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The Big-O Problem for Max-Plus Automata is
Decidable (PSPACE-Complete)

Laure Daviaud
City, University of London, UK

David Purser
University of Liverpool, UK

Abstract—We show that the big-O problem for max-plus
automata, i.e. weighted automata over the semiring (N ∪
{−∞},max,+), is decidable and PSPACE-complete. The big-O
(or affine domination) problem asks whether, given two max-plus
automata computing functions f and g, there exists a constant
c such that f ≤ cg + c. This is a relaxation of the containment
problem asking whether f ≤ g, which is undecidable. Our
decidability result uses Simon’s forest factorisation theorem, and
relies on detecting specific elements, that we call witnesses, in a
finite semigroup closed under two special operations: stabilisation
and flattening.

I. INTRODUCTION

Weighted automata are a generalisation of finite state au-
tomata, assigning values (integers, rationals, strings...) to input
words, and modelling probabilities, costs or program running
times. They have been introduced by Schützenberger [1] and
found applications in quantitative verification [2] and verifica-
tion of probabilistic systems [3], text and speech recognition
[4] or program complexity analysis [5].

More precisely, a weighted automaton is defined over a
semiring. Commonly studied examples include the rational
semiring (Q,+,×) (and the particular case of probabilistic
automata) and the tropical semirings (N ∪ {+∞},min,+)
(referred to as min-plus automata) and (N ∪ {−∞},max,+)
(max-plus automata). Non-deterministic finite automata can be
viewed as weighted automata over the Boolean semiring. In
all these cases, input words are mapped to rational values (and
possibly +∞ or −∞).

Comparing the functions computed by two given weighted
automata is then a fundamental question. It is natural to
consider the equivalence problem (are they equal?), and
the containment problem (is one pointwise smaller than the
other?). These two problems have been extensively studied and
solutions are highly dependant on the semiring under consid-
eration. Results for the equivalence problem are contrasting,
but the containment problem is usually difficult:

• For the Boolean semiring, the equivalence and contain-
ment problems correspond to the language equivalence
and language inclusion respectively. Both problems are
PSPACE-complete [6].

• For the rational semiring the equivalence problem is de-
cidable [1], even in polynomial time [7], but containment
is undecidable [8], even in restricted subclasses [9].

• For the tropical semirings both problems are undecid-
able [10]. See [11], [12] for a comprehensive overview
of the decidability boundary for min-plus automata.

In this paper we consider a relaxation of the containment
problem, called the big-O problem which asks whether an
automaton A is big-O of an automaton B, that is, if there
exists a constant c such that:

[[A]](w) ≤ c[[B]](w) + c for all words w

where [[A]] (resp. [[B]]) denotes the function computed by A
(resp. B). Intuitively the problem asks whether, asymptotically,
[[B]] grows at least as fast as [[A]] on every sequence of words.

Chistikov, Kiefer, Murawski and Purser [13], [14] study the
big-O problem over the non-negative rational semiring, where
it is shown to be undecidable in general, but decidable for
certain restrictions on the ambiguity or the accepted language.
Similarly, in [15], two restrictions of the big-O problem, also
known to be undecidable in general, are studied on specific
subclasses: the boundedness problem (a.k.a. limitedness), and
the zero isolation problem1

For the tropical semirings, the big-O problem has also been
proved to be decidable in the (N∪{+∞},min,+) setting via
the study of another problem: the domination problem [16],
[17]. This later asks whether there is a function α : N → N
such that [[A]] ≤ α ◦ [[B]]. Affine domination requires that
α be affine, and is equivalent to the big-O problem that we
consider. Colcombet and Daviaud [18] show that domination
and affine domination are equivalent and decidable for min-
plus automata. More specifically, it turns out that if some
function α exists then an affine α suffices. This result super-
seded the decidability of the boundedness problem for min-
plus automata [19], [20], [21].

In this paper, we turn our attention to (N∪{−∞},max,+)
for which the (un)decidability of the big-O problem was open.
First, note that there is no obvious way to use the results
obtained for min-plus automata. The natural transformation -
given f computed by a min-plus automaton, −f is computed
by a max-plus automaton - does not preserve positivity, and
the standard way to go back to N implies adding a big enough
function to −f which does not preserve the growth rate.
In fact, we prove that the equivalence between domination
and affine domination does not hold any more for max-plus
automata (see Running Example 2). Second, the boundedness
problem in this case is trivially decidable and does not

1The boundedness problem is the special case of the big-O problem when
[[B]] = 1. The zero isolation problem is the special case when [[A]] = 1. It is
dealt with in [14] for the problem whether [[A]] ≤ c[[B]] - so without +c, but
the two problems are equivalent (see Remark 1).



provide any help. The problem for max-plus automata requires
individual attention and the introduction of new tools. We
show that it is PSPACE-complete and our proof provides new
insights in the description of the behaviour of these automata.
In [5], some description of the asymptotic behaviour of the
functions computed by max-plus automata is given, but this is
somehow orthogonal to the big-O problem. While providing
a precise description, it is not sufficient to solve the big-O
problem and new techniques are required.

Building on some standard techniques, in particular Si-
mon’s factorisation forest theorem and the stabilisation op-
eration [22], [16], [23], [24], [25], [18], [15], we construct
a finite semigroup closed under the stabilisation operation
and a new flattening operation. The stabilisation operation
identifies unbounded behaviour, while the flattening operation
identifies maximal growth rates. The problem reduces to
detecting the presence of witnesses in this semigroup. A naı̈ve
search through the semigroup gives decidability, but may
require exponential space. The PSPACE complexity comes
from searching witnesses of a particular shape only requiring
polynomial space. The hardness comes from the PSPACE-
hardness of the universality problem for Boolean automata.

Organisation of the paper: In Section II, we give the
definition of max-plus automata and introduce a running
example that we will use all along the paper. In Section III,
we state the big-O problem and a simplified version of it,
prove their PSPACE-hardness and reduce our result to prove
that the simplified big-O problem is PSPACE (Theorem 4). In
Section IV, we give a high-level description of this proof and
define the semigroups that will be used and the stabilisation
and flattening operations. In Section V, we define witnesses
and give a decision procedure that we show to be PSPACE.
Sections VI, VII, VIII and IX are then dedicated to prove that
the decision procedure is sound and complete. The organisa-
tion and content of these sections are explained at the end of
Section V, when the suitable notions have been introduced.

II. MAX-PLUS AUTOMATA

Let Nmax denote the set N ∪ {−∞} and note that
(Nmax,max,+) is a semiring. For some positive integers i, j,
let Mi×j denote the set of matrices of dimension i× j with
coefficients in Nmax. We define the product of matrices as
usual on a semiring: (A⊗ B)q,q′ = maxq′′ (Aq,q′′ +Bq′′,q′),
provided the numbers of columns of A matches the number
of rows of B. We will use the symbol ⊗ to denote the product
of matrices on several semirings, but the context will always
clearly identify which one.

Definition 1. A max-plus automaton is a tuple ⟨Q,Σ,M, I, F ⟩
where Q is a finite set of states (and |Q| denotes the number
of states), Σ is a finite alphabet, M : Σ → M|Q|×|Q| maps
each letter to a matrix, I is a row vector in M1×|Q| and F
a column vector in M|Q|×1. Moreover, the automaton is said
to be deterministic if I has at most one entry different from
−∞ and for all a in Σ, every row of M(a) has at most one
entry different from −∞.

p0 0

b : 1 a : 1

A: Computes
word length |w|.

q1 q2 q3

q4

0

0 0

0 0

0b : 0

a : 0 b : 0 a : 0 b : 0a : 1

b : 0

b : 1 0 : a

B: Computes the maximum between the
longest block of a’s and the number of b’s.

Fig. 1: Running examples

Given a max-plus automaton ⟨Q,Σ,M, I, F ⟩, we extend M
by morphism to Σ∗.

Definition 2. The weighting function computed by a max-plus
automaton A = ⟨Q,Σ,M, I, F ⟩ is defined as the function
[[A]] : Σ∗ → Nmax mapping a word w = w1w2 . . . wk, where
wi ∈ Σ for all i = 1, . . . , k, to:

[[A]](w) = I ⊗M(w1)⊗M(w2)⊗ · · · ⊗M(wk)⊗ F.

These definitions can be expressed in terms of graphs as
usual, and we will rather use the usual automaton vocabulary
(transitions, runs, accepting runs, initial and final states, etc.)
when appropriate in some proofs. We will often write p

w:x−−→ q
for a run from state p to state q labelled by the word w
with weight x ̸= −∞, the weight of a run being the sum
of the weights of the transitions in the run. In matrix terms,
this means that, for w = w1w2 . . . wk, where wi ∈ Σ for
all i = 1, . . . , k, there are p = j0, . . . , jk = q such that
M(wi)ji−1,ji = xi and x = x1+. . .+xk. The run is accepting
if p is initial and q is final, i.e. Ip ̸= −∞ and Fq ̸= −∞
and [[A]](w) is equal to the maximum of the weights of the
accepting runs labelled by w.

We assume that all the states in the automata under consid-
eration in this paper are accessible and co-accessible.

The size of an automaton is the number of bits required
to encode M , I and F which is bounded by (|Σ| · |Q|2 +
2|Q|) · ⌈log(Λ)⌉, where Λ is the maximal weight appearing in
an entry of M, I or F .

Throughout the paper we will illustrate the results and
proofs using a running example that we detail now.

