

City, University of London Institutional Repository

Citation: Gomoluch, J. M. (2004). Market protocols for computational clusters and grids.

(Unpublished Doctoral thesis, City, University of London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/30440/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Market Protocols for Computational

Clusters and Grids

Jacek Martin Gomoluch

Submission for the Degree of Doctor of Philosophy

City University

Department of Computing

June, 2004

Acknowledgements

I am most indepted to my supervisor, Prof. Michael Schroeder, for his continuous guid-

ance, encouragement, and support during these three years of research.

I also would like to thank Dr. Geraint Wiggins, who has been my internal supervisor in

the final months of this research.

I wish to thank my colleagues and fellow suffering students Tshiamo, Reinhold, Penny,

Panos, Alex, Eddy, Peter, Rodrigo, Aloysius, and Teddy, who always offered a friendly and

supportive environment, and who I very much enjoyed working with. I am also grateful for

their fast proof-reading of my thesis.

And finally, I wish to thank my parents for all their help and support throughout this long

period of time.

Declaration

I grant powers of discretion to the University Librarian to allow this thesis to be copied in

whole or in part, without further reference to me. This permission covers only single copies

made for study purposes, subject to normal conditions of acknowledgement.

Abstract

Recently, there has been much interest in Computational Grids which provide trans-
parent access to large-scale distributed computational resources. One key issue in these
open and heterogeneous environments is the efficient allocation of resources. Clients
and service providers belong to different organisations and have different priorities, re-
quirements, and goals, making resource management a complex task.

Economic approaches to resource allocation can offer a solution, as they are natu-
rally decentralised, and as decisions about whether to consume or provide resources are
taken locally by the clients or service providers. The use of currency offers incentives
for service providers to contribute resources, while clients have to act responsibly due
to their limited budget. To maximise the benefit of the clients, it is essential to choose
an appropriate resource allocation protocol. There exist various economic protocols
with different properties, however, their performance in Grid settings has not yet been
sufficiently studied.

In this thesis, we review and classify existing work on market protocols in com-
putational clusters and Grids. We then develop a simulation model of an electronic
marketplace and evaluate several market protocols for different computational environ-
ments, task loads, and optimisation requirements of the clients. We study situations, in
which the tasks are independent and arrive randomly. Three scenarios are examined in
which the clients have different requirements concerning the execution of their tasks. In
two scenarios, the completion times of the tasks need to be minimised. In the first one,
all tasks are equally important, whereas in the second one, they have different values
for the clients and are weighted accordingly. In the third scenario, tasks have different
priorities combined with hard or soft deadlines which need to be met in order to deliver
maximum value to the clients.

The resource allocation protocols, which are evaluated, include continuous double
auctions (CDA), periodic double auctions (PDA), and a proportional sharing protocol
(PSP). Also, several preemptive protocols, with and without task migration, are inves-
tigated, as well as protocols, in which the service providers are allowed to set reserve
prices. The simulation results reveal that the choice of the protocol should depend on
the optimisation requirements of the clients, the number of resources in the system, the
heterogeneity of these resources, the amount of load and background load in the system,
the local scheduling policy at the resources, and the communication delays. We found
that, in most situations, CDA leads to very good results. However, with high hetero-
geneity and load, it can be outperformed by PDA, PSP, and the preemptive protocols
without migration. Also reserve prices can lead to performance improvements. In most
cases, the best results are achieved by preemptive protocols which allow migration.

To verify our simulation model and thus our results, we developed a basic Grid
computing infrastructure, that is based on the model, and carried out experiments in
a local area network. We also demonstrated the effectiveness of our infrastructure for
solving real-world problems by deploying a computationally intensive bioinformatics
application.

Abbreviations and Acronyms

CDA
CORBA
CPM
CPU
DAG
D’Agents
EP
EMP
ERA
FLASH
FIFO
FIPA
I/O
GA
HBP
HTTP
JADE
JDK
Jini
JMS
JXTA
LAN
LJF
MAJIC
MATS
MCT
MFLOPS
MPI
MPP
NP
NWS
OCEAN
PE-P
PE-A
PSA
PSP
PVM
RP
RR
RS
RMI
RPC
SA
SJF
TS
WCT

Continuous Double Auction Protocol
Common Object Request Broker Architecture
Compute Power Market
central processing unit
directed acyclic graph
Dartmouth Agents
embarrassingly parallel
Electronic Marketplace
Economic Resource Allocator
Flexible Agent System for Heterogeneous Clusters
First In First Out
Foundation for Intelligent Physical Agents
input/output
Genetic Algorithms
Highest Bid Protocol
Hypertext Transfer Protocol
Java Agent Development Framework
Java Development Kit
Jini Is Not Initials
Java Message Service
’’juxtapose”
local area network
Longest Job First
Multiparameter Auctions for Jini Components
Mobile Agent Teams
Minimum Completion Time
mega FLOPS (floating point operations per second)
Message Passing Interface
Massively Parallel Processors
Nondeterministic Polynomial
Network Weather Service
Open Computation Exchange and Arbitration Network
Preemptive Protocol (Passive)
Preemptive Protocol (Active)
parameter sweep application
Proportional Share Protocol
Parallel Virtual Machine
Random Pushing
Round Robin Protocol
Random Stealing
Remote Method Invocation
remote procedure call
Simulated Annealing
Shortest Job First
Tabu Search
weighted completion time

CONTENTS

Contents

1 Introduction 1

1.1 Motivation... 1

1.2 The G rid ... 2

1.3 The Need for Market Protocols... 3

1.4 S cen a rio s ... 4

1.5 Resource Allocation P ro to co ls .. 6

1.6 Verification through Experiments.. 7

1.7 Publications.. 8

1.8 C ontributions... 8

1.9 Report Structure... 9

2 Overview of Problem Types 10

2.1 Embarrassingly Parallel A pplication... 10

2.2 Parallel Applications with Inter-Task Communication................................... 11

2.2.1 Synchronous Problem s... 11

2.2.2 Asynchronous P rob lem s.. 11

2.2.3 Loosely Synchronous P ro b lem s... 11

2.2.4 Scalability of Parallel Applications ... 12

2.2.5 Flexibility of a Parallel A pp lication ... 12

2.3 Applications with Subtask Dependencies... 13

2.3.1 Job Shop Scheduling (Directed G raphs).. 14

2.3.2 Divide-and-Conquer A pplications.. 14

2.4 Other Application Characteristics... 14

2.5 Speedup.. 15

2.5.1 D efin itions... 15

2.5.2 The Limit of Speedup: Amdahl’s L a w ... 16

2.5.3 Loss of S p e e d u p .. 17

2.6 Metrics .. 18

2.6.1 P erfo rm ance ... 18

l

CONTENTS

2.6.2 Utilisation.. 20

2.6.3 Scalability ... 21

2.6.4 Stability... 21

2.6.5 Other M etrics.. 21

2.7 S u m m ary .. 22

3 Infrastructure and Middleware 23

3.1 Machine Architecture.. 23

3.2 System C o n tro l... 23

3.3 Network Connections.. 24

3.4 M iddlew are.. 24

3.5 Distributed Object C om pu ting .. 25

3.6 Message Passing Libraries (MPI, P V M)... 26

3.7 Mobile Agents ... 27

3.8 Grid Computing Platforms: Globus.. 28

3.9 Other Distributed Computing P la tfo rm s... 29

3.10 S u m m ary ... 30

4 Resource Allocation Protocols 32

4.1 Resource Allocation Problem .. 32

4.2 Classification of Resource Allocation P ro to co ls .. 33

4.3 State-based, Non-Preemptive Resource Allocation... 33

4.3.1 Non-Competitive Protocols.. 34

4.3.2 Market P ro tocols.. 38

4.4 State-based, Preemptive Resource Allocation ... 43

4.4.1 Non-Competitive Protocols.. 43

4.4.2 Market P ro toco ls.. 44

4.5 Model-based Resource A llo catio n .. 45

4.5.1 Non-Competitive Protocols.. 45

4.5.2 Market P ro tocols.. 46

4.6 S u m m ary ... 46

it

CONTENTS

5 Research Objectives and Related Work 47

5.1 P O P C O R N .. 48

5.2 G -C om m erce... 49

5.3 Work by Ferguson et al.. 50

5.4 Work by Chun et al.. 50

5.5 Work by Bredin et al.. 51

5.6 Work by Kim et al.. 52

5.7 S u m m ary ... 53

6 Simulation Model 54

6.1 Introduction.. 54

6.2 Model Description ... 54

6.2.1 Clients .. 54

6.2.2 T a s k s ... 55

6.2.3 S e rv e rs .. 56

6.2.4 Electronic Marketplace (E M P).. 58

6.2.5 Communication M odel... 58

6.3 Interactions in the system .. 59

6.4 Assumption: Managed S y stem ... 61

6.5 Protocol descrip tions.. 62

6.5.1 Continuous Double Auction Protocol (C D A) 62

6.5.2 CDA with Reserve Prices (CDA-RES)... 63

6.5.3 CDA with Time-Dependent Bids (CDA-TDB)................................... 64

6.5.4 Proportional Share Protocol (P S P).. 64

6.5.5 Highest Bid Protocol (H B P) ... 65

6.5.6 HBP with Threshold (H B P -T).. 65

6.5.7 HBP with Reserve Prices (H B P-R ES)... 66

6.5.8 Preemptive Protocol (PE)... 66

6.5.9 Periodic Double Auction Protocol (P D A)... 69

6.5.10 Round-Robin Protocol (R R) ... 70

6.5.11 First In First Out (F IF O)... 70

m

CONTENTS

6.5.12 PRIO-FIFO... 70

6.5.13 Shortest Job First (SJF).. 71

6.6 Model Discussion and Related W o rk ... 71

6.7 S u m m ary ... 72

7 Simulations: Overview 73

7.1 Introduction.. 73

7.1.1 General Setup.. 73

7.1.2 Task S cen ario s ... 74

7.1.3 Scheduling Policy and Background Load Model 75

7.1.4 Communication Delays.. 77

7.1.5 Number of S e rv e rs ... 78

7.1.6 Resource D iversity ... 78

7.1.7 Total Amount of L o a d .. 79

7.1.8 Amount of Background Load .. 79

7.1.9 Task Size D istribu tion .. 79

7.1.10 Task Burstiness... 80

7.2 Realistic System Infrastructures ... 80

7.3 S u m m ary ... 81

8 Tasks with the Same Priority 82

8.1 PC C luster... 82

8.1.1 No Background L oad ... 82

8.1.2 Different Amounts of Background L o a d .. 83

8.1.3 Variable Task S ize s ... 84

8.1.4 Granularity of Background L o ad ... 85

8.1.5 Task Burstiness... 87

8.2 PC G r id .. 88

8.2.1 Resource H eterogeneity ... 88

8.2.2 Resource Heterogeneity and Different Amounts of L o a d 90

8.2.3 Different Server N u m b e rs .. 91

IV

CONTENTS

8.2.4 Communication Delays... 92

8.3 S u m m ary .. 93

9 Tasks with Different Priorities 97

9.1 PC C luster... 97

9.1.1 No Background L o ad .. 97

9.1.2 Background Load: Screensaver M o d e ... 98

9.1.3 Fine-Grained Background L o a d ... 100

9.1.4 Task Burstiness... 102

9.2 PC G r id .. 103

9.2.1 Resource Heterogeneity: Screensaver M o d e 103

9.2.2 Resource Heterogeneity: Fine-Grained Background Load................ 105

9.2.3 Variation of Load: Screensaver M o d e ... 106

9.2.4 Variation of Load: Fine-Grained Background L o a d 108

9.2.5 Different Server N u m b e rs .. 110

9.2.6 Communication Delays... 112

9.3 S u m m ary ... 113

10 Tasks with Time-Dependent Priorities 118

10.1 Examined Parameter S p ace ... 118

10.2 PC C luster... 119

10.2.1 Hard D eadlines... 119

10.2.2 Soft D ead lin e s ... 122

10.3 PC G r id .. 123

10.3.1 Variation of Load: Hard Deadlines.. 123

10.3.2 Variation of Load: Soft D ead lines.. 126

10.3.3 Different Server Numbers: Hard D ead lin es 127

10.3.4 Different Server Numbers: Soft Deadlines... 129

10.3.5 Communication Delays... 130

10.4 S u m m ary ... 132

v

CONTENTS

11 Experimental Grid Computing Framework 136

11.1 Introduction.. 136

11.2 O bjectives... 136

11.3 General Description... 137

11.4 Implementation.. 138

• 11.4.1 Communication.. 139

11.4.2 T a s k s ... 139

11.4.3 S e rv e rs .. 140

11.5 S u m m ary ... 141

12 Experiments 142

12.1 O bjectives... 142

12.2 Experimental S e tu p ... 142

12.2.1 Hardware and Software Infrastructure... 142

12.2.2 Performance Measurements and Load Generation.............................. 143

12.2.3 General Experimental Param eters... 143

12.3 Results... 144

12.3.1 Variation of Load— 10 S e rv e rs ... 144

12.3.2 Variation of Load — 32 S e rv e rs ... 146

12.3.3 Variation of the Number of Servers — 80% L o a d 147

12.3.4 Variation of the Number of Servers — 90% L o a d 148

12.4 Deployment of a Bioinformatics Application.. 149

12.4.1 The PSIMAP Computation.. 150

12.4.2 Distributing the Computation .. 150

12.4.3 Experimental R esults... 151

12.5 Discussion... 153

12.6 S u m m ary ... 155

13 Designer’s Guidelines 156

13.1 Introduction.. 156

13.2 Tasks with the Same Priority (T l-S cen ario).. 156

vi

CONTENTS

13.3 Tasks with Different Priorities (T2-Scenario).. 158

13.4 Tasks with Time-Dependent Priorities (T3-Scenario) 159

13.5 C o m m en t... 162

14 Summary and Future Work 163

14.1 The M odel... 163

14.2 S im ulations.. 164

14.3 Simulations: C ritique .. 168

14.4 Experiments.. 170

14.5 Comparison to Related W o rk .. 170

14.6 Applicability ... 172

14.7 Future W ork .. 173

A Resource Allocation Protocols 176

A.l Resource scheduling policy: Proportional sh a rin g ... 176

A. 2 Resource allocation protocols.. 179

A.2.1 Procedures common to all p ro tocols.. 179

A.2.2 Continuous Double Auction Protocol (C D A) 180

A.2.3 Proportional-Share Protocol (P S P).. 181

A.2.4 Round-Robin Protocol (R R) ... 182

A.2.5 Task Price Adjustment E ven t... 183

B Simulation Framework 185

B. l Introduction... 185

B.2 Discrete-Event S im u la tio n ... 185

B.3 Choice of language and p a ck a g e ... 185

B.4 Simulation Framework: Base P ack ag e .. 186

B.5 Simulation Framework: Protocol-specific P ackages...................................... 188

