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ABSTRACT

The thesis introduces a different insight into the traditional methods of pension funds by 

implementing two ideas:

(a) To consider the age of the plan participant in the development o f the pension 

scheme as an additional factor that affects the growth of the Fund and the 

determination of the Contribution rates. This is attempted by the pension purchase 

density function ‘m(x)’ which is viewed as a probability density function. ‘ New 

Cost methods ‘ are defined based on the statistical distributions: Power function, 

Truncated Pareto and Truncated Exponential.

(b) To consider the parameter A ’, that determines how quickly the Unfunded 

Liabilities are covered, as a random variable; A ’ takes values around a fixed value 

zone, which is considered as the expected value of the random variable.

We build a theoretical model, independent of the distributional assumptions, that has 

run on the fundamental bases, where either each of the rates of investment return and 

A ’ or both are random variables. The first and second moments of the Fund and 

Contribution rates are calculated, as well as their ultimate values as time ‘t’ tends to 

infinity.

A simulation analysis is performed assuming that either or both parameters (i(t)A(t)) are 

random with a Log Normal distribution. In addition, for either case, we assumed that 

the pension plan is implemented based on a different pension accrual density function 

each time. On the basis of the simulated data, the 3rd , 4th moments and the percentile 

values of the Fund and Contribution levels are calculated.
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Conclusions derived for both the Actuarial liability level under the ‘New Cost Methods’

and the growth of the Fund on each basis of the theoretical model. In particular we

show that a) the development of Normal Cost follows the pattern of the accrual function

‘m(x)’ and b) the Actuarial Liability is higher under the density function that allocates

larger proportions of the benefit at younger ages. We also specify an ‘optimal region’,

m , for the number of years, m, over which the unfunded liability is spread. We show

*  #
that for m greater than a particular value m the variances of both the fund and the 

contribution are increasing functions of m.The conclusions are confirmed by the 

simulation data.

The results raise questions such as the important issue of dependency between the rates 

of investment return and the spread parameter. These questions imply the extension of 

this work allowing for further steps in the future.
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CHAPTER 1

INTRODUCTION

Pension systems started in United Kingdom in the early years of the 18th century 

through several schemes that were implemented to provide pensions for widows and 

orphans as well as for the poor old people in parishes.

Today, they are one of the major social achievements of our time. They have 

successfully reduced the risk of poverty in old age, and they are also an important 

feature of modem economies and financial markets.

For this reason, we thought that it would be important to provide an insight into the 

basic ideas that have formed pension theory throughout these years and describe the 

different models introduced over time for the implementation and management of the 

pension schemes. We also point out the main conclusions drawn from their application 

to pension plans.

Since this is the introductory part, we include the aims of the thesis, the methodology 

followed, and the outline of each chapter. At the end of chapter one, we give a list of 

symbols, the basic actuarial functions and the basic pension cost concepts to which we 

will refer throughout the thesis.
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1.1 ACTUARIAL LITERATURE ON PENSION FUNDING

We consider the period from the start of the 18th century up to the start of the 20th 

century. The main contributions are as follows:

Maseres, 1772, an eminent lawyer in United Kingdom, puts to Parliament the first 

proposals for the provision of old age pensions, for enabling parishes to grant life 

annuities to poor persons. Around that time, Richard Price, the author of the Treatise on 

Reversionary payments, calculates extensive tables of contributions for the 

parliamentary bill, which are found as an appendix to Maseres’s ‘The Principles of the 

Doctrine of Annuities’, 1783.

Farr, 1853, in the ‘Twelfth Annual Report of the Registrar-General of Births, Deaths, 

and Marriages in England’ published in the United Kingdom, shows how to use salary 

scales where the clerks could progress from one salary scale through three others.

Salary scale calculations are unusual in actuarial literature, despite all efforts of Farr, 

until after:

Manly’s paper, 1901, constitutes almost a text book on the subject o f valuing staff 

pension funds giving exact and mathematical solutions of problems which at that time 

had been considered by some as being beyond the scope of accurate calculation; 

insoluble except by general methods of approximation. As the pioneer though of the 

main principles of pension fund valuation Hardy is mentioned, but Hardy did not 

publish his methods and only a small circle o f colleagues knew of them.

19



Meanwhile in 1889, Germany becomes the first country in history that introduces old 

age pensions for its population.

M ’ Lauchlan, 1908, sets out in the form of questions and answers, a careful analysis of 

the characteristics of a model pension fund at various times in its existence. Subjects as 

‘fairness’, ‘what exactly is purchased by contributions in respect of new entrants at 

various ages’, ‘the effect of different career salary patterns’ are discussed. The question 

of drawing up a pension scale graduated according to the age at entry is pointed out.

In the years followed, pension-funding theory was developing at a slow pace. As a main 

reason is that during these years Social Security was strong enough to provide pensions 

for people who leaving service, since the ratio between active workers and retirees was 

high. Getting closer to the 1950’s, the actuaries realized that the high increase in birth 

rates would result to a high number of retirees. They also realised the improvement in 

life expectancy. During these years questions as ‘prefunded social security plans are 

demographically immune’, ‘social security is best offered as defined benefit plan or a 

defined contribution plan’ arise. More structured information and efforts to establish 

funding methods and formulae to estimate the Fund and Contributions level then 

become necessary.

Since 1950 the main contributions are as follows:

Trowbridge, 1952, clarifies the basic principles underlying the funding methods 

employed by pension actuaries, by utilizing a simple mathematical pension plan model 

operating in a stationary population.
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To classify funding methods, Trowbridge uses the equation of maturity:

C + d*F = B, where C, F, B are all constants and d is the rate of discount.

Trowbridge classifies the funding methods in ascending order of F, (or descending 

order of C), dividing them into six classes.

Class I, that describes ‘pay as you go’ funding, according to which no contributions are 

made to the plan beyond those immediately necessary to meet benefit payments falling 

due.

Class II, that describes ‘terminal funding’ according to which no funding is 

contemplated for active lives. The present value o f future pension benefits is 

contributed for each life as it reaches retirement.

Class III, that introduces the first method that funds in any respect for employees not yet 

retired, ‘Unit Credit’. Unit Credit funding is based on the principle that the pension 

provided at retirement age will be divided into as many ‘units’ as the active 

membership years, with one unit assigned to each year.

Class IV, that includes four well known funding methods classed together because once 

the ultimate condition has been reached they produce identical contributions and build 

up identical reserves: Entry Age Normal, Initial Level Premium Funding, Aggregate 

Funding, and Attained Age Normal.

Classes V and VI, that include funding methods which produce higher eventual reserves 

and lower eventual contributions than any one of the methods discussed in the others. 

Class V includes “initial funding”, where an employee’s benefits are fully funded as 

soon as he is hired. Class VI is considered in order to point out the extreme case of 

heavy funding, called “complete funding”. Under “complete funding”, the present value 

of future benefit payments is fully paid off as the plan members reach retirement. 

Trowbridge uses discrete functions (see chapter 2) for their description.
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Nesbitt also in 1952, presents a continuous time formulation (see chapter 2).

Continuous time methods, offered certain advantages for the purposes of exploring the 

pension funding theory. In addition, after a few changes in assumptions and notation, 

continuous function formulae parallel to the discrete ones are obtained.

Cooper and Hickman, 1967, working with the continuous time formulation, introduce 

the pension purchase density function m(x) a < x <r . For a stationary population they 

define m(x), a < x < r , as the rate at which retirement income is purchased at age x for 

a member of the pension group, where a and r are the entry and retirement age 

respectively. Their discussion is centered on pension purchase density functions, 

(p.p.d.f.), m(x), that fulfill the following properties: m(x) >- 0, a <x <r  and

r

|  m(x) dx = 1. (Note the similarity in form between the p.p.d.f. and the probability
a

density function for an absolutely continuous random variable.) They also describe the 

cumulative pension purchase function denoted by M(x) as:

*
|  m(t)dt, a < x < r
a

M (x) = {

1 , x > r

which is identical with the accrual function.

Bowers et ah 1976, introduce the mathematical principles applicable to pension funding 

under dynamic conditions of population growth, inflation, and automatic adjustment of

dAL
benefits. From their paper we point out the equation: NC(t)+8*AL (t) - B(t) = ------that

dt

shows that the rate of change of the plan accrued liability AL(t) is expressed by the rates
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of inflow of plan normal cost NC(t) and assumed interest less the rate of outflow of 

pension payments B(t). It also generalizes the equation of maturity stated by 

Trowbridge for a model plan in a stationary condition to a model plan subject to growth 

factors. This equation has similarities to Thiele’s differential equation in life insurance 

mathematics.

In 1979, they introduce a new function x(0), calculated from the equation

r

e0*x(0) = |  e°*x *m(x)dx, where x(0) is named as the average age of normal cost
a

payment associated with the actuarial cost method defined by m(x) and the combination 

of interest (8), population and salary forces (x), 0 = 8 -  x.

Winklevoss ,1977, considers the gap between the mathematical and numerical aspects 

of the pension cost literature, (existing at that time), in his attempt to develop a 

computer model to investigate pension costs; combining in this way, computer science 

and mathematics. His book, published in 1977, serves the needs of anyone interested in 

the dynamics of pensions. It provides actuarial notation and develops methods of 

quantifying known pension costs, concepts and procedures.

O’ Brien, 1985, sees pension funding as a problem in stochastic control. Hence, 

choosing the form of the contribution function, he introduces a stochastic dynamic 

pension fund model via a stochastic differential equation in the variable, ‘Xt’ 

representing the fund ratio. That process Xt is analysed by Lyapunov type methods and 

its first and second moments are computed. O’ Brien, suggests also a linear function of 

the present value of future benefits and of the fund, as pension contribution function, in 

place of the one-parameter family o f funding methods. The one-parameter family, is
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defined by the contribution formula: Ct= (k+d)*(Vt-F t.i) given in Trowbridge (1963), 

where Ft_i is the fund value at time t-1, Vt the present value of benefits at time t, d the 

discount rate and k a positive number less than 1.

In 1986, O’Brien provides some theoretical justification for such a method by showing, 

in a simplified model, that the optimal solution of a stochastic control problem yields, as 

contribution function, an affine function of the present value of future benefits and of 

the fund.

The transition from the deterministic model discussed by many of the previous authors 

to the stochastic one is made by Dufresne, 1986, under the assumption that the rates of 

return are independent, identically distributed random variables. The stochastic 

development of the rates of return allowed greater flexibility, while the calculation of 

the limiting values of the second moments of fund and contribution levels sets the limits 

for the underlying parameters. The latter is of great importance.

Working in a stationary population, Dufresne calculates the first and second moments 

of F(t) and C(t) and their ultimate values, showing that under certain conditions:

lim EF(t) = AL, lim EC(t) = NC and lim VarF(t) = o2(i(t)) ,
/ —»CO / —» c o  /  »CO (1 - k ) * u z

VarF too)
lim VarC(t) = ------------ , k<l and 2< m < oo . He also calculates the covariance
/—»co

—  \2m\ )

between F(t) and F(t+h), between C(t) and C(t+h) and between F(t) and C(t+h), h > 0

proving that:Cov(F(t),F(t+h)) = q'1 * VarC(t), Cov(F(t), C(t+h))= -qh *
VarF(t)

and
an

given that k < l, as t -»  co Cov(F(t),F(t+h)) —» qh, Cov(C(t),C(t+h)) —» qh, 

Cov(F(t),C(t+h)) -> -qh
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Dufresne deals with both the discrete and the continuous cases. For the latter,

he uses the Stochastic Differential Equations defining the instantaneous rates of return

/ . . . . . .  ¿/IE(D , . .  , , dW(t) .as y(t) = y + c(i(t))*--------  where W(t) is the Wiener process a n d -------- is what is
dt dt

known as ‘white noise’. He also shows that by working in a stationary population and

using the spread method the conclusions reached are the same as the ones under the

discrete case.

Dufresne specifies an ‘optimal region’, m*, for the number of years, m, over which the 

unfunded liability is spread. He shows that for m greater than a particular value m*, the 

variances of both the fund and the contribution are increasing functions of m. Thus the 

‘optimal’ values of m are 1 < m < m*.

Dufresne, 1988, shows that there is a trade off between Var F(t) and Var C(t) in the 

limits as t -» oo (and for finite t under certain conditions), and in some sense there is an 

optimal region for the choice of the spread period, m. Specifically, if  E(l+i(t))2 > 1 then 

both VarF( oo) and VarC(oo) become infinite for some finite m and there exists a value 

m* such that a) for m < m VarF(oo ) increases and VarC(co) decreases with increasing 

m and b) for m > m* both VarF(oo) and VarC(<x>) increase with increasing m.

Dufresne, 1989, derives the first two moments of the contribution and fund levels at 

time t considering the actuarial loss experienced during the period (t-1 ,t), Lt, where Lt is 

defined as the difference between the unfunded liability at time t and the corresponding 

one if all actuarial assumptions had been realized. In particular Dufresne obtains the 

moments of F and C and their limits, as t ->■ co , from those of the L’s. He shows that 

there is a trade off between Var F(t) and Var C(t) in the limits as t -» °o and that there is 

not an optimal region for the choice of the spread period, m.
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In the presence of a simple stochastic model for real investment returns and for a 

defined benefit pension scheme Haberman, 1992, extends the Dufresne model and 

studies the fund and contribution rate level considering that the contribution rate is 

fixed, relative to the fund level but with a time delay. He sets up formulae for studying 

mathematically the progression with time of the expected values, variances and 

covariances of contributions and fund levels, exploring as well their behavior both for 

finite time and in the limiting case as t —> <x>.

Haberman, 1993, investigates the variability of pension contributions and fund levels, 

for the case of different time intervals between valuations. In particular, under annual 

and triennial valuations, choosing a mathematical model to represent the behavior of a 

defined benefit pension scheme, he looks at the spread period for amortizing valuation 

surpluses and deficiencies. He also presents how the produced results may be 

generalized to apply to valuations every n years where n is an integer. Haberman thus 

extends the results produced by Dufresne (1988) for the annual valuation, (in the annual

valuation the optimal spread period is denoted by M  )5 by demonstrating an optimal 

spread period, M *, and implementing formulae for the limiting variance of the fund 

level, F(t), and the contribution rate, C(t), as t -»  oo in the triennial valuations.

Zimbidis and Haberman, 1993, study the variability of contribution rates and fund 

levels, when there are time delays and feedback into a pension fund. The time delay of 

q years (q = 0,1,2,3,...) is introduced at each time t, when the contribution rate is fixed 

by considering the information or the actual data for the pension fund at time t-q. 

Zimbidis and Haberman, extend the results produced by Dufresne (1988) when q=0 and 

Haberman (1992) when q= l, to the case o f q = 2 and for large values o f q, i.e. q>3.
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When the delays in information are long they show that the pension scheme may 

become unstable.

Owadally and Haberman, 1999, compare three methods of adjusting the Normal Cost as 

gains or losses arise: a) the spread method, b) the method of amortizing unfunded 

liability and c) the method of amortizing unfunded liability and spreading subsequent 

surpluses/deficits accordingly. When gains / losses are amortized over finite terms, they 

establish that there exists a range of amortization periods, [1, ma J , wider than [1, m\ ] 

that is optimal and for which there is a trade off between ultimate variabilities of the 

fund and contribution levels; where the subscripts s and a refer to methods a and b 

respectively. Based on the criterion of minimizing variabilities of both the fund and 

contribution levels ultimately, they conclude that spreading surpluses / deficits may be 

regarded as more efficient than amortizing gains/losses. For equal spread and 

amortization periods, amortization o f gains / losses methods, achieves greater fund 

security than does spreading surpluses/deficits.

A further body of recent literature has considered the case where the real rates of return 

follow either an autoregressive or a moving average process.

Haberman, 1993, obtains recursive formulae for the expectations and the variability of 

fund and contribution levels for finite t.

Haberman, 1994, explores the detailed properties of the first two moments of the fund 

and contribution rates level at time t. These properties lead to consideration of the 

“optimal” range of values of the spread period, M. He shows that for certain values of cp
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the implied optimal values of M are consistent with those shown in Dufresne (1988) 

which would correspond approximately to the case (p = 0. Haberman, extending his 

analysis, derives as well the first two moments for the case where the earned real rates 

of return follow a second order autoregressive model.

Gerrard and Haberman, 1996, produce recursive formulae for the expected actuarial 

loss in a given year and for the expectation of the square of this quantity. They prove 

that for suitable values of the parameters, these expectations converge in time to limits 

which can be found by a simple numerical procedure in any given case.

Mandl and Mazurova, 1996, investigate the case where the numbers of entrants 

randomly fluctuate, using spectral decomposition o f stationary random sequences. They 

derive formulae for the variances of the fund level and the discounted cash flows in the 

case of direct defrayal of pension cost, and obtain similar results to those of Haberman 

(1994).

Caims and Parker, 1997, examine how the fund levels and contribution rates are 

affected through the valuation basis and the amortization period changes. They 

introduce an efficient frontier as a means of choosing an optimal funding strategy. 

Caims and Parker, extend Dufresne results (1988,1989) to cover the more general cases 

where the valuation and mean long-term rates of interest are not equal.

Haberman and Wong, 1997, derive expressions for the moments of the contribution and 

fund level, assuming (for both moments) the moving average processes of order 1 and 

order 2, (MA(1), MA(2)).They show that there are maximum values of M, Mi, and M2,

28



(where M2 is much smaller than Mi), respectively for which convergence holds. 

Comparing their results with those of Haberman, 1994, they show that the structure of 

the equations obtained under MA(1) is close to that obtained for the autoregressive 

AR(1) process. However, the results are exact rather than approximate as for the AR(1) 

case. The limiting value of EF(t) though, is much simpler for the AR(2) model than for 

the MA(2), due to the simpler covariance function obtained.

Bedard, 1999, based on the bilinear Markovian representation, finds explicit 

expressions for the moments of the fund level and the value of the total contribution. 

Bedard produces results similar to those of Haberman and Wong.

Owadally and Haberman, 2003, compare two methods for the amortization of asset 

gains (losses): a) direct amortization over a fixed term, and b) indirect and proportional 

form of amortization which ‘spreads’ forward pension fund surpluses and deficits over 

a moving term. They show that the first method leads to more variable fund and 

contribution levels. Through simulations they prove that: when rates of return are 

dependent, following simple autoregressive AR(1) and moving average MA(1) 

processes, spreading surpluses and deficits remains more efficient at achieving secure 

funding levels and stable contribution rates. Owadally and Haberman, proceeding to an 

approximate analysis for more general and weakly autocorrelated AR(p) logarithmic 

rates of return, reach the conclusions of Dufresne (1988) that ‘under modem economic 

conditions, m e [1, m]\ is an efficient range over which to spread surpluses and 

deficits’, where the subscript s stands for method a.
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A further theme in the literature follows in from O’ Brien (1985) and introduces control 

theory, in the presence of a simple stochastic model for real investment returns and for a 

defined benefit pension scheme.

Haberman and Sung, 1994 determine the optimal contribution strategy. They discuss 

two types of risk, concerned respectively with the stability and security of funding: the 

'contribution rate’ risk and the ‘solvency risk’. They introduce an objective function, to 

allow their simultaneous minimization. Haberman and Sung, determine the optimal 

contribution strategy in the presence of a deterministic model.

Haberman, 1997, considers the ‘contribution rate risk' and the criterion of minimizing a 

particular measure of this risk, based on the variance of the present value of future 

contributions. Haberman shows, that there is an optimal value for the choice of spread 

period used for the elimination o f valuation deficiencies and surpluses.

Chang, 2000, following Haberman and Sung, 1994, sees also pension plan funding as a 

dynamic control process. He introduces two performance measures to evaluate the 

effectiveness of plan contributions: The cost induced performance measure (CIPM) and 

the ratio-induced performance measure (RIPM). With the objective of minimizing the 

performance measure, he determines the optimal contributions. Comparing these 

measures, Chang concludes that RIPM produces more stable results than CIPM.

Cairns, 2000, proposes a continuous time stochastic pension fund model, in which there 

are n risky assets plus the risk-free asset as well as randomness in the level of benefit 

outgo. He considers Marcov control strategies, that optimize over the contribution rate
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and over the range of possible asset -  allocation strategies. Cairns, introduces a general 

quadratic form which provides an explicit solution for the optimal contribution and 

asset allocation strategies. These solutions, independent of the level o f uncertainty in the 

level of benefit outgo, suggested that small schemes should operate in the same way as 

large ones. Cairns, also discusses the effects of constraints on contribution and asset 

allocation strategies, proceeding as well to a comparison between the optimal and 

dynamic control strategies.

Haberman et al, 2000, deal with the simultaneous minimization of the ‘contribution rate 

risk’ and the ‘solvency risk’. They introduce a performance criterion using the fraction 

of the unfunded liability paid off (k) or the spread period (M) as the control variable. 

Their results lead to practical conclusions about the optimal funding strategy and, 

hence, about the optimal choice of the contribution rate, subject to the constraints 

needed for the convergence of the performance criterion.

Finally, we quote a new approach to the cost allocation for the unfunded liability.

Chang and Chen, 2002, study the cost allocation for the unfunded liability, and 

generalize the constant value assumption in cost amortization, by modeling the returns 

and valuation rates simultaneously. By approximating the conditional and unconditional 

moments o f the plan contribution and fund size level through Taylor series expansion, 

they estimate stability under different allocation periods.
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Summarizing the above we reach the following conclusions:

Pension funding literature may be divided in three periods:

The first period starts from the 18th century and lasts up to 1950. During these years the 

necessity of old age pensions is formulated and, as an example, Maseres, 1772, puts to 

the UK Parliament the first proposal for the provision of old age pensions. The structure 

for the actuarial calculations is set down by Manly in 1901 who gives exact 

mathematical solutions to certain actuarial problems. In 1908, M ’ Lauchlan discusses 

the analysis of the characteristics of a model pension plan and introduces the new 

concepts of ‘fairness’, ‘new entrants’, ‘career salary patterns’. Meanwhile, in Germany 

in 1889, the first national old age pensions system is introduced.

The second period starts from 1950 and lasts up to the early 1980’s. During these years 

the pension funding theory is developed. The basic principles underlying the funding 

methods employed by pension actuaries are clarified. Actuarial notation is provided and 

methods of quantifying known pension costs, concepts and procedures are determined. 

Trowbridge classifies funding methods; Cooper and Hickman introduce the pension 

purchase density function; and Bowers et al, introduce the mathematical principles 

applicable to pension funding under dynamic conditions of population growth, inflation 

and automatic adjustment of benefits.

The third period starts from mid 1980’s and lasts up to the present time. During these 

years research in pension funding area is much developed. The effect of the rates of 

investment return being random on the Fund and Contribution rates level is 

investigated: Dufresne shows that there is an optimal spread period (l,m*), below which
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there is a trade off between VarF(t) and VarC(t). Haberman extends these results for the 

cases of both different time intervals between valuations and where the rates of 

investment return follow either an autoregressive or a moving average process. The 

control theory is introduced and Haberman and Sung determine optimal contribution 

strategy in the presence of a deterministic model. The effect of the different investment 

strategies on the Fund level is examined and Owadally and Haberman reach the 

conclusion that “under modem economic conditions there is an efficient range over 

which to spread surpluses and deficits”. The treatment of the Unfunded Liability is 

further discussed and Owadally and Haberman compare three methods of adjusting the 

Normal Cost as gains or losses arise. In 2002 a new approach to the cost allocation for 

the Unfunded Liability is proposed by Chang and Chen according to which the constant 

value assumption in cost amortization is generalized by modeling the returns and 

valuation rates simultaneously.

It is important to mention that under these different approaches to pension funding, the 

results concerning the evolution over time of the Fund and Contribution rates are 

similar.
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1.2 AIM and OUTLINE of the THESIS

Our aim, throughout this research, is to extend pension-funding theory by adding some 

new ideas on how a pension plan could be managed. We have both ideas a) to view the 

actuarial cost methods as “processes” where time is considered and b) to view the fund 

and contribution rates as “processes” with respect to time by modeling the parameter 

that amortizes the Unfunded Liability. Our work has been implemented so that the 

thesis is mainly connected with the body of the literature where investment returns form 

an i.i.d sequence of random variables. In addition, we have adopted the new approach 

of allowing the parameter in the cost amortization of the unfunded liability to have a 

non-constant value.

1.2.1 OBJECTIVES

The aim of this study is to provide an insight into the traditional methods of pension 

funding through an attempt:

a) to analyze the model pension plan development where the pension purchase density 

function m(x) corresponds to a probability density function f(x). Under this 

assumption, the age o f the member is an additional factor that affects the building 

up of the Fund and the determination of the Contributions. In practice, age is a 

factor that increases Service Cost, in the sense that as the scheme participant 

becomes older he/she is getting closer to retirement. Actuaries apply such Cost 

Methods mainly in defined benefit schemes. We note that in defined contribution 

plans, the scheme sponsor may offer to the plan member the choice to purchase 

his/her benefit by contributing higher or lower amounts according to his/her age. 

The scheme sponsor has also the flexibility, according to his /her financial plans, to
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contribute in this way as well. In defined benefit schemes, the actuary may choose 

either to build up the Fund at a higher pace by purchasing higher amounts of 

benefits at the younger ages, or at a lower pace by purchasing higher amounts at the 

older ones. The actuary also avoids the unfunded liability risk, caused in the case 

where the average age of the new entrants in the scheme is different from the 

average age, which he has assumed for the valuation. In addition, the normal 

retirement age may need to be changed at a later stage in the plan1; and through 

applying such cost methods the actuary may estimate the extra or the lower cost for 

the benefit purchased annually and adjust the Normal Cost accordingly,

b) to specify the Fund and Contribution levels using a parameter iX’> which

determines how quickly Unfunded Liabilities are covered. The amortization of 

the Unfunded Liability is a major concern for the actuary, and X is viewed as a 

control parameter with the objective of controlling the dynamic behaviour of 

C(t) and F(t) over time. Since it is often the case that actuarial assumptions are 

not in agreement with experience, setting X as a constant throughout a long 

period of years is restrictive. For that reason, we consider X as a random 

variable, acquiring values around a fixed value zone, which is considered as the 

expected value of the random variable. Given that X varies in that zone, we then 

analyze the development of the Fund against the Actuarial Liability. In practice, 

actuaries are faced more frequently by schemes with unfounded liabilities for a 

number of reasons, including the following: the scheme sponsor has paid lower 

amount of contributions than that required; the scheme has not been valuated on 

a regular basis; high amounts of benefits may have been paid to the senior 

management upon their retirement; the acquisition by the sponsor of a company

1 Recently, due to the law of equality between both sexes many companies had to revise the normal 
retirement age in their policy documents.
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with an associated unfunded liability in its pension scheme or for which benefit 

levels are to be maintained; and benefit improvements. Also, in practice, the 

pace with which the actuary amortizes gains or losses heavily depends on the 

scheme sponsor’s forecast of financial results for his/her business over the next 

years. Therefore, we consider that it is important to give the actuary the 

flexibility to propose a pattern according to which the amortized amounts may 

occasionally either increase or decrease. Apart from the above cases when the 

actuary designs the plan, he/she may consider it desirable to use a variable 

parameter in order to prevent high amounts of unfunded liability. Also, in 

practice, when designing a pension plan, the method of amortization of the 

assumed unfunded liability may be taken into account by the actuary if the 

assumptions are not sufficiently conservative.

The model for b) is run on three fundamental bases:

i) where the rates of investment return ‘i(t)’ are random variables and X is constant

ii) where X is a random variable and the rates of investment return constant

iii) where both X and rates of investment return are random variables

The study then focuses on the following:

1. the comparison between the ‘new’ pension functions and the ‘traditional’ ones

2. the derivation of the first and second moments of the Fund and Contribution levels 

in the stochastic model through a discrete time formulation.

3. the calculation of skewness and kurtosis of the Fund and Contribution levels in the 

stochastic model on the basis of simulated data.

4. the calculation of the percentiles values of the Fund and Contribution levels in the 

stochastic model on the basis of simulated data.
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Emphasis is given to the development of the Fund and Contribution levels over time t 

rather than at specific points in time.

1.2.2 METHODOLOGY

We consider the financial structure of a defined benefit pension scheme, as represented 

by a simple mathematical model, using a stationary population. We also consider 

individual funding methods, which both determine an actuarial liability and a normal 

cost at every valuation date and amortize inter-valuation gains or losses over a fixed 

number of years. In the light of the above, we focus on the effect of applying the 

questions a) and b) discussed in 1.2.1. on the contribution rates and fund level for the 

scheme.

For the model pension plan, entry is fixed at age a and retirement at age r. Only 

retirement benefits are considered, i.e. no account is taken of death, disability and 

withdrawal benefits. Furthermore, it is assumed that the annual rate o f salary for a

participant age x at time t is sx, a < x < r ,  and that sx increases exponentially at a rate

2 X .

For each different probability density function considered, we both run the model on a 

deterministic basis and on a stochastic basis via simulation. We proceed through 

computer simulations, as an effort to provide results that could lead to practical 

conclusions.

These results are presented in detail and discussed in chapter 6.

When the actuary considers the effect of the age of the scheme participant upon the 

implementation o f the plan, he/she estimates with a higher accuracy the service cost of 2

2 Inflation is included
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the scheme participants; thus providing the scheme sponsor with more accurate 

information on the amount he/she has to include in the pension cost for the next period. 

Also, when the actuary has the flexibility to vary the parameter that amortizes unfunded 

liability he/she may either strengthen or not the Fund value at certain time intervals 

according to the realized gains or losses.

The results show the effect on the fund and contribution rate o f introducing further 

variability through frequent changes to the amortization parameter.

It is thus hoped that pension actuaries may find some practical benefit from the outcome 

of this research, which aims to offer a new perspective on the pension funding 

development.

1.2.3 OUTLINE

Each chapter starts with an introduction where the content of the chapter is described. 

An analysis is then quoted, and, when necessary, numerical illustrations placed at the 

end. From all mathematical proofs, those of the main results form part o f the analysis, 

while the others are set out in the Appendices. A review of literature is also included to 

the extent that it is relevant to the chapter. Focusing on each part separately, we may 

point out the following:

Chapter 2 includes the funding methods traditionally used in Europe, Canada and the 

U.S.A.. They are presented under both a discrete and a continuous time formulation, 

for the individual and the aggregate methods separately. The major focal point is the 

comparison between them. Chapter 2 provides a necessary background for chapter 3, 

since the already known funding methods are compared with the ‘new’ ones that have 

been developed.
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Chapter 3 introduces the new idea of how we may build the fund by considering the age 

of the scheme member in the model development. The main hypothesis now focuses on 

the different pension accrual density functions m(x), such that m(x) ^  0, a < x <r and

r
|  m(x) dx = 1. The major issues considered are:
a

a) The definition of each one of m(x) and its corresponding accrual function M(x).

b) The categorization of m(x)s according to their relationship with either an 

accelerating or a decelerating cost method.

c) The comparison between the various density and accrual functions according to 

their development.

Chapter 4 introduces the pension funding functions Normal Cost, Actuarial Liability 

and Fund Value, which are calculated on the basis of the density functions. These 

calculations are made using a continuous time formulation on a deterministic basis. 

Considering the fact that when facing reality the economic assumptions rarely coincide 

with the actuarial ones, in the model development Normal Cost is adjusted taking into 

account the difference between the Actuarial Liability and the value of the Fund, 

(unfunded liability). This adjustment is made by using the ‘Spread Method’, according 

to which we divide the Unfunded Liability by the present value of an annuity certain. 

The major issues considered are:

a) The calculation of the Actuarial Liability and Normal Cost under each m(x).

b) The development of F(t) based on the formula:

= (<5-/_)*F(t) + NC(t) -  B(t) + /AAL(t), where the parameter is 
dt
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initially considered constant, and is used to control the size of F in relation to 

AL.

c) The comparison of the Actuarial Liability between two different choices of m(x) 

after examining the difference of their corresponding accrual functions M(x)s.

d) The calculation and the comparison of the Normal Costs based on the m(x)s 

used in (c) in order to examine the Actuarial Liability development against 

Normal Cost.

e) The Normal Cost development if the parameter ‘A,’ is calculated on the basis of 

the pension density function.

f) The comparison between the ‘new’ and the traditional cost methods.

Chapter 5 deals with the Stochastic Model. The main hypothesis is that the rates of

investment return and the parameter ‘A’ follow a Log Normal distribution. The

theoretical model is built independently of the distribution assumptions.

Specifically, the following cases are studied:

a) The development of the Fund and the Contribution level where the rates of 

investment return are independent, identically distributed random variables, and 

the parameter ‘A’ is constant. The results are an extension of those of Dufresne 

(1988) and Owadally and Haberman (1999).

b) The development of the Fund and the Contribution level where the parameter 

‘A,’ is random variable and the rates of investment return ‘i(t)’ are constant.

c) The development of the Fund and of the Contribution level where both the rates 

of investment return are independent, identically distributed random variables, 

and the parameter ‘A’ is a random variable, given also that i(t) and A(t) are 

mutually independent.
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The first and second moments of the Fund and Normal Cost have been calculated

for all the above cases on the basis of a discrete time formulation.

Chapter 6 extends the ideas of Chapter 5 and focuses in more detail on the simulation 

results. As mentioned above, the thesis relies heavily on simulations, since this is a 

convenient way of obtaining results and the application of the results is considered to be 

of importance.

The model is used to perform a simulation for each different probability density 

function considered and for each one of the above cases (a)-(c) of chapter 5. The 

simulation results concern the growth of the Fund and the determination of the 

Contributions level. The major points studied are:

a) the goodness of fit between the model and the simulations, comparing the 

simulation results and the results obtained with the theoretical model.

b) the sensitivity of results to changes in parameters, calculating the percentile 

values (the 1%, 5%, 25%, 50%, 75%, 95% and 99% percentiles) over the years, 

on the basis of the simulated data.

c) the 3rd and 4th moments (skewness, kurtosis) o f the distribution o f the Fund and 

Contribution rates.
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1.3 NOTATION

1.3.1 LIST OF SYMBOLS

a : Entry Age 

r : Retirement age

or. The age that terminates the mortality table

i(t): rate of investment return

i: E(i(t)), Valuation rate of investment return

d:
1 + i

8: Valuation force of Investment return 

y: Price inflation rate 

pr: Promotion rate

x' = y+pr : Annual rate of salary increase 

x: Valuation force of salary rate of increase; 1+x' = eT 

ß’: Pension adjustment rate

ß: Valuation force of pension adjustment rate ; 1+ß’ = eß

lx: Number of survivors at age x obtainable from a service table3

m: Length o f the spread period (in years)

X = — - : Spread parameter
Cl m\

X,(t): The process of amortizing U(t)

b: The proportion of the Final or Career Average Salary

m(x): The pension accrual density function

sx : The annual salary rate for a participant aged x at time t = 0. a < x < r .
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W : The initial entry salary at age a , i.e. sa = W

NCX : The Normal Cost of a plan member at age x 

ALX : The Actuarial Liability of a plan member at age x 

NC(t): The annual rate of plan Normal Cost at time t.

AL(t): The accrued Liability of the plan at time t.

B(t): The annual rate of pension outgo at time t.

U(t): The Unfunded Liability of the plan at time t.

C(t): The Contribution rate at time t.

F(t): The Fund level at time t.

1.3.2 BASIC ACTUARIAL FUNCTIONS

■ npx = probability that a person aged x will survive for n years =
K

l
■ nqx = probability that a person aged x will die within n years = 1 -

l X

For simplicity purposes, we have considered a single decrement environment3 4 and a 

stationary population.

In this study, we are looking for the major drivers of pension fund dynamics; rates of 

investment return and the spread parameter. Assuming both a single decrement 

environment and a stationary population, we develop a simple model since we maintain 

the scheme population stable during the years. We have decided to work with a simple 

model because such a model allows a detailed study of these factors.

3 Service table: A service table shows the number of employees out of an original group who survive to 
its future attained age.
4 Single decrement environment: The most important decrement prior to retirement age is withdrawal. 
However, for simplicity purposes, for the stationary population we assumed that the pension plan 
participants are exposed to death only. Other contingencies such as withdrawals, ill, health and early 
retirements are not considered.
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In practice, most pension plans also have additional benefits such as death, disability 

and withdrawal benefits, in accordance with the plan document. Our focus on a pension 

plan providing only age retirement benefits is supported by the observation that the bulk 

of the liability in defined benefit pension plans comes from these benefits rather than 

the ancillary benefits (Lee, 1986). If these restrictions were relaxed, we could develop a 

more complex model. Death benefits are usually different both before and after 

retirement (greater if there is a spouse / children). The disability monthly benefit usually 

ceases at the earliest of death, recovery or retirement. The withdrawal benefit depends 

on the vesting; sometimes the plan pays a deferred monthly pension and sometimes a 

lump sum at termination. We understand that as models become more complex we 

input more and more factors and find that more detail comes in the input from each 

simulation. It then becomes very difficult to identify why certain effects are evident. 

However, simple models provide the backup for the analysis of more complex models 

and give pointers to what we should be investigating.

The cases of a new or ageing scheme are left to future research.

* pension adjustment function, P(x)

It is used to denote the adjustment o f the initial pension at age of retirement r, of a 

retiree age x, x > r , P(x) = ep*(x'r)

■ Pension incurrence density function, h(t).

The symbol h(t) represents the density at time t of the amount of newly incurred age r 

pensions. Thus h( 10) = 1,000 implies that in the moment (10,10 + dt) the amount of 

new age r pensions which come into effect under the model plan is approximately 

l,000dt.

44



Our population is stationary and thus the density of new retirees at time t + r-x from 

participants aged x at time t is lr. Each of these will, at time t + r-x, have annual salary 

rate e ^ 1̂ *  s a .

Then according to the definition above, the density of new pensions incurred, i.e. 

entering benefit status at time t + r-x, for those who at time t are aged x (x<r), or who at 

time t + r -x  were aged r (x >r), can be expressed as: h(t + r-x) = eT it+r"'"x)* s a * lr •

For x = r, h(t + r-x) becomes h(t) = eT*(t_1 ’* s a * f  and represents the density o f new 

pensions incurred at time t.

■ salary function, g(t)

It is used to estimate the future salaries of the plan members in case their benefits and / 

or their contributions are tied to them.

Throughout the chapter, growth in salaries over time will be represented by means of a 

function g(t), defined as : g(t) = e Tt , 0 < t < r - a

At entry age a , t = 0. The salary at entry age, sa , remains as a base factor for t > 0.

The cumulative salary from the entry age a , up to, but not including, age x is denoted

x - l

by Sx. Thus, for x ' ci we have. Sx Z  St
t-a

The estimated employee’s salary at age x and the cumulative salary, both based on his 

salary at age a , are given respectively by the following formulae:

a) Discrete time formulation

sx = s ( a )* eT(x‘a) = W * e T(x-f l ) ,S x= §  * s t = W * ^  ,
t=a

b) Continuous time formulation

sx = s (a )* e T(x-a ) = W eT(x-a ) ,S x= £  W * et(y' a )  dy = W * s ^ j
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■ Accrual function, M(x)

The cumulative pension purchase function is denoted by M(x), and defined by:

0 , x -*< a

M (x) = {  |  m(t)dt, a < x < r
a

1 , x > r

M(x) represents that fraction of the actuarial value of future pensions accrued as an 

actuarial liability at age x under the actuarial cost method.

■ Benefit function, Bx

This is used to determine the amount of benefits to be paid at retirement.

The most common type of benefit formula used in pension plans, is the so called unit 

benefit formula that provides a unit o f benefit for each year of credited service. There 

are three basic formulae associated with defined benefit plans: flat benefit, career 

average, and either final average or final salary. We do not consider the first type, since 

it is rarely used.

■ The Career Average Salary formula

The second type of benefit formula, provides a pension benefit that is defined in terms 

of some stipulated percentage, of the scheme participant’s career average salary; i.e. b 

percent of each year’s current salary.

