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Abstract

This project uses Artificial Neural Networks (ANNs) to develop a prototype 

computer based Operator’s Advisory System for the early detection and diagnosis 

of plant transients.

Three transient monitors were developed two of which are ANN based. Each of the 

independently developed ANN classifiers was then integrated into a multi-level 

operator advisory system OAS. The first level of diagnosis provides information to 

the plant operator of the presence of a major transient. Should a transient be 

detected a corresponding module provides more detailed information on the size of 

the transient. To validate the diagnosis two methods are used in the OAS: User 

confirmation and a comparison with simulated plant data. The diagnosis is 

reproduced in an independently developed PWR simulator and the plant 

parameters compared. If in agreement, a high level of confidence was attached to 

the diagnoses, a poor match would suggest that the transient is not one that the 

diagnostic module had been trained on. The OAS was evaluated on a wide range of 

scenarios. The results of the tests were encouraging with the OAS successfully 

identifying a range of standard transients. However, tests on the robustness of the 

OAS proved inconclusive.

The project concludes with suggestions for future work.
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Chapter 1

introduction

1.1 Background to Thesis

Many natural and increasingly artificial systems are characterised by complex non-

linear behaviour. Examples of such systems include the weather, the stock market 

and power generation. Each of these systems may be considered to be collections 

of simple units which evolve as a result of interaction, both between the 

components, and the components and their environment. Such complex behaviour 

manifests itself as chaotic, seemingly unpredictable dynamics. A detailed 

understanding of any one of the components, does not necessarily prescribe 

knowledge of the behaviour of the full system.

As a result, researchers in a large number of unrelated areas (including, cognitive 

science, computer science, mathematics, control systems, biology, neuroscience, 

engineering, etc.) have begun to address, through a combination of basic, applied, 

theoretical and experimental research, the analysis and modelling of complex 

systems. One such method that has been successfully applied to the modelling of 

complex non-linear systems in recent years are Artificial Neural Networks 

(ANNs), which are a simplified attempt to mimic the brains ability to recognise 

complex patterns.



The work reported in this document investigates the application of ANNs to the 

monitoring of a complex non-linear system (Weller 1997) as typified by a Nuclear 

Power Plant (NPP), although the methods developed are applicable to other 

domains. The diversity of the control system required for its safe and efficient 

operation is reflected in the broad range of temporal observed behaviour in the 

operation of the plant. Over the past few decades there have been major advances 

in the general understanding of the mechanisms governing the behaviour of the 

system and to the early detection and management of plant transients.

Plant operators have an important role for the effective functioning of a NPP A 

typical control room in a NPP is a data rich environment. The types of data 

encountered in a control room include temperature, pressure, How rates and status 

of valves with the data being presented to the control room operator in the form of 

analogue and digital readouts. Some pre-processing of the data before presentation 

to the operator may take place, and is often in the form of alarms, though the 

amount of pre-processing is limited.

Increasingly many of the analogue instrumentation and control systems are being 

replaced with digital alternatives which have benefits of greater stability, higher 

data and storage handling capabilities; and an improved performance in accuracy, 

reliability and computational capabilities (NRC SECY-01-0155).

However the sheer weight of information presented to the plant operator can affect 

their decision making process. The human error that can occur during the decision 

making process when analysing plant data can be exaggerated by factors such as 

stress and fatigue (Swain, 1983). The result of a failure in the correct diagnosis of a 

fault can lead to poor management of the fault. At best, this can result in a drop in 

the efficiency of the NPP as typified by small leaks in a PWR (Hessel 1999) or it 

may lead to more catastrophic failure of a system within the NPP (Kemeny 1979).

This richness in the amount of information available to the plant operator together 

with increase in automation technology requires progressively more complex 

decisions to manage abnormal plant behaviour, for example during the start up of a 

reactor, or a transition change between operating states. The decision-making
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process could be improved if the operator’s skill and experience were further 

supplemented by a robust decision support system.

The work reported in this thesis was performed during a four year project. The 

program is part of an ongoing collaboration between the Centre for Health 

Informatics, City University, London and the Nuclear Department HMS Sultan, 

Gosport.

1.2 Aims and objectives

The aim of this study was to investigate the use of ANNs in the intelligent 

monitoring of small transients in a complex system as typified by a nuclear reactor, 

and to develop a proposal by Weller (1997) of an Operators Advisory System 

(OAS) based on ANNs.

Specifically the objectives of this thesis are to:

• Present an overview of the current understanding of relevant research

• To extend and validate an existing model of transient classification in the 

primary' circuit of a Pressurised Water Reactor (PWR).

• To investigate the use of ANNs in the monitoring of small transients in a 

PWR

• Develop a prototype ANN based OAS
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1.3 Thesis Structure

The remainder of this thesis is described by chapter as follows:

Chapter 2 provides an overview of relevant research in the experimental 

applications and issues in the use of soft computing methods in the monitoring of

transients in Nuclear Power Plants, with an emphasis in the use of ANNs.

Chapter 3 describes the basis of the problem reported on in this thesis.

Chapter 4 reports on the development of a diagnostic ANN based module for the 

early identification of a major fault in the primary circuit of a PWR, including tests 

on its robustness.

Chapter 5 investigates the use of techniques used in chapter 4 for the analysis of 

small transients as typified by a small loss of coolant from the primary circuit of a

PWR.

Chapter 6 considers the classification of a small leak from the secondary circuit of 

a PWR. Two approaches are investigated. The first method looks at the use of data 

obtained from a simulation of small steam leaks to train an ANN to classify the 

leak size. The second method investigates the use of acoustic data obtained by real 

world measurements of a steam raising plant to supplement the data obtained by 

simulation.

Chapter 7 reports on the integration of work described in chapters 4-6, and the 

development of a prototype OAS. An iterative approach is used in the testing and 

refining of the system.

Chapter 8 presents the conclusions, meeting of the objectives, and the 

recommendation for future work.
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Chapter 2

Literature Review

2.1 Introduction

This chapter outlines research in the application of Artificial Neural Networks 

(ANNs) in the nuclear power industry, especially those associated with the 

classification of fault transients. Other soft computing techniques are also included 

in this review for completeness. Finally, a discussion on the research and the 

implementation of soft computing techniques in the nuclear industry in particular 

the use of ANNs is reported on.

ANNs are computational models which, from a numerical modelling point of view, 

are a general framework for representing non-linear mappings between multi-

dimensional spaces in which the form of the mapping is governed by a number of 

adjustable parameters. By modifying of the adjustable parameters the ANN model 

‘learns’ or identifies the mapping.

The growth of ANNs also has parallels with other non-linear modelling techniques 

for example, Fuzzy Logic and evolutionary computation. In 1992, Lotfi Zadeh 

coined the term soft computing which combined the three techniques, and for the 

first time in 1994, the IEEE had a combined meeting in the three areas of Artificial 

Neural Networks, Genetic Algorithms and Fuzzy Logic in Orlando, USA.
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Amongst the many Artificial Neural Network (ANN) methodologies described in 

nuclear power research literature, the most widely used is the multi-layer feed-

forward (back propagation) ANN that is capable of representing non-linear 

functional mappings between inputs and outputs. These networks can be trained 

with a powerful and computationally efficient gradient descent method called the 

error back-propagation. An introduction to ANNs can be found in Appendix A.

2.2 Review of Artificial Neural Network Applications in the
Nuclear Power Plants

2.2.1 introduction

Many complex processes as typified by a Nuclear Power Plant (NPP) are difficult 

to model mathematically as these processes may be; -

• To complex to understand or represent simply.

• The models are difficult or too expensive to evaluate.

• The process is subject to large unpredictable environmental disturbances.

• The processes may be distributed, non linear, incomplete, stochastic and 

temporal therefore not amenable to linear time and variant modelling.”

(Harris, 1994)

A typical control room in a nuclear power plant is a data rich environment (Swain 

1983). The type of data encountered in a control room includes raw data obtained 

from transducers found in different systems in and around the NPP. Examples of 

the measurements made include temperatures, pressure, valve status, flow rates and 

radio chemical measurements.

The control room of a NPP often contains many gauges and dials displaying the 

status of the plant and is presented to the control room operator in the fonn of 

analogue and digital readouts. In some cases, the data may be digitally pre-
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processed prior to presentation to the control room operator and is often in the form 

of alarms or trending, though the amount of pre-processing is limited. The 

introduction of digital technology for instrumentation and control is now vital to 

the safe operation of many plant processes; however an examination of the 

Licensee Event Reports (LERS) database by the US office of Nuclear Regulatory 

Research found that between 1994 and 1999 approximately 8% of all LERS 

contained digital, instrumentation and control failures. (Brill 2000).

The large amount of data combined with differing levels of information presented 

to the operator can affect their decision making process. The human error in this 

process can be exaggerated by factors such as stress and fatigue (Swain, 1983). The 

operator often associates a change in state of the reactor plant with an associated 

pattern change. However, subtle changes in the pattern may well go unnoticed. In 

the case of a nuclear reactor, if a problem does arise, the plant can go from a 

normal operating/transient state to a severe accident in a matter of minutes, as was 

the case in the Chernobyl (Mosey, 1990) and the Three Mile Island (Kemeny, 

1979) incidents.

The power plant at Three Mile Island was of a PWR type and was operating at 

98% full power when the loss of primary coolant led to an uncovering of the core 

resulting in an increase in radiation levels within the building. Serious core damage 

had been sustained during the accident; however there was only a minor release of 

radioactive isotope into the environment. The immediate cause of the accident was 

a combination of human and physical errors. Blocked valves and the feed water 

system were left closed after routine maintenance combined with the failure of 

valves to close in the condensate polisher and pressuriser. The plant operators also 

failed to correctly diagnose the fault condition in the plant. The primary method for 

diagnosing the stuck valve was inadequate. In addition to this, the numerous 

audible and visible alanns associated with secondary indicators triggered an alarm 

“shower” diverting the operators attention.

This incident highlighted the need for better signal validation, earlier diagnosis, a 

change in transient identification and better procedures for turning the data into 

knowledge that can be presented to the operator to help in the decision making
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process and also to give advice or predict what will be the consequence in the plant 

dynamics if a corrective procedure was implemented to deal with an accident.

The IAEA (1999) suggests that the number of human operator errors is likely to 

increase due to the greater need of maintenance of older NPP, and the replacement 

of experienced control room staff, who were there since the commissioning of 

many of the NPP.

The development of intelligent support systems is one means by which data can be 

changed to knowledge in order to better support the control room operator during 

decision- making.

2.2.2 Research in Artificial Neural Networks in Engineering

An insight into the popularity of research into ANNs can be gauged by a search of 

the British Libraries database of journals published internationally, which lists over 

200 titles on the subject. Figure 2.1 is a graph showing the number of publications 

on ANNs in Engineering and Physics between 1990 and 2001 (taken from 

INSPEC). The number of publications with the keywords Neural Networks or 

Artificial Neural Networks in the title peaked in the mid nineties, and although the 

number of publications seems to be in decline there still remains over 5000 articles 

published on this subject per year.

time

Figure 2.1 Publications of ANN in Engineering and Physics (Taken from INSPEC)
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There may be several reasons for the apparent decline in the number of ANN 

publications in engineering and physics as indicated in figure 2.1. One explanation 

may be the combination of ANNs with other soft computing techniques for 

example, Neuro-Fuzzy system (combination of ANNs with Fuzzy Logic) and 

therefore would not appear in the main title, it could also reflect the discipline 

reaching a level of maturity where it is not explicitly mentioned in the title.

Another possible explanation is that ANNs are often viewed as a “black box” 

approach to problem solving. Unlike other modelling techniques for example 

expert systems, ANNs cannot fully explain the decision path of the underlying 

knowledge base. In a safety critical system, as typified by many plant processes, 

this is a major obstacle when trying to obtain a safety justification certificate.

However, on searching the US Patents Database (figure 2.2) it is apparent that 

there has been a steady increase in the number of patents of ANN applications 

applied for in the US, and this gives some indication as to their increase use and 

commercial potential.

Patents of Artificial Neural Network application

Figure 2.2 Patent Applications for ANNs in the US
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2,2.3 Diagnosing plant condition

One of the essential tasks in the operation of a NPP is the detection, via monitoring 

of process changes and faults during normal or abnormal operating conditions. To 

enhance the monitoring activities, the early diagnosis of a fault is required to either 

eliminate, or better manage the transient. Early diagnostic systems were limited to 

alarm handling and protection but in recent years computer based systems have 

been put forward as a means to further improve plant diagnostics. These range 

from systems that make use of the Fast Fourier Transform (FFT) techniques used 

in time series analysis (Wach, 1991) through to the use of soft computing 

techniques such as ANNs (Weller, 1997).

Uhrig (1991) describes one of the earliest solutions to transient identification in a 

NPP using ANNs. In this landmark paper, Uhrig reviews the potential application 

of ANNs at several operational levels from major transients ( e.g. a loss of coolant 

accident), changes of state during normal operating conditions (e.g. reactor start 

up) and at transducer level (e.g. sensor validation).

Uhrig together with Bartlett (1991) go on to describe the difficulty in diagnosing 

the state of the plant when the system under surveillance gives noisy, incomplete or 

intermittent data. A dynamic node architecture scheme was used to optimise the 

architecture of the ANN. The data to train the neural network were generated from 

a NPP simulator, which provided a three bit training code as an output. The inputs 

to the neural network were from twenty-seven plant variables, and the simulator 

was used to generate seven faults and one normal operating condition. A self- 

optimising stochastic learning algorithm was used to develop the architecture of the 

network. The training process began with one perceptron in the hidden layer and 

the ANN was trained until an optimum performance had been acquired. A further 

perceptron was then added until a new optimum level was reached, the process 

continued until a specified level was attained. At this point the least important 

perceptron was removed until the network structure oscillated about a fixed 

architecture.
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The results of this work were extremely promising with all the fault conditions 

being correctly diagnosed. Also noted from the results of the experiment was that 

the ANN exhibited a graceful degradation in performance with the addition of 

gaussian noise to the input signals. The success of this work led to further research 

by Basu and Bartlett (1994), in exploring the feasibility of ANNfs being used for 

fault diagnosis, using the dynamic node architecture scheme. This time a simulator 

generated twenty-seven faults, with ninety-seven plant variables being used as 

inputs to the ANN. The large size of this network led to an increase in the 

complexity of the diagnostic ANN. A hierarchical approach was used to solve the 

problem with individual ANNs being trained independently using sub sets of the 

original data. Two networks were developed; the first to diagnose if the plant was 

operating correctly, the second to diagnose the type of fault. Once again the advisor 

performed well even when the data were corrupted by noise. They also highlighted 

the advantages of a modular approach to solving this problem. This original work 

by Basu and Bartlett led the way for subsequent applications of ANNs in nuclear 

power plants.

Weller (1997) developed the use of ANNs for transient classification and the 

prediction in a PWR. The concept of modular ANNs as methods of classification 

was developed further.

In this work it was suggested that a hierarchy of diagnostic ANNs could be 

developed to provide information to the control room operator on: -

• Plant status

• Area of fault

• Site of fault

• Faulty device

The second concept developed was the training of several ANNs independently on 

the same data, where the outputs of each of these are fed into a decision maker for 

a final diagnosis. The data used in the ANN developed for the diagnostic system 

consisted of sixty -seven PWR variables generated by a generic PWR simulator.
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Six transients were used for classification, five fault conditions and one ‘no fault’ 

condition.

Weller and Thompson (1999) continued the previous work, by testing a diagnostic 

ANN with a wider set of unknown transients. As before, the data set for training, 

testing and validation of the networks was obtained using a generic PWR simulator 

of the primary circuit. The results from these experiments demonstrated that all of 

the diagnostic ANNs developed gave acceptable outputs for the unknown 

transients, but showed difficulty in classification when confronted with similar 

transients; they concluded that further tests were required.

Roverso (2000) compared several alternatives to the feedforward backpropagation 

neural network algorithms and models for performing transient classification. The 

success of each approach was judged upon a series of tests that checked the 

accuracy, robustness, reliability and real time performance of the ANN. The final 

design was used to develop of the prototype system ALADDIN, an approach for 

classifying transients in dynamic processes. This is part of the on going research 

into nuclear technology, safety and reliability at the Organisation for Economic 

Cooperation and Development (OECD) Halden Reactor Project. The ALADDIN 

project was derived from the problem of alarm structuring/suppression in a Nuclear 

Power Plant alarm system. The four main ANN approaches evaluated were: -

• Radial basis function neural networks (RBF)

• Cascade -  RBF neural networks combined with fuzzy clustering

• Self organising map neural network

• Recurrent neural networks.

To compare the four methods a nuclear power plant simulator was used to generate 

a set of five transients at four separate power levels. The recurrent neural network 

was the only model to classify all the transients correctly. The second ALADDIN 

prototype looked at the difficulties of training a neural network when transients 

occur over a long period of time, as most information used for classifying comes 

early in the transient. Various training runs (using the same data) produced several
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networks which all performed differently. In the ALADDIN project an ensemble of 

independently trained networks were each presented with the data, the outputs of 

the networks were averaged to produce the final classification. If an unknown 

output from the ensemble were to be presented to the final classifier, an unknown 

signal would be generated. Much of the research is still ongoing. The next phase of 

the project is for the integration of ALADDIN with other systems developed at the 

OECD Halden Reactor Project (http://www.external.hrp.no/).

2.2.3 Signal validation

An inquiry into the Three Mile Island accident in 1979 highlighted the need for an 

independent signal validation system. Fantoni (2001) describes results achieved 

using the signal validation toolbox PEANO that is based on neuro-fuzzy 

techniques. The aim of PEANO is to confirm sensors that monitor the functioning 

of an industrial plant are operating effectively. During the operation of a plant, 

faulty or mis-calibrated instrumentation channels may lead to erroneous 

identification and diagnosis of abnormal events, which can result in errors by the 

operators in a control room. These errors can lead to:

• Process uncontrollability and instability, when sensors are connected to 

control and automation

• Systems resulting in emergency shutdown of the entire process

• Reduced plant performance and efficiency.

The PEANO signal validation system is now in operation at the Halden Boiling 

Water research reactor, and has been tested on plant processes outside the nuclear 

industry.
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2.2.4 Calculation of Reactor Axial Power Distribution

Yu Seen et al (2002) describes a methodology to calculate the reactor axial power 

distribution using excore detector signals based on an ANN. In this work an ANN 

consisting of a single hidden layer with twenty five neurons is trained using a back 

propagation algorithm to provide a mapping between three level excore detector 

signals and a 20-node axial power distribution. The training set for the neural 

network is obtained using a simulator. The results of the experiment demonstrated 

that the axial power distribution can be deduced from a simulation of the excore 

detector via the use of an ANN. When compared with existing methods for 

predicting axial power at the Yonggang nuclear power plant unit 3, the 

performance of the ANN was found to be superior.

2.3 Small Leak Detection

2.3.1 Introduction

This section briefly examines the detection and monitoring of small leaks in 

nuclear power plants (NPPs) and concentrates on techniques relevant to the 

research in this thesis. The detection of small leaks in a NPP is important for its 

safe and efficient operation. Often the detection of a small leak may not be 

sufficient to warrant the shutdown of power plant, but will require accurate 

monitoring to ensure proper management of the transient. The data used for the 

development of detection and monitoring systems make use of a much wider range 

of plant monitoring transducers, both internal and external to the plant process.
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2.3.2 Leakage detection Expert System

One approach commonly used for solving complex problems are expert systems, 

which acquire and represent domain specific knowledge. When the expert system 

is presented with a pattern, the encounter triggers the relevant rule; and the system 

takes appropriate action. A key distinction between ANN and expert systems is the 

separating of knowledge from control. In expert systems, knowledge is stored in a 

knowledge base whilst rules reside in a separate inference engine. In ANN the 

rules are implicit to its design. The benefits to be gained from using an ANN in the 

development of a decision support system are:

• The amount of expert domain specific knowledge which is required to 

develop an ANN is considerably less than that which is required for a rule 

based system.

• Unlike expert/rule based systems, ANN generate their own rules by 

learning from example.

• The ability of ANN to generalise allows the ANN to give a recognisable 

response to incomplete or noisy data unlike expert systems.

Nagasawa (1998) describes leakage detection based on an expert system, which 

diagnoses a leakage and its source in a Primary Containment Vessel (PCV) of a 

boiling water reactor (BWR). It achieves this by using chemical and radiochemical 

data. Changes in the following instruments and monitors were used:

• The PCV atmosphere dew point

• The PCV sump rate flow

• The PCV Air coolant condensate rate flow

• The PCV Radiation monitor

• The PCV Atmosphere temperature

• Valve leakage detection system temperature

• Primary Recirculation Pump (PLR) pump mechanical seal pressure
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The evaluation of hydrogen and nuclides in the PCV atmosphere is combined with 

the evaluation of nuclides in the PCV sump. This expert system is now under 

planning for use as a plant support tool in a BWR plant.

2.3.3 Acoustic Surveillance

Developments in signal processing and microphones over the last tw'o decades now 

allow for the use of acoustic infonnation for plant diagnostics in real time. Thomas 

(1991) describes the development of an Acoustic Boiling Noise Detection (ABND) 

system for the surveillance of fast reactor primary circuits. In this system a series 

of acoustic waveguides are positioned over the reactor core to transmit acoustic 

signals to attached accelerometers. The signals were recorded in both a digital and 

analogue format, for real time and long-term analysis respectively. Initial 

investigations revealed two components in the background noise recordings, a 

continuous broadband signal, and impulsive activity, both of which contributed in 

reducing the signal to noise ratio for the transient signal under investigation. 

Pattern recognition and source location analysis was used to isolate impulsive 

acoustic sources.

Shimanansky (2003) also used acoustic methods, this time specifically for the 

detection of leaks in a NPP. The system is based on the use of high temperature 

resistant microphones, which are resistant to temperatures up to 300 degrees 

Celsius and up to 20R/h. The microphone system detects acoustic signals generated 

by the leak by monitoring the increase in sound pressure level around the piping. A 

correlation was the observed between artificially generated leak discharge and 

frequency spectrum. The study noted that for small leaks, high-frequency analysis 

was preferable for detection purposes.

2.3.4 Detection of Small Leaks Using ANNs

Hessel et al (1999) developed a neural network combined with acoustic methods 

for estimating the leak rate in a pressure vessel head. A combination of structure 

borne accelerometers (50-500 KHz) and microphones (0.2 -  70 KHz) were placed
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on or around the pressure vessel. The leaks were simulated by a sound source 

driven by compressed air jet, a piezo-electric transmitter or a thin metal blade 

excited by compressed air. The piezo-electric transmitter was used because of its 

linearity. An array of twelve acoustic emissions sensors and three microphones 

were used to measure the sound pattern. The pre -processing of this data gave rise 

to root mean square values (RMS), components of power spectra and coherence 

values, which were used as inputs to the neural network. The results of the leak 

localisation with structure bound sound using the twelve acoustic emissions 

sensors showed that a neural network out-performed the fuzzy pattern classifier. 

Simulated steam leak sounds ranging from 2-65kg/hr were generated. It was found 

that leaks of 5kg/hr and above could be reliably classified.

2.4 Other soft computing techniques used in Nuclear 
Power Plants

2.4.1 Introduction

This section is a brief review of other soft computing methods used in research of 

NPP diagnostics. Its inclusion in this report is to highlight that often several 

techniques may be employed in finding a solution to a problem.

2.4.2 Genetic Algorithms

Mukheijee (2002) has applied a Genetic Algorithm (GA), (Mitchell 1994) to the 

unfolding of neutron energy spectra produced by particle accelerators, in order to 

accurately evaluate dose equivalent, and the efficient design of neutron shielding. 