B.6 Running a Sim ulation.. 189

B.7 Experiments with Parameter V ariation .. 190

B.8 Dealing with Randomness of the R esults... 191

VII

CONTENTS

C Additional Simulation Results 193

C.l Tasks with the Same Priority: Supercomputing C lu s te r 193

C.1.1 Different Amounts of L oad .. 193

C.1.2 Granularity of Background L o ad .. 194

C.2 Tasks with the Same Priority: Supercomputing G rid 195

C.2.1 Resource H eterogeneity ... 195

C.2.2 Different Server N u m b e rs .. 196

C.2.3 Communication Delays.. 196

C.2.4 Task Burstiness.. 197

C.3 Tasks with Different Priorities: PC C luster... 198

C.3.1 With Background L oad .. 198

C.3.2 More Background Load: Fine-Grained Background L oad............... 198

C.4 Tasks with Different Priorities: PC G r i d .. 199

C.4.1 Resource Heterogeneity: Screensaver M o d e 199

C.4.2 Resource Heterogeneity: Fine-Grained Background Load............... 200

C.4.3 Variation of Load: No Background Load .. 200

C.4.4 Variation of Load: Screensaver M o d e ... 201

C.4.5 Variation of Load: Fine-Grained Background L o a d 202

C. 5 Tasks with Time-Dependent Priorities: PC C luster.. 203

C.5.1 PC C lu s te r ... 203

C.5.2 PC Grid: Variation of L oad ... 204

C.5.3 PC Grid: Different Server N u m b ers .. 205

C.5.4 PC Grid: Communication Delays ... 208

D Experimental Framework: Additional Information 209

D. l Base p a c k a g e .. 209

D.2 Protocol-specific P ack ag es .. 210

D.3 Benchmark package... 211

D.4 Interface for a Computational T a sk ... 211

D.5 Interface for a Parameter Sweep Application.. 212

D.6 Specifying Task and Resource Constraints... 212

viii

CONTENTS

D.7 Random Numbers, Statistics, and Parameter Variation................................... 214

D.8 Running an Experiment... 215

E Example of an Input File 217

ix

1 INTRODUCTION

1 Introduction

1.1 Motivation

The last four decades have seen a rapid increase in computing power and the rise and fall of

several technologies. In the 1960s, mainframe computers took up a few hundred square feet.

Just a decade later, the advent of the minicomputer cut down the size of systems by taking

advantage of large-scale integration of semiconductors. During the 1980s, vector computers,

and later parallel computers emerged. At about the same time the microcomputer age began,

bringing PCs to the desks of the end-users.

As computers became more affordable, the need to link them up gave rise to the first

local area networks such as the Ethernet [Metcalfe and Boggs, 1976]. By the mid- to late-

1980s, the first network cards began to appear for the PC. Between 1989 and the early 1990s,

an emerging wide area network — known as the Internet — started becoming the norm at

universities in the US, Japan, and Europe. It had evolved from the ARPANET of the US

Defense department which was first established in 1969 with just 4 nodes. The growth of

the Internet was fueled by a rapid increase in network bandwidth and by the invention of the

World Wide Web [Bemems-Lee, 1999] at CERN, in 1989. The Web provided the means for

creating and organising documents with hyper-links and accessing them online transparently,

irrespective of their location.

The increase in network bandwidth — which has grown twice as fast as the processing

power — led to advancements in high performance computing. The availability of powerful

PCs, workstations, and high-speed networks as commodity components has resulted in the

emergence of computational clusters. In the top 500 list of fastest computers which solve a

matrix factorisation problem [Strohmaier et al., accessed in 2003], clusters of PCs or work-

stations already rank among the top (with seven systems in the top 10). In recent years, the

number of cluster systems in the top 500 has grown to more than 200, making them the most

common high performance computing architecture.

The Internet can add a new dimension to parallel processing, as comparatively small

computing resources such as PCs have the potential to provide vast computing power, when

1

1 INTRODUCTION

connected. And yet, many of these resources lie idle for most of the time. Millions of

online-PCs are only involved in tasks like word processing or browsing the Internet, which

consume very little computing power. The computing resources in many organisations are

often severely under-utilised, especially outside of peak business hours.

At the same time, there are many individuals and organisations that have intensive com-

putations to perform but only have limited access to resources that are available to execute

them. This disparity in resource utilisation has inspired various projects which connect mil-

lions of computers over the Internet to perform computations in areas like drug design 1,

biology 2, and astronomy 3. Such wide-area networks of PCs are, however, only one instance

of a much broader vision: to transform the capability and modalities of scientific research

by providing transparent, intuitive, timely, and efficient access to distributed, heterogeneous,

and dynamic resources. These resources include computational facilities, applications, vi-

sualisation, data, and experimental facilities, which are integrated and accessible as a single

resource over the Internet - the Grid [Foster and Kesselman, 1998],

1.2 The Grid

Inspired by the electrical power grid’s pervasiveness, reliability, and ease of use, scientists

in the mid-90s began exploring the design and development of an analogous infrastructure

called the computational power Grid [Foster and Kesselman, 1998]. The vision is to build

an environment that enables the ’’sharing, selection, and aggregation of a wide variety of ge-

ographically distributed resources including supercomputers, storage systems, data sources,

and specialised devices owned by different organisations for solving large-scale resource-

intensive problems in science, engineering, and commerce” [Buyya, 2002], These efforts are

driven by large-scale, resource-intensive scientific applications that require more resources

than can be provided in a single administrative domain [Buyya, 2002].

A number of Grid platforms have been developed, such as Globus [Foster and Kesselman,

1997], Unicore [Pallas, accessed in 2003], the Load Sharing Facility [Platform Computing,

'Find-A-Drug (http://www.find-a-drug.org), grid.org (http://www.grid.org)
2Folding@Home (http:/folding.stanford.edu)
3SETI@Home (http://setiathome.berkeley.edu/)

2

http://www.find-a-drug.org
http://www.grid.org
http://setiathome.berkeley.edu/

1 INTRODUCTION

accessed in 2003], and Legion [Natrajan et al., 2001]. Also, major companies including Sun,

IBM, and Hewlett Packard have recognised the potential of Grid Computing and provide

their own platforms [Sun Microsystems, accessed in 2003e] and services [Hewlett Packard,

accessed in 2003; IBM, accessed in 2003]. Common to all Grid infrastructures is the need to

provide components which cater for communication infrastructure, data storage and move-

ment, security, task monitoring, and resource management.

Efficiently managing and allocating resources in a Grid is a far more complex task than

in a local cluster: Users and service providers are geographically distributed and belong to

different organisations, with heterogeneous platforms and varying reliability and availability.

Furthermore, the parties involved have different priorities, requirements, and goals, making

resource management even harder.

1.3 The Need for Market Protocols

Market-based approaches to resource allocation [Ferguson et a i, 1996; Sandholm, 2000;

Wellman et al., 2001] can offer a solution to the problems of distributed ownership of

resources and the conflicting interests of the users: Resource allocations are determined

through the use of economic mechanisms such as auctions, in which users place explicit val-

uations ("bids”) on the resources being contended for. The use of currency offers incentives

for service providers to contribute resources, while users have to act responsibly due to their

limited budget. Hence, resource prices and task priorities are directly related to demand and

supply.

To maximise the efficiency of the resource allocations, and thus the benefit to the users,

it is essential to choose the best-performing market protocol 4. There exist various protocols

with different properties, however, their performance in Grid scenarios has not yet been suf-

ficiently studied. When market protocols were examined, the experiments were limited to

only a few protocols and parameter sets. What has been missing is a systematic comparison

of different market protocols which would allow a system designer to choose the most ap-

4 A protocol defines the rules which determine how the participants of the marketplace interact and how the
resources are allocated. It does not include the strategies of the participants for settings their prices or bids.

3

1 INTRODUCTION

propriate protocol for a given situation. In this thesis, we review and classify existing work

on market protocols in computational clusters and Grids. We develop a simulation model

of an electronic marketplace where CPU time is traded as a resource and evaluate several

economic protocols for different computational environments, task loads, and optimisation

requirements of the users.

1.4 Scenarios

Our objective is to maximise performance as experienced by the users. We model a market-

place in which users and service providers may belong to different organisations and trade

resources in exchange for money. The users have computations which must be performed

on certain resources and are willing to pay for the service. An example could be a scientist

who wants to conduct a bioinformatics computation and needs several Linux PCs with the

Globus Toolkit [Foster and Kesselman, 1997] installed. The service providers have access

to idle resources that can execute the computation in question. The system is assumed to be

geographically distributed, and therefore communication bandwidth and latency need to be

taken into account.

We target the following scenarios:

• A computational cluster, e.g. a lab of PCs at a research institute or company. Users

have a limited endowment of artificial money which can be used for buying CPU time.

• An open, geographically distributed computational Grid in which the participants be-

long to different organisations.

In both cases, CPU time is traded at a central electronic marketplace, which the partici-

pants can trust, and whose rules must be obeyed 5. Users submitting computational tasks can

choose how much they bid for the execution of each task and may also specify deadlines.

Participants who do not comply could be penalised by the marketplace, e.g. by excluding them from
further trade. However, this is not the topic of this thesis.

4

1 INTRODUCTION

Concerning the resources, we consider the following cases:

• Time-shared PCs, e.g. running under Linux. Local users may be running applications

(such as word-processors or Internet browsers) which consume some of the CPU time

and are considered as background load. The remaining processing power — which

may vary over time — is made available to computational tasks from the electronic

marketplace.

• PCs whose processing power is offered at the marketplace only at times when they

are completely idle, i.e. when their screensavers are running. If such a policy is used,

fewer resources are available to the marketplace. Yet, it may be more acceptable to the

local users as it reduces the impact of the incoming tasks on the local applications.

• Space-shared multiprocessor machines on which parallel applications can be executed.

Several applications can be run on the machines’ processors at any given time. Again,

as there are local users, only some of the processing power is made available to the

marketplace.

For the scenarios studied in this thesis, we make the assumption of a managed system, in

which the market is a tool to achieve the efficient allocation of resources. Our main focus

is on the design of the protocols which are used at the marketplace. The choice of pricing

strategies for the Clients and Servers is not the subject of this work: We assume that these

strategies — which may or may not be utility-maximising — can be enforced by the system.

Money has no value as such, and hence there is no need to deal with resource accounting.

We mainly look at scenarios where PCs are the resources, as these are idle most of their

time and can therefore offer large amounts of CPU time to computationally intensive appli-

cations. We study situations in which the computational tasks are independent 6 and arrive

randomly. Since the task arrivals and the state of the system are not known a priori, the

scheduling decisions need to be taken online. Three scenarios are examined in which the

users have different requirements concerning the execution of their tasks. In two scenar-

ios the completion times of the tasks need to be minimised. In the first one, all tasks are
“Note that, in this context, we also consider a parallel application to be an independent task because it is

allocated to just one multiprocessor machine.

5

1 INTRODUCTION

equally important, whereas in the second one, they have different values for the users and

are weighted accordingly. In the third scenario, tasks have different priorities combined with

hard or soft deadlines which need to be met in order to deliver maximum value to the users.

The goal of our simulations is to determine the most suitable resource allocation protocol for

each examined situation (w.r.t. the performance metric which is used).

We investigate the impact of parameters, such as the number of resources in the system,

the heterogeneity of these resources, the amount of load and background load in the system,

the local scheduling policy at the resources, and the communication delays.

1.5 Resource Allocation Protocols

We consider several market protocols, all of which use auctions [Kagel, 1995]. In auctions,

buyers bid for resources according to a particular auction protocol. An advantage of auctions

is that they allow an unknown resource value in a group of agents to be determined. Also,

auctions are widely studied, easy to implement, and efficiently computable. A disadvantage

is often the communication cost.

A very familiar auction protocol is the English auction, in which a seller advertises a

resource whose price is gradually increased as the bids come in — and the highest bidder

wins. A problem with English auctions is the associated communication cost which we need

to avoid in order to maximise performance. For this reason, all our protocols are of sealed-

bid type. In a sealed-bid auction, all buyers submit sealed bids, and the highest bidder wins.

There is only one round of communication — without any time-consuming negotiation.

Furthermore, all our protocols can be classified as double auctions: In a double auction,

multiple buyers and sellers submit their bids and ask prices, and matches are made by the

marketplace. Since there are multiple buyers and sellers in our scenarios, this form of auction

is appropriate. A double auction can either be a continuous auction, where transactions are

carried out immediately whenever bids or offers change, or a periodic auction, in which the

transactions are carried out only at periodic intervals.

6

1 INTRODUCTION

Overall, the following protocols are examined in this thesis:

• The Continuous Double Auctions protocol (CDA), which we expect to result in shorter

response times and hence better performance than periodic auctions.

• Several adaptations of CDA in which the tasks can be preempted, both with and with-

out migration.

• Two protocols which allow the service providers to set reserve prices in order to pre-

vent the allocation of the better-performing resources to low priority tasks.

• The Periodic Double Auctions protocol (PDA) in which the transactions are carried

out at periodic intervals only.

• The Proportional-Share Protocol (PSP) in which several tasks can execute on a re-

source, and a task’s resource share is proportional to its price bid.

• Several conventional scheduling heuristics which include Round-Robin (RR), First-in-

First-Out (FIFO), and Shortest Job First (SJF).

In our simulations we aim to determine which resource allocation protocol is the most

appropriate for a given situation. For three scenarios with different user requirements, we

compare the performance of the protocols while varying the parameters of the computational

environment.

1.6 Verification through Experiments

We verify our simulation model and thus our results by carrying out experiments in a lo-

cal area network. We determine whether the assumptions we made about communication

delays, processing delays, etc. are valid under realistic conditions. For this purpose, we

deploy a basic Grid computing infrastructure which we developed as part of the AgentCi-

ties deployment grant CoMAS (Control and Management of Agents and their Services, iD:

ACNET.02.30). This infrastructure is based on the agent platform JADE [Bellifemine et al.,

1999] and is an almost exact implementation of the simulation model. We also demonstrate

7

1 INTRODUCTION

the effectiveness of our infrastructure for solving real-world problems by using it for the

distributed computation of the bioinformatics application PSIMAP [Dafas et al., 2003a].

