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Where is the Life we have lost in living?

Where is the wisdom we have lost in knowledge?

Where is the knowledge we have lost in information?

T. S. Eliot
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Abstract

This thesis is a review of the works and ideas I have been develop-

ing in my doctoral studies, and it is mainly based on Castro-Alvaredo

& Levi [2011]; Castro-Alvaredo et al. [2011]; Levi [2012]; Levi et al.

[2013]. The specific aims of these works were to explore the methods

developed in Calabrese & Cardy [2004]; Cardy et al. [2008] with the

purpose of quantifying entanglement in a quantum field theory, and

have a deeper understanding of their predicting power on lattice sys-

tems.

The first chapter is meant to be a review of quantum entanglement

in many-body physics, and the methods we use to establish the link

to QFT. In the second chapter, after a small introduction on confor-

mal field theory, we collect the results of Calabrese & Cardy [2004],

focusing in particular on the replica trick and the twist field.

The third chapter is devoted to adapting these tools to massive QFT,

as performed in Cardy et al. [2008]. In particular we focus on the form

factor program for the twist field, by means of which we are able to

outline the behavior of entanglement entropy in massive theories in

a non perturbative way. We expand on the results found in Castro-

Alvaredo & Levi [2011], where higher particle form factors were stud-

ied for the roaming trajectory model, and the SU(3)2-homogenous

sine-Gordon model. We then carry out a numerical study of the ∆-

function of the twist field for these two models.

In the fourth chapter we focus on the connection between the ∆-

function of the twist field and Zamolodchikov c-function, as performed

in Castro-Alvaredo et al. [2011]. In addressing this issue we perform

a thorough study of the two point function of the twist field and the

trace of the stress-energy tensor. This allows us to introduce a class



of composite twist fields, which were the main topic of Levi [2012].

In the fifth and last chapter we group the most common methods used

to study the entanglement entropy of quantum spin chains. We start

with the XY chain analysis, which is performed with a combination of

analytical and numerical methods based on free fermion techniques.

We then perform a numerical study of the XXZ chain by means of

the density matrix renormalization group approach. Eventually we

present the results obtained for these two models in Levi et al. [2013].
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1
Introduction

The first two decades of the 20th century were characterized by great intellectual

ferment in the physics community. The works of J. C. Maxwell on the electromag-

netic waves, summarized in his 1873 A Treatise on Electricity and Magnetism1,

paved the way to a technological boost which in turn gave access to a new set

of experiments. Consequently new problems rose, which were not interpreted

by any mathematical theory available to a scientist of that time. A first exam-

ple was Maxwell’s incapability of explaining the propagation of electromagnetic

waves in the vacuum. The only kind of waves known then were pressure waves,

which clearly needed a medium for propagation. This led to the supposition of

the existence of a luminiferous aether, that was a fine substance which acted as

a bearer of light.

It was in 1887 that an experiment led by A. Michelson and E. Morley demon-

strated the nonexistence of such a substance. The problem of how electromag-

netic waves could propagate in the vacuum remained then unsolved, and opened

a quest that found its end with the formulation of a theory of relativity, and quan-

tum mechanics. In particular it was A. Einstein who first introduced the concept

of a light quantum (particle) in his most celebrated work on the photoelectric

effect Einstein [1905].

This wave-particle duality helped solving many other difficulties that mathe-

matical models had in describing experiments of the time. The most remarkable

example was the ultraviolet catastrophe of the black-body radiation. Maxwell’s

1this work was originally divided into two books, and reedited Maxwell [1954a,b].
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theory describes the energy of the electromagnetic field inside a cavity as an in-

tegral over the whole frequency spectrum. This leads to the divergence of the

heat capacity, and then to infinite energy at any non-zero temperature. This di-

vergence was clearly not observed in experiments. This problem was solved by

M. Planck in 1900, when he assumed that the energy distribution were discrete

in frequencies, finding a perfect agreement between his prediction and experi-

mental results. The discreteness of the spectrum led again to the natural inter-

pretation of the radiation as jets of particles, that were called quanta.

The scientific community started then a thorough investigation of this duality,

which finally was embedded in a more comprehensive theory of quantum me-

chanics. Two parallel mathematical descriptions of quantum mechanics were

born during those years, a matrix mechanics developed by W. Heisenberg, and

a wave mechanics developed by E. Schrödinger. These two apparently distant

formulations were proven equivalent, and unified later by P. M. Dirac. Such

theories were based on few shared very solid principles:

1. the wave-particle duality. Not only radiation, but any kind of object can

show particle or wave properties, depending on how it is tested.

2. The uncertainty principle. There are some conjugated couples of ob-

servables which cannot be measured on the same system. This can be

rephrased as if the measurement of one observable would lead to errors

on the second observable large enough to frustrate any prediction.

3. The quantum essence of nature. Performed at small scales, measure-

ments’ outcomes of any physical quantity can be counted in multiples of a

quantum.

4. The superposition principle. Until a physical quantity is measured, it

does not have a defined value, it is instead in a superposition of all possible

outcomes of a supposed forthcoming measurement.

The last point opened a heated debate between two of the fathers of quan-

tum mechanics, namely A. Einstein and N. Bohr. From now on, we will use the

formalism of bras and kets and, unless stated differently, our dynamics will be

2



in the interaction picture. In this language a physical system is described by a

vector |v〉 which lives in a Hilbert space H . The superposition principle is natu-

rally interpreted in this formalism, as the possibility of representing a state by a

linear combination of vectors

|v〉 =
∑

j

α j

∣∣a j〉 , with α j ∈C,
∣∣a j〉 ∈H ,∀ j. (1.1)

The coefficients α j are bounded by
∑

j

∣∣α j

∣∣2 = 1, and they are linked to the prob-

ability that a measurement on any physical quantity contained in |v〉 gives the

value contained in
∣∣a j〉. Physical quantities are called observables, and they are

represented by self-adjoint operators O = O†. The measurement process is re-

sponsible for the collapse of the state in one of the possible eigenstates of the

measured observable. Calling Ok the eigenvalues of O, and |ok〉 its eigenvec-

tors we define the expectation value of O in the physical setting described by the

vector |v〉 as

〈O〉 =
∑

k

|〈ok| v〉|2 Ok. (1.2)

The interpretation of (1.2) is that a measure of O gives Ok as a result with proba-

bility |〈ok| v〉|2. This forces the state |v〉 to “align” with the vector |ok〉, constrain-

ing the possible outcomes of following measurements.

The probabilistic interpretation of a quantum state was unpalatable to A. Ein-

stein, who, with B. Podolsky and N. Rosen, collected his doubts in the renowned

paper Einstein et al. [1935]. In their opinion any theory which aims to describe

the physical reality, must be complete1. The first objection to quantum mechan-

ics is that if two variables do not commute (e.g. position and momentum of a

wave packet) they cannot be measured at the same time, indeed a measurement

on one variable which exactly determines its value would constrain the second

one to have a flat statistics. Then the second quantity has no physical reality.

This means either that the two quantities cannot have both physical reality, or

that the theory is not complete. Their conclusion was that if both the quantities

have an experimental counterpart the theory must not be complete.

1the exact definition of completeness is somehow a bit elusive. In that work the gist of their
interpretation was that any element of the physical reality must have a counterpart in the theory.

3



There is a second example in that paper, which goes a bit deeper on the matter,

and opened a long history of debate. It is worth reporting it here in the fashion

of the original paper. Suppose we have two quantum system, namely A and B,

which interact together for a finite time t ∈ [0,T]. At time T we divide them, and

we give them to two observers, Alice and Bob, who are spatially separated. The

quantum state of the two systems is determined for t < 0, while later on it be-

comes the state of the composite system A∪B, which has to be determined. The

authors used the Schrödinger wave function formalism to describe the problem,

so that the whole system is described by a wave function Ψ(x). Now suppose

that Alice performs a measurement of some observable U. We call u1,u2, ... the

eigenvalues of such operator, and u1(xA),u2(xA), ... the corresponding eigenvec-

tors, where xA is the set of variables associated to the system A. Then the wave

function can be rewritten as

Ψ(xA, xB)=
∞∑

n=1
ψn(xB)un(xA), (1.3)

and the measurement performed by Alice has the effect of “selecting” one of the

uk(xA) by the outcome of uA, and then projecting Bob’s system onto the state

ψk(xB). Now suppose Alice chooses to measure another quantity V, then we can

write

Ψ(xA, xB)=
∞∑

n=1
φn(xB)vn(xA). (1.4)

A measurement of V will project A onto a particular eigenstate vl(xA), and B

onto φl(xB). The conclusion is that two different measures on the system A

would leave the state B described by two different wave functions. On the other

hand, since there is no more physical interaction between A and B, an action on

one of the two sub-systems should not influence the state of the other. In their

work the authors were using this feature to demonstrate the non-completeness

of quantum mechanics, but this goes beyond the scope of this introduction, and

we will take for granted their point of view.

These problems were left open for almost thirty years, until the work of Bell

[1964]. He assumed Einstein et al. [1935] conclusion as his working hypothesis,

and put their work in the more solid formalism of local hidden variables. He

4



managed to describe how the existence of local hidden variables influences the

statistical correlations of a model by a set of inequalities, and finally showed that

quantum mechanics violates those inequalities. By doing so he demonstrated

that quantum mechanics is not a local hidden variables theory, and that its cor-

relations cannot be reproduced by classical correlations.

We need to wait until the works of Freedman & Clauser [1972] and Aspect et al.

[1981, 1982] to have the first convincing experimental realizations of the vio-

lation of Bell’s inequalities. In the meantime the scientific community started

identifying this long range effect typical of a quantum system under the name

of quantum entanglement. In the following section we aim to formally define

this phenomenon.

1.1 Quantum entanglement

Entanglement is probably the deepest (certainly the most obscure) manifesta-

tion of the quantum approach to reality. It finds its origin in the superposition

principle when one is dealing with a composite system. The classical description

of the dynamics of a many-body problem is performed in the phase space, whose

dimension grows linearly with the number of components1. In a quantum me-

chanical description the corresponding concept is the Hilbert space H , which is

a tensor product of its components H =
⊗N

i=1 H i, such that its dimension grows

exponentially with the number thereof.

We will take the Hilbert spaces of each component to have the same dimension

d, then a global state is represented as the vector

|Ψ〉 =
dN∑

{ι}
aι

∣∣ψι〉 , (1.5)

where ι is a N-tuple, and it is summed over all its possible configurations, that

are dN . The vector part of each term can be decomposed on the complete basis of

1here we have in mind an Hamiltonian system, for which each component is represented by
its position q, and its velocity p; in this way the phase space’s dimension D grows linearly with
the number of components N, as D = 2N.
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the subsystems
∣∣uk〉 in the following way

∣∣ψι〉 =
∣∣∣u1

i1
〉⊗

∣∣∣u2
i2
〉⊗ ...⊗

∣∣∣uN
iN
〉 , with 1≤ ik ≤ d,∀ik ∈ ι. (1.6)

In order to ease the notation we will use the two components case in our forth-

coming definitions, and will refer to it as a bipartite system. Unless stated dif-

ferently all the considerations we make can be extended trivially to the generic

N case. In the case of two subsystems eq. (1.5) can be written as

|Ψ〉 =
d∑

i, j=1
ai j

∣∣u1
i 〉⊗

∣∣∣u2
j〉 . (1.7)

Here two cases must be distinguished:

1. the coefficients ai j can be factorized into products, e.g. ai j = αiα j. The

state can be rewritten then as

|Ψ〉 =
(

d∑

i=1
αi

∣∣u1
i 〉

)
⊗

(
dN∑

j=1
α j

∣∣∣u2
j〉

)
, (1.8)

and it is called separable, or factorizable.

2. The coefficients ai j cannot be factorized, and the state is called entangled.

The case in which the two subsystems’ Hilbert spaces have different dimensions

needs extra care. This case can be treated using the Schmidt decomposition

Schmidt [1907]. Suppose the two systems have dimensions m and n with m < n.

Then considering the state (1.7) the coefficients ai j can be written as the entries

of an m× n rectangular matrix A. This in turn can be written as A = UλV†,

where U is an m×m, and V an n×n unitary matrix, while λ is an m×n matrix

with null off-diagonal entries, and a number r of non-zero real diagonal elements

λ1 ≥ λ2 ≥ ... ≥ λr. The number of non-zero eigenvalues r is usually referred to as

rank, and it is a property shared by the two subsystems.

This decomposition is of central importance in understanding the possible states

an original pure state can be trasformed into. In fact, following Nielsen [1999],

we consider two states which have been Schmidt reduced to states with the same
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rank1

∣∣ψ〉 =
r∑

i=1
λi

∣∣u1
i 〉

∣∣u2
i 〉

∣∣φ〉 =
r∑

j=1
η j

∣∣∣v1
j 〉

∣∣∣v2
j 〉 .

(1.9)

It can be demonstrated that
∣∣ψ〉 can be transformed into

∣∣φ〉 by local operations

and classical communication (LOCC) iff

k∑

i=1
λi ≤

k∑

j=1
η j, ∀k ∈ [1, r] . (1.10)

This is called majorization rule.

1.2 The density matrix

States of the kind (1.6) are usually called pure states. There exist a second class

of states which are referred to as mixed states, and they are described by a sta-

tistical ensemble of pure states. The statistical distribution can be for example

canonical, and induced by considering a thermal state. The standard way to

tackle this situations is by introducing the density matrix

ρ =
∑

i=1
pi

∣∣ψi〉〈ψi

∣∣ , (1.11)

where pi are the probabilities associated to the states
∣∣ψi〉 with the aforemen-

tioned distribution2. This matrix is positive definite, and of trace 1, and the

expectation value of any observable O can be defined as 〈O〉 =Tr
[
ρO

]
.

In parallel with the definitions in section 1.1, Werner [1989] defined as separable

1from now on we will drop the tensor product symbol between Hilbert spaces for convenience,
such that |a〉⊗ |b〉 will be abbreviated |a〉 |b〉.

2in the example of a quantum state in equilibrium with a thermal bath pi = e−
Ei
kT , where

we are considering the case where
∣∣ψi〉 are eigenstates of the Hamiltonian, with eigenvalues E i,

while k is the Boltzmann constant.
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those mixed states that can be written as

ρ =
∑

i=1
piρ

i
1 ⊗ρ i

2, (1.12)

and called entangled those states which cannot.

A very interesting and well understood setting in which entanglement can be

studied is that of a bipartite pure system. Suppose we have a global system

described by the pure state
∣∣ψ〉, which we bipartite into two subsystems A and

B (a setting which is totally analogue to the one of Einstein et al. [1935]). The

density matrix associated to this global state contains clearly just the state
∣∣ψ〉,

with probability pψ = 1, that is ρAB =
∣∣ψ〉〈ψ

∣∣. The question we want to answer

is: Given the knowledge of ρAB can we make predictions for the outcomes of a

measurement on A or B?

It is generally impossible to associate a pure state to one of the two subsystems,

but if we want to study the properties of say A, we can trace out the system B.

In detail this means first choosing a complete basis of B, which we call |bi〉, and

then acting on the global density matrix with the projectors on this basis in the

following way

ρA =
∑

i

〈bi|ρAB |bi〉 . (1.13)

The reader may be confused by the notation adopted in eq. (1.13). In the rhs of

eq. (1.13) we are performing a partial trace on the subsystem B of the whole sys-

tem A∪B on which ρAB has support. As a result the outcome of such a trace is

not a scalar, but rather a matrix, which we call reduced density matrix of the sys-

tem A. If there is entanglement between the two subsystems this will be a mixed

state’s density matrix. This is equivalent to admitting total ignorance about the

system B, hence associating equal probability to the outcomes of any measure-

ment of an observable with support on B. This process is usually referred to

as “tracing out” the region B, such that an equivalent notation for eq. (1.13) is

ρA =TrBρAB.

This bipartite setting is the one that will be studied throughout this manuscript.

We want to introduce here a paradigmatic setting that captures well the most

important features of entanglement. The case in which the subsystems A and B
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are two electrons, and their spin wave function is in the singlet state

∣∣ψ〉
AB

=
1
p

2
(|↑〉A |↓〉B −|↓〉A |↑〉B) , (1.14)

where |↑〉 and |↓〉 are the two spin eigenstates along the z-axis1. It is easy to check

that the two electrons are entangled in this case, as with simple calculations one

manages to express ρA = 1
2 (|↑〉A 〈↑|A +|↓〉A 〈↓|A).

Now that we have a way to distinguish two entangled bipartitions from non-

entangled ones we aim to define a way of quantifying entanglement.

1.3 Entanglement measures

In order to define an entanglement measure it is helpful to think about the con-

cept of reduced density matrix (1.13). That matrix is used to define the expecta-

tion values of any operators acting on the subsystem A. The more these expec-

tation values are correlated with those on B, the more the two subsystems are

entangled, the more ρA will be mixed2. As a consequence the more this matrix

is mixed the more we have access to information about B, and possibilities to

influence the outcomes of measures of its observables3.

Another very important aspect of entanglement is its relationship with informa-

tion. Referring to the usual example of the bipartite system if the bipartitions

are entangled, somehow their density matrices capture more information about

the state than ρAB. This feature, even if already noticed by Schrödinger in the

Thirties, was put on a solid basis and quantified in Schumacher [1995]. In this

latter work a quantity called entanglement entropy was defined, which extends

the concept of the Shannon entropy of a statistical distribution to the quantum

1this example actually works with any binary systems.
2there is no measure of how mixed a density matrix is, more mixed means that its eigenvalues

are closer to being all equal.
3this is the key point of many interesting applications, such as the quantum teleportation of

Bennett et al. [1993] and Ekert [1991]’s quantum cryptography.
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case, and is defined as1

S(ρ)=−Trρ logρ. (1.15)

The entanglement entropy as defined here is usually called von Neumann entan-

glement entropy, and has the following interesting properties:

• It is null for separable states and maximal in the case in which the density

matrix ρ has all nonzero equal eigenvalues. In that case, due to the normal-

ization of ρ, if the Hilbert space is d-dimensional, we will have S(ρ)= logd.

States of the kind defined in eq. (1.14) are the easiest examples, and they

are called maximally entangled states.

• If ρAB is the density matrix of a pure state, S(ρA) = S(ρB). This can be

shown trivially by Schmidt decomposing the state, and has remarkable

implications explained in section 1.7.

• It is invariant under unitary transformations of the density matrix U†ρU ,

and then independent of the basis in which it is expressed.

• It is concave, in the sense that for a mixed state
∑

i piρ i the property
∑

i piS(ρ i)≤ S(
∑

i piρ i) holds.

• It has the remarkable property S(ρAB)≤ S(ρA)+S(ρB). This property does

not have a counterpart in classical information theory, where the entropy

of a system can never be lower than that of its components, and is called

subadditivity. A more general version of this property can be written if one

considers the possibility of an intersection between the two subsystems A

and B, where the subadditivity states that S(ρA∪B)+ S(ρA∩B) ≤ S(ρA)+
S(ρB).

The entanglement entropy (1.15) plays a central role in determining how

many singlet states can be distilled from a general mixed state, outlining an

operative definition of it 2. Before walking this way though we have to consider
1in this definition as in any later ones, in contrast to the quantum information notation, we

are expressing the entropy in a natural basis; this in turn means that we would not be allowed
to “count” the quantum information in qubits, but we should use qunats instead; this measure
though is not common in literature, and with an abuse of notation we will talk about qubits
referring to qunats.

2this concept was introduced by Bennett et al. [1996].
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if a general state is transformable at all, and to which states. The answer comes

from the majorization rule (1.10), which tells us which states are compatible, and

which are not. A problem in this approach is the presence of discontinuities in the

probability of transformation from one state to the other. To make this statement

clearer we borrow an example from Plenio & Virmani [2007]. Let us consider the

composition of two ternary states, such that the Hilbert spaces of each component

are spanned by the basis {|0〉 , |1〉 , |2〉}. It is easy to check with (1.10) that the state

(|00〉+|11〉)/
p

2 can be transformed into 0.8 |00〉+0.6 |11〉. That means there exists

a local transformation which links the two states with probability equal unity. If

we introduce a deformation ε leading to (0.8 |00〉+0.6 |11〉+ε |22〉)/
p

1+ε2, we can

check that this state cannot be reached for any nonzero value of ε. This can be

easily understood by considering that LOCC cannot increase the rank of a state.

This feature is somehow unwanted, as the expectation values of any physical

quantity will depend on ε, and we do not expect discontinuities varying such a

parameter.

This problem can be tackled by considering a less ideal setting. Instead of ask-

ing if two states are compatible we can ask if a set of n identical states can be

transformed into a set of m states, “close enough” to a target state, that is a de-

formation ε of a target state which tends asymptotically to it for large n and m.

Formally calling ρ the density matrix of an initial state, and σ that of a target

state, we want to see if it is possible to transform n copies of ρ,
⊗n

i=1ρ i →σm(ε),

where σm(ε) →
⊗m

i=1σi for m →∞. An important question is then which is the

biggest rate r = m/n at which we can perform this transformation?

In particular we would like to define the entanglement cost EC(ρ) as the rate

at which we can convert a set of n maximally entangled binary states as (1.14)

(whose density matrix we call ρ) into a set of m target states σ. So that calling

Λ the LOCC that maps
⊗n

i=1ρ i →σn(ε)

EC(σ)=MIN

[
r
∣∣∣ lim

n→∞
D

(
Λ

(
n⊗

i=1
ρ i

)
,

rn⊗

i=1
σi

)
= 0

]
(1.16)

where D(ρ,σ) =
√

2(1−F(ρ,σ)) is the Bures distance, F(ρ,σ) = Tr
√[p

ρσ
p
ρ
]

is

the fidelity between the two density operators. This quantity then tells us what
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is the minimum number of maximally entangled states that we have to employ

to “build” a set of n target states. We can invert the definition and ask ourselves

how many maximally entangled states ρ we can get out of n identically prepared

noisy singlets σ. This leads to the definition of the entanglement of distillation.

This time we define the LOCC which performs the map Λ(
⊗n

i=1σi)→ ρn(ε)

ED(σ)=MAX

[
r
∣∣∣ lim

n→∞
D

(
Λ

(
n⊗

i=1
σi

)
,

rn⊗

i=1
ρ i

)
= 0

]
. (1.17)

The entanglement cost, and entanglement of distillation are of central relevance

when dealing with experimental realizations of quantum protocols. In fact in the

real world preparing a binary system in a maximally entangled state is gener-

ally a difficult task. Moreover, as those protocols are based on the transmission

of a quantum state, one has to deal with decoherence due to noisy channels.

Quantum information is mediated by qubits, extracted from maximally entan-

gled states, hence understanding how to optimize the conversion of a noisy state

into a maximally entangled one is very important.

It was demonstrated by Bennett et al. [1996] that for pure states EC(σ)= ED(σ),

so that the process is asymptotically reversible. Most remarkably they are both

equal to the Von Neumann entropy, which in this case is the only relevant mea-

sure of entanglement.

Other measures of entanglement are the Rényi entropies, introduced in their

classical version by Rényi [1961]. These quantities are dependent on a real pa-

rameter α≥ 1, and are defined as

Sα(ρ)=
1

1−α
logTrρα. (1.18)

They clearly have the Von Neumann entropy as the limit for α→ 1. To under-

stand their utility we have to diagonalize the density matrix ρ, such that

Sα(ρ)=
1

1−α
log

(
d∑

i=1
λα

i

)
, (1.19)
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where d is again the dimension of the Hilbert space. As
∑d

i=1λi = 1, the sum in

eq. (1.17) converges for any value of α ∈ [1,∞), and Sα(ρ) is well defined. More-

over considering large values of α suppresses the lowest eigenvalues of ρ (lowest

levels in the entanglement spectrum 1), while small values of α take them into

account. From these considerations follows that the knowledge of the Rényi en-

tropies for general α gives access to information about the whole entanglement

spectrum. In particular now we have a way to understand the majorization rule

in eq. (1.10). It is telling us that LOCC cannot increase the entanglement be-

tween the two components, in the sense that Sα(ρφ)≤ Sα(ρψ), for any α.

Another interesting question one can ask is: Considering a single copy of a

generic state, which is the dimension of a maximally entangled state distilled with

certainty?

The answer is given by the single-copy entanglement as defined by Eisert &

Cramer [2005]. Suppose that the a density matrix ρ can be transformed by LOCC

into
∣∣ψD〉〈ψD

∣∣, where
∣∣ψD〉 =

(
|α1〉

∣∣β1〉+ |α2〉
∣∣β2〉+ ...+|αD〉

∣∣βD〉
)
/
p

D, then we

define its single-copy entropy as E1(ρ)= logD2.

For this transformation to be possible condition (1.10) must be satisfied, then

calling again λi the eigenvalues of ρ, and ordering them as decreasing with i, we

have
k∑

i=1
λi ≤

k

D
, ∀k ∈ [1,D] . (1.20)

This naturally implies λ1 ≤ 1/D. We can then express the single-copy entangle-

ment in terms of the original density matrix eigenvalues as

E1(ρ)= log
(
⌊λ−1

1 ⌋
)
, (1.21)

1we use the notion of entanglement spectrum as introduced by Li & Haldane [2008], and
Calabrese & Lefevre [2008].

2the reader may be surprised by the fact that we are talking here about a D-dimensional
maximally entangled state, in contrast to the previously defined measures, for which we consid-
ered a large number of binary maximally entangled states. It can be demonstrated though that
a local unitary transformation exists which maps one into the other, so that the two approaches
are equivalent.
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where with ⌊...⌋ we are taking the integer part. In particular, exploiting the fact

that logTrρα ∼ α logλ1 for α→∞, we can link the single copy entanglement to

Rényi entropies

E1(ρ)= lim
α→∞

Sα(ρ). (1.22)

1.4 Quantum entanglement and many-body sys-

tems

One of the most intriguing challenges in modern physics is the description of

quantum many-body systems. In particular in recent years a great deal of atten-

tion has been given to the connections with quantum information theory. Indeed

many open problems in many-body physics have been successfully treated with

quantum information techniques. On the other hand many new protocols in

quantum computing have been inspired by many-body problems, as a quantum

processor is itself a many-body system.

Quantum mechanics is very effective in studying single-body problems, or sys-

tems composed of few constituents. As we increase the number of components

though, systems become rapidly intractable due to the exponential growth of the

Hilbert space explained in section 1.1.

A real system is seldom composed by few components, hence quantum mechan-

ics would seem powerless in predicting any outcomes of an experiment. For-

tunately in a great deal of cases interactions between components are fairly

small compared to the energy scale of each constituent. Therefore the prob-

lem can be treated perturbatively using single-body techniques. Many cases

though cannot be treated as such as they are characterized by strong interac-

tions. Among them there are some very relevant problems in modern physics,

such as bosonic condensates, strongly correlated electrons, studied in the quest

for high-temperature superconductivity, and last but not least the physical real-

ization of a quantum computer.

The question arises then, how can we describe strongly interacting systems?

In this context the possibility of solving numerically the equations of motion be-

comes crucial. Unfortunately as we are dealing with a quantum system, the
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Hilbert space quickly grows too large to be implemented even on the most re-

cent machines. Then it becomes very important to understand when a quantum

system can be simulated efficiently on a classical computer1. The answer was

given indirectly by White [1992], and it was cast in a quantum information per-

spective. The system’s components must be weakly entangled more than weakly

interacting, in order to succeed with a numerical simulation. This observation

gave rise to a set of very powerful numerical techniques which go under the name

of density matrix renormalization group (DMRG).

There are many other examples of cases in which the study of entanglement

properties of a many-body system leads to new insights. One of the most re-

markable is the existence of quantum phase transitions (QPT). The remaining

part of this section is devoted to explaining qualitatively the main features of

QPT. For a more detailed analysis we redirect readers to Sachdev [2007]. We fo-

cus on the zero temperature case, so that any phase transition will be driven only

by quantum effects, and the system will be in a pure state rather than a thermal

ensemble. We take the system to be in its ground state. To help the understand-

ing we focus on a quantum magnet as an example. The degrees of freedom are

concentrated in the magnetic cells, which, with a drastic simplification, can be

represented by sites with a spin degree of freedom. The interaction among them

can be represented by a link on a lattice. Here and throughout this manuscript

we will consider only the case of nearest neighbours interactions. The cells can

be coupled to an external magnetic field by their spin magnetic moment µh. Sum-

marizing all these considerations we can write the general Hamiltonian of this

system as

H (J,h)= J
∑

〈i, j〉
~Si

~S j − gµhh
∑

i

~Si~ui, (1.23)

where ~S = ~σ/2, J sets the microscopic energy scale of the interaction between

sites, g is the g-factor (≃ 2 for electrons), h is the intensity of the magnetic field,

and ~u is a versor pointing in the direction of the external field. Notice that al-

though eq. (1.23) is independent of the lattice spacing a and the lattice shape,

the physics will depend to a great extent on these quantities.

The Hamiltonian (1.23) is a representative of a family of systems which can be

1this because despite our efforts we still miss a quantum computer.
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written as H (h) =H0 +hH1, h being a dimensionless parameter. For any fixed

value of h we can diagonalize the Hamiltonian, and find the energy levels E i(h),

and the respective eigenstates
∣∣ψi(h)〉. We focus on the case in which H1 is a con-

served quantity, that is, it commutes with H0
1. This means that the eigenvectors

do not depend on h, as for any value of this parameter they are the eigenstates

of H0. The energy levels on the other hand are smooth functions of h. We fo-

cus then on the ground state energy E0(h), and we want to study its behaviour.

It can happen that for a given h = hc, the eigenvalue of an excited state equals

E0(hc), then we have a point of non-analyticity of the ground state energy2. We

call these points quantum critical points, and they usually separate two regions

in which the system shows very different responses to an external perturbation.

In particular we focus on second order QPT which are characterized by collective

phenomena which in turn give rise to long-range correlations. This features can

be formalized considering the model (1.23) in the case of an infinite, traslational-

invariant lattice. We can define the correlation between spin components along

e.g. the z-axis as

〈Sz
i Sz

j 〉 = 〈ψ0(h)
∣∣Sz

i Sz
j

∣∣ψ0(h)〉−〈ψ0(h)
∣∣Sz

i

∣∣ψ0(h)〉〈ψ0(h)
∣∣Sz

j

∣∣ψ0(h)〉 . (1.24)

It is generally a hard task, but it can be demonstrated that the large distance

limit of this quantity is exponentially suppressed as

〈Sz
i Sz

j 〉 ∼ e
− |i− j|

ξ(h) (1+Σd) , (1.25)

where ξ(h) is called correlation length3. The quantity Σd is a sum of infinitely

many terms having a more suppressed exponential behaviour. There are some

integrable theories for which it is possible to sum this series finding a power law.

1notice that this is not usually the case, but we assume this in order to be able to explain the
main features of a QPT in a compact and direct fashion.

2to be precise this feature, called level crossing, is possible only when H1 is a conserved
quantity. In the most general case the two energy levels only come very close, but do not meet,
and this feature is called avoided level crossing. In certain limits though many of these avoided
level crossings become level crossings, so that our arguments are of wide applicability.

3in eq. (1.25) and from now on all the lattice dependent quantities will be taken to be dimen-
sionless. We will switch to the dimensional counterpart by multiplying by the right power of the
lattice spacing a, and denoting them with a hat, as e.g. ξ̂= aξ,
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In a second order phase transition we have ξ(hc) = ∞ and it is actually much

easier to sum Σd. The correlation function will be described by a power law

〈Sz
i Sz

j 〉 ∼ |i− j|−2d , (1.26)

allowing for long-range interactions. The constant d is usually called scaling di-

mension.

The correlation length is then again an analytic function of h, except at the crit-

ical point, and it is particularly interesting to study its behaviour approaching

hc. For the model at hand, it diverges with the power law

ξ(h)∼ |h−hc|ν , (1.27)

where ν is called critical exponent.

Another interesting feature is the collapse of the first excited state onto the

ground state. This means that if we define the energy gap as ∆(h)= E1(h)−E0(h)

we have ∆(hc) = 0. The way this quantity approaches zero, and the correlation

length diverges are related by

∆(h)∼ |h−hc|zν , (1.28)

which means that ∆∼ ξ−z. The exponent z is usually called dynamical exponent.

To elucidate this relation we consider the model (1.23) on a D-dimensional infi-

nite lattice as an example. In what follows is crucial that the lattice is invariant

under rotations, that is under exchange of two axes and respective coupling con-

stants.

The Hamiltonian describes the temporal evolution of the system, and we per-

form a Wick rotation so that we work with imaginary time τ. Then for τ small

enough we can define the transfer matrix T = 1−τH ≃ e−H τ. We take a discrete

time that we count in terms of the lattice spacing a, which we set to be equal

one for simplicity. Then we can study this problem as a statistical model on a

D+1-dimensional lattice, where the wave function at two consecutive times will

be connected by the transfer matrix
∣∣ψ(τ+1)〉 = T

∣∣ψ(τ)〉. Due to the invariance

under rotations and translations the same holds for the wave function of any

17



subspace in any D dimensions, evolving in the orthogonal dimension. We want

to study the same site, different times correlation function, that is 〈Sz
i
(0)Sz

i
(τ)〉.

We represent our operators in the Heisenberg picture, such that

〈Sz
i (0)Sz

i (τ)〉 = 〈ψ0
∣∣Sz

i (0)e−HτSz
i (0)eHτ

∣∣ψ0〉−〈ψ0
∣∣Sz

i (0)
∣∣ψ0〉〈ψ0

∣∣Sz
i (0)

∣∣ψ0〉 =

=
∑

k≥1

∣∣〈ψ0
∣∣Sz

i (0)
∣∣ψk〉

∣∣2 e−(Ek−E0)τ,

(1.29)

where we have assumed the theory has a discrete set of eigenvalues1. The first

gap is usually much wider than the others, and we can rewrite the latter in terms

of it as Ek+1−Ek =αk∆, where k ≥ 1, and 0<αk < 1.

We can then rewrite (1.29) as

〈Sz
i (0)Sz

i (τ)〉 =
∣∣〈ψ0

∣∣Sz
i (0)

∣∣ψ1〉
∣∣2 e−∆τ

(
1+

∑

k>1
δke−αk∆τ

)
, (1.30)

where δk =
∣∣〈ψ0

∣∣Sz
i
(0)

∣∣ψk〉 /〈ψ0
∣∣Sz

i
(0)

∣∣ψ1〉
∣∣2 . Is now easy to compute the expo-

nentially decaying behaviour in the limit τ→∞ in the off-critical case, where ∆

has a fixed value. The series in the rhs of eq. (1.30) is generally very hard to sum,

and one has to consider the fact that the spectrum is not entirely discrete.

Rotation invariance gives us the correspondence ξ∝ 1/∆, and a direct compari-

son with eq. (1.26) tells us that the dynamical exponent z = 1, as usual for second

order phase transitions. This will generally be the case for the theories studied

in this manuscript.

1.5 Generalities on relativistic quantum field the-

ory

The above lattice models are closely related to quantum field theories in their

scaling limit. This connection will be explained thoroughly in the next section.

Here we want to introduce some useful key aspects of D +1-dimensional rela-

1this is usually not the case when considering an infinite lattice, but we consider this case
for simplicity.
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tivistic QFT.

One of the main goals of a QFT is the study of correlation functions of local fields,

as they are the only physical quantities in the theory, in the sense that they can

be related to observables. First we want to settle what we mean by locality. In a

relativistic theory we say that a field is local if it is causally independent of any

other fields for space-like intervals. We apply this definition on a countable set

of fields φa(x) a ∈N. This is a set of local fields if

[
φa(x),φb(y)

]
= 0 ∀a,b ∈N ∀x, y

∣∣∣
(
x0 − y0)2 < |~x−~y|2 (1.31)

This definition is quite cumbersome as it is, and can be simplified further. In fact

the temporal evolution of a field is governed by the Hamiltonian H =
∫

dxDh(x),

where h(x) is the energy density. We can define locality by asking that h(x) do

not depend on any other fields for space-like intervals, that is

[φa(x),h(y)]= 0 a ∈N ∀x, y
∣∣∣

(
x0 − y0)2 < |~x−~y|2 (1.32)

If we prepare a configuration of fields which satisfy eq. (1.32) we can easily see

that any later configuration will automatically satisfy eq. (1.31), so that the two

definitions are equivalent. This is due to the fact that due to eq. (1.32) any later

couple of fields will be quantum mechanically independent, and then eq. (1.31)

holds.

As we will see in the next section the real equivalence is between quantum lattice

theories close to criticality, and Euclidean QFT. The next step is then to define

the correlation functions in the Euclidean QFT as

〈0|φa1(x1)φa2(x2)...φan
(xn) |0〉 =

1

Z

∫[
Dφ

]
φa1(x1)φa2(x2)...φan

(xn)e−S[φ], (1.33)

where S[φ] is the action functional, and Z =
∫[

Dφ
]

e−S[φ] the partition function.

The connections of this expression with a lattice theory, and in particular of the

integration measure, will be explained in section 1.6.

We focused on a countable set of fields because in general one could define a

complete basis of operators with countable members. With this we mean that

there exists a set of fields on which a general operator O can be decomposed
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linearly as

O (x)=
∑

n∈N
anφn(x), (1.34)

where an are c-numbers. Here we are simplifying heavily the notation and we

are not expressing explicitly any quantum number, but clearly all quantum num-

bers of the lhs and the rhs must match. Examples of such a set are the ordered

products of powers of the field and its derivatives for a free bosonic theory. Equa-

tion (1.34) has to be taken in the weak sense, viz. is true only when the operator

O appears into an expectation value.

Another remarkable feature of a relativistic QFT is the existence of an operator

product expansion. Consider a physical process which is characterized by two op-

erators O1(x1) and O2(x2) separated by a very small distance1 compared with all

the other operators ϕi(yi) taking part in the process. It is sensible to think that

fluctuations of these two operators are not felt by ϕi, so that their product can

be replaced by an effective vertex in the diagrams contributing to the process.

Following this idea we can then state

O1(x1)O2(x2)=
∑

n∈N
cn

12 (|x1 − x2|)φn(x1), (1.35)

where cn
12 are c-number functions, dependent only on the nature and relative

positions of the operators O1(x1) and O2(x2). Again as in eq. (1.34) the only fields

allowed in the rhs are those with quantum numbers compatible with the lhs.

1.6 Quantum field theory as scaling limit

At a quantum critical point the divergence of the correlation length makes it

impossible to find a length scale. One consequence is that the lattice spacing is

infinitesimal compared to the range of correlations, and we can think about it as

vanishing. This allows us to treat the degrees of freedom as a continuous field,

and rely on quantum field theory to describe the model. In particular, as the

physics is described by infinitely long fluctuations, the model is invariant under

rescaling, and is well described by a conformal field theory. It is natural then to

1here we are taking the Euclidean definition of distance.
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ask ourselves if a quantum field theory can be used even outside criticality. The

answer to this question is yes, but in a very particular case.

The idea comes from the fact that if we are “close enough” to the critical point

the physics is described by low energy excitations. This can be seen with (1.28),

that is in the region where ξ is very large, the gap is almost null, and energy

levels are shifted towards the ground state. This means that the wave function’s

spectral decomposition is governed by low energy modes, whose oscillations are

very big compared to the lattice spacing. Describing the low energy physics of

the model means looking at large distance, and looking at larger distance is in

turn equivalent to reducing the lattice spacing. The equivalence we are after is

then between the low energy physics of a quantum lattice model, and a quantum

field theory.

We want then to consider a vanishing lattice spacing, but the “naive” limit a → 0

changes sharply the physics, as all dimensional physical quantities are mea-

sured in lattice spacings. In order to maintain the same physics we have to keep

the characteristic length unmodified, and this is achieved by increasing ξ. This

means taking the limit a → 0, and the limit ξ → ∞. Loosely speaking we are

reducing the lattice spacing, but at the same time we are zooming into the sys-

tem, in such a way that we observe the same characteristic distance. In a more

physical fashion it means changing the coupling h in the following way

lim
h→hc

lim
a→0

[aξ(h)]= ξ̂, (1.36)

such that ξ̂ does not change. The definition of the characteristic length ξ̂ is ar-

bitrary, and is this definition which defines the way the two limits in the lhs of

eq. (1.36) must be performed. In fact these limits are taken to keep ξ̂ constant.