The GA was chosen because of its ability to finding the optimum function of 

multiple variables. An inter-comparison with other deterministic spectra unfolding 

was then carried out. The results showed good agreement with the other methods.
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2.4.3 Fuzzy Logic

Erbay (1996) uses a Fuzzy Logic fault tree as means to interpreting signal 

validation results in a nuclear power plant. By mapping signal results into fuzzy 

sets of truthfulness of sensor failure, a fault tree methodology is used to make a 

decision about the failure of the sensor. The decision-making algorithm consists of 

three steps: 1) construction of fuzzy sets from primary sets, 2) propagation of fuzzy 

sets through the fault tree, 3) comparison of the resultant fuzzy set with prototype 

fuzzy sets using dissemble index calculations. Icons were used to highlight degrees 

of fault, from safe to severe.

2.4.4 Multi Level Flow Models

Many human errors are partly caused by shortcomings in the design of the control 

and presentation systems. Many plants are equipped with a large number of alarms 

and in a large accident many alarms become activated which can overwhelm the 

operator’s ability to isolate key faults. An example given is that of the Three Mile 

Island incident where more than one hundred audio alarms were simultaneously 

activated, (Lees 1983).

To improve instrumentation and control management, Larson (2000) proposes 

several methods. These include:

• Sensor fault detection

• Alarm analysis

• Fault diagnosis

• Failure mode and effects analysis

In the case of alarm analysis, Larson presents a Multi Level Flow Model (MLFM), 

which provides a graphical representation of:

• Goals -  which describe the purpose of a system or sub system

• Functions -  describes the capability of the system in terms of flows of 

mass, energy and information.
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MLFM are often compared to expert systems and fuzzy logic, and is a 

representation of human knowledge using natural language.

2.5 Current Issues of the use of ANNs in the nuclear 
industry

2.5.1 Introduction

Bartlett and Urhig’s (1991), initial seminal work on ANNs stimulated a great deal 

of interest in the use of ANNs in a variety of fields in the nuclear industry 

primarily in the early identification of fault transients. A search of peer reviewed 

publications on artificial neural networks in nuclear technology since 1990 up to 

2001(taken from INIS database) is shown in figure 2.3.

Figure 2.3 shows that the amount of publications in this field peaked in 1994 and 

again in 1997. Since the early nineties the range in the application of ANNs in 

nuclear technology has expanded for example from the prediction of critical heat 

flux (Guaanghui et al, 2003), to loading pattern optimisation in gas-cooled reactors 

(Ziver et al, 2002).
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However, since 1998 the number of publications has dwindled (a similar trend is 

observed for other soft computing techniques). With the exception of the PEANO 

project, there have been no reported commercial applications of neural networks 

within the nuclear power industry (however the lack of reported applications may 

be due to security or commercial purposes). As previously mentioned this may in 

part be due to the reluctance to use a ‘black box’ approach in a safety critical 

system. However within the general field of engineering, the number of 

publications of the use of ANN has remained high as shown in Fig 2.1.

What follows are several reviews that have looked at the use of soft computing 

within the nuclear industry.

Uhrig (1999) reviewed the use of soft computing technologies, particularly neural 

networks, fuzzy logic and genetic algorithms in the surveillance, diagnostics and 

operation of nuclear power plants. He comments that virtually all the techniques 

described have operated only as an advisor to a human operator without any 

feedback. He highlights at that at the time of the review, there were very few of 

these systems implemented in a nuclear power plant, even though the financial and 

performance benefits have been demonstrated. He attributes the lack of 

implementation of these techniques with the concerns about regulatory issues with 

the use of soft computing technology in the nuclear power industry. However he 

notes that the approval of the US Nuclear Regulatory Commission of Digital 

Instrumentation and Safety Systems bodes well for the eventual acceptance of soft 

technologies in nuclear power plants.

Many organisations such as the United States Nuclear Regulatory Commission 

(USNRC), International Atomic Energy Agency (IAEA) and the OECD have 

stressed the importance of the man-machine interface to safety. In an TAEA Safety 

Report (IAEA, 1997) it is stated in the introduction:

“The human-machine interaction problems are complex. In many applications, the 

role of the human operator is often neglected in design and the human functions are 

defined by default, governed by the limitations and gaps of hardware and software.
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It is questioned if the role defined by implication for the operator can be effectively 

and reliably performed”

The Nuclear Energy Agency (NEA Draft, 1995): “Nuclear Safety Research in 

OECD countries, Areas of Agreement, Areas for Further Action, Increasing Need 

for Collaboration” report identifies the following major themes for further 

research:

• Characterising and assessing the performance of individuals, teams and 

organisations.

• Man-machine interfaces (MMIs) and communications in the control room 

and other plant areas

• Selection and training of staff.

• Signal validation and condition monitoring methods for severe accident 

situations

• Development of operator support systems using advanced data processing 

and MMIs.

2.5.2 Tension between Views

Owre (2001) discusses the changing role of an operator in a NPP. In the non-

nuclear industry he observes that the role of a plant operator is more ‘operation 

management’, whilst that of the nuclear operator is more manual operation and 

monitoring. He goes on to describe accident management, and the strategies 

needed to manage an accident. Also described is the need for comprehensive 

computer-based support systems for accident management, and how these systems 

can be used to ‘monitor the current status of the plant, and project the progression 

of key phenomenological events’. The PEANO validation system is introduced as 

an example of the use of artificial intelligence techniques (in this case a neuro- 

fuzzy approach). A special feature of this approach is the ability' of the system to 

recognise an ‘unknown’ scenario. Owre concludes that computers are better at 

identifying small variations in data during an accident situation, but that humans 

are better at handling the unexpected.
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Reifman (1997) also conducted a survey of artificial intelligence methods for 

detection and identification of component faults in nuclear power. The review 

emphasises the limitations of AN Ns: -

1. The training process is time consuming and needs large amount o f 

training data, the quality o f which strongly affects the success o f the 

approach.

2. Neural net works are difficult to train when many categories o f transients 

are to be identified.

3. As the number o f variables m in the problem increases, the complexity 

increases faster than a polynomial o f order m

4. Difficulties in differentiating some transients that exhibit similar 

behaviour in almost all the process variables have been reported.

5. Scale up is more difficult in expert system and involves extending the input 

and output nodes, reconstructing the ANN architecture and re-training the 

entire system from scratch.

6. When new transient data are made available, incremental learning does 

not seem to be possible with most types o f ANN.

7. Unlike expert systems, ANN lack explanation facilities and cannot explain 

the decision path o f the underlying knowledge base.

8. The advantage o f the ANN to generalize from trained examples and 

perform inferences when the input data are beyond the scope o f their 

knowledge has negative consequences. For example, a feed forward 

network might incorrectly give a classification answer with high 

confidence for a new type o f transient on which it has never been trained.
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9. The necessity to anticipate all possible transient scenarios and use them 

for training is another limitation o f the use o f ANNs as transient 

classification tools ”

(Reifman, 1997)

He concludes that the above difficulties especially to verify and validate an ANN 

and the diagnostic approach, requires that every component failure in the process 

be anticipated and explicitly represented. Reifman recommends that future research 

should focus on developing a knowledge base on fundamental physical properties.

2.5.3 In Defence of Artificial Neural Networks

It is a major contention of this thesis that the relegation in the use of ANNs to a 

mundane level of academic interest, fails to take account of advancements in soft 

computing methodologies, and, computing power. Consider in the first instance, 

the increase in time taken for the training of an ANN, especially for ANNs with a 

large number of input variables:

“The pace of microchip technology change is such that the amount 

of data storage that a microchip can hold doubles every year.”

(Moore 1965)

In general, Moore’s prediction has remained pertinent for the last 40 years, albeit at 

a slower rate of progress (typically 18 months). This increase in computing power 

has reduced in many circumstances the time required for the training of an ANN. If 

Moore’s prediction holds true, (and it seems that it will for the foreseeable future), 

the issue of long training times will become negligible.

The difficulty in training an ANN when there are many categories of transients can 

be overcome by training several ANNs (figure 2.4.), to cover a set number of 

classifications (Bartlett 1994, Weller 1997). The ANNs can then work in parallel 

each ANN extracting different features from the same data. In some circumstances 

there may be some overlap in the classification of a transient category.
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Classification

Figure 2.4 Parallel ANN model

The limitation of ANNs in differentiating transients that exhibit similar behaviour 

can in some instances be overcome by using alternative ANN training algorithms, 

for example the use of recurrent neural networks in time series analysis.

Boger (1998) also suggests several solutions to problems in implementing soft 

computing techniques described by Reifman; in particular the ANNs lack of an 

explanation facility' and an inability to explain the decision path of the underlying 

knowledge base. Boger suggests the use of the Causal Index (Cl) method as a 

knowledge extraction technique. The Cl looks at the relationship between the input 

and output of the ANN and provides an indication of the magnitude and sign of the 

global relationship, fie concludes that most of the negative aspects of the ANN 

modelling may be overcome by using advance techniques of ANN design and 

recommends that the International Atomic Energy Agency (IAEA) create a 

database of simulated transient data produced by NPP, so that networks can be 

trained and tested on new data.
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Another approach to validating the classification of an ANN is reported by 

Marseguerra (1996). Marseguerra describes the early detection of failures in the 

pressuriser of a Nuclear Power Plant using ANNs. Two multi-layered feed forward 

ANNs were trained to simulate a non-faulty pressuriser. The trained ANN received 

process variables at discreet time intervals from a simulated pressuriser and then 

predicted the system pressure one step ahead. If an accident had occurred a 

divergence between the pressuriser signal and the predicted signal from the ANN is 

used to diagnose a fault condition. Two ANNs were used instead of a single 

network as this was found to be more reliable. The ANNs were only trained on a 

normal pressuriser response as they argued that system faults are of an 

unforeseeable kind. Roverso (2000) extends this method via ensembles of ANNs. 

The predicted output from each of the classifiers is combined to produce an output 

from the ensemble. The outputs of the classifiers are then averaged to produce a 

final classification which is subject to a validation test. If in agreement, an output is 

produced. If not in agreement, an ‘unknown’ transient is flagged.

2.6 Summary

Some of the major uses of ANNs and other techniques used in plant diagnostics 

have been reviewed. Invariably there is a bias to work relevant to the research 

conducted in this thesis

As a result of the literature review several observations become apparent. 

Advances in transducers and the modernisation of plant control rooms to include 

new digital instrumentation and control systems will lead to an even greater 

amount of information available to the plant operator. An example of this can be 

seen with advances in microphone and signal processing technology. The use of 

ANNs can speed up the development and integration of new technologies into 

plant diagnostic systems.

The research in the use of ANNs has been applied to a diverse range of activities 

within the nuclear industry and has reached a level of maturity; as in the case of the 

PEANO project, where it can be run in parallel with existing plant safety systems.
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However, to date there has been no full-scale applications in the use of ANNs. One 

of the major drawbacks in the implementation of ANNs, is that a nuclear power 

plant is a safety critical system and the requirement for the licensing of any 

software based safety system is an ability to follow its decision making process. It 

is felt that these issues can be resolved by a combination of validation techniques 

with a rigorous testing regime.

These observations are only the reported results, as there maybe several 

applications of interest which may have a basis in soft computing, but for 

commercial and security reasons, their reporting is withheld.
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Chapter 3

Problem Definition

3.0 Introduction

In chapter 2 it was seen that the plant safety and efficiency could be enhanced via 

the use of appropriate computer-based monitoring and diagnostic systems. The 

structure of this chapter is that first the specific problem to be addressed in this 

thesis is introduced followed by a discussion on the analytical and experimental 

method developed for the research.

3.1 Problem definition

A nuclear reactor produces heat through nuclear fission in which atomic nuclei 

break apart releasing large amounts of energy. In the core of the reactor a self - 

sustaining nuclear chain reaction takes place. Control rods are raised or lowered to 

increase and decrease the absorption of neutrons and control the reaction and 

amount of heat produced. The most common type of nuclear reactor is the 

pressurised water reactor, it is known as a double loop system because it uses two 

circuits of water. The first loop or primary' circuit pumps water heated by the 

reactor core through a heat exchanger. The water remains liquid even at 300 

degrees Celsius because it is pressurised to high pressures of up to 150 

atmospheres. In the second isolated loop, water is converted to steam in the heat 

exchanger and is fed under pressure to turn turbine generators; the steam is then
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cooled by water drawn from a large reservoir. It is condensed to water and then 

pumped back to the heat exchanger, completing the loop. A diagram of a PWR is 

shown in figure 3.1.

Figure 3.1 Schematic of a PWR

The control room of a nuclear power plant (NPP) is a daunting environment. The 

plant operator is confronted with a variety of information extracted from the plant 

and then presented in various forms, from raw data through to procedural and 

advanced alarm systems. The sheer quantity of information presented to the 

operator can affect their decision making process. A study conducted by the 

Central Electricity Generating Board (CEGB) (Pope 1992), examined the loss-of- 

generation events on a NPP between 1976 and 1982. Their findings were that 

human errors could be categorised as follows: -

• Operating errors -  10%

• Design errors -  20%

• Maintenance /testing errors -  70%
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Swain & Guttmann (1983) studied the cause and effect of human error from an 

applied science prospective. They identified that stress on the plant operator was a 

key factor in causing human error, an increase in high levels of stress resulting in 

an increase in human error as shown in figure 3.2.

Very O ptim um V ery h igh E xtrem ely
Low

Stress
H igh

Figure 3.2 the effect of stress on performance of plant operators

They described how the robustness of a plant design impacts on how quickly a 

plant operator is able to diagnose and correct the cause of an abnormal situation 

before the plant moves into an unsafe state. The operator is much more likely to 

correctly diagnose the problem if they have more time as shown in Table 3.1

Available Response 
Time (Minutes)

Probability of 
Incorrect Diagnosis

1 ~1

10 0 .5

2 0 0.1

30 0 .01

60 0.001

Table 3.1 Diagnosis of a problem as a function of response time
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The efficiency of an operator is determined by how they perform in different 

situations. The Technique for Human Error Rate Prediction (THERP) states that 

human error is a causal effect of stress and available response time. Therefore, the 

operator’s ability to detect plant changes especially those associated with the 

failure of instrumentation or plant components will be determined by both the time 

available for detection and the action and quality of available information. The 

human error in this decision making process can be further exaggerated by factors 

such as stress and fatigue (Swain, 1983). The result of a failure in the correct 

diagnosis of a fault can lead to poor management of the fault. At best, this can 

result in a drop in the efficiency of the NPP, or, it may lead to more catastrophic 

failure of a system within the NPP as seen at the accident at Three Mile Island 

where faulty instrumentation and human error led to a small release of radioactive 

isotopes to the environment.

3.2 A Control Systems Approach

The plant operator can be seen as an integral part of a control system, which is a 

core requirement in plant operations. Transducers placed around the plant 

constantly relay information to the plant operator in the form of digital and 

analogue readouts. The plant operator in turn acts upon this information by 

operating the control mechanisms as shown in figure 3.3

Plant operator

Figure 3.3 Plant Operations

However, as plant machinery' operates at ever-greater levels of sophistication and 

at greater speeds of operations the required response can exceed human capabilities
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leading to a decrease in operator reliability. Also the speed at which some of the 

transients develop requires a faster response from the plant operator.

Typically the control of a Pressurised water reactor (PWR) is a combination of two 

control strategies; an automatic control system for example fire control, or a 

supervised control system, as found in the typical day to day running of a PWR. 

(figure 3.4). The proposed Operators Advisory System (OAS) is intended for use 

in decision support role for the plant operator.

Subset 
Plant data

O A S

Display
Panel --

Controls

Automatic control system

Subset 
Plant data

Figure 3.4 Plant Operation sub-systems

3.3 Automatic Control Systems

A control system involves the feedback of information, which gives the system a 

degree of sophistication by means of effecting the transmission of an output signal 

to affect the input. The system is driven by two signals: the normal input signal 

derived from the plant data and the feedback signal derived from sensors or actions 

taken by the plant operator. The system is provided information concerning its 

performance so that it can correct its subsequent performance on the basis of that 

information. Automatic control performs at least three major functions (Fu 1971):
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• Problem solving and planning to select alternative actions

• Modelling of the environment to simulate the effect of its own actions

• Perception to record changes to the real environment

The primary purpose of the control system is to drive the PWR plant to attain 

specific goals (figure 3.5). To do this the (plant) controller must:

• Remove errors in the output by adjusting the input

• Prevent the output exceeding certain limits

• Produce smooth actions

The control of a PWR implies having to describe the process to effectively attain a 

given target. Feedback control involves the actual output of the system being 

compared with the desired output with the difference being used as feedback to 

drive the system.

Error
detection

Figure 3.5 Block Diagram of a control system

The state of the PWR is the minimal amount of past information required to 

completely describe its future behaviour, i.e. outputs of a system when the inputs to 

the system for all present and future times are known.
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3.4 Supervised Control Systems

In a supervised control system the plant operator provides the feedback control 

required for the correct operation of the PWR. Information gained from the PWR 

plant will enable the plant operator to decide as to whether an intervention is 

required or not. These decisions will be either a reflex or conscious act, following 

standard or emergency operating procedures. A computer based Operator Advisory 

System (OAS) can enhance this decision making process by constantly monitoring 

the control processes of a PWR (figure 3.6) and providing diagnostic advise as to 

the current and future status of the PWR in a more timely and efficient manner.

Figure 3.6 supervised control system with operator advisor

Examples of information that may be provided to the plant operator by the OAS 

could be the monitoring of the PWR status for example the monitoring of normal 

or planned changes in plant status such as a throttle opening transient or, the OAS 

may provide early warning of an unplanned change in plant status, for example a 

primary coolant leak.
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The advisory system described would have the following advantages:

The system would be permanently on duty and not tire or become bored or 

distracted during operation. It would not require briefing at every duty change.

The same advisory system would be applicable to all models of the plant for which 

it was developed. This would provide both transferability and portability of the 

technology.

The system would be easy to upgrade or replace. A computer-based advisory- 

system could be constructed from commercially available hardware and avoid the 

vast use of expensive bespoke equipment.

The proposed advisory system would not be required to attend extensive training 

courses nor gain a wealth of experience to operate fully.

A record of reactor history' could be stored and so provide a built in audit trail.”

(Weller 97)

3.5 Classification methods

There have been several approaches to classifying complex non-linear systems as 

typified by the plant dynamics of a PWR (Erbay 1996, Mukherjee 2002). One of 

the most popular of these in the last decade being the use of Artificial Neural 

Networks (ANNs), which meets the requirements of the proposed advisory system 

stated above. They can be considered as complex adaptive systems in that the 

model Teams’ by adjusting a number of parameters and provide a framework for 

representing non-linear mappings between multi-dimensional spaces where the 

form of the mappings is governed by number of adjustable parameters. An 

introduction to a Feedforward Back Propagation ANN can be found in Appendix 

A.
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Artificial neural networks fall into two broad categories: supervised and 

unsupervised learning. In supervised learning, the ANN is trained by providing it 

with inputs and desired target outputs. The difference between the outputs from the 

ANN and the desired outputs are for each input set used to adapt the model to 

reduce the error. In unsupervised learning there is no feedback from the 

environment to indicate if the outputs from the network are correct and therefore 

the ANN must discover correlations in the input data automatically.

There are several advantages to using ANN in the development of the proposed 

OAS.

• They can be used to model complex non-linear systems as found in the 

operating dynamics of a pressurised water reactor.

• The distributed knowledge representation means the system response 

degrades gradually in response to errors in data. This may be of concern if a 

transducer fails to operate correctly or if interference leads to high levels of 

background noise.

• The short development time for an ANN solution allows for frequent 

updates of the model (could be online), to allow for intra variability 

between PWR plants and changes in plant dynamics due to ageing 

processes within the PWR.

• The ANN will attempt solutions for unknown fault conditions, however the 

probability of a correct diagnosis will be reduced.

• The parallel processing of an ANN leads to shorter computational tune and 

therefore allows for real time analysis of data.

• Domain expert not required during the initial stages of development
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Nevertheless, unlike some modelling techniques, for example expert systems, 

ANNs lack explanation facilities. They cannot fully explain the decision path of the 

underlying knowledge base; they are very much a ‘black box’ approach. This 

makes the use of ANNs as an operators advisory system difficult to pass a safety 

justification process. In addition, the development of an ANN requires a large 

amount of training data that strongly affects the success of the approach.

However, there have been several methods proposed to better explain the decision 

making process of the ANN (Dyhowski 97), (Boger 98) which will help to 

overcome problems in implementing computer based advisory systems because of 

safety' justification regulations. In this report, the ANN training used is the 

feedforward back propagation algorithm, a brief introduction to which can be 

found in appendix A.

3.6 Proposed Development Method

The method proposed for the development of the advisory system is a multi-layer 

system of ANNs (Basu & Bartlett, 1994), (Weller 97) and is shown below in fig

3.7

Plant Data

Figure 3.7 Multi-layer System (Weller 97)

36



The multi-layer system consists of functionally similar modules, loosely 

concatenating one module to another. In the proposed advisory system the top layer 

of the system will be a diagnostic ANN module reporting on the current status of 

the PWR. Should a fault transient be identified the output from this layer would 

initiate the appropriate module in the next level to give the size or possibly the 

location of the fault. In order to confirm the accuracy of the result a simulator and a 

comparator could be added to the advisory system. Once a transient has been 

identified, the simulator would reproduce the plant data for that transient. The 

comparator would look for differences between the predicted state of the plant and 

the actual plant variables as shown in figure 3.8. Where any difference was 

observed an error in the diagnosis or an “unknown diagnosis” would be reported to 

the plant operator.

Comparator

0

Plant operator

Figure 3.8 Diagnostic ANN with Comparator

The system described above will provide information to the plant operator for the 

early diagnosis of a fault transient, and also infonnation on the success of the 

management of that transient.

There are several advantages of this modelling method compared to using a single 

large ANN. The training of a smaller ANN typically requires a smaller dataset to 

converge to an acceptable level. The reduction in the complexity of the ANN leads 

to a decrease in training times, and a higher probability of the ANN converging to
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an optimum solution. A system made up of smaller modules will operate at faster 

speeds, and has the potential to, if implemented in hardware for several modules to 

operate in parallel, leading to an even further increase in performance. Another key 

advantage of this system is that it is much easier to update and modify individual 

modules. This is of particular importance to allow for changes in the plant 

dynamics due to ageing, or the addition of new sensors/systems to the PWR. 

Finally, a hierarchical approach to the system modelling allows easier integration 

on a non-ANN module, as shown by the example in chapter 5.

Figure 3.9 Proposed Operators Advisory System

Figure 3.9 shows a block diagram of the proposed Operators Advisory System 

(OAS). Module 1 (major fault classifier) is intended as a controller for data flow to 

other modules in the OAS. E.g. leak rate classifiers. Output from the modules can 

be made available at all stages to the plant operator. The diagnosis may be 

confirmed by the use of a comparator which runs a simulation of the diagnosed 

transient and compares this with plant data or by the plant operator by accepting or 

rejecting the diagnosis.
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3.7 Data Characteristics

In this thesis, the majority of the data used for modelling several of the components 

in the OAS uses a generic simulator of a Pressurised Water Reactor. It is difficult 

to obtain actual data from a PWR fault due to safety considerations. The creation of 

synthetic data sets allows for a much wider range of transients than would normally 

be available to the developer, and allows for better evaluation of the performance 

of models. However, during the development of the OAS it was necessary to obtain 

‘real world" data by experimentation.

3.8 Study Scope

The primary aim of this study, the investigation of the development of an neural 

network based OAS with an emphasis on small transient analysis, is clearly an 

ambitious one. In order to offset the potential analytical complexity, the scope of 

the study was constrained in the following way:

1. The domain of interest was limited to the development of three modules to 

demonstrate the feasibility of an OAS.

