
              

City, University of London Institutional Repository

Citation: Lv, Q., Zeljic, K., Zhao, S., Zhang, J., Zhang, J. & Wang, Z. (2023). Dissecting 

Psychiatric Heterogeneity and Comorbidity with Core Region-Based Machine Learning. 
Neuroscience Bulletin, 39(8), pp. 1309-1326. doi: 10.1007/s12264-023-01057-2 

This is the published version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/30355/

Link to published version: https://doi.org/10.1007/s12264-023-01057-2

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Vol.:(0123456789)1 3

Neurosci. Bull. 
https://doi.org/10.1007/s12264-023-01057-2

REVIEW

www.neurosci.cn
www.springer.com/12264

Dissecting Psychiatric Heterogeneity and Comorbidity with Core 
Region‑Based Machine Learning

Qian Lv1  · Kristina Zeljic2  · Shaoling Zhao3,4 · 
Jiangtao Zhang5 · Jianmin Zhang5 · Zheng Wang1,6  

Received: 2 September 2022 / Accepted: 17 February 2023 
© The Author(s) 2023

Abstract Machine learning approaches are increasingly 
being applied to neuroimaging data from patients with psy-
chiatric disorders to extract brain-based features for diagno-
sis and prognosis. The goal of this review is to discuss recent 
practices for evaluating machine learning applications to 
obsessive-compulsive and related disorders and to advance 
a novel strategy of building machine learning models based 
on a set of core brain regions for better performance, inter-
pretability, and generalizability. Specifically, we argue that 
a core set of co-altered brain regions (namely ‘core regions’) 
comprising areas central to the underlying psychopathology 
enables the efficient construction of a predictive model to 
identify distinct symptom dimensions/clusters in individual 
patients. Hypothesis-driven and data-driven approaches are 

further introduced showing how core regions are identified 
from the entire brain. We demonstrate a broadly applica-
ble roadmap for leveraging this core set-based strategy to 
accelerate the pursuit of neuroimaging-based markers for 
diagnosis and prognosis in a variety of psychiatric disorders.

Keywords Psychiatric disorders · Obsessive-compulsive 
disorder · Core region · Magnetic resonance imaging · 
Machine learning · Neuroimaging-based diagnosis

Introduction

Psychiatric heterogeneity and comorbidity are ubiquitous 
in the categorical diagnosis of mental disorders, and this 
remains a bottleneck for precision diagnosis and personal-
ized therapy [1–4]. Obsessive-compulsive disorder (OCD) 
is a highly complex and disabling psychiatric disorder char-
acterized by obsessions and/or compulsions [5, 6], with a 
lifetime prevalence of ~ 1% to 2% worldwide [7]. Obsessions 
are repetitive thoughts, images, or urges that are intrusive 
and cause distress or anxiety, such as fear of contamination. 
Compulsions are repetitive and stereotyped behaviors that 
patients feel driven to perform to reduce the anxiety associ-
ated with obsessions, such as washing and cleaning. The cur-
rent gold standard for a clinical diagnosis of OCD relies on 
the symptom-based criteria of the Diagnostic and Statistical 
Manual of Mental Disorders [8], and the symptom severity 
of patients with OCD is typically quantified by behavioral 
assessment instruments such as the Yale-Brown Obsessive-
Compulsive Scale (Y-BOCS) [9]. The need to unbolt the 
shackles of the multifaceted symptom dimensions that 
characterize OCD, as well as phenotypes that co-occur with 
other disorders, has led researchers to search for objective 
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and tangible biomarkers for diagnosis and treatment prog-
nosis in the individual [10].

Brain imaging techniques such as magnetic resonance 
imaging (MRI) and positron emission tomography (PET) 
have demonstrated their capacity for non-invasive investiga-
tion of brain structure and function in patients with OCD, 
leading to unprecedented advancement in the characteriza-
tion of its etiology [11]. Specifically, structural and func-
tional alterations in patients with OCD have been found in 
the orbitofrontal cortex (OFC), anterior cingulate cortex 
(ACC), dorsolateral prefrontal cortex (PFC), inferior frontal 
gyrus (IFG), insula, amygdala, striatum, and thalamus; these 
were central to the development of the traditional cortico-
striato-thalamo-cortical hypothesis [5]. Different degrees 
and patterns of alterations in these neurocircuits in individu-
als with OCD are thought to lead to phenotypic heterogene-
ity and variable responses to pharmacotherapy and neuro-
surgical interventions [12–16]. To resolve the heterogeneity 
in OCD, psychiatrists have attempted to group patients with 
OCD based on clinical manifestations, and four subtypes 
have been consistently identified: contamination/washing, 
aggression/checking, symmetry/ordering, and hoarding [17]. 
Subsequent neuroimaging studies have confirmed the dis-
tinct neural mechanisms underlying these subtypes [18, 19]. 
In subjects with obsessive-compulsive traits, data-driven 
clustering of symptoms has revealed two subgroups with 
distinct symptom patterns and structural abnormalities [20]. 
Focused on the heterogeneity in brain imaging, recent stud-
ies have also identified subtypes of OCD with distinct neu-
roimaging abnormalities [21]. However, our understanding 
of OCD psychopathology stems predominantly from stud-
ies using case-control designs to focus on group differences 
between patients and healthy controls, which have proven 
challenging to translate into clinical utility. As such, charac-
terizing individual structural and functional variations in the 
psychiatric brain has become an important prerequisite to 
the pursuit of translationally valuable imaging biomarkers.

Machine learning algorithms are increasingly being 
combined with neuroimaging techniques to make infer-
ences about the health status of subjects at the individual 
level, thereby enabling the automatic and objective diagnosis 
of psychiatric disorders [22] (Fig. 1). This technique has 
been used in numerous recent investigations to distinguish 
patients with OCD from healthy controls (HCs) [23]. Here, 
we will briefly introduce the pipeline for these machine-
learning techniques; further technical details can be found 
in several excellent recent reviews [22].

