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New approaches to 3D vision are enabling new advances in artificial intelligence
and autonomous vehicles, a better understanding of how animals navigate the
3D world, and new insights into human perception in virtual and augmented
reality. Whilst traditional approaches to 3D vision in computer vision (SLAM:
simultaneous localization and mapping), animal navigation (cognitive maps),
and human vision (optimal cue integration) start from the assumption that the
aim of 3D vision is to provide an accurate 3D model of the world, the new
approaches to 3D vision explored in this issue challenge this assumption.
Instead, they investigate the possibility that computer vision, animal navigation,
and human vision can rely on partial or distorted models or no model at all. This
issue also highlights the implications for artificial intelligence, autonomous
vehicles, human perception in virtual and augmented reality, and the treatment
of visual disorders, all of which are explored by individual articles.

This article is part of a discussion meeting issue ‘New approaches to 3D
vision’.

In November 2021 we held a Royal Society scientific meeting on ‘New approaches
to 3D vision” with the following mission statement:

Leading approaches to computer vision (SLAM: simultaneous localization and map-

ping), animal navigation (cognitive maps), and human vision (optimal cue

integration), start from the assumption that the aim of 3D vision is to produce a

metric reconstruction of the environment. Recent advances in machine learning,

single-cell recording in animals, virtual reality, and visuomotor control, all challenge

this assumption. The purpose of this meeting is to bring these different disciplines

together to formulate an alternative approach to 3D vision.
And now was the perfect time to host this meeting. With artificial intelligence’s
success in 2D vision, attention is now turning to 3D vision. There’s been an
explosion of interest in 3D image reconstruction (A New Trick Lets Artificial
Intelligence See in 3D’, Wired Magazine [1]), considerable successes in using 3D
vision to uncover new biological advances (with DeepMind’s AlphaFold [2,3] sol-
ving the protein-folding problem), and the suggestion that grounding artificial
intelligence in 3D vision will enable better Al (MURT}, [4-6]). But 3D vision still
remains a challenge for AI[7], and is often regarded as the most difficult question
facing robotics and autonomous vehicles [8-10].

At the same time, we are also seeing considerable advances in our understanding
of biological vision and navigation. Single-cell recording in freely moving animals
has enabled us to understand for the first time how the brain’s map of 3D space is
organized [11,12], while the emergence of virtual and augmented reality has
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Table 1. Schedule of talks for the Royal Society meeting ‘New Approaches to 3D Vision (1—4 Nov 2021). For links see: https://osf.io/2waby.

NEW APPROACHES TO 3D VISION
Royal Society, 1-4 Nov 2021
Website / Recordings

DAY ONE (1st Nov) - Seeing Beyond SLAM
Chair: Andrew Fitzgibbon (Microsoft)

Session One: Neural Scene Representation

SM Ali Eslami (DeepMind): “Neural priors, neural encoders and neural renderers”
Ida Momennejad (Microsoft Research): “Multi-scale predictive representations and human-like RL”
Session One Discussion (Fitzgibbon / Eslami / Momennejad)

Session Two: Perception-Action Loop

Sergey Levine (UC Berkeley and Google): “Generalization in data-driven control”
Andrew Glennerster (University of Reading): “Understanding 3D vision as a policy network”

Session Two Discussion (Fitzgibbon / Levine / Glennerster)

DAY TWO (2" Nov) — Animals in Action
Chair: Matteo Carandini (University College London)

Session One: Locating Prey and Rewards
Jenny Read (Newcastle University): “

Stupid stereoscopic algorithms that still work”

Aman Saleem (University College London): “Visual processing in the brain during navigation”

Session One Discussion (Carandini / Read / Saleem)

Session Two: Navigation in 3D Space

Kate Jeffery (University College London): “The cognitive map of 3D space: not as metric as we thought?”
Gily Ginosar (Weizmann Institute of Science): “Locally ordered representation of 3D space in the entorhinal cortex”

Session Two Discussion (Carandini / Jeffery / Ginosar)

DAY THREE (3" Nov) — Experiencing Space
Chair: Mar Gonzalez-Franco (Microsoft Research)

Session One: Theories of Visual Space

Dhanraj Vishwanath (University of St Andrews): “Tripartite encoding of visual 3D space”

Paul Linton (City, University of London): “New approaches to visual scale and visual shape”
Session One Discussion (Gonzalez-Franco / Vishwanath / Linton)

Session Two: Challenges for Virtual Reality

Sarah Creem-Regehr (University of Utah): “Perception and action in virtual and augmented reality”

Douglas Lanman (Facebook Reality Labs): “Engineering challenges for realistic displays”
Session Two Discussion (Gonzalez-Franco / Creem-Regehr / Lanman)

DAY FOUR (4" Nov) - Grasping the World
Chair: Jody Culham (Western University)

Session One: One Visual Stream or Two?

Fulvio Domini (Brown University): “A novel non-probabilistic model of 3D cue integration explains both perception and action”

Irene Sperandio (University of Trento): “Dissociations between perception and action in size-distance scaling”

Session One Discussion (Culham / Domini / Sperandio)

Session Two: 3D Space and Visual Impairment

Ione Fine (University of Washington): “Do you hear what I see? How do early blind individuals experience object motion?”
Ewa Niechwiej-Szwedo (University of Waterloo): “The role of binocular vision in the development of visuomotor

control and performance of fine motor skills”

Session Two Discussion (Culham / Fine / Niechwiej-Szwedo)

Session Three: Future Directions
Chair: Michael Morgan FRS (City, University of London)

Panel Discussion by the Chairs (Fitzgibbon / Carandini / Gonzalez-Franco / Culham)

required that we reconsider the fundamental principles
underpinning human 3D vision.

Over 800 people participated in our meeting, with speak-
ers from DeepMind, Google Robotics, Microsoft Research,
and Meta (Facebook) Reality Labs, as well as academics
from both basic and applied research. Recordings and
abstracts of the talks are available on the Royal Society
website [13], and links to the talks available in table 1.

The purpose of our meeting was to capitalize on a brief
moment when computer vision, animal navigation, and

human vision are all pausing and asking what the most
appropriate representation for 3D vision and action really
is? On the one hand, it’s natural to think that the purpose
of 3D vision is to provide us with an accurate model of the
environment. On the other hand, in recent years computer
vision, animal navigation, and human vision have all been
grappling with whether a partial, distorted, or even inconsist-
ent model of the environment might suffice, or perhaps no
model at all. And the hope is that by drawing attention to
the similarity of these discussions in computer vision,
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animal navigation, and human vision, we can begin to con-
nect these different approaches, which have evolved
relatively independently of one another.

In this Introduction, we outline how these different disci-
plines have tackled this question and highlight the specific
contributions that the papers in this issue make.

1. Computer vision

Computer vision originated with 3D vision in the 1960s
(Larry Roberts’” ‘Machine Perception of Three Dimensional
Solids” (1963) [14-16]). And the emphasis in the 1960s-80s
was on using computer vision to reconstruct an accurate 3D
model of the environment:
...vision is the process of discovering from images what is present
in the world, and where it is. (Marr, [17])
The dominant approach to solving this problem was ‘analysis
by synthesis’, which treats vision as ‘inverse optics’ or
‘inverse graphics’. For instance, Waltz [18]:

The overall goal of the system is to provide a precise description of
a plausible scene which could give rise to a particular [image]...

Horn [19]:

The problem can be viewed as one of inversion: If we understand
the projection process which creates images from the three
dimensional world, we can hope to reverse this process to
recover information about the world.

And Charniak & McDermott [20]:

Given a 2D image, infer the objects that produced it, including
their shapes, positions, colors, and sizes.
However, by the early 1980s the pace of progress on 3D world
models had slowed ([21], p.ix). And in the mid 1980s and
early 1990s, the necessity of an accurate 3D world model
began to be questioned on two fronts: Active Vision and
Non-Euclidean Geometries.

(a) Active vision
Advances in computer hardware meant real-time active
robotics became a possibility in the mid-1980s. Ruzena
Bajcsy at Penn [22,23] and Chris Brown and Dana Ballard
at Rochester [24-26] developed robots with active eye move-
ments, complementing previous work by Marty Tenenbaum
[27] on computer vision using active lens focusing.

In the mid-1980s, Rodney Brooks [28] developed state-of-
the-art autonomous robots by explicitly rejecting the need for
a 3D world model [29]:

Internal world models which are complete representations of the
external environment, besides being impossible to obtain, are not
at all necessary for agents to act in a competent manner

And this was a feature of many Active Vision discussions:

...vision is more readily understood in the context of the visual
behaviors that the system is engaged in, and that these behaviors
may not require elaborate categorical representations of the 3-D
world. (Ballard [25])

The notion of direct coupling of perception and action, without
an explicit 3D intermediary, is very appealing. (Blake & Yuille
[30], p.173)
Two volumes [30,31] summarize the state of the art up to the
early 1990s. And [26] highlights three ways in which Active
Vision ‘recast completely the role of vision’, which was

adhered to (to varying degrees) by different advocates of [ 3 |

Active Vision.