Running Example, Part 1. Let us consider two example
automata A and B over Σ = {a, b}, depicted in Fig. 1.
A computes the length of the input word and B computes
the maximum between the length of the longest block of
consecutive a’s, and the number of b’s.

In the following matrix descriptions, to avoid cluttering
notation, we use − instead of −∞ to denote that there is
no path.

Formally A is defined by a single state QA = {p}, alphabet
Σ = {a, b} and MA(a) = (1),MA(b) = (1) with IA = FA =
(0).



Formally B is defined by states QB = {q1, q2, q3, q4},
alphabet Σ = {a, b} and

MB(a) =

( 0 − − −
− 1 − −
− − 0 −
− − − 0

)
and MB(b) =

( 0 0 − −
− − 0 −
− − 0 −
− − − 1

)

with (IB)q1 = (IB)q2 = (IB)q4 = (FB)q2 = (FB)q3 =
(FB)q4 = 0, and the unspecified entries of I, F are −∞. ◀

III. DECIDABILITY OF THE BIG-O PROBLEM

The big-O problem for max-plus automata asks whether,
given two max-plus automata A,B on the same alphabet Σ,
there is a positive integer c such that for all words w in Σ∗,
[[A]](w) ≤ c[[B]](w) + c. In this case, we say that A is big-O
of B.
Running Example, Part 2. Observe that A is not big-O of B,
since [[A]]((an−1b)n) = n2, while [[B]]((an−1b)n) = n for all
positive integers n.

However, [[B]](w) ≤ [[A]](w) for all words w, so B is big-O
of A.

Note also that [[A]] ≤ ([[B]]+1)[[B]], hence [[A]] is dominated
by [[B]] as explained in the introduction, but not big-O, showing
the discrepancy between the min-plus and the max-plus cases.

◀

The main contribution of this paper is the following result.

Theorem 3. The big-O problem for max-plus automata is
decidable and is PSPACE-complete.

The rest of this paper is devoted to prove this theorem.
The first step is to make a number of simplifications on the
automata taken as input.

Theorem 4. The following problem, called the simplified big-
O problem, is PSPACE-complete:

• Input: Max-plus automata A,B such that A is determin-
istic and [[B]] : Σ∗ → N.

• Output: Yes if and only if A is big-O of B.

Compared to the big-O problem, the simplified big-O prob-
lem requires that A be deterministic and no word w has
[[B]](w) = −∞.
Running Example, Part 3. Recall A,B from the running
example in Running Example, Part 1. Observe that A is
deterministic and [[B]](w) ≥ 0 for all w, so A and B form
an instance of the simplified big-O problem. ◀

Proposition 5. If the simplified big-O problem is decidable in
PSPACE then the big-O problem is decidable in PSPACE.

Proposition 6. The simplified big-O problem is PSPACE-hard.

Proposition 5 states that it is enough to prove that the sim-
plified big-O problem is in PSPACE in order to conclude the
proof of Theorem 3. It is proved by a simple reduction: first, to
get [[B]](w) ≥ 0 for all w, it is enough to do some (polynomial
time) checks on the rational language {w | [[B]](w) = −∞}.
Secondly, to get A deterministic, one just need to change the
alphabet having several different versions of each letter - if

two transitions are outgoing from a state q labelled by the
same letter a, one label is changed into some a′. In B, each
transition labelled by a is duplicated so as to have as many
transitions as new versions of the letter a. Proposition 6 gives
the hardness parts of Theorems 3 and 4 (since the simplified
problem is a particular instance of the general one) and is
proved by a reduction from the problem of cofiniteness of
non-deterministic finite automata, which asks whether a non-
deterministic finite automaton accepts all but a finite set of
words. Both reductions are given in Appendices A and B.

The rest of the paper, Section IV and beyond, will then focus
on proving that the simplified big-O problem is PSPACE.
Remark 1. Chistikov, Kiefer, Murawski and Purser [14] use a
slightly different notion of big-O for rational automata, requir-
ing the existence of c such that [[A]] ≤ c[[B]] (that is, without
+c). We note that for max-plus automata these two problems
are equivalent, they reduce to each other in PSPACE, so
without further blow up in complexity. Indeed, [[A]] ≤ c[[B]]+c
if and only if [[A]] ≤ c([[B]] + 1), for which the translation can
be constructed in polynomial time. Conversely, there exists
c such that [[A]] ≤ c[[B]] if and only if there is c such that
[[A]] ≤ c[[B]] + c and {w | [[A]](w) ≥ 1 and [[B]](w) = 0} is
empty. The latter check can be done with an emptiness test
for regular languages in PSPACE.
Remark 2. One could be interested in computing the optimal
or minimal constant c such that [[A]] ≤ c[[B]] + c, or with
the previous remark such that [[A]] ≤ c[[B]]. Such a c is not
computable. If one could compute it and check whether it is
at most 1, it could be decided whether [[A]] ≤ [[B]], which is
undecidable for max-plus automata [10].

IV. PROJECTIVE SEMIGROUPS

From now on, we fix a deterministic max-plus automaton
A = ⟨QA,Σ,MA, IA, FA⟩ and a max-plus automaton B =
⟨QB,Σ,MB, IB, FB⟩ over the same alphabet Σ.

A. Proof schema

We describe here the general idea of the proof: this is a
very high level explanation, omitting a lot of technical (but
necessary) details, so should be read as such.

We want to show that either A is big-O of B, or exhibit an
infinite sequence of words witnessing that this is not the case.
The general idea of the proof follows the (now rather standard)
scheme of finding a finite semigroup, computable from A and
B, and identifying special elements in it - which we will
call witnesses - such that witnesses exist in the semigroup
associated with A and B if and only if A is not big-O of B.
To obtain the complexity bound, we will show that testing
the existence of such a witness can be done in PSPACE.
Similar proof schema can be found in [21], [18], [5] - in
particular this has been used for deciding the boundedness
of distance automata and we will explain the new insights our
proof provides in comparison.

To construct the appropriate semigroup, the first step is to
project the weights into {−∞, 0, 1}. Indeed, the exact weights
are not important, the only thing that matters is the difference



in growth rates as illustrated in Running Example, Part 2. This
leads to introduce the so-called semigroup of paths (denoted
MA,B) in Definition 7, which is finite and contains elements
(p, x, q,M) where p, q are states in A, x is in {0, 1} and
there is a word w such that there is a run in A from p to q
labelled by w with weight 0 if x = 0, and positive weight
if x = 1. Moreover, M is the matrix MB(w) where all the
(strictly) positive entries are replaced by 1. This semigroup is
easily computed starting from the letters and closing under an
appropriate product.

This semigroup witnesses the existence of runs with 0 or
positive weights, but is not enough to compare the growth
rates in A and B. The next step is to add a value ∞:
an entry will be ∞ if there is a sequence of words with
paths with unbounded weights for this entry. We introduce
the semigroup of asymptotic behaviour (denoted MA,B) in
Definition 10, which contains elements (p, x, q,M) where p, q
are states in A, x is in {0, 1,∞} and M is a matrix with
entries in {−∞, 0, 1,∞}. We introduce a first operation - the
stabilisation operation (as defined in Definition 8) - which
essentially iterates a word many times and puts value ∞ in the
entries that are unbounded as the word is repeated. If starting
from the letters and closing under an appropriate product and
the stabilisation operation, we would get the following: for an
element (p, x, q,M) in the semigroup of asymptotic behaviour,
there is a sequence of words (wi)i labelling paths in A from
p to q with weights 0 if x = 0, positive but bounded weights
if x = 1, unbounded weights if x = ∞. Moreover, an entry of
M is 0 if it is 0 in all MB(wi), is 1 if it is positive and bounded
for the MB(wi) and ∞ if it tends to +∞ when i → +∞ in
the matrix MB(wi).

Up to now the semigroup of asymptotic behaviour wit-
nesses unboundedness of sequences of words, but not yet the
difference in growth rates in A and B. This is where our
proof gives new insight. We introduce a second operation,
which we call flattening, and behaves as follows: consider an
element (p, x, p,M) in the semigroup of asymptotic behaviour
such that x = ∞, so witnessing some sequence of words
with unbounded weights in A from p to p. We would like
to iterate the words in this sequence, no longer looking
at unboundedness, but rather at which entries in M will
grow linearly as the elements of the sequence are repeated.
We define the flattening operation to do exactly that. After
flattening, we obtain an element (p, x, p,M ′) witnessing a
sequence of words (wi)i such that it is possible for an entry
in M ′ to have value 1, corresponds to paths with unbounded
weights, but only if the asymptotic growth rate of these
weights is little-o of the respective weights in A from p to
p. In other words, unbounded runs of maximal growth rate
continue to be represented by ∞, but runs which are not of
the maximal growth rate are ‘flattened’ back to 1, even if they
are unbounded.

The semigroup of asymptotic behaviour can be easily com-
puted starting from the letters, closing under an appropriate
product and stabilisation and flattening operations. Witnesses
are those elements (p, x, q,M) where x = ∞, with p initial

and q final in A, and all the entries of M between an initial and
a final state in B have value at most 1. We will use Simon’s
factorisation theorem [22] (see Theorem 15) in two ways. In
the case where there is no witness, this will allow us to bound
a constant c such [[A]] ≤ c[[B]]+c. In the case where there is a
witness, this will allow us to limit our search to a specific type
- called tractable witness of non-domination (Definition 12) -
ensuring the PSPACE complexity of our algorithm.

