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ABSTRACT

This thesis is mainly concerned with the dual 
fundaments of informetrics. After an intuitive introductory 
chapter, we study, in a broad informetric context, general 
information production processes (IPP) (both discrete and 
continuous ones) and duality principles (between the 
sources and the items) in them in an exact and formalistic 
way. Classical informetrics evolves from this study as an 
example of a purely dual situation. The general duality 
technique is also able to recover new informetric laws 
(including a modelling of the Groos droop) that are easy 
to fit in practice.

We present also parameter relations and classifications 
of some informetric laws, using only exact mathematical 
techniques. The most interesting features here are : the 
study of the group-free version of Bradford's law, the 
generalised Leimkuhler law and the place of Zipf's (or 
Pareto's) law in this context. Also the derivation of 
some formulae for some parameters, appearing in the group- 
dependent version of Bradford's law, is non-trivial and 
very useful in the sequel : they are e.g. basic tools in 
the fitting of the "nuclear" part of the Leimkuhler graph, 
even if a Groos droop is apparent, a result that has nice 
applications. Also the generalised Lotka and Leimkuhler 
functions are fitted.

The thesis is rounded off by a summary of the results.

v i i i
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CHAPTER I : INTRODUCTION

1.1. The background of the present study

Studies of many aspects of the social sciences need, 
first, relevant data and then, secondly, an analysis of 
these data, applying the most appropriate quantitative, 
analytical techniques available for the purpose. In this 
sense, such studies run parallel with analogous studies 
in the physical sciences. But, compared with the analytical 
techniques of the physical sciences, the available 
techniques applicable to the social sciences are weak, 
primitive and incoherent.

That there are indeed many differences between the 
analytical techniques available for the physical and social 
sciences has been pointed out, for instance, in the work of
S.D. Haitun (1982 a, b, c and 1983). He noted the dichotomy 
between the type of statistics that is needed : the well- 
known Gaussian statistics for the physical sciences and 
the far less well-known "Zipfian" statistics, involving 
distribution functions without finite moments (or with, 
at most, one finite moment : the mean), which is the type 
of statistics that seems to be appropriate for the social 
sciences.

Though some valuable work of applying Gaussian 
techniques to Zipfian distributions has been done, (Sichel, 
1986) and (Burrell, 1988), these techniques usually become 
very difficult and do not reach far enough. They further-
more deal only with frequency distributions; in the social 
sciences one needs also techniques to analyse ranks, which 
require, obviously, more detailed aspects of statistics.

In conclusion, one can say that the close relation 
between mathematics/statistics found in the physical sciences 
does not exist in the social sciences. Moreover, applications 
of mathematics/statistics to the social sciences, are not 
comprehensively systematic.

1



So, as a mathematician, I see a field of enquiry, 
inviting an attempt to provide a mathematical framework 
which is at present lacking.

1,2. The general approach

t
An approach to the application of mathematics to the 

empirical sciences has been propounded by Stefan Korner 
(1969). He suggests that three steps are needed :
1. Inexact empirical concepts have to be replaced by exact 

mathematical concepts.
2. Exact conclusions are then deduced from these mathematical 

concepts.
3. The exact mathematical conclusions are then replaced by 

empirical concepts.

As a model of this type has never been developed for 
the social sciences, the present work is the first of its 
kind. However, we must clarify the terminology.

1.3. Sources of the empirical laws : terminology

Throughout the literature one finds the terms : 
bibliometrics, scientometrics, informetrics, econometrics, 
sociometrics, quantitative linguistics, and so on. It is 
not clear what the exact definitions of the above subjects 
must be (for a review on this problem, see e.g. (Egghe, 
1988b)). Clearly, there is an overlap between fields and 
certainly between bi bli ometri cs and sci entometri cs. Sc i ento-
metri cs has been used mostly in Eastern Europe and the term 
bi bliometri cs may be considered as its Western equivalent. * I
The term i nformetri cs is the most recent and to my idea, 
is the most general £ / ^   ̂ ) )

I therefore adopt the term informetrics as the generic 
term for all the above (and possibly other) disciplines. The 
other terms will be used whenever they are linked with a
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historically recognisable regularity such as, for example, 
Pareto's law in econometrics. The mathematical model to be 
developed in this work, is basically independent of the 
different "-metrics". Applications to specific "-metrics" 
will however be given, whenever possible.

It is then within this general informetric framework 
that we will consider Information Production Processes :

1.4. Information Production Processes (IPP). Sources and 1
i terns

In this work we will use the notions "information 
production process" (IPP) in which there are two kinds of 
entities : the sources and the i terns produced by these 
sources. Exact definitions follow in the next chapter.
Let us give some examples.

1. In econometrics we can give the example of a group 
of workers or employees and study their productivity (Theil, 
1967). Productivity can be measured in several ways : as 
quantity (numbers of produced items), as quality, orin terms 
of profits (number of pounds earned in a certain time period). 
In this example, the choice of the term "production" is quite 
clear. In a more general way the next examples can also be 
considered as information production processes.

2. In demography one considers cities and villages 
in conjunction with their populations.

3. In linguistics one considers words (as entities
or "types" - as is often used in linguistics (Herdan, I960)) 
and their occurrences (or "tokens" in 1inguistic terms) in a 
given text (book, article, ...) (Zipf, 1949).

4. In bibliometrics one can study books in a library 
and the number of times they are borrowed, say, in a year 
(Burrell and Cane, 1982).

3



5. One can also study a group of researchers and 
the number of publications they produce, say in a ten-year 
period (Lotka , 1 926).

6. Still in bibliometrics, one can consider a biblio-
graphy (on a specified topic), in which the contributing 
journals produce papers (Bradford, 1934).

7. Papers themselves can be considered as sources 
rather than as i terns in the previous case. Thus, a set of 
papers can be considered together with the citations they 
receive within a fixed time period (Garfield, 1983). In 
this connection one has the "cited" relationship between 
papers. An interesting point to make here is the well-known 
fact that another example can be constructed when "cited" 
is changed into "citing". An equivalent way of expressing 
this is : retain the term "cited" but interchange the two 
sets of papers. This is a first indication of what this 
work is mainly concerned with.

In all of the above examples one has an IPP consisting 
of sources that produce i terns. Hence these terms can be used 
as generic terms in the theory to be developed.

1.5. Empirical laws and corresponding mathematical functions

The regularity that is the simplest to be introduced 
is the law of Lotka.

1.5.1. The law of Lotka

In 1926, A.J. Lotka (1926) studied a 10-year 
Cumulative Index of authors listed in Chemical Abstracts 
(1907-1916) and Auerbach's Geschichtstafeln der Physik 
(1910) was also examined.

He found the following regularity : if f(j) denotes 
the number of authors with j publications, then

4



(1 .1 )

where a « 2 , but not necessarily a = 2.

If a = 2, then

C = T « 0.6079 T , ( 1 . 2 )
TT

where T denotes the total number of authors. Function (1.1) 
will be called the Lotka function, as it expresses the law 
of Lotka.

The other empirical laws all relate to rankings of 
the IPP.

1.5.2. A ranking (intuitively)

In the sequel , we suppose the following ranking on 
the sources of an IPP : the most productive source receives 
rank 1, then the second rank is for the second most productive 
source, and so on : the last rank (T) is for the source with 
the least production; ties are broken arbitrarily (see also 
the next chapter for a more accurate description).

1.5.3. The laws of Zipf and Mandelbrot

Formulated originally in linguistics, Zipf's law can 
be expressed thus (Zipf, 1949) : Order the words in a text 
in decreasing order of occurrence in this text. Then the 
product of the rank r of a word and the number of times j 
it is used in the text is a constant for that text :

r. j = E (1.3)

or, putting j = g(r) :

g(r) = -p . (1.4)

More generally one can formulate the following 
general Zipf function :

5



9<r> ' 4r (1.5)

where F and 3 are constants.

From the same context, but with an expression 
different from (1.5) is the law of Mandelbrot (Mandelbrot, 
1954 and 1977).

g ( r ) =
( 1 + Hr) B ( 1 . 6 )

where G, H and 3' are constants

1.5.4. The law of Pareto

This law is formulated in econometrics (Theil, 1967). 
It states that the number h(j) of workers with an income 
larger than or equal to j is

h(j) = , (1.7)
jT

where L and y are constants. As is obvious in combining 
1.5.3 and the above (with an obvious unification of the 
terminology), we see

r = h(j) = 4- 
j 1

or

and hence

l 1/y
g(r) = ^  (1.8)

In conclusion, the Pareto function and the Zipf function 
are identical though their respective laws apply to different 
contexts. This kind of identity is another issue to be 
considered in the general context of informetrics.

6



1.5.5. The law of Leimkuhler

Consider a bibliography of papers on a specific 
topic, published in journals. Using the order of 1.5.2 
and denoting by F(x) the cumulative fraction of papers
in the journals of rank 1,2,__,r, where x <= y, the
cumulative fraction of the journals, we have :

F ( x ) l og (1 + ¿ x ) 
T o g  ( 1 + <5 ) ’ (1.9)

where 6 is a constant (Leimkuhler, 1967). In the sequel we 
will work with the function R(r) = F(x).A (A = the total 
number of papers and r = x.T. We hence have the following 
Leimkuhler function (equivalent to formula (1.9)) : Let R(r) 
denote the cumulative number of items in the journals of 
rank 1,2.... r. Then

R(r) = a log (1 + br) , (1.10)

where a and b are constants. A Co/*. /w«^j

<\A/\X-£k A 'a ©-
1.5.6. The law of Bradford

The most intriguing of all the empirical laws is 
that of Bradford (Bradford, 1934) based on observations 
of bibliographies on Applied Geophysics, 1928-1931 (incl.) 
and Lubrication, 1931-june 1933.

We present it here in its original definition which 
is, as far as I can see, clear enough. We must remark how-
ever that some informetrists have been confused by its 
formulation, giving rise to what is now known as the "verbal" 
and the "graphical" formulation of Bradford's law (which are 
not exactly equivalent). For the difference between these 
laws, see the third chapter. We present here the original 
"verbal" version. It states :
Order the journals in decreasing order of the number of 
papers (in this bibliography) they contain. If the journals 
are subdivided into p groups (according to the above order) 
such that each group of journals contains the same number

7



yQ of papers in this bibliography, then there exist rQ and 

k > 1 such that the first group has rQ journals, the 

second has rQk journals, the third has rQk journals and 

so on, until the last (p^*1) group, contains r^k*5  ̂ journals.

Otherwise stated, if p is a given positive integer

(denoted p e IN), then there exists rQ e IN and k > 1

(a real number) such that the first (most productive) rQ

journals produce yQ = ^ (A = total number of papers) papers,
2

the next rQk journals produce again yQ papers, the next rQk 

journals also produce yQ papers, and so on, until the last 

(least productive) i^k*3-  ̂ journals producing again yQ papers.

One aspect of this formulation is the kind of symmetry 
between the journals and the papers. If we represent the 
bibliography and the order on it by a straight line (or 
better, an axis with coordinates the ranks of the journals),

_i____i____i_____________________________ _________________ n
1 2 3  ... T r

Fi g . 1.1 : The rank-axis

then we feel intuitively that, when going from left to 
right, the "visibility" of the journals is changed into 
the "visibility" of the papers. We continue this heuristic 
approach in the next paragraph.

1.6. Heuristic approach to duality

In this paragraph we will analyse the information 
production processes (IPP), introduced in 1.4, together 
with some of their historical regularities, introduced in 
1.5. The analysis here will remain heuristic (reflecting

8



the way in which the formal concepts developed in the 
author's mind!) and it is our hope that, in this way, 
the formal theory, to be developed in the next chapters, 
will become clearer and convincing.

A. From 1.4 it is clear that, in IPP 1 s , we deal with
two sets : the set S of sources and the set I of items.
Indeed, unifying 1.4 we can make the fol1 owing Table 1.1 :

Subject Sources I terns

econometri cs workers their salary

demography cities their inhabitants

linguistics words their occurrence 
in a text

bibliometrics books their borrowings

bib!i ometri cs and 
research policy researchers their publications

bibliometri cs journals papers in them 
(on a fixed topic)

bibliometrics and 
research policy papers the citations 

they receive

bibliometrics and 
research policy papers

the citations 
they give (i.e. 
the references)

Table 1.1 : Examples of information production processes

I would call a 1-dimensional i nformetri c study, any 
study dealing with the sources ĉ r the items separately 
(i.e. not linked with each other).

Examples : 1 2 3 4
1. The numbers of books in a library.
2. The numbers of circulations in a library.
3. The total number of publications in geography (say in

a year).
4. The total number of researchers in mathematics in 

Belgi urn.

9



Such data can be very interesting, especially in 
the connection with evolution in time. Many publications 
have resulted from such studies.

However, as is clear from the above table and also 
from 1.5, one can also develop what I would like to call 
2-dimensional study of informetrics. This is, a study of 
the quantitative properties of the sources vs. the items 
and/or vice-versa.

Examples : * So,
1. The average number of circulations of books in a library.
2. The historical laws, described in 1.5.
3. The evolution of the average number of citations per 

publication in physics.

So, central to this 2-dimensional setting is the 
source-item-relationship. Again, there are many publications 
dealing with this kind of problem. Our main focus in this 
work is the theoretical basis of such a situation.

The law of Lotka, as introduced in 1.5.1,i s certainly 
an example of a model in 2-dimensional informetrics. But, 
as compared with the other laws described in 1.5, it is a 
more primitive law : indeed, for this law we do not need 
to introduce an ordering on the set of sources, as is 
indeed needed in all the other laws 1.5.3 - 1.5.5 (even 
in Pareto's law, the order is implicitely assumed).
Expressed differently, from any of the settings 1.5.3 -
1.5.6 we can derive the form of the 1.5.1-setting, but not 
conversely. These matters are well-known : we talk here 
about the difference between frequency distributions and 
rank-order distributions.

So, a "complete" 2-dimensional informetric study 
requires not only the set of sources and the set of items, 
but needs also a device function expressing what items are 
produced by what sources. We hence have the system

(S.I.i)
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where S is the set of sources, I is the set of items and 
i is the device function. This formalism will be studied 
more systematically in the next chapter, where detailed 
definitions will be given.

Another aspect of informetric studies is the problem 
of explaining certain regularities (e.g. the laws in 1.5).
It is not easy to say what "explaining" means. Let us content 
ourselves here by considering as a contribution to an explan-
ation, every logical argument leading to one or another form 
of regularity. In this sense, several explanations of the 
laws described in 1.5 (and others) (hence of 2-dimensional 
informetrics) have been given : by Price ( 1 976), Bookstein 
(1984), Mandelbrot (1977).

The best known of these explanations is the so-called 
"success-breeds-success" principle expressing simply that 
the more items a source has already published, then the 
greater is the probability that this source will produce 
another item. This principle leads to a form of Lotka law 
and is therefore valuable.

In this work, however, we start differently and, in 
a way, also from a more elementary point of view in our 
approach to 2-dimensional informetrics. All the known 
explanations start from an assumed property (principle, 
axiom, ...) between sources and items and there is nothing 
wrong with that : if we want to prove a certain law, we 
must assume some property! Later on in our approach we 
will do the same (f.i. in order to prove that Bradford's 
law belongs to a class of laws with special properties).
But we start by pointing out that two different approaches 
to every problem in 2-dimensional informetrics are possible : 
the one looking at (sources, items) in this order and the 
other looking at (items, sources) in the reverse order. We 
call this the duality principle as applied to informetrics. So,

So, our first claim is not a property that can be 
proved or denied (such as the success-breeds-success principle) 
but a more elementary procedure that needs no proof : the 
duality aspect of 2-dimensional informetrics.



In other words, this duality aspect points only to 
a procedure : every time we look at a function or property 
relating (sources, items) in this order, we also consider 
the corresponding function or property, relating (items, 
sources) in this order. We might even use both functions 
at the same time. The fact that we have, in all these 
problems, the disposition of a pair of functions might 
lead to new results and in fact does so as will be shown 
in the next chapter.

After this, we can formulate a property from which 
we might try to derive a known law.

This approach is new, although the concept of duality 
- between types and tokens in linguistics - was already 
formulated in (Herdan, 1960), but no mathematical exploration 
of this principle followed. It makes no initial assumptions. 
Also, since new, applicable results will be obtained, this 
approach is productive.

This dual approach to informetrics can also be 
compared with the duality principle in geometry. In geometry 
one considers the duality between straight lines and points. 
Also in geometry, this principle is just a procedure and not 
something that has to be proved in itself. The branch of 
geometry devoted to these duality aspects is called projec-
tive geometry. Every time one obtains a theorem proving a 
property between points and lines (in this order), one can 
formulate the dual theorem by interchanging of the words 
lines and points. This is the duality procedure. After this 
action, one still needs to prove the dual theorem thus 
obtained, since duality in itself cannot and does not have 
to be proved.

1.7. Other approaches

In this work we restrict ourselves to 2-dimensional 
informetrics since, in this framework, we find many

12



interesting problems. No doubt, in the future, a 3- 
dimensional approach would be possible.

Examples :
1. Journals have papers and these papers are written by 

authors.
2. Journals have papers and papers receive (or have) 

citations.
3. Papers have references but do also receive citations.

These examples conform, schematically with the 
following diagrams and graphs :

Pi agram

1. Journals Authors

\ /
Papers

2. Journals

Papers

I
Citations

3. Papers

/  \
References Citations 

Fig.1.2 : Schemes of three dimensional informetrics.

One can even think of 4-dimensional (or even higher 
dimensional) informetrics. This is not an easy problem and 
can be the subject of several research projects.

Graph

V

V
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Another fundamental viewpoint of informetrics, 
different from the above, is the "many-to-many" re 1 ationship, 
as was pointed out to me by S. Robertson. It is in contrast 
with the above techniques in that it studies (e.g. in the 
2-dimensional version) many sources versus many items. We 
have here the study of the relationship between a set 
and a set 1̂  such that S1 is a subset of the source set S,
¡I is a subset of the item set I and where the "device" 
function now is

f : S1 11 (or «- )

An example is offered by 
11 = a set of index words 
S,j = the set of papers
f = the function "saying" that the sources in have the 

index words in 1^.

In our approach, is a singleton, but many 
singletons may be linked with the same item set 1^.

1.8. Overview of the results

In the next chapter we will formalise the above 
heuristic approach giving operational definitions of 
"Information Production Processes" (IPP's) and by defining 
duality in them. This will be done for continuous as well 
as for discrete processes.

It will be proved that Bradford's law is the only 
(known) informetric law that has a pertinent property : 
the IPP and its dual IPP have the same informetric calculus.
In this connection, the Bradford function for continuous IPP's 
is defined in a group-free way, yielding also a group- 
independent Bradford factor.

Using the duality technique again we find the new 
laws of Bradford and Leimkuhler, equivalent with the general

14



laws of Lotka

f(j> - 4  a - 1 >
j

(a > 1).

Hence this chapter is mainly concerned with duality 
and the derivation of informetric laws from it. I would like 
to call this : first order informetrics.

The next (third) chapter deals then with second order 
informetrics : classification of informetric laws (showing 
also the special place of Zipf's (Pareto's) law amongst the 
informetric laws and hence of linguistics (econometrics) 
w.r.t. informetrics), and proving methods (again based on 
the duality formalism) for calculating parameters of the 
several informetric laws dealt with in the previous chapter. 
For example, an explicit formula for the Bradford factor is 
proved (using again a duality argument).

In the fourth chapter, these methods form the basis 
for calculating Leimkuhler's function, given a table of 
practical data. In connection with the often encountered 
deviation from Leimkuhler's curve (the so-called Groos 
droop, see (Groos, 1967)) we provide finer fitting methods 
for the first part of a Leimkuhler curve (before the Groos 
droop appears). This in turn has applications in the 
determination of core-collections and of the completion 
of bibliographies.

We provide also methods for calculating the general 
Lotka function (1.1), given a table of raw data and we show 
that our methods - though simpler than some of Nicholls and 
Tague - provide comparable fits. Furthermore, we fit the 
generalised Leimkuhler function (shown in the previous 
chapter) by the same methods and calculations as are needed 
in fitting Lotka's function.

15



The last chapter is devoted to a general summary 
of the most important results, that are discussed in this 
work.

Informetrics can be developed in several different 
ways. Other distribution functions can be considered and 
other methods of investigation are thinkable. This work 
has the aim of presenting one viewpoint of informetrics 
and tries to be consistent within this viewpoint. Apart 
from consistency, we also aim to be as accurate as possible 
in the mathematics used. Approximations - when necessary - 
are clearly defined and explained logically : they become 
part of the theory rather than being weak points withrn it. 
Concerning the mathematical results and formulae we make 
use of, the reader is referred to (Apostol, 1974), (De Lillo, 
1982) or (Gradshtein and Ryzhik, 1965).
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CHAPTER II : DUALITY IN INFORMATION PRODUCTION PROCESSES

11.1. Definition of Information Production Processes (IPP)

We disting|uise between continuous and discrete IPP's. 
Discrete IPP's are exact models of practical situations such 
as for instance the examples in section 1.4, but continuous 
IPP's are close enough models for large discrete IPP's and 
certainly contain (in the subset sense) all the discrete 
IPP's. Continuous IPP's also give more insight in both the 
dual theory of IPP's and also in Bradford's law (coming 
up). In general, continuous IPP's are mathematically easier 
to handle than discrete IPP's.

II.1.1. Continuous IPP's

A conti nuous IPP is a triple of the form

(S,I,V) (II.1)

where S = [0,T] (the closed interval starting in 0 and 
ending in T), I = [0,A] and where V is a strictly increasing 
differentiable function

V : S - I (II.2)

such that V(0) = 0 and V(T) = A.
The elements of S are called sources; the elements of I are 
called i terns. In the sequel we will always consider V(r)
(for every r £ S^{0}) to be the cumulative number of items 
in all the sources s e [T-r,T] (taking [T-r,T] rather than 
[0,r] for technical reasons, to become clear in section
II.2.1). Hence, V is an integral of a certain density 
function, to be introduced in section II.2.1.
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11.1. 2. Di screte IPP 1 s

A discrete IPP is a triple of the form

( S , I, i) (11. 3)

where S and I are countable sets and where, for every s e S, 
i(s) c I. The elements of S are called sources; those of I 
i terns.

Example : * S
Every example in section 1.4 is an example of a discrete IPP, 
where - e.g. in the case of a bibliography -, S is the set of 
journals, I is the set of papers and i is the "device" function 
indicating, for every s G S, the articles i(s) c T that are 
published in s. A definition of the form (II.1), (II.2) is 
also possible here but for practical reasons, the above is 
preferred.

S is linearly ordered as follows : For every 
s,s1 e S,

s < s' if and only if#i(s) > # i (s 1 ) or s = s' (II.4)

(# denotes "the number of elements in "); i.e. we order the 
sources in decreasing order of the number of corresponding 
items. In this way, S,<is partially ordered. Ties are broken 
arbitrarily in order to obtain a linear order (i.e. for every 
s,s'e S : s < s 1 or s' < s),

If we order the sets i(s) c I (for every s e S) in 
an arbitrary linear way, then the order < on S induces an 
order on I, which is also linear. This order on I we will 
also denote by < since confusion with < on S is not possible.
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II.2. Duality in IPP1s

II.2.1. Duality in continuous IPP's

Let

(S.I.V) = ([O.T3,[0,A3,V) 

be an arbitrary continuous IPP.

The dual IPP of the IPP (S , I, V) is defined to be
the IPP

(I.S.U) = ([0,A],[0,T],U) , (II.5)

where

U(i) = T - V"1(A-i) (II.6)

(here V  ̂ denotes the inverse function of V). It is easy
to see that the dual IPP of the IPP (I,S,U) is again the
IPP (S,I,V).

We also define
o(i) = U 1(i) (II.7)

for every i £ I and

P(r) = V 1(r) (II.8)

for every r £ S
(Here U' resp. V' denote the derivative of U resp. V).

r
Note that, since V(0) = 0, V(r) = / p(r') dr' (by

0
(II.8)). From (II.6) it also follows that U(0) = 0; hence

i
by (II.7), U(i) = / a(i') di1, for every r e [0,T] and

0
i € [ 0,A].

When expressed as a function of i in the IPP (S,I,V), 
hence i = V(r), p(r) becomes :

p(i) = V 1 (V”1(i)) (II.9)

We have the following results :
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Lemma I I . 2 . 1 . 1 :

o( i )
p HT= i 1 9

1

for every i G I.

Proof :
For every i G I, we have, using (II.6) :

m u  - i d

(11.10)

= 1
V1(V'1(A-i ))

1
= pT7T-T) *

by (II.9). Hence (II. 7) gives

for every i G I. Note that p  ̂ 0 everywhere since V is 
strictly increasing. □

Coro!1 ary 11.2. 1.2 : * i
In the IPP (I,S,U) we have :
1. p(i) is the density function of the items, in the point 

A-i e I.
2. o(i) is the density function of the sources, in the point

i G I.