First, active vision is task-specific: ‘an active vision system
is far more selfish. It picks out the properties of images which
it needs to perform its assigned task, and ignores the rest.”
(Blake & Yuille, [30], p.xv). This was an insight from
Yarbus [32]'s work on human eye movements, where
patterns of eye movements changed depending on the task.

Second, active vision is dynamic. It only extracts what it
needs now. It uses the physical world as its own best model,
sampling the physical world when and where it needs to: ‘the
visual scene acts as a kind of external memory buffer whose
unclear parts can be activated by making an eye movement’
(O’'Regan & Lévy-Schoen [33]). On this account, ‘the world is
its own best model. ... The trick is to sense it appropriately
and often enough.” (Brooks [34]).

Third, active vision is adaptive. Since action dictates what
visual information is picked-up from the environment, vision
is shaped by the organism’s interactions with the world, and
must be responsive to it. This eradicates a sharp distinction
between “perception” and ‘motor control’ modules: ‘there need
be no clear distinction between a “perception subsystem’, a ‘cen-
tral system’ and an ‘action system’ (Brooks’ [35]). Instead, on
Active Vision accounts, modules are tied to specific tasks and
behaviours: ‘In the purest form of this model each module incor-
porates its own perceptual, modelling and planning
requirements’. (Brooks [36]).

(b) Non-Euclidean geometries

In the early 1990s there was also an explosion of interest
in using non-Euclidean geometries to solve problems in
computer vision:

We usually think of physical space as being embedded in a 3D

Euclidean space, in which measurements of length and angles

do make sense. It turns out that for artificial systems, such as

robots, this is not a mandatory viewpoint and that it is sometimes
sufficient to think of physical space as being embedded in an

affine or even a projective space. (Faugeras [37])

Affine geometry captures geometry in a loose sense, preser-
ving parallel lines, but not distances or angles. Projective
geometry fails to preserve even parallel lines.

First, it was realised that many tasks can be accomplished
without a metric model of the environment. There was a
sense that ‘computer vision may have been slightly over-
doing it in trying at all costs to obtain metric distance
information from images.” (Faugeras [38]). By contrast,
‘Affine structure offers a useful compromise between diffi-
culty of computation and information content.” (Beardsley
et al. [39]). Consequently, affine accounts of structure from
motion [40], stereo vision [38,41], navigation [39,42,43], and
object recognition [44,45] soon emerged.

Second, even when metric scene estimates are necessary,
they can be achieved more easily and directly simply by
adding constraints to affine geometry, rather than attempting
full 3D scene reconstruction: ‘one can estimate all 3D invariants
of the scene directly from the images, without performing an
explicit 3D reconstruction of the scene.” (Faugeras [37]).

(c) LIDAR

By contrast, the early 2000s saw a strong re-emergence of
Euclidean 3D maps in computer vision. Two developments,
LIDAR and SLAM, were key to this re-emergence.
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LIDAR (light detection and ranging) was invented in the
1960s [46]. It estimates the distance of an object in a certain
direction by emitting a laser pulse and timing how long it

takes to return. LIDAR became synonymous with computer
vision in 2005 when ‘Stanley’ (a LIDAR-equipped car)
won the 2nd self-driving car DARPA Grand Challenge [47]
(previously, all cars had failed the 1st DARPA Grand Chal-
lenge). Velodyne’s 360° LIDAR was also launched during
the 2nd DARPA Grand Challenge, producing a high resol-
ution 360° map of the environment (figure 1). This soon
became the industry standard, used by 5 of the 6 finishers
of the 3rd DARPA Grand Challenge in 2007 [48,49] as well
as Google’s self-driving car project (Waymo) [49].

However, the success of deep learning since 2012 [50] has
challenged the importance of LIDAR for self-driving cars,
leading to a split in the industry. While LIDAR remains a
key feature of most self-driving car projects (Waymo
(Google), Baidu, Cruise (General Motors)), LIDAR has been
explicitly rejected by Tesla since 2013, when its self-driving
car program began [51]. Indeed, in 2021 Tesla removed the
only range-finding component (radar) from their self-driving
cars, with a rationale that explicitly evokes human vision:
‘Humans drive with eyes & biological neural nets, so makes
sense that cameras & silicon neural nets are only way to
achieve generalized solution to self-driving.” [52].

(d) SLAM

SLAM (simultaneous localization and mapping) is the ability
of a robot to build a map of its environment, whilst locating
itself relative to this map as it navigates. As Thrun et al. [53]
noted in 2000:

Building maps when a robot’s locations are known is relatively
straight-forward ... Conversely, localizing a robot when a map
is readily available is also relatively well understood ...In
combination, however, the problem is hard.
SLAM remained an intractable problem until the early 2000s.
As Durrant-Whyte and colleagues [54] wrote in 1996:
The solution to the simultaneous localisation and map building
(SLAM) problem is, in many respects a ‘Holy Grail” of autonomous
vehicle navigation research.
But by 2006, Durrant-Whyte & Bailey [55] could reasonably
claim that:

The ‘solution” of the SLAM problem has been one of the notable
successes of the robotics community over the past decade.

So, what changed between 1996 and 2006?

First, the emergence of ‘Probabilistic Robotics” [56] led to
a number of Bayesian solutions to the SLAM problem. The
first, and by far the most influential, was Extended Kalman
Filter (EKF) SLAM (e.g. [57]), derived from Smith et al.
[58]’s concept of a ‘stochastic map”:

...rather than treat spatial uncertainty as a side issue in geometri-
cal reasoning, we believe it must be treated as an intrinsic part of
spatial representations. In this paper, spatial uncertainty will be
tied together in a representation called the stochastic map. It con-
tains estimates of all the spatial relationships, their uncertainties,
and their inter-dependencies.

Another notable solution was FastSLAM [59,60].

Second, early attempts at SLAM combined odometry
(motion sensors) with range-finders like sonar [61], radar [62],
or lidar [63]. In the early 2000s vision-based systems (Visual
SLAM) began to supersede these approaches. Davison &
Murray combined SLAM with Active Vision to enable auton-
omous navigation for a robot with an active stereo head
[64-66]. And with MonoSLAM, Davison and colleagues went
one step further, using structure from motion to enable SLAM
with a single moving camera with no motion sensors or
motor commands [67,68].

However, SLAM has two notable shortcomings. First,
SLAM is unable to build-up an intuitive understanding
of the environment (Gupta et al. [69]): “These maps are
built purely geometrically, and nothing is known until it
has been explicitly observed, even when there are obvious
patterns.” New approaches therefore seek to augment
SLAM with deep learning [70-74] (see also 3D semantic
scene graphs [75-77]). Others seek an alternative to
SLAM in deep reinforcement learning [69,78-83] or deep
learning [84].

Second, and more fundamentally, SLAM is biologically
implausible:

...humans can effectively navigate small and large environments
and yet are unlikely to build internally large-scale metric
reconstructions of spaces akin to traditional SLAM systems...
(Henriques & Vedaldi [84])

Look at the inner workings of most map building algorithms ...
and there is a strong likelihood of finding Cartesian (x, y, z) rep-
resentations of the locations of features. It is not clear this is the
best way to do things on such a low level, or that biological
brains have any similar representation... (Davison [66], p.1)
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Figure 2. Diagram of Dyna-Q [85] redrawn from [86], p.7, which incorporates
both ‘model-based’ (‘value/policy’ — ‘experience’ — ‘model’ — ‘value/policy’)
and ‘model-free’ ('value/policy’ — ‘experience” — ‘value/policy’) reinforcement
learning. (Online version in colour.)

Especially when SLAM is given an explicit Extended Kalman
Filter articulation:
It certainly does not seem that we store the equivalent of a
huge covariance matrix relating to the uncertainties in our esti-
mates of the positions of all the features in a certain area.
(Davison [66])
This suggests that the extensive metric reconstruction of the
environment proposed by SLAM is not necessary for vision
or navigation, and is therefore unnecessarily complicated.

(e) Reinforcement learning

An alternative approach is reinforcement learning. Reinforce-
ment learning is the process of learning which action to take
to maximize the rewards in a given context. Reinforcement
learning can take two forms: model-based and model-free,
as summarized in figure 2.

Model-based reinforcement learning learns a model of
the world in order to predict the rewards of potential
actions. By contrast, model-free reinforcement learning
learns a direct mapping from the inputs to the actions that
maximize rewards.

