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A BSTRACT

This thesis studies the theory of simple-layer and
double-layer vector potentials. The connection with
Somigliana's formula 1is brought out and throws 1light

upon the behaviour of such potentials. Our analysis

provides an easy route to the construction of Volterra

dislocat ions
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Introduction

The theory of simple-layer and double-layer vector potentials was first
systematically given by Kupradze (1965) .He"guided by the well known corresponding
theory of simple-layer and double-layer scalar potentials,e.g.Kellogg (1929)"
Kupradze showed that the displacement fields of classical linear elastostatics,
Knops&Payne (1971),could be represented by vector potentials,and he used his
results to formulate vector boundary-integral eguations covering all the main
boundary-value problems of elastostatics. However these formulations were not
favoured by applied mathematicians and theoretical engineers for three main
reasons:

1. The potentials were generated by hypothetical vector sources which have
no clear physical significance;

2. They led to vector integral equations which involved highly singular
kernels over curved boundaries,so precluding any simple mathematical
analysis,Smithies (1958),

3. Numerical solutions were out of the question because of the absence of
adequate discretisation procedures and fast digital computers.

Some years before Kupradze'streatise much experience was gained in the
discretisation and numerical solution of scalar boundary integral equations.
This development led to a powerful numerical method of attack upon certain
important problems of classical potential theory e.g.computation of electro-
static capacitance,Symm (1963), torsional-rigidity,Jaswon&Ponter (1963) and
potential fluid motion,Hess&Smith (1967).It also opened the way for the
numerical solution of certain biharmonic boundary-value problems,in particular
those arising from the bending or stretching of thin plates.This was achieved by

exploiting Almansi's representation of a biharmonic function in terms of two harmon
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functions, and then representing these harmonic functions as potentials,
Jaswon & Symm (1977). However, a more far-reaching development was
Rizzo's exploitation of Somigliana's formula on the boundary. This
provided a functional relation between boundary displacements and
tractions, which immediately yielded vector integral equations covering
all the main boundary-value problems of the elastostatics. It may be
shown, e..g.Jaswon &Symm(1977), that the. fCupradze boundary formulations
are mathematically equivalent to those of Rizzo. However Rizzo's
formulations became widely acceptable because they involved directly
the quantities of immediate engineering interest, i.g. the boundary
displacements and tractions. In its discretised version, coupled with
suitable software- packages e.g.Brebbia (1973),Rizzo's approafch

has been developed into the BEM technique as we know it today.

Much of the mathematical foundation for BEM had in fact been
already laid down by Kupradze, since Somigliana's formula involves
the superposition of a simple-layer and double-layer vector potential
It therefore seems of interest to look closely at Kupradze's potentials
by reference to some simple elastostatic fields having qualitatively
distinct behaviours at infinity. No particular difficulty arises in

representing any of these fields by a simple-layer potential V . This

is because V— > 0(r 1) as r —> 00,. in line with the general
behaviour of a regular elastostatic field <9 . Physically speaking,
0(xr behaviour at infinity implies the existence of a resultant

force acting on the boundary, an inherent feature of V since this is

generated by a distribution of point-forces on the boundary.

Considerable difficulty arises with the representation of <

2
by a double-layer vector potential W ,because W— > 0(r ) as



r —> 00 whilst in general ( —> O(r ) as r —> 00 . It has been
suggested by Jaswon & Symm (1977) that we may write A = W if

00— > 0(r as r — > 00, but a closer analysis shows that such
fields fall into two main classes

1. ) provides a resultant moment acting on the boundary , in which
case ) ~ W , since W provides no resultant moment acting on the
boundary Jaswon & Symm (1977) ;

2. 0 provides a null resultant moment acting on the boundary , in
which case we may write § = W.

In case (1) we may supplement W by suitable resultant-moment
producing terms. More generally we may always supplement W by
resultant-force and resultant-moment producing terms to achieve a

representation of any regular . Examples will be given later.

The representation of ¢ by V yields vector boundary-integral
equations of the first kind for the relevant source-density
distribution ©* . Unique solutions always exist, but do not seem
to have been achieved numerically . The representation of ~ by W
yields vector boundary-integral equations of the second kind for the v
source-density distribution p . A solution may not exist. However
a set of non-unique solutions always exists 1if W is suitably
supplemented,so allowing some flexibility in the choise of p for
generating W . These issues will be exploited by reference to

specific problems.

Vector double-layer potentials offer an easy route to the theory
of Volterra dislocations . This is a sheet in the elastic continuum
across which the displacement Jjumps by a rigid-body component ,

the strains and stress remaining continuous . Such Jjumps may be ensured



by introducing the double-layer distribution /i = a + b r over the
sheet, where a , b are constant vectors. If b = 0 we obtain the vector
analogue of a uniform magnetic shej.l or vortex-equivalent sheet

The analysis is given for a uniform magnetic shell . The field of a
Volterra dislocation on a circular sheet is compared with that of

a uniform magnetic shell on the sheet . As expected, the two

fields have similar qualitative features

This thesis divides naturally into three main parts.
Part I summarises Kupradze's vector potential theory witb a view
to later applications. A new analysis 1is given for displacement fields
. _2 .
having O0(r ) behaviour as r —>00. We show how to complete the double-
layer vector potential so as to represent an arbitrary regular
elastostatic displacement field.Thé& connection with Somigliana's formula

is brought out and helps to throw light upon Kupradze S representation

Part II uses the Papkovich-Neuber formula to construct some
representative displacement fields in the infinite domain exterior to
a spherical cavity, and it shows how to represent these fields by

vector potentials.The potentials can not in general be evaluated

exactly,but their asymptotic equivalence to the fields is verified.

Part III applies Kupradze's double-layer vector potentials to
construct the field of Volterra dislocations. This brings out
the analogy with the theory of a uniform magnetic shell and also helps

to connect Volterra dislocations with crystal dislocations”pearson(1959).



Part of this thesis has been embodied in three published papers

of which copies are attached at the end.



PART I

INTRODUCTORY ANALYSIS

This provides a summary of vector potential theory in a form

suitable for subsequent applications



Chapter 1

Vector Potential Theory

1.0 Introduction

It was Kupradze who first introduced vector potentials into the
theory of elastostatics. He was very much guided by the role of scalar
potentials in the theory of harmonic functions. Corresponding to the
scalar simple-layer potentials there exist vector simple-layer

potentials. Corresponding to the scalar double-layer potentials there

exist vector double-layer potentials. Green's formula parallels
Somigliana's formula. Corresponding to harmonic functions
there exist displacement fields. Corresponding to the normal

derivatives of a harmonic function there exist the traction vectors

associated with a displacement fieldl. Corresponding to a uniform

harmonic function there exists a rigid-body displacement field

Corresponding to the scalar integral equations there exist vector

integral equations.

1.1 Vector simple-layer potential

Corresponding to the scalar potential we introduce the vector

potential

(1.1.1)
bB

Here 9b 1is a closed Liapunov smooth surface Jaswon & Symm (1977),

y signifies a point of <dB, dy signifies the area element at y ,x



signifies any point of space i.e. within the interior domain bounded by

dB or within the infinite exterior domain Be bounded internally by 3b

or on dB itself. Also g(x,y) signifies the displacement dyadic:

g (ilfy2) g(xr y3)
g(x,y) gury” 9 (i2'72) 9 (x2,y3) (1.1.2)
3(*371) A (=3'" -2} g(i3'"3)

where, 1in the isotropic continuum:

I~1 s L
- fiP f £~
1-K
(o if if

o  ~otfi +_§3EKA, OXp

12f ,
=-1i- S . R - |x-y | 7 o<, £ =1,2,3,
Jap oy, P p dx"x
P (1.1.3)
where p is the shear modulus, )) is Poisson's ratio (0 <V S — ) and
F'1l = 4(1-]1P). This is Kelvin's solution for the displacement component

in the <X - direction at x generated by a unit point-force acting in
the "-direction at y. Clearly column 1 defines the displacement
vector at x generated by a unit point-force acting in the 1l-direction

at y, etc. By virtue of the symmetry property::

(1.1.4)

we see that row 1 defines the displacement vector at y generated by

-12-



a unit point-force acting in the 1l-direction at x. Finally (I signifies

A

a vector source density with components 6 = < ~3>" an

provides the magnitude of the point-force acting in the 1l-direction

at y etc. Expressed in terms of components, (1.1.1) appears as
Vg® o 9k evy) &y -CBi' Be; ~* B ; "P=1'2'3
bP (1.1.5)
It has been proved by Kupridze (196,5) that V has properties entirely

analogous to those of scalar simple-layer potentials. These have

been listed by Jaswon (1984).
1.2 Traction vector
Associated with g(x ,y) we may compute the fundamental traction
dyadic of the medium:
eh=1'-1% 9* (x1,vy2) 9% (11'y3)
g* (X, ¥)= g% (1211 9% (x2,y2) 9% (12173 t.2.1)
9* (13'21) 9% (x3,yJ) 9% (~3,y3)
where
2y-1 1 5P oP
2(1-y) I)l d a x* no<

bf

d,

-13-
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Column 1 of (1.2.1) signifies the traction vector at x generated by
a unit point-force acting in the l-direction at y etc. Kupradze

(1965) proved the important formula:

V*(x) = J o *f(x)dy — 2"[f(fR) ; X ,yC SB, (1.2.3)
bB
for the traction vector at x associated with V, corresponding with
that for the normal derivative V'(x) of scalar potential theory
Kellog (12.9.) e Following the sign convention by Jaswon &Symm(1977),

we replace (1.2.3) by the formulae:

V*¥(x) = J 9l (x,y) .¢'(yidy - 2lief(x) ; x , y*SB (~,.2.4)
bB

V* (x) = J g* (x,y).6"(y)dy - 2TS"(x) ; x , yC" B/ (1.2.5)

e dB et 0T o

referring to the traction at "B acting upon B",B"respectively. Since

(x,y) =0, (1.2.6)

owing to the continuity of 2*(x'Y) at x for a fixed y, it follows

that:

Vix) + Ve(x) = —4IIV(x). (1.2.7)

This useful result has a simple physical interpretation. Imagine
the area element dx as a thin elastic strip sandwiched between
the sides of &B, which is subject to a resultant force 6dx(ifft/
generated from its interior and balanced by a resultant force

(Vi + V*)dx applied over the boundary.



1.3 Vector double-layer potential

A second, equivalent, traction dyadic associated with g(x,y) is

g (Xi,y2)* g Xi,y3)*
*
gty g (i2,-i)* g(-2'-2)* g@z,-3)x (31
3,y3)*
L g(=31-2}* g (x3,y3)
constructed by interchanging x , y in (1.2.1). It may be shown

Jaswon & Symm (1977), that column 1 of (1.3.1) signifies an
elastostatic field, i.e. that generated by a unit traction source
acting in the 1-direction at y, etc. This field corresponds with
the scalar field generated by a dipole source at y and has analogous
properties. Jjnparticular it allows us to construct the vector

double-layer potential:

W(x) = J gi(x,y)*.)iiy)dy ; xCB. ,B ; yc'SB. (1.3.2)
6B "

Here )i signifies a vector source-density with components
p. = , 2 >J "i*dy provides the magnitude of the traction acting
in the 1-direction at y,etc.. Expressed in terms of components

(1.3.2) appears as:

WeE(-) = Lg('io< ; ~C "B ;

U, = 1,2,3. (1.3.3)

W has properties entirely analogous to those of the scalar

- double-layer potential W.



In particular it defines an elastostatic displacement field

everywhere except at 5b, and it Jjumps at according to the formula
lim W(x.) = W(x) + 2"Tp(x) ; xC" B. (1.3.4)
X _——>X
lim W(x) = W(x) - ¢ITpix) ; XC"B, (1.3.5)
X —=>X
-e

as we pass from BI or Be to ”B.

It will be noted that row 1 of (1.2.1) defines an elastostatic
displacement field at y, 1i.e. that generated by a unit traction
force acting in the 1l-direction at x. Also, row 1 of (1.3.1)
defines the traction vector at y generated by a unit point force

acting m thel"3itection at x.



Chapter 2

Representation of Elastostatic
Displacement Fields by Vector

Potentials
2.0 Introduction

In chapter 1 we noted that vector simple-layer and vector double-layer
potentials are displacement fields under broad conditions. In this
chapter we investigate the representation of an arbitrary displacement
field. by such potentials. We also show how the theory of single-— layer

potential representations can be based upon Somigliana's formula.
2.1 Somigliana's formula

Let ~ be a displacement field in B which assumes a given set
of boundary values on Bb . Regarding <{>(y) as a vector double-layer

source density at yC”B, 1t generates the vector double-layer potential
/ g(x,y) *<1>iy)dy xCB , y<; 3p. (2.1.1)

Also ¢ has an associated traction vector (f*(y) at "» . Regarding
this as a vector simple-layer source density,it generates the

simple-layer potential:

g(x,y) <* (y)dy xCB. ; ycas. (2.1.2)

IIOB

Superposing (2.1.1) and (2.1.2) gives the identity:



£ g(x,v);i.<3>(y)dy - T g(x,y) <)*(y)dy

dB 1 OB -
= 47" (x) ; xCB. , vyc”"B, (2.1.3)
valid for a harmonic function ¢ in B”. This is Somigliana's
formula, Smirnov —— (1964). This formula provides a fundamental

link between the theory of elastostatic displacement fields

and vector potential theory. When x lies on dB, (2.1.3)

becomes:
Jox,y)* @ Wdy - £fglx,y) ."*(y)dy
ndB A\ TN 1 " gb " — 1 ~
= 2T $ (x) ;X , yC dB, (2.1.4)
because the integral (2.1.2) remains continuous as x passes

from B. to *0B whilst (2.1.1) Jumps by — . Formula (2.1.4)
providesafunctional relation between () and €&* on "dB, which has

been used to generate boundary integral equations covering all

the boundary-value problems of elastostatics-.

When x passes from~bB into B” there occurs a further jump

in the integral (2.1.1), giving Betti's identity:

J* g(x,y)*.$(y)dy - J g(x,y)."*(y)dy

=0 ;  XcC Be , XCdB‘ (2.1.5)

All exterior equations carry the same signs as their
interior counterpiarts. Fbr a regular displacement field f in BA,

which assumes continuous boundary values f(y) and continuous

-18-



boundary tractions f*(y) at yCo6B, Scmigliana's formula yields

the corresponding exterior formula”:

=4Tf (x) ; 1C.Be ,yCDbB (2.1.06)
= 21tf (x) ; x , yC™B (2.1.7)
=0 ; xCB. , yc OB (2.1.8)
where
f -——=2- IxI 1 f f*(y)dy+ O( Ix | 2) ; Ix|— >oo. (2.1.9)
4T " dB 6 "
2.2 Extension of somigliana's formula
Given a displacement field 9 in defined by Somigliana s

formula (2.1.3), we may generalise the formula by superposing upon
it the identity (2.1.8) where f iS an arbitrary regular exterior

displacement field>Jaswon&Bhargava (1961)1

fg(x,y)*. > - f(y)ldy
4p 1

g(x,y) . (8" (y) + f£*(y)ldy

= 41T() & ; xCB. , YC"B. (2.2.1)



We now consider two distinct possibilities for f£f:

(1) f =0 over providing the vector simple-layer representation
1 .
g(x,y) 2 [>*W §$(y)]dy
IT
= 9)® ; XCB. , yc SB (2.2.2)

generated by the source density:

6 = (2.2.3)

This construction assumes the existence of a unique regular f in B",

which satisfies:

f =3 at OB , (2.2.4)

ensured by the exterior Dirichlet-uniqueness theoremof elastostatics.

(1i) fx = —%f over <B providing the vector double-layer
-e i

representation:

= PR ; xC Bi , ycC (2.2.5)

generated by the source density:

u =- & - f). (2.2.6)

-20-



This construction assumes the existence of a unique regular f in

which satisfies:

£* on OB, (2.2.7)

ensured by the exterior Neumann existence-uniqueness theoremof
elastostatics. These are fundamental existence-uniqueness
theorems which are entirely analogous to those for harmonic

functions in exterior domains.

2.3 Exterior representations

Formulae (2.2.2),(2.2.5) refer to ¢ in B". Somigliana's formula
jalso : holds for  in B subject toa suitable restriction on
the behaviour of ¢ at infinity, i.e. <= 0(r ) asr ———>00.