Proof :
This follows readily from (II.9), resp. (11.10) and the 
definition of U and V. □

Alternatively (and equivalently), the functions 
p and o could have been used as defining functions of a 
continuous IPP and its dual.
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From now on we consider only IPP's with increasing 
function p >0 (so a >0 also is in increasing, by lemma
II.2.1.1). This supposition is natural and does not obstruct 
our general approach; it reduces to an ordering of the set S 
in the same way as introduced in section II.1.2 (but now for 
the continuous setting). We further also assume p (hence 
also o) to be continuous functions.

The functions o and p each introduce a coordinate 
system on [0,A] x [0,T], different for a and p. So whenever 
we use a coordinate (i,r) we have to specify wether it 
belongs to the o-system (IPP (I,S,U) : U(i) = r) or to the 
p-system (IPP (S,I,V) : V(r) = i). We have that (i,r) is a 
coordinate in the a-system if and only if (A-i,T-r) is a 
coordinate in the p-system.

The functions p and a are the central tools in our 
duality approach of continuous IPP's. We can also say that 
p plays the same role in (S,I,V) as a does in (I,S,U), the 
dual .

II.2.2. Duality in discrete IPP's * I

Let (S,I,i) be an arbitrary discrete IPP. Let p e IN 
(the set of natural numbers) be fixed but arbitrary. Divide
I into p equal sets, henceforth called groups (when there is 
divisibility problem we allow proportional fractions; in 
practice this gives rounding offs!). We number the groups
as 1,2.... p, following the order < on I. Hence, because of
the ordering on S, the average number a (i) of sources per 
item in group i, is an increasing function (cf. the analogy 
with the previous section). Hence, in group i, the average 
number ^ (i ) = of items per source is decreasing.
Consequently, the function

P( i ) <= *(p-i.D = b-(p.?n T ) (ii.li)

is increasing, for i = 1,2,...,p.

The functions p and o, as introduced above, play the 
same role in discrete IPP's as the functions p and a, intro-
duced in II.2.1 for continuous IPP's (hence the same notation
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although they are not the same functions; they cannot be 
confused since it will always be clear whether we work with 
a continuous or a discrete IPP).

Formula (11.11) above can also be interpreted as 
follows : since o(i) measures the average number of sources 
per item in group i following the order < (hence from left 
to right (L+R)), the number p(i) measures the average 
number of items per source in group i following the 
reverse order (hence R L ) (see Figs. II.1.a and b).

j________i________ i________________________ _j-------- *-
0 1 2 ... p - 1 P

Fi g. 11.1. a

 ̂ i________ i ■________ i i

p p - 1 ... 2 1 0

Fig. II. 1 ,b
The group-axis (L-*R, resp. R -> L)

In this discrete format the duality approach can be 
illustrated clearly. A similar interpretation can be applied 
to the continuous setting.

II.3. The property of pure duality and classical informetrics

II.3.1. The property of pure duality

In the previous section we introduced the tools by 
which duality in IPP's can be studied : the functions p and
0 (in the continuous or discrete setting). They are dual 
functions in the sense that they play the same role in the 
original resp. the dual situation. The following definition 
is therefore logical :

Defi n i ti on 11.3.1.1 : 1
Given an IPP (discrete or continuous), we say that we have 
the property of pure duality if there exists a constant C > 0 
such that, for every i (i = 1.... p, p e IN in the discrete case
1 £ I in the continuous case)
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a( i  ) = C . p ( i ) ( 1 1 . 1 2 )

Otherwise stated, we have pure duality when the 
dual functions are proportionally the same.

What IPP's satisfy the property of pure duality?

II.3.2. Characterization of discrete IPP's that satisfy the
pure duality property; the consequences for classical 
i nformetri cs

We have the following easy result :

Theorem II.3.2.1 (Egghe, 1989a) :
Let (S,I,i) be any discrete IPP. Fix p e IN. Then this IPP 
satisfies the pure duality property : i.e. there exists a 
constant C > 0 such that

o (i) = C. p (i) (11.12)

for every i = 1,2,...,p, if and only if

o (i) o(p-i+1) = C , (11.13)

for every i = 1 , 2.... p.

Proof :
In view of formula (11.11) it is clear that (11.12) is 
equivalent with (11.13). □

The main point here is that classical in formetries 
(represented by Bradford's law) satisfies the above property 
and, apart from some examples not encountered in practice, 
the Bradford law is the only one satisfying this pure 
duality property. First we will introduce Bradford's law 
for d i screte IPP's.

23



De f i n i t i o n  I I . 3 . 2 . 2  :
Given any discrete IPP, we say that this IPP satisfies 
the law of Bradford with p groups (p £ IN fixed, but 
arbitrary), if we can divide the set I into p equal parts 
each containing yQ > 0 items such that, following the 
ordering < on S, we have a corresponding number of sources 
equal to (respectively) :

for a certain rQ > 0 and k > 1.
The number k is called the Bradford factor and is, of course, 
dependent on p : k = k(p).

Theorem II.3.2.3 (Egghe, 1989a) :
If the discrete IPP satisfies Bradford's law with p groups, 
then this IPP satisfies the pure duality property : i.e. 
there exists a constant C > 0 such that

• • • 9 (11.14)

o(i) = C.p(i) ( 11. 12)

for every i = 1,2 s • • •

Proof :
By definition of Bradford's law we have here

(II. 15a)

for every i = 1,2 » • • •

Hence

o(p-i+1) = kp_i
* n0

(II.15b)

Hence (II.15a) and (II.15b) combined yield
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a constant (independent on i). By theorem II.3.2.1, this 
IPP satisfies the pure duality property. □

Note :
A slight generalization of (11.13) into

o (i) o (j ) = C 1.a (i + j ) (11.16)

for every i ,j = 1.... p, with C' a constant ((11.16) implies
(11.13) by taking j = p-i+1) would imply that

o(i) = A.k1-1 (II.15c)

for certain constants A and k and for i = 1.... p, hence
Bradford's law (as is easy to prove). Our property (11.13) 
however is weaker, since there exists a a which satisfies 
(11.13) but which is not of the form (II.15c). Indeed, take 
for instance p even and, denoting [x] for the largest entire

p
number smaller than or equal to x, define o(1) = [fj-] , 
o(2) = (^], ..., o(^) = 1 and for every i = £ + 1.... p

o( i) C
a C p-i +1) (11.17)

(C : an arbitrary positive constant, as in (11.12) or (11.13)). 
Then (11.17) is also valid for al1 i. Hence (11.13) is 
satisfied, a(i) > 0 for every i, o is increasing, but a is 
not of the form (II.15c).

We must stress however that Bradford's law is the 
only informetric law we know of that satisfies (11.13) and 
hence the property of pure duality. This shows the special 
place of IPP's in classical informetrics (bibliometrics) 
amongst other IPP's.

II.3.3. Characterisation of continuous IPP's that satisfy 
the pure duality property and consequences for 
classical informetrics

As in section II.3.2 we now have (see again (Egghe, 
1989a)) :
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Theorem 11. 3.3.1 :
Let (S,I,V) be any continuous IPP. Then this IPP satisfies 
the pure duality property : i.e. there exists a constant 
C > 0 such that

a (i) = C.p(i) (11.12)

for every i e I = [0,A], if and only if 

a(i) a(A-i) = C 

for every i e I.

Proof :
This follows from (11.12) and lemma II.2.1.1 (formula
(11.10)). □

This result and the previous section on Bradford's 
law, leads us to a new definition, which will prove to be 
very useful in the sequel : the group-free Bradford law 
for continuous IPP's (and corresponding Bradford function).

Definition II.3.3.2 (Egghe, 1989a) : * i
Let (S,I,V) be any continuous IPP. We say that this IPP 
satisfies the group-free law of Bradford if, for every

i e I,

o (i) = M.K1 (11.18)

where M > 0 and K > 1 are constants.

Formula (11.18) is called the group-free Bradford 
function.

The number K is called the group-free Bradford factor 
and, of course, is independent of p in the previous section 
(p does not exist here!). This definition allows us to 
recognise Bradford's law as a function just like the other
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informetric laws discussed in paragraph 1.5. We furthermore 
have the following result :

Theorem II.3.3.3 (Egghe, 1989a) :
If the continuous IPP satisfies the group free Bradford 
function, then this IPP satisfies the pure duality property
i.e. there exists a constant C > 0 such that

o (i) = C.p(i) (11.12)

for every i e I.

Proof :
Indeed

a (i) = M.K1 

and hence

a (A-i) = M.KA" 1 

for every i e I. Consequently

o(i) a (A-i) = M2KA

for every i e I. Using theorem II.3.3.1 gives that this 
IPP satisfies the pure duality property. □

Note 1 :
The comments of section II.3.2 also apply here.
In addition we have the following interesting consequence. 
Suppose that we have a continuous IPP (S,I,V) (hence, in 
practice, a large discrete one). If this IPP satisfies 
Bradford's law then the informetric "calculus" p in (S,I,V) 
is the same as the informetric "calculus" a in the dual IPP 
(I,S,U). This means for instance that, if (S , I, V) is a 
Bradfordian set of citation data (f.i. S -*■ I, where -*■ is 
the relation "citing") then the "cited" set (I,S,U) satisfies 
the same informetric laws with the same proportional para-
meters.

27



Note 2 :
All definitions and results of section II.3.2 can also be 
given (and are also true) for continuous IPP's in an obvious 
way. The results of section II.3.3 are however typical for 
continuous IPP's. In the next chapter we will compare, for 
continuous IPP's, the group-dependent and the group-free law 
of Bradford and provide formulae, relating k(p) (for every 
p € IN ) and K.

The next paragraph gives another application of 
duality in IPP's.

II.4. General duality properties and applications to the 
laws of Lotka

In the previous paragraph we proved a first result 
on duality in IPP's, namely pure duality.

This paragraph deals with more general aspects of 
duality, valid for general continuous IPP's. We then apply 
these aspects to Lotka type laws (to be introduced in the 
sequel), to find conditions on the types of Lotka laws 
that are possible and on other laws that can be proved, 
based on Lotka's laws. The classical informetric laws come 
into this scenario but we also find the generalised Leimkuhler 
and Bradford laws that are linked with the general laws of 
Lotka. In the third chapter we will study their mutual 
interrelations and in the fourth chapter we will devote 
ourselves to the practical fittings of these laws.

II.4.1. Basic equations for o and p, in general continuous 
IPP's

Let (S,I,V) be any continuous IPP with dual functions 
o and p.

We introduce the following function :
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f : [p(0),p(A)] -*■ IR+ (the positive real numbers) 

j f (J )

where f(j) is defined to be the density function (w.r.t. 
the IPP (S,I,V)) of the number of sources in function of j. 
Hence, by definition, for every i e I,

p (i )
J f ( j )  dJ

p(0)

denotes the cumulative number of sources for which 
j e [p(0),p(i)], equivalently on the coordinates (in I)

i' = p " 1 (j ) e [ o , i ] .

This is, by corollary II.2.1.2 equal to : 

i
J o (A-i ' ) d i 1 
0

Hence we have (alternatively to be used as the defining 
relation for f) :

Source - relationship

i P (i )
/ a (A-i 1 ) di' = / f(j) dj (11.19)
0 p( 0)

for every i £ I.

The integral equation (11.19) is difficult to handle 
because it is inversely retarded. Luckily we have that 
(11.19) is equivalent with the following easy integral 
equation :

Item - relationship

P (i)
J f(j)j dj = i (11.20)

p(0)

for every i e I.
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Theorem II.4.1.1 (Egghe, 1989b) :
Equations (11.19) and (11.20) are equivalent.

Proof :
A. (11.20) is equivalent to

f(p(1)) p(i) P 1 (i) = 1 (11.21)

Indeed, (11.20) implies (11.21) by differentiation.
From (11.21) we have

i
/  f ( p ( i ’ ) )  p ( i  ' ) p '  ( i  ' ) d i ' = i ( 1 1 . 2 2 )
0

This gives 

P (i)
/ f(j) j dj = i (11.20)

p( 0)

using the transformation

j = p(i 1 ) . (11.23)

B. In the same way we can show that (11.19) is equivalent 
to

o(A-i) = f(p(i)) p'(i) (11.24)

C. Now (11.21) is equivalent to (11.24), using lemma
II.2.1.1. Hence (11.19) and (11.20) are also equivalent.□

Consequently, whenever it is necessary, we can ignore 
Eqn. (11.19) and work with the system

( p(i> ■ FTXTTT (ii-,0)

< P (i )
J f ( j )  j  d j  = i ( 11 . 20 )

p( 0)

for every i e I = [0,A]. From now on we will also assume
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p( o)  = 1. This is not really necessary but we use it for 
convenience and since this is always true in practice. 
Hence we have the system

for every i £ I = 10,A].

Note that from (11.21) (or (11.24)) it follows that 
f must be decreasing.

We now turn to a first application of this dual 
formali sm.

II.4.2. Exclusion of certain laws of Lotka f

The next theorem is a result for general functions f 
(as defined in the previous section) that are continuous and 
strictly positive on the interval [1,°°[. Considering f on 
the interval [ 1 ,°°t does not mean that we have sources with 
an unlimited number of items. We just assume the existence 
of the continuous function, being an extension of the 
original function. The function f is then, in practice, 
restricted to the interval [1,p(A)].

Theorem II.4.2.1 (Egghe, 1989b) :
If f (restricted to M,p(A)]) is the density function of the 
number of sources in j e [1,p(A)] in a general continuous IPP, 
and if f is continuous and strictly positive on [1,°°[, then

p(i) = a (A-i)

P(i)
J f(j)j dj = i

(11.25)

oo
A < / f(j) j dj (11.26)

Proof :
From (11.20) we find that

p( A)
A = J f  ( j ) j  dj (11.27)

Suppose that

00
J f ( j )  j dj = 0

P ( A )
(11.28)
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Then the function j f(j) j is zero almost everywhere on 
[p(A),°°[ in the Lebesgue-sen se. But f is continuous. Hence 
the function j -* f(j) j is identically zero on [p(A),°°[. 
Hence f(j) is zero on [p(A),°°[, a contradiction. Hence

oo
J f(j) j dj > 0 . (11.29)

p( A)

(11.27) and (11.29) together yield (11.26). □

This result has an unexpected consequence for the 
Lotka functions :

Corollary II.4.2.2 (Egghe, 1989b) :
Suppose that (S,I,V) is a continuous IPP with function f 
(we define this function to be the general Lotka function, 
cf. section 1.5.1)

f(j) = 4" (11.30)
j

for every j £ [1,°°[, where a > 1. Then

a < j  + 2 . (11.31)

Proof :
From the previous theorem we see that

00
A < J f(j) j dj (11.32)

1

Hence, upon integrating the function (11.30) (which 
obviously satisfies the requirements of the above theorem), 
we have :

a. If a < 2, then (11.31) is automatically satisfied.

b. If a > 2, then

J f(j) J dJ = (11.33)

Hence (11.32) and (11.33) yield

hence (11.31). o
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This, in turn yields a further surprising.

%
Corollary II.4.2./ (Egghe, 1989b) :
If (S,I,V) is as in the previous corollary, then a > 3 
implies :

f (1 ) = C > A

Proof :
Indeed, corollary II.4.2.2 yields

a < £ + 2 . (11.31)

Hence a > 3 implies

f(1) = C > A . d (11.34)

Note :
Although it is theoretically possible to have (11.34)
(since f is a density function), the case a > 3 is very 
likely to be excluded if the Lotka function (11.30) must 
fit a practical IPP. Indeed, in practical, discrete IPP's,
C = f(1) denotes the number of sources with one item and 
hence C < A.

In the literature we indeed find examples where 
a > 3 (see e.g. (Pao, 1986)). They do not contradict the 
above remarks since the fittings are statistical and hence 
not based on a mathematical theory. Also practical data can 
differ from Lotka's function (random fluctuations). Further-
more, in most cases we do not know the complete IPP (usually 
missing the least productive sources) or we do not use the 
complete IPP (as in (Pao, 1986)) : in this case A is lower

, 2.
than in reality and hence, according to corollary II.4.2.3, 
a > 3 is possible.

We can however conclude that, in general, a < 3 will 
be more often encountered than a > 3. The above theory is a 
first theoretical basis for it.
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II.4.3. The Bradford and Leimkuhler type laws that are■ x
implied by the general law of Lotka f(j) = —  , 

j e t p ( 0) , p ( A) ] = [ 1 , p ( A) ] .

II.4.3.1. The case a = 2

This case is - in essence - known (cf. (Egghe, 1985)) 
but will be presented here in a new variant, namely based on 
the duality system (11.25). In the next chapter we will 
prove that the results developed here are the same, 
essentially, as those of (Egghe, 1985), but presented 
here more accurately.

Theorem : * (ii)
Let (S, I, V) be any continuous IPP with Lotka function

f(j) = -4 (11.35)
j

(j € [1 ,p(A)]). Then

(i) This IPP satisfies the group-free version of Bradford's 
law (definition II.3.3.2).

(ii) This IPP conforms with the Leimkuhler law, to be 
defined now (cf. section 1.5.5). In the IPP (I,S,U) : 
Let R(r) denote the cumulative number of items in the 
sources s e [0,r], for every r e [0,T] (Hence R = U-1). 
Then

R(r) = a log (1 +br) , (11.36)

where a and b are constants, and r e [0, T]. Function 
(11.36) is called Leimkuhler's function.

Proof : Proof of (i )
From (11.20) and (11.35) we find, for every i e I :

P (i) r
/ t  dj = 1 1 J

Hence
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C log p(i) = i

(here log denotes the Naperian logarithm loge ).

Using also (11.10) this gives :

-C 1og (o(A-i )) = i

We now use the transformation A-i = i l yielding 

C log a(i') = i' - A

Dropping the primes we can write

_ A i 
o (i) = e ^ e^

o(i) = M.K1 , (11.37)

for every i e I, where M and K are constants. Note that 
M > 0 and K > 1. Hence we have found the group-free law 
of Bradford (11.18). Note that p(i) = e"*^ = for every 
i £ I.

Note also that, for every i e I, p(i) > 1 and 
o(i) < 1. This property is encountered every time that 
V(r) > r, vr e [0,T] (i.e. there are more items V(r) than 
sources r, vr) which is fairly evident in practice, and 
certainly so whenever we have Lotka's function (11.35).
We did not put the condition V(r) > r, vr e [0,T] right 
from the beginning (in section II.1.1) since there was no 
need for it and since we wanted to be as general as possible 
(allowing for sources with production less than one). An 
analogous remark can be made for discrete IPP's.

Proof of (i i) * i
In our formalism, we clearly have, when R(r) = i, that

i
r = / a (i 1) di' (11.38)

0
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Using (11.37) above, we have

i i n -
r = / o(i1 ) di' = } M.K di'

0 0

Hence

R(r) = 1 ' T S ? T  l09 (1 + r •

which is of the form

R(r) = a log (1 + br) ,

where

a 1
T3g~K *

_ log K
R

and r € [0 ,T]. □

(11.39)

(11.36)

(11.40)

II.4.3.2. The general case

Performing as in II.4.3.1 we can now construct the 
new functions o(i) (Bradford's function) and p(i) that 
follow from the general Lotka function (11.30), and from 
it, the new function R(r), Leimkuhler's function.

Theorem (Egghe, 1989b) :
Let (S , I, V) be any continuous IPP with Lotka function

f(j) = 4 :  (11.41)
j

(j £ [1 ,p(A)]) , where a / 2 but a > 1. Then

( 1 ) . 1
p(i) = (-i-(-2c"a) + (11.42)

1
a (i ) = ( ( M ^ s i  + 1) - 1 1 ^ ) " ^
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for every i € [0,A]. Hence the general Bradford 
function, if a / 2, is of the form

o(i) = (A1 + i A2) 3 (11.44)

where A^, A^ and are constants.

(ii) In the IPP (I,S,U), let R(r) denote the cumulative 
number of items in the sources s e [0,r], for every 
r € [0 , T]. Then

for every r € [0,T], where p(A ) is as in (11.42) for 
i = A, the maximal density of items.

Proof : Proof of (i) :
(11.44) follows from (11.43) and (11.43) follows from (11.42), 
using (11.10). Hence we only have to show (11.42). From 
(11.20) it foilows that

R(r) = [p(A)2_a - (p(A)1-a + (11.45)

for every i e I. Hence

( p ( i ) 2 " a  -  > >  ■  1

Consequently

(11.46)

under the condition that

—  ̂ + 1 > 0 (11.47)

for every i e [0,A]. To prove this, invoke corollary
II.4.2.2, yielding, if a > 2:

£ (2-a) + 1 > 0 (11.48)
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a) If a < 2 then

i(2-a)
c— + 1 > 0

a 1 ways.

b) If a > 2 then

1 = min (J_(2-aJ_ + 1) (11.49)
i e t o . A ]  L

(11.48) imply 

1 > 0

for every i e [0 ,A].

In conclusion, (11.47) is satisfied for every 
i e [0,A] and every a f 2; hence also (11.46).

Proof of (i i) :
We have

i
r = J a(i1) di'

0

if R(r) = i.

A (2-a)
— c—  +

So, (11.49) and

i(2-a)
— c—

Applying (11.44) we have

i
r = / o(i 1) di 1 

0

1 + A .j 1 + A
(A 1 + i A 2) - A1

a 2 (1 + a 3)

Hence (using R(r) = i), we have
1

4 1 + A -j 1 +Ao
R(r) = [(A1 J + A 2(1+A3)r) (11.50)

We now interprete A^, A2 and A3 by means of (11.43) 
and thus obtain for every r e [0,T] :
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1-a 2-a

R(r) = ¿  + D  - ( ( ^ ^ 1  + 1)71“ - ^  r)11“ ]

(11.51)
But, using (11.42) we see that

1
P (A) = * 1 )7 ~*

Hence (11.51) becomes :
2 -a

R( r )  = C p ( A ) 2" a - ( p ( A ) 1" “  - 1 ^  r)1^  ] ( 11 . 45)

completing the proof of this theorem. □

Note 1 :
The form of the function (11.45) was first derived 
by Rousseau (1988a) by other methods; the functions (11.42) 
and (11.43) however are new and hence, since (11.45) is 
derived from these formulas and also since our dual approach 
is new, the above proof of (11.45) is new.

Note 2 :
From formula (11.43) it follows that

1im o(i ) 
a-*-2

is an exponential function of the form (11.18), hence the 
function a (i) for a = 2 (Bradford's group-free version).
Hence our theory for a f 2 gives the classical Bradford 
function (a = 2) as a limiting case (as it should).

This is the first time that Bradford's law for the 
general Lotka law (11.41) is proved. In (Egghe, 1985) we 
tried to put up a qualitative model for Bradford's law in 
case of formula (11.41). Although not perfect we predicted 
the next corollary (which we can now prove in an exact way!).

Corol1 ary :
If the continuous IPP satisfies (11.41) then the corresponding 
law of Bradford a(i) satisfies
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— rrr- increases with i if a < 2 o ( i ;

0 /.¡V decreases with i if a > 2 
o [ i )

°"7̂ V  is constant if a = 2oUJ

Proof :
Suppose that

o 1 (i)

Hence

o' (i) _ A2A3 
a (i) TTj + i A 2

Now, substituting the values of A1, A2 and A3 , in terms of 
A, C and a (using (11.43)) yields :

a f 2. Formula (11.44) yields

A.,-1
= A2A3{A i + i A 2 )

a 1 ( i ) _ 1
"ÔTTT " A (. 2-a) + C -'"T'( 2- a ) (11.52)

This is an increasing function if a < 2 and a decreasing 
one if a > 2. If a = 2, the result is well-known : Formula 
(11.18) yields

y y y -  = log K , (11.53)

a constant. □

As is shown in (Rousseau, 1988a), the graph of the 
function R (formula (11.45)), in semi logarithmic 
(log r, R(r))-scale , shows an inflection point (in 
bibliometrics one calls this a Groos droop since Groos 
was the first to find such a "deviation" from the log- 
form, cf. (Groos, 1967)) for a < 2 and has no inflection 
point for a > 2 (as predicted also in (Egghe, 1985)). If 
there is a Groos droop (a < 2), the inflection point is 
given by :

40



1 -a
2-a

(11.54)-)

See section IV.2 .8 for some basic notes on the 
Groos droop.

We now turn our attention to further links between 
the encountered informetric laws.
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CHAPTER III : THE INFORMETRIC LAWS : CLASSIFICATION,
APPROXIMATIONS AND PARAMETER DETERMINATION

This third chapter deals with relations between the 
informetric functions so far identified. We first classify 
these functions and then derive some relations between 
their parameters. "Legalised" approximations are introduced 
in a formal way.

