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Abstract

Supercritical carbon dioxide (sCO;) blends have been found to be promising for enhancing
the performance of power cycles for concentrated solar power (CSP) applications; allowing
for up to 6 percentage points enhancement in cycle efficiency with respect to a simple
recuperated CO; cycle, depending upon the nature of the used blend and the choice of
cycle configuration. Despite this promising potential, there have been limited studies into
axial sCO; turbine design in comparison to growing interest in the design of radial turbines
for small-scale applications. This thesis focuses on the mean-line flow path design of a
multi-stage axial turbine operating with sCO; blends for installation in a 100 MWe CSP
plant.

A multi-stage axial mean-line turbine design tool is first developed. The tool is coupled
with multiple loss models which are classically used for axial turbine designs to predict
the performance over a range of operating conditions. Following this, the aerodynamic
design tool is constrained with both mechanical and rotordynamic design criteria to allow
for developing feasible flow path designs from an industrial standpoint. The mean-line
design methodology is verified against multiple case studies from the literature in addition
to 3D CFD simulation results.

The prediction capability of the loss models is investigated for conventional air, sCO;
and ORC turbines over a range of scales given that these models were originally devel-
oped for conventional working fluids such as air and steam. Following the loss model
comparison, multiple flow paths are designed for sCO, based blends, namely CO,/TiCly,
CO,/CgFg and CO,/SO,. Ultimately, similitude theory is used to generate the turbine off-
design performance maps and evaluate the turbine performance over a range of operating
conditions.

The Aungier loss model was found to be suitable for predicting the performance of
large-scale sCO, based turbines whilst the Dunham and Came and Craig and Cox models
were found to over-predict and under-predict the turbine performance with respect to the
Aungier model respectively. Using the Aungier loss model, selected blend and cycle con-
figuration for the 100 MWe CSP plant, a 130 MW 14-stage axial turbine is designed for a
precompression cycle operating with CO,/SO, blend. This design is capable of achieving
a total-to-total efficiency of 93.8%. A good agreement is achieved between the mean-line
design tool and CFD results with a maximum difference of 0.5% in the total-to-total effi-
ciency. Ultimately, the off-design performance of the turbine showed large deviations in
the predicted total-to-total efficiencies compared to the CFD results. A maximum devia-
tion of 23% is obtained in the total-to-total efficiency at a mass flow rate of 52% of the
design point attributed to the flow separation occurring at the downstream stages.

To conclude, this thesis presents detailed insights into the main mean-line design and
performance analysis aspects of large-scale axial turbines for sCO; based applications.
This has considered aerodynamic, mechanical and rotor-dynamic design aspects in addi-
tion to the off-design performance analysis.
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1 Introduction

1.1 Background

The need for sustainable and clean energy supplies, with low carbon emissions, has led
to the declaration of multiple sustainable development goals by the united nations among
which increasing the share of renewable energy substantially in the global energy mix was
acknowledged. This goal was declared to move towards a green energy future and hence
avoid environmental damages [1]. According to the Paris historic climate agreement, the
global temperature rise should be maintained below 2 °C within this century to tackle the
global energy crisis and climate change effectively [2]. Hence, the current annual energy-
related CO, emissions must be reduced by over 70% by 2050. Nonetheless, global energy
consumption is experiencing a rapid increase and most of the world’s energy supply comes
from fossil fuel sources which are responsible for carbon dioxide (CO,) emissions [3].
From this standpoint, advancing renewable energy harvesting techniques is crucial for sat-
isfying the increasing energy demand and reducing the level of greenhouse gases; where
renewable are anticipated to contribute to an overall reduction in CO, level by 30% by

2050, with respect to 2012 [4].

Among the various renewable energy (RE) technologies, concentrated solar power sys-
tems (CSP) can potentially influence future energy scenarios by providing low carbon
footprints and renewable electric energy. Concentrated solar Power (CSP) converts solar
energy into heat, which is then converted to electricity using a heat engine. Though of
this potential, the current Levelised Cost of Electricity (LCOE) of CSP, ranging from 150
to 200 €/ kWh,, is still not competitive among other renewable energy technologies (i.e.
Photovoltaic (PV), wind) [5]. Therefore, despite the early development of CSP technology,
which was first developed in 1913 [6], only 5.5 GW of CSP power capacities have been
available worldwide compared to 100 GW of PV power by 2019 [7]. Therefore, current
research studies are interested in further developing the CSP technology through perfor-

mance enhancement and cost reduction.
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CSP systems convert solar energy into heat by using a mirror or lens to focus the sun’s
rays that fall onto a given area to a much smaller receiver area in order to generate heat,
which is subsequently converted into electricity through the power block (Figure 1.1).
The key components of the CSP plant are the solar collector, the solar receiver and the
power block alongside the thermal energy-storage systems. Among the different solar
collector technologies such as parabolic trough, linear Fresnel collector, dish and solar
tower (ST), solar power tower systems provides the highest system efficiency due to the
high working fluids temperature; point focus power systems that allow for higher working
fluids temperatures and hence higher system efficiency [8].