Although specific procedures might vary at different 
stages across studies, the typical analysis pipeline includes 
the following steps. The first step is to transform neuroimag-
ing data into features. This involves deciding which features 
to use and extracting feature values from the data. The term 
‘feature’ refers to any derived variable containing valuable 

information about the class labels that can be extracted from 
the data. Different types of features in neuroimaging data can 
be used for classification purposes. For example, features can 
be extracted at the voxel level, or based on pre-defined areas 
(regions of interest) from a structural or functional brain 
atlas. Alternatively, multiple voxels across a brain network 
can be combined using dimension reduction techniques or 
joint estimation of multimodal features. Once features have 
been extracted from a training dataset, the number of features 
is most often reduced either using a data-driven method or 
based on prior knowledge [24]. Next, the selected features are 
fed into the machine learning algorithms to learn from the 
labeled data. A classifier is a function that takes features as 
input and generates a class label prediction. Popular machine 
learning classifiers for mental disorders include the support 
vector machine (SVM), logistic regression (LR), and random 
forest approaches [25]. Constructed classifiers require valida-
tion to determine model performance and generalizability, 
for which k-fold cross-validation (CV) is widely-used. To 
mitigate overfitting and performance bias, it is critical to ana-
lyze training and testing datasets independently. In k-fold CV, 
the most parsimonious way is to evenly divide the complete 
dataset into k test sets: k − 1 sets combined for model train-
ing, and one left-out set for testing. The average performance 
gives an approximation of the quality of models generated 
with this training algorithm. When the sample size is small, 
a special form of k-fold CV known as leave-one-out cross-
validation (LOOCV) is typically adopted, where k is the total 
number of subjects. Finally, classification performance can 
be evaluated with metrics such as accuracy, specificity, sen-
sitivity, and the area under the curve (AUC) of the receiver 
operating characteristic (ROC) curve. These metrics evaluate 
different aspects of classifier performance. Accuracy reflects 
how many cases were correctly classified out of the total 
(patients and HCs). Meanwhile, sensitivity and specificity 
refer to the proportion of correctly identified patients and 
HCs, respectively. The ROC curve is commonly used to dem-
onstrate the trade-off between sensitivity and specificity, with 
a larger AUC of the ROC corresponding to the better overall 
performance of the classifier.

Despite their widespread use, current machine-learning 
models face a number of notorious challenges that require 
further consideration. One such challenge is that the number 
of features in a neuroimaging dataset is typically several 
orders of magnitude larger than the number of subjects, 
namely, the curse of dimensionality. Effective feature engi-
neering can therefore significantly reduce the computational 
load and improve efficiency and performance [26, 27], par-
ticularly by taking advantage of the neurocircuitry char-
acteristics of brain diseases [28]. The consensus on what 
constitutes pathological circuits underlying psychiatric dis-
orders like OCD is that widespread structural and functional 
alterations over the whole brain are implicated whereas not 
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all brain regions are uniformly involved in the etiology of 
OCD [6, 29]. Screening key brain-based features to separate 
them from less relevant features is both crucial and ben-
eficial. Here, we review studies relevant to the diagnostic 
classification of OCD to underscore the contribution of core 
pathological regions. We then propose a novel classification 
strategy based on features from a set of core brain regions, 
and evidence endorsing this concept is discussed. A wide 
range of methods that aid in screening these core regions out 
of the whole brain is discussed. Finally, we outline future 
directions to accelerate the pursuit of imaging biomarkers 
in the diagnosis and prognosis of OCD.

Diagnostic Biomarkers for OCD

In this review, we concentrate on MRI modalities as they 
have been most widely applied in the machine-learning lit-
erature related to OCD [30]. In July 2022, a systematic lit-
erature search was done using PubMed with the following 
inclusion criteria: (1) MRI data were acquired; (2) a machine 
learning algorithm was used to classify patients with OCD 
and HCs; (3) the article was published in a peer-reviewed 
journal; (4) the article was in English. This search resulted 
in 24 relevant studies which are reviewed here [31–54]. Data 
from three MRI modalities were analyzed in these studies: 

Fig. 1  The application of neuroimaging-based diagnosis in OCD. A, 
B Comparison of traditional symptom-based diagnosis and neuroim-
aging-based diagnosis in OCD. Traditionally, patients with OCD are 
diagnosed by psychiatrists according to the DSM. In neuroimaging-
based diagnosis, imaging datasets from subjects are acquired, and a 

classifier automatically distinguishes patients with OCD from HCs. C 
The pipeline of diagnostic classification based on neuroimaging data. 
DSM, the Diagnostic and Statistical Manual of Mental Disorders; 
OCD, obsessive-compulsive disorder; HC, healthy control; AUC,  the 
area under the curve.
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structural (6 articles), functional (16 articles), and diffusion 
(1 article) MRI. Only one study used both structural and 
diffusion imaging data [40], but the combination of any two 
modalities in one classifier was not explored. See Table 1 for 
a summary of these studies and the methods used.

Functional MRI

To date, only one study [48] has used a task-based functional 
MRI dataset to distinguish patients with OCD from HCs 
(OCD = 10, HC = 10). Affective pictures from three cat-
egories were presented during functional MRI scanning. A 
two-step pattern recognition analysis was conducted to clas-
sify subjects into two groups. They trained a linear support 
vector classifier to distinguish the picture categories based 
on the subject’s brain response, and a searchlight method 
was then applied to predict the diagnostic label of the sub-
jects with information from the first step. The predictive 
power of features extracted from the OFC and the caudate 
nucleus even reached close to 100.0% accuracy, a finding 
that certainly requires future validation with multi-site and 
large-scale external data.