If so we may always write:

xc.Be , ycaB. (2.3.1)

where

(2.3.2)

assuming the existence of a unique f in B” which satisfies

(2.2.4), 1i.e. ensured by the interior Dirichlet existence-

uniqueness theorem for elastostatics.

Under more restrictive conditions (see below) we may

write :



$(x) = J g(x,y"*.£(y)dy ; xc Be ' yc"B, (2.3.3)

where

Ji = - (s - ), (2.3.4)

assuming the existence of a field f in B” which satisfies:

* o= - on Bb. 2.3.5;
f- -8 <
This field is subject to the interior Neumann existence-
theorem for elastostatics. Even if f exists, it is not unique since

equation (2.3.5) has the class of solutions:

f + (@ +b Ax) , in B, , (2.3.6)
~o 1
where f defines a particular solution and a + b A x defines

an arbitrary rigid-body displacement field. Substituting (2.3.61

into (2.3.3) we find

P =—-—F [ g(x,y)*.(b(y)dy-——— £ g(x,y)*.(atb Ay )dy

oB * f *
- 4f39(5.jr)i.£f0 () ()dy;xcBe
ds if;jtfp
- X * 1T
—= §@E,1"1 .7 (y)rly-4" J g(x,y)J.£0 (y)ay>
28" b
Since the second integral of (2.3.7) is zero by putting J = atb/\y,

into (2.1.5).It follows that the class of solutions (2.3.6) all

generate the same $ in B
e

The field f could only exist in B” provided the traction
f* on Bb produce neither a resultant force nor resultant moment.

These conditions may be expressed by writing:

-22-



(2.3.8)

- (y)dy = 0,
Irn
l vy A (y)dy = 0 (2.3.9)
UB
respectively which imply from (2.3.5) that
*
;(y)dy =0 (2.3.10)

"B

i y A A*(y)‘3y=o. (2.3.11)

"B

Accordingly we may only write ¢ = W in B” provided the traction

gJ* on 'bB produces neither a resultant force nor a resultant moment

ie

acting on B”. This of course could only be known 1f <* were

known on "bB.

i -2
Condition (2.3.10) implies é=: O(r ) as r ———>00, since

a resultant force produces 0(r *) behaviour as follows from

Kelvin's point force solution (1.1.3). It might be supposed

-3

(2.3.11) dimplies é = 0(r ) as r ———>00, since

that condition

a resultant moment generally produces 0O(r ) behaviour, e. g.

see solution (4.2.10) for a twist nucleus. However there exist

certain special fields characterised by O(r_ ) behaviour which do

not produce a resultant moment, e. g. the field defined by W in

B jJaswon & Symm (1977).
e

Another example will be given in the next chapter. Of course

~3 as r ———>00 always implies a null resultant force

d=o0(")

and a null resultant moment.

-23-



Chapter 3
Boundary Integral Equations
3.0 Introduction

In this chapter we utilise the preceding theory to formulate
boundary integral equations. These supplement the theory and allow
us to complete the vector double-layer representation for exterior

fields.

3.1 Formulation by vector simple-layer potential
The representation:

<> () :J g(x,y) .(f(y)dy ; xcb”bp”, yd~"B, (3.1.1)
db
remains continuous as x approaches "B whether from B”or B".

Accordingly (3.1.1) provides the boundary relation:

] s<g*y>.?<y>dy = $(£) » *# yC B# (3.1.2)
B
which is a vector integral equation of the first kind for C in
terms of (). This has a unique solution given by (2.3.2). However
this theoretical solution would not generally be available, and it
would be necessary to solve the equation directly for 6\ Direct
solution”® of (3.1.1) whether analytical or numerical#do not seem

to have been attempted.

-24-



An interesting choice of ©~ is ~ = a + b A x in B. , where a ,

b are constant vectors which provide (j)*=0. It is convenient

to break down a + b \ x into the six independent vectors:

-2 " <0

d3 = <0, 0 £ 1 >

d =<0 , 1, 0>Ar

so yielding the six independent equations:

J g(x,y) *Ag (y)dy = dg (x) ; x , yC ; s=1,— ro6» (3.1.4)
with the corresponding six solutions Ag ; s = 1,...,6.These
equations are the vector analogues of Symm's equation

for electrostatic capacitance”Symm(S63 ,1964).

Computing the traction vector for each side of (3.1.4)

we find:

J 2~(x,y) .~(y)dy - 2TTAg ;s=1, ,6  (3.1.5)
5b

which is a homogeneous _ vector integral equation of the second
kind for 1 . Clearly this has the six independent non-trivial

-s
solutions A RE: =1,...,6. Accordingly, assuming that classical

Fredholm theory applies, the adjoint equations:

/ g(x,y)£.ds (y)dy - 2lfds(y) =0 ; x , yCc>B; s=1,—,6, (3.1.6)

&B

-25-



have corresponding non-triviaj. solutions d . These solutions may be
confirmed by substituting ¢ = dg, O* = (d*) = 0 into Somigliana's

boundary formula (2.1.4).

Operating upon both sides of (3.1.2) by the integral operator

J ~"g(x)...dx, we have

9p

Lj;(x)@(x)dx / k @ *c / g(x,y) 6" (dyldx ;

OB AB ~B

x , yC"B. (3.1.7)

Assuming that the order of integration may be inverted ( Fubini's
theorem), and interchanging x , y in (3.1.4), we find:

JAs (x) <PE)d&x = gly,x) .Bs<x)dx } .~ (yjdy

aB aB

=j 5g(y) .f(y)dy s —1,...,6. (3.1.8)
<*B

Now substituting:

C = - —— (V= + V¥

4ir -

=1 (e* + an, (3.1.9)
a -

into (3.1.8), vyields:

ks (*>. 7 (x) dx ———  fd)*(x).d (x)dx. (3.1.10)

Sb

This last integral gives the components of the resultant force

(s =1,2,3) and the resultant moment ( s = 4,5,6) associated

-26-



with ()* on "B. Therefore the left-hand integral in (3.1.10) provides

these components 1if < is given on bB instead of ()*
3.2 Formulation by vector double-layer potential
Corresponding to (l1.1.1) we may always write:

>& = j gixjyit.yuiyidy ; xCB, ; yc”B. (3.2.1)

Sb

This integral jumps at bB, so providing the vector boundary

integral equation:

J g(x,y)*.ja(y)dy + 21T (x)
"B

= P s x , yC"B (3.2.2)

for y in terms of (). There exists a unique solution given by
(2.3.4). 1In practice,of course, it would be necessary to solve
(3.2.2) directly for /i; however neither an analytical nor a

numerical solution seems as yet to have been attempted.
The exterior equation corresponding with (3.2.2)1is:

g(x,y)*./i(y)dy + 2TT"i(x) = <P ; x , yC "B. (3.2.3)

3b

This requires analysis by vector Fredholm theory since the

associated homogeneous equation:

2 (x,y)*./i(y)dy + 2Tlu(x) = 0 ; x , yc"B, (3.2.4)
3b
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has the six independent non-trivial solutions Es: d ;s=1,..., 6.

-s
Note that (3.2.4) becomes (3.1.6) on writing g(§,z); = —g(g,z)a.
Therefore the adjoint equation to (3.2.4):
JZ*(x,y) A(y)dy + 2TTA(x) =0 ; x , yC "B, (3.2.5)
¢B
has the corresponding six independent non-trival solution
A =A ;s =1, ...,6. Assuming that vector Fredholm theory

applies, equation (3.2.2) only has a solution subject to

the orthogonality conditions:

J > .A(x)dx =0 ; s =1,...,6. (3.2.06)

By virtue of the equality (3.1.10), these express a null resultant
force and a null resultant moment produced by * acting upon 3b, so
confirming the conditions (2.3.10)"(2.3.11) obtained directly

on physical grounds. If (3.2.6) holds, a general solution exists

and may be written:

u = T ad + d (3.2.7)
where dQ is any particular solution and a” are arbitrary scalar
coefficients providing an arbitrary rigid-body displacement, in
accordance with the previously obtained general solution (2.3.6).

Clearly the representation:

JE® = lg(x,y)*.jU(y)dy ; , yC"B (3.2.8)
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is incomplete since p may be not always exist. This can also be

-2
seen directly, since W = O0(zr ) as r ——>00 whilst in general

9 = O0(r 1) as r ——>00. Physically interpreted, W provides no
resultant force at infinity, by contrast with the general be-
haviour ofdj>. However, even if 0 = O(r ") at infinity, it may

not necessarily be represented by W. This is because W provides

no resultant moment at infinity, by contrast with the general

§ having 0 (r behaviour as r ——-->o0.
Accordingly we extend the representation (3.2.1) by writing:
$(x) = 3 + a.g(x,y)
=0
bB Y

+tb AV.g(x,v) ; XCB , yc OB. (3.2.9)

where a ,b are constant vectors to be determined:
a = <a”, a2, a3>; b = <b3, b2, bo "<3"* a anrj. (3.2.10)

This representation yields the boundary integral equation:

gt ) B + Buig

Sb

= <P - [a.g(x,y) t b AV.g(x,y) j=0Q. (3.2.11)

It will be noted that a.g has O(r 1) behaviour as r — >oo,
giving the resultant force without moment (see below) produced
by <; also b AV.g(x,y) has 0(r ) behaviour giving the resultant

moment without force(see below) produced by (.
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In terms of components these vectors appears as:

aa@ldr . x ) ; a=1,2,3
' B ~P -«
(3.2.12)
b A?.g(y,x) = £ (bAaAV) gy ,x ) ; &=1,2,3
Operating upon both sides of (3.2.11) by the integral
operator J } (x)...dx and interchanging.the order of integration
Ab“s AN
we note that;
0 =] A™ (x) '[J g(x,y)*. ,ply)dy + 21"j(x)]dx
= {" ®.[>x - a.g(y,x) - b /\?.g9(y,x)]1dx (3.2.13)
B y=0
i.e.
(]
j (x).l(x)dx = a.dg(y) = a ; s=1,2,3
B (3.2.14)
=0 ; s=4,5,06
showing the absence of a resultant moment. Also:
' >s (x) <J) (x)dx = DbA V.dg (") = 2b ; s=4,5,6
aB (3.2.15)
= 0 ; s=1,2,3
showing the absence of a resultant force.
With these wvalues of a , b the integral equation (3.2.11)
always has a solution of the form:
N (3.2.16)
M = -0 * Sé-r:‘ a§3§
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ﬁo is a particular solution and aS s=1, 6 are arbitrary

scalar coefficients



PART 1II

INTEGRAL REPRESENTATIONS

Using the Papkovich-Neuber formula, we construct three simpl
but qualitatively distinct elastostatic fields in the infinite
domain exterior to a spherical cavity, and we represent these

fields by both simple-layer and double-layer vector potentials.



Chapter 4

Exterior Sphere Problems

4.0 Introduction

In this chapter we construct three simple but qualitatively
distinct elastostatic displacement fields in the infinite region
exterior to a spherical cavity, wutilising the Papkovich-Neuber
formula. We also calculate the tractions associated with these fields.
This paves the way for vector integral representations in the following

chapters.

4.1 papkovich-N«uber formula

In an isotropic linear elastic continuum, the elastic displacement

A

vector satisfies the Cauchy-Navier equation, Sommerfeld (19641*

AV24 + (A + pV(T.<{>) =0 (4.1.1)

in the absence of body force, where A/ p are Lame's elastic constants.

This equation is ©preferably written:

(4.1.2)

A general solutions to equation (4.1.2) has been given by

papkovich (1932) and Neuber (1934) in the form:

Eubanksé& Stechers (1956)
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= - k" (x=,h+ + + f);
O = < hyihyhyr o KOG gt s D

(4.1.3)

h_ h_> 0, v2f 0; *= 4 (1-1?)

where h is a harmonic vector function and f is a harmonic scalar
function. It is often possible to solve problems quickly by

guessing a suitable choice of h, £, (r*a) as will be seen below.

4.2 Construction of displacement fields

We first construct an elastostatic field in Be(r > a) subject
to the following two requirements:
(1) & = <0,0,t > on r=a; t® = a constant , (4.2.1)
i.e. the spherical boundary of radius a is given a uniform
rigid-body translation of amount t in the 3-direction.

(ii) @ = O(r 1) as r —-——>o0. (4.2.2)

An efficient way of calculating ¢ in r*.a is to use

the Papkovich-Neuber formula (4.1.3). In this case we try:

(4.2.3)
where o( , p are constants to be determined. If so,
the required field is
o(x.
<0 A > - r>a (4.2.4)

K-4C1-J0



This field clearly satisfies conditions (4.2.1) and (4.2.2)

provided that (App. I):

3at

3
a . (4.2.5)

hence,
2
X X,

, X1X3 9 X1X3 273 %23
1

1- U X2 . a2 az2x?2 3at U

— e kN TN — > ;% 'T T T ' (4-2-6'

I*r r 3r r r>aE

We also construct a field satisfing the following two
requirements:
(1) <$ =<0, 0, £> A < xi , x2 , x3 > o

on r = a ; = a constant (4.2.7 )

i.e. the spherical boundary is given a uniform rigid-body rotation
of amount about the 3-direction,
(ii) = O(r M@ as r ——->00. (4.2.8)

In (4.1.3) we choose:

2, 3
a "~ x2 3
5 h3 =0, £=20 (4.2.9)
r
which yields:
3
a 3
$  ————— - <x2 /~xi /0> ;r g (4.2.10)
r

and this clearly satisfies conditions (4.2.7) and (4.2.8).



Finally we construct a field satisfing the following two requirements
(1) () @ =h on r =a , h = a constant (4.2.11)
i.e. the spherical boundary is given a uniform radial displacement

of amount h.
(11) <> =0(r 1) as r ——-=>00. (4.2.12)

In (4.1.3) we choose:

ht = h = h" =0 ;£ =—2 ; L = a constant, (4.2.13)

which yields:

1 X1 X2 X3 .
_ L* V(-) =L" <- Z - > (4.21i14)

The radial component of (4.2.14) is:

, X1 X2 X3 X1 X2 X3
tr @ LU'— '"— ' T O 'T" 'T >
r r
L K
L K
i.e. 2 b, (4.2.15)
a

on using (4.2.13). If so (4.2.14) Dbecomes:

$ = 3 " X1 VX8 1 Xg > - (4.2.16)

4.3 Calculation of tractions

To calculate the traction vector on r=a associated with the
field (4.2.6) we first compute the local dilatation;

e 3at3 (2 i< - 1)

V@) (4.3.1)
- 2%
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where ()"

Clearly V. ({)

stress tensor

where.

of.

is a harmonic function in rla.

(D*

=1/2,3 are the components of (>

, by using the stress-strain relation:

The stress components are calculated to be:

11

22

33

12

13

23

21

31

32

§£a%? a XS 5a2x?x / X
r'3-«U
X szx a2x a2x2x
K] 271 3 2n3 ) J X3
r r
W-l 3 3x3 3a2x, 5a2x3 / X,
-—3 5 5
r r r r r
4 xix2X:
a2x 5a2xxx%
U. K-1 1 X1X3
.r{— A~ n -—T + — n—— )
2 2 2
(2 K1 X2 6x2x3 2a x 10a x x
7 1 n
* r3
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(4.3.3)

(4.3.4)
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On the boundary”, (4.3.4) becomes:

2
/X X X
*u
2
tX, X X.
B2 -u- £ ¢ K>F Y
/ X, b4 2%
33
(4.3.5)
X.X0X
= =48 1 2 3
122 % T s
A i S
— (D . — /\lo (\\ _’5 + ]
13 31 ,|*a8 a5
x9 4X2X3
2+ -I-1)
23 - 82 s . A" 733 JL
We now compute the traction vector on r=a acting upon B ' by
substituting from (4.3.5) into
— — o
= 01 *12 *13 "l
(4.3.6)
* = 9 = 021 ®22 P23 n2
[») n
D 0 O
3 31 32 33 3J
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where:

= — (4.:
1 a 2 a ng a
i.e.
, X1X3 X2X3 X3 Jus
A
© a a a4 ka2
<0, 0, - > '"H =AU + 4ps& - (4. 3.8)
ka
This yields the resultant force:
Aji &
J =<0, 0, - Jl__> , (4. 3.9)
~JB
and the resultant moment:
’
] y A <{P>ray = o, (4. 3.10)

as expected acting on the boundary B

Following these steps for the rotation field (4.2.10) we

find V<> = 0 in r»a as expected . If so (4.3.2) readily gives:

6" 13X1X2a' 1

11

- 6f1W3X1X29
22 ~ O)33 =0
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5MA a3 (x2_X1)

¢12 Cbl 5
r
3p " x2x3a3
%3 31 5
r
o ~3 X1X3a3
23 32 5

r

rla.
On the boundary this becomes
6" W3xix2
11 2
a
& 103X 1X2 _ 5
22 2 @33
a
Do T Py
3m N x2X3
@ = @
13 31
3 - ¢ _ NN X1X3
23 32 2
r>,a.