Remark 3. We could have introduced a single operation,
somehow defined as a stabilisation in some cases, and as
flattening in others. We chose not to as the definition felt
ad-hoc and we believe the two operations of stabilisation
and flattening are more intuitive. This might have slightly
simplified parts of the proof, however an added benefit we
gained with two operations is to characterise exactly the shape
of these special witnesses we define: the tractable witnesses
of non-domination.

B. Semigroup of paths

Projection in {−∞, 0, 1,∞}: Let Ω be the semiring
({−∞, 0, 1,∞},max,+) where the operations are defined as
follows: the max operation is given by the order −∞ <
0 < 1 < ∞ and the sum operation is commutative and
given by −∞ + x = −∞ for any element x (including
x = ∞), 0 + x = x for any x ∈ {0, 1,∞}, 1 + 1 = 1
and 1 +∞ = ∞+∞ = ∞.

Let Mi×j
Ω be the set of matrices of size i × j over the

semiring Ω. We use again ⊗ to denote the product of matrices
induced by the operations in Ω.

Given a finite set Q and a positive integer i, we denote by
(MQ,i,⊗) the semigroup where:

• MQ,i is the union of the sets Q × Ω × Q × Mi×i
Ω and

{⊥}.
• (p, x, q,M) ⊗ (p′, x′, q′,M ′) = (p, x ⊗ x′, q′,M ⊗ M ′)

if q = p′ and ⊥ otherwise.
We will often denote the product of two elements e, e′ ∈

MQ,i as ee′ instead of e⊗ e′.
Projection in {−∞, 0, 1}: We denote −∞ = −∞, 0 = 0

and for any positive integer x, x = ∞ = 1. For a matrix M in
Mi×j , we denote by M the matrix M where the coefficients
are replaced by their barred version.

Let Ω be the semiring ({−∞, 0, 1},max,+) where the
operations are defined as follows: the max operation is given
by the order −∞ < 0 < 1 and the sum operation is
commutative and given by −∞ + x = −∞ for any element
x, 0 + x = x for any x ∈ {0, 1} and 1 + 1 = 1.

Let Mi×j

Ω
be the set of matrices of size i × j over the

semiring Ω. We use again ⊗ to denote the product of matrices
induced by the operations in Ω.

Note that x 7→ x is a morphism over Nmax, as well as over
Mi×j

Ω . We will use this without further referencing it. Full
details can be found in Appendix C.

Analogously to (MQ,i,⊗), given a finite set Q and a
positive integer i, we denote by (MQ,i,⊗) the semigroup
where:



• MQ,i is the union of the sets Q × Ω × Q × Mi×i

Ω
and

{⊥}.
• (p, x, q,M) ⊗ (p′, x′, q′,M ′) = (p, x ⊗ x′, q′,M ⊗ M ′)

if q = p′ and ⊥ otherwise.
Semigroup of paths of A and B: Recall we have fixed a

deterministic max-plus automaton A = ⟨QA,Σ,MA, IA, FA⟩
and a max-plus automaton B = ⟨QB,Σ,MB, IB, FB⟩ over the
same alphabet Σ.

Definition 7. The semigroup of paths of A and B, de-
noted MA,B, is the subsemigroup of MQA,|QB| generated by
{(p, x, q,MB(a)) | a ∈ Σ, p

a:x−−→ q in A}.

Running Example, Part 4. From a and b respectively we
construct

ea = (p, 1, p,

( 0 − − −
− 1 − −
− − 0 −
− − − 0

)
) and eb = (p, 1, p,

( 0 0 − −
− − 0 −
− − 0 −
− − − 1

)
).

Observe that eaea = ea, and, for example, eaeb and ebeb, in
MA,B, are given by

eaeb = (p, 1, p,

( 0 0 − −
− − 1 −
− − 0 −
− − − 1

)
), ebeb = (p, 1, p,

( 0 0 0 −
− − 0 −
− − 0 −
− − − 1

)
).

◀

C. Semigroup of asymptotic behaviours

The idempotent elements of a semigroup are elements e
such that e ⊗ e = e. A matrix M in Mi×i

Ω is called path-
idempotent if M is idempotent in Mi×i

Ω
. Similarly, an element

(p, x, q,M) of MQ,i is called path-idempotent if p = q and
M is path-idempotent.

Stabilisation operation: The semigroup MQ,i is equipped
with a unary operation on its path-idempotent elements, called
the stabilisation operation and defined as follows: The stabil-
isation of elements in Ω is defined as: (−∞)♯ = −∞, 0♯ = 0
and 1♯ = ∞♯ = ∞. Given a path-idempotent matrix M in
Mi×i

Ω , the stabilisation of M , denoted M ♯ is defined as the
product M ⊗M ′ ⊗M where M ′ is the matrix M where all
the diagonal elements are replaced by their stabilisation.

Definition 8. The stabilisation operation of MQ,i is de-
fined on its path-idempotents as follows: (p, x, p,M)♯ =
(p, x♯, p,M ♯).

Running Example, Part 5. Observe ea is idempotent and

e#a = (p,∞, p,

( 0 − − −
− ∞ − −
− − 0 −
− − − 0

)
)

indicating that the sequence of words (an)n has unbounded
values in A, and the sequence (MB(an)q2,q2)n is also un-
bounded.

Consider

e#a eb = (p,∞, p,

( 0 0 − −
− − ∞ −
− − 0 −
− − − 1

)
).

Recall from Running Example, Part 2 we are aiming to repre-
sent a word of the shape (anb)n. Hence, we would expect to
iterate e#a eb again, however it is not path-idempotent. Instead

we can make one iteration manually resulting in e#a ebe
#
a eb

which is idempotent,

e#a ebe
#
a eb = (p,∞, p,

( 0 0 ∞ −
− − ∞ −
− − 0 −
− − − 1

)
).

Let us consider the effect of stabilisation on it. We have

(e#a ebe
#
a eb)

# = (p,∞, p,

( 0 0 ∞ −
− − ∞ −
− − 0 −
− − − ∞

)
).

The purpose of this operation is to identify unbounded
entries after arbitrarily many iterations of either the first,
the second, or both, stabilisation operations. Note that
[[A]]((anbanb)n) = 2n2 + 2n while MB((anbanb)n)q1,q3 =
MB((anbanb)n)q2,q3 = n and MB((anbanb)n)q4,q4 = 2n.
Both sequences are unbounded as witnessed by the ∞ but
this does not allow us to identify the different rates of growth
between the entries. ◀

Flattening operation: The semigroup MQ,i is also
equipped with another unary operation on its path-idempotent
elements, called the flattening operation and defined as fol-
lows: Given a path-idempotent matrix M in Mi×i

Ω , the flatten-
ing of M , denoted M ♭ is defined as the product M⊗⟨M3⟩⊗M
where ⟨M⟩ is the matrix M where all the non diagonal
elements are replaced by their barred version.

Definition 9. The flattening operation of MQ,i is defined on
its path-idempotents as follows: (p, x, p,M)♭ = (p, x, p,M ♭).

Running Example, Part 6. Let us consider the effect of
flattening on e#a ebe

#
a eb:

(e#a ebe
#
a eb)

♭ = (p,∞, p,

( 0 0 1 −
− − 1 −
− − 0 −
− − − 1

)
).

Here observe that ∞ corresponds to an entry with growth rates
n2 on the sequence of words (anbanb)n. Other entries, even
unbounded sequences, with asymptotically smaller growth
rates – such as n – are projected to 1 (or 0). The flattening
behaviour allows us to capture differences in growth rates (not
fully, but enough for our purpose), by, roughly speaking, keep-
ing only the fastest growing elements. Intuitively (e#a ebe

#
a eb)

♭

demonstrates that A can grow faster than B and so A is not
big-O of B, we formalise this intuition as a witness of non-
domination in the next section. ◀

The semigroup of asymptotic behaviours of A and B:
Recall we have fixed a deterministic max-plus automaton
A = ⟨QA,Σ,MA, IA, FA⟩ and a max-plus automaton B =
⟨QB,Σ,MB, IB, FB⟩ over the same alphabet Σ.

Definition 10. The semigroup of asymptotic behaviours of
A and B, denoted MA,B, is the subsemigroup of MQA,|QB|
generated by {(p, x, q,MB(a)) | a ∈ Σ, p

a:x−−→ q in A} and
closed under the stabilisation and flattening operations.

V. DECISION PROCEDURE

A. Witnesses

Given a deterministic max-plus automaton A and a max-
plus automaton B over the same alphabet, an element



(p, x, q,M) in MA,B is called a witness of non-domination
if:

• p is initial in A,
• q is final in A,
• x = ∞,
• IB ⊗M ⊗ FB < ∞.

Theorem 11. Given two max-plus automata A,B such that
A is deterministic and [[B]] : Σ∗ → N, the two following
assertions are equivalent:

• A is big-O of B.
• There is no witness of non-domination in MA,B.

We will not prove Theorem 11 directly, rather we will
prove a refined version of the theorem incorporating tractable
witnesses, which are defined next.

B. Tractable witnesses

A witness could be any element in MA,B, found through
arbitrary application of product, stabilisation and flattening,
satisfying the conditions. We now consider a restricted form
of witness in which we place a restriction on the sequence of
operations to construct it.