Powerlines ) Receiver
g Steam

condenser

0/

Figure 1.1: Typical heliostat field connected to simple Rankine cycle through thermal energy stor-
age tanks [9]

Commercially available ST plants are based on two main configurations, direct and in-
direct. In the direct configuration, the steam serves as the working fluid in the power block
and the heat transfer fluid (HTF) in the receiver. Whilst, in the indirect configuration the
HTF is heated up by solar energy in the receiver and then transfers thermal energy to the
power block. Direct steam generation configuration is beneficial for heating up the cycle
working fluids up to the maximum temperature attained by the solar collector. Therefore,
it avoids exergy losses and the additional costs associated with the intermediate heat ex-
changer between the ST and the power cycle. Nonetheless, this technology is penalised by

the lack of commercially available compatible thermal energy storage systems in compar-
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ison to the available storage system for the HTF at low prices [5].

For the indirect configurations, CSP power plants utilise HTF working fluids such as
oil, salt, and steam as heat transfer fluids to transfer energy from the solar collector to the
power block. However, the thermodynamic properties of those working fluids limit the
performance of the power plant. For example, the synthetic oil and nitrate salts have a
temperature limit of 400 and 590 °C respectively [10]. Solar tower systems have a higher
concentration ratio in comparison to parabolic trough systems and this makes them more
suited for employing molten salt heat transfer fluid. Using molten salt allows for achieving
higher system performance due to its capability of reaching a maximum temperature of
590 °C compared to a maximum one of 400 °C achieved for parabolic trough systems
operating with diathermic oil as HTF (max temperature of 400 °C ). The higher operating

temperature allows for higher system performance and hence, reduced LCOE [5].

Therefore, to enhance the ST technology performance, developments are needed at
the solar energy storage receiver and the power block fronts. With more emphasis on
the power block efficiency, achieving high cycle performance may require operating at a
temperature above 600 °C to achieve a power block efficiency greater than 50% [8] For the
current power systems, steam Rankine cycles have been used in concentrated-solar thermal
plants where a maximum efficiency power block efficiency of 42% has been achieved at
a maximum steam temperature of 540 °C [11]. In this regard, the sCO, is found to be

promising as a heat transfer fluid and power cycle working fluid.

1.2 Thermodynamic cycles for CSP applications

The efficiency of thermodynamic cycles depends on the individual processes that make up
the whole cycle and hence, the maximum cycle efficiency is achieved for reversible pro-
cesses in comparison to irreversible ones at the same operating conditions. For given cycle
conditions, the maximum cycle efficiency can be achieved by maximising the temperature
difference between cycle limits; increasing the maximum cycle temperature and decreas-
ing the minimum cycle temperature. The minimum cycle temperature is a function of the

available cooling fluid conditions; which is the ambient air in dry cooling applications
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such as CSP plants. Regardless of the implemented configurations, all the ST power plants
implement the steam cycles for converting the thermal energy to electric energy; where
using water as the working fluid adds a constraint for the maximum operating cycle tem-
perature [5]. Hence, to achieve an efficiency greater than 42% for CSP plants, the steam
should operate at a temperature greater than 540 °C [8]. Increasing the steam temperature
and pressure (above the critical pressure) results in having supercritical steam cycles which
have proven to result in higher efficiency by up to 4.5%. Unfortunately, this would result
in an increase in the power block capital cost and in slower plant dynamics (less flexibility)

during startup and shutdown [11].

In this regard, Supercritical CO, (sCO;) cycles have been proposed due to their poten-
tial to outperform traditional steam cycles for CSP applications if maximum cycle temper-
atures exceed approximately 550°C [12, 13, 14, 15] due to the enhanced performance and
the reduced cost. The efficiency enhancement enabled by supercritical CO; cycles is pri-
marily a result of reducing compression work through increasing the working fluid density
within the compression process, alongside the subsequent positive impact on the potential
for internal heat recovery. This can be enabled by either condensing the working fluid or
by performing the compression process close to the critical point of CO,. Nonetheless,
achieving this is not feasible for CSP plants inasmuch as they are typically located in hot,
arid regions lacking water/steam-cooling resources. Alternatively, the critical temperature
of the working fluid can be increased by doping sCO, with other fluids, hence enabling

condensation at elevated temperatures of the cooling medium [13, 16, 17, 18].

1.3 SCARABEUS project scope and objectives

This study is a part of the Horizon 2020 SCARABEUS project [19]. The SCARABEUS
project, and hence this study, aims to demonstrate the potential of using CO, blends for

large-scale CSP plants in the order of 100 MW,.

Using CO, blends enables condensation at elevated temperatures, as a result of achiev-
ing elevated critical temperature for the working fluid, which would increase the conver-

sion efficiencies of supercritical CO, power cycles to values of around 50%. Hence, up to
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six percentage points increase in cycle efficiency can be achieved compared to a simple re-
cuperated CO, cycle depending on the implemented cycle configuration and the nature of
the selected blend [20]. This results in a significant reduction in the overall capital expen-
ditures (CAPEX) of the solar plant due to the reduction of the solar field size for a given
power output. Using CO; blends has the potential to reduce the CAPEX by 30% and op-
erational expenditures (OPEX) by 35% compared to to state-of-the-art steam cycles. This
results in a Levelised cost of energy less than 96 €/ MWh [19].