Now substituting from (4.3.12) and (4.3.7) into (4.3.6)
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(4.3.12)

we obtain.



the traction vector:

I
fe = — < X2 '~ X170 >
This yields the resultant — force:

J $*(y)3y=<0,o Jo >

as expected, and the resultant moment:

i B

3 W3 ( 2

=
P
o<
—
o<
< a>
o<
—>
o<
>
o<
—
o<
N
~
S
—

O
(o8}

=<0,0,-8a"1">.

For the displacement field (4.2.16) we note that V.4j)

r$a. If so (4.3.2) gives:

®l1l = 2 ha ¢~ -———- 5}

ov 2, 1 3X2
2= 22lha 3~ ~
r r

033 =2pha2(——'57————|§)
T T
6pha x3x2
B2~ O
6pha x x
6 =0

(4.3.13)

(4.3.14)

(4.3.15)

O in

(4.3.16)



6pha2x2x3

=G
23 32 5
r

On r=a (4.3.16) Dbecomes:

i 3xi
"n * 22h<-  ——--7
Q&
6"ihx1x 2
CHZ 21 3
a
6jahx"x”
Dl3 31 3
a
6]ihx2x 3
QB 32 3
a

Substituting from (4.3.17)

which gives the radial traction:

r>&

r>a.

(4.3.16)

(4.3.17)

(4.3.18)



(4.3.19)

acting on the boundary. Also (4.3.18) vyields the resultant force:

1 $*(y)dy = -— 1 / <yl '"y2 > y3 >dy

bB

and the resultant moment:

J y B<j>*(y)3y = 4*h ] <, o , o >dy

aB OB

as expected.

For the interior field we choose

h = I< x1,x2,x3>, f =0 ,L = a constant,
which yields:

0= (1-2 <)IL<x ,x ,x >.
By condition (4.2.11) it follows that:

L = 12k9a
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(4.3.22)

(4.3.23)

(4.3.24),



giving the interior field

X1'X2 '"v

The associated traction vector is:

(3A +2/1)h

2
a

which yields the radial traction:

(3 K+3u)h

= - (3A.+ 2ji)h/a,-

-44-
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Chapter 5

Representation by Vector Simple-Layer

Potentials

5.0 Introduction

We now construct vector simple-layer potentials which represent
the fields of chapter 4. It seems impossible to evaluate the potentials
exactly,but we obtain their asymptotic equivalence to the fields

and also their equivalence at r =0 ,Xaswon& El-Damanawi (1986)+¢

5.1 Integral representation:translation problem

To represent the field (4.2.6) by a vector simple-layer

potential, we use the vector source-density formula:

(5.1.1)
Here < has been computed in (4.3.8), and (0* = 0, since
9=<0 , 0, t*> inr = a, so (5.1.1) Dbecomes:
(r = <0, O (5.1.2)
Substituting from (5.1.2) into:
V(x) = J g(x,y) .(T(y)dy; yC"B ; >_<CBe, By (5.1.3)
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we should identically obtain ¢ for any choice of x. In practice it
seems impossible to evaluate this integral exactly, but its
asymptotic behaviour can be examined as follows:

First we note that:

g(x,y) ——=> g(x,0) as x ———— >00, (5.1.4)
V(x) ——> g(x,0). 7 §"(y)dy; x ——— >00, (5.1.5)
dB
where:
1- * K 1 * X1X2 K X1 X3
r y r3 y 3 y r'
X1X2 . .
1-x P w %3 2
g (X, 0 (5.1.06)
y y r~
K 1% K “2"3 1- K

yr F 3 =

x-01l=r.
The integral of (5.1.2) gives:
J( 6"(y)dy =<0, 0, )[.—, dy >
- - irt
56 5b #E+
<0, 0, >. (5.1.7)

Substituting from (5.1.6) and (5.1./) into (5.1.5) we obtain:
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V(x) = <v1(x) , v2(x) , v3<x) >

2
1 3 2 3 1- K 3
5.1.8
3 ! 3 ' Kr + 3 > ( )
r r r
which agrees exactly with the asymptotic components of ¢ as
given in (4.2.6). Physically speaking the asymptotic field is
. . 45! X . .
that generated by a point force of magnitude K acting in
the 3-direction located at y = 0
We remark that the integral (5.1.3) can be evaluated
exactly at the centre of the sphere, 1i.e. putting x =0 in
(5.1.3) vyields:
v(0) = J g(0,y) .SXy)dy
CB
=<0,0, t >, (5.1.9)

as expected.

5.2 Integral representation:rotation problem

To represent the field (4.2.10) by a vector simple-layer

potential, we use (5.1.1) where ( has been computed in (4.3.13).

Also @T = 0 since ¢):U>5< - xgij,0> on r = a, so that (5.1.1)
becomes:
3> " .
,—yho > (5.2.1)
4fla < y2

.47



The integration of (5.2.1) gives:
{ s"(y)dy = <0 , 0 , 0 > (5.2.2)
OB

Substituting from (5.1.6) ani (5.2.2) into (5.1.5):

Vix) =<0, 0, 0 > (5.2.3)

i.e. the first-order asymptotic approximation to $(x,y) gives

a null result. Using the second approximation,Jaswon & Symm (1977):

g(x,y) = g(x,0) + yv.V g(x,vy) (5.2.4)
n ~y:O v
where Vg (x,y) denotes the gradient vector at y = 0 associated
with each component of g(x,y), so:
jcuy .0 (0
1- K
y.Ag(x,y)l] = 3 0 X.y
0 0 X.y
Xiyi
2 K
X2y 2
yr Y
0 0 x3y 3
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2
IX. .
3x y -x2yr y2xi E3yr y3xi

3xix2x.y 3xix3x.y
. 3xx.
K Vi Xiy2 Kox. ¥y ’X3y2- X2y 3
(5.2.5)
3xix2-"y 3x2x3x-y
x3yr xiy3 X3y2" X2y3 3x%x.y
X1X3-"- .
3 3 3x2x3§_y
Substituting from (5.1.6) and (5.2.5) into (5.1.5), and noting
the null result from the first approximation, we obtain:
3
9u)3
V(x) -————— - < x2 , - x3, 0 > (5.2.6)

This asymptotic field exactly agrees with < as given by (4.2.10).

Physically speaking the asymptotic field is that generated by a point

couple of moment -8TTpald) about the 3-axis located at y =0

The integral (5.1.3) can be evaluated exactly at the centre

of the sphere i.e. putting x = 0 in (5.1.3) vyields:

= ] f(y)dy = w3<-x2 , X1 / 0

=<0,0,0> (5.2.7)
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5.3 Integral representation :pressure problem

To represent the field (4.2.16) we use (5.1.1) where 42

and ()* have been computed in (4 3.18) and (4 3.26), so that:

(5.3.1)
4Ta?2
Now, substituting from (5.1.6) (5.2.5) and (5.3.1) into
(5.10) up to the second approximation yields:
A X1X2 X1X 3
A+ + -k Y
At mpr =
X X,
. _ 3h (at ja) " X1X2 * o+ te. + 2773
(x)= . (A+/1)r ~3
Stye "B
X1X3 *pt k+ 2i 3
(X+ /i)r+ 73
" r
X.Y 0 0 yi
3h (A+3p) (
0 X.y 0 y23y
o)
0 0 X,y \'4

-
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T SX%X.Y

K2yr xiy2 “x3yr xiy3
3x1x2x.y SXAXAX.Y
B + e
3x%x.y
3hU tm) (
2.3 -x2yr xiy2 X3y2-X2y3
8¥"a r dy
3x X X.y 3x2x3x.y
, 3x x?y
x3yr xiy3 X3y 2K 2y 3
3xlx XK.y 3x2x3%2y
(5.3.2)

The first integral gives =zero, the others give:

(5.3.3)

which is the exact field (4.2.16). Clearly the integral of (5.1.3)

is zero at the centre of the sphere as expected.
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5.4 The general rigid-body displacement

The boundary displacements (4.2.1) , (4.2.7) are particular

cases of the general rigid-body displacement:

$ =t + wA r. (5.4.1)
where t = <t~ t9, t3> w = < w.", w2> w3> are constant vectors.
We replace (5.4.1) by the six independent vectors:
A =<T o "0 > e =<'V ° >
f83-3 =<0 "0 '"t3 >> w!'*4 = <wx, 0 , 0 >Ar; (5.4.2)
W2-5 = <0 '"w2' 0 >A -; W3-6 = <0 "0 '"W3>A E
exterior

TheTfields corresponding with t_d_,w_d,  have been determined in

J J Jb

(4.2.6),(4.2.10) and therefore by symmetry we may immediately

write down the exterior fields corresponding with t~d”*,

wld4 and w2d5. These provide the general formula:

[ 2 (x,5xix, S 2
p 1 (1 i- )<
I* r 3 - 3 2
3r r r

<V 1 + t2X2+t3X37J+ . -

t2d2

4

(5.4.3)



The vector source-densities §; ; s =1,...,6 generate the

exterior fields, t.d,; i = 1,2,3, w.d.; i = 4,5,6.
i1

x 1
Introducing the normalised source-densities, ?3-1-3)
bio e
- s a —_—
l ﬁ:ﬂ_ w
Si
<0 ,———— , 0 >
- 4)fa (3-2 K
2 o m )fa ( )
S ) 2iL (5.4.4)
-3 * 473(3-2 W)
s
3b
<1,0,0 >A'r
,)_\\ H 4tfa
Wl "
k=70 - ijf
_5 W2 AL a
Kk =S8 - 3b
_6 \\3 AL 4Ka

we obtain the six vector integral equations:

| g(x,y).A (y)dy = dg(x); xC"B ¢ s =1 (5.4.5)

where d ; s = 1,...,6 have been defined in (3.1.3).

We may now verify the important equations

X"y)dy (y)dy; s 1, 6, (5.4.6)

* (5-1-2) oC(5-2-1)m
. b3.



which hold for a general Liapounov-surface IbB.

First, we verify (5.4.6) for the field (4.2.6):

The left-hand side of (5.4.6) yields:

- 3p .
1 $ -13 (y)dy = | <o, O ,t3>.< 0 ’ 0 ’ 4Tfa(3—2 K) >dy
“B
Fats (5.4.7)
3-2 K K
and the right-hand side yields:
— F.d_ (y)dy = » — (<0,0 >
AT ﬂ: &% -3 = 4ir ) a (3-2 K)
dB 0B
3>iat3
<0, 0, 1 >dy= 3.2 (5.4.8)
as expected.
Secondly, for the field (4.2.7), the left-hand side of
(5.4.6) provides:
3*w3
m < -x2,x1,0>.<-x2,x1,0>dy
' 4]Ta
B <)B
3w 3
2.2 3
om S G1itx2)ay - 2rmsad, (5.4.9)
' 47ia
<B
and the right-hand side ©provides:
3pw3
4T § *e--6(" dy =m r -{ <-x2,x1,0>. <-x2,x1,0>dy
'S
3pw3a , (5.4.10)
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Chapter 6

Representation by Vector Double-layer

Potentials

6.0 Introduction

In this chapter we represent the previous elastostatic fields
by double-layer vector potentials. The determination of double-
layer vector source-densities proves to be considerally more
complicated than that of vector simple-layer source-densities. Three

qualitatively distinct problems are considered below.jaswon& El-Damanawi (1987>

6.1 Vector double-layer source-densities

As already noted in (4.2.6),the exterior displacement field

for the translation problem is:

& - K 2 2
TSRy $ke T v ¥ HAS
5 2 3at u
~6a L2 2 Ly - 6.1.1)
r5 <X1X3' X2x3' 3 r + X3 ' 3-2 K
This has O(r_1) behaviour as r —-—-—>00, so that it can not be

represented by a vector double-layer potential. Slightly adapting

the complete representation (3.2.11), we write:

= W(x) + a<g(x1l,y;J),9(x2,y3),9(x3,y3)>

.55,



)
"y=0
where
a=a = | A3(X).bX)dx = ,
cb" N
b = J (x) (x)dx = 0; s=4, 5,60,
JB

= < > < >
b bl'b2'b3 S b4'b5'b6

on using (3.2.14) and (5.4.7). So we have identified a field:

kii=*TT <g(il'y3) ' g(i2'"

3)

,9(=3"-3)>

6.1.2)

(6.1.3)

(6.1.4)

which provides the 0(r *) component of ;»yielding a new field:

4 m - triii
)saz 12
=== < XX, X, X, -—=>r
5 Frg Fptw 3
e ¢EII
6 a
W3 <X1IX3' X2X3' " ~ T + X3>
a r=a
having O0(r ) behaviour as r ———>oo0.

by W for a suitable choise of ja.
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(6.1.5)

(6.1.6)

This field may be represented



There is no difficulty in calculating the stress components and the

traction vector associated with (j*". Clearly V<] =0 everywhere,

so we readily compute the exterior traction vector:

) 276, . 2 2 2
Jrrr™  — 0 <8x1x3* 5x2x3, =1+ x2-2x3>, (6.1.7 )
which yields the resultant force:
)Inty =<0, 0, 0 > (6.1 .8)
and the resultant moment:
i AIIIdy = <0 "0 "0 > (6.1.9)

aB

These are both null as may be expected for an O(r_3ﬂ displacement
field. Accordingly < could be represented by W for a suitable

choice of vector source-density p.\

If < r=a (6.1.10)

where f is an interior field subject to the condition:

Hie. (6.1.0)

Now, from ,(6.1.7) and (6.1.11)

2 2 2
£* = ——J O x *, 3x2x3, X]_+x2 -5+3 >, 6.1.12)

which yields through fairly straightforward calculations (App.II)
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the boundary field:

f = - 7 <(2|+8u)x x , (i|+8u)x x ,
(3A+2>x)ad 1 J J
cf (JL.i?)
- (4"+6") (x™Mx") - . (6.1.13 )

However an arbitrary rigid- body displacement:

21 2

5 24 <o, o
e } ' 30 1) 3 (6 .1.14.)
(3A+273i)a
may be added to (6.1.13I. If so (6.1.10)becomes :
5& (A+2ju) 11
~4 (3j(+2fd)a <X1X3' X2X3' 'az+Vv (6.1.15)
As regards the pressure problem, similar analysis from
(4.3.18),(4.3.16) and 16.1.10) vyields:
3[4 +2u)n
M = 4 (3A+2p)a <x1'x2 (6.1.16)
6.2 Integral representation:translation problem

To represent the field (6.1.2) by a vector double-layer

potential, we use the vector source-density (6.1-15).Also :

2v-\ 1 ~bf
2(1~V) 2 by nd by nR

.58



i>J° isf ]
i_2J> "y s}
b o

where

YT N ar 0O(r-1);n ;a(=1,2,3, 6 .2.2)

This provides the asymptotic expansion:

X-¥ BKiy2+X2yi X VY,
g(x_,¥< 1-2 K X.y
ar X2yi+Xiy2 ’ X2y 3+X3y2

~Xiy3+X3yi X2y 3-X3y2 X-¥
(xr yil" (xr yi)(v y2) (xr yi) (x3-y3)

6 V<xX.y

ar (xr yi) (x2~y2) (x2"y2) (xr yi) (x3_y3)
(xr yi) (x3%y3) (x2%y2) (X3"y3) (x3-y31} "'

If+IT4

Where T sO (f2) & TIl+IH = 0(£3).
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) XV _+X V
XY "Xiy2+X2y i 1y3 3yl

/= Ja

- + . - * 2 7
o X1V v Xy HoV3 KV
LA.+2M) ]
. . X.y
Xiy3 X3yi X2y3"X3y2
Y
X1X2 X1X3
)t _y
. X1X2 X2X3
a(A+273)r5
X1X3 X 2% 3
J I
.2 2,
X1X3y2y3 x1x3 (V. y3>

(6.2,3)
2x2x3y2y3 X2X3"y2+y3’

/ 2

5 &
(X2+X3) y2y3 3

ITT
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Substituting from (6.1.IS) and (6.2.3) into (2.3.3) gives:

S (x) I g(x,y)*.x(y)dy

X, X,
X1x3 55 (6.2.4)

Dyadics I and II integrate to zero and dyadic III gives (6.2.4),

which equals the exact field (6.1.5).