Denoting by bx the annual benefit accrual during the year of age x to x+1 for an age a 

entrant, then bx = b * sx. The accrued benefit function, i.e. the sum of each attained age

x-\
accrual up to but not including age x, Bx is equal to: Bx = ^ b ,  .

t=a
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■ The Final Salary formula

The third type of benefit formula provides a given percentage of the scheme 

participant’s salary nearest retirement, sr-i-

Denoting by bx the annual benefit accrual during the year of age x to x+1 for an age a 

entrant, then bx = b * sr-i- The accrued benefit function, i.e. the sum of each attained age

x-\
accrual up to but not including age x, Bx is equal to: Bx = 'y'jb, = b* (x - a ) * sr_i.

t-a

• Salary based Annuity

This is a life annuity reflecting the fact that the contributions during a member’s 

working lifetime tend to depend on the member’s salary.

We define sa^rxj=  T  ^£±Le"8*t * tpx
<=o sx

■ Stationary population

This is a population with a constant size age distribution. In particular, in this 

population, the density of deaths at a certain age x and greater, equals the density of the 

number of lives attaining age x, at any time t. For a pension plan we may simply 

consider that under a stationary population, when a life age x leaves the age group of 

the plan either by death, or by retirement, its place is simultaneously taken by a new 

entrant at age a .

1.3.3 BASIC PENSION COST CONCEPTS

■ Present Value of future Benefits (PVFB)

It is the liability associated with the future benefits of all existing plan members.

For an employee currently age x, having entered the plan at age a and retiring at age r, 

for each unit of initial pension from age r, PVFB is given by:
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£)(*)

CO {S -P )

For a retiree, x > r, it is given by: PVFBX = ^  e‘°*u * u p x * p(x+u) = e1(5*(x-r) * ar

■ Normal Cost (NC)

It is a measure of the suggested level of funding based on the actuarial cost method 

which has been adopted. In general, it is designed to fund the present value of future 

benefits over the employee’s working life time, the pattern of amortization payments 

being specified by the particular actuarial cost method.

■ Actuarial Liability (AL)

It is the portion of the present value of future benefits theoretically amortised by the age 

x of the participant, with whom it is associated, exclusive of the Normal Cost then due.

■ Equivalence Principle

The equivalence principal (of life insurance mathematics) states that the present value 

of future benefits at age x, a < x < r, equals to the actuarial liability at age x plus the 

present value of future normal costs yet to be made.

Thus, (PVFB)X = ALX + (PVFNC)X

■ Unfunded Liability (UL)

It is the difference between the plan’s total actuarial liability (with respect to the active 

and non-active members) and the fund allocated to active members at time t.

r - l

Substituting (PVFNC)x by : (PVFNC)X = ^  NCU * u-xpx * e* _-8*(u-x)

u=x

48



CHAPTER 2

TRADITIONAL COST METHODS

2.1 INTRODUCTION

Cost Methods are methods implemented in pension schemes for the funding of the 

future liabilities. They are applied to ‘build up’ gradually the necessary funds needed to 

cover the appropriate pension benefits at the retirement age of each participant.

In this chapter, we describe the actuarial methods most commonly applied by actuaries 

in the European Community, Canada and the USA for calculations relating to private 

retirement provision. They are presented separately, based on a deterministic model. 

For their presentation we use the discrete time formulation (the continuous formulation 

may be implemented in a similar way), and we divide them into the following two 

major categories described below:

Individual Cost methods: The actuarial formulae relate to each plan member and the 

total plan cost equals the sum of each individual cost.

Aggregate Cost methods: The actuarial formulae for deriving the plan cost relate to the 

aggregate o f all plan members.
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2.2 INDIVIDUAL COST METHODS

For the presentation o f the Individual Cost Methods we allocated them into two main 

categories, Accrued and Projected methods, as in Winklevoss, 1977.

2.2.1 ACCRUED BENEFIT COST METHODS

An Accrued Benefit Cost Method is a method that explicitly considers the benefits that 

accrue (or are assumed to accrue) in the current year, and the cumulative benefits that 

have accrued (or are assumed to have accrued) to date. The cost of benefits accruing in 

the current year represents the normal cost of the method, while the value of all benefits 

accrued to date represents the actuarial liability.

Under this method, we describe:

The Current (or Traditional) Unit Credit Cost Method, aiming to maintain a fund equal 

to the value of accrued benefits by reference to their amount as at the calculation date. 

The Projected Unit Credit Cost Method, aiming to maintain a fund equal to the value of 

accrued benefits by reference to their projected amount at the date of retirement.

The distinction between Current and Projected Unit Credit is not strict. However, in 

order to make a distinction, we thought to consider as “Current Unit Credit” the method 

where the units are defined as a flat percentage benefit o f the current salary and as 

“Projected Unit Credit” the method where the units are defined as the projected benefit 

at retirement divided by the number of active years before retirement.
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2.2.1.1 Current Unit Credit Cost Method

The main areas of use in Europe (Collinson, 1993) are Belgium (minimum funding 

purposes) and The Netherlands.

It is most often used with pension plans that provide a flat pension benefit allocated 

throughout the working years in equal portions, bx

Assuming that the pension benefit depends on the employee’s current salary at age x, sx 

for each one of the lx members entering the scheme, the Normal Cost and the Actuarial 

Liability are given by the following formulae:

Discrete time formulation

D (S -P ) D (S -p )  r~\ ( s - P )  n

NCX == bx* —- * a r  =b*sx * r *
a r  , ALX =  Bx* —-  * a r =b*Sx*—-

A A A A

A L X - b x _ A
NCX Bx S ;

(S~P)

and for a population with lx persons aged x:

r - 1 r>  . . ( S -p )  ,.(S~P ) r- 1

NC = X  lx * bx * —r- * a r = ar Z))d ) * b * ^  e8*x * sx
r=n ft. r=n

(2.1)

r- 1 r \ œ
AL = X  lx*B x * -£ -* a r + Br * X  lx

. .(S -p )

* ax *ep*(x~r) or

. (S -P ) r -1 (S~P)

AL -  ar X  e°*x * Bx + Br * e'p*r X  lx*«* *e*~P*X (2 .2)

Continuous time formulation

NCX =b*sx * *A
f t .

- (S ~ P )

a r , ALX = b * Sx * —-  * a
D  -  (S -P )

D,

and for a population with lx persons aged x:
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N C = a r D (rd) * b*V  e8*x * sx dx
-  (S -P )

(2.3)a

- (S ~ P ) -  {S -P ) a>

AL = d r

(see Appendix 1)

2.2.1.2 Projected Unit Credit Cost Method

The main areas of use (Collinson. 1993) are the United Kingdom, Ireland, Belgium, 

Spain and Portugal.

It is most often used with pension plans that provide a pension benefit linked to the 

employee’s salary throughout his/her entire career or part thereof.

The current salary is projected (through a salary scale) to the date o f retirement. For 

each one of the lx members entering the scheme, the Normal Cost and the Actuarial 

Liability are given by the following formulae:

Discrete time formulation

= x-a

and for a population with lx persons aged x:

r -1 £) - ( S - P )  (S -p )
(2.5)

(s-P) (S -P )

AL = ar
x=r
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The continuous time formulation follows in the same way as the discrete time

formulation.

2.2.2 PROJECTED BENEFIT COST METHODS

With a projected benefit cost method, the Normal Cost associated with plan 

membership at age x is the independent variable and the corresponding benefit accrual 

under this method, which must be derived from the Normal Cost function, is the 

dependent variable.

The Entry Age Normal Cost Method, aims to establish the level contribution rate 

which, when payable over the active lifetime of the employee, is sufficient to finance 

the benefits being provided.

The main areas of use in Europe (Collinson, 1993) are Germany (Book reserved 

pension plans), United Kingdom and Spain.

It is most often used with pension plans which amortize, at the entry age, the present 

value of future benefits over the participant’s total years of credited service.

Assuming that the pension benefit depends on the plan participant’s salary for each one 

of the members entering the scheme, the Normal Cost and the Actuarial Liability are 

given by the following formulae:

Discrete time formulation

NCX = b*sx,

The percentage, b, can be derived after equating the participant’s future salary (time b) 

to the present value of his/her projected benefit, as follows:

(S -P ) £) .. (S~P)
(2.7)
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(2.8)NCX =
(S-P)

f___  f “fa QBr ,

S  *  Cla.r-a\
D.

D. . (S-P)

ALx= B r* —-  a r - b* sx a---- ¡ = Br !D x:r~x\

(see Appendix 2)

&a:x-a\ D
(S -p)

Cla.r-a\

* __ i_ *
D

Clr (2-9),

NCr
Sa\x-a\  ? (see Appendix 3)

For either case, Career Average Salary, Br = b * Sr, or Final Salary, Br = b*(r- a )*sr-i 

the total Normal Cost and the total Actuarial Liability for a population of lx at age x are 

given by the following formulae:

r - 1

NC = ^  lx* b* sx or
x~a

(S-P)

NC = ar B„

S„ * aa r-a\

n  r~l
D ^  xt - 'a  x=a

(2 . 1 0 )

r-1 s
ALX= Br * £ Cla\x-a\ jj; D

Ds ------
Cla\r-a \

(S-P) c

d r  lx+ B r *]T  1
(S-P)

* n  * PP*(x-r)x wx C (2 .11)

The continuous time formulation follows in the same way as the discrete time 

formulation.
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2.4 COMPARISONS ON THE BASIS OF INDIVIDUAL COST

METHODS

Among the different cost methods, the Unit Credit methods are the most convenient 

from the perspective of the actuary. A main advantage is that under both, the Current or 

Projected, the actuary estimates the Normal Cost on the basis of the actual salary of the 

plan members.

Under the Entry Age Normal method, the actuary has to use a hypothetical entry age for 

all scheme participants and a hypothetical starting salary, neither of which may be 

appropriate as conditions change. For example, in order to calculate the latter would 

require assumptions about past salary increases for current scheme members and could 

lead to having to store information for members with the same starting age but different 

starting salaries. Furthermore, historical salaries are often not available, and where they 

are available they may not be appropriate for obtaining a level normal cost where the 

participant has had a promotion.

Unit Credit could be considered preferable from the perspective of the scheme sponsor 

as well. This conclusion is derived implicitly from the fact that this method is mostly 

used in countries where occupational pension schemes are well developed such as UK 

and the Netherlands3. In addition it is the only one accepted by the International 

Accounting Standards and USGAAP. Hence, if  the scheme sponsors either plan or are 

obliged to apply international standards in the future, they are likely to prefer to apply 

Unit Credit from the start of the plan so that to avoid any actuarial loss (gain) due to the 

change to the Unit Credit at a later stage. 5

5 According to the official report of the Commisions of the European Communities held in Brussels in 
2002, the second pillar of occupational pension schemes in the Netherlands is more developed than any 
where else in the EU.
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Numerical results are quoted to illustrate the development of the different cost methods. 

In the illustrative examples, we calculate the Normal Cost and the Actuarial Liability, 

assuming that the benefit Br is one unit. For comparison purposes, we consider the same 

amount of benefit Br for all methods, and define bx accordingly.

The formulae used are presented in table 2.1:

Table 2.1: Formulae used in the illustrative examples

A ctuarial C ost M ethod N orm al C ost, N C X A ctuarial L iability , A L X

Current Unit Credit

bx= b *sx, Bx = b* Sx

X Dr
—  *sx * —  a r 
Sr Dx

1 Dr
—  *SX* ~  *Ur
sr Dx

Projected Unit Credit

bx=b*sr_i, Bx = b* (x- a )*sr_1

1 * Dr ¿ S-P)
(r - a ) Dx

n  (<*-/*) 
X- a * D' - a r 
r - a  Dx

Entry Age Normal 

Bx =b*(r- a )*sr_i

sx *Dx Dr -{s-P) 

Da Dx
Sa * Ua:r-a\

sa---- i D
aa:x-a\ * r * ar

i —  DXCta:r-a\

In all the formulae of table 2.1, the salary, sx, increases exponentially at a force of rate x, 

while the other parameters take the following values:

<3 = 30, r = 65, i = 0.05, P' = 0.015, x' = 0.03, y - 0 , s a  = W = 1 unit

As service table, (assuming x > 30), the illustrative life table quoted in Bowers et al

(1986) has been used.

2.4.1 COMPARISON IN TERMS OF NORMAL COST

Normal Cost is calculated on the basis of the Unit Credit and Entry Age Normal 

methods, for a plan participant who enters the scheme at age 30 and retires at age 65. 

The results at specific ages, under each method, are presented in table 2.2, and depicted 

in figure 2.1.
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Table 2.2: Normal cost under the various cost methods for an age 30 entrant who

retires at age 65

age c . u . c . P. u . c . E.A.N.

30 0.03 0.05 0.07

35 0.04 0.06 0.08

40 0.06 0.08 0.09

45 0.09 0.11 0.11

50 0.14 0.14 0.13

55 0.22 0.18 0.15

60 0.34 0.24 0.17

64 0.50 0.32 0.19

We make the following remarks on table 2.2:

In the Projected Unit Credit, Normal Cost is lower at younger ages than the 

corresponding one under Entry Age Normal, as a result of the discounting factor

e 5"-*)*  ,-x P ,.

Although the CUC Normal Cost is 60% of the PUC Normal Cost at entry age ‘30’ it is 

almost 1.4 times higher by age 60 and 1.6 times higher by age 64 (1 year before 

retirement). This result may easily be derived by observing the relationship between

pucbx = —-— and cucbx = —  *sx . Under the Projected Unit Credit bx remains 
r - a  S r

constant throughout the years of service, while under the Current Unit Credit bx is a 

strictly increasing function of sx.

At the younger ages bx < bx, while around age 50 they approximate each other, 

and thereafter the above inequality is reversed.
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Under the Entry Age Normal, Normal Cost is higher than the corresponding one under 

Current Unit Credit up to age of 50, and decreases thereafter. This result is expected,

since the annuity coefficient
1 D

S  *  Cta:r-a\
D

— at the older ages becomes smaller than the

corresponding one under Current Unit Credit in both cases, i.e. ~  and

-------  ------- —  since I) > Dx => —51 < . At the older ages Dx is significantly
sr_x* { r -a )  Dx a Da Dx

lower than Da and, as a consequence, is significantly higher than ~ ~ .

As far as the other coefficient component is concerned, sa * saar-a\, it is lower than Sr

and sr-i * (r- a ). Both inequalities------ ------- > —  a n d --------------> ----------------
S- ___  sr_x* ( r - a )

are

S *  ü a r - a  I sa * ' aa-r-a\

reversed at the older ages due to the Da and Dx components. 

The results of table 2.2 are described in figure 2.1 below.
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0,6

--------Projected Unit C red it--------- Current Unit C red it---------Entry Age Normal

Figure 2.1: Normal Cost under various cost methods

The effect of the different methods on the pension scheme implementation is better 

described when we calculate Normal Cost as a percentage of salary. Table 2.2 then 

becomes:

Table 2.2a: Normal Cost as a percentage o f salary under various cost methods, for an 

age 30 entrant who retires at age 65

age c . u . c . P.U.C. E.A.N.

35 3.64% 5.42% 7.00%

40 4.70% 6.04% 7.00%

45 6.09% 6.75% 7.00%

50 7.96% 7.61% 7.00%

55 10.52% 8.68% 7.00%

60 14.17% 10.09% 7.00%

64 18.36% 11.61% 7.00%

The above results point out quite clearly that the Unit Credit normal cost is a strictly 

increasing function of salary. The normal cost under EAN is a constant percentage of 

salary throughout the period.
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2.4.2 COMPARISON IN TERMS OF ACTUARIAL LIABILITY

The Actuarial Liability is calculated on the basis of the Unit Credit and Entry Age 

Normal methods, for a plan participant who enters the scheme at age 30 and retires at 

age 65. The results at specific ages, under each method, are presented in table 2.3, and 

depicted in figure 2.3.

Table 2.3: Actuarial liability under the various cost methods for an age 30 entrant

who retires at age 65

age c . u . c . P.U.C. E.A.N.

30 0.00 0.00 0.00

35 0.19 0.31 0.43

40 0.54 0.81 1.06

45 1.13 1.58 1.96

50 2.14 2.75 3.24

55 3.84 4.54 5.08

60 6.74 7.35 7.77

64 10.60 10.78 10.91

65 11.89 11.89 11.89

The Actuarial Liability values show clearly that the methods discussed, although 

varying in approach, are only different because of the effect of the actuarial assumptions 

on the timing of the annual costs. In particular, the magnitude by which the actuarial 

liability of each cost method exceeds (or is exceeded by) any one of the corresponding 

other methods can be reflected by the coefficient ‘C’ of the Present Value of Future 

Benefits under each one o f the above cases.

Specifically for the coefficients below, at age x
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puC/~i _ x - a  CUCr, 
r - a

?andEAN C x=^ H

Ctar-a

it holds:

0< <

5
Cla:x-a\

s

Ga:r-a\
< 1

This is described in figure 2.2, below:

------ S x /S r ------- (x-a)/(r-a)------- ala:x-a /ala:r-a

Figure 2.2: Coefficients of PVFB

Because of the above inequality, we have the following ranking of the Actuarial 

Liability under each cost method, presented as well in figure 2.3:

CUCALX< pu c ALx < ean ALx (2.14)
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Figure 2.3: Actuarial Liability under various cost methods 

At this point, it is of importance to mention that:

The ‘security’ associated with any particular method depends on the relationship 

between the required amount of the standard fund held at any time and the 

corresponding amount of liabilities.

In our attempt to ‘quantify’ the security level, we may link it to the level of the Fund 

value, considering that if  a funding method allows for high Fund values the level of 

security increases.

The results derived by the previous comparison show that:

Under the Entry Age Normal method, the Actuarial Liability is higher than under the 

other two methods (P.U.C and C.U.C) and as a consequence we may expect the same 

result for the value o f the Fund. Under the Projected Unit Credit method, the Actuarial 

Liability is higher than for the Current Unit Credit method and thus the Fund value is 

also expected to be higher.

63



Based on these conclusions we may attempt to list the funding methods in order of 

ascending security as follows:

(a) Current Unit C redit, (b) Projected Unit C redit, (c) Entry Age Normal 

Collinson, 1993, listed also those according to the above order of ascending security.

This is indeed the case under the “classical” assumptions where the salary earns a

£)(S-r)
positive real return, S -  y >0, and the function lx is decreasing with x; i.e. f(x) = x

is a strictly decreasing function, defined as the expected present value at the entry age 

a of a unit amount payable on survival to the age x.

However, Dufresne, 1986, considers the more general case where S -  y >0 may not 

apply. Thus, in particular, Dufresne, 1986, proves mathematically that under certain 

conditions the ultimate value of the actuarial liability under Projected Unit Credit might 

be either higher or lower than the corresponding one under Entry Age Normal. 

According also to the assumptions used under those conditions, the ultimate value of 

the Normal Cost under Projected Unit Credit might be either higher or lower than the 

corresponding one under Entry Age Normal. Dufresne’s results may described as 

follows:.

If f(x) is strictly decreasing, then : plJCAL < ea n AL,

If 5-y > 0 => PUCNC > eanNC 

If 5-y < 0 => pucNC < eanNC 

If fix) is strictly increasing, then: PUCAL > ea n AL,

If 5-y > 0 => pucNC < eanNC 

If 5-y < 0 => pucNC > eanNC
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Our results and those of Collinson, are the same with the results of Dufresne for the 

case we and Collinson have assumed; i.e. where f(x) is strictly decreasing and 5-y>0.

2.5 A G G R E G A T E  C O ST M ETH O D S

From all Aggregate Cost Methods in this section we discuss the most commonly used, 

according to our experience: the Aggregate and the Frozen Initial Liability.

The approach we follow is that of Aitken (1994).

2.5.1 A G G R E G A T E

The philosophy of the Aggregate cost method, is that the future Normal Costs will pay 

for the value of the benefits in excess of the funds on hand (Aitken, 1994). Thus, having 

U(t) = 0, we have:

r —1 s .._____
Y  ax:r-x\*bx *lx

NC * x^a ----------------------  = X  Br * PVFBX -  F(t) (2.15)
V 1 x=a

Y bx * lx
x=a

The key difference between the Aggregate and Frozen Initial Liability Method 

(described below) is the treatment of the Unfunded Liability. In particular, under the 

Aggregate Method, the amount of the unfunded liability is used to increase (or 

decrease) the future contribution rate. Pension schemes under the Aggregate Method are 

considered as funded, regardless of the difference between the value of the actuarial 

liability and the value of the assets; the amount of the difference between them affects 

future contributions that are revised accordingly. This is a reason why scheme sponsors 

may prefer the Aggregate method: if a pension plan has assets lower than the
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corresponding actuarial liability value, then the amount of difference between them is 

not registered in the Balance Sheet so that the scheme sponsor is not charged with any 

unfunded liability amount which has to be amortized during a certain period. In 

countries like Greece where second pillar occupational pensions are still not 

widespread, the Aggregate method is much preferable. In particular, in Greece most of 

the defined benefit group policy contracts are issued at the initiative o f the scheme 

sponsor6 and in their majority, either do not allow for employees’ contributions or allow 

for a very low percentage. Under the Aggregate method, scheme sponsors are not 

obliged to amortize any part of the unfunded liability and thus they have a reduced 

exposure to liquidity problems.

2.5.2 FR O Z E N  IN IT IA L  L IA B IL IT Y

The philosophy of this method is that the supplemental costs amortize the FIL, and the 

future normal costs provide for the value of the benefits in excess of the unamortized 

portion of the FIL and the funds on hand.

The unfunded liability is determined annually and it is defined by the actuarial liability 

less the market value of the assets of the plan. The actuarial liability is calculated after 

summing all the individual counterparts determined either through the Entry Age 

Normal (EAN method) or the Current Unit Credit (considering the employee’ s attained 

age; Attained Age method). The Normal Cost is computed based on either the Entry 

Age or the Current Unit Credit, after considering the weighted average of the entry or 

attained annuity value running from entry or attained age to the age of retirement. 

Specifically:

6 The majority of them are issued by subsidiaries of well known foreign companies and by the Greek 
Banks.
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2.5.2.1. Entry Age Normal

Under this method, the initial Unfunded Actuarial Liability (at entry age a , time 0) 

described as the Frozen Initial Liability, is equal to:

r —1 s
r —1

AL( 0) = X
x -a

X a a : r - a \ * s x * l x

Br * PVFBa -N C  (0) * ^ ----------------------  = FIL = U(0)
r - 1

X r  *  7 
5 X  'X

x=a

where both NC(0) and AL(0) are computed by the Entry Age Normal Cost method, bx 

is a level percent of salary, bx=b*sx, and no retired lives are covered by the plan at 

inception.

At each valuation date we have: 

r—1 5

X  aa\r-a\*sx *lx

NC(t) * x=a
r - 1

X / x

O)
X Br * PVFB a -  U(t) -  F(t) 

x=a
(2.16),

x=a

(Aitken 1994)

2.5.2.2 Attained Age Normal

This method differs from the Entry Age Normal as regards the computation of the 

Frozen Initial Liability that is performed under the Current Unit Credit.

FIL is based on the accrued pension benefit and at each valuation date we have:
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Br * PVFBX -  U(t) -  F(t) (2.17),NC(t)

r —1 s ..______
Y j  ax:r-x\*sx *lx

* x=a_________________ ?
r —1

^ f x  * ( x  

x=a

a>
I

X=û

(Aitken 1994)

The Attained Age method may be preferable to the actuary since it describes better the 

funded status of the plan. In particular, under this method, the total benefits are divided 

into past service and future service components. Past service benefits correspond to the

o

assets and future service to the future contributions . As a consequence, it can be clearly 

seen whether the value of assets is adequate to cover the accrued rights of the scheme 

participants and the future contributions are sufficient to cover the future service 

liability.

2.5.2.3 FIL, Comparison between Entry and Attained Age Normal

Based on the Normal Cost formulae, (2.16) and (2.17), we calculate the Normal Cost 

under each one of the above FIL methods. We use a stationary population, based on the 

same assumptions as the ones used for the different parameters (for example entry age, 

rate of interest, and so on) to compare the development of Normal Cost under the 

Individual Cost Methods in section 2.4. For illustration purposes the Frozen Initial

Liability is amortized over a 10 years period. The Unfunded Liability each year equals

8

to: U(t)=U(0) * ^ = i , t =  1,2,3,4,5,6,7,8,9,10 
aw\

7 bx = b*sx

8 These are compared in terms of expected present values.
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On the basis o f  the results obtained, w e observe that the unfunded actuarial liability is

smaller under the Attained age method; hence the normal and supplemental costs, 

throughout the employees’ active years of service, follow the trajectories presented in 

figures 2.4 and 2.5:

Figure 2.4 Supplemental Cost under FIL Entry Age and FIL Attained Age

------ EAN------- AAN

Figure 2.5: Normal Cost under FIL Entry Age and FIL Attained Age
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Figure 2.4 shows that the resulting Supplemental Cost is smaller under the Attained 

Age than under Entry Age Normal, due to the smaller unfunded actuarial liability of the 

former. For the same reason, figure 2.5 shows that the resulting normal cost is higher 

under the Attained Age Method than under Entry Age Normal.

2.5.3 MAIN DIFFERENCE BETWEEN INDIVIDUAL and 

AGGREGATE COST METHODS

By implementing the aggregate methods on the same basis as the one used for the 

individual ones, it is possible for the basic principle underlying an aggregate and an 

individual cost method to be clearly observed ; see formulae (2.18) and (2.19) below: 

For an Aggregate Cost Method the Normal Cost is obtained under the following 

formula:

r - 1

® 1 .1 ,*  b ,
NC (t) = [ Z  B ,*PV FB X- U ( t ) - F ( t ) | * ------ — -----------

x=a r~x s ■■
X * s = ? l , * b ,

(2.18)

For the Individual Cost methods, for a population with lx persons aged x, Normal Cost 

is obtained as:

N C ( t ) = g
x=a

lx * bx * PVFBX -  U(t) -  F(t) (2.19)

We define as average working life annuity: the weighted average of the members’ 

annuity values running from their attained age to the age of retirement, being multiplied 

by the number o f active participants at that age and their annual benefit bx.
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From the above, the basic principle underlying an aggregate and an individual cost 

method may be summarized as follows:

With the individual methods we obtain the total normal cost by making calculations for 

each active participant and summing the individual results, while with the aggregate 

methods by making calculations for the total group after computing the average 

working life annuity.

Winklevoss in 1977, allocated the aggregate methods into the same categories as the 

individuals i.e. into Accrued and Projected Aggregate methods. These are presented 

below:

Despite the fact that this method is not commonly used, we have decided to adopt the 

definition of Normal cost as cited by Winklevoss (1977) in order to show the one-to- 

one correspondence between the methods implemented using the same philosophy, both 

on an individual and on an aggregate basis.

Discrete time formulation

2.5.3.1 Accrued Benefit Cost Method

r —1

r —1
Y Jlx *Br *(PVFB)x

NC = X  lx*bx *[ x=a
r - 1

(2.20)
x=a

x -a
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2.5.3.2 Projected Benefit Cost Method

Frozen Initial Liability 

a) Entry Age Normal

In line with the principle stated earlier for an aggregate method, we will define the 

Normal Cost as:

Discrete time formulation

CO

Y Jlx*^r*PVFBa - U( t ) - F ( t )

NC (t) = j r  lx * s x * [ ^ - ------------------------------------ ] (2.21)
x=a r - 1 5 .._____

^ ^ x *  aa:r-a\ 
x=a

b) Attained Age Normal

In practice, it is the same with a), after replacing the Entry Age Normal by the Current 

Unit Credit in the Initial Liability calculation.

The Normal Cost formula is formed as follows:

Discrete time formulation

CO

Y^lx’ nr > rVFRx -F(t>-U(,>

NC (t) = X  / , * s ,  [ ̂ ------------- ------------------- ] (2.22)
x=a r - 1 0 ..______

ax:r-x |
x=a

The actuarial liability is defined by the Actuarial Liability under each method’s 

individual counterpart.
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2.6 COMPARISON BETWEEN ‘PAY AS YOU GO’ and

ACTUARIAL FUNDING

The ‘Pay as you go’ method is a financing system that does not involve advance 

funding and under which, ideally, contributions are assessed at a sufficient level to meet 

the current benefit payments of the scheme -  in our discussion this means benefits 

payable to retirees.

Since Social Security relies on the above method, the example below offered by Brown 

(1996) is quoted in order to point out the difference between this method and Actuarial 

Funding.

■ Actuarial Funding

Suppose an individual currently age 30 with an annual income of one unit, payable 

continuously, wishes to retire at age 65.

The required contributions are determined after setting the present value of all 

contributions equal to the present value of all retirement income benefits at a defined 

age.

i.e. C = f 5 e' 8*1 * ^ 2±l  dt = e‘35n * —  * f  e 5*1 * ^ ± l  dt=> 
ho ho hs

00

j'e-&*lxdx
=> C =C(8 ) = ff------------- (2.23)

\e~&*lxdx
30

■ Pay as you go funding

Suppose a ‘pay as you go’ plan wishes to pay annual income of one unit payable 

continuously to all retirees alive age 65 and over.

Contributions will be made by all working employees age 30 to 65 inclusive.
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In a ‘pay as you go’ system contribution income is immediately distributed as benefit 

outgo.

Thus, in a stationary population the contribution formula is :

co
\lxdx

C * ( T 3 o - T 6 5 )  =  T 65 =>C =  | --------  (2.24)
\lxdx

30

It is clearly seen that (2.24) is a special case of (2.23) when 0 = 0, since in a pay as you 

go funding contributions are immediately distributed as benefits outgo.

Commenting on 2.23 and 2.24,

Haberman pointed out that a factor, which affects contribution rate in (2.23), is the rate

„ t i i  i dC(8) tvof investment return o. It can be shown th a t---------- < 0.
d8

A factor which affects contribution rate in (2.24), pointed out by Brown as well, is the 

population included in T30 and T65 respectively. It becomes clear, that the social security 

funding depends only on the ratio of beneficiaries to workers and is therefore sensitive 

to demographic shifts.

Actuarial funding is also sensitive to demographic shifts. However, contributions are 

determined before the benefit outgo and if they are closely monitored, the effect of an 

unfunded liability due to those shifts may be mitigated.
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Cla
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NCX = B.

S a  *  Cla:r-a\

D
D,,

(S -P )

L. * d r *sx , ALx= B r* - ^ = ^ * ^ *
D

da:r-a\

(S - f i)

d r

s

S  a:x-a\

Proof

NC„
da:x-a\

* A  * _  ,
D„

d a .x - a  I

s

S  a\x-a\
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CHAPTER 3

PENSION FUNDING USING THE ACCRUAL DENSITY

FUNCTION m(x)

3.1 INTRODUCTION

This chapter introduces the idea of implementing a model pension plan, after 

considering the age o f the insured. For this purpose, the accrual density function m(x) is 

used, defined so as to correspond to a probability density function f(x):

The different pension accrual density functions m(x) are defined along with their 

corresponding accrual functions M(x).

These functions are examined in terms of whether they are associated with an 

accelerating or a decelerating cost method, and compared in terms of their development. 

As chapter 2, chapter 3 is also based on a deterministic model.

a
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3.2 CHOICE of m(x) s

Since m(x) corresponds to a probability density function, the range of all possible 

choices for m(x) is extensive. Accordingly, a large number of cost methods may be 

defined. However, a criterion for choosing m(x) may be derived from its mathematical 

properties and its age profile.

The categorization of m(x) with respect to its association with an accelerating or a 

decelerating cost method has been defined by Cooper and Hickman, 1967, as follows: 

Let m'(x) the first derivative of m(x).

If M"O) = m'(x) < 0 , a < x < r , the actuarial cost method defined by m(x) results in 

decelerating funding at age x, and the actuarial cost method associated with m(x) is a 

decelerating actuarial cost method.

If M"(x) = m'(x) > 0 , a < x < r , the actuarial cost method defined by m(x) results in 

accelerating funding at age x, and the actuarial cost method associated with m(x) is an 

accelerating actuarial cost method.

The pension accrual density functions m(x) discussed in the thesis are the ones 

developed according to the following distributions which we have chosen as being 

possible candidates for application to pension funding methods:

■ Power function

■ Uniform

■ Truncated Pareto

■ Truncated Exponential

For our decision, we were based on the observation that the m(x) and M(x) under a 

uniform distribution, coincide with the benefit accrued under the Normal Cost and 

Actuarial Liability respectively, for the Projected Unit Credit method. Since Uniform
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distribution is the special case o f the Power function when p =1, we thought to examine 

the general case where p * 1 .

Extending our choice, we also decided to consider Truncated Pareto and Truncated 

Exponential since both are related to the Power function distribution. In particular: if  X 

has a Power function distribution X"1 has a Pareto distribution; if  X has a Pareto

x
distribution with parameters p, x0 then ln( — ) has an Exponential distribution with

*0

parameter p; if  X has Uniform distribution defined in [0,1] then -lnX  has an 

Exponential distribution with parameter 1 (see Appendix 4).

We use truncated distributions because with the random variable we refer to the age of 

the plan member and thus it has always to be a nonnegative number, that lies in a 

specified interval.

According to the definitions supplied by Johnson, et al (1995):

3.2.1 POWER FUNCTION DISTRIBUTION

Suppose X ~ Power function, then

(,r - a ) p
a < x <r , p>- 0

m(x) {

0  , otherwise
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o ,x  -< a

1 , x  y  r

Obviously, M( a ) = 0 and M (r)=l, i.e. M(x) has the properties of an accrual function.

3.2.2 UNIFORM 

In case p = 1, X ~ Uniform distribution and

Obviously, M (fl) = 0 and M (r)=l, i.e. M(x) has the properties of an accrual function.

As we may observe, under a uniform distribution m(x), M(x) coincides with the benefit 

accrued under the Normal Cost and Actuarial Liability, respectively, for the projected 

Unit Credit method. Based on this result, in the following chapters, the uniform 

distribution will be considered as the link between these cost methods and the 

traditional ones.

( r - a )
, a < x < r

0  , otherwise

0  , x  -< a

( r - a )

,x  >- r
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3.2.3 TRUNCATED PARETO

Suppose X ~ Truncated Pareto distribution, then

_ *  ^_y+1 
a x

M - ) *r

, a <x < r , & 0

0 , otherwise

0  , x  < a

M(x) = { x

! - ( - ) *r

a < x  <r  , A: >- 0

1 , x > r

Obviously, M( a ) = 0 and M (r)=l, i.e. M(x) has the properties of an accrual function.

3.2.4 TRUNCATED EXPONENTIAL

Suppose X ~ Truncated Exponential distribution, then

1 * 1

<7 (— )

x -a

* e a , a < x ~ < r , cr> 0

0 , otherwise

81



0 ,x  < a

( l - e  CT
M(x) = ^  -------—  ^ a < x < r  , a y  0

l - e  CT

1 , x > r

Obviously, M (a  ) = 0 and M(r)=l, i.e. M(x) has the properties of an accrual function.

3.2.5 R E M A R K S

We have mentioned that a criterion for choosing m(x) may be derived from both its 

mathematical properties and its age profile. We have also mentioned that an important 

factor in choosing an acceptable pension accrual function is the interval range of the 

underlying parameters. Because the age of the plan member has to be a non-negative 

number that lies in a specified interval, we must use a truncated distribution for m(x). 

As we have already mentioned, since m(x) corresponds to a probability density 

function, the range of all possible choices for m(x) is extensive. Accordingly, a large 

number of cost methods may be defined. However, we cannot ignore another factor 

important for our choice; the utility of the accrual function from the perspective of the 

actuary. Before we selected the set of different distributions used throughout the thesis, 

we also studied both the Truncated Gamma and Doubly Truncated Normal 

distributions. The Gamma is related to the family of beta and exponential distributions 

which we have used. In particular, the exponential density function is a special case of 

that of gamma. However, in practice Gamma is not easy to apply. According to its 

probability density function (Johnson et al 1994),
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z>0 , k>0 , a<x<r(jc-1 y ~ '* e- (x~a)*k 

j V i r 1 *e-(x-afkdx

m (x)= {

0  , otherwise

so that the actuary needs to define two parameters: z and k; we have seen that the 

behaviour of m(x) is very sensitive to the z and k values. In addition, from the resulting 

form of m'(x) , we cannot determine if m(x) is associated with either an accelerating or 

a decelerating cost method.

The Doubly Truncated Normal has also been considered, simply because the Normal 

distribution holds a central position in statistics. According to its probability density 

function (Johnson, et al 1994),

w
\  * c  2*er2 

y l2 *7T *a________

r , 1

~(H92 

*e 2*a 2 dt

, a<x<r

m (x)= {

0  , otherwise

Here, the actuary has to define both parameters £ , and a .

We point out that the value of £ determines if m(x) is associated with either an 

accelerating or a decelerating cost method. Specifically, from the definition of

x — <5 . . .m'(x) =m(x)*(-----y ~ ) if  x> ̂ , then m\x) is associated with a decelerating cost method
(7

and vice versa. We observed that as the age of the scheme participant is less than g , he 

/ she purchases a higher portion of benefit along with his / her age increase up to £ ; 

while thereafter, i.e. as the age becomes higher than £ , the opposite hold. The latter is of
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importance since the mean value of m(x) allows the actuary to build up the fund at a 

higher pace in the early years and at a lower pace thereafter. As for the Gamma, the 

Truncated Normal is also less convenient for the actuary than those we have chosen for 

application to pension funding methods in the sense that the estimation of 2  parameters 

is needed.

Since our principal aim is to focus on the pension scheme implementation when the age 

of the plan member is taken into account (and not to consider exhaustively all the 

different pension accrual functions that may be suitable), we have thus decided to 

include neither the Gamma nor the Normal distribution in this study. However, this 

does not exclude the possibility of extending our work in the future by considering 

other distributions, studying those more thoroughly and comparing the corresponding 

results with those already derived.

3.3 CATEGORIZATION of m(x)

■ Power function distribution

(x — a) p~2
m'(x) = p*(p-l)*-------------  , a < x < r  , p>- 0

(r ~ a ) p

If p <  1, then m'(x) < 0  which implies that the actuarial cost method associated with 

m(x) is a decelerating actuarial cost method.

If p y  1, then m'(x) < 0  which implies that the actuarial cost method associated with 

m(x) is an accelerating actuarial cost method.
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At this point we have to mention the special property of the Power function that as a 

result of the parameter p value m(x) may be categorized as either a decelerating or an 

accelerating cost method. Also, when p =1, i.e. under Uniform distribution, the actuarial 

cost method is characterized by m \x ) = 0. This result shows that it is neither a 

decelerating nor an accelerating cost method.

■ Truncated Pareto

— *
m\x) = -(k+1)* — -----  , a < x < r , k y O

r

i.e. m'(x) -< 0 which implies that the actuarial cost method associated with m(x) is a 

decelerating actuarial cost method.

■ Truncated Exponential

x -a

1 e a
m (x) = ------ *----------- , a < x < r  , cr >- 0

v '  __2 r -a  9 5(J ----
l - e  17

i.e. mix') < 0  which implies that the actuarial cost method associated with m(x) is a 

decelerating actuarial cost method.

3.4 COMPARISON of m(x) DEVELOPMENT

3.4.1 COMPARISON WITHIN THE SAME DISTRIBUTION

Before we discuss the properties of m(x) under the different distributions, a comparison 

within the same distribution is conducted in order to examine how the development of 

m(x) is affected by the parameter value of each one.
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Specifically: for each parameter, different values were chosen in an increasing order 

and the m(x) pattern between the entry age and the age of retirement is observed.

We point out, that for a certain distribution, we have tried different parameter values in 

order to examine the trend of m(x) along with the age increase and thus to conclude on 

the magnitude of the portion of the benefit purchased.

