
              

City, University of London Institutional Repository

Citation: Gashi, I. (2007). Software dependability with off-the-shelf components. 

(Unpublished Doctoral thesis, City, University of London) 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/30436/

Link to published version: 

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


SOFTWARE DEPENDABILITY WITH OFF-THE- 
SHELF COMPONENTS

Ilir Gas hi

i.gashi@city.ac.uk 

Centre for Software Reliability 

City University 

London EC1V0HB 

United Kingdom

PhD Thesis

June, 2007

Page 1 o f278

mailto:i.gashi@city.ac.uk


Table of Contents

Abstract.............................................................................................................................14

I. Introduction..................................................................................................................15

1. Motivation and Aims.............................................................................................16

2. Summary of work...................................................................................................17

3. Contributions of the Thesis................................................................................... 20

4. Thesis outline........................................................................................................ 22

References................................................................................................................. 23

II. Literature Review...................................................................................................... 26

1. Introduction........................................................................................................... 27

2. Definitions............................................................................................................. 27

2.1 Database terms................................................................................................ 27

2.2 Faults, errors and failures................................................................................ 29

2.3 Fault tolerance terms....................................................................................... 30

3. Design diversity.................................................................................................... 31

4. Reliability growth modelling................................................................................ 33

5. Other relevant literature already referenced in chapters IV to VI......................... 34

6. Other relevant literature not referenced elsewhere in the thesis........................... 35

6.1 ReSIST D12.................................................................................................... 35

6.2 Dependability benchmarking.......................................................................... 36

6.3 Performability................................................................................................. 37

6.4 Related work on fault-tolerant middleware architectures............................... 38

References................................................................................................................. 39

III. Research Overview................................................................................................... 43

1. Introduction........................................................................................................... 44

2. Research overview................................................................................................ 44

3. Summary of the papers.......................................................................................... 46

3.1 Fault diversity study (Chapter IV).................................................................47

3.1.1 Differences between the papers............................................................... 48

3.1.2 Suggested reading sequence..................................................................... 48

Page 2 of 278



3.2 Architectural aspects of a fault-tolerant diverse SQL server (Chapter V ).....49

3.2.1 Differences between the papers............................................................... 50

3.2.2 Suggested reading sequence..................................................................... 50

3.3 Optimal selection of COTS components (Chapter VI)................................... 51

3.3.1 Differences between the papers............................................................... 53

3.3.2 Suggested reading sequence..................................................................... 53

References................................................................................................................. 53

IV. Fault Diversity Study.............................................................................................. 56

Paper-1. Fault Diversity among Off-The-Shelf SQL Database Servers........................ 57

1. Introduction........................................................................................................... 58

2. Background and related work............................................................................... 59

2.1 Fault tolerance in databases............................................................................ 59

2.2 Studies of faults and failures........................................................................... 61

2.3 Diversity with off-the-shelf applications........................................................ 61

3. Description of the study........................................................................................ 62

3.1 Bug reports...................................................................................................... 62

3.2 Reproducibility of failures.............................................................................. 63

4. Quantitative results................................................................................................ 63

4.1 Detailed results................................................................................................ 63

4.2 Summary of observed fault diversity.............................................................. 65

4.3 Two-version combinations.............................................................................. 66

5. Common faults...................................................................................................... 67

6. Discussion............................................................................................................. 70

6.1 Extrapolating from the counts of common bugs to reliability of a diverse

server..................................................................................................................... 70

6.2 Decisions about deploying diversity............................................................... 73

7. Conclusions........................................................................................................... 74

Acknowledgment...................................................................................................... 76

References................................................................................................................. 76

Paper-2. Fault Tolerance via Diversity for Off-The-Shelf Products: a Study with SQL

Database Servers........................................................................................................... 80

Page 3 o f278



1. Introduction........................................................................................................... 81

2. Architectural considerations.................................................................................. 84

2.1 Current solutions for DBMS replication......................................................... 84

2.2 Diversity.......................................................................................................... 86

2.3 Design options for fault tolerance via diverse replication.............................. 89

2.3.1 Detection of server failures...................................................................... 89

2.3.2 Error containment, diagnosis and correction........................................... 90

2.3.3 State recovery........................................................................................... 91

3. Our studies of bug reports for off-the-shelf DBMS products..........................93

3.1 Generalities..................................................................................................... 93

3.1.1 Reproducibility of failures....................................................................... 94

3.1.2 Classifications of failures......................................................................... 94

3.2 The first study................................................................................................. 95

3.2.1 Description of the study........................................................................... 95

3.2.2 Detailed results......................................................................................... 96

3.2.3 Implications for fault tolerance: two-version combinations..................... 97

3.3 The second study...................................................................................... 98

3.3.1 Description of the study........................................................................... 98

3.3.2 Implications for fault tolerance: two-version combinations..................... 99

3.3.3 Common bugs.........................................................................................100

3.4 Newer vs. older releases (open-source DBMS products)............................. 103

3.4.1 Implications for fault tolerance: the open-source two-version

combinations....................................................................................................104

4. Discussion............................................................................................................105

5. Related work........................................................................................................107

5.1 Fault tolerance in databases...........................................................................107

5.2 Interoperability between databases................................................................107

5.3 Design diversity.............................................................................................107

5.4 Empirical studies of faults and failures..........................................................108

5.5 Diversity with off-the-shelf applications.......................................................109

6. Conclusions..........................................................................................................109

Page 4 o f278



Acknowledgment.....................................................................................................112

References................................................................................................................112

V. Architectural Aspects of a Fault-Tolerant Diverse SQL Server....................... 118

Paper-3. On Designing Dependable Services with Diverse Off-The-Shelf SQL Servers 

......................................................................................................................................119

1. Introduction..........................................................................................................120

2. A Study of faults in four SQL servers..................................................................122

2.1 SQL servers cannot be assumed to ‘Fail-Stop’..............................................123

2.2 Potential of design diversity for detecting/diagnosing failures.......................125

3. Architecture of a fault-tolerant diverse SQL server............................................ 125

3.1 General Scheme.............................................................................................125

3.2 Fault tolerance strategies................................................................................127

3.3 Data consistency between diverse SQL servers.............................................129

3.4 Differences in features and SQL “dialects” between SQL servers.................130

3.4.1 Missing and proprietary features.............................................................130

3.4.2 Differences in dialects for common features..........................................131

3.4.3 Reconciling the differences between dialects and features of SQL servers 

 132

3.5 Replica determinism: the example of DDL support..................................... 132

3.6 Data diversity.................................................................................................133

3.7 Performance of diverse-replicated SQL servers........................................... 136

4. Increasing performance via diversity...................................................................139

4.1 Performance measures of diverse SQL servers............................................. 139

4.2 Design solutions for the optimistic regime....................................................143

5. Related work........................................................................................................144

6. Discussion............................................................................................................145

7. Conclusions..........................................................................................................147

Acknowledgement....................................................................................................148

References................................................................................................................148

Paper-4. Rephrasing Rules for Off-The-Shelf SQL Database Servers....................... 153

1. Introduction........................................................................................................154

Page 5 o f278



2. Architecture of a fault-tolerant server..................................................................155

2.1 General scheme..............................................................................................155

2.2 SQL connectors..............................................................................................157

2.3 Failure detection, masking, recovery.............................................................158

2.4 Data diversity extensions...............................................................................159

3. SQL rephrasing rules............................................................................................160

3.1 Generic rules..................................................................................................161

3.2 Specific rules..................................................................................................164

4. Performance implications of rephrasing..............................................................165

5. Discussion............................................................................................................169

6. Conclusions..........................................................................................................171

Acknowledgment.....................................................................................................172

References................................................................................................................172

VI. Optimal Selection of COTS Components............................................................175

Paper-5. Uncertainty Explicit Assessment of Off-the-Shelf Software: Selection of an 

Optimal Diverse Pair....................................................................................................176

1. Introduction..........................................................................................................177

2. Related work........................................................................................................178

3. Assessment of diverse COTS solutions: Bayesian approach................................179

3.1 Uncertainty in the assessment........................................................................179

3.2 Model for assessment of 1 COTS component with one attribute................. 180

3.3 Model for assessment of a fault-tolerant system consisting of 2 COTS

components..........................................................................................................181

3.4 Utilizing multiple sources of data in the assessment......................................182

4. Empirical results from a study with off-the-shelf databases................................183

4.1 Prior distributions...........................................................................................184

4.2 Observations...................................................................................................186

4.3 Posteriors........................................................................................................187

5. Discussion............................................................................................................189

6. Conclusions..........................................................................................................190

Acknowledgement....................................................................................................191

Page 6 o f278



References................................................................................................................192

Appendix VI-1 A -  Component-Pair Assessment.................................................. 195

Appendix VI-IB -  Partitions Theory.......................................................................196

Paper-6. Reliability Growth Modelling of a l-Out-Of-2 System: Research with Diverse 

Off-The-Shelf SQL Database Servers..........................................................................199

1. Introduction......................................................................................................... 200

2. Background and related work............................................................................. 202

2.1 Analysis of common faults in OTS DBMS products...................................202

2.2 Software reliability growth modelling.......................................................... 203

2.3 Littlewood model.......................................................................................... 203

3. Extending the Littlewood model......................................................................... 204

4. The proportions approach................................................................................... 206

4.1 The underlying theory of the proportions approach.....................................208

4.2 Empirical derivation of P .............................................................................. 210

5. Validity of assumptions...................................................................................... 212

5.1 Similar failure rate distribution assumption................................................. 212

5.2 Conservatism of the common failure rate assumption.................................. 213

5.3 Statistical tests of the “constant proportion of common faults” assumption 213

5.3.1 U-plots.................................................................................................... 214

5.3.2 Tests for equality of proportions............................................................ 216

6. Discussion and Conclusions................................................................................ 217

Acknowledgment.................................................................................................... 219

References............................................................................................................... 219

Appendix VI-2A -Likelihood equations of the extended Littlewood model........221

Paper-7. Uncertainty Explicit Assessment of Off-The-Shelf Software...................... 223

1. Introduction......................................................................................................... 224

2. Problems with COTS component assessment..................................................... 225

2.1 Motivation..................................................................................................... 225

2.2 Dependence among attributes....................................................................... 227

3. Assessment of COTS components: Bayesian approach...................................... 229

3.1 Model for assessment of 2 non-independent attributes................................230

Page 7 of 278



3.2 Combination of uncertainties in the values of attributes..............................232

3.3 Partitioning the demand space...................................................................... 233

4. Numerical examples: a study with off-the-shelf database servers...................... 234

4.1 Study with the TPC-C benchmark application.............................................. 236

4.1.1 Prior distributions................................................................................... 238

4.1.2 Observations........................................................................................... 239

4.1.3 Posteriors................................................................................................ 240

4.2 Study with the known bugs of the servers.................................................... 241

4.2.1 Prior Distributions.................................................................................. 242

4.2.2 Observations........................................................................................... 244

4.2.3 The Posterior results............................................................................... 245

4.3 Discussion of the results for the two setups.................................................. 246

4.4 Further contrived examples........................................................................... 247

4.4.1 Same Priors............................................................................................ 247

4.4.2 Different Priors, same observations....................................................... 249

5. Discussion of applicability of the proposed assessment method........................ 252

5.1 Many assessment attributes........................................................................... 252

5.2 Decisions on how to perform the assessment............................................... 253

5.3 The types of COTS components for which the assessment method can be

applied................................................................................................................. 254

5.4 Other ways of eliciting the prior distributions.............................................. 255

6. Related work....................................................................................................... 255

6.1 COTS assessment methods........................................................................... 255

6.2 Attribute definition methods......................................................................... 257

7. Conclusion.......................................................................................................... 257

Acknowledgement................................................................................................... 259

References............................................................................................................... 259

VII. Conclusions.......................................................................................................... 265

1. Introduction......................................................................................................... 266

2. Summary of conclusions..................................................................................... 266

3. Review of aims and objectives............................................................................ 271

Page 8 o f278



4. Future work......................................................................................................... 273

5. Final remarks....................................................................................................... 274

References............................................................................................................... 274

List of Abbreviations.................................................................................................... 276

Appendix A

Al. Introduction............................................................................................................ A-3

A2. First study............................................................................................................... A-3

A2.1 Description of the study.....................................................................................A-3

A2.2 Summary of observed fault diversity................................................................ A-6

A3. Second study........................................................................................................... A-7

A3.1 Description of the study.....................................................................................A-7

A3.2 Summary of observed fault diversity.................................................................A-8

A4. Fault diversity between releases of open-source DBMS products....................A-9

A4.1 Description of the study.....................................................................................A-9

A4.2 Summary of observed fault diversity.................................................................A-9

A5. The bug reports of the first study...................................................................... A -ll

A5.1 Interbase 6.0 bug reports................................................................................. A-12

A5.2 PostgreSQL 7.0 bug reports............................................................................ A-87

A5.3 Oracle 8.0.5 bug reports............................................................................... A-163

A5.4 MSSQL 7 bug reports................................................................................... A-188

A6. The bug reports for the second study.............................................................A-313

A6.1 Firebird 1.0 bug reports................................................................................ A-314

A6.2 PostgreSQL 7.2 bug reports.......................................................................... A-439

A7. Bug reports of FB 1.0 and PG 7.2 when run on the older releases IB 6.0 and PG

7.0................................................................................................................................ A-541

A7.1 Firebird 1.0 bug reports..................................................................................A-542

A7.2 PostgreSQL 7.2 bug reports...........................................................................A-661

A8. Bug reports of IB 6.0 and PG 7.0 when run on the newer releases FB 1.0 and PG

7.2............................................................................................................................... A-756

A8.1 Interbase 6.0 bug reports............................................................................... A-757

Page 9 o f278



A8.2 PostgreSQL 7.0 bug reports..........................................................................A-827

A9. Generic rephrasing rules..................................................................................A-906

References................................................................................................................. A-924

List of Tables
Table Page Number
Table 1 ---- ----------------------------------- -----------------------------------------—-  65
Table 2 — ------------ ---------------------------------------------------------------------  66
Table 3 --------------------------------------------------------------------------- ----------  67
Table 4 -------------------------------------------------------------------------------- ------ 67
Table 5 --------- ------------------------------------------------ ------ .............. —-.......  97
Table 6 ................... -------------------------------------------—.................. .........—  98
Table 7 ...... ............................................... ............. .........................................—- 99
Table 8    100
Table 9 —............................... -................................................................. -.........- 100
Table 10 ------------------------------------ ------------------------------------------------- 104
Table 11       105
Table 12 -----------------------------------— ------------------------------— ---- -------- 124
Table 13      125
Table 14     164
Table 15 --------------------------—- ---------------------------- --------------------------- 168
Table 16 —.....................-.................-.........................- ...... .................. -.......—-  182
Table 17 ------ ---------------------— -------------------------— ------------------------- 185
Table 18 ......—........—- ............................................................................. -..........  186
Table 19 ------------------------------------------------------------- -----— ............... —  187
Table 20 ------ -------------------------- --------------------------— ....... ----------------- 188
Table 21 ..............- -------------------— -----------------------------------------------— 205
Table 22 -------------------- ---------------------------------------------.............. — ......  210
Table 23 ----------- --------------------------------.........-...... - .......—--------- --------- 211
Table 24       212
Table 25 ---- ------------------------—----- ------------------------------------------------  212
Table 26     216
Table 27   229
Table 28 ....... ............................--------------------------------------------------...... —  231
Table 29 .............. .....................................................-.......... —.................. -.........- 239
Table 30   239
Table 31 —- ................. -......... -...... -............--------------------------------------------  241
Table 32 ------------------------------------------------.................. -..............................  242
Table 33 ---- ------------------- -------------------------------------------------------------  245
Table 34 -..........—----------------------------------------- --------------------------------- 246
Table 35 -...... ............. .................-.......... —.............-.................. -.............-..........  248
Table 36        249
Table 37 .......... .................................................. —- ----------------------------------- 250
Table 38 —....................—----------- -------------------------------------------- ------— 251
Table 39 ----------------------------------------------------------------------------- -----—  251

Page 10 of 278



List of Figures
Figure Page Number
Fig. 1 -------- -----------------------------------------------------------------------------  89
Fig. 2 ------------------------------------------------------------- ------------------------- 102
Fig. 3 ---------------------------------------------------------—- ..... -......................-  126
Fig. 4 — ---- ---------------------- ------------------------------------— --------------- 136
Fig. 5 .............................................. ......... ....... ...................................... ............ 137
Fig. 6 -------------------------------------------------------------------------------------- 138
Fig. 7 ...................................................... ................................. -........-.............. - 141
Fig. 8 -------------------------------------------------------------------------------------- 142
Fig. 9 ........................... .......... ...... .............................. ..................... ...... ..........  143
Fig. 10 - ...................—- --------- ---------------------------------------..................... 157
Fig. 11 -— ......— ............. -....................... ................-— -------------------------- 167
Fig. 12 -— ------ -------------------------------------- -----------------------------------  180
Fig. 13 .................-............................... ------------------------------------------------ 214
Fig. 14 —....... —-------------------------------—- ............................. ..................-  215
Fig 15 -------- ------------------------— ........-------------------------------------------  227
Fig. 16 ---------------------------- ---------------------------------- ----------------------- 229
Fig. 17 ----- -------------------------------- ---------............... -...................... ............ 250

Page 11 of 278



Ac k n o w l e d g me n t s

I am indebt to my supervisor Dr. Peter Popov for his continuous help, advice, support, 

encouragement and friendship. The completion of this thesis would not have been 

possible without his continuous guidance and constructive suggestions.

I would also like to thank other colleagues at CSR that have provided valuable help and 

advice on various parts that form part of this thesis: Prof. Peter Bishop, Prof. Bev 

Littlewood, Prof. Lorenzo Strigini and Dr. David Wright.

I thank Mr. Vladimir Stankovic for allowing me to reuse and modify the experimental 

harness he had developed, which allowed for performance measurements of rephrasing to 

be calculated in Paper 4 of chapter V, as well as for his continuous friendship and 

support.

Dr. Andrey Povyakalo provided help with statistical functions in R. Mrs. Basi Issacs also 

provided valuable help and support with the administrative parts of the PhD and thesis. I 

would also like to thank CSR and Prof. Robin Bloomfield for securing the funding for my 

PhD, as well as other present and previous colleagues at CSR.

Last, but not least, I would like to thank my family (especially my aunties here in the UK) 

for many years of support. They have always been part of my education and have 

encouraged me all along.

Page 12 of 278



I grant powers o f discretion to the University Librarian to allow this thesis to be copied 

in whole or in part without further reference to me. This permission covers only single 

copies made for study purposes, subject to normal conditions o f acknowledgement.

Page 13 of 278



Abstract
When systems are built out of “off-the-shelf’ (OTS) products, fault tolerance is often the only viable way 

of obtaining the required system dependability. Due to low acquisition costs, even using multiple versions 

of software in a parallel architecture, a scheme formerly reserved for few and highly critical applications, 

may become viable for many other applications. A wide range of solutions for employing fault tolerance 

are known in the literature, but the difficulty remains in assessing the possible dependability gains that may 

be achieved.

The research detailed in this thesis will aim to provide a new approach to assessing the dependability gains 

that may be achieved through software fault tolerance via modular redundancy with diversity in complex 

OTS software. OTS SQL database server products have been used in the studies: they are a very complex, 

widely-used category of off-the-shelf products meaning the results reported in this thesis may be of 

immediate interest to practitioners dealing with complex software systems. Bug reports of the servers were 

used as evidence in the assessment: they were the only direct dependability evidence that was found for 

these products. A sample of bug reports from four OTS SQL database server products and later releases of 

two of them have been studied to check whether they would cause coincident failures in more than one of 

the products. Very few bugs were found to affect more than one product, and none caused failures in more 

than two. Many of these faults caused systematic, non-crash failures, a category ignored by most studies 

and standard implementations of fault tolerance for databases. Use of different releases of the same product 

was also found to tolerate a significant fraction of the faults for one of the products used in the study. 

Therefore, a fault-tolerant server, built with diverse OTS servers products, seems to have a good chance of 

delivering improvements in availability and failure rates compared with the individual OTS server products 

or their replicated, non-diverse configurations.

Data diversity in the form of “SQL rephrasing rules” was also found to be a very useful fault tolerance 

mechanism. Data diversity is possible with these products thanks to the redundancy that exists in the SQL 

language: a statement can be specified in multiple different but logically equivalent ways. The results of all 

these studies are reported in this thesis and their implications, the architectural options available for 

exploiting them, and the difficulties that they may present are discussed.

Two reliability models developed previously by colleagues at the Centre for Software Reliability, City 

University have been extended to enable their use in assessing a fault-tolerant l-out-of-2 diverse server. 

The bug reports were used as evidence in the assessment with one of these models which enables an 

assessor to choose the pair of servers, from the possibly many pairs available, which will yield the highest 

reliability gains. The other model that was extended required additional data that was not available for the 

database servers. Therefore another approach was studied in which bug reports data alone can be used to 

derive estimates of possible reliability gains that may be expected from employing a l-out-of-2 diverse 

server in comparison to a non-diverse one.

Page 14 of 278



I. Introduction

Page 15 of 278



Mr Gashi /. Introduction

1. Motivation and Aims
The use of “off-the-shelf’ (OTS) software is ubiquitous. Their use, rather than custom- 

built products, is attractive in terms of acquisition costs and time to deployment but 

brings concerns about dependability and "total cost of ownership". For safety- or 

business-critical applications, in particular, purpose-built products traditionally would 

come with extensive documentation, evidence of good development practice and of 

extensive verification and validation; with mass-distributed OTS products on the other 

hand, users (system designers or end users) invariably find not only a lack of this 

documentation, but anecdotal evidence of serious failures and/or bugs that undermines 

trust in the product. Despite the large-scale adoption of some products, there is usually no 

formal statistical documentation of achieved dependability levels, from which a user 

could attempt to extrapolate the levels to be achieved in his/her own usage environment. 

For all these reasons software fault tolerance is often the only viable way of obtaining the 

required system dependability when systems are built out of OTS products (Popov, 

Strigini et al. 2000), (Valdes, M. Almgren et al. 2003), (Hiltunen, Schlichting et al. 

2000). Fault tolerance may take multiple forms, with examples ranging from simple error 

detection and recovery add-ons (e.g. “wrappers” (Popov, Strigini et al. 2000)) to “diverse 

modular redundancy” (e.g. “N-version programming”: replication with diverse versions 

of the products) (Avizienis and Kelly 1984), (Laprie, Arlat et al. 1990). With OTS 

products the latter approach becomes more viable due to the availability of a large 

number of similar products which may even be open-source and/or freely distributed. 

These approaches are well known from the literature. Questions remain, however, for the 

developers of systems using OTS products:

what dependability gains may be achieved from the use of fault tolerance 

mechanisms with OTS products?

more specifically, what dependability information/data exists for OTS products 

and how can this information be used to assess the dependability gains that may 

be achieved from employing fault tolerance mechanisms.

Page 16 of 278



llir Gashi I. Introduction

for fault tolerance configurations employing diverse modular redundancy, which 

OTS products, from the (possibly many) available ones, should be chosen to 

achieve the highest dependability gains? 

what are the implementation difficulties?

what costs (developmental, procurement, operational, maintenance etc.) may be 

expected?

The purpose of this thesis is to attempt to answer some of these questions for a category 

of OTS products: SQL database servers, or "database management systems" (DBMSs). 

This category of products offers a realistic case study of the advantages and challenges of 

software fault tolerance in OTS products. DBMS products are complex, mature enough 

for widespread adoption, and yet with many faults in each release. Studying the 

implications of fault tolerance with this complex category of OTS products will therefore 

likely have important practical implications as practitioners may find the results relevant 

to their applications, while other smaller or experimental products may be faced with 

scepticism due to their limitations in practical use.

2. Summary of work
Developing an SQL server using diverse modular redundancy (i.e. several OTS DBMS 

products and suitably adapted “middleware” (Bakken 2003) for “replication” (Bernstein, 

Hadzilacos et al. 1987) management) requires strong evidence of dependability benefits it 

can yield: for example empirical evidence that likely failures of the DBMS products, 

which may lead to serious consequences, are unlikely to be tolerated without diversity. 

To investigate such empirical evidence two studies were carried out with four OTS 

DBMS products (both open-source and closed-development) and later releases of two of 

these products (the open-source ones). The DBMS products used in the first study were: 

Open source:

PostgreSQL 7.0 

Interbase 6.0 

Closed development

Microsoft SQL Server 7 

Oracle 8.0.5

Page 17 of 278



Ilir Gashi /. Introduction

In the second study the following later releases of the open-source DBMS products were 

used:

PostgreSQL 7.2

Firebird 1.0 (Firebird is the open-source descendent of Interbase 6.0)

The purpose of the studies was to investigate whether diverse modular redundancy has a 

potential to deliver significant improvement of dependability of DBMS products, 

compared to solutions for data replication that can only tolerate crash failures. The only 

direct dependability evidence that is available for the DBMS products are their fault 

reports. Therefore a preliminary evaluation step concerns fault diversity rather than 

failure diversity. By manual selection of test cases, one can check whether the diverse 

modular redundant configuration would tolerate the known bugs in the repositories of 

bugs reported for the various DBMS products. To this end, in the first study, a total of 

181 bug (fault) reports were collected for the DBMS products used. For each bug, the test 

case that would trigger it was run on all four DBMS products (if possible), to check for 

coincident failures. The number of coincident failures was found to be very low.

The results of the first study were very intriguing and pointed to potential for serious 

dependability gains from using diverse off-the-shelf DBMS products. Flowever these 

results concern only a specific snapshot in the evolution of these products. Therefore the 

study was repeated for later releases of these DBMS products. A further 92 new bug 

reports for the later releases of the open-source DBMS products were collected (no 

further bugs were collected for the closed-development DBMS products as the 

reproduction scripts needed to trigger the fault were missing in most of them - but the 

new bug scripts were still run on the two closed-development DBMS products used in the 

first study). The results of the second study substantially confirmed those of the first: very 

few bugs scripts are again found to cause coincident failures.

The bugs reported for the new releases were also run on the older releases of those 

DBMS products, and vice versa. The results for PostgreSQL are very interesting: most of 

the old bugs had been fixed in the new release and a large proportion of the newly 

reported bugs did not cause failure (or could not be run at all) in the old release. This 

would suggest that dependability improvements can be gained by employing this more 

limited form of diversity: running different releases of a DBMS product from the same

Page 18 of 278



Ilir Gashi I. Introduction

vendor. Similar practices have been applied for embedded and safety critical systems 

(Cook and Dage 1999), (Tai, Tso et al. 2002). Note that the idea of using old and new 

releases of the same program to improve dependability was first mentioned by Brian 

Randell in his work on recovery blocks (Randell 1975): one possible setup of the 

recovery block scheme would use the earlier releases of the primary alternate as sources 

of secondary alternates.

The mechanism of “data diversity” (Ammann and Knight 1988) in the form of 

“rephrasing” was also studied. This approach is applicable due to the natural redundancy 

that exists in the SQL language: statements may be formulated in different, but logically 

equivalent, ways. A limited number of “rephrasing rules” were defined and applied to 

bug reports of the open-source DBMS products examined in the two studies; the results 

show that the rephrasing rules would tolerate at least 60% of these bugs that could be run 

on more than one DBMS product. Data diversity may be used with or without diversity of 

DBMS products; when diverse products are used it can be especially useful for aiding 

with diagnosis of the failed product and recovery of the state of the failed product 

(through the re-execution of a rephrased statement which fails in its original form, i.e. 

through forward error recovery) in addition to failure detection.

The results from the two studies with the bugs point to a potential for serious 

dependability gains from assembling a fault-tolerant server from two or more DBMS 

products. But they are not definitive evidence. An extensive discussion is presented to 

clarify to what extent the observations like those reported in this thesis allow one to 

predict such gains. Three modelling approaches are also presented which show how the 

assessment of the gains in dependability that may be achieved through diversity can be 

performed utilising the bug reports.

In the first modelling approach an existing model developed at our centre (Littlewood, 

Popov et al. 2000) has been adapted and extended which allows for an optimal selection 

of a pair of OTS products to be used in a diverse fault-tolerant server. In this model the 

assessment results are subject to uncertainty which can impact the decisions about which 

pair of OTS products is chosen. The model also enables representing the dependencies 

that exists between uncertainties associated with the reliability of each OTS product in 

the pair. The use of the model for selection of an optimal pair of DBMS products in the

Page 19 of 278



Ilir Gashi I. Introduction

study is then shown. The evidence used in the assessment are the collected bug reports. It 

is also shown that using the same mathematical model, but redefining the variables, the 

assessment of single products may be carried out in which both the correctness 

(ireliability) and timeliness {performance) attributes of the results of the product are 

considered and the best product is selected with respect to both of these attributes. 

Research has also been done on the possibilities of modelling the reliability of a diverse 

l-out-of-2 system of DBMS products. This work has been in two strands:

Adapting and extending a previous reliability growth model (RGM) (Littlewood 

1981) (originally developed for modelling the reliability growth of a single 

bespoke software system) to allow for modelling the reliability growth of a 

diverse l-out-of-2 system of DBMS products. A detailed description is given on 

how the model may be used to perform the assessment but, due to unavailability 

of the necessary data, no empirical work with the model was performed. 

Developing a new modelling approach in which statements about the reliability of 

the diverse l-out-of-2 system can be made (under certain assumptions) purely 

using bug reports data as evidence. The application of the model is illustrated 

using the data from the study with the bug reports of the DBMS products.

3. Contributions of the Thesis
The main contributions of this thesis are the following:

Two studies have been completed with a total of 273 bug reports for 6 OTS 

DBMS products which indicate that bugs triggered in one DBMS product would 

cause failures in another DBMS product only in very few cases. Even using 

different releases of the same DBMS product it is shown to have some benefit in 

terms of improved dependability. To the best of our knowledge we are not aware 

of any similar work which has studied fault diversity with OTS products (and this 

is also confirmed by reviewers of our papers).

Data diversity (Ammann and Knight 1988) in the form of “SQL rephrasing rules” 

is shown to be a useful fault tolerance mechanism with or without diverse 

modular redundancy and may especially help in a diverse product configuration 

with failure diagnosis and state recovery of the failed product.

Page 20 of 278



Ilir Gashi I. Introduction

A previous model developed within our centre (Littlewood, Popov et al. 2000) is 

adapted and extended for assessment of DBMS products in two different setups: 

to select an optimal pair of DBMS products, when multiple (> 2) DBMS 

products are available, for use in a diverse fault-tolerant server configuration. 

The model is Bayesian and allows the expert to specify the prior distribution 

of the probability o f failure on demand (pfd) of each of the DBMS products 

individually as well as the pfd of common failures of the two DBMS products. 

The data from the bugs study are then used as evidence and a posterior 

probability distribution is derived which quantifies the uncertainty and allows 

the assessor to make a selection of the optimal pair.

- to select an optimal single DBMS product but taking into account both the 

product’s output correctness (reliability) and timeliness {performance). Even 

though the mathematical details of the model remain the same as in the 

diverse setup above the variables of the model are redefined to cater for both 

types of failure, namely correctness and timeliness.

A previous reliability growth model (Littlewood 1981), originally developed for 

modelling the growth of reliability in bespoke software systems, was extended for 

use in modelling the reliability growth of a l-out-of-2 system of OTS products. 

And finally, another reliability modelling approach is presented which enables the 

assessor to make statements regarding the reliability of a l-out-of-2 system based 

purely on the bug counts alone. The use of the model is then illustrated using the 

bug reports of the DBMS products.

With respect to the contributions listed above, the research outlined in this thesis could be 

most beneficial to the following people / organisations:

Developers o f fault-tolerant systems which are constructed with OTS products: 

the research outlined in this thesis provides evidence that potentially significant 

dependability gains may be obtained from employing diverse DBMS products; 

evidence is also shown on the effectiveness of data diversity through rephrasing 

and, for one DBMS product, the potential for limited, but significant, gains in 

dependability from using different releases of even the same product. The 

architectures that would enable the use and mixing of these approaches are also

Page 21 of 278



Hir Gashi 1. Introduction

extensively discussed. Therefore developers of fault-tolerant systems who seek 

options for enhancing the system dependability may benefit from the research 

presented in this thesis.

Organisations that require methods to enable selection (or ranking) o f (either 

diverse or single) OTS products from the viewpoint o f Dependability and/or 

Performance', a modelling approach is presented which allows assessors to make 

selections of optimal diverse or single components from the viewpoint of 

dependability and/or performance. The use of the model is illustrated with the 

results from the bugs study as this was the only direct dependability evidence that 

was found for these products; however the model is general enough to allow for 

other types of evidence (such as data from statistical testing or dependability 

benchmarking results (Kanoun, Madeira et al. 2004)) to be utilised in the 

inference.

Vendors o f DBMS products: by running bug scripts reported for a DBMS product 

A, faults were uncovered in another DBMS product B which were not reported in 

the bug repositories (for our collection period) of product B. Vendors are 

therefore advised to test their products with bugs reported for products of other 

vendors.

4. Thesis outline
The main chapters of the thesis (chapters IV-VI) will be presented as a collection of 

seven papers, identified as Paper-1 to Paper-7 respectively (details to follow below and 

in more detail in chapter III). Each paper contains a “Related work” section in which the 

relevant literature for that paper is reviewed. However to improve the readability of the 

thesis a “Literature review” and a “Research outline” chapter will also be given before 

the main chapters with the papers. Therefore chapter I-III of this thesis may be useful to a 

reader who is interested in the main methodology and results of the thesis without the low 

level details. These details are then presented in Chapters IV-VI and the Appendix.

In summary:

Chapter I -  Introduction: outlines the motivation for the work, and summarises the main 

results and outcomes of the thesis.

Page 22 of 278



Ilir Gashi I. Introduction

Chapter II - Literature review, contains a critical review of the related literature relevant 

to this thesis. Since the papers that form part of chapter IV-VI also contain related work 

sections, to avoid duplication the Literature review chapter only reviews in detail the 

relevant literature not discussed in those chapters.

Chapter III -  Research overview, contains an overview of the research done in this thesis 

written at a level which is more comprehensive than an abstract but without the details 

given in the relevant papers and appendices in the thesis. The purpose of this chapter is to 

outline the main structure of the thesis and therefore clarify how the various parts of the 

work detailed in the papers are linked together.

Chapter IV -  Fault diversity study, contains two papers which detail the two studies 

conducted with the bugs reported for (our sample of) DBMS products.

Chapter V -  Architectural aspects o f a diverse fault-tolerant server: contains two papers 

which detail the architecture of a diverse fault-tolerant server, including the data diversity 

mechanism (via SQL rephrasing) and empirical results from the application of rephrasing 

to the bug reports of the open-source DBMS products used in the two studies.

Chapter VI - Optimal selection o f COTS components', contains three papers which detail 

the models and their applications with (our sample of) DBMS products and bug reports 

for the following purposes:

selection of an optimal diverse pair of products

selection of an optimal product, from the viewpoint of both correctness 

(reliability) and timeliness (performance) 

reliability modelling of a 1 -out-of-2 diverse server 

Chapter VII- Conclusions', outlines the main conclusions of this thesis and provisions for 

further work.

Appendix A - contains the full details of all of the bug reports used in the studies, the 

rephrasing rules defined and their application to the bug reports of (our sample of) open- 

source DBMS products.

References
Ammann, P. E. and J. C. Knight (1988), ' 'Data Diversity: An Approach to Software 

Fault Tolerance", IEEE Transactions on Computers 37(4), pp: 418-425.

Page 23 of 278



Ilir Gashi /. Introduction

Avizienis, A. and J. P. J. Kelly (1984), ' 'Fault Tolerance by Design Diversity: Concepts 

and Experiments", IEEE Computer 17(8), pp: 67-80.

Bakken, D. (2003), " Middleware: What it is, and How it Enables Adaptively and 

Dependability", in proc. 43 Meeting of IFIP WG 10.4 Dependable Computing and Fault 

Tolerance, Santa Maria, Sal Island, Cape Verde, pp: 13-40.

Bernstein, P, A., V. Hadzilaeos and N. Goodman (1987), "Concurrency Control and 

Recovery in Database Systems", Reading, Mass., Addison-Wesley.

Cook, J. E. and J. A. Page (1999), "Highly Reliable Upgrading o f Components", in 

proc. Int. Conf. on Software Engineering (ICSE ’99), IEEE-ACM, pp: 203-212.

Hiltunen, M. A„ R. D. Schlichting, C, A. Ugarte and G. T. Wong (2000), 

"Survivability Through Customization and Adaptability: The Cactus Approach", in proc. 

DARPA Information Survivability Conference & Exposition.

Kanoun, K., H. Madeira, et al. (2004), "DBench Dependability Benchmarks", IST- 

2000-25425, http://www.laas.fr/DBench/Final/DBench-complete-report.pdf.

Laprie, J. C„ J. Arlat, C. Beounes and K. Kanoun (1990), "Definition and Analysis o f 

Hardware-and-Software Fault-Tolerant Architectures", IEEE Computer 23(7), pp: 39-51. 

Littlewood, B. (1981), "Stochastic Reliability Growth: a Model for Fault-Removal in 

Computer Programs and Hardware Designs", IEEE Transactions on Reliability R-30(4), 

pp: 313-320.

Littlewood, B„ P. Popov and L. Strigini (2000), "Assessment o f the Reliability of Fault- 

Tolerant Software: a Bayesian Approach", in proc. Int. Conf. on Computer Safety, 

Reliability and Security (SAFECOMP ’00), Rotterdam, the Netherlands, Springer, pp: 

294-308.

Popov, P., L. Strigini and A. Romanovsky (2000), "Diversity for Off-The-Shelf 

Components", in proc. Int. Conf. on Dependable Systems and Networks (DSN '00) - Fast 

Abstracts supplement, New York, NY, USA, IEEE Computer Society Press, pp: B60- 

B61.
Randeil, B. (1975), "System Structure for Software Fault Tolerance", IEEE Transactions 

on Software Engineering 1(2), pp: 220-232.

Page 24 of 278

http://www.laas.fr/DBench/Final/DBench-complete-report.pdf


Ilir Gashi I. Introduction

Tai, A. T., K. S. Tso, L. Alkalai, S. N. Chau and W. H. Sanders (2002), "Low-Cost 

Error Containment and Recovery for Onboard Guarded Software Upgrading and 

Beyond", IEEE Transactions on Computers 51(2), pp: 121-137.

Valdes, A., M. Almgren, S. Cheung, Y. Deswarte, B. Dutertre, J. Levy, H. Saidi, V. 

Stavridou and T. E. Uribe (2003), "An Architecture for an Adaptive Intrusion-Tolerant 

Server", in Lecture Notes in Computer Science (LNCS) 2845 - Selected Papers from 10th 

Int. Workshop on Security Protocols '02, B. Christianson, Crispo, B., Malcolm, J. A., 

Roe, M. (Eds.), Springer, pp: 158-178.

Page 25 of 278



Literature Review

Page 26 of 278



Ilir Gashi II. Literature Review

1. Introduction
The purpose of this chapter is to give an outline of the main topics of previous work 

which this thesis references or extends. However it must be emphasized that each of the 

papers that will be detailed in chapters IV-VI will contain reviews of the previous 

literature relevant for the topic being discussed in that respective paper. Therefore, to 

avoid duplication and repetition, this chapter will only contain additional details about 

topics which due to various length restrictions could not be discussed in the papers, as 

well as a review of more recent literature than that discussed in the papers.

2. Definitions
This section provides some concise definitions of terms that are encountered frequently in 

this thesis but have only been partly defined in the papers that form part of chapters IV- 

VI.

2.1 Database terms

The definitions of database terms given in this subsection are based on those given in 

(Bernstein, Hadzilacos et al. 1987). A database may be defined as consisting of named 

data items. Each of the data items has a value. The values of the data items at a given 

time comprise the state of the database. A database management system (DBMS) product 

may be defined as a collection of hardware and software modules that support the 

commands to access the database. These can be called database operations or statements 

which are usually split into two categories: Data Manipulation Language (DML) 

statements which are read and write statements for manipulating the data stored in the 

database; and the Data Definition Language (DDL) statements which are used to define 

the structure of the database (e.g. Create Table statement).

The DBMS must also support the transaction operations (Start, Commit and Abort). In 

its simplest form a transaction may be thought of as an execution of a program that 

accesses a shared database. However multiple operations may be executed concurrently 

therefore the DBMS product must allow for effective concurrency control and recovery. 

Ideally the DBMS product must guarantee all of the ACID properties of a transaction:

Page 27 of 278



Ilir Gashi II. Literature Review

Atomicity. A transaction either executes in its entirety or it is aborted 

Consistency: the state of the database before and after the transaction execution 

must remain consistent (the definition of consistency is application specific) 

Isolation', modifications of the transaction are not visible to other resources before 

it finishes

Durability: a completed transaction is always persistent.

In practice these properties may be relaxed somewhat as a trade-off to better 

performance. Most commonly the Isolation property is relaxed. ANSI/ISO (American 

National Standards Institute / International Organisation for Standardisation) SQL 

standard (ANSI/ISO 2003) defines four Isolation levels for transactions (the list is given 

in increasing order of transaction isolation):

Read uncommitted', a transaction A can read uncommitted changes made by 

another concurrent transaction B before transaction B has committed (so called 

dirty reads are allowed to occur).

Read committed', a transaction A can read data which is then changed by another 

concurrent transaction B before transaction A commits. Therefore transaction A 

will not be able to see the same data as before if it reissues the same read 

statement (so called unrepeatable reads are allowed to occur)

Repeatable read: a transaction A can read from tables to which another 

concurrent transaction B is inserting data. Therefore transaction A will retrieve 

different results if it reissues a read statement that fulfils the condition of reading 

the newly inserted data (so called phantom reads are allowed to occur)

Serialisable: all transactions are executed in complete isolation, i.e. the 

transactions produce the same output and have the same effect on the database as 

some serial execution of transactions.

These definitions have been criticised as ambiguous and not reflecting accurately the 

isolation provided by many DBMS products (Berenson, Bernstein et al. 1995). In the 

architectural proposals discussed in chapters IV and V of this thesis the serialisable 

isolation of transactions has been assumed.

A replicated database is a distributed database in which multiple copies of the same data 

items are stored in multiple sites. The main reason for using replicated data is to increase

Page 28 of 278



Ilir Gas hi II. Literature Review

DBMS availability. A DBMS product that manages a replicated database should behave 

like a DBMS product that manages a one-copy (i.e. non-replicated) database insofar as 

users can tell. In a one-copy database, users expect the interleaved execution of their 

transactions to be equivalent to a serial execution of those transactions. Since replicated 

data should be transparent to them, they would like the interleaved execution of their 

transactions on a replicated database to be equivalent to a serial execution of those 

transactions on a one-copy database. Such executions are called one-copy serialisable. 

The goal of concurrency control for replicated data is to guarantee the same one-copy 

serialisability amongst the replicas otherwise the replicas may become inconsistent. The 

replication can be eager -  the coordination between the replicas happens before 

transaction commits -  or lazy -  to improve performance, the coordination amongst the 

replicas may happen after the transaction commits. Many replication algorithms have 

been proposed in the literature, and some of these together with more detailed 

explanations of data replication are discussed at length in the papers that form parts of 

chapters IV and V of this thesis. In the architectural proposals discussed in this thesis 

eager replication has been assumed.

2.2 Faults, errors and failures

The definitions of the terms fault (or bug), error and failure given in this sub-section are 

based on (Avizienis, Laprie et al. 2004).

A failure is said to occur when the system stops performing its required functions. An 

error is an erroneous (defective) internal state in the system, which propagates through 

the system and causes the failure. A fault is the triggering condition which when activated 

causes an error.

Therefore the event of the system failure lies in the end of a causal chain that begins with 

the activation of a fault under certain operating conditions and followed by the 

propagation of an erroneous internal state through the system.

In this thesis the term software fault and bug have been used interchangeably.

Page 29 of 278



Ilir Gashi II. Literature Review

2.3 Fault tolerance terms

The definitions of the fault tolerance terms and mechanisms defined in this sub-section 

are based on (Anderson and Lee 1990).

A fault-tolerant system is a system that can continue in operation after some system 

faults have manifested themselves. Fault tolerance is therefore based on the premise that 

faults exist and that it is possible for the computer system to handle them without external 

interventions.

The goal of fault tolerance is to ensure that system faults do not result in system failure. 

However due to the higher cost associated with the use of fault tolerance it tends to be 

mostly employed in applications where a system failure would cause catastrophic 

accidents which would lead to loss of life, or where a system failure would lead to large 

economic losses.

(Anderson and Lee 1990) identify four constituent phases, which taken together, provide 

the general means of preventing faults from leading to a system failure:

1. Error detection'. The system must detect that a particular state combination has 

occurred and could lead to a system failure.

2. Damage assessment'. The parts of the system state, which have been affected by 

the fault, must be identified.

3. Error recovery. The system must restore its state to a known “safe” state. This 

may be achieved by correcting the damaged state (forM’ard error recovery) or by 

restoring the system to a known safe state (backward error recovery).

4. Fault treatment and continued system service: This involves modifying the 

system so that the fault does not recur. In many cases, software faults manifest 

themselves as transient states (e.g. “Heisenbugs” (Gray 1986)). They are due to a 

peculiar combination of system inputs. For these faults no repair is necessary as 

normal processing can resume immediately after error recovery.

Fault tolerance can be achieved through both software and hardware, but throughout this 

thesis the software mechanisms will be discussed unless otherwise stated. Apart from 

(Anderson and Lee 1990) other references which provide extensive coverage of software 

fault tolerance are (Lyu 1995) and (Pullum 2001).

Page 30 of 278



Ilir Gashi II. Literature Review

Other well-known dependability attribute terms (such as reliability, availability etc.) that 

will be used in this thesis are based on the definitions provided in (Avizienis, Laprie et al. 

2004).

Implementations and practical examples of the use of the fault tolerance mechanisms 

defined above and their application to DBMS products will be referenced and discussed 

in the papers that form part of chapters IV and V of this thesis.

3. Design diversity
The central theme of this thesis is the use of diverse off-the-shelf products to increase the 

dependability of a system. Software design diversity is the phenomenon of bespoke 

development or reuse of multiple diverse versions of a software program (or existing 

product) from a common requirement specification with the goal of increasing the system 

reliability or availability. The intuitive underlying principle of design diversity is the 

simple longstanding belief that “two heads are better than one” and its advocacy for use 

with computer systems may be thought of as first being proposed by Charles Babbage 

(Babbage 1974), although by computer he meant a person.

The main reason for employing design diversity in software is due to software suffering 

exclusively from design faults (Littlewood, Popov et al. 2001) and not physical faults 

(such as wear-and-tear for example) which are hardware specific. A design fault in its 

simplest definition is a fault that is introduced in the software during its development 

(hence the word design in this context is used for the whole software development 

process). If non-diverse redundant copies of the same software product are used then 

these design faults will be simply replicated across the copies. Such replication of faulty 

software elements fails to enhance the fault tolerance of the system with respect to design 

faults.

The ideal goal of employing design diversity is to achieve negative dependence between 

the failure modes of the software products (i.e. whenever one fails the other one does 

not). Independent failure modes of the channels that constitute the diverse system would 

also be highly desirable as they would enable an assessor to easily calculate the 

probability of failure of the diverse system: the product of the failure probabilities of the 

individual channels in the diverse system would give the failure probability of the diverse

Page 31 of 278



llir Gashi 11. Literature Review

system. However virtually all of the experimental studies performed for measuring the 

benefits of design diversity (Chen and Avizienis 1978), (Kelly and Avizienis 1983), 

(Knight and Leveson 1986), (Avizienis, Lyu et al. 1988), (Eckhardt, Caglayan et al. 

1991) have found faults, which cause coincident failures in more than one version with 

probability significantly higher than would be expected if the versions truly had 

independent failure modes.

The Knight and Leveson experiment (Knight and Leveson 1986) is the best known of 

these experiments. The experiment was carried out to test the hypothesis of independence 

of failures of diverse versions of software programs. Nine students from University of 

Virginia and eighteen from University of California in Irvine were asked to write 

programs from a single requirements specification. The result was twenty-seven 

programs. No overall software development methodology was imposed on the students. 

However they were required to write the programs in Pascal and to use only a specified 

compiler and operating system. The resulting programs were then subjected to an 

acceptance test. Once all the versions had passed their acceptance test the versions were 

subjected to the experimental treatment, which consisted of simulation of a production 

environment. A total of one million tests were run on each of the twenty-seven versions.

It was found in (Knight and Leveson 1986) that test cases occurred in which eight of the 

twenty-seven versions failed. They also found that the coincident failures did not 

necessarily occur in the versions supplied by one university but they also occurred in the 

versions supplied by different universities (in this case two universities).

For the particular programs that were written for this experiment, Knight and Leveson 

concluded that the assumption of independence of failures does not hold. And based on a 

probabilistic independence model, their results indicated that the null hypothesis of 

versions failing independently has to be rejected at the 99 percent confidence level (even 

though they stress that these results are conditional on the application that they used and 

that other experiments should be carried out before drawing general conclusions). An 

important point made by Knight and Leveson (Knight and Leveson 1986) in the 

conclusion of this experiment is that certain parts of any problem are just more difficult to 

solve than others and will lead to the same faults by different programmers. Littlewood

Page 32 of 278



Ilir Gashi II. Literature Review

and Miller (Littlewood and Miller 1989) call this the variability in difficulty of processing 

different inputs.

Eckhardt and Lee (Eckhardt and Lee 1985) dealt with the case of several versions using a 

single common development methodology. The most important achievement of their 

work was to demonstrate analytically that truly independently developed versions would 

necessarily fail dependently. Thus, the empirical observation by Knight and Leveson 

(Knight and Leveson 1986) was reinforced theoretically.

Littlewood and Miller (Littlewood and Miller 1989) extended the Eckhardt and Lee 

model for diverse development methodologies. The notion of diverse methodologies in 

its widest sense to mean, for example, different personnel, rescues the multiversion 

programming from the Eckhardt and Lee claim of necessary dependent failure, which, 

according to the Littlewood and Miller model, turns out to be a worst case scenario. This 

study rather than concentrating on the goal of independent failure behaviours for the 

versions, showed instead that the important idea at all levels is diversity. In particular the 

role of covariance between methodologies was studied. (Littlewood and Miller 1989) 

conclude that there is an advantage gained from forcing diversity at all levels of 

development from design, programming, testing, as well as using different personnel and 

at different sites during development. If three methodologies are available they should be 

used; if only two are available they should be used (Littlewood and Miller 1989).

A generalisation of (Littlewood and Miller 1989) and (Eckhardt and Lee 1985) in which 

the versions are allowed to evolve (and their reliability to grow) through debugging is 

provided in (Popov and Littlewood 2004).

There is a vast literature on design diversity: a more thorough review of the effectiveness 

of design diversity (both experimental results and probabilistic modelling) is given in 

(Littlewood, Popov et al. 2001); design aspects are discussed in (Strigini 2005). Other 

literature will also be discussed and referenced in the papers that form parts of chapters 

IV to VI of this thesis.

4. Reliability growth modelling
Modelling the reliability of the software products and specifically predicting reliability 

growth as the faults in the software are fixed is the main purpose of the field of research

Page 33 of 278



llir Gas hi II. Literature Review

called reliability growth modelling. Many models have been proposed over the years. The 

assumptions and details of one of these models (specifically the Littlewood model 

(Littlewood 1981)) will be discussed in the second paper that forms part of chapter VI 

(specifically Section 2.3 of Paper-6). A comprehensive overview of this research field is 

given in (Lyu 1996). Chapter 3 of (Lyu 1996) contains a wide ranging survey of the 

models whereas Appendix B of the same reference contains a review of the reliability 

theory, analytical techniques and basic statistics.

5. Other relevant literature already referenced in 
chapters IV to VI
This section lists other related literature topics which are referenced and described in 

chapters IV to VI of this thesis.

Database replication-, both classical and more recent replication techniques have been 

described and referenced in the papers that form parts of chapters IV and V (specifically 

Section 2.1 of Paper-1, Section 2.1 of Paper-2 and Sections 3.1 and 5 of Paper-3).

Data diversity: the concept of “data diversity” first described in (Ammann and Knight 

1988) has been thoroughly described in both papers that form part of chapter V 

(specifically Section 3.6 of Paper-3 and Section 2.4 of Paper-4).

Diversity with off-the-shelf applications-, related work which has explored the use of 

diverse off-the-shelf applications for increasing the dependability and security of a 

system are described and referenced in the two papers that form part of chapter IV 

(specifically Section 2.3 of Paper-1 and Section 5.5 of Paper-2).

Empirical studies with faults and failures', the relatively few studies of faults and failures 

of software products (both off-the-shelf and bespoke ones) are described in the two 

papers of chapter IV (specifically Section 2.2 of Paper-1 and Section 5.4 of Paper-2) 

Reproducibility o f failures-. Jim Gray’s classification of faults (Bohrbugs and Heisenbugs) 

(Gray 1986) has been referenced and described in the papers forming parts of chapters IV 

and V (specifically Section 3.2 of Paper-1, Section 3.1.1 of Paper-2 and Section 2 of 

Paper-3).

COTS assessment and selection-, there are a myriad of approaches that have been 

proposed in the COTS community (primarily in the International Conference on COTS-

Page 34 of 278



Ilir Gashi II. Literature Review

Based Software Systems (ICCBSS)) for assessment and ultimately selection of COTS 

products. Some of these approaches are referenced and described in two of the papers that 

form part of chapter VI (specifically Section 2 of Paper-5 and Section 6 of Paper-7)

6. Other relevant literature not referenced elsewhere in 

the thesis

6.1 ReSISTDI 2

Another important source of very recent relevant literature, not referenced in the papers 

that form parts of chapters IV-VI, is deliverable D12 (ReSIST 2006) of the network of 

excellence ReSIST (Resilience for Survivability in Information Society Technologies) 

sponsored by the European Union Framework Programme 6. Deliverable D12 (ReSIST 

2006) describes the state of knowledge, in the ReSIST partners, of the technologies for 

building resilience (Hollnagel, Woods et al. 2006) and it was published in autumn 2006. 

D12 is in three layers: a brief overview of the state of knowledge; five survey-style parts 

which detail the architectural (Part Arch) solutions and algorithms (Part Algo) used to 

build resilient systems, the resilience of socio-technical systems (Part Socio) and methods 

for evaluation (Part Eval) and verification (Part Verif) of the resilience of systems; and 

an appendix which contains a collection of papers produced by the ReSIST partner sites 

during the year 2006 which contain more in depth analysis and results of the topics 

detailed in the five parts of the second layer.

With reference to this thesis, the most relevant parts of D12 (ReSIST 2006) are “Part 

Arch” (specifically Section 3 titled “Building resilient architectures with off-the-shelf 

components”) and “Part-Eval” (specifically Section 4 titled “Diversity”), though these 

topics have also been covered (or will be covered in chapters IV-VI) in ample detail 

already in this thesis. D12 (ReSIST 2006) also contains two papers that form part of this 

thesis, specifically Paper-2 and Paper-4.

Part-Eval of D12 (ReSIST 2006) contains descriptions of other related approaches for 

evaluation of computer-based systems. A brief description of one of these methods, 

namely Dependability Benchmarking, which is most related to the approaches proposed 

in this thesis is given next.

Page 35 of 278



Ilir Gas hi II. Literature Review

6.2 Dependability benchmarking

Dependability benchmarking of a system involves the evaluation of dependability and/or 

performance attributes of a system either experimentally or with a combination of 

experimentation and modelling (Kanoun and Crouzet 2006). Dependability 

benchmarking combines the workload defined by existing performance benchmarks (e.g. 

TPC-C (TPC 2002)) with a. faultload. The faultload defines the types of faults that are 

used with the workload to derive dependability measures for the system. A closely related 

field is robustness testing (which is described in Part-Verif of D12 (ReSIST 2006)).

To be meaningful the benchmark needs to satisfy a set of properties (e.g. 

representativeness, repeatability, non-intrusiveness etc.): these are explained in Part-Eval 

of D12 (ReSIST 2006) and in (Kanoun, Madeira et al. 2004). In (Kanoun and Crouzet 

2006) it is stated that complex analysis is required to combine the effects of the workload 

and the faultload. The representativeness of the benchmark remains a key issue, i.e. how 

well the benchmark represents the typical use of the target system (also referred to as 

“operational profile” (Musa 1993) in reliability growth modelling). The definition and 

representativeness of the faultload is considered the most difficult part of defining a 

Dependability Benchmark (Kanoun, Madeira et al. 2004). The results from the bug 

studies that are presented in this thesis would at first glance seem to be good evidence to 

calibrate the faultload of the dependability benchmarks for DBMS products (as part of 

the DBench project (Kanoun, Madeira et al. 2004) a Benchmark Specification for Online 

Transaction Processing (OLAP) has been developed which uses the TPC-C benchmark as 

a workload). However DBench does not allow injecting faults in the system being tested 

as it would violate the non-intrusiveness property of the benchmark: in DBench faults are 

not injected directly in the Benchmark Target (BT) (e.g. a DBMS product), only on the 

System Under Benchmark (SUB) (e.g. the underlying Operating System and hardware 

over which the BT runs). Another difficulty stems from the fact that what has been 

studied in this thesis are failure points or regions (especially coincident failure points or 

regions in more than on DBMS product) rather than defects in source code: a better 

analysis of defects in the source code is given in (Duraes and Madeira 2006) which was 

the evidence used for the definition of the faultload in DBench (Kanoun, Madeira et al. 

2004). However, the bug reports that have been collected as part of this thesis contain

Page 36 of 278



Ilir Gas hi II. Literature Review

very detailed bug scripts for reproducing the failure (the erroneous behaviour that the 

reporter of the bug observed) and could be potentially very useful to define more 

“stressful” workloads in Dependability Benchmarking (the workload of DBench for 

OLAP is based on TPC-C (TPC 2002) - a benchmark defined for performance rather than 

dependability which contains very simple statements that may not be highly 

representative of a real operational use and are unlikely to cause any failure).

As is acknowledged in Part-Eval of D12 (ReSIST 2006), the development and use of 

dependability benchmarks are still at an early stage.

6.3 Performability

Performability is a unification of performance and dependability (Tai, Meyer et al. 1996), 

(Haverkort, Marie et al. 2001); the concept arose from the need to model and evaluate 

systems that exhibit degradable performance in the presence of faults (Haverkort, Marie 

et al. 2001). A specific performability measure is obtained by defining what performance 

means for a given situation: in (Haverkort, Marie et al. 2001) it is detailed that there exist 

a variety of choices about the measures for performance, ranging from binary-valued 

performance (on-time or late with respect to a predefined timeout value) to continuous-

valued performance such as throughput rates and processing delays. Existing models on 

evaluating performability of systems tend to specify performance in continuous time 

spectrum which would then give more detailed measures of performability of a system 

(Haverkort, Marie et al. 2001). In this thesis (more precisely in Paper-7) we present a 

simplified approach to considering both performance (timeliness) and reliability 

(correctness) attributes of an OTS product in which both of these attributes take binary 

values (on-time vs late and correct vs incorrect) leading to four possible outcomes for 

each demand sent to the OTS product. An existing Bayesian model (Littlewood, Popov et 

al. 2000), defined previously at the Centre for Software Reliability for modelling the 

reliability of a diverse system, was then adapted to model both performance and 

reliability of a single OTS product.

Page 37 of 278



Ilir Gashi II. Literature Review

6.4 Related work on fault-tolerant middleware architectures

An extensive discussion of the architectural solutions for a fault tolerant SQL database 

server will be given in the papers that form part of chapters IV and Y of this thesis. These 

papers also contain references to related work on middleware for fault tolerance. In this 

section one of the papers not referenced elsewhere in the thesis will be elaborated as it 

contains a complementary approach to what will be presented in chapters IV and V of the 

thesis. In (Bondavalli, Chiaradonna et al. 2004) a three tier architecture is proposed in 

which clients communicate with a legacy application (written in C which uses 

PostgreSQL DBMS product for stable storage) via a layer of middleware. The 

middleware layer contains components which perform standard fault tolerance and 

replication duties such as replication management, adjudication and recovery (these will 

also be discussed in chapters IV and V of this thesis) but also evidence-accruing 

diagnosis mechanisms which collect data about failures of the legacy application and 

allow for on-line selection of more optimal recovery strategies depending on the severity 

of the fault. A performability analysis was then conducted by the authors (via both direct 

measurements and analytical modelling) and their results suggest that substantial 

performability gains may be achieved from using the diagnostic system. The types of 

faults injected in the system for the experimental studies were those that cause hardware 

faults and software aging faults and the recovery mechanisms were primarily based on 

rejuvenation (with rejuvenation performed at different levels of granularity -  host level, 

application level or database level). The main differences between the research pertinent 

to the fault-tolerant architecture presented in (Bondavalli, Chiaradonna et al. 2004) and 

what is presented in this thesis are highlighted next. In this thesis:

The benefits of DBMS product diversity against actual bugs in these products 

have been explored (rather than using transient fault injection)

To aid with diagnosis as well as state recovery of faulty channel(s) in diverse 

product configurations, data diversity (Ammann and Knight 1988) in the form of 

SQL rephrasing has also been studied

Operating system and hardware faults and the benefits of diversity against these 

types of faults have not been studied.

This can be contrasted with the work of (Bondavalli, Chiaradonna et al. 2004) where:

Page 38 of 278



Ilir Gashi II Literature Review

The legacy application is replicated (in Triple Modular Redundant (non-diverse) 

configuration) in diverse hardware and operating systems

An implementation of an evidence-accruing diagnosis and recovery mechanism is 

presented

The effects of the hardware and software aging type faults are studied.

The two strands of research therefore complement each other rather well. For examples 

of other research on the middleware organisation for replication the interested reader is 

referred to (Baldoni, Marchetti et al. 2002), (Marchetti, Baldoni et al. 2006).

References
Ammann, P. E. and J. C. Knight (1988). "Data Diversity: An Approach to Software 

Fault Tolerance", IEEE Transactions on Computers 37(4), pp: 418-425.

Anderson, T. and P. A. Lee (1990), "Fault Tolerance: Principles and Practice 

(Dependable Computing and Fault Tolerant Systems, Vol 3)", Springer Verlag.

ANSI/ISO (2003), "Information technology - Database languages - SOL”, 

INCITS/ISO/IEC 9075.

Avizienis, A., J.-C. Laprie, B. Randell and C. Landwehr (2004), "Basic Concepts and 

Taxonomy o f Dependable and Secure Computing", IEEE Transactions on Dependable 

and Secure Computing 1(1), pp: 11-33.

Avizienis, A., M. R. Lyu and W. Schuetz (1988), "In search o f effective diversity: A six- 

language study o f fault-tolerant flight control software", in proc. Int. Symp. on Fault- 

Tolerant Computing (FTCS ’88), Tokyo, Japan, pp: 15-22.

Babbage, C. (1974), " On the Mathematical Powers o f the Calculating Engine 

(Unpublished manuscript, December 1837)”, in The Origins of Digital Computers: 

Selected Papers, B. Randell (Ed.), Springer, pp: 17-52.

Baldoni, R„ C. Marchetti, et al. (2002), "Active Software Replication through a Three- 

Tier Approach", in proc. Int. Symp. on Reliable Distributed Systems (SRDS'02), Osaka, 

Japan, IEEE Computer Society Press, pp: 109-118.

Berenson, H., P. Bernstein, J. Gray, J. Melton, E. O'Neil and P. O’Neil (1995), "A 

Critique o f ANSI SOL Isolation Levels”, in proc. Int. Conf. on Management of Data 

(SIGMOD '95).

Page 39 of 278



Ilir Gashi II. Literature Review

Bernstein, P. A., V. Hadzilacos and N. Goodman (1987). "Concurrency Control and 

Recovery in Database Systems", Reading, Mass., Addison-Wesley.

Bondavalli, A., S. Chiaradonna, et al. (2004), "Effective Fault Treatment for Improving 

the Dependability o f COTS and Legacy-Based Applications", IEEE Transactions on 

Dependable and Secure Computing 1(4), pp: 223-237.

Chen, L. and A. Avizienis (1978), "N-version Programming: A Fault Tolerance 

Approach to Reliability o f Software Operation", in proc. Int. Symp. on Fault-Tolerant 

Computing (FTCS 78), Toulouse, France, IEEE Computer Society Press, pp: 3-9.

Duraes, J. A. and H. S. Madeira (2006), "Emulation o f Software Faults: A Field Data 

Study and a Practical Approach", IEEE Transactions on Software Engineering 32(11), 

pp: 849-867.

Eckhardt, D. E., A. K. Caglayan, J. C. Knight, L. D. Lee, D. F. McAllister, M. A. 

Vouk and J. P. J. Kelly (1991). "An experimental evaluation o f software redundancy as 

a strategy for improving reliability”, IEEE Transactions on Software Engineering 17(7), 

pp: 692-702.

Eckhardt, D. E. and L. D. Lee (1985), "A theoretical basis for the analysis o f 

multiversion software subject to coincident errors”, IEEE Transactions on Software 

Engineering 11(12), pp: 1511-1517.

Gray, J. (1986), "Why Do Computers Stop and What Can be Done About it?” in proc. 

Int. Symp. on Reliability in Distributed Software and Database Systems (SRDSDS '86), 

Eos Angeles, CA, USA, IEEE Computer Society Press, pp: 3-12.

Haverkort, B. R„ R. Marie, et al., Eds. (2001). "Performability Modelling: Techniques 

and Tools", Wiley, Chichester, England.

HoIInagel, E., D. D. Woods and N. Leveson, Eds. (2006), "Resilience engineering: 

concepts and precepts", Ashgate Pub Co.

Kanoun, K. and Y. Crouzet (2006), "Dependability Benchmarks for Operating 

Systems", International Journal of Performability Engineering 2(3), pp: 277 - 289.

Kanoun, K., H. Madeira, et al. (2004), "DBench Dependability Benchmarks", IST- 

2000-25425, http://www.laas.fr/DBench/Final/DBench-complete-report.pdf.

Page 40 of 278

http://www.laas.fr/DBench/Final/DBench-complete-report.pdf


Ilir Gashi II. Literature Review

Kelly, J. P. J. and A. Avizienis (1983), "A Specification-Oriented Multi-Version 

Software Experiment”, in proc. Int. Symp. on Fault-Tolerant Computing (FTCS '83), 

Milano, Italy, pp: 120-126.

