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Abstract

iii

Control theory has gained a widespread use in almost every area of decision making 
problems. In this thesis, we seek to construct a premium setting strategy and an asset 
allocation strategy of a non-life insurance company whose goal is to maximise a metric 
of her utility function.

As insurance companies do not have perfect insight into future market and cannot as-
sume any given scenario with certainty, stochasticity is introduced to model the market 
conditions and the risk processes that the running of the insurance business is subject to.

The problem is formulated as a continuous time and continuous space control problem 
where the state process is controlled continuously in a way to achieve the target. Bellman 
optimality principle in a stochastic environment is used to reduce the continuous time 
decision problem into a fixed point decision problem under the umbrella of Hamilton- 
Jacobi-Bellman equation.

We also consider the pricing of financial derivative products written on catastrophe losses. 
Since the market of catastrophe insurance is incomplete, we make use of the concept of 
indifference of utility theory of a market participant to derive the so-called affordable 
price.



IV

List of Symbols

• (3 discount rate

• at controlled variable at time t

• A  set of dmissible set, control space

• X t multidimentional state variables at time t

• J (i,x ) Cost function at time t

• V(t, x) Value function at time t

• Bt standard Brownian motion at time t

• ¡1 drift of a Brownian motion

• a volatility of a Brownian motion

• t  stopping time

• Il(i) Space-time Poisson process at time t

• H{dt,dy) Poisson measure

• 7r Expected claim size

• Nt Poisson process with rate A

• Pt Optimal premium

• G Growth rate of the exposure

• Wt Wealth process at time t,

• Qt Exposures at time t



0 / Optimal risky asset allocation at time t

ip(w, q) Survival probability with inial wealth w and initial exposures q 

4>(w, q) Ruin probability with inial wealth w and initial exposures q 

Rt Risk process at time t 

U(w) Utility of wealth w 

Lt Cumulative loss index at time t 

jFt Filtration at time t

E X  I T t conditional expectation of a random variable X  given the filtration at



Contents

1 Introduction 2

1.1 Background.......................................................................................................  2

1.2 Literature Review..............................................................................................  6

1.3 Overview of the t h e s is ..................................................................................... 12

2 Mathematical Background of Stochastic Control Theory 14

2.1 Introduction ....................................................................................................  14

2.2 Example of Control problems ........................................................ 15

2.2.1 Optimal Stopping time problems .....................................................  16

2.2.2 Stochastic control problem s............................................................... 17

2.3 Stochastic Control background.....................................................................  19

2.3.1 Existence condition of a controlled S D E ......................................... 22

2.3.2 Existence of the cost function...........................................................  23

2.4 Derivation of the HJB equ ation .....................................................................  24

2.4.1 Infinite time horizon...........................................................................  28

2.4.2 Optimal stopping time problem s....................................................... 29

2.5 Solution of the PDE: The Verification theorem............................................ 34

2.6 The jump and diffusion process.....................................................................  36

2.6.1 Ito formula for The Jump and Diffusion Process .........................  36

2.6.2 The HJB e q u a tio n ..............................................................................  37

l



CONTENTS CONTENTS

2.6.3 Existence and Uniqueness of solutions to the state jump diffusion

process....................................................................................................  38

2.7 The Martingale Optimality Principle............................................................  39

3 Pricing in a Monopoly Insurance Market 41

3.1 Introduction.......................................................................................................  41

3.2 The market structure........................................................................................ 42

3.2.1 The demand function...........................................................................  42

3.2.2 Choice of the demand fu n ction ........................................................  44

3.2.3 The claim size and claim severity ..................................................  45

3.2.4 The wealth process..............................................................................  46

3.3 Derivation of the H.JB equation..................................................................... 47

3.4 Solution to the HJB Equation........................................................................  50

3.4.1 Optimal premium and conditionality...............................................  51

3.4.2 Analysis of the possible roots ........................................................  53

3.5 Verification T heorem ........................................................................................ 54

3.5.1 Convergence condition of the value fu n ct io n ..................................  55

3.5.2 Optimal premium under the convergence co n d it io n ......................  56

3.6 Optimality in the non admissible region........................................................  60

3.6.1 Integrability under a constant premium strategy............................  60

3.6.2 No optimal strategy in the non admissible region ¡3 € [0, f3min) . 61

3.7 Optimal Premium and Exposure’s G row th ..................................................  63

3.7.1 The prem ium ........................................................................................ 63

3.7.2 The growth rate of the exposure under optimal strategy ............  65

3.8 Significance of results ..................................................................................... 66

3.9 Ruin Probability under optimal strategy.....................................................  67

3.9.1 Derivation of the Integro-differential e q u a tion ................................  68

ii



CONTENTS CONTENTS

3.9.2 Monte Carlo Simulation of the Ruin probability............................ 70

3.10 Sensitivity analysis on ruin probability........................................................  70

3.11 Summary ........................................................................................................... 72

4 Optimal Asset Allocation in the Context of Insurance Risk Process 76

4.1 Introduction.......................................................................................................  76

4.2 The M odel........................................................................................................... 77

4.3 The HJB EQUATION..................................................................................... 81

4.3.1 Analytical solution to the HJB equation......................................... 84

4.3.2 The verification theorem .....................................................................  86

4.4 Interpreting the optimal policy .....................................................................  92

4.5 Summary ........................................................................................................... 94

5 Catastrophe Insurance 96

5.1 Introduction.......................................................................................................  96

5.2 CAT futures contract ..................................................................................... 99

5.3 PCS OPTIONS ..............................................................................................  105

5.4 Pricing of PCS options .................................................................................... 109

6 Pricing of Catastrophe Insurance via Indifference Utility Theory 116

6.1 Introduction to Equivalent utility th e o r y .......................................................  116

6.2 Pricing via indifference utility T h e o r y ........................................................... 120

6.3 Construction of the Solution.............................................................................  124

6.3.1 Verification via the martingale optimality condition ...................... 129

6.3.2 The general price of an option and some properties of the price . 130

6.4 Pricing of some classical reinsurance options............................................... 136

6.4.1 PCS call op tio n .......................................................................................  136

6.4.2 Stop L o s s ............................

iii

137



0.0 CONTENTS

6.4.3 Proportional reinsurance ..................................................................  137

6.5 Parametric Approximation of the Loss Index ............................................ 138

6.5.1 Computation of the parameters of the translated gamma distribution 141

6.5.2 Monte Carlo simulations parameters...............................................  142

6.5.3 Results....................................................................................................  143

6.6 Summary ........................................................................................................... 144

7 Conclusion and Future Research 147

A Stochastic Processes and Properties 150

A.0.1 Markov processes..................................................................................  152

A. 0.2 Continuity and Sm oothness............................................................ 153

B Diffusion Processes and Ito Formula 155

B.l Brownian m otion..............................................................................................  155

B. 1.1 Some properties of Brownian m otion ................................................. 156

B.2 Stochastic integral...........................................................................................  156

B. 2.1 properties of Ito Integral ................................................................... 157

B. 3 The general Ito formula for diffusion processes ...................................... 157

C Jump and Diffusion processes 159

C. l Poisson Processes...........................................................................................  159

C. 1.1 Properties of a Poisson processes ..................................................  161

C.2 Space-Time Poisson p ro ce s s ...........................................................................  161

C.3 Some properties of Marked Poisson p r o ce s s ............................................... 162

C.4 The jump diffusion process..............................................................................  163

C.4.1 Ito formula for The Jump and Diffusion Process ........................... 163

Bibliography 165

1



Chapter 1

Introduction

1.1 Background

The aim of the present thesis is to apply a variety of techniques and tools to solve optimal 

dynamic decision problems related to finance and insurance. Many optimisation problems 

are formulated in terms of continuous time and or continuous space control problems 

where a variable (the control variable) is controlled in such a way to achieve a specific goal, 

usually maximising or minimising a function. As opposed to traditional actuarial pricing 

and financial optimisation methods which deal with one period optimisation decisions, 

the dynamic stochastic control produces for an optimisation starting at a time t, the 

decision to be taken at each time u > t.

Until recently, the mean-variance analysis developed by Markowitz (1952), Markowitz 

(1959) and Tobin (1958) was the main approach adopted in finance. In the mean-variance 

framework, an efficient frontier is constructed on which the investor’s portfolio allocation 

decision is based upon her utility function. The mean-variance approach for the case 

where the investor can allocate resources to a risk free asset and a set of risky assets 

yields two-fund separation result. Due to its simplicity to implement and the closed
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1.1 1.1. BACKGROUND

form solution it affords, this optimisation approach is widely used. However, the mean- 

variance optimisation framework suffers a heavy shortcoming in that it is cast in a one 

period horizon maximisation setting. When decisions have to be taken over time in 

order to rebalance the investment portfolio, a different framework is required to tackle 

the problem. We consider therefore in this thesis a framework in which the investor can 

sequentially make decisions given the current state of the portfolio. The mathematics 

needed comes under the umbrella of stochastic control theory whereby the risky assets are 

modelled as Markov processes and the optimisation problem is to maximise an expected 

future metric of the portfolio value. Usually, the metric is taken to be a utility function of 

wealth. An example is the optimal investment problem of Merton (1969) where an agent 

investing some part of her wealth in risky and non risky assets whilst consuming the rest 

aims to maximise her expected utility (a function of his consumption and wealth).

In the insurance field, Actuaries have long considered the premium setting process in a 

one period setting. The pure premium is evaluated as the expectation of the claim where 

usually a loading factor, dependent on the risk parameter of the claim size is added to 

form the true premium. The introduction of control theory in the insurance literature 

started with de Finetti (1957) who constructed a predefined level of control action for 

the surplus reserve of an insurance company; this was extended by Borch (1967) who 

proposed a more general solution of the problem. Balzer and Benjamin (1980) presented 

a clearer application of control theory in insurance pricing by proposing a model of the 

form

Pt =  dE[Ct] - e S t- 1 (1.1)

where Ct, St are respectively the claims and the surplus value at the end of year t , 9 

and e are positive constants with 9 > 1, e €E [0,1] and pt is the premium. This model 

has been significantly improved by Martin-Lof (1983) who approached the problem in a

3



1.1. BACKGROUND 1.1

stochastic fashion by using the dynamic programming techniques introduced by Bellman 

(1957). From there, dynamic programming techniques have gained enormous interest in 

the control theory literature and different settings have been investigated including state 

processes involving diffusion and jumps.

Common to all the control problems is the need to make sequential decisions i.e. one 

has to make decisions continuously up to a certain time horizon which can be known 

in advance, be infinite or be random. The Bellman principle, which is the key principle 

governing dynamic programming, states that the optimal decision between today and 

a future time is equivalent to the optimal decision from today to tomorrow given that 

the decision from tomorrow to the future time is optimally taken. As simple as it is, 

the Bellman optimality principle is the corner stone of the dynamic control theory in 

finance and insurance. The stochastic control methodology often reduces the sequential 

decision taking problem to a partial differential equation (PDE) which is not usually an-

alytically solvable. The methodology involves modelling the state variable as a Markov 

process whose evolution is governed by the control variable. In the case of a state variable 

following a diffusion process, the stochastic control methodology reduces to a Hamilton- 

Jacobi-Bellman (HJB) equation expressed as a second order partial differential equation 

whereas in the case of a state variable following a jump process, which is especially 

relevant to insurance applications, the problem reduces to a partial integro-differential 

equations (PIDE). The solutions of the PDE or the PIDE if they exist are determined by 

the boundary conditions imposed by the optimisation problem. Due to the difficulty in 

getting analytical solutions of the differential equations (DE), numerical based solutions 

are usually called for.

Different techniques have been elaborated by many authors. One approach is to solve the 

PDE using numerical methods by discretising the different orders of the PDE equations.

4
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This usually results in creating artificial boundary conditions since the natural boundary 

conditions do not always provide a way to the solution.

The Markov chain approximation method developed by Kushner and Dupuis (1993) has 

for long been the most parsimonious method for solving systematically stochastic control 

problems, see Kushner (1977), Kushner (1984) and Kushner (1990). The idea inherent 

in the approximation relies on the local properties of the chain encapsulated by the local 

consistency condition which merely states that the mean and the second moments of 

the increment of the discretised chain must tend to the mean and second moment of the 

increment of the original state variable as the discretisation method becomes finer. An 

application of the method to Merton’s problem can be found in Munk (2003).

Most of the numerical solutions methods including the Markov chain approximation and 

grid based methods in general suffer from the curse of dimensionality. This mean that the 

time and space required to find a solution grow exponentially as the dimension increases. 

Another grid based method addressing the exponential curse of high dimension is the 

Quantization algorithm method for multi-dimensional stochastic control problems. This 

method projects a time-discretised version of the continuous time stochastic process onto 

an optimal grid in the sense that the error of projection is minimised for the optimal grid. 

See Pages, Pham, and Printems (2004).

Although still considered by many practitioners as a no go area, Malliavin Calculus (Nu- 

alart (1995)) has gained interest in relation to financial optimal control problems. Though 

it has been considered for many years as highly theoretical and technical, it has gained 

support in that it provides numerical based solutions that do not suffer from the curse of 

dimensionality. The integration by parts property of the Malliavin derivative provide a 

rather nice expectation framework in which many stochastic pricing problems such as the 

computation of the greeks for a European style plain vanilla option, (see Fournie, Lasry,



1.2. LITERATURE REVIEW 1.2

Lebuchoux, Lions, and Touzi (1999)) or a stochastic control problem that maximises 

inter temporal and terminal utility functions (see (Detemple, Garcia, and Rindisbacher

(2003)), fall.

The previous numerical and analytical approaches make the assumption of regularity 

on the value function. Analytical solutions methods are often subject to some regular-

ity conditions on the value function which are unknown in advance. There are many 

stochastic control problems in which the value function does not satisfy the regularity 

condition of the Hamilton Jacobian Bellman equation in the classical sense. The notion 

of a viscosity solution introduced by Crandall and Lions (1983) provides a framework in 

which such irregular value functions can be constructed. The constructed solutions are 

coherent with the classical solutions for value function that are regular. The construction 

of such solutions is not part of the present thesis; interested readers may refer to Fleming 

and Soner (1993), Crandall and Lions (1983) and Crandall, Ishii, and Lions (1992).

Although it is not trivial to obtain an analytical solution to a randomly selected stochastic 

control problem, the literature provides many examples of known solved control problems 

in the finance arena as well as in the actuarial field. The next section is aimed to expose 

the different areas in finance and actuarial studies in which control theory is applied.

1.2 Literature Review

Since the seminal papers of Merton (1969) and Merton (1971), stochastic control has 

gained a large audience in the investment and risk management community. The books 

by Cksendal (1998), Fleming and Rishel (1975), Fleming and Soner (1993), Cksendal 

and Sulem (2005) and Karatzas and Shreve (1986) cover most of today’s problems and 

methods in this field. The optimal investment and consumption problem of Merton

6
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has revolutionised the way investment and portfolio managers make decision over time in 

contrast to the Markowitz paradigm which is equilibrium based. Most analysis of portfolio 

selection as in the case of Markowitz-Tobin mean variance, maximises over one period. In 

his paper Merton (1969), the author examines the combined problem of optimal portfolio 

selection and consumption rules for an individual in a continuous time model where 

income is generated by returns on assets that are stochastic. The problem of choosing 

optimal portfolio selection and consumption rules can be formulated as follows. Given an 

initial wealth Wo - w and a time horizon T, Merton derived the optimal consumption 

and asset allocation rule that will maximise the inter temporal utility of consumption 

for an investor as well as the terminal bequest function which is a function of terminal 

wealth. Thus the aim is to solve for nt, c(t) and V{x) defined as

where ct is the consumption function, B(T ,.) is the bequest function at T , u(.) is the 

running utility function, n is the vector of the proportion of assets and IT) is the wealth

for the special case of constant relative risk aversion and also for infinite time horizon 

case with no bequest function. A similar problem was considered by Samuelson (1969) 

who treats the optimisation in a discrete time setting. Similar problems are treated by 

Merton in Merton (1971), Merton (1973) and Merton (1975). Since then, dynamic op-

timal asset allocation has become widely researched with many different versions of the 

problem being investigated by academics.

In Blanchet-Scalliet, Karoui, Jeanblanc, and Martellini (2003), the authors extend the 

optimal investment problem of Merton (1969) by allowing the conditional distribution 

of an agent’s time horizon to be stochastic and correlated to returns on risky assets. For

■T

at time t which evolves stochastically. The particular case of two assets (one risky and 

one risk free) was examined in detail by Merton. An analytical solution was provided

7
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a constant relative risk aversion utility function, the authors found that the allocation 

strategy is seriously affected by the dynamics of the exit time which is modelled as an Ito 

process. In Korn (1998), the author relaxes the usual assumption of no trading costs in 

continuous time portfolio optimisation by introducing the impulse control technique in 

order to prevent the trading from having an infinite variation. In the paper, the author 

allows the investor to change his portfolio only finitely often in finite time intervals and 

derives a nontrivial asymptotically optimal solution for the problem of exponential utility 

maximisation. Cvitanic and Karatzas (1992), Xu and Slireve (1992), and He and Pearson 

(1993) all consider optimal allocation with constraints on the strategies while in Korn and 

Trautmann (1999), the authors consider a problem using a terminal wealth constraint. 

In the majority of the literature, risky assets are modelled as a diffusion process and the 

control problem is simplified into solving a PDE. The problem of optimal consumption 

and portfolio problem in a jump diffusion market consisting of a bank account and a stock 

is considered by Framstad, 0ksendal, and Sulem (1998) where price is modelled as a 

Levy process. The results generate a very similar solution to the original case under pure 

diffusion process. In Browne (1995), the author adopts a more conservative, actuarial 

approach by putting more weight on the event of an investor being ruined rather than 

making superior wealth. The investment’s objective is to minimise the probability of ruin 

in the presence of a liability process rather than maximising a function of wealth.

Although the use of control theory in finance has been applied in a complete market 

context, it has recently gained ground in an incomplete market setting using Equivalent 

utility theory. The method attempts to price contingent claims by considering two scenar-

ios in which an investor is indifferent, see Musiela and Zariphopoulou (2004), Young and 

Zariphopoulou (2001), Young and Zariphopoulou (2002) Zariphopoulou (2001a), Young

(2004), Shouda (2005), Sicar and Zariphopoulou (2005), Rouge and Karoui (2000), Mania 

and Schweizer (2005), Grasselli and Hurd (2004), Grasselli and Hurd (2005), and Lim
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(2005).

In the insurance literature, it took until 1994 for the first lecture to address the dynamic 

optimisation problem, see Martin-Lof (1994). Since then, a rapid development in stochas-

tic control theory among actuarial academics has grown. In Taksar and Asmussen (1997) 

the authors considered a classical actuarial insurance risk process and aimed to maximise 

the discounted dividend payments which are paid whenever the reserve is positive. The 

authors modelled the reserve rt at time t as a diffusion process following the stochastic 

differential equation

clrt =  (/i — at)dt +  adBt

where Bt is the standard Brownian motion and a are constants with cr > 0 and at is 

the rate of dividend payment at time t. The objective is to maximise the total discounted 

dividend payment

J (x) =  IE e 3tatdt
Jo

( 1.2)

where ¡3 is the constant force of interest and r is the ruin time i.e.

r =  inf < t >  0, r(t) =  0

In the control framework, the objective is to evaluate at each time the policy at and 

therefore compute the function V  defined as

V (x ) =  sup J(x)
{ a t } t > 0

sup E f e 3tatdt 
( a f } t > o  U o

(1.3)

The authors solved the problem analytically considering two scenarios:

(a) When the dividend rate is bounded by a constant a0 < oo, then if a0 is smaller than 

some critical value cc, the optimal strategy is to always pay the maximal dividend 

rate a0 otherwise the optimal policy prescribes to pay nothing when the reserve

9
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is below some critical level m and to pay the maximal dividend rate ao when the 

reserve is above m.

(b) In the second case, when the dividend rate is unbounded then the optimal strategy 

prescribes to pay out whatever amount exceeds some critical level m but not to pay 

out dividends when the reserve is below m i.e. at — max{rt — m, 0}.

In the actuarial pension framework, control theory has also gained a lot of interest. Ger- 

rard, Haberman, and Vigna (2004) investigated the annuity risk faced by a member 

of a defined contribution pension scheme and introduced the income drawdown option 

whereby the member of the scheme is allowed to choose when to convert the final capital 

into pension within a certain period after retirement. The objective was to look for the 

optimal investment strategy to be adopted after retirement whilst allowing for periodic 

fixed withdrawal from the fund. A quadratic loss function was introduced to penalise 

deviation from a target at each time. Recently, due to changes in regulation of pen-

sion schemes across Europe, control theory serves as a mean of tackling Liability Driven 

Investment (LDI) in which liability streams are as important or more important to be 

met than making a substantial return on the pension fund. See Detemple, Garcia, and 

Rindisbacher (2003)

In the wider actuarial area, Paulsen and Gjessing (2004) considered a typical insurance 

business in which premium income is deterministically perturbed by a diffusion process 

with the random claim payout following a jump process. The authors sought to max-

imise the terminal expected utility by controlling the asset allocation and the proportion 

of business ceded to a re-insurer company. Taksar and Hojgaard (1999) extended the 

work of Taksar and Asmussen (1997) to control for the proportion of insurance business 

that is ceded to re-insurers while Amussen, Hojgaard, and Taksar (2000) included a 

control for investment strategies. Using a traditional risk process framework, Hojgaard

10
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(2001) let the premium rate be dependent on the size of the business with the objective 

to maximise the dividends pay-outs.

Another popular area in the Actuarial literature where control theory has gained sig-

nificant ground especially among German researchers is the minimisation of ruin proba-

bilities. Among them, Hipp and Plum (2000), Hipp and Plum (2003), Hipp and Vogt 

(2003), Schmidli (2001), Schmidli (2002), Gaier and Grandits (2002), Gaier and Grandits 

(2003) and Gaier and Grandits (2003) represent important contributions to this field of 

research.

Finally, Browne (1995) considers the asset allocation problem of Merton without con-

sumption in the presence of an uncontrollable stochastic liability flow. The author adopts 

a more conservative actuarial approach in the objective function by minimising the prob-

ability of ruin. He showed that in the absence of the risk free asset, the optimal strategy 

is equivalent to maximising the terminal utility of wealth for a firm having an exponential 

utility function.

11



1.3. OVERVIEW OF THE THESIS 1.3

1.3 Overview of the thesis

The thesis is organised as follows:

In Chapter 2, we introduce the mathematical background needed to solve stochastic 

control problems in the framework of HJB. We present the necessary conditions for solu-

ble problems, the derivation of the HJB differential equation both in the case of the state 

variable following a diffusion problem as well as a Jump diffusion problem and finally we 

show how the verification theorem can be used to validate the solution of the HJB .

In Chapter 3, we examine the optimal premium setting strategy for a firm operating in 

a monopolistic market regulated by a demand function. A choice of demand function is 

made to describe how customers react to the level of the premium. A high premium is 

unattractive which results in the company having lower business volume. A low premium 

is very attractive but results in a higher likelihood that the company will not be able to 

meet its liabilities. The objective of the firm is to maximise utility of wealth by setting 

an attractive premium to policyholders given that the firm is the sole provider of the 

insurance policy in the market. An analytical solution is obtained which is validated by 

the verification theorem.

In Chapter 4, we present the asset allocation problem in the context of insurance risk 

process. We consider an insurance company operating in a market in which it has no 

control over the price of the premium for a particular non life policy. The aim of the 

firm is to optimally allocate between risky and risk free assets while receiving a premium 

income according to the law of demand and supply. For a firm adopting an exponential 

utility function, an analytical solution is obtained and validated by the verification the-

orem.

12



1.3 1.3. OVERVIEW OF THE THESIS

In Chapter 5, we present the common instruments used in Catastrophe insurance and 

highlight the difficulty in pricing in such an incomplete market. We walk through the 

literature in the field and comment on the deficiencies in current pricing methodologies.

In Chapter 6, we present a new method based on indifference utility theory that we 

adopt and adapt to the pricing of catastrophe insurance. We derive a general formula for 

what we denote by as minimum affordable price which is expressed in terms of expecta-

tions under the physical probability measure. Though the primary goal of the thesis is 

to produce analytical solutions to the problems it attempts to solve, a translated gamma 

distribution approximation to the aggregate loss index at maturity and a Monte-Carlo 

simulation are performed to produce two sets of numerical based solutions.

In Chapter 7, we conclude the thesis and expose the possible extensions to the problems 

solved.

In the next chapter we will look at the mathematics and the framework needed to solve 

stochastic control problems.

13



Chapter 2

Mathematical Background of 

Stochastic Control Theory

2.1 Introduction

The aim of this chapter is to present the basic concepts and results needed in modelling 

events that are random and evolve with time (Stochastic events) and events that are 

random and evolve with time on which one has a control over their evolution (Stochastic 

control events). Since there are several books which give a detailed account of the former, 

we refer the reader to the introductory books Brzezniak and Zastawniak (2000), 0ksendal 

(1998), and Karatzas and Shreve (1986). In this chapter we will concentrate solely on 

the mathematics of the latter which underline the core of stochastic control problems and 

hence of this thesis.

Among the different classes of stochastic processes, this thesis will concentrate on Dif-

fusion processes that are driven by a Brownian motion (Appendix B.l) and Jump pro-

cesses (Appendix C.2) that are driven by Poissori processes (Appendix C.l). The Browr- 

nian motion and the Poisson process form the basis of the Jump-diffusion processes (

14



2.2 2.2. EXAMPLE OF CONTROL PROBLEMS

Appendix C.4) that are the driving processes adopted in this thesis. The two processes 

are continuous-time stochastic processes, which basically means that they are continuous 

time dependent random-variables. They are also Markovian (Appendix A.0.1) in the 

sense that the future value taken by the processes depends only on the current value and 

not by the whole history of the values that they have taken. We will in the next section 

present the Brownian motion and the Poisson process in the context of control theory 

with some properties and results that are relevant to this thesis.