Setting a = 30, r = 65, we obtain the following results:

■ Power function

For the parameter, p, we set the values p = 0.3, p = 0.8, p = 1, (Uniform distribution), 

p = 1.5, and p =1.8.The results, at specific ages, are presented in tables 3.1 and 3.2: 

Table 3.1 mix) development under Power function

age p =  0.3 p = 0.8 p = l p =  1.5 p =  1.8

32 0.064 0.041 0.029 0 .0 1 0 0.005

33 0.048 0.037 0.029 0.013 0.007

34 0.039 0.035 0.029 0.014 0.009

35 0.033 0.034 0.029 0.016 0 .011

40 0 .021 0.029 0.029 0.023 0.019

45 0.016 0.027 0.029 0.028 0.026

50 0.013 0.026 0.029 0.032 0.033

55 0 .011 0.024 0.029 0.036 0.039

60 0.01 0.024 0.029 0.04 0.045

65 0.009 0.023 0.029 0.043 0.051
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Table 3.2 M(x) development under Power function

age p =  0.3 p =  0.8 p = l p =  1.5 p =  1.8

35 0.558 0 .211 0.143 0.054 0.030

40 0.687 0.367 0.286 0.153 0.105

45 0.776 0.508 0.429 0.281 0.218

50 0.845 0.639 0.571 0.432 0.365

55 0.904 0.764 0.714 0.604 0.546

60 0.955 0.884 0.857 0.794 0.758

65 1 .0 0 0 1 .0 0 0 1 .000 1 .000 1 .0 0 0

The above tables illustrate the conclusion derived in the previous section, m(x) is 

associated with either a decelerating or an accelerating actuarial cost method.

When p < l , the values of m(x) s are high at the younger ages and low at the older ones. 

When p > l , the values of m(x) s are low at the younger ages and high at the older ones. 

In any case:

at the older ages, the corresponding m(x) values increase significantly as the value 

of p increases

the M(x) development reflects the m(x) trend. In table 3.2 we may observe that 

M(x) increases at a faster pace when p<l and at a slower pace when p > l .

Under Uniform distribution p =1, m(x) is constant throughout the age interval, since it 

is independent of the age of the insured; accordingly, the M(x) development is a linear 

function of age.

The results of tables 3.1 and 3.2 are described in figures 3.1 and 3.2 respectively:
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Figure 3.1 m(x) s development under the different Power function parameter values

n  — n  T «i — fi O n —1 n  -  1 ap  ~  u . o p  u . o  p - 1 “““  p  1 .3 p  1 . o

Figure 3.2 M(x) s development under the different Power function parameter values

■ Truncated Pareto

For the parameter ‘k ’ we set the values k = 0.3. k = 0.8 and k = 1.5. The results, at 

specific ages, are presented in tables 3.3 and 3.4:
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Table 3.3 m(x) development under Truncated Pareto

age 7T II O

00oII k=  1.5

35 0.040 0.044 0.050

40 0.033 0.034 0.035

45 0.029 0.028 0.026

50 0.025 0.023 0 .0 2 0

55 0 .0 2 2 0.019 0.016

60 0 .0 2 0 0.017 0.013

65 0.018 0.014 0 .011

Table 3.4 M(x) development under Truncated Pareto

age
oII 00®II k=  1.5

35 0.218 0.252 0.301

40 0.399 0.446 0.511

45 0.553 0.601 0.664

50 0 .6 8 6 0.727 0.780

55 0.803 0.833 0.870

60 0.907 0.923 0.942

65 1 .0 0 0 1 .000 1 .000

Since m(x) is associated with a decelerating cost method, the values of m(x) in table 3.3 

are higher at the younger ages and lower at the older ones. Accordingly, as k increases, 

the values at the younger ages become higher, and therefore the values at the older ages 

become lower. Since m(x) integrates to 1 over the age range this effect follows naturally 

from this feature.

The M(x) development in table 3.4 reflects the m(x) s trend.
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The results of tables 3.3 and 3.4 are described in the figures 3.3 and 3.4 respectively:

-------- k = 0 .3 --------- k = 0 .8 --------- k=1.5

Figure 3.3 m(x) s development under the different Truncated Pareto parameter values

-------- k = 0 .3 --------- k = 0 .8 --------- k=1.5

Figure 3.4 M(x) s development under the different Truncated Pareto parameter values

■ Truncated Exponential

For the parameter, a, we set the values a  = 30, a  = 40 and o = 50.

The results, at specific ages, are presented in the following tables, 3.5 and 3.6:
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Table 3.5 m(x) development under Truncated Exponential

a g e o = 30 o = 40 o = 50

35 0.041 0.038 0.036

40 0.035 0.033 0.033

45 0.029 0.029 0.029

50 0.025 0.026 0.027

55 0.021 0.023 0.024

60 0.018 0.020 0.022

65 0.015 0.018 0.020

Table 3.6 M(x) development under Truncated Exponential

a g e Cl II Cm © c  = 40 o = 50

35 0.223 0.202 0.189

40 0.412 0.379 0.360

45 0.571 0.536 0.515

50 0.707 0.675 0.655

55 0.821 0.797 0.782

60 0.918 0.905 0.896

65 1.000 1.000 1.000

Since m(x) is associated with a decelerating cost method, the values of m(x) in table 3.5 

are higher at the younger ages and lower at the older ones. Accordingly, as o increases, 

the values at the younger ages become lower and therefore the values at the older ages 

become higher.

The M(x) development in table 3.6 reflects the m(x) s trend.

The results of tables 3.5 and 3.6 are described in figures 3.5 and 3.6 respectively:
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Figure 3.5 m(x) s development under the different Truncated Exponential parameter values

-------- s  = 30 --------- s = 40 ---------s = 50

Figure 3.6 M(x) s development under the different Truncated Exponential parameter values

3.4.2 COMPARISON UNDER DIFFERENT CHOICES of m(x)

The comparison of m(x) s under different distributions was made for the age interval 

[ a - 30, r = 65].

As far as the parameter values of Power function p, Truncated Pareto k, and Truncated 

Exponential a  are concerned, they have been set equal to:

Power function: p = 0.3, 0.8 

Truncated Pareto: k = 0.3, 0.8,1.5
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Truncated Exponential: a  = 30, 40, 50

Since, for the Truncated Pareto and the Truncated Exponential, the m(x) are categorized 

as decelerating actuarial cost methods, for comparison purposes we choose the Power 

function parameter values to be less than 1 .

In tables 3.7 and 3.8, the values of m(x) s and M(x) s are presented, at specific ages: 

Table 3.7 mix) development under different distributions

P ow er P ow er Tr. Exp. Tr. Exp. Tr. Exp. Pareto Pareto P areto

age p = 0.3 p =  0.8 o  =  30 o  =  40 o  =  50

rnoII¿4 XioII k =  1.5

35 0.033 0.034 0.041 0.038 0.036 0.040 0.044 0.050

40 0.021 0.029 0.035 0.033 0.033 0.033 0.034 0.035

45 0.016 0.027 0.029 0.029 0.029 0.029 0.028 0.026

50 0.013 0.026 0.025 0.026 0.027 0.025 0.023 0.020

55 0.011 0.024 0.021 0.023 0.024 0.022 0.019 0.016

60 0.010 0.024 0.018 0.020 0.022 0.020 0.017 0.013

65 0.009 0.023 0.015 0.018 0.020 0.018 0.014 0.011

In table 3.7, we observe that the lowest values of the m(x) s associated with a 

decelerating cost method are calculated under the Power function p =0.3. Truncated 

Pareto, k = 1.5, gives very low m(x) values after age 50 and considerably higher values 

up to age 40. m(x) values under Truncated Exponential a  = 40 and Truncated Pareto k =

0.3 are very close to each other. As expected, since J" m(x) dx = 1, the low values of

m(x) s at the older ages imply that M(x) s rapidly accumulate to 1, as it is observed 

below, in table 3.8. This is clearly seen in the case of Power function under p = 0.3, 

since the values o f m(x) s are significantly lower than those under all other distribution 

functions from age 35 and thereafter .
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Figure 3.8 M(x) s development under the different distributions parameter values

The actuary has to decide how quickly to build up the fund (in the absence of variations 

from expected experience) i.e. at a lower or at a higher pace on the basis of the annual 

portion of benefit purchased. If, for example, the average age of the scheme members is 

young, he/she may prefer to build up the fund at a lower pace during the early years and 

at a higher thereafter as they get closer to retirement. The choice of the distribution 

depends on that decision. Thus, the set of different distributions associated with either 

cost method gives the actuary the flexibility to choose, among them, the one that 

increases the fund level at a higher pace. Between, for example, the pension accrual 

functions that are associated with a decelerating cost method, he/she knows in advance 

that the fund will build up at a higher pace if the Truncated Pareto is applied than if the 

Power function, p<l is applied. The parameter o f the distribution chosen affects as well 

the pace of the fund. If, for example, the Truncated Pareto is considered, the actuary
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knows in advance that the fund will build up at a higher pace if its parameter value is 

equal to 1.5 (or higher) than if it is equal to 0.3 (or lower).

Summarizing the above, we conclude that the different accrual functions as well as the 

different sets of parameters applied allow the actuary some flexibility regarding the 

pace of building up the fund within the restrictions he/she has already set on the 

development of its level.

In tables 3.1-3.6 , we have focused on the different distributions which we have 

considered for the pension plan implementation; in tables 3.7 -  3.8 we have compared 

these. The comparison between the traditional and new funding methods is presented in 

section 4.9.
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3.5 CONCLUSIONS

The age of the plan participant may be considered in the implementation of the plan 

through the pension accrual function m(x). On that basis, the actuary has the 

flexibility to build up the fund either at a higher or at a lower pace.

We think that it is useful to clarify that, in practice, when we propose a new structure 

for the plan implementation our aim is to give more tools to the actuary to proceed. 

The actuary's main task is to keep the right balance between a sufficiently funded 

scheme and the sponsor’s financial plans. This balance is difficult to be kept today 

due to the flexible forms of employment and job mobility. From their respective 

viewpoints, scheme sponsors care for low costs and scheme participants care for their 

benefit payments when due. However, we cannot ignore that the modernisation of 

pension schemes implies more transparency. On that basis, it will become possible to 

provide better information to the scheme participants about what they can expect from 

their pension system and what additional effort may be required to achieve the desired 

living standard after retirement. If, as a consequence, the scheme participants were to 

come to the position o f deciding on a cost method, then their choice for the method 

that better fits to their age and expectations will depend on the benefits provided by 

the plan benefit rules.

If the benefit is a pension, then young participants usually prefer to buy higher 

portions of benefit as they become older since it is likely that they will change jobs
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and thus they may not be willing to pay high contributions while starting their career9. 

Old participants may prefer to buy lower portions of benefits as their age increases. 

One reason behind this is the fact that, as they get older, and thus closer to retirement, 

their salaries increases and as a consequence so do their contributions. If they also 

decide to buy higher proportion of benefits, then they increase their contributions even 

more; even if they could afford to pay more, they may prefer to avoid very high 

amounts. Another reason may result from plan benefits rules which often allow older 

members with high levels of past service in the plan to acquire both vested rights and 

a percentage of their retirement benefits, if they were to retire earlier, paid 

immediately upon the date of the early retirement. Hence, older members prefer to 

accrue, in advance, higher portions of their benefits for the case where they exercise 

one o f these rights.

Sometimes, according to the plan rules, the choice of a lump sum payment is provided 

at retirement. This may provide some assistance in the case of need in order to meet 

some unexpected expenses. On this basis, young participants may prefer to pay higher 

amount of contributions along as their age increases.

Summarizing, we conclude that there is not a certain rule that either the actuary or the 

scheme participants should follow for the choice of the cost method which heavily 

depends on the benefits provided by the pension plan, the sponsor’s financial plans, and 

the economic environment.

9 Some people may argue that, even if young participants pay high amounts, in the case that they move 
to an other job, the accrued amount of their contributions is returned to them with interest. However, 
this is not always the case since very often, according to the plan benefit rules less than 100% of the 
contributions are returned to them and not the whole amount. This strengthens their choice to pay low 
contributions at the start.
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From all distributions chosen, the Power function has the special property that allows 

m(x) to be associated with either a decelerating or an accelerating cost method, on the 

basis of the adjustment of the parameter ‘p ’ value.

The comparison between the different methods is on the basis of the portion of benefit 

purchased throughout the participant’s active years. The different distributions (and the 

set of parameters investigated) show how the portion of benefit varies along with the 

age of the scheme participant. If it is considered more appropriate to increase the 

contribution rate along with the age of the plan participant, the Power function with p>l 

has to be used. Otherwise, we may select either the Power function with p<l or one of 

Truncated Pareto or Truncated Exponential.

We conclude that, if  it becomes necessary to change the level of contributions in a 

pension scheme, then there is not a unique process; that of applying uniformly to all 

scheme participants the corresponding rate that either increases or decreases normal 

cost. The actuary may apply different rates on the basis of the age of the participant 

determined by his/her choice o f the ‘appropriate’ distribution and the ‘appropriate’ 

parameter values. However, this is not always the case in the sense that occasionally 

there are various reasons that prevent the actuary from proceeding with the ‘right 

choice’. The actuary then is obliged to proceed with the ‘best choice’ i.e. with the 

method that is closest to that initially considered as the most appropriate. The analysis 

in terms of appropriate accrual functions and appropriate parameters that we have 

presented gives him / her the tools to proceed accordingly.
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A P P E N D I X  4

■ If X ~ Power function (p, k) then X"1 ~ Pareto ( p , — )
k

Proof:

Let V = X '1

fv(v)=  4 pv(v) = ^ P { V < v } =  ™ P{X-1<v}= A P{X > I } =  
dv dv dv dv v

( - )^ * p *  —-------, p>0, 0 < - < k
v

= 4 -  [ l - F x ( - ) ]  = - f ^ - ) * ( - ) '  = {dv v v v

0,

p* V(p+1) *(x0)p , p>0, v > *0 = J
k

0, otherwise

■ If X ~ Pareto (p , x0), then ln( — ) ~ Exponential (p)
*0

Proof

Let V = ln(—  )
x 0

f,(v)=  - f  F ,(v)=  ~ P{V<v}= - f  P{ln(—  ) <v}= ~ P {  — <ev}= 
dv dv dv x 0 dv x 0

= ^ P { X < e v *x0 }= 
dv

kP

otherwise
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p*(ev * x0)"(p+1)*ev * x0*(x0)p p>0,v > x0

= [Fx(ev **„)] = fx(ev * x0) * (ev * x0 )' = { 
dv

0,

p *e’v*p. p>0, v >0

- {

0, otherwise

■ If X ~ U[0,1 ] then -lnX  ~ Exponential (1)

Proof:

Let V = -lnX

f,(v)=  ^ F V(V)= ~ P { V < v } =  ^-P{-lnX <v}=
dv dv dv dv

l*e"'

dv
[ 1 -  Fx(e‘v) ] = - fx(e"v) * (e~v ) = {

0,

v >0

0, otherwise

otherwise

P{lnX>-v}= —  P{X >e‘v}= 
dv

0 < v <  1

otherwise

101



CHAPTER 4

A NEW PENSION PLAN MODEL

4.1 INTRODUCTION

This section includes the ‘new cost methods’ that are implemented through the pension 

density functions defined in chapter 3. These methods are regarded as individual.

Based on a deterministic model, the pension funding functions are described and 

compared for each of the p.d.fs. using the continuous time formulation.

The behavior of the Actuarial Liability, the Normal Cost and the fund value F(t) over 

time are examined. In this regard, an important equation is the following:

— {t) = (8-L)*F(t) + NC(t) -  B(t) + L*AL(t) 
dt
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4.2 DERIVATION OF THE PENSION FUNDING FUNCTIONS

In the model pension scheme, we consider an active group which extends over the ages 

a to r, with all new entrants coming in at age a and all retirements occurring at age r; 

and only retirement benefits are considered. For both the active and the retired 

participants, survivorship is in accordance with the function lx, which does not depend 

on the time variable t. Salaries at time t = 0 are represented by the function s(x), and 

thereafter they increase exponentially; this assumption establishes a year-of-experience 

pattern of growth for salaries. Initial pensions are a fixed percentage, b, of final salaries 

and increase during retirement by a factor (3(x) which is used to denote the adjustment 

of the initial pension at age of retirement r, of a retiree age x; x > r ,p(x) = ep*(x'r). For 

a < x -< r , the density of new pensions to be incurred at time t +r-x in respect to the 

survivors of participants aged x at time t is given by the function h(t + r -  x). For x > r, 

h(t + r -  x) is the density of new pensions incurred at time t for those who were then 

aged r and who may or may not be surviving at age x at time t.

The Normal Cost rate NCX in regard to a participant aged x for Br units of initial 

pension from age r is given in the continuous case by the following formula:

£) -(S-P)
Br * m(x) * —- *  a r , a < x < r  

Dx

NCX = { (4.1)

0 , x > r

The accrued liability in regard to a participant aged x for Br units of initial pension from 

age r is given in the continuous case by the following formula:
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£) -(S-fi)
Br * M(x) * —51 * a r , a < x < r

ALX = { (4.2)

- ( S - P )

Bt * ax * ep*(x‘r) , x > r 

The annual rate of plan Normal Cost at time t, equals to:

- (S~P)
NC(t) = |  h(t+r-x)*m(x) * e"°*(r"xi * a r dx (4.3),

Assuming for the model plan that pensions are a flat percentage, b, of final salary, then: 

h(t+r-x) = eT*(t+r'1‘x)*lr * b*Sa. Rewriting formula (4.3) based on (4.1) =>

=>NC(t) = f h(t+r-x) * — *( —  )* NCX dx = e1*1 * NC(0) (4.4)
A K Br

The annual rate of plan Accrued Liability at time t, equals to:

- ( * - / ? )  r _ ( S -P )

AL(t)= |  h(t+r-x)*M(x)*e'°*(r"xl* a r dx + J  h(t+r-x)* — * ax e(1+<x‘r)dx (4.5),
K

where the second term represents the value of future pension payments for those 

participants already retired at time t.

Given that M(x) = 1, for x>r, then using (4.2),

AL(t) = £  h(t+r-x)* — * ( — )* ALX dx = e1*1 * AL(0) ( 4.6 )
l r B r

The density of pensions for participants aged x at time t, x > r , is determined: a) by the 

density of new pensions at time t + r -  x, b) by survivorship from age r to age x, and c) 

by the adjustment factor P(x). Hence this density is given by the formula: 

h(t+r-x)*x.rpr*|3(x). It then follows that the annual rate of pension outgo is given in the 

continuous case by the following formula:

B(t) = J* h(t+r-x) * x-rPr * P(x) dx = e1*' * B(0) (4.7)
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The Unfunded Liability at time t, equals to:

U(t) = AL(t) -  F(t) (4.8)

The Contribution rate at time t, equals to:

C(t) = NC(t) + L(t)*U(t) (4.9)

As far as the Fund value at time t is concerned, Bowers et al (1976) show that

dFi,) = NC(t) + (8-X) * F(t) + X * AL(t) -  B(t) (4.10)
dt

Solving the differential equation (4.10) we have:

_ (X-S+r)

F(t) = F(0)*e(W t +eT *' al\ (NC(0) + L*AL(0) -  B(0)) (4.11) (see Appendix 5)

Setting the initial Fund value at time t=0, F(0), equal to 0, (4.11) becomes:

_ (X-8+ t )

F(t) = eT n * a7\ *( NC(0) + X* AL(0) -  B(0)) (4.12)

Let rc = (NC(0) + L*AL(0) -  B(0)).

At time t = 0, the pension scheme is funded by rc which represents the contributions 

made at that time, (NC(0) + /AAL(O)), minus the benefits paid also at that time. 

Equation (4.12) shows that the Fund value at time t equals to the present value of an 

annuity certain payable continuously for t years, at an interest rate equal to L-0, 

where 0 allows for the difference between the force of investment return and salary 

increase.

From equation (4.11) we have:

_(X-S+ t )

F(t) - F(0) * e(84')*t * e 'T = al\ *( NC(0) + L*AL(0) -  B(0)) =>

Fjt) -  F j0) * e 
e**AL( 0)

(8-X)t . ,  n c (  o)a,\ {
B(0)

AL( 0)
+X) or

F(t) - F (  0) * e(S~A)‘ ~ {X~S+T) * . NC( 0) -  5(0) ,
——-----— ---------- — at\ * ( -------------------+A)

AL(t) AL( 0)

Setting the initial Fund value at time t=0, F(0), equal to 0, (4.13) becomes:

(4.13)
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m  = a p  NC(0)-B(0)  
AL(t) ' AL( 0)

(4.14)

Equation (4.14) shows that the ratio of the Fund value over the Actuarial Liability at 

time t equals to the present value of an annuity certain payable continuously for t years, 

(at an interest rate equal to X -  0, 0 = (8 -  x)), such that: the total amount paid during 

each year equals to the sum of: The ratio o f Normal Cost at time t=0 minus any benefits 

due at that time over the Actuarial Liability at time t=0, and the rate of amortizing the 

Unfunded Liability.

4.3 IN T R O D U C T IO N  o f the FU N C T IO N  x(0)

Bowers et al (1979) define the annual rate of terminal funding10 cost for the plan at time 

t, as the rate at which, at time t, the actuarial present value of future pensions for 

members reaching age r is incurred. It could then serve as a building block and as a 

standard of comparison for other contribution patterns.

On the basis of this rate, Bowers et al display the function that, for a continuous model, 

allocates the actuarial present value of future pension benefits to the various valuation 

times in a participant’s active life. In particular, assuming that an actuarial cost method 

with an accrual function M(x) is selected, they calculate the Normal Cost on the basis of 

the annual rate of terminal funding cost. Applying this result for the case where salaries 

are changing exponentially and pensions are also adjusted exponentially, they show that 

the annual Normal Cost rate at time t, is sufficient with interest to provide the terminal 

funding cost for r - x (0 ) years later.

10 Under the terminal funding methods, pensions are not funded by contributions during active 
membership. Instead, single contributions. Instead single contributions are made to the fund at the time 
of retirement, see section 1.1.
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Hence, the function thus x (9) is introduced, and it is interpreted as an average age of 

Normal Cost payment associated with the Actuarial Cost Method defined by m(x) and 

the combination of interest, population and salary forces 0 = 8 -  x.

In the exponential growth case x (6 ) is calculated from the equation:

e6*x(0)= J  e6 X*m(x) dx .

For the exponential growth case, Bowers et al proposed an amortization process on the

basis o f x (0 ) by defining a mean temporary annuity value a{t) equal to the ratio of the 

present value at time t of future Normal Costs o f the plan over the annual rate of

Normal Cost of the plan at time t. Finding also a more specific expression for a(t) in the

exponential case, they simplified a(t) to a function independent of t and equal to:

f e{S-T)'x * (1 -  M(x))dx
a(.t)=l  . ,--------------

[ e(S z) x * m(x)dx

j jV 5-r)***(l -M(x))dx i
In that process X = - —  = —-------------------------- = —------

a(t) J e(S~Tyx * m(x)dx a^ey^\

where 0 = 5-x,(see Appendix 6)

In the special case, where 0 = 0, X = -------
j u - a

(4.15)

(4.16)

where p = J  x*m(x) dx , (see Appendix 6)

Since we have considered the exponential growth case, we considered the range for the 

parameter that amortizes the unfunded liability under the selected set of the accrual 

functions. In addition, the number of years m, over which the unfunded liability could

spread is calculated using the equation X = — . We consider this approach as the first
&m\
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step for estimating the pace o f the amortization of the Actuarial Liability on the basis of 

different X values from a specified range interval. Illustrative examples are presented in 

Appendix 7; A. is calculated with respect to all pension density functions we have 

discussed in chapter 3.

Considering X as above, the equation of the fund at time t, F(t) is then adjusted 

accordingly. In particular, replacing Xu in each one of the equations 4.11 -  4.14, we 

have:

-(■*-*) i
F(t) = F(0) * e ^ * 1 + eT * aj\ * (NC (0) + AL(0) * —e--------B(0))

Clx{d)-a\

F( t ) -F (0 )*e
AL(t)

A_X~5+T) * , NC(0) 
at| * (■

B( 0)
AL(0) Ctx(0)-

Setting the initial Fund value at time t=0, F(0), equal to 0, then

-(¿-0) i
F(t)=eT n* al\ *(NC (0)+ AL(0) * —e--------B(0))

Clx(0)-a\

m  = £ - s+r)* ( m :(Q) -  B(o ) | l
m )  “ A m  11

(4.17)

(4.18)

(4.19)

(4.20)

11 X value is not shown neither in the annuity rate nor in the exponent, for presentation purposes.
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4.4 APPLICATION of the DENSITY FUNCTIONS m(x)

Since we have considered the exponential growth case, we have decided to revisit the 

results of Bowers et al, after applying the selected set of the accrual functions of the 

new cost methods. For each distribution function, F(t) is then specified as follows:

■ Power function

Given that under the Power distribution:

- * ( \ - e a'e
9

*

/?*

(■r - a ) P
r ))  ,9  * 0
j' e * * ( x - a ) p-ldx

_  /ax(6)-a\ -  ^

P *
r - a

7 + ï ’
e = o (see Appendix 4.7)

equation (4.18) becomes: 

F ( t ) - F (  0)*e(S~X)‘ - a-i+r)
AL{t)

a, I
p*”S NC- pR * S B

pS AL+FR * ( ar ~ ar-----)
O  — T

• +

+ ( -  * ( l - e '  
9

.00* (.r - a ) ’

p* je6* * ( x - a ) p ]dx
) T  ),e*o (4.21) or

F(t)~ F(0)*e 
AL(t)

* 0 (S-X)t . (X -S+ t )

= at |
p*pS NC R * S ,

s al+P r *(
~ ( r - p )
a r

(S~P)
a r

+ (p
P + 1

V ) ,  0=0 (4.22)

5  -  T
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where, pSNc= _[ ° e (5‘T)*y* vp"' dy, pSAl = J  e (8'T)*y* ypdy, 

Sb = f  * P(x) dx and PR = ,

■ Uniform

In the case p = 1, X ~ Uniform distribution 

Given that under Uniform distribution:

0
*  (1 -  M  * 0

S  r-a\

_ e

dx{d)-a\ {

r - a 0 =  0

equation (4.18) becomes:

F ( t ) -F (0 )* e (S~X)l =
AL(t) a‘l (

a - - )- l,R *S B 1
~(T-P) ~(S-P) r

uSAL+uR * ( a - ~ a ' )
O - T

or F ( t ) -F (0 )*e
AL(t)

*  a (S-X)t _(A-<5+r) a-—; - UR * S R
■= al\ *(■ ~(r -p )  - ( S - p )

uS AL+uR * ( ar ~ ar-----)
S ~ T

- (S-T)  J
where, uSa l  = (r-a) - a r-a\ * —---- , SB= f  eT

5 - t  *

(r- l-x )  *  *
x -rP r

(see Appendix 7)

+ ( ^ ) - 1)9 = 0  (4.24) 

P(x) dx, UR =
ar
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Truncated Exponential

Given that under Truncated Exponential:

r-a

0
( 1 - e 00* ;(1

* le(k*e rdx
(i

_(i)cr
Cl r-a\

_a
S  r-a\

) ,0  * 0

a

_e
Clx(0)-a\ {

a -
r - a
r - a 0 =  0

e a - \

equation (4.18) becomes:

(see Appendix 7)

F ( t ) - F ( 0 ) * e  
AL(t)

* _(A-i+r) a ' * a — ~ ° \ TER * S
a,i

B

~ ( r - S )  - ( S - P )
a— i - a — j

-a  | r-a\( S - r ) (S r  ) y e  r .
(s— : - a — i CT )+ R* —

r - a | r-a\  £  -  r

\_

6
+  ( — * ( l  - e a0* CT‘ (1- e ' ) -))-1) .e^o

ea * jV* *e Gdx
(4.27)

or F ( t ) - F ( 0 )* e
AL(t)

* J 6 - X ) t  _ ( A - i+ r )

- a ,  | (

. — (<y-r~) 

r-a B

- ( T - S )  ~ ( S - P )

- ( S - T )  - ( t f - r - - )  r e n s ! : a 7 T i  - £ Z T T i
(s—; - a —i )+ ----- !---------r-a\ r -a  \ § _

+

+ (a- r  a  )~' ) ,0=Ov r-a y '
c CT -1

(4.28)

where, Sr  = f
gi*(r-l-x) *

x-rPr * p(x) dx, teR =
-<CT_1) * -1 5 — i * crr-a\

- ( S - P )  ’
a r
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We conclude that under the selected distribution functions we have derived exact 

mathematical solutions for the ratio of the fund value over the Actuarial Liability at 

time t. In particular, it is equal to a constant amount payable continuously for t years 

that can be exactly calculated for each one of the ‘new cost methods’.

4.5 COMPARISON IN TERMS of NORMAL COST and

ACTUARIAL LIABILITY

In section 2.4, we compared the traditional cost methods, for a participant aged x, on the 

basis of the Normal Cost and Actuarial Liability. In this section we will proceed to the 

same comparison for the ‘new cost methods’ as these are defined under the selected 

accrual functions discussed in chapter 3. As in the traditional methods, our calculations 

concern a participant who enters in the scheme at age 30 and retires at age 65. By 

implementing the formulae for the Normal Cost and Actuarial Liability according to the 

equations (4.1) and (4.2) for a < x < r we obtain the NCX and ALX values presented in 

tables 4.1 and 4.2 for selected ages:
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Table 4.1: Normal Cost under the various cost methods

age P ow er

p =  0.8

P ow er

p = l

P ow er  

p =  1.5

Tr. Exp. 

o  = 30

Tr. Exp. 

c  = 40

Tr. Exp. 

o  = 50

Pareto  

k =  0.3

Pareto  

k =  0.8

Pareto  

k =  1.5

35 0.07 0.06 0.04 0.09 0.08 0.08 0.09 0.10 0.11

40 0.08 0.08 0.07 0.10 0.09 0.09 0.09 0.10 0.10

45 0.10 0.11 0.10 0.11 0.11 0.11 0.11 0.10 0.10

50 0.12 0.14 0.16 0.12 0.13 0.13 0.12 0.11 0.10

55 0.16 0.18 0.23 0.13 0.15 0.15 0.14 0.12 0.10

60 0.20 0.24 0.34 0.15 0.17 0.19 0.17 0.14 0.11

64 0.26 0.32 0.47 0.17 0.20 0.22 0.20 0.16 0.12

Table 4.2: Actuarial Liability under the various cost methods

age P ow er

p = 0.8

P ow er  

p =  l

Pow er  

p =  1.5

Tr. Exp. 

o  = 30

Tr. Exp. 

o =  40

Tr. Exp. 

o  = 50

Pareto  

k = 0.3

Pareto  

k =  0.8

Pareto  

k =  1.5

35 0.46 0.31 0.12 0.49 0.44 0.42 0.48 0.55 0.66

40 1.04 0.81 0.43 1.17 1.08 1.02 1.13 1.27 1.45

45 1.87 1.58 1.03 2.10 1.98 1.90 2.04 2.21 2.44

50 3.08 2.75 2.08 3.40 3.25 3.15 3.30 3.50 3.75

55 4.86 4.54 3.84 5.22 5.07 4.97 5.11 5.30 5.53

60 7.58 7.35 6.80 7.87 7.75 7.68 7.77 7.91 8.07

64 10.84 10.78 10.63 10.93 10.90 10.88 10.90 10.94 10.98

65 11.89 11.89 11.89 11.89 11.89 11.89 11.89 11.89 11.89

Commenting on tables 4.1 and 4.2 we point out:

114



Normal Cost development follows the development of m(x). Hence, the higher the m(x) 

the higher the Normal Cost, the higher the M(x) and hence the Actuarial Liability. But 

eventually, at the age of retirement, r, AL(r) should all be equal as M(r) =1.

As we have discussed in chapter 3, the different accrual functions, as well as the 

different sets of parameters applied, allow the actuary some flexibility regarding the 

pace of building up the fund within the restrictions he/she has already set on the 

development of its level. In this section, we have shown that, in practice, he/she might 

proceed to a further step by calculating the Normal Cost and Actuarial Liability values. 

Thus, in the absence o f variations from expected experience, the actuary could estimate 

at the start of the plan the expected Contributions and Fund level, on the basis of the 

average age of the scheme members.

The results of both parts 2.4 and 4.5 will be considered in section 4.9, for the 

comparison between the traditional and the new cost methods.

4.6 COMPARISON IN TERMS of the ACCRUED LIABILITY at

TIMEt

Bowers et al (1986) prove the following proposition:

Proposition : Consider two actuarial functions Mi(x),Mn(x). If D(x) = Mi(x) -  Mu(x) is 

such that D'(a)  ̂  0 and D 0 has exactly one solution, ci x v , then 

ALi(t) >ALn(t).

Application 1 : Comparison between the Actuarial Liability development under the 

Truncated Exponential (ALi) and under the Uniform (ALn) distribution function 

Let X ~ Truncated Exponential distribution, then
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r-a 1 < 1
From (4.44) => a  * ( e -1) > r -  a ,  and — *

<j r-a

e a - \
■a

i.e. D'(r)< 0

D"(x) < 0, where D"(x) = - *
( J ~

e ~(x-a)/cr

r-a

\ - e  a

Hence: D'(x) =0 for exactly one value of x, a < x < r  .

As a result from the above A L ^fy irunca ted  Exponential) >  A Ln(t)(Uniform ), as shown by the

numerical examples in table 4.2.

Application 2: Comparison between the Actuarial Liability development under the 

Uniform (ALi) and under the Power (ALh) distribution functions.

Let X ~ Uniform distribution, then

0 ,x  <a

Mi(x) = \  ~ —— a < x < r  (4.33)
( r - a )

1 , x > r

Let X ~ Power function, then

0 ,x  -< a

M»(x) = {  a < x < r  , p y  0 (4.34)
( r - a y

1 ,x y  r

From (4.33) and (4.34) => D(x) = Mi(x) -  Mo(x) = ------- - - -------=i>
( r - a )  (r - a ) p

D'(x) = — —  -p* - => D ' ( a ) = - —  i.e. D'(a) > 0
r - a  ( r - a ) p r - a
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D \r )  =
1 P if p > 1. D \r )  < 0

r - a  r - a

Hence: D'(x) = 0 for exactly one value of x, a < x  <r  .

As a result A L |( t ) (Uniform) >  A L H (t)(Power function, P>i) as shown by the numerical examples in 

table 4.2.

Application 3: Comparison between the Actuarial Liability development under the 

Truncated Pareto (ALi) and under the Power (ALn) distribution functions.

Let X ~ Truncated Pareto, then

0 , x < a

(4.35)

r

1 x > r

Let X ~ Power function, then

0 , x  <a

a <x <r  , p>- 0 (4.36)

,x  >- r

From (4.35) and (4.36) ==> D(x) -  Mi(x) -  Mn(x) -
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k

! - ( - ) *x

\ - ( - ) k
r

(x - a ) p 
(r - a ) p

=> D'(x)= — -------
, , a , k

-p*
(.x - a ) p 1 
(r - a ) p

D'(a)= a

! - ( - ) *r

i.e. D \a)>  0

D \r )  = r r 

r

P
r - a

( - ) * ( - ) *  (-)•< /*
We write —-------—  = —---- —  and d = —.

1 - d  r
r

Then we have proved that in the case: 0 -< k -< 1, k < P_
d

the following holds:

.k. . , a . k

i - ( - rr

, a < x  <r  , p y O ,  k y  0

D"{x)
a k * k * (k  + l ) * ( - ) i+2 

x

l - ( £ )‘r

- P  * (P-1)
(.x - a ) p 2 
(r - a ) p

Hence: Z)'(x) = 0 for exactly one value of x, a < x  < r

(see Appendix 9)

As a result ALi(t)( Trunc Pdarew) > ALii(t)(power fe) as shown by the numerical examples in 

table 4.2.
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4.7 COMPARISON of RESULTS

Summarizing the above results, we have:

The Actuarial Liability is higher under the Truncated exponential distribution when 

compared with the Power function choice for m(x), given that p > 1:

AL(t)(Truncated Exponential) ^  A L(t)(Uniform ) ^  A L ( t) ( p ower fh ; p>l) (4.37)

The Actuarial Liability is higher under the Truncated Pareto distribution when

compared with the Power function choice for m(x), given th a t: k<l and k < — :
d

k<\,k<—
AL(t)( Trune.Pareto ) > AL(t)(power fh) (4.38)

The Actuarial Liability is higher under the Uniform distribution when compared with 

the Power function choice for m(x), given that p > 1 :

AL(t)(Uniform) ̂  AL(t)(p0wer fh , p>l) (4.39)

The density function associated with a decelerating method has a higher Actuarial 

Liability than the density function associated with an accelerating method. This is 

reasonable, since in chapter 3 we have shown that in the decelerating methods the 

accrued function, M(x), rapidly accumulates to 1.

When we compare the Actuarial Liability under two functions both associated with a 

decelerating method, we observe, that the Actuarial Liability is higher under that 

density function that allocates larger proportions of the benefit at younger ages. This is 

to be expected, since, for this case, we have shown (chapter 3) that the accrued function, 

M(x), accumulates to 1 at a faster pace.
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4.8 RELATIONSHIP BETWEEN ACTUARIAL LIABILITY and

NORMAL COST

The level of correlation between the Normal Cost and the Actuarial Liability is 

confirmed through the following proposition (Trowbridge, 1952):

In a pension plan mathematical model where:

a) the rate of investment is allowed to change with time, while the other actuarial 

factors remain constant,

b) as time, t, changes new entrants are allowed to enter the population in such a way 

that the population is stationary,

c) the interest rate assumption for valuation purposes is fixed,

d) the contribution income and benefit outgo occur at the start o f each inter-valuation 

period and

e) the valuations are carried out at annual intervals,

the Actuarial Liability AL satisfies the equilibrium equation:

AL = (1+i) * (AL + NC -  B) (4.40)

Then given that ALi, ALn, denote the Actuarial Liability development under methods I

and II respectively, (4.40) in each case can be written as:

ALi = (1+i) * (AL, + N C i  -  B) => N C i  -  B = - d * AL,

and AL„ = (1+i) * (ALn + N C n -  B) => N C n -  B = - d * AL„

_ ■ - • , B-NC, B -  NC,, , . .Considering th a t: --------- - = --------- — = d , then given that:
L i 1 ̂ ,,,

AL, + AL„ —̂ NCi < NCn and vice versa.

Hence, the inequalities (4.37) -  (4.39), imply that:

N C ( t) (T runcated Exponential) ^  N C(t)(U nifonn) ^  N C ( t) ( p ower m s p>i) (4.41)

k<\,k<—
NC(t)(Trunc. Pareto ) +  N C ( t) ( p 0Wer f h )  (4.42)
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NC(t)(Uniform ) N C ( t) ( p 0wer fin, p>l) (4.43)

4.9 COMPARISON BETWEEN the ‘NEW’ and the TRADITIONAL

COST METHODS

For the comparison between the traditional and the ‘new’ methods, assuming that the 

benefit at the age of retirement is equal to 1 unit, we observe the following at the outset, 

as far as the traditional methods are concerned:

■ Current Unit Credit

In this case, career average salary benefit, it is assumed that the benefit of a plan 

member with entry age a , after r- a years of service, is equal to a percentage of the 

total payroll throughout his / her career: bx=b * sx,

Setting b = — , the Normal Cost part allocated to a
S r

m(x) = —  *sx, and m(x) clearly sums to 1 over the
S r

Also, we have that:

0, x < a

M(x) = {  y *  Sx, a < x < r

1, x > r

■ Projected Unit Credit

In this case, final salary benefit, it is assumed that the benefit of a plan member with 

entry age a , after r- a  years of service, equals to a percentage of his / her final salary 

for each year of service : bx = b * sr-i, Bx = b* (x- a )* sr_i

Bx = b* Sx

participant aged x is equal to: 

range x=ato r-1.
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1
Setting b =

V i *(r~a)
, the Normal Cost part allocated to a participant aged x is equal

to m(x) = —1— and m(x) clearly sums to 1 over the range x = a to r-1. 
r - a

Also we have that:

0, x < a

, ,, , f  x - aM(x) = 1 ------  a < x < r
K r - a

1, x > r

■ Entry Age Normal

As in the final salary benefit considered above, it is assumed that the benefit of a plan 

member with entry age a , after r- a years of service, is equal to a percentage of his / 

her final salary for each year of service : Br = b*(r- a )*sr.i

Setting b = ------- -------- , the Normal Cost part allocated to a participant aged x is equal
sr_x* ( r - a )

to m(x)

S n * Ua:r-a\

D
* sx * m(x) clearly sums to 1 over the range x = a  to r-1.