Knight, J. C. and N. G. Leveson (1986), "An Experimental Evaluation o f the 

Assumption o f Independence in Multi-Version Programming", IEEE Transactions on 

Software Engineering 12(1), pp: 96-109.

Littlewood, B. (1981), "Stochastic Reliability Growth: a Model for Fault-Removal in 

Computer Programs and Hardware Designs”, IEEE Transactions on Reliability R-30(4), 

pp: 313-320.

Littlewood, B. and D. R. Miller (1989), "Conceptual Modelling o f Coincident Failures 

in Multi-Version Software”, IEEE Transactions on Software Engineering 15(12), pp: 

1596-1614.

Littlewood, B., P. Popov, et al. (2000), "Assessment o f the Reliability o f Fault-Tolerant 

Software: a Bayesian Approach”, in proc. SAFECOMP-2000, Rotterdam, the 

Netherlands, Springer, pp: 294-308.

Littlewood, B„ P. Popov and L. Strigini (2001), "Modelling software design diversity - 

a review", ACM Computing Surveys 33(2), pp: 177-208.

Lyu, M. R., Ed. (1995), "Software Fault Tolerance", Trends in Software, Wiley.

Lyu, M. R., Ed. (1996), "Handbook o f Software Reliability Engineering”, McGraw-Hill 

and IEEE Computer Society Press.

Marchetti, C., R. Baldoni, et al. (2006), "Fully Distributed Three-Tier Active SoftM’are 

Replication”, IEEE Transactions on Parallel Distributed Systems 17(7), pp: 633-645 

Musa, J. D. (1993), "Operational Profiles in Software-Reliability Engineering”, IEEE 

Software (March), pp: 14-32.

Popov, P. and B. Littlewood (2004), " The effect o f testing on the reliability o f fault- 

tolerant software", in proc. Int. Conf. on Dependable Systems and Networks (DSN ’04), 

Florence, Italy, IEEE Computer Society Press, pp: 265-274.

Pullum, L. (2001), "Software Fault Tolerance Techniques and Implementation”, Artech 

House.

ReSIST (2006), " D12-Resilience-Building Technologies: State o f Knowledge”, 

http://www.laas.fr/RESIST/deliverables.html.

Page 41 of 278

http://www.laas.fr/RESIST/deliverables.html


///>• Gashi II Literature Review

Strigini, L. (2005), "Fault Tolerance Against Design Faults", in Dependable Computing 

Systems: Paradigms, Performance Issues, and Applications, H. Diab and A. Zomaya 

(Eds.), J. Wiley & Sons, pp: 213-241.

Tai, A. T., J. F. Meyer, et al. (1996), "Software Performability: from Concepts to 

Applications", Boston / Dordrecht / London, Kluwer Academic Publishers.

TPC (2002), " TPC Benchmark C, Standard Specification, Version 5.0."

http://www.tpc.org/tpcc/.

Page 42 of 278

http://www.tpc.org/tpcc/


III. Research Overview

Page 43 of 278



Ilir Gashi III. Research Overview

1. Introduction
The main parts of this thesis, namely chapters IV to VI, will be given as a collection of 

papers. The papers deal with specific aspects of the research conducted. The purpose of 

this chapter is to give an overview of how the different parts of the research outlined in 

the papers are linked together. It will also give brief summaries of each of the papers that 

follow in the subsequent chapters, state the differences between the papers and provide a 

guide on the reading sequence of their contents.

2. Research overview
A summary of motivations, the work done and the contributions of this thesis were 

already provided in the Introduction chapter. This section will give an overview of how 

the different parts of the thesis are linked together.

The work detailed in this thesis began as part of the EPSRC (Engineering and Physical 

Sciences Research Council) sponsored research project “Diversity with Off-The-Shelf 

components (DOTS)” (DOTS 2000-2004). Even though the project had several stated 

aims and objectives (see the project summary for full details (DOTS 2000-2004)), the 

two main aims of this project were to explore the dependability benefits that may be 

gained through the use of diverse OTS products and the architectural issues that enable 

their effective use: this thesis details research done on these two strands. OTS DBMS 

products were the family of products chosen to study these issues: these are very complex 

products that are widely used and yet with many reported bugs in each release.

Employing diversity with OTS products requires strong evidence that diversity will 

provide protection against those types of failures that non-diverse solutions will not. 

There are comparatively few studies that have explored this issue for DBMS products 

(Lee and Iyer 1995), (Chandra and Chen 2000). The difficulty is compounded by the lack 

of available dependability data from the vendors. Detailed evidence about DBMS product 

failure rates would be the most useful for reliability analysis, but this data may not even 

be available to the vendors themselves (especially the open-source ones). The only direct 

dependability evidence that is available for these products are the fault (bug) reports. This 

is the evidence that was explored in this study to check for initial estimates of

Page 44 of 278



Ilir G as hi 111. Research Overview

dependability benefits of diversity with OTS DBMS products. A fault report details the 

triggering conditions that are required for the failure to be manifested as well as the 

details of the failure that the user observed. In a first study, 181 bug reports for four 

DBMS products were collected (both open-source and commercial). Each bug script 

(which is contained in the bug report) was run on both the DBMS product for which the 

bug was reported and (when possible) on the other DBMS products. The number of bugs 

that caused failures in more than one DBMS product was very low, and none of the bugs 

caused failures in more than two products. However, since the results of the first study 

concerned only a specific snapshot in the evolution of these products a second study with 

the open-source products was conducted. The results substantially confirmed those of the 

first study: very few bugs cause coincident failures. All of these results will be detailed in 

the two papers in chapter IV.

These results pointed to serious dependability gains that may be obtained from diversity 

and provided plenty of justification to explore the architectural solutions that would 

enable employing diversity with OTS DBMS products. Various trade-offs were identified 

depending on the amount of failure diversity and available functionality that a user may 

require for a specific installation. For example, using successive releases of the same 

product for fault tolerance appeared to bring substantial dependability benefits for one of 

the open-source DBMS products: most of the old bugs had been fixed in the new release; 

many of the newly reported bugs did not cause failure (or could not be run at all) in the 

old release. Another study was conducted on the benefits of data diversity (Ammann and 

Knight 1988). A small number of generic “rephrasing” rules were found to be useful 

workarounds for a number of the known bugs of the open-source DBMS products. All of 

these architectural details of a fault-tolerant server constructed from DBMS products will 

be detailed partly in chapter IV and in the two papers given in chapter V.

The evidence uncovered with the bug reports pointed to potential for significant 

dependability gains to be had from employing diversity. However they are not definitive 

evidence. It was therefore important to point out to what extent these results allow for 

dependability estimates to be obtained. Research in this area concentrated on, first, 

clarifying the limitations that an assessor will encounter if he/she wishes to obtain 

estimates of dependability gains that may be achieved from diversity with OTS products

Page 45 of 278



I Hr Gas hi III. Research Overview

by using bug reports data as evidence. Second, exploring to what extent the existing 

models that are used for estimating the reliability of diverse bespoke software systems 

(Littlewood, Popov et al. 2000) as well as the reliability growth modelling of non-diverse 

bespoke software systems (Littlewood 1981) may be used and or/extended for assessment 

of a diverse fault-tolerant SQL server. And third, how can the bug reports be best utilised 

as empirical evidence in these models. Discussions about the limitations of the bug 

reports as evidence in dependability estimation are discussed in both papers of chapter 

IV. The model extensions and the use of bug reports data as evidence in the assessment 

are detailed at length in the first two papers in chapter VI. The last paper in chapter VI 

contains details of how an existing model (Littlewood, Popov et al. 2000) may be adapted 

to assess a single product when both the products correctness and timeliness are of 

interest.

3. Summary of the papers
This section contains a brief summary of each of the papers that are given in the chapters 

IV, V and VI. A few general points that apply to all of the papers are:

Each of the papers presented in this thesis contains the same text as their 

published/submitted version. The main differences are:

- the format of the references: in the published/submitted versions of the papers 

the references were numbered; in this thesis, to improve the readability, the 

references are annotated, i.e. {author year).

numbering of tables, figures, footnotes and equations: to improve readability, 

tables, figures, footnotes and equations are numbered globally in the thesis, 

rather than the numbering being local to each paper.

The papers will be numbered in order of appearance in the thesis, and the title will 

follow the paper identifier (e.g. Paper-1 -  Fault Diversity with Off-The-Shelf 

SQL Database Servers)

Each paper may contain among its references another paper or Appendix that 

forms part of this thesis. When this is the case a brief note to inform the reader is 

written in bold italic underlined text next to the first occurrence of the reference

Page 46 of 278



Ilir Gas hi III. Research Overview

in the respective paper (e.g. (Gashi, Popov et al. 2004b) (the preceding reference 

forms part o f this thesis as Paper-1)).

Since the papers were written at different times during the evolution of the study 

with the bug reports, they may contain minor differences in the results that they 

present. These differences are also highlighted and explained in this section.

3.1 Fault diversity study (Chapter IV)

The first paper is titled “Fault Diversity among Off-The-Shelf SQL Database Servers” 

(Gashi, Popov et al. 2004b) and is co-authored with Dr Peter Popov and Prof. Lorenzo 

Strigini. The paper forms part of the proceedings of the IEEE DSN-04 (Dependable 

Systems and Networks) conference which was held in Florence, Italy in July 2004. This 

paper details the results of the first study with the bug reports of four DBMS products, 

namely PostgreSQL 7.0.0, Interbase 6.0, Microsoft SQL Server 7 and Oracle 8.0.5. It 

provides details of the definitions that were used to classify the bugs and the failures that 

these bugs caused, as well as a detailed discussion of the more “interesting” bugs that 

caused coincident failures. This paper will be referred to as Paper-1.

The second paper is titled “Fault Tolerance via Diversity for Off-The-Shelf Products: a 

Study with SQL Database Servers” (Gashi, Popov et al. 2007) and is also co-authored 

with Dr Peter Popov and Prof. Lorenzo Strigini. The paper was accepted (with minor 

revisions) by the IEEE TDSC (Transactions on Dependable and Secure Computing) on 

the 30th of January 2007, and the current text present in this thesis is that of the revision 

submitted to IEEE TDSC on the 9th of March 2007. The final acceptance of the paper and 

the publication date are yet to be confirmed. It provides details of the second study with 

the bugs of the later releases of two DBMS products used in the first study, namely 

PostgreSQL 7.2 and the Firebird 1.0 (which is the open-source descendent of Interbase 

6.0). It also contains the analysis of fault diversity between releases of the same product. 

An updated summary of the results of the first study (without providing the details for the 

coincident failures, which are given in Paper-1 above) as well as an updated list of 

definitions of the classification of bugs and failures is also given. Finally, it also contains 

a comprehensive description of the architecture of a diverse fault-tolerant SQL server. 

This paper will be referred to as Paper-2.

Page 47 of 278



Ilir Gashi III. Research Overview

3.1.1 Differences between the papers
Both papers present empirical results from the studies with bug reports of DBMS 

products. The paper published in DSN-04 (Gashi, Popov et al. 2004b) was written before 

the paper that was accepted in IEEE TDSC (Gashi, Popov et al. 2007). Therefore Paper-1 

contains only the preliminary results of the first study. Subsequent analysis was also done 

with the bug reports which meant that the results changed slightly (even though the total 

number of coincident failures remained the same). These differences are due to some 

bugs which were classified as “further work” in Paper-1 (e.g. non-trivial translation of the 

bugs script from one dialect of SQL to another, incomplete bug scripts etc.) which 

prevented the bug being reproduced in one (or more) of the DBMS products; these issues 

were subsequently resolved and the updated results are shown in Paper-2, together with 

the results of the second study. Therefore the reader should be aware that the results in 

the Tables 1 and 3 (in Paper-1), even though they are based on the same raw data, differ 

slightly from the updated results presented in Tables 5 and 6 (in Paper-2).

Other differences between the papers are in the terminology used:

In Paper-1 the term “server” is invariably used to refer to the DBMS products. In 

Paper-2 the more precise term “DBMS product” was used due to the ambiguity of 

the unqualified term “server” (e.g. web server, database server, mail server etc). 

Terminology definitions in Sections 4.1 and 4.3 of Paper-1 have been slightly 

modified and some new terms are defined in Section 3.1 of Paper-2:

Instead of using the more generic (but also more ambiguous) term 

“Heisenbug” a new term named “Unreproducedr  has been defined for those 

bug reports that did not cause failures when the bugs script was run on the 

same DBMS product that the bug was reported.

Performance failures are defined more precisely in Paper-2

Divergent and Non-Dxvergent failure definitions are introduced in Section

3.1.2 of Paper-2, which did not exist in Paper-1.

3.1.2 Suggested reading sequence
Paper-1 presents a detailed account of the first study therefore it can be read as a whole.

Page 48 of 278



Ilir Gashi 111. Research Overview

Paper-2 contains a detailed sub-section on the proposed architecture of a fault-tolerant 

database server constructed from diverse DBMS products. The architectural issues will 

also be detailed in the two papers that form part of chapter V, therefore the reader is 

advised to postpone reading Section 2 of Paper-2 until chapter V. Section 3 of Paper-2 

contains an overview of the updated results of the first study as well as detailed results of 

the second study. Section 4 is a summarised discussion of the implications of the 

observed results: a more comprehensive discussion is provided in Section 6 of Paper-1. 

Section 5 of Paper-2 contains a review of related work.

In summary, the reader is advised to read Paper-1 first as a whole, followed by Paper-2 

(specifically Sections 1, 3, 4, 5 and 6 of Paper-2).

3.2 Architectural aspects of a fault-tolerant diverse SQL server 
(Chapter V)

This chapter contains two papers that detail the architecture of a diverse fault-tolerant 

SQL server. Additionally the reader should also read Section 2 of Paper-2 detailed in 

chapter IV.

The first paper is titled "On Designing Dependable Services with Diverse Off-The-Shelf 

SQL Servers” (Gashi, Popov et al. 2004a) and is co-authored with Dr Peter Popov, Mr. 

Vladimir Stankovic and Prof. Lorenzo Strigini. The paper forms a chapter of the book 

“Architecting Dependable Systems II ” edited by Rogerio de Lemos, Christina Gacek and 

Alexander Romanovsky which is published by Springer-Verlag as part of the Lecture 

Notes on Computer Science Series (volume 3069), and was published in autumn 2004. 

This paper contains a summary of the results of the first study with the bugs (which were 

presented in greater detail in Paper-1) and a comprehensive description of the architecture 

of a diverse fault-tolerant server (containing some additional topics such as replica 

determinism which were only briefly summarised in Section 2 of Paper-2). This paper 

will be referred to as Paper-3.

The second paper is titled “Rephrasing Rules for Off-The-Shelf SQL Database Servers” 

(Gashi and Popov 2006) and is co-authored with Dr. Peter Popov. The paper forms part 

of the proceedings of IEEE EDCC-06 (European Dependable Computing Conference) 

which was held in Coimbra, Portugal in October 2006. This paper details the architectural

Page 49 of 278



Ilir Gas hi III. Research Oven’iew

aspects of SQL rephrasing, rephrasing rules that have been defined and results of 

applying these rules to the bugs that were collected for the open-source DBMS products. 

This paper will be referred to as Paper-4.

3.2.1 Differences between the papers
Both papers in chapter V (as well as Section 2 of Paper-2 in chapter IV) contain 

descriptions (to varying levels of detail) of the architecture of a diverse fault-tolerant SQL 

server. Section 2 of Paper-2 in chapter IV contains a comprehensive description of the 

architecture with references to more recent work on database replication solutions. Paper- 

3 contains an older version of this description, but more detail and examples on issues of 

data consistency, the differences in the SQL dialects between the DBMS products, replica 

determinism and data diversity (detailed in Sections 3.3 to 3.6 of Paper-3). Paper-4 

contains a brief overview of the architecture before concentrating in greater detail on the 

data diversity aspects of the architecture (detailed in Sections 2.2 and 2.4 of Paper-4). 

There is a difference in the terminology used in the papers of chapter V:

In Paper-3 and Paper-4 the term “server” (also “O-server” in Paper-4) is 

invariably used to refer to the DBMS products. In Section 2 of Paper-2 in chapter 

IV the more precise term “DBMS product” is used due to the ambiguity of the 

unqualified term “server” (e.g. web server, database server, mail server etc).

The figure depicting the fault-tolerant server differs slightly in the level of detail 

and the notation used between the three papers. In Section 2 of Paper-2 in chapter 

IV and in Paper-3 a more “neutral” terminology was used; in Paper 4 a UML 

(Unified Modelling Language (OMG 2007)) Deployment Diagram was used to 

depict the architecture. However the constituent parts of the architecture remain 

the same.

3.2.2 Suggested reading sequence
Section 2 of Paper-2 (Gashi, Popov et al. 2007) in chapter IV presents a comprehensive 

overview and description of the architecture of a fault-tolerant SQL server, therefore the 

reader is advised to read that section first.

The reader may skip the following sections of the two papers in chapter V:

Page 50 of 278



Ilir Gashi III. Research Overview

Section 2 of Paper-3: it contains a summary of the results of the study with the 

bugs which were presented in much greater detail in Paper-1.

Sections 3.1 and 3.2 of Paper-3 and Sections 2.1 and 2.3 of Paper-4: they contain 

an overview of the architecture of the fault-tolerant SQL server which is already 

described in greater detail in Section 2 of Paper-2 in chapter IV.

Sections 3.7 and 4 in Paper-3: they detail experiments that measure the 

performance benefits of diversity using the TPC-C benchmark. These experiments 

were carried out by Mr. Vladimir Stankovic and they do not form part of this 

thesis.

Sections 3.3 to 3.6 of Paper-3 are recommended to the reader as they contain descriptions 

of some specific issues of the diverse fault-tolerant SQL server, as was mentioned before. 

Paper-4 can be read in full (apart from Sections 2.1 and 2.3 mentioned above) as it 

contains further details of the data diversity extensions of the architecture of the fault- 

tolerant SQL server, as well as examples of the rephrasing rules and results from applying 

them to the bug reports of the open-source DBMS products.

In summary, the reader is advised to first read Section 2 of Paper-2 in chapter IV, 

followed by Sections 3.3 to 3.6, 5, 6, 7 of Paper-3 and the complete Paper-4 (apart from 

Sections 2.1 and 2.3).

3.3 Optimal selection of COTS components (Chapter VI)

This chapter contains three papers that detail the research conducted on the interpretation 

of the results of the studies with the bugs. Two previous models, developed by colleagues 

at the Centre for Software Reliability (CSR), have been extended to enable their use, 

utilising the results of the bug studies, for optimal selection of either a diverse DBMS 

product pair or a single DBMS product.

The first paper is titled “Uncertainty Explicit Assessment o f Off-the-Shelf Software: 

Selection o f an Optimal Diverse Pair” (Gashi and Popov 2007) and is co-authored with 

Dr. Peter Popov. The paper forms part of the proceedings of the IEEE ICCBSS-07 

(International Conference on COTS-Based Software Systems) which was held in Banff, 

Alberta, Canada in February 2007. This paper details an extension of a previous model 

developed at CSR (Littlewood, Popov et al. 2000) and illustrates its use for selection of

Page 51 of 278



II ir Gas hi III. Research Overview

an optimal pair of products using the data from the first study with the bugs. This paper 

will be referred to as Paper-5.

The second paper is titled “Reliability Growth Modelling o f a l-Out-Of-2 System: 

Research with Diverse Off-The-Shelf SQL Database Servers” (Bishop, Gashi et al. 2007) 

and is co-authored with Prof. Peter Bishop, Prof. Bev Littlewood and Dr. David Wright. 

The text in the thesis is the current version of a paper being prepared for submission to 

IEEE ISSRE-07 (International Symposium on Software Reliability Engineering) the 

deadline for which is 16-April-2007. This paper details two approaches that were studied 

to construct reliability models for a l-out-of-2 fault-tolerant SQL server utilising the data 

from the studies with the bugs:

in the first approach, the Littlewood model (Littlewood 1981) was extended for 

reliability growth modelling of a l-out-of-2 fault-tolerant SQL server, 

the second approach attempts to get away from the need to quantify actual usage 

time of the SQL servers and uses just the available bug counts to make predictions 

regarding the likely improvements in reliability that may be expected from the use 

of a diverse server with two DBMS products instead of a non-diverse setup.

This paper will be referred to as Paper-6.

The third paper is titled “Uncertainty Explicit Assessment o f Off-The-Shelf Software” 

(Gashi, Popov et al. 2006) and is co-authored with Dr. Peter Popov and Mr. Vladimir 

Stankovic. The paper was submitted for publication to the Elsevier Journal of Information 

and Software Technology (JIST) on 19-Dec-2006. The paper is currently under review. 

This paper illustrates how the model developed previously at CSR (Littlewood, Popov et 

al. 2000) can be extended to asses a single COTS product in terms of both its correctness 

and timeliness. The assessor can then use the results of the assessment to select the most 

optimal product for a given setup. The mathematical details of the model and its 

extensions are identical to what is presented in Paper-5. This paper will be referred to as 

Paper- 7.

Page 52 of 278



II ir Gas hi III. Research Overview

3.3.1 Differences between the papers
All three papers utilise the results from the studies with the bug reports of the DBMS 

products, though the way in which the bug reports data are used differs between the 

papers, depending on the capabilities of the models and their assumptions.

Mathematically the models presented in Paper-5 and in Paper-7 are identical. However 

the definitions of the model parameters differ in the two papers:

In Paper-5 the model is used for choosing an optimal diverse pair of DBMS 

products from the viewpoint of correctness.

In Paper-7 the model is used for choosing an optimal single DBMS product from 

two viewpoints (attributes): correctness and timeliness.

Note that the results for the commercial DBMS products had to be anonimised in Paper-7 

due to restrictive “End User License Agreements” on reporting performance-related data. 

However permission was obtained from the two vendors of commercial DBMS products 

used in the studies with the bug reports, and the empirical results in Paper-7 which are 

relevant to this thesis are based on the results of the studies with the bug reports. 

Therefore it can be divulged that the anonimised CS1 product in Paper-7 is Oracle 8.0.5 

and the anonimised CS2 product is Microsoft SQL Server 7.

3.3.2 Suggested reading sequence
The reader is advised to read all three papers in full. As described above, the 

mathematical details of the models presented in Paper-5 and Paper-7 are identical, but the 

parameters of the model are defined differently in the two papers. One small note:

Section 4.1 of Paper-7 was written by Mr Vladimir Stankovic and therefore will 

not form part of this thesis.

The ordering in which the papers should be read is Paper-5, Paper-6 and then Paper-7 

(apart from Section 4.1 of Paper-7).

References
Ammann, P. E. and J. C. Knight (1988), "Data Diversity: An Approach to Software 

Fault Tolerance", IEEE Transactions on Computers 37(4), pp: 418-425.

Page 53 of 278



Uir Gashi III. Research Overview

Bishop, P„ I. Gashi, B. Littlewood and D. Wright (2007), "Reliability Growth 

Modelling of a l-Out-Of-2 System: Research with Diverse Off-The-Shelf SQL Database 

Servers", in proc. Int. Symp. on Software Reliability Engineering (ISSRE '07), 

Trollhattan, Sweden, IEEE Computer Society Press, pp: to be submitted for publication. 

Chandra, S. and P. M. Chen (2000), " Whither Generic Recovery from Application 

Faults? A Fault Study using Open-Source Software", in proc. Int. Conf. on Dependable 

Systems and Networks (DSN '00), NY, USA, IEEE Computer Society Press, pp: 97-106. 

DOTS (2000-2004), "Diversity with off-the-shelf components (DOTS) project", Centre 

for Software Reliability of City University and University of Newcastle-upon-Tyne, 

http://www.csr.ncl.ac.uk/dots/.

Gashi, I. and P. Popov (2006), "Rephrasing Rules for Off-The-Shelf SQL Database 

Servers", in proc. 6th European Dependable Computing Conf. (EDCC '06), Coimbra, 

Portugal, IEEE Computer Society Press, pp: 139-148.

Gashi, I. and P. Popov (2007), "Uncertainty Explicit Assessment o f Off-the-Shelf 

Software: Selection o f an Optimal Diverse Pair", in proc. Int. Conf. on COTS-Based 

Software Systems (ICCBSS ’07), Banff, Alberta, Canada, IEEE Computer Society Press, 

pp: 93-102.

Gashi, I„ P. Popov and V, Stankovic (2006), "Uncertainty Conscious Assessment o f 

Off-The-Shelf Software”, Submitted for publication,

http://www.csr.city.ac.uk/people/ilir.gashi/COTS/.

Gashi, I„ P. Popov, V, Stankovic and L, Strigini (2004a), "On Designing Dependable 

Services with Diverse Off-The-Shelf SQL Servers", in Architecting Dependable Systems 

II, R. de Lemos, Gacek, C., Romanovsky, A. (Eds.), Springer-Verlag, 3069, pp: 191-214. 

Gashi, I., P. Popov and L. Strigini (2004b), "Fault Diversity Among Off-The-Shelf SQL 

Database Servers”, in proc. Int. Conf. on Dependable Systems and Networks (DSN '04), 

Florence, Italy, IEEE Computer Society Press, pp: 389-398.

Gashi, I., P. Popov and L. Strigini (2007), "Fault tolerance via diversity for off-the- 

shelf products: a study with SQL database servers", IEEE Transactions on Dependable 

and Secure Computing, to appear.

Lee, I. and R. K. Iyer (1995), "Software Dependability in the Tandem GUARDIAN 

System", IEEE Transactions on Software Engineering 21(5), pp: 455-467.

Page 54 of 278

http://www.csr.ncl.ac.uk/dots/
http://www.csr.city.ac.uk/people/ilir.gashi/COTS/


Ilir Gashi III. Research Overview

Littlewood, B. (1981), ' 'Stochastic Reliability Growth: a Model for Fault-Removal in 

Computer Programs and Hardware Designs", IEEE Transactions on Reliability R-30(4), 

pp:313-320.

Littlewood, B.„ P. Popov and L. Strigini (2000),"Assessment o f the Reliability o f Fault- 

Tolerant Software: a Bayesian Approach", in proc. Int. Conf. on Computer Safety, 

Reliability and Security (SAFECOMP ’00), Rotterdam, the Netherlands, Springer, pp: 

294-308.

OMG (2007), " Unified Modeling Language (UML), version 2.1 A", 

http://www.omg.org/technology/documents/formal/uml.htm.

Page 55 of 278

http://www.omg.org/technology/documents/formal/uml.htm


IV. Fault Diversity Study

Page 56 of 278



Ilir Gas hi IV. Fault Diversity Study

Paper-1. Fault Diversity among Off-The-Shelf SQL
Database Servers

Abstract: Fault tolerance is often the only viable way o f obtaining the required system 

dependability from systems built out o f “off-the-shelf” (OTS) products. We have studied a 

sample o f bug reports from four off-the-shelf SQL servers so as to estimate the possible 

advantages o f software fault tolerance - in the form o f modular redundancy with diversity 

- in complex off-the-shelf software. We checked whether these bugs would cause 

coincident failures in more than one o f the servers. We found that very few bugs affected 

two o f  the four servers, and none caused failures in more than two. We also found that 

only four o f these bugs would cause identical, undetectable failures in two servers. 

Therefore, a fault-tolerant server, built with diverse off-the-shelf servers, seems to have a 

good chance o f delivering improvements in availability and failure rates compared with 

the individual off-the-shelf servers or their replicated, non-diverse configurations.

Co-authors: Dr. Peter Popov, Prof. Lorenzo Strigini 

Conference: Dependable Systems and Networks 2004 (DSN-04)

Date of submission: December-2003 

Status: Published 

Number of reviewers: 5 

Publication date: July-2004

Full citation: Gashi I., Popov P., Strigini L., "Fault diversity among off-the-shelf SQL 

database servers", Proc. DSN 2004, International Conference on Dependable Systems 

and Networks, Florence, Italy, IEEE Computer Society Press, pp:389-398, 2004

Page 57 of 278



Ilir Gashi IV. Fault Diversity Study

1. Introduction
When systems are built out of “off-the shelf’ (OTS) products, fault tolerance is often the 

only viable way of obtaining the required system dependability (Popov, Strigini et al. 

2000), (Valdes, Almgren et al. 1999), (Hiltunen, Schlichting et al. 2000). Fault tolerance 

may take multiple forms, from simple error detection and recovery add-ons (e.g. 

wrappers (Popov, Strigini et al. 2001)) to full-fledged “diverse modular redundancy” 

(Laprie, Arlat et al. 1990): replication with diverse versions of the components. Even this 

latter class of solutions becomes affordable with many OTS products and has the 

advantage of a fairly simple architecture. The cost of procuring two or even more OTS 

products (some of which may be free) would still be far less than that of developing one’s 

own.

All these design solutions are well known from the literature. The questions, for the 

developers of a system using OTS components, are about the dependability gains, 

implementation difficulties and extra cost that they would bring for that specific system. 

To study the issues for a realistic category of OTS products we have chosen SQL 

database servers. These are complex products, with many faults in each release, and even 

features that imply an accepted possibility of an incorrect behaviour, albeit rare. An 

example of the latter is the known “write skew” (Berenson, Bernstein et al. 1995) 

problem with some optimistic concurrency control architectures (Fekete, Liarokapis et al. 

2000). Further dependability improvement of OTS SQL servers seems only possible if 

fault tolerance through design diversity is used (Gray 2000). Given the many available 

OTS SQL servers and the standardisation of their functionality (SQL 92 and SQL 99), it 

seems reasonable to build a fault-tolerant SQL server from available OTS servers.

The effort of developing an SQL server using design diversity (e.g. several of-the-shelf 

SQL servers and suitably adapted “middleware” for replication management) would 

require strong evidence of its usefulness: for example empirical evidence that likely 

failures of the SQL servers, which may lead to serious consequences, are unlikely to be 

tolerated without diversity. This paper starts to investigate such empirical evidence. We 

seek to demonstrate whether design diversity has a potential to deliver significant 

improvement of dependability of SQL servers, compared to solutions for data replication

Page 58 of 278



Ilir Gashi IV. Fault Diversity Study

that can only tolerate crash failures. To this aim we are running experiments to determine 

the dependability gains achieved through fault tolerance.

A preliminary evaluation step concerns fault diversity rather than failure diversity. By 

manual selection of test cases, one can check whether the diverse redundant configuration 

would tolerate the known bugs in the repositories of bugs reported for the various OTS 

servers. We have conducted a study on four SQL servers, both commercial and open- 

source. We collected known bug reports for these servers. For each bug, we took the test 

case that would trigger it and ran it on all four servers (if possible), to check for 

coincident failures. We found the number of coincident failures to be very low.

We use the following terminology. The known bugs for the OTS servers are documented 

in bug report repositories (i.e. bug databases, mailing lists etc). Each bus report contains 

the description of what the bug is and the bus script (SQL code that contains the failure 

triggering conditions) required to reproduce the failure (the erroneous output that the 

reporter of the bug observed). In our study we collected these bug reports and nm  the bug 

scripts in the servers (we will use the phrase “running a bus” for the sake of brevity).

This paper is structured as follows: In Section 2 we describe the background and 

motivation of the study and related work from the literature. In Section 3 we describe 

how the study was conducted and the terminology for classification of faults. In Section 4 

we present the quantitative results obtained. In Section 5 we describe the bugs that caused 

coincident failures. In Section 6 we discuss the possible reliability gains to be had from 

using diverse OTS SQL servers and in Section 7 we present conclusions and possible 

further work.

2. Background and related work

2.1 Fault tolerance In databases

Software fault tolerance has been thoroughly studied and successfully applied in many 

sectors, including databases. For example, standard database mechanisms such as 

transaction “rollback and retry” and “checkpointing” can be used to tolerate faults that are 

due to transient conditions. These techniques can be used with or without data replication 

in the databases.

Page 59 of 278



Ilir Gashi IV. Fault Diversity Study

There are many solutions for data replication (Bernstein, Hadzilacos et al. 1987), 

(Weismann, Pedone et al. 2000), (Pedone and Frolund 2000) as a feature of many 

commercial SQL servers or as middleware that can be used with a variety of SQL 

servers. Typically, these replication solutions work with sets of identical servers. 

Jimenez-Peris et al (Jimenez-Peris and Patino-Martinez 2003) present a relevant 

discussion of the various ways in which database replication with OTS servers can be 

organised, namely treating the servers as white, grey or black boxes. All commercial 

offerings are of the white-box kind, where code necessary for replication is added inside 

the server product. The grey-box approach, as implemented in (Jimenez-Peris, Patino- 

Martinez et al. 2002), assumes that servers provide specific services to assist with 

replication. The black-box approach uses the standard interfaces of the servers. Both the 

grey and black box approaches are implemented via middleware on top of the existing 

servers. To the best of our knowledge, a common assumption is made in the known 

replication solutions that the SQL servers will fail in a “fail-stop” manner (Schneider 

1984), with detectable clean crashes, and leaving a copy of a correct state for use in 

recovery. Apart from simplifying the protocols for data replication, the assumption of 

crash failures also allows for some performance optimisation such as executing the 

modifying queries on a single server, which then propagates the updates to all other 

servers involved in the replication, a solution considered adequate by the standardising 

bodies (Sutter 2000).

These approaches have shortcomings, i.e., they do not protect against failures that are not 

easily detectable (non-fail-stop), and incorrect updates would be propagated to all the 

replicas. Using diverse SQL servers instead of servers of the same type would improve 

error detection and thus reduce the risk from incorrect results. Availability could also be 

improved because servers that are diagnosed as correct can continue operation while 

recovery is performed on the faulty server[s]. Elsewhere (Popov, Strigini et al. 2004), 

(Gashi, Popov et al. 2004) (the preceding reference forms part o f this thesis as Paper-3) 

we describe some initial steps toward implementing middleware for data replication with 

diverse SQL servers. There, we also discuss some difficulties of data replication with 

diverse servers, such as the need to use the subset of SQL that is common to all servers 

used, and to translate all queries into the SQL “dialects” of these servers.

Page 60 of 278



Ilir Gas hi IV. Fault Diversity Study

2.2 Studies of faults and failures

The usefulness of diversity depends on the frequency of those failures that cannot be 

tolerated without it. There have been comparatively few related studies.

Gray studied the TANDEM NonStop system (Gray 1986) and observed that over an 

(unspecified) measured period only one out of 132 faults caused failures 

deterministically, i.e. the same failure was observed on retry. Gray calls these 

“Bohrbugs”. The others, which he calls “Heisenbugs” only caused failures under special 

conditions (e.g. created by a combination of the state of the operating system and other 

software), difficult to reproduce artificially. Heisenbugs -  so long as their failures are 

detected -  can be tolerated by replication without diversity, as in the Tandem system. A 

later study, (Lee and Iyer 1995) of field software failures for the Tandem Guardian90 

operating system found that 82 % of the reported field software faults were tolerated. 

However, 18 % of the faults did lead to both non-diverse processes in a Tandem process 

failing and therefore leading to a system failure.

Related studies exist on determinism and fail-stop properties of database failures, but 

they, like our study, concern faults rather than failure measurements. A study (Chandra 

and Chen 2000) examined fault reports of three applications (Apache Web server, 

GNOME and MySQL server). Only a small fraction of the faults (5-14%) were 

Heisenbugs triggered by transient conditions that would be tolerated by a simple 

“rollback and retry” approach. However the reason why there are few Heisenbugs here, 

and indeed in our study, might be that people are less likely to report faults that they 

cannot reproduce, and this is acknowledged by the authors in (Chandra and Chen 2000). 

In another study (Chandra and Chen 1998) the same authors found (via fault injection) 

that a significant number of faults (7%) violated the fail-stop model by writing incorrect 

data to stable storage. Even though they report that this number falls to 2% when 

applying the Postgres95 transaction mechanism, this number still remains high for 

applications with stringent reliability requirements.

2.3 Diversity with off-the-shelf applications

Other researchers have also considered the potential of diversity for improving the 

dependability of OTS software. Various architectures have been proposed that use

Page 61 o f278



Ilir Gashi IV. Fault Diversity Study

diversity for intrusion tolerance: e.g. HACQIT (Reynolds, Just et al. 2002), which 

demonstrates diverse replication (with two OTS web servers - Microsoft’s IIS and 

Apache web server) to detect failures (especially maliciously caused ones) and initiate 

recovery; SITAR (Wang, Gong et al. 2001), an intrusion tolerant architecture for 

distributed services and especially COTS servers; or the Cactus architecture (Hiltunen, 

Schlichting et al. 2000), intended to enhance survivability of applications which support 

diversity among application modules.

Another example (Adobe 2004) uses diverse Java virtual machines for interoperability 

rather than for tolerating failures.

3. Description of the study

3.1 Bug reports

Two commercial (Oracle 8.0.5 and Microsoft SQL Server 7 (without any service packs 

applied)) and two open-source (PostgreSQL Version 7.0.0 and Interbase Version 6.0), 

SQL servers were used in this study. Interbase, Oracle and MSSQL were all run on the 

Windows 2000 Professional operating system, whereas PostgreSQL (which is not 

available for Windows) was run on RedHat Linux 6.0 (Hedwig).

We only used bugs that caused failure of a server’s core engine. We did not consider 

other bugs such as those that caused failure to a client application tool or various 

connectivity API’s (JDBC/ODBC etc.), because these functions in a future fault tolerant 

architecture would be provided by the middleware.

For each of these servers there is an accessible repository of reports of known bugs. We 

collected: Interbase bugs (SourceForge) reported in the period between August 2000 and 

August 2001; PostgreSQL bugs (PostgreSQL) reported between May 2000 and January 

2001; Oracle bugs (Oracle) reported between September 1998 and December 2002. Bug 

reports for MSSQL (Microsoft) do not specify dates; we used all reports for both MSSQL 

7 and MSSQL 2000, available as of August 2003, that included “bug scripts” and were 

core engine bugs. For Oracle and MSSQL we collected reports from longer periods, 

because for these two servers (both “closed development” servers) some reports do not 

include bug scripts and we could not check whether the bug was present in other servers.

Page 62 of 278



Ilir Gashi IV. Fault Diversity Study

By extending the collection period we obtained reasonably large (though obviously 

imperfect) samples of bug reports. Despite this, the sample that we could use for Oracle 

contained only 18 bugs, since most reports omitted the bug scripts.

For each reported bug we attempted to run the corresponding bug script. Full details are 

available in (Gashi 2003) (and also provided as Appendix A o f this thesis).

3.2 Reproducibility of failures

All these servers offer features that are extensions to the basic SQL standard, and these 

extensions differ between the servers. Bugs affecting one of these extensions thus literally 

cannot exist in a server that lacks the extension. We called these “dialect-specific” bugs. 

For example, Interbase bug 217138 (Gashi 2003) uses the UNION operator in views, 

which PostgreSQL 7.0.0 views do not offer, and thus cannot be run in PostgreSQL: it is a 

dialect-specific bug.

Another “reproducibility” issue arises when a bug script does not cause failure in the 

server for which the bug was reported. We called these bugs Heisenbugs, borrowing 

Gray’s terminology (Gray 1986). We intend to run the Heisenbugs again in a more 

stressful simulated environment (Popov, Strigini et al. 2004) (with multiple clients and 

large number of transactions) to see whether repeated trials will give incorrect results.

4. Quantitative results

4.1 Detailed results

In total we included in the study I8l bug reports: 55 for Interbase, 57 for PostgreSQL, 51 

for MSSQL and 18 for Oracle. Out of these I8l bugs, 76 were “dialect-specific” (could 

be run in only one of the four servers); 47 could be run in all four servers; 26 could be run 

in only two servers and 32 in only three servers.

Each bug was first run on the server for which it was reported, and (after translating the 

script into the SQL dialect of the respective server) on the other servers. The bugs were 

classified into dialect-specific and non-dialect-specific bugs; the latter were then further 

classified into Bohrbugs or Heisenbugs as explained previously. The failures were also

Page 63 of 278



11 ir Gashi IV. Fault Diversity Study

classified into different categories according to their effects, as different failure types 

require different recovery mechanisms:

Engine Crash failures: crashes or halts of the core engine.

Incorrect Result failures: incorrect outputs without engine crashes: the outputs do not 

conform to the server’s specification or to the SQL standard.

Performance failures: correct output, but with an unacceptable time penalty for the 

particular input.

Other failures.

We also classified the failures according to their detectability by a client of the database 

servers:

Self-Evident failures: engine crash failures, cases in which the server signals an internal 

failure as an exception (error message) and performance failures.

Non-Self-Evident failures: incorrect result failures, without server exceptions within an 

accepted time delay.

Table 1 contains the results of this step of the study. Each grey column lists the results 

produced when the bugs reported for a certain server were run on that server. For 

example, we collected 55 known Interbase bugs, of which, when run on our installation 

of the Interbase server, 8 did not cause failures (possible Heisenbugs). The 47 bugs that 

caused failures are further classified in the part of the column below the double vertical 

lines, after the “Failure observed” row. All the performance failures and all the engine 

crashes are self-evident. Incorrect Result failures and “Other” failures can be self-evident 

or non-self-evident depending on whether the server gives an error message.

The three columns to the right of the grey one present the results of running the Interbase 

bugs on the other three servers. For example, we can see that 23 of the Interbase bugs 

cannot be run in PostgreSQL (dialect-specific bugs). Then we have the bugs that “require 

further work”: this means that we have not managed yet to translate the bug script in the 

PostgreSQL dialect of SQL, or are listed as “performance bugs” but we could not decide 

whether performance improves by changing servers. We plan to resolve this uncertainty 

via a testing infrastructure (Popov, Strigini et al. 2004) to measure the precise execution 

times of the queries.

Page 64 of 278



Ilir Gashi IV. Fault Diversity Study

Out of 55 Interbase bugs we managed to run 27 in PostgreSQL; only one caused a failure 

in both Interbase and PostgreSQL. This particular failure was a non-self-evident incorrect 

result as can be seen from the table.

As for the failure types, we can see that most of the bugs cause incorrect result failures. 

This will be discussed further in the Section 6.

We observed a higher number of Heisenbugs in MSSQL and Oracle than in the other 

servers. This was documented by some of the bug reports, which indicated: “may cause a

failure”.
Table 1 - Results of running the bug scripts on all four servers. IB stands for Interbase, PG for 

PostgreSQL, OR for Oracle and MS for MSSQL___________________

I B  1
P G O R MS PG IB O R MS OR IB MS P G MS IB O R P G

Total bug scripts 5 5  I 55 55 55 57 57 5 7 57 ! 18 18 18 18 51 51 51 51

Bug script cannot be run 
(Functionality Missing) n /a  J 23 2 0 16 n /a 32 2 7 2 4 n /a 13 13 12 n /a 36 32 31

Further W ork n /a  1 5 4 6 n /a 2 0 0 n /a 1 1 2 n /a 3 7 2

Total bug scripts run 55  | 27 31 33 57 23 3 0 33 18 4 4 4 51 12 1 2 18

No failure observed 8 1 2 6 31 31 5 23 3 0 31 4 4 4 3 12 11 12 12

Failure observed
4 7  ! I 0 2 52 0 0 2 14 0 0 I 3 9 I 0 6

Poor Performance 3 0 0 0 0 0 0 0 1 0 0 0 6 0 0 0
5k-
=3 Engine Crash 7  1 0 0 0 11 0 0 0 3 0 0 0 5 0 0 0

i s Incorrect Self-evident 4  0 0 1 14 0 0 1 3 0 0 0 10 0 0 6
C*-i
O Result Non-self-evident 2 3  1 i 0 I 2 0 0 0 1 7 0 0 1 17 I 0 0
a>
CL

Other
Self-evident 2 ¡1 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0

H Non-self-evident
8  II

0 0 0 5 0 0 0 0 0 0 0 0 0 0 0

4.2 Summary of observed fault diversity

Table 2 contains a summary from the viewpoint of the probable effects on a fault-tolerant 

server. Of the 47 bugs that could be run on all four servers, 12 did not cause failures in 

any of the servers: they are Heisenbugs for the server for which they were reported, and 

non-existent or Heisenbugs for the other three servers. 31 of these only caused a failure in 

the server for which they were reported and not in the others; and 4 bugs caused a 

coincident failure in two servers.

Page 65 of 278



Ilir Gashi IV. Fault Diversity’ Study

Table 2 - The number of bug scripts run and the effects on different combinations of servers

The server(s) in which the 
bug script was run

IB,
PG,
OR, 
MS

IB,
PG,
OR
only

IB,
PG,
MS
only

IB,
OR,
MS
only

PG,
OR, 
MS 
only

IB,
PG
Only

IB,
MS
Only

IB,
OR
Only

PG,
OR
Only

PG,
MS
Only

MS,
OR
Only

IB
Only

PG
Only

MS
Only

OR
Only

Total number of bug scripts 
run 47 3 7 12 10 5 3 0 4 12 2 17 18 28 13

Failure not observed in any 
server

12 0 1 2 0 0 0 0 0 0 1 1 2 5 3

Failure observed in one 
server only

31 3 6 9 9
5 3

0 3 7 1 16 16 23 10

Failure observed in two 
servers

4 0 0 I 1 0 0 0 i 5 0 N/A N/A N/A N/A

None of the bugs caused a failure in more than two servers

In addition to these 47, we have many bugs that could be run only on a subset of the four 

servers and thus on a fault-tolerant server built out of this subset. The following sections 

in the table show the number of bugs that could be run in each of these different 

combinations (4 three-version combinations and 6 two-version combinations), and how 

many caused failures or coincident failures.

The last four columns show the 76 dialect-specific bugs, which could only be run in the 

server for which they were reported and therefore affect functionality that would not be 

available on a fault-tolerant diverse server.

4.3 Two-version combinations

We now look more closely at the two-version combinations of the four different servers 

in our study, to see how many of the coincident failures are detectable in the 2-version 

systems. We define:

Detectable failures: self-evident failures or those where servers return different incorrect 

results (the comparison algorithm must be written to allow for possible differences in the 

representation of correct results, e.g. different numbers of digits in the representation of 

floating point numbers, padding of characters in character strings etc.). All failures 

affecting only one out of two (or at most n-1 out of n) versions are detectable. 

Non-Detectable failures: the ones for which two (or more) servers return identical 

incorrect results.

Table 3 contains a summary of the results on each of the six possible two-version 

combinations. Here we only include bugs that could be run on both servers, i.e. we

Page 66 of 278



Ilir Gashi IV. Fault Diversity Study

exclude dialect-specific bugs. Only four of the 12 coincident failures we observed are 

non-detectable. We can see that diversity allows detection of failures for at least 94% of 

these bugs.

Table 3 - Summary of results for the two-version combinations

Pairs of 
servers

Total 
number of 
bug scripts 
run

Failure 
observed 
(in at least 
one server)

One out of two servers failing Both servers failing

Self-
evident

Non -self- 
evident

Non -  
Detectable

Detectable

Self-evident Non-self-
evident

IB + PG 62 43 17 25 I 0 0
IB + OR 62 29 8 21 0 0 0
IB + MS 69 35 11 21 2 I 0
PG + OR 64 30 13 16 0 0 I
PG + MS 76 46 18 21 I 6 0
O R +  MS 71 14 7 7 0 0 0

5. Common faults
We now discuss the bugs that caused coincident failures, listed in Table 4. We give some

details about the functions affected and conjectures about the probable severity and

frequency of failure as a function of the environment of use of the server.

There were 13 bugs in total that were originally reported for one server but caused failure

in another. 12 caused a failure in both the server for which they were reported and

another server. One bug (MSSQL bug report 56775) was reported for MSSQL, did not

cause failure in MSSQT (possible Heisenbug) but did cause failure in PostgreSQL.
Table 4 - Bugs that cause coincident failures. The table should be read horizontally to know for 

which server the bug was reported, and vertically to know in which other server it caused a failure.
IB PG OR MS

IB N/A 1_ - (Bug ID 223512) 0 2 -  (BugID’s 217042(3), 222476)

PG 0 N/A 0 2 — (BugID's 43 and 77)

OR 0 i ~  (Bug ID 1059835) N/A 0

MS L(BugID
58544)

5 -  (BugID’s 54428, 56516, 58158, 58253, 
351180)

0 N/A

Arithmetic-related bugs

PostgreSQL bug report 77 and Oracle bug report 1059835 (Gashi 2003) describe 

arithmetic precision problems, causing incorrect result failures. The Oracle bug 1059835 

affects the MOD (modular arithmetic) operator, probably causing higher consequence 

failures. The failure rates for these bugs would only be expected to be high in 

applications with high use of mathematical functions, not a typical use of SQL servers.

Page 67 of 278



Ilir Gashi IV. Fault Diversity Study

Bugs affecting complex queries

PostgreSQL bug 43 (Gashi 2003) causes a failure in both PostgreSQL and MSSQL. The 

complex SELECT statement below, with nested sub-queries, causes the failure:
SELECT P.ID AS ID, P.NAME AS NAME FROM PRODUCT P WHERE P.ID IN

(SELECT ID FROM PRODUCT WHERE PRICE > = '9.00'AND PRICE < = ’50'AND ID NOT IN

((SELECT PRODUCTJD FROM PRODUCT_SPECIAL WHERE START_DATE <= '2000-9-6' AND END_DATE

>= '2000-9-6')

UNION

(SELECT PRODUCTJD AS ID FROM PRODUCT_SPECIAL WHERE PRICE >= '9.00' AND PRICE <= '50' 

AND START_DATE <= '2000-9-6' AND END_DATE >= '2000-9-6')))

Interestingly, for this same bug the two servers fail with different patterns. PostgreSQL 

fails returning a parsing error. MSSQL does not, but subsequently gives an incorrect 

result, probably because it built an incorrect parsing tree.

MSSQL Bug 58544 (Gashi 2003) causes failures in both MSSQL and Interbase. Using a 

LEFT OUTER JOIN on a VIEW that uses the DISTINCT keyword causes the failure. A 

left outer join is a special type of outer join where if you have a join between tables T1 

and T2 then the joined table unconditionally has a row for each row in T1 (as opposed to 

a Full Outer Join where the joined table has a row for each row present in both tables T1 

and T2). The DISTINCT keyword subsequently eliminates all the duplicate rows from 

the joined table. Complex queries would be common on large databases with many 

tables, leading probably to a comparatively high failure rate, with possibly high failure 

severity, especially for incorrect result failures.

Miscellaneous bugs

Interbase Bug 223512(2) (Gashi 2003) causes a failure in the Data Definition Language 

(DDL) part of SQL which is used to create/modify database objects (i.e. tables, views, 

users, procedures etc). It causes failures in both Interbase and PostgreSQL: both 

incorrectly allow a client to drop Views using the Drop Table statement. This violates the 

SQL-92 standard, which allows Views to be dropped only via the Drop View statement. 

This bug would seem to cause infrequent failures in operation and it would normally 

require an error by an administrator. The severity of failures would also be expected to be 

low since a view is just a ‘virtual table’ (or a stored SELECT statement), which 

represents the data from one or more tables. No data are lost by dropping a view,

Page 68 of 278



Ilir Gashi IV. Fault Diversity Study

although a runtime error will be generated each time a client attempts to access the 

dropped view.

Interbase bug 217042(3) (Gashi 2003) causes both Interbase and MSSQL to fail to 

validate the default values upon creation of tables. Therefore a statement like:
CREATE TABLE TEST (A INT DEFAULT 'ABC')

is allowed in both Interbase and MSSQL, even though an error should be raised since a 

string value (ABC) cannot be stored in an Integer type attribute. The DEFAULT 

attributes are used often in operation but it is not clear how often database users will 

define DEFAULT values of the wrong type. The failure to detect that an incorrect type 

default value is being assigned to a particular column at table creation time is non- 

detectable. However, a runtime error will occur, generating an error message, every time 

an attempt is made to insert the default value into the table: the failure will be detected, 

albeit with high latency1.

Interbase bug 222476 (Gashi 2003) causes a failure in MSSQL as well. Both servers give 

empty field names for avg (average) and sum SQL functions, although they return correct 

results in these fields. This would be a serious problem for client applications that 

construct their output from the field names and results returned by the server.

Five of the MSSQL bug scripts also caused failure in PostgreSQL, but with the difference 

that PostgreSQL fails at the beginning of the bug script. This implies that the causes are 

probably different for the two products, and the “failure regions” (sets of demands that 

would trigger the bug) identified by such scripts for the two servers only partially 

overlap: there are variations of the script for which PostgreSQL fails but MSSQL does 

not. For example, MSSQL bug 54428 causes an incorrect “primary key constraint” 

failure in MSSQL. The same bug causes failure (at the beginning of the bug script) when 

an attempt is made to create a clustered index in PostgreSQL. The latter is a known bug 

for PostgreSQL, and its correction in the later release 7.0.3 causes PostgreSQL not to fail 

on any of these five scripts.

1 If we classify the database as part of the server system, the common terminology recommended in (Laprie 1991) would imply that 
assigning the wrong type is an internal error, which only becomes a failure and is detected when the attempt is made to insert the 
default value.

Page 69 of 278



Ilir Gas hi IV. Fault Diversity Study

6. Discussion

6.1 Extrapolating from the counts of common bugs to reliability 
of a diverse server

These numbers are intriguing and point to a potential for serious dependability gains from 

assembling a fault tolerant server from two or more of these off-the-shelf servers. But 

they are not definitive evidence. Apart from the sampling difficulties caused e.g. by lack 

of certain bug scripts, it is important to clarify to what extent our observations allow us to 

predict such gains.

For brevity, we consider the simplest case: suppose that users of a certain database server 

product A try to obtain a more dependable service by using a fault-tolerant, replicated, 

diverse server AB, built from product A plus another product B (for discussion of the 

feasibility and design problems, see (Popov, Strigini et al. 2004)). The number of bugs 

reported over a certain reference period (say one year) for product A is m Our study 

then finds that of these mj  bugs, only ma b  also caused failure of B. We may then expect

that, had these users been using AB instead of A, only those failures of A that were due to 

those bugs could have caused complete service failures. How much more reliable

would this have made the AB server, compared to the A server?

Before proceeding, we introduce some more simplifications. The possible effects of 

individual server failures on system failures have been discussed in Sections 4.1 and 4.3, 

under the definitions of “self-evident” and “detectable” failures. Here, for the sake of 

brevity, we use a simplified scenario: failures of both servers A and B on the same 

demand are “system failures”, and failures of a single one of them are not2. In addition, 

we only consider the effects on reliability of the factor that we have studied: the diversity 

between faults of the two products A and B. We thus ignore any effects of the 

middleware needed in the AB server, which adds complexity and thus possibly faults; 

and of added complexity in client applications that used complex vendor-specific features 

of server A, if they must be adapted to use the more restricted feature set of server AB.

2 This simplified model is still realistic if either: i) we are only concerned with interruptions of service, and all failures of A and/or B 
are detectable (crashes, self-detected errors, or different erroneous results if both A and B fail); or ii) we are concerned with 
undetected erroneous results, and all failures of both A and B on the same demand are pessimistically assumed to produce such results.

Page 70 of 278



Hir Gas hi IV. Fault Diversity Study

With these simplifications, the AB server is certain to be at least as reliable as the single 

A server because it only fails if both A and B fail. We still need to assess the size of the 

probable reliability gain. To this end, we need to take into account various complications: 

the difference between fault records and failure records; imperfect failure reporting; 

variety of usage profiles.

We can start with a scenario in which our data would be sufficient for trustworthy 

predictions, and then discuss the effects of these assumptions not holding in practice. This 

ideal scenario is as follows: we are interested in the reliability gains for a database 

installation using server A, if it were to switch to a diverse server AB, assuming that this 

installation has a usage profile (probabilities of all possible demands on the server) 

similar to the average of all the bug-reporting installations of server A3. We assume that 

users neither change their patterns of usage of the databases (demand profile) nor upgrade 

to new releases of the database servers4; that all failures that affected installations of A 

during the reference year were noticed and reported; and that there is exactly one bug 

report for each failure that occurred.

Then, we can state that the bug reports describe a one-year sample of operation of the 

system, and our best reliability prediction is that the same set of users, during another 

year of operation, would experience a mean number of system failures if they used A,

but only m¿ft if they used AB. With the numbers we observed, the ratio ma b  / mA is 

quite small, so the expected reliability gain would be large. Given that the reports come 

from millions of installations, each submitting many demands5, we might even trust that 

the true failure probability per demand is close to the observed frequency of failures.

The first difficulty with this analysis is that reports concern bugs, not how many failures 

each caused. They do not tell us whether a bug has a large or a small effect on reliability, 

although the faults that did not cause failures would tend to have stochastically lower

3 Or, from a market-assessment viewpoint, we may consider the average reliability gains for the population of all database 
installations which depend on server A, if they switched to using AB.
4 Because we wish to reason about the reliability effects of diversity alone. This scenario also has practical interest, though. Usage 
patterns vary over time, but periods of very slow variations must exist; users do upgrade to new versions, but upgrades bring expense 
and new problems, so that it is interesting to see whether diversity would be a more cost-effective way of achieving good average 
dependability over a system’s lifetime than frequent upgrades,
5 How to define a “demand" to a state-rich system like a database server, for the purpose of inference about reliability, is a tricky 
theoretical and practical issue. For this informal discussion of other difficulties in inference, we ask the reader to accept that a practical 
solution can be found, somewhere between a single command and the whole sequence of commands over the lifetime of an 
installation, (cf e.g. (Tian, Peng et al. 1995) for examples of useful compromises).

Page 71 of 278



Ilir Gas hi IV. Fault Diversity Study

effect on reliability than those that caused failures. Thus, the bugs which still cause

the fault tolerant server AB to fail may account for a large (perhaps close to 100%) or a 

small fraction (perhaps close to 0) of the failures observed in A’s operation. The actual 

reliability gain may be anywhere between negligible and very high.

Software is often assessed in terms of number of bugs remaining. But it is easily seen that 

the bug reports do not give us any information on this number: the bugs reported may

be the only bugs in the products, or they may be a fraction of them (perhaps minimal), 

which happened to be the ones causing failures during the reference year.

Another difficulty is not knowing how many of the failures that occur are actually 

reported. This fraction is certainly less than 100%. If all failures had the same probability 

of being reported, the ratio between our predicted failure counts for AB and A would still 

be the ratio / m^. Reporting is probably biased, for instance towards bugs that cause

higher frequency or higher severity of failures. Some failures -  like crashes -  are more 

noticeable than others, like storing incorrect data in some data fields, which may not 

produce visible effects for a long time (also making it more difficult to trace the visible 

problem back to its cause). Some users are more assiduous at producing failure reports, 

so the bugs that affect them more are also more likely to be reported, even if not so 

important for other users.

In the end, we do not know in detail how failure reporting differs between different bugs, 

but bug reports are likely to be better evidence about bugs that cause blatant failures than 

about subtle (arguably more dangerous) failures. This prompts another consideration: as 

reported bugs are corrected and products mature, more of their failures are likely to be of 

the subtler types, unlikely to be reported. Therefore failure underreporting probably 

causes a bias towards underestimating the frequency of failures for which diversity would 

help. This makes diversity a more attractive defence, but it also means that bug reports 

will become a less and less accurate representation of the set of failures actually 

occurring.

Last, we have the problem of usage profiles. A single user organisation needs predictions 

about the dependability of its specific installation of server AB or A (i.e., with or without 

diversity), which depends on its specific usage profile, which differs -  perhaps by much -  

from the aggregate profile of the user population which generated the bug reports.

Page 72 of 278



Ilir Gashi IV. Fault Diversity Study

Installations that manage different databases, with different user needs, are subjected to 

different usage profiles. It is then plausible that different bugs are important for different 

installations; this conjecture is also supported by a possible interpretation of Adams’ 

findings (Adams 1984) about the surprisingly small average failure rates of many bugs, 

when averaged over many installations. Then, the number of bugs whose effects can be 

tolerated (what we have counted here) gives little information about the resulting 

dependability gains. The actual effect can only be determined empirically. The user 

organisation may seek indirect evidence from the publicly available bug reports: if they 

generally match the failures experienced locally, the local effects of tolerating those bugs 

can be assessed. However if it does not, little insight is gained, and the exercise is time- 

consuming.

6.2 Decisions about deploying diversity

We have underscored that these results are only prima facie evidence for the usefulness 

of diversity.

A better analysis would be obtained from the actual failure reports (including failure 

counts), available to the vendors, especially if they use automatic failure reporting 

mechanisms (users are biased towards under-reporting of failures from bugs they have 

reported before, or for which they have successful workarounds or recovery 

mechanisms), and even better if they also have indications about the users’ usage profile 

(from rough measures like the size of the database managed, to detailed monitoring as 

proposed in (Voas 2000)). However, vendors are often wary of sharing such detailed 

dependability information with their customers.

How can then individual user organisations decide whether diversity is a suitable option 

for them, with their specific requirements and usage profiles? As usual for dependability-

enhancing measures, the cost is reasonably easy to assess: costs of the software products, 

the required middleware, difficulties with client applications that require vendor-specific 

features, hardware costs, run-time cost of the synchronisation and consistency enforcing 

mechanisms, and possibly more complex recovery after some failures. The gains in 

improved reliability and availability (from fewer system failures and easier recovery from 

some failures, set against possible extra failures due to the added middleware), and

Page 73 of 278



Ilir Gashi IV. Fault Diversity Study

possibly less frequent upgrades, are difficult to predict except empirically. This 

uncertainty will be compounded, for many user organisations, by the lack of trustworthy 

estimates of their baseline reliability with respect to subtle failures: databases are used 

with implicit confidence that failures will be self-evident.

We note that for some users the evidence we have presented would already indicate a 

diverse server to be a reasonable and relatively cheap precautionary choice, even without 

good predictions of its effects. These are users who have: serious concerns about 

dependability (e.g., high costs for interruptions of service or undetected incorrect data 

being stored); applications which use mostly the core features common to multiple off- 

the-shelf products (recommended by practitioners to improve portability of the 

applications); modest throughput requirements for updates, which make it easy to accept 

the synchronisation delays of a fault-tolerant server.

7. Conclusions
To estimate the possible advantages of modular-redundant diversity in complex off-the- 

shelf software, we studied a sample of bug reports from four popular off-the-shelf SQL 

database server products. We checked whether more than one product exhibited bugs that 

would cause common-mode failures if the products were used in a diverse redundant 

architecture. It appears that such common bugs are rare. We found very few bugs that 

affected two of the four servers, and none that affected more than two. Moreover only 

four of these bugs would cause identical, undetectable failures in two servers. Fault- 

tolerant, diverse servers seem to have a good chance of improving failure rates and 

availability.

These preliminary results must be taken with caution, as discussed in Section 6, but are 

certainly interesting and indicate that this topic deserves further study. Their immediate 

implications vary between users, but there are classes of database server installations for 

which even these preliminary results seem to recommend diversity as a prudent and cost- 

effective strategy. Decisions would of course involve many other considerations which 

we could not discuss here: performance, total cost of ownership including updates, risks 

of dependence on one vendor, etc.

Page 74 of 278



Hir Gashi IV. Fault Diversity Study

The practical obstacle would be the need for “middleware”: most users would need an 

off-the-shelf middleware package, which in turn is not likely to be developed until there 

are enough users. On the other hand, a dedicated user could develop a middleware 

package in the hope of seeing his investment amplified through the creation of an open- 

source community of user/developers. But once the diverse server is running, the 

dependability changes due to diversity could be directly assessed. The user could decide 

on an ongoing basis which architecture is giving the best trade-off between performance 

and dependability, from a single server to the most pessimistic fault-tolerant 

configuration (with tight synchronisation and comparison of results at each query).

Some other interesting observations include:

it may be worthwhile for vendors to test their servers using the known bug reports 

for other servers. For example, we observed 4 MSSQL bugs that had not been 

reported in the MSSQL service packs (previous to our observation period). Oracle 

was the only server that never failed when running on it the reported bugs of the 

other servers;

the majority of bugs reported, for all servers, led to “incorrect result” failures 

(64.5%) rather than crashes (17.1%) (despite crashes being more obvious to the 

user). This is contrary to the common assumption that the majority of bugs lead to 

an engine crash, and warrants more attention by users to fault-tolerant solutions, 

and by designers of fault-tolerant solutions to tolerating subtle and non fail-silent 

failures.

Future work that is desirable includes:

repeating this study on later releases of the servers, to verify whether the general 

conclusions drawn here are repeated, indicating that they are the consequences of 

factors that do not disappear with the evolution of the software products; 

statistical testing to assess the actual reliability gains. This is already under way. 

We have run a few million queries with various loads including experiments 

based on the TPC-C benchmark. We have not observed any failures so far 

(however, with the TPC-C load we found that a significant gain in performance 

can be obtained with diverse servers (Gashi, Popov et al. 2004)). We plan to 

continue these experiments with more complete test loads. These are important

Page 75 of 278



Ilir Gashi IV. Fault Diversity Study

for their own sake, as evidence for decision-making, but also for the side benefit 

of checking how far the data confirm the impressions gained from this study, and 

thus how accurate a picture fault reports paint for these products; 

studying alternative options for software fault tolerance with OTS servers, e.g. 

wrappers rephrasing queries into alternative, logically equivalent sets of 

statements to be sent to replicated, even non-diverse servers (Gashi, Popov et al.

2004);

developing the necessary components for users to be able to try out diversity in 

their own installations, since the main obstacle now is the lack of popular off-the- 

shelf “middleware” packages for data replication with diverse SQL servers.

Acknowledgment
This work was supported in part by the “Diversity with Off-The-Shelf components” 

(DOTS) Project funded by the U.K. Engineering and Physical Sciences Research Council 

(EPSRC). We would also like to thank Bev Littlewood, Peter Bishop and the anonymous 

DSN reviewers for comments on an earlier version of this paper.

References
Adams, E. N. (1984), "Optimizing Preventive Service o f Software Products”, IBM 

Journal of Research and Development 28(1), pp: 2-14.

Adobe (2004), "Macromedia JRun",

http://www.adobe.com/products/jrun/productinfo/overview/.

Berenson, H., P. Bernstein, J. Gray, J. Melton, E. O'Neil and P. O'Neil (1995), "A 

Critique o f ANSI SQL Isolation Levels", in proc. Int. Conf. on Management of Data 

(SIGMOD '95).

Bernstein, P. A., V. Hadzilacos and N. Goodman (1987), "Concurrency Control and 

Recovery in Database Systems", Reading, Mass., Addison-Wesley.

Chandra, S. and P. M. Chen (1998), "How Fail-Stop are Programs", in proc. Int. 