Ordinary calculus is based on functions that are continuous, differentiable and continu-

ously differentiable. However, many of the models for Markov processes do not have such 

nice analytical properties. Since Poisson processes are discontinuous (Appendix A.0.2), 

and Gaussian processes are not smooth (not differentiable with respect to time) ( Ap-

pendix A.0.2), there is a need to review and revise the standard calculus so as to include 

these essential properties. Most of the results needed for the two classes of stochas-

tic processes without control over the evolution of the process are presented in Appen-

dices (A,B,C). Before putting the control problem into a mathematical framework, we 

will show some examples of practical control problems.

2.2 Example of Control problems

Optimal problems in a stochastic environment may in general be divided into two classes 

that share similar features in the dynamic programming framework: the optimal stopping 

time problems such as the time to exercise an American style option in which the 

decision variable is the time, and the optimal control problem such as Merton’s investment 

and consumption problem in which the control variable acts on the state variable. We 

investigate each in turn.
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2.2. EXAMPLE OF CONTROL PROBLEMS 2.2

2.2.1 Optimal Stopping time problems

When to sell an asset We consider an investor holding a stock or an asset (house) 

that he is willing to sell. The asset evolves according to the stochastic differential equation

dXt =  p{t, X t)dt + a(t, X t)dBt ( 2 . 1)

where /i(t,Xt) is the drift component of the asset and a (t,X t) represents its volatility. 

At the time of sale, a fixed transaction cost a > 0 is paid. If the agent opts to sell the 

asset at time t, the realised value (asset value less the transaction cost) is e~0t(X t — a) 

where ¡3 is the rate of discount. The optimisation problem is to find the stopping time r 

which maximises the expected realised value of the asset i.e.

supE

and to calculate the expected realised value.

When to invest in a project We consider an agent who wishes to invest in a project, 

for example in a company. From the beginning of the investment, the agent receives a 

dividend which evolves as in (2.1). The capital invested is C. If the agent invests at time 

t, the long term profit realised is J°° e~0sX sds — e~0tC. The optimisation problem is to 

find the optimal time r that maximises the expected profit

supE ~ßsX qds -  e~0TC

Natural ressource extraction We consider the price of a natural resource (gas, oil) 

evolving as a geometric Brownian motion of the form

dPt =  PtifJdt +  adBt).
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We assume that at each time t the quantity of resources Qt decays exponentially according 

to the deterministic differential equation

dQt =  -A  Qtdt

where A > 0 is the rate of decay. We also assume the time unit cost of extraction 

to be K  > 0. If we stop the extraction at time t, the profit from the extraction is 

f 0 e~l3s(Pt — K)dQs + e~lStB(Ptl Qt) where B(p, q) is the value of the extraction site when 

the price of the resource is p and the remaining quantity is q. The objective is to find the 

stopping time r that maximises the expected profit, i.e.

supE e -0s{Pt -  K)dQs +  e~dTB(Pt , Qt )

In the next section, we consider problems in which the evolution of the state variable is 

controlled.

2.2.2 Stochastic control problems

In this section, we consider examples in which the evolution of the state variable is 

influenced by a control variable. The control variable is a process (cq)t>o whose value is 

based on the history of the state variable up to the current time. Let

dXt =  p(t, X t, a t)dt +  a(t, X t, a t)dBt. (2.2)

The most famous example of this type of problem is the following:

Merton’s Investment and consumption problem We consider an investor who has 

a finite time horizon with an initial wealth x. At each time t, the investor consumes an 

amount ct of her wealth and invests a proportion nt in a risky asset while the remaining 

proportion is invested in a risk free asset. The optimisation problem is to optimally al-
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locate the proportion between the two classes of investment asset in order to maximise 

her inter-temporal utility function. We will discuss this problem in greater detail in the 

next section.

Irreversible investment In this example, we consider a firm whose profit depends 

on capital Yt and a stochastic parameter Zt which may be considered in this particular 

example as the demand function which evolves according to the stochastic differential 

equation

dZt =  fi(t, Zt)dt +  a(t, Zt)dBt.

We denote by f l(y, z), the profit function when the demand is 2 and the capital is y. We 

also assume that the capital of the firm never decreases but grows at a rate ut > 0 such 

that

dYt - utdt

and the unit cost of increase in capital is c(Yt). The optimisation problem is to find the 

rate of expansion of the firm’s capital that will maximise the pure profit of the firm i.e.

supE
U

Cost of surreplication in an uncertain volatility model We consider the price of 

a stock evolving according to the differential equation

(0 (yt, zt) -  c(yt)ut) dt

dXt = <JtX tdBt

where the volatility at time t at is random. Given a terminal claim option written on 

the stock with payoff B (X t ) at expiry, the problem is to calculate the surreplication cost 

given by

sup E B{ A »
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2.3 2.3. STOCHASTIC CONTROL BACKGROUND

In the following section, we set up the control problem in a mathematical framework and 

provide the methodology to the solutions.

2.3 Stochastic Control background

We consider the evolution of a mathematical system according to the differential law

dXt =  f ( t ,X t), t >  0,

where the function /  describes the dynamic of the system and X t is the vector value of 

its parameters X  at time t. If the function /  can be precisely measured and completely 

determined, no stochastic theory will be needed in which case we will be faced with a 

deterministic control problem. However, if /  varies randomly with time or if the errors of 

measuring /  is not negligible, stochasticity will be needed. In this section, we consider the 

process X t as a multidimensional diffusion process governed by the stochastic differential 

equation

dXs = b(s, X s)ds +  cr(s, X s)dBs. (2.3)

If, in addition the coefficients b and or a in equation (2.3) depend on some control 

parameters subject to vary over the course of time according to our will, we have a 

controlled diffusion process which is the solution to an equation of the type :

X , =  Xn
f t

b(s, X s, as)ds +  / a(s, X s,
JO

a ,)dBs (2.4)

where as is the value of the controlled parameter a at time s. If we adopt the terminology 

of control theory, the process X  is called the controlled state process, and the process at 

is called the control variable.
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2.3. STOCHASTIC CONTROL BACKGROUND 2.3

We now consider the dynamics of the state variable in the Euclidean space M" ,

dXt =  b(t, X t, at)dt +  a(t, X t, at)dBt (2.5)

where X f € Rn and Bt is a d—dimensional Brownian motion, and assume that the process 

X t is completely observable, that is, we can choose the process at on the basis of the 

values of the controlled state process X t. We also suppose that we live in the same time 

scale as X t does. Thus, up to time t we can see the trajectory of X s only for s e [0, t], 

and our decision about the value of the control parameter a at time t can be only based 

on the trajectory

X[o,t] : X[0,t] (w) :=  { (s ,X s) : s €  [0, f]} 

which can be simply written as a function at =  a(X[0jt]).

In control theory terminology, such functions are called policies or strategies and are 

denoted

a -  | a (X [0ii]),f > o|.

Looking at the dynamics of (2.5), and considering the state process at time t, it is clear 

that the move to the next state at time t +  h does not depend on the whole trajectory 

taken by the state from the initial time to t but only on the value of the current state, 

thus X t is a Markov process on which all the analysis that we will develop in the next 

chapters will be based. Equation (2.5) is a time inhomogeneous Markov process since the 

functions b and a are explicitly dependent on time. A particular case where b =  b{at, X f) 

and a =  a(at, X f) results in a time homogeneous Markov process for which the optimal 

decision a is independent of time for an infinite horizon problem and or for a class of 

cost functions. If we assume that the control variable a varies in a set A  of so-called 

admissible controls and we choose appropriately the random process as with values in 

A , we can obtain various solutions to equation (2.5). This gives rise to the questions as
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to whether there exists a solution to equation (2.5) for a chosen process at and whether

the solution is unique when it occasionally exists.

Generally, the control problem requires maximising a function of the state variable by 

controlling the process at. Let us formulate this problem by maximising the function 

E[J(t, X t)] given the trajectory of the controlled process up to and including time t. 

where

and where T can be taken as:

• T =  T ( Finite time horizon problem)

• T =  oo (Infinite time horizon problem)

• T =  r (Stopping time in infinite horizon problem)

• T =  r A T  (A stopping time in a finite horizon T.)

At any time t, our decision at must take into account all the relevant information avail-

able up to time t (the trajectory of X t); it does not depend on the future behaviour of 

the processes X t. Mathematically, this can be expressed by setting a framework that 

accounts for the dependency on the past and not the future.

We start by considering a probability space (12, IF. P) where T  is the a algebra on (12, P) 

and 2Ft is the filtration generated by the system of Brownian motions that govern the 

diffusion processes. In this setting, the processes driven by the Brownian motion are Tt 

adapted i.e. cr(Bs : 0 < s < t) C Tt. An immediate consequence of this setting is the 

optimal control at is Tt adapted. The control problem therefore turns to looking for a

(2.6)
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2.3. STOCHASTIC CONTROL BACKGROUND 2.3

function E (f,X ) defined as:

V(t ,x)  =  max E \J(t, X ) | Kt] — max E

The function / ( i ,  X t,a t) is called the running cost function whereas V(t, x) is called 

the value function and describes fully the solution of the control problem. Due to the 

Markov property of the state variable, the whole history represented by the filtration T t 

at time t is not needed, the current value of the state process X t is as informative as the 

filtration. Therefore in the rest of the thesis, we shall be using the current state X 4 =  x 

instead of considering the filtration at time t to exhibit the Markov property of the state 

variable, i.e.

Before getting into the derivation of the equation satisfied by V(t,x) ,  we need to ensure 

the existence of the solution of the stochastic differential equation (2.5) and the existence 

of the integral J(t, X ) when a choice of the control variable a is made.

2.3.1 Existence condition of a controlled SDE

We consider Equation (2.5) where X t G Rn, a =  (at)  G A  C Rm and W t is a d- 

dimensional Brownian motion. Let the functions b : R+ x Rn x A  —> R" and a : 

R+ x Rn x A —> Rnxd of Equation (2.5) satisfy the linear growth condition i.e.

3 C  >  0, V t G R+, V x t € Rn, V at G A  , 

|6(i,xt,o:t)| +  |o-(i,xt,Q:t)| < C( 1 +  |xt| +  K|).
( 2.8)
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Let us also assume that b and a satisfy the Lipschitz condition uniformly in A  i.e.

3 C > 0,V t G R+,V x t,yt G Rn,V a t G A,

Ib(t,xuat) -  b(t,yuat)\ + \a(t.xt,at) -  cr(t,yy,at)\ < C  |xt -  yt|,
(2.9)

then the SDE (2.5) has a unique strong solution in R ” with initial value X 0 =  x. More-

over,

E sup |XS <  + 0 0
t < s < T

where |X| is the L2 norm. (See Pham (2002)).

( 2 . 10)

2.3.2 Existence of the cost function

Let consider again the cost function

J( t ,Xt) =  E / ( +  X s, as)ds +  R (X y) ( 2.11)

in a finite time horizon problem where (T — T), if B is bounded and /  satisfies the 

quadratic growth condition, i.e.

\f(t, xt, at)\ < C  (l +  |x ì |2 + |oi|2) , V (t, x t, at) G [0,T] x Rn,a t G A, (2.12)

then the definite integral J(t ,xt) in Equation (2.11) converges .

In infinite time horizon (T =  oo) it is not clear whether the indefinite integral converges 

but if we adopt a cost function in the financial mathematics literature where the cost at 

each time is discounted to the original time i.e. / ( i , X t,a f) =  e~f}tf l3( X t, a t), a sufficient, 

condition for the convergence is achieved when the discounting rate ¡3 is large enough 

together with the running cost cq)5 satisfying the quadratic growth condition. The

proof in the two cases follows from the fact that when a solution exists for the SDE (2.5),
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equation (2.10) is verified which together with the quadratic growth condition, ensures 

the convergence of the integral.

2.4 Derivation of the HJB equation

In this section, we describe how the dynamic principle of Bellman allows us to characterise 

the value function in terms of a partial differential equation so-called the Hamilton-Jacobi- 

Bellman equation.

We consider the case of a finite horizon problem. Let 0 < h < T  — t where T  is the finite 

horizon and t is the current time, let us also assume that we are applying a control as 

on the interval [t, t +  h] . At time t +  h , the state of the system becomes X t+h and we 

observe it at time t +  h. Let us assume that we know the optimal policy to apply from 

time t +  h onward i.e. we know the control a*, t +  h < s < T such that

V(t +  h, X t+h) — J(t +  h, X t+h, a*)
r T

=  E
' t+ h

f { s ,X s,a*s)ds + B (X r ) I Tt+h

Consider the control:
(y. g, t <  s <  t +  h

a« =
a* t +  h <  s < T, 

we obtain by the law of iterated conditional expectations

J(i, x, a) =  E 

=  E 

= E

r*t+/l r T

f  a5) d s+  f  (5, X 5, a*) ds +  B(X.t ) I =  x
L J t

rt+h
f ( s ,X s,a s) ds +  E

L Jt
f ( s ,X s,a *s) ds + B (X T)\Xt+h

(2.13)

(2.14)

f (s ,  X s, as) ds +  v(t +  h, X t+h) I X t =  x
L Jt

X , - x

(2.15)
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2.4 2.4. DERIVATION OF THE HJB EQUATION

The Bellman optimality principles states that if we choose the decision as in the interval 

of time [t, t +  h\ in order to maximise J(t, X , d), then we obtain the optimal control over 

the wThole interval [t, T]. This implies that the optimal control in [t, T] can be decomposed 

in a*, s £ [t,t+h] and a*, s £ [t +  h,T] where the latter is the optimal policy for a problem 

starting at time t +  h where the system is in the state X t+h- Considering equation (2.15), 

it is evident that

V(t, x) =  supE
a ut

f(s , X s, as) ds +  V(t +  h, X t+h) I X t =  x (2.16)

We can now formally derive the Hamilton-Jacobi-Bellman equation using equation (2.16). 

We first consider the constant control as =  a £ A  on the interval [t,t +  /?,]. Using 

equation (2.16), we obtain

V (t,x ) >  E f(s , X s, a) ds + V(t +  h, X t+h) X , =  x
IJt

(2.17)

If we assume that V  £ C 1,2([0,T[, K"), we obtain using Ito ’s formula between t to t +  h:

rt+h a y  n a y  i n n
F(t  + ft,X,+#| X ,= x )  = V'(i.x)+ / —  *  + X a x i ‘i x '; + 5 X X i

Jt L 1=1 i= 1 7=1

d2v
2 ^ ^  dXddXJ

1 = 1  j =1
dXldXJ

ft+h /QY
V(t, x) + / i —  ds + b(S,X,a).VxU

1 ” " 021/
+2 E  E  (s’x- «) J:..L..rfxW

Z=1 j = l

Az.

dXWXi

+  J  (V x U )V (s ,X ,a )d W s.

(2.18)
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Taking the expectation of equation (2.18) after defining

Ca(V) =  b(s, X, a).Vx Vr + ^tr(cr(s, X . a)a'(s, X , a)D2V )

we obtain

r fdv \ 11 X t =  x] =  V (t,x ) +  E i  U +£,w )H

which after substitution in equation (2.17) yields:

H+b , d v
E

.J t ds
+  Ca(V) +  f  (s, X , a) ds < 0. (2.19)

We proceed to the derivation by dividing equation (2.19) by h and tending h to 0, this 

yields
dV
dt,

Ca(V) +  f ( t ,X ,a ) <  0. (2.20)

Equation (2.20) is valid for every a € A  therefore it is valid on the sup of A  :

~  +  sup [£a(V) +  f(t , X , a)] < 0.
Ot ae.4

(2 .21)

If we assume that a* is an optimal control, then using equation (2.16), we obtain

V (t,x ) =  E f(s ,X ;,a *9) ds +  V{t +  h, X*t+h) (2.22)

where X* is the state of the system and the solution to equation (2.5) given that at time 

t, X t — x  and the control a* is applied.

By a similar argument and with regularity conditions assumed to be satisfied on V  we 

obtain:

^ + £ a\V ) + f (t ,X ,a * )  =  0 (2.23)
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which combined with equation (2.21) proves that V  satisfies:

d v
—  + sup [Ca(V) + f ( t .X ,  a)} =  0 V ( i , x ) e [ 0 , T ] x r .  (2.24)
Ot ae A

Equation (2.24) is a second-order parabolic partial differential equation known as the 

Hamilton-Jacobi-Bellman equation that characterises the solution of the value function. 

For the particular value function, solution to the control problem is determined by the 

boundary condition

V(T. x) =  B(x), V x e l "

which results from the definition of the value function. The dynamic programming prin-

cipal of optimality suggests that if we find a control a* such that

sup [Ca(V ) +  f(t, X, a)] =  £ “*<*•*> (V) +  f(t, X, a*(t, x))
a£A

i.e.

then we have

a*(t, x) =  argmax [Ca(V)(t, x) +  f(t , X, a)}
a€A

DV
—  + C a*^\V)  +  f(t,X,a*(t,x)) =  0

and

V (t,x ) =  E f(s ,X ;,a *s) ds +  g (X *T)
L Jt

where X* is a solution to the SDE:

(2.25)

(2.26)

(2.27)

(2.28)

dX*s = b(s, X*, a*s) +  a(s , X*,a*s)dBs t < s < T

x :  =  x.
(2.29)
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2.4.1 Infinite time horizon

An interesting case of the infinite time horizon problem arises when the state variable is 

time homogeneous Markov and when the cost is discounted back to the initial time. Let 

us assume that the evolution of the state is governed by the SDE

dXs 4~ cr(Xs,

X t =  x.
(2.30)

Let the cost function be rewritten in terms of the discount factor as:

V(t, x) — sup E e~0sf ( X s, as)ds I X t =  x (2.31)

If we define V (x) as

V(x) =  supE e~0sf ( X s,a s)ds I X 0 =  x (2.32)

then it is clear from the time homogeneous Markov property of X t that

V(t, x) =  e~mV(0, x) =  e~0tV{x). (2.33)

The proof is given in (3.3.1). The dynamic programming problem turns to the search of 

the function

V(x) =  sup E
C*s

0 < s < h

e - ^ / ( X s, as)ds +  e -0hV (xh) I X,o = x (2.34)

If we replace (2.33) in (2.24), we obtain the appropriate Bellman equation:

-¡3V(x) +  sup [CaV (x) +  /(x ,  a)] =  0, Vx G 
a eA

(2.35)
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which does not involve any terminal condition and is free of the time variable.

2.4.2 Optimal stopping time problems

Optimal stopping time problems are similar to control problems; the objective is to stop 

the process at an appropriate time which is best among all possible stopping time in 

order to optimise a certain goal.

Formulation of the problem

We assume that the state variable is governed by the stochastic differential equation

dXs =  b(Xs)ds +  a (X A.)dBs, (2.36)

where X s € Kn and W  is a ¿-Brownian motion adapted to the filtration Tt. We also 

assume that the function b : R" —> Rn and a : Rn —> Rnxd satisfy the usual linear 

growth conditions and the Lipschitz condition that guarantee the existence and unique-

ness of (2.36) given an initial condition. Let { X;(, .s > 0} be the solution of (2.36) which 

takes the value X t =  x at time t. We denote as T  the set of all stopping times i.e. the 

set of all positives random variables such that

Vi > 0, the event {r  <  i}  G Tt.

We now consider

F(x) supE
rer

e~0sf { X xs)ds +  e~0TB (X xT) (2.37)

where /3 is the discounting factor and /  and B are defined from Rn to M with B being 

bounded. We adopt here the convention that e~0TB(X.x) is equal to zero at every lv <E Ü
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where t ( u j ) — oo. We also assume that

E e_/3s |/(Xf)| ds < oo, (2.38)

which ensures that (2.37) is well defined. The objective is to find the value function V  

and to determine the optimal stopping time i.e. the stopping time r* such that

V’ (x) =  E e - ßsf ( X xs)ds +  e - dT'B {X xTQ .

The variational inequality

(2.39)

In this subsection, we describe formally the dynamic programming principle that allows 

us to obtain the properties satisfied by the value function V.

Consider the time t =  0 where the state variable has value X 0 =  x. Let h > 0 and let us 

assume that the process is not stopped in the time interval [0, h]. We can then capitalise 

a total discounted cost f g e~0sf ( X x)ds and the state variable at time h is X h- If we 

apply at h the optimal strategy, we obtain V (X xh) which discounted back to time t =  0 

gives e~0hV (X xh). Along these lines, without stopping the process in [0, h.], we obtain the 

expected cost function

E e~ßsf ( X xs)ds +  e~0hV {X xh) (2.40)

By definition of the value function V  which is the expected cost function maximised over 

all stopping times, we have:

F(x) >  E e -ßaf { X x8)ds + e - ßhV {X X) . (2.41)

For h >  0 and small enough, we obtain the following approximation

E
.Jo

e - 0sf ( X x)ds +  ( l - ß h ) V ( X x) - V ( x ) + o(h) <  0.
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Applying Ito’s formula between 0 and h after assuming that V € C 2(Mn), we obtain

V (X h) =  F(x) +  /  £ V (X x)ds +  V xV (X xs)'a'(X)dWs, (2.42)
JO

where

£{V ) =  b (X ).V x V + -tr (a {X )a ' (X )D 2V).

By taking the expectation of (2.42) we obtain

E [V (X h)] =  V (x )+ E £ V (X x)ds (2.43)

Substitute (2.43) in (2.40) and divide by h yields

E T e~0sf ( X xs)ds +  T £ V (X X) -  (3V(Xxh) < 0 (2.44)

and by tending h to zero, we obtain

PV(x) -  CVQT) -  / (x )  > 0 , Vx e Mn. (2.45)

Moreover, using (2.37) while taking r =  0 in the supremum of T  we have

V(x) > B(x), Vx E Rn. (2.46)

Now, let us assume that at t — 0, V(x) > B (x). Let r* be the stopping time,

t * =  inf {s > 0 : V(Xg) =  B (X *)} . (2.47)

On the infinitesimal time interval [0, /¿At *), we have V(X*) > B(X*). This suggests that 

it is not optimal to stop the process on [0, /¿A t *) since by doing so, we will receive a cost 

B(X*) whereas we could do better by receiving V(X£) > B{X*). This in turn implies
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the equality in equation (2.41)

V (x) >  E
/ l A r *

^ V ( X f ) d s  +  e - ^ AT‘ V(X5EAT*) (2.48)
Uo

By a similar token together with the estimation of P[t * < h] in 0(h), and by applying 

Ito lemma, we obtain by tending h to zero,

pV (x) — CV(x) — /(x) =  0, whenever V(x) > B (x). (2.49)

Combining equations (2.45), (2.46) and (2.49) , the value function therefore satisfies:

min (3V  -  CV -  f ,V  -  B) =  0. (2.50)

The method used to derive (2.50) indicates that it is never optimal to stop the process 

when F (X *) > J3(X*) but whenever V(X*) =  B (X*) we can obtain a cost V(X*) by 

stopping at that time. This suggests that the stopping time defined as

r*= * in f{5 > 0 :  V (X i) =  5 (X i ) }

with the natural convention that inf{0} =  oo is optimal for the problem (2.37). 

Let us now introduce the open interval on Mn defined as:

D =  {x  G En : V(x) > B (x )}

which we will refer to as the continuity region since whenever the process X* is in D. 

it is not optimal to stop therefore we let the process continue. The stopping time r* is 

therefore the smallest stopping time and can also be defined as the first exit time from 

the open interval D i.e.

t * =  inf {s > 0 : X * g D } .
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Let B G C 2(Mri) and define the set U by

U =  {x  G Rn : 0B (x) -  CB{x) -  / (x )  < 0} ,

where

U CD.

The present formulation suggests that it is never optimal to stop the process before it 

leaves the region U.

From (2.49), we obtain:

/3V(x) -  CV(x) — / (x )  =  0, Vx G D. 

Moreover by the definition of D, we have

U(x) =  J5(x), Vx G dD

(2.51)

(2.52)

where dD is the boundary of D.

When the domain of D is known, the problem (2.51)-(2.52) is a Dirichlet problem and 

under some regularity conditions on the frontier dD, coupled with the ellipticity con-

ditions on the diffusion coefficient cr(x), it has a regular solution (see Friedman 1975). 

Usually D is unknown and therefore we need some extra conditions on the frontier dD 

to identify the domain of D and the value function V. This condition called the Smooth 

fit (see Shiryayev( 1978), Jacka ( 1993)) expresses the continuity of the gradient of the 

value function on the frontier i.e.

V xU(x) =  V x7?(x) Vx G dD. (2.53)
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2.5 Solution of the PDE: The Verification theorem

As mentioned in the introduction, there is no systematic method for solving the Hamilton- 

Jacobi-Bellman equation. The only method in the literature is based on guessing the 

solution and proving that the solution does indeed verify the PDE. This method relies 

on the so-called verification theorem below.

Theorem 2.5.1 (Verification: Finite horizon) .

Let 4/ G C 1,2([0,T] x Rn) satisfy the Hamilton-Jacobi-Bellman equation with boundary 

condition i.e.

T(T,.) =  H and V(f, x) G ([0, t) x Mn) , 3a*(t, x) € A

such that
d<L d'F
—  (i,x ) +  sup [£c>T(t,x) +  /( f ,x ,a )]  =  -^ -(i,x ) +  Ca (t,x) +  f (t , x, a*(t, x)) =  0, 
at aeA at

then T — V is the value function on ([0, T] x M") and a* is a Markovian Optimal control.

It is also true that when T is obtained, then it is unique. If furthermore satisfies the 

quadratic growth condition i.e.

|4/(i,x, a)| < C ( l  +  |x2|) V(i,x, a) G ([0,t[xIR" x A ) ,

then $  is unique in the space of quadratic growth functions.

Theorem 2.5.2 (Verification: Infinite horizon) .

Let T G C 2(Rn) satisfy the quadratic growth condition and verify:

/3T(x) -(-sup [£Qtf(x) +  /  (x, a)} =  /IT(x) + £ "* (x ) +  /(x ,a * (x ))  =  0,
a€A

where q * ( x ) G A , then T is a unique solution of the Hamilton-Jacobi-Bellman equation.
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In the derivation of the Hamilton-Jacobi-Bellman equation and in the verification the-

orems, we have assumed the existence of a C 1,2 and C 2 value function respectively de-

pending on the finite or infinite time, horizon. These are purely assumptions and the 

verification theorem is by no means an existence result. Now, we will state an existence 

result for C 1,2 value functions in the finite time horizon. The existence in the infinite 

time horizon follows logically.