Along with the correlation length, all the lengths have to be rescaled accordingly.

That is we want to keep the coordinate of the site î = ai untouched, and this

means performing the limit i →∞. Performing these two limits we can observe

that 〈OiO j〉 vanishes as a2d → 0. We regularize the correlator by a multiplicative

renormalization. Defining the quantity m = 1/ξ̂ we compute

lim
h→hc

lim
a→0

[
(mξ)2d 〈OiO j〉

]
= 〈0|O (x)O (y) |0〉 ∼ e−m|x−y|. (1.37)
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Under these limits then the correlation function can be rewritten as a two point

function of an Euclidean QFT where we called O the quantum field counterpart

of the lattice operator O, and we identified the continuum coordinates x, y = î, ĵ.

This relation explains better the meaning of eq. (1.33) in light of the lattice

model. In particular allows us to define the integration measure in QFT as

∫[
Dφ

]
= lim

a→0

[
∑

config

∏

n∈N

∏

x

dφ̃n(x̂)

]
, (1.38)

where φ̃n are the lattice counterparts of fields, and we are summing over all

the possible configurations. This quantity is generally divergent, but a rigorous

definition would be far too detailed for our scope.

This sequence of limits is called the scaling limit, and the resulting QFT will

be denoted as scaling theory. A first consequence of eq. (1.37) is that the mass

scale of the QFT m is equivalent to the lattice quantity 1/ξ̂. In particular as it

corresponds to the dimensionful gap ∆̂ in a relativistic theory, we can interpret

this quantity as the mass of the lightest particle in the spectrum. A summary of

all the relationships between QFT and lattice quantities is reported in table 1.1.

lattice theory QFT

D-dim. lattice D+1 Euclidean manifold
rotation and translation invariance, z = 1 relativistic theory

dimensional position î coordinate x

1/ξ̂ m

operator Oi operator O (x) of dimension d

〈OiO j〉 〈0|O (x)O (y) |0〉

Table 1.1: Summary of the map between a lattice theory and its corresponding
scaling quantum field theory.

The QFT as depicted by eq. (1.37) is clearly a simplification over the corre-

sponding lattice theory, as it captures only the low-energy features. Forgetting

about the short-distance physics though means that it describes all the universal

features of a lattice theory, and this is indeed the scope of a scaling limit.

Notice that the process described in this section is equivalent but opposite to

the renormalization techniques developed in quantum field theory. As well ex-
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plained in the introduction of Montvay & Münster [1994], in QFT we regularize

by discretizing continuum theory, that is introducing a lattice spacing a. In that

case there are ultra-violet divergences that come from the integration over mo-

menta of the loop’s contributions. When the QFT is discretized on a lattice, due

to the periodicity 2π/a of the Fourier series on the lattice, we can integrate only

over the first Brillouin zone −π/a ≤ p ≤π/a. This clearly gives a finite result, and

the next step would be sending the lattice spacing to zero, and renormalize the

theory, exactly as we did in this section.

1.7 The area law

Now that we have a clearer picture on what is and how to quantify entanglement,

we can ask ourselves which are the differences between a quantum system and a

classical system. An attempt to answer this question is based on the comparison

between the classical entropy and the von Neumann entropy.

The first difference is the very interpretation of these two quantities. Entropy

enters the classical picture in thermodynamics, where it quantifies the “igno-

rance” of a macroscopic observer on the microscopic state of a system. The easi-

est example one could think about is an isolated system of fixed energy, volume,

and number of constituents. Calling Ω the number of microscopic configurations

compatible with the values of macroscopical quantities the entropy is S = k logΩ.

The entropy then quantifies the uncertainty we have on the microscopic configu-

ration of the system.

We can make a second more complicated example which is more directly compa-

rable with the bipartite setting. Suppose we have a classical many-body system

at fixed temperature, volume and number of constituents, and we divide it in a

region A and a sorrounding environment B. We take the last to be big enough

to be considered an infinite energy thermal bath. We allow the two partitions

to exchange only heat, and we wait long enough for the two parts to be in ther-

mal equilibrium. If we focus on the system A it is sensible to suppose that the

probability for the system to be on an energy level is directly proportional to the

number of microstates corresponding to that energy pi = CΩ(E i), where C is a
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real number. With a bit of work one can demonstrate that pi = e−
Ei
kT holds1, and

the entropy, as defined in thermodynamics, corresponds to S =−k
∑

i pi log pi. If

we fix a temperature we can compute the energy 〈E〉, and the entropy will be

S =−k〈logΩ(E)〉. The same statement applies then here, the entropy is again a

function of the uncertainty we have on the microscopic configurations. Clearly at

zero temperature, where only the lowest energy state is accessible, the two cases

are equivalent.

In the quantum case we could have a non-zero entropy even with absolute cer-

tainty on the microstate. This can be easily seen with the example of the bi-

partite system. If we prepare a classical system in a given microstate, and we

bipartite it both the entropies of its partitions are zero. This follows from the fact

that we know the global state, so that we know with certainty the microstate of

any of its partitions. In the quantum case, as we have seen in section 1.2 this

is not true. Even if we prepare the global state with absolute certainty its par-

titions can in general have a non-zero entropy. This difference is encoded in

the subadditivity property of the entanglement entropy. In the classical case

S(ρAB) = S(ρA)+S(ρB), showing that the two partitions are uncorrelated, while

in the quantum case there is an inequality, showing that there are some left-over

correlations between the parties, even at zero temperature.

We want to show an example in which these correlations are well quantified in

terms of quantum information. We focus on the bipartite setting, and we call dA

and dB the dimensions of the Hilbert space of regions A and B respectively. An

interesting question is the following: if the global state were a random pure state,

what would the average entropy of the region A be?

The answer was conjectured by Page [1993], and proven by Foong & Kanno

[1994] and Sen [1996] to be

〈SA〉 ≃ logdA −
dA

2dB

(1.39)

1this case is an example of a canonical ensemble, and its probability distribution is usually
normalized by a partition function Z. For simplicity of notation here we are assuming Z = 1,
which is equivalent to dividing Ω(E i) by the total number of possible microstates, such that∑

i Ω(E i)= 1. The reader who wants a more complete treatment of this subject can find it on e.g.
Huang [1987].
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for 1 ≪ dA ≤ dB. We can see then that the mean sub-state is very close to the

maximally entangled state, and the smaller the partition the closer it gets. We

define the average information of a system as I(ρ)= SMAX −〈S(ρ)〉, where SMAX

is the entropy of the maximally entangled state in the Hilbert space, that is

SMAX = logd, where d is the dimension of the Hilbert space. Then, continu-

ing with the same example we have I(ρAB) = logdA + logdB, I(ρA) = dA

2dB
, and

I(ρB) = logdB − logdA + dA

2dB
. The amount of information contained by the parti-

tions and their internal correlation is then very small, leaving all the information

on the global state to the correlations between the two parts.

The second, and arguably most remarkable difference between the classical

case and the quantum one is the extensivity. In a classical system the uncer-

tainty is directly proportional to the number of degrees of freedom contained in

the system, and this makes the entropy an extensive quantity. This is not the

case for a typical ground state of a quantum system. In the pioneering works

of Bombelli et al. [1986], and Srednicki [1993], it was shown that in this case

the entropy would rather obey an area law. In those works the authors where

dealing with free D-dimensional massless local quantum field theories, finding

that

S(ρA)= S(ρB)=A
∂̂A

εD−1
, (1.40)

where ∂̂A is the dimensional boundary of the region A, A is a dimensionless

constant, and ε is an ultraviolet cut-off 1. If we were to interpret these QFTs

as scaling limit of lattice theories (or we consider their lattice regularizations),

that cut-off would have a natural interpretation, and could be taken to be pro-

portional to the lattice spacing.

This result gives us some insights on the distribution of quantum correlations

in the ground state. When we are dealing with local QFT, or equivalently with

lattice systems with short range interactions, quantum correlations between two

regions accumulate on the boundary between them. This rather non-trivial re-

sult was demonstrated rigorously for massive (gapped) one-dimensional theories

1notice that the authors were dealing with this problem in the context of black hole entropy,
the two regions were then the sphere inside the event horizon, and the outer region, and the
cut-off was set to be the inverse of the Plank mass.
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in Hastings [2007]. Equation (1.40) would imply a constant entanglement en-

tropy for one-dimensional critical theories. In Holzhey et al. [1994] it was shown

that this law does not hold in this case, and entanglement entropy would rather

satisfy,

S(ρA)=L log
L̂

ε
, (1.41)

where L is a dimensionless constant typical of the model at hand, L̂ is the length

of the chain, and ε is again a UV cut-off. We will devote Chapter 2 to proving

eq. (1.41), and fixing L .

The area law holds for gapped systems when L ≫ ξ as was found in Calabrese &

Cardy [2004]; Cardy et al. [2008]. In that case one finds

S(ρA)=S (ξ). (1.42)

The constant S (ξ) depends both on the model at hand, and the correlation length

(mass scale of the scaling QFT), and it will be studied thoroughly in Chapter 3.
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2
Entanglement Entropy in Conformal Field

Theory

Conformal invariance is very constraining for a quantum field theory, nonethe-

less it has played a central role in the study of critical many-body systems. As we

already mentioned in section 1.6, at the critical point their physics is character-

ized by fluctuations at all length scales, so that they are invariant under changes

of scale. This feature, combined with the usual Poincaré invariance equip the

theory with a symmetry under global conformal transformations. It was firstly

noticed by Polyakov [1970] that local1 theories invariant under scale transforma-

tions should be invariant under a local conformal transformation. Belavin et al.

[1984] found that this consideration is particularly powerful in two dimensions,

where the local conformal algebra becomes infinite dimensional, and constrains

correlation functions enough to allow a complete description and classification of

critical models.

In this chapter we review shortly their results, and we finally focus on methods

for evaluating entanglement entropy in CFT.

1here “local" means defined by short-range interactions; notice that this feature does not
forbid long-range correlations, which are actually present in a model at its critical point.
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2.1 Conformal Field Theory

What follows in these sections is a general introduction to conformal field theo-

ries, mainly based on Francesco et al. [1996] and Ginsparg [1988], from which we

borrowed the logic path. We will start by reviewing general features of conformal

invariant theories in D dimensions. A conformal transformation acts on a space

equipped with a metric tensor gµν(x), leaving the latter invariant up to a scale

gµν(x)→Λ(x)gµν(x). (2.1)

We restrict our analysis to a flat space gµν(x) = ηµν of positive signature. Study-

ing the infinitesimal transformation xµ → xµ+εµ one easily arrives at

∂µεν+∂νεµ =
2

D
ηµν∂ρε

ρ, (2.2)

which manipulated further gives

(2−D)∂µ∂ν∂ρε
ρ = ηµν¤∂ρε

ρ, (2.3)

where ¤= ∂µ∂
µ. A rapid look to this last equation immediately suggests that the

case D = 2 is somehow special, and we will specialize on that in the next section.

For D > 2, eq. (2.3) forces ε to be quadratic in the coordinates, so that its most

general form is

εµ(x)= aµ+b
µ
ρxρ+ c

µ
ρσxρxσ, (2.4)

and imposes c
µ
ρσ = c

µ
σρ, and b

µ
ρ = αη

µ
ρ +m

µ
ρ, where m

µ
ρ is a skew-symmetric ma-

trix. Analyzing separately the three powers of x in (2.4), it is possible to extract

the finite conformal transformations, and their generators, which are presented

in table (2.1). Clearly translations and rotations are typical of a relativistic

field theory, while invariance under dilations and special conformal trans-

formations (SCT) are the new constraints introduced by scale invariance.

It is of great importance to analyze the n-point invariants of the theory Γ(n),

as they are the quantities which will be used to build correlators in the field

theory1. The invariance under the Poincaré group implies that Γ(n) must depend

1indeed as the n-point functions correspond to the physical quantities that we can extract
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Translation x′µ = xµ+aµ Pµ =−i∂µ
Rotation x′µ =Λ

µ
νxν Lµν = i(xµ∂ν− xν∂µ)

Dilation x′µ =λxµ D =−ixρ∂ρ

SCT x′µ = xµ−bµx2

1−2bρxρ+b2x2 Kµ =−i(2xµxν∂ν− x2∂µ)

Table 2.1: Finite conformal transformations, and generators of the infinitesimal
transformations in general dimensions.

on distances |xi − x j|; moreover dilations force invariants to depend on ratios

|xi − x j|/|xk − xl |. Finally, special conformal transformations constrain all the n-

points invariant with n ≤ 3 to be constants, giving as first invariant the harmonic

ratios

Ri jkl =
|xi − x j||xk − xl |
|xi − xk||x j − xl |

. (2.5)

Another consequence of conformal invariance is the tracelessness of the energy-

momentum tensor. This tensor is defined considering the variation of the action

functional under the infinitesimal transformation xµ → xµ+ǫµ, that is1

δS =
∫

dD xTµν∂µεν. (2.6)

Now plugging (2.4) into (2.6) one can see that T
ρ
ρ = 0 implies invariance under

dilations. So that if we want our theory to be invariant under conformal trans-

formations we need the tracelessness of the energy-momentum tensor.

The last feature we focus on for general dimensions is the form of correlation

functions for quasi-primary operators. These fields are defined in the classical

theory and denoted by φa(x). They generally belong to a representation of the

Lorentz group, but we focus only on spinless operators here for simplicity. They

transform then under conformal maps as

φa(x)=
∣∣∣∣
∂x′

∂x

∣∣∣∣

da
D

φa(x′), (2.7)

from the theory, they must be conformal invariant.
1in the following the stress-energy tensor is assumed to be symmetric. This does not pose

any restriction, as in Lorentz invariant theories this tensor can always be made symmetric.
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where
∣∣∂x′/∂x

∣∣ is the Jacobian of the transformation, while da is the scaling di-

mension of φa. We divided the exponent by the number of dimensions in order to

have a simplification, as the dimension of the Jacobian is D. Now considering the

transformation law (2.7), and assuming that the action is invariant under con-

formal transformations, it is clear that the n-point functions satisfy the equation

〈φ1(x1)φ2(x2)...φn(xn)〉 =
∣∣∣∣
∂x′

∂x

∣∣∣∣

d1
D

x=x1

∣∣∣∣
∂x′

∂x

∣∣∣∣

d2
D

x=x2

...

∣∣∣∣
∂x′

∂x

∣∣∣∣

dn
D

x=xn

〈φ1(x′1)φ2(x′2)...φn(x′n)〉.

(2.8)

Let us consider then the two point function

G(x1, x2)ab = 〈φa(x1)φb(x2)〉. (2.9)

Due to invariance under rotations and translations it depends only on the rela-

tive distance. Dilation invariance implies that (2.9) must behave as |x1−x2|−d1−d2 ,

and special conformal transformations lead to the condition G(x1, x2)ab 6= 0 ⇐⇒
da = db. It follows then, after a convenient normalization, that

G(x1, x2)ab =
δab

|x1− x2|2da
. (2.10)

The same arguments can be applied quite easily to the three and four-point func-

tions. This matter though goes beyond the scope of this manuscript, and will not

be reported here. The interested reader can find them in the references reported

at the beginning of this section.

2.2 CFT in 1+1 Dimensions

As we anticipated at the beginning of the chapter the case D = 2 is somehow

special, and this section is devoted to its analysis.

In this case eq. (2.2) becomes the Cauchy-Riemann equations

∂0ε
0 = ∂1ε

1 and ∂0ε
1 =−∂1ε

0 or, (2.11)

∂0ε
0 =−∂1ε

1 and ∂0ε
1 = ∂1ε

0, (2.12)
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and its finite version can be derived by simply using eq. (2.1). Calling f the

conformal map which links the initial and final coordinates we obtain

(
∂0 f 0(x)

)2 +
(
∂1 f 1(x)

)2 =
(
∂1 f 0(x)

)2+
(
∂0 f 1(x)

)2
,

∂0 f 0(x)∂0 f 1(x)+∂1 f 0(x)∂1 f 1(x)= 0,
(2.13)

whose solutions are the finite versions of eqs. (2.11) and (2.12).

It is then natural to use complex coordinates z = x0+ ix1, z̄ = x0− ix1, such that if

we choose (2.11) a conformal transformation will act as a holomorphic function,

while for (2.12) it will be antiholomorphic. In particular expressed in these co-

ordinates, eq. (2.13) reads ∂z̄ f (z, z̄) = ∂z f̄ (z, z̄) = 0, that means that holomorphic

transformations depend only on z, and antiholomorphic only on z̄. We will treat

z and z̄ as two independent variables, and in particular we consider x0 and x1 to

be complex variables too, so that f and f̄ will be just a change of coordinates in

the complex plane. This considerations open the set of coordinates to unphysical

values, but we can recover the physical case by imposing z∗ = z̄.

In two dimensions the conformal transformations are embodied by the set of all

the analytic functions of the complex plane. Here we have to be extremely careful

when we define the conformal group. At this stage the set of analytic functions

is not a group1 on the whole complex plane. This is a direct consequence of the

fact that we considered local transformations, which in general are not invertible

in the whole plane. Moreover any analytic function is characterized in principle

by infinitely many parameters, that are the coefficients of their Laurent series,

making the group infinite dimensional. There is then a huge difference between

the local conformal group, and the global conformal group. For the last we have

to restrict the set to all those holomorphic functions which are invertible on the

whole plane. It can be demonstrated that these transformations form the pro-

jective linear group PGL(2,C), which is isomorphic to SL(2,C). This group is de-

fined by three complex parameters, which reduce to three real parameters once

we set z∗ = z̄. We recover then the situation described for general dimension at

the beginning of this chapter.

Far more interesting is the case in which we allow our group elements to be in-

1with respect to the composition.

31



vertible only locally. As we have seen that the holomorphic and antiholomorphic

parts are decoupled, from now on we will focus on the first case, and any defi-

nition will be naturally extended to the second case. The local group is infinite

dimensional, thus we have an infinite number of generators which we aim now

to calculate. We consider an infinitesimal transformation that admits Laurent

expansion around z = 0

f (z)= z+
∞∑

n=−∞
cnzn+1, (2.14)

where cn are the Laurent coefficients of such a series. We can easily find the

generators applying this transformation to a scalar dimensionless quasi-primary

field φ(z), for which

δφ(z)=−
( ∞∑

n=−∞
cnzn+1

)
∂zφ(z). (2.15)

We can read the infinitesimal generators off this formula which we call ln =
−zn+1∂z, and their antiholomorphic counterparts l̄n = −z̄n+1∂z̄, and finally we

find their algebra

[lm, ln]= (n−m)lm+n

[
l̄n, l̄m

]
= (n−m)l̄m+n

[
ln, l̄m

]
= 0.

(2.16)

It is important now to understand which generators correspond to physical trans-

formations. To begin with we notice that l−1, l0, l1 form a sub-algebra, which

corresponds to the global conformal transformations. In particular when z∗ = z̄

we have the identification of translations with
(
l−1 ± l̄−1

)
, dilations with l0 + l̄0,

rotations with ±i
(
l0 − l̄0

)
, and finally SCT are generated by linear combinations

of l1 and l−1.

In two dimensions we can extend the definition (2.7) to fields with spin. Con-

sidering a quasi-primary field with spin s and scaling dimension d we can de-

fine the holomorphic conformal dimension ∆= (s+d) /2, and its antiholomorphic

counterpart ∆̄= (d− s) /2. Its transformation law under a global conformal trans-
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formation f , f̄ is then

φ(z, z̄)=
(
∂ f (z)

∂z

)∆ (
∂ f̄ (z̄)

∂z̄

)∆̄
φ

(
f (z), f̄ (z̄)

)
. (2.17)

There will be in general a class of fields which transform as in eq. (2.17) under

any local conformal transformation, and they are called primary fields. For these

fields eq. (2.10) can be expressed as

G(x1, x2)ab =
δab

|z1 − z2|2∆a |z̄1 − z̄2|2∆̄a

, (2.18)

and the same arguments apply for three and four-point functions.

2.2.1 The Stress Energy Tensor and Conformal Ward Iden-

tity

In this section we investigate the consequences of Ward identity in two dimen-

sional conformal field theory. First, following eq. (2.6) we introduce the con-

served currents jµ in terms of the stress energy tensor in euclidean coordinates

as jµ = T
µ
νε

ν, where εν are the infinitesimal generators of the conformal alge-

bra as defined in eq. (2.4). Switching to complex coordinates one can easily check

that T z̄z = Tzz̄ = 1
4 T

ρ
ρ = 0, Tzz = 1

4 (T00−T11)+ i
2 T10, and T z̄ z̄ = 1

4 (T00−T11)− i
2 T10.

The conservation law ∂µTµν = 0 translates into complex coordinates as ∂zT z̄ z̄ =
∂z̄Tzz = 0. Thus also the stress energy tensor is divided into a holomorphic and

antiholomorphic part, which we will call respectively T and T̄1. The Ward iden-

tity is a general result, and states that in the presence of a symmetry of the

action, the variation of an operator O is

δO =
∫

d2x∂µ〈 jµO〉, (2.19)

where the integral is performed over a surface which contains the coordinates of

all the fields in play. It is particularly interesting applying this law to a primary

field φ. Equation (2.19) can be compared with the infinitesimal action of the

1in particular we choose a normalization such that T =−2πTzz, and T̄ =−2πT z̄ z̄
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conformal group on φ, that is φ′(x)=φ(x)− iεµ(x)Gµφ(x), where Gµ are the gener-

ators of the conformal algebra as listed in table 2.1. By doing so for translations,

rotations, and dilations we find

∂

∂xµ
〈Tµ

ν (x)φ(y)〉 =−δ(x− y)
∂

∂xν
〈φ(x)〉, (2.20)

εµν〈Tµν(x)φ(y)〉 =−iδ(x− y)s〈φ(x)〉, (2.21)

〈Tµ
µ(x)φ(y)〉 =−δ(x− y)d〈φ(x)〉. (2.22)

Now using as representation of the delta function in the complex plane δ(x) =
1
π
∂z̄

1
z
= 1

π
∂z

1
z̄
, and with a bit of work, we can express eqs. (2.20)–(2.22) in the

complex plane. The derivation is too long to be reported here, but is just a ques-

tion of manipulations, and gives the definition of the OPE of a primary field with

the stress energy tensor

T(z)φ(w, w̄)=
∆

(z−w)2φ(w, w̄)+
1

z−w
∂wφ(w, w̄)+ ... (2.23)

T̄(z̄)φ(w, w̄)=
∆̄

(z̄− w̄)2φ(w, w̄)+
1

z̄− w̄
∂w̄φ(w, w̄)+ ... (2.24)

where the dots stand for regular terms in the limit (w, w̄)→ (z, z̄). A primary field

then is characterized by at most a double pole in its OPE with the stress energy

tensor. Any operator with a higher pole is called secondary field.

2.2.2 The free Majorana Fermion

It is worth specializing these findings to the case of a free Majorana Fermion,

as it will recur many times in our work. We consider this example in light of

its connection with the two-dimensional Ising model found by Zuber & Itzykson

[1977]. In that work the off-critical case was considered, but an adaption to

the critical case is straightforward. The Ising model can be described by two

Hermitian fields ψ1(x) and ψ2(x), which can be interpreted as the components of
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a Majorana spinor. We introduce then

Ψ(x)=
(
ψ1(x)

ψ2(x)

)
(2.25)

γ0 =σ1 =
(

0 1

1 0

)
γ1 = iσ2 =

(
0 1

−1 0

)
γ5 = γ0γ1 =−σ3 =

(
−1 0

0 1

)
, (2.26)

where γ0, γ1 satisfy the Clifford algebra {γa,γb} = 2ηab
I. Then the equations

of motion will be γµ∂µΨ(x) = 0. In this representation the two components are

eigenstates of γ5, with opposite chirality, and the equation of motion can be ex-

pressed in components as the two equations (∂0−∂1)ψ1(x)= (∂0+∂1)ψ2(x)= 0.

To switch to complex coordinates we need first to perform a Wick rotation by

defining the variable τ= ix0, and then we define the complex variables z = τ+ix1,

and z̄ = τ− ix1. Identifying ψ̄ ≡ ψ1 and ψ ≡ ψ2 the equations of motion become

∂ψ̄(z, z̄)= ∂̄ψ(z, z̄)= 0. These equations are defined by the action1

SMajorana =
1

2π

∫
dzdz̄ {ψ(z, z̄)∂̄ψ(z, z̄)+ ψ̄(z, z̄)∂ψ̄(z, z̄)}. (2.27)

First of all we want to determine the two point functions, that are the propaga-

tors of the theory. Dealing with a free theory we can achieve this by rewriting

the action in the form S = 1
2

∫
d2xd2 yΨ(x)A(x, y)Ψ(y), defining A(x, y) = iδ(x−

y)γ0γµ∂µ.

Now we can find the kernel, defined as K(x, y) | A(x, y)K(x, y)= δ(x− y)I , that is

1

π

(
∂z̄ 0

0 ∂z

)(
〈ψ(z)ψ(w)〉 〈ψ(z) ¯ψ(w)〉
〈 ¯ψ(z)ψ(w)〉 〈ψ̄(z)ψ̄(w)〉

)
=

1

π

(
∂z̄

1
z−w

0

0 ∂z
1

z̄−w̄

)
. (2.28)

1in eq. (2.27) we introduce a factor 1/2π for later convenience in the expression of the two
point function, this has clearly no effect on the equations of motion.
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From eq. (2.28) we can easily extract

〈ψ(z)ψ(w)〉 =
1

z−w

〈ψ̄(z)ψ̄(w)〉 =
1

z̄− w̄

〈ψ(z) ¯ψ(w)〉 = 〈 ¯ψ(z)ψ(w)〉 = 0.

(2.29)

Differentiating with respect to w we find

〈ψ(z)∂wψ(w)〉 =
1

(z−w)2 , (2.30)

and we can extend trivially this result for higher order derivatives. From these

results we immediately see that ∆ψ = ∆̄ψ̄ = 1/2, and ∆ψ̄ = ∆̄ψ = 0. Knowing that

sψ = sψ̄ = 1/2, we can derive dψ = dψ̄ = 1/2.

Now we want to test the OPE of the stress energy momentum tensor. This opera-

tor can be easily extracted from eq. (2.27), and is T(z)=−1
2 :ψ(z)∂ψ(z) :. With the

colon notation we mean we take the ordered product of the operators involved,

that is defined as : a :≡ a−〈a〉. This is needed whenever we define an operator

by the product of other operators, as this will naturally diverge when we con-

sider fields at the same point. From the definition of the stress energy tensor,

eqs. (2.28) and (2.31), and applying the Wick theorem we can compute the OPEs

T(z)ψ(w)=
1

2

ψ(z)

(z−w)2 +
∂ψ(z)

z−w
+ ..., (2.31)

and

T(z)T(w)=
1

4

1

(z−w)4 +
2T(z)

(z−w)2 +
∂T(z)

z−w
+ .... (2.32)

Equation (2.31) confirms that ψ is a primary field of conformal weight ∆ = 1
2 .

From eq. (2.32) on the other hand we understand that the stress energy tensor is

not primary. This is quite surprising at first sight as T(z) is a quasi-primary in

the classical theory. The fourth-order pole in the OPE of the stress energy tensor

with itself has been introduced by the quantization process.
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2.2.3 The central charge

The result on the two point function of the stress energy tensor in eq. (2.32) can

be actually generalized, and we can state that in any theory

T(z)T(w)=
c

2

1

(z−w)4 +2
T(z)

(z−w)2 +
∂zT(z)

z−w
+ ... (2.33)

Of course we would have to report also the antiholomorphic version of eq. (2.33),

through which c̄ is defined. We consider only theories for which c = c̄, so that such

an equation is redundant. The constant c is the central charge, and depends

on the model under consideration. The first consequence of the presence of a

central charge is that the quantization of a conformal field theory changes the

algebra (2.16) into the Virasoro algebra. The quantum version of the generators

l−n defined in eq. (2.16) are the “coefficients" of the Laurent series of the stress

energy tensor

T(z)=
∞∑

n=−∞
z−n−2Ln, Ln =

∮
dz

2πi
zn+1T(z). (2.34)

As already mentioned they satisfy the Virasoro algebra

[Ln,Lm]= (n−m)Ln+m +
c

12
(n3−n)δn+m. (2.35)

Conformal invariance in two dimensions is powerful enough to allow a division

in what are usually called conformal families. These are defined by a primary

operator, and a set of secondary operators which can be obtained from it by con-

secutive applications of Ln. By applying these generators we decrease the weight

∆ of the resulting field, such that the primaries are called highest weight fields,

while the secondaries are its descendants. A remarkable result is that the clas-

sification of the highest weight operators of a theory is enough to classify all the

possible irreducible representations of the conformal group. We will not go in

any detail on this matter, for which there exists a vast literature. We redirect

the interested reader to one of the textbooks signaled at the beginning of this

chapter.

The central charge is also an anomaly of the theory. Indeed considering the
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one-loop correction to a process one has to deal with self-energy contributions

Πµνρσ(p) =
∫

d2x eipx〈Tµν(x)Tρσ(0)〉. In particular one has to regularize this

terms as they are ultraviolet divergent, and this can be achieved e.g. by dimen-

sional regularization. One would expect that Π
µ
µρσ(p) = 0, due to the traceless-

ness of the stress energy tensor, but surprisingly enough this is not the case.

This anomaly is proportional to the central charge, and breaks the local confor-

mal invariance1.

The central charge appears also in the transformation law of the stress en-

ergy tensor. With eq. (2.33) we can immediately understand that T(z) is not a

primary operator, and then does not transform as in eq. (2.17). Its transforma-

tion law is indeed more involved

T ′(w)=
(

dw

dz

)−2 [
T(z)−

c

12
{w, z}

]
, (2.36)

where

{w, z}=
d3

zw

dzw
−

3

2

(
d2

zw

dzw

)2

, (2.37)

with dz the total derivative with respect to z, is the Schwartian derivative. This

relation has a remarkable consequence. Let us consider a conformal theory on a

two-dimensional manifold that can be obtained by a local conformal transforma-

tion on the complex plane. In general the trace of the stress energy tensor would

not be zero. Indeed calling M this manifold and w = w(z) its coordinates we find

〈T(w)〉M =
(

dw

dz

)−2 [
〈T(z)〉C−

c

12
{w, z}

]
=

d3
zw

(dzw)3 −
3

2

(
d2

zw

(dzw)2

)2

, (2.38)

where in the last equality we used the fact that the vacuum expectation value of

the stress energy tensor must be null in the complex plane, due to scaling invari-

ance. We are left then with a combination of derivatives of the transformation

that could be nonzero.
1our presentation of the conformal anomaly ends here, but we suggest Duff [1994] for further

details.
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It is a general result that

〈T(w)〉M =
c

24π
R(w), (2.39)

where R(w) is the local curvature of the manifold. This is then another example

of a manifestation of an anomaly. All these considerations will become very use-

ful in the next section, where we aim to consider a conformal field theory on a

Riemann surface.

2.3 CFT on a Riemann surface

In the previous sections we have seen how conformal invariance in two dimen-

sions constrains a QFT, and how the knowledge of all primary fields of a theory

leads to a complete description of the theory. A primary field is defined by its

conformal weight, so that two theories whose primary fields’ dimensions match

are in fact equivalent. This is the key to the success of CFT for describing critical

statistical models, as it has the concept of universality classes built in. In this

section we describe an expanded picture of these ideas by considering the theory

on a Riemann surface.

First we would like to introduce the physical motivations for such a study. Our

final goal is to evaluate the entanglement entropy of a bipartite setting in 1+1-

dimensional CFT. This corresponds to evaluating the entanglement entropy of a

critical one-dimensional quantum lattice system, as explained in section 1.6. To

avoid confusions in notation we will study this problem directly in a quantum

field theory. We consider then a critical QFT quantized on the real line, evolving

in imaginary time. We take it to be in its ground state at zero temperature, and

we focus on the configuration of fields at a given time, which we can take without

loss of generality to be τ = 0. We divide then the real line into two sub-regions

which we call A, and B, as depicted in figure 2.1.

This setting is the same as the one described by eq. (1.13), and, once we have de-

fined ρA, we can proceed with the evaluation of the entropy (1.15). In a quantum

field theory we have an infinite number of degrees of freedom in an infinitesimal

space and, even if conceptually well defined, it is technically a hard task to per-

form the tracing out, and then to define the reduced density matrix. In order to
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Figure 2.1: In this picture we represent a one dimensional lattice system on
the real line T = 0 which is partitioned into the two regions A and B. Due to
translation invariance the region A is only defined by its length r, and we choose
A ∈ [0, r]. The blurred curves around the lattice represent the field configurations
of the scaling quantum field theory.

address this issue we employ a method called the replica trick.

2.3.1 The replica trick

This method was introduced in the context of systems with quenched disorder,

as explained in Mezard et al. [1988]; Nishimori [2001]. Their case is physically

very different from ours, but they share some technical details. They consider

e.g. a classical spin system on a D-dimensional lattice with nearest-neighbour

interactions, for which H (Ji j)=−
∑

〈i, j〉 Ji jSiS j. The couplings Ji j are randomly
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distributed, typically with a normal distribution P(Ji j) with mean value J0. In

particular the partition function is

Z(Ji j)=Tre−βH (Ji j) (2.40)

and they want to evaluate the mean value of the free energy

〈F〉 =−β−1k〈log Z〉 =−
∫(

∏

〈i, j〉
dJi j

)
P(Ji j) log Z(Ji j). (2.41)

Generally the dependence of Z on the couplings is rather complicated, and this

makes it impossible to evaluate the configurational average 〈log Z〉 directly. One

uses then the aforementioned replica trick to extract it exploiting the equality

〈log Z〉 = lim
n→1

〈Zn〉−1

n
. (2.42)

This method is clearly useful only when evaluating 〈Zn〉 is easier than 〈log Z〉.
The process is then equivalent to creating n copies of the model, evaluating the

global partition function of this collection of copies, and finally performing the

limit for n = 1. A rather nontrivial problem is represented by the fact that the

first two steps of this method require an integer n. To perform the last limit then

we need to find an analytic continuation of 〈Zn〉 for n ∈R.

Our case parallels the one just described. Instead of evaluating directly TrAρA

we prefer to deal with ρn
A

. The method in eq. (2.42) was adapted to this setting

by Callan & Wilczek [1994]; Holzhey et al. [1994], and becomes

S(ρA)=− lim
n→1

d

dn
TrAρ

n
A. (2.43)

Their results where then specialized in the context of conformal field theory by

Calabrese & Cardy [2004, 2009]. The same trick of eq. (2.43) can be also em-

ployed to evaluate Rényi entropies (1.18) for integer α if we do not perform the

limit.

The first step is then to find a way to implement TrAρ
n
A

. In our case the degrees

of freedom are encoded in the Hilbert space, which is represented by the field
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configurations {φ(x,0)}, x ∈R. We take here and henceforth the example of a the-

ory with a single field without loss of generality. Any state of the Hilbert space
∣∣ψ〉 can be written in terms of these field configurations as

∣∣ψ〉 =
∫[

Dφ
]
〈φ

∣∣ ψ〉
∣∣φ〉 , (2.44)

with coefficients which depend only on the configurations that lay in the “past”,

such that

〈φ
∣∣ ψ〉 =

1
p

Z

∫

C↓

[
Dϕ

]
↓ e−S[ϕ]. (2.45)

Here with
[
Dφ

]
↓ we mean that we integrate only in the region τ < 0, and the

boundary condition on the integral

C↓ : {φ}↓
∣∣ ϕ(x,−∞)=ϕin(x)

∧
ϕ(x,0)=φ(x,0) ∀x ∈R , (2.46)

ensures that we are integrating the right configurations. In eq. (2.45) Z is the

partition function which links in-configurations to out-configurations, and we

are normalizing with 1/
p

Z in order to have the normalization 〈ψ
∣∣ ψ〉 = 1. The

element 〈ψ
∣∣ can be then represented by

〈ψ
∣∣=

∫[
Dφ

]
〈ψ

∣∣ φ〉〈φ
∣∣ , (2.47)

where

〈ψ
∣∣ φ〉 =

1
p

Z

∫

C↑

[
Dϕ

]
↑ e−S[ϕ], (2.48)

and

C↑ : {φ}↑
∣∣ ϕ(x,∞)=ϕout(x)

∧
ϕ(x,0)=φ(x,0) ∀x ∈R . (2.49)

Now in order to obtain ρA we need to trace out the field configurations of the

region B from ρ =
∣∣ψ〉〈ψ

∣∣. This practically means sewing together the conditions

C↑ and C↓ on the line τ= 0. In this way we obtain a matrix element of ρA

〈φA

∣∣ρA

∣∣φ′
A〉 =

∫[
Dφ

]
B
〈φAφB

∣∣ρA

∣∣φ′
AφB〉 =

1

Z

∫

CA

[
Dϕ

]
C\x∈A

e−S[ϕ], (2.50)
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where

CA : {φ}

∣∣∣∣ ϕ(x,±∞)=ϕ out
in

(x)
∧ ϕ(x,ε−)=φ′

A
(x,0)

ϕ(x,ε+)=φA(x,0)
∀x ∈ A,ε→ 0 . (2.51)

In the end ρn
A

〈φA

∣∣ρn
A

∣∣φ′
A〉 =

∫(
n−1∏

i=1
Dϕi

)
〈φA

∣∣ρA

∣∣ϕ1〉〈ϕ1
∣∣ρA

∣∣ϕ2〉 ...〈ϕn−1
∣∣ρA

∣∣φ′
A〉 , (2.52)

can be obtained by taking n different copies of ρA connected by the condition

that the configuration of fields going out of the region A for positive τ of one copy

must be the same configuration coming into the next copy. The final action that

we want to perform is taking the trace over A, and this is simply implemented

by sewing the outgoing configurations of the nth copy with the incoming config-

urations of the first one.

This is equivalent to plugging our CFT in the manifold M depicted in figure 2.2,

and the evaluation of TrAρ
n
A

reduces to the evaluation of the partition function

on M . In particular if we take the region to be the segment A = [0, r] we arrive

at the conclusion

TrAρ
n
A = εδn

ZM (0, r)

Zn
C

, (2.53)

where we are changing the notation, and we are calling ZC ≡ Z the partition

function on the original CFT. The ratio ZM (0, r)/Zn
C

is known to be ultraviolet

divergent1, so that it needs the introduction of a UV cut-off ε to the right power

(which we called δn) in order to regulate this divergence.

2.3.2 The twist field

Following the line of reasoning of the previous section in order to be able to eval-

uate the entanglement entropy we have to deal with

ZM (0, r)=
∫[

Dφ
]
M

e−
∫
M

d2xL [φ], (2.54)

1as explained in Calabrese & Cardy [2004]; Holzhey et al. [1994]
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Figure 2.2: Representation of the multi-sheeted surface M . Each blue layer
represents a copy of the model at hand, and they are connected through the red
branch cut.

where L is the Lagrangian density. Dealing directly with this quantity is rather

difficult, and we prefer to reduce the problem onto a manifold that we know how

to handle. The idea of considering the CFT under a conformal transformation

that maps M into the complex plane was first introduced by Knizhnik [1986,

1987]. The reasoning goes as follows, let us consider the following single-valued

covering map

Ξ : z ∈U =C→ ξ(z) ∈V =C, (2.55)

and suppose it has a branch point a for which considering a point w in a neigh-

bourhood of a

χ=Ξ(w)= a+wn. (2.56)
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The inverse map Ξ
−1(χ) = n

p
χ−a is clearly not single-valued, but can be regu-

larized by putting a branch cut in V , which connects n different sheets of this

manifold. Along with this cut we have to define an analytic continuation of any

analytic function φ on V , that is calling B the branch cut

lim
ε→0

φ(β+ε)= lim
ε→0

φ(β−ε) ∀β ∈ B
∧

∀ε ∉ B. (2.57)

This machinery can be used to map the manifold M onto the complex plane, with

great subsequent simplification. To achieve this goal we will use an adapted ver-

sion of the inverse of the covering map in eq. (2.55), and the analytic continuation

(2.57) will play the role of the sewing conditions in eq. (2.51).

The other key idea pushed forward by Knizhnik [1986, 1987] is to associate a

local primary field to any branch point. A clear contextualization of this method

in CFT has been pursued lately by Calabrese & Cardy [2004, 2009]. These oper-

ators were then called twist fields by Cardy et al. [2008], and in what follows we

will use their formalism.