2. Limited use of ‘real world data’

3.9 Summary

This chapter has reported on the multi-layer method that will support the 

development of an Operators Advisory System to monitor the status of a 

Pressurised Water Reactor (PWR). The OAS will provide early warning of a fault 

transient, and information on the management of the fault. This research builds on 

previous work (Weller 1997). It is essential that the human operator of the PWR 

remains an integral part of the control system.

The next four chapters explore the components of the system in greater detail.
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Chapter 4

Fault Analysis

4.0 Introduction

This chapter reports on work carried out to investigate the use of Artificial Neural 

Networks (ANNs) in the task of transient classification of a Pressurised Water 

Reactor (PWR), exploiting their documented abilities in pattern recognition. The 

fault classifier module developed in this study is used as the top layer in the 

Operator Advisory System described in chapter 7. The transient classifier discussed 

in this chapter builds on work first described by Weller (1997).

The experiments reported on in this chapter were carried out with the following 

objectives:

• To train an ANN to classify transients found in a Pressurised Water Reactor 

(PWR).

• To test the trained ANNs ability to generalise and to use the results from 

the experiments to enhance the ANN classifier.
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The structure of this chapter is that first, a brief outline is given of some practical 

considerations relevant to the investigations reported in this chapter. The initial 

investigations on the ANN fault classifier are then reported. The performance of 

the developed ANN is then examined and the information gained is used to tram a 

new ANN fault classifier. The development platform used for the training and 

analysis of ANNs was NeuralWorks Professional. Finally, a summary is given in 

section 4.7.

4.1 Background

In chapter three and following the Three Mile island report, the concept of an 

Operators Advisory System (OAS) was proposed as a novel method for the 

effective monitoring of a PWR. The information obtained from the OAS would be 

presented to the plant operator to better enhance the decision-making process 

during both normal and abnormal plant operations. The low level data obtained 

from the plant would be mapped to several re-occurring generic transients. Figure 

4.1 shows how plant data obtained from transducers placed around the primary 

circuit of a PWR can be fed directly to an ANN for classification. ANNs are 

ideally suited to address this problem because of their ability to approximate non-

linear functions (Bartlett 1994), and in their ability to generalise (Lawrence 1997).

Figure 4.1 Classification of a transient based on feature set from a PWR
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In a complex system as typified by the primary circuit of a PWR, it is possible for a 

large range of different transients to occur. This would require a correspondingly 

large amount of data (potentially limitless) for the training & evaluation of the 

ANN. The resulting increase in complexity may cause the ANN to either fail to 

converge to a solution or incorrectly classify or possibly both. Therefore it is 

essential that a smaller set of important generic transients should be considered.

During the development of an ANN certain considerations need to be observed. It 

is important that the dataset consisted of measurable plant parameters found in a 

PWR. Secondly, it is important that when the data is partitioned into training and 

test sub sets, they are not chronologically dependent (the samples are independent). 

The random selection for each of the sub sets should not show bias, within the data 

set either for a single transient or between transients. For example, many of the 

major fault transients developed in a PWR are rare occurrences; therefore the data 

collected from a plant would show a bias towards “normal operating conditions” 

transient. Finally, at some stage during the training and testing of an ANN, it is 

possible that the optimised network may overfit the training sample space. This can 

occur if an ANN is overly complex, so that the ANN fit data noise, not just the 

signal. The effect of this is to reduce the ability of the trained ANN to generalise on 

unseen data, which may be from a different region of feature space than that 

covered by the training/testing data set. The optimal model fits the training sample 

points well but can oscillate wildly between these points. This is analogous to 

fitting a high order polynomial to a lesser number of data points.

Several methods have been developed to improve the ability of an ANN to 

generalise and produce an output. These include network pruning and early 

stopping whilst training the ANN. Once the ANN has been developed, tests on the 

ability of the ANN to generalise would need to be conducted, as part of the 

validation process.

Finally, the ANN would need to be embedded into the Operators Advisory System 

(OAS), An important consideration in the development of the fault classifier is that 

the structure of the data used for the training and implementation of the ANN 

module is common to all modules used in the OAS. It may also be the case that an
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output from the Fault classification ANN can be used as input for another module 

in the system.

Figure 4.2 shows the proposed implementation of the Fault classifier ANN in the 

OAS. Plant data were presented to the Fault classifier ANN. The output from the 

ANN is then presented to the plant operator. The detection of a transient by the 

classifier may also be used to initiate the use of other diagnostic modules within 

the OAS to quantify the size or location of the transient. Depending upon the 

transient, validation of the diagnosis may be left to the plant operator, or confirmed 

via the use of a comparator (refer chapter 3).

Figure 4.2 Embedded Fault classifier in proposed OAS
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4.2 Implementation

This section outlines the steps involved in the implementation of an ANN 

classifier.

Due to safety considerations, real time data from an operational PWR for the 

transients described earlier was not available for the development of the fault 

classifier. As a result a generic simulator of the primary circuit of a PWR was used 

to generate a range of fault conditions. For each of the fault scenarios, the 

simulator generated data for 67 plant variables in real time. The data generated 

from these simulations were tagged with the labels (a binary value) of the transient 

categories to which they belonged. Table 4.1 shows the plant variables generated 

by the simulator.

Neural network input parameters Neural network output
(number of inputs) parameters

Nodal Temperature (25) This consists o f otic output fo r  
each o f the six positions. A binary

Throttle Setting (4) coding o f  7  ’ signifying the 
presence o f  a transient, a ‘0 ’ fo r

Rod Position (4) the absence.

Flow Rate Settings (12)

Valve Settings (11)

Temperature average (1)

Neutron Population ( 1 )

Pressuriser Pressure (1)

Pressuriser Level (1)

Power Levels (6)

Start Up Rate (1)

Table 4.1: Details of Input Data Set
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The plant variables were either a categorical variable, and the presence or absence 

of which were represented by a binary value for example a valve that is either open 

(0) or closed (1) or alternatively the data were a continuous variable such as 

pressuriser level.

Weller and Thompson carried out the first phase of work in 1997. They used a 

Feedforward Back-Propagation training algorithm to develop ANN fault classifier. 

Plowever since that time there had been several refinements to the computer 

simulator used in their initial investigations. There was a need therefore to retrain a 

new diagnostic ANN. A computer simulation of the PWR was used to generate 

data for the following range of six generic transients:

Primary coolant leak: the water in the primary circuit is at such high pressures 

that any small leak can lead to a large loss of coolant from the primary circuit, 

which can have major safety implications. This is known as a loss of coolant 

accident (LOCA). These are classified as either a large break (LBLOCA) or small 

break LOCA (SBLOCA).

Throttle opening: when extra power is required, the throttles are opened to draw 

additional steam through the turbine, this causes transient temperature and 

reactivity transients, resulting in higher reactor power matching the increased 

steam power.

Steam leak: this occurs when a leak occurs in the secondary' loop, which includes 

the piping to and from the steam generator, turbines, and condenser. The resulting 

transient is similar to that found in throttle opening.

Group Drop: a number or group of control rods may be inserted into the reactor, 

either deliberate or accidental producing a large reduction in reactivity. Power falls 

rapidly to very low levels but the reactor may restart if the temperature drops 

sufficiently.

Rod Drop: a rod may accidentally be released, and inserted into the reactor core, 

resulting in a small drop in reactivity. The power dips but recovers.
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Normal operating conditions: this category is a special case, the classification 

identifies a “no fault” Or “unknown fault” situation. This separate category for the 

normal operation of a PWR allows for its definite classification. Should a transient 

exist but not be detected by any of the other categories this would indicate that a 

transient exists

4.2.1 Initial investigations using full data set

This section outlines the steps involved in the implementation of a feed forward 

neural network model. A PWR simulator of the primary circuit was used to 

generate the five faults and one normal operating transient at four power levels 

giving 24 transients. The 67 parameters were used as inputs to the ANN, the output 

was represented by six binary' values, a ‘1’ indicating the presence of a transient, a 

‘O’ value indicating an absence. The feedforward backpropagation network was 

chosen, as this had given consistently good results in previous work (Weller 97).

Figures 4.3 and 4,4 show examples of pressure and temperature outputs from the 

simulator for a rod drop transient at 30% full power:

Figure 4.3 Pressuriser change for rod drop at 30 % power
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Time

Figure 4.4 Temperature change of coolant for rod drop at 30%full power

The simulator was run at a steady state for 50 seconds to allow the simulator 

variables to reach a steady state condition, before the transient was initiated. Each 

data set generated consisted of 730 cases. Each case is a snapshot in time, and 

contains the output of 67 plant variables.

A key factor in the training paradigm in the training of an ANN is that balanced 

data sets were used regarding the number and transients investigated. If the 

proportion of transient to non transients in the training dataset is set to reflect the 

proportion found in the transients generated in the PWR simulation, then a bias in 

classification would reflect the a priori probability of the classification being a 

transient or not.

It is also assumed that during the training of an ANN that each of the samples are 

independent and that there are no chronological influences present in the data set. 

If these criteria are true, and the data set is sufficiently large, the best approach to 

this is to build up both data sets by picking samples at random from the original 

data set.

Three balanced data sets were prepared and randomly assigned for the training, test 

and validation of the ANN model. Approximately 350 cases would be used as 

training set for the ANN, 100 cases as a test set, and 230 cases used as an 

independent validation set. Each case was assigned randomly to either a training.
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test or validation data set. The development process consisted of training a series of 

ANNs with one or two hidden layers. Each ANN was trained for 120,000 iterations 

with testing every 100 iterations, the best network being saved. The RMS error 

between the expected and the actual output from the ANN was used as a measure 

of the best performing network.

The best ANN developed had a RMS error of 0.016, and consisted of two hidden 

layers consisting of 30 and 15 nodes respectively. The full data set was then 

presented to this ANN to explore the accuracy and distribution of error. Figure 4.5 

shows an example output from the ANN for a downstream steam leak at 60% full 

power.

Steady state

Throttle 
opening 
Primary 
coolant leak 

—— Downstream 
leak

-------Rod drop

-------Group drop

time

Figure 4.5 downstream leak at 60% full power

In this example, using a detection threshold of >0.95 indicating the presence of a 

transient, the ANN reports a normal operating condition for 15 time steps. Once the 

transient is initiated, (at 15 time steps), the steady state condition falls to zero, and 

a downstream leak is detected after 2 time periods.

Analysis of the validation data set showed that all transients were correctly 

diagnosed within four time steps, and remained above the 0.95 threshold for the 

duration of the recording. A summary of time steps taken for a transient to be 

correctly classified is shown in table 4.2.
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20% full 40% full 60% full 80% full
T  r a  n.s ie r i  t power power power power

Throttle 4 3 2 1
opening

Primary 3 4 2> 3
coolant leak
Steam leak 1 1 2 1

Rod drop 3 3 4 3

Group drop 4 3 2 1

Table 4.2 Transient Classification Times (number of time steps)

4.2.2 The Effect of Noise on Classification

There has been much interest in the application of noise to feedforward neural 

networks in order to observe their effect on network performance. How a trained 

neural network performs with respect to seen (training data) and unseen data 

(validation data sets) is known as generalisation, the performance of the network 

being evaluated on the validation data set.

It was decided to test the fault transient classifier by adding Gaussian noise to the 

validation data set in order to reflect the noise that may be found in 

instrumentation, for example a poorly calibrated temperature transducer or a faulty 

connection. The results from these tests would provide some measure of the 

‘operational limits’ of the neural network.

As an initial investigation, 2% Gaussian noise (Bartlett, 1991) was added to the 

validation data set (except those parameters which consisted of a binary output, for 

example valve status), this data set was then presented to the trained ANN 

described above. The results from this experiment are shown in table 4.3.

49



Transient 20% full power 40% full power 60% full power 80% full power

Throttle opening Failed to 
classify

12 1 1

Primary coolant 
leak

3 3 4 2

Downstream leak 1 1 1 1

Rod drop 2 3 7 1

Group drop 2 2 2 1

Table 4.3 number of time steps taken for classification

The performance of the trained ANN fault transient classifier when presented with 

gaussian noise added to the validation data set was poor; the RMS error recorded 

when 2% Gaussian noise was added to the validation data set led to an increase in 

the RMS error from 0.016 to an RMS error value of 0.2421. Many of the transients 

presented to the neural network took much longer to be diagnosed, or in the case of 

a throttle opening transient at 20% full power, failed to classify as shown in table 

4.3. It was also observed in some cases that were correctly diagnosed, several 

misclassifications or ‘false alarms’ were indicated prior to the fault being correctly 

classified. An example of this can be seen in figure 4.6. In this example 2% 

Gaussian noise is added to the validation set, and the output of the ANN recorded 

for a steady state condition. A steady output indicating a normal condition is 

observed after 13 time steps; however, a spike at 11 seconds falsely indicates a 

primary coolant leak.
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1.2

steady state

------ primary
coolant leak 
throttle 
opening 
dw nstream 
steam leak 

------ group drop

------ rod drop

Tim e

Figure 4.6 ANN Output for a steady state condition with 2% Gaussian noise in validation set

One possible explanation for the dramatic drop in performance of the ANN is that 

even though an optimised network may have been achieved for the training and 

testing data set, it is possible that this model may have overfit the training sample 

space resulting in poor generalisation capabilities on unseen data. This is because 

the unseen data may be from a different region of parameter space than that 

covered by the training/testing data. A further explanation may be that some 

transients may be very similar, resulting in a complex decision boundary (Bishop 

1996), a 2% change in a parameter value, may result in a change in output.
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4.3 Generalisation

4.3.1 introduction

The aim during the training of an ANN is to minimise the RMS error between the 

actual ANN output and a target value in the training set. It is important that in a 

safety critical system, the successful ability of an ANN to deal with unseen or 

noisy data known as generalisation be demonstrated.

One method for improving the ability7 of the ANN to generalise is to add noise to 

the data used for the training of the ANN. Lawrence (1997) demonstrates that the 

addition of noise to the training data set can result in lower training and 

generalisation error. The effect of this would be to reduce the absolute accuracy of 

the classification (a reduced RMS error), but increase the overall classification of 

unseen transients.

Another method used to improve the generalisation capabilities of the ANN is a 

process known as early stopping (Masters 1993). In this process, training on a 

given data set is stopped prematurely before an optimal solution is obtained. The 

idea behind this is that if training is continued the generalisation capabilities of the 

model will diminish, as at some point the additional 'Knowledge’ of the system 

will not be gained but characteristics of the data considered. By monitoring the 

cross validation performance during learning, the learning process is stopped when 

there is no more improvement.

Finally the large size of the ANN (67 input parameters, and 45 parameters in two 

hidden layers), leads to an increase in complexity of the ANN, which can cause the 

ANN during its training phase, to learn solutions that are consistent with the 

training data, but poor approximations of the problem under consideration. The 

excessive number nodes may cause a problem called overfitting (Masters 1993).

The next stage of work was to train a series of ANNs, incorporating the strategies 

described above, and to see if improvements could be made to the ANN fault 

classifier in its ability7 to correctly diagnose unseen/noisy transients.
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4.3.2 Addition of noise during the training of an ANN

Several authors (Bishop 1996, Lawrence 1997) have observed that the addition of 

noise to the input vectors during the training of an ANN can improve the ability of 

an ANN to generalise.

Figure 4.7 fixed function approximation of a function with noise

In figure 4.7 the circles denote the data points about the underlying function h(x), 

with the addition of noise. For a fixed function g(x), the bias will be high, whilst 

the variance will be zero, however, should the function g(x) model exactly the data

points as in figure 4.8, the bias is low but the variance is high.
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Figure 4.8 exact interpolation of a function with noise

Bishop describes the effect of adding noise to the input vectors is to ‘smear out’ 

each data point, thereby making it difficult the training algorithm to fit ever}/ point, 

and therefore reducing the chances of the ANN of over-fitting the data.

4.3.3 implementation

Keeping the same ANN architecture and data sets used in the previous work, a new 

ANN was trained. However, this time 2% Gaussian noise was added to real 

numbers in the training set, with 0 to 2 % noise added to the validation data set for 

use in testing the performance of the ANN.

Figure 4.9 shows the reduction in RMS error when training the ANN with 

(network f8), and without noise present in the training data (network f9). During 

the training of the ANN, a test data set was presented every 100 iterations, the best 

ANN (lowest RMS error) saved automatically.
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Figure 4.9 ANN network training with and without noise

The minimum recorded RMS error is reached at approximately 17000 iterations. 

The results indicate that training with noise, not only reduces the time taken to 

achieve a minimum error, but also produces an ANN with a lower RMS error.

During the training process, the test set used for cross verification and for 

identifying the early stopping of training (training is stopped when no improvement 

in the RMS observed when test data is presented to the ANN over several iterations 

set by the user), in effect becomes part of the training set; therefore a validation set 

is used to independently test the ANN. To test the generalisation abilities of the 

ANN, between 0-2% Gaussian noise was added to the validation data set. Each 

validation data set was then presented to the fault classification ANNs trained with 

and without noise. The results are shown in table 4.13.
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ANN trained without noise ANN trained with noise (2%)

Validation data 
set (% noise)

RMS error Validation data 
set f% noise)

RMS error

0.0 % 0.1264 0.0 % 0 1229

0.5 % 0.1314 0.5 % 0.1238

1.0% 0.1625 1.0% 0.1393

1.5% 0.1982 1.5 % 0.1639

2.0 % 0.2421 2.0 % 0.1879

Average RMS error 0.172 Average RMS error 0.14756

Table 4.4 RMS error for ANN trained with/without noise

The average RMS error provides an overall measure of the performance of the 

system. The lower average RMS value of the neural network trained with noise 

may suggest a better performing network than one trained without noise, and 

inspection of the results finds this to be the case. Figure 4.10 shows the results for a 

network trained with noise presented with data for a steady state at 30% full power 

with 2% Gaussian noise added. When compared to fig 4.6 it can be seen that there 

is an improvement in the ability of the ANN to generalise, with a corresponding 

reduction in the potential for misclassification.

------ steady state

------ throttle
opening 
primary 
coolant leak 
dow nstream 
leak

------ rod drop

------ group drop

Figure 4.10 ANN output for a steady state condition with Gaussian noise added to training

data set
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The results of this investigation would suggest that the addition of noise to the 

training set would improve the overall performance of the ANN by representing 

the underlying systematic aspects of the data, rather than capturing the specific 

details,

4.4 ANN fault Classifier Training

4.4.1 introduction

The series of experiments that follow incorporate the three methods, early stopping 

of training, the addition of noise to the input data, and a reduction in complexity of 

an ANN, in trying to improve the ability of the ANN fault classifier in correctly 

diagnosing unseen transients in a PWR.

When developing an ANN, many problems require its architecture to follow a 

geometric pyramid rule (Masters 1993). A large number of input nodes would 

increase the complexity of the ANN, but generalisation favours simpler structures 

(Bishop 1996).

In the initial ANN fault classifier, there were 67 input parameters. Discussions with 

plant operators on the results of the experiment highlighted that several of the 

parameters used in the ANN may not be measurable despite initial investigations. 

Analysis of the input data during training revealed that several of the plant 

parameters did not vary. Taking these considerations into account, the number of 

input parameters was reduced from 67 to 32 input parameters.

The experiment highlighted the need for the addition of the noise to the training set 

to improve classification, but the amount of noise to be added is unknown.
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4.4.2 Implementation

In order to investigate the effect of noise on the training of the ANN fault 

classifier, the number of hidden layers, and the number of nodes, would need to be 

fixed.

For a four-layer network with n input neurons and m output neurons, Masters 

(1993) gives a good starting point for the computation of hidden-layer neurons:

Number of neurons in hidden layer 1 NHID1=m r2 (4.2)

Number of neurons in hidden layer 2 NHlD2=/nr (4.3)

The number of plant parameters to be used as inputs (n) was 32, with 6 outputs 

Therefore:

Number of neurons in hidden layer 1 = 18

Number of neurons in hidden layer 2=11

The ANN topology defined by Masters was used to investigate the effect of adding 

gaussian noise to the input vectors. Gaussian noise was added to the training data 

in 0.2% increments. Unlike the previous experiment, the topology of the ANN was 

fixed during training.

A series of ANN were trained three times with randomly assigned weights to 

ensure that the ANN during training had not been trapped in a local minima. The 

eleven best ANNs developed for each increment of noise added to the training data 

were then tested against validation sets that had between 0-2% Gaussian noise 

added to them. The full results obtained from these experiments are given in 

Appendix B. Figure 4.11 illustrates the RMS error profile from the experiments.
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Figure 4.11 RMS error profile

The results of the experiment show that initially a small addition of noise (0.2%) to 

the training data results in an increase in performance of the ANN. However when 

the amount of noise added to the training data (2%) is increased, the performance 

of the ANN deteriorates. It can also be seen that overall, the performance of all the 

ANNs deteriorates as noise in the validation data sets is increased.

4.4.3 Noise in training, experimental results

The results in the previous work had indicated that the addition of noise in the 

training data could dramatically improve the robustness of the ANN. The next 

stage in development was to investigate whether the performance of the fault 

classifier could be further improved by examining a new ANN topology and the 

effect of adding noise to the input parameters.

Finding the optimum ANN using Masters method for defining ANN topology as a 

starting point the ANN were varied by node increments. In total 147 ANNs were 

trained using a hyperbolic transfer function, with testing every 100 iterations using 

an independent test set. The training was stopped when no further improvement in 

the RMS error was observed. The results of training can be found in Appendix B.
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From the above the four best performing ANNs were chosen (table 4.5), using the 

RMS error:

File name Hidden layer 1 Hidden layer2 RMS error
X 84 16 5 0.0783

X 42 14 5 0.082

X 62 22 7 0 .0826

X I 32 16 7 0.0845

Table 4.5 Best ANNs from training

The four ANNs were then tested against the validation data sets containing 

increasing amounts of Gaussian noise to a maximum of 2%. The results are 

summarised in table 4.6.
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Noise in validation File name
data set X84 X42 X62 X132

0 0.1271 0.1192 0.1203 0.1116

0.1 0.1293 0.1229 0.1214 0.1131

0.2 0.126 0.1207 0.125 0.1164

0.3 0.1186 0.1183 0.1181 0.113

0.4 0.133 0.1362 0.1296 0.1419

0.5 0.1526 0.1742 0.1569 0.1561

0.6 0.1683 0.1654 0.1685 0.1595

0.7 0.1921 0.1863 0.1693 0.2033

0.8 0.1947 0.2174 0.1981 0.2051

0.9 0.2117 0.2096 0 2012 0.2269

1 0.2256 0.2552 0.2409 0.242

1.1 0.2409 0.2623 0.2298 0.2552

1.2 0.2848 0.2821 0.2798 0.2761

1.3 0.2836 0.285 0.2785 0.3191

1.4 0.2726 0.3018 0.2834 0.2899

1.5 0.3056 0.2992 0.3034 0.3209

1.6 0.3111 0.3513 0.3285 0.3442

1.7 0.3598 0.2761 0.3605 0.3775

1.8 0.3639 0.3704 0.3748 0.3863

1.9 0.3353 0.3572 0.3383 0.3691

2 0.3857 0.4006 0.3861 0.3944

Average RMS 0.234395 0.238638 0.233924 0.243886

Standard deviation 0.088318 0.090656 0.091863 0.099514

Table 4.6 validation of ANNs trained without noise

The best ANN (file X62) developed had an average RMS error of 0.233924, and 

consisted of 2 hidden layers of 22 and 7 nodes respectively. This ANN topology 

was then used for further testing. With the ANN topology fixed, a further series of 

ANNs were trained with increasing (0.2 % increments) amounts of Gaussian noise 

added to the training data set. The best performing ANN trained for each increment 

of noise was saved. These ANN were then tested against increasing levels of 

Gaussian noise in the validation set. The results of the experiment are shown in 

figure 4.12. Full results of the experiments are given in appendix B.
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Figure 4.12 RMS error profile

4.4.4 Discussion

A key attribute of ANNs is their ability to generalise. The relationship between the 

amount of data available for training and ANN complexity can lead to the ANN 

overfitting of the data during training. Should the ANN overfit the training data 

then its ability to generalise may be reduced. The complexity of an ANN is 

governed by the number of adaptable parameters that exist, e.g. the number of 

weights in an ANN model. However as the relationship between the number of 

weights in an ANN model and the minimum amount of training data needed to 

prevent overfitting is not explicitly known, the generalisation ability of an ANN is 

often monitored during its training. Another method to improve the ability of an 

ANN to generalise is to add artificial noise to the training set.