1.7 Publications

Parts of the experimental work described in this thesis have been published in [Gomoluch

and Schroeder, 2003], [Gomoluch and Schroeder, 2004], [Dafas et al., 2003b], and [Dafas et

al., 2003a]. An earlier version of the survey on market protocols has appeared in [Gomoluch

and Schroeder, 2001b]. In addition, the research undertaken in the course of this PhD has

resulted in the publication of [Gomoluch and Schroeder, 2001a], [Gomoluch and Schroeder,

2002] and [Cogan et al., 2001],

1.8 Contributions

In summary, the main contributions of this thesis are:

• A survey and classification of existing approaches to the dynamic allocation of re-

sources in computational clusters and Grids, with an emphasis on market protocols.

• The design of a simulation model of an electronic marketplace for distributed compu-

tational resources and of several protocols for the resource allocation. This model is

suitable for both computational clusters and Grids.

• The development of a simulation framework for the evaluation of these resource allo-

cation protocols. The framework supports various scenarios, resource types, schedul-

ing policies, and resource allocation protocols. It allows to set any simulation param-

eter and to measure any statistic, thus enabling the exploration of a large parameter

space.

• The evaluation of the market protocols through simulations. We explore the parameter

space for three scenarios in which the clients have different requirements concerning

the execution of their tasks. We provide guidelines for the choice of protocols in

different situations.

8

1 INTRODUCTION

• The verification of the simulation results with an experimental Grid computing frame-

work that has been developed for this purpose. We determine in how far the real system

behaves as we observed in the simulations. To this end, we deploy it in a cluster of

PCs in a local area network. We also demonstrate the effectiveness of this framework

for solving real-world problems such as the PSIMAP computation.

1.9 Report Structure

The rest of this thesis is organised as follows.

Chapter 2 presents an overview of application types that can benefit from being dis-

tributed and executed in parallel. Chapter 3 covers the properties of the hardware and soft-

ware infrastructure which need to be considered for the design of a resource allocation pro-

tocol. Chapter 4 provides a survey and classification of existing approaches to the dynamic

allocation of resources in computational clusters and Grids, and mainly looks at market pro-

tocols. In chapter 5, we state our research objectives and discuss other work on performance

evaluation of market protocols. We show how it relates to this thesis.

Detailed descriptions of our simulation model and the resource allocation protocols in-

vestigated in this thesis are given in chapter 6. These are followed by a hierarchical overview

of the parameter space explored in our simulations in chapter 7. The results of our simula-

tions for the three scenarios are presented in chapters 8 to 10.

Chapter 11 gives a high-level description of our experimental Grid computing frame-

work. Chapter 12 describes the experiments with this framework which are designed to

verify the simulation model. Chapter 13 gives guidelines for the designer of an Electronic

Marketplace which are based on the simulation results. Chapter 14 discusses the results of

the simulations and experiments, draws conclusions, and gives directions for future work.

An appendix follows which provides further information concerning the implementation

of the resource allocation protocols. It also describes our simulation framework, which has

been used for the simulations, and shows additional simulation results. Furthermore, it gives

more details about the implementation and operation of our experimental Grid computing

framework.

9

2 OVERVIEW OF PROBLEM TYPES

2 Overview of Problem Types

Despite ever faster machines, the demand for computing power remains high in application

areas like scientific computing and data analysis. Many computational applications are so

large, that their execution time on a single machine would not be acceptable to the user.

However, for certain applications, the execution time can be reduced by decomposing them

into subtasks which can be distributed among several machines.

In order to do this in an appropriate way, it is necessary to know the characteristics of

the application and the requirements of the user. In this chapter, we first give an overview of

different application types. Then, we discuss the limits of the speedup that can be achieved

when an application is executed in parallel. Finally, we introduce several metrics which can

be used to assess the performance of a resource allocation protocol.

2.1 Embarrassingly Parallel Application

A simple but very common problem type is termed ’’embarrassingly parallel”(EP) [Fox et

a l, 1994], The application consists of a set of independent calculations and can easily be

parallelised, since no temporal synchronisation is involved. In practice, modest node-to-node

communication will be required though, if only to set up the problem and to accumulate the

results. Assuming a high computation to communication ratio, an almost linear speedup

(see section 2.5) can be achieved for this type of computation. An example of a task graph

representing an embarrassingly parallel application is shown in Figure 1 (left).

Problems which fall into this category include the so-called Parameter sweep applica-

tions (PSAs) [Casanova et al., 2000], in which many computations of the same type are run

with different parameter sets. Each computation can execute independently, i.e. without

inter-task communication or data-dependencies (task precedences). Examples of parameter

sweep applications and other embarrassingly parallel problems can be found in bioinformat-

ics [Casanova et al., 2000; Park et al., 2001], high energy physics, and finance [Fox et al.,

1994],

10

2 OVERVIEW OF PROBLEM TYPES

2.2 Parallel Applications with Inter-Task Communication

Another important problem type are applications which consist of several tasks which ex-

ecute in parallel but which require communication between these tasks. Regarding the

communication pattern, this problem type can be subdivided into synchronous, loosely syn-

chronous, and asynchronous problems which will be described in this section [Fox et al.,

1994; Fox, 1992],

2.2.1 Synchronous Problems

Synchronous problems are computations on geometrically regular data domains which re-

quire synchronisation between the iterations. Examples are matrix computations such as LU

decomposition and convolutions such as the Fast Fourier Transform. They are parallelised

by simple domain decomposition [Fox et al., 1994; Fox, 1992], An example of a task graph

representing a synchronous problem is shown in Figure 1 (middle).

2.2.2 Asynchronous Problems

Asynchronous problems are characterised by a temporal irregularity which makes paral-

lelisation hard. An important example are event-driven simulations, where events occur in

spatially distributed fashion but irregularly in time. Branch-and-bound and other pruned tree

algorithms common in artificial intelligence such as computer chess also fall into this cate-

gory [Fox, 1992], For the parallelisation the ’’data parallelism” over the space of events is

exploited.

2.2.3 Loosely Synchronous Problems

Loosely synchronous problems are an intermediate case between asynchronous and syn-

chronous problems. They are characterised by iterative calculations on geometrically irregu-

lar domains. The computations are parallelised by irregular partitioning of the data domain.

The processes are synchronised ’’every now and then”, typically at the end of an iteration or

time step in a solution. Examples are irregular mesh finite element problems and inhomoge-

neous particle dynamics [Fox, 1992],

11

2 OVERVIEW OF PROBLEM TYPES

2.2.4 Scalability of Parallel Applications

Synchronous and loosely synchronous problems parallelise naturally in a fashion that scales

to large systems with many nodes. The computations typically divide into communication

and calculation phases as given by individual iterations or time steps in a simulation. The

efficiency depends on the problem grain size. In many cases an almost linear speedup (see

subsection 2.5) can be achieved — and the calculations are not much affected by the syn-

chronisation.

Asynchronous problems are characterised by additional synchronisation overhead, since

the division into communication and calculation phases is lacking. The speedup for this type

of computations is very problem-dependent. However, large scale parallelisation is possible

for a subclass which is referred to as loosely synchronous complex. The problem consists

of an asynchronous collection of loosely synchronous (or synchronous) modules [Fox et a i,

1994; Fox, 1992],

In a survey carried out in 1989, 400 applications from 84 areas have been classified. The

survey, which might be outdated now, reports that at most 10 percent of the applications were

truly asynchronous, whereas most applications were synchronous (40 percent) or loosely

synchronous (36 percent). About 14 percent belonged to the embarrassingly parallel class

[Fox et al., 1994],

2.2.5 Flexibility of a Parallel Application

A parallel — but not embarrassingly parallel — application may have different constraints

regarding the number of machines it is allocated during its execution. Feitelson et al. [Fei-

telson and Rudolph, 1998; Feitelson et al., 1997] give a classification of applications con-

cerning their flexibility when executed in parallel:

• Rigid Jobs: The number of processors assigned to a job is specified externally and

cannot be changed by the scheduler.

• Moldable Jobs: The number of processors assigned to a job is determined by the

system within certain constraints when the job is first activated, and it uses that many

12

2 OVERVIEW OF PROBLEM TYPES

Figure 1: Task graphs for different problem types. Left: Embarrassingly parallel (EP) ap-
plication. Middle: Synchronous application. Right: Application represented by a directed
acyclic graph (DAG).

processors throughout its execution 7.

• Malleable Jobs: The number of processors assigned to a job may be changed during

the job’s execution, as a result of the system giving it additional processors or requiring

that the job releases some.

• Evolving Jobs: The job goes through different phases which require different numbers

of processors. The number of processors allocated may change during the execution

in response to the job requesting more processors or relinquishing some. Each job is

allocated at least the number of processors it requires at each point in its execution.

2.3 Applications with Subtask Dependencies

In another problem type, which can benefit from being executed in parallel, the application

contains subtasks with data dependencies among them. It will be described in this section.

7According to [Cime and Berman, 2001b] the majority of tasks in supercomputing centres are moldable —
98%, as the authors found in their survey.

13

2 OVERVIEW OF PROBLEM TYPES

2.3.1 Job Shop Scheduling (Directed Graphs)

In this type of application the subtasks require the results of other subtasks before starting

their execution, and on completion they pass their results to consecutive subtasks. The ap-

plication can be modelled with a directed graph where a node corresponds to a subtask and

an arc represents a data transfer between two tasks [Maheswaran et al., 1999b], The graph

may or may not contain cycles. In the latter case it is called directed acyclic graph (DAG),

an example of which is shown in Figure 1 (right). The subtasks may execute on different

machines and may even require different machine architectures. This problem type can be

found in many areas including bioinformatics [Moller et al., 1999] and defence [Ali et al.,

2002], It is also very common in manufacturing where the machines are usually not comput-

ers [Pinedo, 1995].

2.3.2 Divide-and-Conquer Applications

Divide-and-conquer applications consist of subtasks which can spawn further subtasks dur-

ing their execution. The results of the child tasks are needed by their parent tasks for further

processing. As the decomposition of the application happens on-the-fly it is very flexible

with respect to the number of machines that are used — which is even allowed to vary during

runtime. The application is easily parallelised by letting the programmer annotate potential

parallelism in the form of spawn and sync constructs. Computations that can use this model

include geometry procedures, sorting methods, search algorithms, data classification codes,

n-body simulations, and data-parallel numerical programs [van Nieuwpoort et al., 2001].

2.4 Other Application Characteristics

In the previous sections, an overview of different application types has been given which

can benefit from parallel execution in a distributed environment. This overview, however,

may not necessarily cover all aspects of an application that are relevant for the choice of a

resource allocation protocol. Further computational characteristics which need to be consid-

ered include the following [Braun et al., 1998]:

14

2 OVERVIEW OF PROBLEM TYPES

• Granularity: What is the granularity of the application, i.e. its ratio between com-

putation and communication? In the case of fine-grain parallelism the tasks execute

a small number of instructions between communication cycles. This may lead to a

high communication overhead. On the other hand it facilitates load-balancing: a large

number of ’small’ tasks can easily be distributed.

• Task Heterogeneity: Are all tasks of the same size? If not, how greatly and with

what properties, e.g. probability distribution, do their execution times vary for a given

hardware platform or operating system?

• Deadline: Does the application have a deadline? Is it a hard or a soft deadline?

• Temporal Distribution: Is the complete set of tasks known a priori (static application)

or do the tasks arrive in a real-time, non-deterministic manner (dynamic application)?

Or is it a combination of both?

• Duration: Is the duration of the tasks known before their execution?

• Priority: What is the priority of the application?

• Memory Requirements: What are the memory requirements of the application and its

subtasks?

• Quality-of-Service Requirements: Does the application have specific quality-of-service

requirements, such as the level of security?

2.5 Speedup

2.5.1 Definitions

As mentioned before, the aim of parallel execution of a computational task is to minimise the

execution time. A measure for the reduction of execution time is the speedup. It is defined

as the ratio of sequential execution time to parallel execution time of a computation. There

is diversity in the definitions of serial execution time which results in different definitions of

speedup [Sahni and Thanvantri, 1995]:

15

2 OVERVIEW OF PROBLEM TYPES

In the definition of the relative speedup, the serial time is the execution time of the paral-

lel algorithm when run on a single processor of that parallel computer. The relative speedup

describes how well the algorithm has been parallelised. Alternatively, the serial time may

denote the time taken by the best serial algorithm. This definition is used when an absolute

evaluation of the algorithm is required. Since it is not always possible to determine the best

serial algorithm, the runtime of the serial algorithm used ”in practice” is often taken (real

speedup).

2.5.2 The Limit of Speedup: Amdahl’s Law

According to Amdahl [Amdahl, 1967], the speedup of parallel execution can never be more

than linear. Also, in any computation, there should come a point where further task divi-

sion creates more overhead than computational speedup and does not lead to a performance

improvement. The theoretical limit for the speedup is given by Amdahl’s Law [Amdahl,

1967]:

For the parallel algorithm, let seq be the fraction of sequential operations in the compu-

tation, and par-1-seq the fraction that is parallelised. The potential speedup S achievable by

a parallel computer with N processors performing the computation is:

5= 1 - ____ I____
^ + seq ^ + 1 - p a r

When the number of processors N is increased, the upper limit for the speedup can be

determined as:

6max — ,[im par . , ~ ,N-*°° tjj- + 1 — par 1 — par

In a sense this is not really a limit, since for some applications the parallel fraction in-

creases as the workload is increased (unboundedparallelism) [Sahni and Thanvantri, 19951.

In that case the theoretical speedup may be infinite:

lim --------- = °°
p a r -) l 1 — par

16

2 OVERVIEW OF PROBLEM TYPES

If we limit the question of maximum attainable speedup to a particular instance of a

problem, then speedup is limited for those instances that have a fixed workload associated

with them. Two factors limit the attainable speedup [Sahni and Thanvantri, 1995]:

• The total workload. If the instance represents a total workload of u units and each

processor performs one unit of work in one unit of time, then at most u processors

can be gainfully used, and the parallel execution time can be as low as one. The serial

execution time will be u, and therefore speedup can not exceed u.