Definition 12 (Tractable witness of non-domination). We say
an element g in MA,B is a tractable witness of non-domination
if it is both a witness of non-domination and of the form

g = g0(g1(. . . (gk−2(gk−1(gk)
#g′k−1)

♭g′k−2)
♭ . . . )♭g′1)

♭g′0,

for k ≤ 3|MA,B| and gi, g
′
i ∈ MA,B ∪ {id}, where id is an

added identity element of MA,B such that e⊗ id = id⊗ e = e
for all e ∈ MA,B.

Running Example, Part 7. (e#a ebe
#
a eb)

♭ is a witness but not
a tractable witness of non-domination. However, (eaebe#a eb)

♭

will turn out to be a tractable witness. Intuitively it represents
the sequence of words (abanb)n, which is almost the same as
the sequence used to show A is not big-O of B in Running
Example, Part 2. ◀

We will now strengthen Theorem 11, in which we add the
condition that there is a tractable witness; this allows us to
limit our search to tractable witnesses.

Theorem 13. Given two max-plus automata A,B such that A
is deterministic and [[B]] : Σ∗ → N, the following assertions
are equivalent:

• A is big-O of B.
• There is no witness of non-domination in MA,B.
• There is no tractable witness of non-domination in MA,B.

The benefit of a tractable witness will be that we can identify
the existence of one in PSPACE. In the next section we observe
the PSPACE algorithm to detect a tractable witness and then
we will prove the equivalences of Theorem 13 to conclude the
result.

C. PSPACE algorithm

We define a non-deterministic procedure to construct a
tractable witness from middle out, that runs in polynomial
space. Since NPSPACE = PSPACE (from Savitch’s theorem),
this will allow us to conclude.

Any element g ∈ MA,B can be constructed using at most
|MA,B| product operations from the generators. Suppose g =
g1⊗· · ·⊗gm such that gi are generators and m is minimal, then
we can assume that g1⊗· · ·⊗gi is different from g1⊗· · ·⊗gj
for each i ̸= j, i, j ≤ m. Thus m ≤ |MA,B|.

The procedure is as follows:
• Non-deterministically choose k ≤ 3|MA,B|.
• Let g be a non-deterministically chosen idempotent ele-

ment of MA,B, constructed in at most |MA,B| steps.
• Update g to be the stabilisation g#.
• Repeating for i = k to i = 0, we update g with (gi g g′i)

♭

for some gi, g
′
i ∈ MA,B ∪ {id} in the following way:

– Update g by non-deterministically choosing a generator
or id and multiply on the left of g. Repeat up to |MA,B|
many times.

– Update g by non-deterministically choosing a generator
or id and multiply on the right of g. Repeat up to
|MA,B| many times.

– Except for i = 0, check that g is path-idempotent and
update g to be the flattening of g.

• Check if g is a witness.
At any moment we are only storing one element g of MA,B,
plus the space needed for doing the product, iteration and
stabilisation operations, the current iteration and number of
iterations i and k, and how many elements we have multiplied
(on the left or on the right) with g. This requires only
polynomial space. This results in an NPSPACE algorithm,
which is equivalent to a PSPACE algorithm.

D. Proof of Theorem 13

To prove Theorem 13, we are going to prove the following
result - the notions of factorisation trees and faults will be
introduced in due course.

Theorem 14. Given two max-plus automata A,B such that A
is deterministic and [[B]] : Σ∗ → N, the following assertions
are equivalent:
(1) A is not big-O of B.
(2) There is a witness of non-domination in MA,B.
(3) There is a tractable witness of non-domination in MA,B.
(4) Some word has a factorisation tree, of height at most

3|MA,B|, with a fault.

Since a tractable witness is a special case of a witness, it
is clear that (3) implies (2). The remainder of the paper will
prove the remaining implications.

In Section VI, we introduce the notions of factorisation
trees and faults. In Section VII, we prove that (1) implies
(4) - by proving its contrapositive. In Section VIII, we prove
that (4) implies (3). Sections VII and VIII are independent
of each other, but rely on Section VI. Finally, in Section IX,



we prove that (2) implies (1). This later section can be read
independently of the other ones.

VI. FACTORISATION TREES AND FAULTS

Recall we have fixed a deterministic max-plus automaton
A = ⟨QA,Σ,MA, IA, FA⟩ and a max-plus automaton B =
⟨QB,Σ,MB, IB, FB⟩ over the same alphabet Σ.

A. Factorisation trees

Let w = w1 · · ·wk with w1, . . . , wk ∈ Σ such that
[[A]](w) ̸= −∞ and let:

p0
w1:x1−−−−→ p1

w2:x2−−−−→ p2 · · · pk−1
wk:xk−−−−→ pk

be its unique accepting path in A. Let αw(wi) be the element
of MA,B defined as (pi−1, xi, pi,MB(wi)).

A factorisation tree on w is a finite ordered tree in which
every node ν in the tree is labelled by a element in MA,B,
denoted α(ν), such that:

• there are k leaves labelled with αw(w1), . . . , αw(wk),
• internal nodes have two or more children, and are labelled

by the product of the labels of their children: a node ν
with children ν1, . . . νm, m ≥ 2 is labelled with α(ν) =
α(ν1)⊗ α(ν2)⊗ · · · ⊗ α(νm). A node with two children
is called a product node,

• if a node has at least three children then the children and
the node are all labelled by the same idempotent element
- such a node is called an idempotent node (in particular,
α(ν) = α(νi) for all i ≤ m).

Note that for a word w such that [[A]](w) ̸= −∞, no
node in a factorisation tree on w can be labelled by ⊥. It
is also clear that the labelling of the root of the subtree with
leaves αw(wi), . . . , αw(wj) for some i < j, corresponds to the
element in the semigroup of paths witnessing the existence of
0 or positive weights paths in A and B on the word wi · · ·wj .

Theorem 15 (Simon’s Factorisation Theorem [22]). There
exists a positive integer H such that for all w ∈ Σ∗, there
exist a factorisation tree on w of height at most H .

Note that H does not depend on the word w, only on the
size of MA,B. Further we have that H ≤ 3|MA,B| − 1 due to
the bound of [23], which is tighter than the 3|MA,B| bound of
Colcombet [16], and the original bound of 9|MA,B| by Simon.

B. Contributors

Let t be a factorisation tree on a word w, such that
[[A]](w) ̸= −∞. For each node ν of the tree, we define its
set of contributors Cν as follows, in a top-down manner:

• if the root is labelled (p, x, q,M), the contributors of the
root is the set of pairs (i, j) such that i is initial in B, j
is final in B and Mi,j ̸= −∞.

• if a node has a set of contributors C, and has two children
labelled (p, x, q,M) and (q, x, r, P ),
– the set of contributors of the left child is:
{(i, ℓ) | ∃j : (i, j) ∈ C,Pℓ,j ̸= −∞,Mi,ℓ ̸= −∞},

– the set of contributors of the right child is:
{(ℓ, j) | ∃i : (i, j) ∈ C,Mi,ℓ ̸= −∞, Pℓ,j ̸= −∞}.

a

(0 − − −
− 1 − −
− − 0 −
− − − 0

)

an
(0 − − −

− 1 − −
− − 0 −
− − − 0

)
b

(0 0 − −
− − 0 −
− − 0 −
− − − 1

)

aν1

Fault!

(0 − − −
− 1 − −
− − 0 −
− − − 0

)

anν2

(0 − − −
− 1 − −
− − 0 −
− − − 0

)
b

(0 0 − −
− − 0 −
− − 0 −
− − − 1

)

anb

(0 0 − −
− − 1 −
− − 0 −
− − − 1

)
anbν3

(0 0 − −
− − 1 −
− − 0 −
− − − 1

)

anbanbν4

(0 0 1 −
− − 1 −
− − 0 −
− − − 1

)

(anbanb)nν5

(0 0 1 −
− − 1 −
− − 0 −
− − − 1

)

Fig. 2: A possible factorisation tree for the word w =
(anbanb)n. Nodes are labelled by the sub-word of w and
the path-behaviour of MB. The contributors of each node are
indicated by highlighting the corresponding matrix entries. A
node with a fault is also indicated, inducing the sequence of
nodes ν1, . . . , ν5 from the fault to the root.

• if a node has a set of contributors C and has at least three
children, labelled by an idempotent element (p, x, p,M),
then:
– the left-most child has set of contributors:

{(i, ℓ) | ∃j : (i, j) ∈ C,Mℓ,j ̸= −∞,Mi,ℓ ̸= −∞},
– the right-most child has set of contributors:

{(ℓ, j) | ∃i : (i, j) ∈ C,Mi,ℓ ̸= −∞,Mℓ,j ̸= −∞},
– the other children have set of contributors:

{(ℓ, k) | ∃(i, j) ∈ C,Mi,ℓ ̸= −∞,Mk,j ̸= −∞,
Mℓ,k ̸= −∞,Mk,ℓ ̸= −∞}.

Contributors indicate which elements of the matrix mean-
ingfully contribute to a valid run for the whole word. For
example, at the root, not every entry is a weight on a run from
an initial state to a final state, so not all entries contribute to
the value computed on the word. The choices for the root and
product nodes are uncontroversial, however the choice is non-
trivial for the middle children of an idempotent node. Here
only entries that could be repeated many times are taken; this
is because, whilst other transitions could contribute to a valid
run, they could contribute only once, whereas the entries we
consider can be used in many of the idempotent children.

