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Abstract 

Petroleum markets are undergoing rapid financialization and integration, leading to 
increased volatility and exposing participants to potentially much greater risks. This 
thesis addresses the explicit modeling of petroleum price volatility in a multivariate 
framework and analyzes the relative merits of multivariate models to describe change 
in the context of petroleum markets risk. The focus of this thesis will be on explaining 
the dynamic interdependencies in petroleum markets and further demonstrate 
whether the existence of such interdependencies prompt for the need to assess risk 
differently, by which this thesis contributes to the existing economic or econometric 
theories in three aspects. The first empirical part examines the importance of volatility 
spillovers and asymmetry in petroleum markets and their influence on optimal hedging 
strategy. To address in a realistic way the dynamic conditional correlation of petroleum 
spot and futures markets, we develop a new theoretical framework by accounting for 
the effect of time-varying conditional correlations in the conditional volatility processes 
of the VARMA-AGARCH model in what is termed the VARMA-AGARCH-DCC model. 
Results demonstrate that the proposed model is the best for OHR calculation in terms of 
the variance of portfolio reduction and tail risk analysis. The second empirical part, for 
the first time in the literature of energy economics, examines the volatility and 
correlation interdependence between oil market and China stock market at the 
sector-level. Results indicate that oil price fluctuations constitute a systematic asset 
price risk at the sector level and information content embedded in oil market volatility 
is an effective and valuable variable for constructing an optimal oil-stock holding. 
Finally, the third empirical part, for the first time in the literature of energy economics, 
investigates the volatility transmission mechanism among three benchmark oil markets 
and quantifies the size and persistence of these connections through employing the 
Volatility Impulse Response Function (VIRF) methodology. Results suggest markedly 
different responsiveness to historical events and volatility/correlation dynamics across 
crude oil benchmark markets. Overall, the findings of this thesis have important 
implications for crude oil market trading and risk management, as well as stock market 
investors, by providing valuable information on the oil price volatility dynamics and 
will help market participants develop efficient risk measurement schemes and devise 
sound risk management strategies. 
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Chapter 1: Introduction, Motivation, and Significance of the Study 

Chapter 1 

Introduction, Motivation, and Significance of the Study 

 

1.1 Thesis motivation 

Following the two oil price shocks and the development of derivatives markets in the 1980s, the 

total trading volume of oil-related futures contracts has far exceeded total world oil production.1 

Since then, crude oil markets have been transforming from a purely physical goods market into a 

sophisticated financial market, i.e. the ‘paper’ oil market. This transformation has been 

highlighted by two significant changes: the strengthening of the globalization trend of the oil 

markets and its increasing relation to the macroeconomic and financial markets such as the 

exchange rate market, stock market and bond market. The transformation of crude oil markets 

and their size, scope and complexity could allow a wide range of participants beyond the scope of 

traditional crude oil producers, physical traders, and refining and oil companies, to financial 

investors who consider it as a popular asset class. As a result, crude oil prices have experienced 

an unparalleled growth over the last decade with the most pronounced price boom between 

2002 and mid-2008 and have been more volatile than prices of most other commodities since the 

oil crisis in 1973 (Fleming and Ostdiek, 1999; Regnier, 2007).2 The main contributors of this 

phenomenon are geopolitical factors regarding the destabilization of the Middle East situation, as 

well as changes in supply-demand fundamentals. Oil-specific shocks, especially on the supply 

side, have generally played a key role in this respect. Rapidly growing demand for crude oil, 

especially in emerging economies, as well as the debate about the future use of fossil fuels in the 

light of global climate change, and about the link between crude oil production and climate 

1 Oil consumption has increased by more than 20 million barrels per day whereas the total trading volume of futures contracts 
has far exceeded total world oil production. 
2 Regnier (2007) finds that crude oil and energy prices are more volatile than prices for about 95% of other commodities sold 
by domestic producers over the period January 1945 through August 2005. Plourde and Watkins (1998) discover that crude oil 
price volatility is higher than price volatility for nine other commodities during the 1985-1994 periods. 
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change more generally, has clearly had an impact on recent oil price fluctuations beyond simple 

oil-specific shocks. 

The volatile condition of crude oil markets has significant impacts and policy implications at both 

macroeconomic and microeconomic level.3 Considerable oil price fluctuations often have great 

impacts on the macro economy. High volatility of crude oil prices creates uncertainty, as a result, 

the economic instability may be observed from both oil-exporting and oil-importing countries. 

Moreover, fluctuations in oil prices increase uncertainty about future prices and thus cause 

delays in business investments. Ferderer (1996) has shown that it is ideal for companies to 

postpone irreversible investment expenditures when they experience increased uncertainty 

concerning the future oil price. Volatility is an indispensable input for pricing oil derivatives and 

various financial instruments (Arouri et al., 2011). Furthermore, the volatility of crude oil 

markets suggests that individuals and firms trading in crude oil markets have to face significant 

challenges when trying to manage the risk associated with the changes, over time, in crude oil 

prices. Substantial changes in volatility of crude oil markets translate to significantly adverse 

effects for risk-averse investors.  

Given the important role played by volatility of crude oil prices, forecasting crude oil prices, 

quantifying and managing the risks inherent to their frequent volatilities has become critical 

issues for both academicians and markets participants. Indeed, a better understanding of the 

return volatility of crude oil markets should allow the improvement of portfolio allocation using 

the estimated conditional variance matrix. An accurate measure of volatility also helps to 

improve the interference one can draw from an estimate. Therefore, the main motivation of this 

thesis is to build on modern quantitative techniques with a view to address several issues of oil 

price modelling and risk management which are very relevant topics in the industry. The driving 

force for developing such models of oil markets is the desire, by market participants, to ensure 

3 At the macroeconomic level, it can lead to the deterioration in the balance of payments and in public finances, and the 
associated uncertainty is likely to curtail investment and to significantly depress long-term growth. At the microeconomic level, 
high and volatile crude oil prices have severe impacts on the most vulnerable, especially energy-insecure households (UNCTAD, 
2011) 
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accurate estimation of risk measures, successful implementation of hedging strategies as well as 

a thorough evaluation of investment policies. This thesis is a compilation of three closely related 

essays in petroleum risk modelling and risk management, dealing with several practically 

relevant issues in empirical energy economics. That said, three central aims are determined. The 

first is to develop a methodology for futures hedging designed to support risk management 

programmes in petroleum markets. The second is to understand and explore fundamental 

relationships and interdependencies between crude oil market and China stock market for 

optimal portfolio management. The third is to quantify the risk of the more liquid and volatile 

near to maturity crude oil contracts where market activity is mainly concentrated. 

Empirical stylised facts of petroleum returns series suggest that volatility is time-varying. This 

thesis addresses the explicit modeling of petroleum price volatility in a multivariate framework 

and analyzes the relative merits of multivariate models to describe change in the context of 

petroleum markets risk. We argue that univariate models can capture the volatility dynamics of 

individual assets but cannot reveal the relationships among petroleum markets. Thus, the focus 

of this thesis will be on explaining the dynamic interdependencies in petroleum markets and 

further demonstrate whether the existence of such interdependencies for the need to assess risk 

differently. In doing so, we benefit from the flexible family of multivariate GARCH (MVGARCH) 

models that permit us to investigate hedging strategy, volatility spillover and correlations among 

petroleum markets or between petroleum markets and other financial markets. Haigh and Holt 

(2002) for instance, show that modeling of time-variation in hedging strategy according to 

MVGARCH models, and taking into account volatility spillover between markets can lead to 

significant reductions in uncertainty. The information content derived from MVGARCH models 

will be thoroughly discussed with the aim to assess their role and effectiveness in quantifying 

risk and to finally uncover fundamental interactions in a multivariate framework.  

The topics studied range from risk quantification, volatility/correlation modelling, futures 

hedging as well as optimal portfolio management and Value-at-Risk analysis and management. 

3 
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All essays have many things in common. First, they all focus on time series properties of 

petroleum prices. Second, they all explicitly model the return volatilities and correlations of these 

assets in a multivariate framework. Third, they all aim on accurate risk assessment and enhanced 

forecasting ability. 

 

1.2 Thesis objectives and contribution 

This thesis consists of three self-contained essays that discuss both theory and applications of 

multivariate GARCH models to petroleum markets. The thesis contributes to the existing 

literature by addressing three main issues: the development of the VARMA-AGARCH model with 

DCC structure and its application to minimum variance hedging in petroleum markets, the 

application of the asymmetric BEKK model to analyze volatility dependencies between crude oil 

and China stock market at the sector level with the aim of optimal portfolio management, and 

empirical evidence of volatility transmission mechanism among three benchmark oil markets 

with quantifying the size and persistence of these connections through the analysis of volatility 

impulse response functions. This thesis will provide useful information to energy traders and 

portfolio managers regarding risk control and profitable opportunities. 

In the second chapter, we review fundamental concepts of the petroleum market structure and 

dynamics. The chapter begins with an introduction on why crude oil and its price volatility are 

important. This section is followed by an overview of the oil pricing mechanisms that make the 

oil markets special and the impact of financialization of oil markets on oil pricing mechanisms. 

After an outline of the underlying forces for oil price changes including market fundamentals 

(supply-demand) and speculative activities in oil derivative markets, we provide a literature 

review with the objective to present several applications of MGARCH models in energy 

economics, touching upon issues of volatility spillovers among oil markets or between oil and 

stock markets.  

4 
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In the third Chapter, which is the first empirical chapter of the thesis, we propose the use of the 

VARMA-AGARCH model of McAleer et al. (2009) with dynamic conditional correlation structure 

(VARMA-AGARCH-DCC) in the petroleum markets for constructing optimal hedging strategy. 

Although volatility modeling and hedging strategies in a multivariate framework have been 

widely documented in crude oil markets, few studies have analyzed in depth the nature of 

volatility spillovers and asymmetric effects of spot and futures prices in oil-related products 

market, such as gasoline and heating oil markets. We develop a new theoretical framework by 

accounting for the effect of time-varying conditional correlations in the conditional volatility 

processes of the VARMA-AGARCH model in what is termed the VARMA-AGARCH-DCC model. To 

the best of our knowledge, this is the first time that the VARMA-AGRACH-DCC model is applied in 

petroleum markets. Implementing such model allows us to draw some new interesting insights 

regarding the effects of volatility spillovers, asymmetric effects and time-varying conditional 

correlations for petroleum markets hedging strategies. Our model specification is found superior 

in constructing optimal hedging strategy in comparison to the hedging strategies derived from 

other alternative multivariate GARCH models through applying the hedging effectiveness index. 

In addition, we link the new theoretical framework with tail estimation by examining the tails of 

the conditional distributions of the model and extending the above framework to a tail risk 

analysis. Overall, by identifying more accurate interaction between petroleum spot and futures 

markets, market participants may benefit from this analysis in terms of more accurate risk 

quantification. 

In the fourth Chapter, we propose the use of the asymmetric version of the BEKK model 

introduced by Grier et al. (2004) to examine the volatility spillovers as well as asymmetric effects 

between oil and China stock market at the sector-level. This model offers the possibility to 

explore the time-varying conditional correlation as well as the conditional cross effects and 

volatility transmission between these markets, which permit a greater understanding of 

cross-correlation volatility spillovers between these interconnected markets. Only few studies 

5 
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have analysed in depth the nature of the volatility dependencies between crude oil and stock 

markets. No such study has been conducted explicitly so far to disentangle the role of oil price 

shocks from other underlying determinants driving China stock market volatilities. The 

innovation of this chapter is in analyzing the volatility dependencies between these markets at 

the sector level to allow for detailed discussion for optimal portfolio management, which has 

never been investigated in the literature of energy economics. We find significant evidence of 

volatility transmission between these markets at the sector-level, and the intensity of volatility 

transmission varies across the stock sectors, which supports the idea of cross-market hedging by 

investors and validates the argument that the sector perspective is more informative and 

generates more accurate implications for portfolio risk management. Then, we derive the 

implications of the estimated results on variances and covariances for effectuating optimal 

portfolio management in the presence of oil assets, which suggests that stock market investors in 

China should consider the additional source of uncertainty resulting from oil markets and then 

consider oil assets as a dynamic and valuable asset class that improves the risk-adjusted 

performance of a diversified portfolio of sector stocks. Overall, by identifying time-varying state 

dependent hedge ratios and optimal portfolio weights between oil and China stock market, 

market participants in China may be able to obtain significantly superior gains, measured in 

terms of variance reduction and increase in utility. 

In the fifth Chapter, we apply the Volatility Impulse Response Functions model to investigate how 

a shock to one market influences the dynamic adjustment of volatility to another market and the 

persistence of these volatility transmission effects. Then, for the first time in the literature, we 

quantify the size and persistence of these connections through analyzing three historical shocks, 

namely the 2008 Financial Crisis, the BP Deepwater Horizon oil spill 4  and the OPEC 

4 The Deepwater Horizon Oil Spill is an oil spill in the Gulf of Mexico which flowed unabated for three months in 2010. It is the 
largest accidental marine oil spill in the history of the oil industry. It stemmed from a sea-floor oil gusher that resulted from the 
April 20, 2010, explosion of Deepwater Horizon. Please refer to http://en.wikipedia.org/wiki/Deepwater_Horizon_oil_spill for 
detailed explanation. 
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announcements5. Quantifying the impact of a shock on volatility is of practical interest to 

financial practitioners for determining the cost of capital, for assessing investment and leverage 

decisions, and for computing the optimal hedge ratio and portfolio weights as many financial 

instruments, especially options, are prices according to the entire price distribution as well as the 

distribution of volatility. While other financial markets, such as foreign exchange market, stock 

market and electricity market, have been thoroughly investigated in terms of volatility impulse 

response function, to our knowledge, no such study has been undertaken so far in crude oil 

markets. Therefore, it is within the context of previous limited empirical work that the present 

study is concentrated on the quantification of the impact of a shock on oil price volatility. 

Furthermore, for the first time in the literature of energy economics, we are able to test the 

responsiveness of different crude oil markets on historical shocks and then investigate the level 

to which crude oil markets are integrated. Results indicate that Brent and Dubai crude are highly 

responsive to market shocks, whereas WTI crude shows the least responsiveness of the three 

benchmarks, which creates questions about its predominance as a benchmark crude oil and its 

integration into global oil markets. Moreover, the fitted distributions are asymmetric showing 

that the probability of observing a large impact of a shock is lower while the probability of a 

relatively smaller impact is much higher. While the model can in principle be employed to 

analyze the impact of historical shocks on conditional volatility, we also aim to fill in the gap in 

the literature by providing a new approach to obtain forecasts of the Value-at-Risk. Results from 

this exercise indicate that only a “large” shock (derived from a smaller probability) will result in 

an increase in expected conditional volatilities. These results provide useful insights into the 

volatility transmission mechanism in crude oil markets and their associated risk estimation, and 

may have significant implications for various market participants and regulators. 

5 In 1982, OPEC established a system to regulate oil production among its members. Several times a year, the OPEC schedules a 
conference to agree on further oil production policies, based on its assessment of the current market condition. The OPEC’s 
decision usually takes the form of an announcement, setting an overall oil production ceiling for the cartel and individual 
production quotas for its members (see OPEC Secretariat, 2003). 
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Chapter 1: Introduction, Motivation, and Significance of the Study 

In the sixth Chapter, we conclude this thesis by summarizing the main empirical findings of this 

study. We also suggest a number of potential directions in which fruitful future research can be 

undertaken to some degree complement the study and consequently shed some light on the 

issues not covered in this thesis. 

To sum up, for the first time in energy economics literature, all the above topics are examined in 

the particular approaches as offered by this thesis, thus making its contribution an original 

source of reference for academics and a practical tool for financial practitioners. The findings of 

this thesis have important implications for energy market participants who deal with trading and 

risk management by providing valuable information on volatility behaviour and transmission as 

well as their predictability. Overall, market participants may benefit from the thorough 

understanding of volatility transmission among energy markets and between energy markets 

and stock markets in terms of improving the forecasting accuracy and enhancing the 

performance of their hedging strategies. 

 

1.3 Organization of the thesis 

The original contribution of this study commences in Chapter 3 with empirical body of the thesis 

involving Chapter 3 to 5. Note that each chapter covers a topic on its own, so that they can be 

read independently of previous and subsequent chapter. Part of Chapter 4 was presented at the 

2nd International Conference of the Financial Engineering and Banking Society of European 

Business School in London this June. Part of Chapter 5 has been published in the Journal of 

Energy Economics (Jin et al., 2012) and an earlier version was presented at the 34th International 

Association for Energy Economics (IAEE) Conference in Stockholm last June. The specific 

organisation of the thesis follows the objectives mentioned above in Section 1.2 and the rest of 

this study is organized as follows: 
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Chapter 2 offers an outlook of crude oil markets and the market structure, and also provides the 

necessary literature review on the employed MGARCH models in terms of volatility spillovers 

among energy markets or between oil and stock markets. Chapter 3 is the first empirical chapter 

of the thesis in which we propose the use of the VARMA-AGARCH-DCC model in the petroleum 

markets for constructing optimal hedging strategy. Chapter 4 investigates how and to what 

extent oil price shocks impact China stock market at sector level, emphasizing on the volatility 

transmission mechanisms by using an asymmetric version of BEKK model. Chapter 5 investigates 

crude oil markets integration on the second moment and further quantifies the size and 

persistence of these connections through the analysis of Volatility Impulse Response Functions 

for three historical shocks, namely the 2008 Financial Crisis, the BP Deepwater Horizon oil spill 

and the OPEC announcements. Finally, Chapter 6 summarizes the main empirical findings of this 

thesis, discusses the implications, and suggests potential interesting paths of future research as 

directed by the findings of this thesis. 
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Chapter 2 

Introduction to Petroleum Markets 

 

2.1 Introduction 

Oil is the most important energy source, accounting for more than a third of the world primary 

energy mix. It is expected to continue to hold the largest share in the coming decades, although 

the share will decline marginally. In volume terms, oil production and consumption fell after the 

second oil crisis in 1979 and bottomed in 1983. Since then, however, the volume has been 

continuously increasing, despite variations in the price. In comparison to other physical 

commodities, the size, scope and complexity of global crude oil trade are unique. Currently more 

than 80 million barrels of oil are produced and consumed every day. Furthermore, the strategic 

importance of oil and the crucial role that it plays in the broad economy make it a commodity like 

no other. 

Because of its importance in the world economy, the change of oil price has caused great 

concerns among academic researchers, policy makers as well as market participants. Volatility is 

a key input into macroeconomic models and option pricing formulas and oil price uncertainty has 

important implications on economic activity (Hamilton, 1983). Thus, it is of considerable interest 

to energy economists to understand and model oil price volatility and promote applications in 

risk management. For the purpose of capturing the dynamics of volatility, Engle’s (1982) ARCH 

model and the generalized version developed by Bollerslev (1986) are arguably the most popular 

methods for modeling volatility of oil markets. However, univariate models can capture the 

volatility dynamics of individual assets but cannot reveal the dynamic relationship among 

petroleum markets. Thus, multivariate GARCH (MGARCH) models have been used to examine 

volatility spillover and correlations among energy markets or between energy markets and other 
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financial markets. Empirical evidence suggests that volatility spillovers, asymmetric effects on 

the conditional variances and time-varying conditional correlations exist for most pairs of 

returns in major oil markets (see Chang et al., 2010). 

The increasing integration of crude oil markets all over the world, spurred by deregulation, 

securitization, globalization and advances in information technology, has generated a good deal 

of interest in understanding the volatility spillover effects from one market to another. Malik and 

Ewing (2009) suggest that there are two plausible explanations as to why these spillovers exist. 

First, volatility spillovers may result from cross-market hedging and changes in common 

information, which may simultaneously alter expectations across markets. A second reason given 

to explain the volatility spillover effects is that of financial contagion, specifically, a shock to one 

country's asset market may cause changes in asset prices in another country's financial market.  

In this chapter, we describe the structure of the oil markets. Section 2.2 presents an overview of 

oil pricing mechanisms that make the oil market special and the impact of financialization of oil 

markets on oil pricing mechanisms. Section 2.3 presents the underlying forces for oil price 

changes. Section 2.4 provides a brief introduction of MGARCH models with a selective overview 

of MGARCH literature in energy economics, touching upon issues of volatility spillovers among 

energy markets or between energy markets and stock markets. Section 2.5 concludes this 

chapter. The application of this multivariate framework is demonstrated in empirical analysis in 

later chapters. 

 

2.2 Oil pricing mechanisms 

It is important to distinguish between pricing mechanisms and the underlying forces which 

determine prices. The pricing mechanisms refer to the organization of trade, exchange and 

marketplaces, as well as the ways prices are determined. It does not necessarily shed an insight 

into what influences decision-making by buyers and sellers, nor about the resulting market 
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balance and price level. The price mechanisms for crude oil can lead to a transparent and liquid 

market without any pressure for lower prices. However, the underlying forces which determine 

prices will have an influence on pricing mechanisms. In this section, we look into pricing 

mechanisms in the oil sector, particularly into the commodity-type pricing mechanisms that 

make oil special, which has developed since the official selling price system within long-term oil 

contracts established by OPEC1 came to an end in the mid-1980s. The commodity pricing 

mechanism in the oil sector has gradually evolved from the spot trading to the oil derivatives 

markets. This section gives a brief review about the history and mechanism of the oil market with 

a small subsection focusing on the financialization of oil markets. 

Commodity pricing in the oil sector is well established and spot markets for oil have developed 

the full range of commodity pricing instruments. The current spot markets have been developed 

since the early 1970s with the aim of fine-tuning oil demand and supply and cover no more than 

3-5% international oil trade. Prior to the 1970s, however, the vertical value chain for 

internationally traded oil was almost under the full control of the Seven Sisters.2 They held 

concessions covering vast areas, with only very low royalty payments. They received their oil 

mostly through long-term concession agreements with host countries and dominated the market 

through bilateral long-term contracts. During this period, almost all crude oil stayed within the 

integrated companies, and was transferred among affiliates, from producing via transport to 

refining-marketing affiliates. Crude oil prices were mostly internal transfer prices, kept low to 

minimise the rent-taking of producing countries. As transfer pricing dominated during this 

period, spot market was only served as a tool for the Seven Sisters to adjust surplus and 

deficiency and exchange oil products with each other. 

1 OPEC is the abbreviation of Organization of Petroleum Exporting Countries. OPEC is an intergovernmental organization of 12 
oil-producing countries made up of Algeria, Angola, Ecuador, Iran, Iraq, Kuwait, Libya, Nigeria, Qatar, Saudi Arabia, the United 
Arab Emirates, and Venezuela. According to its statues, one of the principal goals is to ensure the stabilization of prices in 
international oil markets with a view to eliminating harmful and unnecessary fluctuations 
2 Seven Sisters refer to the western oil companies dominating the global petroleum industry from the mid-1940s to the 1970s. 
For detailed history of oil market developments at their earlier stages, please see Yergin (1991) and other publications. 
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A structural transformation of the world petroleum industry began to occur in the early 1970s. 

The main symbol of this transformation was the establishment of the Organization of 

Petroleum-Exporting Countries (OPEC) and the decoupling of the upstream and downstream oil 

industry. The upstream assets of international oil companies in OPEC countries were 

nationalised and formed the basis on which the new national oil companies were created. 

Although the market was still dominated by long-term contracts, spot trading increased 

gradually and the spot market was no longer a residual market but became a marginal market 

which reflected the production and refinery cost of crude oil. As the share of volumes traded 

under long-term contracts diminished, their prices began to be established on the basis of spot 

deals, which were illustrated by the significant increase of volumes traded on the spot market. 

The spot market began to balance supply and demand and began to be used as a reference point 

for price levels both for exporters and importers. 

In the early 1980s, new pricing mechanisms, including discounting government selling price and 

netback pricing, were introduced because the old-fashioned pricing mechanism adopted by OPEC 

in the 1970s could not withstand the formidable competitive pressures due to the combined 

impact of significant growth from non-OPEC production and decreasing world oil demand. Key 

benchmark grades, West Texas Intermediate (WTI), Brent and Dubai, emerged, and served as the 

reference for crude of similar qualities and locations. Previously the role was played by Arabian 

Light under OPEC’s official selling price system. The main spot markets or trading centres for 

crude oil are Rotterdam for Europe, Singapore for Asia and New York for the United States. Their 

benchmarks are: Brent, Dubai and WTI. Accompanying the sharp fluctuations in spot oil prices 

was the introduction of risk management techniques into oil operations, which became the 

driving force for the standardized oil trade operations as one of the risk-management 

instruments operated at the existing commodities exchange and for the establishment of 

specialized oil exchange. 
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At the same time, futures markets have also developed in Western countries.3 These arose from 

a desire on the part of oil companies to reduce risk in light of high price volatility. The New York 

Mercantile Exchange (NYMEX) and the International Petroleum Exchange (IPE) are two major 

financial markets for oil. In 1979 heating oil became the first new futures contract at the NYMEX, 

and the International Petroleum Exchange (IPE) in London followed in 1981. Gasoline (petrol) 

futures trading started on the NYMEX in 1981. WTI trading started in 1983 on the NYMEX and 

Brent in 1988 on the IPE. 

Finally, the “market” was ushered into the central stage following the collapse of the OPEC 

administered pricing mechanism in 1986. From then on, financial specialists began to involve in 

the oil markets, introducing the techniques of financial markets and specialized oil derivatives. 

By the end of the 1980s, the current complex contractual structure of the oil market was in place. 

By that time, the complex structure of interlinked oil markets which consisted of spot, forwards, 

futures, options and other derivatives markets declared the advent of the era of ‘paper’ oil 

markets. 

It is now the oil exchange and over-the-counter where oil prices are determined mainly. It may be 

argumentative that the general trend of the oil markets has been moving from trade in ‘physical’ 

oil to trade in ‘paper’ oil, and it is oil derivatives that now play a predominant role in establishing 

oil prices. As oil derivatives have grown to be the dominant part of the oil pricing mechanisms, 

the role of price discovery in the market has moved away from physical markets to oil derivatives 

markets and financial innovations have become the bridge interlinking physical markets and 

derivatives markets of crude oil. Financial institutions, for example investment banks, pension 

funds, hedge funds, and sovereign investment funds, have been exerting influence in crude oil 

markets as traditional suppliers and demanders (see Haigh et al., 2006; Lombardi and Robays, 

2011). Especially in recent years, the sharp fluctuations in oil prices and the sheer increase in 

3 Oil futures markets are not new. Price volatility in the early days of the US oil industry resulted in the first oil futures contracts 
in Pennsylvania in 1860s, which took the form of pipeline certificates. 
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volatility have spurred the possibility that crude oil has acquired the characteristics of financial 

assets such as stocks or bonds. 

2.2.1 Financialization of oil markets 

The striking increase in crude oil prices from the beginning of 2002 has been beyond the 

common expectation of academic community, and many arguments have been focused on the 

so-called financialization of oil markets, which means the vastly expanded role of financial 

motives, financial markets, financial factors and financial institutions in the operation of crude oil 

markets.4 The participation of financial institutions into crude oil markets suggests that the 

fundamental analysis which only concentrates on physical supply-demand sides will present a 

biased view if it is not totally wrong. The core of the pricing mechanisms has been shifted from 

physical markets decided by the equilibrium of supply and demand to financial derivatives 

markets involving more stakeholders rather beyond producers and consumers alone. Some argue 

that the main reason for the rising of oil prices and the sheer volatility in the 21st century lies in 

the funds swarming into the oil futures markets from large banks, hedge funds and other 

speculative capital in recent years. 

Crude oil is not only the industrial blood and economic lifeline but also one kind of investment 

product, similar to stocks and securities. Investors have been engaging in crude oil trading for the 

purpose of portfolio diversification ever since it became clear that crude oil futures contracts 

exhibited the same average returns as investments in equities, while over the business cycle their 

returns were negatively correlated with those on equities and bonds (see Gorton and 

Rouwenhorst, 2006). Crude oil market has been financialised and is now more like other 

traditional financial markets, which is illustrated in two aspects: the scale of financial derivatives 

has grown to surmount that of physical spot markets and financial participants have become 

4 Tang and Xiong (2011) suggest that the significant increase in oil prices since 2002 is the result of many financial institutions 
flooding into commodities markets as a new asset class following the collapse of equity markets in 2000. The asynchronous 
business cycle of equity and commodities markets suggests a negative correlation that is effective for portfolio management 
and investment diversification (see Erb and Harvey, 2006; Gorton and Rouwenhorst, 2006).  
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more active than non-financial participants (Yin, 2008). Therefore, the dynamics of crude oil 

prices have been characterized by high volatility, high-intensity jumps, and strong upward drifts, 

and have been driven by underlying supply-demand factors of crude oil markets and potential 

impact of the participation of financial investors into crude oil markets. The process of 

financializaton of crude oil markets is likely to persist as long as commodity investment remains 

popular among financial investors as diversification incentives for portfolio management still 

motivate them to invest in commodities, and thus causing commodity prices to comove positively 

with other asset classes. 

 

2.3 Underlying forces for oil price changes 

Oil price changes have always been at the centre of academic research agenda not only because of 

their effect on the risk management of oil-related businesses, but also due to their far-reaching 

implications on economic growth and inflation, the price movements of other energy futures 

contracts, and other financial assets. Due to the importance of oil, resources deficiency and 

climate change, understanding the forces behind oil price changes gets unprecedented attention 

and is important in its own right. Particularly, since 2000, the international oil market has 

undergone significant changes in two aspects. First, the globalization trend of the oil markets has 

been strengthening. Second, the oil markets are becoming increasingly related to the 

macroeconomic and financial markets. As a result of these significant changes, oil prices are no 

longer fully subject to the impact of the market fundamentals measured by the supply-demand 

relationship, but show new characteristics. For example, many arguments have been focused on 

the so-called financialization of energy market. Indeed, energy commodities have become a 

recognized asset class within investment portfolios of financial institutions as a means to 

diversify risks such as inflation, or equity market weakness. 

In this context, the long-standing debate surrounding the underlying forces for oil price changes 

has been more intensified due to the dramatic fluctuations in oil prices in recent years. This issue 
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has been much investigated in the literature (see Kaufmann et al., 2008; Kilian, 2009; Kaufmann, 

2011), the general findings among which suggest that oil price changes are driven by market 

fundamentals as well as speculative activities in oil derivatives markets. 

2.3.1 Market fundamentals 

Market fundamentals, i.e. supply- and demand-side factors, are the basis of analysing the 

formation of the global oil market and its operating principles. In the long run, oil price is mainly 

determined by demand-supply fundamentals, and all the other factors can have influence on oil 

price by changing the demand-supply relationship or people’s expectation of the demand-supply 

relationship (see Chai et al., 2011). 

On the supply side, crude oil markets all over the world have witnessed growing integration 

within as well as across boundaries, spurred by deregulation, globalization and advances in 

information technology. A considerable portion of the literature on crude oil markets focuses on 

the degree to which they are integrated (see Adelman, 1984; Bentzen, 2007). However, the 

supply-side of the global crude oil markets is yet imperfectly competitive, and many suggest that 

crude oil prices are partially affected by the different behaviour of two supplier groups, i.e. OPEC 

and non-OPEC nations. OPEC is the most important player in the oil market. Aiming to sustain 

world demand for oil rather than replacing it with alternative energy sources, OPEC has to 

balance market share and profits. The oil cartel’s market power comes from three aspects. First, 

it has the largest size of proven oil reserves (891 billion barrels) and exports (19.5 million barrels 

per day) – 78.3% and 48.7% respectively of the 2003 world totals. Second, the Gulf countries 

within the cartel have the lowest production costs: USD 4.00 per barrel for Saudi Arabia or USD 

4.50 for Iran, as compared with USD 9.85 for the North Sea and USD 12.50 for Brazil (Energy 

Intelligence, 2004). Third, most OPEC oil is produced by fully state-owned companies (Algeria, 

Iran, Kuwait, Qatar, Saudi Arabia and Venezuela) or majority state-owned companies (Libya, 

Nigeria and United Arab Emirates). Only in Indonesia is government participation in the oil 
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sector very limited. The non-OPEC exporting countries, on the other hand, increased their 

international oil market share following the 1973-74 oil crises at the expense of OPEC and the 

resulting geographical dispersion of the oil fields served to smooth the supply process. However, 

by contrast with the Middle Eastern countries, their oil production is characterized by 

technological difficulties and high transportation costs, for instance in North Sea and Alaska. 

Kaufmann and Cleveland (2001) argue that non-OPEC nations generally are viewed as price 

takers and their output is negatively related to the cost of production and positively related to 

international oil price. In particular, unlike OPEC nations, there is little evidence for strategic 

considerations for non-OPEC producers (Kaufmann et al., 2004).  

Blaming OPEC nations for the episodes of crude oil upsurge is quite understandable because of 

its central position in the global crude oil markets. In order to better understand the role played 

by OPEC nations in the global crude oil markets, many empirical analyses have devoted to 

investigate OPEC’s behaviour. For example, Griffin (1985) tests OPEC’s behaviour across the four 

alternative hypotheses including competitive, cartel, target revenues, and property rights models. 

His findings suggest that the partial market-sharing cartel model could be the most suitable one 

to explain OPEC’s behaviour. Jones (1990) suggests that most OPEC members continue to behave 

like a “partial market sharing” while non-OPEC nations behave more competitively. Smith (2005) 

argues that there is a significant cooperative effort among OPEC nations to restrict output and 

then raise prices, which indicates that OPEC is much more than a non-cooperative oligopoly, but 

less than a frictionless cartel. However, Kaufmann et al. (2008) find that OPEC does not fit neatly 

into a single behavioural model. Actually, neither statistical tests nor economic theory supports 

modelling OPEC as a cartel or as a competitive model (see Alhajii and Huettner, 2000). 

Unlike supply, demand for crude oil depends on the choices of many individual households and 

firms, given the transportation, industrial and residential needs. Obviously, this is directly linked 

to the global economic activity. Kilian (2009) finds that demand-driven shocks caused by the 

global economic activity result in a large, persistent and statistically significant increase in real 
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price of crude oil, which has very different effects on the real price of crude oil from 

supply-driven shocks. He et al. (2010) also find that real futures prices of crude oil are 

significantly influenced by fluctuations in the global economic activity through both long-run 

equilibrium conditions and short-run impacts. However, due to oil’s importance for the economy 

and national security, the demand side is also influenced by various private interest groups, for 

example the domestic oil refiners. Price controls and government policies, such as fiscal 

instruments, antitrust policies, public funds for alternative energy research, petroleum 

exploration activities and strategic oil reserves, are also key elements of the demand side. 

Among the consuming countries, the United States is the dominant player, being the world’s 

largest producer, consumer and importer of petroleum. In 2011 over 11 million bpd were 

imported in the United States. Canada, Mexico and South and Central America feed more than half 

of the US oil needs, whereas imports from the Middle East and Africa account for more than 17% 

and 15% of the total figure, respectively (see BP, 2011). Although worldwide demand still 

originates chiefly from OECD5 countries, since the mid-1990s, emerging economies, especially 

China and India, have seen their consumptions surge.6 After decades of self-sufficiency on its oil 

needs, China became a net importer of crude oil with accelerated volume since 1996, and almost 

at the same time, India follows China’s step to import crude oil with increased volume. Some 

prevailing viewpoints forecast that China and India will continue to increasingly import crude oil 

and develop overseas resources for keeping their economy growing. This has become a “great 

concern” for many countries, and the role that emerging markets play in the global oil markets 

becomes the object of study for many academics.7 This rapid growth may seem the driving force 

5 OECD is the abbreviation of Organization for Economic Co-operation and Development. OECD is an international economic 
organization of 34 countries founded in 1961 to stimulate economic progress and world trade. Most OECD members are 
developed, high-income economies. 
6 : According to the U.S. Department of Energy, OECD consumption represented 53% of world consumption in 2011 (see EIA, 
2011). 
7 This concern is directly declared by CNN (2004) that “Surging Chinese demand is underpinning the recent spike in the price of 
oil, figures from the International Energy Agency (IEA) show. This ‘China factor’ has more bearing on oil prices than the ‘risk 
factor’ coming from global tensions, some experts say”. 
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behind the recent rise in the world’s energy demand and the surge in crude oil prices from 2002 

to mid-2008 (see Hamilton, 2009a; Li and Lin, 2011).  

2.3.2 Speculative activities 

One striking characteristic of the oil markets in the past decades is that large financial 

institutions, hedge funds, and other investment funds have been investing billions of dollars in 

the futures market to take advantage of oil price changes (Masters, 2008). Hamilton (2009a) 

argues that speculators can affect the incentives faced by oil producers by purchasing large 

amount of future contracts and pushing future prices to even higher levels than current prices.8 

The unusual upsurge in oil future prices will finally be transmitted into oil spot markets. 

According to Hamilton (2009b), there is a case in which a futures bubble could lead to spot price 

increases with no clear storage effects. This would be, if the spot price is completely price 

inelastic in the short run. Then an increase in the futures price would increase the spot price with 

the exact same amount. 

Although speculators serve an important role regarding market efficiency, transparency and 

enhancing liquidity, some side effects cause deviations from the equilibrium prices and increased 

volatility, at least temporarily. There is strong evidence showing that increasing speculation has 

been one of the important driving forces in the surge of oil prices since 2000. For example, 

Chevillon and Rifflart (2009) find that speculative activity is a driving force to explain the surge 

of oil prices since 2004. By investigating the information flows over the global crude oil spot and 

futures markets, Kaufmann and Ullman (2009) show that the upsurge of oil prices before 2008 is 

caused by fundamentals and speculative activity together. Moreover, by using a multivariate 

modified Capital Asset Pricing Model approach, Cifarelli and Paladino (2010) find evidence that 

speculative activity plays a significant role in the strong oil price changes in recent years. In 

particular, Kaufmann (2011) argues that repeated and extended break-downs in the 

8 Hamilton (2009a) that defines a speculator as a unit who does not produce or use the commodity, but risks his or her own 
capital trading futures in that commodity in hopes of making a profit on price changes. 
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cointegrating relationship between spot and far month futures prices since 2004 is an indication 

of the existence of speculation on crude oil markets. 