• The serial component. If s of the u workload units cannot be parallelised, the parallel

run time cannot be reduced below s+1. So, the speedup cannot exceed u/(s+l).

However, there exist applications with flexible workload per instance, for which neither

of the two factors that limit speedup may apply [Sahni and Thanvantri, 1995],

2.5.3 Loss of Speedup

In practice there are many other reasons which may limit the speedup. The following factors

have been identified for task execution on parallel processors [Nguyen et a l, 1996], They

are also valid for distributed computing on multiple machines:

• Idleness: At times, processors are left idle because of insufficient (coarse-grain) par-

allelism or load imbalance.

• Communication Overhead: Communication takes place if an executing task requires

access to data that does not currently reside on its machine. Communication overheads

appear as the processor stalls while waiting for the data. •

• System Overhead: Even sequential programs incur system overhead because of events

such as page faults, clock interrupts, etc. Such overheads can be more significant for

highly parallel programs because these events typically occur on every processor. The

asynchronous nature of these events can degrade the performance of tightly-coupled

parallel programs.

17

2 OVERVIEW OF PROBLEM TYPES

• Parallelisation Overhead: Parallel programs typically incur computational overheads

which are not present in sequential programs such as per processor initialisation, work

partitioning, and locking and unlocking on entry and exit of a critical section.

According to [Nguyen et al., 1996] the parallelisation overhead and system overhead are

typically very small compared to idleness and communication cost.

2.6 Metrics

The speedup (see section 2.5) is an important measure for the performance improvement of

the parallel execution of a task. However, depending on the type of task and the requirements

of the user, various other metrics can be used for the assessment of a resource allocation

protocol. In this section an overview will be given.

2.6.1 Performance

At first, some metrics will be discussed which characterise the system performance. These

are the completion time, completion rate, user utility, makespan, and throughput.

Completion Time

When considering performance from the application’s point of view, the metric involved is

often one of minimising individual task completion times [Casavant and Kuhl, 1988], The

completion time is defined as the time elapsed from when a task arrives for scheduling to

when it completes execution. It includes both the time spent in waiting queues and time

spent in execution. A common metric is the mean completion time of the tasks of the entire

workload. Another metric, the weighted completion time, is the weighted sum of the indi-

vidual task completion times [Feitelson et al., 1997], The weights may be chosen according

to task priorities or durations.

The completion time places greater emphasis on longer tasks, as opposed to short tasks.

This is why a normalised metric called slowdown [Feitelson and Rudolph, 1998] is some-

times employed. It is defined as the runtime on a loaded system divided by the runtime on a

dedicated system. If the tasks have different priorities, the weighted slowdown may be used.

18

2 OVERVIEW OF PROBLEM TYPES

Completion Rate

If the workload in the system is high and the tasks to be executed have tight deadlines, not

all of them may be able to complete on time. In the case of hard deadlines a task will fail

if its deadline is missed. In this so-called deadline scheduling scenario [Buyya et a i, 2000;

Fatima, 2000; Takefusa, 2001] an important performance metric will be the completion rate,

i.e. the ratio of tasks completed on time and all tasks submitted to the system. If the tasks

have different priorities, the weighted completion rate can be used.

User Utility

In reality, the users of a system may often have tasks with a soft deadline, rather than simply

wanting to minimise their completion time or to meet hard deadlines. This soft deadline may

be expressed as a utility function whose value depends on the time when the task completes

[Chun and Culler, 2002]. At the same time, the value depends on the importance of the

task which may be strongly varying: e.g. a company running simulations for pharmaceutical

research may attach much more value to its tasks than another user who is running image

processing jobs in his spare time. As the utility of a task is sensitive to its delay, it can

be represented by a piecewise-linear function of the slowdown which is shown in Fig. 2.

E.g. the value could remain at its maximum Vrask,initial until a given slowdown value sl\ is

reached and then linearly decrease until a slowdown value sl2 where it becomes zero. In such

a scenario, which can be seen as a generalised deadline scheduling scenario, the following

cases are possible: A task has a hard deadline if s l\-sh , a soft deadline if sl\ < sl2 < °°, and

no deadline at all if sl2 =°°.

Makespan

When dealing with a supertask which consists of many smaller tasks, a typical goal is to

minimise a metric called makespan [Abraham et a l, 2000; Casanova, 2001], The makespan

is defined as the time elapsed between the submission of the first task to the system and the

completion of the last task.

19

2 OVERVIEW OF PROBLEM TYPES

Figure 2: Time-dependent value of tasks.

Throughput

A widely used metric for evaluating the performance from the system’s point of view is the

throughput [Casavant and Kuhl, 1988; Ferguson et a i, 1996; IEEE, 1990], It is defined as

the amount of work that can be performed by a computer system or component in a given

period of time. Assuming that the performance and capacity of its resources are limited, the

aim is usually to maximise the system’s throughput.

There is an inherent conflict in trying to optimise both, an individual task’s completion

time and the system’s throughput [Casavant and Kuhl, 1988]. The reason is that throughput

is concerned with seeing that all tasks are making progress. Therefore an individual task

might not obtain the best possible service.

2.6.2 Utilisation

Another important measure is the utilisation of the machines in the system. One possible

objective is to maximise the utilisation of the system’s resources — which is compatible

with maximising the throughput.

Another very common goal is to obtain an even balance of the load in the system. This,

for instance, can be done by minimising the maximum load over all machines and over the

20

2 OVERVIEW OF PROBLEM TYPES

whole time [Azar, 1998],

2.6.3 Scalability

The term scalability is used to refer to the change in performance of the parallel system as the

problem size and machine size or number increase. Intuitively, a parallel system is scalable

if its performance continues to improve as we ’scale’ (i.e. increase) the size of the system

and of the problem.

2.6.4 Stability

Stability is a concept used in domains such as the physical sciences where it is regarded

as a property of an equilibrium. An equilibrium is stable if, after a small perturbation, the

system returns to it ’voluntarily’. For our type of system the notion of an equilibrium is

not exactly clear. Intuitively, a system is in equilibrium when the statistical properties of

its performance parameters remain stationary for a given variation in the system’s external

load. Thus, instability occurs when a small perturbation of some system parameters leads to

a sharp and persistent deviation in the systems performance indicators [Lee et al., 1998].

2.6.5 Other Metrics

In this thesis we aim to maximise the performance as perceived by the user. Therefore, we

mainly use the perfonnance metrics that are described in subsection 2.6.1. However, there

exist other metrics which can be relevant in some situations: •

• Communication Costs: When dealing with the amount of traffic which is caused ei-

ther by the application itself or by the scheduler, the simplest metric is the number of

messages exchanged. Another one is the distribution of the message size.

• Fairness: In many systems the aim is to treat all users fairly and therefore ensure that

their tasks complete eventually. Fairness can also mean being fair to the resources by

balancing the workload so that the utilisation of the machines is approximately the

same (see subsection 2.6.2).

21

2 OVERVIEW OF PROBLEM TYPES

• Cost o f Task Re-Assignments: In pre-emptive resource allocation protocols (see section

4.4), tasks are re-assigned to other machines at execution time in order to improve

performance. However, the re-assignments can be very costly themselves and may

even degrade performance. Possible metrics are the number of task re-assignments,

the amount of data that needs to be transferred for the individual task, the overhead of

packaging up the state of the task, and the transfer delay.

• Economic Efficiency: One approach to the resource allocation problem is to use com-

putational economies (see subsection 4.3.2), which value resources and aim to achieve

an efficient match of demand and supply. In a computational economy, one possible

objective is to achieve economic efficiency, i.e. the resource allocation mechanism

should help to maximise the gains of the participants. In [Levy et al., 2001] the to-

tal welfare is used as a metric of the allocation efficiency. It is defined as the sum of

the buyers’ utilities from the services they buy at the market minus the costs of these

services for the sellers.

• Reliability: When an application is executed in an unreliable environment, a possible

metric is the application failure probability [Ferguson et a i, 1996],

2.7 Summary

In this chapter, we gave an overview of application types that can benefit from being dis-

tributed and executed in parallel. The main emphasis was on the application’s communica-

tion requirements and dependencies between its subtasks. We then discussed the speedup

that can be achieved through the parallel execution. In addition to the theoretical limits,

which are stated in Amdahl’s law, we named further factors which may reduce it in prac-

tice. Finally, we introduced several metrics that can be used to evaluate a resource allocation

protocol. In this thesis, we will focus on those metrics which assess performance from the

user’s point of view.

22

3 INFRASTRUCTURE AND MIDDLEWARE

3 Infrastructure and Middleware

For the design of a resource allocation protocol, the hardware and software infrastructure of

the system needs to be considered. This chapter will address the relevant system properties,

which include the machine architecture, system control, and network connections. It will

also introduce so-called middleware, which is software that enables the communication of

applications in a distributed system. An overview of different types of middleware platforms

will be provided.

3.1 Machine Architecture

The machine architecture comprises various architectural features such as processor type,

processor speed, external I/O bandwidth, memory size, etc. Different machines in the system

may or may not be able to execute a particular computational task. This will depend not only

on the machine’s hardware architecture but also on the operating system and the software that

is installed. For a given computation it is also necessary to know how greatly and with which

properties the execution times vary across different machines in the system. In the simplest

case all machines are the same, and there are no significant variations (identical machine

case). In the related machines case the relations of execution times on different machines

are the same for all tasks. If certain machines perform better (or worse) for different types of

computation tasks, this is called the unrelated machine case [Azar, 1998],

3.2 System Control

The scheduler of a system, and hence the resource allocation protocol, may have different

levels of control over its resources. Either it may have complete control over all machines in

the system, or it may have to deal with external users which are also consuming resources.

In the case of external users a background load on the resources will have to be assumed.

Also, one needs to distinguish between closed and open systems. In an open system the

users and resource providers will be able to enter and leave the system over time. In such

a system the protocol will have to deal with issues such as user authentication, admission

23

3 INFRASTRUCTURE AND MIDDLEWARE

control, and resource accounting. Another issue which must be considered is whether the

number of machines under the system’s control is fixed or variable. The latter will usually

be the case for open systems. It is also important to know how tasks — which in this context

are usually referred to as jobs or processes — are scheduled on the individual machines.

Can only one task execute at a time, or are the machines time-shared? In the latter case, the

question is how the CPU time is allocated to the tasks — and whether the resource allocation

protocol can influence it. A task’s CPU share can be proportional to its priority but also other

issues may be considered, e.g. real-time requirements of a task, starvation of low priority

tasks, etc. In general, the scheduling of tasks will depend on the operating system — or a

dedicated scheduler that is used.

3.3 Network Connections

For certain types of applications, in particular communication-intensive tasks, the network

infrastructure plays an important role. A widely used metric for network performance is

the bandwidth (also referred to as throughput): it is defined as the amount of data that can

be transferred between two machines per second. Latency is another essential measure of

network performance. It describes the time passed between the dispatch of a message by

the sender and its arrival at the receiver. Normally, it only includes the network traversal

time. Sometimes, also the source queueing time is included in this figure [Chien and Kon-

stantinidou, 1994], Furthermore, the time of marshalling and unmarshalling the data may

be added to it. For the protocol design, it is important to know how the machines in the

system are interconnected. Are all machines in a Local Area Network (LAN) or distributed

all over the Internet? Does the system consist of a collection of workstation clusters, or are

the machines on random geographic locations? The system might also have to deal with

information (packet) losses and variations of the performance characteristics over time.

3.4 Middleware

Having briefly discussed the hardware infrastructure, we now introduce the software infras-

tructure, which is required for any type of distributed computing: middleware. Middleware

24

3 INFRASTRUCTURE AND MIDDLEWARE

is a general term for software that connects otherwise separate applications. There exist var-

ious middleware platforms with different properties and application domains. These will be

discussed in the remaining sections of this chapter. At first, we introduce the most widely

used middleware platforms: the message passing libraries MPI [Pacheco, 1997] and PVM

[Geist et al., 1994] for parallel computing, and the distributed object computing platforms

RM1 [Sun Microsystems, accessed in 2003b], CORBA [Object Management Group, 1992],

.NET [Platt and Ballinger, 2002], and Web Services [Webopedia.com, accessed in 2004] for

distributed systems. Next, we discuss several mobile agent platforms [Hohl, accessed in

2003], in which code can autonomously migrate between different hosts.

Recently, middleware has been incorporated in platforms which are dedicated to Grid

computing. As an example, we will describe the very popular Globus Toolkit [Foster and

Kesselman, 1997], Finally, we discuss other platforms which do not target Grid Comput-

ing but can provide a powerful infrastructure, namely Jini [Sun Microsystems, accessed in

2003c], JMS [Sun Microsystems, accessed in 2003a], JXTA [Sun Microsystems, accessed

in 2003d] and JADE [Bellifemine et a l, 1999],

3.5 Distributed Object Computing

In the early 80s, the Unix operating system with its dedicated programming language C

was enhanced by remote procedure calls (RPCs), which made it possible to access remote

procedures. Similarly, Java was later extended to cater for remote method invocation (RMI)

[Sun Microsystems, accessed in 2003b],

The heterogeneity of many different RPC implementations led to the development of

the Common Object Request Broker Architecture (CORBA) [Object Management Group,

1992]. The core of the object management architecture is an object request broker (ORB),

which enables an object to request an operation execution from another, possibly remote,

object. The objects can be very heterogeneous in the sense that they can be implemented in

different programming languages and they can be running on different hardware platforms

with different operating systems.

While CORBA has been designed for tightly-coupled applications, Web Services [We-

25

3 INFRASTRUCTURE AND MIDDLEWARE

bopedia.com, accessed in 2004] provide a standardised way of integrating loosely-coupled,

web-based applications. They use the XML, SOAP, WSDL, and UDDI open standards over

an Internet protocol backbone: XML is used for tagging the data, SOAP for transferring it,

WSDL for describing services, and UDDI for listing the services that are available.

An increasingly popular framework is Microsoft’s .NET [Platt and Ballinger, 2002] which

is compatible with Web Services and offers a similar functionality as CORBA. Interoperabil-

ity is achieved by compiling the programming language into intermediate code, a concept

similar to the Java bytecode. Unlike in CORBA, the developer does not need to provide

interface definitions for the communicating programs.