111.1 . Classification of informetric functions

We will classify the functions we have encountered 
so far. For the sake of completeness we repeat the formulae 
for the meaning of them, we refer to the place were they 
have been introduced. We restrict ourselves to continuous 
IPP's (S,I,V) = ([0,T],[0,A],V), with dual (I,S,U).

III.1.1. Informetric laws

1. The Lotka function (cf. 1.5.1 and II.4.2.2)

f ( j ) * ( 111.1 )

where C and a are constants, a > 1 and j £ [1,p(A)] = 
[P(0),p(A)].

2. The Zipf or Pareto function (cf. 1.5.3 and 1.5.4).
Consider the IPP (I,S,U) : let g(r) denote the density 
of the number of items in r £ [0,T]. Then

g(r) __ F_
(1+r ) 6 (III.2)

where F and 6 are constants and r € [0,T]. (In our 
framework : r £ [0,T]; so,in formula (III.2) our ranks 
start in 1 which is natural, but which will also be 
explained further on).
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3. The Mandelbrot function (cf. 1.5.3). Consider the IPP 
(I,S,U). Let g(r) denote the density of the number of 
i terns in r e  [0,T]. Then

g(r) = ----bt , (III.3)
(1 +Hr)B

where G, H and B1 are constants and r e [0,T].
Note that g(r) = p(T-r) for every r e [0,T].

4. The Leimkuhler function (cf. 1.5.5 and II.4.3.1)

R(r) = a log (1 + br) , - (III.4)

where a and b are constants and r e [0,T].
Note that R = U ~\ the inverse function of U.

5. The generalised Leimkuhler function (cf. II.4.3.2)
2-g

R(r) = [p(A)2’a - (p(A)1_a + ̂ -  r)^~“] (II 1.5)

with C, a and p(A) constants, r e [0,T] and a i 2.
They are the same as in 1.

6. Bradford's law (cf. 1.5.6, II.3.2.2 and note 2 in section 
II.3.3). Fix p £ IN, We can divide the set I into p equal 
parts, each of length y Q such that the (with U) corres-
ponding division in S has length respectively

V  r0k’ rok2..... rokP" 1 (III.6)

for a certain r Q and k > I.This k, of course, is p-dependent 
k = k ( p).

7. The group-free Bradford function (cf. II.3.3.2)

o(i) = M.K1 , (III.7)

where M and K are constants, K > 1, and i e I = [0,A ].

8. The generalised group-free Bradford function (cf.
II.4.3.2).
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0(i) . + D  - i 1 2̂)
1

(III.8)" 7 ^
9

where A, C and a are constants, a  ̂ 2 and i e I = [0, A]. 
C and a are the same as in 5. and as in 1..

III.1.2. The informetric functions equivalent with Lotka's 
function with a = 2

When we say "equivalent" functions, we mean equivalent 
in the mathematical sense. Of course, together with these 
equivalencies we will prove some relations between the 
parameters (the constants) in the respective functions.
They will be very useful in the sequel.
Some proofs in the theorem below are partially in (Egghe, 
1985 and 1989c) and (Rousseau, 1987a).

Theorem :
Let (S,I,V) be any continuous IPP. Then we have the 
following equivalencies :

(i) The IPP satisfies Lotka's function (I II.1)with a = 2.

(ii) The IPP satisfies Mandelbrot's function (III.3) with 

8 ' = 1.

(iii) The IPP satisfies Leimkuhler's function (III.4).

(iv) The IPP satisfies the law of Bradford (III.6), for 
every p € IN.

(v) The IPP satisfies the group-free function of Bradford 
(III.7).

Assuming the validity of these equivalent functions, 
we have the following relations between the parameters :

a = *0 _ 1 
T o g T  = T o g ! (III.9)

k - 1 _ log K 
~ T ~  = T “

(III.10)

Here yQ , k and rQ form a valid Bradford triple as in (III.6)
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(dependent on p) but a and b are independent of p (as are 
M and K)

G = p(A ) = ab (III.11)

H = - b (III.12)

P
K = k(p)A , (III.13)

for every p e IN. Here we denote k = k(p). 
Consequently, one has also

C = (III.14)

yQ = C log k (III.15)

ro (k 1) (III.16)

Proof : Proof of the equivalence between (i) and (ii)

The proof is based on the genera 1 relation for 
j € [1,p(A)3 :

p (A)
9 (j) = r(j) = / f(j') dj ' , (III.17)

j

which is intuitively clear but we will prove it now, in 
an exact way. Consider a valid triple (r,i,j) in (I,S,U) : 
i.e. i e [0,A], r = U(i) e [0,T] and j e [1,p(A)3. From 
corollary II.2.1.2 we have that j = p(A-i).

Using (II.7) and the notes following it, we
have

i
r = U (i ) = / o (i 1 ) d i '

0

Hence, using the transformation i" = A - i 1 ;
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i"=A-i A
r = - / a(A-i") di" = / a(A-i") di"

i"=A A-i

A A-i
= J a(A-i") di" - J a(A-i") di" .

0 0

Using (11.19) twice implies (p(0) = 1) :

P (A ) p (A - i )
r = J f (j ) d j - J f (j ) d j

1 1

p (A )
r = / f(j) dj

p(A-i )

Hence, since j = p(A-i) we find 

p( A)
r = / f(j') dj' .

j

Since, by definition, j = g(r) we also have g~1(j ) = r. 
Hence (III.17) is proved.

We now prove the different implications :

a ) (i ) implies (i i)

Since, assuming (111.1) with a = 2,

« P ( A ) r
J ( j ) = r( j ) = J  -¡p dj '

j j
1 ) 

pTKT)

(III.18)

= C (1

we also have, putting again j = g(r) and r = r(j)

g(r) = P (A )

1 V  p (a ) (III.19)

Hence, this implication is shown, together with the first 
half of the equalities in (III.11) and (III.12).

b) (i i) implies (i)

From (III.17) we have also

f(j) = -(g"1)' (j ) = -r'(j) (III.20)
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Assuming (III.3) this gives (with 3' = 1) and again using 
that j = g(r) :

Hence, (III.20) and (III.21) yield

f ( j ) = ÏÏ * “ Z
J

completing this part of the proof.

( I I I . 21 )

Proof of the equivalence between (ii) and (iii)

This proof is based on the genera,1 defining relation 
(definition of R and g) :

r
R(r) = / g(r ') dr1 (III.22)

0

a) (i i) implies (iii)
(111.22) together with (III.3) (for 3' = 1) gives :

R(r) = jj log (1 + Hr) , (III.23)

for every r e [0,T], yielding Leimkuhler's law.

b ) (iii) implies (i i)

(111.22) and (III.4) give :

g(r) = R1 ( r) = T  -l \ -  (III.24)

for every r € [0,T]. This also agrees with the second 
half of the equalities in (III.11) and (III.12).

Proof of the equivalence of (iii) and (iv) 

a) (iii) implies (i v)
-------------------  ALet p € IN be fixed but arbitrary. Let yQ = - and rQ be
such that R(r ) = y . Define k > 1 such that o o
R(r +r k) = 2 y . Using (III.4) we see that, if o o  o
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r = + r k + ..o o + r^k1-1 (i = 2 9 • • • 9 p) then

R(r) = i yQ (III.25)

Indeed, from R(r0 +r0*<) = 2 yQ = 2R(rQ) we find
k = 1 + br . So o

Hence

R(r) = i R(rQ) = i y0 , 

for every i = 2.... p.
This relation is equivalent to the law of Bradford for 
p groups. A similar argument could be performed for 
every p £ IN. Hence (iv) is proved.

b ) (i v) implies (i i i)
This proof is not trivial and requires several steps.

A. If we show that the functions R and R~^ are
differentiable, then they also must be continuous.
The fact that they are differentiable follows from
(III.22). Now g(r) = p(T-r) for every r e [0,T] 
as follows from the definition of g (section III.1.1). 
Hence (III.22) becomes :

for every r £ [0,T], Hence R'(r) = p(T-r), for every 
r £ [0,T] and since

r
R(r) = J p(T-r1) dr* 

0
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9

( R ' V d )  =
R ' (R-1(i))

P(T - R-’iD)

the proof is finished, since p > 1 > 0 (cf .II. 4". 3.1 -

B. Denote by A the set

A = {r k 1 - 1 
k - 1 (r ,k,pA) is a valid triple in 

Bradford's law, p fixed (take e.g
p=3) l e IN, and i =-^-A, where

0 P
q = 1,2,...,p .}

This set A is dense in [0,T] (a set X is said to be 
dense in a set Y if every element of Y can be written 
as the limit of a sequence of elements of X).

Proof :
Since we have the validity of Bradford's law, for
every p e IN, we can consider Bradford situations

2 3for a number of groups respectively p,p ,p .....
0

In each case p we have a division of the item set 
[0,A] at the points

A = { —  A}n£ L £* a 9 •••9 ^ j 9
p p

which is a subset of the divisions in the case p¿+1

A = ( . 2A
£+'

pA
* I T T  
P

£’ A)

By taking £ £ IN high enough we can make the length
between two consecutive divisions as small as we
wish. From the form of A. we see that U A 0 is

££ IN *
dense in [0,A]. Now, as R" is continuous, we see 
that
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[ 0 ,T] = R" 1 ([ 0 , A] )

= R"1 ( U An ) ,
££ IN

(where — u AT" denotes the closure of the set u An) 
AGIN £E IN

[ 0 , T ] c R" 1 ( U A J  
££ IN

But, as given by (i v),

R" 1 ( u A.)
££ IN 1

(since, for every i : r +r k +o o
Hence A is dense in [0,T].

.. + r k o
i-1 r k 11ro 1r ^ T ]

C. Fix p £ IN arbitrarily. We apply Bradford's law
we have R(r) = i y foro

r = + r k + • •• + r,ko o  o
i-1

- . - k1 - 1 
r - ro T ^ r

where i = 1 ,2.... p.
Hence

R(r)

/ !r = r (- o
-  1

" F T

yielding

R(r) = ,03 (1 + (V - L)r)3 0

which is Leimkuhler's function for

(III.26)

r - r (k " ^ ) 
r _ ro [ i r r r ) • (III.27)

i = 1,2,. ...p. Here we see that
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a = log k

b = k - 1

D. Let a.j resp. be the above values when there are 
p1 divisions (i = 1,2,3,...) (p e IN fixed; take 
e.g. p = 3). Then

a . = a . .l i+1

b . = b . .l i+1

(III.28)

for every i = 1,2,.

1st Proof :
Indeed, for every i = 1,2,... the divisions with 
i + 1p groups are a refinement of the divisions with 

p1 groups. So we have p1 common points. Select any 
two of them : r1 and r2 e S, r1 + r2. Then

R(r,|) = ai log (1 +bi-r1) = ai + 1 log (1 +bi+1r1)

R(r2) = ai log (1+ b ^ )  = ai + 1 log (1 + bi+ir2) .

This system has only one solution :

a . = a . 4l i + 1

bi " bi+1
(III.28)

2nd Proof
We show it for (â  ,b^) resp. (a2,b2) 
follows then by induction.

(III.28)

Let (w k ’p) and ) be the
respective Bradford parameters. Then
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1 1 og k *
y 'J 0

log k

k - 1 k' - 1
--3P--

according to C. But

y0 = p K  •

obviously and so

ro = ro + ri k ' +

, ,k'P-1
ro (k 1 -  1

)

Also,

. + r'k o
.P-1

, _ T( k 1 - 1) 

0 k ' ^ p- 1

so

r = T k '

k ,epr- 1

But, as

r = T 
0 kp - 1

we see from (III.32) and (III.33) that

k = k ' p

Now (III.30) and (III.34) give

y0 _ pyj _ ^
1 log k lQ k ,p log k 

and so it follows that

y '
= a,

b1 = b2

(III.29)

(III.30)

(I I I. 3 1 )

(III.32)

(III.33)

(III.34)

(III.35)

(III.36)
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____ ____ —--------- --~ ___ Q____
4ta-ke- one comnrorr polTrt r in the p- and p -division)-;

As all a's, and all b's are equal, we have 
verified the validity of

R(r) = a log (1 + br) (III.37)

in the points r € A . This follows indeed from C and D. 
E. Since R is continuous, since A is dense in [0,T] and 

since the function

r -*■ a log (1 + br)

is already a continuous extension of R to tO,T], we 
can conclude that

R(r) = a log (1 + br)

for every r e [0,T], where a and b are constants.
We have also shown the first equalities in (III.9) 
and (III.10), where a and b are independent of p.
Hence with these formulae and (III.11) and (III.12), 
also (III.14), (III.15) and (III.16) are shown.

Note :
From (III.9) it follows that

k(p)p = constant , (III.38)

independent of p.

Proof :
Indeed : let correspond to a Bradford division 
ibto p̂  groups and k2 correspond to a Bradford 
division into p2 groups. Then, according to (III.9) 
and the reasoning of "(iv) implies (i i i)" above we 
have
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a (III.39)

A A
p1 p2

log k1 ■ log

Hence

P i P2
log k1 = log A

a ( I I I . 4 0 )

(111.40 ) yields now

hence

k(p)p = constant.

We now show

Proof of the equivalence of (iv) and (v) 

a) (iv) implies (v)
Let, first i £ [0,A] be such that there is a q and
p £ IN such that i = 3^ .

P
Denote by S(i) :

We apply (iv) with p £ IN as above. This yields p groups 
of respectively

S(i) = f a(i') di 
0

( I I I . 41 )

rQ(p) , rQ(p)k(p) , . . .  , r0(p) k(p)p_1

sourceseach containing yQ (p) = ^ items. Hence 

S(i) = rQ(p) + rQ(p)k(p) + ... + rQ(p)k(p)q_1
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= F T p T -'1 p 1og k(p) 'pVog'kCp!

i
r0 (p) * n i '

= TcTpJ - 1 p log £ (k(p)p) di'

r(p) 1 1 Jr i-
= k" (p) - 1 P 1o9 k(p) J  / (k(p)A ) di" , (III.42)

using the transformation i" = A .i'.
Furthermore,

r0(p) + r0(p) k(p) + ••• + rQ (p) k(p)p_1 = T ,

the total number of sources. Hence

r0(p ) - i (-k-(p-> -
k(p)p - 1

Hence, if we put

M ro (p)
k(p) - 1 p l03 k ( p ) {

then

(III .43)

(III.44)

M = log (k(p)P) T 
k ( p )p - 1 J

Since we suppose (iv) we have also (III.38), 
concluding that M above is a constant. Put

K = k(p) I (III.45)

Then we have that 

1 i 1
S(i) = M J K1 di ' (111.46)

0

for every i = 5. A, for a certain q, p e IN , q < p.
From (III.41) it follows that the function S is 
continuous. But since (III.46) is valid on a dense 
subset of [0,A] = I and since the function
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i -*■ M J K1 ‘ di 1 
0

is continuous on [0,A], we conclude that 

1 i 1s ( i ) = m / r  d i  ■
0

(III.47)

for every i € I = [ 0 ,A ] . Compare this with (III.41) 

and differentiate. We then have (since a is continuous) :

o (i) = M.K1

for every i e I, showing (v).

b) (v) implies (i v ) 
Let p e IN be ar 
according to (v)
Let p e IN be arbitrary. Define yQ (p) = — . Then,

r0 (p) - S(yQ )
7 0
J M K 
0

i ' d i

Furthermore

T s f r  <K ° - 1>

2y,
s <2y0 ) - s(y0 ) - J M K i' di

y n

M y, . y,
log K K 0 (K 0 - 1)

Hence we see that

s (2y0 ) - S(yo ) r0(p) K

r0 (p) KP

In the same way we can show that, for every q = 1,2.... p
A

S(qy0 ) - S((q-1 )y0) = rQ (p) (Kp)q_1

56



Hence, if we put 
A

k(p) = Kp

then

S(qyQ ) - S((q-1)yQ ) = rQ(p) k(p)q'1

for every q = 1,2.... p, showing that the IPP satisfies
Bradford's law for p groups.

From the above proofs, formula (III.13) is 
automatically proved :

P
K = k { p ) J  (III.13)

for every p e IN.

Proof of the equivalence of (iii) and (v)

The general relation between the Leimkuhler function 
R and the Bradford function a is, for i = R(r) :

4 i
r = R 1(i) = / a ( i ') d i 1 (III .48)

0

for every i e [0,A].

a) (iii) implies (v)
Given that

R(r) = a log (1 + br) (III.4)

for every r e [0,T], where a and b are constants, we 
find with (111.48) :

a (i) = dR d1.(i) (III.49)

while
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(III.50)R''(i) - p (ea - 1) = r

(III.49) and (III.50) yield now 
i_

a(1) = ^  ea * M.K1 ,

where

a¥ and K = e

b) (v) implies (i i i) 
Given that

(i) = M.K1

(III.51)

(III.52)

(III.7)

for every i e [0,A], where M and K > 1 are constants, 
we have by (III.48) that, with i = R(r)

R ( r )
r = R 1(i) = / M.K1 di1

0

r * T O f T  <KR<r) - U  ( H I . 53)

Hence

= log K 109 +r "K  ̂ ' 

which is of the form

R(r) = a log (1 + br)

with

a 1
W T and b log K 

H (III.54)

(cf. also formulae (11.40)), which is in accordance 
with formulae (III.52). This shows also the second 
equalities in (III.9) and (III.10).
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This completes the proof of this theorem. □

Remark :
The reader will have noticed that the proof of one of the 
above equivalencies is superfluous. The longest of these 
is the proof that (iii) is equivalent with (iv). However, 
this is the classic statement - seen often in the 
literature (explicitely or implicitely mentioned) - that 
the classical law of Bradford is equivalent with the law 
of Leimkuhler. We therefore provided a direct proof for it.

Corollary 1 :
If the continuous IPP satisfies Bradford's law for p groups 
(p € IN), then the Bradford factor k = k(p) has the value

k = p(A ) p . (III.55)

Proof :
Using (III.15) (valid for a fixed but arbitrary p e I) 
we see that

A
k = e ^  (III.56)

But, using (11.20) we have 

p(A)
A = J j f(j) dj 

1

P (A ) r
A = J £ dj

1 J

A = C log 0(A)- (III.57)

(III.56) and (III.57) now yield

2
k = p(A)p . o

This formula will be slightly adapted to discrete 
practical bibliographies, when fitting them to Bradford's 
law.
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Corollary 2 :
If the continuous IPP satisfies Bradford's function 
group-free, then the continuous Bradford factor K has 
the value

1
K = P(A)7̂ . (III.58)

Proof :
This follows readily from formulae (III.13) and (III. 55);
formula (III.55) can be used since, in the above theorem,
(v) implies (i v). □

III.1.3. Functions equivalent to the general Lotka function

We have the following theorem (see partially
(Egghe, 1985 and 1989b)) :

Theorem :
Let (S,I,V) be any continuous IPP. Then we have the
following equivalencies :
(i) The IPP satisfies the Lotka function (111.1)

(general a).
(ii) The IPP satisfies Mandelbrot's function (III.3) 

(general B ').
(iii) The IPP satisfies the general Leimkuhler function 

(III.5).
(iv) The IPP satisfies the general group-free Bradford 

function (111.8).

Note :
Relations between the parameters can be proved as in the 
previous theorem but we omit them since we do not need 
them further on; this also simplifies the arguments.

Proof : Proof of the equivalence of (i) and (ii)

We use again the general relation (III.17) :

P(A )
g (j ) = r(j ) = J f(j ') dj '

j
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for j e t1,p(A)] (see previous section).

a) (i) implies (i i)

, -1 ,,9 '(j) = r(j ) = J
P (A )

j J 'a
dj '

C / / . \1-a .1-a\ = (P C A ) - j )

from which follows that (j = g(r))

g(r) = p( A)

(1 + r ---2-1, J «-
C p( A) T - a '

Hence

(III.59)

g(r) =
(1 + Hr)B

(III.3)

where G = p(A), H = ---— -L—  and 6 1 = — ^
C p(A)1"“

b) (i i) implies (i ) 
From

j = g(r) G
(1 + Hr)6 '

one finds, using f(j) = -r'(j) (as in (III.20)) that

f (j )

1
1 re 

FTT (“T T T )

being Lotka's law.

(III .60)

Proof of the equivalence of (i) and (iv)

a ) (i) implies (i v)
This is proved in section II.4.3.2.
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b ) (i v) implies (i) 
From Bradfords'1 aw

o ( i )  = (A1 + i A2 ) 3

for i e I, and lemma II.2.1.1 one has that

"A3
p(i) = (A 1 +AA2 - iAz) (III.61)

Consequently

-A,-1
p ' (i) = A2A3(A1 +AA2 - iA2) J

1 + jp
P '(i) = A2A3 p(i) 3 (III.62)

for every i £ I.

Using the duality relation (11.20) we see that

P( i )
/ f(j) j dj = i 
1

and hence

f(p(i)) P(i) P ' (i) = 1 (III.63)

for every i e I. Combining (III.62) and (III.63) we 
have

f (P (i))
2 +

A2A3 P ( i ) *7

for every i € I. 
Hence also

f (p (A - i))
2 +

A2A3 p(A-i) *7

(III.64)
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for every i £ I, since this is exactly the same as 
(III.64). Now j = p(A-i) (corollary II.2.1.2; see also
the previous section). Hence

f(j) - ----- Í---- r
2 + J T  

a 2a 3 j 3

for every j £ [1,p(A)], which is the general Lotka 
function (111.1).

Proof of the equivalence of (iii) and (iv)

a) (iii) implies (iv)
Formula (III.5), written in general form 
of Lotka's a), reads as

(i ndependent

B,
R(r) = B ] ( B 2 - (B3 + B4r) b) (III.65)

Now, for i = R(r), we have 

i
r = J o (i 1 ) d i 1 

0
(III.66)

(cf. (11.38)). Hence, combining (III.65) and (III.66)
gives

1 B,
i = B ] { B Z - (B3 +B4 / o(i') di1) b) 

This yields
1

i *7
i (B2 " F7) " B3
/ o( i ' ) di ' = -------- R-------
0 b4

(III.67)

and hence, differentiating :

. IF " ’
o(l) - - (b2 • (III.68)

which is of the form of the generalised group-free law 
of Bradford.
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b ) ( i v ) i mpl i e s  ( i i i )
This was shown in section II.4.3.2. □

Note :
In quantitive linguistics, Mandelbrot (1974) pointed out
that -X- equals the fractal dimension D of the IPP (in thisr>
case, a text).Whether this is true (and how to understand 
this) in general IPP's is not clear for the moment. From 
the above proof it follows that a -1 = D. Suppose for the 
moment that -p- = a - 1 is the fractal dimension of a general

IPP, then it is interesting to see, due to the results of 
section II.4.2 that D < j  + 1 (cf. (11.31)) and most 
commonly D < 2 (cf. the note after corollary II.4.2.3).
This result looks quite natural, an IPP being studied in 
a "2-dimensional" (dual) framework. In this connection 
also the assumption a > 1 (i.e. D > 0) is clear.

So far, all calculations and theoretical developments 
are exact in the sense that they can be proved or worked out 
mathematically, with no approximations whatever. It must 
however be emphasized that - no matter how valuable 
continuous IPP's are for developing a theory - practical 
bibliographies are discrete but large. Results as above 
would never have been possible to be proved for discrete 
IPP's. But, in order to be able to apply the above results 
to practical bibliographies some approximations are in order. 
They are formulated in the next paragraph.

III.2. Informetric approximations

This section deals with the use of the symbol » in 
further calculations. It is not easy to state "ax4omatically" 
what is allowed and what is not, concerning approximations in 
informetrics in general and in informetric laws in special.

Basically, approximations are needed to cope with the 
fact that the above theory is for continuous IPP's, while
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practical bibliographies are not : they are discrete but 
large. We therefore adopt the following acceptable 
principles :

(A^) We may work with discrete sums, whenever we have been 
working with integrals in the continuous theory above. 
The reason why we have not done so from the beginning 
is technical and also for reasons of theoretical 
elegance. Some results even would have been impossible 
to prove in the discrete setting.

(A2) p(A), the maximal density of items, can be put equal 
to the number of items in the most productive source, 
on condition that there is only one such source. This 
quantity is henceforth denoted by

(A,) y is large, in the absolute sense (i.e. when not in3 m
combination with other parameters).

All these principles do agree with all practical 
(i.e. not too small) bibliographies.

111.3. Relations between parameters of the classical

We have adopted unique notations for the parameters 
that occur in the informetric functions, studied so far.
So we do not repeat their meaning : they can be found in 
paragraph 111.1. Let us just repeat Lotka's law :

C and a are constants, a > 1  and j e t1,p(A)]= [p(0),p(A)]= 
[1,ym ] (see ( 111.1 ) and (III.69)).

ym » p (a ) (III.69)

informetric functions

(III.70)
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Most of our attention will be devoted to the very 
classical case a = 2 since much is still to be done in 
this case. Nevertheless, we will also consider general 
a > 1 , subsequently.