The earliest work on reinforcement learning was model-
based. Richard Sutton and Andrew Barto saw themselves as
building ‘an adaptive network that constructs and uses an
internal model of its world’ [87], as envisioned by Kenneth Craik:

If the organism carries a ‘small scale model’ of external reality

and of its own possible actions within its head, it is able to

try out various alternatives, conclude which is the best for
them, react to future situations before they arise... ([88] quoted

in [87])

By contrast, in the late 1980s ‘model-free’ approaches (such as
‘temporal difference’” [89] and ‘Q-learning’ [90,91]), which do
away with a world model altogether, came to the fore. Model-
free approaches are:

explicitly trial-and-error learners — viewed as almost the opposite

of planning. (Sutton & Barto [86], p.7)

And Sutton & Barto [86], p.12 explain the advantages of this
approach:

Because models have to be reasonably accurate to be useful,

model-free methods can have advantages over more complex

methods when the real bottleneck in solving a problem is the
difficulty of constructing a sulfficiently accurate environment
model.
Reinforcement learning came to the public consciousness in
2015 when DeepMind’s Deep Q-Network (DQN) achieved
human-level performance in Atari computer games [92], and
in 2016 when their AlphaGo defeated the world’s top Go

player [93]. Both relied on ‘deep” model-free reinforcement [ 5 |

learning, where the mapping from inputs to actions is learned
by a deep (multilayer) neural network. (Earlier notable
success, such as IBM’s TD-Gammon [94], which performed
competitively at the 1992 World Cup of Backgammon, relied
on a ‘shallow’ (single layer) neural network.)

Model-free reinforcement learning challenges the tra-
ditional relationship between perception, planning, and
action. When DeepMind’s Deep Q-Network ‘plays’ Space Inva-
ders, all it learns is the mapping between the pixels on the
screen (input) and the buttons to press (output). This is why
it's described as a ‘pixels to action’ approach [95]. And end-
to-end pixel-to-action training has been successfully applied
to robot object manipulation [96], navigation [97-100], driving
[101,102], and 3D video games [103].

At our meeting, Sergey Levine [104] argued that this
pixel-to-action approach improves performance since robots
learn to extract the most relevant representations for the
task from the visual input. Similarly, Zhou et al. [105] note
in ‘Does computer vision matter for action?’

These models bypass explicit computer vision entirely. They do
not incorporate modules that perform recognition, depth esti-
mation, optical flow, or other explicit vision tasks. The
underlying assumption is that perceptual capabilities will arise
in the model as needed, as a result of training for specific
motor tasks. This is a compelling hypothesis that, if taken at
face value, appears to obsolete much computer vision research.

But the rise of this pixel-to-action approach raises two
fundamental questions.

First, would visuomotor control benefit from having an
explicit 3D depth map? On the one hand, [105] found that
having an explicit depth map and scene segmentation for
input significantly improved performance in certain tasks
and, even if it didn’t (e.g. urban driving), it helped the model
to generalize to new and unseen environments (see also
[106-111]). And [69,78] also argue that navigation is improved
if agents are able to build a top-down Euclidean map of the
scene on which to plan their strategies. On the other hand, in
this issue Levine & Shah [104] argue that what matters for
navigation is traversability, not 3D geometry: tall grass is tra-
versable, even though it looks like a barrier, whilst mud is
not traversable, even though it looks like a flat surface, and
an explicit representation of 3D geometry is an unnecessary
bottleneck to learning traversability. Finally, a third alterna-
tive is to use a depth map, but to learn the depth map as
part of reinforcement learning, rather than as an input to
reinforcement learning [98].

Second, even if this pixel-to-action approach doesn’t have
an explicit 3D map of the environment, does it effectively
learn an implicit 3D map? As Zhu et al. [97] note: ‘Our
method is considered map-less. However, it possesses implicit
knowledge of the environment.” What is the nature of this
implicit knowledge? This question has sparked collaborations
between computer vision and psychology. On the one hand,
the Glennerster & Torr labs study the specific spatial represen-
tation in Zhu ef al. [97], and find ‘only a weak correlation
between distance in the embedding space and physical dis-
tance between observable locations’ [112]. By contrast,
SoftBank Robotics and Kevin O'Regan explore the possibility
that a Euclidean representation of space emerges organically
from reinforcement learning [113-116].
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Figure 3. DeepMind’s ‘neural scene representation and rendering’ [106]. First, the ‘Representation Network’ creates a low-dimensional ‘Scene Representation” based
on images from a number of different views (View 1 and View 2). Second, the ‘Generation Network’ uses this low-dimensional ‘Scene Representation’ to predict

what View 3 will be. © authors. (Online version in colour.)

(f) Deep learning
The Summer Vision Project (1966) [117] defined the mission
statement for computer vision as moving from 2D pixels —
3D surfaces — object recognition. But when deep neural
networks finally achieved human levels of performance
in object recognition, they did this by skipping the 3D sur-
faces step and going straight from 2D pixels — object
recognition [50]. Contrast this with the Summer Vision
Project (1966) [117] which assumed: ‘It will be impossible
to do this without considerable analysis of shape and
surface properties’.

Indeed, 3D vision appeared something of a sticking point
for neural networks. Henriques & Vedaldi [84] summarized
the position in 2018:

Despite these successes [in 2D images], ... several aspects of
image understanding remain difficult to approach directly
using deep distributed representations. One of them is reasoning
about 3D space and geometry...

So, can we teach deep neural networks to reason about 3D
space? Here we have to be careful to distinguish neural net-
works that reason about 3D space from neural networks
that merely act as if they do. Two general approaches have
emerged:

1. Geometric deep learning (Explicit 3D model): Neural
networks can be trained to do traditional 3D computer
vision. For instance, take a single 2D image as an input and
output an explicit 3D model of the object, either as voxels
[118-120], point clouds [121], or meshes [122,123]. But it’s
unclear whether these neural networks are actually reasoning
in 3D space (performing a spatial reconstruction of the scene)
or merely performing object recognition (searching for
a matching 3D template). In ‘What Do Single-view 3D
Reconstruction Networks Learn’ [124], three of the then
leading models [125-127] are tested, with the conclusion
that the ‘current state of the art in single-view object recon-
struction does not actually perform reconstruction but
image classification.” Indeed, for many the blurring of
3D reconstruction and object recognition is intentional
[118-120,128-130].

2. Neural scene representations (Implicit 3D model): A
different approach is to have neural networks learn 3D spatial
layout implicitly rather than explicitly. At our meeting, Ali
Eslami presented DeepMind’s landmark work on ‘neural
scene representation’ [106,131] (figure 3). Their network is pro-
vided with 2D images of a scene, but is never explicitly told to
build a 3D model. Instead, DeepMind reason that if their

network can take 2D images, encode a low-dimensional
description of the scene, and then use this low-dimensional
description to imagine what the scene would look like from a
new viewpoint, then the network must have implicitly learnt
the 3D layout of the scene. Contrast this with models that just
try to predict how 2D pixels on a screen will change with a
specific action, without trying to build an intermediate 3D
representation [132].

However, since the ‘scene representation’ (low-dimen-
sional description) is not interpretable by humans (it's not
an explicit 3D model), we have to do experiments to
indirectly reveal the nature of the representation. First,
Eslami et al. [106] show that the same representation can be
used to produce a top-down map of the scene, supporting
the idea of an implicit 3D representation. However, they
also note that changing the 2D input view of the scene
changes the representation, even though it shouldn’t if the
network were learning a truly view-invariant representation
of 3D space. Second, the tension between reconstruction
and recognition re-emerges, with Tung ef al. [73] arguing
that failure cases in Eslami et al. [106] demonstrate that
their ‘geometry-unaware models may be merely memorizing
views with small interpolation capabilities, as opposed to
learning to spatially reason.”

Both [73] and [133] use failure cases in Eslami et al. [106] to
argue that learning in explicit 3D coordinates is necessary for
true 3D understanding. Consequently, the current literature is
primarily focused on ‘meural fields’ [134], ‘neural scene
representations’ that learn in explicit 3D coordinates.

What's interesting is that these models are implicit in a
different sense. The scene representation isn’t an output (an
interpretable or non-interpretable model) that the network
produces, but the neural network itself. So you input a point
in 3D space, and the network outputs some property of that
point in 3D space, for instance occupancy [135], distance
[136], colour +distance [133] or colour + occupancy [137].
From this, the network implicitly learns a continuous (and
uninterpretable) mathematical formula that approximates
the scene.