3.6 Message Passing Libraries (MPI, PVM)

While distributed object computing has been geared towards distributed systems in general,

high performance computing on multi-processor platforms has motivated message-passing

libraries. Two prominent message-passing libraries are PVM, the parallel virtual machine

[Geist et al., 1994], and MPI, the message-passing interface [Pacheco, 1997],

MPI’s main motivation is portability of software for massively parallel processors (MPP).

Before the standardisation of MPI, software of MPP was not re-usable, since different ven-

dors used proprietary message-passing libraries. To overcome this problem without compro-

mising advantages of proprietary solutions, MPI’s main objectives are portability of parallel

applications, high performance, and a large set of point-to-point communication routines.

In contrast to programming MPPs with MPI, PVM allows a user to view a network of

heterogeneous hosts as a single large parallel computer. PVM takes care of different data

formats of the heterogeneous platforms and thus achieves portability in a more general sense

than MPI: while MPI caters for portability of software from one platform to another, PVM

provides the infrastructure to make different, heterogeneous platforms transparently work

together. The network underlying PVM is also re-configurable at run-time, such that hosts

can be added and removed and processes notified about the changing configuration.

26

3 INFRASTRUCTURE AND MIDDLEWARE

3.7 Mobile Agents

Mobile agents are objects comprising data and code, which can decide themselves, when to

move to another server. This autonomy adds a further degree of flexibility: as decisions Con-

cerning migration are taken locally by the agents, they can be used to provide a decentralised

resource allocation protocol.

Historically, mobile agents are based on work carried out in the 80s on process migra-

tion and on distributed object computing [Shoch and Hupp, 1982; Jul et al., 1988; Artsy and

Finkel, 1989; Douglas and Ousterhout, 19911. The combination of the two areas, i.e. to mi-

grate distributed objects was first coined in [Jul et al., 1988], However, only with the spread

of Java, researchers became widely interested in object mobility. Java has been so crucial

for the development of mobile agents, as it has been designed as an architecture-independent

network-centric programming language, which provides many of the requirements to imple-

ment object mobility as a standard feature. With Java’s Remote Method Invocation (RMI)

it is very simple to use mobile objects. RMI has been developed to support the invocation

of methods on remote hosts, but it also caters for mobility, however, indirectly. When local,

serialisable objects are passed as parameters to remote methods, RMI copies the object to the

target machine. If the object at the source is then destroyed, it has effectively migrated from

one machine to another. To support code mobility of classes used by the migrated object,

Java provides dynamic class loading [Liang and Bracha, 1998],

Strong vs. Weak Mobility

In general, there are two types of mobility: strong mobility and weak mobility. In strong

mobility, the execution state of the object is preserved during migration, whereas in weak

mobility the code is restarted on arrival at the remote destination. Java only supports weak

mobility, because it does not allow access to the execution stack. Nonetheless, it has been

used by many mobile agent platforms.

Mobile Agent Platforms

There is an increasing number of mobile agent platforms of which a comprehensive overview

is given by the Mobile Agent List [Hohl, accessed in 2003], In this section some well-known

27

3 INFRASTRUCTURE AND MIDDUEWARE

Java-based platforms will be briefly described.

Mole [Strasser et a l, 1996] was the first Java-based mobile agent framework and was

developed at the University of Stuttgart. It provides the notion of places, the executing

environments, where user agents are able to interact. They can communicate with the system

resources via the so-called service-agents which are always stationary. Mole uses RMI for

the communication and supports weak mobility.

Another popular framework is Aglets [Lange and Oshima, 1998b] which has been devel-

oped by the IBM Tokyo Research Laboratory and aims to facilitate the encoding of complex

agent behaviour with moderate effort [Lange and Oshima, 1998a], It provides enhanced fa-

cilities that allow the agents to co-operate with web browsers and Java applets. In addition

to RMI, Aglets allows communication via TCP sockets.

Grasshopper [Baeumer et al., accessed in 2003] has been the first mobile agent environ-

ment which is compliant to the MASIF standard [Milojicic et al., 1998], MASIF is based

on CORBA and aims to provide inter-operability between different mobile agent platforms.

Grasshopper also supports the FIPA specifications [FIPA, accessed in 2003], which has been

designed to facilitate the communication between different agent platforms. The platform

uses a proprietary ORB but can also be run using RMI or plain socket connections.

In contrast to the previous platforms, D ’Agents [Rus et al., 1997] is a Java-based platform

which supports strong mobility: When an agent moves to another server, the complete state

is packaged up, and the agent’s execution continues after arrival. However, this facility has

come with a high price. In order to support this mechanism, the Java Virtual Machine had to

be modified, and the platform will only work with this specialised JVM.

3.8 Grid Computing Platforms: Globus

There exist a number of frameworks which are dedicated to Grid Computing [Baker et al.,

2001; Foster and Kesselman, 1998]. These include Globus [Foster and Kesselman, 1997],

Unicore [Pallas, accessed in 2003], the Load Sharing Facility [Platform Computing, accessed

in 2003] and Legion [Natrajan et al., 2001], A very popular one is the Globus Toolkit: It

implements parts of the Open Grid Services Architecture (OGSA) standard [Foster et al.,

28

3 INFRASTRUCTURE AND MIDDLEWARE

accessed in 2004], which is based on Web Services concepts and technologies. Globus

provides a software infrastructure that enables applications to handle distributed computing

resources as a single virtual machine. It provides a set of mechanisms for communication,

resource discovery, resource allocation and data access, which form a basic infrastructure

for a computational Grid. It also has a security infrastructure which allow its deployment in

an open environment. The toolkit consists of several components each of which defines an

interface and an implementation for various machine architectures and operating systems.

A major drawback of the framework is that it has been developed in C language: therefore

several versions have to be maintained for different machine architectures and operating

systems.

3.9 Other Distributed Computing Platforms

Several other platforms do not target Grid Computing but can still provide a powerful in-

frastructure for such applications. Some well-known platforms are Jini [Sun Microsystems,

accessed in 2003c], JMS [Sun Microsystems, accessed in 2003a], JXTA [Sun Microsystems,

accessed in 2003d], and JADE [Bellifemine et a l, 1999]. These will be discussed in this

section.

Jini

Jini [Sun Microsystems, accessed in 2003c] is Sun Microsystem’s proposed architecture for

embedded network applications. It provides a lookup serxnce that enables devices to plug

together to form an impromptu distributed system. Its communication infrastructure is not

bound to any specific middleware. However, it is mainly used in combination with RMI. In

contrast to mobile agent platforms, Jini does not support active or autonomous objects. How-

ever, the use of passive mobile objects in combination with Jini’s lookup service provides a

powerful infrastructure which is suitable for many distributed applications [Waldo, 2001],

JXTA

JXTA [Sun Microsystems, accessed in 2003d] is an open source project which has been

started by Sun. It is a set of open protocols that is supposed to allow any connected device on

29

3 INFRASTRUCTURE AND MIDDLEWARE

the network ranging from cell phones and wireless PDAs to PCs and servers to communicate

and collaborate in a peer-to-peer manner. JXTA peers create a virtual network where any

peer can interact with other peers and resources directly, even when some of the peers and

resources are behind firewalls or are on different network transports.

Java Message Service (JMS)

In contrast to CORBA or RMI, Sun’s Java Message Service (JMS) [Sun Microsystems, ac-

cessed in 2003a] is designed for asynchronous communication in loosely coupled systems.

It can guarantee the delivery of a message to its recipient. For a user to participate in the sys-

tem, authentication is required. JMS supports various communication mechanisms including

publish-subscribe messaging. It is an open standard that is supported by several vendors, and

also open source implementations are available.

Java Agent Development Framework (JADE)

JADE [Bellifemine et a i, 1999] is a very popular middleware platform in the agent research

community in Europe. It is FIPA-compliant IFIPA, accessed in 2003] and thus can commu-

nicate with other FIPA-compliant agent platforms. JADE provides a rich API which enables

the developer to build an agent-based distributed system with moderate effort. Among other

features it supports agent behaviours, asynchronous messaging, and multiple communica-

tion protocols, including RMI, Corba, HTTP, and JMS. It provides mechanisms for resource

discovery and several security features. Within a local domain it supports mobile agents via

RMI.

3.10 Summary

In this chapter we addressed the different properties of the system’s infrastructure which need

to be considered when distributing applications for execution on remote resources. These in-

clude the machine architecture, the network connections, and the level of control that the sys-

tem’s scheduler has over the resources. We then introduced middleware, which provides the

software infrastructure for executing distributed applications. Several middleware platforms

have been discussed, including message passing libraries, distributed computing platforms,

30

3 INFRASTRUCTURE AND MIDDLEWARE

mobile agent platforms, and Grid computing frameworks.

So far, we have discussed the relevant aspects of the applications that can benefit from

being executed in parallel and of the systems in which they can be deployed. Since the

objective of this thesis is to evaluate the performance of market protocols in computational

clusters and Grids, the next chapter will provide a survey of various types of resource allo-

cation protocols for such environments.

31

4 RESOURCE ALLOCATION PROTOCOLS

4 Resource Allocation Protocols

In this chapter a survey of different resource allocation protocols for computational clusters

and Grids 8 will be given. The protocols examined here can be classified as online or dynamic

resource allocation protocols, where the decisions concerning the allocation of tasks are

taken at run-time. According to the direction of our work, the main focus of this survey will

be on market protocols. However, other approaches will also be discussed.

4.1 Resource Allocation Problem

At first, we will briefly describe the resource allocation problem which will be tackled. We

assume a system with several computational resources which are defined by their speed and

availability. Due to background load, the latter may vary over time. Computational tasks are

arriving to the system and need to be allocated resources. They have different priorities —

which may or may not be time-dependent. The tasks may either be independent or be part

of larger supertasks. The system is assumed to be geographically distributed, and therefore

communication delays need to be taken into account.

The problem is how to allocate resources to the tasks so that a given performance metric,

such as the mean completion time or the makespan, is optimised. This problem is NP-

complete when computed offline 9, i.e. when all task arrivals and load variations are known

before making the allocation decisions [Garey and Johnson, 1995]. For the online problem

— where the events in the system are not known in advance — it is not even possible to

obtain the optimal allocation. However, good results can be achieved with heuristics which

will be described in this chapter.

8The differences between clusters and Grids have been briefly discussed in section 1.2: Grids are usually
larger than clusters. Users and service providers are geographically distributed and belong to different organi-
sations, with heterogeneous platforms and varying reliability and availability. Furthermore, the parties involved
have different priorities, requirements, and goals, making resource management even harder.

9Note that the offline-computation of a solution is only of theoretical interest. It is often used to assess the
quality of a solution that has been computed online, i.e. at runtime.

32

4 RESOURCE ALLOCATION PROTOCOLS

4.2 Classification of Resource Allocation Protocols

The aim of the resource allocation protocols discussed in this thesis is to maximise the bene-

fit of the users who want to execute their tasks on the resources. To achieve this, the allocation

decisions need to be based on the utilisation and performance of the machines available and

on the requirements of the tasks 10. There is a large number of different approaches which

we classify according to the following criteria:

• State-based vs Model-based: Are the allocations based on a current snapshot of the

system state (state-based) or on a model which predicts the system state (model-based

or predictive)?

• Preemptive vs Non-Preemptive: Are tasks assigned to hosts once (non-preemptive) and

then stay there, or can they migrate if it turns out at a later stage that it is advantageous

to leave the machine {preemptive)?

• Cooperative vs Competitive: Are all parts of the system working towards a common,

system-wide goal {cooperative) or do self-interested autonomous entities take deci-

sions regarding the use of their resources (competitive)?

• Centralised vs Distributed: Does the responsibility for the allocation of tasks reside at

one single location (centralised) or is the decision-making distributed among several

machines (distributed)?

The following survey is summarised in Figure 3. The table provides additional informa-

tion, such as the underlying middleware and the organisation of the system.

4.3 State-based, Non-Preemptive Resource Allocation

In state-based approaches to resource allocation, information about the current system state

is used to decide at which host to start a task. The quality of this approach depends on the

amount of state data available. Gathering the data is expensive but leads to more accurate

10Please note that in literature the terms scheduling and load-balancing are often used when referring to
what we mean by resource allocation. In this thesis we will use these expressions interchangeably.

33

4 RESOURCE ALLOCATION PROTOCOLS

decisions. In non-preemptive resource allocation the task cannot be migrated elsewhere once

it was launched on a host. Since this form of resource allocation is easy to implement and

can lead to good results, it is widely adopted. In this section we review several techniques

which are state-based and non-preemptive. After introducing several conventional schedul-

ing heuristics we move on to systems which use market protocols.

4.3.1 Non-Competitive Protocols

Finding the optimal schedule of tasks online will often be infeasible because of the compu-

tational cost — or because the information about the system is incomplete. For this reason

heuristics have been developed which aim to find a sufficiently good solution. Heuristics

make assumptions about the computational tasks or the system resources. A very simple

example is the ’’Strawman” Round-Robin protocol: it assumes that all resources perform

equally well and that all tasks to be scheduled are equally important. In this section, several

conventional (i.e. non-economic) heuristics will be described.

Shortest Job First (SJF), Min-min

Shortest Job First (SJF) [Chun and Culler, 2002] allocates the shortest task first for which it

selects the best resource that is available. This strategy is useful if the goal is to minimise

the mean slowdown of the tasks. Though, it also minimises the mean completion time.

The idea behind it is that short tasks suffer a larger relative slowdown than longer ones if

they are delayed by the same amount of time. Hence, allocating the shortest job first will

usually result in a lower mean slowdown of all tasks than e.g. a first-in-first-out (FIFO)

protocol. For the unrelated machine case a generalised version of Shortest Job First called

Min-min [Casanova et a i, 2000; Maheswaran et a i, 1999a] can be used: Min-min tentatively

schedules each task to each resource and computes the minimum completion time (MCT).

For resources which are unavailable at the time, the calculation of the MCT considers the

currently executing and already scheduled tasks. In Min-min the task with the minimum MCT

is scheduled first. Note that in dynamic environments the calculation of the MCT requires

estimates of the resource performance and task size, in which case this heuristic becomes a

model-based resource allocation protocol, see subsection 4.5.