Running Example, Part 8. Fig. 2 depicts a factorisation tree for
the word (anbanb)n of height 5. Every node is depicted with
the sub-word and a partial description of its α-labelling: every
node is α-labelled by (p, 1, p,M), where M is the matrix
depicted. The contributors are highlighted in the matrix for
each node. Only a representation of the middle children is
depicted for idempotent nodes. We will return to the fault
label and the sequence ν1, . . . , ν5 after defining faults. ◀

We will make use of the property that every node has at



least one contributor, stated in the following proposition and
proven in Appendix D.

Proposition 16. Given a word w such that [[B]](w) ̸= −∞,
every node in any factorisation tree on w has a non empty set
of contributors.

C. Faults

Given a word w such that [[A]](w) ̸= −∞ and a factorisation
tree on w, a node labelled with (p, x, q,M), is called a fault
if:

• it is the child of an idempotent node, but is neither the
left-most nor the right-most child,

• x = 1,
• Mi,j = 0 for all pairs (i, j) in its set of contributors.

Running Example, Part 9. Let us return to the factorisation
tree for (anbanb)n depicted in Fig. 2. Observe that the node
indicated by ν1 is a middle-child of an idempotent with only
zero entries in the contributors and is therefore a fault. Since
the two subtrees below ν4 are identical the other node labelled
by a is also a fault. In Running Example, Part 10 we will use
the indicated fault ν1 to construct a (tractable) witness of non-
domination. ◀

VII. NO TREE HAS A FAULT IMPLIES BIG-O

In this section, we suppose that no word has a factorisation
tree of height at most 3|MA,B| with a fault, and we construct
a positive integer c such that:

[[A]](w) ≤ c[[B]](w) + c for all w ∈ Σ∗. (1)

Recall that we can also assume that [[B]](w) ̸= −∞ for all
words w.

Let w = w1 · · ·wk with w1, . . . , wk ∈ Σ such that
[[A]](w) ̸= −∞ and let:

p0
w1:x1−−−−→ p1

w2:x2−−−−→ p2 · · · pk−1
wk:xk−−−−→ pk

be its unique accepting path in A. Given a factorisation tree
t on w, for a node ν in t, root of the subtree with leaves
αw(wi), . . . , αw(wj), we denote by:

• valA(ν) the weight xi + . . . + xj of the path in A
corresponding to the factor wi · · ·wj ,

• ValB(ν) the matrix MB(wi · · ·wj).
Let Λ be the largest value occurring on a transition in A,

and let ch = (4|QB|+4)hΛ for positive integers h. We prove
the following property:

Proposition 17. Let w be a word such that [[A]](w) ̸= −∞
and t a factorisation tree on w with no fault. Let ν be a node
in t of height h for some positive integer h. Then:

valA(ν) ≤ ch max
(i,j)∈Cν

ValB(ν)i,j + ch

Observe that Eq. (1) is trivial for w such that [[A]](w) =
−∞. For w such that [[A]](w) ̸= −∞, Eq. (1) is a direct
corollary of Proposition 17 choosing c = cH where H =
3|MA,B|, ν as the root of a factorisation tree on w of height
at most H , which exists by Theorem 15.

Proof. The proof is by induction on h.

Case 1 (If ν is a leaf and h = 0). By definition of Λ as the
largest value occurring on a transition in A, and by definition
of c0, we have:

valA(ν) ≤ Λ ≤ c0 ≤ c0 max
(i,j)∈Cν

ValB(ν)i,j + c0.

The last inequality holds only if the set of contributors Cν

is not empty, which is the case by Proposition 16 since we
assume [[B]](w) ≥ 0 for all w ∈ Σ∗.

Case 2 (If ν is a product node). Let ν1 and ν2 be the two
children of ν. Then valA(ν) = valA(ν1) + valA(ν2). By
induction, for each child m ∈ {1, 2} we have:

valA(νm) ≤ ch−1 max
(i,j)∈Cνm

ValB(νm)i,j + ch−1

Suppose valA(ν1) ≥ valA(ν2) (the case valA(ν2) > valA(ν1)
is symmetric). Then:

valA(ν1) + valA(ν2) ≤ 2valA(ν1)

≤ 2ch−1 max
(i,j)∈Cν1

ValB(ν1)i,j + 2ch−1

Consider (d, f) ∈ Cν1
for which this maximum is attained.

Since (d, f) is a contributor of a left child then there exists g
such that ValB(ν2)f,g ̸= −∞ and (d, g) is a contributor of ν.
We get:

valA(ν) ≤ valA(ν1) + valA(ν2)

≤ 2ch−1ValB(ν1)d,f + 2ch−1

≤ 2ch−1(ValB(ν1)d,f + ValB(ν2)f,g) + 2ch−1

≤ 2ch−1 max
(i,j)∈Cν

ValB(ν)i,j + 2ch−1

≤ ch max
(i,j)∈Cν

ValB(ν)i,j + ch (as ch > 2ch−1.)

Case 3 (If ν is an idempotent node). Let ν1, . . . , νd be the
children of ν. By definition and idempotency, valA(ν) =
valA(νm) for all m = 1, . . . , d. If valA(ν) = 0, then
we directly get the result since the set of contributors Cν

is not empty by Proposition 16 (because we assume that
[[B]](w) ≥ 0 for all w ∈ Σ∗). Let’s suppose now that
valA(ν) = valA(νm) = 1 for all m = 1, . . . , d.

By inductive hypothesis, for all m = 1, . . . , d, we have:

valA(νm) ≤ ch−1 max
(i,j)∈Cνm

ValB(νm)i,j + ch−1.

Since there is no fault in the tree, then for all m, there is some
(i, j) ∈ Cνm such that ValB(νm)i,j ≥ 1, and hence:

valA(νm) ≤ 2ch−1 max
(i,j)∈Cνm

ValB(νm)i,j . (2)

Let (im, jm) be a pair in Cνm on which this maximum
is attained. Note that ValB(νm) are the same for all m as
ValB(ν), and that this is an idempotent matrix. Let us define
i ∼ j if and only if ValB(ν)i,j = ValB(ν)j,i ̸= −∞.
By idempotency, this gives an equivalence relation, and we
denote by S1, . . . ,Sz its equivalence classes. Note that z is
bounded by the number of states of B. We now partition the



set {1, . . . , d} (the children of the node ν) as the union Φ of
the sets {1}, {d}, ΓSf ,even and ΓSf ,odd for all f = 1, . . . , z,
where:

ΓSf ,even = {m ∈ {2, . . . , d−1} | im, jm ∈ Sf and m is even}

and

ΓSf ,odd = {m ∈ {2, . . . , d−1} | im, jm ∈ Sf and m is odd}.

This gives a partition of {1, . . . , d} since (im, jm) is in the set
of contributors of νm and then im and jm are in the same Sf

for some f . We partition this way into even and odd indices to
be able to reconstruct a path: if we select for example the even
indices in one of the Sf , by definition, we can construct a path
in the automaton taking the transitions corresponding to these
indices. Note that the number of sets forming Φ is bounded
by 2(|QB| + 1), where we recall that |QB| is the number of
states of B.

For each Γ in Φ, let xΓ =
∑

m∈Γ valA(νm), and denote by
Γmax one for which this sum is maximal. Observe that:

valA(ν) ≤ 2(|QB|+ 1)xΓmax .

Sub-case 3.1 (Γmax = ΓSf ,odd for some f ). We have:

valA(ν) ≤ 2(|QB|+ 1)xΓmax

= 2(|QB|+ 1)
∑

m∈ΓSf ,odd

valA(νm)

≤ 2(|QB|+ 1)
∑

m∈ΓSf ,odd

(2ch−1ValB(νm)im,jm)

(by Eq. (2))

= 4ch−1(|QB|+ 1)
∑

m∈ΓSf ,odd

ValB(νm)im,jm .

By definition of contributors, and construction of ΓSf ,odd,
there exists (i, j) in Cν and i = ℓ0, ℓ1, . . . , ℓd = j such
that im = ℓm−1 and jm = ℓm for all m in ΓSf ,odd and
ValB(νm)ℓm−1,ℓm ̸= −∞ for all m = 1, . . . , d, hence

∑

m∈ΓSf ,odd

ValB(νm)im,jm ≤
d∑

m=1

ValB(νm)ℓm−1,ℓm .

Since we also have:

max
(i,j)∈Cν

ValB(ν)i,j

= max
(i,j)∈Cν

max
i=ℓ0,ℓ1,...,ℓd=j

(
d∑

m=1

ValB(νm)ℓm−1,ℓm

)

we obtain:

valA(ν) ≤ 4ch−1(|QB|+ 1)
∑

m∈ΓSf ,odd

ValB(νm)im,jm

≤ 4ch−1(|QB|+ 1) max
(i,j)∈Cν

ValB(ν)i,j .

Sub-case 3.2 (Γmax = ΓSf ,even for some f ). This is similar
to the previous case.

Sub-case 3.3 (Γmax = {1}). This is similar to the product
case. We have:

valA(ν) ≤ 2(|QB|+ 1)xΓmax

= 2(|QB|+ 1)valA(ν1)

≤ 4(|QB|+ 1)ch−1 max
(i,j)∈Cν1

ValB(ν1)i,j

≤ 4(|QB|+ 1)ch−1 max
(i,ℓ)∈Cν

ValB(ν)i,ℓ

(by definition of contributors of the left-most child.)

Sub-case 3.4 (Γmax = {d}). This is symmetric to the previous
case.

VIII. CONSTRUCTION OF A WITNESS IF THERE IS A TREE
WITH A FAULT

We suppose that some word has a factorisation tree of height
at most 3|MA,B| with a fault. We are going to construct a
tractable witness of non-domination in MA,B.