The results of the previous experiment (figure 4.12) suggest that the addition of 

levels of noise required to dramatically improve the ability of the ANN are small, 

typically 1% Gaussian noise. When comparing ANNs trained with variable 

architectures and the fixed architecture (figure 4.13) described by Masters (1993), 

there is only a marginal improvement, in the average RMS error.
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number of time steps used in training

Best fixed ANN 
Architecture
Best variable ANN 
Architecture

Figure 4.13 comparisons of fixed and variable ANN architectures

An improvement in the ability of the ANN to generalise would be reflected in 

increased robustness of the fault ANN to noise that may present in plant parameters 

for example calibration drift or core ageing, but at the expense of classification 

accuracy.

4.4.5 Final validation fault classifier

After inspecting the results of the previous experiments, the ANN (FN20) with an 

RMS error of 0.1815 was chosen as the ANN to be implemented in the Operators 

Advisory System. This ANN with 1.2 % Gaussian noise added to the training data 

performed better when presented with validation data containing 0-1% gaussian 

noise.

A summary of the number of time steps taken to identify a transient is shown in 

table 4.7. In general, there has been an overall increase in the number of time 

steps to classify a transient when compared to the initial experiments (table 4.2), 

with the maximum number of time steps to diagnose a transient increasing from 4 

to 15. The time steps taken to classify a throttle opening transient at 60% and 80% 

full power is higher then at 20% and 40% full power, the reverse trend found in 

the initial experiment.
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20% full 40% full 60% full 80% full
Transient power power power power

Throttle 8 7 15 10
opening

Primary 6 3 2 4
coolant leak

Steam leak 2 3 6 4

Rod drop 2 3 2 6

Group drop 7 2 7 3

Table 4.7 number of time steps taken to identify transient

Further tests on FN20 were conducted with a new set of six transients generated by 

the PWR simulator. Gaussian noise (0.5%) was added to the data and presented to 

the ANN FN20. The results are shown in figures 4.14 - 4.19.

normal
primary coolant leak 
throttle opening 
steam leak 
group drop 
rod drop

Figure 4.14 Normal Operating Conditions
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Figure 4.15 Primary Coolant Leak Transient
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Figure 4.16 Throttle Opening Transient
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Figure 4.17 Steam Leak Transient

------- normal

primary coolant leak 

throttle opening 

steam leak

------- group drop

------- rod drop

Figure 4.18 Group Drop Transient
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Figure 4.19 Single Rod Drop Transient

Generally the results from the further testing of the ANN with a new set of 

transients were very encouraging. All the transients were correctly diagnosed. The 

trained ANN is sufficiently robust to deal with levels of noise that may occur 

within a transducer or in signal processing during the measurement of plant 

parameters within the primary circuit of a PWR. The transients were quickly 

diagnosed with the exception of the single and group rod drop (figures 4.18 and 

4.19), where there is a short hesitation in the correct diagnosis of the transient. This 

may be due to the simulator not being allowed to settle into a steady state 

condition, prior to the initiation of the transient.

Difficulties have been reported in the training of ANNs in the diagnosis of 

transients over long periods of time (Bengio et al 1994); however as can be seen in 

figures 4.14 to 4.19, this is not the case in the above trained ANN transient 

classifier. Once the correct diagnosis has been achieved, the ANN output remains 

stable for the remainder of the recording.
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4.4.6 Discussion

The results of the experiment show an overall enhancement in the performance of 

the ANN. The accuracy of classification and stability of the ANN output over time 

are better then the ANN trained without noise added to the training data however, 

the amount of time taken to correctly identify the transient is longer. The time 

taken for the identification of a fault is comparable and often faster than a plant 

operator. All of the transients were quickly diagnosed,

4.5 Conclusion

This chapter has presented work undertaken to investigate the use of an ANN for 

the early identification of a fault transient. The experiments conducted in this 

chapter confirm that feedforward ANNs are an ideal tool in diagnosing transients 

in a pressurised water reactor, with all transients quickly and accurately classified. 

These were pre-defined as an ANN output value greater than 0.95 to classified as a 

1 (transient present), 0 (transient absent).

The initial ANN model failed to correctly classify transients when presented with 

noisy data. However, when noise was added during training stages of an ANN, the 

performance and sensitivity of the ANN was dramatically improved. The choice of 

network topology suggested by Masters were very close to finding the optimum 

solution for the problem, even when the addition of noise to the training data. The 

final ANN reported on will be used in the development of the proposed Operators 

Advisory System described in chapter 8.
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Chapter 5

Small Loss of Coolant Leak Monitor

5.1 Introduction

In chapter four, an Artificial Neural Network (ANN) was used in the development 

of a pressurised water reactor (PWR) fault classifier. However, the information 

relayed to the plant operator did not quantify the size of the fault. The small loss of 

coolant leak monitor module developed in this chapter is used in the quantifier 

layer in the Operator Advisory System (OAS) described in chapter seven. The 

inputs to the monitor would be a recordable subset of the plant data available for 

analysis.

The structure of this chapter is as follows; a brief outline is given of some practical 

considerations relevant to the investigations reported in this chapter. The initial 

investigations on the ANN small loss of coolant leak monitor are then reported. 

The performance of the developed ANN is then examined and the information 

gained is used to train a new ANN monitor. Finally, a summary is given in section 

5.7.
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In the proposed OAS, its top layer performs a diagnostic function. The next layer 

in the OAS contains modules that pertain to the size or location of the fault 

diagnosed. The problem under consideration here is the monitoring of a small loss 

of coolant accident (LOCA). The data used for the monitor, would is a sub set of 

data obtained from the primary circuit of a pressurised water reactor. The criteria 

for its implementation in the OAS could be one of two methods:

• A LOCA is detected in the fault classifier

• The monitor is on all the time

If a leak were present, this information together with the fault diagnosis would be 

presented to the plant operator (refer to chapter 3). The proposed implementation 

of the small loss of coolant monitor in the OAS is shown in figure 5.1.

Figure 5.1 Embedded Small Loss of Coolant Monitor in OAS
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5.2 Background

The reactor compartment of a Pressurised Water Reactor’ is often referred to as a 

‘hostile environment’ with high temperatures and humidity. Because of the harsh 

conditions, the transducers used for the monitoring of plant parameters are 

designed to withstand the tough conditions and provide a stable output over long 

periods. However, during an accident the readings from the transducers in this 

environment may become unreliable. Over the last few years, new leakage 

detectors have become available for the early identification of leaks. The 

requirement of small leakage monitoring (IAEAC 1999) is to meet international 

standards and regulations and has become an important part of a planned 

maintenance. Small leaks can often provide early warning of a major break pipe 

break or ageing of pump or valve seals.

The main effects of a loss of coolant leak occurring in a confined space can be 

defined as:

• Radiation/chemical

• System Response

• Heat

• Noise

The two most common methods for determining primary-to-secondary leak rates 

are the sampling of the secondary side of the steam generator for iodine and 

sampling feedwater for tritium. This chapter investigates the use of recordable 

plant parameters in the primary circuit of a PWR to estimate the leak rate of a 

small primary-to-secondary leak.
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5.3 Implementation

This section outlines the steps involved in the development of an ANN to monitor 

small losses of coolant from the primary to the secondary circuit of a PWR

The management of small leaks from the primary circuit relies on observations of 

the effects on the loss of primary coolant from the PWR and the environment 

within the containment vessel, the primary observations being radiation/chemical 

monitoring, the rate of fall of water height within the pressuriser, and acoustic 

noise. However these are only approximate indicators, as these observations take 

no account of the dynamic changes in the volume of coolant in the primary circuit 

during differing operating conditions, for example changes in power demands, rod 

positions etc.

The location of the leak can also prove problematic, as often the actual site of the 

coolant leak may be several metres from the observed leak. This can occur when 

the thermal lagging material surrounding the piping masks the leak, the coolant 

travelling through the boundary layer between the pipe and the lagging emerges 

elsewhere. Condensation runoff and radiochemical observation, though 

measurable, can be difficult to quantify. For example, a radiation detector may 

provide a warning when the amount of radiation present, is greater than a pre-

determined threshold. Small leaks in the primary coolant system are therefore 

difficult to not only detect, but also to monitor.

A constant loss of pressure can equate to a small or large loss of coolant (figure 

5.2);

Pressure/Height

Figure 5.2 Embedded Small Loss of Coolant Monitor in OAS
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A constant pressure with a loss of pressuriser height together with an increase of 

reactor compartment temperature can also indicate a loss of coolant accident 

(LOCA); this may also be combined with a high water level recorded in the reactor 

compartment. It is often the case that a radiation detector will be the first to provide 

a warning if a leak has occurred.

5.3.1 Initial investigations with full data set

The next stage of work was to investigate whether the technique used to diagnose 

PWR transients, could be used to develop a small leak monitor for a loss of coolant 

from the primary circuit of a PWR. A primary circuit simulator was used to 

generate 6 small coolant leaks, at 4 power levels. The simulator was run for 50 

time steps before a LOCA was initiated, and an output file for the transient was 

generated. The data for 32 plant variables were randomly divided into training and 

test data sets in the approximate ratio of 2:1. A series of ANNs were trained with 

the data. In each case the training data was presented for 120,000 cycles with 

testing every 100 cycles with the best ANN being saved. The number of nodes was 

chosen heuristically.

5.3.2 Results

The best ANN developed with an RMS error 0.178 consisted of 2 hidden layers 

with 26 and 10 nodes respectively. The trained ANN was then presented with an 

independent validation data set of 6 simulated leak rates at 4 power levels. Table 

5.1 shows the number of time steps taken for the trained ANN to correctly identify 

the presence of a correct leak size.
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Size of leak 10%full
power

30% full 
power

50% full 
power

70% full 
power

0.2 Kg/s 20 45 22 20

0.4 Kg/s 81 17 11 12

0.6 Kg/s 64 21 14 16

0.8 Kg/s 51 17 13 55

1 Kg/s 61 18 13 19

1.2 Kg/s 70 8 5 8

Table 5.1 Times to Detection

0.2 kg/s 
0.4 kg/s 
0.6 kg/s 
0.8 kg/s 
1 kg/s 
1.2 kg/s

Figure 5.3 ANN output for a 0.8kg/s loss of coolant accident at 10% full power

All leaks were correctly diagnosed within 81 time periods when an acceptance 

threshold was set at 0.95 (table 5.1). An example of the ANN output for the trained 

network is shown in figure 5.3, which indicates correctly the presence of a 0.8 kg/s 

loss of coolant from the primary to secondary circuit, in 51 seconds. The lowest 

RMS level was chosen as an indicator of the best ANN, no attempt at this stage 

was made to see if any of the inputs from the data sets were redundant.
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5.3.3 Discussion

The results for transient identification demonstrated that an ANN could quickly 

diagnose a transient condition. The time taken to diagnose a transient compared 

favourably with earlier work. A general observation is that the greater the power 

level, the more accurate and faster the classification time (table 5.1). The initial 

results for small leak monitoring showed that the ANN was able to correctly 

classify all leaks within 81 time steps. However, the performance of the network 

was poor when classifying leak rates at low power levels for example at 10% full 

power, and this was reflected in an increase in classification time. For a 0.4 kg/s 

and 0.6kg/s leak rates, the network correctly diagnosis the LOCA but not before 

indicating the presence of much larger LOCA first.

One possible explanation may be the change in the plant dynamics caused by the 

initial starting conditions of the PWR simulator. An example for a potential 

misclassification (false positive) can be seen in figure 5.4.

0.2 kg/s 
0.4 kg/s 
0.6 kg/s 
0.8 kg/s 
1.0 kg/s 
1.2 kg/s

Figure 5.4: ANN output for a 0.6kg/s

If the acceptance threshold were lowered to 0.85, the 0.6kg/s LOCA at 10% full 

power would have been misclassified. The ANN would have incorrectly indicated 

a 1.2kg/s and 0.8 kg/s leak rate before providing a correct diagnosis. The results at 

higher power levels resulted in faster classification times, and a larger difference 

between the correct size LOCA, and others. The ‘jagged’ output for 0.6, 0.4 and
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0.2 kg/s in fig 5.3, seems to occur at lower power levels, this may be due to the 

leak rates sharing a similar solution space. Once again this noise has the potential 

to miss-classify a leak rate.

The results for a no leak or normal transient are also of interest. The ANN 

classifies the normal transient to be the smallest transient, i.e. the 0.2 kg/s, and this 

result was consistent at all four power levels as shown in figure 5.5.

0.2kg/s 

0.4kg/s 

0.6kg/s 

0.8kg/s 

1 Okg/s 

1 2kg/s

Figure 5.5 No Leak at 30% full power

The results from the initial investigation of the use of ANN as a small leak monitor 

were encouraging. The ability of the ANN to find the very small changes in plant 

parameters and then correctly classify them had been demonstrated.

The simulator code was then modified to provide a double fault, a background 

transient of a throttle closing during a 0.2 kg/s loss of coolant. The data from the 

simulation were presented to the ANN the results of which are shown in figures 

5.6.
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1.2

-------0.2 kg/s

------- 0.4 kg/s

0.6 kg/s 

0.8 kg/s

-------1.0kg/s

-------1.2 kg/s

Figure 5.6 0.2kg/s LOCA with a throttle closing transient

The output of the ANN initially indicate a leak rate of 0.2 kg/s, but as the throttle 

closing transient begins to take effect in the primary circuit of the PWR, larger leak 

rates (0.6 kg/s when an ANN output level of 0.85 is used) are indicated.

The results for these preliminary experiments were promising; however the limits 

of the feedforward back propagation method for classifying plant parameters for 

small leaks within the primary circuit had been reached. Analysis of the simulated 

plant data for small leak rates, revealed only small changes in plant parameter 

values, and in the real world many of the changes would be so small as to be un-

measurable.
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5.4 Artificial Neural Network, Time-delay

5.4.1 Introduction

The results from the initial investigation of the use of ANN as a small leak monitor 

were encouraging and warranted further investigation. After speaking to plant 

operators, it was proposed that a more realistic range of small leaks would be 

between 0.1 and 0.6 kg/s. but as observed in the previous work the accuracy 

needed to be improved at these small leak sizes.

To help improve the accuracy of the classification, temporal patterns within the 

data needed to be taken into account. One way of converting a time varying signal 

into a static vector is to accumulate several time steps of data and then present 

them as a single vector (Swingler 1996, p43) thus creating a time delay neural 

network. By delaying the signal at various lengths, more complicated ANNs can 

be created.

If the input contains n parameters and is delayed by d  time periods, there will be nd  

inputs to the network. As new data becomes available, they are placed in nodes at 

one end, and old information shifted down a series of nodes. An example of a time 

delay ANN is shown in figure 5.7, where a plant parameter p  is delayed by nd  time 

steps.
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Leak
Rate

Leak
Rate Output layer

Hidden layer

Figure 5.7 Time-Delay ANN

However, it can be seen that as the number of time steps is increased, there is a 

corresponding increase in the complexity of the ANN, which is governed by the 

amount of adaptable parameters i.e. the weights. An increase in the number of 

variables in a problem to n, the associated complexity increases faster than a 

polynomial of order n (Basu, 1994).

Relationship exists between the complexity of an ANN and the amount of training 

data. An increase in the complexity of an ANN requires an increase in the amount 

of data required for the training to prevent the ANN from overfitting the data, and 

hence in a reduction in the ability of the ANN to generalise. In addition, the result 

of the increased complexity can lead to an increase in training times, and a higher 

probability of the ANN failing to correctly classify leak rates. In order to 

investigate the effect of number of time steps and classification, it was necessary to 

reduce the number of input parameters, in order to reduce ANN complexity.
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5.4.2 Sensitivity Analysis

Sensitivity analysis is a method for examining the cause and effect relationship 

between the inputs and outputs of the network. The network learning is disabled 

during this operation such that the network weights are not affected. The sensitivity 

about the mean test provides feedback as to which input parameters are the least 

significant. Once completed, the results of the test allow pruning the input 

parameters by removing the insignificant channels. This will reduce the size of the 

network, which in turn reduces the complexity and the training times.

Figure 5.8 shows a sensitivity about the mean analysis for the 67 input parameters. 

During the training of the ANN, the input parameters to the ANN are shifted 

slightly (by 1 standard deviation), and the corresponding change in the output is 

reported.

Figure 5.8 Sensitivity about the Mean Analysis

From the sensitivity analysis and consultations with plant operators, the most 

significant plant parameters chosen for use in the training of an ANN to monitor a 

small loss of coolant were:
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• Temperature average (Tavg)

• Pressuriser pressure

• Pressuriser water level

• Start up rate

• Rod position

• Temperature cold leg

The plant variables chosen for use in the development of a loss of coolant leak rate 

monitor are all measurable and routinely monitored in a PWR control room by 

plant operators.

5.5 Optimum Time Steps

5.5.1 Introduction

A PWR simulator was used to generate a new set of small loss of coolant leaks for 

the training and evaluation of a leak rate monitor. For it to be used in the proposed 

Operators Advisory System, it was important that this time a ‘no leak’ diagnosis 

was included in the classification. The sizes of the leaks were between 0-0.5 kg/s. 

and using the results from the experiment above, 6 plant parameters were chosen 

(5.4.2).

5.5.2 Implementation

As in the previous experiment, the method described by Masters for the selection 

of the network architecture was used as a starting point; a series of ANNs were 

trained, with the number of nodes altered heuristically. Unlike the previous 

experiment, Gaussian noise was added to the training, and validation data sets. As 

before the hyperbolic tangent transfer function was used and each ANN was 

trained for 120,000 cycles with testing every 100 cycles with the test set, the best 

network being saved. The optimum network for each time step was found using 

the RMS error as a guide to performance. The results of the test are summarised in 

table 5.2. Full results are given in appendix C.
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Number of Number of Hidden Hidden RMS error
time steps inputs layer 1 layer 2

1 6 20 10 0 .4489

2 12 40 20 0.3833

3 18 30 15 0.2883

4 24 40 20 0.3098

5 30 30 15 0.2418

10 60 30 15 0.1657

15 90 36 15 0.1682

Table 5.2 number of time steps

The ANN trained using ten time steps was chosen for further testing as this 

network had a marginally lower RMS error (0.1657) than for fifteen time steps 

(0.1682). An ANN trained with ten time steps gives rise to an input vector 

consisting of 60 inputs, it was thought that this should be the maximum number of 

time step used as the larger the number of inputs leads to an increase in complexity 

and associated problems also. The increase in the number of time steps leads also 

to an increase in the time taken for a diagnosis to be made. The results of the 

presentation of the validation data set to the ten time step ANN are given in table 

5.3.

Size of leak 40 %full 
power

60 % full 
power

80 % full 
power

100 % full 
power

0.0 Kg/s 3 10 8 9

0.1 Kg/s 13 7 7 8

0.2 Kg/s 8 12 9 14

0.3 Kg/s 7 5 7 9

0.4 Kg/s 10 3 5 7

0.5 Kg/s 12 6 11 4

Table 5.3 number of time steps
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----------0.5 ty s

Figure 5.9 ANN results for LOCA 0-0.5 kg/s
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The ANN classification of loss of coolant leak rates trained using the 6 plant 

parameters that were derived from the sensitivity analysis and were routinely 

monitored by plant operators, produced results that are acceptable. The oscillations 

in ANN output shown for a no leak, and 0.2kg/s classification leads to a false 

classification of 0.1 and 0.3 kg/s respectively (see table 5.3). This leads to an 

increase in the time taken to correctly classify the leak rate.

5.5.3 Intermediate values

Another data set was generated, this time to explore the effect of leak rates, which 

were intermediate to leak rates used for the training of the ANN. The leak sizes 

simulated were 0, 0.15, 0.25, 0.35, 0.45 and 0.55 Kg/s. The full data set was then 

presented to the ANN to investigate the accuracy and performance of the ANN.

The best RMS error from the ANN when presented with the test data was 0.4685. 

When 1% gaussian noise was added to the data set, the RMS error increased to 

0.5345. The results are given in figure 5.10.

Closer inspection of the results for intermediate leak rates show that for leak rates 

1.5, 2.5, 3.5 and 4.5kg/s the ANN output oscillates between the two closest values. 

For example for a leak rate of 1.5 kg/s the ANN output oscillates between 0.1 and 

0.2 kg/s. for a leak rate of 0.55 kg/s, the ANN output settles on the largest leak rate 

classification, 0.5 kg/s.
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Figure 5.10 ANN results for intermediate LOCA

5.5.4 Discussion

Generally these results were encouraging; the ANN correctly classified leak sizes it 

was trained on. The leak rates that were used for training were those that were 

useful to diagnose and classify quickly. The maximum time taken for the correct 

estimation of a leak rate was less than 15 time steps (table 5.3). However, for 

intermediate values the ANN cannot choose between the two nearest classification 

values as the ANN output was in a binary format. To obtain the correct leak rate it 

may be necessary to train another ANN on intermediate values and then compare 

ANN outputs.
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5.6 Classification of Actual Leak on a Continuous Scale

5.6.1 Introduction

So far, two schemes for estimating leak rate of primary coolant have been 

investigated. Though adequate for operational purposes, (only discrete intervals are 

required), they did not satisfactorily quantify intermediate leak rates for example a 

leak rate of 0.25 Kg/s. The extra ANN modules required for finding a solution 

would lead to an extra processing step, leading to an increase in complexity and 

time taken for the OAS to provide an estimate in leak rate.

The previous experiment confinned the use of a time delay ANN did increase the 

accuracy of the classifier to estimate the actual primary coolant leak rate. A further 

method of improving the performance of the ANN would be to investigate this 

method to estimate the leak rate on a continuous scale rather than discrete values. 

To investigate this concept further two ANN models were investigated using five 

and ten time-steps.

5.6.2 Prediction of leak rate using 5 time steps

A series of ANNs were trained using the same data as the previous experiment. 

However, this time the target value during training was the leak rate value (real 

number) provided by the PWR simulator. The training data with 1% Gaussian 

noise were presented for 120,000 cycles, with testing every 100 cycles, the best 

network being saved. The results are given in table 5.4.
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File name Layerl Layer2 RMS error

L37 35 15 0.2966

L38 40 10 0.3015

L39 20 10 0.3062

L40 25 10 0.2977

Table 5.4 Leak rate using five time steps

The best ANN (file L37) had an RMS error of 0.2966. When presented with the 

validation data set, the RMS error increased to 0.3015, and when 5% Gaussian 

noise was added to the validation data set the RMS error increased to 0.4521.

Figure 5.11 shows the output of ANN (estimated leak rate) for a range of primary 

coolant leaks.

input 
leak rate

ANN
output

Figure 5.11 ANN results for classification of leak rate (5 times step)

The above results show that for the normal operating condition, and smaller leak 

rates (0.1 and 0.2 kg/s) the estimation is poor. The ANN overestimates the leak rate 

at the beginning of the transient, and then tends towards the actual leak rate. 