6.3 Integral representation:rotation problem

The rotation field (4.2.10) has O(r “) behaviour as r ———>o00¢
The associated traction (4.3.13) produces a null resultant force
(4.3.14) but a resultant moment (4.3.15). This resultant-moment
generates the entire field, leaving no provision for a contribution
by W. More generally the effect of point -couple would be accounted

for by the terms involving a,b in the complete representation (3.2.9).

6.4 Integral representation :pressure problem

Substituting from (6.1.16) and (6.2.3) into (2.3.3) yields:

£ (%) ha < (6.4.1)
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Also dyadic III gives zero,and dyadics I,II give (6.4.1)

which equals the field (5.3.3)
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Chapter 7

Exact Evaluation of Vector Integrals

7.0 Introduction

We have represented elastostatic displacement fields by

means of integrals evaluated asymptotically in the infinite

region exterior to the spherical cavity r = a . In this chapter

we evaluate the integrals exactly at the particular field point

x =<0, 0, z >

7.1 Exact simple-layer integral:translation problem

In the general dyadic:

1 0 0
1- K
g(x,y) 0 1 0
r
o o 1
2
K 2
+
rr
(X1”"yi~*3 y3) (X2 y2”*((X3"y3" (x3_y3)2

(7.1.1)
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let x =<0 , 0 , z > If so (7.1.1) becomes:
1- K
g(x,y) YP
2 . 2 2 .. 2 .2 . . . .
r sin ©cos 1j r sin GsintjJooslfr —-rsinGcosljJ(z-rcosQ)
2 2 2 2 .
Kr r sin Ccoslpsintlj r sin 9cosl|J -rsin®©sinl (r(z-rcos$)
rsinO©cosl) 1 (z-rcos0) rsin®©coslld ( z-rcosO) (z—rcos0) '
(7.1.2))
where:
> ,(x.—y.)»2 = (22+% —2rzcosO)% (7.1.3)
&1 1 1
There are distinct cases:
(1) z>a Substituting from (5.1.2) and(7.1.2) into (5.1.3)
we find(see the derivation attached at the end):

(0 dy

. g(gg, ) .e"
ll/\B

= <0 Iolj,(
cB

X (z=tcosQ) , Jju&

".r2sin0d0dl|J >
r=a

H

2a
(7.1.4)

>>
39
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i.e.the same value as (4.2.6) for z>a.

(ii) z = a: In this the dyadic (7.1.1) becomes:

1- K

9(xy) = 2pasin (9/2)

.2,
sin (9/2)
H(e/2)]
(7.1.5)
Substituting from (5.1.2) and (7.1.5) into (5.1.3) we find:
[
] g(x,y) * 6" (x)dy
_ <o 0 1- K 4 Ka2sind4f9/2 ).
B ! 2ausin (9/2)+ 3 .3, ..
J 8jia sin (9/2)
2 . A
4'TTKa J s1in9dod1™>
- <0,0 ErG2K) > 5,0, t > (7.1.6)

3a K
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i.e.the same value ai (4.2.6) far z=a

(1iii) =z<a. In this case we obtain:

<0 , 0, t > (7.1.7)

as expected, using a similar analysis to that of (i).

7.2 Exact simple-layer integral:rotation problem

As before there are three distinct cases:

(1) z>a: Substituting from (7.1.2) and (5.2.1) into (5.1.3)
we find:
<0 , 0,0 > (7.2.1)
i.e. the same value as (4.2.10) at x =<0 , 0 , z >,
(ii) z = a: in this case substituting from (7.1.5) and (5.2.1)

into (5.1.3) vyields:
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2 2
Of Ka sin 8sinl|Jcosltt(a-acos?9)

8a3jusin3 (0/2)

2 2 . . /
T _Ka sin Osinl}Jcosip(a- E‘_CQ?Q)_r/ a 2 sin0doqy "
8a "isin (0/2) ~

(7.2.2)
i.e. the same value a (4.2.10) for x = <0 , O , a >.
(1ii) z<0: Using similar analysis to that of (i):
I g(x,y) .ity)dy = <0 , O , O >, (7.2.3)

as expected.

7.3 Exact simple-layer integral :pressure problem
As before there are three distinct cases:
(1) z>a: Substituting from (5.3.1) and (7.1.2) into (5.1.3) vyields:

] g(i'y) .<f(y)dy
i>B

. 2 2 2
3 X+2ja) <0 Ka sin Geos U(z-acos0)
45782
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Ka sin Qsin 1iJ(z-acos9)

3

Xacos8 (z-acos9)

AP3

(1- k )acosQ

5in0CdQd1JJ >

A+2p)h K - 2 ..
3 (a+2p) S0 't (za cos 07a 2 ,acosC 4 %ihododl |\
4JTa '
= <0 , 0, 1> (7.3.1)
z
i.e. the same value as (4.2.16)at x = <0 , 0 , z>.
(i1) z=a Substituting from (5.3.1) and (7.1.5) into (5.1.3):
-
l g(x,y).-F(y)3y
bB3
3.2
301+23Li)h s o U?a sin 9(l-coso6) ,
3 3.
41a? 8jua sin (9/2)
3 29
2‘1— K 125559 1/a czs9(§—cos9) a sinoaedl|ir>
jaasin 8pa “sin” (9/2)
=h <O 1 >, (7.3.2)
i.e.the same value as (4.2.16) atx =<0 , 0 , a >.
(m) z<a ; (sir.g similar analysis to that of fi).
7.4 Exact double-layer integral:translation problem
In the general traction dyadic (6.2.3) let xs< 0, 0, z>,

If so we obtain:
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- 5 - _
e i
[1-2 k)
gy - 428 o x.y
W
| 71 TH 2 x-¥
. -
- 2 / |
¥ ¥ ¥ ¥, -y, (z-y,
BKE.Y 2
¥ 5 172 72 T¥plEoyy) (7.4.1)
af'
(z-v.) (z-y.) (z=y.)°
3"] x 3"3 !-"2 T ?'3 E-"j,l'j
O the bﬂuﬂd-ﬂr‘_‘r’r i.m, '£ ={ (] . i1 , ¥, wa find:
‘ x.¥
j:l = Zaginie/2) . F = - — -'F'iI'I{HJI'-i]_ If sa |:'.-I'.I5-._|_II becomas
d
-1 0 e (872 ) cosl
1-2 R
ﬂ[E‘!:I*- —IE-—E 0 1 Eﬂ.‘:[ﬂjﬂ};ln[lj
da aidias2)

Eoste/zicast)y fostes2)ingl, sin {8/3)
qgiﬁfé}zﬁ Q;iﬁga}éﬂ




2 2 2 ..
cos (9/2)cos P cos (9/23; —cos (9/2) asljy,

fsinlPcosIp £sTnT9/2)
K 2 2

3 cos  (9/2)sin®, cos (9/2). -cos (9/2XsinjL

2a sin(9/2) (foostP . 2 H"in (9/2)

Jsin T
—-cos (9/2jicosip. -cos (9/2)sinjp> sin (9/2)
isin(9/2) 1Sin (9/2)

(7.4.2 )

As before, three cases must be distinguished in each problem:

(1) z > a : Substituting from (6.1.15) and (7.4.1-) into (3.2.8):

jl g(x.y)*.;u(x)dy

A (1-2 K ) (a—-zcos9)y

3%
2 2
6 IX (a-zcos9) (z-y ) ¥y
r 3 "AJa2sin29d9dlp>
jo
2632 _ 4 g, 1 >, (7.4.3)
3z"

i.e. the same wvalue as (6-1-5) at x=< 0 , 0 , z >.

(ii) z = a : Substituting from (6.1.15) and (7.4.2) into (3.2.3):
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+ 21ju(x)

~>B

(7.4.4)

i.e. the same value af~ (6.1.5) for x = <0 , 0 , a

(iii) z < a : A similar analysis applies as for (i).

Exact double-layer integral :pressure problem

(6-4.16) and (7.4.1) into (3.2.1):

(1) z > a : Substituting from
e

( g(x,y)*.%u(x)dy= o ,
_ A A
3(A+2n)h (1=2 l)zlyrsyr) .
4Tfa(3X+2u)) L . 3

AB

=71



ﬁth-zcan]ﬂ[z-}rj}hr? +:.-'.21:I [1-2 I--'tf]I'[aln—zl*:lfletﬂ}::.l'1

; = ) o ’)

2
mcose)(z—yy Yol >
: a sinededy

5

=M 5,0,153 (7.5.1)

i.e. the same value a5 (5.3.3) for x = ¢ 0, 0, 2 ».

{11} =z = a : Substituting from (5.1 46) and (7.4.2) irto {3.2.%):

J g, yheulyidy + AMuix)
3B

=0 ,0, Zéi;‘?“izru] j§;—(l—2]¢<}[l—sin2{e/2)]+\l
OB

-

~/r;]wt[_.sli_:nglIi:L-“.'l'I—sin"I (6,2 ]hl— %{1-2 e

O li-2en® (e/27)-

N ']|.-t[gliuzEEIEJ-EEiniiEIE:ﬂan[HMﬂ w >y

J (3h-2u)h
[E1E IR S
= h <2, 0, 1%, (7.5%.2)

=73




i.e. the same value of (5.3.3) at x =< 0 0 a >

(1i1) z < a : A similar analysis applies as for (i).
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PART III

VOLTERRA DISLOCATIONS

A Volterra dislocation is the elastostatic analogue of a uniform

magnetic shell or vortex-equivalent sheet. Just as these may be

regarded mathematically as uniform dipole sheets” so dislocations .nay

be regarded as specialised traction sheets. This model is briefly

explained and connected up with the theory of Taylor dislocations

in a crystal



Chapter 8

Volterra Dislocations

8.0 Introduction

A Volterra (1907) dislocation is a sheet within the linear
elastic continuum,across which the displacement field Jjumps by
a rigid-body translation or rotation '.without 1impairing
the continuity of the strain and stress components. Some simple
dislocation models may be cbhstructed with a hollow cut cylinder
as exhibited in fig 1‘
We may regard the sheet as a specialised distribution of traction
sources,and these generate a vector double-layer potential which
may be identified as the elastostatic field of the dislocation.
The bounding contour of the sheet”L,e .the dislocation line,plays an
important physical role in the theory of crystal dislocations ,

Taylor (1934); Nabarr* (1967).

Clear]y a dislocation sheet 1is the vector analogue of a uniform

magnetic shell or vortex equivalent sheet,which are particular examples of

a'uniform dipole sheet.This generates a scalar double-layer potential,
eg.a magnetostatic potential or velocity potential,which Jjumps by
a uniform amount on crossing the sheet without impairing the continuity
of the magnetostatic field or fluid velocity. Just as in the dislocation
case, the bounding contour of the sheet plays an important physical
role,being identified as an electric current or vortex line as

the case may be,Pearson (1959-

In his original treatment,Volterra utilised Somigliana's formula,which is

the fundamental formula of vector potential theory,Jaswon-8 Symm (1977).
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However,since this involves the superposition of vector simple-layer
and double-layer potentials,it obscures the useful dipole analogy.
We exploit the analogy to calculate the field of a dislocation

having the form of a circular disc.

8.1 Scalar double-layer potentials

A continuous distribution of dipoles over a sheet S contained

by a contour ""S gen-erat$.s, the potential:

W (x) / g(x,y) Ja(y)dy; y C S 8.1.1)

where "a(y) signifies the dipole source-density at y and dy signifies

the element of area at y. Also

g(x,y) = Ix-y (8.1.2)
and
I I d
g(x,vy) =g (y,x) dn g (y,x) (8.1.3)
y
i.e. g(x,v) is the normal derivative of g(x,y) at y keeping x fixed.

Physically expressed,g(x,y) signifies the potential at xgenerated by
a unit dipole source at y. It is well established, Kellogg (1929),that

W has the following general properties:
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(1) W is continuous and differentiable at least to the second order,
L 2 . .
and satisfies VW =0, everywhere except at S, i.e. W defines a

harmonic function of x everywhere except at S.

(1i) w = 0(r ) as r — "oo.
[W] = A4TT"(x) at xCS, where [ ] signifies the jump in a

quantity on crossing S.

liv> 3" = ® »i«e. the normal derivative ( but not necessarily

the tangential derivatives)of W remains continuous on crossing S.

If "p(=m) is uniform over S,then W has the following additional
properties:
(v) [VIT] = 0,i.e. both the normal and tangential derivatives of

W remain continuous on crossing S.

(vi) W] = l VW.d X = 4TTm
S
for any circuit which loops ""S (fig.2)

These two properties characterise a wuniform magnetic shell or vortex-
equivalent sheet, focusing attention upon 7S as the physically
significant entity i.e. seat of an electric current or of fluid

vorticity as the case may be.

To fix the ideas we choose Sfto' be a.circular disc of radius c

in the Y 2 Plane with centre at y*~ =0, y*= 0. If so
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y = <yl-y2'y3> = <rcos® *rsine ,h >h=Q
dy = rdrdo
Also , for ease of integration , we consider only

12 .-
g(xry)x = ]fr2+(z—ff) ] %/:% ,
P d 2, ..2.-1/2
=1h [r +(z'h) h=0
7y o.
2 2 2
" +z )3/
Inserting thi§ with jiiy) =m, into the integral (1) gives:
r=
zrdr
wo=wz) =200 s
(r™+z7)
r=0
- ; > 0
A (A= 9 9. 172 z
(z"+c )
L :
= 2lfm (l-cosC< )) o' = cos ——— ——-—
(z +c )

This is of course a well known classical result usually obtained by

the method of solid angles,Co Tatz (1966)
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Note that:

. —2
(1) W = 0(z ) as z —— goo as follows from ("8-1-7)
(ii) w A~ 2TIm as z *o . as also follows from {3 4,7\
(iii) W = 0 for z =0 as follows from (8.1.7fend also directly from
I
the fact that g(x,y) = 0 for xCS.

Referring to the integral (8.1.1) these last two results appear

*
14

respectively as, Brkill (1970):

(11) lim J g(x,y) mdy = 21Tm , (8.1.9)
z — 20 S

(1ii) lim  g(x,y) mdy 0, (8.1.10)
zZ — >0

w(i.tth a jump which arises from the non-uniform convergence of the function,

Ferrar (1938)

©.1.11)
v, @ , 2 2.3/2 ras 2
(z"+r ™)

Since U (r) 1is anti-symmetric with respect to z, W is also anti-
z

symmetric with respect to z i.e.

= - - ; <0 8.1.12)
W(z) 27fm (1 L2 2 1/2) z
(z"+r ")
so yielding:
dw
W] =4ml [—— 1 =0 (8.1.13)
dz

in line with general theory. A graph of W(z) appears in £ig 3 (m-1)
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B.3 Vactor double-laver potentiall

Correaponding with W, we introduce the westor double-layer

potential:

'
=
LE ]
H
—
(11
=

,;.ri*-ﬁtl_.if]ﬂ:.r i ¥c 2 EﬁE (a.2.1%

L] -
whers gix,y} 3signifies the fundamental tractien dyadic of the medium

undlﬁﬂy] signifies & wegtar :nurcuudunsityf In terms of componenta:

- i -
qillpyll Hfﬁll?zh* grﬁl'fgﬁ*
* { :I*
QLA ¥
p 5= glx..¥.,) -2°27
g(gﬂ_}’) - ql:E'zl':'_"l:l z -z (8.2.2)

whars gl:g"_.zll1k provides the Be-component of traction at ¥y generate

by a unit paint-Force aseing along kthe &= direction »t x. clearly.gow |
of (¥-2:2)defines the traction wector at ¥ genarated by a unit peint-
force acting along the l-direction at x ,etc. Alsc columl of (S.2.2)
defines an elastostatic displacement field ., i.e. that generate? by

8 unit tractien-saurce acting alaong the l-direction at ¥, etc.

Thisz means that %[Ejgji playd the role af a vector dipale patentcial
corresponding with the acalar 9ipole pocencial g[;,f?l LJHELEIng

ne= tpl.pa.uzh,fs.2.1]appaar5 in component form as:

* This has already been introduced in 1.3 for a closed surface B whilst here
we are goncerned with an open surface




.

) /y(y)ry 5 * >P =1.2,3 (8.2.3)

assuming the summation convention for dummy subscripts.