Theorem  2.5.3 (Existence o f a C 1,2 value function) . Let assume that

• The control space A  is compact

• h, a and f  G C 1,2 and are bounded

• The terminal cost B G C3 is bounded

• V x, y G Rn, 3C >  0 such that

V(£, x, a) G [0, T\ x R" x A, y'aa'(t, x, a) y > C |e|2 ,

Then the Hamilton-Jacobi-Bellman equation admits a unique bounded solution V  G C 1’2 ([0, T] x Rn). 

(See (Pham 2002))

The above theorem is constructed as a sufficient condition of the existence of C 1,2 value 

functions. When those conditions are not satisfied, C 1'2 functions could exist under 

necessary conditions that require more complicated mathematics. Different theorems 

according to the nature of the control problem allow us to check if necessary conditions are 

indeed met. In the event that the control problem fails to meet the necessary conditions, 

one has to look for non regular solutions by considering the theory of viscosity solutions, 

see Crandall and Lions (1983), and Crandall, Ishii, and Lions (1992).
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2.6 The jump and diffusion process

Let II(i) be the space-time Poisson process with non state dependent amplitude h(t, y). 

We can represent dH(t) as

dn(i)-=  J h(t,y)X(dt,dy) (2.54)

where the Poisson measure M(di, dy) is merely a short hand notation for 'H([t,t+dt],[y,y+  

dy]) and y G T represents the size of the jump with distribution function Fy(y). In this 

section, we will develop and derive the HJB equation related to state process that evolves 

not only according to a diffusion process but also with a jump process. The section 

completes the generalisation of Markov noise in continuous time, by including space-time 

Poisson noise with a randomly distributed amplitude conditioned on a Poisson jump time. 

Properties of Poisson process are in appendix (C).

2.6.1 Ito formula for The Jump and Diffusion Process

Let. X t be the state process with values in R" evolving according to the stochastic differ-

assume here that we have no control over the jump amplitude so that h(t, y) is indepen-

dent of a.

The change in value of the state process X ( can be decomposed into a continuous com-

ponent and a jump component. See appendix (C). Using Ito’s formula, we can derive

ential equation

r/Xf = b(t, a t. X t)dt +  a(t, a t, X f)c/Wf + dH(t)

where at as in the diffusion case is the value of the control parameter a at time t. We
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the change in a function G(t, X ) as

dG(t,X) =
dG
dt

b(t, at, X t)V x G +  Mr (cr(t, X t, at)cr'(t, X t, a t)D 2Ĝ j dt
(2.55)

+  {V x V )Ta (t ,X t,a t)dW t +  J [G (t,X t +  h(t,y)) -  G (t ,X t)]K(dt,dy).

2.6.2 The HJB equation

Let J~* be the history of the Brownian motion W t and the marked Poisson process dH(t). 

Following the argument in section (2.4), the value function for the stochastic problem

V(t, x) =  max Eas 
t < s <  T i: f ( s ,X s,a s)ds +  B (X T) I F t (2.56)

verifies the equation

dV
¥ + r * ( t-x)(b ) + / ( i , X ,Q*(i ,x ) )+ %

where

and

Since

[G{t, X t +  h{t, y)) -  G{t, X t)] N(dt, dy)
J r

a*it, x) € argmax [£Q(K)(£, x) +  f{t , X , a)] 
a eA

CaiV) =  b(i, X , a ).V x F +  -tria it, X , a)a\t, X, a )D 2V).

=  0 

(2.57)

(2.58)

E p [Git, X t +  hit, y )) -  Git, X t)] N(dt, dy)

A(t)dt j  [Git, X t +  hit, y)) -  Git, X,)] fviy)dy

= X(t)dtEY [Git, X t +  hit, Y)) -  Git, X f) ] , (2.59)
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the HJB equation for the problem (2.56) turns to

fJV
Hi +  Cn' (t'*\V) + f(t , X , a*(t, x)) +  A(t)Ey [G(t, X t +  h(t, 1")) — G(t, X t)] = 0 . (2.60)

2.6.3 Existence and Uniqueness of solutions to the state jump 

diffusion process

Let us consider the general case where the jump amplitude depends also on the state 

variable and the controlled parameter a i.e. when a jump occurs at time t, it is of size 

h(t, X t, y). The state variable evolves according to the law

dXt =  b(t,at,X t)dt +  a (t,a t,X t)dW t +  j  h (t,y ,X t)H(dt,dy). (2.61)

To ensure the existence of the stochastic integrals and the existence of a solution to (2.61), 

we will need the following conditions, to which we will refer to as the general existence 

conditions.

Let a £ A. and assume that the following conditions hold :

There exists constants C  and L, G M such that V xj x2 G Kn

b(t, X , a)|2 dt < oo

[  [  \h(t,y,Xt)\2 f Y(y )dyd t<oo
Jo Jr

Ib(t, X . a)|2 + \a(t, X , a)|2 +  A(i) J \h(t, y, X,)|2 f Y(y)dy < C  ( l  +  |x|2)

|b(t, x 1; a) -  b(t, x2, a)| < L |xi — x2|

|cr(i,xi,a) -  cr(i,x2,a)|2 + A(t) J \h(t,y,xi) -  h(t, y, x2)|2 f Y{y)dy < L2 |x2 -  x 2|2.

(2.62)

Theorem  2.6.1 If the functions b(t, X, a), a(t, X, a)and h{t, X , Y) are linearly bounded
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2.7 2.7. THE MARTINGALE OPTIMALITY PRINCIPLE

by the constant C and satisfy the uniform Lipschitz-condition with the constant L i.e.

every a € A  a unique solution X , £ Mn adapted to the combined filtration T f with sample 

paths that are continuous from the right with left-hand limits. Moreover,

See Gihman and Skorohod (1979), Theorem 3.4p.l38 & p.156 for the proof.

2.7 The Martingale Optimality Principle

In this section, we will show a different technique that will enable us to verify if our guessed 

value is optimal. In section (2.5) we show the assumptions and sufficient conditions for 

the guessed value function to be optimal under the so call verification Theorem for 

state diffusion processes. We will now elaborate on a different technique called The 

Martingale Optimality Principle that is applicable not only to diffusion processes but 

also to processes with jumps. This technique is mostly applicable when the objective 

function is to optimise a terminal finite function. Again, we consider the stochastic 

control problem:

Theorem  2.7.1 Assume that we have found a control strategy {a*}t<s<T and a function 

M(t, X ) such that

they satisfy the general conditions then the stochastic differential equation (2.61) has for

E [|Xi|2] < oo Vf. (2.63)

1) M * (f ,x )= E  f tr f ( s ,X s,a*s)ds +  B (X r ) | T t

2) M*(f, X ) is a Martingale with respect to T t

3) For any other control strategy {a s}t<s<T,> M (f, X ) is a Superm.artingale with respect
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to Tt, then

a) {a*}i<s<T is the optimal control strategy for the problem,, and

b) For all possible initial states, ) coincides with the value function i.e.

V (t,x), M *(i,x) =  V (t,x ). (2.64)

The proof is simple and relies on the Markov property of the chain together with assump-

tions (1), (2) and (3), see Korn (2003).
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Chapter 3

Pricing in a Monopoly Insurance 

Market

3.1 Introduction

In this chapter, we will analyse the behaviour of an insurance company operating in a 

purely monopolistic market where the company has total control over the market. At 

any given time i, the insurance company can set a premium pt for each policy and this 

premium cannot be challenged by any customer or by any other insurance company or by 

any law. Under these circumstances, the customer has two courses of action. She either 

purchases the policy or turns it down.

A customer who decides to take up the policy will be paying a premium continuously at 

the prevailing rate pt set at time t by the insurance company and will be covered for as 

long as she continues to pay the prevailing premium. Also, at any time t, a customer is 

free to withdraw from the policy and therefore stops paying the premiums and hence stop 

being covered. There is no penalty charged at withdrawal to the customer and no benefit 

is paid if the customer has not made any claim for the random period T that she has 

been covered for. This is analogous to the classical risk theory in which the premium is
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3.2. THE MARKET STR UCTURE 3.2

paid at a constant rate and the insured is covered for as long as premium is paid. We also 

consider the fact that the structure of the insurance market imposes some conditions on 

the premium set by the insurance company through the number of customers willing to 

buy the policy at a given price. It is evident that in a true monopoly market, the demand 

of a good is a decreasing function of price. The objective is to elaborate on an optimal 

strategy that will dictate to the company the premium to be charged in order to achieve 

a specific goal. We will first look at maximising the discounted wealth of the company 

and then evaluate the risk of bankruptcy under the optimal strategy. In the next section, 

we will focus on the mathematical modelling of the market and set the framework for the 

optimisation problem.

3.2 The market structure

3.2.1 The demand function

We denote by qt the number of policy-holders at time t . It is evident that at a future 

time t +  dt, this number could go up due to new business (sale of new policies) or go down 

due to withdrawal. This suggests a model by which in a small interval of time dt, there 

could be an increase or decrease in the number of policy-holders. A candidate model for 

the dynamic of qt would be a birth and death process . We assume that for any contract 

subscribed, the contract remains in force for an exponential time T with parameter k i.e. 

T ~  exp(n). The probability that a contract that has been in force for a time t is no 

longer in force for an extra interval of time h is

P [T < t +  h | T > t\ =  P[T < h] =  1 -  eKh.
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3.2 3.2. THE MARKET STRUCTURE

We may obtain the withdrawal rate as a limit of the probability.

h—>dt
lim P[T < h] =  ndt + o(dt) «  ndt. (3.1)

Above is the death rate of a single contract so that the total rate while qt contracts are

in force is nqt. The birth process will be modelled according to the way the company 

generates new business. If we denote nt as the rate of generating of new business, a first 

equation for the dynamic of the business size may be written as :

An important question about iit is how new business is generated with time. One trivial 

and partial answer to the question is to allow nt to depend on the reputation of the 

company. Since reputation at time t is positively correlated to the number of policy-

holders at time t (qt,) we make nt depend on qt through an increasing function of qt. 

say h(.). It is also true that a company that charges higher premiums will attract fewer 

policy-holders. Consequently, nt will be a decreasing function of the premium charged, 

say g(pt). These two points are expressed in terms of the following equation:

where h(.) increases with qt and g(.) decreases with respect to pt.

We will be calling g the demand function. For simplicity, we take h as an identity function. 

This leaves us with the full dynamic of qt as

dqt =  —nqtdt +  ntdt. (3.2)

nt =  h(qt)g(pt) (3.3)

(3.4)
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The next section will be devoted to the choice of the demand function g(pt) that describes 

the reaction of customers as premium changes.

3.2.2 Choice of the demand function

In section (3.2.1), we denoted as g(pt) the demand function of the monopoly market which 

mathematically represents the growth rate of the exposure in the absence of withdrawals. 

In this section, we consider some desirable features of the demand function and make 

an appropriate choice. One would wish that the demand function should prevent the 

company from charging a negative premium in order to build exposure which we will 

denote as the non-negative premium condition. A candidate function will therefore be a 

function which achieves its maximum value at zero.

Since there are a finite number of customers in the insurance market, we will also like our 

demand function to have a finite number of policy-holders when the premium is set at its 

lowest level i.e. pt =  0 which we denote as the non-diverging condition when premium 

is at lowest value. This outlaws the set of functions g such that

lim o(pt) -  oc.Pt—*Q

One feature that we have mentioned for the demand function in section (3.2.1) is its 

decreasing aspect with respect to the premium. We will also wish to ensure that the 

demand function prevents the insurance company from making excessive expected profits 

by charging more and more on the premium.

Our goal therefore in the choice of the demand function is to assess how the expected 

profit changes as a function of the price charged.

We propose a quadratic candidate function which satisfies the non everywhere increasing 

profit condition, the non diverging condition when the premium is at minimum and the
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non-negative premium condition:

l -  npt if pt <
9\Pt) =  <

{ 0 if Pt >

Together with the withdrawal rate n, we can express the exposure dynamic as

dqt — qt{m — np2)dt where m =  / — k . (3.6)

In the control theory literature and most importantly in the risk theory literature, few 

attempt in incorporating a dynamic demand function has been successful. In this the-

sis, some demand functions coming from the economics literature have been explored 

unsuccessfully. The exponential demand function which also satisfies the eligibility cri-

teria appears to be analytical intractable in solving the dynamic programming problem 

whereas a linear demand function yields the uninteresting bang-bang control solution.

3.2.3 The claim size and claim severity

We model the aggregate claims as a compound Poisson process with a randomly dis-

tributed jump amplitude conditioned on a Poisson jump in time. If we consider the 

policy of a customer say i, a claim occurs with rate A per unit time and when the claim 

occurs, it is of size Yt where Y.t is a random variable assumed to be independent and 

identically distributed i.e. Yt =  Y. At any time t , the exposure of the company denoted 

by qt is a function of time; this implies that the rate at which the claim of size Y  occur 

is Aqt which depends on time by solving Equation (3.6).

Denote by St the cumulative claim size up to time i, and by Nt the cumulative number 

of claims, we can represent the aggregate claim amount St at time f as a marked Poisson 

process with a time dependent rate A(t) =  Aqt and amplitude Y  on a sample space P.
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Hence

y dy) (3.7)

where H(dt, dy) is the Poisson random measure, on the product space of the marked space 

T and the time ( R+ * T). The measure tt(dt,dy) assigns unit mass (y,t) if a mark y 

arrives at time t. It can be decomposed into the measure of the jump amplitude and 

the Poisson measure since the jump process Nt and the jump amplitude are independent. 

This produces

where f(y )  is the density function of the claim size distribution. Combining equa-

tions (3.7) and (3.8), we may compute the expected change in the aggregate claim in 

a small interval of time [t, t +  dt] as

3.2.4 The wealth process

We assume that the company starts with wealth W0 =  x > 0 at time t — 0. We also 

assume that the share holders of the company requires a return of rate a. Changes in the 

company’s wealth in a small interval of time dt are brought about by:

N(dy,dt) =  A qtdtf(y)dy (3.8)

(3.9)

In the Risk processes literature, the aggregate process St is represented as

St =  '^2Yi and dSt =  YdNt where Nt ~  Po(\qt).
Ì— 1

• Excess return on capital required by shareholders i.e. the interest element on share-

holders investment expressed as a\Vtdt in a small interval of time dt.

• Premium income paid by policy-holders qtPtdt in a small interval of time dt
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And by the payment of claims dSt = YdNt occurred during the time interval dt

Thus the dynamic of the wealth is described as

dW, =  —a\Vtdt +  ptqtdt — YdNt. (3.10)

This is decomposed in the continuous change and the jump change as

dWt =  dWtcont -  d\V{umv where dWtJump =  j  y dNtf(y)dy. (3.11)

3.3 Derivation of the HJB equation

In this section, we consider X  to be the o  algebra generated by the marked Poisson process 

S{t>o} and Xt to be the history of the process St up to time t. The company starts at time 

t =  0 with initial wealth If o =  x  aiming to maximise the expected discounted wealth .J0 

in an infinite horizon.

Let us denote by X ( the vector of state variables at time t, X t =  [IT), qt\. The objective 

is to maximise the discounted wealth of the company up to time oo by controlling the 

premium charged pt. Let

J(t, X t) =  E e~0sWsds I X, and V (t ,X t) =  max J (t,X t), (3.12)
Ps

t<S<  OO

the value function can be split up into the disjoint intervals [t, t +  dt] and [i, oo]

V (t ,X t) = max E
Ps

t<s<o o

e~/3aW„ds

=  max E
Ps ,

t< s<  o o  L ,y  1

pt+dt
e~0sWsds +  / e~0sWsds 

J t+dt
x t

=  max E
Ps

t<S< OO

pt+dt
e~0sWsds +  E

poo
/  e~0sWsds t+dt x t

_J t+dt
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Applying the principle of dynamic programming, we can can decompose the maximisation 

into disjoint intervals [t, t +  dt] and [t +  dt, oo]:

V (t , X t) =  max E
Ps

t<s<t+dt

rt+dt
e 0sWsds +  max E

Ps
t+dt<s<  o o

' p  o o

/ e~0s\Vsds F t+dt F
t+dt

=  max E
Ps

t<s<t+dt

=  max E

rt+dt
e -^ W ads +  V(t +  d t,X t+dt) T,

t<s<t+dt

rt+dt
e~0sWsds +  V(t, X t) +  dV F t (3.13)

Taking the limit when dt tends to zero of both sides yields :

max
pt

~0tWtdt E dV Tt =  0. (3.14)

We can now apply the Ito formula for jump processes to obtain

E dV I Tt
dV dV dV

- l * dt +  ^ dq* \ ^  +  8WtE[W tlTt]

+ \qtdt I ( V[t, Wt -  y. qt] -  V[t, Wt, qt
(3.15)

In order to proceed to the optimisation with less variables, we make a change of the value 

function:

V + X t ) = e 0tV (t ,X t) (3.16)

and continue the maximisation of the transformed value function V (t ,X t). The deriva-

tives and difference equations according to equation (3.16) yield

d v
dqt

=  e -ptdV_
W t ’

dV
d m

=  e-P t o v
dWt (3.17)

V[t, Wt -  y, qt) -  V[t, Wt, qt} =  e~0t ( V[t, Wt -  y, qt) -  V[t, Wt, qt
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Substituting equation (3.15) and the different expressions of equation (3.17) into equa-

tion (3.14) after multiplying it by e^4, we obtain :

Theorem  3.3.1 V(t, X t) is independent oft.

P ro o f The proof relies on showing that V(t, X t =  x) =  P(0, x) for all t, which will mean 

that V(t, X t = x) is independent of t and therefore ^  — 0. The argument will be based 

on comparison by first making a one to one correspondence between the control (t, x) 

and those for (0, x) using a translation.

Let us denote by a any control for (0,x), where a € A and a(s) is defined for s >  0 and 

let z be its corresponding path with z(0) =  x.

Now consider a{u) =  a(u — t) and z(u) =  z(u — t) for u > t with z(t) =  x, where 2 and 

5 solve the same differential equation. If we had started with a and z, we would have 

obtained a and z by inverse translation. And the performance by a and a are just the 

same, i.e.

max <
pt

Wtdt -  (3Vdt +  % dt +  f|E  [dqt I Tt\ +  |^E  [dWt I Tt\ 

+ Xqtdt f r (v [t, Wt -  y, qt] -  V[t, Wu q t])fY(y)dy
> =  0. (3.18)

We now show that V(t, X t) has less variables than V (t , X t).
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Now taking maximum over a for (0, x), and a for (0,x) respectively, we obtain

V (t, X t =  x) max /  e ^ u ^h(z(u),a(u))duâÇ:A

max /  e l3sh(z(s), a(s))ds «6-4 Jt

V (0, x)

Therefore ^  =  0. □

This in turn simplifies equation (3.18) which after substitution of the state variables 

dynamic yields

Wt - P V -  | £ (aWt -  ptqt) +  g q t [g(pt) -  k ]

max <
pt

+ \qt f r [V(Wt -  y, qt) -  V(W U qt)] f(y)dy

=  o. (3.19)

Equation (3.19) is a first order PIDE with no boundary condition. It is a fact that 

there is no systematic method to obtain solution of PIDE equations derived from the 

jump stochastic control problem or control problems with jump and diffusion. We will 

therefore seek a solution through a guess method and verify that the solution indeed 

satisfies the requirements imposed on the state dynamic and the value function. The 

next section will be devoted to a search for a solution to the PIDE.

3.4 Solution to the HJB Equation

The approach to solve the PIDE (3.19) is based on a trial of possible functions of two 

variables. A candidate function is proposed as the solution and the verification theorem 

is applied to prove that it is indeed the solution of the problem. Due to the nature of 

the cost function which is linear in the wealth process, we suggest a transformed value
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function of the form

V  =  AWt +  Bqt where A e R  and B e l .  (3.20)

Given the proposed value function (3.20), after substituting the different partial deriva-

tives, the PIDE (3.19) turns to:

Wt [1 — A(a  +  /?)] +  qt max | -  (3B +  Apt — XAtt +  B[g(pt) — k ] |, (3.21)

where n is the expected value of the claim distribution function i.e.

k =  /  yf(y)dy-

A value function of the form (3.20) makes the PIDE separable in Wt and qt regardless 

of the demand function. Notice that the maximisation is carried out only on the second 

part of equation (3.21). In the rest, we will consider the quadratic demand function of 

section (3.2.1) that describes at best the reaction of customers as the premium changes. 

We substitute the quadratic demand function in (3.21) which yields

1 — A(ß  +  a) — 0 = >  A — — ——
a +  (j

(3.22)

and

max
pt

ßB \ixA + Apt +  B[l — = 0. (3.23)

3.4.1 Optimal premium and conditionality

We obtain the candidate optimal premium by applying the first order maximisation 

condition to equation (3.23).
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First Order Condition

Differentiating the expression in the brackets of (3.23) with respect to pt and setting it 

to be equal to zero yields the optimal premium,

Pt =
A

2 nB
(3.24)

Second order condition

The second order condition imposes the condition that the second derivative of the brack-

eted expression in (3.23) is negative to make the optimal value (3.24) a maximum. This 

is translated as

- 2 nB < 0 = »  B > 0. (3.25)

It is trivial to see that since A >  0, the optimal premium is positive if the second order 

condition is met.

To solve for B. we replace the value of the premium by the value of the optimal premium 

from expression (3.24) into equation (3.23) and remove the maximisation. B then solves:

B(m  — ¡3) — A 7tA +  Apt — nBpf =  0,

which after substitution turns to the quadratic equation

A2
(m — ß )B 2 — XirAB +  -— =  0.

4n (3.26)

The discriminant A of (3.26) will impose a condition on the admissible set where:

A =  A27t2A2 — —  (m — ß) = A2 .2 2 m - ß
A  7T —

n
= A2N (3.27)
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3.4.2 Analysis of the possible roots

We are looking for positive real roots given by the second order condition. This implies 

that the discriminant must be positive to obtain a solution. It is also true that from the 

properties of quadratic equations, if there are real roots B\ and B2, their product is

A2
4n(m — ¡3)'

This in turn suggests that if there are two real roots then they are of different sign if 

(m — (3) < 0 and of the same sign if (m — (3) >  0. We will first look at the possibility of 

a positive root for a sufficient condition ensuring the positiveness of the discriminant.

Case (m — (3) <  0

Assuming m — (3 < 0 =4> ¡3 > m ,

the discriminant is non negative. Two different real roots B\ and B2 are solutions 

to (3.26) :
AtrA -  A\JA27r2 -  m=§. 

2 (m — /3)
(3.28)

and

Bo =
XttA  +  a J x h 2 -  ^

(3.29)
2 (m — (3)

Under the condition (m — (3) < 0 , B2 < 0 and B\ > 0. Consequently the only candidate 

solution for the HJB equation satisfying the second order condition is B\.

Case m — (3 =  0

When m — (3 =  0, the quadratic equation (3.26) simplifies to a linear equation with 

solution

B =
A

TuXir
>  0
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Case m — ¡3 >  0

In the case where m — (3 >  0 =4> (3 < m,

the discriminant is not always positive. To ensure the existence of real roots, restrictions 

are needed.

The analysis will therefore be made in the interval 

0 < m — (3 < nX27T2 <t=» m — n\2n2 < (3 < m .

This ensures that m — ¡3 >  0 and the discriminant is positive. Solving for B in the above 

range yields B\ and B2 as in equations (3.28) and (3.29). Using again the product and 

sum of real roots of a quadratic equation if they exist, we obtain:

A2 XttA
B\B2 =  -—-,-------— > 0 and B\ +  B2 =  -,---------> 0 (3.30)

4n(m — ¡3) (m — (3)

Expression (3.30) implies that Bi > 0 and B2 > 0 thus both Bi and B2 satisfy the second 

order condition. In the following sections, a choice will be made as to which of B\ and 

B2 is the solution to the control problem. This requires the verification theorem under 

the optimal strategy which will be the subject of the next section.

3.5 Verification Theorem

This section is concerned with the different tools that enable us to verify if our candidate 

function is indeed the value function. The analysis is based on the verification theorem 

applied to the infinite horizon discounted running cost problem. Through this analysis, 

we will be able to discard the value of B that does not satisfy the verification theorem 

and the result of the analysis will provide the value function if it is of the form expressed 

in equation (3.20). We start with the fact that the solution V{t, X t) =  eP*V(t, X t) of the 

HJB equation exists and the first and second order condition in the admissibility region 

(3 < Prnin are met. In order for V (t, X t) to be the value function, it needs to satisfy the
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convergence to zero condition which is the subject of the next section.

3.5.1 Convergence condition of the value function

We assume that there exists a value Bi for * =  1,2 for the optimal control problem under 

the optimal strategy which predicts to charge the constant premium pt =  with value 

function

Zi{t, IV, q) =  e +  B^qt).

We would like to assess the conditions under which

lim E
t—> OO

Zi(t,W ,q) =  0

where Wt and qt represent respectively the wealth process and the exposure under the 

optimal strategy. Under the optimal strategy the exposure qt evolves as :

dqu =  qug{pu)du. (3.31)

Since the optimal premium is constant, the solution of the differential equation is given 

by

qt =  qo exp (3.32)

The dynamic of the wealth process under optimal strategy evolves as :

d\Vu =  —aW udu + puqudu — dSu. (3.33)

Equation (3.33) is an ordinary differential equation that may be solved using the inte-

grating factor:

Wteat =  1U0 + - 4 T  f  queaud u -  f  YdNueau.2nBi J0 J0
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The claim size and the claim severity are independent i.e.

E YdN„ = e  [y] e dN„ 7tA qudu.

Taking the expectation of both sides while interchanging the order of integration yields

E W, — at " “+(kk_ Xn
queaudu

For simplicity of the notation, we let G,; =  rn — ^ (  A )2.