However, for the larger leak rates the ANN underestimates the leak rate though it is 

closer to the actual leak rate. A possible reason for the over/under estimation in
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leak rate may be the time taken for the transient to settle during the simulation. 

This could be eliminated by having the simulator run for a longer start-up period.

5.6.3 Estimation of leak rate using 10 time steps

The above experiment was carried out this time with ten time steps, using the same 

data sets for training, testing and validation. As before, 1% Gaussian noise was 

added to the training set and each network was trained for 120,000 cycles with 

testing every 100 cycles, the ANN with the lowest RMS value being saved.

The two networks with the lowest RMS error were chosen for further testing. A 

series validation data set containing no noise, one and five percent were presented 

to the ANNs, with the corresponding RMS errors noted. The results are 

summarised in table 5.5.

File name Layerl Layer2
RMS
error

Validation 
Validation (1% noise)

Validation 
(5% noise)

L45 35 15 0.0456 0.0727 0.154 0.4968

L46 40 10 0.0534

L47 30 10 0.0491

L49DR 20 14 0.0413 0.0629 0.1545 0.4788

Table 5.5 Leak rate using ten time steps

The leak rate estimation by the best performing ANN (file L49 DR) using the three 

validation sets is shown in Figures 5.12-5.14.
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Figure 5.12 ANN results for classification of leak rate (10 times step) no noise

actual 
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Figure 5.13 ANN results for classification of leak rate (10 times step, 1% noise)
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actual
leak
rate
ANN
output

Figure 5.14 ANN results for classification of leak rate (10 times step, 5% noise)

The simulated data for intermediate leak rates from the previous experiment were 

then presented the ANN; the results are shown in figure 5.15.

actual
leak
rate

ANN
output

Figure 5.15 ANN results for classification for intermediate leak rate
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5.6.4 Analysis of results

From this investigation it can be seen that in general the results for estimation of 

primary coolant leak rate using ten time steps were good. When 1% noise was 

added to the validation data set, the degradation in performance was predictable. 

However when 5% noise was added to the validation data, the RMS error had 

increased to 0.4788, with a corresponding failure in the ANN to provide a 

meaningful output. The actual tolerances stated for many of the transducers used 

for measuring plant parameters are quoted as better than 0.1%, well within the 

capabilities of the ANN leak rate estimator.

Initial experiments on using larger levels of noise during the training of the 

network resulted in a failure of the ANN weight values to converge to a useful 

value. The maximum level of noise that could be added during the training of the 

network and still give acceptable performance was 1% and this is reflected in the 

ability of the ANN to give an adequate estimate of leak rate when 1% noise was 

added to the validation data set.

Unlike the initial investigations, the output from the ANN was not binary; instead, 

the output was an estimation of the actual leak rate. Figures 5.15 and 5.16 highlight 

the inability of the ANN to produce a linear output, by either over or under 

estimating the initial stages of the transient. A possible reason for this behaviour 

could be that the PWR simulator had not reached a steady state condition prior to 

the start of the transient.

5.7 Summary

This chapter has reported on work undertaken to devise an ANN based small loss 

of coolant monitor for use in the operators advisory system described in chapter 7. 

In the first part of the chapter, a general description for leak monitoring is 

described. A PWR simulator was then used to simulate a range of primary-to- 

secondary leaks. The data was used to train an ANN to map plant vectors to their 

respective leak rate category.
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In the second half of the chapter, the use of a time delay ANN for classifying leak 

rates is investigated. Practical considerations required a reduction in the maximum 

leak rate to be classified from 1.2 kg/s to 0.5 kg/s. The increase in the number of 

input parameters when using a time delay ANN results in an increase in the 

number of plant parameters and therefore an increase in network complexity. 

Practical considerations and a sensitivity analysis reduced the number of plant 

parameters to be used in the investigation from 67 to 6. A time delay ANN was 

then trained for a leak rate on a continuous scale. The best ANN (10 time steps) 

was then tested on a wide range of untrained leak rates. The results show good 

generality of diagnosis and early diagnosis. The ANN leak rate monitor was felt to 

be suitably robust to be used in proposed Operators Advisory System described in 

chapter 7.
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Chapter 6

Steam Leak Monitor

6.1 Introduction

In chapters 4 and 5, ANNs were used to develop transient classification modules 

for use in the proposed OAS. The small loss of steam leak monitor discussed in 

this study is to be used in the quantifier layer in the OAS described in chapter 7. 

The development of the module uses information gained from experiments gained 

in chapter 4 and 5 in development of the ANNs.

This chapter reports on a field study carried out to develop a monitor to estimate a 

small loss of steam from the secondary circuit of a Pressurised Water Reactor 

(PWR). The field study acted as a dual-purpose research vehicle to satisfy two 

objectives.

1. To supplement the PWR simulated primary circuit plant variables, with 

‘real world’ external plant parameters.

2. To investigate the potential of using acoustic information for small leak rate 

monitoring using artificial neural networks (ANNs).

To achieve these objectives, acoustic sensors were used to detect and quantify the 

loss of steam from the secondary circuit of a PWR passively. The results from this
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experiment would be used in the development of the Operators Advisory System 

(OAS)

The study goes on to investigate the use of ANNs for differentiating between 

features extracted from the acoustic signatures of small steam leaks generated in a 

steam generator test rig. Analysis of the steam leaks was carried out using a sound 

level meter equipped with a third octave band filter to separate the different 

frequency elements of the noise produced by the different leak rates. 

Simultaneously, a real time digital sound recording of the noise produced by the 

steam leaks was also carried out. The sound recording was transformed into the 

frequency domain for additional processing using a Fast Fourier Transform (FFT). 

The frequency spectrum was then divided into set frequency bands, which were 

then used as inputs into a feedforward backpropagation ANN.

6.2 Background

In chapter 3, the proposed OAS top layer performs a diagnostic function. The next 

layer in the OAS contains modules that pertain to the size or location of the fault 

diagnosed. The problem under consideration here is the monitoring of a small loss 

of steam from the primary circuit of a PWR. It was envisaged that the data used in 

the monitor, would be a sub set of data obtained from the primary circuit of a 

pressurised water reactor. The implementation of the small steam leak monitor 

could be in one of two ways, either once a steam leak is detected in the fault 

classifier, the small steam leak monitor is initiated, or, the monitor remains on 

constantly.

If a leak were present, this information together with the fault diagnosis would be 

presented to the plant operator. The proposed implementation is shown in figure 

6 . 1.
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Figure 6.1 Embedded Steam Leak Monitor in OAS

6.2.1 Steam Leaks

The energy developed in a PWR is used to produce steam in heat exchangers called 

steam generators. Dried steam is generated in the secondary circuit of a PWR, 

which is then used to drive turbines, which generate power. A small loss of steam 

due to a break in the secondary circuit can lead to cooling of the steam causing it to 

change state back to liquid; a consequence of this is a drop in efficiency in power 

generation and may lead to damage of the turbines. The main effects of a steam 

leak to the environment are:

• Noise

• Heat

• Water

• System response
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By observing the above effects either by monitoring the indirect effects of a leak or 

via the use of instrumentation, the plant operator is able to identify the occurrence 

of a steam leak. However if the leak rate is small (typically less than 0.5 kg/s), 

many of the physical effects may not be in evidence. At best, this would result in a 

long delay in its diagnosis, or the leak may go unnoticed. The aim of this chapter is 

therefore the early identification and estimation of a small loss of steam in the 

secondary circuit of a PWR by observing a system response in the primary circuit.

6.3 Initial Investigation

6.3.1 System response to a steam leak

Using the existing simulator of a PWR, a series of five small steam leaks ranging 

from zero to 0.6 kg/s were generated. Initial analysis of the data produced by the 

simulations showed that for this range of steam leaks it was observed that there 

was very little change in the system response of the primary circuit of a PWR. 

Figure 6.2 shows the progression of simulated temperature changes in the hot leg 

of the primary circuit of a PWR at a leak rate of 0.3 kg/s. The temperature 

variations for these small leak rates for many of the plant parameters in the primary 

circuit of a PWR are typically less than 0.2 °C and in a real world scenario are 

approaching the limits of which transducers can accurately record the changes.

Figure 6.2 Temperature change for secondary circuit steam leak of 0.3 kg/s

Using techniques outlined in chapter 5, attempts were made to train a feedforward 

ANN. However, the ANN failed to converge to an acceptable level when presented
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with both a full data and a reduced data set using a time delay ANN. A range of 

ANN learning parameters and topologies were used with no reasonable indication 

of learning in any case. The best network consisting of two hidden layers (31 and 

14 nodes respectively) and at 10-time steps and had an RMS error 0.5823. This 

compares unfavourably with results achieved for the loss of coolant monitor where 

an RMS error of 0.0413 was achieved.

6.3.2 Results

The inability to train an ANN prompted further analysis of the simulated plant 

data. By plotting a graph of the plant data in a suitable format the recognition of 

distinguishing features such as clustering, which characterise the data, may become 

apparent.

However, when the dimensionality of the data is high as is the case from the PWR 

simulations (up to 68 plant variables), a dimension reduction technique is required 

in order to visualise the data set. Techniques allowing the visualisation of high-

dimensional data in a low-dimensional space are called projection methods, which 

looks to the preservation of interpoint distances in the mapping. One such 

projection is Sammon Mapping (Lerner 2000).

Figure 6.3 shows a Sammon mapping for three small steam leaks (0.1-0.3 kg/s). 

The mapping highlights the difficulties encountered during the development of a 

leak rate monitor. The projection shows no difference in the data during the initial 

stages of the transient. As the transient progresses, only a marginal separation of 

the data sets is observed.
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Figure 6.3 Sammon map three small steam leaks

The results of this investigation suggested that effects of a small loss of steam in 

the secondary circuit of the PWR had only a minor impact on the primary circuit. 

The small changes that do occur are probably not measurable as indicated in figure 

6.2. It was therefore necessary to examine other possible sources of data, external 

to the primary and secondary circuit of a PWR that could be used to estimate rate 

of a small steam loss each of which provides a signal, which can be used in an 

ANN for transient analysis.

6.3.3 Alternative methods for estimating leak rates

There are several alternative methods for steam leak monitoring that have been 

developed over the last few years, mainly due to advances in instrumentation. 

These techniques are briefly outlined below.
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6.3.4 Acoustic monitoring

The environment surrounding the a PWR can be systematically checked for leaks 

by using acoustic equipment, which detects the sound or vibration (or more 

recently ultra sound) induced by the steam as it escapes from pipes under pressure 

(Thomas 1991). The transducers (both vibration and acoustic) used for acoustic 

detection often include built in signal processors to help in difficult environments.

6.3.5 Infrared Thermography

Infrared (IR) Thermography is a non-intrusive method of analysing diagnostic 

information about the thermal pattern of a piece of equipment. All objects radiate 

energy in the IR spectrum. As a steam leak develops, IR detectors can be used to 

“sense" infrared radiant energy and produce electrical signals proportional to the 

temperature of above the pipe. (Lanius 2000).

6.3.6 Tracer Gas

In the tracer gas method, helium or another lighter than air non-toxic gas is 

introduced into the pipe system under pressure. Should a break in the pipe system 

exist, the gas leaks into the environment, above the piping system. A highly 

sensitive gas monitor, is used to detect the tracer gas, the amount of tracer gas 

detected is proportional to its leak rate and therefore to the size of the leak 

(Gassonic 2004).

6.3.7 Ultrasonic Gas Leak Detection

This new method of leak detection uses ultrasonic gas sensors to detect gas leaks 

by sensing the airborne ultrasound emitted from leaking gas at high pressure. The 

intensity of the sound will vary proportionally to the distance of the source, 

therefore aiding in the location of the leak site. The advantage of the ultrasonic 

detection is that there is no interference with any other background acoustic noise, 

which in most generators can be exceptionally noisy (CTRL Systems 2003).
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6.3.8 Discussion

Any of the above methods for the detection of leaks could be used in the 

development for the monitoring of a small steam leak. However, due to practical 

considerations, only the acoustic method could be investigated. The aim of the 

experiments was firstly to derive a simple relationship between the levels of noise 

generated by steam leak from a pipe that could be used in the proposed Operators 

Advisory System. Secondly, a more detailed noise measurement to provide data 

explored the use of an ANNs in estimating steam leak rates.

6.4 Acoustic Monitoring of a steam leak

6.4.1 Introduction

Sound is an aural sensation caused by pressure variations in the air, which are 

always produced by some sort of vibration. They may be from a solid object or 

from turbulence in a liquid or gas. These pressure variations may take place very 

slowly, such as those caused by atmospheric changes, or very rapidly and be in the 

ultrasonic frequency range. The velocity of sound is independent of the rate at 

which these pressure changes take place and depends solely on the properties of the 

air in which the sound wave is travelling. The velocity (c) of sound is therefore 

dependent on the frequency (/), which is the number of vibrations or pressure 

changes per second measured in Hertz and the wavelength ( A )  which is the 

distance travelled by the sound during one complete vibration.
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C  = f A (6.1)

Where C = velocity of sound,/is frequency and A is Wavelength.

The wave produced is longitudinal, where the vibrations are in the direction of the 

motion. Sound energy is transmitted through air by vibration of air molecules, 

which in turn set the neighbouring air molecules in motion and begins a chain of 

movement. This movement causes areas where the air molecules are close or 

widely separated and are known as compression and rarefaction. Sound does not 

travel in a straight line it radiates from a source like ripples on a pond radiating 

from a stone splash. Reflection of sound takes place when there is a change of 

medium.

6.4.2 Measurement of Sound

The average displacement and pressure fluctuations of the air molecules are zero 

due to equal positive and negative changes. To overcome this problem 

measurements are made of the root mean square pressure changes (RMS value). 

The most commonly used aspects of sound are particle displacement, particle 

velocity, particle acceleration and sound pressure. As the ear is a pressure sensitive 

mechanism, pressure is used as the measure of sound magnitude. The sound 

intensity is the sound power per unit area in a sound wave and is related directly to 

the square of the sound pressure. The size of sound pressure affecting the ear varies 

from 2x10° Pa at the threshold, up to 200 Pa in the region of damage and pain. 

This may be compared to normal atmospheric pressure of 103 Pa. Because of the 

large values involved, and also that the ears response is not directly proportional to 

pressure a logarithmic scale is used.

Sound Pressure Level (SPL) = 20 logio (Pi/Po) (6.2)

The above is a comparative scale relating two pressures were Po = pressure at the 

average threshold of hearing at 1000Hz of 2x10 ̂ Pa.
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Most sound investigations begin with measurements using a sound level meter. 

The sound level meter used for the measurement of RMS sound pressure levels 

consists of a microphone, amplifier and a meter. The microphone converts the 

sound pressure waves into electrical voltage fluctuations, which are amplified and 

operate the meter. Because the meter is unable to indicate accurately over a large 

range of 30-120dB the amplification is altered as required in steps of lOdB and the 

meter reads the difference between the amplifier setting and the sound pressure 

level. Most meters have connections to which filters can be added were the 

response varies with frequency. The most common measurement of noise is the 

dB(A) level. It can be measured with a sound level meter having an A-weighting 

filter to simulate the subjective response of the human ear as shown in figure 6.4. 

When simple direct readings are needed the dB(A) scale is the best one to use. The 

sound level meter is calibrated by means of a source of known noise level, such as 

a pistonphone, which helps to verify that the chain of sound measuring 

instrumentation is measuring properly and accurately.

Figure 6.4 A Weighting Frequency Curve
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6.4.3 Initial Investigation

The objective of this experiment was to investigate whether a simple relationship 

existed between sound pressure level and the size of a steam leak. The 

experiments were conducted at a steam raising plant shown in figure 6.5. A large 

boiler plant was used to simulate a steam leak by venting steam through a valve in 

controlled amounts.

Figure 6.5 A Steam raising plant

A KAMPLEX SLM3 sound level meter was mounted on a tripod at a height of 1 

meter, and at a distance of 2 and 4 meters from the leak source. The distance of 2 

meters from the source of the sound was chosen primarily for safety reasons. The 

first measurements made were for ambient noise, with the sound level meter set to 

‘fast’ mode. Several measurements were made for both average and maximum 

dB(A) levels. The valve was then opened at measured intervals, to provide a 

known leak rate given by:
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Ws = KvAAP

Where Ws is the mass flow rate of steam, A is the effective area of the valve, AP  is 

differential pressure across the valve and Kv is a valve constant (type of valve).

At each opening of the valve, three measurements were made. The valve was then 

closed as before, again recording the noise levels.

6.4.4 Discussion

The results for dB(A) measurements at 2 and 4 meters are given in figure 6.6.

Figure 6.6 results of sound measurements

The results of the experiment although not conclusive indicate that a linear 

relationship exists between sound intensity (I) and leak rate (R):

I = MR + C
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The results from the experiment do not accurately model the noise generated by a 

small steam leak in a real plant environment (a complex sound field), however the 

intensities of noise recorded are feasible, and the assumption of a linear 

relationship is used for the remainder of this work.

The derived model for estimating the leak rate at 2 meters for sound levels above 

ambient noise is later used in the development of the Operators Advisory System 

described in chapter 7.

6.5 Further Investigation

6.5.1 Introduction

The results from the experiment provided a simple linear regression model that 

could be used in Operators Advisory System however, the linear regression model 

is dependent on the distance of the microphone to the sound source. If a leak were 

to occur closer or further away from the microphone, a new set of relationships 

would need to be found.

Further investigation of an audio recording conducted at the same time as the 

sound level measurements indicated a slight change in frequency as the leak rate 

was increased. Shimanansky (2003) has also reported this observation in similar 

investigations. If a frequency change were observed, this would be independent of 

microphone position and therefore a more accurate gauge of the steam leak size. It 

was therefore decided to repeat the experiment but this time doing a third octave 

spectral analysis of the steam leak, together with an audio recording.

Sound does not consist of single frequency notes, but a highly complex 

combination of tones and is best represented by finding out what bands of 

frequency are represented, and at what magnitude. This is performed using a sound
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level meter fitted with a set of Octave Band Filters. The use of electrical filters 

helps to separate the appropriate band of frequencies from the remainder, thus 

measuring the magnitude of that one group. One octave band consists of all sounds 

from any frequency to twice that same frequency. In most cases it is convenient to 

refer to the centre frequency within each band. An octave analysis is needed in 

order to calculate loudness. To measure the level in each octave band a sound level 

meter is set to the linear scale using a set of octave band filters. The noise is 

recorded with a suitable attenuation on the sound level meter. The recording is 

played back through an audio-frequency analyser or spectrogram and the levels 

recorded on paper.

6.5.2 Measurement Procedure

Using the same test rig as the previous experiment, a third octave analysis of the 

noise generated for each of the valve positions generated, was conducted using a 

B& K 2260 modular sound level meter together with a third octave filter (fig 6.7).

Figure 6.7 B&K 2260 with 1/3 octave filter
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The microphone on the sound level meter has a flat frequency response between 20 

Hz to 20 KHz. As before several reading for each of the valve positions was taken, 

for both opening and closing of the valve.

Simultaneously a SURE 849 professional microphone together with a personal 

computer was used to record digitally the noise generated by the steam leak for the 

duration of the above experiment for further analysis. A schematic of the 

experimental set up is shown in figure 6.8

Figure 6.8 Experimental set up

A distance of 2 meters from the source of the steam leak was chosen to measure 

the noise generated from the steam leak, once again for safety reasons. The audio 

recorder was positioned 10 meters away to avoid microphone saturation.
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As in the previous experiment several reading at each of the valve positions was 

taken, for both opening and closing of the valve but this time a full third octave 

(from 50Hz-20Khz) frequency analysis was carried out at each position. At valve 

position seven, only frequencies between 3150 Hz and 20 KHz were recorded

6.5.3 Results

The results for the third octave analysis are shown in figure 6.9.

Figure 6.9 Third Octave Frequency Analysis

The difference between the background reading and position one were similar, 

suggesting that the valve may have already been partly open. Most of the 

background noise observed was below 1000 hz, most of the changes observed 

occurring above
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3000 Hz. It can be seen that not only is there an increase in intensity at the 

frequencies above 3000 Hz but the pattern changes with a peak occurring between 

6-12 KHz. The results from this spectral analysis suggested that it might be 

possible to train an ANN to recognise the different frequency response for each of 

the valve positions.

6.6 Frequency Analysis

6.6.1 Introduction

This section outlines the steps involved in the implementation of an ANN. As 

described earlier, most noise is complex and has a continuous frequency spectrum. 

One way of abstracting this information is to perform a Fast Fourier 

Transformation (FFT). A FFT analyser uses digital signal processing techniques to 

produce very rapid narrowband frequency analysis of acoustic signals, and allows 

the conversion of an acoustic signal in the time domain into the frequency domain 

(fig 6.10). A full explanation of the FFT can be found in (Smith 1996).

Amplitude

FFT analyser

Time Frequency

Figure 6.10 FFT analyser
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6.6.2 Frequency Analysis of Field Results

Figure 6.11 is a sample (3 seconds) of the audio recording of the transition from 

valve position 4 to valve position 5 (after 1 second), and shows a plot of amplitude 

in the time domain. As expected, as the valve is opened, the amplitude increases.

Figure 6.11 Transition between valve positions 4 and 5

Figure 6.12 shows the results of an FFT analysis (spectrogram) of the audio 

recording of the generated steam leaks. A spectrogram is a display of the frequency 

content of a signal drawn so that the energy content in each frequency region and 

time is displayed as a grey scale. The horizontal axis of the spectrogram is time, 

and the picture shows how the signal develops and changes over time. The vertical 

axis of the spectrogram is frequency and it provides an analysis of the signal into 

different frequency regions.
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Figure 6.12 Spectrogram of steam leak recording

The spectrogram reveals that most of the energy found in the steam leak is between 

4 to 12 KHz. From this analysis, it can be seen that changes were occurring in 

frequency during the transition from one valve position to the next and warranted 

further investigation. The dark bands that occur at each of the valve positions may 

be due a sudden release in pressure during the initial stages in the opening of the 

valve.

6.6.3 Data pre-processing

For many applications, an ANN can be used to map the raw input data directly to a 

required output. However there are some circumstances where it is necessary to 

pre-process the input data prior to presentation to an ANN (Masters 1993). The 

pre-processing of the data can vary from simple filtering through to the use of 

complex algorithms for feature extraction. From the data analysis of the sound 

recording, it was observed that each change in leak size resulted in a new 

frequency spectrum.
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A data file of the acoustic recording was generated which divided the spectrum into 

frequency bands of 200Hz, from 0-20KHz, thus giving 11 frequency bands which 

would provide the input parameters for an ANN. An output was generated every 

second. An example output for the third valve position is shown in figure 6.13. 

This highlights the prevalence of low frequencies to be found in the generated 

steam leak.

frequency

Figure 6.13 Frequency versus Time plot of valve position 3

6.6.4 Implementation of an Artificial Neural Network (ANN)

Before the data from the FFT could be used for the training of an ANN only the 

most relevant data is selected for training purposes. The careful selection of 

relevant data makes the development of an ANN easier and can improve their 

performance on noisy data.
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The data generated from the frequency analysis were first checked for any 

anomalies, and these removed. During the frequency analysis of the data, it was 

observed that at each opening of the valve, there was a momentary increase in the 

intensity of the noise, for approximately 20 seconds, seen as solid lines in figure 

6.12 before resuming a steady state. Figure 6.14 shows a more detailed 

examination of the anomaly after pre-processing of the data. It is thought that this 

is a specific response to the test rather than a generic occurrence. The data were 

then checked that an equivalent number of data points were in each of the six 

output categories (background noise and 5-valve positions).this was done to avoid 

bias during the training of the ANNs.