Symp. on Fault-Tolerant Computing (FTCS ’98), IEEE Computer Society Press, pp: 240- 

249.

Page 76 of 278

http://www.adobe.com/products/jrun/productinfo/overview/


Ilir Gashi IV. Fault Diversity Study

Chandra, S. and P. M. Chen (2000), " Whither Generic Recovery from Application 

Faults? A Fault Study using Open-Source Software”, in proc. Int. Conf. on Dependable 

Systems and Networks (DSN '00), NY, USA, IEEE Computer Society Press, pp: 97-106. 

Fekete, A., D. Liarokapis, E. O'Neil, P. O'Neil and D. Shasha (2000), "Making 

Snapshots Isolation Serialisable”, http://www.cs.umb.edu/~isotest/snaptest/snaptest.pdf. 

Gashi, I. (2003). " Tables containing known bug scripts o f Interbase, PostgreSQL, Oracle 

and MSSQL. " http://www.csr.city.ac.uk/people/ilir.gashi/DBMSBugReports/.

Gashi, I., P. Popov, V. Stankovic and L. Strigini (2004), "On Designing Dependable 

Services with Diverse Off-The-Shelf SQL Servers", in Architecting Dependable Systems 

II, R. de Lemos, Gacek, C., Romanovsky, A. (Eds.), Springer-Verlag, 3069, pp: 191-214. 

Gray, J. (1986), "Why Do Computers Stop and What Can be Done About it?” in proc. 

Int. Symp. on Reliability in Distributed Software and Database Systems (SRDSDS '86), 

Los Angeles, CA, USA, IEEE Computer Society Press, pp: 3-12.

Gray, J. (2000), "FT101: Talk at UC Berkeley on Fault-Tolerance",

http://research.microsoft.com/~Gray/talks/UCBerkeley_Gray_FT_Avialiability_talk.ppt. 

Hiltunen, M. A., R. D. Schlichting, C. A. Ugarte and G. T. Wong (2000), 

"Survivability Through Customization and Adaptability: The Cactus Approach", in proc. 

DARPA Information Survivability Conference & Exposition.

Jimenez-Peris, R. and M. Patino-Martinez (2003), "D5: Transaction Support", 

ADAPT Middleware Technologies for Adaptive and Composable Distributed 

Components, Deliverable IST-2001 -37126.

Jimenez-Peris, R., M. Patino-Martinez, G. Alonso and B. Kemme (2002), "Scalable 

Database Replication Middleware”, in proc. 22nd Int. Conf. on Distributed Computing 

Systems, Vienna, Austria, IEEE Computer Society Press, pp: 477-484.

Laprie, J. C., Ed. (1991), "Dependability: Basic Concepts and Associated Terminology", 

Dependable Computing and Fault-Tolerant Systems Series, Springer-Verlag.

Laprie, J. C., J. Arlat, C. Beounes and K. Kanoun (1990), "Definition and Analysis of 

Hardware-and-Software Fault-Tolerant Architectures", IEEE Computer 23(7), pp: 39-51. 

Lee, I. and R. K. Iyer (1995), "Software Dependability in the Tandem GUARDIAN 

System", IEEE Transactions on Software Engineering 21(5), pp: 455-467.

Page 77 of 278

http://www.cs.umb.edu/~isotest/snaptest/snaptest.pdf
http://www.csr.city.ac.uk/people/ilir.gashi/DBMSBugReports/
http://research.microsoft.com/~Gray/talks/UCBerkeley_Gray_FT_Avialiability_talk.ppt


llir Gashi IV. Fault Diversity Study

Microsoft, "List o f Bugs Fixed by SQL Server 7.0 Service Packs", 

http://support.microsoft.com/default.aspx?scid=kb;EN=US;313980.

Oracle, "Oracle Metalink", http://metalink.oracle.com/metalink/plsql/ml2_gui.startup. 

Pedone, F. and S. Frolund (2000), "Pronto: A Fast Failover Protocol for Off-the-shelf 

Commercial Databases", in proc. Int. Symp. on Reliable Distributed Systems (SRDS 

'00), Nürnberg, Germany, IEEE Computer Society, pp: 176-85.

Popov, P., L. Strigini, A. Kostov, V. Mollov and D. Selensky (2004), "Software Fault- 

Tolerance with Off-the-Shelf SQL Servers", in proc. Int. Conf. on COTS-based Software 

Systems (ICCBSS'04), Redondo Beach, CA USA, Springer, pp: 117-126.

Popov, P., L. Strigini, S. Riddle and A. Romanovsky (2001), "Protective Wrapping of 

OTS Components”, in proc. 4th ICSE Workshop on Component-Based Software 

Engineering: Component Certification and System Prediction, Toronto.

Popov, P., L. Strigini and A. Romanovsky (2000), "Diversity for Off-The-Shelf 

Components", in proc. Int. Conf. on Dependable Systems and Networks (DSN '00) - Fast 

Abstracts supplement, New York, NY, USA, IEEE Computer Society Press, pp: B60- 

B61.

PostgreSQL, "PostgreSQL Bugs Mailing List Archives", 

http://archives.postgresql.org/pgsql-bugs/.

Reynolds, J., J. Just, E. Lawson, L. Clough, R. Maglich and K. Levitt (2002), "The 

Design and Implementation o f an Intrusion Tolerant System", in proc. Int. Conf. on 

Dependable Systems and Networks (DSN '02), Washington, D.C., USA, IEEE Computer 

Society Press, pp: 285-292.

Schneider, F. (1984), "Byzantine Generals in Action: Implementing Fail-Stop 

Processors", ACM Transactions on Computer Systems 2(2), pp: 145-154.

SoureeForge, "Interbase (Firebird) Bug tracker",

http://sourceforge.net/tracker/7atidM 09028&group_id=9028&func=browse.

Sutter, H. (2000), "SQL/Replication Scope and Requirements Document", ISO/IEC JTC 

1/SC 32 Data Management and Interchange WG3 Database Languages, H2-2000-568. 

Tian, J., L. Peng and J. Palma (1995), "Test-Execution-Based Reliability Measurement 

and Modeling for Large Commercial Software", IEEE Transactions on Software 

Engineering 21(5), pp: 405-414.

Page 78 of 278

http://support.microsoft.com/default.aspx?scid=kb;EN=US;313980
http://metalink.oracle.com/metalink/plsql/ml2_gui.startup
http://archives.postgresql.org/pgsql-bugs/
http://sourceforge.net/tracker/7atidM


11 ir Gas hi IV. Fault Diversity Study

Valdes, A., M. Almgren, S. Cheung, Y. Deswarte, B. Dutertre, J. Levy, H. Saidi, V. 

Stavridou and T. E. Uribe (1999), "An Adaptive Intrusion-Tolerant Server 

Architecture", http://www.sdl.sri.com/users/valdes/DIT_arch.pdf.

Voas, J. (2000), "Deriving Accurate Operational Profiles for Mass-Marketed Software", 

http://www.cigital.com/papers/download/profile.pdf.

Wang, F., F. Gong, C. Sargor, K. Goseva-Popstojanova, K. Trivedi and F. Jou

(2001), "SITAR: A Scalable Intrusion-Tolerant Architecture for Distributed Services", in 

proc. 2001 IEEE Workshop on Information Assurance and Security, West Point, New 

York, U.S.A.

Weismann, M„ F. Pedone and A. Schiper (2000), "Database Replication Techniques: a 

Three Parameter Classification”, in proc. Int. Symp. on Reliable Distributed Systems 

(SRDS ’00), Nürnberg, Germany, IEEE Computer Society Press, pp: 206-217.

Page 79 of 278

http://www.sdl.sri.com/users/valdes/DIT_arch.pdf
http://www.cigital.com/papers/download/profile.pdf


Il ir G as hi IV. Fault Diversity’ Study

Paper-2. Fault Tolerance via Diversity for Off-The-Shelf 
Products: a Study with SQL Database Servers

Abstract: I f  an off-the-shelf software product exhibits poor dependability due to design 

faults, software fault tolerance is often the only way available to users and system 

integrators to alleviate the problem. Thanks to low acquisition costs, even using multiple 

versions o f software in a parallel architecture, a scheme formerly reserved for few and 

highly critical applications, may become viable for many applications. We have studied 

the potential dependability gains from these solutions for off-the-shelf database servers. 

We based the study on the bug reports available for four off-the-shelf SQL servers, plus 

later releases o f two o f them. We found that many o f these faults cause systematic, non-

crash failures, a category ignored by most studies and standard implementations o f fault 

tolerance for databases. Our observations suggest that diverse redundancy would be 

effective for tolerating design faults in this category o f products. Only in very few cases 

would demands that triggered a bug in one server cause failures in another one, and 

there were no coincident failures in more than two o f the servers. Use o f different 

releases o f the same product would also tolerate a significant fraction o f the faults. We 

report our results and discuss their implications, the architectural options available for 

exploiting them and the difficulties that they may present.

Co-authors: Dr. Peter Popov, Prof. Lorenzo Strigini

Journal: IEEE Transactions on Dependable and Secure Computing (IEEE TDSC)

Date of submission: 24-October-2006

Status: Accepted in May 2007. To be published in the July-September 2007 issue. 

Number of reviewers: 3 

Publication date: TBC

Full citation: Gashi I., Popov P., Strigini L., "Fault diversity among off-the-shelf SQL 

database servers", in IEEE Transactions on Dependable and Secure Computing, IEEE 

Computer Society Press, to appear, 2007

Page 80 of 278



Ilir Gas hi IV. Fault Diversity Study

1. Introduction
The use of “off-the-shelf’ (OTS) -  rather than custom-built -  products is attractive in 

terms of acquisition costs and time to deployment but brings concerns about 

dependability and "total cost of ownership". For safety- or business-critical applications, 

in particular, purpose-built products would normally come with extensive documentation 

of good development practice and extensive verification and validation; when switching 

to mass-distributed OTS systems, users -  system designers or end users -  often find not 

only a lack of this documentation, but anecdotal evidence of serious failures and/or bugs 

that undermines trust in the product. Despite the large-scale adoption of some products, 

there is usually no formal statistical documentation of achieved dependability levels, 

from which a user could attempt to extrapolate the levels to be achieved in his/her own 

usage environment.

For all these reasons, when systems are built out of OTS products, fault tolerance is often 

the only viable way of obtaining the required system dependability (Popov, Strigini et al. 

2000), (Valdes, M. Almgren et al. 2003), (Hiltunen, Schlichting et al. 2000). These 

considerations apply not only to OTS software, but also to hardware, like 

microprocessors, or complete hardware-plus-software systems. In this paper we will 

consider “software fault tolerance” (by which we mean “fault tolerance against software 

faults”), focusing on a specific category of software products. Fault tolerance may take 

multiple forms (Strigini 2005), from simple error detection and recovery add-ons (e.g. 

wrappers) (Popov, Strigini et al. 2001) to full-fledged “diverse modular redundancy” (e.g. 

"N-version programming": replication with diverse versions of the components) (Strigini

2005). Even this latter class of solutions becomes affordable with many OTS products 

and has the advantage of a fairly simple architecture. The cost of procuring two or even 

more OTS products (some of which may be free) would still be far less than that of 

developing one’s own product.

All these design solutions are well known from the literature. The questions, for the 

developers of a system using OTS components, are about the dependability gains, 

implementation difficulties and extra cost that they would bring for that specific system. 

We report here some evidence about potential gains, and briefly discuss the architectural

Page 81 o f278



Ilir Gashi IV. Fault Diversity Study

issues that would determine feasibility and costs, for a specific category of OTS products: 

SQL database servers, or "database management systems" (DBMSs)6.

This category of products offers a realistic case study of the advantages and challenges of 

software fault tolerance in OTS products. DBMS products are complex, mature enough 

for widespread adoption, and yet with many faults in each release7. Fault tolerance in 

DBMS products is a thoroughly studied subject, with standard recognized solutions, 

some of which are commercially available. But these solutions do not give full protection 

against software faults, because they assume fail-stop (Schneider 1984) or at least self-
o

evident failures : errors are detected promptly enough that the database contents are not 

corrupted, or that a suitable correct checkpoint can be identified and used for rollback. 

There is no guarantee that software faults in the OTS DBMS products themselves will 

satisfy this assumption. As we document here, they do not, and we know of no published 

statistical evidence of the frequency of violations, which one could use as evidence that 

the assumption is satisfied with high enough probability for a specific application of one 

of these OTS products.

There are many OTS SQL DBMS products, obeying (at least nominally) common 

standards (SQL 92 and SQL 99), which makes diverse redundancy feasible in principle. 

For instance, a parallel-redundant architecture using two replicas of a database, managed 

by two diverse DBMS products, would allow error detection via comparison of results 

from the two DBMS products. A fault-tolerant server capable of tolerating server 

software faults can be built from installations of two or more diverse DBMS products, 

connected by middleware that makes them appear to clients as a single database server. 

There are clearly problems as well: in particular, existing DBMS products have certain 

concurrency control and fault tolerance features that rely on lack of diversity between

6 Everyday terms may be ambiguous when discussing redundant and diverse architectures. We will apply these conventions: a DBMS 
product is a specific software package; a fault-tolerant database server includes one or more channels (each performing the database 
server function), each including an installation of a DBMS product (these may be the same product or different ones - different 
versions) and a replica of the database. Two replicas of the database will be physically different if they are in channels that use 
different DBMS products. They may also exhibit temporary differences due to the asynchronous operation of the channels. We follow 
the popular usage of the word “bug” as synonym for “software fault” or “defect”.
7 And even features that imply an accepted possibility of an incorrect behaviour, albeit rare. An example of the latter is the known 
“write skew” (Berenson, Bernstein et al. 1995) problem with some optimistic concurrency control architectures (Fekete, Liarokapis et 
al, 2005).
* By “self-evident failures” we will mean failures that a generic client of the DBMS product can detect without depending on 
knowledge of the specific database and its semantics. They are those failures that -  as seen by the client -  consist in issuing an error 
message to the client, spontaneously aborting a transaction, “hanging” or crashing.

Page 82 of 278



II ir Gas hi IV. Fault Diversity Study

replicated executions for their proper and efficient operation. However, it is worth 

exploring the costs and benefits of solutions that accept the drawbacks of diversity in 

return for improved dependability. For many users, there is no practical alternative to 

OTS DBMS products, and performance losses may well be acceptable in return for 

improved assurance. In addition to tolerating faults in general, users may look at software 

fault tolerance as a way of guaranteeing good service during upgrades of the DBMS 

products, when new bugs might appear that are serious under the usage profile of their 

specific installation, and/or of delaying “patches” and upgrades, thus reducing the total 

cost of ownership of DBMS products.

As a preliminary assessment of the potential effectiveness of software fault tolerance with 

DBMS products, we have studied publicly available fault reports for four DBMS 

products (two open-source and two closed-development). We ask questions about the 

potential effectiveness of design diversity -  deploying two different products. Fault 

reports are the only publicly available dependability evidence for these products, so our 

study concerns fault diversity among them. Complete failure logs would be much more 

useful as statistical evidence, but they are not available. Many vendors discourage users 

from reporting already known bugs; detailed failure data are rarely available even to the 

software vendors themselves. This scarcity of data also makes it difficult to estimate how 

dependable a DBMS product will be for a specific installation. But the many reports of 

failures of DBMS products suggest that some users need reliability improvements.

In a first study (Gashi, Popov et al. 2004b) (the preceding reference forms part o f this 

thesis as Paper-1), we looked at the set of bugs reported for one release of each DBMS 

product. For each bug, we took the bug script (a sequence of SQL statements) that would 

trigger it and ran it on all four DBMS products (if possible), to check for coincident 

failures: if the bug script does not trigger failures in the other DBMS product, we take 

this as evidence that software fault tolerance would tolerate that fault. We found that a 

high number of reported faults would not be tolerated (or even detected) by existing, non- 

diverse fault-tolerant schemes but did not cause coincident failures in any two DBMS 

products, offering a way of tolerating them.

These intriguing results suggested a potential for considerable dependability gains from 

using diverse OTS DBMS products, but they only concerned a specific snapshot in the

Page 83 of 278



Ilir Gas hi IV. Fault Diversity Study

evolution of these products. We therefore ran a follow-up study with later releases of 

DBMS products (thus with different set of bug reports), with results that substantially 

confirm the previous ones. This paper reports the complete results of the two studies.

The rest of the paper is organized as follows: in Section 2, we briefly discuss the 

architectural issues in software fault tolerance with DBMS products -  feasibility, design 

alternatives and performance issues -  since they determine the usefulness of the empirical 

results we report; Section 3 presents the results of the two empirical studies of known 

bugs of DBMS products, including the comparisons between older and newer releases of 

two DBMS products; Section 4 contains a discussion of the implications of our studies; 

Section 5 contains a review of related work on database replication, interoperability of 

databases, empirical evidence on DBMS products’ faults and failures and diversity with 

off-the-shelf components and Section 6 contains conclusions and outlines of further 

work.

2. Architectural considerations

2.1 Current solutions for DBMS replication

Standard solutions for automatic fault tolerance in databases use the mechanisms of 

atomic transactions and/or checkpointing to support backward recovery, which can be 

followed by retry of the failed transactions. These solutions will tolerate transient faults, 

if detected, and if combined with replication will mask permanent faults, without service 

interruption.

Various data replication solutions exist (Bernstein, Hadzilacos et al. 1987), (Weismann, 

Pedone et al. 2000), (Pedone and Frolund 2000), (Patino-Martinez, Jimenez-Peris et al. 

2005), (Lin, Kemme et al. 2005). In commercial DBMS products, they are often called 

“fail-over” solutions: following a (crash) failure of the primary DBMS product, the load 

is transparently taken over by a separate installation of the DBMS product holding a 

redundant copy of the database, at the cost of aborting the transactions affected by the 

crash. Multiple copies may be used. The code for fault tolerance is integrated inside the 

DBMS product. A recent survey (Jimenez-Peris and Patino-Martinez 2003) calls this a 

“white box” solution. Alternatively, replication can be managed by middleware separate

Page 84 of 278



Ilir Gashi IV. Fault Diversity Study

from the DBMS products: “black box” solutions (fault tolerance is entirely the 

responsibility of the middleware), or “grey box” (the middleware exploits useful 

functions available from the DBMS products (Jimenez-Peris, Patino-Martinez et al. 

2002)). Our discussion here will refer to “black box” solutions: the only ones that can be 

built without access to OTS source code, and most convenient for studying the design 

issues in the use of redundancy and diversity. We will assume that fault tolerance is 

managed by a layer of middleware; clients see the fault-tolerant database server via this 

middleware layer, which co-ordinates the redundant channels.

Existing data replication solutions use sophisticated schemes for reducing the overhead 

involved in keeping the copies up to date. Their common weakness is their dependence 

on the assumption of “fail-stop” or at least “self-evident” failures. This assumption 

simplifies the protocols for data replication, and allows some performance optimisation. 

For instance, in the Read Once Write All Available (ROWAA) (Bernstein, Hadzilacos et 

al. 1987) replication protocol the read statements9 are executed by a single replica while 

the write statements are executed by all replicas. These fault-tolerant solutions are 

considered adequate by standardizing bodies (Sutter 2000), despite the assumption being 

false in principle. Some recent solutions (Kemme and Alonso 2000) seek further 

optimisation by executing the write statements on a single replica, which then propagates 

the changes to all the (available) replicas.

As we shall see, current OTS DBMS products suffer from many bugs that cause non-

crash, non-self-evident failures. The failures that these cause may be undetected 

erroneous responses to read statements, and/or incorrect writes to all the replicas of the 

database.

For these kinds of failure, the current data replication solutions are deficient, in the first 

place from the viewpoint of error detection. Two kinds of remedy are possible:

database-, or client-specific solutions that depend on the client (an automatic 

process or a human operator) to run reasonableness checks on the outputs of the 

DBMS product and order recovery actions if it detects errors. Good error 

detection may be achieved by exploiting knowledge of the semantics of the data

9 We will use the term “statement” to refer to the SQL requests that are sent to the DBMS product. These may be read or write data 
manipulation language (DML) statements or data definition language (DDL) statements

Page 85 of 278



Ilir Gashi IV. Fault Diversity Study

stored and the processes that update them. This knowledge may also support more 

efficient error recovery than simple rollback and retry. The main disadvantages 

are high implementation cost (especially with a workforce generally unaware of 

the need for fault tolerance), high run-time cost, at least for human-run checks, 

and the possibility of low error detection coverage if the database is -  as common 

-  the sole repository of the data10.

generic solutions that use active replication (Gashi, Popov et al. 2004a) (the 

preceding reference forms part o f this thesis as Paper-3) for error detection, so 

that errors can be detected by comparing the results of redundant executions, 

and/or corrected, via voting or copying the results of correct executions.

2.2 Diversity

Replication will give a basis for effective fault tolerance if the multiple channels do not 

usually fail together on the same demand, or at least they tend not to fail with identical 

erroneous results. To pursue such failure diversity, a designer building a fault-tolerant 

database server can use various forms of diversity:

simple separation of redundant executions. This is the weakest form, but it may 

yet tolerate some failures. It is well known that many bugs in complex, mature 

software products are “Heisenbugs”11 (Gray 1986), i.e., they cause apparently 

non-deterministic failures. When a database fails, its identical copy may not fail, 

even with the same sequence of inputs. Even repeating the same operations on the 

same copy of a database after rollback may in principle not replicate the same 

failure;

design diversity, the typical form of parallel redundancy for fault tolerance against 

design faults: the multiple replicas of the database are managed by diverse DBMS 

products;

10 Simple reasonableness or “safety” checks are often available, but have limited efficacy against some failure scenarios. E.g., 
reasonableness checks may prevent the posting of incredibly large movements in a company’s accounts, yet allow many small 
systematic errors, allowing large cumulative errors to build up before the problem comes to light.
11 The name introduced by Gray (Gray 1986) for bugs that are difficult to reproduce, as they only cause failures under special 
conditions: "strange hardware conditions (rare or transient device fault), limit conditions (out of storage, counter overflow, lost 
interrupt, etc.) or race conditions", “Bohrbugs” instead appear to be deterministic (the failures they cause are easy to reproduce in 
testing).

Page 86 of 278



Ilir Gas hi IV. Fault Diversity Study

data diversity (Ammann and Knight 1988): thanks to the redundancy in the SQL 

language, a sequence of one or more SQL statements can be "rephrased" into a 

different but logically equivalent sequence to produce redundant executions, 

reducing the risk of a failure being repeated when the rephrased sequence is 

executed on the same or another replica of even the same DBMS product. Two of 

the present authors have reported elsewhere (Gashi and Popov 2006) (the 

preceding reference forms part o f this thesis as Paper-4) on a set of "rephrasing 

rules" that would tolerate at least 60% of the bugs examined in our studies. 

Another possibility is varying the “hints” to the “query optimiser” of the DBMS 

that are included with SQL statements.

configuration diversity (which can be seen as a special form of data diversity). 

DBMS products have many configuration parameters, affecting e.g. the amount of 

system resources they can use (amount of RAM and/or the “page size” used by 

the database), or the degree of optimisation to be applied to certain operations: 

given the same database contents, varying these parameters between two 

installations can produce different implementations of the data and the operation 

sequences on them, and thus decrease the risk of the same bug being triggered in 

two installations of the same DBMS product by the same sequence of SQL 

statements.

These precautions can in principle be combined (for instance, data diversity can be used 

with diverse DBMS products), and implemented in various ways, including manual 

application by a human operator.

Among the above forms of diversity, design diversity appears the most likely to avoid 

coincident failures in redundant executions, but it may impose substantial limitations or 

design costs. In the first place, OTS DBMS products, even if they nominally implement 

the operations of the standard SQL language, in practice use different “dialects”: they use 

different syntax for commands that are semantically the same (this problem can be solved 

via automatic, on-the-fly translation); more importantly, each offers extra, non-standard 

features, which would require either more complex translation (“rephrasing” of 

statements, mentioned above as a form of data diversity, can be useful to overcome 

problems with translation, as we have shown (Gashi and Popov 2006)), and/or clients to

Page 87 of 278



Mr Gas hi IV. Fault Diversity Study

be limited to using a common subset among the features of the diverse DBMS products. 

In addition, many aspects of database operation are specified in a non-deterministic 

fashion, making the goal of ensuring consistency among replicas difficult even with 

same-product replication, and more so with diverse replication.

A special case of design diversity is using successive releases of the same DBMS 

product. This will avoid or greatly reduce the problems due to “dialect’' differences. It 

may be expected to tolerate fewer faults, since the successive releases will share large 

portions of their code, including some bugs; but it may be attractive for “smoothing out” 

upgrades which may otherwise cause peaks of unreliability in a database installation, due 

to the new faults introduced, and at the same time evaluating the new release to decide 

when it has reached sufficient dependability to be used alone. Similar practices have been 

applied for embedded and safety critical systems (Cook and Dage 1999), (Tai, Tso et al. 

2002).

We now discuss briefly the architectural options available in designing automated fault 

tolerance solutions with some form of diversity applied to OTS DBMS products. A basic 

"black box" replication architecture delegates the management of redundancy to a layer 

of middleware, as in Fig. 1, so that the multiple DBMS products appear to clients as a 

single server. There may be any number of channels, though typical values would be one 

(using "time redundancy" -  repeating the execution on the single DBMS product -  when 

needed), two or three (the minimum that allows error masking through voting). We will 

normally refer to systems with two replicas, unless otherwise noted.

This basic architecture can be used for various fault tolerance strategies, with different 

trade-offs between coverage for various types of failures, performance, ease of 

integration etc (Anderson and Tee 1990). The most serious design issues concern 

ensuring replica determinism, for those replication schemes that require it. The difficulty 

is that each DBMS product has its own concurrency control strategy, and these are non- 

deterministic and may be different between products. Proprietary replication solutions 

deal with this problem by using knowledge of the implementation of a DBMS product. 

For a middleware layer managing generic OTS products, this is more difficult, especially 

since commercial vendors may keep these details secret. The middleware can instead 

artificially serialize statements in the same way on all replicas (Popov, Strigini et al.

Page 88 of 278



Il ir Gashi IV. Fault Diversity Study

2004), (Jimenez-Peris, M. Patino-Martinez et al. 2002). There are performance costs, but 

these will be acceptable for many installations, though intolerable on others, depending 

on the amount and pattern of write transactions in a specific installation.

A separate requirement, easier to satisfy, is that any voting/comparison algorithm need to 

allow for “cosmetic” differences between equivalent correct results issued by different 

DBMS products, e.g. differences in the padding blank characters in character strings or 

different numbers of digits in the representations of floating point numbers. Trade-offs 

exist here between embedding in the algorithm more knowledge about the idiosyncrasies 

of each specific product, and keeping it more generic at the cost of possibly lower 

coverage.

Fig. 1 - A stylised design of a fault-tolerant database server with two channels. Each channel includes 
an installation of an OTS DBMS product (these may be the same or different products, including 

different releases of the same product) and a replica of the database. The middleware must ensure 
connectivity between the clients and the DBMS products, some filtering of the statements sent by 

clients (e.g. returning error messages to the client for statements that are not supported by both the 
underlying OTS DBMS products), replication and concurrency control, management of fault 

tolerance (error detection; error containment, diagnosis and correction; state recovery), as well as 
translation of SQL statements (“S” in the figure) sent by the clients to the dialects of the respective 
OTS DBMS products (translation may be done in off-the-shelf add-on components). Support for 

“data diversity” through “rephrasing” may also form part of the same components which perform 
translation: rephrasing rules will produce rephrased versions -  “S-reph” in the figure -o f the 

statements sent by clients. The middleware must also adjudicate the results -  “R” in the figure -  
from the OTS DBMS products and return a result to the client|s].

2.3 Design options for fault tolerance via diverse replication

2.3.1 Detection of server failures
Erroneous responses to read statements can be detected by comparing the outputs of the 

channels, detecting those non-self-evident failures that cause some discrepancy between 

these outputs.

Both design diversity and data diversity increase the chance of detection, compared to 

simple replication. Replica determinism is necessary, i.e., discrepancies between correct

Page 89 of 278



Ilir Gashi IV. Fault Diversity Study

results must be rare, as they may cause correct results to be treated as erroneous, and thus 

a performance penalty. Self-evident failures are detected as in non-diverse servers, via the 

server’s error messages (i.e., via the existing error detection mechanisms of the DBMS 

products) and time-outs.

Erroneous updates to the databases that will only cause output discrepancies in the future 

are also a concern. To detect them, the middleware can compare the contents of the 

database replicas, via the standard read commands of the DBMS products. There is a 

degree of freedom in how much should be compared, allowing latency/performance 

trade-offs. The middleware could just ask each DBMS product for the list of the records 

modified in each write operation, and then read and compare their contents. In principle, 

though, a buggy DBMS product could omit some changed records from the list it returns. 

So, a designer could decide to compare a superset of the data that appear to be affected, 

trading off time for better error detection.

Another trade-off is possible between error latency and the overhead imposed by the 

fault-tolerant operation: error detection can be scheduled in a more or less pessimistic 

mode. In the most pessimistic mode, at each operation the middleware performs all its 

comparisons before forwarding to the client the response from the DBMS produces]. 

More optimistically, it can forward most responses immediately, and run the checks in 

parallel with the subsequent operation of the client and DBMS products. A natural 

synchronization point is at transaction commit: the middleware only allows the 

transaction to commit if it detected no failures.

In addition, the middleware can use slack capacity for a background audit task, 

comparing the complete contents of the database replicas.

2.3.2 Error containment, diagnosis and correction
Error containment is tightly linked to detection. For read statements, the middleware 

receives multiple responses for each statement sent to the diverse channels, one from 

each of them, and must return a single response to the client. In general, the middleware 

will present to the client a DBMS product failure as a correct but possibly delayed 

response (masking), or as a self-evident failure (crash - the behaviour of a “fail-silent” 

fault-tolerant server; or an error message - a “self-checking” server). DBMS product

Page 90 of 278



Ilir Gashi IV. Fault Diversity Study

failures can be masked to the clients, if the middleware can select a result that has a high 

enough probability of being correct:

if more than two redundant responses are available, it can use majority voting to 

choose a consensus result, and to identify the failed replica which may need a 

recovery action to correct its state.

with only two redundant channels, if they give different results the middleware 

cannot decide which one is in error. A possibility is not to offer masking, but 

simply a clean failure to be followed by manual diagnosis of the problem. 

Alternatively, additional redundant execution can be run by replaying the 

statements, possibly with “data diversity”, i.e., rephrasing the statements (Gashi 

and Popov 2006).

Depending on how redundant executions are organized, the middleware may need to 

resolve rather complex scenarios, e.g., two diverse DBMS products, A and B, may give 

different responses upon first submission for a read statement, while upon resubmission 

of a rephrased statement A produces an error message and B a result matching A’s 

previous result; but this is a standard adjudication problem (Di Giandomenico and 

Strigini 1990), (Blough and Sullivan 1994), (Parhami 2005) for which the design options 

and trade-offs are well known.

Again, the need for replica determinism is the main design issue with these schemes.

2.3.3 State recovery
Besides selecting probably correct results, adjudication will identify probably failed 

channels in the fault-tolerant database server (diagnosis). This improves availability: the 

middleware can selectively direct recovery actions at the channel diagnosed as having 

failed, while letting the other channel(s) continue providing the service.

The state of a channel can be seen as composed of the state of permanent data in the 

database and that of volatile data in the DBMS product's variables. For erroneous states 

of the latter, since the middleware cannot see the internal state of each executing DBMS 

product, some form of "rejuvenation" (Bao, X. Sun et al. 2005) must be applied, e.g. 

stopping and restarting the DBMS product.

As for state recovery of the database contents, it can be obtained:

Page 91 of 278



Ilir Gasili IV. Fault Diversity Study

via standard backward error recovery -  rollback followed by retry of logged write 

statements which will sometimes be effective (failures due to Heisenbugs), at 

least if the failures did not violate the ACID properties in the affected 

transactions. "Data diversity" will extend the set of failures that can be recovered 

this way. To command backward error recovery, the middleware can use the 

standard database transaction mechanisms: aborting the failed transaction and 

replaying its statements may produce a correct execution. Alternatively or 

additionally, it can use checkpointing (Gray and Reuter 1993): the middleware 

orders the states of the database replicas to be saved at regular intervals (by 

database “backup” commands: e.g., in PostgreSQL the pg_dump command). 

After a failure, a database replica is restored to its last checkpointed state and the 

middleware replays the sequence of (all or just write) statements since then (the 

redo log provided in some DBMS products cannot be used because it might 

contain erroneous writes). For finer granularity of recovery, the checkpoint- 

rollback mechanism can be used within transactions: this allows the handling of 

exceptions within transactions, and should be applied when using data diversity 

through “rephrasing” (Gashi and Popov 2006);

additionally, diversity allows one to achieve forward recovery by essentially 

copying the state of a correct database replica into the failed one (similarly to (Tso 

and Avizienis 1987)). Since the formats of database files differ between the 

DBMS products, the middleware would need to query the correct channels] for 

their database contents and command the failed channel to write them into the 

corresponding records in its database, similar to the solution proposed in (Castro 

and Liskov 1999). This would be time-consuming, perhaps to be completed off-

line, but a designer can use multi-level recovery, in which the first step is to 

correct only those records that have been found erroneous on read statements. 

During any recovery phase, the fault-tolerant server would work with reduced 

redundancy. A two-channel fault-tolerant server would be reduced to a non-fault-tolerant 

configuration. Trade-offs open to the designer involve the duration of the recovery phase 

(it can be shortened by more efficient algorithms or by reducing the extent of the state

Page 92 of 278



Ilir Gashi IV. Fault Diversity’ Study

that is checked/corrected), and the degree of conservatism applied during non-fault- 

tolerant operation.

3. Our studies of bug reports for off-the-shelf DBMS 

products

3.1 Generalities

We use the following terminology. The known bugs for the OTS DBMS products are 

documented in bug report repositories (i.e. bug databases, mailing lists etc). Each bus 

report contains a description of the bug and a bus script for reproducing the failure (the 

erroneous behaviour that the reporter of the bug observed). The bug script may come with 

indications on the database states that are preconditions for the failure (e.g., in the form of 

statements to issue for the database to reach one such state), plus the statements (and 

values for their parameters) which reproduce the failure. In our study we collected these 

bug reports and nm  the bug scripts on installations of each of the DBMS products we 

used (we will use the phrase “runnins a bus” for the sake of brevity).

What constitutes an individual bug is of course not definable by any a priori rule (Frankl, 

Hamlet et al. 1998): people characterize a bug in terms of the apparent mistakes made by 

the developers, of code changes required to fix it, and/or of circumstances on which the 

software fails. We define a "demand" as the complete circumstances (i.e. an initial state 

plus a series of statements) that would cause failure. A bug report does not necessarily 

identify the whole set of demands (the "failure region") on which the product fails and 

would no longer fail if the bug were corrected. When running a bug script, we usually 

tested all DBMS products in our study on at least one demand (the same for all) 

mentioned in the bug report, and listed the bug as present in all DBMS products that 

failed on that demand. In some cases, we also tested the DBMS products with other 

similar demands - variations of the statements and/or parameters specified in a bug script. 

We did this when a bug script did not seem to trigger a failure in the DBMS product to 

which it related, to check whether the bug did appear to be present, but the reporter may 

have been imprecise in characterizing the conditions for triggering it; and when a bug 

script caused failures in more than one DBMS products, to study and compare the

Page 93 of 278



llir Gas hi IV. Fault Diversity Study

“failure regions” identified in the two products, especially to determine their overlap and 

whether the DBMS products fail identically throughout them.

3.1.1 Reproducibility of failures
As mentioned earlier, DBMS products offer features that extend the SQL standard, and 

these extensions differ between products. Bugs affecting these extensions literally cannot 

exist in a DBMS product that lacks them. We called these bugs “dialect-specific”. For 

example, Interbase bug 217138 (Gashi 2006) affects the use of the UNION operator in 

VIEWs, which PostgreSQL 7.0 VIEWs do not offer, and thus cannot be run in PostgreSQL 

7.0: it is a dialect-specific bug.

Another reproducibility issue arises when a bug script does not cause failure in the 

DBMS product for which the bug was reported. We called these bugs ‘Unreproduced' 

bugs. They may be Heisenbugs (Gray 1986) or bugs reported without enough detail for 

reproducing them. Compared to our preliminary report (Gashi, Popov et al. 2004b), we 

have been able to trigger some more previously ‘ Unreproduced ’ bugs (and thus we report 

updated statistics): by running variations of the incomplete bug script, as mentioned 

above; or thanks to more complete bug scripts posted after our collection period or to 

mailing lists other than the main repository for the respective DBMS product.

3.1.2 Classifications of failures
We ran each bug first on the DBMS product for which it was reported, and then (after 

translating the script into the appropriate SQL dialect[s]) on the other DBMS produces]. 

We classified bugs into Reproduced and Unreproduced and into dialect-specific and non-

dialect-specific bugs, as explained previously, and failures into different categories that 

would require different fault tolerance mechanisms:

Engine Crash failures: a crash or halt of the core engine of the DBMS product. 

Incorrect Result failures, which are not engine crashes but produce incorrect 

outputs: the results do not conform to the DBMS product’s specification or to the 

SQL standard.

Performance-related failures. We classified as performance failures: i) failures 

that are so classified in bug reports; ii) failures observed by us if either the DBMS 

product clearly “hung” or, whatever the observed latency, the bug script generated

Page 94 of 278



llir Gas hi IV. Fault Diversity Study

a query plan indicating potential performance problems, e.g. with an un-utilized 

column “index” in a SELECT statement using that column.

Other failures: e.g. security related failures, such as incorrect privileges for 

database objects (tables, views etc.)

We further classified failures according to their detectability by a client of the DBMS 

products:

Self-Evident Failure: engine crash failures, internal failures signalled by DBMS 

product exceptions (error messages) or performance failures 

Non-Self-Evident Failures: incorrect result failures without DBMS product 

exceptions, with acceptable response time.

For clients with access to at least two diverse DBMS products the failures would be:

Divergent failures: any failures where DBMS products return different results. All 

failures affecting only one out of two (or at most n-1 out of n) DBMS products are 

divergent. Even if all fail but ‘differently’ the failure will still be divergent. 

Non-divergent failures: the ones for which two (or more) DBMS products fail 

with identical symptoms. For some bugs, all demands we ran caused non- 

divergent failures, for others only some demands did. In the tables that follow we 

use the labels “non-divergent -  all demands” and “non-divergent -  some 

demands” for these two cases.

All the divergent or self-evident failures are detectable by a client of the database server 

when at least two replicas of the database are available, on different DBMS products. 

Failures that are non-divergent and non-self-evident are non-detectable.

3.2 The first study

3.2.1 Description of the study
In our first study (Gashi, Popov et al. 2004b) we used four DBMS products: two 

commercial (Oracle 8.0.5 and Microsoft SQL Server 7, without any service packs 

applied) and two open-source ones (PostgreSQL Version 7.0.0 and Interbase Version 

6.0). Interbase, Oracle and MSSQL were all run on the Windows 2000 Professional 

operating system; PostgreSQL 7.0.0 (not available for Windows) was run on RedFIat 

Linux 6.0 (Hedwig). We use the following abbreviated identifiers (for PostgreSQL we

Page 95 of 278



Ilir Gashi IV. Fault Diversity Study

include the release number in the identifier since we will report later on results of one of 

its later releases):

- PG 7.0 for PostgreSQL 7.0.0

- IB for Interbase 6.0

- OR for Oracle 8.0.5

- MS for Microsoft SQL Server 7

For each of these DBMS products there is an accessible repository of reports of known 

bugs. We collected the IB bugs from SourceForge (SourceForge), the PG 7.0 bugs from 

its mailing list, (PostgreSQL), MS bugs from its service packs site (Microsoft) and OR 

bugs from the Oracle Metalink (Oracle).

We only used bugs that caused failure of a DBMS product’s core engine. Other bugs, e.g. 

causing failures of a client application tool, various connectivity (JDBC/ODBC etc.) or 

installation-specific bugs were not included in the study, because in a future fault-tolerant 

architecture these functions would be provided by the middleware.

For each reported bug, we attempted to run the corresponding bug script. Full details are 

available in (Gashi 2006) (and also provided as Appendix A o f this thesis).

3.2.2 Detailed results
In total, we included in the study 181 bug reports: 55 for IB, 57 for PG, 51 for MS and 18 

for OR. None of these bugs was reported for more than one DBMS product. Out of these 

181 bugs, 70 were dialect-specific (could be run in only one of the four DBMS products); 

58 could be run in all four DBMS products; 26 could be run in only two DBMS products 

and 27 in only three DBMS products.

Table 5 contains the results of the first study. The structure of the table is as follows. 

Each grey column lists the results produced when the bugs reported for a certain DBMS 

product were run on that DBMS product. For example, we collected 55 known IB bugs, 

of which, when run on our installation of IB, 8 did not cause failures (Unreproduced). 

The 47 bugs that caused failures are further classified in the part of the column below the 

double horizontal line, after the “Failure observed” row. Performance failures and engine 

crashes are self-evident. Incorrect Result failures and “Other” failures can be self-evident 

or non-self-evident, depending on whether the DBMS product gives an error message.

Page 96 of 278



Ilir Gashi IV. Fault Diversity’ Study

To the right of the grey column, three columns present the results of running the IB bugs 

on the other three DBMS products. For example, we can see that out of 55 IB bugs, 24 

cannot be run in PG 7.0 (dialect-specific bugs). Of the other 31, which we ran in PG 7.0: 

3 are classified as “Undecided Performance” meaning that the bug report indicated a 

“performance failure” but we could not decide, from the query plan and observed 

response time, whether a performance failure also occurs in PG 7.0; 27 did not cause a 

failure in PG 7.0; only 1 caused a failure in both IB and PG 7.0. The table shows that this 

particular failure was a non-self-evident incorrect result. Details about the bugs causing 

coincident failures were given in (Gashi, Popov et al. 2004b).

As for the failure types, we can see that most of the bugs for each DBMS product cause 

Incorrect Result failures. The percentage of non-self-evident failures is also high: they 

range from 44% for MS to 66% for IB. Engine crashes are less frequent: they range from 

13% for MS to 21.5% for OR.
Table 5 - Study 1: Results of running the bug scripts on all four DBMS products. 

Abbreviations: IB -  Interbase 6.0; PG 7.0 - PostgreSQL 7.0.0; OR -  Oracle 8.0.5; MS -  Microsoft 
__________________________________ SQL Server 7. ________________________________

IB ! PG 
I 70

OR MS PG
7.0 IB OR MS OR IB MS PG

7.0 MS IB OR PG
7.0

Total bug scripts 55 55 55 55 57 57 57 57 18 18 18 18 51 I 51 51 51
Bug script cannot be run 
(Functionality Missing) n/a J 24 21 17 n/a 33 27 24 n/a 14 14 13 n/a I 36 35 31

Total bug scripts run 55 ¡1 31 34 38 57 24 30 33 18 4 4 5 51 ¡I 15 16 20

Undecided performance 0 I 3 3 3 0 0 I 0 0 o I 0 0 1 0 I 3 4 2
No failure observed 8 I 27 31 33 5 24 J 30 31 4 ¡ 4 4 3 12 I 11 12 12
Failure observed 47 I 1 0 2 52 0 0 2 14 0 0 1 39 ¡I 1 0 6

Ty
pe

s 
of

 fa
ilu

re
s

Poor Performance 3 0 0 0 0 0 I 0 0 1 I! 0 0 0 6 0 0 0
Engine Crash 7 0 0 0 11 0 I 0 0

3  I  0 0 0 5 0 0 0
Incorrect
Result

Self-evident 4 0 0 1 14 0 0 1 3 0 0 0 10 0 0 6
Non-self-evident 23 1 0 1 20 0 0 Ì 7 I 0 0 1 17 1 0 0

Other
Self-evident 2 0 0 0 2 0 II 0 0 0 I 0 0 0 1 0 0 0
Non-self-evident 8 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0

3.2.3 Implications for fault tolerance: two-version combinations
We now look more closely at the two-version combinations of the four different DBMS 

products. We want first to find out how many of the coincident failures are detectable

Page 97 of 278



U ir Gasili IV. Fault Diversity Study

(l.e. divergent or self-evident) in the two-version systems. Table 6 contains a summary of 

the results on each of the six possible two-version combinations12.

Only twelve coincident failures occurred (note that there were thirteen bugs that caused 

failures in a different DBMS product than the one for which they were reported (as 

detailed in Table 5); one bug (MS bug report 56775) (Gashi 2006), although reported for 

MS, did not cause failure in MS (Unreproduced) but did cause failure in PG 7.0); only 

four of these twelve are non-detectable. We can see that diversity allows detection of 

failures for at least 95% of these bugs (41 out of 43, for the IB+MS pair). Moreover, it 

would support masking and forward recovery (following the self-evident failure of a 

single channel) for a fraction of bugs varying between 11/32 (34%) for the IB+OR pair) 

and 11/18 (61%) for the OR+MS pair. More details on these bugs are in (Gashi, Popov et 

al. 2004b) and (Gashi 2006).
Table 6 - Study 1: summary of results for the two-version combinations. 
abbreviations: s.e. -  self-evident failure', tt.s.e. - non-self-evident failure.

Pairs of 
DBMS 

Products

Total 
number 
of bug 
scripts 

run

Bugs scripts 
causing 

failure (in at 
least one 

DBMS 
product)

One out of two DBMS 
products failing Both DBMS products failing

s.e. n.s.e.
Non -  Divergent Divergent

All Demands Some Demands 1 s.e. & 
1 n.s.e. 2 s.e. 2

n.s.e.s.e. n.s.e. s.e. n.s.e.

IB + PG 7.0 71 49 22 26 0 i 0 0 0 0 0
IB + OR 69 32 11 21 0 0 0 0 0 0 0
IB + MS 78 43 17 23 1 2 0 0 0 0 0
PG 7.0 + OR 72 33 16 16 0 0 0 0 0 0 1

PG 7.0 + MS 85 48 20 21 0 1 0 0 3 3 0
OR + MS 80 18 11 7 0 0 0 0 0 0 0

3.3 The second study

3.3.1 Description of the study
To repeat the study on later releases of DBMS products, we collected 92 new bug reports 

for the later releases of the open-source DBMS products: PostgreSQL 7.2 and Firebird

1.0 (abbreviated as PG 7.2 and FB respectively; Firebird is the open-source descendant of 

Interbase 6.0. The later releases of Interbase are issued as closed-development by 

Borland). We excluded the closed-development DBMS products as most of their bug

12 Here we only include bugs (reported for any of the four DBMS products) that could be run on both DBMS products, i.e. we exclude 
dialect-specific bugs. For instance, Table 6 shows that a total of 71 bugs could be run on both IB and PG 7.0. In detail, 31 of these 
were reported for IB and 24 for PG; these two numbers can be deduced from Table 5. The remaining 16 were bugs of either OR or MS 
which could be run on both IB and PG 7.0 -  these numbers are not directly deducible from Table 5 due to some bugs being dialect- 
specific for one DBMS product but not another; they can however be obtained from (Gashi 2006) or Appendix A (Table A2).

Page 98 of 278



Ilir Gashi IV. Fault Diversity Study

reports lacked the bug scripts needed to trigger the faults. But we still translated the new 

bug scripts of bugs reported for the open-source DBMS products into the dialects of the 

closed-development ones, and ran them in the releases used in our first study (Oracle 

8.0.5 and MSSQL 7.0). The results of the second study are shown in Table 7 (for full 

details see (Gashi 2006)). The classifications of faults and failures are as defined in 

Section 3.1.

Incorrect results are still the most frequent failures. Engine crashes are slightly more 

frequent than in the first study but still no more than 22.2%. The number of non-self- 

evident failures is lower than in the first study: 35% for PG 7.2 and 53% in FB. The 

number of bugs causing coincident failures was again low: in the second study we 

observed a total of 5 coincident failures. None of the bugs caused failures in more than 

two DBMS products. The coincident failures are detailed in Section 3.3.3.
Table 7 - Study 2: results of running the bug scripts of FB and PG on all four DBMS products. 

Abbreviations: FB -  Firebird 1.0; PG 7.2 - PostgreSQL 7.2; OR -  Oracle 8.0.5; MS -  Microsoft SQL
Server 7

FB PG 7.2 OR MS PG 7.2 FB OR MS

Total bug scripts 43 43 43 43 49 49 49 49

Bug script cannot be run (Functionality Missing) n/a 12 15 13 n/a 29 29 30
Total bug scripts run 43 31 28 30 49 20 20 19

Undecided performance 0 1 2 1 0 2 2 0
No failure observed 4 29 26 27 4 17 18 18
Failure observed 39 1 0 2 45 1 0 1

Poor Performance 4 0 0 0 5 0 0 0
</>Q>k. Engine Crash 6 0 0 1 10 0 0 1
3
TO Incorrect Self-evident 7 0 0 0 13 1 0 0
«*-O Result Non-self-evident 20 1 0 1 15 0 0 0
COO)Q. Other

Self-evident 1 0 0 0 1 0 0 0
>%1- Non-self-evident 1 0 0 0 1 0 0 0

3.3.2 Implications for fault tolerance: two-version combinations
Table 8 shows the results of the two-version combinations of the 4 DBMS products used 

in the second study. None of the bugs caused non-detectable failures for all demands. 

Here there are some bugs that are “non-divergent” for “some demands” only. One caused 

non-detectable failure only for a few demands in the common failure region, but 

detectable failure on the others. Three bugs caused self-evident failures in both DBMS 

products and one caused non-self-evident failure in one and self-evident failure in the 

other.

Page 99 of 278



Ilir Gashi IV. Fault Diversity Study

So, diversity allows detection of failures for all these bugs. It would allow masking and 

forward recovery (following the self-evident failure of a single channel) for a fraction of 

bugs varying between 11/28 (39%) for the FB+MS pair and 12/20 (60%) for the PG 

7.2+MS pair.
Table 8 - Study 2: summary of results for the two-version combinations. 
abbreviations: s.e. -  self-evident failure-, n.s.e. - non-self-evident failure.

Pairs of 
DBMS 

Products

Total 
number 
of bug 
scripts 

run

Bugs scripts 
causing 

failure (in at 
least one 

DBMS 
product)

One out of two DBMS 
products failing Both DBMS products failing

s.e. n.s.e.
Non - Divergent Divergent

All Demands Some Demands 1 s.e. & 
1 n.s.e. 2 s.e. 2

n.s.e.s.e. n.s.e. s.e. n.s.e.

FB + PG 7.2 51 47 26 19 i 0 0 i 0 0 0
FB + OR 46 25 10 15 0 0 0 0 0 0 0
FB + MS 46 28 11 15 0 0 1 0 1 0 0
PG 7.2 + OR 47 21 13 8 0 0 0 0 0 0 0
PG 7.2 + MS 47 20 12 7 0 0 1 0 0 0 0

3.3.3 Common bugs
It is interesting to describe in some more detail some of the bugs that caused coincident 

failures, listed in Table 9, and speculate about the probable frequency and severity of the 

failure observed (similar accounts for bugs in Study 1 are in our preliminary report

(Gashi, Popov et al. 2004b)).
Table 9 - Bugs that cause coincident failures

O
■S §>

C  o  -Q  g

1 * 9 *  I  w £ t
* 8 1 »LL Û > u

On which additional DBMS product was failure observed?

FB PG OR MS
FB N/A 1_ - (Bug ID 926001) 0 2 - (BugIDs 910423, 926624)
PG 1 (Bug report date 16/05/2003) N/A 0 1 -  (BugID 847)

Arithmetic-related bugs

Firebird bug 926001 (Gashi 2006) causes non-self-evident failure in both FB and PG 7.2 

when the DBMS product is asked to add two values of type Timestamp (a timestamp 

value contains both date and time information). Due to rounding errors, FB always gives 

a result that is 1 second less than the correct result, whereas PG 7.2 adds the dates but not 

the time of the second timestamp value (i.e. it treats the operation as Timestampi + 

Date2). The failure rate for this bug would be highest in applications that require high 

precision arithmetic computations with timestamp datatypes. On most demands the 

erroneous results of the two DBMS products would be different: the failure is non- 

divergent only for some (probably rare) demands.

Page 100 of 278



Ilir Gashi IV. Fault Diversity Study

FB bug 926624 (Gashi 2006) causes a crash in both FB and MS. The crash is due to a 

stack overflow from attempting to use in the column part of the SELECT statement an 

arithmetic expression longer than: 8000 characters in FB; 2834 characters in MS. 

Therefore FB fails for a smaller set of demands than MS. The expected correct behaviour 

is for the DBMS product to process the statements, or to give an error message that warns 

the user of the maximum allowed expression length. The failure rate for this bug would 

probably be low for most installations, as SELECT statements would seldom contain such 

long arithmetic expressions.

Miscellaneous bugs

FB bug 910423 (Gashi 2006) causes failure in both FB and MS. Fig. 2 shows the 

demands for which they fail. The failure consists in allowing the datatype of a table 

column to be changed from integer to string even when the string type is specified to be 

shorter than needed to hold the data already stored in the column. The expected correct 

behaviour is for the DBMS product to refuse (with an error message) to change the 

datatype of either any column that already contains data, or at least those containing data 

that wouldn’t fit in the new length specified. If a client later tries to read the column 

affected, the two DBMS products react differently: FB responds with an error message 

(self-evident failure), while MS returns a symbol. We have therefore classified the 

failure as divergent. As shown, MS actually fails on a superset of the demands on which 

FB does. It is difficult to conjecture how often applications change the datatypes of 

columns and hence the likely failure rates for this bug. The severity of this failure is 

different in the two DBMS products. FB does not lose the data stored in the column: if 

you just change the type again to a long enough string (>=10 in the example above) then 

the data can again be read. MS instead truncates the data item to the new length, so that it 

is irremediably lost.

Page 101 of 278



Ilir Gashi IV. Fault Diversity Study

New length of the column in string (varchar)

Fig. 2 - FB bug 910423: demands on which MS fails (light grey shaded boxes) and demands for
which both FB and MS fail (dark grey).

PG 7.2 bug 847 (Gashi 2006) causes failure in both PG 7.2 and MS. PG 7.2 allows the 

creation of exceptions that return a message longer than 4000 characters, but then crashes 

if the exception is raised. The correct behaviour is for a DBMS product to give an error 

message once its maximum length for exception messages is reached: either when the 

exception is defined or when attempting to raise the exception. The same problem occurs 

in MS, but the threshold message length is even smaller (440 characters), and thus 

failures would be more frequent.

The PG 7.2 bug reported on 16 May 2003 (with no ID in the PG 7.2 mailing list (Gashi

2006)) causes an error message in PG 7.2 and FB, although no error exists. The bug script 

is given below. The UPDATE statement causes the contents of the database to violate the 

UNIQUE CONSTRAINT (a constraint over a set of columns requiring that no two values for 

different rows be equal) at some intermediate stage, although the final state does not 

violate it:
CREATE TABLE TEST2 (V1 I NT, V2 INT, CONSTRAINT UQ_TEST UNIQUE (V1 ,V2));

INSERT INTO TEST2 VALUES (0,0);

INSERT INTO TEST2 VALUES (0,1);

INSERT INTO TEST2 VALUES (0,2);

UPDATE TEST2 SET V2=V2+2;

Violation of UNIQUE KEY constraint "UQ_TEST" on table "TEST2"

OR and MS correctly execute the script without error messages; PG 7.2 and FB perform 

the UNIQUE CONSTRAINT checks at intermediate states (in this case after each row is 

updated), which causes the exception to be raised. The failure is not specific to this bug 

script. It can be triggered with any UNIQUE CONSTRAINT on integer, real or float 

datatypes affecting single or multiple columns, whenever an update is attempted that will

Page 102 of 278



Ilir Gashi IV. Fault Diversity Study

(at an intermediate step during the execution) set a value of a row to that of an existing 

row in the table, although at the end of the execution of the statement no violations would 

be present. On every set of parameter values that we tried, either both DBMS products 

failed or neither did. The failure rate for this bug is expected to be relatively high in 

update-intensive applications if UNIQUE CONSTRAINT is used.

3.4 Newer vs. older releases (open-source DBMS products)

We now look more closely at those DBMS products that were used in both studies (i.e. 

the two open-source products). We ran all the new bugs reported for the newer releases 

on the older releases, to check how many already existed there. The results are in the 

leftmost eight columns of Table 10 (full details are in (Gashi 2006)).

The structure of Table 10 is the same as that of Table 5 and Table 7. We can see that 33 

bugs reported for FB also cause failure in the older release IB. Of the six that do not 

cause failures in IB, four were Unreproduced in FB. So only 2 bugs that caused failure in 

FB (the new release) appear to be new bugs, introduced in functionalities that used to 

work correctly. The reason might be that FB 1.0 was mainly a bug fix release, with no 

major enhancements, which probably also reduced the number of new problems that 

could be introduced.

The situation is different for PG 7.2, which featured many more enhancements, for 

example the support for OUTER JOINS in SELECT statements. We can see that 13 of the 

bugs reported for PG 7.2 cannot be run at all in the older release (they affect newly added 

functionality) and, more importantly, 17 of the other 36 bugs do not cause failures in the 

older release (2 of them are Unreproduced in both releases). This means that the 

development of the newer release introduced many bugs in functionality that used to 

work correctly in the old release.

We also ran the old bugs in the new releases of the DBMS products to see how many had 

been fixed. The results are in the rightmost eight columns of Table 10 (full details are in 

(Gashi 2006)).

More PG 7.0 bugs were fixed in PG 7.2 than the IB bugs fixed in FB. This high number 

of fixes, with the attendant risk of new bugs, may be one cause of the relatively many PG

7.2 bugs affecting pre-existing PG 7.0 functionalities^/ the first half of Table 10).

Page 103 of 278



Ilir Gashi IV. Fault Diversity Study

Table 10 - The results of running the new scripts reported for FB and PG 7.2 on the older releases 
(IB and PG 7.0 respectively) And the bugs reported for the old releases on the new ones 

Abbreviations: FB -  Firebird 1.0; IB -  Interbase 6.0; PG 7.0 - PostgreSQL 7.0.0; PG 7.2 - 
___________________________________PostgreSQL 1.2.___________________________________

FB IB PG
7.2

PG
7.0

PG
7.2

PG
7.0 FB IB IB FB PG

7.0
PG
7.2

PG
7.0

PG
7.2 IB FB

Total bug scripts 43 43 43 43 49 49 49 49 55 55 55 55 57 57 57 57

Bug script cannot be run 
(Functionality Missing) n/a 4 12 26 n/a 13 29 29 n / 

a n/a 24 21 n/a n/a 33 33

Total bug scripts run 43 39 31 17 49 36 20 20 55 55 31 34 57 57 24 24

Undecided performance 0 0 1 1 0 0 2 2 0 0 3 3 0 0 0 0

No failure observed 4 6 29 16 4 17 17 17 8 33 27 31 5 40 24 24

Failure observed 39 33 1 0 45 19 1 1 47 22 1 0 52 17 0 0

Poor Performance 4 3 0 0 5 1 0 0 3 2 0 0 0 0 0 0

</>
£

J3

Engine Crash 6 6 0 0 10 3 0 0 7 2 0 0 11 2 0 0

Incorrect Self-evident 7 6 0 0 13 8 1 1 4 2 0 0 14 6 0 0
Result Non-self-evident 20 1 1 1 0 15 5 0 0 23 10 1 0 20 5 0 0

V)
CD Other Self-evident 1 1 0 0 1 1 0 0 2 2 0 0 2 0 0 0
a
? Non-self-evident 1 1 0 0 1 1 0 0 8 4 0 0 5 4 0 0

3.4.1 Implications for fault tolerance: the open-source two-version 
combinations
Table 11 shows the results for all the bugs, from both studies, that could be run on the 

various open-source combinations.

The first two rows concern the pairs of different releases of the same DBMS product. For 

PostgreSQL, we see that out of 93 bugs that caused failure in at least one of the releases,

7.0 or 7.2, only 35 cause failures in both; 58 bugs cause failures in only one of the 

releases. So, using diverse releases of the same DBMS product in a fault-tolerant 

configuration, as discussed in Section 2, does provide some protection against upgrade 

problems and can help to assure higher dependability, ffowever there are still many bugs 

causing failures in both releases of the same DBMS product:

57 in Interbase/Firebird 

35 in PostgreSQL.

This can be compared with the four DBMS product pairs using different DBMS products 

(last four rows in Table 11), where we get at most 2 bugs that cause coincident failures. 

This is because:

The IB 6.0 bug 223512(2) which caused non-divergent coincident failure in IB

6.0 and PG 7.0, has been fixed in the newer releases of both DBMS products.

Page 104 of 278



11 ir G as h i IV. Fault Diversity Study

The FB 1.0 bug 926001 (Gashi 2006), which causes coincident failure in the new 

releases FB 1.0 and PG 7.2, did not cause a failure in IB 6.0 and cannot be run in 

PG 7.0 (dialect-specific).

The main conclusion is to confirm the high level of fault diversity between these DBMS 

products, and thus potential advantages of a diverse redundant fault-tolerant server. Using 

different releases of the same DBMS product would also yield dependability gains, but 

these seem nowhere near as high as the gains that can be achieved by using diverse 

DBMS products.
Table 11 - Summary of the results of both studies for open-source two-version combinations 
_________ (abbreviations: s.e. -  self-evident failure', n.s.e.- non-self-evident failure)_________

Pairs of 
DBMS 

Products

Total 
number 
of bug 
scripts 

run

Bugs scripts 
causing 

failure (In at 
least one 

DBMS 
product)

One out of two DBMS 
products failing Both DBMS products failing

s.e. n.s.e.
Non - Divergent Divergent

All Demands Some Demands 1 s.e. & 
1 n.s.e. 2 s.e. 2

n.s.e.s.e. n.s.e. s.e. n.s.e.

FB 1.0 + IB 6.0 157 84 8 19 24 33 0 0 0 0 0

PG 7.2 + PG 7.0 164 93 33 25 20 15 0 0 0 0 0

FB 1.0 + PG 7.2 127 65 33 30 1 0 0 1 0 0 0

FB 1.0 + PG 7.0 106 65 34 30 1 0 0 0 0 0 0

IB 6.0 + PG 7.2 127 79 37 41 1 0 0 0 0 0 0

IB 6.0 + PG 7.0 106 77 39 37 0 1 0 0 0 0 0

4. Discussion
The results presented in Section 3 are intriguing and suggest that assembling a fault- 

tolerant database server from two or more of these OTS DBMS products could yield 

large dependability gains. But they are not definitive evidence. Apart from the sampling 

difficulties caused e.g. by lack of certain bug scripts, it is important to clarify to what 

extent our observations allow us to predict such gains. We gave a detailed discussion of 

the difficulties in (Gashi, Popov et al. 2004b). In summary:

the reports available concern bugs, not how many failures each caused. They do 

not tell us whether a bug has a large or a small effect on reliability, although the 

unknown faults -  those that have not yet caused failures -  would tend to have 

stochastically lower effect on reliability than those that did cause failures. A better 

analysis would be obtained from the actual failure reports (including failure 

counts), if available to the vendors. Flowever, vendors are often wary of sharing 

such detailed dependability information with their customers;

Page 105 of 278



llir Gashi IV. Fault Diversity Study

less than 100% of the failures that occur, and thus also of the bugs causing them, 

are reported. However, blatant failures are more likely to be reported than subtle 

(arguably more dangerous) failures. Therefore failure underreporting probably 

causes a bias towards underestimating the frequency of these subtler failures for 

which diversity would help;

an organization needs to predict the dependability of its specific installation^] of 

a diverse server, compared to a single DBMS product, which depends on the 

organization’s (or each specific installation’s) usage profde, which differs -  

perhaps markedly -  from the aggregate profile of the user population which 

generated the bug reports.

How can then individual user organizations decide whether diversity is a suitable option 

for them, with their specific requirements and usage profiles? As usual for dependability-

enhancing measures, the cost is reasonably easy to assess: costs of the DBMS products, 

the required middleware, difficulties with client applications that require vendor-specific 

features, hardware costs, run-time cost of the synchronization and consistency-enforcing 

mechanisms, and possibly more complex recovery after some failures. The gains in 

improved reliability and availability (fewer system failures and easier recovery from 

some failures, to be set against possible extra failures due to the added middleware), and 

possibly less frequent upgrades, are difficult to predict except empirically. Using ballpark 

figures may provide useful guidelines: there are studies that suggest that the “Total Cost 

of Ownership” may exceed the initial investment by more than one order of magnitude, 

and the cost of recovery from failures is a major part of this (Patterson, Brown et al. 

2002). This uncertainty will be compounded, for many user organizations, by the lack of 

trustworthy estimates of their baseline reliability with respect to subtle failures: databases 

are used with implicit confidence that failures will be self-evident.

Despite all these uncertainties, for some users our evidence already means that a diverse 

server is a reasonable and relatively cheap precautionary choice, even without good 

predictions of its effects. These are users who have: serious concerns about dependability 

(e.g., high costs for interruptions of service or for undetected incorrect data being stored); 

applications which use mostly the core features common to multiple off-the-shelf DBMS 

products (recommended by practitioners to improve portability of the applications);

Page 106 of 278



Ilir Gashi IV. Fault Diversity Study

modest throughput requirements for write statements, which make it easy to accept the 

synchronization delays of a fault-tolerant diverse server.

5. Related work

5.1 Fault tolerance in databases

Fault tolerance in databases has been thoroughly studied and successfully applied in 

established products. We already mentioned standard database mechanisms such as 

transaction rollback and retry and checkpointing, which can be used to tolerate faults due 

to transient conditions. These techniques can be used with or without data replication 

(discussed in Section 2) in the databases.

5.2 Interoperability between databases

Due to the incompatibilities between the SQL “dialects” of different DBMS products we 

emphasized the need for SQL translators in the middleware of a diverse fault-tolerant 

server. Similar ideas have been applied for increasing interoperability between DBMS 

products (EnterpriseDB 2006), (Janus-Software 2006): the grammar of a DBMS product 

is re-defined to make it compatible with that of another DBMS product, while keeping 

the core DBMS product engine unchanged.