III.3.1. The case a = 2

We draw the reader's attention to the results in 
section III.1.2 and repeat the formulae that were obtained 
there (together with (III.69)) :

< F 1 >

b - V 2 <F2>o

G = ym = <F3)

H = ^  = b (F4 )

C = a

yQ = C log k

r0 ■ 71 (k-,)J m

K = k(p)
P
J

<FS >

< F 6>

(F?)

(f8 )

We have also, following from the group-dependent 
Bradford formulation, that (for p € IN groups) :

A - y0 .p

and

T = r  + r k + ... + r kp~̂  o o  o
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Hence

and

A
P

T(k-1)
0 kP-1

This, together with (F1) and (F2) gives

(Fg)

< F i o >

and

a =

a =

1 og T

1
log W *

1
log K

log K

(F,,)

(f ,2)

(see formu1ae(11.40) or (III.9) and (III.10)).

That (F12) also follows from (F2) can be shown thus

u k - 1

5 log kp

ro log kp 
F ^ T  --A—

log K 
H ’

using formula (III.44). Hence all formulas (11.40), (III.9), 
(III.10) and (III.44) are in complete accord with each other.
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Adapting the proof of corollary 1 in section III.1.2 
to the discrete case we have, now using (cf. (Ap, (A^) and 
(A3)) :

*m r
Z i  « C (1og y + y ) (III.71)

j = 1 J

(where y is Euler's number, y » 0.5772...), the following 
result :

\

k « (eYym )P . (F13)

(Fg ) and (F13) imply

1
(FU )

(see also (Egghe, 1986) and (Egghe, 1989c)).

A and T, the total number of items resp. of sources 
can be related to the above parameters as follows

ymm p 
A w  I j —rr

j = 1 j

(cf. (A.|), (A^), (A3)). Hence, since ym is large (A3) we 
have (see also (III.71 )) :

A w C (log ym + y)

and

^m r
T w Z 

j = 1 J

° °  1Since z — *• converges and by (A3) we have 
j = 1 j

T w Z
j  = 1

C
77
J

C
2IT

T

'F15>
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So

27T

Formulae (F^ through (F12) are not adaptable in 
this way (or do not need an adaptation!); so they are left 
as they are. The above set of formulae will be shown to be 
useful (f.i. for fitting purposes) in the sequel.

Note that the parameter C in Lotka's law is 
determined by formula (F^), in the sense that C can be 
determined from the practical data, being

Note again that C < T < A (cf. the note after corollary 
II.4.2.3).

If there is a need to express C in function of y ,
this has been done in (Allison et al., 1976), in (Egghe and
Rousseau, 1986) and in (Egghe, 1987) in connection with
Price's law. Following (Allison et al., 1976) there are
at least two different ways of expressing the value of C
i n functi on of y :m

(a) Expressing the fact that the (unique) most productive 
source stands for the "mathematical tail" of the

r
function f(j) = . Hence we then have that

(III.72)
7T

(III.73)

Hence
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00

1 °° d * °°( Z -K w J 4  since Z 4, converges and by (AJ).
1 J=1 J J

So

C « ym (III .74)

(see section III.4 for more information on this case).

(b) Expressing the fact that the unique most productive 
source stands for itself and hence

1 = f(y ) = -4 (III.75)
*m

Consequently

C = (III.76)

Practical examples show that almost always 
6 2C » —2 T € [ym ,y^], which is not much of a property since
 ̂ p

the interval [y„,yf;] is indeed very wide! We refer the m m
reader to the examples studied in the next chapter, to see 
that the above assertion is indeed true.

Therefore, as in (Allison et al., 1976) we can put

C = y£ , (III.77)

where c € [1,2]. In this case we have the following 
formulae (indicated with PF since they are assuming the 
practical relation (III.77)) :

H = y 1"c ■'m (PF,)

a = y£•'m (PF2)

y0 = y‘ log k (PF3)

ro - »S'1 <k-1> (pf4)
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A « y£ (log ym + y) (p f5)

T « < C TT 
'm ~F (pf6)

III.3.2. The general case

In section III.1.3 we can read the following 
formulae (using (III.69) of course) (denoting GF for 
"General Formula") :

G = y 

H = -

m

a  -  1

c y
-a

m

I _
a - 1

and furthermore (see II.4.3.2), with

o(i) = (A1 + i A2)

and

P(i) = (1 - iA2)
-A.

one has :

A. = p(A ) = y A (2-a)
m C~ + 1

9 . a

Also, for

R(r) = B1 (B2 - (B3 + B4r) 5)

(GF1 )

(g f 2)

(GF3)

(11.44)

(11.43)

(GF4)

(g f 5)

(GF6)

(III.65)
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one has (see also II.4.3.2) :

B C
(g f 7)

(GF8 )

(GFg)

Of course, obvious interrelations between the 
and B. can be made.

J

For the rest of this section, we restrict ourselves 
to the case a = 2, hence purely Bradfordian situations 
(cf. section 111.1.2).

Firstly we investigate the relationship between the 
classical Bradford factor k = k(p) and the average produc-
tion p (often claimed to be equal to k - wrong of course, 
but we will shed some new light on this claim).

Secondly, also in the case a = 2, we will prove an 
explicit formula for m(i) (i = 1,...,p), where m(i) is the 
number of items in the most productive source in the

J_ L.

(p-i + 1 / -Bradford group. Here we use duality aspects 
in discrete IPP's. This will have applications in fitting 
procedures, to be dealt with in the next chapter.

III.3.3. k as a function of p

In (Goffman and Warren, 1969) as well as in 
(Yablonsky, 1980), the relationship between k and the 
average production is considered. In both publications
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one considers a bibliography of journals (sources) 
containing papers (items). In the former publication one 
deals with the average number p of papers per journal. In 
the latter however one uses the average production n of 
papers per author and they estimate k » n. We want to 
stress here that no k can be equal to any average (p nor n), 
because of the p-dependence (see e.g. formula (F^3)).

The relation between k and n is part of 3-dimensional 
informetrics (cf. 1.7) and is not dealt with here. The 
relation between k and p is as follows (see (Egghe, 1989c))

^m
£ j f (j )

W = ^ -------- (III.78)
ym
2 f(j) 

j = 1

J m
Z

j = 1
J m
Z

j = 1

1
J

log ym + y
w ----- 2----

IT
TT

Here we used (A^), (A3) and (A^), together with the fact

00 1that z —w converges. So 
j = 1 J

P w 4  (log ym + y ) (1 1 1 .79)
7T

Using (F ̂ 3) we hence see that

p w p log k (III.80)
TT
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The graph of the function

fp(k) k
M

fp(k) TT2k
6 p log k ( III .81 )

looks like the graph of Fig.III.1 (the exact form being, 
of course, dependent on p). We have the properties, for 
every p e IN :

lim f (k) = 0 , lim f(k) = -» (III.82)
k+0 p k+1 p
> <

(unimportant since in informetries , k > 1)

lim f (k) = +» (III.83)
(<->+00 P

lim f (k) = +œ (III.84)
k-*-1 p
>

(a vertical asymptote in k=1) and

fp(2) = fp(4) = 3' p log 2 (III.85)

It is remarkable however that for a wide range of 
k > 1 the function f is almost horizontal, hence there 
is an approximately constant relationship between k and p!
The minimum is obtained in k = e (independent of p) and

2
there is an inflection in k = e . So in a wide range (see 
Fig.III.1) around k = e we have an almost constant relation 
between p and k :

f
P
(e) (III.86)

Hence, for p > 5 we always have that k < p for a 
wide range of k's around k = e while k might be > p for
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Fi g. 111.1 : Graph of ^ for p = 5
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p = 3 or 4 or for p > 5 and k close to 1 or k very large 
(not common in practice).

We have checked our theoretical findings, using 
some classical bibliographies : Applied Geophysics 
((Bradford, 1934) or (Egghe, 1989d)), Lubrication 
((Bradford, 1 934 ) or (Egghe, 1989d)) , ORSA ((Kendall, 1 960 ) 
or (Egghe, 1989d)), Mast Cell ((Seley, 1968) or (Egghe, 
1989d)), Schistosomiasis ((Warren and Newill, 1 967) or 
(Egghe, 1989d)) , Circulation data (Goffman and Morris, 
1970), User's data (Goffman and Morris, 1970), Transplan-
tation - Immunology (Goffman and Morris, 1970) and 
finally 6 bibliographies in (Aiyepeku, 1977) : Geography, 
USA-UK-France-Germany-data, USA-data, UK-data, France- 
data and Germany-data.

We have found a complete confirmation of the above 
results. See Table 111.1.

Note 1 :
The Bradford data of Goffman and Warren on Mast Cell and 
Schistosomiasis (Table 3 in (Goffman and Warren, 1969)) 
are omitted for reasons to be given later.

Note 2 :
The reader can verify that Table III.1 is correct by 
simply checking the values of p, k and p on the raw data.
A method of calculating these values is given in chapter IV. 
Furthermore, there we can also find the calculations for k 
for the first 5 bibliographies (Applied Geophysics (p = 3 
or p = 5), Lubrication (p = 3 or p = 7), ORSA (p = 4), Mast 
Cell (p = 13) and Schistosomiasis (p = 9). The calculations 
of the other values is carried out in exactly the same way.
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bib!iography P k P confi rmation

Applied Geophysics 3 5.49 4.09 Y k > P
Idem 5 2.78 4.09 Y k < P
Lubrication 3 3.40 2.41 Y k > P
Idem 7 1.69 2.41 Y k < P
ORSA 4 4.56 4.76 Y k P
Mast Cell 13 1.44 4.05 Y k < P
Schistosomiasis 9 2.03 5.70 Y k < P
Circulation data 8 1.4 2.36 Y k < P
User's data 8 1.4 2.22 Y k < P
Tran splantati on- 
Immunology 9 1.8 4.12 Y k < P

Geography 7 1 .7 13.27 Y k < P
USA, UK, France, 
Germany data 6 1.8 5.50 Y k < P

USA data 5 2.3 4.05 Y k < P
UK data 7 2.4 4.23 Y k < P
France data 4 2.8 4.48 Y k < P
Germany data 6 1.9 3.20 Y k < P

Table III.1 : Verification of the relation between k and p

III.3.4. The number of items in the most productive source 
in every Bradford group

Let us consider the case a = 2 once more. We have 
here a pure Bradford IPP again. Consider the p Bradford 
groups (p€lN fixed but arbitrary). We might wonder how 
these groups are structured. For instance, where do the 
divisions (between one group and the following) occur?.
Let us visualise the p groups as in Fig.III.2, numbering

pthgroup 2ndgroup lstgroup
— i------- «------------------— —---- 1________ i________ i_____

P p - 1 ... 2 1 0

Fig.III.2 : The Bradford groups
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them from right to left (i.e. starting with the least 
producti ve sources).

This approach is identical to the dual approach for 
discrete IPP's in section II.2.2. Furthermore, in theorem 
II.3.2.3 we showed that the function p(i), measuring the 
average number of items per source in group i (from right 
to left as above) is the same function (upon a constant) 
as the Bradford function a(i), i.e. an exponential one.

Analogous to the above but far more intricate is 
finding the exact place of the "cutting points" 1,2,...,p-1, 
in Fig.III.2 above : what sources are there and what is 
their production? As in chapter II, our dual approach will 
yield a solution, but it is more intricate to solve this 
problem. The problem itself is interesting and its solution 
will be applied in chapter IV.

Let i = 1,2,...,p. Denote by m(i) the number of 
items in the most productive source in group i (counted 
in the dual sense : from right to left). We suppose that 
we have a large discrete IPP for which Lotka's law

f(j) = -4 (III.87)
j

j = 1,2.... ym , is valid (discrete law).

The cutting points i are such that every group has
the same number of items (since they are the divisions of
the Bradford groups). So, in general, these divisions do
not coincide with some divisions j = 1,2,...,y in Lotka'sm
law. Since, by definition, m(i) is the number of items in 
the most productive source in group i, this group ends in 
the Lotka category j = m(i) but, maybe, not all the 
sources with production m(i) are included or, what is the 
same, not all the items in all the sources with production 
m(i) are included. Let a(i) denote the fraction of the items, 
belonging to sources with production m(i), that belong to 
the ith group. Hence a(i) € ]0,1] (a(i)  ̂ 0, by definition 
of m (i)).
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Lemma (Egghe, 1986) :

m ( i ) -1 1
oc( i ) = m(i)(i log k- I |) (III.83)

j = 1 J

for every i = 1,2,

Proof :
We will prove this formula by mathematical induction.

(a) i = 1

Since in every group (hence also in the first one) 
û

we have yQ = - items and since yQ = C log k (formula (Fg)), 
we have, by definition of a(1), m(1) and by (III.87) :

C log k = y = C + -Sr. 2 + -£ . 3 + ... + --- ----(m(1)-1)
0 2d 3d ( m O H ) 2

+ — m(1).a(1) (III.89)
m(1)2

Hence

log k = 1 + \  + y + ... + rnCI")" - i + mOT a(1)

So

m(1 )-1 .
a( 1 ) = m( 1 )(log k - I 4-) (III.90)

j=1 J

showing (III.88) for i = 1.

(b) Given (III.88) for i, show (III.88) for i replaced 
by i+1

Now we have that the yQ items in group i+1 are 
composed of the items
- in the sources with production m(i) that are not in 

group i
- in the sources with production m(i)+1, m(i)+2,...,m(i+1)-1
- in the sources with production m(i+1), but only a fraction 

(of the items involved) a(i+1).
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Expressed mathematically this gives

C log k = y = — ^  m(i)--- ^  m(i) a(i) + --------7 (m(i) + 1)
0 m(i)2 m(i y (m(i)+1)2

+ . . .  +
(m(if1)-1)

7 (m(i + 1)-1) + - -- C--7 m(i+1) a(i+1) (111.91)
m(i+1)'

Using (III.88) for i, and putting this in (III.91)
gives :

4 i m(i)-1 .
los k = s i r r  wn[m(1)(i l0= k - }  j )]

J '

+ m(i)+1 + . . .  + mTT+TT-l + a(i+1)

m(i + 1)-1 . .,
l  I - i log k ♦ “(,+1)

j = 1 J m(i+1)

So this yields

a(i+1) = m(i+1)[(i+1) log k -
m(i+1)-1 .

Z I ] j=1 J

(a) and (b) together show (III.88) for every i = 1,2,...,p. □

With the help of this lemma we can now prove the 
following useful result.

Theorem (Egghe, 1986) :
For every i = 1,2,...,p we have that

« m(i)-1 .
4- z

1 m(i) 1
t  < log k < T z 

j=1 J j=1 J

and hence, for m(i) not too small,

(III.92)

m (i) « —  « 0.5615 k1
,Y

(III.93)
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Proof :
Group i has, by definition, sources with production
1. m(i-1); the fraction w.r.t. the items in the sources 

with production m ( i - 1 ) being 1 - ct ( i - 1 ) € [ 0 ,1 [,
2. m ( i -1 ) + 1.... m ( i ) - 1 ,
3. m (i); the fraction w.r.t. the items in the sources with 

production m(i) being a(i) £ ]0,1] .

Consequently, since there are yo = C log k (Fg) 
items in every group, we can write the following equality 
(cf. also (III.91) with i replaced by i-1) :

c l09 k ■ *0 - mTT^TT (’-“(i-')) + ITT-1)VI

(111.88) 

log k =

* ••• * ITTFT + SITT “(i) (in.94)

together with (III.94) now yield :

1 m(i-1)-1 .
■m-(i.r) [1 - m ( i -1 ) ( ( i -1 ) log k - I j)]

J ^

+ m(T-'1 ) +1 + + mTT) - '1 + mTTJ a(i) ‘

Hence

a(i)
mTTT

m ( i ) - 1 . 
i 1og k - L — 

j = 1 J
( III .95)

Since a (i) e ]0,1] we hence find (III.92), for 
every i = 1,2,...,p.

If m(i) is not too small, we can use the following 
approximation :

x 1Z 4 « log x + y (III.96)
j = 1 J

for x high.
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This gives in (III.92), approximately :

log (m(i)-l) + y < log k1 < log m(i) + y

Hence, since m(i) is large,

log k1 - y fa log m(i)

Finally we find

m (i) « —  « 0.5615 k1 .
,Y

(III.93)

Corol1 ary :

k « (eY ym ) p (F13^

where k is the Bradford factor related to the 
division in p groups.

Proof :
Certainly m(p) = ym is high, supposing (A3). Hence

kP
ym = m(p) * —  ,J m r y 5e '

from which (F^) follows. □

Note that the above proof is a second proof of this 
fact, the first one being given in section III.3.1, based 
on the results of section III.1.2. The first proof resulted 
from the relations that exist with other informetric laws; 
the second one is a proof completely within the Bradford 
framework. Neither proof is completely trivial.

The above results on m (i) will be re-used in the 
next chapter on fittings of Bradford's and Leimkuhler's 
1 aw.
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Note also that, in order to have formula (III.93) 
accurately, not i but only m(i) must be large. We have 
the following table :

n 1 og n r 1
E ¥ ' Y k=1 K

A

1 0 0.42 0.42
2 0.69 0.92 0.23
3 1. 1 1.25 0.15
4 1.39 1.50 0.11
5 1.61 1.70 0.09
6 1.79 1.87 0.08
7 1.95 2.01 0.06
8 2.08 2.14 0.06
9 2.2 2.25 0.05
10 2.3 2.35 0.05

n 1Table III.2 : l ^ versus log n 
i = 1 K

So, already from m(i) > 7 on, the difference is 
less than 3 % of the actual value, which can be reached 
already in the second or third Bradford group (counted 
in the dual way), in practical situations.

III.4. Further comments on the classification of certain 
informetric functions

It is not our intention to try to classify all kinds 
of informetric functions. Nevertheless it is not easy to 
see the exact place of some classical laws such as Pareto, 
Zipf, the graphical formulation of Bradford's law (see 
further) and Brookes' law (also called the Weber-Fechner 
law - see also further).
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Without claiming the complete study of this 
problem we will present some ideas (both mathematical 
and philosophical) leading to the conclusion that the 
above mentioned laws together :
(1) are equivalent
(2) are part of. our theory on continuous IPP's satisfying 

Lotka1s law
but

(3) play also a separate role and this is found to be 
true in several ways, to be explained later on.

In order to be able to prove a correct result, all 
classical definitions are slightly modified in the sense 
that all ranks are lowered by 1; otherwise nô  relation 
between the laws will exist.

III.4.1. Definitions

For the sake of simplicity and unity we will always 
assume a continuous IPP (S , I, V) as in chapter II.

A . The graphical formulation of Bradford's law, group- 
dependent

Fix p e IN. We say that our IPP satisfies the 
graphical formulation of Bradford's law (p-dependent) 
if we can divide the set I into p equal parts, each 
containing yQ > 0 items such that, in (I,S,U), we have, 
for the first yQ items, the first r.j-1 > 0 sources,

for the first 2 yQ items, the first r ̂ k 1 -1 sources (k^ > 1),
2

for the first 3 yQ items, the first r^k^-1 sources, and so 

on until : for the first (p-1) yQ items, the first r^k^~^-1 

sources and finally, the p yQ = A items stand for 

r^k^"1-1 = T sources (see e.g. (Wilkinson, 1973), where 

the ranks are 1 higher).
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B. The graphi ca l  f ormul at i on of  Bradf ord' s  law,  group- f ree

Let the function l(i) denote the cumulative number 
of sources up to the co-ordinate i e I = [0,A] in (I,S,U). 
Then

Z(i) = M1.k ] - 1 ■ (111.94)

where and K̂  > 1 are constants.
I is called the group-free graphical Bradford function.
Note that in general IPP's :

I(i) = J a (i ' ) di'
0

= r

= U ( i ) . ( 111. 9 5 )

C. Brookes' law or the law of Weber-Fechner

Let, in (I,S,U), R^(r) denote the cumulative 
number of items in the sources s e [0,r], for every 
r e [0 ,T]. Then

R1(r) = a log (B(1+r)) , (III.96)

where a and B are positive constants. R̂  is the 
corresponding Brookes (or Weber-Fechner) function.

D. Zipf's law or Pareto's law

In (I,S,U), let g(r) denote the density of the 
numbers of items in r e [0,T]. Then, for every r € [0,T]

g ( r )  = -p i-p  ( I I I . 97)

(cf. also (1.5) or (1.8)), where F is a constant (we 
restrict our attention to the power 1 in the denominator 
of (1.5) or (1.8)). g is called the Zipf (or Pareto) 
function.
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Note :
In (III.96) as well as in (III.97) one uses 1+r instead 
of r. This is because these functions are not defined 
at 0. We could have used r (instead of 1+r) together with 
the interval S starting in 1 but, in view of our unified 
theory, we prefer to retain our framework : a continuous 
IPP of the form

Both approaches are, however, equivalent.

Theorem III.4.2 (Egghe, 1988a) :
Let (S,I,V) be an arbitrary continuous IPP. Then the 
following assertions are equivalent :
(i) The IPP satisfies the graphical formulation of 

Bradford's law group-dependent, for every p € IN, 
but with the relation r̂  = k^.

(ii) The IPP satisfies the graphical group-free Bradford 
function, with = 1.

(iii) The IPP satisfies Brookes' function with B = 1.
(iv) The IPP satisfies Zipf's (or Pareto's) function.

In this case, and following the notations of 
IH.4.1, we have the following relations between the 
parameters :

(S,I,V) = ([0,T],[0,A],V) .

= Tog" KT = F (III.98)

K. = k?/A (III.99)

r (III. 100)

Proof : Proof of the equivalence of (i) and (ii)

(a ) (i ) implies (i i)

Let first i € (0, A] be such that i = 3A where q < p, 
q,p £ IN, q > 1. By (i) we have, with p groups :
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1 (III.101)E ( i )  = r ^ - 1  -

for a certain r k „ > 1 , with r. = k

pi - 1
I(i) = r.k7 ~

P

Z(i) = K (III.102)

with

K. = k
P
J (III.99)

Since 2 is continuous (cf. (III.95)) and since the function 
i + K!j is a continuous extension of 2 to [0,A], we have 
that

K i )  = Kj - 1

for every i G [0, A]. This is so because the set of the i's 
as considered above is dense in [0, A ].

(b) (i i) implies (i)

A
Let p G IN be arbitrary. Let yQ = yQ(p) = - and

rr 1 = r.(p) 1.

Then

y y 
K,°.K,°

and, more generally, for every i = 2 »P

87



1

= (k^ h k ^0)1-1 - i

Hence, putting

E < 1 y 0 ) = K1/ 0 -

we have (i) for every p e IN.

(III. 103)

(III. 100)

Proof of the equivalence of (ii) and (iii)

(a ) (i i) implies (iii)

Since

I(i) = Kj - 1 ,

for every i e [0,A], we have, using i = R^r), and 
Z(i) = r (see (III.95))

M r )
r = K1 1 - 1

Hence

R1(r) = Tog' K1 109 (r+1) ’ (III.104)

being Brookes' law, for every r € [0,T], but with B = 1.
Here

“ = T o g V ^  (III.98)

(b) (iii) implies (i i) 

Given

R1(r) = a log (1 +r)

for every r € [0,T], we have trivially :
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Rj1(i) = r = ea - 1 .

Hence, using z(i) = r again

= K] - 1 (III.105)

for every i e [0,A]. Here
2

K! = e“ (III.98)

Proof of the equivalence of (iii) and (iv)

This proof is executed using the general formula 
(definition of R ̂ and g) :

r
M r )  = / g(r') dr' (III.106)

0

for every r e [0,T].

(a ) (iii) implies (i v)

Since from the previous formula one also has 

9(r) = Rj(r) ,

we find, using R^r) = a log (1+r),

g(r) = Rj(r) = , (III.107)

being Zipf's law.

(b) (iv) implies (iii)

Now we have

R,<r> • lTT r * * * ’

R1 (r) = a log (1 + r) (III.108)

Here we have the relation
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a = F (III.98)

This completes the proof of this theorem. □

III.4.3.
Now it is clear that the above group of laws is

not completely separated from the groups we have considered
earlier. Indeed, taking b = 1 or, what is the same, H = 1
in (III.12) gives us the laws we have encountered in this
section. This reduces to the choice C = y„ in Lotka's lawm
(see (F^), cf. also (III.74) and the (PF)-formulas with 
c = 1). This special case has already been noted (Rousseau, 
1988b).

From the above, we hence also have that Zipf's law 
corresponds to a Bradford law (p-dependent) where

k = 1 + r . (III.109)o

Indeed, use (III.10), with b = 1.