We can now substitute qu by expression (3.32) which yields

E Wt — e—at
w ° - ( ^ B r Xn) a ^ a,

®  -e‘°<
a

(3.34)

Using (3.32), we compute the expectation of the value function

E e - 3t(AWt +  Bqt) =  Ae~(-a+l3'>t Wo ( 9 ‘4r + <7o A + B\lnBl ^ Gj + a Gi H- Oi
(3.35)

The first term of (3.35) tends to zero when t tends to oo, therefore

e + Btqt) =  0 <t==̂  Gi — (3 < 0.lim E
t—>oo

3.5.2 Optimal premium under the convergence condition

In this section, we will use the result of section (3.5.1) to choose the correct value of D, 

that completely defines the optimal premium pt in the admissibility region.

Theorem  3.5.1 In the set of admissibility region i.e. A > 0, Bi is solution to the 

quadratic equation satisfying the second order condition and the convergence condition of 

the value function.
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Proof The proof is split up in the different two intervals of the admissibility set. We 

recall that the discriminant is positive when

We will therefore prove the theorem in the three different cases

a) m — ¡3 < 0

b) m — 0 =  0

c) 0 < m — ¡3 < n\2TT2.

a) Case m  — j3 <  0

In section (3.4.2), we proved that when m — (3 < 0 there is only one candidate solution 

Bi for equation (3.26) and satisfying the second order condition for the control problem. 

We only need to show that the convergence condition is also satisfied :

m — (3 < nX2n2 i.e. (3 >  ¡3,m m
\ 2 2=  rn — nX n .

1 A
G\ — ¡3 — (m — (3) — — ( t t )2 < 0 since m — (3 <  0. 4n B i

Therefore the value function converges to zero and Bx is indeed the solution.

b) Case m  — ¡3 =  0

For m =  (3, we obtained in section (3.4.2) a linear equation in B with solution

A
B =

AnXix

( w ) 2 <0-

Therefore B is the solution .

57
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c )  Case 0 <  nn — (3 <  nA27r2

In this case, there are two candidate solutions B\ and j52 (see section (3.4.2)) that satisfy 

the second order condition. We will therefore show that only Bi satisfies the convergence 

to zero condition.

Let

X-k A +  c a J A27t2 -  ^  | -1  =► Be =  B1
Be = ---------- —--------v----------- where e =

2 (m -  (3) 1 = *  Bt =  B2

The objective is to prove that

Ge — ¡3
< 0 when e =  —1 

> 0 when e — 1
(3.36)

Proof

n o  a 1 , A 2 , 1 (m — (3)2
Ge - ( 3  =  m - f3 - — ( - — ) 2 =  m - ( 3 -------------------------------------------- -  —

4n n  ( A t t  +  e y ^ v r 2 -  2 ^ ) 2

m — (3

(Xtt +  e^ X H 2 -  ^ ) 2
(1 + 2̂)

.2 2 r n - /3A 7T —
n

+  2A~f \ A27t2
m — 3

n

Since m — / 3 > 0 ,G ( — (3 takes the sign of

/, =  (l +  62) 2 2 m -(3
A T i -

ri
+  2Xne\ A27r2 —

m — Q
n

* ,  _€ — 1 4 > FI, — Bo

I\ > 0 therefore P2 does not satisfy the convergence to zero condition.
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I_1 = 2 ( m - l 3 ) [ J \ W - ^

* e =  - 1  Be =  Bi

s J E 5  -  - a *] < o
therefore B\ satisfies the convergence to zero condition. □

Sections a) and c) show that when A > 0 i.e. ¡3 > /3min =  m — n\2ir2 there is only 

one root solution B\ of equation (3.26) satisfying the second order optimisation condition 

and the convergence condition of the verification theorem under optimal strategy. □

Corollary 3.5.2

For d > (3
A m -  0

'm in , P t  =  “  =  A7T +  \ l  A 27T2 -2 nB\ n
(3.37)

and the value function of the control problem is

V (t,w ,q ) =  e~0t (.Aw +  Bq) (3.38)

where

A =
1

XirA-A^/xV-^  
2 (m —/3)

a +  ¡3

P roo f For ¡3 > (3min and 0 j- m,

and B — <

4 nXir

if P +  m 

if (3 =  m

Pt =
A m — 0

‘2nBi n A?r _  A 21x2_m =â
(3.39)

Multiplying the top and bottom by A7T — \JA27r2 — yields the result

For 0 — m,

2 nB
I TT~L _ Q

pt = - —— =  2Att =  Xir +  \ A27t2 ---------- — for 0 — m.
n

The rest of the proof follows from the consequence of the verification theorem. □
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3.6 Optimality in the non admissible region

The objective in this section is to assess the existence of a strategy that outperforms 

other strategies in the non admissible region (3 <

We showed in section (3.4.1) that an optimal policy if it exists predicts to charge a 

constant premium. In the rest of this section, we will prove that there is no constant 

premium strategy that is optimal in the non admissible region.

3.6.1 Integrability under a constant premium strategy

In this section, we w'ould like to assess the conditions under which a constant premium 

strategy p diverges the value function.

Proposition 3.6.1 For a constant premium strategy p, the resulting value function V  

diverges when m — np2 — (3 > 0

P roo f Under a constant premium strategy p, the exposure at time u > t is computed as

qu =  qteStia(v)-Ods = ^¿m-npKu-t) (3.40)

The wealth at any time s > u > t follows

I s I se -(a + /3 )s Wteat +  p /  queaudu - /  YdNueau
Jt Jt

Applying Fubini’s theorem on the conditional expectation yields,

/ \ I s
E Wae-®\Ft — e-G+h)s Wteat +  (p  — Xn)  /  queaudu

v  1 Jt

Substituting expression (3.40) yields

E Wse~0s\Ht —  e  ~ O + 0 ) s Wteat + ( p -  Att)q te~im- np2)t [  e{m- np2+a)udu
v J Jt
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Taking G =  m -  np2 and rearranging we obtain,

E Wse - 0s\Et =  eat W. m  ~ Xn) c + a + 0 ) s  ! c - t ô 9 t ( p  ^ ) c ( G - 0 ) s (3.41)
L G +  Ol G +  a

Integrating both sides of (3.41) from t to oo while considering the order of the integration 

yields

V (t,q ,w ) > W t - qt( p -  \ir)
G + a

e-0t 
a T ¡3 + e -tôQtip Att) [° °  e(G-i3)sdS'

G + a

from which we deduce that V(t, q, w) will diverge if G — ¡3 > 0. □

3.6.2 No optimal strategy in the non admissible region /3 G

[0, m in )

In this section, we want to effectively prove that when the discriminant is not positive i.e. 

P < Pmini there is no constant optimal strategy. We will proceed by constructing a family 

of policies pe that leads to a value function Ve that diverges to infinity with reference to 

Proposition (3.6.1).

Proposition  3.6.2 For 0 <  (3 <  /3mîn, there is no constant optimal policy.

P ro o f Let’s consider again the dynamic of the wealth process and the exposure under 

any policy that predicts charging a constant premium pe, using the results in section (3.5), 

and denoting by W[ and ql the respective wealth and exposure under the constant policy 

strategy e, we obtain :
nt — +m-npl)(u-t)Hu "tC

and

W Wteeat +  pe cfueaudu - YdNl
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Taking Ge =  m — np2, yields

Ve(t,q,w) TT,e Qt(Pe~ Att) e 0t _tGCqet (pe -  Xk ) 
Wt ------ ^  „ T -7-5  + eGe +  Oi et H- (3 Ge H- Q. I ,

■oo

eiGe- 0)sds. (3.42)

Denoting as

/
OO

e[G‘~0]sds,

our objective is to construct a policy pe under a force of interest [3 G [0, l3min) such that

a) (pc — Xtt) is non negative,

b) Ge +  a is positive, and

c) Jt diverges to 00.

Proposition 3.6.3 The family of policies

diverges the value function Ve.

P roo f Firstly we will show that under the constraint (3 < (3rnin, the upper bound of e is 

well defined i.e. positive.

Pe — X t t  +  e w h ere

(3 < (3,'m m > AJ7t2 (The expression in the root is positive)

— Xu > 0 (The upper bound of e is non negative )

By construction of the domain of e, p e — X t t =  e. > 0.

We now consider Ge +  a — m +  a — npl and show that it is positive.
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Adding a to both sides and rearranging gives

a + ß  < m +  a — np2e = Ge + a >  0.

Lastly, we consider Ge — ¡3 — m — @ — np2 and show that it is positive.

Xn < pt <
m — ß

= >  ß  — m < —np2
n

0 < m — ß  — np2 =  Ge — ß.

Using the result in section (3.6.1), and since Ge — /3 > 0, the indefinite integral Je diverges. 

The three proofs demonstrate that under the restriction ¡3 < (3min , the value function Vt 

diverges when policy pe is applied. □

provide infinite wealth for the company. Consequently there is no optimal strategy. □

3.7 Optimal Premium and Exposure’s Growth

3.7.1 The premium

Under the optimal strategy in the admissibility region ¡3 >  3mm, the optimal premium 

may be simplified to

If we take pt =  pt(A, ir, (3), as the claim severity or claim size increases, so is the optimal 

premium pt as expected. It is also an increasing function of the discount rate ¡3. The 

minimum value of the optimal premium is attained when the force of interest rate is at 

minimum i.e.

Since e G 0 there are infinitely many strategies pe indexed by e which

(3.43)

ß ßmin " p(X. 7T, ßmin) A7T. (3.44)
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Equation (3.44) gives the value of the pure premium which is just sufficient on average 

to pay off the claims. In the actuarial literature, the second term of the premium

w =
m — ß 

n

may be considered as the loaded premium over the pure premium and increases in line 

with the risk free rate (3. Consequently, the optimal premium increases in line with the 

risk free rate ,6 through the loading factor w .

Theorem 3.7.1 Starting with a positive wealth, the future expected wealth is positive 

under the optimal strategy.

Proof First notice that pt — Xtt =  \JX2n2 — > 0.

We recall the dynamic of the wealth under the optimal strategy as :

dWt =  —aW tdt +  ptqtdt — dSt. (3.45)

The conditional expectation of the change in wealth given the history at time t, is given 

by

E dWf I F t -  aW t +  qt (pt -  Xtt) dt. (3.46)

Equation (3.46) means that if there is any profit made in selling the insurance i.e. pt > \n 

then a part of the profit is transferred to the investors as a proportion of the current wealth 

i.e. aWt. The expected wealth at any future time s is given by

E W8 | Ft =  e~as Wteat +  (pt -  Xtt) qte~tô [  euô+adu
v y Jt

Since pt Xtt > 0 then E > 0 whenever Wt > 0. □
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3.7.2 The growth rate of the exposure under optimal strategy

In this section we will look at the growth rate of the exposure and assess what factors if 

any influence it under the optimal strategy. Let us recall the dynamic of the exposure:

dqt =  qt(g(pt) -  n)dt =  qt(m -  np2)dt. (3.47)

Under the optimal strategy which predicts charging a constant premium rate, a solution 

to equation (3.47) given the initial exposure q0 may be expressed as

qt =  g0et(m- np‘ b (3.48)

Let us also denote by G =  m — np2 the growth rate of the exposure. Since the premium 

charged depends on the risk free rate ß, and the growth rate G depends on the premium 

charged, we would like to assess how the growth rate depends directly on the risk free 

rate by assessing the function

G =  G(ß) for ß > ßmin.

At the minimum value of the risk free rate ¡3 =  l3min, the optimal premium is pt = Xtt 

and the growth rate is (3min which is the maximum value of the exposure growth rate :

ß =  ßn pt = Xtt and G(ßmin) ßmin Gri

where Gmax represents the maximum value of the exposure growth rate.

One should also notice that since the risk free rate is positive then Gmax > 0. As the risk 

free rate increases, the premium increases and the Growth rate decreases.

There exists a turning point rate /3 > pmin such that

a) If ¡3 < ¡3 then G(/3) > 0 i.e. the exposure grows exponentially at rate G.
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b) If (3 >  ¡3 then G(f3) < 0 i.e the exposure decays exponentially at rate G.

The turning rate ¡3 is solution to the equation :

p(0) -  Ayr +  J A27t2 -  — =  I™, (3.49)
V n V  n

which solves to :

0 (3.50)

3.8 Significance of results

Equation (3.43) expresses the premium as an increasing function of the discount rate (3. 

In section (3.7.2), we discovered that as the premium increases through the average claim 

per unit or through the discount rate, the exposure decreases .

The discount rate /3 can therefore be considered as a measure of short term aim for 

the insurance company operating under an infinite time horizon. For a high value of the 

discount rate f3, the positive expected profit will be higher since the premium charged will 

be higher. Since each profit, made is discounted, the profit made in the distant future will 

be discounted with a higher discount factor than in the near future, therefore the present 

value of distant future profit will be less significant than the present value of near future 

profit. On the exposure side, the exposure will be decreasing therefore distant future 

total business will be less valuable than near future business. The insurance company 

will consequently have preference for short term aim than long term aim. If the discount 

rate is low, the company will be much more interested in building the exposure in the 

near future and charge the constant premium to the high number of policy-holders.

We also discover that for an optimal policy to exist, the insurance company must apply 

at least the minimum discounting rate /3min which yields the pure premium just sufficient
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to cover the claims. Interestingly, when the minimum premium is charged, the exposure’s 

growth rate is identical to the discounting rate 8rnin.

3.9 Ruin Probability under optimal strategy

In this section, we focus on the likelihood of ruin under the optimal strategy that predicts 

charging constant premium. Insurance risk has always been a main concern in the actu-

arial contexts. The literature in this field is extensive both in the classical risk theory as 

well as in the the controlled Risk theory.

In Sundt and Josef (1995), the authors provide a numerical solution scheme to the differ-

ential equation that is satisfied by the infinite time ruin probability in continuous time 

where the aggregate claim process is a compound process with an exponential claim size 

distribution, and the premium rate as well as the interest rate are both assumed constant. 

In Albrecher and Kainhofer (2000), ruin probability was computed under a classical risk 

process in the presence of a non-linear dividend barrier. Simulation techniques were pre-

sented in Yuanjiang, Xucheng, and Xhang (2003) for a general claim size distribution. 

Other authors investigate the probability of ruin in the framework of control theory. Hipp 

and Taksar (2000) investigate the control of new" business in the context of general risk 

processes in order to minimise the ruin probability, and Schmidli (2000) investigates the 

optimal excess of loss reinsurance policy to minimise the ruin probability. The interested 

reader is referred to Ma and Sun (2000), Albrecher, Reinhold, and Tichy (2000), Schmidli 

(1991) and Grandell (1990) for more details.

Unlike most ruin functions, which depend only on wealth, our probability of ruin will 

depend also on the exposure explicitly. We will in the rest of this section derive the 

integro-differential equation satisfied by the ruin probability and evaluate the ruin prob-

ability numerically.
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3.9.1 Derivation of the Integro-differential equation

The objective is to compute the probability of ruin (p(w, q) when the state variables at

w and the initial exposure q, the ruin probability at time t +  dt depends on the change 

in the wealth and the exposure added to the occurrence or not of a claim in the small 

interval of time dt. If a claim does not occur in the interval [i, t + dt], the ruin probability 

at time t +  dt will be ip(w +  d;wfmt\ q +  dqt) and the probability that no claim occurs in 

[f, t +  dt] is 1 — Aqdt.

If a claim occurs in [t, t +  dt}, and is of size y, the ruin probability at time t +  dt will be 

ip(iu +  dwctont — y, q +  dqt) and the probability that a claim occurs in [t, t +  dt\ is Xqdt. 

Combining these two scenarios, we obtain

ip(w +  dw™nt, q +  dqt) =  ip(w, q) +  ipwdwt°nt +  i ’qdqt where dqt =  qGdt. (3.52) 

Substitute (3.52) in (3.51) yields

ip(w, q) =  (1 -  A qdt) [ip(w, q) +  ipwdwctont +  ipqdqt] +

time t are IT) =  i u  and qt =  q. We recall that under the optimal strategy, the growth 

rate is constant and is denoted by G =  m — npf. Starting at time t with the initial wealth

ip(w, q) — (1 — Aqdt)ip{w +  dw ĉmt, q +  dqt)
(3.51)

But

Xqdt

(3.53)

For y > w +  dw\.cont i/j (w  +  dWfOTli — y,q +  dqt) — 1,
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therefore

0 =  +  pq) +  vqqG -  Aq [tp(w, q) +  ipwdú)ctont +  i'qdqt] +
pw + dw tont

Xq L’(«' +  dwt — y,q +  dqt) fY(y)dy +  1 -  FY(w + dibctont)

Tending the small change of time dt incorporated in the change of the wealth and the 

change of the exposure to zero bearing in mind that

lim dw(font =  lim dqt — 0.dt—>0 df—>0

yields

0 =  4>w{-a w  +  pq) +  ipqqG -  Xqip(w, q) +  Xq ip(w -  y, q )fY(y)dy +  1 -  FY{w)
Ldo

Let us consider the survival probability <f> =  1 — ijj. With the first derivatives

(f)q i(>q and óVj — tpiij.

we may express the Integro-differential equation in terms of the survival probability:

A#  -  qG(j>q +  (aw -  pq)<f)u, -  Xq <t>(w -  y ,q)fy{y)dy =  0 (3.54)

with boundary conditions

lim q) =  1 , lim cf>(w, q) — <j>°(q) and lim ó(w,q) =  óòo(w).
W-+00 w^O q—>oo

where <p0(q) and ^ (w) are to be determined.

The analytical solution of the differential equation (3.54) constitutes a challenge in the 

case of the general claim size distribution and also in the case of an exponential claim
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distribution. We will proceed using Monte Carlo simulation to compute the probability 

of ruin.

3.9.2 Monte Carlo Simulation of the Ruin probability

This section is concerned with a simulation approach of the wealth process under optimal 

strategy. We explain the logic underlying the choice of the parameter values.

We first make a reasonable assumption that the demand function is in such a way that 

charging a pure premium p — \ir is attractive and as result the exposure grows at a rate 

a > 0 . This implies that

O max m u (A7t) =  CL. (3.55)

We also assume that the implied premium that leaves the exposure constant i.e. G — 0 

is higher than the pure premium by a loading factor b > 0 i.e.

G =  rri — npf — 0 and (1 +  b)\n. (3.56)

Combining equations (3.55) and (3.56) yields

n =

In the simulation , we choose a — 15% 

and (3.55).

6 ( 2  +  6 ) ( A 7 t ) 2
(3.57)

, 6 =  10% and n and rn respectively as in (3.57)

3.10 Sensitivity analysis on ruin probability

Figure (3.2) shows the result of sensitivity analysis on the parameters affecting the finite 

time probability of ruin. The time horizon is taken to be 100 units.
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Increase in Initial wealth

The north-west graph on figure (3.2) shows the relationship between the ruin probability 

and the initial wealth. The graph shows a decrease in the probability of ruin as the initial 

wealth increases which is conform with the classical theoretical result for distribution 

function having a closed form solution for the ruin probability. As initial wealth increases, 

there are increasing reserve to handle bankruptcy hence the likelihood of ruin decreases. 

The actual probability of ruin are tabulated in table (3.1)

Wealth 60 110 160 210 260 310 360 410 460 510
Prob(Ruin) 0.33 0.27 0.23 0.20 0.14 0.13 0.11 0.10 0.07 0.07

Table 3.1: Probability of ruin as wealth increases

Shift in the Demand function

The north-east graph on figure (3.2) shows as increase in the ruin probability as the 

demand function shifts upward. In the simulation, an upward shift in the demand function 

is carried out by increasing Gmax =  a of equation (3.55). In fact, a policyholder makes 

a subscription decision based on the premium set and not on her utility function. An 

upward shift in the demand function means the policy is more attractive to the policy 

holders and since the claim size and claim severity are constant, the premium diminishes 

through the loading factor. Under the simulation conditions, the loading factor may be 

computed as

w =
m — ¡3 

n
a +  n(\n)2 — ¡3 

n J =  J h 2 +  W A ir R -1 + - )V n V a
(3.58)

which decreases as the demand shift upward hence a decrease in the ruin probability.
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Increase in the average claim size and claim severity

The south-west graph on figure (3.2) shows a decreasing trend of the probability of ruin as 

a function of the mean claim size. This may be explained by the fact that ceteris paribus, 

an increase in the average claim size increases the loading factor and hence diminishes 

the likelihood of bankruptcy, whereas the south-east graph shows an inconclusive trend 

about the probability of ruin as the claim severity increases. This may be explained by 

the fact that though the loading factor increases with the claim severity, the benefit can 

be fully, partially or under offset by the potential of a high number of claims hence the 

inconclusive effect.

3.11 Summary

In this chapter, we have considered the pricing of non-life insurance premium in a monop-

olistic market driven by a demand function. The obtention of an analytical solution to 

the problem has been made possible due to the form of the demand function considered as 

the aggregate of the withdrawal of policies and the new business generation. The optimal 

premium rate obtained using dynamic programming principle is time independent; this 

suggests that the problem could have been solved deterministically using the calculus of 

variation or by following the following steps:

1) Consider the premium as constant

2) Compute the expected wealth for any time s

3) Compute the expected running cost by integrating the discounted expected wealth 

from t to oo which produce an equation similar to equation (3.42)

4) Differentiate the expected total running cost obtained with respect to the constant 

premium pt for ¡3 > pmin yields the expected answer.
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We also notice that the discount rate ¡3 can be considered as a measure of short term 

aim of the company. The solvency criteria imposes a minimum discounting rate equal to 

the maximum exposure growth rate and which when adopted yield the pure premium. 

Under the optimal strategy, the probability of ruin decreases as initial wealth or claim 

size increases, increases as the demand increases and is inconclusive as the claims severity 

changes.
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Chapter 4

Optimal Asset Allocation in the 

Context of Insurance Risk Process

4.1 Introduction

In this chapter, we consider the problem of an insurance company operating in a regime 

where the price of the insurance product is set by the forces of demand and supply. 

Higher prices will generally result in a lower demand. We also consider the fact that the 

insurance company has no control over the price of the product. The company is faced 

with an uncontrollable stochastic flow which we denote in the insurance literature by a 

risk process. The objective is to maximise the terminal utility function of the company 

by implementing an asset allocation strategy. The capital market is composed of two 

assets: a risky asset and a risk free asset.

Among the different methods used to solve stochastic control problems, two main ap-

proaches are widely used in the asset allocation problem. The traditional stochastic 

control approach and the martingale approach which originated from the paper Harrison 

and Kreps (1979b) and Harrison and Kreps (1981). In this work, we will be using the
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traditional approach pioneered by Merton which relies on the stochastic control approach .

Asset allocation is a classical problem on which many works have already been done. The 

problem originated from financial economics where an economic agent seeks to achieve 

a goal such as minimising the probability of ruin or maximising a function of wealth by 

allocating optimally her wealth in different assets.

Consider the pioneering Investment and Consumption problem of Merton (1971) where 

an agent with initial wealth W0 seeks to maximise her utility function on a final time 

horizon T  while investing an amount Qt in a risky asset and consuming an amount ct. 

Merton derives an analytical solution for a class of utility functions for finite time and 

for infinite time horizon. In this chapter, we consider solving Merton’s problem with no 

consumption, with income arriving deterministically whilst the outgoing are stochastic. 

The analytical solution of the optimal policy and the value function are obtained and the 

verification theorem is applied to validate them.

4.2 The Model

We assume that there is only one risky asset whose price is denoted as St and one risk free 

asset that is priced as Ct■ The evolution of the risky asset follows a geometric Brownian 

motion which satisfies the stochastic differential equation:

clSt =  St(nclt +  odBt)  (4.1)

where Bt is a standard Brownian motion, f.i is a positive constant (the drift) and a is a 

positive constant (the volatility). The risk free asset evolves deterministically according 

to the differential equation

dCt — rCtdt (4.2)
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where r is the risk free interest rate on all bonds.

The company operating in the insurance industry receives a constant premium p per 

policy for as long as the policy is in force and pays a claim of amount Y  if a claim occurs. 

This is the classical Risk process on which extensive work has been done.

Particularly in the simple case where the volume of business is taken to be unity, there 

exist an extensive literature dealing with different objectives functions.

In Browne (1995), the author considered a firm facing an uncontrollable stochastic flow 

modelled as a diffusion process. The firm’s wealth is invested in the risky and risk free 

asset. Under exponential utility, Browne derived an analytical solution for the optimal 

investment in the risky asset with the firm objective to maximise the terminal utility 

function as well as minimising the probability of ruin which is defined as the first time 

the firm’s wealth reaches 0.

In Browne (1999), the author derived the optimal investment in the risky asset with the 

objective function to maximise the probability of reaching a certain goal (as an example, 

terminal wealth reaching a certain higher value within a given time).

Sehmidli (2003) considered a classical risk model with the possibility of reinsurance and 

the possibility of investment in a risky asset. The objective was to control the risky 

investment allocation and the proportional reinsurance to be taken. For a small claim 

distribution, he proves that the optimal strategy converges to the asymptotically optimal 

strategy as the capital increases to infinity.

In this work we also consider the volume of business qt which represents the number 

of policyholders at time t. We consider the natural dependency of the business volume
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on the premium charged p through the demand function

dqt = qtg(p)dt thus qt =  q0eta{p) (4.3)

where g(p) is a decreasing function of the premium.

Though the literature in risk processes is very large, there are few works that consider the 

volume of business as a variable of the process. This is to my knowledge the first attempt 

to include the volume of business implied by a demand function in the risk process under 

the dynamic stochastic control framework. If we denote by Rt the risk process, Rt is best 

described by its dynamic

dRt =  pqtdt — J y^(dt, dy) (4.4)

where dy) is a marked point process on R+ x T and Nt is the claim counting process 

at time t when business volume is qt. We assume that Nt is a Poisson process with rate Aqt 

where A is a positive constant representing the claim frequency of each individual policy. 

Consequently, H(dt,dy) is a marked Poisson process with jump amplitude h(t,y ) =  y. 

Since the claim severity in the model depends on the business volume, the more policies 

we have in our portfolio, the more claims we are likely to pay out but also the more 

premium income we surely receive from the policyholders.