To introduce the twist field we focus on the inverse of the map in eq. (2.56) where

we take a = 0 for simplicity. We choose to place the branch cut on the positive

real axis, and we associate a twist field to the branch point in the following way.

We call φi the fields on the ith sheet of V , and σ the operation of making a loop

counterclockwise around ξ = 0. The functional integration will have to include

the condition (2.57), such that in this case we have
∫
Cσ(0)

∏n
i=1

[
Dφi

]
, where

Cσ(0) : lim
ε→0

φi(β−ε)= lim
ε→0

φi(σβ+ε)= lim
ε→0

φi+1(β+ε) (mod n). (2.58)

The twist field is denoted with Tσ(0) and is then formally defined by

∫ n∏

i=1

[
Dφi

]
Tσ(0)...≡

∫

Cσ(0)

n∏

i=1

[
Dφi

]
..., (2.59)

where the dots represent the insertion of any other operators.

Notice that the locality of the twist field is ensured by the additivity property of

the action. The action on the collection of the n sheets is defined as the sum of

the action functionals of every sheet, such that eq. (1.32) is satisfied. eq. (2.59)
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defines only one of the possible fields which implement the right branching con-

dition. We could have considered e.g. T̃σ =: Tσφ : instead, and (2.59) would had

been satisfied in any case. What uniquely fixes the twist field is the requirement

that it be primary, with the lowest possible conformal weight, and invariant un-

der all the symmetries of the theory.

Now we go back to the original manifold M . It is clear in light of eqs. (2.56)

and (2.57) it can be considered as a branched Riemann manifold with a branch

cut running on the real axis from z = 0 to z = r. We need to introduce a second

operator T̃σ−1(r), which corresponds to σ−1, that is a clockwise loop, such that

condition (2.57) becomes

Cσ−1(r) : lim
ε→0

φi(β+ε)= lim
ε→0

φi(σ
−1β+ε)= lim

ε→0
φi−1(β−ε) (mod n). (2.60)

The two twist fields T (0) and T̃ (r)1 can be thought of as if they were propagat-

ing two branch cuts which map fields respectively one copy up and one down.

This affects the fields configuration in the following way. Any field crossing the

negative real line does not feel any action, and will propagate on the same copy.

Fields crossing the real line in the region A ∈ [0, r] cross the branch cut propa-

gated by T (0), and then will switch to the copy up. Finally those fields crossing

the real line at values x > r cross both the branch cuts of T (0), and T̃ (r), and

will propagate on the same copy. The picture as just described is represented in

figure 2.3. Now putting together eqs. (2.53), (2.54) and (2.58)–(2.60) we can see

that

TrAρ
n
A =

1

Zn
C

∫ n∏

i=1

[
Dφi

]
T (0)T̃ (r)e−

∑n
i=1 S[φi] = 〈T (0)T̃ (r)〉Cn , (2.61)

What we achieved then is that now the entanglement entropy can be evaluated

through a two-point function of primary field, a much easier object to compute

than a partition function on a Riemann surface.

Next we are interested in determining the conformal weight ∆T of the twist field.

The expectation value of an operator O on the ith sheet of the manifold M can

1from now on we will abandon the subscripts σ and σ−1 as redundant in distinguishing T

from T̃ .
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Figure 2.3: We show the effect of T and T̃ on fields configurations. The black
lines can be interpreted as the centre of some wave packets propagating in the
incrasing τ direction.

be evaluated in terms of its correlation with the twist fields as follows

〈O (ξ, on ith sheet)〉M =
〈Oi(ξ)T (0)T̃ (r)〉Cn

〈T (0)T̃ (r)〉Cn

. (2.62)

Then, as we are interested in the conformal weight of the twist field, we can use

the OPE eq. (2.23) to extract it from its double pole. The stress energy tensor

is an additive quantity, such that on the manifold it holds T(ξ) =
∑n

i=1 Ti(ξ). We

first focus on the inverse of the covering map (2.55) that in our case is

z(ξ)= n

√
ξ

ξ− r
, (2.63)
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such that it first stretches the branch cut to infinity, and then maps the manifold

to the complex plane, as illustrated in figure 2.4. As (2.63) is locally conformal

Figure 2.4: We show the sequence of transformations which unravel the manifold
M on R

2.

we can use eq. (2.38) in order to determine the expectation value of the stress

energy tensor on the manifold, and we obtain

〈T(ξ)〉M =
c(n2 −1)

24n

r2

ξ2(ξ− r)2 . (2.64)

Comparing to eq. (2.39) we see we can interpret the two branch points as points

of M with infinite curvature for any n 6= 1. Equation (2.62) implies that

〈T(ξ)T (0)T̃ (r)〉Cn

〈T (0)T̃ (r)〉Cn

=
c(n2 −1)

24n

r2

ξ2(ξ− r)2 . (2.65)
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Now we can use eq. (2.23) to find the following

〈T(ξ)T (0)T̃ (r)〉Cn =
(

1

ξ− r

∂

∂r
+

h
T̃

(ξ− r)2 +
1

ξ−χ

∂

∂χ
+

hT(
ξ−χ

)
)
〈T (χ)T̃ (r)〉

∣∣∣∣
χ=0
(2.66)

and using eq. (2.18) to define 〈T (χ)T̃ (r)〉 =
∣∣χ− r

∣∣−4∆T and ∆T = ∆
T̃

we finally

obtain

∆T =
c

24

(
n−

1

n

)
. (2.67)

2.3.3 The entanglement entropy

We are now able to evaluate the bipartite entanglement entropy for the region

A. Using eqs. (2.62) and (2.67) we can finallty fix δn in eq. (2.53), and extract

TrAρ
n
A =

( r

ε

)− c
6

(
n− 1

n

)

. (2.68)

The analytic continuation needed for using the replica trick (2.43) is straightfor-

ward, such that the final result is

S(ρA)=
c

3
log

( r

ε

)
. (2.69)

This result allows us to fix the constant L in eq. (1.41), and it captures the

universal features of the entanglement entropy, as it depends only on the central

charge. To enjoy the full power of universality though we have to link the CFT to

a critical lattice model. We have to perform a non-universal step, that is finding

the relation between the lattice spacing and the UV cut-off. We can encode this

non-universality with the introduction of an adimensional constant γ which links

a = γε, such that eq. (2.69) becomes

S(ρA)=
c

3
log

( r

a

)
+

c

3
logγ, (2.70)

Other quantities that can be straightforwardly obtained from eq. (2.68) are the

Rényi entropies (1.18), that in CFT take the form

Sn(ρA)=
c

6

(
1+

1

n

)
log

( r

a

)
+

c

6

(
1+

1

n

)
logγ. (2.71)
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The constant corrections in eqs. (2.70) and (2.71) are non-universal, as they de-

pend on the renormalization point, and cannot be determined by CFT arguments.

They can though be found and fixed by direct calculations or numerical simula-

tions on the lattice. This has been the case in Cardy et al. [2008]; Franchini et al.

[2008]; Iglói & Juhász [2008]; Its et al. [2005]; Jin & Korepin [2004], where the

authors were able to evaluate these constants for few integrable models.

As was noticed by Calabrese & Cardy [2004, 2009] these results can be eas-

ily extended to the case of finite temperature or finite systems. This is because

these two settings can be easily obtained from the infinite case with a conformal

mapping, and the entanglement entropy is related to the two point function of

twist fields, which has a simple transformation law being primary fields.

The finite temperature case is obtained by mapping the theory from C into a

cylinder of circumference β by the conformal transformation z(w)= β

2π logw. This

corresponds to considering the manifold M where we fold in a cylinder the di-

rection perpendicular to the branch-cut. The result was obtained by Calabrese &

Cardy [2004]; Korepin [2004] and is1

S(ρA)=
c

3
log

(
β

πa
sinh

πr

β

)
+ c′1 =

{
c
3 log ra+ c′1 r ≪β

πc
3β r+ c′1 r ≫β

, (2.72)

that means that we recover the behaviour (2.69) for low temperature, while for

high temperature the entropy becomes extensive and follows an area law no

more. It behaves actually as a thermodynamic entropy and we have no quan-

tum correlations left. If we were to consider finite size systems we should put

the theory on a cylinder folded in the same direction of the cut. Following the

same logic of (2.72) we obtain

S(ρA)=
c

3
log

(
L

πa
sinh

πr

L

)
+ c′1, (2.73)

where L is the total length of the system. It is easy to see that eq. (2.69) is

recovered by taking r ≪ L. This is the most useful result of this section, as it

1in those works the constant correction of eq. (2.70) was denoted by c′1, so that we will use
their formalism in what follows, meaning that c′1 =

c
3 logγ.
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allows for a direct comparison with computer simulations of lattice models on a

finite chain with periodic boundary conditions.

51



3
Entanglement entropy in integrable massive

QFT

In this chapter we focus on the methods to evaluate entanglement entropy for

(1+1)-dimensional relativistic QFT. As we will see these methods parallel those

developed in chapter 2, with some adaptions and extensions deriving from con-

sidering a massive theory. The technology we present here was mainly intro-

duced by Cardy et al. [2008]; Castro-Alvaredo & Doyon [2009b]. Although the

key points in the evaluation of entanglement entropy hold for any relativistic

QFT we will focus mainly on integrable quantum field theories. We must say

here that recently it has been demonstrated by Doyon [2009] that most impor-

tant results do not require integrability. But the rather special characteristics

of integrable theories allow for a simplification of the problem at hand, and in

many cases for a direct analytic computation of the entanglement entropy. In

the next sections follows a brief introduction of common concepts of integrability,

which we made extensive use of to achieve our results.

3.1 Integrability in QFT

Integrability is a vast topic, which ranges from lattice theories and QFTs to clas-

sical field theories. There is actually no universally accepted definition of inte-

grability, and many times one has to find an “ad hoc” definition for the theory

at hand. We will be rather generic, and consider integrable any theory which
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has enough conserved quantities to manifest some key features in its scattering

processes.

The idea that conserved charges and scattering details could be somehow linked

comes from a work of Coleman & Mandula [1967]. They demonstrated that in

any QFT in more than one dimension with non-trivial S-matrix the only possi-

ble symmetry Lie algebra is constituted by the Lorentz generators Pµ, and Jµν.

Any other symmetry must be implemented by spinless and momentumless gen-

erators. A direct consequence of this theorem is that a QFT with a conserved

charge with spin must have a trivial S-matrix S = 1. We must notice that in

the derivation of this result only algebrae of commutators were considered, and

that this does not hold in general for anti-commutators, super-symmetry being a

remarkable exception.

This statement does not hold either for (1+1)-dimensional theories, where higher

spin conserved charges do not imply trivial scattering. This case was stud-

ied in Iagolnitzer [1978]; Polyakov [1977]; Shankar & Witten [1978]; Zamolod-

chikov [1977], where the authors found that for (1+1)-dimensions the existence

of higher-spin conserved charges is enough for the S-matrix to be factorizable,

and to avoid particle production. The rest of this section is devoted to describe

these two properties.

Before beginning with this matter, let us introduce some typical formalism of

QFT in (1+1)-dimensions. In this case the on-shell condition p2
0 − p2

1 = m2 is en-

coded by requiring pµ = (mcoshθ,msinhθ), where θ is the rapidity. A boost B(Λ)

acts in this representation as

B(Λ)

(
p0

p1

)
=

(
coshΛ −sinhΛ

−sinhΛ coshΛ

)(
p0

p1

)
=

(
mcosh(θ−Λ)

msinh(θ−Λ)

)
, (3.1)

such that it is easy to understand that any Lorentz invariant will be built on

differences of rapidities.

Second we require the existence of a set of creation/annihilation operators A
†
a(θ),

Aa(θ) acting on the in/out states such that

A†
a(θ) |0〉 = |θ〉a

in
out

, Aa(θ) |0〉 = 0, Aa(θ) |ϑ〉b
in

out

= δabδ(θ−ϑ) |0〉 , (3.2)
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where the subscripts represent different particle types. Thus an in state will be

written as |θ1θ2...θn〉in, with θ1 > θ2 > ... > θn, while an out state will be written

in the same fashion with θ1 < θ2 < ...< θn.

To show what we mean by no particle production we focus on the scattering

process 2→ n. Its properties are encoded in the S-matrix, defined as

|θ1θ2〉a1a2
in

=
∞∑

n=2

′∑

{a′
1a′

2...a′
n}

∫′

Θ

n∏

i=1
dθ′i S

a′
1a′

2...a′
n

a1a2

(
θ1,θ2;θ′1,θ′2...θ′n

)∣∣θ′1θ
′
2...θ′n〉

a′
1a′

2...a′
n

out ,

(3.3)

where Θ = θ′1 < θ′1 < ... < θ′n is the region of integration, while with the dashed

integral and sum in the rhs we mean the requirement that all the charges be

conserved. In particular Lorentz invariance requires conservation of energy and

momentum, from which we can define the two charges Q±1 = H±P, whose action

on eq. (3.3) gives

m1eθ1 +m2eθ2 =
n∑

i=1
m′

i e
θ′

i

m1e−θ1 +m2e−θ2 =
n∑

i=1
m′

i e
−θ′

i .
(3.4)

We labelled these two charges with ±1 as they transform respectively as a spin

one and minus one quantity under boosts. Notice that in one dimension the

Lorentz group is one-dimensional, so that we can represent it with a real num-

ber (the rapidity), and will act on a quantity Qs with spin s as esΛ. Then Qs is

an s-order covariant tensor, and can be thought as Qs ∝ (H+P)s, where the pro-

portionality constant is a c-number. Generally in and out states are formed by

well-spaced wave-packets on which these charges act locally. It is a physical re-

quirement then that these quantities be in involution with each other, and their

action on the asymptotic states can be split into the action on single particles.

Then the presence of any conserved charge Qs would require that

q(s)
a1

(
m1eθ1

)s
+ q(s)

a2

(
m2eθ2

)s
=

n∑

i=1
q(s)

ai

(
m′

i e
θ′

i

)s
. (3.5)

54



We consider theories for which it is possible to build an infinite number of higher-

spin charges, and it is easy to see that the only possible solution is the trivial

one, viz. when the set of rapidities and eigenvalues of all the charges of the

incoming and outgoing particles match. This rules out any particle production or

annihilation, and forces the scattering just to “shuffle” momenta and quantum

numbers, which are strictly the same before and after the scattering.

In a later work of Parke [1980] it was shown that the same effects can be achieved

with just two such conserved quantities. Moreover, assuming the conservation of

only two charges, Parke demonstrated that any scattering process can be divided

into a sequence of 2 → 2 processes, and that the S-matrix satisfies a version of

the Yang-Baxter equations1. A very simplified version of his proof goes as follows.

First we want to understand the action of a conserved charge Qs on a localized

wave-packet. We consider a Gaussian wave-packet centred on the momentum pa

and position xa

ψα(x)∼
∫

dp1e−α(p1−pa1)2 eipµ(x−xa)µ . (3.6)

The action of a conserved quantity on this state is generated by eiσQs , such that

eiσQsψα(x)∼
∫

dp1e−α(p1−pa1)2 eipµ(x−xa)µ+iσ(meθ)s

. (3.7)

Now it can be shown with a saddle point expansion that the result of acting with

a charge is a shift of the centre of the wave-packet xa → xa + sσ
(
meθ

)s−1
. This

shift then depends on the rapidity of the packet and the spin of the charge in

general, such that if s = 1 the shift is independent of θ. But the existence of

higher-spin charges means that the shift is different on packets with different

momenta.

With this in mind it is now easy to see the factorizability property considering e.g.

the 3 → 3 process. In (1+1)-dimensions this scattering can happen in three dif-

ferent ways with different amplitudes in principle. But if there exist higher-spin

charges we can relate the three channels to one another. Then the amplitudes

must factorize into products of 2 → 2 processes, and they satisfy the following

1Baxter [1982]
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remarkable conditions

S
a′

1a′
2a′

3
a1a2a3(θ1,θ2,θ3)= Scb

a1a2
(θ1,θ2)S

a′
1d

ca3 (θ1,θ3)S
a′

2a′
3

bd
(θ2,θ3)

= Sbc
a2a3

(θ2,θ3)S
da′

3
a1c (θ1,θ3)S

a′
1a′

2
bd

(θ1,θ2), (3.8)

which go under the name of Yang-Baxter equations Baxter [1972]; Yang [1967].

3.2 Conformal perturbation theory

In the previous section we have seen how the presence of an infinite number of

conserved quantities implies absence of particle production, and factorization of

the S-matrix. The next problem is then to understand how we can define such

quantities in a QFT. There is actually no unique way of addressing this issue,

but for what concerns us we will take the point of view of Zamolodchikov [1989].

We consider a CFT perturbed by a set of n primary operators

S = SCFT +
n∑

i=1
g i

∫
φi(x) d2x. (3.9)

In particular we assume them to be scalar and with scaling dimension ∆i < 1,

and that there exists a finite number of them. We take our theory to be unitary1,

which in this case translates into the absence of negative conformal dimension

fields. Consequently g i = γm2−2∆i , γ being an dimensionless positive constant,

and m being the mass scale. The introduction of a mass scale through {g} clearly

brakes conformal invariance, and drives the theory away from the critical point2.

Zamolodchikov demonstrated that under these conditions there exist a family of

fields satisfying

∂̄Ts+1 = ∂Θs−1, (3.10)

1in the sense of no negative-norm states in the CFT. This implies non-negative ∆i.
2acting with the renormalization group on eq. (3.9) drives the theory away from the CFT.
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associated with the conserved charges

Qs =
∮

[Ts+1dz+Θs−1dz̄] , (3.11)

where the index s, labeling various equations of motion, is a spin parameter as

defined in the previous section.

In a more recent work Zamolodchikov [1991] focused on the two-point functions.

The formalism is developed in the case when in eq. (3.9) we are perturbing with

only one relevant field, the case of general n being extracted trivially from the

considerations below. We want to study the two point function of some operator

ϕ. If g is small enough to allow the problem to be tackled perturbatively we get

〈ϕ(x)ϕ(0)〉g =
1

Zg

∞∑

n=0

(−g)n

n!

∫[
n∏

i=1
d2 yi

]
〈ϕ̃(x)ϕ̃(0)φ(y1)φ(y2)...φ(yn)〉CFT , (3.12)

where with ϕ̃ we mean the CFT field corresponding to the massive ϕ. The parti-

tion function is defined as in (1.33), such that Zg = 〈e−g
∫

dxφ(x)〉CFT . The integrals

in the rhs of eq. (3.12) suffer from both UV and IR divergences. The UV diver-

gences can be as usual regulated by standard renormalization techniques. In

particular this process will lead to a redefinition of the fields, and in the marginal

case ∆= 1 also of the coupling constant g.

In our case we will deal only with supernormalizable theories with ∆< 1/2, such

that neither g nor φ must be renormalized.

The IR divergencies are of deeper nature and they cannot be absorbed with a

renormalization.

To analyze the UV behaviour of the lhs of eq. (3.12) we make use of an OPE of

the kind introduced in eq. (1.35)

ϕ(x)ϕ(0)=
∑

i

C i
ϕϕ(x)A i(0), (3.13)

where A i is a set of local operators of the kind (1.34). The structure constants are

local quantities, and it is natural to expect that in the presence of the perturba-

tion parameter g they be analytic. The fields A i on the other hand are perturba-

tions of the respective CFT field Ã i, and they develop a vacuum expectation value

57



which is of non-local nature and therefore could be non-analytic. Calling (∆i,∆̄i)

the conformal dimensions of such fields we have from dimensional arguments

C i
ϕϕ(x)= x∆i−2∆ϕ x̄∆̄i−2∆̄ϕ

∞∑

n=0
C i(n)

ϕϕ

(
gr2−2∆)

. (3.14)

The VEVs of fields A i are 〈A i〉 =Q i g
∆i

1−∆ , where Q i are dimensionless constants.

These quantities cannot be determined directly with this method. Clearly not

every element of the basis will develop a non-zero VEV in the perturbed theory.

In fact the perturbed theory being Lorentz invariant all those A i with non-zero

spin, or those which can be written as derivatives of other fields must have a null

VEV. The same can be said for those fields generated with eq. (3.10), as they are

conserved charges of the theory.

It has to be said that both the fields A i and their structure constant have to be

renormalized, and Zamolodchikov [1991] gives a prescription for that.

We study now the stress energy tensor in the perturbed theory. It is clear

that, as in this theory scale invariance is broken, the stress energy tensor is

traceless no more. If we remember the definitions we gave in section 2.2.1 of

the stress energy tensor components in complex coordinates we can write the

following conservation law

∂z̄T +
1

4
∂zΘ= 0. (3.15)

We focus on the first order renormalization of the off-diagonal component of the

stress energy tensor, that is we consider the following expectation value

〈T(z)...〉g = 〈T̃(z)...〉CFT − g

∫
dwdw̄〈T̃(z)φ̃(w, w̄)...〉CFT + ... (3.16)

We can use eq. (2.23) to express the expectation value under integration in the

rhs of this equation up to first derivatives

T(z)φ(w, w̄)=
∆

(z−w)2φ(w, w̄)+
1

z−w
∂wφ(w, w̄)+ ...

=
∆

(z−w)2φ(z, z̄)+
1−∆

z−w
∂zφ(z, z̄)+ ...

(3.17)
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This OPE is clearly UV divergent, so that we need to introduce a small dis-

tance cut-off. This can be achieved by introducing a Heaviside step function

H
(
|z−w|2 −a2

)
under integration. Then

∂z̄T =
∫

dwdw̄(1−∆)∂zφ̃(z, z̄)δ
(
|z−w|2 −a2)

=πg(1−∆)∂zφ(z, z̄)+ ...,
(3.18)

where we ignored the most singular term in eq. (3.17) as it develops a dependence

on the cut-off a, and must vanish. Then comparing eqs. (3.15) and (3.18) we

deduce

Θ(z, z̄)= 4πg(1−∆)φ(z, z̄)+ .... (3.19)

This rather important relation is a direct consequence of the braking of scale

invariance by the introduction of a cut-off, and as such could have been derived

only with renormalization group arguments.

3.2.1 The Ising field theory

In this section we present an example of application of the definitions formulated

so far. This example is the Ising field theory, and aiming to its definition we first

consider the conformal Ising model1. The model has c = 1/2 as central charge,

and its operator content is reported in table 3.1.

This theory is equivalent to the Free Majorana theory of section 2.2.2, with

the identification of the two spinor components with ψ and ψ̄2. The expression

of the energy operator ε in terms of the free Fermion fields is easily obtainable

as ε∝ ψ̄ψ, while σ and µ need a non-local product of Majorana fields to be ex-

pressed.

We can get a massive integrable theory out of this model by perturbing it with

one of its primaries. The most studied case is the one where we perturb the

action (2.27) with the energy operator, and it corresponds to the massive two-

1for a proper definition of this model we should have introduced the concept of minimal
conformal model. This matter as well as a complete definition would bring us too far from the
main topic of this manuscript, such that we redirect interested readers to Francesco et al. [1996];
Ginsparg [1988].

2which we already denoted with the same symbol with a bit of notation freedom.
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Operator ∆ ∆̄

I 0 0
ψ 1

2 0

ψ̄ 0 1
2

ε 1
2

1
2

σ 1
16

1
16

µ 1
16

1
16

Table 3.1: Operator content of the Ising model. σ and µ are usually referred to
as order and disorder operators respectively in light of the correspondence with
the two-dimensional Ising lattice theory.

dimensional Ising model. Adopting the same formalism of section 2.2.2, the

equations of motion found by Zuber & Itzykson [1977] out of criticality are

(
γµ∂µ+γ5m

)
Ψ= 0. (3.20)

These are associated with the action

SIsing =
∫

d2x
[
ψ̄ (∂x +∂t)ψ̄−ψ (∂x −∂t)ψ−mψ̄ψ

]
. (3.21)

Performing a Wick rotation and mapping onto complex variables one can see that

this action corresponds to the perturbation

SIsing = 2πSMajorana + im

∫
d2xψ̄ψ, (3.22)

which is indeed proportional to the energy operator. Notice that in eq. (3.22) we

normalized the Majorana action by a factor 2π. The choice of this constant is

not unique and we fixed it with the requirement that eq. (3.22) give (3.20) as

equations of motion. Notice that this corresponds to a normalization of the fields

ψ and ψ̄, and will multiply each two point function in eq. (2.29) with a factor

1/2π. We proceed with the canonical quantization of the two fields ψ and ψ̄. This
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is done by decomposing them into Fermionic modes as

ψ(τ, x)=
√

m

4π

∫
dθe

θ
2 {a(θ)em(ixsinhθ−τcoshθ) +a†(θ)e−m(ixsinhθ−τcoshθ)}

ψ̄(τ, x)=−i

√
m

4π

∫
dθe−

θ
2 {a(θ)em(ixsinhθ−τcoshθ) −a†(θ)e−m(ixsinhθ−τcoshθ)},

(3.23)

where θ is the rapidity. Then we impose that the mode operators a(θ) and a†(θ)

satisfy the canonical anti-commutation relations

{a(θ),a†(θ′)}= δ(θ−θ′) {a(θ),a(θ′)}= {a†(θ),a†(θ′)}= 0. (3.24)

The Hilbert space of this model is the Fock space built over the vacuum |0〉 using

the algebra (3.24). The action of the operators a and a† is

a(θ) |0〉 = 〈0|a†(θ)≡ 0 a†(θ) |0〉 ≡ |θ〉 〈0|a(θ)≡ 〈θ| , (3.25)

and a general vector is defined by multiple applications of (3.25)

|θ1,θ2, ...,θn〉 = a†(θ1)a†(θ2)...a†(θn) |0〉 . (3.26)

3.3 Form Factors

The perturbative approach is characterized by slow convergence, and the need

for renormalization, so that we aim for a more efficient way of computing two-

point functions. A solution comes from non-perturbative approaches based on

the study of the S-matrix. An exact evaluation of S-matrix elements is often

accessible in the presence of integrability. Factorizability and eq. (3.8) makes

the study of the two-body S-matrix of central importance, so that we will very

shortly summarize its properties.

The scattering process p1 + p2 → p3 + p4 can be described by the Mandelstam

variables1 s = (p1 + p2)2, t = (p1 − p3)2 and u = (p1 − p4)2. In (1+1)-dimensions

however, only two of them are independent, say s and t. Calling θ = θ1 − θ2,

and m1 and m2 the masses of the incoming particle we can express s(θ) = m2
1 +

1Mandelstam [1958].
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m2
2 +2m1m2 coshθ. The fact that the S-matrix depends on the difference of the

incoming repidities is a consequence of Lorentz invariance. There are some other

physical requirements that it has to fulfil, first being unitarity, that is SS† = I.

Expressed in matrix element this becomes

∑

b1,b2

Sb1b2
a1a2

(θ)
[
S

a3a4
b1b2

(θ)
]∗

= δ
a3
a1δ

a4
a2

. (3.27)

To describe all the other properties we have to study the analytic structure of

the S-matrix. The threshold for particle production is s ≥ (m1 +m2)2, such that

from that value on we will have a continuum of branch points of the S-matrix.

The same argument holds for t, from which we can extract a continuum of poles

for s ≤ (m1 −m2)2. For values of s in between we could in general have bound

states, but this case will not be taken under consideration here. If we analytically

continue the variable s to the complex plane, we can interpret these two sets

of poles as branch cuts. Allowing for complex rapidities the two branch points

s = (m1 ± m2)2 are mapped into θ = 0 and θ = iπ. The map employed to shift

between s and θ is clearly multivalued, and we choose to work in the first sheet

Im(θ) ∈ (0,π), which we call physical sheet.

To obtain the physical values of the scattering matrix we have to “lift" it from

the real axis, that is Sphys(s) = limε→0 S(s+ iε). Another property is Hermitian

analyticity, which reads
[
S

a3a4
a1a2 (θ)

]∗ = S
a2a1
a4a3(−θ∗). This condition combined with

parity invariance S
a3a4
a1a2 (θ)= S

a4a3
a2a1 (θ) gives the real analyticity condition

[
S

a3a4
a1a2 (θ)

]∗ = Sa1a2
a3a4

(−θ∗). (3.28)

The last property we want to discuss is crossing symmetry, that is that a scat-

tering amplitude with an in particle with given momentum must equal the am-

plitude with an outgoing anti-particle of opposite momentum. This translates in

our case as

S
a3a4
a1a2 (iπ−θ)= S

ā2a3
ā4a1

(θ). (3.29)

This set of analytic properties can be encoded into the Zamolodchikov-Faddeev

algebra1. For the expression of this algebra we have to postulate the existence

1Faddeev [1980]; Zamolodchikov & Zamolodchikov [1979].
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of a set of creation and annihilation operators such as the ones in eq. (3.2). As

we have seen with that definition the nature of an in or out state is determined

by the order of its rapidities. In particular we can think of a n-particle in state

as the action on the vacuum of A
†
a1(θ1)A†

a2(θ2)...A†
an

(θn), with θ1 ≥ θ2 > ... ≥ θn.

Any other state can be obtained by exchanging rapidities and multiplying by the

right scattering amplitude. These concepts are summarized in the following set

of equations

Aa1(θ1)Aa2(θ2)=
∑

a3,a4

S
a3a4
a1a2 (θ12)Aa3(θ2)Aa4(θ1) (3.30)

A†
a1

(θ1)A†
a2

(θ2)=
∑

a3,a4

S
a3a4
a1a2 (θ12)A†

a3
(θ2)A†

a4
(θ1) (3.31)

Aa1(θ1)A†
a2

(θ2)= 2πδa1a2δ(θ12)+
∑

a3,a4

S
a3a4
a1a2(θ21)A†

a3
(θ2)Aa4(θ1), (3.32)

where we assumed the notation θi j = θi −θ j.

3.3.1 The form factor program

Form factors are expectation values of local operators between an n-particle in

state and the vacuum

F
O |a1a2...an
n (θ1,θ2, ...,θn)= 〈0|O (0) |θ1θ2...θn〉a1a2...an

, (3.33)

where ais label all the discrete quantum numbers of the i-th particle. Their

general properties was first studied by Karowski & Weisz [1978]; Weisz [1977],

and they follow directly from properties of the S-matrix.

The usual way of proceeding in finding an analytic expression of form-factors

is exploiting eqs. (3.29) and (3.31) and the branched structure of the rapidities

sheet to get Watson’s equations Watson [1954]. These are

F
O |a1...,aiai+1...an
n (θ1, ...,θi,θi+1, ...,θn)=

∑

a′
i
,a′

i+1

S
a′

i
a′

i+1
aiai+1(θii+1)×

F
O |a1,...,a′

i+1,a′
i
,...,an

n (θ1, ...,θi+1,θi, ...,θn) (3.34)

F
O |a1a2...an
n (θ1 +2iπ,θ2, ...,θn)= F

O |a2...ana1
n (θ2, ...,θn,θ1), (3.35)
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and have a much more compact expression in the two particle case

F
O |a1a2
2 (θ12)=

∑

a′
i
,a′

i+1

S
a′

i
a′

i+1
aiai+1(θ12)FO |a1a2

2 (−θ12) (3.36)

F
O |a1a2
2 (iπ−θ12)= F

O |a1a2
2 (iπ+θ12). (3.37)

For diagonal theories, that is in absence of back-scattering, the most general

solution can be written as

F
O |a1a2...an
n (θ1,θ2, ...,θn)=Q

O |a1a2,...an
n (θ1,θ2, ...,θn)

∏

i< j

F
aia j

min (θi j)

Paia j (θi j)
, (3.38)

where QO
n is a polynomial, characteristic of the operator under consideration, P

are monomials which capture the pole structure, and Fmin are the minimal form

factors. These last quantities are analytic functions with no zeros in the physical

strip, they are uniquely fixed by requiring that they have the weakest possible

divergence for θ→±∞, and they satisfy the identities

F
aia j

min (θi j)= Saia j (θi j)F
a jai

min (−θi j)= F
a jai

min (2iπ−θi j), (3.39)

and they are equivalent to eqs. (3.36) and (3.37) in the diagonal case. If we are

able to express the two particle S-matrix with the following integral representa-

tion

Saia j (θi j)= e
∫∞

0
dt
t

f
aia j (t)sinh

tθi j
iπ , (3.40)

for some f aia j (t), then we can express the minimal form factor as Berg et al.

[1979]; Watson [1954]; Weisz [1977]

F
aia j

min (θi j)=Naia j
e
∫∞

0
dt
t

f
aia j (t)

sin2
[

t(iπ−t)
2π

]

sinh t . (3.41)

From Watson’s equations and eq. (3.39) it follows that QO
n is symmetric under

the switch of two rapidities. It was found in Delfino & Mussardo [1995] that form

factors depend exponentially on the difference of rapities. It is then particularly

convenient to express QO
n in terms of xi = eθi , so that it becomes a symmetric

polynomial of these quantities. Moreover we can get some information on these
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polynomials by studying the asymptotic behaviour of form factors. First they

are Lorentz invariant, and we know that a boost B(λ) of rapidity λ acts on form

factors as

B(λ)FO |a1a2...an
n (θ1,θ2, ...,θn)B−1(λ)= F

O |a1a2...an
n (θ1 +λ,θ2 +λ, ...,θn +λ), (3.42)

so that the degree of QO
n must be n(n− 1)/2, in order to equal that of the de-

nominator of eq. (3.38). Furthermore they must diverge at most as e∆Oθi for any

θi → ∞, where ∆O is the weight of the CFT counterpart of the operator under

consideration, Delfino & Mussardo [1995].

To have a better understanding of QO
n and the monomials Paia j in eq. (3.38) we

need to analyze the pole structure of n-particle form factors. As we are consid-

ering theories with no bound states the only source of poles is given by crossing

conditions. These are called kinematic poles, and they are related to the one par-

ticle sub-channel in the three-body scattering. They lead to the residue equation

Res
[
F

O |āaa1,...,an

n+2 (θ̄0 + iπ,θ0,θ1, ...,θn)
]

θ̄0=θ0
= i



1−
n∏

k=1

∑

a′a′
k

S
a′

0a′
k

aak
(θ0k)



×

F
O |a1,...,an
n (θ1, ...,θn), (3.43)

which connects different particle number form factors. This equation is very use-

ful for determining higher particle form factors recursively.

Once we managed to determine the form factors of the operators we are in-

terested in, we can finally define a non-perturbative expansion of two point func-

tions. This is achieved by inserting the resolution of the identity

I=
∞∑

n=0

∑

a1,...,an

∫

θ1>θ2>...>θn

dθ1...dθn

(2π)n
|θ1, ...,θn〉a1...an a1...an

〈θ1, ...,θn| , (3.44)
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into the two point function 〈O (T , x)O (0)〉1, such that it can be then expressed as

〈O (T , x)O (0)〉 =
∞∑

n=0

∑

a1,...,an

∫
dθ1...dθn

n!(2π)n
〈0|O (T , x) |θ1, ...,θn〉a1...an

×

(
〈0|O (0) |θ1, ...,θn〉a1...an

)∗ .

(3.45)

We consider O to be a spinless operator, and we act with a translation and a boost

on the first operator, to rewrite eq. (3.46) as

〈O (T , x)O (0)〉 =
∞∑

n=0

∑

a1,...,an

∫ ∏n
i=1 dθi e

−rmi coshθi

n!(2π)n

∣∣∣FO |a1a2...an
n (θ1,θ2, ...,θn)

∣∣∣
2

,

(3.46)

where r =
p

T 2 + x2. In this way a full knowledge of the form factors of an opera-

tor means having access to every order coefficient of the large-distance expansion

in the lhs of eq. (3.46), and then in principle determining the two point function

under examination.

3.4 Twist field form factors

We can perform the form factor program for any operator of a replica theory with

few adaptions. First of all we will have an additional quantum number defining

the state of particles, that is the copy they belong to. We will label by |θi〉µi
, with

µi = (ai,ni) the state created by the operator A
†
ai

(θi) acting on the the vacuum of

the copy ni
2. The S-matrix of the n-copy model can be obtained from the single

copy one with the same philosophy, and also eqs. (3.30)–(3.32). This extension

is not completely trivial though, as there is no scattering between excitations on

different copies, so that the S-matrix will assume the form

S
µ3µ4
µ1µ2 (θ12)=

[
S

a3a4
a1a2(θ12)

]δn1n2 δn3n1δn4n2 (3.47)

1here we are taking one of the two operators in the origin with no loss of generality, as this
two point function, being invariant under translation, depends only on the distance between the
two operators.

2here we are assuming that the global vacuum of the n-copy theory can be expressed as direct
product of the vacua of single copies.
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and the Zamolodchikov-Fadeev algebra must be modified to

Aµ1(θ1)Aµ2(θ2)=
∑

µ3,µ4

S
µ3µ4
µ1µ2 (θ12)Aµ3(θ2)Aµ4(θ1) (3.48)

A†
µ1

(θ1)A†
µ2

(θ2)=
∑

µ3,µ4

S
µ3µ4
µ1µ2 (θ12)A†

µ3
(θ2)A†

µ4
(θ1) (3.49)

Aµ1(θ1)A†
µ2

(θ2)= 2πδµ1µ2δ(θ12)+
∑

µ3,µ4

S
µ3µ4
µ1µ2 (θ21)A†

µ3
(θ2)Aµ4(θ1). (3.50)

We are mainly interested in form factors of the twist field, so that we want to

focus onto its exchange relations with other operators of the theory. In particular

we want to understand how it acts on A and A†. This can be achieved considering

the boundary conditions which define this field in eqs. (2.58) and (2.60). We focus

for simplicity on a scalar field φi(x), such that the only quantum number i is the

number of the copy it belongs to. As the action of the twist field on creation and

annihilation operators is the same we focus directly on its action on the field. In

this case we find the equal time exchange relations

φi(y)T (x)=T (x)φi+1(y) x1 > y1,

φi(y)T (x)=T (x)φi(y) x1 < y1, (3.51)

and

φi(y)T̃ (x)= T̃ (x)φi−1(y) x1 > y1,

φi(y)T̃ (x)= T̃ (x)φi(y) x1 < y1. (3.52)

To allow the identification between these conditions, and eqs. (2.58) and (2.60)

we take products of operators in eqs. (3.51) and (3.52) to be time-ordered. These

relations define the action of the twist field at the operator level, and they allow

for a comparison between matrix elements of T and T̃ , giving as a result the

identification T̃ =T
†.

Taking into account eqs. (3.48)–(3.52) a modified version of eqs. (3.34), (3.35)
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and (3.43) was derived in Cardy et al. [2008]1

F
T |...µiµi+1...
k

(. . . ,θi,θi+1, . . .)=Sµiµi+1(θi i+1)×

F
T |...µi+1µi ...
k

(. . . ,θi+1,θi, . . .), (3.53)

F
T |µ1µ2...µk

k
(θ1 +2πi, . . . ,θk)=F

T |µ2...µnµ̂1
k

(θ2, . . . ,θk,θ1), (3.54)

Res
[
F

T |µ̄µµ1...µk

k+2 (θ̄0 + iπ,θ0,θ1 . . . ,θk)
]

θ̄0=θ0
=i F

T |µ1...µk

k
(θ1, . . . ,θk), (3.55)

Res
[
F

T |µ̄µ̂µ1...µk

k+2 (θ̄0 + iπ,θ0,θ1 . . . ,θk)
]

θ̄0=θ0
=− i

k∏

i=1
Sµ̂µi

(θ0i)F
T |µ1...µk

k
(θ1, . . . ,θk).

(3.56)

Equations (3.53) and (3.54) are Watson’s equations for the twist field. The main

difference from eqs. (3.34) and (3.35) is the introduction in the second equation

of the symbol µ̂ = (a,n+1), by means of which we can see that a shift of 2πi in

the rapidity of a particle makes it “jump” to the copy above. Another difference

is that the special nature of the twist field causes the kinematic pole equation to

split into eqs. (3.55) and (3.56), depending on whether µ̄ is in the same copy as µ,

or there is a previous exchange with the twist field.

Now we focus our attention on the two-particle form factor. To ease this analysis

we are going to consider a scalar single-particle theory, for which this quantity

can be written as F
i j

2 (θi j), where i and j label just the copy number, as there is

only one particle type. From eq. (3.54) we understood that a shift of 2πi of the

rapidity of a particle shifts it to the copy above, and relativistic invariance tells

us that the same shift applied to both particles leaves the form factor invariant.