From this we can draw the conclusion that we are
dealing here with a highly concentrated situation.in the
sense that £r rQ is small, which is a way of saying that
(take p = 3 to fix the ideas) the core group of highly
produced sources is small, o_r rQ is large but then,
according to (III.109), k must be large and hence, the
core group of r sources is nevertheless small w.r.t.o p
the other groups rQk, rQk and so on.

We conclude that linguistics (or econometrics) can 
be viewed as part of informetrics, but in practice there 
is a separation since
1. In most informetric examples (and we will present

many in the next chapter on the fitting of the 
informetric laws) we have b < 1 and indeed : b «  1.

2. In linguistics and econometrics one often finds b = 1.
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111.4.4. Philosophical explanation for the special place 
of linguistical (econometrical) laws within the 
informetric laws

Informetric laws are mostly applied to bibliographies, 
or authors publishing research papers, while the law of Zipf 
originates from linguistics (measuring the number of times 
that a word occurs in a text).

In the first group there is a natural tendency in 
the most important sources to lower their number of items 
a little : the most prolific authors will not publish less 
important (but still publishable) work; in the same way, 
the most important journals in a research area will become 
more and more selective in accepting papers, and so on.
This is not the case with the use of words in texts : the 
most heavily used words are words such as 'the', 'a', 'and', 
and so on : there is no limitation on these words for 
grammatical reasons! Synonyms are in use only for popular 
but not so heavily used words.

So this explains again why Zipf's law is a highly 
concentrated version of Mandelbrot's law.

111.4.5. Solution of an apparent paradox

As a corollary of the above developments we see 
that, in the special case of b = 1, the graphical law of 
Bradford should be equivalent to the original "verbal" 
law of Bradford. This looks quite impossible. The verbal

A
Bradford law for p groups yields rQ , k and yQ = ^ such 
that (schematically) we have for every group :

i terns o>> —

o>> — yo
I

sou rces ro rok rok

Situation I
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Suppose this situation is also describable via the 
graphical law of Bradford with p groups in its classical 
formulation. Then each group still has yQ items. We now 
have r̂  and such that

items

sources

Situation II

From this viewpoint, we never have the two situations
occuring together. Indeed, to have both situations we need
to have r. = r and r.k. = r + r k; hence 1 o 11 o o

k 1 = 1 + k (III.110)

But then the third group contains

r 1 k^ = rQ (1+k) 2 (III.111)

2
sources, while in the first case this group has rQk sources. 
Since both groups must be equal (since they are made that 
way) we conclude : The above situations are never equivalent. 
This is a new result.

This paradox (with theorem III.4.2) is solved as 
fol1ows.

A. Group-dependent versions

To agree with our theory on both Bradford laws, 
we first note that theorem III.4.2 provides a way of changing 
situation II into situation II', which is the former 
situation but where all source ranks are reduced by 1.

To make this situation II* 1 compatible with situation
I it is necessary that r̂  - 1 = rQ , r^k^ - 1 = rQ + rQk and
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Situation II'

2 2r.k. - 1 = r + r k + r k (since p > 3 necessarily). 11 o o o  r
This yields

r 1 + ro >

k 1

k1

1 + r + r k o o
— r ~ r " —  *o

2
1 + r  + r k  + r k____ o_____ o o

1 + r + r k o o

Equalising the last equations we find

k = 1 + ro

hence

(III.112)

b = 1 . (III.113)

Conversely, if b = 1 then it is easy to see that
both situations I and II' are identical, when we take

1 + r + r k
r 1 - 1 = rQ and k1 = —  ̂ -+ ----  = k (since k = 1 + rQ ). This

o
solves our paradox in case A .

Although not strictly necessary (because of 
theorems III.4.2 and III.1.2) we will solve explicitly 
this paradox for the group-free versions :

B. Group-free versions

(1) If b = 1, then

o (i) = M.K1 (III.114)
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if and only if

I (i) = K1 - 1 (III. 115)

for every i £ [0,A], with K > 1 a constant.

Proof : only if
Since b = 1 , we have by (III.10) that

M = log K (III.116)

Furthermore

1
Z(1) = / a(i ' ) di ' (111.95)

0

according to (111.95).
Hence, combining (III.116) and (III.95), we find

Z (i) = K1 - 1 (III.115)

for every i e [0,A]. 

if
From (III.95) it follows that

a (i) = Z 1 (i) (111.116)

for every i £ [0,A]. Hence Z(i) = K1 - 1 implies 
a (i) = log K.K1 = M.K1 (using b = 1 again), for every 
i £ (0 , A ] .

(2) If both a and Z are of the form

a (i) = M.K1 (III.114)

Z(i) = K] - 1 (III.115)

for every i £ [0,A], where M and K,K1 > 1 are constants, 
then b = 1.
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Proof :
Indeed

Z (i) = / a (i ' ) d i 1 
0

by (III.95). 
Hence

V  ( -j \ -  M y i
z t w  ■ 7og~K K T o T T

■ Ki

for every i e [0,A] only if

H
log K = 1

(III.118)

and

K = K1 .

This gives, with (III.10) that b = 1. □

The above proofs in III.4.5 are a second proof 
(but yielding more insight) of the following corollary, 
which is in fact an immediate corollary of theorems III.4.2 
and III.1.2 :

Corollary :
Zipf's (or Pareto's) function is the only function that 
agrees with both the verbal and the graphical form of 
Bradford's law (and this in the group-dependent as well 
as in the group-free version).

A final chapter deals with the practical applications 
of the results obtained so far and more specifically on the 
formulae that were proved.
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CHAPTER IV : FITTING METHODS FOR INFORMETRIC LAWS

We will devote ourselves to the fitting of the 
group-dependent law of Bradford, Leimkuhler 1 s function, 
the generalised Leimkuhler function (with general a) and 
Lotka's function (with general a).

These fittings, of course, are based on the results 
of the previous chapter. Extensive practical evidence of 
the value of the methods will be given. All methods can 
be applied directly to "raw" data as e.g. practical 
bibliographies (but also other IPP's are allowed).

These fittings do have applications (as will be 
indicated), but are also necessary to show the validity 
of the several formulae between parameters, we have proved 
so far. No doubt, the proved formulae are correct from a 
mathematical or theoretical informetric point of view, 
but we must be aware of possible problems arising from 
the fact that practical data differ (slightly) from the 
theoretical models. Only when our results are stable w.r.t. 
minor deviations in the data, will they be good and 
acceptable. This will be verified in the sequel.

IV.1. Fitting of the classical law of Bradford with p groups 
(p £ IN, p > 3)

IV.1.1. Methodology of fitting

In principle, choose any whole number p of Bradford 
groups that you want to obtain. Usually, take p between 4 
and 10, but for large IPP's a choice larger than 10 may be 
appropriate (for smaller IPP's a choice for a large p gives 
rise to small Bradford groups and this might give some 
fluctuations in the Bradford groups).

p = 3 is allowed but gives not much of a "law", 
although Bradford himself adapted this value; cf. (Bradford,
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1934).

An element in deciding what value of p to use is 
offered by the practical advantage of finding a value of 
rQ (the number of sources in the first Bradford group) 
which is a whole number (a formula for rQ is given after 
these lines). This is not really a requirement since one 
can always round of to the nearest whole number, but if 
the calculated rQ is close to a whole number, this reduces 
some initial fluctuations, when constructing the Bradford 
groups.

Once p is chosen, calculate

k = (eYym)1/p = (1.781 ym )1/p (F̂ )

and then

yo ( f 9 )

and

T(k-1)
kp-1 ( F 10)

Since A and T are obviously known from the raw data, 
r Q and yQ are easily calculated, once k is calculated by 
formula ( 3).

As said before, try several values of p in order to
get a rQ that is close to a whole number. If this cannot be
reached, use any p but take t rQ] , the largest whole number
smaller than rQ (one could use [rQ] +1 also, but if rQ is
not close to a whole number, [rQ] +1 is larger than rQ and
this gives rise to an incomplete last Bradford group). For

2
the calculations of r k, r k ,..., we use the exact r ando o p 0
k (not rounded off) and rQk, rQk ,..., themselves are 
rounded off in the usual way (we need a whole number of 
sou rces!).
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A final remark : since formula (F ̂ q ) implies that 

1im r = 0 (IV.1)

(since k > 1), values of p for which rQ < 1 are immediately
excluded (r must at least be 1!).

IV.1.2. Application to "Applied Geophysics"

This is one of the two classical bibliographies 
studied by Bradford himself in 1934, cf. (Bradford, 1934). 
The data are as follows :

journals correspondí- ng R(r)
§ articles (observed)

1 93 1 93
1 86 2 179
1 56 3 235
1 48 4 283
1 46 5 329
1 35 6 364
1 28 7 392
1 20 8 412
1 17 9 429
4 16 13 493
1 15 14 508
5 14 19 578
1 12 20 590
2 1 1 22 612
5 10 27 662
3 9 30 689
8 8 38 753
7 7 45 802

1 1 6 56 868
12 5 68 928
17 4 85 996
23 3 1 08 1065
49 2 157 1163
169 1 326 1332

Table IV.1 : Applied Geophysics , 1928 -1931 (i n c1 .

Calculating Bradford's law with P = 3 does not
involve much checking but, since Bradford himself considered 
this case, we will investigate also p = 3 with our methods. 
We find :
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5.49

y = = 444 and r = 326lk"1 ) = 8.93 « 9Jo 3 o k3_ 1

The Bradford groups are

p = 3, k = (1.781 ym )1/3 = (1.781 * 93)1/3 =

§ journals § articles

1st group r = 0 8.93 « 9 429
2nd group rok = 49.03 « 49 449

3rd group r k2 0 « 269 446

Table IV.2 : Bradford's law for AG, p = 3

which is better than Bradford's original division, (Bradford, 
1934) : he gets 9/59/258 journals yielding respectively 
429/499/404 articles.

We now show that p = 3 can be changed into any

reasonable number. For p = 5 we find k = (1.781 y^ ) ^ 3 =

2.78, y = « 266 and r = = 3.52. This valueo o o k b _ 1
of r is far from a whole number but we nevertheless can o
work with it. We use [rQ] = 3. The Bradford groups are :

§ journals # articles k
. St1 group r = 3.53 « 3 0 235 -

0nd2 group rQk = 9.81 « 10 258 3.33
_ rd3 group r k2 = 27.27 « 27 0 274 2.70

4 ^  group rQk3 = 75.81 « 76 314 2.81

5 group rQk^ » 210, exactly 
the last rank

251 2.76

Table IV.3 : Bradford's law for AG, p = 5
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IV. 1.3. Application to "Lubrication11

This is the second classical bibliography studied 
by Bradford, cf. (Bradford, 1934). The data are :

journals correspondi ng R(r)
§ articles I (observed)

1 22 1 22
1 18 2 40
1 15 3 55
2 13 5 81
2 10 7 101
1 9 8 110
3 8 1 1 134
3 7 14 155
1 6 15 161
7 5 22 196
2 4 24 204

13 3 37 243
25 2 62 293

102 1 164 395

Tab!e IV.4 : Lubrication, 1931 - june 1933

Again, we consider the case p = 3 since Bradford

himself considered this. We have k = ( 1.781 x 22 ) 1//3 = 3.40 ,

yn = ^  = 131.67 » 132 and r = = 10.30. Hence
0 J 0 kJ -1

use [r ] = 10. The groups are

# journals § articles k
4 St1 group r = 10.30 « 10 0 126 -

2nd group r k = 35.02 » 35 0 133 3.50
,rd3 group r k3 w 119, which 0

is exactly the last 
rank in the biblio-
graphy

136 3.40

Table IV.5 : Bradford's law for L, p = 3

This is better than Bradford's original example, 
(Bradford, 1934) : he gets 8/29/127 journals yielding 
respectively 110/133/152 articles. For p = 4, 5 or 6 we
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find a r not close to a whole number, so we do not use o
them. For p = 7 we find k = 1.69, v = 56 and r = 2.95 « 30 0
(if r Q is close to a whole number, take this number (here 3) 
otherwise take (r ] even if r > [r ] +0.5. E.g. for 2.70 : 
choose 2 : if we take 3 in this case, the last Bradford 
group will be incomplete - this is not a problem with the 
present value 2.95). The Bradford groups are :

§ journals § articles k

1st group r = 2.95« 3 0 55 -

2n<̂ group
LO200cr>•iio 55 1.67

r d3 group r k2 = 8.42 « 8 0 56 1.60

4t 1̂ group r k3 = 14.23 « 14 0 56 1.75

5 group r k4 = 24.05 « 24 0 55 1.71
cth6 group r k5 = 40.64 « 41 0 49 1.71
-,th7 group r k6 = 68.68 « 69 0

which is exactly 
the last existing 
rank

69 1.68

Table IV.6 : Bradford's law for L, p = 7

This shows once more that any reasonable (i.e. 
related to the finiteness of the discrete IPP) value of 
p can be used, contrary to what was believed before.
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IV.1.4. Application to "ORSA

This bibliography in operations research was 
introduced by Kendall (1960) but the data can also be 
found in (Brookes, 1981). They are

§ journals corresponding 
# articles r R(r)

(observed)

1 242 1 242
1 114 2 356
1 1 02 3 458
1 95 4 553
1 58 5 611
1 49 6 660
1 34 7 694
1 22 8 716
1 22 9 738
1 21 10 759
1 21 11 780
1 20 12 800
1 20 13 820
1 18 14 838
1 16 15 854
1 16 16 870
1 16 17 886
1 16 18 902
1 15 19 917
1 15 20 932
1 14 21 946
2 12 23 970
5 1 1 28 1025
3 10 31 1055
4 9 35 1091
8 8 43 1155
8 7 51 1211
6 6 57 1247

10 5 67 1297
17 4 84 1365
29 3 113 1452
54 2 167 1560

203 1 370 1763

Table IV.7 : ORSA
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For p = 4, we find k = ( 1 . 781 x 242 ) 0* 25 = t 

= = 441 and r = -3-70P (k " 1 ̂ = 3.05 « 3. Weo "T ■ 0
have the following Bradford groups

kr -i

§ journals # articles

1st group rQ = 3.05 Pd 3 458

2n<̂ group r k = 13.91 « 14 0 428
0 r d3 group rQk2 = 63.43 « 63 463

4th group r k3 = 289.24 » 289 0
(1 article unused)

413

Table IV.8 : Bradford's law for ORSA, p =

hence

k

4.67

4.50

4.59

.56,
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IV. 1.5. Application to "Mast Cell11

This bibliography was compiled by Selye (1968) for 
the period 1877 until early 1964, but the data can also be 
found in (Goffman and Warren, 1969) and (Goffman and 
Warren, 1980). They are

§ journals correspond!' ng 
# articles r R(r)

(observed)

1 66 1 66
1 58 2 124
1 57 3 181
1 55 4 236
1 53 5 289
1 46 6 335
1 40 7 375
2 38 9 451
1 37 10 488
1 35 1 1 523
1 34 12 557
1 32 13 589
1 31 14 620
1 30 15 650
1 28 16 678
1 27 17 705
2 23 19 751
1 22 20 773
2 21 22 815
2 20 24 855
2 19 26 893
2 18 28 929
1 17 29 946
1 16 30 962
3 15 33 1007
6 14 39 1091
3 13 42 1130
5 12 47 1190
8 1 1 55 1278
6 10 61 1338

1 1 9 72 1437
6 8 78 1485
8 7 86 1541
8 6 94 1589
16 5 110 1669
24 4 134 1 765
35 3 169 1870
90 2 259 2050

328 1 587 2378

Table IV.9 : Mast Cell
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In (Goffman and Warren, 1969) as well as in 
(Goffman and Warren, 1980), I was struck by the fact 
that only the first seven "Bradford groups" are presented, 
dealing only with 51,9 % of the articles (produced by only 
8,7 % of the journals). I(J was even more surprised by the 
numbers themselves :

§ journals # articles

1st group 3 181

2nd group 4 194
r d3 group 5 182

4**1 group 6 171

5 group 8 165

6^  group 11 170
-,th7 group 14 171

Table IV.10 : "Bradford distribution" according
to (Goffman and Warren, 1969 and 1980)

Indeed, according to our theory, to have k « 1.25 
(the average of the multipliers in the above table), one 
has

1 .25 = ( 1.781 y J 1/P

So

P =
Y + log y 

1 o g "1.25
m « 26

and hence

yo =
2378
~T5~ « 91

But in table IV.10 we have ym « 176 (the average of the 
third column). Conversely, requiring yQ = 176 yields

« 13.5 groups and so k = (1.781 ym) 1/13,5 « 1.424
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which differs considerably from k in table IV.10. So our 
theory proves, before checking in a direct way, that 
table IV.10 does not represent real Bradford groups. To 
convince the reader for 100 %, we will extend table IV.10 
keeping yQ w 176, and watch what happens with k.

# journals # articles k

8t *1 group 18 176 1.3

9**1 group 27 179 1.5

10th group 40 176 1.5

11^  group 70 175 1.8

12**1 group 121 176 1.7

13^ group 262 262 2.2

Table IV.10bi s : Completion of the Goffman-
Warren table IV. 10

What we predicted did come out : k had to increase 
and hence, table IV.10 and IV.10bi s do not represent a 
Bradford analysis. I think that cutting at the seventh 
group is misleading and does not help to gain an insight 
into the mechanism of Bradford's law.

If we use also 13 groups, as Goffman-Warren did 
(we do not have to!), we find with our methods : p = 13,

k = ( 1.781 x 66) 1713 = 1.44, yQ = 182.9 « 183 and

rQ = —— y-3————— ■ = 2.28. Hence we have the following Bradford

groups
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# journals # articles k

1st group r = 2.28 « 2 0
124 -

2nd group r k = 3.28« 3 0
165 1 .50

r d3 group r k2 = 4.72 « 5 0 199 1.67

4 ^  group r k8 = 6.80« 7 0 217 1.40

nth5 group r k4 = 9.79 « 10 0 206 1.43

6th group r k5 = 14.10 « 14 0
206 1.40

-,th7 group r k6 = 20.30 « 20 0 221 1.43

8th group r k7 = 29.23 « 29 0 227 1.45

9 ^  group r k8 = 42.09 « 42 0
192 .1.45

10th group r k9 = 60.61 « 61 0 162 1.45

11th group r k10 = 87.28 « 87 0 153 1 .43

12^  group r k11 = 125.68 «126 0 126 1.45

13th group r k12 « 181 0 181 1.44

(exactly the last
rank in the ^
bi bliography)

Table IV.11 : Correct Bradford distribution 
for Mast Cell, p = 13

Furthermore, in the next section we will see that 
the "Mast Cell" bibliography does not fit perfectly Leim- 
kuhler's function (nor Bradford's law either) and hence, 
in forming the Bradford groups we must expect some 
fluctuation in y . Table IV.11,although not perfect, is 
the best that can be done : the deviating values of yQ in 
the first group (124 instead of yQ = 183) is 
due to the rounding offs in the second column and is normal, 
because of the small number of journals involved while the 
values yQ in the tenth until the last group shows the deviation 
of the bibliography from Bradford's law (as will be seen more 
clearly later on). Such an analysis cannot be done for 
table IV.10 and IV.IObis : even if we cut the beginning 
and end groups away, we do not end up with a relatively 
constant k, and even if we keep only table IV.10 (the
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table as shown by Goffman-Warren), an average value of 
k = 1.25 is not acceptable together with an average value 
of yQ = 176, according to the theory.

IV. 1.6. Application to "Schistosomiasis11

Warren and Newill (1967) compiled the schistoso-
miasis bibliography (1852-1962), see also (Goffman and 
Warren, 1969 and 1980). The data are

§ journals correspondí' ng 
§ articles r R(r)

(observed)

1 325 1 325
1 266 2 591
1 259 3 850
1 215 4 1 065
1 211 5 1276
1 171 6 1447
1 159 7 1606
1 143 8 1749
1 137 9 1886
1 136 10 2022
1 118 1 1 2140
1 115 12 2255
1 112 13 2367
1 108 14 2475
2 105 16 2685
1 94 17 2779
1 90 18 2869
1 80 19 2949
1 74 20 3023
2 72 22 3167
2 70 24 3307
1 68 25 3375
1 66 26 3441
1 64 27 3505
1 56 28 3561
2 55 30 3671
2 51 32 3773
1 50 33 3823
1 47 34 3870
1 45 35 3915
1 44 36 3959
2 42 38 4043
1 41 39 4084
1 40 40 4124
2 39 42 4202
3 37 45 4313
1 36 46 4349
2 35 48 4419
1 34 49 4453

cont.
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# journals corresponding 
# articles r R(r)

(observed)

1 33 50 4486
3 32 53 4582
3 31 56 4675
2 29 58 4733
5 28 63 4873
1 27 64 4900
1 26 65 4926
2 25 67 4976
3 24 70 5048
4 23 74 5140
2 22 76 5184
4 21 80 5268
3 20 83 5328
4 Î9 87 5404

10 18 97 5584
8 17 105 5720

10 16 115 5880
9 15 124 6015

1 0 14 134 6155
10 13 144 6285
6 12 150 6357

11 1 1 161 6478
14 10 175 6618
19 9 194 6789
29 8 223 702 1
27 7 250 7210
44 6 294 7474
57 5 351 7759
76 4 427 8063

137 3 564 8474
266 2 830 9006
908 1 1738 9914

Table IV.12 : Schistosomiasis (1852-1962)

In (Goffman and Warren, 1969) again the first seven
Bradford groups are presented, but in (Goffman and Warren,
1980) this time the complete Bradford distribution is shown,
consisting of p = 16 groups. Now they succeeded in keeping 
yQ constant (about 620) as well as k relatively constant 
(about 1.5, although at the end k increases). With our 
theory, we obtain with p = 16 (but we may take other 
values of course, if we want to), k = ( 1.781 * 325) 1//16 = 
1.49, yQ = 619.6 « 620 : i.e., we re-calculate the Goffman- 
Warren values for yQ and k; so we think that our method 
provides a rationale for calculating the Bradford groups. 
Previously, the only method that one could use was "trial
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and error". We finally give the Bradford groups for p = 9, 
showing that p = 16 is not necessary : here we have

k = (1.781 x 325)1/9 = 2.03, yQ = 1102 and rQ = - 73g (k~1)

We obtain the following Bradford groups :

# journals § articles k
. St1 group r = 3.06 w 3 0 850 -

0nd2 group r k = 6.21 « 6 0 1036 2.00
~ t h3 group rQk2 = 12.61 « 13 1281 2.17
„ th4 group r k3 = 25.60 « 26 0 1252 2.0 0
,-th5 group r k4 = 51.97 « 52 0 1216 2.00
cth6 group r k5 = 105.499 « 105 0 1242 2.02
-.th7 group r k6 = 214.17 « 214 0 1154 2.04

8th group r k7 = 434.77 « 435 0 999 2.03

9**1 group r k8 « 883 0
which is the second 
to last rank

883 2.03

Table IV.13 : Bradford's law for
Schistosomiasis, p = 9

For the same reason why in (Goffman and Warren, 1980) 
k increases at the end (and yQ remains relatively constant) 
we find in table IV.13 that yQ decreases somewhat (with k 
constant). This is due (as in the preceding case) to the 
fact that the Schistosomiasis bibliography does not per-
fectly conform with a Bradford distribution. The reason for 
this is probably the fact that this bibliography ranges over 
a very long time-period 1852-1962 in which journals "come 
and go". This will be explained in more detail in section
IV.2.8. The same note can be made for the Mast Cell biblio-
graphy.

So in this case, the Goffman-Warren Bradford groups 
are acceptable. Of course, in none of the previous works a 
real algorithm or rationale to calculate the Bradford groups

110



was given. We think that this section has provided this.

Note :
It is not clear what statistical test is needed to fit

O
Bradford's law. As remarked to me by B.C. Brookes, a x ~ 
test could be used (comparing the actual number of items 
in the groups with the expected "equal" number of items. 
However it is not clear if one tests the right thing here : 
the law of Bradford is an exponential function (a in the 
continuous setting) that has been "reformed" in a group- 
dependent discrete way.

IV.2. Fitting of the Leimkuhler function for known IPP's

IV.2.1. Methodology of fitting

The Leimkuhler function

R(r) = a log (1 +br) (III.4)

can be deduced from the law of Bradford by using the 
following exact formulae :

a - ToTTi <F1>

b = ^  (F2>

Hence, in view of the methods developed earlier 
(cf. formulae (Fg), (F^Q ) and (F13)), it is extremely 
simple to calculate Leimkuhler's function (III.4). The 
situation here is even simpler since there is no need 
for a rQ close to a whole number.