A more general question arising in the premium pricing context is to determine if the 

premium income is sufficient to cover the claim payout. If we denote the expected claim 

amount by n =  E[Y'], the safety and profit principle recommends to load the theoretical 

premium in order to decrease the chance of ruin and to allow for profit, which is trans-

lated into p > n where p is the premium charged.

In this work, we do not impose such condition which is usually regarded as a static profit 

maximisation condition. Instead, we adopt a dynamic view on a fixed time horizon while 

considering the demand function that dictates the premium to be set giving a number of
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policies.

The insurance company is financed by shareholders who receive a dividend payout con-

company with a constant of proportionality a. The company invests an amount Ot in the 

risky asset and the remaining Wt — 0 t in the risk free asset. The wealth process therefore 

evolves as:

The objective of the investor is to maximise the finite time horizon utility by optimally 

allocating the wealth between risky and non risky assets. While the choice of utility 

function is subjective, there are specific utility functions that have many objective criteria 

associated with them. We assume that the investor has an exponential utility function 

on the form

U{w) =  7  -  r)e~tm

where 7  > 0, rj >  0 and u >  0 . The exponential utility has a constant absolute risk

It can be seen that the exponential utility function plays a prominent role in insurance 

mathematics and actuarial practise since they are the only utility functions under which 

the principle of “zero utility” gives a fair premium that is independent of the level of the 

reserves or the wealth of an insurance company (see Gerber (1979)) .

The company is not allowed to short the stock, i.e. we do not allow the optimal investment

tinuously with time. The dividend paid at any time is proportional to the wealth of the

St

aversion parameter v . This is deduced from the fact that =  v, see Pratt (1964).
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in the risky asset to be negative. Since the terminal utility of wealth is a function of 

the terminal wealth WT which is itself random, we will consider maximising the expected 

utility of wealth giving the current wealth Wt. Mathematically, we would like to maximise

■HEX) E U(WT) Tt

where Tt is the filtration up to time t generated by both the Brownian motion and 

the marked Poisson process. We will approach the problem by deriving the differential 

equation satisfied by the value function

V (t,X ) =  max J(t,X )
Of

max E
©t

U(WT)

using the dynamic programming technique. The partial differential equation is on the 

integro-differential form due to the jump process and will be solved in the subsequent 

sections analytically.

4.3 The HJB EQUATION

In this section, we will derive the integro-differential equation satisfied by the value func-

tion with the conditions under which a solution of the equation exists.

Let

V (t,X ) max E
t< s < T

U(WT)

max E
e s

t< s < T

U{ WT) t+dt (4.5)
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Using the principle of dynamic programming, we decompose the maximisation over dis-

joint interval [t, t +  dt\ and [t +  dt, T] :

V(i, X ) =  max E max E U(WT) t+dt T
©s

t< s < t+ d t t+ d t< s < T

=  max E
t< s < t+ d t

V{t +  dt, X t+dt)

= maxes
t< s < t+ d t

E V(t, X t) +  dV

Taking the limit when dt tends to zero of both sides yields :

(4.6)

max < E
e t dV T =  0.

An application of Ito’ s formula for Jump and diffusion processes, see (Appendix C) yields

E dV
dV , c>U 

— ~̂ rrdt +  ——E 
ot oqt dqt T

dV
dWt

E dW[cont Tt
d2V ^

+
d\Vtcont2 T

VQtdt f (v [t, Wt -  y, qt\ -  V[t, Wt, qt

(4.7)

where d\Vt and dqt follow respectively the differential equations (4.5) and (4.3). Thus the 

HJB equation is

dV , dV 
~didt + dWt (V -  a j Wt + pqt u i t  \ dV ° 2QÌ d'2ydf +  ma x { i l i - r ) Q t—  +  —  — dt

+  ^ qtg{p)dt +  Aqtdt j  (V[t, Wt -  y, qt\ -  V[t, Wt,qt] ) f Y(y)dy =  0.

(4.8)

Let us assume that the HJB equation (4.8) has a classical solution. To obtain the op-

timum, we use the first order condition by differentiating (4.8) with respect to Ot and
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setting the derivatives to zero. This yields

0t = (/*-*■) 
rr2

d V
d W t

d 2 V
d 2 W t

(4.9)

The second order condition of optimality requires < 0.

We will therefore be looking for a solution V to (4.8) satisfying the second order condition 

together with the no short sale condition imposed on the amount of wealth invested on 

the risky investment. This latter constraint can be translated into the optimal value by 

imposing a further constraint on the first derivative of the value function i.e. — > 0 

which is true since the risky investment drift is greater than the risk free rate {p > r). 

In fact, if
dV d2V

>‘ - r BW, > 0  “ d OTU<0’ (410)

the optimal value of the risky asset investment is positive. In the set of solutions of 

the HJB equation, we will be looking for solution that has a positive first derivative 

and a negative second derivative with respect to the wealth together with the boundary 

condition V (W r,q ,p ) =  U(Wt )• Substituting (4.9) in (4.8) yields after simplification:

dV dV . . dV
~m + W ,q,3ip) + sw ,

r -  a )  Wt +  pqt \ (E
2 a

d V  \22 (V d W t

d 2 V
d 2 \ V t

+ Mt (v [t, Wt -  y, qt] -  V[t, Wt, qt])fY (y)dy  =  0

such that

dV
dWt

> 0,
d2v
d2w t

< 0 and V (T ,W ,p ,q )^ U (W T).

(4.11)

Equation (4.11) together with the conditions is equivalent to a nonlinear integro-differential 

Cauchy problem for the value function V.
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4.3.1 Analytical solution to the HJB equation

The Cauchy integro-differential problem will be solved analytically by the usual method 

of guess. The verification theorem will be used in the next section to prove that the 

solution obtained is indeed the correct solution.

We will be inspired by the previous work of Pliska (1986). The Pliska problem is similar to 

the present problem; the difference is that in Pliska (1986) there is no dividend payment 

and no risk process involved in the wealth process. The author found that the optimal 

investment in the risky asset is independent of the wealth process which is a feature of 

the exponential utility adopted. A much more similar problem is the optimal investment 

problem in Browme (1995) in which there is no dividend payment to shareholders but 

the risk process is involved in the wealth process. In Browne (1995) the risk process was 

approximated by a diffusion process, correlated with the Brownian motion underlying 

the risky asset process whose drift is constant i.e. the business volume is constant up 

to the final time horizon T. The HJB in Browne (1995) is simply a Cauchy non linear 

differential equation but not integro-differential. The author shows that the optimal risky 

asset allocation depends on the correlation between the risk process and the risky asset 

but the value function does not.

In the present work, we propose a solution of the form

V(t, w, q,p) =  7  — r] exp < —vwe ^ ( T - t )  + q t x h(t,p) 1 (4.12)

where h(t. p) is a suitable function of the constant premium charged and time. We first 

note that the proposed solution (4.12) satisfies

(4.13)
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~  =  h{t,p) [F -  7] , ~  =  - v e (r a){T [F -  7 ] , (4.14)

and
81 2V
d2W

=  v 1e 2 x ( r -a ) (T - t )  [ y  _  _ (4.15)

The discontinuous change in the value function produces,

V[t, W  -  y, q, p\ -  V[t, W, q, p\ = oVve( r - a  ) ( T - t ) -  1 [F — 7] hence

J (v [t ,W t - y , q t\ - V [ t ,W u qt] sj f Y(y)dy =  E e V'i'e(r - “ Kr - t> _  ^ [F — 7 ]. (4.16)

Substituting equations (4.13) , (4.14) , (4.15) and (4.16) into (4.11) yields

dh(t,p)
H r -  + \ { ~ ) + q t +  q,g(p)h(t. p)

-  v e ( r - < . ) ( T - t )

1 f  ¡1 — r

(r -  a) Wt +  pqt

=  0

dt

\qtE : eY''C:(r nUT -  1 (4.17)

which after simplification yields

+ g (p ï h(t ,p ï ~  upe(r ^  t] + AE e
Yve(r~aHT- t'> =  0. (4.18)

Since qt ^  0, we are left with the first order differential equation

dhjt.p)
dt

+ g(p)h(t,p) — vpe^ o)F   ̂ +  AE vê r a)(T’ fc) _ ^ =  0 (4.19)

with boundary condition h(T,p) =  0.

Equation (4.19) is a first order differential equation in the time variable t that can be
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solved using the integrating factor techniques:

dh(t,p)
dt
r T

g{p)h{t, p) =  vpe ('r - a ) ( T - t ) _  y g y'i/e(r- Q)(r_() 1e -  1

d (ess(p)h(s,p)) = up J  e(r-<x){T-s)+sg{p)ds

-T

~ X J, E Yi/e(r ~a )(T~ s) ^ e“9(p)ds

Since h(T,p) =  0, we obtain

h(f,p) =  x Jt E
Yve(’—“)(T_S> 1e — 1 e 9 (p )(«-t)d 5 -  i/p  /  e ( r -a ) ( T - a)+ 9(p ) ( .- t )d5  ( 4>2q )

and hence under the optimal strategy, the risky investment is simplified as

0 ,  =  ( p - ( r ~ a ) ( T - t )
ua2

(4.21)

4.3.2 The verification theorem

The Value function of the partial integro-differential equation was obtained through a 

method of guess. We will now verify through the Martingale optimality principle that 

equation (4.12) is indeed the value function of the Cauchy problem.

Theorem  4.3.1 (Optim ality) Under the optimal strategy, V is a martingale with re-

spect to the filtration generated by the Brownian motion underlying the risky asset process 

and the marked Poisson process underlying the Risk process.

P ro o f The proof is driven by the dynamic of the wealth process under the optimal 

strategy. We recall that under optimal strategy,

0 t =  ^

If we replace the risky asset allocation under the optimal strategy into the dynamic of
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Substituting (4.23) into (4.25), we obtain 

V(t +  s, Wt+s,qt+a,p) -- y  -  7 / e x p  \ - i / e ( r _ a ) ( r _ t ) W t  -  -  (  - — -  ) ( T  -  t )2 V (7

+ q t+ sh ( t  +  s , p )  -  u p  J  que {r q ) ( T  “ W

/
t + S  r

j  ¿r -cW -v ) y X(dUjdy)

1 . 2 /  \ /*i+.5
s  p  — r  \ E ~  r

a2 V a
dBv

Using equation (4.20) and (4.3), yields

r t+ sft
h ( t  +  S ,p )  =  e - S9(p)h { t , p )  +  UP e ^ t+s)gip) j ' e ( r - a )(T-u)+ug{p)du

/
t + S

E
Yue ( r - a ) ( T - u )  _  ^ ug(p)du

so that

rt+s
h ( t  +  s , p ) q t+ s =  h ( t , p ) q t +  u p  J  que {r “ ) ( T  u)du

-  A
rt+s

/  qu E
eYve(r-a)<T-u -  1Jt du.

(4.26)

Substituting (4.26) into (4.26) and after simplification, we obtain

Vit +  s, Wt+S, qt+s,p) =  7 -  P exp I - u e ^ T~+Vt -  i  -  i)

+
/•t+s r

Jt Jr
ve(r-a)(T-u) y d y ) - S- (  'J-----

2 V (J

du
rt+s

/  ??<?«E
v  (i q) ( T — u)

ey V '  - 1Jt
p  —  r /•t+s

d - B «  +  qt x  h(t, p)

(4.27)

We may substitute in (4.27) the value of V(i, Wt.qt,p) which in turn yields after taking
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the expectation:

E V(t +  s, Wt+a, qt+s, p) -  7 Ft V (t,W t,qt,p ) - 7 x exp
s f  f i  — r

/
t + s

XquE
, ,  [ r  — c t ) ( T  — u )

eY ’  - 1

2 \ a 

du > x

E

E

exp

exp

rt+s
uyeT-OU-u) dy-j

it J r  

H —  r

a

rt+s
dBn

Ft

(4.28)

But

E
rt+s r

exp { I j  vye (r—a)(T—u) H(du, dy) Ft

exp I r *muE oVve ( i a )- q I(T-u)
-  1 du (4.29)

and

E exp
y - r

a

rt+s
dBu Ft s / u — r 

=  eXP < o2 \ (7

Substituting (4.29) and (4.30) into (4.28), yields the expected result:

(4.30)

E V(t +  S, Wt+a, qt+s,p) Ft =  7 + V(t, Wt, qt,p)  - 7 V (t,W t,qt,p) (4.31) 

Therefore the value function under optimal strategy is a martingale. □

Theorem  4.3.2 (Supermartingale) For any policy (bt)0<t<T different from the pre-

sumed optimal policy (Ot)o<t<T, the implied value function Vb is a strict supermartingale 

with respect to the filtration generated by the Brownian motion underlying the risky asset 

process and the marked Poisson process underlying the Risk process.
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Proof We first consider the proposed solution

which we rewrite for simplicity as

Vb(t, w, q ,p )=  7  -  r] exp ^F(t, wu qt) 

The objective is to prove that for any policy bt ^  Qt ,

Vb(t,w,q,p) =  7  -  rj exp —vwe^r a^T ^

E Vb(t +  s,W t+Slqt+s.p) T t < Vb(t,W t,qt,p ) i.e. 

7 -  7E exp jp(i + s, ug g) j JE] < 7 -  7exp |F(t,w,

which equivalently results to

E exp {F ( t  +  s,wt+s,qt+s) -  F(t,w , Tt > 1 .

Considering any policy (bt)t>0, the wealth at time t +  s may be computed as

/ t+s
que-^-°>du

rt+s ~[r—a]u ,yH(du, dy)
n j t
rt+s

+ /  bue <r a)u [(p — r)du +  adBu

(4.32)

(4.33)

(4.34)
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Combining (4.20) and (4.34), yields

F(t +  s, wt+s, qt+s) -  F(t, w, q) =  | ^ -  {e  ~ r ) £  ve{r “ )(T u)budu

r t+ s

- a  I ue{r- a)(T~u)budBu

(r-a)CT-t.) X ( d U j d y )

J t
rt+s (4.35)

^2/ê
■Jt Jr

exp | XquE +Yve (r-a)(r-u)
-  1 du.

Let f u =  ve^T Q)(r u)bu. Using equation (4.30) together with the Ito Isometry yields

E 0F(t+s,Wt+s,qt+s)-F (t,w  ,q) Tt
s / n -  r \ 2 rt+s r 

6X̂ i 2 ( CT + -  (M -  r ) /«  +  y / u du j .

(4.36)

In the calculus of variations framework, the Euler-Lagrange necessary condition for an 

extremal yields

fu ~ ¡i — r 
a2 vaz

- (  if__ M  ¿-(r-aKT-t- (4.37)

The second order condition shows that f u is actually a minimum since a2 > 0. Sub-

stituting (4.37) into (4.36) yields the derived expected equality for the martingale case 

obtained from (4.31) i.e.

E e F ( t+ 8 ,w t+ s ,q t+ , ) -F ( t ,w ,q )

Since 0 U is the minimum, any policy bu ^  © will result in

E ( / - ' ( f - . v . f / f ..,) F(t.w.q) > 1 .

(4.38)

(4.39)

□
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4.4 Interpreting the optimal policy

The optimal risky asset investment Ot depends on the time but not on the current wealth 

Wt due to the constant aversion to risk utility function. Whatever the risk process Rt 

appears to be, the optimal strategy is independent of it. This is based on the fact that 

we have assumed that the source of randomness in the risk process and in the investment 

process are independent. This is by contrast to Browne (1995) in which the optimal 

policy depends also on the risk process as a consequence of the correlation between the 

risk process and the investment process . It is also interesting to look at the interpretation 

of the optimal policy:

• If we assume that the company capital is fully raised by shareholders, we can 

interpret a as the dividend rate of the shareholders which is in fact the interest rate 

the shareholders obtain by investing in the company. By the no arbitrage principle, 

the dividend rate should be higher than the risk free rate hence a > r. This shows 

that as we approach the finite time horizon T, the optimal strategy predicts to 

invest less in the risky asset which contrasts with Browne (1995) that predicts to 

invest more in the risky asset as we approach the deadline. If on the other hand 

we assume that the company is not completely owned by shareholders i.e. there 

is a possibility of dividend rate being lesser than the risk free rate (a < r), the 

optimal strategy radically changes and dictates to invest more in the risky asset 

as we approach the terminal horizon (Browne’s result). In general, the result of 

Browne can be derived if we set the shareholders dividend rate to be zero (a — 0).

• The optimal policy is inversely proportional to v. This is as expected since v is the 

degree of aversion to risk using Pratt measure. As u gets larger, the individual is 

more averse to risk and therefore will invest less in the risky asset as shown by the 

result.

• We also notice that the optimal policy is proportional to the Sharpe ratio and
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inversely proportional to the volatility of the risky access. In fact, the higher the 

Sharpe ratio, the higher the market price of risk and therefore the more attractive 

will be the risky investment versus risk free investment. At the same time, for a 

constant Sharpe ratio, a more volatile risky investment will be less attractive.

• Though the value function depends on the demand function, the optimal allocation 

in the risky asset does not. In fact the analysis is based on a broad class of demand 

functions whose growth rate depends on the premium. This has the advantage that 

the solution is portable from one market to another.

These results are supported on figure (4.1) with the following starting parameters:

The drift and the volatility of the risky asset are /i =  0.08 and a — 0.13 per year

The risk free rate is constant with value r =  0.04 per year

The risk aversion parameter is set at v — 0.6

The dividend payable to shareholder is set to a =  0.07

The time horizon is set to be T — 10 years.
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4.5 Summary

The optimal asset allocation problem analytically solved in this chapter can be considered 

as an extension of Merton’s investment problem in the context of insurance risk process, 

driven by a deterministic demand function and a Poisson process. The resulting optimal 

strategy which is time dependent changes depending on the level of the dividend rate 

compared to the risk free rate. An extension of the problem is possible, see Chapter (7). 

Maringale optimality principle is used to validate the analytical solution.
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4.5 4.5. SUMMARY

Decreasing Maturity Increasing Risk Aversion

Time

Increasing dividend rate Increasing Risk free rate

Increasing Market price per risk Increasing Volatility

Figure 4.1: Optimal Asset allocation
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Chapter 5

Catastrophe Insurance

5.1 Introduction

For many years, the insurance industry has suffered from many catastrophes losses mainly 

due to natural disasters, and in recent times also due to terrorism, of which insurance 

premiums only cover a small part. Many of the catastrophe premiums are too high so 

that there is no room to increase capacity in the catastrophe insurance market. Until 

1993, the only method available to insurance companies to hedge their underwriting risk 

was through reinsurance contracts but reinsurance contracts do not always benefit the 

insurer specially for catastrophe cover, which usually requires a large premium. Both 

the insurance and the reinsurance industries have become increasingly concerned about 

the concentration of exposures linked to a single event. The experience of major natural 

catastrophes in the nineties such as Hurricane Andrew in 1992, followed by Northridge 

California earthquake in 1994 resulted in great concerns that insurance and reinsurance 

companies may not have enough capital to meet their liabilities. This provoked in the 

industry, the need to increase capacity not only within the traditional insurance system 

but also in transferring them into the more liquid financial markets. On December 11, 

1992, The Chicago Board of Trade (CBOT) made the first attempt to introduce a finan-
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cial instrument for the catastrophe reinsurance market, and ever since, the market has 

grown according to invest or s’needs. The first instrument proposed by CBOT was the 

catastrophe insurance futures contracts (CAT) which started trading at the beginning of 

1993, followed by options and call spreads which proved very successful. Unlike finan-

cial markets in which products such as stocks on which futures contracts and options 

are written, the insurance market has no continuously updated underlying cash price. 

The solution chosen by CBOT was the loss ratio index, calculated by the Insurance 

Services Office (ISO) for CAT products. The main idea underlying trading insurance 

related risk on capital market is twofold. It allows insurance and reinsurance companies 

to dynamically adjust their exposure to natural catastrophic risk through hedging with 

standardised financial contracts at low cost and additionally attracts new capital linked 

to natural catastrophic risk from investors for whom those derivatives provide an excel-

lent opportunity for portfolio diversification. A question raised by the introduction of 

insurance derivatives is the one that addresses how those financial contracts should be 

valued in order to preserve the valuation of existing insurance contracts. In a general 

insurance market, information about the risk underwritten is reflected in the insurance 

premium through the expected claim and loading valuation principle. As the same risk 

underlies insurance derivatives, one has to come up with a price that depends not only on 

the underlying risk being underwritten but also and mostly that rules out the arbitrage 

possibility that may arise from trading in both insurance and financial contract markets. 

This suggests that both traditional actuarial valuation skills as well as financial mathe-

matics skills are indispensable to produce a price that will be accepted by all participants 

in the market.

In a Black Scholes world, derivatives are written on the underlying asset that are tradable 

and for which their price does not involve any unhedgeable element such as insurance 

claim size. These features of the asset together with the no arbitrage principle produce
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a unique price for all derivatives through the completeness of the market which in turn 

is equivalent to the existence of a unique equivalent measure under which the discounted 

price of assets is a martingale, see Harrison and Pliska (1981).

In the context of catastrophe insurance market, the valuation of derivatives appears much 

more problematic compared to the Black Scholes world for two reasons. First there is no 

tradable catastrophe asset since the indices on which the contracts are written are not 

tradable; this precludes the possibility of pricing according to no-arbitrage market for 

that the no-arbitrage argument, can only hold when all underlying assets are explicitly 

defined. Secondly, the mathematical description of the indexes incorporates a Marked 

Poisson process with a stochastic jump size which makes the catastrophe derivatives mar-

ket incomplete. For these two reasons, it is therefore not possible to perfectly replicate 

the movements and therefore the payoffs of those derivatives by continuously trading in 

other securities. As a consequence, the price processes of catastrophe derivatives cannot 

be uniquely determined solely on the basis of excluding arbitrage opportunities.

The objective of this chapter is to to review7 the different models used in the modelling of 

catastrophe risk introduced by CBOT and the pricing of the financial derivatives written 

on the indexes derived from catastrophic losses. The losses and hence the indexes will 

be modelled as compound Poisson processes where the amplitude of the jump will reflect 

the size of the catastrophe arising unpredictably with time. In the next section, we will 

explain the first derivatives introduced by CBOT, the reasons for their unpopularity and 

their improvement over time.
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Figure 5.1: Illustration of a CAT contract

5.2 CAT futures contract

The first derivative introduced by the CBOT was the CAT futures contract which is 

available for trading in March, June, September and December. If we consider the March 

1994 contract, it trades from the beginning of January until the end of June; the period 

between January 1 and March 31 is called the event quarter, the period between January 

and the end of June is the reporting period. The underlying asset is the ISO index. 

Each quarter, approximately 100 American insurance companies report property loss 

data to the Insurance Service Office (ISO). ISO then selects a pool of at least 10 of these 

companies on basis of size, diversity of business, and quality of reported data. The ISO 

index is then calculated as the loss ratio of the pool:

Trtr. _ , reported incurred lossesISO index = ------------- ---------------------.
earned premiums

The list of companies included in the pool is announced by the CBOT prior to the 

beginning of the trading period for the contract. The premium volume of the companies 

participating to the pool is also announced prior to the start of trading period. Thus, 

the premium in the pool is known as a positive constant so that change in the loss ratio 

is due to change in the market expectation of losses.

Example The June contract (figure 5.1) covers losses from events occurring in April, 

May and June as reported to the participating companies by the end of September.
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If we let Lt  denote the sum of the selected losses incurred during the quarter corre-

sponding to the contract and reported at the end of the following quarter (T) and let n 

denote the announced premiums earned during the three months exposure period, then 

the future settlement value FT is given by :

Ft  =  $25, 000 x min (5.1)

Futures prices are quoted in points (US $250) and tenths of a point . Equation (5.1) shows 

that the settlement value is capped at 200% which is a desirable feature in insurance, 

ensuring than the party who is short on the contract has a limited loss. The maximum 

loss of the long position is simply the agreed price of the futures contract.

At some point t 6 [0, T], the price Ft will reflect the market’s expectation of the ter-

minal price. If we consider an insurer who is willing to hedge against a possible excess 

of losses over a given quarter, one option she might consider is to buy futures contract. 

Assuming that the contract is bought at time t =  0, at an agreed price F0 which will 

be paid at time T, if severe catastrophes occur, the insurer will gain Ft  — F0 which will 

offset the heavy losses incurred in her underwriting. The more correlated the insurer’s 

losses are with the ISO index, the better the hedge, see Genian (1994). Let denote by 

(Ft)o<t<T the insurance future’s price, a position at time t means the commitment to pay 

the random amount Ft  — Ft at time T. A holder of a long position will thus receive 

Ft  — Ft at time T. There are theoretically no cash-flows before time T, although in 

reality, the CBOT requires certain payment from agents before time T. Equation (5.1) 

can be rewritten as

Ft  =  $25,000 x Lt
7T

max —  — 2,0
7T
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In finance terminology, the settlement of a catastrophe futures is equivalent to a long 

position in the loss ratio and a short position in a European call option with maturity T 

and strike price 2 where the underlying is the loss ratio. Depending on the assumption 

used to model the aggregate loss process Lt, an analytical solution may be found for 

the futures price Ft. In Geman and Cummins (1994), the instantaneous claim process 

is defined as St so that in a small interval of time [t,t +  dt], the amount of claim to be 

reported in the ISO index is equal to dSt. The value of the aggregate claim Lt  at the 

end of the reporting period T is

Lt =  f  dSs.
Jo

Since the reporting of the claims is continuous and claims are always positive, the process 

St is considered in Geman and Cummins (1994) as a geometric Brownian motion with 

some jumps describing the random claims occurring during the event period. The time 

to maturity is divided into two intervals, R =  [0, -|] represents the event period and 

R — [t), T] represents the development period.

For t € 11, the claim process St follows the jump and diffusion process

dSt =  St_ (/ult +  adBt) +  kdNt,

where,

Bt is a standard Brownian motion,

fi and a are positive constants representing the continuous part parameters of the instan-

taneous claims,

k is a positive constant representing the claim size when a loss is incurred, and Nt is a 

Poisson process orthogonal to the Brownian motion Bt, with intensity A.
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For t € h , St is simply a geometric Brownian motion

dSt =  St (p'dt +  a'dBt) .