Also we have that:

x < a

M(x) ■ {
Cla:x-a\

Cla\r-a\

a < x  -<r

1, x > r

On the basis of the above, we observe that the functions used for the Normal Cost 

allocation and for the accrued benefit have the properties of a probability distribution 

for a discrete random variable. As mentioned in chapter 3, when the Normal Cost and
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Accrued Liability are based on the Uniform distribution, then their development 

coincides with that under the traditional Unit Credit Cost method, where the benefit is 

equally allocated throughout the working years.

In the light of the above we shall proceed to compare the traditional Cost methods with 

the proposed new ones.

4.9.1 COMPARISON IN TERMS of NORMAL COST and 

ACTUARIAL LIABILITY at AGE x

In section 2.4, formula 2.14 shows that CUCALX < PUCALX < EAN ALX.

In section 4.6, we show that:

A L x(Xrunc Exponential) ^  A L X (Uniform) ^  A L X (Power f n , p>l)

k<\,k<—
ALX ( Tnmc.Pareto ) > ALX (Power fit ) (4.44)

A L X (Uniform) A L X (Power fn, p>l)

Combining (2.14) and (4.44) we conclude:

CUC AT ^  PUC A T  _ A T  < " A T
/ ' L x f  \  L x =  -x (Uniform) (Truncated Exponential) (4.45)

cue (4.46)

ALX ALX — ALX (Uniform) > ALX (Power ,p>l) (4.47)

The above inequalities (4.45) -  (4.47) are illustrated in the table 4.3:
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Table 4.3: Actuarial Liability under the new & traditional cost methods

Age CUC PUC - Power Tr. Exp. Tr. Exp. Tr. Exp. Pareto Pareto E.A.N

= Uniform p = 1.5 0 II w o o = 40 o = 50 k = 0.3 00oII¿6

35 0.19 0.31 0.12 0.49 0.44 0.42 0.48 0.55 0.43

40 0.54 0.81 0.43 1.17 1.08 1.02 1.13 1.27 1.06

45 1.13 1.58 1.03 2.10 1.98 1.90 2.04 2.21 1.96

50 2.14 2.75 2.08 3.40 3.25 3.15 3.30 3.50 3.24

55 3.84 4.54 3.84 5.22 5.07 4.97 5.11 5.30 5.08

60 6.74 7.35 6.80 7.87 7.75 7.68 7.77 7.91 7.77

64 10.60 10.78 10.63 10.93 10.90 10.88 10.90 10.94 10.91

65 11.89 11.89 11.89 11.89 11.89 11.89 11.89 11.89 11.89

-------- CUC -------- PUC = Uniform --------- Power, p =1.5

-------- Tr. Exp. s = 30 -------- Tr. Exp. s = 40 -------- Tr. Exp. s = 50

-------- Pareto, k =0.3 ---------Pareto, k =0.8 -------- E.A.N.

Figure 4.1 Actuarial Liability under the new & traditional cost methods
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The Normal Cost at specific ages is presented in the following table 4.4: 

Table. 4.4: Normal Cost under the new & traditional cost methods

age CUC PUC a Power T r. Exp. Tr. Exp. Tr. Exp. Pareto Pareto E.A.N

= Uniform p = 1.5 omII o = 40 o = 50 k = 0.3 00dII¿4

35 0.04 0.06 0.04 0.09 0.08 0.08 0.09 0.10 0.08

40 0.06 0.08 0.07 0.10 0.09 0.09 0.09 0.10 0.09

45 0.09 0.11 0.10 0.11 0.11 0.11 0.11 0.10 0.11

50 0.14 0.14 0.16 0.12 0.13 0.13 0.12 0.11 0.13

55 0.22 0.18 0.23 0.13 0.15 0.15 0.14 0.12 0.15

60 0.34 0.24 0.34 0.15 0.17 0.19 0.17 0.14 0.17

64 0.50 0.32 0.47 0.17 0.20 0.22 0.20 0.16 0.19

65 0.55 0.34 0.51 0.18 0.21 0.23 0.21 0.17 0.20

--------CUC --------PUC = Uniform -------- Power, p =1.5
--------Tr. Exp. s = 30 --------Tr. Exp. s = 40 --------Tr. Exp. s = 50

--------Pareto, k=0.3 --------Pareto, k=0.8 --------EA.N.

Figure 4.2: Normal Cost under the new & traditional cost methods
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We make the following remarks on tables 4.3 and 4.4 and Figures 4.1 and 4.2:

In table 4.4 the figures provided by the Current Unit Credit approach those under the 

Power function when p > l . For this reason we may consider that they form one group. 

This result is to be expected since under both methods, the benefit is allocated in higher 

proportions as age increases.

In table 4.4 the figures provided under Entry Age Normal are lower than the 

corresponding ones provided under the Truncated Exponential and Truncated Pareto. 

We may also consider that Entry Age Normal, Truncated Exponential and Truncated 

Pareto form one group, where the benefit is allocated in lower proportions as age 

increases.

Setting as ALi, ALn the Actuarial Liability and N Q, NCn the Normal Cost under 

methods I and II respectively after age 50 we observe that if ALi > ALn (table 4.3) then 

N Q  < NCn (table 4.4) and vice versa; a result that is to be expected.

As a general remark, after the comparison of the two groups, defined as above, we may 

repeat the one stated in section 2.4: ‘The progress with time of both the Normal Cost 

and Actuarial Liability is determined (ceteris paribus) by the choice of the function, 

m(x); the Normal Cost follows the trend that m(x) follows, while the higher is the value 

of this function at younger ages, the higher is the Actuarial Liability’.

In order to examine the sensitivity of the results obtained, we have tested the underlying 

parameters, changing consecutively the entry age, the age of retirement and the 

valuation rate of investment return.

In particular, we first assumed that the participant enters in the scheme at age 25 and 

retires at age 65. From the results we observe that the trend followed by the Normal 

Cost and Actuarial Liability throughout the participant’s active years is kept the same 

with the corresponding one calculated assuming that the entry age is 30. As expected
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though, the Normal Cost values are lower because the cost is spread over 40 instead of 

35 years; as a consequence, the Actuarial Liability increases slightly above age 50, to 

the age o f retirement. On the other hand, when we assume that the participant enters the 

scheme at age 40, the Normal Cost increases since it is spread over 25 years and the 

Actuarial Liability decreases slightly up to the age of retirement.

The difference between the entry and retirement age is the key assumption that affects 

their values. Specifically, given that the age of retirement is kept constant, the higher the 

number of years in service, the lower the Normal Cost and the higher the liability as the 

plan members approach retirement.

Testing the development of the Liability and Normal Cost assuming that the participant 

enters in the scheme at age 30 and retires at age 70, we also observe that it follows the 

same pattern as that of the case where the participant enters at age 30 and retires at age 

65. We point out that, as the retirement age increases, the Normal Cost and Actuarial 

Liability values decrease due to the change in post-retirement life expectancy.

The Normal Cost and Actuarial Liability patterns remain also unchanged if the 

valuation rate of investment return either increases or decreases. The effect of its change 

is focused on the cost and liability values, which as expect increase as it decreases, and 

vice versa.

Summarizing the above we may conclude that the way that the Normal Cost and 

Actuarial Liability progress with time does not change significantly along with the 

change of either one of the entry age and the age of retirement or the valuation rate of 

investment return.
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4.9.2 COMPARISON IN TERMS of the ACCRUED LIABILITY and 

NORMAL COST at TIME t

We now apply the Bowers et al proposition in order to compare the development of the 

Accrued Liability at time t between the traditional Cost methods:

Application 1 : Comparison between the development of the Actuarial Liability under 

the Projected Unit C redit, (ALi), and under the Current Unit Credit where the pension 

benefit is linked to the employee’s salary (ALn)

Under the Projected Unit Credit

0 , x  < a

(4.48)

, x > r

Under the Current Unit Credit

0 , x < a

(4.49)

x > r

From (4.48) and (4.49) =>D(x) = Mi(x) -  Mn(x)

( x - a )  J _  * s  (.x - a ) e(x a)r -1
( r - a )  ' Sr X ( r - a ) '  e{r~a)r -1

, providing x>0

Since : x-a< s r-a\ =>
1 1

=> D \ d )> 0>
r - a
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D \r)
1 z*e(r-a)T 1 1

r — a e(r-a)T ■ 1 r — a
, providing x>0

ar

Since : r- a > ar-a\
r - a

Clr-a\

D"(x) < 0, where D"(x) = - r*
T*e{x~a)T 
e(r~a)T -1

<0

Hence: D'(x) =0 for exactly one value of x, a < x < r  .

As a result from the above ALj(t)p.u.c. > ALn(t)c.u.c. (4.50)

Application 2: Comparison between the development of the Actuarial Liability under 

the Entry Age Normal, where the pension benefit is linked with the employee’s salary 

(AL[), and under the Projected Unit Credit (ALn).

Under the Entry Age Normal

0 , x < a

,  jr , \  )  Cla.x-a\Mi(x) = _ a -< x -<r ,

Cla:r-a\

(4.51)

1 , x > r

Under the Projected Unit Credit

0 , x  < a

Mn(x) -  {  a\ , a < x < r  , (4.52)
( r - a )

1 , x > r

From (4.51) and (4.52) => D(x) = Mi(x) -  M„(x) =
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Saa:x-aj ( x  -  O) =  N^f T) -  N (/  T) ( x  ~  a )

v ___ (r - a ) N(f ~ T> - N (rs~T) (r - a )
Cla:r-a\

=> Z)'(x) Zff~r) 1
N (as~r) - N ^ T) r - a

D \ a ) = A(¿-r) 1
N^~T)-N [ S~T) r - a ' J 3-*) r - a

aa:r-a\

s (8 - t )

Since : r- a > aa-.r-a\
r - a

< 1
•s (8-z) D'(a) >0 , providing 5 - x>0

aa:r-a\

D \r ) D(8-r ) 1 D,(8- t )

NÌS~T)- N Ì S~T) r - a  DÌS~T) s - ^ r - a
a a : r - a \

£ ) ( 8 - t ) s  . . ( 8 - t )

Since :r-a< a
D ( 8 - t ) aa:r-a\

] _ > DÌS-T) 1
r - a  D,( 8 - t ) s  ( 8 - t ) 

aa.r-a\

D \ r ) <0, providing 8 - x>0

DiS~T) *(u +S)
D"(x) < 0, where D"(x) = - * . /  < 0

W  W  Ar(8-*) _  m (8~ t )a r

Hence: D \x )  =0 for exactly one value of x, a < x < r

(4.53)

(4.54)

As a result from the above shown also by Bowers et al (1986), 

ALi (t)eAN > ALn(t)p.u.c.

From (4.50) and (4.53) we have: 

cucAL(t) < pucAL(t) < EAN AL(t)

Combining the inequalities (4.37) -  (4.39) with (4.54) we conclude:

A L ( t )  <  A L ( t )  =  AL(t)(Uniform) ^  AL(t)(Xruncaled Exponential) (4.55)

fa ̂  ̂
A L ( t )  <  A L ( t )  =  A L(t)(uniform ) <  A L ( t ) (  Trunc Pdaret0) (4.56)

A L ( t ) (Power , p>q <  PUCA L ( t )  =  A L ( t ) (Uniform) <  EAN A L ( t )  (4.57)

131



These inequalities show that the Actuarial Liability of the accelerating cost methods 

(i.e. Current Unit Credit, Power function, p > 1) is less than the Actuarial Liability of 

the decelerating cost methods (i.e. Truncated Exponential, Truncated Pareto, Entry Age 

Normal).

The conclusions derived from the comparison in terms of the Accrued Liability at time 

t, are the same with the ones derived from the comparison in terms of the Actuarial 

Liability at age x, (table 4.3). These conclusions, verify the proposition proved by 

Bowers et al, according to which: “ if m(x) is associated with a decelerating cost 

method (m'(x) <0) and mi(x) is associated with an accelerating cost method ( ™[(x) >0), 

then M(x) > Mi(x), a<x<r  ”

The inequalities (4.55) -  (4.57) imply:

CUCN C ( t ) >  PUCN C ( t )  =  N C (t)(U niform ) > NC(t)(Truncated Exponential) ( 4 .5 8 )

k<i k<—
c u c N C ( t )  >  p u cN C ( t )  =  N C W d j m t a , ,  >  N C ( t ) ,  Tnmc , ( 4 .5 9 )

N C d V , ,» . , ,  , p>i) >  p u cN C ( t )  .  N C ( t ) (Unifoml >  ™ N C ( t )  ( 4 .6 0 )

4.10 CALCULATION of AL(t), NC(t) and B(t) WHEN t  = 0

When x = 0, the formulae of NC(t), AL(t), and B(t) may revised as follows:

r  - (S -P )

NC(t)= J eT (t+r'1‘xAir * Sa *b *e's<r"x̂ * a r *m(x)dx =
a

r - (8-p)
= J lr * sa *b *e'8(r'x)* a r *m(x) =>

a
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=> NC(t)= lr * s a * b *e‘5*r * a r * J e°*x * m(x)dx
_ (s-P) r,

(4 .6 1 )
a

AL(t) = J  e ^*(t+r-i-x)* lr *s a *b * M(x)* e
_(s-p)

'* e-8'(r-x)* ar dx +

- (S-P)
[  M(x)* e6*x dx + b f  >

-(S-P)
*s  * e p*r *

following the same mathematical argument as in Appendix 8.

The integral in formula 4.62 is approximated considering either Simpson’s or 

Rectangular rule. We set the value of AL(t) equal to the average of the values that result 

after applying each method of approximation (see Appendix 10).

For the calculation of B(t) given that t = 0, the equilibrium equation is applied i.e.

B = NC + d*AL o  B(0) = NC(0) + d*AL(0) (4 .6 3 )

It is clearly seen, from formulae (4.4), (4.6) and (4.7) stated in section 4.2, that the 

values of NC(t), AL(t) and B(t) when x = 0 do not depend on t. They remain constant 

throughout the years, equal to NC(0), AL(0) and B(0) respectively.

These values, are presented in the tables below, (4.5) -  (4.7), for the distributions being 

considered regarding the choices of the valuation of the rates of investment which will 

be used as expected values for the simulations we discuss in chapter 6:
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Table 4.5: AL(O) , NC(O) and B(0) when E(i(t)) = 0.03

Distribution fn AL(0) NC(0) B(0)

P o w er p= 0 .8 263 .55 5.98 13.66

P o w er p = l 252 .33 6.31 13.66

P o w er p= 1 .5 231 .13 6.93 13.66

Tr. E xpon . o = 3 0 2 7 2 .56 5.71 13.65

Tr. E xpon . o = 4 0 267.73 5.85 13.65

Tr. E xpon . o = 5 0 264.75 5.94 13.65

Tr. P are to  k=0.3 2 6 9 .79 5.79 13.65

Tr. P are to  k= 0 .8 2 7 6 .20 5.59 13.63

T r. P are to  k= 1 .5 2 8 4 .86 5.32 13.62

Table 4.6: AL(O) , NC(O) and B(0) when E(i(t)) = 0.05

Distribution fn AL(0) NC(0) B(0)

P o w er p= 0 .8 204 .65 3.78 13.53

P o w er p = l 197.84 4.11 13.53

P o w er p = l  .5 184.63 4 .76 13.55

Tr. E xpon . o = 3 0 210.5 3 .49 13.51

Tr. E xpon . o = 4 0 207.51 3 .64 13.52

T r. E xp o n . o = 5 0 205 .65 3.73 13.52

Tr. P are to  k=0.3 2 0 8 .69 3 .58 13.52

Tr. P are to  k= 0 .8 212 .63 3 .39 13.52

T r. P are to  k=1 .5 217 .75 3 .10 13.47
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Table 4.7: AL(0) , NC(O) andB(O) when E(i(t)) =  0.07

Distribution fn AL(0) NC(0) B(0)

Power p=0.8 165.82 2.55 13.40

Power p=l 161.49 2.84 13.40

Power p=1.5 152.84 3.43 13.43

Tr. Expon. a=30 169.83 2.28 13.39

Tr. Expon. a=40 167.89 2.41 13.39

Tr. Expon. a=50 166.68 2.49 13.39

Tr. Pareto k=0.3 168.56 2.36 13.39

Tr. Pareto k=0.8 171.09 2.19 13.38

Tr. Pareto k=1.5 174.37 1.97 13.38

The results of tables 4.5 -  4.7 (and those presented in the appendix 10) show that the 

effect of the rate of the investment return does not depend on the accrual pension 

function used.

As we present in figure 4.3, the Actuarial Liability decreases as the expected value of 

the rates of investment return increases. This result is discussed in detail in section 6.6.
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Figure 4.3: Actuarial Liability at time t=0, under different values of the rate of investment return

Both the Actuarial Liability and Normal Cost values satisfy equations (4.55) -  (4.60) 

AL(t) =  AL(t)(Uniform) ^  AL(t)(Truncated Exponential) —^

=> N C ( t )  =  N C (t)(tjn ifo m i) ' > N C ( t) ( '[  runcated Exponential) (4.64)

k < \  k < —

A L ( t )  =  AL(t)(Uniform) <  A L ( t ) (  frunc.Pareto )

k  <, 1
= >  PUCN C ( t )  -  N C ( t ) (Uniform) > N C ( t ) ( TmnJareto) (4.65)

A L(t)(Pow er , p>l) ^  A L ( t )  =  AL(t)(Uniform) —^

=>  N C ( t) ( p 0w e r , P>i) >  PUCN C ( t )  =  N C ( t ) (Uniform) (4.66)

For the Power function and the Truncated Exponential, the Actuarial Liability level 

decreases as the parameters, p, a increase. For the Power function distribution this is 

straightforward because when p becomes higher than 1 the actuarial cost method which 

up to that value (p=l) is associated with a decelerating cost method, becomes associated 

with an accelerating cost method (section3.3). For the Truncated Pareto, the Actuarial 

Liability level increases, along with k.
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Within the same distribution, comparing the Actuarial Liability and Normal Cost under 

the different parameter values, say AL, AL’ and NC, NC’ respectively, we conclude 

that when AL > AL’ then NC< NC’ and vice versa.

The illustrative examples when x = 0 show the range interval of the Actuarial Liability 

and Normal Cost under the new cost methods. By considering in advance how the level 

of the fund varies on the basis of the accrual function which we use, we improve our 

understanding of the effect o f the different distribution functions and their underlying 

parameters on the pension scheme implementation.
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4.11 CONCLUSIONS

The development of Normal Cost follows the pattern of the accrual function ‘m (x)\

The Actuarial Liability level depends on the benefit parts allocated to the plan members 

on yearly basis. In particular, it is higher when the density function allocates higher 

proportions o f benefit at younger ages.

Comparing the ‘new’ with the traditional cost methods, we may conclude that: When 

the benefit is allocated in higher proportions as age increases, the Nomial Cost values 

are very similar when they are calculated either under the Current Unit Credit method 

or using the Power function. When the benefit is allocated in lower proportions as age 

increases, the Normal Cost values are very similar when they are calculated either under 

Entry Age Normal method or using one o f the Truncated Exponential or Truncated 

Pareto methods.

The following inequalities hold for the accrued liability at time t as well as for the 

Actuarial Liability at age x

<l) A L ( t )  <  A L ( t )  =  AL(t)(Uniform) ^  A L ( t) ( x runcated Exponential)

k < \  k < —

b) c u c A L ( t )  <  PUCA L ( t )  =  A L ( t ) ( u mform) <  A L ( t ) ( Tmnc £ reto), and

c) A L ( t ) (Power, p>i) < PUCA L ( t )  = A L ( t ) (Uniform) < EAN A L ( t ) ,
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These inequalities show that in practice, among the different accrual functions, a lower 

Actuarial Liability is expected from those that are associated with an accelerating cost 

method than from the ones associated with a decelerating cost method.

Remark:

The link for the comparison between the ‘new’ and traditional cost methods, is the 

Power function distribution that coincides with Projected Unit Credit when p = 1. As far 

as the Current Unit Credit is concerned, according to its definition, the portion of 

benefit purchased annually is a constant percentage of the participant's salary. In order 

for the power function to be equivalent with the Current Unit Credit, the p value needs

to approach 1. As p -> 1, (x -- a)p 1 -»1 and the fraction ————  becomes
(:r - a ) p

independent of the age x.
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APPENDIX 5

dF̂  = NC(t) + (5 A) * F(t) + X * AL(t) -  B(t) => 
dt

_(A-S+r)
=> F(t) = F(0) * e(8'X) + eT n * aj\ *( NC(O) + X*AL(0) -  B(0)) 

Proof

dF̂ -  = NC(t) + (8-a ) * F(t) + a * AL(t) -  B(t) => 
dt

=» - (8A) * F(t) = NC(t) + X * AL(t) -  B(t) ^
dt

=> — [ F(t) * e'(8~x,n ] = ( NC(t) + X * AL(t) -  B (t)) * e'(5')',*t -  
dt

=> F(s) * e‘(8‘X)*s ;:'0 = |  ( NC(s) + X* AL(s)- B (s)) * eW s  ds =»

=» F(t) * e’(5’X)*‘ -  F(0) = |  ( NC(s) + X * AL(s) -  B (s)) * eW s  ds =>

=> F(t) = F(0)* e(8~X)*1 + e(8‘X)*t |  ( NC(s) + X * AL(s) ~ B (s )) * e (8‘X)*s ds (1)

|  ( NC(s)+A,*AL(s)- B (s)) * e (8'X)*s ds = (NC(0) +>* AL(0)-B(0))* |  e(T"8+X)sds (2) 

since we know that NC(s) + )AAL(s) -  B(s) = (NC(0) +A*AL(0) -B(0)) * eT*s

(2) => |  ( NC(s) + X * AL(s) -  B (s)) * e'(8‘X)*s ds =

_(A,-S+t ) _(A-S+t )
s7\ * (NC (0)+X,* AL(0)-B(0))=e(X'5+T) *l * al\ *(NC(0) + X*AL(0) -  B(0)) (3)

(3) _(A-5+r)
=i> F(t) = F(0)* e(8'X)n + e(8'X)n * e(X‘8+T) ** * al\ *( NC(0) + ^*AL(0) -  B(0)) =

-  F(0)* e(8’xrt + eT n * al\ *( NC(0) + X*AL(0) -  B(0))
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/ T

a * eaB *e"0*x(e) - e“9 * |x  * * m(x)dx * [ je& * m{x)dx\

= a*eaS* [ j*e& * m{x)dx] 1 - eaB * |x  * * m(x)dx * [ j e * m(x)dx] 2

When 0 —»0,

d e -e - (X(e)-a ) =  a  *
I I  I

[ ^m(x)dx]A- J*x*m(x)iix-[ Jw(x)i& ]’1 a — p (2)

From (1) ,(2) lim ax(s)-a|= lim -—-—  
<?->0 <?—>0 $

-d (x(8 )-a )

lim —--------------------
0^0  d

—  u 
da

= ~(a -M )  
1

lim aX(8)-a\ = |x -  a e^o

APPENDIX 7

Illustrative Examples:

The following examples show the values of X, under the different distributions when 

they are calculated based on the function x(9); i.e. X = — .
Ox(0)-a\

For the calculations we have assumed that: 

i = 0.05, x’ = 0.03

Entry age a = 30, age of retirement r = 65.

The results are presented in the following table, 4.8:
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Table 4.8: A values calculated based on x(6)

Distributions
X value 

when 0 5* 0

X value 

when 0 = 0

Power fn, p = 0.8 0.070 0.064

Uniform dn, p = 1 0.064 0.057

Power fn, p = 1.5 0.056 0.048

Trunc. Pareto, k =0.3 0.074 0.068

Trunc. Pareto, k =0.8 0.080 0.074

Trunc. Pareto, k =1.5 0.11 0.083

Trunc. Exponential, o = 30 0.076 0.071

Trunc. Exponential, o = 40 0.073 0.067

Trunc. Exponential, o = 50 0.071 0.065

In table (4.8) we observe that X acquires the highest values under the Truncated Pareto 

when k = 0.3 and the lowest ones under the Power function when p = 1.5.

We also observe that under the Power function and the Truncated Exponential, the X 

values decrease as the parameters p and a  increase while under the Truncated Pareto 

they increase as k increases.

The X values that are calculated based on the function x(0), may be used as an 

indication for the length, in years ‘m ’, of the amortization period. Calculating ‘m ’ based

on the equation X = - — we obtain the following result:
Clm\

m = -  — * ln(l -  — * £ ), ‘m ’ is determined if ( ! -  — *£) >0.
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In particular, substituting the X values presented in table 4.8 in the equation X = —  and
Clm\

solving with respect to ‘m ’, the number of years ‘m ’ indicated are presented in table 4.9, 

below: 12

Table 4.9: Length o f  the amortization period based on X values

Distributions length of the amortization length of the amortization

period (in years), 0^0 period (in years), 0 =  0

P o w er fn, p  =  0.8 2 4 2 9

U n ifo rm  dn, p  =  1 2 9 4 0

P o w er fn, p =  1.5 4 2 n / a 12

T runc . P are to , k =0.3 2 2 2 6

T ran e . P are to , k = 0 .8 19 2 2

T runc . P are to , k =1.5 12 18

T ra n e . E x p o n en tia l, o  =  30 21 2 4

T ra n e . E x p o n en tia l, o  =  40 2 3 2 7

T runc . E xp o n en tia l, o  =  50 2 4 2 8

12 The value of m is not available, since ( 1 -(X75)) <0
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For each distribution we calculate the limiting values of X as the relevant parameter 

value (p, k, o), tends either to infinity or to zero.

Power function

-  * (1 - e ae* ----- ( r - a ) p---------  ̂ , 0 ^ 0

6 p* \e<k* ( x - a ) p-ldx
a

_ e

dx(6)-a\ = {

Limiting values of X

r - a

7 + 1
9 =  0

When 9 ^ 0 ,  consider

A  = c a 0 *_____ {r~ aY
(,r - a )' (r - a ) 1

p* \etk* ( x - a ) p-xdx p * je0(x~a) * ( x - a)p~xdx \eeKx~a) * d ( x - a ) pdx

( r - a ) f (,r - a ) l
! u r u

( x - o ) p *ee'(x-a)\r; a - 0 *  \ee' ' * t pdt ( r - a)p *e0t(r~a) - 0 * \ed*‘ *tpdt

B*(r~a) -9* f / * ' *{ - ^ - y d t  
J r - a

lim (------ )p = 0 => lim A = e
« r — a

= 0 - 6 \ r - a )

lim (------ Y  = 1
p->o r — a

lim A = ---------------- ------------------- = 1
P~>0 e6*(r-a) _ q  * J_ * (ee*(r~a) _ n

( 1)

(2)
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When 0 ^ 0 ,  consider

l - ( - ) *  l - ( — ) *
___________r_________ __________ r______
k  * ak * [  ee'x * x~(M)dx -  ak * (  e**' * dx~k

- a k *(x~k *e9*x|ra- 0 *  l e e*x *x~kdx)

l - R *r
V ‘r + / * a +6>* r e0‘*

y  «a X

=> lim (—)k => lim A = e a*9
»00 y  k—> 00

(5)

lim ( - )* = 1  => lim A
£->0 y  k - *  0

/ ' H ô p ita l ru le

lim/t->0

- ( - ) ^ l n ( - )  
r r

-  (-)*  * ln(—) * e9'r + 6 * f  <?*** * { - ) k * ln ( - )dx 
r r A x x

- l n ( i )
________________r____________

-  ln (- )  * e9*r + 6 * f  * ln(-)<fr 
r ■“ x

- l n ( - ) V * r
r

-  ln(—)
____________r____________________

+ e» ' '* ln ( - ) | ; - [ / • ' * ( - 4 ) * “ *x x a

- H - )______ r

\ e e'x * - d x  
A x

x

(6)

_e
lim aX(e)-a\ = 0=> lim X, =  oo
k —>oo k —>oo

From (5 ), (6) => {

lim aX(B)-a\ = lim X = ( — * (1 -  ea*e *
_  ln (—)

______ r

\ e e’x * - d x  
•o r

)■'
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f i *
e°'x *—dx may be approximated either after analyzing ee*x as

V

1 , , , r v . 6*r)k ^ ( 0 * a ) k
follows: [e e’x * - d x  = ln ( - )+  - Y

A x a k\*k k\*k
or by using an approximate

method of numerical integration (for example, Simpson’s rule or the trapezoidal rule). 

When 9 = 0

7 -k k * / \-k 1 -k \ i F ‘ ( ) Q.. k* a *(r - a  ) I . r J
l im -------------------------- a = l im ------- * ------ ---------

.............. *Q\k\ k̂ >x i-- |
■a = 0

r

(7)

k * a k * {rx~k- a x~k ) I'Hopitairuie r * (-)*  - a  + k* ln (-)  * r  * (-)*
limk̂> 0

a -  lim * r ' r
(1

r
-  (1 -  ( - )  ) + (1 -  *) * ( -  ln (- )  * (-)*  ) 

r r r

■a =

r - a  

r

- a (8)

From (7) , (8)

Truncated Exponential:

limX= ook—> oo

limA,=( ———  - a)"1 
*-»° , ,a- l n ( - )  

r

-i1)
I . ( l _ ^ = f )  , 8 f C

__cr
5 r—

_e
Clx(d)-,*  - {

a  -
r - a
r -a

,9

e -1

0
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From (11) , (12) => {

lim  X =  0

lim X — co
C 7 - > 0

The above results are summarised in the following tables, 4.10, 4.11:

Table 4.10: Limiting values for X, based on x()), as either parameter —» co

Distributions X value when 0^0 X value when 0 = 0

Power function, lim X
p-+oo cT

 i
7 

1 ^ e> 1

1
r - a

Trunc. Pareto, lim X&-> 00
oo OO

Trane. Exponential, lim X
cr—>co e * ( i - ^ y ’

S  r-a\

0

Table 4.11: Limiting values for X, based on x (9), as either parameter —» 0

Distributions X value when 0^0 X value when 0 = 0

Power function, lim X0
oo OO

Trunc. Pareto, lim X0 ~ ln(—)
(----------------- £--------------1"'
-\n(-)*ee’r +0* [ee‘x*\r\{-)dx r ■** jc

, r -  a ! (
~ ln(—)r

Trunc. Exponential, lim XCT->0
oo 00

Remarks:

Tables 4.10 and 4.11 show that X value is bounded under Power function and Truncated 

Exponential as either parameter (p,o) tends to infinity. As either p or a tends to zero, X 

tends to infinity. In the Truncated Pareto the opposite is observed; X value is bounded as 

k tends to zero while it tends to infinity as k tends to infinity.
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APPENDIX 8

i
g-xix-r)*

/ - S - p

— * a x * ep*(x'r)dx =
K

1 _(r-7?) _(£-/?)
— —  * ) 
S - T

Proof:

w w wJ ex*(r'x) * lx* a. * eP(x-r) dx = J * lx* J e'(5-p)u * upx du dx
r x=r u= 0

w w
= J e-(T-pr(x-r) * J e‘(8'p)u * lx+u du dx

x=r u= 0

(1)

Setting x+u = y, then : r < x < y < w , u  = y - x ,  and (1) becomes:

j  e -(x-P)*(x-r) * j  e -(5-p)*(y-x) * ly d y  d x

x=r y=x

w y

-  I V j
y=r x=r

e -(T-p)*(x-r) * e -(S-p)*y * e  (S-P)*x dx dy =

w y

= J ly * e-(5'p)*y * e(T-p)*r * j  e (8'T)*X dx dy =
y=r x=r 1

-  \ 1 * e'(8'P)*y * e(x‘p)*r * [ * ( e(5‘T)*y- e(5'T)*r) ] dy =
5 ~ T

w

[J
y=r

1 *ly .-(s-P)31y * £b-P)* * e (8-t)*y
w

d y - | 1 * ly
e -(8-P)*y * e (i-P)* (8-T)*r dy] =

y=r

S - T
[ j  ly * e'(T'p)*(y'r) dy - j  ly * e"(8"p)* (y’r) dy ] (2)

Setting y -  r = t, then 0 < t < w-r , and (2) becomes:

8

w—r w—r

[ |  lm * e w *dt- J 1; * P-(8-pr
r+t e 1 dt ]

t= o i=0

*
S - T

[ J tPr * e'(T'P)n dt- |  tPr * e'(8'P) 1 dt ]
1=0 t=0

l  - ( T - P )  _ (d~P)

——  * ( a r - d r  )  
S - T
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<0 (2)jk -u  1 - d  - 1 - ^
k - \

1 - d k
- 1 =

1 - d k
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1 - d  1 - d

APPENDIX 10

Approximation of the integral value j" lx*ep*(x'r) dx = j* lr+t*epn dt 

Applying Simpson’s rule

Setting lr+t*ep*t= f(t), the approximation using Simpson’s rule is obtained by dividing

[0,co-r] into an even number o f equal intervals, of length At= 1
co -r
co -r

, and

approximating f(t) by a quadratic through 3 successive points corresponding to to, ti, X2, 

t3, t4,..., tn-2, tn-i, tn. Geometrically, this replaces the curve y = f(t) by a set of 

approximating parabolic arcs.

According to the above, the integral value is approximated as follows:

f Wt *ep*1 dt * *  { yo + 4 * yi + 2*y2 + 4*y3 + ... +2* yn.2 + 4* yn., + yn },
0 J

where y; = lr+i * ep 1 , i = 0,.. .,co-r 

Applying Rectangular rule

The approximation using Rectangular rule was obtained by dividing [0,co-r] into a

number of equal intervals, of length At = 1 =
co-r
co-r

The integral value is approximated as follows:

co-r

J lr+t*epn dt «At*{y0+yi+y2+y3+ ...+  yn-2 + y„-i } or At*{ yi +y2+ y3 + ...+  yn_i + yn },
0

where y\-  lr+i * ep 1 , i = 0,...,co-r
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CHAPTER 5

STOCHASTIC PENSION FUND MODELING

5.1 INTRODUCTION

In practice, actuarial assumptions are set on the basis of the historical experience 

provided by the pension plan over the years. However, most of times these assumptions 

are not exactly realized since important new issues keep arising in the market and/or the 

economic environment. As a consequence, often these assumptions need to be revised 

in order to fulfill the new requirements.

Since actuaries have to estimate in advance the possible range of deviations between the 

assumptions set and reality, they have to implement methods to deal with these 

deviations.

In this chapter, such methods are discussed, focusing on the effect of varying either 

investment returns or the spread parameter since both may determine, at a high level, 

the value of the Fund. Considering either one of these or both as random variables, we 

are taking into account their deviation from a fixed value zone; the expected value of 

each parameter. On this basis the deviation of the Fund value from its expected value is 

calculated.

The idea behind this approach is to allow for a range of different parameter values that 

will influence positively or negatively the Fund level over time. Based on this approach 

we can measure the sensitivity of Fund values and Contribution rates over a long year 

period to changes in assumptions.

We shall consider a simple theoretical model which is constructed to be independent of 

the distribution assumptions; which has been described in chapter 4 by the following 

pair of equations (4.8) and (4.9):
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C(t) = NC(t) + ).(t)*UL(t), and UL(t) = AL(t) -  F ( t) , where t > 0.

The model is applied to a defined benefit pension plan, and a regular valuation is carried 

out. We calculate the first and second moments of the Fund and Contribution rates, 

considered as random variables, based on the discrete time formulation.

The following cases are considered:

a) where the rates o f investment return are independent, identically distributed random 

variables and the spread parameter W is constant.

b) where the spread parameter is a random variable and the rates of investment return 

‘i(t)’ are constant.

c) where both the rates of investment return 'i(t)' and the spread parameter ‘A,(t)’ are 

independent identically distributed random variables given also that they are 

mutually independent.
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5.2 PENSION FUNDING WHERE the RATES of INVESTMENT

RETURN are RANDOM VARIABLES

The rate of investment return has a significant effect in pension funding.

As mentioned in section 1.1, Dufresne (1986) made the transition from the 

deterministic model to the stochastic one assuming that the rates of investment return 

are independent identically distributed random variables. Thereafter, Haberman 

(1992,1993), Owadally and Haberman (1999) and others have implemented pension 

models according to that approach.

We will also follow this assumption considering a defined benefit pension model where 

the salary function includes salary increases at a rate x.

C(t) and F(t) are estimated every year, based on the membership of the scheme at that 

time. As t changes, however, new entrants are allowed to the membership so that the 

population remains stationary.

For the calculations we assume that the rate o f investment return earned on the fund 

during the period (t, t+1) is i(t+l), where E(i(t+1)) = i. We further define 

a]  = Var(i(t+1)).

The moments of F(t) and C(t) are estimated on the basis that both contribution income 

and benefit outgo occur at start of each scheme year, implying along with the previous 

stated assumptions that the equation of equilibrium holds with annual valuations; i.e. 

AL = (l+i)* (AL + N C - B ) .

5.2.1 MOMENTS of F(t) and C(t)

Assuming that the spread parameter ' a '  is a constant, and that i(t) and F(t) are 

independent, we calculate the first and second moments of F(t), C(t) 

i.e. E (F(t)), Var (F(t)) and E (C(t)), Var (C(t))
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5.2.1.1 Expected Value

Calculation of EF(f)

E(F(t)) = E(i(t)+1) * ( E(F(t-l)) + (AL(t-l) -  E(F(t-l))) + NC(t-l) -B (t-l) ) (5.1)

(5.1) <44U 4 7)E(F(t)) -  (1+i) *((1-X) * E(F(t-l)) + eT*(t_1) (NC(0) +X*AL(0) -B(0)) (5.2) 

Setting q=( 1+i)*(1 —A) and based on the equation of equilibrium, (5.2) becomes:

E(F(t)) = q* E(F(t-l)) + eT*(t_1) *(l-q)*AF(0) (5.3)

Setting EF(t) = F(0) at time t = 0,

When t = 1, E(F( 1)) = q * F(0) + (1 -q) * AF(0) (5.4)

Based on (5.4), (5.3) can be rewritten as:

EF(t)=qt*F(0)+(l-q)*AF(0) *( qM + q1'2 * eT + q1'3 e2*1 +..+ q * e(t'2)*T + e(t' 1}*T ) (5.5)

/-I
=> EF(t) = ql*F(0) + (1 -q)*AF(0) * ^  =

n=0

q1 * F(0) + (1 -q)* AF(0) *q't-i
t-1
Y^q-n*eT,n =ql * F(0) + (l-q^AFtO)* q ' - e * (5.6)
n=0

Setting as (l-q)*AF(0)* — -—  = c , (5.6) is finally written as:
q - e T

EF(t) = ql*(F(0) + c) -  eT*( *c (5.7)

Calculation of EC(t)

EC(t) = E(NC(t) + A*(AL(t) -  F(t)) EC(t)= ezn *(NC(0) +X*AF(0) ) - X * EF(t)

S  EC(t)= eT*1 *(NC(0) +^*AF(0)) -  X * (q1 * ( F(0) + c) -  eTn * c) =>

=> EC(t)= exn *( NC(0) +X,*(AE(0) + c)) - X * q‘ * (F(0) + c) (5.8)

These results ((5.7) and (5.8)) show that when the salary function is considered, the 

results of Dufresne (1988) and Owadally and Haberman (1999) can be extended, after 

including the salary rate of increase. When x = 0, our results are identical to those of 

Dufresne (1988) and Owadally and Haberman (1999).
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The salary rate of increase is a key factor that affects both EF(t) and EC(t). A key 

assumption affecting the level of the Actuarial Liability is the difference between the 

rate of increase of salaries and the discount rate. In an economic environment where 

i(t) >-1 with a high probability, high values of t  lead to low values of EF(t) with a 

corresponding increase of EC(t) and vice versa. During periods of high inflation with 

consequent large salary increases this could represent an onerous provision for the 

scheme sponsor.