The main components of supercritical CO, condensation cycles, similar to conven-
tional power plants, are pumps, expanders and heat exchangers; including recuperators
and primary and heat rejection heat exchangers. Designing sCO, cycle components is
a distinctive process with respect to steam and gas turbine cycles owing to the physical
properties of the sCO, fluid including the high power density, high pressure, low kine-
matic viscosity and the abrupt properties changes near the critical point. Meaning that the
size of most system components can be considerably reduced, which leads to a smaller
plant footprint and possibly lower capital costs. Nevertheless, these properties leads to

components with features that challenge the standard components design [21].

Consequently, research interest in sCO; cycles increased dramatically during the last
decades with more focus on new cycle proposals and components design (such as heat
exchangers and turbo-machinery). Considering that the turbine efficiency significantly af-
fects the overall plant performance, it is important to explore the design space of CO;
turbines. This should allow for examining the turbine performance to provide better pre-

dictability for the cycle performance and cost of the proposed technology.

1.3.1 Supercritical CO, turbines

Turbine design methodologies are well established and have been extensively discussed in
many textbooks and publications [22, 23]. However, non-conventional working fluids such
as CO, impose some challenges and uncertainties on applying those conventional design
methodologies. Therefore, turbine design for sCO; and sCO; based working fluids is still

a developing field compared to the well-established designs for air and steam turbines.
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Turbines are classified into radial and axial configurations. In radial turbines, the fluid
flows radially to the rotating shaft whereas in the axial turbine the fluid is axial along the
shaft through the mounted blading. Radial turbines are known to be suitable for small-
scale applications with a power ranging from 300 kW to up to 25 MW, allowing for the
expansion of working fluid in one single stage [14]. Operating at a higher power rating
results in an increased mass flow rate whereas axial turbines proved to be competitive to
radial turbines. Hence, the overall aim of this project is to develop design and optimisation
tools for 100 MW scale sCO, multi-stage axial turbine design for concentrated-solar power

applications for power cycles.

1.4 Contribution to knowledge

The SCARABEUS project [19] is composed of seven work packages. Work package three
aims to develop turbomachinery components that work efficiently with CO, blends across
arange of anticipated operating conditions for a 100 MW, CSP plant. To achieve this goal,
work package three is split into four different tasks, which include producing a preliminary
turbine design, creating an optimised and detailed design, conducting a cost assessment to
ensure economic viability of the produced design, and performing off-design performance
analysis to understand how the turbine will operate away from the design point. City,
University of London (CITY) and Baker Hughes are collaborating to accomplish the four
tasks; where the CITY team are focusing on the producing aerodynamic flow path design
including mean-line and CFD based methods. Furthermore, the CITY team have helped in
providing the turbine boundary conditions alongside the project partners at the University

of Seville.

Two research frameworks are involved in the development of the aerodynamic flow
path design. The first research framework is concerned with performing the preliminary
sizing and optimisation of the turbine taking into account the trade-off between the aero-
dynamic performance and the mechanical robustness of the machine. Whilst the second
framework is concerned with generating the 3D blade profile and carrying out CFD simu-

lations for the flow path, as well as investigating the different loss mechanisms. This thesis
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focuses on addressing the first research framework of work package three, which involves

developing the mean-line design of the axial flow turbine operating with CO, blends.

To accomplish this, a mean-line design tool is created in MATLAB; where the steady-
state mass, energy, and momentum equations are solved at a constant mean diameter and
constant hub diameter to obtain the turbine geometry. To evaluate the aerodynamic per-
formance of the turbine, the design tool is integrated with multiple loss models. These
models are used to quantify the energy losses that the working fluid experiences during the
expansion in the stator and rotor blade rows. The tool is developed to optimise the turbine
aerodynamic design along with complying with a set of different design constraints, which
include mechanical and rotordynamic constraints. Two different subroutines are devel-
oped in MATLAB for designing the turbine using both design techniques: constant mean
diameter and constant hub diameter. In addition, multiple subroutines are developed for
the loss models implemented in this study. As a part of this work, the mean-line design
model is verified against the CFD results, which are interpreted within the second research

framework of work package three of the SCARABEUS project.

1.5 Thesis structure and scientific contributions

This thesis consists of seven chapters that cover the progress of this work (Chapters 1 to 7).
The introduction and literature review, including the identified research gaps, are presented

in Chapters | and 2 respectively.