Although catastrophe claims related to insurance cannot be bought and traded as an 

asset, it is nevertheless true that the Futures on catastrophes can be regarded as a tradable 

asset. In Gernan (1994), futures are viewed as financial instrument. Furthermore, since 

the claim size is assumed to be constant in the model, the insurance market is therefore 

regarded as complete. This in turn allows the application of the consequence of the no 

arbitrage assumption introduced in Harrison and Kreps (1979a) and Harrison and Pliska 

(1981) which in turn implies the existence of a probability measure Q under which the 

discounted price of all assets is a martingale. Under Q, the claim process behaves similarly 

as in the physical probability with different parameters, i.e. under Q,

St- ( gdt +  adBt ) +  kdNt where p. =  g +  pa for t G R

dSt =  { (5.2)

St ( g'dt +  a'dBt I where p! =  g' +  pa' for f € I2

The parameter p represents as in (Shimiko 1992) the equilibrium market price of a claim 

level risk assumed to be constant in [0, T]. Under the above setting and assumptions, 

see Geman (1989) and (Jamshidian 1989), the future price is a martingale under Q i.e.

Ft =  E,•Q Ft Tt

$25,000
7T

Er - E Q max (Lt  — 27r, 0) (5.3)

An analytical solution was obtained depending on whether the price is being computed 

in the event period or development period.
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For t e l 2,

Ff =
$25,000

7r

rt c  r
Ssds +

) Q
o t R T - t ) +  T x IE,Q

1 [ T n , 27T
max I -  J Ssds -  y - ,0

where the second term can be viewed as the value of an Asian option with strike price 

see Geman (1994) for the detailed calculations and an explicit formula for the Laplace 

transform of the Asian option.

For t E I\, the pricing is much more challenging due to the jump in the the dynamic of the 

claim process. The process containing the jump in (5.2) is recognised as the Doleans-Dade 

exponential. The futures price Ft is given by

Ft Ssds T St

+Soe'e'(T/2-t)

ee(T/2-t) _  1

r q ' t / 2  _  l

k\
ee(T/2-t) _  Q (T/2 - t ) - l

kX
ee(T/2-t) _ 1\ /  ee’T/2 _  l

(5.4)

Using the same dynamic of the loss process with the assumption of constant claim size 

in Geman (1994), the price of call option written on futures of the ISO index was derived. 

While the assumption of completeness of the market in Geman (1994) is convenient in 

the pricing, the assumption of a constant claim size is questionable because of the nature 

of catastrophe claims which can vary.

A more realistic view was taken in Aase (1999) in which the loss index was modelled 

as a compound Poisson process with random claim size. The author investigated the 

price of futures and derivatives written on the futures. As in Geman (1994), the futures 

are traded in the market, and therefore the incompleteness of the market does not arise 

from the fact that the underlying asset is not traded but from the fact that the size of the 

claims is random. This problem was circumvented by specifying the preference of market
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participants by a utility function which determines a unique price processes within the 

framework of partial equilibrium theory under uncertainty. An analytical solution was 

obtained under the assumptions of exponential utility function and the aggregate loss 

following a gamma distribution.

A more convenient derivative called a CAT call spread has proved more popular than 

futures and plain vanilla call on futures. A CAT call spread involves buying a call at a 

strike price Aq and selling a call at a higher spread k2 with both calls having the same 

maturity T. The underlying asset on the CAT spread call is the futures contract. The 

payoff at maturity T of a CAT call spread with loss ratio attachment k\ and k2 is :

c spread =  min j max (FT -  Aq, 0), k2 -  Aq

Call spreads are much more desirable by the market participants than the futures since 

the amount of risk at stake is much more limited for the short position and the long 

position. Although the CAT call spread has proved successful, the CAT products in 

general lost viability among markets participants for many reasons. One of the reasons 

was that the ISO index It was published only prior to the settlement date (just after the 

end of the reporting period). This means that a company participating to the pool could 

be aware of part of the data used to compute the index whereas companies not in the 

pool cannot. This situation created an information asymmetry in the market therefore 

preventing people from entering the market.

Other reasons are linked to the moral hazard behaviours that a company which has 

a short position in the pool can adopt as a strategy. In fact, a company in the index pool 

with a short position in futures contract can manipulate the index by delaying the report 

of big losses that it incurs, therefore reducing the payoff of the future contract that it is
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subject to pay to the long position holder. This problem occurred with the Northbridge 

earthquake which was a late quarter catastrophe of the March 1994 contract. The settle-

ment value was too low and did not entirely represent the real accumulated losses of the 

industry. Since then, a new generation of financial instruments were created to fix the 

bugs in the CAT products. A more standardised product was created in 1995 on a new 

index called the PCS (Property Claims Service) index on which options are written.

5.3 PCS OPTIONS

PCS options were introduced at CBOT in September 1995. PCS options are standard-

ised, exchange-traded contracts with only cash contracts available. The underlying assets 

of a PCS option are PCS indices on which, call, put and call spreads are written; futures 

are no longer available as opposed to CAT contracts. Most of the trading activities occur 

in call spread options because of the limits on losses that their payoff provides to both 

parties in the long position as well as in the short position. CBOT lists PCS options 

both as “small cap” contracts, which limit the amount of aggregate industry losses that 

can be included under the contract to $20 billion, and as “large contracts” which track 

losses from $20 billion to $50 billion.

As CAT products, the loss period is the time during which a catastrophic event must 

occur so that resulting losses can be included in a particular index. During the loss 

period, PCS provides loss estimates as catastrophes occur. Most of the options have 

a quarterly loss period with contracts lists for March, June, September and December. 

Others have annual loss periods and are only available as annual contracts. The last day 

of the loss period is the calendar day of the quarter or year. Losses from catastrophes 

starting in one quarter or year and ending in the next will be included in the quarter or 

year in which the catastrophe started.
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The development period is the time after the loss period during which the PCS continues 

to estimate and re-estimate losses from catastrophes occurring during the loss period. 

Market participants can choose either a six-month or twelve-month development period. 

The development period begins immediately after the loss period ends. The PCS index 

value at the end of the chosen development period will be used for settlement purposes, 

even though PCS loss estimates may continue to change. PCS-options settle in cash on 

the last business day of the development period. The settlement value Lt  for each index 

represents the sum of the current PCS insured loss estimates provided and revised over 

the loss and development periods. Table (5.5) clarifies the time structure of the insurance 

contracts.

Contract Loss Developm ent period Settlement date

M onth Period

Six 

M onth

Twelve

Month

Six 

M onth

Twelve 

AIonth

March Jan — Mar Aprì — Sep30 Aprl — Mar 31 Sep30 Mar 31

June Apr — Jun Jull — Dec3l Jul 1 — Jun30 Dec3l Jun30

September Jul — Sep Octl — Mar31 Octl — Sep30 Mar 31 Sep30

December Oct — Dec Janl — Jun30 Janl — Dec3l Jun30 Dec3l

Annual Jan — Dec Janl — Jun30 Janl — Dec3l Jun30 Dec3l

Each PCS loss index represents the sum of then-current PCS estimates for insured catas-

trophic losses in the area and loss period divided by $100 million. The indices are quoted 

in points and tenths of a point and each index point equals $200 cash value as indicated 

in table (5.6).
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PCS Loss PCS Options Industry

index value cash equivalent loss equivalent

0.1 $20 $10 million

1.0 $200 $100 million

50.0 $10,000 $5 billion

200.0 $40,000 $20 billion{small cap limit)

250.0 $50,000 $25 billion

350.0 $70,000 $35 billion

500.0 $100,000 $50 billion(large cap limit)

(5.6)

Strike values are listed in integral multiples of five points. For a small cap contract, strike 

values range from 5 to 195. For large cap contracts, strike values range from 200 to 495. 

PCS options are European options, which means that they can only be exercised on the 

expiration date i.e at the end of the development period. The payoff of a PCS call option 

at expiration day T, exercise price K\ and cap value K 2 is illustrated in in figure (5.2). 

The value of the option at maturity is expressed as

PCSCaii =  min l max (LT -  K x. 0), I<2 -  \. (5.7)

The indices are computed through different phases. At the announcement of a catastro-

phe, PCS generally provides a flash, estimate of the anticipated industry insured property 

losses from such event. The flash estimates are generally based on PCS’s initial meteoro-

logical or seismological information and information from industry personnel and public 

officials. The estimates are expressed in terms of a range of estimated total insured 

property losses. These flash loss estimates give the insurers and re-insurers an initial 

perspective on the catastrophe's severity but are not included in the indices calculated
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PCS Cal I payoff

i - O S S

Figure 5.2: Illustration of a PCS call option

for the CBOT.

The indices compiled for the CBOT comprise Preliminary loss estimates and are adjusted 

according to Resurvey loss estimates. The preliminary loss estimate of anticipated insured 

property losses is typically prepared and released within several days to two weeks after 

the occurrence of a PCS identified catastrophe. If a catastrophe is large enough, PCS will 

continue to survey loss information to determine whether its preliminary estimate should 

be adjusted. PCS releases the initial Resurvey estimate to subscribers approximately 

60 days after the Preliminary Estimate is issued and may continue the resurvey process 

and publish additional Resurvey estimates approximately every 60 days until it believes 

that the loss has been reasonably approximated. The advantage of PCS products over 

CAT products relies on the fact that no market participant, nor any agency can release 

any information on the losses before being officially published. This means that all mar-

ket participants including companies in the index pool receive the same information at
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the same time thereby eliminating the problem of information asymmetry. Also, when 

PCS estimates the loss indices, they conduct surveys of the market. These surveys are 

confidential and they are not used directly in the estimation of the indices. So it is quasi-

impossible for insurance companies to affect the indices, and therefore the moral hazard 

problem is eliminated. The construction of the PCS options also eliminates the problem 

by late occurring catastrophes. The PCs index does not directly depend on a number of 

reported claims and the time from the end of the event period to the time the index is 

settled is also longer for the PCS products than it was for CAT products. The problem 

of the PCS options arises in the pricing of the derivatives written on the indices.

5.4 Pricing of PCS options

PCS options are based on an underlying loss index that is not traded itself hence the 

payoff at maturity T  of the option is directly related to the aggregate claims index which 

becomes the important element in the valuation of the option. The market is therefore 

incomplete even with constant jump sizes of the underlying index. Different authors in 

the literature have considered different frameworks for valuing the price of terminal claim 

options written on the index.

In Genian and Yor (1994), just like in Genian (1994), the underlying index is directly 

modelled as a geometric Brownian motion added to a Poisson process with a constant 

jump amplitude. Although the loss index is a non traded asset, the pricing has been 

possible by basing the no-arbitrage argument on the existence of a class of layers of 

reinsurance with different attachment points to guarantee completeness of the insurance 

derivative market.

If we consider the loss period to be [0, T\] and the reporting period to be [Ti,T2], the
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dynamic of the aggregate reported claim evolves as :

dLt =

dSt + kdNt for t G [0, T\] 

dSt for t G [Tj, T2]

where k represents the jump size assumed to be constant, St is a geometric Brownian 

motion that represent the adjustment made to the claim and Nt represents the number 

of claims of size k made by time t. The authors investigated the pricing of a call option 

with strike price I\ with the assumption of a constant force of interest during the life of 

the option [0,T], Based on the completeness of the market, the price of the derivative is 

computed as

C(t) =  e - r^ E Q [(Lt  -  K )+Ft] ,

where the measure Q is the particular martingale measure that best fits the prices of 

reinsurance layers quoted by major reinsurance companies among the class of martingale 

measures. The authors then used an Asian approach to obtain a semi-analytical solution 

for the value of C(t) in form of the Laplace transform.

In Murman (2001) the author took a different approach and considered the aggregate 

loss index as a compound Poisson process with no adjustment made to the claims. In 

this framework, we consider the aggregate index claim of the form

Nt

L‘ =  £  n
k= 1

where Nt is a Poisson process with constant claim severity A and Yj. =  Y  is the size of 

the claim. With G denoting the distribution of Y, the author constructs an equivalent 

probability measure Q under which the index process Lt preserves the compound Poisson 

structure.
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If (A,dG(x)) denotes the characteristic of the compound Poisson process Lt, under the 

original measure P, a probability measure Q under which Lt preserves the compound 

Poisson structure is equivalent to P  if and only if there exists a non negative constant k  

and a measurable function v : R+ —> R satisfying:

v{y)dG{y) =  1,

such that the associated density process =  Ep[£T | N,\ of the Radon-Nikodym derivative 

derived from the probability measure Q, (£r =  ^ )  is given by

6  = n « . (u ) ) . e x p ( / ‘ n
k=i \Jo Jo

(1 — nv(y))\dG(y)ds

(5.8)
N t

exp ^ 2  In(Kv(Yk)) +  A(1 -  k )t
a-=i

Under the new measure Q index by the constant k , and the function v, the index loss 

process Lt has characteristic (.XQ,dGQ(y )) =  (AK,v(y)dG(y)) and is associated to the 

couple (n,v(y)); moreover, the set of equivalent probability measures P K,,V is one-to-one. 

For details of the proof, see Delbaen and Haezendonck (1989).

The author proposed two different methods based on the no-arbitrage assumption for the 

valuation of a terminal claim option G(LT) under the assumption of a constant force of 

interest r.

The first method is based on computing the price of the derivative through the Fourier 

transformation. In a no-arbitrage market, the price of the derivative is computed as

n?(t,L ) =  Eq e~r^ G ( L T) | T t =  e- r{T- t]f Q{t ,L)

in
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where Q is the equivalent martingale measure. Assuming that there exists a constant k 

such that G(.) — k 6 L2(R) then the price f Q(t.L) can be represented as

f Q(t, L )=  eiuLL%_t(u)<p(u)du +  k (5.9)

where <p(.) is the inverse Fourier transform of G(.) — k and is the characteristic

function of Lx-t under the probability measure Q i.e.

L$_t(u) =  exp\\Q ^  eiuy

This yields the derivative price on the form

dGQ( y ) - ? j  C T - t ) j .

L) =  e- r(T- t) f  é uLexp LAq  (Eq [eiuY] -  1 ) (T -  <p(u)du +  k.

The second method exploits the fact that the discounted price processes in the insurance 

market are martingales under an equivalent measure. Infinitesimal generator with a 

Markov Process L =  {Lt)o<t<T on the set of price function /  : M+ x [0, T] —> R is applied, 

from which the author deduced that the process M  =  (Mt)0<t<T with

Mt -  -  / ( 0, L q ) -  / ‘ A (f ) (s ,L a)ds
Jo

is a martingale under the measure Q where

A ( f Q(t, L)) = dfQ£ L) + XQ- 1  (/Q(  ̂L +  y ) -  f Q(t, L)) dGQ(y).
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The author proves that for a choice of the parameters (k , v ) and for any constant fceM  

such that G(.) — k G L2(M), f® (t,L ) satisfies the partial integro-differential equation

= A0 . / « ( ( ,  L )  _  \ Q  £  / « ( , ,  L  +  y ) ) d G % )

with boundary condition = G(L) and has a unique solution satisfied by (5.9).

In both methods, the choice of the parameters (k , v ) can be made to reflect the structure 

of the market or the preference of an agent. In a liquid insurance derivative market, it 

is therefore possible to obtain the market prices of frequency risk k  and jump size v(.) 

as implied parameters from observed derivative prices. In the context of a market with 

a representative agent, market price of frequency and jump size risk are determined by 

the preferences of the representative agent. The principle of utility maximisation thus 

determines the unique price process of the insurance.

A different approach is considered in Christensen (2000) where the author considered 

the aggregate index to be modelled as an exponential Levy process

Lt =  L°exp(Zt),

where Zt is a Levy process defined differently depending on whether the process evolves 

in the loss period [0, Tj] or in the development period [T\,T2] according to :

Nt

=  V) for t € [0, Ti]
¿=1

where Nt is a Poisson process with parameter Aj and Yt is exponentially distributed 

with parameter g implying that Lt -  L° ~  Pa(g,L°). In the development period, X, is
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expressed as a random sum of Normal distribution according to

Nt-Ti
X:t =  X Tl+ Y , Y i  fOT t £ [ T i , T 2],

i=1

where Nt is a Poisson process with parameter A2 and Y, ~  N(0, a2). The author priced 

a capped call option with cap K  and strike price A  whose payoff is

C(T2, LT2) =  min (max (Lt 2 — 4̂., 0) , K  — A ) .

A no-arbitrage assumption is again made, which results in the price at time t being:

C(t, L) =  e~r^ E Q [C(T2, Lt 2)\Tt\ . (5.10)

But since Lt is not tradable, the author considered the process ^  as the traded asset 

where Pt is the deterministic premium paid up to time t. The author defined the Esscher 

transform

M (z, t, h) =  [ X ezxF(dx, t- h) =  h- ]
7-oo M (h,t)

where

F(dx , t, h) ehxF(dx , t) 
M(h, t)

and

M (z,t) = E [e,xXt ezxF(dx, t).

The idea in Gerber and Cummins (1996) is then used to obtain the risk neutral Esscher 

Measure Q under which the discounted price of the process is a martingale. The
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Radon-Nikodym derivative for the risk neutral Esscher measure is characterised by

o p  ^  '
e h i x T 1 e  h d ( x t - x T l ) 

„ Mi(hi,Ti) Md(hd,t-Ti)

for t G [0, Ti]

for t e f Z i .T y

(5.11)

where hi and hd are such that

Er Pt =  — =  1 .
Po

For t G [0. Ti], hi is obtained as the solution of the equation

E, ■tU
Pt

-rt =  1 M ( 1 , /¿/) =  eriPt whereas

For t G [0, Ti], hd is obtained as the solution of the equation

E,-Q
'  Pt =  1 .

Er

Er

ertP  - 1

g-x' r l e x 't - .V r l
=  ertPT. PtTi r t—Ti

M /(1,T1; hi)M (l,t -  Tu hd) =  ertPTlPt- Tl.

Although there is more than one equivalent measure, the author used the Esscher trans-

form to produce a unique equivalent measure Q defined as in Equation (5.11) under which 

the price of the derivative is provided as in Equation (5.10).

In the next chapter, the principle of equivalent Utility for the pricing of dynamic risk, 

pioneered by Young and Zariphopoulou is applied to calculate the indifference price of a 

catastrophe option where the payoff depends only on the value of the index at the term 

of the option.
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Chapter 6

Pricing of Catastrophe Insurance via 

Indifference Utility Theory

6.1 Introduction to Equivalent utility theory

The Black-Scholes pricing theory is based on the fact that one can create and construct 

a portfolio that can accurately replicate the payoff of a contingent claim. The risk as-

sociated with the financial product is thereby completely eliminated or hedged therefore 

one can argue that the value of the product is the cost of creating the hedging portfolio. 

One of the assumption of the Black-Scholes model is the completeness of the derivatives 

market. In the case of a catastrophe insurance derivatives market, the market is incom-

plete and there is no universal theory to date that successfully produces a unique value 

of the contingent claim that all market agents agree on.

In an incomplete market with unhedgeable risk present, there are a variety of ideas 

on what should be the right notion of pricing. Various methods including the ones in 

chapter (5) can be used. The approach that we will adopt in the pricing is based on 

an expected utility argument built around investors’ preferences towards the risks that
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cannot be eliminated. The risk preference of an investor is quantified through her util-

ity function of wealth. To fully determine the price of the option for an investor given 

her utility function, one compares her maximum expected utility of wealth when the 

investor takes up the option therefore paying a price and her maximum expected utility 

of wealth without taking up the option. The indifference price is the price that makes 

the investor indifferent between the two investment opportunities. The fundamental idea 

underlying the technique is based on the principle of certainty equivalence drawn from 

economic theory but modified in order to accommodate the dynamic nature of the mar-

ket. The principle was introduced in Hodges and Neuberger (1999) and was extended 

in Panas, Davis, and Zaripliopoulou (1993). Since then, many authors, see Young and 

Zariphopoulou (2001), Young and Zariphopoulou (2002), Zariphopoulou (2001a) and Za- 

riphopoulou (2001b) have applied the utility based technique to the pricing of financial 

options and insurance products.

In Shouda (2005), the author considered the indifference price of defaultable bonds whose 

recovery values are not predictable. A partial integro-differential equation was derived 

via a backward stochastic differential equation for an investor with exponential utility 

function. As a result of the incompleteness of the market, the author proposed a natural 

risk measure to compute the indifference price of the bond.

In the indifference pricing framework, different methodologies may be used. One method 

is to work with the diffusion or jump-diffusion model of the state variables and derive the 

PDE or PIDE for the indifference price.

In Musiela and Zariphopoulou (2004), the authors considered an incomplete market where 

there are tradable assets and non tradable assets with correlated Brownian motions and 

derived a nonlinear PDE for the indifference price of a contingent claim. In Sicar and Za-

riphopoulou (2005), the authors considered a stochastic volatility model and showed that 

the indifference price is bounded by a risk neutral price and the certainty equivalent price.
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Another popular indifference pricing method is to use the duality method in Fritelli 

(2000) and Delbaen, Grandits, Rheinlander, Samperi, Schweizer, and Strieker (2002) 

to derive a backward stochastic differential equation (BSDE) for the indifference price 

process. In Rouge and Ivaroui (2000), a diffusion model with a constrained trading op-

portunity was considered and the author derived the BSDE for the indifference price 

whereas in Mania and Schweizer (2005) the authors considered a general semi-mart ingale 

filtration, derived the BSDE for the indifference price and studied the asymptotic results 

with respect to the risk aversion coefficient.

In the absence of an analytical solution of the indifference price which is a solution 

to a PDE or PIDE, numerical solutions are called for.

Grasselli and Hurd (2004) proposed a Monte Carlo algorithm for the exponential hedging 

problems which is computationally expensive. In Grasselli and Hurd (2005), they authors 

studied the numerical methods for indifference pricing for a stochastic volatility model 

when the volatility process follows a reciprocal CIR, process and showed the result for the 

volatility claims only, leaving out the claims on the stock. In Lim (2005), a numerical 

solution was proposed to compute the indifference price and risk monitoring strategy of a 

contingent claim in an incomplete market with exponential utility function. Using the du-

ality between exponential optimal investment problem and the relative entropy problem, 

the author recasts the option writer’s optimal investment problem as a minimax problem 

and derive the complete procedure of finding the numerical solution of the indifference 

price.

The common ground in the use of the principle of equivalent utility in the pricing of 

contingent claims is the fact that the risks to be priced are related to uncertainties that 

do not correspond to fluctuations of a tradable asset making the market incomplete. An
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example of the risk in this thesis is the claim size of an insurance policy that is random 

and cannot be hedged using financial products. The principle of equivalence can also be 

applied in a complete market i.e. if the contingent claim is written on a tradable asset. 

In Young and Zariphopoulou (2002), the authors proved that for a contingent claim writ-

ten on a tradable asset, the equivalent utility based method yields a price that is utility 

independent and identical to the Black-Scholes price.

The principle of indifference utility is based on the definition given by Hodges and 

Neuberger:

Definition The indifference price of the European claim G =  G{LT)1 is defined as the 

function h =  h(t, x, L) such that the investor is indifferent towards the following two 

scenarios: optimise the expected utility without the derivative therefore not facing any 

contingent claim and not receiving any compensation (premium); and optimise it with 

the derivative taking into account, on one hand the liability G =  G(LT) at expiration T 

to be faced as well as the compensation h(t,x,L ) received at the time of inception t.

If we denote by V(t, x) the maximum expected utility without using the derivative where 

x is the initial wealth of the agent and denote by U(t,x,L)  the maximum expected 

utility of the agent having to face a contingent claim at the time of expiration T where 

L represents the current value of the asset on which the contingent claim is written, then 

the indifference price is the value of the function h such that

V (f, x) — U(t,x +  h(t, x, L), L). (6.1)

The next section will be the application of equation (6.1) in pricing Catastrophe insurance.
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6.2 Pricing via indifference utility Theory

As the pricing process involves the maximum expected utility of two investment scenarios, 

one needs to solve two optimal stochastic problems and extract the parameter price that 

makes their value functions equal under the umbrella of equivalence utility principle. In 

the subsequent analysis, we will adopt the exponential utility function on the form

u(w) =  -r}e~vw (6 .2)

where w represents the wealth of an investor. We assume that the contingent claim is a 

terminal claim and is written on an insurance claim index Lt which evolves in a manner 

similar to a PCS option. The term of the option (reporting period) [0, T] is divided 

into the loss period [0,7\] and the development period [71, T]. Due to the nature of 

the aggregate claim, we represent its dynamic in the loss period as a compound Poisson 

process with a constant claim severity i.e.

Nt

Lt =  y  Yt for t € [0,71],
i=l

where Nt is the Poisson counting process of the claims with rate A, and Yt are the claim 

sizes assumed to be independent and identically distributed. The change in the aggregate 

claim index is expressed as

dLt = YdNt for t € [0, T\]. (6.3)

In the development period [7), T], the aggregate claim process is represented as a geo-

metric Brownian motion with parameters /.¿l  and aL. Thus Lt evolves according to

dLt =  Lt(fJ.Ldt + (JidBf) for t £ [Ti,T]
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where Bjr is a standard Brownian motion. Thus at any point t G [Ti. T] ,

Lt =  LTl exp (^(m -  y ) ( i  -  Ti) +  (t l BJ -  B%\

where LTl is the aggregate claim at the end of the loss period. The parameter ¡i l  expresses 

the upward revaluation of the claim in monetary terms which we consider above the rate 

of inflation whereas o l  expresses its volatility.

The objective is to determine at time t G [0, T\] the price of an insurance contingent claim 

G =  G{Lt ) given the value of the aggregate index claim at time t . We also assume that 

investors have the opportunity to trade between a risky asset St and a risk-free asset Ct. 

