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We study two-dimensional (2D) Dirac fermions in the presence of a periodic mass term alternating
between positive and negative values along one direction. This scenario could be realized for a
graphene monolayer or for the surface states of topological insulators. The low-energy physics is
governed by chiral Jackiw-Rebbi modes propagating along zero-mass lines, with the energy dispersion
of the Bloch states given by an anisotropic Dirac cone. By means of the transfer matrix approach, we
obtain exact results for a piece-wise constant mass superlattice. On top of Bloch states, two different
classes of boundary and/or interface modes can exist in a finite-size geometry or in a nonuniform
electrostatic potential, respectively. We compute the dispersion relation for both types of boundary
and interface modes, which originate either from states close to the superlattice Brillouin zone (BZ)
center or, via a Lifshitz transition, from states near the BZ boundary. In the presence of a potential
step, we predict that the interface modes, the Bloch wave functions, and the electrical conductance
will sensitively depend on the step position relative to the mass superlattice.

I. INTRODUCTION

It is well known that the band structure of solids can
be modified in a controllable way by means of super-
lattice potentials. For instance, the use of electrostatic
superlattice potentials has been suggested as versatile
and tunable tool for creating emergent Dirac fermions
with anisotropic dispersion in 2D graphene monolayers
[1–7] or in few-layer black phosphorus devices [8]. Sim-
ilarly, moiré superlattice effects can induce a spectacu-
lar restructuring of the band structure in twisted bilayer
graphene [9], layered van der Waals materials [10], and
topological insulators (TIs) [11], including the formation
of topologically nontrivial and nearly flat bands with
strong correlation effects [12]. Apart from the mostly
considered case of electrostatic superlattices, interesting
modifications of the band structure have also been pre-
dicted for magnetic superlattices and for periodic modu-
lations of the spin-orbit coupling, see, e.g., Refs. [13–16]
for the case of graphene monolayers.

In the present work, we focus on yet another super-
lattice type which can be realized in 2D Dirac mate-
rials, e.g., in graphene monolayers [17] or the surface
states of TIs [18, 19]. We study the effects of a one-
dimensional (1D) mass superlattice M(x), which period-
ically alternates between regions of positive and negative
mass. (The mass term is assumed homogeneous along
the y-direction, with the 2D material in the xy-plane.)
For the graphene case, such a mass profile could arise
from a sublattice-dependent potential due to substrate
or strain effects [17]. For TI surface states, it could (ap-
proximately) be generated by the exchange field of an
array of magnetic stripes with alternating magnetization
direction.

It is well known that a single mass kink binds a
fermionic zero mode by the Jackiw-Rebbi mechanism
[20–22]. This zero mode is unidirectional (“chiral”) and

propagates with the Fermi velocity vF either in the pos-
itive or negative y-direction while being exponentially
localized near the mass kink along the x-direction. In
general terms, a sign change of the mass for 2D Dirac
fermions corresponds to a transition between two topo-
logical Chern insulators with a different Chern number
[23]. By the bulk-boundary correspondence, zero-mass
lines at the interfaces then harbor chiral zero modes. For
the TI realization, experimental evidence for such chi-
ral zero modes has been reported in Refs. [24, 25]. In
Bernal-stacked bilayer graphene devices, in the presence
of either interlayer bias voltage kinks, tilt boundaries,
or in folded geometries, one expects topological valley-
momentum-locked zero-line modes [26, 27] that closely
resemble the above chiral zero mode [28, 29]. We refer the
reader to Ref. [30] for a recent survey, including a sum-
mary of the experimental evidence for zero-line modes in
bilayer graphene. In particular, such modes have been
identified by scanning tunneling microscopy (STM) [31].
Similar zero-line modes also appear in the helical net-
work description of minimally twisted bilayer graphene
[32]. More generally, depending on the symmetries of
the problem, 1D zero-line modes can also appear near
line defects such as dislocations [33, 34].

For 2D Dirac fermions with a periodic mass M(x) al-
ternating between positive and negative values, chiral 1D
modes are located near the positions with M(x) = 0,
with adjacent modes having opposite propagation direc-
tion. While low-energy transport remains efficient along
the y-direction, the band structure flattens along the
x-direction. For large mass amplitude (and assuming
the same absolute value for positive and negative mass
regions), the residual overlap between counterpropagat-
ing neighboring chiral modes generates a small velocity
vx � vF along the x-direction. In effect, one then ar-
rives at a highly anisotropic Dirac cone dispersion at low
energies [35, 36]. We here show that the case of a piece-



2

wise constant periodic mass term is exactly solvable. Our
calculations confirm the existence of anisotropic Dirac
cones, yield analytical results for the ratio vx/vF, and
provide a useful starting point for future studies of in-
teraction effects and/or magnetic fields. We note that
in Refs. [37, 38], closely related models have been stud-
ied. In particular, the authors of Ref. [37] show that for
smooth mass kinks, additional non-chiral localized states
analogous to Volkov-Pankratov states [39, 40] can exist.
However, the anisotropy of the Dirac cone dispersion has
not been discussed in Ref. [37]. Moreover, while Ref. [38]
(see also Ref. [41]) contains a detailed discussion of the
electronic spectrum for a periodic mass problem, their
mass term alternates between zero and a finite value, in
contrast to the mass term considered below. As a con-
sequence, chiral zero modes and physical effects caused
by these modes are absent in Refs. [38, 41]. Let us also
mention that we here study a coupled-wire model, see
Refs. [42, 43] for related but different examples, where
the 1D wires correspond to chiral zero modes with alter-
nating propagation direction [44].

A central result of our work is to point out the exis-
tence of two types of boundary modes in the presence of
a sample boundary along the y-direction. The modes are
spatially confined to the vicinity of the boundary but can
propagate along the boundary. Similarly, for an electro-
static potential step along the x-direction, we predict two
types of interface modes. The two different mode types
emerge either near the center of the superlattice BZ or
near the BZ boundary. In the latter case, we observe
that such modes appear only if the mass amplitude ex-
ceeds a critical value. Under this condition, the Fermi
surface for the lowest band undergoes a Lifshitz transi-
tion [45], opening up from a closed elliptic contour into
a pair of open (disconnected) arcs. Remarkably, both
types of boundary and/or interface modes can only exist
in the presence of the mass superlattice, and their spatial
decay length can exceed the lattice constant of the mass
term.

The structure of this paper is as follows. In Sec. II, we
introduce the model and the assumptions behind it, and
we consider the cases of a single mass kink and of a mass
barrier. (Technical details have been delegated to the
Appendix.) Next, in Sec. III we use the transfer matrix
approach to determine the band structure and the Bloch
states for a piecewise periodic mass term with alternating
regions of mass ±M , see Eq. (3.1) below. In this case, we
find a gapless low-energy anisotropic Dirac cone near the
Γ point of the superlattice BZ. However, if the positive
and negative mass amplitudes differ, a spectral gap will
open, as shown in Sec. III C, where we construct a sys-
tematic low-energy theory. Importantly, in the presence
of boundaries or in an inhomogeneous electrostatic po-
tential, the spectral condition also allows for evanescent
wave solutions. We discuss boundary modes in Sec. IV.
In Sec. V, we include an electrostatic potential step along
the x-direction, which defines an np-junction. We deter-
mine the transmission probability for Bloch states and

show that the conductance across the step will sensitively
depend on the step position. This dependence is a di-
rect consequence of the fact that low-energy states have
significant weight only near the positions of mass (anti-
)kinks. In Sec. V C, we show that interface modes of
various types can exist and we compute their energy dis-
persion. The paper concludes with an outlook in Sec. VI.

II. MODEL

In this paper, we study noninteracting electrons de-
scribed by a 2D Dirac Hamiltonian with a single Dirac
cone. This model captures the essential physics of the
spin-momentum locked and protected surface states in
3D TI materials [18, 19], as well as the low-energy physics
of 2D graphene monolayers which is governed by states
close to a single K point (“valley”) [17]. For the lat-
ter case, the assumption of a single K point requires the
mass or potential terms considered below to be actually
smooth on the scale of the lattice spacing of graphene.
For an infinitely extended system in the xy-plane, using
units with ~ = 1 and Fermi velocity vF = 1 throughout,
we study the Hamiltonian

H = −iσx∂x − iσy∂y +M(x)σz + V (x)1, (2.1)

with the electrostatic potential V (x) and the mass term
M(x). Both terms are assumed homogeneous along the
y-direction. As a consequence of this translation invari-
ance, the wave vector (or momentum) component ky is
conserved. The Pauli matrices σx,y,z and the 2× 2 iden-
tity matrix 1 act in spin space for TI surface states, and
in the sublattice space of the honeycomb lattice for the
case of graphene.