To sum up, oil price at any point in time should reflect the balance between demand and supply 

fundamentals as well as the other factors that have influence on oil price by changing the 

demand-supply relationship or people’s expectation of the demand-supply relationship. 

Short-run price elasticity of demand for crude oil is very low as there are no substitutes to its use 

that are readily available. The demand curve becomes elastic as quantity increases. The 

long-term demand curve is more elastic than the short-term demand curve (see Fattouh, 2007). 

An important characteristic of the oil supply curve is the existence of capacity constraints. The 

curve is elastic below the capacity constraint but becomes drastically inelastic as supply quantity 

approaches the constraint. It is almost vertical at the capacity limit. The short-run inelasticity and 

long-run elasticity imply that supply shortages or severe positive demand shocks are translated 

to large price movements, which in turn induce significant volatility and then have direct 

implications for market participants who deal with trading and risk managements. 

 

2.4 Multivariate GARCH models and applications in the oil markets 

Understanding and measuring the temporal interdependence in the second-order moments of 

assets returns is one of the hottest topics in finance as risk management, asset pricing, asset 

allocation, and the pricing of derivatives written on multiple assets all depend heavily on the 

forecast of the co-movement between financial assets. It is now widely accepted that financial 

asset returns volatility, covariance and correlations are time-varying with persistent dynamics.  

Recognizing these features through a multivariate modelling framework leads to more relevant 

empirical models than working with separate univariate models (Bauwens et al., 2006). 

Since the seminal paper of Engle (1982), many considerations have been extended to 

multivariate GARCH (MGARCH) models to accommodate the co-movements of financial returns. 

21 



Chapter 2: Introduction to Petroleum Markets 

MGARCH models were initially developed in the late 1980s and the first half of the 1990s, and after a 

period of tranquility in the second half of the 1990s, this area seems to be experiencing again a quick 

expansion phase. There are generally two directions for modeling the multivariate time series, i.e. 

modeling variance-covariance matrix directly and modeling the correlation between the time series 

indirectly. Bollerslev, Engle, and Wooldridge (1988) proposed the first multivariate GARCH model for 

the conditional variance-covariance matrix, namely the VEC model. This VEC-GARCH model is a 

straightforward generalization of the univariate GARCH model. The generality of the VEC model is an 

advantage in the sense that the model is very flexible, but it also brings disadvantages as it is very 

difficult to impose the positive definiteness of the variance-covariance matrix. Bollerslev, Engle, and 

Wooldridge (1988) presented a simplified version of the VEC model, namely the Diagonal-VEC model. 

This model reduced the number of parameters greatly and it is relatively easier to derive the conditions 

to guarantee the positive definiteness of the variance-covariance matrix. However, this simplified VEC 

model seems too restrictive since no interaction is allowed between the different conditional variances 

and covariances. 

A model that can be viewed as a restricted version of the VEC model is the Baba-Engle-Kraft-Kroner 

(BEKK) defined in Engle and Kroner (1995). The BEKK model has the attractive property that 

conditional variance-covariance matrix is positive definite by construction. The disadvantage of the 

BEKK model is that it is computationally complicated and the estimated coefficients for the 

variance-covariance matrix is not easy to be interpreted on an individual basis (see Caporin and 

McAleer, 2009). A further simplified version of the BEKK model which has diagonal matrices is the 

Diagonal-BEKK model. Diagonal-BEKK model faces the same problem of the Diagonal-VEC model 

even if the number of parameters has been reduced significantly. The most restricted version of the 

Diagonal-BEKK model is the Scalar-BEKK model. Scalar-BEKK model is too restrictive as it imposes 

the same dynamics to all the variances and covariances. On the other hand, a more complicated version 

of the BEKK model which accommodates the asymmetric effects is the Asymmetric version of the 

BEKK model introduced by Grier, Olan, Nilss, and Kalvinder (2004), namely the ABEKK model. The 
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ABEKK model relaxes the assumption of symmetry, thereby allowing for different relative responses 

to positive and negative shocks in the conditional variance-covariance matrix. 

The main problem of multivariate GARCH models in most specification is the very large number of 

parameter. Those specifications which bypass this problem have to trade off the severe loss of 

generality. A potential way to reduce the number of parameters in the model is to introduce so-called 

factors. The so-called factor models are motivated by economic theory. Engle, Ng, and Rothschild 

(1990) introduced the first factor GARCH model. In this model it is assumed that the observations are 

generated by underlying factors that are conditionally heteroskedastic and possess a GARCH-type 

structure. The approach has the advantage that it can solve the problem of dimensionality by 

modeling the factors which is much less than the number of assets in terms of number. However, 

it has the undesirable property that the factors are generally correlated as it may turn out that 

several of the factors capture similar characteristics of the data. In order to avoid this 

disadvantage, several factors models with uncorrelated factors have been proposed in the 

literature, for example the Orthogonal-GARCH model of Alexander (2001) and the Generalized 

Orthogonal-GARCH model of Van Der Weide (2002). Furthermore, the Generalized Orthogonal 

Factor-GARCH model proposed by Lanne and Saikkonen (2007) can be seen as combining the 

advantages of both the factor models (having a reduced number of heteroskedastic factors) and 

the orthogonal models (relative ease of estimation due to the orthogonality of factors). However, 

one potential disadvantage of this approach is that it is difficult to interpret the parameters as the 

BEKK model. 

Another direction for MGARCH models is to model the correlation indirectly between the time series 

instead of modeling the variance-covariance matrix directly. Correlation models are based on the 

decomposition of the conditional variance-covariance matrix into conditional standard deviations and 

correlations. Bollerslev (1990) first proposed a class of constant conditional correlation (CCC) models 

in which conditional correlation matrix is time-invariant and thus the conditional covariances are 

proportional to the product of the corresponding conditional standard deviations. In order to 
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accommodate interdependencies of volatility across different assets and/or markets, Ling and McAleer 

(2003) proposed a vector autoregressive moving average (VARMA-) GARCH model. The 

VARMA-GARCH model assumes that negative and positive shocks of equal magnitude have identical 

impacts on the conditional variance. McAleer, Hoti and Chan (2009) extended the VARMA-GARCH 

model to accommodate the asymmetric impacts of the unconditional shocks on the conditional variance, 

and proposed the VARMA-AGARCH model. Both VARMA-GARCH and VARMA-AGARCH 

models assume constant conditional correlation matrix. Especially, the CCC-GARCH model of 

Bollerslev (1990) could be included into the VARMA-GARCH or VARMA-AGARCH model as 

special case. The estimation of MGARCH models with constant correlations is computationally 

attractive and the positive definiteness of the variance-covariance matrix is automatically guaranteed. 

However, the assumption of constant conditional correlations may be too restrictive and unrealistic in 

many empirical applications. 

The CCC-GARCH model may be generalized by making the conditional correlation matrix 

time-varying. There are many ways to interpret the time-varying conditional correlation matrix. Tse 

and Tsui (2002) imposed GARCH type of dynamics on the conditional correlations in their 

VC-GARCH model in which the conditional correlations are functions of the conditional correlations 

of the previous period and a set of estimated correlations. Engle (2002) proposed a Dynamic 

Conditional Correlation (DCC-) GARCH whose dynamic conditional correlation matrix is similar to 

that of the VC-GARCH model. Both the VC- and the DCC-GARCH model extend the CCC-GARCH 

model, but do it with few extra parameters. However, compared to the CCC-GARCH models, the 

advantage of numerically simple estimation is lost, as the correlation matrix has to be inverted for each 

𝑡 during every iteration. Another disadvantage of the DCC-type models is that it restricts all the 

correlation processes to obey the same dynamic structure. 

To avoid these limitations, several variants of the DCC-GARCH model are proposed in the literature. 

Billio and Caporin (2006) proposed a Quadratic Flexible DCC (GFDCC-) GARCH model, where the 

conditional correlations follow a BEKK structure. However, the number of parameters governing the 
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correlations in the GFDCC-GARCH model in its fully general form is unfeasible in large systems. 

Cappiello, Engle, and Sheppard (2006) generalized the DCC-GARCH model in a similar manger, but 

also including asymmetric effects. In their Asymmetric Generalized DCC (AG-DCC) GARCH model 

the AG-DCC process allows for series-specific news impact and smoothing parameters and permits 

conditional asymmetries in conditional dynamics. The AG–DCC specification is well suited to 

examine correlation dynamics among different asset classes and investigate the presence of 

asymmetric responses in conditional variances and correlations to negative returns. 

2.4.1 Evidence from the oil markets for volatility spillovers 

Volatility is important in the oil markets and is typically unobservable, and volatility spillovers appear 

to be widespread in energy futures markets (see Lin and Tamvakis, 2001; Chang et al., 2010). The 

spillovers effect holds even when markets do not necessarily trade at the same time. Substantial 

research has been conducted to investigate volatility spillover effects in energy futures markets using 

various multivariate conditional volatility models. Lin and Tamvakis (2001) examine the volatility 

spillover effects between New York Mercantile Exchange (NYMEX) and International Petroleum 

Exchange (IPE) crude oil contracts in both non-overlapping and simultaneous trading hours. Their 

finding suggests that substantial spillover effects exist when both markets are trading simultaneously. 

Ewing et al. (2002) investigate the volatility transmission between the oil and natural gas markets using 

the BEKK model of Engle and Kroner (1995). Their finding indicates that changes in volatility in one 

market may have spillovers to the other market. Chang et al. (2009) examine the volatility spillovers 

and dynamic conditional correlations for the spot, forward and futures returns on Brent, WTI and 

Dubai crude oil markets using various multivariate conditional volatility models. Their finding 

indicates that there are significant volatility spillovers and the constant conditional correlations 

are not supported in the empirical analysis. Furio and Chulia (2012) investigate the volatility 

linkage between the Spanish electricity, Brent crude oil and Zeebrugge (Belgium) natural gas 

1-month-ahead forward prices through employing the asymmetric version of the BEKK model 

proposed by Grier et al. (2004). Their finding suggests there are significant volatility spillovers and 
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asymmetric effects between the Spanish electricity, Brent crude oil and Zeebrugge (Belgium) 

natural gas markets.  

Significant volatility spillovers are also found between oil and stock markets (see Agren, 2006; 

Tansuchat et al., 2009). For example, Malik and Hammoudeh (2007) examined the volatility and shock 

transmission among U.S. equity, global crude oil market, and Gulf equity markets using the BEKK 

model of Engle and Kroner (1995). Their finding shows that Gulf equity markets are sensitive to 

volatility from the oil markets, while stock market volatility spills over into the oil markets only in 

Saudi Arabia. Malik and Ewing (2009) investigate volatility spillover between oil prices and five U.S. 

equity sector indices using the BEKK model of Engle and Kroner (1995) and find evidence of 

significant volatility transmission. Arouri et al. (2011) utilize the VAR-GARCH model of Ling and 

McAleer (2003) to examine the extent of volatility transmission between oil and stock markets in 

Europe and the United States at the sector-level. Their findings point to the existence of significant 

volatility spillover between oil and sector stock returns. However, the spillover is usually 

unidirectional from oil markets to stock markets in Europe, but bidirectional in the United States. 

 

2.5 Conclusion 

In this chapter we discussed the structure of the oil markets. We distinguished the oil pricing 

mechanisms and the underlying forces for oil price changes surrounding the markets from the 

basic fundamental forces (demand-supply) to the power of OPEC throughout time and the role of 

speculative activities. Finally, we gave a brief review of MGARCH models and some of the 

empirical evidence regarding the use of MGARCH models in the oil markets for detecting 

volatility spillover effects. 

Next, in Chapter 3, we will focus on analyzing the nature of volatility spillovers, asymmetric 

effects and time-varying conditional correlations of spot and futures prices in petroleum markets 

and then constructing optimal hedging strategies. We extend previous research by including the 
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time-varying conditional correlations in the specification of the VARMA-AGARCH model of 

McAleer et al. (2009) in what is termed the VARMA-AGARCH model with dynamic conditional 

correlation DCC structure. Our model specification is found superior in constructing optimal 

hedging strategy in comparison to the hedging strategies derived from other alternative 

multivariate GARCH models through applying the hedging effectiveness index. 

27 



Chapter 3: Volatility Spillovers, Asymmetries and Hedging Strategies in Petroleum Markets 

Chapter 3 

Volatility Spillovers, Asymmetries and Hedging Strategies in 

Petroleum Markets 

 

3.1 Introduction 

The past few years have witnessed a renewed interest in modeling petroleum price volatility and 

then constructing optimal hedging strategies.1 A number of factors may have contributed to that 

interest. First, petroleum price volatility has significant effect on the risk management of 

oil-related business and far-reaching implications on the economic variables (Ferderer, 1996; 

Lardic and Mignon, 2006)2 and other financial assets (Sadorsky, 2003; Aloui and Jammazi, 

2009)3. Second, over the last decade, the financialization of petroleum markets has allowed a 

wide range of participants to hedge petroleum price risk. Third, a recent finding of Jalali-Naini 

and Manesh (2006) indicates that petroleum price is typically characterized by high volatility, 

which entails the necessity for market participants to actively search for an effective way to 

hedge petroleum price risk. 

Among other strategies, an investor facing volatile price movements in spot markets could 

reduce uncertainty by simultaneously holding an opposite futures position on underlying assets.4 

It has been argued that the futures/spot hedging strategy can substantially reduce petroleum 

price volatility without significantly reducing returns, and with the added benefit of greater 

1 See for instance Cotter and Hanly (2010, 2012) and Chang et al. (2011). 
2 Further discussion about the impact of crude oil price volatility on the macroeconomy could be found in Hamilton (2003), 
Chang and Wong (2003), Doroodian and Boyd (2003), and Chen and Chen (2007). 
3 Further discussion about the impact of crude oil price volatility on the financial markets could be found in Sadorsky (1999, 
2000), Ewing and Thompson (2007), and Driesprong et al. (2008). 
4 A futures contract is an agreement between underlying parties to buy and sell a given amount of a commodity at an agreed 
upon certain date in the future, at an agreed upon price, and at a given location. Furthermore, a futures contract is the tool 
primarily designed to minimize one’s exposure to unwanted risk. Conceptually, hedging through holding futures contract is a 
process uses to restrain or reduce the risk of unfavourable price movements because futures prices and cash for the same 
commodity tend to move together. Therefore, changes in the value of a cash position are mitigated by changes in the value of 
an opposite futures position. 
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predictability and certainty.5 Oil futures contracts have proven to be very popular among the 

participants in the oil industry and the volume of these derivatives has grown significantly since 

2000. In addition, futures contracts are favoured as a hedging tool because of their liquidity, 

speed and lower transaction costs (Chang, et al., 2011).  

In order to successfully reduce price risk of futures trading, it is important to employ the hedging 

strategy which is capable of capturing the dynamic interaction between futures and its 

underlying spot prices. Theoretically, the “optimal” hedge ratio (OHR) is a proper way to capture 

the dynamics between futures and its underlying spot prices. Under the mean-variance 

framework of Markowitz (1952) and the martingale assumption, the “optimal” hedge ratio (OHR) 

can be defined as a ratio of covariance between spot and futures returns to the variance of 

futures returns. However, as financial assets return volatility, covariances and correlations 

usually display time-varying characteristics with persistent dynamics, estimating a static hedge 

ratio may not be appropriate (see Baillie and Myers, 1991). Therefore, much literature has 

focused on identifying the optimal hedge ratio through employing various econometric models 

with time-varying characteristics.6 Among other models, the multivariate GARCH models have 

been proven to be successful in capturing the time-varying variance-covariance matrix of 

financial variables and appear to be ideal for estimating time-varying OHRs.7  

In the literature, research has been conducted on estimating time-varying hedge ratios of crude 

oil spot and futures returns using multivariate GARCH models.8 However, few studies have been 

conducted to investigate the same issue for oil products markets. This chapter tends to fill this 

gap by modeling time-varying hedge ratios among crude oil (WTI), gasoline and heating oil 

futures contracts. Furthermore, volatility spillovers, asymmetric effects and time-varying 

conditional correlations between spot and futures markets for crude oil, gasoline and heating oil 

5 See for instance Daniel (2001) and Chang et al. (2011). 
6 See for instance Baillie and Myers (1991), Myers (1991) and Bystrom (2003). 
7 For instance an earlier study by Baillie and Myers (1991) documents superior hedging effectiveness in the US agricultural 
commodities market through employing a multivariate GARCH model. 
8 See section 3.2 for detailed discussion. 
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are likely to be important for constructing optimal hedge ratios. Therefore, this chapter has three 

main objectives as follows. Firstly, we want to investigate the importance of volatility spillovers, 

asymmetric effects of negative and positive shocks of equal magnitude on the conditional 

variance for modeling petroleum price volatility in the returns of spot and futures prices. 

Secondly, we apply the estimated results to compute the optimal hedge ratios and optimal 

portfolio weights for optimal portfolio design and hedging strategies, which provides important 

policy implications for risk management in petroleum markets. Finally, the performance of the 

OHRs from the estimated models is compared through applying the hedging effectiveness index. 

Further analysis with regard to the tail risk in terms of semi-variance reduction and 

Value-at-Risk is also presented. 

In doing so, the contributions of this chapter compare with the existing literature in at least two 

points. First, we employ the VARMA-AGARCH model of McAleer et al. (2009) to analyse in depth 

the nature of volatility spillovers and asymmetric effects of spot and futures prices in gasoline 

and heating oil markets, which has not been done previously. Second, we extend previous 

research by including the time-varying conditional correlations in the specification of the 

VARMA-AGARCH model of McAleer et al. (2009) in what is termed the VARMA-AGARCH model 

with dynamic conditional correlations (DCC) structure. A principal feature of this specification is 

that the assumption of constant conditional correlations may be too restrictive given changing 

economic conditions, thereby entailing the need to incorporate time-varying correlations (see 

Lanza et al., 2006). To the best of our knowledge, this is the first time the VARMA-AGARCH model 

with DCC structure is applied in petroleum markets.9 Implementing such model allows us to 

draw some new interesting insights regarding the effects of volatility spillovers, asymmetric 

effects and time-varying conditional correlations for petroleum markets hedging strategies. 

9 Sadorsky (2012) applies the approach to investigate the correlations and volatility spillovers between oil prices and the stock 
prices of clean energy and technology companies. 

30 

                                                           



Chapter 3: Volatility Spillovers, Asymmetries and Hedging Strategies in Petroleum Markets 

The plan of the chapter is as follows. Section 3.2 provides a brief literature review. Section 3.3 

discusses the VARMA-AGARCH model with DCC structure to be estimated, and the derivation of 

the optimal portfolio weights, optimal hedge ratios and hedging effectiveness index. Section 3.4 

explains the data, descriptive statistics, unit root test and cointegration test statistics. Section 3.5 

describes the empirical results and presents the economic implications for optimal hedge ratios 

and optimal portfolio weights. Section 3.6 provides some concluding remarks. 

 

3.2 Literature review 

In the literature, substantial research has been undertaken on analyzing the volatility, as well as 

the correlations in the shocks to volatility, in petroleum spot, forward and futures markets. The 

dynamic conditional correlations are crucial for deciding whether or not to hedge against 

unforeseen circumstances, as well as for pricing options and other derivatives. Actually, there can 

be substantial differences among the estimated constant and dynamic conditional correlations. 

For example, Manera et al. (2006) estimate the volatility and dynamic conditional correlations in 

the returns on Tapis oil spot and one-month forward prices using various multivariate 

conditional volatility models. Their results suggest that there are significant interdependences in 

the conditional volatilities between the spot and forward markets and the significance of 

time-varying conditional correlations makes it clear that the assumption of constant conditional 

correlation is not supported empirically. Lanza et al. (2006) investigate the dynamic conditional 

correlations between WTI crude oil forward and futures markets by employing the constant 

conditional correlation model of Bollerslev (1990) and the dynamic conditional correlation 

model of Engle (2002). Their results suggest that the dynamic correlations offer a more 

comprehensive explanation of whether the shocks to the volatilities in the forward and futures 

returns are substitutes or complements. Chang et al. (2009) examine the volatility spillovers and 

dynamic conditional correlations for the spot, forward and futures returns on Brent, WTI and 

Dubai crude oil markets using various multivariate conditional volatility models. Their findings 
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indicate that there are significant volatility spillovers and the constant conditional correlations 

are not supported in the empirical analysis.  

With regard to the estimated time-varying hedge ratio using multivariate conditional volatility 

models, Haigh and Holt (2002) examine the hedging effectiveness of using crude oil, gasoline and 

heating oil futures contracts to reduce price uncertainty for energy traders by employing an 

innovative multivariate GARCH model allowing for time-varying variances/covariances and 

volatility spillovers in the volatility equations. The model performs relatively well and provides 

insightful information on risk management in the oil industry. Jalali-Naini and Manesh (2006) 

estimate the hedge ratios for WTI crude oil spot and futures contracts with different maturities 

by employing the BEKK model of Engle and Kroner (1995). Their results suggest that the optimal 

hedge ratios are time-varying and futures contract with longer maturity has higher perceived 

risk, higher OHR mean and standard deviations. Chang et al. (2010) estimate the OHR and 

optimal portfolio weights of the crude oil portfolio using only the VARMA-GARCH model of Ling 

and McAleer (2003) without comparing their results in terms of risk reduction such that their 

policy implications for risk management in crude oil markets may be misleading. Recently, Chang 

et al. (2011) estimate the OHR and optimal portfolio weights of the crude oil portfolio using a 

wide range of multivariate conditional volatility models and compare their results in terms of 

risk reduction or hedge strategies. However, they did not consider the asymmetric effect and 

time-varying conditional correlations within the same multivariate conditional volatility model 

specification. 

3.3 Econometric models 

3.3.1 Multivariate GARCH models 

32 



Chapter 3: Volatility Spillovers, Asymmetries and Hedging Strategies in Petroleum Markets 

The econometric specification used in this chapter has two components. A vector autoregression 

(VAR) with two lags is used to model the returns.10 This allows for autocorrelations and 

cross-autocorrelations in the returns. The multivariate GARCH models are used to model the 

time-varying variances and covariances. 

In order to capture interdependencies of volatility across different markets and/or assets, Ling 

and McAleer (2003)11 assumed symmetry in the effects of positive and negative shocks of equal 

magnitude on the conditional volatility, which is given by 

𝑌𝑡 = 𝐸(𝑌𝑡|𝐹𝑡−1) + 𝜀𝑡                                                                  (3.1) 

Φ(𝐿)(𝑌𝑡 − 𝜇) = Ψ(𝐿)𝜀𝑡                                                             (3.2) 

𝜀𝑡 = 𝐷𝑡𝜂𝑡                                                                                        (3.3) 

𝐻𝑡 = 𝑊𝑡 + �𝐴𝑙𝜀𝑡−𝑙�������⃗
𝑟

𝑙=1

+ �𝐵𝑙𝐻𝑡−𝑙

𝑠

𝑙=1

                                               (3.4) 

where Eq. (3.1) denotes the decomposition of 𝑌𝑡  into its predictable (conditional mean) and 

random components, 𝐹𝑡−1  is the past information available at time 𝑡 , 𝐷𝑡 = 𝑑𝑖𝑎𝑔(ℎ𝑖,𝑡
1/2) ,  

𝜂𝑡 = (𝜂1𝑡, … . , 𝜂𝑚𝑡)′ is a sequence of independently and identically distributed (i.i.d.) random 

vectors, 𝑊𝑡 , 𝐴𝑙  and 𝐵𝑙  are 𝑚 ∗ 𝑚  matrices, with typical elements 𝑎𝑖𝑗  and 𝛽𝑖𝑗representing 

the ARCH and GARCH effect, respectively, 𝐻𝑡 = (ℎ1𝑡 , … . , ℎ𝑚𝑡)′, 𝜀 = (𝜀1𝑡2 , … , 𝜀𝑚𝑡2 )′, Φ(𝐿) = 𝐼𝑚 −

Φ1𝐿 − ⋯ .−Φ𝑝𝐿𝑝  and Ψ(𝐿) = 𝐼𝑚 − Ψ1𝐿 −⋯ .−Ψ𝑞𝐿𝑞  are polynomials in 𝐿 , the lag operator. 

Although Bollerslev (1986) argues that 𝐺𝐴𝑅𝐶𝐻(1,1) captures infinite ARCH process, on a 

practical level, a multivariate GARCH model with a greater number of lags can be problematic. 

Spillover effects, or the dependence of conditional variances across different markets/assets, are 

10 As is often the case in applied research, different criterion functions select different lag lengths for the VAR models. 
Preliminary regression analysis showed very little differences between a VAR with two lags compared to a VAR with one or 
three lags. Consequently, in the interest of parsimony and accuracy, a VAR with two lags is chosen. 
11 Recent examples of the VARMA-GARCH approach include Change et al. (2010), Hammoudeh et al. (2009) and Hammoudeh 
et al. (2010). 
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given in the conditional volatility for each market/asset in Eq. (3.4) as it allows large shocks to 

one variable to affect the variances of the other variables. 

The abovementioned model assumes that positive and negative shocks of equal magnitude have 

identical impacts on the conditional variance. However, this may not be the case in some 

empirical analysis. Therefore, McAleer et al. (2009) extended the VARMA-GARCH model to 

accommodate the asymmetric impacts of the unconditional shocks on the conditional variance, 

and proposed the VARMA-AGARCH specification of the conditional variance as follows: 

𝐻𝑡 = 𝑊𝑡 + �𝐴𝑖𝜀𝑡−𝚤�������⃗
𝑟

𝑖=1

+ �𝐵𝑗𝐻𝑡−𝑗

𝑠

𝑗=1

+ �𝐶𝑖𝐼𝑡−𝑖𝜀𝑡−𝚤�������⃗
𝑟

𝑙=1

                   (3.5) 

where 𝐶𝑖  are 𝑚 ∗𝑚  matrices for 𝑖 = 1, … . , 𝑟  with typical element 𝛾𝑖𝑗 , and 

𝐼𝑡 = 𝑑𝑖𝑎𝑔(𝐼1𝑡 , … . , 𝐼𝑚𝑡), is an indicator function, given as: 

𝐼(𝜂𝑖𝑡) = �0,    𝜀𝑖𝑡 > 0 
1,    𝜀𝑖𝑡 ≤ 0                                                                     (3.6) 

If 𝑚 = 1, Eq. (3.5) reduces to the asymmetric GARCH (or GJR) model of Glosten et al. (1992). 

Meanwhile, the VARMA-AGARCH model reduces to the VARMA-GARCH model when 𝐶𝑖 = 0 for 

all 𝑖. If 𝐶𝑖 = 0 and 𝐴𝑖  and 𝐵𝑗  are diagonal matrices for all 𝑖 and 𝑗, then the VARMA-AGARCH 

model reduces to the constant conditional correlation (CCC) multivariate GARCH model of 

Bollerslev (1990). For further details about the necessary and sufficient conditions for 

stationarity and ergodicity of the VARMA-AGARCH model, please see McAleer et al. (2009). The 

parameters of Eq. (3.1) to Eq. (3.5) are obtained by maximum likelihood estimation (MLE) using 

a joint normalized distribution. However, it is well known that the normality of the innovations is 

always rejected in most applications dealing with daily data in commodity markets. In particular, 

the kurtosis of most commodities prices returns is larger than three, which means that they have 

too many extreme values to be normally distributed and could be considered as conditional 

leptokurtosis. Harvey et al. (1992) and Fiorentini et al. (2003) indicate that an alternative to the 
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multivariate Gaussian distribution is the Student’s 𝑡 distribution, which has an extra scalar 

parameter, the degrees of freedom parameter, denoted 𝜈 hereafter. Therefore, when 𝜂𝑡 does 

not follow a joint multivariate normalized distribution, the appropriate estimator is 

Quasi-Maximum Likelihood Estimation (QMLE).12 

With regard to the conditional correlation, we can assume it to follow the Bollerslev (1990) 

model, in which the conditional volatility matrix is defined as: 

𝐻𝑡 = 𝐷𝑡Γ𝐷𝑡                                                                              (3.7) 

where 𝐷𝑡 = 𝑑𝑖𝑎𝑔(ℎ1
1/2, … . , ℎ𝑚

1/2) , 𝑚  is the number of returns, and 𝑡 = 1, … ,𝑛 , and Γ =

E(ηtηt′|Ft−1) = E(ηtηt′), where Γ = {ρij}, for 𝑖, 𝑗 = 1, …𝑚, is the constant conditional correlation 

matrix of the unconditional shocks, ηt is equivalent to the constant conditional covariance 

matrix of the conditional shocks, 𝜀𝑡, from Eq. (3.1), 𝜀𝑡𝜀𝑡′ = 𝐷𝑡ηtηt′𝐷𝑡 , and E(𝜀𝑡𝜀𝑡′|Ft−1) = 𝐻𝑡 =

𝐷𝑡Γ𝐷𝑡 , where 𝐻𝑡  is the conditional covariance matrix. The conditional covariance matrix is 

positive definite if and only if all the conditional variances are positive and Γ is positive definite. 

As the assumption that the conditional correlations across different markets are constant may 

seem unrealistic in many empirical analyses (see Lanza et al., 2006; Manera et al., 2006), it will be 

appropriate to use the dynamic conditional correlation (DCC) structure proposed by Engle (2002) 

to capture the time-dependent conditional correlation matrix Γ𝑡, which is defined as: 

Γ𝑡 = {𝑑𝑖𝑎𝑔(𝑄𝑡)−
1
2}𝑄𝑡{𝑑𝑖𝑎𝑔(𝑄𝑡)−

1
2}                                      (3.8) 

where 𝑄𝑡 = (𝑞𝑖𝑗,𝑡) is a 𝑚 ∗ 𝑚 symmetric positive definite matrix given by: 

𝑄𝑡 = [1 − 𝜃1 − 𝜃2]𝑄 + 𝜃1𝜂𝑡−1𝜂𝑡−1′ + 𝜃2𝑄𝑡−1                         (3.9) 

where 𝜃1 is a positive and 𝜃2 a non-negative scalar parameter to capture the effects of previous 

shocks and previous dynamic conditional correlations on the current dynamic conditional 

12 Please refer to McAleer et al. (2009) for detailed log likelihood function. They state that since 𝜂𝑡 is not necessarily assumed 
to be normal, the estimation of the log likelihood function is the QMLE. 
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correlation respectively. Their sum is less than unity to ensure the positive definite of the 

variance-covariance matrix 𝐻𝑡 . 𝑄  is the 2x2 unconditional correlation matrix of the 

standardized residuals 𝜂𝑡−1. Engle (2002) presents the conditional correlation as a weighted 

sum of past correlations. For the DCC structure, the null hypothesis of 𝜃1 = 𝜃2 = 0 is tested to 

determine whether imposing constant correlations is relevant. When 𝜃1 = 𝜃2 = 0, 𝑄𝑡  in Eq. (3.9) 

is equivalent to the CCC structure. The disadvantage of the DCC specification is that 𝜃1 and 𝜃2 

are scalars, therefore, the conditional correlations feature the same dynamics. This is a necessary 

condition to ensure Γ𝑡 is positive definite for all t. The DCC structure may be estimated simply 

using a two-step method based on the likelihood function (see Caporin and McAleer, 2009). 

An alternative dynamic conditional correlation model featuring the volatility transmission effects 

is the BEKK model of Engle and Kroner (1995), which has the attractive property that the 

conditional covariance matrices are positive definite. However, McAleer et al. (2009) argue that 

the BEKK model suffers from the so-called “curse of dimensionality”. The BEKK model for 

multivariate GARCH (1, 1) is given as: 

𝐻𝑡 = 𝐶𝐶′ + 𝐴𝜀𝑡−1𝜀𝑡−1′ 𝐴′ + 𝐵𝐻𝑡−1𝐵′                                           (3.10) 

where the individual element for the matrices 𝐶,𝐴 𝑎𝑛𝑑 𝐵 are given as: 

𝐶 = �𝑐11𝑐21 𝑐22
� ,𝐴 = �

𝑎11 𝑎12
𝑎21 𝑎22� ,𝐵 = �𝑏11 𝑏12

𝑏21 𝑏22
� 

for a two-market/asset portfolio with ∑ ∑ (𝐴𝑘𝑗⨂𝐴𝑘𝑗)𝐾
𝑘=1

𝑞
𝑗=1 + ∑ ∑ (𝐵𝑘𝑗⨂𝐵𝑘𝑗)𝐾

𝑘=1
𝑞
𝑗=1 , where ⨂ 

denotes the Kronecker product of two matrices, are less than one in the modulus for covariance 

stationary (Silvennoinen and Terasvirta, 2008). Matrix 𝐴  measures the extent to which 

conditional variances are correlated with past squared unexpected returns and consequently the 

effects of shocks on volatility. At the same time, matrix B depicts the extent to which current level 

of conditional variance-covariance matrix is related to past conditional variance-covariance 

matrices. The disadvantage of the BEKK model is that it is computationally complicated and the 
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estimated coefficients for the variance-covariance matrix cannot be interpreted on an individual 

basis (see Caporin and McAleer, 2009). 

3.3.2 Optimal hedge ratios and optimal portfolio weights 

The objective of market participants in futures markets is to minimise risk of their portfolio 

without reducing their expected returns. Consider an investor in petroleum markets intending to 

protect their exposure to petroleum price fluctuations, the return on the investor’s portfolio of 

spot and futures positions can be denoted as:  

𝑅𝐻,𝑡 = 𝑅𝑆,𝑡 − 𝛾𝑡𝑅𝐹,𝑡                                                            (3.11) 

where 𝑅𝐻,𝑡 is the return on holding the portfolio between 𝑡 − 1 and 𝑡, 𝑅𝑆,𝑡 and 𝑅𝐹,𝑡  are the 

returns on holding spot and futures positions between 𝑡 − 1 and 𝑡, and 𝛾𝑡  is the hedge ratio, 

which is the number of futures contracts that the hedger should sell for each unit of spot 

commodity on which price risk is borne.13 

Johnson (1960)14 explains that the variance of the returns of the hedged portfolio, conditional on 

the information set available at time 𝑡 − 1, is described as: 

𝑉𝑎𝑟�𝑅𝐻,𝑡�Ω𝑡−1� = 𝑉𝑎𝑟�𝑅𝑆,𝑡�Ω𝑡−1� − 2𝛾𝑡𝐶𝑜𝑣�𝑅𝑆,𝑡 ,𝑅𝐹,𝑡�Ω𝑡−1� + 𝛾𝑡2𝑉𝑎𝑟�𝑅𝐹,𝑡�Ω𝑡−1�         (3.12) 

where 𝑉𝑎𝑟�𝑅𝑆,𝑡�Ω𝑡−1�, 𝑉𝑎𝑟�𝑅𝐹,𝑡�Ω𝑡−1�  and 𝐶𝑜𝑣�𝑅𝑆,𝑡 ,𝑅𝐹,𝑡�Ω𝑡−1�  are the conditional variance 

and covariance of the spot and futures returns, respectively. Therefore, the optimal hedge ratio 

(OHR) is defined as the value of 𝛾𝑡  which minimizes the conditional variance (the proxy of risk) 

of the hedged portfolio returns. Baillie and Myers (1991) derive the OHR from Eq. (3.12) after 

taking the partial derivative of Eq. (3.12) with respect to 𝛾𝑡 , setting it equal to zero and solving 

for 𝛾𝑡 , as: 

13 In this chapter we assume that a hedger in petroleum markets, such as petroleum producers or consumers, is always short 
on the futures contracts. Similar discussion could be attained for someone who is short on the physical and has to buy it at 
some future time. 
14 Please also see Stein (1961) and Ederington (1979). 
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𝛾𝑡∗|Ω𝑡−1 =
𝐶𝑜𝑣�𝑅𝑆,𝑡 ,𝑅𝐹,𝑡�Ω𝑡−1�
𝑉𝑎𝑟�𝑅𝐹,𝑡�Ω𝑡−1�

                                                 (3.13) 

in which the returns are defined as the logarithmic differences of spot and futures prices. 

Based on the VARMA-AGARCH model described previously, the OHR could be described as: 

𝛾𝑡∗|Ω𝑡−1 =
ℎ𝑆𝐹,𝑡

ℎ𝐹,𝑡
                                                                 (3.14) 

where ℎ𝑆𝐹,𝑡 is the conditional covariance between spot and futures returns, and ℎ𝐹,𝑡  is the 

conditional variance of futures returns. This equation is consistent with the function given by 

Kroner and Sultan (1993). In order to minimize risk, a long position of one dollar taken in one 

petroleum spot asset should be hedged by a short position of $𝛾𝑡∗ in its corresponding futures 

asset at time 𝑡 (see Hammoudeh et al., 2009). 