Interest in these approaches exploded in 2020 with ‘Neural
Radiance Fields’ (NeRFs) [138] (figure 4), a collaboration
between Google, Berkeley and UC San Diego, which takes as
inputs the location of a point in 3D space and the direction
it's being viewed, and outputs the colour and density of the
point in 3D space. This means it can capture the reflective prop-
erties of the surfaces, producing photorealistic 3D renderings of
real scenes.
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Figure 4. ‘Neural Radiance Fields' (NeRFs) [138]. NeRFs generate images by
sampling points along a ray (5D input = position + direction) and the net-
work (Fg) outputs a colour and density value for each sampled point.
NeRF is ‘geometry aware” since its inputs are explicitly in 3D coordinates
(xy,2). © authors. (Online version in colour.)

However, two challenges remain:

First, like SLAM, ‘Neural Radiance Fields’ (NeRFs) are
purely geometric. They can’t use prior knowledge about the
common structure of scenes to make common sense infer-
ences. Instead, they rely purely on multi-view consistency,
which can be achieved without deep learning [139]. This
means the original NeRF paper required around 20-60
images per scene [138]. By contrast, recent deep learning
approaches such as ‘pixelNeRF’ [140] and ‘NeRF-VAE’ [141]
learn common image features across scenes, enabling new
scenes to be reconstructed with just 2-3 images.

Second, NeRFs are biologically implausible. They work
by giving a colour and density to each point in 3D space.
And, to render a new image, they have to ‘ray march’ (by
integrating the colours and densities of each point in 3D
space that lie along the ray corresponding to each pixel
(figure 4)). But this can’t be what the human brain is doing.
Instead, Vincent Sitzmann and Josh Tenenbaum [1] advance
their ‘light field network’ [142] as a more biologically plaus-
ible approach because it estimates the colour of each ray
(rather than each point along a ray), and builds on earlier
work in human vision that employs light-field concepts
(“plenoptic function’ [143], ‘optic array’ [144]).

2. Animal navigation

Studying animals with very different eyes and brains from
our own opens up new ways of thinking about vision and
navigation.

First, the different optics of animal eyes may lead to differ-
ent depth cues being prioritised. For instance, jumping spiders
[145,146], squid [147], and even the prehistoric trilobite [148]
have been shown to rely heavily on defocus blur [149], whilst
chameleons appear to rely on accommodation (the ability to
change the focus of the eye) [150].

Second, if animals have overlapping eyes, how they com-
pute depth from binocular disparity (the difference in the
images projected to the two eyes) may be very different
[151-153]. In this issue we contrast humans and insects.
Michael Morgan [154] explores the complexity of disparity
processing in humans. By contrast, Jenny Read [155] explores
how an animal with more limited computational capacities,
such as the praying mantis, could extract distance infor-
mation from disparity without the complexities of human
vision (such as matching the points in the two eyes or extract-
ing a depth map). Other studies of stereo vision in animals
include owls [156], toads [157], and cuttlefish [158].

Figure 5. A place cell’s firing field (left) and a grid cell’s grid of firing fields
(right) as a rat moves around an enclosure. Recorded by Elizabeth Marozzi.
From [172]. © authors. (Online version in colour.)

Third, how different animals navigate the 3D world may
be very different as well. Rodney Brooks explains how insects
inspired his rejection of 3D models in robotics: ‘Look at an
insect, it can fly around and navigate with just a hundred
thousand neurons. It can’t be doing this very complex sym-
bolic mathematical computations. There must be something
different going on. [159]. See also work by Barbara
Webb [160-163] as well as [164]. Recent work at the inter-
section of insect navigation, computation, and robotics
includes work on bees [165,166], flies (Fly-Net: [167]), and
ants [168-170].

(a) Cognitive maps

However, the key paradigm for animal navigation over the
past 120 years has been rodent navigation in mazes. The
hope is that it will teach us about mammal navigation in gen-
eral, and potentially provide important insights about how
humans navigate the world. Navigation had its ‘cognitive
revolution’ a decade before the rest of psychology when
Tolman [171] rejected behaviourism, arguing that the
relationship between the stimulus (maze) and the rat’s
response was mediated by the rat constructing a ‘cognitive
map’ of the maze. This insight appeared to be confirmed
by two findings that ultimately won the Nobel Prize in 2014.

First, in the early 1970s ‘place cells” were found in the hip-
pocampus. These cells fire when an animal is in a specific
place in the environment (figure 5) [173]. In The hippocampus
as a cognitive map [174,175], O’Keefe & Nadel argued that the
hippocampus functioned as Tolman’s cognitive map. Going
beyond Tolman, they argue that this cognitive map had
four properties. First, it is ‘Euclidean’ (‘the metric of the cog-
nitive map is Euclidean’ [174]). Second, it is ‘absolute’ (it
organizes or structures our experience: ‘the brain must
come equipped to impose a 3D Euclidean framework on
experience’ [175]). Third, it is ‘world-centred” or ‘allocentric’
(‘a non-centred stationary framework through which the
organism and its egocentric spaces move’ [174]. And fourth,
it is ‘innate’ (‘this framework is part of the innate machinery
of the organism’ [174]). Whether this ‘Euclidean’ ideal is
borne out by the subsequent data is the key concern of
this section.

Second, in the mid-2000s ‘grid cells” were found in the
entorhinal cortex. These cells fire when an animal crosses
one of the cell’s ‘firing fields”: locations in space arranged in
a hexagonal grid that cover the entire area (figure 5)
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Figure 6. Hypotheses being tested by [11] and [12]. On the left is the 2D hexagonal grid of grid cell firing fields we saw in figure 5. The remaining panels explore
potential 3D grid arrangements. Some sort of 3D ‘global order’ was originally hypothesised [193—197]. But Ginosar et al. [11] only find evidence of ‘local order’ in
bats, whilst the results in rats [12] are consistent with a ‘random arrangement’. From Ginosar et al. 2021 [11]. © authors. (Online version in colour.)

[176,177]. Each grid cell’s hexagonal grid has its own scale
(spacing between the firing fields), orientation (rotation of
the firing fields), and phase (grid shifted in a certain direc-
tion). When grid cells were found, it was immediately
hypothesized that their regular geometry could provide a
metric map of the environment [178]: a map that preserves
both the angles and distances between points, enabling
path integration (for distance estimation) and vector naviga-
tion (for shortcuts) [179]. As Grieves & Jeffery [180] note:
‘Given their mathematical and geometric properties it is
almost hard to believe these cells exist at all’.

(b) Distortions in place cells and grid cells

However, the spatial mappings of both place cells and grid cells
are subject to significant distortions [181,182], challenging the
notion that they provide a metric map of the environment.

First, grid cells are loosely anchored to the environment,
with a grid cell’s firing fields being stable across time. But
what this means is that if the environment is artificially
expanded or contracted, the grid cell’s firing fields will also
be expanded or contracted by roughly 50%, creating a dis-
torted geometry and metric to the space [183,184]. Similar
distortions are also seen in place cells [185].

Second, grid cell firing fields are distorted by the borders of
the environment [186], and there’s evidence that these distor-
tions impact spatial memory [187]. For instance, in a square
environment these distortions lead to an elliptical grid [188],
whilst in an irregular environment, like a trapezoid, the grid
is almost obliterated [189,190]. As Krupic et al. [189] conclude:

These results challenge the idea that the grid cells system can act

as a universal spatial metric for the cognitive map as grid pat-

terns change markedly between enclosures and even within the
same enclosure.
Again, similar distortions are also seen in place cells [190].

Third, Boccara et al. [191] found that rewards also distort
the regular grid arrangement of grid cell firing fields:

Many grid fields moved toward goal locations, leading to long-

lasting deformations of the entorhinal map.

Put simply, the entorhinal cortex (grid cell) cognitive map is
attracted to goals: ‘This demonstrates the influence of non-
geometrical cognitive factors on the grid structure itself.” By
contrast, Butler et al. [192] didn’t find the grid distortion
towards rewards that Boccara et al. [191] reported, although
they did find that rewards affected the arrangement of grid
cell firing fields in other ways (grids were translated and
rotated, more closely spaced, less elliptical), and also grid
cells fired more closer to rewards.

(c) Grid cells in 3D

Entering our meeting, the great unanswered question was
how grid cell firing fields are organized in 3D space? They
are regularly ordered on a 2D surface (e.g. the floor of an
enclosure) (figure 5), and a number of models suggested
that this regular 2D grid was likely a cross-section of a regular
3D grid in 3D space, where each firing field had a fixed angle
and distance from one another (‘global order’ in figure 6)
[193-197]. As Finkelstein et al. [197] noted in 2016: ‘An impor-
tant future test for this idea would be to record from 3-D grid
cells: Do they support the notion of a metric representation of
3-D space?’