The turbine design methodology is presented in Chapter 3. Within this chapter, pre-
liminary axial turbine design methodology and empirical loss models are all grouped to
develop the turbine design that complies with a set of mechanical and rotordynamic de-
sign constraints. This chapter includes the verification results of the implemented pre-
liminary turbine design methodology with respect to multiple cases from the literature.
The implemented design methodology allows for developing optimised flow path designs
considering mechanical and rotordynamic constraints that were set based on industrial rec-

ommendations.
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Bearing in mind that the empirical loss models were initially developed for turbines
operating with conventional working fluids such as air and steam, Chapter 4 focuses on
exploring the deviation between the performance predictions of the loss models for non-
conventional working fluids; where turbines may differ in design and operation than con-
ventional air or steam turbines. Additionally, this chapter aims to investigate the effect of
the turbine scale on the trends in the performance prediction of these models owing to the

differences in the fluid flow characteristics.

Chapter 5 presents the results of the effect of SCO, blends and their corresponding mo-
lar fraction on the achievable turbine efficiency considering aerodynamic, rotor-dynamic
and mechanical design constraints. Furthermore, the aim of this chapter extends to exam-
ining the differences in the turbine flow path designs generated for pure CO, compared
to CO, blends taking into account aerodynamic, rotordynamic and mechanical design as-
pects, as assessed during the mean-line design process. Ultimately, the effect of changing
turbine design variables, including load coefficient, flow coefficient and degree of reaction

on the flow path design and overall aerodynamic performance is also investigated.

In Chapter 6, the off-design performance analysis methodology alongside the applica-
tion of similitude theory are discussed. This chapter aims to investigate the performance of
a selected flow path design operating with CO,/SO, over a range of off-design conditions.
Hence, performance maps are presented at the end of the chapter. Finally, the conclusions
of this research are summarised in Chapter 7 and recommendations for future work are

presented.
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2 Literature Review

2.1 Introduction

In this chapter, a summary of the advances in cycle analysis and the different aspects of
turbine design are discussed for CSP applications with reference to the recent research
activities in the field; this discussion includes covering recent research outcomes in regard
to the selection of candidate sSCO, blends for these applications. This chapter includes a
review of the thermodynamics of sCO; cycles in addition to the different aspects of sCO,
axial turbine modelling. The scope of this chapter extends to reviewing the aspect of sCO,
turbine designs; where a detailed review of the existing prototypes, conceptual designs and
mechanical design challenges are addressed. At the end of the literature review, a summary
is presented to highlight the main research gaps and hence, the research objectives are

defined.

2.2 Thermodynamics of supercritical CO, cycles

Thermodynamic cycles are categorised into Brayton and Rankine cycles; in the Brayton
cycle, the working fluid exists in a single phase (gaseous form). Whilst in the Rankine cy-
cle, the working fluid experiences a phase change throughout the cycle. A simple Brayton
cycle consists of four components namely, compressor, turbine and high and low-pressure
heat exchanger as illustrated in Figure 2.1a. The gas is firstly compressed in the compres-
sor then heated inside the high-pressure heat exchanger and finally expanded inside the
turbine. As a result of that, the turbine produces work where a fraction of this work is used
to drive the compressor. The Rankine cycle consists of four components namely, pump,
boiler, turbine and condenser (Figure 2.1b). The liquid water is pumped to the boiler where
the heat addition process takes place to produce super-heated vapour. The generated steam
is used to drive the turbine to produce work and then it condenses into the liquid phase,

where the heat rejection takes place, to be pumped again into the cycle [24].

The performance of concentrated-solar power (CSP) systems is significantly affected
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(a) (b)
Figure 2.1: (a) Brayton cycle with a compressor (C), high pressure heat exchanges (HP-HE), low
pressure heat exchanges (LP-HE), and turbine (T) (b) Rankine cycle with a pump, boiler, condenser
(cond.), and turbine (T).
by the efficiency of the power block; where a maximum cycle efficiency of 42% can be
obtained by conventional subcritical steam Rankine cycles operating at a maximum steam
temperature of 540°C [11]. Further enhancement in conventional steam cycle efficiency,

by up to 4.5%, can be achieved by operating at supercritical conditions. Unfortunately, this

would result in an increase in the power block capital cost [11].

2.2.1 Supercritical CO,

Supercritical carbon dioxide (sCO») is a fluid state of CO, experienced by operating at a
temperature and pressure above the critical point; the end point of the pressure-temperature
curve where liquid and vapour phases can coexist. Carbon dioxide reaches the critical point
at a pressure of 7.38 MPa and temperature of 304.12 K. CO, is a non-ideal gas, and hence,
its density is sensitive to pressure and temperature changes, particularly around the critical
point. The density of the CO; is very high near the critical point as shown in Figure 2.2.
Hence, it is beneficial to use a working fluid in power cycles as the compression work of
the cycle is significantly reduced by operating close to the critical point resulting in less

compression work and hence high thermal efficiency.

Using supercritical carbon dioxide as a working fluid allows for higher turbine inlet
temperature > 600 °C and hence, results in higher efficiency compared to steam turbines,

alongside retaining the simplicity of Brayton cycles layout [25]. The promising proper-
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Figure 2.2: Variations of CO, density over a range of temperatures and pressures [11].
ties of sCO, working fluid results in sCO, power cycles with high power density, large
power capability and lower cost owing to the small turbo-machinery size and the simple
cycle design [10]. Supercritical CO; is also characterised by superior properties including
being non-corrosive, non-flammable, non-explosive, in-expensive, not-toxic and widely
available working fluid [26]. Despite the above-mentioned advantages of sCO, working
fluid for power generation, its high solubility and high diffusivity bring a high risk of con-
tamination of CO, with other fluids and corrosion in cycle components. Considering the
promising properties of sCO,, sCO, plants have the potential to be lower capital and op-

erational costs compared to an equivalent steam cycle [3].