Let ν be a fault of maximal height in this tree. Let ν1 = ν
and let νh+1 be the direct parent of νh for h = 2, . . . ,m,
where νm is the root node. Before giving the construction of
the tractable witness formally, we will see how to construct it
on our running example.

Running Example, Part 10. We consider the tree depicted in
Fig. 2. We define ν1, . . . , ν5 as explained above. A tractable
witness is constructed by doing the stabilisation operation on
the labelling of ν1, then doing the product on the right with
the labelling corresponding to b and on the left with the one
corresponding to ab. This gets us to ν4. At this point, we
take the flattening of what we have obtained. We define the
β-labelling of the nodes νh:

β(ν2) = (p, 1, p,

( 0 − − −
− 1 − −
− − 0 −
− − − 0

)
)♯ = (p,∞, p,

( 0 − − −
− ∞ − −
− − 0 −
− − − 0

)
)

β(ν3) =β(ν2)⊗ (p, 1, p,

( 0 0 − −
− − 0 −
− − 0 −
− − − 1

)
)

=(p,∞, p,

( 0 0 − −
− − ∞ −
− − 0 −
− − − 1

)
)

β(ν4) =(p, 1, p,

( 0 0 − −
− − 1 −
− − 0 −
− − − 1

)
)⊗ β(ν3)

=(p,∞, p,

( 0 0 ∞ −
− − ∞ −
− − 0 −
− − − 1

)
)

β(ν5) = β(ν4)
♭ = (p,∞, p,

( 0 0 1 −
− − 1 −
− − 0 −
− − − 1

)
)

Observe that β(ν5) is a witness of non-domination. ◀

Running Example, Part 11. Recall that contributors are defined
top down, thus whether a node is a fault depends on the context
in which it sits. Observe that ν5 of Fig. 2, which is a fault in
that context, would not be fault if the tree were rooted at ν3.
This is because the contributors are different in this scenario,
which is depicted in Fig. 3. In this case the node corresponding



a
not a fault

(0 − − −
− 1 − −
− − 0 −
− − − 0

)

an
(0 − − −

− 1 − −
− − 0 −
− − − 0

)
b

(0 0 − −
− − 0 −
− − 0 −
− − − 1

)

anb

(0 0 − −
− − 1 −
− − 0 −
− − − 1

)

Fig. 3: A factorisation tree for the word anb with contributors
highlighted.

to a has a 1 in an entry of the contributors, and is therefore
not a fault, and does not induce a witness. ◀

Formally, every node ν in the tree is labelled by an element
α(ν) of MA,B. We now associate nodes ν2, . . . , νm with
elements of MA,B, which we denote by β(ν), defined by the
following:

• If h = 2, let β(ν2) = α(ν1)
#. This means we take

stabilisation of the child’s label.
• If νh is a product of νh−1 and ν′, we let β(νh) =
β(νh−1)⊗ α(ν′).

• If νh is a product of ν′ and νh−1, we let β(νh) = α(ν′)⊗
β(νh−1).

• If νh is the idempotent product, with νh−1 a middle child
(that is, neither the left child nor the right) we let β(νh) =
β(νh−1)

♭. This means we flatten the β-label of the child.
• If νh is the idempotent product, with νh−1 as the left child

(resp. right child), we let β(νh) = β(νh−1) ⊗ α(νh−1)
(resp. β(νh) = α(νh−1)⊗ β(νh−1)).

Note we only associate β-labels with nodes on the path
ν2, . . . , νm, and not other nodes in the tree.

We will observe that the β-labelling of the root, β(νm), is
a tractable witness of non-domination. First, by construction,
it has the correct shape: it is constructed with a single
stabilisation at β(ν2), and subsequently only products with
elements of MA,B and nested flattening operations. Since the
height of the tree is bounded by 3|MA,B| then so to is the
number of flattening operations defining β(νm). All is left is
to show that it is a witness, which we do with the following
property (in which we recall Cν are the contributors of a node
ν).

Proposition 18. For all h ∈ {2, . . . ,m}, we have β(νh) =
α(νh) and denoting β(νh) = (p, x, q,M), we have x = ∞
and Mi,j ≤ 1 for all (i, j) ∈ Cνh

.

Observe that this immediately implies that β(νm) ∈ MA,B
is a witness.

Proof. We proceed by induction on h starting from h = 2.

Case 1 (Base case, h = 2). Recall that β(ν2) = α(ν)#. Due
to ν being an idempotent fault we can assume α(ν) takes the
form (p, 1, p,M), hence β(ν2) = (p,∞, p,N) where N =
M ⊗M ′⊗M , and M ′ replaces diagonal elements of M with
their stabilisation, i.e. M ′

ℓ,ℓ = (Mℓ,ℓ)
#. Since ν is a fault

Mℓ,ℓ = 0 for (ℓ, ℓ) ∈ Cν , hence M ′
ℓ,ℓ = 0. Thus for (i, j) ∈

Cν2 Mi,j = maxℓ,k Mi,ℓ + M ′
ℓ,k + Mk,j ≤ 1. Indeed for

(ℓ, k) that could contribute to the maximum, Mi,ℓ,Mk,j ≤ 1
by definition, and either ℓ ̸= k and M ′

ℓ,k ≤ 1, or ℓ = k,
(ℓ, k) ∈ Cν and hence, M ′

ℓ,k = 0.
Case 2 (νh is a product). Let us assume νh is a product of
νh−1 and ν′. We have β(νh) = β(νh−1)⊗ α(ν′) = β(νh−1)⊗
α(ν′) = α(νh−1)⊗ α(ν′) = α(νh).

By induction hypothesis, β(νh−1) = (p,∞, r,N ′) for some
p, r,N ′. Let α(ν′) = (r, x, q,M) for some q,M and some
finite x. Then β(νh) = (p,∞, q,N ′ ⊗M). Let N = N ′ ⊗M .

Consider (i, j) ∈ Cνh
. We have Ni,j = maxℓ N

′
i,ℓ +Mℓ,j .

Observe that (i, ℓ) ∈ Cνh−1
whenever Mℓ,j ̸= −∞ and N ′

i,ℓ ̸=
−∞. Hence N ′

i,ℓ ≤ 1 by induction and Mℓ,j ≤ 1 by definition,
since α(ν) ∈ MA,B. Hence Ni,j ≤ 1.

The case νh is a product of some ν′ and νh−1 is similar.
Case 3 (νh is idempotent such that νh−1 is the left-most child).
Note that α(νh) = α(νh−1) = β(νh−1) by induction, and
β(νh) = β(νh−1)⊗ α(νh) by definition. Hence, β(νh) =
α(νh) by idempotency. By induction hypothesis, β(νh−1) =
(p,∞, p,M), for some p,M , so β(νh) = (p,∞, p,M ⊗M).

Let (i, j) in Cνh
. Then by definition of contributors, for all

ℓ such that M i,ℓ ̸= −∞ and M ℓ,j ̸= −∞, we have (i, ℓ) in
Cνh−1

. Hence, by induction hypothesis, for such ℓ, Mi,ℓ ≤ 1.
We then have (M ⊗M)i,j = maxℓ Mi,ℓ +M ℓ,j ≤ 1.
Case 4 (νh is idempotent such that νh−1 is the right-most
child). This case is symmetric to the previous one.
Case 5 (νh is idempotent such that νh−1 is a middle child).
By idempotence, note that α(νh) = α(νh−1). Also note that
for idempotent e ∈ MA,B we have e♭ = e, thus e♭ = e =

e. Therefore we have β(νh) = (β(νh−1))♭ = α(νh−1)♭ =
α(νh−1) = α(νh).

By induction hypothesis, β(νh−1) = (p,∞, p,M), for some
M , and thus we have β(νh) = (p,∞, p,M)♭ = (p,∞, p,M ♭).
Let N = M ♭.

Consider (i, j) ∈ Cνh
. We have Ni,j = maxℓ,k M i,ℓ +

⟨M3⟩ℓ,k +Mk,j , where ⟨M3⟩ is the matrix M3 where all the
non diagonal elements are replaced by their barred version.
Observe that if ℓ ̸= k then M i,ℓ, ⟨M3⟩ℓ,k,Mk,j cannot be ∞,
as each entry has been replaced by its barred version.

Thus it remains to verify M i,ℓ + ⟨M3⟩ℓ,ℓ +M ℓ,j ≤ 1. We
show that ⟨M3⟩ℓ,ℓ ≤ 1 for ℓ such that Mi,ℓ ̸= −∞ and Mℓ,j ̸=
−∞. Note that M3

ℓ,ℓ ≤ 1 if and only if Mℓ,s+Ms,t+Mt,ℓ ≤ 1
for all s, t. For any such ℓ, s, t in which all three are not −∞,
the pairs (ℓ, s), (s, t) and (t, ℓ) are in the set of contributors
Cνh−1

of νh−1. Thus by induction all three are less than or
equal to 1 and thus M3

ℓ,ℓ ≤ 1.

IX. PRESENCE OF WITNESS IMPLIES NON BIG-O

In this section, we assume that there is a witness of non-
domination in MA,B and we construct a sequence of words
(wi)i∈N such that for all positive integer c, there is i such that:

[[A]](wi) > c · [[B]](wi) + c.

