or more specifically
h(a)(u), would act on the crystals. This can be done with the help of the actions of other generators.

Write h(a)(u)|C⟩ = h
(a)
C |C⟩ for an arbitrary crystal configuration C. Using the he relation, we have

(u− v − δabϵ3)h(a)(u)e(b)(v)|C⟩ =
(
(u− v)e(b)(v)h(a)(u)− δabϵ3h(a)(u)e(b)(u)

)
|C⟩. (5.3.19)

Then

(u− v − δabϵ3)h(a)(u)
∑

b∈C+

Num(b)

v − ϵ̃(b) |C+ b⟩

=(u− v)e(b)(v)h(a)C |C⟩ − δabϵ3h(a)(u)
∑

b∈C+

Num(b)

u− ϵ̃(b) |C+ b⟩,
(5.3.20)

where the numerator in the action of e(b) is denoted as Num(b). The explicit expression can be
found in §5.2, but it is not important here. This yields

(u− v − δabϵ3)
∑

b∈C+

Num(b)

v − ϵ̃(b)h
(a)
C+b|C+ b⟩

=(u− v)
∑

b∈C+

Num(b)

v − ϵ̃(b)h
(a)
C |C+ b⟩ − δabϵ3

∑

b∈C+

Num(b)

u− ϵ̃(b)h
(a)
C+b|C+ b⟩.

(5.3.21)

In other words,

(u− v − δabϵ3)
Num(b)

v − ϵ̃(b)h
(a)
C+b = (u− v)Num(b)

v − ϵ̃(b)h
(a)
C − δabϵ3

Num(b)

u− ϵ̃(b)h
(a)
C+b. (5.3.22)

By taking the contour integral
∮
v=∞ (or equivalently, the large v expansion), we have

h
(a)
C+b

h
(a)
C

=
u− ϵ̃(b)

u− ϵ̃(b)− δabϵ3
. (5.3.23)
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Let us choose the normalization h(a)(u)|∅⟩ = |∅⟩. Then we get

h(a)(u)|C⟩ =
∏

a∈C

u− ϵ̃(a)
u− ϵ̃(a)− ϵ3

|C⟩ (5.3.24)

for any crystal configuration C. Thus, h(a)(u) only sees the atoms of colour a in the crystal12.

By comparing the actions of h(a)(u) and ψ(a)(u) (with vertex constraints taken into account), we
can write ψ(a)(u) in terms of h(a)(u). For instance, for generalized conifolds, we have the relation

ψ(a)(u) =

(
u+ ψ0

u

)δa1
h(a−1)(u+ σaϵ1)h

(a−1)(u+ σaϵ2)

h(a+1)(u+ σa+1ϵ1)h
(a+1)(u+ σa+1ϵ2)

(
h(a)(u)h(a)(u+ ϵ3)

)σa+σa+1
2

,

(5.3.25)

where we have used C =
∑
a∈Q0

ψ
(a)
0 =: ψ0 for the vacuum charge as shown in [57] for generalized

conifolds.

5.3.2 Crystal Melting and the RT T Relation

Given a quiver and its quiver Yangian, we shall construct the R-matrices by acting the RT T
relation on the Fock modules of the algebra. For any quiver, we propose that we can consider a
particular representation whose states are labelled by molten crystal configurations at depth 0 in
the crystal melting model. In other words, such representation is a 2d crystal which is a surface of
the 3d crystal constructed from the periodic quiver. Indeed, the Fock representation would arise
when one considers the D4-brane framing for the quiver. On the other hand, it was shown in [152]
that the torus fixed points of the D4 moduli space are in one-to-one correspondence with the 2d
molten crystal configurations. Moreover, the 2d crystal structure, that is, the specific surface in
the 3d crystal, is determined by the correpsonding (non-compact) divisor in the toric diagram13.

In fact, this agrees with the modules used in [206, 209], where the states are labelled by partitions
and bi-coloured partitions for ĝl1 and ĝl2 respectively (see also [197]). Now, if we know how the
currents of YB are connected to T , the actions of the R-matrix can then be found using the relations
among these currents.

The strategy is to consider the matrix element obtained by sandwiching T between two states
|µ1,2⟩ ∈

⊕
a
F(a),0(u), viz, Tµ1,µ2(u) := ⟨µ1|T (u)|µ2⟩. Here, we have further labelled the auxiliary

spaces F(a),0(u) with the colours a as the 2d crystals can have different initial atoms of different
colours. As the name of YB algebras suggests, we propose that the first matrix elements are related
to our currents of YB by

h(a)(u) = T∅(a),∅(a)
(u), h(a)(u)e(a)(u) = T∅(a),□(a)

(u), f (a)(u)h(a)(u) = T□(a),∅(a)
(u),

ψ(a)(u− ϵ3) =
(
T□(a),□(a)

(u)− T∅(a),□(a)
(u)h(a)(u)−1T□(a),∅(a)

(u)
)
h(a)(u)−1,

(5.3.26)

12Hence, if we consider the action of h(u) =
∏

a∈Q0

h(a)(u), then we would get

h(u)|C⟩ =
∏

a∈Q0

∏
a∈C

u− ϵ̃(a)

u− ϵ̃(a)− ϵ3
|C⟩.

13As studied in [57], the representation of Y constructed from cyrstal configurations would become reducible for
some special values of ϵ̃I . In terms of crystals, truncations would appear to stop the molten crystal growing at certain
atoms. Therefore, some ResΨ

(a)
C (u) would vanish in the actions of e(a)(u) and f (a)(u). The representation would

then become irreducible in the truncated algebra. As the 2d crystal is essentially a surface of the 3d crystal, it could
be possible to study this from the perspective of truncations. It would be interesting to see if there could be any new
insights for the truncations by considering the relations between Y and YB.



Chapter 5. BPS Algebras and Crystal Melting 87

where ∅(a) and □(a) denote the empty 2d crystal and one single atom of colour a respectively.

Intuitively, starting with the “empty” h(a)(u), we can create an atom by acting f (a)(u) (e(a)(u)) on
the empty bra (ket) vector. Nevertheless, the actual situation is more complicated (although we
would have a conjectural expression for higher levels with a similar intuition involving integrals).
Indeed, the expression for ψ(a)(u) in terms of the matrix elements already looks somewhat intricate.

Now we can try to find the actions of the R-matrix on these states via the RT T relation. Let us
take the normalization R12(u− v)|∅(a),∅(b)⟩ = |∅(a),∅(b)⟩. Then

⟨∅(a),∅(b)|R12(u−v)T1(u)T2(v)|∅(a),∅(b)⟩ = ⟨∅(a),∅(b)|T2(v)T1(u)R12(u−v)|∅(a),∅(b)⟩ (5.3.27)

simply yields the hh relation
h(a)(u)h(b)(v) = h(b)(v)h(a)(u). (5.3.28)

Next, we can consider

⟨□(a),∅(b)|R12(u−v)T1(u)T2(v)|∅(a),∅(b)⟩ = ⟨□(a),∅(b)|T2(v)T1(u)R12(u−v)|∅(a),∅(b)⟩. (5.3.29)

The right hand side is actually

T∅(b),∅(b)
(v)T□(a),∅(a)

(u) = h(b)(v)f (a)(u)h(a)(u). (5.3.30)

By applying the hf and hh relations, we get

⟨□(a),∅(b)|R12(u− v)T1(u)T2(v)|∅(a),∅(b)⟩

=
1

v − u
(
(v − u− δabϵ3)f (a)(u)h(b)(v)h(a)(u) + δabϵ3f

(a)(v)h(b)(v)h(a)(u)
)

=
1

v − u
(
(v − u− δabϵ3)f (a)(u)h(a)(u)h(b)(v) + δabϵ3f

(a)(v)h(b)(v)h(a)(u)
)

=
1

v − u(v − u− δabϵ3)T□(a),∅(a)
(u)T∅(b),∅(b)

(v) +
1

v − uδabϵ3T□(b),∅(b)
(v)T∅(a),∅(a)

(u).

(5.3.31)

Therefore, we find that

⟨□(a),∅(b)|R12(u− v)=⟨□(a),∅(b)|
v − u− δabϵ3

v − u + ⟨∅(a),□(b)|
δabϵ3
v − u. (5.3.32)

Likewise, R12(u− v)|□(a),∅(b)⟩ can be obtained by using the he and ee relations.

One can then proceed to higher levels with more atoms. However, we do not know how general
Tµ1,µ2 correspond to the currents. A possible way is to look for currents at higher levels that
appear in the local terms from ee and ff relations. These higher currents would then give rise to
matrix elements of T at higher levels. However, the computations would get rather involved even
at the levels with 2 atoms for a general quiver. In [206, 209], for ĝl1 and ĝl2, it was found that any
such matrix element can be expressed as some contour integral in terms of the currents. Here, we
conjecture that this remains true for any general quiver. Explicitly, we have

Tµ1,µ2(u) =
1

(2πi)n

∮

C1
dz1· · ·

∮

Cn
dznF (z)




n∏

j=k+1

f (aj)(zj)


h(a0)(u)




k∏

j=1

e(aj)(zj)


 , (5.3.33)

where the rational function F (z) has poles at zj = u. The clockwise contour Cj goes around
zj = u,∞ and can be deformed in a way such that the contributions from local terms would be
cancelled when applying current relations to swap e(a)(zj) or f

(a)(zj) with other currents. Moreover,
the indices aj (including a0) should correspond to the colours of the atoms in µ1 and µ2.
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This conjecture does not tell us how to compute F (z), which is the key to get the exact results.
Nevertheless, we may still verify this with the expression at level 1. Indeed,

1

2πi

∮

C

1

u− z f
(a)(z)h(a)(u)dz =− Resu

(
f (a)(z)h(a)(u)

u− z

)
− Res∞

(
f (a)(z)h(a)(u)

u− z

)

=f (a)(u)h(a)(u) + Res0

(
1

z2
f (a)(1/z)h(a)(u)

u− 1/z

)

=f (a)(u)h(a)(u)

(5.3.34)

recovers T□(a),∅(a)
(u) with F (z) = 1/(u− z). We also give some examples for states at higher levels

in Appendix G.

The motivation of this conjecture stems from the R-matrix being the intertwiner between certain
free field representations. For the C3 case, it was found in [206, 211] that we have the relations

[a−n, Tµ1,µ2 ] = Tµ1,µ′2 , [Tµ1,µ2 , an] = Tµ′1,µ2 ,

a−n =
1

ϵk3(n− 1)!
adn−1

e1 e0, an =
1

ϵk3(n− 1)!
adn−1

f1
f0,

(5.3.35)

where a−n|µ⟩ = |µ′⟩ (n > 0) creates boxes/atoms in the Young tableau. Therefore,

a−n =
1

(−ϵ3)k(n− 1)!

1

(2πi)n

∮
dz




n∏

j=1

zj






n∑

j=1

(−1)j−1
(
n−1
j−1

)

zj




n∏

j=1

e(zj),

an =
1

(−ϵ3)k(n− 1)!

1

(2πi)n

∮
dz




n∏

j=1

zj






n∑

j=1

(−1)j−1
(
n−1
j−1

)

zj




n∏

j=1

f(zj).

(5.3.36)

The integral expression for matrix elements of T would then follow from their commutation relations
with the modes. In general, such process is still not clear, and the explicit expression for the
rational function F (z) is desired. Nevertheless, we can still apply this to certain problems without
the knowledge of its precise form. We will also further expound the contour integral conjecture in
§5.4 for a certain class of quivers.

5.3.3 Bethe Ansatz

As an application of our previous results, let us now try to generalize the results in [206, 209] and
obtain the Bethe ansatz equation for any quiver Q. Consider the quantum space which is the tensor
product of n Fock spaces, F(u1)⊗ · · · ⊗ F(un). We can define the Knizhinik-Zamolodchikov (KZ)
operator

T1 := tL1
1 . . . tLG

G R1,n(u1 − un) . . .R1,2(u1 − u2), (5.3.37)

where ta ∈ [0, 1) are the twist parameters and G = |Q0|. The quantum space is graded under each
level operator La via

La :=
n∑

j=1

La,j such that La,j |µ⟩u = Na,j |µ⟩u (5.3.38)

gives the number Na,j of atoms with colour a in the jth 2-dimensional crystal, where the subscript
u indicates that the state belongs to

⊗F(uj). By considering

|χ⟩x := |□1, . . . ,□1, . . . ,□G, . . . ,□G⟩x ∈ F1(x1,1)⊗· · ·⊗F1(x1,N1)⊗· · ·⊗FG(xG,1)⊗· · ·⊗FG(xG,NG
),

(5.3.39)
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let us further introduce the off-shell Bethe vector

|B(x)⟩u := x⟨∅|Rx1,1, u1 . . .Rx1,1, un . . .Rx1,N1
, u1 . . .Rx1,N1

, un

. . .RxG,1, u1 . . .RxG,1, un . . .RxG,NG
, u1 . . .RxG,NG

, un |∅⟩u|χ⟩x
(5.3.40)

in the quantum space, where x⟨∅, . . . ,∅| is abbreviated as x⟨∅| for brevity. Notice that it was
pointed out in [58] that due to the non-trivial coproduct of the algebra from soliton contributions,
in general |χ⟩x should be a mixed state of the chains of crystals rather than simply being identified
as a chain of single-atom states. See [58] for the modification of this subtlety. Nevertheless, we
shall take this single-atom states for |χ⟩x as an illustration. In the following discussions, this would
change the eigenvalue of the KZ operator with the results on Bethe ansatz equations unaffected.

Now, we would like to find the condition such that the off-shell Bethe vector is an eigenvector of
the KZ operator, that is, T1|B(x)⟩u = t|B(x)⟩u. Pictorially, we have

|B(x)〉u =

∅

∅

∅

∅

∅ ∅ ∅ ∅

x1,1

x1,2

xG,NG−1

xG,NG

. . .

.
.
.

.
.
. |χ〉x

u1 u2 un−1
. . .

un

. . ..
.
.

.
.
.

(5.3.41)

and

T1|B(x)〉u =

∅

∅

∅

∅

∅ ∅ ∅ ∅

x1,1

x1,2

xG,NG−1

xG,NG

. . .

. . .

.
.
.

u2

∅

∅

∅

∅

∅ ∅ ∅ ∅

x1,1

x1,2

xG,NG−1

xG,NG

. . .

. . .

.
.
.

un−1 un u1

. . .

.
.
.

.
.
.

t
L1
1 . . . t

LG
G

|χ〉x = |χ〉x

u2 u3 un
. . .

u1

t
L1
1 . . . t

LG
G

.
.
.

.
.
.

.
.
.

.
.
.

(5.3.42)

following the RT T relations along with R1,j |∅,∅⟩ = |∅,∅⟩.

If we project the eigenvalue equation onto some state u⟨µ| satisfying
n∑
j=1

Na,j = Na for all a, then

u⟨µ|T1|B(x)⟩u = t
N1,1

1 . . . t
NG,1
n x⟨∅|Tµ2,∅(u2) . . . Tµn,∅(un)Tµ1,∅(u1)|χ⟩x

= t x⟨∅|Tµ1,∅(u1)Tµ2,∅(u2) . . . Tµn,∅(un)|χ⟩x.
(5.3.43)

By setting x⟨µ| = x⟨∅, µ2, . . . |, i.e., µ1 = ∅, this equation becomes

t01 . . . t
0
G x⟨∅|Tµ2,∅(u2) . . . Tµn,∅(un)h(a)(u1)|χ⟩x = t x⟨∅|h(a)(u1)Tµ2,∅(u2) . . . Tµn,∅(un)|χ⟩x.

(5.3.44)
The actions of the currents/modes in YB on the 2d crystal are completely analogous to the actions
on the 3d crystal discussed above. Therefore14,

h(a)(u)|χ⟩x =

Na∏

j=1

u− xa,j
u− xa,j + ϵ

|χ⟩x, (5.3.45)

where we have used ϵ := ϵ1 + ϵ2 = −ϵ3. As a result,

t =

N1∏

j=1

u1 − x1,j
u1 − x1,j + ϵ

. (5.3.46)

14Notice that the coordinates are now given by y + ϵ̃(a) = y +
∑
I

NI ϵ̃I for an atom a in |µ⟩y [206, 209].
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Now let us consider the state x⟨µ| with Na,1 = δaa′ for some colour a′. Using the contour integral
form of Tµj ,∅, the eigenvalue equation reads

t1
x

〈
∅
∣∣∣∣
∮
F (z)

(
f (1)

(
z
(n)
1,1

)
. . . f (1)

(
z
(n)
1,N1,n

)
. . . f (G)

(
z
(n)
G,1

)
. . . f (G)

(
z
(n)
G,NG,n

)
h(1)(un)

)

. . .
(
f (1)

(
z
(2)
1,1

)
. . . f (G)

(
z
(2)
G,NG,2

)
h(1)(u2)

)
f (1)

(
z
(1)
1,1

)
h(1)(u1)dz

∣∣∣∣χ
〉

x

=t
x

〈
∅
∣∣∣∣
∮
F (z)f (1)

(
z
(1)
1,1

)
h(1)(u1)

(
f (1)

(
z
(n)
1,1

)
. . . h(1)(un)

)
. . .
(
f (1)

(
z
(2)
1,1

)
. . . h(1)(u2)

)
dz

∣∣∣∣χ
〉

x

.

(5.3.47)

Given the different variables with three indices, it would be better to clarify the notation here.

For z
(⋇)
∗,⋆ indicating the ⋇th state/2d crystal, ∗ denotes the colour of an atom (as in f (∗)), and ⋆

enumerates the number of the atoms of such colour. Recall that each Fock space in the quantum
space is F1 whose initial atom is of colour 1 (as in h(1)).

Using the hf and ff relations, we can get

t1

(
n∏

i=2

ui − x1,1 + ϵ

ui − x1,1

)
(−1)

|(1)|
G∑

a=1
|(a)|Na




G∏

a=1

Na∏

j=1
(a,j)̸=(1,1)

g1a(x1,1 − xa,j)
ga1(x1,1 − xa.j)




(
N1∏

l=1

u1 − x1,l
u1 − x1,l + ϵ

)
= t.

(5.3.48)
Notice that the parameters ϵ̃1a,i and ϵ̃a1,i in g1a and ga1 should be correspondingly changed to ϵj
in terms of the loop and vertex constraints from the quiver Yangian. Plugging in the value of t
yields the Bethe equation

(
n∏

i=2

ui − x1,1
ui − x1,1 + ϵ

)



G∏

a=1

Na∏

j=1
(a,j)̸=(1,1)

ga1(x1,1 − xa.j)
g1a(x1,1 − xa,j)


 = (−1)

|(1)|
G∑

a=1
|(a)|Na

t1. (5.3.49)

One may then consider other states x⟨µ| with different 2d crystal configurations (whose initial
atoms are still labelled by 1) so that the other twist parameters tj would also appear in the Bethe
equations. There should be a set of G independent such equations as the sufficient and necessary
condition for the off-shell Bethe vector |B(x)⟩u to be an eigenstate of the KZ operator T1. These
equations can then be labelled by (eqn)1,...,G so that they are chosen by considering the state where
the atom of colour a first appears in the 2d crystal for (eqn)a.

Examples Consider the Jordan quiver, that is, one node with one loop. Taking the quantum
(auxiliary) space to be a tensor product of L (M) Fock space F , we simply have

L∏

l=1

xj − ul
xj − ul + ϵ

= t

M∏

k ̸=j

xj − xk − ϵ
xj − xk + ϵ

. (5.3.50)

This reduces to the familiar Bethe equation

(
xj + i

xj − i

)L
= t

M∏

k ̸=j

xj − xk + 2i

xj − xk − 2i
(5.3.51)

for the XXX spin chain under ul = −i, ϵ = −2i.

As the simplest toric CY example, consider C3 whose quiver Yangian is the affine Yangian Y
(
ĝl1

)
.

Taking the quantum (auxiliary) space to be a tensor product of n (N) Fock space F (notice that
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we only have one node in the quiver), we get the equation

n∏

l=1

xj − ul
xj − ul − ϵ3

= t
N∏

k ̸=j

3∏

α=1

xj − xk + ϵα
xj − xk − ϵα

(5.3.52)

for any j = 1, . . . , N , as obtained in [206].

The connection to Bethe ansatz equation would be of particular interest in the context of Bethe/gauge
correspondence [212–214] (see [58] for a more recent discussion on this). For instance, the rapidities
(denoted as xj in the above examples) in the Bethe equations correspond to the supersymmetric
vacua of the associated 2d N = (2, 2) theory. In terms of the S-matrix, due to its factorized
scattering property, we expect that each (2-magnon) S-matrix would correspond to a bond factor
ϕb⇒a(xj − xk) as in (5.2.23) on the quiver side.

5.4 Generators of Quiver Yangians

For toric CYs without compact divisors whose quivers have more than two nodes15, the quiver

Yangians are actually generated by finitely many generators16. In this section, f
(a)
n will be used to

denote the generators in Y (instead of YB).

Recall that the generators are e
(a)
i , f

(a)
i and ψ

(a)
j with a ∈ Q0, i ∈ N and j ∈ Z≥−1. In particular,

ψ
(a)
−1 = 1. As |a→ b| ≤ 1, we have the relations

[
ψ
(a)
n+1, e

(b)
m

]
= σ1e

(b)
m ψ(a)

n + σ′1ψ
(a)
n e(b)m +

[
ψ(a)
n , e

(b)
m+1

]
,

[
ψ
(a)
n+1, f

(b)
m

]
= −σ′1f (b)m ψ(a)

n − σ1ψ(a)
n f (b)m +

[
ψ(a)
n , f

(b)
m+1

]
,

(5.4.1)

where σ1 := σa→b
1 and σ′1 := σb→a

1 . Then for n = −1, we have

[
ψ
(a)
0 , e(b)m

]
= σ̃1e

(b)
m ,

[
ψ
(a)
0 , f (b)m

]
= −σ̃1f (b)m , (5.4.2)

where σ̃1 := σ1 + σ′1. Notice that these were also used when discussing the relation of quiver
Yangians and Ueda’s affine super Yangians. Therefore, for n = 0, we get

[
ψ
(a)
1 , e(b)m

]
=
σ1
σ̃1
ψ
(a)
0

[
ψ
(a)
0 , e(b)m

]
+
σ′1
σ̃1

[
ψ
(a)
0 , e(b)m

]
ψ
(a)
0 + σ̃1e

(b)
m+1,

[
ψ
(a)
1 , f (b)m

]
=
σ′1
σ̃1
ψ
(a)
0

[
ψ
(a)
0 , f (b)m

]
+
σ1
σ̃1

[
ψ
(a)
0 , f (b)m

]
ψ
(a)
0 − σ̃1f

(b)
m+1.

(5.4.3)

Notice that we have chosen a and b with arrows connecting them so that σ1 and σ′1 are non-zero.

For |(a)| = 0, choosing b = a, we have

e
(a)
m+1 =

1

2σ1

[
ψ
(a)
1 −

1

2

(
ψ
(a)
0

)2
, e(a)m

]
, f

(a)
m+1 = −

1

2σ1

[
ψ
(a)
1 −

1

2

(
ψ
(a)
0

)2
, f (a)m

]
. (5.4.4)

For |(a)| = 1, choosing a = b+ 1, we have

e
(b)
m+1 =

1

σ̃1

[
ψ
(b+1)
1 − σ1

σ̃1

(
ψ
(b+1)
0

)2
, e(b)m

]
− σ1 − σ′1

σ̃1
e(b)m ψ

(b+1)
0 ,

f
(b)
m+1 = −

1

σ̃1

[
ψ
(b+1)
1 − σ1

σ̃1

(
ψ
(b+1)
0

)2
, f (b)m

]
+
σ1 − σ′1
σ̃1

ψ
(b+1)
0 f (b)m .

(5.4.5)

15More generally, the discussions here should work for any symmetric quiver with at most one pair of arrows
between any two nodes.

16In fact, as we will discuss later, they are not only finitely generated but also finitely presented. In other words,
the defining relations for higher modes can be obtained from finitely many relations at lower orders.
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Notice that we can always write σ1 and σ′1 in terms of ϵ1,2,3 due to vertex constraints. For both
bosonic and fermionic nodes, define

ψ̃
(a)
1 := ψ

(a)
1 −

σa→b
1

σa→b
1 + σb→a

1

(
ψ
(a)
0

)2
. (5.4.6)

We can then compactly write the relations as

e
(a)
m+1 =

1

σb→a
1 + σa→b

1

[
ψ̃
(b)
1 , e(a)m

]
− σb→a

1 − σa→b
1

σb→a
1 + σa→b

1

e(a)m ψ
(b)
0 ,

f
(a)
m+1 = −

1

σb→a
1 + σa→b

1

[
ψ̃
(b)
1 , f (a)m

]
+
σb→a
1 − σa→b

1

σb→a
1 + σa→b

1

ψ
(b)
0 f (a)m ,

(5.4.7)

where b = a for |(a)| = 0 and b = a+ 1 for |(a)| = 1. Moreover, we have

ψ
(a)
m+1 =

[
e
(a)
m+1, f

(a)
0

}
. (5.4.8)

As a result, we have shown that the quiver Yangian in this case is generated by e
(a)
0 , f

(a)
0 and ψ

(a)
0,1 .

The other modes can actually be inductively obtained using (5.4.7) and (5.4.8).

Moreover, we can now also get the matrix elements of T (u) at higher levels inductively. For
instance,

T∅,µ′(u) = ⟨∅|T (u)|µ′⟩ = ⟨∅|T (u)e(a)m |µ⟩. (5.4.9)

Then using (5.4.7) and (5.4.8), we can express all Tµ1,µ2(u) in terms of e
(a)
0 , f

(a)
0 and ψ

(a)
0,1 . If we

can write the contour integral expressions for all the states generated only by e
(a)
0 (and f

(a)
0 ), then

we can write the contour integral expression for any Tµ1,µ2(u) and hence obtain the action of the
R-matrix (recall that we know the actions of ψ from §5.2 and §5.3.3).

In fact, analogous to the known cases, we conjecture that for |µ′⟩ = e
(a)
0 |µ⟩, where |µ⟩ is a state

generated only from e
(ai)
0 , we have

T∅,µ′(u) =
1

2πi

∮

∞+u
dz

1

ϵ3

(
1− u− z − ϵ3

u− z
k∏

i=1

gaai(u− z)
gaia(u− z)

)
T∅,µ(u)e(a)(z)

=
1

2πi

∮

∞+u
dz

1

ϵ3

(
1− u− z − ϵ3

u− z
k∏

i=1

1

ϕa⇒ai(u− z)

)
T∅,µ(u)e(a)(z),

(5.4.10)

where T∅,µ(u) = 1
(2πi)k

∮
dzF (z)h(a0)(u)e(a1)(z1) . . . e

(ak)(zk). Similarly,

Tµ′,∅(u) =
1

2πi

∮

∞+u
dz

1

ϵ3

(
1− u− z − ϵ3

u− z
k∏

i=1

gaai(u− z)
gaia(u− z)

)(
−f (a)(z)

)
Tµ,∅(u)

=
1

2πi

∮

∞+u
dz

1

ϵ3

(
1− u− z − ϵ3

u− z
k∏

i=1

1

ϕa⇒ai(u− z)

)(
−f (a)(z)

)
Tµ,∅(u).

(5.4.11)

We can then get any Tµ1,µ2(u) inductively using the contour integral expressions. For instance, at
level 1, we simply have

T∅,□(a)
(u) =

1

2πi

∮

∞+u
dz

1

ϵ3

(
1− u− z − ϵ3

u− z

)
T∅,∅(u)e(a)(z) =

1

2πi

∮

∞+u
dz

1

u− zh
(a)(u)e(a)(z),

(5.4.12)
which agrees with our discussions in §5.3.2. More examples at higher levels can be found in
Appendix G.
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5.5 Coproduct of Quiver Yangians

For the remaining part of this chapter, we shall mainly focus on the generalized conifolds xy =
zMwN with M + N > 2. Moreover, in §5.5∼5.7 (and Appendix E) only, we shall rescale the

generators as e
(a)
n → (ϵ1+ϵ2)

1/2e
(a)
n , f

(a)
n → (ϵ1+ϵ2)

1/2f
(a)
n and ψ

(a)
n → (ϵ1+ϵ2)ψ

(a)
n for convenience.

Following the strategy in [215, 216], a coproduct of the quiver Yangian can be obtained based

on the underlying Kac-Moody superalgebra g = A
(1)
M−1,N−1. In the Chevalley basis, we have the

generators with
[
x
(a)
+ , x

(a)
−
]
= h(a) and

(
x
(a)
+ , x

(a)
−
)
= 1, where (-, -) is an invariant inner product

on the Kac-Moody superalgebra. Let ∆ = ∆+ ∪∆− be the set of roots composed of positive and
negative roots. Denote the sets of real and imaginary roots as ∆re and ∆im respectively. Write
gα as the root space attached to the root α, and the simple roots will be labelled as α(a). In

particular, ∆re
+ = ∆̊+ ∪

{
nδ + α|n ∈ Z+, α ∈ ∆̊

}
and ∆im

+ = {nδ|n ∈ Z+}, where ∆̊ is the set of

roots of the underlying Lie superalgebra with the zeroth vertex removed in the Dynkin diagram of

g and δ =
∑
a
α(a) is the minimal positive imaginary root of g = A

(1)
M−1,N−1. Notice that all the odd

roots are isotropic (i.e., with vanishing inner product) in such case.

Following the Cartan matrix (with the first non-zero diagonal element being 2), our convention
would be taken as σab1 + σba1 = (ϵ1 + ϵ2)

(
α(a), α(b)

)
for future convenience. In other words, we

shall always choose ςa = −1 for the corresponding simplex in the toric diagram. Therefore, σaa1 =
−1

2ϵ3
(
α(a), α(a)

)
. Then it is straightforward to see that there is an algebra homomorphism ι from

U(g) to Y with h(a) 7→ ψ
(a)
0 , x

(a)
+ 7→ e

(a)
0 and x

(a)
− 7→ f

(a)
0 . For each positive root α, choose a basis{

x
(α,k)
+

}
of gα with a dual basis

{
x
(α,k)
−

}
of g−α such that

(
x
(α,k)
+ , x

(α,l)
−

)
= δkl. We will also

denote e(α,k) = ι
(
x
(α,k)
+

)
and f (α,k) = ι

(
x
(a,k)
−

)
, where k = 1, . . . , dim gα. When α is a real root,

dim gα = 1 and we shall simply write e(α) = e(α,1), f (α) = f (α,1). In particular, given a simple root

α(a), we have e
(a)
0 = e(α

(a)) and f
(a)
0 = f(α

(a)).

5.5.1 A Minimalistic Presentation

The definition of the quiver Yangian in §5.2 involves infinitely many generators. To write the
coproduct, we first need to give a presentation with generators of a finite number.

Recall from the above discussions that all the generators can in fact be inductively obtained from

e
(a)
0 , f

(a)
0 and ψ

(a)
0,1 by

e
(a)
m+1 =

1(
α(a), α(b)

)
[
ψ̃
(b)
1 , e(a)m

]
− σab1 − σba1

2
(
α(a), α(b)

)
[
ψ
(b)
0 , e(a)m

]
=

1(
α(a), α(b)

)
[
ψ̃
(b)
1 , e(a)m

]
− σab1 − σba1

2
e(a)m ,

f
(a)
m+1 = −

1(
α(a), α(b)

)
[
ψ̃
(b)
1 , f (a)m

]
+

σab1 − σba1
2
(
α(a), α(b)

)
[
ψ
(b)
0 , f (a)m

]
= − 1(

α(a), α(b)
)
[
ψ̃
(b)
1 , f (a)m

]
− σab1 − σba1

2
f (a)m ,

ψ
(a)
m+1 =

[
e
(a)
m+1, f

(a)
0

]
,

(5.5.1)

where ψ̃
(b)
1 := ψ

(b)
1 − ϵ1+ϵ2

2

(
ψ
(b)
0

)2
, and the node b can be taken as a (resp. a+1) when a is bosonic

(resp. fermionic). Therefore, it is natural to expect that the quiver Yangian can be generated only

by finitely many relations of the three sets of zero modes together with ψ
(a)
1 (or equivalently, ψ̃

(a)
1 ).

To confirm that this is the case, we need to show that they can recover all the defining relations of
the quiver Yangian in §5.2.
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For this minimalistic presentation of the (reduced) quiver Yangians, as discussed in [15], we also
need to exclude two special cases: (1) (M,N ) = (2, 1), (1, 2); (2) (M,N) = (2, 2) with only fermionic
nodes17. Their quivers are depicted in Figure 5.5.1.

(a) (b)

Figure 5.5.1: (a) The SPP quiver with (M,N) = (2, 1), (1, 2). (b) The quiver for the Z2

orbifold of the conifold with (M,N) = (2, 2) in one of the toric phases.

Theorem 5.5.1. For generalized conifolds with M + N > 2, the non-reduced quiver Yangian is

generated by the modes e
(a)
r , f

(a)
r and ψ

(a)
r (a ∈ Q0, r = 0, 1) satisfying the relations

[
ψ(a)
r , ψ(b)

s

]
= 0, (5.5.2)

[
e
(a)
0 , f

(b)
0

]
= δabψ

(a)
0 ,

[
e
(a)
1 , f

(b)
0

]
=
[
e
(a)
0 , f

(b)
1

]
= δabψ

(a)
1 , (5.5.3)

[
ψ
(a)
0 , e(b)r

]
=
(
α(a), α(b)

)
e(b)r , (5.5.4)

[
ψ
(a)
1 , e

(b)
0

]
=
(
α(a), α(b)

)
e
(b)
1 + σba1 ψ

(a)
0 e

(b)
0 + σab1 e

(b)
0 ψ

(a)
0 , (5.5.5)

[
ψ
(a)
0 , f (b)r

]
= −

(
α(a), α(b)

)
f (b)r , (5.5.6)

[
ψ
(a)
1 , f

(b)
0

]
= −

(
α(a), α(b)

)
f
(b)
1 + σab1 ψ

(a)
0 f

(b)
0 + σba1 f

(b)
0 ψ

(a)
0 , (5.5.7)

[
e
(a)
0 , e

(b)
0

]
=
[
f
(a)
0 , f

(b)
0

]
= 0 (σab1 = 0), (5.5.8)

[
e
(a)
1 , e

(b)
0

]
−
[
e
(a)
0 , e

(b)
1

]
= σba1 e

(a)
0 e

(b)
0 + (−1)|a||b|σab1 e(b)0 e

(a)
0 , (5.5.9)

[
f
(a)
1 , f

(b)
0

]
−
[
f
(a)
0 , f

(b)
1

]
= −σab1 f (a)0 f

(b)
0 − (−1)|a||b|σba1 f (b)0 f

(a)
0 . (5.5.10)

Then the higher modes ψ
(a)
n , e

(a)
m and f

(a)
m (n > 1,m > 0) are defined via (5.5.1). Moreover,

when the quiver does not belong to those in Figure 5.5.1, the quiver Yangian is generated by these
relations together with

[
e
(a)
0 ,
[
e
(a)
0 , e

(a±1)
0

]]
=
[
f
(a)
0 ,

[
f
(a)
0 , f

(a±1)
0

]]
= 0 (|a| = 0), (5.5.11)

[
e
(a)
0 ,
[
e
(a+1)
0 ,

[
e
(a)
0 , e

(a−1)
0

]]]
=
[
f
(a)
0 ,

[
f
(a+1)
0 ,

[
f
(a)
0 , f

(a−1)
0

]]]
= 0 (|a| = 1). (5.5.12)

In terms of ψ̃
(a)
1 , the ψ1e0 and ψ1f0 relations can be written as

[
ψ̃
(a)
1 , e

(b)
0

]
=
(
α(a), α(b)

)
e
(b)
1 +

σba1 − σab1
2

(
α(a), α(b)

)
e
(b)
0 ,

[
ψ̃
(a)
1 , f

(b)
0

]
= −

(
α(a), α(b)

)
f
(b)
1 −

σba1 − σab1
2

(
α(a), α(b)

)
f
(b)
0 .

(5.5.13)

It is worth noting that this resembles Drinfeld’s realization in [217]. For simplicity, we shall denote
all the relations (5.5.2)∼(5.5.10) as (R) and the relations (5.5.11), (5.5.12) as (S). A proof of this
can be found in [15].

17Notice that the other toric phase for (M,N) = (2, 2) is not excluded, where the quiver has four nodes being
bosonic and fermionic alternatively, though all cases with M = N will not be considered when we discuss coproducts
later.
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Although we omit the proof here, let us mention some useful identities used therein.

Lemma 5.5.2. For m ∈ N, we have

[
ψ
(a)
0 , e(b)m

]
=
(
α(a), α(b)

)
e(b)m , (5.5.14)

[
ψ
(a)
1 , e(b)m

]
=
(
α(a), α(b)

)
e
(b)
m+1 + σba1 ψ

(a)
0 e(b)m + σab1 e

(b)
m ψ

(a)
0 , (5.5.15)

and similar relations for f
(b)
m from (R).

It would be helpful to also spell out these relations using ψ̃
(a)
1 :

[
ψ̃
(a)
1 , e(b)m

]
=
(
α(a), α(b)

)
e
(b)
m+1 +

σba1 − σab1
2

(
α(a), α(b)

)
e(b)m ,

[
ψ̃
(a)
1 , f (b)m

]
= −

(
α(a), α(b)

)
f
(b)
m+1 −

σba1 − σab1
2

(
α(a), α(b)

)
f (b)m .

(5.5.16)

5.5.2 Another Presentation and Coproduct

From now on, besides the restrictions M +N > 2 and MN ̸= 2, we will mainly focus on the cases
with M ̸= N due to the subtleties from the underlying simple Lie superalgebra psl(M |M) (when
M = N). Analogous to [215], we can write an algebra homomorphism ∆V1,V2 : Y→ EndC(V1 ⊗ V2)
for any modules V1,2 in the category O. In particular, this can be promoted to a coproduct of the
Yangian algebra by considering its completion Ŷ following the argument in [215, §5]. Then any
∆V1,V2 can be recovered from ∆ : Y→ Y⊗̂Y, where Y⊗̂Y is the completion of Y⊗ Y we are now going
to discuss.

The quiver Yangian has the triangular decomposition Y ∼= Y+ ⊗ Y0 ⊗ Y−, where Y+ (Y−, resp. Y0)

is generated by e
(a)
n (f

(a)
n , resp. ψ

(a)
n ) for all a ∈ Q0 and n ∈ N [57]. We shall also assume that the

positive (resp. negative) part Y+ (resp. Y−) is isomorphic to the free algebra on e
(a)
n (resp. f

(a)
n )

quotiented out by the ee (resp. ff) relations. We will denote the subalgebra generated by e
(a)
n

(resp. f
(a)
n ) and ψ

(a)
n as Y≥0 (resp. Y≤0).

We can set a degree as deg e
(a)
n = 1 whose grading is compatible with the algebra structure. With

respect to this grading, Y+ =
∞⊕
k=0

Y+k with Y+k spanned by monomials of degree k in Y+. We also

write Y+≥n :=
∞⊕
k≥n

Y+k . Therefore, the quiver Yangian is a graded vector space as Y =
∞⊕
k=0

Yk, where

Yk = Y≤0⊗Y+k . Now consider the pair (An, qn) for n ∈ N with the left Y-module An := Y/
(
Y · Y+≥n

)

and the natural quotient map qn from Y to An. Then qn−1 factors through An, that is, pn◦qn = qn−1

with the homomorphism pn : An → An−1. The pairs (An, pn) give rise to an inverse system of Y-
modules, and we can define the completion of the quiver Yangian as the projective limit [218, §10.1]:

Ŷ := lim←−
n

An. (5.5.17)

We will also write Y⊗̂Y as the completion of Y⊗ Y.

To write down the coproduct of the quiver Yangian, we need another presentation of the algebra.
Drinfeld’s J presentation is used for finite dimensional cases in [219], but can be appropriately
extended to affine cases following the recipe of [215]. In this presentation, the quiver Yangian is
generated by x and J(x) for x elements of the underlying Kac-Moody superalgebra g. Together
with the Chevalley generators of g mapped to the zero modes of Y (recall the beginning of §5.5),
the isomorphism is given by

J
(
ψ
(a)
0

)
= ψ

(a)
1 + v(a), J

(
e
(a)
0

)
= e

(a)
1 + w

(a)
+ , J

(
f
(a)
0

)
= f

(a)
1 + w

(a)
− , (5.5.18)
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where18 [215]

v(a) =
1

2
(ϵ1 + ϵ2)

∑

α∈∆+

(
α, α(a)

) dim gα∑

k=1

f (α,k)e(α,k) − 1

2
(ϵ1 + ϵ2)

(
ψ
(a)
0

)2
. (5.5.19)

Then w
(a)
± can be obtained by requiring

J
([
ψ
(a)
0 , e

(a)
0

])
=
[
J
(
ψ
(a)
0

)
, e

(a)
0

]
, J

([
ψ
(a)
0 , f

(a)
0

])
=
[
J
(
ψ
(a)
0

)
, f

(a)
0

]
. (5.5.20)

In general, a direct computation shows that
[
J
(
ψ
(a)
0

)
, e

(b)
0

]
− J

([
ψ
(a)
0 , e

(b)
0

])

=
ϵ1 + ϵ2

2


 ∑

α∈∆+

(
α, α(a)

) dim gα∑

k=1

f (α,k)e(α,k), e
(a)
0


+

σba1 − σab1
2

(
α(a), α(b)

)
e
(b)
0 −

(
α(a), α(b)

)
w

(b)
+ .

(5.5.21)

As derived in [15], we have

w
(a)
+ =

ϵ1 + ϵ2
2

∑

α∈∆+

dim gα∑

k=1

f (α,k)
[
e(α,k), e

(a)
0

]
− ϵ1 + ϵ2

2
ψ
(a)
0 e

(a)
0 . (5.5.22)

Likewise,

w
(a)
− = −ϵ1 + ϵ2

2

∑

α∈∆+

dim gα∑

k=1

[
f
(a)
0 , f (α,k)

]
e(α,k) − ϵ1 + ϵ2

2
f
(a)
0 ψ

(a)
0 . (5.5.23)

With the expressions for v(a) and w
(a)
± , we can write the commutation relations for the generators

in the J presentation. For brevity, we shall also define

ṽ(a) := v(a) +
ϵ1 + ϵ2

2

(
ψ
(a)
0

)2
=

1

2
(ϵ1 + ϵ2)

∑

α∈∆+

(
α, α(a)

) dim gα∑

k=1

f (α,k)e(α,k). (5.5.24)

It was then shown in [15] that

Lemma 5.5.3. We have
[
ψ
(a)
0 , v(b)

]
= 0, (5.5.25)

[
ṽ(a), e

(b)
0

]
=
(
α(a), α(b)

)
w

(b)
+ , (5.5.26)

[
ṽ(a), f

(b)
0

]
= −

(
α(a), α(b)

)
w

(b)
− , (5.5.27)

[
w

(a)
+ , f

(b)
0

]
=
[
e
(a)
0 , w

(b)
−
]
= δabv

(a), (5.5.28)
[
w

(a)
+ , e

(b)
0

]
−
[
e
(a)
0 , w

(b)
+

]
= −ϵ1 + ϵ2

2

(
α(a), α(b)

) [
e
(a)
0 , e

(b)
0

]
, (5.5.29)

[
w

(a)
− , f

(b)
0

]
−
[
f
(a)
0 , w

(b)
−
]
=
ϵ1 + ϵ2

2

(
α(a), α(b)

) [
f
(a)
0 , f

(b)
0

]
. (5.5.30)

From these relations, it is straightforward to get the following corollary by definitions of J
(
ψ
(a)
0

)
,

J
(
e
(a)
0

)
and J

(
f
(a)
0

)
.

18Notice that this is a well-defined operator when acting on modules in the category O as e(α,k) (i.e., x
(α,k)
+ )

annihilates a vector for α with sufficiently large height.
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Corollary 5.5.3.1. We have
[
ψ
(a)
0 , J

(
X

(b)
0

)]
= J

([
ψ
(a)
0 , X

(b)
0

])
(X = ψ, e, f), (5.5.31)

[
J
(
ψ
(a)
0

)
, e

(b)
0

]
=
(
α(a), α(b)

)
J
(
e
(b)
0

)
+
σba1 − σab1

2

(
α(a), α(b)

)
e
(b)
0 , (5.5.32)

[
J
(
ψ
(a)
0

)
, f

(b)
0

]
= −

(
α(a), α(b)

)
J
(
f
(b)
0

)
− σba1 − σab1

2

(
α(a), α(b)

)
f
(b)
0 , (5.5.33)

[
J
(
e
(a)
0

)
, f

(b)
0

]
=
[
e
(a)
0 , J

(
f
(b)
0

)]
= δabJ

(
ψ
(a)
0

)
, (5.5.34)

[
J
(
e
(a)
0

)
, e

(b)
0

]
−
[
e
(a)
0 , J

(
e
(b)
0

)]
=

1

2

(
σba1 − σab1

) [
e
(a)
0 , e

(b)
0

]
, (5.5.35)

[
J
(
f
(a)
0

)
, f

(b)
0

]
−
[
f
(a)
0 , J

(
f
(b)
0

)]
= −1

2

(
σba1 − σab1

) [
f
(a)
0 , f

(b)
0

]
, (5.5.36)

[
J
(
e
(a)
0

)
, e

(b)
0

]
=
[
J
(
f
(a)
0

)
, f

(b)
0

]
= 0 (σab1 = 0). (5.5.37)

Notice that the last line follows from

J
(
e
(a)
0

)
=

1(
α(c), α(a)

)
[
J
(
ψ
(c)
0

)
, e

(a)
0

]
− σac1 − σca1

2
e
(a)
0 , (5.5.38)

and likewise for f
(a)
0 . When a is bosonic, we can take c = a. When a is fermionic, c can be taken

as one of a± 1 such that σcb1 = 0. It is straightforward to see that each relation in this corollary is
equivalent to one of the relations (involving non-zero modes) in (R) in Theorem 5.5.1.

It is also possible to write J acting on any positive real roots besides the simple ones with the help
of the Weyl group of the untwisted affine A-type superalgebra. Since dim gα = 1 for α ∈ ∆re

+ , we
shall omit the label k in the corresponding elements. Due to the Serre relations, given an even

simple root α(b), the operator τ (b) := exp
(
ad

e
(b)
0

)
exp

(
−ad

f
(b)
0

)
exp

(
ad

e
(b)
0

)
is well-defined and is

an automorphism of the quiver Yangian (see for example [220, 221]). Following the same argument

as in [215, Lemma 3.17], τ (b) can be applied to J
(
ψ
(a)
0

)
, J
(
e
(a)
0

)
and J

(
f
(a)
0

)
for any simple root

α(a). Moreover, we find that

τ (b)
(
J
(
ψ
(a)
0

))
= J

(
ψ
(a)
0

)
− 2

(
α(b), α(a)

)
(
α(b), α(b)

) J
(
ψ
(b)
0

)
−
(
σba1 − σab1

) (α(b), α(a)
)

(
α(b), α(b)

)ψ(b)
0 . (5.5.39)

Suppose a root α can be obtained from a simple root α(a) under the even reflections s(b) via
α = s(b1) . . . s(bp)

(
α(a)

)
. Then we may write e(α) = τ (b1) . . . τ (bp)

(
e(a)
)
and define J

(
e(α)

)
:=

τ (b1) . . . τ (bp)
(
J
(
e(a)
))

(and likewise for f).

Proposition 5.5.4. For any positive real root α and a ∈ Q0, we have
[
J
(
ψ
(a)
0

)
, e(α)

]
=
[
ψ
(a)
0 , J

(
e(α)

)]
+ caαe(α) =

(
α(a), α

)
J
(
e(α)

)
+ caαe(α),

[
J
(
ψ
(a)
0

)
, f (α)

]
=
[
ψ
(a)
0 , J

(
f (α)

)]
− caαe(α) = −

(
α(a), α

)
J
(
f (α)

)
− caαf (α),

(5.5.40)

where caα ∈ ϵ1−ϵ2
2 Z.

A proof of this can be found in [15]. As a result, J
(
e(α)

)
and J

(
f (α)

)
are independent of the choice

of the sequence of τ (b) up to a constant multiple. From this proposition, it is also straightforward
to obtain the following corollary.

Corollary 5.5.4.1. For any positive real root α and a ∈ Q0, we have
(
α(b), α

) [
J
(
ψ
(a)
0

)
, e(α)

]
−
(
α(a), α

) [
J
(
ψ
(b)
0

)
, e(α)

]
= cabα e

(α),
(
α(b), α

) [
J
(
ψ
(a)
0

)
, e(α)

]
−
(
α(a), α

) [
J
(
ψ
(b)
0

)
, e(α)

]
= cabα e

(α),
(5.5.41)
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where cabα =
(
α(b), α

)
caα −

(
α(a), α

)
cbα.

Now, we are prepared to write our coproduct of the quiver Yangians. Recall that in general,
(x⊗y)(z⊗w) = (−1)|y||z|(xz)⊗(yw). For brevity, let us write a linear operator □(x) := x⊗1+1⊗x
and define a Casimir element

Ω− :=
∑

α∈∆+

dim gα∑

k=1

f (α,k) ⊗ e(α,k). (5.5.42)

It is straightforward to get the following commutation relations:

Lemma 5.5.5. We have
[
□
(
ψ(a)
r

)
,Ω−

]
= 0,

[
□
(
e
(a)
0

)
,Ω−

]
= ψ

(a)
0 ⊗ e

(a)
0 ,

[
□
(
f
(a)
0

)
,Ω−

]
= −f (a)0 ⊗ ψ(a)

0 . (5.5.43)

Let us also introduce another map ∆ defined by

∆
(
ψ
(a)
0

)
= □

(
ψ
(a)
0

)
, ∆

(
e
(a)
0

)
= □

(
e
(a)
0

)
, ∆

(
f
(a)
0

)
= □

(
f
(a)
0

)
,

∆
(
ψ
(a)
1

)
= □

(
ψ
(a)
1

)
+ (ϵ1 + ϵ2)ψ

(a)
0 ⊗ ψ

(a)
0 + (ϵ1 + ϵ2)

[
ψ
(a)
0 ⊗ 1,Ω−

]

= □
(
ψ
(a)
1

)
+ (ϵ1 + ϵ2)ψ

(a)
0 ⊗ ψ

(a)
0 − (ϵ1 + ϵ2)

∑

α∈∆re
+

(
α(a), α

)
f (α) ⊗ e(α).

(5.5.44)

Notice that this uniquely determines ∆ as the actions on all modes can be obtained following the
discussions in §5.5.1. For instance,

∆
(
ψ̃
(a)
1

)
= □

(
ψ̃
(a)
1

)
+ (ϵ1 + ϵ2)

[
ψ
(a)
0 ⊗ 1,Ω−

]
, (5.5.45)

∆
(
e
(a)
1

)
= □

(
e
(a)
1

)
− (ϵ1 + ϵ2)

[
Ω−, e

(a)
0 ⊗ 1

]
, (5.5.46)

∆
(
f
(a)
1

)
= □

(
f
(a)
1

)
+ (ϵ1 + ϵ2)

[
Ω−, 1⊗ f (a)0

]
. (5.5.47)

This operator in fact gives a coproduct of the quiver Yangian.

Theorem 5.5.6. For M + N > 2, MN ̸= 2 and M ̸= N , the map ∆ : Y → Y⊗̂Y specified by
(5.5.44) is a coassociative algebra homomorphism.

This can be proven using the properties and identities for the minimalistic presentations and the
J presentations mentioned above. A detailed proof can be found in [15].

5.6 Isomorphism of Quiver Yangians

Given any toric CY threefold, its quivers can be in different toric phases. Since these quivers
are related by Seiberg/toric duality, it is natural to conjecture that their quiver Yangians are
isomorphic. Here, we shall prove this for the generalized conifolds considered in this paper. As a
result, different toric phases correspond to different triangulations of the toric diagram, i.e., different
sequences ς.

A special feature for these generalized conifold is their underlying Kac-Moody superalgebras, which
are of untwisted affine A-type. The zero modes of the quiver Yangians are actually different sets
of Chevalley generators. For any two inequivalent sets of Chevalley generators, one can reach
one from the other by odd reflections and Weyl groupoids [221–223]. We shall now extend this
to isomorphisms of quiver Yangians. Recall that each quiver has an underlying Dynkin diagram
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associated to ŝlM |N . In such case, the odd reflection corresponding to an odd simple root α(𭟋) acts

on any simple root α(a) as19

α′(a) = r(𭟋)
(
α(a)

)
=





−α(a), a = 𭟋,
α(a) + α(𭟋), a = 𭟋± 1,

α(a), otherwise.

(5.6.1)

The Cartan matrix A = (Aab) where Aab =
(
α(a), α(b)

)
is mapped to A′ = RART with R = (Rab)

given by

Rab =





−1, a = b = 𭟋,
1, a = b ̸= 𭟋,
1, b = 𭟋, Aa𭟋 ̸= 0,

0, otherwise.

(5.6.2)

In terms of Dynkin diagrams, this manipulation changes the Z2-grading of the nodes (and hence
their e, f generators) connected to the node 𭟋 (i.e., those with Aa𭟋 ̸= 0) and leaves the remaining
ones unchanged. The Chevalley generators are mapped to

ψ
′(a)
0 =

M+N∑

b=1

Rabψ
(b)
0 =





−ψ(a)
0 , a = 𭟋,

ψ
(a)
0 + ψ

(𭟋)
0 , a = 𭟋± 1,

ψ(a), otherwise;

e
′(a)
0 =





f
(a)
0 , a = 𭟋,[
e
(𭟋)
0 , e

(a)
0

]
, a = 𭟋± 1,

e
(a)
0 , otherwise;

f
′(a)
0 =





−e(a)0 , a = 𭟋,
− 1
Aa𭟋

[
f
(a)
0 , f

(𭟋)
0

]
, a = 𭟋± 1,

f
(a)
0 , otherwise.

(5.6.3)

Notice that Aa𭟋 is simply ±1.
It would also be useful to spell out the following lemmas.

Lemma 5.6.1. We have

(
α′(a), α′(b)

)
=





−
(
α(a), α(b)

)
, (a, b) = (𭟋± 1,𭟋), (𭟋,𭟋± 1),(

α(a), α(a)
)
+ 2

(
α(𭟋), α(a)

)
, a = b = 𭟋± 1,(

α(a), α(b)
)
, otherwise.

(5.6.4)

Lemma 5.6.2. We have σ′𭟋±1,𭟋
1 = −σ𭟋,𭟋±1

1 and σ′𭟋,𭟋±1
1 = −σ𭟋±1,𭟋

1 while the other σab1 are
invariant. Therefore, σ′ab1 − σ′ba1 = σab1 − σba1 .

It was then shown in [15] that

Theorem 5.6.3. Given a generalized conifolds with M ̸= N , the quiver Yangians in different toric
phases are isomorphic algebras.

19More generally (especially when the Kac-Moody superalgebra has non-isotropic odd roots), the odd reflection
associated to an isotropic simple odd root has the same action with the second condition as α(a) +α(𭟋) being a root.
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Although we will not write the detailed proof here, let us give the transformations for the generators.
The transformations are given by (5.6.3) and

J
(
ψ
′(a)
0

)
=





−J
(
ψ
(a)
0

)
, a = 𭟋,

J
(
ψ
(a)
0

)
+ J

(
ψ
(𭟋)
0

)
− 1

2

(
σa𭟋1 − σ𭟋a1

)
ψ
(𭟋)
0 , a = 𭟋± 1,

J
(
ψ
(a)
0

)
, otherwise;

J
(
e
′(a)
0

)
=





J
(
f
(a)
0

)
, a = 𭟋,[

e
(𭟋)
0 , J

(
e
(a)
0

)]
, a = 𭟋± 1,

J
(
e
(a)
0

)
, otherwise;

J
(
f
′(a)
0

)
=





−J
(
e
(a)
0

)
, a = 𭟋,

− 1
Aa𭟋

[
J
(
f
(a)
0

)
, f

(𭟋)
0

]
, a = 𭟋± 1,

J
(
f
(a)
0

)
, otherwise.

(5.6.5)

In terms of ψ
(a)
1 , e

(a)
1 and f

(a)
1 , we have

ψ̃
′(a)
1 =





−ψ̃(a)
1 , a = 𭟋,

ψ̃
(a)
1 + ψ̃

(𭟋)
1 − σa𭟋1 e

(𭟋)
0 f

(𭟋)
1 + σ𭟋a1 f

(𭟋)
1 e

(𭟋)
0 , a = 𭟋± 1,

ψ̃
(a)
1 , otherwise;

e
′(a)
1 =





f
(𭟋)
1 − σb𭟋

1

(α(𭟋),α(b))
ψ
(𭟋)
0 f

(𭟋)
0 − σ𭟋b

1

(α(𭟋),α(b))
f
(𭟋)
0 ψ

(𭟋)
0 , a = 𭟋,

[
e
(𭟋)
0 , e

(a)
1

]
, a = 𭟋± 1,

e
(a)
1 , otherwise;

f
′(a)
1 =





−e(𭟋)
1 +

σb𭟋
1

(α(𭟋),α(b))
e
(𭟋)
0 ψ

(𭟋)
0 +

σ𭟋b
1

(α(𭟋),α(b))
ψ
(𭟋)
0 e

(𭟋)
0 , a = 𭟋,

− 1

(α(𭟋),α(a))

[
f
(a)
1 , f

(𭟋)
0

]
, a = 𭟋± 1,

f
(a)
1 , otherwise.

(5.6.6)

Here, b can be taken as either 𭟋 + 1 or 𭟋 − 1 which would give the same result. One may check
that this satisfies the relations for quiver Yangians in Theorem 5.5.1. Notice that the coefficients
σb𭟋1 /Ab𭟋 and σ𭟋b1 /Ab𭟋 are equal to ϵ1,2.

5.7 Connections to W-Algebras

As mentioned before, the quiver Yangians and certain W-algebras are expected to have intimate
relations that implement the BPS/CFT correspondence. Indeed, as we are now going to see, the
rectangularW-algebras for the associated generalized conifolds can be viewed as truncations of the
quiver Yangians.

5.7.1 From Y to W
Here, we shall directly start with the commutation relations for the generators of rectangular
W-algebras for the generalized conifold xy = zMwN . A mathematical definition of rectangular
W -algebras Wk

(
gl(Ml|Nl),

(
l(M |N)

))
is given in Appendix H with the notations and conventions

set up therein. For brevity, we shall abbreviate it as WM |N×l.

The W-algebras of interest in this paper can be generated by U
(s)
ij with spin s = 1, 2 and i, j ∈

Z/(M + N)Z. Given a parity sequence ς = {ςi} as introduced in §5.2, the generator U
(s)
ij has
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the Z2-grading given by (−1)p(i)+p(j), where (−1)p(i) = ςi (see also (H.0.1))20. The OPEs of the

currents U
(s)
ij (z) were obtained in [69, 70]. The following commutation relations for their modes

U
(s)
ij [m] can then be computed directly using (H.0.22).

Lemma 5.7.1. We have[
U

(1)
i1j1

[m], U
(1)
i2j2

[n]
}

=δm,−nml
(
δj1i2δi1j2(−1)p(j1)κ + δi1j1δi2j2

)

+ (−1)p(i1)p(j1)+p(i2)p(j2)+p(j1)p(i2)δi1j2U
(1)
i2j1

[m+ n]− (−1)p(j1)δi2j1U
(1)
i1j2

[m+ n], (5.7.1)

[
U

(1)
i1j1

[m], U
(2)
i2j2

[n]
}

=
1

2
l(l − 1)m(m− 1)κδm,−n

(
(−1)p(j1)κδi1j2δi2j1 + δi1j1δi2j2

)

+m(l − 1)
(
(−1)p(i1)p(j1)+p(i2)p(j2)+p(j1)p(i2)κδi1j2U

(1)
i2j1

[m+ n] + δi1j1U
(1)
i2j2

[m+ n]
)

+ (−1)p(i1)p(j1)+p(i2)p(j2)+p(j1)p(i2)δi1j2U
(2)
i2j1

[m+ n]− (−1)p(j1)δi2j1U
(2)
i1j2

[m+ n], (5.7.2)

[
U

(2)
ii [m], U

(2)
jj [n]

}

=
1

12
l(l − 1)m(m− 1)(m+ 1)δm,−n

(
2κ((1− 2l)α2 + 1)(−1)p(i)δij − (4l − 3)κ2 + 1

)

+
1

2
m(m+ 1)

(
(l − 1)2κ

(
U

(1)
ii [m+ n]− U (1)

jj [m+ n]
))

− (m+ 1)
(
U

(2)
jj [m+ n] + U

(2)
ii [m+ n] + 2κ(−1)p(i)δijU (2)

ii [m+ n]
)

+ (m+ 1)(l − 1)


∑

k<0

U
(1)
ii [k]U

(1)
jj [m+ n− k] +

∑

k≥0

U
(1)
jj [m+ n− k]U (1)

ii [k]




+ (m+ 1)(l − 1)(−1)p(j)κ


∑

k<0

U
(1)
ij [k]U

(1)
ji [m+ n− k] + (−1)p(i)+p(j)

∑

k≥0

U
(1)
ji [m+ n− k]U (1)

ij [k]




− (m+ 1)l(l − 1)κ(m+ n+ 1)
(
1 + (−1)p(i)κδij

)
U

(1)
ii [m+ n]

− (m+ n+ 2)
(
U

(2)
jj [m+ n]− (−1)p(i)κδijU (2)

ii [m+ n]− 2U
(2)
ii [m+ n]

)

+ (−1)p(i)

∑

k<−1

U
(2)
ji [k]U

(1)
ij [m+ n− k] +

∑

k≥−1

(−1)p(i)+p(j)U (1)
ij [m+ n− k]U (2)

ji [k]




− (−1)p(j)

∑

k<−1

U
(2)
ij [k]U

(1)
ji [m+ n− k] +

∑

k≥−1

(−1)p(i)+p(j)U (1)
ji [m+ n− k]U (2)

ij [k]




+ (l − 1)


∑

k<0

(−k − 1)U
(1)
ii [k]U

(1)
jj [m+ n− k] +

∑

k≥0

(−k − 1)U
(1)
jj [m+ n− k]U (1)

ii [k]




+ (l − 1)κ(−1)p(j)
(∑

k<0

(−k − 1)U
(1)
ij [k]U

(1)
ji [m+ n− k]

+(−1)p(i)+p(j)
∑

k≥0

(−k − 1)U
(1)
ji [m+ n− k]U (1)

ij [k]




20As we will see shortly, |a| and p(i) are indeed consistent in the sense of ς when relating Y and W. In other words,
|a| is bosonic when p(a) = p(a+ 1) and fermionic otherwise.
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+
1

2
(l − 1)(m+ n+ 1)(m+ n+ 2)

(
(l + 1)κU (1)

ii [m+ n]− κU (1)
jj [m+ n]

)

+
1

2
(l − 1)(m+ n+ 1)(m+ n+ 2)(−1)p(j)lκ2δijU

(1)
ii [m+ n]. (5.7.3)

Notice that we only give the U
(2)
i1i2

U
(2)
j1j2

relation when i1 = j1 and i2 = j2 as this is sufficient for
the use here. It is also straightforward to get the more general case from the OPE. Here, we shall
always assume κ ̸= 0.