0-1999 Hz 
2000-3999 Hz 
4000-5999Hz 
6000-7999Hz 

8000-9999 Hz 
10000-1199Hz 
12000-13999Hz 
14000-15999Hz 
16000-17999Hz 
18000-19999Hz 
20000-22000Hz

Figure 6.14 Transition from first to second valve position

The data (1704 vectors) of 11 frequency bands consisting of real numbers was 

randomly divided into a training test and validation data sets (60, 10, and 30% 

respectively). The number of layers and nodes in the hidden layer were chosen 

heuristically, with previously stated equation from Masters (1993) used as a 

starting point. The Root Mean Square Error (RMS) was used as the criterion for 

choosing the best ANN.
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6.6.5 Results

Using Masters (1993) as a starting point, the best performing feedforward 

backpropagation ANN consisted of an input layer of 11 nodes corresponding to the 

11 frequency bands, two hidden layers of 10 nodes each using the hyperbolic 

transfer function, and 6 binary outputs, corresponding to one background noise 

level and the 5 valve positions. The ANN was trained for 150,000 iterations. The 

ANN returned RMS error 0.2052 with presented with the test data set, and an RMS 

error 0.1541 when presented with an independent validation data set. Table 6.1 

shows the percentage correct greater than 0.95 ANN output:

Background noise 96% correct

Valve position 1 88% correct

Valve position 2 73% correct

Valve position 3 82% correct

Valve position 4 99% correct

Valve position 5 93% correct

Table 6.1 Percentage of correct classification of leak rate

The results of the estimation of leak rates by the ANN for each of the valve 

positions are given in figures 6.15 to 6.20.
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Figure 6.16 ANN output for Valve position 1
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Figure 6.17 ANN output for Valve position 2
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Figure 6.18 ANN output for Valve position 3
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Figure 6.19 ANN output for valve position 4
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Figure 6.20 ANN output for valve position 5
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Overall, the results for the training of an ANN to classify steam leak rates were 

promising. For valve positions, 2 and 3 (figures 6.17, 6.18) a false positive output 

from the ANN is observed, in each case a larger leak rate is reported. For valve 

position 2, the accuracy of the estimation starts to diminish after 63 seconds and 

this is reflected in the lower percentage correctly classified (73%), with the ANN 

output for a larger leak rate (valve position 3), staring to emerge. Figure 6.21 

shows the frequency bands derived from the FFT of the audio recording

------ 0-1999 Hz
2000-3999 Hz 

4000-5999HZ 

6000-7999HZ

--------8000-9999HZ

--------10000-1199Hz

------ 12000-13999Hz
------ 14000-15999Hz

16000-17999Hz 
18000-19999Hz 
20000-22000Hz

Figure 6.21 frequency bands for valve position 2

The artefact in the middle of the recording may be due to a sudden loud noise. In 

order to examine the relative importance of each feature it was decided to examine 

which feature the class separability measures using a Sammon map. Figures 6.22 

and 6.23 show Sammon mappings both with and without the impulse noise 

artefact, for valve positions 1 to 3 respectively.
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Figure 6.22 Sammon Mapping for valve positions 1,2 and 3 (With Artefact)

Figure 6.23 Sammon Mapping for valve positions 1,2 and 3 without artefact
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Visual inspection of the Sammon mappings show that for valve positions 1 and 3, 

the data points are relatively tightly clustered; however, the data values for valve 

position 2 are more widely dispersed, even when omitting the impulse noise 

artefact. The wider dispersion of data values for valve position 2 may explain the 

poor performance of the ANN for valve position 2.

6.7 Discussion

The introduction of new noise measuring sensors together with advances in signal 

processing, have made the real time estimation and location of small leaks from the 

primary or secondary circuits of a PWR a reality. The acoustic sensors must cover 

a wide frequency and dynamic range, enough for the investigation of small steam 

leaks. As the noise analysis would generally be performed in complex sound fields 

with both high temperatures and humidity, the transducers must be capable of 

discriminating between normal background noise generated during normal plant 

operations, and insensitive to the effects of these environmental conditions.

This initial investigation show that the use of acoustic monitoring combined with 

the pattern recognition capabilities of an ANN can be used to estimate the leak rate 

from the primary circuit of a PWR. Acoustic monitoring devices could be used, as 

an additional input to the monitor. One method to achieve this aim is to use a 

combination of structure and air based acoustic transducers. Leaks could be 

simulated at points along the primary circuit. An arrangement of accelerometers 

and microphones could be placed at several points along the structure and inside 

the containment vessel, and the output from these recorded. The data obtained 

would then be put through a band pass filter, to reduce the amount of normal 

environmental noise, for example pump noise. The data were sampled and 

analysed, using either RMS or a Fourier transform signal processing package. The 

output from this stage would provide information on the size, frequency and phase 

of the noise. This data could then be fed into an ANN classifier system along with
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the primary circuit data. The noise analysis could also be used to train a separate 

neural network and used as a check on the neural net primary circuit classifier. A 

possible system is shown in figure 6.24.

Figure 6.24 Possible acoustic Neural Net Monitor

To summarise, the following present a list of the main advantages and 

disadvantages of ANN based acoustic leak rate monitor.

Advantages:

• Capable of dealing with a wide range of sensor inputs by either a single 

ANN or an array of ANNs.

• Capable of analysing pre processed data, such as a Fourier analysis of the 

leak.

• Information gained from the acoustic monitoring can also be used for leak 

location.

• As the main data source is remotely sensed the technique is ideally suited to 

the hostile environments such as the reactor compartment.
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Disadvantages:

• A considerable amount of time would be required to calibrate microphones 

and accelerometers

• Transducer selection, the high temperatures, humidity and radioactivity can 

affect calibration.

• It is difficult to model a complex sound field, as typified by a power plant.

• The site of a leak may be several meters away from where the steam 

emerges, for example due to the lagging of pipes.

6.8 Summary

This chapter has reported work undertaken to investigate the use of sound for the 

estimation of a loss of steam due to a small break in the secondary circuit of a 

Pressurised Water Reactor.

The first half of the chapter described investigations made into the relationship 

between the leak rates, and noise levels. The derived model from this experiment is 

then used in the development of the prototype OAS system described in chapter 7.

The second half of the chapter explained a novel approach for using the noise 

generated by several steam leaks to train an ANN. A Fast Fourier Analysis of the 

sound converted data in the time domain into frequency domain, which was then 

used to train an ANN. As a result of the investigations into the use of acoustics and 

ANNs for estimating leak rates, a scheme is put forward for the development of an 

ANN based acoustic steam leak monitor.
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Chapter 7

Development of a Prototype Operator’s 

Advisory System

7.1 Introduction

This chapter reports the design, implementation and initial evaluation of a 

prototype computer based Operators Advisory System (OAS) for monitoring the 

control processes of a Pressurised Water Reactor (PWR). The OAS would provide 

diagnostic advice as to the current and future status of the PWR in a more timely 

and efficient manner.

Figure 7.1 Block diagram of proposed Operators Advisory System
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At this stage of the project, several modules had been developed as described in 

previous chapters, and as stated in the introduction, it was proposed that each of the 

independently trained diagnostic classifiers be integrated into a multi-level OAS. A 

block diagram of the proposed OAS advisory system is shown in figure 7.1

The development of the OAS involved three major stages. The development of a 

major fault transient classifier as described in chapter four, the loss of coolant leak 

and steam leak rate monitors as described in chapters five and six respectively. 

Secondly, the design and development of the OAS using appropriate software 

development tools. Finally, the testing and modification of the OAS using 

independently generated test data. It is the design, development and testing of the 

OAS system that is reported on in this chapter.

The input to the OAS is data generated by a generic simulator of the primary 

circuit of a pressurised water reactor, simulated environmental noise 

measurements, and user interventions. In future the data would be derived from 

real plant data. The advisory system would be expected to correctly identify 

unseen transients and report the findings to the plant operator

7.2 Methodology

The method proposed for the development of the OAS is a multi-layer system of 

Artificial Neural Networks (ANNs). In the proposed advisory system, the top layer 

of the system is the diagnostic ANN module as described in chapter 4 and shown in 

figure 7.1. The requirement of this level of diagnosis is the rapid identification of a 

major fault transient, which requires an immediate response in order to manage the 

situation.

Should a fault be identified, the output from this layer would notify the plant 

operator of the transient. The plant operator may decide to verify the diagnosis, and 

rectify the situation by following standard operating procedures.

123



If the classification of the OAS identified a ‘normal’ operating condition (figure 

7.1), it is intended that the next level of classification i.e. a small primary or a 

secondary circuit break module (described in chapters 5 and 6 respectively) be 

initiated. This effectively increases the resolution of the OAS in looking for small 

transients that are below the threshold of detection in the upper layer. The 

multilayer classification system would only report on the major transient, and not 

secondary transients that are caused because of a major fault. Once the main fault 

is dealt with, only then would the minor faults start to be diagnosed. This by 

default can allay some of the problems associated by ‘alarm showers’ (Lees 1983).

Due to the smaller changes in the plant dynamics, the time taken for a correct 

classification of leak rate can be longer. However, the emphasis at this level is on 

long term monitoring for the successful management of the small transient, the 

speed of response is of less importance as the transient is unlikely to cause a 

critical failure of the plant, but will lead to a drop in its efficiency and 

effectiveness.

During the early design stages of the OAS as shown in figure 7.1, it was envisaged 

that once a transient has been identified, an independent PWR simulator would 

reproduce the plant data for that transient. A comparator would then look for 

differences between the predicted state of the plant and the actual plant variables. 

Where any difference was observed a measure of confidence in the diagnosis 

would be reported to the plant operator. It was initially envisaged that a ‘traffic 

light’ approach could be adopted;

Green - accept system result 

Orange - accept result, but with caution 

Red -  reject system diagnosis

However, when plant operators were asked whether it was necessary that 

information regarding the confidence of the OAS output be displayed along with 

the results, they indicated that if there were a need to 'double-check' the accuracy 

of the OAS, they would prefer the system output be suppressed.
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After due consideration, it was decided that should the difference between the 

simulated and actual plant parameters deviate by more than a prescribed amount, 

the diagnosis from the relevant module would be suppressed. If the difference 

between the simulated and actual plant parameters was small, a high level of 

confidence could be attached to the diagnoses presented to the plant operator. It 

was also decided to include the plant operator in the decision making process of the 

OAS, by drawing the attention of the plant operator to a diagnosed transient, and 

requiring the plant operator to confirm the OAS diagnosis.

7.3 Prototype Operators Advisory System Development

7.3.1 Tools

The software tool used in the development of the OAS was MATLAB version 6.5, 

a high-performance software development package used extensively in academia 

and industry for all types of research. MATLAB has an inbuilt interpreted language 

for numeric computation and visualisation. The advantage of using MATLAB was 

the ease of integrating the developed ANN modules into the OAS system. This also 

meant should any modules be developed in the future, these could quickly be 

integrated within the existing system. A sample of the OAS MATLAB code is 

given in appendix D.

7.3.2 Translating

All the ANN modules reported on in this thesis had been developed using 

NeuralWorks Professional, a neural network development platform. The initial 

development work concentrated on re-coding the NeuralWorks based ANN 

modules into MATLAB language. This was a two-stage process. First, the ANN 

modules needed to be converted from the NeuralWorks development environment
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into C programming language, an automated process. The generated C code was 

then manually translated into MATLAB.

7.3.3 The Operators Advisory System model

Once the individual ANN modules had successfully been tested in MATLAB using 

independent validation data sets, the coding of the OAS could then proceed.

The OAS is made up of several functions:

Fault Analysis - This first level of diagnosis provides information to the plant 

operator of the presence of a major transient, for example a downstream steam 

leak, or a ‘single rod drop’ transient.

Size of transient - If a primary coolant or steam leak were detected, the 

corresponding diagnostic modules would provide an estimation of the leak rate. 

The results from this level would be presented to the operator.

Comparator - An independent PWR simulator is used to generate the diagnosed 

transient. The simulator utilised in the comparator was developed in MATLAB, 

and is based on the generic PWR simulator used to generate the data used 

extensively in this project and therefore a high degree of correlation exists between 

the PWR and the simulated transient. Significant plant parameters are then 

compared with corresponding simulated plant parameters, and any difference 

between the values used as an indication of accuracy of diagnosis.

The confirmation of the small loss of coolant monitor is used to demonstrate the 

use of the comparator; however the technique could be extended to confinn the 

output of other modules used in the OAS. Two plant parameters were chosen to 

compare with actual plant data, the pressuriser pressure and level as they showed 

the greatest variation in plant values during a small loss of coolant accident. These 

plant parameters would also be routinely monitored by a plant operator to help 

infer leak rate. The technique could be extended to confirm rate of loss for a steam 

leak in the secondary circuit of a PWR. If the difference were less than 10%, the
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results would be displayed to the plant operator. If the difference between the OAS 

simulation and plant data was greater than or equal to 10% the results from that 

module, would be suppressed as previously discussed. A threshold of 10% was 

chosen in the initial design stages for the acceptance of a diagnosis to allow for 

differences between the two data sources (one a newly developed simulator). 

However future developments of the system should aim to reduce this figure to 

5%.

Confirmation of Diagnosis -  If a throttle opening, group or single rod drop is 

identified, plant operator confirms diagnosis. The confirmation of the presence or 

absence of a transient by a plant operator is an essential component of any decision 

support system. By asking the plant operator for confirmation, it encourages further 

inspection of raw plant variables and ensures that the plant operator remains an 

integral part of the decision process.

‘None of the above’ classification - One of the design decisions that had to be 

made before implementation was whether to give equal weighting over many 

transients in the fault layer the ANN was trained on, or to assign a priority role to 

one particular transient, the ‘none of the above’ classification. Giving overall 

priority to this classification has the advantage of considerably simpler control flow 

and makes the addition of new modules easier.

7.4 System Evaluation

7.4.1 Introduction

To evaluate the effectiveness of the OAS, a generic PWR simulator was used to 

generate a series of transients to test the overall performance of the OAS.
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The same PWR simulator used in the development of the fault and loss of coolant 

monitors (consisting of 67 plant parameters, subsets of which are used in various 

ANNs), was used to generate the data set for the evaluation of the OAS. In addition 

to the simulated PWR data sets, an extra plant parameter containing acoustic 

information (dBA noise level) was also simulated and added to the PWR data set, 

thereby creating a data set of 68 plant variables.

7.4.2 Application Testing -  Fault Transients

To assess the performance of the OAS for a major fault transient, the following 

transients the fault ANN was trained on were simulated:

• Throttle opening transient

• Steam leak

• Group drop

• Single rod drop

• Primary coolant leak

• Normal operating

Each transient simulation was run for 50 seconds, in order to allow the reactor to 

reach a steady state condition. The plant parameters were then recorded every 

second for 80 seconds.

A Sammon map was generated to aid in the visualisation and analysis of the multi 

dimensional input vector (plant parameters) for the six transients (figure 7.2). This 

diagram shows that the largest changes in the plant parameters of the primary 

circuit occur during a group or single control rod drop, as expected.
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Figure 7.2 Sammon map of Major Fault Transients

However there was little variance between normal operating conditions and a small 

primary coolant, this partly explains the increased difficulty encountered when 

developing an ANN based LOCA analyser for use in the OAS

In order to test the abilities of the OAS, a 15 second sample of data was randomly 

chosen for each of the six transients, and then presented to the OAS. Table 7.1 

shows a summary of the OAS outputs, for each of the samples.

For both a single and group rod drop, the fault ANN module correctly identified 

the transients. The plant operator is then prompted to confirm the classification. If 

confirmed the programme is terminated. If the classification is not accepted by the 

OAS the plant operator is advised of an unknown transient.

For large primary coolant and steam leaks from the primary and secondary circuit 

of a PWR respectively, the OAS correctly identified the transients.
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Transient OAS output
Single R od  D rop Is  the transien t a  S IN G L E  R O D  

D R O P  Y /N

G roup R o d  D rop Is the transien t a  G R O U P  
D R O P  Y /N

Steam  L eak D O W N ST R E A M  S T E A M  
L E A K

T hro ttle  transien t TH R O TT L E

P rim ary  coolant 
leak

P rim ary  coo lan t leak

N orm al ‘N o n e  o f  the above ’

Table 7.1 Operators Advisory System output for major fault transients

The results from the first tests were encouraging. All the major transients were 

correctly identified. Using a desktop PC, with a 2.2GHz processor with 512 MB of 

RAM, results were obtained within 3-5 seconds, meeting the objectives for a rapid 

and accurate diagnosis of a major transient.

7.4.3 Application Testing -  LOCA

To assess the ability of the OAS to identify a small primary coolant leak, and 

establish the threshold of detection for a diagnosis of a LOCA in the major fault 

classifier ANN, the PWR simulator was used to generate a range of coolant leaks, 

from 0.1-10 kg/s. Figure 7.3 shows a Sammon map for five LOCA’s between 1-8 

kg/s and for a ‘no leak’ or normal operating condition.
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Figure 7.3 Sammon map for 5 LOCAS

The mapping indicates that the variability in the plant parameters for each of the 

leak rates grows larger as they develop. For the higher leak rates (>2kg/s) the 

separation in the transients is clear and allows for the early classification of the 

transient. The divergence between leak rates becomes ever greater as the leak 

develops. The cross over of the leak rates in the Sammon map may arise because 

the PWR simulator has not yet reached a steady state.

However for leak rates below lkg/s, this is not the case. Figure 7.4 shows a 

Sammon map for five leak rates between 0-lkg/s. The map shows a great deal of 

overlap between the transients, with a difference between leak rates late in the 

transient’s development. Closer inspection of the simulated plant data reveals little 

difference in plant variables. In the real world, these differences are too small to 

measure accurately (chapter 6).
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Figure 7.4 Samraon mapping for five small LOCAS

7.4.4 Application Testing -  LOCA results

To test the OAS applications performance for small primary coolant leaks, samples 

of data (15 continuous time periods) were randomly chosen for a range of leak 

rates between 0-10kg/s, which were then presented to the OAS. The results from 

these experiments are summarised in Table 7.2, which shows the outputs from the 

OAS and the real number outputs from the small loss of coolant and fault ANN 

modules.
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Actual 
leak rate 

kg/s IMOA PCL

Fault ANN output
Steam Group 

Throttle leak Rod Drop
Single rod 

drop

OAS output
Recorded % to plant 
Leak rate Difference operator

0 1.04 -0.02 0.00 0.00 0.00 -0.04 0.01 NOA
0.1 1.04 -0.02 0.00 0.00 0.00 -0.04 0.11 6.42 NOA

0.15 1.04 -0.02 0.00 0.00 0.00 -0.04 0.16 3.54 NOA

0.2 1.04 -0.03 0.00 0.00 0.00 -0.04 0.21 5.92 NOA

0.25 1.04 -0.02 0.00 0.00 0.00 -0.04 0.27 7.82 NOA

0.3 1.04 -0.02 0.00 0.00 0.00 -0.04 0.30 0 NOA

0.35 1.04 -0.02 0.00 0.00 0.00 -0.04 0.36 3.05 NOA

0.4 1.04 -0.02 0.00 0.00 0.00 -0.04 0.40 0.26 NOA

0.45 1.04 -0.03 0.00 0.00 0.00 -0.04 0,47 3.93 NOA

0.5 1.04 -0.02 0.00 0.00 0.00 -0.04 0.51 1.61 NOA

0.55 1.04 -0.03 0.00 0.00 0.00 -0.04 0.51 NOA

0.6 1.03 -0.02 0.00 -0.01 -0.01 -0.03 0.51 NOA

0.7 1.03 -0.02 0.00 -0.01 -0.01 -0.03 0.51 NOA

0.8 1.03 -0.02 0.00 -0.01 -0.01 -0.02 0.51 NOA

0.9 1.03 -0.02 0.00 -0.01 -0.01 -0.02 0.51 NOA

1 1.03 -0.02 0.00 -0.01 -0.01 -0.02 0.51 NOA

1.2 1.03 -0.02 0.00 -0.01 -0.01 -0.02 0.51 NOA

1.4 1.03 -0.02 0.00 -0.01 -0.01 -0.02 0.51 NOA

1.6 1.03 -0.01 0.00 -0.01 -0.01 -0.02 0.51 NOA

1.8 1.03 0.00 0.00 -0.02 -0.02 -0.02 0.51 NOA

2 1.04 -0.01 0.00 -0.01 -0.02 -0.02 0.51 NOA

2.2 1.03 0.01 0.00 -0.02 -0.02 -0.02 0.51 NOA

3 1.03 0.03 0.01 -0.02 -0.03 -0.01 0.51 NOA

4 1.00 0.06 0.04 -0.02 -0.03 -0.02 0.51 NOA

5 0.92 0.08 0.11 0.00 -0.01 -0.04 0.51 NO OUTPUT
6 0.64 0.40 0.07 0.03 0.00 -0.05 0.51 NO OUTPUT
7 0.17 0.91 0.02 0.03 -0.03 -0.04 0.51 NO OUTPUT

7.5 0.10 0.96 0.01 0.03 -0.03 -0.03 0.51 LOCA
8 0.07 0.98 0.01 0.03 -0.03 -0.03 0.51 LOCA

8.5 0.06 0.98 0.01 0.02 -0.03 -0.03 0.51 LOCA

9 0.04 0.99 0.01 0.02 -0.03 -0.03 0.51 LOCA
9.5 0.03 0.99 0.00 0.01 -0.02 -0.02 0.51 LOCA

10 0.02 0.99 0.00 0.01 -0.02 -0.02 0.51 LOCA

Table 7.2 Operator’s Advisory System output

For leak rates between 0-4kg/s, the fault analyser module of the OAS failed to 

detect a primary coolant leak. The classification ‘none of the above’ (NOA) is 

reported to the plant operator. If a NOA classification is observed by the OAS, the 

OAS then cycles through the small leak monitors developed earlier in the thesis. 

The OAS correctly classified within 10% all leak rates up to and including 0.5 

kg/s, 60% of the classifications were within 5% of the stated value.

However, for primary coolant leaks greater than 0.5 kg/s and less than 5 kg/s, the 

threshold at which the fault ANN detects a LOCA, the OAS indicated normal 

operating conditions with a small loss of coolant leak of 0.51 kg/s. For leak rates
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greater than 5kg/s but smaller than 7.5kg/s, the OAS only indicated a leak rate of 

0.51kg/s, and failed to diagnose a major transient. For leak rates greater than and 

equal to 7.5kg/s, the fault classifier correctly identified a primary coolant leak- the 

OAS provides an output stating the presence of a LOCA.

7.4.5 Application refining -  LOCA

Although the small loss of coolant monitor reported a 0.5 kg/s leak, which could be 

programmed to indicate the presence of a leak, the plant operator would still need 

to infer the rate of coolant loss by monitoring another plant process, for example a 

drop in the water level of the pressuriser.

It was therefore decided that the range of leaks the ANN would report on would 

need to be extended to cover the absence of information provided to the plant 

operator (between 0.5 -7.5 kg/s).

Early experiments using a single ANN proved unsuccessful. The weight values 

within the ANNs failed to converge to any useful value, despite using several 

backpropagation training algorithms. The Sammon maps shown in figure 7.3 and 

7.4 demonstrate the dynamic changes that occur in the primary circuit of the PWR 

are greater at higher leak rates (>lkg/s). As a result of these experiments, it was 

decided to divide the range of leaks under investigation into three categories 

(small, medium, and large), and train a further ANN (medium, large) for each 

category.