Since the pilot work of Biswal et al. [55], resting-state 
functional MRI has become a popular technique to inves-
tigate functional dysfunction in psychiatric disorders [56, 
57]. Multiple measures derived from resting-state fMRI 
data have been used as candidate features trained for the 
diagnosis of OCD, such as the functional connectivity, the 
amplitude of low-frequency fluctuations (ALFF), the frac-
tional amplitude of low-frequency fluctuations (fALFF), 
and regional homogeneity (ReHo). Gruner et al. [41] were 
the first to perform diagnostic classification for OCD based 
on 36 functional networks decomposed from resting-state 
functional data. The assembly of three networks combined 
with the LR algorithm achieved the highest performance at 
an accuracy of 80.1%, including the middle frontal/dorsal 
anterior cingulate network, the anterior/posterior cingulate 
network, and the visual network. Hu et al. [37] focused on 
ReHo maps to train SVM classifiers in tandem with LOOCV 
achieving 79.0% accuracy for patients with OCD (sensitivity 
78.4%, specificity 79.6%). The key regions contributing to 
the SVM classifier were the right OFC, dorsal ACC, inferior 
parietal cortex, temporal regions, and cerebellum, among 
which the right OFC exhibited the highest discriminative 
power. Using features derived from the fALFF map, Yang et 
al. [33] applied SVM to discriminate 68 drug-naïve patients 
with OCD from 68 HCs. The overall accuracy was 72.0% 
with 68.0% sensitivity and 76.0% specificity. Brain regions 
contributing to the discrimination consisted of the left supe-
rior temporal gyrus, the right middle temporal gyrus, the left 
supramarginal gyrus, and the superior parietal lobule. Jia et 
al. [39] adopted the voxel-mirrored homotopic connectiv-
ity method to investigate interhemispheric coordination in Ta
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OCD. Patients with OCD showed significantly decreased 
homotopic connectivity in the OFC, thalamus, middle occip-
ital gyrus, precentral gyrus, and postcentral gyrus compared 
with HCs. Exploratory SVM was performed with homotopic 
connectivity indices based on these five brain regions and 
all possible pairwise combinations. And they found that a 
combination of the thalamus and postcentral gyrus achieved 
the highest accuracy of 94.9%. In drug-naïve patients with 
OCD, Bu et al. [53] tested a wide range of imaging features 
extracted from ALFF, fALFF, ReHo, and functional con-
nectivity strength, and found that the SVM classifier yielded 
the highest accuracy of 95.4% with ALFF extracted from the 
PFC, ACC, precentral gyrus, and occipital lobes. Liu et al. 
[35, 51] conducted a series of studies to distinguish med-
ication-free patients from HCs with effective connectivity 
and functional connectivity. The combined classifier outper-
formed the classifiers with any type of connectivity (80.5% 
accuracy). To reduce the number of features extracted from 
whole-brain functional connectivity, Takagi et al. [52] 
applied principal component analysis to reduce the number 
of features from nearly 10,000 down to the number of par-
ticipants. An additional feature selection procedure, canoni-
cal correlation analysis, was applied to extract smaller sets of 
features related to diagnosis. The selected features were then 
entered into a sparse LR model, and the LOOCV achieved 
an accuracy of 73.0% in the training dataset. They further 
tested the classifier in an external dataset (OCD = 10, HC = 
18), and the AUC of the classifier was 0.7.

In addition, new functional measures were developed to 
expand the application of functional data in diagnostic clas-
sification. Liu et al. [43] applied a sliding-window approach 
to extract the dynamic ALFF as features in 73 OCD and 73 
HCs. The SVM classifier with 10-fold CV successfully dis-
tinguished patients (83.6% accuracy, 80.8% sensitivity, and 
86.3% specificity) from HCs with the most discriminative 
regions located in the inferior parietal lobule, dorsolateral 
PFC, middle occipital gyrus, and cuneus. Luo et al. [38] 
used distance correlation to construct the functional con-
nectivity matrices (OCD = 61, HC = 67), and the best dis-
criminative features were selected by SVM recursive feature 
elimination with a 10-fold CV strategy. The features from 
distance correlation achieved an accuracy of 93.0% (89.7% 
specificity and 95.1% sensitivity), superior to features from 
either Pearson correlation or partial correlation. The most 
discriminative features from distance correlation were dis-
tributed in the right dorsolateral PFC, orbital part of left 
superior frontal gyrus and right middle frontal gyrus, right 
ACC, paracingulate gyri, left supplementary motor area, and 
right precuneus.

Recent developments along this line of research focus on 
new machine-learning models to boost classification perfor-
mance [31, 34, 49]. In a small dataset (OCD = 15, HC = 13), 
Sen et al. [49] introduced an information-theoretic approach 

to extract features from resting-state data and found that 
the features derived from the differential sub-graph (edge) 
entropy achieved better performance (89.1% accuracy, 
100.0% specificity, and 80.0% sensitivity) than other feature 
engineering methods. The most discriminative features were 
located in the frontal lobe, parietal lobe, ACC, posterior 
cingulate gyrus, thalamus, default mode network, nucleus 
accumbens (NAc), and amygdala. Using whole-brain func-
tional connectivity matrices, Xing et al. [34] put forward a 
new Riemann Kernel principal component analysis for fea-
ture extraction. The proposed feature selection algorithm 
combined with an XGBoost classifier yielded the highest 
accuracy (91.8%). The decisive features were found in intra-
cerebellar connectivity, connectivity between the cerebellum 
and basal ganglia, connectivity between the rectus and para-
hippocampal gyrus, as well as corticothalamic connectivity. 
Yang et al. [46] integrated deep learning with traditional 
machine learning in one framework to distinguish 62 OCD 
from 65 HCs. A novel spatial similarity-aware learning 
model was proposed to construct the functional connec-
tivity matrix, and a fused deep polynomial network model 
was subsequently applied to learn informative features. The 
SVM classifier with these informative features yielded the 
best performance (87.6% accuracy, 95.2% sensitivity, and 
83.6% specificity) among features extracted from other types 
of functional connectivity and other feature learning meth-
ods. The most effective features were connected with OFC, 
IFG, insula, middle cingulate cortex, putamen, thalamus, 
temporal cortices, and parahippocampal cortex. Kalmady 
et al. [32] predicted the diagnosis of OCD (OCD = 175, 
HC = 175) with an established framework called EMPaS-
chiz, which was proposed to extract both regional and con-
nectivity-based features onto 14 different brain parcellation 
schemes in schizophrenia [58]. The EMPaSchiz algorithm 
with an LR classifier was able to predict OCD with 80.3% 
accuracy using the 5 times 5-fold CV, outperforming the 
neural network model. The most important features were 
distributed in several functional brain networks, such as the 
default mode, language, attention, visual, auditory, motor, 
and salience networks. Using a cross-species strategy, a 
recent study transferred the features extracted from trans-
genic monkeys to discriminate HCs from patients in sev-
eral psychiatric disease cohorts, including autism spectrum 
disorder (ASD), OCD, and attention deficit hyperactivity 
disorder [31]. A set of core brain regions distributed in the 
frontal and temporal cortices was extracted from the monkey 
dataset and then used to construct a new classifier to classify 
human patients in multiple independent clinical cohorts. In 
the OCD cohort, the monkey-derived classifier achieved an 
average accuracy of 78.4%.
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Structural MRI