2.2.2 Supercritical CO, power cycles

Supercritical CO, power cycles were firstly proposed by Angelino [27] and Feher [28]
in 1968. Angelino set several configurations for condensation (transcritical) power cycles
starting with a simple fully condensing cycle with a recuperative layout followed by several
modifications to reduce cycle irreversibility. Afterwards, in the early 2000s, Dostal’s work
revived the research interest in sCO; cycles [29] resulting in a dramatic increase in research

studies in sCO; cycles with more focus on new cycle proposals and components designs.

The fully condensing layout is composed of a recuperator (R) turbine (T), primary heat
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exchnager (PHX), primary cooler (PC) and compressor/pump (C) as shown in Figure 2.3.
To enhance the performance of the recuperative cycle and reduce the irreversiblities in
the recuperator, the recompression cycle layout was proposed. In the recompression cycle
(Figure 2.4), the low-pressure carbon dioxide stream is split into parallel compression in
the main compressor (MC) and the re-compressor (RC). The bypass flow, compressed in
the RC, is used to balance the heat duty across the low-temperature recuperator (LTR) and

hence reduce the irreversibilities in the recuperator.

PHX

2D I

4 <

-

PC

Figure 2.3: Simple recuperated CO, cycle with a compressor (C), primary cooler (PC), primary
heat exchanger(PHX), recuperator (R) and turbine (T) [30].

Following, the precompression cycle was proposed where a boost compressor (BC) is
added between the high-temperature recuperator (HTR) and LTR. This allows for increas-
ing the amount of thermal energy that can be transferred from the hot side of the LTR, and
hence, alleviate the temperature pinch point problem in the LTR. Additionally, this cycle
allows for achieving higher pressure ratios due to overcoming the constraint imposed by
the condensation temperature on the exhaust pressure in the recuperated cycles and hence
increases the specific work of the cycle. Similar to the precompression cycle, a partial
cooling cycle was considered; where an external cooling medium is added in the cycle so
that the low-pressure flow is further cooled after exiting the low-pressure recuperator as

represented in Figure 2.5.

Angelino proved that the efficiency of a recompression cycle with an inlet temperature
of 650 °C is competitive to a reheat Rankine cycle; in a comparative study between vari-

ous Angelino layouts and conventional cycles, the recompression cycle showed the highest
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Figure 2.4: Recompression cycle with a high-temperature recuperator (HTR), low-temperature re-
cuperator (LTR), main compressor (MC), primary cooler (PC), primary heat exchanger (PHX),
recycle compressor(RC) and turbine (T) [30].
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efficiency in comparison to various conventional cycles and architectures as shown in Fig-
ure 2.6 [27].
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Figure 2.5: Partial cooling cycle with a boost compressor (BC), high-temperature recuperator
(HTR) low-temperature recuperator(LTR); main compressor(MC), primary cooler (PC), primary
heat exchanger (PHX) and turbine (T) [30].

Similar to Angelino, Feher [28] proposed an alternative power cycle that could poten-
tially improve the performance of both the Brayton and Rankine cycle. The proposed cycle
is based on using purely supercritical fluid which can be implemented with both steam and
carbon dioxide. The presented cycle has the potential to overcome temperature restric-
tions, turbine exhaust conditions and a large number of turbine stages in Rankine cycles.
Additionally, it overcomes the large compression work needed in Brayton cycles, large
heat transfer areas because of the low density of the operating fluids and cycles’ sensitivity
to pressure drops and compressor efficiency. In the early 2000s, Dostal’s work revived the

research interest in sCO; cycles [29] resulting in a dramatic increase in research studies
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in sCO; cycles with more focus on new cycle proposals and components designs. A thor-
ough review of the different cycle configurations and advances of the sCO, power cycles
has been covered by Crespi et al. [25]. According to this review study, the average stan-
dalone power cycles achieved efficiencies in the order of 40% and combined cycle layouts

can reach efficiencies in the range of 50 to 60%.
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Figure 2.6: The performance of CO, condensation cycles compared to steam and perfect-gas cy-
cles [27]

In regards to CSP applications, several cycle configurations have been found to be
promising with respect to supercritical or superheated steam cycles for high-temperature
CSP applications including recuperated, recompression Brayton and partial-cooling cy-
cle [31, 32]. The recompression cycle was found to achieve the highest thermal efficiency
of 52%, among the simple Brayton, simple recuperated, precompression, split expansion
cycle for Solar Power Tower (SPT) CSP applications; this conclusion was confirmed as-

suming the same operating conditions for all cycles [33]. Following the recompression

17



CHAPTER 2 2.2. Thermodynamics of supercritical CO; cycles

cycle, the recuperated cycle showed promising results in terms of thermal efficiency and
produced power output. Furthermore, a comparative study of the different cycle configu-
rations conducted over a wide range of operating conditions showed that the intercooling
cycles offered the highest efficiency followed by the partial-cooling cycle, and the recom-

pression cycles respectively for applications in molten salt SPT systems [34].