We will prove the following property:



Proposition 19. For all (p, x, q,M) in MA,B, for all s ∈ N
there exists a pair (ws, xs), with ws a word over Σ∗ and
xs ∈ N with the following properties:
(1) p

ws:xs−−−→ q in A with x = xs,
(2) MB(ws) = M ,
(3) if x = ∞, for all i, j such that Mi,j ≤ 1,

xs ≥ s(MB(ws))i,j + s.

Note that applying this property to a witness of non-
domination gives the expected result and concludes the proof.

Proof. We prove the proposition by structural induction on
MA,B. Consider an element (p, x, q,M) in MA,B. By defi-
nition of MA,B, (p, x, q,M) is either a generator of MA,B
representing a letter, the product of two elements of MA,B,
the stabilisation or the flattening of an element of MA,B.

Case 1 (Base case: generator representing letters). Consider
an element (p, y, q,MB(a)) such that a ∈ Σ, p

a:y−−→ q in A.
We associate with every s the word ws = a. Since y < ∞,
there is nothing to prove for (3).

Case 2 (Product of two elements). Suppose (p, x, q,M) =
(p, y, r,N) ⊗ (r, z, q, P ) with (us, ys)s∈N and (vs, zs)s∈N
given by induction.

• If y ≤ 1 and z ≤ 1 (and so x ≤ 1), we define ws = usvs
and xs = ys+zs. (1) and (2) are immediate by definition
and there is nothing to prove for (3).

• If y = z = ∞, we define ws = usvs and xs = ys+zs. (1)
and (2) are immediate by definition. For (3), intuitively,
since both y = z = ∞ we can straightforwardly bound
both ys and zs through their respective words. Suppose
Mi,j ≤ 1, we have MB(ws)i,j = MB(us)i,ℓ+MB(vs)ℓ,j
for some ℓ. Note that we have Ni,ℓ ≤ 1 and Pℓ,j ≤ 1,
otherwise Mi,j = ∞. Hence s(MB(us)i,ℓ) + s ≤ ys and
s(MB(vs)ℓ,j) + s ≤ ys.

s(MB(ws)i,j) + s = s(MB(us)i,ℓ +MB(vs)ℓ,j) + s

≤ sMB(us)i,ℓ + s+ sMB(vs)ℓ,j + s

≤ ys + zs = xs as required.

• If y = ∞ but not z, let Θ be the maximum value appear-
ing in the matrix MB(v0). We define ws = us(Θ+1)v0
and xs = ys(Θ+1) + z0. (1) and (2) are immediate by
definition. For (3), we will only be able to use property
(3) inductively from y = ∞ but not z, thus we only use
the short word v0 (to ensure path compatibility) with the
sufficiently larger word us(Θ+1). Suppose Mi,j ≤ 1, we
have MB(ws)i,j = MB(us(Θ+1))i,ℓ+MB(v0)ℓ,j for some
ℓ. Note that we have Ni,ℓ ≤ 1, otherwise Mi,j = ∞.
Hence s(Θ+1)(MB(us(Θ+1))i,ℓ)+s(Θ + 1) ≤ ys(Θ+1).

s(MB(ws)i,j) + s = s(MB(us(Θ+1))i,ℓ +MB(v0)ℓ,j) + s

≤ sMB(us(Θ+1))i,ℓ + sΘ+ s
(since MB(v0)ℓ,j ≤ Θ)

≤ s(Θ + 1)MB(us(Θ+1))i,ℓ + s(Θ + 1)

≤ ys(Θ+1) ≤ ys(Θ+1) + z0 = xs.

• The case of z = ∞ but not y is symmetric.
Case 3 (Stabilisation of an element). Suppose (p, x, p,M) =
(p, y, p, P )♯ and (us, ys)s∈N given by induction.

• If y = 0 (and hence x = 0), let ws = us and xs = ys.
(1) and (2) are immediate by definition - since P ♯ = M
as P is path-idempotent - and there is nothing to prove
for (3).

• If y = ∞ (and hence x = ∞), let ws = us and xs = ys.
(1) and (2) are immediate by definition. Observe that if
Mi,j ≤ 1 then Pi,j ≤ 1, thus

s(MB(ws)i,j) + s = s(MB(us)i,j) + s ≤ ys = xs.

• If y = 1 (and hence x = ∞), let Θ be the maximum
value appearing in the matrix MB(u0) and recall |QB| is
the number of states of B. We define ws = u

s(Θ|QB|+1)
0

and xs = s0s(Θ|QB| + 1). (1) and (2) are immediate
by definition. For (3), intuitively if Mi,j ≤ 1, then the
repetition of u0 cannot access a positive cycle between i
and j, hence bounding the weight of MB(ws)i,j , while
iterating u0 sufficiently many times will make xs as large
as needed. Formally, if Mi,j ≤ 1, then for all ℓ such that
Pi,ℓ and Pℓ,j are both different from −∞, we have Pℓ,ℓ =
0. Hence, since P is path-idempotent and MB(u0) = P
by induction, MB(ws)i,j has value at most Θ|QB|. On
the other hand, the weight of ws in A from p to p is at
least s(Θ|QB|+ 1), since y = 1. Hence,

s(MB(ws)i,j) + s ≤ sΘ|QB|+ s ≤ xs.

Case 4 (Flattening of an element). Suppose (p, x, p,M) =
(p, y, p, P )♭ and (us, ys)s∈N given by induction.

• If x = y ≤ 1 let ws = us and xs = ys. (1) and (2)
are immediate by definition – since P ♭ = M as P is
path-idempotent – and there is nothing to prove for (3).

• Otherwise, we have x = y = ∞. Let Θs be the maximum
value appearing in the matrix MB(us), |QB| the number
of states of B and Ks = |QB|Θs + 1. We define ws =
(us)

Ks and xs = Ksys. (1) and (2) are immediate by
definition. We prove (3).
By induction, if Pi,j ≤ 1 then s(MB(us)i,j) + s ≤ ys.
Let Rs = max

i,j:Pi,j≤1
MB(us)i,j . In particular,

sRs + s ≤ ys. (3)

Consider i, j such that Mi,j ≤ 1. Since P is path-
idempotent and by definition of flattening, necessarily for
all ℓ such that both Pi,ℓ and Pℓ,j are different from −∞,
we have Pℓ,ℓ ≤ 1 (⋆).
We have:

MB(ws)i,j = MB(u
Ks
s )i,j

= max
i0,i1,i2,...,iKs
i0=i, iKs=j

MB(us)i0,i1
+MB(us)i1,i2

+···+MB(us)iKs−1,iKs

(4)

Consider the path i0, i1, . . . , iKs
that achieves the max-

imum in Eq. (4). Since Ks ≥ |QB|, there exists
n < m such that in = im and all elements



i0, . . . , in, im+1 . . . , iKs
are distinct. By (⋆), we have

Pin,in ≤ 1 and furthermore, Piℓ,iℓ+1
≤ 1 for n ≤

ℓ ≤ m − 1 since Pin,im ≤ 1. By definition of Rs, we
then have MB(us)iℓ,iℓ+1

≤ Rs. Hence all components of
Eq. (4), except those between i0, . . . , in and im, . . . , iKs

,
are bounded above by Rs, and the remaining, of which
there are at most |QB|, are bounded above by Θs. We
have:

MB(ws)i,j ≤ |QB|Θs +KsRs. (5)

So, we have:

s(MB(ws)i,j) + s ≤ s(|QB|Θs +KsRs) + s
(by Eq. (5))

= s(KsRs + |QB|Θs + 1)

= s(KsRs +Ks)
(by choice of Ks)

= Ks(sRs + s)

≤ Ksys (by Eq. (3))
= xs.

Running Example, Part 12. We compute the sequence ws for
the nodes inducing the tractable witness in our example:

• The leaves, labelled by a and b, induce the sequences
ws = a for all s, and ws = b for all s respectively.

• β(ν2) is generated as the stabilisation of an element with
word us = a in which y = 1 (Case 3.3), hence ws =
as(Θ|QB|+1) = a5s, where Θ = maxi,j MB(a)i,j = 1 and
|QB| = 4.

• β(ν3) is the product of elements with us = a5s and
vs = b, where y = ∞, but not z, and so we have ws =
us(Θ+1)v0 = a10sb, where Θ = maxi,j MB(b)i,j = 1.

• β(ν4) is the product of elements with us = ab and vs =
a10sb, where z = ∞ but not y, and so we have ws =
abvs(Θ+1) = aba20sb, as Θ = maxi,j MB(ab)i,j = 1.

• The tractable witness β(ν5) is the flattening of an el-
ement with us = aba20sb, where y = ∞, thus (by
Case 4.2) ws = u

|QB|Θ+1
s = (aba20sb)4·20s+1, where

Θ = maxi,j MB(us)i,j = 20s.
Hence, our witness shows that for every s, ws =
(aba20sb)80s+1 is a contradiction to [[A]] ≤ s[[B]] + s. Apart
from the additional complexity introduced by the constants, the
sequence matches our expectations from Running Example,
Parts 2 and 7.

Indeed, [[A]](ws) = (20s+ 3)(80s+ 1) = 800s2 + 260s+
3 increases quadratically in s, while [[B]](ws) = 160s + 2,
maximised by counting b’s, only increases linearly in s, and
in particular:

800s2 + 260s+ 3 > s(160s+ 2) + s for every s ∈ N. ◀

X. CONCLUSION

In this paper, we develop new techniques – in particular a
new flattening operation – to describe the behaviour of max-
plus automata. It would be interesting to see if such insight
can be applied to other problems, particularly for min-plus

automata. Another direction would also be to construct a
series of examples of max-plus automata requiring tractable
witnesses with an increasing number of nested flattening
operations2.
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APPENDIX

A. Proof of Proposition 5

Proposition 5. If the simplified big-O problem is decidable in
PSPACE then the big-O problem is decidable in PSPACE.