The degree of closeness of the calculated function
(III.4) with the observed cumulative distribution function 
is an indication of the value of the method developed 
earlier. We will investigate this for the bibliographies 
used in the previous paragraph as well as for two other 
bibliographies. Any IPP could have been checked, however.



IV.2.2. "Applied Geophysics

Using some data from section IV.1.2, we have, for 
p = 3, k = 5.49, rQ = 8.93 (no need to round off now) and 
yo = 444. Hence.

a yo
log k 260.7

b = iLll = 0.503 
ro

Hence, the law of Leimkuhler for "Applied Geophysics" is

R(r) = 260.7 log ( 1 + 0.503 r) (IV.2)

See Fig.IV.1 (upper-curve), where plus-signs stand for 
the observed values and the crosses for the values according 
to the calculated function. It is obvious that the fit is 
very close. This can also be checked when comparing the 
table of observed R(r) (previous section) with the one of 
the calculated R(r) (from formula (IV.2)) and performing a 
Kolmogorov-Smirnov test for goodness of fit. The other marks 
(points) visualise the law of Leimkuhler as calculated by 
Brookes (1985). Our fit is better, although Brookes' fit is 
also very good. Brookes' method is one of fitting the be-
ginning and ending points of the observed graph : this yields 
two equations from which a and b are calculated. This method 
is good but is an "ad hoc" method, not based on the theory 
of Bradford's law. Furthermore, the calculations needed to 
find the Leimkuhler function according to Brookes' method 
are more intricate (the equation for b for instance is 
transcendent and is numerically solved via an iteration 
process) than our simple formulae (which have also the 
advantage of being mathematically derived).

We finally remark here that the choice of p is 
arbitrary. Any other (reasonable) choice of p must lead 
to the same equation (IV.2). Take f.i. p

1332 = 266.4, k = (eYy J 0*2Yo --- 5
260.7. Furthermore, r 
yielding

nr

= 5. Now we find
yo

= 2.778 and a = log k
= Idilli = 3.525. So b = JLlI = 0.504 b . r
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Applied Geophysics Lubrication

Fig.IV.1 : Fittings of AG and L
♦ « Observed

• * Calculated (Brookes) 

x * Calculated (Eoghe) 113



R(r) = 260.7 log ( 1 + 0.504 r)

which is little different from formula (IV.2).

IV.2.3. "Lubrication"

From the data of section IV.1.3 we have y = 131.67,
y  ^

k = 3.40, a = yQ-q- k = 107.7, rQ = 10.30 and b = ^ - 1  = 0.233.
9 ro

Hence, Leimkuhler's function for "Lubrication" is

R(r) = 107.7 log ( 1 + 0.233 r) (IV.3)

See Fig.IV.1 (lower curve), where we only showed the 
observed data since the points, as calculated by formula 
(IV.3) are not separable from the former ones (in fact the 
same is true for the data as calculated by Brookes (1985)). 
This remarkable fit is due to the fact that "Lubrication" 
is a perfect Bradfordian bibliography. This is of course 
a requirement for a good fit : if the data do not conform 
with the law of Bradford, their graph differs also from 
the Leimkuhler function and hence, a perfect fit cannot 
be obtained. We will encounter such bibliographies later 
on in this chapter. There, however, we will explain why 
Leimkuhler's function still is very important.

IV.2.4. "ORSA"

From section IV.1.4 we find, for p = 4 (but you make 
take any reasonable p to start with), that a = 290.64 and 
b = 1.167. Hence we find here

R(r) = 290.64 log (1+1.167 r) (IV.4)

See Fig.IV.2 for a visual view of the very good fit, 
and compare also with Brookes' fit, now based on a method 
of Wilkinson, (Wilkinson, 1978), but still using the method 
of fitting data points.

In conclusion we can say that, if the bibliography 
is Bradfordian (hence satisfies Leimkuhler's function), we
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"ORSA"

R(r)

+ » Observed 

• * Calculated (Brookes) 

x « Calculated (Egghe)

Fi g.IV.2 : Fittings of ORSA 
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find an almost exact fit by using our theory on Bradford's 
1 aw.

In the next bibliographies we will encounter some 
deviations from Leimkuhler's function. These deviations, 
however, will introduce the most important aspect of this 
paragraph.

IV.2.5. "Mast Cel 1 "

From section IV.1.5 we find for p = 13 and using one
yomore decimal in k = 1.443 , that a = y - " y = 498.7 and

b = = 0.1 987. So Leimkuhler's function for "Mast Cell"
' o 

i s

R(r) = 498.7 log (1 + 0.1987 r) (IV.5)

As we mentioned before, the method is very stable 
w.r.t. the original choice of p (f.i. for p = 5 we find 
r = 498.9 and b = 0.1984).

See Fig.IV.3 for a visual view of the observed and 
calculated points (disregard in this section the curve 
marked by dots •). The fit is very good, taking into account 
the "Groos droop" (see at the end of section II.4.3.2) which 
is in this case more a deflection starting about r = 150 and 
a revival about at r = 400. This mixed "ending" is also 
mirrored in table IV.11 (deflection in group 10, 11 and 12 
and revival in group 13; this is not shown in tables IV.10 
and IV. 10b i s ).

IV.2.6. "Sch i stosomiasi s"

From section IV.1.6 we find, for p = 9, and using 
again one more decimal in k = 2.027 that

y  o k _ 1
a = y = 1 559.7 and b = = 0.3318. So Leimkuhler's

 ̂ r o
function for "Schistosomiasis" is

R(r) = 1559.7 log (1+0.3318 r) (IV.6)
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Mast Cell

Fig.IV.3 : Fittings of Mast Cell
♦ * Observed

x * Calculated (Egghe)

• * Calculated (Egghe, truncated) _ ^ 7  _



Schistosomiasis
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See Fig.IV.4 for a visual view of the observed and 
calculated points (disregard again in this section the 
curve marked by dots •). Again, the fit is very good, 
taking into account the "Groos droop" (cf. the 
deflection in table IV.13 which is hereby explained).

A bibliography with a large Groos droop now 
fol1ows.

IV.2.6. Pope ' s bib!iography

In (Pope, 1975), Pope introduces data of a bibliography 
on information science. They are

# journals correspond i ng 
ft articles

R ( r )
(observed)

1 261 1 261
1 259 2 520
1 220 3 740
1 211 4 951
1 205 5 1 1 56
1 176 6 1332
1 168 7 1500
1 164 8 1664
1 155 9 1819
1 134 10 1953
2 120 12 2193
1 115 13 2308
1 105 14 2413
1 102 15 2515
1 96 16 2611
1 85 17 2696
1 80 18 2776
2 79 20 2934
1 78 21 3012
1 74 22 3086
1 64 23 3150
1 63 24 3213
2 60 26 3333
1 59 27 3392
1 53 28 3445
1 52 29 3497
2 51 31 3599
1 45 32 3644
1 44 33 3688
2 42 35 3772
1 40 36 3812
2 38 38 3888
1 36 39 3924

cont.
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cont.

# journals corresponding 
§ articles r R(r)

(observed)

2 33 41 3990
1 32 42 4022
5 31 47 4177
1 30 48 4207
1 29 49 4236
1 28 50 4264
1 27 51 4291
1 25 52 4316
3 24 55 4388
1 23 56 4411
6 22 62 4543
2 21 64 4585
5 20 69 4685
4 19 73 4761
8 18 81 4905
5 17 86 4990
3 16 89 5038
4 15 93 5098
7 14 100 5196

10 13 110 5326
9 12 119 5434
9 11 128 5533
7 10 135 5603
8 9 143 5675
12 8 155 5771
20 7 175 5911
14 6 189 5995
35 5 224 6170
45 4 269 6350
68 3 337 6554
140 2 477 6834
534 1 1011 7368

Table IV.14 : Pope's bibliography

In calculating Leimkuhler's function for Pope's 
bibliography, we take f.i. p = 5. Then

yo = = 1473.6, k = (1.781 ym )°‘2 = 3.415,
•a - — 11 no q _ 1011 (k-1) k - 1
a " TogT  ‘ 1199*8* r0 -----k5' _ '1 = 5*27 and b = —  =
0.4584. This gives

R(r) = 1199.8 log ( 1 + 0.4584 r) (IV.7)

Se^ Fig.IV.5 for a comparison of the observed and 
cal cul att*+g data. The fit is good, taking into account 
the large Groos droop which is permanently present from
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Pope

Fig.IV.5 : Fittings of Pope's bibliography
+ * Observed 

x » Calculated (Egghe)

• « Calculated (Egghe,truncated) 121



r = 30 on but is strong from r = 200 on. Again disregard 
the dotted graph (#) in this section.

IV.2.7. Sachs' bibliography

The next bibliography (on statistical methods) is 
new and was published only recently by Sachs (1986). From
this bibliography we calculated the following table (using
only journals) :

# journals correspondi ng 
# articles r R(r)

(observed)

1 64 1 64 -
1 44 2 1 08
1 41 3 149
3 40 6 269
1 37 7 306
1 36 8 342
1 34 9 376
1 33 10 409
1 27 11 436
2 19 13 474
2 18 15 510
1 15 16 525
2 12 18 549
3 9 21 576
2 8 23 592
4 7 27 620
4 6 31 644
5 5 36 669
5 4 41 689
8 3 49 713

21 2 70 755
73 1 143 828

Table IV.15 : Sachs' bibliography

Leimkuhler's function for Sachs' bibliography follows
by the following calculations (f.i. for p = 5) :

k - < i-781 y j 0-2 = 2.579, yQ = 165. 6 a - yo = 174.8,log k

ro =
143 (k-1)

:t  '
00 and b - k ' 1 = r0

0.791. This yields

R(r ) = 174.8 log (1+0.791 r) (IV.8)

See Fi g. IV.6 for a comparison between the observed
data and the calculated curve, using (IV.8) •
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Statistical Methods

log r

+ * Observed 

x « Calculated (Egghe)

• * Calculated (Egghe,truncated)

Fig.IV.6 Fittings of Sachs' bibliography 
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IV.2.8. Comments

The above method for calculating Leimkuhler's 
function is very good, at least for IPP's showing no 
"Groos droop" (cf. section II.4.3.2) : this is logical 
since Leimkuhler's function

R(r) = a log (1 + br) (III.4)

does not involve a Groos droop. Indeed, the graph of
(III.4) in semi-logarithmic scale (log r, R(r)) looks 
like in Fig.IV.7.

Fig.IV.7 : Leimkuhler's function expressed 
graphically

We 

1 i m
T “*00

have :

dR (r) 
dlog r 1 i m

p->-oo

abr 
1 + br

a constant.

(IV.9)

It is a well-known fact that most practical 
examples of IPP's show a Groos droop (small or large) : 
see e.g. the examples above, except the first three.
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Other examples are (Aiyepeku, 1977), (Brookes, 1969), 
(Brookes, 1 973), (Brookes, 1977) , (Brown, 1 977 ), (Drott, 
Mancall and Griffith, 1979), (Egghe, 1985), (Groos, 1967) 
(the one who invented the phenomenon, the term "droop" 
however being invented by B.C. Brookes), (Lipatov and 
Denisenko, 1 986), (Praunlich and Kroll , 1978), (Saracevic 
and Perk, 1973), (Singleton, 1976), (Asai, 1981), 
(Avramescu , 1980), (Brookes, 1980) and (Haspers, 1976).

A Groos droop can be defined exactly, as the 
occurrence of an inflection point rrf in the curve of the 
function R(r) in semi-logarithmic scale :

d2R
7  (rd ) = 0dlog r

We then have a graph as in Fig.IV.8.

(IV.10)

Fig.IV.8 : The Groos droop

This model is not included in Leimkuhler's function
(III.4) (the case a = 2) but it is included in the 
generalised Leimkuhler function (11.45) (or (III.65), to-
gether with (GF^) until (GF^)), for a < 2.
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Two approaches are possible.
1. We try to model the Groos droop with function (III.65) 

(or any other well-fitting function). This droop is then 
explained in so far that (III.65) is explained. This 
reduces to the explanation of Lotka's law

f ( j )  = ( 111.1 )
J

j € [p(0),p(A)] = [1 *ym1 - One reference to such an 
explanation can be found in (Bookstein, 1984). In an 
other context, in (Avramescu, 1980) one can also find 
an attempt of explanation. The fitting of function 
(III.65) will be done in the last part of this chapter.

2. We nevertheless accept Leimkuhler's function (III.4) as 
a good law to model certain "pure" informetric phenomena 
and then try to explain deviations from it, due to 
several reasons. In (Egghe and Rousseau, 1988)., this 
last approach has been studied. There we encountered
the following possible explanations for the Groos droop 
(from the "deviations"-point of view) :

a) Incompleteness of the IPP

One explanation is that our IPP (supposing it to be 
Bradfordian when complete) is in fact incomplete, due to 
selectivity or omission. This is very plausible, since, of 
course, the incompleteness occurs in the higher ranks and 
not in the lower ones : the less important a source is, 
in the compilation of an IPP the easier it is to miss a 
few of them, and that can explain the difference between 
Figs.IV.7 and IV.8. That this is certainly one of the facts 
that causes a Groos droop is illustrated by the bibliography 
on "statistical methods" as compiled by Sachs (1986). This 
publication has the aim of giving one or two pertinent 
references for every statistical method that Sachs included 
in the book. Hence, it was not the purpose to present a 
complete bibliography and hence we can expect a marked 

Groos droop here.
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This was clearly the case as was seen in section 
IV.2.7. But incompleteness certainly is not the only reason 
for the occurrence of a Groos droop.

b) Merging of IPP1s

Defi ni tion :
Suppose we have N IPP's. We suppose that when an item belongs 
to two or more of these N IPP's (assumed to be discrete), the 
corresponding sources are the same (meaning that we are 
considering only IPP's of the same type). Merging of these 
IPP's means that we join all items into one "big" IPP (i.e. 
we simply take the union of the N IPP's, considered as sets 
of items). Due to the above assumption, the merging of IPP's 
is again an IPP. Once this is done, we rearrange the sources 
in decreasing order of number of items that they have.

We can then formulate the following problem :
Suppose that we denote by R.(r) (resp. R(r)) the cumulative

' J. L.
number of items in the sources of rank 1,...,r in the i n 
IPP (i = 1,...,N) (resp. the merged IPP). What is then the 
relation between R and Ri (i = 1,...,N)? More specifically, 
assuming all N IPP's to the Bradfordian (hence with R^-curves 
as in Fig.IV.7), is then the merged IPP also Bradfordian?

In (Adenaike, 1982), (Aiyepeku, 1977) and (Sen, 1985) 
it is assumed that the answer to the above question is yes.
In (Egghe and Rousseau, 1988) however we showed (using a 
merging-simulation package constructed by R. Philips) that 
the merging of Bradfordian IPP's does not necessarily yield 
a Bradfordian IPP and - what is more - yields sometimes a 

Groos droop. Explanations of this effect have also been 
given in (Egghe and Rousseau, 1988), solving at the same 
time a problem of Bonitz and Schmidt (see (Bonitz and 
Schmidt, 1982)).

A practical interpretation of "merging", in the 
area of bibliometry, is "interdisciplinarity" of a biblio-
graphy. In the bibliography made by Pope (see IV.2.6) on 
information science, a large Groos droop is noticed.
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So far, this was always interpreted as an indication 
of the incompleteness of Pope's bibliography. In the light 
of our ideas, this large Groos droop might also be seen as 
a consequence of the fact that information science is very 
much an interdiscipiinary subject.

Another interpretation of merging - still in 
bibliometrics (although generalisations are thinkable), 
but more in an "osmotic" sense, are the bibliographies 
that range over a very long time period. Indeed, when the 
time interval is large, journals change. Of course it is 
impossible to cut such a bibliography into a number of 
subbibliographies (according to the time period) such-that 
the journals remain the same, but such a model can be used 
as a first approximation. The bibliography itself can then 
be considered as the merged bibliography of the sub-
bibliographies, mentioned above. As such, as explained, 
a Groos droop can be expected, even if the bibliography 
is complete. A nice example of this is the Schistosomiasis 
bibliography, ranging over the period 1852-1962. It shows 
a Groos droop, although this bibliography is believed to 
be very complete (as mentioned to me by B.C. Brookes).

Note :
Prof. dr. I.K. Ravichandra Rao (DRTC, Indian Statistical 
Institute, Bangalore, India) remarked to me that another 
reason for the Groos droop in bibliometrics can be found 
in the fact that a subject is new and hence that the 
articles in this early state, are scattered over a lot 
journals (not directly devoted to the new subject). This 
can be true but needs further modelling. This aspect is, 
however, more belonging to the first approach, since 
special models are required.

In our second approach, i.e. accepting Leimkuhler's 
function (III.4) and considering the Groos droop as a 
deviation from it, the fit of our calculated model (III.4) 
to the practical data will be worse, the larger Groos droop 
we have. This does not mean that Leimkuhler's law is only
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important for IPP's without a Groos droop (such as 
"Applied Geophysics", "Lubrication" and "ORSA"). Indeed, 
considering a Groos droop as being caused (completely or 
partially) by the incompleteness of the IPP, we can still 
be interested in the Leimkuhler fit (III.4) to the first 
part of the graph of the data, i.e. the part before the 
Groos droop : r < r^. Knowing Leimkuhler's function for 
the (unknown) complete IPP can be important in order to 
deduce some properties of the complete IPP. What needs to 
be done is to "cut away" the Groos droop in the IPP and 
work with the truncated IPP. But, since our theory as 
developed here, was based on the complete IPP we must 
modify it in order to be applicable to incomplete IPP 
(truncating an IPP so as to get rid of the Groos droop 
leaves an IPP where the least productive sources might 
have a production larger than one, say 5 or 6; the theory 
as developed here uses the fact that the least productive 
sources have production one - so we have to modify our 
theory). This will be done in the next section and applied 
to all IPP's (bibliographies) studied so far, which show a 
Groos droop.

IV.3. Fitting of the Leimkuhler function for unknown IPP's

We will develop in this paragraph a theory and 
algorithm to calculate the Leimkuhler function for the 
complete (usually unknown) IPP. For this, we have to "cut 
off" the Groos droop at the rank pQ at which this droop 
becomes very explicite.

This can easily be done by visual inspection of the 
graph of observed data (R(r) in function of log r) : In most 
cases one can draw a line at a certain rank pQ such that for 
ranks r < pQ we have almost no droop while for r > pQ the 
droop is very apparent (see f.i. in Fig. IV.9 : rank p ). 
Furthermore it must be stated that the lower the cut-off rank 
pQ , the more exact we work, from a mathematical point of view, 
but the fewer data we keep;
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JWr)4

log r

Fig.IV.9 : Cut-off rank

hence individual fluctuations enter into the calculations. 
Conversely, the higher the cut-off rank p , the more data 
are involved, but the Groos droop gives deviations in the 
calculations. So, anyway, the cut-off point pQ must be 
chosen somewhere in the middle of the semi 1ogarithmic graph.

We will give in the next section the methodology, 
then test it on a "perfect" example (to show that our 
method is "perfect") and then test it on practical biblio-
graphies .

IV.3.1. Methodology (Egghe, 1989d)

- Choose a cut-off rank pQ at which the Groos droop becomes 
apparent and check the production (the number of items) 
of the source at this rank, say n.

- Choose a number p of Bradford groups for the complete 
(unknown) IPP. Take p high enough (e.g. p = 10) so that 
we can "interpolate" until we reach rank r = pQ (we will 
explain this further on).

- The Bradford factor for the complete IPP is determined 
as before :

k = (1.781 y )1/p m
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- We repeat a result that was proved in section III.3.4, 
and which can be applied here, very surprisingly.

Theorem :
Let q denote the number of the Bradford group counted from 
the last groups onward (i.e. 1 = the number of the last 
Bradford group, 2 = the number of the second to last Brad-
ford group, etc.). Denote by n(q) the production (i.e. 
number of items) in the most productive source in this 
q ^  (last) Bradford group. Then

kq kqn = n ( q ) = L .  = (III.93)

- We calculate q from n as follows : using formula (III.93) 
we have

q
Y + 1og n 

log k (IV.11)

- Hence, the source on rank r = pQ belongs to the ([q]+ 1 )^ - 
last Bradford group ([q] = the largest whole number smaller 
than or equal to q; indeed q can be a decimal number!), 
where q is determined from the production n of the source 
on rank pQ and by (IV.11).

- Since we need further on a whole number of groups, we 
will take our cut-off point a little lower in rank (not 
larger, in order to exclude the Groos droop). This means 
that we take the source with the highest rank in the

i .  L.

([q] +1)L -group. This is calculated using again formula 
(III.93) :

k[q]+1n' = ------  (IV.12)Y e '

n' determines the final cut-off rank r'.

- What is left, after truncation at rank r', contains 
p - [q] - 1 Bradford groups.
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Fig.IV.10 : Geometry of Bradford groups

- We are now in a position to calculate all parameters for 
the Leimkuhler function for the complete Bradford distri-
bution, based on our truncated one.
The number of sources r' = T and the number A of items 
in the truncated IPP are of course immediately known from 
the table of observed data.

- Since A items are divided over p - [q] - 1 groups and since 
all groups (even for the complete IPP) contain yQ items, 
we have

p - [q] - 1
(IV.13)

Since yQ and k for the complete IPP are now known, we 
have already

A
a = log k (F1 )

Since every Bradford group contains resp. r0 »r0k,rok ,..., 
rQkP~^ sources, the truncated IPP contains

f = r + r k + ... + r kp ~ ^  " 2 o o  o

sources (since in the truncated IPP there are p - [q] - 1 
groups). Hence rQ is also found :

0 1 + k + ... + kp " LqJ " 'L

f(k-1 )
kp ' [c*j - 1 - 1

(IV.14)

From this we finally have 

b (F2)
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and

R(r) = a log (1 + br) (111.4)

representing now Leimkuhler's function for the complete 
unknown IPP.

Note :
In the above method one may take T = r 1 -1. In fact, the 
source on rank r' is intermediate between the groups 
(calculating from the end) [q] +1 and (q] + 2 (see Fig.IV.10) 
and it depends on the actual decimals to decide which case 
to take. Anyway, taking f =r' or r '-1 does not make a real 
difference in the calculations of a and b.

This algorithm will prove to be very accurate (see 
further) due to the "interpolation" technique.

IV.3.2. Application on a quasi-perfeet example

Under perfect example we understand that we take 
data following from Lotka's function

f(n) = , (11.35)
n

Indeed, as shown in section III.1.2, this function is 
mathematically equivalent with the classical Leimkuhler 
function (III.4), hence without a Groos droop. Take for 
instance the function

f(n) = (^ - )2 (IV.15)

(but you may take any law of the form (11.35)).

Since we work only with whole numbers we have to 
round off the values of f(n) for the different n. Further-
more, we assume that ym = 30. All these assumptions give 
rise to a distribution which is very much looking as a 
Leimkuhler one but deviating a little bit from it. Never-
theless we will see that the above described methodology
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works fine. The "observed" data (conform with the above 
assumptions) are :

# sources corresponding 
# articles r R(r)

("observed")

1 30 1 30
1 29 2 59
1 28 3 87
1 27 4 114
1 26 5 140
1 25 6 165
2 24 8 213
2 23 10 259
2 22 12 303
2 21 14 345
2 20 16 385
2 19 18 423
3 18 21 477
3 17 24 528
4 16 28 592
4 15 32 652
5 14 37 722
5 13 42 787
6 12 48 859
7 11 55 936
9 10 64 1026
1 1 9 75 1125
14 8 89 1237
18 7 107 1363
25 6 132 1513
36 5 168 1693
56 4 224 1917
100 3 324 2217
225 2 549 2667
900 1 1449 3567

Table IV.16 : Quasi-perfect example f(n) . (— >2 v n

Suppose we cut (here articifia 1ly , since there is no 
Groos droop and furthermore we know the "exact" data) at 
r = 70. Hence, the production at this rank is n = 9. Take 
p = 10. So k = ( 1.781 x 30)0'1 = 1.49. Formula (IV.11) gives

„ _ y + log n _ c nc 
* log k----6*96

Hence [q] = 6 and [q] +1 = 7.
Formula (IV.12) now gives

= —  = 9.15 
eY
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So the final cut-off rank is (production 9 being between 
the ranks 65 and 75)

r 1 = 75 - 0. 1 5 ( 75 - 64 ) 

r' « 73

So T = 73 and Â = 1125-18 = 1107. So

^  - 369

log k = 925.3

= 10-11 = Ì 5.5
0 k *  -  1

b = -1^1 = 0.0316

Hence Leimkuhler's function is

R(r) = 925.3 log (1+0.0316 r) (IV.16)

This, compared with the "observed" data, shows a very good 
fit as is seen from table IV.17 and is confirmed through 
a Ko1mogorov-Smirnov test.