Globally, CSP locations are identified using the global distribution of direct normal
irradiance (DNI); where high solar radiation is available from the sun. Thus, these regions
are defined to be North Africa, the Middle East, the Mediterranean, and vast areas in the
United States including California, Arizona, Nevada and New Mexico. The defined loca-
tions have massive land areas with extraordinary solar irradiation making it suitable for
installing many solar thermal systems. Therefore, the main drawback of using the sCO,
for CSP applications is that its critical temperature is relatively very low and hence, it does
not allow for taking the advantage of the real gas effect and the reduction in compression
work; where the minimum cycle temperature may exceed 50°C due to high ambient tem-
peratures in arid regions where CSP plants are typically located, making it unlikely for

CO, condensation to occur.

To overcome the issue, it has been proposed to develop novel CO, based working fluids
(a mixture of pure sCO, and certain additives) that are operating at a higher critical point
in comparison to the pure sCO;. Substantial enhancement in the performance of sCO,
cycles can be achieved by operating with a minimum cycle temperature close to or below
the critical point, to allow for a significant reduction in the compression work. The means
of selecting the different dopants to alter the critical temperature of the new working fluids

(sCO, blends) will be discussed in the next section.

2.2.3 Supercritical CO; blends

The critical point of the CO; based working fluids can be increased by doping pure sCO,
with other additives to allow for condensation at elevated cooling temperatures [13, 16, 17,
18]. Increasing the critical temperature of the CO, based working fluid should allow for

economically feasible cooling in dry regions and hence, result in a significant reduction in
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the compression work.

Figures 2.7a and 2.7b show condensing versus non-condensing sCO; cycles. In the
non-condensing cycle, the compression occurs above the critical point and hence, a com-
pressor is needed to increase the pressure of the pure CO, gas (Figure 2.7a). Alternatively,
adding the additives to the pure CO; results an increase in the critical point as shown in
Figure 2.7b. Therefore, condensation takes place at the ambient air temperature and com-

pression takes place in the liquid phase region where a pump is needed.

T 3 T

Gas phase
A

(a) (b)
Figure 2.7: Entropy versus temperature (7T — s diagram) for (a) non-condensing cycle operating
with pure CO, (b) condensing cycle operating with CO, blends.

The utilisation of sCO, blends as working fluids in power cycles is still a developing
field. Therefore, there is a need to set a procedure for selecting the candidate dopants and
to examine the effects of using the novel working fluids (sCO, blends) on the cycle design
and performance. To adopt sCO; blends in thermodynamic cycles, it is important to set a
procedure for selecting of the optimal working fluid. Particularly, if the experimental data
of the developed blends is still missing. A procedure for selecting and characterising the

novel working fluids for the power plant applications can be summarised as follows [35] :

* Using a reliable equation of state (EoS) that can be easily implemented to the blends
and the binary interaction parameters can be calibrated using Vapour-Liquid Equi-
librium (VLE) data.

* Assessing the thermal stability of the working fluids and identifying the maximum
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operating temperature that the working fluid can sustain before deterioration.
» Assessing the cycle performance achieved with the working fluid when used for the
power cycle; the main purpose of this is to evaluate the cycle efficiency as a function

of the temperature limits (the maximum and the minimum) [35].

Several dopants have been proposed for CO, power cycles and their effects on cycle per-
formance have been investigated; where dopants are classified based on their critical tem-
perature. As shown in Figure 2.8, blending N>, O,, He, and Ar dopants with pure sCO,
resulted in a reduction in the critical temperature of the working fluids compared to the
pure sCO,. Among the three dopants, He was found to result in an enhancement in cycle
efficiency by 1.73% for a recompression cycle configuration due to the maximum reduc-
tion achieved in the critical temperature of the developed blend [36]; where the decrease in
the critical point results in an increase in the optimum pressure ratio and hence, enhanced
cycle efficiency. Similarly, using Xe and Kr resulted in CO, blends with lower critical

points and hence, higher thermal efficiency due to the higher cycle pressure ratio.
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Figure 2.8: CO, blends critical pressure and temperature with respect to the pure CO, (the blue
circle) at a 10% molar fraction.