As a clinically valuable tool, MRI measurement has been 
applied to non-invasively quantify the morphological struc-
ture of the gray and white matter in psychiatric patients. In 
2007, Soriano-Mas et al. [47] applied voxel-wise t-tests to 
compare the regional gray matter volume of the whole brain 
in a cohort (OCD = 72, HC = 72) and defined the individ-
ual expression value as the scalar product of an individual 
volumetric map of gray matter by the t map of group differ-
ences between OCD and HC. Next, the Euclidean distances 
between individual expression values and each group’s mean 
expression value were used as candidate features to train a 
classifier for the diagnostic classification of OCD. The clas-
sifier yielded an accuracy of 93.1% in the training cohort 
with LOOCV, while the overall accuracy was only 76.6% in 
an independent cohort (OCD = 30, HC = 30). The most rel-
evant features were found in the OFC/medial PFC, the poste-
rior cingulate cortex/precuneus, cerebellum, posterior insula, 
ventral striatum, and thalamus. Trambaiolli et al. [44] aimed 
to distinguish 38 patients with OCD from 36 HCs using the 
volumetric data of 117 cortical and subcortical regions. All 
117 features were submitted to 7 kinds of feature selection 
algorithms and trained with SVM classifiers in a LOOCV 
fashion. Interestingly, the t-test feature selection method 
yielded the best performance, with an average accuracy of 
71.6%. The most discriminative and consistent features were 
found in the left caudate, bilateral putamen, bilateral IFG, 
left precentral gyrus, right fusiform gyrus, and right lateral 
OFC. Parrado-Hernández et al. [45] proposed a new feature 
selection method for classification with structural MRI data 
in OCD. To identify stable features, voxel-wise features were 
selected by training an ensemble of linear classifiers based 
on randomly selected GMV data. In their cohort (OCD = 86, 
HC = 86), these features achieved an accuracy of 73.8% with 
74.1% sensitivity and 73.6% specificity. The stable features 
contributing to the classification were widely distributed in 
the brain, including the OFC, PFC, ACC, insula, temporal, 
and parietal cortices, as well as subcortical structures like 
the caudate, putamen, and thalamus.

In some studies, many types of structural measures have 
been used to gather more information. Based on the treat-
ment response to pharmacotherapy, Yun et al. [50] divided 
the patients with OCD into responders (n = 25) and non-
responders (n = 31). Cortical thickness and cortical surface 
area before treatment were estimated from structural MRI 
data and used to construct pair-wise structural covariance 
networks in individuals. A univariate t-test was applied in 
a leave-one-out manner to identify the significant differ-
ences in the structural covariance network as features. The 
SVM classifiers were trained to successfully differentiate 
HCs from responders or non-responders among patients 

with OCD (OCD responders versus HC: 95.6% accuracy, 
OCD non-responders versus HC: 90.7% accuracy). Hu et 
al. [36] used both gray matter and white matter volume data 
for OCD classification. Both SVM and Gaussian process 
classifiers were trained to examine the classification per-
formance of different tissue types. The best classification 
performance (81.8% accuracy) was achieved by the SVM 
classifier with white matter volumetric data, and white mat-
ter regions with superior discriminative power were located 
in the middle frontal gyrus, inferior parietal gyrus, inferior 
temporal gyrus, precentral and postcentral gyri, and occipital 
cortices. With both structural and diffusion MRI datasets 
obtained from a cohort of 48 patients with OCD from 45 
HCs, Zhou et al. [40] fed four types of features (gray mat-
ter volume, white matter volume, fractional anisotropy, and 
mean diffusivity) into the SVM classifiers. The classification 
performance of features extracted from diffusion MRI was 
better than that from structural MRI. The most discrimina-
tive regions for classification were located in the angular 
gyrus, ACC, paracentral lobule, inferior parietal gyrus, IFG, 
and cerebellum.

Notably, an international OCD working group within the 
Enhancing Neuro-Imaging Genetics Through Meta-Analysis 
(ENIGMA) was initiated to aggregate structural MRI data 
of OCD around the world [59, 60]. Using large-scale data 
from ENIGMA (OCD = 2304, HC = 2608), Bruin et al. [54] 
extracted cortical thickness, surface area, and subcortical vol-
ume as classification features and submitted them to multiple 
machine learning models, but achieved relatively poor perfor-
mance after rigorous cross-validation procedures. When the 
inter-site cross-validation procedure was implemented, clas-
sification performance acutely dropped to chance level.