From these considerations we deduce that F
i j

2 must depend only on the difference

between the two copy numbers, such that

F
T |k+i k+ j

2 (θi j)= F
T |i j

2 (θi j), ∀k ∈Z. (3.57)

We will then focus on Fk1
2 (θk1), keeping in mind that we can extract the case of

general copy numbers by applying eq. (3.57). Moreover acting repeatedly with

1in the following equations we are simplifying the notation further writing them in the case
of diagonal theories. In this case any scattering process does not change quantum numbers, so
that an S-matrix element can be defined only by the set of quantum numbers of the incoming
particles.
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eq. (3.54) we can reduce a general two particle form factor to one with two parti-

cles on the same copy, that is

F
T |k1
2 (θk1)= F

T |11
2 (θ+2πi(k−1)). (3.58)

As a consequence we can focus on the analysis of F
T |11
2 (θ), and study its analytic

structure. This is an analytic function in the region Im(θ) ∈ [0,2πin), which we

call extended physical sheet. The only exceptions are the single poles given by

eqs. (3.55) and (3.56), which for two particles become

Res
[
F

T |1̄1
2 (θ+ iπ)

]

θ=0
=i〈T 〉, (3.59)

Res
[
F

T |1̄2
2 (θ+ iπ)

]

θ=0
=Res

[
F

T |1̄1
2 (θ+ (2n−1)iπ)

]

θ=0
=−i〈T 〉, (3.60)

where we identified for obvious reasons FT

0 = 〈T 〉. Equation (3.58) tells us that

all form factors can be obtained from the same copy (and no matter which) by just

shifting the rapidity, so that one can focus on F
T |11
2 (θ). In this case eqs. (3.59)

and (3.60) tell us that there are two poles at θ = iπ, and θ = (2n−1)iπ, and give

us their residues.

As we did for general form factors in the previous section we focus on the minimal

form factor of the n-copy theory. This can be extracted from the one-copy theory

considering that

F
T |11
min (θ)= S(θ)FT |11

min (−θ)= F
T |11
min (−θ+2πni), (3.61)

Using eqs. (3.40) and (3.41) in Cardy et al. [2008] the authors managed to extract

the minimal form factor for diagonal theories

F
T |11
min (θ)=N e

∫∞
0

dt
t

f (t)
sin2

[
it
2 (n+ iθ

π )
]

sinh(nt) . (3.62)

In the same work the form of the general copy two particle form factor was ob-

tained for the first time with angular quantization techniques Brazhnikov &
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Lukyanov [1998]; Lukyanov [1995], and is

F
T | jk
2 (θ)=

〈T 〉sin
(
π
n

)

2nsinh
(

iπ(2( j−k)−1)+θ
2n

)
sinh

(
iπ(2(k− j)−1)−θ

2n

)
F

T | jk
min (θ)

F
T | jk
min (iπ)

. (3.63)

Before considering higher particle form factors we focus on T̃ . We understand

from eqs. (3.51) and (3.52) that its form factors can be related to those of T by

the transformation i → n− i for each particle i, that means

F
T |i j

2 (θ)= F
T̃ |(n−i)(n− j)
2 (θ). (3.64)

For higher particle form factors we can extend the considerations that brought

us to eq. (3.38) to the n-copy case, and make the ansatz

F
T |11···1
k

(θ1, . . . ,θk)= H
T |1...1
k

Q
T |1...1
k

(x1, . . . , xk)
∏

i< j

F
T |11
2 (θi j)

〈T 〉
. (3.65)

Here we are dimensionlessizing the two particle form factor for convenience,

hence H
T |1...1
k

will be a dimensional constant proportional to 〈T 〉. For the poly-

nomials Q
T |1...1
k

(x1, . . . , xk) the same properties of those in eq. (3.38) hold, with

the identification of xi = eθi /n.

The general copies form factor can be extracted from eq. (3.65) by multiple appli-

cations of eq. (3.54), finding

F
T |µ1···µk

k
(θ1, . . . ,θk)= F

T |11···1
k

(θ1+2πi(µ1−1),θ2+2πi(µ2−1), . . . ,θk+2πi(µk−1)),

(3.66)

with the ordering µ1 ≥µ2 ≥ . . .≥µk.

We conclude this section by applying all definitions to an example, the Ising

field theory defined in section 3.2.1. Being a free Fermion theory Zamolodchikov-

Fadeev operators will simply be creators and annihilators of Fermion modes, and

the associated S-matrix can be read directly from eq. (3.24), and is S(θ) = −1.

The minimal form factor can be easily obtained by plugging the S-matrix into
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eq. (3.39), leading to Fmin(θ)=−isinh θ
2 . From this it follows that

F
T |11
min (θ)=−isinh

θ

2n
, (3.67)

such that

F
T |11
2 (θ)=

−i〈T 〉cos
(
π

2n

)

nsinh
(

iπ+θ
2n

)
sinh

(
iπ−θ
2n

)sinh
(
θ

2n

)
, (3.68)

is a nice and neat expression. Higher particle form factors were found for the first

time in Castro-Alvaredo & Doyon [2009a], where they were evaluated simply

applying Wick’s theorem. Due to the Z2 symmetry of the Ising model only even

particle form factors are nonzero, as the twist field is by construction invariant

under any symmetry of the theory. It is easy to show that they can be expressed

as Pfaffians1

F
T |11...1
k

(θ1, . . . ,θk)= 〈T 〉Pf(K), (3.69)

where K is a skew-symmetric k×k matrix with entries K i j =
F

T |11
2 (θi j)
〈T 〉 .

The next few sections will be devoted to two more involved models for which we

carried out the form factor program for the twist field. The aim of this study is

to prove the effectiveness of this program for non-free theories. We will compute

higher particle form factors, so that we need a method to check the correctness of

our results. As we will show in section 3.5 the ∆-sum rule Delfino et al. [1996] is

fit to the task. This rule though gives information on the form factor expansion

up to a given order, and makes it hard to check higher particle form factors. In

fact usually the contribution of higher terms is so small compared to the leading

term, that it can be confused with the typical errors of any numerical integration.

To overcome this problem we chose to study two rather special theories, for which

the contribution of higher particle form factors is very significant.

1the Pfaffian of a 2n×2n skew-symmetric matrix A is defined as Pf2(A)=Det(A), after the ob-
servation that the determinant of a skew-symmetric matrix can always be written as the square
of a polynomial of degree n of its entries.
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3.4.1 The roaming trajectory model

The first theory we want to investigate is the roaming trajectories (RT) model,

defined by Zamolodchikov [2006]. This is a model with a single particle spectrum

and no bound states which is closely related to the sinh-Gordon model. The model

is characterized by the two-particle S-matrix,

S(θ)= tanh
1

2

(
θ−θ0 −

iπ

2

)
tanh

1

2

(
θ+θ0 −

iπ

2

)
, θ0 ∈R. (3.70)

On the other hand, the sinh-Gordon S-matrix, as found by Arinshtein et al.

[1979]; Mikhailov et al. [1981] is given by

S(θ)=
tanh 1

2

(
θ− iπB

2

)

tanh 1
2

(
θ+ iπB

2

) , B ∈ [0,2]. (3.71)

It is easy to see that the S-matrix (3.70) can be obtained from (3.71) by the re-

placement

B → 1−
2iθ0

π
. (3.72)

This relationship implies in particular that computing the form factors of the

sinh-Gordon model and setting B to the value (3.72) gives the form factors of the

RT-model.

The model’s name emerged in the computation of the effective central charge

ceff(r) within the thermodynamic Bethe ansatz approach Klassen & Melzer [1991];

Zamolodchikov [1990] carried out by Zamolodchikov [2006]. For massive QFTs

it is expected that the function ceff(r) “flows" from the value zero in the infrared

(large r) to a finite value in the ultraviolet (small r). For many theories, includ-

ing the sinh-Gordon model, the constant value reached as r → 0 is the central

charge of the underlying conformal field theory associated to the model. In this

case, that theory is the free massless boson, a conformal field theory with central

charge c = 1. Therefore, in the sinh-Gordon model, the function ceff(r) flows from

the value zero to the value 1 as r decreases.

When the same function ceff(r) is computed for the RT-model it shows a very

different behaviour. It still flows from the value 0 to the value 1, but it does so

by “visiting" infinitely many intermediate values of c giving rise to a staircase
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(or roaming) pattern. The values of c that are visited correspond exactly to the

central charges of the unitary minimal models of conformal field theory

cp = 1−
6

p(p+1)
, with p = 3,4,5 . . . (3.73)

Another observation made in Zamolodchikov [2006] is that the size of the inter-

mediate plateaux that the function ceff(r) develops at the values (3.73) is deter-

mined by the value of θ0. For θ0 = 0 there is a single plateaux at c = 1, thus

the usual sinh-Gordon behaviour is recovered, whereas the plateaux at (3.73) be-

come more prominent as θ0 is increased. In the limit θ0 →∞ a single plateaux at

c = 1
2 remains which reflects the fact that the S-matrix (3.70) becomes -1 in this

limit, hence the model reduces to the Ising field theory. This interesting limit

behaviour was studied by Ahn et al. [1993] within the form factor approach.

The two-particle minimal form factor of the sinh-Gordon model

F
T |11
min (θ)= exp

[
−2

∫∞

0

dtsinh tB
4 sinh t(2−B)

4

tsinh(nt)cosh t
2

cosh t

(
n+

iθ

π

)]
, (3.74)

was first obtained in Cardy et al. [2008] and can be easily rewritten as an infinite

product of ratios of Gamma functions. The explicit expression can be also found

in Cardy et al. [2008].

Having eq. (3.65) in mind we make the following ansatz,

FT

k (x1, . . . , xk)= HkQk(x1, ..., xk)
k∏

i< j

F
T |11
min ( xi

x j
)

(xi −αx j)(x j −αxi)
, (3.75)

where we have introduced the new variables xi = e
θi
n and α = e

iπ
n so that, for

example

F
T |11
min (θi −θ j)≡ F

T |11
min (

xi

x j

), (3.76)

A similar ansatz was already used in Niedermaier [1998] in a different context.

We use the simplified notation FT

k
(x1, . . . , xk) to represent the k-particle form
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factor of particles all of which live in the same copy of the model. As we already

introduced in the previous section Qk(x1, ..., xk) are symmetric in all variables

and have no poles on the physical sheet, while Hk are constants. We can fix the

normalization by means of the pole eq. (3.59), that is H0 = 〈T 〉 and Q0 = 1.

Once the ansatz (3.75) has been made it remains to identify the functions

Qk(x1, . . . , xk) and the constants Hk. In the sinh-Gordon model symmetry consid-

erations imply that only even particle form factors are non-vanishing, so that our

first new results would correspond to the k = 4 case and k will always be an even

number. We therefore turn to solving equation (3.55), which we can now rewrite

as

lim
θ̄0→θ0

(θ̄0 −θ0)Fk+2(αx0, x0, x1, . . . , xk)= iFk(x1, . . . , xk), (3.77)

where x0 = e
θ0
n .

In order to turn the equation (3.77) into an equation for the functions Qk(x1, . . . , xk)

and the constants Hk the following identity will be needed,

F
T |11
min (

αx0

xi

)FT |11
min (

x0

xi

)=
(x0 − xi)(αx0 − xi)

(αβ−1x0 − xi)(βx0 − xi)
, (3.78)

where β= e
iπB
2n and B is the coupling constant that appears in the sinh-Gordon S-

matrix (3.71). This identity can be easily derived from the Gamma function rep-

resentation of the minimal form factor of Cardy et al. [2008]. Plugging eq. (3.75)

into eq. (3.77) and simplifying we obtain

Hk+2 =
2sin π

n
αk+2

nF
T |11
min (iπ)

Hk and Qk+2(αx0, x0, x1, . . . , xk)= x2
0PkQk(x1, . . . , xk).

(3.79)

where

Pk =
k∏

a,b,c,d=1
(xa −α2x0)(x0 −αxb)(xc −αβ−1x0)(βx0 − xd) (3.80)

= (−α)k
k∑

a,b,c,d=0
(−α2x0)k−a(−α−1x0)k−b(−αβ−1x0)k−c(−βx0)k−dσ(k)

a σ(k)
b

σ(k)
c σ(k)

d
,

and σ(k)
i

is the i-th elementary symmetric polynomial on k variables x1, . . . , xk,
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which can be defined by means of the generating function,

k∑

i=0
xk−iσ(k)

i
=

k∏

i=1
(xi + x). (3.81)

The equation for Hk can be easily solved to

Hk =
(

2sin π
n
α2

nF
T |11
min (iπ)

) k
2

α
k
2 ( k

2−1)〈T 〉, (3.82)

whereas equations for the polynomials Qk(x1, . . . , xk) will need to be solved on a

case by case basis. Unfortunately the solutions get very involved very quickly.

There are three main reasons for this:

• The degree of the polynomial in the denominator of (3.75) is much higher

than would be the case in the standard form factor programme. Since the

twist field is spinless, the degree of such polynomial must equal the degree

of the polynomial Qk(x1, . . . , xk) and this means that its degree will be very

high for relatively small values of k. As an example, for the RT-model

we will see later that the degree of Q2(x1, x2) is just 2, but the degrees of

Q4(x1, x2, x3, x4) and Q6(x1, . . . , x6) are 12 and 30 respectively.

• The polynomial Pk is a very complicated function in terms of elementary

symmetric polynomials, which again complicates the solution procedure

and makes it very difficult to identify any patterns as k is increased.

• The reduction properties of the elementary symmetric polynomials σ(k)
i

are

much more involved for the twist field than in the usual form factor pro-

gramme. In general,

σ(k+2)
i

=σ(k)
i

+ (1+α)x0σ
(k)
i−1 +αx2

0σ
(k)
i−2, (3.83)

where σ(k+2)
i

is an elementary symmetric polynomial on the variables αx0, x0, x1, . . . , xk

and σ(k)
i

,σ(k)
i−1,σ(k)

i−2 are elementary symmetric polynomials in the variables

x1, . . . , xk. We will also adopt the conventions σ(k)
i

= 0 for i < 0 and σ(k)
0 = 1.

The usual reduction properties are recovered for n = 1 or α=−1.
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The polynomial Q2(x1, x2) can be easily obtained by setting k = 0 in (3.79)

which gives the equation,

Q2(αx0, x0)= x2
0, (3.84)

There are actually two combinations of elementary symmetric polynomials of

two variables σ(2)
1 and σ(2)

2 that correctly reduce to the identity above. The most

general solution is

Q2(x1, x2)=α−1σ(2)
2 +Ω2K2(x1, x2), (3.85)

with Ω2 an arbitrary constant and

K2(x1, x2)=α−1σ(2)
2 −

(
σ(2)

1

1+α

)2

, (3.86)

the kernel of equation (3.84), that is the most general order 2 polynomial on the

variables x1, x2 which solves

Qk+2(αx0, x0, x1, . . . , xk)= 0, (3.87)

with k = 0. Substituting (3.85) together with H2 in (3.75) it is easy to see that

(3.63) is only recovered for µ1 = µ2 = c1 = c2 = 1 if we choose Ω2 = 0. Hence we

have fixed the constant above and can now go on to compute the four particle

form factor.

Solving now for Q4(x1, x2, x3, x4) we find that the most general solution to (3.79)

takes the form

Q4(x1, x2, x3, x4)= σ4
[
σ4

2 +γσ2(σ2
3 +σ2

1σ4)+δσ1σ
2
2σ3 +ησ2

1σ
2
3 +ξσ2

2σ4

+λσ1σ3σ4 +ρσ2
4

]
+Ω4K4(x1, x2, x3, x4), (3.88)

where we have abbreviated σ(4)
i

≡ σi. The constants γ,δ,η,ξ,λ and ρ are fixed

functions of n, whose explicit form is given in appendix A. The function K4(x1, x2, x3, x4)

is the most general order 12 polynomial on the variables x1, x2, x3 and x4 that

solves the equation (3.87) and Ω4 is an arbitrary constant. The function K4(x1, x2, x3, x4)
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has the form

K4(x1, x2, x3, x4)= Aσ2
1σ

2
2σ

2
3 +B(σ3

2σ
2
3 +σ3

1σ
3
3 +σ2

1σ
3
2σ4)+Cσ1σ2σ3(σ2

3 +σ2
1σ4)

+Dσ4
2σ4 +σ4

1σ
2
4 +σ4

3 +Eσ1σ
2
2σ3σ4 +Fσ2

1σ
2
3σ4

+Gσ2σ4(σ2
3 +σ2

1σ4)+Hσ2
2σ

2
4 + Iσ1σ3σ

2
4 + Jσ3

4, (3.89)

where the constants are given in Appendix A.

We have also computed the most general polynomial Q6(x1, . . . , x6) which solves

(3.79) with k = 4. The solution is an order 30 polynomial on the variables x1, . . . , x6

and too cumbersome to be reported here. For Ω4 = 0 (we will see below why

this choice is sensible), Q6(x1, . . . , x6) depends once more on a free parameter Ω6,

which as above acts as coefficient to the function K6(x1, . . . , x6) which satisfies the

same equation (3.87) above.

Therefore, a structure seems to emerge where the most general 2k-particle form

factor depends on k free parameters. A similar structure was found when study-

ing the boundary form factors of specific fields in the A2-affine Toda field theory

Castro-Alvaredo [2008]; Oota [1996], although no physical interpretation for the

result was provided there. A more thorough analysis of solutions to equations

of the form (3.87) was carried out in Delfino & Niccoli [2006] for the case α=−1

and the field TT̄.

Finally we would like to argue that choosing Ω4 = 0 in (3.88) corresponds

to the specific twist field we are interested in. The general solution (3.88) is a

one-parameter family of solutions characterized by the choice of the constant Ω4.

Given the usual assumption that the space of fields in a local QFT is linear, we

expect that the form factor of a linear combination of fields is a linear combina-

tion of form factors, that is, in general

F
O1+ΩO2
k

(x1, . . . , xk)= F
O1
k

(x1, . . . , xk)+ΩF
O2
k

(x1, . . . , xk) (3.90)

and therefore the solution (3.88) must describe the form factors of a linear com-

bination of local fields (as would the solution (3.85)). Since we are interested

only in one very particular field, the twist field T , we must find a suitable mech-

77



anism that allows us to select the particular value of Ω4 corresponding to the

four-particle form factor of the twist field.

An interesting way of identifying the form factors of the twist field is to use the

form factor cluster decomposition property, which has been studied for various

models in the past Castro-Alvaredo & Fring [2001a]; Koubek & Mussardo [1993];

Smirnov [1990]; Zamolodchikov [1991] and analysed from a more general point

of view in Delfino et al. [1996]. It is a factorization property of form factors which,

for the four particle case, can be expressed as

lim
κ→∞

FT

4 (κx1,κx2, x3, x4)∝ F
T1
2 (x1, x2)FT2

2 (x3, x4). (3.91)

In general, the fields T1 and T2 on the r.h.s. may not necessarily correspond

to the same field as the form factor on the l.h.s. A notable example of this is

the model studied in Castro-Alvaredo & Fring [2001a] and the form factors of

the field TT̄ studied in Delfino & Niccoli [2006]. In Delfino et al. [1996] it was

argued that for theories without internal symmetries, the cluster decomposition

would be a consequence of the decoupling of right- and left-moving modes in the

conformal limit and would hold for any field whose counterpart in the underlying

conformal field theory is a primary field.

Given that the twist field does certainly correspond to a primary field in the

underlying conformal field theory we expect a factorization of the type (3.91).

Imposing (3.91) is in fact sufficient to select a single value of Ω4 in (3.88). Indeed,

if we carry out the cluster limit in (3.91) for the general expression (3.88) and we

call σi =σi(x1, x2) and σ̂i = σ̂i(x3, x4) we find that

lim
κ→∞

F4(κx1,κx2, x3, x4) ∼
[
σ2σ̂2 +Ω4(Aσ2

1σ̂
2
1 +B(σ2σ̂

2
1 +σ2

1σ̂2)+Dσ2σ̂2)
]

×
F

T |11
min ( x1

x2
)FT |11

min ( x3
x4

)

(x1−αx2)(x2 −αx1)(x3 −αx4)(x4 −αx3)
. (3.92)

Clearly, this expression factorises if and only if Ω4 = 0. In that case, we recover

exactly (3.91) with T1 = T2 = T . We will therefore choose Ω4 = 0 as our twist

field solution.

If we had chosen to use the cluster decomposition property to fix the constant Ω2
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in (3.85) we would have found

lim
κ→∞

FT

2 (κx1, x2)∝Ω2, (3.93)

so that our choice Ω2 = 0 guarantees that limκ→∞ FT

2 (κx1, x2)∝ FT

1 FT

1 = 0.

In general, it appears from our two-, four- and six-particle form factor solutions

that for every a ∈Z
+ there exists a field K2a whose form factors solve eqs. (3.53)

and (3.56), and have the interesting property that

F
K2a

0 = F
K2a|µ1µ2
2 (θ1,θ2)= ·· · = F

K2a|µ1...µ2a−2
2a−2 (θ1, . . . ,θ2a−2)= 0, (3.94)

consequently F
K2a|µ1...µ2a

2a
(θ1, . . . ,θ2a) solves (3.87) for k = 2a, that is, it has no

kinematic poles.

3.4.2 The SU(3)2-homogenous sine-Gordon model

The second model we want to study is the SU(3)2-Homogeneous sine-Gordon

(HSG) model. The model is just one of the simplest representatives of a large

class of theories named by Fernandez-Pousa et al. [1997a]. Its spectrum was

studied by Fernandez-Pousa & Miramontes [1998]; Fernandez-Pousa et al. [1997a,b],

and its S-matrix by Miramontes & Fernandez-Pousa [2000]. The form factor pro-

gram was carried out by Castro-Alvaredo & Fring [2001a,b]; Castro-Alvaredo

et al. [2000a]; Castro-Alvaredo & Fring [2001c], while its thermodynamic prop-

erties were studied by Castro-Alvaredo et al. [2000b, 2004]; Dorey & Miramontes

[2004]. The HSG-models are very interesting theories, as they include a number

of distinct features rarely found for integrable models: they posses both unstable

particles and bound states in their spectrum, and their S-matrices are generally

non-parity invariant1. In particular, the SU(3)2-HSG model contains two parti-

cles, which we will label as + and −. They are self-conjugated and interact with

each other by means of the following S-matrix

S±±(θ)=−1, and S±∓(θ)=±tanh
1

2

(
θ±σ−

iπ

2

)
. (3.95)

1Sab(θ) 6= Sba(θ) for a 6= b.
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Thus particles of the same species interact with each other as free Fermions,

whereas particles of different species interact by means of parity-breaking S-

matrix which depends on a free parameter σ. These S-matrix amplitudes have

a pole in the unphysical sheet (that is ℑ(θ) ∈ (−π,0)), with real part given by ±σ.

Such type of poles are a signature of the presence of unstable particles in the

spectrum.

The scattering picture is that particles + and − interact with each other by cre-

ating an unstable particle, whose mass m̃ and decay width Γ̃ depend on the pa-

rameter σ through Breit-Wigner’s formula1. The latter states that the S-matrix

must have a pole in the Mandelstam variable s at

s =
(
m̃− i

Γ̃

2

)2

. (3.96)

A comparison between eqs. (3.95) and (3.96) for |σ| large, gives that the mass

of the unstable particle can be approximated by me|σ|/2, where m is the mass

of the stable particles2. Therefore, the limit σ→∞ corresponds to an infinitely

massive unstable particle, that is a particle that can not be formed at any finite

energy scales. At the level of the S-matrix we find that limσ→∞ S±,∓(θ) = 1, that

is, the model reduces to two non-interacting copies of the Ising field theory. This

property is very useful as a consistency check in form factor calculations. It

implies that when σ→∞ the form factors of any field should reduce to those of

the Ising model, which are generally known.

As for the RT-model described before, the effective central charge of the SU(3)2-

HSG model also exhibits a staircase pattern, albeit with only two steps (at most),

as was observed by Castro-Alvaredo et al. [2000b]. The same structure was found

for Zamolodchikov’s c-function3 and the conformal dimensions of certain local

fields by Castro-Alvaredo & Fring [2001b]. In this case the appearance of steps

is directly related to the presence of the unstable particle and its mass. There is

only one step if σ = 0 in which case the unstable particle’s mass is of the same

order as that of the stable particles and a second step emerges if σ 6= 0 whose

1Breit & Wigner [1936]
2Castro-Alvaredo & Fring [2001b]
3this function was introduced by Zamolodchikov [1986], and we do not introduce it here, as

we will talk about it in length in the next chapter.
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onset and length are related to the precise value of σ. All these features have

been analysed in detail by Castro-Alvaredo & Fring [2001b]; Castro-Alvaredo

et al. [2000b]. The minimal form factors of the n-copy theory can be extracted

with eqs. (3.61) and (3.62), and are

F±±
min(θ)=−isinh

(
θ

2n

)
, (3.97)

and

F±∓
min(θ)= A(n)e±

θ
4n

+ iπ(1∓1)
4 exp




∫∞

−∞

dt

t

sinh2
(

t
2

(
n+ i(θ±σ)

π

))

sinh(nt)cosh(t/2)



 , (3.98)

with A(n) given by the limit,

A(n)= lim
p→∞

e−
2p+2+n

2n
− iπ

4

√
2n

p

(
4p+3+2n

4n

) 4p+3+2n
8n

(
4p+5+2n

4n

) 4p+5+2n
8n

p∏

k=0

Γ
(4k+1+2n

4n

)2

Γ
(4k+3+2n

4n

)2 .

(3.99)

The solution (3.97) is nothing but that of the Ising model, as we would expect

from the first S-matrix in (3.95).

The form factors (3.98) can also be expressed in terms of an infinite product of

Gamma functions

F±∓
min(θ)= A(n)e±

θ
4n

+ iπ(1∓1)
4

∞∏

k=0

Γ
(4k+3+2n

4n

)2
Γ

(−2w+4k+1+2n
4n

)
Γ

(2w+4k+1+2n
4n

)

Γ
(4k+1+2n

4n

)2
Γ

(−2w+4k+3+2n
4n

)
Γ

(2w+4k+3+2n
4n

) , (3.100)

with w = n+ i(θ±σ)/π.

The function A(n) defined above would seem a strange choice of normalization.

The motivation for it is to ensure that the following minimal form factor relations

F±∓
min(θ)F±∓

min(θ+ iπ)=±
e±

θ
2n

± iπ
4n

sinh
(
θ±σ
2n

+ iπ
4n

) , (3.101)

hold, without involving complicated constants. In particular, A(1)= e−G/πe−iπ/421/4,

where G is the Catalan constant that appears in the normalization of the form

factors of the one-copy model of Castro-Alvaredo et al. [2000a]; Delfino et al.
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[1995]. It is worth noticing however that with respect to the latter normaliza-

tion our minimal form factor at n = 1 is multiplied by the extra factor e−iπ/4.

Once the two-particle form factor and minimal form factor have been computed

the basic monodromy and pole structure features of the form factors are fixed

so that higher particle form factors can be constructed in terms of the solutions

already found. Let us introduce the following notation:

Fℓ+m({x}+ℓ ; {x}−m) := F
T |

ℓ︷ ︸︸ ︷
+ . . .+

m︷ ︸︸ ︷− . . .−
ℓ+m

(x1, . . . , xℓ, xℓ+1 . . . xℓ+m), (3.102)

This represents the ℓ+m-particle form factor of the twist field with ℓ particles of

type + and m particles of type − living in one particular copy of the model. For

the model under consideration, we will make the following ansatz

Fℓ+m({x}+ℓ ; {x}−m) = H+−
ℓ,mQ+−

ℓ+m({x}+ℓ ; {x}−m)
∏

1≤i< j≤ℓ

F
T |++
min ( xi

x j
)

(xi −αx j)(x j −αxi)

×
ℓ∏

i=1

ℓ+m∏

j=ℓ+1
F

T |+−
min (

xi

x j

)
∏

ℓ+1≤i< j≤ℓ+m

F
T |−−
min ( xi

x j
)

(xi −αx j)(x j −αxi)
.(3.103)

It is easy to check that, the ansatz (3.103) automatically satisfies equations (3.53)

and (3.54) provided that the functions Q+−
ℓ+m

({x}+
ℓ

; {x}−m) are separately symmetric

in both sets of variables and have no poles on the physical sheet and H+−
ℓ,m are

constants. Notice that there are kinematic poles associated to pairs of + and −
particles, but not to the combination +−, as the two particles in the model are

self-conjugated (their own antiparticle). The ansatz (3.103) is reminiscent of the

solution procedure used in Castro-Alvaredo & Fring [2001b]; Castro-Alvaredo

et al. [2000a] where the form factors of local fields of the present model were also

studied.

Once the ansatz (3.103) has been made it remains to identify the functions Q+−
ℓ+m

({x}+
ℓ

; {x}−m)

and the constants H+−
ℓ,m. A useful benchmark that can be employed for this model

is the fact that whenever m = 0 or ℓ = 0, the resulting form factor must be the

ℓ-particle or m-particle form factor of the Ising model, respectively. This relation-

ship with the Ising model, combined with the kinematic residue equation (3.55)

also implies that only form factors with both ℓ and m even will be non-vanishing.
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Substituting the ansatz (3.103) into (3.55) we obtain the following recursive re-

lations for Q+−
ℓ+m

({x}+
ℓ

; {x}−m) and the constants H+−
ℓ,m,

H+−
ℓ+2,m =

α
3ℓ−m

2 +2e−
σm
2n 22ℓ−m+1 sin π

n

nF
T |++
min (iπ)

H+−
ℓ,m, (3.104)

and

Q+−
ℓ+2+m(αx0, x0, {x}+ℓ ; {x}−m)= P+−

ℓ,m(x0, {x}+ℓ ; {x}−m)Q+−
ℓ+m({x}+ℓ ; {x}−m), (3.105)

with

P+−
ℓ,m(x0, {x}+ℓ ; {x}−m)=αℓxℓ+2−m

0 σ+
ℓ

ℓ∑

i, j=0

(
−

x0

α

)ℓ−i

(−α2x0)ℓ− jσ+
i σ

+
j

m∑

k=0
(−

p
αe

σ
n x0)m−kσ−

k ,

(3.106)

where σ+
k
,σ−

k
are elementary symmetric polynomials on the variables {x}+

ℓ
and

{x}−m, respectively. To simplify notation, in (3.106) and (3.109) we have dropped

the explicit variable dependence of the symmetric polynomials.

In the ansatz (3.103) we have chosen a particular ordering of the particles with

type + appearing first and type - last. Of course this ordering can be changed

by employing the first form factor equation (3.53). Alternatively, we could have

worked with the form factor Fℓ+m({x}−
ℓ

; {x}+m) where we now have ℓ particles of

type - first, followed bym particles of type +. For this ordering, the recurrence

equations above become instead

H−+
ℓ+2,m =

α
3ℓ
2 +2e−

σm
2n 22ℓ−m+1 sin π

n

nF
T |−−
min (iπ)

H−+
ℓ,m, (3.107)

and

Q−+
ℓ+2+m(αx0, x0, {x}−ℓ ; {x}+m)= P−+

ℓ,m(x0, {x}−ℓ ; {x}+m)Q−+
ℓ+m({x}−ℓ ; {x}+m), (3.108)
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with

P−+
ℓ,m(x0, {x}−ℓ ; {x}+m)=αℓxℓ+2

0

σ−
ℓ

σ+
m

ℓ∑

i, j=0

(
−

x0

α

)ℓ−i

(−α2x0)ℓ− jσ−
i σ

−
j

m∑

k=0
(−

p
αe

σ
n x0)m−kσ+

k .

(3.109)

From the definition (3.103) and equations (3.53) and (3.61) it is easy to show that

H+−
ℓ,mQ+−

ℓ,m({x}ℓ; {x}m)= H−+
m,ℓQ−+

m,ℓ({x}m; {x}ℓ), (3.110)

which provides a useful relationship between the solutions of (3.108) and those

of (3.105).

Given the structure of the S-matrix (3.95) we know that form factors involving

only particles of type + or only particles of type - should equal the form factors of

the Ising model. We will consider then this case first. For m = 0 in (3.104)-(3.105)

or equivalently m = 0 in (3.107)-(3.108) the equations reduce to

Hℓ+2 =
α

3ℓ
2 +222ℓ+1 sin π

n

nF
T |±±
min (iπ)

Hℓ, (3.111)

and

Qℓ+2(αx0, x0, {x}ℓ)= Pℓ(x0, {x}ℓ)Qℓ({x}ℓ), (3.112)

with

Pℓ(x0, {x}ℓ)=αℓxℓ+2
0 σℓ

ℓ∑

i, j=0

(
−

x0

α

)ℓ−i

(−α2x0)ℓ− jσiσ j. (3.113)

Interestingly even for this special case, these equations are not easy to solve and

the solutions for Qℓ({x}ℓ) become very cumbersome beyond ℓ = 4. The first few
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solutions are,

Q2(x1, x2) = α−1σ2, (3.114)

Q4(x1, x2, x3, x4) = α−1σ2
4

(
σ2

2 −
p1(α)σ1σ3

α
+

p1(α)(1+α2)2σ4

α3

)
, (3.115)

Q6(x1, x2, x3, x4, x5, x6) = σ3
6

(
σ2

2σ
2
4 +

p1(α)2σ1σ
2
3σ5

α2 +
p2(α)σ1σ2σ4σ5

α

−
(
1+α2

)2
p3(α)σ2

1σ
2
5

α4 −
p1(α)σ3

(
σ1σ

2
4 +σ2

2σ5
)

α

+
p2(α)p1(α)4σ2

3σ6

α5 +
(
1+α2

)2
p1(α)

(
σ3

4 +σ3
2σ6

)

α3

−
p2(α)p1(α)2 p4(α)p3(α)σ1σ5σ6

α7 +
p2(α)3 p1(α)4 p3(α)σ2

6

α9

−
p1(α)2 p3(α)σ3 (σ4σ5 +σ1σ2σ6)

α4 −
p2(α)p1(α)2 p5(α)σ2σ4σ6

α5

+
p1(α)p3(α)2 (

σ2σ
2
5 +σ2

1σ4σ6
)

α5

)
, (3.116)

with

p1(α) = 1+α+α2,

p2(α) = 1−α+α2

p3(α) = 1+α+α2+α3+α4,

p4(α) = 1−α+3α2−α3+α4,

p5(α) = 3+2α+4α2+2α3+3α4. (3.117)

Comparing eq. (3.69) to our original ansatz we have the remarkable identity

Qℓ({x}ℓ)= H−1
ℓ Pf(Kℓ)

ℓ∏

i< j

(xi −αx j)(x j −αxi). (3.118)

Bringing the rhs of (3.118) into the form of a combination of symmetric polyno-

mials is highly non-trivial for ℓ > 4. In particular, for ℓ = 6 it yields the result

(3.116).

We now focus of form factors with + and - particles. Starting with the two particle
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solutions (3.114) we find the following new four particle form factor solutions

Q+−
2+2(x1, x2; x3, x4) = α−1σ−

2

(
σ̂+

2 −
p
α

1+α
σ̂+

1σ
−
1 +σ−

2

)
, (3.119)

Q−+
2+2(x1, x2; x3, x4) = α−2σ+

2

(
σ̂−

2 −
p
α

1+α
σ+

1 σ̂
−
1 +σ+

2

)
, (3.120)

where σ̂±
k

are symmetric polynomials on the variables {xe
σ
n }ℓ,m.

Going beyond four particles is rather difficult, but because of their relationship

to the form factors of the Ising model, it is possible to find closed formulae for

certain types of form factors. For example, when ℓ= 2 and m is general. In this

particular case the form factor equations become simply

Q+−
2+m(αx0, x0; {x}−m)= x2−m

0

m∑

k=0
(−

p
αe

σ
n x0)m−kσ−

k Qm({x}−m), (3.121)

and

Q−+
2+m(αx0, x0; {x}+m)=

x2
0

σ+
m

m∑

k=0
(−

p
αe

σ
n x0)m−kσ+

k Qm({x}+m), (3.122)

where Qm({x}m) is the Ising model solution given by (3.118). Particular solutions

to (3.121) and (3.122) take the form,

Q+−
2+m(x1, x2; {x}−m)=



α
m
2 −1σ̂+

2

m
2∑

k=0

σ−
2k

(σ̂+
2 )k

−
α

m−1
2 σ̂+

1

1+α

m−2
2∑

k=0

σ−
2k+1

(σ̂+
2 )k



Qm({x}−m), (3.123)

and

Q−+
2+m(x1, x2; {x}+m)=

(σ̂−
2 )

m
2

σ+
m



α−1σ̂−
2

m
2∑

k=0

σ̂+
2k

(σ̂−
2 )k

−
α− 1

2 σ̂−
1

1+α

m−2
2∑

k=0

σ+
2k+1

(σ−
2 )k



Qm({x}+m).

(3.124)

They provide closed solutions to the equations (3.121)-(3.122) valid for any values

of m. Unfortunately, this is not enough to conclude they are fully consistent with

all form factor equations. What we mean is that the relation (3.110) must also

hold, which means that for example the solution Q−+
2+4(x1, x2; {x}+4 ) constructed

above, must also solve the form factor equation satisfied by Q+−
4+2({x}+4 ; x1, x2) (up

to constants). This imposes a set of further constraints on the solutions to (3.121)
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and (3.122).

Let us consider an example. From (3.123) we find

Q−+
2+4(x1, x2; {x}−4 )=α−1 σ̂

−
2

σ+
4

[
(σ̂−

2 )2 + σ̂−
2σ

+
2 +σ+

4 −
p
ασ̂−

1

1+α

(
σ̂−

2σ
+
1 +σ+

3

)
]

Q4({x}+4 ).

(3.125)

This function solves (3.121), however it does not solve the equation for Q+−
4+2({x}+4 ; x1, x2)

which can be obtained from (3.109) with ℓ= 2, m = 4. If we solve that equation,

we obtain a completely different solution. Therefore (3.125) is not a consistent

solution to all form factor equations. As we studied in detail for the RT-model,

we can generally add an extra function to any solution, as long as that function

is in the kernel of the equation we are trying to solve. In our case, this means

that we can always add to (3.125) any function K−+
2+4(x1, x2; {x}4) which satisfies,

K−+
2+4(αx0, x0; {x}+4 )= 0. (3.126)

The most general solution to this equation, up to a multiplicative constant is,

K−+
2+4(αx0, x0; {x}+4 )=

σ−
2σ

+
4 (α(σ+

1 )2 − (α+1)2σ+
2 )

α3(1+α)2

×
(
α3σ+

1σ
+
2σ

+
3 −α(1+α+α2)((σ+

3 )2 + (σ+
1 )2σ+

4 )+ (1+α)4(1+α2)σ+
2σ

+
4 )

)
.(3.127)

Solving for Q+−
4+2({x}+4 ; x1, x2) we find that

Q+−
4+2({x}+4 ; x1, x2) = α

σ̂−
2

σ+
4

[
(σ̂−

2 )2 + σ̂−
2σ

+
2 +σ+

4 −
p
ασ̂−

1

1+α

(
σ̂−

2σ
+
1 +σ+

3

)
]

Q4({x}+4 )

+K−+
2+4(x1, x2; {x}+4 ), (3.128)

and from equation (3.110) it follows that

Q−+
2+4(x1, x2; {x}−4 )=α−2Q+−

4+2({x}+4 ; x1, x2). (3.129)

Therefore, in general, the solutions (3.123) and (3.124) need to be modified by

adding some function in the kernel of (3.121) or (3.122) which is consistent with

(3.110).
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3.5 The ∆-sum rule

In this section we introduce the ∆-sum rule, as defined by Delfino et al. [1996],

and eventually we use it to check the correctness of the higher particle form fac-

tors obtained in sections 3.4.1 and 3.4.2. We focus on a massive model which can

be described as a perturbation of a CFT, as explained in section 3.2. We call φ one

of its primary operators, and we study the two point function between this field

and the stress energy tensor. In particular we express in complex coordinates

z, z̄ = re±iα the two following correlators

〈T(z, z̄)φ(0)〉 =
F(r2)

z2 (3.130)

〈Θ(z, z̄)φ(0)〉−〈Θ〉〈φ〉 =
G(r2)

r2 , (3.131)

where the exact definitions of T and Θ can be found in section 2.2.1. The conser-

vation law of the stress energy tensor was reported in eq. (3.15). Calling t = r2

we can use this equation to demonstrate that for D(t)= F(t)+ 1
4G(t) it holds

d

d log t
D(t)=

1

4
G(t). (3.132)

As we have seen in section 3.2 if we consider a theory described by the action (3.9)

perturbed with just one field, the trace of stress energy tensor and the perturbing

field are related by eq. (3.19). Hence we can focus on 〈ϕ(z, z̄)φ(0)〉 to determine

G. In particular we use the short distance OPE of these two fields to express

G(t)= 4πg(1−∆)C0
ϕφt∆0−∆−∆φ+1〈A0〉+ ..., (3.133)

and distinguish two cases.