5.3 Design diversity

Fault tolerance through design diversity has been studied for over 30 years. The literature 

is vast: the interested reader can refer to survey papers about the effectiveness of design 

diversity (Littlewood, Popov et al. 2001), and about design aspects (Strigini 2005). More 

recent results on the effectiveness of design diversity include measurements with very 

large populations of amateur programmers (van der Meulen, Bishop et al. 2004), and 

more detailed probabilistic models on how development affects the reliability of fault- 

tolerant software (Popov and Littlewood 2004). The literature points at substantial 

reliability gains from diversity, although it cautions on the difficulty of predicting them, 

since independence of failures between diverse versions should not be expected.

Our study differs from the earlier experimental studies in three main ways:

Page 107 of 278



Ilir Gashi IV. Fault Diversity Study

we study large software products - DBMS products - rather than the small 

programs used in the earlier experiments;

we study samples of known bug reports, not failures observed during testing; 

we study coincident failure points or regions rather than defects in source code; 

this is different, for instance, from the analysis by Brilliant et al (Brilliant, Knight 

et al. 1990) of the causes of coincident failures in the Knight and Leveson 

experiment (Knight and Leveson 1986).

5.4 Empirical studies of faults and failures

The usefulness of diversity depends on the frequency of those failures that cannot be 

tolerated without it. There have been comparatively few studies.

Gray studied the TANDEM NonStop system (with non-diverse replication) (Gray 1986). 

Over the (unspecified) measurement period, 131 out of 132 faults were “Heisenbugs” and 

thus tolerated. A later study of field software failures for the Tandem Guardian90 

operating system (Lee and Iyer 1995) found that 82 % of the reported failures were 

tolerated. However, the others caused failure of both non-diverse processes in a Tandem 

process, and thus system failure.

Other related studies concern the determinism and fail-stop properties of database 

failures, but, like our study, they concern faults rather than failure measurements. A 

study (Chandra and Chen 2000) examined fault reports of three applications (Apache 

Web server, GNOME and MySQL DBMS product). Only a small fraction of the faults 

(5-14%) were Heisenbugs triggered by transient conditions, that would be tolerated by 

simple rollback and retry. However, as the authors point out, the reason why they, like us, 

found few Heisenbugs, might be that people are less likely to report faults that they 

cannot reproduce. Using instead fault injection, the same authors also found (Chandra 

and Chen 1998) that a significant number of their injected faults (7%) violated the fail- 

stop model by writing incorrect data to stable storage. Although this fell to 2% when 

using the Postgres95 transaction mechanism, 2% is still high for applications with 

stringent reliability requirements.

Page 108 of 278



llir Gashi IV. Fault Diversity Study

5.5 Diversity with off-the-shelf applications

Several research projects have addressed architectures supporting software fault tolerance 

for OTS software. Some have as their main aim intrusion tolerance, e.g.: HACQIT 

(Reynolds, Just et al. 2002), which demonstrated diverse replication (with two OTS web 

servers - Microsoft’s IIS and Apache) to detect failures (especially maliciously caused 

ones) and initiate recovery; SITAR (Wang, Gong et al. 2001), an intrusion-tolerant 

architecture for distributed services and especially COTS servers; the Cactus architecture 

(Hiltunen, Schlichting et al. 2000), intended to enhance survivability of applications 

which support diversity among application modules; DIT (Valdes, M. Almgren et al. 

2003), an intrusion-tolerant architecture using diversity at several levels (hardware 

platform, operating system platform, and web servers); the MAFTIA (Dacier (Editor) 

2002) project, which delivered a reference architecture and supporting mechanisms. 

Others target fault tolerance against mainly accidental faults, e.g.: the BASE approach 

(Castro, Rodrigues et al. 2003) focuses on supporting state recovery for diverse replicas 

of components via a common abstract specification of a common abstract state, the initial 

state value and the behaviour of each component; the GUARDS (Powell, Arlat et al. 

1999) and Chameleon (Kalbarczyk, Iyer et al. 1999) architectures aim at supporting 

multiple application-transparent fault tolerance strategies using COTS hardware and 

software components.

6. Conclusions
We have reported two studies of samples of bug reports for four popular off-the-shelf 

SQL DBMS products, plus later releases of two of them. We checked for bugs that would 

cause common-mode failures if the products were used in a diverse redundant (fault- 

tolerant) architecture: such common bugs are rare. For most bugs, failures would be 

detected (and may be masked) by a simple two-diverse configuration using different 

DBMS products. In summary:

out of the 273 bug scripts run in both our studies, we found very few bug scripts 

that affected two DBMS products, and none that affected more than two;

Page 109 of 278



Ilir Gashi IV. Fault Diversity Study

only five of these bug scripts caused identical, non-detectable failures in two 

DBMS products; of these five, one caused non-detectable failures on only a few 

among the demands affected.

The results of the second study, on later releases of the same products, substantially 

confirmed the general conclusions of the first study: the factors that make diversity useful 

do not seem to disappear as the DBMS products evolve.

Using successive releases of the same product for fault tolerance also appeared useful, 

although less so. We found a high level of fault diversity between successive releases of 

PostgreSQL: most of the old bugs had been fixed in the new release; many of the newly 

reported bugs did not cause failure (or could not be run at all) in the old release. This 

special form of design diversity is attractive for users who need the SQL “dialectal” 

features of a specific DBMS product, but gives less dependability benefits than using 

different products. With data diversity also a possibility, users have various trade-offs 

available between the wishes to exploit dialectal features and to get effective diversity. 

These results must be taken with caution, as discussed in Section 4, and their immediate 

implications vary between users. Our evidence suggests that the forms of redundancy and 

diversity discussed here will improve the dependability of DBMS products, perhaps 

dramatically. For some classes of DBMS installations, diversity could already be 

recommended as a prudent and cost-effective strategy. Yet, users with "ultra-high- 

dependability" requirements (Littlewood and Strigini 1993) would still have great 

difficulty achieving confidence that their requirements are satisfied. Our finding some 

common faults, however rare, certainly suggests caution. Such users might adopt our 

proposals, but still retain the database- or client-specific solutions mentioned in Section 

2.1. The topic of diversity with OTS software certainly deserves further study.

The need for middleware is an obstacle for users wishing to try out diversity in their 

applications. But our results provide a good business case for implementing the required 

middleware software.

The performance penalty due to controlling concurrency via the middleware would be a 

problem with write-intensive loads, but not if concurrent updates are rare (Stankovic and 

Popov 2006).

Some other interesting observations include:

Page 110 of 278



Ilir Gashi IV. Fault Diversity Study

there is strong evidence against the fail-stop failure assumption for DBMS 

products. The majority of bugs reported, for all products, led to “incorrect result” 

failures rather than crashes (64.5% vs 17.1% in our first study; 65.5% vs 19% in 

the second), despite crashes being more obvious to the user. Even though these 

are bug reports and not failure reports, this evidence goes against the common 

assumption that the majority of failures are engine crashes, and warrants more 

attention by users to fault-tolerant solutions, and by designers of fault-tolerant 

solutions to tolerating subtle and non fail-silent failures;

it may be worthwhile for vendors to test their DBMS products using the known 

bug reports for other DBMS products. For example, in the first study we observed 

4 MSSQL bugs that had not been reported in the MSSQL service packs (previous 

to our observation period). Oracle was the only DBMS product that never failed 

when running on it the reported bugs of the other DBMS products;

Future work that is desirable includes:

statistical testing of the DBMS products to assess the actual reliability gains from 

diversity. We have run a few million queries with various loads, including ones 

based on the TPC-C benchmark, observing no failures (however, significant 

performance gains appear to be possible from using diverse servers (Gashi, Popov 

et al. 2004a), (Stankovic and Popov 2006)). These results may not be particularly 

surprising, since these benchmarks use a limited set of well-exercised features of 

SQL servers. It would be interesting to repeat the tests with more varied test 

loads. However, these studies are likely to be most useful with reference to 

specific application environments, for which the usage profile can be 

approximated reasonably well;

developing the necessary middleware components for users to be able to try out 

data replication with diverse servers in their own installations. Lack of these 

components is the main practical obstacle to the adoption and practical evaluation 

of these solutions. There are signs that some DBMS product vendors may also 

help with this problem: EnterpriseDB (EnterpriseDB 2006) and Fyracle (Janus- 

Software 2006) are Oracle-mode implementations based on PostgreSQL and

Page 111 of 278



Ilir Gashi IV. Fault Diversity Study

Firebird DBMS engines, respectively. With these solutions the problem with SQL 

dialects is significantly reduced.

Acknowledgment
This work was supported in part by the U.K. Engineering and Physical Sciences Research 

Council (EPSRC) via projects DOTS (Diversity with Off-The-Shelf components, grant 

GR/N23912/01) and DIRC (Interdisciplinary Research Collaboration in Dependability, 

grant GR/N13999/01) and by the European Union Framework Programme 6 via the 

ReSIST Network of Excellence (Resilience for Survivability in Information Society 

Technologies, contract IST-4-026764-NOE). We thank Bev Littlewood, Peter Bishop, 

David Wright and the anonymous TDSC reviewers (in particular the one who suggested 

further analyses with one of the bug reports) for their comments on earlier versions of this 

paper.

References
Ammann, P. E. and J. C. Knight (1988), ' 'Data Diversity: An Approach to Software 

Fault Tolerance", IEEE Transactions on Computers 37(4), pp: 418-425.

Anderson, T. and P. A. Lee (1990), "Fault Tolerance: Principles and Practice 

(Dependable Computing and Fault Tolerant Systems, Vol 3)", Springer Verlag.

Bao, Y., X. Sun and K. S. Trivedi (2005), "A Workload-based Analysis o f Software 

Aging and Rejuvenation", IEEE Transactions on Reliability R-54(3), pp: 541-548. 

Berenson, H., P, Bernstein, J, Gray, J. Melton, E. O'Neil and P. O'Neil (1995), "A 

Critique o f ANSI SQL Isolation Levels", in proc. Int. Conf. on Management of Data 

(SIGMOD '95).

Bernstein, P. A., V. Hadzilacos and N. Goodman (1987). "Concurrency Control and 

Recovery in Database Systems", Reading, Mass., Addison-Wesley.

Blough, D. M. and G. F. Sullivan (1994), "Voting Using Predispositions", IEEE 

Transactions on Reliability R-43(4), pp: 604-616.

Brilliant, S. S., J. C. Knight and N. G. Leveson (1990), "Analysis o f Faults in an N- 

Version Software Experiment", IEEE Transactions on Software Engineering 16(2), pp: 

238-247.

Page 112 o f278



Ilir Gashi IV. Fault Diversity’ Study

Castro, M. and B. Liskov (1999), "Practical Byzantine Fault Tolerance", in proc. Third 

Symp. on Operating Systems Design and Implementation, New Orleans, LA, USA, pp: 

173-186.

Castro, M., R. Rodrigues and B. Liskov (2003), "BASE: Using Abstraction to Improve 

Fault Tolerance", ACM Transactions on Computer Systems (TOCS) 21(3), pp: 236-269. 

Chandra, S. and P. M. Chen (1998), "How Fail-Stop are Programs", in proc. Int. 

Symp. on Fault-Tolerant Computing (FTCS '98), IEEE Computer Society Press, pp: 240- 

249.

Chandra, S. and P. M. Chen (2000), " Whither Generic Recovery from Application 

Faults? A Fault Study using Open-Source Software", in proc. Int. Conf. on Dependable 

Systems and Networks (DSN '00), NY, USA, IEEE Computer Society Press, pp: 97-106. 

Cook, J. E. and J. A. Page (1999), "Highly Reliable Upgrading o f Components", in 

proc. Int. Conf. on Software Engineering (ICSE ‘99), IEEE-ACM, pp: 203-212.

Dacier (Editor), M. (2002), "Design o f an Intrusion-Tolerant Intrusion Detection 

System”, MAFTIA deliverable D10, http://www.maftia.org/deliverables/D10.pdf.

Di Giandomenico, F. and L. Strigini (1990), "Adjudicators for Diverse-Redundant 

Components", in proc. Int. Symp. on Reliable Distributed Systems (SRDS '90), 

Huntsville, Alabama, IEEE, pp: 114-123.

EnternriseDB (2006), "EnterpriseDB", http://www.enterprisedb.com/.

Fekete, A., P. Liarokapis, E. O'Neil, P. O'Neil and P. Shasha (2005), "Making 

Snapshots Isolation Serialisable", ACM Transactions on Database Systems (TODS) 

30(2), pp: 492 - 528.

Frankl, P„ P. Hamlet, B. Littlewood and L. Strigini (1998), "Evaluating Testing 

Methods by Delivered Reliability", IEEE Transactions on Software Engineering 24(8), 

pp: 586-601.

Gashi, I. (2006), "Fault Diversity Among Off-The-Shelf SQL Database Servers: 

Complete Results From Two Studies”,
http://www.csr.city.ac.uk/people/ilir.gashi/DBMSBugReports/.

Gashi, I. and P. Popov (2006), "Rephrasing Rules for Off-The-Shelf SQL Database 

Servers”, in proc. 6th European Dependable Computing Conf. (EDCC-6), Coimbra, 

Portugal, IEEE Computer Society Press, pp: 139-148.

Page 113 of 278

http://www.maftia.org/deliverables/D10.pdf
http://www.enterprisedb.com/
http://www.csr.city.ac.uk/people/ilir.gashi/DBMSBugReports/


Ilir Gashi IV. Fault Diversity Study

Gashi, I., P. Popov, V. Stankovic and L. Strigini (2004a)' "On Designing Dependable 

Services with Diverse Off-The-Shelf SQL Servers", in Architecting Dependable Systems 

II, R. de Lemos, Gacek, C., Romanovsky, A. (Eds.), Springer-Verlag, 3069, pp: 191-214. 

Gashi, I., P. Popov and L. Strigini (2004b), "Fault Diversity Among Off-The-Shelf SQL 

Database Servers", in proc. Int. Conf. on Dependable Systems and Networks (DSN ’04), 

Florence, Italy, IEEE Computer Society Press, pp: 389-398.

Gray, J. (1986), "Why Do Computers Stop and What Can be Done About it?" in proc. 

Int. Symp. on Reliability in Distributed Software and Database Systems (SRDSDS '86), 

Los Angeles, CA, USA, IEEE Computer Society Press, pp: 3-12.

Gray, J. and A. Reuter (1993), "Transaction Processing : Concepts and Techniques”, 

Morgan Kaufmann.

Hiltunen, M. A„ R. D. Schlichting, C. A. Ugarte and G. T. Wong (2000), 

"Survivability Through Customization and Adaptability: The Cactus Approach", in proc. 

DARPA Information Survivability Conference & Exposition.

Janus-Software (2006), "Fyracle", http://www.janus-software.com/fb_fyracle.html. 

Jimenez-Peris, R., M. Patino-Martinez and G. Alonso (2002), "An Algorithm for Non- 

Intrusive, Parallel Recovery o f Replicated Data and its Correctness", in proc. Int. Symp. 

on Reliable Distributed Systems (SRDS ’02), Osaka, Japan, IEEE Computer Society 

Press, pp: 150-159.

Jimenez-Peris, R. and M. Patino-Martinez (2003), ”D5: Transaction Support", 

ADAPT Middleware Technologies for Adaptive and Composable Distributed 

Components, Deliverable IST-2001-37126.

Jimenez-Peris, R„ M. Patino-Martinez, G. Alonso and B. Kemme (2002), "Scalable 

Database Replication Middleware", in proc. 22nd Int. Conf. on Distributed Computing 

Systems, Vienna, Austria, IEEE Computer Society Press, pp: 477-484.

Kalbarczyk, Z. T., R. K. Iyer, S. Bagchi and K. Whisnant (1999), "Chameleon: A 

Software Infrastructure for Adaptive Fault Tolerance", IEEE Transactions on Parallel 

Distributed Systems 10(6), pp: 560-579.

Kemme, B. and G. Alonso (2000), "Don't be Lazy, be Consistent: Postgres-R, a New 

Way to Implement Database Replication”, in proc. Int. Conf. on Very Large Databases 

(VLDB), Cairo, Egypt.

Page 114 of 278

http://www.janus-software.com/fb_fyracle.html


Ilir Gashi IV. Fault Diversity Study

Knight, J. C. and N. G. Leveson (1986), "An Experimental Evaluation o f the 

Assumption o f Independence in Multi-Version Programming", IEEE Transactions on 

Software Engineering 12(1), pp: 96-109.

Lee, I. and R. K. Iyer (1995), "Software Dependability in the Tandem GUARDIAN 

System", IEEE Transactions on Software Engineering 21(5), pp: 455-467.

Lin, Y„ B, Kemme, M. Patino-Martinez and R. Jiménez-Peris (2005), "Middleware 

based Data Replication providing Snapshot Isolation", in proc. Int. Conf. on 

Management of Data (SIGMOD '05), Baltimore, Maryland, USA, ACM Press, pp: 419- 

430.

Littlewood, B., P, Popov and L. Strigini (2001). "Modelling software design diversity - 

a review", ACM Computing Surveys 33(2), pp: 177-208.

Littlewood, B. and L. Strigini (1993), " Validation o f Ultra-High Dependability for 

SoftM’are-based Systems", Communications of the ACM 36(11), pp: 69-80.

Microsoft, "List o f Bugs Fixed by SQL Server 7.0 Service Packs", 

http://support.microsoft.com/default.aspx?scid=kb;EN=US;313980.

Oracle, "Oracle Metalink", http://metalink.oracle.com/metalink/plsql/ml2_gui.startup. 

Parhami, B. (2005), "Voting: A Paradigm for Adjudication and Data Fusion in 

Dependable Systems", in Dependable Computing Systems: Paradigms, Performance 

Issues, and Applications, H. B. Diab and A. Y. Zomaya (Eds.).

Patino-Martinez, M„ R, Jiménez-Peris, B, Kemme and G. Alonso (2005), "MIDDLE- 

R: Consistent Database Replication at the Middleware Level", ACM Transactions on 

Computer Systems 23(4), pp: 375-423.

Patterson, D„ A, Brown, P. Broadwell, G. Candea, M. Chen, J, Cutler, P. Enriquez, 

A. Fox, E, Kycyman, M. Merzbacher, D, Oppenheimer, N. Sastry, W, Tetzlaff, J. 

Traupman and N, Treuhaft (2002). "Recovery-Oriented Computing (ROC):

Motivation, Definition, Techniques and Case Studies", UC Berkeley Computer Science, 

CSD-02-1175.

Pedone, F. and S. Frolund (2000), "Pronto: A Fast Failover Protocol for Off-the-shelf 

Commercial Databases", in proc. Int. Symp. on Reliable Distributed Systems (SRDS 

'00), Nürnberg, Germany, IEEE Computer Society, pp: 176-85.

Page 115 of 278

http://support.microsoft.com/default.aspx?scid=kb;EN=US;313980
http://metalink.oracle.com/metalink/plsql/ml2_gui.startup


Ilir Gashi IV. Fault Diversity Study

Popov, P. and B. Littlewood (2004), " The effect o f testing on the reliability o f fault- 

tolerant software", in proc. Int. Conf. on Dependable Systems and Networks (DSN '04), 

Florence, Italy, IEEE Computer Society Press, pp: 265-274.

Popov, P., L. Strigini, A. Kostov, V. Mollov and D. Selensky (2004), "Software Fault- 

Tolerance with Off-the-Shelf SQL Servers", in proc. Int. Conf. on COTS-based Software 

Systems (ICCBSS '04), Redondo Beach, CA USA, Springer, pp: 117-126.

Popov, P., L. Strigini, S. Riddle and A. Romanovsky (2001), "Protective Wrapping of 

OTS Components", in proc. 4th ICSE Workshop on Component-Based Software 

Engineering: Component Certification and System Prediction, Toronto.

Popov, P., L. Strigini and A. Romanovsky (2000). "Diversity for Off-The-Shelf 

Components", in proc. Int. Conf. on Dependable Systems and Networks (DSN '00) - Fast 

Abstracts supplement, New York, NY, USA, IEEE Computer Society Press, pp: B60- 

B61.

PostgreSQL, "PostgreSQL Bugs Mailing List Archives", 

http://archives.postgresql.org/pgsql-bugs/.

Powell, D., J. Arlat, L. Beus-Dukic, A. Bondavalli, P. Coppola, A. Fantechi, E, Jenn, 

C. Rabejac and A. Wellings (1999), " GUARDS: A Generic Upgradable Architecture for 

Real-Time Dependable Systems", IEEE Transactions on Parallel and Distributed Systems 

10(6), pp: 580-599.

Reynolds, J„ J. Just, E. Lawson, L. Clough, R. Maglich and K. Levitt (2002), "The 

Design and Implementation o f an Intrusion Tolerant System”, in proc. Int. Conf. on 

Dependable Systems and Networks (DSN ’02), Washington, D.C., USA, IEEE Computer 

Society Press, pp: 285-292.

Schneider, F. (1984), "Byzantine Generals in Action: Implementing Fail-Stop 

Processors", ACM Transactions on Computer Systems 2(2), pp: 145-154.

SourceForge, "Interbase (Firebird) Bug tracker”,

http://sourceforge.net/tracker/7atidM 09028&group_id=9028&func=browse.

Stankovic, V. and P. Popov (2006), "Improving DBMS Performance through Diverse 

Redundancy", in proc. Int. Symposium on Reliable Distributed Systems (SRDS '06), 

Leeds, UK, IEEE Computer Society, pp: 391-400.

Page 116 o f278

http://archives.postgresql.org/pgsql-bugs/
http://sourceforge.net/tracker/7atidM


Il ir G as hi IV. Fault Diversity Study

Strigini, L. (2005), "Fault Tolerance Against Design Faults", in Dependable Computing 

Systems: Paradigms, Performance Issues, and Applications, H. Diab and A. Zomaya 

(Eds.), J. Wiley & Sons, pp: 213-241.

Sutter, H. (2000), "SQL/Replication Scope and Requirements Document", ISO/IEC JTC 

1 /SC 32 Data Management and Interchange WG3 Database Languages, H2-2000-568.

Tai, A. T., K. S. Tso, L. Alkalai, S. N. Chau and W. H. Sanders (2002), "Low-Cost 

Error Containment and Recovery for Onboard Guarded Software Upgrading and 

Beyond", IEEE Transactions on Computers 51(2), pp: 121-137.

Tso, K. S. and A. Avizienis (1987), "Community Error Recovery in N-Version Software: 

A Design Study with Experimentation", in proc. Int. Symp. on Fault-Tolerant Computing 

(FTCS '87), Pittsburgh, PA, USA, pp: 127-133.

Valdes, A„ M. Almgren, S. Cheung, Y. Deswarte, B. Dutertre, J. Levy, H. Saidi, V. 

Stavridou and T. E, Uribe (2003), "An Architecture for an Adaptive Intrusion-Tolerant 

Server", in LNCS 2845 - Selected Papers from 10th Int. Workshop on Security Protocols 

'02, B. Christianson, Crispo, B., Malcolm, J. A., Roe, M. (Eds.), Springer, pp: 158-178. 

van der Meulen, M. J. P., P. G. Bishop and M. Revilla (2004), "An Exploration of 

Software Faults and Failure Behaviour in a Large Population o f Programs", in proc. Int. 

Symp. on Software Reliability Engineering (ISSRE '04), Rennes, France, Springer- 

Verlag, pp: 101-112.

Wang, F„ F. Gong, C. Sargor, K. Goseva-Popstojanova, K. Trivedi and F. Jou

(2001), "SITAR: A Scalable Intrusion-Tolerant Architecture for Distributed Services", in 

proc. 2001 IEEE Workshop on Information Assurance and Security, West Point, New 

York, U.S.A.

Weismann, M., F. Pedone and A. Schiper (2000), "Database Replication Techniques: a 

Three Parameter Classification”, in proc. Int. Symp. on Reliable Distributed Systems 

(SRDS ’00), Nürnberg, Germany, IEEE Computer Society Press, pp: 206-217.

Page 117 of 278



V. Architectural Aspects of a Fault-Tolerant 
Diverse SQL Server

Page 118 of 278



11 ir Gashi V. Architectural Aspects o f  a Fault-Tolerant Diverse SOL Server

Paper-3. On Designing Dependable Services with 

Diverse Off-The-Shelf SQL Servers
Abstract: The most important non-functional requirements for an SQL server are 

performance and dependability. This paper argues, based on empirical results from our 

on-going research with diverse SQL servers, in favour o f diverse redundancy as a way of 

improving both. We show evidence that current data replication solutions are insufficient 

to protect against the range o f faults documented for database servers; outline possible 

fault-tolerant architectures using diverse servers; discuss the design problems involved; 

and offer evidence o f the potential for performance improvement through diverse 

redundancy.

Co-authors: Dr. Peter Popov, Mr. Vladimir Stankovic, Prof. Lorenzo Strigini

Book: Architecting Dependable Systems II

Series: Lecture Notes in Computer Science

Date of submission: December-2003

Status: Published

Number of reviewers: 2

Publication date: October 2004

Full citation: Gashi I., Popov P., Stankovic V., Strigini L., "On Designing Dependable 

Services with Diverse Off-The-Shelf SQL Servers", in "Architecting Dependable Systems 

ID, Lecture Notes in Computer Science, (R. de Lemos, C. Gacek and A. Romanovsky, 

Eds.), vol. 3069, pp. 191-214, Springer-Verlag, 2004

Page 119 o f278



Ilir Gashi V. Architectural Aspects o f a Fault-Tolerant Diverse SOL Server

1. Introduction
‘Do not put all eggs in the same basket’, ‘Two heads are better than one’ summarise the 

intuitive human belief about the value of redundancy and diversity as a means of 

reducing the risk of failure. We are more likely to trust the results of our complex 

calculation if a colleague has arrived independently at the same result. In this regard, 

Charles Babbage was probably the first person to advocate using two computers - 

although by computer he meant a person (Babbage 1974).

In many cases, e.g. in team games, people with diverse, complementary abilities signify a 

way of improving the overall team performance. Every football team in the world would 

benefit from having an exceptional player such as Ronaldo13. A good team is one in 

which there is a balance of defenders, midfielders and attackers because the game 

consists of defending, play making and, of course, scoring. Therefore, a team of 11 

Ronaldos has little chance of making a good team.

High performance of computing systems is often as important as the correctness of the 

results produced. When a system performs various tasks, optimising the performance 

with respect to only one of them is insufficient; good response time must be achieved on 

different tasks, similarly to how a good team provides a balanced performance in defence, 

midfield and attack. When both performance and dependability are taken into account, 

there is often a trade-off between the two. The balance chosen will depend on the 

priorities set for the system. In some cases, improving performance has a higher priority 

for users than improving dependability. For instance, a timely, only approximately 

correct response is sometimes more desirable than one that is absolutely correct but late. 

The value of redundancy and diversity as a means of tolerating faults in computing 

systems has long been recognised. Replication of hardware is often seen as an adequate 

mechanism for tolerating 'random' hardware faults. If hardware is very complex, 

however, e.g. VLSI chips, and hence design faults are likely, then diverse redundancy is 

used as a protection against hardware design faults (Traverse 1988). For software faults 

as well, non-diverse replication will fail to detect, or recover from, all those failures that 

do not produce obvious symptoms like crashes, or that occur in identical ways on all the

13 A1 the time of writing the Brazilian footballer Ronaldo is recognised as one of the best forwards in the world.

Page 120 of 278



Ilir G as hi V. Architectural Aspects o f a Fault-Tolerant Diverse SOL Server

copies of a replicated system, and at each retry of the same operations. For these kinds of 

failures, diverse redundancy (often referred to as 'design diversity') is required. The 

assumptions about the failure modes of the system to be protected dictate the choice 

between diverse and non-diverse replication.

Diverse redundancy has been known for almost 30 years (Randell 1975) and is a 

thoroughly studied subject (Lyu 1995). Many implementations of the idea exist, for 

instance recovery blocks (Randell 1975), N-version programming (Avizienis and Kelly 

1984) and self-checking modular redundancy (Laprie, Arlat et al. 1990).

Over the years, diverse redundancy has found its way to various industrial applications 

(Voges 1988). Its adoption, however, has been much more limited than the adoption of 

non-diverse replication. The main reason has been the cost of developing several versions 

of software to the same specification. Also, system integration with diverse versions 

poses additional design problems, compared to non-diverse replication (Avizienis, 

Gunningberg et al. 1985), (Lyu 1995), (Pullum 2001).

The first obstacle -  the cost of bespoke development of the versions - has been to a large 

extent eliminated in many areas due to the success of standard products in various 

industries and the resulting growth in the market for off-the-shelf components. For many 

categories of applications software from different vendors, compliant with a particular 

standard specification, has become an affordable commodity and can be acquired off-the- 

shelf.14 15 Deploying several diverse off-the-shelf components (or complete software 

solutions) in a fault-tolerant configuration is now an affordable option for system 

integrators who need to improve service dependability.

In this paper we take a concrete example of a type of system for which replication can be 

(and indeed has been) used -  SQL servers13. We investigate whether design diversity is 

useful in this domain from the perspectives of dependability and performance.

Many vendors offer support for fault-tolerance in the form of server ‘fail-over’, i.e. 

solutions with replicated servers, which cope with crashes of individual servers by 

redistributing the load to the remaining available servers. Despite the relatively long

14 The difference between commercial-off-the-shelf (COTS) and just off-the-shelf (e g. freeware or open-source software) is not 
important for our discussion despite the possible huge difference in cost. Even if the user is to pay thousands for a COTS product, e g. 
a commercial SQL server, this is a tiny fraction of the development cost of the product.
15 Although many prefer relational Databases Management System (RDBMS), we instead use the term SQL server to emphasise that 
Structured Query Language (SQL) will be used by the clients to interact with the RDBMS.

Page 121 of 278



Ilir Gashi V. Architectural Aspects o f a Fault-Tolerant Diverse SOL Server

history of database replication (Bernstein, Hadzilacos et al. 1987), effort on 

standardisation in the area has only started recently (Sutter 2000). Fail-over delivers some 

improvement over non-replicated servers although limited effectiveness has been 

observed in some cases (Kalyanakrishnam, Kalbarczyk et al. 1999). Fail-over can be used 

as a recovery strategy irrespective of the type of failure (not necessarily “fail-stop” 

(Schneider 1984)). Flowever its known implementations assume crash failures, as they 

depend on detecting a crash for triggering recovery.

The rest of the paper is organised as follows. In Section 2 we summarise the results of a 

study on fault diversity of four SQL servers (Gashi, Popov et al. 2004) (the preceding 

reference forms part o f this thesis as Paper-1) which run against the common 

assumptions that SQL servers fail-stop and failures can be tolerated simply by rollback 

and retry. In Section 3, we study the architectural implications of moving from non- 

diverse replication with several replicas of the same SQL server to using diverse SQL 

servers, and discuss the main design problems that this implies. We also demonstrate the 

potential for diversity to deliver performance advantages and compensate for the 

overhead created by replication, and in Section 4 we present preliminary empirical results 

suggesting that these improvements can indeed be realised with at least two existing 

servers. This appears to be a new dimension of the usefulness of design diversity, not 

recognised before. In Section 5 we review some recent results on data replication. In 

Section 6 we discuss some general implications of our results. Finally, in Section 7 some 

conclusions are presented together with several open questions worth addressing in the 

future.

2. A Study of faults in four SQL servers
Whether SQL servers require diversity to achieve fault tolerance depends on how likely 

they are to fail in ways that would not be tolerated by non-diverse replication. There is 

little published evidence about this. First, we must consider detection: some failures (e.g. 

crashes) are easily detected even in a non-diverse setting. A study using fault injection 

(Chandra and Chen 1998) found that 2% of the bugs of Postgres95 server violated the 

fail-stop property (i.e., they were not detected before corrupting the state of the database) 

even when using the transaction mechanism of Postgres95. 2% is a high percentage for

Page 122 of 278



11 ir Gashi V. Architectural Aspects o f  a Fault-Tolerant Diverse SOL Server

applications with high reliability requirements. The other question is about recovery. Jim 

Gray (Gray 1986) observed that many software-caused failures were tolerated by non- 

diverse replication. They were caused by apparently non-deterministic bugs 

(“Heisenbugs”), which only cause failures under circumstances that are difficult to 

reproduce. These failures are not replicated when the same input sequence is repeated 

after a rollback, or applied to two copies of the same software. However, a recent study of 

fault reports about three open-source applications (including MySQL) (Chandra and 

Chen 2000) found that only a small fraction of faults (5-14%) were triggered by transient 

conditions (probable Heisenbugs).

We have recently addressed these issues via a study on fault diversity in SQL servers. We 

collected 181 reports of known bugs reported for two open-source SQL servers 

(PostgreSQL 7.0 and Interbase 6.016) and two commercial SQL servers (Microsoft SQL

7.0 and Oracle 8.0.5). The results of the study are described in detail in (Gashi, Popov et 

al. 2004). Here we concentrate on the aspects relevant to our discussion.

2.1 SQL servers cannot be assumed to ‘Fail-Stop’

Table 12 summarises the results of the study. The bugs are classified according to the 

characteristics of the failures they cause, as different failure types require different 

recovery mechanisms:

Engine Crash failures: crashes or halts of the core engine.

Incorrect Result failures: not engine crashes, but incorrect outputs: the outputs do 

not conform to the server’s specification or to the SQL standard.

Performance failures: the output is correct, but observed to carry an unacceptable 

time penalty for the particular input.

Other failures.

We also classified the failures according to their detectability by a client of the database 

servers:

Self-Evident failures: engine crash failures, cases in which the server signals an 

internal failure as an exception (error message) and performance failures.

16 Made available as an open-source product under this name by Borland Inc. in 2000. The company reverted to closed development 
for subsequent releases. The product continues to be maintained as an open source development under a different name - “Firebird”.

Page 123 of 278



I tir Gas hi V. Architectural Aspects o f a Fault-Tolerant Diverse SOL Server

Non-Self-Evident failures: incorrect result failures, without server exceptions 

within an accepted time delay.

(Gashi, Popov et al. 2004) shows that the fraction of reported faults causing crash failures

varies across servers from 13% (MS SQL) to 21% (Oracle and PostgreSQL). These are

small percentages, despite crashes being easy to detect and thus likely to get reported

(Gashi, Popov et al. 2004). More than 50% of the faults cause failures with incorrect but

seemingly legal results, i.e. a client application will not normally detect them. In other

words, an assumption that either a server will process a query correctly or the problem

will be detected is flatly wrong. Any replication scheme that tolerates server crashes only

does not provide any guarantee against these failures -  the incorrect results may be

simply replicated. Although our results do not show how likely non-self-evident failures

are - the percentages above are based on fault counts - the evidence in (Gashi, Popov et

al. 2004) seems overwhelming against assuming (until actual failure counts are available)

that ‘fail-stop’ failures are the main concern to be resolved by replication.
Table 12 - A summary of the study with reported bugs for 4 SQL servers. The first 6 rows represent 
the observations after running the bug scripts. Each shaded column represents the results of running 
bug scripts on the server for which the bugs were reported, while the non-shaded columns represent 
the results of running the scripts on the other three servers. The last 6 rows represent a classification

of the observed failures.

In
te

rb
as

e

Po
stg

re
SQ

L

O
ra

cl
e

M
SS

Q
L

j

In
te

rb
as

e

O
ra

cl
e

M
SS

Q
L

O
ra

cle

In
te

rb
as

e

M
SS

Q
L

Po
stg

re
SQ

L

a00t/5
2 In

te
rb

as
e

O
ra

cl
e

Po
st

gr
eS

Q
L

Total Scripts C/i 55 55 55 57 57 57 57 18 18 18 18 51 51 51 51

Script cannot be run 
(Functionality Missing) n/a 23 20 16 n/a 32 27 24 n/a 13 13 12 n/a 36 32 31

Further Work n/a 5 4 6 n/a 2 0 0 n/a 1 1 2 n/a 3 7 2
Total scripts run 55 27 31 33 57 23 30 33 18 4 4 4 51 12 12 18

No failure observed 8 26 31 31 5 23 30 31 4 4 4 3 12 11 12 12
Failure observed 47 I 0 2 52 0 0 2 14 0 0 1 39 I 0 6

Ty
pe

s o
f f

ai
lu

re
s

Poor Performance 3 0 0 0 0 0 0 0 1 0 0 0 6 0 0 0
Engine Crash 7 0 0 0 11 0 0 0 3 0 0 0 5 0 0 0

Incorrect
Result

Self-
evident 4 0 0 1 14 0 0 1 3 0 0 0 10 0 0 6

Non -self- 
evident 23 1 0 1 20 0 0 1 7 0 0 1 17 1 0 0

Other

Self-
evident 2 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0

Non -self- 
evident 8 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0

Page 124 of 278



Ilir Gashi V. Architectural Aspects o f a Fault-Tolerant Diverse SOL Server

2.2 Potential of design diversity for detecting/diagnosing failures

Table 13 gives another view on the reported bugs of the 4 SQL servers: what would 

happen if 1 -out-of-2 fault-tolerant SQL servers were built using these 4 SQL servers. 

What we want to find out is how many of the coincident failures are detectable in the 2- 

version systems. We define:

Detectable failures: Self-Evident failures or those where servers return different 

incorrect results (the comparison algorithm must be written to allow for possible 

differences in the representation of correct results). All failures affecting only one 

out of two (or up to n-1 out of n) versions are detectable.

Non-Detectable failures: the two (or more) servers return identical incorrect 

results.

Replication with identical servers would only detect the self-evident failures: crash

failures, failures reported by the server itself and poor performance failures. For all four

servers, less than 50% of faults cause such failures. Instead, with diverse pairs of servers

many of the failures are detectable. All the possible two-version fault-tolerant

configurations detect the failures caused by at least 94% of the faults.
Table 13 - Potential of diverse pairs of servers for tolerating the effects of the reported bugs in our 

sample. IB stands for Interbase, PG for PostgreSQL, OR for Oracle and MS for MS SQL

Pairs of 
servers

Number 
of bug 
scripts 
run

Failure 
Observed 
(in at 
least one 
server)

One out of two 
servers failing Both servers failing

Self-
evident

Non -
Self-
evident

Non -  
Detectable

Detectable

Self-
evident

Non -
Self-
evident

IB + PG 62 43 17 25 I 0 0
IB + OR 62 29 8 21 0 0 0
IB+ MS 69 35 11 21 2 I 0
PG + OR 64 30 13 16 0 0 i
PG + MS 76 46 18 21 I 6 0
OR + MS 71 14 7 7 0 0 0

3. Architecture of a fault-tolerant diverse SQL server

3.1 General Scheme

Studying replication protocols is not the focus of this paper. Data replication is a well- 

understood subject (Bernstein, Hadzilacos et al. 1987). A recent study compared various 

replication protocols in terms of their performance and the feasibility of their 

implementation (Jimenez-Peris, M. Patino-Martinez et al. 2003). One of the oldest

Page 125 of 278



Ilir Gashi V. Architectural Aspects o f a Fault-Tolerant Diverse SOL Server

replication protocols, ‘Read once write all available (ROWAA)’ (Bernstein, Hadzilacos 

et al. 1987) comes out as the best protocol for a very wide range of scenarios. In 

ROWAA, read operations are on just one copy of the database (e.g. the one that is 

physically nearest to the client) while write operations must be replicated on all nodes. 

An important performance optimisation for the updates is executing the update statements 

only once and propagating the updates to the other nodes (Bernstein, Hadzilacos et al. 

1987). This may lead to a very significant improvement; with up to a fivefold reduction 

in execution time of the update statements (Jimenez-Peris, Patino-Martinez et al. 2001), 

(Kemme and Alonso 2000). However, these schemes would not tolerate non-self-evident 

failures that cause incorrect updates or return incorrect results by select queries. For the 

former, incorrect updates would be propagated to the other replicas and for the latter, 

incorrect results would be returned to the client. This deficiency can be overcome by 

building a fault-tolerant server node (“FT-node”) from two or more diverse SQL servers, 

wrapped together with a “middleware” layer to appear to each client as a single SQL 

server and to each of the SQL servers as a set of clients, as shown in Fig. 3.

Fig. 3 - Fault-tolerant server node (FT-node) with two or more diverse SQL servers (in this case two: 
SQL Server 1 and SQL Server 2). The middleware “hides” the servers from the clients (/ to n) for 

which the data storage appears as a single SQL server

Some design considerations about this architecture follow.

The middleware must ensure connectivity with the clients and the multiple servers. The 

connectivity between the clients and the middleware can implement a “standard” API, 

e.g. JDBC/ODBC, or some proprietary API. The middleware communicates with the 

servers using any one of the connectivity solutions available for the chosen servers (with 

server independent API, e.g. JDBC/ODBC, or the server proprietary API).

The rest of Section 3 deals with other design issues in this fault-tolerant design:

synchronisation between the servers to guarantee data consistency between them; 

support for fault-tolerance for realistic modes of failure via mechanisms for: 

error detection;

Page 126 of 278



Ilir Gashi V. Architectural Aspects o f a Fault-Tolerant Diverse SOL Server

error containment; 

state recovery

“replica determinism”: dealing with aspects of server behaviour which would 

cause inconsistencies between database replicas even with identical sequences of 

queries;

translation of the SQL queries coming from the client to be “understood” by 

diverse SQL servers which use different “dialects” of the SQL syntax;

“data diversity”: the potential for improving fault tolerance through expressing 

(sequences of) client queries in alternative, logically equivalent ways; 

performance effects of diversity, which depending on the details of the chosen 

fault-tolerance scheme may be negative or positive.

3.2 Fault tolerance strategies

This basic architecture can be used for various forms of fault-tolerance, with different 

trade-offs between degree of replication, fault tolerance and performance (Anderson and 

Lee 1990).

We can discuss separately various aspects of fault tolerance:

Failure detection and containment. Self-evident server failures are detected as in 

a non-diverse server, via server error messages (i.e. via the existing error detection 

mechanisms inside the servers), and time-outs for crash and performance failures. 

Diversity gives the additional capability of detecting non-self-evident failures by 

comparing the outputs of the different servers. In a FT-node with 3 or more 

diverse versions, majority voting can be used to choose a result and thus mask the 

failure to the clients, and identify the failed version which may need a recovery 

action to correct its state. With a 2-diverse FT-node, if the two servers give 

different results, the middleware cannot decide which server is in error: it needs to 

invoke some form of manual or automated recovery. The middleware will present 

the failure to the client as a delay in response (due to the time needed for 

recovery), or as a self-evident failure (crash - a “fail-silent” FT-node; or an error 

message - a “self-checking” FT-node). The voting/comparison algorithm will 

need to allow for “cosmetic” differences between equivalent correct results, like

Page 127 of 278



11 ir G as hi V. Architectural Aspects o f  a Fault-Tolerant Diverse SOL Server

padding characters in character strings or different numbers of digits in the 

representations of floating point numbers.

Error recovery. As just described, diversity allows for more refined diagnosis 

(identification of the failed server). This improves availability: the middleware 

can selectively direct recovery actions at the server diagnosed as having failed, 

while letting the other server(s) continue to provide the service. State recovery of 

the database can be obtained in the following ways:

via standard backward error recovery, which will be effective if the failures 

are due to Heisenbugs. To command backward error recovery, the middleware 

may use the standard database transaction mechanisms: aborting the failed 

transaction and replaying its queries may produce a correct execution. 

Alternatively or additionally, checkpointing (Gray and Reuter 1993) can be 

used. At regular intervals, the states of the servers are saved (by database 

“backup” commands: e.g., in PostgreSQL the pg_dump command). After a 

failure, the database is restored to the state before the last checkpoint and the 

sequence of (all or just update) queries since then is replayed to it; 

additionally, diversity offers ways of recovering from Bohrbug-caused 

failures, by essentially copying the database state of a correct server into the 

failed one (similarly to (Tso and Avizienis 1987)). Since the formats of the 

database files differ between the servers, the middleware would need to query 

the correct server[s] for their database contents and command the failed server 

to write them into the corresponding records in its database, similar to what is 

proposed in (Sutter 2000). This would be expensive, perhaps to be completed 

off-line, but a designer can use multi-level recovery, in which the first step is 

to correct only those records that have been found erroneous on read queries. 

To increase the level of data replication a possibility is to integrate our FT-node scheme 

with standard forms of replication, like ROWAA, possibly with the optimisation of writes 

(Bernstein, Hadzilacos et al. 1987). One could integrate these strategies into our proposed 

middleware, or for simplicity choose a layered implementation (possibly at a cost in 

terms of performance) in which our fault-tolerant nodes are used as server nodes in a

Page 128 of 278



Ilir Gashi V. Architectural Aspects o f a Fault-Tolerant Diverse SOL Server

standard ROWAA protocol. However, a layered architecture using, say, 2-diverse FT- 

nodes may require more servers for tolerating a given number of server failures.

3.3 Data consistency between diverse SQL servers

Data consistency in database replication is usually defined in terms of 1-copy 

serialisability between the transaction histories executed on the various nodes (Bernstein, 

Hadzilacos et al. 1987). In practical implementations this is affected by: 

the order of delivery of queries to the replicas

the order in which the servers execute the queries, which in turn is affected by: 

the execution plans created for the queries

the execution of the plans by the execution engines of the servers, which are 

normally non-deterministic and may differ between the servers, in particular 

with the concurrency control mechanism implemented.

Normally, consistency relies on “totally ordered” (Jimenez-Peris, M. Patino-Martinez et 

al. 2002) delivery of the queries by reliable multicast protocols. For the optimised 

schemes of data replication, e.g. ROWAA, only the updates are delivered in total order to 

all the nodes. Diverse data replication would also rely on the total ordering of messages.

In terms of execution of the queries the difference between non-diverse and diverse 

replication is in the execution plans, which will be the same for replicas of the same SQL 

server, but may differ significantly between diverse SQL servers. This may result in 

significantly different times to process the queries. If many queries are executed 

concurrently, identical execution plans across replicas do not guarantee the same order of 

execution, due to for example multithreading. The allocation of CPU time to threads is 

inherently non-deterministic. In other words, non-determinism must be dealt with in both 

non-diverse and diverse replication schemes. The phenomenon of inconsistent behaviour 

between replicas that receive equivalent (from some viewpoint) sequences of requests is 

not limited to database servers (Poledna 1996) and there are well known architectural 

solutions for dealing with it (Powell, Arlat et al. 1999). Empirically (Popov, Strigini et al. 

2004), we repeatedly observed data inconsistency even with replication of the same SQL 

server.

Page 129 of 278



Ilir Gashi V. Architectural Aspects o f a Fault-Toler ant Diverse SOL Server

To achieve data consistency, i.e. a 1-copy serialisable history (Bernstein, Hadzilacos et al. 

1987) across replicas, the concurrent execution of modifying transactions needs to be 

restricted. Two extreme possible scenarios can be exploited to deal with non-determinism 

in SQL servers, and apply to both non-diverse and diverse SQL servers:

non-determinism does not affect the combined result of executing concurrent 

transactions: for instance, the transactions do not “clash”. No concurrent 

transactions attempt modifications of the same data. If this is the case, all possible 

sub-histories, which may result from various orders of executing the transactions 

concurrently, are identical and thus 1-copy serialisability across all the replicas 

(no matter whether diverse or non-diverse) will be guaranteed despite the possibly 

different orders of execution of the transactions by the different servers; 

non-determinism is eliminated with respect to the modifying transactions by 

executing them one at a time. Again, 1-copy serialisability is achieved (Popov, 

Strigini et al. 2004). This regime of serialisability may be limited to within each 

individual database, thus allowing concurrency between modifying transactions 

executed on different databases.

Combinations of these two are possible: concurrent transactions are allowed to execute 

concurrently, but if a “clash” is detected, all transactions involved in the clash are rolled 

back and then serialised according to some total order (Jimenez-Peris, M. Patino- 

Martinez et al. 2002).

3.4 Differences in features and SQL “dialects” between SQL 

servers

3.4.1 Missing and proprietary features
With two SQL standards (SQL-92 and SQL-99 (SQL 3)) and several different levels of 

compliance to these, it is not surprising that SQL servers implement many different 

variants of SQL. Most of the servers with significant user bases guarantee SQL-92 Entry 

Level of compliance or higher. SQL-92 Entry Level covers the basic types of queries and 

allows in many cases the developers to write code which requires no modification when 

ported to a different SQL server. However some very widely used queries are not part of

Page 130 of 278



11 ir G as hi V. Architectural Aspects o f  a Fault-Tolerant Diverse SOL Server

the Entry Level, e.g. the various built-in JOIN operators (Gruber 2000). Triggers and 

stored procedures (Melton 2002) are another example of very useful functionality, used in 

many business databases, which are not part of SQL-92 (surprisingly they are not yet 

supported in MySQL, one of the most widely used SQL servers).

In addition vendors may introduce proprietary extensions in their products. For example 

Microsoft intends to incorporate .NET in “Yukon”, their new SQL server (Microsoft 

2003).

3.4.2 Differences in dialects for common features
In addition to the missing and proprietary features, there are differences even in the 

dialect of the SQL that is common among servers. For instance the example below shows 

differences in the syntax for outer joins between the SQL dialects of three servers which 

we used in experiments with diverse SQL servers (Popov, Strigini et al. 2004) (Oracle 

uses a non-standard syntax for outer joins):

ORACLE 8.0.5
s e le c t ite m s .n u m b e r 

fro m  Item s, o rd e rs

w h e re  ite m s .n u m b e r = o rd e rs . ite m _ n u m b e r (+ ) 

g ro u p  b y  ite m s .n u m b e r 

h a v in g  ite m s .n u m b e r < 2 0 0 0 0  

o rd e r by  ite m s .n u m b e r d e s c

MS SQL 7.0 and INTERBASE 6.0
s e le c t ite m s .n u m b e r 

fro m  ite m s

le f t  o u te r  jo in  o rd e rs  on  ite m s .n u m b e r = 

o rd e rs . ite m _ n u m b e r 

g ro u p  b y  ite m s .n u m b e r 

ha v in g  ite m s .n u m b e r < 2 0 0 0 0  

o rd e r by  ite m s .n u m b e r d e s c

Although the difference in the syntax is marginal, Oracle 8.0.5 will not parse the standard 

syntax. Significant differences exist between the syntax of other SQL constructs, e.g. 

stored procedures and triggers. For instance, Oracle’s support for SQLJ for stored 

procedures differs slightly from the standard syntax.

Page 131 of 278



Ilir Gashi V. Architectural Aspects o f a Fault-Tolerant Diverse SOL Server

3.4.3 Reconciling the differences between dialects and features of 
SQL servers
Standardisation is unlikely to resolve the existing differences between the SQL dialects in 

the foreseeable future, although there have been attempts to improve interoperability by 

standardising “persistent modules” (Melton 2002) (also called “stored procedures” in 

most major SQL servers or “functions” in PostgreSQL). However, some vendors still 

undermine standardisation by adding proprietary extensions in their products.

To use replication with diverse SQL servers, the differences between the servers must be 

reconciled. Two possibilities are:

requiring the client applications to use the SQL sub-set which is common to all 

the SQL servers in the FT-node, and reconciling the differences between the 

dialects by implementing “translators” that translate the syntax used by the client 

applications to the syntax understood by the respective servers. Such “translators” 

can become part of the replication middleware (Fig. 3). One may:

require the client applications to use ANSI SQL to work with the middleware, 

which will contain translators for all SQL dialects used in the FT-node; 

allow the clients to use the SQL dialect of their choice (e.g. the dialect of a 

specific SQL server or ANSI SQL), to allow legacy applications written for a 

specific SQL server to be “ported” and run with diverse replication, 

expressing some of the missing SQL features through equivalent transformation of 

the client query to query(ies) supported by the SQL servers used in the FT-node (see 

Section 3.6).

In either case, translation between the dialects of the SQL servers is needed. Translation 

is certainly feasible. Surprisingly, though, we could not find off-the-shelf tools to assist 

with the translation even though “porting” database schema from one SQL server product 

to another is a common practice.

3.5 Replica determinism: the example of DDL support

The differences between SQL servers also affect the Data Definition Language (DDL), 

i.e., the part of SQL that deals with the metadata (schema) of a database. The DDL does 

not require special attention with non-diverse replication: the same DDL statement is just

Page 132 of 278



Ilir Gashi V. Architectural Aspects o f a Fault-Tolerant Diverse SOL Server

copied to all replicas. We outline here an aspect of using DDL which may lead to data 

inconsistency: auto numeric fields,

SQL servers allow the clients to simplify the generation of unique numeric values by 

defining a data type, which is under the direct control of the server. These unique values 

are typically used for generating keys (primary and secondary) without too much 

overhead on the client side: the client does not need to explicitly provide values for these 

fields when inserting a new record. Implementations of this feature differ between servers 

(Identity() function in MS SQL, generators in Interbase, etc.), but this is not a serious 

problem. The real problem is that the different servers specify different behaviours of this 

feature when a transaction is aborted within which unique numbers were generated. In 

some servers, the values generated in a transaction that was rolled back are “lost” and 

will never appear in the fields of committed data. Other servers keep track of these 

“unused” values and generate them again in some later transactions, which will be 

committed. This difference affects data consistency across different SQL servers. The 

inconsistencies thus created must be handled explicitly, by the middleware (Popov, 

Strigini et al. 2004), or by the client applications by not using auto fields at all.

This is just one case of diversity causing violations of replica determinism (Poledna 

1996); others may exist, depending on the specific combination of diverse servers.

3.6 Data diversity

Although diversity can dramatically improve error detection rates it does not make them 

100%, e.g. our study found four bugs causing identical non-self-evident failures in two 

servers.

To improve the situation, one could use the mechanism called “data diversity” by 

Ammann and Knight (Ammann and Knight 1988) (who studied it in a different context). 

The simplest example of the idea in (Ammann and Knight 1988) would refer to 

computation of a continuous function of a continuous parameter. The values of the 

function computed for two close values of the parameter are also close to each other. 

Thus, failures in the form of dramatic jumps of the function on close values of the 

parameter can not only be detected but also corrected by computing a “pseudo correct” 

value. This is done by trying slightly different values of the parameter until a value of the

Page 133 of 278



Ilir Gashi V. Architectural Aspects o f a Fault-Tolerant Diverse SOL Server

function is calculated which is close to the one before the failure. This was found 

(Ammann and Knight 1988) to be an effective way of masking failures, i.e. delivering 

fault-tolerance. Data diversity thus can help not only with error detection but with 

recovery as well, and thus to tolerate some failures due to design faults without the cost 

of design diversity.

Data diversity seems applicable to SQL servers because most queries can be “re-phrased” 

into different, but logically equivalent [sequences of] queries. There are cases where a 

particular query causes a failure in a server but a re-phrased version of the same query 

does not. Examples of such queries often appear in bug reports as “workarounds'’. The 

example below is a bug script for PostgreSQL v7.0.0, producing a non-self-evident 

failure (incorrect result) by returning one row instead of six.

C R E A T E  T A B L E  E M P L O Y E E  (N A M E  V A R C H A R (1 0 )  N O T  N U L L , A G E  IN T E G E R , S A L A R Y  F L O A T , 

D E P T N A M E  V A R C H A R (1 0 ) , M A N A G E R  V A R C H A R (1 0 ), P R IM A R Y  K E Y (N A M E )) ;

The following data exists in the table:
N a m e A g e S a la ry D e p tn a m e M a n a g e r

M ike 28 1 5 0 0 .0 0 S h o e E dna

S a lly 42 8 7 7 .5 0 T o y T e d

G e o rg ia 22 B o o k

T e d 2 6 1 5 .7 3 T o y M a lc o lm

E dna 39 2 0 0 0 .0 0 S h o e M a lc o lm

M a lc o lm 50 2 7 5 0 .0 0 A d m in

C R E A T E  V IE W  A V G J N T  A S  S E L E C T  A V G (S A L A R Y ) A S  A V G _ S A L  F R O M  E M P L O Y E E ;

C R E A T E  V IE W  A V E R A G E  A S  S E L E C T  E M P L O Y E E .N A M E , E M P L O Y E E .S A L A R Y , A V G _ IN T .A V G _ S A L , (S A L A R Y - 

A V G _ S A L ) A S  S A L _ D IF F  F R O M  E M P L O Y E E , A V G J N T ;

S E L E C T  * F R O M  A V E R A G E ;

N A M E  | S A L A R Y  | A V G _ S A L  | S A L _ D IF F

-------+---------- +------------+-----------
M ik e  | 1 5 0 0  | 1 9 4 8 .6 4 6  | -4 4 8 .6 4 6

A workaround exists which is based on using a TEMP (temporary) table instead of a view 

(in this case to hold the average salaries). The same table schema definition and data 

given above are used together with the code below, and then the result is correct.

Page 134 of 278



Ilir Gashi V. Architectural Aspects o f a Fault-Tolerant Diverse SOL Server

I *  T h is  is th e  te m p o ra ry  ta b le * /

S E L E C T  A V G (S A L A R Y ) A S  A V G _ S A L  IN T O  T E M P  T A B L E  A V G J N T  F R O M  E M P L O Y E E ;

/*  T h is  v ie w  is s a m e  a s  a b o v e . * /

C R E A T E  V IE W  A V E R A G E  A S  S E L E C T  E M P L O Y E E .N A M E , E M P L O Y E E .S A L A R Y , A V G J N T .A V G _ S A L , (S A L A R Y - 

A V G _ S A L ) A S  S A L _ D IF F  F R O M  E M P L O Y E E , A V G J N T ;

S E L E C T  * F R O M  A V E R A G E ;

N A M E 1 S A L A R Y I A V G _ S A L  I S A L _ D IF F

M ike 1 15 00 I 1 9 4 8 .6 4 6 I -4 4 8 .6 4 6

S a lly I 8 7 7 .5 I 1 9 4 8 .6 4 6 I -1 0 7 1 .1 4 6

G e o rg ia I I 1 9 4 8 .6 4 6 I

T e d I 2 6 1 5 .7 3 I 1 9 4 8 .6 4 6 I 6 6 7 .0 8 4

E dna I 2 0 0 0 I 1 9 4 8 .6 4 6 I 5 1 .3 5 4

M a lc o lm  | 2 7 5 0 I 1 9 4 8 .6 4 6 I 8 0 1 .3 5 4

(6  ro w s )

Data diversity could be implemented via an algorithm in the middleware that re-phrases 

queries according to predefined rules. For instance, one such rule could be to break-up all 

complex nested SELECT queries so that the inner part of the query is saved in a 

temporary table, and the outer part then uses the temporary table to generate the final 

result.17

Data diversity can be used with or without design diversity. In the case of databases it 

would be attractive alone as it would for instance allow applications to use the full set of 

features of an SQL server, including the proprietary ones. Architectural schemes using 

data diversity are similar to those using design diversity. For instance, Amman and 

Knight in (Ammann and Knight 1988) describe two schemes, which they call “retry 

block” and “n-copy programming”, which can also be used for SQL servers. The “retry 

block” is based on backward recovery. A query is only re-phrased if either the server 

“fail-stops” or its output fails an acceptance test. In “n-copy programming”, a copy of the 

query as issued by the client is sent to one of the servers and re-phrased variants] are sent 

to the others; their results are voted to mask failures. The techniques for error detection 

and state recovery would also be similar to the design diversity case (Section 3.2). In the 

“retry block” scheme (backward error recovery), applied to one of the servers, a failed

17 Re-phrasing algorithms can also be part of the translators for the different SQL dialects. A complex statement which can be directly 
executed with some servers but not others may need to be re-phrased as a logically equivalent sequence of simpler statements for the 
latter.

Page 135 of278



llir G as hi V. Architectural Aspects o f a Fault-Tolerant Diverse SOL Server

transaction would be rolled back, and the rephrased queries executed from the rolled-back 

state thus obtained. In the “n-copy programming” scheme, the state of a server diagnosed 

to be correct would be copied to the faulty server (forward error recovery). Another 

possibility is not to use “re-phrasing” unless diverse replicas produce different outputs 

with no majority. Then, the middleware could abort the transaction and replay the 

queries, after “re-phrasing” them, to all or some of the servers. Fig. 4 shows, at a high 

level, an example of architecture using both data diversity and design diversity with SQL 

servers. This example assumes a combination of “N-version programming” and “n-copy 

programming”, with a single voter in the middleware.

A designer would choose a combination of design diversity and data diversity as a trade-

off between the conflicting requirements of dependability, performance and cost. At one 

extreme, combining both design and data diversity and re-phrasing all those queries for 

which re-phrasing is possible would give the maximum potential for failure detection, but 

with high cost.

Fig. 4 - A possible design for a fault-tolerant server using diverse SQL servers and data diversity. 
The original query (A) is sent to the pair {Interbase 1, PostgreSQL /}, the re-phrased query (A“) is 

sent to the pair {Interbase 2, PostgreSQL 2}. The middleware compares/votes the results in one of the 
ways described in Section 3.2 for solutions without data diversity

3.7 Performance of diverse-replicated SQL servers

Database replication with diverse SQL servers improves dependability, as discussed in 

the previous sections. What are its implications for system performance? In Fig. 5 we 

sketch a timing diagram of the sequence of events associated with a query being 

processed by an FT-node which includes two diverse SQL servers.

Page 136 of 278



Ilir Gashi V. Architectural Aspects o f a Fault-Tolerant Diverse SOL Server

Fig. 5 - Timing diagram with two diverse servers and middleware running in pessimistic regime. The 
meaning of the arrows is: 1 -  the client sends a query to the middleware; 2 -  the middleware 

translates the request to the dialects of the servers and sends the resulting queries, or sequences of 
queries, to the respective servers; 3 -  the faster response is received by the middleware; 4 -  the 

slower response is received by the middleware; 5 -  the middleware adjudicates the two responses; 6 -  
the middleware sends the result back to the client or if none exists initiates recovery or signals a

failure
Processing every query will involve some synchronisation overhead. To “validate” the 

results of executing each query, the middleware should wait for responses from both 

servers, check if the two responses are identical and, in case they differ, initiate recovery. 

We will use the term “pessimistic” for this regime of operation. If the response times are 

close, the overhead due to differences in the performance of the servers (shown in the 

diagram as dashed boxes) will be low. If the difference is significant, then this overhead 

may become significant. If one of the servers is the slower one on all queries, this slower 

server dictates the pace of processing. The service offered by the FT node will be as fast 

as the service from a non-replicated node implemented with the slower server, provided 

the extra overhead due to the middleware is negligible compared to the processing time 

of the slower server. If, however, the slower response may come from either server, the 

service provided by the FT-node will be slower than if a non-replicated node with the 

slower server was used. This slow-down due to the pessimistic regime is the cost of the 

extra dependability assurance.

Many see performance (e.g. the server’s response time) as the most important non-

functional requirement of SQL servers. Is diversity always a bad news for those for 

whom performance is more important than dependability? Fig. 6 depicts a scenario, 

referred to as the “optimistic” regime. For this regime the only function of the 

middleware is to translate the client requests, send them to the servers and as soon as the 

first response is received, return it back to the client. Therefore, if the client is prepared to

Page 137 of 278



llir G as hi V. Architectural Aspects o f a Fault-Tolerant Diverse SOL Server

accept a higher risk of incorrect responses diversity can, in principle, improve 

performance compared with non-diverse solutions.

Fig. 6 - Timing diagram with two diverse servers and middleware running in 
optimistic regime. The meaning of the arrows is: /  -  the client sends a query to 
the middleware, 2 -  the middleware translates the request to the dialects of the 

servers and sends the resulting queries, or sequences of queries, to the respective 
servers; 3 -  the fastest response is received by the middleware; 4 - the 

middleware sends the response to the client

How does the optimistic regime compare in terms of performance (e.g. response time) 

with the two diverse servers used? If one of the servers is faster on every query, diversity 

with the optimistic regime does not provide any improvement compared with the faster 

server. If, however, the faster response comes from different servers depending on the 

query, then the optimistic regime will give a faster service than the faster of the two 

servers (provided the overhead of the middleware is not too high compared with the 

response times of the servers).

The faster response for a query may come from either server (as shown in Fig. 6). A 

similar effect is observed when accepting the faster response between those of two or 

more identical servers. Similarly, in mirrored disk configurations one can take advantage 

of the random difference between the physical disks' response times to reduce the average 

response time on reads (Chen, Lee et al. 1994). What changes with diverse servers is that 

they may systematically differ in their response times for different types of 

transactions/queries, yielding a greater performance gain. The next section shows 

experimental evidence of this effect.

Page 138 of 278



I lir G as hi V. Architectural Aspects o f a Fault-Tolerant Diverse SOL Server

4. Increasing performance via diversity

4.1 Performance measures of diverse SQL servers

We conducted an empirical study to assess the performance effects of the pessimistic and 

optimistic regimes using two open-source SQL servers, PostgreSQL 7.2.4 and Interbase

6.0 (licenses for commercial SQL servers constrain the users’ rights to publish 

performance related results).

For this study, we used a client implementing the TPC-C industry-standard benchmark 

for on-line transaction processing (TPC 2002). TPC-C defines 5 types of transactions: 

New-Order, Payment, Order-Status, Delivery and Stock-Level and sets the probability of 

execution of each. The specified measure of throughput is the number of New-Order 

transactions completed per minute (while all five types of transactions are executing). 

The benchmark provides for performance comparisons of SQL servers from different 

vendors, with different hardware configurations and operating systems.

We used several identical machines with different operating systems: Intel Pentium 4 (l .4 

GHz), 640MB RAMBUS RAM, Microsoft Windows 2000 Professional for the client(s) 

and the Interbase servers, Linux Red Hat 6.0 for the PostgreSQL servers. The servers ran 

on four machines: 2 replicas of Interbase and two replicas of PostgreSQL. Before the 

measurement sessions, the databases on all four servers were populated as specified by 

the standard.

The client, implemented in Java, used JDBC drivers to connect to the servers. We ran two 

experiments with different loads on the servers:

Experiment 1: A single TPC-C client for each server;

Experiment 2: 10 TPC-C clients for each server, each client using one of 10 TPC-C 

databases managed by the same server, so that we could measure the servers’ 

performance under increased load while preserving 1-copy serialisability.

Our objective of the study was not just to repeat the benchmark tests for these servers, but 

also to get preliminary indications about the performance of an FT-node using diverse 

servers, compared to one using identical servers and to a single server. Our measurements 

were more detailed than the ones required by the TPC-C standard. We recorded the

Page 139 of 278



Il ir Gashi V. Architectural Aspects o f a Fault-Tolerant Diverse SOL Server

response times for each individual transaction, for each server. We were specifically 

interested in comparing two architectures:

two diverse servers concurrently process the same stream of transactions (Fig. 3) 

translated into their respective SQL dialects: the smallest possible configuration 

with diverse redundancy.

a reference, non-diverse architecture in which two identical servers concurrently 

process the same stream of transactions.