The implementation of other blends such as CO,/H;S and CO ;,/cyclohexane resulted

20



CHAPTER 2 2.2. Thermodynamics of supercritical CO; cycles

in higher critical points compared to the pure CO, [37]. Additionally, NoO4 and titanium
tetrachloride (TiCL4) dopants have been implemented to elevate the critical temperature of
the pure sCO, and promising results were obtained with respect to the cycle efficiency [18].
Using CO,/N;04 and CO,/TiCly blends resulted in total cycle efficiencies of 49% and
50% respectively for a recuperated cycle configuration. This configuration resulted in
power block capital cost of less than 700 $/kW which accounts for 50% and 20% cost
reduction compared to steam and pure sCO, cycles respectively [18]. Using the TiCly
dopant resulted in an increase in cycle efficiency by 5% and 3% for the recuperative and
recompression cycles, respectively, compared to the pure sCO;, case. Further potential
dopants such as the C4Hg, C4H9, CsH;g, CsH;2 and CqHg have been examined for CO,
doping and the application of these blends have proven to enhance the efficiency of a re-
compression power cycle by 3-4% compared to pure sCO; [38]. The same conclusion
has been confirmed by Crespi et al. [13] where CO,/TiCly and CO,/C¢Fg blends resulted
in an enhancement in cycle efficiency by up to 4-5% compared to the pure CO, case for

recuperated and precompression cycles respectively [13].

According to the aforementioned studies, some of the proposed dopants resulted in a
reduction in the critical temperature of the pure sCO,. Nonetheless, given that CSP appli-
cations operate in dry regions where the ambient temperature is high, it is required to select
a dopant to increase the critical temperature of the developed working fluid. For this pur-
pose, this work focuses on multiple dopants that have been examined by the SCARABEUS
consortium to increase the temperature of the CO, based working fluid. In this regard,
Polimeni et al. [5] compared the performance of solar power tower plants operating of
CO»/sodium and CO,/KC1-MgCl, blends; where the analysis included evaluating the per-
formance of simple recuperated, recompression and partial cooling cycle configurations.
The used blends resulted in cycle efficiencies ranging from 42% for a simple recuperated
cycle to 47.5% for the Recompression Main Compressor Intecooling cycle (RMCI) cycle
at a maximum cycle temperature of 750°C; where the cycle efficiencies are obtained at

different pressure ratios optimised for each configuration.

Likewise, Binottia et al. [17] evaluated the effect of using dinitrogen tetroxide (N,Oy4)
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dopant for the same application considering a simple recuperated cycle configuration. Us-
ing N,O4/CO, blend resulted in a power cycle efficiency of 46% with a simple cycle
operating at a maximum temperature of 700°C. Later, Morosini et al. [39] and Manzolini
et al. [40] examined the potential of using CO,/CgFg blend for a power cycle coupled with
a solar power tower system. A simple recuperated cycle efficiency of 42.5% and 46.5%
have been obtained by operating at maximum cycle temperature of 550 and 650 °C respec-
tively. The same blend has been further examined by Rodriguezet al. [41] in addition to
considering two other blends (CO,/TiCly and CO,/SO,). Exergy analysis has been con-
ducted for the three selected blends with respect to a pure CO, for simple recuperated
cycle configurations. As a result, CO; blends achieved thermal and exergy efficiencies as
high as 51.6 and 75.3% at 700°C which outperforms the performance obtained by Rankine
cycles and pure sCO; cycles. Later, Morosini et al. [42] examined the performance of
multiple cycles operating with CO,/SO, blend. The results of the analysis showed that the
recompression layout results in a power block electric efficiency of 48.67% (2.33% higher

than the respective sCO; cycle).

Similarly, Crespi et al. [ 13] examined the cycle performance operating with CO,/TiCly,
CO,/CgFg blends for recuperated and precompression cycle configurations respectively.
Using these blends resulted in an efficiency gain of 4-5% points with respect to an equiv-
alent cycle operating with pure CO,. Furthermore, Crespi et al. [20] investigated the po-
tential of introducing CO,/SO; in a transcritical recompression cycle. Introducing the
CO,/S0O; blend resulted in promising results where cycle thermal efficiencies of ~ 45%
and greater than 51% have been obtained at a maximum cycle temperature of 550 and 700
°C respectively. Thus, CO,/SO; has shown an efficiency equal to or higher than the other
promising blends including CO,/TiCly and CO,/CgFg.

Ultimately, for the SCARABEUS project, three candidate dopants have been found
to be particularly interesting for CO, power cycles including CO,/TiCly, CO,/CgFg and
CO,/SO;. Given that the previous studies showed that the best cycle configuration is
strongly dependent on the used dopant, simple recuperated, precompression and recom-

pression cycles (shown in Figures 2.9a to 2.10) have been selected for CO,/TiCly, CO,/CgFq
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and CO,/SO, respectively [43]. It is worth emphasising that these configurations do not
include any means of inter-cooling and re-heating processes. Hence, they are considered
to be more promising for enhancing the power block efficiency and reducing the capital
cost. Considering that the main target of the SCARABEUS project is to reduce the cost
of the power block, Morosini et al. [42] carried out an economic analysis for a power
block operating with a transcritical CO,/SO, recompression cycle. A specific CAPEX of
1000 $/kW, was obtained for the cycle operating with recompression CO,/SO, compared
to 1160 $/kW, for the sCO; cycle with the same cycle layout. Likewise, the CAPEX
of a simple recuperated cycle working with the optimal CO,/SO, blend was found to be

718 $/kW, compared to 795 $/kW, for the same cycle layout operating with pure CO,.
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Figure 2.9: (a) Simple recuperated cycle operating with the CO,/TiCl, blend (b) recompression
cycle operating with the CO,/SO; blend [43].
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Figure 2.10: Precompression cycle operating with the CO,/C¢Fg blend.