Alternatively, estimating the right time-varying variance-covariance matrix is essential for the 

optimal portfolio design. Following Kroner and Ng (1998)’s instruction, we assume here that the 

expected returns are zero, making the problem equivalent to estimating the risk-minimizing 

portfolio weights. Then we can define  

𝑤𝑆𝐹,𝑡 =
ℎ𝐹,𝑡 − ℎ𝑆𝐹,𝑡

ℎ𝑆,𝑡 − 2ℎ𝑆𝐹,𝑡 + ℎ𝐹,𝑡
                                                           (3.15) 

Under the assumption of a mean-variance utility function, the optimal portfolio weight of 

petroleum spot/futures holding is given by:  

𝑤𝑆𝐹,𝑡 = �
0,         𝑖𝑓 𝑤𝑆𝐹,𝑡 < 0

𝑤𝑆𝐹 ,𝑡 ,         𝑖𝑓 0 < 𝑤𝑆𝐹 ,𝑡 < 1
1,         𝑖𝑓 𝑤𝑆𝐹,𝑡 > 0

                                                 (3.16) 

where 𝑤𝑆𝐹,𝑡  and 1 − 𝑤𝑆𝐹,𝑡  are the optimal weight of the spot and futures in a one dollar 

portfolio of petroleum commodity spot/futures at time 𝑡. 
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Furthermore, it would be interesting to look into hedging effectiveness (HE) by actually running 

the portfolio simulations with the optimal portfolio designs. The effectiveness of the portfolio 

diversification is measured by comparing the realized risk and return characteristics of the 

considered portfolio. Ku et al. (2007) propose that the effectiveness of hedging across each 

considered portfolio can be evaluated by examining the realized hedging errors, which is given 

by: 

𝐻𝐸 =
𝑉𝑎𝑟𝑢𝑛ℎ𝑒𝑑𝑔𝑒𝑑 − 𝑉𝑎𝑟ℎ𝑒𝑑𝑔𝑒𝑑

𝑉𝑎𝑟𝑢𝑛ℎ𝑒𝑑𝑔𝑒𝑑
                                            (3.17) 

where the variance of the hedged portfolio is obtained from the variance of the rate of 

return, 𝑅𝐻,𝑡 , and the variance of the unhedged portfolio is the variance of spot returns (see, 

Arouri et al., 2011). A higher HE ratio suggests superior hedging effectiveness in terms of the 

portfolio’s variance reduction, which thus implies that the associated investment method can be 

deemed a better hedging strategy. 

 

3.4 Data 

The data set for this chapter comprises daily synchronous closing prices of spot and the nearby 

futures contract (that is, the contract for which the maturity is closest to the current date) for 

three petroleum commodities: NYMEX WTI crude oil, gasoline, and heating oil from October 7, 

2005 to October 23, 2012.15 All daily closing prices of 1768 observations are obtained from the 

Energy Information Agency of US government website.16 The returns of petroleum commodity 𝑖 

at time 𝑡 in a continuous compound basis are calculated as 𝑟𝑖,𝑡 = log (𝑃𝑖,𝑡/𝑃𝑖,𝑡−1), where 𝑃𝑖 ,𝑡 and 

𝑃𝑖,𝑡−1 are the closing prices of petroleum commodities 𝑖 for days 𝑡 and 𝑡 − 1, respectively.  

15 The reason for us to choose this particular starting date is that the futures contract with regard to gasoline has changed 
specification in late 2005. In order to keep datasets consistency across three petroleum commodities, we have chosen this 
particular date. 
16 The abbreviation for the spot prices of WTI crude oil, gasoline and heating oil are WTI_S, GASO_S and HEAT_S, respectively. 
The abbreviation for the futures prices of WTI crude oil, gasoline and heating oil are WTI_F, GASO_F and HEAT_F, respectively. 
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The criteria for selecting the data set for this analysis include: (1) the petroleum commodities 

must be actively traded; (2) F.O.B. price is preferable. F.O.B. price (Free on board, which is the 

price charged at the exporting country’s port of loading) for oil products will eliminate the impact 

of transportation and insurance cost in comparison with C.I.F. price (Cost, Insurance and Freight, 

which is the price charged at the importing country’s port of discharging). 

 
Table 3.1 
Descriptive statistics. 

Returns Mean (%) Std. Dev. (%) Skew. Kurt Max Min JB 𝑄(10) 𝑄2(10) 

WTI_S 0.019 2.533 0.105 7.877 0.164 -0.128 1754.7+++ 35.387+++ 1065.3+++ 

WTI_F 0.019 2.525 0.130 7.942 0.164 -0.131 1803.3+++ 25.051+++ 1121.9+++ 

GASO_S 0.018 3.090 0.111 7.255 0.222 -0.187 1336.3+++ 13.798 349.02+++ 

GASO_F 0.023 2.544 -0.162 6.357 0.153 -0.135 837.5+++ 19.437++ 372.74+++ 

HEAT_S 0.026 2.141 -0.094 4.490 0.106 -0.099 166.2+++ 3.179 299.05+++ 

HEAT_F 0.025 2.122 -0.125 4.852 0.088 -0.102 257.2+++ 4.396 449.16+++ 

Notes: This table reports the basic statistics of the return series of WTI crude oil, gasoline and heating oil, including mean (Mean), standard deviation 
(Std. Dev), skewness (Skew.), kurtosis (Kurt.), minimum (Min), and maximum (Max). JB refers to the empirical statistic of the Jarque-Bera (1980) test 
for normality based on skewness and excess kurtosis. Q(10) represents the Ljung-Box (1978) tests for autocorrelations of order 10 applied to 
standardized residuals. 𝑄2(10) represents the Engle’s (1982) ARCH test, carried out as the Ljung–Box (1978) Q statistics on the squared series. +++ 
and ++ indicate the rejection of the null hypothesis of associated statistical tests at the 1% and 5% levels, respectively. 

 

Table 3.1 reports the descriptive statistics of the return series. The means of the six return series 

are quite small in comparison to the standard deviations, but the corresponding volatility of 

returns measured by standard deviation is much higher. Both skewness and kurtosis statistics, 

accompanied with extreme value statistics (Minimum and Maximum), indicate essentially that 

pre-eminence of large jumps in the datasets leads up to the rejection of the normality 

assumptions for the return series, which is also confirmed by the Jarque-Bera (1980) test. The 

Ljung and Box (1978) Q statistic on the first ten lags of the sample autocorrelation function is 

significant only in the WTI crude oil market at the 1% significance level. Engle’s (1982) ARCH test, 

carried out as the Ljung-Box Q statistic on the squared series, indicates the existence of 

heteroscedasticity for all six return series. 

Table 3.2 reports the results of unit roots tests for the price and returns series of petroleum 

markets based on Augmented Dickey-Fuller (1979) (ADF) and Phillips and Perron (1988) (PP) 
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unit root tests. Under the hypothesis of both intercept and trend in test equations, both ADF and 

PP test statistics fail to reject the null hypothesis of a unit root for all price series. For each of the 

return series, the results of a stationary process can be obtained from unit root tests. Thus, we 

can say that the petroleum price process follows a unit root, whereas the return process is 

stationary. The market efficiency hypothesis requires that the current futures prices and the 

future spot price are cointegrated, meaning that futures prices are unbiased predictors of spot 

prices at maturity (see Moosa, 1996). Consequently, the agent can buy or sell a contract in the 

futures market for a commodity and undertakes to receive or deliver the commodity at a certain 

time in the future, based on a price determined today (Chang et al., 2011). 

 
Table 3.2 
Unit root tests. 

Panel A: price series 

Prices ADF test 
 

PP test 

None Cons. Cons. & trend 
 

None Cons. Cons. & trend 

WTI_S -0.2103 -2.1099 -2.2077 
 

-0.1728 -2.0452 -2.1366 

WTI_F -0.2041 -2.1025 -2.1979 
 

-0.1673 -2.0581 -2.0985 

GASO_S -0.2822 -2.3689 -2.6822 
 

-0.3357 -2.5027 -2.8346 

GASO_F -0.0702 -2.0175 -2.2925 
 

-0.1051 -1.9998 -2.2166 

HEAT_S 0.1644 -1.4240 -1.8661 
 

0.1817 -1.4113 -1.8556 

HEAT_F 0.1541 -1.4347 -1.8811 
 

0.1686 -1.4179 -1.8653 

Panel B: return series 

Returns ADF test 
 

PP test 

None Cons. Cons. & trend 
 

None Cons. Cons. & trend 

WTI_S −19.418+++ −19.416+++ −19.411+++ 
 

−42.396+++ −42.388+++ −42.377+++ 

WTI_F −24.212+++ −24.207+++ −24.201+++ 
 

−44.067+++ −44.058+++ −44.046+++ 

GASO_S −43.057+++ −43.047+++ −43.035+++ 
 

−43.081+++ −43.069+++ −43.057+++ 

GASO_F −41.685+++ −41.677+++ −41.665+++ 
 

−41.686+++ −41.677+++ −41.665+++ 

HEAT_S −43.536+++ −43.530+++ −43.521+++ 
 

−43.532+++ −43.526+++ −43.517+++ 

HEAT_F −42.812+++ −42.806+++ −42.797+++ 
 

−42.818+++ −42.812+++ −42.803+++ 

Notes: ADF is the Augmented Dickey-Fuller (1979) unit root test statistic. PP is the Phillips-Perron (1988) unit root test statistic. The null 
hypothesis in the ADF and PP tests is that the underlying series has a unit root. +++ indicates the rejection of the null hypothesis at the 
significance levels of 1%. Numbers of augmenting lags are chosen using the Hannan-Quinn Criterion. Significance levels probabilities from 
MacKinnon (1996) use the number of observations. Asymptotic values have a higher significance level. 
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The Johanson (1995) cointegration test between spot and futures prices is reported in Table 3.3 

through employing the trace (𝜆𝑡𝑟𝑎𝑐𝑒) and maximal (𝜆𝑚𝑎𝑥) eigenvalue test statistics. Both tests 

suggest that the null hypothesis of no cointegrating vector, 𝑘 = 0, can be rejected at the 

significance level of 1%, while the alternative hypothesis of at least one cointegrating vector, 

𝑘 = 1, can not be rejected at the significance level of 10% at least. Therefore, we can draw the 

conclusion that spot and futures prices are cointegrated with one cointegrating vector. 

 
Table 3.3 
Cointegration test using the Johansen approach. 

Market Lag number 𝜆𝑡𝑟𝑎𝑐𝑒 
 

𝜆𝑚𝑎𝑥  

𝑘 = 0 𝑘 ≤ 1 
 

𝑘 = 0 𝑘 ≤ 1 

WTI 2 381.3+++ 4.125 
 

377.2+++ 4.126 

GASO 2 64.608+++ 4.431 
 

60.177+++ 4.431 

HEAT 2 101.5+++ 3.585 
 

97.9+++ 3.586 

Notes: +++ indicates the rejection of the null hypothesis at the significance levels of 1%. Significance levels probabilities from MacKinnon 
(1996) use the number of observations. Asymptotic values have a higher significance level. 

 

Fig. 3.1 displays the evolution of the synchronous petroleum commodities prices. All prices move 

in the same pattern, suggesting they are contemporaneously correlated. The behaviour of 

petroleum commodities prices shows distinctly three main patterns: a modest stable trend from 

October 2005 to February 2007, followed by a strong upward deterministic trend and 

persistence over the period from March 2007 to July 2008, with prices rising progressively to 

cross the peak point in July 2008, showing no sign for stability around a mean. However, 

following the impact of financial crisis of 2008, the persistent upward trend is dramatically 

reversed within a very short period from August 2008 to December 2008. Subsequently, the 

upward trend comes back and becomes predictable. Fig. 3.2 shows the plot of petroleum 

commodities returns, which indicates that the periods of high volatilities are followed by the 

periods of relative tranquillity. Fig. 3.3 presents the dynamics of volatilities of petroleum 
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commodities, whereas volatilities are proxied by the squared daily returns.17 These plots also 

confirm the existence of volatility clustering. 

 
Table 3.4 
Engle and Ng (1993) tests for sign and size bias in variance. 

Variable Sign Negative size Positive size Joint 

WTI_S 2.375++ 6.801+++ 9.119+++ 133.95+++ 

WTI_F 2.262++ 7.056+++ 6.929+++ 111.16+++ 

GASO_S 0.315 5.469+++ 3.941+++ 46.28+++ 

GASO_F 1.935+ 4.317+++ 6.883+++ 66.79+++ 

HEAT_S 0.073 5.096+++ 2.857+++ 37.76+++ 

HEAT_F 0.049 4.679+++ 1.577 30.13+++ 

Notes: +++, ++ and + indicate the rejection of the null hypothesis of the Engle and Ng (1993) test at the 1%, 5% and 10% levels, respectively. 

 

Finally, as we are interested in the asymmetry of the volatility response to news, in Table 3.4, we 

present Engle and Ng (1993) test statistics for “sign bias”, “negative size bias”, “positive size bias” 

and their “Joint effect”. As can be seen from Table 3.4, the conditional volatilities of petroleum 

commodities prices are sensitive to the sign and size of the innovation. In particular, the joint test 

for both sign and size bias is significant at 1% significance level. 

17 Kang et al. (2009) take the same approach to assess daily actual volatility (variance). Another way to measure the daily 
volatility is to calculate the square of the estimated residuals of the returns series from an ARMA (1, 1) process (see Chang et al., 
2011). The plotted patterns are similar no matter which approach has been employed, which suggests the existence of volatility 
clustering. 
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Fig. 3.1 Petroleum commodities spot and futures prices. 
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Fig. 3.2 Logarithm of daily petroleum commodities spot and futures returns. 
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Fig. 3.3 Squared returns of daily petroleum commodities spot and futures prices. 
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3.5 Empirical results 

In this section, we will first discuss our findings related to volatility transmission between 

petroleum commodities spot and futures markets within the empirical framework of the 

VARMA-AGARCH model with DCC structure18. We will then use the estimation results to compute 

the optimal weights as well as the optimal hedge ratios and to discuss the optimal hedging 

strategies. 

Table 3.5 reports the estimates of the conditional mean and variance for VAR (2)-AGARCH (1, 1) 

models with DCC structure.19 The results with regard to the conditional mean equation indicate 

that returns for all petroleum spot and futures prices are interdependent but these 

interdependencies are not the same across the petroleum markets. In order to investigate the 

information flow between petroleum spot and futures returns, we also examine the daily 

Granger-causality relationship in returns. Granger causality test (Granger, 1969) is designed to 

detect causal direction between two time series. More precisely, Granger causality test detects a 

correlation between the current value of one variable and the past values of another variable. 

Based on Granger’s definition of causality, Sims (1980) provided a variant. Consider a bivariate 

VAR model with two time series for up to five lags20: 

𝑟𝑖𝑆 = 𝑎1 + � 𝑏1𝑗𝑟𝑡−𝑗𝑆
5

𝑗=1
+ � 𝑐1𝑗𝑟𝑡−𝑗𝐹

5

𝑗=1
+ 𝜀1𝑡                      (3.18𝑎) 

𝑟𝑖𝐹 = 𝑎1 + � 𝑏2𝑗𝑟𝑡−𝑗𝐹
5

𝑗=1
+ � 𝑐2𝑗𝑟𝑡−𝑗𝑆

5

𝑗=1
+ 𝜀2𝑡                      (3.18𝑏) 

where 𝑟𝑖𝑆 and 𝑟𝑖𝐹  are the log returns on petroleum markets spot and futures prices, 𝜀𝑡 is an 

error term, b and c are parameters for estimation. The VAR model is estimated using ordinary 

18 The other two models, i.e. the VARMA-AGARCH model with CCC structure and the BEKK model, are also estimated, but the 
results are not shown here as they are used especially to compare the results of hedging effectiveness. Both models are 
estimated under the distributional assumption of a joint normalized distribution. The computations presented in this study 
were conducted by means of RATS and R programs. 
19 Note that we also estimated the models under the distributional assumption of a joint normalized distribution. Model 
parameters were found to be robust irrespective of the distribution chosen and results were similar to those reported in Table 
3.5. 
20 We use five lags to represent a typical trading week. The results are robust to differing numbers of lags. 
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least squares with heteroskedasticity-consistent standard errors. To test whether the Granger 

causality runs from spot to futures market or from futures to spot market, the null hypothesis is: 

𝐻0,1: 𝑐1𝑗  𝑎𝑛𝑑 𝑐2𝑗 = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 = 1, … ,5  

                                                         𝐻0,2 : ∑ 𝑐1𝑗𝑗  𝑎𝑛𝑑 ∑ 𝑐2𝑗 = 0𝑗   

The first null hypothesis tests that all of the cross-market coefficients are jointly equal to zero. 

The second tests that the sum of all the coefficients is equal to zero. Hereafter, the first and 

second tests are defined as the joint and sum coefficient tests, respectively. The results for the 

Granger-causality tests are reported in Table 3.6. For the WTI crude oil market, there is 

significant bi-directional lead-lag relationship between spot and futures markets, since the joint 

tests are significant at the 1% level. The results for the heating oil markets are also significant. 

Regarding the gasoline market, the results demonstrate that neither gasoline spot market returns 

lead futures market returns nor do futures market returns lead spot market returns as both the 

joint and sum tests are not significant in either direction. 

3.5.1 Volatility dependencies and dynamic conditional correlations 

The results with regard to the conditional volatility equation show that the volatility sensitivity 

to its own lagged conditional volatility (GARCH terms) is significant for all spot and futures 

returns series. Changes in the current conditional volatility of both spot and futures returns are 

also dependent upon their own lagged shocks (ARCH terms), which are indicated by the 

significance of the estimates of ARCH coefficients. Furthermore, the larger magnitude of 

GARCH-term estimates, combined with the smaller size of ARCH-term estimates, indicates the 

gradual fluctuations of conditional volatility over time for petroleum markets, which suggests 

that investors participating in petroleum markets may consider active asset management 

strategies based on volatility persistence and current market trends. These properties can be 

further apprehended through plotting the time-variations of conditional volatility estimated over 

the sample period in Fig. 3.4. 
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Table 3.5 
Estimates of VAR (2)-AGARCH (1, 1) model with DCC structure. 

Variables    WTI_S-WTI_F   GASO_S-GASO_F 
 

HEAT_S-HEAT_F 

  WTI_S WTI_F 
 

GASO_S GASO_F 
 

HEAT_S HEAT_F 

Conditional mean equation 

Constant 
 

0.0002 0.0002 
 

0.0001 0.0002 
 

0.0002 0.0002 

𝐴𝑅(1)𝑆 
 

0.1058 0.0374 
 

−0.0698∗∗ 0.0079 
 

−0.2275∗∗∗ 0.2958∗∗∗ 

𝐴𝑅(1)𝐹 
 

-0.1204 -0.0822 
 

2.1701∗∗ 0.0017 
 

0.2095∗∗∗ −0.3002∗∗∗ 

𝐴𝑅(2)𝑆 
 

−0.1493∗∗∗ 0.1527∗∗∗ 
 

-0.0111 -0.0176 
 

-0.0085 0.1847∗∗∗ 

𝐴𝑅(2)𝐹 
 

1.9207∗ −0.1969∗∗∗ 
 

-0.0335 −0.0156∗∗ 
 

0.0072 −0.1834∗∗∗ 

Conditional variance equation 

Constant 
 

0.00004∗∗∗ 0.00004∗∗∗ 
 

0.00001∗∗ 0.00002∗∗ 
 

0.00001∗∗ 0.00002∗ 

(𝜀𝑡−1𝑆 )2 
 

−0.0924∗∗∗ 0.4884∗∗∗ 
 

0.1265∗∗∗ −0.1241∗∗∗ 
 

0.0193∗∗ −0.0719∗∗∗ 

(𝜀𝑡−1𝐹 )2 
 

0.4759∗∗∗ −0.0765∗∗ 
 

−0.0056∗ −0.0045∗ 
 

0.0952∗∗∗ −0.0506∗∗∗ 

ℎ𝑡−1𝑆  
 

0.6968∗∗∗ −0.0378∗∗ 
 

0.8085∗∗∗ 0.1723∗∗∗ 
 

0.9541∗∗∗ 0.0155∗ 

ℎ𝑡−1𝐹  
 

0.0753 0.5827∗∗∗ 
 

0.2437∗∗∗ 0.7492∗∗∗ 
 

−0.0954∗∗∗ 1.0954∗∗∗ 

Asymmetry 
 

0.3312∗∗∗ 0.3324∗∗∗ 
 

0.0544∗∗ 0.0736∗∗∗ 
 

0.0296∗∗∗ 0.0354∗∗∗ 

𝑆ℎ𝑎𝑝𝑒(𝜈) 
 

3.19∗∗∗ 
 

4.88∗∗∗ 
 

6.61∗∗∗ 

Dynamic Conditional Correlation (DCC) 

𝜃1 
 

0.4075∗∗∗ 
 

0.0364∗∗∗ 
 

0.0779∗∗∗ 

𝜃2 
 

0.5862∗∗∗ 
 

0.9557∗∗∗ 
 

0.9157∗∗∗ 

𝜃1 + 𝜃2 0.9937 
 

0.9921 
 

0.9936 

Average DCC 0.9656 (0.0909) 
 

0.6799 (0.1211) 
 

0.9428 (0.0780) 

Diagnostic statistics 

Log L 
 

11807.2 
 

8736.3 
 

11207.1 

JB 
 

207.4+++ 171.6+++ 
 

134.5+++ 197.9+++ 
 

41.13+++ 51.76+++ 

ARCH(10) 
 

14.971 16.817+ 
 

19.001++ 19.977++ 
 

9.409 7.483 

Q(10) 
 

5.987 8.251 
 

4.749 10.896 
 

4.212 3.764 

Notes: *, **, and *** indicate significance at the 10%, 5% and 1% respectively. Model is estimated using QMLE with robust 
(heteroskedasticity/misspecification) standard errors. The Log L (Log Likelihood) criterion measures the relative goodness of fit of the 
estimated model. JB, ARCH(10), and Q(10) refer to the empirical statistics of the Jarque-Bera (1980) test for normality based on skewness 
and excess kurtosis, the Engle (1982) test for conditional heteroscedasticity of order 10, and the Ljung-Box (1978) tests for 
autocorrelations of order 10 applied to standardized residuals in levels. The Average DCC refers to the average value of dynamic 
conditional correlations between petroleum spot and futures markets. The two entries for each Average DCC are their respective value and 
the corresponding standard deviation. +, ++, and +++ indicate the rejection of the null hypothesis of associated statistical tests at the 10%, 5% 
and 1% respectively. 
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Table 3.6 
Granger causality in returns. 

𝑟𝑖𝑆 = 𝑎1 + � 𝑏1𝑗𝑟𝑡−𝑗𝑆
5

𝑗=1
+ � 𝑐1𝑗𝑟𝑡−𝑗𝐹

5

𝑗=1
+ 𝜀1𝑡                     (3.18𝑎) 

 
𝑟𝑖𝐹 = 𝑎1 + � 𝑏2𝑗𝑟𝑡−𝑗𝐹

5

𝑗=1
+ � 𝑐2𝑗𝑟𝑡−𝑗𝑆

5

𝑗=1
+ 𝜀2𝑡                     (3.18𝑏) 

 

Panel A: WTI Crude oil 𝑟𝑖𝑆  𝑟𝑖𝐹  

 
𝜒2(5) statistic p-value  𝜒2(5) statistic p-value 

𝐻0,1: Joint coefficient test  2.9452 0.0098∗∗∗  3.2419 0.00645∗∗∗ 

𝐻0,2: Sum coefficient test 1.3167 0.2512  12.722 0.0004∗∗∗ 

Panel B: Gasoline 𝑟𝑖𝑆  𝑟𝑖𝐹  

 
𝜒2(5) statistic p-value  𝜒2(5) statistic p-value 

𝐻0,1: Joint coefficient test  1.5476 0.1719  0.3228 0.8995 

𝐻0,2: Sum coefficient test 2.4517 0.1174  0.3507 0.5537 

Panel C: Heating Oil 𝑟𝑖𝑆  𝑟𝑖𝐹  

 
𝜒2(5) statistic p-value  𝜒2(5) statistic p-value 

𝐻0,1: Joint coefficient test  2.6132 0.0231∗∗  5.6585 0.0001∗∗∗ 

𝐻0,2: Sum coefficient test 2.2722 0.1317  15.341 0.0001∗∗∗ 

Notes: This table presents results for the initial Granger-causality tests specified by Eq. (3.18a) and (3.18b). *** and ** indicate the null 
hypothesis is significant at the 1% and 5% level, respectively. 

 

The estimates of volatility spillovers and asymmetric effects between spot and futures returns 

are also found in all petroleum markets. This means that the conditional variances of spot returns 

of petroleum markets are affected by the previous short run shocks and long run persistence 

from their corresponding futures returns and the conditional variances of futures returns of 

petroleum markets are also affected by the previous short run shocks and long run persistence 

from their corresponding spots returns. Furthermore, the significance of the coefficients 

associated with asymmetry indicates that the positive and negative shocks of equal magnitude 

have different impacts on the conditional variance, which in turn suggests that the 

VARMA-AGARCH model is more appropriate than the VARMA-GARCH model in terms of 

modeling dynamic volatility of petroleum markets. 
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The DCC estimates of the conditional correlations between the volatilities of spot and futures 

returns are also given in Table 3.5. The estimated coefficients on 𝜃1 and 𝜃2 are each positive 

and statistically significant at the 1% level, which indicates that the assumption of constant 

conditional correlation for petroleum markets is not supported empirically. The short run 

persistence of shocks on the dynamic conditional correlations is greatest for WTI crude oil at 

0.4075, while the largest long run persistence of shocks to the conditional correlations is 0.9937 

(=0.4075+0.5862) for WTI crude oil. Furthermore, these estimated coefficients sum to a value 

which is less than one, meaning that the dynamic conditional correlations are mean-reverting.  

The time-varying conditional correlations between spot and futures returns are plotted in Fig. 3.5. 

It is clear that there is significant variation in the conditional correlations over time, especially in 

the spot and futures returns of gasoline which has the highest standard deviation of the dynamic 

conditional correlations reported in Table 3.5. It is also observed that the dynamic conditional 

correlations can vary a lot from the average conditional correlations 

(𝐷𝐶𝐶𝑊𝑇𝐼 = 0.9656,𝐷𝐶𝐶𝐺𝑎𝑠𝑜𝑙𝑖𝑛𝑒 = 0.6799, 𝑎𝑛𝑑 𝐷𝐶𝐶𝐻𝑒𝑎𝑡𝑖𝑛𝑔𝑜𝑖𝑙 = 0.9428) emphasizing the need to 

compute dynamic conditional correlations. The time series plots in Fig. 3.5 show that, for each 

pair of series, the dynamic conditional correlations provide much more useful information than 

do the correlations from the constant conditional correlations model, which indicates that any 

calculations associated with correlations from the constant conditional correlation model would 

have been very misleading.  
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Fig. 3.4 Time-variations of conditional volatility for petroleum markets. 
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Fig. 3.5 Time-varying conditional correlations for petroleum markets. 
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Table 3.7 
Diagnostic tests based on the news impact curve. 

 
(𝜀𝑡𝑆)2 − ℎ𝑡𝑆 𝜀𝑡𝑆𝜀𝑡𝐹 − ℎ𝑡𝑆𝐹  (𝜀𝑡𝐹)2 − ℎ𝑡𝐹  

WTI_S – WTI_F 

𝐼(𝜀𝑡−1
𝑆 < 0) 0.9656 0.8589 0.8732 

𝐼(𝜀𝑡−1
𝐹 < 0) 0.9569 0.8717 0.8260 

𝐼(𝜀𝑡−1
𝑆 < 0, 𝜀𝑡−1

𝐹 < 0) 0.9268 0.8233 0.7882 

𝐼(𝜀𝑡−1
𝑆 < 0, 𝜀𝑡−1

𝐹 > 0) 0.0902 0.0742 0.1213 

𝐼(𝜀𝑡−1
𝑆 > 0, 𝜀𝑡−1

𝐹 < 0) 0.1887 0.1856 0.2475 

𝐼(𝜀𝑡−1
𝑆 > 0, 𝜀𝑡−1

𝐹 > 0) 2.3659++ 2.2142++ 2.0932++ 

(𝜀𝑡−1𝑆 )2𝐼(𝜀𝑡−1𝑆 < 0) 0.5119 1.9254+ 0.0064 

(𝜀𝑡−1𝑆 )2𝐼(𝜀𝑡−1𝐹 < 0) 5.4003+++ 5.9963+++ 0.7884 

(𝜀𝑡−1𝐹 )2𝐼(𝜀𝑡−1𝑆 < 0) 0.3379 0.1704 0.0345 

(𝜀𝑡−1𝐹 )2𝐼(𝜀𝑡−1𝐹 < 0) 0.4618 0.1572 0.1287 

GASO_S – GASO_F 

𝐼(𝜀𝑡−1
𝑆 < 0) 0.2759 1.4307 0.9226 

𝐼(𝜀𝑡−1
𝐹 < 0) 0.1766 1.8176+ 0.6727 

𝐼(𝜀𝑡−1
𝑆 < 0, 𝜀𝑡−1

𝐹 < 0) 1.0940 2.2088++ 0.8657 

𝐼(𝜀𝑡−1
𝑆 < 0, 𝜀𝑡−1

𝐹 > 0) 0.2489 5.4369+++ 0.5131 

𝐼(𝜀𝑡−1
𝑆 > 0, 𝜀𝑡−1

𝐹 < 0) 0.7479 0.5022 0.4690 

𝐼(𝜀𝑡−1
𝑆 > 0, 𝜀𝑡−1

𝐹 > 0) 1.3954 0.7341 1.5672 

(𝜀𝑡−1𝑆 )2𝐼(𝜀𝑡−1𝑆 < 0) 0.0836 0.3853 2.7016+++ 

(𝜀𝑡−1𝑆 )2𝐼(𝜀𝑡−1𝐹 < 0) 0.3643 1.0421 2.8634+++ 

(𝜀𝑡−1𝐹 )2𝐼(𝜀𝑡−1𝑆 < 0) 2.9182+++ 0.1296 2.5521++ 

(𝜀𝑡−1𝐹 )2𝐼(𝜀𝑡−1𝐹 < 0) 0.2515 0.1809 0.3001 

HEAT_S – HEAT_F 

𝐼(𝜀𝑡−1
𝑆 < 0) 1.3263 1.9530+ 1.8736+ 

𝐼(𝜀𝑡−1
𝐹 < 0) 1.1812 1.8902+ 1.8189+ 

𝐼(𝜀𝑡−1
𝑆 < 0, 𝜀𝑡−1

𝐹 < 0) 1.2745 1.9404+ 1.8377+ 

𝐼(𝜀𝑡−1
𝑆 < 0, 𝜀𝑡−1

𝐹 > 0) 0.2145 0.2399 0.1578 

𝐼(𝜀𝑡−1
𝑆 > 0, 𝜀𝑡−1

𝐹 < 0) 0.2274 0.1789 0.2393 

𝐼(𝜀𝑡−1
𝑆 > 0, 𝜀𝑡−1

𝐹 > 0) 2.5182++ 1.5289 2.9194++ 

(𝜀𝑡−1𝑆 )2𝐼(𝜀𝑡−1𝑆 < 0) 0.0476 0.2041 0.4436 

(𝜀𝑡−1𝑆 )2𝐼(𝜀𝑡−1𝐹 < 0) 0.6928 2.3199++ 0.8892 

(𝜀𝑡−1𝐹 )2𝐼(𝜀𝑡−1𝑆 < 0) 0.3469 0.3701 0.2522 

(𝜀𝑡−1𝐹 )2𝐼(𝜀𝑡−1𝐹 < 0) 1.5917 0.5971 0.1463 

Notes: +++, ++ and + indicate the rejection of the null hypothesis of t of no asymmetric effects at the 1%, 5% and 10% significance levels, 
respectively. 
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Lastly, the results of diagnostic tests based on standardized residuals are also shown in Table 3.5. 

The diagnostic tests for the standardized residuals and standardized residuals squared show no 

evidence of serial autocorrelation and ARCH effects at the significance level of 1%. However, the 

JB statistics still reject the normality hypothesis even though that departure from normality is 

greatly reduced. We regard the departure from normality as well as the significance of the 

estimated degrees of freedom for the Student’s 𝑡 distribution as strong evidence for favouring a 

Student’s 𝑡 distribution for 𝜀𝑡. 

The diagnostic tests suggested by Engle and Ng (1993) and Kroner and Ng (1998), based on the 

‘generalized residuals’, defined as 𝜀𝑡𝑆𝜀𝑡𝐹 − ℎ𝑡𝑆𝐹 , are also conducted. A generalized residual can be 

thought of as the distance between a point on the scatter plot of 𝜀𝑡𝑆𝜀𝑡𝐹  from a corresponding 

point on the news impact curve. If the conditional heteroskedasticity part of the model is correct, 

generalized residuals should be uncorrelated with all information known at time 𝑡 − 1. The 

Engle and Ng (1993) and Kroner and Ng (1998) misspecification indicators test whether we can 

predict the generalized residuals by some variables observed in the past, but which are not 

included in the model. In this regard, we follow Kroner and Ng (1998) and Shields et al. (2005) 

and define two sets of misspecification indicators. In a two dimensional space, we first partition 

(𝜀𝑡−1𝑆 , 𝜀𝑡−1𝐹 ) into four quadrants in terms of the possible sign of the two residuals. Then, we define 

the series of indicator functions as 𝐼(𝜀𝑡−1𝑆 < 0) , 𝐼(𝜀𝑡−1𝐹 < 0) , 𝐼(𝜀𝑡−1𝑆 < 0, 𝜀𝑡−1𝐹 < 0) , 𝐼(𝜀𝑡−1𝑆 <

0, 𝜀𝑡−1𝐹 > 0) , 𝐼(𝜀𝑡−1𝑆 > 0, 𝜀𝑡−1𝐹 < 0) , and 𝐼(𝜀𝑡−1𝑆 > 0, 𝜀𝑡−1𝐹 > 0) , where 𝐼(∙)  equals one if the 

argument is true and zero otherwise. Furthermore, we further define a second set of indicator 

functions, (𝜀𝑡−1𝑆 )2𝐼(𝜀𝑡𝑆 < 0) , (𝜀𝑡−1𝑆 )2𝐼(𝜀𝑡𝐹 < 0) , (𝜀𝑡−1𝐹 )2𝐼(𝜀𝑡𝐹 < 0) , and (𝜀𝑡−1𝐹 )2𝐼(𝜀𝑡𝑆 < 0) , to 

examine the possible effect of both the size and the sign of a shock. These indicators are 

technically scaled versions of the former ones, with the magnitude of the shocks as a scale 

measure. We conduct indicator tests and report the results in Table 3.7. It can be observed from 

Table 3.7 that most of the indicators fail to reject the null hypothesis of no misspecification - all 

test statistics in Table 3.7 are distributed as 𝜒2(1). Hence, our model captures the effects of all 
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sign bias and size-sign scale depended shocks in predicting volatility and there is no significant 

model misspecification error in the standardized residuals. Therefore, the VARMA-AGARCH 

model with DCC structure provides a sufficient and parsimonious representation of the volatility 

process of petroleum commodities returns in terms of volatility spillovers, asymmetric effects 

and time-varying conditional correlations. 

Summarizing all, the empirical VARMA-AGARCH model with DCC structure appears to 

satisfactorily capture the volatility transmission for all petroleum markets under consideration. 

The analysis of volatility interdependence shows significant volatility spillovers and asymmetric 

effects between petroleum spot and futures markets. It is worth noting that the estimation 

results will allow us to compute the optimal weights as well as the optimal hedge ratios and to 

discuss the optimal hedging strategies in the following section. 

3.5.2 Portfolio management with optimal hedging strategies 

Our previous findings suggest that potential gains from diversification are substantial by 

investing in both petroleum spot and futures markets. However, their volatility transmissions 

require investors to quantify the optimal weights and hedging ratios in order to deal adequately 

with the risk. To illustrate this purpose, we now consider a portfolio composed of petroleum spot 

and futures assets for which we attempt to minimize the risk without reducing expected returns. 

The average values of optimal portfolio weights (𝑤𝑆𝐹,𝑡)  using estimates from various 

multivariate models, namely the VARMA-AGARCH model with DCC or CCC structure and the 

BEKK model, are presented in the second, third and fourth columns of Table 3.8.  

For all petroleum markets, the optimal portfolio weights from each model are not particularly 

different, suggesting that the portfolio constructions give similar results. In the case of the WTI 

crude oil market, the largest average value of 𝑤𝑆𝐹,𝑡  of the portfolio consisting of crude oil spot 

and futures from the VARMA-AGARCH model with CCC structure is 0.6714, meaning that 

investors should have more crude oil spot than futures in their portfolio in order to minimize risk 
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without lowering expected returns. In addition, the optimal holding of spot in a one-dollar 

spot-future market portfolio should be 67.14 cents, and the remaining budget of 32.86 cents is 

invested in futures. With regard to the gasoline market, the largest average value of 𝑤𝑆𝐹,𝑡  

obtained from the VARMA-AGARCH model with CCC structure, which is 0.7411, suggests that 

investors should have more gasoline spot than futures in their portfolio and the optimal holding 

of spot in a one-dollar spot-future market portfolio should be 74.11 cents, and the remaining 

budget of 25.89 cents is invested in futures. In the case of the heating oil market, the largest 

average value of 𝑤𝑆𝐹,𝑡  obtained from the BEKK model, which is 0.4533, suggests that investors 

should have less heating oil spot than futures in their portfolio and the optimal holding of spot in 

a one-dollar spot-future market portfolio should be 45.33 cents, and the remaining budget of 

54.67 cents is invested in futures. 

 
Table 3.8 
Optimal hedging strategies. 