34

4 RESOURCE ALLOCATION PROTOCOLS

System / Authors Protocol Computation Middleware T M PE Org
Streit et al. SJF, LJF Ind. tasks n/a S - - C

Maheswaran et al. Min-min, etc. Ind. tasks n/a S - - c
Casanova et al. Min-min, etc. PSAs n/a S - - c
Abraham et al. GA, SA, TS PSAs n/a s - - c
v. Nieuwpoort et al. RS,RP,CHS,CLS,CRS D & C Satin s - (/) d
Spawn Second Price Auction D & C C, RPC s / (/) d
Ferguson et al. Auction protocols Ind. tasks n/a s / - d
ERA First-Price Auction Processes n/a s / - d
Chun et al. First-Price Auction Ind. tasks n/a s / - C

POPCORN Auction protocols Parallel appi. Applets s / - c
CPM Economic protocols Parallel appi. RMI, JXTA s / - d
MAJIC Reverse auction Serv. requests Jini, RMI s / - C

Dynasty Brokering D & C C s / (/) h
OCEAN Brokering Parallel appi. Java, .NET s / - d
G-Commerce Commodity market Ind. tasks n/a s / - C

Traveler Autonomous agents Parallel appi. RMI s - / d
MATS Autonomous agents Parallel appi. Voyager s - / d
FLASH Autonomous agents Parallel appi. Voyager s - / d
Keren et al. Autonomous agents Parallel appi. n/a s - / d
Bredin et al. Proportional share Mobile agents D’Agents s / d
Harchol-Balter et al. Task runtime prediction Processes Unix m - / C

NWS Performance prediction n/a n/a m - - n/a
Challenger Bidding Ind. tasks n/a m / - d
Nimrod-G Economic protocols Globus PSAs m / - h

Abbreviations:
T: type of resource allocation (s=state-based, m=model-based), M: market protocols (/ / -) , PE: allows
pre-emption/migration (/ / -) , Org: organisation (c=centralised, d=distributed, h= hierarchical), ind. tasks:
independent tasks, PSAs: parameter sweep applications, D & C: divide-and-conquer applications, serv.
requests: service requests.

References:
Streit et al.: [Streit, 2001], Maheswaran et al.: [Maheswaran et al., 1999a], Casanova et al.: [Casanova et al.,
2000], Abraham et al.: [Abraham et al., 2000], v. Nieuwpoort et al.: [van Nieuwpoort et al., 2001], Spawn:
[Waldspurger et al., 1992], Ferguson et al.: [Ferguson et al., 1996], ERA: [Messer and Wilkinson, 1996],
Chun et al.: [Chun and Culler, 2002], POPCORN: [Nisan et al., 1998], CPM: [Buyya and Vazhkudai, 2001],
MAJIC: [Levy et al., 2001], Dynasty: [Backschat et al., 1996], OCEAN: [Padala et al., 2003], G-Commerce:
[Wolski et al., 2001], TRAVELER :[Wims and Xu, 1999], MATS: [Ghanea-Hercock et al., 1999], FLASH:
[Obeloer et al., 1998], Keren et al.: [Keren and Barak, 1998], Bredin et al.: [Bredin et al., 1998],
Harchol-Balter et al.: [Harchol-Balter and Downey, 1997], NWS: [Wolski, 1997], Challenger: [Chavez et al.,
1997], Nimrod-G: [Abramson et al., 2002],

Figure 3: Overview of systems

35

4 RESOURCE ALLOCATION PROTOCOLS

Longest Job First (LJF), Max-min

The opposite strategy, Longest Job First (LJF) [Streit, 2001], can be appropriate if the objec-

tive is to minimise the makespan (see subsection 2.6.1) of a set of tasks which belong to a

larger application. The expectation is to overlap long-running tasks with short-running ones.

A generalised version of LJF for the unrelated machine case is Max-min [Casanova et a i,

2000; Maheswaran et al., 1999a]: It schedules the task with the maximum MCT first.

Sufferage

Sufferage also aims to minimise the application makespan. The rationale behind this heuris-

tics is that a machine should be assigned to a task that would suffer the most if not assigned

to it. For each task its sufferage value is defined as the difference between its best MCT and

its second-best MCT. Tasks with high sufferage value will take precedence. In [Casanova

et al., 2000], an extended heuristic called XSufferage is proposed which is designed for the

allocation of a parameter sweep application in a dynamic Grid environment. It takes advan-

tage of file sharing and, according to the simulation results, achieves better performance and

is more tolerant to errors in the estimated execution times.

Search heuristics

There exist several search heuristics which aim to find a near-optimal solution to the resource

allocation problem in a limited amount of time. Almost any optimisation goal is possible,

such as minimising the completion times of the tasks or the makespan of a super-task. Ge-

netic Algorithms (GA), Simulated Annealing (SA), and Tabu Search (TS) are examples of

popular greedy search heuristics. They will be briefly described in this section: •

• Genetic Algorithms (GA): Genetic algorithms (GA) are based on the genetic pro-

cess of biological organisms and are a popular technique that is used to find near-

optimal solutions in optimisation problems. Possible solutions are encoded as chro-

mosomes, the set of which is called a population. The population is iteratively op-

erated on by the following steps until a stopping criterion is met: In the selection

step, some chromosomes are removed and others duplicated based on their fitness

value — a measure of the quality of the solution. This is followed by a crossover

36

4 RESOURCE ALLOCATION PROTOCOLS

step where some chromosomes are paired and the corresponding components of the

paired chromosomes are exchanged. Finally, the chromosomes are randomly mu-

tated, with the constraint that they still remain valid solutions [Abraham et al., 2000;

Braun et al., 1999],

• Simulated Annealing (SA): Simulated Annealing (SA) exploits an analogy between the

way in which a metal cools and freezes into a minimum energy crystalline structure

(the annealing process) and the search for a minimum in a more general system. It is

an iterative technique that has the ability to avoid becoming trapped at local minima:

it uses a procedure which probabilistically allows poorer solutions to be temporarily

considered in order to obtain a better search of the solution space. This probability is

based on a system temperature that decreases for each iteration. As the system tem-

perature cools, it becomes more difficult for currently poorer solutions to be accepted

[Abraham et al., 2000; Braun et al., 1999],

• Tabu Search (TS): Tabu search is a solution space search that keeps track of the re-

gions of the solution space which have already been searched so as not to repeat a

search near these areas. It is a meta strategy for guiding known heuristics to overcome

local optimality and has become an established optimisation approach that is rapidly

spreading to many new fields [Abraham et al., 2000; Braun et al., 1999],

In [Braun etal , 1999] these heuristics are applied to the offline scheduling of independent

tasks onto heterogeneous resources in a cluster (unrelated machine case, see section 3.1).

The aim is to minimise the makespan. The observation is that Genetic Algorithms (GA)

perform best in most situations and also outperform other heuristics such as Min-min and

Max-min.

The work presented in [Abraham et al., 2000] deals with the problem of how tasks can

be allocated online to geographically distributed computational resources. For the allocation

a global scheduler is used, and the aim is to generate the schedules in a minimum period

of time. The authors use simulations to compare the performance of GA, SA, TS, and hy-

brid random search techniques GA-SA and GA-TS. They find that the GA-SA has better

37

4 RESOURCE ALLOCATION PROTOCOLS

convergence than GA whereas GA-TS improves its efficiency.

Random Stealing, Random Pushing

Random Stealing (RS) and Random Pushing (RP) are well-known load balancing heuristics,

used both in shared-memory and distributed-memory systems [van Nieuwpoort et al., 2001].

Both heuristics are distributed in the sense that scheduling decisions are taken locally by the

processors. At the beginning of the computation, all jobs of the application are distributed

over the processors in the system. (During the execution the number of jobs may rise, e.g.

in case of divide-and-conquer computations, see subsection 2.3.2.) Each of the processors

maintains a queue for jobs which are waiting for execution. In Random Stealing, each pro-

cessor executes its jobs until the queue becomes empty. Then, the processor attempts to

steal a job from a randomly selected peer, repeating steal attempts until it succeeds. This ap-

proach minimises communication overhead at the expense of idle time: No communication

is performed until a node becomes idle, but then it has to wait for a new job to arrive.

In Random Pushing, a processor, whose queue exceeds a certain length, takes a job from

its queue and sends it to a randomly chosen peer. This approach aims to minimise proces-

sor idle time because jobs are pushed ahead of time, before they are actually needed, but

comes at the expense of additional communication overhead. In [van Nieuwpoort et al.,

2001], Random Stealing, Random Pushing, and several improved variants have been eval-

uated for a range of divide-and-conquer applications (see subsection 2.3.2) in a wide-area

setting. These variants included Cluster-aware Hierarchical Stealing (CHS), Cluster-aware

Load-based Stealing (CLS), and Cluster-aware Random Stealing (CRS). The applications

were implemented on top of the Satin system, a middleware in which the communication

mechanisms of Java have been optimised for high-performance computing. In most experi-

ments, Cluster-aware Random Stealing performed better than the other approaches.

4.3.2 Market Protocols

Market-based approaches to resource allocation provide an intuitive way of representing the

system state and balancing the workload: they value resources and aim to achieve an efficient

match of supply and demand. They satisfy some basic requirements for a Grid setting, as

38

4 RESOURCE ALLOCATION PROTOCOLS

decisions about whether to consume or provide resources are taken locally by the clients or

service providers. The use of currency provides incentives for service providers to contribute

resources. It also forces the clients to act responsibly, as, due to their limited budget, they

cannot afford to waste resources. Recently, market-based approaches to resource allocation

have received much theoretical interest [Ferguson et al., 1996; Sandholm, 2000; Wellman et

ai, 2001], They have not only been applied to the allocation of computational resources but

also in other fields, e.g. in 'information filtering economies’ [Christoffel, 2001; Kephart et

al., 2001; Moss, 1999] or in the freight domain [Preist et al., 2001].

Types of Protocols

For transactions between buyers and sellers different pricing mechanisms can be employed.

Some systems use only a price, and match offers and bids. Others employ dynamic pricing

where the sellers set their prices and may change them at any time, depending on the buyers’

demand [Bredin et al., 1998; Kephart et al., 2001]. Another approach are auctions [Kagel,

1995] where buyers bid for resources according to a particular auction protocol.

A very familiar auction protocol is the English auction, in which a seller advertises a

resource whose price is gradually increased as the bids come in — and the highest bidder

wins. In a Dutch auction, the auctioneer starts with a high price which is decreased until a

buyer is willing to pay it. In a sealed-bid auction, there is only one round of communication:

All buyers submit sealed bids, and the highest bidder wins. There are different types of

sealed bid auctions: In a first-price auction, the winning bidder pays a price which is equal

to his own bid, whereas in the second-price auction, he only has to pay the second highest

bid. The idea behind the latter type of auction, which is also called Vickrey auction, is

that buyers are encouraged to express their true valuations of the resource, thus preventing

strategic behaviour.

A different type of auction is the double auction which is a many-to-many protocol, and

not a 1-to-many protocol as the above. Multiple buyers and sellers submit their bids and

ask prices, and matches are made by the marketplace. A double auction can either be a

continuous auction where transactions are carried out immediately whenever bids or offers

39

4 RESOURCE ALLOCATION PROTOCOLS

change I1, or a periodic auction in which the transactions are carried out only at periodic

intervals.

Auctions in Clusters

Spawn [Waldspurger et al., 1992] has been among the first systems which employed market

protocols in a computational cluster. It used Vickrey auctions for the allocation of divide-

and-conquer applications (see subsection 2.3.2) in a cluster of workstations. Ferguson et al.

[Ferguson et al., 1996] developed a load-balancing economy for the allocation of indepen-

dent jobs in a network of processors. These jobs have various preferences on the service they

wish to receive: best price, best service time, or a combination of the two. Several auction

protocols are examined including English, Dutch, Hybrid, and Sealed Bid auctions.

The ERA system [Messer and Wilkinson, 1996] provides an operating-system level

framework for resource allocation in a network of workstations. Its goal is to dynami-

cally maximise performance whilst maintaining fairness between competing processes. A

multiple-unit first-price auction is held at each workstation, and agents are used to dissem-

inate resource information to other markets. The auction results in proportional sharing:

it provides response time proportional to the money paid — and hence to the relative im-

portance of the process. In an experiment, where a matrix multiplication computation was

emulated, the framework could be shown to be scalable and low-overhead.

In a more recent work by [Chun and Culler, 2002] a first-price auction is used for the

allocation of parallel tasks in a homogeneous computational cluster — which is modelled as

a single but divisible resource. In simulations, the performance of the auction is compared

to that of conventional protocols such as Shortest Job First (SJF, see subsection 4.3.1). The

authors use the time-dependent user utility as performance metric (see subsection 2.6.1)

which they consider to be a more realistic performance measure than e.g. the task completion

time. The results show that using a first-price auction instead of traditional approaches can

substantially increase the value delivered to the user.

Spawn, ERA, and the work by Ferguson use architectures in which auctions are held at

each machine in the network. These architectures may be suitable for computational clusters

11A similar protocol is used at the New York stock exchange.

40

4 RESOURCE ALLOCATION PROTOCOLS

but will be problematic for a Grid: In a Grid the communication delays are higher. Also,

the ownership of resources is distributed, leading to security problems. The architecture

used by Chun et al. is also limited to a cluster because the assumption of having a single,

homogeneous resource is not valid for a Grid.

Auctions: Grid-wide

POPCORN [Nisan et al., 1998; Regev and Nisan, 1998] has been one of the first market-

based systems to target resources on the Internet. It provides a market infrastructure that

uses Applets to distribute large applications which can be broken up into independent com-

putations. These include Genetic Algorithms, Simulated Annealing, Brute Force Search, and

Code Breaking. A similar approach is used in the Compute Power Market (CPM) [Buyya and

Vazhkudai, 2001] which also targets low-end personal computing devices as idle resources of

CPU power. The system supports various economic models including the commodity mar-

ket model, contract-net, and auctions. An important feature is its distributed infrastructure

which consists of multiple interacting markets. Both POPCORN and the Compute Power

Market use architectures which could be deployed in practice.

Reverse Auctions

MAJIC [Levy et al., 2001] is a marketplace for the allocation of distributed resources which

is based on Sun’s Jini [Sun Microsystems, accessed in 2003c], The system consists of a

central marketplace with several buyers and sellers. In contrast to the previous systems

it handles multiple parameters in the specification of utilities of the buyers and the costs of

each resource. When a buyer sends a service request to the marketplace, the system performs

a reverse auction where all service providers can participate. The provider, that charges the

lowest price, wins. The allocation efficiency of MAJIC is studied both theoretically and

experimentally. The authors report that load-balancing is achieved as a by-product.