The W-algebra is often defined via the distinguished parity sequence, that is, only two fermionic
p(i) (the non-super case M |0 always has bosonic ones only). Here, we allow it to have different
ς. Analogous to the quiver Yangians related by Seiberg dualities, we would expect the W-algebras
with different ς are essentially the same. In fact, the proof of this is much simpler than the quiver
Yangian case in §5.6 by virtue of the matrix presentation here.

Proposition 5.7.2. Given M , N and l, the rectangular W-algebras WM |N×l are isomorphic for
different ς.

Proof. The isomorphism can be constructed from a sequence of the following isomorphic maps.
Suppose ς and ς ′ are related by σ ∈ SM+N that permutes the ith and (i + 1)th elements. Then

the transformation is given by U
(r)
ij 7→ U

(r)
σ(i)σ(j). It is straightforward to see that this preserves the

relations for the generators.

Therefore, when considering the map from the quiver Yangians to the (universal enveloping algebra
of)W-algebra below, we can simply take them to have the same ς. The isomorphic ones are related
by the transformations in Theorem 5.6.3 and Proposition 5.7.2 respectively.

Let ϵ± = ϵ1 ± ϵ2. Since

ςa(ϵ1 − ϵ2) =
{
ςa+1(ϵ1 − ϵ2), ςa = ςa+1

ςa+1(ϵ2 − ϵ1), ςa = −ςa+1,
(5.7.4)

we can take ϵ− = σa+1,a
1 − σa,a+1

1 for any a based on Figure E.0.2 without loss of generality. This
allows us to consider another presentation of the quiver Yangian which would be convenient for our
discussions. Let us prepare the generators defined as





H(a)
0 = ψ

(a)
0

E(a)0 = e
(a)
0

F (a)
0 = f

(a)
0 ,





H(a)
1 = ψ

(a)
1 + 1

2ν(a)ϵ−ψ
(a)
0

E(a)1 = e
(a)
1 + 1

2ν(a)ϵ−e
(a)
0

F (a)
1 = f

(a)
1 + 1

2ν(a)ϵ−f
(a)
0 ,

(5.7.5)

where ν(a) can be any function satisfying ν(a±1) = ν(a)±1 for 0 ≤ a ≤M +N −1. In particular,
this means that ν(−1) ̸= ν(M +N − 1) and ν(0) ̸= ν(M +N). For instance, the simplest example
would be ν(a) = a (−1 ≤ a ≤M +N). We shall also pick a reference node labelled by a = 0.

Proposition 5.7.3. The quiver Yangian is generated by H(a)
r , E(a)r , F (a)

r (a ∈ Q0, r = 0, 1) subject
to the relations

[
H(a)
r ,H(b)

s

]
= 0, (5.7.6)

[
E(a)r ,F (b)

s

}
= δabH(a)

r+s, (5.7.7)
[
H(a)

0 , E(a)r

]
= AabE(a)r , (5.7.8)

[
H̃(a)

1 , E(b)0

]
=





AabE(b)1 + 1
2Aabν(M +N)ϵ−E(b)0 , (a, b) = (M +N − 1, 0)

AabE(b)1 − 1
2Aabν(M +N)ϵ−E(b)0 , (a, b) = (0,M +N − 1)

AabE(b)1 , otherwise,

(5.7.9)
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[
H(a)

0 ,F (a)
r

]
= −AabF (a)

r , (5.7.10)

[
H̃(a)

1 ,F (b)
0

]
=





−AabE(b)1 − 1
2Aabν(M +N)ϵ−E(b)0 , (a, b) = (M +N − 1, 0)

−AabE(b)1 + 1
2Aabν(M +N)ϵ−E(b)0 , (a, b) = (0,M +N − 1)

−AabE(b)1 , otherwise,

(5.7.11)

[
E(a)0 , E(b)0

}
=
[
F (a)
0 ,F (b)

0

}
= 0 (σab1 = 0), (5.7.12)

[
E(a)1 , E(b)0

}
−
[
E(a)0 , E(b)1

}

=





1
2Aabϵ+

{
E(a)0 , E(b)0

]
− 1

2ν(M +N)ϵ−
[
E(a)0 , E(b)0

}
, (a, b) = (0,M +N − 1)

1
2Aabϵ+

{
E(a)0 , E(b)0

]
, otherwise,

(5.7.13)

[
F (a)
1 ,F (b)

0

}
−
[
F (a)
0 ,F (b)

1

}

=




−1

2Aabϵ+

{
F (a)
0 ,F (b)

0

]
− 1

2ν(M +N)ϵ−
[
F (a)
0 ,F (b)

0

}
, (a, b) = (0,M +N − 1)

−1
2Aabϵ+

{
F (a)
0 ,F (b)

0

]
, otherwise,

(5.7.14)

Serre relations (S), (5.7.15)

where H̃(a)
1 := H(a)

1 − 1
2ϵ+

(
H(a)

0

)2
. Here, for brevity, we have used {x, y] to denote xy+(−1)|x||y|yx.

The higher modes with r ≥ 2 can be obtained in a way similar to the presentation using ψ, e, f .

This can be verified by straightforward calculations. Hence, we omit the explicit proof here. When
checking these relations, it is also worth noting that

Aab =
(
α(a), α(b)

)
=





−(ςb + ςb+1), a = b

ςb+1, a = b+ 1

ςb, b = a+ 1

0, otherwise.

(5.7.16)

Remark 25. As pointed out in [14], the quiver Yangian is only isomorphic to Ueda’s affine super
Yangian introduced in [216] when ϵ− = 0. By comparing the presentation above with the similar
presentation for Ueda’s affine super Yangian in [224], it is straightforward to see that this difference
is encoded by ν(a) here and the coefficients in the presentation in [224].

Now, we are ready to bridge the quiver Yangians and W-algebras. Again, let us only state the
theorem here, and the proof can be found in [15].

Theorem 5.7.4. Given a generalized conifold with M + N > 2, MN ̸= 2 and M ̸= N , when
ν(M + N)ϵ− = (2κ − M − N)ϵ+, there is a surjective algebra homomorphism from the quiver
Yangian to the universal enveloping algebra of WM |N×l. Fixing a parity sequence ς, such map
Φ : Y→ U

(
WM |N×l

)
can be uniquely determined by

Φ
(
X

(a)
0

)
= Φ

(
Y

(a)
0

)
, Φ

(
X

(a)
1

)
= Φ

(
Y

(a)
1

)
− 1

2
ν(a)ϵ−Φ

(
Y

(a)
0

)
(5.7.17)

for (X,Y ) = (ψ,H), (e, E), (f,F), where

Φ
(
H(a)

0

)
=

{
U

(1)
M+N,M+N [0]− U

(1)
11 [0] + lκ, a = 0

U
(1)
aa [0]− U (1)

a+1,a+1[0], a ̸= 0,
(5.7.18)
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Φ
(
E(a)0

)
=

{
−(−1)p(1)U (1)

M+N,1[−1], a = 0

−(−1)p(a+1)U
(1)
a,a+1[0], a ̸= 0,

(5.7.19)

Φ
(
F (a)
0

)
=

{
U

(1)
1,M+N [1], a = 0

U
(1)
a+1,a[0], a ̸= 0,

(5.7.20)

Φ
(
H(0)

1

)
=ϵ+

(
U

(2)
M+N,M+N [0]− U

(2)
11 [0]− U (1)

M+N,M+N [0]U
(1)
11 [0]

−
M+N∑

c=1

∑

k≥0

(−1)p(c)+p(M+N)U
(1)
c,M+N [−k]U

(1)
M+N,c[k]

+
M+N∑

c=1

∑

k≥0

(−1)p(c)+p(1)U (1)
c,1 [−k − 1]U

(1)
1,c [k + 1]

+

(
1

2
ν(1)− 1

2
− lκ

)(
U

(1)
M+N,M+N [0]− U

(1)
11 [0] + lκ

)
+ κU (1)

M+N,M+N [0]

)
, (5.7.21)

Φ
(
H(a̸=0)

1

)
=ϵ+

(
U (2)
aa [0]− U (2)

a+1,a+1[0]− U (1)
aa [0]U

(1)
a+1,a+1[0] +

1

2
ν(a)

(
U (1)
aa [0]− U (1)

a+1,a+1[0]
)

−
a∑

c=1

∑

k≥0

(−1)p(c)+p(a)U (1)
ca [−k]U (1)

ac [k]

+
M+N∑

c=a+1

∑

k≥0

(−1)p(c)+p(a)U (1)
ca [−k − 1]U (1)

ac [k + 1]

−
a∑

c=1

∑

k≥0

(−1)p(c)+p(a+1)U
(1)
c,a+1[−k]U

(1)
a+1,c[k]

+

M+N∑

c=a+1

∑

k≥0

(−1)p(c)+p(a+1)U
(1)
c,a+1[−k − 1]U

(1)
a+1,c[k + 1]

)
, (5.7.22)

Φ
(
E(0)1

)
=ϵ+

(
− (−1)p(1)U (2)

M+N,1[−1]− (−1)p(1)
(
1

2
ν(1)− 1

2
− lκ

)
U

(1)
M+N,1[−1]

+

M+N∑

c=1

∑

k≥0

(−1)p(c)+p(M+N)p(c)+p(1)p(c)+p(M+N)p(1)+p(M+N)U
(1)
c,1 [−k − 1]U

(1)
M+N,c[k]

)
,

(5.7.23)

Φ
(
E(a̸=0)
1

)
=ϵ+

(
− (−1)p(a+1)U

(2)
a,a+1[0]−

1

2
ν(a)(−1)p(a+1)U

(1)
a,a+1[0]

−
a∑

c=1

∑

k≥0

(−1)p(c)+p(a)p(c)+p(a+1)p(c)+p(a)p(a+1)+p(a)U
(1)
c,a+1[−k]U (1)

ac [k]

+
M+N∑

c=a+1

∑

k≥0

(−1)p(c)+p(a)p(c)+p(a+1)p(c)+p(a)p(a+1)+p(a)U
(1)
c,a+1[−k − 1]U (1)

ac [k + 1]

)

(5.7.24)

Φ
(
F (0)
1

)
=ϵ+

(
U

(2)
1,M+N [1] +

(
1

2
ν(1)− 1

2
+ κ

)
U

(1)
1,M+N [1]

−
M+N∑

c=1

∑

k≥0

(−1)p(c)+p(M+N)p(c)+p(1)p(c)+p(M+N)p(1)U
(1)
c,M+N [−k]U

(1)
1,c [k + 1]

)
,

(5.7.25)

Φ
(
F (a̸=0)
1

)
=ϵ+

(
U

(2)
a+1,a[0] +

1

2
ν(a)U

(1)
a+1,a[0]
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−
a∑

c=1

∑

k≥0

(−1)p(c)+p(a)p(c)+p(a+1)p(c)+p(a)p(a+1)U (1)
ca [−k]U (1)

a+1,c[k]

+
M+N∑

c=a+1

∑

k≥0

(−1)p(c)+p(a)p(c)+p(a+1)p(c)+p(a)p(a+1)U (1)
ca [−k − 1]U

(1)
a+1,c[k + 1]

)
.

(5.7.26)

Remark 26. From Theorem 5.7.4, we can see that the universal enveloping algebras of WM |N×l
are essentially truncations of the quiver Yangians, that is,

Y/ ker(Φ) ∼= U(WM |N×l). (5.7.27)

Therefore, we may view the quiver Yangian as some sort of “U(WM |N×∞)” algebra (cf. [69])21.
This allows us to apply our knowledge in BPS algebras to VOAs and vice versa.

At first glance, one might wonder whether we could write such surjective homomorphism without
choosing a reference a = 0 so that the map would become more “uniform”. However, as we will see
shortly, this is actually very natural on the quiver Yangian side (not just due to the presentation
in Proposition 5.7.3), especially when discussing the crystal melting models.

Coproduct and parabolic induction As the coproduct for the quiver Yangians is obtained
in §5.5, we can thence consider the parabolic induction for the W-algebras. In other words, given
representations R1,2 of U(WM |N×l1,2), we have R1 ⊗ R2 as a representation of U

(
WM |N×(l1+l2)

)
.

In particular, the study in [225] (see also [226] for non-super cases including some cases of BCD
types) answers Conjecture 2 in [69].

Consider ĝl(M |N)κ = ŝl(M |N)κ ⊕ ẑ(M |N)κ+M−N , where ẑ is the Heisenberg algebra at level
κ +M −N = k + l(M −N). We have an algebra automorphism given by [225]

ηβ (Eij [m]) = Eij [m] + δm,0δijβ (5.7.28)

for some complex number β. This yields an algebra automorphism

η⊗lβ =
⊗

l times

ηβ ∈ Aut

(
U
(
ĝl(M |N)κ

)⊗̂l)
. (5.7.29)

Using (H.0.20), we have

η⊗lβ

(
U

(1)
ij [m]

)
= U

(1)
ij [m] + δm,0δijlβ,

η⊗lβ

(
U

(2)
ij [m]

)
= U

(2)
ij [m] + (l − 1)κU (1)

ij [m] +
1

2
δm,0δijl(l − 1)(β2 − κβ).

(5.7.30)

To relate the parabolic induction with the coproduct of quiver Yangians, let us take l = l1+ l2 and
k + l(M − N) = k1 + l1(M − N) = k2 + l2(M − N) such that κ remains the same for WM |N×l
and WM |N×l1,2 . Then there exists an inclusion map ∆l1,l2 : WM |N×l → WM |N×l1 ⊗WM |N×l2 that
splits (H.0.18) into two pieces of sizes l1 and l2 (see also (5.5) in [69]). As computed in [69, 225],
we have22

∆l1,l2

(
U

(1)
ij [m]

)
= U

(1)
ij [m]⊗ 1 + 1⊗ U (1)

ij [m],

∆l1,l2

(
U

(2)
ij [m]

)
= U

(2)
ij [m]⊗ 1 + 1⊗ U (2)

ij [m] +
M+N∑

c=1

∑

n∈Z
U

(1)
in [k]⊗ U (2)

nj [m− k]− (m+ 1)l1κ1⊗ U (1)
ij [m].

(5.7.31)

21Notice that this is not claiming that Φ becomes an isomorphism when taking the limit l → ∞. It still requires
to show the injectivity. However, this map does not seem to be well-defined when l diverges, and the factors l cannot
be fully absorbed under redefinitions of the generators in these expressions. One might think of taking κ → 0 as
another possible way to bypass this divergence, but some properties of Φ, such as surjectivity, rely on κ ̸= 0.

22We are not adding extra labels l and l1,2 to these U
(s)
ij as it should be clear which elements belong to which

parts.
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Let us also define the map ∆̃l1,l2 =
(
id⊗l1 ⊗ η⊗l2−l1κ

)
◦ ∆l1,l2 . Then following the same proof as

in [225], we have the commutative diagram

Y U(WM |N×l)

Y⊗̂Y U(WM |N×l1)⊗̂U(WM |N×l2)

Φl

Φl1
⊗ Φl2

∆ ∆̃l1,l2

, (5.7.32)

where we have labelled Φ with subscripts l and l1,2 for clarity.

More general truncations As studied in [65,66,88] for the C3 case and [69] for any generalized
conifold, there exist larger families of truncations of the W-algebras. These truncations, which
are dictated by the functions xl3yl2zl4wl1 ∈ C[x, y, z, w]/

〈
xy = zMwN

〉
, can be built from x-,

y-, z- and w-algebras associated to different divisors in the CY3. In particular, the x-algebra
just corresponds to the Miura operator of form (H.0.18). More generally, these truncations have
generalized Miura/pseudo-differential operators of different types.

In terms of (p, q)-brane webs, certain stacks of D3s are stretched in different regions, indicating
the multiplicities of smooth components of these divisors. See for example Figure 6 in [69] for an
illustration of the patterns of these elementary truncated algebras. The web diagram encodes the
loci in the base where the T 2 part of the fibre degenerates to a circle in the (resolved) CY threefold.
The complex coordinates that are used in the moment maps parametrizing the base can be grouped
into variables x, y, z, w. This gives rise to the perspective of a 4d N = 4 gauge theory which is
divided into a junction of four interfaces (or three for the C3 case).

The generators for the elementary building blocks of truncations can be found in [69]. Here, we
would just like to mention that with

l =
((N −M)ϵ1 − ϵ2)l3 + ϵ2l2 − ϵ1l4 + ϵ1l1

(N −M)ϵ1 − ϵ2
, (5.7.33)

the same argument as in Theorem 5.7.4 indicates that we have this surjective homomorphism from
the quiver Yangian to the general xl3yl2zl4wl1-algebra, which reflects the feature of the VOAs as

truncations. Notice that now the generators U
(1)
ij and U

(2)
ab are given in [69, (5.47)], satisfying the

same OPEs as before.

5.7.2 Crystal Melting Representations

As argued in [57, 198], the truncations of quiver Yangians lead to truncated crystal configurations
where the melting would stop at one or more atoms. Therefore, with the map Φ, we may consider
the truncated crystals as modules of U(WM |N×l).

To get the actions of U
(s)
ij on the truncated crystals, we need to know how they can be expressed

using the map Φ. Here, let us find such expressions for all the elements at spin s = 1, 2, which
essentially gives the proof of the surjectivity of Φ.

First, let us consider U
(1)
ab [m] for any a, b = 1, . . . ,M +N and m ∈ Z. The zero modes of H, E ,F

already gives U
(1)
a,a+1[0], U

(1)
a+1,a[0] (with two exceptions) and U

(1)
aa [0] − U (1)

a+1,a+1[0]. It is immediate

to obtain U
(1)
aa [0]− U (1)

bb [0] for any a, b. Using the commutation relations




−(−1)p(a+1)

[
U

(1)
a,a+1[0], U

(1)
a+1,a+2[0]

]
= U

(1)
a,a+2[0],

(−1)p(a)p(a+1)+p(a+1)p(a+2)+p(a)p(a+2)
[
U

(1)
a+1,a[0], U

(1)
a+2,a+1[0]

]
= U

(1)
a+2,a[0]

(5.7.34)
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iteratively, we can get U
(1)
ab [0] for any a ̸= b (including U

(1)
1,M+N [0] and U

(1)
M+N,1[0]). This is consistent

with the fact that e
(α)
0 (and likewise for f

(α)
0 ) is of form

[
. . .
[[
e
(a1)
0 , e

(a2)
0

]
, e

(a3)
0

]
. . . , e

(an)
0

]
when

α = α(a1) + · · ·+ α(an). Now, using Φ
(
E(a)0

)
and Φ

(
F (a)
0

)
, we can write




U

(1)
M+N,a[−1] = −(−1)p(1)

[
U

(1)
M+N,1[−1], U

(1)
1,a [0]

]
,

U
(1)
a,M+N [−1] = (−1)p(1)p(M+N)+p(a)p(1)+p(a)p(M+N)

[
U

(1)
1,M+N [1], U

(1)
a,1 [0]

] (5.7.35)

for a ̸=M +N . Hence, via



U

(1)
ba [−1] = (−1)p(M+N)p(a)+p(M+N)p(b)+p(a)p(b)

[
U

(1)
M+N,a[−1], U

(1)
b,M+N [0]

]
,

U
(1)
ab [1] = −(−1)p(M+N)

[
U

(1)
a,M+N [1], U

(1)
M+N,b[0]

]
,

(5.7.36)

we can get U
(1)
ab [±1] for any a ̸= b. Keep this procedure, and we can obtain U

(1)
ab [m] for any a ̸= b

and m ∈ Z.

For elements of spin 1, we are now left with U
(1)
aa [m]. Take

Xab[m] :=

[
U

(1)
ab [m], U

(2)
bb [0]− U (2)

b+1,b+1[0]− U
(1)
bb [0]U

(1)
b+1,b+1[0]

−
∑

k≥0

U
(1)
bb [−k]U (1)

bb [k] +
∑

k≥0

U
(1)
b+1,b+1[−k − 1]U

(1)
b+1,b+1[k + 1]

] (5.7.37)

for a ̸= b. We are allowed to use this commutation relation because of Φ
(
H(b)

1

)
. A straightforward

computation yields

Xab[m] =− (−1)p(b)U (2)
ab [m] + (−1)p(b)U (1)

ab [m]U
(1)
b+1,b+1[0]

+
∑

k≥0

(−1)p(b)U (1)
ab [m− k]U

(1)
bb [k]−

∑

k≥0

(−1)p(b)U (1)
bb [−k]U (1)

ab [m+ k].
(5.7.38)

Therefore,

[
U

(1)
ba [0], (−1)p(b)Xab[m]

]
−
[
U

(1)
ba [1], (−1)p(b)Xab[m− 1]

]

=− (l − 1)(−1)p(a)κU (1)
bb [m]− δm,0l(−1)p(a)κU (1)

b+1,b+1[0]− δm≥0l(−1)p(a)κU (1)
bb [m]

+ δm≤0l(−1)p(a)κU (1)
bb [m] + (−1)p(b)U (1)

ab [m]U
(1)
ba [0]− (−1)p(b)U (1)

ba [0]U
(1)
ab [m].

(5.7.39)

Notice that most terms appeared in the calculation get cancelled since 0 +m = 1 +m− 1. When
m > 0, (5.7.39) is equal to

−(−1)p(a)κU (1)
bb [m]− l(−1)p(a)κU (1)

bb [m]+(−1)p(b)U (1)
ab [m]U

(1)
ba [0]− (−1)p(b)U (1)

ba [0]U
(1)
ab [m]. (5.7.40)

As a result, we obtain U
(1)
bb [m] for m > 0. This is likewise for m < 0. When m = 0, (5.7.39) is

−(−1)p(a)κU (1)
bb [0]−l(−1)p(a)κU (1)

b+1,b+1[0]+(−1)p(b)U (1)
ab [0]U

(1)
ba [0]−(−1)p(b)U (1)

ba [0]U
(1)
ab [m]. (5.7.41)

This in particular gives −(−1)p(a)κU (1)
bb [0]−l(−1)p(a)κU (1)

b+1,b+1[0]. Together with U
(1)
bb [0]−U (1)

b+1,b+1[0],

we can get U
(1)
bb [0].

Now, we shall consider the elements of spin 2. From Φ
(
H(a)

1

)
, Φ

(
E(a)1

)
and Φ

(
F (a)
1

)
, we get

U
(2)
a,a+1[0], U

(2)
(a+1,a)[0] (with two exceptions) and U

(2)
aa [0]−U (2)

a+1,a+1[0]. Similar to the case of U
(1)
ab [m],
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we can then obtain U
(2)
ab [m], as well as U

(2)
aa [m]−U (2)

bb [m], for any a ̸= b andm ∈ Z using the U (1)U (2)

commutation relation.

To get the remaining elements U
(2)
aa [m], let us compute

[
U (2)
aa [1]− U (2)

bb [1], U (2)
aa [m]− U (2)

bb [m]
]
−
[
U (2)
aa [1]− U (2)

bb [1], U (2)
aa [m+ 1]− U (2)

bb [m+ 1]
]

(5.7.42)

for a ̸= b. This could be tedious due to all the U (2)U (2) commutation relations, but we notice that
most of the terms can be cancelled, and it becomes

− 2κ(−1)p(a)U (2)
aa [m+ 1]− 2κ(−1)p(b)U (2)

bb [m+ 1]

+ (l − 1)


(1 + (−1)p(a))


∑

k>0

U (1)
aa [−k]U (1)

aa [m+ 1 + k] +
∑

k≥0

U (1)
aa [m+ 1− k]U (1)

aa [k]




+ (1 + (−1)p(b))


∑

k>0

U
(1)
bb [−k]U (1)

bb [m+ 1 + k]−
∑

k≥0

U
(1)
bb [m+ 1− k]U (1)

bb [k]




−
∑

k>0

U (1)
aa [−k]U (1)

bb [m+ 1 + k]−
∑

k≥0

U
(1)
bb [m+ 1− k]U (1)

aa [k]

−
∑

k>0

U
(1)
bb [−k]U (1)

aa [m+ 1 + k]−
∑

k≥0

U (1)
aa [m+ 1− k]U (1)

bb [k]

− (−1)p(b)κ
∑

k>0

U
(1)
ab [−k]U

(1)
ba [m+ 1− k]− (−1)p(a)κ

∑

k≥0

U
(1)
ba [m+ 1− k]U (1)

ab [k]

−(−1)p(a)κ
∑

k>0

U
(1)
ba [−k]U (1)

ab [m+ 1− k]− (−1)p(b)κ
∑

k≥0

U
(1)
ab [m+ 1− k]U (1)

ba [k]




− l(l − 1)(m+ 2)κ2
(
(−1)p(a)U (1)

aa [m+ 1] + (−1)p(b)U (1)
bb [m+ 1]

)
. (5.7.43)

From this, we get (−1)p(a)U (2)
aa [n] + (−1)p(b)U (2)

bb [n]. Choose a, b such that p(a) = p(b) (which is

always possible for the cases we focus on in this paper). Together with U
(2)
aa [n] − U (2)

bb [n], we can

obtain U
(2)
aa [n] for any a = 1, . . . ,M +N and n ∈ Z.

Now, we can in principle write the actions of any U
(s)
ab [m] on the (truncated) crystals. Since the

crystal configuration always starts from the empty state |∅⟩ on which only the e
(0)
0 and ψ

(0)
0 modes

would have non-trivial action. It is natural to wonder whether the truncated crystal can be a highest
weight representation of U(WM |N×l) with |∅⟩ being the highest weight vector. In particular, all

the modes U
(s)
ab [m] with s ∈ Z+, a, b = 1, . . . ,M + N and m > 0 should annihilate the highest

weight state. To make this state unique, we also need U
(1)
ab [0] to act trivially on it for all a > b in

our convention here.

Corollary 5.7.4.1. The truncated crystal is a highest weight representation of U(WM |N×l) with
the empty room configuration |∅⟩ as the highest weight state23.

Again, the proof can be found in [15].

When consideringH(a̸=0)
0 |∅⟩ = ψ

(a)
0 |∅⟩ = 0, we can see that U

(1)
11 |∅⟩ = U

(1)
22 |∅⟩ = · · · = U

(1)
M+N,M+N |∅⟩.

On the other hand,
(
U

(1)
M+N,M+N [0]− U

(1)
11 [0] + lκ

)
|∅⟩ = H(0)

0 |∅⟩ = C|∅⟩. This then relates the

parameter on the W-algebra side with the vacuum charge in the quiver Yangian:

Corollary 5.7.4.2. We have C = lκ, where C is the vacuum charge.

23Notice that we are only considering the x-algebra here. For the other types of truncations, since U (n>l) do not
vanish due to the pseudo-differential operators, one further needs to show that U (n>l) annihilates all the states in
the truncated crystal.
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Example Let us illustrate the above discussions with an example. The simplest case would be
C×C2/Z3 whose quiver and crystal model are depicted in Figure 5.7.1. The possible configurations

(a) (b) (c)

0

12

Figure 5.7.1: (a) The quiver for C × C2/Z3. (b) The corresponding crystal model with
three colours. The dased lines are the ridges of the crystal. (c) The equivalent crystal model

visualized using coloured plane partitions.

with the corresponding modes acting on |∅⟩ at low levels are listed in [57]. For instance, take |C⟩
to be

|C〉 = e
(2)
0 e

(0)
0 |∅〉 =

. (5.7.44)

One possible way to add an atom is to act E(1)0 = e
(1)
0 . Using the action of e(1)(z), we have

Ψ
(1)
C =

(z + ϵ̃10) (z − ϵ̃02 + ϵ̃12)

(z − ϵ̃01) (z − ϵ̃02 − ϵ̃21)
, (5.7.45)

where we have kept the notation ϵ̃I . Therefore,

E(1)0 |C⟩ = −
(
(ϵ̃10 + ϵ̃02 + ϵ̃21) (ϵ̃12 + ϵ̃21)

ϵ̃01 − ϵ̃02 − ϵ̃21

)1/2

|C+ 1⟩. (5.7.46)

This gives

U
(1)
12 [0]|C⟩ = 3ϵ2(ϵ1 + ϵ2)

ϵ1 − 2ϵ2
|C+ 1⟩, (5.7.47)

where

|C+ 1〉 =
. (5.7.48)

One may apply the procedure above used for constructing other elements and get their actions.

Here, we list a few examples for U
(1)
ij [m]:

U
(1)
23 [0]

0

U
(1)
31 [−1] U

(1)
13 [0] U

(1)
21 [0]

0

U
(1)
32 [0] U

(1)
13 [1]

0

U
(1)
31 [0] U

(1)
32 [−1] U

(1)
21 [−1]|C〉

|C′〉 0

, (5.7.49)

where we omit the coefficients and only show the crystal configurations. By considering higher
modes of the quiver Yangian generators, we can also get the actions of U (s) with higher spins.

Let us take a brief look at how the truncations of the crystal could happen. Here, we shall only
discuss the simplest example which truncates the algebra at l = 1. In such case, we just have
the universal enveloping algebra of the Kac-Moody algebra with only zero modes for the quiver
Yangian, or equivalently, only spin 1 elements for the W-algebra. It is straightforward to see that
the truncated crystal has the shape

(5.7.50)
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of semi-infinite length. We simply have U
(s≥2)
ab [m]|C⟩ = 0 for any a, b ∈ {1, 2, 3}, m ∈ Z and any

configuration C as U
(s)
ab [m] vanishes for s > l.

In general, for any quiver Yangian we focus on in this paper, the truncation at the very first level
l = 1 can be desribed in this manner. For more general truncations of the crystal and larger l, this
could be more involved, and we leave this to future work (see also §5.13).

5.8 Toroidal and Elliptic Cases

Let us now have a discussion on the trigonometric and elliptic counterparts of the rational quiver
Yangians [199] (see also [200, 201]). Such algebras, dubbed rational (toroidal, resp. elliptic) quiver
BPS algebras, can be realized by 3d N = 2 (2d N = (2, 2), resp. 1d N = 4) quantum field theories.
These theories are low-energy effective theories on the D-branes that probe the CY threefolds. In
particular, the three types of algebras can be uniformly described by some bond factors. For the
elliptic algebras, the bond factor is composed of certain theta function Θq(u), where q is the square
of the nome. In other words, it is related to the modulus τ of the torus by q = exp(2πiτ ). Under
dimensional reduction, this gives the trigonometric version of the algebras whose bond factor is
determined by Sinβ(u) := 2 sinh(βu/2). In the limit where the radius β of the circle goes to 0,
one reaches the rational case with the bond factor consisting of the rational function u. For future
convenience, we shall use h1,2 to denote the two parameters of the algebras in the remaining of this
chapter.

To extend the above definition of the rational quiver Yangians, we need to consider three types of

currents, ψ
(a)
± (u), e(a)(u) and f (a)(u), where we now have ψ± instead of the single ψ. The currents

have the following mode expansions24:

x(a)(u) =





∑
n∈Z+

x
(a)
n
un , rational

∑
n∈Z

x
(a)
n
Un , trigonometric

∑
n∈Z

x
(a)
n
Un =

∑
n∈Z

∑
α∈Z≥0

x
(a)
n,α

Un qα, elliptic

, (5.8.1)

where x = e, f . For non-chiral quivers,

ψ
(a)
± (u) =





∑
n∈Z≥0

ψ
(a)
n
un , rational

∑
n∈Z≥0

ψ
(a)
±,n

U±n , trigonometric

∑
n∈Z

ψ
(a)
±,n

U±n =
∑
n∈Z

∑
α∈Z≥0

ψ
(a)
±,n,α

U±n qα, elliptic

(5.8.2)

with ψ
(a)
±,n<0,0 = 0 in the elliptic case. For chiral quivers,

ψ
(a)
± (u) =





∑
n∈Z

ψ
(a)
n
un , rational

∑
n∈Z

ψ
(a)
±,n

U±n , trigonometric

∑
n∈Z

ψ
(a)
±,n

U±n =
∑
n∈Z

∑
α∈Z≥0

ψ
(a)
±,n,α

U±n qα, elliptic

. (5.8.3)

24One can also consider shifted quiver BPS algebras that would introduce an extra shift parameter to (some part
of) the mode expansion of ψ± [199]. This is closely related to the crystal representations and the framings of the
quivers [198, 201]. However, we shall not consider this here.
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Notice that in the rational case, ψ+ = ψ− = ψ. Moreover, the expansions for trigonometric and
elliptic cases are in terms of U rather than u. The letters in the upper case are related to those in
the lower case by25

X = eβx, (x,X) = (u, U), (v, V ), (c, C), (hI , HI), . . . (5.8.4)

Henceforth, we will use the upper and lower cases interchangeably (such as e(a)(U) = e(a)(u)) in
the arguments of the currents for trionometric and elliptic cases. For convenience, we may also

write e(a)(U) =
∑

α∈Z≥0

e
(a)
α (U)qα (and likewise for the other currents) in the elliptic case.

To write their relations, we first need to introduce some necessary concepts. To distinguish chiral
and non-chiral quivers, we define the chirality parameter as

χab = |a→ b| − |b→ a| (5.8.5)

for each pair of nodes a, b in the quiver, where |a→ b| denotes the number of arrows from a to b.
Moreover, we shall define the formal delta function as

δ(u) =




1/u, rational∑
n∈Z

Un, otherwise . (5.8.6)

Recall that the key factor in the definition of the algebras is the bond factor φa⇐b(u). Here, we
shall write it as26

φa⇐b(u) =

∏
a→b

ζ(hI + u)

∏
b→a

ζ(hI − u)
, (5.8.7)

where hI is the parameter/charge associated to the arrow I in the quiver, and

ζ(u) =





u, rational

Sinβ(u) := 2 sinh βu
2 = U1/2 − U−1/2, trigonometric

Θq(u) := −U−1/2θq(u) =
(
U1/2 − U−1/2

) ∞∏
k=0

(
1− U−1qk

)
(1− Uqk), elliptic

.

(5.8.8)
Here, θq(u) = (U ; q)∞

(
qU−1; q

)
∞ in terms of the q-Pochhammer symbols. From the expressions

for ζ, we have
ζ(u) = −ζ(−u). (5.8.9)

It is straightforward to see that in the rational limit β → 0, the trigonometric case reduces to the
rational one. Likewise, when q → 0, the elliptic one reduces to the trigonometric one. This will
also be the limits that relate the three types of quiver BPS algebras.

To get rid of the powers with half-integers, we will take the balanced bond factor

ϕa⇐b(u, v) = (UV )
t
2
χabφa⇐b(u− v), (5.8.10)

where t is 0 in the rational case and −1 otherwise27. Therefore, this balancing would only affect
chiral quivers in the trigonometric and elliptic cases. As can be seen from its expression, the bond
factor satisfies

φa⇐b(u)φb⇐a(−u) = 1. (5.8.11)

25As a result, β can be absorbed under a redefinition of variables. Nevertheless, we shall keep it here due to its
physical origin.

26This is slightly different from the notion in [199] when both |a→ b| and |b→ a| are odd. Nevertheless, the bond
factor here should still be legitimate as it satisfies the reciprocity condition (5.8.11) below.

27Notice that this is slightly different from the original one in [199] where t was defined to be 1 for the trigonometric
and elliptic cases. This is only a choice for our later discussions on mode expansions for chiral quivers. Since the

balancing factor (UV )
t
2
χab is used to get rid of the half-integer powers in the Laurent expansions of the expressions,

this should just be a matter of convention.
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Therefore,
ϕa⇐b(u, v)ϕb⇐a(v, u) = 1. (5.8.12)

Moreover, we have
ϕa⇐b(u+ s, v) = stχabϕa⇐b(u, v − s). (5.8.13)

With this (balanced) bond factor, the three types of quiver Yangians can be presented in a unified
way as [57, 199]

ψ
(a)
± (u)ψ

(b)
± (v) ≃ C±tχabψ

(b)
± (v)ψ

(a)
± (u), (5.8.14)

ψ
(a)
+ (u)ψ

(b)
− (v) ≃ ϕa⇐b(u+ c/2, v − c/2)

ϕa⇐b(u− c/2, v + c/2)
ψ
(b)
− (v)ψ

(a)
+ (u), (5.8.15)

ψ
(a)
± (u)e(b)(v) ≃ ϕa⇐b(u± c/2, v)e(b)(v)ψ(a)

± (u), (5.8.16)

ψ
(a)
± (u)f (b)(v) ≃ ϕa⇐b(u∓ c/2, v)−1f (b)(v)ψ

(a)
± (u), (5.8.17)

e(a)(u)e(b)(v) ≃ (−1)|a||b|ϕa⇐b(u, v)e(b)(v)e(a)(u), (5.8.18)

f (a)(u)f (b)(v) ≃ (−1)|a||b|ϕa⇐b(u, v)−1f (b)(v)f (a)(u), (5.8.19)
[
e(a)(u), f (b)(v)

}
≃ −δab

(
δ(u− v − c)ψ(a)

+ (u− c/2)− δ(u− v + c)ψ
(a)
− (v − c/2)

)
. (5.8.20)

Here, c is the central element of the algebra which is 0 for the rational case (while it can be
non-trivial for the other two cases). In the last relation, we have used the supercommutator
[x, y} = xy − (−1)|x||y|yx. For the rational quiver Yangians, “≃” indicates that the equalities
are up to some sporadic umvn terms as we have seen before. For the trigonometric and elliptic
cases, it means that the Laurent expansion on the two sides should agree, and we shall henceforth
simply write it as “=”. As shown in [199], (5.8.14)∼(5.8.17) can be derived from (5.8.18)∼(5.8.20).
Therefore, when discussing the current relations, it suffices to consider the ee, ff and ef relations.

Besides the above relations, we also need the Serre relations. We will mention the Serre relations for
the generalized conifolds below. Remarkably, the Serre relations for the toroidal algebras associated
to any quivers (including chiral ones) were found recently in [205]. By taking the rational limit, we
can obtain the Serre relations for the raitional quiver Yangians. Moreover, following the process to
be mentioned in §5.10, we can get the Serre relations for the elliptic algebras as well.

5.8.1 Coproducts

The coproducts of the quiver BPS algebras are of particular interest due to their crucial role in
the construction of R-matrices and the study of Bethe/gauge correspondence [14, 58]. For rational
quiver Yangians of certain non-chiral quivers, the coproduct was discussed in §5.5. In contrast,
the coproducts for trigonometric and elliptic cases (for either chiral or non-chiral quivers) are more
straightforward. One may verify that the following gives a coassociative homomorphism (cf. [200]):

∆
(
e(a)(U)

)
= e(a)(U)⊗ 1 + ψ(a)

(
C

1/2
1 U

)
⊗ e(a)(C1U), (5.8.21)

∆
(
f (a)(U)

)
= 1⊗ f (a)(U) + f (a)(C2U)⊗ f (a)

(
C

1/2
2 U

)
, (5.8.22)

∆
(
ψ
(a)
+ (U)

)
= ψ

(a)
+ (U)⊗ ψ(a)

+

(
C−1
1 U

)
, (5.8.23)

∆
(
ψ
(a)
− (U)

)
= ψ

(a)
−
(
C−1
2 U

)
⊗ ψ(a)

− (U), (5.8.24)

∆(C) = C ⊗ C. (5.8.25)

Here, C1 = C ⊗ 1 and C2 = 1 ⊗ C are the conventional notations that indicate where the C
factors should be in the mode expressions. More explicitly, for the toroidal algebras associated to
non-chiral quivers, we have

∆
(
e(a)n

)
= e(a)n ⊗ 1 +

∞∑

j=0

C−n−j/2ψ(a)
−,j ⊗ e

(a)
n+j , (5.8.26)
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∆
(
f (a)n

)
= 1⊗ f (a)n +

∞∑

j=0

f
(a)
n−j ⊗ C−n+j/2ψ(a)

+,j , (5.8.27)

∆
(
ψ
(a)
+,n

)
=

n∑

j=0

Cn−jψ(a)
+,j ⊗ ψ

(a)
+,n−j , (5.8.28)

∆
(
ψ
(a)
−,n
)
=

n∑

j=0

ψ
(a)
−,n−j ⊗ C−n+jψ(a)

−,j . (5.8.29)

For the elliptic algebras and the algebras for chiral quivers, we just need to replace all
∞∑
j=0

and

n∑
j=0

with
∑
j∈Z

. In the elliptic case, it is also straightforward to write down this in terms of x
(a)
n,α

(x = e, f, ψ±). We simply replace xn ⊗ 1 (resp. 1⊗ xn) with xn,α ⊗ 1 (resp. 1⊗ xn,α) and xm ⊗ yn
with

α∑
γ=0

xm,γ ⊗ yn,α−γ .

Hopf algebras Together with the above coproduct in terms of the currents, we can have a counit
and an antipode such that the algebra is endowed with the Hopf (super)algebra structure. The
counit reads

ϵ
(
e(a)(U)

)
= ϵ

(
f (a)(U)

)
= 0, ϵ

(
ψ
(a)
± (U)

)
= ϵ(C) = 1. (5.8.30)

The antipode is an anti-homomorphism, that is, S(xy) = (−1)|x||y|S(y)S(x). Assuming that

ψ
(a)
± (U) are invertible in the algebra, then

S
(
e(a)(U)

)
= −ψ(a)

−
(
C−3/2U

)−1
e(a)(CU), (5.8.31)

S
(
f (a)(U)

)
= −f (a)(CU)ψ

(a)
+

(
C−3/2U

)−1
, (5.8.32)

S
(
ψ
(a)
± (U)

)
= ψ

(a)
±
(
C−1U

)−1
, (5.8.33)

S(C) = C−1. (5.8.34)

It is also straightforward to write them in terms of the modes. One may check that they satisfy
the properties of Hopf algebras, such asM◦ (S × id) ◦∆ =M◦ (id×S) ◦∆ = η ◦ ϵ, whereM and
η denote the multiplication and the unit map respectively.

5.8.2 Gradings

Similar to the discussions in [227, 228], we can assign different gradings to the quiver BPS alge-
bras. The degree of an element x can be written as deg(x) = (pdeg(x), hdeg(x)), where pdeg(x) =(
pdeg(a)(x)

)
is a vector known as the principal degree and hdeg(x) is a number called the homoge-

neous degree. We can introduce some invertible elements D(a) and D such that D(a)x
(
D(a)

)−1
=

eβpdeg
(a)(x)x and DxD−1 = e−βhdeg(x)x.

We have deg
(
e
(a)
n

)
= (0, . . . , 1, . . . , 0, n) and deg

(
f
(a)
n

)
= (0, . . . ,−1, . . . , 0, n), where ±1 is at the

ath entry. On the other hand, deg
(
ψ
(a)
±,n
)
= (0,±n) and deg(C) = deg

(
D(a)

)
= deg(D) = (0, 0).

For elliptic algebras, we may further consider the degree with respect to q, as well as an operator
Dq, such that the modes at order α would have q-deg equal to α.

5.9 Toroidal Algebras for Non-Chiral Quivers

The first examples we shall discuss are the toroidal algebras for non-chiral quivers. Here, we will
mainly focus on the generalized conifolds xy = zMwN with M +N ≥ 3. In particular, it suffices to
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consider these cases in the discussions of toric duality as the other cases all have one single toric
phase28.

We shall use the same convention as in [199] for the two parameters h1,2 of the algebra. For the
arrow pointing from a to b, its charge is

hab = Aabh1 +Mabh2 =





2ςah1, a = b

ςb(−h1 − h2), a+ 1 = b

ςa(−h1 + h2), a = b+ 1

0, otherwise

(5.9.1)

Equivalently, we can write Hab = HAab
1 HMab

2 . Here, Aab is the Cartan matrix

Aab = (ςa + ςa+1)δab − ςaδa,b+1 − ςbδa+1,b, (5.9.2)

and Mab is defined as
Mab = ςaδa,b+1 − ςbδa+1,b. (5.9.3)

Therefore, Aab is symmetric while Mab is antisymmetric.

The relations for the toroidal quiver algebra T can then be explicitly written as

ψ
(a)
± (U)ψ

(b)
± (V ) = ψ

(b)
± (V )ψ

(a)
± (U), (5.9.4)

HMab
2 HAab

1 U − CV
HMab

2 U −HAab
1 CV

ψ
(a)
± (U)ψ

(b)
∓ (V ) =

HMab
2 HAab

1 CU − V
HMab

2 CU −HAab
1 V

ψ
(b)
∓ (V )ψ

(a)
± (U), (5.9.5)

(
HMabC±1/2U −HAab

1 V
)
ψ
(a)
± (U)e(b)(V ) =

(
HMab

2 HAab
1 C±1/2U − V

)
e(b)(V )ψ

(a)
± (U), (5.9.6)

(
HMabC∓1/2U −H−Aab

1 V
)
ψ
(a)
± (U)f (b)(V ) =

(
HMab

2 H−Aab
1 C∓1/2U − V

)
f (b)(V )ψ

(a)
± (U), (5.9.7)

(
HMabU −HAab

1 V
)
e(a)(U)e(b)(V ) = (−1)|a||b|

(
HMab

2 HAab
1 U − V

)
e(b)(V )e(a)(U), (5.9.8)

(
HMabU −H−Aab

1 V
)
f (a)(U)f (b)(V ) = (−1)|a||b|

(
HMab

2 H−Aab
1 U − V

)
f (b)(V )f (a)(U), (5.9.9)

[
e(a)(U), f (b)(V )

}
= −δab

(
δ
(
UV −1C−1

)
ψ
(a)
+

(
UC−1/2

)
− δ

(
UV −1C

)
ψ
(a)
−
(
V C−1/2

))
.

(5.9.10)

In particular, when the central charge is trivial, that is, when C = 1, ψ+ would commute with the
ψ− as can be seen directly from their current relations. The Serre relations are

Sym
u1,u2

s
e(a)(u1),

r
e(a)(u2), e

(a±1)(v)
z

H1

{

H1

= 0 (|a| = 0), (5.9.11)

Sym
u1,u2

t

e(a)(u1),

s
e(a+1)(v1)

r
e(a)(u2), e

(a−1)(v2)
z

H1

{

H1

|

H1

= 0 (|a| = 1), (5.9.12)

Sym
u1,u2

s
f (a)(u1),

r
f (a)(u2), f

(a±1)(v)
z

H−1
1

{

H−1
1

= 0 (|a| = 0), (5.9.13)

Sym
u1,u2

t

f (a)(u1),

s
f (a+1)(v1)

r
f (a)(u2), f

(a−1)(v2)
z

H−1
1

{

H−1
1

|

H−1
1

= 0 (|a| = 1). (5.9.14)

Here, the q-graded bracket is given by Jx, yKq = xy − (−1)|x||y|q(x,y)yx, where (x, y) is the root
pairing stemmed from the underlying affine Lie superalgebra. For instance, the pairing of two
simple roots gives the corresponding entry in the Cartan matrix.

28Of course, for M + N ≥ 3, all the triangles (i.e., MN = 0) and the suspended pinch point (i.e., (M,N ) =
(2, 1), (1, 2)) have one single toric phase as well.
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5.9.1 More on Mode Expansions

We can also express (5.9.4)∼(5.9.10) in terms of modes:

ψ
(a)
±,mψ

(b)
±,n = ψ

(b)
±,nψ

(a)
±,m, (5.9.15)

H2Mab
2 HAab

1 Cψ
(a)
+,m+2ψ

(b)
−,n −HMab

2

(
H2Aab

1 + C2
)
ψ
(a)
+,m+1ψ

(b)
−,n−1 −HAab

1 Cψ
(a)
+,mψ

(b)
−,n−2

= H2Mab
2 HAab

1 Cψ
(b)
−,nψ

(a)
+,m+2 −HMab

2

(
H2Aab

1 C2 + 1
)
ψ
(b)
−,n−1ψ

(a)
+,m+1 −HAab

1 Cψ
(b)
−,n−2ψ

(a)
+,m,

(5.9.16)

HMab
2 C1/2ψ

(a)
+,m+1e

(b)
n −HAab

1 ψ
(a)
+,me

(b)
n+1 = HMab

2 HAab
1 C1/2e(b)n ψ

(a)
+,m+1 − e

(b)
n+1ψ

(a)
+,m, (5.9.17)

HMab
2 C−1/2ψ

(a)
−,me

(b)
n −HAab

1 ψ
(a)
−,m+1e

(b)
n+1 = HMab

2 HAab
1 C−1/2e(b)n ψ

(a)
−,m − e

(b)
n+1ψ

(a)
−,m+1, (5.9.18)

HMab
2 C−1/2ψ

(a)
+,m+1f

(b)
n −H−Aab

1 ψ
(a)
+,mf

(b)
n+1 = HMab

2 H−Aab
1 C−1/2f (b)n ψ

(a)
+,m+1 − f

(b)
n+1ψ

(a)
+,m, (5.9.19)

HMab
2 C1/2ψ

(a)
−,mf

(b)
n −H−Aab

1 ψ
(a)
−,m+1f

(b)
n+1 = HMab

2 H−Aab
1 C1/2f (b)n ψ

(a)
−,m − f

(b)
n+1ψ

(a)
−,m+1, (5.9.20)

HMab
2 e

(a)
m+1e

(b)
n −HAab

1 e(a)m e
(b)
n+1 = (−1)|a||b|

(
HMab

2 HAab
1 e(b)n e

(a)
m+1 − e

(b)
n+1e

(a)
m

)
, (5.9.21)

HMab
2 f

(a)
m+1f

(b)
n −H−Aab

1 f (a)m f
(b)
n+1 = (−1)|a||b|

(
HMab

2 H−Aab
1 f (b)n f

(a)
m+1 − f

(b)
n+1f

(a)
m

)
, (5.9.22)

[
e(a)m , f (b)n

}
= −δab

(
C(m−n)/2ψ(a)

+,m+n − C−(m−n)/2ψ(a)
−,−m−n

)
. (5.9.23)

Notice that ψ±,l<0 simply vanishes such as in the ef relations. In particular, the ψe and ψf relations
include

ψ
(a)
±,0e

(b)
n = H±Aab

1 e(b)n ψ
(a)
±,0, ψ

(a)
±,0f

(b)
n = H∓Aab

1 f (b)n ψ
(a)
±,0 (5.9.24)

by setting m = −1 and

HMab
2 C1/2ψ

(a)
+,1e

(b)
n −HAab

1 ψ
(a)
+,0e

(b)
n+1 = HMab

2 HAab
1 C1/2e(b)n ψ

(a)
+,1 − e

(b)
n+1ψ

(a)
+,0,

HMab
2 C−1/2ψ

(a)
−,0e

(b)
n −HAab

1 ψ
(a)
−,1e

(b)
n+1 = HMab

2 HAab
1 C−1/2e(b)n ψ

(a)
−,0 − e

(b)
n+1ψ

(a)
−,1,

HMab
2 C−1/2ψ

(a)
+,1f

(b)
n −H−Aab

1 ψ
(a)
+,0f

(b)
n+1 = HMab

2 H−Aab
1 C−1/2f (b)n ψ

(a)
+,1 − f

(b)
n+1ψ

(a)
+,0,

HMab
2 C1/2ψ

(a)
−,0f

(b)
n −H−Aab

1 ψ
(a)
−,1f

(b)
n+1 = HMab

2 H−Aab
1 C1/2f (b)n ψ

(a)
−,0 − f

(b)
n+1ψ

(a)
−,1

(5.9.25)

by setting m = 0. Likewise, the ψ+ψ− relation includes

ψ
(a)
+,mψ

(b)
−,0 = ψ

(b)
−,0ψ

(a)
+,m, ψ

(a)
+,0ψ

(b)
−,n = ψ

(b)
−,nψ

(a)
+,0 (5.9.26)

by taking n = 0 and m = −2 respectively. Therefore, ψ±,0 commute with all the modes of ψ±. It

is worth noting that given a fixed fermionic node 𭟋, the ψ
(𭟋)
± modes commute with all 𭟋 modes,

and the e(𭟋) (resp. f (𭟋)) modes anticommute with the e(𭟋) (resp. f (𭟋)) modes. In fact, from

(5.9.24), it is not hard to see that ψ
(a)
+,0ψ

(a)
−,0 is central for any node a. Write these central elements

as C(a) = ψ
(a)
+,0ψ

(a)
−,0. Then we can write ψ

(a)
±,0 = C(a)

(
ψ
(a)
∓,0
)−1

with a mild assumption that
(
ψ
(a)
±,0
)−1

are also in the algebra. For convenience, we shall rescale them to be 1, that is, ψ
(a)
+,0 =

(
ψ
(a)
−,0
)−1

,

in the following discussions.

Like many toroidal algebras, it is instructive to write the ψ
(a)
± (U) currents as

ψ
(a)
± (U) = ψ

(a)
±,0 exp

( ∞∑

n=1

k
(a)
±nU

∓n
)
. (5.9.27)
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Therefore,

ψ
(a)
±,n = ψ

(a)
±,0

n∑

m=1

1

m!

∑

r1,...,rm>0
r1+···+rm=n

k
(a)
±r1k

(a)
±,r2 . . . k

(a)
±,rm . (5.9.28)

Similarly, we can write the zero modes as

ψ
(a)
+,0 = exp

(
−βh1k(a)0

)
= H

−k(a)0
1 , ψ

(a)
−,0 = exp

(
βh1k

(a)
0

)
= H

k
(a)
0

1 . (5.9.29)

We shall refer to the modes k
(a)
r (r ∈ Z) as Heisenberg modes. There could also be different

conventions to define these modes as discussed in Appendix I.

In terms of the Heisenberg modes, we can rewrite the relations involving ψ± as

[
k
(a)
0 , k(b)s

]
= 0,

[
k
(a)
r ̸=0, k

(b)
s

]
= δr+s,0

1

r

(
C−r − Cr

)
H−rMab

2

(
HrAab

1 −H−rAab
1

)
, (5.9.30)

[
k
(a)
0 , e(b)n

]
= −Aabe(b)n ,

[
k
(a)
0 , f (b)n

]
= Aabf

(b)
n , (5.9.31)

[
k
(a)
r ̸=0, e

(b)
n

]
=

1

r
C−|r|/2H−rMab

2

(
HrAab

1 −H−rAab
1

)
e
(b)
n+r, (5.9.32)

[
k
(a)
r ̸=0, f

(b)
n

]
= −1

r
C |r|/2H−rMab

2

(
HrAab

1 −H−rAab
1

)
f
(b)
n+r. (5.9.33)

Moreover, we have [
e(a)n , f

(b)
−n
}
= δab

(
H
k
(a)
0

1 −H−k(a)0
1

)
. (5.9.34)

It would also be helpful to notice that

[
e
(a)
±1, f

(b)
0

}
= ∓δabC1/2H

∓k(a)0
1 k

(a)
±1 ,

[
e
(a)
0 , f

(b)
±1

}
= ∓δabC−1/2H

∓k(a)0
1 k

(a)
±1 . (5.9.35)

Coproduct We can also write the coproduct above using k
(a)
r :

∆
(
k(a)r

)
=

{
Cr ⊗ k(a)r + k

(a)
r ⊗ 1, r ≥ 0

k
(a)
r ⊗ Cr + 1⊗ k(a)r , r < 0

. (5.9.36)

In particular, ∆
(
k
(a)
0

)
= 1⊗ k(a)0 + k

(a)
0 ⊗ 1.

Grading Likewise, for the aforementioned grading, we have deg
(
k
(a)
r

)
= (0, r). In [227, 228],

such gradings were useful in the quantum double construction of the universal R-matrix for certain
toroidal algebra associated to gl1. For toroidal BPS algebras associated to any non-chiral quivers
here, a naive generalization would be R = R(0)R(1)R(2) with

R(0) =
(
C−1 ⊗D−1

) (
D−1 ⊗ C−1

)∏

a

(
ψ
(a)
+,0 ⊗

(
D(a)

)−1
)((

D(a)
)−1
⊗ ψ(a)

+,0

)
,

R(1) = exp


∑

r≥1

r
∑

a

k(a)r ⊗ k(a)−r


 , R(2) = 1⊗ 1 +

∑

n∈Z

∑

a

e(a)n ⊗ f (a)−n + . . . ,

(5.9.37)

where the ellipsis in R(2) indicates terms with hdeg ≥ 1, and pdeg
(
R(2)

)
should be 0. However,

whether these naive expressions would work and/or what modifications (such as proper normaliza-
tions etc.) are needed would still require further investigations in future.
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5.9.2 Toric Duality

Now let us try to construct the transformations of the generators under toric duality. As mentioned
in Appendix E, only fermionic nodes can be dualized. If the node 𭟋 is dualized, then we just need
to add an adjoint loop to 𭟋 ± 1 if |𭟋 ± 1| = 0 or remove the existing adjoint loop on 𭟋 ± 1 if
|𭟋± 1| = 1. As a result,

ς ′a =

{
−ςa, a = 𭟋,𭟋+ 1

ςa, otherwise
, (5.9.38)

where the primed notation stands for the one after performing the duality. Therefore, we have

A′
ab =





−Aab, (a, b) = (𭟋± 1,𭟋), (𭟋,𭟋± 1)

Aaa + 2Aa𭟋, a = b = 𭟋± 1

Aab, otherwise

(5.9.39)

and

M ′
ab =





−Mab, a = 𭟋− 1,𭟋, b = a+ 1

−Mab, a = 𭟋,𭟋+ 1, b = a− 1

Mab, otherwise

. (5.9.40)

Analogous to the rational case, the ke and kf commutation relations can be used to express higher
e, f using lower modes29. The higher modes of k can in turn be obtained using the ef relations.
In fact, the relations involving higher modes can also be derived from those with lower modes.
Therefore, the toroidal BPS algebras for non-chiral quivers are finitely presented with the relations
involving e0, e±1, f0, f±1, k0, k±1 (or equivalently, ψ±,0, ψ±,1). Hence, it suffices to find the
transformations for these modes.

We would like to mimic the isomorphisms for the rational case in discussed above. As all but three
of the nodes are unaffected, we would expect the modes to be invariant for a ̸= 𭟋,𭟋±1. Therefore,
from their relations, we have

C ′ = C. (5.9.41)

Now, let us first consider the zero modes. For a = 𭟋, the k′0 modes should be determined only by
k0 themselves, possibly with changes of minus signs (such as multiplication by −1), while the e0

and f0 modes should get swapped. In the rational case, the ψ′
0 mode is a sum of ψ

(a)
0 and ψ

(𭟋)
0 for

a = 𭟋± 1. Here, our ansatz for ψ0 would still be a combination of ψ
(a)
0 and ψ

(𭟋)
0 , but we expect it

to be a multiplication instead of addition as we are dealing with the trigonometric case (and hence

addition for k0). On the other hand, for e
′(a)
0 , the ansatz would be a linear combination of e

(a)
0 e

(𭟋)
0

and e
(𭟋)
0 e

(a)
0 (and likewise for f

′(a)
0 ).

By computing the supercommutators [x, y} with

x = e
(𭟋)
0 e

(a)
0 , e

(a)
0 e

(𭟋)
0 and y = f

(a)
0 f

(𭟋)
0 , f

(𭟋)
0 f

(a)
0 , (5.9.42)

we find that for a = 𭟋± 1,

ψ
′(a)
±,0 = ψ

(a)
±,0ψ

(𭟋)
±,0, k

′(a)
0 = k

(a)
0 + k

(𭟋)
0 ,

e
′(a)
0 = e

(𭟋)
0 e

(a)
0 − (−1)|a|HAa𭟋

1 e
(a)
0 e

(𭟋)
0 ,

f
′(a)
0 =

1

H
Aa𭟋
1 −H−Aa𭟋

1

(
f
(a)
0 f

(𭟋)
0 − (−1)|a|H−Aa𭟋

1 f
(𭟋)
0 f

(a)
0

) (5.9.43)

would verify the corresponding ef relation. Likewise, checking the ef relation for a = 𭟋, we have

ψ
′(𭟋)
±,0 = ψ

(𭟋)
∓,0, k

′(𭟋)
0 = −k(𭟋)

0 , (5.9.44)

29Here, by higher (resp. lower) modes, we mean the modes with larger (resp. smaller) absolute values |n|.
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and e
′(𭟋)
0 = f

(𭟋)
0 , f

′(𭟋)
0 = −e(𭟋)

0 . However, to be compatible with the ee and ff relations that
contain modes with n = 0,±1, we need to multiply them by some extra factors:

e
′(𭟋)
0 = ψ

(𭟋)
+,0f

(𭟋)
0 = H

−k(𭟋)
0

1 f
(𭟋)
0 , f

′(𭟋)
0 = −ψ(𭟋)

−,0e
(𭟋)
0 = −Hk

(𭟋)
0

1 e
(𭟋)
0 . (5.9.45)

Notice that they would still recover the transformations of the Chevalley generators under odd
reflections in the limit β → 0. One may check that these transformations are consistent with all
the other relations involving zero modes.