The first case is ∆0−∆−∆φ+1> 0, which means that in the UV limit r → 0 the rhs

of eq. (3.133) vanishes. Hence r = 0 is a stationary point of D(t), and D(0)= F(0).

We can now use eq. (2.23) to see that D →∆φ〈φ〉, in the UV limit1. Here we have

1actually we have to say that in principle the renormalization process needed in conformal
perturbation theory to cure IR divergences could mix the operators, such that this limit could be
more complicated. This is not the case for any of the models considered by us.
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to consider two sub-cases

• the perturbation makes the original CFT flow onto a fixed point correspond-

ing to another CFT; then we can integrate eq. (3.132) along this massless

flow obtaining

∆
UV
φ −∆

IR
φ =−

1

2〈φ〉

∫
dr r〈Θ(r)φ(0)〉c, (3.134)

where with 〈...〉c we mean the connected correlator.

• The perturbation makes the original CFT flow onto an infinite coupling

massive theory, then

∆
UV
φ =−

1

2〈φ〉

∫
dr r〈Θ(r)φ(0)〉c. (3.135)

The other case is when ∆0 −∆−∆φ+1 ≤ 0. In this case G(t) does not vanish for

t → 0, and using eq. (3.133) is useless, as the resulting integral diverges. We

will not describe further this case, as it does not occur in the models we consider.

Moreover both the RT and the SU(3)2-homogenous sine-Gordon models have an

infinite coupling theory as IR limit.

Equation (3.135) can be then employed to check the correctness of our twist field

form factors, as the conformal weight of T is well known (2.67). This rule was

already employed in Cardy et al. [2008] with the same scope for the Ising and

sinh-Gordon models.

In what follows we will use a slightly more general version of eq. (3.134), already

employed by Castro-Alvaredo & Fring [2001b]

∆φ(r0)=−
1

2〈φ〉

∫∞

r0

dr r〈Θ(r)φ(0)〉c, (3.136)

where we dropped the UV superscript, so that taking r0 = 0 we recover eq. (3.135),

whereas for larger values of r0 we are now able to trace changes in the value of

∆
T (r0) along the renormalisation group (RG) flow, that is as we move from low

energies or r0 large to high energies or r0 = 0. Observing such intermediate be-

haviour is particularly interesting for models where the RG-flows approach the
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vicinity of more than one critical point, as the RT model. It is also instructive

for those models with bound states or unstable particles. For those models we

expect to see a sharp change in the expectation values once we reach an energy

scale comparable with the mass of these excitations. This is because of the con-

tribution of channels involving those particles to scattering processes.

Focusing on the twist field, employing eq. (3.46) and performing the integration

in r, eq. (3.136) becomes

∆T (r0)=−
1

2〈T 〉

∞∑

k=1

∑

µ1...µk

∞∫

−∞

. . .

∞∫

−∞

dθ1 . . .dθk

k!(2π)k

(1+ r0E) e−r0E

2E2

×F
Θ|µ1...µk

k
(θ1, . . . ,θk)

(
F

T |µ1...µk

k
(θ1, . . . ,θk)

)∗
, (3.137)

where E stands for the sum of the on-shell energies E =
∑k

i=1 mµi
cos(θi). Unfor-

tunately in eq. (3.137) both the number of integrals and the complexity of form

factors grow very fast, making an analytic solution inaccessible. We have to rely

on numerical integration methods then, and the rest of this section is devoted to

this analysis for the RT and SU(3)2-homogeneous sine-Gordon models.

We start by considering the roaming trajectories model. As explained in sec-

tion 3.4.1, the function ceff(r) exhibits an infinite set of plateaux between r = 0

and r →∞. From Castro-Alvaredo [2011] we understand that in the RG flow of

the c-function1 each plateau is connected to the contribution of a certain order

form factor. A similar type of behaviour is expected for ∆T (r0) as r0 is varied, so

that we would need to perform a numerical integration of eq. (3.137) for different

values of r0 ∈ [0,∞) to follow the flow. This in particular means that the two par-

ticle contribution will give c = 1/2, the four particle c = 7/10−1/2, and so on and

so forth. Thus taking r0 = 0, we would expect to identify two values of ∆T , that

is the value obtained in the two-particle approximation and the value obtained

in the four-particle approximation.

The two particle contribution can be expressed after a bit of manipulation by

means of a single integral, which can be solved numerically with any Newton

1this will be defined in the next chapter.

90



Cotes formulae1. With the same kind of manipulation we are able to express the

four particle contribution by means of a triple integral, which we solved numeri-

cally with a Montecarlo integration. Since the integrand function is very peaked

in a certain region we used the adaptive VEGAS algorithm of the Gnu Scientific

Library (GSL)2. The precise height of the plateaux can be easily predicted plug-

ging (3.73) into eq. (2.67). By doing so we obtain a value of ∆T for each central

charge and each value of n.

The two particle contribution takes exactly the same form as for the sinh-Gordon

model and was given in Cardy et al. [2008]. Evaluating it for θ0 = 20 we obtain

the values listed in table 3.2.

n 1
48

(
n− 1

n

)
∆

(2)
T

(0)

2 0.03125 0.0312548
3 0.0555556 0.055676
4 0.078125 0.0785953
5 0.1 0.101033
6 0.121528 0.123257
7 0.142857 0.145351
8 0.164062 0.167351
9 0.185185 0.189277
10 0.20625 0.211143

Table 3.2: Two particle contribution to the conformal dimension in the RT-model.
The second column shows the exact values of the conformal dimension of the
twist field corresponding to central charge c3 = 1/2. The third column shows
the numerical values of the same quantity in the two-particle approximation for
θ0 = 20.

Employing the four-particle form factors of the energy momentum tensor ob-

tained in Fring et al. [1993] and Koubek & Mussardo [1993] and our solution

1in particular we used the trapezoid rule.
2Galassi & Gough [2005]
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eq. (3.88) with Ω4 = 0, the four-particle contribution is given by

∆
(4)
T

(0) = −
sin

(
π
n

)
cosh(θ0)

∣∣FT

min(iπ)∗FΘ

min(iπ)
∣∣2

1536π3

∫∞

−∞
dθ1dθ2dθ3dθ4

σ1σ2σ3Q4(x1, x2, x3, x4)
∏
i< j

FT

min(θi j)∗FΘ

min(θi j)

(
∏
i< j

cos
(
π
n

)
−cosh

(
θi j

n

))
(

4∑
i=1

cosh(θi j))2

(3.138)

where σ1,σ2 and σ3 above represent elementary symmetric polynomials in the

variables eθi with i = 1,2,3,4. The values of (3.138) for different values of n are

given in table 3.3. Both tables 3.2 and 3.3 show relatively good agreement be-

n 1
120

(
n− 1

n

)
∆

(4)
T

(0)

2 0.012500 0.013086
3 0.022200 0.022169
4 0.031250 0.028611
5 0.040000 0.042555
6 0.048611 0.047566
7 0.057143 0.057996
8 0.065625 0.064736
9 0.074074 0.072281
10 0.082500 0.068762

Table 3.3: Four-particle contribution to the conformal dimension in the RT-model.
The second column shows the difference between the values of the conformal
dimension of the twist field corresponding to central charges c4 = 7/10 and c2 =
1/2. The third column shows the numerically computed four-particle contribution
to the conformal dimension for θ0 = 20.

tween the values predicted by the theory and those numerically obtained. The

difference between the theoretical and numerical values is considerable for some

of the results in table 3.3, specially as n is increased. However it is always within

the standard deviation of the computation.
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We now focus on the SU(3)2-HSG model. For this model we follow the flow

of ∆T (r0), and this obviously increases the simulation time. We managed to

reduce the running time of our program by employing a very precise, piece-wise

polynomial interpolation of the functions F
T |±∓
min (θ)FΘ|±∓

min (θ)∗. Also in this case we

have carried out the integrals by means of the GSL version of VEGAS algorithm.

From (3.63) and the two particle form factor of the energy-momentum tensor for

the thermally perturbed Ising model1

F
Θ|±±
2 (θ)=−2πim2 sinh(

θ

2
), (3.139)

the two particle contribution can be easily calculated to

∆
(2)
T

(r̃0)=
2cos

(
π

2n

)

4π

∫∞

−∞
dθ1dθ2

(1+ r̃0
∑2

i=1 cosh(θi))e
−r̃0

2∑
i=1

cosh(θi)

(
∑2

i=1 cosh(θi))2

sinh
(
θ12
2n

)
sinh

(
θ12
2

)

cosh
(
θ12
n

)
−cos

(
π
n

) ,

(3.140)

where r̃0 = mr0 is a dimensionless parameter proportional to the mass scale.

From a physical point of view, we expect this contribution to produce a function

with a plateau at exactly ∆
(2)
T

(0) = 1
24

(
n− 1

n

)
, which is the value corresponding

to two copies of the Ising model or c = 1. The four particle contribution is also

quite simple to compute, as only few form factors contribute. This is because, for

each copy of the model, the only non-vanishing four particle form factors of the

energy-momentum tensor are F
Θ|+−
2+2 (θ1,θ2;θ3,θ4) and all other form factors that

can be obtained from this one by changing the particle ordering. This form factor

was given explicitly in Castro-Alvaredo et al. [2000a]. Together with our solution

(3.120) and the ansatz (3.103) it gives the four particle contribution

∆
(4)
T

(r̃0)=−
cos

(
π

2n

)2

256nπ3eσ/n

∫∞

−∞
dθ1dθ2dθ3dθ4

(1+ r̃0(
∑4

i=1 cosh(θi))e−r̃0(
∑4

i=1 cosh(θi))

(
∑4

i=1 cosh(θi))2
e(θ31+θ42)/2

(2+
∑4

i< j
cos(θi j))

[∏4
i< j

(
F

T |µiµ j

min (θi j)
)∗

F
Θ|µiµ j

min (θi j)
]

Q+−
2+2(x1, x2; x3, x4)e−(θ1+θ2+θ3+θ4)/n

cosh
(
θ12
2

)
cosh

(
θ34
2

)(
cosh

(
θ12
n

)
−cos

(
π
n

))(
cosh

(
θ34
n

)
−cos

(
π
n

)) ,

(3.141)

1Berg et al. [1979]; Yurov & Zamolodchikov [1991].

93



-40 -30 -20 -10 0
0.00

0.02

0.04

0.06

0.08

t=logHr�2L

D
Ht
L

n=2

Σ=20

Σ=10

Σ=0

-40 -30 -20 -10 0
0.00

0.05

0.10

0.15

0.20

t=logHr�2L

D
Ht
L

n=4

Σ=20

Σ=10

Σ=0

-40 -30 -20 -10 0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

t=logHr�2L

D
Ht
L

n=6

Σ=20

Σ=10

Σ=0

-40 -30 -20 -10 0
0.0

0.1

0.2

0.3

0.4

t=logHr�2L

D
Ht
L

n=8

Σ=20

Σ=10

Σ=0

Figure 3.1: The function ∆(t) := ∆T (t) with t = 2log(r̃) and r̃ = mr. In these fig-
ures we show the behaviour of ∆T (t) along the renormalization group flow, from
the infrared to the ultraviolet fixed point, for different values of the resonance
parameter σ. Our results are consistent with (2.67) and c = 1 for the first plateau
and (2.67) with c = 6/5 for the second plateau.

where µ1,µ2 =+ and µ3,µ4 =−. This contribution, when added to (3.140) should

bring the value of ∆T closer to the expected one, which is obtained by setting c =
6/5 in (2.67). Our numerical results shown in figure 3.1 clearly demonstrate this

to be the case for various values of n. As t →−∞ the functions ∆(t) all approach

the expected value (2.67) for n = 2,4,6 or 8 and c = 6/5 with great accuracy. This

is shown in Table 3.4.

In figure 3.1 we also see that the function ∆(t) exhibits two finite plateaux

along the renormalization group flow, which in numerical terms exactly corre-

spond to the two particle and four particle contributions. The position at which

the second plateau emerges changes as a function of σ, as is also illustrated in

the figure. An entirely similar behaviour was found in Castro-Alvaredo & Fring
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n σ= 0 σ= 10 σ= 20 1
20

(
n− 1

n

)

2 0.075021 0.075041 0.074947 0.075
4 0.187194 0.187369 0.186426 0.1875
6 0.291655 0.290274 0.290568 0.291667
8 0.392992 0.392880 0.389882 0.39375

Table 3.4: In this table we display the value ∆T (t) for different n when we ap-
proach the UV limit t → −∞ considering different values of the resonance pa-
rameters σ. We observe a good agreement with the CFT prediction (2.67) with
c = 6/5.

[2001b] for the c-function of the same model and in Castro-Alvaredo et al. [2000b]

for its effective central charge. A detailed physical interpretation has been given

there. Unfortunately, the errors on the 6 particles contribution were too large to

give acceptable results.

3.6 The entanglement entropy

To evaluate the entanglement entropy in a massive theory we use exactly the

same approach of the CFT case in section 2.3.3. Remember that the entropy we

want to evaluate is that of a region A = [0, r] tracing out \A, then we can write

TrAρ
n
A = ε2∆T

〈T (r)T (0)〉. (3.142)

We already know that in the UV limit r ≪ m−1, the behaviour of entanglement

entropy can be well described by eqs. (2.69) and (2.71), so that we focus on the

opposite limit r ≫ m−1. In this regime the two point function in the rhs of

eq. (3.142) can be expressed very efficiently with a form factor expansion. So

efficiently that we expect that the two particle contribution to be enough to have

a good approximation, so that, using eqs. (3.46), (3.57) and (3.58), we can write

〈T (r)T (0)〉 = 〈T 〉2
(
1+

n

4π2

∫∞

−∞
dθ f (θ,n)K0(2mr cosh

θ

2
)
)
, (3.143)

95



where K0 is a modified Bessel function of the second kind, and

f (θ,n)=
n∑

j=1

∣∣∣FT |11(−θ+2πi j)
∣∣∣
2

. (3.144)

In order to extract the entropy we have to use the replica trick (2.43), and this

means we have to find an analytic continuation for n ∈ [1,∞) of eq. (3.142). Ac-

tually f (θ,n) is the only quantity to depend non-trivially on n, so that we will

focus on that. The details on how to perform this analytic continuation were first

reported in Cardy et al. [2008], where they found that for an integrable theory1

lim
n→1

∂

∂n
f (θ,n)=

π2

2
δ(θ). (3.145)

This result was checked explicitly for the Ising and sinh-Gordon models. Now

putting together eqs. (2.43), (3.142), (3.143) and (3.145) we find eventually

S(ρA)=−
c

3
log(εm)+U −

1

8
K0(2mr)+O(e−4mr), (3.146)

The dimensionless constant U is of universal nature, and is defined as

U =− lim
n→1

∂

∂n
m−2∆T 〈T〉2, (3.147)

and corrections of order O(e−4mr) are to be expected when taking under consid-

eration higher particle form factors.

All the considerations made so far hold for an integrable theory with just one

particle in its spectrum, but in a later work it was proven by Doyon [2009] that

eq. (3.145) holds also for non-integrable theories with an arbitrary number of

particles. We can now regroup the results obtained in Chapters 2 and 3, and

1here we are denoting with f (θ,n) also the analytic continuation when n ∈ [1,∞).
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distinguish the following two limits for a massive QFT

S(ρA)=
c

3
log

( r

ε

)
for r ≪ m−1

1 ,

(3.148)

S(ρA)=−
c

3
log(εm1)+U −

1

8

k∑

α=1
K0(2mαr)+O(e−3m1r) for r ≫ m−1

1 ,

(3.149)

for a theory with k particles of mass mα in its spectrum, with m1 ≤ m2 ≤ ...≤ mk.

Notice that these general results confirm the behaviour of the entanglement en-

tropy anticipated with eqs. (1.41) and (1.42).

Equation (3.149) has been obtained with a form factor expansion whose region of

convergence is m1r > 1, where higher order terms are exponentially suppressed.

We expect then that neglecting higher order terms gives a good approximation,

which clearly becomes better for larger size of A. We have then the following

qualitative picture. The entanglement entropy of the bipartition A grows loga-

rithmically with the size of r for r < m−1
1 . When r ≃ m−1

1 , S(ρA) comes very close

to a saturation point which it reaches when r ≫ m−1
1 . In the region r > m−1

1 the

difference between the entanglement entropy and its saturation value decreases

exponentially with increasing r.

A remarkable feature of eqs. (3.148) and (3.149) is that, if we think of our QFT

as a scaling limit of a lattice theory, then S(ρA) can be expressed by means of

universal features of the latter. Indeed its behaviour depends only on the central

charge and the spectrum of the QFT. The connection between these QFT results

and the lattice theory has to be thought of in the spirit of section 1.6. Equa-

tions (3.149) and (3.148) give meaningful predictions for the lattice only in its

scaling limit, that is when the limits in eq. (1.37) are performed. This means

that the predictive power of the QFT is restricted only to the case in which both

the size of the region A and the correlation length are very large compared to the
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lattice spacing. The cut-off can be related to the lattice spacing as

ε∝
a

mξ̂
, (3.150)

in a non universal way, and we can choose it in a way that it gives the same con-

stant of eq. (2.70). Using the map reported in table 1.1 we can apply eqs. (3.148)

and (3.149) to the lattice theory getting

S(ρa)=
c

3
log(r)+ c′1 for r ≪ ξ1, (3.151)

S(ρa)=
c

3
log(ξ1)+ c′1 +U −

1

8

k∑

α=1
K0(2

r

ξα
)+O(e−4 r

ξ1 ) for r ≫ ξ1, (3.152)

where ξα are the characteristic lengths of the correlations of the theory, and we

are considering ξ1 ≥ ξ2 ≥ ... ≥ ξk. The constant c′1 in eqs. (3.151) and (3.152)

has the same origin as the one in eqs. (2.70)–(2.73), hence it is of non-universal

nature, and cannot be predicted with scaling arguments. In particular, as ex-

plained in section 2.3.3 depends on the renormalization point through the pa-

rameter γ = a/ε = e
6c′1

c . Of totally different nature is the constant U as defined

in eq. (3.147), which is an off-critical universal quantity, which does not depend

on the renormalization point, and can be predicted by QFT argument. Equa-

tion (3.152) is of crucial importance to have a predictive power on numerical

simulations on lattice theories, and we will devote the whole Chapter 5 to this

matter.
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4
An entropic version of the c-theorem

In this chapter we explore the relations between the entanglement entropy, and

Zamolodchikov [1986] c-function. The connection between these two quantities

has been a fertile field of research since the original formulation of the theorem,

and found broad applications. In the original work Zamolodchikov [1986] defines

a c-function, which counts the loss of degrees of freedom for coarse-graining un-

der renormalization. Entanglement entropy on the other hand counts the corre-

lation between degrees of freedom of two distinct regions, so that a connection

between the two is appealing.

As we will see in section 4.1 Zamolodchikov’s c-function satisfies some very pe-

culiar properties, such that in literature any function which satisfies these prop-

erties is called a c-function.

Casini & Huerta [2004, 2007] managed to define a c-function in (1+1)-dimensional

theories by means of the mutual information, demonstrating all its properties us-

ing strong subadditivity and Lorentz invariance. In an original work by Cardy

[1988] the difficulties of extending this theorem to higher dimensions were col-

lected, and a proposal for a more suitable c-function (called a-function) was

given. We have to wait until Komargodski & Schwimmer [2011] though to have

the first convincing proof of existence of a c-function in more than two dimen-

sions.

We will be only concerned with theories in (1+1) dimensions, so that our next

step will be to give the definition of the original c-function of Zamolodchikov.
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4.1 The c-function

This section is devoted to the proof of Zamolodchikov’s c-theorem. This theory

states that there exist a function c(t) of the couplings1 which

• is monotonically decreasing along the RG flow, that is d
d log t

c(t)≤ 02,

• is stationary only at fixed points d
d log t

c(t)
∣∣∣
t=t∗

= 0,

• at these points its value corresponds to the central charge of the corre-

sponding CFT, c(t∗)= c.

To prove these propositions we define a set of functions similar to those in sec-

tion 3.5. We focus on the two point functions of the three components of the stress

energy tensor T, T̄,Θ. For dimensional and spin reasons we can express them as

follows

〈T(z, z̄)T(0)〉 =
F(t)

z4 (4.1)

〈Θ(z, z̄)T(0)〉 = 〈T(z, z̄)Θ(0)〉 =
G(t)

tz2 , (4.2)

〈Θ(z, z̄)Θ(0)〉 =
H(t)

t2 , (4.3)

where F, G and H are dimensionless quantities, and we are using as renor-

malization parameter t = zz̄. Now we use the two point functions between the

conservation law (3.15) of Θ and T to find

d

d log t
F +

1

4

(
d

d log t
G−3G

)
= 0

d

d log t
G−G+

1

4

(
d

d log t
H−2H

)
= 0.

(4.4)

Combining these two equations and defining c = 2F −G− 3
8 H we find eventually

d

d log t
c(t)=−

3

4
H(t). (4.5)

1t being a renormalization parameter on which all the couplings depend.
2here t is a renormalization variable which has the same meaning as in eq. (3.132)
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Remarkably tracelessness of the stress energy tensor implies that the critical

points are stationary points for c(t). Furthermore they are the only ones, be-

cause any other point could be reached by perturbing the CFT as in section 3.2,

and as a consequence of eq. (3.19) the stress energy tensor would have a non-

vanishing trace. For the same reason at a fixed point c(t∗) = 2F(t∗), and from

eq. (2.33) follows trivially that F(t∗) = c
2 , hence c(t∗) = c. Finally to prove that

c(t) decreases along the RG flow we need some remarks. As Θ is a scalar operator

real time Hermitian conjugation corresponds to time inversion. In the Euclidean

theory clearly the concept of Hermitian conjugation does not exist, but we can

extend it by considering Euclidean time reflection. As the original theory enjoys

Hermitian positivity1 we expect that

〈Θ(x,τ)Θ(x,−τ)〉 ≥ 0. (4.6)

Moreover, due to Lorentz invariance, this statement holds for two fields taken

at any position 〈Θ(x)Θ(y)〉 ≥ 0. This property is called reflection positivity2, and

from it follows trivially d
d log t

c(t)≤ 0.

We can now integrate this function in the same way we did for eq. (3.136), and

define the integral c-function

c(r0)=
3

2

∫∞

r0

dr r3〈Θ(r)Θ(0)〉. (4.7)

4.2 Connections between c(r) and ∆(r)

The rather special properties of Zamolodchikov c-function suggest that it could

be related to some entropic function. In chapters 2 and 3 we developed a method

based on the twist field T to evaluate entanglement entropy. We know from

eq. (2.67) that the conformal weight of the twist field is related to the central

charge c, so that we suspect that this might be the bridge between a c-function

and the entanglement entropy. At least at the critical point this is the case, so

1this is a total general requirement of a probabilistic interpretation of quantum mechanics.
2Osterwalder & Schrader [1973].
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that we are tempted to extend it outside criticality, that is to say

∆T (r)=
c(r)

24

(
n−

1

n

)
, (4.8)

where ∆T (r) is the ∆-function (3.136) while c(r) is Zamolodchikov c-function

(4.7), both evaluated in the same renormalization point.

It can be checked both analytically and numerically that eq. (4.8) does not hold

in general. A clear example of this is the Ising model, for which the two functions

are reported in figure 4.1. We notice though from figures 3.1 and 4.1 that ∆T (r)

c HtL
24
Hn- 1

n
L

DHtL

-40 -30 -20 -10 0
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

t=2logHmrL

Figure 4.1: In this picture we show the difference between ∆(t), and c(t) for two
copies of the Ising model (n = 2). We carried out the same analysis until n = 10,
finding the same qualitative behaviour. The scale is logarithmic, and we can
see that, even if at the critical point ∆T (0) = c(0)

24

(
n− 1

n

)
, along the RG flow this

equality does not hold anymore.

seems to have all the qualitative features shown by Zamolodchikov c-function.

We want then to prove that this is actually the case, and conclude that the ∆-

function of the twist field is a c-function.

The twist field exists only when we consider n copies of a model, then we can
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express eq. (3.132) as

d∆T (r)

dr
=

r
(
〈Θ(r)T (0)〉(R2)n

−〈Θ〉(R2)n
〈T 〉(R2)n

)

2〈T 〉(R2)n

, (4.9)

where we denote with (R2)n the expectation values obtained considering n dis-

connected copies. The integral expression (3.136) becomes then

∆T (r)=−
1

2

∫∞

r
ds s

(
〈Θ(s)〉M n

0
−n〈Θ〉R2

)
, (4.10)

where M
n
0 is the n sheeted Riemann manifold defined by the insertion of a

branch point twist field T at the origin. The presence of n in front of the vev

of the trace Θ in the single copy theory is a consequence of considering n copies

of the model, so that in that term we have the sum of n non-interacting stress

energy tensors.

If we manage to demonstrate that

〈Θ(s)〉M n
0
−n〈Θ〉R2 < 0 ∀r ∈ (0,∞), (4.11)

then we can prove positivity ∆(r)≥ 0, and the monotonicity property ∆̇(r)< 01.

Notice that eq. (4.10) converges by factorization of correlation functions at large

distances, and automatically implements ∆(∞)= 0. For the same reason we have

that ∆̇(r) vanishes in the IR limit. Clearly it vanishes also at the UV point due to

traclessness of the stress energy tensor, so that if we manage to prove eq. (4.11)

true, we can conclude that the UV and IR points are the only stationary points,

and this would prove all the wanted properties.

It is interesting to note that these properties do not necessarily hold for operators

other than the branch point twist field. The results of Castro-Alvaredo & Fring

[2001b] (Figs. 2 and 3) and Castro-Alvaredo & Fring [2001c] (Fig. 3) show explicit

examples of fields for which the monotonicity property of ∆(r) does not hold.

Reflection positivity, used to prove the c-theorem, does not work here, so that we

have to develop new arguments. We approach the problem in two different ways

• analysis of the IR and UV regions using form factor expansions and per-

1this feature was also observed in Calabrese & Cardy [2004].
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turbed CFT, respectively,

• general QFT-based intuitive arguments.

These two different attempts to prove eq. (4.11) will be presented respectively in

sections 4.2.1 and 4.2.2. Finally we will present a thorough analysis of the Ising

model in section 4.3.

4.2.1 Neighbourhood of the IR and UV fixed points

We begin by considering the large distance region. In the two-particle approxi-

mation we write

〈Θ(r)〉M n
0
−n〈Θ〉R2 ≃

n∑

a,b=1

∞∫

−∞

dθ1dθ2

2(2π)2 F
Θ|ab
2 (θ1,θ2)

(
F

T |ab
2 (θ1,θ2)

〈T 〉

)∗
e−rm(coshθ1+coshθ2),

(4.12)

where for simplicity we assume that we have, on the right-hand side, n copies

of a QFT with a single particle spectrum. The functions above are defined as

F
O |ab
2 (θ1,θ2) := 〈0|O (0)|θ1θ2〉ab, where |0〉 is the vacuum, |θ1θ2〉ab is a two-particle

asymptotic state, and θ1,2 are rapidities.

For integrable models, the twist field two particle form factor is the one re-

ported in eq. (3.63), and here we assume the form

F
T |ab
2 (θ1,θ2)=

〈T 〉
2n

sin
(
π
n

)

sinh
(

iπ(2(a−b)−1)+θ
2n

)
sinh

(
iπ(2(b−a)−1)−θ

2n

)
Fab

min(θ,n)

Fab
min(iπ,n)

, (4.13)

where we express explicitly the dependence on n of the minimal form factor. On

the other hand the Θ form factor

F
Θ|ab
2 (θ1,θ2)= 2πm2 Fab

min(θ,1)

Fab
min(iπ,1)

δab, (4.14)

depends on the single copy minimal form factor. The normalization of eq. (4.14),

F
Θ|aa
2 (iπ)= 2πm2, is fixed as explained in Mussardo & Simonetti [1994].
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Inserting these expressions into (4.12), we can write

〈Θ(r)〉M n
0
−n〈Θ〉R2 =−

m2 sin π
n

2π

∞∫

−∞

dx
K0(2mr cosh x

2 )

cosh x
n
−cos π

n

F11
min(x,1)

F11
min(iπ,1)

F11
min(x,n)∗

F11
min(iπ,n)∗

,(4.15)

where K0(t) is a modified Bessel function.

Clearly, the sign of (4.15) is only determined by the minimal form factor product,

as all the other quantities in the integrand are positive. We can express the

minimal form factor through the integral representation (eq. (3.62))

F11
min(x,n)= exp

∫∞

0

dt f (t)

tsinh(nt)
sin2

[
it

2

(
n+

ix

π

)]
, (4.16)

where f (t) can be extracted from the S-matrix with the help of eq. (3.40). The

minimal form factor is in general a complex function, however the product

F11
min(x,1)F11

min(x,n)∗ = exp
∫∞

0

dt

2t
f (t)

(
1−cos tx

π
coshnt

sinhnt
+

1−cos tx
π

cosh t

sinh t

)
,

(4.17)

is real and positive. This proves (4.11) near the infrared fixed point (mr large).

In addition, the presence of the exponential (4.12) ensures that the value of the

integral is larger for smaller values of mr. Note that for fields other than the

branch point twist field, there is no reason to expect that the present argument,

which depends on the particular form of the form factors, gives negativity.

Let us now turn to the short distance behavior of 〈Θ(s)〉M n
0
−n〈Θ〉R2 , using the

conformal perturbation formalism defined in section 3.2.

On dimensional grounds, the coupling constant g is related to a mass scale m as

g ∼ m2−2∆, and we will take g > 0 and φ “positive” so that the spectrum of the

theory is bounded from below. We can use eq. (3.19) to relate the trace of the

stress energy tensor to the perturbing field φ, so that we can focus on the two

point function between φ and the twist field. For ∆ < 1 Zamolodchikov [1989]

showed that eq. (3.19) is exact in the sense that no higher order corrections in

g occur. The expectation value 〈Θ(r)〉M n
0

can be evaluated through the operator

105



product expansion (OPE) eq. (3.13), such that

〈φ(r)T (0)〉(R2)n

〈T 〉(R2)n

=
∞∑

µ=0
C

µ

φT
(r)

〈Aµ〉(R2)n

〈T 〉(R2)n

, (4.18)

in terms of some fields Aµ of the massive QFT. Considering the zeroth order

of conformal perturbation theory, we directly replace the structure functions by

their CFT value. The leading term of the expansion (4.18) will involve a field A0,

written as the composite field :φT :,

〈φ(r)T (0)〉(R2)n

〈T 〉(R2)n

= C̃
:φT :
φT

r2(∆:φT :−∆−∆T ) 〈:φT :〉(R2)n

〈T 〉(R2)n

+·· · (4.19)

It is possible to fix ∆:φT : by comparing the OPE above to the standard CFT com-

putation of a correlation function of the form:

〈φ(z, z̄)T (0)O (x, x̄)〉(R2)n

〈T 〉(R2)n

= 〈φ(z, z̄)O (x, x̄)〉M n
0

=
r2∆( 1

n
−1)

n2∆
〈φ(0)( f ∗O )( f (x), f (x̄))〉R2 + ... ,

(4.20)

where r = |z| =
p

zz̄ and f (z) = z
1
n is the conformal transformation that unrav-

els the Riemann sheets conformally mapping them to R
2.Here O is an arbitrary

product of local fields, not necessarily primary, at positions represented by the

sets x, x̄. From the comparison between (4.19) and (4.20) we can fix

∆:T φ: =
∆

n
+∆T and C̃

:φT :
φT

=
1

n2∆
. (4.21)

We can then use (4.19), and (4.21) to write

〈Θ(r)〉M n
0
−n〈Θ〉R2 = m2n

(
αβ(mr)2∆( 1

n
−1)

n2∆−1
−µ

)
+·· · (4.22)

where 4πg(1−∆)=αm2−2∆, 〈Θ〉R2 =µm2 and

〈:φT :〉(R2)n

〈T 〉(R2)n

=βm
2∆
n , (4.23)
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and α,β and µ are all dimensionless constants. Clearly α > 0 if ∆ ≤ 1/2 and

g > 0. Hence, negativity of (4.22) at short distances requires β < 0. Although

expectation value 〈T 〉(R2)n
is positive as it represents the partition function of the

theory on the manifold M
n
0 , we are not able to give a derivation of the negativity

of 〈: φT :〉(R2)n
in this context, so that we need some more general arguments to

prove it.

4.2.2 General arguments

In this section we provide model-independent arguments, based on expected

physical properties of unitary models, strongly suggesting that (4.11) holds for

arbitrary values of mr. Here, we use in an essential way the geometric interpre-

tation of the branch point twist field, hence these arguments do not apply to any

other field.

Note that proving (4.11) (for n > 1) is equivalent to showing that

∂

∂n

(
〈Θ(r)〉M n

0

)
< 0. (4.24)

Indeed at n = 1 we have 〈Θ(s)〉
M

1
0
= 〈Θ〉R2 . Similarly, if

∂

∂r

(
〈Θ(r)〉M n

0

)
> 0, (4.25)

then (4.11) follows, because of factorization of correlation functions at large r. In

particular, establishing (4.25) immediately shows negativity of the coefficient β

in (4.23).

Our main argument uses the idea of virtual particle propagation. We re-interpret

unitarity as “positivity” of the perturbing field φ (hence of Θ): φ should be an ap-

propriate normal-ordered (i.e. renormalized) product of an operator ψ and its her-

mitian conjugate, φ= (ψ†ψ), in analogy with the factorization of positive-definite

matrices. Then contributions to the expectation value 〈Θ(r)〉M n
0

come from vir-

tual particles created and annihilated at the point (r,0), and propagating in M
n
0 .

Every path contributes a positive amplitude proportional to the exponential of

minus the single-particle Euclidean action (i.e. the Brownian motion measure

of the path), with possible branching due to interactions. Some of these paths
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go around the origin. As the angle around the origin 2πn increases, these self-

interaction contributions become less important, because the distance traveled

is greater. Whence the derivative with respect to n is negative, giving (4.24). A

similar argument leads to (4.25) for n > 1. Indeed, as r decreases, more and more

self-interaction loops must travel around the origin, hence giving lesser contri-

butions.

We give a qualitative picture of this situation in figure 4.2.

Figure 4.2: In this picture we are representing the self-interaction contributions
to the stress energy tensor with an arrowed solid line. We chose to place the
branch cut on the negative real axis. The dashed line represent those contribu-
tions which are forced to loop around other copies to close.

A way to study the self-interaction loops around the origin is to use angular

quantization. Let us consider as an example the Klein-Gordon theory, and explic-

itly show (4.24) in this case. Angular quantization was developed quite generally

in Brazhnikov & Lukyanov [1998]; Lukyanov [1995] in the context of form factors

in integrable models; the Klein-Gordon angular quantization described in Brazh-

nikov & Lukyanov [1998] allows us to evaluate correlation functions. The con-

struction of the branch point twist fields in angular quantization was described

in Cardy et al. [2008]. Let us summarize few key ingredients. We are interested

in the operator Θ∝ :ϕ2 : where ϕ is the Klein-Gordon field; the normal-ordering

is a point-splitting regularization, with a subtraction proportional to the iden-

tity. We first compute the two-point function 〈ϕ(r,0)ϕ(r′,0)〉, then take the limit
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r → r′. In the angular quantization approach, correlation functions are expressed

as traces over the space of field configurations on the half-line (representation de-

noted by πZ). The density matrix used in this trace is the operator performing

a rotation by the angle necessary to go around the origin. The corresponding

conserved charge associated to rotation, denoted by K , is the Hamiltonian of the

theory. The presence of the branch-point twist field means that the angle around

the origin is 2πn. Hence, the density matrix is e2πinK :

〈· · ·〉M n
0
=

TrπZ

(
e2πinKπZ(· · · )

)

TrπZ

(
e2πinK

) . (4.26)

For the Klein-Gordon theory, πZ is a representation of the Heisenberg algebra

with oscillators bν that satisfy [bν,bν′] = 2sinh(πν)δ(ν+ν′). Then, the following

relation holds Cardy et al. [2008]:
TrπZ (e2πinK bνbν′)

TrπZ (e2πinK ) = eπnν sinh(πν)
sinh(πnν)δ(ν+ν′). Further,

the bosonic field is expressed as is Brazhnikov & Lukyanov [1998]

πZ(ϕ(r,0))=
2
p
π

∫∞

−∞
dνbν K iν(mr) with K iν(mr)=

1

2

∫∞

−∞
dθe−mr coshθeiνθ.

(4.27)

Employing all these definitions, the two-point function can be written as

〈ϕ(r,0)ϕ(r′,0)〉M n
0
=

4

π

∫∞

−∞
dν eπnν sinh(πν)

sinh(πnν)
K iν(mr)K−iν(mr′). (4.28)

Since the conformal point is a free boson, this function diverges logarithmically

when r → r′. However, this divergence is independent of n, whence we differen-

tiate then take r = r′:

d〈:ϕ(r,0)2 :〉M n
0

dn
=−4

∫∞

−∞
dνν

sinh(πν)

sinh2(πnν)
|K iν(mr)|2 < 0 for mr 6= 0. (4.29)

This establishes (4.24) for the Klein-Gordon theory.

For more general, unitary models, the argument goes as follows. The operator

K , as it does above, should have positive imaginary eigenvalues in order for the

trace (4.26) to be well-defined. Hence, let us write iK =−J for a positive operator
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J. Differentiating with respect to n, we find

d

dn
〈φ(r,0)〉M n

0
=−2π

(
〈Jφ(r,0)〉M n

0
−〈J〉M n

0
〈φ(r,0)〉M n

0

)
. (4.30)

Since the measure is rotation invariant, and since J is proportional to the gener-

ator of rotations, we have 〈[J,φ(r,0)]〉M n
0
= 0. Hence, J and φ(r,0) can be inter-

preted as “classical” statistical variables, and the derivative with respect to n is

the negative of their statistical correlation. We expect this statistical correlation

to be positive: the statistical variable J is an “energy”, composed of a kinetic

energy (the conformal part) and a potential energy V (the perturbation by φ).

Indeed, a moment’s thought shows that if the average potential energy 〈V 〉J at

fixed total energy J increases with J, as should be expected, then J is positively

correlated with V . Finally, let us further justify the latter angular-quantization

argument through a drastic simplification. Instead of propagating a half-line

around the origin for an angle of 2πn, we reduce to a finite number of degrees of

freedom: we consider the propagation of a quantum mechanical particle along a

circle of circumference 2πn. This simplification is expected to provide the right

sign of the variation with respect to n, which comes from particles propagating

around the origin. The operator J is replaced by the Hamiltonian H of the quan-

tum system, and the perturbing field φ(r) is replaced by the potential energy V .

The trace becomes ∫
dxV (x)〈x|e−2πnH |x〉
∫

dx 〈x| e−2πnH |x〉
. (4.31)

Since quantum mechanics in imaginary time corresponds to a stochastic prob-

lem, we need to evaluate the average of the potential V (x), with an un-normalized

measure given, for any value of the position x, by the probability for a random

walk in that potential to start and end at x in a time 2πn. As time increases,

this probability decreases for any x. However, at lower values of the potential,

nearer to the absolute minimum, the additional time given to the particle is more

likely to be spent near to its original position than it is at larger values, because

the particle has a tendency to fall back to the minimum of the potential. Hence,

as time increases, lower values of the potential get more relative weights. This

implies that the average of the potential decreases as the time 2πn increases.
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4.3 Perturbative renormalization analysis of the

Ising model

In the previous sections we have demonstrated the validity of (4.11) for general

unitary theories, giving as a specific example the Klein-Gordon case. Here we

focus in much more detail on the Ising field theory, proving again (4.11) true. As

a byproduct we will gain some insight on the modification of the OPE in both

critical and massive theories induced by the introduction of a twist field.