Brokering

Two other systems, Dynasty [Backschat et al., 1996] and OCEAN [Padala et al., 2003],

avoid the communication overhead of auctions. Dynasty allocates the subtasks of a divide-

and-conquer application to machines in a computational cluster. It employs a hierarchical

41

4 RESOURCE ALLOCATION PROTOCOLS

brokering architecture in which the prices of the resources are periodically fixed. In addi-

tion, fees for migration and data transport services are introduced, according to the distance

between source and destination. The local cluster brokers determine several statistics (e.g.

load indices) and pass them up the hierarchy. Also, global knowledge is passed down. The

brokers evaluate the qualification of their subbrokers in order to allocate the tasks efficiently.

The aim of OCEAN [Padala et al., 2003] is to provide a scalable market infrastructure

where resources like CPU time, associated memory usage, and network bandwidth are the

traded commodities. It operates on a peer-to-peer network for which the authors developed

efficient matching protocols. A buyer, who is looking for resources, needs to specify resource

requirements as well as various constraints on the acceptable sales agreement details, such

as price details and method of payment. The buyer’s trade proposal is propagated through

the network, maximising the number of matches found. After a successful match, the buyer

and seller will enter detailed negotiations. OCEAN’S peer-to-peer architecture is likely to be

more scalable than a centralised system. However, the lack of a single, trusted marketplace

leads to additional security problems.

Commodity markets

Another type of market mechanism uses the commodity market model: at the marketplace

an equilibrium of demand and supply is iteratively determined by adjusting prices based

on the supply and demand functions of the producers and consumers. The authors of G-

Commerce [Wolski et al., 2001] apply this approach to computational Grid settings. They

study a market of hypothetical resource consumers (users and Grid-aware applications) and

resource producers (resource owners who sell their resources on the Grid). In a simulation,

the authors consider an independent task scenario in which they compare the performance of

commodity markets to auctions. As performance metrics, mainly economic properties like

equilibrium and price stability are considered. However, the utilisation of resources and the

throughput of tasks are also compared. The authors conclude that commodity markets are a

better choice for controlling Grid resources than auctions. An outline of how the examined

market model could be implemented in practice is given in [Wolski et al., 2003],

42

4 RESOURCE ALLOCATION PROTOCOLS

None of the above systems allows true task migration. However, Spawn and Dynasty,

which deal with the allocation of divide-and-conquer applications (see subsection 2.3.2),

allow tasks to send subtasks to remote machines. Preemptive protocols will be discussed in

the following subsection.

4.4 State-based, Preemptive Resource Allocation

In state-based, non-preemptive approaches to resource allocation, the task is stuck on one

machine once launched. However, if the environment is very dynamic, it may be advanta-

geous for a task to migrate elsewhere. Operating systems researchers already investigated

how the allocation of resources can be optimised with mobility [Cabrera, 1986; Harchol-

Balter and Downey, 1997]. Mobile agents [Bredin et al., 1998] add a further degree of

flexibility: tasks become agents and can decide themselves, when and where to move to,

with a global pattern of load-balancing emerging. Also, mobile agents allow migration to

remote networks and are therefore suitable for computational Grids.

4.4.1 Non-Competitive Protocols

There exist a number of systems which use a mobile agent based infrastructure [Ghanea-

Hercock et al., 1999; Obeloer et al., 1998; Bredin et al., 1998; Bredin et al., 1999; Xu and

Wims, 2000; Wims and Xu, 1999; Keren and Barak, 1998]. Three systems, TRAVELER [Xu

and Wims, 2000; Wims and Xu, 1999], MATS [Ghanea-Hercock et al., 1999], and FLASH

[Obeloer et al., 1998], make specifically use of autonomous mobile agents roaming the net in

search of the best host. The resource allocation protocols in these systems can be classified

as cooperative.

Autonomous, mobile agents

TRAVELER [Xu and Wims, 2000; Wims and Xu, 1999] allows clients to wrap their parallel

applications as mobile agents which are dispatched to a resource broker. The broker forms a

parallel virtual machine atop available servers to execute the agents. Instead of hosts asking

the broker when they have capacities, the system lets its autonomous agents roam the net

43

4 RESOURCE ALLOCATION PROTOCOLS

to find servers to run on. The platform is based on RMI but has been extended to support

strong mobility of multi-threaded agents. The system’s performance has been evaluated for

two parallel applications: sorting and LU factorisation problems.

MATS [Ghanea-Hercock et al., 1999] uses a combination of collaborative and mobile

agents to compute large parallel applications. The system, which has been evaluated for a

standard Genetic Programming problem, distinguishes several agent roles: A Hive is respon-

sible for managing user interaction and determining how tasks are to be distributed, while

Queen agents are run on local servers and control several Worker threads. Specialised light-

weight mobile agents (Scouts) are used for messaging and finding idle computer resources

on remote workstations.

In FLASH [Obeloer et al., 1998], mobile agents are used to compute a ray-tracing ap-

plication in a cluster of workstations. A system agent maintains information of the whole

system and passes it to nodes, which keep information about the locally residing mobile

agents. The agents migrate through the system searching for free resources. FLASH com-

bines application and system information based load management. Therefore it is able to

react efficiently on dynamic background load and avoids unnecessary migration of agents

with a short life span.

Additional optimisation of communication

While most of the above systems aim to optimise CPU usage, Keren and Barak [Keren and

Barak, 1998] also optimise an agent’s location with respect to its communication partners.

The system is geared towards improving the overall performance by a dynamic match be-

tween the available resources and the execution requirements of the agents. This is accom-

plished by agents migrating to the hosts where the agents reside with which they communi-

cate. The authors simulated a Matrix computation, for which a 30-40% improvement could

be achieved compared to a static placement scheme.

4.4.2 Market Protocols

In [Bredin et al., 1998], a framework is presented, which provides market-based resource

control for mobile agents. It is based on the D’Agents platform [Rus et al., 1997] and there-

44

4 RESOURCE ALLOCATION PROTOCOLS

fore allows strong mobility of the agents. The agents need to travel over certain routes in the

network on which they need to consume computational resources. To allocate resources to

the agents, the system uses electronic cash, a banking system, and a set of resource managers.

In the paper, fixed pricing and dynamic pricing protocols are presented. The authors’ focus

is on seller-adjusted pricing and sealed-bid second price auction as mechanisms for dynamic

pricing. In another publication [Bredin et al., 2001], the authors assume the use of a market

protocol and present an algorithm for planning a mobile agent’s itinerary. It is supposed to

guarantee the agent’s optimal completion time. The algorithm is evaluated by discrete event

simulations with Swarm [Minar et al., 1996], In the simulations, a network model is used

which is created with a stochastic network topology generator.

4.5 Model-based Resource Allocation

Model-based approaches to resource allocation aim to predict the duration of the tasks and/or

the load on the resources — and thus their performance. They are much rarer, as they involve

two very challenging problems: how to obtain an initial model and how to adapt the model

as time passes.

4.5.1 Non-Competitive Protocols

In the area of operating systems, some researchers explored this approach and used distri-

butions of CPU load and expected process lifetime to decide if and when to migrate tasks

[Cabrera, 1986; Harchol-Balter and Downey, 1997].

For computational Grids, the prediction of resource performance has recently received

much attention: The Network Weather Service (NWS) [Wolski, 1997] can forecast the load

in global computing environments where platforms like Globus [Foster and Kesselman,

1997] are deployed. It takes periodic measurements of deliverable resource performance

from distributed network resources and uses numerical models to dynamically generate sta-

tistical forecasts of future performance levels. The forecasts are made available to schedulers

and other resource management mechanisms at runtime. They allow them to determine the

future quality of service for each resource. The authors report that the results of the pre-

45

4 RESOURCE ALLOCATION PROTOCOLS

dictions are more accurate than those generated from measurements of current conditions

alone. The approach, which is based on time-series analysis techniques, performs almost

as well as more complex methods. It is lightweight and therefore appropriate for dynamic

computational settings [Wolski, 1997].

4.5.2 Market Protocols

A model-based approach is also used in the Challenger system [Chavez et al., 1997] which

simulates the allocation of independent tasks. It implements load-balancing with a market

approach — however, without money. When a task is created, a request fo r bids containing

its priority value and information which can be used to estimate its duration is sent to the

agents in the network. These make bids giving the estimated time to complete that task on

their machine 12. Important parameters, which have a major impact on the system perfor-

mance, are the message delays and errors in estimating the task’s completion time. Learning

behaviour has been introduced in order to deal with these problems.

Another model-based resource allocation protocol is used by the Nimrod-G Resource

Broker [Abramson et al., 2002], Nimrod-G is a resource management system for schedul-

ing parameter sweep applications (see section 2.1) on globally distributed resources with

varying quality of service. The system is an economic-driven environment which supports

various market protocols such as the commodity market model, posted pricing, and bargain-

ing. It predicts the future performance of the resources in the system by resource capability

measurements and load profiling.

4.6 Summary

In this chapter a survey of different resource allocation protocols for computational clusters

and Grids has been given. Due to the topic of this thesis, the main emphasis was on market

protocols. However, other approaches have also been discussed. We classified the resource

allocation protocols according to several criteria: state-based vs. model-based, preemptive

vs. non-preemptive, cooperative vs. competitive, and centralised vs. distributed.

12This approach belongs to the class of bidding mechanisms [Casavant and Kuhl, 1988].

46

5 RESEARCH OBJECTIVES AND RELATED WORK

5 Research Objectives and Related Work

The previous chapter gave an overview of existing work on market protocols in computa-

tional clusters and Grids and introduced several conventional scheduling heuristics. Some

of the described systems merely try the market approach, whereas others have the objective

to improve performance. However, what is missing, is a systematic comparison of different

market protocols, which will allow a system designer 13 to choose the most appropriate pro-

tocol for a given situation. In this chapter, we state the objectives of this thesis and discuss

related work.

Our objectives and assumptions can be summarised as follows:

• We aim to model a marketplace for computational resources which can be applied to

both computational clusters and Grids. We assume that the resources are not dedicated:

Their availability may vary due to background load, which is outside the control of the

marketplace.

• Our main focus is on independent tasks which arrive randomly and need to be allo-

cated online. These applications are very common and easy to execute on geograph-

ically distributed infrastructures. However, we also examine cases where tasks arrive

in bursts 14.

• As resources we consider PCs which are idle most of their time and therefore can offer

large amounts of processing power to computationally intensive applications 15. As

these PCs belong to different users or organisations, there is a need for a marketplace

which can provide incentives for participation.

• We consider the market as a tool to achieve an efficient allocation of resources. Our

main focus is on the design of the protocols which are used at the marketplace. The

choice of pricing strategies for the Clients and Servers is not the subject of this work:

13The system designer is the person who designs the marketplace and decides which resource allocation
protocol is used.

14This is characteristic for parameter sweep applications (see section 2.1).
15In addition to this, we examine a situation where parallel applications are allocated to multiprocessor

machines.

47

5 RESEARCH OBJECTIVES AND RELATED WORK

We assume a managed system which has the power to enforce these strategies. Money

has no value as such, and hence there is no need to deal with resource accounting.

• Our objective is to maximise performance from the user’s perspective, and therefore,

we choose the performance metrics accordingly (see subsection 2.6.1). In the first

scenario, our goal is to minimise the average completion time of the task, and in the

second one, their weighted completion time. In the third scenario, tasks have hard or

soft deadlines. As performance metric, we use the weighted completion rate (for hard

deadlines) and the aggregate user utility (for soft deadlines).

• To maximise the performance metrics, the resource allocation protocols need to avoid

unnecessary communication. All examined market protocols are double auctions of

sealed-bid-type (’’fire and forget”), i.e. there is no complex negotiation with multiple

rounds. They exploit techniques such as continuous auctions, periodic auctions, pro-

portional sharing, preemption, migration, and the use of reserve prices by the Servers.

In addition to the market protocols, several conventional scheduling heuristics are ex-

amined.

• We want to be able to determine the advantages and disadvantages of the protocols

for different situations which are characteristic for computational clusters and Grids.

This requires a comprehensive exploration of the parameter space. We investigate the

impact of parameters, such as the number of resources in the system, the heterogeneity

of these resources, the amount of load and background load in the system, the local

scheduling policy at the resources, and the communication delays.

We are aware of only few other efforts to evaluate the performance of different market

protocols for computational clusters or Grids. They will be described in this chapter.

5.1 POPCORN

The authors of POPCORN [Nisan etal., 1998; Regev andNisan, 1998] (see subsection 4.3.2)

use simulations to compare several market protocols for the allocation of computational re-

sources in a globally distributed system. In the simulations, the arrivals of buyers and sellers

48

5 RESEARCH OBJECTIVES AND RELATED WORK

are modelled by Poisson processes. The buyers have valuations for the computation of their

tasks, which are time-dependent and are expressed by a decay function. In our thesis, a

similar scenario will be investigated.

The examined protocols are of sealed-bid-type: They require only a single round of

communication and are efficiently computable. However, only few protocols are studied,

which include Vickrey Auctions, Double Auctions, and Clearinghouse Double Auctions.

The latter auction type is similar to the technique which [Wolski et a l, 2001] refer to as the

Commodity Market Model (see subsection 4.3.2). The main difference to our work is that

these auctions are only carried out at periodic time intervals, rather than continuously. As

will be shown, these periodic auctions often result in poor performance.

In their simulations, the authors use other performance metrics for the assessment of the

protocols. The focus is on economic aspects of the system, like price stability and social

efficiency, i.e. the generated welfare of the agents — which is not the concern of our work.

The results show that the Clearinghouse Double Auction protocol leads to the highest eco-

nomic efficiency and the best price stability. However, the experiments are limited to a few

parameter sets, i.e. there is no systematic exploration of the parameter space.

5.2 G-Commerce

The work presented in [Wolski et a i, 2001] investigates computational economies for con-

trolling resource allocation in computational Grid settings (’G-Commerce’, see subsection

4.3.2). The resources are traded at a central marketplace in which several consumers and

producers participate. Simulations are used to compare the performance of commodity mar-

kets to that of Vickrey auctions. As in the work by [Nisan et a l, 1998], all transactions are

carried out at periodic intervals, rather than immediately.