Next, let us consider the modes with n = ±1. By considering the commutator of k
′(b̸=𭟋)
1 and e

′(a)
0

with b = a± 1 (which is always possible since there are at least four nodes in the quiver), we find
that for a = 𭟋± 1,

e
′(a)
1 = e

(𭟋)
0 e

(a)
1 − (−1)|a|HAa𭟋

1 e
(a)
1 e

(𭟋)
0 . (5.9.46)

Likewise,

f
′(a)
1 =

1

H
Aa𭟋
1 −H−Aa𭟋

1

(
f
(a)
1 f

(𭟋)
0 − (−1)|a|H−Aa𭟋

1 f
(𭟋)
0 f

(a)
1

)
. (5.9.47)

Again, computing [x, y} with

x = e
(𭟋)
0 e

(a)
1 , e

(a)
1 e

(𭟋)
0 and y = f

(a)
1 f

(𭟋)
0 , f

(𭟋)
0 f

(a)
1 , (5.9.48)

we find that

ψ
′(a)
+,1 = ψ

(𭟋)
+,0ψ

(a)
+,1 − C1/2H

−Ma𭟋
2

(
H
Aa𭟋
1 f

(𭟋)
1 e

(𭟋)
0 +H

−Aa𭟋
1 e

(𭟋)
0 f

(𭟋)
1

)
ψ
(a)
+,0, (5.9.49)

ψ
′(a)
−,1 = ψ

(𭟋)
−,0ψ

(a)
−,1 − C−1/2H

Ma𭟋
2

(
H
Aa𭟋
1 e

(𭟋)
−1 f

(𭟋)
0 +H

−Aa𭟋
1 f

(𭟋)
0 e

(𭟋)
−1

)
ψ
(a)
−,0. (5.9.50)

In terms of the Heisenberg modes, we have

k
′(a)
1 = k

(a)
1 − C1/2H

−Ma𭟋
2

(
H
Aa𭟋
1 f

(𭟋)
1 e

(𭟋)
0 +H

−Aa𭟋
1 e

(𭟋)
0 f

(𭟋)
1

)
H
k
(𭟋)
0

1 , (5.9.51)

k
′(a)
−1 = k

(a)
−1 − C−1/2H

Ma𭟋
2

(
H
Aa𭟋
1 e

(𭟋)
−1 f

(𭟋)
0 +H

−Aa𭟋
1 f

(𭟋)
0 e

(𭟋)
−1

)
H

−k(𭟋)
0

1 . (5.9.52)

By considering the commutation relations of k
′(𭟋±1)
1 and e

′(𭟋)
0 , we find that

e
′(𭟋)
1 = CH

−2Ma𭟋
2 H

k
(𭟋)
0

1 f
(𭟋)
1 , (5.9.53)

where a can either be 𭟋+ 1 or 𭟋− 1 as Ma𭟋 would be the same. Likewise,

f
′(𭟋)
1 = H

−2Ma𭟋
2

(
−C−1e

(𭟋)
1 + C−1/2k

(𭟋)
1 e

(𭟋)
0

)
H
k
(𭟋)
0

1 , (5.9.54)

e
′(𭟋)
−1 = H

2Ma𭟋
2

(
Cf

(𭟋)
−1 − C1/2k

(𭟋)
−1 f

(𭟋)
0

)
H

−k(𭟋)
0

1 , (5.9.55)

f
′(𭟋)
−1 = −C−1H

2Ma𭟋
2 H

−k(𭟋)
0

1 e
(𭟋)
−1 . (5.9.56)

Using the ef relations, we get

ψ
′(𭟋)
±,1 = −H∓2Ma𭟋

2

(
ψ
(𭟋)
∓,0
)2
ψ
(𭟋)
±,1, k

′(𭟋)
±1 = −H∓2Ma𭟋

2 k
(𭟋)
±1 . (5.9.57)

One may check that these transformations are consistent with all the other relations.

From the above discussions, we may also derive the transformations in terms of currents. By
applying the k±1 modes successively, it is not hard to see that

e′(a)(U) = e
(𭟋)
0 e(a)(U)− (−1)|a|HAa𭟋

1 e(a)(U)e
(𭟋)
0 , (5.9.58)
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f ′(a)(U) =
1

H
Aa𭟋
1 −H−Aa𭟋

1

(
f (a)(U)f

(𭟋)
0 − (−1)|a|H−Aa𭟋

1 f
(𭟋)
0 f (a)(U)

)
(5.9.59)

for a = 𭟋± 1. Then by considering their supercommutator, we find that each term contains some
formal delta function with other terms being cancelled. This yields

ψ
′(a)
± (U) =e

(𭟋)
0 ψ

(a)
± (U)f

(𭟋)
0 − (−1)|a|HAa𭟋

1 e
(𭟋)
0 f

(𭟋)
0 ψ

(a)
± (U)

−H−Aa𭟋
1 ψ

(a)
± (U)e

(𭟋)
0 f

(𭟋)
0 − f (𭟋)

0 ψ
(a)
± (U)e

(𭟋)
0 .

(5.9.60)

It is less straightforward to write down the currents for 𭟋. Nevertheless, we can write some
conjectural expressions by computing a few more higher modes and then verify them using the
current relations. The perturbative calculations show that

e
′(𭟋)
0 (U) = f

(𭟋)
>0

(
C−1U

)
ψ
(𭟋)
+

(
C−1/2H

2Ma𭟋
2 U

)
+ f

(𭟋)
≤0 (CU)ψ

(𭟋)
−
(
C1/2H

2Ma𭟋
2 U

)
,

(5.9.61)

f
′(𭟋)
0 (U) = −e(𭟋)

≥0 (CU)ψ
(𭟋)
+

(
C1/2H

2Ma𭟋
2 U

)
− e(𭟋)

<0

(
C−1U

)
ψ
(𭟋)
−
(
C−1/2H

2Ma𭟋
2 U

)
, (5.9.62)

where

f
(𭟋)
>0 (U) =

∑

n>0

f (𭟋)
n U−n, f

(𭟋)
≤0 (U) =

∑

n≤0

f (𭟋)
n U−n,

e
(𭟋)
≥0 (U) =

∑

n≥0

e(𭟋)
n U−n, e

(𭟋)
<0 (U) =

∑

n<0

e(𭟋)
n U−n,

(5.9.63)

and

ψ
(𭟋)
+ (U) =

(
ψ
(𭟋)
−,0
)2

ψ(𭟋)

+,0 −
ψ
(𭟋)
+,1

U
−
ψ
(𭟋)
+,2 −

(
ψ
(𭟋)
+,1

)2
ψ
(𭟋)
−,0

U2

−
ψ
(𭟋)
+,3 +

(
ψ
(𭟋)
+,1

)3 (
ψ
(𭟋)
−,0
)2

U3
− . . .


 , (5.9.64)

ψ
(𭟋)
− (U) =

(
ψ
(𭟋)
+,0

)2(
ψ
(𭟋)
−,0 − ψ

(𭟋)
−,1U −

(
ψ
(𭟋)
−,2 −

(
ψ
(𭟋)
−,1
)2
ψ
(𭟋)
+,0

)
U2

−
(
ψ
(𭟋)
−,3 +

(
ψ
(𭟋)
−,1
)3 (

ψ
(𭟋)
+,0

)2)
U3 − . . .

)
. (5.9.65)

In fact, we find that the perturbative expressions here coincide with the “inverse currents”,that is,

ψ
(𭟋)
± (U) = ψ

(𭟋)
± (U)−1. (5.9.66)

Then we have

ψ
′(𭟋)
± (U) = ψ

(𭟋)
±
(
H

2Ma𭟋
2 U

)−1
. (5.9.67)

Indeed, one may verify these expressions using the current relations. It is also worth noting that

k′(𭟋)
n = −H2nMa𭟋

2 k(𭟋)
n . (5.9.68)

5.9.3 Higgsing

Recall that the toric quiver gauge theories have nice features under the Higgs-Kibble mechanism.
It is then natural to wonder if their BPS algebras are also connected via blowing up/down the
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singularities, or more precisely, if there is a subalgebra structure for a higgsed theory from a parent
theory.

As the higgsing process always merges the two neighbouring nodes, say a and a+ 1, in the quiver
for any toric CY without compact divisors, we expect the generators associated with other nodes
(and the central element C) to be invariant. Of course, there is a relabelling for b > a + 1 as the
number of nodes is reduced by one after higgsing.

For x′(a) (x = e, f, ψ, k), where the primed letters indicate the generators for the higgsed theory,
it should be a combination of x(a) and x(a+1). As discussed in Appendix E, the parity should
satisfy

∣∣x′(a)
∣∣ =

∣∣x(a)
∣∣ +

∣∣x(a+1)
∣∣. Therefore, for the zero modes, a natural candidate would be a

combination of e
(a)
0 e

(a+1)
0 and e

(a+1)
0 e

(a)
0 (and likewise for f). Similar to the construction for toric

duality, we find that

e
′(a)
0 = e

(a+1)
0 e

(a)
0 − (−1)|a||a+1|HAa,a+1

1 e
(a)
0 e

(a+1)
0 , (5.9.69)

f
′(a)
0 =

1

H
Aa,a+1

1 −H−Aa,a+1

1

(
f
(a)
0 f

(a+1)
0 − (−1)|a||a+1|H−Aa,a+1

1 f
(a+1)
0 f

(a)
0

)
, (5.9.70)

ψ
′(a)
±,0 = ψ

(a)
±,0ψ

(a+1)
±,0 , k

′(a)
0 = k

(a)
0 + k

(a+1)
0 (5.9.71)

would give the expected subalgebra structure for the zero modes. This is precisely the transforma-
tion for a = 𭟋± 1 in the above discussions of toric duality with 𭟋 replaced by a+1. In fact, in the
rational limit β → 0, this gives the surjection map of the Chevalley generators of the corresponding
affine Lie superalgebras.

However, when we use k
′(a−1)
±1 = k

(a)
±1 or k

′(a+1)
±1 = k

(a+2)
±1 to get the higher modes from e

′(a)
0 (resp.

f
′(a)
0 ), the expressions are not symmetric in e(a) and e(a+1) (resp. f (a) and f (a+1)) any more. Indeed,

for instance,
[
k
(a−1)
1 , e

′(a)
0

]
yields

e
′(a)
1 = e

(a+1)
0 e

(a)
1 − (−1)|a||a+1|HAa,a+1

1 e
(a)
1 e

(a+1)
0 (5.9.72)

while
[
k
(a+2)
1 , e

′(a)
0

]
leads to

e
′(a)
1 = e

(a+1)
1 e

(a)
0 − (−1)|a||a+1|HAa,a+1

1 e
(a)
0 e

(a+1)
1 . (5.9.73)

They are not equal to each other as can be seen from the ee relation. Explicitly,

e
(a+1)
1 e

(a)
0 − (−1)|a||a+1|HAa,a+1

1 e
(a)
0 e

(a+1)
1 = H

Ma,a+1

2

(
e
(a+1)
0 e

(a)
1 − (−1)|a||a+1|HAa,a+1

1 e
(a)
1 e

(a+1)
0

)
.

(5.9.74)

Due to the non-trivial factor H
Ma,a+1

2 , this transformation does not give the subalgebra structure.
Nevertheless, when H2 = 1, the quiver BPS algebras reduce to a one-parameter algebra, and the

above two expressions for e
′(a)
1 would coincide.

Therefore, at least when h2 = 0, for non-chiral quivers30, the toroidal BPS algebra contains the
ones for the higgsed theories as its subalgebras. The surjection for the generators associated with
a and a+ 1 are the same as the transformations for a = 𭟋± 1 under toric duality with 𭟋 replaced
by a ∓ 1 31. Of course, a + 1 (as well as a) can be either bosonic or fermionic. This is also the
case for the rational quiver Yangians, where the surjection map is most conveniently expressed in
the J presentation. See (4.5) in [15] (with conventions therein). It is not clear whether higgsing
would still lead to the subalgebra structure for generic h2, and if so, what the surjection map would
be. Physically, the two parameters of the algebra are related to the Ω-background that is used
to resolve the singular target space of the supersymmetric quantum mechanics. In particular, the
scalars in the vector multiplets would also have non-zero VEVs. Therefore, the algebra structure
under higgsing could be closely related to the localizations of the Higgs and Coulomb branches [197].

30For C3/(Z2 × Z2) which can be higgsed to the suspended pinch point, this should also be true. The discussions
here do not cover C3, C× C2/Z2 and the conifold although we still expect this to hold.

31As a result, this gives two transformations, but they should essentially be the same up to a normalization factor.
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5.10 Elliptic Algebras for Non-Chiral Quivers

Now, let us have a discussion on the elliptic algebras for non-chiral quivers. Unlike the rational
and toroidal algebras for non-chiral quivers, it is more difficult to work with modes. This is due to
the existence of q-Pochhammer symbols in the elliptic case.

Given a generalized conifold xy = zMwN with M + N ≥ 3, the elliptic quiver algebra E has the
relations

ψ
(a)
± (U)ψ

(b)
± (V ) = ψ

(b)
± (V )ψ

(a)
± (U), (5.10.1)

ψ
(a)
± (U)ψ

(b)
∓ (V ) =

(
UCV −1HAab

1 HMab
2 ; q

)
∞

(
qU−1C−1V H−Aab

1 H−Mab
2 ; q

)
∞(

U−1C−1V HAab
1 H−Mab

2 ; q
)
∞

(
qUCV −1H−Aab

1 HMab
2 ; q

)
∞(

U−1CV HAab
1 H−Mab

2 ; q
)
∞

(
qUC−1V −1H−Aab

1 HMab
2 ; q

)
∞(

UC−1V −1HAab
1 HMab

2 ; q
)
∞

(
qU−1CV H−Aab

1 H−Mab
2 ; q

)
∞

ψ
(b)
∓ (V )ψ

(a)
± (U)

(5.10.2)

ψ
(a)
± (U)e(b)(V ) = HAab

1

(
U−1C∓ 1

2V H−Aab
1 H−Mab

2 ; q
)
∞

(
qUC± 1

2V −1HAab
1 HMab

2 ; q
)
∞(

U−1C∓ 1
2V HAab

1 H−Mab
2 ; q

)
∞

(
qUC± 1

2V −1H−Aab
1 HMab

2 ; q
)
∞

e(b)(V )ψ
(a)
± (U)

(5.10.3)

ψ
(a)
± (U)f (b)(V ) = H−Aab

1

(
U−1C± 1

2V HAab
1 H−Mab

2 ; q
)
∞

(
qUC∓ 1

2V −1H−Aab
1 HMab

2 ; q
)
∞(

U−1C± 1
2V H−Aab

1 H−Mab
2 ; q

)
∞

(
qUC∓ 1

2V −1HAab
1 HMab

2 ; q
)
∞

f (b)(V )ψ
(a)
± (U)

(5.10.4)

e(a)(U)e(b)(V ) = (−1)|a||b|HAab
1

(
U−1V H−Aab

1 H−Mab
2 ; q

)
∞

(
qUV −1HAab

1 HMab
2 ; q

)
∞(

U−1V HAab
1 H−Mab

2 ; q
)
∞

(
qUV −1H−Aab

1 HMab
2 ; q

)
∞

e(b)(V )e(a)(U)

(5.10.5)

f (a)(U)f (b)(V ) = (−1)|a||b|H−Aab
1

(
U−1V HAab

1 H−Mab
2 ; q

)
∞

(
qUV −1H−Aab

1 HMab
2 ; q

)
∞(

U−1V H−Aab
1 H−Mab

2 ; q
)
∞

(
qUV −1HAab

1 HMab
2 ; q

)
∞

f (b)(V )f (a)(U)

(5.10.6)
[
e(a)(U), f (b)(V )

}
= −δab

(
δ
(
UV −1C−1

)
ψ
(a)
+

(
UC−1/2

)
− δ

(
UV −1C

)
ψ
(a)
−
(
V C−1/2

))
.

(5.10.7)

Similar to the toroidal case, for any fermionic node 𭟋, we have ψ
(𭟋)
± (U)e(𭟋)(V ) = e(𭟋)(V )ψ

(𭟋)
± (U),

e(𭟋)(U)e(𭟋)(V ) = −e(𭟋)(V )e(𭟋)(U) etc. Moreover, when the central charge is trivial, that is, C = 1,

ψ
(a)
+ (U) commutes with ψ

(b)
− (V ).

To write down the Serre relations, let us first recall that both the rational and the toroidal algebras
have their versions of the brackets. Therefore, we would also like to use an “elliptic bracket” to
write the Serre relations for the elliptic cases. Let us introduce the operators χa(u) and ξa(u) that
commute with all e, f , ψ± generators in the elliptic algebras. They have the following correlators:

e⟨χa(u)χb(v)⟩ =

(
qHAab

1 H−Mab
2 U−1V ; q

)
∞(

qH−Aab
1 H−Mab

2 U−1V ; q
)
∞

, (5.10.8)
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e⟨ξa(u)ξb(v)⟩ =

(
qH−Aab

1 H−Mab
2 U−1V ; q

)
∞(

qHAab
1 H−Mab

2 U−1V ; q
)
∞

, (5.10.9)

e⟨χa(u)ξb(v)⟩ = 1. (5.10.10)

Then using the correlators of the “dressed” operators

E(a)(u) = eχa(u)e(a)(u), F (a)(u) = eξa(u)f (a)(u), Ψ
(a)
± (u) = eχa(u±c/2)eξa(u∓c/2)ψ(a)

± (u),
(5.10.11)

the relations of the elliptic algebras can be written in the same forms as those of the toroidal
algebras. For instance, the ee relations of the elliptic algebras now become

(
HMab

2 U −HAab
1 V

)〈
E(a)(u)E(b)(v)

〉
= (−1)|a||b|

(
HAab

1 HMab
2 U − V

)〈
E(b)(v)E(a)(u)

〉
.

(5.10.12)
Therefore, the Serre relations of the elliptic algebras can simply be obtained by taking the ones of
the toroidal algebras. Then we replace the toroidal generators with the dressed elliptic generators
and take the correlators of the whole expressions. For brevity, we shall write them using the “elliptic
brackets” as

Sym
u1,u2

[
e(a)(u1),

[
e(a)(u2), e

(a±1)(v)
}
χ

}

χ

= 0 (|a| = 0), (5.10.13)

Sym
u1,u2

[
e(a)(u1),

[
e(a+1)(v1)

[
e(a)(u2), e

(a−1)(v2)
}
χ

}

χ

}

χ

= 0 (|a| = 1), (5.10.14)

Sym
u1,u2

[
f (a)(u1),

[
f (a)(u2), f

(a±1)(v)
}
ξ

}

ξ

= 0 (|a| = 0), (5.10.15)

Sym
u1,u2

[
f (a)(u1),

[
f (a+1)(v1)

[
f (a)(u2), f

(a−1)(v2)
}
ξ

}

ξ

}

ξ

= 0 (|a| = 1). (5.10.16)

5.10.1 More on Mode Expansions

Although we would like to work with the currents directly, it would still be helpful to have a look at
their mode expansions. There are infinitely many groups of relations as α can be any non-negative
integer, but there are finitely many terms in each relation at each order. At order q0, for instance,
the ee relations read

e
(a)
m+1,0e

(b)
n,0 −HAab

1 H−Mab
2 e

(a)
m,0e

(b)
n+1,0 = (−1)|a||b|

(
HAab

1 e
(b)
n,0e

(a)
m+1,0 −H−Mab

2 e
(b)
n+1,0e

(a)
m,0

)
, (5.10.17)

which coincide with the ee relations for the toroidal algebra. In fact, all the relations at q0 are the
same as those in the toroidal case. Therefore, the elliptic subalgebra E0 at order q0 is isomorphic
to the toroidal algebra T. This is expected as the elliptic algebra E reduces to T in the limit q → 0.

As another example, let us also write the ψe relations at order q1 here:

(
HMab

2 U −HAab
1 V

)((
−H−Aab

1 HMab
2 UV −1 −HAab

1 H−Mab
2 V U−1

)
ψ
(a)
±,0
(
C∓1/2U

)
e
(b)
0 (V )

+ψ
(a)
±,1
(
C∓1/2U

)
e
(b)
0 (V ) + ψ

(a)
±,0
(
C∓1/2U

)
e
(b)
1 (V )

)

=
(
HAab

1 HMab
2 U − V

)((
−HAab

1 HMab
2 UV −1 −H−Aab

1 H−Mab
2 V U−1

)
ψ
(a)
±,0
(
C∓1/2U

)
e
(b)
0 (V )

+ψ
(a)
±,1
(
C∓1/2U

)
e
(b)
0 (V ) + e

(b)
1 (V )ψ

(a)
±,0
(
C∓1/2U

))
,

(5.10.18)
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from which we can write the corresponding mode relations. The other relations can be obtained in
a similar manner. For relations at higher orders of q, there would be more terms with larger ranges
of modes in the coefficients. In general, at order qα, the ψ±

(
C∓1/2U

)
e(V ) relations read

(
HMab

2 U −HAab
1 V

) α∑

γ=0

∑

α1,α2
α1+α2=α−γ

Kγ(Aab)ψ
(a)
±,α1

(
C∓1/2U

)
e(b)α2

(V )

=
(
HAab

1 HMab
2 U − V

) α∑

γ=0

∑

α1,α2
α1+α2=α−γ

Kγ(−Aab)e(b)α2
(V )ψ

(a)
±,α1

(
C∓1/2U

) (5.10.19)

for some functions Kγ coming from the expansions of (the product of) the q-Pochhammer symbols.
Here, we have suppressed the other indices and arguments in Kγ for brevity. In particular, K0 = 1.
The e(U)e(V ) relations have the same coefficients (with an extra sign factor (−1)|a||b|) while for
the ψ± (C∓U) f(V ) and f(U)f(V ) relations, we simply have Aab ↔ −Aab on both sides. We can
then write the mode relations at each order of q from these current relations.

Heisenberg modes Similar to the discussions on the toroidal algebras above, as well as some
elliptic deformed algebras in [229], we may expand the ψ± modes as

ψ
(a)
+ (U) = H

−k(a)0
1 exp


∑

n̸=0

k(a)n U−n


 , ψ

(a)
− (U) = H

l
(a)
0
1 exp


∑

n̸=0

l
(a)
−nU

n


 . (5.10.20)

For convenience, we shall still refer to the k and l modes as Heisenberg modes. Notice that the
sums are now over Z\{0}. Moreover,

ψ
(a)
+,n = H

−k(a)0
1




∞∑

m=0

1

m!

∑

ri ̸=0
r1+···+rm=n

kr1kr2 . . . krm


 , (5.10.21)

ψ
(a)
−,n = H

−l(a)0
1




∞∑

m=0

1

m!

∑

ri ̸=0
r1+···+rm=n

lr1 lr2 . . . lrm


 . (5.10.22)

In particular, k
(a)
0 and l

(a)
0 are not equal to ψ

(a)
±,0 (or ψ

(a)
±,0,0) here. Nevertheless, the Heisenberg

modes may still play the role that raises or lowers the e, f modes. More explicitly,
[
k(a)r , k(b)s

]
=
[
l(a)r , l(b)s

]
=
[
k
(a)
0 , l(b)s

]
=
[
k(a)r , l

(b)
0

]
= 0, (5.10.23)

[
k
(a)
r ̸=0, l

(b)
s

]
= δr+s,0

1

r

1

1− qr
(
C−r − Cr

)
H−rMab

2

(
HrAab

1 − qrH−rAab
1

)
, (5.10.24)

[
k
(a)
0 , e(b)n

]
= −Aabe(b)n ,

[
k
(a)
0 , f (b)n

]
= Aabf

(b)
n , (5.10.25)

[
l
(a)
0 , e(b)n

]
= Aabe

(b)
n ,

[
l
(a)
0 , f (b)n

]
= −Aabf (b)n , (5.10.26)

[
k
(a)
r ̸=0, e

(b)
n

]
=

1

r

1

1− qrC
−r/2H−rMab

2

(
HrAab

1 −H−rAab
1

)
e
(b)
n+r, (5.10.27)

[
k
(a)
r ̸=0, f

(b)
n

]
= −1

r

1

1− qrC
r/2H−rMab

2

(
HrAab

1 −H−rAab
1

)
f
(b)
n+r, (5.10.28)

[
l
(a)
r ̸=0, e

(b)
n

]
=

1

r

1

1− qrC
−r/2H−rMab

2

(
HrAab

1 −H−rAab
1

)
e
(b)
n−r, (5.10.29)

[
l
(a)
r ̸=0, f

(b)
n

]
= −1

r

1

1− qrC
r/2H−rMab

2

(
HrAab

1 −H−rAab
1

)
f
(b)
n−r. (5.10.30)

However, the ef relations in terms of k and l would be quite different from those of the toroidal
cases. This is one of the difficulties when discussing toric duality for elliptic algebras.
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5.10.2 Toric Duality

Let us have a brief discussion on toric duality for the elliptic cases. In fact, as discussed above, the

dressed currents E(a)(u), F (a)(u) and Ψ
(a)
± (u) introduced therein have the same relations as those

of the toroidal cases. Therefore, the previous transformations should also apply to the elliptic cases
using the dressed currents (with products replaced by correlators or normal orderings). Moreover,
by comparing these relations with the ones using the “bare” generators at each order qα, we may
write the correlators ⟨XY ⟩α in the expansion of q. For instance, from (5.10.19), we have

〈
Ψ

(a)
±
(
C∓1/2U

)
E(b) (V )

〉
α
=

α∑

γ=0

∑

α1,α2
α1+α2=α−γ

Kγ(Aab)ψ
(a)
±,α1

(
C∓1/2U

)
e(b)α2

(V ), (5.10.31)

〈
E(b) (V )Ψ

(a)
±
(
C∓1/2U

)〉
α
=

α∑

γ=0

∑

α1,α2
α1+α2=α−γ

Kγ(−Aab)e(b)α2
(V )ψ

(a)
±,α1

(
C∓1/2U

)
. (5.10.32)

Nevertheless, let us still take a look at the original bare generators e, f , ψ± directly in the followings
for completeness.

Suppose that the node 𭟋 is dualized. Then the currents associated to a ̸= 𭟋,𭟋 ± 1 (and hence
C) should remain invariant. For a = 𭟋 ± 1, we expect the currents to have a combination of a
and 𭟋 currents/modes similar to the ones in the toroidal cases. Let us recall that for the toroidal
algebras, we have

e′(a)(U) =
[
e
(𭟋)
0 , e(a)(U)

}
H

Aa𭟋
1

, (5.10.33)

where the deformed bracket is given by [x, y}q = xy − (−1)|x||y|qyx. Likewise, for the rational
algebras, we have

e′(a)(U) =
[
e
(𭟋)
0 , e(a)(U)

}
. (5.10.34)

As a result, each transformation is determined by its corresponding version of the bracket. More-
over, these are preciously the brackets that appear in their Serre relations. Therefore, we propose
that the elliptic version of the bracket is used here:

e′(a)(U) =
[
e(𭟋)(V ), e(a)(U)

}
χ

∣∣∣∣
V 0

, (5.10.35)

where χ represents the elliptic deformed bracket as mentioned before and V 0 indicates that we only
take the terms of order V 0. More explicitly, using the q-binomial theorem, we have

e′(a)(U) =
∞∑

n=0

(
H

2Aa𭟋
1 ; q

)
n

(q; q)n

(
qH

−Aa𭟋
1 H

Ma𭟋
2 U

)n

(
e
(𭟋)
−n e

(a)(U)− (−1)|a|HAa𭟋
1 H

−2nMa𭟋
2 U−2ne(a)(U)e(𭟋)

n

)
.

(5.10.36)

Likewise,

f ′(a)(U) =
∞∑

n=0

(
H

−2Aa𭟋
1 ; q

)
n

(q; q)n

(
qH

Aa𭟋
1 H

−Ma𭟋
2 U−1

)n

H
Aa𭟋
1 −H−Aa𭟋

1(
f (a)(U)f (𭟋)

n − (−1)|a|H−Aa𭟋
1 H

2nMa𭟋
2 U2nf

(𭟋)
−n f

(a)(U)
)
.

(5.10.37)

For the node 𭟋, we expect that ψ′
± are still given by the inverse currents, that is,

ψ
′(𭟋)
± (U) = ψ

(𭟋)
±
(
H

2Ma𭟋
2 U

)−1
. (5.10.38)
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Analogously, it is natural to conjecture that e′(𭟋) and f ′(𭟋) would have the same forms as in the
toroidal algebras. In other words e′ = f>0ψ

−1
+ + f≤0ψ

−1
− , f ′ = −e≥0ψ

−1
+ − e<0ψ

−1
− , where we have

omitted the different arguments in different factors for brevity.

Indeed, the inverse currents are consistent with the relations under toric duality. For instance, the
e′(a)e′(𭟋) relation contains

e(a)(U)E (𭟋)F (𭟋)
± ψ

(𭟋)
±
(
C∓1/2H

2Ma𭟋
2 V

)−1

=(−1)|a|U−1V H
Ma𭟋
2

(
UV −1H

−Aa𭟋
1 H

−Ma𭟋
2 ; q

)
∞(

U−1V H
−Aa𭟋
1 H

Ma𭟋
2 ; q

)
∞

(
qU−1V H

Aa𭟋
1 H

Ma𭟋
2 ; q

)
∞(

qUV −1H
Aa𭟋
1 H

−Ma𭟋
2 ; q

)
∞

F (𭟋)
± ψ

(𭟋)
±
(
C∓1/2H

2Ma𭟋
2 V

)−1
e(a)(U)E (𭟋) + . . . ,

(5.10.39)

where E(𭟋) (resp. F (𭟋)
± ) sketchily indicates the factors containing only e(𭟋) (resp. f (𭟋)) modes. The

ellipsis stands for the extra terms coming from exchanging these factors which should be cancelled
in the whole expression. Recall that A′

a𭟋 = −Aa𭟋 and M ′
a𭟋 = −Ma𭟋. As we can see, this recovers

the correct coefficient for the e′(a)e′(𭟋) relation.

Higgsing Similar to the rational and toroidal cases, the surjection (if it exists) induced from
higgsing should leave the central element C and all but two (say, a and a + 1) currents invariant
(with a possible relabelling of nodes). However, due to the complication at higher orders of q, it is
more difficult to write the currents associated to a′ in terms of those for a and a+1. Nevertheless,
we may still conjecture that higgsing would also give subalgebras in the elliptic case, at least in
certain one-parameter degeneracy.

5.11 Heisenberg Modes for Chiral Cases

The transformations of the algebras for chiral quivers under toric duality are more difficult to find
since there does not seem to have the underlying affine Lie algebras and their relations can vary
case by case. A preliminary discussion can be found in [16, §4.2]. Here, we shall just make some
comments on the mode expansions. Similar to the discussions for non-chiral quivers, we may also
take the mode expansions as

ψ
(a)
+ (U) = exp

(∑

n∈Z
k(a)n U−n

)
, ψ

(a)
− (U) = exp

(∑

n∈Z
l
(a)
−nU

n

)
. (5.11.1)

We shall still refer to k and l as Heisenberg modes. Notice that the conventions when writing k0
and l0 are slightly different from before, and the sums are over Z.

Consider two nodes a and b in any chiral quiver. Suppose that there are |a→ b| = r and |b→ a| = s.
Then

[
k
(a)
0 , l

(b)
0

]
= log

(
C−r−s) = −(r + s)βc, (5.11.2)

[
k
(a)
0 , k

(b)
0

]
= −

[
l
(a)
0 , l

(b)
0

]
= log

(
Cr−s

)
= (r − s)βc, (5.11.3)

[
k
(a)
m̸=0, k

(b)
n

]
=
[
l
(a)
m̸=0, l

(b)
n

]
=
[
k
(a)
0 , l

(b)
n̸=0

]
=
[
k
(a)
m̸=0, l

(b)
0

]
= 0. (5.11.4)

Moreover, we have

[
k
(a)
0 , e(b)(V )

]
=
[
l
(a)
0 , e(b)(V )

]
=





log
(
HabV −(r−s)) e(b)(V ), r > s

log
(
−HabV −(r−s)) e(b)(V ), r < s

log ((−1)rHab) e(b)(V ), r = s

, (5.11.5)
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[
k
(a)
0 , f (b)(V )

]
=
[
l
(a)
0 , f (b)(V )

]
=





− log
(
HabV −(r−s)) f (b)(V ), r > s

− log
(
−HabV −(r−s)) f (b)(V ), r < s

− log ((−1)rHab) f (b)(V ), r = s

, (5.11.6)

where Hab =
r∏
i=1

H
1/2
ab,i

s∏
j=1

H
1/2
ba,j . It would be more useful to write them as

e±
1

r−s
k
(a)
0 e(b)n e∓

1
r−s

k
(a)
0 = sgn(r, s)H

± 1
r−s

ab e
(b)
n∓1 (r ̸= s), (5.11.7)

e±
1

r−s
k
(a)
0 f (b)n e∓

1
r−s

k
(a)
0 = sgn(r, s)H

∓ 1
r−s

ab f
(b)
n±1 (r ̸= s), (5.11.8)

ek
(a)
0 e(b)n e−k

(a)
0 = sgn(r, s)Habe(b)n (r = s), (5.11.9)

ek
(a)
0 f (b)n e−k

(a)
0 = sgn(r, s)Habf (b)n (r = s), (5.11.10)

(5.11.11)

and likewise for l
(a)
0 , where we have defined

sgn(r, s) =





1, r > s

(−1)r, r = s

−1, r < s

. (5.11.12)

The remaining relations would be different for the toroidal and the elliptic cases. For the toroidal
algebras, we have

[
k(a)m , e(b)n

]
=

1

m
C−m/2


∑

j

Hm
ba,j −

∑

i

H−m
ab,i


 e

(b)
n+m (m > 0), (5.11.13)

[
k(a)m , f (b)n

]
= − 1

m
Cm/2


∑

j

Hm
ba,j −

∑

i

H−m
ab,i


 f

(b)
n+m (m > 0), (5.11.14)

[
l
(a)
−m, e

(b)
n

]
=

1

m
Cm/2


∑

j

Hm
ba,j −

∑

i

H−m
ab,i


 e

(b)
n+m (m > 0), (5.11.15)

[
l
(a)
−m, f

(b)
n

]
= − 1

m
C−m/2


∑

j

Hm
ba,j −

∑

i

H−m
ab,i


 f

(b)
n+m (m > 0), (5.11.16)

[
k(a)m , e(b)n

]
=
[
k(a)m , f (b)n

]
=
[
l
(a)
−m, e

(b)
n

]
=
[
l
(a)
−m, f

(b)
n

]
= 0 (m < 0), (5.11.17)

[
k(a)m , l(b)n

]
= δm+n,0

1

m

(
C−m − Cm

)

δm>0

∑

j

Hm
ba,j + δm<0

∑

i

H−m
ab,i


 (m ̸= 0), (5.11.18)

where δcond is 1 when the condition cond is satisfied and 0 otherwise. Notice that we would only
raise the e, f modes using the non-zero Heisenberg modes. If we take t = 1 in the balancing factor
(UV )

t
2
χab for the toroidal algebras, then only km and l−m with m < 0 would lower the e, f modes

while the other non-zero Heisenberg modes would commute with them. This would also make
certain changs in (5.11.7)∼(5.11.10).
For the elliptic algebras, we have

[
k(a)m , e(b)n

]
=

1

m

1

1− qmC
−m/2


∑

j

Hm
ba,j −

∑

i

H−m
ab,i


 e

(b)
n+m, (5.11.19)
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[
k(a)m , f (b)n

]
= − 1

m

1

1− qmC
m/2


∑

j

Hm
ba,j −

∑

i

H−m
ab,i


 f

(b)
n+m, (5.11.20)

[
l
(a)
−m, e

(b)
n

]
=

1

m

1

1− qmC
m/2


∑

j

Hm
ba,j −

∑

i

H−m
ab,i


 e

(b)
n+m, (5.11.21)

[
l
(a)
−m, f

(b)
n

]
= − 1

m

1

1− qmC
−m/2


∑

j

Hm
ba,j −

∑

i

H−m
ab,i


 f

(b)
n+m, (5.11.22)

[
k(a)m , l(b)n

]
= δm+n,0

1

m

1

1− qm
(
C−m − Cm

)

∑

i

H−m
ab,i −

∑

j

Hm
ba,j


 , (5.11.23)

where m ̸= 0. If we take t = 1 in the balancing factor (UV )
t
2
χab , then 1/(1− qm) would be changed

to 1/ (q−m − 1).

5.12 Free Field Realizations

Let us now discuss the free field realizations of the toroidal and elliptic quiver BPS algebras. From
the discussions of the dressed operators above, it suffices to consider the toroidal case. For non-
chiral quivers, the level (1, 0) representation (when c = h1) was given in [?] with notations and
conventions therein. Therefore, we shall only mention the cases for chiral quivers here.

Let us rewrite the balancing factor in (5.8.10) as (
∏
Hab,i)

1/2 (
∏
Hba,i)

−1/2 (UV )χab/2 for conve-
nience. We have essentially made two changes here. First, we use the convention t = 1 instead
of −1. Moreover, the extra factors with Hab,i (and Hba,i) are included so as to remove the half
integer powers of these parameters (just like what (5.8.10) does for the spectral parameters). Of
course, these extra factors can always be re-absorbed into the OPEs of the free fields that will be
introduced below.

In the remaining part of this section, we shall write q = C. It would also be convenient to use the

standard notation [n]q =
qn−q−n

q−q−1 . Let us write the OPE of two vertex operators as

V1(Z)V2(W ) = ⟨V1(Z)V2(W )⟩(V1(Z)V2(W )), (5.12.1)

where we have used (. . . ) to denote the normal ordering and ⟨. . . ⟩ is the contraction. In partic-
ular, (V1(Z)V2(W )) = (V2(W )V1(Z)). Notice that here, the contraction ⟨V1(z)V2(w)⟩ which is a
rational function should be understood as a Laurent series that converges in the region |Z| ≫ |W |.
Therefore, it would be helpful to recall that for any rational function F (Z), we have

[F (Z)]|Z|≫1 − [F (Z)]|Z|≪1 = −
∑

i

δ

(
Z

ri

)
Resri

F (Z)

Z
, (5.12.2)

where [. . . ]A denotes the Laurent expansion in the region A and the sum is over all the poles ri of
F other than 0 and ∞. As we are actually considering the q-deformed algebras, we shall also use
the difference operator ∂ such that

∂V(Z) = V (qZ)− V
(
q−1Z

)

(q− q−1)Z
. (5.12.3)
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Let us introduce the generators satisfying

[
x(a)r , x(b)s

]
= δr+s,0

[r]2q
r

∑

i

qHba,i,

[
y(b)r , y(a)s

]
= δr+s,0

[r]2q
r

∑

i

qHab,i,

[
γ(a)r , γ(b)s

]
= δabδr+s,0

[r]2q
r
,

(5.12.4)

with the other commutators vanishing. Consider the currents

X(a)(U) = log(U) + x
(a)
−
(
q−1U

)
− x(a)+ (U) + x

(a)
0 log(U) + α(a)

x ,

Y (a)(U) = log(U) + y
(a)
− (q−1U)− y(a)+ (U)− y(a)0 log(V )− α(a)

y ,

Γ
(a)
± (U) = ±γ(a)− (U)∓ γ(a)+ (U)± γ̃(a) ± γ(a)0 log(U),

(5.12.5)

where

x
(a)
± (U) =

∑

r>0

x
(a)
r

[r]q
U∓r (5.12.6)

and likewise for y
(a)
± (U), γ

(a)
± (U). We have also introduced the elements α

(a)
x,y, γ̃(a) such that

〈
exp

(
α(a)
x

)
Ux

(a)
0

〉
= U |a→b|,

〈
exp

(
α(a)
y

)
Uy

(a)
0

〉
= U−|a→b|,

(
exp

(
α
(a)
i

)
exp

(
α
(b)
i

))
= ϵ(a, b)δa̸=b

(
exp

(
α
(a)
i + α

(b)
i

))
(i = x, y),

(
exp

(
α
(a)
i

)
exp

(
α
(b)
j

))
= ε(a, b)δa̸=b

(
exp

(
α(a)
x + α(b)

y

))
, (i ̸= j)

〈
Uγ

(a)
0 exp

(
γ̃(b)
)〉

= U δab .

(5.12.7)

Here, ϵ(a, b) and ε(a, b) can be any non-zero numbers satisfying ϵ(a,b)
ϵ(b,a) = (−1)χab+1 and ε(a,b)

ε(b,a) = −1
(for a ̸= b). We can then obtain the OPEs for X(a), Y (a),Γ

(a)
± from

〈
exp

(
x
(a)
+ (U)

)
exp

(
x
(b)
− (V )

)〉
=
∏

i

(
1− qHba,i

V

U

)
,

〈
exp

(
y
(b)
+ (U)

)
exp

(
y
(a)
− (V )

)〉
=
∏

i

(
1− qHab,i

V

U

)−1

,

〈
exp

(
γ
(a)
+ (U)

)
exp

(
γ
(b)
− (V )

)〉
=

(
1− V

U

)−δab
.

(5.12.8)

With these currents, we have

ψ
(a)
+ (U) =

1

q−1 − q

(
exp

(
x
(a)
−
(
q−1/2U

)
− x(a)+

(
q1/2U

)
− y(a)+

(
q−1/2U

)
+ y

(a)
−
(
q−3/2U

)))
,

ψ
(a)
− (U) =

1

q−1 − q

(
exp

(
x
(a)
−
(
q−3/2U

)
− x(a)+

(
q−1/2U

)
− y(a)+

(
q1/2U

)
+ y

(a)
−
(
q−1/2U

)))
,

e(a)(U) =
(
exp

(
X(a)(U)

)
∂ exp

(
Γ
(a)
− (U)

))
,

f (a)(U) =
(
exp

(
Y (a)(U)

)
exp

(
Γ
(a)
+ (U)

))
.

(5.12.9)

This follows from a straightforward check with the use of the property δ(Z/W )f(Z) = δ(Z/W )f(W )
of the formal delta function for any Laurent series f(Z).
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From the above discussions, we can also obtain the free field realization for the elliptic algebras

using the dressed operators32. In other words, Ψ
(a)
± (U), E(a)(U), F (a)(U) have the same expressions

as the right hand sides in (5.12.9).

5.13 Outlook

The shallow discussion here is just the tip of the iceberg, and there are still many open problems left.
For instance, it could be useful to consider the free fermion representations [230] in the discussions
of R-matrices. As such formalism is intimately related to crystal melting [41, 231], it could then be
possible to give a full description of the contour integral forms in the RT T relation.

One may also use the Wakimoto representations [232,233]. For the conifold case, this was analyzed
very recently in [234]. It was shown that one can correctly recover the corresponding quiver Yangian
starting from the N = 2 superconformal W algebra. In general, a notable feature of R-matrices
constructed from Wakimoto realizations is that they would depend not only on u − v but also on
other more spectral parameters.

In the constructions of R-matrices for various representations to reproduce the quiver Yangian
relations, the screening operator is always a useful tool. For instance, a free field realization for the
(truncations of) W algebra was constructed in [235] as the kernel of some screening fields acting on
the tensor product of current algebras. This was shown to be equivalent to the free field realization
from Miura operators in [66]. It would be interesting to investigate this in the context of matrix
extended W algebras (some relevant discussions can be found in [14, §5]).

When starting from certain algebra/theory to construct the R-matrix and reproduce the quiver
Yangian relations, one often benefits from the underlying Kac-Moody (super)algebra. Therefore,
it would be helpful to see if there is any similar approach for any CY3/quivers that extends the
cases of generalized conifolds. Moreover, the study of R-matrices for quiver Yangians might lead
to further applications to the Bethe/gauge correspondence [212–214]. Recently, it was later found
in [58] that a consistent construction of R-matrices is restricted to symmetric quivers (for unshifted
quiver Yangians) and hence rules out those associated to CY3 with compact divisors. Therefore,
any further generalization would require a more delicate treatment.

As both the quiver Yangians and MO Yangians are constructed from quivers, it is natural to
expect some connections of the two Yangian algebras. However, the precise relation between them
is still not known in general. A possible direction could be the notion of tripled quivers. Further
explorations of these quantum algebras might give us a deeper understanding of various physical
and mathematical problems.

The coproduct plays an important role when studying the Bethe/gauge correspondence from the
BPS quiver algebra [14,58]. Similar to the map from the quiver Yangian to theW-algebra, it would
be natural to wonder whether we can write some RT T -like presentation of the quiver Yangian,
which might in turn shed light on the Bethe/gauge correspondence. The construction of the co-
product we have benefits from the untwisted affine Lie superalgebra of A-type. A natural extension
would be a more thorough study on quiver Yangians for the remaining generalized conifolds (i.e.,
(M,N) = (2, 0), M = N), as well as C3/(Z2 × Z2). All of them have underlying Kac-Moody
algebras. It is worth noting that a method of computing the coproduct perturbatively is given
in [58, Appendix C] for generalized conifolds. For the cases with M = N , due to the vanishing
Killing forms33, we would probably need to consider the algebra gl(M |M). This could be sim-
ilar to the Khoroshkin-Tolstoy approach [236, 237]. More generally, for toric CYs with compact

32Notice that the dressed operators discussed above are for non-chiral quivers. However, the construction is similar
for the chiral cases.

33This is also the situation for D(2, 1;α) and osp(2N +2|2N). The former is associated to the quiver Yangian for
C3/(Z2 × Z2). For the latter case, we do not have associated quiver Yangians so far. It would also be interesting to
see whether there can be similar (BPS) algebras for the orthosymplectic cases.



Chapter 5. BPS Algebras and Crystal Melting 130

4-cycles, the quiver Yangians do not seem to have such underlying Kac-Moody algebras. It would
be desirable to find the coproduct of the rational algebra associated to any quiver.

Apart from the above perspectives, the study of quiver BPS algebras and W-algebras could give
new insights in the study of BPS/CFT correspondence [79, 80]. In particular, it is believed that
both the quiver Yangians and the WM |N×∞ algebras should play the role as the double of the
corresponding cohomological Hall algebras [57, 69]. This would also be intimately related to the
wall crossing phenomenon.

Regarding the truncations and VOAs, we have only explicitly discussed the crystal configurations
here for l = 1. As analyzed in [57], when the crystal is truncated at some atom, this leads to some
extra conditions that ϵ̃I should satisfy on the quiver Yangian side. On the other hand, recall that
we also have certain condition on ϵi for Φ to be homomorphic, and the truncation comes from the
parameter l on the W-algebra side. We expect that the cut at l would not provide all the possible
truncations of the crystal. It is very likely that the coefficients in the actions of some U -modes
become zero due to the truncation conditions on ϵ̃I from the quiver Yangians. Besides, there are
more general truncations, namely the xl3yl2zl4wl1-algebras, as mentioned above. They might also
give possible truncations on the crystal. Moreover, it would be interesting to see whether other
crystal configurations, such as crystals in other chambers [12, 44, 151] and 2d crystals [14, 58, 152],
could give similar relations.

It still remains an open question whether the quiver Yangians for more general geometry, espe-
cially those associated to toric CYs with compact divisors, could have some W-algebras as their
truncations. It might be possible to construct the VOAs from the quiver Yangians in this setting
and compare them with other constructions.

We may also consider the truncations of the toroidal and even elliptic quiver BPS algebras. It could
be possible that they would lead to deformations of the rational VOAs. In particular, the toroidal
algebra for C3 is shown to be a q-deformation of the W1+∞-algebra in [238]. We conjecture that
there exist certain q-deformations of the WM |N×∞-algebras such that for toroidal BPS algebras T
associated to the generalized conifolds, we have the following commutative diagram which would
give the 5d AGT correspondence:

T U(qWM |N×l)

T⊗̂T U(qWM |N×l1)⊗̂U(qWM |N×l2)

Φl

Φl1
⊗ Φl2

∆ ∆̃l1,l2

, (5.13.1)

where Φl are some surjections and the hats denote the completions of the algebras. On the BPS
algebra side, this would require a detailed study on the so-called horizontal representations of the
algebras with non-trivial central element C so that we can get vertex operators from the generators.
On the VOA side, we need to find some suitable deformations of the WM |N×∞-algebras studied
in [69, 70].

Recall that there is another duality for toric quiver gauge theories known as the specular duality,
and we have seen that many concepts and quantities enjoy nice properties under such duality. As
specular duality does not preserve the mesonic moduli space (except self-dual cases) although the
Hilbert series would agree up to some fugacity maps, we do not expect the quiver BPS algebras
to be isomorphic under specular duality. However, it exchanges the internal and external perfect
matchings, which are associated to the internal and external points of the toric diagram respectively,
of the dual brane tilings.

As each arrow in the quiver can be written in terms of a product of some perfect matchings, the
arrows also have a one-to-one correspondence for specular dual theories. It is then natural to
wonder if the charge assignments would also follow this correspondence of the arrows. However,
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we have checked several examples and this is not the case, even for self-dual ones34. Nevertheless,
as argued in [57], the perfect matchings can be used to determine certain truncations of the quiver
Yangian. This is because such truncations come from adding D4-branes to the divisors of the toric
CY threefold, which correspond to the lattice points of the toric diagram. In [57], such truncations
were only identified for external (or more precisely, corner) perfect matchings. It could be possible
that the truncations from D4-branes associated to internal points can be studied from the specular
dual case, where the internal perfect matchings are mapped to the external ones35.

34For a self-dual quiver, an arrow would often be mapped to a different arrow in the quiver.
35Of course, there can also be external lattice points that are not at the corners. Moreover, for non-reflexive

polygons, specular duality can relate brane tilings on Riemann surfaces with higher genus [239].
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Chapter 6

Chiral Rings and K-Stability

So far, most of our discussions are restricted to the toric varieties. Although extending the study
to more general settings could be difficult, in this chapter, we shall consider the chiral rings with
the tools of K-stability that in principle can be applied to any geometry.

It is known mathematically that the K-stability of a ring can be determined by considering the so-
called test symmetries that “perturb” the Hilbert series of the associated variety. However, explicit
calculations have only been performed for the simplest cases before. Here, we consider more non-
trivial examples, and discuss various ways to find the test symmetries. In particular, we give the
first examples to our best knowledge whose test symmetries would also “perturb” the numerators
of the Hilbert series. Moreover, we will also mention some subtleties previously overlooked in the
calculations that are worth more careful study in future. Physically, it is conjectured that a chiral
ring is a ring of some CFT if and only if it is K-stable. After illustrating the K-stability calculations
with various examples, ranging from instanton moduli spaces to phenomenological models, we find
some counterexamples of the conjecture. Nevertheless, this does not rule out the possibility that
being K-stable still serves as a necessary condition.

Before we discuss these results in more detail, let us first review some preliminaries of the chiral
rings, as well as the concept of K-stability. For supersymmetric gauge theories in 4d with N = 1,
the chiral rings are important in the study of their dynamics; this is the set of operators annihi-
lated by Q̂α̇, defined modulo {Q̂α̇, }, closed under addition and multiplication, whereby forming
a ring structure. In [89], the interesting question of when a polynomial ring is the chiral ring of a
superconformal field theory (SCFT) was posed. Since many new symmetries might emerge when a
theory flows to IR (e.g. some free operators in the IR have these new symmetries acting on them),
the idea of chiral ring stability was introduced in [89] to determine whether there could be some
new ring that would destabilize the original ring in the sense that the destabilizing ring would have
a larger symmetry and would give no less central charge compared to the original ring1. It was
argued in [89] that this is equivalent to the concept of K-stability2. In [160, 240], for a polarized
ring with symmetry/Reeb vector field ζ, K-stability is determined via perturbing the ring by a test
symmetry ϵη for some symmetry η and small ϵ.

The (Donaldson-)Futaki invariant, which constitutes the criterion for K-stability, was originally
defined in [241] and then generalized in [242] and [243] as an obstruction to constructing metrics:
its vanishing is a necessary condition of the existence of Kähler-Einstein metrics on Fano varieties.
For general compact complex manifolds, it is conjectured that K-stability is equivalent to the
existence of constant scalar curvature Kähler (cscK) metric.

In [160, 240], the notion of K-stability was extended to any Sasakian manifold, including irregular
ones. It was shown that if a Sasakian manifold S with Reeb vector field ζ has a constant scalar
curvature metric, then its cone (Cone(S), ζ) is K-semistable (see Definition 6.1.2). In particular, we
can use Hilbert series (HS) to compute Futaki invariants. For an affine variety X ⊂ Cn cut out by

1Notice that this does not violate the a-theorem which requires the central charge to decrease under RG flow
since the original ring is not a ring of an SCFT.

2Therefore, we will use the words “stability” and “K-stability” interchangeably throughout.
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some I ⊂ C[x1, . . . , xN ] such that X = Spec(R), where R = C[x1, . . . , xN ]/I, the symmetry/Reeb
field ζ ∈ t acts on the functions on X with positive weights, where t is the Lie algebra of the torus
action T ⊂ Aut(X). Then we can write the HS with respect to the weighting of ζ (strictly, we
should think of the HS as being associated to the weighted projective variety obtained from the
projectivization of the affine variety, keeping the weights as multi-degrees). To see if there exists
a destabilizing ring which has a larger symmetry, we perturb the HS with a test symmetry η by
considering (ζ + ϵη). The information of the grading induced by η is reflected by the coefficients
(and derivatives thereof) in the Laurent expansion for the perturbed HS. With this data, we may
follow the standard algebro-geometric set-up to compute the Futaki invariant.

Such idea can then be applied to various aspects in physics. It was shown that the Lichnerowicz
obstruction in [244] is in fact the problem of K-semistability for deformations arising from Rees
algebras of principal ideals. Moreover, K-(semi)stability for product test configurations is equivalent
to volume minimization. In light of AdS/CFT, this is then related to a-maximization [113]. For
a general test configuration induced by η, if we find some destabilizing ring at the central fibre
(i.e., the flat limit of the test configuration) whose symmetry is ζ(ϵ) parameterized by ϵ, then
following [89], the Futaki invariant is equal to the derivative of a0(ζ(ϵ)) with respect to ϵ, where
a0(ζ(ϵ)) is the leading coefficient in the Laurent expansion for the HS of the destabilizing ring
weighted by ζ(ϵ). It turns out that this a0(ζ(ϵ)) is inversely proportional to the central charge
of the destabilizing chiral ring. Hence, K-stability, serving as some generalized a-maximization, is
naturally related to the conformality of supersymmetric gauge theories.

6.1 Chiral Rings of Supersymmetric Gauge Theories

We shall focus on the chiral rings of (3+1)-dimensional SCFT [245–247] for whose supersymmetry
we will write in N = 1 language. In short, this is simply the set of operators Oi which are
“holomorphic” in that they are annihilated by the supercharges Q̄α̇ so that they are defined modulo
the cohomolgy thereof; hence there exists an operator χ such that

Oi ∼ Oi +
[
Q̄α̇, χ

]
. (6.1.1)

The ring structure follows from the fact that (1) there is an identity operator O = I, (2) the sum
and product of two chiral operators remain chiral, and (3) the structure constant is that for the
(spacetime independent) OPE for the VEVs: OiOj =

∑
k

CkijOk. In fact, this ring is a (finite)

commutative ring with identity.

Computationally, the classical chiral ring can be determined as follows. We have a superpotential
W , which is a holomorphic polynomial in Oi, each of which can be thought of as a matrix operator
in an appropriate representation of the gauge group, with over-all trace. Consider all (complex)
components ϕi of all the Oi, and work over the polynomial ring R = C[ϕi]. The F-terms, constituted
by the partial derivatives of W with respective to ϕi, can be thought of as the Jacobian ideal
J = ⟨∂ϕiW ⟩ ⊂ R. The chiral ring can then be thought of as the quotient ring R/J (giving us the
“master space” [28]), and then quotiented further by any polynomial relations which arise from the
traces, such as those obeyed by Newton relations. For example, for SU(N) theory with a chiral
field Φ in the adjoint, the chiral ring is freely generated by the single-trace operators tr(Φi) for
i = 0, 1, 2, . . . , N − 1 because any tr

(
Φi>N

)
can be written as Newton polynomials of the former

and any multi-trace operator is just products of these single-traces.

The above should be compared and contrasted with the calculation of the classical vacuum moduli
space (VMS), which is the GIT quotient of J by the complexified gauge group [248]. Computa-
tionally, this is done by considering the minimal set of gauge invariant operators (GIOs) Gj in the
theory, each being a single-trace operator, and thus a polynomial in the ϕi. Then the classical VMS
is the image of quotient ring R/J under the map {Dj} into S = C[Dj ] [34,36,249]. Importantly, in
AdS/CFT, this VMS is nothing more than the Calabi-Yau variety X which a single brane probes
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and whose world-volume gauge theory is the SCFT; for N parallel stack of D-branes, the VMS is
the N th symmetric product of X.

It should be emphasized that the classical chiral ring and the VMS both receive quantum cor-
rections due to strongly coupled effects such as instantons. Algebro-geometrically, the correc-
tion often corresponds to a complex structure deformation. For example, in N = 1 SQCD, the
classical chiral operators are the mesons M i

j = QiaQ̃
a
j and baryons Bi1...iN = ϵa1...aNQ

a1
i1
. . . QaNiN ,

B̃ = ϵa1...aN Q̃
a1
i1
. . . Q̃aNiN in terms of the quarks Qi and Q̃i, with the famous relation for the VMS:

Bi1...iN B̃j1...jN = M
[i1
j1
. . .M

iN ]
jN

. Interestingly, in [27], it was shown that all the classical VMSs are
affine Calabi-Yau (Gorenstein) singularities.

6.1.1 Hilbert Series

One of the most important quantities which characterize an algebraic variety X is the Hilbert
series. We have mentioned Hilber series in our previous discussions. For completeness, let us have
a more detailed discussion here. The relevance of computing the HS in relation to the volume
of the Sasaki-Einstein base in toric AdS/CFT has been the beautiful work of [113, 114, 250]. In
parallel, a plethystic programme was established [25, 26] addressing the key problem of counting
GIOs in gauge theory (q.v. [27–32]). Moreover, its properties have also been exploited to study
the phenomenology of the standard model, ranging from question of vacuum structure to operator
selection [33–40].

We recall that for a variety X in C[x1, ..., xk], the HS is the generating function for the dimension
of the graded pieces:

HS(t;X) =
∞∑

i=0

(dimCXi) t
i, (6.1.2)

where Xi, the i
th graded piece of X can be thought of as the number of independent degree i

(Laurent) polynomials on the variety X. The most useful property of HS is that it is a rational
function in t and can be written in 2 ways:

HS(t;X) =

{
Q(t)

(1−t)k , HS of first kind ;
P (t)

(1−t)dim(X) , HS of second kind .
(6.1.3)

Importantly, both P (t) and Q(t) are polynomials with integer coefficients and the powers of the
denominators are such that the order of the pole captures the dimension of the variety and the
embedding space Ck within which X is an algebraic variety, respectively for the first and second
kind.

Let us summarize a few key properties of the HS which we will need:

• It is not a topological invariant and does depend on embedding and choice of grading/weighting
for the coordinate ring for X. The weight comes from a choice of a symmetry/Reeb vector
field ζ of the theory. Typically, we choose the U(1)R symmetry of the SCFT to weight the
fields, and, thence the GIO variables of X;

• Written in the second kind, P (1) equals to the degree of the variety;

• Also in the second kind, if P (t) is palindromic, then Stanley’s theorem says this is equivalent
to X being Gorenstein [251], which for our purposes can be taken to mean affine Calabi-Yau;

• A Laurent expansion for the Hilbert series of second kind in (6.1.3) can be developed, as a
partial fraction expansion:

HS(t;X) =
Vn

(1− t)n + . . .
V3

(1− t)3 +
V2

(1− t)2 +
V1

1− t + V0 +O(1− t) , (6.1.4)
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where we see explicitly that the Hilbert series is a rational function and the degree of its most
singular pole is the dimension of X.

In the case of X being a toric Calabi-Yau variety of dimension 3 (such as in the vast majority
of known cases of AdS5/CFT4), the coefficients V0,1,2,3 are related directly to the Reeb vector
of X so that V3 is the volume of the spherical Sasaki-Einstein horizon3.

• In the notation of [89], suppose the underlying (Calabi-Yau) geometry (VMS) is X, of complex
dimension n = 3, we have a U(1)R symmetry ζ with the associated trial central charge a(ζ),
we perform the Laurent expansion of the Hilbert series as

HS(t = e−s, ζ;X) =
a0(ζ)

s3
+
a1(ζ)

s2
+ . . . (6.1.5)

Then, we have that

– the coefficient a0 is proportional to the (normalized) volume of the base over which X
is a cone (for example, X = C3 = Cone(S5));

– the trial a-charge (of order N2) is given by

a(ζ) =
27N2

32

1

a0(ζ)
; (6.1.6)

– the holomorphic volume (3, 0)-form Ω (from the Calabi-Yau condition of X) will be
chosen to have charge 2, which implies that a0 = a1;

– the coefficient a0(ζ) is a convex function in the symmetry generators [113].