All four servers were run concurrently, receiving the same stream of transactions from 

the test harness, which produced four copies of each transaction/query. The overhead that 

the test harness introduces (mainly due to using multi-threading for communication with 

the different SQL servers) is the same with and without design diversity.

Instead of translating the queries into the SQL dialects of the two servers on the fly, the 

queries were hard-coded in the test harness. The comparison between the two 

architectures is based on the transaction response times, neglecting all extra overheads 

that the FT-node’s middleware would introduce. This simplification may somewhat 

distort the results, but also allows us to compare the potential of the two architectures, 

and to look at possible trade-offs between dependability and performance, without the 

effects of the detailed implementation of the middleware.

We compare the performance of the two servers with each other and with the two 

regimes, pessimistic (Fig. 5) and optimistic (Fig. 6). The performance measure we 

calculated for the pessimistic regime represents the upper bound of the response time for 

this particular mix of transactions while performance measure for the optimistic regime 

represents the lower bound.

We used the following measures of interest:

mean transaction response times for all five transaction types (Fig. 7) 

mean response times per transaction of each type (Fig. 8).

With two identical SQL servers (last two server pairs in Fig. 7), the difference between 

the mean times is minimal, within 10%. The mean times under the optimistic and 

pessimistic regimes of operation remain very close (differences of <10% for Interbase 

and <15% for PostgreSQL). Interbase is the faster server, being almost twice as fast as 

PostgreSQL, for this set of transactions.

Page 140 of 278



Ilir Gashi V. Architectural Aspects o f a Fault-Tolerant Diverse SOL Server

When we combine two diverse SQL servers we get a very different picture. Now the 

optimistic regime can deliver dramatically better performance than the faster server, 

Interbase. The mean response time is almost 3 times shorter than for Interbase alone 

(compare the first two bars for the first four pairs). When the pessimistic regime is used, 

the value of the mean response time is larger than the respective value of the slower 

server, PostgreSQL, but the slow down is within 40% of PostgreSQL’s mean response 

time - the cost of the improved dependability assurance.
Mean Response Times - All 5 Transactions

□  Server 1 □MIN(Server1,Server2) EiMAX(Server1lServer2) ■  Server 2

1400

Server! :IB1 Server1:IB1 Server1:IB2 Server1:IB2 Server!: IB1 Server1:PG1
Server2:PG1 Server2:PG2 Server2:PG1 Server2:PG2 Server2:IB2 Server2:PG2

S e r v e r  P a i r s

Fig. 7 - Mean response time for all five transaction types over 10,000 transactions for two replicas of 
Interbase 6.0 and two of PostgreSQL 7.2.4. The X-axis lists the servers grouped as pairs (Server 1 
and Server 2). Each server may be of type Interbase (IB) or PostgreSQL (PG). For each of the 6 

server pairs the vertical bars show: -  the mean response times of the individual servers and the mean 
response times calculated for the two regimes of operation of an FT-node (optimistic and pessimistic) 
In order to understand why a diverse pair is so different from a non-diverse pair we

looked at the individual transaction types. The mean response times of the five

transaction types individually are shown in Fig. 8. The figure indicates that the servers

“complement” each other in the sense that when Interbase is slow (on average) to process

one type of transaction PostgreSQL is fast (New-Order and Stock-Level) and vice versa

(Payment, Order-Status and Delivery). This illustrates why a diverse pair outperforms a

non-diverse one so much when the optimistic regime is used, and why it is worse than the

slower server when the pessimistic regime is used (Fig. 7).

Page 141 o f278



Il ir G as hi V. Architectural Aspects o f a Fault-Tolerant Diverse SOL Server

Mean Response Times per Transaction

□  IB1 □  IB2 ■  PG1 ■  PG2

Transaction Type

Fig. 8 - Mean response times by two replicas of Interbase 6.0 and PostgreSQL 7.2.4 for all five 
transactions. The X-axis lists the transaction types (New-Order, Payment, Order-Status, Delivery 

and Stock-Level). The Y-axis gives the values of the mean response time in milliseconds for each of 
the servers (IB1,1B2, PG1 and PG2) for a particular transaction type

In addition to the mean execution times, we have calculated the percentage of the faster

responses coming from either Interbase or PostgreSQL for each transaction. For three 

transaction types the situation is clear-cut. Interbase is always the faster server for Order- 

Status and Delivery transactions, while PostgreSQL is always the faster for Stock-Level 

transactions. For New-Order and Payment transactions instead, the server that is faster on 

average does not provide the faster response for each individual transaction. Consider the 

pair {IB 1, PG1}. For New-Order transaction, PG1 is faster than IB1 on 81.2% of the 

transactions but slower on 15.6% (3.2% of the response times were equal). The situation 

is reversed for Payment transactions: 77.2% of the faster responses come from IB 1, 

15.3% from PG1. This fluctuation is further revealed in Fig. 9. Both observations confirm 

that diverse servers under the optimistic regime would have performed better (for this 

transaction mix and load) than a pair of identical servers.

This pattern of the two SQL servers “complementing” each other was also observed in 

Experiment 2 under increased load with 10 TPC-C clients. During this experiment the 

servers were “stretched” so much that the virtual memories of the machines were 

exhausted. Similarly to the observations of Experiment 1, when two identical servers are 

used the difference between the mean response times is minimal, within 10%, and the 

difference between the mean response times of the optimistic and pessimistic regime 

remain less than 10% for both servers. Again Interbase is the faster server.

Page 142 of 278



Il ir G as hi V. Architectural Aspects o f a Fault-Tolerant Diverse SOL Server

The mean response times when two diverse servers are considered under the optimistic 

regime are around four times shorter than for Interbase alone. Under the pessimistic 

regime, the mean response time is of course larger than the value of the slower server (on 

average), PostgreSQL, but the slow down is within 60% of PostgreSQL’s mean response 

time (it was 40% in Experiment 1, when a single client was used).
N e w - O r d e r  T r a n s a c t i o n :  IB1 v s  PG1 P a y m e n t  T r a n s a c t i o n :  IB1 v s  PG 1

0 200 400 600 800 1000 1200
IB1 (msec)

5
Q.

0 200 400 600 800 1000 1200
IB1 (msec)

Fig. 9 - Response times for the New-Order and Payment transactions. Every dot in the 
plots represents the response times of two servers for an instance of the respective 
transaction type. If the times were close to each other most of the dots would be 

concentrated around the unit slope (observed for the pairs of identical servers, IB1 vs 
IB2 and PG1 vs PG2). If the dots are mostly below the slope, Interbase is slower (as 

with the New-Order). If the dots are concentrated above the unit slope -  PostgreSQL is 
slower (as with the Payment). Similar results were obtained for the other three diverse

server pairs

4.2 Design solutions for the optimistic regime

Under the optimistic regime, diversity offers better performance than each of the diverse 

SQL servers used. Various design solutions are possible, with different trade-offs 

between dependability and performance. We discuss two in more detail, for an FT-node 

with two or more servers:

Non fanlt-tolerant solution: For each query, the middleware forwards the first response to 

the client and discards all later responses. The performance gain depends on whether, by 

the time the middleware relays a query to the servers, all servers have finished processing 

the previous query.18 If the slowest server is still processing the previous query, there are 

two options:

18 This happens if the sum of the transport delay to deliver the fastest response to the client, the client’s own processing time to 
produce the next query, and the transport delay to deliver the next query to the middleware is longer than the extra time needed by the

Page 143 of 278



Il ir Gashi V. Architectural Aspects o f a Fault-Tolerant Diverse SOL Server

the middleware waits until the slowest server completes (aborting the query is not 

an option because it will compromise data consistency); this delay may seriously 

limit the performance gain given by the optimistic regime;

the middleware forwards each query, of a transaction, immediately to those 

servers that are done processing the previous one, but buffers it for servers that are 

not. If the middleware only behaves like this within transactions, while on 

commits of transactions it, inevitably, waits for the slowest server, 1-copy 

serialisability is preserved.

The transport delays and the client’s own processing delays are the two key factors, 

which decide how much time will be gained using the optimistic regime. The transport 

delays are implementation-specific and likely to be significant in multi-tier systems. 

Similarly, the client’s own delay is application specific. For interactive applications, it is 

very likely to be significant.

Fault-tolerant solution: The middleware optimistically forwards the first response to the 

client, and keeps a copy to compare with later responses when they arrive. If they differ, 

it initiates recovery. This is easily accomplished within a transaction: the transaction is 

rolled back, and the client is notified just as for any other transaction rollback decided by 

a server. This optimistic fault-tolerant scheme will be almost as fast as discarding the late 

responses, except in the presumably rare case of discrepancy between the servers' 

responses. The previous considerations about the impact of transport delays and of the 

client’s processing delays still apply.

5. Related work
Replicated databases are common, but most designs are not suitable for diverse 

redundancy. We have referred in the previous section to some of the standard solutions 

(Bernstein, Hadzilacos et al. 1987), (Sutter 2000), (Jimenez-Peris, Patino-Martinez et al. 

2001), (Gray and Reuter 1993) and (Kemme and Alonso 2000).

Recent surveys exist of the mechanisms for eager replication of databases (Weismann, 

Pedone et al. 2000), and for the replication mechanisms (mainly lazy replication)

slower server to complete query processing. In this case, both (or all) servers will be ready to take the next query and the race between 
them will start over.

Page 144 of 278



Ilir Gashi V. Architectural Aspects o f a Fault-Tolerant Diverse SOL Server

implemented in various SQL servers (Vaysburd 1999). The Pronto protocol (Pedone and 

Frolund 2000) attempts to reduce the negative effects of lazy replication using ideas 

typical for eager replication. One of its selling points is that it can be used with off-the- 

shelf SQL servers, but it is unclear whether this includes diverse servers. A potential 

problem is the need to broadcast the SQL statement from the primary to the replicas. The 

syntax of SQL statements varies between SQL servers, as discussed in Section 3.

A relevant discussion of the various ways of implementing database replication with off- 

the-shelf SQL servers is in (Jimenez-Peris and Patino-Martinez 2003). Three forms are 

discussed, treating the SQL servers as black, white or grey boxes. All commercial 

vendors of SQL servers use the white-box approach, where a suite necessary for 

replication is added to the code of the non-replicated server. The black-box and the grey- 

box approaches are implemented in the form of middleware on top of the existing SQL 

servers. The black-box approach, like the design solutions discussed here, uses the 

standard interfaces of the servers and its main advantage is applicability to a wide range 

of servers. The grey-box approach, implemented in (Patino-Martinez, Jimenez-Peris et al. 

2000) and (Jimenez-Peris, Patino-Martinez et al. 2002), assumes that the servers provide 

services specifically to assist replication.

Comparisons of various replication protocols from the point of view of their performance 

and feasibility are presented in (Jimenez-Peris, M. Patino-Martinez et al. 2003), 

(Jimenez-Peris, Patino-Martinez et al. 2001).

The problem of on-line recovery is scrutinised in (Kemme and Alonso 2000) and 

(Jimenez-Peris, M. Patino-Martinez et al. 2002) and cost-effective solutions are proposed.

6. Discussion
The fault diversity figures (presented in Section 2) point to a serious potential gain in 

reliability from using a fault tolerant SQL server built from two or more off-the-shelf 

servers. There are limitations to what can be speculated from the bug reports alone, 

because these do not address the frequency of the failures caused. The actual failure 

reports would be more informative, especially if the vendors used automatic failure 

reporting mechanisms. An even better analysis could be obtained if these mechanisms 

gave indications about the users’ usage profile as proposed in (Voas 2000). However

Page 145 of 278



Ilir Gashi V. Architectural Aspects o f a Fault-Tolerant Diverse SOL Server

such detailed dependability information is difficult to obtain from the vendors. Based on 

the evidence of fault diversity presented in Section 2, using a diverse fault-tolerant server 

would already appear a reasonable and relatively cheap precautionary decision (even 

without good predictions of its effects) for a user that had: serious concerns about 

dependability (e.g., interruptions of service or undetected incorrect data being stored are 

very costly); client applications using mostly the core features common to multiple off- 

the-shelf products (for instance a user who required portability of applications); modest 

throughput requirements for database updates which make it easy to accept the 

synchronisation delays of a fault-tolerant server.

We have provided a more detailed discussion of the fault diversity results in (Gashi, 

Popov et al. 2004).

Data diversity has been proposed as a possibility to detect failures that would otherwise 

be un-detectable in some diverse server replication settings. We have provided examples 

of this in Section 3.6. The possible benefits of this approach could be its relatively lower 

cost (especially if OTS re-phrasing software becomes available) in comparison with 

design diversity, and also that it can be used with or without design diversity allowing for 

various cost-dependability trade-offs.

In Section 4 we presented the results from our experiments on the performance of two 

open-source SQL servers. We estimated the likely performance effect of diversity under 

optimistic and pessimistic regime of operation.

The Quality of service provided by a database server can be defined to include both 

performance and dependability. Clients with conflicting needs may benefit from design 

diversity according to their own priorities because an FT-node can apply different 

regimes for different databases or different clients. When performance is top priority the 

optimistic regime can be used, possibly even in the non-fault-tolerant variation, which 

discards the slower responses. In many practical cases this is likely to produce significant 

improvement. At the other end of the spectrum, when dependability is top priority, the 

pessimistic regime with a fully featured middleware for fault-tolerance will provide 

significantly improved dependability assurance. Several intermediate solutions are 

possible with different trade-offs between performance and dependability. The optimistic

Page 146 of 278



11 ir G as hi V. Architectural Aspects o f a Fault-Tolerant Diverse SOL Server

regime can be used together with functionality for fault-tolerance using the responses 

from all servers as discussed in Section 4.2.

7. Conclusions
Most users of SQL servers see performance as the most critical requirement. 

Dependability, although important, is often assumed not to be a problem, and users who 

seek to improve it are apparently satisfied with redundant solutions meant to tolerate 

crash failures only.

We have argued that non-diverse replication is a limited solution, since many server 

failures are non-self-evident and cannot be tolerated by non-diverse replication. We have 

shown evidence of this problem from our “fault diversity” measurements. To provide 

extended protection against non-self-evident failures, we have argued in favour of using 

diverse SQL servers and outlined a range of possible architectural solutions.

We have presented some encouraging empirical results which suggest that diversity can 

improve the performance of a fault-tolerant server. To the best of our knowledge, similar 

results have not been reported before. This possibility is due to the fact that different SQL 

server may “complement” each other, as we have established empirically for Interbase 

and PostgreSQL: one of the server is systematically faster in processing some types of 

transactions while the other server is faster processing other types of transactions. This is 

similar to the intuitive idea of forming teams of individuals who have different skills, 

which is an accepted view in various areas. Diversity can improve both aspects of the 

service provided by the SQL servers, dependability and performance.

We have outlined some design problems in implementing middleware for diverse SQL 

servers. However, the technical benefits of having such a solution for data replication 

could be significant. There remain open questions worth studying in the future:

the work on fault diversity can be extended by finding out whether the same 

proportion of crash/non-crash failures will be observed with later versions of the 

servers, or even including other servers e.g. DB2, MySQL, etc. 

evidence of actual failure diversity (or lack thereof) in actual use is also to be 

sought. We are currently running experiments to assess statistically the actual 

reliability gains. We have so far run a few million queries on a configuration with

Page 147 of 278



Ilir Gashi V. Architectural Aspects o f a Fault-Tolerant Diverse SOL Server

three off-the-shelf SQL servers (Interbase, Oracle and MSSQL), with various 

loads without failures. We plan to continue these experiments for more complete 

test loads

demonstrating the feasibility of automatic translation of SQL queries from, say 

ANSI/ISO SQL syntax to the SQL dialect implemented by the deployed SQL 

servers.

empirical evaluation of whether the “optimistic” regime, discussed in Section 4, is 

practicable for a range of widely used clients;

implementing configurable middleware, deployable on diverse SQL servers, to 

allow the clients to request quality of service in line with their specific 

requirements for performance and dependability, is a possibility for future work

Acknowledgement
This work was supported in part by the Engineering and Physical Sciences Research 

Council (EPSRC) of the United Kingdom through the Interdisciplinary Research 

Collaboration in Dependability (DIRC) and the DOTS (Diversity with Off-The-Shelf 

Components) projects. We wish to thank Peter Bishop for comments on an earlier version 

of this paper.

References
Ammann, P. E. and J. C. Knight (1988), "Data Diversity: An Approach to Software 

Fault Tolerance", IEEE Transactions on Computers 37(4), pp: 418-425.

Anderson, T. and P. A, Lee (1990), "Fault Tolerance: Principles and Practice 

(Dependable Computing and Fault Tolerant Systems, Vol 3)”, Springer Verlag.

Avizienis, A., P. Gunningberg, J, P, J. Kelly, L. Strigini, P. J. Traverse, K. S. Tso 

and U. Voges (1985), "The UCLA DEDIX System: A Distributed Testbed for Multiple- 

Version Software", in proc. Int. Symp. on Fault-Tolerant Computing (FTCS '85), Ann 

Arbor, Michigan, USA, IEEE Computer Society Press, pp: 126-134.

Avizienis, A, and J. P. J. Kelly (1984), " Fault Tolerance by Design Diversity: Concepts 

and Experiments”, IEEE Computer 17(8), pp: 67-80.

Page 148 of 278



Ilir Gashi V. Architectural Aspects o f a Fault-Tolerant Diverse SOL Server

Babbage, C. (1974), " On the Mathematical Powers o f the Calculating Engine 

(Unpublished manuscript, December 1837)", in The Origins of Digital Computers: 

Selected Papers, B. Randell (Eds.), Springer, pp: 17-52.

Bernstein, P. A., V. Hadzilaeos and N. Goodman (1987), "Concurrency Control and 

Recovery in Database Systems", Reading, Mass., Addison-Wesley.

Chandra, S. and P. M. Chen (1998), "How Fail-Stop are Programs”, in proc. Int. 

Symp. on Fault-Tolerant Computing (FTCS '98), IEEE Computer Society Press, pp: 240- 

249.

Chandra, S, and P. M. Chen (2000), " Whither Generic Recovery from Application 

Faults? A Fault Study using Open-Source Software”, in proc. Int. Conf. on Dependable 

Systems and Networks (DSN '00), NY, USA, IEEE Computer Society Press, pp: 97-106. 

Chen, P. M„ E. K. Lee, G. A, Gibson, R. H. Katz and D. A. Patterson (1994), "Raid: 

High-Performance, Reliable Secondary Storage", ACM Computing Surveys 26(2), pp: 

145-185.

Gashi, I., P. Popov and L. Strigini (2004), "Fault Diversity Among Off-The-Shelf SQL 

Database Servers", in proc. Int. Conf. on Dependable Systems and Networks (DSN '04), 

Florence, Italy, IEEE Computer Society Press, pp: 389-398.

Gray, J. (1986), "Why Do Computers Stop and What Can be Done About it?" in proc. 

Int. Symp. on Reliability in Distributed Software and Database Systems (SRDSDS ’86), 

Los Angeles, CA, USA, IEEE Computer Society Press, pp: 3-12.

Gray, J. and A. Reuter (1993), "Transaction Processing : Concepts and Techniques", 

Morgan Kaufmann.

Gruber, M, (2000), "Mastering SQL", SYBEX.

Jimenez-Peris, R., M. Patino-Martinez and G. Alonso (2002), "An Algorithm for Non- 

Intrusive, Parallel Recovery o f Replicated Data and its Correctness", in proc. Int. Symp. 

on Reliable Distributed Systems (SRDS '02), Osaka, Japan, IEEE Computer Society 

Press, pp: 150-159.
Jimenez-Peris, R., M. Patino-Martinez, G. Alonso and B, Kemme (2003), "Are 

Quorums an Alternative for Data Replication?” ACM Transactions on Database Systems 

28(3), pp: 257-294.

Page 149 of 278



Il ir G as hi V. Architectural Aspects o f a Fault-Tolerant Diverse SOL Server

Jimenez-Peris, R. and M. Patino-Martinez (2003), "D5: Transaction Support”, 

ADAPT Middleware Technologies for Adaptive and Composable Distributed 

Components, Deliverable IST-2001-37126.

Jimenez-Peris, R., M. Patino-Martinez, G. Alonso and B. Kemme (2001), "How to 

Select a Replication Protocol According to Scalability, Availability and Communication 

Overhead", in proc. Int. Symp. on Reliable Distributed Systems (SRDS '01), New 

Orleans, Louisiana, IEEE Computer Society Press, pp: 24 -33.

Jimenez-Peris, R., M. Patino-Martinez, G. Alonso and B. Kemme (2002), "Scalable 

Database Replication Middleware", in proc. 22nd Int. Conf. on Distributed Computing 

Systems, Vienna, Austria, IEEE Computer Society Press, pp: 477-484.

Kalyanakrishnam, M„ Z. Kalbarczyk and R. Iyer (1999), "Failure Data Analysis of 

LAN o f Windows NT Based Computers", in proc. Int. Symp. on Reliable and Distributed 

Systems (SRDS '99), Lausanne, Switzerland, IEEE Computer Society Press, pp: 178-187. 

Kemme, B. and G. Alonso (2000), " Don't be Lazy, be Consistent: Postgres-R, a New 

Way to Implement Database Replication", in proc. Int. Conf. on Very Large Databases 

(VLDB), Cairo, Egypt.

Laprie, J. C., J. Arlat, C. Beounes and K. Kanoun (1990), "Definition and Analysis o f 

Hardware-and-Software Fault-Tolerant Architectures", IEEE Computer 23(7), pp: 39-51. 

Lyu, M. R.. Ed. (1995), "Software Fault Tolerance", Trends in Software, Wiley.

Melton, J. (2002), "(ISO-ANSI Working Draft) Persistent Stored Modules (SQL/PSM)”, 

http://www.jtclsc32.org/sc32/jtclsc32.nsf/Attachments/9611E99B3901802188256D950 

05B0184/$FILE/32N1008-WD9075-04-PSM-2003-09.PDF.

Microsoft (2003), "SQL Server "Yukon"", 

http://www.microsoft.com/sql/yukon/productinfo/default.asp.

Patino-Martinez, M., R. Jimenez-Peris and G. Alonso (2000), "Scalable Replication in 

Database Clusters", in proc. Int. Conf. on Distributed Computing, DISC'OO, Springer, pp: 

315-329.
Pedone, F. and S. Frolund (2000), "Pronto: A Fast Failover Protocol for Off-the-shelf 

Commercial Databases", in proc. Int. Symp. on Reliable Distributed Systems (SRDS 

'00), Nürnberg, Germany, IEEE Computer Society, pp: 176-85.

Page 150 of 278

http://www.jtclsc32.org/sc32/jtclsc32.nsf/Attachments/9611E99B3901802188256D950
http://www.microsoft.com/sql/yukon/productinfo/default.asp


Ilir Gashi V. Architectural Aspects o f a Fault-Tolerant Diverse SOL Server

Poledna, S. (1996), "Fault-Tolerant Real-Time Systems: The Problem o f Replica 

Determinism”, Kluwer Academic Publishers.

Popov, P., L. Strigini, A. Rostov, V. Mollov and D. Selensky (2004). "Software Fault- 

Tolerance with Off-the-Shelf SQL Servers", in proc. Int. Conf. on COTS-based Software 

Systems (ICCBSS ’04), Redondo Beach, CA USA, Springer, pp: 117-126.

Powell, D., J. Arlat, L. Beus-Dukic, A. Bondavalli, P. Coppola, A. Fantechi, E. Jenn, 

C. Rabejac and A. Wellings (1999), " GUARDS: A Generic Upgradable Architecture for 

Real-Time Dependable Systems", IEEE Transactions on Parallel and Distributed Systems 

10(6), pp: 580-599.

Pullum, L. (2001), "SoftM’are Fault Tolerance Techniques and Implementation", Artech 

House.

Randell, B. (1975), "System Structure for Software Fault Tolerance", IEEE Transactions 

on Software Engineering 1(2), pp: 220-232.

Schneider, F. (1984), "Byzantine Generals in Action: Implementing Fail-Stop 

Processors", ACM Transactions on Computer Systems 2(2), pp: 145-154.

Sutter, H. (2000), "SQL/Replication Scope and Requirements Document", ISO/IEC JTC 

1/SC 32 Data Management and Interchange WG3 Database Languages, H2-2000-568. 

TPC (2002), "TPG Benchmark C, Standard Specification, Version 5.0"

http://www.tpc.org/tpcc/.

Traverse, P. J. (1988), "AIRBUS and ATR System Architecture and Specification”, in 

Software diversity in computerized control systems, U. Voges (Eds.), Springer-Verlag, 2, 

pp: 95-104.

Tso, K. S. and A. Avizienis (1987), "Community Error Recovery in N-Version Software: 

A Design Study with Experimentation", in proc. Int. Symp. on Fault-Tolerant Computing 

(FTCS '87), Pittsburgh, PA, USA, pp: 127-133.

Vaysburd, A. (1999), "Fault Tolerance in Three-Tier Applications: Focusing on the 

Database Tier", in proc. Int. Symp. on Reliable Distributed Systems (SRDS ’99), 

Lausanne, Switzerland, IEEE Computer Society Press, pp: 322-327.

Voas, J. (2000), "Deriving Accurate Operational Profiles for Mass-Marketed Software", 

http://www.cigital.com/papers/download/profile.pdf.

Page 151 of 278

http://www.tpc.org/tpcc/
http://www.cigital.com/papers/download/profile.pdf


Ilir Gas hi V. Architectural Aspects o f a Fault-Tolerant Diverse SOL Server

Voges, U„ Ed. (1988), "Software diversity in computerized control systems", Dependable 

Computing and Fault-Tolerance series, A. Avizienis, H. Kopetz, J.C. Laprie (series 

Editors), Wien, Springer-Verlag.

Weismann, M., F. Pedone and A. Schiper (2000). "Database Replication Techniques: a 

Three Parameter Classification”, in proc. Int. Symp. on Reliable Distributed Systems 

(SRDS '00), Nürnberg, Germany, IEEE Computer Society Press, pp: 206-217.

Page 152 of 278



Ilir Gashi V. Architectural Aspects o f a Fault-Tolerant Diverse SOL Server

Paper-4. Rephrasing Rules for Off-The-Shelf SQL
Database Servers

Abstract: We have reported previously (Gashi, Popov et al. 2004b) results o f a study with a 

sample o f bug reports from four off-the-shelf SQL servers. We checked whether these 

bugs caused failures in more than one server. We found that very few bugs caused 

failures in two servers and none caused failures in more than two. This would suggest a 

fault-tolerant server built with diverse off-the-shelf servers would be a prudent choice for 

improving failure detection. To study other aspects o f fault tolerance, namely failure 

diagnosis and state recovery, we have studied the “data diversity" mechanism and we 

defined a number o f SQL rephrasing rules. These rules transform a client sent statement 

to an additional logically equivalent statement, leading to more results being returned to 

an adjudicator. These rides therefore help to increase the probability o f a correct 

response being returned to a client and maintain a correct state in the database.

Co-author: Dr. Peter Popov

Conference: European Dependable Computing Conference 2006 (EDCC-06)

Date of submission: April-2006 

Status: Published 

Number of reviewers: 6 

Publication date: October 2006

Full citation: Gashi, I., Popov, P., "Rephrasing Rules for Off-The-Shelf SQL Database 

Servers", in Proc. 6th European Dependable Computing Conference (EDCC-6), 18-20 

October, Coimbra, Portugal, IEEE Computer Society, pp. 139-148, 2006

Page 153 of 278



Ilir Gashi V. Architectural Aspects o f a Fault-Tolerant Diverse SOL Server

1. Introduction
Fault tolerance is frequently the only viable approach of obtaining the required system 

dependability from systems built out of “off-the-shelf’ (OTS) products (Popov, Strigini et 

al. 2004). There are various methods in which this fault tolerance can be achieved 

ranging from simple error detection and recovery add-ons (e.g. wrappers (Popov, Strigini 

et al. 2001)) to diverse redundancy replication using diverse versions of the components. 

These design solutions are well known. Questions remain, however, about the 

dependability gains and implementation difficulties for a specific system.

We have studied some of these issues in SQL database servers, a very complex category 

of off-the-shelf products. We have previously reported (Gashi, Popov et al. 2004b) (the 

preceding reference forms part o f this thesis as Paper-1) results from a study with a 

sample of bug reports from four off-the-shelf SQL servers so as to assess the possible 

advantages of software fault tolerance - in the form of modular redundancy with diversity 

- in complex off-the-shelf software. We found that very few bugs cause failures in two 

servers and none cause failures in more than two, which would indicate that significant 

dependability improvements can be expected from the deployment of a fault-tolerant 

server built out of diverse off-the-shelf servers in comparison with individual servers or 

the non-diverse replicated configurations.

Although we found that using multiple diverse SQL servers can dramatically improve 

error detection rates it does not make them 100%, e.g. our study (Gashi, Popov et al. 

2004b) found four bugs causing identical non-self-evident failures in two servers. Thus 

there is room for improving failure detection further. Many of the cases, in which a 

failure was detected did not allow for immediate diagnosis of the failed server. Fault 

tolerance requires also diagnosing the faulty server and maintaining data consistency 

among the databases in addition to failure detection. To improve the situation, we studied 

the mechanism called “data diversity” by Ammann and Knight (Ammann and Knight 

1988) (who studied it in a different context). The simplest example of the idea in 

(Ammann and Knight 1988) refers to computation of a continuous function of a 

continuous parameter. The values of the function computed for two close values of the 

parameter are also close to each other. Thus, failures in the form of dramatic jumps of the 

function on close values of the parameter can not only be detected but also corrected by

Page 154 of 278



Ilir Gashi V. Architectural Aspects o f a Fault-Tolerant Diverse SOL Server

computing a “pseudo correct” value. This is done by trying slightly different values of the 

parameter until a value of the function is calculated which is close to the one before the 

failure. This was found (Ammann and Knight 1988) to be an effective way of detecting 

as well as masking failures, i.e. delivering fault-tolerance. Data diversity, thus, can help 

with failure detection and state recovery, and thus complement fault-tolerance solutions 

which employ diverse modular redundancy, as well as helping achieve a certain degree of 

fault tolerance without employing diverse modular redundancy.

Data diversity is applicable to SQL servers because of the inherent redundancy that exists 

in the SQL language: statements can be “rephrased” into different, but logically 

equivalent [sequences of] statements. While working with the bug reports we found 

examples where a particular statement causes a failure in a server but a rephrased version 

of the same statement does not. Examples of such statements often appear in bug reports 

as “workarounds”.

In this paper we provide details of how SQL rephrasing can be employed systematically 

in a fault-tolerant server and provide examples of useful rephrasing rules. We also report 

on performance measurements using the TPC-C (TPC 2002) benchmark client 

implementation to get some initial estimates of the delays introduced by rephrasing.

The paper is structured as follows: in Section 2 we give details of the architecture of a 

fault-tolerant server employing rephrasing. In Section 3 we give details of the data 

diversity study we have conducted for defining SQL rephrasing rules and illustrate how 

one of these rules has been used as a workaround for two known bugs of two SQL 

servers. In Section 4 we give some empirical results of experiments we have conducted to 

measure the performance penalty due to rephrasing. In Section 5 we discuss some general 

implications of our results and finally in Section 6 some conclusions are presented with 

possibilities for further work.

2. Architecture of a fault-tolerant server

2.1 General scheme

Data replication is a well-understood subject (Patino-Martinez, Jimenez-Peris et al. 

2005), (Lin, Kemme et al. 2005), (Bernstein, Hadzilacos et al. 1987). The main problem

Page 155 of 278



Ilir Gashi V. Architectural Aspects o f a Fault-Tolerant Diverse SQL Server

replication protocols deal with is guaranteeing consistency between copies of a database 

without imposing a strict synchronisation regime between them. A study which compared 

various replication protocols in terms of their performance and the feasibility of their 

implementation can be found in (Jimenez-Peris, M. Patino-Martinez et al. 2003). Existing 

protocols implement efficient solutions for this problem, but depend on running copies of 

the same (non-diverse) server. These schemes would not tolerate non-self-evident19 

failures that cause incorrect writes to the database or that return incorrect results from 

read statements. For the former, incorrect writes would be propagated to the other 

replicas and for the latter, incorrect results would be returned to the client. This 

deficiency can be overcome by building a fault-tolerant server node (“FT-node”) from 

two or more diverse SQL servers, wrapped together with a “middleware” layer to appear 

to each client as a single SQL server. An illustration of this architecture with two diverse 

Off-The-Shelf servers (“O-servers”) is shown in Fig. 10. A brief explanation of the figure 

follows. Several nodes (computers) are depicted which run client applications (Client 

node 1, Client node 2 and Client node 3) or server applications (Middleware node, 

RDBMS 1 node and RDBMS 2 node). The bottom three nodes together form the FT- 

server. Components may share a node: e.g. Replication Middleware, and the two SQL 

connectors for dialects 1 and 2 are deployed on the Middleware node. The SQL 

connectors additionally contain the SQL rephrasing rules. The diagram assumes that the 

Off-The-Shelf servers (O-servers) run on separate nodes, RDBMS 1 node and RDBMS 2 

node. The circles represent the interfaces through which the components interact. Each 

SQL connector, implements the SQL Connector API interface used by the Replication 

Middleware component. This, in turn implements the Middleware API interface via 

which the client applications access the FT-server, either directly or via a driver for the 

FT-server in a specific run-time environment, e.g. JDBC driver or .NET Provider.

Further improvements to this architecture would be to also run diverse replicas of the 

middleware component. We have described elsewhere (Gashi, Popov et al. 2004a) (the 

preceding reference forms part o f this thesis as Paper-3), (Popov, Strigini et al. 2004) in

19 In (Gashi, Popov et al. 2004b) we classified the failures according to their detectability by a client of the database servers into: Self- 
Evident failures - engine crash failures, cases in which the server signals an internal failure as an exception (error message) and 
performance failures; Non-Self-Evident failures', incorrect result failures, without server exceptions within an accepted time delay.

Page 156 of 278



llir Gashi V. Architectural Aspects o f a Fault-Tolerant Diverse SOL Server

more detail the FT-node architecture. Here we will only elaborate on the parts relevant to 

the discussion of rephrasing.

2.2 SQL connectors

The O-servers are not fully compatible: they “speak different dialects” of SQL, despite 

being compliant at various levels with SQL standards. Therefore the FT-server includes a 

translator between these dialects, defined for a subset of SQL (e.g. “SQL-92 entry level”) 

plus some more advanced features important for enterprise applications (such as 

TRIGGERS and STORED PROCEDURES). The translators are depicted as “SQL Dialect 

Connector’s” in Fig 10.

A similar idea (implemented in (EnterpriseDB 2006), (Janus-Software 2006)) is to 

redefine the grammar of one database server to make it compatible with that of another 

while keeping the core database engine unchanged.

Fig. 10 - UML Deployment diagram of the FT-server

Page 157 of 278



llir Gashi V. Architectural Aspects o f a Fault-Tolerant Diverse SQL Server

2.3 Failure detection, masking, recovery

The middleware of the FT-server includes extensive functionality for failure detection, 

masking and state recovery. Self-evident server failures are detected as in a non-diverse 

server, via server error messages (i.e. via the existing error detection mechanisms inside 

the servers), and time-outs for crash and performance failures. Diversity gives the 

additional capability of detecting non-self-evident failures by comparing the outputs20 of 

the different O-servers. In a FT-node with 3 or more diverse O-servers, majority voting 

can be used to choose a result and thus mask the failure to the clients, and identify the 

failed O-server which may need a recovery action to correct its state. With a 2-diverse 

FT-node, if the two O-servers give different results, the middleware cannot decide which 

O-server is in error. This is where “data diversity” can help by providing additional 

results to break the tie (more in the next subsection). State recovery of the database can 

be obtained in the following ways:

via standard backward error recovery, which will be effective if the failures are 

due to transient failures (caused by so called “Heisenbugs” (Gray 1986)). To 

command backward error recovery, the middleware may use the standard 

database transaction mechanisms: aborting the failed transaction and replaying its 

statements may produce a correct execution. With “data diversity” a finer 

granularity level of recovery is possible using SAVEPOINTS and ROLLBACKS; 

additionally, diversity offers ways of recovering from non-transient failures 

(caused by so called “Bohrbugs” (Gray 1986)), by essentially copying the 

database state of a correct server into the failed one (similarly to (Tso and 

Avizienis 1987)). Since the formats of the database files differ between the 

servers, the middleware would need to query the correct server[s] for their 

database contents and command the failed server to write them into the 

corresponding records in its database, similar to what is proposed in (Sutter 2000). 

This would be expensive, perhaps to be completed off-line, but a designer can use

211 An "output” may be the results from a S E L E C T  statement or the number of rows affected for a write ( IN S E R T , U P D A T E  and 
D E L E T E ) statement. For IN S E R T  and U P A D T E  statements a more refined way would be to read back the affected rows and use 
those for comparison.

Page 158 of 278



Ilir Gashi V. Architectural Aspects o f a Fault-Tolerant Diverse SOL Server

multi-level recovery, in which the first step is to correct only those records that 

have been found erroneous on read statements.

2.4 Data diversity extensions

Even with just two diverse O-servers, many of the O-server failures may be masked by 

using “data diversity” (rephrasing an SQL statement into a different, but semantically 

equivalent one) to solicit “second opinions” from the O-servers and if possible outvote 

the incorrect response.

Data diversity could be implemented via an algorithm in the “Middleware Node” that 

rephrases statements according to predefined rules. We can define these rules for each 

type of SQL statement defined by the SQL grammar implemented by the server. These 

rules therefore may form part of the “SQL Dialect Connectors“. Upon receiving a 

statement from a client application the middleware can look up a rule from the list of 

available rules and rephrase the statement. The middleware must allow for new rules to 

be defined as and when necessary. If the middleware exhausts the list of rules that it can 

apply to a certain statement but no “correct result” can be established by applying the 

closed adjudication mechanism then an error message is returned to the client.

Data diversity can be used with or without design diversity. Architectural schemes using 

data diversity are similar to those using design diversity. For instance, Amman and 

Knight in (Ammann and Knight 1988) describe two schemes, which they call “retry 

block” and “n-copy programming”, which can also be used for SQL servers. The “retry 

block” is based on backward recovery. A statement is only rephrased if either the server 

“fail-stops” or its output fails an acceptance test. In “n-copy programming”, a copy of the 

statement as issued by the client is sent to one of the O-servers and rephrased variant(s) 

are sent to the others; their results are voted to mask failures.

Data diversity allows for a finer-granularity of state recovery, which is facilitated by the 

implementation of SAVEPOINT and ROLLBACK within transactions. The procedure 

(written in pseudocode), for a statement within a transaction, is given at the end of this 

sub-section. 21

21 Depending on the setup used a correct result could be either the majority result or one that passes an acceptance test.

Page 159 of 278



Il ir Gashi V. Architectural Aspects o f a Faalt-Tolerant Diverse SOL Server

A performance optimisation could be to perform adjudication at an intermediate step of 

the WHILE loop execution rather than at the end (e.g. for a “majority voting” adjudication, 

if there are five rules for a particular statement then could check after the execution of the 

first three rephrased versions of the statement whether results returned by each of them 

are identical; if yes then majority result is already obtained and therefore no need for the 

last two rephrased versions of the statement to be executed).

The SAVEPOINT and ROLLBACK approach is the correct way of ensuring the “isolation” 

property of an ACID transaction. Otherwise, if we “ABORTed” the transaction and 

started a new one to perform the rephrased version of the statement, a concurrent transac-

tion may have updated rows in the target table. This would lead to different results being 

returned by the O-server for the rephrased statement even though the behaviour is not 

faulty.
W H IL E  m o re  re p h ra s in g  ru le s  a v a ila b le  fo r  th e  s ta te m e n t D O

IF W R IT E  ( i.e . D M L  (IN S E R T , U P D A T E  o r D E L E T E ) o r D D L  (e  g. C R E A T E  V IE W  e tc .))  s ta te m e n t T H E N  

S A V E P O IN T ;

E x e c u te  W R IT E  s ta te m e n ts ]  p ro d u c e d  by  th e  c u rre n t re p h ra s in g  ru le ;

R E A D  th e  ro w s  a m e n d e d  by  th e  W R IT E  s ta te m e n t;

S to re  th e  re s u lts  p ro d u c e d  b y  th e  p re c e d in g  R E A D  s ta te m e n t;

R O L L B A C K  T O  la s t S A V E P O IN T ;

E L S E  IF R E A D  (i.e . S E L E C T ) s ta te m e n t T H E N

E x e c u te  R E A D  s ta te m e n ts ]  p ro d u c e d  by  th e  c u r re n t re p h ra s in g  ru le ;

S to re  th e  re s u lts  p ro d u c e d  b y  th e  R E A D  s ta te m e n t;

E N D  IF 

E N D  W H IL E

A d ju d ic a te  fro m  th e  s to re d  re s u lts  p ro d u c e d  b y  e a c h  re p h ra s e d  v e rs io n  o f  th e  s ta te m e n t;

IF a d ju d ic a tio n  s u c c e e d s  (e .g . “m a jo r ity  v o t in g ” p ro d u c e d  a re s u lt)  T H E N  

E x e c u te  th e  s ta te m e n t w h ic h  w a s  a d ju d ic a te d  to  b e  c o rre c t;

E LS E

A B O R T  c u r re n t T ra n s a c tio n  

R a is e  an  e x c e p tio n ;

E N D  IF

3. SQL rephrasing rules
As explained in Section 2, the support for data diversity can be implemented in the 

middleware in the form of rephrasing rules. The initial step is defining the rules that are 

to be implemented. The rules can be defined by studying in depth the SQL language itself 22

22 This is under the assumption that the ACID property of the transaction is failure-free.

Page 160 of 278



llir Gashì V. Architectural Aspects o f a Fault-Tolerant Diverse SOL Server

to identify the parts of the language which are synonymous and therefore enable the 

definition of logically equivalent rephrasing rules. We took a different more direct 

approach to defining these rules: we studied the known bugs reported for 4 open-source 

servers, namely Interbase 6.0, Firebird 1.023, PostgreSQL 7.0 and PostgreSQL 7.2 

(abbreviated IB 6.0, PG 7.0, FB 1.0 and PG 7.2 respectively). However our intention was 

not to simply define workaround rules which are highly bug specific, but instead to define 

generic rephrasing rules, which can be used in a broader setting. As a result we found that 

some of the generic rules that we defined could be applied to multiple bugs in our study. 

We provide examples next.

3.1 Generic rules

The “generic rules” are rephrasing rules, which can be applied to a range of ‘similar’ 

statements, be it DML (data manipulation language: SELECT, INSERT, UPDATE and 

DELETE) or DDL (data definition language e.g. CREATE TABLE etc.) statements. We have 

defined a total of 14 generic rephrasing rules. Full details of these rules are in (Gashi 

2006) (and also provided as Appendix A of this thesis). We will provide details of Rule 

8 and how it proved to be a useful workaround for two different bugs reported for two 

different servers.

Rule 8: An SQL VIEW can be rephrased as an SQL STORED PROCEDURE or SQL 
TEMPORARY TABLE

This rule proved to be a useful workaround for FB 1.0 Bug 488343 (Gashi 2005) (and 

also provided as Appendix A of this thesis). To observe the failure the bug report details 

the following setup:
CREATE TABLE CUSTOMERS (ID INT, NAME VARCHAR(10));

CREATE TABLE INVOICES (ID INT, CUSTJD INT, CODE VARCHAR(10), QUANTITY INT);

INSERT INTO CUSTOMERS VALUES (1, 'ME');

INSERT INTO INVOICES VALUES (1, 1, 'INV.1', 5);

INSERT INTO INVOICES VALUES (2, 1,'INV.2', 10);

INSERT INTO INVOICES VALUES (3, 1, 'INV 3', 15);

INSERT INTO INVOICES VALUES (4, 1, 'INV 4’, 20);

The following VIEW is faulty (specifically, the use of the SQL DISTINCT keyword to filter 

the results of a SELECT statement is faulty in SQL VIEWs of the FB 1.0 server):

23 Firebird is the open-source descendant of Interbase 6.0. The later releases of Interbase are issued as closed-development by Borland.

Page 161 of 278



IUr Gashi V. Architectural Aspects o f a Fault-Tolerant Diverse SOL Server

CREATE VIEW V_CUSTOMERS AS SELECT DISTINCT ID, NAME FROM CUSTOMERS;

The failure can be observed by issuing the following statement:

SELECT SUM(INV. QUANTITY) FROM INVOICES INV INNER JOIN 

V_CUSTOMERS CUST ON INV.CUSTJD = CUST.ID;

SUM

20

The expected result is 50 not 20. If we use a STORED PROCEDURE instead of the VIEW 

then the correct results is returned24:

SET TERM !!;

CREATE PROCEDURE V_CUSTOMERS RETURNS (ID INT, NAME VARCHAR(10)) AS 

BEGIN

FOR SELECT DISTINCT ID, NAME FROM CUSTOMERS INTO :ID, :NAME DO 

BEGIN

SUSPEND;

END

END!!

SET TERM; !!

Issuing the same SELECT statement as before we obtain the expected result (50):
SELECT SUM(INV. QUANTITY) FROM INVOICES INV INNER JOIN V_CUSTOMERS CUST ON 

INV.CUSTJD = CUST.ID;

SUM

50

The same rule was a useful workaround for another bug, this time the PG 7.0 bug 23 

(Gashi 2003). To observe the failure the bug report details the following setup:
CREATE TABLE L (PID INT NOT NULL, SEARCH BOOL, SERVICE BOOL);

INSERT INTO L VALUES (1 .T'/F'); INSERT INTO L VALUES (1 ,T,'F');

INSERT INTO L VALUES (1 ,T','F); INSERT INTO L VALUES (1 ,T ,'F );

INSERT INTO L VALUES (1 ,T','F); INSERT INTO L VALUES (1 ,'F,'F);

INSERT INTO L VALUES (1 ,'F,'F); INSERT INTO L VALUES (2,,F,,,F');

INSERT INTO L VALUES (3,'F,'F'); INSERT INTO L VALUES (3,T,'F');

The following VIEWs are then defined (notice the use of the GROUP BY clause):
CREATE VIEW CURRENT AS SELECT PID, COUNT(PID), SEARCH, SERVICE FROM L GROUP BY PID, 

SEARCH, SERVICE;

CREATE VIEW CURRENT2 AS SELECT PID, COUNT (PID), SEARCH, SERVICE FROM L GROUP BY PID, 

SEARCH, SERVICE;

24 The syntax used is specific for Firebird.

Page 162 of 278



11 ir G as hi V. Architectural Aspects o f a Fault-Tolerant Diverse SOL Server

By issuing the fo llow ing SELECT statement incorrect results are obtained (this is due to

the GROUP BY clause used in the VIEWS and the COUNT used on a column from a VIEW):

SELECT CURRENT.PID, CURRENT.COUNT AS SEARCHTRUE, CURRENT2.COUNT AS 

SEARCHFALSE FROM CURRENT,CURRENT2 WHERE CURRENT.PID =CURRENT2.PID AND 

CURRENT. SEARCH-T' AND CURRENT2.SEARCH-F' AND CURRENT.SERVICE='F' AND 

CURRENT2.SERVICE-F';

-  pid | searchtrue | searchfalse

-  1 | 10 | 10
-  3 | 1 | 1

The expected results are:

-- pid I searchtrue | searchfalse

-  1 I 5 I 2

-  3 I 1 I 1

By using TEMPORARY TABLES instead of VIEWs the correct result is obtained:

SELECT PID, COUNT(PID), SEARCH, SERVICE INTO TEMP

CURRENT FROM L GROUP BY PID, SEARCH, SERVICE;

SELECT PID, COUNT(PID), SEARCH, SERVICE INTO TEMP 

CURRENT2 FROM L GROUP BY PID, SEARCH, SERVICE;

SELECT CURRENT.PID,CURRENT.COUNT AS SEARCHTRUE, CURRENT2.COUNT AS SEARCHFALSE 

FROMCURRENT, CURRENT2 WHERE CURRENT.PID=CURRENT2.PID AND CURRENT SEARCH=T AND 

CURRENT2.SEARCH-F' AND CURRENT.SERVICE=’F' AND CURRENT2.SERVICE='F';

-  pid | searchtrue | searchfalse

-  1 | 5 | 2

-  3 | 1 | 1

We used TEMPORARY TABLES in PG 7.0 and not STORED PROCEDURES since PG 7.0 

does not support functions (procedures) that return multiple rows.

Details of the other generic rephrasing rules and how they can be used as workarounds 

for other reported bugs are given in (Gashi 2006).

We looked at how many of the generic rules can be applied to the bugs reported for the 

open-source servers in our bugs study. The results are shown in Table 14. The leftmost 

three columns of the table show the results for the non-self-evident failures caused by 

read (i.e. SELECT) statements. Clearly, a number of these are also classified as a “user 

error”, i.e. the user issues an incorrect statement, which the server incorrectly executes 

without raising an exception. For example IB 6.0 incorrectly executes a statement such as

Page 163 of 278



llir Gashi V. Architectural Aspects o f a Fault-Tolerant Diverse SOL Server

SELECT X FROM A, B even though the column X is defined in both tables A and B, which 

can lead to ambiguous results. PG 7.0 / PG 7.2, correctly, raise an exception.

If we take away the “user error” bugs then we can see that in all the server pairs the 

generic rules can be used as workarounds for at least 80% of the non-self-evident failures 

caused by read statements.

Table 14 - A summary of applying the generic rephrasing rules for non-self evident and state- 
_______ changing bugs of IB 6.0 and 1*G 7.0 and the later releases FB 1.0 and PG 7.2

Server pair Non-self evident non-state-changing 
failures (SELECT statements)

State-changing failures
Dl)l. statement failures Write statement failures

Total Total covered 
by generic rules

Total user 
errors * Total Total covered 

by generic rules Total Total covered by 
generic rules

IB 6.0 + PG 7.0 21 12 6 21 13 9 7
IB 6.0 + PG 7.2 26 18 6 19 13 7 5
FB 1.0 + PG 7.0 16 11 2 19 13 8 6
FB 1.0 + PG 7.2 19 15 2 17 13 6 4

The right-most 4 columns of the table are for the bugs that cause state-changing failures, 

which have been further subdivided into bugs in DDL and write statements. We can see 

that generic rules can be used as workarounds for at least 60% of failures caused by the 

state-changing statements.

3.2 Specific rules

The generic rephrasing rules that we have defined do not provide workarounds for all the 

failures caused by the bugs collected in our study. For these failures specific workaround 

rules need to be defined. For example recursive BEFORE UPDATE TRIGGERS can return 

error messages in FB 1.0/IB 6.0 which means the table for which the trigger is defined 

becomes unusable (FB 1.0 bug 625899 (Gashi 2005)). A generic rule could not be 

defined for this bug. A specific workaround (and a generic recovery procedure) upon 

encountering this error message would be to: 

disable the trigger in FB 1.0/ IB 6.0

read the log of the other server to check the sequence of the write statements that 

have been issued as a result of the trigger

send this sequence of statements explicitly to the FB 1.0/ IB 6.0 server

Page 164 of 278



Ilir Gashi V. Architectural Aspects o f a Fault-Tolerant Diverse SOL Server

The workaround above would work in a diverse server-type configuration if the other 

server[s] works correctly (the other server[s] in our study do not contain this bug) while 

without design diversity a fault, clearly, cannot be dealt with this way.

We have found that a large number of bugs, if server diversity is not employed, would 

require very specific rules to be defined to workaround the failures that they cause. In 

many cases these rules require substantial new implementation in the form of “wrapping” 

of the results returned to the client (or for write statements before they are stored in the 

database) or re-implementing parts of the functionality of the database that are found to 

be faulty and no workaround exists in SQL. Although possible such an approach is 

clearly limited because the newly developed code can itself be faulty which may diminish 

the gains in reliability that can be obtained from its use. This reiterates that design 

diversity is desirable.

4. Performance implications of rephrasing
To measure the performance implications of rephrasing, we conducted a number of 

experiments based on the industry standard benchmark for databases - TPC-C (TPC 

2002) . The factors which degrade performance when rephrasing is employed are:

1. delays enforced by the middleware for comparison of results

2. delays from using the following mechanisms within transactions:

Transaction SAVEPOINTS 

Transaction ROLLBACKS

Execution of SELECT statements after WRITE statements (INSERT, UPDATE, 

DELETE)

Rephrasing

The additional delay introduced by the use of rephrasing is delay 2. We have performed 

an experimental study to estimate delay 2. Delay 1 would exist also in a diverse setup 

with or without rephrasing. Studies that have reported measures of other delays which are 

not specific to rephrasing (such as enforcing 1-copy serialisability) can be found in (Lin, 

Kemme et al. 2005), (Patino-Martinez, Jimenez-Peris et al. 2005) . There are other 25 26

25 The TPC-C experiments were carried out with 1 emulated client and 1 warehouse with client think times set to 0.
26 These studies also provide some optimisation procedures for 1-copy serialisability.

Page 165 of 278



Ilir Gashi V. Architectural Aspects o f a Fault-Tolerant Diverse SOL Server

factors that can influence the degradation of performance that we have not measured in 

our experimental setup (e.g. rephrasing delays when more than one rephrasing rule is 

used etc.). The experiments that we have conducted aim to provide an initial estimate of 

the delays due to rephrasing. A more thorough performance evaluation should also take 

into account concurrent execution of transactions. As was also noted by one of the 

anonymous reviewers, for some concurrency control mechanisms, the increase in 

transaction execution times due to the use of rephrasing, the probability of conflicts due 

to concurrency may also increase which may further degrade performance.

The experimental setup consisted of three computers. All three computers ran on 

Microsoft’s Windows 2000 operating system, they had 384 MB RAM, and Intel Pentium 

4 1.5GHz processors. One machine hosted the client implementation of the TPC-C 

benchmark. The other two machines hosted the servers (PostgreSQL 8.0 and Firebird 

1.5). We used later releases of the servers than the ones used in our bugs study since these 

earlier releases do not support SAVEPOINTs and ROLLBACKS within transactions. We 

have not used any commercial servers in our experiments since the license agreements 

are very restrictive with regard to publishing performance data.

We ran experiments on both diverse and non-diverse setups. In the diverse experiments 

we always wait for the slowest server response before we can start the next transaction. 

Therefore the diverse setups here are always slower (other configurations are possible 

and we have discussed some of these in (Gashi, Popov et al. 2004a)).

Fig. 11 illustrates the sequence of executions within a transaction for the different non- 

diverse setups. The grey boxes represent the fault tolerance mechanism used whereas the 

dotted lines represent the added delay from the use of the respective mechanism. Setup a) 

is the baseline, against which we will measure the added delays. Setups b), c), and d) 

measure the delays of using the fault tolerance mechanisms when no failures are observed 

(i.e. the cost of being cautious) . Setups e) and f), measure the cost of re-execution of a 

statement27 28. These experiments measure delays for a number of situations:

27 b) detection of erroneous writes; c) SAVEPOINT are used before write statements for finer grained recovery; d) both 
SAVEPOINTs are used and the modified rows are read back (combination of b) and c));
28 e) optimistic (on writes) rephrasing: each statement is executed twice; to ensure that the state of the database remains unchanged 
during the second execution of the write statement we use SAVEPOINTs and ROLLBACKS; 0 pessimistic rephrasing: same as e) but 
the written rows are also read to protect against erroneous writes.

Page 166 of 278



Ilir Gashi V. Architectural Aspects o f a Fault-Tolerant Diverse SOL Server

re-execution of an unchanged statement as a possible protection against transient

failures (caused by the so called “Heisenbugs” (Gray 1986))

re-execution of a logically equivalent rephrased statement in case the first one has

failed self-evidently (i.e. a crash or other exceptional failures)

re-execution of a logically equivalent rephrased statement to get additional results

for comparison on the middleware to increase the likelihood of failure detection

for non-self-evident failures

In our experiments we did not use rephrased statements. Instead, the same statement was 

executed twice. This is a simplification due to the absence of a proper implementation of 

rephrasing. In the absence of any other data, we wanted to get an initial estimate of the 

delays that the various fault tolerance mechanisms will produce with the database servers. 

The diverse setups have a similar structure. The only difference is that in diverse setups 

we only use 1 SAVEPOINT (at the beginning of the transaction) rather than before each 

write statement and therefore we may also have only one ROLLBACK (at the end of 

transaction). For setups e) and I), this means that we first execute every statement once 

then we ROLLBACK to the beginning and execute all the statement again. So the 

difference between the diverse and non-diverse setups is a different level of granularity of 

using SAVEPOINTs/ROLLBACKs.

start read wnte wnte
*

read
A

commit
?'...T" f f f ?

read written rad written
start read wnte : rows wr.te rows rB(1 . comn
♦— — ♦— ♦— — ♦ f--♦ ♦— — ,

C)

d)

stari read savqxsnt vmte sawpoat write read _ commit
♦---»—♦ *----- ♦ ♦—

readwiiiten readwiitteo
start reaisavepomnœ rcws savepoal wnte rows read ... commit 
♦-- f—♦ ♦-----♦ ♦ ♦---♦ ♦-------♦

e)

1)

stad red read’ savqiQjnl write rollbacksavepomt wnte’ savepràt onte rollback savepoint write’ read reaif ... coma 
*--*— ♦ » ♦----♦ ♦ ♦ ♦ «-- ♦ ♦ ♦ ♦ ♦------- ♦

r a d w tte o
start read read' savqiosnl wile rOTS 
♦---♦—♦... ♦....*---- f::"

readwntlen . , 
lint write’ rews savepoint wnte

• ♦ ♦... 4-
rows 
-♦.

rollback savqioini writ«' fows read read’ 
♦ ♦ ♦ ♦

commit
-♦

Fig. 11 - A transaction execution sequence in the experimental setups. The shaded boxes represent 
the fault tolerant mechanism used and the dotted lines represent the additional delays from their use. 

The second executions of the statements are proxies for rephrased versions of statements.

Page 167 of 278



Ilir Gashi V. Architectural Aspects o f a Fault-Tolerant Diverse SOL Server

The full results of these experiments are given in Table 15. The first column explains the 

setup under which the experiment was run. The following 4 columns spell out which fault 

tolerance mechanisms were used (if the cell is blank then the respective mechanism was 

not used). The following 3 columns show the average execution time of a transaction, and 

the last 3 columns show the added delay (in percentages) proportional to the baseline of 

each setup. The first six rows contain the results for each of the setups we explained 

earlier (and illustrated in Fig. 11).

The last two rows are structurally the same as setups (e) and (f) respectively. However in 

these experiments we have tried to simulated the effect of a simple learning rule: if after 

1000 executions a statement has been found to be correct then we stop rephrasing (in our 

simulation it means we stop executing the statement twice for both setups and 

additionally stop executing the SELECT statement that read the modifications of the write 

statements for setup (h)).
Table 15 - Performance effects of the various fault-tolerance schemes. Each experiment is run with 
______________________________ loads of 10,000 transactions______________________________

S e tu p
A v e r a g e  T ra n s a c t io n  

E x e c u t io n  t im e  (m il l i s e c o n d s )
D e la y s  p r o p o r t io n a l  to  th e  

b a s e l in e  (% )

Setup descrip tion  (w ith reference to 
Fig. 11)

SA
V

EP
O

IN
Ts

RO
LL

BA
CK

S

2 
ex

ec
ut

io
ns

 f
or

 
ea

ch
 s

ta
te

m
en

t (5 c 
<§ gC3 E
h  sU BLÜ ”  -1 Ü LU c

P G
8 .0

F B
1.5

D iv e r s e  P G  
8 .0  & F B  1.5

P G
8 .0

F B  1.5

D iv e rs e  
P G  8 .0  
&  F B  

1.5

B a s e l in e  (a ) 2 2 8 3 0 6 3 4 3

D e te c t io n  o f  e r ro n e o u s  w r i te s  (b ) V 2 9 2 3 5 6 4 3 4 2 8 .3 1 6 .3 2 6 .5

F in e r  g r a n u la r i ty  o f  r e c o v e ry  (c ) V 2 4 0 3 0 8 3 5 0 5 .3 0 .4 1 .8

C o m b in a t io n  o f  b  a n d  c (d ) V V 3 0 5 3 6 4 4 3 3 3 3 .9 1 8 .6 2 6 .0

O p tim is t ic  (o n  w r i te s )  R e p h ra s in g  (e ) V 7 V 3 5 3 4 5 0 4 8 9 5 4 .9 4 6 .9 4 2 .3

P e s s im is t ic  R e p h ra s in g  ( f) V V V V 4 9 6 6 0 1 6 9 9 1 1 8 . 9 6 .2 1 0 5 .5

L e a rn in g  O p tim is a t io n  (g ) V V V 2 5 6 3 2 5 4 0 2 1 2 .6 6 .2 1 7 .3

L e a rn in g  O p tim is a t io n  (h ) V V V V 2 7 8 3 4 1 5 2 4 2 2 .5 1 1 .4 5 2 .6

The delays seem to be higher proportionally in PostgreSQL than in Firebird. This is 

because the execution time of COMMITS is smaller in Firebird for the experiments with 

larger number of SELECT statements. The number of write statements to be COMMITed 

always remains the same in all experiments (even in the ones with 2 executions of 

statements, since the first execution of a write statement is always ROLLBACKed). 

Comparing the setups a) with e) we can see that even though in setup e) every statement

Page 168 of 278



Ilir G as hi V. Architectural Aspects o f a Fault-Tolerant Diverse SOL Server

is being executed twice the average execution times of the transactions are not simply 

twice the execution time of transactions in setup a). This is explained by the fact that the 

number of transactions remains the same (i.e. we still have the same number of COMMITs) 

and also the data may be stored already in the RAM which reduces the execution time of 

the second statement. The same holds when comparing results of setups b) with f).

Since the numbers in Table 15 represent point estimates (i.e. they are single runs of an 

experiment per setup) we have repeated the experiments for setup a) and f) to measure the 

non-deterministic variation that may exist between the different runs. We observed a very 

small difference (less than 1% for 5 out of six of the experiments and less than 3% for 

all). Hence we can trust with a higher degree of confidence that the observations 

documented in Table 15 represent closely the ‘true’ differences between different setups.

5. Discussion
We presented in Section 2 the architecture we propose for a fault-tolerant server 

employing rephrasing. The middleware used would make use of a rephrasing algorithm. 

Any fault-tolerant solution, which makes use of server diversity would need to have 

“connectors” developed as part of the middleware to translate a client sent statement to 

the dialect of the respective server. This is because each server ‘speaks’ its own dialect of 

SQL. The rephrasing algorithms can also be part of these connectors. A related point is 

that database servers offer features that are extensions to the SQL standard, and these 

features may differ between the servers. Therefore for applications which require a richer 

set of functionality data diversity would be attractive alone as it would for instance allow 

applications to use the full set of features. A complex statement, which can be directly 

executed with some servers but not others, may need to be rephrased as a logically 

equivalent sequence of simpler statements for the latter. For example, the TRUNCATE 

command is a PostgreSQL specific feature (and is buggy in version 7.0; see bug 20 

(Gashi 2003) for details). In its stead the DELETE command can be used to workaround 

the problem. The DELETE command is also implemented in Firebird and all the other 

SQL compliant servers.

Page 169 of 278



11 ir G as hi V. Architectural Aspects o f a Fault-Tolerant Diverse SOL Server

Since most of these rules are transformations of the SQL grammar, they are amenable to 

formal analysis. Thus, despite the additional implementation, high reliability can be 

achieved with a combination of formal analysis and testing of the new code.

The results presented in Section 3 demonstrate that a small number of rephrasing rules 

can help with server diagnosis and state recovery. We observed that a limited set of 

generic rephrasing rules that we have defined (14 in total) can be used as workarounds for 

at least 80% of the non-self-evident failures caused by read statements and at least 60 % 

of failures caused by write or DDL statements in any of the open-source 2-diverse setups 

in our study. We have also observed that using data diversity without design diversity 

would lead to a large number of specific rephrasing rules to workaround certain failures. 

Implementing such rules might require a substantial amount of new implementation, 

which itself may be faulty, thus, reducing the possible reliability gains that can be 

obtained from their use.

Rephrasing has been proposed as a possibility to detect failures that would otherwise be 

un-detectable in some replication settings. The possible benefits of this approach could be 

its relatively low cost in comparison with design diversity, and also that it can be used 

with or without design diversity allowing for various cost-dependability trade-offs. 

Possible setups include:

In non-diverse redundant replication settings, if high dependability assurances are 

required, the only option available would be to rephrase all the statements sent to 

the server. This can lead to high performance penalties. To reduce the 

performance penalty some form of learning strategy can be applied, e.g. keep 

track of all the statements that have been rephrased. If the rephrased statement 

keeps giving the same results as the original statement then confidence is gained 

that the original statement is giving the correct result and the statement does not 

have to be rephrased in future occurrences (what we did in setups g) and h) of the 

TPC-C experiments). The other dimension is to stop sending the client-version of 

the statement to a server if it always gives an incorrect result. In this case the 

middleware can flag each occurrence of this statement and use the rephrased 

version of it without sending the original statement to the server (Popov, Strigini 

et al. 2004). This reduces the time taken to respond to the client.

Page 170 of 278



Ilir Gashi V. Architectural Aspects o f a Fault-Tolerant Diverse SOL Server

In a diverse server configuration a less rephrasing-intensive approach may be used 

where only the read statements (i.e. SELECTs) that return different results are 

rephrased (assuming that at least two servers are running in parallel so that a 

mismatch is detected). The rephrasing is also done for all the write statements (to 

ensure that the state of the database is not corrupted). Since a smaller set of 

statements needs to be rephrased the performance is enhanced. The non-self- 

evident identical failures, however, (we observed 4 of these in the study with 

known bugs of SQL servers (Gashi, Popov et al. 2004b)) will not be detected. To 

further enhance the performance the same learning strategies can be used as in the 

previous setup.

6. Conclusions
We have reported previously (Gashi, Popov et al. 2004b) on the dependability gains that 

can potentially be achieved from deploying a fault-tolerant SQL server, which makes use 

of diverse off-the-shelf SQL servers. From studying bugs reported for four off-the-shelf 

servers we reported that failure detection rates in l-out-of-2 configurations was at least 

94% and this increased to 100% in configurations which employed more than two 

servers. However fault tolerance is more than just failure detection. In this paper we 

reported on the mechanism of data diversity and its application with SQL servers in 

aiding with failure diagnosis and state recovery. We have defined 14 generic 

‘workaround rules’ to be implemented in a ‘rephrasing’ algorithm which when applied to 

a certain SQL statement will generate logically equivalent statements. We have also 

argued that since these rules are transformations of the SQL language syntax, they are 

amenable to formal analysis and dependability gains from employing rephrasing are 

achievable despite the development of a bespoke new code.