To evaluate (8.2.2) we must first compute the fundamental

displacement dyadic of the medium:

g(xl,yl) gi-1'.y2) g (-1'-3)
g(x.y) g (2'-y1) gi-2'y2) g(-2'y3)
(8.2.3
(-3'yi’ 231y2
g(-3'yi g(23'y2) 5 (X3'y3)

where gvx ,zp) provides thep -component of displacement at y generated

by a unit point-force acting along the®-direction at x. Alternatively”

since g(

x ,y ) =g( vy ,xj, 1t also provides the st-component of

*kk p ,\,p

displacement at x generated by a unit point-force acting along the
P-direction at y. Clearly both rcw 1 and columnl of (8.2.3define elastostatic
displacement vector”, etc. For an infinite linear isotropic elastic

I

continuum, the dyadic components are nothing more than Kelvin s point-

force solution” Love (1927)"written systematically, in subscript notation.

It has been shown by Kupradze (1965) that W has the following

properties in a linear isotropic elastic continuum:
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(1) W is continuous and differentiable at least to the second order,
and satisfies the Cauchy-Navier equation, everywhere except at S*i.e.
W defines an elastostatic displacement field everywhere except at S.
(1ii) W = 0(r ) as |x|] = r —— > oo.

(1ii) [W] = 411"tx) at xC s-

IfyW.(y) = b + ijJAy , where b ,u) are constant vectors, i.e. p
varies as a rigid-body displacement over S, then W has the following

additional property analogous to [VW] = 0 in the scalar case:

(iv) 0 ; K;$

"exa 1# 2,3,

i.e. the strains associated with W remain continuous on crossing S.
This means that the stresses and therefore the tractions remain
continuous on crossing S so identifying the sheet as a Volterra

dislocation.

Ifto = 0 ,i.e. no rotational Jjump, then W has the following

additional property which replaces(iii) above:

(v) &Pl = VW.dV = 4Tlb 41Tb = Burgers vector,
for any circuit which loops the dislocation 1line &S. Here 4flb is the
Burgers vector of the dislocation line as defined in the theory of

crystal dislocations (see section 8.5)
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8.3 pircular dislocations

Choosing a circular sheet of radius c as before,and again writing

X = <0,0,z> , y = <yl,y2,h >h=Q (8.3.1)

we compute the components of g(x,y) from the known components of

% (x,v) ,using a similar analysis to that of Section 6*2-‘

1-K

g(x,y) 1 0
PP
0 0 1
2
yiy2 "y32
+—- 3 .
PP yiy?2 W27
(8.3.2)
-yiz W27
* _ gl-2K)z
g(x,y) 3 -y.
? P
iy 2
YLy yiz
(8.3.3)
+ 6 K yiy2 y2z
_7‘:2
r r ~D
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The integral (8.2.3)may then be evaluated exactly for the six independent

rigid-body displacements:

Wj<1,0,0>Ay , ~<0,1,0>Ay *><0,0,1>Ay

8.4 Two-dimensional continuum dislocations

Problems of two-dimensional 1linear isotropic elastostatics,in

the absence of body forces, may .be conveniently formulated through

a stress function “which satisfies the biharmonic equation:

V2 (V2~) =0 ; V2 28.4.1)

The displacement components associated withXare given by the formulae”

Muskhelishvili (1953%b) ;

(1-JI)H 1>JL (1-7)H- m (8.4.2)

~w!

*

where H, H are conjugate harmonic functions defined by

bH ~pHY 2/

bx” N X2 ! (8.4.3)

andjj ,y denote the shear modulus and Poisson s ratio respectively.

These formulae

simplify somewhat by introducing the Almansi (1897)

representation for

x» § + if (or x2¢ + 4) (8.4.4)

—64-



where <& , ij are harmonic functions,since then, Brown(l973)

H =20 , (8.4.5)

so enabling us to replace b .4 .2} by

ywl 2(1-»)$ 2(1- 106> .(8.4.6)

Note that the functional equation x < + if =0 has the two independent

non-trivial solutions”lLaSkar (197i):

a 1 i =~x1 ; P =X =—x"x* (8.4.7)
showing that an arbitrary rigid-body displacement may be superposed

upon wl»w2 keeping invariant.

Formulae (8.4.7)P°int to the dislocation solution (omitting

dimensional coefficients)

= x*logr ; €= log r,<|) =0 , if=0 (8.4.8)

yielding the translation Jjumps:

W 1 =0, [, = 2HL-. pn.V) (8.4.9)
y

for any complete circuit about the origin. They also point to a second,

independent, solution:

=x2logr . = < =logr, t (x21logr+x"9 ) (8.4.10)
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yielding the translation Jjumps:

[wl] 2T 12 V) , (w2] = 0. (8.4.11)

Here the dislocation line coincides with the x"-axis as exhibited in
fig 4 , so identifying the dislocation sheet as the half-plane x* =0,
x < 0. These are purely mathematical models. Physical models could
only be constructed by making the body multiply-connected, 1i.e.
replacing the dislocation line by a hollow tube or core which in
general has the form of a torus enclosing "as.We then cut through

the material so as to intersect the core, rigidly translate one side
of the cut relative to the other,and weld the sides together again

in the new configuration. Six independent dislocations can be
constructed across the cut, of which two examples have appeared in

fig. 1

.5 Crystal dislocations

The atomistic structure of an edge dislocation is modelled in
fig 5 .which depicts a section of the crystal at right angles to
the dislocation 1line. This provides a crystalline version of the
continuum dislocation modelled in fig. 4 e« Here the straight lines
numbered 1,2,..., 6 mark the traces of crystal planes at right angles
to theslip direction” i.e. that of the translation Jjump(s-4-1). Fig.5 (a)
refers to the perfect crystal . Figure 5"(b) shows the crystal severed
into two halves across the slip plane, fig.5(¢c) shows an extra,Frankf1949),,

half-plane, denoted p, inserted symmetrically between the upper half-
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planes 3 and 4 . In fig 5 (d) the two halves of the crystal have been
stitched together by re-introducing the atomic forces, matching as
farapossible half- planes of the same number, and thereby leaving
the central half-plane without a partner.This operation requires the
upper half-plane to be compressed and the lower half-plane to be
extended.The lower edge of p, identified as the x"-axis of fig4 marks

the edge dislocation line,Foreman,Jafwon,Wood (1951)-

The dislocation 1lies at the centre of a small region of misfit
bounded by the almost perfectly matched half-planes 1 and 6, beyond
which the crystal is perfect. Since the misfit also falls off vertically
the region is preferably pictured as a cylindrical domain, sometimes
termed the dislocation core,and indicated oy the circled area in fjg
,5(3)» In5 (e) the dislocation has effectively jumped forward by one
inter-atomic spacing to the right compared with 5 (d)/as the central
spot now falls between the lower half-planes 4,5 instead of between

3,4. This jump does not imply any movement of matter: p still remains

the neighbour of the upper half-plane 3 (being now labelled 4') but its lower
part deviates slightly to the right,thereby becoming aligned with the lower
half— plane4.The upper half-plane 4 1is left without a partner,to assume the

role formerly held by p (being now labelled p'). The dislocation thus propagates
very much like a travelling wave or disturbance,instantaneously separating

the slipped from the unslipped regions of perfect crystal.lt eventually

becomes blocked at some particular point,or passes right out of the crystal
as shown in fig.5(f). Since the configurations 5(d) and 5(e). have the same
energy, the dislocation,to a first approximation moves under a vanishingly small

stress.This provides the essential mechanism of plastic deformation.
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The locked-up stress field generated by the continuum dislocation
provides a very good approximation to that of a crystal dislocation
outside the region of the dislocation core. Within the latter region,
the strains are so large that classical elasticity can no longer be
applied and a direct calculation of atomic displacements becomes

necessary.

Since dislocations are singularities in stress fields,they inter-
act with other dislocationsand more generally, with other geometrical
imperfections. For instance two edge dislocations in the same slip
plane repel or attract each other”according to whether their signs
are like or unlike. If they are on different slip planes the situation
becomes more complex, but the general possibility arises of dislocations
blocking or locking each other by virtue of their mutual interactions,
an effect which provides the essential mechanism in all theories of

work hardening.
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FIGURES



Fig.1l

Fig.2

Fig.3

Fig.4

Fig.5

Volterra dislocations in a hollow cut cylinder.

(a) cut cylinder

(b) edge dislocation : sides of cut relatively
displaced in direction at right angles to
cylinder axis

(c) screw dislocation : sides of cut relatively

displaced in direction paralled to cylinder axis

Irreducible circuit vy around a contour dS modelling
a dislocation line, vortex or electric current.

Graph of W in terms of the non-dimensional parameter
C = z/c, showing the jump in W and continuity of
dw/dC at C = 0 (for choice m = 1).

Model of 2-dimensional continuum dislocation.

(a) section at right angles to dislocation 1line
exhibiting the origin as a singularity in the

field
(b) 3-dimensional picture of dislocation line bounding
the infinite sheet -0 < x* < 0, x* =0

Model of 2-dimensional crystal dislocation (following
Taylor) ; This is an edge dislocation since it
propagates in direction.of slip. Note that the extra
half-plane p becomes successively identified with the
upper half-plane,r 4,£, 6..... , eventually reaching the
boundary of the crystal.
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figure 1
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figure 2



figure 5
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figure 3
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Appendix I

Sphere:translation problem

Given $§ =(o0,0,t*jon the boundary r= a of a spherical cavity

where t is a constant,i.e. £ is a rigidy-body translation,find $
w

in the infinite region r“a such that

(1) $ =0(r 1) as r—— 3 o0;

Cii) £ =<0,0, t3 on r = a.

Ctii) $ =satisfies Cauchy-Navier equation:

We choose:

h =<(o, o , f =p'6r i/bx3 » Cl.n)
in the Papkovich-Neuber represention,which yields:

$ =<0 ,0, (</r>- KVt*Xg/r - px”~r3) (1.2)

where c( ,p are constants to be determind. In components Cl.2)

becomes

<& = K(oCXjXg/r- Spx”"x”~rb5)
$2= Kfx "~ r 3 -- apx”zrbh) (1.3)

8B = Cl1-K) ~/r + *( o(x3/r3 + /3/r3-3£x"/r5)

Now applying the boundary condition Cii):

o
o
I
o
<
*
I

OCgive the same value)

0K X1X3/" *3 3"%xiX3//&5 i,e* P = °"&2/3» (1.4)
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Also <]O = t<8 gives:

0(/a(l-K) + K(*3a =t , i.e. o< = 3at3/3-2K, (1.5)

Substituting from (1.4), (1.5) into (1.3) gives the field K°i)

A v , .3 2 . .3 2 .5
$ = * x1x3/r " a xix3>> x2X3/r * a X2X3/r '

(1/* -1)/r + x3/r3*+a2/3r3-a2x3/r5%
r 7, a

(1.6)
Now we differentiate (1.6) with respect to x*; i = 1,2,3 to obtain:

= X (xg/r3 ~ 3xix3/r5_ a2x3/r5+ 5a2x2x3/r7)

«l/2 = * ("3xiX2X3/r5 + 5a2xiX2X3/r?)

v 2 2 2 7
§1/3 = © (x"'r3— §x~Xg/t §a x'/\? + 8a x"%'r 3( /(311.'7)
* \4 ’ ’ 3 2 ’ 5 2 ’ 5 c 2 2 7
«2/2 = * (V r ' 3X2X3/r " a ~3/r + 5a X2X3/r >

«2/1 = * (!3x1X2X3/r5 + 5a2x1X2X3/r7 >

v 3 2 5 2 2
«2/3 = vV r ' 3x2X3/r + 5a X2X3)

>

$3/1 = #  ((1-1/(( )xl/r3 - Sx"X¢2;/r3 ga x"/r5 + 5a2x’g/z:' )

«3/3 =~ ((3-1//)x3/r3- 3x2/r5 -a**~r5 + 5a2x2x2/r7)

«3/2 = * ((1-VK> V 13 T 3x2Xf/r5%a2x2/r5+5a2x2X3/r7)

(1.7)
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These expressions readily provide the dilatation:

A=-i,»1/dx1+-b»2/Sx2 +'i»3/ax3= (I-8>
& (Xg/r3- .'ix*x*/r3 -a2x3/r5+5a2x3x3/r7
.3 2 2 5 22 7
+xg/r “8XgXg/ r - a Xg/ r + 5a XgXg/r

+ (3-1/x )xg/r3- 3Xg/r5-3a2x3/r5+5a3x*/r7)

A (2-1/*)Xg/r3 = 3at3 (2 -1)Xg/(3-2K.)r3

= 1>Xg/r = X Xg/a3; r=a .2V = 3atgC2K-1>y3 2K (1.9)

which is seen to be a harmonic function.

The accompanying strain tensor at r = a is

i(V+W o120 (1-10)

*11 £ *1/1 = 2*x? V a5 *22= *2/2 =2iix2x3/ab

I
*

*33

*3/3 + 2X3/a }

*12 " *21 = 2ix1X2X3/at

$13 . .31 . asae.s. 22XK ..



*23 =*32 . . <.‘972K"3 . ZJZﬁias.

From the stress-strain relations:

*<(3 = ' + vV T+ i'7T 8 7? 1,2,3
we calculate the stress components at r = a:

s$11 "~ x3 "3 4+ 4f“ cix3/»5

$22 = + ~ 2 X/ a5

$33 =~ x3/a3 + 2a / A

$11 = $21 = v* XIX2X/ &5
$13 ='$831 = /**<-Vk ~ + ~1XY *5)
$23 = §32 =~ ("X2~a3 + A2XV A

Finally we obtain the traction vector

m*r i1l A2 13
* t
s o $2 12 £2o 523
ax ¢
*3 *13 23 $33
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afd opdnr s ammed o Laedld s

4ijx2x3/'a5 x3/'a3+4/<x§x3/a5 -x2/'a3x/4xAx§,‘a5 ur

(50 ad tdxtx3 /a3 ) (-xl/adtdxlx3 /e 205 adtdxt et xd)a

‘XIN 3
{'-t:243 /2
9 A 2
= < Hx (x*/a , Hx"~ /a Hx~/a - A*/Ha >
=< 0, 0, - EB/™a2>; (1.13)
where
H 4/<k- ~ /K = 0 . (1.14)
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Appendix II

Vector double-layer source density

Given the boundary traction

0 =-2ZIVa® < 3x"2, 3x2x", -x"- x24+2x”* >, (II. 1)

on a spherical cavity r = a , we determine the corresponding boundary
displacement field <¢. It is clear that ?, satisfies the equilibrium

conditions:

3 < o = o, Sxas” (x)ax = o. (I1.2)

r=a r=a

In (4.1.3) we choose the second-degree harmonic functions:

’ , 2 2, .2 2. ~
hl= alxix2+a2x1x3+ a3x2x3+ad4”"x2 xr +ab(X1-x3"»

(II.3)
\Y \Y v v 1V b3X2X3+ b4 (x2-x7?)+b5 (xr x3)»
\ CIX 1X2+ C2X1X3+C2X2X3+ C4 (x2-X1)+C5 (xr x3);
rta
where a*,b”,c”*;i=1,.,.,5 are constants to be determined. If so,

the Papkovich-Neuber formula gives:

2 2
1-x3),

. 2 2 ,
§ = <37 "~ 2432X N 2+432X2X24- a® (x2-x1) + a5 (x
2 2 2 2

b “x*x2+ b2x1x3+b3x2x3+b4”x2 x1) + b*x.j*),

22, P22
clx'®2+ c2x1lxs+ C3X2X3+ c4x2-x1 +C5°X1 X3*>

rVi(a x? + 2 + 1+a,x 2_ 3+ 3 3
RO T SRS B I b B Tt o T & S S i T
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2 7 3 2 2
oAt DK XMt DKt Dy =h KR YhoXgX, *hoXaK, o+

2 2 2
B R e R M e R i T L R e LR L I L

Ta calculace che fracrtion vector oo ¢ = a associated with (IT.4&),

we use che craction components formuia, Lowe (1927):

-EIE]-_.‘IIF = k//‘xiﬂ-P hb.?;fa‘x i.+ IL?.'Ih ih}[ [_hi_=

A= R N LI (II.5)

First we compute the local dilatation:
ﬁi-f-ﬁai+éas+3h*3:2]x1+ {Hn]* Ebﬁ* JEB]HE

t(]aEtBh =hE_ 1N, .