• For complete intersection varieties, i.e., the codimension of X being exactly equal to the
number of defining polynomials, the HS is relatively easy to construct [25, 26]. In particular,
the simplest case of a complete intersection is that of a single defining equation and X
being codimension 1, viz., a hypersurface. For example, consider the quadric hypersurface
Q = {x2 + y2 + z2 + w2 = 0} in C4, otherwise known as the conifold singularity as a local
Calabi-Yau threefold. Suppose we weigh the variables as W (x, y, z, w) = (1, 1, 1, 1), then we
have 4 generators (variables), each of degree 1, obeying the one quadratic defining relation,
of degree 2. For each generator we place a factor of (1 − tW ) in the denominator, and for
each relation of degree d, we place a factor of (1 − td) in the numerator. Therefore, the HS

here is simply HS(t;Q) = 1−t2
(1−t)4 .

In fact, one can define a pair of inverse functions [26], the plethystic exponential PE[f(t)] and
the plethystic logarithm PL[f(t)] for any analytic function f(t) affording Taylor series about
0:

f(t) =
∞∑

n=0

ant
n ⇒





PE[f(t)] = exp

( ∞∑
n=1

f(tn)−f(0)
n

)
=

∞∏
n=1

(1− tn)−an

PL[f(t)] =
∞∑
k=1

µ(k)
k log(f(tk))

(6.1.7)

where µ(k) is the Möbius function, which for an integer k is equal to 0 if k has repeated prime
factors, equal to 1 if k = 1 and equal to (−1)n if k is a product of n distinct primes. That
the above pair are indeed inverses of each other is non-trivial and involves the arithmetic
properties of µ.

3The relation to the Reeb vector, at least for toric X, is as follows [114]. Refine the generating function into

tri-variate (this can always be done for toric X), in terms of ti=1,2,3 and set ti := exp(−biq) where b⃗ = (b1, b2, b3) is
the Reeb vector for the 3 isometries of X as a toric variety. Then Laurent expand f(t1, t2, t3) near q → 0 to compare
with (6.1.4).
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The remarkable fact is that (though it has poles at t = 1) the HS is analytic about t = 0
and can be used as the functional argument of PE and PL. Indeed, HS(t;X) for X being
the supersymmetric vacuum moduli space of the SCFT is the generating function for the
single-trace operators in the chiral ring and PE[HS(t;X)] counts the multi-trace operators.
Moreover, PL[HS(t;X)] is a polynomial for complete intersections and explicitly counts the
generators (the first positive terms) and relations (the first negative terms) for X of each
degree4. For our above conifold example, PL[HS(t;Q)] = 4t − t2, signifying 4 degree-one
generators obeying 1 quadratic relation.

• It should be emphasized that the generic variety, and chiral ring, is not complete intersection
and the presentation of the generators and relations could be rather complicated. In such
situations, the most standard method is to compute the Gröbner basis of X. The advantage
of the Gröbner basis method is that it is algebraic and algorithmic. We describe this in more
detail in Appendix J. On the other hand, as we are considering the Higgs branch, we can
also use another method, namely the Molien-Weyl integral, to compute HS. For a detailed
treatment, readers are referred to [25].

6.1.2 Flat Limits and Central Fibres

As mentioned above, (K-)stability and the Futaki invariant are related to the existence of a
destabilizing ring for X. We start with some test configuration Xt, that is, X with a one-
parameter subgroup η(t) : C∗ ↪→ GL(m,C). For any polynomial f , in our convention, we have
(η(t) · f)(x0, . . . , xm) = f(η(t)x0, . . . , η(t)xm). We will always assume that η(t) is diagonal un-
der a unitary change of basis. The test configuration now has the ring C[x0, . . . , xm]/It with
It = {η(t) · f |f ∈ I}, where I is the ideal defining the ring of X. Then to get the central fibre,
we need to take the flat limit defined as follows (see Appendix J for details on initial ideals and
polynomial ordering).

Definition 6.1.1. For any f ∈ I, we find the initial polynomial in(f) with respect to the ordering
defined by η(t) such that in(f) is the lowest weight polynomial. Then the flat limit of It is I0 =
lim
t→0

It = {in(f)|f ∈ I}.

Notice that, however, following [89,240], it should be a partial ordering rather than a total ordering.
For instance, consider the conifold w2+x2+ y2+ z2 = 0. If we have η(t) · (w, x, y, z) = (tw, x, y, z),
then the test configuration is t2w2 + x2 + y2 + z2 = 0. Taking the flat limit gives the central fibre
x2+y2+z2 = 0, rather than a single monomial. On the other hand, if we consider η(t)·(w, x, y, z) =
(t−1w, x, y, z), i.e., the test symmetry η with charges (−1, 0, 0, 0), we would get w2 = 0.

It is also worthing noting that for more general cases, if we simply take the initial polynomials of
the generators of the ideal, we may get a smaller ideal than the flat limit [252]5. To get the exact
flat limit, the strategy is to compute the Gröbner basis. Let us consider the twisted cubic curve
example in [253], where I = ⟨f1, f2, f3⟩ for f1 = w2 − xy, f2 = wy − xz, f3 = wz − y2, and the
action is η(t) = (t−16, t−4, t−1, 1). The test configuration is

ηf1 = t−32w2 − t−5xy, ηf2 = t−17wy − t−4xz, ηf3 = t−16wz − t−2y2. (6.1.8)

Naively, the flat limit is generated by w2, wy, wz. However, if we consider the Gröbner basis for
fi, we have

w2 − xy, wy − xz, wz − y2, xz2 − y3. (6.1.9)

Hence, the flat limit should really be generated by w2, wy, wz, xz2.

4For non-complete intersections, there are terms of higher orders known as syzygies that enumerates relations
among basic relations and generators.

5The reason behind it is actually related to the syzygies. For more details, see [253, 254].
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6.1.3 Futaki Invariant and K-Stability

Let us start with the (polarized) ring (X, ζ) with symmetry ζ. Throughout, by “polarized” we
mean that the ring is also equipped with a Reeb symmetry. Also note, by slight abuse of notation,
that we will use X for varieties and associated coordinate rings interchangeably. Then to find out
whether there would be a ring destabilizing X, we need to consider some test symmetry η. As
aforementioned, this is done by considering some test configuration Xt = C[xi]/It induced by the
test symmetry, and then taking the flat limit t → 0 to get the central fibre X0 = C[xi]/I0. For
general t, Xt would be isometric to X while X0 may or may not be trivial.

From [252], we know that the total weight wk of the action on the (sufficiently high) degree k piece
of our graded ring can be written as a polynomial

wk = b0k
n + b1k

n−1 + . . . , (6.1.10)

where from [160], we learn that (up to a positive constant dependent only on the dimension n)6

bi = −
1

n− iDϵai(ζ + ϵη)

∣∣∣∣
ϵ=0

. (6.1.11)

The Futaki invariant is then defined as7 [252]

F (X; ζ, η) =
a1
a0
b0 − b1 . (6.1.12)

There is also an equivalent definition in [160, 240]8:

F (X; ζ, η) = Dϵa0(ζ + ϵη) + na0Dϵ
a1(ζ + ϵη)

a0(ζ + ϵη)

∣∣∣∣
ϵ=0

, (6.1.13)

where Dϵ is defined in (6.1.16) below. We remark that the Futaki invariant in its original context,
was in terms of a integral as detailed in the footnote, due to the purely algebraic recasting above,
it is sometimes referred to as the Futaki-Donaldson invariant.

Algorithmically, our Futaki invariant can be determined as follows [89]:

• For a symmetry/weighting ζ of the variables of X such that the holomorphic top form has
charge/weight 2, compute the HS (thus in particular a0(ζ) = a1(ζ) in our convention);

• Find a test symmetry η of X, expressed as a vector of weights9, as ζ;

• Consider the possible U(1)R symmetry, for some small ϵ > 0 (so that the central fibre from
the test symmetry ϵ(η − aζ) is the same as the one from η),

ζ(ϵ) = ζ + ϵ(η − aζ) = (1− aϵ)ζ + ϵη, (6.1.14)

where a can be obtained from

a =
1

a0(ζ)

(
da1(ζ + ϵη)

dϵ
− da0(ζ + ϵη)

dϵ

) ∣∣∣∣
ϵ=0

. (6.1.15)

6In fact, up to some convention, the ai’s also act as leading and subleading coefficients of a polynomial, namely
the dimension dk of the degree k piece of the graded ring: dk = a0k

n+a1k
n−1+ . . . , which is nothing but the Hilbert

function of X.
7There is also a differential geometric definition of Futaki invariant. Specifically, for a smooth n-dimensional

normal variety X (the generalizations allow X to be singular) with Kähler form ω ∈ [c1(TX)] and Ricci potential
hω so that Ric(ω) − ω = i

2π
∂∂̄hω where Ric(ω) is the Ricci form. Then the Futaki invariant, for some holomorphic

vetor field v on X, is Fc1(TX )(v) =
∫
X
v(hω)ω

n. Since it is a character on the Lie algebra of v and independent of the
choice of ω, this is an holomorphic invariant [255]. One can show that if X is smooth and the C∗-action is induced
by a holomorphic vector field, then (6.1.12) is the sames as the differential geometric Futaki invariant [252].

8Notice that due to different conventions of a0 and a1, our definition here should agree with the definition
in [160, 240, 252] up to some positive constant depending only on dimension.

9Technically, η is a square matrix, but as we will see, it is always assumed to be diagnolizable.
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• With respect to this new weighting, compute the HS and perform the usual Laurent expansion
(6.1.5) to extract the coefficients a0 (ζ(ϵ)) = a1 (ζ(ϵ));

• The Futaki invariant is obtained by

F (X; ζ, η) =
∂

∂ϵ
a0 (ζ(ϵ))

∣∣∣∣
ϵ=0

=: Dϵa0(ζ(ϵ))|ϵ=0. (6.1.16)

As argued in [89], (6.1.16) is equivalent to the original definition of Futaki invariant in [243] by
considering

F = Dϵa0

(
ζ(ϵ) = ζ + ϵ(η − aζ)

)∣∣∣∣
ϵ=0

= (η − aζ) · a′0|ϵ=0

= η · a′0 − aζ · a′0|ϵ=0

= Dϵa0(ζ + ϵη) +
1

a0

(
da1(ζ + ϵη)

dϵ
− da0(ζ + ϵη)

dϵ

)
na0

∣∣∣∣
ϵ=0

= Dϵa0(ζ + ϵη) + na0Dϵ
a1(ζ + ϵη)

a0(ζ + ϵη)

∣∣∣∣
ϵ=0

, (6.1.17)

where we have used ζ ·a′i = Dϵai(ζ+ ϵζ) = −(n− i)ai(ζ) to get the fourth line, and the last equality
is the quotient rule of derivatives with η ·a0|ϵ=0 = η ·a1|ϵ=0 = a0. As we can see, the result obtained
in (6.1.17) is exactly (6.1.13).

Following the third line in (6.1.17), it is straightforward that F is linear with respect to the test
symmetry. For the first term, we have (sη1+η2)·a′0 = sη1·a′0+η2·a′0 (s > 0). Hence, it is equivalent to
showing that a is linear with respect to the test symmetry, which is then equivalent to showing that
Dϵai(ζ+ϵη) is linear. This is certainly true as Dϵai(ζ+ϵ(sη1+η2)) = (sη1+η2) ·a′i = sη1 ·a′i+η2 ·a′i.
Moreover, from the fourth line in (6.1.17), we also have

F = nDϵa1(ζ + ϵη)− (n− 1)Dϵa0(ζ + ϵη)|ϵ=0. (6.1.18)

Inserting (6.1.11), we find that this is the same as definition (6.1.12) (up to some positive coefficient).
Therefore, (6.1.16)∼(6.1.18) all give the same answer and we can use them interchangeably.

As K-stability depends on the sign of Futaki invariant, we can almost introduce its definition.
However, whether a test configuration is trivial still needs to be determined especially when F = 0.
A test configuration was initially defined to be trivial when the central fibre is biholomorphic to
X. However, as shown in [256], there exist non-trivial test configurations (which are trivial in
codimension 1) satisfying biholomorphicity. To avoid such pathological cases, one has to restrict
to normal (or S2) test configurations when X is normal (or S2). Here, following [252], we will use
an alternative way to determine the K-stability when F vanishes without the normality condition.
In particular, one can introduce the norm ||η|| by considering the infinitesimal generator Ak of the
C∗-action on the degree k piece of the ring. It is not hard to see that tr(Ak) = wk. We can also
define c0, which is also a constant with respect to degree k, by

tr(A2
k) = c0k

n+1 + . . . , (6.1.19)

and it is shown in [160] that (up to a positive constant same as in b0)

c0 =
1

n(n+ 1)
D2
ϵa0(ζ + ϵη)|ϵ=0. (6.1.20)

Then we can define the norm as

||η||2 =
{

0, I0 ∼= It̸=0;

c0 − b20
a0
, otherwise.

(6.1.21)

Thus defined, the notion of K-stability is clear:
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Definition 6.1.2. The ring (X, ζ) is K-semistable if for any test symmetry η, we have F (X; ζ, η) ≥
0. If in addition F = 0 only when the norm vanishes, then the ring is K-stable.

Let us have a closer look at the case with F = 0. A trivial test configuration (which leads to
F = 0) for a K-stable ring should always have a vanishing norm. In the usual K-stability context,
a well-defined triviality should be the equivalent to the norm being zero. However, as we will see
below, besides the second line in (6.1.21), the first line is also necessary since there could be trivial
configurations with non-zero values for the second line10.

It is then the conjecture of [89] saying that

Conjecture 6.1.1. The ring (X, ζ) is the chiral ring of an SCFT iff X is K-stable.

As we will see, there seems to exist a counterexample where this K-stability criterion would not
work. However, this is still possible to be true for a sub-class of supersymmetric theories such as
the worldvolume theories of D3-branes probing CY3.

6.1.4 Futaki Invariants for Non-Complete Intersections

For complete intersections, the denominators of the HS encode the charges of the coordinates/generators.
With the aforementioned method, the Futaki invariants can then be quickly computed as in [89]
since we can directly add the test charges to the corresponding terms in the denominator of HS.
Here, we propose a method allowing us to obtain the Futaki invariants with Hilbert series which
also works for general varieties.

We would like to know which factor in the HS our test symmetry can act on, but for non-complete
intersections this piece of information is hidden (especially when we derive the HS from quivers
in physics). The denominator simply encodes the dimension of the variety while the numerator
contains other complicated data. Therefore, we can naturally use the plethystic logarithm to reveal
the information we need.

We start with a general HS and take its PL whose first positive terms tell us all the generators at
different degrees. For instance, if we have a generator of order k (and hence with weight/charge
k), then we multiply the HS with (1 − tk) on its denominator and numerator:

HSζ =
1− tk
1− tkHS =

1− tk
1− tk ×

P (t)

(1− tm)dim(X)
. (6.1.22)

As we write out the specific generator explicitly in the denominator, as in the complete intersection
case, we can easily get the HS for test symmetry η where only the generator at order k has non-
vanishing charge:

HSζ+ϵη =
1

1− tk+ϵη ×
(
1− tk

)
P (t)

(1− tm)dim(X)
. (6.1.23)

Now we can immediately get a0(ζ+ ηϵ) and a1(ζ+ ηϵ) as usual. Then the Futaki invariant directly
follows from (6.1.16)∼(6.1.18). If we use (6.1.16), the Hilbert series for ζ(ϵ) reads

HSζ(ϵ) =

(
1− tk(1−aϵ)

)
P
(
t(1−aϵ)

)
(
1− tk(1−aϵ)+ϵη

) (
1− tm(1−aϵ))dim(X)

. (6.1.24)

One may also check that for complete intersections, this approach reduces to the usual method
before. We will see an example validating this approach on complete intersections in §6.2.2.

10In fact, there are various conventions to define K-stability in various literature. In some texts dealing with
Fano manifolds, the “K-stability” we are considering here would be called “K-polystability” which could be subtlely
different. Here, we will adopt the convention so that the trivial test configurations arise from automorphisms will
automatimatically have norm zero.
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To determine the stability, usually we need to consider quite a few test symmmetries. By the
linearity discussed in §6.1.3, it suffices to compute the test symmetries ηi with charge δij for the j

th

generator. Any test symmetry and hence F can be written as a linear combination of ηi’s (though
crucially it still requires some work to figure out what kinds of linear combinations we want). In
fact, we can use this to get Futaki invariants in a quicker way as follows.

Suppose we have a generator of order/charge k under ζ. Let us show that for the test symmetry
with charge (0, . . . , 0, 1, 0, . . . , 0), where only this generator of order k has a non-vanishing charge,
the Futaki invariant would have a simple expression. As usual, the HS has coefficient ai for the
s−(n−i) term under expansion around s = 0. Then with the test symmetry, we have

HSζ+ϵη =
HSζ ×

(
1− e−ks

)

1− e−(k+ϵ)s

=
a0k

(k + ϵ)sn
+
k(ϵa0 + 2a1)

2(k + ϵ)sn−1
+ . . . (6.1.25)

Since a0 = a1, we have

a0(ζ + ϵη) =
a0k

k + ϵ
, a1(ζ + ϵη) =

a0k(ϵ+ 2)

2(k + ϵ)
. (6.1.26)

Now using (the second line in) (6.1.18), we get

F = n
d

dϵ

a0k(ϵ+ 2)

2(k + ϵ)
− (n− 1)

d

dϵ

a0k

k + ϵ

∣∣∣∣
ϵ=0

=
nk − 2

2k
a0. (6.1.27)

Likewise, using (6.1.21),

||η||2 = (n− 1)a0
n2(n+ 1)k2

. (6.1.28)

Incidentally, we can find that

a =
1

a0

(
d

dϵ

a0k(ϵ+ 2)

2(k + ϵ)
− d

dϵ

a0k

k + ϵ

) ∣∣∣∣
ϵ=0

=
1

2
. (6.1.29)

We can also write a general expression for general test symmetries. Suppose we have a test sym-
metry η with charge vi for the i

th generator which has order ki, then

a0(ζ + ϵη) = a0
∏

i

ki
ki + viϵ

, a1(ζ + ϵη) = a0
∏

i

ki(viϵ+ 2)

2(ki + viϵ)
, (6.1.30)

and

a =
1

a0
× a0

2

∑

i

vi =
1

2

∑

i

vi. (6.1.31)

The Futaki invariant is

F =
∑

i

vi
nki − 2

2ki
a0, (6.1.32)

and the norm is

||η||2 =





0, I0 ∼= It̸=0;

(n−1)a0
n2(n+1)

(
∑
i

v2i
k2i
− 2

n−1

∑
j<l

vjvl
kjkl

)
, otherwise.

(6.1.33)

As an example, consider the orbifold C3/Z5 (1,2,2) studied in [2, 25] with

HS =
1− t2/3 + 3t2 − t8/3 + 3t10/3 − t14/3 + t16/3
(
1− t2/3

)3 (
1 + t2/3 + t4/3 + t2 + t8/3

)2 . (6.1.34)
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Under Laurent expansion around s = 0, we have a0 = a1 = 27/40. Notice that here the fractional
powers in the HS is just a consequence of our convention a0 = a1. Hence, they do not have to equal
the corresponding R-charges numerically.

The PL of HS reads
PL(HS) = 3t2 + 2t8/3 + 7t10/3 − t4 − . . . , (6.1.35)

where we see that there are 3 generators of order 2, 2 generators of order 8/3 and 7 generators of
order 10/3. Therefore, we can quickly get a general expression for Futaki invariant using (6.1.32):

F =
27

40
(v1 + v2 + v3) +

243

320
(v4 + v5) +

81

100
(v6 + · · ·+ v12), (6.1.36)

for test symmetry η with charges (v1, v2, . . . , v12). However, notice that this example is just for a
pure calculation purpose: the orbifold here is actually a toric variety. As briefly aforementioned, for
any toric singularity, there is no non-trivial test configuration because the number of C∗-actions is
already maximal [89,257], or in other words, it has complexity zero. As a result, we should always
expect the rings to be stable. We can also think of the quiver gauge theories which stay in the toric
phase. Hence, there is no fractional brane that would prevent our theory from being conformal. On
the other hand, for non-toric cases, we still need to find appropriate test symmetries to determine
the stability.

6.1.5 Test Symmetries

In practice, there could be a lot of possible test symmetries for us to consider. To guarantee
stability, we need to exhaustively check all these Futaki invariants, which can be difficult. However,
we could try to reduce the number of test symmetries we need to check. As argued in [257], for
hypersurface singularities, especially for those with complexity one (i.e. having isometry U(1)n−1)
whose degeneration is toric, we can consider X as a fibration over some Riemann surface, with the
torus action acting on the fibre. Then the integer slopes of some piecewise-linear functions would
help us find the correct test symmetries we want. See [257, 258] for more details. In general, from
the perspective of field theory by viewing Xt as a deformation of X0, it is also conjectured in [259]
that it should suffice to only consider the test configurations that remove one of the monomials for
(isolated) hypersurface singularities.

For non-hypersurface singularities or even non-complete intersections, the above methods are not
applicable (except that the toric varieties still have no non-trivial test configurations). First of all,
we need to get the relations on which we can act with the one-parameter C∗-subgroup and take
the flat limit. This can again be found by taking the PL of HS, where the relations are given by
the first negative terms, but we need the refined HS to get the exact relations. For instance, if we
have [25]

PL

(
xy(1/q2 − 1)

(1− qx)(1− qy)(1− x/q)(1− y/q)

)
=
q

x
+ qx+

q

y
+ qy − q2, (6.1.37)

where x, y, q are the fugacities. The defining equation is then given by (q/x)(qx) = (q/y)(qy) = q2,
viz, uv = wz, which is exactly the conifold.

As detailed in §6.1.2, we should take the Gröbner basis of the relations to avoid generating a set
smaller than the flat limit. Now when taking a test configuration, we always have some action
η(t) acting on these equations11. Then we will only keep the term(s) with lowest weight in each
equation under the flat limit. In principle, there could be infinitely many η’s. However, there might
be fewer cases due to the symmetries of the variables in the equation(s).

Moreover, as checking stability is equivalent to checking the positivity of Futaki invariants, and
the sign of (6.1.32) is determined by vi’s, the vi-space would be divided into different areas which

11Notice that for hypersurfaces, there is no need to find the Gröbner basis, and the coefficients in front of the
terms in the equations do not matter.
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correspond to positive or negative Futaki invariants (recall that if F = 0, we can check the norm).
In the vi-space, each choice of η would be a point which lies in certain positive or negative region.
To determine stability, it is equivalent to checking whether there are any points in the negative
regions.

For example, consider the Futaki invariant for the hypersurface w2 + x2 + y2 + zn+1 = 0 and test
symmetry η with charges (v1, v2, v3, v4). Its Futaki invariant is given in (6.2.2). It is often difficult
to visualize the vi-space, but here since the coordinates w, x, y are symmetric, we can solely
consider v1 and v4 (i.e. two ways of dropping terms, although we can use some specific method to
reduce the number of test symmetries in this case). We depict some v1-v4 planes for small n’s in
Figure 6.1.1. Indeed, we see that the ring is only stable for n = 1, 2 as there is no red point inside
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Figure 6.1.1: The region plot in vi-space for w2+x2+y2+ zn+1 = 0 at n = 1, . . . , 6 shown
in (a)∼(f) respectively. The red points correspond to the two test symmetries and the blue
area is the region where F < 0 in each picture. A red point inside the blue region indicates

that the ring is unstable.

the negative region which agrees with the result in [89]. We should be careful with n = 3 where a
red point lives on the boundary of the blue region, showing that F = 0. The test configuration is
certainly not trivial, and by computing the norm for this test symmetry with charges (0,0,0,1), we
get ||η||2 = 27/128 ̸= 0. Hence, the ring is unstable for n = 3.

Some simplifications can be made to reduce the number of necessary test symmetries. In [89,240], η
is required to be normal and commuting with the automorphism group of X. For X ⊂ Cn, the torus
action and η are induced by the subgroups of GL(n,C). The commutation condition then implies
that we can diagonlize the T - and C∗-subgroups simultaneously. Hence, we will always assume that
the test symmetries are diagonal under some unitary changes of basis. Normality could be boiled
down to two conditions called Serre’s criterion: S2 and R1. It is often not easy to check the former,
but as we are always dealing with Cohen-Macaulay rings, S2 is always guaranteed. Therefore,
only R1, namely being regular in codimension one, is left. This means that the singular locus has
codimension no less than two, which can be checked via the Jacobian. We may also use Macaulay2
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and the package FastLinAlg to tell this. In fact, we are also allowed to consider more general test
configurations that are not normal or even those who have test symmetry not commuting with the
T -action, but they will not give any additional information12. For simplicity, we will therefore not
require the normality condition as this should not affect our results.

“Problematic” Test Symmetries Following the above procedure to compute the Futaki in-
variant, especially using (6.1.32), one can easily find some inconsistencies that seems to give “sick”
test symmetries13.

The non-zero norm problem The first problem is actually already resolved when defining the
norm. Usually, a norm is defined only with the second line in (6.1.21), but we have to add the
first line which makes the definition seemingly weird. For instance, for C3 = Cone

(
S5
)
(or more

generally, Cn = Cone
(
S2n−1

)
), there would be no non-trivial test configurations as this is toric

with a maximal number of torus action. Indeed, we always have a vanishing Futaki invariant.
Its stability is for sure expected as physically this corresponds to the N = 4 SYM in 4d which
is superconformal. However, all the test symmetries, except the one with charge (1, 1, 1), would
yield non-zero norms. Another less “trivial” example is the conifold uv + y2 + z2 = 0 and the test
symmetry with charges (1,−1, 0, 0) (though we would not have this if we make a linear holomorphic
change to w2+x2+ y2+ z2 = 0), which leads to F = 0. Such test configuration is certainly trivial,
but (c0 − b20/a0) = 1/3 ̸= 0. However, the conifold is undoubtedly stable as it admits a Ricci-flat
cone metric.

The ϵ-region problem Recall that physically we are only focusing on the ϵ > 0 region for
a0(ζ(ϵ)) to find whether there is a minimum because we want ϵ(η − aζ) to give the same central
fibre as the test symmetry η does. However, if we consider w2 + x2 + y2 + z5 = 0 and η with
(−1,−1,−1, 0), we find that (η − aζ) would give rise to a = −3/2 and weights (8/7, 8/7, 8/7, 6/7),
which has an opposite central fibre. This seems to indicate that we should look at the region with
ϵ < 0 in this case. Consequently, F < 0 here would not destabilize the ring. However, we know
from Figure 6.1.1 and also §6.2.1 that (0, 0, 0, 1), which has an equivalent test configuration as
(−1,−1,−1, 0), is the right test symmetry that destabilizes the ring. This becomes a bigger issue
if we consider stable rings or even non-complete intersections. For instance, consider the orbifold
C3/(Z4 × Z2) (1, 0, 3)(0, 1, 1) whose relations are given in [105]:

x1x3 = x22, y1y2 = x23, (6.1.38)

where x1 has order 4/3 and x2 has order 2 with the remaining three having order 8/3. Its Gröbner
basis is

x23 − y1y2, x1y1y2 − x22x3, x1x3 − x22. (6.1.39)

Since this is a toric variety, it should be K-stable. Let the test symmetry have charges (0, 0,−1, 0, 0).
Then the test configuration reads

t−2x23 − y1y2, x1y1y2 − t−1x22x3, t
−1x1x3 − x22. (6.1.40)

However, with a = −1/2, ϵ(η − aζ) has charges ϵ(2/3, 1, 1/3, 4/3, 4/3). The test configuration is

t2ϵ/3x23 − t8ϵ/3y1y2, t10ϵ/3x1y1y2 − t7ϵ/3x22x3, t2ϵx1x3 − t2ϵx22. (6.1.41)

Now, no matter what value ϵ takes, the two central fibres will never be the same. We do not even
know which region of ϵ to consider.

12The condition of being normal is related to the triviality of the central fibre. It was discussed in [256] that
normality could avoid some pathological test configurations. However, as pointed out in [252], we can instead use
an alternative definition by introducing the norm whose vanishing is sufficient to give K-stability (when F is zero).
Regarding the norm, there could also be different conventions as aforementioned, and here we take the definition as
in (6.1.21).

13As we will see, these η’s are not really “problematic” or “sick”. We are just not using the correct way to do the
computation.
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The F < 0 problem Even if a test symmetry does not cause the ϵ-region problem, the Futaki
invariant we get could also be problematic. For example, let us consider the conifold w2 + x2 +
y2 + z2 = 0 and the test symmetry with charges (−1,−1,−1, 0). Now a = −3/2 and (η − ϵζ)
gives charges (−5/2,−5/2,−5/2,−3/2). Therefore, we should still focus on the region of positive
ϵ. Following (6.1.32), it is straightforward that F = −3 < 0. However, we already know that
the conifold is stable. Under such construction, this contradiction can happen for any stable case.
Another example is given in Figure 6.1.2(b).

In the next subsection, we will see a method to resolve this, but if we insist on the results from
(6.1.32), we could physically understand the problem for a subset of these test symmetries. This
can be explained if we contemplate the plots of a0(ζ(ϵ)) against ϵ as in Figure 6.1.2. To destabilize
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Figure 6.1.2: (a) The conifold w2 + x2 + y2 + z2 = 0 and η with charges (0,−1,−1,−1),
and a0(ζ(ϵ)) = 16

(ϵ+2)3
. (b) The E7 threefold w2 + x2 + y3 + yz3 = 0 and η with charges

(−1,−1, 0,−1), and a0(ζ(ϵ)) =
750(3ϵ+2)

(ϵ+4)(17ϵ+18)2
.

the original ring, (the piece around some neighbourbood of ϵ = 0 of) the curve should have a
local minimum at some positive ϵ. However, the cases in Figure 6.1.2 do not have such local
minima. In other words, a0(ζ(ϵ)) keeps decreasing as ϵ→∞, so if we consider the new R-symmetry
parameterized by ζ(ϵ) = ζ + ϵ(η − aζ), viz, ζ(ϵ)/ϵ = ζ/ϵ + (η − aζ) with ϵ → ∞, we would get
η = aζ, which does not make sense. We should again emphasize that this could not account for all
the “sick” η’s. For example, if we consider the test symmetry with (−1,−1,−1, 2) for the stable

A2 threefold w2+x2+ y2+ z3 = 0, then a0(ζ(ϵ)) =
375(ϵ+2)

16(3−ϵ)3(1+3ϵ)
. On the smooth piece around the

neighbourhood of ϵ = 0, it has a local minimum at ϵ = (5
√
10− 13)/9 > 0.

Regularizations of Numerators To find out what really goes wrong, it is always useful to
start from the original definitions and derivations of K-stability. Recall that algebro-geometrically
the Futaki invariant is defined as F = B0A1/A0 − B1, where Ai’s and Bi’s are the leading and
subleading coefficients of dk and wk respectively14. Therefore, we can compute Ai’s and Bi’s using
their definitions and compare with the results from HS.

Let us again consider the conifold w2 + x2 + y2 + z2 = 0. For the usual test symmetry η(t) ·
(w, x, y, z) = (w, x, y, tz), the central fibre is w2 + x2 + y2 = 0, and the HS gives

HS =
1− t2

(1− t)3 (1− t1+ϵ)
=

2

(1 + ϵ)s3
+

2 + ϵ

(1 + ϵ)s2
+ . . . (6.1.42)

Taking ϵ = 0, we have (in the convention of [160])

A0(n− 1)! = 2A0 = 2, A1(n− 2)! = A1 = 2. (6.1.43)

Likewise,

B0 = − 1

n
DϵA0(ϵ)|ϵ=0 = −

1

3
Dϵ

(
1

1 + ϵ

) ∣∣∣∣
ϵ=0

=
1

3
,

14Since the ai’s have a different convention here, we will use capital letters for the traditional conventions in
mathematics literature such as [160, 252] to distinguish them.
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B1 = − 1

n− 1
DϵA1(ϵ)|ϵ=0 = −

1

2
Dϵ

(
2 + ϵ

1 + ϵ

) ∣∣∣∣
ϵ=0

=
1

2
. (6.1.44)

By definition, the dimension of the degree k piece Rk of the ring is

dk =

(
k + 3− 1

k

)
+

(
k − 1 + 3− 1

k − 1

)
= k2 + 2k + 1, (6.1.45)

where we have used that the number of independent monomials of degree k with m variables is(
k+m−1

k

)
. In particular, the first term in (6.1.45) counts the number of independent monomials of

the form xlymzp with l + m + p = k, while the second term counts the monomials of the form
wxlymzp with l +m+ p = k − 1. Likewise, by definition, the total weight of Rk is

wk =

k∑

i=0

(
k − i+ 2− 1

k − i

)
i+

k−1∑

i=0

(
k − i− 1 + 2− 1

k − i− 1

)
i =

1

3
k3 +

1

2
k2 +

1

6
k. (6.1.46)

Here, we see that the first term sums up the different choices for monomials weighted i of the form
xlymzi with l +m = k − i, while the second term sums for monomials of the form wxlymzi with
l +m = k − i − 1. As we can see, the result from HS agrees with the one from definition for this
test symmetry.

However, if we consider η(t)·(w, x, y, z) =
(
t−1w, t−1x, t−1y, z

)
, which yields F < 0, the Ai’s remain

the same while from

HS =
1− t2

(1− t) (1− t1−ϵ)3
= − 2

(−1 + ϵ)3s3
+
−2 + 3ϵ

(−1 + ϵ)3s2
+ . . . , (6.1.47)

we get B0 = −1 and B1 = −3/2. On the other hand, by definition of wk, B0 = −2/3 and
B1 = −3/2. We see that the results are different.

Even for some non-negative F ’s, we would still have this issue. Consider the test symmetry η(t) ·
(w, x, y, z) = (tw, tx, ty, tz). Then from HS, we have

A0 = 1, A1 = 2, B0 =
4

3
, B1 = 2, F =

2

3
. (6.1.48)

In contrast, from definition, as wk is simply kdk here, we can easily get

A0 = 1, A1 = 2, B0 = 1, B1 = 2, F = 0. (6.1.49)

In fact, we expect the Futaki invariant to vanish for this test symmetry not only because this is the
result from the computation using definition, but also because the test configuration t2

(
w2 + x2 + y2 + z2

)

is trivial.

One may wonder if this is a matter of convention. In other words, it might be possible that we have
not found the right convention that makes all the parameters agree. After all, the precise values
can differ by a positive numerical factor in different conventions. This possibility can be excluded
by the example xz − y2 = 0 with η(t) · (x, y, z) =

(
t−1x, ty, z

)
. The HS is

HS =
1− t2p

(1− tp+ϵ) (1− tp−ϵ) (1− tp) , (6.1.50)

where the convention is arbitrary with some power p. From this HS, we find that

B0 = B1 = 0. (6.1.51)

However, the correct answers are already obtained in [252] by definition:

B0 = B1 =
1

2
. (6.1.52)
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Hence, no matter what positive constant we multiply, the two would never agree. This shows that
the problem is from the steps in the HS method we use.

In [160], the index character is defined to be

G(ζ) =
∑

α∈t∗
e−sα(ζ) dimRα, (6.1.53)

where t is the Lie algebra of the torus action and Rα is the associated root space with root α in
the root space decomposition of R. Since ζ ∈ t is a symmetry acting with positive weights, viz, a
Reeb vector field, the sum converges for Re(s) > 0 and has a meromorphic extension at s = 0. It
is proven that the index character has a Laurent expansion

G =
A0(n− 1)!

sn
+
A1(n− 2)!

sn−1
+ . . . (6.1.54)

at s = 0, which is exactly the HS. Similarly, to show that bi’s (and also c0) are certain derivatives
of ai’s, the weight character is defined to be

Cη =
∑

α∈t∗
e−sα(ζ)α(η) dimRα. (6.1.55)

Then one can show that

−tCη =
∂

∂ϵ
G(ζ + ϵη)

∣∣∣∣
ϵ=0

. (6.1.56)

Importantly, this expression is true because for sufficiently small ϵ, (ζ+ϵη) is a Reeb field, and hence
the sum for G(ζ + ϵη) converges uniformly for s > 0. Therefore, since the Reeb field determines
the weights of the relations and the information of these relations are contained in the numerator
of HS, we should modify the HS with ϵ. In other words, we should also write the numerator with
respect to the Reeb field (ζ + ϵη), rather than just ζ.

When we write HS, we still need to consider (ζ + ϵη) as two degrees for the grading: one variable
t0 for ζ and one variable t1 for η. Only after this step, we can assign small ϵ to the powers of t1.
However, in the first step, η in fact is not a Reeb field and it would make the equations in the ideal
inhomogenous. Therefore, we cannot simply write down the HS. One may try some homogenization
of the equations, but it would not yield correct results for K-stability.

Here, we discuss a method to modify the numerator with the help of Gröbner basis15. As discussed
in Appendix J.0.1, when writing HS, it suffices to consider the initial terms of the equations in the
Gröbner basis. In particular, the initial terms are obtained from some ordering of the variables,
and likewise, the initial terms for the flat limit are also obtained from a specific ordering, that is,
the (lowest) powers/weights of t in the relations16.

Therefore, to write the HS with respect to (ζ + ϵη), especially the t1 for η, we also take the
initial terms induced by the same ordering when taking flat limits. If the initial term has a
factor tp (regardless of the sign of p), then we should include the corresponding power of t1 in the
numerator. If the initial term has no t, then the numerator is free of t1. In particular, the power
of t1 is determined by the power of initial terms of the ideal.

For instance, for the conifold example above, (0, 0, 0, 1) would still give the same HS as in (6.1.42).
For (−1,−1,−1, 0), the initial term would have t−1, and therefore we should add some power of ϵ

15To the authors’ best knowledge, such method has never been mentioned in literature. Modifying the numerators
might be known to mathematics society, but mathematicians mainly focus on the aforementioned complexity one
varieties (such as those in §6.2.1 below), where one only needs to check several test symmetries using the method
in [258]. It turns out that the remaining possible test symmetries are simple enough so that no modifications of
numerators are required. The authors also consulted some mathematicians, but modifying the numerators was never
mentioned. Therefore, it is worth spelling out such method here.

16We are using t both in the HS and in the test configuration, but it should be clear which t we are referring to
in the context.
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in the numerator. We see that the ideal of conifold is quadratic, so we add a factor of t−2ϵ
1 to the

numerator. Let t0 and t1 denote the variables for ζ and ϵη respectively. The multivariate (refined)
HS reads

HS =
1− t20t−2ϵ

1

(1− t0)
(
1− t0t−ϵ1

)3 . (6.1.57)

Unrefining the HS by t0 = t1 = t, we get

HS =
1− t2(1−ϵ)

(1− t) (1− t1−ϵ)3
. (6.1.58)

From this HS, following the usual steps of taking Laurent series and derivatives, we find that

A0 = 1, A1 = 2, B0 = −
2

3
, B1 = −

3

2
, (6.1.59)

which is exactly the same result obtained from definition. Indeed, this yields F = 1/6 > 0, which
equals to the Futaki invariant for (0, 0, 0, 1). This agrees with the fact that the two test symmetries
give rise to equivalent test configurations17.

We may also check that for (1, 1, 1, 0),

HS =
1− t2

(1− t) (1− t1+ϵ)3
(6.1.60)

since the initial term is z2 which has weight t0, and that for (0, 0, 0,−1),

HS =
1− t2(1−ϵ)

(1− t1−ϵ) (1− t)3
(6.1.61)

since the initial term is t−2z2. Again, we can verify that both of them yield the same correct Ai’s
and Bi’s as those from definition, as well as a positive Futaki invariant. Likewise, one can also
check that the xz − y2 example gives the correct B0 = B1 = 1/2.

We can also verify that by modifying the numerators, for the aforementioned problems, we would
not have the ϵ-region issue or negative F for stable rings any more. We will omit the detailed
calculations here. Nevertheless, it is worth noting that some trivial test configurations will thence
automatically have F = 0 and even a vanishing norm. Recall that without the modification of
numerators, (1, 1, 1, 1) yields a positive F , as well as a non-zero norm. After regularizing the
numerator,

HS =
1− t2(1+ϵ)
(1− t1+ϵ)4

. (6.1.62)

This gives the correct A0 = B0 = C0 = 1 and A1 = B1 = 2. Thus, F = A1B0/A0 − B1 = 0 and
||η||2 = C0 −B2

0/A0 = 0 as expected.

However, we still need the first line in the definition (6.1.21) of the norm. For example, when we
write the conifold as uv = xy, and consider (1,−1, 0, 0), the numerator still remains the same.
Hence, C0 −B2

0/A0 is still not zero. However, such test symmetry is a bit special and we can still
force the norm to vanish via definition. Incidentally, we find that if the HS is written as

HS =
1− t2(1−ϵ2)

(1− t1−ϵ) (1− t1+ϵ) (1− t)2
, (6.1.63)

then C0 −B2
0/A0 = 0. Similarly, for (1,−1, 1,−1), if we write the HS as

HS =
1− t2(1−ϵ2)

(1− t1−ϵ)2 (1− t1+ϵ)2
, (6.1.64)

17Notice that in our convention where a0 = a1, the value of Futaki invariant has an extra dimensional factor
n(n− 1). For example, here we have a1b0/a0 − a1 = 3× (3− 1)× 1/6 = 1.
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then C0−B2
0/A0 = 0 as well. So far it is still not clear why this happens. It might be possible that

it requires higher order of corrections in the numerator for such special test symmetries, or maybe
this is just a coincidence.

Now in our convention with ai and bi, although they take values different from those obtained by
definition. They would always differ by a positive constant depending only on dimension, viz,

a1
a0
b0 − b1 = n(n− 1)

(
A1

A0
B0 −B1

)
. (6.1.65)

The norms (squared) agree up to the same positive constant as well. Therefore, this method can
certainly be applied in any convention.

The Rescaling Method We now have seen how to write the HS and get the Futaki invariants
correctly by some modifications in the numerators. However, in principle, there could be a large
number of possible test symmetries to determine K-stability and such method does not reduce this
number. Here, by considering the central fibres, we propose a method that potentially simplifies
the process of checking test symmetries.

In general, if the test symmetry has charge (v1, . . . , vm), then the test configuration for I =
⟨f1, . . . , fl⟩ is generated by f1 (t

v1x1, . . . , t
vmxm) , . . . , fl (t

v1x1, . . . , t
vmxm). When taking the flat

limit, only the initial terms would survive as discussed in §6.1.2. Another way to view the
flat limit is by considering a rescaling of the fi’s [253]. Under the rescaling, we write g1 =
tw1f1 (t

v1x1, . . . , t
vmxm) , . . . , gl = twlfl (t

v1x1, . . . , t
vmxm) such that the initial terms in each fi

has weight zero with respect to t. Then at t = 1, we recover I = ⟨g1, . . . , gl⟩|t=1, and at t = 0, we
recover the flat limit I0 = ⟨g1, . . . , gl⟩|t=0. For example, (0,−1,−1,−1), which has F < 0 by (6.1.32)
without regularizing the numerator, gives f = w2+t−2x2+t−2y2+t−2z2 for the conifold, and we can
rescale it to g = t2f = t2w2+x2+y2+z2. It is worth noting that this g is what we get directly from
(1, 0, 0, 0) without rescaling. We may also consider (−1,−1,−1,−1) which gives negative Futaki
invariant if we naively use (6.1.32) to do the calculation. However, t−2w2 + t−2x2 + t−2y2 + t−2z2

is simply a trivial test configuration and can be rescaled to w2 + x2 + y2 + z2. Indeed, we would
just get the trivial η′ = 0.

Inspired by this, suppose we pick a test symmetry η with a random charge, then we may follow
these steps to only compute F for η′:

• We rescale the fi’s to gi’s such that the terms with lowest t-weights would have weight 0.
This would lead to some new test symmetry η′ that directly yields gi’s without any rescaling.
Since all the initial terms have no t’s and no regularization in the numerator is required, we
can simply use (6.1.32) to compute the Futaki invariant.

• When dealing with non-hypersurfaces, it is possible to have some η whose rescaling (though we
can always do such rescaling) does not correpsond to any η′. In other words, such configuration
cannot have a test symmetry with all the initial terms having weight 0 for all the equations.
In this case, we should find a “minimal” η′ in the sense that the number of g′is with non-zero
lowest weights is minimized. Moreover, these non-zero lowest weights should be positive. In
this situation, there is at least one initial term having a positive t-weight. Therefore, we
should apply the modification of the numerator to compute F .

At the first step, we have already seen such examples as those for the conifold. It is easy to
check that this also works for positive Futaki invariants. For instance, (1, 1, 1, 1) for the conifold
can be rescaled to (0, 0, 0, 0) as well, both of which have trivial test configuration. Moreover, for
those like (1,−1, 0, 0) for uv = xy which does not receive regularization in the numerator but with
c0− b20/a0 ̸= 0, we can also rescale it to the trivial test configuration. Let us now contemplate some
less non-trivial example whose K-stability is known to validate this. Consider the aforementioned
orbifold C3/(Z4×Z2) (1,0,3)(0,1,1) with η-charges (1, 1/2,−1/2,−1, 0) whose test configuration is

t−1x23 − t−1y1y2, x1y1y2 − t1/2x22x3, t1/2x1x3 − tx22, (6.1.66)
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which should be rescaled according to the above steps. Indeed, a naive computation for this yields
a negative F . Then the test configuration can be written as

x23 − y1y2, x1y1y2 − t2x22x3, x1x3 − t2x22 (6.1.67)

with η′ giving charges (0, 1, 0, 0, 0). We can then simply apply (6.1.32) which yields a positive F .

For the second step, let us consider the same orbifold with test charges (0,−1, 0,−1,−1) whose
test configuration is

x23 − t−2y1y2, t
−2x1y1y2 − t−2x22x3, x1x3 − t−2x22. (6.1.68)

Under the rescaling, the test configuration can be written as

t2x23 − y1y2, tx1y1y2 − tx22x3, t2x1x3 − x22 (6.1.69)

with η′ giving charges (1, 0, 1, 0, 0). Note that we can not simply rescale every relation in the ideal
such that the initial term has weight 0 in t. For example, the first and third relations in (6.1.68)
show that x3 should have non-trivial weight and x2 should have weight 0. This then fixes the form
of the second relation to be that shown in (6.1.69). It turns out that for η′

HS =
1− t4 − t16/3 + t28/3

(
1− t4/3+ϵ

)
(1− t2)

(
1− t8/3+ϵ

) (
1− t8/3

)2 , (6.1.70)

where it has no ϵ’s in the numerator, and we can therefore use (6.1.32) to get F > 0. However, as
we will see later, in general there could be modifications in the numerator for η′ in the second step.

It is also possible that for η1 and η2 with different η′1 and η′2 have the same central fibre, but they
are not related by a simple rescaling. For hypersurfaces, these are often equivalent as η′2 = sη′1
for s > 0 such as (1, 0, 0, 0) and (2, 0, 0, 0) for the aforementioned conifold example. Therefore,
it suffices to consider only one of them. More generally, including non-hypersurfaces, it would be
natural to speculate that η′1 and η′2 also give the same result as they lead to the same central fibre.
Suppose we have m monomials in all the equations, then there would be at most (2m − 2) ways
to drop terms (excluding dropping all terms or dropping no terms). This gives finitely many test
symmetries although the number increases drastically when m increases and this does not tell us
the exact (minimal) number of test symmetries or exactly which test symmetries we need to check
(compared to complexity one varieties in [258]). The above steps are based on the following point,
which is yet to manifest. Using rescaling, we are actually choosing a representative for each central
fibre, so either the representative test symmetry should be able to correctly indicate whether the
variety can be destabilized to the central fibre, or maybe every test symmetry with the same central
fibre should give the same sign of F .

In fact, a consequence of such rescaling is that there are only two ways to get a negative F . One
possibility is that the ζ-weight k of a generator is small enough so that nk − 2 < 0 in (6.1.32),
such as the A-type threefolds in §6.2.1 below. The other possibility is that we have some negative
weight in η, but this negative power of t gets cancelled by other positive powers in the monomials
in the relations. Then if the generator with this negative η-weight has a large enough k, the Futaki
invariant could become negative. Such example includes the D-type threefolds in §6.2.1 below.

These two ways of destabilizing the chiral ring should have explanations in terms of the dynamics
of physics. The first way could be caused by the violation of unitarity bound. In particular, if a
generator violates the unitarity bound, we would have k < 2/3, which is exactly 3k − 2 < 0 from
(6.1.32) for a three dimensional moduli space, such as the case for D3-branes probing CY3. For
higher dimensional moduli spaces, as we will see in §F.1, the orders k are not necessarily equal to
R-charges numerically in the convention of a0 = a1, and more importantly, it could be possible that
(violation of) the unitarity bound “leaks” out of the nk − 2 < 0 region. For the first way, being
unstable could also be caused by irrelevance of superpotential terms or some unknown dynamical
reasons. For the second way, as shown in [89], there could also be some unknown dynamical effects
to prevent the ring from being a ring for an SCFT, such as the D-type threefolds.
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6.2 Illustrative Examples

Now let us contemplate various examples to illustrate the above discussion. We will see (6.1.32) and
the modification of numerator applied to different cases including non-complete intersections, and
also how the rescaling method might reduce the number of possible test symmetries for equations
whose variables have certain symmetries.

6.2.1 ADE Threefolds

The Kleinian singularities can be obtained by orbifolding C2 with some subgroups Γ of SU(2),
which are related to (affine) ADE Dynkin diagrams by McKay correspondence [260]. We may
require a0 = a1 so that the canonical (2,0)-form has charge 2. However, they should always be
stable as there would be no normal central fibres (and non-normal ones would not give any extra
information). Hence, we can lift the ADE singularities to “ADE threefolds” [257] by adding another
squared term of a new coordinate to the defining equation18. As one may check, the stabilities
should be consistent with the results in [240, 257].

Cyclic group Zn+1: Ân The defining equation is w2 + x2 + y2 + zn+1 = 0. This belongs to
the family of Brieskorn-Pham (BP) singularity, also known as the Yau-Yu singularity of type I

(YY-I) [160]. This ring X has a symmetry ζ with charges
(
2n+2
n+3 ,

2n+2
n+3 ,

2n+2
n+3 ,

4
n+3

)
. Hence, we

write the HS as

HS =
1− t(4n+4)/(n+3)

(
1− t4/(n+3)

) (
1− t(2n+2)/(n+3)

)3 . (6.2.1)

Under Laurent expansion around s = 0, we obtain a0(ζ) = a1(ζ) =
(n+3)3

8(n+1)2
. By (6.1.32),

F = (v1 + v2 + v3)
n(n+ 3)3

8(n+ 1)3
+ v4

(3− n)(n+ 3)3

32(n+ 1)2
(6.2.2)

for test symmetry with charges (v1, v2, v3, v4). It suffices to check the test symmetries ηi with charge
δij on the jth coordinate. In particular, (0,0,0,1) gives us the non-trivial result: 0 < n < 3 19 for
K-stability.

Dicyclic group Dicn−1: D̂n+1 (n ≥ 3) The defining equation is w2 + x2 + y2z + zn =
0. This belongs to the singularity of type YY-II. The ring X has a symmetry ζ with charges(

2n
n+1 ,

2n
n+1 ,

2n−2
n+1 ,

4
n+1

)
. Hence, we write the HS as

HS =
1− t4n/(n+1)

(
1− t4/(n+1)

) (
1− t(2n−2)/(n+1)

) (
1− t2n/(n+1)

)2 . (6.2.3)

Under Laurent expansion around s = 0, we obtain a0(ζ) = a1(ζ) =
(n+1)3

8n(n−1) . By (6.1.32),

F = (v1 + v2)
(n+ 1)3(2n− 1)

16n2(n− 1)
+ v3

(n+ 1)3(n− 2)

8n(n− 1)2
+ v4

(n+ 1)3(5− n)
32n(n− 1)

(6.2.4)

for test symmetry with charges (v1, v2, v3, v4). It suffices to check test symmetries (0, 0,−1/2, 1),
which yields

F = −(n+ 1)3(n− 2)

16n(n− 1)2
+

(n+ 1)3(5− n)
32n(n− 1)

= −(n+ 1)3(n2 − 4n+ 1)

32n(n− 1)2
. (6.2.5)

18Note that these ADE threefolds are not to be confused with C × C2/Γ which are extensively used in D-brane
quiver gauge theories, whose chiral rings are all stable.

19As aforementioned in Figure 6.1.1, when n = 3, the Futaki invariant is zero, but it is unstable since ||η|| ̸= 0.
Also, if the vi’s are complicated, we should modify the numerator to get the correct Futaki invariant rather than
directly apply (6.1.32). However, for hypersurfaces, they can all be rescaled such that the lowest t-weights are 0 in
the equation. We will not restate these two points for similar situations below.
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In addition, for test symmetries (1, 0, 0, 0) and (0, 0, 1, 0), we see that F > 0 for n > 3. Hence, the
ring is stable when n2 − 4n+ 1 < 0. Therefore, only the ring of D̂4 with n = 3 is stable.

Binary tetrahedral/icosahedral group BT, BI: Ê6,8 The defining equation is w2+x2+ y3+
zn = 0, where n = 4 for BT and n = 5 for BI. This belongs to the singularity of type YY-I. The

ring has a symmetry ζ with charges
(

3n
3+n ,

3n
3+n ,

2n
3+n ,

6
3+n

)
. Hence, we write the HS as

HS =
1− t6n/(3+n)

(
1− t3n/(3+n)

)2 (
1− t2n/(3+n)

) (
1− t6/(3+n)

) . (6.2.6)

Under Laurent expansion around s = 0, we obtain a0(ζ) = a1(ζ) =
(n+3)3

18n2 . By (6.1.32),

F = (v1 + v2)
(n+ 3)3(7n− 6)

108n3
+ v3

(n+ 3)3(2n− 3)

36n3
+ v4

(n+ 3)3(6− n)
108n2

(6.2.7)

for test symmetry with charges (v1, v2, v3, v4). It suffices to check test symmetry (0, 0, 0, 1), and
hence the ring is stable when 2 ≤ n < 6, in particular for n = 4, 5 here. For other test symmetries,
(1, 0, 0, 0) and (0, 0, 1, 0), we see that F > 0 since n ≥ 2.

Binary octahedral group BO: Ê7 The defining equation is w2+x2+y3+yz3 = 0. This belongs
to the singularity of type YY-II. The ring has a symmetry ζ with charges

(
9
5 ,

9
5 ,

6
5 ,

4
5

)
. Hence, we

write the HS as

HS =
1− t18/5

(
1− t9/5

)2 (
1− t6/5

) (
1− t4/5

) . (6.2.8)

Under Laurent expansion around s = 0, we obtain a0(ζ) = a1(ζ) =
125
108 . By (6.1.32),

F =
2155

1944
(v1 + v2) +

125

162
v3 +

125

432
v4 (6.2.9)

for test symmetry with charges (v1, v2, v3, v4). It suffices to check test symmetries (1, 0, 0, 0),
(0, 0, 1,−1/3) and (0, 0, 0, 1), and hence the ring is stable. In [257], it was shown that the E7

threefold does not admit a non-commutative crepant resolution (NCCR). Therefore, it is still possi-
ble to be an SCFT, but it could not have a string embedding. In other words, in light of Conjecture
6.1.1, this could be an SCFT without a D-brane system picture20.

6.2.2 del Pezzo Spaces

Let us consider the del Pezzo family dPn where 0 ≤ n ≤ 8. The HS is [25]

HS =
1 + (7− n)t2 + t4

(1− t2)3 . (6.2.10)

Under Laurent expansion around s = 0, we obtain a0(ζ) = a1(ζ) = (9 − n)/8. Notice that the
singularities are toric for n = 0, . . . , 3. Therefore, these four rings are all stable as the symmetries
are already maximal, and we will now only focus on n ≥ 4.

Case 1: dP4 The PL of HS reads

PL(HS) = 6t2 − 5t4 + 5t6 − . . . . (6.2.11)

There are 6 generators satifying 5 relations which can be written as [261]

x2x6 − x3x5 + x24, x2x5 − x3x4 − x26, x1x6 + x2x4 − x23 − 2x5x6,

20It is also suggested that this could be a non-Lagrangian theory.
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x1x5 − x2x3 + x4x6 − 2x25, x1x4 − x22 + x3x6 − 2x4x5. (6.2.12)

It turns out that the Gröbner basis consists of 6 equations:

x24x5 − x3x25 + x3x4x6 + x36, x
2
4 − x3x5 + x2x6, x1x4 − x22 − 2x4x5 + x3x6,

x2x4 + x1x6 − x23 − 2x5x6, x1x5 − x2x3 − 2x25 + x4x6, x2x5 − x3x4 − x26. (6.2.13)

Let us first consider η’s that can be rescaled to some η′ that simultaneously make the initial terms
to have t-weight zero. Then by (6.1.32),

8

5
F = (v1 + v2 + v3 + v4 + v5 + v6)

3× 2− 2

2× 2
= v1 + v2 + v3 + v4 + v5 + v6 (6.2.14)

(where we have put a0 on the left hand side). From the Gröbner basis, we see that there are
monomials of various powers solely containing one xi without mixing for all i ̸= 1, so we only need
to consider whether there is a test symmetry with charges (−1, . . . ) that destabilizes the ring in
terms of the rescaling method. However, it has to be compensated by positive charges from more
generators in the 6 equations as there are several mixing terms of form xp1x

q
i̸=1 and they all have

p = q = 1. Alternatively, as it is sufficient to find one instance giving negative F to destabilize
the ring, we can also solve a system of inequalities: 2v4 + v5 ≥ 0, v3 + 2v5 ≥ 0, . . . , together with
F ≤ 0. It turns out there is no solution except xi = 0 to the inequalities21.

As an example, for the test symmetry η with charges (0,−1,−1,−1,−1,−1) (which would certainly
lead to negative Futaki invariant if we do not modify the numerator or rescale it), the central fibre
is

x24x5 − x3x25 + x3x4x6 + x36, x
2
4 − x3x5 + x2x6, −x22 − 2x4x5 + x3x6,

x2x4 + x1x6 − x23 − 2x5x6, −x2x3 − 2x25 + x4x6, x2x5 − x3x4 − x26. (6.2.15)

Consider (ζ + ϵη) as a Reeb field for small ϵ, then the HS for (6.2.12) (or equivalently (6.2.13)) is

HS =
1− 5t4−2ϵ + 5t6−3ϵ − t10−5ϵ

(1− t2−ϵ)5 (1− t2)
. (6.2.16)

We find a0(ζ) = a1(ζ) =
5

2(ϵ−2)2
. Thus, in our convention,

F = nDϵa1(ζ + ϵη)− (n− 1)Dϵa0(ζ + ϵη)|ϵ=0 =
5

8
, (6.2.17)

which is positive as expected. More importantly, if we consider the test symmetry with (1, 0, 0, 0, 0),
this is the rescaled η′ we get from the above η with equivalent test configuration. It does not receive
any modifications in the numerator. Hence, we can use (6.2.14) to compute the Futaki invariant,
and indeed we get the same result F = 5/8.

For η’s that cannot give zero t-weights to all the initial terms after rescaling, it is exhaustive to
check all the cases. However, according to [262], we expect this ring to be stable.

Case 2: dP5 The PL of HS reads

PL(HS) = 5t2 − 2t4 ; (6.2.18)

the termination of the PL says that dP5 is a complete intersection and it indeed is: the base Fano
surface is a well-known degree 4 double-quadric in P4. There are 5 generators satifying 2 relations
which following theorem 115 in [263] can be written as

5∑

i=1

x2i =

5∑

i=1

aix
2
i = 0 (6.2.19)

21Notice this is a necessary but not sufficient condition for all the initial terms having a vanishing t-weight, but
as it has no solutions, this certainly shows that there is no such η′ destabilizing the ring.
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in P4
C, where ai ̸= aj for i ̸= j and the subscript “C” is explicit here just to emphasize that the

field is algebraically closed as required by the theorem. By (6.1.32),

2F = (v1 + v2 + v3 + v4 + v5)
3× 2− 2

2× 2
= v1 + v2 + v3 + v4 + v5. (6.2.20)

It suffices to check the test symmetry with charges (1, 0, 0, 0, 0) due to the fact that all generators
are symmetric within the relation. This symmetry indeed gives F > 0. Hence, the ring is stable
for n = 5.

Case 3: dP6 The PL of HS reads

PL(HS) = 4t2 − t6. (6.2.21)

Again, this is a complete intersection: it is famous cubic surface in P3 with the 27 lines (in the
PL, we have −t6 because the generators are weighted by 2). There are 4 generators satisfying 1
relation which can be written as

x31 + x32 + x33 + x34 = 0. (6.2.22)

By (6.1.32),
8

3
F = (v1 + v2 + v3 + v4)

3× 2− 2

2× 2
= v1 + v2 + v3 + v4. (6.2.23)

It suffices to check the test symmetry with charges (1, 0, 0, 0, 0) due to the fact that all generators
are symmetric within the relation. This symmetry indeed gives F > 0. Hence, the ring is stable
for n = 6.

Case 4: dP7 The PL of HS reads

PL(HS) = 3t2 + t4 − t8. (6.2.24)

There are 4 generators satifying 1 relation which can be written as

x41 + x42 + x43 + x24 = 0. (6.2.25)

By (6.1.32),

4F = (v1 + v2 + v3)
3× 2− 2

2× 2
+ v4

3× 4− 2

2× 4
= v1 + v2 + v3 +

5

4
v4. (6.2.26)

It suffices to check the test symmetries with charges (1, 0, 0, 0) and (0, 0, 0, 1) which both give F > 0.
Note here the generators x1, x2 and x3 are symmetric in the relation. Hence, the ring is stable for
n = 7.