23



CHAPTER 2 2.2. Thermodynamics of supercritical CO; cycles

Before proceeding further with the implementation of the selected blends within the
cycle analysis, it was important to investigate the thermal stability of those blends at
the operating conditions. In this regard, several experiments have taken place within
the SCARABEUS consortium. It has been found that both TiCL4 and SO, are show-
ing promising results where thermal degradation was experienced at temperatures above
700 °C. However, the CgFg has shown some signs of thermal degradation at temperatures
above 600°C [44]. Apart from the thermal stability issues, the use of the TiCL4 dopant
might face some potential limitations due to the corrosion effects resulting from the high
reactivity of TiCL4 with air moisture. Additionally, the formation of H,SO4 when the
SO, combines with water adds some challenges to the use of the SO, dopant. It is worth
mentioning that the health hazards associated with the SO, or TiCly are very similar to
other fluids that are commonly employed in CSP plants, such as Therminol VP1 [20]. As
for the environmental hazards, no global warming potential or ozone depletion is present
for the selected mixtures. Therefore, the environmental impact of the selected dopants is
considered minimal. A brief overview of safety hazards for the three selected dopants,
developed according to standard 704 of the National Fire Protection Association, is pre-
sented in Table 2.1. More information regarding these dopants can be found in previous

publications [13, 16].

Table 2.1: Dopants thermophysical properties (columns 2 to 6) and hazard according to NFPA 704
[45]

Chemical MW Ter P, Molecular Thermal Health  Flammability =~ Chemical Special

Compound  [kg/kmol] [C] [bar] Complexity [-] Stability ~ Hazard Reactivity Hazard

CO, 44.01 31.06 73.83 -9.324 >700°C 2 0 0 Simple Asphyxiant
SO, 64.06 157.60  78.84 -8.230 >700°C 3 0 0

CeFs 186.06 24358  32.73 12.740 <625°C 1 3 0

TiCly 189.69 364.85 46.61 1.922 >700°C 3 0 2 React with water

2.2.4 Supercritical CO; blends thermodynamic properties

The accuracy of the thermodynamic cycle modelling relies on the selection of the Equa-
tion of State (EoS) and its capability of predicting the thermodynamic properties for the
different fluid phases [46]. Therefore, the calculation of thermodynamic properties is an

important step towards conducting accurate thermodynamic cycle analysis and compo-
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nents modelling for novel systems operating with CO, blends.

The cubic equations of state (EoS) are versatile models that can provide accurate calcu-
lations for the thermodynamic properties of pure components. Besides, it can be extended
to predict the behaviour of mixtures through the introduction of appropriate mixing rules
and the calibration of binary interaction parameters (BIP, also named k;; in cubic EoS)
using experimental vapour-liquid equilibrium (VLE) data [47]. Hence, cubic EoS, such
as Peng-Robinson (PR) [48], Boston-Mathias alpha function (PR-BM), and the Soave-
Redlich-Kwong (SRK) [49] have been proposed for predicting the properties of binary
CO; based working fluids [16, 18, 42, 35, 46]. Additionally, other equations of state have

been proposed for the same purpose such as PC-saft [50] equation of state [42, 47].

In this regard, Di Marcoberardino et al. [47] examined the influence of equations of
state, such as Peng-Robinson, Peng Robinson with Boston-Mathias alpha function, the
Predictive Soave-Redlich-Kwong (PSRK), the virial model Lee-Kesler-PLocker and the
PC-SAFT, on the estimation of thermo-physical properties of CO,/CgFg in a transcritical
cycle. Additionally, they investigated the sensitivity of the design of multiple-cycle com-
ponents to the selection of the EoS. It has been found that the cycle efficiency is not signif-
icantly sensitive to the choice of the EoS. Nonetheless, the selection of the EoS was found
to affect the operating conditions for the cycle components; where variations of about 15%
in the pump specific work and of 7% in the turbine specific work were achieved. As a
consequence, the cycle specific work (and therefore its mass flow rate) can be affected by
up to 5%. Similarly, Morosini et al. [42] investigated the accuracy of using multiple EoS,
including the standard Peng Robinson EoS (PR), the PC-SAFT EoS, the REFPROP builtin
EoS (extended GERG-2008 EoS [51]), to characterise of the thermodynamic behaviour of
CO2/S0O; blend. It has been found that PR EoS has a poor capability for predicting some
of the advanced calorimetric properties. Whilst, the PC-SAFT and the REFPROP equa-

tions were found to be adequate for predicting the properties of the examined blends.

Further to the growing research interest in identifying the promising blends, EoS, to
calculate the thermodynamic properties of the selected blends, and optimum cycle con-

figurations, great attention has been made to developing a detailed component design with
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more focus on turbo-machinery and heat ex-changer designs. This step is crucial for devel-
oping CSP technologies further considering the different physical properties of the sCO;
fluid compared to the conventional steam and gas turbine cycles<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>