We also outlined a possible architecture of a fault tolerant server employing diverse SQL 

servers and detailed how the middleware used in it can be extended to also handle 

rephrasing of SQL statements.

We also presented some performance measurements from experiments we have run with 

an implementation of the TPC-C benchmark (TPC 2002), which gave initial estimates of 

the likely delays due to employing rephrasing.

Page 171 o f278



llir G as hi V. Architectural Aspects o f a Fault-Tolerant Diverse SOL Server

Further work that is desirable includes:

demonstrating the feasibility of automatic translation of SQL statements from, say 

ANSI/ISO SQL syntax to the SQL dialect implemented by the deployed SQL 

servers. We have completed some preliminary work on implementing translators 

between MSSQL and Oracle dialects for SELECTS, and between Oracle and 

PostgreSQL dialects for SELECT, INSERT and DELETE statements; 

developing the necessary components so that users can try out diversity in their 

own installations, since the main obstacle now is the lack of popular off-the-shelf 

“middleware” packages for data replication with diverse SQL servers. This would 

also include implementing a mechanism of maintaining (adding/removing) 

rephrasing rules as add-on components in the middleware.

Acknowledgment
This work has been supported in part by the Interdisciplinary Research Collaboration in 

Dependability (DIRC) project funded by the U.K. Engineering and Physical Sciences 

Research Council (EPSRC). Authors would like to acknowledge the anonymous 

reviewers for the thoughtful comments and useful suggestions.

References
Ammann, P. E. and J. C. Knight (1988), "Data Diversity: An Approach to Software 

Fault Tolerance", IEEE Transactions on Computers 37(4), pp: 418-425.

Bernstein, P. A., V. Hadzilacos and N. Goodman (1987), "Concurrency Control and 

Recovery in Database Systems", Reading, Mass., Addison-Wesley.

EnterpriseDB (2006), "EnterpriseDB", http://www.enterprisedb.com/.

Gashi, I. (2003), " Tables containing known bug scripts o f Interbase, PostgreSQL, Oracle 

and MSSQL." http://www.csr.city.ac.uk/people/ilir.gashi/DBMSBugReports/.

Gashi, I. (2005), " Tables containing known bug scripts o f Firebird 1.0 and PostgreSQL 

7.2", http://www.csr.city.ac.uk/people/ilir.gashi/DBMSBugReports/.

Gashi, I. (2006), "Rephrasing Rules for SQL servers", 

http://www.csr.city.ac.uk/people/ilir.gashi/DBMSBugReports/.

Page 172 of 278

http://www.enterprisedb.com/
http://www.csr.city.ac.uk/people/ilir.gashi/DBMSBugReports/
http://www.csr.city.ac.uk/people/ilir.gashi/DBMSBugReports/
http://www.csr.city.ac.uk/people/ilir.gashi/DBMSBugReports/


Ilir Gashi V. Architectural Aspects o f a Fault-Tolerant Diverse SOL Server

Gashi, L, P. Popov, V. Stankovic and L. Strigini (2004a), "On Designing Dependable 

Services with Diverse Off-The-Shelf SQL Servers”, in Architecting Dependable Systems 

II, R. de Lemos, Gacek, C., Romanovsky, A. (Eds.), Springer-Verlag, 3069, pp: 191-214. 

Gashi, I„ P. Popov and L. Strigini (2004b), "Fault Diversity Among Off-The-Shelf SQL 

Database Servers”, in proc. Int. Conf. on Dependable Systems and Networks (DSN '04), 

Florence, Italy, IEEE Computer Society Press, pp: 389-398.

Gray, J. (1986), "Why Do Computers Stop and What Can be Done About it?” in proc. 

Int. Symp. on Reliability in Distributed Software and Database Systems (SRDSDS '86), 

Los Angeles, CA, USA, IEEE Computer Society Press, pp: 3-12.

Janus-Software (2006), "Fyracle", http://www.janus-software.com/fb_fyracle.html. 

Jimenez-Peris, R., M. Patino-Martinez, G. Alonso and B. Kemme (2003), "Are 

Quorums an Alternative for Data Replication?” ACM Transactions on Database Systems 

28(3), pp: 257-294.

Lin, Y„ B. Kemme, M. Patino-Martinez and R. Jiménez-Peris (2005), "Middleware 

based Data Replication providing Snapshot Isolation”, in proc. Int. Conf. on 

Management of Data (SIGMOD'05), Baltimore, Maryland, USA, ACM Press, pp: 419- 

430.

Patino-Martinez, M., R. Jiménez-Peris, B. Kemme and G. Alonso (2005), "MIDDLE- 

R: Consistent Database Replication at the Middleware Level”, ACM Transactions on 

Computer Systems 23(4), pp: 375-423.

Popov, P., L. Strigini, A. Kostov, V. Mollov and D. Selensky (2004), "Software Fault- 

Tolerance with Off-the-Shelf SQL Servers”, in proc. Int. Conf. on COTS-based Software 

Systems (ICCBSS '04), Redondo Beach, CA USA, Springer, pp: 117-126.

Popov, P., L. Strigini, S. Riddle and A. Romanovsky (2001), "Protective Wrapping of 

OTS Components", in proc. 4th ICSE Workshop on Component-Based Software 

Engineering: Component Certification and System Prediction, Toronto.

Sutter, H. (2000), "SQL/Replication Scope and Requirements Document”, ISO/IEC JTC 

1/SC 32 Data Management and Interchange WG3 Database Languages, H2-2000-568. 

TPC (2002), " TPC Benchmark C, Standard Specification, Version 5.0.”

http://www.tpc.org/tpcc/.

Page 173 of 278

http://www.janus-software.com/fb_fyracle.html
http://www.tpc.org/tpcc/


Ilir Gashi V. Architectural Aspects o f a Fault-Tolerant Diverse SOL Server

Tso, K. S. and A. Avizienis (1987), "Community Error Recovery in N-Version Software: 

A Design Study with Experimentation", in proc. Int. Symp. on Fault-Tolerant Computing 

(FTCS '87), Pittsburgh, PA, USA, pp: 127-133.

Page 174 of 278



VI. Optimal Selection of COTS Components

Page 175 of 278



Ilir Gashi VI. Optimal Selection o f COTS Components

Paper-5. Uncertainty Explicit Assessment of Off-the- 
Shelf Software: Selection of an Optimal Diverse Pair

Abstract: Assessment o f software COTS components is an essential part o f component- 

based software development. Sub-optimal selection o f components may lead to solutions 

with low quality. The assessment is based on incomplete knowledge about the COTS 

components themselves and other aspects, which may affect the choice such as the 

vendor's credentials, etc. We argue in favour o f assessment methods in which uncertainty 

is explicitly represented ( ‘uncertainty explicit’ methods) using probability distributions. 

We have adapted a model (developed elsewhere (Littlewood, Popov et al. 2000)) for 

assessment o f a pair o f COTS components to take account o f the fault (bug) logs that 

might be available for the COTS components being assessed. We also provide empirical 

data from a study we have conducted with off-the-shelf database servers, which illustrate 

the use o f the method.

Co-author: Dr. Peter Popov

Conference: IEEE International Conference on COTS-Based Software Systems 2007 

(ICCBSS-07)

Date of submission: July-2006 

Status: Published 

Number of reviewers: 3 

Publication date: March 2007

Full citation: Gashi, I., Popov, P., "Uncertainty Explicit Assessment o f Off-the-Shelf 

Software: Selection o f an Optimal Diverse Pair", in Proc. ICCBSS-2007, Sixth 

International Conference on COTS Based Software Systems, Banff, Alberta, Canada, pp. 

93-102, IEEE Computer Society Press, 2007

Page 176 of 278



IUr Gashi VI. Optimal Selection o f COTS Components

1. Introduction
Commercial-off-the-shelf (COTS) components often form an essential part in software 

development. Benefits of their use are wide ranging: from the incentive to cut-down on 

cost to reducing the development time and improving quality by using tried and tested 

components. An initial and essential part of component based software development is 

the assessment of available COTS components. There exist a plethora of available 

methods for COTS assessment (Ncube and Maiden 1999), (Kontio, Chen et al. 1995), 

(Jeanrenaud and Romanazzi 1994), (Tran and Liu 1997), (Ochs, Pfahl et al. 2001), (Alves 

and Castro 2001), (Phillips and Polen 2002), (Boehm, Port et al. 2003), (Dean 2000), 

(Kunda and Brooks 1999), (Gregor, Hutson et al. 2002), (Burgués, Estay et al. 2002), 

(Comella-Dorda, Dean et al. 2002), (Ruhe 2003). An often overlooked aspect in the 

existing assessment techniques is the inherent uncertainty in the values of the parameters 

being assessed. This is because the assessment is carried out with limited resources of 

time and budget. Therefore the true values of the assessed attributes will rarely be known 

with certainty.

For solutions with very stringent dependability requirements a single component may 

rarely be able to meet the required dependability target. It has been argued (Littlewood 

and Strigini 1993) that employing fault-tolerance in the form of software design diversity 

(i.e. using more than one component to perform the same function) is usually the best 

guarantee of achieving higher levels of dependability than what the available COTS 

components can offer. But, employing software diversity was seen in the past as an 

expensive method for increasing dependability due to the need of building more than one 

component. With off-the-shelf components this problem is overcome: there may be many 

different components that will have the required functionality therefore bespoke 

development may not be required29. Moreover many of these components are free and 

open-source, thus the cost of procurement may be non-existent. The problem of 

assessment though still exists. If we were interested in building a l-out-of-2 system, 

simply choosing the two best components that exist in the market may not be enough. * 50

29 Apart from 'glue code ' (usually referred to as middleware) which may be needed to ensure the components can be deployed for a 
given system in a coordinated manner as required by the particular system context.
50 In this configuration the system performs correctly as long as 1 of the 2 components works correctly.

Page 177 of 278



Ilir Gashi VI. Optimal Selection o f COTS Components

What is of interest is how well the pair works together. The optimal pair will be the one 

with the lowest probability of coincident failures of both components of the pair. The 

components that form the best pair may not necessarily be the ones which are the best 

individually. For further details on the subtleties of this problem the interested reader is 

referred to a recent survey (Littlewood, Popov et al. 2001).

In this paper we will provide details of an adaptation of the model in (Littlewood, Popov 

et al. 2000) which allows for an optimal selection of a pair of components to be used in a 

fault-tolerant system. In this model the assessment results are subject to uncertainty and 

we discuss how this may impact the decisions about which pair of components we 

choose. The model also enables representing the dependencies that exist between 

uncertainties associated with the values of each COTS component in the pair.

The paper is structured as follows: Section 2 contains a brief review of related work on 

COTS assessment; in Section 3 we describe the model of assessment, in which model 

parameters are not known with certainty and argue in favour of using probability 

distributions as an adequate mechanism to capture this uncertainty; in Section 4 we 

provide details of an empirical study with off-the-shelf database servers and illustrate 

how our approach can be used to select the optimal diverse pair; in Section 5 we provide 

a discussion of the method and finally Section 6 contains conclusions and provisions for 

further work.

2. Related work
There are a wide variety of COTS assessment approaches available. All of them start with 

an initial statement of requirements, which defines what is being sought. It has been 

proposed that the requirements initially should not be too stringent, since this would 

discard potentially appropriate COTS candidates at a very early stage (Dean 2000), 

(Lewis, Hyle et al. 2000). It has even been suggested (Lewis, Hyle et al. 2000) that if the 

requirements are not flexible then the COTS based development may not be appropriate 

and bespoke development could be more cost-effective. So initially (Lewis, Hyle et al. 

2000) suggests distinguishing between essential requirement and those that are 

negotiable. The selection criteria are then based on the essential requirements.

Page 178 of 278



Ilir Gashi VI. Optimal Selection o f COTS Components

Off-the-shelf-option (OTSO) (Kontio, Chen et al. 1995) is a multi-phase approach to 

COTS selection. The phases are: the search phase, the screening and evaluation phase and 

the analysis phase. In the first phase COTS products are identified. In the screening and 

evaluation phase the products are further filtered using a set of evaluation criteria 

(established from a number of sources, including the requirements specification, the high 

level design specification etc). In the analysis phase results of the evaluation are analysed, 

which lead to the final selection of COTS products for inclusion in the system. 

Procurement-oriented requirements engineering (PORE) (Ncube and Maiden 1999) is a 

process in which requirements are defined in parallel with COTS component evaluation 

and selection. (Ncube and Maiden 1999) propose using prototypes to develop knowledge 

concerning COTS products and their use within the wider system.

Other assessment methods include: CISD (COTS-based Integrated System Development) 

(Tran and Liu 1997), STACE (Socio Technical Approach to COTS Evaluation) (Kunda 

and Brooks 1999), CDSEM (Checklist Driven Software Evaluation Methodology) 

(Jeanrenaud and Romanazzi 1994), CRE-COTS-Based Requirements Engineering 

Method (Alves and Castro 2001), CEP (Comparative Evaluation Process Activities) 

(Phillips and Polen 2002), CBA Process Decision Framework (Boehm, Port et al. 2003), 

A Proactive Evaluation Technique (Dean and Vidger 2000), CAP-COTS Acquisition 

Process method (Ochs, Pfahl et al. 2001), Storyboard Process (Gregor, Hutson et al. 

2002), Combined Selection of COTS Components (Burgués, Estay et al. 2002), PECA 

Process (Comella-Dorda, Dean et al. 2002) or COTS-DSS (Ruhe 2003).

3. Assessment of diverse COTS solutions: Bayesian 

approach

3.1 Uncertainty in the assessment

Any assessment is conducted with limited resources and under various assumptions, 

which may not hold true in real operation. Therefore the outcome of the assessment is 

subject to uncertainty. For example, deciding to rate a COTS component exactly 7 out of 

10 according to a chosen scale may be difficult to justify. The assessor may be certain 

that the values of the attribute outside the range {6,7} are unreasonable but be indifferent

Page 179 of 278



Ilir Gashi VI. Optimal Selection o f COTS Components

between the possible values inside this interval. Software reliability is a typical example 

of an attribute which is never known with certainty. Probability of failure on a randomly 

chosen demand (pfd) is unknown, but the assessor may be prepared to state, with 

confidence 99%, that it is less than, say 10'3. The assessor may be even more specific of 

their doubts about the COTS pfd and state that the most likely range of the pfd is between 

1 O'4 and 10'3.

There are various methods for representing uncertainty (Wright and Cai 1994). Bayesian 

approach to probabilistic modelling is one of the best-known ones and used with some 

success in reliability assessment (Littlewood and Wright 1997). It allows one to combine, 

in a mathematically sound way, the prior belief (which is ‘subjective’ and possibly 

inaccurate) about the values of a parameter with the (‘objective’) evidence from seeing 

the modelled artefact (in this case a COTS component) in operation. Combining the prior 

belief and the evidence from the observations in a mathematically correct way leads to a 

posterior belief about the values of the assessed attribute. If the prior belief is represented 

as a probability distribution rather than a single value, then after seeing the observations 

we get a posterior distribution (quantification of uncertainty) which takes into account 

both the prior knowledge and the empirical evidence.

3.2 Model for assessment of 1 COTS component with one 

attribute

In this section we illustrate how the Bayesian approach to assessment is normally applied 

to assessing a single attribute of a single COTS component. Assume that the attribute of 

interest is the component’s probability of failure on demand (pfd).

If the system is treated as a black box, i.e. we can only distinguish between COTS 

component's failures or successes (Fig. 12), the Bayesian assessment proceeds as follows.

demands COTS output

OOFS

Fig. 12 - Black-box model of a COTS component
Let us denote the system pfd as p, with prior distribution /  (•), which characterizes the

assessor’s knowledge about the system pfd prior to observing the COTS component in 

operation. Assume further that the COTS component is subjected to n demands,

Page 180 of 278



Ilir Gashi VI. Optimal Selection o f COTS Components

independently drawn from a ‘realistic’ operational environment (profile), and r failures 

are observed. The posterior distribution, /  (x | r,n) , ofp  after the observations will be:

f p ( x \ r , n ) x  L(n,r \x) fp (x) (1)

where L(n,r\x) is the likelihood of observing r failures in n demands i f  the pfd were 

exactly x, which in this case of independent demands is given by the binomial 

distribution:

L(n,r I x) =
f n'

\ r J
xr ( l - x ) ' (2)

For any prior and any observation (r, n), including (r= 0), the posterior can be calculated. 

Thus it can be applied to all the COTS components included in the assessment. Now, the 

selection can be based on the posterior distribution derived for the COTS components 

using different criteria:

for a given reliability target the COTS component chosen will be the one which 

has the highest probability of having a pfd lower than the given target; 

for a predefined ‘mission’ of say, 1000 demands, the COTS component chosen 

will be the one which is most likely to survive the mission without a failure.

3.3 Model for assessment of a fault-tolerant system consisting of 

2 COTS components

The Bayesian assessment can also be applied to choosing a pair of components. In what 

follows we will describe how the assessment can be performed for a system made up of 

two components. The mathematical details can be found in (Littlewood, Popov et al. 

2000) and Appendix VI-1 A at the end of this paper.

Let us assume that the attribute of interest is again the pfd of the system: that is of 

simultaneous failure of both components. Now assume that the system is subjected to a 

series of independently selected demands. On each demand the response received from 

each of the COTS components is characterized as correct/incorrect. Since we have two 

COTS components clearly 4 combinations exist, which can be observed on a demand, as 

shown in Table 16.

Page 181 of 278



Ilir G as hi VI. Optimal Selection o f COTS Components

The four probabilities given in the last column of Table 16 sum to unity (i.e. they sum to 

1). So if the last three probabilities are 0.2, 0.4 and 0.3 respectively then the first one p l0

= 1- (0.2 + 0.4 + 0.3) = 0.1. Thus, the joint distribution of any three of these probabilities, 

will give an exhaustive description of the COTS pair behaviour. In statistical terms, the 

model of the COTS component pair has three degrees of freedom. Since we have a three 

variate distribution we need to define three prior distributions (not a single one as in the 

previous section): the prior distributions for the pfd of each of the components, and then 

the conditional prior distribution for the pfd of both components simultaneously. The 

details of this joint distribution are given in (Littlewood, Popov et al. 2000) and Appendix 

VI-1A at the end of this paper. From this distribution we can then derive the marginal 

distribution of common failures which will be used to choose the best pair of components 

in a l-out-of-2 setup.
Table 16 - The outcomes and their frequency and probabilities for each demand

E v e n t C O T S  A  C o r r e c t C O T S  B  C o r r e c t O b s e r v a t io n s  in  n  d e m a n d s P r o b a b il it y

A N o Y e s n P 10

B Y e s N o r  2 Pm

r N o N o r 3 Pn

A Y e s Y e s r* P  00

3.4 Utilizing multiple sources of data in the assessment

In some areas of software engineering, especially in testing, the usefulness of partitioning 

the demand space has been recognized (Jeng and Weyuker 1991), (Hamlet and Taylor 

1990), (Musa 1993). The demand space partitions typically represent different types of 

demands, which may have different likelihoods of occurring in realistic environment. 

Realistic testing, thus, would require generating mixes of demands, which take into 

account the likelihood of the types of demands.

In our context, operating in a partitioned demand space may imply that the uncertainty 

associated with the attribute of interest may differ among the partitions, e.g. as a result of 

different number of observations being made for the different partitions.

If the demand space is partitioned into M partitions {S), S2, ... Sm}, then for each of these 

the assessment will be performed as described above, e.g. with two COTS components 

the description provided in Section 3.3 will apply. As a result M conditional distributions 

will be associated with each pair of COTS components from which the conditional

Page 182 of 278



Ilir Gashi VI. Optimal Selection o f COTS Components

uncertainty of interest will be expressed, that characterizes the behaviour of the particular 

pair of COTS components in the specific partition. Finally, in order to compare the 

competing pairs of COTS components the unconditional distribution of the probability of 

joint failure should be derived for the particular profile defined over the set o f partitions, 

which represents the targeted operational environment. In (Gashi 2006) (the precedins 

reference forms part of this thesis as Paper-7) we describe an approach of combining 

the assessment in partitions under the assumption of independence of uncertainties across 

the sub-domains. Mathematical details can be found in (Gashi 2006) and Appendix VI- 

1B at the end of this paper.

4. Empirical results from a study with off-the-shelf 
databases
We have reported previously results of a study on dependability of off-the-shelf database 

servers (Gashi, Popov et al. 2004) (the precedins reference forms part of this thesis as 

Paper-1). In this paper we will use the data collected in that study to demonstrate how the 

model explained in Section 3.3 can be utilized to perform the selection of the best pair of 

2 servers. We note that the ideal selection of the best pair is to perform statistical testing 

using the COTS products. This, however, is problematic in practice due to the lack of
T 1

suitable middleware for diverse database replication. Database replication is non-trivial 

as it requires synchronizing the operation of the copies while serving concurrent clients. 

Additionally the software vendor of the middleware may like to make a ‘strategic’ choice 

of an SQL server pair for use in the foreseeable future. The application(s), which may be 

developed by the users of the middleware in the future, will be clearly unknown at the 

time of making the selection, therefore performing statistical testing (which is crucially 

dependent on knowing the operational profile in the targeted environment) will be 

impossible.

Given these difficulties we can use alternative options. We will describe in this paper one 

such option: using stressful environments which increase the likelihood of failures 

occurring. After all the fault-tolerant solution with a pair of servers is intended to cope

51 Some rudimentary solutions such as C-JDBC (ObjectWeb 2006) only allow for the use of a minimal subset of SQL with diverse 
SQL servers.

Page 183 of 278



Ilir Gashi VI. Optimal Selection o f COTS Components

with the difficult situations (demands) where the individual channels are deficient. The 

set of bugs of a particular COTS product (in our case SQL server) defines one such 

stressful environment for a server. We have collected known bug reports for four SQL 

servers, namely PostgreSQL 7.0, Interbase 6.0, Oracle 8.0.5 and Microsoft SQL server 7 

(Gashi, Popov et al. 2004) (for the sake of brevity we will use the abbreviations PG, IB, 

OR and MS respectively throughout the rest of the text when referring to these servers). 

The union of the bugs reported for all the compared COTS products will form a demand 

space, in which there will be a partition stressing each of the products. The logs of the
'K')known bugs are treated as a sample (without replacement ) from the corresponding 

partition (representing the server, for which the bug has been reported). We label the 

partitions SServer name. Partition Sx  is called an ‘own’ partition for server X and a

‘foreign’ partition for any other server Y^X. The servers are then compared using the 

methodology described in Sections 3.3 and 3.4.

4.1 Prior distributions

The prior distributions used in this study are explained next. The joint prior distribution 

was constructed under the assumptions that the respective pfds of a server A and a server 

B are independently distributed; in the general case of the failures being non-independent 

events, the conditional distributions of the probability of coincident failure are specified 

for every pair of values of the pfds of servers A and B.

The distributions were assumed to be identical for each of the four servers across both 

their ‘own’ and ‘foreign’ partitions respectively. This assumption was made because we 

did not have reasons to believe otherwise. We discuss other options of deriving more 

accurate priors in the Conclusions section. A summary of the distributions used is given 

in Table 17.

For ‘own’ partitions the prior distributions of pfds of both A and B were defined as 

uniform in the range [L, 1], where L < 1 accounts for the chance that some of the reported 32

32 Strictly, there might be a difference between sampling with and without replacement. Our model is based on sampling without 
replacement while the inference procedure described in Section 3.3 implies sampling with replacement. This is a simplification, which 
in many cases is acceptable (e.g. sampling from a large population of units, none of which dominates the sampling process, which 
seems a plausible assumption in our case of SQL servers being very complex products and likely to contain many unknown bugs).

Page 184 of 278



Il ir Gashi VI. Optimal Selection o f COTS Components

bugs might be Heisenbugs33 (Gray 1986), i.e. we expect most of the bugs that have been 

reported for a particular server to cause failures when they are run on that server (hence 

the probability of observing an incorrect results failure is very close to 1) but, due to 

Heisenbugs, not always so. As a source for L we used the study by Chandra and Chen 

(Chandra and Chen 2000). These authors studied the fault reports for three off-the-shelf 

products: MySQL database server, GNOME desktop environment and the Apache Web-

server and reported that 5%, 7% and 14%, respectively, of the reported bugs were 

Heisenbugs. Given the variation between the products we interpreted these findings by 

setting L = 1 -(2*0.14), that is twice the highest value of Heisenbugs reported, i.e. 

allowing for even higher proportion of the Heisenbugs than recorded in (Chandra and 

Chen 2000). The prior, thus, is expected to be within the range [0.72, 1], Notice that here 

the prior distribution for incorrect results is being defined at a range close to 1 (i.e. high 

unreliability). This is because of the unusual profile of the demands: since we are using 

known bug reports as demands we expect most of the bugs to cause failures when we run 

them on the server for which they were reported.
Table 17 - The Prior distributions (identical for all four servers)

Partition Range Distribution

p fd  o f  s e rv e r  A  o r  B on  ‘O w n ’ p a rtit io n s 0 .7 2  -  1 U n ifo rm

p fd  o f  s e rv e r  A  o r  B  on  ‘F o re ig n ’ p a rtit io n s 0 - 1 U n ifo rm

C o n d it io n a l D is tr ib u tio n  o f 'C o in c id e n t 

fa ilu re s ’ in b o th  A  a n d  B o n  e ith e r  p a rtit io n
0 -  m in  (v a lu e  o f p fd  o f A , v a lu e  o f p fd  o f B) U n ifo rm

For ‘foreign’ partitions, however, the prior distributions for both pfds of A or B were 

defined as uniform in the range [0, 1]. This is due to the absence of any comparative 

study to guide our expectation about the likely value. In passing we note that theoretical 

work such as (Littlewood and Miller 1989), (Eckhardt and Lee 1985) suggest that diverse 

software versions will tend to fail coincidentally on ‘difficult’ demands. Since all the 

bugs are ‘difficult’ -  they are known to be problematic at least for one of the servers -  we 

may consider them genuinely difficult, hence assume as plausible that the other servers 

too, are likely to fail on them. On the other hand, empirical studies such as (Knight and 

Leveson 1986), (Eckhardt, Caglayan et al. 1991), have shown that significant gains can

33 Gray defines two types of bugs (Gray 1987): “Bohrbugs” for bugs that appear to be deterministic (they manifest themselves each 
time the bug script is executed); and “Heisenbugs” for those that are difficult to reproduce as they only cause failures under special 
conditions (e.g., created by usage pattern, other software and internal state)

Page 185 of 278



11 ir G as h i VI. Optimal Selection o f COTS Components

be had via design diversity -  hence low chances that a particular server will fail on bugs 

reported for other servers are also plausible. In summary, we are indifferent between the 

values of the probability that a server will fail from a ‘foreign’ bug.

All conditional prior distributions for coincident failures of the two servers for given 

values of the components’ pfds were defined in the range [0, min (value of pfd of A, 

value of pfd of B)] (since it cannot be greater than the probability of either of the two 

individually). This is again due to the rather unique profile, under which we apply the 

inference and the lack of comparable studies that would enable us to define a more 

accurate prior, thus ‘indifference’.

For the comparison we use a distribution defined on the partitions which does not favour 

any of the servers, i.e. we assumed that probability of each partition is 0.25 in the study 

with 4 servers34.

4.2 Observations

The observations using the known bugs of four off-the-shelf servers are given in Table 18 

(Gashi, Popov et al. 2004). Since we included 4 servers in our study and we are interested 

in diverse pairs of servers, then we have a total of 6 different server pairs.
Table 18 - The observations for the 6 diverse server pairs on the bug reports of the different 

partitions. In the partition column the subscript indicates for which server these bugs have been 
reported. N is the total number of bugs run and r1; r2 and r3 are as defined in Table 16.

S e rv e r

P a ir
P a r t i t io n N r . r 2 r 3

S e rv e r

P a ir
P a r t i t io n N 0 r 2 r 3

S e rv e r

P a ir
P a r t i t io n N •T r 2 r 3

S p G 2 4 2 1 0 0 S p c , 1 8 0 0 0
IB
Rr

S p g 2 1 0 1 0
PG
Ri S lB 2 8 0 2 3 1

IB
& S i b 3 1 2 5 0 0 S i b 3 5 2 7 0 2

IB S o R 3 0 0 0 O R S o r 4 0 3 0 M S S o r 4 0 0 0

S m s 9 0 0 0 S m s 1 0 1 0 0 S m s 1 2 0 6 1

S p g 3 0 2 7 0 0
PG

S p g 3 3 2 8 0 2 S p g 2 7 0 2 0
PG
& S /B 2 4 1 0 0 S jB 2 5 I 2 0

O R
S i b 3 0 0 2 0

O R S o r 4 0 2 1 M S S o r 3 0 0 0 M S S o r 4 3 0 0

S m s 7 0 0 0 S m s 1 8 1 7 5 S m s 1 2 0 7 0

We can see that the number of bugs collected for each server was different, which 

indicated that the empirical evidence differs between the partitions. The reason for this

34 We could use the number of known bugs for each of the partition to construct a profile consistent with the observations. This is not 
acceptable for two reasons: i) it will favour poor bug reporting practices, an ii) we would have used the bugs twice -  once in the 
inference procedure and another time in defining the profile, which is theoretically unsound.

Page 186 of 278



Ilìr Gashi VI. Optimal Selection o f COTS Components

was merely differences in the reporting practices operated by the vendors of the servers, 

e.g. unavailability in the public domain of fully reproducible bug scripts for the 

commercial servers (especially OR). Therefore, the sizes of the samples from the 

partitions on each server are different3\  Additionally, these servers are not functionally 

identical: they offer different degrees of compliance with the SQL standard(s) and even 

proprietary extension to SQL. Bugs affecting one of these extensions, thus, literally 

cannot exist in a server that lacks the extension. We called these “dialect-specific ” bugs. 

Due to this, not all the bugs reported for a server can be run on the other servers. 

Therefore the number of ‘foreign’ bug reports varies between the servers.

4.3 Posteriors

Table 19 shows the percentiles of the priors and posteriors of the probability of a failure 

of a pair of components assuming a l-out-of-2 setup. The values in the cells represent the 

confidence that the probability of a coincident failure of both components of a pair on the 

same randomly chosen demand is no greater than the respective confidence level, e.g. for 

PG & IB the value of 0.02 at the 50th percentile can be interpreted as “we are 50% 

confident that the probability of a coincident failure of both PG & IB on a randomly 

chosen demand is no greater than 0.02”.
Table 19 - The percentiles of the probability of system failure for each server pair.

Server Pair
50th percentile 99thpercentile
Prior Posterior Prior Posterior

PG & IB 0.02 0.12
PG & OR 0.07 0.19
PG & MS 0 3 0.09 0 61 0.20
IB & OR 0.02 0.14
IB& MS 0.04 0.14
OR& MS 0.02 0.14

We can see that universally the best pair across the percentiles is the open-source server 

pair PG & IB. There are some interesting remarks to note from the results on Table 19, 

which highlight the value of handling the uncertainty explicitly using probability

15 It may seem desirable to have a similar amount of data for the different servers, but in reality there are different reporting practices 
for each server. Such differences simply translate into different amounts of empirical evidence available for the servers, with which 
our method can cope easily.

Page 187 of 278



11 ir G as hi VI. Optimal Selection o f COTS Components

distributions, rather than using point estimates of attribute values and the value of 

exploiting the dependence in the failure behaviour of the servers:

It may seem surprising that the best server pair is PG & IB given that results in 

Table 18 show that one coincident failure (i.e. r3) was observed for this pair and 

none for the commercial server pair OR & MS. But, in Table 18 we also saw that 

there is a much larger number of single channel failures (i.e. rj and xi) observed 

for the open-source server pair than for the commercial server pair which 

increases our confidence of a strong negative correlation in the failure behaviour 

of the open-source pair, i.e. we see extensive evidence that diversity does work: 

when one of the servers fails the other works correctly. No such evidence is 

available for the commercial servers.

We cannot make a selection purely on the 50th percentile of the posterior 

distribution of the system pfd since 3 of the server pairs give identical results. 

Most of the conventional assessment techniques, which rely on median values of 

the assessment attributes would have also been unable to provide a clear choice. 

However we can make a selection from the 99th percentile of the same setup.

We have also used the model described in Section 3.1 to calculate the posteriors of single 

servers (using the same prior definitions as for the pairs, the observations for each 

individual server and utilizing the partitions theory described in Section 3.4). The 

posteriors for each server are shown in Table 20. We can see that even the worst pair 

from Table 19 on all percentiles performs better than the best single server in Table 20. 

This is hardly surprising given the fact that coincident failures are very rare despite the 

choice of a stressful demand profile (known bug reports). We can also see that the 

differences in the pfd values of a single server vs. a diverse pair of servers are quite 

significant.

Table 20 - The percentiles of the probability of failure on demand for each single server.
Posteriors PG IB OR. MS

50th percentile 0.41 0.30 0.26 0.30

99th percentile 0.54 0.43 0.32 1 0.42

The worst performing server pair has a pfd of no worse than 0.20 with confidence 99% 

whereas the best performing single server has a pfd of no worse than 0.32 with the same

Page 188 of 278



11 ir G as hi VI. Optimal Selection o f COTS Components

confidence level. These results indicate that the use of a diverse server pair would bring 

significant dependability gains: the best single server may fail up to once in 3 demands 

while the worst pair -  up to once in 5 demands.

5. Discussion
The Bayesian model explained in Sections 3.3 and 3.4 can be used for selection of an 

optimal pair of COTS components, as was illustrated in Section 4, when the attribute of 

interest is the probability of failure on demand. It is a common practice that COTS 

components are assessed in terms of more than 2 attributes, usually many more. The 

obvious question, therefore, is whether the proposed ‘uncertainty explicit’ assessment 

‘scales up’ to:

more than one attribute

fault-tolerant configurations in which more than two COTS components are used 

(for example, three COTS components to enable majority voting on the results)

In both of these cases, the question is how the method applies if we have to define 

multivariate distributions. Even though mathematically possible, Bayesian inference with 

multivariate distributions is difficult. The difficulty has two aspects:

specifying a multivariate prior distribution becomes problematic because many 

non-intuitive dependencies between the attributes must be defined and justified. 

manipulating a multivariate distribution is non-trivial even using the most 

advanced math/statistical tools. Calculating the posterior distribution is 

impracticable with more than 3 variates and without simplifying assumptions 

about the dependencies between them.

For scenarios where the COTS components need to be assessed in terms of more than one 

attribute, to partially overcome these difficulties, a “divide-and-conquer” approach can be 

employed: first the attributes can be grouped into smaller groups so that there are 

dependencies within the groups, which the assessment can capture, but the groups are 

assumed independent (i.e. knowing the values of the attributes in one group does not 

change the assessor’s knowledge (belief) about the values of the attributes included in the 

other group); then, due to the independence assumption, the final distribution is the

Page 189 of 278



Ilir Gashi VI. Optimal Selection o f COTS Components

product of the distributions of the individual groups. More details on this approach can be 

found in (Gashi 2006).

The limitations we outlined in this section are not specific to our assessment method; in 

fact they are more serious for the conventional methods in which the individual attributes 

are assessed separately. We have shown in (Gashi 2006) that even when the assessment 

of single COTS components is done using just two attributes, ignoring the dependence 

between the values of the attributes may lead to wrong decisions: a sub-optimal 

component may wrongfully be chosen as the best one. If this could be observed with only 

two attributes, then it is bound to be much more pronounced with more than two 

attributes, where many more dependencies may exist between the values of the attributes. 

The “divide and conquer” approach to attributes also has its problems. It can only be 

applied if the assessor can justify that assuming a set of independent pairs is plausible. 

Despite this problem, however, using small independent groups is still an improvement 

compared with the extreme assumption used implicitly in the existing assessment 

methods surveyed, that all of the attributes are independent.

It is worth pointing out that many of the attributes, such as ‘has the required functions’, 

various forms of compliance, e.g. ‘complies with certain standards’, “Backward 

Compatibility”, etc. (Bertoa and Vallecillo 2002), do not require any uncertainty attached 

to their values. Assessment with respect to such attributes normally leads to a reduction 

of the number of the COTS components (which satisfy all these ‘binary’ attributes), for 

which the more thorough assessment with respect to the remaining ‘non-binary’ attributes 

can proceed (Ncube and Maiden 1998).

6. Conclusions
Software diversity is a well known and well studied subject in the literature (Anderson 

and Lee 1990). It is recognized that often the only way of obtaining dependability 

assurances is to employ software diversity (Littlewood and Strigini 1993). With the 

plethora of off-the-shelf components available fault tolerance through software diversity 

becomes a much more achievable and affordable solution especially since many of the 

components are open-source and free. The important questions for a given project is how

Page 190 of 278



Ilir Gashi VI. Optimal Selection o f COTS Components

much dependability gains there will actually be from employing diversity, or at least 

given a set of diverse software alternatives which is the best for a given application.

We applied methods of Bayesian assessment developed elsewhere (Littlewood, Popov et 

al. 2000), (Gashi 2006). We illustrated how our model can be used with the collected 

evidence to perform the assessment and choose the best server pair. We then compared 

the results of the posteriors of server pairs with those of single servers and we saw that 

even the worst server pair still performs much better than the best single server. This 

indicates that significant dependability gains may be obtained from using diverse off-the- 

shelf database servers. It is also interesting to note that in our assessment the best single 

server is a commercial server, namely Oracle, whereas the best pair of components is the 

pair PostgreSQL & Interbase both of which are free and open-source components.

The prior definition in Bayesian assessment is crucial. In our study we have assumed that 

prior distributions for each component are the same. This was due to the unavailability of 

other known evidence that we could use to define more accurate priors. However this 

problem can be remedied by utilizing evidence from earlier versions of the servers and 

then doing multiple steps of inference, i.e. if we want to perform the assessment with 

later versions of the servers in our study we can use the posteriors from this step as priors 

for the later versions, collect the new evidence for the later versions and then use the 

model to derive the posteriors for each.

Future work that is desirable would be to enable effective assessment with a higher 

number of COTS components in a diverse setup (more than two components may be 

desirable in a diverse setup to enable majority voting on the results from the 

components).

Acknowledgement
This work was supported by the UK Engineering and Physical Sciences Research 

Council (EPSRC) under the ‘Interdisciplinary Research Collaboration in Dependability of 

Computer-Based Systems’ (DIRC) project.

Page 191 of 278



I tir G as hi VI. Optimal Selection o f COTS Components

References
Alves, C. and J. Castro (2001), "CRE: A Systematic Method for COTS Components 

Selection", in proc. XV Brazilian Symposium on Software Engineering (SBES), Rio de 

Janeiro, Brazil.

Anderson, T. and P. A. Lee (1990). "Fault Tolerance: Principles and Practice 

(Dependable Computing and Fault Tolerant Systems, Voi 3)", Springer Verlag.

Bertoa, M. F. and A. Vallecillo (2002), "Quality Attributes for COTS Components", in 

proc. 6th ECOOP Workshop on Quantitative Approaches in Object-Oriented Software 

Engineering (QAOOSE 2002), Málaga, Spain, pp: 54-66.

Boehm, B„ D. Port, Y. Yang, J. Bhuta and C. Abts (2003), "Composable Process 

Elements for Developing COTS-Based Applications", in proc. Int. Symp. on Empirical 

Software Engineering. (ISESE '03), ACM-IEEE, pp: 8-17.

Burgués, X., C. Estay, X. Franch, J. A. Pastor and C. Quer (2002), "Combined 

Selection o f COTS Components", in proc. Int. Conf. on COTS-Based Software Systems 

(ICCBSS ’02), Florida, USA, Springer-Verlag, pp: 54-64.

Chandra, S. and P. M. Chen (2000). " Whither Generic Recovery from Application 

Faults? A Fault Study using Open-Source Software", in proc. Int. Conf. on Dependable 

Systems and Networks (DSN ’00), NY, USA, IEEE Computer Society Press, pp: 97-106. 

Comella-Dorda, S., J. Dean, E. Morris and P. Oberndorf (2002), "A Process for 

COTS Software Product Evaluation", in proc. Int. Conf. on COTS-Based Software 

Systems (ICCBSS ’02), Florida, USA, Springer-Verlag, pp: 86-92.

Dean, J. (2000), 1 'An Evaluation Method for COTS Software Products", http://www.stc- 

online.org/cd-rom/cdrom2000/webpages/johndean/paper.pdf

Dean, J. and M. Vidger (2000), "COTS Software Evaluation Techniques", in proc. The 

NATO Information Systems Technology: Symposium on Commercial Off-the-shelf 

Products in Defence Applications, Brussels, Belgium.

Eckhardt, D. E„ A. K. Caglayan, J. C. Knight, L. D. Lee, D. F. McAllister, M. A. 

Vouk and J. P. J. Kelly (1991), "An experimental evaluation o f software redundancy as 

a strategy for improving reliability", IEEE Transactions on Software Engineering 17(7), 

pp: 692-702.

Page 192 of 278

http://www.stc-online.org/cd-rom/cdrom2000/webpages/johndean/paper.pdf
http://www.stc-online.org/cd-rom/cdrom2000/webpages/johndean/paper.pdf


Il ir Gashi VI. Optimal Selection o f COTS Components

Eckhardt, D. E. and L. D. Lee (1985), "A theoretical basis for the analysis of 

multiversion software subject to coincident errors”, IEEE Transactions on Software 

Engineering 11(12), pp: 1511-1517.

Gashi, I„ P. Popov and L. Strigini (2004 ), "Fault Diversity Among Off-The-Shelf SQL 

Database Servers”, in proc. Int. Conf. on Dependable Systems and Networks (DSN '04), 

Florence, Italy, IEEE Computer Society Press, pp: 389-398.

Gashi, L, P. Popov and V. Stankovic (2006), "Uncertainty Conscious Assessment o f 

Off-The-Shelf Software", Submitted for publication, 

http://www.csr.city.ac.uk/people/ilir.gashi/COTS/.

Gray, J. (1986), "Why Do Computers Stop and What Can be Done About it?” in proc. 

Int. Symp. on Reliability in Distributed Software and Database Systems (SRDSDS ’86), 

Los Angeles, CA, USA, IEEE Computer Society Press, pp: 3-12.

Gregor, S„ J. Hutson and C. Oresky (2002), "Storyboard Process to Assist in 

Requirements Verification and Adaptation to Capabilities Inherent in COTS”, in proc. 

Int. Conf. on COTS-Based Software Systems (ICCBSS ’02), Florida, USA, Springer- 

Verlag, pp: 132-141.

Hamlet, D. and R. Taylor (1990), "Partition testing does not inspire confidence”, IEEE 

Transactions on Software Engineering 16(12), pp: 1402-1411.

Jeanrenaud, J. and P. Romanazzi (1994), "Software Product Evaluation: A 

Methodological Approach”, in proc. Software Quality Management II: Building Software 

into Quality, pp: 55-69.

Jeng, B. and E. J. Weyuker (1991), "Analyzing partition testing strategies", IEEE 

Transactions on Software Engineering 17(7), pp: 703-711.

Knight, J. C. and N. G. Leveson (1986), "An Experimental Evaluation o f the 

Assumption o f Independence in Multi-Version Programming”, IEEE Transactions on 

Software Engineering 12(1), pp: 96-109.

Kontio, J„ S. Y. Chen, K. Limperos, R. Tesoriero, G. Caldiera and M. Deutsch

(1995), "A COTS Selection Method and Experiences o f Its Use”, in proc. Twentieth 

Annual Software Engineering Workshop,NASA Goddard Space Flight Center, Greenbelt, 

Maryland.

Page 193 of 278

http://www.csr.city.ac.uk/people/ilir.gashi/COTS/


Ilir Gashi VI. Optimal Selection o f COTS Components

Kunda, D. and L. Brooks (1999), "Applying Social-Technical Approach for COTS 

Selection", in proc. UK Academy for Information Systems (UKAIS'99), University of 

York, England.

Lewis, P., P. Hyle, M. Parrington, E. Clark, B. Boehm, A. Abts and R. Manners

(2000), "Lessons Learned in Developing Commercial Off-The-Shelf (COTS) Intensive 

SoftM’are Systems",

http://www.cebase.org/www/researchActivities/COTS/LessonsLearned.pdf.

Littlewood, B. and D. R. Miller (1989), " Conceptual Modelling o f Coincident Failures 

in Multi-Version Software", IEEE Transactions on Software Engineering 15(12), pp: 

1596-1614.

Littlewood, B„ P. Popov and L. Strigini (2000), "Assessment o f the Reliability o f Fault- 

Tolerant Software: a Bayesian Approach", in proc. Int. Conf. on Computer Safety, 

Reliability and Security (SAFECOMP ’00), Rotterdam, the Netherlands, Springer, pp: 

294-308.

Littlewood, B„ P. Popov and L. Strigini (2001), "Modelling software design diversity - 

a review", ACM Computing Surveys 33(2), pp: 177-208.

Littlewood, B. and L. Strigini (1993), " Validation o f Ultra-High Dependability for 

Software-based Systems", Communications of the ACM 36(11), pp: 69-80.

Littlewood, B. and D. Wright (1997), "Some conservative stopping rules for the 

operational testing o f safety-critical software", IEEE Transactions on Software 

Engineering 23(11), pp: 673-683.

Musa, J. D. (1993), "Operational Profiles in Softw’are-Reliability Engineering", IEEE 

Software (March), pp: 14-32.

Ncube, C. and N. Maiden (1998), "Acquiring COTS Software Selection Requirements", 

IEEE Software 15(2), pp: 46-56.

Ncube, C. and N. Maiden (1999), ' 'PORE.Procurement Oriented Requirements 

Engineering Method for the Component-Based Systems Engineering Development 

Paradigm", in proc. International Workshop on Component-Based Software Engineering. 

ObjectWeb (2006), "C-JDBC", http://c-jdbc.objectweb.org/.

Ochs, M., D. Pfahl, G. Chrobok-Diening and B. Nothhelfer-Kolb (2001), "A Method 

for Efficient Measurement-based COTS Assessment and Selection -Method Description

Page 194 of 278

http://www.cebase.org/www/researchActivities/COTS/LessonsLearned.pdf
http://c-jdbc.objectweb.org/


Ilir G as hi VI. Optimal Selection o f COTS Components

and Evaluation Results", in proc. 7th Symposium on Software Metrics, London, England, 

IEEE Computer Society, pp: 285-294.

Phillips, B. C. and S. M. Polen (2002). "Add Decision Analysis to Your COTS Selection 

Process", http://www.stsc.hill.af.mil/crosstalk72002/04/phillips.html.

Ruhe, G. (2003), "Intelligent Support for Selection o f COTS Products", in proc. Web, 

Web-Services, and Database Systems, Springer, pp: 34-45.

Tran, V. and D.-B. Liu (1997), "A Risk Mitigating Model for the Development of 

Reliable and Maintainable Large-Scale Commercial-Off-The-Shelf Integrated Software 

Systems”, in proc. Reliability and Maintainability Symp. (RAMS'97), IEEE Print, pp: 

361-367.

Wright, D. and K.-Y. Cai (1994), "Representing Uncertainty for Safety Critical 

Systems", PDCS2 Tech. Rep. 135. Center for Software Reliability, City University, 

London.

Appendix VI-1 A -  Component-Pair Assessment
Assume that the attribute of interest is the probability of failure on demand ipfd). Now 

assume that the system is subjected to a series of independently selected demands. On 

each demand the response received from the COTS components is characterized as 

correct/incorrect. But since we have two COTS components clearly 4 combinations exist, 

which can be observed on a randomly chosen demand, as shown in Table 16 of Section 3. 

The four probabilities given in the last column of Table 16 sum to unity (i.e. they sum to 

1). This constraint remains even if we treat the probabilities in Table 16 as random 

variables: their sum will always be 1. Thus, the joint distribution of any three of these 

probabilities, e.g. fp ouPlo<Pn (•,*,•), gives an exhaustive description of the COTS

component’s behaviour. In statistical terms, the model has three degrees of freedom.

The probabilities of getting an incorrect response on a random demand from COTS A, 

let’s denote it pA, or COTS B,p B, respectively, can be expressed as:

Pa = P\o + P\ l and Pb ~ Po\ + P\ l •

pii represents the probability of receiving an incorrect response from both the COTS 

components. Hence, a notation p A B  = Pi i will capture better the intuitive meaning of the

Page 195 of 278

http://www.stsc.hill.af.mil/crosstalk72002/04/phillips.html


Ilir Gashi VI. Optimal Selection o f COTS Components

event it is assigned to. Instead of using f  p p (•,•,•) another distribution, which can 

be derived from it through functional transformation, can be used. We 

usQ f  p A, pB, pAB (•>•>•) • We define the joint prior distribution as:

f P a t P B ’ P a b ^ * =  f p A B \ P A > P B  I P A ’ P b )  f p A,pB( * ’ * )  ( 3 )  

under the assumption thatpA and pb  are independently distributed, i.e.

f P a  . P b  ( * ’ * )  f P a  ^  f  P b

It can be shown that for a given observation (n, T2, and r3 in N demands) the posterior 

joint distribution can be calculated as:

f p A ^ P A B ^ ’2 \ N >r\ > W )  =

f p A ,p B,p AB ( W  Z)L (N > r\S2>rl \  PA> Pb > PAB)

J j j 'fpA,Pb ,Pab (x>y>Z)L (N ’r\ ’r2’r3\ PA’PB’P AB)dxdy dz ^
P A ’ P b > P a b

where

L(N,r],r2,r3 | Pa ,PB’Pa b ) =

, , U. N'----------- -(J>A-Pa b Y](Pb - Pa b Y2Pa b  ̂(\ + Pa b - P a ~ Pb Y ^ 1̂ '
r\-r2'ri m(P ~ r\ ~ r2 ~ r7>)-

(6)

is the multinomial likelihood of the observation (N, ri, X2, r3).

The marginal distribution f p [B (• ) , which is used for comparison of the COTS 

component pairs, can be derived from f p 4,pB, p 4B (•>•>•) by integrating out pA and pB, 

i.e.

■ W * )  = I I  f p A , p B , p A B ( ' > ’ , ’ ) d P A d p B  (7)
P a P b

Appendix VI-1 B -  Partitions Theory
If the demand space is partitioned into M partitions {Si, S2, • • • SM}, then for each of these 

the assessment will be performed as described in Section 3.3, e.g. with two COTS

Page 196 of 278



Ilir Gashi VI. Optimal Selection o f COTS Components

components the description provided in Section 3.3 (with details given in Appendix A) 

will apply. As a result M conditional distributions will be associated with each pair of 

COTS components, e.g. using two components these can be denoted as 

f d Du d (•>•>• I Si )  , from which the conditional uncertainty f D (• | S t ) will

be expressed. This distribution characterizes the probability of failure, PAB \ S , , of both 

components in the specific partition. Finally, in order to compare the competing COTS 

pairs the unconditional distribution f p AB ( • )  should be derived for the particular

profile defined over the set of partitions, which represents the targeted operational 

environment.

Let us denote the profile of the targeted environment as { P(S\ ),..., P(SM)}, and assume 

that these are known with certainty. The marginal probability of failure of a COTS 

component pair, according to the formula of full probability is:
M
Pa b = Y , P^ \ S , x P(S,) (8)

(=1

The distribution of this random variable, Pab > depends on the joint distribution,

f p 4B \s] p4B\sM (•>•••5 • ) ,  he. of the conditional probabilities of failure in sub-

domains. In some setups it may be plausible to assume that the conditional probabilities 

of failure (in the partitions that is) are independently distributed, i.e.:
M

f p AB\su ...,pAB\sM (•»-»•)=n / «  ( • ) - f p AB\sM (•) (9)
/=1

Such an assumption represents the assessor’s belief that learning something about the 

probability of failure, PAB \ St , of a particular COTS component pair in partition i will 

not change their belief about the probability of failure, PAB \ S j , of the same COTS

component pair in another partition. The assumption is consistent with applying 

inferences to the individual partitions, i.e. conditional on the demands coming from a 

particular partition.

Page 197 of 278



Ilir Gashi VI. Optimal Selection o f COTS Components

Under (9) the unconditional probability of COTS component pair failure (8) can be 

expressed as a convolution of the distributions of the random 

variables Pw (/') = PAB \ x P(Si), i.e.:

PjB =®Pw{i) ( 10)

The selection of the best COTS component pair, out of the available alternatives, then

will be based on the marginal distributions, /  w (• ) , associated with the available COTS
P a b

component pairs.

Page 198 of 278



Ilir Gashi VI. Optimal Selection o f COTS Components

Paper-6. Reliability Growth Modelling of a 1-0ut-0f-2 

System: Research with Diverse Off-The-Shelf SQL
Database Servers

Abstract: Fault tolerance via design diversity is often the only viable way o f achieving 

sufficient dependability levels when using off-the-shelf components. We have reported 

previously on studies with bug reports o f four open-source and commercial off-the-shelf 

database servers and later release of two o f them. The results are very promising for 

designers o f fault-tolerant solutions that wish to employ diverse servers: very few bugs 

cause failures in more than one server and none cause failure in more than two. In this 

paper we offer details o f two approaches we have studied to construct reliability growth 

models for a l-out-of-2 fault-tolerant server which utilize the bug reports. The models 

presented are o f practical significance to system designers wishing to employ diversity 

with off-the-shelf components since often the bug reports are the only direct 

dependability evidence available to them.

Co-authors: Prof. Peter Bishop, Prof. Bev Littlewood, Dr. David Wright

Conference: IEEE International Symposium on Software Reliability Engineering 2007

(ISSRE-07)

Date of submission: 30-April-2007 

Status: Under Review 

Number of reviewers: TBC 

Publication date: TBC

Full citation: TBC

Page 199 of 278



Ilir Gashi VI. Optimal Selection o f COTS Components

1. Introduction
Off-the-shelf (OTS) components are used ubiquitously in software systems development 

due to the perceived lower costs from their use (some of the components may be open- 

source and/or freely available), faster deployment and the multitude of available options. 

There remain concerns, however, about the dependability levels of the components: they 

tend to be distributed without any assurances of their dependability, with “use-as-is” 

labels often attached to them by the vendors. As a result, the only viable way available to 

users and system integrators of achieving higher dependability is to use software fault 

tolerance. Fault tolerance may take multiple forms, with examples ranging from simple 

error detection and recovery add-ons (e.g. “wrappers” (Popov, Strigini et al. 2001)) 

“diverse modular redundancy” (e.g. “N-version programming”: replication with diverse 

versions of the components) (Strigini 2005).

The design decisions are well known from the literature. Questions remain however about 

the dependability gains that developers of systems using OTS components can expect, the 

implementation difficulties and the extra cost expected. We have studied some of these 

issues with OTS database servers or database management system (DBMS) products: a 

highly complex category of OTS components. The architectural solutions for 

implementing a fault tolerant DBMS using diverse OTS database products are given in 

(Gashi, Popov et al. 2007) (the precedins reference forms part of this thesis as Paper- 

2 ) .

With regard to the dependability of a fault tolerant DBMS, we have reported previously 

on a study with the publicly available fault reports of four OTS DBMS products (both 

open-source and closed development) (Gashi, Popov et al. 2004) (the precedins 

reference forms part of this thesis as Payer-1) and later releases of two of them (Gashi, 

Popov et al. 2007). We found that a high number of these faults would not be tolerated 

(or even detected) by the existing non-diverse fault-tolerant schemes but did not cause 

failures in any two diverse DBMS products. We found the number of faults that caused 

coincident failures to be very low. These results seem to suggest that significant 

dependability gains may be achieved if diverse modular redundancy is employed with 

OTS DBMS products. However they are not definitive evidence. The main problem is 

that the available reports concern faults (bugs) and not how many failures each caused,

Page 200 of 278



Ilir G as hi VI. Optimal Selection o f COTS Components

which makes their use in reliability predictions difficult. Complete failure logs would be 

much more useful as statistical evidence, but they are not available. The only direct 

dependability evidence available for these products often are the fault reports.

It is the absence of failure data and the lack of known approaches that can utilize existing 

fault reports of OTS components in reliability assessment that has motivated the research 

detailed in this paper. More precisely, the question we attempt to answer is “how can we 

incorporate existing evidence for off-the-shelf products to evaluate the possible gains in 

reliability achievable by a l-out-of-2 diverse server?” To this end we have studied two 

approaches which use fault reports for obtaining dependability measures of a fault 

tolerant server employing two diverse OTS DBMS products For the sake of brevity, we 

shall refer to this fault tolerant DBMS as a “FT-node”.

The two approaches presented in this paper for estimating the reliability of a FT-node are:

1. An extension of a previous software reliability growth model (Littlewood 1981) 

for use in reliability growth modelling of the FT-node.

2. An alternative “proportions” approach where the observed reliability of a single 

server is scaled by a factor to derive the expected reliability of the FT-node.

The first method requires information on actual usage time. In closed development 

environments, it should be feasible to derive usage time from dated fault reports if the 

total population of the DBMS product is known over time (e.g. from product registration 

information). However for open source products, information on the product population 

over time is hard to obtain, and hence the usage time is difficult to estimate.

We have therefore developed a second method where information about usage time is not 

required and statements about the reliability improvement achievable by an FT-node can 

be made (under certain assumptions about the underlying failure rate distributions) based 

only on information derived from reported product faults.

The paper is structured as follows: Section 2 contains background on the studies we have 

conducted with known fault reports of the DBMS products, software reliability growth 

modelling and the Littlewood (Littlewood 1981) model; Section 3 details the extensions 

of the Littlewood model (Littlewood 1981) for the reliability growth modelling of the FT- 

node; Section 4 contains details of an alternative model in which fault counts alone are 

used for reliability prediction of the FT-node; in the same section we also provide

Page 201 of 278



Ilir Gashi VI. Optimal Selection o f COTS Components

empirical data to illustrate the use of the method; Section 5 contains a discussion and 

verifications of the main modelling assumptions made and finally Section 6 contains a 

discussions of the two modelling approaches, conclusions and provisions for further 

work.

2. Background and related work

2.1 Analysis of common faults in OTS DBMS products

We have conducted two studies with fault reports of four OTS DBMS products and later 

releases of two of them. We have fully described these studies and provided analysis of 

the results in (Gashi, Popov et al. 2004) and (Gashi, Popov et al. 2007). We will be 

utilizing the results of those studies in this paper as empirical evidence with one of the 

models, as well as for verification of the assumptions. Therefore, in what follows we will 

provide a brief summary of the studies and the main results.

A mixture of free open-source and commercial closed development products were used in 

the studies. In the first study we collected a total of I8l bugs reported for the following 

DBMS products (for the sake of brevity, we will use the abbreviations (detailed in 

brackets next to each product), when referring to these products from this point forward. 

The first two products in the list are open-source; the last two are commercial closed- 

development):

Interbase 6.0 (IB)

PostgreSQL 7.0 (PG7.0)

Oracle 8.0.5 (OR)

Microsoft SQL Server 7 (MS).

We first ran the bug scripts (contained within the bug reports) on the products for which 

they were reported and then (when possible36) on the other products. We found very few 

bugs that caused coincident failures in more than one DBMS product, and none which 

caused failure in more than two.

36 Even though all of these DBMS products are compliant with the SQL language, each of them also implements their own proprietary 
extensions. Therefore some faults could be run on only one (or a subset of the four) DBMS products.

Page 202 of 278



Ilir Gashi VI. Optimal Selection o f COTS Components

The results were encouraging, but they only represented one snapshot in the evolution of 

these products. Therefore we repeated the study for the later releases of the two open- 

source products (due to difficulties with data collection no new bug reports were 

collected for the commercial products):

Firebird 1.0 (FB) (this is the open-source descendant of Interbase 6.0)

PostgreSQL 7.2 (PG7.2)

We collected 92 new bugs reported for these two products. The results of the second 

study substantially confirmed those of the first: very few bug reports caused coincident 

failures. This suggests that factors that make diversity useful do not disappear as the 

DBMS products evolve and is a further indication that diversity with OTS products 

certainly deserves further study.

2.2 Software reliability growth modelling

Software reliability growth modelling is a well studied subject over the previous thirty 

years. A good reference to the subject is (Lyu 1996). Chapter three of (Lyu 1996) 

provides a comprehensive survey of the well known models. In the next sub-section we 

will provide details of one of these models which has been extended in this paper.

2.3 Littlewood model

In what follows we will stick to the notation that was first described in the Littlewood 

model (Littlewood 1981) and the assumptions made there. In the Littlewood model 

(Littlewood 1981) (and in reliability growth modelling in general), interest centres upon 

time-to-failure distributions and the data is a sequence of successive execution times 

between the failures //, G, ••• U- The following assumptions are made:

1. Each of the N  (the number of faults that exist in the OTS software product at its 

release) faults will cause a failure after a time which is distributed exponentially, 

and independently of other faults, with rate O/,

where ®i, ..., Oy are independent identically distributed (i.i.d.) random variables,

2. When a failure occurs, there is an instantaneous removal of the fault which caused 

the failure,

Page 203 of 278



Ihr Gashi VI. Optimal Selection o f COTS Components

3. If a total time x has elapsed and i faults have been removed, the failure rate of the 

program is:

A = + ... +

4. When debugging starts each has the probability density function (pdf) b T  (bp; 

a)

where r  is the Gamma Distribution with parameters37 a and b, with p being the 

realization of the random variable O,.

Following on from these assumptions it is shown in (Littlewood 1981) that the times, 7'„ 

at which the faults show themselves are i.i.d. random variables and they are Pareto 

distributed:

P(7) < o = i -  (qr—)a (11)b + t

The motivation behind these assumption and the full details of the model can be found in 

(Littlewood 1981).

3. Extending the Littlewood model
In this section we discuss how the Littlewood model can be extended for reliability 

growth modelling of l-out-of-2 FT-node (i.e. the FT-node is assumed to fail only if both 

of its components fail on a particular demand). Let’s assume that the FT-node is made up 

of two OTS DBMS products A and B. Each of these DBMS products has their own log of 

fault (bug) reports. We collected the faults reported for each DBMS product over specific 

periods and ran the “bug scripts” (which are contained in the fault reports) on both the 

DBMS product for which the fault was reported and on the other DBMS product. Even 

though we have observed faults that cause failures in more than one DBMS product, we 

have not observed any fault which has been reported for more than one DBMS product; 

however double-reporting may happen, therefore our inference method accepts double- 

reported data. Each fault is therefore characterized from two dimensions: whether it 

causes failure in either or both DBMS products A or B; which DBMS produces] the fault 

was reported for. Therefore for any two DBMS products A or B we have five types of

57 We defined the parameters of the gamma Distribution as a (shape) and b (scale) instead of the conventional a and p since we will 
define p for a different purpose in Section 4.

Page 204 of 278



Ilir G as hi VI. Optimal Selection o f COTS Components

faults, as detailed in Table 21. Clearly, the faults which will cause a l-out-of-2 FT-node 

failure are the ones which make both DBMS products fail (the columns in Table 21 

shaded in grey).

Table 21 -  The types of failures caused by each fault on the DBMS products A and B of the FT-node
F a u l t  r e p o r t e d  

f o r  A  o n l y

F a u l t  r e p o r t e d  

f o r  B  o n l y

F a u l t  r e p o r t e d  

f o r  b o t h

F a i l u r e  i n  A Y e s Y e s Y e s N o Y e s
F a i l u r e  i n  B Y e s N o Y e s Y es Y e s

Deriving the inter-failure times is more complicated than when only a single failure log is 

used. Since the fault reports come from potentially thousands of installations worldwide, 

it is virtually impossible to get accurate measures of the operational time and hence inter-

failure times. If the vendors maintain detailed information about the date and time when 

the fault was reported (this is usually available) and date and time as well as frequency of
TO

the downloads of the DBMS products, then a (simplified ) proxy for the inter-failure 

time might be the inter-reporting time which can be calculated for each fault report as 

follows38 39:
Inter-reporting time =

{(calendar time of current fault report) -  

(calendar time of previous fault report)} *

(number of DBMS product downloads since the release of the version being used)

Since the fault reports come from two different logs (one for each DBMS product) then 

we will have two different sets of inter-reporting times; additionally we also need to 

consider the inter-reporting time that we assign to the faults that have been reported for 

both DBMS products. These are inference issues and to deal with them the Likelihood 

equations of the Littlewood model have been extended (see Appendix VI-2A at the end 

o f this paper for the details). The Littlewood model remains unchanged and the 

assumptions described in Section 2.3 were retained apart from the following extensions:

1. We assume that the operational profiles (averaged over all users) of the two 

different DBMS products are the same.

38 There are limitations with this simplified calculation which will be discussed in Section 4.
39 Unless additional information exists about the server downloads, the following assumptions are made to derive the expression: there 
is a single installation for each of the downloaded servers; the installation is running round the clock from the time of the download 
until the present time; all the server downloads are still in operation.

Page 205 of 278



Ilir G as hi VI. OptimaI Selection o f COTS Components

2. Depending on the failure they cause (DBMS product A-only, DBMS product B- 

only or both DBMS products A and B) there are three different fault totals NA, Nb 

and Na b of faults initially present in the software. The time to discovery of these 

faults will still be assumed to be conditionally exponentially distributed random 

variables given the failure rate distribution, but the failure rate may be different 

for each type of failure.

3. While collecting the fault reports for the various OTS DBMS products, we noted 

that fault reporters are specifically instructed not to report already known faults. 

This may be thought of as satisfying assumption 2 of the Littlewood model: a 

known fault will not be reported again, so subsequent data is as though it had been 

fixed.

4. The failure rate distributions for each of the <J>A, 0 B and Oab (for the three 

different types of failures that the faults cause) are assumed to be drawn from the 

same gamma distribution.

We will discuss in more detail the assumption 4 above in Section 5.

The DBMS product releases that we have used in our studies with the faults (Gashi, 

Popov et al. 2004), (Gashi, Popov et al. 2007) are relatively old (the later releases of the 

open-source DBMS products were released in mid-2002; the DBMS products used in our 

first study were released in year 2000 or earlier). Therefore no data existed for the 

download rates of these DBMS products. As a result, proxies for usage time that would 

allow empirical measurements with the extended Littlewood model, could not be 

calculated. SourceForge (SourceForge 2006) does keep download numbers for the later 

releases of Firebird (release 1.0.3 onwards), but does not contain any data for the older 

releases of the DBMS products that we have used.