Model Optimal portfolio weights 
 

Optimal hedge ratio  

WTI Gasoline Heating oil 
 

WTI Gasoline Heating oil  

VARMA-AGARCH with DCC 0.6420 0.7343 0.4473 
 

0.9578 0.5762 0.9638  

VARMA-AGARCH with CCC 0.6714 0.7411 0.4197 
 

0.9682 0.5941 0.9673  

BEKK 0.6356 0.7123 0.4533 
 

0.9442 0.5929 0.9546  

Note: The optimal portfolio weights given are for the spot crude oil/gasoline/heating oil, and thus 1-spot weights for futures in the 
portfolio are warranted. 

 

The average values of the optimal hedge ratio (𝛾𝑡∗) using estimates from various multivariate 

models are presented in the fifth, sixth and seventh columns of Table 3.8. It can be observed that 

different multivariate conditional volatility models generate different OHR. The average OHR 

values of the gasoline market obtained from different multivariate conditional volatility models 

are lowest among all three petroleum commodities markets. By following the estimated hedge 

strategy from the VARMA-AGARCH model with DCC structure, the average value of the optimal 

hedge ratio between spot and futures petroleum commodities is 0.9578, 0.5762, and 0.9638 for 

WTI crude oil, gasoline and heating oil, respectively. These results are important in establishing 
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that a one-dollar long position in spot WTI crude oil market can be hedged for 95.78 cents with a 

short position in futures WTI crude oil market; A one-dollar long position in spot gasoline market 

can be hedged for 57.62 cents with a short position in futures gasoline market; and a one-dollar 

long position in spot heating oil market can be hedged for 96.38 cents with a short position in 

futures heating oil market. Fig. 3.6 presents the calculated time-varying optimal hedge ratios 

(OHRs) from the VARMA-AGARCH model with DCC structure.21 

 
Table 3.9 
Hedging effectiveness. 

 
Mean 

 

Variance (%) 𝑅𝑒𝑡𝑢𝑟𝑛(%)∗ HEI (%) 𝑉𝑎𝑅5%($) Semi-Variance 

 

HEII (%) 

WTI_S – WTI_F  
 

     

Unhedged 0.0173 0.0641 0.6837 --- 41642.2 0.0240 --- 

VARMA-AGARCH-DCC 0.0273 0.0089 2.9050 86.17 15486.8 0.0045 81.19 

VARMA-AGARCH-CCC 0.0213 0.0097 2.1626 86.13 15558.3 0.0046 81.17 

BEKK 0.0112 0.0106 1.0878 83.45 16942.8 0.0047 80.26 

GASO_S – GASO_F  
 

     

Unhedged 0.0180 0.0956 0.5817 --- 50871.4 0.0349 --- 

VARMA-AGARCH-DCC 0.0315 0.0573 1.3159 40.08 39379.5 0.0208 40.31 

VARMA-AGARCH-CCC 0.0304 0.0576 1.2667 39.80 39469.3 0.0211 39.62 

BEKK 0.0298 0.0584 1.2331 38.94 39751.6 0.0210 39.92 

HEAT_S – HEAT_F  
 

     

Unhedged 0.0239 0.0458 1.1178 --- 35219.7 0.0165 --- 

VARMA-AGARCH-DCC 0.0258 0.0071 3.0619 84.41 13798.5 0.0034 79.64 

VARMA-AGARCH-CCC 0.0245 0.0080 2.7392 82.52 14724.3 0.0041 75.31 

BEKK 0.0196 0.0084 2.1385 81.65 13907.1 0.0037 77.58 

Notes: This table reports the realized risk-adjusted returns, portfolio variance, semi-variance, Value-at-Risk (VaR) and hedging 
effectiveness ratios. 𝑅𝑒𝑡𝑢𝑟𝑛∗ is the realized risk-adjusted returns, measured by calculating the ratio of each portfolio’s mean to its 
standard deviation, of different portfolios. Variance denotes the variance of the unhedged/hedged portfolios. Semi-variance denotes the 
semi-variance of the unhedged/hedged portfolio. 𝑉𝑎𝑅5% is the Value-at-Risk estimated using Eq. (3.19) with Φ(𝑐) equal to 
the normal distribution 5% quantile, i.e. 1.645. HEII denotes the hedging effectiveness. HEI denotes the hedging effectiveness and 
measures the incremental variance reduction of various models. HEII denotes the hedging effectiveness and measures the incremental 
semi-variance reduction of various models. 

 

 

21 The time-varying optimal hedge ratios (OHRs) from the VARMA-AGARCH model with CCC structure and the BEKK model are 
presented in Appendix 3.A and 3.B respectively. 
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Fig. 3.6 Optimal hedge ratios for petroleum markets from VARMA-AGARCH model with DCC structure. 
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The results from portfolio simulations in the second, third and fourth columns of Table 3.9 show 

that the risk-adjusted return ratios have been improved in the hedged portfolios. More 

importantly, these results hold for all cases and for all models we consider. The benchmark 

VARMA-AGARCH model with DCC structure provides the best risk-adjusted return ratios in all 

markets. The hedging effectiveness documented in the fifth column of Table 3.9 show that all 

numbers are positive, implying the superior performance of hedged portfolios over unhedged 

portfolios. All three multivariate conditional volatility models effectively reduce the variance of 

the portfolio, and perform better in the WTI crude oil and heating oil markets than in the gasoline 

market (the HE indices are above 80% for WTI crude oil and heating oil markets and only around 

40% for gasoline market). Among all three multivariate conditional volatility models, the 

VARMA-AGARCH model with DCC structure produces the highest hedging performance across all 

petroleum markets, such that the VARMA-AGARCH model with DCC structure is the best model 

for OHR calculation in terms of the variance of portfolio reduction. In contrast, the lowest HE 

value in all markets is obtained from the BEKK model. Therefore, the BEKK model is the worst 

model in terms of the variance of portfolio reduction.22 

The relatively poor performance of all three models for gasoline market could be explained as 

follows. First, as the volume and open interest of gasoline is lower than crude oil or heating oil, in 

terms of the volume or the number of market participants, gasoline has lower liquidity than 

crude oil or heating oil. Second, as traders profit from wide price swings, increasing volatility 

makes it more expensive for producers and consumers to use futures as a hedge. Table 3.1 shows 

that the standard deviation of the gasoline returns is higher than for crude oil and heating oil. 

Similarly, we can consider the economic benefits from the proposed hedging strategies through 

investigating the reduction in the Value-at-Risk (VaR) exposure. Under the assumption of a 

normal distribution, if we denote 𝑊0 as the initial value of the portfolio and Φ(𝑐) the inverse of 

22 Even we consider the transaction costs, the changes in hedging effectiveness resulting from including transaction costs is 
found to be very small and mostly negative. In this case, the VARMA-AGARCH model with DCC structure is still the best model 
for calculating the optimal hedge ratio and the BEKK model is the worst. Similar approach has been adopted by Alexander et al. 
(2012). 
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the standard Gaussian cumulative distribution function, the portfolio VaR is simply a constant 

multiple of the diversified portfolio standard deviation where the multiple is determined by the 

VaR confidence level 1 − 𝑐: 

𝑉𝑎𝑅 = 𝑊0 �𝐸(𝑟𝑑) + Φ(𝑐)�𝑉𝑎𝑟(𝑟𝑑)�                                 (3.19) 

with 𝑟𝑑  representing the returns from the hedged portfolio. 

The results of the daily VaR for a portfolio value of $1m with 95% confidence level are reported 

in the sixth column of Table 3.9, which indicates that the VaRs have been reduced in the hedged 

portfolios for all petroleum commodities and across all models we consider. For example, the 

results for the WTI crude oil market indicates that one obtains a daily VaR=-$41642.2 if the 

unhedged portfolio is considered and a VaR of -$15486.8 when the hedge ratio derived from the 

VARMA-AGARCH model with DCC structure is used. Hence, by using the VARMA-AGARCH model 

with DCC structure, hedgers in the market can benefit from a decrease in the average daily VaR of 

$26155 over the unhedged portfolio. Similarly, hedgers can also benefit from a decrease in the 

average daily VaR of $ 11492 and $ 21421 by using the VARMA-AGARCH model with DCC 

structure in the gasoline and heating oil markets, respectively. Among all three models, the 

VARMA-AGARCH model with DCC structure produces the highest decrease in the average daily 

VaR across all petroleum markets, which is consistent with the results derived from the hedging 

effectiveness (HE) ratio previously. Therefore, investors would prefer the hedging strategy 

derived from the VARMA-AGARCH model with DCC structure to the hedging strategies derived 

from other models or unhedged portfolio.  

Another way of considering the hedging effectiveness from the proposed hedging strategies is to 

look at the reduction at the downside risk, arising from the different hedging strategies. The 

motivation for investigating this stems from both the pitfalls associated with variance as a 

measure of hedging effectiveness and the specific properties inherent in the VARMA-AGARCH 

model.  
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Because the variance metric assigns the same weight to positive gains and negative losses, it may 

not be the appropriate measure for the risk averse investor who is more concerned about the 

downside risk of a hedged portfolio. In practice a number of metrics have been proposed in the 

literature that is able to deal with possible asymmetries in the profile of risk averse investors. For 

instance, Cotter and Hanly (2006) evaluate the hedging performance based on Lower Partial 

Moments (LPM) and find differences in terms of the best strategy compared to the traditional 

variance metric. On the other hand, it is of interest to examine whether the VARMA-AGARCH 

model is capable of adequately capturing the skewness and kurtosis typical of financial data and, 

if this is true, whether this can be used effectively to eliminate downside risk within the 

minimum-variance framework. In this regard, we propose to use the semi-variance metric that 

acts as a measure for a downside risk averse investor. Mathematically, this can be expressed as: 

𝑠𝑣(−) =
1
𝑇
�{min (0, 𝑟𝑡+1 − 𝑢)}2
𝑇

𝑖=1

                                            (3.20) 

This is equivalent to the second order lower partial moment (LPM) where the target return 𝑢 is 

set to zero in order to distinguish between positive and negative realized portfolio returns 𝑟𝑡+1. 

A short hedging position is equivalent to selling futures contracts against the purchase of the 

underlying spot assets; hence the investor is more concerned about negative semi-variance. 

The seventh and eighth columns of Table 3.9 present the negative semi-variance figures where 

negative semi-variance reflects the downside variation in the performance of short hedging 

strategies and the hedging effectiveness ratios. Overall, the results indicate that the improvement 

in the semi-variance using the VARMA-AGARCH model with DCC structure is best across all 

petroleum markets, thus supporting the suggested strategy. 
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3.6 Conclusion 

The main purpose of this chapter is to examine the optimal hedging strategies in petroleum 

markets using the VARMA-AGARCH model of McAleer et al. (2009) with DCC structure. The 

rationale behind the use of this model stems from the fact that there may be volatility spillovers 

and asymmetric effects between petroleum spot and futures markets and the assumption of 

constant conditional correlations between petroleum spot and futures markets is not supported 

empirically. Therefore, by applying the VARMA-AGARCH model with DCC structure, one may 

obtain more efficient volatility estimates and hence, superior hedging strategy compared to the 

methods which are currently being employed, such as the BEKK model or the VARMA-AGARCH 

model with CCC structure. 

The empirical results show that, for the WTI crude oil and gasoline market, the optimal portfolio 

weights obtained from all multivariate volatility models suggest holding spot in larger proportion 

than futures. On the contrary, for the heating oil market, the optimal portfolio weights obtained 

from all multivariate volatility models suggest holding futures in larger proportion than spot. In 

the case of minimizing risk by using a hedge, a long position of one dollar in the petroleum spot 

markets should be shorted by a large cents in the petroleum futures markets. The hedging 

effectiveness indices indicate that the VARMA-AGARCH model with DCC structure is the best for 

OHR calculation in terms of the variance and semi-variance of portfolio reduction. 

The findings of this chapter offer several avenues for future research. First, our empirical results 

are available for only in-sample time horizon. So it would be interesting to assess the optimal 

hedging strategy for the out-of-sample time horizon which in turn may provide more information 

about petroleum markets risk to central governments and businesses. Second, our results may be 

sensitive to the choice of the return innovation’s distribution. Thus, it would be interesting to 

consider other innovation’s distributions. Finally, it would be interesting to expand the current 

study to cover wider energy market, such as natural gas market and electricity market.  
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In the following chapter, we will turn our attention to the impact of oil price changes on stock 

markets. Crude oil plays a pivotal role in modern economies. Stock markets, as a barometer of the 

state of our economy, are unlikely to escape the influence from oil market fluctuations. Therefore, 

we will investigate how and to what extent the information embedded in oil price shocks is 

transmitted into China stock market. We will focus our research on the volatility transmission 

between oil markets and China stock market. The potential findings will help investors optimize 

their portfolio management. 
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Appendix 3.A 

 

 

 

 

Fig. 3.A Optimal hedge ratios for petroleum markets from VARMA-AGARCH model with CCC structure. 
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Appendix 3.B 

 

 

 

 

Fig. 3.B Optimal hedge ratios for petroleum markets from BEKK model. 
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Chapter 4 

Volatility Spillovers and Asymmetries between Oil Prices and 

Chinese Stock Sector Returns: Implications for Portfolio 

Management 

 

4.1 Introduction 

The financialization of energy market means that crude oil has become a recognized asset class 

within investment portfolios of financial institutions as a means to diversify risks such as 

inflation, and/or equity market weakness (see Gorton and Rouwenhorst, 2006). This has resulted 

in increased inter-relationship between stock markets and oil prices. It is a common theoretical 

assumption that stock prices should equal the sum of discounted values of expected future cash 

flows at different investment horizons. Therefore, it will be central for market participants to 

identify the factors affecting these discounted cash flows to support their decision making. 

Empirical analysis in the energy finance literature has documented several channels through 

which oil shocks are transmitted to stock markets. For example, on the one hand, changes on the 

prices of oil, a key factor in the production process, affect financial performance or cash flows of 

firms, which in turn influence equity prices (e.g. Huang et al., 1996; Jones and Kaul, 1996). On the 

other hand, oil prices affect interest rates in the economy via inflation and monetary policy of the 

central bank, which in turn influence discount rate and equity prices (e.g. Apergis and Miller, 

2009). Furthermore, the interaction between oil and stock markets does not dwell on the level of 

return variables, it also appears in volatility. Tauchen and Pitts (1983) and Ross (1989) suggest 

that it is the volatility of an asset rather than its return that is related to the rate of information 

flow in a market. This information flow is the pivotal point of risk management, asset pricing as 

well as its underlying derivatives pricing. 
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Although understanding the comovements of volatility between oil and stock markets is of great 

practical importance, relatively little empirical work has been conducted on the extent of 

volatility transmission between oil and stock markets at the sector-level and such study may 

provide interesting insights into the nature of the volatility interaction between different asset 

classes. Work has been carried out in the OECD1 countries to detect the impact of oil shocks on 

the stock markets of these largely oil-importing nations. To the best of our knowledge, no such 

study has been undertaken for Chinese stock market. It is within the context of previous limited 

empirical work that the present chapter is conducted to fill this gap by examining the information 

flow between oil and Chinese stock market. In the meantime, one of the most important 

motivations for considering Chinese stock market is that China is considered the growth engine 

of the world economy and its stock market is a very promising area for regional and global 

portfolio diversification. The impact of oil markets on the stock market and their sector-based 

stocks may have significant implications for investors. Furthermore, China is now the second 

largest oil importer in the world and its economy is increasingly dependent on imported oil. 

Variations in economic growth may well be reflected in stock markets, then transmitted directly 

into oil prices (Li and Lin, 2011). Our results would have significant implications for oil users, 

traders, regulators and investors.  

In this study we aim to examine the extent of volatility transmission between oil and Chinese 

stock market from a sector perspective. This permits a greater understanding of information 

transmission via volatility flows among these interconnected markets. Five major industrial 

sectors are studied: Basic Materials, Consumer Goods, Consumer Services, Financials, and 

Industrials sectors. Our next objective is to apply the estimated results to derive optimal portfolio 

weights and hedge ratios, which will effectuate optimal portfolio management in the presence of 

oil assets.  

1 OECD is the abbreviation of Organization for Economic Co-operation and Development. OECD is an international economic 
organization of 34 countries founded in 1961 to stimulate economic progress and world trade. Most OECD members are 
developed, high-income economies. 
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We employ the asymmetric version of the BEKK model introduced by Grier et al. (2004) to 

examine the volatility spillovers as well as asymmetric effects between oil and stock markets 

(sectors) in China. Using daily data over the period from November 1, 2000 through October 31, 

2011, we examine volatility transmission between five industrial sectors and crude oil 

benchmark. The empirical results offer four major findings. Firstly, there is evidence that the 

correlation between oil and stock markets (sectors) in China is not constant but time-varying. It 

tends to increase with the volatility in the market. Secondly, there is significant transmission of 

shocks and volatility between oil and stock sectors. Thirdly, the extent of volatility transmission 

varies across the five stock sectors, which validates the argument that the sector perspective is 

more informative and generates more accurate implications for portfolio risk management. 

Finally, our analysis shows that Chinese stock market investors should consider the additional 

source of uncertainty resulting from the strong connection between crude oil and Chinese stock 

markets in terms of volatility transmission and then consider oil assets as a dynamic and valuable 

asset class that improves the risk-adjusted performance of a diversified portfolio of sector stocks. 

The remainder of this chapter is organized as follows. Section 4.2 provides a brief literature 

review. Section 4.3 presents the data. Section 4.4 describes the multivariate GARCH framework to 

be used in the analysis. Section 4.5 discusses the empirical results. Section 4.6 shows the 

implications on portfolio management in the presence of oil assets. Section 4.7 provides some 

concluding remarks along with a few possible areas for future research. 

 

4.2 Literature review 

The relationship between oil price and macroeconomic variables is well documented in the 

literature through the studies on the impact of oil price changes on macroeconomic variables (e.g. 

Hooker, 1996; Hamilton, 2008). The majority of these studies have found that rising oil prices 

and price volatility serve to stifle economic activity (Hamilton, 2003), whereas a reduction in oil 
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prices does not necessarily lead to noticeable output growth (Mork and Olsen, 1994). Recently, 

the interconnection between oil price and stock markets has been added to the literature (Jones 

and Kaul, 1996; Jones et al., 2004).2 This research aims to uncover the information flow between 

the two markets. Detailed analysis has been conducted to examine the relationship between 

sector indices and oil prices. 

From a theoretical perspective, stock market returns and their price levels should reflect the 

effects of current and expected future impacts of oil price shocks (Jones et al., 2004). The study 

by Kaul and Seyhun (1990) is the first to examine the reaction of stock markets to oil shocks. The 

authors consider the US stock market over 1949-1984 and report a detrimental effect of oil price 

shocks on the US stock market. Jones and Kaul (1996) propose a standard cash flow/dividends 

valuation model to examine stock market efficiency in the US, Canada, Japan, and UK in terms of 

the degree to which stock prices change in response to oil price changes. They find that the 

changes of oil price on the current and future cash-flows have a partially decisive effect on the 

four countries’ real stock returns. A similar conclusion is drawn from the Greek stock market as 

positive oil price shocks suppress real stock returns (Papapetrou, 2001). As to oil-exporting 

countries, stock market prices are expected to be affected positively by oil price changes through 

positive income and wealth effects3, which has been confirmed by Park and Ratti’s (2008) 

findings that stock markets in Norway, an oil-exporting country, respond positively to oil price 

shocks.4 Furthermore, as global economy shifts to emerging markets, the importance of the oil 

factor for stock prices is also discovered as Basher and Sadorsky (2006) suggest that emerging 

economies are more exposed to oil price shocks than more developed economies because they 

2 In comparison with the research on the links between oil prices and macroeconomic variables, the strand of research on the 
potential links between oil prices and stock markets has gained ground only recently. The possible explanation for the less 
emphasis on this issue is that oil price shocks are not the only factor affecting the stock price and oil price shocks influence 
various industries’ stock prices differently (Cong, et al., 2008). However, if oil plays an important role in the economy, one 
would expect oil price changes to affect stock markets (Huang et al., 1996), and oil shocks on real cash flows can partly account 
for fluctuation in aggregate stock prices (Jones and Kaul, 1996). 
3 The wealth effect is an economic term referring to an increase (decrease) in spending that accompanies an increase 
(decrease) in perceived wealth. Mehra and Ptersen (2005) indicate that changes in oil prices have asymmetric influence on 
consumption expenditures via wealth transfers. The negative impact of an increase in oil prices is greater than the stimulus of 
economic growth as a result of a fall in oil prices. 
4 Jones and Kaul (1996) argue that the impact of oil price shocks to a country’s economy of which reflected on stock returns are 
likely to vary across countries depending on their oil production and consumption level. 
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are less able to reduce oil consumption and thus more energy intensive, which causes significant 

changes in stock returns over both the short-run and long-run.  

A number of studies have investigated the impact of oil price changes on the stocks of individual 

sectors, as it is important to know which sector indices are more sensitive to oil price fluctuations. 

A common belief is that oil price shocks are beneficial for oil-related companies (e.g. El-sharif et 

al., 2005; Boyer and Filion, 2007) and also have an impact on other sectors (e.g. Arouri and 

Nguyen, 2010; Arouri et al., 2011). Recently, Elyasiani et al. (2011) examine the impact of 

changes in the oil returns and oil return volatilities on excess stock returns and return volatilities 

of thirteen US industries and show that oil fluctuations constitute a systematic asset price risk at 

the industry level as nine of the thirteen sectors analysed show a statistically significant 

relationship between oil-futures return distribution and industry excess return. Surprisingly, the 

paper of Cong et al. (2008) shows that oil price shocks do not exert a statistically significant 

impact on the real stock returns of most Chinese stock market sectors indices, except for 

manufacturing index and some oil companies. 

More recently, the research emphasis has broadened to include not only the effects of changes in 

the oil price level but also the effects of price volatility. The evidence confirms that oil volatility 

has a considerable influence on the stock market. For example, Malik and Ewing (2009) employ a 

bivariate GARCH model to detect volatility spillover between oil prices and five different US stock 

sector indexes, i.e. Financials, Industrials, Consumer Services, Health Care, and Technology. They 

find evidence of significant volatility transmission between oil prices and some of the examined 

market sectors. Arouri et al. (2011) use a VAR-GARCH (1, 1) model of Ling and McAleer (2003) to 

study the volatility transmission from oil prices to European equity markets. The authors show 

strong evidence of volatility spillover from oil to the sector stock markets studied. 

In summary, volatility spillovers among oil and stock markets have been tested in several 

countries. However, little is known about how volatility is transmitted between oil and stock 
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markets in China. This chapter tries to fill this gap and also adds to the literature on financial 

liberalisation and integration in a global context.  

 

4.3 Data 

Our sample data for the equity segments cover five industrial sectors in China (DataStream 

Global Sector Indices): Basic Materials, Consumer Goods, Consumer Services, Financials, and 

Industrials.5 One market-wide index, the DataStream Global Country Index, is also included to 

compare the empirical results across sector and market level.6 The use of sector data allows us 

to uncover relationships between individual sectors with crude oil market, hence equipping us 

better for making risk management and portfolio diversification decisions. Furthermore, by 

design, the sector indices may offer an alternative view of the performance of the Chinese equity 

market. All stock sectors data are extracted from DataStream International database and all 

indices are expressed in local currencies. 

For the crude oil market, we choose the Brent crude oil price, taken from DataStream 

International database. In this study, we use the nearby futures contract (that is, the contract for 

which the maturity is closest to the current date) because of the advantage of its liquidity, 

transparency, and flexibility in comparison to spot prices (Sadorsky, 2001). The spot prices are 

more heavily affected by temporary random noise than the futures prices. Finally, we convert 

Brent futures prices into local currency using the US dollar exchange rates from DataStream 

International database. 

5 A representative sample of 100 stocks has been chosen for Chinese stock market. Using FTSE Actuaries classifications, the 
constituent stocks are allocated into industries/sectors, and the DataStream Global Indices calculated. DataStream classifies 
each company by industry, and a sector is any group of stocks with the same industrial classification. Each sector on the 
DataStream system comprises a representative sample of major stocks within that market and with that industrial classification. 
DataStream uses these constituent stocks when calculating an index for a specific sector. An aggregate index of all sectors is the 
Market Index. The abbreviation for the five sectors indices of Basic Materials, Consumer Goods, Consumer Services, Financials, 
and Industrials are BASIM, CONSG, CONSS, FINAN, and INDUS, respectively. 
6 For Chinese stock market, the Market Index is the China A index comprising of class A shares of mainland Chinese companies 
traded on Shanghai and Shenzhen exchanges and is investable only by Chinese nationals. The abbreviation for the Market Index 
is MARKT. 
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We employ daily data over the period from November 1, 2000 through October 31, 2011 with 

2870 observations. Although some empirical analyses suggest that weekly data is superior to 

daily data when being employed to examine the oil-stock market relationships (see Arouri and 

Nguyen, 2010), daily data is more convenient and effective to capture the information content of 

changes in volatilities due to avoiding time aggregation and compensation effects associated with 

other data frequencies. As usual, stock market, sectors, and oil returns are computed by taking 

the natural log of the ratio between two successive prices. It is worth noting that all data are 

expressed in RMB (China’s currency unit) inasmuch as our primary focus is on China where the 

links between oil prices and Chinese stock sector returns have received only little attention. 

 
Table 4.1 
Summary statistics for daily returns. 

Returns Mean (%) Std. Dev. (%) Skew. Kurt. JB 𝑄2(10) Q(10) Corr. with oil 

BRENT 0.035 2.125 -0.104 6.877 1801.9+++ 243.5+++ 13.242 
 

MARKT 0.005 1.629 -0.079 7.370 2286.2+++ 329.1+++ 20.550++ 0.0646∗∗∗ 

BASIM 0.018 1.946 -0.200 6.293 1315.1+++ 516.0+++ 33.272+++ 0.0738∗∗∗ 

CONSG 0.025 1.758 -0.223 6.620 1590.5+++ 389.2+++ 27.499+++ 0.0271∗ 

CONSS 0.023 1.814 -0.350 6.909 1885.5+++ 504.9+++ 29.821+++ 0.0297∗ 

FINAN 0.004 1.838 0.125 6.569 1530.2+++ 279.9+++ 11.758 0.0442∗∗ 

INDUS -0.034 1.759 -0.266 6.927 1877.6+++ 441.8+++ 23.754+++ 0.0503∗∗∗ 

Notes: This table reports the basic statistics of return series of oil and stock sectors indices, including mean (Mean), standard deviation 
(Std. Dev), skewness (Skew.), kurtosis (Kurt.), and correlation between stock sectors and crude oil Brent (Corr. with oil). JB refers to the 
empirical statistic of the Jarque-Bera (1980) test for normality based on skewness and excess kurtosis. Q(10) represents the Ljung-Box 
(1978) tests for autocorrelations of order 10 applied to standardized residuals. 𝑄2(10) represents the Engle’s (1982) ARCH test, carried 
out as the Ljung–Box (1978) Q statistics on the squared series. +++ and ++ indicate the rejection of the null hypothesis of associated statistical 
tests at the 1% and 5% levels, respectively. With regard to the correlation between stock sectors and crude oil Brent, we calculate the 
Spearman’s rank correlation coefficient. ***, ** and * indicates significance at the 1%, 5% and 10% levels, respectively. 

 

The summary statistics for the log return series are shown in Table 4.1. The crude oil market 

experiences higher returns than Chinese equity segments over our study period. With regard to 

the equity segments, Consumer Goods has the highest sector returns (0.025%) and Industrials 

has the lowest sector returns (-0.034%). It is clearly shown that the means of the return series 

are relatively small compared to the corresponding standard deviations. Kurtosis coefficients are 

significantly greater than three and all return series, except the Financials sector have negative 
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skewness values, which indicate that the distribution of almost all return series are typically 

asymmetric and that the probability of observing large negative returns is higher than that of a 

normal distribution. As a result, the Jarque-Bera (1980) test statistics (JB) clearly confirm the 

rejection of the null hypothesis of normality for all return series at the significance level of 1%. 

Results from the Ljung-Box (1978) Q statistic indicate the presence of serial autocorrelations for 

five of seven return series. Engle’s ARCH test (1982), carried out as the Ljung-Box Q statistic on 

the squared return series, indicates the existence of heteroscedasticity for all return series at the 

1% level, which thus supports the argument to employ a GARCH modeling approach to 

examining volatility spillovers between oil and stock markets. We also calculate the Spearman’s 

rank correlation coefficient of equity and oil returns.7 It varies substantially across industries: 

from 0.0271 (Consumer Goods) to 0.0738 (Basic Materials), which are all positive and 

significantly from zero. This finding suggests that oil price increases over the last decade may be 

indicative of higher expected economic growth and corporate earnings (Arouri et al., 2011).8 

A battery of unit root tests is conducted in Table 4.2 for the prices and log returns series of crude 

oil and Chinese equity segments. As can be seen, according to the Augmented Dickey-Fuller 

(1979) (ADF) and Phillips and Perron (1988) (PP) unit root tests, performed on the levels and 

log-differences, all prices series under consideration follow the unit root processes, while their 

first differences are stationary as large negative values support the rejection of the null 

hypothesis of a unit root at the 1% significance level. We thus conclude that the return series of 

Brent crude oil and Chinese equity segments are stationary. 

 

 

 

7 We prefer the copula based Rank correlation measure, i.e. the Spearman’s rank correlation coefficient, to the Pearson 
correlation measure. The estimation process is implemented through MatLab. 
8 The weak positive correlation between stock and oil market is also observed in the Europe and Gulf Cooperation Council (GCC) 
countries.  
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Table 4.2 
Unit root tests. 

Panel A: index series 

Indices ADF test 
 

PP test 

None Cons. Cons. & trend 
 

None Cons. Cons. & trend 

BRENT 0.3584 -1.1365 -2.2413 
 

0.3471 -1.1494 -2.2617 

MARKT -0.3803 -1.2788 -1.5246 
 

-0.3736 -1.2768 -1.5246 

BASIM -0.3916 -1.4414 -1.8075 
 

-0.4653 -1.5635 -1.9632 

CONSG 0.2806 -0.9090 -1.7746 
 

0.3192 -0.8767 -1.7333 

CONSS -0.2846 -1.3329 -1.7680 
 

-0.2398 -1.2878 -1.6941 

FINAN -0.4680 -1.3532 -1.5735 
 

-0.4791 -1.3747 -1.6026 

INDUS −2.3761++ −2.8914++ -2.4968 
 

−2.2389++ −2.8576++ -2.5114 

Panel B: return series 

Returns ADF test 
 

PP test 

None Cons. Cons. & trend 
 

None Cons. Cons. & trend 

BRENT −54.362+++ −54.366+++ −54.358+++ 
 

−54.355+++ −54.360+++ −54.352+++ 

MARKT −53.665+++ −53.656+++ −53.649+++ 
 

−53.681+++ −53.672+++ −53.665+++ 

BASIM −50.674+++ −50.669+++ −50.661+++ 
 

−50.947+++ −50.941+++ −50.933+++ 

CONSG −51.385+++ −51.386+++ −51.391+++ 
 

−51.402+++ −51.401+++ −51.405+++ 

CONSS −51.052+++ −51.049+++ −51.042+++ 
 

−51.053+++ −51.051+++ −51.043+++ 

FINAN −53.425+++ −53.715+++ −53.707+++ 
 

−53.726+++ −53.717+++ −53.709+++ 

INDUS −51.586+++ −51.597+++ −51.622+++ 
 

−51.736+++ −51.731+++ −51.749+++ 

Notes: ADF is the Augmented Dickey-Fuller (1979) unit root test statistic. PP is the Phillips-Perron (1988) unit root test statistic. The null 
hypothesis in the ADF and PP tests is that the underlying series has a unit root. +++ indicates the rejection of the null hypothesis at the 
significance levels of 1%. Numbers of augmenting lags are chosen using the Hannan-Quinn Criterion. Significance levels probabilities from 
MacKinnon (1996) use the number of observations. Asymptotic values have a higher significance level. 

 

Finally, as we are interested in the asymmetry of the volatility response to news, we report Engle 

and Ng (1993) test statistics for “sign bias”, “negative size bias”, “positive size bias” and their 

“Joint effect” in Table 4.3. The sign bias test examines the impact that positive and negative 

shocks have on volatility. In particular, if the response of volatility to shocks is asymmetric, then 

the “sign bias” statistics will be statistically significant. Furthermore, the size of the shock could 

also affect volatility. Therefore, the “negative size bias” statistics focuses on the different effects 

that large and small negative shocks have on volatility and the “positive size bias” statistics 

focuses on the different effects that large and small positive shocks have on volatility. And the 

“joint test” statistics focuses on the joint effects of sign and size on volatility. It can be observed 
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that the conditional volatility of Brent crude oil is sensitive to the sign and size of the innovations. 

In particular, there is strong evidence of sign and both positive and negative size bias in the Brent 

crude oil volatility, and the joint test for both sign and size bias is highly significant. Also, the 

conditional volatilities of the change in Chinese equity segments indexes display both negative 

and positive size bias and the joint test for both sign and size bias is significant at conventional 

significance levels. 

 
Table 4.3 
Engle and Ng (1993) tests for sign and size bias in variance. 

Variable Sign Negative size Positive size Joint 

BRENT 1.7796+ 3.0072+++ 2.4102++ 23.5017+++ 

MARKT 0.2691 5.9704+++ 4.5318+++ 56.8166+++ 

BASIM 1.0224 6.9614+++ 3.6940+++ 62.2075+++ 

CONSG 0.0172 7.5869+++ 4.5434+++ 79.7997+++ 

CONSS 0.2174 8.1053+++ 4.5274+++ 87.0229+++ 

FINAN 1.6599+ 3.7313+++ 4.4914+++ 40.0577+++ 

INDUS 0.3115 6.5144+++ 4.8467+++ 66.0611+++ 

Notes: +++ and ++ indicate the rejection of the null hypothesis of the Engle and Ng (1993) test at the 1% and 5% levels, respectively. 

 

4.4 Econometric methodology 

Multivariate GARCH (MGARCH) models have been commonly used to estimate the volatility 

spillover effects among different markets. Andersen et al. (1999) show that MGARCH models 

perform well relative to competing alternatives, for example, the continuous stochastic diffusion 

models. Especially, MGARCH models have been used in the energy economics and finance 

literature to study oil prices (see Chang et al., 2010, 2011)9, and to study volatility transmissions 

in equity markets (see Khan and Batteau, 2011)10. Given the evidence of volatility spillovers and 

asymmetric effects in Brent crude oil and Chinese equity segments, we characterize the joint data 

9 Further discussion about this issue could be found in Jalali-Naini and Kazemi-Manesh (2006) and Lanza et al. (2006). 
10 Further discussion about this issue could be found in Hassan and Malik (2007) and Büttner and Hayo (2011). 
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generating process underlying the return series of Brent crude oil and Chinese equity segments 

as follows: 

𝑅𝑡 = 𝜇 + � Φ𝑖𝑅𝑡−𝑖
𝑝

𝑖=1
+ 𝜀𝑡  ,    𝜀𝑡|𝐼𝑡−1~(𝟎,𝑯𝒕)

𝜀𝑡 = 𝜂𝑡𝐻𝑡
1/2

                                   (4.1) 

where 𝑅𝑡 = �
𝑟1,𝑡
𝑟2,𝑡

� is the vector of the returns on Brent oil price and Chinese equity segments 

indices respectively, 𝜇 = �
𝜇1
𝜇2� is the deterministic vector specifying the unconditional means of 

𝑅𝑡 and 𝑅𝑡−𝑖 is used to model the interdependence between oil and equity segments return 

series with its coefficient matrix given as Φ𝑖 = �
𝛾11

(𝑖) 𝛾12
(𝑖)

𝛾21
(𝑖) 𝛾22

(𝑖)�,  𝜀𝑡 = �
𝜀1,𝑡
𝜀2,𝑡

� is the stochastic vector 

specifying the random error term of the mean equation for the returns on Brent oil price and 

Chinese equity segments indices respectively, 𝜂𝑡 = �
𝜂1,𝑡
𝜂2,𝑡

� is a sequence of independently and 

identically distributed (i.i.d.) random vectors. The market information available at time 𝑡 − 1 is 

denoted as 𝐼𝑡−1, and 𝐻𝑡 = �
ℎ11,𝑡 ℎ12,𝑡
ℎ21,𝑡 ℎ22,𝑡

� is the matrix of conditional variances of oil and stock 

returns. 

Multivariate GARCH models require that we specify volatility matrix 𝐻𝑡 . Several different 

specifications have been proposed in the literature, including the VECH model of Bollerslev et al. 

(1988), the CCORR model of Bollerslev (1990), the BEKK model of Engle and Kroner (1995), the 

DCC model of Engle (2002), and the VARMA-GARCH model proposed by Ling and McAleer (2003). 