Diffusion MRI

A variety of metrics derived from diffusion MRI data have 
been used as classification features to discriminate OCD from 
HCs. For instance, Li et al. [42] applied fractional anisotropy 
to train the SVM classifier and identified patients with 84.0% 
accuracy (86.0% sensitivity, 82.0% specificity). The white 
matter regions contributing to classification were mainly 
located in the bilateral prefrontal and temporal white matter, 
inferior frontal-occipital fasciculus, superior frontoparietal 
fasciculus, splenium of the corpus callosum, and left mid-
dle cingulum bundle. In a cohort of 93 subjects (OCD = 48 
and HC = 45), Zhou et al. [40] found that the classification 
performance of SVM with fractional anisotropy was better 
than that with mean diffusivity (80.7% versus 77.4%). The 
most discriminative fiber tracts included the uncinate fascicu-
lus, corticospinal tract, inferior cerebellar peduncle, superior 
cerebellar peduncle, cingulum, pontine crossing tract, and 
cerebral peduncle.
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Current Status

All reviewed papers reported successful classification of 
patients with OCD and HCs, with accuracies ranging from 
50.0% to 100.0%. Although the performance of diagnostic 
classification in a small population is promising, it has been 
suggested that studies of this kind often suffer lower gener-
alizability [22]. Moreover, due to the limited sample size, the 
majority of investigations implemented the LOOCV method 
to train classifiers, and very few studies validated their mod-
els with external data [47, 52, 54]. On the other hand, despite 
the largest sample size available in the ENIGMA-OCD con-
sortium, the overall classification accuracy was far from the 
diagnostic criterion, which indicated the effects of confound-
ing factors like personal medication status on classification 
performance. In addition to potential technical issues that 
could contribute to poor performance in cohorts with large 
sample sizes [22], we believe that suboptimal strategies 
of feature engineering in MRI-based brain connectomics 
remain a key obstacle to unleashing the power of machine 
learning models for psychiatric diagnosis.

Screening Core Regions in OCD

The Concept of Core Regions and Relevant Evidence 
in OCD

Here we propose a novel machine-learning framework based 
on a set of core regions for diagnostic classification. Only a 
subset of brain regions (not all regions) indispensable to the 
neuropathology of brain diseases like OCD is considered as 
core regions. We argue that feature engineering confined to 
a selective neural network consisting of a set of core regions, 
rather than the entire brain, would effectively improve effi-
cacy and achieve superior performance, substantially reduc-
ing the dimensionality of candidate features by discarding 
regions irrelevant to the underlying psychopathology. Below 
we elaborate on the concept of core regions in the context of 
OCD etiology, which can conveniently be extended to other 
psychiatric disorders.

Early neuroimaging studies of individuals with OCD 
found both structural and functional abnormalities in the 
OFC, ACC, caudate, and thalamus [61–67]. Dysfunction 
in the OFC-caudate circuit is one of the most consistently 
reported findings in the field [6] and appears to be clinically 
meaningful, with dysmetabolism in the left OFC, bilateral 
PFC, and ACC associated with the severity of symptoms in 
individual patients [64]. Recent technological developments 
in the fields of neuroimaging and computational psychiatry 
have further elucidated the roles of the IFG, ACC, insula, 
parietal cortex, striatum, thalamus, and cerebellum in the 
pathophysiology of OCD [59, 60, 68]. Moreover, different 

neural circuits may underlie distinct domains of neurocogni-
tive impairment in OCD [69]. The concept of core regions 
relies on leveraging such findings to formulate a machine-
learning model that can investigate a specific symptom 
dimension or behavioral domain of OCD. For instance, dys-
function in ventral cognitive circuits (composed of the IFG, 
ventrolateral PFC, ventral caudate, and thalamus) are likely 
to drive maladaptive self-regulatory behaviors in patients 
with OCD [70]. Put together, a core set of regions includ-
ing OFC, ACC, IFG, dorsolateral PFC, insula, amygdala, 
striatum, and thalamus has been heavily implicated in the 
pathophysiology of OCD (see Fig. 2A from meta-analysis).

In treatment-resistant OCD, neurosurgical interventions 
such as deep brain stimulation and stereotactic ablation have 
been applied as a “last resort” by selectively targeting one of 
a few key brain regions in the frontostriatal circuits. Aside 
from the remarkable therapeutic effects in treated patients, 
these neurostimulation procedures offer valuable insights 
into the pathophysiological role of individual regions in the 
OCD circuitry.

Dorsal anterior cingulotomy and anterior capsulotomy 
are the most commonly used stereotactic ablative proce-
dures in the treatment of refractory OCD [71, 72]. Cin-
gulotomy targets the dorsal ACC and cingulum bundle, 
disrupting anatomical connections between the dorsal 
ACC, ventral striatum, and limbic structures [73]. Volu-
metric reductions after anterior cingulotomy have been 
observed in the caudate, ventral temporal-fusiform, and 
posterior cingulate cortex [74, 75]. Meanwhile, anterior 
capsulotomy targets the anterior limb of the internal cap-
sule (ALIC), which carries bidirectional fibers connect-
ing the frontal cortex to deep gray matter including the 
thalamus and basal ganglia [76–78]. Thus, a study com-
bining structural and diffusion MRI revealed that an ALIC 
lesion disrupts fiber integrity in the bilateral ALIC and 
anterior thalamic radiation, accompanied by a decrease in 
gray matter volume in the PFC, ACC, striatum, thalamus, 
and cerebellum [13]. Furthermore, bilateral capsulotomy 
has been reported to alter metabolic activity in the dorsal 
ACC, OFC, IFG, medial dorsal thalamus, caudate, and 
cerebellum [79, 80]. Importantly, functional connectivity 
between the ventral striatum and dorsal ACC has been 
selectively rectified by bilateral capsulotomy in association 
with symptom relief in patients with OCD [16].