It was our privilege to have Gily Ginosar and Kate Jeffery
present the two landmark studies on this very question at
our meeting; Ginosar on bats flying in 3D space [11], and Jeffery
on rats navigating a 3D maze [12]. The surprising answer from
both studies is that grid cell firing fields are not arranged in a
regular 3D grid, and so have no global 3D order [198]. In bats
the grid cell firing fields ‘exhibited only local order, creating a
locally ordered metric for space’ [11], with firing fields
having similar spacing but not similar angles, whilst in rats
firing fields were consistent with a random arrangement (no
similarity in spacing or angles) [12].

The common finding that grid cell firing fields do not
have a global 3D structure is especially striking given that
bats and rats diverged evolutionarily 65 million years ago.
And it challenges the assumption that grid cells provide a
general purpose metric for space:

...suggestions that grid cells are involved in geometric compu-
tations ... were motivated by the highly geometric, periodic
representation of 2D space by grid cells. Given our findings on
the absence of global periodicity in 3D, it seems less plausible
that 3D grid cells are involved in general purpose geometric com-
putations... (Ginosar et al. [11])

Indeed, Grieves et al. [12] go further, and suggest that the
structure of grid cell firing fields may reflect ‘affordances’
(potential for action). Explaining the difference between
their study on rats and Ginosar et al. [11]'s study on bats,
Grieves et al. [12] suggest that it is unlikely to arise from
differences between the two species, but instead is likely to
be ‘due to how movement patterns through the volumetric
spaces can affect grid self-organization.” For instance, bats
could fly in any direction, whilst rats were constrained by
the structure of the 3D maze they were navigating. As Kate
Jeffery [199] explains, on this account ‘the cognitive map is
not fixed and rigid, like an artificial map’, but instead pro-
vides ‘a more flexible spatial code in which the map is
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adapted to the movement possibilities of the space.” Kate Jeff-
ery [200] continues the discussion in this issue, considering
asymmetries and distortions in the firing fields of place
cells, grid cells and head-direction cells.

In another contribution to this volume, Ida Momennejad [201]
considers the convergence of neuroscience and machine learn-
ing (NeuroAl) (see also [202-205]). Nowhere has this
convergence been more apparent than in navigation research.
But how should we connect the neural representations (place
cells and grid cells) that we are discussing with the compu-
tational models of scene understanding (SLAM and
reinforcement learning) that we discussed in the computer
vision section?

1. SLAM and place cells: One of the earliest models
of SLAM (simultaneous localization and mapping) in
computer vision was Maja Matari¢’s ‘Navigating with a rat
brain: a neurobiologically inspired model for robot spatial
representation’ [206]. Inspired by hippocampal place cells,
Matari¢c aimed for a ‘topological’ rather than Euclidean
map of the environment. Like the London tube map, ‘topolo-
gical’ maps preserve the relationship between landmarks,
but not their metric distances or directions. In Mataric’s
case, her robot could follow the perimeter of its enclosure,
but its scene understanding was limited to which landmarks
it would encounter in which order. By contrast, later
models aimed to provide metric scene representations, with
metric information either the explicit input [207] or the
implicit output [208, p.107], [209]. Halfway between them,
RatSLAM [210-213] aimed for a fine grained topological
map that could facilitate shortcuts, but was less than fully
metric (‘the map does not follow a strict Cartesian
coherence’ [210]).

2. Reinforcement learning and grid cells: By the time
grid cells were discovered in 2004-5, the literature’s focus
had largely shifted to reinforcement learning (learning
navigation strategies, rather than hard-coding them; cf.
[214]). Reconciling reinforcement learning with place and
grid cells has been a key focus of the recent literature (for
review see [215]), with both Euclidean and non-Euclidean
approaches.

Euclidean: Banino ef al. [216] and [217] show that grid
cell-like patterns can spontaneously emerge when neural
networks are trained to perform path integration. Banino
et al. [216] incorporated this ‘grid network’ into a deep
reinforcement learning agent, and further showed that this
agent’s performance had (unlike a comparison agent) all the
hallmarks of a Euclidean spatial metric, such as distance
estimation and ‘vector navigation’ (shortcuts to remembered
locations [179,218,219]). They therefore conclude that grid
cells, in both biological systems and machines, ‘furnish
agents with a Euclidean spatial metric’.

...we argue that grid-like representations furnish agents with a

Euclidean geometric framework — paralleling the proposed com-

putational role in mammals as an early developing Kantian-like

spatial scaffold that serves to organize perceptual experience...

(From Banino et al. [216].)

Non-Euclidean: By contrast, at our meeting and in [220], Ida
Momennejad argues that it's the non-Euclidean aspects of
place and grid cells that need accounting for, such as the distor-
tions of grid cell firing fields by rewards, as well as the fact that

the majority of distance estimates in the hippocampus reflect
path distance (taking into account obstacles) rather than
direct Euclidean distance [221,222].

Reinforcement learning has been proposed as a way
of capturing these non-Euclidean properties of place and
grid cells. Gustafson & Daw [223] argue that an emphasis
on path rather than Euclidean distance reflects the fact that
place and grid cells ‘are well adapted to support reinforce-
ment learning’, since efficient reinforcement learning
requires that the inputs (place and grid cells) are already
articulated in terms of the goals of navigation:

Importantly, this exercise views the brain’s spatial codes less as a

representation for location per se, and instead [as] a value function

over state space — a mapping of location to value.

More recently, Stachenfeld et al. [224,225] argue that place cells
are the encoding of ‘successor representations’. In reinforce-
ment learning, ‘successor representations’ [226] provide a
model of next steps, affording the flexibility of considering
alternatives at each stage (versus model-free reinforcement
learning), while avoiding the computational intractability of
modelling the whole world (model-based reinforcement learn-
ing). On this account, place cells encode the likelihood that a
location will be visited given the animal’s current navigation
strategy, explaining why locations that have the same path dis-
tance to a reward can still have different responses from the
reward’s place cell.

Place cells in the hippocampus have traditionally been viewed as

encoding an animal’s current location. In contrast, the predictive

map theory views these cells as encoding the animal’s future

locations. (Stachenfeld et al. [225])

Momennejad et al. [227], Russek et al. [228] and Geerts
et al. [229] also suggest that successor representations
capture the semi-flexible navigation strategies of humans
and rodents.

Successor representations also promise to invert the
traditional relationship between grid cells and place cells.
Rather than grid cells being the neutral Euclidean
input into place cells [230], Stachenfeld et al. [224,225]
argue that grid cells are simply a higher-order abstraction
(principal component analysis) of the successor repre-
sentations captured in the place cell cognitive map (see
also [231,232]).

At our meeting we intentionally used ‘3D vision” in a broad
(computer vision) sense to include ‘vision for interaction
with the 3D world’ (e.g. navigation). But how should we
relate the cognitive mapping of space in the hippocampus
(place cells) and entorhinal cortex (grid cells) to the percep-
tual mapping of space in the visual cortex? Can navigation
affect vision?

At our meeting Aman Saleem discussed his and col-
leagues’ findings in [233] that the location of rewards alters
firing rates in the mouse primary visual cortex as well as
the hippocampus, suggesting an influence of cognitive
maps all the way down to the earliest retinal maps in the
cortex. Saleem et al. [233] therefore conclude that:

...visual responses in V1 [primary visual cortex] are controlled

by navigational signals, which are coherent with those encoded

in hippocampus ... The presence of such navigational signals as

early as a primary sensory area suggests that they permeate sen-
sory processing in the cortex.



Table 2. Models of human 3D vision.

Models of Human 3D Vision

No 3D Model
1. Direct Perception

2. Sensorimotor

3D Models that Recover Metric Scene Properties
3. Constraints (Non-Probabilistic)
4. Non-Linear Cue Combination (Strong Fusion)
5. Linear Cue Combination (Weak Fusion)
6. Inverse Graphics (Generative Models)

7. Deep Learning (Discriminative Models)

3D Models that Don’t Recover Metric Scene Properties
8.  Minimal Model
9. Fragmentation
10. Topology
11. Affine Geometry
12. Intrinsic Constraint
13. Perspective Space
14. Tripartite Model
15. Affordances / Embodiment

16. Task Dependence

The effect of self-motion on vision in mice and humans is
further explored by Aman Saleem and colleagues (Horrocks,
Mareschal & Saleem [234]) in this issue.

Like computer vision and animal navigation, competing
interpretations of human 3D vision alternate between adopting
no 3D model, a 3D model that recovers metric scene properties,
or a 3D model that doesn’t recover metric scene properties.
These different approaches are summarized in table 2.