Note :
The attentive reader might remark that the above method also 
predicts the size of the complete IPP, namely the last 
calculated value of R(r) in the above table : 3558 which 
is very close to the (in practical cases unknown) 3567. 
However, the situation is not that simple, since, if we 
have an incomplete IPP, we have no idea of what the highest 
rank (here 1449) will be. Nevertheless, later on we will 
give a partial solution to this problem.

Let us now see what happens with real data : we will 
investigate the previously studied bibliographies which show 
a certain degree of Groos droop.
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R(r) (calcu1 ated )r R(r) (original)

1 30 29
2 59 57
3 87 84
4 114 110
5 140 136
6 165 161
8 213 209
10 259 254
12 303 297
14 345 339
16 385 379
18 423 417
21 477 471
24 528 522
28 592 586
32 652 647
37 722 717
42 787 782
48 859 854
55 936 932
64 1026 1023
75 1125 1124
89 1237 1238
100 1314 1319
107 1363 1367
120 1441 1450
132 1513 1520
150 1603 1617
168 1693 1704
200 1821 1842
224 1917 1933
250 1995 2023
275 2079 2101
300 2145 2174
324 2217 2239
400 2369 2418
500 2569 2611
549 2667 2692
600 2718 2770
700 2818 2906
800 2918 3025
900 3018 3130
1000 3118 3224
1100 3218 3310
1200 3318 3388
1300 3418 3460
1400 2518 3527
1449 3567 3558

Table IV.17 : "Cut-off" fitting of the quasi-
perfect examp 1e
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IV.3.3. Application to "Mast Cell

We refer again to Fig.IV.3. There, a visual 
inspection shows a small Groos droop. We estimate visually 
(but we do not have to be very exact here for the method 
to work!) that the droop really starts at a rank about 
r = 170. Hence n = 3 (we follow the data from section 
IV.1.5). Take p = 10. Hence k = 1.611. We find

3 and [q]+1 = 4. n' isq = — ] 0l ° l  " = 3.51. Hence [q]
k^determined by n ' = —  = 3.782. Hence the final rank at
eY

which we cut off will be r 1 = 169 - 0.782 ( 169 - 134) pa 142,

So T = 142 and A is immediately determined from the data in

Table IV.9 : A = 1789. Hence y = = 298.2, a = j-9-8.-1 =Jo 6 1og k
625.3 , r = — —  = 5.264.and b =     = 0.116. This yields

0 k6-1 ro
the following Leimkuhler function :

R(r) = 625.3 log (1 + 0.116r) (IV.17)

When compared to formula (IV.5) (Leimkuhl er1s function for 
the global Mast Cell literature) we see that the value of _a_ 
is larger for the truncated data. This is a requirement of 
course, since we have cut away the Groos droop. We refer to 
Fig.IV.3 (curve marked by dots •) for a comparison between 
the observed and calculated data (truncated for r < 142).
The fit is almost perfect now and really follows the observed 
curve as long as the Groos droop is not present. Intuitively 
we see now that if we extrapolate formula (IV.17) for r > 142 
we will follow the data of the completed (unknown) biblio-
graphy or, at least give an upper bound to it. But, as 
mentioned in the previous note, it is not clear what is the 
maximal rank to use. Obviously the present maximal rank is 
not high enough. This will be solved later on.

IV.3.4. Application to "Schistosomiasis"

Visual inspection of Fig.IV.4 shows that a cut not 
larger than rank r = 450 gets rid of most of the Groos droop.

137



So n = 4. For p = 10, we find k = 1.889. q is then

q = —— y'0 ̂ ° jjj—,P = 3.087. So [q] = 3 and [ q ] +1 = 4. Then we

find n 1 by n 1 = —— = 7.15. Hence (production 7 being for
eY

the sources between ranks 224 and 250), we finally take 
the rank

r' = 250 - 0.15 (250-223) 

r' « 246 = f

From table IV.12 we now find Â = 7210 - 28 = 7182.

J o
and b

= 1197, a =
k - 1

1197 
log k 1881.9, r, _ T(k-1 ) 

" 7 F
= 0.181, yielding the function

-  1

Hence

4.92

R(r) = 1881.9 log (1 + 0.181r ) (IV.18)

See Fig.IV.4 (the dotted curve) and remark the very close
fit.

IV.3.5. Application to Pope's bibliography

The Groos droop is very heavy here (see Fig.IV.5) 
and we cannot really cut it away completely. We propose to 
cut at about rank r = 185 (although better fits might be 
obtained when cutting at a rank 50 or so; we leave this 
exercise to the reader). Here n = 6. Take p = 10. Then 
k = 1.848. Now q = 3.86, hence [q] = 3 and [q]+1 = 4, 
n' = 6.55. So we finally take the rank
r' = 189 - 0.55 (189-175) « 181. Hence T = 181 and so, by 
table IV.14, A = 5947. So y Q = 991.2, a = 1614.0, rQ = 3.95 
and b = 0.215. This yields the function

R(r) = 1614 log (1 + 0.215r) (IV.19)

We see from Fig.IV.5 (dotted line) that the fit is 
much better than when working with the complete bibliography. 
As said before, better fits are possible when cutting off 
earlier : indeed, as we can see in Fig.IV.5, the Groos droop 
is also present in the ranks before 181.
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IV.3.6. Application to Sachs' bibliography

Amongst the bibliographies that we studied so far, 
the Sachs bibliography is the one with the largest Groos 
droop. So we have to cut early in the bibliography to 
eliminate as much as possible of this droop. We want to 
cut at r = 16. Hence n = 15. For p = 10 is k = 1.606. So 
q = 6.93 and hence [q] = 6, and [q]+1 = 7. So n' = 15.47. 
The only choice we have here is r* = f = 16 and hence 
Â = 525. Since we had to cut early in the bibliography, 
there are not many sources attached to a certain production 
in our case : there is only one source with a production 15 
while the next more productive source has a production 18. 
So the "rule of three", as mentioned in the general 
methodology is not really applicable. Indeed, the choice 
of t = 16 gives a value of q 1 = 7.07 and not exactly 
[q]+1 = 7 (if there were a lot of sources this "fine- 
tuning" can always be done, as in all the previous biblio-
graphies). We modify our formulae in this case to

P -  q
(IV.20)

(replacing formula (IV.13)) 
and

1 ♦ k ♦ ♦ kP-i'-1
(IV.21 )

(replacing formula (IV.14)).
in order to correct for this little difficulty, because of 
very early truncation (only then, is such a problem 
encountered).
Formulae (IV.20) and (IV.21), applied to our example, give

p -  q t * ? r h  = 179-2 a"d r< 1 + k + kT757 " O I = 3

k - 1So a = t— 2_rr = 378.2 and b = ----  = 0.193. Finally we found1 og k r3 o
the function

R(r) = 378.2 log (1 + 0.193r) (IV.22)

As we can see in Fig.IV.6, our generalized algorithm 
works very well and gives a very close fit.
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R. Rousseau remarked to me that citation data do 
conform very well with Leimkuhler's function. He compiled 
the following data :

IV.3.7. Application to Citation Data

# journals corresponding 
# citations r R(r)

(observed)

1 3594 1 3594
1 3008 2 6602
1 2144 3 8746
1 1895 4 1 0641
1 1848 5 12489
1 1643 6 14132
1 1552 7 1 5684
1 1419 8 17103
1 1411 9 18514
1 1391 10 19905
1 1335 11 21240
1 1093 12 22333
1 1088 13 23421
1 1029 14 24450
1 1018 15 25468
1 957 16 26425
1 938 17 27363
1 854 18 2821 7
1 844 19 29061
1 819 20 29880
1 810 21 30690
1 688 22 31378
1 638 23 32016
1 629 24 32645
1 618 25 33263
1 590 26 33853
1 559 27 3441 2
1 524 28 34936
1 474 29 3541 0
1 427 30 35837
1 426 31 36263
1 413 32 36676
1 410 33 37086
1 408 34 37494
1 406 35 37900
1 395 36 38295
1 380 37 38675
2 374 39 39423
1 369 40 39792
1 367 41 40157
1 361 42 40520
1 347 43 40867
1 338 44 41205
1 330 45 41535
1 324 46 41859
1 323 47 42182
1 312 48 42494

cont.
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cont.

§ journals corresponding 
# citations r R(r)

(observed)

1 288 49 42782
1 280 50 43062
1 279 51 43341
1 278 52 43619
1 250 53 43869
1 249 54 44118
1 247 55 44365
1 245 56 4461 0
1 233 57 44843
2 223 59 45289
2 222 61 45733
1 209 62 45942
1 208 63 46150
1 200 64 46350-
1 190 65 46540
1 189 66 46729
1 164 67 46893
1 161 68 47054
1 152 69 47206
1 141 70 47347
1 125 71 47472
1 107 72 47579
1 102 73 47681
1 91 74 47772
1 84 75 47856
1 67 76 47923
1 44 77 47967
1 41 78 48008
1 16 79 48024

Table IV.18 : Rousseau's Citation data :
mathematics journals from SCI, 1985

See Fig.IV.11 (the curve drawn by plus signs +).
Indeed, the observed curve ressembles very much a Leimkuhler
function. Rousseau asked me if the above theory could be
appiied to table IV. 18.

Note first that, apart from the few last journals
in this bibliography , there is no Groos droop. This is due
to the fact that a citation analysis deal s with a very high
number of items per source (i.e. citations per journal) and
that the lower number of citations (the less important
journals) cannot be determined (this is due to the way 
the Science Citation Index is constructed). In any case
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it would be almost impossible to compile citation data 
up to the least important journals (number of citations 
equal to one). In Rousseau's data the least important 
journal still has 16 citations, the second to least 
important journal has even 41 citations.

Data, as appearing in table IV.18, can be handled 
by our methodology for unknown bibliographies, as explained 
in section IV.3.1. But, since it is typically the case for 
citation data, that (since the number of citations is high) 
we have not so many journals attached to a certain number 
of citations (usually even only one - see table IV.18) and 
furthermore, there can be a certain distance (larger than 
one) between two consecutive numbers of citations (f.i. the 
distance between the number of citations between ranks 75 
and 76 still is 17), we have to apply the modified formulas 
(IV.20) and (IV.21) from section IV.3.6. As in IV.3.6, we 
will show that they also apply very well for Rousseau's 
data. We start now the calculation of the best Leimkuhler 
function for Rousseau's data.

Although small, there is a Groos droop, starting at 
about r = 61, hence n = 222. Put p = 10, so k = (1.781 xy )8 '̂
= 2.4023 (since we deal here with higher data values we will

keep a few more decimals than before). So q = — ■ -1 = 6.823;

hence [q] = 6. Therefore n' = —  = 259.25. Our only choice is
e^

r' = 53 = f (with A = 43869) and n' = 250. Since, as mentioned 
before, we could not pick the exact source corresponding 
exactly to the lowest rank in the seventh last group we adapt 
the correction as explained in section IV.3.6. Hence

q' = Y V g V '  = 6 -9586- So P' = 3.0414. Formula (IV.20)

yields : yQ = = 14424. So a =  ̂ k = 16457.6. Formula

(IV.21) gives now

r0 = ----------7 "04'14 = 3.6464
0 1 + k + k^*U414

and hence
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b = = 0.248355
ro

Leimkuhler's function is therefore

R(r) = 1 6457.6 log ( 1 + 0.248355r) (IV.23)

A glance at Fig.IV.11 shows immediately that the fit 
is very close. Of course, if necessary, a truncation at 
r = 20 will produce even better fits (up to r = 20) and 
gives an even more exact form of Leimkuhler's function, 
being the underlying Leimkuhler function for the (unknown) 
complete bibliography of citation data.

General note :
More correct calculations can be done by keeping more 
decimals in the above calculations. We checked this problem 
but present here a degree of accuracy beyond which only 
small alterations occur.

We close by noting that Rousseau (1987b) was able 
to apply the above fitting methods (and, more particularly 
paragraph IV.3) to his theory on p-nuclei. This theory is 
based on the exact form of the Leimkuhler function and 
graph without a Groos droop; hence the above "truncated" 
fitting method could be applied.

IV.4. An upper estimation of the complete IPP from a given 
(incomplete) one

Finding a method to determine if an IPP is complete 
or not, and if it is not complete, giving an algorithm to 
calculate the size of the complete IPP has been studied in 
the past cf. (Brookes, 1969 and 1981).

If the complete IPP conforms with Leimkuhler's function 
but with a Groos droop-deviation, we have shown how to "cut 
away" the Groos droop and estimate the parameters of the 
underlying exact Leimkuhler function. If incompleteness
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would be the only cause of the Groos droop we would hence 
have a perfect method to estimate the completion of an IPP, 
given incomplete data.

However, by the notes in section IV.2.8, 
incompleteness is not (necessarily) the only cause of the 
Groos droop : interdisciplinarity or long time periods are 
possibly also a reason.

So, in general, we can say that the fitted Leimkuhler 
function R, calculated in the previous paragraph IV.3, gives 
an upper bound of the complete IPP (if not an exact estimate 
of it, in case of unidisciplinarity).

Once the "exact" Leimkuhler function R(r) for the 
complete data has been determined, there remains the problem 
of where to cut this graph : i.e. if we know T = the total 
number of sources in the complete IPP, then of course 
A = R(T) = the total number of items in the complete IPP 
is known. But determining T is the hardest part since, 
talking in fractions of the total now, we know a large 
fraction of A but only a small fraction of T. In (Brookes, 
1969) it is argued that we may stop whenever

R(r) - R(r- 1) « 1 (IV.24)

since we do not allow increments of R(r) smaller than one. 
Although this requirement looks evident, there is no 
rationale for it. Furthermore, in (Brookes, 1981), algo-
rithm (IV.24) is changed into : stop if

R(r) - R( r- 1 ) = ^ (IV.25)

where b is the parameter appearing in R(r) = a log (1 +br).
I do not see any rationale for this.

We may conclude that the completion of an IPP still 
is a problem.
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Our method, as developed in the previous section, 
gives a trivial application in the solution of the above 
mentioned problem, at least as far as an upper bound is 
concerned.

IV.4.1. Methodology

Choose p not too small (take e.g. p = 10). In the 
previous section we calculated the number of items A cor-
responding to p - [q] - 1 Bradford groups, if p denotes the 
total number of Bradford groups of the complete IPP. We 
found

yo “ p - [q] - 1 (IV.13)

Since yQ is also the total number of items divided by p 
groups, we find simply

A _ A 
P " L q J - 1 p

Hence

A P
P " LqJ - 1 A (IV.26)

which gives a simple, but exact solution to the calculation 
of A.

Note :
It is not even necessary to work with [q]+1. Also decimal 
q's can be used if necessary (see the examples).

But, using (F ̂ ̂ ) and (F^g)

and

gives

A « C (log ym + y)

T « C
2TT

T

6T - A
~2 ~ log y_ + y tt 3 J m 1

<F15>

‘f 16>
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So

T 7T2A
(log ym + y J (IV.27)

Formulae (IV.26) and (IV.27) solve completely the problem 
of determining an upper bound for the size of the complete 
IPP. The average production of the sources that we have 
missed is given by

M = A , (IV.28)
T - T

in so far that incompleteness is the only cause of the 
Groos droop.

To show that the easy method as described by formulae 
(IV.26) and (IV.27) is good, we will apply it first on the 
"quasi-perfect" example of section IV.3.2.

IV.4.2. Application to the quasi-perfect example

We re-use the "quasi-perfect" example of section
IV.3.2 , (which is a complete IPP according to Lotka's function)
in order to show that formulae (IV.26), (IV.27) and (IV.28)

0 1are very accurate. We have for p = 10, k = (1.781 x ym ) * 
1.4886. Suppose we know the above IPP only until about 
production n = 11. The ranks with n = 11 are 48, 49, 50,
51, 52, 53, 54 and 55. We take the average : f = r 1 = 51.5 
with a cumulative production A = 897.5 (keep all decimals 
in order to be more accurate). Furthermore

<1' = H o -g- k-  ■ 7'478

Hence

A = TO”-“77478 = 3558

to be compared with the real value 3567 (a value which is 
unknown in practical examples). (IV.27) now yields :
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T 14717t2 3558
T> (1 og 30 + y)

being close to the actual 1449 number of sources.
Formula (IV.28) shows that

M = -A- A = 1 .874 
T - T

the average production of the "missed" sources.

We are now going to apply the method to the 
calculation of an upper bound of the completion of the 
bibliographies (that we have encountered so far) which 
show a Groos droop.

IV.4.3. Completion of practical bibliographies (upper 
estimates)

IV.4.3.1. Mast Cell

From section IV.3.3 and formulas (IV.26), (IV.27) 
and (IV.28) we find as upper estimates :

A = - Pn , A = -U . 1789 = 2982
p - q 6

and

T tt2A
(log ym + y) 1029

as compared to the actual size of the bibliography of resp. 
2378 articles and 587 journals. Furthermore, the average 
number of articles per missed journal is estimated as

p = 1.367

We may say that we have only missed journals with a low 
number of articles.
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IV.4.3.2. Schistosomiasis

From section IV.3.4, we have 

A

and

T

to compare with the actual size of the bibliography of 
resp. 9914 articles and 1738 journals. Here

p = 1.515

showing that the Schistosomiasis bibliography could be a 
bit less complete than Mast Cell. But we refer also to the 
comments in section IV.2.8.(b) , concerning this bibliography.

IV.4.3.3. Pope

From section IV.3.5, we have A = 9912, T = 2655 and 
p = 1.547 while the actual size of Pope's bibliography is 
7368 articles and 1011 journals.

IV.4.3.4. Sachs ' bib!iography

From section IV.3.6, we have A = 1 792 , T = 622 and 
p = 2.013 while the actual size of Sachs' bibliography 
(which was not meant to be complete!) is 828 articles and 
143 journals. So this bibliography is very incomplete, the 
value of p being a measure for it.

IV.4.3.5. Rousseau's citation data

From paragraph IV.3.7 we have

A = 3 04T4 * 43869 = 1^4239 {# citations now)

T ■ e n o g 4 V r r r -  27072

10
IT 7182 = 11970

tt . 11970 
(log 325 + y) = 3095
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as compared to 48024 citations and 79 journals in the actual 
bibliography. Furthermore p = 3.72.

Note :
A total of 27072 mathematical journals is not reasonable 
but completing Rousseau's bibliography (which is never 
possible in practise!) involves also non-mathematical 
journals which sometimes publish a mathematical paper 
(that receives then some citations). Anyway, the completion 
problem for citation data is, of course, less meaningful 
than it is for bibliographies consisting of journals, and 
articles in these journals.

IV.4.4. Estimating the number of missing sources in every 
category of production

In paragraph IV.4.1 we described a method to upper 
estimate A and T, the total number of items, resp. sources 
in the complete, unknown IPP. The missing sources are, of 
course, the least productive ones. But how to upper estimate 
how many sources are missing with 1 item, with 2 items, with 
3 items, ...? This can be done by the following rationale : 
By formula (F,|g) it follows that

C = log ym + y ^F15)

So

f(n) = \  = ------- ------- ? (IV.29)
n (log ym + y) n

Hence, the upper estimate for A, as given in the previous 
paragraphs, gives also the number f(n), an upper estimate 
of the number of sources (in the completed IPP) with n items 
(n = 1,2,3,...).

We examine the already used bibliographies.
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1. Mast Cell

f ( n ) ------- « 2 2 ---- - -
(log 6 6 +y)

This gives the following table, to be compared with 
the observed values.

From IV.4.3.1 we deduce

n f(n) observed A
1 626 328 298
2 156 90 66
3 70 35 35
4 39 24 15
5 25 16 9
6 17 8 9
7 13 8 5
8 10 6 4
9 8 1 1 -3

Table IV.19 : Upper estimation of Mast Cell

We notice, of course, the higher n, the more complete 
is the bibliography.

2. Schistosomiasis

From IV.4.3.2 we deduce

1881.8 f (n ) = --- n—
n

yielding the following table

n f(n) observed A
1 1882 908 974
2 470 266 204
3 209 137 72
4 118 76 42
5 75 57 18
6 52 44 8
7 38 27 11
8 29 29 0
9 23 19 4

10 19 14 5

Table IV.20 : Upper estimation of Schistosomiasis
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3. Pope

1613.9f (n j - --- 2—
n

yielding the table

From IV.4.3.3 , we find

n f (n) observed A
1 1614 534 1 080
2 403 140 263
3 213 68 145
4 101 45 56
5 65 35 30
6 45 14 31
7 33 20 13
8 25 12 13
9 20 8 12

10 16 7 9
1 1 13 9 4
12 11 9 2
13 10 10 0

Table IV.21 : Upper estimation of Pope

4. Sachs 1 bib!iography

From IV.4.3.4 , we find

fin) 378.4f C n ; = ---2~
n

yielding the table

n f ( n ) observed A
1 378 73 305
2 95 21 74
3 42 8 34
4 24 5 19
5 15 5 10
6 11 4 7
7 8 4 4
8 6 2 4
9 5 3 2

Table IV.22 : Upper estimation of Sachs
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We now come to the final section of this chapter : 
the fitting of the Leimkuhler function, and, together with 
it, the fitting of the general Lotka function.

IV.5. Fitting of the generalised Leimkuhler and Lotka 
functions

This final section is devoted to the fitting of the 
general Leimkuhler function

R(r) -a
2 -a

(IV.30)

r = 1 ,2,...,T
(see (III.5) or (III.65) together with (PFy) until (PF^)).
Of course this gives immediately the problem of fitting 
Lotka's function (a > 1) :

f(j) = 4  (IV.31)
J

j = 1 ,2.... ym (see (111.1)).

3C>
Remark that, if a < 2, the function (IV.,3ft) has a 

Groos droop. Other functions have been proposed to fit this 
phenomenon but usually with complicated, unexplained 
distributions; see e.g. (Griffith, 1988) and (Sichel, 1986).

On fitting Lotka's function (for general a) there 
have been several papers : (Nicholls, 1986), (Nicholls, 1987), 
(Pao, 1982), (Pao, 1985), (Pao, 1986) and (Tague and Nicholls, 
1987). In them a few methods to derive a good a have been 
constructed, some better than others.

Let us immediately remark that the whole problem of 
fitting (IV.30) and (IV.31) reduces to finding the "best" a .  

Once a determined, C follows as indicated below :

ymm
T = l  f(j)

j = 1
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00

m 1 I —. . .a
J = 1 J

where a > 1. Since I
j = 1

converges (a>l) we have 
j

c " z b  • (IV-32)

where s (a) denotes the classical z£ta-function. Since T is 
known, C can then be determined from a table of c(a)'\ 
appearing for instance in (Nicholls, 1987), but reproduced 
here since we need it further on : see Table IV.23.

Since also ym is known, we now see that, once a is 
known, all parameters in (IV.30) and (IV.31) are known.