As a reversible alternative to surgical lesions, deep brain 
stimulation has demonstrated remarkable success in miti-
gating refractory OCD symptoms [81]. Several targets have 
shown safety and efficacy, including ALIC, ventral ALIC/VS 
(VC/VS), NAc, and subthalamic nucleus (STN) [82]. PET 
studies have shown that stimulation of the ALIC reduces 
metabolic activity in the OFC [83, 84], subgenual ACC, and 
right dorsolateral PFC [85]. Using diffusion imaging, studies 
have confirmed that the connections between the stimulation 
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Fig. 2  Evidence supporting the concept of core regions in OCD. A 
The Neurosynth automatically analyzed information from 81 studies 
investigating OCD (FDR corrected, P <0.01). The color bar denotes 
the z scores of the uniformity test. Please see the link (https:// neuro 
synth. org/ analy ses/ terms/ ocd/) for further details. B Three types of 
neuromodulation therapies for OCD: stereotactic lesion (left), deep 
brain stimulation (middle), and transcranial magnetic stimulation 

(right). C Application of the core region-based strategy in schizo-
phrenia, adapted from [101]. OCD, obsessive-compulsive disorder; 
ALIC, anterior limb of the internal capsule; NAc, nucleus accum-
bens; STN, subthalamic nucleus; dlPFC, dorsolateral prefrontal cor-
tex; mPFC/ACC, medial prefrontal cortex/anterior cingulate cortex; 
FDR, false discovery rate; fALFF, fractional amplitude of low-fre-
quency fluctuations.

https://neurosynth.org/analyses/terms/ocd/
https://neurosynth.org/analyses/terms/ocd/
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site within the ALIC and the middle frontal gyrus are asso-
ciated with clinical improvement [86, 87]. Because the 
ALIC is also widely used in lesion procedures, it has been 
suggested that deep brain stimulation and lesioning exert 
their effects in a similar manner [88, 89]. With regard to 
the VC/VS target, a recent study suggested that its effective 
site is primarily connected to the medial OFC, dorsomedial 
thalamus, amygdala, and habenula [90]. Meanwhile, for the 
NAc-DBS, a resting-state fMRI study reported that symptom 
relief was correlated with the normalization of excessive 
connectivity between the NAc and the lateral PFC [91]. Con-
nections with the effective site in the STN-DBS, however, 
include the lateral OFC, dorsal ACC, and dorsolateral PFC 
[90]. Furthermore, DBS in the STN has been found to reduce 
glucose metabolism in the OFC, medial PFC, and ACC [92].

The effectiveness of non-invasive neuromodulation tech-
niques such as transcranial magnetic stimulation (TMS) for 
OCD has also been examined. However, optimal targets and 
stimulation frequencies for OCD treatment are still under 
debate in the literature. Despite some inconsistency, several 
recent studies have shown promising results [93]. Specifi-
cally, two studies found that active stimulation over the dor-
solateral PFC resulted in significant improvement of OCD 
symptoms compared to sham stimulation, although the sam-
ple size was relatively small (< 20) [94, 95]. In a prospective 
multicenter randomized double-blind placebo-controlled 
trial (n = 99), Carmi et al. [96] applied high-frequency deep 
TMS over the medial PFC and ACC in patients with OCD 
who failed to respond to treatment with medications and 
cognitive-behavioral therapy. The reduction in the Y-BOCS 
was significantly greater in the active group than that in the 
sham group and remained significant one month after treat-
ment. In addition, the response rate in the active group was 
significantly higher than that in the sham group.

Despite different targets in multiple neuromodulation 
therapies, all the affected brain regions converge onto the 
fronto-striatal-thalamic circuits (Fig. 2B) [12, 97]. Several 
frequently modulated key regions are also involved in the 
emergence of OCD symptoms, such as the OFC, dorsal 
ACC, dorsolateral PFC, striatum, and thalamus [63, 65, 
98]. We argue on the basis of this evidence that these are 
core regions that are crucial in neuromodulation-mediated 
recovery from severe, refractory OCD symptoms.

Although the concept of core regions in diagnostic clas-
sification has not yet been formalized, several pioneering 
studies have already adopted classification strategies that 
involve selecting core regions. For example, a large body 
of research suggests that the striatum plays a central role 
in schizophrenia, with dysfunction of the striatum tightly 
linked to schizophrenia symptoms [99, 100]. Based on this 
prior knowledge, Li et al. [101] developed an imaging bio-
marker for schizophrenia, which they refer to as “functional 

striatal abnormalities”, that integrates information from 
intra- and extra-striatal functional connectivity, as well as 
fALFF and ReHo within the striatum. In a large multi-site 
cohort (n = 1100), the “functional striatal abnormalities” 
score successfully distinguished patients with schizophrenia 
from HCs with an overall accuracy exceeding 80.4% (79.3% 
sensitivity and 81.5% specificity), which is comparable to 
the classification performance in other large cohort studies 
[102–111] (Fig. 2C). In another study, Chu et al. [112] com-
pared the classification performance of four feature selection 
methods in Alzheimer’s disease (AD), including selecting 
regions of interest based on prior knowledge, univariate 
t-test, recursive feature elimination, and t-test constrained 
by regions of interest. Several important regions [113] impli-
cated in AD were selected, such as the cingulate gyrus, hip-
pocampus, and parahippocampal gyrus. Features from these 
key regions (the hippocampus and parahippocampal gyrus 
in particular) resulted in better performance compared to 
features selected based on data-driven approaches such as 
t-test and recursive feature elimination. Such findings sug-
gest that core regions can meaningfully contribute to diag-
nostic labels and can be used to prevent the inclusion of 
features that capture redundant information. Further support 
for this concept comes from a study done by Sheng and col-
leagues [114], who proposed a novel classification method 
to identify stages of progression toward AD, i.e., HC, mild 
cognitive impairment, and AD. Their algorithm achieved 
89.0% accuracy in three-group classification with features 
from 24 regions (360 regions in total). The authors further 
calculated the frequency of brain regions that were selected 
as features, and five regions appeared more frequently than 
others. Features from these 5 regions successfully classified 
three groups (5 regions, 80.0% versus 24 regions, 89.0%). 
These findings show that the entire brain may not be nec-
essary for effective classification, suggesting that a subset 
of relevant regions is sufficient for diagnostic purposes. 
Although no studies applied a similar strategy in patients 
with OCD, these examples show that this core region-based 
strategy can easily be applied to other mental disorders.

Methods to Identify Core Regions in OCD

The evidence reviewed in previous sections highlights the 
potential of the core-region-based framework in diagnostic 
classification. Here we offer several methods for the selec-
tion of core regions from the whole brain to improve the 
diagnostic classification performance.