Information on the number of installations could, in principle, be derived for closed 

development DBMS products (such as Oracle and Microsoft SQL server), but further 

research is needed before the theory can be evaluated using data from such sources.

4. The proportions approach
In this section we will explain a different approach which attempts to get away from the 

need to quantify actual usage time.

Page 206 of 278



I Hr G as hi VI. Optimal Selection o f COTS Components

This alternative approach is useful in applications where it may be difficult to quantify 

the usage time, and hence difficult to use the model described in Section 3. Quantifying 

the usage time is especially difficult for open-source OTS software products. Some of 

these difficulties are:

Faults are reported in calendar time; it is difficult to quantify how much usage 

time this represents

Even if “proxies” for usage time may be calculated (as we discussed in Section 3) 

there are several issues that still remain:

Multiple download sites and/or mirrors exist for each product

OTS products are often distributed as part of operating systems

Even if users can be quantified, the actual usage time of the products by each

user will remain difficult to quantify.

The alternative approach to modelling the reliability of a l-out-of-2 FT node is to use:

the counts of faults which are available from the fault logs of each product. From 

it we can then calculate the proportion of faults in product A that are also found to 

cause failure in product B, fiAB, (from the ratio of common to non-common faults 

in the fault history of A). Similarly we can also calculate f}BA for product B faults 

that are also found to cause failure in A.

the pfd (probability of failure on demand) of the products A and/or B; estimates 

of these may exists for a particular application based on actual failures in 

operation for that application 

This approach has the following underlying assumptions:

Common faults are drawn from the same failure rate distribution as non common 

faults, i.e. a constant proportion of faults in each failure rate band are common to 

A and B.

The failure rate distributions for A and B are the same.

These assumptions are identical to those made for the extension to the Littlewood model 

described in Section 3. Given these assumptions, we can estimate the expected common 

mode failure rate as:

E(Aab ) = Pab  E(Aa ) or

E(Aba) = Pba E(A#)

Page 207 of 278



Ilir G as hi VI. Optimal Selection o f COTS Components

Where E(Zab) and E(Aba) both represent common mode failure rate estimates that should 

be, in principle, equivalent. In what follows we will describe in more detail how these 

two expressions were obtained.

4.1 The underlying theory of the proportions approach

Fault density represents the number of faults within a given failure rate interval that 

remain in a component. We assume the fault density functions of the A, B and AB 

functions are:

K<P).4 = N a  p(0) (12)

K<P)b  = N b  p($) (13)

K<P)a b  = N a b  p($ (14)

where:

Na is the total number of faults in Product A 

Nb  is the total number of faults in Product B 

NAb are faults common to Products A and B

p(^) is the probability distribution of failure rate40 </> for a fault in the product 

(assumed to be the same for A, B and AB faults).

Under these assumptions, the expected number of faults nA,TA observed in product A after 

some usage time xA is:
oo

E(fU lA) = Na (l -  \ Adtp) (15)
o

The expected number of faults nAB,TA observed in product A that are common to product 

B after some usage time xA is:
oo

E(nABi t a) = NAb 0  -  jp(0)e~*T/,d0) (16)
o

It can be seen that the assumption of a common failure rate distribution means that the 

bracketed term (the probability a fault is found after time zf) is identical for E(nf) and

40 We use A for the failure rate of an entire program (i.e. Product A, Product B or FT-node AB failure rate), and we use <j> for the 
failure rate of a randomly chosen fault.

Page 208 of 278



Ilir G as hi VI. Optimal Selection o f COTS Components

E ( u a b )  and will cancel out if we take the ratios. So knowledge of the actual usage time 

t a  and the failure rate distribution p(T) is not required.

So we can estimate Pab from the fault sequence observed in product A up to t a, where 

some faults in the sequence are labelled as being common to B (from a knowledge of the 

B product faults). Given the observed values, h a  j Ta  and h a b m '-

P a b  = N a b /N a  ~  k a b , x a ! n a , x a  (17)

Similarly, we can also estimate Pba from the fault sequence observed in product B up to 

t b

P b a  =  N a b /N b  ~ riBA, ib  / Kb . %b  ( 1 8 )

These /? values need not necessarily be identical as one product could contain more faults 

than another.

If we now consider the use of a product for a particular application, the operational 

profile is likely to differ from the average usage profile for the product which determines 

the average failure rate distribution p(^). For a different usage profile there will be a new 

failure rate distribution p(</>)'. However if common faults are randomly chosen from the 

set of available faults, there is no reason to believe that the proportion of common faults 

will change for any given failure rate </>), i.e. we assume that:

K W a = N a  p(0)' (19)

K $ a b = N a b  P($' (20)

So the expected failure rates are:
oo

EfkA) = N A 1 p(<p)'<pd(p 
0

(21)

00
E(Xab) = N A/3

0
(22)

and hence:

E(/Ub ) = Pa b  E(A a ) (23)

and similarly:

E(T b a ) = Pba  E(T b ) (24)

Page 209 of 278



Ilir Gashi VI. Optimal Selection o f COTS Components

The estimates of the performance of each DBMS product, E(Aa) and E(/Lg) are derived 

from testing or standalone operation for the actual application, and the Rvalues are 

estimated from the bug history.

In practice, the estimates E(A Ab )  and E(A Ba )  are likely to differ due to uncertainties in 

the P and A, values and, in this case, the most conservative estimate should be used.

4.2 Empirical derivation of p

In this section we will use the results of our previous studies with the bugs (Gashi, Popov 

et al. 2004), (Gashi, Popov et al. 2007) (which we summarized in Section 2.1) to derive 

empirical estimates of /?. The results of the first study from running the DBMS product 

faults that could be run on each pair and the failures that they cause are given in Table 22: 

nA are faults reported in product A 

nAB are product A faults that also affect B 

riB are faults reported in product B 

uba are product B faults that also affect A

The results presented in Table 22 do not distinguished between “Heisenbugs” and 

“Bohrbugs”41, i.e. we assume the fault will always cause a failure in the DBMS product 

for which it was reported even if when we tested it in our setup we did not observe the 

failure that was detailed in the bug report. Therefore the estimates that we will get for p 

will be conservative.

T a b l e  2 2  -  T h e  r e s u l t s  o f  r u n n i n g  t h e  f a u l t s  o n  e a c h  D B M S  p r o d u c t  p a ir .  F i r s t  D B M S  p r o d u c t  in t h e
p a i r  is l a b e l l e d  A  a n d  t h e  s e c o n d  o n e  B,

P a ir :
F a i lu re  in: n A Na b nB n BA

I B -P G 7 .0 28 1 2 4 0

IB -O R 31 0 4 0

IB -M S 35 2 12 1

P G 7 .0 - O R 3 0 0 4 1

P G 7 .0 -M S 33 2 18 6

O R -M S 4 0 12 0

41 Terms introduced by Gray (Gray 1986), defining two types of bugs: "Bohrbugs” appear to be deterministic (the failures they cause 
are easy to reproduce in testing); “Heisenbugs”, are difficult to reproduce as they only cause failures under special conditions: "strange 
hardware conditions (rare or transient device fault), limit conditions (out of storage, counter overflow, lost interrupt, etc.) or race 
conditions"

Page 210 of 278



Ilir Gashi VI. Optimal Selection o f COTS Components

The (3 values obtained for this dataset are given in Table 23. The table also contains 
90% upper confidence bounds on the estimates. The confidence bound is computed 
using:

Pr(y? <p \njc) = £  r=o¿ C(n,r)pr(\-p)n~r (25)

where x is the number of common faults in a sequence of n faults.

T a b l e  2 3  -  E s t i m a t e s  o f  ¡1 f o r  e a c h  D B M S  p r o d u c t  p a i r
P a ir Pa b 9 0 %  b o u n d Pb a 9 0 %  b o u n d

IB -P G 7 .0 0 .0 3 6 0 .1 3 2 0 0 .0 9 2

IB -O R 0 0 .0 7 2 0 0 .4 3 6

IB -M S 0 .0 5 7 0 .1 4 5 0 .0 8 3 0 .2 8 8

P G 7 .0 - O R 0 0 .0 7 4 0 .2 5 0 0 .6 7 9

P G 7 .0 -M S 0 .061 0 .1 5 3 0 .3 3 3 0 .511

O R -M S 0 0 .4 3 6 0 0 .1 7 5

Note that the number of faults for a product (like IB) is not constant for different partners 

(like PG7.0 and MS) as it only includes the subset of faults that can be run on the product 

pair.

P values vary considerably for the different product pairs but the number of common 

faults is low (and sometimes zero) so the estimation errors are large. From equations (17) 

and (18), it can be seen that the P b a  P a b  values need not be identical as they depend on 

the number of residual faults, N a  and N b , which can vary with the quality of the 

development process. However many of the P b a  P a b  values for the DBMS product pairs 

seem to be similar given the inherent sampling errors. The main exceptions to this 

observation are the PG7.0-MS and PG7.0-OR DBMS product pairs where the Pba value 

exceeds the 90% confidence bound estimate for the pAB value. The proportions theory 

indicates that this would occur if PG7.0 had significantly more residual faults than OR 

and MS.

Taking the data set as a whole, the results suggest that for most diverse DBMS product 

pairs, P values of 0.1 (and possibly lower) are possible. This means that using a 1-out-of- 

2 FT-node may reduce the failure rate 10 fold or more compared with a single DBMS 

product. We also compared P values for successive versions of the same DBMS product 

pairs using the results from our second study (Gashi, Popov et al. 2007) (described in 

Section 2.1). These can be compared with the faults found in the earlier releases. The 

results are given in Table 24.

Page 211 o f278



Ilir G as hi VI. Optimal Selection o f COTS Components

T a b l e  2 4  - T h e  r e s u l t s  f o r  d i f f e r e n t  r e l e a s e s
P a ir :

F a i lu re  in: n A n AB n B n BA

I B -P G 7 .0 28 1 2 4 0

F B -P G 7 .2 3 0 1 18 1

The (3 factor estimates for earlier and later releases of the products are given in Table 25.
T a b l e  2 5  -  / /  v a l u e s  f o r  d i f f e r e n t  r e l e a s e s

P a ir P a b 9 0 %  b o u n d P b a 9 0 %  b o u n d

I B -P G 7 .0 0 .0 3 6 0 .1 3 2 0 .0 0 0 0 .0 9 2

F B -P G 7 .2 0 .0 3 3 0 .1 2 4 0 .0 5 6 0 .2 0 0

The ¡3 values seem relatively consistent between different releases of the same product 

pair (around 0.035). This might indicate that the relative improvement can be estimated 

from previous releases of the DBMS product pairs (where more data may be available). 

However it is difficult to draw any firm conclusions due to the high uncertainty in the 

estimations.

5. Validity of assumptions
The two underlying assumptions of both the approaches that have been discussed in this 

paper are that: the failure rate distributions for A and B are the same; the distribution of 

AB-faults is also the same as those of A and B. The following subsections consider 

whether these assumptions are credible, and present some statistical tests of the 

underlying assumptions.

5.1 Similar failure rate distribution assumption

There is some justification for believing the assumption that the failure rate distributions 

for the DBMS product pairs are the same. The research by Adams (Adams 1984) shows 

that there is remarkable consistency in the failure rate distributions of different operating 

systems from the same supplier. In addition, in previous work by one of the authors of 

this paper (Bishop and Bloomfield 2003), it was argued that the failure rate distribution is 

determined by the complexity of the program structure and the failure rates are likely to 

have the same (log-normal) distribution. This theory is consistent with the empirical 

observations in Adams (Adams 1984).

Page 212 of 278



Hir Gashi VI. Optimal Selection o f COTS Components

5.2 Conservatism of the common failure rate assumption

It is also assumed that AB faults have the same distribution as the A and B faults. This 

would be the case if the AB faults are not “special” in any way (i.e. the AB faults are 

chosen at random from the set of A faults). For the empirical results presented in Section 

4.2, the AB faults chosen differed for each DBMS product pair. So no faults were 

observed that were common to three products (i.e. there are no “special” AB faults that 

occur very frequently). This gives some credence to the idea of random selection (as a 

bias towards selecting the same common faults should make triple common faults more 

likely).

We also note that an assumption of an identical distribution of A and AB failure rates 

would be conservative if there is a higher proportion of AB faults at higher failure rates. 

In this case, the ¡3 factor calculation based on the higher rate faults would overestimate 

the ¡3 value of the remaining faults, and hence overestimate the common failure rate using 

equations (23) or (24).

Some empirical experiments (Meulen, Strigini et al. 2005) suggest that the /? factor 

decreases from a high value down to a “plateau” as the higher failure rate faults are 

excluded from the fault set. This might be expected if additional coincident failures occur 

when dissimilar faults occupy a large proportion of the input space (and hence are more 

likely to overlap with other faults in the input space). If this was generally true for 

product pairs, the assumption of common failure rate distributions for A, B and AB faults 

would be conservative (as the /? factor would be overestimated for the low failure rate 

faults remaining in the two products).

5.3 Statistical tests of the “constant proportion of common 

faults” assumption

The assumption of constant proportion of common faults can be tested using the data 

taken from the fault histories. Basically we would expect the sequence of common faults 

to be scaled to the sequence of all faults, as illustrated in Fig. 13.

We have used two methods to check whether the steps are consistent with the linearity 

assumption for the fault reports in our studies with the faults:

Page 213 of 278



Hir Gashi VI. Optimal Selection o f COTS Components

We constructed a u-plot42 (Brocklehurst and Littlewood 1996) for the DBMS 

product pair PG7.0-MS on MS faults and checked whether the Kolmogorov- 

Smirnov (KS) distance value obtained is statistically significant.

Divided the sample of fault reports for each DBMS product in two equally sized 

groups and performed the following tests to check whether there is a difference in 

the number of common faults observed between the two groups:

Fisher’s Exact test (Fisher 1922)

Binomial proportions test (Institute of Phonetic Sciences 2006)

F ig .  1 3  -  I l l u s t r a t i o n  o f  c o n s t a n t  p r o p o r t i o n s

5.3.1 U-plots
In the earlier work (Brocklehurst and Littlewood 1996) on prediction analysis, u-plots 

were used to check for consistent differences between the sequence of functions FA,(t,) 

(the predictions) and t, (the actual values). The sequence of numbers u, were calculated as 

u, = FAi(t,) (26)

Each element of the sequence is P(Tj < t,) (previous predictive probability that the failure 

time will be lower than it’s subsequently observed value).

With the fault reports we have actual values and not predictions (here, the u, represent the 

relative distance along the chronological fault sequence at which the ith coincident fault is 

observed). We want to check whether the fault reports of DBMS product A which were 

also found to cause a failure in DBMS product B are equally likely to occur at any stage 

in the (ordered) history of fault reports for A. If this is the case then the step function 

depicted in the u-plot should not deviate significantly from the unit-slope (which is the 

cumulative uniform distribution function), i.e. using the hypothesis testing terminology: 

Ho: The u, are uniformly distributed random variables

J2 U - p l o t s  can be used (in our case) to test for deviations o f  the observations from the unit slope.

Page 214 of 278



Mr Gashi VI. Optimal Selection o f COTS Components

Hp The u, are not uniformly distributed random variables 

We can produce u-plots for DBMS product pairs in which coincident failures were 

observed. However, as we saw in Table 22 and Table 24, the number of coincident 

failures observed is very small (< 2) for all but one pair (the PG7.0-MS pair on MS 

faults). We will therefore show only one of the u-plots: for the pair PG7.0-MS on the MS 

faults. This u-plol is depicted in Fig 14.
U- plot fo r  PG-MS co incident fai lures from MS bugs

F ig .  1 4  - T h e  u - p l o t  c o m p u t e d  f o r  t h e  c o i n c i d e n t  f a i l u r e  c a u s i n g  f a u l t s  in  P G 7 . 0  a n d  M S  b y  t h e  f a u l t s

r e p o r t e d  f o r  M S .

The explanation of the u-plot follows: a total of 18 fault reports of MS could be run on 

the PG7.0 DBMS product (we'll call it n); of those 6 caused a coincident failure in PG 

(we’ll call it r). Since there are 6 coincident failure faults there will be a total of six steps 

in the u-plot function. The size of each step is 1/r. The u, values on the x-axis will 

represent the point i/n, i.e. the sequence in which the fault was reported in MS. Therefore 

if the second fault of MS was found to cause a coincident failure in PG7.0 this will be 

shown as the point 2/18 (i.e. 1/9) on the x-axis. The KS distance for this pair is 0.3889 

with the p-value 0.5041. Since the p-value is so large we do not have enough evidence to 

reject Ho for this DBMS product pair: we do not have enough evidence to reject the claim 

that u, are uniformly distributed random variables. Therefore on this dataset there is not 

enough evidence to reject the assumption of constant proportion of common faults.

Page 215 of 278



llir Gashi VI. Optimal Selection o f COTS Components

5.3.2 Tests for equality of proportions
We can also verify the assumption of constant proportions of coincident failures by 

partitioning the sample of faults observed and checking whether the proportion of 

coincident faults differs significantly between the partitions. Initially we have done this 

by partitioning the samples in two. To illustrate how this was done, we will again use the 

MS faults that could also be run on the PG7.0 DBMS product. We have a total of 18 fault 

reports. We split the sample in half chronologically and check whether the proportion of 

MS faults reported earlier that cause coincident failures in PG7.0 differs significantly 

from the proportion of later MS faults. We therefore have two partitions each with 9 fault 

reports and the common faults found in each half is 1 and 5 respectively. The full details 

for each pair of DBMS products on each dataset are given Table 26. The table also 

contains the results of performing the Fisher’s Exact test and the Binomial proportions 

test. The Fisher’s Exact test used is the one for 2 X 2 tables. Fisher’s exact test for 2 X 2 

tables is used when members of two independent groups can fall into mutually exclusive 

categories. Quoting from (Preacher 2001): “The test is used to determine whether the 

proportions of those falling into each category differ by group.”

T a b l e  2 6  - R e s u l t s  f r o m  p e r f o r m i n g  t h e  F i s h e r ’s  e x a c t  a n d  B i n o m i a l  p r o p o r t i o n s  t e s t s  o n  t h e  d a t a  s e t s  
_______________o f  th e  f a u l t s  s t u d y  ( a f t e r  t h e  d a t a  s e t s  w e r e  p a r t i t i o n e d  i n t o  t w o  h a l v e s ) . _________________

DBMS 
product pair

Faults reported for 
DBMS product V, AB, n 2 AB:

Fisher's exact test Binomial Proportions:
Exact probability /r-value p-value

IB-PG7.0 IB 14 1 14 0 0.5 0.5 0.309
IB-PG7.0 PG7.0 12 0 12 0 N/A N/A N/A

1B-OR IB 15 0 16 0 N/A N/A N/A
IB-OR OR 2 0 2 0 N/A N/A N/A
1B-MS IB 17 2 18 0 0.2286 0.2286 0.134
1B-MS MS 6 0 6 1 0.5 0.5 0.296

PG7.0-OR PG7.0 15 0 15 0 N/A N/A N/A
PG7.0-OR OR 2 1 2 0 0.5 0.5 0.248
PG7.0-MS PG7.0 16 1 17 1 0.5152 0.7728 0.965
PG7.0-MS MS 9 1 9 5 0.0611 0.0656 0.0455

MS-OR MS 6 0 6 0 N/A N/A N/A
MS-OR OR 2 0 2 0 N/A N/A N/A

The Binomial Proportions test (the last column of Table 26 contain the /7-values of this 

test), is only an approximation, whereas the Fisher’s exact test calculates the exact 

probability. Note that the problem of low sample sizes for coincident faults remains. 

Whenever possible (i.e. when the number of coincident failures is not 0) we have also

Page 216 of 278



Ilir Gashi VI. Optimal Selection o f COTS Components

tried to calculate the p-values, but we warn the readers that, due to the small sample sizes, 

these values should be taken with caution.

We can see in Table 26 that the p-values for the Fisher’s exact test are not statistically 

significant at the 5% level. This is due to there being little difference between the two 

partitions, or in the case of PG7.0-MS on MS faults, the sample size being too small for 

the p-value to be significant. For this latter pair the value is statistically significant at the 

10% level (on the MS faults). For the Binomial Proportions test only the p-value of PG- 

MS on MS faults is statistically significant at the 5% significance level (the p-value is 

0.0455); none of the others are significant at the 5% or 10% level.

6. Discussion and Conclusions
Two approaches to predicting the reliability of a l-out-of-2 FT-node were described in 

Sections 3 and 4. These methods are based on some strong assumptions about the 

operational profile and failure rate distributions which may not hold in real operation. 

Ideally we would like to have detailed information about failure counts and usage time. 

However vendors discourage users from reporting already known faults and detailed 

failure data are rarely available even to the software vendors themselves. Also due to the 

various non-restrictive license agreements of the open-source DBMS products, a DBMS 

product may be downloaded from a multitude of sources and then installed in many 

different instances, which makes estimation of the usage time of the DBMS products very 

difficult. Faced with these difficult problems of data availability, it was necessary to 

make these strong modelling assumptions in order to derive initial estimates of the 

potential benefits of fault tolerance with SQL DBMS products.

In Section 5.2 we argued that assuming a common failure rate distribution for A-, B- and 

AB-faults is conservative. Also we have observed in earlier research (Gashi, Popov et al. 

2004), (Gashi, Popov et al. 2007) that AB-faults can fail in different ways in the two 

DBMS products, and hence can be detected (and potentially corrected (Gashi and Popov 

2006) (the preceding reference forms part o f this thesis as Paper-4)). As a result, the 

estimates that we get using our models for the reliability benefits of diversity will most 

probably be underestimates: the true benefits may be higher. Despite this conservatism, 

using the reported faults for the DBMS products in our studies, we would expect an order

Page 217 of 278



I Hr G as hi VI. Optimal Selection o f COTS Components

of magnitude increase in reliability when switching from a single DBMS product to a 1- 

out-of-2 FT-node. This result should however be treated with caution, due to the small 

sample sizes and relatively high estimation errors. There also appear to be variations in 

dependability improvement between different DBMS product pairs.

We used the reported faults from our studies to test for statistical significance of the 

“constant proportion of common faults” assumption, using u-plots and two tests for 

difference between proportions (namely Fisher’s exact and the Binomial Proportions 

tests). We found that these tests are giving reasonably consistent results with regard to 

whether the hypothesis of constant proportion of common faults should be rejected. 

Using these tests at the 90% confidence level, we found, at most, one case out of 12 

where the null hypothesis was rejected (and typically 1 in 10 cases might be rejected at 

the 90% confidence level when the hypothesis is true). This would indicate that the 

assumption of constant proportions does seem to hold for the dataset that we have.

In summary, for users who want to assess the likely dependability gains achievable if 

they switch from using a single DBMS product to a l-out-of-2 diverse server then:

if the only dependability data available for the DBMS products are the fault 

reports, and reasonable estimates can be obtained for the failure rate of the DBMS 

product they are using, then the model described in Section 4 can be used to 

calculate the likely improvements in reliability that they may expect from the 

changeover to a diverse setup

if proxies can also be obtained for usage time, then the extended Littlewood 

model, described in Section 3, may also be used to assess the improvements as 

well as obtain other estimates such as: 

the distribution of the common faults

predictions about the expected time to next diverse server failure etc. 

the two approaches may also be used sequentially to improve the predictions: 

the p  values using the proportions approach of Section 4 are calculated first 

these p  values are then used as priors for the b parameter of the extended 

Littlewood model

Further research is needed to validate the theory presented in this paper. This research 

includes:

Page 218 of 278



Ilir Gashi VI. Optimal Selection o f COTS Components

Methods for obtaining more accurate proxies for usage time.

Empirical investigations of the predictive performance of the proportions model 

for actual DBMS product pairs.

Empirical investigations of the consistency of f  factor estimates in successive 

releases of the same product pair.

Applying the method to other types of off-the-shelf components (such as diverse 

web-servers and application servers).

Acknowledgment
This work was supported in part by the U.K. Engineering and Physical Sciences Research 

Council (EPSRC) via projects DOTS (Diversity with Off-The-Shelf components, grant 

GR/N23912/01) and DIRC (Interdisciplinary Research Collaboration in Dependability, 

grant GR/N13999/01) and by the European Union Framework Program 6 via the ReSIST 

Network of Excellence (Resilience for Survivability in Information Society 

Technologies, contract IST-4-026764-NOE).

References
Adams, E. N. (1984), "Optimizing Preventive Service o f Software Products", IBM 

Journal of Research and Development 28(1), pp: 2-14.

Bishop, P. G. and R. E. Bloomfield (2003), "Using a Log-normal Failure Rate 

Distribution for Worst Case Bound Reliability Prediction", in proc. Int. Symp. on 

Software Reliability Engineering (ISSRE '03), Denver, Colorado, U.S.A., pp: 237-245. 

Brocklehurst, S. and B. Littlewood (1996), "Techniques for prediction analysis and 

recalibration", in Handbook of Software Reliability Engineering, M. R. Lyu (Eds.), 

McGraw-Hill and IEEE Computer Society Press.

Fisher. R. A. (1922). " On the interpretation o f chi-squared from contingency tables, and 

the calculation o fP ", Journal of the Royal Statistical Society 85(1), pp: 87-94.

Gashi, I. and P. Popov (2006), "Rephrasing Rules for Off-The-Shelf SQL Database 

Servers”, in proc. 6th European Dependable Computing Conf. (EDCC-6), Coimbra, 

Portugal, IEEE Computer Society Press, pp: 139-148.

Page 219 of 278



Ilir Gashi VI. Optimal Selection o f COTS Components

Gashi, I., P. Popov and L. Strigini (2004), "Fault Diversity Among Off-The-Shelf SQL 

Database Servers", in proc. Int. Conf. on Dependable Systems and Networks (DSN '04), 

Florence, Italy, IEEE Computer Society Press, pp: 389-398.

Gashi, I„ P. Popov and L. Strigini (2007), "Fault tolerance via diversity for off-the- 

shelf products: a study with SQL database servers", IEEE Transactions on Dependable 

and Secure Computing, to appear.

Gray, J. (1986), "Why Do Computers Stop and What Can be Done About it?" in proc. 

Int. Symp. on Reliability in Distributed Software and Database Systems (SRDSDS ’86), 

Los Angeles, CA, USA, IEEE Computer Society Press, pp: 3-12.

Institute of Phonetic Sciences, A. (2006), "Binomial proportions", 

http://www.fon.hum.uva.nl/Service/Statistics/Binomial_proportions.html.

Littlewood, B. (1981), "Stochastic Reliability Growth: a Model for Fault-Removal in 

Computer Programs and Hardware Designs", IEEE Transactions on Reliability R-30(4), 

pp: 313-320.

Lyu, M. R.. Ed. (1996), "Handbook o f Software Reliability Engineering", McGraw-Hill 

and IEEE Computer Society Press.

Meulen, M. J. P. v. d., S. Riddle, L. Strigin and N. Jefferson (2005), "On the 

Effectiveness o f Run-Time Checks", in proc. Int. Conf. on Computer Safety, Reliability 

and Security (SAFECOMP '05), Fredrikstad, Norway, Springer-Verlag, pp: 151-164. 

Popov, P., L. Strigini, S. Riddle and A. Romanovsky (2001), "Protective Wrapping of 

OTS Components", in proc. 4th ICSE Workshop on Component-Based Software 

Engineering: Component Certification and System Prediction, Toronto.

Preacher, K. J. and Briggs, N. E. (2001), " Calculation for Fisher's Exact Test: An 

interactive calculation tool for Fisher's exact probability test for 2 x 2  tables [Computer 

software]", http://www.quantpsy.org.

SourceForge (2006), "Firebird downloads", 

http://sourceforge.net/project/showfiles.php?group_id=9028.

Strigini, L. (2005), "Fault Tolerance Against Design Faults", in Dependable Computing 

Systems: Paradigms, Performance Issues, and Applications, H. Diab and A. Zomaya 

(Eds.), J. Wiley & Sons, pp: 213-241.

Page 220 of 278

http://www.fon.hum.uva.nl/Service/Statistics/Binomial_proportions.html
http://www.quantpsy.org
http://sourceforge.net/project/showfiles.php?group_id=9028


Ilir Gashi VI. Optimal Selection o f COTS Components

Appendix VI-2A -Likelihood equations of the extended 

Littlewood model
To produce a general likelihood function for data of the kind discussed in Section 3, 

several different kinds of data need to be considered. For each fault we need to consider: 

whether it is present in both DBMS products (i.e. does it cause a failure in both 

DBMS products),

whether it is randomly encountered during testing of one or more DBMS products 

(i.e. has it been reported in more than one DBMS product).

We assume that all three classes of faults (faults that are present on DBMS product A 

only, B only, or both) have rates independently selected from one common gamma rate 

distribution. This produces a 5-parameter model with parameters being three unknown 

fault-count parameters (say Na, Nb, Nab), and two /"-distribution parameters a, b.

For the data symbols, we will use a convention that observed failure counts n, and also 

observed times T of random failure are all, likewise, subscripted to denote which DBMS 

product(s) contain the faults, and now, in addition, superscripted to identify the DBMS 

product(s) during the testing of which the fault is randomly encountered. In the case of 7s 

only, with multiple superscripts (AB or BA), the first of these superscripts will indicate 

which DBMS product’s time T is. For all other cases (whether of subscripts or 

superscripts AB) the order has no significance and will be left alphabetic. Finally, 

parameters lA and lB represent the time it took to uncover the faults in DBMS product A 

or B respectively. With these rather complex but necessary conventions, the extended 

Likelihood function for the Littlewood model is now given by:

rp A B rp A B rp BA rp BA A rp A rp A B rp B rp B
1  a b v -1 ABnfe N A B \ - i A B n B A , n A , l M . . . l A n AA , nB, l m...JBnb„b ’ N a , N b , N ab  , a, b)

(Na b - A
X

1=1

Page 221 of 278



Ihr Gashi VI. Optimal Selection o f COTS Components

nAB
n  «1+
j-i

rpB jA 
1 ABj + / (a+,)}x

»ab r AB 4, t baf f  {(i + A d ß l ± i m r («+2)}x

i=l b

( J  _|_ ^  y ( N A H - > 1 a b  ~ n A B  ~ n A B  ) a

b

a T I „«4  n A rr A

—  x ^ n  { ( i + % r ,0+l,!x
(Na - i>Î)\ f i w  *

(I + — 
b

NbI r » B  " B

» -  „ T I  +
(JVfl -n f ) !  A-I L |  *

(■] + __y ( NB~nB )a (27)

This is the general likelihood case. For our data sets to date (Gashi, Popov et al. 2004), 

(Gashi, Popov et al. 2007), there are no doubly sz^erscripted 7s (i.e. all the doubly 

szz/zerscripted z?s are 0). That is to say, no common fault was encountered randomly 

during testing on more than one DBMS product (although we did note faults which were 

present in more than one DBMS product).

Page 222 of 278



Ihr Gashi VI. Optimal Selection o f COTS Components

Paper-7. Uncertainty Explicit Assessment of Off-The-
Shelf Software

Abstract: Assessment o f software COTS components is an essential part o f component- 

based software development. Poorly chosen components may lead to solutions with low 

quality and difficult to maintain. The assessment is based on incomplete knowledge about 

the COTS component itself and other aspects, which may affect the choice such as the 

vendor’s credentials, etc. We argue in favour o f assessment methods in which uncertainty 

is explicitly represented ( ‘uncertainty explicit' methods) using probability distributions. 

We provide details o f a Bayesian model, which can be used to capture the uncertainties 

in the simultaneous assessment o f two attributes, thus, also capturing the dependencies 

that might exist between them. We also provide empirical data from the use of this 

method for the assessment o f off-the-shelf database servers which illustrate the 

advantages of ‘uncertainty explicit’ methods over conventional methods o f COTS 

component assessment which assume that at the end o f the assessment the values o f the 

attributes become known with certainty.

Co-authors: Dr. Peter Popov, Mr. Vladimir Stankovic

Journal: Elsevier Information and Software Technology Journal

Date of submission: Dec-2006

Status: Under review

Number of reviewers: TBC

Publication date: TBC

Full citation: TBC

Page 223 of 278



11 ir G as h i VI. Optimal Selection o f COTS Components

1. Introduction
The use of commercial-off-the-shelf (COTS) components in software development is 

ubiquitous. There are many benefits to using COTS components stemming from the 

incentive to cut-down on cost and development time and to improve quality by using 

tried and tested components. An essential part of component-based software development 

is the assessment of available COTS components. Various assessment methods have been 

proposed (Ncube and Maiden 1999), (Kontio, Chen et al. 1995), (Jeanrenaud and 

Romanazzi 1994), (Tran and Liu 1997), (Ochs, Pfahl et al. 2001), (Alves and Castro 

2001), (Phillips and Polen 2002), (Boehm, Port et al. 2003), (Dean 2000), (Kunda and 

Brooks 1999), (Gregor, Hutson et al. 2002), (Burgués, Estay et al. 2002), (Comella- 

Dorda, Dean et al. 2002), (Ruhe 2003). The results of these assessment techniques 

crucially depend on assuming that the values of the assessed attributes will be known 

with certainty at the end of the assessment. However, since the assessment is carried out 

with limited resources of time and budget the outcome is subject to uncertainty.

We propose an assessment method in which the assessment results are subject to 

explicitly stated uncertainty and discuss how this may impact the decisions about the use 

of COTS software. The method also enables representing the dependencies that exist 

between the uncertainties associated with the values of the COTS component attributes 

which affect the decision about which of the available COTS components to choose and 

also encourages assessing the dependent attributes simultaneously, thus speeding up the 

assessment. We provide empirical results from a study with off-the-shelf database 

servers, which demonstrate how the assessment method can be used in practice.

The paper is structured as follows: Section 2 contains an overview of the problems that 

need to be addressed during COTS component assessment; in Section 3 we describe 

models of assessment, in which model parameters (values of the attributes to be assessed) 

are not known with certainty and argue in favour of using probability distributions as an 

adequate mechanism to capture this uncertainty; in Section 4 we give details of an 

empirical study with off-the-shelf database servers and also some contrived numerical 

examples which illustrate the advantages of handling uncertainty and dependence 

between the values of the attributes; Section 5 contains a discussion of the scalability and 

applicability of the method proposed; Section 6 contains a brief review of related work on

Page 224 of 278



Ilir Gas hi VI. Optimal Selection o f COTS Components

COTS component assessment and attribute definitions and finally in Section 7 we present 

conclusions and possible further work.

2. Problems with COTS component assessment

2.1 Motivation

Any assessment is conducted with limited resources and under various assumptions, 

which may not hold true in real operation. As a result the outcome of the assessment is 

subject to uncertainty -  the assessor may never be 100% sure that what they concluded 

during the assessment (both about the values of the attributes as well as the choice of a 

COTS component) will be confirmed when the COTS component is used in operation. 

This is clearly true for some parameters, which can be estimated objectively, e.g. failure 

rate, performance, etc. For failure rate, for instance, even after a very thorough testing 

one can only identify a range of rates which are more likely than others. For instance, 

Littlewood and Wright have shown (Littlewood and Wright 1997) that starting with 

indifference between the values of the failure rate (i.e. uniform distribution of the failure 

rate in the range [0, 1 ]) and seeing a protection system process correctly 4600 demands 

translates into 99% confidence that this system’s probability of failure on demand (pfd) is 

no worse than 10' . The same equally applies to attributes assessed subjectively, e.g. 

using the Likert scale (Likert 1932), widely used in the COTS component assessment. It 

may be difficult for an assessor to justify that a COTS component must be ranked at 

exactly, say 7 out of 10, according to a chosen scale but he/she may be certain that the 

‘true’ value of the attribute is in the range [6,7].

The value of expressing the assessment results in the form (value, confidence) has been 

recognized in some other technical areas which dealt with assessment. The best 

performing software reliability-growth models (RGM) which predict the failure rate from 

the observed failures in the past, for instance, are those in which the model parameters are 

treated as random variables (Brocklehurst, Chan et al. 1990). In these models the ‘true’ 

values of the attributes being assessed are never assumed known with certainty. Instead 

the attribute is characterized by a probability distribution from which the true value of the 

attributes will come (i.e. are seen as drawn at random). For each reliability target, then,

Page 225 of 278



Ihr Gashi VI. Optimal Selection o f COTS Components

the assessor can tell the probability that the true reliability is lower than the target. Such 

models systematically outperformed the alternative simplistic methods in which the 

parameters were assumed known with certainty (Lyu 1996). If the ‘uncertainty explicit’ 

models have been best with one specific method of assessment -  software reliability -  it 

seems natural to try similar ‘uncertainty explicit’ methods for other assessments, e.g. 

evaluation of COTS software and selecting the best out of a set of comparable 

alternatives. This is the focus of this paper.

There are various methods for representing uncertainty (Wright and Cai 1994). Bayesian 

approach to probabilistic modelling is one of the best-known ones and used with some 

success in reliability assessment (Lyu 1996), (Littlewood and Wright 1997). It allows one 

to combine, in a mathematically sound way, the prior belief (which may be ‘subjective’ 

and possibly inaccurate) about the values of a parameter or a set of parameters to be 

assessed with the (‘objective’) evidence from seeing the modelled artefact in operation. 

Combining the prior belief and the evidence from the observations in a mathematically 

correct way leads to a posterior belief about the values of the assessed attribute(s).

How does ‘uncertainty explicit’ assessment differ from the conventional deterministic 

assessment? With deterministic assessment point estimates of the attributes are used. A 

common approach of comparing the alternatives is then to use a weighted sum of the 

estimates for each of the alternatives. When uncertainty is used, this approach is still 

possible -  we can use various characteristics of the posterior distributions (mean, median, 

etc.) of the attributes as estimates and then calculate the weighted sum for each of the 

COTS components included in the assessment before deciding which is the best one. 

When uncertainty is explicitly used in the assessment, however, more refined ways of 

comparison are possible: from the posterior one can express the uncertainty in the value 

o f the comparison criterion, e.g. the weighted sum of the attributes. Since the value of the 

weighted sum is now uncertain we have a range of options. We may give preference to 

the COTS component for which the mean (median) value of the weighted sum is best (as 

we would have done with point estimates of the attributes). With uncertainty stated 

explicitly a range of new options exists, which is illustrated in Fig. 15.

In this figure we illustrate the value of handling uncertainty explicitly even when dealing 

with a single assessment attribute, COTS component reliability. Let us assume that Fig.

Page 226 of 278



I Hr G as hi VI. Optimal Selection o f COTS Components

15 illustrates the cumulative distribution function (c.d.f.) graph for two COTS 

components with the same average pfd. If we wanted to choose the COTS component 

that has the highest probability of having a pfd of no worse than 6.1 O'3 (i.e. the value of 

the x-axis of 0.006) then we would choose COTS component A, whereas the COTS 

component with the highest probability of having a pfd of no worse than 4.1 O'3 is COTS 

component B. We can also see clearly that the distribution of the pfd of COTS component 

B is much more spread than that of COTS component A (in fact the distribution of COTS 

component A is uniformly spread across all the values from 0 to 10"2). Therefore there is 

a much higher uncertainty associated with the values of COTS component B than those 

of COTS component A. Stating uncertainty explicitly, thus, offers the assessor a wider 

range of options in selecting the most appropriate COTS component.

Fig. 15 - The pfd for two different COTS components.

2.2 Dependence among attributes

COTS component assessment requires dealing with multiple attributes of the COTS 

components being compared. The selection of a particular COTS component, thus, is a 

multi-criteria decision which taken under uncertain values of the attributes naturally leads 

to the question about the dependence between the uncertainties associated with the 

individual attributes. Ignoring the possible dependence between the attributes represents a 

particular form of belief: that assessing attribute X one can learn nothing about another

Page 227 of 278



Ilir Gashi VI. Optimal Selection o f COTS Components

attribute, Y. For example, performance of a COTS component will hardly tell anything 

about the quality of its documentation and vice versa. It is quite obvious, however, that 

not all COTS component attributes are like that. In many cases while assessing an 

attribute X the assessor may infer something about another set of attributes. For instance 

if we devise a prototype in order to assess the functionality of a COTS component in the 

process we will learn something about the performance (how quickly this COTS 

component responds to requests) and how reliable the COTS component is. A more 

subtle, but very useful concept, as we will see later, is that the uncertainties associated 

with the assessed attributes may be dependent. Informally, assume that we want to assess 

the reliability and performance of a COTS component. We may assume that the 

uncertainties associated with these two attributes are independent, in the statistical sense. 

Under this assumption learning something about reliability will tell us nothing about 

performance and vice versa. Now suppose that we have run a very long testing campaign 

and have repeatedly observed that whenever the response was late it was also incorrect 

and no other incorrect response has been observed. With such evidence of a strong 

positive correlation between the failures (incorrect responses) and the responses being 

late, we may accept that any change of our belief about the rate of failure should also be 

translated into a change in our belief about the rate of late responses. The assessment 

models surveyed invariably assume that the attributes are independent and do not allow 

for dependencies between their uncertain values to be captured adequately.

In summary, we can draw a two by two contingency table to illustrate a possible 

categorization of an assessment method (Table 27) with respect to the method’s handling 

of the uncertainty between the values and the dependence between the values of the 

attributes.

In the assessment method that we propose in this paper we are in quadrant I: we aim to 

both handle the uncertainties in the values of an attribute and the dependence that exists 

between the values of the different attributes. The existing assessment methods surveyed 

tend to be in quadrant IV.

Page 228 of 278



Ilir Gas hi VI. Optimal Selection o f COTS Components

Table 27 -  A categorization of an assessment method with respect to uncertainty and the dependence
of the attribute values

Is the Uncertainty handled?

Yes No

Is the Dependence Yes I H

handled? No III IY

3. Assessment of COTS components:
approach
In this section we briefly summarize how the Bayesian approach to assessment is 

normally applied to assessment of a single attribute. Assume that the attribute of interest 

is the component’s probability of failure on demand (pfd). If the system is treated as a 

black box, i.e. we can only distinguish between COTS component’s failures or successes 

(Fig. 16), the Bayesian assessment proceeds as follows.

d e m a n d s  __________________________  C O T S  o u t p u t

COTS_______

Fig. 16 - Black-box model of a COTS component. The internal structure of the component is 
unknown. Only its output (success or failure) is recorded on each demand and used in the inference

of component’s pfd
Let us denote the system pfd as p, with prior distribution (probability density function, 

pdf) f p {•), which characterises the assessor’s knowledge about the COTS component

pfd prior to observing the COTS component in operation. Assume further that the COTS 

component is subjected to n demands, independently drawn from a ‘realistic’ operational 

environment (profile)43, and r failures are observed. The posterior 

distribution, f p (x \ r, n) , of p  after the observations will be:

fn (x\r,n )cc  L { n ,r \x ) fJ x ) , (28)

where L(n,r \ x) is the likelihood of observing r failures in n demands if the pfd were 

exactly x, which in this case of independent demands is given by the binomial

distribution, L(n,r | x) =
f n\

\ r J
xr( l - x ) n r . For any prior and any observation (r, n) the

posterior can be calculated for all the COTS components included in the assessment.

43 An operational profile (Musa 1993) can be defined as a quantitative characterization of how the component will be used in its ‘true’ 
environment

Page 229 of 278



Ilir Gashi VI. Optimal Selection o f COTS Components

Even if no failure is observed (i.e. r = 0), the posterior can be calculated. Other measures 

of interest can also be derived from this posterior, e.g. the probability that the COTS 

component will survive the next 5000 randomly chosen demands. This probability can be 

calculated for each of the COTS components included in the assessment as follows:
00

p f m  f p(p\r,n)dp
o

Then the best COTS component will be the one, for which the integral above gets a 

maximum value.

3.1 Model for assessment of 2 non-independent attributes

Typically the COTS component assessment is a multi-criteria decision with dozens of 

attributes usually assessed and taken into account (as detailed in (Kontio, Chen et al. 

1995), (Ncube and Maiden 1999), (Ochs, Pfahl et al. 2001), (Boehm, Port et al. 2003)). 

The Bayesian assessment can be applied to multiple attributes, too. For simplicity we first 

demonstrate the approach with two attributes and then discuss the implications of scaling 

it up to many attributes.

Let us assume that two non-functional attributes must be assessed, such as the COTS 

component’s pfd and performance, the latter assessed in the form of whether the response 

is received on time or not, i.e. the probability of a late response on demand, pld. Using a 

binary score -  on time vs. late -  is an adequate approach when the COTS component is 

planned for integration in a larger system. In these circumstances using an absolute scale, 

e.g. how long it takes a COTS component to respond to a demand, may be unnecessary: it 

will be sufficient to know whether the response is received with an acceptable delay as 

dictated by the wider system. In terms of comparison of several COTS components using 

the binary scale (on time/late) seems also adequate. Any COTS component, which 

responses with an acceptable delay, is equally good from the point of view of the 

system’s integrator.

Here we define a model to help with the comparison of COTS components assessed by 

subjecting them to a series o f independently selected demands. Both, the COTS 

component’s pfd and pld, are used in the comparison and different comparison criteria are 

discussed.

Page 230 of 278



I Ur G as hi VI. Optimal Selection o f COTS Components

On each demand the response received from the COTS components is evaluated from 

two different viewpoints: correct/incorrect and on time/late. Clearly 4 combinations exist, 

which can be observed on a randomly chosen demand, as shown in Table 28.
Table 28 -  The outcomes, their frequencies and probabilities for a random demand

E v e n t
C o r r e c t  R e s p o n s e  

( R e l i a b i l i t y )
R e s p o n s e  O n - T i m e  

( P e r f o r m a n c e )
N u m b e r  o f  o b s e r v a t i o n s  in 

n  d e m a n d s
P r o b a b i l i t y

a N o Y e s r  / P \ 0

p Y e s N o n P o \

X N o N o r  i P u

5 Y e s Y e s n P o o

The four probabilities given in the last column sum to 1. So if the last three probabilities 

are 0.2, 0.4 and 0.3, respectively, then the first one p]0 = 1- (0.2 + 0.4 + 0.3) = 0.1. This 

constraint remains even if we treat the probabilities in Table 28 as random variables: their 

sum will always be 1. Thus, the joint distribution of any three of these probabilities, 

e.g. f PouP]0,P] (•,*,•) > gives an exhaustive description of the COTS component’s

behaviour. In statistical terms, the model of the COTS component with two binary 

attributes has three degrees of freedom.

The marginal probabilities of getting an incorrect response on a random demand, let’s 

denote it pj, and of getting the response late, pi, respectively, can be expressed as:

Pi =P\o+P\\  and P l  =Po\ + P u -

pa  represents the probability of receiving late an incorrect response and, hence, a 

notation pn  = pn  will capture better the intuitive meaning of the event it is assigned to. 

Instead of using /  (•,•,•) another distribution, which can be derived from it

through a functional transformation, can be used. In this section we use f Pl,Pi tPu (•,*,•) •

It can be shown that for a given observation (rj, r?, and r? in N  demands) the posterior 

joint distribution can be calculated as:

f P l , P L , P , S x ’ y ’ z \ N ' r\>r2>r3) =

f Pl,pL,pIL(x>y’z)L(N ’rl’r2>r3\Pl>PL>PlL) (29)
,PL ,Pil  (x , y, z)L{N , r, ,r2,r3 \p I , p L, p IL )dxdydz

Pi’PL’Pii.

where

Page 231 of 278



Ilir Gashi VI. Optimal Selection o f COTS Components

L(N,rh r2,r3 \p ,,p L,p IL) = 
N\

(.Pi -  Pil Y] (Pl  -  Pil Y2 Pi l 3 (1 + Pil  -  Pi ~P l )
r]!r2!r3!(A ,' - r ] - r 2 - r 3)!

\N-r\ ~r2 ~r3 (30)

is the multinomial likelihood of the observation (r/, r2, r3 , N).

A similar model has been used in the past in assessing reliability of various systems built 

with components (Littlewood, Popov et al. 2000), (Popov 2002).

3.2 Combination of uncertainties in the values of attributes

For comparison of the COTS components we will define the following criterion:

Probability of an inadequate response, Pser, by the COTS component: of getting 

either an incorrect or late response. Clearly, Pser = Pi + Pl  -  Pil ■ Its posterior 

distribution, /  (• | N,r^,r2,r-i ) , can be derived from the joint

posterior, f p Pu (•,»,• | N, ̂ , r2, r3), by f"irst transforming it, to for example 

fpi.Pi ,pSer (•’•>• I N,r\,r2,r3) , and then integrating out the nuisance parameters P/ 

and Pl .

An often used selection method (Port and Chen 2004) in the literature is the weighted 

sum of the values of the attributes. The weighted sum of the two attributes in our study 

can be calculated as follows: Ps — kP\ + (1 -K)Pi, in which the constant k is defined by the 

assessor. High values of k correspond to cases when incorrect results are highly 

undesirable while late results may be tolerable. On the contrary, low values of k 

correspond to cases when incorrect results may be tolerated by the system while late 

responses may have serious consequences. In order to derive the marginal distribution of 

Ps first the joint distribution f Pl,Pl Pn (•>•>• I N,r\,r2,r{) is transformed

to f PliPl ,Ps (•,*,• | N,r],r2,r3) and then the nuisance parameters Pi and Pl  are integrated

out, as we did above for Pser■ However we will not be using this method of selection since 

the new variable Ps does not have an obvious intuitive meaning. This difficulty is 

compounded in our case since the uncertainty is stated explicitly. It is impossible to say 

what a confidence of say 99% associated with a particular value of Ps tells us about the 

COTS component being assessed.

Page 232 of 278



Ilir Gashi VI. Optimal Selection o f COTS Components

3.3 Partitioning the demand space

In some areas of software engineering, especially in testing, the usefulness of partitioning 

the demand space has been recognised (Jeng and Weyuker 1991), (Hamlet and Taylor 

1990), (Musa 1993). The demand space partitions typically represent different types of 

demands, which may have different likelihoods of occurring in realistic environment. 

Realistic testing, thus, would require generating mixes of demands, which take into 

account the likelihood of the types of demands.

In our context, operating in a partitioned demand space may imply that the uncertainty 

associated with the attributes of interest may differ among the partitions, e.g. as a result 

of different number of observations being made for the different partitions.

If the demand space is partitioned into M  partitions {57, 57, ... 5a/}, then for each of these 

the assessment will be performed as described above, e.g. with two attributes the 

description provided in Section 3.1 will apply. As a result M conditional distributions 

will be associated with each COTS component, e.g. using reliability and performance 

these can be denoted as f Pl,Pl,Pu (•,•,•! 5 from which the conditional distribution

f Ps r (• | Sj) will be expressed. This distribution characterises the probability of failure 

(incorrect or late response), PSer | Si , of the particular COTS component in the specific 

partition. Finally, in order to compare the competing COTS components the 

unconditional distribution f p (•) should be derived for the particular profile defined

over the set of partitions, which represents the targeted operational environment.

Let us denote the profile of the targeted environment as { P(S]),..., P(S a/ ) } 44, and assume 

that these are known with certainty45. The marginal probability of failure of a COTS 

component, according to the formula of full probability is:
M

PSer= Y,P seA Sl xP{S,) (31)
¡ = 1

44 The meaning of these random variables is that a demand chosen at random with probability P(SJ will be drawn from S„
45 This assumption is needed for the comparison only. We do not require here that we know the ‘real’ operational environment, in 
which the system together with the chosen COTS component will be deployed. Taking into account the uncertainty about the profile is 
possible at the expense of making the calculations more complicated, which is beyond the scope of this paper.

Page 233 of 278



I Ur G as hi VI. Optimal Selection o f COTS Components

The distribution of this random variable,/*^, depends on the joint distribution,

f p Ser\S] pScr s M (•,-■■»•)> i-£- of the conditional probabilities of failure in sub-domains. In

some setups it may be plausible to assume that the conditional probabilities of failure (in 

the partitions that is) are independently distributed, i.e.:
M

fPser\Sl,...,Pser\SM (•>->•)= E f fPSer\S\ ( * ) - / ^ |%  W ' (32)
(  =  1

Such an assumption represents the assessor’s belief that learning something about the 

probability of failure, PSer | St , of a particular COTS component in partition i will not 

change their belief about the probability of failure, PSer \ S j , of the same COTS

component in another partition. The assumption is consistent with applying inferences to 

the individual partitions, i.e. conditional on the demands coming from a particular 

partition.

Under (32) the unconditional probability of COTS component failure (31) can be 

expressed as a convolution of the distributions of the random variables

Pw(i)= P ser\S^P (S ,),le .:

P s,r= ® P y)  (33)

The selection of the best COTS component, out of the available alternatives, then will be 

based on the marginal distributions, f  w ( • ) , associated with the available COTS
PSer

components.

4. Numerical examples: a study with off-the-shelf 
database servers
We have reported recently results of studies on dependability and performance of 

database servers (Gashi, Popov et al. 2004b) (the precedins reference forms part of this 

thesis as Paper-1), (Gashi, Popov et al. 2004a) (the precedins reference forms part of 

this thesis as Paper-3), (Stankovic and Popov 2006). The focus of these earlier studies 

was in measuring the amount of “diversity”, in both correctness and response time, which 

exists between different servers, i.e. certain server might give an incorrect and/or late 

response in one input but the other one might not. The motivation behind this work was

Page 234 of 278



Ilir G as hi VI. Optimal Selection o f COTS Components

to get preliminary measurements on the improvements in reliability and performance that 

can be had from using more than one component in parallel in a multi-channel diverse 

configuration.

In this paper we will use the data collected in those studies to demonstrate our approach 

to COTS component selection. SQL servers are a very complex category of off-the-shelf 

components, with many reported faults in each release. In total six off-the shelf SQL 

servers from four different vendors were used. Four of the servers are open-source, 

namely PostgreSQL 7.0, PostgreSQL 7.2, Interbase 6.0 and Firebird46 1.0. The other two 

servers are commercial closed development servers, anonymised here due to the 

restrictive ‘End User License Agreements’. We will refer to these components as CS1 

(Commercial Server 1) and CS2 as they are from different vendors.

An ideal selection of an SQL server based on the results of statistical testing of the COTS 

components may be problematic in practice. We will highlight two circumstances in 

which these difficulties can occur:

Assume that we are interested in choosing between several SQL servers, based on 

their reliability and performance. The ideal situation for choosing the most 

appropriate SQL server based on measurements after deploying the COTS 

components is clearly unrealistic since we would like to select the best server 

before the application is developed.

Assume that the system integrator (e.g. a software house) would like to make a 

strategic choice of a SQL server for use in the foreseeable future. In this scenario 

the application(s), which may be developed in the future may be even unknown at 

the time of making the selection.

Given these difficulties we can use alternative options:

Using well-known benchmark applications. In the context of SQL servers this 

might be the TPC-C benchmark for on-line transaction processing (TPC 2002). In 

this case, the performance of the components can be measured directly on the 

target platform, but there might be problems observing failures. This is because it 

would be reasonable to expect that an SQL server would correctly process the 

statements defined in the TPC-C benchmark application. Thus, in this case the

46 Firebird is the open-source descendant of Interbase. The later releases of Interbase are issued as closed-development by Borland.

Page 235 of 278



Ilir G as hi VI. Optimal Selection o f COTS Components

selection of the SQL server would be significantly influenced by the performance 

attribute. Even if failures are observed, such a measurement of the reliability of 

the COTS components may be very expensive; the likely candidates to choose 

from will be reliable components. Thus the amount of testing to observe a few 

failures may be prohibitively high (Adams 1984). We illustrate the assessment 

method with data collected from experiments with an implementation of the TPC- 

C client benchmark. For the TPC-C experiments we used all six of afore 

mentioned SQL servers.

Using stressful environments (in terms of the reliability attribute) may be sought 

in such circumstances for comparing the components, i.e. environments which 

increase the likelihood of failures occurring, even if we do not know how likely 

these are to occur in operation. The set of bugs of a particular COTS component 

(in our case SQL server) defines one such stressful environment for a server. The 

union of the bugs reported for all the compared COTS components will form a 

demand space, in which there will be a partition stressing each of the components. 

We have collected known bug reports for four of the SQL servers in our studies, 

namely PostgreSQL 7.0, Interbase 6.0, CS1 and CS2 and used them as a sample 

from a ‘stressful’ environment, in which to compare the COTS components. 

Detailed results for each of these studies are given in the next two sub-sections. We did 

not use partitioning o f the demand space approach in the study with the TPC-C 

Benchmark application (even though the TPC-C transactions types could form basis for 

such partitioning). This is because we did not have any reason to expect that the servers 

will perform differently (in terms of timeliness and correctness) for each transaction type. 

We however did use partitioning of the demand space in the study with the bug reports of 

the servers, since we had compelling reasons to expect that the servers will perform 

differently (this will be explained in Section 4.2).

4.1 Study with the TPC-C benchmark application

We first describe the results obtained using the TPC-C benchmark application as a basis 

of selecting the best SQL server. In the empirical study we used our own implementation 

of TPC-C. The benchmark defines five transaction types (New-Order, Payment, Order-

Page 236 of 278



Ilir Gashi VI. Optimal Selection o f COTS Components

Status, Delivery and Stock-Level) and sets the probability of execution for each, i.e. the 

particular transaction mix (profile) is defined. The specified performance measure is the 

number of New-Order transactions completed per minute. However, our measurements 

were more detailed - we recorded the transaction response times instead. The benchmark 

specifies explicitly an upper bound on the 90th percentile values for each transaction type. 

It requires that a response time of each transaction type is less than or equal to the 

respective 90th percentile value. The values are as follows:

New-Order - 5 seconds 

Payment - 5 seconds 

Delivery -  80 seconds 

Order-Status -  5 seconds 

Stock-Level -  20 seconds 

The test harness consisted of two machines:

a server machine, on which one of the six database servers was run. 

a client machine, which executed a JAVA implementation of the TPC-C standard 

Each experiment comprised the same sequence of 1000 transactions. We ran two types of 

experiments:

single client - a TPC-C compliant client modifies the database by executing the 

specified transaction mix

multiple clients - a TPC-C compliant client modifies the database and additional 

10 clients concurrently execute read-only transactions (Order-Status and Stock- 

Level).

Multiple clients experiment enabled us to increase the load on the servers and measure 

the effect of the increased load on their performance.

A timeout value, specific to each transaction type, was used to distinguish between late 

and timely responses. We defined two sets of timeouts47:

the 90th percentile values specified by TPC-C (TPC-C timeout), 

one fifth of the 90th percentile values {short timeout).

We defined four scenarios, varying the number of clients and timeout values respectively:

47 The choice of these was made after a personal communication of one of the authors with a TPC-C affiliate and auditor who 
confirmed that the values were conservative for a wide range of on-line transaction processing applications.

Page 237 of 278



I Ur G as hi VI. Optimal Selection o f COTS Components

Scenario 1 - single client / TPC-C timeouts 

Scenario 2 - single client / short timeouts 

Scenario 3 - multiple clients / TPC-C timeouts 

Scenario 4 - multiple clients / short timeouts 

The SQL servers were compared for each of the scenarios.

4.1.1 Prior distributions
The prior, /  p (•,*,•), was constructed under the assumption that Pj and Pi are

independently distributed random variables, i.e. f Pl,Pl (•,•) = f Pl(*)fPl (•) • We made

this assumption since we did not have any objective evidence to believe otherwise. In 

case there are reasons (objective or subjective) then the assumption of independence 

maybe be dropped. In this case the particular form of f P] p (•,•) should be defined

explicitly. Additionally the conditional distributions f p ^  p (• | Pj,Pi) were defined for

every pair of values of Pi and Pi, in the range [0, minCP/, Pi)] since the probability of 

incorrect and late responses cannot be greater than the probability of either of the two 

individually. In passing we note that the choice of the prior is not critical here since with 

this benchmark application an arbitrarily large number of demands can be generated, 

which can correct any inaccuracies of the priors, i.e. ‘the data will speak for itself.

We anticipated observing mainly late responses while the incorrect result failures were 

expected to be very rare. We have assumed ‘ignorance prior’ (Uniform distribution) for 

performance in the range 0 to 1. For incorrect result failures we have also assumed 

ignorance but using an upper bound of 1 O' , likely to be very conservative in the context 

of TPC-C. We assumed ignorance priors for both Pj and Pi since we did not have any 

preference regarding their values. In this study we used the same distribution for all the 

servers since for the scenarios tested we did not have any reason to prefer one server over 

the others. There might, however, be cases -  some discussed later in Section 5.4 - 

whereby the assessor may have different prior beliefs about the competing COTS 

components.

A summary of the distributions used and the range in which they are defined is given in 

Table 29.

Page 238 of 278



Ilir Gashi VI. Optimal Selection o f COTS Components

Table 29 - The Prior distributions (identical for all six servers and all four scenarios)
P r i o r  D i s t r i b u t i o n R a n g e D i s t r i b u t i o n  T y p e

R e l i a b i l i t y  f p [  ( • ) 0 - 0.01 U n i f o r m

P e r f o r m a n c e  f p ^ ( • ) 0 - 1 U n i f o r m

C o n d i t i o n a l  d i s t r i b u t io n :  f  , ( •  \ P i  P r  )
J  P i l \P I ’P l  v  1 I  ’  l , J 0  -  m i n ( P , , P L) U n i f o r m

4.1.2 Observations
The observations from the TPC-C experiments are given in Table 30. The number of 

demands for all servers is 1000. Five out of six servers exhibit late result failures only. 

Incorrect result failures are observed only for CS2. In addition, whenever a result was 

incorrect on CS2 it was late, too. The incorrect results observed were due to the specific 

concurrency control mechanism used by CS2 (Popov, Strigini et al. 2004). The locks on 

resources, e.g. database rows, were not released properly when the lock holding 

transactions were completed. To resolve the problem we had to install timeout watchdogs 

and abort transactions when the timeout expired. Each aborted transaction was repeated 

as many times as necessary to eventually commit successfully. We decided to use 

transaction repetition count as the criterion of an incorrect response on CS2. In 

particular, we defined a threshold of 5 as a value, beyond which the transaction would be 

considered to have failed.

We used transaction timeout values and transaction repetition count to classify each

demand on each server in the categories r/ to r4 (defined in Section 3.1).
Table 30 - The observations of the six database servers for the four scenarios. The number of 

demands (N) is 1000 for each server. We did not observe any incorrect-only failures, i.e. r;=0 for all
servers

C O T S
S c e n a r i o  1 S c e n a r i o  2 S c e n a r i o  3 S c e n a r i o  4

U r 2 r 3 r i r 2 r 3 r i r 2 r 3 U r 2 r 3

P G  7 . 0 0 1 0 0 3 0 0 0 0 0 0 6 4 4 0

P G  7 . 2 0 6 0 0 3 3 0 0 3 0 0 4 8 9 0

I B  6 . 0 0 0 0 0 2 4 0 0 1 0 0 4 3 4 0

F B  1 .0 0 0 0 0 1 0 0 0 0 0 4 3 9 0

C S 1 0 0 0 0 3 3 0 0 19 0 0 3 0 3 0

C S 2 0 0 0 0 4 0 0 0 1 0 3 2 9 1

Page 239 of 278



Ilir G as hi VI. Optimal Selection o f COTS Components

4.1.3 Posteriors
The percentiles derived from the posterior distribution for the 4 scenarios are given in 

Table 31. One can see that the ordering between the servers changes as the number of 

clients and/or the timeout values vary (to improve the readability of the table we have 

explicitly shown the ranking order of the servers in each scenario).

Under Scenario 1 (the least demanding scenario) four servers (IB 6.0, FB 1.0, CS1 and 

CS2) produce identical results since they completed without any failure (i.e. on time and 

correctly) the 1000 transactions. We are indifferent in the choice among them. The two 

versions of PostgreSQL exhibit late responses and they are ranked lowest. When we 

decrease the timeout value (Scenario 2) the ranking changes: now there are late responses 

with all the servers. The two worst servers are still PostgreSQL 7.2 and CS1. 

Interestingly, Firebird 1.0, an open-source server, is ranked the best.

In Scenario 3 the percentile values are close again as in the first scenario, though the 

earlier version of PostgreSQL, PG 7.0, is ranked the best, alongside Firebird 1.0 while 

CS1 is the worst performing server. Firebird 1.0 is consistently among the best servers in 

the first 3 scenarios. An interesting observation is the 50th percentile value of the 

posteriors CS2 and IB 6.0. Even though the total number of failures for these two servers 

were the same (1 each, see Table 30), the nature of the failure was different: the result 

from CS2 was both incorrect and late whereas from IB 6.0 it was only late. Exploring this 

dependence we can still see a difference in the 50th percentile values of these two servers 

(even though the difference is marginal and on the chosen accuracy of expressing the 

percentile values is not observed in the 99th percentile). We will further scrutinize the 

interplay between the failures of the individual components and the correlation between 

their failures with contrived examples in Section 4.4.

The ranking changes again in the most demanding scenario (Scenario 4). The best server 

is now CS1.