Proof. We reduce an instance of the big-O problem to the
simplified big-O problem. The instance of simplified big-O
problem will be of polynomial size with respect to the initial
input, but a PSPACE pre-processing step is also used.

• Let A,B be max-plus automata. Let us first construct
A′,B′ with [[B′]] : Σ∗ → N such that A is big-O of B
if and only if A′ is big-O of B′. Let LA (resp. LB) be
the (rational) language of words w such that [[A]](w) ̸=
−∞ (resp. [[B]](w) ̸= −∞). Checking whether LA ⊆ LB
can be done in PSPACE (consider the Boolean automata
obtained from A and B by ignoring the weights - they
accept LA and LB, and inclusion of rational languages
is PSPACE [26]). If LA is not included in LB then A
cannot be big-O of B. Take A′ that computes the length
of the words and B′ that computes the function 0. If LA is
included in LB, take A′ = A and B′ being B augmented
with a new state which is both initial and finial and has
a self loop on all letters with weight 0. In both cases,
A is big-O of B if and only if A′ is big-O of B′ and
[[B′]] : Σ∗ → N.

• We now reduce this to the case where automaton
A is deterministic. Consider two automata A =
⟨QA,Σ,MA, IA, FA⟩ and B = ⟨QB,Σ,MB, IB, FB⟩
with [[B]] : Σ∗ → N. We construct A′,B′ with A′

deterministic and [[B′]] : Σ∗ → N such that A is big-
O of B if and only if A′ is big-O of B′. Automata A′

and B′ are over the alphabet Σ′ = {aq | a ∈ Σ, q ∈ QA}
and:
– A′ is constructed from A, with set of states QA ∪

{r} with r a new state (the new unique initial state),
(IA′)r = 0 and all the other entries of IA′ being −∞,
final states (FA′)p = (FA)p for p ∈ QA and (FA′)r =

max{(FA)p | p initial in A } , a transition p
aq :x−−−→

q for each transition p
a:x−−→ q in A, and a transition

r
aq :x+(IA)p−−−−−−−→ q for each transition p

a:x−−→ q in A. Note
that A′ is deterministic.

– B′ is constructed from B, with set of state QB, initial
and final states IB and FB respectively, and a transition
p

ar:x−−−→ q for each transition p
a:x−−→ q in B and each

r ∈ QA. Note that [[B]] : Σ∗ → N.
Suppose that A is big-O of B and let us prove that A′

is big-O of B′. Let w be a word over Σ′ and w̄ over Σ
defined as w where the subscripts of the letters are re-
moved. Then [[A′]](w) ≤ [[A]](w̄) and [[B]](w̄) = [[B′]](w)
by construction and hence A′ is big-O of B′. Conversely,
suppose that A′ is big-O of B′. Let w ∈ Σ∗. Consider
an accepting run in A labelled by w that has maximal
weight and q0, q1, q2, . . . , qk the corresponding sequence
of states. Let w̄ = a1q1 · · · a

k
qk

word over Σ′ where w =
a1 · · · ak and ai ∈ Σ for all i. Then [[A]](w) = [[A′]](w̄)

and [[B′]](w̄) = [[B]](w) by construction. Hence A is big-
O of B.

B. Proof of Proposition 6

Proposition 6. The simplified big-O problem is PSPACE-hard.

Proof. We reduce from the COFINITENESS problem, which
asks whether the language of a non-deterministic finite au-
tomaton is cofinite, that is, accepts all but a finite set of words.

Lemma 20. COFINITENESS is PSPACE-hard

Proof. We reduce from the universality of non-deterministic
finite automata. Let A be an instance of universality over
alphabet Σ; we construct A′ over Σ∪{#} where # is a new
letter not in Σ. A′ is such that for all words w over Σ∗ and
for all words u over Σ∪ {#}, w#u is accepted by A′ if and
only if w is accepted in A. This is achieved by augmenting
A with an accepting sink state reachable on # from every
accepting state of A. We observe A is universal if and only
if A′ is cofinite. In particular, if A is universal, so too is A′,
and in particular, cofinite. If A does not accept w then A does
not accept the language w#Σ∗, and thus is not cofinite.

Let B be an input to COFINITENESS; we construct an
instance of the simplified big-O problem. Let A′ and B′ such
that [[A′]](w) = |w| for all w ∈ Σ∗ and [[B′]](w) = |w| for
all w accepted by LB and 0 otherwise. The automaton B′ is
constructed from B by associating every edge in B with the
weight 1 and augmented with a new state which is both initial
and finial and has a self loop on zero for all letters.

We observe B is cofinite if and only if A is big-O of B.
• If B is cofinite there exists a longest word wL not

recognised by B and [[A′]](w) ≤ [[B′]](w) + |wL| for all
w ∈ Σ∗ and A is big-O of B.

• If B is not cofinite then there is an infinite sequence
of words not accepted by B and in particular one
of increasing length words, (wi)i∈N. Hence we have
[[A′]](wi) → ∞ while [[B′]](wi) = 0 as i → ∞ and A′ is
not big-O of B′.

C. Basic properties of the projection

Recall the projection into the semi-group Ω = {−∞, 0, 1},
defined in Section IV-B. We prove the following basic prop-
erties of the projection.

Lemma 21.
Let a, b ∈ Nmax, and let a, b be the projection of a and b into
Ω, we have:
(1) If a ≤ b then a ≤ b.
(2) a+ b = a+ b, where a+ b is taken in the Ω semiring.

Let M,N ∈ (Nmax)
d×d and let M,N be the pointwise

projection of M and N into Ω
d×d

, we have:
(3) M ⊗N = M ⊗ N where M ⊗ N is taken in the Ω

semiring.

Proof.



(1) • Suppose a = −∞ then −∞ = a ≤ b and −∞ = a ≤
b.

• Suppose a = 0, we have a ≤ b ⇐⇒ b ∈ N. Then
a ≤ b.

• Suppose a ∈ N, we have a ≤ b ⇐⇒ b ∈ N≥a, thus
b = 1. Then 1 = a ≤ b.

(2) • Suppose a = −∞ (or, b = −∞) then a+ b = a+ b =
a+ b = −∞.

• Suppose a = b = 0, then a+ b = a+ b = a+ b = 0.
• Suppose a ∈ N≥1, b ∈ N. Then a+ b ∈ N≥1, a+ b =
1, a = 1, a+ b = 1.

(3) We have (M ⊗N)i,k = Mi,j +Nj,k for some j

= Mi,j +Nj,k

≤ max
j

Mi,j +Nj,k

= (M ⊗N)i,k

and (M ⊗N)i,k = Mi,j +Nj,k for some j

= Mi,j +Nj,k

≤ max
j

Mi,j +Mj,k

= (M ⊗N)i,k.

D. Proof of Proposition 16

Proposition 16. Given a word w such that [[B]](w) ̸= −∞,
every node in any factorisation tree on w has a non empty set
of contributors.

Proof. We show that if a node has a contributor then all its
children have a contributor. Since we assume IB ⊗MB(w)⊗
FB ̸= −∞ we observe that the root in any factorisation
tree has non-empty contributors, this would imply that every
element of the tree has non-empty contributors.

First observe, that the definition of a contributor requires
that for every ν, with α(ν) = (p, x, q,M), if (i, j) ∈ Cν then
Mi,j ̸= −∞. We consider two cases for both type of internal
node. Suppose (i, j) ∈ Cν and Mi,j ̸= −∞.

Case 1 (ν is a product node). Suppose α(ν) = (p, x, q,M)
is the product of two children ν1 and ν2 with α(ν1) =
(p, x1, r, P1) and α(ν2) = (r, x2, q, P2) then M = P1 ⊗ P2,
and Mi,j = (P1)i,k + (P2)k,j for some k. Thus (i, k) ∈ Cν1

and (k, j) ∈ Cν2 .

Case 2 (ν is an idempotent node). Suppose ν has children
ν1, . . . , νk, k ≥ 3, with α(ν) = α(νi) = (p, x, p,M) for all
1 ≤ i ≤ k. Since M is idempotent, we have M = Md for
any choice of d ≥ 1. Note that there is no requirement that
d ≤ k, the equivalence holds for all d by idempotence. In
particular, let us fix a choice of some d ≥ |QB| + 3. Choose
a contributor of ν, (i, j) ∈ Cν , and so we have Mi,j ̸= −∞.
Further, since M is idempotent, we have Mi,j = Md

i,j . Thus
there exists a sequence i = ℓ1, . . . , ℓd+1 = j such that Md

i,j =
Mℓ1,ℓ2 +Mℓ2,ℓ3 + · · ·+Mℓd,ℓd+1

, where Mℓn,ℓn+1 ̸= −∞ for
every n ≤ d.

Note then that (ℓ1, ℓ2) ∈ Cν1
, (ℓd, ℓd+1) ∈ Cνk

. Further-
more, by simple application of the pigeon hole principle,

there exists distinct indices n,m such that in = im (as
d ≥ |QB|+3). Thus we have (in, in) ∈ Cν2 ∩· · ·∩Cνk−1

.
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