375773 {1I1.8)

Also

[E-I P

2
?{ - a.x?x +4a, % N +ha ¥ ow M wha, M E

Ky RgPhayK K v ha X KK vha, K Xy =dig R

2

3 2 2 2 3
+#a511—ﬁi53|33+4qxlxz+4bzx13233+ﬁb33233+ﬁh4x2

2 2 2 2 2
—#hix2x1 +ﬁh5x2x1-4h53223tﬁclex2x1+ic33213 +Ec4x2 x,
2 X 3
e, X prghe X it de X, . (II.7)
‘h?fhx1-{aai-ab&+ah5}x131+(352—ac&+a:53x1x3
2
+{ﬁaa*ﬁb2+&c1}x133+(-1234-1235]11
+(4a, +4b JxT+{-ba +he,)x (11.8)
a, 115y B, t4e, )X, .
“oYfon,=(6a, +6b )x x4 (ha thb, +he Ix xg
7
+{Eb3+5c¢}x1x3+E¢a1—4h#+#h53x1
{II.9}

2 2
+ 1Ib¢x1 * [-4h5+#c3333*
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“afyfy-(4a + 4b2+4cl)x1x2+(-8a5+8c2)x1x3
2
+ (-8b5+8c3) x2x3+ (4a2~4c"+4c5) x1
2 2
f (4b3+4c”™)x2-12chx3 . H(11.10)

Finally

Xti>h/oxr (= (-2b"+3al+2b5>x1x2+ (-2c*+2c5+3a2) x1x3
2
+ (2a3+b2+cl)x2x3+ (-4a~+4a5) x1

+b*X2+ (-2a3+c2)x3 . til.1ll)

XI>h2A x 2-h2 =(2a”+ 3bl)x1x2+ (cl+a3+2b2)x ix3

+(2c™+3b3) x2x3+ (al-2b"+2b5) x"

2 2
+4b"x2+ (-2b5+c3) x3

(11.12)
XI>h3A x 3~h3 =(2cl+a3+b2) x1xj (3c2~2a5) x1x3
2
+(3¢c3-2b3)x2x3+ (a2-2c™+2c3)x"
2 2
+ (b3+2c4)x2~3c5x3 (11.13)
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Now substituting from (II.6), (II.8) and (II. 11) into (II.5) we fine

[A/§1+2~ (al+2b4+c3) H3 a1-2b4+2b5) -K (8al-8b4+8b4d) ] x1x2

+ [V)t+2f (a2+b4d+2c5) +(3a2-2c4+2c5)- (8a2-8c4+8cH)I x *

+ [ (2a3+b2+" )- K(4a3+4b2+4cl) 1x2x3

+£~/A+2/*(-2a3+2a,-+bl+c2) +(-4ad+4a3)-K(-12ad+12a

+[(23%) - V(4a4+4b1) 1x2+[ (-2a5+c2)-K(-4a5+4c2)]1x3. (II.14)

a$*/p = [*/A+2~(-2ad4+2a5b1l+c2) +(2a4+3bl)-K(6ad4+6bl)JT x *
+[£/A+2" (a2+b3-2c5) + (3b3+2c4)-*<(8b3+8c4d) 1x2x3
+ [ (a3+2b2c1l) -K(4a3+4b2+4cl) 1x*2
+[ (al-2b4+2b5) -K(4al~4b4+4B" ] x”*

+ PlA+2r (ait2bd+c3) +4b4-12 b4)x2

+[ (-2b5+c3) -M(-4b5+4c3)]1x3 . (11.15)

&
a<B/p= [(a3+b2+2cl)- K(4a3+4b2+cl)1x”*2

+ [| /A+2£f, (-2a4+2a5+bl+c2) -2a5+3c2 — K(-8a5+8c2)]1x*3

+ [)/A+2p (al+2b4+c3)+ (-2b5+3¢c3)-1K(-8b5+8c3) 1x2x3
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2
+[ (a2-2c*+2c5)- K (4a2-4c4+4ch5) 1x1

+[ (b*2c”™) - K(4b3+4c3)]1x2

*HVXt2” (a2+b3- 2¢5) - 4¢5+12Ke5]x2. (11.16)

Now the three components of (II.1l) are (II.14),(II.15)and

(11.16) respectively which give 15 wunknowns in 15 equations By

solving these 15 equations we get:

31= a3=a4= a5= °* bl= b2= b4= b5= °’ Cl= C2= C3= °’

= b3= 3(ct2r)fctD), c5= -2 (a+2£%) *351+2£1%2C4 (11.17)

Substituting from (11.17) into (II.3) gives:

h*= -67(A+2r) /a” (314+2")x"x3

h2=-6" (A+2") /a” (3"+2/<)x2x3 (11.18)

h3=-2tf (k+2p) /a” (31+2f\) (-x "-x2+2x3)

yielding the boundary displacement field:
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b= MU Aft) et (3 A VD K

- ((2A+3p) / (A+v ]| (x"+x1i})]

il -1 [E )] . (11.19)

An arbitrary rigid-body displacement can be superposed

on (11.19).
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THE DERIVATION OF THE EQUATION (7.1.4) P /-y

/o
1 0 0
IT2Tf M
.2
~oegxy).r(y)dy =g -y, 1 0 i a sin0d8dv
"213 o a -
10 0 /% rtfs 2 j
L * J
-fXli
c
(jj&a™ 4 1X) r~-KpJ3sinflcosifi(z-acos0)/*jj)* , -KasinQsintti(z-acosB)jjjp'J }
L.
Co

+ (z-acos8 A 3>J sinSdBdy ~j

It is clear that the first and second integrals components are zero

therefore (1) gives:



111

\' g(x,y).6” (y)dy , £ a +K (z-acos9) 22 up 3/ sin8dsdjj\,

(>§S/49n<x”~  * 0

t.

=(p&f2tf<0 , 0 >\j(l-*yiz2+a2-2azcos8)

A

2 2 2 / 2 2
+X(z -2azcosS+a cos &)yfz +a -2azcosA2j

sinsSds

i

=CJf£/2* , a ,1(i-¥ z2+a -2azcos8)°

+K 0 z2-2azcos8+aA)+ (aAosAS-ajj/(z2+a2-2azcasQ)l
1
:"sin0d9 \j,

- r
=("<g/2~ , 0 "I1// (z2+a2-2azcose)2K'a2 1-cos20) // (z2+a2-2azcos0h
V.
za (2)
Put cosS = u sin0d8 =-du ~

in which case (2) becomes:

(2)



g%, y).6" (y)dy = (VoK)<0 Q 1/ (z24+a2-2azu)?2 du S
7)0 n

J* ?
+(V 2*%)<Q 0 , Xa (1-u2)/(z2+a2-2a; :w) Jdu">J

z>a ,a/z=\jj

= (X2K)<f£ , 0

= (6/2fc) ~ 0 , O , (-1/z)I1 + (Ka2/z3)12 »~ ,

where
J1 = 1/(1+\/2-2uu)2[du = - (1/v) jA(f#ud-2uu)23
= —(1/v) 1j1+v) - (1-u) = -2 ; @)
-u2)/v)([A +vy2-2uv”)’ 2u/v(l+v -2uv)pu
A
1 1-n
=0 - j*2u(l+u2-2uu)2/ uj ,(2/u2)(1+u2-2uu )57 du
= 4/v2 — (2/3v3)pl+v) - (1-v2)3] = -4/3 (5)

Substituting from (4) and(5) into (3) gives:

ii/2KA , 0 ,2/z - 4*a2/3z">

A g(x,_y).IT(y)dy

~ ~ =V <O , 0, i/kz -
—-3-

z?a (6)



Vector Potential Theory
M.A. Jaswon, K.E.S.K. El-Damanawi
Department ofMathemetics, The City University, London EC 1V OHB, U.K.

ABSTRACT

Linear elastostatic displacement fields may be represented by
vector potentials analogous to the representation of harmonic
functions by scalar potentials. We introduce fields which
vanish at infinity and provide rigid-body displacements on the
surface of a spherical cavity in an infinite linear elastic
continuum. The asymptotic identity of the vector potential
with the field is demonstrated for each problem. This work
carries an interesting significance in the theory of

vector boundary integral equations.

SIMPLER-LAYER POTENTIALS

It is interesting to represent elastostatic displacement
fields by vector potentials. These have properties closely
analogous to those of scalar potentials. Thus, given a closed
Liapunov-smooth surface SB, let o(g") be the source density at
a point ~ ¢ 3B. If dg denotes the surface element at qC SB,
then o(q)dg is the source strength at q. This provides a
potential g(p,”)o(q)dq at any point p Inside or outside SB or
lying on SB. Here--

(1
denotes the Newtonian potential at p generated by a Unit

source at g or vice versa. Superposing the contributions from
all over SB, we obtain the simple-layer potential,

f

V(p) = g(p,9)o(q)dg ipC , BgC SB (2)

where B* denotes the interior domain bounded by SB and Bg



denote? the infinite exterior domain internally bounded by 3B.
If o is Holder-continuous on 6B, then V() has properties
which may be summarized as follows, Kellogg (1929):

(i) V is continuous and differentiable to any order in

B. , B . Also
1 e
3V(p) 0 @
-= ’ d .
351 g(p,9)o(q)dq <~y
where p =< p3 , p2 , p3 > . In some equations we

write p = < x3 , x2 , x3 >.

(ii) V satisfies Laplace's equation in B*, B* i.e.

V2V (p) V2g(p,q)a(q)dq 06 pc B~ B @

3B

since V2g =0, p ¥ q. Accordingly, V is a harmonic
function everywhere except at 6B.

(iii) V() = Il a(q)dg + |Ipl (p-@)o (@dg + 0(IpI3),O

3B 3B
as IeJd 0
Therefore V is a regular harmonic function in Bg .
(iv) V©>) exists at every p ¢c3B, and it is continuous at p

with respect to its neighbouring values in B*, B*, i.e.

V(p.) > V(p) as p. -> p, p. ¢ Br 6)
V(p ) > v(p) as Pe -> p, Pec.

v) V(p) is continuous and differentiable on 3B. Also, in
line with (3)

3V(p)
31 gY g(p»n)o(q)dg pc 3@ )

3B
where _09t denotes differentiation along any tangential

direction to 3B at g
(vi) V(g9) has two formally distinct normal derivatives ,

V! at p C 3B pointing into Bg, B* respectively. These
may be constructed by writing

Vi(p) = g9 (P,9dcr(ddy - 2na(p) ; p("3B. @)
3B

V'l(p) = gs{(g,g)o(g)dq - 2img) ;)ec.38, 9)
3B

where g”(p,q) denotes the exterior normal derivative

of g at p keeping %Tfixed, and similarly for g'l.

Since
9\ (p,9) + g'(p,9) = o do)
it follows that

V! (p) + Vg() = -4iro(p) . (11)

According to the interior Dirichlet existence-uniqueness
theorem, there exists a unique harmonic function < in B.,

which assumes prescribed continuous boundary values on a
closed Liapunov surface 3B. To construct in B*, we

write

<XKg) = g(g>g)°(g)dq i Rc By (12

3B

where o appears as a hypothetical HBlder-continuous source
density to be determined. An effective way forward is to
note that both sides remain continuous at 3B, so yielding the
boundary relation

g(p,9)o(q)dg = < ; pc. B . (13)

3B

This may be viewed as a Fredholm integral equation of the
first kind for a in terms of @ on 6B, with a unique solution
which enables us to generate ¢ throughout B* from (12).

Similarly, according to the exterior Dirichlet existence
uniqueness theorem, there exists a unique regular harmonic
function fp in B which assumes prescribed continuous
boundary values on 3B. Clearly p may be constructed by



solving equation (13) as before and utilising o to generate
the' simp-le-layer potential

¢ = g(,o(q)dg ; pO Bg (14)
3B

Of course

o(p) =" (T + . (15)

in line with (11). Accordingly, if 4 is available both in B*
and B , then a is immediately known from (15) so yielding the

identities:
) g 9P E@ + @l pCE (16)
3B
g(p>q)U!(q) + (q)ldg = <(p) ; po 3B @
3B
¢(®) = -z 8P VI (0 + 4'I(q)ldq ; pr B 8)

3B

In place of (12), (13), (14) respectively.

VECTOR POTENTIAL THEORY

Classical linear elastostatics may be formulated by a vector
potential theory which closely parallels scalar potential
theory. It would, indeed be advantageous to employ the same
symbolism in each theory, its interpretation depending on the
context. Thus the scalar potential £ becomes the
elastostatic displacement vector The normal derivative
< becomes the traction vector <* associated with . The
Newtonian unit-source potential g(p,q) becomes the ~
fundamental displacement dyadic of the medium. More
precisely, in this context we mean that

g(£i,aj) 8 (Pa '32> g (PitSa)
9/p.q) g(P2.ax) g (p2»a2) 8 (P2»"3) (19

“K(£3»7) & (P3».52> 8 £3'93).

where g(gat9g) signifies the displacement component in the
a-direction at g generated by a unit point-force in the B-
direction at q. Clearly column 1 defines the displacement
vector at g generated by a unit force acting in the 1-
direction at etc. By virtue of g(p ,9 ) = g(g ,p ), we see
that row 1 defines the displacements vector at *# generated by
a unit point-force acting in the 1l-direction at p, etc. 1In
the isotropic continuum,

(1-k)6 + k 3R 3R

g(J,a*3e) PR aB PR 3p_ 3py
(1-Og + JC (pa~qa)(pB~qB) (20)
PR aB P Rs
1, k 32R

— a, B=1, 2, 3
PR 2B P 3p_ 3py

where R = . This is Kelvin's solution expressed in
tensor notation, Love (1927).

traction dyadic of the medium, i.e.

g* (Px ) g*(px,32) g*(px»33)
g*(p,£) = g*(p ,q9,) g*@ ,R) g*(p2,"3) en

g* p3»")  g*(p3 ,) g*(p3,B)

where g*(pa ,qg) signifies the traction component in the
a-direction at g generated by a unit point-force acting .in
the 8-direction at q. Clearly column 1 defines the traction
vector at p generated by a unit point-force acting in the
l-direction at q, etc.

Finally, corresponding with g(p,q)' we construct
dyadic
9Py 9" g(pi'32)*  g(£i'3.3)*

gp,A* = g(p2/94)* g(E2'i2>*  g(P2.i3)* @2)

g(p3,qx)* g(p3,92)*

where row 1 defines the traction vector at g generated by a
unit point-force acting in the 1l-direction at p, etc.

The simple-source density o now becomes a vector simple-source
density a = <alf a2, o3 >. This enables us to construct a



vector simple-layer potential corresponding to (2), viz

[ |

X®) g(p,q) .o(q)dq o(q) .g(q,p)dq , (23)
86 36

with components

v 2, 3 24

a<? 8(Pa’~6)a6”~)dg ' 0,6 24)

36

This has properties at 38 entirely analogous to those of the
scalar simple-source potential, e.g. formulae (8), (9) may be
read as traction formula, and it defines an elastostatic
displacement field for any choice of p. These properties
have been proved by Kupradze (1965) for the linear isotropic
elastic continuum, but we may conjecture that they also hold
for the general linear anisotropic elastic continuum.

SPHERE PROBLEMS

We now construct two distinct elastostatic fields external to
a spherical boundary, and we show how these may be
represented by vector potentials. First, we seek a field <
with the properties:-

i) =0 (r 1) as r > %,

(ii) F=<0, 0, t3 > , i.e. a rigid-body translation of
magnitude ta on the boundary r = a of a spherical
cavity within an infinite isotropic linear elastic
continuum.

Utilising the Papkovitch-Neuber representation (Jaswon and
Symm, 1977), the required field is

ax, -1
=<0, 0,->.kV(—r +e3x3);r>a (25)
where k = 1 ; v = Poisson's ratio 0O < v * i)
4(1-v)
3at3 a3t.
= = 26
and 2= 4 5 /6 a3 (@e)

In terms of components

11A3
<k = ¥(
X2x3 a xx
=y (-—————-- - ) (27)
a2x 32
6= y(—= + 4. 32
3 ¥ Icc r3 3r3
3a<
where y - This
if*e > over (28)
yielding a resultant force
D+ =<0, 0, tirpy (29)
k
3B
and a resultant moment
<PErdg = < -x2,xx,0>g=<0, 0, 0>, (30)

3B 3B

acting on the boundary.

We also seek a field $ with the properties
(1) =0(r X) as r ->

(ii) &=<0, 0, w3>A (xx, x2, x3 > =<-wkx2,wXxl} 0 > ,

j.e. rigid-body rotation of magnitude w3 on r = a.