However, none of these specifications is capable of capturing the asymmetry of the volatility 

response to news.11 In this regard, given the asymmetric effects of news on volatility in the 

return series of Brent crude oil and Chinese equity segments, we use an asymmetric version of 

the BEKK model, introduced by Grier et al. (2004), as follows: 

11 McAleer et al. (2009) extended the VARMA-GARCH model to accommodate the asymmetric impacts of the unconditional 
shocks on the conditional variance, and proposed the VARMA-AGARCH specification of the conditional variance. However, the 
VARMA-AGARCH model does not accommodate the time-varying conditional correlations which are more realistic in many 
empirical analyses. In chapter 3, we take the extended version of the VARMA-AGARCH model with dynamic conditional 
correlations to analyze empirical issues. In this chapter, we choose the asymmetric version of the BEKK model to accommodate 
volatility spillovers, asymmetry and dynamic conditional correlations simultaneously.  
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𝐻𝑡 = 𝐶′𝐶 + � 𝐴𝑘′ 𝜀𝑡−𝑘𝜀𝑡−𝑘′ 𝐴𝑘
𝑔

𝑘=1
+ � 𝐵𝑗′𝐻𝑡−𝑗𝐵𝑗

𝑓

𝑗=1
+ 𝐷′𝑢𝑡−1𝑢𝑡−1′ 𝐷             (4.2) 

where 𝐶, 𝐴𝑘,𝐵𝑗 , 𝑎𝑛𝑑 𝐷 are 2 ∗ 2 matrices (for all values of 𝑗 and 𝑘)12, 𝑢𝑡 = max (𝜀𝑡 , 0) are 

the Glosten et al. (1993) dummy series collecting the stylized negative asymmetry from the 

shocks, with 𝐶  being a triangular matrix to ensure positive definiteness of 𝐻𝑡 . Matrix 𝐴 

measures the extent to which conditional variances are correlated with past squared unexpected 

returns and consequently the effects of shocks on volatility. At the same time, matrix B depicts 

the extent to which current level of conditional variance-covariance matrix is related to past 

conditional variance-covariance matrices. Matrix D shows the asymmetric volatility effect. This 

specification allows past volatilities, 𝐻𝑡−𝑗, as well as lagged values of 𝜀𝑡−𝑘𝜀𝑡−𝑘′  and 𝑢𝑡−1𝑢𝑡−1′ , to 

show up in estimating current volatilities of oil and equity, where 𝑢𝑡 = �
𝑢1,𝑡
𝑢2,𝑡

� captures potential 

asymmetric responses. In particular, if the price of oil is higher than expected, we consider that in 

general to be bad news to Chinese equity market, although oil price shocks may have differential 

effects on Chinese equity segments. In addition, the introduction of the 𝑢𝑡−1𝑢𝑡−1′  term in Eq. (4.2) 

extends the BEKK model by relaxing the assumption of symmetry, thereby allowing for different 

relative responses to positive and negative shocks in the conditional variance-covariance matrix, 

𝐻𝑡 . 

Estimation is done by maximum likelihood, where the contribution of 𝜀𝑡 to the joint Gaussian 

log-likelihood of a sample with T observations is given by: 

𝐿𝑇 = −
1
2
� log|𝐻𝑡|
𝑇

𝑡=1

−
1
2
�𝜀𝑡′𝐻𝑡−1𝜀𝑡

𝑇

𝑡=1

                                   (4.3) 

In empirical application of univariate GARCH processes it has often been found that standardized 

residuals have excess kurtosis. To take the conditional leptokurtosis into account, Bollerslev 

(1986) advocates to evaluate and maximize the sample log-likelihood under the assumption of 

12 The coefficient matrices are described as A = �
𝑎11 𝑎12
𝑎21 𝑎22�, B = �𝑏11 𝑏12

𝑏21 𝑏22
�, D= �𝑑11 𝑑12

𝑑21 𝑑22
�, and C= �𝑐11𝑐21 𝑐22

�. 
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Student’s t-distributed innovations. For this reason we alternatively use a product of 

standardized univariate t distributions to specify the log-likelihood function, which is given by: 

𝐿𝑇 = � log 𝐹 �𝐻𝑡
−12𝜀𝑡�

𝑇

𝑡=1

+ � |𝐻𝑡
−12| 

𝑇

𝑡=1

                                    (4.4) 

with 𝐹 is the density function of the multi standardized Student’s 𝑡 distribution. Because the 

conditional distribution of 𝜀𝑡  is governed by a non-normal distribution, i.e. Student’s t 

distribution, the estimation procedure given by Eq. (4.4) is interpreted as quasi-maximum 

likelihood (QML) estimation.  

Therefore, the econometric specification used in this chapter has two components. A vector 

autoregression (VAR) given in Eq. (4.1) is used to model the returns. This allows for 

autocorrelations and cross-autocorrelations in the returns. A multivariate GARCH model given in 

Eq. (4.2) as the asymmetric version of the BEKK model is used to model the volatility spillovers, 

asymmetry and dynamic conditional correlations. As is often the case in applied research, 

different criterion functions select different lag lengths for the VAR models. Preliminary 

regression analysis showed very little difference between a VAR with two lags compared to a 

VAR with one or three lags. Consequently, in the interest of parsimony and accuracy, a VAR with 

two lags is chosen. Furthermore, in order to deal with estimation problems in the large 

parameter space which is clearly the case of Eq. (4.2), we assume that 𝑓 = 𝑔 = 1 in Eq. (4.2), 

which is consistent with recent empirical evidence regarding the superiority of GARCH (1, 1) 

models (see Hansen and Lunde, 2005). Therefore, the conditional variance for Brent crude oil 

�ℎ11,𝑡+1� and Chinese equity segments (ℎ22,𝑡+1) returns can be expanded as: 

ℎ11,𝑡+1 = 𝑐112 + 𝑎112 𝜀1,𝑡
2 + 2𝑎11𝑎12𝜀1,𝑡𝜀2,𝑡 + 𝑎212 𝜀2,𝑡

2 + 𝑏112 ℎ11,𝑡 + 2𝑏11𝑏12ℎ12,𝑡   

+𝑏212 ℎ22,𝑡 + 𝑑112 𝑢1,𝑡
2 + 2𝑑11𝑑12𝑢1,𝑡𝑢2,𝑡 + 𝑑212 𝑢2,𝑡

2                          (4.5) 
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ℎ22,𝑡+1 = 𝑐122 + 𝑐222 + 𝑎122 𝜀1,𝑡
2 + 2𝑎12𝑎22𝜀1,𝑡𝜀2,𝑡 + 𝑎222 𝜀2,𝑡

2 + 𝑏122 ℎ11,𝑡 + 2𝑏12𝑏22ℎ12,𝑡  

+𝑏222 ℎ22,𝑡 + 𝑑122 𝑢1,𝑡
2 + 2𝑑12𝑑22𝑢1,𝑡𝑢2,𝑡 + 𝑑222 𝑢2,𝑡

2                           (4.6) 

In Eq. (4.5) and Eq. (4.6), the elements contained in the matrices of Eq. (4.2) are given by their 

corresponding lowercase letters, where subscripts (𝑘, 𝑗, 𝑡) denote row, column and time period, 

respectively. Eq. (4.5) and Eq. (4.6) reveal how shocks and volatility are transmitted across time 

and across the Brent crude oil and Chinese stock sectors.13 

 

4.5 Empirical results and analysis 

In this section we estimate the VAR(2) – ABEKK(1,1) model for all pairs of oil and stock market 

(sector) returns in China using quasi maximum likelihood methods and allow necessary 

adjustments for standard errors by using robust versions. We used a range of starting values to 

ensure that the estimation procedure converged to the global maximum.14 

Table 4.4 shows the estimation results of our 𝑉𝐴𝑅(2) − 𝐴𝐵𝐸𝐾𝐾(1,1) model for six pairs of 

oil-stock market returns in China, together with statistical tests applied to standardized residuals. 

Taking a close look at the conditional mean equations for all equity segments, we find that the 

returns for Brent crude oil and Chinese equity segments are not interdependent as current oil 

returns in all cases are only affected by the one-period or two-period lagged oil returns, denoted 

by 𝐴𝑅(1)𝑂 and 𝐴𝑅(2)𝑂, respectively. This finding thus suggests some evidence of short-term 

predictability in oil price changes through time and corroborates the conclusions of some recent 

papers that the weak-form informational efficiency of international oil markets is rejected most 

of the time (see Elder and Serletis, 2008; Arouri et al., 2010). At the same time, none of the 

13 In Eq. (4.2), the elements of 𝐴,𝐵,𝑎𝑛𝑑 𝐷 matrices cannot be interpreted individually. Instead, we have to interpret the 
non-linear functions of the parameters which form the intercept terms and the coefficients of the lagged variances, covariances 
and error terms presented in Eq. (4.5) and Eq. (4.6). We follow Kearney and Patton (2000) and calculate the expected value and 
the standard error of those non-linear functions. The expected value of a non-linear function of random variables is calculated 
as the function of the expected value of the variables. In order to calculate the standard errors of the function, a first-order 
Taylor approximation is used. This linearizes the function by using the variance–covariance matrix of the parameters as well as 
the mean and standard error vectors. 
14 The computations presented in this study were conducted by means of RATS and R programs. 

80 

                                                           



Chapter 4: Volatility Spillovers and Asymmetries between Oil Prices and Chinese stock Sector Returns: Implications for Portfolio Management 

autoregressive terms in the return-generating process for the stock market is statistically 

significant from zero, which indicates that past information of Chinese stock returns do not help 

predict current Chinese stock returns. Our finding is consistent with Arouri et al. (2011)’s 

conclusion with regard to the European and U.S. stock markets that past realizations of stock 

returns do not help predict stock returns. 

Moreover, in order to assess the information flow between oil price and Chinese stock market 

returns, the daily Granger-causality relationship among the oil and Chinese stock markets 

returns is examined through the VAR model using two lags15, which is given as: 

𝑟𝑖𝑂 = 𝑎1 + � 𝑏1𝑗𝑟𝑡−𝑗𝑂
2

𝑗=1
+ � 𝑐1𝑗𝑟𝑡−𝑗𝑆

2

𝑗=1
+ 𝜀1𝑡                      (4.7𝑎) 

𝑟𝑖𝑆 = 𝑎1 + � 𝑏2𝑗𝑟𝑡−𝑗𝑆
2

𝑗=1
+ � 𝑐2𝑗𝑟𝑡−𝑗𝑂

2

𝑗=1
+ 𝜀2𝑡                      (4.7𝑏) 

where 𝑟𝑖𝑂  and 𝑟𝑖𝑆 are the log return on the respective crude oil and stock markets. The VAR 

model is estimated using ordinary least squares with heteroskedasticity-consistent standard 

errors. The coefficients 𝑏1𝑗  and 𝑏2𝑗  in Eq. (4.7a) and (4.7b) describe the lead-lag relationship 

between the respective crude oil and stock markets own returns, while the coefficients 𝑐1𝑗  and 

𝑐2𝑗  quantify Granger-causality between the respective crude oil and stock markets. In order to 

test the significance of the lead-lag relationships, two restriction tests are employed on the 

cross-market coefficients 𝑐1𝑗  and 𝑐2𝑗 , in Eq. (4.7a) and (4.7b) as follows: 

𝐻0,1: 𝑐1𝑗  𝑎𝑛𝑑 𝑐2𝑗 = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 = 1,2  

                                                            𝐻0,2 : ∑ 𝑐1𝑗𝑗  𝑎𝑛𝑑 ∑ 𝑐2𝑗 = 0𝑗   

The first null hypothesis tests that all of the cross-market coefficients are jointly equal to zero. 

The second tests that the sum of all the coefficients is equal to zero. Hereafter, the first and 

second tests are defined as the joint and sum coefficient tests, respectively. The results for the 

15 The results are robust to differing numbers of lags. 
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Granger-causality tests described in Table 4.5 suggest that there is no Granger-causality 

relationship between the oil and Chinese stock market returns.16 None of the coefficient tests for 

the oil and Chinese stock market returns reject the null hypothesis of no lead-lag relationship 

among all the cross-market coefficients at the significance level of 1%.17

16 In order to examine the separate effects of signed returns, the VAR model is modified to include the effects of lagged 
positive and negative returns describing Granger causality from positive and negative shocks from Brent crude oil and Chinese 
stock markets. The results suggest that there is no evidence that significant lead-lag relationships persist among Brent crude oil 
and Chinese stock markets positive/negative returns. 
17 It is noteworthy that the dynamic relationship between oil and stock returns is sensitive to the stage of the business cycle, 
and if this dependence is not accounted for, it may become unstable. In particular, when the economy is down and subject to 
high uncertainty, as in the aftermath of the recent financial crisis of 2007-2010, oil prices may not reflect expected future 
macroeconomic conditions accurately. Therefore, we examined the coefficients stability of the mean equation in Eq. (4.1) 
across business cycles by extending our model to include a dummy variable indicating the aftermath of the financial crisis of 
2007-2010 following the bankruptcy of Lehman Brothers on September 15, 2008. For the most part, the results support the 
argument that the returns for Brent crude oil and Chinese equity segments are not interdependent. Elyasiani et al. (2011) take 
the similar method to clarify the impact of business cycle on the dynamic relationship between oil and stock returns. 
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Table 4.5 
Granger causality in returns. 

𝑟𝑖𝑂 = 𝑎1 + � 𝑏1𝑗𝑟𝑡−𝑗𝑂
2

𝑗=1
+ � 𝑐1𝑗𝑟𝑡−𝑗𝑆

2

𝑗=1
+ 𝜀1𝑡                     (4.7𝑎) 

 
𝑟𝑖𝑆 = 𝑎1 + � 𝑏2𝑗𝑟𝑡−𝑗𝑆

2

𝑗=1
+ � 𝑐2𝑗𝑟𝑡−𝑗𝑂

2

𝑗=1
+ 𝜀2𝑡                      (4.7𝑏) 

 

Panel A: Market Index 𝑟𝑖𝑂  𝑟𝑖𝑆 

 
𝜒2(2) statistic p-value  𝜒2(2) statistic p-value 

𝐻0,1: Joint coefficient test  1.0413 0.3531  1.7592 0.1511 

𝐻0,2: Sum coefficient test 0.0109 0.9167  2.0151 0.1621 

Panel B: Basic Materials 𝑟𝑖𝑂  𝑟𝑖𝑆 

 
𝜒2(2) statistic p-value  𝜒2(2) statistic p-value 

𝐻0,1: Joint coefficient test  1.6792 0.1867  3.1588 0.0645∗ 

𝐻0,2: Sum coefficient test 0.0543 0.8158  4.9240 0.0265∗∗ 

Panel C: Consumer Goods 𝑟𝑖𝑂  𝑟𝑖𝑆 

 
𝜒2(2) statistic p-value  𝜒2(2) statistic p-value 

𝐻0,1: Joint coefficient test  0.6198 0.5381  0.5197 0.5948 

𝐻0,2: Sum coefficient test 0.1909 0.6621  0.1109 0.7391 

Panel D: Consumer Services 𝑟𝑖𝑂  𝑟𝑖𝑆 

 
𝜒2(2) statistic p-value  𝜒2(2) statistic p-value 

𝐻0,1: Joint coefficient test  0.5032 0.6046  0.7099 0.4918 

𝐻0,2: Sum coefficient test 0.0105 0.9185  0.0396 0.8422 

Panel E: Financials 𝑟𝑖𝑂  𝑟𝑖𝑆 

 
𝜒2(2) statistic p-value  𝜒2(2) statistic p-value 

𝐻0,1: Joint coefficient test  0.8029 0.4481  2.5190 0.0807∗ 

𝐻0,2: Sum coefficient test 0.0059 0.9389  2.0163 0.1556 

Panel F: Industrials 𝑟𝑖𝑂  𝑟𝑖𝑆 

 
𝜒2(2) statistic p-value  𝜒2(2) statistic p-value 

𝐻0,1: Joint coefficient test  1.5910 0.2039  1.3631 0.2560 

𝐻0,2: Sum coefficient test 0.4193 0.5173  0.0371 0.8473 

Notes: This table presents results for the initial Granger-causality tests specified by Eq. (4.7a) and (4.7b). ** and * indicate the null 
hypothesis is significant at the 5% and 10% level, respectively. 
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4.5.1 Volatility spillovers and asymmetric effects: the market-level perspective 

The results of estimating the ABEKK parameterization from the market-level perspective are 

reported in Panel A of Table 4.4. Our findings indicate that volatility (conditional variance) in oil 

returns is directly affected by its own volatility and by the volatility in the Chinese stock index 

returns. High level of conditional volatility in the past are associated with higher conditional 

volatility in the current period (see the positive and significant coefficients on ℎ11,𝑡  and ℎ22,𝑡). 

Moreover, the coefficient for the covariance term (ℎ12) in the conditional variance equation for 

oil returns is statistically significant. This latter finding implies indirect volatility transmission 

through the covariance term from Chinese stock index returns to oil returns. Thus, we find 

significant direct and indirect transmission of volatility from the Chinese stock market to the 

Brent crude oil market. Furthermore, our results indicate that volatility in oil returns is also 

affected by shocks originating in the Chinese stock market (note the significant estimated 

coefficient on 𝜀2,𝑡
2 ) but not shocks originating in the oil market (note the insignificant estimated 

coefficient on 𝜀1,𝑡
2 ). In addition, the estimated coefficient on the cross-error term (𝜀1,𝑡𝜀2,𝑡) is 

insignificant, suggesting the absence of an indirect effect of shocks in the Chinese stock market on 

the Brent oil market.18 Finally, the coefficients on 𝑢1,𝑡
2  and 𝑢2,𝑡

2  are significant indicating that 

Brent oil market volatility responds asymmetrically to its own shocks and Chinese stock market 

shocks, i.e. negative events originating in these markets increase volatility more than positive 

shocks. 

The behaviour of stock return volatility is similar to that of oil. The results indicate that volatility 

in stock returns is directly affected by its own volatility and by the volatility in the oil returns 

(note the significant estimated coefficient on ℎ11,𝑡  and ℎ22,𝑡). Moreover, the coefficient for the 

covariance term (ℎ12) in the conditional variance equation for stock returns is statistically 

significant. This latter finding implies indirect volatility transmission through the covariance 

18 The analysis of the impacts of the previous day’s shocks of crude oil and stock markets on the conditional variance of crude 
oil market and the conditional variance of stock market, in some degree, is similar to the news impact surfaces analysis 
developed by Kroner and Ng (1998), which is a multivariate generalization of the univariate news impact analysis of Engle and 
Ng (1993) involving plotting conditional variance against lagged shocks. 
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term from oil returns to Chinese stock index returns. Thus, we find significant direct and indirect 

transmission of volatility from the Brent crude oil market to the Chinese stock market. Moreover, 

our results indicate that volatility in stock returns is also affected by shocks originating in the 

Chinese stock market (note the significant estimated coefficient on 𝜀2,𝑡
2 ) but not shocks 

originating in the oil market (note the insignificant estimated coefficient on 𝜀1,𝑡
2 ). In addition, the 

estimated coefficient on the cross-error term (𝜀1,𝑡𝜀2,𝑡) is insignificant, suggesting the absence of 

an indirect effect of shocks in the Brent oil market on the Chinese stock market. Finally, the stock 

returns volatility responds asymmetrically to its own shocks and to shocks originating in the oil 

market (𝑢1,𝑡
2  and 𝑢2,𝑡

2  are both significant), suggesting that negative events in these markets 

increase volatility more than positive shocks. 

Panel A of Table 4.4 also provides estimates of the persistence in volatility for each return 

series.19 The estimates of volatility persistence will provide clue about the extent to which future 

conditional variance is influenced by past shocks and volatility. The greater the persistence, the 

more weight should be given to recent observations of volatility in terms of explaining future 

volatility. On the contrary, less weight on recent observations of volatility should be given under 

the condition of lesser degrees of persistence for forecasting future values of volatility. This is 

because the volatility of the series will return to its unconditional variance faster than would be 

the case when there is greater persistence. In the case of no persistence, forecasts of future 

volatility will simply be given by the long-run variance of the series. The results presented here 

indicate that both Brent crude oil and Chinese stock returns series are persistent with their 

persistence value and the reversion of volatility to its long-run value is a little bit of quicker for 

stock than for oil returns. 

In general, the estimated conditional volatility series do not change very rapidly under the 

impulsion of return innovations given the small size of the coefficients associated with shocks. 

19 Analogous to the univariate GARCH model, the persistence of volatility in the multivariate GARCH model is computed by 
taking the sum of coefficients of lagged variances, covariances, squared error terms and cross-product of error terms (see 
Ewing et al., 2002). 
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They tend instead to evolve gradually over time with regard to substantial effects of past 

volatility given the large values of the coefficients associated with current volatility. Accordingly, 

investors seeking profit from trading oil and Chinese stock assets may consider active investment 

strategies based on volatility persistence and current market trends and should keep in mind 

that the viability of such strategies depends on the stability and the strength of performance 

between successive periods. 

The volatility interdependence between the Brent oil market and the Chinese stock market may 

result from the fact that China’s oil consumption has quadrupled during the last three decades, 

and it has become the second largest oil consumer only after the US. At the same time, because 

the domestic oil production of China has reached its full capacity in recent years, the increase in 

consumption is mainly satisfied by increases in import such that China has turned from an oil 

exporter into the world’s second largest oil importer. Furthermore, China has accounted for the 

largest increase in world oil consumption. Therefore, one would expect fluctuations in oil market 

would have a significant impact on China’s stock market as a result. Unambiguously, with its 

amount of oil consumption, higher dependence on imported oil supply and more 

market-oriented domestic oil pricing mechanism, the interaction between the world oil price and 

China’s macro-economy and its stock market should have been more significant (Du et al., 2010).  

4.5.2 Volatility spillovers and asymmetric effects: the sector-level perspective 

The results for oil and basic materials models are reported in Panel B of Table 4.4. Our findings 

indicate that volatility (conditional variance) in oil returns is directly driven by past volatilities in 

oil and sector returns, as well as indirectly influenced by the covariance term from sector returns 

to oil returns. Thus, we find significant direct and indirect transmission of volatility from basic 

materials sector to the Brent crude oil market. Moreover, only past sector shocks are found to 

drive volatility changes in oil market. Furthermore, crude oil volatility responds asymmetrically 

to its own shocks and to shocks originating in the basic materials sector. On the other hand, the 

89 



Chapter 4: Volatility Spillovers and Asymmetries between Oil Prices and Chinese stock Sector Returns: Implications for Portfolio Management 

behaviour of sector return volatility is similar to that of oil as both direct and indirect 

transmission of volatility from the Brent crude oil market to the basic materials sector has been 

detected. Interestingly, only unexpected changes in sector returns influence sector return 

volatility. Furthermore, sector volatility responds asymmetrically to its own shocks and to shocks 

originating in the oil market. Finally, the estimates of the persistence in volatility suggest that 

both Brent crude oil and basic materials returns series are persistent and the reversion of 

volatility to its long-run value is a little bit of quicker for sector returns than for oil returns. The 

possible explanation for the volatility transmissions between crude oil and basic materials sector 

is that the relatively heavy use of oil in the basic materials sector is a key determinant of the oil 

effects (see Arouri et al., 2011). Indeed, the sector return volatility could be intensified by oil 

prices increases through changes in the oil supply for this industry as well as consumer demand 

for its manufactured products. Therefore, it is their own interest to minimize the unfavorable 

impact of rising oil prices through an effective hedging strategy. 

For the oil-consumer goods model reported in Panel C of Table 4.4, our finding suggests that 

there are no significant direct and indirect cross-volatility effects and shock transmissions from 

sector returns to oil returns. Volatility in oil returns depends on own past return innovations and 

own past volatility. On the other hand, we essentially find unilateral volatility transmission from 

oil returns to sector returns as volatility in sector returns is driven by not only its own past 

shocks and volatility but also past volatility in oil returns. The unilateral volatility transmission 

from crude oil to consumer goods sector is expected as rising oil prices are likely to strongly 

influence consumer and investment sentiment, and consequently their appetite for consumer 

goods. With respect to the asymmetric effects, our finding suggests that oil and sector returns 

only respond asymmetrically to their own shocks. In addition, the estimates of the persistence in 

volatility suggest that both Brent crude oil and consumer goods returns series are persistent with 

their persistence value and sector returns are slower than oil returns in terms of the reversion of 

volatility to its long-run value. 
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The results for oil and consumer services model reported in Panel D of Table 4.4 reveal 

bidirectional volatility transmissions even though the transmission patterns are not similar for 

oil and sector returns. Volatility (conditional variance) in oil returns is only driven by past 

volatilities in oil and sector returns. On the other hand, volatility in sector returns is directly 

driven by own past volatility as well as indirectly influenced by the covariance term from oil 

returns to sector returns. Furthermore, there are no significant direct and indirect shock 

transmissions between sector and oil returns as only own unexpected changes influence 

volatility. The significant volatility transmissions from oil returns to sector returns may be 

primarily the result of the direct impact of oil price changes on uncertainty over demand for the 

products of companies in consumer services sector. In addition, both oil and sector volatilities 

respond asymmetrically to the shocks originating in the oil and sector markets. Finally, the 

estimates of the persistence in volatility suggest that both Brent crude oil and consumer services 

returns series are persistent with their persistence value to be very close to one and the return of 

volatility to its long-run value is a little bit of slower for sector returns than for oil returns. 

For the oil-financials sector model reported in Panel E of Table 4.4, our finding suggests that 

there are no significant direct and indirect shock transmissions between sector returns and oil 

returns. However, we essentially find bidirectional volatility transmissions as there are direct 

and indirect interaction for volatility in oil and sector returns. Although financial institutions are 

not directly involved with oil production or consumption, their association with oil occurs via 

their lending to and/or holdings of corporate bonds issued by firms with significant exposure to 

oil price fluctuations, their speculative positions in oil-related instruments, and portfolio 

readjustments that take place by market players in response to oil price movements (see 

Elyasiani et al., 2011). In addition, both oil and sector volatilities respond asymmetrically to the 

shocks originating in the oil and sector markets.. 

The results reported in Panel F of Table 4.4 reveal that the industrials sector and the oil market 

experience significant direct and indirect shock transmissions and cross-volatility effects. Their 
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conditional volatility depend on both own and counterpart past return innovations and past 

volatilities. As a heavy user of petroleum and related products and the limited development of 

effective hedges against the impact of oil price fluctuations, it is not surprising to observe the 

volatility transmission effects for industrials sector in China. Our results are the counterevidence 

of Malik and Ewing (2009), who note that the development of effective hedges against the effects 

of oil price changes is the most likely explanation of the insignificant volatility transmission from 

the world oil markets to the US industrials sector. In addition, both oil and sector volatilities 

respond asymmetrically to the shocks originating in the oil and sector markets. Finally, the 

estimates of the persistence in volatility indicate that both Brent crude oil and industrials returns 

series are persistent and the return of volatility to its long-run value is a little bit of quicker for 

sector returns than for oil returns. 

4.5.3 Dynamic conditional correlations and diagnostic tests 

Fig. 4.1 shows the time-varying conditional correlations from the ABEKK model. The dynamic 

conditional correlations can vary a lot from their average value reported in Table 4.4 

emphasizing the need to compute dynamic conditional correlations. Up until 2008 there was no 

significant trend in each pair of correlations. After 2008, there is a slight upward trend in each 

pair of correlations. It has been observed that the dynamic conditional correlations for each 

series are all smaller than 0.5. This indicates that there is sufficient scope for portfolio 

diversification between Brent crude oil and Chinese stock sectors. Furthermore, these dynamic 

conditional correlations do alternate in sign and cover a range of values between -0.2 and 0.4. 

These periods of negative correlations provide an opportunity for meaningful portfolio 

diversification. Furthermore, the significant variation in the conditional correlations over time 

indicates that any inferences from the constant conditional correlation model would be 

misleading.  
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Lastly, the results of diagnostic tests based on standardized residuals are also shown in Table 4.4. 

Tests on the standardized residuals and standardized residuals squared indicate that there are 

no significant signs of autocorrelation and ARCH effects at the 1% significance level. However, 

the JB statistics still reject the normality hypothesis even though that departure from normality is 

greatly reduced. We regard the departure from normality as well as the significance of the 

estimated degrees of freedom for the Student’s 𝑡 distribution as strong evidence for favouring a 

Student’s 𝑡 distribution for 𝜀𝑡.  

We also present diagnostic tests suggested by Engle and Ng (1993) and Kroner and Ng (1998), 

based on the ‘generalized residuals’, defined as 𝜀𝑡𝑂𝜀𝑡𝑆 − ℎ𝑡𝑂𝑆 . For all symmetric GARCH models, 

the news impact curve is symmetric and centred at 𝜀𝑡−1 = 0 (see Engle and Ng, 1993). A 

generalized residual can be thought of as the distance between a point on the scatter plot of 𝜀𝑡𝑂𝜀𝑡𝑆 

from a corresponding point on the news impact curve. Therefore, if the conditional 

heteroskedasticity part of the model is correct, generalized residuals should be uncorrelated with 

all information known at time 𝑡 − 1. In other words, the unconditional expectation of 𝜀𝑡𝑂𝜀𝑡𝑆 

should be equal to its conditional one, ℎ𝑡𝑂𝑆 . The Engle and Ng (1993) and Kroner and Ng (1998) 

misspecification indictors test whether we can predict the generalized residuals by some 

variables observed in the past, but which are not included in the model. In this regard, we follow 

Kroner and Ng (1998) and Shields et al. (2005) to define a battery of misspecification indicators. 

In a two dimensional space, we partition (𝜀𝑡−1𝑂 , 𝜀𝑡−1𝑆 ) into four quadrants in terms of the possible 

sign of the two residuals. Then, to shed light on any possible sign bias of the model, we define the 

set of indicator functions as 𝐼(𝜀𝑡−1𝑂 < 0), 𝐼(𝜀𝑡−1𝑆 < 0), 𝐼(𝜀𝑡−1𝑂 < 0, 𝜀𝑡−1𝑆 < 0), 𝐼(𝜀𝑡−1𝑂 < 0, 𝜀𝑡−1𝑆 > 0), 

𝐼(𝜀𝑡−1𝑂 > 0, 𝜀𝑡−1𝑆 < 0), and 𝐼(𝜀𝑡−1𝑂 > 0, 𝜀𝑡−1𝑆 > 0), where 𝐼(∙) equals one if the argument is true 

and zero otherwise. Significance of any of these indicator functions indicates that the model, Eq. 

(4.2), is incapable of predicting the effects of some shocks to either oil or stock markets. 

Moreover, due to the fact that the possible effect of a shock could be a function of both the size 

and the sign of the shock, we define another set of indictor functions, (𝜀𝑡−1𝑂 )2𝐼(𝜀𝑡𝑂 < 0), 
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(𝜀𝑡−1𝑂 )2𝐼(𝜀𝑡𝑆 < 0), (𝜀𝑡−1𝑆 )2𝐼(𝜀𝑡𝑆 < 0), and (𝜀𝑡−1𝑆 )2𝐼(𝜀𝑡𝑂 < 0). These indicators are technically scaled 

versions of the former ones, with the magnitude of the shocks as a scale measure. We conducted 

indicator tests and report the results in Table 4.6. As can be seen in Table 4.6, most of the 

indicators fail to reject the null hypothesis of no misspecification – all test statistics in Table 4.6 

are distributed as 𝜒2(1). Hence, our model captures the effects of all sign bias and sign-size scale 

depended shocks in predicting volatility and there is no significant model misspecification error 

in the standardized residuals. Therefore, the 𝑉𝐴𝑅(2) − 𝐴𝐵𝐸𝐾𝐾(1,1)  model we employ is 

flexible enough to capture the dynamics of oil and Chinese stock returns in terms of volatility 

spillovers, asymmetric effects and time-varying conditional correlations. 

In summary, our results imply the existence of widespread volatility transmissions between oil 

and stock sector returns. Moreover, the degree of volatility transmissions from oil market to 

stock market varies from one sector to another, which confirms the argument that the degree 

with which stock sector returns are sensitive to oil volatility depends on several industry-specific 

factors such as the degree of oil consumption, competition and concentration in the industry, and 

the effectiveness of hedging oil risk (see Arouri et al., 2011). It is obvious that the significant 

volatility transmissions we show previously require portfolio managers to quantify the optimal 

weights and optimal hedge ratios to properly deal with oil risk. 
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Table 4.6 
Diagnostic tests based on the news impact curve. 

 
(𝜀𝑡𝑂)2 − ℎ𝑡𝑂 𝜀𝑡𝑂𝜀𝑡𝑆 − ℎ𝑡𝑂𝑆 (𝜀𝑡𝑆)2 − ℎ𝑡𝑆 

BRENT_MARKET INDEX 

𝐼(𝜀𝑡−1
𝑂 < 0) 3.6251+++ 1.4249 1.7606+ 

𝐼(𝜀𝑡−1
𝑆 < 0) 1.1915 1.1914 1.3574 

𝐼(𝜀𝑡−1
𝑂 < 0, 𝜀𝑡−1

𝑆 < 0) 0.9247 0.5865 1.4529 

𝐼(𝜀𝑡−1
𝑂 < 0, 𝜀𝑡−1

𝑆 > 0) 1.2748 1.4003 0.3238 

𝐼(𝜀𝑡−1
𝑂 > 0, 𝜀𝑡−1

𝑆 < 0) 0.5709 1.1422 0.3993 

𝐼(𝜀𝑡−1
𝑂 > 0, 𝜀𝑡−1

𝑆 > 0) 0.2390 1.3745 0.9887 

(𝜀𝑡−1𝑂 )2𝐼(𝜀𝑡−1𝑂 < 0) 0.6757 1.2871 0.0167 

(𝜀𝑡−1𝑂 )2𝐼(𝜀𝑡−1𝑆 < 0) 0.8880 1.6612+ 0.0010 

(𝜀𝑡−1𝑆 )2𝐼(𝜀𝑡−1𝑂 < 0) 0.0066 0.5344 0.0889 

(𝜀𝑡−1𝑆 )2𝐼(𝜀𝑡−1𝑆 < 0) 2.6402+++ 2.1334++ 0.8066 

BRENT_BASIC MATERIALS INDEX 

𝐼(𝜀𝑡−1
𝑂 < 0) 3.4832+++ 2.2074++ 0.7355 

𝐼(𝜀𝑡−1
𝑆 < 0) 1.3113 1.0738 1.7011+ 

𝐼(𝜀𝑡−1
𝑂 < 0, 𝜀𝑡−1

𝑆 < 0) 0.9348 0.8193 2.1244++ 

𝐼(𝜀𝑡−1
𝑂 < 0, 𝜀𝑡−1

𝑆 > 0) 0.0225 1.6111 0.6471 

𝐼(𝜀𝑡−1
𝑂 > 0, 𝜀𝑡−1

𝑆 < 0) 0.5577 1.0881 0.5302 

𝐼(𝜀𝑡−1
𝑂 > 0, 𝜀𝑡−1

𝑆 > 0) 0.2830 1.0684 1.2082 

(𝜀𝑡−1𝑂 )2𝐼(𝜀𝑡−1𝑂 < 0) 0.7627 0.4794 0.3362 

(𝜀𝑡−1𝑂 )2𝐼(𝜀𝑡−1𝑆 < 0) 0.9218 0.6258 0.2704 

(𝜀𝑡−1𝑆 )2𝐼(𝜀𝑡−1𝑂 < 0) 0.0013 0.3793 0.4356 

(𝜀𝑡−1𝑆 )2𝐼(𝜀𝑡−1𝑆 < 0) 3.0229+++ 1.3850 1.6349 

BRENT_CONSUMER GOODS INDEX 

𝐼(𝜀𝑡−1
𝑂 < 0) 0.1364 0.9588 0.6236 

𝐼(𝜀𝑡−1
𝑆 < 0) 1.0592 0.4860 0.5753 

𝐼(𝜀𝑡−1
𝑂 < 0, 𝜀𝑡−1

𝑆 < 0) 0.9373 1.5524 0.9109 

𝐼(𝜀𝑡−1
𝑂 < 0, 𝜀𝑡−1

𝑆 > 0) 1.0215 1.9259+ 0.2969 

𝐼(𝜀𝑡−1
𝑂 > 0, 𝜀𝑡−1

𝑆 < 0) 0.7353 0.0281 0.6310 

𝐼(𝜀𝑡−1
𝑂 > 0, 𝜀𝑡−1

𝑆 > 0) 0.0703 0.9255 0.3861 

(𝜀𝑡−1𝑂 )2𝐼(𝜀𝑡−1𝑂 < 0) 0.7315 1.4279 0.0001 

(𝜀𝑡−1𝑂 )2𝐼(𝜀𝑡−1𝑆 < 0) 0.9327 0.0239 0.1934 

(𝜀𝑡−1𝑆 )2𝐼(𝜀𝑡−1𝑂 < 0) 0.0074 0.4427 0.8112 

(𝜀𝑡−1𝑆 )2𝐼(𝜀𝑡−1𝑆 < 0) 2.6828+++ 1.1667 0.6626 

BRENT_CONSUMER SERVICES INDEX 

𝐼(𝜀𝑡−1
𝑂 < 0) 0.1820 0.7626 1.8117+ 

𝐼(𝜀𝑡−1
𝑆 < 0) 1.0388 1.4052 0.2864 

𝐼(𝜀𝑡−1
𝑂 < 0, 𝜀𝑡−1

𝑆 < 0) 0.8886 1.3856 1.4485 

𝐼(𝜀𝑡−1
𝑂 < 0, 𝜀𝑡−1

𝑆 > 0) 1.1090 1.8629+ 0.6539 

𝐼(𝜀𝑡−1
𝑂 > 0, 𝜀𝑡−1

𝑆 < 0) 0.7669 1.8382+ 0.1880 

𝐼(𝜀𝑡−1
𝑂 > 0, 𝜀𝑡−1

𝑆 > 0) 0.5368 0.8753 1.3239 

(𝜀𝑡−1𝑂 )2𝐼(𝜀𝑡−1𝑂 < 0) 1.0110 0.7573 0.1147 

(𝜀𝑡−1𝑂 )2𝐼(𝜀𝑡−1𝑆 < 0) 0.9608 0.4394 0.2067 

(𝜀𝑡−1𝑆 )2𝐼(𝜀𝑡−1𝑂 < 0) 0.0039 0.4499 0.0107 

(𝜀𝑡−1𝑆 )2𝐼(𝜀𝑡−1𝑆 < 0) 2.8875+++ 0.6844 1.9499++ 
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Table 4.6 (continued.) 
Diagnostic tests based on the news impact curve. 