1. Direct Perception: The most famous Mo model’ account
of human vision is James Gibson’s ‘direct perception’
[144,235,236], according to which we directly perceive the struc-
ture of the world through ‘invariants’ in the constantly changing
retinal image:

...perceiving is a registering of certain definite dimensions of

invariance in the stimulus flux... The invariants are invariants
of structure [236, p.249].

The theory of the extracting of invariants by a visual system takes
the place of theories of ‘constancy’ in perception, that is,

explanations of how an observer might perceive the true m

colour, size, shape, motion, and direction-from-here of objects

despite the wildly fluctuating sensory impressions on which

the perceptions are based. [236, p.311].

But Gibson'’s proposal has been given a variety of interpretations
by the contemporary literature. Wagner and colleagues [237]
suggest that ‘Gibson’s...doctrine of realism implies that
visual space should be strictly Euclidean...” Warren [238]
advances an ‘affine’ interpretation: humans do not in fact
recover Euclidean structure—rather, they reliably perceive quali-
tative shape (hills, dales, courses and ridges), which is specified
by the second-order differential structure of images.” Finally,
Tsao & Tsao [239] argue for a ‘topological” approach.

2. Sensorimotor: Sensorimotor (pixel-to-action) accounts
of human vision have also been influential [240]. We saw sen-
sorimotor (pixel-to-action) accounts previously in computer
vision with Sergey Levine’s work on reinforcement learning,.
In this issue Andrew Glennerster [241] argues that model-free
reinforcement learning (without a 3D model) is a good model
for human 3D vision, and his paper aims to show ‘how a
policy network could support the same behaviour as a
system that uses a 3D reconstruction of the scene.’

3. Constraints (Non-Probabilistic): The dominant approach to
human and computer vision in the 1970s-80s was specifying
the physical constraints on how the retinal image was
produced, so that the inverse optics question (what 3D scene
produced this 2D image?) had a unique solution: ‘the resulting
operation is defined uniquely by constraints it has to satisfy’
(Marr [17, p.23]). However, in the late 1980s and early 1990s,
it became apparent that simply specifying constraints would
not suffice, although some argue that we simply have too lim-
ited a notion of these constraints [242,243].

4-6 (Below). Bayesian approaches: Instead, the visual
system would have to decide which of the remaining
potential percepts were more or less likely, framing perception
as a probabilistic process: “The principle aspect of this approach
is the probabilistic representation of constraints.” (Clark &
Yuille [244, p.218]). Bayesian models have been the dominant
approach to human 3D vision for the past 25 years [245-248],
and can be articulated in one of three ways:

4. Linear cue combination (weak fusion): The leading
approach to human 3D vision [246,249] treats 3D vision
simply as a problem of eradicating of sensory noise. It breaks
3D vision down into a series of ‘cues’ (e.g. stereo vision,
motion parallax, structure from motion, perspective, shading),
and assumes each cue gives an accurate (undistorted, unbiased)
but imprecise (vague, noisy) depth estimate. It then reduces the
effect of sensory noise by taking a weighted average of the indi-
vidual cues: the less noisy a cue is, the more weight its estimate is
given. Empirical support can be found in [250-261].

However, there are two key concerns with this approach.
First, it assumes each cue gives an unbiased (undistorted)
depth estimate. But we will see below that this isn’t the case.
And Domini & Caudek [262] argue that if ‘the estimates of
the world properties are biased, ... it is meaningless to maxi-
mize reliability’ (cf. [260]). Second, a significant number
of studies are inconsistent with linear cue combination’s pre-
diction that the less noisy a cue is, the more weight its
estimate is given [263-268] (see also [269] and [270]'s related
methodological concerns).
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Figure 7. Inverse graphics network from [281]. How do we recognize someone as ‘John’? Rather than train a neural network to directly identify people
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(3D scene — identity). © authors. (Online version in colour.)

5. Nonlinear cue combination (strong fusion): By contrast,
nonlinear cue combination assumes some degree of bias in
the individual cues, and is really about ‘the constraints
needed to solve sensory information processing tasks,
rather than just a method for reducing the effects of sensor
noise.” (Clark & Yuille [244, p.222]). The focus is still on
metric scene recovery, so that the cue combination rules
‘inverting the world-image mapping are sufficient and,
most importantly, valid.” (Clark & Yuille [244, p.222]). Non-
linear cue combination was originally more popular in the
early 1990s, and ranges from the addition (rather than aver-
aging) of cues [271,272], through to highly sophisticated
interdependencies between cues [244,273].

6. Inverse graphics (generative models): Other, more recent,
Bayesian accounts have done away with ‘cues’ altogether, and
ask: ‘what arrangement of lights, surfaces, and materials
would give rise to this specific 2D image?” [274-280]. This
‘inverse graphics’ approach relies on ‘analysis by synthesis’:
simulating 2D images of different 3D scenes to see under
which 3D scene configuration the actual 2D image is most
likely. Yildirim et al. [281] (figure 7) divide this into two
stages, where a ‘synthesis’ model (‘generative model’, on the
right in figure 7) simulates 2D images of 3D scenes, which are
then used to train a separate ‘analysis model’ (‘inverse graphics
network’, on the left in figure 7).

7. Deep learning (discriminative models): In contrast to
‘inverse optics” models (3-6 in table 2), deep learning models
can be thought of as reflecting a ‘statistical appearance
model’ [282-284]: ‘rather than learning the mappings between
image quantities (cues) and physical quantities, we learn to
represent the dimensions of variations within and among natu-
ral images, which in turn arise from the systematic effects that
distal properties have on the image.” (Fleming & Storrs [284]).
See also the discussion of the ‘generative’ versus ‘discrimina-
tive’ approaches in [285]. Strictly speaking, this approach
aims to capture a compact representation of the variables that
determine image structure (latent variables), rather than a rep-
resentation of physical scene structure itself. However, as
Fleming & Storrs [284] suggest, one may lead to the other:
‘we may end up with internal representations that are well
suited for describing the distal scene factors that have created
those images.’

(c) Failures of metric scene reconstruction

Models 3-7 in table 2 provide different ‘normative’ or ‘ideal
observer’ models [286] of how 3D vision ‘ought’ to act if it
were trying to estimate the metric properties of the scene.
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Figure 8. Schematic of the task in [287]. Participants set the depth of the
cylinder so that its depth appeared to be proportional to its height (the
dotted line). At near viewing distances (53.5 cm) the cylinder they produced
was compressed in depth, while at far viewing distances (214 cm) the cylin-
der they produced was elongated in depth.

However, there’s two ways in which human 3D vision regularly
fails to live up to this standard of metric scene reconstruction.

1. Constancy (distortions): First, our depth perception is
subject to considerable distortions. One vivid illustration is
stereo vision (depth from disparity). In Johnston [287], par-
ticipants viewed a cylinder whose depth was defined by
stereo vision (disparity) alone. Their task was simple. Set
the cylinder’s depth so it was proportional to its height (the
dotted line in figure 8). But the cylinder produced varied
drastically in depth with the viewing distance. At 53.5 cm
the cylinder they produced was compressed in depth,
suggesting that depth from disparity is accentuated at close
distances, while the cylinder they produced at 214 cm was
elongated in depth, suggesting that depth from disparity is
compressed at far distances. And these 3D shape distortions
persist even in the presence of other cues [288,289].

Similarly, we seem to experience less depth when we look
at the world with one eye closed, but there’s little justification
for why this should be the case if vision is estimating metric
scene properties using the available information [290,291,
pp-13-16].

Domini & Caudek [262] rightly consider ‘the large failures
of constancy of 3D metric structure over changes in viewing
distance and/or orientation to be an important empirical find-
ing that needs to be addressed by any theory’. First, metric cue
integration accounts try to suggest that ‘failures to observe
depth constancy may be due to the influence of unmodelled
flatness cues such as blur and accommodation’ [249]. But this
doesn’t seem to fully meet the challenge. Second, others try
to suggest that these distortions merely affect our visual



experience of depth (qualia), but not our metric scene estimates
[291, pp.13-16]. But our visual experience of depth is exactly
what a theory of 3D vision should explain. Third, some try to
suggest that these distortions are a way of the visual system
conveying how reliable our metric scene estimates are [292].
But this is not supported by the data [293].

2. Consistency (conflicts): Second, our judgements about
visual space are often marked by pervasive inconsistencies.
Di Luca et al. [294] find inconsistencies between estimates
of depth, slant and curvature. Koenderink [295] finds incon-
sistencies between global and local depth judgements.
Loomis et al. [296-298] find inconsistencies between absolute
distance judgements and relative depth judgements.
Koenderink et al. [299] find conflicting judgements of
fronto-parallels. And Svarverud et al. [300] find visual space
can be ‘broken’, with no consistent ordering between objects.
Illusions also provide insights into inconsistency: Gillam &
Chambers [301] find that position and size are inconsistent
in the Miiller-Lyer illusion, while Smeets et al. [302] find
that the perceived centre of the Judd and Poggendorff illu-
sions depends on the order in which the points are
constructed. There’s also a debate over whether we experi-
ence conflicting shape percepts when we see a rotated coin
both as a circle and as an ellipse (Morales et al. [303-305] vs
Linton [306] vs Burge & Burge [307]).