A further series of ANNs were trained on an extended range of leak rates. The 

medium leak rate monitor was trained on a range of leak rates between 0.4 and 1.9 

kg/s. The training data for ten time steps (with 1% Gaussian noise added to the 

input data) was presented for 120,000 cycles with testing every 100 cycles with the 

test set, the best network being saved. The best ANN consisted of two hidden 

layers of 32 and 16 nodes, and an RMS error of 0.0277. Figure 7.5 shows the ANN 

output for leak rates between 0.55-1.85kg/s
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time

Figure 7.5 Estimation of medium size leak rates

Finally, a series of ANNs were trained on the large leak sizes between 1.8 and 8.3 

kg/s for 120,000 cycles with testing every 100 cycles to facilitate early stopping, 

the best network being saved. The best ANN developed had a RMS error of 0.04, 

and consisted of two hidden layers of 20 and 10 nodes respectively. The results for 

an independently generated validation data are shown for leak rates between 2-7.9 

kg/s in figure 7.6

Time

Figure 7.6 Estimation of large size leak rates
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The RMS error of 0.04 is higher than that observed for the medium leak rate 

analyser (0.0277). A possible reason for this is the greater range of leak sizes the 

ANN was trained on (1.8-8.3 kg/s). An example of the drop in performance is 

reflected in the estimation of a leak rate of 4.9 kg/s as shown in figure 7.7

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

Time

Figure 7.7 Estimation of a leak rate of 4.9 kg/s

Although the performance of the ANN classifier for large leak rates was not as 

accurate as the medium ANN leak rate classifier, the diagnosis is still acceptable 

(compares well with small leak RMS error of 0.0413), as all the estimates were 

within 10% of the actual leak rate. The results could be improved by training 

further ANN on smaller ranges of leak rates.

The data used for training each of the ANNs contained an overlap in leak rate 

range, to ensure that the output node for each of the three ANNs were not saturated 

for leak rates at the extremes of each range. The artificial increase in the 

boundaries for the output node would have the added benefit of improving the 

tolerance of the ANNs to noise, which may be present on the input parameters.

As before, the ANNs were converted into C code, translated into MATLAB and 

embedded into the OAS as separate MATLAB files.
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Simulated leak rates from the previous experiment (15 continuous time period 

samples) presented again to the OAS, the results of which are summarised in table 

7.4. Values that are highlighted are actual outputs from the OAS. For leak rates of 

7 kg/s and below, the OAS reports a ‘none of the above’ classification, as well as 

the estimated leak rate. For leak rates of 7.5 kg/s and above the OAS reports a 

‘primary coolant leak’ classification, the estimated leak rate is suppressed.
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Actual
LR

Fault ANN output 
Primary Coolant Leak SmallMediumLarge

0 0.00 0.01 0.32 1.56

0.1 0.00 0.11 0.32 1.56

0.15 0.00 0.16 0.33 1.56

0.2 0.00 0.21 0.33 1.56

0.25 0.00 0.27 0.34 1.56

0.3 0.00 0.30 0.33 1.56

0.35 0.00 0.36 0.37 1.56

0.4 0.00 0.40 0.40 1.57

0.45 0.00 0.47 0.42 1.56

0.5 0.00 0.51 0.48 1.57

0.55 0.00 0.51 0.52 1.56

0.6 0.00 0.51 0.56 1.57

0.7 0.00 0.51 0.65 1.57

0.8 0.00 0.51 0.75 1.57

0.9 0.00 0.51 0.84 1.58

1 0.00 0.51 0.94 1.59
1.2 0.00 0.51 1.14 1.60

1.4 0.00 0.51 1.33 1.60

1.6 0.00 0.51 1.58 1.64

1.8 0.00 0.51 1.77 1.72
2 0.00 0.51 1.89 1.78

2.2 0.00 0.51 1.92 1.96
3 0.02 0.51 1.92 2.70

3.5 0.03 0.51 1.93 3.22
4 0.04 0.51 1.93 3.81
5 0.11 0.51 1.93 4.80
6 0.40 0.51 1.93 5.85
7 0.91 0.51 1.93 6.75

7.5 0.96 0.51 1.93 7.16

8 0.98 0.51 1.93 7.91

8.5 0.98 0.51 1.93 8.37

9 0.99 0.51 1.93 8.43

9.5 0.99 0.51 1.93 8.44

10 0.99 0.51 1.93 8.44

Table 7.3 Operators Advisory System output (Revised)

138



7.4.6 Implementation

Figure 7.8 shows the implementation of the three primary coolant leak monitors 

centred on the regions populated by the training vectors (small, medium and large 

leak rates), into the OAS.

Figure 7.8 Flow diagram of LOCA Classification

If the fault classifier makes a ‘none of the above’ diagnosis, the plant data is then 

(buffered 10 time steps) presented to each of the primary coolant leak monitors.
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If a leak is diagnosed by any of the three classifiers, the output (leak rate) from the 

corresponding ANN is then used to modify the input data for an independently 

developed PWR simulator. The simulation then reproduces the diagnosed leak. 

Figure 7.9 shows a simulation for a leak rate of 0.5 kg/s (diagnosed as 0.482 kg/s) 

for 6 plant parameters. In this example (the data is normalised for security reasons), 

the simulator is run for 50 time periods to stabilise prior to the initiation of a 0.5 

kg/s LOCA lasting for 70 time periods.

Figure 7.9 OAS trend data for a small primary coolant leak

Two of the simulated parameters, the pressuriser level and pressure are then 

compared with the corresponding plant parameters. If the difference between the 

two values is less than +/-5%, the confirmed diagnosis is presented to the plant 

operator. If the difference is greater than +/- 5%, the diagnosis is suppressed and an 

unknown transient is reported.
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7.4.7 Discussion- Small LOCA, Initial Findings

Dividing the LOCA into three smaller ranges allowed for the successful estimation 

of leak rate using ANNs. Figure 7.10 shows a plot of the OAS estimate versus 

actual leak rate.
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Figure 7.10 Estimated leak rate (LOCA)

In general the accuracy of the loss of coolant monitor was very good, 90% of leak 

rate estimates were within 10% of stated values. The widest deviation was recorded 

for leak rates of 2.2 and 3kg/s, each of which was at 11% of the stated value. It was 

also noted that from 2kg/s onwards the estimated leak rates were consistently 

below the actual leak rate. One explanation for this may be the use of a time-delay 

ANN used in the development of the small loss of coolant monitor. The time-delay 

ANN maintains a ‘history’ of the transient as it develops, which may cause the 

ANN output to lag behind any transient changes that occur.

The constant limit reached by each of the three ANNs can be explained as follows:
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Problems can occur when presenting raw data to the ANN using a hyperbolic 

transfer function. Very large values for plant parameters can cause the transfer 

function to saturate presenting. One way to address this problem is to normalise the 

input/output vectors during the training stages of the ANN by taking the minimum 

and maximum values of the plant parameters. The process is shown in figure 7.11

Figure 7.11 Supervised learning model

The final node of the ANN figure (7.12) has the following output:

Bias w O

Figure 7.12 processing unit

The output node receives data from all the nodes of the hidden layer and outputs 

computation results equation 7.1. An activation function the hyperbolic tangent 

given in equation 7.2 and presented graphically in figure 7.13 is then used to 

calculate the output y.
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7.1y =

Where net = w0+ Y j wix, 7.2

And w0 is the bias of each node; each w, is a weight for the connection 

from the i-th node of the previous layer

Function

For continuous-valued targets such as leak rates with a bounded range, the 

hyperbolic tangent functions are useful, provided that either the outputs or the 

targets to be scaled to the range of the output activation function. This is done 

automatically in NeuralWorks. A scaling function is then used on the output y, to 

give real world values.

The effect of the scaling can be observed if for the medium LOCA ANN actual 

leak rate is compared to the ANN output (figure 7.14).

4 6

Figure 7.13 Hyperbolic Tangent Function
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Figure 7.14 Estimated leak rate

However, this still compares favourably with established techniques for estimating 

a small loss of coolant from the primary circuit of a PWR, which usually relies on 

inferring the leak rate from a secondary source, for example particle detectors 

(rarely provide quantitive data), or observing the decrease in water level in the 

pressuriser over a given period, typically several hours.

7.4.8 Application Testing -  Secondary System Steam Leak

The development of the steam leak monitor for the secondary circuit of a PWR was 

discussed in chapter 6. Experiments at a steam raising test plant revealed a linear 

relationship between noise levels and leak rates. Figure 7.15 shows the 

implantation of the steam leak monitor in the OAS.
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Figure 7.15 Implementation of Steam leak Monitor

Unlike the hierarchical implementation of the primary coolant leak classifiers, it 

was decided the OAS would constantly monitor for a break in the secondary circuit 

of the PWR. If a sound level measured by a transducer were greater than a pre-

determined level, the OAS would calculate and display the estimated leak rate. The 

minimum (above background noise) and maximum leak rate were defined by 

experiments described in chapter 6.

7.4.9 Results

Using the results of the experiments described in chapter 6, the PWR primary 

circuit was modified to include an acoustic plant parameter. To assess the ability 

of the OAS to identify correctly a small break in the secondary circuit of a PWR, a 

range of steam leaks, from 0.2-0.6 kg/s were simulated.
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The threshold of detection for a steam leak in the secondary circuit of the PWR by 

the Fault ANN was established at 0.52 kg/s. The results of the ANN fault monitor 

for the simulated leak rates is shown in figure 7.16.

NOA

Rimary
coolant
leak
throttle
opening

Steam
leak

Group
drop

Single 
rod drop

Figure 7.16 Fault ANN output for a range of downstream steam leaks

Table 7.6 summarises the results obtained from the OAS for a range of steam leaks 

in the secondary circuit of the PWR.

Noise levels 
Decibels

OAS Output 
Leak rate

F0 None of the 
above

FI 0.11 Kg/s
F2 0.35 Kg/s
F3 0.58 Kg/s
F4 0.8 Kg/s
F5 None of the 

above

Table 7.4 Displayed outputs for small steam leaks
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The results show that the OAS for sound levels between FI and F5 provides an 

estimate of leak rate, which is beyond the threshold of detection for the fault 

classifier ANN. At FO, the OAS returns a ‘none of the above’ classification. A leak 

may exist, but the noise levels are similar to background noise, and are therefore 

below the threshold of the acoustic monitor.

7.4.10 Further Application Testing

To investigate the performance OAS further, a double fault was simulated: a small 

downstream steam leak coupled with throttle opening. The OAS reports the major 

transient (throttle opening), and not the minor steam leak. This is because a major 

transient takes precedence over a minor fault. This triage of transient’s addresses 

(by default) problems associated with alarm showers (Lees 1983). The OAS would 

only provide a leak rate estimate when the power plant returned to a steady state.

The next stage was to observe the effect of corrupted data on the performance of 

the OAS. The simulated plant data for a single rod drop was replaced with random 

numbers. The OAS failed to return an output. Next a single channel of data was 

replaced with first zero values, and then twice the original value. Once again, in 

both cases the OAS failed to provide an output or ‘fails safe’.
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7.5 Discussion

7.5.1 Results

The results obtained in the previous section are now discussed in more general 

terms. The motivation for this study was to establish a methodology for the 

development of an ANN based Operators Advisory System (OAS) for the 

diagnosis of PWR transients. In particular, the focus was the identification of small 

transients as typified by small breaks in the primary and secondary circuits. 

Extensive use was made of PWR simulators, to provide data for the development 

and validation of the OAS.

Diagnostic modules developed early in this thesis for the classification of major 

and minor transients were successfully integrated to form the basis of the prototype 

OAS. Initially the modules were tested individually. The results from these tests 

were then used to modify the OAS to improve its performance. The study then 

proceeded to treat the modules as a linked system, particularly for the estimation of 

a small break in the primary circuit of PWR. The study concluded by investigating 

the tolerance of the OAS to missing or noisy data. A flow diagram of the prototype 

OAS is shown in figure 7.17
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The overall performance of the OAS was very good. The prototype OAS was able 

to identify all major fault transients quickly and accurately (ANN output > 0.95) 

when tested on an independent data set. Plant operators are required to confirm the 

diagnosis for two of the transients (single and group rod drop). The inclusion of the 

plant operator interaction in the decision making process may be beneficial to the 

successful implementation of the OAS.

When the OAS was presented with a range of small breaks in the primary circuit of 

the PWR, it failed to provide an output for leak rates that exceeded the limits of the 

ANN leak rate monitor, and below the threshold of detection of the major transient 

classifier. Two further ANNs were trained to ‘bridge’ the gap, and were 

implemented, in parallel, in the OAS. The fast and successful introduction of the 

two new ANN classifiers demonstrated the adaptability of the design methodology. 

An independently developed plant simulator was then used to compare the results 

of the simulation with plant data. If in agreement, the leak rate estimate was 

confirmed, and the results presented to the plant operator. The output to the plant 

operator also included a plot of the predicted progress of the diagnosed plant 

transient. Further research is required to exploit this information.

It was decided in the design stages of the OAS that the acoustics based leak rate 

monitor developed in the first part of chapter 6 would constantly monitor for a 

break in the secondary circuit. This would allow the OAS system to better identify 

a double fault, for example a major fault and a small break in the secondary circuit.

An alternative implementation of an acoustic leak rate monitor (ANN based or 

otherwise) is shown in figure 7.18. The use of a hierarchical system for transient 

diagnosis would by default, only allow major transients to be reported, and in 

effect suppress spurious or low level alanns.
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Figure 7.18 Flow diagram for Steam leak Monitor in OAS

A further difference between the two approaches is the speed of response, the 

elapsed time between the occurrence of the transient and its diagnosis. A parallel 

implantation of diagnostic modules results in a faster diagnosis, but requires an 

increase in computing power. The sequential selection of alternative modules used 

in a hierarchical system leads to longer diagnostic times. For example, in the 

proposed implementation of an acoustic monitor shown in figure 7.17, it may take 

several time steps for the fault classifier to diagnose a ‘none of the above’ 

classification. In addition, the loss of primary coolant monitor uses a minimum of 

10 time steps to make a diagnosis (typically 15 time steps). Finally the acoustic 

monitor is then accessed to estimate the leak rate. The parallel implementation of 

the acoustic monitor would typically provide a response in a single time step. The
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speed of response of either method when used in the OAS still compares 

favourably with that of a human operator.

The response of the OAS to missing or corrupted data was to provide no output or 

‘fail safe’.

7.5.2 OAS Validation

It has been demonstrated that the OAS can provide several advantages to the plant 

operator in the diagnosis of transients in a PWR. However as the OAS is developed 

further (for example the addition of further modules), so does the complexity of the 

system. This increase in complexity has the potential for decreasing the 

dependability of the overall safety critical system, the failure of which can lead to 

injury or loss of life and damage to the plant and the environment. Before the 

implementation of the OAS it is essential that various aspects of the system be 

assessed for its dependability and any malfunction predicted.

The principle dimensions of a safety critical system are as follows:

• Availability -  the ability of the system to deliver services when requested

• Reliability -  the ability of the system to deliver services as requested

• Safety -  the ability of the system to operate without catastrophic failure

• Security -  the ability of the system to protect itself against accidental or 

deliberate intrusion

(Sommerville 2004)

As the levels of dependability required for a safety critical system are increased, 

so are the costs associated with the systems development -  increased testing and 

system validation, and more expensive development techniques.

The OAS must also follow government regulations or industry standards for 

safety critical systems and be certified by licensing bodies (Isaksen 1996), 

(Nuclear Regulatory Working Group 2000).
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Chapter 8

Conclusion

8.1 Introduction

A research aim was proposed in the introduction of this thesis; this chapter draws 

conclusions on the research, and what contribution has been made and possible 

areas of further research.

The development of powerful instrumentation for the monitoring of Pressurised 

Water Reactors (PWR) has resulted in the routine production of data to be 

analysed. In turn this has prompted much research into approaches to automatic 

system analysis. Due to the successful track record of artificial neural network 

models (ANNs) in application to difficult problems, there is considerable interest 

in the industrial use of safety-related ANNs (Lisboa 2001).

The aim of this thesis was to investigate the use of Artificial Neural Networks in 

the development of a prototype Operators Advisory System (OAS) for the early 

identification and management of a fault condition in a Pressurised Water Reactor 

(PWR). It is intended that the OAS act as an advisor to the PWR plant operator, not 

as a replacement.
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Artificial Neural Networks are a general framework for the mapping of 

input/output systems and readily lend themselves to the study of complex non-

linear systems as typified by a PWR. The main advantage of using ANNs is that 

they make no apriori assumptions about the system under consideration and are 

straightforward to implement. A shortfall is their lack of transparency in directly 

revealing the nature of the system under consideration. The standard back- 

propagation algorithm for training feed-forward neural networks has proven robust 

even for difficult problems. However, its high performance results are attained at 

the expense of a long training time to adjust the network parameters. The extensive 

use of simulations of a generic PWR was used in this thesis.

8.2 Summary

This thesis has provided a synopsis of some aspects of the current state of 

understanding of the uses of ANN in the nuclear industry and highlights the main 

challenges facing the research community, namely, the development of benchmark 

data sets for future development. Intrinsically linked with this goal is the need to 

continue collecting large-scale real time data sets.

The first investigation undertaken was the use of ANNs for transient classification. 

The aim of this operation was to further develop a major PWR fault classifier first 

proposed by Weller 1997. This was a multidimensional classification problem and 

as such was ideally suited for ANN application.

The focus of the current work has been towards the improvement of the practical 

applicability of this type of system to real processes as demonstrated by the 

experiments on the effects of noise on the performance of the trained ANN. The 

results of the experiments were to improve the robustness of the transient classifier 

to noisy transducers, and take account of the ageing process within the plant.

The techniques used to develop the fault classifier were then used to develop the 

next module in the OAS, the estimation of leak rate, for a small primary coolant 

leak. These small leaks only made small dynamic changes within the primary
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circuit of the PWR, it was therefore necessary to extend the use of a feed forward 

ANN to take account of temporal information, to aid in the development of the 

classifier. The final ANN provided a real number estimate of the leak rate.

During the development of the module for a small loss of steam from the 

secondary circuit of a PWR, the effects on the primary circuit plant parameters 

were too small to successfully develop a leak rate estimator using an ANN. In 

keeping with the aim of this work, practicability, external information was used to 

supplement the data provided by the PWR simulators. Experiments were conducted 

in the use of acoustics to aid in the development of the classifier. From these 

experiments a relationship was derived between the levels of noise generated by a 

steam leak and the rate of steam leak.

Also investigated was the pre-processing of the sound data, a Fourier transform, 

which could then be used to develop an ANN leak rate classifier.

Finally the three modules developed were integrated into the prototype OAS. The 

OAS would provide to the PWR plant operator early warning of a PWR transient 

As noted in the synopsis on the use of ANNs in the nuclear industry, much has 

been made of the lack of transparency and therefore confidence in the results 

provided. In answer to these concerns, two strategies were adopted in the 

development of the OAS system. First, the use of a independently developed PWR 

simulator, the data from which was used to confirm the OAS diagnosis. Secondly, 

confirmation by the plant operators for major transients for example a ‘rod drop’ 

transient. Early tests indicated that the use of a single ANN for the classification of 

a small primary coolant leak was inadequate; therefore three ANNs were 

developed to overcome this problem. The rapid development and integration of the 

new ANNs highlighted the flexibility of the proposed system
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8.3 Discussion

This section deals with each of the objectives listed in the introduction and 

describes the extent to which they were met.

To extend and validate an existing model of transient classification in the 

primary circuit of a Pressurised Water Reactor (PWR).

This objective was only partly met. The original fault classifier was extended and 

applied to data derived from a modified PWR simulator. Unfortunately the lack of 

real plant data limited the validation of the fault ANN to the effects of noise, 

calibration drift, and plant ageing on input data.

To investigate the use of ANNs in the monitoring of small transients in a PWR

This objective was met in full. ANNs were used to investigate small breaks in the 

primary and secondary circuits of a PWR.

Develop a prototype ANN based OAS

This objective in the development of an ANN based OAS was also met as planned. 

The successful integration of the fault and small LOCA ANN into a decision 

support system was established. Unfortunately the investigation into the use of an 

ANN based acoustic small leak monitor could not be incorporated into the OAS 

due to a lack of data. However, information gained from the investigation provided 

valuable data for the development of a non-ANN acoustic leak monitor, which was 

included in the OAS.
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8.4 Future Work

This section highlights theoretical and practical aspects, which merit further 

exploration and development.

8.4.1 Further Testing

The development of the OAS system described in this thesis, made extensive use 

of simulated data. Indeed many of the studies in the use of ANNs for transient 

analysis report results from qualitative assessments using simulated data. It is very 

difficult to assess such work and to determine the generalisation capacity of the 

proposed approaches. The work reported in this thesis was performed in order to 

investigate and demonstrate the potential of ANNs in application to PWR analysis. 

Information gained from experimentation in chapter 4 in the development of a 

major fault classifier, was used to improve the robustness of ANNs developed later 

on in the thesis. However further research is required into improving the robustness 

of ANNs to missing/noisy data.

8.4.2 New diagnostic modules

Currently, only three modules have been developed for the diagnosis of plant 

transients. Whilst this approach was necessary to demonstrate the feasibility of an 

ANN based multi layered support system. The models implemented so far could 

serve as a benchmark for the development of future modules. The modules 

developed could be extended to not only detect a transient and the size of the 

transient but also to include the location.

An example could be the further development of the acoustic ANN monitor. 

Chapter 6 investigated the use of ANN for the classification of leak rates. 

Unfortunately, the model validity could not be ascertained due to the limited 

amount of data, and could not therefore be included in the OAS. Despite the fact, 

the model was not included in the ANN; the results are of importance and could 

serve as a benchmark for future development. A more detailed investigation this
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time including both air and structure borne microphones, together with signal 

processing could yield information for an ANN to not only detect and estimate a 

leak, but also its location. The development of a passive leak monitoring system 

using instrumentation, which has been protected against high temperatures and 

humidity, would be extremely useful in the hostile environment of a reactor 

compartment.

The OAS described, by default requires that the output data delivered by 

instrumentation is in a standardised/common format. This makes for the easier 

integration of future developed modules.

8.4.3 Confidence levels

In chapter 7, two methods were used to improve the level of confidence which 

could be attached to a diagnosis by the OAS. The inclusion of a comparator to 

compare the predicted plant parameters by the OAS with actual/real plant 

parameters the smaller the difference the greater the degree of accuracy, also and 

as important is user confirmation it is envisaged that both of these methods be 

included in future development. However, another method to improve the 

confidence attached to a decision maybe to train several ANNs for the same task, 

each trained on an independent test data set. A polling strategy (Wellerl997) can 

then be adopted for the acceptance of a diagnosis. For example, if two out of three 

ANNs agree the diagnosis is confirmed.

8.4.4 On-line Calibration

Because of dynamic nature of PWR systems their environment, inherent elements 

of the domain as well as the type of tasks completed by the systems may change. 

Initially very well performing ANN may encounter a significant drop of 

performance after plant characteristics have changed, for example calibration drift 

in instrumentation or aging processes within the reactor.
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Most diagnostic systems described will only report a problem when the diagnosis 

no longer satisfies expectation. One solution may be the continuous external 

monitoring of the proposed OAS as well as plant instrumentation to continually 

‘fine tune’ the overall system. This may include re-training ANN modules using 

the latest available plant data.

8.4.5 The Man-Machine Interface

Plant operators where possible were consulted in the development of the OAS. 

Another area of research could be to investigate the point at which the plant 

operator interacts with the OAS, the Man-Machine Interface (MMI). A well- 

designed user interface can reduce human error in process control. Research is 

required on how much information generated by the OAS is presented to the plant 

operator. Too much information may well lead to an increase in human error. The 

manner, in which the information is displayed to the plant operator in either the 

form of a computer display, dedicated gauges, audible alarms or a combination of 

all, will also require investigation. The optimising of the MMI may well require the 

changes in the OAS development, e.g. from a multi-layered system as described in 

this thesis, to a hierarchical system.