For given momentum ky, the spinor eigenstates of
Eq. (2.1) can be written as

Ψ(x, y) = eikyy ψ(x), ψ(x) =

(
u(x)
v(x)

)
, (2.2)

which results in the 1D Dirac equation(
M(x) + V (x) −i(∂x + ky)
−i(∂x − ky) −M(x) + V (x)

)(
u
v

)
= E

(
u
v

)
. (2.3)

In this work, we are interested in the case of a spatially
periodic mass term which alternates between positive and
negative values. As simple and exactly solvable model,
we will consider the piece-wise constant periodic mass
term discussed in Sec. III. For the TI case, such a mass
term can (approximately) be generated by the deposi-
tion of ferromagnetic insulator stripes with alternating
magnetization on a TI surface, where the magnetic ex-
change contributions produce a periodic mass term [36].
Similarly, for a graphene monolayer, a suitably patterned
substrate creates a sublattice-dependent superlattice po-
tential which in effect gives a periodic mass term [17].

In the remainder of this section, to prepare the ground
for the periodic mass case in Sec. III, we will analyze
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three simpler problems. In Sec. II A, we determine the
general solution of Eq. (2.3) for the homogeneous case.
In Sec. II B, we rederive the well-known low-energy spec-
trum for a mass kink, M(x) = M sgn(x), which binds
a 1D chiral zero mode propagating along the y-direction
[18, 20–22]. In Sec. II C, we study a mass barrier com-
posed of a mass kink and an anti-kink, where one finds
two counterpropagating chiral zero modes. For ease of
notation, we often keep the dependence on ky and E im-
plicit.

A. Homogeneous problem

Let us first specify the general (not normalized) eigen-
states of Eq. (2.3) for a region with constant potential,
V (x) = V , and constant mass, M(x) = M . A uniform
scalar potential can be included by shifting E → E − V ,
which we implicitly assume below. For M(x) = M , the
solution is given by

ψ(x) = WM (x)

(
a
b

)
, (2.4)

where a and b are arbitrary complex coefficients and we
define the matrix

WM (x) =

(
eκx e−κx

i
ky−κ
M+E e

κx i
ky+κ
M+E e

−κx

)
, (2.5)

with the definition

κ =


√
M2 + k2

y − E2, E2 < k2
y +M2,

ik ≡ i
√
E2 −M2 − k2

y, E
2 > k2

y +M2.
(2.6)

For low energies, E2 < k2
y + M2, we have evanescent

waves along the x-direction, and the eigenstates are spa-
tially localized on the length scale κ−1 near boundaries
or mass kinks. For E2 > k2

y+M2, κ = ik is purely imagi-
nary and we find plane-wave solutions propagating along
the x-direction with wave number kx = k. Useful ex-
pressions involving WM (x) in Eq. (2.5) are summarized
in Appendix A. In particular, Eqs. (A3) and (A4) imply
that the x-component of the particle current density is
given by

jx = ψ†σxψ =


4κIm(b∗a)
M+E , E2 < k2

y +M2,

2k(|a|2−|b|2)
M+E , E2 > k2

y +M2.

(2.7)

B. Mass kink

We turn to the case of a single mass kink, M(x) =
M sgn(x) with M > 0, see Ref. [22]. We here discuss only
the low-energy case, E2 < k2

y +M2, where κ in Eq. (2.6)

is real. From Eq. (2.4), normalizable eigenstates then
have the form

ψ(x) =


W−M (x)

(
aL
0

)
for x < 0,

WM (x)

(
0
bR

)
for x > 0,

(2.8)

where the coefficients aL and bR are determined by con-
tinuity of ψ(x) at x = 0 and normalization. Using
Eq. (A2), we define the matrix

ΩM = W−1
M (0)W−M (0) (2.9)

=
1

κ(E −M)

(
Eκ− kyM −(κ+ ky)M

(−κ+ ky)M Eκ+ kyM

)
,

such that the continuity condition takes the form(
0
bR

)
= ΩM

(
aL
0

)
. (2.10)

As a result, we get the relations 0 = (Eκ− kyM)aL and

bR =
(−κ+ky)M
κ(E−M) aL. For nontrivial solutions, we must

have Eκ−kyM = 0 from the first relation, which is solved
by the dispersion relation E(ky) = ky of a 1D chiral
mode. The second relation then yields bR = aL for the
spinor wave function, where aL is finally determined by
normalization. This chiral mode propagates with velocity
vF along the positive y-direction and is localized near
the mass kink at x = 0 in the x-direction. Similarly, for
an anti-kink mass profile with M replaced by −M , one
finds a 1D chiral mode propagating along the negative
y-direction, with dispersion relation E(ky) = −ky.

C. Mass barrier

Next we consider a mass barrier of width ` described
by [27]

M(x) =

{
M for |x| < `/2,
−M for |x| > `/2.

(2.11)

We search for low-energy solutions with E2 < k2
y + M2,

where normalizable eigenstates can be written as

ψ(x) =



W−M (x)

(
aL
0

)
for x < −`/2,

WM (x)

(
a
b

)
for |x| < `/2,

W−M (x)

(
0
bR

)
for x > `/2,

(2.12)

with coefficients aL, a, b, and bR. Imposing continuity
at x = ±`/2, one can eliminate a and b. We arrive at
Eq. (2.10) but with ΩM replaced by

ΩB = W−1
−M (`/2)WM (`/2)W−1

M (−`/2)W−M (−`/2),
(2.13)
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FIG. 1. Piece-wise constant periodic mass profile M(x) in
Eq. (3.1). A unit cell of length d is indicated by the red
square. The inset indicates the regions of positive (grey) and
negative (yellow) mass in the xy-plane. 1D chiral zero modes
are generated near the (anti-)kink positions by the Jackiw-
Rebbi mechanism, with the respective propagation direction
indicated by arrows.

see Eq. (A5) for explicit matrix elements. The dispersion
relation follows from [ΩB ]11 = 0, which reads explicitly

E2 = k2
y +M2e−2κ`. (2.14)

For barrier width ` → ∞, we can neglect the expo-
nential term and obtain E±(ky) = ±ky, corresponding
to a pair of counterpropagating chiral zero modes lo-
calized at the barrier edges. For large but finite bar-
rier width with M` � 1, the two chiral zero modes
hybridize. The level crossing at ky = 0 is now re-
placed by an avoided crossing, where Eq. (2.14) yields
E±(ky = 0) ' ±Me−`M . The low-energy dispersion then
acquires an exponentially small gap due to the avoided

crossing, E±(ky) ' ±
√
k2
y +M2e−2M`.

III. PERIODIC MASS

In this section, we discuss the solution of the Dirac
equation (2.3) for the piece-wise constant periodic mass
term sketched in Fig. 1, which is given by

M(x) =

{
+M, jd ≤ x < (j + 1

2 )d,
−M, (j + 1

2 )d ≤ x < (j + 1)d,
(3.1)

where d is the lattice period and j ∈ Z labels the
unit cell. For simplicity, we here assumed that the re-
gions of positive and negative mass have the same spa-
tial extent, ` ≡ d/2, and the same absolute value of
the mass, |M(x)| = M . This implies the symmetry
M(x + `) = −M(x). Our calculations can easily be
adapted to the general case, where we find that the spec-
trum acquires a gap, see Sec. III C. For now, however, let

us focus on Eq. (3.1). In Sec. III A, we employ the trans-
fer matrix method to solve the spectral problem and, in
particular, to derive the energy quantization condition.
The band structure and the corresponding Bloch states
are described in Sec. III B, while we postpone the discus-
sion of evanescent state solutions to Sec. IV. Finally, in
Sec. III C, a systematic low-energy theory is constructed
by projecting the model to the subspace spanned by the
chiral zero modes.

A. Transfer matrix and spectral equation

We first consider the unit cell 0 < x < d, where ψ(d)
and ψ(0) are connected by the transfer matrix T ,

ψ(d) = Tψ(0). (3.2)

In this unit cell, Eq. (2.4) implies that the wave function
has the form

ψ(x) =


WM (x)

(
a1

b1

)
for 0 < x < `,

W−M (x)

(
a2

b2

)
for ` < x < d,

(3.3)

with W±M (x) in Eq. (2.5). The continuity of ψ(x) at
x = ` relates the complex coefficients (a2, b2) and (a1, b1)
according to(

a2

b2

)
= W−1

−M (`)WM (`)

(
a1

b1

)
, (3.4)

with W−1
−M (`)WM (`) given in Eq. (A2). We can therefore

express the transfer matrix as

T = W−M (d)W−1
−M (`)WM (`)W−1

M (0). (3.5)

The explicit form of the matrix elements of T is given
by Eq. (A7) in App. A. The matrix T is symmetric and
has detT = 1. Its eigenvalues can be written as λ± =
e±iKd, where K can be interpreted as a quasi-momentum
along the x-direction. As discussed below, K can be
either real-valued (for Bloch waves) or complex-valued
(for evanescent modes).