Case 5: dP8 The PL of HS reads

PL(HS) = 2t2 + t4 + t6 − t12. (6.2.27)

There are 4 generators satifying 1 relation which can be written as

x61 + x62 + x33 + x24 = 0. (6.2.28)

By (6.1.32),

8F = (v1 + v2)
3× 2− 2

2× 2
+ v3

3× 4− 2

2× 4
+ v4

3× 6− 2

2× 6
= v1 + v2 +

5

4
v3 +

4

3
v4. (6.2.29)

It suffices to check the test symmetries with charges (1, 0, 0, 0), (0, 0, 1, 0) and (0, 0, 0, 1) which all
give F > 0. Note here the generators x1 and x2 are symmetric in the relation. Hence, the ring is
stable for n = 8.
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As we can see, not all of the dPs are non-complete intersections (in fact, only dP4 is a non-complete
intersection). For instance, dP8 is a complete intersection with

HS =
1− t12

(1− t2)2 (1− t4) (1− t6)
. (6.2.30)

Therefore, we can also use the standard steps for complete intersections to compute the Futaki
invariant. One may check that this yields the same result as above. In fact, when writing the HS
for test symmetry using PL, this recovers to the HS from complete intersection relation. Indeed,
the degrees of the generators in PL(HS)= 2t2 + t4 + t6 − t12 agree with those in (6.2.30). For
instance, when we pick the test symmetry with non-vanishing charge on the generator at order 4,
the HS becomes

HS =

(
1− t2 + t4

) (
1− t4

)

(1− t2) (1− t2)2 (1− t4+ϵ)
. (6.2.31)

In particular, (
1− t2 + t4

) (
1− t4

)

(1− t2) =
1− t12
1− t6 . (6.2.32)

Hence, we recover the HS in (6.2.30) with an explicit 1/(1− t4) factor. As a result, the method for
non-complete intersections is consistent with the method for complete intersections. Importantly,
our method is general and applies to arbitrary varieties.

6.2.3 One SU(N) Instanton Moduli Spaces on C2

The Higgs branch of D(p−4)-Dp brane systems, which is the moduli space of instantons, is studied
in [264]. Here, we consider the worldvolume theory of a D3 brane in the background of stack of N
D7 branes, whose N = 1 quiver is given in Figure 7 (with k = 1) of [264]. The U(1) factor of the
global U(N) global symmetry is absorbed into the gauge group U(1) in the quiver diagram. The
superpotential is W = qΦq̃, where q and q̃ are the fundamentals and Φ is a U(1) adjoint. Notice
that there are two other U(1) adjoints ϕ1 and ϕ2 with superpotential term ϵαβϕαΦϕβ , but since
the adjoints are just complex numbers for U(1), it vanishes in the superpotential. The HS is22

HS =

N−1∑
i=0

(
N−1
i

)
t2i/N

(
1− t1/N

)2 (
1− t2/N

)2(N−1)
. (6.2.33)

The dimension of the moduli space is n = 2N . Let us first consider the case with N = 2. Under
Laurent expansion around s = 0, we have a0 = a1 = 8. The PL of HS reads

PL(HS) = 2t1/2 + 3t− t2. (6.2.34)

Algebro-geometrically, we can write the equation as

x21 + x22 + x23 + x44 + x45 = 0. (6.2.35)

If we consider the test symmetry with charges (0, 0, 0, 0, 1), then we find that

F = 8× 4× 1/2− 2

2× 1/2
= 0 (6.2.36)

and

||η||2 = (4− 1)× 8

42 × (4 + 1)× (1/2)2
=

6

5
̸= 0. (6.2.37)

22Again, the fractional powers are always just computationally a result of our convention.
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Hence, the ring is unstable. Interestingly, we can see that the central fibre is x21+x
2
2+x

2
3+x

4
4 = 0,

which is also known to be unstable from §6.2.1. Therefore, the destabilizing ring in general may
not necessarily be stable as well.

If we further destabilize this A3 threefold singularity with (0, 0, 0, 1, 0), we would get the stable23

x21 + x22 + x23 = 0, which is C2/Z2. In fact, if we remove the two ϕα’s in the quiver diagram, we
would get the same superpotential and

HS =
1− t2
(1− t)3

, (6.2.38)

which in the IR fixed point should be the same as SQED with 2 flavours [265].

For general N , the varieties are not complete intersections. Even if we do not write the relations
explicitly, we can still consider the test symmetry where only one generator of order 1/N has a
charge 1 with other test charges vanishing. The Futaki invariant is then

F

a0
=

2N × 1/N − 2

2× 1/N
= 0 (6.2.39)

with
||η||2
a0

=
2N − 1

(2N)2 × (2N + 1)× (1/N)2
=

2N − 1

4(2N + 1)
̸= 0. (6.2.40)

Hence, the rings for one SU(N) instanton moduli spaces are (K-)unstable.

6.2.4 Phenomenological Theories

Now, let us consider the VMS of some phenomenologically interesting SUSY gauge theories.

SQCD We can use the HS obtained in [27] to study the ring stabilities for SQCDs with SU(Nc)
gauge groups. The generators follow the standard relations between mesons and baryons: Bi1...iNc B̃j1...jNc

=

M
[i1
j1
. . .M

iNc ]
jNc

and M
[i1
j B

ji2...iNc ] =M j
[i1
B̃ji2...iNc ]

= 0.

Example 0: Nf < Nc In such cases, the moduli spaces are freely generated, and the moduli

spaces are simply CN
2
f [27]. Hence, the HS is

HS =
1

(
1− t2/N2

f

)N2
f

. (6.2.41)

As aforementioned, there are no non-trivial test configurations for CN
2
f . Hence, the rings for

Nf < Nc are stable. Notice, however, the discussion here is semi-classical. When we take quantum
corrections into account, there is no stable24 ground state, and such vacuum variety is just an
auxiliary space that helps us study the GIOs. For more details, see, for example, [27, 266].

Example 1: Nf = 2, Nc = 2 For Nc = 2, the refined HS is

HS =
∞∑

k=0

dim[0, k, 0, . . . , 0]tk/Nf = 2F1

(
2Nf − 1, 2Nf ; 2; t

1/Nf

)
, (6.2.42)

where [n1, . . . , nNf−1] is the highest weight notation of SU(Nf ) irrep, and 2F1 is the hypergeometric
function. In particular, for SU(2) gauge group, since the fundamentals are pseudoreal, there is no
distinction between quarks and antiquarks. Moreover, as the fundamentals only have two colour

23Equivalently, we can consider (0, 0, 0, 1, 1) for (6.2.35) to directly get this central fibre.
24Here, this “stable” should not be confused with “K-stable”.
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indices, the antisymmetrized product on three or more flavour indices vanish. Hence, the relation
becomes ϵi1...i2Nf

M i1i2M i3i4 = 0, where i1, . . . , i2Nf
= 1, . . . , 2Nf .

Let us start with SU(2) with 2 flavours. The (unrefined) HS is

HS =
1− t

(
1− t1/2

)6 . (6.2.43)

Under Laurent expansion around s = 0, we have a0 = a1 = 64. The PL of HS reads

PL(HS) = 6t1/2 − t, (6.2.44)

which is in fact a hypersurface. The defining equation is x1x2 + x3x4 + x5x6 = 0, or under a
holomorphic change of coordinates, u2 + v2 + w2 + x2 + y2 + z2 = 0. By (6.1.32),

F =
6∑

i=1

vi
5× 1/2− 2

2× 1/2
a0 = 32

6∑

i=1

vi. (6.2.45)

It suffices to check test symmetry with charges (1,0,0,0,0,0) due to the symmetry of generators in
the relation. We then have F > 0. Hence, we conclude that the ring for SU(2) with Nf = 2 is
stable.

Example 2: Nf = 3, Nc = 3 The HS for SU(3) with 3 flavours is

HS =
1− t2/3

(
1− t1/3

)2 (
1− t2/9

)9 . (6.2.46)

Under Laurent expansion around s = 0, we have a0 = a1 = 1162261467/256. The PL of HS reads

PL(HS) = 9t2/9 + 2t1/3 − t2/3. (6.2.47)

There are 11 generators satisfying 1 relation which can be written as

x11x22x33 + x21x12x33 + x11x32x23 + x21x32x13 + x31x22x13 + x31x12x23 + y1y2 = 0. (6.2.48)

By (6.1.32),

F =
1162261467

256

(
1

2
(v1 + · · ·+ v9) + 2(v10 + v11)

)
. (6.2.49)

As the mesons and baryons are symmetric in the single equation respectively and there are no
mixing terms of mesons and baryons, the ring for SU(3) with 3 flavours is expected to be stable.

A speculation for Nf = Nc More generally, as observed in [27], the moduli space of Nf = Nc

is a hypersurface in CN2
c+2 with

HS =
1− t2/Nc

(
1− t2/N2

c

)N2
c
(
1− t1/Nc

)2 . (6.2.50)

Since a hypersurface can always have the initial terms with t0 under rescaling, we can apply (6.1.32)
which yields

F

a0
=

1

2
(v1 + · · ·+ vN2

c
) +

(Nc − 1)2

2
(w1 + w2) (6.2.51)

for test symmetry with charges (v1, . . . , vN2
c
, w1, w2). In particular, we have F/a0 = 1/2 and

F/a0 = (Nc − 1)2/2 for (1, 0, 0, . . . , 0) and (0, 0, . . . , 0, 1, 0) respectively. The mesons and baryons
are symmetric in the hypersurface algebraic equation with same ζ-weights respectively, so in terms
of the rescaling method it is natural to speculate that a negative η-charge of a generator would
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require other generators to have positive η-charges to compensate this in the test configuration.
Moreover, there are no monomials having both mesons and baryons in the relation. Hence, it is
natural to expect that the rings for Nf = Nc are stable.

However, as we learn from [267] that the ring is expected to be (K-)unstable for Nf < 3Nc/2. The
(anti-)quarks have R-charges (1 − Nc/Nf ), and therefore equal to zero for Nf = Nc. However,
to have a conformal fixed point, we require the R-charges (of GIOs) to be no less than 2/3, i.e.,
Nf ≥ 3Nc/2 here from the mesons. Thus, it seems that the K-stability criterion for conformality
fails in this case.

Example 3: Nf = 4, Nc = 3 Even for non-zero R-charges, violation of unitarity bound might
also “leak” out of the bound nk − 2 < 0 from stability. For instance, the HS for SU(3) with 4
flavours reads

HS =
P (t)

(
1− t1/6

)16 (
1− t1/4

)2 , (6.2.52)

where P (t) is polynomial with palindromic coefficients whose exact expression can be found in [27]
(up to some rescaling of t). Under Laurent expression, we learn that n = 16. In fact, we can see
that Nf = 4 < 3Nc/2 = 9/2, and hence the mesons violate the unitarity bound. On the other
hand, we have nk − 2 = 16/6− 2 = 2/3 > 0 for the mesons. Therefore, the unitarity bound could
live above the stability bound.

Electro-Weak MSSM The electroweak sectors of minimal supersymmetric standard model
(MSSM) with renormalizable superpotentials are classified in [37]. The simplest case is gener-
ated by LH and HH̄ where L stands for the lepton doublets and H, H̄ stand for the up and down
types of Higgs doublets. Notice that we have suppressed the indices and Levi-Civita symbols in
the generators. It turns out that geometrically this is just C4, and hence is trivially stable.

The next simplest case is generated by LLe and LH̄e where e stands for the lepton singlet. From
[37], the HS is

HS =
1 + 4t+ t2

(1− t)5 . (6.2.53)

Under Laurent expansion around s = 0, we have a0 = a1 = 729/16. The PL of HS reads

PL(HS) = 9t− 9t2 + 16t3 − . . . (6.2.54)

There are 9 generators satifying 9 relations which can be written as

y6y8 − y5y9, y3y8 − y2y9, y6y7 − y4y9,
y5y7 − y4y8, y3y7 − y1y9, y2y7 − y1y8,
y3y5 − y2y6, y3y4 − y1y6, y2y4 − y1y5, (6.2.55)

which already forms a Göbner basis. For those (v1, v2, . . . , v9) that can be rescaled such that all
the 9 equations have initial terms with 0 t-weights, we can simply apply (6.1.32) which yields

F =
729

16
× 3

2

9∑

i=1

vi =
2187

38

9∑

i=1

vi. (6.2.56)

Due to the symmetry of the 9 variables, if there is a negative test charge, then it should be com-
pensated by more positive test charges in order to satisfy the condition for a rescaled configuration.
Hence, (6.2.56) should always give a positive F .

However, for the test symmetries that cannot be rescaled to one where (6.2.56) applies, it is ex-
haustive to check all of them. As an example, let us consider η with charges (−1,−2, 0, 0, . . . , 0).
The test configuration is then

y6y8 − y5y9, y3y8 − t−2y2y9, y6y7 − y4y9,
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y5y7 − y4y8, y3y7 − t−1y1y9, t
−2y2y7 − t−1y1y8,

y3y5 − t−2y2y6, y3y4 − t−1y1y6, t
−2y2y4 − t−1y1y5. (6.2.57)

With the help of Macaulay2, a direct computation with regularization in the numerator yields

HS =
1

(1− t)7 (1− t1−2ϵ) (1− t1−ϵ) ×
(
1− 3t2 − 4t2−2ϵ − 2t2−ϵ

+2t3−3ϵ + 9t3−2ϵ + 3t3−ϵ + 2t3 − 3t4−3ϵ − 6t4−2ϵ + t5−2ϵ − t5−ϵ + t6−3ϵ
)
.

(6.2.58)

Thus,

F = nDϵa1(ζ + ϵη)− (n− 1)Dϵa0(ζ + ϵη)|ϵ=0 =
1

2
. (6.2.59)

We also notice that this η can be rescaled to the “minimal” η′ with charges (1, 0, 2, 0, 0, . . . , 0). The
test configuration is then

y6y8 − y5y9, t2y3y8 − y2y9, y6y7 − y4y9,
y5y7 − y4y8, t2y3y7 − ty1y9, y2y7 − ty1y8,
t2y3y5 − y2y6, t2y3y4 − ty1y6, y2y4 − ty1y5. (6.2.60)

Regularization in the numerator yields

HS =
1− 2t2+ϵ − 7t2 + 5t3+ϵ + 11t3 − 3t4+ϵ − 6t4 − t5+ϵ + t5 + t6+ϵ

(1− t)7 (1− t1+ϵ) (1− t1+2ϵ)
. (6.2.61)

Therefore, we find that

F = nDϵa1(ζ + ϵη)− (n− 1)Dϵa0(ζ + ϵη)|ϵ=0 =
1

2
. (6.2.62)

We have checked quite a few test symmetries with low values of vi, all of which give positive Futaki
invariants. It is natural to speculate that this ring is stable.

Outlook K-stability is naturally related to the chiral rings of SCFTs as some “generalized a-
maximization”. However, when an AdS/CFT picture is not present, the connection between K-
stability and conformality becomes more subtle. However, as an example, we show that SQCD does
not seem to follow the K-stability criterion for conformality. Furthermore, the unitarity bound is
possible to live above the stability bound nk− 2 ≥ 0, so some operators which violate the unitarity
bound could have positive nk − 2. Nevertheless, K-stability should still play a crucial role in
studying chiral rings and SCFTs since on the (emergent) gravity side, there usually involves many
symmetries, and this is exactly what K-stability and destabilizing rings concern. We speculate that
K-stability could be a necessary (but not sufficient) condition for the ring being a ring of SCFT.
This condition might become sufficient as well in some special classes of theories, such as the gauge
theories from D-branes probing CYs.

In [268], chiral ring stability is introduced when one drops certain superpotential terms. Its relation
to K-stability still requires further study. It is also worth noting that in [257], non-commutative
crepant resolution (NCCR) is applied to finding the quivers for various theories. However, the
existence of NCCR and being K-stable are not necessary to each other. It would be interesting to
further study their connections and also extend the discussions to supersymmetric theories in other
dimensions.
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Chapter 7

AI as a Witness?

In the past few years, machine learning has been introduced to the study of theoretical and mathe-
matical physics [269,270]. Instead of talking about some rudiments of machine learning and AI, we
shall briefly discuss what we should expect from machine learning or how we should properly use
machine learning in our study. Then we will use some examples to illustrate the recent progress.

The most straightforward way to apply machine learning is to feed the machine some known data
and perform the training to see how well the algorithm behaves when making predictions. Here,
by “how well”, we mean that we use various measures to check how accurate the predictions the
machine gives after training. However, such way, known as the supervised learning, is not really
helpful. Of course, this shows the performance of machine learning in a specific research field and
gives one some hint on how much it could be relied on. In many cases, espcially in algebraic
geometry, we have seen many good performances such as in [3,6,7,10,13]. Nevertheless, this would
not produce new physics or mathematics.

Therefore, it could be more helpful to consider methods such as unsupervised learning and rein-
forcement learning. It could be possible that with machine learning and AI, some hidden structures
and patterns of certain objects can be revealed. In other words, instead of simply measuring how
much one can trust on the predictions by the machine, it would be more instructive to see whether
the machine can help one find plausible directions for investigations or even formulate any unknown
conjectures, which could then be beneficial for our analytical study.

Since machine learning often only gives linear approximations, it is still difficult to find patterns or
formulae that can be used practically. Nevertheless, this modern technique might still help us in
numerical analysis and in the string landscape with huge data in future. Here, we shall give some
preliminary examples where one can see some analytical results from the analysis of the machine
learning results although these results are particularly simple and are known previously. In the first
example, we show how a simple linear regressor can reproduce the volumes of the lattice polytopes
in different dimensions from their Ehrhart series. In the second example, we illustrate how one can
recover the conditions that determine the genus of the (lopsided) amoebae using data projections
and unsupervised learning.

7.1 Ehrhart Series and Volumes of Polytopes

Our first example would be using the Ehrhart series to predict the volumes of the lattice polytopes
in different dimensions associated to canonical Fano varieties. Let us start with some backgrounds
on polytopes and Ehrhar series. More details can be found for example in [271].

The Ehrhart series is the key to enumerating interior lattice points of a polytope. As with Hilbert
series in algebraic geometry, we have

Definition 7.1.1. Given a polytope P in the lattice M , the Ehrhart polynomial is

ehrP (k) := |kP ∩M | , (7.1.1)
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which counts the number of lattice points within the k-dilation of P . Then, the generating function
is the Ehrhart series:

EhrP (t) =
∑

k≥0

ehrP (k)t
k, (7.1.2)

for a formal variable t.

Indeed, we expect that the number of lattice points, as with volume, grows polynomially with k in
a fixed dimension, d. That is, ehrP is a polynomial [272] in k. It is hence of the form

ehrP (k) = cdk
d + · · ·+ c1k + c0, (7.1.3)

where d!cd is the (normalized) volume1 of the P , called as Vol(P ) henceforth. In this case, the
Ehrhart polynomial/series coincides with the Hilbert polynomial/series of the variety. The Ehrhart
series can then be written as

EhrP (t) =
g(t)

(1− t)d+1
=
g0 + g1t+ · · ·+ gdt

d

(1− t)d+1
. (7.1.4)

In particular, g(1) = g0 + g1 + · · ·+ gd = d!cd = Vol(P ).

Example 22. The Ehrhart polynomial for the polygon associated to dP2 (No.12 in Figure 4.0.1)
is ehrP (k) =

5
2k

2 + 5
2k + 1. Therefore, the Ehrhart series reads

EhrP (t) =

∞∑

k=0

(
5

2
k2 +

5

2
k + 1

)
tk =

1 + 3t+ t2

(1− t)3 . (7.1.5)

As one may check, g0 + g1 + g2 = 5 gives the volume of P .

Now, let us use the regressors to predict the volumes of the polytopes of dimensions from 1 to 6.
We use the coefficients in the Taylor expansions of the Ehrhart series up to order 30 as input. After
training a few data, we find that the coefficients of the regressors can be extracted as follows:

dim = 1 : [−1, 1];
dim = 2 : [1,−2, 1];
dim = 3 : [−1, 3,−3, 1];
dim = 4 : [1,−4, 6,−4, 1];
dim = 5 : [−1, 5,−10, 10,−5, 1];
dim = 6 : [1,−6, 15,−20, 15,−6, 1].

(7.1.6)

As we can see, for dimension d, this is precisely

d∑

i=0

(
d

i

)
(−1)iehrP (d− i). (7.1.7)

Recall that the Ehrhart polynomial can be written as
d∑
i=0

cik
i, then

d∑

i=0

(
d

i

)
(−1)iehrP (d− i) =

d∑

i=0

(
d

i

)
(−1)i(cd(d− i)d + · · ·+ c1(d− i) + c0). (7.1.8)

For k < d,
d∑
i=0

(
d
i

)
(−1)i(d− i)k vanishes. To see this, consider

(
x
d

dx

)k
(x− 1)d =

(
x
d

dx

)k( d∑

i=1

(
d

i

)
(−1)ixd−i

)
=

d∑

i=0

(
d

i

)
(−1)i(d− i)kxd−i. (7.1.9)

1In the corresponding toric variety, this volume equals the degree of the toric variety polarized by the Cartier
divisor DP .
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Taking x = 1, we see that this is indeed zero. Therefore,

d∑

i=0

(
d

i

)
(−1)iehrP (d− i) = cd

d∑

i=0

(
d

i

)
(−1)i(d− i)d = d!cd, (7.1.10)

where the last equality can again be obtained by acting (xdx/x)k with k = d. This is exactly the
volume of P . As we can see, such example works with the linear regressors as the formulae for the
volumes are linear.

7.2 Amoebae and Genus

We shall now consider a slightly more complicated example. Let us take the amoebae and predict
their genus, that is, the numbers of holes/gas phases. First, we need to introduce the lopsidedness
of the amoebae [273].

Definition 7.2.1. Let f ∈ C
[
z1, z

−1
1 , . . . , zr, z

−1
r

]
be a sum of (Laurent) monomials mi as f(z) =

m1(z) + · · ·+mk(z). For x ∈ Rr, define the list of positive numbers

f{x} :=
{∣∣m1(Log

−1(x))
∣∣ , . . . ,

∣∣mk(Log
−1(x))

∣∣} . (7.2.1)

We say a list of positive numbers is lopsided if one of the numbers is greater than the sum of all
the others. This definition can then be applied to f{x}.
It is then natural to define the following [274]:

Definition 7.2.2. Given a Newton polynomial P , the lopsided amoeba is

LAP := {x ∈ Rr| P{x} is not lopsided}. (7.2.2)

For some cases, such as P = z1 + z2 + 1, LAP = AP . However, in general, they do not need to
coincide. Nevertheless,

AP ⊆ LAP , (7.2.3)

so that LAP can be constructed as a crude approximation to AP . This can be made precise as
follows.

Let n be a positive integer, x ∈ Rr, and P (x) a (Newton) polynomial, define P̃n to be 2

P̃n(x) :=

n−1∏

k1=0

· · ·
n−1∏

kr=0

P
(
e2πik1/nx1, . . . , e

2πikr/nxr

)
. (7.2.4)

Clearly, P̃1 = P . Such P̃n is in fact a cyclic resultant

P̃n = resur
(
resur−1

(
. . . resu1 (P (u1x1, . . . , urxr), u

n
1 − 1) . . . , unr−1 − 1

)
, unr − 1

)
(7.2.5)

where resu(f, g) is the resultant of f, g with respect to the variable u.

The lopsided amoeba LAP̃n
for P̃n approximates AP itself [273]:

Theorem 7.2.1. For an r-dimensional Newton polytope ∆(P ), with polytope coordinates pi for each
ith direction in the Zr lattice which the polytope is defined in, one defines ci := max(pi)−min(pi)
over the polytope vertices; then c = max(ci). Suppose x ∈ Rr \ AP is a point in the amoeba
complement whose distance from AP is at least ϵ > 0. If n is large enough so that

nϵ ≥ (r − 1) log n+ log((r + 3)2r+1c), (7.2.6)

then P̃n{x} is lopsided3 and LAP̃n
converges uniformly to AP as n→∞.

2In [274], a faster algorithm was proposed to compute LAP̃n
at level k where n = 2k using the properties of cyclic

resultants. The time complexity is O(kd2) with d being the degree of P (z1, z2).
3In this paper, as r is always 2, we have nϵ ≥ log n+ log(8c).
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A consequence of this is one way to solve the membership problem:

Theorem 7.2.2. Let I ⊂ C
[
z1, z

−1
1 , . . . , zr, z

−1
r

]
be an ideal. The point x ∈ Rr is in the amoeba

AI if and only if f{x} is not lopsided for every f ∈ I.
Therefore, to fully determine the boundary of an amoeba, we need to consider all the Laurent
polynomials in the ideal generated by our Newton polynomial. Equivalently, we need to take
n → ∞ for the cyclic resultant. As a result, we often approximate the boundary with some finite
large n in practice. This would also be our basic strategy to study the genus using neural networks
later, although unlike finding the boundary, sometimes we can count the genus in other ways, as
we will see.

Example For instance, consider the Newton polynomial P = z3 + w3 + 2zw + 1 whose amoeba
is plotted red in Figure 7.2.1. The dark blue points (plus the red ones) form the lopsided amoeba
LA

P̃16
while the chartreuse points (plus the red and dark blue ones) give the region of LA

P̃8
.

Figure 7.2.1: It is clear from this example that the lopsided amoeba contains the amoeba
as a subset. Figure taken from [274, Figure 1].

7.2.1 Lopsided Amoebae: n = 1

As discussed above, we will use lopsided amoebae since they are more amenable to computation.
We begin with the simplest case of n = 1 where P̃1 = P by definition, so that LAP̃1

= LAP .

For a fixed Newton polynomial P (z, w) =
∑
ckz

iwj , the input is the vector composed of the
coefficients, i.e., {c1, c2, . . . , cn}, and the output is the genus. In other words, we have labelled data
of the form

{c1, c2, . . . , cn} −→ g . (7.2.7)

Example 1: F0 We start with our simple running example F0 whose toric diagram is No.15 in
Figure 4.0.1. Some plots of the amoebae can be found in Appendix B. As the Newton polynomial
is

P (z, w) = c1z + c2w + c3z
−1 + c4w

−1 + c5. (7.2.8)
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our input is {c1, c2, c3, c4, c5}. Since the resulting lopsided amoeba could have at most one genus
(corresponding to its single interior point), this is a binary classification where the output is either
g = 0 or g = 1. For this simple example, one can analytically derive (see Appendix K) the genus g
as a function of the coefficients:

g =

{
0, |c5| ≤ 2|c1c3|1/2 + 2|c2c4|1/2
1, |c5| > 2|c1c3|1/2 + 2|c2c4|1/2

. (7.2.9)

Now, the actual accuracy of classifying g, albeit very high, is not important here. Our purpose is
to see whether we can recover these conditions from unsupervised learning.

To see how well the neural network (NN) is learning the above equation for g, we can a perform
principal component analysis (PCA) projections, as visualized in Figure 7.2.2(a). With the help
of the Yellowbrick package, we can use multi-dimensional scaling (MDS) manifold projection to
make the two types of data points further separated as in Figure 7.2.2(b). For a brief introduction
to different methods of manifold learning, see [7, Appendix B] and references therein.

20 15 10 5 0 5 10 15 20

8

6

4

2

0

2

4

6

8

(a)

Using…5…features

MDS…Manifold…(fit…in…169.23…seconds)

0
1

(b)

g = 0

g = 1

LHS

RHS

(c)

Figure 7.2.2: (a) The kernel PCA projection for an NN. (b) The MDS manifold projection
which gives a better separation of the two classes of points. (c) Ideally, the blue and green
regions would be separated by y = ±x. In practice, due to the complication of square roots,
the NN would get shifted. This shift, i.e., the actual separation of the blue and green points,

is indicated by the red lines here.
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To get an idea about how these data points are distributed in the projection, let us define4 x ≡ c5
and |y| ≡ 2|c1c3|1/2+2|c2c4|1/2. Then the inequalities in (7.2.9) has the boundary lines y = ±x. As
depicted in Figure 7.2.2(c), the two lines divide the projection plane into different regions, where
in the blue region we have genus zero while in the green region we have genus one. The equivalent
separation coming from our NN in Figure 7.2.2(a,b) is represented by the red lines in (c), although
we can see that they do not intersect at the origin and the g = 0 region would occupy some of the
g = 1 parts.

Why is there a shift of the boundary lines? We believe that this is due to the non-trivial expression
of y (especially the square roots therein). Although it is possible for an NN to learn such expression
in principle, it could still be too complicated for a simple NN to fully simulate this.

There is another useful projection in this example, that is, the spectral embedding visualization as
shown in Figure 7.2.3(a). As we can see, this gives a distribution in a parabola shape. We argue

Using…5…features

Spectral…Embedding…Manifold…(fit…in…0.16…seconds)

0
1

(a)

Using…5…features

Spectral…Embedding…Manifold…(fit…in…0.17…seconds)

0
1

(b)

Figure 7.2.3: (a) The spectral embedding manifold projection of the dataset for F0. For
the input vectors, c1,2,3,4 range from −5 to 5 while c5 ranges from −20 to 20. (b) To
verify our explanation for (a), we generate a dataset whose two classes are separated by
c′25 = 4|c′1c′3|+ 4|c′2c′4|+ c0 (with c′i the same range as ci), where c0 = 4× 2× 2.52 as 2.5 is

the average of the possible values for c1,2,3,4.

that this comes from squaring y = ±x, i.e., Y (≡ y2) = x2. However, again due to the complicated
expression, it would be very hard for a simple NN to fully recover Y . Hence, there could still be
some mixing at the boundary parts. As a validation, we generate a dataset whose binary classes
are separated by the bound c′25 = 4|c′1c′3|+4|c′2c′4|+50 and plot its spectral embedding as in Figure
7.2.3(b). Indeed, we obtain a similar parabola-shaped projection.

Example 2: L3,3,2 Let us consider a non-reflexive example with two interior points, viz., L3,3,2

whose toric diagram is

. (7.2.10)

The Newton Polynomial is

P (z, w) = c1z + c2w + c3z
−1 + c4w

−1 + c5z
2 + c6. (7.2.11)

Hence, our input is {c1, c2, c3, c4, c5, c6}. Since the resulting lopsided amoeba could have at most
two holes (corresponding to its two interior points), this is a ternary classification where the output
can be g = 0, 1, 2.

4As discussed in Appendix K, (7.2.9) works for all complex coefficients. However, we are only using real input
vectors here, and more importantly, only the absolute values would matter in the condition. Hence, we can set
c5 = x ∈ R in the projection.
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As with F0, we can analytically find the boundary decisions, though the expressions are much more
complicated. The details are presented in Appendix K, and we summarize them here:

g =





0, |c1| ≤ a1 and |c6| ≤ a2
1, (|c1| > a1 and |c6| ≤ a2) or (|c1| ≤ a1 and |c6| > a2)

2, |c1| > a1 and |c6| > a2

, (7.2.12)

where a1 := |c2|w0/z0 + |c3|/z20 + |c4|/(z0w0) + |c5|z0 + |c6|/z0 and a2 := |c1|z′0 + |c2|w0 + |c3|/z′0 +
|c4|/w0 + |c5|z′20 such that z0 := 3

√
− q

2 +
√
∆ + 3

√
− q

2 −
√
∆, with ∆ :=

∣∣∣ c3c5
∣∣∣
2
− (2|c2c3|1/2+|c6|)3

27|c5|3 ,

and z′0 is the positive root of 2|c5|z′30 + |c1|z′20 − |c3| = 0. Again, let us see to what extent the
unsupervised learning can recover this.

Again, we can plot different manifold projections to visualize how the NN is simulating the above
condition as shown in Figure 7.2.4(a,b,c). We can see that different projections give similar data

Using…6…features

MDS…Manifold…(fit…in…1695.49…seconds)

0
1
2

(a)

Using…6…features

Isomap…Manifold…(fit…in…65.38…seconds)

0
1
2

(b)

Using…6…features

t-SNE…Manifold…(fit…in…114.67…seconds)

0
1
2

(c)

g = 0

g = 1

g = 2

(d)

Figure 7.2.4: (a) The MDS embedding manifold projection of the dataset for L3,3,2. (b)
The Isomap embedding manifold projection. (c) The t-SNE embedding manifold projection.
For instructions on these manifold projections, one is referred to [275]. (d) The sketch of an

ideal separation of the data points.

separations. To understand such decision regions, let us first write the two bounds as

|c1| = a1 ≡ |c6|/z0 + b1,

|c6| = a2 ≡ |c1|z′0 + b2,
(7.2.13)

where bi > 0. In other words, when g = 2, the region is bounded by |c6|/z0+b1 < |c1| < |c6|/z′0−b2.
This corresponds to the red region in Figure 7.2.4(d) whose horizontal and vertical axes are x ≡
±|c6| and y ≡ ±|c1| respectively. Notice that z0, z

′
0, bi are not constants, but we can always draw
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some boundary lines (in yellow) as a sketch (assuming that the changes of the boundary lines are
small compared to different coloured regions5).

Likewise, it is straightforward to find the regions for g = 0 (in blue) and g = 1 (in green). Indeed,
this is the decision regions we get from those different projections. As z0, z

′
0 and bi are not

really constants and have some complicated expressions, it is natural to see some mixings in the
projections.

7.2.2 Genus From Data Projections

One may also consider other toric diagrams. We may also consider lopsided amoebae for n > 1
(including n → ∞ where one recovers the orignial amoebae). Such analysis with more examples
can be found in [7]. Of course, the analysis would be more difficult for larger polygons as can
be seen from the theorem on lopsidedness. Here, let us use data projections to see if we can also
recover the conditions for the genus. For simplicity, we shall only consider the F0 example as an
illustration.

For instance, let us take Figure 7.2.2(b) for F0 where MDS manifold projection was applied. Each
point (x, y) in the plane represents one input vector as (c1, c2, c3, c4, c5) 7→ (x, y). By checking the
coordinates of (x, y), it is possible to recover the conditions in (7.2.9), i.e.,

g =

{
0, |c5| ≤ a
1, |c5| > a

with a := |c1c3|1/2 + 2|c2c4|1/2, as follows.

-20 -10 10 20
c5

-20

-10

10

20

x

(a)

5 10 15 20 25
a-2 δ

5

10

15

20

25

2 y

(b)

Figure 7.2.5: For the projection (c1, c2, c3, c4, c5) 7→ (x, y) for F0, we plot (a) x versus c5
and (b) 2|y| versus a− 2δ.

We plot x against c5 in Figure 7.2.5(a) and find that the average of (c5− x) is −0.172± 1.054. We
also draw the line x = c5 is in red to show a good fit. Indeed, we see that x is essentially recovering
the left hand side of the above inequalities. For y, it is more complicated and we find that there is
a nice fit with |c1,2,3,4|:

|yfit| = 0.141|c1c3|+ 0.166|c2c4|+ 2.411. (7.2.14)

In fact, this fit actually contains a typical linear approximation of square roots,
√
m ≈ (0.1k+1.2)×

10n for any real k ∈ [1, 100) and n ∈ Z such that m = k × 102n. Here, c1,2,3,4 are random reals
generated in the range [−5, 5] and the right hand side is approximately (0.1|c1c3|+1.2+0.1|c2c4|+
1.2). This agrees with the linear approximation for square roots when m = k and n = 0. In other
words,

|y| ≈
√
|c1c3|+

√
|c2c4| = a/2. (7.2.15)

5For instance, here c1,6 are generated in the range [−20, 20], and the means are µ(1/z0) = 0.31, µ(1/z′0) =
2.01, µ(b1) = 6.48, µ(b2) = 9.18 with standard deviations σ(1/z0) = 0.18, σ(1/z′0) = 0.77, σ(b1) = 3.72, σ(b2) = 3.07.
We will not restate this explicitly for the examples discussed below. The complicated expressions for bi and the
standard deviations could account for the mis-classifications in machine learning.
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We show this in Fig. 7.2.5(b). The blue points are the pairs (a− 2δ, 2|y|) and the line 2|y| = a− 2δ
is in red, where we have defined δ := |yfit| − |y|. Comparing the fitted results of (x, y) and Figure
7.2.2, we find that this indeed gives the bound |c5| = a for F0.
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Appendix A

The 45 Lattice Polygons with Two
Interior Points

Below is the list of all inequivalent lattice polygons with two interior points as classified in [123]:

5 Triangles:

(1) (2) (3) (4) (5)
;

19 Quadrilaterals:

(6) (7) (8) (9) (10) (11)

(12) (13) (14) (15) (16) (17)

(18) (19) (20) (21) (22) (23) (24)
;

16 Pentagons:

(25) (26) (27) (28) (29) (30) (31)
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(32) (33) (34) (35) (36) (37)

(38) (39) (40)
;

5 Hexagons:

(41) (42) (43) (44) (45)
.

A.1 Volume Functions

For reference, we list all the 45 volume functions and their minima in Table A.1.1.

# V b∗1 b∗2 Vmin [L : Q]

(1) − 18
(b2+3)(−3b1+2b2+6)(−3b1+4b2−6)

0 0 1
6

1

(2) − 25
(b1−2b2+3)(2b1+b2−9)(b1+3b2+3)

2 0 1
5

1

(3) 16
(b2+3)(−2b1+b2−3)(2b1+3b2−9)

2 -1 1
8

1

(4) 10
(b2+3)(−b1+b2−3)(2b1+3b2−9)

1 -1 1
10

1

(5) 6
(b2+3)(−b1+b2−3)(b1+2b2−6)

2 -1 1
12

1

(6)
3(4b1+2b2+21)

(b1+3)(b1+b2+3)(b1+3b2−6)(b1−2(b2+3))
1
2
(−6 + 3

√
6) 0 4

405
(9 + 4

√
6) 2

(7)
6(b1+b2+12)

(b1+3)(b1−b2−6)(b1+2b2+3)(b1+3b2−6)
3
2

(√
33− 5

)
0 1

648

(
63 + 11

√
33

)
2

(8) 81
(b1−6)(b1+3)(b1+3b2−6)(b1+3b2+3)

3
2

0 16
81

1

(9) − 2(b2−9)
(b2−3)(b2+3)(b1+b2+3)(b1+2b2−6)

3
(√

3− 1
)

3− 2
√
3

√
3

18
2

(10) − 2(b2−15)
(b2−3)(b2+3)(b1+b2+3)(2b1+3b2−9)

1
2

(
5
√
7− 11

)
5 + 2

√
7 1

243
(10 + 7

√
7) 2

(11)
2(b1+4(b2−6))

(b2−3)(b1+b2+3)(b1+2b2−6)(b1−2(b2+3))
0 4−

√
13 1

648
(46 + 13

√
13) 2

(12)
6(b2−5)

(b2−3)(b2+3)(2b1+b2+3)(b1+2b2−6)
1
6

(
1 + 5

√
13

)
1
3

(
5− 2

√
13

)
− 1

108
(35− 13

√
13) 2

(13)
2(2b1+b2+15)

(b2+3)(−b1+b2−3)(b1+b2+3)(b1+2b2−6)
3.27464 −0.831239 0.112571 4

(14) − 8(b2−6)
(b2−3)(b2+3)(2b1+b2+3)(2b1+3b2−9)

1
2

(
2
√
7− 1

)
2−

√
7 4

243
(−10 + 7

√
7) 2

(15)
2(3b1+2b2+24)

(b2+3)(−b1+b2−3)(b1+b2+3)(2b1+3b2−9)
2.19488194 −0.760489 0.142613 4

(16) − b1−12(b2+4)
(b1+6)(b2+3)(b1−2b2−3)(b1+3b2−3)

−2.8546585 −0.17276 0.156243 4

(17) − 5b1−7b2+24
(b2+3)(b1−2b2+3)(b1−b2+3)(b1+b2−6)

1.8379935 −0.95469 0.0974795 4

(18) − 2(b1−7b2−36)
(b2+3)(b1−b2−6)(2b1+b2+3)(b1+3b2−6)

1.2608787 −0.21349 0.184633 4

(19) − 8b1−11b2+39
(b2+3)(b1−2b2+3)(b1−b2+3)(2b1+b2−9)

0.8345102 −0.93610217 0.120498 4

(20) − 18−4b2
(b2−3)(b2+3)(−b1+b2−3)(b1+b2−6)

3
2

1
2

(
3−

√
21

)
4

225
(−27 + 7

√
21) 2

(21) − 3(b1−15)
(b1−6)(b1+3)(b2+3)(b1+3b2−6)

3(2−
√
3) 1

2

(√
3− 3

)
2

9
√
3

2

(22) 18
(b1−6)(b1+3)(b2−3)(b2+3)

3
2

0 8
81

1

(23) − 4b1−7b2−69
(b2+3)(−2b1+b2−3)(−b1+b2+6)(b1+2b2−6)

1.20148202 −0.4914321 0.165004 4

(24) 48
(b2−3)(b2+3)(−2b1+b2−3)(−2b1+b2+9)

3
2

0 4
27

1

(25) − b1
2−2b1(4b2+15)+4(b22−6b2−45)

(b1+3)(b2+3)(b1−b2+3)(b1+2b2−6)(b1−2(b2+3))
0.746501345 −0.1982794 0.17226 11

(26) − b1
2−4b1(b2+3)+4b2

2−30b2−207
(b1+3)(b2+3)(b1−2b2+3)(b1+b2−6)(b1−2(b2+3))

1.11941442 −0.21197378 0.178752 8

(27) − 2b1
2−4b1(b2+6)+2b2

2−3b2−171
(b1+3)(b2+3)(b1−b2−6)(b1−b2+3)(b1+2b2−6)

0.9337514 −0.449691462 0.15542 8

(28) − 2(b12−b1(b2+3)+b2
2−3b2−99)

(b1+3)(b2+3)(b1−2b2+3)(b1−b2−6)(b1+b2−6)
1.26614895 −0.4677020986 0.158756 3

(29) − 3(b12−6b1+6(b2−9))
(b1−6)(b1+3)(b2+3)(b1−b2+3)(b1+2b2−6)

1.32269853 −0.70067002 0.136079 8

(30) − 4b1
2+4b1(b2−3)−2b2

2+39b2−153
(b1+3)(b2+3)(b1−b2+3)(b1+b2−6)(b1+2b2−6)

1.939465 −0.8789301 0.116367 3
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(31) − 2(b22−3b2−36)−3b1(b2+5)

(b1+3)(b2−3)(b2+3)(b1−b2+3)(b1−2(b2+3))
2.9071583 0.6850367 0.106224 9

(32) − −2b1(b2+6)+4b2
2−90

(b1+3)(b2−3)(b2+3)(b1−2b2+3)(b1−2(b2+3))
3.0926707 0.479773042 0.121782 7

(33) − 6(b22+b2−18)−b1(b2+9)

(b1+3)(b2−3)(b2+3)(b1−3b2+3)(b1−2(b2+3))
2.97485275 0.22750743 0.135851 9

(34) − 2(3b1−4b2
2−6b2+63)

(b1+3)(b2−3)(b−2+3)(b1−4b2+3)(b1−2(b2+3))
1
4

(
9
√
57− 57

)
0 143+19

√
57

1944
2

(35) − −b1(b2+15)+b2
2+3b2−72

(b1+3)(b2−3)(b2+3)(b1−b2−6)(b1−b2+3)
2.2242667 0.26148655 0.112411 7

(36) − 2(−6b1+b2
2+6b2−45)

(b1+3)(b2−3)(b2+3)(b1−2b2+3)(b1−b2−6)
1
8

(
9
√
33− 33

)
0 1

972

(
59 + 11

√
33

)
2

(37) − 3(b22−2b2−39)−4b1(b2+6)

(b1+3)(b2−3)(b2+3)(b1−b2+3)(2b1−3(b2+3))
1.84403082 0.57573193 0.133134 9

(38) − 6(b22+b2−24)−2b1(b2+9)

(b1+3)(b2−3)(b2+3)(b1−2b2+3)(2b1−3(b2+3))
1.9049613 0.28929897 0.154554 9

(39)
3(4b1−3b2

2−6b2+57)
(b1+3)(b2−3)(b2+3)(b1−3b2+3)(2b1−3(b2+3))

1
16

(
15

√
145− 153

)
0 347+29

√
145

4050
2

(40) − −24b1+b2
2+12b2−117

(b1+3)(b2−3)(b2+3)(b1−b2+3)(2b1−b2−9)
1
32

(
15

√
65− 81

)
0 83+13

√
65

1350
2

(41)
6b1

2−b1(−4b2
2+6b2+72)−2b2

3+27b2
2+36b2−513

(b1+3)(b2−3)(b2+3)(b1−b2+3)(b1+b2−6)(b1−2(b2+3))
0.97912771 0 0.160827 3

(42)
b1

2((b2+9))−18b1(b2+3)+18(b22−2b2−27)
(b1−6)(b1+3)(b2−3)(b2+3)(b1−b2+3)(b1−2(b2+3))

1.3830544 0.2588732 0.145643 17

(43)
2b1

2(b2+6)−2b1(2b22+15b2+18)+2b2
3+9b2

2−108b2−459

(b1+3)(b2−3)(b2+3)(b1−b2−6)(b1−b2+3)(b1−2(b2+3))
2.02070885 0.52070885 0.126977 3

(44)
6(b12−2b1b2−3b1+6b2

2+3b2−99)
(b1−6)(b1+3)(b2−3)(b2+3)(b1−2b2+3)(b1−2(b2+3))

3
2

0 40
243

1

(45)
3(4b12−4b1(b2+3)+3(b22+2b2−51))

(b1−6)(b1+3)(b2−3)(b2+3)(b1−b2−6)(b1−b2+3)
3
2

0 32
243

1

Table A.1.1: Volume functions V , critical Reeb vectors b∗i and their corresponding volume
minima Vmin, with b3 = 3. In the last column, we list the degree of the extension L (of Q),

where L = Q(b∗1, b
∗
2) = Q(b∗1).

As a matter of fact, all the minimized volume functions of Sasaki-Einstein manifolds Y are algebraic.
When Vmin ∈ Q, Y is said to be regular. If Vmin ∈ Q(

√
c) (c ∈ N), viz, quadratic irrationals, then

Y is quasi-regular. In Fig. A.1.1, we plot the 1/Vmin against χ, with regular and quasi-regular Y ’s
highlighted.

4 5 6 7 8 9 10
4

6

8

10

12

χ

1/
V
m
in

Figure A.1.1: The red points correspond to regular Sasaki-Einstein manifolds while the
quasi-regular ones are in orange. We omit the first-grade points in the plot.

A.2 Higgsing the Parent Theory

The Higgs-Kibble mechanism states that by turning on a non-zero vev of a bifundamental and
integrating out the quadratic mass terms in superpotential, we would get a theory with a different
moduli space. This corresponds to removal of an edge in the brane tiling and merger of two gauge
nodes in the quiver. In terms of toric diagrams, it is easy to identify the parent theories by blowing
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up/down points. For instance, No.5 is the parent of all the triangles and the pentagon No.35 is the
parent of all the hexagons here. As a simple example, we consider higgsing (2.2.1) to the theory of
dP0:

. (A.2.1)

The superpotential of the parent theory is

W =X1
12X25X

2
51 +X2

12X
1
23X31 +X2

23X
1
34X42 +X2

34X
1
45X53 +X2

45X
1
51X14

−X2
12X25X

1
51 −X1

12X
2
23X31 −X1

23X
2
34X42 −X1

34X
2
45X53 −X1

45X
2
51X14.

(A.2.2)

We first give a non-zero vev to X53, viz, ⟨X53⟩ = 1:

W =X1
12X25X

2
51 +X2

12X
1
23X31 +X2

23X
1
34X42 +X2

34X
1
45 +X2

45X
1
51X14

−X2
12X25X

1
51 −X1

12X
2
23X31 −X1

23X
2
34X42 −X1

34X
2
45 −X1

45X
2
51X14.

(A.2.3)

Integrating our the quadratic terms yields

W =X1
12X

3
23X

2
31 +X2

12X
1
23X

3
31 +X42X

2
23X

1
31X14

−X2
12X

3
23X

1
31 −X1

12X
2
23X

3
31 −X42X

1
23X

2
31X14.

(A.2.4)

Finally, by turning on a vev of X42 such that ⟨X42⟩ = 1, the superpotential becomes

W =X1
12X

3
23X

2
31 +X2

12X
1
23X

3
31 +X2

23X
1
31X

3
12

−X2
12X

3
23X

1
31 −X1

12X
2
23X

3
31 −X1

23X
2
31X

3
12,

(A.2.5)

which is exactly the superpotential of the dP0 theory. In terms of quivers, we have

1

2

34

5

Merge
nodes
3&5

1

2

34

Merge
nodes
2&4

1

2

3 . (A.2.6)

As a matter of fact, the 45 polygons can be higgsed from a same parent theory. This theory can be
C3/(Z6 × Z6) (1,0,5)(0,1,5) such that there is only one corresponding quiver in the toric phase. It
is a huge quiver with 36 nodes and 108 bifundamentals. The R-charges of the bifundamentals are
all 2/3, and hence the three GLSM fields corresponding to the extremal points all have R-charge
2/3, with others vanishing. If we only want the minimal parent toric diagram, then we would have
C/(Z6 × Z2) (1,0,0,5)(0,1,1,0).
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Appendix B

Example: Mahler Measure and
Amoeba for F0

We can compute the Mahler measure for any Newton polygon/polynomial directly from the defi-
nition. Let us use (3.1.6) to perform the integration. As an example, let us consider the familiar
F0 whose Newton polynomial is P (z, w) = −z − z−1 − w − w−1 + k. Then its Mahler measure is

m(P ) =
1

(2πi)2

∫

|z|=|w|=1
log |k − (z + z−1 + w + w−1)|dz

z

dw

w

= Re

(
1

(2πi)2

∫

|z|=|w|=1
log(k − (z + z−1 + w + w−1))

dz

z

dw

w

)
.

(B.0.1)

The log part can be expanded as

log(k − (z + z−1 + w + w−1)) = log k −
∞∑

n=1

(z + z−1 + w + w−1)n

n
k−n, (B.0.2)

where |k| > 4 or k = 4 as max
|z|=|w|=1

|p(z, w)| = 4.

For each summand in the above sum, they can be further expanded as

(z + z−1 + w + w−1)n =
n∑

i=0

(
n

i

)
(z + z−1)i(w + w−1)n−i

=
n∑

i=0

(
n

i

)


i∑

j=0

(
i

j

)
z2j−i



(
n−i∑

l=0

(
n− i
l

)
w2l−n+i

)
.

(B.0.3)

As the only contribution to the integral, its constant term satisfies i = 2j, n − i = 2l. Therefore,
we can write the constant term as

[(z + z−1 + w + w−1)n]0 =

n∑

i=0
i even

(
n

i

)(
i

i/2

)(
n− i

(n− i)/2

)
, (B.0.4)

where [Q]0 denotes the constant term of Q. Equivalently, this can written as

[(z + z−1 + w + w−1)2n]0 =

n∑

i=0

(
2n

2i

)(
2i

i

)(
2n− 2i

n− i

)

=
42n
(
2n−1

2

)
!2

πn!2
=

16nΓ2
(
2n+1

2

)

πn!2

(B.0.5)
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while [(z + z−1 + w + w−1)2n−1]0 vanishes. Hence,

[ ∞∑

n=1

(z + z−1 + w + w−1)n

n
k−n

]

0

=

[ ∞∑

n=1

(z + z−1 + w + w−1)2n

2n
k−2n

]

0

=
∞∑

n=1

16nΓ2
(
2n+1

2

)

πn!2
k−2n

2n

= 2k−2
4F3

(
1, 1,

3

2
,
3

2
; 2, 2, 2; 16k−2

)
,

(B.0.6)

where pFq is the (generalized) hypergeometric function. Therefore, we get

m(P ) = Re

(
log k − 2k−2

4F3

(
1, 1,

3

2
,
3

2
; 2, 2, 2; 16k−2

))
, |k| > 4 or k = 4. (B.0.7)

In this paper, we are mainly interested in the case k ≥ 4. Therefore,

m(P ) = log k − 2k−2
4F3

(
1, 1,

3

2
,
3

2
; 2, 2, 2; 16k−2

)
, k ≥ 4. (B.0.8)

We may as well calculate the period u0(k) following the same manner. Recall that u0(k) can be
written as the integral

u0(k) =
1

(2πi)2

∫

|z|=|w|=1

1

1− k−1(z + z−1 + w + w−1)

dz

z

dw

w
. (B.0.9)

Then we have the series expansion

1

1− k−1(z + z−1 + w + w−1)
=

∞∑

n=0

k−n(z + z−1 + w + w−1)n, |k| > 4. (B.0.10)

Since we are still dealing with (z+z−1+w+w−1)n, the constant terms are still the same as (B.0.5).
Hence,

u0(k) =
∞∑

n=0

16nΓ2
(
2n+1

2

)

πn!2
k−2n =

2

π
K(4k−1) = 2F1

(
1

2
,
1

2
; 1; 16k−2

)
, |k| > 4, (B.0.11)

where K(x) =
∫ 1
0

dt√
(1−t2)(1−x2t2)

is the elliptic integral of the first kind. As we can see, u0(k) is

simply a hypergeometric function and m(P ) can also be expressed concisely using some hypergeo-
metric function. In general, there may not be such compact expressions for m(P ) and u0(k). We
will then compute them perturbatively in terms of their series expansions as

m(P ) = log k −
∞∑

n=2

fn
nkn

, u0(k) = 1 +

∞∑

n=2

fn
kn
. (B.0.12)

In Figure B.0.1, we plot m(P ) along the Mahler flow. We also plot several amoebae using Monte-
Carlo for different k to illustrate how the amoebae would change along the Mahler flow.

Incidentally, we also plot the Mahler measures for negative k in Figure B.0.1(a) which give the
mirror shape of the positive Mahler flow. This shows a non-differentiable point at k = 0. If we plot
the amoeba for k = 0 as in Figure B.0.1(b), we can see that it degenerates to two lines. In other
words, the amoeba retracts to its spine in this case. By definition, k = 0 gives another tropical
limit.
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Figure B.0.1: The numerical m(P ) along the Mahler flow in (a). The amoeba for P (z, w)
when (b) k = 0, (c) k = 3/4, (d) k = kiso = 4, (e) k = 5 and (f) k = e7.
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Appendix C

Dessins, Seiberg-Witten Curves and
Conformal Blocks

In this appendix, we discuss another aspect of dessins involving the connections to SW theories
and conformal blocks (CBs). We shall focus on six specific trivalent dessins with 4 punctures on
the sphere.

From these dessins, we obtain algebraic curves that we interpret as SW curves of 4d SU(2) N = 2
Nf = 4, SYM theories. These curves are given in terms of six parameters, four mass parameters
(µ1, µ2, µ3, µ4), a parameter ζ and a modulus U . We write these curves in the form that appears
in [276, 277], and use their mirror map to translate the above parameters to those characterizing
the 4d instanton partition function of a 4d N = 2 gauge theory. In particular, we map the modulus
U to the Coulomb parameter a. Following that, we use the AGT dictionary [79, 80] to interpret
the result in 2d CFT terms.

Let us take a closer look at the six parameters for the SU(2) gauge theory. With Nf = 4, the
theory has an SO(8) ⊃ SU(2)4 flavour symmetry. Then the mass parameters of the four hypers
could be indentified as the charges of the primaries in Liouville theory under AGT correspondence.
Following [278,279], the AGTmap could also lead to diagonal minimal models by further restrictions
on the partition pairs. As usual, we would arrange the poles of the SW curves at z = 0, 1,∞ and
ζ. This ζ is nothing but the UV gauge coupling τ via ζ = e2πiτ . For each dessin, we find that ζ
could have several different values but these values enjoy certain triality.

Recall that the Coulomb parameter a denotes the vev of the adjoint scalar ϕ, or equivalently, a
could be obtained by integrating the SW differential along the so-called A-cycle on SW curve. Such
supersymmetric vacua can be gauge invariantly parametrized by u = ⟨trϕ2⟩/2 = a2 up to quantum
corrections. As we will discuss, the parameter U , which will appear in the parametrization of
the curve, is linear in the Coulomb moduli u. In fact, as we will see, each dessin gives a family
of solutions for the gauge theory parameters, and indeed, we would have the same corresponding
dessin under the change mi → kmi, a → ka, U → k2U for k2 ∈ R. This is consistent with their
mass dimensions.

The above discussions can go the other way as well. Starting from the CBs in CFTs, we can write
down the Nekrasov partition functions under the AGT dictionary. This 4d partition function can
also be lifted to 5d, which leads to topological string partition functions and SW curves. As the SW
differential and the Strebel differential from the dessin side are both quadratic, the gauge theories
are naturally related to dessins.

Since the instanton partition functions with extra conditions on the Young tableaux pairs could
be mapped to conformal blocks in minimal models [278, 279], we can then check whether (the
parametrizations from) the dessins could correspond to such CBs in minimal models. As we will
see, such map is not one-to-one. A dessin could correspond to one or more possible CBs in multiple
minimal models. These CBs, albeit in different minimal models, would satisfy certain (fixed) rules
for the dessin. There might also exist dessins that do not give rise to minimal models. On the
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minimal model side, it is still not determined whether this subset of dessins could recover all the
CBs or just part of them.

C.1 From Seiberg-Witten Curves to Dessins d’Enfants

Here, we shall only mention how dessins can arise from SW curves via the identification of the
quadratic differentials. The details on obtaining Nekrasov partition functions as well as 5d and 4d
topological string partition functions from conformal blocks can be found for example in [5, §2].

From Belyi maps to dessins Recall that we can associate a Belyi map β(x) to a dessin via its
ramification indices : the order of vanishing of the Taylor series for β(x) at x̃ is the ramification
index rβ(x̃)∈{0,1,∞}(i) at that ith point. By convention, we mark one white node for the ith pre-

image of 0 with r0(i) edges emanating therefrom. Similarly, we mark one black node for the jth

pre-image of 1 with r1(j) edges. We then connect the nodes with the edges, joining only black with
white, such that each face is a polygon with 2r∞(k) sides. In other words, there is one pre-image
of ∞ corresponding to each polygon of D. Moreover, there is a cyclic ordering arising from local
monodromy winding around vertices, i.e., around local covering sheets that contain a common
point.

Following Belyi’s theorem, the existence of a dessin on X is equivalent to X admitting an algebraic
equation over the algebraic numbers. Moreover, the Galois group Gal(Q̄ : Q) acts faithfully on the
space of dessins.

Quadratic Differentials A (holomorphic) quadratic differential q on a Riemann surface X is a
holomorphic section of the symmetric square of the contangent bundle. In terms of local coordinates
z, q = f(z)dz ⊗ dz, for some holomorphic function f(z).

A curve γ(t) ⊂ X can be classified by q as

• Horizontal trajectory: f(γ(t))γ̇(t)2 > 0;

• Vertical trajectory: f(γ(t))γ̇(t)2 < 0.

Locally, one can find coordinates so that horizontal tracjectories look like concentric circles while
vertical trajectories look like rays emanating from a single point.

Then we can define the Strebel differential :

Definition C.1.1. For a Riemann surface X of genus g ≥ 0 with n ≥ 1 marked points {p1, . . . , pn}
such that 2 − 2g < n, and a given n-tuple ai=1,...,n ∈ R+, a Strebel differential q = f(z)dz2 is a
quadratic differential such that

• f is holomorphic on X\{p1, . . . , pn};
• f has a second-order pole at each pi;

• the union of all non-compact horizontal trajectories of q is a closed subset of X of measure 0;

• every compact horizontal of q is a simple loop Ai centered at pi such that ai =
∮
Ai

√
q. (Here

the branch of the square root is chosen so that the integral has a positive value with respect to
the positive orientation of Ai that is determined by the complex structure of X.)

The upshot is that [280]

Theorem C.1.1. The Strebel differential is the pull-back, by a Belyi map β : X → P1, of a
quadratic differential on P1 with 3 punctures,

q = β∗
(

dζ2

4π2ζ(1− ζ)

)
=

(dβ)2

4π2β(1− β) =
(β′)2

4π2β(1− β)dz
2, (C.1.1)
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where z and ζ are coordinates on X and P1 respectively.

Recall the definition of the SW differential

λ = v
dz

z
. (C.1.2)

Then

q = λ2 = v2
dz2

z2
=: ϕ(z)dz2 (C.1.3)

is the quadratic differential on C.

SW curves and Dessins As mentioned above, the SW curve Σ is related to the quadratic
differential q. Moving in the moduli space of the theory in question will alter the parameters
in the SW curve, thereby altering the parameters in q [168]. Following [280], it was found in
[168] that at certain isolated points in the Coulomb branch Ug,n, where g is the genus of the
Gaiotto curve C with n marked points, q is completely fixed and becomes a Strebel differential

q = ϕ(t)dt2 = dβ2

4π2β(t)(1−β(t)) .