The roles of specific brain regions in the development 
and symptomology of OCD have been extensively studied 
and documented, resulting in rich literature. This informa-
tion can be used as guidance to capture relevant features 
and maximize the efficiency of the classifiers. Teasing out 
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irrelevant information is particularly important for high-
dimensional neuroimaging data, which contain a large 
number of irrelevant and redundant features [24]. Zeng et 
al. [115] successfully applied this method by using patterns 
of functional connectivity to parcellate the perigenual ACC 
into two subregions (subgenual and pregenual) based on pre-
vious findings of dysfunction of the subgenual ACC in major 
depressive disorder (MDD) [116, 117] and its effectiveness 
as a target region for deep brain stimulation in refractory 
cases [118, 119]. They further used functional connectivity 
with these two subregions for the unsupervised classifica-
tion of patients with MDD and healthy controls. Functional 
connectivity with the subgenual region achieved an indi-
vidual‐level classification consistency of 92.5%, suggesting 
a core function of the subgenual ACC for the diagnostic 
classification of MDD. This approach has been success-
fully applied to other psychiatric disorders. For example, in 
post-traumatic stress disorder (PTSD), studies have reported 
abnormal resting-state functional connectivity both with the 
hippocampus and amygdala, and dysconnectivity with these 
two regions is correlated with the severity of PTSD [120]. 
Using functional connectivity with the amygdala as a fea-
ture, Fitzgerald et al. [121] demonstrated that the functional 
connectivity pattern with the amygdala is a reliable predic-
tor of PTSD severity (n = 90, R = 0.46). Their later study 
[122] further showed that functional connectivity with the 
hippocampus can forecast the severity of PTSD symptoms 
in adult subjects 6 months after injury (n = 98, R = 0.30). 
Their findings support the view that the hippocampus and 
amygdala are core regions in PTSD diagnosis. Despite the 
usefulness of hypothesis-driven methods for screening core 
regions for diagnostic classification, this method has not yet 
been applied to feature selection in OCD.

A potential difficulty in identifying core regions in OCD 
is the contradictory findings among case-control studies 
in which imaging techniques are commonly used to exam-
ine the neural mechanisms underlying this disorder. These 
inconsistent findings may result from small sample sizes, 
medication, and duration of illness. These studies provide 
valuable but noisy information that is difficult to integrate 
and translate into clinical advances. One way to system-
atically combine results from several studies and obtain a 
conclusion with greater statistical power to draw out core 
regions in OCD is meta-analysis [123]. Moreover, meta-
analysis has been successfully implemented as a method of 
feature selection. Specifically, Dukart et al. [124] combined 
datasets from structural MRI and [F18] fluorodeoxyglucose 
PET to automatically detect AD based on the results of 
meta-analyses [125]. Features extracted from meta-analy-
ses resulted in an accuracy of 88.0% in one dataset (AD = 
28, HC = 28), and 91.0% in an independent cohort (AD = 
21, HC = 13). In another study, Sundermann et al. [126] 
used meta-analysis to screen resting state studies and extract 

key features of MDD. In subsequent research, the authors 
used all pairwise functional connectivity among 38 meta-
analytically defined brain regions as features to classify 180 
patients with MDD from 180 HCs [127]. However, the SVM 
models achieved diagnostic accuracies around the chance 
level in the training dataset. As meta-analysis methods pool 
information from numerous studies, this approach could 
increase the statistical power and therefore reduce type II 
errors. However, the bias in small datasets might undermine 
the advantages of the meta-analysis for feature reduction. 
Future studies in a large cohort are encouraged to validate 
the power of meta-analysis in feature selection.

OCD is a highly heterogeneous disease with high levels 
of comorbidity [10]. The high heterogeneity in patients with 
OCD adds noise to the neuroimaging features, making it 
difficult to extract the key features. To solve this problem, 
the recruitment of “pure patients” with OCD who do not 
meet the criteria for other psychiatric disorders has been 
proposed. However, stricter criteria make recruitment more 
difficult. Animal models of OCD (especially the nonhuman 
primate model) provide an alternative way to harmonize 
individual differences. A common and clear etiology could 
suppress noise from individual differences and improve effi-
ciency to identify core regions for diagnostic classification. 
To achieve this, Zhan et al. [31] adopted a cross-species fea-
ture selection framework for screening key regions related 
to stereotypic behaviors. This was done using transgenic 
monkeys with methyl-CpG binding protein 2 overexpressed 
in the brain, which results in autism-like behaviors [128]. 
First, the group least absolute shrinkage and selection opera-
tor (LASSO) algorithm was applied in the transgenic mon-
key dataset to extract vital brain regions for distinguishing 
transgenic monkeys from typically developing monkeys. 
Specifically, nine core regions were extracted: the left cen-
tral temporal cortex, right superior temporal cortex, right 
dorsolateral PFC, right primary somatosensory cortex, right 
primary motor cortex, left ACC, right centrolateral PFC, left 
superior parietal cortex, and right ventrolateral PFC. Next, 
the identified brain regions were considered as seed regions 
to construct classifiers for classification in human datasets. 
The monkey-derived classifier successfully distinguished the 
ASD cohort from HC with high accuracy, outperforming the 
human-derived classifiers (ABIDE-I cohort, 82.1% versus 
61.3%; ABIDE-II cohort, 75.2% versus 60.4%). This pio-
neering study demonstrated the advantages of animal models 
for reducing clinical heterogeneity and providing valuable 
key features for human datasets.