 
(𝜀𝑡𝑂)2 − ℎ𝑡𝑂 𝜀𝑡𝑂𝜀𝑡𝑆 − ℎ𝑡𝑂𝑆 (𝜀𝑡𝑆)2 − ℎ𝑡𝑆 

BRENT_FINANCIALS INDEX 

𝐼(𝜀𝑡−1
𝑂 < 0) 0.1537 1.1579 0.9273 

𝐼(𝜀𝑡−1
𝑆 < 0) 1.2505 0.4933 0.7642 

𝐼(𝜀𝑡−1
𝑂 < 0, 𝜀𝑡−1

𝑆 < 0) 1.0216 0.7534 0.2465 

𝐼(𝜀𝑡−1
𝑂 < 0, 𝜀𝑡−1

𝑆 > 0) 1.2257 0.9984 0.1340 

𝐼(𝜀𝑡−1
𝑂 > 0, 𝜀𝑡−1

𝑆 < 0) 0.6844 1.6030 1.3547 

𝐼(𝜀𝑡−1
𝑂 > 0, 𝜀𝑡−1

𝑆 > 0) 0.2445 1.5922 0.9440 

(𝜀𝑡−1𝑂 )2𝐼(𝜀𝑡−1𝑂 < 0) 0.7407 3.3198+++ 0.1259 

(𝜀𝑡−1𝑂 )2𝐼(𝜀𝑡−1𝑆 < 0) 0.9098 0.5849 0.3039 

(𝜀𝑡−1𝑆 )2𝐼(𝜀𝑡−1𝑂 < 0) 0.0025 0.0279 0.1081 

(𝜀𝑡−1𝑆 )2𝐼(𝜀𝑡−1𝑆 < 0) 2.1449++ 1.7531+ 1.6822+ 

BRENT_INDUSTRIALS INDEX 

𝐼(𝜀𝑡−1
𝑂 < 0) 0.0634 1.0234 1.8374+ 

𝐼(𝜀𝑡−1
𝑆 < 0) 1.0342 1.0558 0.6697 

𝐼(𝜀𝑡−1
𝑂 < 0, 𝜀𝑡−1

𝑆 < 0) 0.7625 0.8867 1.6044 

𝐼(𝜀𝑡−1
𝑂 < 0, 𝜀𝑡−1

𝑆 > 0) 1.4455 1.5956 0.8231 

𝐼(𝜀𝑡−1
𝑂 > 0, 𝜀𝑡−1

𝑆 < 0) 0.6930 1.4424 0.0514 

𝐼(𝜀𝑡−1
𝑂 > 0, 𝜀𝑡−1

𝑆 > 0) 0.2490 0.7386 0.3218 

(𝜀𝑡−1𝑂 )2𝐼(𝜀𝑡−1𝑂 < 0) 0.8622 0.8082 0.4915 

(𝜀𝑡−1𝑂 )2𝐼(𝜀𝑡−1𝑆 < 0) 0.8583 0.3113 0.1626 

(𝜀𝑡−1𝑆 )2𝐼(𝜀𝑡−1𝑂 < 0) 0.0053 0.0925 0.3182 

(𝜀𝑡−1𝑆 )2𝐼(𝜀𝑡−1𝑆 < 0) 2.1606++ 1.8145+ 0.4176 

Notes: +++, ++ and + indicate the rejection of the null hypothesis of no asymmetric effects at the 1%, 5% and 10% significance levels, 
respectively. 
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Fig.4.1 Time-varying conditional correlations (red lines) and corresponding average value of dynamic conditional 
correlations (dotted black lines) for pairs of Brent crude oil and stock sector indices in China. 
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4.6 Implications for portfolio management 

The additional source of uncertainty resulting from the strong connection between oil and stock 

markets in China may present a new challenge, and the same time, a new opportunity for stock 

markets participants. Investors may need to re-evaluate their risk management strategy to deal 

with this additional source of risk.  

To illustrate the implications of our findings on optimal portfolio design and oil risk hedging, we 

consider a portfolio of oil and stocks in which an investor attempts to minimize portfolio risk 

without lowering expected returns.20 Let ℎ𝑡𝑂 , ℎ𝑡𝑆, and ℎ𝑡𝑂𝑆  be the conditional volatility of the oil 

market, the conditional volatility of the stock market (sector), and the conditional covariance 

between oil and stock returns at time 𝑡, respectively. According to Kroner and Ng (1998) and 

Hammoudeh et al. (2010), define 

𝑤𝑡𝑂𝑆 =
ℎ𝑡𝑆 − ℎ𝑡𝑂𝑆

ℎ𝑡𝑂 − 2ℎ𝑡𝑂𝑆 + ℎ𝑡𝑆
                                                    (4.8) 

Then it is easy to show that, under the condition of a mean-variance utility function, the optimal 

portfolio weight of oil-stock holding is 

𝑤𝑡𝑂𝑆 = �
0, 𝑖𝑓 𝑤𝑡𝑂𝑆 < 0
𝑤𝑡𝑂𝑆 , 𝑖𝑓 0 ≤ 𝑤𝑡𝑂𝑆 ≤ 1
1, 𝑖𝑓 𝑤𝑡𝑂𝑆 > 1

 

where 𝑤𝑡𝑂𝑆  and (1 − 𝑤𝑡𝑂𝑆) are the optimal weight of the oil and stock assets in a one-dollar 

portfolio of oil-stock at time 𝑡.  

Summary statistics for portfolio weights computed from the 𝑉𝐴𝑅(2) − 𝐴𝐵𝐸𝐾𝐾(1,1) model are 

reported in Table 4.7. A glance at the coefficients shows that the optimal weights for the oil asset 

in the oil-stock portfolios vary substantially across sectors. At the aggregate market level, we 

observe that, to maximize the risk-adjusted return of the one-dollar oil-stock portfolio, China 

investors should have more stock assets than oil assets in their portfolio in order to minimize 

risk without lowering expected returns. In addition, the optimal holding of oil assets in a 

20 In order to avoid forecasting expected returns, we assume here that the expected returns are zero, making the problem 
equivalent to estimating the risk-minimizing portfolio weights, which is consistent with Kroner and Ng (1998). 
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one-dollar oil-stock portfolio should be 33.12 cents, and the remaining budget of 66.88 cents is 

invested in stock assets. By sector, the optimal weight for oil ranges from 36.86% (Industrials) to 

41.55% (Basic Materials) from the 𝑉𝐴𝑅(2) − 𝐴𝐵𝐸𝐾𝐾(1,1)  model for China sector-based 

portfolios. This result suggests that for Industrials the optimal allocation for oil in a one-dollar 

oil-stock portfolio should be 36.86 cents, with the remainder, 63.14 cents, invested in the 

Industrials stock sector index. For Basic Materials, these optimal investments are 41.55 cents for 

oil and 58.45 cents for stocks. On the whole, our results indicate that, to minimize the risk 

without lowering the expected return, investors in China should have more stocks than oil in 

their portfolios. 

 
Table 4.7 
Portfolio weights summary statistics. 

 
Mean St. Dev. Min Max 

BRENT_MARKT 0.3312 0.0231 0.0747 0.7491 

BRENT_BASIM 0.4155 0.0362 0.0783 0.8467 

BRENT_CONSG 0.3778 0.0257 0.0396 0.8368 

BRENT_CONSS 0.3820 0.0329 0.0313 0.8581 

BRENT_FINAN 0.4013 0.0207 0.1088 0.7891 

BRENT_INDUS 0.3686 0.0320 0.0001 0.8461 

Notes: This table reports the basic statistics of portfolio weights for oil, including mean (Mean), standard deviation (Std. Dev), minimum 
value (Min) and maximum value (Max) using conditional variance and covariance estimated from the VAR(2)-ABEKK(1,1) model. The oil 
asset is represented by the Brent crude oil of future contracts, whereas investment in stocks is represented by the DataStream Global 
Country Indices (China) or each of five stock sector indices in China represented by the DataStream Global Sector Indices. 

 

As to the optimal hedge ratios, Kroner and Sultan (1993) consider a two-asset portfolio, 

equivalent to a portfolio composed of oil and the stock market (sector) index in our analysis. To 

minimize the underlying portfolio risk, a long position of one-dollar on the stock segment should 

be hedged by a short position of 𝛽𝑡𝑆𝑂dollars on the oil assets, where 𝛽𝑡𝑆𝑂  is given by 

𝛽𝑡𝑆𝑂 =
ℎ𝑡𝑆𝑂

ℎ𝑡𝑂
                                                                   (4.9) 

Fig. 4.2 plots the calculated time-varying optimal hedge ratios from the 𝑉𝐴𝑅(2) − 𝐴𝐵𝐸𝐾𝐾(1,1) 

model. For all of the hedge ratios, the graphs show considerable variability after January 2007. 

For many of the hedge ratios it is also the case that the maximum value was recorded after 

January 2007. 
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  Fig.4.2 Time-varying hedge ratios computed from the VAR(2)-ABEKK(1,1) model. 
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Summary statistics for hedge ratios computed from the 𝑉𝐴𝑅(2) − 𝐴𝐵𝐸𝐾𝐾(1,1)  model are 

reported in Table 4.8. A glance at the average optimal hedge ratio (𝛽𝑡𝑆𝑂) provides insightful 

information for short hedgers. First, the low ratios suggest that stock investment risk can be 

hedged by taking a short position in oil markets or oil futures markets. At the aggregate market 

level, the ratio, 0.0471, means that one-dollar long (buy) in the Chinese stock market index 

should be shorted (sell) by 4.71 cents of oil futures. Second, similar to the optimal portfolio 

weights, the optimal hedge ratios differ across sectors ranging from 0.0245 (Consumer Goods) to 

0.0714 (Basic Materials). Summing up these together, our findings for optimal hedge ratios 

support the argument that oil assets should be an integral part of a diversified portfolio of stocks 

and then improve the risk-adjusted performance of the hedged portfolio. 

 
Table 4.8 
Hedge ratio (long/short) summary statistics. 

 
Mean St. Dev. Min Max 

BRENT_MARKT 0.0471 0.0038 -0.2039 0.2899 

BRENT_BASIM 0.0714 0.0064 -0.1153 0.4091 

BRENT_CONSG 0.0245 0.0023 -0.2228 0.2541 

BRENT_CONSS 0.0278 0.0025 -0.1617 0.2759 

BRENT_FINAN 0.0364 0.0039 -0.2889 0.2661 

BRENT_INDUS 0.0400 0.0031 -0.1649 0.2928 

Notes: This table reports the basic statistics of hedge ratio (long/short) for oil and stock sectors indices, including mean (Mean), standard 
deviation (Std. Dev), minimum value (Min) and maximum value (Max) using conditional variance and covariance estimated from the 
VAR(2)-ABEKK(1,1) model. The oil asset is represented by the Brent crude oil of future contracts, whereas investment in stocks is 
represented by the DataStream Global Country Indices (China) or each of five stock sector indices in China represented by the DataStream 
Global Sector Indices. 

 

We now look into diversification effectiveness by actually running the portfolio simulations with 

our optimal portfolio designs. We use the estimates of the ABEKK model to build two portfolios: a 

portfolio of stocks and a weighted oil-stock portfolio with optimal weights provided in Table 4.7. 

The effectiveness of the portfolio diversification is judged by comparing the realized risk and 

return characteristics of the considered portfolios. A higher diversification effectiveness (DE) 

ratio indicates greater diversification effectiveness in terms of the portfolio’s variance reduction, 
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which thus implies that the associated investment method can be deemed a better diversification 

strategy.  

 
Table 4.9 
Diversification effectiveness. 

 
Mean (%) Variance (%) 𝑅𝑒𝑡𝑢𝑟𝑛(%)∗ DEI (%) 𝑉𝑎𝑅5%($) Semi-Variance 

 

DEII (%) 

BRENT_MARKT  
 

     

Undiversifie

 

0.0043 0.0265 0.2612 --- 26883.7 0.0106 --- 

Diversified 0.0163 0.0166 1.2626 37.46 22142.2 0.0063 40.82 

BRENT_BASIM  
 

     

Undiversifie

 

0.0173 0.0379 0.8867 --- 32119.1 0.0153 --- 

Diversified 0.0283 0.0201 2.0002 47.08 24885.4 0.0075 50.88 

BRENT_CONSG  
 

     

Undiversifie

 

0.0249 0.0309 1.4136 --- 29017.2 0.0123 --- 

Diversified 0.0275 0.0173 2.0880 44.09 22958.4 0.0065 47.47 

BRENT_CONSS  
 

     

Undiversifie

 

0.0425 0.0517 1.8715 --- 37512.5 0.0118 --- 

Diversified 0.0285 0.0201 1.9981 61.20 26842.1 0.0084 29.03 

BRENT_FINAN  
 

     

Undiversifie

 

0.0160 0.0463 0.7448 --- 35518.6 0.0096 --- 

Diversified 0.0195 0.0168 1.5033 63.65 25357.3 0.0065 32.29 

BRENT_INDUS  
 

     

Undiversifie

 

0.0258 0.0458 1.2062 --- 35292.4 0.0104 --- 

Diversified 0.0267 0.0184 1.9713 59.87 26030.9 0.0076 27.42 

Notes: This table reports the realized risk-adjusted returns, portfolio variance, semi-variance, Value-at-Risk (VaR) and 
diversification effectiveness ratios. 𝑅𝑒𝑡𝑢𝑟𝑛∗ is the realized risk-adjusted returns, measured by calculating the ratio of 
each portfolio’s mean to its standard deviation, of different portfolios. Variance denotes the variance of the 
undiversified/diversified portfolios. Semi-variance denotes the semi-variance of the undiversified/diversified portfolio. 
𝑉𝑎𝑅5% is the Value-at-Risk estimated by using Eq. (4.10) with Φ(𝑐) equal to the normal distribution 5% quantile, i.e. 
1.645. DEI denotes the diversification effectiveness and measures the incremental variance reduction of the ABEKK 
model, which is estimated using the formula: 
[𝑉𝑎𝑟(𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑓𝑖𝑒𝑑 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜) − 𝑉𝑎𝑟(𝑈𝑛𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑓𝑖𝑒𝑑 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜] 𝑉𝑎𝑟(𝑈𝑛𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑓𝑖𝑒𝑑 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜⁄ ). 
DEII denotes the diversification effectiveness and measures the incremental semi-variance reduction of the ABEKK 
model, which is estimated using the formula: 
[𝑆𝑉𝑎𝑟(𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑓𝑖𝑒𝑑 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜) − 𝑆𝑉𝑎𝑟(𝑈𝑛𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑓𝑖𝑒𝑑 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜] 𝑆𝑉𝑎𝑟(𝑈𝑛𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑓𝑖𝑒𝑑 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜⁄ ).  
The diversified portfolio is a weighted oil-stock portfolio in which the weights are given by the optimal weights reported 
in Table 4.7. 

 

The results from portfolio simulation in the second and fourth columns of Table 4.9 show that 

adding the oil asset to the diversified portfolios improves their risk-adjusted return ratios. More 

importantly, this result holds for all equity sectors we consider. We then focus on the fifth column 
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of Table 4.9, in which the diversification effectiveness ratios (DEI) are reported. The results show 

that diversification strategies involving oil and stock assets make it possible to reduce portfolio 

risk (variance) considerably with the variance reduction ranging from 37.46% (Market index) to 

63.65% (Financial index). Moreover, this variance reduction differs significantly across equity 

sectors. 

Another way of considering the economic benefits from the proposed portfolio diversification is 

to look at the reduction in the Value-at-Risk (VaR) exposure, arising from the diversification 

strategy. Assuming a normal distribution, if we denote as 𝑊0 the initial value of the portfolio 

and Φ(𝑐) the inverse of the standard Gaussian cumulative distribution function, the portfolio 

VaR is simply a constant multiple of the diversified portfolio standard deviation where the 

multiple is determined by the VaR confidence level 1 − 𝑐: 

𝑉𝑎𝑅 = 𝑊0 �𝐸(𝑟𝑑) + Φ(𝑐)�𝑉𝑎𝑟(𝑟𝑑)�                                 (4.10) 

with 𝑟𝑑  representing the returns from the diversified portfolio. 

Results of the daily VaR for a portfolio value of $1m with 95% confidence level reported in the 

sixth column of Table 4.9 indicate that one obtains a daily VaR of -$26883.7 if the undiversified 

portfolio is considered and a VaR of -$22142.2 when the diversified portfolio is considered for 

the China market index, which results in a decrease in VaR of $4741. Similar results are obtained 

across all equity sectors in terms of the reduction of VaR. Therefore, investors would prefer the 

ABEKK-based strategy to diversify their investment portfolio. 

Although variance reduction gives the overall picture about how well a diversification strategy 

performs, it does not consider the tail risk of the diversification strategy. The motivation for 

investigating this stems from the pitfalls associated with variance as a measure of diversification 

effectiveness. Variance assigns the same weight to positive gains and negative losses, which may 

not be the case for the risk averse investors. A number of metrics have recently been proposed in 
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the literatures that are able to deal with possible asymmetries in the profile of risk averse 

investors. For example, Cotter and Hanly (2006) evaluate the diversification performance based 

on Lower Partial Moments and find differences in terms of the best strategy compared to the 

traditional variance metric. In order to remove the effect of upside gains from the variance, we 

employ the semi-variance metric which acts as a measure for a downside risk averse investor, 

who is more concerned about the variability of negative losses. This can be expressed as: 

𝑠𝑣(−) =
1
𝑁
�{min (0, 𝑟𝑛+1 − 𝑢)}2
𝑁

𝑖=1

                                            (4.11) 

This is equivalent to the second order lower partial moment (LPM) where the target return 𝑢 is 

set to zero in order to distinguish between positive and negative realized portfolio returns 𝑟𝑛+1. 

The seventh and eighth columns of Table 4.9 present the negative semi-variance figures where 

negative semi-variance reflects the downside variation in the diversified strategies and the 

diversification effectiveness ratios. Overall, all numbers are positive, implying the superior 

performance of the diversified portfolio over undiversified portfolio with the semi-variance 

reduction ranging from 27.42% (Industrials index) to 50.88% (Basic Materials index). Moreover, 

this semi-variance reduction differs significantly across equity sectors. 

 

4.7 Conclusion  

The main purpose of this chapter is to investigate the extent of volatility transmission and its 

implication for portfolio management in oil and stock market in China from a sector perspective. 

The rationale for doing so is that market-level index may mask the industry-specific 

characteristics, and different industry may react differently to oil shocks as well. Arouri et al. 

(2011) argue that with regard to portfolio management, studies focusing on sector sensitivities to 

oil price shocks are of particular interest since they offer insight into sectors that still provide 

valuable opportunities for international diversification during large swings in oil prices. 
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After considering the evidence of volatility spillovers and asymmetric effects in Brent crude oil 

and Chinese stock market, by taking the asymmetric version of the BEKK model approach which 

permits volatility spillover and asymmetric effects, we find significant volatility interdependence 

in oil and stock market sectors. Empirical evidence also points out to the heterogeneous intensity 

of volatility transmissions across the five stock sectors. Furthermore, we find that the 

correlations between oil and stock markets (sectors) are time-varying and must be modelled as 

such. Finally, out investigation of optimal portfolio weights and hedge ratios indicates that 

optimal portfolios should have more stocks than oil assets and that the stock investment risk can 

be hedged with relatively low hedging costs by taking a short position in the oil futures markets. 

Overall, our analysis suggests that oil assets can be treated as a dynamic and valuable asset class 

that help improve the risk-adjusted performance of a well-diversified portfolio of sector stocks 

and serves to hedge oil risk more effectively. 

Future research may focus on simulation and analysis of government intervention regarding how 

to alleviate the impact of oil price fluctuations on equity markets. Additional insight may also be 

gained by exploring regime changes in the role of oil price fluctuations in explaining the equity 

market behaviour as well as employing the spillover index from the Diebold and Yilmaz (2009) 

framework to shed new direction on the volatility spillover between oil and stock markets in 

China. 

In the following chapter, we will focus on the investigation of crude oil markets integration in 

terms of volatility transmission. We also quantify the size and persistence of these connections 

through the analysis of Volatility Impulse Response Functions (VIRFs) for three historical shocks, 

namely the 2008 Financial Crisis, the BP Deepwater Horizon oil spill and the OPEC 

Announcements. The potential findings will provide useful insights into the volatility 

transmission mechanism in crude oil markets and their associated risk estimation, and may have 

significant implications for various market participants and regulators. 
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Chapter 5 

Volatility Transmission and Volatility Impulse Response 

Functions in Crude Oil Markets1 
 

5.1 Introduction 

Since the reverse oil price shocks of 1986 and the move to a market-driven pricing mechanism, 

the behaviour of oil prices has been under scrutiny practically on a daily basis and for a variety of 

reasons. Trading in crude oil has also changed, with physical and paper trading attracting 

numerous types of market participants, not just parties with commercial interests, but also those 

who treat oil as an investment vehicle. In the last few years, trading in the paper markets has 

become even more widespread and accessible for close to 24 hours and for almost every day of 

the year. At the same time, there is relatively easy access to multiple markets, particularly so for 

the all-important European and US markets, where two of the key benchmark oils, Brent and 

West Texas Intermediate, are traded. 

There is increasing integration of major financial markets throughout the world, enabling 

convergence of risk-adjusted returns on the assets of similar maturities across markets. With the 

introduction of crude oil as an alternative asset in investment portfolios, crude oil markets all 

over the world have witnessed growing integration, spurred by deregulation, securitization, 

globalization and advances in information technology.  

In crude oil markets more specifically, we have witnessed the strength of Brent crude oil as a 

benchmark of world oil prices, but also its changing relationship with West Texas Intermediate 

crude oil (henceforth WTI), which seems to increasingly reflect US domestic, rather than world, 

1 Part of this chapter has been published in Energy Economics (Jin et al., 2012). We would like to thank the Editor (Richard Tol) 
and two anonymous referees for their constructive comments and helpful feedback. An earlier version is presented at the 34th 
IAEE International Conference in Stockholm (June 19th-22nd, 2011). 
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markets. In addition, the increased trade flows from the Middle East to the developed and 

emerging markets of East Asia have given more prominence to the use of Dubai Fateh crude oil 

(henceforth Dubai) as a pricing benchmark for these crude oil flows. It is therefore of interest and 

practical significance to investigate further the relationship among these three crude oils.  

Within this context, the behaviour of crude oil prices and returns has been the subject of much 

attention from the academic community and financial practitioners. Numerous econometric 

studies have examined the dynamic and distributional properties of price and/or return time 

series in leading crude oil markets. The majority of these studies are devoted to the analysis of a 

univariate time-series. A natural extension to this interest is to investigate crude oil markets in 

higher moments of a distribution, i.e. volatility. Although some research has been done on the 

second moment with regard to the existence of volatility transmission, there are no direct 

findings about how a shock to one market influences the dynamic adjustment of volatility to 

another market and the persistence of these transmission effects.  

The importance of measuring volatility cannot be overstated. It is equally important, however, to 

understand how volatility is transmitted between markets and assets. In physical oil markets, 

agents often have exposures to a number of different grades of crude oil, which may be priced off 

one or more of the benchmarks; in paper oil markets, agents frequently build portfolios which 

include some or all of the benchmarks. More generally, an understanding of volatility and how it 

is transmitted is important for determining the cost of capital, for assessing investment and 

leverage decisions, and for computing the optimal hedge ratio and portfolio weights. Substantial 

changes in volatility in crude oil markets may have significant negative effects on risk-adverse 

investors. 

In this chapter we focus on volatility aspects of crude oil markets and aim to achieve two 

objectives: (1) to investigate the volatility transmission mechanism, using a multivariate 

conditional volatility model, within and across benchmark markets, i.e. WTI, Dubai and Brent; 
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and (2) to apply the volatility impulse response function analysis to uncover the impact of 

historical innovations on conditional volatility by utilizing the above transmission mechanism 

and to quantify the risk on a future horizon. We choose to study WTI, Brent and Dubai markets 

because they represent major demand-supply activities in the world oil trade. 

To achieve the first goal, a multivariate conditional volatility model, namely the full BEKK model 

by Engle and Kroner (1995), is used to facilitate the study of volatility transmissions within the 

three benchmark markets as well as across them. The results will have significant implications on 

how volatilities are being transmitted among major oil markets, and hence indicate the pattern of 

information flow and to some extent the relative strength of three benchmarks. For the second 

goal, the volatility impulse response function (VIRF) methodology developed by Hafner and 

Herwartz (2006) is applied. It allows us to analyse the impact of external shocks on oil market 

volatilities. Three major historical events, i.e. the 2008 Financial Crisis, the BP oil spill of 20102, 

and the OPEC announcements 3 , are examined, followed by the creation of an empirical 

distribution of possible random shocks. The latter further facilitates the quantification of 

Value-At-Risk estimation. Results generated from these analyses could have implications for 

trading, risk management and policy issues in crude oil markets. 

By focusing on the volatility aspects of crude oil markets, this chapter contributes to the existing 

literature in two aspects. The first contribution of this chapter is to show that volatilities within 

and across WTI, Dubai and Brent markets follow a “meteor shower”4 process, indicating that 

volatility spillovers across crude oil markets should be considered for crude oil volatility 

modelling. In particular, we empirically examine the trivariate time-series properties of crude oil 

2 The Deepwater Horizon Oil Spill is an oil spill in the Gulf of Mexico which flowed unabated for three months in 2010. It is the 
largest accidental marine oil spill in the history of the oil industry. It stemmed from a sea-floor oil gusher that resulted from the 
April 20, 2010, explosion of Deepwater Horizon. Please refer to http://en.wikipedia.org/wiki/Deepwater_Horizon_oil_spill for 
detailed explanation. 
3 In 1982, OPEC established a system to regulate oil production among its members. Several times a year, the OPEC schedules a 
conference to agree on further oil production policies, based on its assessment of the current market condition. The OPEC’s 
decision usually takes the form of an announcement, setting an overall oil production ceiling for the cartel and individual 
production quotas for its members (see OPEC Secretariat, 2003). We will consider a series of OPEC announcements which 
correspond with our data period. 
4 This concept is developed by Engle et al. (1990) to describe volatilities reacting to shocks in other markets and a volatility 
process whose estimation is not improved by using innovations in other markets. 
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returns. The multivariate volatility model we employ is robust, in which it is capable of handling 

non-linear effects on the variances of each time-series, as well as allowing for the possibility that 

changes in volatility in one crude oil market may transmit into the other crude oil markets 

through conditional variance and conditional covariance channel. As we have argued previously, 

an understanding of volatility and how it is transmitted are very important for financial market 

practitioners to understand the volatility transmission mechanism across time and markets in 

order to facilitate optimal portfolio allocation decisions, which provide important policy 

implications for risk managements in crude oil markets. 

The second contribution of this chapter is to quantify the impact of three historical observed 

shocks, i.e. the 2008 Financial Crisis, the BP Deepwater Horizon oil spill and the OPEC 

announcements, on the volatilities within the WTI, Dubai and Brent markets adapting Sims’s 

(1980) impulse response function to the volatility setting. To do so, by using a recently developed 

technique, i.e. Hafner and Herwartz’ (2006) VIRF methodology, we estimate the corresponding 

VIRFs implied by the specification of each model. To the best of our knowledge, no other study 

has employed this innovative technique of VIRFs to study volatility dynamics in crude oil markets. 

More importantly, in comparison with another technique derived by Lin (1997) in a context of 

MGARCH model and Gallant et al. (1993)’ definition of impulse response analysis, there are some 

crucial features of the VIRFs which should be addressed. The VIRFs depend on both the volatility 

state and the unexpected returns vector when the shock occurs, which indicates that a given 

shock will not always increase expected conditional volatility. Because of the application of 

Jordan’s decomposition, this approach avoids typical orthogonalization and ordering problems 

which would be hardly feasible in the case of high-frequencies financial time-series.  

The VIRF clearly shows us that different historical shocks have significantly different impacts on 

expected conditional volatilities, in which the 2008 Financial crisis around the bankruptcy of 

Lehman Brothers on September 15, 2008 exerts the highest positive impacts on expected 

conditional volatilities within WTI, Dubai and Brent markets and followed by the BP Deepwater 
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Horizon oil spill. By contrast, the OPEC announcements only exert relatively small negative 

impacts on expected conditional volatilities.5 Another interesting finding is that even if the 

shocks are absorbed by crude oil markets simultaneously as we have assumed, the dynamics of 

the impact of shocks are largely specific: Dubai and Brent crude oils are more volatile and 

sensitive than crude oil WTI in terms of the volatility impulse response analysis. Alternatively, we 

can say that crude oil Dubai and Brent are more responsive to market shocks, and WTI shows the 

least responsiveness of the three benchmarks, which put its predominance as a world oil price 

benchmark to question. 

The variance forecasting ability shown in our analysis provides important practical guidelines for 

financial practitioners and policy implications to determine the cost of capital, assess investment 

and leverage decisions, and compute the optimal hedge ratio and portfolio weights as many 

financial instruments, especially options6, are priced according to the entire price distribution as 

well as the distribution of volatility7. 

The chapter comprises six sections. Following this introduction, section 5.2 gives some 

background on previous contributions to the study of crude oil markets integration and volatility 

transmission, and the concept of volatility impulse response function analysis. Section 5.3 

explains the dataset and descriptive statistics. Section 5.4 discusses the econometric 

methodology of volatility impulse response function in conjunction with the multivariate GARCH 

model to be estimated. Section 5.5 describes the empirical estimates and some diagnostic tests of 

the multivariate model, discusses results for different historical shocks within the framework of 

volatility impulse response analysis, and presents the estimated distributions of the volatility 

impulse response function for different forecast horizons obtained through the simulation of 

5 The possible explanation for the opposite pattern of VIRFs is that OPEC announcements are not purely random events which 
cannot be anticipated and forecasted, such that market rational expectation about OPEC announcements result in the 
subsequent decrease of crude oil volatility no matter which scenario emerges. By contrast, the bankruptcy of Lehman Brothers 
in the peak of the 2008 Financial Crisis and the BP Deepwater Horizon oil spill were random events and occurred without 
sufficient anticipation. These kinds of unanticipated events will cause the increase of conditional volatility subsequently.  
6 For example, put options for negative skewed assets are more expensive thus indicating that volatility is not a sufficient 
criterion to price derivatives. 
7 Hull and White (1987) suggest that this is of much concern for option pricing using stochastic volatility. 
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random shocks. Section 5.6 provides some concluding remarks along with a few possible areas 

for future research. 

 

5.2 Literature review 

5.2.1 Crude oil markets integration and volatility transmission 

There has been a considerable interest in the financial literature in examining whether or not 

different crude oils produced in a variety of countries or locations constitute a homogeneous 

world oil market. For example, Weiner (1991) analyses correlations and regression results on 

price adjustment across regions, indicating that world oil market is far from unified and crude oil 

prices do not move together around the world. Adelman (1992) rejects Weiner’s (1991) results 

and argues that based on the ‘Law of One Price’, arbitrage opportunities will be eliminated if the 

price differential between crude oils from two different regions is less than the transaction costs 

(e.g. transportation) between these regions and quality differentials (e.g. sulphur content, API 

gravity index) between the crude oils.  

More recent studies tend to support the view advocated by Adelman (1992) that world oil 

markets behave like one common market. Gulen (1999) applies cointegration tests to a series of 

oil markets with pairwise comparisons on post-1990 data, and concludes that prices of similar 

quality crude oils have grown more unified during the period 1994-1996 as compared with the 

period 1991-1994. Ewing and Harter (2000) find that Alaska North Slope (ANS) and UK Brent oil 

prices follow a random walk and share a long-run common trend, suggesting the two markets are 

“unified”. Using daily price data for five very different crude oils, i.e. WTI, Brent, ANS, Dubai and 

Indonesian Arun, and the error correction model proposed by Engle and Granger (1987), 

Bachmeier and Griffin (2006) conclude that the world oil market is a single, highly integrated 

economic market. Bentzen (2007) re-confirms this postulation while analysing WTI, Brent and 

Dubai, for the time period 1988 to 2004. The bi-directional causality among these crude oil prices 
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suggests the globalization of crude oil markets. There seems to be a general consensus of 

empirical findings which support the hypothesis that global crude oil market is integrated.  

The increasing integration of major crude oil markets has generated interest in understanding 

the effects of information transmission on returns and volatilities across markets. Lin and 

Tamvakis (2001) investigate information transmission with regards to returns between the New 

York Mercantile Exchange (NYMEX) and London’s International Petroleum Exchange (IPE) crude 

oil contracts in both non-overlapping and simultaneous trading hours. They find that substantial 

transmission effects do exist when both markets are trading simultaneously, although IPE 

morning prices seem to be considerably affected by the close of the previous day on NYMEX. 

Ewing et al. (2002) examine how volatility in the oil and natural gas sectors are transmitted 

between each other using the BEKK model and daily returns data. Their findings indicate that 

there exists direct and indirect transmission from one market to the other. Chang et al. (2009) 

analyse conditional volatility and conditional correlation relationships among spot, forward and 

future returns for Brent, WTI and Dubai markets respectively. Their empirical findings show the 

presence, as well as the asymmetry, of volatility transmission in the conditional volatilities within 

each of the markets. 

5.2.2 Volatility impulse response function (VIRF) method 

The idea of impulse response, or error shock methodology, which measures the time profile of 

the effect of a shock on the behaviour of a time series, is put forward by Sims (1980) and refined 

by Doan et al. (1984) and others subsequently. Initially, the so-called impulse response analysis 

is a comprehensive tool kit of methods for exploring the dynamics of a linear process and 

comparing them to the predictions of an economic model.  

With regard to the idea of impulse response analysis, two issues have been raised. Firstly, many 

works have focused on linear models rather than nonlinear ones. Beaudry and Koop (1993), 

Pesaran and Potter (1994), and Potter (1995) argue that linear models are too restrictive for 
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attempting to measure the persistence effect of shocks on macroeconomic time series because 

the symmetry property of the linear model does not facilitate different features generated by 

shocks occurring in a recession period and shocks from an expansion period. Secondly, a better 

understanding of the persistence of shocks can be provided within the framework of vector 

linear multiple time series (Blanchard and Quah, 1989). Some applications of extending the basic 

linear univariate model to linear multivariate models have been implemented by Pesaran et al. 

(1993) and Lee and Pesaran (1993). 

The definition of impulse response of non-linear econometric structures to shocks has been 

addressed in a number of papers, most notably Gallant et al. (1993) and Koop et al. (1996). 

Gallant et al. (1993) provide a methodology for computing the impulse response for a non-linear 

time series model by computing the differences between the baseline approach and the 

conditional moment profile using a semi-parametric methodology. The shock which inflicts the 

difference between the “shocked” and the baseline trajectories is a perturbation in the 

conditionally heteroskedastic error term, which is supposed to be either observable or estimated. 

Koop et al. (1996) develop the concept and derive rigorously what is termed as generalized 

non-linear impulse response functions for the conditional expectation by using the difference 

between the mean of the response vector conditional on both history and a present shock and the 

mean that only conditions on history.  

Building on the definition by Gallant et al. (1993), Lin (1997) derives a measure in the context of 

an MGARCH model and assesses the finite sample properties of the standard errors that 

surround the impulse response function by means of a Monte Carlo simulation. The main critique 

for Gallant’s et al. (1993) approach is discussed by Koop et al. (1996) and Hafner and Herwartz 

(2006). They argue that the method of obtaining shocks from the conditionally heteroskedastic 

error term is a priori for analyzing macroeconomic systems and then hardly feasible for 

high-frequency financial time series. Following Koop’s et al. (1996) methodology, Hafner and 

Herwartz (2006) demonstrate a model of impulse response functions tracing the time pattern of 
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the effects of independent shocks on volatility. In order to avoid the typical orthogonalization and 

ordering problems, they apply a Jordan decomposition to retrieve an independent and realistic 

shock from the conditionally heteroskedastic error term.  

Panopoulou and Pantelidis (2009) argue that the VIRF approach developed by Hafner and 

Herwartz (2006) is a convenient way to analyse volatility transmission and has a number of 

advantages in comparison with traditional impulse response functions developed by Sims (1980). 

First, this approach allows practitioners to determine precisely how a shock to one market 

influences the dynamic adjustment of volatility in another market and the persistence of these 

spillover effects. Second, VIRFs depend on both the volatility state and the unexpected returns 

vector when the shock occurs, which indicates that a given shock will not always increase 

expected conditional volatility. Third, contrary to traditional impulse response functions, this 

specific methodology avoids typical orthogonalization and ordering problems, which would be 

hardly feasible in the case of high-frequency financial time series.  

 

5.3 Data 

In this chapter, we use daily futures prices for the three crude oil benchmarks: WTI, Brent and 

Dubai. We do so because futures prices have the advantage of liquidity, transparency and 

flexibility. In all cases, the nearest to expiry contract is used, rolling forward to the next nearby on 

the first business day of the delivery month in order to mitigate the impact of thin trading and 

expiration effects in the estimation results.8 The oil prices cover the period from 1 July 2005 to 

30 June 2011 with 1565 observations.9 Prices are quoted in US dollars per barrel and are 

obtained from Bloomberg.  