The required field is readily seen to be

i = < “fr W3Xx2 ¢ 7?2 W3X1l> 0 > = 77?2 < “W3X2* W3X1> 0 > 5 r >/ a

(31)
which provides a traction vector
3pw3
itr=----<x,,-x,,0>0ver r =a , (32)
<e a < i

yielding a resultant force



P*(tj)dg =<o0,0, 0 > (33)
dB

and a resultant couple

3pw,

CIAD* (@ dq
3B 3B

XXy, XXy, TX3mX3 >dq

<o0, 0, -8impws > (34)
acting on the boundary.

The above boundary displacements are particular cases of the
general rigid-body displacement

g=tt+tw,r (35)

~

where t, w are constant vectors.

It is convenient to break this down into the six independent
vectors

ﬁ1=<1,0,0>,P2=<0, 1, 0> g3 =<o0,0, 1>
(36)
p =<1,0, 0>Ax ,P5=<° 10> g> g =<0,0,1>r
A A

The fields corresponding with p*, jjg have been determined and

therefore by symmetry we may immediately write down the fields
corresponding with 3 ;s =1,2,3,4,5.

INTEGRAL REPRESENTATIONS: TRANSLATION PROBLEM

Within the interior domain r a there exists mathematically
a field * =<0, 0, t, > which assumes the same boundary

values as the exterior field (27), i.e. <0, 0, t3 >on r = a.
This interior field yields the traction vector £*e = Q%

Accordingly, from (15) both the interior and exterior fields
may be generated from the vector source density.

PY
_+ . R | * % 7
a a BE+in) sene 0O &7

on bearing in mind (28). Substituting for o into the integral

V(p) g(p,q) .o(q)dg . (38)
3B

we should identically obtain 4 for any choice of . 1In

practice it is very difficult to evaluate the integral
exactly, but its asymptotic behaviour can be examined as
follows. Note that

gpa ->3j(p,0) as p -> » (39)
so that

g(p,@ .0 (9)dq -> g(p»e). o(q)dq as p -> . (40)
dB 3B

Now from (37)

a(q)dq = < ° (@da, a,(@dgq, as3(@dg >=<o0,0,-">

3B 3B B 3B )

so that (40) has the components

3
V e =Igp ,0. O0F(ddg = g(px,03) =
~ j=i ~ J
3
v2@@ =1Ig(p2,0.) ©.(addg =g(p2,03)* =
~ j=1 ~
3
v .I g ,0.) 3(_51>dq N gmfs"gé) AK -

=
3B

which agree exactly with the asymptotic components of £ as
given by (27). We remark that the integral (38) can be

evaluated exactly at the centre of the sphere, i.e. putting
p = 0 in the expression (20), and we find V =< 0, 0, t3 >

as expected.



INTEGRAL REPRESENTATIONS: ROTATION PROBLEM m3

Within r < a there exists a field $ = < -w3x2, w3x1l, 0 > which $3@ = I [g-vg(p»0)13008 (q)dg O (48)
becomes identical with the exterior field (31) on r = a. 3
Accordingly from (15), both fields may be generated by the
vector simple-source density B This asymptotic field agrees exactly with <as given by (31)
o« @+ A = = A* ~353w3 B allowing for a slight adaptation of symbols. We remark that
0= Ar ~e 1  Allde ATIa ¥ » -X1>0 > »xx» x2C3B the integral (38) can also be evaluated exactly at the centre
of the sphere i.e. at p = O:
(43)
on bearing in mind (32) and &€ = 0. If so, by symmetry,
<K0) g(0,q).a(q)aq = <0, 0, Q > (49)
“oKl)dg =<0, 0, 0 > (44) 3B

=< -wXxx2,wXx3, 0 >at p=<0, 0, 0> as expected.

showing that the first-order asymptotic approximation to
g(p,”j) gives a null result. In the second approximation we THE RIGID-BODY DISPLACEMENT FIELD
Have, Jaswon and Syram (1977), Jaswon (1984),

_ 45 This plays an analogous role in vector potential theory
g9 =g,0 + 9-Vg(p,g)g= + 0(lpl ) , (45) (elastostatics) to that of the constant harmonic function in
so that scalar potential theory. Thus £ =34 ;s =1, 2, ... 6 on 3B
implies A =p in B. + SB and &* = 0Son 3B, in line with well

0 46 known corresponding properties of the harmonic function £ =k
&P -> [a.-Vg(p,0)].0o(q)dq as p —> « (46) (@ constant) on 3B. Also, given an arbitrary source-free
displacement field J on B. + 3B, it satisfies the boundary

3B
conditions
To evaluate the components of [g#.}(g P,QI1:
56,060 =0; s=1,2, ... 6 50
AR = . gtPaV g=o éé*edgdq (50)
i J=1 J ~ 1B
< 3*R
- AL
ve. 8_ N Wl R - \z<\\ W These express the fact that the tractions associated with *
3q P*aB P 3pa_3p =0
J p a7 produce no resultant force (s = 1, 2, 3) and no resultant
47) moment (s =4, 5, 6) acting on 3B, in line with the Gauss
Accordingly condition for the flux of a harmonic function over 3B.
aw p Given on 3B, we may generate this by a vector source-
~ (p) 13=Ij_ [q-vg (p. ) {éag () d9 R3 density which satisfies the vector integral equation of
the first kind
3B
|
3 a w.p, g, Xs(@dg= @ ;pC 3B e (51)
*® @ I [g-Vg(P.0)12 @ (@)dg = (48)
8=i ~ 3B
3B

equation continued



Analytical solutions of (51) have been found for a spherical
boundary; i.e. (28), (32) bearing in mind (15). For other
boundaries, solutions can only be achieved by numerical
methods.

If g(s is available for 3B, regarded as the internal boundary

of an infinite external domain, then we may exploit the
following theorem:

given arbitrary continuous displacements ‘on 3B,
the tractions associated with £ produce resultant
forces and moments which satisfy the relations

- X pXgdg s=1, 2, 6 (52)
3B 3B

These may be proved by introducing a vector source density a
which satisfies the equation

j?@€,9 .o(g)dg =¢(g I pcC 80 (53)
SB
i.e. a generalisation of (51). Operating upon both sides of

equation (53) by ./ ...X (|>)dp, we find
3B ~S

tp).xgP)dp = X (@I g(p,q) .0 (Pdq

3B 3B
X ). gR/Qdp. o(g)dq = @) .o(@dg
3B 3B 3B 4

on interchanging the order of integration (Fubini’s theorem)
and using (51) with p,q interchanged. The right-hand side of
(54) may be written ~ ~

7~ + iy (35)

if
deps 1 44 jI*s-Iedg
8B 3B

by virtue of (52), so defining the force- and moment-
resultants required. This proves the theorem.
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ABSTRACT

Fields in the infinite region exterior to a spherical cavity
have been represented by vector simple-layer potentials
(BETECH 86). We now attempt to represent these Fields by
vector double-layer potentials. This poses a far more
difficult problem, both in defining the sources and in
ensuring acceptable behaviour at infinity. These issues do
not appear to have been previously explored.

INTRODUCTION

At Betech 861 we introduced linear elastostatic fields on the
infinite region exterior to a spherical cavity, and we
represented these fields by simple-layer vector potentials.
In this paper we represent fields by double-layer potentials.
However the problem is now more difficult for two reasons:

1. The double-layer potential has asymptotic behaviour
0(r-2 ) as 1 = whereas the regular elastostatic field
generally has O0(r-1), behaviour as r #°. Accordingly
either suitable terms must be superposed upon the
potential or appropriate terms must be removed from the
field, before such a potential can be constructed.2

2. The determination of double-layer source densities proves
to be considerably more complicated than that of simple-
layer source densities since, as will be explained below,
the former essentially involves solving a boundary-value
problem whereas the latter only involves the straight-
forward computation of tractions.



IJO WJUNUAKY ELEMENTS IX

(he plan ot our paper 1is as follows, first we briefly
summarise the DuEoch 116 paper. Next wu introduce double-
layer potentials. then we reduce the given field to
0(r~"1 behaviour as r M°® and calculate the relevant
source-density distribution. This enables us to
construct the required double-layer potential and to
demonstrate its exact or at least asymptotic equivalence
with the reduced field.

Single-potential representations of elastostatic fields,
first proposed by Kupradse2, provide interesting
theoretical alternatives to Somigliana's formula, which
involves a superposition of potentials. A clear
advantage of the formula is that it involves directly
the boundary displacements and tractions, i.e. the
data of immediate engineering significance. However

it may not necessarily yield numerical solutions of
greater accuracy, for the same cost, as those which
might be achieved by the Kupradse boundary formulations.
A useful testing ground fur syptoinatic numerical
comparisons 1is available though the exact solutions
presented in this paper.

SUMMARY OF BE IECH 86 PAPER

Within the infinite region exterior to a spherical cavity
there exists a linear elastostatic displacement field

X1X3 a2x xX3
te (1) =Y < I3 - 5
X2X3 azx2xg 1< + xf af afxi>; . A4
r3 rs <r rs 3r3

where r2 =x2 + xf + xf and

Y = 3a< 1

513 > K "
3-2< 40 =a constant

This field is characterised by the behaviour:

(1) @€ = (Hrl) as r-*-9;

= Poisson's ratio (0<v$:i/2)

(2)

(2)
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¥ = <0, 0, t3> on r =a, i.e. a rigid-body

translation of the boundary in the x3-direction.

If so there exists an accompanying interior field
& = <0, 0, t3> rNa. (3

Both 4&, §4 may be represented by the simple-layer

vector potential

vl glxy) a(y) dy 5 v ¢ 3B (r =a)

3B * X c (r Aa) (4)

Be

or X ¢ B1 (rA< a)

Where dy denotes the element of surface area at
y ¢ 3B, a is the simple-layer section source
density at y, and g is the fundamental
displacement dyadic of the medium. Since $ , A
are known we may immediately write (* denotes the

traction operation)

a = @0 =- &
= - %;; <8 O (5)

since of course <« =0 Al so

g(xi,yi) g(x3.y2) g(xi,yi)
g(x,y) = g(x2,yi) g(x2,y?2) g(x2,ya) (6)

g(x3,yi) g(x3,y2) g(x3,ys)



where
3p 3p .
gx y_) =—-6__ + a= 12,3 (7)
-a¢s P as 37, %g g 1203
p -yl»

This dyadic element signifies the a-component of displacement
at x generated by a unit point-force acting in the
B-direction at y; alternatively, for an isotropic medium,

it could also signify the g-component of displacement at

y denerated by a unit point-force acting the a-direction

at x. Expressed in component form, (4) appears as

(
Vax) = 9y, ¥ © Wdy 5a =1, 2,3 (8)
” B ' B=1, 2, 3
3B
where i B=1,2, 3 is defined in (5).

It appears not possible to evaluate the integral (4) exactly,
but its asymptotic behaviour can be examined as follows.
Note that

g(x, y) -m g(x, 0) as r *=, (9)
so that

[ g(x,y)o(y)dy  g(x,0) | aly)dy as r (10)
27T - 3B~

which gives the asymptotic results

vx) =YY< .l , -frk. 77" + T*xy’ 1)

agreeing exactly with the asymptotic components of
extracted from (1). No such procedure is possible for
<. We may point out that V can be evaluated exactly
at the centre of the cavityi.e. putting x =0 in (4),
yielding the expected result

r

An exterior field of different character is

A

$e =p- <-wgx2>4Xt. 0> r a*w =const. (13)
This has the behaviour:
(1) & @ o(r 2) as r

(2) o = <-u3x2, udxx 0 > =< -Wy2, uyi 0 > (14)

on r=a.
If so there exists an interior field
= < -#Mx2, MXj, 0 >; r ¢ a. (15)

As before 4>* =0 and we find

iT RY T . < -y2. Yi, 0 > (16)

Now, however o(y)dy =o,
3B
showing that the first-order asymptotic approximation

gives a null result by virtue of (10). Expanding to the
second approximation(Jaswon & Symm3):

g(X,Y) :g(X,O) + y, Vg((),x) +0(r"3) as r _.,v.» ,
(18)

so that

V(x) [y. vg(0, x)]1 a(y)dy + O(r 3) as r >
3B = (19)
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On computing the components of the dyadic [y. g(x,0)]
and evaluating the integral in (19), we recover precisely
the field (13). This implies that the asymptotic
expansion (18) provides a route for the exact integration
of V everywhere in Be. As before, V can be evaluated
exactly at x =0, yielding the expected result

g(o,y)a(y)dy
3BS

Il
A
o
o
o
\Y

< -agx2, 103X2, 0 > at x =0. (20)

REPRESENTATION BY DOUBLE-LAYER VECTOR POTENTIALS

Corresponding with g(x,y) we introduce the traction
dyadic .

"giXi.y)* g(xj, y2)* g(xj ,y3)*
gx,y)* = gixi.yj* g(x2, y2)* g(x2,y3)~ (21)

gixj.yj* g(x3, y2)= g(x3,y3)*
where

2v-1 I e n - 3o s
O a’'v * =

Ix -y]| . (22)

STRESS ANALYSIS ArrLlUfti hi'io ijj

This dyadic element has two distinct interpretations: it is
either the 3-component of traction at y generated by a
unit point force acting in the a-directTon at x, or it is
the a-component of displacement at x generated by a unit
traction source oriented in the 3-direction at y. Only
the latter interpretation applies here. Utilising (21) we
construct the double-layer vector potential

W(x) g(x,y)* p(y)dy ; y C 3B

3B =" X ¢ Bi or Bo , (23)

where y signifies the double-layer source density at .
Expressed in terms of components, (23) appears as

WQ(x) g(xa,y6)* Mg(ydy ; a =12, 3 (24)
3B 3 =1, 2

An important feature of W is that

W= 0(r2) as r =>» , (25)

so that it could not represent the field (1) as it stands.
We therefore remove the O0(»—1) terms to obtain a reduced
field

te?? @ -1 g (X0 (26)
ya2 ¥ X A (27)
o(r 3) as r ‘m

The tractions [jje(2)] * associated with an 0(r” ) field
produce neither a resultant force nor a resultant moment.
Accordingly if the 8(r-3condition is met, then

Je (*) could be represented by W for a suitable choice

of p.



It has been shown (Jaswon & Symm3) that

M = - (2 ] (28)
- -e -1 r=a
where signifies the interior field (r £ a) defined
by

[ $e(2) 1* + [ I* =0. (29)

Since the interior tractions [j.A2)]* must constitute a
self-equilibrated system of forces, the same applies to

ue(2)]* so explaining the null resultant moment condition.
Now

2(jy < r r

r =a
(30)

from which follows the resultant

ya [9e(2)]* dy = <0, 0, 0 > (31)

SB '

By virtue of (30)

uiCl* = -[1A <3yiy3, 3y2y3, -yl -yf +2§ > (32)

which yields through fairly straightforward calculations
( El -Damanawi **)

$.(2)= < (*+4p)y y3, (x+4p)y2y3, -2x+3p)yl+yl)

—(iru)yf >. (33)

To this may be added an arbitrary rigid body displacement

d + b/\x (34)

where d, b are constant vectors. Substituting (27),
(33), (34) into (28) gives

i = ifca,TT-"zr)Tra<) <yivi e y2V3’ ' *rl1 a* + y| >

+d +b/yx (35)

which is the vector source density required.