This is clearly observed from the illustrative examples presented in the table below, 

where our results ( z ^  0) are compared with those of Dufresne and Owadally & 

Haberman ( r  = 0), for the case where E(i(t)) = 0.05

Comparison of the first moments EF(t)when r  = 0 and r  ^  0

year t  = 0.00 z = 0.03 z = 0.05

1 9.48 9.20 9.02

5 43.22 39.65 37.47

10 77.32 66.57 60.49

20 125.43 97.26 83.32

30 155.36 111.40 91.94

50 185.57 120.93 96.42

(0.05)
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Limiting Values:

In order to examine the limiting values we will consider the ratios and so
ert eTl

that to deal with ‘real’ values that allow for inflation.

Considering A as a penal rate o f interest charged on the unfunded liability (as suggested 

by Dufresne (1988)),q = (1+i) * (l-A) may be seen as the rate of return earned during a

year in excess of the amortization charge. Also —  = e"T * (1+i) * (1 -A) may be seen as
eT

the net rate of return earned during a year over the salary rate of increase, in excess of 

the amortization charge.

Convergence in each model for the first moments (EF(t), EC(t)) is obtained, if the 

interest earned during a year, in excess of the amortization charge, is lower than the 

salary rate of increase. In particular, under this assumption:

i(fit=(F(0) + d*(4>‘- c (5-9)

It can be seen that if  i> -l, —  < 1. Then, as t —> co
eT

E F  ( c o )  q - 1
---- )—~ —̂ - c = AL(0) *

q - e
(5.10)

i.e. the ultimate value o f the expected fund level equals the actuarial liability increased 

by salary growth.

— ^  = NC(0) +A*(AL(0) +c) -  A* (F(0) + c) * (-^- )‘
eT a eT

(5.11)

as t ^  oo => EC{T ] -> NC(0) +A*(AL(0) +c) =

: NC(0) +A*AL(0)
1 -C
q - e r

(5.12)
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i.e. the ultimate value of the expected contribution level equals the sum of the normal 

cost and the amortized part of the actuarial liability, which is increased by salary 

growth.

In the case x = 0, c = - AL(0) and the formulae (5.7) and (5.8) become :

EF(t) = q‘ * (F(0) - AL(0)) + AL(0) (5.13)

EC(t) = NC(0) - 1 * q1 *( F(0) -  AL(0) ) (5.14)

as derived by Dufresne (1986,1988).

Limiting Values:

It can be seen that if  i> -l, q < 1. Then as t —» oo

EF(oo)—>AL(0) (5.15)

andEC(co) —> NC(0) (5.16)

From these formulae, ((5.15) and (5.16)), we may expect that given no growth on 

salaries over time, as t —» oo, the initial unfunded liability will be completely amortized 

and the fund and contribution levels will reach their target values.

When x = 0, the results are the same as those of Dufresne (1988) and Owadally and 

Haberman (1999).

5.2.1.2 Variance

Calculation of VarF(t)

VarF(t) = E(F(t))2 -  (EF(t))2 (5.17)

E(F(t))2 = E { (l+i(t)) * ( F(t-l) + l  * (AL(t-l) -  F(t-l)) + NC(t-l) -  B(t-l) ) }2 =

= E ( 1 +i(t))2 * E {(1 -X)*  F(t-l) + eT(t' 1} * *AL(0) }2
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= E (l+i(t))2 * E * F(t-l) + eT(M) * *AL(0) }21 + i 1 + i

-  E(l+i(t))2 * (-—  )2 *
1 + /

* E { (q2 * (F(t-l)2 + e2T(t_1) * (l-q)2*AL(0)2 + 2* q* (1-q)* F(t-l)*eT(t_1) 

=> E[F(t)]2 = E ( 1 + i2(t) + 2*i(t) ) *( —  f  *

* E { (q2 * (F(t-l)2 + e2T(M) * (l-q)2*AL(0)2 + 2* q* (1-q)* F(t-l)*eT(t' 1} 

=> E[F(t)]2 = ( 1 + o f + i2 + 2 * i ) * ( ~ ) 2 *

* { q2 * E (F(t-l) )2 + e2T(t_1) * (l-q)2*AL(0)2 + 2* q* (1-q)* E(F(t-l))*

E[F(t)]2 =(l + - ^ ~ r  )*{ q2 *VarF(t-l) + (E F(t))2}
(1 + 0

(5.17)(S } VarF(t) = E(F(t))2 -  (EF(t))2 =

= (1+A A  )*<12 *VarF(t-l) + A A  * [EF(t)]2
(i + o  (1 + 0

This is equivalent to the result of Owadally and Haberman (1999).

Substituting in (5.19) the value of EF(t) from (5.7), we have:

VarF(t) = (1+ ° i . )*q2 *VarF(t-l) + ^  . * ( q‘ *(F(0)+c) -  e1*1 * 
(1 + 0  0  + 0

Setting at time t = 0 VarF(0) = 0, then at time t = 1,

VarF(l) = ^  , * (q *(F(0)+c) -  eT * c)2
(1 + 0

Based on (5.21), (5.20) can be rewritten as:

VarF(t) = [(l + -^-r )*q2 f 1 * * (q *(F(0)+c) -  eT * c)2 +
(1 + 0  (1 + 0

*AL(0)}

*AL(0)}

:x(t' 1) *AL(0)} =>

(5.18)

(5.19)

(5.20)

(5.21)
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Calculation of VarCft)

VarC(t) -  Var(NC(t)+ A*(AL(t) -F(t)) = A2 * VarF(t) =>

(5i 5> VarC(t) = X2 *{ 0  * e2*T*1 + ¥  * ((l-X)*(l+i))2*1 + Q*(eT *(l-X)*(l+i))t - 

- (0+¥+Q ) * ((l-r>2*((l+i)2 +  (7,2 )} (5.26)

These results ((5.25),(5.26)) show that when the salary function is considered, the 

results of Dufresne (1988) and Owadally and Haberman (1999) can be extended, after 

including the salary rate o f increase. When x = 0, our results are identical to those of 

Dufresne (1988) and Owadally and Haberman (1999).

As with the first moments, we also expect a decrease for the second moments along 

with the decrease of the difference between the salary rate of increase and the rate of 

investment return (formula 5.17). Thus, as with the first moments, we have also 

calculated some illustrative examples. In particular, we have calculated the standard 

deviation of the Fund at time t, t>0, as a percentage of the expected value of the Fund as 

at that time, for the cases where E(i(t)) = 0.05 & Ci = 0.025, E(i(t)) = 0.05 & a\ = 0.05 

and E(i(t)) = 0.05 & a; = 0.1514. The forthcoming results show that the level of this ratio 

changes quite significantly, as the standard deviation of i(t) acquires high values, since, 

for high values of a,, the Fund becomes less stable.

(0.05)

«151

164



(Var(F(t)))2
Comparison of the Standard deviations in percent of E F (t),-----------------

1

when r = 0

and t  ^  0

year 0 7  = 0.025 cTj = 0.05 C f  =0.15

t  = 0 .0 0 t  = 0.03 t  = 0.05 t  = 0 .0 0 t  = 0.03 t  = 0.05 t  = 0 .0 0 r  = 0.03 t  = 0.05

1 2.38% 2.38% 2.38% 4.76% 4.76% 4.76% 14.29% 14.29% 14.29%

5 3.46% 3.41% 3.38% 6.92% 6.82% 6.76% 20.92% 20.63% 20.44%

10 4.44% 4.30% 4.20% 8.89% 8.60% 8.42% 27.16% 26.25% 25.65%

2 0 5.70% 5.30% 5.05% 11.44% 10.63% 10.13% 35.57% 32.92% 31.30%

30 6.48% 5.80% 5.42% 13.02% 11.65% 10.87% 41.13% 36.46% 33.83%

50 7.32% 6.18% 5.63% 14.73% 12.42% 11.30% 47.64% 39.30% 35.38%

Limiting Values:

In order to examine the limiting values we will consider the ratios
Var(F(t))

2*T*t and

Var(C(t))
„2 *T*t

so that to deal with ‘real’ values that allow for inflation.

Considering X as a penal rate of interest charged on the unfunded liability, as before, 

q =  (1+i) * (1 - a ) may be seen as the rate of return earned during a year in excess of the

amortization charge. Also —  = e'T *(l+i) *(1 -X) may be seen as the net rate of return
eT

earned during a year over the salary rate of increase, in excess of the amortization 

charge.

, ( l - / l ) 2 *((l + i) 2 +cr2) ,
VCir(2fj —  =0+  ^  * ( “T  )2n+0*( —  /  -( 0 + ^ + 0 )  * (- „ 2 * r T (5-27)

It can be seen that i f —1 < i < (-------- - - e r f ) 2 -1 = ^<1 , —  <  1, and
(l - X f  eT

( l - l ) 2*((l + i Y+ crf)
2 , _2 ̂

2*r < 1. Then, as t —» co =>
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Var(F( oo))
2*z*a —> 0 ( 5 .2 8 )

and Var(C(co)) _ ^ 2 *  Var{F(co)) v , 2
2*T*a 2 *r*a -> v  * 0 ( 5 .2 9 )

Limiting results show that, after a long period of the scheme being continued, both the 

Variance of the Fund and the Variance of the Contribution rates, are stabilized.

The convergence criteria for the second moments provide restrictions on the set of

c2’rparameter values. In particular: Based on the inequality i < (——— - o f ) 2 -1, we may

specify an ‘optimal region’ m* for the number of years m over which the unfunded 

liability is spread. In particular, we show that convergence is obtained, when m is less 

than

m = In ( 1 - d
1- - ln(— )1 l

((1 + i)2 + a f)2\2

When x = 0, c = - AL(0) and the constants T, Q, 0  become: 

T  -  - (F(O)-AL(O))2

0  = AL(0)2*
(i + O2 l - ( l - T ) 2 *[(1 + /)2 +CT,2]

Q = 2 * AL(0)
o '

d  + 0 2
(F(O)-AL(O))

_______ 1_________

i= 4 » [ ( l  + 0 2 +CT,2]
1 ~f ~ l

Hence (5.25) and (5.26) are written as:

VarF(t)=0+vF*((l-L)*(l+i))2*t+Q ((l-L)(l+i))t-( 0+T/+Q)*((l-L)2*((l+i)2 + cj2 )l ( 5 .3 0 )  

and VarC(t) = X2 * VarF(t) ( 5 .3 1 )
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Limiting Values:

It can be seen that i f —1 < i <
(0 - r > 2

-ex,2)2-! , X,<1 , q< 1, and

(1-T)2 *((l + i)2 + o f ) < 1. Then, a s t-» c o = >

Var F(co)—>0

and Var C( co) —» L2 * 0

When x = 0, m* = In ( 1 - d * ----------- —--------- ) * ----- .
1----------- -------- f  ln(— )

I \ + i
((1 + i)2 + o’,2)2

(5.32)

(5.33)

When x = 0, the results are the same to those of Owadally and Haberman (1999).
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5.2.2 ILLUSTRATIVE EXAMPLES

5)S #
For the case where x =0, we calculate the number of years m below which we obtain 

convergence for the following sets of assumptions:

Table of Assumptions

moÖIIpq W r̂—̂ II o Ö Cfl

odIId
'

pq

<* = 0.025 a, = 0.025 <* = 0.025

o, = 0.05 = 0.05 ov = 0.05

c* = 0.1 a, = 0.1

dIIÜ

a, = 0.15 <* = 0.15 <* = 0.15

We have decided that our choice of the expected value of the rates of investment return 

should reflect, under the current economic environment, the rate at which the liabilities 

could effectively be settled. Thus, we have used values that approach the rates of return 

on high quality fixed income investments of the appropriate maturity. The long-term 

Greek Government bonds as at 31/12/2001 had a yield of about 6% per year and about 

5% per annum as at 31/12/2003. We expect that this decreasing trend will continue in 

the forthcoming years, and we expect that this rate will be higher than the long term rate 

of inflation that is considered to be about 2.5%.

The value of o(i(t)) has then been decided on the basis of the possible fluctuations we 

may expect within a year.

According to the above assumptions, we obtain the following table for m*
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Table 5.1: Values o f m when i(t) are random

Oi W II ® o w E(i(t)> = 0.05

r-~ooIIW
0.025 156.76 106.14 82.05

0.05 110.88 78.10 61.75

0.1 67.76 51.10 41.99

0.15 45.82 36.64 31.15

Table 5.1 shows that as either the expected value or the standard deviation of i(t) 

increases, the number of years below which we obtain convergence decreases 

significantly. Specifically: When E(i(t)) is equal to 0.03 and Gj is equal to 0.025, 

m* = 156.76 while when E(i(t)) is equal to 0.07 and Oj is equal to 0.15, m = 31.15.

This is an expected result, since, when either one of E(i(t)) and o, or both increase, the 

Fund becomes less stable and thus the Unfunded Liability should be amortized at a 

higher pace.

Setting 7 = — r- , we calculate the expected value and the variance for the Fund and

£Zl5|

Contribution rates; (formulae 5.2, 5.8 and 5.30,5.31).

For the calculations we considered the Actuarial Liability, Normal Cost and Pension 

Outgo values presented in tables 4.5 -4.7 at time t=0. The fund value at time t = 0, is set 

equal to F(0) = 0.

Their limiting values are compared to the Actuarial Liability and Normal Cost at time 

t = 0.

In the tables below, 5.2 and 5.3 the ultimate values, as t —» go , of EF(t) and EC(t) are 

presented:
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Table 5.2: EF(t) at time t -  100

D istribution fn E(i(t)) =  0.03 E(i(t)) =  0.05 E(i(t)) =  0.07

P o w er p= 0 .8 263 .55 204 .65 165.82

P o w er p = l 252 .33 197.84 161.49

P o w er p=  1.5 231 .13 184.63 152.84

Tr. E xpon . o = 3 0 2 7 2 .56 210.5 169.83

Tr. E xpon . o = 4 0 267.73 207.51 167.89

Tr. E xpon . o = 50 264 .75 205 .65 166.68

Tr. P are to  k=0.3 269 .79 208 .69 168.56

Tr. P are to  k= 0 .8 276 .20 212 .63 171.09

Tr. P are to  k= 1 .5 284 .86 217 .75 174.37

Table 5.3: EC(t) at time t -  100

D istribution fn E(i(t)) =  0.03 E(i(t)) =  0.05 E(i(t)) = 0.07

P o w er p= 0 .8 5.98 3 .78 2.55

P o w er p =  1 6.31 4.11 2 .84

P o w er p=1 .5 6.93 4 .76 3.43

Tr. E xp o n . o = 3 0 5.71 3 .49 2 .28

Tr. E xpon. o = 4 0 5.85 3 .64 2.41

Tr. E xpon . o = 5 0 5.94 3.73 2 .49

Tr. P are to  k=0.3 5.79 3 .58 2 .36

Tr. P are to  k=0 .8 5.59 3 .39 2 .19

Tr. P are to  k=1 .5 5.32 3 .10 1.97

The results in tables 5.2, 5.3, calculated for t >100, verify the theoretical results 

obtained in section 5.1.1. as t -» oo ;this is clearly seen if we compare these results with 

the corresponding ones in tables 4.5 -  4.7.
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We have to mention though, that in practice, as E(i(t)) increases, the limiting values of 

EF(t) and EC(t) are reached at a significantly lower pace. Specifically: EF(t) approaches

EF(t)
its limiting value, i .e . ---------—  = 99%, at about 70 years when E(i(t))=0.03, and at

lim EF( t )
t->  CO

about 160 years when E(i(t)) = 0.07. Importantly, when E(i(t))=0.03, ~ =50%

?-»<=O

EF(t)at about 10 years while when E(i(t)) = 0.07; ----- —— = 50% after 24 years.
lim EF(t )
i->00

Contribution rates are adjusted accordingly;
lim EC(t)

r—» co 
EC(t) = 99% at about 90 years when

lim EC(t)
E(i(t)) = 0.03 and at about 220 years when E(i(t))=0.07, — = 50% at about 20hjLs(t)

years when E(i(t)) = 0.03 and at about 60 years when E(i(t))=0.07.

The above practical implications are examined in detail in section 6.6.3, where the 

simulation results when the rates of investment return are random variables are 

discussed.

We may also observe that for two different EF(t) values, say EFi(t), EF2(t), as t - »  oo if 

EFi(t) > EF2(t) then ECi(t) < EC2(t), where ECi(t), EC2(t) result from the EFj(t), EF2(t) 

values. This result may theoretically proved as follows:

Proposition: Let EFi(t), EF2(t), EF 1 (t) * EF2(t), and the corresponding to those values 

contribution rates ECi(t), EC2(t).

Then as t -> 00 if EFj(t) > EF2(t) =>ECi(t) < EC2(t)

Proof:

Let ALi(t), AL2 (t) the actuarial liability values based on which the EFi(t), EF2(t) are 

calculated. Then clearly, if  EF 1 (t) > EF2(t) => ALi(t) > AL2 (t)
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From formula 5.8, EC,(t) =B-A*ql *F(0) +ALi(t) * (X*ql -  d) and 

EC2(t) =B- X*ql *F(0) + AL2(t) * (k*ql -  d)

Then: ECi(t) -  EC2(t) = (X*ql -  d)*( AL,(t) -A L2(t))

Assuming i > -1, as t -> oo, A*ql -  d —» -d => ECi(t) < EC2(t)

Remark:

A st —» 0, then k*ql -  d -> k -d  => ECi(t) >EC2(t)

When t = ln( — -  q ) then ECi(t) = EC2(t) 
d

In Appendix 12, we may observe the development of EF(t) and EC(t) when 

F(0) = 0 and F(0) * 0, F(0) > AL(0)15.

In Appendix 11, the ultimate values as t -> oo, of VarF(t) and VarC(t) are presented 

(tables 5.6 -  5.11), for all cases discussed in the table of the assumptions: The 

theoretical results obtained in section 5.1.1, are verified, i.e.

VarF(» ) - ♦  AL(0)2 * * , J,v ----- F, . VarC(oo) -> X2 * VarF(» ) .
(1 + /) l - ( l - T )  *[(1 + i) +&-]

In order to examine how the above results are affected as the constant X changes, we

undertake some sensitivity tests on the basis of the equation X=~ , regarding the

a\5\

valuation rate and the number of years. In particular, we calculate X assuming that the 

valuation rate is equal consecutively to 0.03 and to 0.07, keeping m unchanged and 

equal to 15; and assuming that the number of years m is equal consecutively to 10 and 

20, keeping the valuation rate unchanged and equal to 0.05.

15 When F(0) ^  0, F(0) < AL(0) F(t), C(t) are developed as in case where F(0) = 0.
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From the results on the next page we observe that as either the valuation rate decreases 

or the number of years increases, X decreases and the Fund reaches its limiting value at 

a lower pace; this is as expected due to the lower pace at which the Unfunded Liability 

is amortized. The sensitivity o f the results to changing the constant X, is described in the 

following table where the value of EF(t) as a percentage of lim EF(t) and the value of
i—>oo

EC(t) as a percentage o f lim EC(t) are presented.
t —>co

For the presentation we choose Power function, p = 0.08 and we calculate EF(t) and 

EC(t) assuming that E(i(t)) = 0.05.

Sensitivity results

X- 1
1 1 1 1 1

JO
Qm\

(0.05)
<315

(0.03)
<315

(0.07)
<315

(0.05) 
<310|

(0.05)

<320

EF(t)  _  99%  
lim EF(t)

f - >  CO

97 yrs 128 yrs 78yrs 56 yrs 150 yrs

lim EC(t)

EC<<) = 99%
132 yrs 171 yrs 108 yrs 80 yrs 198 yrs

EF{t) = 50% 
lim EF(t)

t—>C0
15 yrs 19 yrs 12 yrs 9 yrs 23 yrs

lim EC(t)

"* t m  = 50%
34 yrs 42 yrs 29 yrs 23 yrs 47 yrs

It is clearly seen that the number of years over which the Unfunded Liability is spread 

affects significantly the development of the fund; these results are discussed in detail in 

section 6.7. The valuation rate also affects the level of the fund, but not as much as the 

spread period. In addition, we point out that if  we increase the valuation rate used to 

calculate X, i.e. if E(i(t)) = 0.05 and we calculate X assuming a higher value than 0.05,
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the X value increases and the fund level reaches its expected value more quickly and

vice versa.

5.3 PENSION FUNDING WHERE the PARAMETER X is a

RANDOM VARIABLE

The spread parameter ‘X’ determines the level of the amortization of the Unfunded 

Liability and its value depends on the actuary’s selection of the length of the 

amortization period.

But to consider X as though it were constant during a long period restricts our flexibility 

of strengthening or not the Fund value at certain time intervals according to the realized 

experience gains or losses. Since in real life, the fund fluctuates above and below its 

target level, if  these fluctuations are not dealt with, (i.e. if  the contribution rate remains 

fixed), then the fund will ultimately either runs out of assets from which to pay the 

benefits or grows exponentially out of control. In this part of chapter 5, we will consider 

the variability in funding levels and contribution rates when there are fluctuations in the 

spread parameter and how these can be controlled. As has already mentioned in section 

1.2.1, in practice, actuaries are faced more frequently by schemes with unfunded 

liabilities. Also in practice, the pace with which the actuary amortizes gains or losses 

heavily depends on the scheme sponsor’s financial plans. In our opinion it is important 

to give the actuary the flexibility to propose a pattern according to which the amortized 

amounts may occasionally either increase or decrease.

In chapter 4, we calculated X based on the x(0) function. This calculation suggested that 

x(0) could be considered as a basis of approximating the years to amortize the unfunded 

liability; see Appendix 7. Another approach, adopted as well by the International 

Accounting Standards and US GAAP, is to amortize the unfunded liability, at each
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measurement date, over the expected future working lifetime of the existing employees. 

We understand that then, the A value would change on a yearly basis according to the 

changes in the membership profde. Following those approaches, we thereafter extend 

our thoughts on defining a fixed value as a basis and allow X varying around a mean 

value; in other words to treat X as a random variable.

Treating A, as a random variable, we can calculate in advance the expected Fund and 

Contribution level as well as the maximum and minimum Fund and Contribution values 

resulting from the corresponding A’s. Thus, we become aware for the best and the least 

favorable performance of the Fund that may occur, during a long year period. As a 

consequence, we can decide for either an increase or a decrease o f the X value with 

some safety, on the basis of the progress of the estimated Fund level with time.

As a random variable, the spread parameter ‘A,’ acquires either very low or very high 

values not applicable in real life. To solve this problem, we may define an upper and a 

lower bound so that to exclude the extreme, non-desirable results. In other words, we 

may include the idea that the spread parameter ‘A’ is a truncated random variable by 

introducing a range over which it varies; i.e. we may ‘regard’ it as random, with some 

safety margins.

Thinking of ‘A’ as a penal interest rate, we allow it to take very high values up to the 

upper bound, in order to balance a possible high level of the unfunded liability. On the 

other hand, the lower bound may be thought as a value that sets ‘security loadings’ 

when the Unfunded Liability level approaches zero.

A(t) as random variable is studied in the same way as i(t) being a random variable; i.e.

a) we consider a defined benefit pension model that allows for the salary function, 

with a salary rate o f increase V

175



b) the model, estimates on a yearly basis C(t) and F(t) based on the membership of the 

scheme at that time. As t changes, however, we allow for new entrants to the 

membership so that the population remains stationary.

c) for the calculations we assume that the X(t) rate set for the unfunded liability 

amortization during the period (t, t+1) is A,(t+1), where E(A,(t+l)) = k and we further 

define a] = Var(A, (t+1)).

d) the moments of F(t) and C(t) are estimated on the basis that both contribution 

income and benefit outgo occur at start o f each scheme year, implying along with 

the previous stated assumptions that the equation o f equilibrium holds with annual 

valuations: i.e. AL = (1+i) * (AL + NC -  B).

5.3.1 MOMENTS of F(t) and C(t)

Assuming that the value of the rate of investment return is fixed, and that A,(t) and F(t) 

are independent, we calculated the first and second moments of F(t), C(t); i.e. E(F(t)), 

Var(F(t)) and E (C(t)), Var (C(t)).

5.3.1.1 Calculation of EF(t) and EC(t)

Both EF(t) and EC(t) are exactly the same as the corresponding ones derived when i(t) 

are random in section 5.2, and as a consequence all the results produced for the first 

moments hold in this case as well. We have already shown in section 5.2.2 that as X 

acquires high values, the unfunded liability is amortized at a higher pace, than if it 

acquires low values, and as a consequence the expected value of the Fund increases.
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5.3.1.2 Variance

Calculation o f VarF(t)

VarF(t) = E(F(t))2 -  (EF (t))2

E(F(t))2 = (1+i)2 * E [ F(t-l) +1(t) * (AL(t-l) -  F(t-l)) + NC(t-l) -  B(t-l) ]2 = 

= E [(1+i) * (1 -  l{t)) * ( F(t-l) - eT(t_1) * A L(0)) + eT(t_I) * AL(0)]2 =

=(q2+(t 2a *(l+i)2)*VarF(t-l)+ o \  *( 1 +i)2*[E(F(t-1 ))-eT(t''A L ( 0 ) ] 2 +[E(F(t))]2

where q = (l+ i)* (l-X).

Based on (5.35), (5.34), becomes:

VarF(t)=(q2+ cr2 (1+i)2 )*VarF(t-l)+o-2 *(l+i)2*[E(F(t-l)) -eT(M)*AL(0)]2 => 

=> VarF(t)=(q2+ o \  (1+i)2 )*VarF(t-l)+cr2 *(l+i)2*[E (U(t-1)]2

E (U(t-1)]= (F(t-l)) -ex(t' 1) *AL(0) ' = ' qt_1* (F(0)+c) - eT(t_1) *AL(0) *( 1 — )
q - e r

Setting also c’ = AL(0) *(
1 -  ez
--------), (5.36) becomes:
q - e T

VarF(t) = (q2 +cr] * (1+i)2 )*VarF(t-l) +cr] *(l+i) 2*[ qt' 1*(F(0)+c)-eT(t'1) V  f  

Setting at time t = 0 VarF(O) = 0, then at time t = 1,

VarF(l) = <72 *(l+i)2 *[q*(F(0)+c) - c’ ]2 

Based on (5.39), (5.38) can be rewritten as:

VarF(t) = <j\ *(l+i)2 * X  K42 + *(l+i)2](t_1 )_n *( q" (F(0)+c) -eT*n*c’)2
«=0

Working on the summation part of (5.40) we obtain the following:

X  [(q2 + cr2 *(l+i)2](t- 1)-n *( qn(F(0)+c) -eT*n*c’)2 =
«=0

i-1
[(q2+ crA *(i+i)2] t l *{((F(0)+c)2 (

n =0 (qz +o-2 *(l + f>•\ 2 )n +

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)
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+ c’2I  (
2 *T

n =0 q 2 + a l* ( l  + i)2
)" -2 * C’*(F(0)+C) * X  ( 9 * e ' )"}

t s  (<T +<7, *(! + /)

= [q2 + <rl *(l+i)2] t'1*{(F(0)+c)2 * ( ( g 2+CJ22* (l + ;)x2l  q2 * t f  + erl  *(l+i)2]1_t +
( ^ + ^ * ( 1  + 0 0 - ^

+ c
(y +iT ]* ( i+ o 2) - ^ '  l q  l (  01

2*c’*(F(0)+c):| [ q2+fTI *(i+i)z]1'} =
((g 2+ o -,2* ( i + 0 2y - ( gr * gy

(#2 + a 2 *(l + i)2) - e T *q 14
2i1-t i

((?2+ ^ * a + * r y - ^ ’' X/.,2 * ( ( < r + ^ * a + * y y - «
v2\r 2*/ 2 , _2 v2 \r 2*r*r

(F(0)+c;
o’2 * (1 + 0 2

+ c (<y2+<x2* ( l  + 0 2) - e 2*r

- 2*c’*(F(0)+c)H ((g2 + g 2* g + o 2y - ( e f *gy
(g2 +cr2 * ( l  + /)2) - e r (5.41)

(5.41)
(5.38) => VarF(t) = (F(0)+c)2 *(((q2 + a 2A*(l + i)2)‘ - q 2*‘) +

+ CT2.0+i)2 .c.2 .« y ± i i l ^ ± 0 2 ^ 2 :
( r + C T ) * ( i + o J) - e

2 \ „2*r

- cr2 *(l+i)2 *2*c’*(F(0)+c)!| ((g 2+ g 2* ( i + o 2y - ( e r *gy
(q2+crl*(\ + i)2) - e ^ q

(5.42)

Setting:

XF’ = - (F(0)+c)2

0 ’ = cr2 *(l+i)2 * c’2 *
1

e2*T - ( q 2 +arj*(\ + i)2)

1
o-2 *(l+i)2* c’2 * --------  , , ,

g2 r _ (1 + z)2 * [(1 + 2 )2 + cr2 ]

0 ’ = - o-2 *(l+i)2 *2*c’*(F(0)+c)*
1

e ^ q - t f + c r l ^ l  + i)2)

= - cr  ̂*(l+i)2 *2*c’*(F(0)+c)!t
er * g - ( 1 + 0 2*[(1 + 2.)2+cr2] 

(5.42) is rewritten as: VarF(t)= 0 ’ * e2*1*1 + VF’ * ((l-A.)*(l+i))2n +
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+ O ’* (eT *(l-X)*(l+i))t - ( ©’+ ¥ ’4 0 ’) * ((l+i)2*((l-^)2+ ^ ) ) t (5.43)

This result is very similar to (5.25), when the rates of investment return are random.

Calculation of VarC(t)

VarC(t) = Var(NC(t)+ X{t)*(AL(t) -F(t)) = Var(X(f)*( exn AL(0) - F(t))) =

= e2T *(AL(0))2 * o-2 + Var(X,(t)*F(t)) -  2*Cov f/.(t)*eTn A L(0), 1(f)* F(t)) =

= e2T *(AL(0))2 <j \  + E(À,(t)*F(t))2 -  (E(X(t)*F(t)) -

2*[E (À(t)*eT*1 AL(0)* >.(t)* F(t)) -  E( /ft)*ein AL(0)) * E(/,(t)* F(t))] =

= e2x (AL(0))2 o \  + (crj +X2)*VarF(t) + *(E(F(t))2 -2* crj V * 1 AL(0)*EF(t) =>

=> VarC(t) =( rr2 +/?)* VarF(t) + a \  *( EF(t) - eT*r AL(0))2 (5.44)

(5.7),(5.44)
VarC(t) = (<j \ +X2)* {©’ * e2*tn + tP’*((l-X.)*(l+i))2*t + 0 ,*(eT*(l-X.)*(H-i))l-

- ( 0 ’+ 'F + Q ’)*((l+i)z * ((l-Xf + a l)) ' } + <ri* (ql * (F(0)+c)-er i *c’)2 * (nX * (5.45)

l - e r
where c’ = AL(0) * ( --------)

q - e T

Limiting Values:

Var(F(t))
In order to examine the limiting values we will consider the ra tio s-----2,T,t ' and

Var(C(t))
2*r */ so that to deal with ‘real’ values that allow for inflation.

Considering X as a penal rate of interest charged on the unfunded liability, 

q = (1+i) * (1 -X) may be seen as the rate of return earned during a year in excess o f the

amortization charge. Also —  = e'T * (l+i)*(l-X) may be seen as the net rate of return
eT

earned during a year, over the salary rate of increase in excess of the amortization 

charge.
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i q r(F (/)) = 0 ,+vjPH=(_i.) 2*l+ Q ’( —  )‘-( O’+ T ’+Q’)* ( ( 1 + ;) * ((! ^  + c7a ) y (5 46)
e2 r ' e r eT e~r

e 2' r  i  . n
It can be seen that if  1 - (-------- - 0 7 ) 2 <X<1, -1 < i  ,then — < 1,

(1 + /)2

(\ + iY * ( ( \ - A ) 2+ a j)------ -— -— ----- —  < 1. Then as t2*rand —> oo

Var(F( oo))
2 *T*a - > 0 ’

^ ^ = ( a J +X V  + * J * (  ^ - A L C O ) ) 2

(5.47)

(5.48)

as t —> oo F a r ( C ( g o ) )  ^ ^ 2 ^ *  @ , +  ^ 2  *  ( A L ( 0 ) * - ^ 1 -  ) 2

^ r - c r2*r*a (5.49)

Limiting results show that after a long period of the scheme being continued, both the 

Variance of the Fund and the Variance of the Contribution rates, become stabilized. 

The convergence criteria for the second moments provide restrictions for the set of

parameter values. In particular: based on the inequality 1 -(——— -cr:)2 <k< 1, we may

specify an ‘optimal region’ m for the number o f years m over which the unfunded 

liability is spread. In particular, we show that convergence is obtained, when m is less 

than

m = ln(l- d  ' 1
- ) ;

1

1 - 0
e2*T 2 7  '" ‘r ^- e r r ) 2 1 + *

a + T  1

When x = 0, c’ = 0 and the constants T ’, Q ’, 0 ’ become: 

T ’ = - (F(O)-AL(O) ) 2 , 0 ’ = 0 and Q ’ = 0.

Hence (5.43) and (5.45) are written as:

VarF(t) = T ’ * ((1 -X,)*(l+i))2*t -T ’ * ((l+i)z*((l-h)z + cxi ).2 \t (5.50)

V a r C ( t )  = (erj +l2) * T ’ * [((1-).)*( 1+i))"'1- ((l+i«(l-V +<rS)l+2*t \2 , 2 '
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+ cr] *qt * (EF(O)-AL(O))2 (5.51)

Limiting Values:

Then, as t —» q o  VarF( co ) —» 0 (5.52)

and VarC(co)—>0 (5.53)

Limiting results show again that the rate of salary increase is a key assumption. When 

we assume that salaries are adjusted to the inflation rate, and given that there are neither 

any material changes to the benefits provided nor any changes in membership profile 

then the Variance of the Fund and Contribution rates both follow a decreasing trend; 

and after a long period for the scheme they tend to zero.

When x = 0, ‘the optimal region’, m*, becomes:

m* = \n(\-d  *
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5.3.2 ILLUSTRATIVE EXAMPLES

For the case where t  =0 and assuming that the valuation rate is equal to 0.05, we 

calculate the number of years m* below which we obtain convergence, for the following 

set of assumptions for the standard deviation of X:

Table of Assumptions

Ox 0.05

Ox 0.1

Ox 0.15

We would like to mention that for comparison purposes, we chose a; values equal to 

those o f Gj; thinking also that it is reasonable for /. to vary on the basis o f these figures. 

The effect of E(k(t)) is considered implicitly through the m* values; since E(k(t)) is

calculated using the equation E(X,(t)) = — the optimal region determines the range

Qm\

interval above which we may chose E(/.(t)) value.

• • ♦ 
According to the above assumptions, we obtain the following table for m .

Table 5.4: Values o f  m* when X(t) is random variable

Ox
•km

E(>:(t)) = - ^ -

a—  * 
m

0.05 74.15 0.0489

0.1 47.29 0.0529

0.15 33.01 0.0595
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Table 5.4 shows that as the standard deviation o f L(t) increases, the number of years m* 

below which we obtain convergence decreases. This is mainly due to the fact that as o>. 

increases, the pace o f amortizing the unfunded liability may vary significantly on a 

yearly basis and as a consequence the fund level becomes less stable. We have thus to 

increase the average pace of amortising the actuarial liability, in order to balance the 

low values that L(t) may take throughout the years because of c>-L. Table 5.4 shows the 

values of E(k(t)), above which we obtain convergence, taking into account the standard 

deviation of L(t).

Comparing m* values of table 5.1 with those of table 5.4, we may conclude that m* is 

more sensitive to changes in the mean and variance of L(t). This is to be expected since 

the pace of the amortization of the unfunded liability has a higher effect on the level of 

the fund.

We calculate the expected value and the variance for the Fund and Contribution rates; 

(formulae 5.2, 5.8 and 5.30,5.31). For the calculations of the Actuarial Liability, Normal 

Cost and Pension Outgo values the rate of investment return is assumed equal to 0.05

and the mean spread period equal to E(L(t)) = — -—  . The fund value at time t=0, is set
" (°.°5) 
a  5|

equal to F(0) = 0. We also assume, for the calculation of the second moments, that c>. = 

0.1. The limiting values of the Fund and Contribution rates are compared to the 

Actuarial Liability and Normal Cost at time t = 0.

As far as the Expected value of the Fund and Contribution rates is concerned, we come 

up with the same conclusions as in section 5.2.2 In tables (5.12), (5.13) of Appendix 

11, we present the values of the second moments of the Fund and Contribution rates at 

time t equal to 1, 10,20,30, 40, 50, 80 and 100 years. The theoretical results obtained in 

section 5.3.1.2, are verified; i.e. as t -»  oo, VarF(t) —» 0, VarC(t) —> 0.
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5.4 PENSION FUNDING WHERE BOTH the RATES of

INVESTMENT RETURN and the PARAMETER k are 

RANDOM VARIABLES

As it has been discussed both the rates of investment return and the spread parameter 

determine the growth of the Fund, ultimately.

In the previous sections 5.1, 5.2 we considered one of those as a random variable, while 

the other was fixed. In this chapter, we will consider both as random.

In practice, the actuary may wish either to increase or to decrease the spread parameter 

value according to the fluctuations in the rates of investment return, considering that i(t) 

and k(t) are negatively correlated. A higher than expected rate of investment return 

increases the value of the assets; as a consequence we obtain a lower unfunded liability 

level than expected. The actuary thus is allowed to decrease the value of k. On the other 

hand, when the rates of investment return are kept at a low level, the value of assets is 

lower than expected; as a consequence, we obtain a higher unfunded liability than 

expected. A high value of k could then be considered to amortize the unfunded liability.

However, as a first attempt at approaching this problem, we will assume that they are 

mutually independent, so that analytical results can be derived. These results may then 

hold only approximately, for the more realistic case of dependency. At this stage, we 

thought that it would be easier, as a first step, to see which factor has a stronger effect 

on the development of the fund and contribution rates. We leave the second step, 

allowing for correlation between these parameters, as an open question for the future. 

We consider the pension model of sections 5.2 and 5.3; i.e.

a) we are working on a defined benefit pension plan model that allows for the salary 

function, with a salary rate of increase V
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b) the model estimates on a yearly basis C(t) and F(t) based on the membership of the 

scheme at that time. As t changes, new entrants are allowed to the membership so 

that the population remains stationary

c) the rate of investment return earned on the fund during the period (t, t+1) is i(t+ l), 

where E(i(t+1)) = i. We further define o]  = Var(i(t+1))

d) the spread parameter rate set for the unfunded liability amortization during the 

period (t, t+1) is A,(t+1), where E(/,(t+1)) = X. We further define <y] = Var(F (t+1))

e) the moments of F(t) and C(t) are estimated on the basis that both contribution 

income and benefit outgo occur at start of each scheme year, implying along with 

the previous stated assumptions that the equation of equilibrium holds with annual 

valuations: i.e. AL = (1+i) * (AL + NC -  B).
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5.4.1 MOMENTS of F(t) and C(t)

Assuming that A,(t), F(t) are independent, and i(t), f(t), F(t) are also independent, we 

derive the first and second moments of F(t), C(t); i.e. E (F(t)), Var(F(t)) and E (C(t)), 

Var (C(t)).

5.4.1.1 Calculation of EF(t) and EC(t)

Both EF(t) and EC(t) are exactly the same as the corresponding ones derived when i(t) 

are random in section 5.1, and as a consequence all the results produced for the first 

moments hold in this case as well. As we have already mentioned in sections 5.2 and 

5.3, the rate of salary increase, which we consider, affects significantly the level of the 

fund; as it increases, the expected fund value decreases considerably. We have also 

mentioned that the number of years over which the unfunded liability is spread affects 

significantly the development of the fund; more than the valuation rate. These results 

are discussed in detail in section 6.9.