8 Nomikos and Pouliasis (2011) take the similar method to pass from one contract to another in the case of succession of front 
contract to make sure that the large kurtosis is not due to outliers occurring around the contract switch dates. Further example 
could be found in Chang et al. (2009). 
9The sample period is restricted by data availability of Dubai crude futures contract. It would be better to update it to the range 
of 2013 in the revised version. However, due to the unavailability of the access to DataStream, the dataset would be left at its 
original range. 
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There are two considerations that should be mentioned for the selection of the datasets. Firstly, 

future prices are preferable to spot prices. Schwarz and Szakmary (1994) find that future prices 

dominate price discovery relative to spot prices. This finding is corroborated by Silvapulle and 

Moosa (1999), in which they argue that some evidence proves the existence of causal 

relationship from future prices to spot prices for crude oil. Oil future prices are appropriate 

predictors of future oil spot prices. Secondly, the same closing time (NYMEX close) is critical 

which ensures information content embedded in the price series are synchronized (see Lin and 

Tamvakis, 2001).  

5.3.1 Preliminary analysis 

For the purpose of this study, all daily sample prices are converted into continuously 

compounded daily returns, which are computed as follows: 

𝑟𝑡𝑖 = ln�𝑋𝑡𝑖 𝑋𝑡−1𝑖⁄ �                                                                   (5.1) 

For 𝑡 = 1,2, … .𝑇, in which 𝑟𝑡𝑖is the log return for crude oil prices at time 𝑡, 𝑋𝑡𝑖  is the current 

price, 𝑋𝑡−1𝑖 is the previous day’s price, 𝑖 represents different crude oil, i.e. WTI, Brent and Dubai.  

Descriptive statistics are reported in Table 5.1. From panel A, we can observe that all price 

returns share similar statistical properties in relation to third and fourth moments. All the 

returns are skewed and have higher kurtosis value than standard normal distribution, which 

indicate that they do not conform to the normal distribution assumption. Based on the 

Jarque-Bera (1980) test statistic, we can reject the null hypothesis of Gaussian distribution. 

Furthermore, based on the Box-Pierce 𝑄2 statistic of order 10, we can also reject the null 

hypothesis of white noise and assert that all the time series are autocorrelated.  

In panel B, we present the results of the Augmented Dickey-Fuller (1979) (ADF) and 

Phillips-Perron (1988) (PP) unit root tests, and the Kwiatkowski, Phillips, Schmidt and Shin 

(1992) (KPSS) stationarity test. The ADF and PP tests undoubtedly reject the null hypothesis of 
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unit root for all the crude oils returns time series at the 1% significance level. Meanwhile KPSS 

test of stationarity cannot be rejected at the significance level of 1% for all three crude oil returns 

time series. As the result, we can conclude that all the three return series are stationary. 

Table 5.1 
Summary statistics, unit root and stationarity tests for daily returns 

 WTI  Dubai  Brent 

Panel A: Descriptive statistics 

Nu of Obs. 1565  1565  1565 

Mean 0.000295  0.000445  0.000430 

Median 0.000000  0.000531  0.000747 

Maximum 0.152819  0.203841  0.158267 

Minimum -0.106556  -0.105361  -0.109452 

Std. Dev. 0.023301  0.024146  0.023016 

Annul Vol. 0.369892  0.383306  0.365368 

Skewness 0.102577  0.261531  -0.038124 

Kurtosis 6.888152  8.756687  7.105626 

      
Panel B: Unit root and stationarity tests 

J-B 987.9146∗  2177.417∗  1098.839∗ 

𝑄2(10) 619.617∗  525.801∗  767.235∗ 

ADF test −41.25613∗  −43.60221∗  −41.71571∗ 

PP test −41.24039∗  −43.64751∗  −41.74526∗ 

KPSS test 0.069844  0.084406  0.092736 
Note: * denotes significance at a 1% level.  J-B test is the Jarque-Bera (1980) normality test statistic. The test follows a 𝜒2 distribution 
with 2 degrees of freedom. 𝑄2(10) is the Box-Pierce Q-statistic of order 10 on the squared returns. ADF is the Augmented Dickey-Fuller 
(1979) unit root test statistic. PP is the Phillips-Perron (1988) unit- root test statistic. KPSS is the Kwiatkowski, Phillips, Schmidt and Shin 
(1992) stationarity test statistic. 

 

 

5.4 Econometric methodology 

5.4.1 The BEKK model 

We follow the BEKK (Engle and Kroner, 1995) by modelling return series of WTI, Dubai and 

Brent crude oil prices as a vector random process {𝑟𝑡} of dimension 3. We condition {𝑟𝑡}  on 

the sigma field, denoted by 𝐼𝑡−1, of past information until time 𝑡 − 1, as follows: 

𝑟𝑡 = 𝜇𝑡 + 𝜀𝑡;  𝜀𝑡 = 𝐻𝑡
1 2⁄ (𝜃)𝓏𝑡                                                           (5.2) 

116 



Chapter 5: Volatility Transmission and Volatility Impulse Response Functions in Crude Oil Markets 

where 𝜇𝑡 is the conditional mean vector and could be governed by a vector autoregression 

(VAR), 𝜀𝑡 = (𝜀1𝑡, 𝜀2𝑡, 𝜀3𝑡)′ is the vector of the zero-mean error terms, 𝓏𝑡  is the 3∗ 1 random 

vector following two moments: 𝐸(𝓏𝑡) = 0 and 𝑉𝑎𝑟(𝓏𝑡) = 𝐼𝑁 (the identity matrix of order 3).  

𝜀𝑡 has a time-varying conditional variance governed by 𝐻𝑡  with a finite vector of parameters 

denoted by 𝜃 , which is a 3∗ 3 positive definite symmetric matrix. In a BEKK (1, 1), 𝐻𝑡�� has 

the following representation: 

𝐻𝑡 = 𝐶 ∗ 𝐶′ + 𝐴 ∗ 𝜀𝑡−1 ∗ 𝜀𝑡−1′ ∗ 𝐴′ + 𝐺 ∗ 𝐻𝑡−1 ∗ 𝐺′                    (5.3) 

where 𝐶 is a lower triangular matrix, and 𝐴 and 𝐺 are 3*3 parameter matrices. Matrix 𝐴 

measures the extent to which conditional variances is correlated with past squared one lag 

unexpected returns (i.e. deviation from the conditional mean) and consequently the effects of 

shocks on volatility. At the same time, matrix 𝐺 depicts the extent to which current levels of the 

conditional variance-covariance matrix are related to past one lag conditional 

variance-covariance matrices. 

The procedure most often used in estimating Eq. (5.3) involves the maximization of a likelihood 

function constructed under the auxiliary assumption of an independent and identical distribution 

for the standardized innovations 𝓏𝑡 . The most commonly employed distribution in the literature 

is the multivariate normal distribution, uniquely determined by its first two moments. In this 

case, the likelihood function is given by: 

𝐿𝑇(𝜃) = −
1
2
� log|𝐻𝑡|
𝑇

𝑡=1

−
1
2
�𝜀𝑡′𝐻𝑡−1𝜀𝑡

𝑇

𝑡=1

                                   (5.4) 

If the conditional distribution of 𝜀𝑡 is not normal, then maximizing Eq. (5.4) is interpreted as 

quasi maximum likelihood (QML) estimation. Results for the asymptotic properties of the 

QML-estimator have been derived by Jeantheau (1998) and Comte and Lieberman (2003). 

However, it is well known that the normality of the innovations is always rejected in most 

applications dealing with daily data in commodity markets, which is obviously the case in our 
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analysis as we have rejected the null hypothesis of gaussianity based on the Jarque-Bera (1980) 

test statistic reported in Table 5.1. In particular, the kurtosis of prices returns of crude oil WTI, 

Dubai and Brent are larger than three, which means that they have too many extreme values to 

be normally distributed and could be considered as conditional leptokurtosis. Following 

Bollerslev’s advocations (1986), Harvey et al. (1992) and Fiorentini et al. (2003) argue that a 

natural alternative to the multivariate Gaussian distribution is the Student’s 𝑡 distribution, 

which has an extra scalar parameter, the degrees of freedom parameter, denoted 𝜈 hereafter. 

The density of a multi standardized 𝑡 distribution is given by: 

𝑓(𝓏𝑡|𝜃, 𝜈) =
Γ(𝜈 + 𝑁

2 )

Γ(𝜈2)[𝜋(𝜈 − 2)]
𝑁
2

[1 +
𝓏𝑡′𝓏𝑡
𝜈 − 2

]−
𝑁+𝜈
2                            (5.5) 

where Γ(∙) is the gamma function.  

Under this assumption the conditional distribution of 𝜀𝑡 is given by: 

𝜀𝑡|𝐼𝑡−1~𝑓 �𝐻𝑡
−12𝜀𝑡� |𝐻𝑡

−12|                                                 (5.6) 

and the contribution of 𝜀𝑡 to the log-likelihood function reads as: 

𝐿𝑇(𝜃) = � log 𝑓 �𝐻𝑡
−12𝜀𝑡�

𝑇

𝑡=1

+ � |𝐻𝑡
−12| 

𝑇

𝑡=1

                                    (5.7) 

5.4.2 Volatility impulse response functions (VIRF) 

5.4.2.1 The vech representation 

Equation (5.3) of BEKK model can also be represented by the VEC model proposed by Bollerslev 

et al. (1988) with variables within the model being stacked up as  

𝑣𝑒𝑐ℎ(𝐻𝑡) = 𝑣𝑒𝑐ℎ(𝐶) + 𝑅 ∗ 𝑣𝑒𝑐ℎ(𝜀𝑡−1 ∗ 𝜀𝑡−1′ ) + 𝐹 ∗ 𝑣𝑒𝑐ℎ(𝐻𝑡−1)                (5.8) 

118 



Chapter 5: Volatility Transmission and Volatility Impulse Response Functions in Crude Oil Markets 

where 𝑣𝑒𝑐ℎ(∙) denote the operator that stacks the lower fraction of an 3∗ 3 matrix into an 

𝑁∗ = 𝑁 ∗ (𝑁 + 1)/2  dimensional vector. 𝑅  and 𝐹  are parameter matrices each containing 

(𝑁∗)2 parameters, whereas 𝑣𝑒𝑐ℎ(𝐶) contains 𝑁∗ coefficients.10  

5.4.2.2 Identification of independent shocks 

Hafner and Herwartz (2006) argue that a shock is inherently independent over time and consider 

a shock appearing in one time series as independent from a shock appearing in another time 

series if they appear at the same time. This assumption enables the VIRF to be constructed based 

on the definition of data generating process of Koop et al. (1996), which indicates that 

independent shocks can be traced or obtained from historical data sets for the VIRF analysis 

within a multivariate framework. 

However, because of the characteristics of contemporaneous correlation of the error vector 𝜀𝑡 

within a multivariate framework, it is not easy to identify the effect of shock on one of its 

components without taking into account the changes in the others. Therefore, the error 

components in 𝜀𝑡 cannot be directly treated as shock coming from independent sources. To 

filter out the effects of independent sources, we need to look at the orthogonality of residuals. 

In practice, Choleski decomposition is often employed to identify 𝓏𝑡 , by which the elements of 𝓏𝑡  

depend recursively on the elements of 𝜀𝑡 and therefore the ordering of variables in 𝜀𝑡 . Another 

solution is to apply the structural analysis of dynamic macroeconomic systems, which is hard to 

apply to financial data or other high frequency data because of the unclear links of causation. 

Therefore, Jordan decomposition11 was employed by Hafner and Herwartz (2006) to decompose 

𝐻𝑡  such that identical and independent shocks can be retrieved from Eq. (5.2). The symmetric 

matrix of 𝐻𝑡
1 2⁄  is decomposed as: 

𝐻𝑡
1 2⁄ = Γ𝑡Λ𝑡

1 2⁄ Γ𝑡′                                                                  (5.9) 

10 See Appendix 5.A for the derivation of the equivalent vec-representation of a BEKK model. 
11 We also calculated VIRFs using spectral decomposition. Results are similar. However we adopt Jordan Decomposition as a 
preferred method as the former does not always generate a solution. 
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in which Λ𝑡 = 𝑑𝑖𝑎𝑔(𝜆1𝑡 , 𝜆2𝑡 , 𝜆3𝑡)  is the diagonal matrix whose components 𝜆𝑖𝑡 , 𝑖 = 1, … ,3 

denotes the eigenvalues of 𝐻𝑡 . Γ𝑡 = (𝛾1𝑡 , 𝛾2𝑡 ,𝛾3𝑡)  is the matrix 3∗ 3  of the corresponding 

eigenvectors. Therefore, the independent shocks are defined as  

𝓏𝑡 = 𝐻𝑡
−1 2⁄ 𝜀𝑡                                                                     (5.10) 

Hafner and Herwartz (2006) show that under the hypothesis of a non-Gaussian distribution, 𝓏𝑡  

is uniquely defined, which may be treated as shocks from the past that could affect each of the 

markets in the future. 

Hafner and Herwartz (2006) show that if 𝜀𝑡 is normally distributed, Jordan decomposition 

cannot generate a unique shock vector 𝓏𝑡 ; however, if 𝜀𝑡  is not normally distributed, i.e. 

Student’s t distribution, a unique 𝓏𝑡  can be attained through the Jordan decomposition in Eq. 

(5.10) and may be treated as shocks from the past that could affect each of the markets in the 

future. The requirement of non-Gaussin distribution works well with empirical evidence that 

residuals are fat tailed (Meade, 2010). 

5.4.2.3 Volatility impulse response functions 

Hafner and Herwartz (2006) define the VIRF as the expectation of volatility conditional on an 

initial shock and history, subtracted by the baseline expectation that only conditions on history, 

which is given by: 

𝑉𝑡(𝓏0) = 𝐸[𝑣𝑒𝑐ℎ (𝐻𝑡)|𝐼𝑡−1, 𝓏0] − 𝐸[𝑣𝑒𝑐ℎ (𝐻𝑡)|𝐼𝑡−1]                             (5.11) 

in which 𝓏0 is an initial specific shock hitting the system at time 0, estimated from Eq. (5.10),  

𝐼𝑡−1 is the observed history up to time 𝑡 − 1, and 𝑉𝑡(𝓏0) is the 𝑁∗ = 𝑁(𝑁 + 1)/2 vector of the 

impact of the identical and independent shock components of 𝓏0  on the 𝑡 -step ahead 

conditional variance-covariance matrix components.  For a BEKK (1, 1) model with the number 

of dimension equal to 3, there will be 6 components in the 𝑣𝑒𝑐ℎ representation model of Eq. 

(5.11). Therefore, the first, fourth and sixth elements of 𝑉𝑡(𝓏0) (denoted as 𝜐1,𝑡, 𝜐4,𝑡 and 𝜐6,𝑡  
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respectively) represent the reaction of the conditional variance of the first, second and third 

variable respectively to the shock, 𝓏0, that occurred 𝑡 periods ago.  

Applied to a BEKK (1,1) and then the 𝑣𝑒𝑐ℎ representation, the one-step ahead VIRF is obtained 

as: 

𝑉1(𝓏0) = 𝑅 ∗ �𝑣𝑒𝑐ℎ�𝐻0
1 2⁄ 𝓏0𝓏0′𝐻0

1 2⁄ � − 𝑣𝑒𝑐ℎ(𝐻0)�  

= 𝑅𝐷𝑁+�𝐻0
1 2⁄ ⨂𝐻0

1 2⁄ �𝐷𝑁𝑣𝑒𝑐ℎ(𝓏0𝓏0′ − 𝐼𝑁)                  (5.12) 

in which 𝐻0 is the conditional variance-covariance matrix at initial time 0, 𝐷𝑁  denotes the 

duplication matrix defined by the property 𝑣𝑒𝑐ℎ(𝑍) = 𝐷𝑁𝑣𝑒𝑐ℎ(𝑍) for any symmetric (𝑁 ∗ 𝑁) 

matrix 𝑍, 𝐷𝑁+ denotes the Moore-Penrose inverse of matrix 𝑍, 𝐼𝑁  is the identify matrix, ⨂ is 

the Kronecker Tensor product and R is identical to that specified in Eq. (5.8). And for any 𝑡 ≥ 2, 

the VIRF is: 

𝑉𝑡(𝓏0) = (𝑅 + 𝐹)𝑡−1𝑅𝐷𝑁+�𝐻0
1 2⁄ ⨂𝐻0

1 2⁄ �𝐷𝑁𝑣𝑒𝑐ℎ(𝓏0𝓏0′ − 𝐼𝑁)                             

= (𝑅 + 𝐹) ∗ 𝑉𝑡−1(𝓏0)                                                                   (5.13) 

Equation (5.13) shows that Hafner and Herwartz (2006) VIRF has the following distinctive 

properties in comparison with traditional Choleski decomposition impulse response function 

analysis of the conditional mean in linear systems: 

1. The VIRF is a symmetric function of the shock, as opposed to an odd function in the 

traditional analysis, which can be shown by the feature of 𝑉𝑡(𝓏0) = 𝑉𝑡(−𝓏0). 

2. The VIRF is not a homogeneous function of any degree, in contrast to the traditional 

linear analysis. 

3. The VIRF depends on the history through the volatility state 𝐻0 at the time when the 

initial shock occurs. In contrast, the traditional impulse response functions do not 

depend on the history of the process. 
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4. The decay or persistence of shocks is measured by the moving average matrices 

Φ𝑡 = (𝑅 + 𝐹)𝑡−1𝑅, which is analogous to the traditional analysis.  

Hafner and Herwartz (2006) suggest that if 𝓏𝑡  is a random variable with an identical and 

independent distribution, the response for the random shocks drawn from this predefined 

distribution at any time horizon can be calculated and a non-parametric estimation method, i.e. 

kernel estimation, could be applied to construct the distribution of volatility impulse responses. 

Moreover, if the baseline (the initial conditional variance-covariance state 𝐻0) is also randomly 

drawn from an unconditional distribution, another distribution of volatility impulse responses at 

any time horizon could be estimated, again based on the same kernel estimation. Because of the 

flexibility of the VIRF method, there are several possible applications. 

In our application, we focus on considering specific historical shocks, i.e. the 2008 Financial crisis, 

the BP Deepwater Horizon oil spill and the OPEC announcements. Our aim is to investigate the 

impact of an observed historical shock given the observed volatility at the date the shock occurs, 

which will give some empirical evidence on a past event. Another choice we have made is to 

consider random shocks and an observed conditional baseline from history, in which case we will 

be able to forecast the expectation of future conditional volatility given this level of volatility 

(baseline) and a specific level of shock. By then a value-at-risk estimation of a specific level of 

shock could be attained. This would be a particularly interesting point for a market participant 

when optimizing his/her portfolio when taking into risks into consideration.  

 

5.5 Empirical analysis 

In this section, we illustrate how return and volatility series are modelled and the VIRF analysis 

for crude oil markets. We focus on investigating several historical shocks that fall into our sample 

period. We fit the VIRF distribution12 for random innovations generated from a predefined 

12Note that we adopt the VIRF methodology developed by Hafner and Herwartz (2006) on the basis of a fully symmetric BEKK 
model. Other versions of BEKK, such as the diagonal and scalar BEKK models, are nested within our specification.  
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distribution, followed by the three significant historical events mentioned above, within the 

sample period. 

5.5.1 Dynamic interdependencies in returns 

A trivariate dynamics vector autoregression (VAR) model is set up to examine the market return 

behaviour. The residuals saved would allow us to further investigate a trivariate volatility 

dynamics model for discovering volatility transmission and then analysing volatility impulse 

response functions. The VAR analyses would show whether there exist interdependencies in the 

returns of oil prices within and across the three crude oil markets: 

𝑟𝑡𝑖 = {𝑟𝑡𝑊𝑇𝐼 , 𝑟𝑡𝐷𝑈𝐵𝐴𝐼 , 𝑟𝑡𝐵𝑟𝑒𝑛𝑡}  

where 𝑟𝑡𝑊𝑇𝐼 , 𝑟𝑡𝐷𝑈𝐵𝐴𝐼 , 𝑟𝑡𝐵𝑟𝑒𝑛𝑡  stand for the returns of WTI, Dubai and Brent crude oil prices at time 

𝑡. The lag length for the VAR model is determined using model information selection criteria, 

which indicate that the vector of three return time series are appropriately modelled by the VAR 

model with three lags.  

The estimation results and diagnostic results are summarized in Table 5.2. The results in Panel A 

of Table 5.2 indicate that returns for all crude oil prices are interdependent but these 

interdependencies are not the same across the variables. 𝑟𝑡𝑊𝑇𝐼  is dependent on by its first and 

third-lagged values, the third- lagged value of 𝑟𝑡𝐷𝑈𝐵𝐴𝐼and the first-lagged value of 𝑟𝑡𝐵𝑟𝑒𝑛𝑡 . By 

contrast, 𝑟𝑡𝐷𝑈𝐵𝐴𝐼  depends on its own first and third-lagged values, the first, second and 

third-lagged value of 𝑟𝑡𝑊𝑇𝐼and the first and second-lagged value of 𝑟𝑡𝐵𝑟𝑒𝑛𝑡 .  𝑟𝑡𝐵𝑟𝑒𝑛𝑡  has its 

dependence on all lagged values of 𝑟𝑡𝑊𝑇𝐼 , 𝑟𝑡𝐷𝑈𝐵𝐴𝐼   and its own displayed in Table 5.2.  

The results of the diagnostic tests are reported in Panel B of Table 5.2. The Box-Pierce 

Portmanteau Q test on the standardized residuals show that serial correlation has been 

eliminated for all variables up to 12 lagged orders. The LM-ARCH test rejects the 

homoskedasticity hypothesis at the significance level of 1% up to 20 lagged orders for all 
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variables.  All residual processes show excess kurtosis, such that the normality assumption 

tested by the Jarque-Bera test is strongly violated at the significance level of 1%.  

 

Table 5.2 

Estimates of the VAR for returns of crude oil prices 

  rtWTI rtDUBAI rtBrent 

  Coefficient Std. Error Coefficient Std. Error Coefficient Std. Error 

Panel A: Estimation results 

Constant 0.000313 0.00059 0.000539 0.00060 0.000503 0.00058 

rt−1WTI −0.111844∗∗∗ 0.06204 0.113951∗∗∗ 0.06372 0.111395∗∗∗ 0.06108 

rt−2WTI 0.0533854 0.06187 0.130894∗∗ 0.06355 0.111940∗∗∗ 0.06092 

rt−3WTI 0.201788∗ 0.05846 0.268998∗ 0.06004 0.231032∗ 0.05755 

rt−1DUBAI −0.122972 0.1020 −0.393557∗ 0.1047 −0.229695∗∗ 0.1004 

rt−3DUBAI −0.172228∗ 0.05662 −0.252543∗ 0.05815 −0.219796∗ 0.05574 

rt−1Brent 0.205795∗∗∗ 0.1107 0.206847∗∗∗ 0.1137 0.0739988 0.1090 

rt−2Brent −0.0793701 0.06307 −0.173299∗ 0.06478 −0.150058∗∗ 0.06209 

RSS 0.83739  0.88338  0.81169  

       

Panel B: Model Diagnostic 

Portmanteau (12) 5.25846  4.90572  6.93857  

Jarque-Bera Test 333.59∗  564.54∗  384.94∗  
LM-ARCH 1-20 
Test 17.957∗  21.726∗  25.880∗  

Note: *, ** and *** denotes significance at the 1%, 5% and 10% level, respectively.  

 

It is clearly indicated from the estimations and diagnostic analysis that a Student’s t distribution 

rather than a Gaussian distribution may be employed to model the residuals obtained from the 

VAR system for constructing the volatility dynamics model.  

5.5.2 Dynamic interdependencies in volatilities 

We follow the trivariate BEKK model described in Eq. (5.3). The estimation of the BEKK model is 

implemented under normal and Student’s t distribution assumptions for 𝜀𝑡 , namely 
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𝜀𝑡|𝐼𝑡−1~𝑁(0,𝐻𝑡) and 𝜀𝑡|𝐼𝑡−1~𝑔�H𝑡
−1 2⁄ �|H𝑡

−1 2⁄ , respectively. The estimated parameters of the 

conditional variances and covariances with associated standard deviation in parentheses and the 

likelihood function values are given in Table 5.3 and Table 5.4 for normal distribution and 

Student’s t distribution, respectively. Generally, for both distributions, the conditional 

variance-covariance equations incorporated into the BEKK methodology effectively capture the 

volatility and cross volatility dynamics among the variables under consideration. Therefore, 

useful insights are uncovered by examining the changes in volatility transmission across crude oil 

markets.  

For both distributions, some off-diagonal coefficients of 𝐴 and 𝐺 are statistically significant 

(reported in Table 5.3 and Table 5.4), implying that volatility spillovers are transmitted through 

the cross product of innovations as well as the squared innovations. This result indicates that 

volatility spillovers across crude oil markets should be included for crude oil volatility modelling. 

Higher levels of conditional volatility in the past are associated with higher conditional volatility 

in the current period. The estimated degree of freedom parameter of the Student’s t distribution 

is 𝜈 = 4.0213  at the significance level of 1%. Comparing the log likelihood value for the BEKK 

model with different distribution assumptions, we find that the BEKK model with a Student’s t 

distribution has a higher log likelihood value than the BEKK model with a normal distribution. 

We can regard both the significance of the estimated degree of freedom for the Student’s t 

distribution and the higher log likelihood value achieved by the Student’s t distribution as strong 

evidence for favouring a Student’s t distribution for 𝜀𝑡. 

 

 

 

13 Note that a Student’s t-distribution tends to normality as its degree of freedom 𝜈 increases. A value close to 4 indicates a 
leptokurtic distribution for the residuals. 
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Table 5.3 

Estimates of BEKK (1,1) model for crude oil returns with normal distribution 𝜀𝑡|𝜓𝑡−1~𝑁(0,Σ𝑡) 

𝐶0 𝐴11 𝐺11 

0.0028∗ 0 0 0.3415∗ 0.0594 0.0847∗∗∗ 0.8796∗ −0.0503∗∗ −0.0623∗∗ 

(0.0005) 
  

(0.0441) (0.0454) (0.0461) (0.0249) (0.0238) (0.0265) 

0.0027∗ 0.0017∗ 0 0.2211∗ 0.4635∗ 0.2890∗ −0.0624∗ 0.9044∗ −0.0713∗ 

(0.0005) (0.0002) 
 

(0.0644) (0.0628) (0.0669) (0.0231) (0.0194) (0.0206) 

0.0029∗ 0.0014∗ 4.6e-8 −0.4089∗ −0.3239∗ −0.1564∗∗ 0.1639∗ 0.1115∗ 1.0907∗ 

(0.0005) (0.0002) (0.0008) (0.0710) (0.0675) (0.0716) (0.0283) (0.0222) (0.0255) 

         
𝜆𝑖 

        
0.9482 + 0.0456i 0.9482 - 0.0456i 0.9825 0.9685 + 0.0185i 0.9685 - 0.0185i 0.9649 0.9706 + 0.0154i 0.9706 - 0.0154i 0.9626 

𝐿𝑜𝑔 (𝐿) 15313.983 
       Note: standard errors in parentheses. 𝐿𝑜𝑔 (𝐿) is the value of the log – likelihood. The 𝜆𝑖 are the eigenvalues of the matrix 𝐴11 ⊗ 𝐴11 + 𝐺11 ⊗ 𝐺11. 

*, **, and *** denotes significance at a 1%, 5% and 10% level, respectively. 
 

Table 5.4 
        

Estimates of BEKK (1,1) model for crude oil returns with Student’s t distribution 𝜀𝑡|𝜓𝑡−1~𝑔 �Σ𝑡
−12� |Σ𝑡

−12 

𝐶0 𝐴11 𝐺11 

0.0026∗ 0 0 0.2212∗ −0.0534 −0.0257 0.9639∗ 0.0144 0.0099 

(0.0005) 
  

(0.0469) (0.0507) (0.0461) (0.0113) (0.0132) (0.0114) 

0.0029∗ −0.0022∗ 0 0.2623∗ 0.7428∗ 0.2885∗ −0.0874∗ 0.6994∗ −0.1106∗ 

(0.0006) (0.0002) 
 

(0.0689) (0.0762) (0.0663) (0.0206) (0.0259) (0.0031) 

0.0022∗ −0.0008∗ 0.0011∗ −0.3039∗ −0.4957∗ −0.0693 0.1070∗ 0.2664∗ 1.0812∗ 

(0.0005) (0.0002) (0.0002) (0.0783) (0.0792) (0.0760) (0.0225) (0.0161) (0.0122) 

         
𝜆𝑖 

        
0.9992 0.9705 0.8685 + 0.0120i 0.8685 - 0.0120i 0.8944 0.9828 0.9828 0.8831 + 0.0045i 0.8831 - 0.0045i 

𝐿𝑜𝑔 (𝐿) 15683.701 
       

𝜈 4.02 
       

Note: standard errors in parentheses. 𝐿𝑜𝑔 (𝐿)is the value of the log –  likelihood. The 𝜆𝑖  are the eigenvalues of the matrix 𝐴11 ⊗ 𝐴11 +
𝐺11 ⊗ 𝐺11.∗,∗∗, and ∗∗∗  denotes significance at a 1%, 5% and 10% level, respectively. 𝜈  is the estimated degree of freedom of the 
Student’s t distribution. 

 

Fig. 5.1 plots the estimated conditional variances, covariances and correlation dynamics obtained 

from the BEKK model with a Student’s t distribution for crude oil WTI, Dubai and Brent. All three 

benchmarks crude oils show signs of volatility clustering, with Dubai having the highest value of 

conditional variance and WTI having the lowest during the course of the 2008 Financial crisis. 

The volatility spikes are caused by the unprecedented increase in fundamental uncertainty and 
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speculative behaviour in crude oil futures markets (Kaufmann, 2011), which correspondingly 

causes the disconnection between markets, or downward spikes in the conditional correlations 

between WTI-Dubai and WTI-Brent. Among conditional covariance dynamics, those between 

Dubai and Brent have the highest value and that between Brent and WTI has the lowest. 

Correspondingly, the conditional correlation between WTI and Dubai is the most volatile and has 

the lowest value, followed by that between WTI and Brent. Furthermore, the most volatile period 

for the conditional variances, covariances and correlations is from July 2008 to July 2009, which 

coincides with the course of the 2008 Financial crisis, as well as the meteoric rise and subsequent 

collapse of the oil price.  

We also report 𝜆, the eigenvalues of the estimate of 𝐴⊗ 𝐴 + 𝐺 ⊗ 𝐺14 in Table 5.3 and Table 5.4. 

Their magnitudes are less than one but close to it, which suggests that covariances are stationary 

but with a high level of persistence in volatility transmission across markets, indicating that the 

duration of volatility transmissions is likely to increase. The high level of persistence suggests 

that more weight should be given to recent observations of volatility in terms of explaining future 

volatility. The high level of persistence in volatility transmissions is more significant for the BEKK 

model with a Student’s t distribution than the BEKK model with a normal distribution because 

the largest eigenvalues reported in Table 5.4 are only slightly smaller than one. Given the data 

characteristics, we adopt Student’s t distribution and Quasi Maximum Likelihood estimation for 

our analyses. 

14 ⨂ is the Kronecker Tensor product. 
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Fig. 5.1 Conditional variances, covariances and correlations for WTI, Dubai and BRENT crude oil returns obtained 
from the BEKK model with a Student’s t-distribution. 
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5.5.3 Volatility impact from past events 

In this section, we illustrate the VIRF analysis for crude oil markets. We first focus on 

investigating several historical shocks that fall into our sample period. We then fit the VIRF 

distribution for random innovations generated from a predefined distribution, followed by three 

significant historical events within the sample period, namely the 2008 Financial crisis (Lehman 

Brothers Bankruptcy), the BP Deepwater Horizon oil spill and the OPEC announcements. The 

estimated residual 𝜀𝑡 and the estimated covariance matrix 𝐻𝑡  from the BEKK model with a 

Student’s t distribution at the time of the historical shocks are used to calculate the 𝑉𝑡(𝓏0). The 

impulse responses are scaled with respect to the estimated conditional volatilities at the time the 

shock occurred. This allows us to interpret the scales as percentage deviations of the ‘shock 

scenario’ with respect to the ‘baseline scenario’. 

5.5.3.1 Onset of the 2008 Financial crisis -Lehman Brother Bankruptcy 

The 2008 Financial Crisis was triggered by the liquidity shortfall in the United States banking 

system caused by the collapse in the domestic housing market. The crisis culminated on 

September 15, 2008 with Lehman Brothers filing for bankruptcy. Why would this event, however, 

be relevant to the oil market? One of the many effects of the crisis was the reluctance of financial 

institutions to lend money either to each other or to commercial entities. For example, Aubouin 

(2009) observe “supply-driven shortages of trade finance have a potential to inflict further 

damages to international trade. Even if the lack of trade finance may not to be blamed entirely for 

the drop in world trade in the aftermath of the crisis, it is quite reasonable to assume that the 

uncertainty around the prospects of world economic growth permeated all commodity business 

(oil baseness in particular) is closely associated with changes in economic activity (Asmundson et 

al., 2011). It is, therefore, not an unreasonable proposition to examine the 2008 Financial Crisis 

in relation to oil prices. 
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To our knowledge, the impact of the 2008 Financial Crisis on crude oil markets has not been 

investigated so far. Therefore, we will employ the VIRF methodology to investigate the effect of 

the event on crude oil volatility in the returns of future prices within and across the WTI, Dubai 

and Brent markets.  

Although spanning a period of at least several months, the news of the bankruptcy of Lehman 

Brothers on September 15, 2008 signaled the unraveling of a series of events that came to be 

known as the 2008 Financial Crisis. We therefore set this date as the base point for our analysis. 

However, we do not merely focus on analyzing the impact of the single shock on conditional 

expected volatility, but rather compare the average impulse responses obtained over a 

symmetric time window located around the bankruptcy of Lehman Brothers since numerous 

similar events took place after the Lehman Brothers filing for bankruptcy. 

For a symmetric time window located around the bankruptcy of Lehman Brothers covering 31 

trading days, Fig. 5.2 depicts the time profile of the average impulse response of volatilities of 

before the bankruptcy of Lehman Brothers (red lines) and after the event (blue lines) for crude 

oil WTI, Dubai and Brent, respectively. They show that on average there are large volatility 

increases resulting from the shock of the 2008 Financial crisis on all three conditional variances 

post-bankruptcy and relatively smaller volatility decreases resulting from the shocks on all three 

conditional variances pre-bankruptcy. This indicates the 2008 Financial crisis has a significant 

impact on oil markets across the globe. However, the size of the impacts is not the same for all 

crude oil markets. The smallest positive impact for the post-period can be observed for the 

returns of WTI as its one-step ahead expected conditional variance is only increased by 4%. The 

positive impact for the post-period in expected conditional variance of Dubai and Brent returns 

are about 100% and 70% respectively for the one-step ahead expected conditional variance. By 

contrast, the absolute magnitudes of the negative impact for the pre-period are relatively smaller 

than the corresponding ones of the positive impact for the post-period. The latter ones are 1.5%, 
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40% and 30% for the one-step ahead expected conditional variance of WTI, Dubai and Brent 

returns, respectively.  

The results reported above indicate that both Brent and Dubai exhibit a high responsiveness to 

shocks (as seen by the scale on the Y-axis of the VIRF graphs in Figure 5.2) and their magnitudes 

are higher than that exhibited by WTI. This finding may reflect the position of Brent a leading 

price benchmark, followed by Dubai and WTI. WTI’s position at the third place is reflected by its 

being increasingly decoupled from international oil marketplaces and becoming a domestic US 

crude. It may also coincide with a reversion of the WTI-Brent spread for the last 18 months or so. 

Furthermore, we have found similar patterns for WTI, Dubai and Brent from Fig. 5.3 to Fig. 5.4 

(discussed in section 5.5.3.2 and section 5.5.3.3 below), which indicates that it is not simply 

because WTI was more responsive to previous news from the U.S. financial markets and has 

already adjusted downwards and demonstrated higher volatility at an earlier time.  

Furthermore, a striking phenomenon of the effects of the shock is that the lengths of the impacts 

are relatively protracted, such that they cannot be cancelled even after about 50 days. This 

feature is attributable to the fact that several eigenvalues of the matrix 𝐴⊗ 𝐴 + 𝐺 ⊗ 𝐺 reported 

in Table 5.3 and Table 5.4 are very close to unity. 

To sum up our results, we can find that the window horizon after the Lehman Brothers 

bankruptcy can be described as a more volatile period than the window horizon before the event 

and the shocks that hit the returns at the window horizon of post Lehman Brothers bankruptcy 

are larger compared to their previous values for the year 2008, even before the bankruptcy of 

Lehman Brothers. Another interesting finding is that even if the shocks are absorbed by crude oil 

markets simultaneously, the responsiveness of crude oil markets from the impact of shocks are 

largely specific: Dubai and Brent are more volatile and sensitive than WTI in terms of the 

volatility impulse response analysis on the information source of Lehman Brothers bankruptcy. 
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Fig. 5.2 Volatility impulse responses functions for the 2008 Financial Crisis around the bankruptcy of Lehman 
Brothers. The blue lines are averages of VIRF over a period from the filing of Lehman Brothers bankruptcy on 
September 15, 2008, until 15 days after it; the red lines are averages of VIRF over a period from 15 days prior to 
the filing until the day before the filing. The dotted black lines are the corresponding 95% confidence intervals. 
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5.5.3.2 BP deepwater Horizon oil spill 

The Deepwater Horizon oil spill (Reuters, 2010) is a well documented event in the Gulf of Mexico, 

which followed the explosion of the offshore oil-drilling platform, Deepwater Horizon, on April 

20, 2010. The leak was eventually stopped by capping the gushing wellhead on July 15, 2010 

(Petroleum Economist, 2010). The event is of course directly linked to the oil industry, but it is of 

particular interest for two reasons: firstly, because of the short-term disruption it could cause to 

the supply of oil in the US Gulf (see Evans, 2010) and; secondly because of the ramifications it 

could have on the issue of new leases for oil exploration in the area and the implications for the 

mid- to long-term oil supply to the US market (see Hoyos, 2010). 