(d) 3D Models that dont recover metric scene
properties

On nmormative’ or ‘ideal observer’ models, these failures of
metric scene reconstruction reflect a failure of evolution to
live up to our rational standards of what vision ‘ought’ to
be doing (Landy et al. [249]):

Of course, there remains the possibility that we have character-

ized the sensory information and the task correctly, but the

nervous system simply has not developed the mechanisms for
performing optimally (Landy et al. [249], emphasis added)
By contrast, for models 8-16 in table 2, these failures of metric
scene reconstruction suggest that we haven't specified the task
correctly. Instead, these failures give us an important insight
into the very different task that the visual system has set itself.

So a number of authors, including three of the present
authors (Linton, Vishwanath, Domini), see the failures of
metric scene reconstruction as a reason to question whether
human 3D vision is trying to extract the metric 3D properties
of the environment in the first place. Vishwanath [308] argues
that 3D vision is ‘the presentation of causally efficacious visual
information rather than an inference to objective external reality.’
Domini & Caudek [262] argue that ‘the goal of the visual system
is to guarantee a successful interaction between the observer
and the environment without recovering metric 3D (3D) infor-
mation’. And Linton [309], p. 74 argues that 3D vision ‘operates
purely at the level of phenomenal geometry, and makes no claims
about the physical geometry of the physical world’.

But if human 3D vision isn’t trying to estimate the metric
properties of the environment, what else could it be doing?
The following models provide nine distinct alternatives.

8. Minimal model: In this issue, Paul Linton [310] argues
for a ‘minimal model’ of 3D vision.

First, in order to answer the challenge of ‘inconstancy’,
Linton decouples stereo vision from estimating scene proper-
ties such as distance and shape, rejecting ‘triangulation’-
based accounts of stereo vision that date back to Kepler [311]

and Descartes [312]. Instead, on his account, stereo depth is
simply a solution to a different (and entirely internal) problem,
the eradication of rivalry between the two retinal images.
Indeed, rather than the resulting ‘inconstancy’ being a problem
to be solved, Linton argues that it's primarily through this
‘inconstancy’ that we judge size and distance.

Second, in order to answer the challenge of ‘inconsis-
tency’, Linton argues that stereo vision and non-stereo cues
(and therefore the inconsistencies between stereo vision and
non-stereo cues) operate at different levels, with stereo
vision affecting our perception (visual experience) of depth,
whilst non-stereo cues (such as motion, perspective and shad-
ing) merely affect our cognition (judgements) of depth.

9-13 (Below). Qualitative models of scene geometry: The fol-
lowing five approaches suggest that human 3D vision captures
scene geometry in a qualitative (fragmentary and/or distorted)
sense, but differ as to the exact way in which scene geometry is
fragmented and / or distorted. Often this takes the form of asking
how loose (or permissive) the mathematical transformation
from physical space to visual space is? From more to less
permissive: Topology — Projective Geometry (Perspective) —
Affine Geometry — Euclidean Geometry.

9. Fragmentation: A common response to conflicting
depth estimates of the same 3D scene is to say that humans
are only capable of local, and often inconsistent, depth judge-
ments. For instance, Koenderink [295] suggests:

Observers are quite content to live with any number of mutually
inconsistent fragmentary representations since they can blindly
depend on the consistency of the physical world.

And illusions lead [301,313] and [302] to reach a similar
conclusion. Asking ‘Does visual space exist?’, Smeets et al.
[302] conclude:

It might be more fruitful to abandon the concept of a geometri-
cally consistent perceptual (or motor) space altogether. Instead,
one can regard perception as a set of independent local estimates
of various spatial attributes.

However, Koenderink et al. [314] raise the possibility that while
depth judgements are fragmentary, they're still consistent,
arguing that you can build up a coherent global map from
observers’ local depth judgements. But Koenderink et al. [314]
argue that observers are unable to build up a coherent global
map for themselves since they experience visual space neither
globally nor locally, but as a patchwork of ‘hills” and ‘“troughs”:

Possibly the data structure itself is not a whole, but rather a quilt of
locally coherent, but mutually only weakly synchronized patches.

10. Topology: Nowhere has the shift in thinking about human
3D vision from a quantitative ‘inverse optics” approach to a
qualitative approach been more apparent than in ‘shape-
from-shading’. Initial research in the 1980s tied human
vision closely to computer vision [315]. Now leading figures
from that tradition seek to sharply distinguish human vision
from ‘inverse optics’. So, Jan Koenderink, Andrea van Doorn,
and colleagues suggest [316]:

It may well be the case that the whole notion of shape from shad-
ing is spurious..., and that biological vision research should
leave it to computer vision engineers.

Similarly, Steven Zucker, in ‘On qualitative shape inferences:
a journey from geometry to topology’ (2020) [317] argues:
...we argue that the perception of shape is qualitative, not quan-

titative, a point that has been well understood in visual
psychophysics for decades. This suggests that we should not be
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seeking to solve the shape-from-shading equations, but should
look for qualitative (that is, topological) solutions instead.

And both Koenderink ef al. and Zucker point to the considerable
differences not just between observers’ 3D estimates and reality,
but also between observers themselves.

For Kunsberg & Zucker [318,319], this qualitative
approach is best expressed through ‘topology’, the study of
what remains true about a surface after it has been distorted
in an arbitrary way. For instance, if we think about deforming
a mesh, neighbouring points on the mesh before deformation
will still be neighbouring points afterwards. For Zucker, the
topology of the surface that emerges in shape from shading
is anchored in a few places by ‘critical contours’ (such as
peaks and troughs), which form ‘a kind of scaffold on
which the shape can be readily built.” But beyond that, each
person’s interpretation of the surface is largely subjective
and unconstrained.

11. Affine geometry: By contrast, Koenderink et al. [320]
suggest observers can recover something more than topology,
but still less than Euclidean geometry, noting that observers
are ‘surprisingly close to the physical layout modulo a gauge
transformation, with the deviations being mainly an isotropic
rotation and scaling.” This is ‘affine geometry’, which captures
the Euclidean geometry subject to a homogeneous stretch or
shear. Affine geometry is more structured than topology, pre-
serving the relationship between parallel lines, but not the
distance or angles between points.

As we saw earlier in computer vision, the information from
both stereo vision (disparity) and structure from motion also
lends itself to analysis at the affine level. But evidence of whether
humans can recover affine structure from stereo vision or
motion is equivocal. Domini et al. [321] find that structure
from motion is not affine, while [322,323] find that structure
from motion is affine but stereo vision is not. Todd et al. [324]
did however find that whilst the mapping from physical space
to visual space is not affine for stereo vision, stereo vision is at
least internally consistent in an affine sense (“perceptions had
an internally consistent affine structure’), since line bisections
in different directions were consistent with one another.

More broadly, Wagner et al. [325] suggest that size and dis-
tance judgements are best thought of as affine transformations
of physical space, and Glennerster et al. [326] that pointing
errors in virtual spaces reflect affine distortions. Affine geometry
also played a key role in early versions of Domini & Caudek’s
‘intrinsic constraint’ cue combination model [262,327]: ‘Our
main claim ... is that the brain extracts from retinal signals the
local affine information of environmental objects.”

12. Intrinsic constraint: In this issue Fulvio Domini [328]
presents a new version of the ‘intrinsic constraint’ model. On
this new account, perceived depth is still linearly related to
(and therefore still an affine transformation of) physical
depth. But what this new ‘intrinsic constraint’ model is trying
to do is not estimate affine depth per se, but simply maximize
the 3D signal in the image (while minimizing nuisance vari-
ables, such as viewing conditions and materials). To achieve
this, the ‘intrinsic constraint’ model uses a ‘vector sum’ that
adds (rather than averages) the depth estimates from the indi-
vidual cues, so that the more cues you have (and the more 3D
signal is in the image), the more depth you see. While this
model aims to achieve a more stable representation across view-
ing conditions, it also explains why adding or removing cues
can lead to inconsistent depth estimates.