Validation of Potential Core Regions in OCD

In animal models, a variety of techniques can be applied to 
up-regulate or down-regulate the activity in specific regions 
or circuits, such as optogenetics, chemogenetics, and deep 
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brain stimulation [129, 130]. Animal models, therefore, 
provide a valuable platform in which to validate potential 
core regions in OCD. Hyperactivity in the OFC and stria-
tum is tightly implicated in OCD, and successful treatments 
may normalize this hyperconnectivity [6]. Ahmari et al. 
[131] reported that repeated optogenetic excitation of the 
axon terminals of the OFC in the ventral striatum generated 
persistent grooming behavior, a well-known compulsive-
like behavior in mice. Moreover, the elevated grooming 
evoked by chronic optogenetic modulation was reversed 
by fluoxetine. This study demonstrated the causal relation-
ship between the OFC-striatal circuit and the pathophysiol-
ogy of OCD. In mice, deletion of the Sapap3 gene induces 
excessive grooming [132]. Using optogenetic techniques, 
Burguière et al. [133] found that stimulation of the lateral 
OFC and its terminals in the striatum alleviated the elevated 
grooming response during a conditioning task. In a recent 
study, Ramírez-Armenta et al. [134] applied optogenetics to 
inhibit the activity of the dorsomedial striatum in Sapap3-
knockout mice and found that specific suppression of the 
striatal indirect pathway neurons rescued the excessive 
grooming. These findings set good examples to validate the 
causal role of brain regions in the pathophysiology of OCD. 
In the future, validation of other proposed core regions will 
advance our understanding of the circuits of OCD and the 
clinical translation of neuroimaging-based diagnosis.

Perspectives

Transdiagnostic Perspective on OCD

Although obsession and compulsion are core OCD symp-
toms, there is substantial OCD comorbidity with anxiety, 
depression, and other symptoms [10]. Moreover, obsession 
and compulsion are broadly observed in other psychiatric 
disorders, including addiction, autism spectrum disorder, 
generalized anxiety disorder, and eating disorder. To over-
come this problem, a Research Domain Criteria strategy has 
been proposed to shift the focus away from classical diagnos-
tic categories and symptoms to dissecting the neural circuits 
underlying the maladaptive behavior [4, 135]. This strategy 
requires a transdiagnostic view of psychiatric disorders to 
map brain-behavior relationships. Several studies have sug-
gested that compulsion is the main candidate for OCD and 
related disorders [136], and research has tried to dissect the 
neural mechanisms underlying compulsive behaviors across 
different diagnostic disorders. For instance, Montigny et al. 
[137] applied a higher-order two-factor model to extract the 
compulsivity construct in a multisite adolescent dataset (n 
= 1938), and brain gray matter volume in the bilateral OFC, 
right ventral striatum, and right dorsolateral PFC was signifi-
cantly linked to the compulsivity. In a large multi-site dataset 

acquired from adolescent subjects (n = 11876, 9–10 years 
old, subclinical-clinical population), Pagliaccio et al. [138] 
examined the associations between obsessive-compulsive 
symptoms (OCS) and brain structural and functional data. 
They reported a negative correlation between OCS scores 
and fractional anisotropy of the superior corticostriatal tract, 
and higher OCS scores were associated with lower connec-
tivity within the dorsal attention network and lower anticor-
relation between the dorsal attention network and the default 
mode network. In a small cohort of children and adolescents 
(ASD = 24, OCD = 25), Akkermans et al. [139] reported 
that higher functional connectivity between the left NAc and 
right premotor/middle frontal gyrus is associated with more 
compulsivity measured by repetitive behaviors. These stud-
ies have implied the existence of a continuum of compulsiv-
ity. Further studies are encouraged to apply machine learning 
algorithms to identify key features related to compulsivity. 
Other key dimensions of OCD, like anxiety and obsession, 
are also important directions to dissect the heterogeneity in 
patients with OCD and related disorders.

From Classification to Prognostic Prediction

The search for neuroimaging biomarkers in the treatment 
of OCD is rapidly underway. Although several studies have 
tried to construct the relationship between baseline imag-
ing data and treatment outcomes [140], machine learning 
algorithms have not been widely adopted [141–143]. In one 
of these studies, Reggente and colleagues [142] applied 
the LASSO regression algorithm to predict the treatment 
response to cognitive behavioral therapy based on baseline 
network connectivity patterns. They reported that the sever-
ity of OCD after treatment could be predicted by functional 
connectivity patterns within the default mode network and 
visual network, explaining up to 67% of the variance. Pagli-
accio et al. [141] applied task-based fMRI data to predict 
the response to exposure therapy. The remission could be 
forecasted by brain activation within the cingulo-opercular 
and default mode network in the Simon spatial incompat-
ibility task, specifically the anterior insula and anterior/
posterior cingulate cortices. In future studies, it is promis-
ing to apply the features extracted from core regions in the 
diagnostic classification of OCD to the prediction of treat-
ment outcomes.

Conclusions

Cross-sectional studies in OCD have advanced our under-
standing of its pathophysiology. However, inefficient diag-
nosis and poor treatment remain important issues in the 
field. With the rise of machine learning and neuroimag-
ing, diagnostic classification using imaging biomarkers is 
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rapidly developing. Although the sensitivity and specificity 
of classification are not optimized, this direction might shed 
light on the data-driven individualized diagnosis. The main 
problem in diagnostic classification is how to extract effec-
tive features to boost the performance of the algorithms. 
Taking together neuroimaging findings on the neural cor-
relates of OCD, neuromodulation treatments, and practices 
in diagnostic classification, we propose a classification 
framework based on “core regions” of the brain, which are 
indispensable areas among the mass features for classifi-
cation algorithms. We further introduce hypothesis-driven 
or data-driven methods to screen these core regions from 
the whole brain. Advanced circuit modulation techniques 
offer opportunities to interrogate the potential core regions 
proposed in patients. Meanwhile, data from other levels 
also provide different angles to understand the role of core 
regions in the context of the pathophysiology of OCD, such 
as the spatial transcriptome [144] and metabolome [145] in 
the brain. Nevertheless, heterogeneity and comorbidity in 
patients diagnosed based on symptoms still hinder precise 
diagnosis and treatment. A transition from the diagnostic 
category to a transdiagnostic view is urgently needed to 
push the improvement of the whole field. Besides, applying 
machine learning to prognosis is an important direction to 
achieve the goal of precise medicine [146].
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