In this study, we look into the impact of this event on crude oil volatility. We look into several 

specific dates rather than the whole time horizon during the period of oil spill because we are 

more concerned with the direct impact of the shocks of the first notice of oil spill on crude oils 

volatility. The timeline of the spill is summarized as follows: 

• April 20, 9:45 p.m. Central Time Zone (North America): gas, oil and concrete from the 

Deepwater explode up the wellbore onto the deck and then catch fire. 

• April 21: The platform continues to burn. 

• April 22: The rig sinks and an oil leak is discovered in the afternoon when a large oil slick 

begins to spread around the former rig site. 

We select April 23, 2010, as the event day of the spill for the purpose of our analysis, using the 

volatility impulse response function methodology. By this date the whole information on the oil 

leak following the explosion had been completely transmitted to crude oil markets and would be 

reflected in crude oil prices and their volatilities.  

In Fig. 5.3 the estimated volatility impulse responses functions are presented for f crude oil WTI, 

Dubai and Brent, respectively. The volatility impulse responses to the shock on April 23 indicate 

that a positive impact has been exerted onto the expected conditional variance. For all three 
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crude oil markets, the impact is instantaneous. In this context, Dubai is the crude oil with the 

most responsive pass-through from the shock to the one-step-ahead expected conditional 

variance illustrated by a 34% increase. For Brent, the expected conditional variance is 

significantly influenced by the spill shock. The one-step ahead conditional variance is increased 

by 14%. For WTI, the expected conditional variance is also significantly influenced by the spill 

shock with one-step ahead conditional variance increased by 12%. This result indicates that, as 

mentioned earlier, Dubai and Brent again demonstrate a higher responsiveness to the shock in 

comparison to WTI, which may infer a declining use of the latter as a global benchmark and more 

as a US domestic benchmark instead. 

We also depict the time profile of the impulse response of expected conditional variance for the 

shocks of the rig catching fire (April 21), the rig sinking (April 22) and the first trading day 

following the information of oil spill (April 26). Obviously, for all three crude oil markets, the 

impact is instantaneously recorded. However, two significant differences, in comparison with the 

previous mentioned response from the oil spill on April 23, have been observed. Firstly, the 

impacts are negative, which mean that expected conditional variance following the shocks tends 

to decrease rather than increase as described in the previous case. Secondly, the size of the 

shocks in these cases is relatively smaller than in the previous case correspondingly. The 

comparison indicates that the impact of shocks depend on the current level of volatility and 

therefore only “large” shocks compared to the current level of volatility will result in an increase 

in expected conditional volatilities and relative “small” shocks seem to decrease expected 

conditional volatility.  
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Fig. 5.3 Volatility impulse responses functions for the BP Deepwater Horizon oil spill on April 23, 2010. The blue 
lines are VIRF for shocks on April 23, 2010, the red lines are VIRF for shocks on April 21, 2010, the green lines 
are VIRF for shocks on April 22, 2010, and the purple lines are VIRF for shocks on April 26. The dotted black 
lines are the corresponding 95% confidence intervals. 
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5.5.3.3 OPEC Announcements 

Many factors have been brought forth to explain the extreme movements in oil prices, among 

which OPEC’s ability to effectively cartelize the oil market is the object of ongoing discussion (see 

Loderer, 1985; Smith, 2005; Fattouh, 2007). In 1982, OPEC established a system in which it 

regulates oil production among its members. Several times a year, OPEC schedules a conference 

to discuss on further oil production policies, based on its assessment of the current market 

condition.15 OPEC’s decision usually takes the form of an announcement, which sets an overall 

oil production ceiling for the cartel and individual production quotas for its members (see OPEC 

Secretariat, 2003). As a consequence of the announcements, there will be a particular channel 

through which OPEC can induce volatility: prior to OPEC conferences, there is usually rampant 

speculation about which decision on production levels (increase, no change, or decrease) the 

cartel will agree on (Schmidbauer and Rosch, 2012). However, empirical analyses on whether oil 

price changes are significantly triggered around OPEC meetings are ambiguous.16  

In this analysis, we explore the information content of the OPEC announcements and attempt to 

identify whether the patterns of impact from the OPEC announcements are uniform with respect 

to the type of decision. For this purpose, we examine meeting summaries from the Official 

Resolutions and Press Releases published by the OPEC Secretariat and compile a list of official 

announcements on production decisions. In our analysis, each official press release is considered 

an event. Having compiled a list of events, we then classify each OPEC announcement in terms of 

production quotas increase, no change, and decrease. Overall, as reported in Table 5.5, a total of 

24 OPEC meetings have been examined, of which 2 resulted in a production hike, 5 in a 

15 OPEC meets twice a year on prescheduled dates for ‘ordinary’ conferences but they also call for ‘extraordinary’ conferences 
with short notice. The ministerial meetings are held occasionally to resolve operational and monitoring problems in the 
organization; and sometimes they decide to change production levels. In our analysis, we do not intend to distinguish between 
scheduled and unscheduled events.  
16 Deaves and Krinsky (1992) examine the reaction of crude oil futures to OPEC meetings during the period 1970 – 1990. They 
find that the oil futures markets respond efficiently to OPEC announcements of “good news” in terms of bearish outcomes, but 
on the average, futures prices underreact to bullish outcomes. Horan et al. (2004) examine the implied volatility of crude oil 
options and provide evidence on the pre-meeting rise in implied volatility followed by a post-meeting drop in implied volatility, 
implying OPEC has a significant impact on oil prices. At a further comprehensive step, Lin and Tamvakis (2010) suggest that 
there exists significant differentiation in the magnitude and significance of market responses to OPEC quota decisions under 
different price bands. Further discussion about this issue could be found in Demirer and Kutan (2010). 
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production cut, and 17 in no change in production levels. We will not merely focus on analyzing 

the impact of a single announcement on expected conditional volatility, but rather compare the 

average impulse responses of the same type of decision. 

 

Table 5.5 

OPEC announcements summary 

Date 
OPEC announcement 

Increase  No change Decrease 

2005-09-20 * 

 
 

2005-12-09 

 

* 
 

2006-01-31 

 

* 
 

2006-03-08 

 

* 
 

2006-06-01 

 

* 
 

2006-09-11 

 

* 
 

2006-10-19 

  

* 

2006-12-14 

  

* 

2007-02-01 

  

* 

2007-03-15 

 

* 
 

2007-09-11 * 

 
 

2007-12-05 

 

* 
 

2008-02-01 

 

* 
 

2008-03-05 

 

* 
 

2008-10-24 

  

* 

2008-12-17 

  

* 

2009-03-16 
 

* 
 

2009-05-28 
 

* 
 

2009-09-09 
 

* 
 

2009-12-22 
 

* 
 

2010-03-17 
 

* 
 

2010-10-14   *   

2010-12-11 
 

* 
 

2011-06-08 
 

* 
 

 

Fig. 5.4 depicts the time profile of the impulse response of volatilities for crude oil WTI, Dubai 

and Brent, respectively. There is a large negative impact of the OPEC’s announcement with all 

types of decision on all three expected conditional variances. However, the size of the impact 

originating from the same type of decision is different for all oil markets. With regard to OPEC’s 

decision to increase the production level, the largest decrease can be observed for Dubai crude oil 
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as its one-step ahead expected conditional variance is decreased by near 40%. The one-step 

ahead expected conditional variance for crude oil Brent is decreased by almost 35%. By contrast, 

the response of WTI crude oil is relatively small as its one-step ahead expected conditional 

variance is only decrease by 2%. A similar but less responsive pattern is also observed in the case 

of decisions to cut or maintain the production level for all crude oil markets.  

To sum up our analysis, the VIRF clearly shows us at least three findings. First, the patterns of 

impact from the OPEC announcements appear non-uniform with respect to the type of decision. 

Anticipation effects on volatility appear to be highly pronounced in the case of decisions to 

increase production level, which is illustrated by the largest decrease in expected conditional 

variance.17 Second, there is significant differentiation in terms of the magnitude of market 

responses to OPEC decisions, in which Dubai crude oil absorbs the shock more efficiently and 

then reflected by the largest decline in one-step ahead expected conditional variance. Third, the 

negative impact of OPEC decisions on crude oil volatility gives rise to a hypothesis that 

information leakage is crucial in the creation of volatility as OPEC decisions are strongly 

anticipated by market players and then incorporated into the volatility of price changes in the 

post-announcement period. The drop in conditional variance after the OPEC announcements 

corroborates the finding of a post-meeting drop in implied volatility by Horan et al. (2004).18 

Our results reinforce the conception of the cartel’s meetings as a “channel through which the 

OPEC can induce volatility” (Fattouh, 2005; Schmidbauer and Rosch, 2012).19 

17 This is in line with existing literature (e.g. Schmidbauer and Rosch, 2012). 
18 Wirl and Kujundzic (2004) conclude that, with data ending in 2001, OPEC’s impact on the crude oil markets has weakened 
after 1985 and at best restricted to meetings recommending price increases. 
19 The rationale behind the significantly opposite pattern of VIRFs among the 2008 Financial crisis, the BP Deepwater Horizon 
oil spill and the OPEC announcements could be argued by the fact that OPEC announcements are not purely random events 
which cannot be anticipated and forecasted, such that market rational expectation about OPEC announcements result in the 
subsequent decrease of crude oil volatility no matter which scenario emerges. By contrast, the bankruptcy of Lehman Brothers 
in the peak of the 2008 Financial Crisis and the BP Deepwater Horizon oil spill were stochastic events and occurred without 
sufficient anticipation. These kinds of unanticipated events will cause the increase of conditional volatility subsequently.  
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Fig. 5.4 Volatility impulse responses functions for the OPEC announcements with current production levels 
decreased (blue lines), unchanged (green lines) and increased (red lines). The dotted black lines are the 
corresponding 95% confidence intervals. 
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5.5.4 Simulated volatility impulse response distributions  

Having demonstrated the impacts of historical events on expected conditional volatility of crude 

oil markets in previous section, we now estimate hypothetical random shocks and their 

associated volatility impulse responses to uncover the volatility impact of possible future shocks.  

The impact of a random shock can be measured by the notion of dispersion of the distribution of 

VIRF. However, Hafner and Herwartz (2006) prove that the distribution of VIRF will be 

asymmetric and far from being Gaussian, which indicates that only calculating the dispersion of 

the distribution of VIRF is not enough to generate the whole feature about the impact of a 

random shock on VIRF. Therefore, we simulate 100,000 realizations of the shock 𝓏0 from an 

independent, standardized Student’s 𝑡  distribution with 𝜈 = 4.02 . The VIRF can then be 

calculated according to Eq. (5.13) using the estimated BEKK model, obtaining 100,000 

realizations of VIRF for various time horizons. For three random horizons, ℎ=1, ℎ=5 and ℎ=20, 

which corresponds with one-day, one-week and one-month forecasting, we then estimate the 

density by kernel density estimation. 

We apply the observed conditional variance-covariance matrix obtained from the BEKK model on 

the date of Lehman Brother Bankruptcy (15 September, 2008)20 to simulate shocks from a 

Student’s t distribution with degree of freedom 𝜈 = 4.02. The VIRF for abovementioned date is 

estimated subsequently.  

20 The dates are randomly chosen. We also tested the volatility impulse response distribution for simulated random shocks 
from other dates. The inferences were found to be robust irrespective of the dates chosen and results were similar to those 
reported in Fig. 5.5 to Fig. 5.7. 
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Fig. 5.5 Volatility impulse responses distribution (VIRFD) for WTI crude oil variances with a forecast time horizon 
h=1(top), h= 5 (middle) and h=20 (down) on September 15, 2008 (Lehman Brother Bankruptcy). 
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Fig. 5.6 Volatility impulse responses distribution (VIRFD) for Dubai crude oil variances with a forecast time horizon 
h=1(top), h= 5 (middle) and h=20 (down) on September 15, 2008 (Lehman Brother Bankruptcy). 
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Fig. 5.7 Volatility impulse responses distribution (VIRFD) for Brent crude oil variances with a forecast time horizon 
h=1(top), h= 5 (middle) and h=20 (down) on September 15, 2008 (Lehman Brother Bankruptcy). 
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The estimated densities of the impact of a stochastic shock date 𝑡=15/09/08 are depicted on 

Fig.5.5 to Fig. 5.7 with forecast time horizons ℎ=1 (top) day, ℎ=5 (middle) days and ℎ=20 

(down) days for crude oil WTI, Dubai and Brent, respectively. The VIRF distributions are highly 

skewed to the right-hand side, indicating that the probability of observing a large positive impact 

of a shock is very low while the probability of a relatively smaller positive impact is much higher. 

In comparison with the other two crude oils, the VIRF distributions for Dubai crude (Fig. 5.6) 

show that they have the highest probability of observing a very large positive impact. However, 

as the time horizon increases the VIRF become more and more centred around zero, indicating 

the gradual fading of the impact of the shock.21 

5.5.5 Forecasted volatility impulse response analysis for a given random shock (Value-at-Risk 

analyses) 

We now proceed to forecast the change in future volatility in terms of volatility impulse response 

analysis for a given possibility of a random shock from an innovation distribution. This setting 

will correspond to a situation where we can observe the current state of volatility and forecast 

the change in future volatility given the known probability of the possible, still unobserved, shock 

(e.g. economic downturn). We use shock 𝓏0  from independent, standardized Student’s 𝑡 

distribution with degrees of freedom 𝜈 = 4.02 and we assign to the occurrence of the random 

shock as 𝑝 = {0.01,0.025,0.05,0.1,0.2,0.25,0.3,0.4,0.45}. We estimate the VIRF up to five hundred 

steps ahead for expected conditional variance in crude oil returns within the WTI, Dubai and 

Brent markets. We estimate VIRF for the date 𝑡=30/06/11, which is the last date in our sample 

period.  

21 Similar results are observed for other dates. Given the similarity among the VIRF fitted distribution on other random dates, it 
seems that the change in the initial condition 𝐻0 does not have a significant effect on the VIRF distributions. 
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Fig. 5.8 Volatility impulse responses functions for a given possibility of a random shock on June 30, 2011. From 

top to down: WTI, Dubai and Brent crude oil variance. 
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The estimated time profiles of the impulse response of volatilities are depicted in Fig. 5.8. The 

first columns of Fig. 5.8 plot the impulse response of volatilities corresponding to a random shock 

with a probability of 𝑝 = 0.01 (blue lines), 𝑝 = 0.025 (red lines), and 𝑝 = 0.05 (green lines); 

the second columns of Fig. 5.8 plot the impulse response of volatilities corresponding to a 

random shock with a probability of 𝑝 = 0.1 (blue lines), 𝑝 = 0.2 (red lines), and 𝑝 = 0.25 

(green lines), which indicate that there is a positive impact of the shock on all three expected 

conditional variances. The size of this specific impact for a given probability is however not the 

same for all crude oil markets and the size of the positive impact of the shock on a specific crude 

oil market gradually declines following the increase of the probability of the shock.  

The third columns of Fig. 5.8 plot the impulse response of volatilities corresponding to a random 

shock with a probability of 𝑝 = 0.3 (blue lines), 𝑝 = 0.4 (red lines), and 𝑝 = 0.45 (green lines), 

which indicate there is a small negative impact of the shock on all three expected conditional 

variances in crude oil returns within the WTI, Dubai and Brent markets. The size of this specific 

impact for a given possibility is however not the same for all crude oil markets and the size of the 

negative impact of the shock on a specific crude oil market is gradually increased following the 

increase of the probability of the shock.  

The VIRF presented here shows us at least three results. Firstly, only a “large” shock (with 

smaller probability of occurrence) will result in increased expected conditional volatilities. For 

example, in the Dubai market with graphs illustrated in Fig. 5.8, a large shock may increase its 

expected conditional variance by 600% even though the probability of the shock is as small as 

0.01(or 1%). By contrast, its one-step ahead expected conditional variance is only increased by 

100% when the probability of the shock is equal to 0.25(or 25%). Secondly, the probability of 

𝑝 = 0.3 seems to be the critical transition point for the impact of the shocks. A probability higher 

than 0.3 indicates a “small” shock and normal market conditions, where the expected conditional 

variance tends to gradually reduce. Therefore, the impact of a given shock will be reversed to be 

negative following the increase of the possibility of the shock over the critical transition point. 
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Thirdly, the size and the dynamics of the impact of a given shock are largely market specific as 

Dubai crude is the most sensitive and information-efficient, which is reflected by the relatively 

large response from the given shock in comparison with other two markets. This finding may 

implicate the position of Brent a leading price benchmark, followed by Dubai, both of which push 

WTI into third place and making it more of domestic US crude oil.  

This VIRF illustrated above can be used as a risk warning method that gives us the entire 

probability distribution of the risk that is still unidentified. It could help the development of risk 

matrix among risk professionals. This is a powerful risk prediction method that can find its use 

for investors, traders and other market participants. 

 
5.6 Conclusion 

We analyze the volatility transmission effects among three crude oil markets using a VAR-BEKK 

model. The results demonstrate that Brent crude is highly responsive to market shocks, which is 

concomitant with its position as a leading benchmark for crude oil pricing. Our findings also 

suggest that Dubai crude demonstrates similar, but scaled down, properties to that of Brent. 

Probably the most interesting result is that WTI shows the least responsiveness of the three 

benchmarks, which adds evidence to the recent developments in WTI prices, which have seen its 

relationship with Brent prices reverse and its position to be viewed increasingly as that of a 

dominant US domestic crude, rather than as an international benchmark. We also quantify the 

size and persistence of volatility connections of the three oil benchmarks through VIRF analyses. 

We analyse three historical shocks, namely the 2008 Financial Crisis, the BP Deepwater Horizon 

oil spill and the OPEC Announcements, and observe that the first two events have large and 

positive impacts on expected conditional variance, whereas the last event has relatively small 

and negative impact on expected conditional variance. We then simulate random shocks drawn 

from the estimated data generating process to fit the VIRF distributions and show the estimated 

VIRF distributions are asymmetric and highly skewed to the right, indicating the probability of 
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observing a large positive impact of a shock is very low while the probability of a relatively 

smaller positive impact is much higher. In comparison with the other two crude oils, the VIRF 

distribution for Dubai crude shows that it has the highest probability of observing a very large 

positive impact. Furthermore, we simulate the VIRF for a given possibility of a random shock 

which can be used as risk measure to be applied by investors and risk professionals. Again Dubai 

crude is the most sensitive in this measure.   

A number of shortcomings and research opportunities could be followed to improve this study. 

Our empirical results may be sensitive to the data frequency. Thus, it would be interesting to 

consider other data frequencies, for example, high frequency data (tick-by-tick) and weekly data, 

which will provide an opportunity to examine the robustness of this study to data frequency. This 

study could be extended into describing the impact of shocks on conditional covariances and then 

correlations, which will be of practical importance to financial practitioners in making optimal 

portfolio allocation decisions. Furthermore, the VIRF methodology could be extended in two 

ways: to incorporate asymmetric effect in conditional volatility, which could be captured by the 

asymmetric BEKK model and to analyze the impacts of shocks on third and higher moments of a 

distribution, which has been pioneered by Jondeau and Rockinger (2009). Both these extensions 

will be the object of our future work. 

In the following chapter, which is the closing chapter, we will summarize the main empirical 

findings of this thesis, discuss the implications, and suggest potential interesting paths of future 

research as directed by the findings of this thesis. 
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Appendix 5.A  

The derivation of the unique equivalent Vec-representation of a BEKK model is straightforward. 

For a vector stochastic process {𝑟𝑡} of dimension 3∗ 1 as the returns series of crude oil prices, 

the BEKK (1, 1) is given by: 

𝐻𝑡 = 𝐶0 ∗ 𝐶0′ + 𝐴 ∗ 𝜀𝑡−1 ∗ 𝜀𝑡−1′ ∗ 𝐴′ + 𝐺 ∗ 𝐻𝑡−1 ∗ 𝐺′                           (5.𝐴. 1) 

In which: 

𝐻𝑡 = �
ℎ11,𝑡 ℎ12,𝑡 ℎ13,𝑡
ℎ21,𝑡 ℎ22,𝑡 ℎ23,𝑡
ℎ31,𝑡 ℎ32,𝑡 ℎ33,𝑡

� ,𝐶0 = �
𝜔11 0 0
𝜔21 𝜔22 0
𝜔31 𝜔32 𝜔33

� ,𝐴 = �
𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

� ,𝐺 = �
𝑔11 𝑔12 𝑔13
𝑔21 𝑔22 𝑔23
𝑔31 𝑔32 𝑔33

� , 𝜀𝑡−1 = �
𝜀1,𝑡−1
𝜀2,𝑡−1
𝜀3,𝑡−1

� 

Therefore, the Vec-representation of the BEKK (1, 1) model is given by: 

𝑣𝑒𝑐ℎ (𝐻𝑡) = 𝑣𝑒𝑐ℎ(𝐶) + 𝑅 ∗ 𝑣𝑒𝑐ℎ(𝜀𝑡−1 ∗ 𝜀𝑡−1′ ) + 𝐹 ∗ 𝑣𝑒𝑐ℎ(𝐻𝑡−1)                (5.𝐴. 2) 

In which: 

𝑣𝑒𝑐ℎ (𝐻𝑡) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
ℎ11,𝑡
ℎ12,𝑡
ℎ13,𝑡
ℎ22,𝑡
ℎ23,𝑡
ℎ33,𝑡⎦

⎥
⎥
⎥
⎥
⎥
⎤

, 𝑣𝑒𝑐ℎ(𝐶) =

⎣
⎢
⎢
⎢
⎢
⎡ 𝜔11

2

𝜔11𝜔21
𝜔11𝜔31
𝜔21
2 + 𝜔22

2

𝜔21𝜔31 + 𝜔22𝜔32
𝜔31
2 +𝜔32

2 + 𝜔33
2 ⎦
⎥
⎥
⎥
⎥
⎤

, 𝑣𝑒𝑐ℎ(𝜀𝑡−1 ∗ 𝜀𝑡−1′ ) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝜀1,𝑡−1

2

𝜀1,𝑡−1𝜀2,𝑡−1
𝜀1,𝑡−1𝜀3,𝑡−1

𝜀2,𝑡−1
2

𝜀2,𝑡−1𝜀3,𝑡−1

𝜀3,𝑡−1
2 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

, 𝑣𝑒𝑐ℎ (𝐻𝑡−1) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
ℎ11,𝑡−1
ℎ12,𝑡−1
ℎ13,𝑡−1
ℎ22,𝑡−1
ℎ23,𝑡−1
ℎ33,𝑡−1⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

And  

𝑅 =

⎣
⎢
⎢
⎢
⎢
⎡ 𝑎112
𝑎11𝑎21
𝑎11𝑎31
𝑎212
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𝑎312
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𝑎12𝑎21 + 𝑎11𝑎22
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2𝑎31𝑎33
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𝑎222
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2𝑎12𝑎13
𝑎13𝑎22 + 𝑎12𝑎23
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2𝑎22𝑎23
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2𝑎32𝑎33

𝑎132
𝑎13𝑎23
𝑎13𝑎33
𝑎232
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𝑎332 ⎦

⎥
⎥
⎥
⎥
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In general, any given BEKK model has a unique equivalent Vec-representation (Engle and Kroner, 

1995), while the reverse is not true. It is possible that a Vec-model has no equivalent BEKK 

representation. 
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Chapter 6 

Summary, Discussion, and Further Research 

 

6.1 Introduction 

Crude oil markets around the world are undergoing rapid financialization and integration, 

leading to more competition, increased volatility in crude oil prices and exposing participants to 

potentially much greater risks. The financialization of crude oil markets impacts both consumers 

and producers and has led to a heightened awareness of the need for identifying, quantifying and 

then managing the risks. The increasing integration of crude oil markets all over the world has 

generated a good deal of interest in understanding the volatility spillover effects from one market 

to another. As a result, it is of considerable interest to energy economists to understand, model oil 

price volatility and promote applications in risk management in a multivariate framework. 

Therefore, the objective of this thesis will be on explaining the dynamic interdependencies in 

petroleum markets and further demonstrate whether the existence of such interdependencies 

prompt for the need to assess risk differently, which has been explored in three aspects in three 

cohesive and related chapters: the investigation of optimal hedging strategy in petroleum 

markets (Chapter 3), the discussion of the theory and applications of multivariate GARCH models 

to oil and stock markets in China (Chapter 4), and the application of the volatility impulse 

response function (VIRF) to crude oil futures markets (Chapter 5). 

In the literature, although volatility modeling and hedging strategies in a multivariate framework 

have been widely documented in crude oil markets, few studies have analyzed in depth the nature 

of volatility spillovers and asymmetric effects of spot and futures prices in gasoline and heating 

oil markets. Therefore, it is within the context of previous limited empirical work that Chapter 3 

is conducted to fill this gap by modeling volatility spillovers and asymmetric effects in crude oil 

(WTI), gasoline and heating oil markets and then constructing an optimal hedging strategy. The 
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growing significance of crude oil markets to investors and portfolio managers in Chinese stock 

market, coupled with a lack of sufficient research to characterize volatility dynamics, paint the 

background of Chapter 4. Our reported evidence of volatility transmission between crude oil 

markets and stock market in China has in turn led us to construct an optimal oil-stock portfolio 

with the aim to exploit optimal portfolio management signals. Finally, Chapter 5 is firstly inspired 

by a novel methodology designed to test market integration in terms of volatility transmission 

and thus market efficiency, and secondly, by the lack of attention in the existing literature to the 

distribution of volatility that could be used to determine the cost of capital, for assessing 

investment and leverage decisions, and for computing the optimal hedge ratio and portfolio 

weights as many financial instruments, especially options1, are priced according to the entire 

price distribution as well as the distribution of volatility2. 

 

6.2 Summary of the findings and conclusions 

In this thesis we have examined many empirical issues relating to the modelling and exploitation 

of information contents in petroleum markets from three different perspectives, elaborated upon 

in three self-contained chapters. The topics studied in this thesis range from risk quantification, 

volatility/correlation modeling, futures hedging as well as identification of risk factors. All essays 

have many things in common. First, they all focus on time series properties of petroleum prices. 

Second, they all explicitly model the return volatilities and correlations of these assets in a 

multivariate framework. Third, they all aim on accurate risk assessment and enhanced 

forecasting ability. The balance of this thesis explores the importance of volatility spillovers and 

asymmetry in petroleum markets and their influence on optimal hedging strategy, the volatility 

transmission mechanisms between crude oil and Chinese stock market which provide insight into 

means of building accurate valuation models and accurate forecasts of the volatility of both 

1 For example, put options for negative skewed assets are more expensive thus indicating that volatility is not a sufficient 
criterion to price derivatives. 
2 Hull and White (1987) suggest that this is of much concern for option pricing using stochastic volatility. 
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markets, and discovering the impact of historical innovations on conditional volatility which is 

helpful for the successful implementation of hedging strategies as well as the evaluation of risk 

measures and investment policies. Therefore, the whole research of this thesis is a cohesive and 

continuous process to comprehend the evolution of prices, volatilities, correlations and economic 

relationship among economic variables. It will help market participants (i.e. crude oil producers 

and consumers, refiners, portfolio managers, commodity traders etc.) develop efficient risk 

measurement schemes and devise sound risk management strategies. 

6.2.1 Chapter 3: Optimal hedging strategies in petroleum markets 

While the risks faced by petroleum industry are various and differ throughout the sectors of the 

industry, -from upstream to downstream- price risk is universal to all. Chapter 3 addressed the 

concept of hedging oil price risk. Oil price risk management has always been a vital part of the 

successful operation of oil-related business. A key parameter in devising effective futures hedging 

strategies is the hedge ratio. Traditionally, hedge ratios are estimated to minimise the variance of 

the hedged portfolio. To allow for time-dependency in the hedging decision, GARCH models have 

been widely used (Kroner and Sultan, 1993). After considering the evidence of volatility 

spillovers and asymmetric effects in petroleum markets, this chapter presented the 

VARMA-AGARCH model of McAleer et al. (2009) with DCC structure to investigate the hedging 

effectiveness of petroleum futures. 

Results indicate that, for the WTI crude oil and gasoline market, the optimal portfolio weights 

obtained from all multivariate volatility models suggest holding spot in larger proportion than 

futures. On the contrary, for the heating oil market, the optimal portfolio weights obtained from 

all multivariate volatility models suggest holding futures in larger proportion than spot. In the 

case of minimizing risk by using a hedge, a long position of one dollar in the petroleum spot 

markets should be shorted by a large cents in the petroleum futures markets. The hedging 

effectiveness indices indicate that the VARMA-AGARCH model with DCC structure is the best for 
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OHR calculation in terms of the variance of portfolio reduction and the BEKK model is the worst 

for OHR calculation in terms of the variance of portfolio reduction. Overall, the results indicated 

that volatility spillovers and asymmetry may be able to offer superior gains to market agents, 

measured in terms of both variance reduction and increase in utility. These findings held even 

when we examined the downside risk and Value-at-Risk analysis. 

6.2.2 Chapter 4: Oil market and Chinese stock market 

Chapter 4 addressed the concept of volatility interdependencies between crude oil market and 

Chinese stock market with implication to optimal portfolio management. As there is an increasing 

trend of financial globalization throughout the world, dynamic links through volatility 

transmission across capital markets are of greater interest to the financial community. This issue 

has been extensively investigated in the context of international asset markets and has been 

expanded to the context of crude oil and stock markets following the financialization of crude oil 

markets.3 For a robust estimation of the volatility interdependencies between crude oil market 

and Chinese stock market, the asymmetric version of BEKK model proposed by Grier et al. (2004) 

was employed. By considering the volatility spillovers and asymmetries between crude oil and 

Chinese stock markets, the optimal portfolio management was more efficient. 

Results indicate that oil price fluctuations constitute a systematic asset price risk at the sector 

level. This implies that the knowledge of the relative sensitivities of sector stock returns to 

changes in oil prices would be of benefit for risk management purposes and it is important for 

investors to fully account for the differences in sectoral oil sensitivities when implementing 

sector-based investment strategies. Moreover, we find that the correlations between oil and stock 

markets (sectors) are time-varying and must be modelled as such. Finally, our investigation of 

optimal portfolio weights and hedge ratios indicates that optimal portfolios should have more 

stocks than oil assets and that the stock investment risk can be hedged with relatively low 

3 Please see Syriopoulos (2007) for stock markets, Wang et al. (2007) for monetary markets, and Johansson (2008) for bond 
markets. These studies generally find evidence of significant volatility transmissions across markets, and the degree of volatility 
transmissions is highly dependent on economic and financial integration.  
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hedging costs by taking a short position in the oil futures markets. Overall, our analysis suggests 

that oil assets can be treated as a dynamic and valuable asset class that helps improve the 

risk-adjusted performance of a well-diversified portfolio of sector stocks and serves to hedge oil 

risk more effectively. 

6.2.3 Chapter 5: Volatility impulse response function in oil markets 

The last empirical part of this thesis, Chapter 5, deals with an important issue in crude oil market 

dynamics, volatility impulse response functions (VIRFs).4 Although some research has been 

conducted to investigate the volatility transmission effect in crude oil markets (see Chang et al., 

2010; Kang et al., 2011), little is known about how a shock to one market influences the dynamic 

adjustment of volatility to another market and the persistence of these transmission effects. 

Following a shock (in a given market), the entire price distribution as well as the distribution of 

volatility has been a cause of great concern for market participants. When a shock is expected to 

have a low and/or a non-persistent impact on volatility, then portfolio rebalancing may be 

postponed to limit transaction costs. Option pricing will be more accurate with the help of 

forecasting the distribution of volatility. This chapter exploits the information content of 

historical events on expected conditional volatility and describes the dynamic volatility 

interdependencies among three benchmark oil markets, i.e. WTI, Dubai, and Brent. By employing 

the VIRF methodology, we are able to obtain this distribution at any desired horizon and then 

build several scenarios, using the “stress testing” methodology, to evaluate the riskiness of a 

derivative asset.  

Whereas impulse response analysis has mainly focused on the impact of shocks on the 

conditional mean of returns, we are more interested in their impact on conditional variance as 

measured by the VIRFs. In comparison with Lin’s (1997) model, the VIRFs depend on both the 

volatility state and the unexpected returns vector when the shock occurs, which indicates that a 

4 The concept of volatility impulse response function is recently developed by Hafner and Herwartz (2006).  
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given shock will not always increase expected conditional volatility. Results indicate that Brent 

and Dubai crude are highly responsive to market shocks, whereas WTI crude shows the least 

responsiveness of the three benchmarks, which creates questions about its predominance as a 

benchmark crude oil. While the VIRF methodology is primarily used to aid our understanding of 

the market responsiveness to historical events, the methodology is also found useful when 

forecasting the distribution of volatility at any desired horizon as well as in risk measures such as 

Value-at-Risk. Results from these simulated random shocks indicate that the probability of 

observing a large impact of a shock is lower whereas the probability of a relatively smaller impact 

is much higher, as well as only a “large” shock (derived from a smaller probability) will result in 

an increase in expected conditional volatilities. These features denote good market efficiency and 

a good reaction to shocks from market participants. Overall, the VIRFs methodology is very 

promising, providing a very practical policy analysis tool to market participants for forecasting 

the entire probability distribution of the risk that is still unidentified, as well as helping the 

development of a risk matrix for investors, traders and other market participants.  

 

6.3 Suggestions for further research  

The theme of the research in this thesis is to explicitly model petroleum price volatility in a 

multivariate framework and to analyze the relative merits of multivariate models to describe 

change in the context of petroleum markets risk. The main motivation of this thesis is to build on 

modern quantitative techniques with a view to address several issues of oil price modelling and 

risk management which are very relevant topics in the industry. The driving force for developing 

such models of oil markets is the desire, by market participants, to ensure accurate estimation of 

risk measures, successful implementation of hedging strategies as well as thorough evaluation of 

investment policies. 

The empirical investigation presented in Chapter 3 to 5 of this thesis, although quite 

comprehensive, is subjected to certain limitations due to space and time constraints and 
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availability of data. Therefore, the aim of this section is to suggest a number of potential 

directions in which fruitful future research can be undertaken to complement to some degree the 

study and consequently shed some light on the issues not covered in this thesis.  

First, the findings of Chapter 3 offer several avenues for future research. Our empirical results are 

available for only in-sample time horizon. So it would be interesting to assess the optimal hedging 

strategy for the out-of-sample time horizon which in turn may provide more information about 

petroleum markets risk to central governments and businesses. As our results may be sensitive to 

the choice of the return innovation’s distribution, it would be interesting to consider the 

distributions of other innovations. Furthermore, it would be interesting to expand the current 

study to cover a wider spectrum of the energy markets, such as natural gas and electricity. 

Second, given the results of Chapter 4, an interesting extension would be to focus on simulation 

and analysis of government intervention regarding how to alleviate the impact of oil price 

fluctuations on equity markets. For example, how could governments of oil-importing countries 

benefit from increasing their strategic oil reserves, and thus protect themselves from the risk of 

supply disruptions?5 Oil-saving measures may be considered by governments of oil-importing 

countries. Oil-saving measures, especially renewable energy or other technological developments 

(e.g. improved fuel efficiency), will have significant impacts on specific stock sectors. Additional 

insight may also be gained by exploring regime changes in the role of oil price fluctuations in 

explaining the equity market behaviour as well as employing the spillover index from the Diebold 

and Yilmaz (2009) framework (DY 2009). The multivariate regime switching framework could 

shed light on the information content of regimes in risk measures and optimal portfolio 

management. Another advantage of this framework is its ability to deal with fat-tails for more 

details beyond normal distribution assumption. The DY 2009 framework has several advantages 

5 The Chinese government began to prepare for the establishment of strategic petroleum reserve in March 2004. Chinese 
reserves would consist of a government-controlled strategic reserve complemented by mandated commercial reserves. The 
government-controlled reserves are being completed in three phases. Phase one consisted of a 101.9 million barrel reserve, 
mostly completed by the end of 2008. The second phase of the government-controlled reserves with an additional 170 million 
barrels will be completed by 2011. The third phase that will expand reserves by 204 million barrels will be completed by 2020. 
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over common econometric methodologies measuring volatility spillover, such as the Multivariate 

Generalized Autoregressive Conditional Heteroskedasticity (MGARCH), Regime Switching (RS) 

and Stochastic Volatility (SV) models. The DY 2009 can be used to gauge the magnitude of the 

volatility spillover as well as to indicate the direction of the spillover. 

Third, given the results of Chapter 5, a number of research opportunities could be followed to 

improve this study. Our empirical results may be sensitive to the data frequency. Thus, it would be 

interesting to consider other data frequencies, for example, high-frequency data (tick-by-tick) 

and weekly data, which will provide an opportunity to examine the robustness of this study to 

data frequency. As the findings in this study indicate the presence of beneficial strategies for 

market participants, it could be useful to evaluate these strategies. This study could be extended 

into describing the impact of shocks on conditional covariances and then correlations, which will 

be of practical importance to financial practitioners in making optimal portfolio allocation 

decisions. Furthermore, a challenging extension would be to apply the VIRF methodology in two 

directions: to incorporate the asymmetric effect in conditional volatility, which could be captured 

by the asymmetric BEKK model and to analyse the impacts of shocks on third and higher 

moments of a distribution which has recently been opened by Jondeau and Rockinger (2006). As 

options are known to be priced in reference to the skewness (and also higher moments), a better 

understanding of the impact of a shock on the conditional skewness of crude oil markets might be 

able to improve the pricing and hedging performances. 
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