The integral (23) can be evaluated exactly by means of
the asymptotic expansion

g(ny)* =
(1-2k)x.y -(1-2<)(xiyz-x2yl) -(1 —2K)(x1y 3-x3y i)
aP)J aPj ap3
Okx|x.y 0iXiX2x.y 6 texix3x, y
aps aPs ap
-(1—2K)(x2yi-Xiy2) (1-2k)x.y "(1-2k)(x2y3-x2y3)
aP3 ap3 ap3
O6kXix 2x,y Skx|x.y
T 6<x2x3%).y~
aph aph apa
(1-2<)(xly3-x3yl) (1-2K)(x2y3-x3y2)  (1-2k)x.y
aP3 ap3 ap3
6 KXiX3x.y 6 KX2x3x.y EKxfx.y
ap5 apj PS5

(@



U (1-2<) xix3yiy3 - 12Kx1x3x | y2yl Bxix3 (2y | +xEyE+xry|)
ap5 aP7 Of
12<x*x3yiy3
@‘
12icxfx2x3y 'y3 2(1-2i<)x2x3y2y3 6kx2x 3 (xfyf+xfyf+xfyf )
ap' ap- at
12<xfx3yiy3
@ 1
12<xix|yiy3 AKxlxfy*a 2y |+xly | +x|y )
ap' ap'
{19)
0(rl4) as r (36)
i.e. dyadic (a) integrates to zero and dyadic (b) gives
. (O .
W= 4e everywhere provided that
10 i tiwlitim <° “e(P5u-  ><(3))

and

(ii) m in (35) is multiplied by the factor

5(3 x+2p)
4 (-X+6p) (1-2<) (1+4x)

i .e. provided that

Sy 5+8k
U. = <vyiy3»y2y3. .. a2yl > (38)
l6ma2(1-2c) (1449 Y27 VY 3
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The rotation field (13) has 0(r"2) behaviour as r =,
and the associated tractions produce a resultant moment

( ~h fer dy 32013 <yi, y2,y3 >A< y2, -yi, o> dy
8B ~ 3B
3
3?) (yiy3, ya2y3. -yi-yhdy (39)
B
=<0,0, -8ira3pu3 >. (40)

This moment generates the entire field, leaving no
provision for a contribution by W

CONCLUSION

Owing to the jump in M at 3B, p as defined in (38)
satisfies the vector boundary integral equation

g(x,y)* u(y)dy + 2tm (x) =

b =~ ~
2 < X% X% 1, +
vas rs ' ?:sl * — 313 r$ !
r=a
< x3x3, x2x3, -af + x§ > 41)

see equation (27).



Also a as defined in (5) satisfies the vector boundary

integral equation

g(x,y)a(y)dy =<0, 0. t3 >,
3B=v [ B |

(42)

and a as defined in (16) satisfies the vector boundary

integral equation

g(x,y)o(y)dy = < w3y2, W3yi, 0 > .
3B =~"

These provide exact analytical solutions against which
numerical solutions could be usefully calibrated.

Instead of reducing ge we may superpose suitable
contributions upon y to accommodate the effects of a
resultant force and resultant moment, according to the
general theory put forward by Jaswon5 .

(43)
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ABSTRACT

A Volterra dislocation la tha alaatoatatlc analogua of a uniform
BMagnatic shell or vortax-aquivalent sheet. Just as these nay be
regarded nathenatically aa uniform dipole sheets”so dislocations may
be regarded as spacialiaed traction sheets. This nodal is briefly

explained and connected up with the theory of Taylor dislocations

in a crystal.
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1. INTRODUCTION °

A Volterra (1907) dislocation is a sheet within the linear
elastic continuum,across which the displacement field Jjumps by
a rigid-body translation or rotation without impairing
the continuity of the strain and stress components. Some simple
dislocation models may be constructed' with a hollow cut cylinder
as exhibited in £ig.1
We may regard the sheet as a specialised distribution of traction
sources,and these generate a vector double-layer potential which-
may be identified as the elastostatic field of the dislocation.
The bounding contour of the sheet,i.e.the dislocation line,plays an
important physical role in the theory of crystal dislocations

Taylor (1934); NabarYo (1967).

Miserly a dislocation sheet is the vector analogue of a uniform magnetic

shell or vortex-equivalent sheet,which are particular examples of a
uniform dipole sheet.This generates a scalar double-layer potential,
eg.a magnetostatic potential or velocity potential,which jumps by

a uniform amount on crossing the sheet without impairing the continuity
of the magnetostatic field or fluid velocity. Just as in the dislocation
case,the bounding contour of the sheet plays an important physical
role,being identified as an electric current or vortex line as

the case may be.

In his original treatment,Volterra utilised Somigliana's formula,which is

the fundamental formula of vector potential theory.Jaswon S Symm (1977).

However,since this involves the superposition of vector simple-layer
and double-layer potentials.it obscures the useful dipole analogy.
We exploit the analogy to calculate the field of a dislocation

having the form of a circular disc..

2. Scalar double-layer potentials

A continuous distribution of dipoles over a sheet S contained

by a contour "&S generates the potential

w (x) g(x,y) "i(y)dy; y C

where "i(y) signifies the dipole source density at y and dy signifies

the element of area at y. Also

g(x,y) = Ix-yl 1 , 2)
I
and
g(x,y) =9 yx = - 9glyx) (3)
y
i.e. g(x,y) is the normal derivative of g(x,y) at y keeping x fixed,

physically expressed,g(x,y) signifies the potential at a generated by

a unit dipole source at y. It is well established”Kellogg (1929) that

W has the following general properties:



ro(1) W is continuous and differentiable at least to the second order,
and satisfies V2W = 0, everywhere except at S, i.e. W defines a
harmonic function of x everywhere except at S.

r
(i1) W = 0(r 2) as|f)— >oo0.
(iii) W] = 4THHi(x) at xCS, where [ ] signifies the jump in a

quantity on crossing S.

(iv) %g ] * 0 ,i.e. the normal derivative ( but not necessarily

the tangential derivatives) of W remains continuous on crossing S.

If jj(=m) 1is uniform over S,then W has the following additional
properties:
(v) VW] = o,i.e. both the normal and tangential derivatives of

W remain continuous on crossing S.

() Wl= JW.de =4Th
S

for any circuit £ which loops (fig.2 ).

These two properties characterise a uniform magnetic shell or vortex-
equivalent sheet, focusing attention upon as the physically
significant entity i.e. seat of an electric current or of fluid

vorticity as the case may be.

To fix the ideas we choose S tobe a circular disc of radius c

in the y1,y2 plane with centre at y* =0, y2= 0. If so

y * ~~ ' 'V = <rcose ,rsine ,h >h=0
dy * rdrde

Also , for ease of integration we consider only
x=<x1¥x3»>=<0,0,2> ;z>0

ale%y = F 2 fup?y 2

d B - 1/2
g(x,y) dh [r2+(z h)2]h=o

z> 0.
2 2
z

[ 3/2

)

Inserting (6), withji(y) =m, into the integral (1) gives:

W= W(z) - 2Tm (r C zrdr
Jr=0 (r2+z2)3/2
2IHnGr 2 2 1/2 ; z >0
1z5+c"§
- 2jm (l-cos«< ) o = cos 1= 2?2 21 2~i/2'

(z +c ) '

This is of course a well known classical result usually obtained

the method of solid angles.

(8)

by



3. Vector double-layer potential

Note that:
(1) W o= 0(272) as z ———oc as follows from (8). Corresponding with W, we introduce the vector double-layer
(i) W~ iRmas z o as also follows from (8). potential:
(iii) W = 0 for z =0 as follows from (7) and also directly from ,
I
the fact that g(x,y) ™ 0 for JCS- W(x) = g(x,y) ,ya(y)dy ; yC S xS ’ (15)
S
Referring to the integral(l) these last two results appear - where g(x,y) signifies the fundamental traction dyadic of the medium
and J*(y) signifies a vector source-density. In terms of components:
respectively aJs
(ii) lim g(x,y) mdy = S5TTm , (10)
z —Jo S
giii'.v g(Xi.y2)* g(*i»y3)
(iii) J lim g(x,y) mdy = o0 , (11)
_ *2.y3
5= g(x2, y2)* a("2.y3)
9(i2'-1>*
*
g(*3,yi>* g(-3"-2) 9(-31-3)
with a jump which arises from the non-uniform .convergence of. the
function:
where g (x”") provides the "-component of traction at y generated
U (r) = ,as z (12)
’(22+r2)3/2 by a unit point-force acting along the fl¢ direction at x. Clearly row

1 of (16) defines the traction vector at y generated by a unit point-
Since U (r) 1is anti-symmetric with respect to z, W is also anti-
z force acting along the l-direction at x ,etc. Also columnl of (16)

symmetric with respect to,z i.e. defines an elastostatic displacement field , i.e. that generated by

a unit traction-source acting along the 1-direction at y, etc.

W(z) = -27Jn(1l- 2 2 1/2) iz <0 (13) *
12545 This means that g(x.y) plays the role of a vector dipole potential
so yielding: i
corresponding with the scalar dipole potential g(x,y) °* Writing
ja = >, (15) appears in component form as:
W] = 41m) [ ] =0 (14)

in line with general theory. A graph of W(z) appears in fig.3 (m-1).



K& | 9=y )Yy + * ~ =123 an

assuming the summation convention for dummy subscripts.

To evaluate (16) we must first compute the fundamental

displacement dyadic of the medium:

9i?r .V g(iry2) 9 X1'y3)
g<i2 " 1> g<-2'-2) g (12,y3)
g'is'.Vv g (I3—y?2) g (x3,.y3)

where gtx.,y.) provides thep -component of displacement at y generated

by a unit point-force acting along theK -direction at x. Alternatively
since g(>t,,y ) =g( y ,xu), it also provides the « -component of
displacement at x generated by a unit point-force acting along the
~-direction at y. Clearly both.row 1 and column 1 of (18) define elastostatic
displacement vectors, etc. 'For an infinite linear isotropic elastic
continuum, the dyadic components , are nothing more than Kelvin s point-

force solution; Love (1927) written systematically in subscript notation

It has beenshown by Kupradze (1965) that W _has the following

properties in a linear isotropic elastic continuum:

(1) W is continuous and differentiable at least to the second order,
and satisfies the Cauchy-Navier equation, everywhere except at s 1 e

W defines an elastostatic displacement field everywhere except at S.

(ii) W - 0(r 2) as [|x|] - r —— =*00.

(iii) [W] - 4TjuTx) at xCS.

= b + y>Ay , where b ,to are constant vectors,i.e. jI
varies as a rigid-body displacement over S, then W has the following

additional property analogous to [TO] M O in the scalar case:

N o
(1v) T Kip ™ 1,2,3,

i.e. the strains associated with W remain continuous on crossing S.
This means that the stresses and therefore the tractions remain
continuous on crossing S so identifying the sheet as a Volterra

dislocation.

Ifto = o ,i.e. no rotational jump, then W has the following

additional property which replaces (iii) above:

(v) [w] = 7~ TO.dV = 41Tb ; 41Tb = Burger's vector,
for any circuit which loops the dislocation line ds. Here 4Tb is the
Burger's vector of the dislocation line as defined in the theory of

crystal dislocations (see section 6).



4 Circular dislocations The integral (17) may then be evaluated exactly for the six independent

rigid-body displacements:
Choosing a circular sheet of radius c as before,and again writing

b <1, 0, 0>, b2<0,1, 0 >, b3<0o, 0, 1>

x = <0,0,2> , y = <yl,y2,h >0 (18)
60~<0,0,y2> iW<0, 0, -y1>J
we compute the components of g(x,y) from the known components of
X -z
g(x,y). Details are given by El-Damanawi (1989) (he obtained: S. Two-dimensional continuum dislocations
Problems of two-dimensional linear isotropic elastostatic$, in
1 ) o the absence of body forces, may -be conveniently formulated through
a stress function “which satisfies the biharmonic equation:
g(x,y) = —t- (0] 1 o
PP
0 0 ! vV V2 (v2p() (21)
‘ , 19)
yvi yiy2 ~y3Z
The displacement components associated withXare given by the formulae:
2
+—- 3 .
PP yiy2 y2 _y2
2 P 171 (22)
1-y)H*-
-yiz "y27 “ 9*] = (1-0)H- (L=y) B = 5o
1 (o] .
-yi
where H, H are conjugate harmonic functions defined by
B (1-2 « )z o 1
g (x#y> = 3 -y2
yp OH AH
" (23)
bx. bx, — \
i y2 1 (20) 1 2 ) . )
b andy ,y denote the shear modulus and Poisson s ratio respectively.
These formulae simplify somewhat by introducing the Almansi (1897)
yi yiy2 viz representation for
2
6 K yiy2 y2 y27Z

X+ <flar >+ t) (24)



whert 4: ¥ are hareonic functlons,dlnoe then

v';{= ZI%E'L— . H -:&* . o o= :t.r 1}

50 gnabling ud ko replace {2235 by

M, = 200- 104 -\% BN = 1s IR = %:L ] (24
; 2

Hote char the fumctianmt mgquarion "1‘ + [ = O hux the two indeperdenc

Eon-tPivisl solution=:

= | - = - -
4 L A o 0=, 271
dhowing that an srnizyacy rigid-body displecesent nay be UpErpobud

upen Wy W, keeping PLinvariant.

Forzulae (271 polal e khe dimlocation solurian {ani bEing

Ayensional coefficients]
?:.. = x_legr ] tl = 1 T * L - = I
,1e9 i == I - . 1281
¥ielding tha tran=lntiom {ampes
1

w1 wo, ikl = ’%[—- AT (24

fcr oany gonplete ciecuit aboob the origin. They alaea paint o & mecond,

indepanenT, 301Ut lcn:

. =aglege ; b =8, ¢" slogz, € = (z_legra @ ) {301
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yvimldiesg the rraeslotion jumpe:

w1 = B (1= 21y, [ 1 = D (311
)J

i

Here the dislocabicn lics coincides with the x.-sxin as sxhibited ic

x
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Iig,1
& Cryaral dimlocaticmne
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stk ALslooatlon Eine. Thim provides b crystalline weraiom of Ehe
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-13=




planes 3 and 4 . In fig. 5 (d) the two halves of the crystal have been
stitched together by re-introducing the atomic forces, matching as far
as possible half- planes of the same number, and thereby leaving

the central half-plane without a partner.This operation requires the
upper half-plane to be compressed and the lower half-plane to be

extended.The lower edge of p, identified as the J"-axis of fig.4 marks

the edge dislocation line.

The dislocation lies at the centre of a small region of misfit
bounded by the almost perfectly matched half-planes 1 and 6, beyond
which the crystal is perfect. Since the misfit also falls off vertically
the region is preferably pictured as a cylindrical domain, sometimes
termed the dislocation core,and indicated by the circled area in fg.

5(d). In 5() the dislocation has effectively Jjumped forward by one
inter-atomic spacing to the right compared with 5 (d” as the central
spot now falls between the lower half-planes 4,5 instead of between
3,4. This jump does not imply any movement of matter: p still remains
the neighbour of the upper half-plane 3 , but its lower part deviates
slightly to the right, thereby becoming aligned with the lower half-
plane 4. The upper half-plane 4 is left without a partner, to assume
the role formerly held by p.The dislocation thus propagates very much
like a travelling waveior disturbance instantaneously separating . the
slipped from the unslipped regions of prefect crystal. It eventually
becomes blocked at some particular point, or passes right out of the
crystal as shown in fig. .3(f). Since the configurations 5 (d) and 5 (e)
have the same energy, the dislocation, to a first approximation,moves

under a vanishingly small stress. This provides the essential mechanism

of plastic deformation

The locked-up stress field generated by the continuum dislocation
provides a very good approximation to that of a crystal dislocation
outside the region of the dislocation core. Within the latter region,
the strains are so large that classical elasticity can no longer be

applied and a direct calculation of atomic displacements becomes

necessary.

Since dislocations are singularities in stress fields.they inter-
act With other dislocation*.' and more generally, with other geometrical
imperfections. For instance two edge dislocation in the same slip
Plane repel or attract each other;according to whether their signs
are like or unlike. If they are on different slip planes the situation
becomes more complex, but the general possibility arises of dislocations
blocking or locking each other by virtue of their mutual interactions,

an effect which provides the essential mechanism in all theories of

work hardening.
7. Concluding remarks

Vector potentials play a key role in the formulation of
elastostatic boundary-value problems by boundary integral
equations. In these problems the potential is generated
from simple-lay® or double-layer vector sources on a
closed surface. However vector potentials may also be
generated from sources on an open surface (sheet) . By
analogy with the wuniform magnetic shell or vortex
equivalent sheet, which involve a uniform distribution of
scalar dipoles over the sheet, we can introduce a
specialised distribution of vector dipoles over the sheet
so constructing a Volterra dislocation as described in
section 4. This paper accordingly demonstrates the
essential mathematical unity between the foundations of
B.E.M. and the foundations of dislocation theory. In
consequence the computational methods developed with
B.E.M. could also be applied to the computation of
dislocation fields.

The elastic continuum is a smooth approximation to the
underlying crystal medium. By the same token Volterra
dislocations are smooth  versions of crystalline
dislocations. These have proved to be extremely
effective in general, but fail in one important respect:
Volterra dislocations react elastically to applied
s*ress' whilst crystalline dislocations become mobile so
providing familiar metallurgical effects beyond the scope
of continuum theory. A simplified model of a crystalline
dislocation is briefly described in section 6,
corresponding with the two - dimensional Volterra
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