In what follows, instead of T , we find it more conve-
nient to use a modified transfer matrix Ω defined by

T = WM (0) ΩW−1
M (0). (3.6)

Using Eq. (3.5) and the relations ψ(0) = WM (0)

(
a1

b1

)
and ψ(d) = W−M (d)

(
a2

b2

)
, which follow from Eq. (3.3),

we arrive at1

Ω = W−1
M (0)W−M (d)W−1

−M (`)WM (`). (3.7)

1 With the matrix D(x) = diag(eκx, e−κx) and the matrix ΩM
for the single-kink problem in Eq. (2.9), we may express Ω as
Ω = ΩM D(`) Ω−1

M D(`). This establishes a relation between the
single-kink problem and the periodic problem.
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The corresponding matrix elements are specified in
Eq. (A6). We again have det Ω = 1, and Ω has the same
eigenvalues λ± = e±iKd as T .

We next require that ψ(x) satisfies the Bloch period-
icity condition

ψ(x+ d) = eiKd ψ(x), (3.8)

with a quasi-momentum K along the x-direction. For
Bloch wave solutions, K must be real. We then take K
from the first BZ of the mass superlattice,

−π
d
< K ≤ π

d
, (3.9)

where (K, ky) = (0, 0) is the “Γ point”. More generally,
we can impose Eq. (3.8) for complex values of K. We
find three possible types of solutions, where K is either
real (Bloch waves) or complex (evanescent waves), with
K = ±iK or K = ∓iK ± π/d. The inverse length scale
K > 0 is determined below. Evanescent state solutions
thus are obtained by imposing either

ψ(x+ d) = e∓Kd ψ(x) (3.10)

or

ψ(x+ d) = −e±Kd ψ(x). (3.11)

In what follows, evanescent waves derived from
Eqs. (3.10) and (3.11) are denoted as “type-I” and “type-
II” states, respectively. While for the infinitely extended
system evanescent states are not normalizable and hence
not admissible, they emerge in the presence of boundaries
or nonuniform potentials, see Secs. IV and V C.

Setting x = 0 and using the transfer matrix, Eq. (3.8)
is next written as

WM (0) ΩW−1
M (0)ψ(0) = eiKdψ(0), (3.12)

which is equivalent to the condition(
Ω− eiKd1

)(a1

b1

)
=

(
0
0

)
. (3.13)

Nontrivial solutions of Eq. (3.13) can only exist if

det
(
Ω− eiKd1

)
= 0. (3.14)

The compatibility condition (3.14) is equivalent to the
spectral equation

f(ξ) = cos(Kd), (3.15)

where we define f(ξ) ≡ 1
2Tr Ω(ξ) with the dimensionless

variable

ξ = (k2
y − E2)d2. (3.16)

Using Eq. (A6), one finds

f(ξ) =
(Md)2 + ξ cosh

(√
(Md)2 + ξ

)
(Md)2 + ξ

. (3.17)

-4 -3 -2 -1 0 1
-2

-1

0

1

2

ξ

f(
ξ) 2 5 8

0

0.5

1

Md

E c
/M

(a)

FIG. 2. Spectrum of the 2D Dirac Hamiltonian with the
periodic mass term (3.1). (a) The function f(ξ) vs ξ, see
Eq. (3.17), in the regime ξ > −(Md)2, for Md = 0.7, 2, 3.5,
and 5, corresponding to the red, green, brown, and blue
curves, respectively. According to Eq. (3.15), Bloch states
require |f(ξ)| ≤ 1. For f(ξ) > 1 [f(ξ) < −1], type-I [type-II]
evanescent states are possible. Inset: Critical energy Ec vs
Md, where type-II states can only exist for |E| > Ec. The
solid curve gives numerically exact results. The red and blue
dotted curves give the analytical estimates (3.19) for Md ≈ 2
and Md � 1, respectively. (b) Low-energy band structure,
E = ±En(K, ky), for Bloch states with n = 0 and Md = 5.

The spectral equation thus depends on the single di-
mensionless parameter Md, and E and ky appear only
through the dimensionless variable ξ. Below, we mostly
focus on the low-energy regime, subject to the condition

|E| < M, (3.18)

such that ξ > −(Md)2. The function f(ξ) is shown for
several values of Md in Fig. 2(a). Bloch states are possi-
ble for −1 ≤ f(ξ) ≤ 1 corresponding to ξc ≤ ξ ≤ 0, where
ξc < 0 is defined by the condition f(ξc) = −1. Outside
this window, no real solutions for the quasi-momentum
K can be found. However, Eq. (3.15) also allows for
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solutions with complex-valued K. For f(ξ) > 1, corre-
sponding to ξ > 0 and therefore |E| < |ky|, we obtain
type-I evanescent states. On the other hand, for ξ < ξc,
we can have type-II evanescent states at energies above
a critical value, |E| > Ec with Ecd =

√
−ξc, where we

find the analytical estimate

Ecd ≈
{

3−Md/2, Md ≈ 2,
2Mde−Md/2, Md� 1.

(3.19)

In the low-energy regime (3.18), solutions for ξc, and thus
type-II states, exist only for Md > 2. This is related to
the fact that if Md < 2, for any Fermi level |EF| <
M , the Fermi surface is a closed curve in the 2D BZ.
If Md > 2, instead, the Fermi surface evolves from a
closed curve (for |EF| < Ec) into a pair of disconnected
arcs (for Ec < |EF| < M). The critical point |EF| = Ec
corresponds to a Lifshitz transition. Numerical results
for Ec vs Md along with the estimates in Eq. (3.19) are
shown in the inset of Fig. 2(a). For large Md� 1, type-II
states are also realized at very low energies.

We discuss type-I and type-II states in more detail
in Sec. IV and focus on Bloch states with real K for
the remainder of this section. We note in passing that
Eq. (3.15) has also been specified in Ref. [37]. However,

the solutions E = ±
√
k2
y +M2 reported in Ref. [37] are

spurious, and the anisotropy of the emergent Dirac cone
near the Γ point has been missed, see Eq. (3.25) below. It
is also worth mentioning that for ky = 0, Eq. (3.15) coin-
cides with the spectral equation for a generalized Kronig-
Penney model of diatomic crystals [46, 47].

B. Band structure and Bloch states

We first study the solutions of the spectral condition
(3.15) for real quasi-momenta K in the 1D BZ (3.9). The
corresponding Bloch bands form the band structure of
the mass superlattice. For computing the band structure
and the group velocities, it is convenient to introduce the
auxiliary function

Φ(E,K, ky) = f
(
(k2
y − E2)d2

)
− cos(Kd), (3.20)

where Eq. (3.15) is equivalent to the condition
Φ(E,K, ky) = 0. The band structure calculation
amounts to finding the implicit function E(K, ky) de-
fined by this condition. In limiting cases, this can be
done analytically (see below), but in general one has to
resort to numerics. In any case, one finds a particle-hole
symmetric spectrum, E = ±En(K, ky), where n ∈ Z la-
bels different bands with non-negative energy En(K, ky).
The group velocity (vx, vy) for a given eigenstate follows
with E = ±En(K, ky) from Eq. (3.20) as

vx = −∂KΦ

∂EΦ
, vy = −

∂kyΦ

∂EΦ
. (3.21)

The low-energy spectrum determined numerically is
shown in Fig. 2(b). To understand these results, we now

examine limiting cases where analytical progress is pos-
sible.

First, for Md → 0, Eq. (3.15) recovers the standard
isotropic massless Dirac cone with kx = K restricted to
the first BZ (3.9),

E = ±En(K, ky) = ±
√

(K + 2πn/d)2 + k2
y, (3.22)

which includes an isolated Dirac node at zero energy
as well as finite-energy crossing points for K = 0, be-
cause En(0, ky) = E−n(0, ky), and for K = π

d , because
En(πd , ky) = E−n−1(πd , ky). The finite-energy crossings
points are not isolated but form lines when varying ky.
We will show next that a finite value of Md does not
spoil the above nodal structures at the center of the 1D
BZ, but it does lift the degeneracies at the BZ boundary
where gaps open.