In the sequel, we will suffice by investigating 
whether some a and C that yield a well fitting Lotka function 
(IV.31) (to the practical data) will also yield a well 
fitting general Leimkuhler function. We will give three 
examples.
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a CIT a CIT a

1.50 0.3828 1.90 0.5715 2.30
1.51 0.3885 1.91 0.5753 2.31
1.52 0.3942 1.92 0.5791 2.32
1.53 0.3998 1.93 0.5828 2.33
1.54 0.4054 1.94 0.5865 2.34
1.55 0.4109 1.95 0.5902 2.35
1.56 0.4163 1.96 0.5938 2.36
1.57 0.4217 1.97 0.5974 2.37
1.58 0.4270 1.98 0.6009 2.38
1.59 0.4323 1.99 0.6044 2.39
1.60 0.4375 2.00 0.6079 2.40
1.61 0.4427 2.01 0.6114 2.41
1.62 0.4478 2.02 0.6148 2.42
1.63 0.4528 2.03 0.6182 2.43
1.64 0.4578 2.04 0.6215 2.44
1.65 0.4628 2.05 0.6249 2.45
1.66 0.4677 2.06 0.6281 2.46
1.67 0.4725 2.07 0.6314 2.47
1.68 0.4773 2.08 0.6346 2.48
1.69 0.4821 2.09 0.6378 2.49
1.70 0.4868 2.10 0.6409 2.50
1.71 0.4914 2.11 0.6441 2.51
1.72 0.4961 2.12 0.6472 2.52
1.73 0.5006 2.13 0.6502 2.53
1.74 0.5051 2.14 0.6533 2.54
1.75 0.5096 2.15 0.6563 2.55
1.76 0.5140 2.16 0.6593 2.56
1.77 0.5184 2.17 0.6622 2.57
1.78 0.5227 2.18 0.6651 2.58
1.79 0.5270 2.19 0.6680 2.59
1.80 0.5313 2.20 0.6709 2.60
1.81 0.5355 2.21 0.6737 2.61
1.82 0.5397 2.22 0.6766 2.62
1.83 0.5438 2.23 0.6793 2.63
1.84 0.5479 2.24 0.6821 2.64
1.85 0.5519 2.25 0.6848 2.65
1.86 0.5559 2.26 0.6875 2.66
1.87 0.5599 2.27 0.6902 2.67
1.88 0.5638 2.28 0.6929 2.68
1.89 0.5677 2.29 0.6955 2.69

Table IV. 23 : Table of $ 1
¡¡(a)

CIT a CIT a CIT

0.6981 2.70 0.7848 3.10 0.8450
0.7007 2.71 0.7866 3.11 0.8463
0.7033 2.72 0.7883 3.12 0.8475
0.7058 2.73 0.7901 3.13 0.8488
0.7083 2.74 0.7918 3.14 0.8500
0.7108 2.75 0.7935 3.15 0.8512
0.7133 2.76 0.7952 3.16 0.8524
0.7157 2.77 0.7969 3.17 0.8536
0.7181 2.78 0.7986 3.18 0.8547
0.7205 2.79 0.8003 3.19 0.8559
0.7229 2.80 0.8019 3.20 0.8571
0.7252 2.81 0.8035 3.21 0.8582
0.7276 2.82 0.8052 3.22 0.8593
0.7299 2.83 0.8068 3.23 0.8605
0.7322 2.84 0.8083 3.24 0.8616
0.7344 2.85 0.8099 3.25 0.8627
0.7367 2.86 0.8115 3.26 0.8638
0.7389 2.87 0.8130 3.27 0.8649
0.7411 2.88 0.8145 3.28 0.8660
0.7433 2.89 0.8161 3.29 0.8670
0.7454 2.90 0.8176 3.30 0.8681
0.7476 2.91 0.8191 3.31 0.8691
0.7497 2.92 0.8205 3.32 0.8702
0.7518 2.93 0.8220 3.33 0.8712
0.7539 2.94 0.8235 3.34 0.8723
0.7560 2.95 0.8249 3.35 0.8733
0.7580 2.96 0.8263 3.36 0.8743
0.7600 2.97 0.8277 3.37 0.8753
0.7620 2.98 0.8299 3.38 0.8763
0.7640 2.99 0.8305 3.39 0.8772
0.7660 3.00 0.8319 3.40 0.8782
0.7680 3.01 0.8333 3.41 0.8792
0.7699 3.02 0.8346 3.42 0.8801
0.7718 3.03 0.8360 3.43 0.8811
0.7737 3.04 0.8373 3.44 0.8820
0.7756 3.05 0.8386 3.45 0.8830
0.7775 3.06 0.8399 3.46 0.8839
0.7793 3.07 0.8412 3.47 0.8848
0.7811 3.08 0.8425 3.48 0.8857
0.7830 3.09 0.8438 3.49 0.8866

for a £ [ 1 . 50,3.49] with 
increments of 0.01
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a C1T a CIT a

1.50 0.3828 1.90 0.5715 2.30
1.51 0.3885 1.91 0.5753 2.31
1.52 0.3942 1.92 0.5791 2.32
1.53 0.3998 1.93 0.5828 2.33
1.54 0.4054 1.94 0.5865 2.34
1.55 0.4109 1.95 0.5902 2.35
1.56 0.4163 1.96 0.5938 2.36
1.57 0.4217 1.97 0.5974 2.37
1.58 0.4270 1.98 0.6009 2.38
1.59 0.4323 1.99 0.6044 2.39
1.60 0.4375 2.00 0.6079 2.40
1.61 0.4427 2.01 0.6114 2.41
1.62 0.4478 2.02 0.6148 2.42
1.63 0.4528 2.03 0.6182 2.43
1.64 0.4578 2.04 0.6215 2.44
1.65 0.4628 2.05 0.6249 2.45
1.66 0.4677 2.06 0.6281 2.46
1.67 0.4725 2.07 0.6314 2.47
1.68 0.4773 2.08 0.6346 2.48
1.69 0.4821 2.09 0.6378 2.49
1.70 0.4868 2.10 0.6409 2.50
1.71 0.4914 2.11 0.6441 2.51
1.72 0.4961 2.12 0.6472 2.52
1.73 0.5006 2.13 0.6502 2.53
1.74 0.5051 2.14 0.6533 2.54
1.75 0.5096 2.15 0.6563 2.55
1.76 0.5140 2.16 0.6593 2.56
1.77 0.5184 2.17 0.6622 2.57
1.78 0.5227 2.18 0.6651 2.58
1.79 0.5270 2.19 0.6680 2.59
1.80 0.5313 2.20 0.6709 2.60
1.81 0.5355 2.21 0.6737 2.61
1.82 0.5397 2.22 0.6766 2.62
1.83 0.5438 2.23 0.6793 2.63
1.84 0.5479 2.24 0.6821 2.64
1.85 0.5519 2.25 0.6848 2.65
1.86 0.5559 2.26 0.6875 2.66
1.87 0.5599 2.27 0.6902 2.67
1.88 0.5638 2.28 0.6929 2.68
1.89 0.5677 2.29 0.6955 2.69

Table IV.23 : Table Of j 1
" Z W !

CIT a CIT a CIT

0.6981 2.70 0.7848 3.10 0.8450
0.7007 2.71 0.7866 3.11 0.8463
0.7033 2.72 0.7883 3.12 0.8475
0.7058 2.73 0.7901 3.13 0.8488
0.7083 2.74 0.7918 3.14 0.8500
0.7108 2.75 0.7935 3.15 0.8512
0.7133 2.76 0.7952 3.16 0.8524
0.7157 2.77 0.7969 3.17 0.8536
0.7181 2.78 0.7986 3.18 0.8547
0.7205 2.79 0.8003 3.19 0.8559
0.7229 2.80 0.8019 3.20 0.8571
0.7252 2.81 0.8035 3.21 0.8582
0.7276 2.82 0.8052 3.22 0.8593
0.7299 2.83 0.8068 3.23 0.8605
0.7322 2.84 0.8083 3.24 0.8616
0.7344 2.85 0.8099 3.25 0.8627
0.7367 2.86 0.8115 3.26 0.8638
0.7389 2.87 0.8130 3.27 0.8649
0.7411 2.88 0.8145 3.28 0.8660
0.7433 2.89 0.8161 3.29 0.8670
0.7454 2.90 0.8176 3.30 0.8681
0.7476 2.91 0.8191 3.31 0.8691
0.7497 2.92 0.8205 3.32 0.8702
0.7518 2.93 0.8220 3.33 0.8712
0.7539 2.94 0.8235 3.34 0.8723
0.7560 2.95 0.8249 3.35 0.8733
0.7580 2.96 0.8263 3.36 0.8743
0.7600 2.97 0.8277 3.37 0.8753
0.7620 2.98 0.8299 3.38 0.8763
0.7640 2.99 0.8305 3.39 0.8772
0.7660 3.00 0.8319 3.40 0.8782
0.7680 3.01 0.8333 3.41 0.8792
0.7699 3.02 0.8346 3.42 0.8801
0.7718 3.03 0.8360 3.43 0.8811
0.7737 3.04 0.8373 3.44 0.8820
0.7756 3.05 0.8386 3.45 0.8830
0.7775 3.06 0.8399 3.46 0.8839
0.7793 3.07 0.8412 3.47 0.8848
0.7811 3.08 0.8425 3.48 0.8857
0.7830 3.09 0.8438 3.49 0.8866

for a e [ 1. 50 j 3.49] with 
increments of 0.01

155



IV.5.1. Example : The Pao data on computational musicology

These data can be found in (Pao, 1979) and are as 
in the left part of Table IV.24.

R(r) R(r)r observed calculated

1 40 35.8
2 74 65.2
3 95 90.4
4 11 1 112.5
5 125 132.2
6 138 150.0
7 151 166.3
8 164 181.3
9 176 195.3

10 188 208.3
1 1 200 220.6
12 212 232.1
13 222 243.1
14 232 253.5
15 242 263.4
16 252 272.9
17 260 282.0
18 268 290.7
19 276 299.1
20 283 307.1
26 325 350.3
36 383 408.1
46 433 454.7
56 475 494.0
66 515 528.1
76 545 558.4
86 575 585.6
96 605 610.3
106 627 633.1
126 667 673.9
146 707 709.8
166 747 741.8
186 775 770.8
206 795 784.4
226 815 809.9
250 839 849.1
300 889 899.5
350 939 943.3
400 989 982.3
450 1 039 1017.4
500 1089 1049.4

Table IV.24 : The Pao data on computational 
musi cology

156



The maximum likelihood method in (Nicholls, 1986) 
gives a = 2.2000 and c|T= 0.6709, giving a good fit of 
Lotka's function. The fit for Leimkuhler's function with 
this a  and C is as in the right part of Table IV.24.

The fit is very good. Using the Kolmogorov-Smirnov 
test one has that the maximal relative deviation is

D = 0.0412 max

while the critical value (at the 5 % level) is approximately
(incidentally) — '--fi-- = 0.0412. Hence, the model

/TUF?
n o  1 o 1 2 .0.1667-1

R(r). („-o.z - (40-* 1 * * *-2 + oW T boo r) 1

_ nnoc vO. 1667-j
R ( r )  =-1667.25 [0 .4 7 8 2  - (0.0120 + 0 ,0 0 3 6 r )  1

(IV.33)
is accepted.

IV.5.2. Example : The Murphy data

They can be found in (Murphy, 1973) but also in 
(Pao, 1986) or (Rao, 1980) - see Table IV.25. For these 
data, the least square method of Nicholls (1986) yields 
a = 2.104 and Cjf= 0.6424. Lotka's function is hereby well- 
fitted. With this a and C we also have a good fit to (IV.30).

Here = 0.0665 but the 5 % critical value ismax
1  ̂f)

approximately ‘ = 0.0882. Again we can accept our general
/238

Leimkuhler function :

R ( r )

R ( r )

= 0-6424 x 170 r ,-0 .1047 _ , ,- 1 .1 0 4 7  1.1047 „ ,0 .0 9 4 8
-0.1047 V 0.6424 x 170 ‘

= -1043.05 [0 .8449  - (0 .1690 + O .O lO l r ) 0 ,0948]
(IV.34)
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R(r) R(r)r observed ca1culated

1 5 4.9
2 9 9.5
3 13 13.9
4 17 18.1
5 21 27.1
6 25 26.0
7 29 29.7
8 33 33.3
9 37 36.7

10 40 40.0
11 43 43.3
12 46 46.4
13 49 49.4
14 52 52.3
15 55 55.2
16 58 57.9
17 61 60.6
18 64 63.2
19 66 65.8
20 68 68.3
30 88 90.2
40 108 108.2
50 118 123.6
70 138 148.9
90 158 169.3

110 178 186.6
130 198 201.5
150 218 214.7
170 238 226.5

Table IV. 25 : The Murphy data

Example : The Radhakrishnan- Kerdizan data

They can be found in (Radhakrishnan and Kerdizan, 
1979), see also (Pao, 1986) and Table IV.26.

In this case the Nicholls least squares method yields 
a = 3.4880, C r= 0.8864 and the maximum likelihood method 
(also of Nicholls) gives a = 3.4000 , cjT= 0.8782. Both 
methods give a fit to Lotka's function (IV.31) (although 
not splendid) but a very bad fit to Leimkuhler's function 
(IV.30). In this case I propose another simple method : 
Estimate C by

f(1) = C (IV.35)
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Here this is (not indicated in Table IV.26) : 250

r R(r)
observed

R(r)
calculated

1 7 6.4
2 13 12.0
3 18 17.0
4 22 21.6
5 26 25.8
6 30 29.8
7 34 33.5
8 38 37.1
9 41 40.4

10 44 43.7
11 47 46.8
12 50 49.8
13 53 52.7
14 56 55.5
15 59 58.2
20 69 70.8
30 89 92.3
40 109 110.7
50 129 127.0

100 180 191.5
200 280 283.5
300 380 354.2
301 381

Table IV,26 : The Radhakrishnan-Kerdizan data 

This gives

C 250 250
T = ~T~ = TOT 0.8306

and with this (using Table IV.23) 

a = 2.9907

With these values I do not only get 
Leimkuhler's function but the fitted Lotka

JL5~o

a good fit of 
function

f ( j ) T 2 7 W Ü 7
J

(IV.36)

is better than Nicholls least square (LS) or maximum 
likelihood (ML) methods in (Nicholls, 1986). For Lotka's 
fitting I obtain Dmax = 0.0151 which is smaller than 
Nicholls' fits :
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LS : D = 0.0367max
ML : D = 0.0285max

For Leimkuhler's general function (IV.30) I obtain 
: 0.086 (much better than Nicholls), which is at aboutm a X

the 1 % level. Hence we have, at the 1 % level a fit 
(contrary to Nicholls). We have here the law

0.8378 x 301 r 7- l .0442 _ f7 -2.0442 2.0442 .0.5108!
-1.0442 1 + DTB'3/8 x 301 ]

-241.49 [0 .1311  - (0.0187 + 0 .0081r)0 * 510S] _ (IV.37)

We need further investigation on the value of the 
above simple method.

IV.5.4. Conclusion

R(r) = 

R(r) =

In general we can say that the new function (IV.30) 
is a valuable law and can easily be fitted. Further research 
is in order to determine what is the best fitting method; 
some preliminary calculations (such as in IV.5.3, but there 
have been other calculations) show that the simple method, 
described in IV.5.3 is not worse than the more sophisticated 
methods (least square or maximum likelihood) of Nicholls.

It is furthermore very well possible to fit (IV.30) 
and (IV.31) with the same set (a,C), a result which looks 
more evident than it is.
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CHAPTER V : CONCLUDING COMMENTS AND SUMMARY OF THE RESULTS

In chapter I, I have explained that, having 
considered the great variety of techniques, mainly 
statistical, that have been applied in the past to 
empirical data within the field of informetries, techniques 
which appear to tackle each problem of fitting in some 
different ad hoc way, I thought that it might be possible 
to device a mathematical framework which would accomodate 
all informetric problems of this kind. If this could be 
done, the present wide variety of analytical techniques 
would be replaced by one unified mathematical calculus.

In chapters II and III, this general mathematical 
framework was worked out by applying the 'duality principle' 
which enabled me to fit all the well-known empirical laws 
within the framework. It has to be remembered that 
informetric data are compiled from many sets of sources 
and their corresponding items - a long and tedious task 
(now aided by the computer of course). So the published 
results have to be accepted as 'given' - there is no chance 
of verifying them as there usually is in the physical 
sciences. So, when it comes to fitting mathematical 
formulae to empirical data of this kind, some degree 
of misfit must be expected.

However, the only practicable test which can be 
applied to the general mathematical framework is to test 
it in as many ways as possible against the data-sets 
already well-known, fitted by other techniques, in the 
hope of demonstrating that it provides fits as least as 
well as the various ad hoc techniques already published.
The details of these tests are described in chapter IV.
I claim that they demonstrate the success of the mathe-
matical approach.

But I must also point out that as this is the first 
attempt of its kind, my approach has been exploratory.
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I regard the present work not as an end in itself but as 
a beginning which suggests further lines of research. It 
may be possible to refine what has already been done by 
extending the duality approach from two-dimensional to 
three-dimensional informetrics as soon as I can find 
suitable sets of data to work on.

A further reservation I have to make concerns 
'goodness of fit1. I have made some use of the Kolmogorov- 
Smirnov test when possible, but all the conventional 
methods of testing for goodness of fit are based on 
Gaussian statistics and I have doubts about their 
suitability for the Zipfian distributions of informetrics. 
This is however a very deep problem which has not yet been 
resolved.

I will now briefly repeat the most important results, 
giving always reference to the section number and/or the 
formula number.

V.1. Duali ty

The dual of the continuous IPP (S,I,V) = 
(10,T],[0,A] ,V) is the IPP

(I.S.U) = ([0,A] ,[0,T] , U) (II.5)

where

U (i) = T - V " 1 (A - i) (II.6)

Notation :

o(1) = U'(i) 

p(r) = V '(r)

(11.7)

(11.8)

for every i e I and r e S. 
One has
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(11.10)

for every i £ I.

One has pure duality if

o(i) = C.p(i) (11.12)

with C > 0 a constant, i e I.

Bradford ' s law is the only known law that satisfies 
this property (section II.3.3). Analogous results are true 
for discrete IPP's (section II.3.2).

Basi c dual relations

P(i)
(i terns) J

1
f ( j ) j dj = i (II,.20)

i p(i )
(sources ) J a ( A-j ) d j = J f ( J ) d j (II,.19)0 1

for every i e I = (0 ,A] .

From this one finds, for Lotka's a : 

a < j  + 2 (11.31 )

and hence, in practice,

a < 3 (11.34)

V.2. Classification of informetric functions and formulae 
found as a consequence of it

From the previous duality theory one finds 

If a = 2 (cf. II.4.3.1, III.1.2 and III.3.1)

We have equivalency of the following laws :

163



1. Lotka's function (a =2) :

f ( j ) = — £■ >
J

j e [ 1 » P ( A ) ] = [ p ( 0 ) , p ( A ) ]

(11.35)

2. The group-free Bradford function 

o (i) = M.K1 , 

i e I.

( 11.18)or (III.7)

3. The group-dependent version of Bradford's law (para-
meters rQ ,yQ ,k) ( 111.6 )

4. Mandelbrot's function (B‘ =1) :

g(r) = , (III.3)

r e S.

5. Leimkuhler's function :

R(r) = a log (1 + br) (11.36) or (III.4)

r e s ,

In this case one has the relations (putting 
P(A ) = ym ; cf. (A2) in III.2) :

a = yo _ 1
log k log k (F1) and (F11)

b = k - 1 _ log K
TT (F2) and (F12)

G = ym = ab m (F3 )

T (F4)

C = a
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y0 = C log k (F6>

r° = t  (k- nm
(f7)

K = kP/A (f8)

(k is in fact p-dependent : k = k(p))

y - *3 o p (Fg)

r _ T (k -1)
0 kP - 1 <Fio>

In the discrete case, one may use

ym c
Z T « C(log y + y) , 

j = 1 J m
(III.71)

since ym is high (cf. (A3) in III.2). 

]_
k « (eYy J p , <F13>

where Y « 0.5772 (Euler's number) and hence 
1

k » (eYym )* (F14 >

Furthermore

A « C (log ym + y) (F15>

—i 5 o <F16>

In case we put

c = m (III.77)

for a certain c € [1,2], one finds

H = y^~c m (PF1 )

a = ymm (p f2)
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y0 - y Si log k (PF3) 

r0 = y ^ 1(k-l) (p f4) 

a ■» ŷ  (log ym n) (PFj)

T - y c, 4  (p f6>

If g is general (> 1) (cf. II.4.3.2, III.1.3 and III.3.2) 

We have equivalency of the following functions :

1. Lotka ' s funct i on

j €

f(j) = * (11.41) or (III.1) 
J

[ 1 , p(A) ] .

2. The general group-free Bradford function

Ao
o(i) = (A1 + iA2) J , (11.44)0r (III.8)

i e I.

3. Mandelbrot's function

r e

g(r) = ---- —— jt , (III.3)
(1 + Hr)B

S.

4. The generalised Leimkuhler function,

r £

B r
R(r) = B1 (B2 - (B3 + B4r) b) (11.45) or (III.5)

or (III.65) 
S.

In this case one has the relations :
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G = ^m (GF1 )

H a - 1 (g f 2)r 1 -ac J m

6 1 1 (g f 3)a - 1

fli = ^  ♦ i (GF4)

(using againi (A2) in III.2)

A2 = 2 - a
r~ (g f 5)

A3 = 1
'  2“^ (GF6 )

b i
C (g f 7)2 - a

B2
= y2'“ (g f8 )

B3
= y 1 " aJm (GFg)

B4 = a - 1
C <GFio>

B5
= 2 - a 

1 - a (GF,,)

V.3. Further formulae

VI.3.1. The average p in function of the Bradford factor k

M « log k
TT

(III.80)

were k = k(p) is the group-dependent factor.

The function

V k>
(III.81)

hence has the properties :

167



(III.83) and (III.84)Tim f(k) = l i m f ( k ) = + ° °  
k++°° P k-*-1 P 

>

f^(e) = 0

fpis in avery long interval around e, nearly horizontal 
with value

fp(e) = (III.86)

Consequently, for p > 5 : k < p almost always, 
k might be >p for p = 3 or 4. Experiments agree with these 
findings.

V.3.2. The number of items m(i) in the most productive 
source in every Bradford group i (counted from 
right to left)

A duality argument

4 m ( i ) -1 .
4 Z 4 < log k 
1 j = 1 J

gi ves

1 m( i )
< T Z 

1 j  = 1

1~T
J

(III.92)

Consequently

m (i) « —  « 0.5615 k* 1 (III.93)

from m(i) > 7 on (i.e. i > 2 or 3 is enough in most cases).

These results have nice applications in fitting 
techniques further on.

V.4. Classifying Zipf's law

We have equivalency of the following informetric 
laws (cf. III.4.2) :

1. The graphical formulation of Bradford's law, group- 
dependent (parameters r^,y ,k^) with r1 = k^.
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2. The graphical formulation of Bradford's law, group-free

z(1) * " r Ki - 1 , (III.94)

(where, in general :

z(i) = } 0(10 
0

d i' = r) (III.95)

f o r i £ I, with M1 = 1 .

Brookes ' function

Rj(r ) = a log (B(1+r)) (III.96)

where r € S , with B = 1 .

Zipf's (Pareto ' s) function

g ( r ) F
’ T T T (III.97)

r e s .

In this case we have the relations :

a = 1 f (III.98)log 1<1

K, ■ kp/A (III.99)

r 1 =
Ky° - k 
K1 k1 (III.100)

We have also the corollary : Zipf's law (Pareto's
law) is the only law that agrees with both the verbal and 
the graphical form of Bradford's law (and this in the group- 
dependent as well as in the group-free version).

Zipf's function represents a highly elitary 
situation.
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V.5. Fittings

Fitting procedures have been carried out for
- Bradford's law (verbal, group-dependent)
- Leimkuhler (known IPP's)
- Leimkuhler (unknown IPP's)
- General Lotka together with general Leimkuhler.

V. 5. 1 . Fitting of Bradford's law, p groups (i £ IN, p>3) 

The method is based on

k « (1.781ym ) 1 / P (F13

A
yo p (F9)

and

r _ T ( k -1 ) 
0 kp - 1

• ( F 10

p can be chosen . Experiments have been carried out on 
several "classical" bibliographies, with good results, 
mistake of Goffman-Warren has been corrected.

IV.5.2. Leimkuhler (known bibliographies)

Methodology (cf. IV.2)

R(r) = a log (1 + br ) (III

wi th

a y 0
log k (Fi>

b

and k as in (F^3).

( F 2 )

Although k = k(p), the method (to find (III.4)) is 
p - independent.
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V.5.3. Leimkuhler (unknown bibliographies)

We refer here to the problem of practical IPP's, 
that show a Groos droop.

Groos droops occur e.g. if (cf. IV.2.8) :
- we have an incomplete IPP
- we have a merged IPP.

Since incompleteness can be a partial reason for 
the occurrence of a Groos droop, we can present upper 
estimates of the completed IPP.

Methodology (cf. IV.3) : dual technique and "cutting 
away" at the point q where the Groos droop becomes apparent. 
We interpolate until our cut-off point is at the connection 
[q]+1 of 2 Bradford groups. The first (non-affected) part 
is then modelled more exactly. If [q]+1 groups are cut away 
and A items resp. f sources are left in the first p - [q] - 1 
groups, we have

yo ' p - [q] - 1

a . y° log k

ro

where

r _ f ( k -1)
r0 - kP-[q]-1 _ ,

This gives the "complete" function

R(r) = a log (1 +br) (III.4)

Examples are given and, indeed, the fittingsof the 
first part of the graphs are much better, when a Groos 
droop is present.

( IV.13)

(F1>

(f 2)

(IV.14)
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As a corollary we can upper estimate T and 
(cf. (IV.4.1)) :

A

A ' p - lq] - 1 A (IV.26)

and with this,

tt2A
T ' 6 (log ym +V) (IV.27)

The average number of items per source, of 
missed sources is

the

s - A - A
T - T 

Since

( I V 2 8 )

C - A
log ym + y

we can hence also estimate the Lotka function

<F,5>

f (n j - —2 ------------- t
n (log ym + y)n

for every n e IN.

(IV.29)

V.5.4. General Lotka together with general Leimkuhler 
(cf. (IV.5))

One has

■ 4
J

wi th

(IV.31 )

r T
C(al

(IV.32)

(table IV.23) 
and

(IV.30)
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The good Nicholls-fittings of (IV.31) yield also 
good fittings of (IV.30). A new, simple, ad hoc, method 
is presented, in case the Nicholls-fittings are not so 
good.
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