5.4.1.2 Variance 

Calculation of VarF(t)

VarF(t) = E(F(t))2 -  (EF(t))2 (5.54)

E(F(t))2 = E {(l+i(t))2 * [ F(t-l) +Mt) * (AL(t-l) -  F(t-l)) + NC(t-l) -  B(t-l) ]2} =

= (a ;  +(l+i)2)* (1+i)'2 *E [(1 +i)*(1 -A,(t))*(F(t-1)- eT(t' 1}* AL(0)) + eT(M) * AL(0)]2 -

( =5) (o',2 *(l+i)'2+l)*{ (q2 + cr2 * (1+i)2 )* VarF(t-l) + cr2 * (1+i)2 *
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+ ( e r f  * ((l+i)2 + cr,2 )* c’2 + e r f  *(l+i)"2 * c2 * e2*1 )*

[ ( \  +  i)2 + e r f ) * ( ( \ - X ) 2 + c r f ) l - e 2""
( ( \  +  i ) 2 + c r f y ( ( l - A ) 2 + a l ) - e 2 "

-  2 *  (F(0)+c) * ( e r f  *((l+i)2+ e r f  )*c’+ c r f  (1+i)' c*q *eT*

* ¡ g u y + & • ( ( ! - v + r t T - w  (5M )
((1 + i)2 +<r;)*((l-J .y+aA) - q e ’

Setting:

¥ ” = - (F(0)+c)2

0 ”  = ( c r f  * ((1  + i)2 +  e r f  )*  c ’2 +  e r f  * ( l + i ) '2 * c 2 * e2*T )*

______________ 1______________
e * ' - ( L l  +  i ) 2 + ( T f ) * ( ( l - J l ) 2 + v l )

Q ” -  -2* (F(0)+c)(cr2 *((l+i)2+cr2 )*c’+ a f  (l+ i) '1*c*q:,!eT)

*______________I______________
q*eT -((1 + i)2 + a f ) * ( ( l - A , ) 2 + c r f )

(5.60) is rewritten as:

VarF(t)= 0 ” * e2 ¥ t + T ”  * ((l-X)*(l+i))2n +

+ f i” * (eT *(14,)*(l+i))t - ( 0 ” +vF” +Q” ) * [ ((1+i)2 + <r2) * ((1 -X,)2 + <x2) ]* (5.61)

This result is very similar to (5.25), when the rates of investment return are random and 

the spread parameter is constant.

Calculation of VarC(t)

(5.44)
VarC(t) = Var(NC(t)+ X(t)*(AL(t) -F(t)) =>

=> VarC(t) =( ( j2 +X,2)*VarF(t) + <x2 *( EF(t) - e1*1 AL(0))2 (5.62)

(̂ ) VarC(t) = (erf +l2)* ( 0 ”  * e2*T*1 + XF” * ((1 A)*(l+i))2*1 +
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As in the case where either one o f the rates of investment return or the spread parameter 

is random variable, the limiting results show that, when the pension scheme is 

implemented on the basis where both i(t) and /ft) are random variables and mutually 

independent, after a long period of time, both the Variance of the Fund and the Variance 

of the Contribution rates, become stabilized.

Based on the above parameter restrictions, we may specify an ‘optimal region’ m* for 

the number of years m over which the unfunded liability is spread. In particular, we 

show that convergence is obtained, when m is less than

m = ln (l-i/*

When x = 0, c’ = 0, c = -AL(0) and the constants XF” , i2” , 0 ”  become: 

VF” = - (F(O)-AL(O))2 ,

0 ”  = cr2 *(l+ i)'2 *  (AL(0))2 * 1
l - ( ( l  + i)2 + c r f) *( ( l-f l) 2 + cr )̂

Q ” = - 2* (F(O)-AL(O)) * ex2 (1+i)'1 *( -AL(0))*q)*
1

i - ( ( l  + i)2+o-,2) * ( ( l - A ) 2+ ^ )
Hence (5.61) and (5.63) are written as: 

VarF(t)= 0 ” + 'P ” * ((l-f)*(l+ i))2tt +

and

VarC(t) = (o-2 + f2)* {0” + VF”  * ((l-f)*(l+ i))2n +

+ Q ” * ((l-f)*(l+ i))t - ( 0 ” +vF ” + Q ” ) *  [((l+ i)2 + /r2) * ( ( l - f ) 2 + o-2) ] t }+
+ Cx2*(q t *(F(0)-AL(0)))2 ( 5 .6 9 )
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Limiting Values:

1 - i I
It can be seen that if 1- (—— —---- - - c r ; ) 2 <L< 1, and-1 < i < (—— —----- - - a 2)2 -1

'(l + 0 2+<r,2 ( l - ^ ) 2+ ^ 2

q< 1, and ((1 + /)2 +<ji2)*((l-/L)2 + o 2)<l. Then, as t -»  co

V arF (oo )^  a ;  (1+i)'2 (AL(0))2
1

l - ( ( l  + i)2+cr,2) * ( ( l - / l ) 2+cr2)2 . 'I > (5.70)

and VarC( oo ) —>• ( <j\ +X2 )
cj-*(\ + i y 2*(AL(0))2

2 . _ 2 nl . ( ( l  + i)2+ ^ ) * ( ( l . ^ + ^ ) (5.71)

When T = 0, m = ln(l -  d 1 1

2*r
l - ( -

I W 1 An -  ln(----- )
^ - a ] ) 2 1 + /

(I + 0 +crt

5.4.4 ILLUSTRATIVE EXAMPLES

For the case where x =0, and E(i(t)) = 0.05 we calculate the number of years m* below 

which we obtain convergence for the following set of assumptions concerning a, and o,_: 

Table of Assumptions

Oj = 0.05 Oi = 0 .1 Oi = 0.15

ox = 0.05 ox = 0.05 ox = 0.05

ox = 0.1 Cl >-■ ll p Q II p

= 0.15 a?, = 0.15 Cl II O Ln

We calculate the ‘optimal region’ considering the changes in the standard deviations 

and not the changes in the expected values because the effect of changing E(i(t)) has 

been discussed in section 5.2, while the effect of changing E(L(t)) has been shown in 

section 5.3. Since L(t) and i(t) are mutually independent, the effect of changing
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simultaneously both parameters is measured by adding the effect o f changing each one 

of i(t) and /ft).

According to the above assumptions we obtain the following table for m*

Table 5.5: Values o f  m* when both the i(t) and X(t) are random variables

ox m  , ttj = 0 .0 5 m , (Tj = 0.1
-------n------------------

m  , <Tj = 0 .1 5

0.05 62.30 46.12 34.45

0.1 43.86 36.63 29.40

0.15 31.58 28.07 23.88

Table 5.5 shows that as either standard deviation increases (a; or ax), the number of 

years m* below which we obtain convergence decreases. Specifically when Oi=ax= 0.05 

m* = 62.30 while when c>j = ax = 0.15, m = 23.88. As we have also mentioned in 

sections 5.2 and 5.3, this is mainly due to the fact that, as either one of c\  or a, 

increases, the fund level becomes less stable.

We calculate the expected value and the variance for the Fund and Contribution rates; 

(formulae 5.2, 5.8 and 5.30,5.31). Their limiting values are compared to the Actuarial 

Liability and Normal Cost at time t = 0. For the calculations we consider the Actuarial 

Liability, Normal Cost and Pension Outgo values presented in table 4.6 at time t=0,

where E(L(t)) = - ¿ p  , and F(0) = 0. 
a\5 j

For the calculation of the second moments we assume that a,. =<jj = 0.1.

As far as the Expected value of the Fund and Contribution rates is concerned, we come 

up with the same conclusions as in section 5.2.2

In the tables (5.14), (5.15) of Appendix 11 the values of the second moments of the 

Fund and Contribution rates at time t equal to 1, 10,20,30, 40, 50, 80, 100 are presented
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The theoretical results obtained in section 5.4.1.1 are verified; i.e.as t -»  oo,

VarF(t)-> erf (1+i)’2 (AL(0))2
1

and
l- ( ( l  + i)2+r7,2)* ( ( l-T )2 + ^ )

VarC(t)-> (erf+k2)*
cjf*(\ + i y 2*(AL(0))2

l - ( ( l  + i)2 +CT;2)*((1-A )2 +CT“) ‘

For the case where both i(t) and k(t) are random variables we also examine the 

standard deviations o f F(oo) and C(<x>), expressed in percentages of Actuarial Liability, 

regarding different values for the parameter L(t) while E(i(t)) is kept constant and equal 

to 0.05. VarF(oo ) and VarC(oo ) are calculated assuming aj=ax=0.05 and o, = = 0.15.

We choose these assumptions since they correspondingly reflect both: the case with a 

low deviation from the expected value of each parameter and the case with a high 

deviation effect. For the presentation we choose the Power function, p = 0.08; the 

conclusions are the same for each one of the distribution functions defined in chapter 3. 

The results are presented below, in table 5.5a:
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Table 5.5a: Standard déviations ofF(co) and C(co), in percent o f AL, for different

values o f X

Cj = G\=  0.05 a i=  0.15

l
1

('Var(F(<x>)))2 

AL

1
(Var(C( oo)))2 

AL

I
(Var(F( oo)))2 

AL

1
(Var(C( oo)))2 

AL

0.06 32.9707% 2.5751% n/a n/a

0.07 23.3688% 2.0103% 349.0556% 57.7790%

0.08 19.1296% 1.8047% 95.2646% 16.1950%

0.09 16.6104% 1.7101% 68.8318% 12.0407%

0.10 14.8964% 1.6655% 56.7190% 10.2252%

0.11 13.6351% 1.6475% 49.4156% 9.1918%

0.12 12.6579% 1.6455% 44.4077% 8.5304%

0.1201 12.6493% 1.6456% 44.3653% 8.5251%

0.2 8.8421% 1.8228% 28.3073% 7.0768%

0.21 8.5858% 1.8534% 27.3627% 7.0615%

0.22 8.3535% 1.8846% 26.5170% 7.0607%

0.221 8.3315% 1.8878% 26.4373% 7.0613%

0.30 7.0534% 2.1452% 21.9537% 7.3635%

0.40 6.1505% 2.4793% 18.9271% 8.0857%

0.50 5.6081% 2.8180% 17.1553% 8.9553%

0.60 5.2572% 3.1653% 16.0252% 9.9110%

0.70 5.0257% 3.5269% 15.2857% 10.9429%

0.80 4.8778% 3.9099% 14.8161% 12.0594%

0.90 4.7951% 4.3223% 14.5543% 13.2795%

1.00 4.7685% 4.7745% 14.4700% 14.6319%
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Table 5.5a shows that the standard deviation o f C( co ) is not a monotonic function of/.; 

up to a certain value of A. there is a ‘trade o ff  between the standard deviation of F(oo ) 

and the standard deviation of C( oo). When o,= aA= 0.05, C(oo) is an increasing 

function o f A for A = A* = 0.12 < A < 1 but a decreasing one when A < A*. When a, = a% = 

0.15 C( oo ) is an increasing function of A,, for A. = A = 0.22 < A, < 1 but a decreasing one 

when A, < A,*. As Gj ,a\ increase, A* increases as well.

The ‘'trade o ff’ between the standard deviation o f F and the standard deviation of C for 

different values of A, has been shown by Dufresne (1989) for the case when the rates of 

investment return are i.i.d random variables. We have extended this result, for the case 

where both the rates of investment return and the spread parameter A are mutually 

independent random variables.

On the basis of the above assumptions, we also examine the standard deviations of 

F(oo ) and C(oo ), expressed respectively as percentages of the Actuarial Liability and 

Normal Cost, regarding different values of the spread period, m.

The results are presented below in tables 5.5b and 5.5c:
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Table 5.5b: Standard deviations o f F(co) and C(co), in percent o f AL,NC for different 

values o f the spread period, er, =  oA =  0.05.

m
l

(Var(F( oo)))2 
AL

l
(Var(C( oo))) 2 

NC

1 4.77% 258.33%

5 8.35% 101.97%

8 10.81% 91.05%

10 12.38% 89.13%

11 13.15% 89.01%

20 20.36% 100.63%

25 24.91% 113.32%

30 30.17% 129.96%

35 36.48% 151.39%

40 44.41% 179.52%

45 55.05% 218.30%
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Table 5.5c: Standard deviations o f F(co ) and C(co ), in percent of AL,NC for different

values o f the spread period, a, = ox = 0.15

m
l

(V ar(F ( o o )))2  

AL

l
{Var(C{ o o ) ) )2 

N C

1 14.47% 791.70%

2 16.99% 490.63%

3 20.22% 416.40%

4 23.40% 389.43%

5 26.52% 382.04%

6 29.64% 385.29%

7 32.81% 395.37%

8 36.08% 410.44%

10 43.06% 452.42%

15 66.13% 629.19%

Tables 5.5b and 5.5c show that when the spread period is below a certain number of 

years, there is a ‘trade o ff  between the standard deviation of F(co) and the standard 

deviation o f C( oo ); as F( o o ) increases, C( co ) decreases. We may clearly see that, for the 

case of high standard deviations for the rates of investment return and the spread 

parameter, because the level of the Fund becomes less stable, the spread period below 

which we observe the “trade o ff’ between the standard deviations of F( co) and C( co ) 

decreases significantly.

The “trade o ff’ between the standard deviation o f F and the standard deviation of C for 

different values of m, has been shown by Dufresne (1988) for the case when the rates of 

investment return are i.i.d random variables. We have extended this result, for the case
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where both the rates of investment return and the spread parameter A, are random 

variables and mutually independent.

As shown also by Dufresne (1989), for the case where the rates of investment return are 

i.i.d. random variables, in the neighborhood of zero as the standard deviation of F(oo) 

increases, the standard deviation of C(oo) decreases. As presented in table 5.5d, this 

result is extended, for the case where both the rates of investment return and the spread 

parameter /. are random variables.

Table 5.5d: Standard deviations o f F(oo) and C (oo ), as i(t) -»  0

ftj =  =  0 .1 5 Oi =  a>. =  0 .1 5

i(t)
1

(Var(F( o o )))2
1

(Var(C( o o ) ) )2

1
(Var(F( o o ))) 2

1
(Var(C( o o ))) 2

1*10'6
24.779702 2.589318727 84.00960732 14.77205672

1*10 ^
24.7796068 2.589308752 84.00915816 14.77197774
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5.5 CONCLUSIONS

In this chapter, we studied the development of the Fund and Contribution rates level 

based, consecutively, on the following stochastic models:

a) where the rates of investment return, i(t) are random variables and the spread 

parameter is constant.

b) where the spread parameter /,(t) is random variable and i(t) are constant.

c) where both i(t), A,(t) are random variables.

In each model, the first and second moments of the Fund and Normal Cost have been 

calculated on the basis of a discrete time formulation.

The respective results produced by Dufresne (1988) and Owadally and Haberman 

(1999) have been extended after including the salary rate o f increase. We show that the 

salary rate of increase is the key assumption for the Actuarial Liability level and thus 

for the expected value of the level of the fund and the contribution rates.

In an economic environment, where i(t) > -1, convergence in each model for the first 

moments (EF(t), EC(t)) is obtained, if  the interest earned during a year in excess of the 

amortization charge, is lower than the salary rate of increase.

Convergence is also observed for the second moments, after restrictions are applied to 

the set of the parameter values. According to the parameter restrictions an ‘optimal 

region’, m*, is specified for the number o f years, m, over which the unfunded liability is 

spread. We show' that for m greater than a particular value m*, the variances of both the 

fund and the contribution are increasing functions of m; the ‘optimal’ values of m are
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1 < m < m  . After a long period for the scheme being continued, limiting results show 

that both the Variance of the fund and the contribution rates are stabilized.

In practice, as either E(i(t)) increases or E(Lft)) decreases, both the fund and 

contribution rates reach their ultimate values, Actuarial Liability and Normal Cost, at a 

lower pace.

The stability of the fund decreases, under high standard deviations for either the rates of 

investment return or the spread parameter; as a consequence the ‘optimal period’ below 

which we obtain convergence, is significantly reduced.

This effect is shown clearly when we consider /.ft) as random variable since m is more 

sensitive to change in the mean and variance of L(t).

Assuming that the salary rate of increase is equal to zero, when both i(t), /-ft) are 

random variables, illustrative examples show that:

■ the ultimate value of the standard deviation of the contribution rates is not a 

monotonie function o f L(t). Up to a certain value of L  there is a ‘trade o ff 

between the ultimate value of the standard deviation of the fund and the 

ultimate value of the standard deviation of the contribution rates.

■ when the spread period is below a certain number of years, there is a ‘trade o ff 

between the standard deviation of F( co ) and the standard deviation o f C( co ); as 

F( oo ) increases, C( co ) decreases.
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■ as i(t) value approaches zero, then we observe that the ultimate value of 

standard deviation of the fund increases, while the ultimate value of standard 

deviation of the contribution rate decreases.

Dufresne (1989) has showed the above results for the case where the rates of 

investment return are i.i.d. random variables. In this work, Dufresne’s results have 

been extended for the case where both i(t) and k(t) are mutually independent 

random variables.
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APPENDIX 11

Table 5.6: E(i(t))=0.03, VarF(t) at time t -  100

D istribution fn o¡ =  0.025 o¡ =  0.05 a¡ =  0.1 o¡ =  0.15

P o w er p= 0 .8 329 .10 1 ,332.99 5 ,614 .85 13,858.98

P o w er p = l 301 .69 1,221.94 5,147.11 12 ,704.47

P o w er p=1.5 253.11 1,025.21 4 ,318 .40 10 ,658.99

Tr. E xpon . £ = 3 0 352 .00 1,425.75 6 ,005 .58 14 ,823 .39

Tr. E xpon . o = 4 0 339.63 1,375.63 5 ,794 .49 14,302.33

Tr. E xpon . o = 5 0 332 .09 1,345.12 5 ,665 .96 13 ,985.12

Tr. P are to  k=0.3 344 .87 1,396.87 5 ,883 .96 14 ,523.19

Tr. P are to  k= 0 .8 361 .45 1,464.03 6 ,166 .84 15,521.43

Tr. P are to  k= 1 .5 384 .46 1,557.22 6 ,559 .36 16 ,190 .27

Table 5.7: E(i(t))=0.03 VarC(t) at time t -  100

D istribution fn =  0.025 <r¡ = 0.05 o¡ =  0.1 tr, = 0.15

P o w er p= 0 .8 2 .77 11.22 47 .27 116.68

P o w er p = l 2 .54 10.29 43.33 106.96

P o w er p=  1.5 2.13 8.63 36 .36 89.74

Tr. E xpon . o = 3 0 2.96 12.00 50.56 124.79

Tr. E xpon . o = 4 0 2.86 11.58 48 .78 120.41

Tr. E xpon . o = 50 2.79 11.32 47 .70 117.74

Tr. P are to  k=0.3 2 .90 11.76 49 .54 122.27

Tr. P are to  k=0 .8 3.04 12.32 51 .92 128.15

Tr. P are to  k=1.5 3.24 13.11 55 .22 136.04

2 0 2



Table 5.8: E(i(t))=0.05, VarF(t) at time t ^  100

D istribution fn Ci = 0.025 o¡ =  0.05 c¡ =  0.1 Ci =  0.15

P o w er p= 0 .8 263 .75 1,073.42 4,616 .51 11,875.22

P o w er p = l 246 .49 1,003.21 4 ,314 .55 11,098.48

P o w er p = l  .5 214 .66 873 .64 3 ,757 .28 9 ,664 .99

Tr. E xpon . o = 3 0 279.05 1,135 .69 4 ,884 .33 12,564.13

Tr. E xpon . o = 4 0 271 .16 1,103.61 4 ,746 .35 12,209.19

Tr. E xpon. o = 50 266 .33 1,083.93 4 ,661 .68 11 ,991 .42

Tr. P are to  k=0.3 274 .28 1,116 .29 4 ,800 .88 12,349.48

Tr. P are to  k=0 .8 284.71 1,158.75 4 ,983 .48 12 ,819 .19

Tr. P are to  k = l .5 298 .58 1,215.21 5 ,226 .29 13,443.77

Table 5.9: E(i(t))=0.05, VarC(t) at time t -  100

D istribution fn Cj =  0.025 Cj =  0.05 Ci =  0.1 Ci = 0.15

P o w er p= 0 .8 2.22 9 .04 38 .87 99 .98

P o w er p = l 2.08 8.45 36.23 93 .44

P o w er p=1 .5 1.81 7.36 31.63 81 .37

Tr. E xpon . o = 3 0 2.35 9 .56 41 .12 105.78

Tr. E xpon . o = 4 0 2.28 9 .29 39 .96 102.79

Tr. E xpon . o = 5 0 2.24 9.13 39.25 100.95

Tr. P are to  k=0 .3 2.31 9 .39 40 .42 103.97

T r. P are to  k=0 .8 2 .39 9 .76 41 .96 107.92

Tr. P are to  k=1 .5 2.51 10.23 43 .99 113.18
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Table 5.10: E (i(t))=(). 07, VarF(t) at time t -  100

D istribution fn c¡ = 0.025 = 0.05 Ci =  0.1 c¡ =  0.15

P o w er p= 0 .8 272 .69 1,122.33 5 ,076 .38 14,604.93

P o w er p = l 258 .64 1,064.46 4 ,814 .62 13,851.85

P o w er p=1 .5 2 31 .67 953 .45 4 ,312 .50 12,407.23

Tr. E xpon . o = 3 0 286 .05 1,177.26 5 ,324 .84 15 ,319 .76

T r. E xpon . o = 4 0 279.55 1,150.51 5 ,203 .84 14,971.65

T r. E xp o n . o = 5 0 2 75 .54 1,134.02 5 ,129 .27 14 ,757.10

Tr. P are to  k=0.3 281 .78 1,159.70 5 ,245 .42 15 ,091.27

Tr. P are to  k= 0 .8 290.31 1,194.83 5 ,404 .30 15 ,548.38

Tr. P are to  k=1 .5 301 .54 1,241.03 5 ,613 .26 16,149.55

Table 5.11: E(i(t))=0.07VarC(t) at time t -  100

D istribution fn Ci =  0.025 o¡ =  0.05 Ci =  0.1 Ci -  0.15

P o w er p= 0 .8 2 .29 9.45 42 .74 122.96

P o w er p = l 2.18 8.96 40.53 116.62

P o w er p=1 .5 1.95 8.03 36.31 104.45

Tr. E xpon . c = 3 0 2.41 9.91 44.83 128.98

Tr. E xpon . o = 4 0 2.35 9 .69 43.81 126.04

T r. E xpon . o = 5 0 2.32 9.55 43 .18 124.24

Tr. P are to  k=0.3 2 .37 9 .76 44 .16 127.05

Tr. P are to  k=0 .8 2 .44 10.06 45 .49 130.90

T r. P are to  k = l  .5 2 .54 10.45 47 .26 135.96
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Table 5.12: Var F(t), where E(A(t)) =  — -— , o\ = 0.1
^_(° .05 )

D istr. fn / years 1 10 20 30 40 50 80 100

P o w er p= 0 .8 461 .75 136.80 5.49 0.17 0.00 0.00 0.00 0 .00

P o w er p = l 431 .55 127.85 5.13 0 .16 0.00 0.00 0.00 0.00

P o w er p=1 .5 375.81 111.34 4 .47 0.13 0.00 0.00 0.00 0.00

Tr. E xpon . o = 3 0 4 8 8 .5 4 144.74 5.81 0.18 0.00 0 .00 0.00 0.00

T r. E xpon . o = 4 0 4 7 4 .74 140.65 5.65 0.17 0 .00 0 .00 0.00 0.00

T r. E xp o n . o = 5 0 4 6 6 .27 138.14 5.55 0.17 0 .00 0 .00 0.00 0.00

T r. P are to  k=0.3 4 8 0 .19 142.27 5.71 0.17 0 .00 0 .00 0.00 0.00

T r. P areto  k=0 .8 4 9 8 .46 147.68 5.93 0.18 0 .00 0.00 0.00 0 .00

Tr. P are to  k = l .5 522 .74 154.87 6.22 0 .19 0.01 0.00 0.00 0 .00

Table 5.13: Var C(t), where E(A(t)) = — -— , o\ = 0.1
" _(°.°5)

D istr. fn /  years 1 10 20 30 40 50 80 100

P o w er p= 0 .8 307.91 15.71 0.46 0.01 0.00 0.00 0.00 0 .00

P o w e r p = l 2 8 7 .77 14.69 0.43 0.01 0 .00 0.00 0.00 0.00

P o w er p = l .5 2 5 0 .60 12.79 0.38 0.01 0 .00 0.00 0 .00 0.00

Tr. E xpon . o = 3 0 3 2 6 .66 17.35 0.62 0.05 0.02 0.02 0.02 0.02

Tr. E xpon . o = 4 0 317.43 16.86 0.60 0.05 0.02 0.02 0.02 0.02

Tr. E xpon . g = 50 311 .77 16.56 0.59 0.05 0.02 0.02 0 .02 0.02

Tr. P are to  k=0.3 321 .08 17.05 0.61 0.05 0.02 0.02 0.02 0.02

Tr. P are to  k= 0 .8 3 33 .29 17.70 0.63 0.05 0.02 0.02 0.02 0.02

Tr. P are to  k=1 .5 349 .53 18.56 0.66 0.05 0.02 0.02 0.02 0.02
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Table 5.14: Var F(t), where E(X(t))= — ------, E(i(t)) = 0.05, a, =a, =0.1
„ —-(°-°5)

D istr. fn  /  y ea rs 1 10 20 30 40 50 80 100

P o w er p= 0 .8 466 .75 2 ,381 .03 2 ,778 .02 3 ,054 .80 3 ,453 .44 3 ,891 .83 4 ,840 .50 5 ,122 .14

P o w e r p = l 436 .22 2 ,225 .29 2,596 .31 2 ,854 .99 3 ,227 .55 3 ,637 .27 4 ,523 .89 4 ,787 .11

P o w er p = l  .5 379 .88 1,937.87 2 ,260 .97 2 ,486 .24 2 ,810 .68 3 ,167 .48 3 ,939 .58 4 ,1 6 8 .8 0

T r. E xpon . o = 3 0 493.83 2 ,519 .16 2 ,939 .18 3 ,232 .02 3 ,653 .78 4,117.61 5,121.31 5 ,419 .29

Tr. E xpon . o = 4 0 479 .88 2 ,447 .99 2 ,856 .15 3,140.71 3 ,550 .56 4 ,001 .29 4 ,976 .64 5 ,266 .20

Tr. E xpon . a = 5 0 471 .32 2 ,404 .33 2 ,805 .20 3 ,084 .69 3 ,487 .23 3,929.91 4 ,887 .87 5 ,172 .26

Tr. P are to  k=0.3 485 .39 2 ,476 .12 2 ,888 .96 3 ,176 .80 3 ,591 .36 4 ,047 .26 5 ,033 .82 5,326.71

Tr. P are to  k=0 .8 503 .86 2 ,5 7 0 .3 0 2 ,998 .85 3 ,297 .63 3 ,727 .96 4 ,201 .20 5 ,225 .28 5,529.31

T r. P are to  k=1.5 528.41 2 ,695 .53 3 ,144 .96 3 ,458 .30 3 ,909 .59 4 ,4 0 5 .8 9 5 ,479 .87 5,798.71

Table 5.15: Var C(t), where E(A(t)) = — -— , E(i(t)) = 0.05, o> = a, = 0.1
"-¡(0 .0 5 )

D istr. fn /  years 1 10 20 30 40 50 80 100

P o w er p= 0 .8 3 89 .50 2 0 5 .99 113.93 80.56 73.02 75.32 89.37 94 .38

P o w er p=  1 3 64 .02 192.52 106.48 75 .30 68.24 70 .40 83.52 88 .20

P o w er p=1 .5 317.01 167.65 92.73 65 .57 59.43 61.31 72.73 76.81

T r. E xpon . o = 3 0 4 12 .10 217 .94 120.54 85 .24 77.25 79 .69 94.55 99 .85

Tr. E xpon . o = 4 0 400 .45 211 .78 117.14 82.83 75 .07 77.44 91 .88 97 .03

Tr. E xpon . o = 5 0 393.31 208.01 115.05 81.35 73.73 76 .06 90 .24 95 .30

Tr. P are to  k=0.3 405 .05 214 .22 118.48 83.78 75.93 78.33 92 .94 98 .14

T r. P are to  k=0 .8 4 20 .46 222 .37 122.99 86 .97 78.82 81.31 96 .47 101.88

Tr. P are to  k = l .5 440 .95 2 33 .20 128.98 91.21 82.66 85.27 101.17 106.84
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APPENDIX 12

Figure 5.1: EF(t) development when F(0) = 0 and F(0) ^ 0, F(0) >AL(0)

Figure 5.2: EC(t) development when F(0) = 0 and F(0) ^ 0, F(0) > AL(O)
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CHAPTER 6:

SIMULATION ANALYSIS

6.1 INTRODUCTION

In this chapter we investigate if the theoretical model proposed in Chapter 5 can be 

applied in real life situation and use the results to measure the risks associated with 

funding.

For this reason we have proceeded with simulation analysis assuming that either of the 

investment rates of return and ‘>2 or both variables are random with a Log Normal 

distribution. For our choice we have focused on those distributions that have elegant 

properties and thus are convenient for evaluating the value of the fund. Both the Normal 

and Log Normal distributions have been considered by many others researchers for the 

case where the i(t) are assumed to be random variables. For k  the stochastic approach is 

new; we have investigated the Log Normal distribution for reasons of consistency, and 

also thinking about potential future work, which would involve examining i(t) and /.(t) 

assuming dependency. For the latter case, we thought that it would be very helpful to 

apply the same distribution for both random variables. However, this does not exclude 

the possibility of extending our work in the future by considering other distributions, for 

example Normal distribution.

For either case, we assume that the pension plan is implemented based on a different 

pension accrual density function each time, using those defined in section 3.2. We may 

proceed as above, because the theoretical model is independent of any density function, 

which we may consider for the pension plan implementation. Therefore, all simulation
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results provided by the different functions are comparable with the corresponding ones 

calculated by the theoretical formulae in chapter 5.

The effect o f each parameter being stochastic is examined separately, (Model I and 

Model II respectively), assuming that the other parameter is a constant. In addition, the 

effect when both parameters are stochastic is considered (Model III).
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6.2 THE MODEL

All simulations have been performed using the StatGraph software. We select the Log 

Normal distribution setting each time the expected value and the standard deviation of 

the parameter that is assumed as the random variable; for each choice, we derive 1,000 

simulated paths over a period of 100 years. For the variance and estimation of tail 

percentiles the number of paths required was higher than 1,000; they reached the 

number of 10,000 while discussing the second model. For these calculations we have 

used SPLUS software.

Based on these, we calculated the values for both the fund and the contribution rates 

according to the formulae described in section 4.2. Then we calculated the first and 

second moments using the formulae described in sections 5.2-5.4, where either each of 

the rate of investment return and the spread parameter or both are random variables.

For the illustrative examples, we choose the case where x =0. We have decided to use a 

simple model, because of convenience but also because such a model does allow 

detailed study of the important factors, which contribute to the qualitative behavior of 

the Actuarial Liability and Contribution rates. These factors are the expected value and 

the standard deviation o f the parameter assumed as the random variable.
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6.3 DATA CHECK

When all simulated paths were completed, and before proceeding to the calculations of 

the results, we check the data produced by the random number generation. Data checks 

took place on the basis of the Normal distribution, for which the expected number of 

values that fall under each one of the following intervals is known: (0,p-4.4*o)16, 

(p-4.4*a,p-4*a), (p-4*a,p.-3*o), (p-3*a,p-2*a), (p-2*o,p-a), (p-a,p), (p,p+a), 

(p+o,p.+2*c), (p+2*a,p+3*a), (p+3*a,p+4*a), (p+4*a,p+4.4*o), (p+4.4*o,co)17. We 

use the %2 statistic to test whether sample data indicate that the particular model for the 

parameter distribution fits the data, comparing the observed number of the simulated 

figures allocated in those intervals with the expected one. We consider that the 

parameter distribution fits the data, when the chi square test performed higher either 

than 97.5% at the 0.025 percentile, x lta s or higher than 95% at the 0.05 percentile,

% 0 .0 5  ■

6.4 CALCULATION OF THE RESULTS

In each one o f the 100-year periods, from the simulated data we record:

The 1%, 5%, 25%, 50%, 75%, 95% and 99% percentiles: We focus on the 

percentile values throughout the years in order to discuss, under each model, the 

sensitivity of results to changes in parameters (in our case expected value and

16 |i, o are the mean and the standard deviation of the Normal distribution.
17 See the Normal distribution tables.
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standard deviation). This is an empirical analysis in which the growth level of the 

Fund as well as the Contribution rates level is indicated under each choice of the 

expected value and for each standard deviation of the parameter assumed as 

random. On the basis of the percentile values, the skewness and kurtosis of the 

distribution of the fund and the contribution rates are examined.

Descriptive Measures of the Sample: Average, Variance and Standard Deviation.

We briefly present, for comparison purposes, these results and the corresponding 

ones derived by the theoretical model.

With the simulation approach, we are able to analyze the growth of the Fund under 

the chosen variables and thus to become aware of its development over time as well 

as the highest and lowest values we may expect about its level throughout the years 

and a range of key percentiles. Thus, in our opinion, by using the stochastic 

simulation approach, we gain knowledge of the experience as to how the theoretical 

results might be applied in practice as well as information about the measurement of 

the risk taken for the level of the Fund and Contribution, under the different 

parameter values.

6.5 PRESENTATION OF RESULTS

As we have also discussed in section 4.10, the level of Actuarial Liability a) tends to 

decrease slightly when the plan is implemented using either the Power or the 

Exponential pension density function as the parameters p, a  respectively increase b) 

tends to increase along with the increase of the parameter k when the plan is
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implemented under the Truncated Pareto. This trend is also followed, in all models, 

when we examine the level of difference between the sample average and the expected 

value provided by the theoretical formula as well as between the sample and the 

theoretical variance. It is followed as well when we examine the level of the percentile 

values.

Similar conclusions are derived for different values of p as well as when instead of the 

Power function, for the implementation of the Fund, we use either Truncated 

Exponential or Truncated Pareto

For the above reasons, we decided to present the results calculated based on the Power 

function distribution, p= 0.8.

The results provided under each Model are discussed separately and overall conclusions 

are given at the end of the chapter.
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6.6 MODEL I, RANDOM RATES of INVESTMENT RETURN

6.6.1 ASSUMPTIONS

For Model I we consider the following different cases:

Case III, E(i(t)) =  0.07 Case I, E(i(t)) =  0.03 Case II, E(i(t)) =  0.05

o, =  0.025 a, =  0.025 Oi =  0.025

a, =  0.05 Oj =  0.05 o; =  0.05

o, =  0 .1 0 G{ =  0.1 0 Oj =  0 .1 0

a, = 0.15 Q II o c/i

|----------

oIID

We have applied these values for the calculation of NC(t), AL(t), F(t) and C(t) of the 

following distributions:

Power function (p=0.8, p= l, p=1.5)

Truncated Pareto (k=0.3, k=0.8, k=1.5)

Truncated Exponential (a=30, a=40, a=50)

The spread period, defined as the number of years, over which some extra contribution 

should be paid so that the unfunded liability turns to zero, for all cases, equals to 15

years. Hence, the amortization spread parameter equals to X = ((| 0S) .
a  i5|
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6.6.2 DESCRIPTIVE MEASURES of the SAMPLE: AVERAGE,

VARIANCE and STANDARD DEVIATION

6.6.2.1 Sample Average

Simulations verify the expected result that the sample average, F(t) = h  1000 ’

1000 q

C (0  = I t A t  approximate significantly the theoretical expected value EF(t), EC(t).
k = \ i ooo

EF(t), EC(t) provided by the theoretical model, remain unchanged as the standard 

deviation of the rates o f investment return changes. The sample average changes, since 

the standard deviation value affects the simulated data.

For the cases where Cj is equal to either 0.1 or 0.15, we increase the number of 

simulations to 5,000 paths over a 100 year period, because for high standard deviations 

we need more simulated figures to reach conclusions.

6.6.2.2 Variance, Standard Deviation18 

The simulation results verify that the sample variance sj =

1000 (C ( t ) -C( t ) )2
si  = V 1— --------------- are close to the expected one provided by the theoretical
c tT 1000-1

model, VarF(t), VarC(t).

Both VarF(t) and VarC(t) provided by the theoretical model change as the standard 

deviation value of the rates of investment return changes. The sample variance also 

changes, since the standard deviation value affects the simulated data.

^ (Fk( t ) - F( t ) ) 2
h  1000-1

18 The positive square root of the sample variance, s F , Sc , gives the sample standard deviation.
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In figures 6.1 and 6.2 below the sample variance and the theoretical variance for the 

Fund are plotted for the cases where E(i(t))=0.05 and o, = 0.05, E(i(t))=0.05 and 

Oj = 0.1519; the latter is based on 8,000 simulated paths. The differences between the 

simulated and analytical results are due to sampling error only.

VarF(t) F sample Var

Figure 6.1: VarF(t) vs Sample Variance, E(i(t)) = 0.05, rr, = 0.05

19 The pattern followed by the sample variance of the Contribution rates when sketched against the 
theoretical variance VarC(t), is identical to that followed by the sample variance of the Fund, when 
sketched against the theoretical variance VarF(t).
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14000

VarF(t) F sample Var

Figure 6.2: VarF(t) vs Sample Variance, E(i(t)) = 0.05, 07 = 0.15

6.6.3 PERCENTILES

For each one o f the standard deviations of i(t), the 1%, 5%, 25%, 50%, 75%, 95% and 

99% percentile values of the Fund and Contribution rates are calculated.

The percentiles indicate the sensitivity of the Fund and Contribution rates level 

becoming either low or high as a result of changes in parameters for the proposed Log 

Normal model. The theoretical model does not enable us to calculate percentiles easily 

since we need to specify a distribution for the random inputs.

The concentration of the percentile values around the median is also examined, taking 

their difference from the median on a yearly basis. This process deals with the 

measurement of both skewness and kurtosis of the simulated data.

The results produced verify that both the expected value and the standard deviation of 

i(t) have a high impact on the growth level of the Fund. In particular, the variability of 

the Fund increases along with the increase of the standard deviation.

In addition, the results show that as time “t” increases the difference between the 

percentiles and the median tends to stabilize at a certain level, for both the Fund and
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Contribution rate distributions; this is expected since the parameter values we consider 

fulfill the requirements for convergence as t -» oo .

According to the formulae used in section 4.2, the Contribution rates depend directly on 

the growth of the Fund. Specifically, the higher is the value of the Fund the lower is the 

value of the contribution rates and vice versa. As a consequence, the pattern of the 

Contribution rates percentiles is affected directly by the Fund.

6.6.3.1 Fund Percentiles

In tables 6.1 and 6.2 the 1% and 99% percentile Fund values are shown at specific 

points of time, as a percentage of the Actuarial Liability. We chose those, since they 

reflect two extreme cases respectively: 1% percentile shows the value below which 1% 

of cases occur for the Fund level and the 99% percentile the value above which 1% of 

cases occur.