For finite Md, let us first consider the 1D BZ center
K = 0. We then find that Eq. (3.15) has the non-negative
solutions

E0(0, ky) = |ky|, En 6=0(0, ky) =

√
k2
y +

(
2πn

d

)2

+M2,

(3.23)
where each energy En 6=0(0, ky) is two-fold degenerate due
to ±n bands. However, this degeneracy is lifted for K 6=
0, see Eq. (3.27) below. From Eq. (3.23), using E

(c)
n ≡

En(0, 0) for the Γ-point energy of the respective band,
Γ-point crossings occur at zero energy (n = 0) and at the

finite energies ±E(c)
n 6=0 with

E
(c)
n 6=0 =

√
M2 + (2πn/d)2. (3.24)

The zero-energy node is of special interest. By expand-
ing Eq. (3.15) for small energies and small momenta, one
obtains an anisotropic conical Dirac dispersion,

E = ±En=0(K, ky) ' ±
√
v2
x,0K

2 + v2
Fk

2
y, (3.25)

with a renormalized velocity along the x-direction,

vx,0
vF

=
Md/2

sinh(Md/2)
. (3.26)

Numerical results for the full low-energy band structure
are shown in Fig. 2(b). Near the Γ point, they agree
with Eq. (3.25). Evidently, for Md→ 0, Eqs. (3.25) and
(3.26) recover the isotropic Dirac cone in Eq. (3.22). For
Md � 1, however, vx,0/vF is exponentially small and
the dispersion becomes almost flat in the K-direction.
In this case, the individual mass kinks and anti-kinks
in the periodic mass profile (3.1), which are centered at
x = jd/2 with integer j, bind 1D chiral zero modes by
means of the Jackiw-Rebbi mechanism, see Sec. II. As
we elaborate in Sec. III C, superpositions of chiral zero
modes generate the n = 0 band dispersion (3.25), where
the finite hybridization between the counterpropagating
zero modes at neighboring mass kinks and anti-kinks is
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responsible for the finite but exponentially small velocity
(3.26). While the anisotropic Dirac cone dispersion asso-
ciated with zero modes in periodic mass profiles has been
discussed before [36], the piece-wise constant mass term
(3.1) admits an exact solution. We note that anisotropic
Dirac cones can alternatively be engineered by means of
scalar superlattice potentials [1, 2, 4, 7, 8] or by using
periodic magnetic fields [13–15].

Similarly, we may expand around the Γ point for the
finite-energy crossing points (3.24), where we obtain

En 6=0(K, ky) ' E(c)
n +

k2
y

2E
(c)
n

+ sgn(n) vx,nK, (3.27)

with the velocities vx,n 6=0 = [2πn/(E
(c)
n d)]2 along the x-

direction. We observe that a finite ky does not lift the
two-fold degeneracy at K = 0, and hence there is a nodal
line.

Let us briefly compare the above results to the corre-
sponding uniform-mass case M(x) = M , where the band
structure is given by

E = ±E(u)
n (K, ky) = ±

√
M2 + (K + 2πn/d)2 + k2

y.

(3.28)
Importantly, no zero-energy modes related to the
anisotropic Dirac cone (3.25) appear anymore in
Eq. (3.28). Expanding around the Γ point, where finite-

energy crossings occur again at E = ±E(c)
n 6=0 with E

(c)
n in

Eq. (3.24), we find the positive-energy solutions

E
(u)
0 (K, ky) 'M +

k2
y +K2

2M
, (3.29)

E
(u)
n 6=0(K, ky) ' E(c)

n +
k2
y

2E
(c)
n

+ sgn(n) ṽx,nK,

with ṽx,n = 2π|n|/(E(c)
n d). The main difference between

the alternating and the uniform mass profile is that the
n = 0 zero-mode band in Eq. (3.25) has shifted to finite

energies E
(u)
0 (K, ky) ≥M . On the other hand, the n 6= 0

dispersion relation (3.29) differs from Eq. (3.27) only with
respect to the velocity along the x-direction, vx,n → ṽx,n.

Let us now turn to the Bloch eigenstates corresponding
to the above band structure. Keeping (E, ky) implicit, we
begin by expressing ψ(x) in terms of a spinor wave func-
tion uK(x) with the periodicity of the mass superlattice,

ψ(x) = eiKxuK(x), uK(x+ d) = uK(x). (3.30)

In the unit cell 0 < x < d, we obtain uK(x) = e−iKxψ(x)
from ψ(x) as specified in Eq. (3.3). We then need to de-
termine the K-dependent coefficients (a1, b1) and (a2, b2)
in Eq. (3.3). To that end, we recall that (a2, b2) follows
from (a1, b1) by the continuity condition (3.4) imposed at
x = d/2. Using Eq. (3.13), we can express2 b1 in terms

2 For K = 0, the matrix element Ω12 vanishes for the spectral
branches ±E0(0, ky) = ky . Then Eq. (3.31) does not apply and
we have instead a1 = 0 with b1 determined by normalization.

0.0 0.5 1.0 1.5 2.0
0

1

2

3

4

5

x/d

P(
x)

(a)

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

x/d

P(
x)

(b)

FIG. 3. Probability density P (x) vs x for selected eigenstates
of the periodic mass problem. (a) P (x) for Bloch states with
band index n = 0, taking Md = 5 and Ed = 0.7. Solid
blue, dashed blue, blue-red, dashed red, and solid red curves
are for kyd = 0.7, 0.3, 0,−0.3,−0.7, respectively. (b) P (x)
normalized to its value at x = 2d, for type-II evanescent states
with Md = 5 and Ed = 1. Solid (dashed) green curves are
for kyd = 0 (kyd = 0.3), while the dotted gray lines show the
corresponding graphs of eKx.

of a1,

b1(K) =
eiKd − Ω11

Ω12
a1, (3.31)

with the matrix elements of Ω in Eq. (A6). Finally, a1 is
fixed by the normalization condition∫ d

0

dx |uK(x)|2 = 1. (3.32)

We thereby obtain the Bloch eigenstate ΨK,ky,n,±(x, y) =

ei(Kx+kyy)uK,ky,n,±(x) for the energy E = ±En(K, ky).
We illustrate the corresponding probability densities in
Fig. 3(a). For kyd = 0.7 (solid blue curve), the state is
mainly localized near the mass kinks at x = jd with
integer j. For kyd = −0.7 (solid red curve), on the
other hand, the state is localized near the anti-kinks at
x = (j + 1/2)d. As |kyd| decreases, one approaches the
d/2-periodic probability density found for ky = 0, where
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the eigenstate is an equal-weight superposition of coun-
terpropagating chiral Jackiw-Rebbi modes.

For E2 < k2
y + M2 (where κ is real), we now ob-

serve that the particle current density (2.7) along the
x-direction is uniform and given by

jx =
−4κ sin(Kd)

(M + E)Ω12
|a1|2, (3.33)

with a1 determined by Eq. (3.32). Note that jx is odd in
K. We note that for the scattering problem in Sec. V A,
instead of Eq. (3.32) it will be more convenient to adopt
a normalization where the wave function carries unit cur-
rent. This is achieved by setting

|a1|2 =

∣∣∣∣ (M + E)Ω12

−4κ sin(Kd)

∣∣∣∣ , (3.34)

which determines a1, with |a1(−K)|2 = |a1(K)|2, up to
an irrelevant phase.

C. Effective low-energy theory

For Md � 1, the essential low-energy physics of the
staggered Dirac mass superlattice problem is captured
by projecting the full Hamiltonian (2.1) onto the sub-
space spanned by the 1D chiral zero modes centered at
the (anti-)kink positions xj = jd/2 (integer j) of the pe-
riodic mass term (3.1). The resulting effective low-energy
theory is also useful for studying interacting variants of
the model. We show below that this projection repro-
duces the exact spectrum to exponential accuracy in the
low-energy regime, |E| < M .

In the unit cell |x| < ` obtained after shifting x →
x− `

2 , we start from the mass profile

M(x) =

{
(1 + γ)M, |x| < `

2 ,
−(1− γ)M, `

2 < |x| < `,
(3.35)

whereM > 0. The full mass profile follows by periodicity,
M(x+ jd) = M(x), and is inversion symmetric, M(x) =
M(−x). We here allow for a dimensionless asymmetry
parameter γ, resulting in different mass amplitudes in re-
gions of positive and negative mass. Note that Eq. (3.1)
follows (up to the above shift) from Eq. (3.35) for γ = 0,
where we also have M(x+`) = −M(x). The latter prop-
erty is lost for γ 6= 0. For |γ| > 1, the mass term always
has the same sign and chiral zero modes are absent. Be-
low we focus on the more interesting case |γ| < 1.