The correlation function involved in (4.9) is known exactly for the Ising model.

In this case, the two-particle approximation (4.12) is exact, and we can use

eq. (3.139) to write

〈Θ(r)〉M n
0
−n〈Θ〉R2 =−

m2

π
cos

π

2n

∞∫

−∞

dx
K0(2mr cosh x

2 )sinh x
2n

sinh x
2

cosh x
n
−cos π

n

. (4.32)

This shows negativity for all 0< mr <∞.

In section 3.2.1 we have seen that this model corresponds to a perturbation of

the CFT Ising model by the energy operator ε(x). We know moreover that this

operator is related to the stress energy tensor by eq. (3.19), so that we prefer

working with ε(x) directly.

In the off critical model we need extra care to define ε as, due to the presence of

m, there is a mixing with the identity operator. Instead of just being proportional

to ψ̄ψ as in the critical theory here we have

ε= aψ̄ψ+bmI with a,b ∈R\{0}. (4.33)

We fix the constants a and b in eq. (4.33) with the normalization

ε(x)= 2π
(
mI+ : ψ̄(x)ψ(x) :

)
, (4.34)
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where aa† =: aa† : +I is the definition of normal ordering in this case. The two-

particle form factor can be easily extracted using (3.23)

Fε
2(θ1,θ2)= 〈0|ε(0) |θ1θ2〉 =−i

m

2

∫
dφdηe

φ−η
2 〈0|a(η)a(φ)a†(θ1)a†(θ2) |0〉 =

=−imsinh
θ1 −θ2

2
,

(4.35)

where the Wick theorem for Fermion algebrae is used to define contractions. The

normalization (4.34) is chosen in light of the relation between ε and the trace of

the stress energy tensor Θ(x)= 2πmε(x) 1, to give FΘ

2 (iπ)= 2πm2.

Clearly also for ε only the two-particle form factor is non-vanishing and it is

possible to find an exact integral representation for the correlation function2

〈ε(r)T (0)〉 = 〈ε〉〈T 〉−
〈T 〉m

2π2 cos
π

2n

∞∫

−∞

dx
K0(2mr cosh x

2 )sinh x
2n

sinh x
2

cosh x
n
−cos π

n

, (4.36)

where K0(φ) is the modified Bessel function of the second kind with argument φ.

In the CFT, where the correlation length tends to infinity, one is allowed to use

the OPE

ε(r)T (0)=
∑

k

C̃k
εT r2(∆k− 1

2−∆T )Ak(0), (4.37)

where Ak is a basis of fields, and C̃k
εT

are the dimensionless constants of the

expansion. The most relevant operator appearing in (4.37) is the composite twist

field O0 ≡: εT :, and it is defined implicitly as the twist operator which corre-

sponds to the leading term. Its conformal weight and structure constant with ε

and T can be obtained using (4.21), and they are

∆:εT : =
1

2n
+∆T and C̃:εT :

εT =
1

n
. (4.38)

1Zamolodchikov [1989]
2from now on the subscript labelling the manifold VEVs are evaluated on will be omitted. It

is implicit that 〈T 〉 is always evaluated on n disconnected copies of R2, while other VEVs are on
the real plane.
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We know that, due to the arbitrariness in the choice of the argument of 1 : εT :,

also derivatives of this field play a role in the OPE (4.37). We are able to fix

the weight and structure constants for these corrections, and to identify Oα ≡:

∂2αεT : with α ∈N

∆:∂2αεT : =
1+2α

2n
+∆T and C̃:∂2αεT :

εT =
1

nα!2
, (4.39)

where ∂2α ≡ (∂2
zz̄)α. Notice that since ε and T are both spinless operators only

these particular derivatives can contribute to the expansion. From now on we

will refer directly to the operators : ∂2αεT :, denoting : εT : as the case α= 0.

We can use the perturbation process explained in section 3.2 to formulate the

massive OPE, in particular with the help of eq. (3.14) we can write

Ck
εT (r)= C̃

kr2(∆k− 1
2−∆T )

[
1+C

k
1 mr + C

k
2 (mr)2 + . . .

]
. (4.40)

By means of (4.38) and (4.39) we can express this expansion for the composite

twist fields as

C:∂2αεT :
εT (r)=

r
1+2α

n
−1

n(2α)!

[
1+C

:∂2αεT :
1 mr + C

:∂2αεT :
2 (mr)2 + . . .

]
for α ∈N0.

(4.41)

Fixing the perturbation constants appearing in (4.41) is generally a very hard

task already for the first order. However, due to the special nature of the OPE

under consideration we are able to determine all C
:∂2αεT :
j

in a systematic way,

and this will be the object of section 4.3.1. Therefore we expect the OPE in the

massive theory to take the form

ε(r)T (0)=
∞∑

α=0
C

:∂2αεT :
εT (r) : ∂2αεT : (0), (4.42)

although we will see in eq. (3.14) that further corrections to (4.42), that are not

predictable from CFT arguments, also appear.

1indeed the choice to take as argument 0 is arbitrary, and one could have chosen any point
in the interval [0, r]. The difference between these choices is represented by a Taylor expansion
about 0, therefore the OPE (4.37) should include all derivatives of the field : εT :.

113



4.3.1 Computation of 〈: ∂2αεT :〉 and C
:∂2αεT :
j

Let us now proceed by expanding the integral in the RHS of (4.36) in a small

r region, and then compare the result with the massive OPE (4.42), that is we

compare terms with the same dimensions. In order to extract all the information

needed it is convenient first to reexpress the integral in terms of the quantity

t = mre
x
2

−
m

π2 cos
π

2n
(mr)

1
n
−1

∞∫

mr

dt t−
1
n K0

(
t+

(mr)2

t

)
[
1−

(
t

mr

)−2
][

1−
(

t
mr

)− 2
n

]

(
t

mr

)− 4
n −2cos π

n

(
t

mr

)− 2
n +1

. (4.43)

One can notice that leading contributions to this integral are given for large

t/(mr). This provides a natural parameter over which is possible to expand the

fraction in (4.43) as

[
1−

(
t

mr

)−2
][

1−
(

t
mr

)− 2
n

]

(
t

mr

)− 4
n −2cos π

n

(
t

mr

)− 2
n +1

=
∞∑

α=0
Ωα(n)

(
t

mr

)− 2α
n

, (4.44)

where the coefficients Ωα(n) are real numbers, evaluated in Section B.1. Once

(4.44) is plugged into (4.43) one gets

−
m

π2 cos
π

2n

∞∑

α=0
Ωα(n)(mr)

1+2α
n

−1

∞∫

mr

dt t−
1+2α

n K0

(
t+

(mr)2

t

)
. (4.45)

The dependence on mr of the Bessel function can be extracted by expanding it

for small r as

K0

(
t+

(mr)2

t

)
= K0(t)−

K1(t)

t
(mr)2 +

K0(t)+K2(t)

4t2 (mr)4 +O(mr)6. (4.46)

The resulting integrals can be thought of as a special case of a known integral

of the Maijer G-function, as explained in Appendix B.2. Substituting (4.46) into
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(4.45) and carrying out the integrals gives

〈ε(r)T (0)〉 =−
〈T 〉m
π2 cos

π

2n

∞∑

α=0
Ωα(n)



Γ
(

n−1−2α
2n

)2

21+ 1+2α
n

(mr)
1+2α

n
−1 +

+
n

n+1+2α

Γ
(

n−1−2α
2n

)2

21+ 1+2α
n

(mr)
1+2α

n
+1+

( n

n+1+2α

)2 Γ
(

n−1−2α
2n

)2

22+ 2+2α
n

(mr)
1+2α

n
+3+

−
n3

(n+1+2α)2(3n+1+2α)

Γ
(

n−1−2α
2n

)2

22+ 2+2α
n

(mr)
1+2α

n
+3 + . . .



 ,

(4.47)

where we reported only the first contributions related to the composite twist

field and its descendants, as we are mainly interested in those. After a bit of

manipulation we can compare term by term this expansion with (4.42), and by

matching the terms with the same perturbative order we are able to extract the

following VEVs

〈: ∂2αεT :〉 =−
cos (1+2α)π

2n
(2α)!n

21+ 1+2α
n π2

Γ

(
n−1−2α

2n

)2

m
1+2α

n 〈T 〉. (4.48)

This is the main result of this section. In the same way we can fix the constants

C
:∂2αεT :
j

to every order. A major challenge when doing this is to be able, for

terms proportional to the same power of r, to distinguish between contributions

to expectation values and to structure constants. It turns out that this ambiguity

can be resolved by requiring that the expectation values (4.48) are continuous

functions of n for each fixed value of α. This requirement is natural because of

the special relation between T and the entanglement entropy, in which context

it is necessary to analytically continue all physical quantities to n ∈ [1,∞). The
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first few non-vanishing coefficients are

C
:∂2αεT :
2 =

n

n+1+2α
+

n2

(n+1+2α)2

tan (1+2α)π
2n

tan π
2n

C
:∂2αεT :
4 =

n2

2(n+1+2α)(3n+1+2α)
+

n3(1+2α+2n)

(1+2α+n)2(1+2α+3n)2

tan (1+2α)π
2n

tan π
2n

C
:∂2αεT :
6 =

n3(4n+1+2α)

6(n+1+2α)2(3n+1+2α)(5n+1+2α)

+
sin (1+2α)π

2n

sin π
2n

n4(4n+1+2α)

2(n+1+2α)2(3n+1+2α)2(5n+1+2α)
(
1−2n−

2n2

1+3n+2α

)
.

(4.49)

We find that C
:∂2αεT :
2 j+1 = 0, for j ∈N0.

It is worth noticing that VEVs of these composite operators are singular when-

ever the argument of the Gamma-function is either zero or a negative integer.

Analyzing (4.48) one can see that when n = 1+2α the VEV of the 2αth derivative

is divergent. In other words, such singularities can only occur for odd values of

n. Therefore, it follows that the analysis above is only really consistent when

restricting n to be even, in which case no singularities for special values of n and

α arise. In the n odd case, the singularities that occur at various orders of the

expansion actually cancel each other, generating a well defined short distance

expansion. This stark contrast between the n even and n odd cases is a priori

rather surprising. The leading term in (4.42) is well defined for all values of

n > 1, for both n even and odd so that our identification of the expectation value

of : εT :, does still hold for general values of n.

In particular from eq. (4.48) we are able to prove the negativity of β in eq. (4.23),

and extend the argument to higher perturbation orders. This in turn allow us to

prove the validity of eq. (4.11) for the Ising field theory.
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4.3.2 Logarithmic corrections to the massive OPE

Analyzing carefully the contributions reported in Appendix B.2, one can notice

that further corrections involving terms of the form (mr)2α and (mr)2α log(mr),

with α = 0,1, . . . occur (note for example the logarithmic terms in (B.10), and

(B.11)), such that (4.42) is modified to

ε(r)T (0)=
∞∑

α=0

[
C

:∂2αεT :
εT (r) : ∂2αεT : (0)+mC

∂2α
T

εT (r)∂2α
T (0)

]
, (4.50)

where the new terms mentioned above are contained in the coefficients C
∂2α

T

εT
(r).

It is clear that they are features of the massive theory as they have no counter-

part in the CFT. To understand their presence one has to consider once more

(4.33). The term proportional to ψ̄ψ is responsible for all the composite fields

: ∂2αεT : in the OPE, whereas the term proportional to the identity generates

contributions proportional to mT and its derivatives m∂2α
T . It is interesting

that this paves the way for the evaluation of 〈∂2α
T 〉, although in this case, due

to the structure of the expansion, this would need a resummation of infinitely

many terms. The presence of logarithmic terms is imputable to the freedom in

choosing b in (4.33). Indeed in the expansions carried out in Section B.2 we have

general terms of the type

(mr)2α
∞∑

β=0

(
Υ(α,β,n)+Λ(α,β,n) log mr

)
, (4.51)

where Υ and Λ are two rational functions of α, β and n. When a correction of the

kind of (4.51) is plugged into (4.47) it gives for fixed α

−
〈T 〉m
π2 cos

π

2n
(mr)2α

∞∑

β=0
Ωβ(n)

(
Υ(α,β,n)+Λ(α,β,n) log mr

)
. (4.52)

The term containing Υ contributes to 〈ε〉〈∂2α
T 〉. The presence of the logarithmic

term allows us to rewrite (4.52) as

−
〈T 〉m
π2 cos

π

2n
(mr)2α

∞∑

β=0
Ωβ(n)

(
Υ(α,β,n)+Λ(α,β,n) logδ+Λ(α,β,n) log

mr

δ

)
,

(4.53)
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where δ ∈ R
+ \ {0}. This corresponds to a redefinition of 〈ε〉, and one can notice

that a logarithmic correction is the only functional form that allows this to hap-

pen. This is not the first time a logarithmic correction to two point functions

of the Ising model has been observed (see for example the spin-spin correlation

function in Mikhak & Zarkesh [1994]). In both cases their presence is fully ex-

plained by the ambiguity in the definition of 〈ε〉.

4.4 Two particle form factors of composite oper-

ators

This section is dedicated to the evaluation of form factors for composite twist

fields of the type introduced in Section 4.3. These operators are formally defined

as the regularized limit of an operator O approaching the twist field in the orig-

inal CFT. The regularization defines the meaning of the ordered product, which

can be taken to be a point splitting

: OT : (x)∼ lim
ε→0

O (x+ε)T (x). (4.54)

One can start by considering : ψT : as a benchmark. Since T is even and ψ is

odd under the Z2 symmetry of the Ising model, only odd particle form factors

will be non-vanishing. Considering then the matrix element 〈0|ψ(x)T (0) |θ〉 the

one-particle form factor can be extracted by looking at the leading contribution

as x approaches 0. Inserting the resolution of the identity for the n-copy system

I=
∞∑

k=1

∑

µ1...µk

∫

θ1>θ2>···>θk

dθ1 . . . dθk

(2π)k
|θ1, . . . ,θk〉µ1,...,µk µk,...,µ1〈θk, . . . ,θ1| (4.55)

we can write

〈0|ψ(x)T (0) |θ〉 =
n

2π

∫∞

−∞
dφ〈0|ψ(x)

∣∣φ〉〈φ
∣∣T (0) |θ〉 . (4.56)
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The matrix element 〈0|ψ(x)
∣∣φ〉 can be easily extracted from (3.23)

〈0|ψ(x)
∣∣φ〉 =

√
m

4π
e

φ
2 −ixpφ , (4.57)

while 〈φ
∣∣T (0) |θ〉 is linked to the two-particle form factor by crossing1

〈φ
∣∣T (0) |θ〉 = 〈0|T (0)

∣∣θ,φ+ iπ− iε+〉+〈T 〉δ(θ−φ), (4.58)

where the introduction of iε+ has to be thought of in the distributions sense, and

describes how to avoid the pole at iπ.

Plugging (4.57) and (4.58) into (4.56) yields

〈0|ψ(x)T (0) |θ〉 =〈T 〉
√

m

4π
e

θ
2−ixpθ +

i

2π

√
m

4π
〈T 〉cos

π

2n

∫
dφ e

φ
2 −ixpφ

sinh
(
θ−φ−iπ

2n

)

sinh
(
θ−φ+iε+

2n

)
sinh

(
θ−φ−2iπ

2n

) .
(4.59)

The leading term when x approaches 0 is given by the integral part, that is

divergent, but can be made convergent by shifting the domain of integration

from the real axe R to R+ iπ/2. Such a change of variable does not affect the

result of the integration, as the integrand has no poles in the region between the

two axes2.

The integral in (4.59) becomes then

e−i π4

∫
dφ e

φ
2 −xEφ

sinh
(
θ−φ−iπ/2

2n

)

sinh
(
θ−φ+iπ/2

2n

)
sinh

(
θ−φ−i3π/2

2n

) . (4.60)

In this integral the main contributions come from large |φ|, so that, after splitting

the integration path into positive and negative regions, one can find two series

expansions for the fraction in (4.60). The leading term for small x is given by the

1Smirnov [1992].
2notice that it is the term iε+ which allows to perform this shift.
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positive ψ part, that is

−2e−i π4

(
1+ 1

n

)
e

θ
2n

∫∞

0
dφ e

φ
2

(
1− 1

n

)
−xEφ + . . .=

−2e−i π4

(
1+ 1

n

)
e

θ
2n

∫∞

−∞
dφ e−mxcoshφ cosh

[
φ

2

(
1−

1

n

)]
+ . . .=

−2e−i π4

(
1+ 1

n

)
e

θ
2n 2

1
2

(
1− 1

n

)
Γ

(
n−1

2n

)
(mx)−

1
2

(
1− 1

n

)
+ . . . .

(4.61)

The one particle form factor for :ψT : can be read out from (4.59) and (4.61)

F
:ψT :|1
1 (θ)=−

ie−i π4

(
1+ 1

n

)

π
2

1
2

(
1− 1

n

)
Γ

(
n−1

2n

)
cos

( π

2n

)
〈T 〉

m
1

2n

p
4π

e
θ

2n (4.62)

The procedure used to get this result was introduced for descendants of twist

fields in Doyon & Silk [2011]. In that case the authors were dealing with the

twist field associated to the global U(1) symmetry of the Dirac Lagrangian. In

this and next sections extensive use of this procedure is made, demonstrating its

consistency for a different kind of twist fields.

4.4.1 Two particle form factor of : εT :

In this section we find the two particle form factor of the operator : εT :. We do

so by considering the matrix element

〈0|ε(x)T (0) |θ1,θ2〉 =
1

4π2

n∑

j=i

∫

φ1>φ2

dφ1dφ2 〈0|ε(x)
∣∣φ1,φ2〉 j, j j, j〈φ2,φ1

∣∣T (0) |θ1,θ2〉 ,

(4.63)

where j labels the copy number, and is repeated because ε connects only particles

on the same copy.

The matrix element j, j〈φ2,φ1
∣∣T (0) |θ1,θ2〉 is connected to the four-particle form

factor of the twist field by the crossing relation (4.58), which used repeatedly

120



gives

j, j〈φ2φ1
∣∣T (0) |θ1θ2〉 =−〈0|T (0)

∣∣θ1,θ2,φ1 + iπ− iε+,φ2 + iπ− iε+〉1,1, j, j
+

+δ(θ1−φ1)δ1, j 〈0|T (0)
∣∣θ2,φ2 + iπ− iε+〉1, j

+δ(θ2 −φ2)δ1, j 〈0|T (0)
∣∣θ1,φ1 − iπ− iε+〉1, j

−

δ(θ1 −φ2)δ1, j 〈0|T (0)
∣∣θ2,φ1 + iπ− iε+〉1, j

−δ(θ2 −φ1)δ1, j 〈0|T (0)
∣∣θ1,φ2 − iπ− iε+〉1, j

+

+δ(θ1 −φ1)δ(θ2 −φ2)δ1, j −δ(θ1 −φ2)δ(θ2 −φ1)δ1, j.

(4.64)

Even if (4.64) is quite cumbersome one can notice that many terms can be ex-

tracted from the others with the exchange θ1 ←→ θ2, which leaves the integra-

tion untouched. The leading contribution for small x is given by the first term

(the one without deltas). This four-particle form factor considers two particles

on the first copy, and two on copy j, but can be reduced to one where particles

are considered on the same copy (say 1) with multiple applications of equations

(3.53) and (3.54)

〈0|T (0)
∣∣θ1,θ2,φ1 + iπ− iε+,φ2 + iπ− iε+〉1,1, j, j

=

F
T |11 j j

4 (θ1,θ2,φ1 + iπ− iε+,φ2 + iπ− iε+)=

F
T |1111
4 (θ1,θ2,φ1 + (2 j−1)iπ,φ2 + (2 j−1)iπ)+,

(4.65)

and this allows us to use the Pfaffian structure (3.69) to re-express it. In the last

step of (4.65) the notation (. . .)+ is introduced to indicate that any pole on the real

axe of what is in the brackets is avoided with the iε+ prescription. With the help

of (3.69) and (4.35), one can rewrite the leading term of (4.63) as

im

〈T 〉
1

4π2

n∑

j=1

∫

φ1>φ2

dφ1dφ2 sinh
(
φ1 −φ2

2

)
e−ix(pφ1+pφ2 )

[FT |11
2 (θ1,θ2)FT |11

2 (φ1,φ2)−F
T |11
2 (θ1,φ1 + (2 j−1)iπ)FT |11

2 (θ2,φ2 + (2 j−1)iπ)+

F
T |11
2 (θ2,φ1 + (2 j−1)iπ)FT |11

2 (θ1,φ2 + (2 j−1)iπ)]+,

(4.66)
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and proceed by evaluating the leading contribution for the three terms in (4.66).

The first one is

−
mcos π

2n

8π2 F
T |11
2 (θ1,θ2)

∫
dφ1dφ2

sinh
(
φ1−φ2

2

)
sinh

(
φ1−φ2

2n

)

sinh
(
φ1−φ2+iπ

2

)
sinh

(
φ1−φ2−iπ

2n

) e−ix(pφ1+pφ2 ),

(4.67)

on which we can perform the change of variables t = (φ1−φ2)/2 and s = (φ1+φ2)/2,

and carry out the s integration to get

−
mcos π

2n

2π2 F
T |11
2 (θ1,θ2)

∫
dt

sinh tsinh t
n

sinh
(

t
n
+ iπ

2n

)
sinh

(
t
n
− iπ

2n

)K0(2mxcosh t), (4.68)

We notice again that the leading contribution is given for large t so that we can

use the parity of the integrand to reduce the region of integration to (0,∞), and

expand the fraction in (4.68) in a convergent way on this domain. The resulting

integral is

−
mcos π

2n

π2 F
T |11
2 (θ1,θ2)

∫∞

0
dt et

(
1− 1

n

)
K0(mxet)+ . . . , (4.69)

and with the change of variable u = mxet we can extract the leading order for

small x, that is

−
mcos π

2n

π2 F
T |11
2 (θ1,θ2)

(∫∞

0
dt u− 1

n K0(u)
)
(mx)

1
n
−1 + . . . . (4.70)

Solving the integral we finally obtain

−
mcos π

2n

21+ 1
nπ2

Γ

(
n−1

2n

)2

F
T |11
2 (θ1,θ2)(mx)

1
n
−1 + . . . . (4.71)

The second and third terms in (4.66) are more involved then the first, due to their

explicit dependence on the parameter j. One can start by noticing that the value

of the third term can be extracted from the value of the second one by changing

sign, and performing the exchange θ1 ←→ θ2. Hence we focus on the first term.

As, in order to have a convergent integral, the integration axe has to be risen by

iπ/2, we need to study the pole structure of this term. The only kinematic poles
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which lie on the real axes arise from the cases j = 1,n and φ1 = θ1 and φ2 = θ2;

but they are avoided with the iε+ prescription. In general F
T |11
2 (θ,φ+ (2 j−1)iπ)

has kinematic poles for φ= θ+2(n− j+1)iπ and φ = θ+2(n− j)iπ. Considering

that j runs from 1 to n one can see that all poles group in even multiples of iπ, so

that the first group above the real axe is in θ+2iπ, and correspond to j = n,n−1.

Hence the needed shift can be safely performed.

The integral we want to evaluate is then

im〈T 〉cos2 π
2n

8π2n2

n∑

j=1

∫
dφ1dφ2 e−ix(pφ1+pφ2 ) sinh

(
φ1 −φ2

2

)

sinh
(
θ1−φ1−(2 j−1)iπ

2n

)
sinh

(
θ2−φ2−(2 j−1)iπ

2n

)

sinh
(
θ1−φ1−2( j−1)iπ

2n

)
sinh

(
θ1−φ1−2 jiπ

2n

)
sinh

(
θ2−φ2−2( j−1)iπ

2n

)
sinh

(
θ2−φ2−2 jiπ

2n

) .

(4.72)

Although the fraction in (4.72) is rather complicated and mixes integration vari-

ables with parameters it can be dramatically simplified by means of the following

identity

sinh
(
α1−β1±γ

)
sinh

(
α2−β2 ±γ

)
=

1

2

[
cosh

(
α1+α2− (β1 +β2)±2γ

)
−cosh

(
α1 −α2− (β1−β2

)]
,

(4.73)

leading to

im〈T 〉cos2 π
2n

4π2n2

n∑

j=1

∫
dφ1dφ2 e−ix(pφ1+pφ2 ) sinh

(
φ1 −φ2

2

)

cosh
(
θ1+θ2−(φ1+φ2)−2(2 j−1)iπ

2n

)
−cosh

(
θ1−θ2−(φ1−φ2)

2n

)

cosh
(
θ1+θ2−(φ1+φ2)−4( j−1)iπ

2n

)
−cosh

(
θ1−θ2−(φ1−φ2)

2n

) ×

1

cosh
(
θ1+θ2−(φ1+φ2)−4 jiπ

2n

)
−cosh

(
θ1−θ2−(φ1−φ2)

2n

) .

(4.74)

123



Now performing the same change of variable as in (4.68) gives

im〈T 〉cos2 π
2n

2π2n2

n∑

j=1

∫
dtds e−2imxsinh scosh t sinh t

cosh
(
θ1+θ2

2n
− s+(2 j−1)iπ

n

)
−cosh

(
θ1−θ2

2n
− t

n

)

cosh
(
θ1+θ2

2n
− s+2( j−1)iπ

n

)
−cosh

(
θ1−θ2

2n
− t

n

)×

1

cosh
(
θ1+θ2

2n
− s−2 jiπ

n

)
−cosh

(
θ1−θ2

2n
− t

n

) ,

(4.75)

and to make it convergent the shift s −→ s− iπ/2 has been performed.

As x approaches 0 the main contribution is given by large t, and s peaked around

0. It is natural then to expand the fraction in (4.75) in powers of t. As before

there is no such expansion on the whole real axe, but splitting it into the positive

and negative parts, allows us to consider two different series which converge

respectively on the two regions. We can start considering t < 0, such that the

expansion of (4.75) yields

e−
θ1−θ2

2n

∫0

−∞
dt e−t

(
1− 1

n

) ∫∞

−∞
ds e−2mxe−t cosh s + . . .=

2e−
θ1−θ2

2n

∫0

−∞
dt e−t

(
1− 1

n

)
K0(mxe−t)+ . . . .

(4.76)

Following now the same procedure which was used to obtain (4.71) out of (4.69),

we arrive at the result

im〈T 〉cos2 π
2n

2
1
n
+1π2n

Γ

(
n−1

2n

)2

e−
θ1−θ2

2n (mx)
1
n
−1+ . . . . (4.77)

The positive part of the integral can be performed with the same logic and gives

−
im〈T 〉cos2 π

2n

2
1
n
+1π2n

Γ

(
n−1

2n

)2

e
θ1−θ2

2n (mx)
1
n
−1 + . . . , (4.78)

so that the final result of the second part is

−
im〈T 〉cos2 π

2n

2
1
nπ2n

Γ

(
n−1

2n

)2

sinh
θ1 −θ2

2n
(mx)

1
n
−1+ . . . . (4.79)
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As mentioned before, the result of of third part of the integral in (4.66) can be

obtained from (4.79) by switching θ1 ←→ θ2 with a minus sign in front, which

doubles the result. Putting (4.71), (4.77) and (4.79) together, we finally obtain

the two particle form factor for the field : εT :, that is

F
:εT :|11
2 (θ1,θ2)=−

cos π
2n

21+ 1
nπ2

Γ

(
n−1

2n

)2

m
1
n

[
F

T |11
2 (θ1,θ2)+

4i cos π
2n

n
〈T 〉sinh

θ1 −θ2

2n

]
.

(4.80)

This result was the aim of this section. To check its validity one can employ

(3.55). Indeed, since : εT : is still a twist field, the same type of residue equations

as for T must be satisfied. Then one can easily check using (4.48) and (4.80) that

lim
θ̄→θ

(θ̄−θ)F :εT :|11
2 (θ̄+ iπ,θ)= i〈: εT :〉, (4.81)

which confirms the compatibility of the two results of these sections.

Notice that this result satisfies all form factors equations for the twist field, and

has a structure of the type

F
:εT :|11
2 (θ1,θ2)=α

[
QT

2 (θ1,θ2)+βκ(θ1,θ2)
]

Fmin(θ1,θ2), (4.82)

where α and β are two dimensional constants, Fmin is the minimal form factor

of the theory1, and κ is a kernel solution of the form factor equations as the ones

found in sections 3.4.1 and 3.4.2. Even if we could have understood that (4.80)

should have had the form (4.82) to fulfill all twist properties it has to, we would

have never been able to fix α and β without the methods used in this section, and

section 4.3.

4.5 Higher particle form factors of composite op-

erators

In this section we deal with the computation of higher particle form factors for :

ψT : and : εT :. They can be extracted with the same methods for both operators,

1for the Ising model Fmin(θ1,θ2)=−isinh θ1−θ2
2n
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employing higher particle form factors of the twist field (3.69). Indeed, focusing

on : ψT :, when looking for the leading term for the 2k−1 particle form factor,

one has to deal with

〈0|ψ(x)T (0) |θ1,θ2, . . . ,θ2k−1〉 ∼
n

2π

∫
dφ〈0|ψ(x)

∣∣φ〉〈0|T (0)
∣∣θ1,θ2, . . . ,θ2k−1,φ+ iπ− iε+〉 .

(4.83)

One is then able to isolate term by term the higher particle part, and reduce it to

the same evaluation carried out in (4.56)-(4.62), getting finally

F
:ψT :|11...1
2k−1 = 〈T 〉Pf(K:ψT :), (4.84)

where K:ψT : is the 2k×2k matrix defined as

K:ψT : =





0 F
:ψT :|1
1 (θ1) · · · F

:ψT :|1
1 (θ2k−1)

−F
:ψT :|1
1 (θ1) 0 · · · F

T |11
2 (θ1,θ2k−1)/〈T 〉

...
...

. . .
...

−F
:ψT :|1
1 (θ2k−1) −F

T |11
2 (θ1,θ2k−1)/〈T 〉 · · · 0




.

(4.85)

Higher particles form factors for : εT : can be evaluated with the same logic,

although they show a more complicated pattern, and can not be reduced to a

Pfaffian form. This is due to the presence of a kernel part in the two particle

form factor. The 2k+2 particle form factor is

F
:εT :|11...1
2k+2 (θ1,θ2, . . . ,θ2k+2)=

∑

i< j

(−1)σ(i, j)

〈T 〉2k
F

T |11...1
2k

(θ1, . . . ,θ2k+2)i jF
:εT :|11
2 (θi,θ j),

(4.86)

where σ(i, j) is the permutation that brings θi and θ j to the right of all other

rapidities, while with F(. . . )i j we mean a form factor of all rapidities but those

two.
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5
Entanglement entropy in quantum spin chains

In this chapter we present a broad review of the most commonly used methods

to evaluate block entanglement entropy on quantum spin chains, and we then

specialize to our results. We will use as benchmarks the XY, and XXZ models

through the following sections. The first model is defined on a chain of N sites,

and N −1 links, by the Hamiltonian

HXY =
J

2

[
N−1∑

i=1

(
1+κ

2
σx

iσ
x
i+1 +

1−κ

2
σ

y

i
σ

y

i+1

)
+h

N∑

i=1
σz

i

]
, (5.1)

where J,κ,h ∈R,

σx =
(

0 1

1 0

)
σy =

(
0 −i

i 0

)
σz =

(
1 0

0 −1

)
, (5.2)

are Pauli matrices, and σα
i
= I⊗I⊗...⊗σα⊗...⊗I is acting on the i-th site, I being the

identity operator on all other sites. As we are ultimately interested in the ther-

modynamic, and scaling limit of (5.1)1, we consider open boundary conditions to

avoid any complications. A first solution to this model for h = 1 was obtained by

Lieb et al. [1961], and for κ= 1 by Pfeuty [1970]. The solution for general κ was

then generalized to non-vanishing external magnetic field by Niemeijer [1967,

1968]. The correlation functions for the fundamental operators were evaluated

in Barouch & McCoy [1971a,b]; Barouch et al. [1970]; McCoy et al. [1971], and

1both limits involve the consideration of an infinite chain.
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were expressed in terms of Topelitz matrices. In those references also the phase

diagram and critical properties of this model were studied.

The modulus of the parameter J in (5.1) sets the energy scale, while the sign

sets which kind of interactions are energetically more accessible. There is a fer-

romagnetic regime for negative J, where the lowest-energy eigenstates of HXY

are characterized by aligned spins. Positive J on the other hand makes alternat-

ing spins preferable. We choose to work in the ferromagnetic regime, and we set

J =−1.

The phase diagram of this model is parametrized by h and κ, the first being an

external magnetic field, and the latter being the anisotropy parameter. There

are two important sub-cases of this model, defined by limiting values of κ. For

κ = 0 (5.1) becomes U(1) invariant, and is called XX model, while for κ = 1 the

Hamiltonian reduces to the Ising model

HIsing =
J

2

(
N−1∑

i=1
σx

iσ
x
i+1+h

N∑

i=1
σz

i

)
. (5.3)

In this limit there is Z2 invariance. These two sub-cases belong to different

universality classes, which compete in the phase diagram. The Hamiltonian (5.1)

is symmetric under the change h →−h, and κ→−κ, so that we can focus on the

sector h,κ ≥ 0 with no loss of generality. In this region there are two different

quantum phase transitions, one on the line κ = 0∧ h ≤ 1, and the other one at

h = 1. We are particularly interested in the QPT which occurs in the Ising limit,

that is κ= 1∧h = 1. This transition belongs to the same universality class as the

two-dimensional classical Ising model. As the latter, it divides a disordered phase

with Z2 symmetry, from an ordered phase where the symmetry is spontaneously

broken. These two phases in the quantum Ising model are represented by the

regions h < 1, where the ground state is doubly degenerated and Z2 symmetric,

and h > 1, where it is unique. It is easy to check this feature considering the two

limits h → 0,∞. In the case h = 0 there are two ground states corresponding to

the two totally aligned states along the x-axes. Labelling by

|↑〉i =
(

1

0

)

i

|↓〉i =
(

0

1

)

i

, (5.4)

128



the two eigenvectors of Sz
i
, the two possible ground states are the product states

∏N
i=1 (|↑〉i +|↓〉i) /

p
2, and

∏N
i=1 (|↑〉i −|↓〉i) /

p
2. In the limit for infinite magnetic

field on the other hand the ground state will be totally polarized along the z-axes

|↑↑ ... ↑〉. As the energy levels En(h) of (5.3), are smooth functions of the exter-

nal magnetic field, there will be a certain value of h where some level-crossings

occur. This is the h = 1 critical point, and as we will see it is characterized by a

vanishing energy gap.

5.1 The XY chain

In this section we report a summarized version of the diagonalization procedure

introduced in Lieb et al. [1961]. Our aim is to rewrite (5.1) as the Hamiltonian

of a set of decoupled Femionic harmonic oscillators. As usual when dealing with

harmonic oscillators we introduce the ladder operators σ±
i
=

(
σx

i
± iσ

y

i

)
/2. They

act on the local spins as

σ+
i |↑〉i = 0 σ+

i |↓〉i = |↑〉i

σ−
i |↓〉i = 0 σ−

i |↑〉i = |↓〉i , (5.5)

and they satisfy the algebra {σ+
i
,σ−

j
} = Iδi j. These operators are clearly not suit-

able for the diagonalization process, as they commute on different sites. We need

to perform a Jordan-Wigner transformation to have proper Fermionic modes.

This transformation relies on the basic assumption of the existence of a map be-

tween the Hilbert space of spin-1/2 chains, and the one of a system of spinless

Fermions hopping from site to site. The standard way to perform it is to rewrite

the Hilbert space of a single site |s〉i = {|↑〉i , |↓〉i} as |n〉i = {|0〉i , |1〉i}, and to as-

sociate |0〉i with the absence of a Fermion in the site i (a hole), while |1〉i corre-

sponds to an occupied site. In order to implement this transformation we notice

that if we find a unitary operator U(n) such that it commutes with σ±
n , this would

leave the same-site anti-commutation brackets invariant, so that we can define

cn =U(n)σ+
n , which automatically satisfy {c†

n, cn} = I. In this way cn will flip the

n-th spin up, while c
†
n will flip it down. If we insist on this interpretation we have

then the correspondence |↑〉i = |0〉i, and |↓〉i = |1〉i, which serves as a map between
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the Hilbert spaces of the spin system, and the Fermion Hamiltonian. The next

step then is to define U(n) so as to have the desired anti-commutation relations

for different sites. Notice that if we want to impose anti-symmetric relations, cl

and c
†
l

must act on the Hilbert space in the following way

c
†
l
|n1n2...nl ...nN〉 = (−1)δl (1−nl) |n1n2...nl +1...nN〉 ,

cl |n1n2...nl ...nN〉 = (−1)δl nl |n1n2...nl −1...nN〉 , (5.6)

where δl =
∑

i<l ni. Then the problem is reduced to finding an operator repre-

sentation of (−1)δl . This is achieved noticing that σz
i
= 1−2c

†
i
ci has all the right

properties to be the building block of U(n), so that

cn =
(
∏

l<n

σz
l

)
σ+

n σ+
n =

∏

l<n

(
1−2c

†
j
c j

)
cn

c†
n =

(
∏

l<n

σz
l

)
σ−

n σ−
n =

∏

l<n

(
1−2c

†
j
c j

)
c†

n (5.7)

The highly non-local nature of the above map is forced by the constraints (5.6),

which are necessary to have {c†
i
, c j} = δi jI, and {ci, c j} = {c†

i
, c

†
j
} = 0. As a result ci

and c
†
i

are sensitive to the number of particles on the left of the considered site1,

besides annihilating and creating one on it, respectively.

Substituting (5.7) into (5.1), we find the quadratic Fermionic Hamiltonian

H extXY =−
1

2

N−1∑

i=1

[
c

†
i+1ci + c

†
i
ci+1+κ

(
ci+1ci + c

†
i
c

†
i+1

)]
−

hN

2
+h

N∑

i=1
c

†
i
ci. (5.8)

Notice that for κ 6= 0 the number of Fermions is not conserved, that is the total

magnetization in the z-direction is not conserved by (5.1). What is conserved is

the oddness/evenness of the number of Fermions, that is to say that the orig-

inal Hamiltonian can be split into two integer/non-integer magnetization sec-

tors. To diagonalize (5.8) we have to find a basis of conserved Fermion operators.

1to be precise their sign changes if the total number of particles on the left of the site under
consideration is even or odd. This observation becomes of central importance when considering
periodic boundary conditions, for which one has to distinguish chains with even/odd number of
sites.
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As a first step we can take advantage of the translation invariance of the scal-

ing Hamiltonian Fourier transforming the Fermionic modes. Clearly any such

transformation would not have as a target space the momentum space, as it is

impossible to define a momentum, due to the boundary conditions under consid-

eration. We can tackle this issue though if we remember that we are interested

in the limit N →∞. Having that in mind we can manipulate (5.8) and write the

following

HXY = −
1

2

N∑

i=1

[
c

†
i+1ci + c

†
i
ci+1 +κ

(
ci+1ci + c

†
i
c

†
i+1

)
−2hc

†
i
ci

]

−
hN

2
− c

†
1cN + c

†
N

c1 +κ
(
c1cN + c

†
N

c
†
1

)
, (5.9)

where we identified cN+1 = c1. This Hamiltonian is not that of a periodic chain,

due to the presence of bond operators outside the sum, and yet we cannot define

a proper momentum. In the thermodynamic limit though, we can ignore those

terms, as they are O(1/N), and overcome this problem.