We assume that a; equals either to 0.025 or 0.05. For the case where E(i(t))=0.05 we 

also quote the corresponding values when Oj equals to 0.1 and 0.15, based on 5,000 

simulated paths, in order to show the effect of changing the standard deviation.
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Table 6.1: Model I, Random Rates o f investment return, 1 % percentile Fund values as

a percentage o f the Actuarial Liability

E(i(t)) Oi
1% percentile Fund values as a percentage of Actuarial Liability

5th yr 10th yr 15th yr 20,h yr 30th yr 40th yr 50th yr 80th yr O o -t

0.03
0.025 0.27 0.45 0.58 0.67 0.78 0.83 0.86 0.88 0.88

0.05 0.27 0.44 0.56 0.64 0.73 0.78 0.80 0.82 0.82

0.05

0.025 0.20 0.35 0.46 0.55 0.67 0.74 0.78 0.82 0.83

0.05 0.19 0.33 0.43 0.51 0.61 0.66 0.70 0.74 0.74

0.1 0.19 0.32 0.41 0.47 0.55 0.60 0.62 0.65 0.65

0.15 0.19 0.31 0.39 0.45 0.52 0.56 0.58 0.61 0.61

0.07
0.025 0.12 0.23 0.31 0.38 0.50 0.58 0.63 0.74 0.77

0.05 0.12 0.21 0.29 0.35 0.44 0.51 0.54 0.64 0.63

Table 6.2: Model I, Random Rates o f investment return, 99% percentile Fund values 

as a percentage o f the Actuarial Liability

E(i(t>)
a,

99% percentile Fund values as a percentage o f the Actuarial Liability

5th yr 10th yr 15“ yr 20th yr 30th yr 40th yr 50“ yr 80th yr o o & A

0.03
0.025 0.32 0.56 0.73 0.87 1.03 1.11 1.16 1.19 1.19

0.05 0.35 0.63 0.85 1.00 1.24 1.43 1.42 1.52 1.43

0.05

0.025 0.23 0.43 0.58 0.70 0.89 1.03 1.09 1.18 1.19

0.05 0.26 0.49 0.69 0.83 1.08 1.23 1.36 1.52 1.57

0.1 0.30 0.63 0.88 1.13 1.43 1.64 1.89 2.17 2.23

0.15 0.38 0.78 1.13 1.50 2.02 2.22 2.34 2.87 2.62

0.07
0.025 0.15 0.28 0.40 0.51 0.67 0.82 0.93 1.13 1.18

0.05 0.17 0.31 0.46 0.58 0.80 1.00 1.14 1.51 1.45

219



We make the following remarks on tables 6.1 and 6.2:

The lower values are achieved when E(i(t))=0.07. This is due to the fact that the 

expected rate of investment return is also considered in the calculation of the 

Actuarial Liability, which decreases as E(i(t)) increases.. If Actuarial Liability 

remained unchanged, then we could observe that an increase of the rate of 

investment return results to a higher than expected level of the fund Thus, it is 

linked with a higher risk in terms of a less favorable performance of the growth of 

the Fund than that expected. This is a result also observed in chapter 5, section 

5.2.2, where as table 5.2 shows, the expected value of the Fund decreases as E(i(t)) 

increases; i.e. the distribution is shifted to the left.

As the standard deviation increases the distribution is more spread out. In terms of 

the 1% percentile, a significant decrease in the Fund level is observed along side an 

increase in the standard deviation.

None of the 1% percentiles in Tables 6.1 and 6.2 are zero. We may conclude that 

the risk of a deficit at any time is less than 1%. Flowever, at this point, we have to 

take into account the fact that the starting value of the Fund level, F(0), has been 

assumed equal to zero. An open question for the future is to examine the Fund level 

status, when its starting value, F(0), is different than zero.

Table 6.3 shows the median values of the Fund in the years 5,20 and 100, and their 

difference from the corresponding percentiles (percentile value -  median value) for the 

case where Oi equals 0.025. The percentiles are grouped in corresponding pairs for ease 

of comparison.
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Table 6.3 : Model I, Random Rates o f investment return, Difference between the Fund

percentiles and the Median , er,=0.025

E(i(t))
years median

Difference between the median and the respective 

percentile of fund

1% 99% 5% 95% 25% 75%

0.03

5 74.16 i © 00 9.49 -2.39 5.81 -1.28 1.59

20 192.09 -15.94 36.93 -11.54 21.96 -5.72 8.17

100 259.90 -28.91 53.42 -22.02 36.42 -10.29 13.01

0.05

5 43.08 -2.42 4.52 -1.93 2.96 -1.52 0.99

20 124.25 -12.14 19.67 -9.27 13.38 -7.19 5.14

100 201.25 -31.33 42.67 -22.72 28.32 -18.49 10.33

0.07

5 21.98 -1.31 2.20 -0.97 1.46 -0.44 0.50

20 71.68 -7.85 12.17 -5.60 7.43 -2.61 2.98

100 154.22 -26.58 41.08 -20.05 26.61 -8.10 10.49

We make the following remarks on table 6.3:

For each value of E(i(t)) we note that, the lower percentile has a smaller difference 

between it and the median than the corresponding upper percentile, and that this gap 

increases as the percentiles become more outlying. As E(i(t)) increases, this gap tends to 

be reduced; a few exceptions may observed in the outlying percentiles.

When E(i(t)) equals 0.03 the difference between the median and the 25% percentile in 

the 20th year is 5.72 (in absolute values) and for the 75% percentile is 8.17. The upper 

percentile difference is therefore 43% larger than the lower percentile. For the 1% 

percentile and 99% percentile the corresponding difference for the upper percentile is 

132% larger than for the lower percentile. When E(i(t)) equals 0.07 the difference for 

the 75% percentile is 14% larger than that for the 25% percentile and the difference for
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the 99% percentile is 55% larger than that for the 1% percentile. This is an indication of 

the skewness of the distribution of Fund. In particular, the Fund appears to become 

skewed to the right. Since the distance of the percentiles from the median tends to 

increase with time, an increase in kurtosis may be expected over time (see sections

6.6.4.1 and 6.6.4.2).

The effect of changing the standard deviation, is presented in the following table 6.4 for 

the years 5,20 and 100 for the case where E(i(t)) equals 0.05. For the cases where 

E(i(t)) = 0.05, Oj = 0.1 and E(i(t)) = 0.05, cjj= 0.15, the results are based on 5,000 

simulated paths. The percentiles are grouped in corresponding pairs for ease of 

comparison.
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Table 6.4: Model I, Random Rates o f investment return, Difference between the Fund

percentiles and the Median, E(i(t))=0.05

Standard

deviation

years median

Difference between the median and the respective 

percentile of fund

1% 99% 5% 95% 25% 75%

0.025

5 43.08 -2.42 4.52 -1.93 2.96 -1.52 0.99

20 124.25 -12.14 19.67 -9.27 13.38 -7.19 5.14

100 201.25 -31.33 42.67 -22.72 28.32 -18.49 10.33

0.05

5 42.57 -3.07 -2.48 -1.21 1.98 6.19 10.14

20 122.40 -17.73 -14.64 -7.20 10.00 31.45 48.26

100 197.33 -46.42 -35.32 -17.41 22.24 61.09 123.38

0.1

5 41.62 -3.17 20.29 -2.69 9.81 -1.51 2.67

20 118.32 -21.94 113.45 -18.13 52.23 -9.66 14.41

100 185.50 -52.02 270.21 -42.99 137.31 -22.35 35.60

0.15

5 40.91 -2.85 35.94 -2.51 13.84 -1.45 2.85

20 113.71 -21.67 192.27 -18.14 81.48 -10.04 17.29

100 175.85 -50.94 360.06 -42.38 166.37 -22.86 42.45

As table 6.4 indicates when the standard deviation is higher than 0.05 the gap between 

the upper and lower percentile is very high, especially when the percentiles become 

more outlying. This is an indication o f skewness of the distribution of Fund. In 

particular, it appears to become skewed to the right (see sections 6.6.4.1 and 6.6.4.2). 

This is an expected result since, as discussed earlier, with higher standard deviations, 

the distribution becomes more spread out, as a consequence of the very high or very 

low rates of investment return that may occur and may influence the progress of the 

Fund over time.
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6 . 6 3 . 2  Contribution Rates percentiles

High values for the Fund lead to low values for the Contribution rates and vice versa. 

However, we will discuss the Contribution rates percentiles because it is important to 

investigate how low / high these values become in response to fluctuations in the level 

of the Fund. In tables 6.5 and 6.6 the 1% and 99% percentile Contribution rates values 

are shown at specific points of time, as a percentage of Normal Cost. We chose those, 

since they reflect two extreme cases respectively. From the 1% percentile we get the 

value of the Contribution rates below which 1% of cases occur while from the 99% 

percentile the value above which 1 % of cases occur, when an unfavorable performance 

for the Fund is considered. The results are presented for the cases where a, equals to 

0.025 and at equals to 0.05. When E(i(t))=0.05 we also present the cases where o, equals 

to 0.1 and o, equals to 0.15, based on 5,000 simulated paths, in order to show the 

standard deviation effect.

Table 6.5: Model I, Random Rates o f investment return, 1% percentile Contribution 

rates values as a percentage o f Normal Cost

E 009) o,
1% percentile Contribution rates values as a percentage of Normal Cost

5th yr 10th yr 15th yr 20th yr 30th yr 40th yr 50th yr O
O o & >>oo

0.03
0.025 3.76 2.79 2.09 1.53 0.87 0.56 0.34 0.23 0.24

0.05 3.65 2.50 1.61 1.02 0.02 -0.72 -0.68 -1.11 -0.76

0.05

0.025 4.81 3.85 3.07 2.47 1.55 0.86 0.56 0.11 0.05

0.05 4.68 3.51 2.55 1.82 0.60 -0.13 -0.80 -1.57 -1.82

0.1 4.46 2.83 1.59 0.34 -1.13 -2.17 -3.41 -4.81 -5.09

0.15 4.10 2.07 0.35 -1.46 -4.07 -5.06 -5.65 -8.29 -7.04

0.07
0.025 6.10 5.32 4.61 3.95 2.95 2.10 1.44 0.25 -0.06

0.05 5.98 5.11 4.23 3.50 2.17 0.99 0.15 -2.02 -1.69
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Table 6.6: Model I, Random Rates o f investment return, 99% percentile Contribution

rates values as a percentage o f Normal Cost

E(i(t)) Oj
99% percentile Contribution rates values as a percentage of Normal Cost

5th yr 10th yr 15th yr 20th yr 30th yr 40th yr 50th yr J->>
£oOO 100th yr

0.03
0.025 3.96 3.21 2.69 2.34 1.91 1.70 1.58 1.50 1.50

0.05 3.97 3.26 2.80 2.46 2.08 1.90 1.82 1.73 1.75

0.05

0.025 4.98 4.25 3.69 3.24 2.64 2.29 2.07 1.87 1.84

0.05 5.01 4.32 3.82 3.43 2.92 2.70 2.47 2.28 2.30

0.1 5.03 4.40 3.95 3.63 3.22 3.00 2.88 2.73 2.73

0.15 5.04 4.43 4.02 3.73 3.37 3.17 3.07 2.95 2.93

0.07
0.025 6.23 5.62 5.12 4.67 4.02 3.51 3.20 2.56 2.38

0.05 6.26 5.70 5.24 4.88 4.33 3.95 3.73 3.17 3.18

The Contribution rates values presented in tables 6.5 and 6.6 show, as expected, a 

significant decrease (table 6.5) as the Fund level increases (table 6.2) and a significant 

increase (table 6.6) as the Fund level decreases (table 6.1).

In the extreme case o f the 1% percentile, the values may turn to be negative as either the 

expected value, E(i(t)), or the standard deviation, Oi, increases. Negative values imply 

that, following a very good investment performance of the Fund, we may expect a Fund 

surplus and no more contributions are necessary, and indeed, contribution refunds 

occur.

Table 6.7 shows the median values of the Contribution rates in the years 5,20 and 100, 

and their difference from the corresponding percentiles (percentile value -  median 

value) for the case where a; equals 0.025. The percentiles are grouped in corresponding 

pairs for ease of comparison.
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Tables 6 .7: Model /, Random Rates o f investment return, Difference between the

Contribution percentiles and the Median, a, = 0.025

E(i(t)) years median

Difference between the median and the respective 

percentile of the Contribution rates

1% 99% 5% 95% 25% 75%

5 23.35 -0.87 0.28 -0.53 0.22 -0.15 0.12

0.03 20 12.53 -3.39 1.46 -2.01 1.06 -0.75 0.52

100 6.31 -4.90 2.65 -3.34 2.02 -1.19 0.94

5 18.61 -0.42 0.22 -0.27 0.18 -0.19 0.08

0.05 20 11.16 -1.81 1.11 -1.23 0.85 -0.99 0.38

100 4.10 -3.92 2.87 -2.60 2.08 -1.96 0.99

5 15.74 -0.20 0.12 -0.13 0.09 -0.05 0.04

0.07 20 11.18 -1.12 0.72 -0.68 0.51 -0.27 0.24

100 3.61 -3.77 2.44 -2.44 1.84 -0.96 0.74

We make the following remarks on table 6.7:

As expected, for the Contribution rates, the opposite relationship holds between the 

lower and the upper percentiles from that of the Fund percentiles (section 6.6.3.1.); i.e. 

the lower percentile of each pair has the higher difference between it and the median 

than the upper percentile. This is an indication of the skewness of the distribution of 

Contribution rates, which is the opposite side of that of the Fund. In particular, the 

distribution of the Contribution rates appears to become skewed to the left. Since the 

distance of the percentiles from the median tends to increase over time, an increase in 

kurtosis may be expected as well (see sections 6.6.4.1 and 6.6.4.1).

226



The effect of changing the standard deviation is presented in the following table 6.8 for 

the years 5,20 and 100, for the case where E(i(t)) equals 0.05. For the cases where 

E(i(t)) = 0.05, cxj = 0.1 and E(i(t)) = 0.05, a, = 0.15 the percentile values are based on 

5,000 and 8,000 simulated paths respectively. The percentiles are grouped in 

corresponding pairs for ease of comparison.

Table 6.8: Model I ,Random Rates o f investment return, Difference between the 

Contribution percentiles and the Median, E(i(t)) = 0.05

Standard

deviation

years median

Difference between the median and the respective 

percentile of the Contribution rates

1% 99% 5% 95% 25% 75%

0.025

5 18.61 -0.42 0.22 -0.27 0.18 -0.19 0.08

20 11.16 -1.81 1.11 -1.23 0.85 -0.99 0.38

100 4.10 -3.92 2.87 -2.60 2.08 -1.96 0.99

0.05

5 18.65 -0.93 0.28 -0.57 0.23 -0.18 0.11

20 11.33 -4.43 1.63 -2.89 1.34 -0.92 0.66

100 4.45 -11.32 4.26 -5.61 3.24 -2.04 1.60

0.10

5 18.74 -1.86 0.29 -0.90 0.25 -0.24 0.14

20 11.70 -10.41 2.01 -4.79 1.66 -1.32 0.89

100 5.54 -24.79 4.77 -12.60 3.94 -3.27 2.05

0.15

5 18.80 -3.18 0.26 -1.21 0.23 -0.26 0.13

20 12.11 -16.88 1.99 -7.16 1.66 -1.56 0.91

100 6.40 -33.74 4.71 -15.61 3.95 -3.71 2.17

Table 6.8 indicates that as the standard deviation increases the gap between the upper 

and lower percentile increases along with time, especially when the percentiles become
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more outlying. The lower percentile of each pair has a higher difference between it and 

the median than the upper percentile and, as a consequence skewness to the left side is 

expected (see sections 6.6.4.1 and 6.6.4.2).

6.6.4 SKEWNESS20 and KURTOSIS

6.6.4.1 Skewness in Model I

From the definition o f skewness for this model, skewF = -skewC.

Skewness is calculated for the years 1,5,10,20,30,50,100.

Tables 6.9 and 6.10 confirm the conclusions derived in section 6.6.3, as far as both the 

Fund and Contribution rate values are concerned. In particular, table 6.9 shows that as 

the expected value increases, the distribution becomes skewed to the right for the Fund; 

table 6.10 shows that as a, increases, skewness values increase as well. We point out 

that skewness of symmetric distribution is 0 by definition.

Because of the definition stated above, the skewness values for the Contribution rates 

are not presented.

Table 6.9 Model I, Random Rates o f investment return: Fund skewness, rr,=0.025

E(i(t))

Fund Skewness

5th yr 10th yr 20th yr 30th yr 50th yr 100th yr

0.03 1.57 1.38 1.26 0.93 1.08 0.95

0.05 0.84 0.65 0.57 0.72 0.71 0.48

0.07 0.77 0.45 0.51 0.43 0.45 0.55

20 in Appendix 13 the definitions are quoted
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Table 6.10 Model I, Random Rates o f investment return: Fund skewness, E(i(t)= 0.05

n,
Fund Skewness

5th yr 10th yr 20th yr 30th yr 50th yr o o s- *3

0.025 0.84 0.65 0.57 0.72 0.71 0.48

0.05 1.92 2.49 1.51 1.42 1.52 1.76

0.1 3.56 4.22 2.87 3.24 3.20 5.47

0.15 8.49 11.81 18.97 13.02 6.75 7.15

6.6.4.2 Kurtosis in Model I

Kurtosis is calculated for the years 1,5,10,20,30,50,100. It is clear from the definition of 

kurtosis in Appendix 13, that the kurtosis is the same for both fund value and 

contribution rate.

Table 6.11 and 6.12 values below, confirm the conclusions derived in section 6.6.3, as 

far as both the Fund and Contribution rate values are concerned:

Specifically, as presented in table 6.11, when the expected value increases a peaked 

distribution of the sample values is formed in the latter years.

Table 6.11 Model I, Random Rates o f investment return: Fund /  Contribution rates 

kurtosis, a,=0.025

E(i(t))

Fund / Contribution rates kurtosis, in specific years

5th yr 10th yr 20th yr 30th yr

oto Vh£OO

0.03 3.67 3.34 3.41 1.45 2.17 1.60

0.05 1.00 0.99 0.26 0.92 1.09 0.41

0.07 1.29 0.30 0.30 0.13 0.40 0.73
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In table 6.12, we present the values of kurtosis when the standard deviation of i(t) 

increases; as a, increases, kurtosis increases as well.

Table 6.12 Model I, Random Rates o f investment return: Fund /  Contribution rates 

kurtosis, E(i(t))= 0.05

Oi

Fund / Contribution rates kurtosis, in specific years

5th yr 10th yr 20th yr 30th yr 50th yr 100th yr

0.025 1.00 0.99 0.26 0.92 1.09 0.41

0.05 6.78 15.35 4.64 3.71 4.44 6.84

0.1 16.11 62.91 10.72 12.59 49.28 62.14

0.15 117.54 281.48 627.23 309.61 97.53 105.72
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6.7 MODEL II, RANDOM SPREAD PARAMETER ‘k’

6.7.1 ASSUMPTIONS

For Model II we considered the following different cases:

Case I Case II Case III Case IV Case V

amort, period amort, period amort, period amort, period amort, period

5 years 10 years 15 years 20 years 25 years

E(k(t))=—
aj\

E(k(t))=—  
aioj

E(k(t))=—
C t\5]

E(k(t))=—
Cl20\

E(k(t))=—
Cl25\

ax =  0.05 ox =  0.05 ox =  0.05 ox =  0.05 Q II o o k/1

ax =  0.10 ax =  0.10 ox =  0.10 ox =  0.10 ox =  0.10

>ro

OIID ox =  0.15 Ox =  0.15 ox = 0.15

T')

oII<<
D

We applied these values for the calculation of NC(t), AL(t), F(t) and C(t) of the 

following distributions:

Power function (p=0.8, p= l, p=l .5)

Truncated Pareto (k=0.3, k=0.8, k=l .5)

Truncated Exponential (a=30, a=40, a=50)

In all cases, the rates of investment return i(t) are assumed equal to 0.05, V t > 0 

Since the spread period parameter is assumed to be random, we consider that the spread 

period of 5,10,15,20 and 25 years is the value that corresponds to the mean of the 

distribution for the parameter X. Hence, throughout this section we refer to the mean 

spread period.
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6.7.2 D E S C R I P T I V E  M E A S U R E S  o f  th e  S A M P L E : A V E R A G E ,

V A R I A N C E  a n d  S T A N D A R D  D E V I A T I O N

6.7.2.1 Sample Average

iooo p  \
Simulations verify the expected result that the sample average, F(t) = ^  -— ,

£ = i 1000

1000 ^
C (0 =  approximate significantly the theoretical expected value EF(t), EC(t).

k=\ 1 ooo

As in Model I, section 6.6.2, the expected values EF(t) and EC(t) provided by the 

theoretical model remain unchanged as the standard deviation of the spread parameter 

changes. The sample averages change, since the value of the standard deviation affects 

the simulated data.

The assumption that the spread period parameter is a random variable implies that the 

period of amortizing the unfunded liability changes on a yearly basis according to X. In

other words, based on the equation X = — , as X changes, the number of years, ‘m ’ that
& m \

correspond to the value of X, changes as well. As a consequence, the Contribution rates 

in year t, depend not only on the growth of the Fund in year t-1,(resulted by all X values 

up to that time i.e. A(1),A(2), ...,/.(t-l)), but also on the number of years determined by 

the value of A,(t), specified through simulations, for year t .

The effect of /, on the Contribution rates becomes significant as ox increases, since the 

distribution becomes more spread out. In particular when ax is higher than 0.05, 

deviations are observed between the sample average and the theoretical expected value, 

EC(t), for the case where the mean spread period is longer than 10 years. When the 

mean spread period equals either 5 or 10 years, the sample average approaches the 

expected value provided by the theoretical formula. As it is extended between 10 and 20
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years, discrepancies are observed when a,, equals to 0.15. These discrepancies become 

more significant when G\ equals either to 0.1 or 0.15 and the mean spread period equals 

25 years. For these cases, we have increased the number of simulated paths. In 

particular for the case where the mean spread period equals 25 years and o\ 0.1 we have 

obtained convergence after considering 5,000 simulated paths over a 100 year period 

.The same result is also observed, when a,, increases to 0.15 .

6.7.2.2 Variance, Standard Deviation21 22

Both of the values VarF(t) and VarC(t) provided by the theoretical model change along 

with the standard deviation value of the spread parameter. The sample variance also 

changes, since the standard deviation value affects the simulated data.

For the case where the mean spread period equals 25 years, and 0 , 0.15, convergence 

between the sample average, s2F , and VarF(t) is achieved, after increasing the number 

of simulated paths to 3,000.

The sample variance for the contribution rates when the mean spread period is 

extended, for the cases where ax = 0.1 or a,.= 0.15 deviates significantly from the 

theoretical one, VarC(t). Focusing on the case where the mean spread period equals 25 

years and ox 0.1 we have proceeded as follows" : As a first step, we increase the 

number of simulated paths to 5000 over a 100 year period; the convergence, between 

the sample variance and the theoretical one, is not at a desired level. Based on this result

21 It generally holds that if  the sample average approaches significantly the theoretical expected value 
when a long spread period o f amortizing the unfunded liability is assumed, then, the same outcome will 
definitely hold for a shorter one.

22 the positive square root o f the sample variance, S F  , S c , gives the sample standard deviation.

2 ' The case where the spread period equals to 25 years and a ,  = 0 .1 5  was not considered since the 
variability o f the Contribution rates sample was very high and a desired result would not be achievable.
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and because both VarF(t) and VarC(t) (as determined by the theoretical formula) reach 

their long term values at some time, t>l 00 with a long spread period we extend the 100 

year period to 250, and increase the number of simulated paths to 2,000. The results 

show convergence between the sample average and the theoretical expected value. 

However, the skewness o f the distributions indicates that the number o f simulated paths 

should increase to achieve stability. For this reason, we test 10,000 paths over 250 

years. Checking the behavior o f the results provided by those data, we observe a higher 

level of convergence, especially as t is extended to 250 years, where the sample 

variance coincides with the theoretical one. This result, (based on 10,000 paths over 250 

years) is described in figure 6.3 where the sample variance is plotted against the 

theoretical one, VarC(t). The differences between the simulated and analytical results 

are due to sampling error which is reduced as we increase the number of simulations.

— — VarC(t) —— sample variance

Figure 6.3: VarC(t) vs Sample Variance, spread period = 25 years, ax = 0.1

In addition, we have shown (table 5.4) that the 25 years period when a>. = 0.15, is very close to the 
m’=33 years period, below which we obtain convergence.
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6.7.3 PERCENTILES

For each one of the standard deviations of X ' s, the 1%, 5%, 25%, 50%, 75%, 95% and 

99% percentile values of the Fund and Contribution rates are calculated.

The percentiles indicate the sensitivity of the Fund and Contribution rates level 

becoming either low or high as a result of changes in parameters for the proposed Log 

Normal model. The theoretical model does not enable us to calculate percentiles easily 

since we need to specify a distribution for the random inputs.

The concentration of the percentile values around the median is also examined, taking 

their difference from the median on a yearly basis. This process deals with the 

measurement of both the skewness and the kurtosis of the simulated data.

We observe that, for both the Fund and Contribution rates the main components 

affecting the magnitude of the percentiles and their concentration around the median are 

the length of the mean of the distribution and the standard deviation o f X,(t). In particular 

as either the value of the spread period that corresponds to the distribution mean or the 

standard deviation o f T(t) increases, the distribution becomes more spread out and the 

percentiles distance from the median increases.

As in Model I, section 6.6.3 the results show that as time, t, increases, both the spread of 

the percentiles of the Fund and Contribution rates’ around the median tends to become 

stabilized. This is expected since the parameter values we consider fulfill the 

requirements for convergence as t ->• co .
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6.7.3.1 Fund percentiles

In tables 6.13 and 6.14 the 1% and 99% percentile Fund values are shown at specific 

points of time, as a percentage of the Actuarial Liability. We chose those, since they 

reflect two extreme cases respectively. 1% percentile shows the value below which 1% 

of cases occur for the Fund level while the 99% percentile the value above which 1% of 

cases occur.

In order to compare the growth of the Fund level under the lowest and the highest 

standard deviation of lamda we assume that ox equals either to 0.05 or 0.15

Table 6.13: Model II, Random spread parameter : 1% percentile Fund values as a 

percentage o f the Actuarial Liability

am 1% percentile Fund values as a percentage of the Actuarial Liability

period Ox 5th yr O & 15th yr 20th yr 30th yr 40th yr 50th yr 80th yr >>
£oo

0.05 0.51 0.78 0.92 0.96 0.99 1.00 1.00 1.00 1.00

5ys 0.15 0.29 0.61 0.82 0.92 0.98 1.00 1.00 1.00 1.00

0.05 0.16 0.37 0.54 0.69 0.84 0.92 0.96 1.00 1.00

lOys 0.15 0.00 0.07 0.20 0.34 0.61 0.77 0.88 0.98 1.00

0.05 0.02 0.13 0.26 0.37 0.55 0.70 0.79 0.94 0.97

15ys 0.15 0.00 0.00 0.00 0.00 0.00 0.19 0.36 0.73 0.89

0.05 0.00 0.00 0.05 0.12 0.26 0.42 0.52 0.78 0.85

20ys 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.23 0.38

0.05 0.00 0.00 0.00 0.00 0.06 0.20 0.28 0.55 0.67

25ys 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 6.14: Model II, Random spread parameter: 99% percentile Fund values as a

percentage o f the Actuarial Liability

am 99% percentile Fund values as a percentage of the Actuarial Liability

period ox 5th yr 10th yr 15th yr 20th yr 30th yr 40th yr 50th yr

o00 100th yr

0.05 0.76 0.92 0.98 0.99 1.00 1.00 1.00 1.00 1.00

5ys 0.15 1.01 1.03 1.02 1.01 1.00 1.00 1.00 1.00 1.00

0.05 0.55 0.73 0.84 0.90 0.96 0.99 0.99 1.00 1.00

lOys 0.15 1.09 1.38 1.20 1.19 1.09 1.06 1.03 1.00 1.00

0.05 0.48 0.66 0.75 0.83 0.90 0.95 0.97 0.99 1.00

15ys 0.15 1.05 1.27 1.40 1.31 1.31 1.24 1.18 1.08 1.05

0.05 0.40 0.57 0.66 0.74 0.84 0.89 0.93 0.98 0.99

20ys 0.15 1.26 1.60 1.76 1.87 2.12 1.93 1.86 1.55 1.24

0.05 0.42 0.55 0.63 0.70 0.79 0.86 0.90 0.96 0.98

25ys 0.15 1.28 1.47 1.64 1.78 1.84 1.85 1.87 1.69 1.58

We make the following remarks on tables 6.13 and 6.14:

High values for the mean spread period (extended longer than 10 years) and the 

standard deviation are linked with a high variability. For the extreme case of the 1% 

percentile, there is a deficit; i.e. the scheme has insufficient assets. Hence, an 

unfavourable performance of the Fund at a certain time cannot be excluded. However, 

as in Model I, section 6.6.3.1, we also have to mention that these results are produced 

assuming that the starting value of the Fund level, F(0), equals zero. As an open 

question for the future we leave to examine the Fund level status when the starting 

value, F(0), is not equal to zero.When the mean spread period is low, the variability of 

the Fund is also at a low level, even as the standard deviation a,, increases. This is due 

to the fact that the unfunded liability is amortized quickly.
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In table 6.15, the relationship between the distance of the F(t) percentile values from the 

median (percentile value -  median value) is presented, at time t = 5,20 and 100 years 

assuming that ax = 0.05. The percentiles are grouped in corresponding pairs for ease of 

comparison.

Table 6.15: Model II, Random spread parameter: Difference between the Fund 

percentiles and the Median ax=0.05

Mean spread 

period

years median

Difference between the median and the 

respective percentile of the Fund

1% 99% 5% 95% 25% 75%

5ys

5 130.00 -25.75 25.64 -18.12 17.99 -7.69 6.89

20 200.98 -3.51 1.99 -2.27 1.52 -0.79 0.71

100 204.65 0.00 0.00 0.00 0.00 0.00 0.00

lOys

5 69.40 -37.39 42.47 -26.90 29.03 -12.27 11.36

20 166.15 -25.92 19.03 -17.18 14.63 -7.49 6.55

100 204.61 -0.12 0.03 -0.06 0.03 -0.02 0.02

15ys

5 40.68 -37.13 57.04 -26.68 37.32 -12.04 13.86

20 125.69 -49.79 43.48 -33.67 31.35 -14.14 13.78

100 203.10 -3.89 1.18 -2.21 1.00 -0.66 0.51

20ys

5 25.75 -35.70 55.72 -28.53 35.91 -12.90 13.63

20 94.32 -70.16 56.94 -49.88 38.62 -19.09 16.24

100 196.33 -21.43 6.50 -11.27 5.39 -3.54 2.69

25ys

5 17.62 -35.73 68.77 -27.77 47.82 -12.60 15.99

20 70.93 -72.38 71.79 -55.50 52.21 -23.74 21.06

100 182.46 -44.71 17.22 -28.18 14.92 -9.36 7.71
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Table 6.15 shows that for small values of t (example 5) and low values of the mean 

spread period (example 5), the lower percentile of each pair has a higher difference 

between it and the median than the upper percentile. When the mean spread period is 

longer than 10 years this is observed to occur at a higher value of t, which is expected 

since, as discussed earlier, stability is reached at a later time point when mean spread 

periods are increased.

As the value of the mean spread period increases, the gap between the percentiles and 

the median is higher, especially when the percentiles become more outlying. For 

example, when it equals 5 years, the difference between the median and 1% percentile 

in the 20th year is 3.51, in absolute values, and in the 5th year is 25.75, and between the 

median and the 99% percentile is 1.99 and 25.64 respectively; while when the mean 

spread period equals 25 years the corresponding figures in years 20 and 5 are equal to 

72.38, in absolute values, and 35.73 for the 1% percentile and 71.79 and 25.64 for the 

99% percentile; i.e. when the mean spread period is extended to 25 years in the 5th year 

the 1% percentile absolute value (18.11) is almost equal to the median value while the 

99% percentile value is almost 5 times higher than the median value. In year 20 the 1% 

percentile absolute value (1.45) is almost 49 times less than the median value while the 

99% percentile value is equal to twice the median value. When the mean spread period 

equals 5 years, in year 20 the percentile values are very close to the median while in 

year 5 there is some distance. In addition, when the mean spread period equals 5 years, 

in both cases the percentiles are at equal distance from the median. For the cases where 

the mean spread period is extended to 20 or to 25 years, in year 100, the distance of the 

percentiles from the median is, as expected, still significant since the long term value of 

the Fund is reached at a later stage than 100 years. This is an indication of the skewness
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in the distribution of Fund. In particular, it appears to become skewed to the left. 

Kurtosis could also be expected in the later years (see sections 6.7.4.1 and 6.7.4.2).

The effect of the standard deviation is described in Table 6.16 where the distance of the 

values of the fund percentiles from the median is calculated for different values of the 

standard deviation for the case where the mean spread period equals 5 years. The 

percentiles are grouped in corresponding pairs for ease of comparison.

Table 6.16: Model II, Random spread parameter, Difference between the Fund 

percentiles and the Median, spread period equals 5 years

standard

deviation

years median

Difference between the median and the respective 

percentile of the Fund

1% 99% 5% 95% 25% 75%

5 130.00 -25.75 25.64 -18.12 17.99 -7.69 6.89

0.05 20 200.98 -3.51 1.99 -2.27 1.52 -0.79 0.71

100 204.65 0.00 0.00 0.00 0.00 0.00 0.00

5 127.70 -47.27 52.28 -32.73 39.40 -14.03 15.06

0.10 20 201.28 -7.41 2.92 -4.51 2.40 -4.51 1.28

100 204.65 0.00 0.00 0.00 0.00 0.00 0.00

5 127.07 -68.19 79.19 -49.61 52.88 -21.32 23.20

0.15 20 201.89 -14.02 4.31 -8.72 2.86 -2.82 1.57

100 204.65 0.00 0.00 0.00 0.00 0.00 0.00

We make the following remarks on table 6.16:

The lower percentile of each pair has the higher difference between it and the median 

than the upper percentile. In particular, the distribution of the Fund appears to become 

skewed to the left (see sections 6.7.4.1 and 6.7.4.2). With a standard deviation higher

240



than 0.05, this outcome is observed, as expected, at a later stage, since, for the case 

where standard deviation value is high, stability is achieved later. Both kurtosis and 

skewness will increase along with the standard deviation increase (see sections 6.7.4.1 

and 6.7.4.2).

As discussed earlier, when the mean spread period is low, the unfunded liability is 

amortized during a short period of time, and the long term values of the Fund are also 

attained within a short spread period. This is clearly observed in table 6.16 as the 

distance of the percentiles from the median is at a considerable level in year 5 and 

significantly decreases by year 20.

6.7.3.2 Contribution Rates percentiles

High values for the Fund lead to low values for the Contribution rates and vice versa. 

However, we will discuss the Contribution rates percentiles because it is important to 

investigate how low / high these values become in response to fluctuations of the level 

of the Fund.

In tables 6.17 and 6.18 the 1% and 99% percentile Contribution rates values are shown 

at specific points of time, as a percentage of Normal Cost. We chose those, since they 

reflect two extreme cases respectively. From the 1% percentile we get the value of the 

Contribution rates below which 1% of cases occur while from the 99% percentile the 

value above which 1% of cases occur, when an unfavorable performance for the Fund is 

considered. In order to compare the Contribution rates level under the lowest and the 

highest standard deviation of lamda we assume that o>_ equals either to 0.05 or 0.15.
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Table 6.17: Model II, Random spread parameter, 1% percentile Contribution rates

values as a percentage o f Normal Cost

am

period ox

1% percentile Contribution values as a percentage o f Normal Cost

5th yr 10th yr 15th yr 20th yr 30th yr 40th yr 50th yr 80th yr 100th yr

5ys
0.05 3.48 1.83 1.26 1.09 1.01 1.00 1.00 1.00 1.00

0.15 0.72 0.71 0.71 0.89 0.98 1.00 1.00 1.00 1.00

lOys
0.05 2.82 2.06 1.62 1.40 1.17 1.07 1.03 1.00 1.00

0.15 0.22 -2.17 0.00 -0.50 0.35 0.67 0.84 0.97 0.99

15ys
0.05 2.11 1.85 1.63 1.51 1.20 1.16 1.09 1.02 1.00

0.15 0.72 0.30 -2.04 -1.14 -0.47 0.38 0.46 0.77 0.79

20ys
0.05 1.80 1.68 1.50 1.49 1.30 1.20 1.15 1.04 1.02

0.15 0.42 -0.47 -1.50 -3.56 -2.82 -1.56 -1.88 -0.14 0.11

25ys
0.05 1.53 1.48 1.43 1.35 1.30 1.18 1.15 1.07 1.04

0.15 0.26 -1.55 -0.99 -2.15 -1.18 -1.67 -1.37 -0.91 -1.60

242



Table 6.18: Model II, Random spread parameter, 99% percentile Contribution rates

values as a percentage o f Normal Cost

am 99% percentile values as a percentage of Normal Cost

period ax 5th yr 10th yr 15th yr 20® yr 30“ yr 40“ yr 50“ yr 80“ yr 100“ yr

5ys
0.05 7.37 3.80 2.11 1.43 1.07 1.01 1.00 1.00 1.00

0.15 10.35 6.00 3.07 2.04 1.20 1.03 1.00 1.00 1.00

lOys
0.05 9.56 7.02 5.27 3.81 2.42 1.65 1.30 1.03 1.01

0.15 13.90 10.78 7.79 7.14 4.06 2.72 1.72 1.09 1.02

15ys
0.05 10.83 8.32 6.96 6.20 4.61 3.04 2.44 1.38 1.17

0.15 14.59 13.07 12.03 11.26 9.47 6.48 4.61 2.43 1.69

20ys
0.05 11.08 8.62 8.04 7.67 6.04 5.21 3.91 2.29 1.77

0.15 15.25 15.06 13.71 12.60 11.14 10.77 7.52 4.96 3.08

25ys
0.05 11.00 11.14 9.28 9.58 7.95 6.69 5.81 3.94 2.72

0.15 14.72 14.35 15.00 14.46 12.72 13.60 12.07 8.30 7.94

We make the following remarks on tables 6.17 and 6.18:

When the mean spread period equals 5 years, the 1 % and 99% percentile coincide after 

year 30. This result is to be expected, since the Unfunded Liability is amortized during a 

short period of time. When the mean spread period exceeds 5 years, and as standard 

deviation increases, the contribution rates become more volatile.

As the mean spread period is extended, the 1 % percentile values decrease approaching 

each other throughout all years. As shown earlier when discussing the 1% percentile 

Fund values, the risk of possible losses increases along with the increase in the number 

of years over which the unfunded liability is amortized. Combining those results, we 

may conclude, that when a long mean spread period corresponds to the mean of the 

distribution of X, the frequency with which valuations are performed in the pension
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scheme should be increased, in order to check the adequacy of the Fund at close time 

intervals.

Table 6.19 shows the difference between the C(t) percentile values and the median, 

(percentile value -  median value), in years 5,20 and 100 under each value of the mean 

spread period we assume and for the case where c>. equals to 0.05. The percentiles are 

grouped in corresponding pairs for ease of comparison.

Table 6.19: Model II, Random spread parameter, Difference between the 

Contribution percentiles and the Median o, = 0.05

mean spread 

period
years median

Difference between the median and the respective 

percentile o f the Contribution rates

1% 99% 5% 95% 25% 75%

5 20.01 -6.83 7.86 -4.75 5.77 -2.24 2.33

5
20 4.56 -0.44 0.83 -0.32 0.55 -0.16 0.19

100 3.78 0.00 0.00 0.00 0.00 0.00 0.00

5 19.20 -8.54 16.97 -6.73 11.83 -3.43 7.72

10 20 8.17 -2.86 6.24 -2.37 4.05 -1.23 1.45

100 3.79 0.00 0.00 0.00 0.00 0.00 0.00

5 17.45 -9.45 23.50 -7.59 14.15 -4.19 4.78

15 20 10.10 -4.38 13.33 -3.77 7.90 -2.04 2.73

100 3.90 -0.10 0.51 -0.09 0.51 -0.05 0.09

5 15.79 -8.98 26.12 -7.87 15.66 -3.97 4.85

20 20 10.46 -4.84 18.54 -4.15 11.97 -2.23 4.02

100 4.32 -0.47 2.37 -0.39 1.33 -0.22 0.35

5 13.18 -7.41 28.40 -6.14 14.92 -2.90 4.77

25 20 10.87 -5.75 25.37 -4.90 13.07 -2.42 4.47

100 4.99 -1.07 5.31 -0.96 2.95 -0.52 0.89
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We make the following remarks on table 6.19:

The lower percentile of each pair has a smaller difference between it and the median 

than the upper percentile and this gap increases as the percentiles become more 

outlying. In addition, this gap becomes more prominent as the mean spread period 

increases. For example, when it equals 5 years, in the 20th year the difference of the 

75% percentile from the median (0.19) is 24% larger than that for the 25% percentile 

(0.16, in absolute values). For the 1% and 99% percentiles, the corresponding 

difference for the upper percentile is 90% larger than that for the lower percentile. 

Considering a mean spread period o f 25 years, the difference for the 75% percentile is 

84% larger than that for the 25 percentile and the difference for the 99% percentile is 

341% than that of the 1% percentile. This is an indication of the skewness of the 

distribution of Contribution rates. In particular, it appears to become skewed to the right 

(see sections 6.7.4.1 and 6.7.4.2).