The kink and anti-kink positions in M(x) define a 1D
bipartite lattice in the x-direction, where sublattice A
(kinks) comprises the sites at xAj = jd− `

2 and sublattice

B (anti-kinks) refers to xBj = jd+ `
2 . We now introduce

the mass profileMK(x−xA) for a single kink centered at
position xA, and similarly M̄K(x− xB) for an anti-kink
centered at xB , where

MK(x) = Msgn(x) + γM, M̄K(x) =MK(−x).
(3.36)

Zero-energy fermion modes bound to a kink or an anti-
kink at x = 0 satisfy

(−iσx∂x +MK(x)σz)φ+(x) = 0,(
−iσx∂x + M̄K(x)σz

)
φ−(x) = 0, (3.37)

where the orthonormalized states φ±(x) are eigenstates

of σy and satisfy φ−(x) = σzφ+(−x). Defining M̃ =
(1− γ2)M , we find

φ±(x) =

√
M̃

2
e−F (±x)

(
1
±i

)
, F (x) = (|x|+ γx)M.

(3.38)
For constructing the low-energy theory for Md � 1, we
expand the electron field operator in terms of the zero
modes (3.38) for kink and anti-kinks centered at xAj and
xBj , respectively,

Ψ̂(x, y) =
∑
j

[φ+(x− xAj) ψ̂Aj(y) +φ−(x− xBj) ψ̂Bj(y)]

(3.39)

with 1D chiral fermion field operators ψ̂αj(y) for each
sublattice α = A,B and each unit cell j ∈ Z of the 1D
bipartite lattice. With fermion operators cαjky , we have

ψ̂αj(y) = 1√
W

∑
ky
eikyy cαjky , using periodic boundary

conditions, ψ̂αj(y + W ) = ψ̂αj(y), such that ky = 2πm
W

for integer m and linear system size W .
Projecting the full Hamiltonian H, see Eq. (2.1) with

V (x) = 0 and M(x) in Eq. (3.35), onto the low-energy
basis (3.39), we obtain the effective low-energy Hamilto-
nian,

Heff =

∫
dxdy Ψ̂†(x, y)HΨ̂(x, y) (3.40)

=
∑

αα′,jj′,ky

c†αjkyH
αα′

jj′ (ky) cα′j′ky ,

with the sublattice-diagonal matrix elements

HAAjj′ (ky) = kyM̃

∫
dx e−F (x−xAj)−F (x−xAj′ ), (3.41)

HBBjj′ (ky) = −kyM̃
∫
dx e−F (−x+xBj)−F (−x+xBj′ ).

Similarly, the off-diagonal components take the form

HABjj′ (ky) = HBAj′j (ky) =

∫
dx e−F (x−xAj)−F (−x+xBj′ )

× M̃
[
M(x)− M̄K(x− xBj′)

]
. (3.42)

All matrix elements depend on the site indices j and j′

only through their separation (j − j′)d and decay ex-
ponentially with this distance. In particular, Eq. (3.41)
yields

HAAjj′ (ky) = −HBBjj′ (ky) = ky f|j−j′|, (3.43)
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FIG. 4. Illustration of the numbers gm in Eq. (3.46), which
encode the overlap between counterpropagating chiral zero
modes. The sites A and B correspond to the 1D bipartite
lattice of kink and anti-kink positions, where rectangles indi-
cate a unit cell.

where the dimensionless numbers (l = 0, 1, 2, . . .)

fl =

(
cosh(γlMd) +

sinh(γlMd)

γ

)
e−lMd (3.44)

encode the overlap between zero-energy modes at dis-
tance ld belonging to the same sublattice. Note that
f0 = 1. The off-diagonal matrix elements (3.42) do not
depend on ky and can similarly be expressed as

HABjj′ (ky) = Mgj−j′ , (3.45)

where the dimensionless numbers gm, with m ∈ Z and
M(x) in Eq. (3.35), are given by

gm = M̃d eγ(m− 1
2 )Md

∫
ds e−(|s|+|s−m+ 1

2 |)Md

×
(
M(s+ 1

4 )

M
+ sgn(s)− γ

)
. (3.46)

Note that for γ = 0, we have gm = −g1−m. For Md� 1,
the numbers fl and gm decrease exponentially fast when
increasing l and |m|, respectively. The low-energy theory
is dominated by terms with fl=0 = 1 and gm=0,1, corre-
sponding to overlaps between at most adjacent sites of
the 1D bipartite lattice, as illustrated in Fig. 4. In par-
ticular, the couplings g−1 and g2 describe next-nearest-
neighbor overlap integrals which are exponentially small
compared to the nearest-neighbor couplings g0,1, and can
be omitted. For m = 0, 1, the integral in Eq. (3.46) can
be evaluated to exponential accuracy,

g0 ≈ −(1− γ2)e−(1+γ) Md
2 , g1 ≈ (1− γ2)e−(1−γ) Md

2 .
(3.47)

Since the matrix elementsHαα′jj′ (ky) only depend on the

separation (j−j′)d, the low-energy Hamiltonian (3.40) is
diagonal in momentum space. Using the above chiral 1D
fermion operators cαjky , we define a momentum-space
spinor field CKky according to(
cAjky
cBjky

)
=

∫ π/d

−π/d

dK

2π
eijKdCKky , CKky =

(
CAKky
CBKky

)
.

(3.48)

For W →∞, we then obtain

Heff =

∫
dKdky
(2π)2

C†KkyH̃(K, ky)CKky , (3.49)

where the single-particle effective Hamiltonian,

H̃(K, ky) =

(
f̃(K)ky g̃(K)M

g̃∗(K)M −f̃(K)ky

)
, (3.50)

is expressed in terms of the Fourier series

f̃(K) = f0 + 2

∞∑
l=1

fl cos(lKd) ≈ 1, (3.51)

g̃(K) =
∑
m

gme
−imKd ≈ g0 + g1e

−iKd.

The approximate results in Eq. (3.51) are obtained by
keeping only the leading coefficients fl=0 = 1 and gm=0,1,
and hold to exponential accuracy for Md� 1. By diago-
nalizing H̃(K, ky) with the approximations in Eq. (3.51),
we obtain the eigenenergies

E(K, ky) = ±
√
k2
y +M2[g2

0 + g2
1 + 2g0g1 cos(Kd)].

(3.52)
This expression accurately reproduces the n = 0 band
obtained from the exact spectral equation (3.15).

Close to the Γ-point (Kd� 1), Eq. (3.50) reduces to

H̃(K, ky) = Mg1Kdτy + kyτz −
(

∆ +
1

2
Mg1(Kd)2

)
τx,

(3.53)
with the gap ∆ = −(g0 + g1)M > 0 and Pauli matrices
τa in sublattice space for the 1D bipartite lattice. Equa-
tion (3.52) then simplifies to the dispersion relation of
anisotropic massive Dirac fermions,

E(K, ky) = ±
√
ṽ2
xK

2 + v2
Fk

2
y + ∆2, (3.54)

with

∆ = 2M̃ e−Md/2 sinh(γMd/2),
ṽx
vF

= M̃d e−Md/2.

(3.55)
For γ = 0, we have ∆ = 0 and Eq. (3.54) reproduces
Eq. (3.25) since vx,0 = ṽx for Md � 1, see Eq. (3.26).
However, for γ 6= 0, the anisotropic Dirac cone is gapped
and has the Chern number C = − 1

2 sgn(∆) [28, 30, 48–
50].

We mention in passing that in terms of fermionic sub-

lattice spinor fields, ψ̂j(y) =

(
ψ̂Aj(y)

ψ̂Bj(y)

)
, the low-energy

Hamiltonian (3.49) can also be written as

Heff =
∑
j

∫
dy
{
ψ̂†j [−i∂yτz +Mg0τx] ψ̂j

+Mg1[ψ̂†jτ+ψ̂j+1 + h.c.]
}
, (3.56)
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with the approximations in Eq. (3.47) and using τ+ =
1
2 (τx + iτy). Such a representation can be useful in order
to include, for instance, Coulomb interaction effects.

The above projection scheme can be adapted to any pe-
riodic mass profileM(x) alternating between positive and
negative values. For a continuous mass profile, the zeros
of M(x) define the sites of the 1D bipartite lattice, and
close to these zeros, a single (anti-)kink in Eq. (3.36) can
be approximated by a linear function MK(x) = Mx/d
(M̄K(x) = −Mx/d). In that case, the normalized zero-
energy wave functions in Eq. (3.38) are replaced by

φ±(x) = (4πM/d)−1/4 e−
M
2dx

2

(
1
±i

)
. (3.57)

The effective low-energy Hamiltonian is then still given
by Eq. (3.50), with f̃(K) and g̃(K) now calculated with
φ± in Eq. (3.57). We conclude that the projection ap-
proach offers a powerful route towards studying the low-
energy theory of Dirac fermions in a mass superlattice.