It is convenient firstly to center the sum in (5.8) by considering −(N −1)/2 ≤ i ≤
(N −1)/2. Then we can define the Fourier modes as

dk =
1

p
N

N−1
2∑

j=−N−1
2

c j e
− 2πi

N
k j, (5.10)

which clearly inherit the anti-commutation properties {d†
l
,dm}= δmlI, and {dl ,dm}=

{d†
l
,d†

m} = 0. The sums in (5.8), and (5.10) have been shifted in order to have a

well defined, centered delta function

δlm =
1

N

N−1
2∑

j=−N−1
2

e−
2πi
N

(l−m) j. (5.11)

We can now rewrite HXY in terms of these new modes, and we find

HXY =
N−1

2∑

k=−N−1
2

[(
h−cos

2πk

N

)
d

†
k
dk −

iκ

2
sin

2πk

N

(
dkd−k +d

†
k
d

†
−k

)]
−

hN

2
. (5.12)
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Our final aim is the removal from the Hamiltonian of the terms of the kind

d
†
k
d

†
−k

, as they do not conserve the Fermion number. This can be achieved by

a transformation such as the one introduced in Bogoliubov [1947]. This is basi-

cally a rotation on the Fermion modes, and is based on the observation that if one

has a set of Fermionic oscillators ak, and defines bk = eiφu ukak + eiφv vka
†
k

where

|uk|2+|vk|2 = 1, then also bk satisfy Fermionic anticommutation relations. In our

case the situation is slightly complicated by the fact that we are considering also

negative modes in (5.10). We define then the mixed Bogoliubov transformation

γk = eiφu ukdk+ eiφv vkd
†
−k

, and notice that Fermionic relations are automatically

satisfied under the condition uk = u−k, and vk =−v−k. We assume that uk and vk

are real, and parametrize them as uk = cosθk and vk = sinθk. Finally we can set

φu = 0 with no loss of generality, and choose for convenience φv = −π/2, so that

dk = cosθkγk + isinθkγ
†
−k

.

We now write (5.12) in this new Fermion basis, and notice that by the choice

tan2θk =
κsin 2πk

N

h−cos 2πk
N

, (5.13)

we are able to cancel the unwanted terms. The Hamiltonian can be then rewrit-

ten as the one of decoupled Fermionic oscillators

HXY =
N−1

2∑

k=−N−1
2

ε(k)
(
γ

†
k
γk −

1

2

)
, (5.14)

with dispersion relation

ε(k)=

√(
h−cos

2πk

N

)2

+κ2 sin2 2πk

N
. (5.15)

Now that we have an analytic expression of the energy levels in terms of h and

κ we can perform the thermodynamic limit by considering the limits κ→ 1, and

N →∞ in (5.14). This is easily performed changing variable to φ = 2πk/N and
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replacing the sum

1

N

N−1
2∑

k=−N−1
2

−→
1

2π

∫π

−π
dφ, (5.16)

so that the Hamiltonian can be written as

lim
N→∞

HXY

N
=

1

2π

∫π

−π
dφε(φ)

(
γ

†
φγφ−

1

2

)
, (5.17)

where ε(φ)=
√

(h−cosφ)2 +κ2 sin2φ. We have now a clearer picture of the phase

diagram, as drawn in Figure 5.1. The Hamiltonian becomes gapless, on the lines

κ= 0∧h < 1, and for h = 1. The first critical line clearly falls into the XX univer-

sality class, and is described by a CFT with c = 1. The second line belongs to the

Ising universality class, and is characterized by a central charge c = 1/2. We will

focus on this second kind of phase transition henceforth, restricting ourselves

in particular to the Ising model (5.3), that is we approach the critical line h = 1

along the green line in Figure 5.1.

h
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Ising model QPT
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Figure 5.1: phase diagram of the XY spin chain.
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5.1.1 Correlation functions

In this section we summarize the derivation of the fundamental correlation func-

tions at zero temperature as presented by Barouch & McCoy [1971b]. We have

seen in the previous section that the quantity ε(k), as defined in (5.15), can be

interpreted as a single particle energy. As it is positive defined, we can interpret

the vacuum state as the zero particle state, that is γφ |0〉 = 0. Hence the Hilbert

space is described by the number of occupied states, so that
∣∣φ1φ2, ...,φk〉 = γ

†
φ1
γ

†
φ2

, ...,γ†
φk

|0〉.
In this formalism it is particularly easy to express the two-point correlators, that

are 〈0|γφγ
†
ϕ |0〉 = δ(φ−ϕ), and 〈0|γφγϕ |0〉 = 〈0|γ†

φγ
†
ϕ |0〉 = 〈0|γ†

φγϕ |0〉 = 0. We can

now proceed backwards in order to find the correlation functions of the original

spin operators. We invert the Bogoliubov transformation defined in the previous

section. We find then that the correlators of the set of Fermions dk are

〈0|dkd
†
l
|0〉 =

1+cos2θk

2
δkl 〈0|dkdl |0〉 =−

i

2
sin2θkδ−kl . (5.18)

In the thermodynamic limit we can Fourier expand these two quantities, and

define the following

E jk = 〈0| c j ck |0〉 =− i
2π

∫π
−π dφ

sin2θφ
2 eiφ( j−k)

F jk = 〈0| c j c
†
k
|0〉 = 1

2π

∫π
−π dφ

1+cos2θφ
2 eiφ( j−k). (5.19)

We now want to invert the Jordan-Wigner transformation (5.7) in order to ex-

press all correlation functions in terms of the original spin operators, so that

we call ρα
jk

= 〈0|σα
j
σα

k
|0〉, with α = x, y, z, and j ≤ k. By means of simple calcu-

lations we can write all the fundamental correlators in terms of the quantities

A i = c
†
i
+ ci, and Bi = c

†
i
− ci, finding

ρx
jk = 〈0|B j A j+1B j+1...Ak−1Bk−1Ak |0〉

ρ
y

jk
= (−1)k− j 〈0|A jB j+1A j+1...Bk−1Ak−1Bk |0〉

ρz
jk = 〈0|A jB j AkBk |0〉 . (5.20)

By noticing that A i and Bi satisfy the following anti-commutation relations

{A i, A j}= {Bi,B j}= 0 and {A i,B j}= 2δi j, we can reduce the last equality in (5.20)
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to ρz
jk
= 〈0|A jB j |0〉〈0|AkBk |0〉−〈0|A jBk |0〉〈0|AkB j |0〉.

Using the definitions of A and B, and (5.19), we can rewrite

ρz
jk =G2(0)−G( j−k)G(k− j), (5.21)

in terms of

G( j−k) = 〈0|B j Ak |0〉 =
1

2π

∫π

−π
dφe2iθφ−iφ( j−k)

=
1

2π

∫π

−π
dφe−iφ( j−k) h−cosφ+ iκsinφ

√
(h−cosφ)2 +κ2 sin2φ

. (5.22)

The other fundamental correlators are more involved to express in terms of Gs.

Using the Wick theorem to reduce ρx and ρ y in (5.20) one can show that

ρx
jk = det

∣∣∣∣∣∣∣∣∣∣∣

G(−1) G(−2) ... G(−l)

G(0) G(−1) ... G(−l+1)
...

...
. . .

...

G(l−2) G(l−3) ... G(−1)

∣∣∣∣∣∣∣∣∣∣∣

ρ
y

jk
= det

∣∣∣∣∣∣∣∣∣∣∣

G(1) G(0) ... G(−l+2)

G(2) G(1) ... G(−l+3)
...

...
. . .

...

G(l) G(l−1) ... G(1)

∣∣∣∣∣∣∣∣∣∣∣

, (5.23)

where l = | j−k|.
Matrices of the kind (5.23) are known in the literature as Topelitz matrices,

and were studied in Wu [1966], Szegö [1952], Kac [1954] and Hartwig & Fisher

[1969]. Their properties were exploited by Barouch & McCoy [1971b] to study the

physical behaviour of the correlation functions at zero and finite temperature, in

order to have a complete physical description of the XY chain. This descrip-

tion goes far beyond the scope of this manuscript, and we refer the interested

reader to the aforementioned literature. We have though a clearer interpreta-

tion of the Ising critical line in figure 5.1. With the examination of (5.21) and

(5.23) for large separations (l →∞) we find the asymptotic behavior reported in
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section 5.1.1, where we identify λ=
(
h+

p
κ2+h2−1

)
/(1+κ).

h < 1 ρx(l)≃ M2
x ρ y(l)≃ λ2l

l3 ρz(l)−M2
z ≃ λ2l

l2

h = 1 ρx(l)≃ l−
1
4 ρ y(l)≃ l−

9
4 ρz(l)−M2

z ≃ l−2

h > 1 ρx(l)≃ λ−l

l
1
2

ρ y(l)≃ λ−l

l
3
2

ρz(l)−M2
z ≃ 1

4 −M2
z

Table 5.1: Asymptotic behavior for large distance of the correlation functions of
the XY chain near the Ising critical line h = 1.

The critical line h = 1 is described by a CFT, and all correlation function are

characterized by a large-distance power law. This line divides two non-critical

regions which can be identified by means of the order parameter1 Mx = 〈0|σx
j
|0〉.

The region h > 1 is usually referred to as disordered phase, as there is no mag-

netization along the x-axis. The correlation functions decay exponentially, and

comparing to eq. (1.25) we can extract the correlation length

ξXY =
1

logλ
. (5.24)

In the region h < 1 the local magnetization Mx 6= 0, and we call it ordered phase.

This phase is characterized by long-range order along the x-axis, as can be seen

from the large distance behavior of the correlation function, which saturates to

a fixed value.

5.1.2 The Ising chain and its scaling limit

Our final goal is the study of entanglement entropy of the Ising model, it is then

worth reporting a restricted version of the formulae we found for this sub-case.

The Ising case can be extracted in general by setting κ = 1 in all the quantities

we derived.

The Hamiltonian can then be expressed in terms of Fermion harmonic oscil-

lators as (5.17), with the identification ε(φ) =
√

1+h2 −2hcosφ, and a qualita-

1the most natural choice would be the total magnetization along this axis, but as we consider
the thermodynamic limit, for which this quantity diverges, we prefer the local magnetization.
Notice that due to translation invariance its definition is independent of the position.
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Figure 5.2: Energy levels of the scaling Ising chain.

tive description of the excited states is reported in figure 5.2. There we plot the

spectrum of excited states for different values of the external magnetic field. Dif-

ferent values of φ correspond to different excitations γ
†
φ
|0〉 of energy E0 + ε(φ),

the lowest corresponding to φ = 0. The red solid line corresponds to the critical

case, and we can see how the gap between the ground state and the first excited

state vanishes. Also (5.22) is fairly simplified by restricting it on the κ = 1 line.

In the noncritical case it can be expressed as

G(l)= hF(l)−F(l+1), with F(l)=
1

π

∫π

0
dφε−1(φ)cos(φl). (5.25)

For h = 0,1, expression (5.22) can be worked out exactly

G(l)=
2

π

1

2l+1
, h = 1

G(l)=−δ−l1, h = 0, (5.26)

and because of the simplicity of these expressions, the correlations (5.21) and

(5.23) can be studied in great detail. This goes beyond the scope of this thesis,

but has been studied in Pfeuty [1970], along with the characterization of the

magnetization.
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In order to perform the scaling limit on the Ising spin chain we first use the

Jordan-Wigner transformation defined in eq. (5.7). The Hamiltonian (5.3) can be

then rewritten as

HIsing =
J

2

∑

i

[(
c

†
i
− ci

)(
c

†
i+1 + ci+1

)
−h

(
c

†
i
− ci

)(
c

†
i
+ ci

)]
, (5.27)

where we do not take into account boundary conditions, as we are considering

an infinite chain. We have written eq. (5.27) in a factorized form to underline

the connection with a free Majorana Hamiltonian. Indeed we can define the two

components of a Majorana spinor as

Ψ(n)=
c

†
n + cnp

2
, and Ψ̄(n)=

c
†
n − cnp

2i
, (5.28)

by means of which we can rewrite eq. (5.27) as

HIsing = iJ
∑

n

{Ψ̄(n) [Ψ(n+1)−Ψ(n)]− (h−1)Ψ̄(n)Ψ(n)}. (5.29)

Again checking that they satisfy the right anticommutation conditions is a sim-

ple exercise.

We now perform the scaling limit described in section 1.6. We want to consider

the limit a → 0, going towards the critical point h = 1 at the same time. If we just

perform these two limits though we can see from Figure 5.2 that the energy gap

would collapse. We have a gapped scaling theory if we take also the limit J →∞.

Considering all the limits together we can define the Fermi velocity c = Ja1, and

the mass m = J(h−1). We perform the aforementioned limits so as to keep c

and m constant. Defining the set of coordinates x = na, under the scaling limit
∑

n →
∫

dx, and Ψ(n),Ψ̄(n)→Ψ(x),Ψ̄(x), such that we find

HIsing = i

∫
dx

(
cΨ̄(x)∂xΨ(x)−mΨ̄(x)Ψ(x)

)
. (5.30)

This Hamiltonian gives the equations of motion of (3.20), hence the Ising field

theory is indeed the scaling limit of the Ising model. To see explicitly the connec-

1this quantity is the speed of light of the relativistic scaling theory.
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tion we represent eq. (5.29) with the new set of Majorana components

ψ(x)=
Ψ(x)+Ψ̄(x)

p
2

, and ψ̄(x)=
Ψ(x)+Ψ̄(x)

p
2

. (5.31)

This change of variables in turn allows us to write1

HIsing = i

∫
dx{

c

2

[
ψ(x)∂xψ(x)− ψ̄(x)∂xψ̄(x)

]
+mψ̄(x)ψ(x)}, (5.32)

and by means of a Legendre transformation, and taking c = 1 we can easily see

that this Hamiltonian corresponds to the action (3.21).

5.1.3 Entanglement entropy of the XY chain

In this section we use results from previous sections to compute the bi-partite

entanglement entropy (1.15). The region A corresponds to a block of L contiguous

spins, B being its complement. This setting is shown in Figure 5.3. We aim

then first to define the reduced density matrix ρA, and then evaluate SA, as

defined in (1.13), by diagonalizing this matrix. The position of the block A is

of no importance since we are considering a translationally-invariant infinite

chain, such that we can consider spins |s〉i from position i = 1 to i = L, and label

the reduced density matrix by ρL. This is a hermitian matrix, and its action on

the generic spin i can be written as αµσ
µ

i
, where αµ =

(
α0,α1,α2,α3

)
is real, while

σ
µ

i
= (I,σx

i
,σy

i
,σz

i
). Then the density matrix takes the form

ρL =
1

2L

∑

µ1,...,µL=0,1,2,3
ρµ1,...,µL

σ
µ1
1 ⊗ ...⊗σ

µL

L
, (5.33)

where ρµ1,...,µL
= 〈0|σµ1

1 ⊗ ...⊗σ
µL

L
|0〉. This is a 2L ×2L-matrix, then its dimension

grows exponentially with the length of the region L. This makes the direct eval-

uation of its eigenvalues impossible but for very short intervals. A way to tackle

this problem comes from the Bogoliubov transformation defined in section 5.1,

as it reduces the XY Hamiltonian, to one of uncorrelated Fermionic harmonic

1to perform this step we are assuming that ψ and ψ̄ be some well localized wave functions
for which

∫
dx∂x

[
ψψ̄

]
= 0 holds.
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oscillators.

In this section we choose a different map than (5.7), and we want to work with

Figure 5.3: Representation of the bipatition in the two regions A, and its com-
plement. The external magnetic field is aligned along the z-axis, while the black
links between spins represent the bond interaction.

Majorana instead of Dirac Fermions1, as it is a drastic simplification. This for-

malism was first introduced by Bravyi & Kitaev [2000], and it was thought as

a way to implement a physical realisation of a quantum computation with local

Fermion modes. It has then been employed by Vidal et al. [2003] to express the

density matrix of the XY-chain in terms of these modes. In the following we will

proceed as in section 5.1 defining a Jordan-Wigner map, and then a Bogoliubov

transformation in order to find the Majorana-Fermion basis in which (5.1) is di-

agonal.

The central idea is to identify the two Dirac complex operators of creation and

annihilation on a certain site, as real Majorana operators acting on two different

sites. So that instead of (5.7) we define

a2n−1 =
(
∏

l<n

σz
l

)
σx

n a2n =
(
∏

l<n

σz
l

)
σ

y
n, (5.34)

and they clearly are Hermitian Fermionic operators, as they satisfy a
†
k
= ak,

and {ak,al} = δkl . Using this map it is easy to check that σz
n = −ia2n−1a2n,

1here the words Majorana and Dirac are not to be understood in the QFT sense, as we are not
talking about spinor representations; instead they mean respectively a real or complex Fermion.
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σx
nσ

x
n+1 =−ia2na2n+1, and σ

y
nσ

y

n+1 = ia2n−1a2n+2. The XY Hamiltonian can then

be formulated in terms of these operators as

HXY =
i

2

N−1
2∑

n=−N−1
2

[
1+κ

2
a2na2n+1 −

1−κ

2
a2n−1a2n+2+ha2n−1a2n

]
, (5.35)

and rewritten in the much more convenient form HXY = i
4~a

TA~a, where~a = (a−N ,a1−N , ...,aN+1),

while

A=





A0 A1

−AT
1 A0 A1

. . .

−AT
1 A0 A1

−AT
1 A0





, (5.36)

with

A0 =
(

0 2h

−2h 0

)
, A1 =

(
0 κ−1

κ+1 0

)
. (5.37)

In this way the problem reduces to finding a transformation matrix V ∈ SO(2N)

that makes A diagonal. This transformation corresponds to a combination of

the Fourier expansion and Bogoliubov transformation of section 5.1. First we

Fourier-expand the Majorana operators in the following way

a2n =

√
2

N

N−1
2∑

k=−N−1
2

[
sin

(
2πnk

N

)
e2k +cos

(
2πnk

N

)
d2k

]
,

a2n−1 =

√
2

N

N−1
2∑

k=−N−1
2

[
sin

(
2πnk

N

)
e2k−1 +cos

(
2πnk

N

)
d2k−1

]
, (5.38)

which allows to write the Hamiltonian as

HXY =
i

4

N
2∑

k=0
ε(k)





d2k−1

e2k−1

d2k

e2k





T 



0 0 ck −sk

0 0 sk ck

−ck −sk 0 0

sk −ck 0 0









d2k−1

e2k−1

d2k

e2k




, (5.39)
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where ck = cos2θk, sk = sin2θk, θk being the angle defined in eq. (5.13), while ε(k)

are the energy levels defined in eq. (5.15). Finally we act with the Bogoliubov

transformation





b−2k−1

b−2k

b2k−1

b2k




=

1
p

2





uk vk uk −vk

uk vk −uk vk

vk −uk vk uk

−vk uk vk uk









d2k−1

e2k−1

d2k

e2k




. (5.40)

It can be readily verified that the operators bk satisfy all the right properties

to be Majorana Fermions, and they diagonalize the Hamiltonian, which finally

takes the form

HXY =
i

2

N−1
2∑

k=−N−1
2

ε(k)b2k−1b2k. (5.41)

The matrix V is then defined by the composition of the transformations (5.38),

and (5.40), and connects the two sets of Fermions as~b =V~a. Notice that this last

formulation is totally equivalent to the one used to diagonalize the Hamiltonian

in section 5.1. We can see that by comparing the definitions of the Dirac oper-

ators γk, and the real ones bk. It takes a bit of work, but one can extract the

relation between those two set of Fermions, that is γk = (b2k−1+ ib2k)/2. This can

be readily used to prove the equivalence of (5.14) and (5.41).

We have seen in section 5.1.1 the properties of the ground state of the set of oper-

ators γk. Summarising here, we have 〈γ†
k
γl〉 = δkl , and 〈γ†

k
γ

†
l
〉 = 〈γkγl〉 = 0. These

are the only important expectation values of the theory, as with Wick’s theorem

one can reduce any n-correlation function to products of two-point functions. To-

gether with requiring that the ground state be the lowest energy eigenvector of

the Hamiltonian, the set of correlation functions gives a full characterisation of

|0〉. We can do the same for the operators bk, and use the map between them and

γk to obtain the only non-trivial two-point correlation 〈bkbl〉 = δkl + iΓb
kl

, where
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Γ
b
kl

are the entries of the 2N ×2N matrix

Γ
b =





0 1

−1 0
. . .

0 1

−1 0





. (5.42)

We recall here that our final goal is to extract the eigenvalues of (5.34) by diago-

nalizing a smaller matrix, exploiting the uncorrelation of Fermion modes. Then

the next step is to express the two point function 〈bkbl〉 by means of the Fermion

set an, as with (5.34) they can be easily related to the Pauli matrices appearing

in eq. (5.33). This can be achieved by defining Γ
a = VT

Γ
bV, and noticing that

〈aia j〉 = δi j + iΓa
i j

. This yields

Γ
a =





G0 G1 . . . GN−1

−G1 G0 . . . GN−2
...

. . .
...

−GN−1 −GN−2 . . . G0




, with Gn =

(
0 G(n)

−G(−n) 0

)
,

(5.43)

where G(n) are the quantities defined in eq. (5.22) for the thermodynamic limit.

Now we aim to express the coefficients ρµ1,...,µL
of eq. (5.33) by means of the

matrix elements 〈aia j〉. First we notice that many ρµ1,...,µL
are null. In fact

the Hamiltonian (5.1) conserves the number of spins up/down1. This in turn

implies that
∏L

i=1σ
z
i
ρµ1,...,µL

∏L
i=1σ

z
i
= ρµ1,...,µL

, that is any ρµ1,...,µL
with an odd

number of σx and σy must be zero. Hence any non-vanishing element will have

an even number of σx and σy, and correspond to matrix elements with an even

number of an. We will then be always able to reduce such matrix elements to

products of two point correlators 〈aia j〉, where i, j ∈ [1,2L]2. Now we have all

the means to express any density matrix element in terms of two-point functions

of the Majorana set an, and compute them by dealing with 2L × 2L matrices,

1that is the oddness/evenness of Fermions in eq. (5.8).
2recall that we are dealing only with a block of L spins.
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instead of 2L ×2L. Unfortunately, a direct evaluation at this stage is difficult,

due to the high degree of correlation among an modes1, so that we need further

simplifications. Notice that (5.43) is a real skew symmetric Topelitz matrix, and

as such its eigenvalues are complex conjugated pairs, which we label ±iν j, with

j ∈ [1,L]. We first reduce Γ
a in its block diagonal form by the transformation

Γ
f =UT

Γ
aU, where U ∈ SU(2L). Then we end up with the matrix

Γ
f =





0 ν1

−ν1 0 ν2

−ν2 0
. . .

0 νL

−νL 0





, (5.44)

and the set of Majorana operators ~f = U~a. This is a fair simplification, because

as can be read from eq. (5.44), the only correlated modes are f2 j−1 with f2 j, ∀ j ∈
[1,L]. To conclude we define the Fermionic modes ψn = ( f2 j−1 + i f2 j)/2, such that

〈ψlψ
†
m〉 = δlm

1+νl

2
. (5.45)

We have finally reduced the density matrix ρ in eq. (5.33), to the density ma-

trix of a set of uncorrelated, unentangled Fermionic operators, that is ρ = ̺1 ⊗
̺2⊗ ...⊗̺L. The single mode density matrix can be reduced to the diagonal form

̺m = diag[(1+νm)/2, (1−νm)/2] which means that we have a clear expression of

the 2L eigenvalues of ρ, in terms of products of the 2L eigenvalues of the matri-

ces ̺l . The map between eigenvalues of ρ (that we will call λs) and ̺l can be

implemented by a string of L classical bits P = p1 p2...pL, where pi = 0,1, such

that an eigenvalue will be labelled by such a string as

λP =
L∏

j=1

1+ (−1)p jν j

2
. (5.46)

1this is directly linked to the low “sparseness” of the matrix elements in Γ
a; this matrix is

generally easy to diagonalize, but a map between its eigenvalues, and those of the density matrix
would result rather complicated in general.
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This map is directly related to the uncorrelation of the modes ψ j, and allows us

to extract the entanglement entropy by the sum

S(λP)=
L∑

j=1
H2(

1+ν j

2
), (5.47)

where H2(x)=−x log x− (1− x) log(1− x) is the binary entropy.

This is the main result of this section, and it is telling us that any simulation

which aims to evaluate the entanglement of the XY -chain will be extremely fast

and reliable. Indeed we were able to reduce the system to a set of Fermions which

are only classically correlated, and this means that the system can be very effi-

ciently simulated on a classical computer. Another way to see this is that to

evaluate the entanglement entropy we do not need the knowledge of the Ps. So

that if we define a gain as the amount of classical information that we need to

extract the λs out of the νs, that is ∆I = L log2.

5.2 Numerical results for the Ising chain

In the previous section we have defined a method to evaluate the block entangle-

ment entropy which is suitable for numerical implementation. The main steps of

a computer simulation will be to integrate (5.22) numerically, then build and di-

agonalize (5.43), and finally evaluate the entanglement entropy as in eq. (5.47).

The program we used to obtain the results listed in this section is reported in

Appendix C.

Firstly we want to check the qualitative behavior of the entanglement entropy as

a function of the external magnetic field. From the scaling considerations carried

out in Chapters 2 and 3 we expect that it diverge logarithmically with L at the

critical point h = 1, and that it saturate for any other values of the magnetic field.

In Figure 5.4 we can see how the critical point is manifested for finite increasing

blocks, confirming the behaviour that we expect. The analytical counterpart of

this plot can be found in Franchini et al. [2007]. In that case the authors were

considering a different setting, evaluating the entropy of half an infinite chain
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Figure 5.4: Behavior of the entanglement entropy for fixed block length as a
function of h.

against the other half. Even considering two different settings Figure 5.4 is qual-

itatively comparable with Figure 5 in Franchini et al. [2007], the only difference

being the slope approaching the critical point. We can also extract some informa-

tion on the ground state. In the limit h →∞ the entanglement entropy vanishes

for any L. that is the ground state is a separable state in that limit. On the

other hand at h = 0 the entanglement entropy is log2, and again does not depend

on the length of the block anymore. This is due to the degeneracy of the ground

state explained in the comments below eq. (5.3). The ground state is composed

by two separable states, and it has to be treated as a mixed state. This means

that if we call the two equivalent ground states
∣∣φ0〉 and

∣∣ϕ0〉, the density matrix

will be

ρ =
1

2

[∣∣φ0〉〈φ0
∣∣+

∣∣ϕ0〉〈ϕ0
∣∣] , then S(L)= log2+

1

2
Sφ0(L)+

1

2
Sϕ0(L)= log2.

(5.48)

Another interesting qualitative study is the behavior of the entropy for growing

block lengths, at fixed h. We know from eqs. (3.151) and (3.152) that in the

gapped regime, where there is a finite correlation length ξ, we have a logarithmic

growth for short intervals L << ξ, while the entropy saturates for L >> ξ. At the

critical point on the other hand we expect that the chain be described by a CFT,
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Figure 5.5: Behavior of the entanglement entropy for fixed h as a function of the
block length.

so that the entropy grows logarithmically unbounded. These features can be

observed in Figure 5.5. The logarithmic growth ceases sooner and sooner for

increasing h, and the entropy saturates to a constant value, except for the case

h = 1.

We need a more detailed study in order to be able to compare our results with

the QFT predictions. The Ising spin chain and QFT are connected by the scaling

limit reported in section 5.1.2, which allows us to use numerical results on the

spin chain to confirm the QFT analytical predictions. Using the map reported

in Table 1.1 and the explicit form of the correlation length (5.24) we are able to

write eqs. (3.151) and (3.152) specifically for the Ising model. These are

S(L,h)=
1

6
log(L)+ c′1 for L ≪

1

logh
, (5.49)

S(L,h)=−
1

6
log(logh)+ c′1 +U −

1

8
K0(2L logh)+ ... for L ≫

1

logh
. (5.50)

The first quantity we focus on is the constant U . The value of this constant was

computed analytically in Cardy et al. [2008], and takes the value U =−0.131984....

In order to obtain U from the lattice model we have to eradicate the non-universal

behaviour from eqs. (5.49) and (5.50). This can be achieved by considering the
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following limits

U = lim
h→1

S(∞,h)− lim
L→∞

S(L,1). (5.51)

In terms of numerical simulations the most accessible way to obtain U is to

subtract the constant c′1 obtained by fitting the critical results with (5.49) from

the constant obtained by fitting the saturation value of the off-critical data with

(5.50).

We start then considering the critical case h = 1, and we display the results in

Figure 5.6, which shows remarkable agreement between the numerical data and

the interpolating function eq. (5.49). In fact extrapolating the central charge and
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Figure 5.6: Plot of the critical entanglement entropy S(L,1). The numerical data
are shown in red, along with the fitting logarithmic behaviour (5.49) as a blue
dashed line.

the non-universal constant from a best fit with c
3 logL+ c′1, we find c = 0.500003,

and c′1 = 0.478551. We can already appreciate the precision of our simulation

comparing the numerical estimate of the central charge with the theoretical

value c = 1/2.

While the small distance limit (5.49) is described by a unique conformal theory,

the large distance limit depends explicitly on the external magnetic field, and we

expect the QFT prediction (5.50) to hold only in the scaling region, that is in an

infinitesimal region around the critical point. We would expect though that the
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scaling behaviour deform smoothly outside this region, hence that it depend on

some analytic functions of h. It is convenient to parametrize eq. (5.50) in terms

of the correlation length ξ. In particular we make the ansatz that

S(L,ξ)=
1

6
log(ξ)+ c′1 +U(ξ)−

1

α(ξ)
K0(2

L

ξ
)+ ... for L ≫ ξ. (5.52)

This ansatz is supported specially by the study of the Bessel function term. In

fact we observed that an interpolation of the numerical behaviour with K0(2L/ξ)

for different value of ξ fits remarkably, with some slight modification of the 1/8

constant in front. In Figure 5.7 we summarize these considerations.

We want to study then how the dimensionless constants U(ξ) and α(ξ) run
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Figure 5.7: In this figure we plot the numerical data obtained for the Bessel-like
term in eq. (5.52) for different values of the correlation length ξ. We can observe
how even for relatively small ξ the scaling behaviour K0(2 L

ξ
)/8 (black dashed line)

fits our numerical data.

outside the scaling region, and we want to see how they approach the critical

point in order to compute their scaling value. The region we consider is 1.001 ≤
h ≤ 1.1, that is 600 ≤ ξ≤ 10, and we collect data for 1 ≤ L/ξ≤ 6. We focus first on

U(ξ). As we already found c′1 we can obtain this quantity for different values of

ξ using

U(ξ)= S(∞,ξ)−
1

6
log(ξ)− c′1. (5.53)
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In Calabrese et al. [2010]; Peschel [2004] the corrections to entanglement entropy

in the gapped regime of the Ising chain were studied analytically, so that we can

use their results to check the accuracy of our simulations. In that work the au-

thors were considering a different setting from ours, and they were focusing on

the bipartite entanglement between two infinite half chains. As explained in

section 1.7 the area law prescribes that in one dimensional theories the entan-

glement entropy be proportional to the number of shared boundaries between

the two regions. We expect then to find double the contributions of the infinite

half chain case. We can extrapolate from eq. (27) in Calabrese et al. [2010] a

theoretical prediction for S(∞,ξ), that is

S(∞,ξ)−
1

6
log(ξ)= 4

∞∑

k=1

[
(−1)k

4ksinh(k logξ)
(kcoth(k logξ) logξ−1)

]
, (5.54)

and exploiting eq. (5.53) we can compare the r.h.s. of (5.54) with our results

for U + c′1. This comparison is displayed in Figure 5.8 which shows remarkable
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Figure 5.8: The numerical values obtained for U+c′1 are presented and compared
against the analytical prediction in Calabrese et al. [2010] for S(∞,ξ)−1

6 logξ, pic-
tured as a dashed black line. The agreement leaves no doubt about the precision
of our numerics.

agreement, underlying the reliability of our results. Eventually we can extract

from the plot in Figure 5.8 the scaling value of limξ→∞U(ξ)+ c′1, and subtracting

150



the value of c′1 obtained with the critical analysis in Figure 5.6, we finally obtain

U(∞)=−0.131984, which is exactly equal to the theoretical predictions up to the

precision we considered.

Now we focus on the constant α(ξ) of eq. (5.52). From a careful look to Fig-

ure 5.7 we can see that the agreement between numerical data and the the-

oretical expectation K0(2L/ξ)/8 becomes better for increasing ratios L/ξ. This

is explained by the fact that our theoretical prediction has been made on the

basis of a form factor expansion of which we considered only the two parti-

cle contribution. As this series converges in the region mr = L/ξ > 1 it is to-

tally sensible to expect that for L/ξ & 1 higher particle corrections still play a

big role, and truncating to the two particle contribution is not a good approx-

imation. In order to tackle this issue we perform our analysis for L ≥ xξ, for

x = 1.5,2,2.5,3,3.5,4 and 4.5. For each value of x we give a numerical exti-

mation on αx(ξ) for different ξ fitting our data with 1
αx(ξ) K0(2 L

ξ
). The data we
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Figure 5.9: The running of the constant αx(ξ) outside the scaling region is shown
for different values of x.

obtained are shown in Figure 5.9, where we can see that for increasing x the

value of αx(ξ) approaches the scaling theoretical value α = 8. A very interest-

ing and unexpected feature is that αx(ξ) seems to remain constant in the re-

gion 1 ≤ h ≤ 1.1. Linear fittings of the seven sets of data provide the asymptotic

values α1.5(∞) = 7.85581, α2(∞) = 7.9186, α2.5(∞) = 7.95252, α3(∞) = 7.97121,
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α3.5(∞) = 7.9818, α4(∞) = 7.98783 and α4.5(∞) = 7.99146. These data are dis-
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Figure 5.10: We show data obtained for αx(∞) in the region 1.5 ≤ x ≤ 4,5 with a
numerical fit represented by the black dashed line.

played in Figure 5.10, and we performed a numerical best-fit which is shown in

the graph alongside. From this fit we extapolate limx→∞αx(∞)= 8.00084, which

is remarkably close to the theoretical value α= 8.

5.3 The XXZ Heisenberg chain

The XXZ Hamiltonian is defined as

HXXZ = J
N∑

i=1

(
Sx

i Sx
i+1+S

y

i
S

y

i+1+∆Sz
i Sz

i+1

)
, (5.55)

where Sα
i
= σα

i
/2 are spin operators, and ∆ plays the role of an anisotropy pa-

rameter. The parameter J sets the energy scale, and only its sign is important

in the description of the phase diagram. A negative value of J makes the pla-

nar behaviour in the xy-plane antiferromagnetic, while with a positive value a

ferromagnetic alignment is energetically less expensive. The axial behaviour on

the z-axis in contrast is described by the sign of the product J∆. For positive

J∆ a Néel state is more accessible, whereas J∆< 0 makes aligned states prefer-
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able. We will consider positive J throughout this section. In the limit of large

anisotropy parameter the XXZ chain becomes a Ising spin chain with zero exter-

nal magnetic field. On the other hand in the opposite limit, i.e. for small values

of ∆ the model behaves as the isotropic XY model. The ground state in these two

point is highly different, so that we expect that the model undergo a QPT some-

where in the middle. This is indeed the case. In fact this model has a critical line

for ∆ ∈ (−1,1]. The modulus of ∆ describes the competition between interactions

in the z direction with the ones on the xy-plane. Consequently the region |∆| > 1

is usually referred to as the axial regime, while for |∆| < 1 we talk about planar

regime.

The free Fermion methods which worked so well for the Ising model do not ap-

ply to the XXZ spin chain, and we can easily understand why considering the

Jordan-Wigner transformation described in eq. (5.7). For ∆ 6= 0 we have a term

of the kind

σz
iσ

z
i+1 = 1−2

(
c

†
i
ci + c

†
i+1ci+1

)
+4c

†
i
ci c

†
i+1ci+1. (5.56)

The last term in eq. (5.56) is responsible for an interaction between Fermions.

This feature makes the approach based on the correlation matrix inapplicable

for the XXZ model, hence we need a more sophisticated numerical method to

find the ground state properties. A particularly suitable method is the density

matrix renormalization group, which we will describe in section 5.3.1.

Performing the transformation (5.7) on eq. (5.55) lets us express the XXZ Hamil-

tonian as that of a Fermion model closely connected to the Hubbard model Essler

[2005]. Precisely we can write

HXXZ = t
N∑

i=1

[
c

†
i
ci+1 + c

†
i+1ci

]
+V

N∑

i=1

(
n̂i −

1

2

)(
n̂i+1−

1

2

)
. (5.57)

The operator n̂i = c
†
i
ci is the number operator, t = J/2 is usually called the hop-

ping integral, and V = J∆ is the nearest-neighbour Coulomb repulsion.

The XXZ spectrum has been computed with the Bethe ansatz approach in Cloizeaux

& Gaudin [1966]; des Cloizeaux & Pearson [1962]; Gaudin [1971]. The ground

state energy was found to be E0 = J∆N/4. The correlation length can also be

evaluated with the same methods. This was done in Gu et al. [2002], and taking
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J = 1 it is

1

ξ(∆)
= γ(∆)+

∞∑

n=1

(−1)n

n
tanh

[
2nγ(∆)

]
, with γ(∆)= cosh−1

∆. (5.58)

5.3.1 The density matrix renormalization group (DMRG)

The density matrix renormalization group is a renormalization technique which

works extremely well for describing the ground state of strongly correlated sys-

tems, specially in low dimension. The main difference between this method,

and other renormalization schemes is the decimation procedure. A step of the

momentum space renormalization group is performed with a truncation of high

energy modes, while the real space renormalization group prescription is to ap-

proximate the short distance correlations with their mean value. The DMRG on

the other hand, as introduced in White [1992, 1993], performs a truncation in

the Hilbert space, keeping the most important states in the description of the

ground state. The criteria used to understand which states are important, and

which must be discarded allow for a quantum information interpretation of the

DMRG. In what follows we describe a DMRG step.

As we applied this method to the XXZ model, we will present directly the action of

the DMRG on a XXZ spin chain. We start with a block of l spins B. The quantum

state which describes the block lives in a 2l-dimensional Hilbert space HB, and

any operator with support on this block such as the Hamiltonian H can be ex-

pressed by 2l×2l matrices with matrix elements 〈B|H
∣∣B′〉, where |B〉 ,

∣∣B′〉 ∈ HB.

Now we add a site to the right of B, defining what is usually called the system

B•. The system is described by a vector of a 2l+1 dimensional Hilbert space HB•,

and all the operators can be easily written in the product basis |Bs〉 = |B〉⊗ |s〉,
where |s〉 represents the single site basis. Taking the XXZ Hamiltonian1 as an

example this can be written as

HB• =HB ⊗ I2+σx
R ⊗σx

s +σ
y

R
⊗σ

y
s +∆σz

R ⊗σz
s , (5.59)

1we consider as usual the ferromagnetic regime, and from now on we will take J = 1 with no
loss of generality.
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where σα
s with α= (x, y, z) act on the state |s〉, and σα

R
= I2l−1 ⊗σα are spin opera-

tors acting on the rightmost site of B.

Next we introduce an environment which has the aim of mimicking the ther-

modynamic limit. There are several ways to implement this feature. The set-

ting we chose is the original one, introduced by White. We define the envi-

ronment as •B, that is by reflection of the system, so that we obtain the su-

perblock B ••B. The superblock Hamiltonian is again easily defined in the basis

|B1s1s2B2〉 = |B1〉⊗ |s1〉⊗ |s2〉⊗ |B2〉 as

HB••B =HB•⊗ I2l+1 + I2l+1 ⊗H•B + I2l ⊗
(
σx

s1 ⊗σx
s2 +σ

y

s1 ⊗σ
y

s2 +∆σz
s1 ⊗σz

s2

)
⊗ I2l

+σx
L1 ⊗ I4 ⊗σx

R2+σ
y

L1⊗ I4 ⊗σ
y

R2+∆σz
L1⊗ I4 ⊗σz

R2,

(5.60)

where we denoted with s1 and s2 respectively the left and right additional sites,

with B1 and B2 the block’s and environment’s states, and with L1 the leftmost

spin of the system’s block, and with R2 the rightmost spin of the environment’s

block. The terms HB• and H•B are defined with the logic of eq. (5.59). With

the connection terms between the two blocks in eq. (5.60) we implement periodic

boundary conditions.