13. Perspective space: Train tracks appear to converge as
they recede in distance, suggesting that instead of an affine
transform (which preserves parallel lines), visual space is a
perspective projection of Euclidean space (with visual space
converging to a vanishing point) [329-333]. Wagner et al.
[237] find that human judgements correspond better to a per-
spective projection than an affine transform. But what’s so
surprising about the perspective space account is just how
shallow visual space appears to be. Erkelens [332] asked par-
ticipants to match the perceived convergence of railway lines
using compasses, and the vanishing point inferred was no
further than 6 m, suggesting that visual space is compressed
in depth, like a bas relief, to fit within 0-6 m of physical
space.

14. Tripartite model: Perhaps we should think of visual
spaces, rather than one single visual space. In this issue
Dhanraj Vishwanath [334] argues for a ‘tripartite model’ of
visual space, according to which there are three ‘distinct
and dissociated encodings’ for (a) 3D shape, (b) ‘egocentric’
(observer to object) distances, and (c) ‘exocentric” (object to
object) distances. However, often viewing conditions will
only support one or two of these encodings, explaining the
‘inconsistencies’ reported in the literature above.

Vishwanath argues for these three distinct encodings based
on their different experiential ‘qualities’, in contrast to standard
models that ‘typically do not make a fundamental distinction
among these different modes of spatial experience’. For
instance, the dual nature of pictures reflects the fact that pictor-
ial space supports 3D shape perception but not ‘egocentric’ and
“exocentric” distance perception, whilst the vivid separation in
depth typically associated with stereo vision (depth from
disparity) reflects the ‘exocentric’ distance encoding.

15. Affordances/Embodiment: The past couple of decades
have seen the rise of a ‘pragmatic turn’ in cognitive science,
according to which ‘cognition should not be understood as pro-
viding models of the world, but as subserving action’ [335-337].
This has led to increased interest in the visual processing of
‘affordances’ (potential for action) [236,338]. We have already
encountered one such affordance (traversability) in our discus-
sions of robot navigation [104] and rats navigating 3D mazes
[12]. And Sarah Creem-Regehr’s [339] talk at our meeting
focused on affordances in virtual and augmented reality.

But what are the implications for 3D vision? Do affordances
replace our perception of 3D surfaces, as Sergey Levine [340]
suggests they ought to for robotics? In some passages Gibson
suggests so (‘What animals need to perceive is not layout as
such but the affordances of the layout’, Gibson [341, pp.157-
158]), but contemporary Gibsonians reject this (Warren [342]).

Instead, the closest we come to this view are ‘embodied’
theories of perception [343,344] that claim that ‘explicit aware-
ness of spatial layout varies not only with relevant optical and
ocular-motor variables but also as a function of the costs associ-
ated with performing intended actions.” The classic claim is
that hills are perceived as steeper when you wear a heavy back-
pack or if you are elderly ([345]; see also [346-348]). However,
this theory has been criticized from both experimental [349]
and theoretical [350,351] perspectives, with the suggestion
being that the effect of the rucksack is a consequence of partici-
pants’ trying to ‘act as they should’ in the experiment. For the
latest iteration of this debate see [352-355].

16. Task dependence: Still, perhaps there is something to
the idea of tying scene estimates to the task being performed.
Indeed, the suggestion that 3D vision is task-dependent is



one of the most common responses to the ‘inconsistencies” in
3D vision outlined above. For example, Glennerster ef al. [356]
found that depth constancy for stereo vision (disparity)
depends on the nature of the task, and the same was found
for tasks involving both stereo vision and motion parallax
[357]. Norman et al. [358] tested the relationship between
objects in action space and found that: “‘Whether a Euclidean
or affine compressed visual space was obtained depended
not upon any characteristic of the visual stimuli, but upon
the specific task employed by the observer.” Wagner &
Gambino [325] ‘embrace the idea that visual space is a
living, malleable entity whose geometry changes with
experimental conditions and shifts in observer attitude.
Finally, Warren [338] concludes that ‘there is no consistent
visual space. Rather, perception by an active agent is task-
specific and information-driven, such that judgements
of different properties of layout are based on different
optical variables.’

But task dependence doesn’t necessarily mean giving up
on the concept of visual space. Mel Goodale and David
Milner have long argued that task-dependence implies two
models of visual space, one for conscious visual perception
and the other for action [359-361]. A key claim of this account
is that vision for perception is distorted by illusions, whilst
vision for action is not. But an alternative explanation for
this effect is that eye movements are different in perception
and action, explaining the different effect of illusions. So, in
this issue, to rule this out, Whitwell et al. [362] show that
the effect still persists even when there are no significant
differences between eye movements in perception and action.

Virtual reality enables us to study perception in a more eco-
logically valid way that is closer to the real world than
conventional displays. But it also enables us to test vision
in a more ecologically invalid way by decoupling the visual
and physical consequences of our actions. This technique is
used in two papers in this issue. First, Horrocks, Mareschal, &
Saleem review [363] how virtual reality is being used to study
the effects of locomotion on optic flow in humans and mice.
Second, Maselli, Ofek, Cohn, Hinckley & Gonzalez-Franco
[364] test how participants respond to displacing the location
of a virtual (seen) hand relative to their physical (unseen)
hand as they reach for an object, and find more efficient cor-
rections towards the body midline.

However, we are still in the process of understanding the
limitations of virtual reality. At our meeting, Douglas
Lanman outlined the progress that his Display Systems
Research team at Meta (Facebook) Reality Labs is making
towards the ‘visual Turing test: creating a display indistin-
guishable from reality [365,366]. But he also cautioned
against equating virtual reality with real-world vision given
the optical distortions that exist in virtual reality displays
[367-369]. The concern that virtual reality doesn’t reflect
real-world perception is also shared by two papers in this
issue. First, Creem-Regehr, Stefanucci & Bodenheimer [339]
show how distances are underestimated in virtual reality,
and the strategies that can be used to improve distance per-
ception. Second, Rzepka, Hussey, Maltz, Babin, Wilcox &
Culham [370] find that participants rely far more on the fam-
iliar size of objects when making distance judgements in
virtual reality than they do in the real world.

The final two contributions to this issue explore how visual
impairments affect our perception of space, and the ability
of the human brain to adapt to these impairments.

First, 8% of the general population appear to have no stereo
vision (they are unable to extract depth from disparity)
[371,372]. Poor stereo vision is known to affect fine motor
skills (such as threading a bead on wire) [373], reaching and
grasping [374], and walking across uneven terrain [375]. Sue
Barry [376] (‘Stereo Sue’ in Oliver Sacks’ The Mind’s Eye
[377]) and Bruce Bridgeman [378] provide vivid personal
descriptions of how recovering stereo vision transformed
their visual experience:

Gaining stereovision, I thought, would augment my perception

of depth but not change it in any fundamental way. So, I was

completely unprepared for my new appreciation of space...

(Barry [376], p.111)

Extrapolated to the world population, stereo vision deficits
affect over half a billion people, so a key concern is better
understanding what causes stereo vision deficits, how they
affect our interactions with the world, and how they might
be treated. In this issue Niechwiej-Szwedo, Colpa & Wong
[379] review the effect that amblyopia (lazy eye) has on the
development of reaching and grasping, documenting how
young children lag behind their peers, and older children
develop compensatory strategies.

Second, recovery from early blindness can cause very
selective visual deficits. As Ione Fine and colleagues’ found
with Mike May when he recovered his sight, his perception
of visual motion was relatively ‘normal’, whilst his percep-
tion of 3D form remained permanently impaired [380,381].
In this issue, Fine & Park explain this by pointing to the
fact that early blind individuals use auditory motion for
many of the tasks we would typically attribute to 3D vision
(e.g. navigating a busy interaction using noise from passing
cars). But how is this possible? Fine & Park [382] find that
this ability relies on the auditory system adopting brain
area hMT+, that's associated with visual motion processing
in normal observers, but it changes the nature of the
motion processing that hMT+ engages in to accommodate
the low spatial resolution of auditory information.

As we noted at the beginning, the purpose of our meeting
was to capitalize on a brief moment when computer vision,
animal navigation, and human vision are all pausing and
asking what the most appropriate representation for 3D
vision and action really is? The argument of this article,
and indeed of this issue, is that our understanding of how
brains and computers do 3D vision is at a crossroads. As
Andrew Glennerster [383], one of the contributors to this
issue, notes, ‘we’re moving away from the idea that what
the brain does is something complicated, which is easy for
us to understand’, namely a metric 3D map of the environ-
ment, ‘toward the view that the brain does something
which is easy for it to do, but really quite hard for us to
understand’. This issue presents sixteen perspectives on
what that ‘something’ might be. But it's meant to be the
beginning of a conversation, not the end. And, at a time
when neuroscience, and science in general, is thought to be



in the midst of a ‘theory crisis’?, our hope is to have put these
theoretical questions back at the centre of 3D vision.

This article has no additional data.
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