IV. BOUNDARY MODES

We now turn to evanescent wave solutions which are
characterized by a complex-valued quasi-momentum K
and can arise in the presence of boundaries or nonuni-
form potentials. Throughout this section, we focus on
boundary-induced evanescent states in a constant poten-
tial and set V (x) = 0. In addition, we consider the low-
energy regime (3.18), where κ in Eq. (2.6) is real-valued
and (Md)2 + ξ > 0 in Eq. (3.17). The length scale κ−1

governs the decay (or growth) of the wave function along
the x-direction in a region of constant mass. For the
piece-wise constant mass term (3.1), the length κ−1 thus
represents a microscopic scale, which is only relevant on
scales below the period d and which becomes shorter with
increasing |ky|. As discussed below, the mass superlattice
generates another characteristic length scale, K−1, which
governs the decrease (or increase) of evanescent waves on
scales larger than the superlattice period d and which, for
small |ky|, grows with increasing |ky|. In Sec. IV A, we
summarize general properties of evanescent states, fol-
lowed by the explicit calculation of boundary modes for
a semi-infinite geometry in Sec. IV B.

A. Evanescent states

The spectral condition (3.15) is formally solved by

Kd = ± arccos f(ξ), (4.1)

with the function f(ξ) in Eq. (3.17). Bloch wave solu-
tions with real K only exist for |f(ξ)| ≤ 1. For f(ξ) > 1,
corresponding to ξ > 0 and thus to |E| < |ky|, one in-
stead finds a purely imaginary solution, K = ±iK for the
respective sign in Eq. (4.1), with the convention K > 0.

-2 -1 0 1 2

-1

0

1

2

3

kyd

K
d

FIG. 5. Quasi-momentum K in Eq. (4.1) vs ky for Md = 4,
taking the + sign in Eq. (4.1). Red (blue) curves show the
imaginary (real) part of K. The solid curves are for Ed = 0.5
and the dashed curves for Ed = 1.4.

For 0 < ξ � 1, we estimate

Kd ' sinh(Md/2)

Md/2

√
ξ, (4.2)

in agreement with Eqs. (3.25) and (3.26). The resulting
type-I boundary modes, see Eq. (3.10), originate from
states near the superlattice BZ center and are directly
connected to the anisotropic Dirac cone dispersion (3.25).
This case is illustrated for Ed = 0.5 (solid curves) in
Fig. 5. For the wave function (3.3) of type-I states, using
Eqs. (3.13) and (A6), we obtain

b1(K = ±iK)

a1
=
e∓Kd − Ω11

Ω12
, (4.3)

resulting in a decay (increase) of ψK(x) with increasing
x for K = iK (K = −iK). We note that the particle
current along the x-direction vanishes, jx = 0, because
b1/a1 is real.

Next we turn to the case Ed = 1.4 (dashed curves in
Fig. 5), where the real part of K again vanishes for |E| <
|ky|, corresponding to type-I states. However, for small
|ky| and Md > 2, a region with f(ξ) < −1 corresponding
to ξ < ξc < 0 exists, cf. Fig. 2(a), where Eq. (4.1) yields a
pair of type-II states with K = ∓iK±π/d, see Eq. (3.11).
For ξ . ξc, we find

Kd '
√
f ′(ξc) (ξc − ξ). (4.4)

From Eq. (4.4) and Fig. 5, we observe that the decay
length K−1 can exceed the lattice spacing d of the mass
superlattice. The wave function of type-II states also
follows from Eq. (3.3) but with

b1 (K = ∓iK ± π/d)

a1
=
−e±Kd − Ω11

Ω12
, (4.5)

again resulting in jx = 0. The corresponding spatial
probability density is illustrated in Fig. 3(b), where an
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overall decay on the emergent (long) length scale K−1 is
clearly visible. At the same time, the microscopic length
` = d/2 due to the mass superlattice causes a periodic
modulation of the spatial decay.

The emergence of type-II states can also be seen from
the results of Sec. III C. Near the boundary of the su-
perlattice BZ, by writing K = π

d + q with |q|d � 1, the
low-energy dispersion relation (3.52) takes the form

E
(π
d

+ q, ky

)
≈ ±

√
−ṽ2

xq
2 + k2

y + E2
c , (4.6)

with ṽx in Eq. (3.55) and Ec = 2M̃e−
Md
2 cosh(γMd

2 ).
Equation (4.6) reveals a saddle point at the BZ boundary,
which is responsible for the Lifshitz transition discussed
in Sec. II A. For |E| < Ec, Bloch states with real q ex-
ist for any (small) value of ky. However, for |E| > Ec,
type-II states with imaginary q emerge for k2

y < E2−E2
c .

B. Boundary modes for semi-infinite geometry

It is instructive to study a specific example admitting
evanescent wave solutions. We here consider the Dirac
mass superlattice problem on the half-plane x < x0, with
the boundary line x = x0 located in a positive-mass re-
gion, say, 0 < x0 <

d
2 . We impose a boundary condition

at x = x0 and y ∈ R,

B(α) Ψ(x0, y) = ±Ψ(x0, y), (4.7)

which ensures that the component of the current density
normal to the boundary vanishes [51, 52]. The matrix B
depends on a phenomenological boundary angle α,

B(α) = σy cosα+ σz sinα. (4.8)

For definiteness, we choose the eigenvalue +1 in Eq. (4.7)
in what follows. (The solution for eigenvalue −1 follows
by replacing α → α + π.) The corresponding eigenstate
of B(α) is given by

|α〉 =

(
cos(α2 −

π
4 )

−i sin(α2 −
π
4 )

)
. (4.9)

We now consider parameter regions with |f(ξ)| > 1,
where Bloch waves are absent and K in Eq. (4.1) is
complex-valued.

For the semi-infinite problem, normalizable states can
be obtained only from one of the two solutions in
Eq. (4.1). Denoting this solution by K = K0 and recall-
ing our convention K > 0, we have K0 = −iK for type-I
states with ξ > 0. Similarly, we have K0 = −iK+π/d for
type-II states with ξ < ξc < 0. For x→ −∞, the solution
ψK0(x) decreases exponentially and therefore describes a
normalizable state. The other solution ψ−K0(x) grows
exponentially for x→ −∞ and hence is not admissible.

The boundary condition (4.7) implies that the bound-
ary spinor ψK0

(x0) must be proportional to the state |α〉

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-2

-1

0

1

2

kyd

E B
d

FIG. 6. Dispersion relation EB(ky) of type-I (blue) and type-
II (red) boundary modes in a semi-infinite geometry with
x < x0. We assume x0 = d/4 and Md = 3.1, where results
obtained by numerically solving Eq. (4.10) are shown for the
boundary angles α = π/3, π/2, and 2π/3, using solid, dashed,
and dotted lines, respectively. The shaded region corresponds
to Bloch states.

in Eq. (4.9). Using Eq. (3.13), we thereby arrive at the
spectral condition(

Ω− eiK0d1
)
W−1
M (x0)|α〉 = 0, (4.10)

which determines the dispersion relation of the bound-
ary modes E = EB(ky). We illustrate typical results
in Fig. 6 for different values of the boundary angle.
For Md > 2, we observe both type-I boundary modes
with |EB(ky)| < |ky| (blue curves) and type-II boundary
modes (red curves). In both cases, the precise shape of
the dispersion EB(ky) sensitively depends on the angle α
and on the boundary location x0 (not shown). Moreover,
the dispersion is not symmetric in ky, which implies that
the boundary modes can carry unidirectional currents.
We therefore expect them to be observable in transport
experiments. In addition, they could be detected in STM
experiments.

V. POTENTIAL STEP AND INTERFACE
MODES

In this section, we return to the extended problem
(without boundaries) for the Dirac Hamiltonian (2.1)
with the periodic mass term in Eq. (3.1). We now include
an electrostatic potential step of moderate step size 2Vs
at position x = xs,

V (x) = Vs sgn(x− xs), 0 < 2Vs < M. (5.1)

The potential (5.1) defines an np-junction. For definite-
ness, we assume 0 < xs <

d
2 such that the step is located

in a region of positive mass.
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Here we focus on the most interesting low-energy
regime with real-valued κ parameters in Eq. (2.6). Re-
calling that a uniform potential can be accounted for by
shifting the energy E, on the left side x < xs, κ = κL fol-
lows from Eq. (2.6) with E → E+Vs . Similarly, κ = κR
for x > xs is obtained by replacing E → E − Vs. (Below
we will also use ξL,R which follows from Eq. (3.16) with
the same substitutions.) In order to have both κL and
κR real for all values of ky, we require

|E| < M − Vs. (5.2)

Apart from evanescent states bound to the potential
step, we then have to take into account only the zero-
mode band with n = 0 corresponding to the emergent
anisotropic Dirac cone near the Γ point.