Page 240 of 278



Mr Gashi VI. Optimal Selection o f COTS Components

T a b l e  31 -  P e r c e n t i l e s  ( a b b r e v i a t e d  P - t i l e )  f o r  t h e  d i s t r i b u t i o n  o f  t h e  s y s t e m  q u a l i t y  PSer = Pi + Pi -  
P//. c l a s s i f i e d  p e r  s c e n a r i o .  T o  i m p r o v e  t h e  r e a d a b i l i t y  w e  h a v e  a l s o  p r o v i d e d  t h e  R a n k i n g  o r d e r  f o r  
e a c h  o f  t h e  s e r v e r s  b a s e d  o n  t h e  p e r c e n t i l e s  v a l u e s .  T h e  p r i o r  d i s t r i b u t i o n  is  t h e  s a m e  f o r  a l l  s e r v e r s

a c r o s s  a l l  s c e n a r i o s

P-tile COTS Prior
Scenario 1 Scenario 2 Scenario 3 Scenario 4

Posterior Rank Posterior Rank Posterior Rank Posterior Rank

0.5

PG 7.0

0.502

0.0021 5 0.0310 4 0.0012 1 0.6436 6

PG 7.2 0.0071 6 0.0340 5 0.0041 5 0.4888 5

IB 6.0 0.0012 1 0.0250 3 0.0021 4 0.4340 3

FB 1.0 0.0012 1 0.0021 1 0.0012 1 0.4392 4

CS1 0.0012 1 0.0340 5 0.0200 6 0.3032 1

CS2 0.0012 1 0.0051 2 0.0020 3 0.3300 2

0.99

PG 7.0

0.992

0.0076 5 0.0456 4 0.0060 1 0.6780 6

PG 7.2 0.0152 6 0.0492 5 0.0108 5 0.5256 5

IB 6.0 0.0060 1 0.0384 3 0.0076 3 0.4704 3

FB 1.0 0.0060 I 0.0076 1 0.0060 1 0.4756 4

CS1 0.0060 1 0.0492 5 0.0324 6 0.3376 I

CS2 0.0060 1 0.0124 2 0.0076 3 0.3652 2

4.2 Study with the known bugs of the servers

Now we compare the servers using the methodology described in Section 3.3. We have 

collected known bug reports for four SQL servers. We will use the union of the bugs 

reported for each of these SQL servers. Each of these bug reports will constitute a 

‘demand’ to the server. These demands form a partition of the demand space for each 

server . In contrast to the TPC-C study where partitioning of the demand space was not 

used, in the study with the bug reports we apply inferences to the partitions. The reason 

for doing so was due to the very different prior beliefs about the performance of servers 

in the different partitions as will be discussed in Section 4.2.1. The logs of the known 

bugs are treated as a sample (without replacement48 49) from the corresponding partition 

(representing the server, for which the bug has been reported). We label the

48 We have observed no bugs reported for two or more servers, thus the logs of the known bugs indeed formed partitions of the union 
of the bugs. Even if we had observed bugs reported form more than one server we could construct a partition of the intersection of the 
bugs reported for several servers by putting them in their own partition. Thus a server may have more than one own partition in the 
demand space and the description provided here will apply.
49 Strictly, there might be a difference between sampling with and without replacement. Our model is based on sampling without 
replacement while the inference procedure described in Section 3.1 implies sampling with replacement. This is a simplification, which 
in many cases is acceptable (e.g. sampling from a large population of units, none of which dominates the sampling process, which 
seems a plausible assumption in our case of SQL servers being very complex products and likely to contain many unknown bugs).

Page 241 of 278



Ilir Gashi VI. Optimal Selection o f COTS Components

partitions SServername. Partition Sx  is called an ‘own’ partition for server X and a 

‘foreign’ partition for any other server YAX.

4.2.1 Prior Distributions
The prior distributions f p/ p/ (•,•,• | St) used in this study are explained next. The

prior distribution, f Pl,Pl,PlI (•,*,•! S f  , was constructed under similar assumptions to

those of the TPC-C study: that Pi and Pl  are independently distributed random variables; 

in the general case of incorrect and late responses being non-independent events, the 

conditional distributions, f Pn\p^p, (*|5),Pi,PL), are specified for every pair of values

of Pi and PL.

The distributions were assumed to be identical for each of the four servers in both their 

‘own’ and ‘foreign’ partitions. Again, this assumption was made because we did not have 

objective evidence to believe otherwise. We discuss other options in Section 5.4. A 

summary of the distributions used and their respective parameters including the range of 

each distribution are given in Table 32, and we will discuss these choices in the rest of 

this sub-section.
T a b l e  3 2  -  T h e  P r i o r  d i s t r i b u t i o n s  ( i d e n t i c a l  f o r  a l l  f o u r  s e v e r s )

Proportion Range Distribution

Reliability
f  Pl (* 1 ^  o w n  ) 0.72-1 Uniform

f Pl (* 1 ^ f o r e i g n ) 0 -1 Uniform

Performance
f  P l 1 ^ o w n  ) 0 -1 Uniform

f  Pl (* 1 ^ f o r e ig n  ) 0 -1 Uniform

Conditional distribution: f p \p  p (• | S,P/,P^) 0 -  min(P],PL) Uniform

0 -  min(P,,PL) Uniform

Prior distributions for Incorrect Results f p (• | St)

For ‘own’ partitions the prior distribution was defined as Uniform in the range [L, 1], 

where L < 1 accounts for the chance that some of the reported bugs might be

Page 242 of 278



Hir Gashi VI. Optimal Selection o f COTS Components

Heisenbugs50, i.e. we expect most of the bugs that have been reported for a particular 

server to cause failures when they are run on that server (hence the probability of 

observing an incorrect results failure is very close to 1) but, due to Heisenbugs, not 

always so. As a source for L we used the study by Chandra and Chen (Chandra and Chen 

2000). These authors studied the fault reports for three off-the-shelf components: MySQL 

database server, GNOME desktop environment and the Apache web-server and reported 

that 5%, 7% and 14%, respectively, of the reported bugs were Heisenbugs. Given the 

variation between the components we pessimistically interpreted these findings by setting 

L = 1 -(2*0.14), that is twice the highest value of Heisenbugs reported, thus the prior is 

expected to be within the range [0.72, 1], Notice that here the prior distribution for 

incorrect results is being defined at a range close to 1 (i.e. high unreliability). This is 

because of the unusual profile of the demands: since we are using known bug reports as 

demands we expect most of the bugs to cause failures when we run them on the server for 

which they were reported.

For ‘foreign’ partitions, however, the prior distributions were defined as uniform in the 

range [0, 1], This is due to the absence of any comparative study to guide our expectation 

about the likely value. In passing we note that theoretical work such as (Littlewood and 

Miller 1989), (Eckhardt and Lee 1985) suggest that diverse software versions will tend to 

fail coincidentally on ‘difficult’ demands. Since all the bugs are ‘difficult’ -  they are 

known to be problematic at least for one of the servers -  we may consider them genuinely 

difficult, hence assume as plausible that the other servers too, are likely to fail. On the 

other hand, empirical studies such as (Knight and Leveson 1986), (Eckhardt, Caglayan et 

al. 1991), have shown that significant gains can be had via design diversity -  hence low 

chances that a particular server will fail on bugs reported for other server are also 

plausible. In summary, we are indifferent between the values of the probability that a 

server will fail from a ‘foreign’ bug.

50 Gray defines two types of bugs (Gray 1987): “Bohrbugs” for bugs that appear to be deterministic (they manifest themselves each 
time the bug script is executed); and '‘Heisenbugs” for those that are difficult to reproduce as they only cause failures under special 
conditions (e.g., created by the internal state affected by the other applications etc.)

Page 243 of 278



Il ir Gashi VI. Optima! Selection o f COTS Components

Prior distributions for Performance f p (• | St)

We have not found a public domain sources, which would allow us to define a prior 

distribution for performance failures (in the context we have defined). This is also 

because the number of late results that would be observed would be conditional on how 

the timeout threshold is set. The only remaining source is to look at the data (either our 

own or of various vendors) from the experiments using the TPC-C (TPC 2002) 

benchmark. However it is not clear how accurate a prior based on these results would be 

due to the differences in the profile that will exist between the TPC-C client application 

and the bug scripts. Therefore we have decided to define the prior distribution for all 

proportions as uniformly distributed in the range 0 to 1, i.e. be ‘indifferent’ between the 

possible chances of the servers exceeding the set timeout.

Prior distributions for Incorrect and Late Results f p P/ p (• | S¡, P¡ , PL)

All conditional prior distributions of the probability of a result being at the same time 

incorrect and late were defined in the range [0, min{P¡ ,P¿)] (since the probability of 

incorrect and late responses cannot be greater than the probability of either of the two 

individually). This is again due to the rather unique profile, under which we apply the 

inference and the lack of comparable studies that would enable us to define a more 

accurate prior, thus ‘indifference’.

Priors for probabilities o f a bug being selected from the partitions

For the comparison of the servers we use a distribution defined on the set of partitions, 

which does not favour any of the servers, i.e. we assumed that probability of each 

partition is 0.25 in the study with 4 servers51.

4.2.2 Observations
The observations using the known bugs of four off-the-shelf servers are given in Table 

33. We can see that the number of bugs collected for each server was different, which 

indicated that the empirical evidence differs between the partitions. The reasons for this 

were merely differences in the reporting practices operated by the vendors of the servers,

51 We could use the number of known bugs for each of the partition to construct a profile consistent with the observations. This is not 
acceptable for two reasons: i) it will favour poor bug reporting practices, an ii) we would have used the bugs twice -  once in the 
inference procedure and another time for the profile, which is theoretically unsound.

Page 244 of 278



Ilir Gashi VI. Optimal Selection o f COTS Components

e.g. unavailability in the public domain of fully reproducible bug scripts for the 

commercial servers (especially CS1). Therefore, the sizes of the samples from the 

partitions on each server are different. Additionally, these servers are not functionally 

identical: they offer different degrees of compliance with the SQL standard(s) and even 

proprietary extension to SQL. Bugs affecting one of these extensions, thus, literally 

cannot exist in a server that lacks the extension. In other words, such bug scripts will 

provide empirical evidence for the server they were reported for but not for the other 

servers. We called these “dialect-specific” bugs. Due to this, not all the bugs reported for 

a server can be run on the other servers. Therefore the number of ‘foreign’ bug reports 

varies between the servers.

T a b l e  3 3  -  T h e  o b s e r v a t i o n s  f o r  t h e  4  o f f - t h e - s h e l f  s e r v e r s  o n  t h e  b u g  r e p o r t s  o f  t h e  d i f f e r e n t  
p a r t i t i o n s .  In t h epartition  c o l u m n  w e  h a v e  w r i t t e n  in b r a c k e t s  f o r  w h i c h  s e r v e r  t h e s e  b u g s  h a v e  b e e n  

^ __________________ r e p o r t e d . _________________________________

COTS Partition Number of 
demands N n r2 r 3

PG 7.0

S p c i .  0 57 41 0 1 1

S l B 6 . 0 28 1 0 0

S c s \ 4 1 0 0

/'.S'2 18 6 0 0

IB 6.0

S p G i .o 24 0 0 0

S ib  6.o 55 37 3 7

S c s i 4 0 0 0

S c s  2 12 1 0 0

CS1

S p G T .O 30 0 0 0

S  I B 6 .0 31 0 0 0

S c s i 18 10 1 3

S c s i 12 0 0 0

SpGT. 0 33 2 0 0

CS2
S  I B 6 .0 35 2 0 0

S c s i 4 0 0 0

S c s  2 51 28 6 5

4.2.3 The Posterior results
The 50th and 99th percentiles of the marginal distribution, /  w (•), associated with each

PSer

server is shown in Table 34. Since the prior distributions are identical for each of the 

components, then the ordering of the components in the posteriors will be determined by

Page 245 of 278



Ihr Gashi VI. Optimal Selection o f COTS Components

the observations. The best server, across all the percentiles is CS1. This is not surprising 

since CS1 did not fail for any of the foreign bugs. The second best server is CS2, 

although IB 6.0 is very close, both at the 50% and the 99% level of confidence. This is 

somewhat surprising at first given that this server failed more on the foreign bugs than 

IB6.0. However, the total number of foreign bugs that could be run on CS2 (72) is much 

higher than IB6.0 (40). Additionally the number of Heisenbugs for CS2 is also much 

higher (23.5%) than IB6.0 (14.5%), which leads to the CS2 being better in the posteriors.

Table 34 - The table shows the percentiles of the system quality f  M, (•) for each server
PSer

Percentiles 0.5 0.99
COTS PG7.0 IB6.0 CS1 CS2 PG7.0 IB6.0 CSI CS2
Priors 0.77 0.77 0.77 0.77 0.94 0.94 0.94 0.94

Posterior 0.42 0.32 0.24 0.3 0.55 0.45 0.32 0.42

4.3 Discussion of the results for the two setups

We have seen that under the more ‘stressful’ profiles (i.e. Scenario 4 in the TPC-C study 

and the Bugs study) the best COTS component is CS1. The fact that we have come to the 

same conclusion using rather different testing methods and different profiles would give 

us an extra assurance that CS1 is indeed the best component for applications with more 

stringent reliability and performance requirements which operate at greater transaction 

load and level of concurrency. However if the concurrency is low, then even with more 

rigid performance requirements (Scenario 2) Firebird 1.0 server, which is open-source 

and freely available, comes out as the best server.

The two studies are also in agreement with respect to the worst server -  these are the 

PostgreSQL components.

We could also use the outcome of the studies as a validation of the proposed method. 

CS1, which came out best, is widely accepted as the best SQL server and has by far the 

largest share in the market of SQL servers. This gives some confidence that both the data 

that we used is sufficiently informative to allow for meaningful and accurate 

discrimination between the competing components and the method itself is trustworthy to 

provide rigorous ground for accurate COTS component selection.

Page 246 of 278



IUr Gashi VI. Optimal Selection o f COTS Components

4.4 Further contrived examples

In the empirical study with the SQL server we could not fully illustrate the interplay 

between the dependence and the uncertainty in the values of the attributes due to the 

empirical results often being strikingly different for each server and also because the prior 

distributions that we started with were the same for each server. In this section we 

provide some further numerical examples, which illustrate the usefulness of handling 

uncertainty and dependence between the attribute values explicitly. We comment on the 

cases where the choice of the best COTS component would differ with conventional 

assessment methods which rely on point estimates of the attribute values and make 

assumptions of independence between the values of the attributes. We also discuss the 

effect of the priors on the selection, including different priors for each of the competing 

components. The choice of prior distributions and the observations serve illustrative 

purposes only. The prior, /  >p (•,»,•), was constructed under the assumption

that f p (•) and /  (•) are both Beta independently distributed random variables, 

Beta(»,a,b), defined in the interval [0, 0.01], i.e. f P],Pl (•,•) = f Pl (*)fPl (•)-The 

conditional distributions, /  \Pi ,Pl (* I for every pair of values of P/ and Pi, in

the general case of incorrect and late responses being non-independent events are also 

assumed to be Beta distributions, Beta(*,a,b). Clearly they are defined in the range [0, 

min(Pf, Pl )]. Note that we do not provide any justification for the choice of the prior 

distributions used here, and neither for the interval on which the distribution is defined; 

the particular choice of the type of the prior is dictated by some convenience offered by 

Beta distribution in the examples given below. The assessor can choose any prior 

distribution and interval that best represents his/her prior beliefs.

4.4.1 Same Priors
In the first example we consider 3 different COTS components, referred to as Cl, C2 and 

C3 respectively for which the prior information does not give any reasons to prefer one to 

another, i.e. we are indifferent between Cl, C2 and C3. The prior distributions, therefore, 

for all three COTS components are identical. We assumed Beta distributions, defined on 

[0, 0.01] as described above, with parameters given as follows:

Page 247 of 278



Ilir G as hi VI. Optima/  Selection o f COTS Components

Beta (2, 10) for pfd associated with incorrect results

Beta (2, 10) for pld associated with late results f p (•)

Beta (3,3) for the conditional distribution /  | (•\PI ,PL)

This completes the definition of the tri-variate distribution, /  p p (•,*,•).

The assumed observations for these three COTS components are given in Table 35. For 

Observation 1 the total number of incorrect or late results are the same for C2 and C3: 5 

each. But the failure correlations differ in the two components: for C2 these failures 

happen on 5 demands (i.e. each of these 5 demands gives both an incorrect and a late 

response), whereas for C3 they happen on 10 demands (the responses are either incorrect 

or late). For observation 2 both the total number of failures and the failure correlation are 

different in the three COTS components.

Table 35 - Observations from testing the COTS components. All observations are from test 
campaigns of 5000 demands. The observations differ by the number of incorrect (rl+ r3) and late 

_______ (r2+ r3) responses and the number of incorrect & late (r3) responses._______
Observation ID Number of demands, N COTS ri+r3 1 r2+r3 r3

Observation 1 5000
Cl 0 0 0
C2 5 5 5
C3 5 5 0

Observation 2 5000
Cl 20 10 10
C2 13 13 10
C3 10 10 0

Table 36 shows the results using the percentiles of the prior/posterior distributions of the 

probability of an inadequate response Pser. The posterior distribution for Observation 1 

reveals that Cl is clearly the best component, since testing revealed no failures for this 

component. The interesting results are for C2 and C3. Even though the total number of 

failures observed for C2 and C3 is the same we can still distinguish between them since 

the types of failures observed in both cases differ. Positive correlation between the two 

types of failures is observed for C2 whereas the correlation observed between the types of 

failure for C3 is negative. As a result, the posterior distribution of C2 after testing with 

Observation 1 is better than that of C3 for all percentiles. Using conventional methods of 

assessment, where the attributes are assessed independently, this distinction would have 

not been possible since the marginal distributions for the two attributes are the same in

Page 248 of 278



Mr Gashi VI. Optimal Selection o f COTS Components

both C2 and C3 leading to identical results for these two components. We commented on 

a similar observation for IB 6.0 and CS2 servers in Section 4.1.3.

The posterior after the Observation 2 is also interesting. The total number of failures 

observed in C3 is the lowest (20 in total) in comparison with C2 (26) and C3 (30). 

However the correlation between the two types of failures is very different. In C3 there is 

a maximum negative correlation between the two types of failure (the observed failures 

are either incorrect or late responses but not both). For C2 we see 10 incorrect results 

which are also late. And for Cl we see that all late results are also incorrect. Thus, the 

observations indicate different degrees of correlation between the two types of failure, 

which as a result, translates into quite different posteriors for the three COTS 

components. We would choose C2 as the best COTS component despite the total number 

of failures (26) observed during testing for this component being higher than the total for 

C3 (20). This example clearly indicates that the ‘uncertainty explicit’ assessment method 

proposed in this paper and conventional assessment methods52 would have concluded 

differently regarding which of C2 and C3 should be chosen. The reason for this 

difference is the correlation between the two types of failure, which we take into account 

while the conventional methods, which are based on separate assessment of the attributes, 

would ignore.
Table 36 - The table shows the percentiles of the chosen parameters of system quality.

Percentiles 0.5 0.99
COTS Cl C2 C3 Cl C2 C3

System Quality PSer = Pt + PL -  P/L
Priors 0.0025 0.0025 0.0025 0.0061 0.0061 0 0061 |

Observation 1 0.0005 0.0011 0.002 0.0015 0.0024 0.0037 1
Observation 2 0.0033 0.0027 0.0036 0.0051 0.0044 0.0056 |

4.4.2 Different Priors, same observations
In the second example we will consider 2 different COTS components, COTS 1 and 

COTS 2 referred to as Cl, and C2. The assumed testing results for Cl and C2 are 

identical. The prior distributions, however, for the two COTS components are now 

different. We will define Beta distributions again but with different parameters for each 

COTS component, as given in Table 37.

52 The conventional methods not exploring the dependence in the values of the attributes would conclude that C3 is better than C2.

Page 249 of 278



Ilir G as hi VI. Optimal Selection o f COTS Components

Table 37 - The parameters (a, b) for the Beta prior distributions defined for each COTS components

COTS
Reliability

f p ,(*)
Performance

fp , ( ')
Conditional distribution: 
f P , l \ P i > P l  I P I ’ P l )

Cl (5,5) (5,5) (3,3)
C2 (15,14) (15,14) (9,9)

A high value for the a parameter of the Beta distribution means that the distribution is 

shifted to the right -  in our context it represents a prior belief that the number of failures 

will be high, whereas the b parameter shifts the distribution to the left (i.e. a prior belief 

that the number of failures will be low). The higher the values are the smaller the 

uncertainty. We can see for example that Cl and C2 are going to have very similar mean 

values (the mean of the Beta distribution being a / (a + b)) but the prior distribution for 

C2 is being expressed with much greater certainty. Therefore the prior distribution of C2 

will be much less ‘spread’ from that of Cl as is illustrated in Fig. 17.

0 0 . 0 0 2  0 . 0 0 4  0 . 0 0 0  0 .0 0 8  0.01  0 . 0 1 2  0 . 0 1 4

Pser

Fig. 17 - The prior distribution for the probability of an inadequate response (PSer) for Cl and C2. 
We can see that the prior distribution for Cl is more ‘spread’ than that of C2 which reflects the 

assessor’s higher uncertainty in the prior beliefs for the values of Cl.

We do not make any claims that the priors used in the examples should be used in 

practical assessment. They serve illustrative purposes only and yet, have been chosen 

from a reasonable range. For example, the mean of P] for Cl is 5.10"3, which is a value 

from a typical range for many software components.

One set of observations were used for the calculations with the number of trials, N=  5000 

as shown in Table 38.

Page 250 of 278



Ilir Gashi VI. Optimal Selection o f COTS Components

Table 38 - Observation 3 from testing the COTS components.
Observation ID Number of tests, N COTS r,+r3 D+D r3

Observation 3 5000 All 4 4 1

Table 39 shows the results using the percentiles of the prior/posterior distributions of the 

probability of an inadequate response Pser. The structure of the table is similar to that of 

Table 36.

Interesting points with reference to these posterior values are:

at the 50th percentile, if the selection is based on the prior values the then Cl is the 

best component. However at the 99th percentile53 then the ordering changes: C2 is 

now the preferred choice over the two. For those assessors who prefer to 

minimize the risk of making ‘wrong’ decisions with high confidence (i.e. 90%+), 

C2 is the better choice. This type of distinction would have not been possible in 

the conventional methods of COTS component assessment which use point values 

rather than distributions.

the posterior values of Cl have shifted significantly in comparison with the priors 

but not as much as those of C2, even though the testing results for these two 

components are the same. This is due to the prior distributions: for Cl the prior 

distribution was highly spread, signifying that the uncertainty was high prior to 

testing; the opposite is true for C2. Therefore the posterior distribution of Cl is 

influenced by the testing results much more than that of C2.
Table 39 - The table shows the percentiles of the chosen parameters of system quality

Percentiles 0.5 0.99
COTS Cl C2 Cl C2

System Quality Pser = Pi + P i -  Pa
Priors 0.0078 0.0079 0.0122 0.0106
Observation 3 0.0028 0.0046 0.0048 0.0065

53 The same ordering was observed for all percentiles higher than ÇO“1.

Page 251 of 278



Ilir Gashi VI. Optimal Selection o f COTS Components

5. Discussion of applicability of the proposed 

assessment method

5.1 Many assessment attributes

We have illustrated in the previous sections how the assessment can be done for the 

Reliability and Performance attributes, which are usually the most important attributes for 

software COTS components compliant with a known specification (e.g. SQL servers, 

J2EE Application servers, Business process execution engines (Andrews, F. Curbera et 

al. 2003) etc.). We illustrated that, even for assessments in which only two attributes are 

considered, taking account of the dependence that exists between these attributes can lead 

to a different decision on which COTS component to choose compared with methods that 

do not account for this dependence.

It is a common practice that COTS components are assessed in terms of more than 2 

attributes, usually many more. The obvious question, therefore, is whether the proposed 

‘uncertainty explicit’ assessment ‘scales up’ to many attributes. Formally, the question is 

how the method applies if we have to compare COTS components, each of which is 

represented by a multivariate distribution f p(a],a2,...,an). The assessment will deliver

posterior distributions f p(a],a2,...,an \ assessment) , which will be used in the

comparison. A new variable should be defined as a function of the variates of the 

distribution {ai, zl2, ..., an}, e.g. a weighted sum of all the attributes. The uncertainty 

associated with this aggregate variable is easily derived from the joint 

posterior f p(a],a2,...,an \ assessment). Even though mathematically possible, Bayesian

inference with multivariate distributions is difficult. The difficulty has two aspects:

Specifying a multivariate prior distribution becomes very difficult because many 

non-intuitive dependencies between the attributes must be defined and justified. 

Manipulating a multivariate distribution is non-trivial even using the most 

advanced math/statistical tools. Calculating the posterior distribution is 

impracticable with more than 3 variates and without simplifying assumptions 

about the dependencies between them.

Page 252 of 278



Ilir Gashi VI. Optimal Selection o f COTS Components

To partially overcome these difficulties a divide-and-conquer approach can be employed. 

First the attributes can be grouped into smaller groups so that there are dependencies 

within the groups, which the assessment can capture, but the groups are assumed 

independent. In other words, knowing the values of the attributes in one group does not 

change the assessor’s knowledge (belief) about the values of the attributes included in the 

other group. Assume that our initial multivariate distribution can be represented as two 

independent groups of attributes:

f p \ , P l , . . . p n ( ^ 1  5 ^ 2 ’ • • • >  * 2 «  )  ~

f P\ ,p 2 ,-P s  ’ a 2 a s ) / p v+] ,p s+2 ,...ps+n (^s+l ’ a s + 2 ’ - - ’ a n  )

the likelihood of observing the COTS component in operation can be expressed

as:

¿{observation \ f px pi Pn (a,,a2 a„))= f  (<observation, I f Pi ,P2...Ps ,a2 as))x

4 observation I fp s+uPs+2,...Ps+n {as+i’as+2>->an))

In this case, it trivially follows that:

f P],P2,...Pn (a\,a2,...,a„ \ assessment) =

f P],p2,...Ps {a\,a2,...,as \ assessmen0 X f Ps+],Ps+2,-px+n (ai+i ,as+2’---’an I assessment)

From the attribute definition papers surveyed (e.g. (Bertoa and Vallecillo 2002), 

(Torchiano and Jaccheri 2003)) we failed to find other examples of attributes which could 

be assessed objectively using the demand notation we explained in Section 3. An 

example could be '‘Recoverability” (which again can be characterised in terms of 

correctness of the recovery and the timeliness of the recovery), but treating the Reliability 

/ Performance on the one hand and Recoverability on the other as independent groups is 

an unreasonable assumption since recovery will only be needed once a failure has 

happened (therefore strong dependency exists between Reliability attribute and the 

Recoverability attribute).

5.2 Decisions on how to perform the assessment

We outlined the problems with assessment of a large number of attributes due to the 

complex interdependencies that may exist between the different attributes. The higher the 

number of attributes to be assessed and the higher the number of independence

Page 253 of 278



llir Gashi VI. Optimal Selection o f COTS Components

assumptions that are made the more difficult it becomes to place a high degree of 

confidence in the results obtained from the assessment. The limitations we have outlined 

in Section 5.1 are not specific to our assessment method; in fact they are more serious for 

the conventional methods in which the individual attributes are assessed separately. We 

illustrated with numerical examples in Section 4.4 that even when the assessment is done 

using two attributes, ignoring the dependence between the values of the attributes may 

lead to wrong decisions: a sub-optimal component may wrongfully be chosen as the best 

one. If this could be observed with only two attributes, then it is bound to be much more 

pronounced with more than two attributes, where many more dependencies may exists 

between the values of the attributes.

Doing the assessment with ‘independent groups’ of attributes also has its problems. It can 

only be applied if the assessor can justify that assuming a set of independent pairs is 

plausible. Despite this problem, however, using small independent groups is still an 

improvement compared with the extreme assumption used implicitly in the existing 

assessment methods surveyed, that all of the attributes are independent.

It is worth pointing out that many of the attributes, such as ‘has the required functions’, 

various forms of compliance, e.g. ‘complies with certain standards’, “Backward 

Compatibility”, etc. (Bertoa and Vallecillo 2002), do not require any uncertainty attached 

to their values. Assessment with respect to such attributes normally leads to a reduction 

of the number of the COTS components (which satisfy all these ‘binary’ attributes), for 

which the more thorough assessment with respect to the remaining ‘non-binary’ attributes 

needs to be done (Ncube and Maiden 1998).

5.3 The types of COTS components for which the assessment 
method can be applied

The method of assessment proposed in this paper would be applicable to any family of 

COTS components. The setup described in Section 3 and illustrated in Section 4 is 

particularly relevant for COTS components with stringent reliability and performance 

requirements. In Section 4 we provided empirical results using off-the-shelf database 

servers. There is a plethora of off-the-shelf database servers, both open source and

Page 254 of 278



Mr Gashi VI. Optimal Selection o f COTS Components

commercial. Deciding which one to choose among the many choices available 

overwhelmingly depends on the reliability of servers and their performance.

Java Virtual Machines (JVMs), various application servers, web servers and Business 

process execution engines (Andrews, F. Curbera et al. 2003) are also examples of COTS 

components were reliability and performance requirements are usually the deciding 

attributes for selection. For these components we may not need to deal with more than 2 

attributes, i.e. our 2-attribute model proposed in Section 3 is immediately applicable 

without any simplifying assumptions.

5.4 Other ways of eliciting the prior distributions

The prior definition in Bayesian assessment is crucial. In our studies we have assumed 

that prior distributions for each component are the same. This was due to the 

unavailability of other known ‘objective’ evidence that we could use to define more 

accurate priors. Anecdotal evidence about the servers does exist, but is difficult to 

translate these subjective beliefs into priors in the form required by our method. By 

assuming that the prior distributions were the same for each server, the decision on which 

server is chosen is dictated by the observations only. As a result the decision of the types 

of distributions for the random variables in our study becomes less important.

However there are other ways of deriving more accurate priors. We could, for example, 

utilize evidence from earlier versions of the servers and then do multiple steps of 

inference, i.e. if we want to perform the assessment with later versions of the servers in 

our study (e.g. with versions of PostgreSQL after release 7.2 or Firebird after release 1.0) 

we can use the posteriors derived here as priors for the later versions, collect the new 

evidence for the later versions and then use the model to derive the posteriors for each. 

This approach has also been reported elsewhere (Littlewood and Wright 1997).

6. Related work

6.1 COTS assessment methods

There are a wide variety of COTS component assessment approaches available. All of 

them start with an initial statement of requirements, which defines what is being sought.

Page 255 of 278



Ilir Gashi VI. Optimal Selection o f COTS Components

It has been proposed that the requirements initially should not be too stringent, since this 

would discard potentially appropriate COTS component candidates at a very early stage 

(Dean 2000), (Lewis, Hyle et al. 2000). It has even been suggested (Lewis, Hyle et al. 

2000) that if the requirements are not flexible then the COTS-based development may not 

be appropriate and bespoke development could be more cost-effective. So initially 

(Lewis, Hyle et al. 2000) suggests distinguishing between essential requirement and those 

that are negotiable. The selection criteria are then based on the essential requirements. 

Off-the-shelf-option (OTSO) (Kontio, Chen et al. 1995) is a multi-phase approach to 

COTS component selection. The phases are: the search phase, the screening and 

evaluation phase and the analysis phase. In the first phase COTS components are 

identified. In the screening and evaluation phase the components are further filtered using 

a set of evaluation criteria (established from a number of sources, including the 

requirements specification, the high level design specification etc.). In the analysis phase 

results of the evaluation are analysed, which lead to the final selection of COTS 

components for inclusion in the system. Other similar multiphase process approaches for 

COTS component evaluation that have been proposed include CEP (Comparative 

Evaluation Process Activities) (Phillips and Polen 2002), CBA Process Decision 

Framework (Boehm, Port et al. 2003) which in addition to defining a process for COTS 

component assessment also defines two other processes: COTS integration (“gluing”) and 

COTS configuration (“tailoring”); CAP-COTS Acquisition Process method (Ochs, Pfahl 

et al. 2001) and PECA Process (Comella-Dorda, Dean et al. 2002).

Procurement-oriented requirements engineering (PORE) (Ncube and Maiden 1999) is a 

process in which requirements are defined in parallel with COTS component evaluation 

and selection. (Ncube and Maiden 1999) propose using prototypes to develop knowledge 

concerning COTS components and their use within the wider system. Other methods that 

are centred on the requirements to assist with the COTS component selection process are 

CRE-COTS-Based Requirements Engineering Method (Alves and Castro 2001), 

Storyboard Process (Gregor, Hutson et al. 2002), Combined Selection of COTS 

Components (Burgués, Estay et al. 2002) and COTS-DSS (Ruhe 2003).

CISD (COTS-based Integrated System Development) (Tran and Liu 1997) and CDSEM 

(Checklist Driven Software Evaluation Methodology) (Jeanrenaud and Romanazzi 1994)

Page 256 of 278



Ilir Gashi VI. Optimal Selection o f COTS Components

are both checklist-based evaluation methodologies. STACE (Socio Technical Approach 

to COTS Evaluation) (Kunda and Brooks 1999) is a socio-technical approach to 

evaluation which builds on work of (Ncube and Maiden 1999) and (Kontio, Chen et al. 

1995) and emphasizes the organizational issues related to COTS selection.

6.2 Attribute definition methods

Extensive work has been also reported on definition of COTS component assessment 

attributes. A comprehensive list is given in (Bertoa and Vallecillo 2002). They group the 

attributes in two categories depending on how they can be measured: Attributes 

Measurable at Runtime (which contain Accuracy, Security, Recoverability, Time 

Behaviour and Resource Behaviour) and Attributes Measurable during Component Life- 

Cycle (Suitability, Interoperability, Maturity, Learnability, Understandability, 

Operability, Changeability, Testability and Replaceability). These attributes are further 

divided into more fine-grained attributes, which are measurable using their proposed 

metrics of: presence, time, level and ratio. This work (Bertoa and Vallecillo 2002) 

follows the spirit of the guidelines for attribute definitions outlined by the international 

standardizing organizations ISO (ISO/IEC-9126-1:2001 2001), and IEEE/ANSI

(IEEE/ANSI 1993) in a broader context, not specific to COTS component attributes. 

COCOTS framework by Abts et al. (Abts, Boehm et al. 2001), and Torchiano and 

Jaccheri (Torchiano and Jaccheri 2003) also provides COTS attribute definitions.

7. Conclusion
To handle the inherent uncertainty in the COTS component assessment we propose the 

use of “uncertainty explicit” methods. As Bayesian approach to representing uncertainty 

has been successfully applied in other contexts of assessment we have defined a Bayesian 

model that can be used for assessment of COTS components with respect to two related 

attributes. This approach complements the conventional selection procedures with more 

powerful calculus, which can take into account the uncertainty explicitly.

We have conducted an empirical study with off-the-shelf database servers which also 

illustrated the use of the method. The contribution of this paper is in several aspects:

Page 257 of 278



Ilir Gashi VI. Optimal Selection o f COTS Components

We have demonstrated in the context of the COTS component assessment how to 

apply the Bayesian methods which have had some popularity in reliability 

assessment of both software and hardware.

We have described the use of the model in selecting the best off-the-shelf 

database server from a sample of different servers, using two sources of data:

Experiments using an implementation of the TPC-C client benchmark for 

database severs

Known faults reported for four different servers.

We recommend that the ‘uncertainty explicit’ assessment methods be considered 

at least as a non-expensive warranty against badly sub-optimal decisions possible 

with the conventional COTS component selection methods (we provided 

contrived numerical examples which show examples of sub-optimal selections of 

COTS components if uncertainty or dependence in the values of the attributes are 

ignored).

We have also demonstrated how our model can be extended and used with a 

partitioned demand space which allows utilization in the inference of all the 

evidence available from the different partitions 

An interesting observation from the study with SQL servers is that the results of the 

inference with the more stressful setups (scenario 4 of TPC-C study and the bugs study) 

both lead to CS1 being preferred as the best server and PG servers being the worst. This 

may give the assessor further assurance of preferring CS1 for an application with more 

stringent reliability, performance and concurrency requirements given that it performed 

best under two very different but ‘stressful’ profiles. Interestingly, CS1 is considered by 

many as a leader among the SQL server vendors, which may be seen as validation of the 

method’s usefulness for making a correct choice among several similar COTS 

components despite the scarcity of the data that we could use.

There are several well-known difficulties of using Bayesian assessment. Bayesian 

assessment does not scale up well due to:

the difficulty with specifying a multivariate prior distribution when the number of 

attributes to be assessed increases, unless independence is assumed among the 

attributes

Page 258 of 278



Ilir G as hi VI. Optimal Selection o f COTS Components

defining the prior is crucial. It may be difficult for practitioners, not comfortable 

with non-trivial math, to express their individual beliefs as probability 

distributions.

the difficulty with manipulating a multivariate distribution, which becomes 

impracticable with more than 3 variates if no simplifying assumptions are made. 

Future work that is desirable includes:

Methods are needed which would allow for effective assessment with a large 

number o f related attributes. Currently the ‘uncertainty explicit’ assessment only 

works with a limited number of related attributes (or with independent groups of 

attributes in which the number of attributes in the groups is small).

Further development of the theoretical framework is needed for cases of groups of 

more than 2 dependent attributes. Conceptually, the multivariate inference is no 

different than the 1- and 2-variate inferences. Its practical use, however, is 

currently problematic.

Acknowledgement
This work was supported by the UK Engineering and Physical Sciences Research 

Council (EPSRC) under the Interdisciplinary Research Collaboration in Dependability of 

Computer-Based Systems (DIRC) project. We would also like to thank Professor Bev 

Littlewood for his comments on an earlier version of this paper.

References
Abts, C., B. Boehm and E. B. Clark (2001). "COCOTS: A software COTS-Based 

System (CBS) Cost Model", in proc. Conf. on European Software Control and Metrics 

(ESCOM'Ol), London, UK, pp: 1-8.

Adams, E. N. (1984), "Optimizing Preventive Service o f Software Products”, IBM 

Journal of Research and Development 28(1), pp: 2-14.

Alves, C. and J. Castro (2001), ”CRE: A Systematic Method for COTS Components 

Selection", in proc. XV Brazilian Symp. on Software Engineering (SBES), Rio de 

Janeiro, Brazil.

Page 259 of 278



Ilir Gashi VI. Optimal Selection o f COTS Components

Andrews, T., F. Curbera, H. Dholakia, Y. Coland, J. Klein, F. Leymann, K. Liu, D. 

Roller, D. Smith, S. Thatte and I. Trickovic (2003), "Business Process Execution 

Language for Web Services version 1.1",

http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/.

Bertoa, M. F. and A. Vallecillo (2002), "Quality Attributes for COTS Components", in 

proc. 6th ECOOP Workshop on Quantitative Approaches in Object-Oriented Software 

Engineering (QAOOSE 2002), Málaga, Spain, pp: 54-66.

Boehm, B., D. Port, Y. Yang, J. Bhuta and C. Abts (2003), "Composable Process 

Elements for Developing COTS-Based Applications", in proc. Symp. on Empirical 

Software Engineering. (ISESE'03), ACM-IEEE, pp: 8-17.

Brocklehurst, S., P. Y. Chan, B. Littlewood and J. Snell (1990), "Recalibrating 

software reliability models", IEEE Transactions on Software Engineering 16(4), pp: 458- 

470.

Burgués, X., C. Estay, X. Franch, J. A. Pastor and C. Quer (2002), "Combined 

Selection o f COTS Components", in proc. Int. Conf. on COTS-Based Software Systems 

(ICCBSS ’02), Florida, USA, Springer-Verlag, pp: 54-64.

Chandra, S. and P. M. Chen (2000), " Whither Generic Recovery from Application 

Faults? A Fault Study using Open-Source Software", in proc. Int. Conf. on Dependable 

Systems and Networks (DSN ’00), NY, USA, IEEE Computer Society Press, pp: 97-106. 

Comella-Dorda, S., J. Dean, E. Morris and P. Oberndorf (2002), "A Process for 

COTS Software Product Evaluation", in proc. Int. Conf. on COTS-Based Software 

Systems (ICCBSS '02), Florida, USA, Springer-Verlag, pp: 86-92.

Dean, J. (2000), "An Evaluation Method for COTS Software Products", http://www.stc- 

online.org/cd-rom/cdrom2000/webpages/johndean/paper.pdf.

Eckhardt, D. E„ A. K. Caglayan, J. C. Knight, L. D. Lee, D. F. McAllister, M. A. 

Vouk and J. P. J. Kelly (1991), "An experimental evaluation o f software redundancy as 

a strategy for improving reliability", IEEE Transactions on Software Engineering 17(7), 

pp: 692-702.

Eckhardt, D. E. and L. D. Lee (1985), ' 'A theoretical basis for the analysis o f 

multiversion software subject to coincident errors", IEEE Transactions on Software 

Engineering 11(12), pp: 1511-1517.

Page 260 of 278

http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/
http://www.stc-online.org/cd-rom/cdrom2000/webpages/johndean/paper.pdf
http://www.stc-online.org/cd-rom/cdrom2000/webpages/johndean/paper.pdf


Ilir Gashi VI. Optimal Selection o f COTS Components

Gashi, I„ P. Popov, V. Stankovic and L. Strigini (2004a), "On Designing Dependable 

Services with Diverse Off-The-Shelf SQL Servers", in Architecting Dependable Systems 

II, R. de Lemos, Gacek, C., Romanovsky, A. (Eds.), Springer-Verlag, 3069, pp: 191-214. 

Gashi, L, P. Popov and L. Strigini (2004b), "Fault Diversity Among Off-The-Shelf SQL 

Database Servers”, in proc. Int. Conf. on Dependable Systems and Networks (DSN '04), 

Florence, Italy, IEEE Computer Society Press, pp: 389-398.

Gray, J. (1986), " Why Do Computers Stop and What Can be Done About it?" in proc. 

Int. Symp. on Reliability in Distributed Software and Database Systems (SRDSDS '86), 

Los Angeles, CA, USA, IEEE Computer Society Press, pp: 3-12.

Gregor, S., J. Hutson and C. Oresky (2002), "Storyboard Process to Assist in 

Requirements Verification and Adaptation to Capabilities Inherent in COTS", in proc. 

Int. Conf. on COTS-Based Software Systems (ICCBSS ’02), Florida, USA, Springer- 

Verlag, pp: 132-141.

Hamlet, D. and R. Taylor (1990), "Partition testing does not inspire confidence", IEEE 

Transactions on Software Engineering 16(12), pp: 1402-1411.

IEEE/ANSI (1993), "Recommended Practice for Software Requirements Specifications, 

International Standard 830-1993", IEEE.

ISQ/IEC-9126-1:2001 (2001), "Information technology -  Product Quality -  Parti: 

Quality Model”, International Standard ISO/IEC 9126, International Standard 

Organization, June, 2001.

Jeanrenaud, J. and P. Romanazzi (1994), "Software Product Evaluation: A 

Methodological Approach", in proc. Software Quality Management II: Building Software 

into Quality, pp: 55-69.

Jeng, B. and E. J. Weyuker (1991), "Analyzing partition testing strategies”, IEEE 

Transactions on Software Engineering 17(7), pp: 703-711.

Knight, J. C. and N. G. Leveson (1986), "An Experimental Evaluation o f the 

Assumption of Independence in Multi-Version Programming", IEEE Transactions on 

Software Engineering 12(1), pp: 96-109.

Kontio, J„ S. Y. Chen, K, Limperos, R. Tesoriero, G. Caldiera and M. Deutsch

(1995), "A COTS Selection Method and Experiences o f Its Use", in proc. Twentieth

Page 261 of 278



Il ir G as hi VI. Optimal Selection o f COTS Components

Annual Software Engineering Workshop,NASA Goddard Space Flight Center, Greenbelt, 

Maryland.

Kunda, D. and L. Brooks (1999), "Applying Social-Technical Approach for COTS 

Selection", in proc. UK Academy for Information Systems (UKAIS'99), University of 

York, England.

Lewis, P.„ P. Hyle, M. Parrington, E. Clark, B. Boehm, A. Abts and R. Manners

(2000), "Lessons Learned in Developing Commercial Off-The-Shelf (COTS) Intensive 

Software Systems",

http://www.cebase.org/www/researchActivities/COTS/LessonsLearned.pdf.

Likert, R. (1932), "A Technique for the Measurement ofAttitudes", New York, McGraw- 

Hill.

Littlewood, B. and D. R. Miller (1989), "Conceptual Modelling o f Coincident Failures 

in Multi-Version Software", IEEE Transactions on Software Engineering 15(12), pp: 

1596-1614.

Littlewood, B„ P. Popov and L. Strigini (2000), "Assessment o f the Reliability o f Fault- 

Tolerant Software: a Bayesian Approach", in proc. Int. Conf. on Computer Safety, 

Reliability and Security (SAFECOMP '00), Rotterdam, the Netherlands, Springer, pp: 

294-308.

Littlewood, B. and D. Wright (1997), "Some conservative stopping rides for the 

operational testing of safety-critical software", IEEE Transactions on Software 

Engineering 23(11), pp: 673-683.

Lyu, M. R,, Ed. (1996), "Handbook o f Software Reliability Engineering", McGraw-Hill 

and IEEE Computer Society Press.

Musa, J. D. (1993), "Operational Profiles in Software-Reliability Engineering", IEEE 

Software (March), pp: 14-32.

Ncube, C. and N. Maiden (1998), "Acquiring COTS Software Selection Requirements", 

IEEE Software 15(2), pp: 46-56.

Ncube, C. and N. Maiden (1999), "PORE.Procurement Oriented Requirements 

Engineering Method for the Component-Based Systems Engineering Development 

Paradigm”, in proc. Int. Workshop on Component-Based Software Engineering.

Page 262 of 278

http://www.cebase.org/www/researchActivities/COTS/LessonsLearned.pdf


Ilir G as hi VI. Optimal Selection o f COTS Components

Ochs, M., D. Pfahl, G. Chrobok-Diening and B. Nothhelfer-Kolb (2001), "A Method 

for Efficient Measurement-based COTS Assessment and Selection -Method Description 

and Evaluation Results", in proc. 7th Symp. on Software Metrics, London, England, 

IEEE Computer Society, pp: 285-294.

Phillips, B. C. and S. M. Polen (2002L "Add Decision Analysis to Your COTS Selection 

Process", http://www.stsc.hill.af.mil/crosstalli/2002/04/phillips.html.

Popov, P. (2002), "Reliability Assessment o f Legacy Safety-Critical Upgraded with Off- 

the-Shelf Components", in proc. Int. Conf. on Computer Safety, Reliability and Security 

(SAFECOMP ’02), Catania, Italy, Springer, pp: 139-150.

Popov, P., L. Strigini, A. Kostov, V. Mollov and D. Selensky (2004), "Software Fault- 

Tolerance with Off-the-Shelf SQL Servers", in proc. Int. Conf. on COTS-based Software 

Systems (ICCBSS ’04), Redondo Beach, CA USA, Springer, pp: 117-126.

Port, D. and S. Chen (2004), "Assessing COTS assessment: How much is enough?" in 

proc. Int. Conf. on COTS Based Software Systems (ICCBSS '04), Redondo Beach, 

California, Springer-Verlag, pp: 183-198.

Ruhe, G. (2003), "Intelligent Support for Selection o f COTS Products", in proc. Web, 

Web-Services, and Database Systems, Springer, pp: 34-45.

Stankovic, V. and P, Popov (2006), "Improving DBMS Performance through Diverse 

Redundancy", in proc. Int. Symp. on Reliable Distributed Systems (SRDS '06), Leeds, 

UK, IEEE Computer Society, pp: 391-400.

Torchiano, M. and L. Jaccheri (2003), "Assessment o f Reusable COTS Attributes”, in 

proc. Int. Conf. on COTS Based Software Systems (ICCBSS '03), Ottawa, Canada, 

Springer-Verlag, pp: 219 - 228.

TPC (2002), "TPC Benchmark C, Standard Specification, Version 5.0." 

http://www.tpc.org/tpcc/.

Tran, V. and D.-B. Liu (1997). ' 'A Risk Mitigating Model for the Development of 

Reliable and Maintainable Large-Scale Commercial-Off-The-Shelf Integrated Software 

Systems”, in proc. Reliability and Maintainability Symp. (RAMS'97), IEEE Print, pp: 

361-367.

Page 263 of 278

http://www.stsc.hill.af.mil/crosstalli/2002/04/phillips.html
http://www.tpc.org/tpcc/


Itir G as hi VI. Optimal Selection o f COTS Components

Wright, D. and K.-Y. Cai (1994), "Representing Uncertainty for Safety Critical 

Systems", PDCS2 Tech. Rep. 135. Centre for Software Reliability, City University, 

London.

Page 264 of 278



VII. Conclusions

Page 265 of 278



Ilir Gashi VII. Conclusions

1. Introduction
Each of the papers detailed in chapters IV-VI had their own Conclusions section. 

However the conclusions section of each paper will naturally only be with respect to the 

results and analysis presented on that respective paper. Additionally, since the papers 

were written as the research was progressing the conclusions drawn there had to be 

revisited and updated, especially for the papers published during the earlier stages of 

research. The purpose of this chapter is to link and present those conclusions in a single 

coherent chapter. It will also outline the provisions for further work.

2. Summary of conclusions
The main purpose of this thesis was to explore and estimate the possible advantages of 

using modular-redundant diversity in complex off-the-shelf software. To this end two 

studies were conducted with samples of bug reports from four popular off-the-shelf SQL 

DBMS products and later releases of two of them. The purpose of these studies was to 

check for bugs that would cause common-mode failures if the products were used in a 

diverse redundant architecture. Such common bugs were found to be rare. For most bugs, 

failures would be detected (and may be masked) by a simple two-diverse channel 

configuration using different DBMS products. In summary:

out of the 273 bug scripts run in both the studies conducted, very few bug scripts 

were found that affected two DBMS products and none that affected more than 

two.

only five of these bug scripts caused identical, non-detectable failures in two 

DBMS products:

of these five, one caused non-detectable failures on only a few among the 

demands affected.

The results of the second study, on later releases of the same products, substantially 

confirmed the general conclusions of the first study: one may conclude that the factors 

that make diversity useful do not disappear as the DBMS products evolve and become 

more reliable.

Other interesting observations include:

Page 266 of 278



Ilir Gashi VII. Conclusions

there is strong evidence against the fail-stop failure assumption for DBMS 

products. The majority of bugs reported, for all products, led to “incorrect result” 

failures rather than crashes (64.5% vs 17.1% in the first study; 65.5% vs 19% in 

the second), despite crashes being more obvious to the user (i.e. easier to detect 

and report). Even though these are bug reports and not failure reports, this 

evidence goes against the common assumption that the majority o f failures are 

engine crashes, and warrants more attention by users to fault-tolerant solutions, 

and by designers of fault-tolerant solutions to tolerating subtle and non fail-silent 

failures;

it may be worthwhile for vendors to test their DBMS products using the known 

bug reports for other DBMS products. For example, in the first study 4 MSSQL 

bugs were observed that had not been reported in the MSSQL service packs 

(previous to the observation period in which the bugs were collected). Oracle was 

the only DBMS product that never failed when running on it the reported bugs of 

the other DBMS products;

Using successive releases of the same product for fault tolerance also appeared useful, 

although less than using diverse products from different vendors. A high level of fault 

diversity between successive releases of PostgreSQL was found: most of the old bugs had 

been fixed in the new release; many of the newly reported bugs did not cause failure (or 

could not be run at all) in the old release. This more limited form of diversity may be 

especially useful for legacy applications written for an older release of a product. New 

releases are usually written so that they are backward compatible with the older releases, 

but new bugs may also be introduced (as we have observed with PostgreSQL). Therefore 

using different releases of the same product may bring some dependability improvements 

for the legacy applications.

These results were very encouraging and pointed to serious gains in dependability from 

using diverse off-the-shelf DBMS products. The architectural solutions that facilitate the 

use of this diversity were then explored and analysed. The mechanism of “data diversity” 

(Ammann and Knight 1988) and its application with SQL DBMS products was 

conducted as part of this analysis. 14 generic “rephrasing rules” were defined which can 

be implemented in a “rephrasing” algorithm. These rules can then be applied to specific

Page 267 of 278



Ilir Gashi VII. Conclusions

SQL statements and generate logically equivalent statements. By generating additional 

responses from the DBMS products “rephrasing” can thus help with failure diagnosis and 

state recovery. It was also argued that since these rules are transformations of the SQL 

language syntax, they are amenable to formal analysis, and dependability gains from 

employing rephrasing are achievable despite the need for development of bespoke new 

code.

The analysis of possible gains from using diverse DBMS products, different releases of 

the same DBMS product and also data diversity allows users who wish to explore fault 

tolerance with these products various architectural options. These users therefore have 

various trade-offs available between the wishes to exploit dialectal features and to get 

effective diversity.

As discussed extensively in the thesis, the results derived from the bug reports must be 

treated with caution, and their immediate implications vary between users, but for some 

classes of DBMS product installations, diversity could already be recommended as a 

prudent and cost-effective strategy. Examples of these installations are those that use 

mainly the core features of DBMS products (recommended by practitioners to improve 

portability of the applications), have modest throughput requirements for write statements 

(which make it easy to accept the synchronization delays of a fault-tolerant diverse 

server) or, most importantly, have serious concerns about dependability (e.g., high costs 

for interruptions of service or for undetected incorrect data being stored). The need for 

middleware to manage diverse DBMS products is an obstacle to users wishing to try out 

diversity in their applications. But the results in this thesis provide a good business case 

for implementing the required middleware software. Separate add-on “wrapping” 

components may also be developed for DBMS products to enable a more seamless 

integration at a higher middleware layer. For example, the SQL dialect translators which 

need to be defined for each DBMS product may be implemented as add-ons for each 

respective DBMS: the “wrapped” DBMS product is then connected to the middleware of 

a diverse fault-tolerant server.

The performance penalty due to controlling concurrency via the middleware would be a 

problem with write-intensive loads, but not if concurrent updates are rare (Stankovic and 

Popov 2006).

Page 268 of 278



Ilir Gashi VII. Conclusions

The final stage of the research conducted in this thesis concerned exploring methods of 

incorporating bug reports as empirical evidence with existing methods of reliability 

assessment of l-out-of-2 systems of diverse products. The need for this research stems 

from the unavailability of failure data which would be much better as reliability evidence. 

Detailed failure data are rarely published and they may even be unavailable to the 

software vendors themselves. This research was in three directions:

a model of Bayesian assessment developed elsewhere (Littlewood, Popov et al. 

2000) was explored and extended. The model was used, with the bug reports as 

evidence, to perform the assessment and choose the best DBMS product pair. The 

results of the posteriors of DBMS product pairs were compared with those of 

single DBMS products and it was observed that even the worst DBMS product 

pair still performs much better than the best single DBMS product. This further 

reinforces the conclusions from the studies with the bugs that significant 

dependability gains may be obtained from using diverse off-the-shelf DBMS 

products. It is also interesting to note that the assessment concluded that the best 

single DBMS product is a commercial one (namely Oracle), whereas the best pair 

of DBMS products is the pair PostgreSQL & Interbase both of which are free and 

open-source.

an existing Reliability Growth Model (Littlewood 1981) was extended for 

assessment of l-out-of-2 systems of diverse products. The model parameters may 

be inferred with evidence from bug reports as well but they are not enough: 

additional data is required about the download rates of the DBMS products before 

proxies can be calculated for inter-failure times. This latter evidence did not exist 

for the DBMS product versions used in this thesis, therefore the extended model 

could not be utilized to make reliability growth predictions, 

in the absence of even proxies for inter-failure times a final approach was 

explored to use the results from the bugs study to estimate the likely gains in 

reliability that may be expected from switching to a l-out-of-2 diverse system. 

Despite some fairly conservative assumptions that were made in the modelling it 

was found that, for the DBMS products used in this thesis, an order of magnitude 

increase in reliability may be expected when switching from a single DBMS

Page 269 of 278



tlir Gashi VII. Conclusions

product to a l-out-of-2 system made up of 2 diverse DBMS products. However it 

was emphasized that this result should be treated with caution, due to the small 

sample sizes and relatively high estimation errors.

Finally, the Bayesian model (Littlewood, Popov et al. 2000) used previously for 

assessment of a l-out-of-2 system was adapted and applied in a different context: 

assessing a single software product from the viewpoint of the timeliness (performance) 

and correctness (reliability) of the products results. This model was then applied to select 

a single best DBMS product using evidence from the bugs study. It was interesting to 

observe that the most optimal DBMS product selected when bug reports were used as 

evidence was the same as the product selected by a colleague who used the same model 

with a different set of data as evidence (an experimental study with an implementation of 

a TPC-C benchmark (TPC 2002)). This may give the assessor further confidence of 

choosing that DBMS product for an application with more stringent reliability, 

performance and concurrency requirements given that it performed best under two very 

different but “stressful” profiles. Interestingly, this DBMS product (Oracle) is considered 

by many as a leader among the DBMS product vendors, which may be seen as validation 

of the method’s usefulness for making a correct choice among several similar COTS 

products despite the scarcity of the data that might be available and the simplifying 

assumptions that the method is based on.

As discussed extensively in the thesis, the results derived from the assessment in chapter 

VI should also be treated with caution due to the low sample sizes and, for the Bayesian 

model in Papers 5 and 7, due to the crucial role of the prior distribution definitions. In 

paper 5 a discussion was provided of alternative sources of deriving more accurate priors, 

such as using evidence from previous versions of these DBMS products. Another source 

for deriving more accurate priors are the results from the dependability benchmarking 

experiments: results from these experiments are reported in (Kanoun and Crouzet 2006). 

Multiple steps of inference are also possible: first evidence from the bug studies are used 

to derive posterior distributions (as was reported in Papers 5 and 7) and then these 

posteriors are fed in as prior distributions in another step of inference with results from 

the dependability benchmarking (or other statistical testing) experiments.

Page 270 of 278



Ilir Gashi VII. Conclusions

Complete failure logs would be much more useful as evidence in the assessment of the 

dependability benefits of diversity. The results reported in this thesis indicate that using 

diverse open-source DBMS products may bring substantial dependability gains even 

when compared with very expensive non-diverse commercial products. This should serve 

as an incentive to the open-source community to develop accurate failure monitoring 

facilities (similar to those reported in (Voas 2000)): the availability of failure data would 

allow an assessor to obtain more accurate results with much higher confidence about the 

dependability benefits of diversity and may therefore lead to adoption of open-source 

products, in diverse configurations, in much wider applications than where they are used 

presently.

3. Review of aims and objectives
In the Introduction chapter of this thesis a set of questions were listed that the research 

conducted as part of this thesis aimed to provide answers for. These questions will be 

revisited in this section and short concise answers will be provided based on the results 

and analysis provided thus far in this thesis.

What dependability gains may be achieved from the use o f fault tolerance mechanisms 

with OTSproducts?

The results obtained from the two studies with OTS DBMS products point to 

serious dependability gains that may be obtained from using diverse DBMS 

products: very few bugs cause failures in more than one product and none of them 

cause failures in more than two.

Limited, but in some cases significant, gains in dependability may also be 

obtained from employing different releases of the same DBMS product.

Data diversity (Ammann and Knight 1988) mechanism in the form of SQL 

rephrasing was found to be a useful mechanism especially for aiding with fault 

diagnosis and state recovery.

What dependability information/data exists for OTS products and how can this 

information be used to assess the dependability gains that may be achieved from 

employing fault tolerance mechanisms?

Page 271 of 278



Ilir Gashi VII. Conclusions

For OTS DBMS products the only direct dependability evidence found were the 

bug reports.

Three different approaches were explored to utilise the bug reports in the 

assessment of the reliability of a l-out-of-2 system of DBMS products.

Use of two of these approaches was demonstrated using the bug reports 

collected as part of this study.

One of the approaches (namely the extended Littlewood model (Littlewood 

1981)) could not be used since additional data is required about the rate of 

downloads which did not exist for the release of DBMS products used in this 

thesis.

For fault tolerance configurations employing diverse modular redundancy, which OTS 

products, from the (possibly many) available ones, should be chosen to obtain the best 

dependability gains?

An existing model (Littlewood, Popov et al. 2000) was extended and the evidence 

from the studies with the bugs was used to asses the various pairs of DBMS 

products so as to choose the most optimal dependable pair.

What are the implementation difficulties?

The architectural solutions for employing diversity with OTS DBMS products 

were given. Users will have many options available to them with various tradeoffs 

between functionality, dependability and performance.

What costs (developmental, procurement, operational, maintenance etc.) may be 

expected?

This question is difficult to answer as it will be application specific. The question 

is made harder due to the unavailability of off-the-shelf middleware that would 

allow users to test diversity in their applications. However, as mentioned before, 

the results presented in this thesis would provide a strong business case for 

building such middleware solutions for DBMS products. This would in turn make 

the estimation of total cost of employing diverse products much easier.

Page 272 of 278



Uir G as hi VII. Conclusions

4. Future work
There are several strands of future work that may follow the work presented in this thesis.

They include:

Statistical testing of DBMS products to assess the actual reliability gains from 

diversity. Several million queries with various loads, including ones based on the 

TPC-C benchmark have been run by researchers in our centre so far observing no 

failures (however, significant potential for performance gains from using diverse 

DBMS products was found (Stankovic and Popov 2006)). These results may not 

be particularly surprising, since these benchmarks use a limited set of well- 

exercised features of DBMS products. It would be interesting to repeat the tests 

with test loads that do not suffer from this limitation. An example might be the 

test loads defined for DBench (Kanoun and Crouzet 2006) which apart from the 

workload (based on TPC-C benchmark) also provide a faultload', these results 

may then be used as evidence in the assessment model defined in Paper 5 and 7, 

as was discussed earlier in this chapter;

Developing the necessary middleware components for users to be able to try out 

data replication with diverse DBMS products in their own installations. Lack of 

these components is the main practical obstacle in the way of the adoption and 

practical evaluation of these solutions. There are signs that some DBMS product 

vendors may also help with this problem: EnterpriseDB (EnterpriseDB 2006) and 

Fyracle (Janus-Software 2006) are Oracle-mode implementations based on 

PostgreSQL and Firebird DBMS engines, respectively. With these solutions the 

problem with SQL dialects is significantly reduced. Some preliminary studies 

have been completed by undergraduate students in our centre on implementing 

translators between MSSQL and Oracle dialects for SELECTS, and between 

Oracle and PostgreSQL dialects for SELECT, INSERT and DELETE statements; 

Methods are needed which enable effective assessment with a higher number of 

COTS products in a diverse setup (more than two products may be desirable in a 

diverse setup to enable majority voting on the results from the products). This is a 

problem at the moment due to the difficulty in specifying and justifying 

multivariate distributions in Bayesian statistics. The same problem applies for the

Page 273 of 278



llir Gashi VII. Conclusions

effective assessment of even single products but when more than two related 

attributes are used in the assessment (i.e. more than just reliability and 

performance)

Methods for obtaining more accurate proxies for usage time are also needed to 

allow for effective use of the extended Littlewood model described in this thesis. 

Empirical investigations of the consistency of p factor estimates (explained in the 

“proportions” approach in chapter VI) in successive releases of the same DBMS 

product pair are desirable. The |3 factor estimates seem to be fairly consistent for 

the successive release of the DBMS products used in this thesis but the sample is 

too low to make more general conclusions.

Methods presented in chapter VI should be applied to other types of off-the-shelf 

products (such as diverse web-servers, application servers etc).

5. Final remarks
Despite the age-old belief that “two heads are better than one” the use of full-fledged 

diversity, multiple diverse redundant channels, was long thought to be too expensive an 

approach of increasing system dependability. With the availability of myriad of off-the- 

shelf software products, many of which are free and/or open-source, the use of diversity 

becomes a much more realistic possibility. However the problems of assessing the 

dependability gains that are achievable still remain. The scarcity of direct dependability 

data makes the assessment even more difficult. The work presented in this thesis has 

presented evidence that potentially significant dependability gains may be achieved with 

a very complex and highly used category of off-the-shelf products, namely DBMS 

products, and has also demonstrated how the assessment of the likely gains may be 

performed by utilizing the only direct dependability evidence that exists for these 

products, namely the bug reports. To the best of my knowledge similar empirical work or 

assessment approach has not been reported elsewhere.

References
Ammann, P. E. and J. C. Knight (1988), " Data Diversity: An Approach to Software 

Fault Tolerance", IEEE Transactions on Computers 37(4), pp: 418-425.

Page 274 of 278



llir Gashi VII. Conclusions

EnterpriseDB (2006), "EnterpriseDB", http://www.enterprisedb.com/.

Janus-Software (2006h "Fyracle", http://www.janus-software.com/fb_fyracle.html. 

Kanoun, K., H. Madeira, et al. (2004), "DBench Dependability Benchmarks", IST- 

2000-25425, http://www.laas.fr/DBench/Final/DBench-complete-report.pdf.

Littlewood, B. (1981), "Stochastic Reliability Growth: a Model for Fault-Removal in 

Computer Programs and Hardware Designs", IEEE Transactions on Reliability R-30(4), 

pp: 313-320.

Littlewood, B., P. Popov and L. Strigini (2000), "Assessment o f the Reliability o f Fault- 

Tolerant Software: a Bayesian Approach", in proc. Int. Conf. on Computer Safety, 

Reliability and Security (SAFECOMP '00), Rotterdam, the Netherlands, Springer, pp: 

294-308.

Stankovic, V. and P. Popov (2006), "Improving DBMS Performance through Diverse 

Redundancy”, in proc. Int. Symp. on Reliable Distributed Systems (SRDS '06), Leeds, 

UK, IEEE Computer Society, pp: 391-400.

TPC 12002), " TPC Benchmark C, Standard Specification, Version 5.0." 

http://www.tpc.org/tpcc/.

Voas, J. (2000), "Deriving Accurate Operational Profiles for Mass-Marketed Software", 

http://www.cigital.com/papers/download/profile.pdf.

Page 275 of 278

http://www.enterprisedb.com/
http://www.janus-software.com/fb_fyracle.html
http://www.laas.fr/DBench/Final/DBench-complete-report.pdf
http://www.tpc.org/tpcc/
http://www.cigital.com/papers/download/profile.pdf


List of Abbreviations

Page 276 of 278



Ilir Gashi List o f Abbreviations

ACM - Association of Computing Machinery

ANSI - American National Standards Institute

API - Application Programmers Interface

CDF - Cumulative Distribution Function

COTS - Commercial Off-The-Shelf

DBMS - Database Management System

DIRC - Interdisciplinary Research Collaboration in Dependability project

DOTS - Diversity with Off-The-Shelf components project

DSN - Dependable Systems and Networks conference

EDCC - European Dependable Computing Conference

EPSRC - Engineering and Physical Sciences Research Council

FB - Firebird DBMS

FT - Fault-Tolerant

IB - Interbase DBMS

IEEE - International Electrical and Electronic Engineering

ISO - International Organisation for Standardisation

JDBC - Java Database Connectivity

MS - Microsoft SQL Server DBMS

MSSQL - Microsoft SQL Server DBMS

N.S.E. - Non-Self-Evident failure

OR - Oracle DBMS

OTS - Off-The-Shelf

PDF - Probability Density Function

PFD - Probability of Failure on Demand

PC - PostgreSQL DBMS

PLD - Probability of a Late response on Demand

ReSIST — Resilience for Survivability in Information Society Technologies 

project

S.E. - Self-Evident failure

SQL - Structured Query Language

TPC - Transaction Processing Council

Page 277 of 278



Ilir Gashi List o f Abbreviations

UML -  Unified Modelling Language

The appendix o f this thesis can be downloaded from :

h t t p : / / w w w .c s r . c i t y .a c .u k / p e o p l e / i l i r .g a s h i / t h e s i s /

Page 278 of 278

http://www.csr.city.ac.uk/people/ilir.gashi/thesis/