8.4.6 Assessment of Safety-Critical Software

Arndt (2004) highlights the following challenges in the introduction of digital

systems:

• Increased complexity

• New failure modes (particularly common cause failures)

• Difficulties in demonstrating system safety

• Rapid technology changes

• Cyber security

The assessment of the OAS to meet relevant standards is an important part of the 

software validation process,
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8.5 Summary

It is envisaged that the needs of intelligent monitoring systems will increase in the 

future. New technology has led to an increase in the number and complexity of 

transducers used in the monitoring of a nuclear power plant, and it is hoped the 

developed systems will be able to capitalise on the increasingly data rich 

environment of the control room, and further enhance existing safety systems.

Due to concerns in the use of a ‘black box’ approach to aid in the decision making 

process in a safety critical system as typified by the operation of a PWR, it may be 

the case that individual modules be implemented (in parallel with existing systems) 

and their reliability proved. This ‘bottom up’ approach to implementation may be 

more acceptable.
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Appendices

A: An Introduction to Artificial Neural Networks

This appendix is a brief introduction to the principal modelling technique used in 

this research, the feedforward Artificial Neural Network (ANN). Further 

information can be obtained from specialist books (Bishop 1996, Masters 1993).

ANNs are a simplified attempt to mimic the brains ability to recognise complex 

patterns. The building blocks of an ANN are the node. The basic architecture of 

ANN consists of nodes or neurones, which are highly interconnected. The origins 

of these networks can be traced back to the “perceptron” introduced by Rosenblatt 

(1958).

Input layer Hidden layer Output layer

Figure A.l Feedforward Artificial Neural Network (ANN)
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Figure A. 1 shows a typical architecture for a trained (though could be untrained), 

feedforward backpropagation ANN. The example above consists of an input layer 

of three nodes (data from the environment), a hidden layer of five nodes, and an 

output layer of three nodes. The ANN, once trained, can be used to diagnose 

unknown cases. In this example each neuron is able to sum many weighted inputs 

whether plant data or other nodes with each input being modified by an adjustable 

weight. The sum of these weighted inputs is added to a bias for that neuron and 

then passed through a modifying function, typically step, sigmoid or hyperbolic 

tangent, which determines the final output (figure A2).

For n inputs, {x,,. i=0, ..., n -  /}, the neurons output is calculated as:

Neuron output = f(net) = f( ^ x (w,. + x nwn )

Fig A.2 Diagram of an ANN node

In supervised learning, the ANN the topology is usually held fixed, and the 

Connection weights are changed during training to minimise error between actual 

and desired output data.

To train a network and measure how well it performs, a cost function must be 

defined to provide an unambiguous numerical rating of system performance. A few 

basic functions are very commonly used. One of them is the sum of squares error 

function,
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E-U  P' - ^ 2

where p  indexes the patterns in the training set, i indexes the output nodes, and tp, 

and y pi are, respectively, the target and actual network output for the /th output unit 

on the p\h  pattern. In real world applications, it may be necessary to complicate the 

function with additional terms to control the complexity of the model.

The training method used in this thesis, and the most common is the Back- 

Propagation training algorithm, which is based on the minimising of the cost 

function using a gradient descent rule.
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B: Results of effect of noise on training

Noise added to training File name RMS error

0 FN1 0.0861

0 FN2 0.0829
0 FN3 0.09

0.2 FN4 0.0896

0.2 FN5 0.0969

0.2 FN6 0.0988

0.4 FN7 0.0975

0.4 FN8 0.0984

0.4 FN9 0.0908
0.6 FN10 0.0916

0.6 FN11 0.096

0.6 FN12 0.0895
0.8 FN13 0.0973

0.8 FN14 0.0969

0.8 FN15 0.092
1 FN16 0,1037

1 FN17 0.099

1 FN18 0.0949

1.2 FN19 0.1066

1.2 FN20 0.0988

1.2 FN21 0.121

1.4 FN22 0.1084
1.4 FN23 0.1109

1.4 FN24 0.1277

1.6 FN25 0.1162

1.6 FN26 0.1186

1.6 FN27 0.1001
1.8 FN28 0.13
1.8 FN29 0.1477

1.8 FN30 0.1494

2 FN31 0.0886

2 FN32 0.092

2 FN33 0.0855

Table B1 Effect of Noise on ANN performance

Best results (lowest RMS error) are highlighted.
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Noise added  to  va lida tion

set FN2 FN4 FN9 FN12 FN15 FN18 FN20 FN22 FN27 FN28 FN33

0 0.101 0.1074 0.1043 0.1246 0.1131 0.1124 0.1249 0.1383 0.1422 0.155 0.1112

0.1 0.8148 0.1085 0.1076 0.1262 0.1143 0.1111 0.1255 0.1374 0.1431 0.1545 0.1132

0.2 0.8436 0.1163 0.1075 0.1283 0.1155 0.1132 0.1274 0.1405 0.1431 0.1562 0.128

0.3 0.8651 0.1281 0.1143 0.1209 0.1164 0.1148 0.1272 0.1329 0.1346 0.1462 0.1215

0.4 0.8674 0.1658 0.1282 0.1375 0.1307 0.1181 0.1451 0.1539 0.1514 0.1657 0.158

0.5 0.8646 0.1649 0.1535 0.1393 0.147 0.1279 0.1396 0.1572 0.1599 0.1594 0.1684

0.6 0.8871 0.2074 0.1723 0.1602 0.1404 0.1376 0.1552 0.1575 0.1514 0.1614 0.1987

0.7 0.8812 0.2478 0.1925 0.1848 0.1697 0.1376 0.1615 0.1433 0.1678 0.1627 0.2599

0.8 0.864 0.253 0.2169 0.1896 0.1877 0.1509 0.1678 0.1772 0.1823 0.1621 0.241

0.9 0.8899 0.2777 0.2373 0.1745 0.1761 0.1499 0.174 0.1666 0.1655 0.1624 0.2851

1 0.8824 0.3038 0.2422 0.2233 0.2036 0.1578 0.1815 0.2093 0.1917 0.1866 0.2968

1.1 0.8739 0.3011 0.2446 0.2013 0.2058 0.1868 0.1924 0.1972 0.2055 0.1823 0.3205

1.2 0.8803 0.3689 0.2891 0.247 0.258 0.2082 0.2277 0.2387 0.1998 0.196 0.3613

1.3 0.8766 0.3744 0.3066 0.2815 0.256 0.2269 0.2185 0.2094 0.2233 0.1831 0.3519

1.4 0.8916 0.3409 0.3209 0.2809 0.2526 0.2401 0.233 0.2382 0.232 0.191 0.3678

1.5 0.8832 0.4288 0.3133 0.2726 0.277 0.2596 0.2454 0.2423 0.2159 0.1971 0.402

1.6 0.8956 0.3861 0.3255 0.2989 0.2883 0.2466 0.243 0.2644 0.2307 0.2094 0.3801

1.7 0.8742 0.4258 0.3617 0.3265 0.3287 0.2901 0.2671 0.2785 0.2813 0.2126 0.4378

1.8 0.8662 0.4349 0.3759 0.3208 0.2988 0.2817 0.2582 0.2785 0.28 0.2298 0.4367

1.9 0.8858 0.451 0.3746 0.3429 0.3253 0.3133 0.2927 0.276 0.267 0.2249 0.4418

2 0.8755 0.4764 0.3813 0.3593 0.326 0.3151 0.2846 0.2964 0.2993 0.2256 0.4606

Average RMS error 0.8364 0.289 0.2414 0.221 0.211 0.1905 0.1949 0.2016 0.1985 0.1821 0.28773

Standard deviation 0.1694 0.1242 0.0985 0.0809 0.0775 0.0721 0.0562 0.056 0.0515 0.0265 0.12119

Table B2 Effect of noise in the validation data on trained ANN
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File name Hidden layer 1 Hidden Iayer2 RMS error

X1 24 17 0.0945

X2 24 15 0.0993

X3 24 13 0.0932

X4 24 11 0.0941

X5 24 9 0.1031

X6 24 7 0.0928

X7 24 5 0.1039

X8 22 17 0.097

X9 22 15 0.0891

X10 22 13 0.1081

X11 22 11 0.091

X12 22 9 0.0935

X13 22 7 0.1085

X14 22 5 0.097

X15 20 17 0.1043

X16 20 15 0.095

X17 20 13 0.0955

X18 20 11 0.0902

X19 20 9 0.0916

X20 20 7 0.0954

X21 20 5 0.0985

X22 18 17 0.0895

X23 18 15 0.0918

X24 18 13 0.0977

X25 18 11 0.0927

X26 18 9 0.0938

X27 18 7 0.0964

X28 18 5 0.0914

X29 16 17 0.1184

X30 16 15 0.0923

X31 16 13 0.0931

X32 16 11 0.1178

X33 16 9 0.0918

X34 16 7 0.0891

X35 16 5 0.0974

X36 14 17 0.1043

X37 14 15 0.0886

X38 14 13 0.1056

X39 14 11 0.0916

X40 14 9 0.0936

X41 14 7 0.0874

X42 14 5 0.082
X43 12 17 0.0876

X44 12 15 0.0884
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X45 12 13 0.1065

X46 12 11 0.0977

X47 12 9 0.0952

X48 12 7 0.1014

X49 12 5 0.1012

X50 24 17 0.1015

X51 24 15 0.0912

X52 24 13 0.093

X53 24 11 0.1033

X54 24 9 0.0918

X55 24 7 0.089

X56 24 5 0.0891

X57 22 17 0.0938

X58 22 15 0.097

X59 22 13 0.0856

X60 22 11 0.0848

X61 22 9 0.0934

X62 22 7 0.0826
X63 22 5 0.0932

X64 20 17 0,0904

X65 20 15 0.092

X66 20 13 0.0936

X67 20 11 0.0902

X68 20 9 0.0917

X69 20 7 0.0934

X70 20 5 0.1385

X71 18 17 0.0931

X72 18 15 0.0986

X73 18 13 0.0864

X74 18 11 0.0928

X75 18 9 0.1305

X76 18 7 0.096

X77 18 5 0.093

X78 16 17 0.0912

X79 16 15 0.0974

X80 16 13 0.0994

X81 16 11 0.0924

X82 16 9 0.0893

X83 16 7 0.0906

X84 16 5 0.0783
X85 14 17 0.1088

X86 14 15 0.0966

X87 14 13 0.0937

X88 14 11 0.0944

X89 14 9 0.0938

X90 14 7 0.1018

X91 14 5 0.0965

X92 12 17 0.0981
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X93 12 15 0.0894

X94 12 13 0.0989

X95 12 11 0.0917

X96 12 9 0.0902

X97 12 7 0.0921

X98 12 5 0.0952

X99 24 17 0.103

X100 24 15 0.0984

X101 24 13 0.0928

X102 24 11 0.0874

X103 24 9 0.0884

X104 24 7 0.0932

X105 24 5 0.0947

X106 22 17 0.1326

X107 22 15 0.0966

X108 22 13 0.0874

X109 22 11 0.1017

X110 22 9 0.0966

X111 22 7 0.0847

X112 22 5 0.1065

X113 20 17 0.0963

X114 20 15 0.0984

X115 20 13 0.0977

X116 20 11 0.1034

X117 20 9 0.1002

X118 20 7 0.0913

X119 20 5 0.0966

X120 18 17 0.0953

X121 18 15 0.0972

X122 18 13 0.0957

X123 18 11 0.0879

X124 18 9 0.1001

X125 18 7 0.0947

X126 18 5 0.0875

X127 16 17 0.0898

X128 16 15 0.0908

X129 16 13 0.099

X 130 16 11 0.0921

X131 16 9 0.0985

X132 16 7 0.0845
X133 16 5 0.0946

X134 14 17 0.1076

X135 14 15 0.0914

X136 14 13 0.1031

X137 14 11 0.0918

X138 14 9 0.0897

X139 14 7 0.1014

X140 14 5 0.0925
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X141 12 17 0.0998

X142 12 15 0.0918

X143 12 13 0.0907

X144 12 11 0.0934

X145 12 9 0.0967

X146 12 7 0.1077

X147 12 5 0.1043

Table B3 Training of fault ANN without noise

Noise added

to training File name RMS error

0 FNA1 0.0803

0 FNA2 0.0997

0 FNA3 0.0921

0.2 FNA4 0.0959

0.2 FNA5 0.0865

0.2 FNA6 0.0899

0.4 FNA7 0.0908

0.4 FNA8 0.081

0.4 FNA9 0.1051

0.6 FNA10 0.0924

0.6 FNA11 0.0906

0.6 FNA12 0.0968

0.8 FNA13 0.0884

0.8 FNA14 0.0957

0.8 FNA15 0.0893

1 FNA16 0.092

1 FNA17 0.0984

1 FNA18 0.0935

1.2 FNA19 0.1034

1.2 FNA20 0.1028

1.2 FNA21 0.104

1.4 FNA22 0.1192

1.4 FNA23 0.1058

1.4 FNA24 0.1262

1.6 FNA25 0.1457

1.6 FNA26 0.1081

1.6 FNA27 0.0968

1.8 FNA28 0.1178

1.8 FNA29 0.1523

1.8 FNA30 0.1214

2 FNA31 0.1333

2 FNA32 0.1336

2 FNA33 0.1513

Table B4 Training of file X62 with increasing amounts of noise
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N o ise  in
va lid a tio n

se t
FNA1 FN A 5 FN A 8 FNA11 FN A 13 F N A 16 F N A 20 F N A 23 F N A 27 F N A 28 FNA31

0 0.1111 0.1151 0.1299 0.1204 0.1177 0.1387 0.1164 0.1265 0.1596 0.1424 0.1654

0.1 0.7489 0.1161 0.1322 0.1199 0.1176 0.1412 0.118 0.1244 0.1603 0.1415 0.1645

0.2 0.7559 0.1319 0.1298 0.122 0.1196 0.1384 0.1175 0.1292 0.1603 0.1442 0.1693

0.3 0.7749 0.1329 0.1324 0.1276 0.1232 0.1371 0.1203 0.1242 0.1493 0.1374 0.1572

0.4 0.7706 0.1461 0.1457 0.1351 0.1342 0.1425 0.1351 0.1473 0.1618 0.1594 0.1721

0.5 0.7834 0.1625 0.1705 0.1351 0.147 0.1478 0.1428 0.1616 0.1631 0.1475 0.1699

0.6 0.7731 0.2001 0.166 0.1479 0.1512 0.15 0.1595 0.1549 0.1608 0.1475 0.1792

0.7 0.7799 0.2463 0.1971 0.173 0.171 0.1587 0.1682 0.1498 0.1683 0.1624 0.1674

0.8 0.7675 0.2304 0.2123 0.1943 0.1891 0.1752 0.173 0.1771 0.1916 0.167 0.1683

0.9 0.7872 0.2695 0.2112 0.1943 0.1876 0.1684 0.1705 0.1574 0.1789 0.1583 0.1741

1 0.7759 0.2915 0.257 0.235 0.2169 0.1786 0.1987 0.2183 0.1967 0.1812 0.1785

1.1 0.7801 0.3146 0.2637 0.2241 0.2256 0.202 0.2018 0.2098 0.2105 0.1836 0.1886

1.2 0.7642 0.3706 0.3082 0.2596 0.2567 0.2233 0.2318 0.2526 0.2009 0.201 0.1984

1.3 0.7766 0.3532 0.309 0.2925 0.2529 0.244 0.2429 0.2326 0.2223 0.2036 0.2077

1.4 0.7919 0.3586 0.3152 0.2751 0.2532 0.2421 0.2469 0.2601 0.2299 0.2093 0.2175

1.5 0.7733 0.416 0.3409 0.2913 0.2794 0.2661 0.2494 0.2535 0.2053 0.2244 0.2342

1.6 0.7913 0.39 0.338 0.2932 0.3017 0.2504 0.263 0.2684 0.225 0.2403 0.2132

1.7 0.7884 0.4353 0.3832 0.3198 0.3376 0.296 0.2628 0.2787 0.277 0.2389 0.2368

1.8 0.7779 0.4363 0.4025 0.344 0.3304 0.2955 0,2783 0.2964 0.2655 0.2241 0.241

1.9 0.7785 0.464 0.3909 0.3662 0.3316 0.3246 0.3125 0.3011 0.2661 0.264 0.2804

2 0.7804 0.4602 0.3992 0.3901 0.3315 0.3197 0.3151 0.3041 0.2829 0.237 0.2305

Average 0.7443 0.2877 0.2540 0.2267 0.2179 0.2067 0.2012 0.2061 0.2017 0.1864 0.1959

Standard

deviation 0.1455 0.1234 0.0992 0.0885 0.0796 0.0655 0.0656 0.0649 0.0429 0.0399 0.0335

Table B5 Effect of noise in the validation data on trained ANN
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C: Primary Coolant Monitor Results

Single Time Step

FILE NAME LAYER 1 LAYER 2 RMS error

A1 16 12 0.187078

A2 16 10 0.18951

A3 16 8 0.182427

A4 16 6 0.178421

A5 16 4 0.226477

A6 14 12 0.189774

A7 14 10 0.18873

A8 14 8 0.18249

A9 14 6 0.172226
A10 14 4 0.286537

A11 12 12 0.181359

A12 12 10 0.199172

A13 12 8 0.178152

A14 12 6 0.192903

A15 12 4 0.252449

A16 10 12 0.179889

A17 10 10 0.194358

A18 10 8 0.194806

A19 10 6 0.199407

A20 10 4 0.198946

A21 8 12 0.175807

A22 8 10 0.187086

A23 8 8 0.191555

A24 8 6 0.203062

A25 8 4 0.277354

A26 6 12 0.209713

A27 6 10 0.199976

A28 6 8 0.194458

A29 6 6 0.221167

A30 6 4 0.257711
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Two Time Steps

FILE NAME LAYER 1 LAYER 2 RMS error

B1 24 16 0.129966

B2 24 14 0.13565

B3 24 12 0.125653

B4 24 10 0.128832

B5 24 8 0.127018

B6 24 6 0.121968

B7 22 16 0.131249

B8 22 14 0.134367

B9 22 12 0.129163

B10 22 10 0.137943

B11 22 8 0.132099

B12 22 6 0.126523

B13 20 16 0.129888

B14 20 14 0.134833

B15 20 12 0.132106

B16 20 10 0.133119

B17 20 8 0.125792

B18 20 6 0.130315

B19 18 16 0.137765

B20 18 14 0.127822

B21 18 12 0.13734

B22 18 10 0.126106

B23 18 8 0.128838

B24 18 6 0.132644

B25 16 16 0.132075

B26 16 14 0.136684

B27 16 12 0.134345

B28 16 10 0.140852

B29 16 8 0.144664

B30 16 6 0.130387

B31 14 16 0.134411

B32 14 14 0.133094

B33 14 12 0.135172

B34 14 10 0.1358

B35 14 8 0.135478

B36 14 6 0.131262

B37 12 16 0.1311

B38 12 14 0.139507

B39 12 12 0.138112

B40 12 10 0.137786

B41 12 8 0.147646

B42 12 6 0.139856
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Three time steps

FILE NAME LAYER 1 LAYER 2 RMS error

C1 27 17 0.104711

C2 27 15 0.107908

C3 27 13 0.113785

C4 27 11 0.10166

C5 27 9 0.098508

C6 27 7 0.102642

C7 25 17 0.108204

C8 25 15 0.113085

C9 25 13 0.10532

C10 25 11 0.108302

C11 25 9 0.101712

C12 25 7 0.10694

C13 23 17 0.112326

C14 23 15 0.102636

C15 23 13 0.10468

C16 23 11 0.111378

C17 23 9 0.096972

C18 23 7 0.103358

C19 21 17 0.111007

C20 21 15 0.109732

C21 21 13 0.107229

C22 21 11 0.109089

C23 21 9 0.100004

C24 21 7 0.100972

C25 19 17 0.105291

C26 19 15 0.106962

C27 19 13 0.110128

C28 19 11 0.109667

C29 19 9 0.107145

C30 19 7 0.102466

C31 17 17 0.106548

C32 17 15 0.120648

C33 17 13 0.107123

C34 17 11 0.11834

C35 17 9 0.119336

C36 17 7 0.105957
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Four time steps

FILE NAME LAYER 1 LAYER 2 RMS error

D1 28 16 0.133147

D2 28 14 0.11837

D3 28 12 0.114552

D4 28 10 0.116557

D5 28 8 0.110502

D6 28 6 0.115617

D7 26 16 0.130143

D8 26 14 0.112685

D9 26 12 0.111579

D10 26 10 0.120447

D11 26 8 0.104759

D12 26 6 0.111781

D13 24 16 0.125872

D14 24 14 0.125704

D15 24 12 0.119773

D16 24 10 0.115021

D17 24 8 0.124038

D18 24 6 0.105963

D19 22 16 0.133344

D20 22 14 0.120943

D21 22 12 0.116951

D22 22 10 0.123745

D23 22 8 0.123225

D24 22 6 0.135028

D25 20 16 0.113594

D26 20 14 0.121802

D27 20 12 0.131562

D28 20 10 0.119046

D29 20 8 0.125952

D30 20 6 0.139183
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D: Sample MATLAB code for Operators Advisory System

% m file advisor

% This is a script for the overall PWR operator's advisory system 

% It uses jloca.m and faultannlb m

% returns 6 real valued outputs

% (c) Peter Weller, Llew D'Souza, Alex Thompson

% City University

% 12/1/06

clear all 

close all

global Youtl Yout2 Yout3 Yout4 Yout5 Yout6 small medium large leakr 

%initialize;

%siml0;

load ('testfile.txt');

faultannlb;

% Youtl = 1; % Check point for checking outcome of second ANN, toggle on/off for use

if Youtl >0.95

jloca;

j21oca;

jloca3;

iftestfile(l 1, 33) > A & testfilefl 1, 33) < B 

dsl = (testfile(l 1, 33)-C)/D; 

break; 

else 

end
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e lse

if Yout5 > 0.95

n = input('Is the transient a GROUP DROP Y/N ' ,'s'); 

if n —  'Y'

disp ('program end') 

break; 

else

disp ('unknown transient has occured') 

end 

end

ifYout3 >0.95

n = input('Is the transient a throttle opening Y /N ' ,'s'); 

ifn  =  'Y’

disp ('program end') 

break; 

else

disp ('unknown transient has occured') 

end 

end

if Yout6 > 0.95

n = input('Is the transient a SINGLE ROD DROP Y/N ’ ,'s'); 

if n —  'Y' 

disp ('program end') 

break; 

else

disp ('unknown transient has occured') 

end 

end

disp ('program end') 

end;

leakr=[0 0 7000 7000]; 

leakt=[0 50 51 300];

if small <= 0.45

leakr=[0 0 small small] 

disp('Primary coolant leak of'); 

disp(small)

elseif medium > 0.45 & medium <= 1.6 

leakr=[0 0 medium medium];
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disp('Primary coolant leak of'); 

disp(medium) 

elseif large > 1.6

leakr=[0 0 large large];

fprintf('Primary coolant leak of %5f kg/s', large) 

end

if leakr =  [0 0 7000 7000] 

break; 

else

oSimlO;

end

%inptime2;

% Comparator between calculated and recorded values 

comp = zeros(2, 1);

com p(l,l) = 100 + ((pres(ned, 1) - testfile(l0,27)* 100)/testfile( 10,27)); 

comp(2,l) = 100 + ((levp(ned, 1) - testfile(l0,28)* 100)/testfile( 10,28));

if com p(l,l) <= 5 & com p(l,l) >= -5 & comp(2,l) <= 5 & comp(2,l) >= -5 

plot(tp,pp,tp,tc,tp,th,tp,ts,tp,levp,tp,pres) 

else

disp('out of limits') 

end

x = pres( 1); 

y = levp(l);

% End of program
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