In Sec. V A, we consider scattering states and calculate
the corresponding transmission probability for the poten-
tial step (5.1). The linear two-terminal conductance G is
discussed in Sec. V B, where we consider transport across
the junction with lead electrodes attached to the system
at x → ±∞. Interestingly, we find a pronounced de-
pendence of G on the step position xs. In Sec. V C, we
then determine the dispersion relation of interface modes,
which are spatially localized near the potential step in the
x-direction but propagate along the y-direction.

A. Scattering states and transmission probability

We here consider scattering states with energy

|E| < Vs. (5.3)

Since the emergent Dirac cones on the two sides of the
junction are shifted by the potential in opposite direc-
tions, in this energy window one finds a particle-like state
on the left side and a hole-like state on the right side of
the np-junction. The associated group velocity is then
parallel (anti-parallel) to the momentum K on the left
(right) side. We note that for 0 < 2Vs < M , Eq. (5.3)
automatically implies Eq. (5.2). For given E and ky,
we have a pair of 1D Fermi momenta ±KL on the left
side, and similarly ±KR on the right side. The values
of KL > 0 and KR > 0 follow from the spectral equa-
tion (3.15). In particular, using the auxiliary function
Φ(E,K, ky) in Eq. (3.20), KL,R are the solutions of

Φ(E + Vs,KL, ky) = 0, Φ(E − Vs,KR, ky) = 0. (5.4)

We then use Eqs. (3.3) and (3.31) to determine the scat-
tering state by matching the wave function on the left side
of the junction to the wave function on the right side.
Appending energy arguments as indices on the matrix
WM (x) in Eq. (2.5), the full wave function for 0 < x < d

2
is written as

ψ(x < xs) = WE+Vs,M (x)

[(
a1

b1

)
KL

+ r

(
a1

b1

)
−KL

]
,

ψ(x > xs) = tWE−Vs,M (x)

(
a1

b1

)
−KR

, (5.5)

with complex-valued reflection (r) and transmission (t)
amplitudes. We normalize the incident, reflected, and
transmitted wave functions such that they carry unit cur-
rent, see Eq. (3.34). Notice that the wave function for
x > xs describes a hole propagating to the right and
therefore involves the 1D Fermi momentum −KR.

The transmission probability T is given by

T (E, ky) = |t|2 =

∣∣∣∣a1(KL)

a1(KR)

∣∣∣∣2 |t′|2, (5.6)

where the amplitude t′ follows by setting all coefficients
a1(±KL,R) = 1 in Eq. (5.5). Continuity of ψ(x) at x = xs
then results in two coupled linear equations for r and t′,

WE+Vs,M (xs)

[(
1
b1

)
KL

+ r

(
1
b1

)
−KL

]
=

= t′WE−Vs,M (xs)

(
1
b1

)
−KR

, (5.7)

where, using a1 = 1, Eq. (3.31) gives

b1(±KL) =
e±iKLd − Ω11(E + Vs)

Ω12(E + Vs)
, (5.8)

and analogously for b1(±KR). Note that the energy ar-
gument of the Ω matrix elements (A6) has been made
explicit. With the auxiliary quantities(

A(K)
B(K)

)
= W−1

E+Vs,M
(xs)WE−Vs,M (xs)

(
1

b1(K)

)
,

(5.9)
where we suppress the dependence on xs, reflection and
transmission amplitudes can be expressed as

r = − B(−KR)− b1(KL)A(−KR)

B(−KR)− b1(−KL)A(−KR)
, (5.10)

t′ =
b1(KL)− b1(−KL)

B(−KR)− b1(−KL)A(−KR)
.

We thus obtain the reflection probability R = |r|2 and
the transmission probability T from Eq. (5.6). Of course,
current conservation yields T = 1−R.

We illustrate typical results for the transmission prob-
ability in Fig. 7. Depending on the parameters, Bloch
states, and thus a finite transmission, can only be real-
ized in a window of ky values. For fixed step position,
we indeed observe a strong dependence on ky, with the
symmetry T (E = 0,−ky) = T (E = 0, ky), cf. Fig. 7(a),
where we also illustrate the effect of changing the param-
eter Md. In particular, we see that at fixed energy, for
the case of larger mass in the main panel of Fig. 7(a),
there is a window around ky = 0 where the transmission
vanishes. This window shrinks as the mass decreases,
and eventually closes, as shown in the inset. Notice that
the window’s edges do not depend on the position of the
step. For fixed (E, ky), Fig. 7(b) reveals a pronounced
dependence of T on the step position xs, with the sym-
metry T (d2−xs, ky) = T (xs,−ky). This effect is linked to
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FIG. 7. Transmission probability T for the Dirac mass su-
perlattice in the presence of the potential step (5.1) with
Vsd = 1.25. (a) T vs ky for E = 0, Md = 5, and
xs/d = 0.05, 0.1, 0.25 (red, green, blue curves). Inset: Same
parameters as in the main panel but for Md = 3.7. (b) T
vs step position xs for Md = 5 with kyd = 1.1 (solid lines)
and kyd = −1.1 (dashed lines), using Ed = 0, 0.05, 0.1 (red,
green, blue curves).

the strong x-dependence of the wave functions. Indeed,
as discussed in Sec. III C, the low-energy states are built
from chiral zero modes which are localized along the x-
direction near x = jd/2 (integer j). Depending on the
sign of ky, we find high transmission probability if xs is
near one of these positions, where the probability density
has maxima, see Fig. 3(a). In the next section, we study
how this behavior affects the electrical conductance.

B. Conductance

Within a noninteracting theory, the transmission prob-
ability T (E, ky) directly determines the linear two-
terminal conductance G via the standard Landauer-
Büttiker formula [53]. At zero temperature, identifying
E with the Fermi energy EF, the conductance for a strip
of large width W along the y-direction, with source and
drain electrodes adiabatically connected at x → ±∞, is

0.0 0.1 0.2 0.3 0.4 0.5
0.00

0.05

0.10

0.15

0.20

0.25

xs/d

G 0 0.5 1 1.5 2
0

0.3

0.6

Vsd

G

FIG. 8. Conductance G for the Dirac mass superlattice with
Md = 5 at Fermi energy EF = 0 in the presence of the

potential step (5.1). We show G in units of Nve
2W

(2π)2~d for a

strip of width W and degeneracy index Nv. Main panel: G vs
step position xs for several values of the potential step size,
Vsd = 1.1, 1.25, 1.4, shown by red, green, and blue curves,
respectively. Inset: G vs Vs for xs = 0.05d (blue) and
xs = 0.25d (red curve).

given by

G =
Nve

2W

(2π)2~

∫
dky T (EF, ky), (5.11)

where Nv is a degeneracy factor. For instance, in a
graphene monolayer, we have Nv = 4 because of spin
and valley degeneracies. Note that at given energy, only
states with ky such that |f(ξL,R)| < 1 have finite trans-
mission probability and contribute to the conductance.

We illustrate the dependence of G on the potential
step position xs and on the step size Vs in Fig. 8. We
observe that G strongly depends on xs and, in the inter-
val 0 < xs < d/2, exhibits a broad minimum at xs = d/4
with the symmetry G(d2−xs) = G(xs). The conductance
will then be a periodic function of xs with period d/2.
Such conductance oscillations are most pronounced for
Md� 1 and small values of the Fermi energy, where the
relevant electronic states originate from the chiral zero
modes localized near the mass (anti-)kinks at x = jd/2.
The xs-dependence of G becomes weaker for smaller val-
ues of M (results not shown). A pronounced spatial de-
pendence of G on the step position is therefore an hall-
mark of the existence of zero modes which are well local-
ized along the x-direction.