As examples for SU(2) with Nf = 4, we will discuss 6 Strebel points in Ug,n × Rn, for which
the Belyi maps are presented in Table C.1.1. These six Belyi maps are those found in [166, 281]

Graph β(t) Ramification Strebel q

Γ(3) t3(t+6)3(t2−6t+36)3

1728(t−3)3(t2+3t+9)3
[34|26|34] − 9t(t3+216)

4π2(t3−27)2

Γ0(4) ∩ Γ(2) (t4+224t2+256)3

1728t2(t−4)4(t+4)4
[34|26|42, 22] −4t4+896t2+1024

4π2t2(t2−16)2

Γ1(5)
(t4+248t3+4064t2+22312t+40336)3

1728(t+5)(t3−t−31)5
[34|26|52, 12] − t4+248t3+4064t2+22312t+40336

4π2(t+5)2(t2−t−31)2

Γ0(6)
(t+7)3(t3+237t2+1443t+2287)3

1728(t+3)2(t+4)3(t−5)6
[34|26|6, 3, 2, 1] − (t+7)(t3+237t2+1443t+2287)

4π2(t+5)2(t+3)2(t+4)2

Γ0(8)
(t4+240t3+2144t2+3840t+256)3

1728t(t+4)2(t−4)8
[34|26|8, 2, 12] − t4+240t3+2144t2+3840t+256

4π2t2(t2−16)2

Γ0(9)
(t+6)3(t3+234t2+756t+2160)3

1728(t2+3t+9)(t−3)9
[34|26|9, 13] − (t+6)(t3+234t2+756t+2160)

4π2(t3−27)2

Table C.1.1: The list of the six genus-zero, torsion-free, congruence subgroups of the
modular group Γ, of index 12. The corresponding Belyi maps β(t) and their ramification
indices, as well as the Strebel differentials are also shown. Note that the ramification indices
for all 6 are such that there are 4 pre-images of 0 of order 3 and 6 pre-images of 1 of order
2. The pre-images of ∞ (aka the cusp widths) all add to 12, as do the ramification indices
for 0 and 1. This is required by the fact that all the subgroups are of index 12 within Γ.

to be associated to the six genus zero, torsion-free, congruence subgroups of the modular group
Γ = PSL(2,Z) ∼= Z2 ∗ Z3, where ∗ denotes the free product1.

From the Belyi maps in Table C.1.1, we can compute the associated dessins as displayed in Figure
C.1.1. The dessins d’enfants associated to each Strebel point of the generalised quiver theory in
question turn out to have an interpretation as so-called ribbon graphs on the Gaiotto curve C. For
details, the readers are referred to [168, 280].

C.2 From Dessins to Conformal Blocks

Let us now complete the cycle of the route map above by considering what gauge theory and CFT
data we can obtain starting from these 6 dessins.

1It remains an open question whether dessins associated to other subgroups of the modular group, perhaps of
higher index, arise for other N = 2 generalised quiver theories in a parallel manner.
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Γ(3) Γ0(4) ∩ Γ(2) Γ1(5)

Γ0(6) Γ0(8) Γ0(9)

Figure C.1.1: The dessins d’enfants associated to the six Strebel points of the SU(2),
Nf = 4 theory.

C.2.1 The SU(2) with 4 Flavours

Given that all our graphs in Figure C.1.1 are drawn on the Riemann surface (genus zero) with 4
marked points (one for each face), we can naturally interpret these as Gaiotto curves [168, 178],
and thence N = 2 gauge theories.

To begin, the Seiberg-Witten curve Σ for the SU(2) Nf = 4 theory in algebraic form is standard
[282]. For future convenience, we write the SW differential as [276, 277]

λSW =

√
P4(z)

z(z − 1)(z − ζ)dz, P4(z) = m2
0

4∏

i=1

(z − λi) = m2
0

4∑

i=0

z4−iSi, (C.2.1)

under the substitution

λSW = vdz/z, t = z,

µ1 = m2 +m0, µ2 = m2 −m0, µ3 = m3 +m1, µ4 = m3 −m1, (C.2.2)

The parameters Si are given in terms of the flavour mass and coupling parameters m0,1,2,3, ζ, U ∈ C
so that S0 = 1 for the top coefficient and

m2
0S1 = −

(
m2

0 +m2
2(ζ − 1) +m2

0ζ + 2m2m3ζ + (1 + ζ)U
)
,

m2
0S2 = (m2

0 +m2
1 −m2

3 + 2m2m3)ζ +m2
2(ζ − 1)ζ + 2m2m3ζ

2 +m2
3ζ

2 + (1 + ζ)2U,

m2
0S3 = −

(
(m2

1 −m2
3)ζ + (m2

1 + 2m2m3 +m2
3)ζ

2 + ζ(1 + ζ)U
)
,

m2
0S4 = m2

1ζ
2 . (C.2.3)

Now the SW curve is of the form

z2(v − (m0 +m2))(v − (m2 −m0)) + z(1 + ζ)

(
−v2 + 2ζ

(1 + ζ)
(m2 +m3)v + U

)

+ζ(v − (m1 +m3))(v − (m3 −m1)) = 0. (C.2.4)
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Now the SW curve is of the form

z2(v − (m0 +m2))(v − (m2 −m0)) + z(1 + ζ)

(
−v2 + 2ζ

(1 + ζ)
(m2 +m3)v + U

)

+ζ(v − (m1 +m3))(v − (m3 −m1)) = 0. (C.2.5)

On the other hand, the S-parameters can be written in terms of the λi as standard symmetric
polynomials,

Sk =
∑

1≤j1≤...≤jk≤4

λj1 . . . λjk . (C.2.6)

As derived in [5, Appendix E.1], we can then write

da(U)

dU
= − 1

πi

1 + ζ

m0

√
(λ2 − λ3)(λ4 − λ1)

K(r), (C.2.7)

where

r2 =
(λ1 − λ2)(λ3 − λ4)
(λ2 − λ3)(λ4 − λ1)

, (C.2.8)

and K(r) is the elliptic integral of the first kind. The right hand side of (C.2.7) implicitly depends
on U , through λi and thence Si, thus we only need to integrate it to obtain a(U) as a function of
U , which could be a daunting task analytically.

Let us nevertheless attempt at some simplifications. First, we see that the right hand side depends
only on the cross-terms in the four λi, which we will denote as λ(ij)(kl) = (λi − λj)(λk − λl).
Combining with (C.2.6), let us see whether these can be directly expressed in terms of Si, and
thence, in terms of U . This is a standard algebraic elimination problem and we readily find the
following:

Lemma C.2.1. Consider the monic cubic polynomial,

x3 +
(
−2S2

2 + 6S1S3 − 24S4

)
x2 +

(
S4
2 − 6S1S3S

2
2 + 24S4S

2
2 + 9S2

1S
2
3 + 144S2

4 − 72S1S3S4

)
x

+27S2
4S

4
1 + 4S3

3S
3
1 − 18S2S3S4S

3
1 − 144S2S

2
4S

2
1 + 4S3

2S4S
2
1 + 6S2

3S4S
2
1 − 18S2S

3
3S1 + 192S3S

2
4S1

+80S2
2S3S4S1 + 27S4

3 − 256S3
4 + 4S3

2S
2
3 − S2

1S
2
2S

2
3 + 128S2

2S
2
4 − 16S4

2S4 − 144S2S
2
3S4. (C.2.9)

Then the squares of the 3 cross-products

x1 = λ2(12)(34), x2 = λ2(23)(41), x3 = λ2(13)(24) (C.2.10)

are the three roots of it.

Of course, we can substitute the Si parameters in terms of the mi, ζ, U parameters from (C.2.1),
though the expression become too long to present here. Now, we have

a(U0)− a(U) = −1 + ζ

m0πi

∫ U0

U

dU ′

4
√
x2(U ′)

K

(
4
√
x1(U ′)

4
√
x2(U ′)

)
. (C.2.11)

To determine the integral constant, we choose U0 such that a(U0) = 0. We can find such U0 by
solving the discriminant of P4(z) where two branch points coincide and the A-cycle shrinks2. Hence,

a(U) =
1 + ζ

m0πi

∫ U0

U

dU ′

4
√
x2(U ′)

K

(
4
√
x1(U ′)

4
√
x2(U ′)

)
. (C.2.12)

2Alternatively, we may also integrate from U to ∞ as the large U behaviour can be determined as in [5, Appendix
E.2].
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In general, when we integrate from some U to U0, the positions of branch points and cuts might
change. Therefore, this is really a sum of integrals:

∫ U0

U
=

∫ U1

U
+

∫ U2

U1

+ · · ·+
∫ Un=U0

Un−1

(C.2.13)

such that xi does not change its expression for each integral on the right hand side.

Recall the definition of the Seiberg-Witten differential from (C.1.3), we have that

λ2SW = ϕSW(z)dz2 (C.2.14)

is a quadratic differential. This is the above mentioned meromorphic quadratic differential on C.
Moving in the moduli space of the theory in question will alter the parameters in the Seiberg-Witten
curve, thereby altering the parameters in q (cf. [168]). Following [280], it was found in [168] that
at certain isolated points in the Coulomb branch of the moduli space Ug,n of the gauge theory in
question, where g is the genus of the Gaiotto curve C with n marked points, q is completely fixed,
which becomes a Strebel differential.

We therefore have two forms of the Strebel differentials, ϕβ(t) coming from the dessin and ϕSW(z)
coming from the physics. Now, because dessins are rigid, they have no parameters. The insight of
Belyi and Grothendieck is precisely that the maps β have parameters fixed at very special algebraic
points in moduli space. Thus, ϕβ(t) is of a particular form, as a rational function in t with fixed
algebraic coefficients.

On the other hand ϕSW(z) from the gauge theory has parameters which we saw earlier, correspond-
ing to masses, couplings etc. Therefore, up to redefinition of the variables (t, z) and identifying
ϕSW(z) and ϕβ(t) it is natural to ask how the special values of the parameters from the dessin per-
spective fix the physical parameters in the gauge theory and if a dessin implicates any interesting
physical theory.

We have now introduced all the necessary dramatis personae of our tale and our strategy is thus
clear. There are also some further details that we should be careful about in the calculations. We
will work through an example in detail to illustrate them in the following subsection.

C.2.2 Example: Γ(3)

Let us take the dessin for Γ(3), whose Belyi map is

β(t) =
t3(t+ 6)3(t2 − 6t+ 36)3

1728(t− 3)3(t2 + 3t+ 9)3
. (C.2.15)

We can readily get the pre-images of 0, 1 and ∞:

Pre-image Ramification

β−1(0) −6 3
0 3

3− 3i
√
3 3

3 + 3i
√
3 3

β−1(1) 3(1−
√
3) 2

3(1 +
√
3) 2(

3
2 + 3i

2

) (√
3 + (−2− i)

)
2(

−3
2 − 3i

2

) (√
3 + (2 + i)

)
2

1
2

(
(−3 + 9i)− (3− 3i)

√
3
)

2
1
2

(
(−3 + 9i) + (3− 3i)

√
3
)

2

β−1(∞) ∞ 3
3 3

−3
2 i
(√

3− i
)

3
3
2 i
(√

3 + i
)

3

. (C.2.16)
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We can construct the corresponding dessin as in Figure C.1.1. Subsequently, using (C.1.1), we see
that the Strebel differential is q = ϕβ(t)dt

2, where

ϕβ(t) = −
9t(t3 + 216)

4π2(t3 − 27)2
. (C.2.17)

We have marked ϕ with a subscript β to emphasize its dessin origin. On the other side, we have the
Seiberg-Witten curve and quadratic differential for SU(2) with Nf = 4 from (C.2.1) and (C.2.14),
to be

ϕSW(z) =
P4(z)

(z(z − 1)(z − ζ))2
, where

P4(z) = z4m2
0 − z3

(
m2

0 +m2
2(ζ − 1) +m2

0ζ + 2m2m3ζ + (1 + ζ)U
)

+ z2
(
(m2

0 +m2
1 −m2

3 + 2m2m3)ζ +m2
2(ζ − 1)ζ + 2m2m3ζ

2 +m2
3ζ

2 + (1 + ζ)2U
)

− z
(
(m2

1 −m2
3)ζ + (m2

1 + 2m2m3 +m2
3)ζ

2 + ζ(1 + ζ)U
)
+m2

1ζ
2. (C.2.18)

Here, likewise we have marked ϕ with a subscript “SW” to emphasize its Seiberg-Witten origin.
We have also explicitly written the differential coming from the Seiberg-Witten side in terms of the
parameters m0,1,2,3, ζ, U .

We need to match (C.2.17) with (C.2.18), up to an PGL(2,C) transformation on the complex
variable z. The reason for this is that we are dealing in this example with a quadratic differential
on the sphere. For curves of higher genus, such PGL(2,C) transformations are generically not
permitted, as they will not preserve the structure of the poles and zeros of the quadratic differential.

We can therefore write

z =
at+ b

ct+ d
, a, b, c, d ∈ C (C.2.19)

and solve for complex coefficients a, b, c, d as well as the parameters m0,1,2,3, ζ, U so that we have
identically for all t that

ϕβ(t) = ϕSW

(
at+ b

ct+ d

)
. (C.2.20)

There are actually continuous families of 2 × 2 matrices solving this equation for a given dessin.
As the elliptic curve is the same up to an overall factor, it turns out that each continuous family
would simply scale the SW differential by ϕSW → k2ϕSW with k2 ∈ R, where the square comes from
the λ2SW in the differential. Obviously, equating the numerators of ϕβ and ϕSW as well as equating
their denominators would give a solution. For future convenience, such solution will be referred to
as the “basic” values of the parametrization. Then other parametrizations would simply follow

ϕSW = k2ϕSW,basic. (C.2.21)

There are two points we should pay attention to:

• As we will try to relate this to minimal models, due to modular invariance, we can only allow
primary states with pure imaginary charges [283]. The AGT relation in terms of mi is

m0√
ϵ1ϵ2

+
Q

2
= α4,

m1√
ϵ1ϵ2

+
Q

2
= α1,

m2√
ϵ1ϵ2

= α3,
m3√
ϵ1ϵ2

= α2,
a√
ϵ1ϵ2

+
Q

2
= αint. (C.2.22)

In fact, ϵ1,2 are not completely free once Q = (ϵ1 + ϵ2)/
√
ϵ1ϵ2 is chosen. Moreover, to have

real conformal dimensions, mi’s and a should only be real or pure imaginary (depending on
ϵ1,2). This is also the reason why k2 should be real.

• One may easily check that an SW differential/elliptic curve would have the same j-invariant
under ϕ → k2ϕ. As a result, the parameters, based on their mass dimensions or by looking
at P4(z) and a(U), would follow

mi → kmi, a→ ka, ϵi → kϵi, U → k2U ;
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ζ → ζ, αi,int → αi,int, Q→ Q. (C.2.23)

Therefore, rather than discrete parameters, we would have families of differentials. Impor-
tantly, we can see that the coupling ζ is invariant. Following the AGT map, the dimensionless
CFT parameters, αi,int and Q, are also invariant under the scaling though we still have the
freedom to choose

√
ϵ1ϵ2.

Now expanding the above and setting all the coefficients of t to vanish identically gives a complicated
polynomial system in (a, b, c, d,m0,1,2,3, ζ, U) for which one can find many solutions. For example,
the following constitutes a solution (with k2 = 1),

m0 = −m1 = m2 = −m3 =
1

2
√
3π
, ζ =

1

2
+

i
√
3

2
, U =

1

9π2
(C.2.24)

with (a, b, c, d) =
(

1+i√
233/4

, i
(

4√3
2
√
2
− 33/4

2
√
2

)
+

4√3
2
√
2
+ 33/4

2
√
2
, 0, (1−i)33/4√

2

)
. The numerator of the SW

differential takes the form

P4(z) = −
6z4 − 4i

(√
3− 3i

)
z3 +

(
6 + 6i

√
3
)
z2 − 8i

√
3z + 3i

√
3− 3

72π2
. (C.2.25)

We now need the roots λi of P4(z) as given in (C.2.1):

z4 +

(
−2− 2i√

3

)
z3 +

(
1 + i

√
3
)
z2 − 4i√

3
z +

1

2
i
(√

3 + i
)
=

4∏

i=1

(z − λi). (C.2.26)

The SW curve itself is genus 1 and is in fact an elliptic curve. We can recast (C.2.18) as

y2 = z4m2
0 − z3

(
m2

0 +m2
2(ζ − 1) +m2

0ζ + 2m2m3ζ + (1 + ζ)U
)

+ z2
(
(m2

0 +m2
1 −m2

3 + 2m2m3)ζ +m2
2(ζ − 1)ζ + 2m2m3ζ

2 +m2
3ζ

2 + (1 + ζ)2U
)

− z
(
(m2

1 −m2
3)ζ + (m2

1 + 2m2m3 +m2
3)ζ

2 + ζ(1 + ζ)U
)
+m2

1ζ
2, (C.2.27)

where the redefinition y2 = (z(z − 1)(z − ζ))2ϕSW(z) = P4(z) is used. Using the formula derived
in [5, Appendix D], one may check that the j-invariant we get from the parameterization (C.2.24)
agrees with the one directly from the Strebel differential (C.2.17):

j = 0. (C.2.28)

Indeed, j = 0 corresponds to a special elliptic curve with Z/3Z-symmetry, much like the dessin for
Γ(3) itself.

In this case, we can integrate (C.2.12) numerically to obtain a(U) = 1
3
√
3π

3. Now we can use the

AGT relation (C.2.22) to get the parametrizations for CBs. If we take Q = 0, we have

α1 = α2 = −α3 = −α4 =
i

2
√
3π
, αint =

i

3
√
3π
, (C.2.29)

where we have chosen −ϵ1 = ϵ2 = 1 as an example.

We can also have pure imaginary mi’s and a for the above example such as

m0 = −m1 = m2 = −m3 =
i

2
√
3π
, ζ =

1

2
+

i
√
3

2
, U = − 1

9π2
, a =

i

3
√
3π
. (C.2.30)

Then we can still get the same CFT parameters for Q = 0 as in (C.2.29) with the choice −ϵ1 =
ϵ2 = i.

3Numerical integration would often give decimals rather than precise values. For instance, here we get a ≈
0.06125877. In some cases like here, we give exact values for a with the help of minimal models. This can be done
by checking multiple minimal models and finding certain ϵ1,2 so that ∆i would fit into their Kac tables. Then the
correct closed form of a can be obtained if ∆int also lives in these Kac tables for all these minimal models. (To get
the correct CBs under AGT map, we further need the fusion rule, but even if the corresponding ∆int does not satisfy
the fusion rule for some CB, this could still be regarded as a verfication of fine-tuning a as long as ∆int, along with
∆i, belongs to the Kac table.)
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C.2.3 Matching Parameters

Here, we report all parameters from the six dessins in Table C.2.1∼C.2.6. Notice that we are only
giving solutions coming from (±)ϕSW,basic with pure imaginary mi’s and a. There is actually a
family for each parametrization following (C.2.23).

ζ = e2πiτ m0 m1 m2 m3 U
∑
i
mi a = αint√

ϵ1ϵ2
+ Q

2
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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Table C.2.1: The parameters obtained from Γ(3). Using (C.2.22), we can get the values
for αi’s.
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i
4π − i

4π − i
2π

i
2π 0

−1 i
4π − i

4π
i
2π − i

2π Any 0 0

− i
4π

i
4π − i

2π
i
2π value4 0

− i
4π

i
4π

i
2π − i

2π 0
i
4π

i
4π − i

2π
i
2π − i

2π
i
4π

i
4π

i
2π − i

2π − i
2π

Table C.2.2: The parameters obtained from Γ0(4) ∩ Γ(2). Using (C.2.22), we can get the
values for αi’s.

As the size of the table increases, we will give a more compact version for the remaining cases
below. For each ζ, there are usually 24 = 16 possibilities. For a, as the sign of a only depends on
the sign of m0 (in the following sense), “±” in a means that a has the same sign as m0 while “∓”
in a indicates that m0 and a have opposite signs.

ζ = e2πiτ m0 m1 m2 m3 U a

± i
√
5

50π ± i
√
5

10π
i
√
5

10π
i
√
5

50π
(−607+85

√
5)

62750π2 ± i
√
5

25π
1
2 − 11

50

√
5 − i

√
5

10π − i
√
5

50π

± i
√
5

50π ± i
√
5

10π
i
√
5

10π − i
√
5

50π
9(−69+20

√
5)

31375π2 ∓ i
√
5

25π

− i
√
5

10π
i
√
5

50π

± i
√
5

50π ± i
√
5

10π
i
√
5

10π
i
√
5

50π
(−607−85

√
5)

62750π2 ∓ i
√
5

25π
1
2 + 11

50

√
5 − i

√
5

10π − i
√
5

50π

± i
√
5

50π ± i
√
5

10π
i
√
5

10π − i
√
5

50π
9(−69−20

√
5)

31375π2 ∓ i
√
5

25π

− i
√
5

10π
i
√
5

50π

± i(5
√
5+11)
4π ± i5(5

√
5+11)

4π
i(5

√
5+11)
4π

i5(5
√
5+11)

4π 100.010534 ± i2(5
√
5+11)

4π
125
2 + 55

2

√
5 − i(5

√
5+11)
4π − i5(5

√
5+11)

4π

± i(5
√
5+11)
4π ± i5(5

√
5+11)

4π
i(5

√
5+11)
4π − i5(5

√
5+11)

4π 38.200625 ± i2(5
√
5+11)

4π

− i(5
√
5+11)
4π

i5(5
√
5+11)

4π

± i
√
5

50π ± i
√
5

50π
i
√
5

10π
i
√
5

10π −0.000843 ± i
√
5

25π

−123
2 + 55

2

√
5 − i

√
5

10π − i
√
5

10π

4Here, any complex number can be a basic value for U since all the terms of U in P4(z) contain (1 + ζ) as well.
Moreover, the integral for a always vanishes.



Appendix C. Dessins, Seiberg-Witten Curves and Conformal Blocks 185

± i
√
5

50π ± i
√
5

50π
i
√
5

10π − i
√
5

10π −0.000674 ∓ i
√
5

25π

− i
√
5

10π
i
√
5

10π

± i
√
5

50π ± i
√
5

10π
i
√
5

50π
i
√
5

10π −0.001278 ∓ i
√
5

25π
125
2 − 55

2

√
5 − i

√
5

50π − i
√
5

10π

± i
√
5

50π ± i
√
5

10π
i
√
5

50π − i
√
5

10π −0.003346 ± i
√
5

25π

− i
√
5

50π
i
√
5

10π

± i(5
√
5+11)
4π ± i(5

√
5+11)
4π

i5(5
√
5+11)

4π
i5(5

√
5+11)

4π 303.899917 ± i2(5
√
5+11)

4π

−123
2 − 55

2

√
5 − i5(5

√
5+11)

4π − i5(5
√
5+11)

4π

± i(5
√
5+11)
4π ± i(5

√
5+11)
4π

i5(5
√
5+11)

4π − i5(5
√
5+11)

4π −10.195921 ± i2(5
√
5+11)

4π

− i5(5
√
5+11)

4π
i5(5

√
5+11)

4π

Table C.2.3: The parameters obtained from Γ1(5). Using (C.2.22), we can get the values
for αi’s and Q.

ζ = e2πiτ m0 m1 m2 m3 U a

± i
4π ± i

√
109
2π

2i
π

27i
4π

595
48π2 ±0.30258i

1
2 −2i

π −27i
4π

± i
4π ± i

√
109
2π

2i
π −27i

4π − 269
48π2 ±0.30258i

−2i
π

27i
4π

± i
4π ±2i

π
i
√
109
2π

27i
4π

−665+108
√
109

48π2 ±0.741431i
1
2 − i

√
109
2π −2i

π

± i
4π ±2i

π
i
√
109
2π −27i

4π
−665−108

√
109

48π2 ±0.741431i
− i

√
109
2π

27i
4π

± i
2π ± i

√
109
π

27i
2π

4i
π

455
3π2 ±0.6051525i

2 −27i
2π −4i

π

± i
2π ± i

√
109
π

27i
2π −4i

π
23
3π2 ±0.6051525i

−27i
2π

4i
π

± i
2π ±4i

π
27i
2π

i
√
109
π

125+54
√
109

3π2 ±1.4828632i
2 −27i

2π − i
√
109
π

± i
2π ±4i

π
27i
2π − i

√
109
π

125−54
√
109

3π2 ±1.4828632i
−27i

2π
i
√
109
π

Table C.2.4: The parameters obtained from Γ0(6). Using (C.2.22), we can get the values
for αi’s and Q.

ζ = e2πiτ m0 m1 m2 m3 U a

± i
16π ± i

8π
i
2π

i
16π

11
768π2 ±0.0528623

1
2 − i

2π − i
16π

± i
16π ± i

8π
i
2π − i

16π − 7
256π2 ±0.0528623

− i
2π

i
16π

± i
8π ± i

4π
i
8π − i

π
7

48π2 ±0.1057
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2 − i
8π

i
π

± i
8π ± i

4π
i
8π

i
π

23
48π2 ±0.1057

− i
8π − i

π

Table C.2.5: The parameters obtained from Γ0(8). Using (C.2.22), we can get the values
for αi’s and Q.

ζ = e2πiτ m0 m1 m2 m3 U a

± i
6
√
3π

± i
6
√
3π

i
6
√
3π

i
√
3

2π − i(33i+25
√
3)

162π2 ±(−0.1402495 + 0.0315441i)
1−i

√
3

2 − i
6
√
3π

− i
√
3

2π

± i
6
√
3π

± i
6
√
3π

i
6
√
3π

− i
√
3

2π − i(3i+8
√
3)

81π2 ±(−0.0887502 + 0.0362071i)

− i
6
√
3π

i
√
3

2π

± i
6
√
3π

± i
6
√
3π

i
6
√
3π

i
√
3

2π
i(−33i+25

√
3)

162π2 ±(−0.1402495− 0.0315441i)
1+i

√
3

2 − i
6
√
3π

− i
√
3

2π

± i
6
√
3π

± i
6
√
3π

i
6
√
3π

− i
√
3

2π
i(−3i+8

√
3)

81π2 ±(−0.0887502− 0.0362071i)

− i
6
√
3π

i
√
3

2π

Table C.2.6: The parameters obtained from Γ0(9). Using (C.2.22), we can get the values
for αi’s and Q.

Based on the above calculations, there are some remarks we can make:

• One may check that the elliptic curves parametrized by these mi, ζ and U have the same
j-invariants as in Table C.2.7 for the six Belyi maps. Moreover, there are two cases with

Γ(3) 0

Γ0(4) ∩ Γ(2) 35152
9

Γ1(5)
131072

9

Γ0(6) −3072
Γ0(8)

21952
9

Γ0(9) 0

Table C.2.7: The j-invariants that correspond to the six index-12 Belyi maps.

ζ = (1 ± i
√
3)/2, which are the cusp points for the fundamental diagram of SL(2,Z). They

are exactly the dessins whose Belyi maps have j-invariant 0.

• It is obvious that for each dessin, the parametrizations for different ζ’s are related by triality

ζ ↔ ζ ′ =
1

ζ
↔ ζ ′′ = 1− ζ. (C.2.31)

This is explicitly listed in Table C.2.8. Modular invariance of the curve also leads to the
following transformations of mass parameters:

ζ ↔ 1

ζ
: (m0,m1,m2,m3)↔

1

|ζ|(m0,m1,m3,m2);
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ζ ↔ 1− ζ : (m0,m1,m2,m3)↔ (m0,m2,m1,m3). (C.2.32)

In particular, the two rows for Γ1(5) are also related by triality: 1−
(
125
2 + 55

2

√
5
)
= −123

2 −

Dessin ζ ζ ′ ζ ′′

Γ(3) 1
2(1± i

√
3) 1

2(1∓ i
√
3) 1

2(1∓ i
√
3)

Γ0(4) ∩ Γ(2) 2 1
2 −1

Γ1(5)
1
2 − 11

50

√
5 125

2 + 55
2

√
5 1

2 + 11
50

√
5

−123
2 + 55

2

√
5 −123

2 − 55
2

√
5 125

2 − 55
2

√
5

Γ0(6) 2 1
2 -

Γ0(8) 2 1
2 -

Γ0(9)
1
2(1± i

√
3) - 1

2(1∓ i
√
3)

Table C.2.8: The parametrizations for each case are related by triality. The hyphens
indicate that such ζ either gives no solution to mass parameters (Γ0(6) and Γ0(8)) or does

not satisfy the transformations of masses (Γ0(9)).

55
2

√
5.

C.2.4 Minimal Models and Γ(3)

As an example, let us match the parametrizations for Γ(3) obtained above to 4-point CBs in minimal
models. In fact, as we will see, such CB first appears for the tetracritical Ising model when p′ = 6
and p = 5, that is, c = 4/5. As usual, we can write the 4-point CB as

α1 α4

α2 α3

αint . (C.2.33)

Then the intermediate field ϕk,l should satisfy the fusion rule

ϕr,s × ϕm,n =

min(m+r−1,2p−1−m−r)∑

k=|m−r|+1
k−m+r−1∈2Z

min(n+s−1,2p′−1−n−s)∑

l=|n−s|+1
l−n+s−1∈2Z

ϕk,l, (C.2.34)

where the entire conformal family of a primary is implicit in the above abuse of notation. Let ϕri,si
correspond to α1,4 and ϕmi,ni correspond to α2,3 (i = 1, 2). Then the fusion rule for the 4-point
CB is

ϕk,l ∈ ϕr1,s1 × ϕm1,n1 , ϕk,l ∈ ϕr2,s2 × ϕm2,n2 (C.2.35)

with constraints on k, l indicated in (C.2.34).

Before we insert the specific values of the parametrizations, we can make some simplifications:

• Recall that the mass parameters are real or pure imaginary. If we have some parametrization
with mi ∈ R, without loss of generality we can choose ϵ1 < 0 < ϵ2. Then since ϵ1+ϵ2√

ϵ1ϵ2
= Q =

i
(√

p′
p −

√
p
p′

)
, we have

√
ϵ1ϵ2 = −iϵ2

√
p
p′ . Likewise, for some parametrization with mi ∈ iR,

without loss of generality we can choose ϵ1/i < 0 < ϵ2/i. Such two cases related by mi → imi

should give the same ϵ1,2 up to a factor of i.

• If we make the choice in the above point for some specific mi, then mi → −mi should give
the same CFT parameters with ϵ1,2 → iϵ1,2. If we only have m0 → −m0 or m1 → −m1,
then we should always get the same parametrization even without changing ϵ1,2 since the

corresponding conformal dimension is Q2

4 −
m2

0,1

ϵ1ϵ2
.
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• Swapping m2 ↔ m3 and swapping m0 ↔ m1 simultaneously should give the same CFT
parameters (for same ϵ1,2) due to the AGT map. This simply corresponds to read the CB
(C.2.33) from the left or from the right.

In light of these points, it suffices to only contemplate one parametrization5, say m0 = −m1 =
m2 = −m3 = − 1

2
√
3
, for Γ(3). When p′ = 6, p = 5, we find that there is only one possibility for ∆1

and ∆4, that is,

∆1 = ∆4 =
1

15
. (C.2.36)

There are two possible solutions for the remaining mass parameters (and deformation parameters):

ϵ2 =
2√
3π
, ∆2 =

1

40
, ∆3 =

1

8
; (C.2.37)

ϵ2 = −
2√
3π
, ∆2 =

1

8
, ∆3 =

1

40
. (C.2.38)

Moreover, for the intermediate channel,

a = − 1

3
√
3π
, ∆int =

1

40
. (C.2.39)

Hence, the intermediate channel (k, l) obtained from Γ(3) corresponds to (2, 2) or (3, 4) (and another
(k, l) satifying the fusion rule but not from the dessin is (2, 4) or (3, 2)). It is not hard to see that
the above two solutions both give the 8 CBs in Table C.2.9.

∆1 (2,3) (2,3) (2,3) (2,3) (3,3) (3,3) (3,3) (3,3)
∆2 (2,2) (2,2) (3,4) (3,4) (2,2) (2,2) (3,4) (3,4)
∆3 (1,2) (4,4) (1,2) (4,4) (1,2) (4,4) (1,2) (4,4)
∆4 (3,3) (2,3) (2,3) (3,3) (2,3) (3,3) (3,3) (2,3)
∆int (3,4) (3,4) (2,2) (2,2) (2,2) (2,2) (3,4) (3,4)

Table C.2.9: There are 8 possible combinations. Each column gives a CB. In the leftmost
column, ∆i’s follow the nomenclature correpsonding to (C.2.37). For (C.2.38), it just swaps
2 ↔ 3 (and ∆1 = ∆4). Therefore, it essentially gives the same CBs. In other words, the two

solutions just correspond to reading the 4-point CB (C.2.33) from left or from right.

In fact, this corresponds to not only a CB in the tetracritical Ising model, but also CBs in many
other minimal models. In Figure C.2.1, we give the Kac tables for a few examples.

By looking at these examples, one might see some patterns of the minimal models and the positions
of conformal dimensions in cyan appeared in the Kac tables. Now, we are going to show

Proposition C.2.2. The dessin Γ(3) gives rise to the charges/momenta of the states in 4-point
conformal blocks, where the corresponding weights of the primaries satisfy the conditions in Table
C.2.10, in minimal models.

Following the specific values for mi and a, we can define M0 :=
m0√
ϵ1ϵ2

so that

α1 = −M0 +
Q

2
, α2 = −M0, α3 =M0, α4 =M0 +

Q

2
, αint =

2M0

3
+
Q

2
. (C.2.40)

There are two possible choices for ∆1 in the Kac table. For future convenience, let us denote them
as ∆r1,s1 and ∆r2,s2 . Then

(p′ri − psi)2 − (p′ − p)2
4p′p

=
Q2

4
−M2

0 = −(p′ − p)2
4p′p

−M2
0 . (C.2.41)

5Since ∆1 = ∆4, when considering ζ ↔ 1/ζ, it is equivalent to swapping bothm2 ↔ m3 andm0 ↔ m1. Therefore,
ζ = (1± i

√
3)/2 should give the same parametrizations. Even if |ζ| ̸= 1, as long as ∆1 = ∆4, swapping 2 ↔ 3 always

gives same CFT parameters as the extra factor of 1/|ζ| can be absorbed into
√
ϵ1ϵ2.
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4 3 13
8

2
3

1
8 0

3 7
5

21
40

1
15

1
40

2
5

2 2
5

1
40

1
15

21
40

7
5

1 0 1
8

2
3

13
8 3

1 2 3 4 5
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4 15
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16
7

33
28

3
7

1
28 0

3 9
5

117
140

8
35 − 3

140
3
35

11
20
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20

3
35 − 3

140
8
35

117
140

9
5

1 0 1
28

3
7

33
28

16
7

15
4
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(b)

5 5 22
7

12
7
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7

1
7 0

4 23
8

85
56

33
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56

1
56

3
8

3 4
3

10
21

1
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1
21

10
21

4
3

2 3
8

1
56

5
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33
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23
8

1 0 1
7
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7

22
7 5
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(c)
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27
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187
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(d)
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224
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224

1
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224
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224

1
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224
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3
224
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224
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1 0 5
32

3
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32
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165
32

15
2
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(e)

Figure C.2.1: Here we list the first five possible examples of CBs that Γ(3) corresponds
to: (a) p′ = 6, p = 5, (b) p′ = 7, p = 5, (c) p′ = 7, p = 6, (d) p′ = 8, p = 5, (e) p′ = 8, p = 7.
Those appeared in the CBs are in cyan in the Kac tables. For (e), we also have another

combination of CBs in green.

Therefore,

M2
0 = −(p′ri − psi)2

4p′p
. (C.2.42)

It is also immediate from (C.2.40) that ∆1 = ∆4. Hence, we can denote ∆2 or 3 as ∆mi,ni without
specifying whether (m1,2, n1,2) corresponds to ∆2 or ∆3. We can plug this into ∆mi,ni = ∆3 =
−M2

0 +QM0 and get

(p′mi − p′ni + xn2)
2 − x2 = (p′rj − p′sj + xsj)

2 − 2x(p′rj − p′sj + xsj), (C.2.43)

where x := p′ − p is some positive integer. Its expansion gives

p′2(mi−ni)2+2p′(mi−ni)xni+x2n2i−x2 = p′2(rj−sj)2+2p′(rj−sj)(sj−1)x+x2s2j−2x2sj . (C.2.44)

Cases Conditions

All (r1, s1) = (p− r2, p′ − s2) ∈ 3(Z,Z)
(r1, s1), (r1 + 1, s1 + 1), (r1 − 1, s1 − 1), (r1, s1)

(r1, s1), (r1 + 1, s1 + 1), (r2 + 1, s2 + 1), (r2, s2) r1 ≤ 3(p−1)
4 , s1 ≤ 3(p′−1)

4 ,
(r1, s1), (r1 − 1, s1 − 1), (r2 − 1, s2 − 1), (r2, s2) k = 2

3r1, l =
2
3s1

(r2, s2), (r2 + 1, s2 + 1), (r2 − 1, s2 − 1), (r2, s2)

(r2, s2), (r1 + 1, s1 + 1), (r1 − 1, s1 − 1), (r2, s2)
(
p+1
2 ≤ r1 ≤ p− 2

(r2, s2), (r1 + 1, s1 + 1), (r2 + 1, s2 + 1), (r1, s1) or p+1
2 ≤ r1 ≤

3(p−1)
4 or p = 2r1

)

(r2, s2), (r1 − 1, s1 − 1), (r2 − 1, s2 − 1), (r1, s1) and (similar relations6 with p→ p′, r1 → s1)
(r1, s1), (r2 + 1, s2 + 1), (r2 − 1, s2 − 1), (r1, s1) and k = p− 2

3r1, l = p′ − 2
3s1

Table C.2.10: The possible CBs of minimal models that Γ(3) corresponds to.
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Since this is for general p′, by comparing coefficients at different orders of p′, we have

mi − ni = ±(rj − sj), ni = ±(sj − 1), n2i − 1 = s2j − 2sj , (C.2.45)

where ± can be seen from the symmetry of p′2 and p′ terms in (C.2.44). Due to a similar symmetry
for (mi, ni) ↔ (p −mi, p

′ − ni), it is possible to replace (mi, ni) with (p −mi, p
′ − ni) or (rj , sj)

with (p − rj , p′ − sj) in (C.2.43). It turns out that they also give the same set of equations. The
third equation is actually redundant, and hence we have

mi − ni = ±(rj − sj), ni = ±(sj − 1). (C.2.46)

Strictly speaking, in (C.2.43), we should really have |p′rj−p′sj+xsj | on the right hand side. Taking
this into account, we would obtain another set of solutions with −1 replaced by +1. Therefore,

mi = rj − 1, ni = sj − 1, (C.2.47)

or mi = rj + 1, ni = sj + 1. (C.2.48)

As we also have similar relations for ∆2 and we have seen that ∆m1,n1 ̸= ∆m2,n2 for Q ̸= 0, we
learn that

(mi, ni) = (rj , sj)± (1, 1), (m1, n1) ̸= (m2, n2), (m1, n1) ̸= (p−m2, p
′ − n2). (C.2.49)

For the intermediate channel, using a√
ϵ1ϵ2

= 2M0
3 , we have

(p′k − p′l + l)2 =
4

9
(p′rj − p′sj + sj)

2, (C.2.50)

so likewise,

k =
2

3
r1, l =

2

3
s1, (C.2.51)

or k = p− 2

3
r1, l = p′ − 2

3
s1, (C.2.52)

where without loss of generality we have chosen j = 1 for convenience. As k, l are integers, we must
have r1, s1 ∈ 3Z (or in other words, (p− r2), (p′ − s2) ∈ 3Z). As p = p′ − 1, it is straightforward to
see that k, l ∈ 2Z for (C.2.51) while (k, l) ∈ (2Z, 2Z+ 1) or (k, l) ∈ (2Z+ 1, 2Z) for (C.2.52).

We also need to take the fusion rule into account. In general, there are 22 ×
(
4
2

)
= 24 possible

choices of external legs, where 22 is the number of choices of ∆1 and ∆4 and
(
4
2

)
corresponds to

the choices of ∆2 ̸= ∆3. Therefore, we can discuss these possibilities case by case. Here, we will
provide the details for three representative cases as examples7.

Example 1: r1, r1 + 1, r1 − 1, r1 In such case, the fusion rule gives

2 ≤ k ≤ min(2r1, 2p− 2r1 − 2);

2 ≤ k ≤ min(2r1 − 2, 2p− 2r1). (C.2.53)

Putting them together, we have

2 ≤ k ≤ min(2r1 − 2, 2p− 2r1 − 2). (C.2.54)

Therefore,
r1 ≥ 2, p− r1 ≥ 2. (C.2.55)

In fact, we can omit r1 ≥ 2 as we already have r1 ∈ 3Z. Furthermore, we also require k − (r1 +
1)+ r1 − 1 ∈ 2Z, that is, k ∈ 2Z. We can write similar conditions for l. In particular, l should also

7Below we will use the correpsonding r’s for external legs to denote each case.
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be even, so (k, l) should obey (C.2.51). Therefore, we also need to plug (C.2.51) into the above
inequality. This gives

r1 ≤
3(p− 1)

4
, s1 ≤

3(p′ − 1)

4
. (C.2.56)

Comparing p− 2 with 3(p− 1)/4, we find that p− 2 ≤ 3(p− 1)/4 only when p ≤ 5 (with equality
at p = 5). However, for p ≤ 4, we cannot have p− r1 ≥ 2 as r1 ∈ 3Z. Hence, r1 ≤ min(p− 2, 3(p−
1)/4) = 3(p− 1)/4 and likewise for s1. In all, the conditions for this case are

r1 ≤
3(p− 1)

4
, s1 ≤

3(p′ − 1)

4
, k =

2

3
r1, l =

2

3
s1. (C.2.57)

Example 2: r2, r1 + 1, r1 − 1, r2 In such case, it is not hard to see that k and l should satisfy
(C.2.52). Besides, the fusion rule gives

|p− 2r1 − 1|+ 1 ≤ k ≤ p− 2;

|p− 2r1 + 1|+ 1 ≤ k ≤ p− 2. (C.2.58)

Putting them together, we have

max(|p− 2r1 − 1|+ 1, |p− 2r1 + 1|+ 1) ≤ k ≤ p− 2. (C.2.59)

Since p− 2r1 − 1 < p− 2r1 + 1, there are three possibilities:

1. p− 2r1 − 1 ≥ 0: If
p ≥ 2r1 + 1, (C.2.60)

then
p− 2r1 + 2 ≤ k ≤ p− 2. (C.2.61)

Plugging k = p − 2
3r1 into (C.2.61), one may check that (C.2.60) and (C.2.61) are indeed

consistent (they give the conditions r1 ≥ 2/3 and r1 ≥ 3 which are automatic as r1 ∈ 3Z).

2. p− 2r1 + 1 ≤ 0: If
p ≤ 2r1 − 1, (C.2.62)

then
2r1 − p+ 2 ≤ k ≤ p− 2. (C.2.63)

For this inequality to hold, we need p ≥ r1 + 2. Plugging k = p − 2
3r1 into the inequalities,

we need r1 ≤ 3(p−1)
4 . Following the above same reasoning, it suffices to keep r1 ≤ 3(p−1)

4 .

3. p− 2r1 = 0: If
p = 2r1, (C.2.64)

then
2 ≤ k ≤ p− 2. (C.2.65)

Plugging k = p − 2
3r1 into the inequalities, one may check that these inequalities are indeed

consistent (they give the conditions r1 ≥ 2/3 and r1 ≥ 3 which are automatic as r1 ∈ 3Z).

The disussion for p′, l, s1 is the same.

Example 3: r1, r1 + 1, r1 − 1, r2 In such case, the fusion rule gives

2 ≤ k ≤ min(2r1, 2p− 2r1 − 2);

2 ≤ k ≤ min(r1 + r2 − 2, 2p− r1 − r2) = min(p− 2, p) = p− 2. (C.2.66)

Putting them together, we have

2 ≤ k ≤ min(2r1 − 2, 2p− 2r1 − 2, p− 2). (C.2.67)
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Therefore,
r1 ≥ 2, p ≥ 4, p− r1 ≥ 2, (C.2.68)

where we can omit the first two conditions as we already have r1 ∈ 3Z. Furthermore, we also
require k − (r1 + 1) + r1 − 1 ∈ 2Z, that is, k ∈ 2Z. We can write the similar conditions for l.
In particular, l should also be even. However, we also have k − (r1 − 1) + r2 − 1 ∈ 2Z, that is,
k− r1− r2 = k− p = k− p′+1 ∈ 2Z. Likewise, l− p′ ∈ 2Z. This means that k, l cannot be even at
the same time (i.e., they should satisfy (C.2.52)). Hence, we reach an contradiction and this case
is not possible.

In fact, we can still reduce the number of cases to be checked. Since r1 = p − r2, we have
r1 ± 1 = p − (r2 ∓ 1). Therefore, we can rule out the cases where we choose r1 ± 1, r2 ∓ 1 from
the

(
4
2

)
possibilities as ∆2 ̸= ∆3. Hence, there are 16 cases (including the above three examples)

overall. Moreover, just like in Example 3, we see that it fails to satisfy the fusion rule due to the
parity of k, l. This can also be used to reduce the number of possible cases. One may check that

r = ri,m = rj ± 1, i = j ⇒ (k, l) ∈ 2(Z,Z);
r = ri,m = rj ± 1, i ̸= j ⇒ (k, l) ∈ (2Z, 2Z+ 1) or (2Z+ 1, 2Z). (C.2.69)

This further reduces the number of possible cases (including the first two examples) to 8. Although
there are 8 distinct cases, there are only two conditions as in Example 1 and 2. This is because for
the combination ri, ri ± 1, rj ± 1, rj , we always have

2 ≤ k ≤ min(2r1 − 2, 2p− 2r1 − 2), (C.2.70)

and for the combination ri, rj ̸=i ± 1, rι, rκ̸=ι ± 1, we always have

max(|p− 2r1 − 1|+ 1, |p− 2r1 + 1|+ 1) ≤ k ≤ p− 2. (C.2.71)

This completes the proof, and the above conditions are summarized in Table C.2.10. We can also
see why the tetracritical Ising model is the one with smallest p′ for Γ(3). One way is to compute
p′ = 3, 4, 5 (with possible p) case by case, and none of them would give parametrizations from Γ(3).
Alternatively, it is straightforward to use the above conditions as well. Likewise, we can deduce
that the smallest possible p is 5. Moreover, this also tells us why we cannot have r1 = 6 or s1 = 6
for p′ = 6, 7 and why s1 = 6 is not allowed for (p′, p) = (8, 5) as in Figure C.2.1 etc.

If a minimal model has CBs corresponding to Γ(3), then (r1, s1) = (3, 3) (and hence (r2, s2) =
(p− 3, p′− 3)) must be one solution. It is not hard to find that (k, l) is (2, 2) or (p− 2, p′− 2), and
either ∆2 or ∆3 corresponds to (2, 2) or (p − 2, p′ − 2) for all the eight cases. Therefore, we may
use this to solve M0 and ϵ1,2. Suppose ∆int = ∆3, then

Q2

4
− 4

9
M2

0 = −M2
0 +QM0. (C.2.72)

Hence, M0 = 3Q
10 or 3Q

2 with Q = i√
p′(p′−1)

. If we consider ∆int = ∆2 (which we have seen that

this would give no new CBs), then we have the opposite values, that is, M0 = −3Q
10 or −3Q

2 . Using
M0 =

m0√
ϵ1ϵ2

and
√
ϵ1ϵ2Q = ϵ1 + ϵ2, we may also solve ϵ1,2.

C.2.5 Minimal Models and Γ0(4) ∩ Γ(2)

Let us now discuss one more example, Γ0(4) ∩ Γ(2). We first focus on the cases when ζ = 1/2. In
terms of the simplifications we can make as above, there are only two cases we need to consider.
Again, we setM0 =

m0√
ϵ1ϵ2

. In particular, one can find that the two cases only differ by ∆3. However,

after some calculations, the fusion rule would always lead to p′, p ∈ 2Z, which is impossible for
coprime p′ and p.
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Next, for ζ = 2, it is very similar to ζ = 1/2 but with a swap of m2,m3 and an overall rescaling. We
also have two distinct cases. For (+,+,−,−) 8, using the same method yields the CBs in minimal
models with conditions in Table C.2.11.

Cases Conditions

2r0, 2r0 ± 1, r0 ± 1, r0

2r0, 2r0 ± 1, p− (r0 ± 1), p− r0 r0 ≤ p−1±1
3 ,

p− 2r0, p− (2r0 ± 1), r0 ± 1, r0 k = 2r0

p− 2r0, p− (2r0 ± 1), p− (r0 ± 1), p− r0
p− 2r0, 2r0 ± 1, p− (r0 ± 1), r0

(
r0 <

p∓1
4 or

p− 2r0, 2r0 ± 1, r0 ± 1, p− r0 p∓1
4 ≤ r0 ≤

p−1/2∓1/2
3 or r0 =

p−1
2

)

2r0, p− (2r0 ± 1), p− (r0 ± 1), r0 and k = p− 2r0

2r0, p− (2r0 ± 1), r0 ± 1, p− r0

Table C.2.11: One set of possible CBs in minimal models that Γ0(4)∩Γ(2) corresponds to.
There are similar relations for s0, l, p

′ by a simple substitution of the corresponding letters,
where we have set α4 = αr0,s0 .

Likewise, the other case with (−,+,−,+) gives the conditions in Table C.2.12.

Cases Conditions

2r0, 2r0 ± 1, r0 ∓ 1, r0

2r0, 2r0 ± 1, p− (r0 ∓ 1), p− r0 r0 ≤ p−1±1
3 ,

p− 2r0, p− (2r0 ± 1), r0 ∓ 1, r0 k = 2r0

p− 2r0, p− (2r0 ± 1), p− (r0 ∓ 1), p− r0
p− 2r0, 2r0 ± 1, p− (r0 ∓ 1), r0

(
r0 <

p∓1
4 or

p− 2r0, 2r0 ± 1, r0 ∓ 1, p− r0 p∓1
4 ≤ r0 ≤

p−1/2∓1/2
3 or r0 =

p−1
2

)

2r0, p− (2r0 ± 1), p− (r0 ∓ 1), r0 and k = p− 2r0

2r0, p− (2r0 ± 1), r0 ∓ 1, p− r0

Table C.2.12: The other set of possible CBs in minimal models that Γ0(4)∩Γ(2) corresponds
to. There are similar relations for s0, l, p

′ by a simple substitution of the corresponding
letters, where we have set α4 = αr0,s0 .

It is not hard to see that for (+,+,−,−), the first CB appears in the minimal model with p′ =
5, p = 4, viz, the tricritical Ising model. For (−,+,−,+), the first CB appears in the minimal
model with p′ = 4, p = 3, viz, the (critical) Ising model. The Kac tables and corresponding CBs
are shown in Figure C.2.2.

Finally, let us consider ζ = −1. Since a always vanishes, ∆int =
Q2

4 = − (p′−p)2
4p′p . Hence, p′k−pl = 0,

that is, p′/p = l/k. However, as gcd(p′, p) = 1 and k < p, l < p′, this is impossible.

Now that we have found two dessins that corresponds to CBs in minimal models, we can consider
their CBs in the same minimal model. Such example would first appear when p′ = 6, p = 5 as in
Figure C.2.3.

8Here, it is still sufficient to choose two representatives for the two distinct cases. As different parametrizations
of the masses would only differ by signs of mi’s, we will only use their signs to denote (m0,m1,m2,m3).
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Figure C.2.2: Here we list the first possible examples of CBs that Γ0(4) ∩ Γ(2) corre-
sponds to: (a) The first CB for (+,+,−,−). For reference, the one in grey is the CB from

(−,+,−,+) for this minimal model. (b) The first CB for (−,+,−,+).
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Figure C.2.3: The CBs from Γ(3) (cyan) and Γ0(4)∩Γ(2) (green) in the tetracritical Ising
model. The ones in orange appear for both of the dessins. The three CBs, from left to right,

come from Γ(3), (+,+,−,−) and (−,+,−,+) in Γ0(4) ∩ Γ(2) respectively.

C.2.6 Minimal Models and General Dessins

Following the above steps, we can derive the results for any dessin in general.

Proposition C.2.3. Suppose for a dessin, we have the gauge theory parameters with relation

m1 = ±/∓ k1m0, m2 = ±/∓ k2m0, m3 = ±/∓ k3m0, a = ±/∓ kintm0, (C.2.73)

where ki,int > 0. Then the dessin corresponds to the states of 4-point CBs satisfying conditions in
Table C.2.13 in minimal models.

Cases Conditions

k1r0, k2r0 ± 1, k3r0 ± /∓ 1, r0 max(|▲± 1|, | △ ±1|) + 1

k1r0, k2r0 ± 1, p− (k3r0 ± /∓ 1), p− r0 ≤ kintr0 ≤ 1
2 min(⋆− 3, 4p− 3−⋆),

p− k1r0, p− (k2r0 ± 1), k3r0 ± /∓ 1, r0 and k = kintr0

p− k1r0, p− (k2r0 ± 1), p− (k3r0 ± /∓ 1), p− r0
p− k1r0, k2r0 ± 1, p− (k3r0 ± /∓ 1), r0 max(|(k1 + k2)r2 ± 1|, |(k3 + 1)r2 ± 1|) + 1

p− k1r0, k2r0 ± 1, k3r0 ± /∓ 1, p− r0 ≤ kintr0 ≤ min(p− 2− |▲|, p− 2− | △ |),
k1r0, p− (k2r0 ± 1), p− (k3r0 ± /∓ 1), r0 and k = p− kintr0
k1r0, p− (k2r0 ± 1), k3r0 ∓ 1, p− r0

Table C.2.13: The set of possible CBs in minimal models that a general dessin corre-
sponds to. There are similar relations for s0, l, p

′ by a simple substitution of the corre-
sponding letters, where we have set α4 = αr0,s0 and ▲ = (k2 − k1)r0,△= (1 − k3)r0,⋆ =(

−|k1 + k2 − k3 − 1|+
∑
i

ki

)
r0. In particular, ki,intr0 ∈ N∗ is a necessary condition.
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In fact, we may further make the following conjecture.

Conjecture C.2.4. For a dessin satisfying the conditions in Proposition C.2.6, it corresponds to
a family of 4-point CBs whose states follow Table C.2.13.

So far, we have already discussed how a dessin can reproduce the charges/momenta of the states in
a 4-point CB of a minimal model. However, as ζ is fixed for each dessin and we are only obtaining
ζ by relating the Strebel and SW differentials rather than describing it as a concrete mathematical
object in the language of dessins, further study on whether/how dessins could fully recover the CBs
and the spectra is required.

With the conditions in Table C.2.13, we can check what CBs in minimal models we can obtain
from a dessin. For instance, when ζ = 1

2 + 11
50

√
5 for Γ1(5), we have k2 = 1, k1 = k3 = 5, kint = 2.

It is not hard to find that the first CB it corresponds to appears when p′ = 7, p = 6 as in Figure
C.2.4.
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Figure C.2.4: The CB on the right has conformal dimensions coloured cyan in the Kac
table.

Examples not giving minimal models From Proposition C.2.6, it is straightforward to see that
there could be dessins that do not correspond to CBs in minimal models. Besides the inequalities
in Table C.2.13, a necessary condition is that ki,intr0 and ki,ints0 should be positive integers. Let
us verify this with some examples.

For Γ0(6), there are two big classes of parametrizations. If m2 or m3 has the factor
√
109, then

we cannot get the rational conformal dimensions for all the external legs. If instead m1 has the

factor
√
109, all the conformal dimensions can be rational since ∆1 = Q2

4 −M2
0 . However, if we

now express M0 in terms of the labels (r2, s2) for ∆4 and insert this into ∆1, we find that

(p′r1 − ps1)2 = 4× 109(p′r2 − ps2)2, (C.2.74)

where 109 is not a square number, and hence no integer solutions (except when 0 = 0 which is
excluded for minimal models). Therefore, it is not possible to get CBs in minimal models for Γ0(6).

For Γ0(8), mi and a are non-zero and cannot simultaneously be real/pure imaginary as in Table
C.2.5. Without loss of generality, suppose mi√

ϵ1ϵ2
is pure imaginary and then a√

ϵ1ϵ2
is real. This

yields

∆int =
Q4

4
− a2

ϵ1ϵ2
<
Q2

4
. (C.2.75)

Therefore,
(p′k − pl)2 − (p′ − p)2

4p′p
<
Q2

4
= −(p′ − p)2

4p′p
. (C.2.76)

In other words,
(p′k − pl)2 < 0. (C.2.77)

Hence, it is not possible to get CBs in minimal models for Γ0(8).

For Γ0(9), since the a’s are not real or pure imaginary, it should not give CBs in minimal models.
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Appendix D

Minimally Tempered Newton
Polynomials

In Table D.0.1, we list all the maximally and minimally tempered Newton polynomials for the
reflexive polygons.

Polygon Maximally tempered polynomial Minimally tempered polynomial

No.1 k − w2

z − z2

w − 3w
z − 3z

w − 1
wz − 3w − 3

w − 3z − 3
z k − w2

z − z2

w − 1
wz

No.2 k − w3

z − 4w2

z − 6w
z − z

w − 1
wz − 2w − 2

w − 4
z k − w3

z − z
w − 1

wz

No.3 k − w2

z − 3w
z − z

w − 1
wz − 2w − 2

w − z − 3
z k − w2

z − z
w − 1

wz − z
No.4 k − wz − z

w − w
z − 1

wz − 2w − 2
w − 2z − 2

z k − wz − z
w − w

z − 1
wz

No.5 k − w2

z − 3w
z − 1

wz − 2w − 1
w − z − 3

z k − w2

z − 1
wz − 1

w − z
No.6 k − w2

z − 2w
z − z

w − 2w − 1
w − z − 1

z k − w2

z − z
w − 1

w − z − 1
z

No.7 k − w2

z − 3w
z − 1

wz − 2w − z − 3
z k − w2

z − 1
wz − z

No.8 k − w2

z − 2w
z − 2w − 1

w − z − 1
z k − w2

z − 1
w − z − 1

z

No.9 k − w
z − 1

wz − w − 1
w − z − 2

z k − w
z − 1

wz − w − 1
w − z

No.10 k − z
w − w

z − w − 1
w − z − 1

z k − z
w − w

z − w − 1
w − z − 1

z

No.11 k − w
z − 1

wz − 1
w − z − 2

z k − w
z − 1

wz − 1
w − z

No.12 k − 1
wz − w − 1

w − z − 1
z k − 1

wz − w − 1
w − z − 1

z

No.13 k − w
z − 1

wz − z − 2
z k − w

z − 1
wz − z

No.14 k − 1
wz − w − 1

w − z k − 1
wz − w − 1

w − z
No.15 k − w − 1

w − z − 1
z k − w − 1

w − z − 1
z

No.16 k − z − w − 1
zw k − z − w − 1

zw

Table D.0.1: The maximally and minimally tempered Newton polynomials for reflexive
polygons.

D.1 Elliptic Curves for Minimally Tempered Coefficients

Although not as physically interesting as the maximally tempered coefficients, let us list the results
for minimally tempered coefficients for comparison and reference. As the reflexive polygons No.10,
12, 14, 15 and 16 do not have any boundary points other than vertices, the minimally tempered
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coefficients coincide with the maximially tempered coefficients. Hence, we will not repeat their
results here.

As shown in Table D.1.1, the elliptic curves for minimally tempered coefficients are not the same
for specular duals. The reason is that these coefficients do not encode all the information of the
corresponding (numbers of) perfect matchings.

Polygon No.1 No.2 No.3 No.4

a(k) −9
2k −4 −3 1

3k
2 − 16

3

b(k) −5
8k

3 − 27
4 −2

3k
2 −3

4k
2 − 2 − 1

36k
4 − 4

9k
2 + 128

27

j(k) k3(k3+216)3

(k3−27)3
(k4+192)3

(k4−64)2
(k4+144)3

k2(k2−16)(k2+9)2
(k4−16k2+256)3

k4(k2−16)2

Polygon No.5 No.6

a(k) 1 1
6k

2 + 1
2k +

5
3

b(k) − 1
12k

2 − k − 1 − 1
72k

4 − 1
24k

3 − 1
9k

2 − 5
6k − 125

108

j(k) (k4−48)3

k7+k6+k4−72k3−504k2−864k−496
(k4−8k2−24k−80)3

(k2+4k+5)2(k3−6k2+12k−35)

Polygon No.7 No.8 No.9

a(k) 0 1
2k

2 + k 1
6k

2 + k + 2
3

b(k) −1 − 1
24k

4 − 1
12k

3 + 1
4k

2 + k + 1 − 1
72k

4 − 1
12k

3 − 1
36k

2 + 1
3k − 7

27

j(k) k12

k6−432
(k4−8k2−32)3

k6−11k4−32k2−256
(k4−8k2−48k−32)3

(k+1)2(k4−8k2−64k−48)

Polygon No.11 No.13

a(k) 1
2k + 1 1

b(k) − 1
24k

3 − 1
12k

2 + 1
4 − 1

12k
2

j(k) (k4−24k−48)3

k5+k4+k3−30k2−96k−91
(k4−48)3

k4−64

Table D.1.1: The data of the elliptic curves y2 = x3 + fx+ g and j-invariants for reflexive
polygons (with minimally tempered coefficients). Again, we have f = − 1

48
k4 + a(k) and

g = 1
864

k6 + b(k) here.

In Figure D.1.1, we list the plots obtained from j(k)/1728. As we can see, this is not a Belyi map
for No.8, and hence the plot is not dessin or even a bipartite graph. Moreover, although the graph
for No.9 is bipartite, it is not connected, and hence the map is not Belyi as well.

One may also compute the Mahler measures for the Newton polynomials P (z, w) = k − p(z, w)
with those minimally tempered coefficients as series of k. We will not list them here, but we would
like to point out two properties:

• There are several (but not all) reflexive pairs giving the same Mahler measures. These pairs
are No.1&16, No.2&13, No.4&15 (plus the self-dual ones). The reason is that the vertices
of the polygons in each pair are related by some GL(2,Z) transformation (while the other
reflexive duals are not). This can be seen by quotient gradings on the lattice or direct
computations of Plücker coordinates. As the minimally tempered coefficients only contain
the vertices, this then follows from the fact that Mahler measure is GL(2,Z) invariant.

• There are four classes of polygons whose Mahler measures can be expressed compactly using
some generalized hypergeometric functions 4F3. Likewise, their u0 are also simply some
hypergeometric functions 2F1. These four classes are classified in [50]. It turns out that the
four classes are precisely No.1&16, No.2&13, No.4&15 and the self-dual No.7.
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Although not all dessins (or just graphs) are associated to congruence subgroups, we may still com-
pute the modular expansions for the k parameters and check if they give rise to any Hauptmoduln.
Here we give three examples of different types. The detailed steps can be found in [183, 185].