The risky asset evolves dynamically as

dSt =  St(fj,dt +  adBt)

where ¡.i >  0 is the drift of the asset and a > 0 its volatility. The risk free asset evolves 

deterministically as

dCt =  rCtdt.

where r >  0 is the risk free interest rate. At time t, the investor has capital Wt =  w and 

is allowed to trade dynamically between the risky asset and risk free asset at no cost.

If we let 0 t denote the amount invested in the risky asset and 0° the amount invested in 

the risk free asset, the total current wealth satisfies the budget constraint Wt =  0 t +  0° 

with the flexibility of the company to short sell stocks or borrow cash at the risk free 

rate. Thus the wealth follows the dynamics

dWs =  rWsds +  0,,f/i — r)ds + aOsdBs t < s < T .  (6.4)

In the absence of a liability and therefore of a premium received, the investor equipped 

with an increasing utility function therefore preferring more to less will maximise the
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expected utility of terminal wealth

V(t,w) =  sup E [u (Wt ) I Wt =  w] (6.5)
©s

t < s < T

where Qs satisfies the usual integrability condition E f  O^ds < oo . By the same token

as in chapter (4), the solution of (6.5) satisfies the Hamilton-Jacobi-Bellman equation

+ max© (M -r ) 0 g  +  ^ 202Sd2w

V(T, w) =  u(w)

( 6 .6 )

The optimal solution is obtained as a feedback control

(6.7)

in which V  solves (6 .6):

9V T, 1
~m + rwV-  2 a

2 y  2
w = 0 .

Kww
( 6 .8 )

From chapter (4) which assumes an exponential utility function of the form (6.2), we 

can derive the value function solution to (6 .6) and the optimal risky asset investment by 

setting the return on shareholders investment to null (a =  0), and the Risk process to be 

identically null (p =  0 and A =  0). This yields:

V(t, w) =  —rje eHT-t)_Ln^r2 cr2 ( T - t ) (6.9)

and the optimal investment in the risky asset is computed as

e, =
uaz ( 6 . 1 0 )
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The optimal investment is independent of the state variables and decreases as the risk 

aversion of the investor measured by the constant v increases. It predicts to invest less 

in the risky asset as we approach the final time horizon T.

In the case where liability induced by a premium is involved, the principle of equivalence 

utility will be assessed depending on whether the investor is in a short or long position on 

the contingent claim. An insurer who is short on the option will receive some premium 

h(t,w,Lt) that will be added to her current wealth and be invested in the assets. She 

will have to face the contingent claim at the term of the option. The associated value 

function is therefore

U(t, w, Lt) — sup E
e s

t < s < T

u(WT -  G(Lt )) Wt W +  hShort{t,W,Lt) ( 6 . 1 1 )

Her indifference price will therefore be hshort such that her terminal expected utility 

remains the same if she had not sold the policy i.e.

U(t,w +  hShart(t,W,Lt) ,L t) =  V(t, w). (6 .12 )

Similarly, we can think of the option as a hedging strategy for an insurer who is concerned 

about big claims. Depending on her utility function, she will be willing to pay a price 

hLong to cover a potential big loss in the future. The policy-holder has two courses of 

action. She either purchases the option to hedge the risk, paying an amount hLong at 

inception t and invest the remaining of her wealth optimally in the assets or choose not 

to buy the policy at hLong and invest her wealth w in the assets optimally in which case 

she will be facing the terminal claim at time T. Her indifference price will be the /iio„ 9 

such that she is indifferent between hedging the potential big loss and not hedging it; 

thus hLong is the solution of

V(t, W -  hLong) = U(t, w, Lt) (6.13)
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In both cases, the technique results in equating the expected terminal utility of wealth 

of not insuring the risk with the value when the risk in insured. The price hshort can 

be thought of as the minimum price the party on the short position is willing to accept 

for taking the risk and this price will inevitably depend on her utility function in an 

incomplete market and particularly through the degree of aversion to risk . Similarly, 

the price ĥ ong can be considered as the maximum price the party on the long position is 

willing to pay for transferring the terminal risk to a risk taker. Unlike the Black-Scholes 

models in which both parties agree on the same price, the two prices do not coincide in 

an incomplete market even if the twro parties have the same risk preference. This is due 

to the non linearity of (6.12) and (6.13). In real life the assumptions of identical utility 

functions for the twx> parties is not true since the short party is less averse to risk than 

the long party (vshort >  Uong) which furthermore increases the gap between the prices. 

We will in the next section consider the price hs to be set by a party in the long position 

on the terminal claim option with payoff G =  G(Lt )■

6.3 Construction of the Solution

We will proceed in this section by determining the value function of the optimal policy 

in the two intervals of time [7\, T] and [0, T\].

Value function in [T \ ,T ]

Let U be the value function in the development period [Ti, T], U satisfies

U (t ,w ,L )=  sup es E u (W t  — G(Lt )) 
Ti<t<T L

Ü(T, Wt , Lx) — u{\Vx — G{Lt ))

Wt =  w

for t E [Ti,T]. (6.14)
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Using the dynamic programming technique, the optimal wealth invested in the risky asset 

is obtained as a feedback control

A /. \ ( T - r )  £4= ------ (6.15)

Following the same steps as in chapter (4), U satisfies the partial differential equation

Utdt - \ (  - — 3^-dt  +  rwÜwdt +  Ül E [dLt | Tt\ +  \(Jl l E [dL\ \ F t] =  0 (6.16) 
® )  Uv,v, 4

with boundary condition U(T, w, L) =  u (Wt  — G(LT)) where

dLt =  Lt (nLdt +  crLdBt) for t G [Ti,T].

Taking the conditional expectation, yields

Ut -  | ( ^ ) 2 £  +  rwUw +  ULLtp L + \a2LL2tULL =  0 

< . (6.17)

U(T, w, L) =  u(WT -  g(LT))

By the nature of the utility function which has a constant aversion to risk, we propose a 

solution of the form

U(t,w,L) =  V(t,w) x F(t,L). (6.18)

Using (6.18), we obtain

Ut -  VtF  +  VFU Uw = VWF 

Fww — VWWF , Ul  — VF l  

and ULL = VFl l .
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Substituting (6.19) into (6.17), yields

F d V  M  r ,  U T -
■ m +rwV~ - 2 {  —

2 y  2 
r  W

Vww
+ v

a2L2 __
Ft +  H l L ì F l  H— =  (

Due to (6 .8), the first term of (6.19) vanishes leading to

Ft +  iiLLtFL +  ^ ~ F Ll  =  0,

with boundary condition derived from the equality

Ü(T, w, Lt ) =  u (w — G{Lt )) =  V(T, w) x F(T, LT) 

= - r j e - ^ + ^ r )  =  -rie-™  x F(T, LT) 

=» F(T, Lt ) =  =  F(L t ).

F then verifies
Ft +  fiLLtFL +  ^ F l l  =  0

F{T. L) =  euG{L) = F{L)

The Feynman-Kac formula gives us the following representation of F

F(t, L) =  E ^G(Lj Et for t e  [Ti,T],

thus a candidate value function in [T\,T] is

Ü(t,w,L) =  V(t,w) E ^G(Lt ) E, for t € [ T u T\

(6.19)

( 6 .20 )

(6.21)

( 6.22)
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Value function in [0, T\]

In the loss period, the aggregate loss index evolves dynamically according to equa-

tion (6.3). If we let U be the value function for t 6 [0,I\] i.e.

using again the dynamic programming principle, we obtain a feedback control of the 

optimal risky asset allocation as in (6.15) where U is replaced by U. The HJB equation 

satisfied by U follows the equation

where f Y denotes the density function of the claim size distribution. The continuity 

of the value function with the time variable at t =  T\ as the result of the principle of 

dynamic programming imposes the natural condition U(Ti,w , L) — U(Ti, w, L) which in 

turn constitutes the boundary condition for the problem in the loss period [0, T\]. The 

complete HJB equation with its boundary condition turns to :

U (t, w, L) =  sup E [u [Wt )\
e.

/
•oo

U(t,w, L +  y) — U(t, w, L) f Y(y)dy =  0,

Ut -  Ì { ^ ) 2 £  +  rwUw +  AE \u(t, w,L + y) -  U(t, w, L) 1 =  0

(6.23)

U(Tu w,L) =  Ü(Tu w,L) =  V(T1,w)E [evĜ  \ETi\

We again assume that U is of the form

U(t, w, L) =  V(t, w) x F(t, L). (6.24)

The partial derivatives and change in U are calculated as:

Ut =  VtF  + FtV, Uw -  VWF, UxIuw VWWF and

U(t, w, L +  Y ) -  U(t, w, L) =  V [F(t, L +  Y) -  F(t, L )}. (6.25)
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Substituting (6.24) into (6.23) while accounting for (6.25) yields

F dV T/ 1 V*
—  +  rwVw -  -  -- --------------- j f -Ot 2 \ (7 ) Vi/)?/) + V Ft + AE F(t, L +  Y) -  F{t, L) =  0.

The first term vanishes due to equation (6 .8) therefore F satisfies

Ft +  AE F(t, L + x) — F(t, L) = 0

(6.26)

k F(Tu L) =  F(TUL) =  E [evĜ  \FTl, LTl = L] = £(L)

The solution of (6.26) is a path sum of possible histories or trajectories of the aggregate 

claim index process of the form :

F( LL) =  E Ç(LTl-t) L0 = L

But since the process Lt is time homogeneous, this can be simply represented as

F{t,L) =  E i{LTl) Lf — L

and given that

t(L Tl) =  E 0uG(Lt ) 7 Ti

we obtain after simplification using the Tower property,

F(t, L) =  E E 0v G ( L t ) 7 Ti Lt = L =  E d̂ G(L7 Lt =  L (6.27)

This shows that for t G [0, T\] where the option can be bought, a candidate value function 

is of the form

U(t,w,L) = V(t,w) F(t,L) (6.28)
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where V  is according to (6.9) and F  according to (6.27).

6.3.1 Verification via the martingale optimality condition

In this section, we will use the martingale optimality theorem of section (2.7) to show that 

U and U respectively described by (6.22) and (6.28) are indeed the value functions. The 

proof follows from the fact that U and U can be written in a factorised form, see (6.18) 

and (6.24). Following (6.15), the optimal risky asset allocation during the whole life 

of the option is therefore independent of the index loss and is exactly as described by 

equation (6.10). We now consider the candidate value function U in the development 

period [Tt, T ],

Theorem  6.3.1 U is martingale when the optimal control is applied, and is a sub-

martingale otherwise.

P roo f

E tj(t T S, I'l'Vs, 1't+s) Ft =  E 

=  E

V(t +  s, Wt+s) x F(t +  s, Lt+S) F t

V(t +  s, Wt+S) Ft x E F(t -F s, Lt+S) Ft

But F  is a martingale i.e.

E F(t +  s, Lt+S) F(t,L t).

Also, since V  is the value function of the stochastic control problem with no loss index 

and since the dynamic of the loss index does not involve the control variable, V  is a 

martingale when the optimal strategy is applied and a sub-martingale when it is not. 

This fact together with (6.29) proves that U is a martingale when the optimal strategy 

is adopted and a sub-martingale whenever it is not applied. Consequently, U is indeed
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the value function in [7\, T], By the same token, we can easily show that U is indeed the 

value function in [0, 7\]. □

We are now ready to derive a closed form formula for the equivalent price of the option 

for the long position as well as for the short position.

6.3.2 The general price of an option and some properties of the 

price

We derive in this section the price of any terminal claim option.

Theorem  6.3.2 The price of the long position ĥ ong is equal to the price of the short 

position h-short and are given by the formula

6 Long k s h o r t  —  In IE 0i/G(Lt ) L, =  L =  Hu). (6.29)

P ro o f Applying the principle of utility equivalence to the short position, we obtain

U(t, w +  hshoru L) =  v(t , w)

which yields:

V(t,w +  hshort) * F(t, L) =  V (t, w)

hence
e - r ( T - t )  e - r ( T - t )

hsh o r t  = ---------- In F(t, T) = -----------------In EV V
al/G(Lq Lt =  L

For the long position price, we equate

U(t , w, L) =  V (■t , w -  hLong)
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which is equivalent to

V {t ,w )* F ( t ,L ) V(t, w) exp uer(T t]hLong

hence

e - r ( T - t )

hLong In F(t,T ) hshort —
e - r ( T - t )

---------- InE
v

evG(LT) h(u), (6.30)

completing the proof. □

The above formula brings out some important ingredients of the utility based valuation 

approach. First and foremost, we remark that by contrast to existing methods for in-

complete markets, the price of the option is given as the expectation of a function of the 

payoff and the degree of aversion to risk g{y, x) =  evx which is similar to risk neutral 

pricing. But unlike risk neutral pricing in which the price of option is computed as the 

discounted value of the payoff under the the equivalent martingale probability measure, 

we notice that the expectation in the formula of h{u) is with respect to the physical 

probability measure. The fact that the expectation is taken on a function of the payoff 

and the degree of aversion to risk constitutes a direct consequence of the utility based 

approach that distorts the original payoff and replaces it by a derived function of the 

utility function . Although the derived function is in general nonlinear with respect to 

the payoff, the price of the option can be obtained easily by using Monte Carlo simula-

tions methods that will be explored in the subsequent sections in lieu of solving partial 

differential equations.

Theorem 6.3.3 As the degree of aversion to risk increases, the price of the option h(v) 

increases.

Proof The proof relies on the Lyapunov inequality on the class of random variables in 

Lp. We first, consider the price of the option as a function of the degree of aversion to
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risk,

h{v)
e - r ( T - t )

V
I11E eî G(LT)

e - r ( T - t )  ln g p G (L t )

1
u

Let us consider the Holder Inequality on the functions F  and G,

E F G < (E [|Fj J ) p (E [|

Taking F =  X p, G =  1 where X  =  eĜ L0\Lt — L, we obtain

E [ | < E [|à ' i'|p] = E X »p for u > =  0

(6.31)

E X v < E X vp\ = E where x  =  up.

Since p >  1 and x  > u, I(u) =
1
u

□

E e v G (L t ) s increases in v .

The price can be seen as a function of the aversion to risk from the buyer’s point of view 

as well as from the seller point of view. If the short position holder has a high aversion 

to risk, she will charge a higher premium. On the other hand, if the buyer has a higher 

aversion to risk, she will be prepared to pay a higher premium to have the risk passed to 

the seller.

Equation (6.30) shows that if the two parties have the same utility function and the same 

aversion to risk i.e. uLong =  ushort, then both parties agree on the same universal price 

on a terminal contingent claim option with payoff G{LT) which is a particular feature 

in Black-Scholes pricing theory. In reality, and specially in insurance risk hedging, the
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party on the short position has lower aversion to risk than the party on the long position 

so that her risk aversion parameter is lower i.e. vshort < vLong; consequently, the price of 

the short position is lower i.e. hshort <  hLong. This suggests that in reality, if the two 

parties adopt the same utility function of wealth, the buyer of the option will be able to 

afford the price of the seller.

Another important point is to assess how different the computed price h(u) based on the 

equivalent utility theory is from the traditional actuarial perspective. To do that, we will 

first make use of Jensen’s inequality. Since the function exponential is convex, applying 

.Jensen inequality shows that

h{u)
e - r ( T - t )

---------- InE
V

e ‘'G (L T ) > e_r(T_i)E G (L j hA(r). (6.32)

In equation (6.32), the price hA{r) can be considered as the traditional actuarial price 

of the option purely based on the expectation and not on the aversion of the party on 

the long or short position, using the risk free rate as a discounting rate. The inequality 

in prices, brought about by the application of Jensen’s inequality shows that for a risk 

averse investor who adopts an exponential utility function, regardless of her degree of 

aversion to risk, the price she is willing to pay will always be above the actuarial price if 

the actuarial discounting rate of return is the risk free rate. This result as one might think 

is surprising since it goes against the principle of no-arbitrage in the financial market. 

In fact, equation (6.32) is not surprising because the actuarial discount rate 5 is usually 

different from the risk free rate of return r. On the contrary, the result shows that there is 

an implied actuarial discounting rate with regard to the level of risk under the derivative 

contract and the risk aversion of the seller of the contract such that the actuarial price 

equates the indifference price h(v) =  hA(S) where 5 denotes the no-arbitrage actuarial
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discounting rate which is computed as

1 in E e v G (L T ) Lt =  L

T -  t ^ E v G(Lt )

i 
i

>-3II4
“

(6.33)

Equations (6.33) shows that the no-arbitrage actuarial discounting rate is lower than the 

risk free rate of return . In practise, S is not chosen by equating the indifference price to 

the actuarial price since the indifference price is unknown in the actuarial pricing. Instead, 

S is chosen subjectively in order to reflect the level of risk in the financial contract as well 

as the degree of aversion to risk to the seller of the contract; this subjectivity element in 

the choice does not guarantee that the two prices will be equal and therefore can create 

an arbitrage in the market if one can exactly compute h(v). This example is one of the 

many including the article of Andrew Smith (Smith 1996) which claim that the traditional 

actuarial approach on its own is not appropriate for pricing financial derivatives. In the 

following, we show that if the seller is completely neutral to risk, she will charge the 

actuarial price based on the risk free rate.

Theorem  6.3.4 The lower bound of the option is attained when the party on the short 

position is risk neutral i.e. u =  0 and the consequent price is the actuarial price with a 

risk free discounting rate.

P ro o f The proof relies on the fact that the price of the option can be written as a 

cumulant function. Observe that

e - r ( T - t )
h{v) =  ---------- In ( E , v G (L t ) Lt =  L

where =  E e v G (L T ) L t =  l  is the conditional moment generating function of 

the payoff evaluated at the risk aversion parameter v and K G(Lt ){v ) is the corresponding 

cumulant function.
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A series expansion of ex at x0 =  0 may at this point be used to rewrite Mq (Lt )(v ) as

¿=i
M g [Lt ) {u ) =  \+Yj G (L t Y Lt =  L = 1  +  G ( L t )

O O  j —  1ul 1

i=1
A  =  I = 1+uS

where
À— 1

s  =  £  - jp E  G (i
Z=1

Lt =  L (6.34)

The cumulant function Kq (Lt )(v ) — In (1 +  i/S) may also be expanded using the series 

expansion of ln(l + x) at x0 =  0. This yields

K G(Lt )(v ) -
j=i

ip '- 1 . . 4 4  ( -1 V -1 ■
A — V J S J  =  u S  + V  4 — u 3 S 3 = v S
j  TU', jj=2 Jfc=l

i + y i T y S‘
' k +  1

from which we deduce that

K G(l t ){v )
= 5 i +  V

'  h  4 - 1

,k nkk= 1
k + 1

From (6.34), we compute the limit of 5,

lim S =  Eis—>o G(Lt ) L/ =  L

and conclude therefore that

lim h(v) =  e“ r(T“ f)E G(Lt ) u—>o L Lt =  L = hA(r).

□

The result interestingly shows that not only the actuarial price of the option (/i^(r)) 

when the rate of discount is the risk free rate is the cheapest in the market but also that 

when the seller of the option is completely neutral to risk (u =  0), she does not care 

about the volatility of the payoff. This finding suggests that the fair actuarial premium
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pricing approach with risk free rate is based on the risk neutrality of the policy seller.

6.4 Pricing of some classical reinsurance options

In this section, we consider the major types of insurance options. The price of any option 

with payoff G(LT) is given by :

h(t, L, u)
p - r ( T - t )
---------- In E

v
e v G (L T ) (6.35)

where for t < T),

/  N r - N t  \  2

LT \ Lt =  ¡ L t +  ] T  Yi (6 .36)

At terminal horizon T, the aggregate loss function can be decomposed as a sum of the 

product of a log-normal distribution and the compound Poisson process. The price which 

depends on the expectation of the exponential of the payoff is analytically challenging 

even in the case of the simplest payoff G(Lt ) =  LT due to the presence of the moment 

generating function of a log-normal distribution. Depending on the form of the payoff, 

different methods will be applied to compute the price of the option. The advantage in 

having the price in the conditional form (6.35) is that in the absence of any simplification 

due to the structure of the payoff, Monte Carlo simulation may be used to obtain the 

equivalent price. On figure (6.1) is the histogram of the aggregate loss index at the 

terminal horizon using Monte Caro simulations.

6.4.1 PCS call option

The PCS call option with strike price K\ and cap value K 2 provides at the term of the 

contract, a payoff

G(Lt ) =  min < max (Lt  — K\, 0) , K 2 — K\ > = (Lt  — R i ) I { l t > k 1}  — (LT — R2)I{l t >k 2}-
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Since G(.) is not linear, an analytical form of the price is doomed to failure. We will 

proceed by numerical solution using Monte Carlo techniques. Figure (6.2) shows the 

distribution of the simulated payoff and table (6 .1 ) shows the resulting price.

6.4.2 Stop Loss

The stop loss is a non proportional type of reinsurance and works similarly to excess-of- 

loss reinsurance. While excess of loss reinsurance is related to single loss amounts, either 

per risk or per event, stop loss covers are related to the total amount of claims for a given 

time period net of an agreed retention amount K . The re-insurer pays the excess of the 

total claim amount above the retention amount . The payoff is similar to a European call 

option with strike price K  with the difference that the underlying variable of the option 

is not the stock but the aggregate claim. The payoff at maturity may be written as

G { L t ) =  ( L t  — K ) 1 { l t > k }-

The price of such option maybe also be computed using Monte Carlo simulations. Fig-

ure (6.2) shows the distribution of a Stop loss payoff and table (6.1) shows the resulting 

price.

6.4.3 Proportional reinsurance

The index Lt can also be taken as the aggregate claims of an insurance company which 

is concerned about the aggregate claim from running the business in a given interval of 

time [0, T}. The company could, giving its aversion to risk, decide or not to purchase 

a reinsurance that protects against large amount of aggregate claims at the end of the 

term of the business. A common option available to the insurance company is to cede a 

proportion of whatever the aggregate claims appear to be to a re-insurer company: the 

proportional insurance. We consider a company ceding a proportion k  of the aggregate
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risk to a re-insurer. Proportional reinsurance in the framework of equivalent utility is 

suitable for a company or a reinsurance company whose losses are heavily weighted in the 

loss index. Giving the risk aversion u of the re-insurer, the price in (6.35) represents the 

minimum price the re-insurer is willing to charge to retain a proportion n of the aggregate 

loss where

G(Lt ) =  k Lt .

In contrast to the traditional expected liability actuarial pricing approach that does not 

take into consideration the aversion of the insurer. The payoff may be explicitly written

as
/  N T - N t \ 2

G(Lt ) =  k Lt  =s  f k L +  k  Y ,  yi )  e^ L- ^ ){T- Tl)+aBT-Ti .

A close form solution of the price of the price E [y^lTr) | may only be obtained for

claim size distributions whose moment generating function are everywhere finite. Since 

real life claim size distribution do not satisfy the condition, we will proceed via a Monte 

Carlo simulations. The resulting distribution of the payoff is shown on figure (6.2) and 

table (6 .1 ) shows the price of the option.

6.5 Parametric Approximation of the Loss Index

In section (6.4.3), we made a distributional assumption on the claim size and evaluate 

the price of the option as the mean of the simulations across all paths. In the absence 

of a parametric assumption on the claim size distribution, it is of actuarial practise to 

approximate the maturity time aggregate loss index Lt  by a distribution that preserves 

some key properties of the aggregate claim. Approximate calculations are desirable in the 

industry as time is a crucial factor. We will in this section, approximate the aggregate 

loss index at time T by a translated gamma distribution with parameter T 7(^) ’4’) 

translated by A units i.e. LT \Lt =  A  +  T such that the mean, the variance and the
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skewness coefficient of the translated gamma match with those of the aggregate loss i.e.

E [Lt  ILt\ =  A +  - ,  Yar[LT \Lt] =  and Sk[LT \Lt\ =  aL  (6-37)
'Ip2 y /(j)

where § k is the coefficient of skewness. Knowing the first three moments of the aggregate 

loss, the parameters of the translated gamma can be deduced as

^ «3Ì -2 ’ 4> =  E^ 7r ^  and A = E[LT \Lt\ Yar
4 Yar

E [Lt  I Lt\ x Sk2'
(6.38)

PCS

At this point, we can rewrite the payoff of a PCS call option in terms of the value taken 

by the gamma distribution T.

G{Lt ) =

0

T + A -  K\

K 2 -  K x

if T < K\ -  A

if A'! -  A < T < K 2 -  A

if T > K 2 -  A

(6.39)

We are now ready to compute the approximated price of the PCS option. Let us evaluate 

the conditional expectation based on the approximation of the aggregate loss.

E [e"G(ir) ILt] =

= P

ç K  i — A  p K  2— A  p o o

I .fr(y)dy+ / ev{v+A~Kl) f r (y)dy + ev^ ~ Kl) / fr(y)dy
0 J —A J K2 — A

+ e^A~Kl) (  2 evy e~̂ 'vdy
J A'l-A r(0 )

T < K\ -  A

- J - g ^ C K 2 - K l )  p T > Ko -  A

=  P T < K x -  A ip rK 9—A
W -  v)*. i - l+  e K A - x 1 ) ( ^ _ )  x l M P _ A L M ^ - i e - i t - O y d y  

ÿ  ~ v )  Jk i - a
+ e P K 2 - K l) p  [ X  >  J<2 _  A ]

=  P T < Ki -  Al +  eu{A~Kl)
ip  —  v

X  P Ah — A < T < Ko -  A

+e v ( K 2 - K i ) P T > Ko -  A
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where Y' ~  j(4>, ip — u). If we denote by \n the chi-square with n degrees of freedom, 

using transformation techniques, we obtain

E [e Ĝ(Lr) JLt\ =  eu{A~Kl) 

+ P

+ p

'Ip
X  P

= e

ip — v 

2ipT < 2ip(K1 -  A)

ip

2pip — u)(K\ —  A) < 2( ip  —  v)Y < 2pip —  v)(K 2 — A)

_j_ ĝ (A'2—A'i) p 2ipT > 2ip(K2 -  A)

P
ip — v 

X24> < ty (K i  -  A)

2{ip -  v){K, -  A) < X20 < 2(iP -  u)(K2 -  A)

_|_ e v(K2-K\) p X20 > 2ip(K2 -  A) (6.40)

Denoting by Fx the distribution function of x 2<t>x the price of the PCS option becomes

h(t, L, v) =
o - r ( T - t )

In FXJ “ i) + ( - T 0  ) x h w w  -  A „ ( M )

^ (A X -A X )^ (6.41)

where

ai =  2ip(Kx—/N), b2 =  2(ip—v)(K 2—A), b\ =  2(ip—v)(K\ —A) and a2 =  2ip(K2—A).