As a function of step size Vs, we observe that the con-
ductance shows a broad peak, cf. inset of Fig. 8. This
behavior can be rationalized by noting that in this ex-
ample we consider EF = 0, where the density of states
associated with the Dirac cone, and hence also the con-
ductance, vanishes for Vs → 0. Moreover, upon increas-
ing Vs, the phase space for transmission (the window of
ky where the transmission amplitude is finite) first in-
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FIG. 9. Dispersion relation of interface states bound to a potential step with Vsd = 1.5 and several step positions xs for
Md = 5, with E in units of ~vF/d. The green (red) bands correspond to Bloch states at x < xs (x > xs). The solid black
curves refer to interface modes. The interface modes in the central inner region are of type II-II, while all others are of type
I-II. From left to right panel: xs = 0, xs = 0.1d, xs = 0.4d, and xs = 0.5d.

creases, but eventually shrinks and, as a consequence,
the conductance decreases toward zero.

C. Interface states

We finally study states localized near the interface at
x = xs. These states are formed by a combination of ei-
ther type-I or type-II evanescent waves on opposite sides
of the step, matched at x = xs. In particular, solutions
with type-II modes on both sides (“type II-II” interface
modes) require f(ξL) < −1 and f(ξR) < −1, and have
quasimomenta

KL = −iKL +
π

d
, KR = +iKR −

π

d
, (5.12)

with KL,R > 0 given by Eq. (4.4) with the replacement
E → E ± Vs. The state ψKL

(x) (for x < xs) then shows
an exponential decay for x→ −∞ and, similarly, ψKR

(x)
(for x > xs) decays for x → ∞. For type I-II interface
states, composed of type-I and type-II modes on opposite
sides, we find that, for E > 0, the type-II state is on the
left and the type-I on the right, with

KL = −iKL +
π

d
, KR = +iKR, (5.13)

while for E < 0, the opposite happens, with

KL = −iKL, KR = +iKR −
π

d
. (5.14)

The wave function matching condition at x = xs now
implies

WE+Vs,M (xs)

(
a1

b1

)
KL

= t′WE−Vs,M (xs)

(
a1

b1

)
KR

,

(5.15)
with b1(K) in Eq. (5.8). Using the auxiliary quantities
in Eq. (5.9), we arrive at the equation

(
Ω(E + Vs)− eiKLd1

)(A(KR)
B(KR)

)
= 0, (5.16)

which implicitly defines the dispersion relation E =
EI(ky) of the interface modes. As for the boundary case
(4.10), the two equations in Eq. (5.16) are nonlinear con-
ditions for ky and E which have to be solved simultane-
ously. Depending on the parameter values, our numerical
analysis shows that such solutions indeed exist. Typical
results for the dispersion relation EI(ky) are shown in
Fig. 9. We find interface modes of type I-II or type II-II,
where the latter modes can only exist for Md > 2. For
the parameters in Fig. 9, there are no type I-I interface
modes. In fact, the absence of type I-I modes is a generic
feature which can be rationalized by observing that their
dispersion should originate from one of the two crossing
points (ky = 0, E = ±Vs), but at the same time it should
satisfy the conditions k2

y > (EI ± Vs)
2. Clearly, both

requirements are incompatible.
In analogy to the boundary modes in Sec. IV, we ex-

pect such interface modes to affect transport properties.
In addition, they should be observable by STM or tun-
neling spectroscopy.

VI. CONCLUSIONS

Our analysis of 2D Dirac fermions in a piecewise-
constant mass superlattice, where the mass term peri-
odically changes sign, shows a remarkable richness. We
have shown that the low-energy part of the spectrum
is spanned by the chiral zero modes tied to the zero-
mass lines of the superlattice. Apart from the resulting
anisotropic Dirac cone dispersion, we also predict non-
trivial boundary modes as well as interface modes near
potential steps. Those modes exist in two different types.
Type-I modes require a momentum |ky| parallel to the
zero-mass lines which is larger than the energy |E|. In-
stead, type-II modes emerge at small |ky| but exist only
for Md > 2, where M is the amplitude of the mass term
and d the superlattice period. Both types of evanescent
states could affect transport properties and should be ob-
servable by STM techniques.

Although our results have been derived for a particular
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exactly solvable model, we have also shown that in the
regime Md � 1, the low-energy physics is directly con-
nected to the chiral zero modes localized at the zero-mass
lines, and therefore is generic to all Dirac mass super-
lattices where the mass alternates between positive and
negative values, including periodic arrays of topological
junctions between Chern insulators with different Chern
numbers.

The low-energy theory put forward in this work points
to several interesting extensions. First, the inclusion of
an orbital magnetic field along the z-direction allows
one to study the interplay of Landau level formation
and quantum Hall physics with the phenomena discussed
above. Second, since we have a model of coupled 1D chi-
ral fermions, bosonization methods [54] can be used to
construct solvable nonperturbative theories of this 2D
system in the presence of electron-electron interactions.

Zero-line modes similar to those discussed in our work
have also been reported in recent experiments performed
on magnetic topological insulators [55] which realize in-
terfaces between quantum anomalous Hall insulators [23]
with different Chern numbers. We expect that our re-
sults will also be relevant in this platform. Theoretical
predictions for layer-dependent zero-line modes in anti-
ferromagnetic topological insulator multilayer structures
based on MnBi2Te4 [56] suggest that our theory can also
be applied in that context. An important caveat when
comparing our results to experiments concerns the ideal-
ized step-like mass term considered here. While this sim-
plification allowed us to obtain exact analytical solutions,
for smooth mass kinks, additional states localized at the
kinks can emerge at elevated energies, so-called Volkov-
Pankratov states [37, 39, 40]. However, such states are
non-chiral and are expected to cause distinct transport

and spectroscopical features than the chiral states dis-
cussed in our work.

To conclude, we hope that the results put forward
here will inspire future experimental and theoretical work
along these lines.
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Appendix A: Matrix properties

We here summarize useful algebraic relations involving
the matrix WM (x) in Eq. (2.5). We first note that its
inverse is given by

W−1
M (x) =

1

2κ

(
(ky + κ)e−κx i(M + E)e−κx

−(ky − κ)eκx −i(M + E)eκx

)
(A1)

with κ in Eq. (2.6). Second, we observe that the deter-
minant of WM (x) is x-independent, detWM (x) = 2iκ

M+E .

Third, Eqs. (2.5) and (A1) imply the relation

W−1
−M (x)WM (x) =

1

κ(E +M)

(
Eκ+Mky e−2κx(κ+ ky)M

e2κx(κ− ky)M Eκ−Mky

)
. (A2)

Fourth, for real κ corresponding to E2 < k2
y +M2, we find

W †M (x)WM (x) =

e
2κx

(
1 +

(
ky−κ
E+M

)2
)

2E
E+M

2E
E+M e−2κx

(
1 +

(
ky+κ
E+M

)2
)
 , (A3)

W †M (x)σxWM (x) = − 2κ

E +M
σy, W †M (x)σyWM (x) =

2

E +M

(
e2κx(ky − κ) ky

ky e−2κx(ky + κ)

)
.

For κ = ik with real k > 0, we instead find

W †M (x)WM (x) =


2E
E+M e−2ikx

(
1−

(
−k+iky
E+M

)2
)

e2ikx

(
1−

(
k+iky
E+M

)2
)

2E
E+M

 , (A4)

W †M (x)σxWM (x) =
2k

E +M
σz, W †M (x)σyWM (x) =

2

E +M

(
ky e−2ikx(ky + ik),

e2ikx(ky − ik) ky

)
.
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Next, the matrix ΩB in Eq. (2.13) for the mass-barrier problem in Sec. II C, is given by

ΩB =
1

κ2(E2 −M2)

(
(E2 −M2)[k2

y − E2 +M2e−2κ`] −2M(κ+ ky)(Eκ+ kyM) sinh(κ`)

2M(κ− ky)(Eκ− kyM) sinh(κ`) (E2 −M2)[k2
y − E2 +M2e2`κ]

)
. (A5)

Similarly, the modified transfer matrix Ω in Eq. (3.7) for the periodic mass profile (3.1) reads

Ω =
1

κ2(E2 −M2)

(
(E2 −M2)[M2 + (k2

y − E2)eκd] M(1− e−κd)(κ+ ky)(Eκ−Mky)

M(1− eκd)(κ− ky)(Eκ+Mky) (E2 −M2)[M2 + (k2
y − E2)e−κd]

)
. (A6)

For E2 < k2
y + M2 such that κ is real, the matrix elements of Ω are also real. For completeness, we also specify the

elements of the symmetric transfer matrix T :

T11 =
M2 + (k2

y − E2) cosh(κd)

κ2
+
ME[cosh(κd)− 1] + kyκ sinh(κd)

κ2
,

T12 = T21 = i
Eκ sinh(κd) +Mky(cosh(κd)− 1)

κ2
, (A7)

T22 =
M2 + (k2

y − E2) cosh(κd)

κ2
− ME[cosh(κd)− 1] + kyκ sinh(κd)

κ2
.
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