Example 1: No.1 As this is the same as the case for dP0 (No.16), we have computed that

k3 = 27 +
(
η(τ)
η(3τ)

)12
. This is a Hauptmodul for Γ0(3). In particular, the congruence subgroup

associated to the dessin in this case is Γ(3), which is a subgroup of Γ0(3).

Example 2: No.13 We have

k4 = q−1 + 40 + 276q − 2048q2 + 11202q3 + · · · = 64 +

(
η(τ)

η(2τ)

)24

, (D.1.1)

where the second equality is checked perturbatively. This is a Hauptmodul for Γ0(2). On the other
hand, the crossing dessin does not correspond to any congruence subgroup. By removing the white
vertices (or black vertices), this does not even seem to be a coset graph for any group either.

Example 3: No.7 We have

k6 = 864

(
1− E6(τ)

E
3/2
4 (τ)

)
, (D.1.2)

where E4(τ) = 1+ 240
∞∑
n=1

n3qn

1−qn and E6(τ) = 1− 540
∞∑
n=1

n5qn

1−qn are the Eisenstein series. This is not

known to be a Hauptmodul of any genus-0 congruence subgroup. On the other hand, the flower
dessin does not correspond to any congruence subgroup either. By removing the white vertices,
however, it could be viewed as a coset graph associated to any group with 6 generators (and the
subgroup being itself). Incidentally, there are two things worth noting:

• As given in [284], we have

E
1/4
4 (τ) = 2F1

(
1

12
,
5

12
; 1;

1728

j

)
(D.1.3)

in terms of j-invariant (cf. §4.2.2).

• The q-series expansion for E4(τ) has an = 240 for n ≥ 1. It turns out that 2an = 480 are the
GW invariants in the first row of Table 1 given in [192] (cf. §4.3.2).
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(a) No.1: Γ(3) (b) No.2 (c) No.3: Γ0(4) ∩ Γ(2)

(d) No.4: Γ0(4) ∩ Γ(2) (e) No.5: Γ0(9) (f) No.6: Γ0(9)

(g) No.7 (h) No.8 (i) No.9: Γ0(3)× Γ0(4)

(j) No.11: Γ0(9) (k) No.13

Figure D.1.1: The dessins (or just graphs from j/1728) for reflexive polygons with min-
imally tempered coefficients. As listed, some of them correspond to certain congruence

subgroups (as coset graphs).
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Appendix E

Quivers for Generalized Conifolds

Given any generalized conifold with M +N ≥ 1, its toric diagram is

M

N . (E.0.1)

Its quivers in different toric phases can be obtained from the triangulations of the lattice polygon
[285,286]. These triangulations can in turn be encoded by a sequence of signs ς = {ςa|a ∈ Z/(M +
N)Z}, one for each simplex in the toric diagram. There are M minus ones and N plus ones.
When two simplices are glued side by side, they have the same sign. When they are glued in the
alternative way, they have opposite signs. An illustration can be found in Figure E.0.1.

(a) (b) (c)

Figure E.0.1: In these examples, we have (a) ς = {−1,+1}, (b) ς = {−1,−1} and (c)
ς = {−1,−1,+1,+1,−1,+1,+1,+1}.

The quiver is constructed as follows. First, there is always a pair of opposite arrows connecting
node a and node a + 1 (a ∈ Z/(M + N)Z). Then the node a is bosonic/even and has a self-loop
if ςa = ςa+1. If ςa = −ςa+1, then it is fermionic/odd and has no self-loops. Hence, the resulting
quiver is essentially the double of the untwisted affine slM |N Dynkin quiver with extra loops on the
bosonic nodes. The superpotential W can be fully determined in the toric quiver gauge theory and
is composed of the terms

{
ςatr(Ia,aIa,a−1Ia−1,a − Ia,aIa,a+1Ia+1,a), ςa = ςa+1,

ςatr(Ia,a+1Ia+1,aIa,a−1Ia−1,a), ςa = −ςa+1,
(E.0.2)

where Ia,b denotes the arrow/field from node a to b.

Recall that from the superpotential, we have the loop constraint

∑

I∈L
ϵ̃I = 0, (E.0.3)

for any closed loop L in the periodic quiver. Furthermore, there are also vertex constraints:

∑

I∈a
sgna(I)ϵ̃I = 0, (E.0.4)

where the sign function sgna(I) is equal to +1 (resp. −1) when the arrow I starts from (resp. ends
at) the node a, and 0 otherwise.
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Following the above rule of toric duality, it is straightforward to see that we can only dualize
fermionic nodes in the toric phase. This would just change the parity of the two nodes connected to
the dualized node by adding or removing the adjoint loops. Correspondingly, the Dynkin diagrams
of the underlying affine Lie superalgebra are related by odd reflections.

A generalized conifold with a larger polygon can be higgsed to one with a smaller polygon. This
can be decomposed into a sequence of higgsings. For each single higgsing, the leftmost or rightmost
simplex is removed. In the quiver, we merge two adjacent nodes. The two nodes can be either
bosonic or fermionic. Suppose that the nodes a and a + 1 are merged, then |a′| = |a| + |a + 1|,
where a′ denotes the corresponding node after higgsing. Let us list how the Cartan matrices would
change for the three possible cases:




. . .

· · · 2 −1 · · ·
· · · −1 2 −1 · · ·

· · · −1 2 −1 · · ·
−1 2 · · ·

. . .




|a| = |a+ 1| = 0 :
a

a+ 1 a′




. . .

· · · 2 −1 · · ·
· · · −1 2 −1 · · ·

−1 2 · · ·
. . .




, (E.0.5)



. . .

· · · 2 −1 · · ·
· · · −1 2 −1 · · ·

· · · −1 0 1 · · ·
1 −2 · · ·

. . .




|a| = 0, |a+ 1| = 1 :
a

a+ 1 a′




. . .

· · · 2 −1 · · ·
· · · −1 0 1 · · ·

1 −2 · · ·
. . .




, (E.0.6)



. . .

· · · 2 −1 · · ·
· · · −1 0 1 · · ·

· · · 1 0 −1 · · ·
−1 2 · · ·

. . .




|a| = |a+ 1| = 1 :
a

a+ 1 a′




. . .

· · · 2 −1 · · ·
· · · −1 2 −1 · · ·

−1 2 · · ·
. . .




. (E.0.7)

Therefore, the quiver Yangian constructed therefrom is a two-parameter algebra1. The general rule
of the parameter assignment to the arrows is summarized in Figure E.0.2.

Now, according to the definition of quiver Yangians, the defining relations for the cases of generalized
conifolds can be written as follows.

Definition E.0.1. Given a quiver Q = (Q0, Q1) and its superpotential W (with M + N > 2),

the non-reduced quiver Yangian is generated by the modes e
(a)
n , f

(a)
n and ψ

(a)
n (a ∈ Q0, n ∈ N)

satisfying the relations

[
ψ(a)
n , ψ(b)

m

]
= 0, (E.0.8)

[
e(a)n , f (b)m

}
= δabψ

(a)
m+n, (E.0.9)

1In §5.7, we discuss the connection of quiver Yangians to W-algebras. These W-algebras only depend on the
ratio ϵ1/ϵ2 [69]. However, the two parameters are independent for generic quiver Yangians. This is also reflected in
the condition on ϵ1,2 in Theorem 5.7.4.
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a

a− 1 a + 1

(a)

σaε1

σaε2 σa+1ε2

σa+1ε1

(σa + σa+1)ε3/2

a

a− 1 a + 1

(b)

σaε1

σaε2 σa+1ε1

σa+1ε2

Figure E.0.2: The values of ϵ̃I associated to bifundamentals and adjoints subject to the loop
and vertex constraints for generalized conifolds. We have (a) ςa = ςa+1 and (b) ςa = −ςa+1,

where ϵ1,2,3 are parameters of the quiver Yangian.

[
ψ
(a)
n+1, e

(b)
m

]
−
[
ψ(a)
n , e

(b)
m+1

]
= σba1 ψ

(a)
n e(b)m + σab1 e

(b)
m ψ(a)

n , (E.0.10)
[
ψ
(a)
n+1, f

(b)
m

}
−
[
ψ(a)
n , f

(b)
m+1

}
= −σab1 ψ(a)

n f (b)m − σba1 f (b)m ψ(a)
n , (E.0.11)

[
e(a)n , e(b)m

}
=
[
f (a)n , f (b)m

}
= 0 (σab1 = 0), (E.0.12)

[
e
(a)
n+1, e

(b)
m

}
−
[
e(a)n , e

(b)
m+1

}
= σba1 e

(a)
n e(b)m + (−1)|a||b|σab1 e(b)m e(a)n (σab1 ̸= 0), (E.0.13)

[
f
(a)
n+1, f

(b)
m

}
−
[
f (a)n , f

(b)
m+1

}
= −σab1 f (a)n f (b)m − (−1)|a||b|σba1 f (b)m f (a)n (σab1 ̸= 0). (E.0.14)

The generators e
(a)
n and f

(a)
n have the Z2-grading same as the corresponding node a while ψ

(a)
n is

always bosonic. In the above relations, we also allow ψ
(a)
−1 := 1/(ϵ1 + ϵ2) so that

[
ψ
(a)
0 , e(b)m

]
=

1

ϵ1 + ϵ2

(
σab1 + σba1

)
e(b)m ,

[
ψ
(a)
0 , f (b)m

]
= − 1

ϵ1 + ϵ2

(
σab1 + σba1

)
f (b)m (E.0.15)

can be deduced from the ψe and ψf relations.

Notice that for convenience, we have rescaled the generators compared to the convention in §5.2.
The two sets of modes are related by e

(a)
n = (ϵ1 + ϵ2)

1/2e
(a)
n , f

(a)
n = (ϵ1 + ϵ2)

1/2f
(a)
n and ψ

(a)
n =

(ϵ1 + ϵ2)ψ
(a)
n (including ψ

(a)
−1), where for clarity we have used e, f and ψ to denote the ones using

the convention in §5.2.

To correctly recover the BPS degeneracies, we also need the Serre relations.

Definition E.0.2. Given the above quiver data, the (reduced) quiver Yangian YQ,W is the non-
reduced quiver Yangian with the Serre relations given as follows. When MN ̸= 2, we have

Symn1,n2

[
e(a)n1

,
[
e(a)n2

, e(a±1)
m

]}
= 0 (|a| = 0), (E.0.16)

Symn1,n2

[
e(a)n1

,
[
e(a+1)
m1

,
[
e(a)n2

, e(a−1)
m2

}}}
= 0 (|a| = 1), (E.0.17)

and the same relations with all e replaced by f . When (M,N) = (2, 1) (or equivalently, (M,N) =
(1, 2)), namely for the suspended pinch point (SPP), we have

Symn1,n2
Symm1,m2

[
e(0)n1

,
[
e(2)m1

,
[
e(0)n2

,
[
e(2)m2

, e
(1)
k

}}}}

=Symn1,n2
Symm1,m2

[
e(2)m1

,
[
e(0)n1

,
[
e(2)m2

,
[
e(0)n2

, e
(1)
k

}}}}
,

(E.0.18)

and the same relation with all e replaced by f , where the node (1) is taken to be the single bosonic
node.

For toric CYs, as the superpotential can be unambiguously determined for a given quiver, we shall
abbreviate YQ,W as YQ or even Y if it would not cause confusions. Moreover, since the quiver
Yangian is always a two-parameter Yangian algebra, we will omit ϵi as well.
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Appendix F

BPS Partition Functions, Plethystics
and Kac Polynomials

In this chapter, we discuss the BPS partition functions for all the toric CYs without compact 4-
cycles as well as (tripled) quivers from affine type (including non-toric ones). One may check that
the resuls agree with those from topological strings such as in [202, 287–291]. All of them can be
expressed using (generalized) MacMahon functions1:

M(p, q) :=
∞∏

k=1

1

(1− pqk)k , M(q) :=M(1, q), M̃(p, q) :=M(p, q)M(p−1, q). (F.0.1)

In the above, M(q) is the standard MacMahon function [292]. We can then also use these expres-
sions to study the gluing process beyond two trivalent vertices in the web diagram and identify the
bosonic and fermionic generators.

When studying wall crossings, it is convenient to introduce the shorthand notation

M∧(p, q; k0) :=
∞∏

k=k0

1

(1− pqk)k , M∧(p, q; k0) :=
k0∏

k=1

1

(1− pqk)k (F.0.2)

as the truncated MacMahon functions from below and above. For different chambers separated by
the walls of marginal stability, we shall discuss their possible crystal descriptions. For chambers
C̃ described by M∧, the model could be constructed by combining a union of (sub-)crystals. For
chambers C described by M∧, the model could be constructed by peeling semi-infinite faces off the
crystal.

We will also write these generating functions in terms of plethystic exponential (PE) of a multi-
variable analytic function f(t1, . . . , tr):

PE[f(t1, . . . , tr)] = exp

( ∞∑

k=1

f(tk1, . . . , t
k
r )− f(0, . . . , 0)
k

)
. (F.0.3)

As the PE computes the character of the symmetric algebra, this indicates that the quiver Yangians
are symmetric algebras. They can then be endowed with Hopf algebra structures as one may expect.

For some cases, we shall also discuss the PE expressions in the context of (nilpotent) Kac poly-
nomials [293] and consider the connections to different quantum algebras. More specifically, for
C3, the partition function agrees with the Poincaré polynomial encoded by Kac polynomials for
some nilpotent (sub)stack. For (tripled) affine quiver cases, the double of such Poincaré polynomial
contains the partition function as a factor, and it seems that there exists some subalgebra structure.
All these will be checked for both unrefined and refined expressions. It could be possible that the
other cases may as well have certain interpretations in their PE expressions.

1For refined partition functions, we will use refined (generalized) MacMahon functions.
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Crystal Partition Functions In this appendix, we are considering toric diagrams without inter-
nal points. Therefore, we will count the D2 and D0 states bound to a single D6. As the dimensional
reduction from 4d N = 1 gauge theory, the effective supersymmetric quantum mechanics on the
D-branes is a quiver theory. Recall that a quiver Q is a graph (Q0,Q1) with Q0 denoting the set
of nodes and Q1 its edges, and the crystal model can be thought of as the 3d uplift of the periodic
quiver.

Given a molten crystal configuration C, we can write the crystal generating function to enumerate
the possible configurations:

Zcrystal(qj) =
∑

C

∏

j∈Q0

q
|C(j)|
j , (F.0.4)

where |C(j)| denotes the number of atoms with colour j in C. For BPS states counting, we have
the BPS partition function

ZBPS(q,Q) =
∑

n0,n2

Ω(n0,n2)q
n0

|Q0|−1∏

i=1

Q
n2,i

i , (F.0.5)

where Ω is the Witten index for the bound states of n0 D0s and n2 D2s inside a single non-compact
D6 with n2,i the number of D2’s wrapping the ith 2-cycle. Note that n0 ∈ Z≥0 is a non-negative

integer and n2 = (n2,i) ∈ Z|Q0|−1
≥0 is a vector, where |Q0| − 1 is the number of compact 2-cycles in

the CY3. In topological strings, these fugacities q and Q = (Qi) are related to string coupling gs
and Kähler moduli respectively [131].

Roughly speaking, the partition functions for crystal and BPS states are related by a change of

variables q = ±
n−1∏
j=0

qj , Qi = ±Qi for n = |Q0| and i = 1, . . . , n − 1. To determine these signs, we

first introduce the (Euler-)Ringel form2

⟨d1,d2⟩ =
∑

a∈Q0

d1,ad2,a −
∑

Xab∈Q1

d1,ad2,b (F.0.6)

for the dimension vectors d1,2. Then the sign of the term qm =
n−1∏
i=0

qmi
i is given by (−1)m0+⟨m,m⟩

[294].

In general, we need to check the signs term by term. However, for toric diagrams without internal
points, we simply have

(−1)m0+⟨m,m⟩ = (−1)
∑
a∈S

ma

, (F.0.7)

where S = {a0} ⊔ {a|∄ Xaa ∈ Q1}. Notice the disjoint union sign here. This means the initial
node is counted twice, one from {a0} and one from {a|∄ Xaa ∈ Q1} (if it does not have a loop).
Therefore, the signs of variables can be determined as follows:

q0 =

{
p0, ∄ Xaa ∈ Q1

−p0, ∃ Xaa ∈ Q1

; qi̸=0 =

{
pi, ∃ Xaa ∈ Q1

−pi, ∄ Xaa ∈ Q1

. (F.0.8)

We shall call this the crystal-to-BPS map. Then we can obtain ZBPS(q,Q) via q =
n−1∏
j=0

pj , Qi = pj .

For convenience, especially when writing the sign-changed expressions, we have simply denoted the
crystal-to-BPS map as qj → ±qj in the followings, with the understanding of the signs according
to (F.0.8).

2Recall that Xab denotes an arrow from node a to node b. Moreover, the node a0 corresponding to the initial
atom always uses the variable q0.
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Kac Polynomials As our partition functions can also be expressed in terms of PE, we would like
to see whether they could be related to Kac polynomials. Given a locally finite quiver Q = (Q0, Q1),
the Kac polynomial Ad(Fp) is the number of absolutely indecomposable representations of the

quiver over a finite field Fp of dimension d ∈ Z|Q1|
≥0 (and hence the name dimension vector). This is

called a polynomial because there exists a unique polynomial Ad(t) ∈ Z[t] such that Ad(Fp) = Ad(p)
for any Fp [293].

One can then define the doubled quiver Q = (Q0, Q1⊔Q∗
1) where an arrow X∗ in opposite direction

is added for each arrow X in the quiver Q. The preprojective algebra ΠQ is defined as the path
algebra CQ quotiented by the ideal generated by

∑
X∈Q1

[X,X∗]. The stack of representations of ΠQ

is an abelian category denoted as RepΠQ =
⊔
d

RepdΠQ. A representation M is called nilpotent if

there exists a filtration {0} = Ml ⊂ · · · ⊂ M1 ⊂ M such that Π+
Q(Mi) ⊆ Mi+1, where Π+

Q ⊂ ΠQ
is the augmentation ideal [295, 296]. The substack of these nilpotent representations is called the
Lusztig nilpotent variety ΛQ =

⊔
d

ΛQ,d. One may also introduce some semi-nilpotent and strongly

semi-nilpotent conditions to define the Lagrangian substacks Λ0
Q and Λ1

Q respectively. We shall not
expound the details here, and readers are referred to [295,297] for these conditions. As their names
suggest, ΛQ ⊆ Λ1

Q ⊆ Λ0
Q.

Consider the T -equivariant Borel-Moore homology HT
∗ (RepΠQ,Q) =

⊕
d

HT
∗ (RepdΠQ,Q) [298]. Its

Poincaré polynomial3, as shown in [295, 299], is encoded by the Kac polynomial:

PQ(t, z) =
∑

d

P (RepdΠQ, t)t
⟨d,d⟩zd = PE

[
1

1− t−1

∑

d

Ad(t
−1)zd

]
, (F.0.9)

where P (RepdΠQ, t) =
∑
i
dimH2i(RepdΠQ)t

i and ⟨d1,d2⟩ is the Ringel form. Likewise, for the

Borel-Moore homology of Λ♭Q (♭ = 0, 1), we have4

P ♭Q(t, z) = PE

[
1

1− t−1

∑

d

A♭d(t
−1)zd

]
. (F.0.10)

One can introduce algebra structures on these homology spaces. These “2d” COHAs are closely
related to the “3d” COHAs/quiver Yangians discussed in the previous subsection. For instance,
consider the Jordan quiver Q, that is, one single node with one loop X. Its tripled quiver Q̂ is
given by Q with a loop ω added to the node. The (super)potential is then W = ω[X,X∗]. Then
the 2d COHAs are the dimensional reductions5 of the corresponding versions of the 3d COHAs

associated to quiver Yangian Y
(
ĝl1

)
of Q̂ [208, 301,302].

More generally, given a quiver Q, its tripled quiver Q̂ is the doubled quiver Q with a loop ωa added
to each node. The superpotential is then W =

∑
a,x
ωa[x, x

∗]. For example, the quivers for C×C2/Zn

are tripled quivers Q̂ of the affine A-type quivers Q. As the expressions here associated to both Q
and Q̂ are in the form of PE and the Kac polynomials encode certain graded characters, it would
be natural to compare them and expect some relations between them. In general, for other toric
CY 3-folds, the quivers are not tripled, but it might be possible that they could also have some
interpretations in terms of something similar to Kac polynomials and lead to possible connections
between various algebras.

3Since we have infinitely generated homology, this should really be a series, but we shall always refer to it as
Poincaré polynomial.

4Similarly, A♭
d(p) gives the number of absolutely indecomposable representations satifying the corresponding

nilpotency condition over a finite field Fp [295].
5This dimensional reduction is in the sense that the 3d COHAs were defined in the framework of 3-dimensional

CY categories in [300] while the 2d ones come from 2-dimensional CY categories in [86].



Appendix F. BPS Partition Functions, Plethystics and Kac Polynomials 206

F.1 Examples Galore

We now discuss the BPS partition functions for all toric CY3 without compact 4-cycles and some
non-toric examples, along with various relevant aspects. Let us start with the simplest case C3

which is most well-studied in literature.

F.1.1 Plane Partition: C3

The toric diagram for C3 is the simplex with vertices (0, 0), (1, 0) and (0, 1). Its dual web is just the
trivalent vertex. There is no compactly supported D2-branes in this case. The generating function
is enumerated by plane partitions, given by the MacMahon function [303]:

Zcrystal =M(q0) =

∞∏

k=1

1

(1− qk0 )k
. (F.1.1)

The BPS partition function of D0-branes follows the map q = −q0, that is, ZBPS = M(−q). For
future convenience6, let us also introduce the variable x = −q, and then ZBPS = M(x). The

MacMahon function is precisely the vacuum character of the affine Yangian Y
(
ĝl1

)
.

It is straightforward to write the generating function as

M(x) = PE

[
x

(1− x)2
]
. (F.1.2)

It is curious to see that the Hilbert series (HS) for C2, namely 1/(1−x)2, appears inside PE (rather
than C3). Incidentally, C2 frequently appears in relevant study of instantons and VOAs. The

COHA of the C2 quiver is also isomorphic to the positive part Y+
(
ĝl1

)
of the affine Yangian [302].

Although similar features are not observed in other cases, the factor 1/(1 − x)2 is universal in all
the examples we consider7.

We may now use the method in [26,304–306] (see also [12, Appendix B] for a short summary) to get
the asymptotics for the generating function. For plane partitions, this is a well-known result [307].
At large n, the asymptotic expansion of MacMahon function has coefficient

Zn ∼
ζ(3)7/36√

12π

(n
2

)−25/36
exp

(
3ζ(3)1/3

(n
2

)2/3
+ ζ ′(−1)

)
. (F.1.3)

Since PE[1 + f ] = PE[1]PE[f ] = PE[f ], we may also write the expression as

M(x) = PE

[
1 +

x

(1− x)2
]
= PE

[
1− x+ x2

(1− x)2
]
. (F.1.4)

Now the expression inside PE is purely an HS whose Taylor expansion starts from 1. In fact, this
is the HS for the complete intersection defined by X 6

1 + X 3
2 + C23 = 0. By virtue of PE, this gives

a one-to-one correspondence between the BPS states labelled by boxes in the plane partition and
single-/multi-trace operators generated by X1,2,3. Nevertheless, it is not clear whether this does
imply anything non-trivial in physics and mathematics8.

6It seems to be redundant to write M(q0) (or M(−q)) as M(x), but this notation would be easier for our
discussions on cases with more variables qi.

7Here, we use x instead of q as it stands for different (but patterned) products of variables for D-branes in different
cases.

8It is worth noting that this defining equation could be labelled by E10 following [308] though it does not fit in
the usual McKay correspondence or belong to the exceptional unimodal singularities. This could probably be in line
with the McKay correspdence as equivanlence of derived categories [309, 310]. Moreover, (1 − x + x2)/(1 − x)2 was
also studied in [311] in the context of Hasse-Weil zeta functions and Dirichlet series.
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Kac polynomials and Poincaré polynomials On the other hand, we find some connections
to certain Kac polynomials. Consider the Jordan quiver Q whose doubled quiver Q leads to the
preprojective algebra ΠQ = CQ/[X,X∗]. The tripled quiver Q̂ is then the quiver for C3 having one
node with 3 loops X,X∗, ω and superpotential W = ω[X,X∗]. For the T -equivariant Borel-Moore
homology HT

∗ (Λ
♭
Q,Q), we have [295]

P ♭Q(t, x) = PE

[
tx

(t− 1)(1− x)

]
=

∞∏

d=1

∞∏

k=0

1

1− t−kxd (F.1.5)

with Kac polynomials A♭d(t) = 1 for both ♭ = 0 and ♭ = 1. In this case, Λ1
Q = Λ0

Q. Under the

unrefinement t = x−1, we find that this agrees with the MacMahon functionM(x) = PE[x/(1−x)2].
This reflects [297,312] the fact that the COHA of the moduli stack of coherent sheaves on C2 with

zero-dimensional support is isomorphic to Y+
(
ĝl1

)
. One may also check that in this case the

Poincaré polynomial [86] of Y+ is PE
[

tx
(t−1)(1−x)

]
. For reference, we also have

PQ(t, x) = PE

[
x

(t− 1)(1− x)

]
=

∞∏

d=1

∞∏

k=1

1

1− t−kxd (F.1.6)

with Kac polynomials Ad(t) = t.

F.1.2 Conifold

Instead of directly move on to C3 orbifolds, we shall first consider another very well-studied case,
that is, the conifold C. The toric diagram is the square enclosed by the four vertices (p1, p2) with
p1,2 = {0, 1}. As the quiver has two nodes with two pairs of opposite arrows, the atoms in the
crystal (aka pyramid partition) should have two colours q0,1. The generating function is well-known
from [202, 203]:

Zcrystal =
M(q0q1)

2

M(−q1, q0q1)M(−q−1
1 , q0q1)

=M(q0q1)
2M̃(−q1, q0q1)−1. (F.1.7)

We may write this in terms of PE as

Zcrystal = PE


 ∑

k∈2Z≥0+1

kqk−1
1 (1 + q1)

2qk0


PE


 ∑

k∈2Z>0

k

2
qk−2
1 (−1 + 2q1 + 4q21 + 2q31 − q41)qk0




= PE

[
q0((1 + q1)

2 + q20q
2
1(1 + q1)

2 + q0(−1 + 2q1 + 4q21 + 2q31 − q41))
(1− q0q1)2

]
.

(F.1.8)

Setting q0 = q1 = q, we get the pyramid partition without any colouring:

Z = PE

[
q(1 + q+ 3q2 + 4q3 + 3q4 + q5 + q6)

(1− q4)2

]
. (F.1.9)

This has asymptotic behaviour

Zn ∼
(7ζ(3))

2
9√

3π
2−

25
36n−

13
18 exp

(
2

3
(7ζ(3))

1
3

(n
2

) 2
3
+ 2ζ ′(−1)

)
. (F.1.10)

We can use the map q = −q0q1 for D0s and Q = −q1 for D2s to obtain the BPS partition function:

ZBPS(q,Q) =M(−q)2M̃(Q,−q)−1. (F.1.11)
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In terms of PE, we get

ZBPS(q,Q) = PE




∞∑

k=1
k ̸∈4Z+2

(−1)k+1k
(1−Q)2

Q
qk


PE


 ∑

k∈4Z≥0+2

−k
2

(1−Q)2(1 + 4Q+Q2)

Q2
qk




= PE

[
q(1−Q)2(Q− q(1 + 4Q+Q2) + 3q2Q− 4q3Q+ 3q4Q− q5(1 + 4Q+Q2) + q6Q)

Q2(1− q4)2
]
.

(F.1.12)

The expressions in PE are rather tedious in this case. Besides, it is not easy to instantaneously
transform between the MacMahon expressions and the PE ones. However, if we change the signs
properly, namely getting rid of the minus signs in the arguments of (generalized) MacMahon func-
tions, we can easily get

Z̃c =M(q0q1)
2M̃(q1, q0q1)

−1 = PE

[
−q0(1− q1)

2

(1− q0q1)2
]
, (F.1.13)

where Z̃c is the sign-changed expression from Zcrystal. As we will see, when writing the generating
functions in terms of PE, the patterns are more straightforward for generalized conifolds with the
signs properly changed. The coefficients in the expansions of Z̃c and Zcrystal also agree up to

signs. One can simply multiply (−1)n0+n1 for the terms qn0
0 qn1

1 in Z̃c to recover9 the correct signs
in Zcrystal. Alternatively, one may consider the twisted PE introduced in [313]. We find that in

general given Z̃c = PE[g̃], the twisted PE of g̃ is precisely Zcrystal.

Likewise, using x = −q = q0q1, we have

ZBPS(x,Q) =M(x)2M̃(Q, x)−1 = PE

[
−x(1−Q)2

Q(1− x)2
]
. (F.1.14)

In general given ZBPS(x,Q) = PE[g̃], the twisted PE of g̃ is precisely ZBPS(q,Q). Henceforth, we
shall always abbreviate ZBPS(x,Q) as ZBPS.

Gluing operators In [314–316], the vacuum character for the N = 2 affine Yangian and its
generalization were studied through certain gluing process. Likewise, we may also identify the
gluing operators for the affine Yangians discussed in this paper. For the u(1) ⊕WN=2

∞ algebra, it
contains two copies of affine Yangians of gl1 as subalgebra. Therefore, in its vacuum character

χ(x, y) =M(x)2M̃(−yxρ, x)−1, (F.1.15)

the factor M(x)2 is identified with the generators contributed from the two W1+∞ with ’t Hooft
couplings λa, λb and central charges ca, cb. Then the factor

M̃(−yxρ, x)−1 =

∞∏

k=1

(1 + yxk+ρ)k(1 + y−1xk+ρ)k (F.1.16)

can be interpreted as gluing operators whose conformal dimensions are controlled by the shifting
modulus ρ. More precisely, we have ∆ = 1 + ρ. For the N = 2 affine Yangian, ρ = 1/2.

Compared to the vacuum character of affine Yangian of gl1|1 for the conifold, we find that M(x)2

with x = q0q1 = −q (and y = q1 = −Q) again comes from the two trivalent vertices while their

9Since the coefficients in the expansion of Zcrystal are all positive as they simply count the numbers of atoms, this

is equivalent to just taking absolute values for the coefficients in the expansion of Z̃c.
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gluing yields the gluing operators with contribution M̃(−y, x)−1 with no shift, viz, ρ = 0. Therefore,
we may write the character identity

∞∏

k=1

(1 + yxk)k =
∑

R

y|R|χ∧,[λa]
R (x)χ

∧,[λb]
R∗ (x), (F.1.17)

where the representation R runs over all Young tableaux and R∗ := RT is the conjugate of RT.

Moreover, χ
∧,[λ]
R (x) is the wedge part of the character for representation R of W1+∞[λ], that is

[314, 317],

χ
[λ]
R (x) = χpp(x)χ

∧,[λ]
R (x) =M(x)χ

∧,[λ]
R (x), . (F.1.18)

where χpp = χplane partitions is the MacMahon function M(x). With a similar decomposition for the

second part in M̃(−yxρ, x)−1, we arrive at

χvac,C(x, y) =M(x)2M̃(−y, x)−1

= χpp(x)
2


∑

R1

y|R1|χ∧,[λa]
R1

(x)χ
∧,[λb]
R∗

1
(x)




∑

R2

y−|R2|χ∧,[λa]
R∗

2
(x)χ

∧,[λb]
R2

(x)




= χpp(x)
2 +

∑

R1

y|R1|χ[λa]
R1

(x)χ
[λb]
R∗

1
(x) +

∑

R2

y−|R2|χ[λa]
R∗

2
(x)χ

[λb]
R2

(x) + . . . .

(F.1.19)

In particular, the fermionic gluing generators transform as (R1, R
∗
1) ⊕ (R∗

2, R2) under the left and

right W1+∞ algebras10. This is reflected by the negative power on M̃ and the minus signs of the
arguments therein, as well as the minus signs in the sign-changed Z̃c,b. The ways of triangula-
tions/gluing simplices in the toric diagrams are also in line with this. It will become more obvious
when we discuss those with bosonic generators in the next subsection.

F.1.3 Coloured Plane Partitions: C× C2/Zn
In such cases, they are all plane partitions but with multiple colours, one for each node. Therefore,
we have n variables q0,1,...,n−1, and the generating function would reduce to the MacMahon function
under q0 = · · · = qn−1.

The other bicoloured crystal: n = 2 Let us start with the simplest case C × C2/Z2. When
writing the generating functions for the conifold, we observe that they are of form PE[q0(1+q1)

2g1]

and PE
[
q(1−Q)2

Q g2

]
, where g1,2 have expansion 1 + . . . . In particular, the two extra factors satisfy

q0(1+q1)
2 = q(1−Q)2/Q under the matching of variables for conifolds. As one of the only two cases

with two colours, it is natural to wonder whether C×C2/Z2 would also follow the same pattern with
the same extra factor q0(1+ q1)

2 or q(1−Q)2/Q. Recall that we have PE[xg1] with g1 = 1/(1−x)2
for the plane partition with extra factor x. Replacing this extra factor with q0(1 + q1)

2, we obtain

Zcrystal = PE

[
q0(1 + q1)

2

(1− q0q1)2
]
=M(q0q1)

2M̃(q1, q0q1), (F.1.20)

where we have also substitute x in the denominator with q0q1 similar to the conifold expression.
Indeed, one may check that when taking q0 = q1 = q, we get M(q) = PE[q/(1 − q)2] and recover
the plane partition with single colour. As there are no minus signs to be removed in (F.1.20),
Z̃c = Zcrystal in this case.

For C × C2/Z2, the D-brane variables follow q = −q0q1 and Q = q1. Therefore, the extra factor
should be −q(1 +Q)2/Q = q0(1 + q0q1)

2 instead of q(1−Q)2/Q in this case. Either applying this

10In [315], this was denoted as (R1 ⊗ R∗
2, R

∗
1 ⊗ R2), where the notation R ⊗ S∗ indicates the representation has

“box” part described by R and “anti-box” part described by ST. In [316], it was denoted as (R1 ⊕ R∗
2, R

∗
1 ⊕ R2).

Here, we shall use the notation which resembles the branching rule.
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extra factor to PE[x/(1−x)2] (with q in the denominator changed to q) or directly writing (F.1.20)
in q,Q, we can get

ZBPS(q,Q) =PE

[−q(1−Q)2

Q2(1− q4)2 (Q(1 +Q)2 − q(1 + 2Q+ 6Q2 + 2Q3 +Q4) + 3q2Q(1 +Q)2

−4q3Q(1 +Q)2 + 3q4Q(1 +Q)2 − q5(1 + 2Q+ 6Q2 + 2Q3 +Q4) + q6Q(1 +Q)2))
]

=PE




∞∑

k=1
k ̸∈4Z+2

(−1)k+1k
(1 +Q)2

Q
qk


PE


 ∑

k∈4Z≥0+2

k

2

(1−Q)2(1 + 2Q+ 6Q2 + 2Q3 +Q4)

Q2
qk




=M(−q)2M̃(Q,−q).
(F.1.21)

In fact, the generating functions for C × C2/Zn were obtained in [287, 288]. One can check that
(F.1.20) and (F.1.21) do give the correct expressions.

As before, it is more concise to use x = −q:

ZBPS =M(x)2M̃(Q, x) = PE

[
x(1 +Q)2

Q(1− x)2
]
. (F.1.22)

More importantly, comparing Z̃c for C×C2/Z2 with the ones for the conifold, or equivalently their
Zcrystal,BPS in (generalized) MacMahon functions, we can see that they only differ by certain minus
signs. This is in fact consistent with the analysis of bosonic and fermionic gluing operators. In
terms of toric diagrams, they correspond to the two different ways of gluing two simplices. More
specifically, here we have

χvac,C×C2/Z2
=

∞∏

k=1

1

(1− xk)2k(1− yxk)k(1− y−1xk)k
, (F.1.23)

where x = q0q1 = −q and y = q1 = Q. This leads to the bosonic gluing operators with character
identity

∞∏

k=1

(1 + yxk)−k =
∑

R

y|R|χ∧,[λa]
R (x)χ

∧,[λb]
R

(x). (F.1.24)

As a result, the vacuum character decomposes as

χvac,C×C2/Z2
(x, y) = χpp(x)

2


∑

R1

y|R1|χ∧,[λa]
R1

(x)χ
∧,[λb]
R1

(x)




∑

R2

y−|R2|χ∧,[λa]
R2

(x)χ
∧,[λb]
R2

(x)




= χpp(x)
2 +

∑

R1

y|R1|χ[λa]
R1

(x)χ
[λb]

R1
(x) +

∑

R2

y−|R2|χ[λa]

R2
(x)χ

[λb]
R2

(x) + . . . .

(F.1.25)

In particular, the bosonic gluing generators transform as (R1, R1) ⊕ (R2, R2) under the left and
right W1+∞ algebras.
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General n We may generalize the above discussion to any n. The extra factor now becomes
q0(1 + q1 + q1q2 + · · ·+ q1q2 . . . qn−1)(1 + qn−1 + qn−1qn−2 + · · ·+ qn−1qn−2 . . . q1). Therefore,

Zcrystal = PE




q0

(
1 +

n−1∑
i=1

i∏
j=1

qj

)(
1 +

n−1∑
i=1

i∏
j=1

qn−j

)

(
1−

n−1∏
i=0

qi

)2




=M

(
n−1∏

i=0

qi

)n ∏

0<r≤s<n
M̃




s∏

i=r

qi,

n−1∏

j=0

qj


 .

(F.1.26)

As a sanity check, this reduces to the MacMahon functionM(q) under q0,...,n−1 = q. More generally,
if m|n, then ZBPS for n can be reduced to the one for m by identifying all qi = qj when i ≡
j (mod m).

Now that the crystal-to-BPS map reads q0 → −q0, qi̸=0 → qi, we have q = −
n−1∏
i=0

qi and Qi = qi.

Thus,

ZBPS(q,Q) =M (−q)n
∏

0<r≤s<n
M̃

(
s∏

i=r

Qi,−q
)
. (F.1.27)

One may check that (F.1.26) and (F.1.27) agree with the results in [287, 288]. By using x = −q,
we can also get a simpler PE form for ZBPS:

ZBPS =M (x)n
∏

0<r≤s<n
M̃

(
s∏

i=r

Qi, x

)

= PE




x

(
1 +

n−1∑
i=1

i∏
j=1

Qj

)(
1 +

n−1∑
i=1

i∏
j=1

Qn−j

)

(1− x)2
n−1∏
i=0

Qi



.

(F.1.28)

Remarkably, it was observed in [313] that

Zcrystal = PE

[
x

(1− x)2

(
n+

∑

α∈Ψ
qα∗

)]
, (F.1.29)

where x =
n−1∏
i=0

qi and qα∗ =
n−1∏
i=1

qαi
i while Ψ is the root system of the Lie algebra of type An−1. In

particular,

(
n+

∑
α∈Φ

qα∗

)
is the character of the adjoint representation. This reflects the enhanced

gauge symmetry when the target spaces of type IIA strings have An−1 singularities [318].

General gluings Given the vacuum characters for affine Yangians Y
(
ĝln

)
, we are now able to

generalize the gluing process to n trivalent vertices. In (F.1.26), the factor M(x)n arises from n
disjoint trivalent vertices. This corresponds to the subalgebra of n copies of W1+∞. Hence, the
remaining product of generalized MacMahon functions are contributions from the gluing operators.

Suppose we only have the first two vertices and glue them. Then we obtain

M(x)2M̃(q1, x) = χpp(x)
2


∑

R1

q
|R1|
1 χ

∧,[λa]
R1

(x)χ
∧,[λb]
R1

(x)




∑

R2

q
−|R2|
1 χ

∧,[λa]
R2

(x)χ
∧,[λb]
R2

(x)




(F.1.30)
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as in the C× C2/Zn=2 case, where the blue part corresponds to the two bosonic gluing operators.

Now let us glue a third vertex. We should expect different non-trivial factors as this is not a gluing
of two trivalent vertices any more. According to the vacuum character in the n = 3 case, we should
get

M(x)3M̃(q1, x)M̃(q2, x)M̃(q1q2, x) =χ
3
pp


∑

R1

q
|R1|
1 χ∧

R1
χ∧
R1




∑

R2

q
−|R2|
1 χ∧

R2
χ∧
R2




×


∑

R3

q
|R3|
2 χ∧

R3
χ∧
R3




∑

R4

q
−|R4|
2 χ∧

R4
χ∧
R4




×


∑

R5

(q1q2)
|R5|χ∧

R5
χ∧
R5




∑

R6

(q1q2)
−|R6|χ∧

R6
χ∧
R6


,

(F.1.31)

where we have omitted the superscripts coming from the three copiesW1+∞[λa,b,c] in χ
∧ for brevity.

In particular, the red part corresponds to the bosonic operators when the second and third vertices
are glued together (ignoring the first vertex). On the other hand, the purple part indicates that
there are new bosonic generators arising from blue and red ones. For convenience, we shall refer
to the generators like those in blue and red as “basic” gluing operators while the ones like those in
purple as “derived” gluing operators. The vacuum character can be decomposed as

χpp3 =χ3
pp +

∑

R1

q
|R1|
1 χR1χR1

χpp +
∑

R2

q
−|R2|
1 χR2

χR2χpp

+
∑

R3

q
|R3|
2 χppχR3χR3

+
∑

R4

q
−|R4|
2 χppχR4

χR4

+
∑

R5

(q1q2)
|R5|χR5χR5

χpp +
∑

R4

(q1q2)
−|R6|χR6

χR6χpp + . . . ,

(F.1.32)

where ppn denotes the n-coloured plane partitions. Here, some generators transform as (R1, R1, 1)⊕
(R2, R2, 1) and (1, R3, R3)⊕ (1, R4, R4). The remaining ones transform as (R5, R5, 1)⊕ (R6, R6, 1)
under a subalgebra composed of three different copies of W ′

1+∞ (which can be thought of as a
mixing of W1+∞[λa,b,c]). We shall illustrate this gluing in the shorthand notation

q1 q2 q1q2 , (F.1.33)

where those in the dashed box correspond to the new bosonic gluing operators.

Moving on to n = 4, we further glue another vertex. According to (F.1.26),

χpp4 =M(x)4M̃(q1, x)M̃(q2, x)M̃(q1q2, x)M̃(q3, x)M̃(q2q3, x)M̃(q1q2q3, x). (F.1.34)

As we can see, gluing the third and fourth vertices (while ignoring the other two) leads to the
bosonic operators of the green part. Then the blue and green operators give rise to the new cyan
bosonic gluing operators while the red and green parts yield the new yellow ones. The character
decomposition can be obtained likewise as before. In the above shorthand notation,

q1 q2 q1q2 q2q3 q1q2q3q3

. (F.1.35)
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As we can see, we have q1,2,3 corresponding to basic operators while q1q2 and q2q3 corresponds to
derived operators arising from basic ones. Furthermore, we also have derived ones that are derived
from both basic and derived generators.

We can thence get the gluing operators for any n. For instance, at the next level, in the shorthand
notation we have

q1 q2 q1q2 q2q3 q1q2q3q3 q4 q3q4 q2q3q4 q1q2q3q4

. (F.1.36)

Here, we only have bosonic gluing operators, so we do not need to worry about their Z2-gradings.
When considering any generalized conifolds, we will also have fermionic gluing operators. Although
the process is the same, we will discuss the way to determine their Z2-gradings for multiple vertices.

Kac polynomials and Poincaré polynomials As in the C3 case, let us view the quiver for
C×C2/Zn as the tripled quiver Q̃ of some quiver Q. Then the quiver Q is simply the cyclic affine
Ân−1 quiver with arrows in the same orientation. From [295], we know that

P 0
Q(t, q) = PE


 ∑

d∈Φ+
0

tqd

(t− 1)(1− qδ)


PE

[
ntqδ

(t− 1)(1− qδ)

]
PE


 ∑

d∈Φ−
0

tqd+δ

(t− 1)(1− qδ)


 , (F.1.37)

where qd =
n−1∏
i=0

qdii . Here, let Φ+ = Φ+
Re ⊔ Φ+

Im denote the set of positive roots with real and

imaginary roots Φ+
Re = {Φ+

0 + δZ≥0} ⊔ {Φ−
0 + δZ>0} and Φ+

Im = δZ>0 respectively, where δ is the
minimal positive imaginary root. For affine A-type, we simply have δ = (1, . . . , 1) = 1n. Then Φ0

is the root system of the underlying finite type quiver Q0 ⊂ Q. For reference, we also have

PQ(t, q) = P 1
Q(t, q) = PE


 ∑

d∈Φ+
0

tqd

(t− 1)(1− qδ)


PE

[
(1 + (n− 1)t)qδ

(t− 1)(1− qδ)

]
PE


 ∑

d∈Φ−
0

tqd+δ

(t− 1)(1− qδ)


 .

(F.1.38)
The Kac polynomials are

{
Ad(t) = A♭d(t) = 1, d ∈ Φ+

Re

Ad(t) = A1
d(t) = t+ n− 1, A0

d(t) = n, d ∈ Φ+
Im

. (F.1.39)

To compare this with the character of the affine Yangian, let us further introduce a “negative”
counterpart of the COHA associated to Λ0

Q such that the Poincaré polynomial takes the sum over

Φ− = Φ−
Re ⊔ Φ−

Im with Φ−
Re = {Φ−

0 − δZ≥0} ⊔ {Φ+
0 − δZ>0} and Φ−

Im = −δZ>0. This simply takes
qi → q−1

i in (F.1.37). Notice that A0
d is independent of t, and the t dependence in P 0

Q only comes

from the factor 1/(1 − t−1) in (F.0.10). Therefore, we also treat t as a formal variable and take
t→ t−1. Then

P̃ 0
Q(t, q) = PE


 ∑

d∈Φ+
0

t−1q−d

(t−1 − 1)(1− q−δ)


PE

[
nt−1q−δ

(t−1 − 1)(1− q−δ)

]
PE


 ∑

d∈Φ−
0

t−1q−d−δ

(t−1 − 1)(1− q−δ)




= PE


 ∑

d∈Φ−
0

qd

(1− t)(1− q−δ)


PE

[
nq−δ

(1− t)(1− q−δ)

]
PE


 ∑

d∈Φ+
0

qd−δ

(1− t)(1− q−δ)




= PE


 ∑

d∈Φ−
0

qd+δ

(t− 1)(1− qδ)


PE

[
n

(t− 1)(1− qδ)

]
PE


 ∑

d∈Φ+
0

qd

(t− 1)(1− qδ)


 .

(F.1.40)
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Consider the product

P 0
Q(t, q)P̃

0
Q(t, q) =PE


 ∑

d∈Φ+
0

qd

(t− 1)(1− qδ)


PE

[
ntqδ

(t− 1)(1− qδ)

]
PE


 ∑

d∈Φ−
0

tqd+δ

(t− 1)(1− qδ)




× PE


 ∑

d∈Φ+
0

tqd

(t− 1)(1− qδ)


PE


 ∑

d∈Φ−
0

qd+δ

(t− 1)(1− qδ)


PE

[
n

(t− 1)(1− qδ)

]

=PE




∑

d∈Φ+
0

qd

(t− 1)(1− x)


+

ntx

(t− 1)(1− x) +


∑

d∈Φ−
0

txqd

(t− 1)(1− x)






× PE




∑

d∈Φ+
0

tqd

(t− 1)(1− x)


+

n

(t− 1)(1− x) +


∑

d∈Φ−
0

xqd

(t− 1)(1− x)




 ,

(F.1.41)

where we have again used x =
n−1∏
i=0

qi. Henceforth, we shall abbreviate the second PE in the last

equality as an ellipsis. As before, taking t = x−1, we get

P 0
Q(1/x, q)P̃

0
Q(1/x, q) = PE


 x

(1− x)2


n+

∑

d∈Φ0

qd




× . . . . (F.1.42)

Recall the character of the affine Yangian Y
(
ĝln

)
in (F.1.26) and especially in (F.1.29). Inside PE,

we have the root system Ψ of An−1 while Φ0 here is the root system of An. Hence, Ψ is the subset
of Φ0 with d0 = 0. As a result, we obtain

P 0
Q(1/x, q)P̃

0
Q(1/x, q) = PE




x

(1− x)2


n+

∑

d∈Φ0
d0=0

qd





PE




x

(1− x)2



∑

d∈Φ0
d0 ̸=0

qd





× . . .

= χppnPE




x

(1− x)2



∑

d∈Φ0
d0 ̸=0

qd





× . . . .

(F.1.43)

Therefore, it is tempting to conjecture that the double copy of the COHA associated to Λ0
Q contains

(the positive part of) the affine Yangian as a subalgebra. We will also check this with the refined
partition functions below.

Let us illustrate this with a concrete example. Consider n = 2, then we have

χpp2 = PE

[
q0(1 + q1)

2

(1− q0q1)2
]
= PE

[
q0q1(q1 + 2 + q−1

1 )

(1− q0q1)2
]

(F.1.44)

while

P 0
Q(1/x, q)P̃

0
Q(1/x, q) = PE

[
q0q1

(1− q0q1)2
(q1 + 2 + q−1

1 + q0 + q−1
0 + q0q1 + q−1

0 q−1
1 )

]
× . . . .
(F.1.45)
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F.1.4 Generalized Conifolds

The generalized conifold is defined by xy = zmwn. Its crystal melting partition function will give

the vacuum character of the affine Yangian Y
(
ĝlm|n

)
. From the information of the (triangulations

of the) toric diagrams and their quivers in Appendix E, we can deduce that the crystal-to-BPS

map reads q0 → (−1)
σ0+σ1

2 q0 and qa → (−1)
σa−σa+1

2 qa for a ̸= 0. Now we can write our ansantz
for Z̃c which recovers Zcrystal under the crystal-to-BPS map. The sign-changed expression is Z̃c =

PE
[

g
(1−x)2

]
, where x =

m+n−1∏
i=0

qi. The extra factor g is

g = (−1)
σ0+σ1

2 q0


1 +

m+n−1∑

i=1

(−1)
σ1−σi+1

2

i∏

j=1

qj




1 +

m+n−1∑

i=1

(−1)
σm+n−i−σ0

2

i∏

j=1

qm+n−j


 .

(F.1.46)
In the expansion of Z̃c, the coefficients are equal to the numbers of atoms given by Zcrystal up to
signs. As Zcrystal always has positive coefficients in its expansion, the correct signs are recovered
simply by taking absolute values.

Write Z̃c using (generalized) MacMahon functions and apply the crystal-to-BPS map, we find

Zcrystal =M

(
m+n−1∏

i=0

qi

)m+n ∏

0<r≤s<m+n

M̃


(−1)

σr−σs+1
2

s∏

j=r

qj ,
m+n−1∏

i=0

qi




(−1)
σr−σs+1

2

. (F.1.47)

As we can see, such expression in terms of (generalized) MacMahon functions also follows a nice
pattern. One may check that all the cases discussed before obey this expression.

Now from the crystal-to-BPS map, we obtain q = −
m+n−1∏
i=0

qi, Qj = (−1)
σj−σj+1

2 qj . Therefore,

ZBPS(q,Q) =M(−q)m+n
∏

0<r≤s<m+n

M̃

(
s∏

i=r

Qi,−q
)(−1)

σr−σs+1
2

. (F.1.48)

In terms of x = −q, ZBPS = PE
[

g̃
(1−x)2

]
, where the extra factor g̃ reads

g̃ =

x

(
1 +

m+n−1∑
i=1

(−1)
σ1−σi+1

2

i∏
j=1

Qj

)(
1 +

m+n−1∑
i=0

(−1)
σm+n−i−σ0

2

i∏
j=1

Qm+n−j

)

m+n−1∏
i=1

Qi

. (F.1.49)

One may expect that these expressions agree with the topological vertex formalism in [290, 291]
as well as the results in [319] from a more mathematical approach. They should also satisfy the
following properties:

• The perturbative expansion would recover the number of configurations at each level in the
crystal in light of the melting rule.

• As a self-consistency check, we can make identifications among the variables q0,...,m+n−1. This
should reduce to Zcrystal with fewer colours of the same crystal configuration.

• The general gluing operators should be consistent with the factors in the character.
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The gluing process Let us explain the gluings in more detail. When gluing two “free” ver-
tices, there will be fermionic or bosonic generators depending on the way of gluing them. More
generally, when there are multiple vertices glued together, the Z2-gradings of the basic generators
are determined via σ. In other words, if σa = σa+1, the basic gluing operators are bosonic for
qa. If σa = −σa+1, the basic gluing operators are fermionic for qa. As a result, we cannot sepa-
rate the two triangles/trivalent vertices and treat them as two “free” building blocks to determine
the Z2-grading of the basic generators. Therefore, for the conifold C, we have fermionic gluing
operators since σ1 = −σ2≡0. On the other hand, we only have bosonic ones for C × C2/Zn since
σ1 = σ2 = · · · = σn−1 = σn≡0.

Recall the criterion of adding adjoint loops to quiver nodes. We find that a yields bosonic gluing
operators when it has an odd number of adjoint loops while it gives fermionic ones when it has no

adjoint loop11. This is exactly the same as the grading rule in [57] for determining whether e
(a)
n

and f
(a)
n are bosonic or fermionic generators.

Moreover, there will also be derived gluing operators as discussed before. These extra generators
can be simply determined by the usual Z2-grading, namely, b × b = f × f = b and b × f = f. One
may check that the generalized MacMahon functions in the characters do follow the discussions
here.

Example: SPP As an example, let us consider the SPP as in Figure F.1.1; this corresponds to
m = 1, n = 2 from the above.

(a) (b) (c)

Figure F.1.1: The toric diagram with two different triangulations is shown in (a), (b).
They give the same quiver as in (c). In the crystals, (a) has the initial atom corresponding
to the node with an adjoint while (b) has the initial atom corresponding to one of the nodes

without adjoints.

For the crystal from Figure F.1.1(a), the crystal partition function reads

Zcrystal =M(q0q1q2)M̃(−q1, q0q1q2)−1M̃(−q2, q0q1q2)−1M̃(q1q2, q0q1q2)

=PE

[
q0(

1− q20q21q22
)2
(
q0q

2
2 (q0q2 (q2 + 1)− 1) q41 + q0q

2
2

(
q0q

2
2 + 3q0q2 + 2q2 + q0 + 2

)
q31

+ (q2 + 1)
(
q20q

2
2 + q2 − q0

(
q32 − 3q22 − 3q2 + 1

))
q21 +

(
(2q0 + 1) q22 + (2q0 + 3) q2 + 1

)
q1

−q0q22 + q2 + 1
)
]
.

(F.1.50)

The sign-changed expression is

Z̃c =M(q0q1q2)M̃(q1, q0q1q2)
−1M̃(q2, q0q1q2)

−1M̃(q1q2, q0q1q2)

=PE

[
q0
(
q22q

2
1 − q2q21 − q22q1 + 3q2q1 − q1 − q2 + 1

)

(1− q0q1q2)2

]
.

(F.1.51)

11Here, the “odd number” is used to include the C3 case. We can likewise extend the fermionic case to even
number of adjoints. Of course, for generalized conifolds, this even number can only be zero. It seems that a non-zero
even number of adjoints does not exist for physical quiver theories [57].
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They have perturbative expansions

Zcrystal = 1 + q0 + (q20 + q0q1 + q0q2) + (q30 + q20q1 + q20q2 + 3q0q1q2) + . . . (F.1.52)

and
Z̃c = 1 + q0 + (q20 − q0q1 − q0q2) + (q30 − q20q1 − q20q2 + 3q0q1q3) + . . . . (F.1.53)

Indeed, the terms only differ by signs. We may take q = q0 = q1 = q2 to get the monochrome
crystal12:

Z = PE

[
q(1 + 2q+ 3q2 + 2q3 + 5q4 + 6q5 + 5q6 + 2q7 + 3q8 + 2q9 + q10)

(1− q6)2

]

= 1 + q+ 3q2 + 6q3 + . . . .

(F.1.54)

As a byproduct, its asymptotic behaviour is

Zn ∼
e

7
3
ζ′(−1)Γ

(
1
6

) 2
3 ζ(3)

17
108

2
23
54 3

47
54π

5
6

n−
71
108 exp

(
6

1
3 ζ(3)

1
3n

2
3

)
. (F.1.55)

Under q = −q0q1q2 and Q1,2 = −q1,2, we have

ZBPS(q,Q) =M(−q)3M̃(Q1,−q)−1M̃(Q2,−q)−1M̃(Q1Q2,−q)

=PE

[
q

Q2
1Q

2
2 (1− q4)2

(−q6Q3
1Q

3
2 + q6Q2

1Q
3
2 + q6Q3

1Q
2
2 − 3q6Q2

1Q
2
2

+ q6Q1Q
2
2 + q6Q2

1Q2 − q6Q1Q2 + q5Q4
1Q

4
2 − q5Q2

1Q
4
2 + 2q5Q3

1Q
3
2 − 2q5Q2

1Q
3
2

− q5Q2
1 − q5Q4

1Q
2
2 − 2q5Q3

1Q
2
2 + 9q5Q2

1Q
2
2 − 2q5Q1Q

2
2 − q5Q2

2 − 2q5Q2
1Q2

+ 2q5Q1Q2 + q5 − 3q4Q3
1Q

3
2 + 3q4Q2

1Q
3
2 + 3q4Q3

1Q
2
2 − 9q4Q2

1Q
2
2 + 3q4Q1Q

2
2

+ 3q4Q2
1Q2 − 3q4Q1Q2 + 4q3Q3

1Q
3
2 − 4q3Q2

1Q
3
2 − 4q3Q3

1Q
2
2 + 12q3Q2

1Q
2
2 − 4q3Q1Q

2
2

− 4q3Q2
1Q2 + 4q3Q1Q2 − 3q2Q3

1Q
3
2 + 3q2Q2

1Q
3
2 + 3q2Q3

1Q
2
2 − 9q2Q2

1Q
2
2 + 3q2Q1Q

2
2

+ 3q2Q2
1Q2 − 3q2Q1Q2 + qQ4

1Q
4
2 − qQ2

1Q
4
2 + 2qQ3

1Q
3
2 − 2qQ2

1Q
3
2 − qQ2

1 − qQ4
1Q

2
2

− 2qQ3
1Q

2
2 + 9qQ2

1Q
2
2 − 2qQ1Q

2
2 − qQ2

2 − 2qQ2
1Q2 + 2qQ1Q2 + q −Q3

1Q
3
2 +Q2

1Q
3
2

+Q3
1Q

2
2 − 3Q2

1Q
2
2 +Q1Q

2
2 +Q2

1Q2 −Q1Q2)

]

=1 +

(
−3 +Q1 +Q2 +

1

Q1
+

1

Q2
−Q1Q2 −

1

Q1Q2

)
q + . . . .

(F.1.56)

More concisely, with x = −q, we have

ZBPS =M(x)3M̃(Q1, x)
−1M̃(Q2, x)

−1M̃(Q1Q2, x) = PE

[
x(1−Q1 +Q1Q2)(1−Q2 +Q1Q2)

Q1Q2(1− x)2
]
.

(F.1.57)

From the generalized MacMahon functions, it is straightforward to find out the gluing operators. In
particular, the basic generators for M̃(q1, q0q1q2)

−1 and M̃(q2, q0q1q2)
−1 are both fermionic. This

is consistent with σ1 = −σ2 and σ2 = −σ3≡0. Their derived gluing operators M̃(q1q2, q0q1q2) are
thus bosonic as expected. The shorthand notation is simply

−q1 −q2 q1q2 , (F.1.58)

12Of course, Z̃c(q) = 1 + q− q2 + 2q3 + . . . would have different coefficients.
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where the minus signs indicate the fermionic generators.

Likewise, for Figure F.1.1(b), we have

Zcrystal =M(q0q1q3)
3M̃(−q1, q0q1q2)−1M̃(q2, q0q1q2)M̃(−q1q2, q0q1q2)−1

= 1 + q0 + (q0q1 + q0q2) + (3q0q1q2 + q20q1 + q20q2) + . . .
(F.1.59)

and

ZBPS(q,Q) =M(−q)3M̃(Q1,−q)−1M̃(Q2,−q)M̃(Q1Q2,−q)−1

= 1 +

(
−3 +Q1 −Q2 +

1

Q1
− 1

Q2
+Q1Q2 +

1

Q1Q2

)
q + . . . .

(F.1.60)

One may also check that the gluing operators follow our discussions above.

As another check, let us consider for instance two copies of the (triangulated) trapezia in Figure
F.1.1(a) glued together. This is SPP/Z2 with action (1, 0, 0, 1). Its defining equation is xy = z2w4.
Its crystal has four colours with generating function

ZBPS =M(x)6M̃(−q1, x)−1M̃(−q2, x)−1M̃(q3, x)M̃(−q4, x)−1M̃(−q5, x)−1M̃(q1q2, x)

× M̃(−q2q3, x)−1M̃(−q3q4, x)−1M̃(q4q5, x)M̃(q1q2q3, x)M̃(q2q3q4, x)M̃(q3q4q5, x)

× M̃(−q1q2q3q4, x)−1M̃(−q2q3q4q5, x)−1M̃(q1q2q3q4q5, x),

(F.1.61)

where x =
5∏
i=0

qi. One may check that under q0 = · · · = q5 = q, this reduces to the SPP partition

without colouring as in (F.1.54). Moreover, taking q0 = q3, q1 = q4 and q2 = q5, we get the crystal
partition function (F.1.50) for SPP, that is, the SPP partition with three colours.