The aim of our algorithm is to obtain the best approximation of the ground

state, so that we diagonalize the superblock Hamiltonian. This is the most time

demanding step in the DMRG, requiring a fair amount of computational power

and memory, already for relatively small blocks1. This task can be accomplished

using any diagonalization algorithm. As HB••B is a sparse symmetric real ma-

trix we used the “dsyev" routine of the Lapack Anderson et al. [1999]. This is a

standard realization of the Lanczos algorithm Lanczos [1950], by which we ob-

tain an approximation to the superblock ground state. The computational time

of this step can be reduced sharply by using conserved quantum numbers. The

Hamiltonian (5.55) conserves e.g. the global magnetization along the z-axis,

mz = 〈Sz
tot〉 =

1
2〈

∑
i σ

z
i
〉. This means that

[
Sz

tot,HXXZ
]
= 0, and HXXZ connects

1if the length of the block is e.g. 10 sites finding the ground state of eq. (5.60) would require
the numerical diagonalization of a 222 ×222 matrix.

155



only states with equal definite global magnetization. We can then build the basis

of eigenstates of Sz
tot. The Hamiltonian HXXZ is block diagonal expressed in this

basis, each block corresponding to a different value of mz. We can focus on each

block separately, reducing the computational effort which is required by a full

diagonalization, and making this step parallelizable. The global magnetization

can assume any integer value between −l −1 ≤ mz ≤ l +1, and the largest block

is the mz = 0 sector, which is a square matrix of dimension1

(
2l+2

l+1

)
= (2l+2)!

(l+1)! (l+1)!
∼

22l

p
l
, when l →∞. (5.61)

Our algorithm outputs the ground state as a 22l+2 vector in the basis

∣∣ψ〉 =
2l∑

β1=1

∑

σ1=1,2

∑

σ2=1,2

2l∑

β2=1
ψβ1σ1σ2β2

∣∣B1β1 s1σ1 s2σ2B2β2〉 . (5.62)

It is convenient to change basis, and rewrite
∣∣ψ〉 in the factor basis

∣∣B1β1 s1σ1〉⊗∣∣s2σ2B2β2〉. We simplify the notation calling |i〉 the system’s basis, and | j〉 the

environment basis, such that eq. (5.62) takes the form

∣∣ψ〉 =
2l+1∑

i, j=1
ψi j |i〉 | j〉 . (5.63)

The coefficients ψi j in eq. (5.63) can be conveniently stored in a 2l+1×2l+1 matrix.

Now comes the central part of the DMRG, the truncation protocol. The origi-

nal idea in White [1992, 1993] is that, as
∣∣ψ〉 is a pure state, the physical proper-

ties of the system are encoded in the reduced density matrix ρB• = Tr•B

∣∣ψ〉〈ψ
∣∣.

If we stored the ground state as suggested in eq. (5.63) then the trace can be

performed with just one matrix multiplication, and the reduced density matrix

1to compute this dimension we have to think that we are looking for all the states with an
equal number of up and down spins. These states can be counted considering just half of the
spins, as the other half is fixed once chosen the first half. This means that we want to count the
number of combinations of half of the spins, such that eq. (5.61) follows.
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elements can be computed as

〈i|ρB•
∣∣i′〉 =

∑

j

ψi jψ
∗
ji′ . (5.64)

As explained in section 1.2 this density matrix has positive eigenvalues λα which

sum to one. We choose a number m, which we call truncation number. We di-

agonalize ρB•, and we keep the largest m eigenvalues λ1 ≥ λ2 ≥ ... ≥ λm, and the

respective eigenvectors |v1〉 , |v2〉 , ..., |vα〉 stored as columns of the 2l+1 ×m trun-

cation matrix V . We define the truncation error as

ε= 1−
m∑

α=1
λα, (5.65)

which as we will see is a good control parameter of the precision of our approx-

imation. Now we want to understand how this truncation affects the represen-

tation of operators, and the ground state. Consider a bounded operator, with

support on the system, e.g. the Hamiltonian HB•. As explained in section 1.2 we

can evaluate the exact value of the ground state energy of the system as

E0 =Tr
[
ρB•HB•

]
. (5.66)

We define the approximated version Ẽ0 as

Ẽ0 =
∑m

α=1λα 〈vα|HB• |vα〉∑m
α=1λα

, (5.67)

and the error on E0 introduced by the truncation is easily obtained as

|E0 − Ẽ0| =
∣∣∣∣∣
2l+1∑

α=1
λα 〈vα|HB• |vα〉−

∑m
α=1λα 〈vα|HB• |vα〉

1−ε

∣∣∣∣∣

≤ε
∣∣∣∣∣

2l+1∑

α=m+1
〈vα|HB• |vα〉

∣∣∣∣∣+O(ε2).

(5.68)

The error on the estimate of an observable is then of the order of ε, then we want

the truncation error to be as small as possible. Now we turn our attention to

the ground state, and we want to demonstrate that the prescription of keeping
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the largest m eigenstates of ρB• gives the most faithful approximation. After the

truncation procedure the superblock state (5.63) is left in the form

∣∣ψ̃〉 =
∑

α, j

aα j |vα〉 | j〉 . (5.69)

The quantities aα j are elements of a m×2l+1 matrix Ã = VΨ, where Ψ is the

matrix of the coefficients ψi j in eq. (5.63), and V is the truncation matrix. The

matrix Ã can be brought into a more convenient form if we Schmidt decompose

it, as explained in section 1.1. This means we bring it to the form A = V AU†,

where A is a diagonal m×m matrix with diagonal elements a1 ≥ a2 ≥ ... ≥ am,

and U is a m×2l+1 matrix of matrix elements uα j. This in turn means we are

rewriting (5.63) as
∣∣ψ̃〉 =

∑

α

aα |vα〉 |uα〉 . (5.70)

We have to be careful here as the Schmidt decomposition does not preserve the

norm. That is, considering uα j = 〈uα| j〉, in general
∑

j |uα j|2 6= 1, leading to the

necessity of a normalization of the basis |uα〉.
To find the best approximation we want to minimize the quadratic norm

D =
∣∣∣∣ψ〉−

∣∣ψ̃〉
∣∣2 , (5.71)

and in components

D =Tr

∣∣∣∣∣ψi j −
m∑

α=1
aαv∗αiuα j

∣∣∣∣∣

2

, (5.72)

is given in terms of the Hilbert-Schmidt distance. The Schmidt decomposition is

a sub-case of the more general singular value decomposition, and we can apply

the Eckart—Young theorem Eckart & Young [1936]. This theorem states that

the optimal way of approximating a matrix M of rank r with a matrix M̃ of lower

rank r̃ < r is keeping the largest r̃ singular values and singular vectors. This

is exactly what we are doing in eq. (5.72). Notice moreover that (5.64) can be

diagonalized by means of U , and its eigenvalues are λα = |aα|2. We have demon-

strated then that the DMRG prescription is the optimal way to approximate the

ground state with a lower rank state. Moreover, with a bit of manipulation on
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eq. (5.72), one is able to demonstrate that D = ε, giving to the truncation error a

new interpretation. A connection with quantum information theory can be found

if we rewrite eq. (5.70) as

∣∣ψ̃〉 =
∑

α

√
λα |vα〉 |uα〉 . (5.73)

Then ρB• =
∑m

α=1λα |uα〉〈uα|, and ρ•B =
∑m

α=1λα |vα〉〈vα|, such that the block en-

tropy

SB• = S•B =−
m∑

α=1
λα logλα. (5.74)

The DMRG truncation procedure is then that which maximizes the block entropy

between the system and the environment.

We are now ready to summarize the key steps of the infinite algorithm

1. Import as input parameter the chosen truncation number m, and the Lanc-

zos precision at will. Consider a block of small size l if it is the first loop,

or consider the output block of step 4 if the program has already looped.

Consider or import also all the operators of interest. For simplicity we will

assume it is the first loop in what follows. As we want to form the su-

perblock in the next step in particular we have to define the rightmost and

leftmost spin operators σα
R
= I2l−1 ⊗σα, and σα

L
=σα⊗ I2l−1 .

2. Form the superblock Hamiltonian (5.60), and find the ground state with

the Lanczos algorithm at the chosen precision. The output is a 22l+2 vector.

3. Store the ground state as in eq. (5.63), and build the system reduced den-

sity matrix as described in eq. (5.64). Now we need to fully diagonalize ρB•,

store the first m eigenvalues, and arrange the corresponding eigenvectors

as columns of the truncation matrix V . The columns of V must be nor-

malized correctly to achieve the right result. Use the found eigenvalues λα

to define ε as in eq. (5.65), and SB• as in eq. (5.74), these will be used as

control parameters.

4. Change basis to the block Hamiltonian doing H̃B• = V †
HB•V , which is

stored as a m× m matrix. This process is called update. Do the same
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with all operators of interest after giving them support on the system.

In particular the update σα
R

and σα
L

is done as σ̃α
L
= V † (σα⊗ I2l)V , and

σ̃α
R
=V † (I2l ⊗σα)V . Use the updated matrices to define the new superblock

Hamiltonian in steps 1–2.

Once we set the truncation number m, as long as m ≤ 2l+1 the infinite algo-

rithm results only in a change of basis. The truncation begins the first step in

which m > 2l+1, and the superblock Hamiltonian will be a 2m×2m matrix in all

subsequent loops.

We implemented this algorithm in C++ with the use of Lapack package, and

Boost C++ libraries Demming & Duffy [2012, 2010]. The typical truncation

number our realization is able to keep is m < 64 without considering conserved

quantum numbers. With the consideration of quantum numbers the truncation

number grows to m < 200. The most precise and reliable results though were

obtained with the help of the super optimized ALPS project realization of the

DMRG Albuquerque et al. [2007]; Bauer et al. [2011], which allowed us to con-

sider up to m = 1000 states.

The second part of our DMRG simulation is the finite algorithm. This is de-

signed with the aim of gaining precision in reproducing the ground state of finite

chains. Its mechanism is similar to the infinite algorithm, but the dimension of

the super block is kept fixed, and the system grows at the expense of the envi-

ronment, and vice versa. If we want to extract the ground state properties of a

chain of length 2L, we start performing the finite algorithm until the left and

right blocks are both L−1-sites long. At this stage we begin what is called the

first sweep. We grow the left block to L sites, and decrease the right block to

L−2 sites. The system growth is performed as in the infinite algorithm, and we

use the updated operators of the L−2 step to describe the environment1. We

keep on with this process until we grew the left block to L− 3 sites. Now we

invert the process, and we make the right block grow at the expense of the left

one. When the left block is just one site long we consider the sweep ended. This

part of the program introduces a kind of thermalization of the chain. In fact in

1here we are assuming that we started with a block of just one spin, as is usually the case.
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the infinite algorithm the changing length from step to step can introduce some

unwanted features. Specially in those electronic systems with definite particle

density the number of particles grows at each infinite step, and the system can-

not thermalize1. Other cases in which the finite systems does not perform well

are in presence of impurities or randomness in the Hamiltonian, and in general

whenever the Hamiltonian changes from step to step.

5.4 The scaling limit of the XXZ chain

Performing the scaling limit for the XXZ chain is a rather hard task compared to

the Ising case. In this case the scaling theory would be the SU(2)-Thirring (sine-

Gordon) model, which has a much richer structure than the Ising field theory.

The sine-Gordon model presents in its spectrum a massive soliton and antisoliton

(the Fermion and antiFermion of the Thirring model), and a class of bound states

called breathers. The action can be written as

SsG =
∫

d2x

[
1

2
∂µφ∂

µφ+λcos(βφ)
]

, (5.75)

in terms of the pseudoscalar field φ, the mass scale λ, and the parameter β.

The connection between the XXZ chain and the sine-Gordon model has been stud-

ied in Ercolessi et al. [2010]; Klassen & Melzer [1993]; Pallua & Prester [1999],

using two different approaches. In Pallua & Prester [1999] they considered the

ferromagnetic chain, i.e. J = −1 in eq. (5.55), plugged in an external magnetic

field h along the x-axis. They were studying then the limits ∆→−1+, and h → 0,

and they managed to find a precise relation between the XXZ and sine-Gordon

Hamiltonians. The introduction of a magnetic field in that case had the effect

of “lifting" the theory off the critical line, so as to end up with a massive scaling

theory.

The authors of Ercolessi et al. [2010] were considering a different setting. They

were dealing with the XYZ chain, that is the case where the coupling constants of

the bound terms along the three axes are all different. In that work the entangle-

ment entropy for both the XXZ chain and the sine-Gordon model was evaluated

1this feature is well explained e.g. in Schollwöck [2005]
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analytically. Yet a different kind of setting was considered. In fact the authors

exploited the connection between XXZ spin chain and the six-vertex model Bax-

ter [1982], and used the transfer matrix approach to evaluate the entropy. The

same study was carried out, along with the Ising and XY chains, in Calabrese

et al. [2010]; Peschel [2004]. This method by construction allows to compute the

bipartite entanglement entropy of a semi-infinite chain, and the modifications

explained in section 5.2 are needed to compare these results to ours.

5.5 Numerical results on the XXZ chain

In section 5.2 we have seen that the ansatz (5.52) seems to describe very well the

entanglement entropy in the gapped region, and it reduces to the right scaling

behaviour when we approach the critical point. We want to perform the same

study for the XXZ model in order to have a nontrivial confirmation of the validity

of our hypothesis. In fact, as explained in section 5.4 this model contains two

lightest particle, so that eq. (3.152) reduces to

S(L,ξ)=
1

6
logξ+U −

1

4
K0(2

L

ξ
)+ ..., (5.76)

as both soliton and anti-soliton give the same contribution to the Bessel-like

term.

In order to obtain meaningful numerical data the program we use can be divided

into the following two steps

• We start with the infinite algorithm until we reach the desired length.

We are interested in the scaling properties of the block entropy when the

length of the block is from comparable to much bigger than the correlation

length. We need then to grow our block far beyond the correlation length.

• We perform then the finite algorithm. We take a number of sweeps and

states which ensures convergence, and we use the entropy of the final

sweep for increasing (e.g. left) blocks to extract our results. The setting

we want to reproduce is the one of a finite block, plugged into an infi-

nite chain, so that we are forced to consider periodic boundary conditions.
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∆ 1.92833 1.85021 1.79041 1.74286 1.70394 1.67137
Ls 60 70 80 90 100 110
mi 600 600 800 800 800 1000
m f 600 600 600 800 800 1000
n 60 60 10 80 80 100

ǫ(10−11) 1.3 3.4 6.5 3.7 6.2 3.06
|〈σz

i
〉| 0.0089 0.0068 0.0011 0.01 0.01 0.009

Table 5.2: In this table the details of our DMRG simulations are reported. Ls is
the length of the chain, mi the number of states kept in the infinite phase, m f

the number of states kept in the finite phase, and finally ǫ is the truncation error.

DMRG’s precision relies heavily on the decaying of the entanglement spec-

trum, which is much slower for periodic boundaries than open ones. This

forces us to keep more states, and sweep more before observing a good con-

vergence. Good convergence is characterized by a low truncation error, and

a symmetric behaviour of the entanglement entropy for growing left/right

blocks.

We used conserved quantum numbers to speed up the computation. In fact we

know that the XXZ Hamiltonian conserves the global magnetization along the

anisotropy axis. Moreover we know that the ground state is in the 〈Sz〉 = 0 sector

of the Hamiltonian. As in section 5.2 we extend our study outside the scaling

region, making the ansatz that the behaviour be described by smooth functions

in the anisotropy parameter ∆.

The DMRG, in contrast with free Fermion methods, gives access only to finite

chain results. The chain must grow much longer than whichever L we con-

sider, and, as we want to study the region L ≫ ξ, this feature forces us to per-

form our study quite far from the critical point ∆ = 1. We study the cases

∆ = 1.67137,1.70394,1.74286,1.79041,1.85021 and 1.92833, which correspond

respectively to ξ= 12,14,16,18,20 and 22. We find as optimal length of the chain

five times the correlation length. This is long enough to allow us to perform our

scaling study, but small enough to ensure contained running times. The values

of the input parameters alongside with some properties of the ground state are

reported in Table 5.2. A major problem that arose in performing DMRG simu-
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lations on long chains in this regime is the presence of oscillations in the local

magnetization and the entropy. As found in Baxter [1982]; Izergin et al. [1999],

in the thermodynamic limit the ground state is two-fold degenerate for ∆ > 1,

as there are two lowest energy states, with different momenta 0, and π, which

we call respectively
∣∣ψ0〉, and

∣∣ψπ〉. This degeneracy is removed in the case of

finite periodic chains, where the ground state has zero momentum, while the

lowest energy state of the momentum π sector is an excited state. We will refer

to these two states again as
∣∣ψ0〉, and

∣∣ψπ〉 with an abuse of notation. The gap

between these two states though becomes very narrow for chains of the length we

are considering. Our DMRG implementation struggles to distinguish these two

states at the precision we are working . A source of error could be the employ-

ment of the Lanczos algorithm for sparse diagonalization, which has difficulties

in resolving degeneracies. As a result we observe a small staggered behaviour

for the local magnetization, and a small oscillation in the block entropy between

even/odd lengths of the block. Even if 〈ψ0
∣∣σz

i

∣∣ψ0〉 = 〈ψπ

∣∣σz
i

∣∣ψπ〉 = 0, a confu-

sion between these two states can end up giving as target state a superposition

|Ψ〉 =α
∣∣ψ0〉+β

∣∣ψπ〉, and as a result 〈Ψ|σz
i
|Ψ〉 6= 0 in general. We use as signal of

a good convergence |〈σz
i
〉|, which we want to be as low as possible. We used differ-

ent implementations of the DMRG, but the most precise and reliable results were

obtained with ALPS Albuquerque et al. [2007]; Bauer et al. [2011]. Throughout

all our simulations we managed to keep |〈σz
i
〉| ≤ 0.01, and the truncation error

on the order of 10−11. This is a quite big value of ε, but is totally acceptable as

we are considering periodic boundary conditions.

In Figure 5.11 we show how well numerical data for the Bessel-like function in

eq. (5.76) are fitted by the analytical prediction. For this plot the same qual-

itative considerations valid for Figure 5.7 hold, and data are fitted better for

increasing L/ξ. Moreover, isolating any value of ξ in the plot, we can appreciate

the oscillation introduced by the aforementioned degeneracy.

We consider now the ansatz (5.52) and we focus on U(ξ). We the same logic used

for eq. (5.54) we can extrapolate from (14) of Ercolessi et al. [2010]

S(∞,∆)−
1

3
logξ(∆)= log2+2

[
ε(∆)

∞∑

j=0

j

1+ e jε(∆)
+

∞∑

j=0
log

(
1+ e jε(∆)

)]
, (5.77)
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Figure 5.11: Numerical data for the Bessel-like term in eq. (5.76) are compared
with the analytical behaviour represented by the dashed black line.

where ε(∆) = cosh−1
∆. Our results are shown, and compared with eq. (5.77) in

Figure 5.12. We can observe in Figure 5.12 that this case is not particularly

affected by oscillation between odd and even blocks. The appearance of the term

log2 in eq. (5.77) is related to the fact that the ground state, that is the state

with zero momentum
∣∣ψ0〉, is itself a composition of two orthogonal Néel-states.

From eq. (5.77) we can compute U(∞)+ c′1 = 2log2/3.

We performed a numerical study of the critical ∆ = 1 case, from which we can

extract c′1. This case is really well fitted by the behaviour c/3logL + c′1, with

c = 1.00024, and c′1 = 0.73375. The numerical value of the central charge is very

close to the analytical value c = 1, sine-Gordon being a deformation of a free

boson. We use the value of c′1 to give a numerical prediction of the constant

U(∞)=−0.27166 for the SU(2)-Thirring model.

Finally we focus on the behaviour of α(ξ) in the region considered by us. As usual

we consider each value of the correlation length separately, and we estimate α(ξ)

by a numerical fit of our data with K0(2L/ξ)/α(ξ). We observe sharper oscillations

between even and odd blocks for the extracted value of α(ξ) than for U(ξ), and

we report in Figure 5.13 our data. Taking the mean value of results on odd
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Figure 5.12: The numerical results obtained for U + c′1 are displayed, and com-
pared with the analytic prediction in Ercolessi et al. [2010]. The accordance is
lower than for the Ising case, but good enough to confirm confidently the analytic
behaviour.

and even block lengths we find the best fit is of linear form, from which we can

easily extrapolate α(∞) = 4.0039, which is remarkably close to the scaling QFT

prediction α = 4. Contrary to the Ising model in the XXZ case α(ξ) has a non

trivial running, which seems to be linear in the region that we considered.
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6
Conclusions

In the first part of this thesis we have reviewed the methods commonly used to

study entanglement in QFT, stressing particularly their connections to the scal-

ing regime of lattice theories. We then achieved a series of results which we are

going to list in this section.

In Chapter 3 we focused on the replica trick in the context of massive rel-

ativistic QFT, and in particular on the twist field approach. There we have

solved eqs. (3.53)-(3.56) in order to compute higher particle form factors of the

twist field. We considered two different models, namely the roaming trajectory

model, and the SU(3)2-homogeneous sine-Gordon model. This study have been

motivated by the desire to find solutions to the form factor equations for non-

trivial, non-free models. The choice of models have been performed in light of

an eventual test by the ∆-sum rule. Our computations have revealed a num-

ber of interesting features: first, although the solution procedure and equations

have many similarities with those for other local fields, it is considerably harder

to find higher particle solutions for the twist field. This is mainly due to the

increased number of poles the form factors have within the extended physical

sheet. As a consequence, even for simple models it does not seem possible to

find the nice closed determinant formulae found for example in Castro-Alvaredo

& Fring [2001a]; Castro-Alvaredo et al. [2000a]; Fring et al. [1993]; Koubek &

Mussardo [1993] for free Fermion models.

For the RT-model we have noted that solutions to the form factors equations for
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branch point twist fields are generally not unique. This lack of uniqueness is not

unexpected. This is because this geometric picture of the twist field as an object

that connects the various sheets in a Riemann surface is not the only feature

that characterizes the twist field. As its name indicates it is mainly character-

ized by a branch cut. One may also change the features of the twist field by

putting other fields at the corresponding branch point as we did in Chapter 4.

The expectation is that in this way we find form factors of descendants of the

twist field. This has been one of the main inspirations for Castro-Alvaredo et al.

[2011], and the study performed in Chapter 4. Our analysis of the RT-model,

including the investigation of the cluster decomposition property of form factors,

confirms that some of these other twist fields correspond to non primary fields

at conformal level and are likely to be related to composite fields involving the

entropy-related twist field and other fields of the theory. We have found that for

the RT-model and generally any model with a single particle spectrum, the most

general solution for the 2k-particle form factor of the twist field depends on k

free parameters.

Concerning the numerical computations performed in this chapter, our aim has

been to test the few form factor solutions obtained for two theories: the roam-

ing trajectories model and the SU(3)2-homogeneous sine-Gordon model. Both

share the appearance of staircase patterns for the associated effective central

charges Castro-Alvaredo et al. [2000b]; Zamolodchikov [2006]. For the HSG-

model the same pattern has been reproduced for Zamolodchikov’s c-function

Castro-Alvaredo & Fring [2001b]; Zamolodchikov [1986] and for the conformal

dimensions of certain local fields Castro-Alvaredo & Fring [2001b]. Our nu-

merics demonstrate that such pattern is again reproduced for the conformal di-

mension of the twist field which exhibits two plateaux at ∆T = 1
24

(
n− 1

n

)
and

∆T = 1
20

(
n− 1

n

)
. For the RT-model we focused on the first and second steps in

the staircase pattern only, corresponding to ∆T = 1
48

(
n− 1

n

)
and ∆T = 7

240

(
n− 1

n

)
,

respectively.

An interesting conclusion that can be drawn from this study, specially for the

SU(3)2-HSG model, is that the function ∆T (r0) given by (3.136) seems to behave
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exactly as

∆T (r0)=
c(r0)

24

(
n−

1

n

)
, (6.1)

where c(r0) is Zamolodchikov’s c-function. The study of this relation is the main

subject of Chapter 4.

In Chapter 4 we have first provided evidence that

∆T (r0) 6=
c(r0)

24

(
n−

1

n

)
, (6.2)

but that the function

c̃(r)=
24n∆T (r)

n2−1
, (6.3)

satisfies Zamolodchikov’s c-theorem. A study of the ∆-function of the twist field,

due to its definition (4.10), relies on the full knowledge of the two point function

〈Θ(r)T (0)〉, so that we focused on this last quantity. First, we used a form factor

expansion of 〈Θ(r)T (0)〉 to show that ∆(r) is monotonically decreasing for large

distances. Second we investigated the short distance behavior of ∆(r) by using

conformal perturbation theory considerations.

We exploited the relation (3.19) between Θ and the perturbing field φ, and then

used the OPE of operators φ and T to attempt to prove that ∆(r) is a c-function

in this region. This proof relies on the negativity of the composed twist field

〈: φT :〉, which we did not manage to ensure for general theories. We managed

though to compute 〈ε(r)T (0)〉, where ε is the energy operator of the Ising model,

and we showed negativity in this case.

This in particular led us to the identification of the vacuum expectation values

of a new class of twist fields, including

: εT : (x)∼ lim
δ→0

ε(x+δ)T (x), (6.4)

and its derivatives : ∂2αεT :. In the process of showing the negativity of 〈ε(r)T (0)〉
we managed to compute massive corrections to the structure constants up to

(mr)6 for both : εT :, and : ∂2αεT :. Moreover we computed the exact expression
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of 〈: εT :〉 and : 〈∂2αεT :〉, showing the negativity of all of them. The very fact

that we are able to compute the expectation values of such a large class of op-

erators is remarkable, as this is in general a rather hard task, and there is no

general prescription to tackle it.

For the Klein-Gordon model we proved that ∆(r) is also monotonically decreas-

ing for all r using angular quantization. Finally provided general arguments,

based on various physical considerations, we showed that this holds for general

unitary models. We eventually conclude that the function c̃(r), as Zamolodchikov

c(r), measures the loss of degrees of freedom in a renormalization process. This

important and somehow unexpected result could help to establish a connection

between the loss of degrees of freedom, and the increasing of the entanglement

entropy along the renormalization group flow.

In Chapter 5 we focus on giving numerical evidence for the behaviour in

eqs. (3.148) and (3.149) of the entanglement entropy in QFT. We used the scaling

map to translate QFT quantities in the context of gapped spin chains, on which

we performed our numerics. We considered the Ising and the XXZ chains, which

have very different characteristics, as the first corresponds to a free Fermion

problem, while the second does not. We employed different numerical methods,

taking advantage of the free Fermion map of the Ising model, and performing a

DMRG study of the XXZ chain.

We managed to confirm QFT predictions with an amazing precision up to the first

exponentially decaying correction, and we observed that they can be extended off

the scaling region with few small changes. By means of this study we show that

computing the entanglement entropy is a good numerical way to determine the

number of lightest particles in the QFT spectrum. Finally we gave a numerical

prediction of the constant U in eq. (3.149) in the SU(2)-Thirring model.

171



A
Explicit formulae for Q4 and K4

The constants in (3.88) are given by

γ = 2
(
1+2cos(

π

n
)
)
sec(

π

2n
)sin(

(B−4)π

4n
)sin(

(2+B)π

4n
), (A.1)

δ = −
(
4cos(

π

2n
)−cos(

3π

2n
)−cos(

(B−1)π

2n
)
)
sec(

π

2n
), (A.2)

η = 3+2cos(
π

n
)+4cos(

π

2n
)cos(

(B−1)π

2n
), (A.3)

ξ = 2
(
1+3cos(

π

n
)−cos(

2π

n
)+8cos(

π

2n
)
3

cos(
(B−1)π

2n
)

+cos(
(B−1)π

n
)
)
, (A.4)

λ = −2
(
6+6cos(

π

n
)+4cos(

2π

n
)+cos(

3π

n
)+

(
1+2cos(

π

n
)
)
cos(

(B−1)π

n
)
)

−4
(
5cos(

π

2n
)+2cos(

3π

2n
)+cos(

5π

2n
)
)
cos(

(B−1)π

2n
), (A.5)

ρ = 8cos(
π

n
)
2
(
3+3cos(

π

n
)+cos(

2π

n
)+8cos(

π

2n
)
3

cos(
(B−1)π

2n
)
)

+8cos(
π

n
)
2 (

1+2cos(
π

n
)
)
cos(

(B−1)π

n
). (A.6)

All the constants above are real for B real and they remain real when B = 1− 2iθ0
π

,

as one would expect.
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The constants in (3.89) are given by

A = −
1

(
1+2cos(π

n
)
)3 , (A.7)

B =
2

(
1+cos(π

n
)
)

(
1+2cos(π

n
)
)3 , (A.8)

C = −
2

(
2+cos(π

n
)
)

(
1+2cos(π

n
)
)2 , (A.9)

D = −
16cos4( π

2n
)

(
1+2cos(π

n
)
)3 , (A.10)

E =
8cos( π

2n
)2 (

3+6cos(π
n

)+cos(2π
n

)
)

(
1+2cos(π

n
)
)3 , (A.11)

F =
2

(
2cos(π

n
)+cos(2π

n
)
)

(
1+2cos(π

n
)
)3 , (A.12)

G = −
16cos( π

2n
)2 cos(π

n
)
(
2+cos(π

n
)
)

(
1+2cos(π

n
)
)2 , (A.13)

H =
128cos( π

2n
)4cos(π

n
)2

(
1+2cos(π

n
)
)3 , (A.14)

I =
8
(
cos( π

2n
)+cos(3π

2n
)
)2 (

3+2cos(π
n

)+cos(2π
n

)
)

(
1+2cos(π

n
)
)3 , (A.15)

J = −
256cos( π

2n
)4cos(π

n
)4

(
1+2cos(π

n
)
)3 . (A.16)
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B
Coefficients Ωα(n) and Maijer’s G-function

B.1 Coefficients Ωα(n)

This section is devoted to the computation of coefficients in (4.44). As explained

in Section 4.3.1 the aim is to expand the fraction on the LHS of that equa-

tion for large t/mr. First of all, let us introduce the more convenient variable

u = (t/mr)−2/n. The denominator can be then treated, as long as t > mr as the

generating function of the Chebishev polynomials of the second kind, that is

1

u2−2xu+1
=

∞∑

α=0
Uα(x)uα, (B.1)

for −1 < x < 1, and |u| < 1. The first condition is satisfied for every n ≥ 2 as

x = cos(π/n), while the second is satisfied in the whole integration domain of

(4.43) except for the lower limit t = mr. This divergence is “cured” by integrating

over the domain [mr+ ǫ,∞), where ǫ is a small parameter. Once this expansion

is plugged into (4.43) the sum and the integration can be safely exchanged. After

the integration is performed one has then to be sure that the result does not

depend on ǫ, and finally set it to zero. We have performed these steps showing

that indeed (B.1) in this case can be taken as valid also at the point t = mr. The

details are technical and cumbersome, and they will not be reported here. From

now on, and throughout the calculation in Section 4.3.1 we will take (B.1) as

series representation on the whole integration path.
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The polynomials Uα(x) in our case are formally defined as follows

Uα

(
cos

π

n

)
=

sin (1+α)π
n

sin π
n

, (B.2)

The LHS in (4.44) can then be expanded as shown in the RHS with

Ωα(n)=






cos (1+2α)π
2n

cos π
2n

if α< n

cos (1+2α)π
2n

cos π
2n

+ sin (1+2α)π
2n

sin π
2n

if α≥ n
. (B.3)

B.2 Definite integrals of Bessel functions and pow-

ers

In this appendix we present a solution to integrals of the kind

∫∞

mr
dt t−µKν(t), (B.4)

where both µ and mr are positive real numbers. In Section 4.3.1, in particular,

an expansion for small values of mr was needed, so that this will be the aim of

this appendix. First of all let us introduce the function

G
m,n
p,q

(
t

∣∣∣∣∣
a1, . . . ,ap

b1, . . . ,bq

)
=

1

2πi

∫

L

∏m
j=1Γ(b j − s)

∏n
j=1Γ(1−a j + s)

∏q

j=m+1Γ(1−b j + s)
∏p

j=n+1Γ(a j − s)
ts ds. (B.5)

This is a representation of the Meijer G-function, in the formalism adopted by

Gradshteyn & Ryzhik [1980], and the details and properties about this function

will not be reported here. A useful identity is

Kν(t)=
1

2
G

2,0
0,2

(
t2

4

∣∣∣
ν

2
,
−ν
2

)
, (B.6)
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which holds for |arg(t)| ≤ π/2, and the empty sets of gamma functions’ poles are

omitted. In the light of (B.6) the integral in (B.4) can be rewritten as follows

(mr)1−µ

4

∫∞

1
dt t−

µ+1
2 G

2,0
0,2

(
m2

4
t
∣∣∣
ν

2
,−

ν

2

)
. (B.7)

This is a special case of a known integral of the G-function, which in the most

general form is

∫∞

1
dt t−ρ(t−1)σ−1G

m,n
p,q



αt

∣∣∣∣∣∣∣

a1, . . . ,ap

b1, . . . ,bq



=Γ(σ)G m+1,n
p+1,q+1



α

∣∣∣∣∣∣∣

a1, . . . ,ap,ρ

ρ−σ,b1, . . . ,bq



 , (B.8)

which holds for real |arg(t)| ≤ (m+n− p/2− q/2)π, p+ q ≤ 2(m+n), ℜ(σ)> 0 and

ℜ(ρ−σ−a j)>−1 ∀ j ∈ [1,n]. These conditions are all clearly satisfied by (B.7), so

that the result is

∫∞

mr
dt t−µKν(t)=

(mr)1−µ

4
G

3,0
1,3

(
m2

4

∣∣∣∣∣

µ+1
2

µ−1
2 , ν2 ,−ν

2

)
(B.9)

Now this result has to be restricted to the cases (4.46) to be useful for the

OPE that was considered in Section 4.3.1. The calculations are tedious and the

results cumbersome, hence only the first few terms of the expansion of the first

two contributions are given

∫∞

mr
dt t−

2α+1
n K0(t)= 2−1− 1+2α

n Γ

(
n−1−2α

2n

)2

+

+
n[(n−1−2α)(γ− log2)−n]

(n−1−2α)2 (mr)1− 1+2α
n +

n

(n−1−2α)
(mr)1− 1+2α

n log(mr)+

+
n[(3n−1−2α)(γ−1− log2)−n]

4(3n−1−2α)2 (mr)3− 1+2α
n +

+
n

4(3n−1−2α)
(mr)3− 1+2α

n log(mr)+O(mr)5− 1+2α
n

(B.10)
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∫∞

mr
dt t−1− 2α+1

n K1(t)=

(mr)−1− 1+2α
n n

1+2α+n
+2−2− 1+2α

n Γ

(
n−1−2α

2n

)
Γ

(
−

1+2α+n

2n

)
+

+
n[(n−1−2α)(1+2log2−2γ)−2n]

4(n−1−2α)2 (mr)1− 1+2α
n +

−
n

2(n−1−2α)
(mr)1− 1+2α

n log(mr)+

+
n[(3n−1−2α)(5+4log2−4γ)+4n]

64(3n−1−2α)2 (mr)3− 1+2α
n +

+
n

16(3n−1−2α)
(mr)3− 1+2α

n log(mr)+O(mr)5− 1+2α
n ,

(B.11)

where γ= 0.577216 is the Euler-Mascheroni constant.
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C
Mathematica code for the Ising model

In this appendix we report the details of the program used to extract the block

entanglement entropy (5.47) of the Ising spin chain (5.3) numerically. The pro-

gram is implemented in Mathematica. Our program uses the Stream objects

present in Mathematica’s libraries to write the outputs in external files. Then

the first step is to give the command

1 ee = OpenWrite [ " ee . nb" ] ;

2

3 . . .

4

5 Close [ ee ] ;

Listing C.1: Stream commands

in lines 1 of listing C.1. With this we open the file ee.nb on which we write the re-

sults. The stream will be closed after the program has ended with the commands

in lines 5 of listing C.1.

The second step is the evaluation of Gn in eq. (5.43) by means of the function

GG of listing C.2. This is achieved first by defining G(n)s of eq. (5.25) and (5.26)

as done in lines 2–9, and then by setting them as entries of Gn as done in lines

10–13.
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1 GG[ L_ , h_ ] := Block [ { gg } ,

2 gg [ x_ , a_ ] := KroneckerDelta[−x , 1] / ; h == 0;

3 gg [ x_ , a_ ] := −1. / (\ [ Pi ] ( x + 1 /2 ) ) / ; h == 1;

4 gg [ x_ , a_ ] :=

5 NIntegrate [

6 Re [ ( Cos [ t ] − a + I *Sin [ t ] ) / Sqrt [ ( Cos [ t ] − a ) ^2 + ( Sin [ t ] ) ^2] E^(

7 I * t *x ) / ( 2 \[ Pi ] ) ] , { t , 0 , 2 \[ Pi ] } ,

8 Method −> { GlobalAdaptive , MaxErrorIncreases −> 10000} ,

9 PrecisionGoal −> 12 , MaxRecursion −> 20] / ; h != 1 && h != 0;

10 Do[

11 G[ l ] = { { { 0 , gg [ l , h ] } , {−gg[− l , h ] , 0 } } } ;

12 Print [ l , " ok ! " ] ;

13 , { l , 0 , L − 1 } ] ;

14 ] ;

Listing C.2: Definition of the function GG

The third and last step is to implement the definition of the entanglement

entropy from Gns. This is achieved with the function CorrToEntropy defined in

listing C.3. In lines 3–11 we define the matrix Γ
a of eq. (5.43). We diagonalize it

completely and select its positive eigenvalues in lines 12–16. In lines 17–22 we

use those eigenvalues to extract the entanglement entropy (EE). We finally print

on ee.nb, and sce.nb respectively the two measures of entanglement.

1 CorrToEntropy [ L_ ] :=

2 Block [ {MM, MMM, MMMM, l1 , l2 , gg , EE, ss , SCE, EigenC , H} ,

3 MM = Table [0 , { i , 1 , 2*L} , { j , 1 , 2*L } ] ;

4 Do[MMM[ j ] =

5 ArrayFlatten [ Transpose [ Table [G[ i ] , { i , 0 , L − j } ] ] ] , { j , 1 , L } ] ;

6 Do[Do[MM[ [ i , j ] ] =

7 MMM[ Ceil ing [ i / 2 ] ] [ [ Mod[ i + 1 , 2] + 1 ,

179



8 j − 2 Ceil ing [ i / 2 ] + 2 ] ] , { j , 2 Ceil ing [ i / 2 ] − 1 , 2*L } ] , { i , 1 ,

9 2*L } ] ;

10 Do[Do[MM[ [ j , i ] ] = −MM[ [ i , j ] ] , { i , 1 , 2* Ceil ing [ j / 2 ] − 2 } ] , { j , 3 ,

11 2*L } ] ;

12 EigenC = Eigenvalues [MM] ;

13 (* Selects only pos i t ive eigenvalues and build (1+ l [ i ] ) /

14 2 upper eigenvalues of the density matrices o f each fermion mode*)

15

16 l1 = Select [Im[ EigenC ] , # > 0 &];

17 l2 = Table [ ( l1 [ [ i ] ] + 1) / 2 , { i , 1 , Length [ l1 ] } ] ;

18 (*Von Neumann entanglement entropy as binary entropy *)

19 H[ x_ ] :=

20 I f [ Abs [ x ] > 10^−22 &&

21 Abs[1 − x ] > 10^−22, −x*Log [ x ] − (1 − x ) Log[1 − x ] , 0 ] ;

22 EE = Chop[Re[Sum[H[ l2 [ [ i ] ] ] , { i , 1 , Length [ l2 ] } ] ] ] ;

23 WriteString [ ee , " { " , L, " , " , SetPrecision [EE, 20] , " } ,\n" ] ;

24 Return [Re[EE] ] ;

25 ] ;

Listing C.3: Definition of the function CorrToEntropy

The time taken by this program to run is independent on the value of the

external magnetic field, apart from the cases h = 0,1, for which the definitions of

gg in lines 2 and 3 of listing C.1 boost the simulations, as no integration has to

be performed. On the other hand it is highly dependent on the length L of the

interval A considered, as one would expect. The most time consuming step is by

far the exact diagonalization of the 2L×2L matrix MM, as this is in general not

very sparse. We run our simulations with Mathematica 9.0, an a 3.06 GHz Intel

Core 2 Duo CPU, with 4 GB 1067 MHz DDR3 memory. The longest simulation

we run was for h = 1.0025, on a block growing from L = 1 to L = 1770. Its running

time has been roughly of six hours.
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