Stop Loss
Proceeding to the same methodology as in section (6.5) we can find an approximated value 

of the price of a stop loss option using the translated gamma approximation technique 

to the aggregate loss. LT \ Lt — A + Y. The payoff is rewritten in terms of Y

G ( L t ) —
0 if Y < K  -  A

Y + A -  K  if Y > K  -  A

and the price of the option is approximated by

(6.42)

g - r ( T - t )
h(t, L, v) — ---------- 111 FxM { K - A )  +  e ^ - Ki

iP
ip — v X ( 1 -  FX2 {̂2^  -  U)(K  -  A )

(6.43)
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Proportional reinsurance
By the same token as above, the price of a proportional reinsurance may be derived as

h(t, L, v)
e—r(T—i)

V
e - r ( T - t )

V

[lnE [eKu{A+Y)]]

nvA +  (j) In ip y
Ip — KU J

(6.44)

6.5.1 Computation of the parameters of the translated gamma 

distribution
Equation (6.38) provides the parameters of the translated gamma knowing the different 

moments of the aggregate loss. In this section, we will evaluate the different moments 

of the aggregate loss at time T. Let us consider equation (6.36), and decompose the 

conditional terminal loss Lt  \ Lt =  L as

Lt  I Lt =  A x S x Z

where A =  e g  =  Lt +  Y ^ T~Nt yt ancj z  =  eaBT- Ti .

We first compute the first three moments of the conditional loss in terms of the moments 

of its components:

Moments of LT

E [Lt  I Lt\ =  AE[S]E[Z]

Lt Var[LT ILt\ =  A2 

Sk[LT ILt\ =

E[S2]E[Z2} - E 2[S}E2[Z]
5 3 ] E [ Z 3 ] - 3 E [ S 2 ] E [ Z 2 ] E [ 5 ] E [ Z ] + 2 E 3 [ 5 ] E 3 [Z ]1

. (6.45)

Var[LT |L t ]2

We obtain the first three moments of S through its moment generating function :

Ms (9) =  e e L + A Tx - t ) [ M Y ( 0 ) - i }

where Y  represents the claim size, and MY{6) represents its moment generating function. 

By first, second and third differentiating Mg(6) and evaluating at 9 =  0, we respectively
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obtained

E[S] =  A(7j -  t)E[Y] +  L

Moments of S < E[S2] =  A(7j -  t) 

E[53] =  A(Ti -  t)

E[F2] +  E[y]E[5] +  LE[S]

E[F3] + 2E[y2]E[5] +  E[y]E[52]l +  LE[52]
(6.46)

The Z  component of the loss is a log-normal variable whose moments may be derived 

through the transformation Z =  eN where N  ~  J\f(o,cr'2(T — Ti)^. This yields

Moments of Z <

E[Z] =

E[Z2] -  e2a'^T- T̂  

E[Z3] =  e i^ V -T o

(6.47)

6.5.2 Monte Carlo simulations parameters

C l a i m  d i s t r i b u t i o n  i s  Gamma w i t h  p a r a m e t e r  10 and 2 

E x p e c t e d  c l a i m s i z e  = 5 m i l l i o n s

C l a i m  p r o c e s s  i s  P o i s s o n  w i t h  r a t e  0 . 5  p e r  month 

Cap K l =  10 M i l l i o n s  Cap K2 = 20 M i l l i o n s  (PCS)

S t r i k e  K = 15 ( S t o p  L o s s )

R e t e n t i o n  = 0 . 4  ( P r o p o r t i o n a l )

L o s s  e v e n t  p e r i o d  = 6 months D e v e lo p m e n t p e r i o d  = 3 months

E f f e c t i v e  m o n t h l y  f r e e  r a t e  = 0 . 0 5 / 1 2

D r i f t  o f  c l a i m s  a d j u s t m e n t  i n  d e v e lo p m e n t p e r i o d  = 0 . 0 3 / 1 2  p e r  month 

V o l a t i l i t y  o f  c l a i m s  a d j u s t m e n t  i n  d e v e lo p m e n t p e r i o d  = 0 . 1 3 / 1 2  p e r  month 

I n i t i a l  L o s s  = 10 B i l l i o n s  

R i s k  a v e r s i o n  p a r a m e t e r  = . 2  

r e t e n t i o n  = 0 . 4
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6.5.3 Results

Figure (6.1) shows a comparison between the aggregate Index Loss distribution when a 

Monte Carlo simulation and a gamma approximation are applied. The Aggregate loss 

Index is positively skewed which justifies the approximation. The parameters of the 

implied gamma distribution obtained in the approximation are:

A = —5.89 0 =  9.363 and 0  =  0.301 such that /.-/• | /./ - A f  T (o. 0 ). (6.48)

In table (6.1) we compare the first 3 moments of the approximated gamma distribution 

to the Monte Carlo aggregate Index claim. The moments of the Gamma approximation 

are obtained using formula (6.37) with the computed values of 0, 0  and A in (6.48). 

Table (6.1) also shows a comparison of the prices using Monte Carlo simulation and 

gamma approximation. Aside the Stop Loss option, the discrepancy in price of the two 

methods is not very significant. This suggests that the gamma approximation which 

is computationally advantageous has a merit to be exploited since it does not involve 

simulations in the pricing. The significant discrepancy in the price of Stop loss is due to 

the fact the tail of the approximated gamma is slightly longer than in the Monte carlo 

simulation(see the last column of Table (6.1)).

If we look at the prices using the Monte Carlo method, we notice that the Stop Loss has 

the highest price. This is explained by the fact that the payoff is not bounded above 

hence the higher price.

The proportional option has a retention of k =  0.4. Jensen’s inequality shows the price 

of the option is higher than the discounted value of

E[G(Lt )} =  K x E[Lt ] =  0.4 x 25.21 = 10.08

using the risk free rate as the discounting rate. But since the discounting factor is itself 

less than 1 , the price of the option must be greater than E[G'(Lr)] which is satisfied in
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table (6 .1 ).

Aggregate Loss Prices Prob
Mean Variance Skewness PCS Stop Prop P(Lt  > 60)

Monte Carlo 25.21 83.25 0.65 8.74 22.33 11.17 0.0014
Gamma Approx 25.26 103.65 0.67 8.66 28.88 11.63 0.0033

Table 6.1: Monte Carlo and Gamma approximation prices

6.6 Summary

In this chapter, we have shown that using the indifference utility theory, one can price 

in an incomplete market. Although the resulting differential equation from the HJB is 

an integro-differential equation, a quasi-analytical solution has been obtained in terms of 

physical expectation. We also show that in the presence of exponential utility function, 

the two parties agree on the same indifference price which increase as the aversion to risk 

increases. The minimum indifference price equals to the actuarial price which is obtained 

when we are neutral to risk. We also notice that due to the fact that the aggregate 

terminal loss is positively skewed, a translated gamma approximation provides a quick 

and simple way to the pricing of the options. Martingale optimality principal has been 

used to validate the solution of the partial integro-differential equation.
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6.6 6.6. SUMMARY

Aggregate Loss at Maturity

Aggregate Loss

Gamma Approximation

Aggregate Loss

Figure 6.1: Distribution of the Aggregate Index Loss
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Payoff of PCS Option

Payoff of Stop Loss Option

Aggregate Loss

Payoff of Proportional Insurance

Aggregate Loss

Figure 6.2: Distribution of the Payoff
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Chapter 7

Conclusion and Future Research

In this thesis, we have presented the use of stochastic control theory to solve dynamic 

control problems and have shown how a real life problem can be mathematically modelled 

and solved using differential equations and probability theory results. Extensive use of 

the dynamic programming principle has been extensively applied to transform the all 

time optimisation problem to a single time optimisation in H.JB framework.

In Chapter 3, we have solved analytically, the problem of optimal premium setting of 

a non-life insurance policy in a monopolistic market. The optimal strategy predicts to 

charge a constant premium rate which satisfies the premium solvency criteria. We also 

noted the correspondence between minimum discount rate and solvency criteria. In the 

results, the utility discount rate has been interpreted as a measure of short aim of the in-

surance company. We also examined the probability of ruin under optimal strategy. The 

partial integro-differential equation derived was a mathematical challenge to be solved 

analytically due to the boundary conditions that are not obvious to be determined. A 

Monte Carlo simulation was performed which yields a decreasing probability of ruin as the 

initial wealth or the claim size increases, an increasing probability of ruin as the demand 

of policies shifts upward and an inconclusive trend of the ruin probability as the claim
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severity changes. An extension of this work can be made by solving the PIDE satisfied 

by the probability of ruin and by assuming other demand functions that are influenced 

by exogenous factors so that the market can be extended to oligopoly market.

In Chapter 4, we considered an asset allocation problem in the context of insurance 

risk process. An analytical solution of the problem is obtained and validated using the 

Martingale optimality principle. The optimal asset strategy when the risk free rate is 

less than the dividend rate dictates to invest less in the risky asset as we approach the 

finite horizon and to invest more if the risk free rate is higher than the dividend rate. 

An extension of the problem to be explored in a future research is to make the dividend 

rate a control variable or to make the payment of the dividend contingent on the level of 

the wealth being above a certain floor value. We further noticed that the optimal asset 

allocation is inversely proportional to the risk aversion parameter, proportional to the 

Sharpe ratio, independent of the demand function and of the insurance risk process. A 

logical further extension will be to make the insurance risk process be correlated with the 

risky asset and to assume many risky assets.

In Chapter 6, we elaborated a framework for pricing options in an incomplete market 

based on the indifference utility theory. Catastrophe insurance index loss was considered 

as the underlying option variable. We observed that by adopting an exponential utility 

function, the long and the short position agree on the same price which clears the mar-

ket. Our results also showed that the price of the option increases as the risk aversion 

parameter increases with the minimum price reflecting a neutrality to risk. A semi-closed 

form solution of the price in terms of physical probability expectation is obtained. The 

right skewness of the terminal aggregate loss index and the expectation semi-closed form 

solution of the option price allowed us to respectively approximate the terminal aggre-

gate index loss by a translated gamma distribution and to use Monte Carlo simulations in
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computing the price of the derivatives. The result shows that the discrepancy in the two 

prices is not significant. In the loss period, claims are not inflated. A possible extension 

of the model will be to inflate any claim incurred from the random time of occurrence up 

to the end of the loss period.
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Appendix A

Stochastic Processes and Properties

Measurable space If Q is a given set, then a cr-algebra T  on Q is a family T  of subsets 

of Q with the following properties:

(i) 0  G T

(ii) F e f  =i> F c  G T where F c  =  Q\F is the complement of F  in if

(iii) A i, A 2, ■ ■ ■ € T  = >  A  : =  U ^ i  G T  

The pair (fT P ) is called a measurable space .

Probability measure A probability measure P  on a measurable space (if, T)  is a func-

tion

P  : T  —> [0,1] such that

(a) P (0 ) =  0, P(fi) =  1

(b) if Ai, A 2, • • ■ G T  and {A !} “ 1 is disjoint ( i.e. Ai (~l Aj — 0  ii i ^  j  ) then

(
OO \  OO

U a , = •£  p (a )

¿=1 /  ¿=1
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The triple (Q, T . P) is called a probability space and the subsets F  of Cl which belong do 

T  are called T-measurable sets which in the context of probability are called events with 

the interpretation that

P(F)  — “the probability that the event F  occurs”

Measurable function If (Q, T , P)  is a given probability space, then a function X  : 

Q —> 3Rn is called ^-measurable if

X~\U) := {w € Sd; X(w) G U} G T

for all open subsets U G Rn

Stochastic Processes

A stochastic process is a parametrised collection of random variables

{X i}igr , T C R

defined on a probability space (Q , F , P ) with values assumed in RT In this thesis, we 

will be dealing with continuous time stochastic processes therefore the parameter set T 

will be taken as the time variable i.e. T =  R+.

For each fixed t G T, we have a random variable ui —> X t(cu); oo G Q, and

for every u  G Q we obtain the function t —> X t(cu); i G T  which is called the path of

the process X,

Filtration A family Ft of a-algebra on u j  parametrised by T  C M is called a filtration if

V s, t G T such that s < t, Ts C F t C T
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We can think of P tl as the history of the process X  from time t =  0 to time t =  t\

Some Properties of stochastic processes

M artingales A stochastic process X t parametrised by t E T is called a martingale ( 

sub-martingale, supermartingale) with respect to the filtration Tt if

1) X t is integrable for each t G T  i.e. V i 6 T f\ |Xt| dP < oc

2) X t is .Ty-measurable for each t 6 T (in which case we say that X f is adapted to Tt)

3) V s >  0, V t € T, E [Xt+S I .Ty] =  X t (respectively, < and >)

In the thesis, martingale and supermartingale are used to carry out some verification 

proofs through the Martingale optimality principle.

A .0.1 Markov processes

An important class of stochastic processes is the Markov Processes. The characteristic 

property of such processes is that it retains no memory of where it has been in the past. 

This means that only the current state of the process can influence where it goes next 

called the Markov property. This property offers many advantages in the analysis of the 

behaviour of these processes.

M arkov process  A stochastic process X t for t >  0 in continuous time is a Markov 

process on a space JR" if for any t >  0, At >  0 and x € Mn,

Prob X í + A í  <  X Prob X í+Aí < X

where T, represents the history of the process X f up to time t. Thus the Markov process 

can be called a memory-less process. This memory-less property of Markov processes
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leads immediately to the independent increments property of Markov processes. In this 

thesis, we have only dealt with processes that are Markovian therefore substituting the 

filtration of a process to its current value in our calculation.

Independent increment and stationarity of Markov processes

If is a Markov process, then the state increment A X t =  X i+Ai — X t is independent 

of A X S =  X s+As — X s if the time interval are disjoint i.e. s +  As < t or t +  At < s. A 

Markov process is called stationary or time-homogeneous if the probability distribution 

depends only on the time difference i.e.

Prob [Xt+Ai -  X t < x] -  Prob [AXt < x]

depends only on At >  0 and is independent of t >  0.

A .0.2 Continuity and Smoothness

Continuity

• A Process X t is a continuous process at t0 if limAt_>o X to+At =  X fg provided that 

the limit exists, else X t is discontinuous at t0.

• The process X t has a jump discontinuity at t0 if lim X to+At ^  X to , provided
|A i|> 0

that the limit exist, i.e. the limit from the left does not agree with the limit from 

the right. This is represented as

= J “ + ¥= \  = J/ni X i0+Ai

where At —> 0+ means ^Af —> 0, At > 0 

We say that X t has a jump at t =  t0. The corresponding jump at the jump 

discontinuity is defined as [X] (f0) =  X to — X t~.
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• The process X t is right-continuous at t0 if

lim X to+At — X t0
A t — O

A f> 0

such that the jump of A" at to is defined as [A'] (f0) =  X to — X t . since X t 

Left-continuous processes are defined similarly.

Smoothness .

• The process X t is smooth at t0 if

lim
A t— >0

AA,„
At

exists, i.e. X t is differentiable at f0; else the process X t is non-smooth.
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Appendix B

Diffusion Processes and Ito Formula

B .l Brownian motion

Brownian Motion  A continuous time stochastic process Bt, t € M+ is a standard 

Brownian motion defined on a probability space (Q, T , P) if :

1) B0 =  0 ( almost surely)

2) The sample path of Bt is continuous i.e. t —► Bt is continuous a.s.

3) Bt has independent (a) and stationary(b) increment, i.e.

a) V s, t, s <  t, Bt — Bs is independent of Ts

b) V s,i, s < t, Bt — Bs and Bt^s have the same distribution

4) The increment Bt — Bs is normally distributed with mean 0 and variance t— i.e. 

the density function of Bt is :

fBt-Ax) t — s for i g R

155



B.2. STOCHASTIC INTEGRAL B.2

B.1.1 Some properties of Brownian motion

• The sample paths are nowhere differentiable

• Brownian motion is a martingale

B.2 Stochastic integral

When attempting to define calculus for Brownian motion and other diffusions, one has 

to face the fact that their sample path, though they are continuous are nowhere differen-

tiable. A direct approach to stochastic integral like

f(s ,u )d B s(u>) where /  : [0, oo) x Q —> R (B.l)

is doomed to failure. The expression (B.l) is called an Ito integral and will be the subject 

of this section. It is distinguished by the fact that we are integrating with respect to 

Brownian motion (as can be seen from the dBs), not with respect to time. There is an 

extensive literature that deals with Ito integral, see Brzezniak and Zastawniak (2000), 

0ksendal (1998), and Karatzas and Shreve (1986). Only few properties and results of Ito 

integral will be presented here.

Ito Integral Let V II Co

that

0 ) (L ca) —» f(t , to) s B xF -

(ii) f(t , ui) is ^¿-adapted

(hi) E Is < oo
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B.3 B.3. THE GENERAL ITO FORMULA FOR DIFFUSION PROCESSES

then, for any function /  G V, the Ito integral T{f\(uj) =  j J  f(t,Lu)dBt(u) satisfies:

f  f(t ,u )d B t(uj) =  lim f  cj)n(t,uj)dBt(uj) (lim  in L2(P ))
Js n̂ °° Js v 7

where {4>n} is a sequence of elementary functions adapted to Tt such that

E ( f i t , l u) -  4>n ( t , u j ) ) 2 dt 0 as n —> oo

B.2.1 properties of Ito Integral

i) E / J  f{t,u )d B t(«j) = 0

(ii) E f(t ,u )d B t(u) — E f j  f 2{t,(jj)dt for all /  G V(S,T)

(iii) T[f}{u) =  f j  f(t ,u )d B t(uj) is a martingale with respect to E

(iv) If /  is deterministic i.e. f ( t ,u )  =  f ( t ), then

£  f(t)dB t(u) ~  N (o , £  f 2{t)dt

where N denotes the normal distribution

B.3 The general Ito formula for diffusion processes

Let

where

X (i) =

dX(t) =  udì vdB(t)

X i(i)
/ N

U l

II3 II>

x „ ( i) y u„k /

V l l  ■ • • V i r

v„i • • • V.„

> , dB(t) =  <

dBi(t)

d.Bm{t)
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be an n-dimensional Ito process. Let g(t,x) =  (gi(t,x), • • • ,gp(t,x )) be a C2 map from 

[0, oo) x M" into ML Then the process

Y(i,u>) =  5(i,X(i))

13.3. THE GENERAL ITO FORMULA FOR DIFFUSION PROCESSES________ R3

is again an Ito process, whose component number k, Yk is given by

dYk =  + 5 2  a£ d X ,  +  ^ r ( t . x ) d x , d X j2 '  dx.idxdhj J

where r/Byii =  dtdBi =  0 and c/B, x dBj =  dijdt
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Appendix C

Jump and Diffusion processes

C .l Poisson Processes

A Poisson process is a non deceasing continuous time counting process with values in N . 

Since a Poisson process suffers from positive jumps of integer magnitude, it is therefore 

discontinuous, which makes the differentiability problems of the Poisson process of second 

importance. Thus the analytical problems are even more severe than for the Brownian 

motion.

Homogeneous Poisson process A process Nt G N is a time homogeneous Poisson 

process with intensity A > 0 if

• N0 =  0

• Nt has independent and stationary increments

• For h > 0 and h small,

P{N h

Ah +  o(h) for k =  1

1 — A h +  o(h) 

o(h)

for k =  0 

otherwise
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C.l. POISSON PROCESSES C.l

In this thesis, we have allowed the intensity to depend on time as a consequence of the 

business volume that is time dependent. This gives birth to a non-homogeneous Poisson 

process with rate A(t). The increments are still independent for any non-overlapping 

intervals and are Poisson distributed.

Nt+S -  Nt r\j Poisson
ft+S

A(u)dy (C.l)

and

P (dNt+dt = Nt+dt -  Nt — k) =

A(t)dt +  o(dt) for k =  1

1 — A(t)dt +  o{dt) for k =  0 

o(dt) otherwise

In contrast to an homogeneous Poisson process, a non-homogeneous Poisson process does 

not have a stationary increment. This can be seen from the increment distribution (C.l) 

for which the rate depends on s and not only on s — t .

Non-homogeneous Poisson processes can always be converted to an homogeneous Poisson 

process via a time transformation.

Let’s

Nt ~  Poisson (A(t))

The conversion from regular time t to modified time s is accomplished through

s =  A (t) =  I A (u
Jo

where A(t) =  is the rate of the non-homogeneous process. Then the new process in

the new time is Ns = Nt and < Ns > is time homogeneous with rate 1.I J 8>0
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C.2 C.2. SPACE-TIME POISSON PROCESS

C.1.1 Properties of a Poisson processes

Most of Poisson processes results will be reviewed in section (C.2) when dealing with the 

Poisson mark measure. We will just state some results about the first two moments of a 

Poisson processes.

Let’s

A(u)dii\ ,

• Expectation

E [dNt] =  \{t)dt

• Variance

E [dlV2] =  A(t)2dt ==$■ Var [dNt] — A(t)dt

C.2 Space-Time Poisson process

The space time Poisson process is a generalisation of the Poisson process with the dif-

ference that the amplitude of the jump when it occurs at time t is not deterministic as 

opposed to a Poisson process but random. We denote as h(t, Y, X ) the amplitude of the 

jump when it occurs where Y  is a random variable on a support F and X t is the state 

process at time t. The distribution function of Y  is denoted by FY(y) . The space-time 

Poisson process is equivalent to a Poisson process when the jump amplitude is taken as 

1 i.e. h{t, y ,x )  =  1. In the thesis, we limit ourselves to jump amplitude that does not 

depend on the state variable and also on a state variable that depends on only one source 

of jump. Let 11(f) be the space-time Poisson process with non state dependent amplitude 

h{t,y ), we can represent dll(f) as

dU(t) = J h(t, y)K{dt, dy) (C.2)

JVy. Poisson
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C.3. SOME PROPERTIES OF MARKED POISSON PROCESS C.4

where the Poisson measure H(dt, dy) is merely a short hand notation for N([f, t+dt\, [y, y +

C.3 Some properties of Marked Poisson process

of the marked Poisson process.

Independent increment

N has an independent increments on non-overlapping intervals in time t and marks y i.e. , 

Nj,* =  H([ti,ti +  Ati), [yk,y k + Ayk)) is independent of A/},/ =  N([i,-, tj +  At,-), [yu yt +  Ayf)), 

provided that the time interval [U,ti +  A tf) does not overlap with [tj,tj +  A tf) and the 

mark interval [yk, y k + A yk) has no overlap with [yi, yi +  Ay;). Below are some results 

used in the thesis.

The expectation of dH(t)

dy])

In the different proofs of the stochastic control problem, we have used the below results

Jr

The Variance of tZII(i)

Var[dU(t)] =  A(t)dt h(t, y)2f Y{y)dy =  X{t)dtEY [h{t, F )2] (C.4)

The expectation of the exponential of II(f)

(C.5)

see (Hanson and Westman 2003) for the proof of (C.3),(C.4) and (C.5).
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C.4 C.4. THE JUMP DIFFUSION PROCESS

C.4 The jump diffusion process

In this section, we show how Ito formula can be applied to jump and diffusion processes 

by separating the jump change (discontinuous part) to the continuous change.

C.4.1 Ito formula for The Jump and Diffusion Process

Let X t be the state process with values in Rn evolving according to the stochastic differ-

ential equation

dXt =  b(t,at,X t)dt +  a (t,a t,X t)dBt +  dH(t)

=  b(t, at,X t)dt +  a {t,a u X t)dBt + j  h(t,y)H(dt,dy)

(C.6)

where at as in the diffusion case is the value of the controlled parameter a at time t. 

The change in value of the state process X t can be decomposed into:

The continuous changes reflected by the deterministic change b(t, at,X t)dt and the ran-

dom change a(t, at, X.t)d~Bt so that

dXctmt =  b(t, at, X t)dt +  a(t, at, X t)dBt (C.7)

and

The discontinuous change or jump change brought about the mark Poisson process i.e.

thus

dX}ump =  J h{t,y)H(dt,dy), (C.8)

dXt =  dXctont + dXjump (C.9)
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C.4. THE JUMP DIFFUSION PROCESS C.4

Let us assume that the jump amplitude h(t, y) is independently distributed from the 

Brownian motion W t. Conditioning on the Poisson event occurring where the Poisson 

process Nt underlying the mark Poisson process is distributed as :

P{dNt =  k) =  <

1 — Adt i f  k =  0 

Adt i f  k — 1

0 other-wise

> + o(dt) (C.10)

the total change in the state will be explained by the change caused by the continuous 

change and the change caused by the discontinuous change. If we consider a compos-

ite function G(t, X t) of the state which is assumed to be at least twice continuously 

differentiable in x and once in t, the total change in G can be decomposed into :

The continuous change

dG(t, X i cont O G  D G  ,v c o n £ 1 d ^ G  ] V c o n t j - v c o n t— dt +  — — dXt +  x 2 ^  2 ^  dX^dX*™dt ^  dXi=1 2 ^ ^  dXfJX,¡=1 j=1 4 3
dG 
dt

+ (V x.V )Ta (t ,X u at)dBt

+  b(t, atX t)V^G  +  ~tr (a(t, X t, at)a (t. X t, at)D 2G )

(C .ll)

Jump change

dG(t, x y um? = J  [G(t, X t +  hit, y)) -  G(t, X t)] K{dt, dy) (C.12)

The Ito formula therefore allows for the continuous change and the jump change if it 

occurs therefore :

dG{t, X ) = +  b{t, o tX t)V xG  +  ~tr (cr{t, X t, at)a (t, X t, a t)D 2ĜJ dt

+  (V x L )TiT(f, Xt, afjdBt + j  [G(t, Xt +  h{t, y)) — G(t, X t)] K(df, dy).
(C. 13)
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