F.1.5 The Remaining Case: C3/(Z2 × Z2)

Besides generalized conifolds, there is another one which does not have compact four cycles, that
is, C3/(Z2 × Z2) as shown in Figure F.1.2. We have

(a) (b) (c)

Figure F.1.2: (a) The toric diagram for C3/(Z2 × Z2). (b) Its dual web diagram. (c) The
corresponding quiver (the Mercedes-Benz quiver).

Zcrystal =M(q0q1q2q3)
4M̃(−q1, q0q1q2q3)−1M̃(−q2, q0q1q2q3)−1M̃(−q3, q0q1q2q3)−1

× M̃(q1q2, q0q1q2q3)M̃(q1q3, q0q1q2q3)M̃(q2q3, q0q1q2q3)M̃(−q1q2q3, q0q1q2q3)−1
(F.1.62)

and

ZBPS(q,Q) =M(−q)4M̃(Q1,−q)−1M̃(Q2,−q)−1M̃(Q3,−q)−1M̃(Q1Q2,−q)M̃(Q1Q3,−q)
× M̃(Q2Q3,−q)M̃(Q1Q2Q3,−q)−1.

(F.1.63)
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The expressions in terms of PE are rather tedious. Hence, we shall not list them here. Instead, by
removing the minus signs, the sign-changed expression Z̃c is more concise:

Z̃c =PE

[
q0

(1− q0q1q2q3)2
(−q22q23q21 + q2q

2
3q

2
1 + q22q3q

2
1 − q2q3q21 + q22q

2
3q1 − q2q23q1

− q2q1 − q22q3q1 + 4q2q3q1 − q3q1 + q1 + q2 − q2q3 + q3 − 1)

] . (F.1.64)

Likewise, again with x = −q,

ZBPS =PE

[
x

Q1Q2Q3 (1− x)2
(Q2

2Q
2
3Q

2
1 +Q2Q

2
3Q

2
1 +Q2

2Q3Q
2
1 +Q2Q3Q

2
1 +Q2

2Q
2
3Q1

+Q2Q
2
3Q1 +Q2Q1 +Q2

2Q3Q1 + 4Q2Q3Q1 +Q3Q1 +Q1 +Q2 +Q2Q3 +Q3 + 1)

]
.

(F.1.65)

One may check that Zcrystal reduces to PE
[

q
(1−q)2

]
, namely the (monochrome) crystal for C3, when

taking q0,1,2,3 = q.

Moreover,

ZBPS = PE

[
x

(1− x)2

(
2 +

4∏

i=1

(
Q

1/2
i +Q

−1/2
i

))]
, (F.1.66)

where Q4 := Q1Q2Q3. In particular, it contains the fundamental representation of SU(2)4. Physi-
cally, the web diagram decribes the T [AN−1] theory where N M5-branes wrap a sphere with three
full punctures when N = 2 [320]. Therefore, it should have SU(2)3 flavour symmetry [321], which
is reflected by the factors with Q1,2,3. On the other hand, the Q4 part should indicate the Z3 action
on the brane web which reduces the above SU(2)3 to a single SU(2) as discussed in [322]13.

The gluing process As shown in Figure F.1.2, there is one trivalent vertex glued to each leg of
the centre one. As a result, the gluing operators in this picture would also be different14. This is
again indicated by the vacuum character. From (F.1.62), we see that the basic gluing operators
are all fermionic. Furthermore, we have gluing operators associated to qiqj for all pairs (i, j) with
i < j and q1q2q3 all derived from the basic operators. In our shorthand notation, we have

−q1 −q2 q1q2−q3 q1q3 −q1q2q3q2q3

. (F.1.67)

F.1.6 Some Non-Toric Examples

Based on the discussions on A-type singularities, we may try to generalize to D- and E-type
singularities. Now, C × C2/Γ are not toric, where Γ ∈ {Dicr,BT,BO,BI} is the binary dihe-
dral/tetrahedral/octaheral/icosahedral group, i.e., the Dr and E6,7,8 subgroups of SU(2). Never-

theless, they should still admit quiver descriptions which are the tripled quivers Q̂ of the affine
D-/E-type quivers Q [323].

13Notice that the full flavour symmetry under gauging this Z3 discrete symmetry would further have an extra
SU(3) factor.

14However, we should emphasize that the gluing process here is essentially in line with the ones for generalized
conifolds. The algebraic gluing rules we have still consist of the corresponding holomorphic curves on the geometric
side for topological string amplitudes.
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Similar to (F.1.26) and (F.1.29), we may conjecture that the parititon function in such case is

χr = PE

[
x

(1− x)2

(
r +

∑

α∈Ψ
qα∗

)]
, (F.1.68)

where x :=
r−1∏
i=0

qδii and qα∗ =
r−1∏
i=1

qαi
i while Ψ is the root system of the Lie algebra of type Dr or

E6,7,8. In particular,

(
r +

∑
α∈Φ

qα∗

)
is the character of the adjoint representation.

Notice that here we let the convention to be x =
r−1∏
i=0

qδii due to the non-trivial minimal positive

imaginary root δ. For the affine ADE types, δ are the Dynkin labels (dual Coxeter numbers) [324]:

...

1 1 1 1

1

...

1 2 2 1

2

2

2

1 2 2 1

2

3

1

1 2 2 1

2

3 34 1 2 6 4

3

3 54 2 .
(F.1.69)

Then δ0,...,r−1 should take the values associated to the nodes of the underlying finite quiver.

This is in line with the discussions on Kac polynomials. For affine DE’s, the Kac polynomials
are [295] {

Ad(t) = A♭d(t) = 1, d ∈ Φ+
Re

Ad(t) = A1
d(t) = t+ r, d ∈ Φ+

Im

. (F.1.70)

The Poincaré polynomials are

P ♭Q(t, q) = PQ(t, q) = PE


 ∑

d∈Φ+
0

tqd

(t− 1)(1− qδ)


PE

[
(1 + rt)qδ

(t− 1)(1− qδ)

]
PE


 ∑

d∈Φ−
0

tqd+δ

(t− 1)(1− qδ)


 .

(F.1.71)
Again, the double copy P 0

Q(t, q)P̃
0
Q(t, q) contains χr as a factor:

P 0
Q(t, q)P̃

0
Q(t, q) = PE




x

(1− x)2


r +

∑

d∈Φ0
d0=0

qd





× · · · = χr × . . . (F.1.72)

under the unrefinement t−1 = x. This seems to indicate some subalgebra struture. In §F.2.1, we
will check this with the refined partition functions.

It is worth noting that the partition functions ZDT and ZPT for DT and Pandharipande-Thomas
(PT) invariants were obtained in [325, 326] for ADE singularities C× C2/Γ with Γ ⊂ SU(2) finite.
One may then verify that (F.1.68) agrees with these results under wall crossings discussed in the next
section. More generally, one may also consider all the other affine quivers as classified in [324, Table
Aff 1-3]. Although the 3-fold geometry may not be clear, it would be natural to conjecture that
(F.1.68) would still give the partition functions for the tripled quivers of these affine quivers.
Moreover, the Kac polynomials and Poincaré polynomials would again follow (F.1.70)∼(F.1.72).

F.2 Wall Crossings

Having presented in detail, in the previous section, explicit expressions for Zcrystal and ZBPS for a
variety of examples, let us now move on to discuss the wall-crossing phenomena which have been
intensively studied for such partition functions.
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It is well-known that there are walls of marginal stability of codimension 1 in the moduli space
of the quiver theory. When BPS particles cross a wall from one chamber to another, they might
decay due to the stability conditions. So far, we have only focused on the BPS states in the NCDT
chamber [202]. It is related to the toplogical string amplitudes by ZBPS = Ztop(x,Q)Ztop(x,Q

−1).
On the other hand, the BPS parition function in the core chamber is trivially ZBPS = 1. There
are many other chambers between these two where the (anti-)D2s on different 2-cycles form stable
states with various numbers of D0s.

For example, the most well-studied conifold case has the chamber structure which can be depicted
as15 [44, 45]

C0 C1 C2 ......
C̃2 C̃1 C̃0

D2 + D0 D2 + 2D0 D2 + 3D0 D2 + D0D2 + 2D0D2 + 3D0D0

NCDT CoreDT PT .
(F.2.1)

The BPS partition function ZBPS in the NCDT/Szendröi chamber is the one discussed above while
ZBPS = ZDT = Ztop(x,Q) in the DT chamber. Therefore, one loses a factor (1 − xkQ−1)k when
crossing the wall from the chamber Ck−1 to Ck. In the other half, if we start from the core chamber,
one obtains a factor (1 − xkQ)k when crossing the wall from the chamber C̃k−1 to C̃k, and in the
PT chamber, we have ZBPS = M(Q, x)−1 such that the BPS invariants are identified with PT
invariants. Let R denote the inverse D0-brane central charge (up to some complex constant)16,
and let B denote the NS-NS B-field through the 2-cycles wrapped by the D2s in the CY manifold.
Then R > 0 from NCDT to DT chambers while R < 0 from PT to core chambers. The B-fields
satisfy k−1 < B < k and −k−1 < B < −k respectively. In fact, there is another half with flopped
geometry going from NCDT to core chambers. Together the two pieces form a closed circle.

More generally, for any toric CYs without compact 4-cycles, one would obtain/lose a factor
(
1− xkQ±1

)±k

every time we cross a wall of marginal stability similar to the conifold case. Here, Q =

(∏
i∈J

Qi

)

where J refers to the set of indices for any possible combination of Qi’s that would appear in
ZNCDT.

For generalized conifolds xy = zmwn, the BPS partition function in any chamber can be written
as [285, 327]

ZBPS =
∏

(k,β):Z(k,β)>0

(
1− xkQβ

)kN0
β
, (F.2.2)

where Z denotes the central charge and N0
β is the genus-0 Gopakumar-Vafa invariant specified by

the 2-cycle β =
∑
i≤l≤j

αl with αl the basis of 2-cycles. Therefore, N0
0 = |Q0| − 1 = m + n and

N0
−β = N0

β. The central charge is Z = (k + B(β))/R where B(β) is the B-field flux through the
2-cycle β. Recall that σ = {σl} denotes the signs of simplices in the triangulation. Then [285, 286]

N0
β = (−1)1+#{l∈[i,j]: αl is an O(−1,−1)-curve} = (−1)1+#{l∈[i,j]: σl ̸=σl+1}. (F.2.3)

The BPS partition function is therefore

ZBPS =M(x)m+n
∏

0<r≤s<m+n

(
M

(
s∏

i=r

Qi, x

)
M∧

(
s∏

i=r

Q−1
i , x;Br,...,s

))(−1)
σr−σs+1

2

(F.2.4)

15This can be understood as follows. Starting from the region where only the D6 itself is stable (which is known
as the core chamber), every time one crosses a wall labeled by D2+ND0, an arbitrary number of D2+ND0 can bind
to the D6. Then one encounters the D0 wall where any number of D0s can bind to the D6. After that, D2 + ND0
particles start to bind to the D6 every time one crosses a D2 +ND0 wall.

16This notation R comes from the Taub-NUT circle in the M-theory uplift [327].
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or

ZBPS =
∏

0<r≤s<m+n

M∧
(

s∏

i=r

Qi, x;Br,...,s

)(−1)
σr−σs+1

2

(F.2.5)

based on the chamber, where Br,...,s := [B(αr + · · ·+ αs)], which labels the chamber, is the integer
part of the value of the B-field through the 2-cycle β = αr + · · ·+ αs.

The remarkable result in [286] says that [B] are not completely independent and can be determined
by the map θ : 1

2Zodd → 1
2Zodd such that θ(h+m+ n) = θ(h) +m+ n for any half-integer h and

m+n∑
i=1

θ(i− 1
2) =

m+n∑
i=1

(i− 1
2). If θ(1/2) < θ(3/2) < · · · < θ(m+ n− 1/2), then

[Bθ(αr + · · ·+ αs)] = #{k ∈ Z|θ(r − 1/2) < k(m+ n) < θ(s+ 1/2)}. (F.2.6)

If θ is not increasing, then we can choose a permutation τ ∈ Sm+n such that θ(τ(1/2)) <
θ(τ(3/2)) < · · · < θ(τ(m + n + 1/2)) and replace θ by θ ◦ τ . For instance, in the SPP exam-
ple in Figure F.1.1, if θ(1/2) = 11/2, θ(3/2) = 3/2, θ(5/2) = −5/2, then [Bθ◦τ (α1)] = [Bθ◦τ (α2)] =
1, [Bθ◦τ (α1 + α2)] = 2 where τ = (132). This specifies the truncations of MacMahon functions in
(F.2.4) and (F.2.5). Notice that θ(1/2) = −5/2, θ(3/2) = 3/2, θ(5/2) = 11/2 gives [Bθ] of the same
values, but generically they parametrize different chambers [286].

It is also straightforward to write ZBPS in different chambers using PE. This simply follows from

M∧(p, q; k0) = PE




∞∑

k=k0

kpqk


 , M∧(p, q; k0) = PE

[
k0∑

k=1

kpqk

]
, (F.2.7)

along with PE[f ]PE[g] = PE[f + g] and PE[f ]−1 = PE[−f ].

F.2.1 Refined Partition Functions

For any chamber C, the refined BPS index/(protected) spin character is Ω(n0,n2; y; C) = TrHn0,n2 (C)
(−y)J3 ,

where H is the (reduced) Hilbert space of BPS states and y tracks the spin information J3. In the
limit y → 1, one recovers the unrefined index. In the following, it would be more convenient to
take t1 = qy and t2 = q/y.

It is fairly straightforward to refine the partition functions discussed above:

ZBPS =MR(t1, t2)
m+n

∏

0<r≤s<m+n

M̃R

(
s∏

i=r

Qi; t1, t2

)(−1)
σr−σs+1

2

(F.2.8)

for the generalized conifold xy = zmwn [328, 329] and

ZBPS =MR(t1, t2)
4

∏

I∈P{1,2,3}
M̃R

(∏

i∈I
Qi; t1, t2

)(−1)|I|

(F.2.9)

for C3/(Z2 × Z2) where P{1, 2, 3} is the power set of {1, 2, 3}. Here,

MR(p; t1, t2) =

∞∏

k,l=0

1

1− ptk+1
1 tl2

= PE

[
pt1

(1− t1)(1− t2)

]
,

MR(t1, t2) =MR(1; t1, t2), M̃R(p; t1, t2) =MR(p; t1, t2)MR(p
−1; t1, t2)

(F.2.10)

are the refined (generalized) MacMahon functions. In terms of PE, we have ZBPS = PE[g], where

g =

t1

(
m+ n+

∑
0<r≤s<m+n

(−1)
σr−σs+1

2

(
s∏
i=r

Qi +
s∏
i=r

Q−1
i

))

(1− t1)(1− t2)
(F.2.11)
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for the generalized conifold and

g =

t1

(
4 +

∑
I∈P{1,2,3}

(−1)|I|
(∏
i∈I

Qi +
∏
i∈I

Q−1
i

))

(1− t1)(1− t2)
(F.2.12)

for C3/(Z2 × Z2).

Recall that in the unrefined case, one would obtain/lose a factor of
(
1− xNQ±1

)±N
when cross-

ing a wall of marginal stability, where Q =

(∏
i∈J

Qi

)
for a set J of indices whose combina-

tion would appear in ZNCDT. Likewise, in the refinement, one would obtain/lose a factor of(
∏

k+l+1=N

(1− tk+1
1 tl2Q

±1)

)±1

every time we cross a wall17.

We can also directly compare the refined partition functions with the previous discussions on Kac
polynomials and Poincaré polynomials. Indeed, the refined C3 partition function is MR(t1, t2),
which is exactly (F.1.5) under the change of variables x = t1 and t−1 = t2. One may also check
that the results for all the affine ADE quiver cases still hold. The partition function is

χr = PE

[
t1

(1− t1)(1− t2)

(
r +

∑

α∈Ψ
Qα

)]
. (F.2.13)

This is precisely a factor of P 0
Q(t, q)P̃

0
Q(t, q) under x = qδ = t1, t

−1 = t2 and qi = Qi.

A comment of D4-D2-D0 bound states Based on [152,330–333], it would be straightforward
to write the generating functions for certain D4-D2-D0 brane bound states similar to the above
discussions. Mathematically, they are related to curve counting on surfaces in the CY 3-fold
[289,334].

As argued in [152], the D4-D2-D0 bound states can be enumerated by 2-dimensional crystals as
opposed to the 3d crystals for D6-D2-D0 bound states. As a result, they should be counted via 2d
Young tableaux instead of 3d plane partitions. Indeed, it turns that the (generalized) MacMahon
functions should be replaced by the inverse (generalized) Euler functions ϕ(x, q)−1 counting integer
partitions. See [12, §5] for more details.

17It is conjectured that there does not exist walls invisible to unrefined indices such that only refined indices would
jump [45].
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Appendix G

Examples of R-Matrices Acting on
Higher Levels

Here, we shall consider some examples at higher levels using the contour integral expressions for
the matrix elements of T .

G.0.1 Example 1: Conifold

Let us first consider the conifold whose 2d crystal description can be found in [152, Figure 29 and
30]. In particular, there is one atom of colour a (or b ̸= a) at the first level and only one atom of
colour b (or a) can be added at the second level. Following the RT T relation, we can write

⟨C(a),∅(c)|R12(u− v)T1(u)T2(v)|∅(a),∅(c)⟩ = ⟨C(a),∅(c)|T2(v)T1(u)R12(u− v)|∅(a),∅(c)⟩, (G.0.1)

where c is either a or b and C(a) here stands for the 2d crystal with two atoms whose initial atom
is of colour a. Based on the first part of contour integral conjecture (§5.3.2), the right hand side is
then

T∅(c),∅(c)
(v)TC(a),∅(a)

=
1

2πi

∮

∞+u
dzF (z)h(c)(v)f (b)(z)f (a)(u)h(a)(u), (G.0.2)

where we have used the fact that T□(a),∅(a)
(u) = f (a)(u)h(a)(u). Suppose a = c ̸= b. After applying

the current relations, we have

⟨C(a),∅(a)|R12T1T2|∅(a),∅(a)⟩ =
(
v − u− ϵ3
v − u − ϵ23

)
1

2πi

∮

∞+u
dzF (z)f (b)(z)f (a)(u)h(a)(u)h(a)(v)

+
(u− v)ϵ3
u− v − ϵ3

1

2πi

∮

∞+u
dzF (z)f (b)(z)h(a)(u)f (a)(v)h(a)(v).

(G.0.3)

The first term clearly leads to a bra vector ⟨C(a),∅(a)|. For the second term, suppose the contour
integral gives ∮

∞+u
dzF (z)f (b)(z) = P (u)f (b)(u) +

∑

j

Qj(u)f
(b)
j , (G.0.4)

where P (u) comes from −Resu(F (z)f (b)(z)) = P (u)f (b)(u) + . . . with the ellipsis denoting terms
only with modes of f (b) (if F (z) has a higher order pole at z = u). The terms with Qj(u) then
include both such terms and those from the residue at infinity. Thus, using the hf relation and
writing the modes as contour integrals of the current, the second term in (G.0.3) becomes

(u− v)ϵ3
u− v − ϵ3

h(a)(u)P (u)


f (b)(v) + 1

P (u)

∑

j

Qj(u)f
(b)
j


 f (a)(v)h(a)(v). (G.0.5)
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However, since this must become some matrix element(s) composed of allowed states/2d molten
crystal configurations (with levels no greater than 2), we propose that Qj(u) must vanish or equal
P (u). Therefore,

(u− v)ϵ3
u− v − ϵ3

1

2πi

∮

∞+v
dzF (z)

P (u)

P (v)
h(a)(u)f (b)(z)f (a)(v)h(a)(v). (G.0.6)

Hence, we get

⟨C(a),∅(a)|R12 = ⟨C(a),∅(a)|
(
v − u− ϵ3
v − u − ϵ23

)
+ ⟨∅(a),C(a)|

(u− v)ϵ3P (u)
(u− v − ϵ3)P (v)

. (G.0.7)

Now let us consider the case b = c ̸= a. Then (G.0.2) becomes

1

2πi

∮

∞+u
dzF (z)

v − z − ϵ3
v − z f (b)(z)f (a)(u)h(a)(u)h(b)(v). (G.0.8)

The residue of the contour integral would be

P (u)
v − u− ϵ3
v − u f (b)(u) +

∑

j

Q′
j(u)f

(b)
j . (G.0.9)

Therefore, Q′
j(u) should be equal to either P (u)(v − u− ϵ3)/(v − u) or 0. As a result,

⟨C(a),∅(b)|R12 = ⟨C(a),∅(b)|
v − u− ϵ3
v − u P (u). (G.0.10)

As the two-atom configuration is e
(b)
0 e

(a)
0 |∅(a)⟩ (and ⟨∅(a)|f (a)0 f

(b)
0 ) for a ̸= b, we can use the second

part of the contour integral conjecture (§5.4) to write1

⟨∅(a)|f (a)0 f
(b)
0 T |∅(a)⟩ =

1

2πi

∮

∞+u
dz

1

ϵ3

(
1− u− z − ϵ3

u− z
(u− z − ϵ2)(u− z + ϵ2)

(u− z − ϵ1)(u− z + ϵ1)

)
f (b)(z)f (a)(u)h(a)(u)

=− ϵ22
ϵ21
f (b)(u)f (a)(u)h(a)(u).

(G.0.11)

Therefore, P (u) = ϵ22/ϵ
2
1 (and indeed Qj , Q

′
j vanish). Hence,

⟨C(a),∅(b)|R12 =




⟨C(a),∅(a)|

(
u−v+ϵ3
u−v − ϵ23

)
+ ⟨∅(a),C(a)| (u−v)ϵ3(u−v−ϵ3) , a = b

⟨C(a),∅(b)| ϵ
2
2

ϵ21

u−v+ϵ3
u−v , a ̸= b.

(G.0.12)

G.0.2 Example 2: C× C2/Z3

Now, let us discuss C× C2/Z3 with the specific state, say, e
(2)
1 e

(3)
0 e

(1)
0 |∅(1)⟩. At level 1, we simply

have T∅(1),□(1)
= h(1)(u)e(1)(u). At level 2, we have

⟨∅(1)|T e(3)0 e
(1)
0 |∅(1)⟩ =

1

2πi

∮

∞+u
dz

1

ϵ3

(
1− u− z − ϵ3

u− z
u− z − ϵ1
u− z + ϵ2

)
h(1)(u)e(1)(u)e(3)(z)

=− ϵ1
ϵ2
h(1)(u)e(1)(u)e(3)(u).

(G.0.13)

Then at level 3, recall that

e
(2)
1 =

1

2ϵ3

[
ψ
(2)
1 −

1

2

(
ψ
(2)
0

)2
, e

(2)
0

]
(G.0.14)

1Notice that here the convention of f is the one for YB instead of Y.
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following the results in §5.4. Therefore,

e
(2)
1 e

(3)
0 e

(1)
0 |∅(1)⟩ =

1

2ϵ3

(
ψ
(2)
1 e

(2)
0 −

1

2
ψ
(2)
0 ψ

(2)
0 e

(2)
0 − e

(2)
0 ψ

(2)
1 +

1

2
e
(2)
0 ψ

(2)
0 ψ

(2)
0

)
e
(3)
0 e

(1)
0 |∅(1)⟩.

(G.0.15)
By considering the action of the current ψ(2)(z) and taking the contour integral around ∞, we get

ψ
(2)
0 e

(3)
0 e

(1)
0 |∅(1)⟩ = (4u− 2ϵ3) e

(3)
0 e

(1)
0 |∅(1)⟩, ψ

(2)
0 e

(2)
0 e

(3)
0 e

(1)
0 |∅(1)⟩ = 6ue

(2)
0 e

(3)
0 e

(1)
0 |∅(1)⟩,

ψ
(2)
1 e

(3)
0 e

(1)
0 |∅(1)⟩ =

(
8u2 − 8ϵ3u+ ϵ23

)
e
(3)
0 e

(1)
0 |∅(1)⟩, ψ

(2)
1 e

(2)
0 e

(3)
0 e

(1)
0 |∅(1)⟩ = 18u2e

(2)
0 e

(3)
0 e

(1)
0 |∅(1)⟩.
(G.0.16)

Moreover,

⟨∅(1)|T e(2)0 e
(3)
0 e

(1)
0 |∅(1)⟩

=
1

2πi

∮

∞+u
dz
−ϵ1
ϵ2ϵ3

(
1− u− z − ϵ3

u− z
u− z − ϵ1
u− z + ϵ2

u− z − ϵ2
u− z + ϵ1

)
h(1)(u)e(1)(u)e(3)(u)e(2)(z)

=− ϵ1
ϵ2
h(1)(u)e(1)(u)e(3)(u)e(2)(u).

(G.0.17)

Hence,

⟨∅(1)|T (u)e(2)1 e
(3)
0 e

(1)
0 |∅(1)⟩ = −

ϵ1ϵ3
2ϵ2

h(1)(u)e(1)(u)e(3)(u)e(2)(u). (G.0.18)

One can then obtain, for example, R12(u− v)
(
e
(2)
1 e

(3)
0 e

(1)
0 |∅(1)⟩

)
⊗ |∅(a)⟩ using the RT T relation

and the relations among the currents.
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Appendix H

Rectangular W-Algebras

In literature, the rectangularW-algebra (of type A) is often defined based on the distinguished case
for the Kac-Moody superalgebra where the number of fermionic nodes is minimized. Nevertheless,
we can certainly consider W-algebras with any underlying root systems/Dynkin diagrams as we
are going to discuss now. Proposition 5.7.2 then ensures that they are isomorphic for a given
generalized conifold.

In this appendix only, we will use g to denote the algebra gl(Ml|Nl) for some positive integer l.
We shall choose the convention such that the basis matrix Eij has entry (−1)p(j) at position (i, j)
with all other elements being zero1. Notice that we have used

p(i) =

{
0, i is bosonic

1, i is fermionic
(H.0.1)

so as to distinguish it from |a| in the quiver Yangians. Given a parity sequence ς composed of
(−1)p(i), the Z2-grading of Eij is p(i) + p(j). In particular, Ei1j1Ei2j2 = (−1)p(j1)δj1i2Ei1j2 and
str(Ei1j1Ei2j2) = (−1)p(j1)δj1i2δi1j2 . Then

g =
⊕

1≤i,j≤M+N
1≤r,s≤l

CE(r−1)(M+N)+i,(s−1)(M+N)+j , (H.0.2)

and E(r−1)(M+N)+i,(s−1)(M+N)+j = Eij ⊗ Ers as g is isomorphic to gl(M |N) ⊗ gl(l) as a vector

space2. We shall take the bosonic nilpotent matrix x− =
l−1∑
s=1

M+N∑
i=1

Es(M+N)+i,(s−1)(M+N)+i which

can be written as

(
M+N∑
i=1

Eii

)
⊗
(
l−1∑
s=1

Es,s−1

)
. This nilpotent matrix is of Jordan type with the

rectangle Young tableau
(
l(M |N)

)
(and hence the name rectangular W-algebra). Given a complex

number k, there is an inner product of g given by

(u|v) =
{
kstr(uv), u ∈ sl(Ml|Nl) or v ∈ sl(Ml|Nl)
kstr(uv) + (−1)p(i)+p(j)(1− c), u = Eii ⊗ Err and v = Ejj ⊗ Ess

(H.0.3)

for some c ∈ C.

Now, g has a good grading in the sense of [76] for the nilpotent element with

gr :=
⊕

1≤i,j≤M+N
0≤s≤l−1

0≤s+r≤l−1

CEs(M+N)+i,(s+r)(M+N)+j . (H.0.4)

1Another convention often adopted in literature would naturally be 1 at entry (i, j).
2Notice that the gl(l) part (with subscripts r, s) is always bosonic.
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We then have an sl2 triple (h, x+, x−) such that gr = {y ∈ g|[h, y] = ry}. Define the subalgebras
b = g≤0 =

⊕
r≤0

gr and g0 = gr=0. We have an inner product on b which reads

κ(u, v) = (u|v) + 1

2
(κg(u, v)− κg0(pr(u), pr(v))) (H.0.5)

for any u, v ∈ b, where κg (resp. κg0) is the Killing form on g (resp. g0) and pr : b → g0 is the
projection map. Recall that in general, the Killing form is κgl(M |N)(x, y) = 2(M − N)str(xy) −
2str(x)str(y). Then

κ(Er1(M+N)+i1,s1(M+N)+j1 , Er2(M+N)+i2,s2(M+N)+j2)

=δr1,s2δr2,s1δi1,j2δi2,j1(−1)p(j)κ + δr1,s1δr2,s2δi1,j1δi2,j2(δr1,r2 − c),
(H.0.6)

where κ := k + (l − 1)(M −N). Consider the affinization b̂ = b
[
t±1
]
⊕ C1 (with 1 central). The

commutation relation reads [atm, btn] = [a, b]tm+n + δm,−nmκ(a, b)1. The associated (universal

affine) vertex algebra V k(b) is defined to be U(b̂)/U(b̂)(b[t]⊕C(1−1)) ∼= U(b̂)⊗U(b[t]⊕C1)C. Here,
C denotes the one-dimensional representation of b[t]⊕ C1 where b[t] acts trivially as 0 and 1 acts
as 1. This is isomorphic to U

(
b
[
t−1
]
t−1
)
as a vector space by PBW theorem. Here, we shall take

the mode expansion of a current a(z) in the vertex algebra depending on its spin s:

a(z) =
∑

n∈Z

a[n]

zn+s
, (H.0.7)

where we have denoted atn as a[n] to avoid potential clutter of subscripts later on. In this paper,
we use the normal ordered product with the convention3

: a(z)b(z) : = a(z)≤b(z) + (−1)p(a)+p(b)b(z)a(z)>,

where a(z)≤ =
∑

n≤−s

a[n]

zn+s
and a(z)> =

∑

n>−s

a[n]

zn+s
.

(H.0.8)

In terms of modes, we have

: a[n]b[m] : =

{
a[n]b[m], n ≤ −s
(−1)p(a)+p(b)b[m]a[n], n > −s.

(H.0.9)

In the main context and below, we shall use (ab) instead of :ab: to denote the normal ordering for
convenience when it would not cause confusions. Of course, different conventions of the normal
ordered product would not change our results in §5.7. For instance, if we “split” the normal ordering
at the zero modes, one may check that the homomorphism Φ from Y to W would remain the same.

Let us also consider the Lie superalgebra a =

(⊕
u∈b

CA(u)

)
⊕
(
⊕

u∈g<0

CA(u)

)
with p

(
A(u)

)
= p(u)

and p
(
A(u)

)
= p(u) + 1. The commutation relations are

[
A(u),A(v)

}
= A([u,v]),

[
A(u),A(v)

}
= 0,

[
A(Ei1j1

),A(Ei2j2
)

}
= δj1,i1A(Ei1,j2

) − δi1,j2(−1)(p(i1)+p(j1))(p(i2)+p(j2)+1)A(Ei2,j1
).

(H.0.10)

3One can also define the n-product given by

(a(n)b)(z) = a(z)(n)b(z) =

{
Resw(w − z)n[a(w), b(z)], n ≥ 0

1
(n+1)!

: ∂n+1a(z)b(z) :, n < 0,

as well as the λ-bracket [aλb] =
∑

n∈Z+

λn

n!
a(n)b which enjoys certain properties such as the noncommutative Wick

formula. See for example [335] for more details. The pair of fields is local if (a(n)b)(z) vanishes for sufficiently large
(positive) n. It is clear that the (−1)-product coincides with the normal ordered product.
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Suppose u =
∑
i
aiui (ai ∈ C), then A(u) is

∑
i
aiA(ui) (and similarly for A(u)). We can write the

inner product determined by

κa

(
A(u),A(v)

)
= κb(u, v), κa

(
A(u),A(v)

)
= κa

(
A(u),A(v)

)
= 0, (H.0.11)

and likewise consider the affinization of a. Then the associated vertex algebra V k(a) contains
V k(b) as a subalgebra. Both of the vertex algebras can be regarded as non-associative algebras
with respect to the normal ordered product.

TheW-algebra is then the collection of elements in V k(b) that are annihilated by the BRST charge.
More specifically, the BRST cohomology has fermionic derivation Q : V k(a) → V k(a) commuting
with the translation operator ∂ of the vertex algebra. The other commutation relations Q should
satisfy can be found for example in [336, §3] and in [224, §3] (with the convention therein).

Definition H.0.1. Given the above data, the rectangular W-algebra is Wk
(
gl(M |N),

(
l(M |N)

))
:=

{v ∈ V k(b) ⊂ V k(a)|Qv = 0}.
Notice that we have omitted the parity sequence ς in the notation as different ς give isomorphic
W-algberas by Proposition 5.7.2. For our discussions, it would be of great help to obtain the
generators of theW-algebra. This can be constructed by considering the non-associative free algebra
T
(
gl(l)≤0

[
t−1
]
t−1
)
⊗C[τ ] with the even element τ commuting with 1 and [τ, y[m]] = −my[m− 1]

for y ∈ gl(l)≤0. We then have an algebra homomorphism T : T
(
gl(l)≤0

[
t−1
]
t−1
)
⊗ C[τ ] →

gl(M |N)⊗ V k(b)⊗ C[τ ] such that

T(x) =
M+N∑

i,j=1

(−1)p(i)p(j)Eij ⊗ Tij(x), T(τ) = τ, (H.0.12)

where
Tij(x) = x⊗ Eji ∈ gl(l)≤0

[
t−1
]
t−1 ⊗ gl(M |N) = b

[
t−1
]
t−1. (H.0.13)

Since T(xy) = T(x)T(y), we find that

Tij(xy) =
M+N∑

r=1

Tir(x)Trj(y). (H.0.14)

Let us now consider the l × l matrix

B =




κτ + E11[−1] −1 0 . . . 0
E21[−1] κτ + E22[−1] −1 . . . 0

...
...

. . .
...

...
El−1,1[−1] El−1,2[−1] . . . κτ + El−1,l−1[−1] −1
El1[−1] El2[−1] . . . El,l−1[−1] κτ + Ell[−1]




(H.0.15)

and compute its column determinant

cdet(B) =
∑

σ∈Sl

sgnσ bσ(1)1(bσ(2)2(bσ(3)3 . . . (bσ(l−1),l−1bσ(l),l) . . . )). (H.0.16)

As the entries brs of B are in T
(
gl(l)≤0

[
t−1
]
t−1
)
⊗ C[τ ], we can write

Tij(cdet(B)) =
l∑

r=0

Ũ
(r)
ji (κτ)l−r. (H.0.17)

We then have the remarkable results from [224, 336]:
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Theorem H.0.1. The rectangular W-algebra Wk
(
gl(M |N),

(
l(M |N)

))
is freely generated by Ũ

(r)
ij

for 1 ≤ r ≤ l and 1 ≤ i, j ≤ M + N . Moreover, when M ̸= N , M + N ≥ 2 (and κ ̸= 0), it is

generated by Ũ
(1)
ij and Ũ

(2)
ij .

Following [336, 337], the projection b → l = (gll)0 ⊗ glM |N induces an injective algebra homomor-

phism µ :Wk
(
gl(M |N),

(
l(M |N)

))
→ V k(l) known as the (quantum) Miura transformation. Under

the Miura transformation, we have

l∑

r=0

µ
(
Ũ

(r)
ji

)
(κτ)l−r = Tij ((κτ + E11[−1])(κτ + E22[−1]) . . . (κτ + Ell[−1])) . (H.0.18)

Let us write4

J sij = −E(s−1)(M+N)+i,(s−1)(M+N)+j [−1], ∂J sij = −E(s−1)(M+N)+i,(s−1)(M+N)+j [−2]. (H.0.19)

This gives the same convention as in [69]. The generators of the W-algebra can be written as

U
(1)
ij =

∑

1≤s≤l
J sij , U

(2)
ij = κ

∑

1≤s≤l
(s− 1)∂J sij +

∑

1≤s1<s2≤l
1≤n≤M+N

(
J s1in J s2nj

)
. (H.0.20)

By definition of the vertex algebra, the OPE of J sij reads

J s1i1j1(z)J
s2
i2j2

(w) ∼
κ(E(s1−1)(M+N)+i1,(s1−1)(M+N)+j1 , E(s2−1)(M+N)+i2,(s1−2)(M+N)+j2)

(z − w)2
[E(s1−1)(M+N)+i1,(s1−1)(M+N)+j1 , E(s2−1)(M+N)+i2,(s1−2)(M+N)+j2 ][−1](w)

z − w

=
δs1s2δj1i2δi1j2(−1)(p(j1))κ + δi1j1δi2j2(δs1s2 − c)

(z − w)2

+
(−1)p(i1)p(j1)+p(i2)p(j2)+p(j1)p(i2)δs1s2δi1j2J s1i2j1 − (−1)p(j1)δs1s2δi2j1J s1i1j2

z − w .

(H.0.21)

The OPEs for U
(r)
ij can then be obtained from this, as well as the commutation relations for their

modes via

[
U

(r)
i1j1

[m], U
(s)
i2j2

[n]
}
=

1

(2πi)2

∮

0
dw

∮

w
dz zm+r−1wn+s−1U

(r)
i1j1

(z)U
(s)
i2j2

(w). (H.0.22)

In this paper, we shall focus on the case when the parameter c = 0. The commutation relations
used in this paper are listed in Lemma 5.7.1.

To relate the non-associative W-algebra with the quiver Yangian, we shall consider the universal
enveloping algebra U(W). In general, for any vertex algebra V , its universal enveloping algebra
U(V ) is an associative algebra topologically generated by utm (or utm+s−1 depending on the con-
vention) for u ∈ V andm ∈ Z which correspond to the modes u[m] in the vertex algebra. Therefore,
we shall slightly abuse the notation and write u[m] as well for the elements in U(V ). For more
details on vertex algebras and their universal enveloping algebras, see for example [338].

4Notice that we could have also started with −Eij as our basis matrix from the very beginning.
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Appendix I

Conventions of Heisenberg Modes

In the main context, we introduced the modes kr (and lr) for the ψ± currents. Here, we mention
some alternative convention to define these Heisenberg modes. It could be possible that this would
be more convenient when considering certain aspects of the algebras such as their representations
and the AGT correspondence.

Let us consider the toroidal algebras for non-chiral quivers as an example. The other cases can be
redefined in a similar manner. First, we rescale the e, f modes as

e(a)n =
(
q− q−1

)1/2
e(a)n , f (a)n =

(
q− q−1

)1/2
f(a)n , (I.0.1)

where we have suggestively written q = exp(βh1) = H1. Notice that this does not change the ee
and ff relations. Then the e0f0 relations (as well as the enf−n relations) would become

[
e
(a)
0 , f

(a)
0

}
= δab

qk
(a)
0 − q−k

(a)
0

q− q−1
= δab

[
k
(a)
0

]
q
. (I.0.2)

Here, [x]q =
qx−q−x

q−q−1 is the standard q-number. On the other hand, the k0en (resp. k0fn) relations

remain the same as the ones for k0en (resp. k0fn). As we can see, the relations among the zero
modes resemble the ones appeared in quantum groups.

Likewise, we can write

ψ
(a)
± (U) = ψ

(a)
±,0 exp

(
(
q− q−1

) ∞∑

n=0

k
(a)
±nU

∓n
)

(I.0.3)

such that k
(a)
r =

(
q− q−1

)
k
(a)
r . Therefore,

ψ
(a)
±,n = ψ

(a)
±,0

n∑

m=1

(
q− q−1

)m

m!

∑

r1,...,rm>0
r1+···+rm=n

k
(a)
±r1k

(a)
±,r2 . . . k

(a)
±,rm . (I.0.4)

The commutation relations involving k
(a)
r can be obtained with the substitutions

HrAab
1 −H−rAab

1 → [rAab]q, C−r − Cr → C−r − Cr
q− q−1

= −[rc/h1]q (I.0.5)

in the relations for k
(a)
r .

Sometimes, it is also conventional to define the Heisenberg modes with signs inside the exponentials.

In other words, we have exp

(
±∑

n
k±nU∓n

)
in the expressions for ψ±. This is simply a redefinition

of k−n → −k−n.



232

Appendix J

Gröbner Bases & Hilbert Series

Since our chiral rings can be realized as quotient rings of polynomial rings over C by defining
ideals arising from the likes of polynomial F-terms, it is important for us to systematically study
such objects. The first step toward any serious investigation of an ideal I within a graded ring is
the establishment of its Gröbner basis GB(I); constituting the pillar of computational algebraic
geometry [339, 340] (cf. [341] for recent advances and applications in the context of gauge/string
theories).

Briefly [339,342], for the polynomial ring R = C[x1, x2, . . . , xn] to any monomial x⃗α⃗ := xα1
1 xα2

2 . . . xαn
n

with each αi ∈ Z≥0 (the short-hand notation of raising the exponent is standard) in R, we can
associate the exponent vector α⃗; this defines a monomial ordering ≻ such that

1. ≻ is a total order on R, i.e., for any elements α⃗, β⃗, one and only one of the three possibilities
α⃗ ≻ β⃗, or β⃗ ≻ α⃗, or α⃗ = β⃗ occurs;

2. for any γ⃗, if α⃗ ≻ β⃗, then α⃗+ γ⃗ ≻ β⃗ + γ⃗;

3. ≻ is a well-ordering in that any nonempty subset has a smallest element.

Of course, these properties are no more than the axiomatization of how we usually manipulate

degrees in monomials. Indeed, we will denote total degree of a monomial as |α⃗| =
n∑
i=1

αi.

We emphasize that there are many possible choices of this ordering and the most typical are

• Lexicographic: this is just dictionary ordering, i.e., α⃗ ≻Lex β⃗ if the leftmost nonzero entry of
α⃗− β⃗ is positive;

• Graded Lexicographic: this is sorting by total degree first and then by lexicographic, i.e.,
α⃗ ≻grLex β⃗ if |α⃗| > |β⃗| or, when |α⃗| = |β⃗|, we have α⃗ ≻Lex β⃗. There is a reverse version of

this where one sorts by total degree first and then if they are equal, then α⃗ ≻grevLex β⃗ if the

rightmost nonzero entry of α⃗− β⃗ is negative;

• General Weighted Lexicographic: We can weight each variable xi. For example, choose a
weight vector w⃗ = (w1, w2, . . . , wn) for the variables xi. Usually, the weight is taken to be
wi ∈ Z≥0. This weight can, for example, be prescribed by the R-charges. Here, the total
degree is obviously |α⃗| = w · α⃗.
In fact, one is not restricted to just weighting each variable by some non-negative integer but
in general by some vector, say of length k ≤ n, so that we have some weight matrix Wk×n.
Then we could sort as: α⃗ ≻W β⃗ if W · α⃗ ≻Lex W · β⃗. This multi-weighting can be used as a
refinement of possible charges and variables thus graded are called fugacities [26, 28].

An example, taken from [339], would illustrate the above. Suppose R = C[x, y, z], and we weight
x, y, z with the standard base vectors (1, 0, 0), (0, 1, 0) and (0, 0, 1), then x ≻Lex yz

2 since (1, 0, 0)−
(0, 1, 2) has the leftmost entry 1 which is positive. On the other hand, yz2 ≻grLex x since the
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degrees are |x| = 1 and |yz2| = 3; this graded lexicographic ordering is one perhaps most familiar
to us.

Having fixed a monomial ordering ≻ on R, then we have

Definition J.0.1. For any multivariate polynomial f =
∑
α⃗

cα⃗x⃗
α⃗ ∈ R, the initial monomial in(f )

is the largest (with respective to ≻) monomial term in f . We can always make the coefficient of
this term to be 1 so that f is monic.

Thus prepared, we are finally at the crux of our subject:

Definition J.0.2. A subset {g1, g2, . . . , gm} for an ideal I is a Gröbner basis GB(I) for I if the
ideal generated by the initial monomials of the elements of I is generated by {in(g1), . . . , in(gm)},
i.e., if

in(I) = ⟨in(gi)⟩.

Computationally, we have the important result that

Theorem J.0.1. A set G is a Gröbner basis iff the S-polynomial (or syzygy pair) defined as

S(gi, gj) :=
lcm
(
in(gi), in(gj)

)

in(gi)
gi −

lcm
(
in(gi), in(gj)

)

in(gj)
gj

reduces modolo G for all pairs gi, gj ∈ G.
This gives a practical - albeit exponential-running-time - algorithm, the so-called Buchberger algo-
rithm for computing GB(I) given an ideal I = ⟨fi⟩i=1,...,N :

1. Set G = {f1, . . . , fN} and compute S(fi, fj) for each of the pairs with respect to a chosen
ordering ≻;

2. Compute the remainder of each S(fi, fj) upon division by each of the elements of G. If the
remainder is not zero, then include this S(fi, fj) as a new element of G;

3. Repeat until all remainders with respect to all elements are 0; this final list (which could have
much more than N elements) is a Gröbner basis for I.

J.0.1 Hilbert Series: Revisited

In light of the discussions above, more properties, especially from a computational perspective, of
the HS emerge. Most importantly, we have a the classical result of Macaulay [343] that

Theorem J.0.2. The Hilbert series of in(I) is the same as that of the ideal I itself.

Thus explicit computation of the HS reduces to finding the Gröbner basis: given the ideal I, we
simply (1) compute its Gröbner basis GB(I) = {gi} with respect to some monomial ordering; (2)
find the initial ideal ⟨in(gi)⟩ (this is a Gröbner basis guarantees that this ideal is equal to in(I));
(3) importantly each generator in(gi) is monomial and we thus only need to compute the basis of
monomials modolo these monomials at each degree and sum the generating series to obtain the HS
for in(I), which by the above theorem is then the HS for I.

Moreover, one can refine the HS: this means we can assign not just a single weight to the variable
t, but, instead, a vector of weights for multi-variables ti. In other words, the polynomial ring will
be multi-graded. For example, for C3, the (unrefined) HS is HS(t;C3) = (1− t)−3 and the refined
series can be, for instantce, HS(t1, t2, t3;C3) = ((1− t1)(1− t2)(1− t3))−1.
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Appendix K

Genus for Lopsided Amoebae

Using lopsidedness, we can write the conditions for the number of genus for any LAP̃n
. We now

derive such conditions for some lopsided amoebae where n = 1.

Example 1: F0 As one of the simplest examples, let us determine the genus of the lopsided
amoeba for F0 with P (z, w) = c1z+ c2w+ c3z

−1 + c4w
−1 + c5 which could have at most one genus

corresponding to its sole interior point1. Straight away, we can find the centre of the amoeba,
which always lie in the hole if g = 1. We can find the spectral curve (spines) by considering the
asymptotic behaviour as

• z, w →∞, z/w ∼ O(1): this yields Log|w| = Log|z| − Log
∣∣∣ c2c1
∣∣∣.

• 1/z, 1/w →∞, z/w ∼ O(1): this yields Log|w| = Log|z|+ Log
∣∣∣ c4c3
∣∣∣.

• z, 1/w →∞, zw ∼ O(1): this yields Log|w| = −Log|z| − Log
∣∣∣ c1c4
∣∣∣.

• 1/z, w →∞, zw ∼ O(1): this yields Log|w| = −Log|z|+ Log
∣∣∣ c3c2
∣∣∣.

In particular, the first two lines are parallel to each other, and so are the other two. The remaining
4 pairs give rise to 4 intersection points (which may or may not coincide). In other words, we
have obtained the equations for the four spines of the amoeba and how they surround a rectan-
gle with these 4 intersection points as vertices. One can check that this rectangle is centred at(
1
2Log

∣∣∣ c3c1
∣∣∣ , 12Log

∣∣∣ c4c2
∣∣∣
)
.

In general, to determine the genus, we should find all possibilities for the lopsided lists. Here,
using (7.2.1), we have that P{x1, x2} = {|c1z|, |c2w|, |c3/z|, |c4/w|, |c5|}. Suppose |c5| is the largest
number, then we have the lopsided condition:

|c5| > |c1z|+ |c2w|+ |c3/z|+ |c4/w|. (K.0.1)

However, the right hand side reaches a minimum when |c1z| = |c3/z|, |c2w| = |c4/w|, i.e., |z| =
|c3/c1|1/2, |w| = |c4/c2|1/2, which is exactly the aforementioned centre of the amoeba. Therefore,
|c5| should at least be greater than this minimum for genus 1, and this bound is precisely |c5| >
a := 2|c1c3|1/2 + 2|c2c4|1/2. In other words,

g =

{
0, |c5| ≤ a
1, otherwise

. (K.0.2)

In particular, the centre point is precisely the point where the right hand side of (K.0.1) reaches
its minimum.

1Here, all the coefficients can be any complex numbers. To avoid degenerate cases, we also require c1,2,3,4 ̸= 0.
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For completeness, there are four more possibilities for P{x1, x2} to be lopsided, but we can see that
they would not lead to a non-zero genus by the same argument. For example, suppose the largest
is

|c1z| > |c2w|+ |c3/z|+ |c4/w|+ |c5|. (K.0.3)

Let us now fix |w|, viz, contemplating a horizontal line on the Log plane. If we keep increasing |z| (or
equivalently Log|z|), this inequality would always hold. Therefore, this region, as a complementary
component of the amoeba on the Log plane, would go to infinity. Hence, it is not bounded and
cannot be a hole of the amoeba. Likewise, the other three inequalities would not give a hole either
by considering the asymptotic behaviour of |w| (or |z|) going to infinity or zero while keeping |z|
(or |w|) fixed. This also verifies that the lopsided amoeba for F0 can have at most genus 1.

Example 2: L3,3,2 Let us now consider L3,3,2 as it is a non-reflexive polytopes (see [2]) and hence
has more interior points. Its Newton polynomial is P = c1z+ c2w+ c3z

−1+ c4w
−1+ c5z

2+ c6 = 0.
Therefore, P{x} = {|c1z|, |c2w|, |c3/z|, |c4/w|, |c5z2|, |c6|}. One possibility for these numbers to be
lopsided is

|c1z| > |c2w|+ |c3/z|+ |c4/w|+ |c5z2|+ |c6|. (K.0.4)

As |z| cannot be zero, we can divide both sides by |z| and then find the minimum for the right
hand side. For |w|, it is easy to see that this requires |w| = w0 ≡ (|c4/c2|)1/2. Then for |z|, we have
the cubic equation

|c5||z|3 −
(
2|c2c4|1/2 + |c6|

)
|z| − 2|c3| = 0. (K.0.5)

Write

p = −
(
2|c2c4|1/2 + |c6|

)

|c5|
, q = −2

∣∣∣∣
c3
c5

∣∣∣∣ ,

∆ =
(q
2

)2
+
(p
3

)3
=

∣∣∣∣
c3
c5

∣∣∣∣
2

−
(
2|c2c3|1/2 + |c6|

)3

27|c5|3
.

(K.0.6)

Based on the sign of the discriminant, we have three different cases. If ∆ > 0, or equivalently,

27
∣∣c23c5

∣∣ >
(
2|c2c4|1/2 + |c6|

)3
, then there is only one real root to this equation:

z0 =
3

√
−q
2
+
√
∆+ 3

√
−q
2
−
√
∆. (K.0.7)

Since q < 0, z0 is always positive. If ∆ = 0, there are three real roots. Again, due to negative q,
we always have a positive root

z0 = −2 3

√
q

2
. (K.0.8)

If ∆ < 0, then we would have three distinct roots, z1,2,3. Since z1 + z2 + z3 = 0, there must be at
least one positive root, which we shall still call z0. Hence, there would be (at least) one hole if

|c1| > a1 := |c2|w0/z0 + |c3|/z20 + |c4|/(z0w0) + |c5|z0 + |c6|/z0. (K.0.9)

It is also possible that these numbers are lopsided as

|c6| > |c1z|+ |c2w|+ |c3/z|+ |c4/w|+ |c5z2|. (K.0.10)

Likewise, the right hand side reaches its minimum when |w| = w0 = (|c4/c2|)1/2 and |z| = z′0 where
z′0 is a positive number satisfying2

2|c5|z′30 + |c1|z′20 − |c3| = 0. (K.0.11)

2One can show that there is always a positive root for this cubic equation. A quick way to see this is to consider
the function y = x2(2|c5|x + |c1|), which is a cubic curve tangent to the x-axis at the origin (and always increasing
for positive x). It also crosses the negative x-axis once while increasing. Then we can simply move this curve down
along the y-axis to get y = x2(2|c5|x+ |c1|)− |c3|. Hence, this would always give a positive root. Using this method,
one can also check that both z0 and z′0 give local minima in the two cases.
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Then there would be (at least) one hole if

|c6| > a2 := |c1|z′0 + |c2|w0 + |c3|/z′0 + |c4|/w0 + |c5|z′20 . (K.0.12)

One may check that other ways for P{x} to be lopsided would lead to unbounded complementary
regions. To summarize3,

g =





0, |c1| ≤ a1 and |c6| ≤ a2
1, (|c1| > a1 and |c6| ≤ a2) or (|c1| ≤ a1 and |c6| > a2)

2, |c1| > a1 and |c6| > a2

. (K.0.13)

The punchline is that in this example, we are dealing with cubic (and quadratic) equations. Hence,
we can always write down a full analytic condition for the genus. In general, for most of the
polygons (even including reflexive ones) as well as P̃n, we can always write certain equations to
determine the genus for any coefficients, but there may not be general formulae to solve them
analytically.

3If different holes combined with each other, then there would be a point (i.e., fixed |z|, |w|) in the hole satisfying
more than one inequality. However, this is not possible for fixed |z|, |w|.
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[205] A. Neguţ, “Reduced quiver quantum toroidal algebras,” arXiv:2301.00703 [hep-th].

[206] A. Litvinov and I. Vilkoviskiy, “Liouville reflection operator, affine Yangian and Bethe
ansatz,” JHEP 12 (2020) 100, arXiv:2007.00535 [hep-th].

[207] V. Drinfeld, “Hopf algebras and the quantum yang-baxter equation,” Proceedings of the
USSR Academy of Sciences 32 (1985) 254–258.

[208] B. Davison, “The critical CoHA of a quiver with potential,” Quart. J. Math. Oxford Ser. 68
no. 2, (2017) 635–703, arXiv:1311.7172 [math.AG].

[209] E. Chistyakova, A. Litvinov, and P. Orlov, “Affine Yangian of gl(2) and integrable structures
of superconformal field theory,” JHEP 03 (2022) 102, arXiv:2110.05870 [hep-th].

[210] N. Wang and K. Wu, “Yang–Baxter algebra and MacMahon representation,” J. Math.
Phys. 63 no. 2, (2022) 021702.

[211] T. Procházka, “W -symmetry, topological vertex and affine Yangian,” JHEP 10 (2016) 077,
arXiv:1512.07178 [hep-th].

[212] N. A. Nekrasov and S. L. Shatashvili, “Supersymmetric vacua and Bethe ansatz,” Nucl.
Phys. B Proc. Suppl. 192-193 (2009) 91–112, arXiv:0901.4744 [hep-th].

[213] N. A. Nekrasov and S. L. Shatashvili, “Quantum integrability and supersymmetric vacua,”
Prog. Theor. Phys. Suppl. 177 (2009) 105–119, arXiv:0901.4748 [hep-th].

[214] N. A. Nekrasov and S. L. Shatashvili, “Quantization of Integrable Systems and Four
Dimensional Gauge Theories,” in 16th International Congress on Mathematical Physics,
pp. 265–289. 8, 2009. arXiv:0908.4052 [hep-th].

[215] N. Guay, H. Nakajima, and C. Wendlandt, “Coproduct for Yangians of affine Kac–Moody
algebras,” Advances in Mathematics 338 (2018) 865–911, arXiv:1701.05288 [math.QA].

[216] M. Ueda, “Affine Super Yangian,” arXiv:1911.06666 [math.RT].

[217] V. G. Drinfeld, “A New realization of Yangians and quantized affine algebras,” Sov. Math.
Dokl. 36 (1988) 212–216.

[218] V. Chari and A. N. Pressley, A guide to quantum groups. Cambridge university press, 1995.

[219] V. G. Drinfeld, “Hopf algebras and the quantum Yang-Baxter equation,” Sov. Math. Dokl.
32 (1985) 254–258.

[220] S. Kumar, Kac-Moody groups, their flag varieties and representation theory, vol. 204.
Springer Science & Business Media, 2012.

[221] V. Serganova, “Kac–Moody superalgebras and integrability,” in Developments and trends in
infinite-dimensional Lie theory, pp. 169–218. Springer, 2011.

[222] V. V. Serganova, “Automorphisms of simple Lie superalgebras,” Mathematics of the
USSR-Izvestiya 24 no. 3, (1985) 539.

[223] C. Hoyt and V. Serganova, “Classification of finite-growth general Kac–Moody
superalgebras,” Communications in Algebra 35 no. 3, (2007) 851–874, arXiv:0810.2637
[math.RT].

[224] M. Ueda, “Affine super Yangians and rectangular W-superalgebras,” Journal of
Mathematical Physics 63 no. 5, (2022) 051701, arXiv:2002.03479 [math.RT].

http://dx.doi.org/10.2140/gt.2008.12.1171
http://dx.doi.org/10.2140/gt.2008.12.1171
http://arxiv.org/abs/0705.3419
http://arxiv.org/abs/0709.3079
http://arxiv.org/abs/0709.3079
http://dx.doi.org/10.1007/s00220-009-0832-2
http://arxiv.org/abs/0810.5072
http://arxiv.org/abs/2301.00703
http://dx.doi.org/10.1007/JHEP12(2020)100
http://arxiv.org/abs/2007.00535
http://dx.doi.org/10.1093/qmath/haw053
http://dx.doi.org/10.1093/qmath/haw053
http://arxiv.org/abs/1311.7172
http://dx.doi.org/10.1007/JHEP03(2022)102
http://arxiv.org/abs/2110.05870
http://dx.doi.org/10.1063/5.0064593
http://dx.doi.org/10.1063/5.0064593
http://dx.doi.org/10.1007/JHEP10(2016)077
http://arxiv.org/abs/1512.07178
http://dx.doi.org/10.1016/j.nuclphysbps.2009.07.047
http://dx.doi.org/10.1016/j.nuclphysbps.2009.07.047
http://arxiv.org/abs/0901.4744
http://dx.doi.org/10.1143/PTPS.177.105
http://arxiv.org/abs/0901.4748
http://dx.doi.org/10.1142/9789814304634_0015
http://dx.doi.org/10.1142/9789814304634_0015
http://arxiv.org/abs/0908.4052
http://arxiv.org/abs/1701.05288
http://arxiv.org/abs/1911.06666
http://arxiv.org/abs/0810.2637
http://arxiv.org/abs/0810.2637
http://arxiv.org/abs/2002.03479


REFERENCES 247

[225] R. Kodera and M. Ueda, “Coproduct for affine Yangians and parabolic induction for
rectangular W-algebras,” Letters in Mathematical Physics 112 no. 1, (2022) 1–37,
arXiv:2107.00780 [math.RT].

[226] N. Genra, “Screening operators and parabolic inductions for affine W-algebras,” Advances
in Mathematics 369 (2020) 107179, arXiv:1806.04417 [math.RT].

[227] B. Feigin, M. Jimbo, T. Miwa, and E. Mukhin, “Quantum toroidal and Bethe ansatz,”
Journal of Physics A: Mathematical and Theoretical 48 no. 24, (2015) 244001,
arXiv:1502.07194 [math.QA].

[228] A. Garbali and J. De Gier, “The R-Matrix of the Quantum Toroidal Algebra Uq,t

( ..
gl1

)
in

the Fock Module,” Communications in Mathematical Physics 384 no. 3, (2021) 1971–2008,
arXiv:2004.09241 [math-ph].

[229] T. Kojima, “Elliptic Deformed Superalgebra uq,p(ŝl(M |N)),” J. Phys. A 44 (2011) 485205,
arXiv:1103.5527 [nlin.SI].

[230] M. Jimbo and T. Miwa, “Solitons and Infinite Dimensional Lie Algebras,” Publ. Res. Inst.
Math. Sci. Kyoto 19 (1983) 943.

[231] P. Sulkowski, “Wall-crossing, free fermions and crystal melting,” Commun. Math. Phys.
301 (2011) 517–562, arXiv:0910.5485 [hep-th].

[232] M. Wakimoto, “Fock representations of the affine lie algebra A1(1),” Commun. Math. Phys.
104 (1986) 605–609.

[233] B. L. Feigin and E. V. Frenkel, “Affine Kac-Moody algebras and semiinfinite flag
manifolds,” Commun. Math. Phys. 128 (1990) 161–189.

[234] D. Kolyaskin, A. Litvinov, and A. Zhukov, “R-matrix formulation of affine Yangian of

ĝl(1|1),” arXiv:2206.01636 [hep-th].

[235] A. Litvinov and L. Spodyneiko, “On W algebras commuting with a set of screenings,”
JHEP 11 (2016) 138, arXiv:1609.06271 [hep-th].

[236] S. M. Khoroshkin and V. N. Tolstoy, “Universalr-matrix for quantized (super) algebras,”
Communications in Mathematical Physics 141 no. 3, (1991) 599–617.

[237] S. Khoroshkin and V. Tolstoy, “The c art an-weyl basis and the universal r-matrix for
quantum kac-moody algebras and superalgebras,” Quantum symmetries (1993) 336.

[238] K. Harada, Y. Matsuo, G. Noshita, and A. Watanabe, “q-deformation of corner vertex
operator algebras by Miura transformation,” JHEP 04 (2021) 202, arXiv:2101.03953
[hep-th].

[239] S. Cremonesi, A. Hanany, and R.-K. Seong, “Double Handled Brane Tilings,” JHEP 10
(2013) 001, arXiv:1305.3607 [hep-th].
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