The standard deviation effect is described in Table 6.20 where the distance of the C(t) 

percentile values from the median is presented by value of the standard deviation, for 

the case where the mean spread period equals 5 years. The percentiles are grouped in 

corresponding pairs for ease of comparison.
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Table 6.20: Model II, Random spread parameter, Difference between the

Contribution percentiles and the Median, spread period equals 5 years

standard

deviation

years median Difference between the median and the 

respective percentile of the Contribution rates

1% 99% 5% 95% 25% 75%

5 20.01 -6.83 7.86 -4.75 5.77 -2.24 2.33

0.05 20 4.56 -0.44 0.83 -0.32 0.55 -0.16 0.19

100 3.78 0.00 0.00 0.00 0.00 0.00 0.00

5 18.83 -10.16 16.34 -7.72 11.57 -3.75 3.99

0.10 20 4.45 -0.56 1.84 -0.48 1.19 -0.26 0.4

100 3.78 0.00 0.00 0.00 0.00 0.00 0.00

5 17.11 -14.39 22.04 -9.75 15.43 -5.00 6.30

0.15 20 4.28 -0.93 3.44 -0.52 2.08 -0.29 0.56

100 3.78 0.00 0.00 0.00 0.00 0.00 0.00

We make the following remarks on table 6.20:

The lower percentile of each pair has a lower difference between it and the median than 

the upper percentile. In particular, the distribution of the Contribution rates appears to 

become skewed to the right (see sections 6.7.4.1 and 6.7.4.2). As observed in table 6.16, 

section 6.7.3.1, when the mean spread period is low, the distance of the percentiles from 

the median are at a considerable level at low values of t, (for example, year 5), while 

significantly decrease thereafter (for example, year 20).
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6.7.4 SKEWNESS24 and KURTOSIS

6.7.4.1 Skewness in Model II 

Skewness is calculated for the years 1,5,10,20,30,50,100.

Tables 6.21 and 6.22 confirm the conclusions derived in section, 6.7.3, as far as both the 

Fund and Contribution rate values are concerned:

Specifically as presented in table 6.21, when the mean spread period is extended, the 

distribution becomes skewed to the left for the Fund and skewed to the right for the 

Contribution rates values.

We present skewness for both the Fund and Contribution rates since for model II the 

relationship between skewF and SkewC, i.e. skewF = - SkewC, does not hold as it holds 

for model I.

24 in Appendix 13 the definitions are quoted
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Table 6.21 Model II, Random spread parameter: Fund /  Contribution rates

skewness, o\ = 0.05

amort Skewness

period 5th yr 10th yr 20m yr

so J-h

£oin ^ ,
soo

5ys F(t) -0.01 -0.46 -0.82 -1.12 -1.31 -1.73

C(t) 0.25 0.61 0.90 0.99 1.69 1.84

lOys F(t) 0.21 -0.22 -0.42 -0.61 -0.96 -2.25

C(t) 0.70 0.86 0.93 1.27 1.61 2.48

15ys F(t) 0.61 0.23 -0.12 -0.49 -0.85 -1.81

C(t) 1.15 1.01 1.24 1.59 1.61 2.54

20ys F(t) 0.51 0.22 -0.24 -0.52 -0.77 -1.79

C(t) 1.20 1.09 1.45 1.68 1.96 2.62

25ys F(t) 0.81 0.38 0.00 -0.34 -0.55 -1.09

C(t) 1.95 1.79 1.93 2.45 2.31 2.32

As presented in table 6.22, when the standard deviation increases the distribution 

becomes skewed to the left for the Fund and skewed to the right for the Contribution 

rates values; in the later years it is clear that as c\ increases, skewness values increase as 

well.
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Table 6.22 Model II, Random spread parameter: Fund /  Contribution skewness, mean

spread period value = 5 years

cr>.

Skewness

5th yr 10th yr 20T yr 30th yr >>
soin &soo

0.05 F skew -0.01 -0.46 -0.82 -1.12 -1.31 -1.73

C skew 0.25 0.61 0.90 0.99 1.69 1.84

0.1 F skew 0.22 -0.50 -1.06 -1.69 -2.40 -5.09

C skew 0.55 0.94 1.53 1.98 2.88 5.98

0.15 F skew 0.31 -0.39 -1.28 -2.37 -4.05 -7.50

C skew 0.10 1.04 1.41 2.29 3.84 7.56

6.7.4.2 Kurtosis in Model II

Kurtosis is calculated for the years 1,5,10,20,30,50,100.Table 6.23 and 6.24 values 

below, confirm the conclusions derived in section 6.7.3, as far as both the Fund and 

Contribution rate values are concerned:

Specifically as presented in table 6.23, for small values o f t and low values of the mean 

spread period kurtosis is small; thus the distribution is close to the bell-shaped normal 

distribution. As kurtosis is higher than zero, a peaked distribution of the sample values 

is formed. In specific years, kurtosis takes negative values so that the distribution 

appears to be flat.
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Table 6.23 Model II Random spread parameter: Fund /  Contribution rates kurtosis

o\= 0.05

Amort

period

Fund / Contribution rates kurtosis

5th yr 10m yr 20th yr 30th yr 50th yr 100th yr

5ys
F(t) 0.14 0.58 1.22 2.66 2.62 3.76

C(t) -0.10 0.56 1.50 1.53 5.33 4.50

lOys
F(t) 0.05 -0.02 0.18 0.38 1.19 10.22

C(t) 0.23 0.93 1.19 2.14 4.39 10.13

15ys
F(t) 0.64 0.08 -0.26 0.22 0.93 5.56

C(t) 1.93 1.35 1.99 3.88 3.52 11.19

20ys
F(t) 0.40 0.08 -0.06 0.53 0.65 5.57

C(t) 1.72 1.38 2.52 4.50 6.35 11.26

25ys
F(t) 0.77 0.19 -0.19 -0.16 0.12 1.56

C(t) 5.95 4.70 5.65 9.61 8.71 8.96

In table 6.24, we present the values of kurtosis when the standard deviation of X,(t) 

increases; as a,, increases, kurtosis increases as well.
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Table 6.24 Model II, Random spread parameter: Fund /  Contribution rates kurtosis,

mean spread period value = 5 years

Fund / Contribution rates kurtosis, in specific years

5th yr &so

20th yr 30th yr 50th yr H
.

soo

0.05
F kurt 0.14 0.58 1.22 2.66 2.62 3.76

C kurt -0.10 0.56 1.50 1.53 5.33 4.50

0.1
F kurt -0.12 0.74 1.36 3.85 7.39 42.10

C kurt 0.22 1.11 3.71 5.95 11.49 53.86

0.15
F kurt 0.83 1.51 3.09 9.18 24.24 69.76

C kurt 2.34 1.36 5.92 7.35 21.34 75.63
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6.8 MODEL III, RANDOM RATES of INVESTMENT RETURN &

RANDOM SPREAD PARAMETER

6.8.1 ASSUMPTIONS

For Model III we considered the following different cases:

Case I Case II Case III

E(X) , E(i(t)) = 0.05
a\5\

E(X)=— , E(i(t)) = 0.05
a\5j

E(X,)= — , E(i(t)) = 0.05
ai5\

o, = ox -  0.05 o, = 0.10, = 0.05 Gi= 0.15, ax = 0.05

ai=  0.05, ox = 0.10 Oi = ax = 0.10 Gj= 0.15, ox = 0.10

Oi = O x  = 0.15 o,= ox = 0.15 Gi = ox = 0.15

We applied these values for the calculation of NC(t), AL(t), F(t) and C(t) of the 

following distributions:

Power function (p=0.8, p= l, p=1.5)

Truncated Pareto (k=0.3, k=0.8, k=1.5)

Truncated Exponential (o=30, o=40, o=50)

Since the spread period parameter is assumed as random we consider that the spread 

period of 15 years is the value that corresponds to the mean of the distribution for the 

parameter X . Hence, throughout this section we refer to the mean spread period.
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6.8.2 DESCRIPTIVE MEASURES of the SAMPLE: AVERAGE,

VARIANCE and STANDARD DEVIATION

6.8.2.1 Sample Average

1000 p  ( f \
Simulations verify the expected result that the sample average, F(t) = — ,

x= \ 1000

1000 q

« o =  approximate significantly the theoretical expected value EF(t), EC(t).
¿¿-I 1000

Both the expected values, EF(t) and EC(t), provided by the theoretical model, remain 

unchanged as the standard deviation of the rates of investment return and/or the spread 

parameter changes. The sample average changes, since the standard deviation value 

affects the simulated data.

As ox and a, reach high levels, the variability of the Contribution rates values increases 

significantly and we have to consider a higher number than 1,000 of simulated paths to 

obtain convergence. Specifically, for the cases where Gj=0.1, o,=0.15 and c>i=G)=0.15 

we increased the number of simulated paths to 4,000 and 3,000 respectively.

6.8.2.2 Variance, Standard deviation

Both the variance values, VarF(t) and VarC(t), provided by the theoretical model, 

change as the standard deviation value of the rates of investment return and/or the 

spread parameter changes. The sample variances also change, since the standard 

deviation value affects the simulated data.

As ox increases, the variability of the Fund and Contribution rates also increases 

especially, when a, value lies at a high level. This is an expected result, obtained as well 

under Model I and Model II under high standard deviation values, (see also appendix
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11). Under Model III, the distribution of the Fund and Contribution rates is more spread 

out than under either Model I or Model II, noting that, in addition, the random variables, 

i(t), /ft) are mutually independent.As an open question for the future we leave the case 

of examining the Fund and Contribution rates level when i(t) and /ft) are dependent 

random variables.

In table 5.5 we have shown that as either standard deviation increases (a, or ax) the

number o f years m* below which we obtain convergence decreases significantly.

For the case where a; = ax = 0.15, we have shown (table 5.5) that convergence cannot be

• ♦
obtained because the mean spread period, m , has to be less than 23.88 years. 

Convergence between the sample variance of the Contribution rates and the one 

provided by the theoretical model is difficult to obtain even after increasing the number 

of simulated paths. For the case where a; = 0.1, ax = 0.15, the sample variance seems to 

approach the variance provided by the theoretical model after increasing the simulated 

paths, over a 100 year period, to 10,000“ , (figures 6.6, 6.7). In figures 6.4 -  6.7 below, 

the sample variance of the Fund and the Contribution rates are plotted against the 

theoretical VarF(t) and VarC(t) respectively, for the cases where o, = a,. = 0.05 and 

aj = 0.1, ax = 0.15. Differences between the simulated and analytical results in figures

6.6 and 6.7 are due to sampling error; and these are reduced as we increase the number 

of simulations. 25

25 X outliers are omitted.
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VarF(t) F sample Var

Figure 6.4: VarF(t) vs Sample Variance, 07 = 07. = 0.05

VarC(t) C sample Var

Figure 6.5: VarC(t) vs Sample Variance, rr, = ax = ft 05

2 5 5
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7000

■■ — VarF(t)------ Fsample Var

Figure 6.6:VarF(t) vs Sample Variance, 07 = 0.1 and cx = 0.15

VarC(t) C sample Var

Figure 6.7: VarC(t) vs Sample Variance, 07 = 0.1 and ax = 0.15
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6.8.3 PERCENTILES

For each one of the standard deviations of k(t) and per each standard deviation o f i(t), 

the 1%, 5%, 25%, 50%, 75%, 95% and 99% percentile values of the Fund and 

Contribution rates are calculated.

The percentiles indicate the sensitivity of the Fund and Contribution rates level 

becoming either low or high as a result of changes in parameters for the proposed Log 

Normal model. The theoretical model does not enable us to calculate percentiles easily 

since we need to specify a distribution for the random inputs.

The concentration of the percentile values around the median is also examined, taking 

their difference from the median on a yearly basis. This process deals with the 

measurement of both the skewness and the kurtosis of the simulated data.

The results show that the higher effect on the growth level of the Fund comes from the 

randomness of the spread parameter when compared with that of the randomness of the 

rates of investment return. In addition, the results verify that a) the standard deviation 

assumed for either parameter, has a high impact on the growth level of the Fund and b) 

as time “t” increases, the distance o f the percentiles of the distribution of the Fund and 

the Contribution rates from the median tends to stabilize; this is expected since the 

parameter values we consider fulfill the requirements for convergence as t -» oo .

6.8.3.1 Fund percentiles

In the tables 6.25 and 6.26 the 1% and 99% percentile values are shown at specific 

points of time, as a percentage of the Actuarial Liability. We chose those, since they 

reflect two extreme cases respectively. 1% percentile shows the value below which 1%
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of cases occur for the Fund level while the 99% percentile the value above which 1% of

cases occur.

Table 6.25: Model III, Random rates o f investment return, random spread 

parameter: 1% percentile Fund values as a percentage o f the Actuarial Liability

a, ox

1% percentile Fund values as a percentage of the Actuarial Liability

5th yr 10th yr 15th yr 20th yr 30th yr 40th yr 50th yr 80th yr 100th yr

0.05

0.05 0.01 0.13 0.25 0.34 0.50 0.58 0.64 0.69 0.72

0.1 0.00 0.00 0.01 0.11 0.24 0.40 0.51 0.67 0.68

0.15 0.00 0.00 0.00 0.00 0.00 0.14 0.33 0.55 0.62

0.1

0.05 0.01 0.12 0.23 0.31 0.44 0.50 0.55 0.59 0.63

0.1 0.00 0.00 0.01 0.10 0.21 0.36 0.43 0.55 0.57

0.15 0.00 0.00 0.00 0.00 0.00 0.13 0.26 0.45 0.50

0.15

0.05 0.01 0.12 0.22 0.32 0.41 0.48 0.53 0.56 0.57

0.1 0.00 0.00 0.01 0.08 0.21 0.38 0.43 0.49 0.50

0.15 0.00 0.00 0.00 0.00 0.00 0.09 0.25 0.39 0.41
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Table 6.26: Model III, Random rates o f investment return, random spread parameter:

99% percentile Fund values as a percentage o f the Actuarial Liability

ax

99% percentile Fund values as a percentage of the Actuarial Liability

5th yr 10th yr 15* yr 20th yr 30th yr 40th yr 50* yr 80th yr 100th yr

0.05

0.05 0.46 0.68 0.80 0.92 1.07 1.29 1.33 1.45 1.57

0.1 0.86 1.01 1.10 1.16 1.28 1.32 1.36 1.53 1.45

0.15 1.05 1.20 1.31 1.32 1.43 1.50 1.45 1.56 1.70

0.1

0.05 0.47 0.73 0.92 1.14 1.37 1.55 1.70 2.02 2.15

0.1 0.84 1.01 1.11 1.35 1.48 1.68 1.74 2.26 2.44

0.15 1.17 1.43 1.51 1.62 1.79 1.78 1.95 2.24 2.25

0.15

0.05 0.54 0.82 1.11 1.36 1.67 2.58 2.30 2.54 2.78

0.1 0.88 1.13 1.38 1.63 1.75 2.54 2.38 2.68 3.13

0.15 1.11 1.58 1.58 1.71 1.84 2.66 2.54 2.69 2.76

The 1% and 99% percentile values presented in tables 6.25 and 6.26 as a percentage of 

the Actuarial liability, are at a similar level with those presented in tables 6.13 and 6.14 

for Model II, section 6.7.3.1 for the case where the mean spread period equals 15 years. 

The extreme case of the 1% percentile, shows that an unfavourable performance of the 

Fund, that may result in a Fund deficit, cannot be excluded. As in Models I and II 

sections 6.6.3.1, 6.7.3.1, we must also mention at this point that the starting value of the 

Fund level, F(0), has been assumed to be equal to zero. An open question for the future 

is to examine the Fund level status when its starting value, F(0), is different than zero.

In the following tables 6.27 and 6.28 the F(t) percentile values distance from the median 

is presented, in the years 5,20 and 100. The effect of the standard deviation increase is 

shown for each parameter separately, keeping the other constant at the level of 0.05.

The results are compared with those presented in Table 6.6, Model I section 6.6.3.1,
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and in Table 6.15, Model II section 6.7.3.1 for the case where the mean spread period 

equals 15 years. The percentiles are grouped in corresponding pairs for ease of 

comparison.

Table 6.27: Model III, Random rates o f investment return, random spread 

parameter: Difference between the Fund percentiles and the Median, a, = 0.05

Difference between the median and the respective percentile

Ox years median 1% 99% 5% 95% 25% 75%

5 39.89 -37.22 54.61 -26.92 35.99 -12.46 13.58

0.05 20 121.86 -51.55 65.92 -38.09 43.33 -16.78 16.61

100 192.76 -45.40 129.04 -34.96 59.50 -16.77 21.67

5 32.44 -51.25 143.37 -40.08 79.70 -19.30 27.54

0.10 20 122.04 -100.10 114.45 -73.90 73.87 -31.04 31.25

100 193.89 -54.35 103.77 -40.73 60.08 -16.40 22.12

5 25.65 -58.81 188.79 -49.04 113.13 -24.75 37.09

0.15 20 118.27 -153.66 151.66 -119.84 96.61 -41.46 42.37

100 193.82 -67.78 154.47 -44.92 67.73 -18.72 22.41
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Table 6.28: Model III, Random rates o f investment return, random spread

parameter: Difference between the Fund percentiles and the Median, o\=0.05

Difference between the median and the respective percentile

years median 1% 99% 5% 95% 25% 75%

5 39.89 -37.22 54.61 -26.92 35.99 -12.46 13.58

0.05 20 121.86 -51.55 65.92 -38.09 43.33 -16.78 16.61

100 192.76 -45.40 129.04 -34.96 59.50 -16.77 21.67

5 39.49 -37.06 57.50 -26.90 36.46 -12.23 13.77

0.10 20 117.13 -52.67 115.33 -37.32 56.59 -16.49 20.97

100 181.72 -52.28 257.83 -42.81 125.66 -20.82 33.81

5 38.88 -36.37 71.30 -26.43 39.73 -12.21 14.24

0.15 20 113.88 -49.20 164.04 -38.16 70.53 -17.69 19.56

100 170.88 -54.80 398.80 -43.90 170.65 -22.75 41.36

We make the following remarks on tables 6.27 and 6.28:

The upper percentile o f each pair has a higher difference between it and the median than 

the lower percentile. In particular, it appears that the distribution exhibits skewness to 

the right (see sections 6.8.4.1 and 6.8.4.2). When a, equals 0.15, (Table 6.27), the 

distribution of the Fund is spread out and this trend is not kept throughout all years. 

Specifically we observe that around year 20 and for some period of time thereafter, 

the lower percentile has a higher difference between it and the median than the upper 

percentile.

The effect of an increase in ox as O! remains unchanged (equal to 0.05) is not similar to 

that observed for Model II, table 6.15, in terms that in model II the distribution is 26

26 The number of simulated paths is increased up to 5,000.
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shifted to the left (skewness to the left), while in Model III it appears skewed to the 

right.

The effect o f an increase in a-t as a-,, remains unchanged (equal to 0.05) is similar to that 

observed in Model I, table 6.6, in terms that under both models, the distribution appears 

skewed to the right (see sections 6.8.4.1 and 6.8.4.2).

6.8.3.2 Contribution Rates percentiles

The 1% and 99% percentile Contribution rate values as a percentage of Normal Cost, 

are shown at specific points of time in the following tables, 6.29 and 6.30. As it has also 

been mentioned in sections 6.6 3.2 and 6.7.3.2 we think it is important to investigate

how low / high these values become in response to fluctuations o f the level of the Fund. 

Table 6.29: Model III, Random rates o f investment return, random spread parameter: 

1% percentile Contribution rates values as a percentage o f  Normal Cost

<7 cu

1% percentile Contribution rates values as a percentage of Normal Cost

5th yr 10th yr 15th yr 20th yr 30th yr 40th yr &5 o
 

ir) 80th yr

6OO

0.05

0.05 2.11 1.84 1.58 1.27 0.58 -0.21 -0.64 -1.44 -2.16

0.1 1.21 0.89 0.68 0.14 -0.74 -0.96 -1.51 -1.09 -1.44

0.15 0.80 0.39 -1.49 -0.31 -1.14 -1.08 -2.04 -1.41 -3.23

0.1

0.05 2.12 1.71 1.37 0.45 -0.34 -1.49 -2.81 -4.22 -4.56

0.1 1.22 0.96 0.63 -0.27 -1.75 -1.38 -2.32 -5.31 -7.88

0.15 0.36 0.19 -2.85 -1.51 -2.33 -1.73 -3.29 -4.01 -7.51

0.15

0.05 2.07 1.63 0.31 -1.12 -2.10 -5.71 -5.78 -6.09 -8.93

0.1 1.20 0.54 0.01 -1.28 -4.55 -6.69 -5.68 -6.42 -8.85

0.15 0.12 -0.12 -3.89 -2.36 -3.59 -4.37 -7.75 -6.11 -8.43
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Table 6.30: Model 111, Random rates o f investment return, random spread parameter:

99% percentile Contribution rates values as a percentage o f Normal Cost

a , c x

99% percentile Contribution rates values as a percentage of Normal Cost

5th yr 10th yr 15* yr 20* yr 30* yr 40* yr 50* yr i-.oO
O 100* yr

0.05

0.05 10.83 8.54 7.14 6.42 5.08 3.83 3.46 2.97 3.22

0.1 14.37 11.96 10.91 8.96 7.23 5.76 4.64 3.40 3.91

0.15 15.23 12.96 12.23 1 1 . 8 8 9.81 6.73 6.14 3.89 4.70

0.1

0.05 11.07 8.23 7.23 6.65 5.44 4.61 4.16 3.53 3.95

0.1 14.35 11.97 10.90 9.13 7.62 6.16 5.68 4.85 4.94

0.15 14.95 12.99 12.61 12.23 9.90 7.81 6.82 6.37 5.65

0.15

0.05 11.11 8.67 7.18 6 . 8 6 5.73 4.82 4.58 4.20 4.35

0.1 14.40 12.10 10.82 9.63 7.70 7.34 6.37 5.30 5.75

0.15 14.90 13.68 12.56 11.80 10.05 8.34 7.64 5.79 6.23

As in table 6.7 in Model I, in table 6.29 we observe that in the extreme case of the 1% 

percentile, the values may turn to be negative as the standard deviation, o,. increases. A 

result that implies that a refund of contribution may occur with a reasonable level of 

probability. However, since, as discussed earlier, the >.(t) effect appears to be higher 

than that of i(t) and given that as a,, increases in the extreme case of the 1% percentile 

the Fund level turns to be negative, we have to point out that when such values are 

obtained the adequacy of the Fund should be closely monitored .

The distance o f the Contribution rates percentile values from the median is presented in 

tables 6.31 and 6.32 in the years 5,20 and 100. The effect of the standard deviation 

increase is shown for each parameter separately, keeping the other constant at the level 

of 0.05. The results are compared with those presented in tables 6.8, Model I section

263



6.6.3.2, and 6.19, Model II section 6.7.3.2 for the case where the mean spread period 

equals 15 years. The percentiles are grouped in corresponding pairs for ease of 

comparison.

Table 6.37: Model III, Random rates o f investment return, random spread 

parameter: Difference between the Contribution percentiles and the Median, a = 0.05

O). years median

Difference between the median and the respective 

percentile of the Contribution rates

1% 99% 5% 95% 25% 75%

5 17.61 -9.63 23.35 -7.73 14.24 -4.27 4.85

0.05 20 10.23 -5.44 14.04 -4.03 9.19 -2.05 3.18

100 4.65 -12.83 7.54 -5.25 4.14 -1.56 1.53

5 13.59 -9.00 40.77 -7.67 26.02 -4.31 8.47

0.1 20 8.48 -7.95 25.41 -4.50 15.66 -2.56 4.54

100 4.33 -9.76 10.46 -4.62 5.46 -1.09 1.33

5 11.51 -8.50 46.08 -6.85 28.48 -4.31 8.13

0.15 20 7.25 -8.43 37.70 -3.72 20.68 -2.27 5.33

100 4.07 -16.28 13.70 -4.65 5.81 -0.66 1.17
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Table 6.38: Model III, Random rates o f investment return, random spread

parameter: Difference between the Contribution percentiles and the Median, o\= 0.05

<7, years median

Difference between the median and the respective 

percentile of the Contribution rates

1% 99% 5% 95% 25% 75%

5 17.61 -9.63 23.35 -7.73 14.24 -4.27 4.85

0.05 20 10.23 -5.44 14.04 -4.03 9.19 -2.05 3.18

100 4.65 -12.83 7.54 -5.25 4.14 -1.56 1.53

5 17.53 -9.51 24.32 -7.80 14.43 -4.21 4.77

0.1 20 10.41 -8.71 14.76 -4.71 9.17 -2.30 3.39

100 5.40 -22.64 9.54 -10.64 5.95 -2.40 2.03

5 17.62 -9.80 24.42 -8.07 14.32 -4.36 4.79

0.15 20 10.85 -15.09 15.09 -5.53 9.51 -2.71 3.30

100 6.15 -39.91 10.31 -13.97 6.85 -2.89 2.29

In tables 6.31 and 6.32, we observe that the distance of the percentiles from the median 

does not follow a stable pattern, especially as the percentiles become more outlying. In 

the first years the upper percentile o f each pair appears to have the higher difference 

between it and the median than the lower percentile, while thereafter the opposite is 

observed. This is an indication of skewness to the right in the first years, as in Model II 

section 6.7.3.1, and to the left thereafter, as in Model I section 6.6.3.1 (see sections

6.8.4.1 and 6.8.4.2).
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6.8.4 SKEWNESS27 and KURTOSIS

6.8.4.1 Skewness in Model III 

Skewness is calculated for the years 1 ,5 ,1 0 ,2 0 ,3 0 ,5 0 ,1 0 0 .

Tables 6.33 and 6.34 confirm the conclusions derived in section, 6.8.3, as far as both the 

Fund and Contribution rate values are concerned. In particular, as either standard 

deviation remains unchanged while the other increases skewness to the right appears for 

the distribution of the Fund. For the Contribution rate distribution, skewness to the right 

appears in the first years and to the left thereafter.

Table 6.33 Model III, Random Rates o f investment return, Random Spread 

parameter: Fund /  Contribution rates skewness, a, = 0.05

Ox

Fund / Contribution rates skewness, in specific years

5th yr 10th yr 20th yr 30th yr >>
aO f-i
5OO

0.05
F kurt 0.63 0.32 0.38 1.00 1.22 1.61

C kurt 1.17 1.01 1.14 0.51 -0.58 -2.46

0.1
F kurt 1.63 0.67 0.32 -0.04 0.45 2.04

C kurt 0.99 1.43 1.43 -8.92 -12.16 -0.32

0.15
F kurt 3.15 1.44 0.75 0.42 0.30 2.24

C kurt -23.36 -23.48 -26.61 -12.10 -5.62 -3.83

27 in Appendix 13 the definitions are quoted
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Table 6.34 Model III, Random Rates o f investment return, Random Spread parameter

Fund /  Contribution rates skewness, o, = 0.05

ai

Fund / Contribution rates skewness, in specific years

5th yr 10th yr 20th yr 30™ yr 50™ yr 100™ yr

0.05
F kurt 0.63 0.32 0.38 1.00 1.22 1.61

C kurt 1.17 1.01 1.14 0.51 -0.58 -2.46

0.1
F kurt 0.79 0.93 1.61 2.19 3.66 7.48

C kurt 1.18 0.91 0.58 -0.14 -4.08 -11.82

0.15
F kurt 1.11 1.86 10.52 14.57 9.47 9.11

C kurt 1.14 0.77 -9.59 -11.50 -4.60 -6.03

6.8.4.2 Kurtosis in Model III 

Kurtosis is calculated for the years 1,5,10,20,30,50,100.

Table 6.35 and 6.36 values below, confirm the conclusions derived in section 6.8.3, as 

far as both the Fund and Contribution rate values are concerned; when either standard 

deviation remains unchanged while the other increases, kurtosis values are very high.. 

In particular, assuming that c; does not change as a,, increases, for Contribution rates no 

kurtosis is observed, while Fund kurtosis is obtained for some period of time. When o,_ 

remains unchanged as C[ increases, for both the Contribution rates and the Fund, as the 

number of years increases, no kurtosis is observed.
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Table 6.35 Model III, Random Rates o f investment return, Random Spread

parameter: Fund /  Contribution rates kurtosis, a, = 0.05

Ox

Fund / Contribution rates kurtosis, in specific years

5th yr

so

20th yr 30th yr 50th yr J-H
£OOT—H

0.05 F kurt 0.77 0.29 0.62 4.51 3.37 5.45

C kurt 2.03 1.29 1.82 5.59 4.53 17.54

0.1 F kurt 5.97 1.11 0.90 0.72 1.12 11.76

C kurt 3.61 2.03 5.03 200.81 284.76 9.88

0.15 F kurt 20.35 5.82 4.77 4.87 3.15 12.93

C kurt 612.56 676.75 797.09 297.68 74.89 50.20

Table 6.36 Model III, Random Rates o f investment return, Random Spread 

parameter: Fund /  Contribution rates kurtosis, o\ = 0.05

Oi

Fund / Contribution rates kurtosis, in specific years

5th yr S-HJ**'»
£O

20th yr 30th yr 50th yr 100th yr

0.05 F kurt 0.77 0.29 0.62 4.51 3.37 5.45

C kurt 2.03 1.29 1.82 5.59 4.53 17.54

0.1 F kurt 1.59 2.54 6.50 10.30 31.95 90.36

C kurt 2.06 1.43 2.72 4.95 39.31 228.46

0.15 F kurt 2.94 9.65 201.45 313.62 161.60 144.97

C kurt 1.89 1.81 205.96 241.71 40.58 66.23
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6 .9 C O N C L U S I O N S

After the detailed analysis of the simulated data assuming that either or both parameters 

are random variables with Log Normal distribution, we have reached the conclusions 

below:

Under any pension accrual density function given that the expected value and 

standard deviation of the variable parameter are the same, similar conclusions are 

obtained for both the progress with time of the Fund and Contribution rate.

Simulations verify the expected result that the sample average, and the sample 

variance approximate significantly the corresponding values obtained by the 

theoretical model.

Analyzing the sensitivity of results to changes in parameters we observe that:

Both the level of the expected value of the random variable parameter and its 

standard deviation value have a high impact on the growth of the Fund and, as a 

consequence, on the Contribution rates level.

As either the expected value of the rates of investment return increases or the 

expected value of the spread parameter decreases (i.e. the number of years the 

unfunded liability is amortised increases), there is a greater probability that the 

scheme will at some time have insufficient assets.

As the standard deviation of either parameter increases, the distribution of the Fund 

as well as the distribution of the Contribution rates becomes more spread out.

269



When rates of investment return are random and with an initial funding level of 0%, 

the 1% percentile of the Fund distribution shows that there is not a possibility of 

deficit.

When either the spread parameter or both parameters are assumed as random 

variables and with an initial funding level of 0%, there is a non zero probability of 

deficit for the scheme; this probability appears to increase when standard deviation 

values are increased and the mean spread period is increased.

From the definition of skewness, in model I it holds that: skewF = -skewC.

In each model, skewness and low kurtosis values are observed over time, when the 

standard deviation values of either parameter (i(t) or k(t)) are low.
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APPENDIX 13

Skewness

A

The sample skewness, denoted by y 3, characterizes the degree of asymmetry of the

sample of all possible Fund values around the sample average.

Sample skewness is calculated through the following formula:

1  1000

;/, = ------ —------------- — , where n = number of sample values

(Z(F,-h  o ) 2)1
i= 1

and the outcome values compared with the conclusions derived when the distance of the 

percentiles from the median is examined.

Kurtosis

A

The sample kurtosis, denoted by y A, characterizes the relative peakedness or flatness of

28a sample, compared with the normal distribution .

Sample kurtosis is calculated through the following formula:

1000

y  4 = 100Q'=I----- -̂---------- 3, where n = number of sample values
( £ ( / ; - F (0)2)2

¿=1

The values are compared with the conclusions derived when the distance of the 

percentiles from the median was examined.

28 According to the definition above, the kurtosis for any normal distribution equals to zero.
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CHAPTER 7

CONCLUSIONS and EXTENSIONS

7.1 CONCLUSIONS

In our study we view the actuarial cost methods as ‘processes’ where time is 

considered, adding as another factor, in the pension scheme implementation, ‘the age of 

the plan participant’. In particular, we introduce the accrual density function m(x), so 

as to correspond to a probability density function f(x).

We have chosen the following distributions as being possible candidates for application 

to pension funding methods: Power function, Truncated Exponential and Truncated 

Pareto. The criteria set for our choice are the mathematical properties of m(x), its age 

profile and the interval range of its underlying parameters. In addition, we have taken 

into account the utility of the accrual function from the perspective of the actuary.

The comparison between the different methods is based on the portion of benefit 

purchased throughout the participant’s active years. The different distributions (and the 

set of parameters investigated) show how the portion of benefit varies along with the 

age of the scheme participant. Among the distributions chosen, we identify the Power 

function for its special property that allows m(x) to be associated with either a 

decelerating or an accelerating cost method, on the basis of the adjustment of the 

parameter p value.
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We conclude that there is no definite rule that either the actuary or the scheme 

participants should follow for the choice of the cost method, since this depends on the 

benefits provided by the pension plan, the sponsor’s financial plans, and the economic 

environment. However, if  the actuary thinks that it would be more appropriate to 

increase the contribution rate along with the age of the plan participant, the Power 

function with p>l has to be used. Otherwise either the Power function with p<l or one 

of Truncated Pareto or Truncated Exponential may be selected.

The pension funding functions have been calculated with the use of the density 

functions defining ‘New Cost methods’, which were compared with the ‘Traditional’. 

According to the results derived we have reached the following general conclusions:

The development of Normal Cost follows the pattern of the accrual function ‘m(x)’.

On the basis of the benefit allocation along with age increase there are two groups 

for the Normal Cost value. In the first group, the benefit is allocated in higher 

proportion as age increases and Normal Cost values are very similar when they are 

calculated either under the Current Unit Credit method or using the Power function, 

p > l. In the second group, the benefit is allocated in lower proportion as age 

increases and Normal Cost values are very similar when they are calculated either 

under the Entry Age Normal method or using one of the Truncated Exponential and 

the Truncated Pareto.
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The Actuarial Liability is higher under the density function that allocates larger 

proportions of the benefit at younger ages. In particular, the following inequalities 

hold for the accrued liability at time t as well as for the Actuarial Liability at age x

a) A L ( t )  <  A L ( t )  =  AL(t)(Uniform) ^  AL(t)(Truncated Exponential)

k k
b )  A L ( t )  < A L ( t )  =  AL(t)(Uniform) <  A L ( t ) (  T n m c  Jareio ) s an<̂

C) A L ( t ) (Power ,p>l) <  PUCAL(t) s  A L(t)(Unifoim ) <  EAN AL(t),

These inequalities show that in practice, among the different accrual functions, 

a lower Actuarial Liability is expected from those that are associated with an 

accelerating cost method than from the ones associated with a decelerating 

cost method.

An idea, which we have also developed, is to view the fund and contribution rates as 

‘processes’ with respect to time by modeling the parameter that amortizes the unfunded 

liability. Using a simple theoretical stochastic model built independently of the 

distribution assumptions, we have obtained theoretical results for the first two moments 

of the Fund and Contribution rates distributions. We have proceeded through a discrete 

time formulation for the cases where: a) i(t) are random variables and L(t) is constant, b) 

L(t) is a random variable and the rates of investment return ‘i(t)’ constant, c) both L(t) 

and i(t) are random and mutually independent. Independence is assumed between the 

Fund value, ‘F(t)’ and the random parameter.

The respective results produced by Dufresne (1988) and Owadally and Haberman 

(1999) have been extended after including the salary rate of increase. We show that the
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salary rate of increase is a key assumption for the Actuarial Liability level and thus for 

the expected value of the level of the fund and the contribution rates.

For each one of the above models:

■ Convergence for the first moments is obtained in an economic environment, where

i > -1 and if the interest earned during a year in excess of the amortization charge is 

lower than the salary rate of increase.

■ Convergence for the second moments is also observed, after restrictions are applied 

to the set of the parameter values. According to the parameter restrictions an 

‘optimal region’, m*, is specified for the number o f years, m, over which the 

unfunded liability is spread. We show that for m greater than a particular value m*, 

the variances of both the fund and the contribution are increasing functions o f m; 

the ‘optimal’ values o f m are 1 < m < m  .

Assuming that the salary rate of increase is equal to zero, when both i(t), k(t) are 

random variables, illustrative examples show that:

* The ultimate value of the standard deviation o f the contribution rates is not a 

monotonie function of k(t). Up to a certain value of L  there is a "trade o ff 

between the ultimate value of the standard deviation of the fund and the ultimate 

value of the standard deviation of the contribution rates.

■ When the spread period is below a certain number o f years, there is a ‘trade o ff 

between the standard deviation of F(oo ) and the standard deviation of C(oo ); as 

F(oo) increases, C(°o ) decreases.
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■ As i(t) value approaches zero, the ultimate value o f standard deviation of the 

fund increases, while the ultimate value of standard deviation of the contribution 

rate decreases.

Dufresne (1988) has showed the above results for the case where the rates of investment 

return are i.i.d. random variables. In this work, Dufresne’s results have been extended 

for the case where both i(t) and L(t) are mutually independent random variables.

Simulations performed assuming that either or both parameters are random and 

distributed as Log Normal random variables. For our choice, we have taken into 

account the fact that the Log Normal is convenient for evaluating the value of the fund. 

We have also considered that it has been used by many others researchers for the case 

where the i(t) are assumed to be random variables. For X, the stochastic approach is 

new; we have investigated the Log Normal distribution for reasons o f consistency, and 

also thinking about potential future work, which would involve examining i(t) and k(t) 

assuming dependency.

For either one of the above cases, we also assumed that the pension plan is implemented 

based on a different pension density function each time with a 0% initial funding level.

According to the results derived, we have reached the following general conclusions:

■ Under any pension density function given that the expected value and 

standard deviation of the variable parameter are the same, similar 

conclusions derived for both the Fund and Contribution rates progress 

with time. The level of difference between either the sample average and
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the theoretical expected value or the sample and the theoretical variance 

in all models: a) tends to decrease slightly when the plan is implemented 

using either the Power or the Exponential density function as the 

parameters p, a  respectively increase; b) tends to increase along with the 

increase o f the parameter k when the plan is implemented under the 

Truncated Pareto. The same hold when comparing the level of the 

percentile values.

■ Analysing the sensitivity of results to changes in parameters:

Both the level of the expected value of the random variable parameter and 

its standard deviation value have a high impact on the growth of the Fund 

and, as a consequence, on the Contribution rates level.

As either the expected value of the rates of investment return increases or 

the expected value of the spread parameter decreases (i.e. the number of 

years the unfunded liability is amortised increases), there is a greater 

probability that the scheme will at some time have insufficient assets.

As the standard deviation of either parameter increases, the distribution of 

the Fund as well as the distribution of the Contribution rates becomes more 

spread out.

In each model, skewness and low kurtosis values are observed over time, when 

the standard deviation values of either parameter (i(t) or >.(t)) are low.
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7.2 FUTURE WORK

Throughout the implementation of our work, questions relating to the models used and 

assumptions made have arisen suggesting further, future steps in our approach to 

pension funding. In particular:

We have assumed that the Fund value at start ‘F(0)’ equals zero. Future work could 

investigate Fund performance when the initial funding level is different than 0%.

We are also aware that our analysis disregards the important issue of dependency 

between the rates of investment return ‘i(t)’ and the spread parameter 'k(t)’. This 

issue though raises deeper questions and clearly needs much further research. We 

would propose two Log Normal models with a correlation coefficient p * 0.

Dependency as well could be investigated between L(t) and F(t) noting that the 

fund level heavily depends on the assumption concerning k(t).

Besides the above, more general questions on the basis of our work could be 

investigated. A few ideas for further research are the following:

For Models I and III we have assumed that the rates of investment return are i.i.d. 

random variables. Future work could investigate as well the effect of introducing 

time series models of i(t).

Future work, could also consider other risk measures for both F(t) and C(t), for 

example, measures based on conditional mean shortfall.
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