As performance metrics, the authors examine price stability, utilisation of resources, and

throughput of jobs. The results indicate that commodity markets perform better than Vickrey

auctions. One interesting aspect of the examined scenario is that the producers (i.e. service

providers) set their prices based on past revenue. We believe that this technique can help to

improve performance in certain situations, and we will therefore implement it in two of our

49

5 RESEARCH OBJECTIVES AND RELATED WORK

protocols (CDA-RES and HBP-RES, see subsections 6.5.2 and 6.5.7, respectively).

5.3 Work by Ferguson et al.

In the work reported in [Ferguson et al., 1996], several auction protocols (English, Dutch,

Hybrid, Sealed-Bid) are compared to non-economic strategies. In contrast to our work, the

studied system is a cluster of processing nodes connected by a point-to-point network, and

not a geographically distributed infrastructure with a central marketplace. At each of the

processing nodes, tasks are generated which migrate to other nodes and seek CPU time. In

the system, auctions are held at each processing node, rather than centrally. We believe that,

due to its overhead, such an approach would be hard to implement in a computational Grid.

In the simulations, a performance metric called waiting time is used. It corresponds to the

task completion time, that we also use as metric in one of our scenarios. Its main limitation is

that it does not consider the different priorities of tasks. According to the authors, the results

show that the auctions can achieve better performance levels than non-economic algorithms.

5.4 Work by Chun et al.

The authors of [Chun and Culler, 2002] use simulations to examine the performance of

market protocols in a computational cluster. In the studied scenario, the cluster is modelled

as a single, divisible resource consisting of identical processors, which is also fully dedicated,

i.e. without any background load. The author’s goal is to maximise the value delivered to

the users: Users are modelled as having a utility function for each task, which measures its

value as a function of its slowdown (see subsection 2.6.1). A task’s value declines over time

— which can be considered a soft deadline.

As performance metric, the authors use the aggregate utility of all tasks. We will use a

similar performance metric in one of our scenarios, in which the tasks have time-dependent

priorities (see chapter 10).

While the main focus of our work is on independent tasks or embarrassingly parallel

applications, [Chun and Culler, 2002] study both, sequential and highly parallel workloads.

In the latter case, tasks are assumed to be rigid, i.e. they require a specified number of pro-

50

5 RESEARCH OBJECTIVES AND RELATED WORK

cessors which cannot be changed (see subsection 2.2.5). We also study a case with parallel

workload. However, our tasks are assumed to be moldable, which according to [Cime and

Berman, 2001b] is more common than rigid tasks.

The authors study several market protocols and conventional scheduling heuristics, all of

which carry out the transactions only at periodic intervals. They examine first-price auctions

in which the bids for the tasks are static and also first-price auctions where the price bids

decrease according to the tasks slowdown 16. The performance of the auction protocols is

compared to that of commonly used conventional scheduling heuristics, such as Shortest-

Job-First (SJF) (see subsection 4.3.1) and PRIO-FIFO. In PRIO-FIFO, the scheduler uses a

set of FIFO queues with different priorities (see subsection 6.5.12 for more details).

The results show that, in comparison to traditional approaches like SJF or PRIO-FIFO,

the first-price auction with time-dependent user valuations can substantially increase the

value delivered to the user. The gain is higher for parallel load than for sequential load.

However, in comparison to the first-price auction with static bids, improvements can only be

observed for highly parallel workloads. The authors also found that preemption does not add

significant value.

5.5 Work by Bredin et al.

In [Bredin et al., 2001; Bredin, 2001], a scenario is studied which is not typical for a compu-

tational Grid, but which could become relevant in the future. The authors simulate a system

that provides market-based resource control for mobile agents (also see subsection 4.4.2).

The agents need to travel over certain routes in a network, on which they consume different

types of computational resources, for which they have to pay. The agents have different mon-

etary endowments, which reflect their priorities, and their goal is to complete their routes as

fast as possible.

A proportional sharing protocol is proposed in which the rate, at which a job is processed,

is proportional to the agent’s price bid. Each agent uses a strategy in which its price bid is

16We adapted this first-price auction with time-dependent price bids for our scenario with multiple resources
which requires a double auction (CDA-TDB, see subsection 6.5.3).

51

5 RESEARCH OBJECTIVES AND RELATED WORK

proportional to the congestion at a resource, i.e. the number of other agents already executing

there. This protocol is compared to several traditional heuristics, including First-Come-First-

Served (FCFS), Shortest-Remaining-Processing-Time (SRPT), and an equal-share policy. In

SRPT, the shortest job is executed first (as in SJF), and an agent chooses a resource based on

how many agents are already there. According to the authors, SRPT is locally optimal in the

sense that it minimises the average waiting time at the resources.

In the simulations, both undersubscribed and oversubscribed systems are examined, and

also the effects of network delays and errors of the job size estimation are investigated.

The authors find that the cost of the prioritisation is about 8% of the overall performance.

However, the market protocol allows to run important jobs even when the system is over-

subscribed, and can also operate under uncertainty and network delay.

It must be noted that the mean completion time of the agents, which is used as per-

formance metric in the simulations, does not reflect the priorities of the tasks. Hence, the

comparison is not fair to the market protocol.

5.6 Work by Kim et al.

In [Kim et al., 2003] a scenario is studied, in which independent tasks with different pri-

orities are generated by a Poisson process and are allocated in a cluster of eight machines.

There are different types of resources in the system, on which each task will have different

execution times (unrelated machine case, see section 3.1). The value of a task’s execution

depends on its completion time — which is, again, similar to one of our scenarios where

tasks have time-dependent priorities (see chapter 10). The authors limit their experiments to

an oversubscribed system, where there is not enough capacity to execute all tasks.

Several heuristics are compared, all of which operate in batch mode, i.e. the transactions

are carried out only at periodic intervals. These heuristics include Max-Min, Min-Min (see

subsection 4.3.1), and several variants which take into account the priorities of the tasks,

such as Slack Sufferage and Max-Max. Slack Sufferage uses the Sufferage concept (see

subsection 4.3.1), but also takes into account task priorities and deadlines. Max-Max is based

on Min-Min but prioritises tasks with higher value. In the simulations, several situations are

52

5 RESEARCH OBJECTIVES AND RELATED WORK

investigated: tasks with loose or tight deadlines, high and low heterogeneity of resources. In

most of the experiments, Max-Max and Slack Sufferage provide the best results.

We believe that the studied scenario (unrelated machine case) is not very common, and

that the related machine case (see subsection 3.1) will be a close approximation of reality

in most situations. Also, we find it unrealistic that each task can be submitted with a set of

estimates of completion times at the different resources. For these reasons, our thesis will

focus on the related machine case.

5.7 Summary

In this chapter, we stated our research objectives and discussed related work on performance

evaluation of market protocols. We pointed out the limitations of these approaches. If market

protocols were examined for computational Grids, the experiments were limited to just a

few protocols and parameter sets — a comprehensive exploration of the parameter space

was missing. Furthermore, none of the work considered continuous auctions or proportional

sharing. Task preemption and migration were only examined by [Chun and Culler, 2002] and

[Ferguson et al., 1996], respectively, and only for computational clusters. In two other cases,

the authors studied economic properties of the market rather than measuring the performance

as perceived by the user.

In the next chapter, we will introduce our simulation model of an electronic marketplace

for computational resources.

53

6 SIMULATION MODEL

6 Simulation Model

6.1 Introduction

For our evaluation of the market protocols, we decided to use discrete-event simulations, as

they allow us to explore various scenarios and to use arbitrary values for parameters like

message delays, processing delays, arrival times, etc. We use continuous — rather than

discrete — simulation time: There are no discrete time-steps, and hence no restrictions to

the granularity of the simulations. In this chapter, we present the model that we use for our

simulations. A description of the simulation framework, which implements this model, can

be found in chapter B of the appendix. We start by giving a detailed characterisation of

the actors in the system and the underlying communication model. Next, we describe the

sequence of interactions in the system which all the examined resource allocation protocols

have in common. Finally, we introduce the protocols that are studied in this thesis.

6.2 Model Description

Our model represents an electronic marketplace for distributed computational resources.

As shown in Figure 4 there are three main actors in the model, which are assumed to

be distributed over the Internet: the Clients, the Servers and the Electronic Marketplace

(EMP). Clients generate tasks which require computational resources for their execution.

The Servers provide these resources: they advertise and sell them at the Electronic Mar-

ketplace. The accounts of the Clients and Servers are located at a Bank. In this section a

detailed description of the model, its actors, and the underlying assumptions will be given.

A summary of the main variables of the actors is shown in Figure 5.

6.2.1 Clients

There is a constant number of Clients Nciient in the system 17, each provided with an initial

amount of money (’endowment’) M. Each Client generates tasks at a rate which is modelled

l7In this thesis, we only consider the stationary case, i.e. system properties such as the number of Clients
and Servers or the task arrival rate do not change over time — or they change so slowly that this cannot be
noticed.

54

6 SIMULATION MODEL

Bank
Client accounts
Server accounts

8) initiate
payment

3) return
/query result

EMP
Events:
Task arrival event
Resource update event
Task price adjustment event

2) process task query

1) send
task query

Client i
Endowment M
Task generation ~ Poisson

Comp, size Sc
Deadline tD

Task

Input file size SD jn

Output file size SD out
Task price bid pXask

5) execute
task

6) update resource
information

4) send task

7) return result

Server j
Speed factor f Speed
No. res. units N RU total
Availability N RUavail
Price per task unit p Serv

Background load -Poisson
Comp, size Sc BG
Res. units alloc NRU BG

Figure 4: Model of the marketplace

by a Poisson arrival process. Poisson processes have been chosen, since they are suitable

for describing user session arrivals on the Internet [Floyd and Paxson, 2001]. Also, they

are used in models describing task arrivals in supercomputing centres [Downey, 1997]. A

Poisson arrival process has an exponential inter-arrival distribution. Its density function is

given by / (t) = X- , where X is the inverse of the mean time between two task creations.

6.2.2 Tasks

A task which is created by a Client is characterised by the size of its computation Sc (in task

units), the sizes of the input and output files So,in and So,out (in bytes), and — in the market

This is realistic if the task execution times are relatively short in comparison to the variations of the system
properties.

55

6 SIMULATION MODEL

Entity Parameter Symbol Distribution
Client Number of Clients N C lie n t -

Endowment (’’money”) M -

Task inter-arrival time T exponential
Task Computation size S c -

Weight W T a sk uniform
Deadline tD -

Price bid P T a s k -
Input file size S D ,in -
Output file size S d ,o u 1 -

Server Number of Servers N s e r v -

Speed factor f S p e e d uniform
Number of resource units N w j o t a l -

Availability (res. units) ^ R U y O v a il -
Res. units allocated (task) N r u ,a llo c -
BG task res. units N r u ,b g -
BG task comp, size S c ,B G -
Price per task unit P S e r v -
Eff. exec, speed (total) S E f f j o t a l -
Eff. exec, speed (task) s E f f -

Network Communication delay T c o m m lognormal

Figure 5: Summary of the main variables

protocols — its price bid pjask■ It may also have a deadline tp or a weight wrask■ We assume

that the execution of a task can be spread over an arbitrarily large fraction of a resource.

We only consider the case that there are no dependencies among the tasks. Also, the task’s

memory requirements are not considered in our model.

Computation size distributions

The computation size Sc of a task (also called ’runtime’) can have different probability distri-

butions. These depend on the type of workload used. We use a probability distribution which

is based on workload logs collected from large-scale systems in production use. We consider

a model which uses a loguniform distribution for the job runtime [Cime and Berman, 2001a;

Downey, 1997]. A distribution of a random variable X is loguniform if P [X < x] ~ log (x).

6.2.3 Servers

There is a constant number of Servers Nserv in the system, which provide CPU resources to

the Clients and charge them according to the protocol of the marketplace.

56

6 SIMULATION MODEL

We assume that each Server has a resource consisting of one or more resource units

(RU). This allows us to model either time-shared resources (e.g. a stand-alone machine

where a resource unit corresponds to a time share of its CPU) or space-shared resources (e.g.

a multiprocessor machine where a resource unit corresponds to a processor). We further

assume that a task can execute on several resource units in parallel and that each unit can be

split and allocated to different tasks.

To enable modelling of resources with different speed, we introduce a speed factor fspeed,

which is equal to 1.0 on a reference machine. On a reference machine, one resource unit will

need one unit of simulation time (e.g. one second) to execute one task unit. Thus, if a

constant number of resource units Nru ,cUIoc is allocated to a task with size Sc, the duration

of its execution is given by Tr---- -------- .
° N RU,alloc- JSpeed

Background Load

We also introduce background load on the Servers’ resources, i.e. a load generated by tasks

which are outside the control of the EMP. We assume a Poisson distribution for the arrivals

of background tasks, each of which has the same computation size, Sc ,b g , and the same

number of resource units allocated, Nru ,b g - If a background task arrives at a time when no

(or not enough) resource units are available, it is put into a queue. Background tasks waiting

in this queue are started immediately when resources become available. This guarantees that

the (average) resource share of background tasks is the same for any load of incoming tasks.

Scheduling policy

There are different ways of scheduling resource units to tasks which have been allocated

by the EMP. We consider the following cases {N r u ,alloc'- number of resource units allocated,

N r u ,avail- number of resource units available):

1. allocate all available resource units of the Server, Nru ,avail,to the task. The number of

allocated units, N r u ,alloc, does not change throughout the task's execution. This type of

policy may be used for moldable parallel tasks which are executed on a space-shared

resource (see subsection 2.2.5).

57

6 SIMULATION MODEL

2. allocate all available resource units of the Server, Nru ,avail’ to the task. The number of

allocated units, Nru ^Uoc, may increase or decrease during the task’s execution due to

changes in the background load, which is given priority. Such a policy may be used

on a single-processor, time-shared machine which is not dedicated to the execution of

incoming tasks — e.g. a PC in a university lab.

3. allocate all available resource units of the Server, Nr u ,avail, to the task. The number

of allocated units, Nmj,aiioc-> maY increase or decrease during the task’s execution due

to changes in the background load, which is given priority. Also, the task can be

preempted by an another task with higher priority. In this case it may either suspend

its execution or migrate to another resource.

4. allocate a fraction of the currently available resource, NRu,avau, which is proportional

to the task’s price bid pra$k,i■ The allocated share, Nru ,allocs may increase or decrease

during the task’s execution due to arrivals and departures of other tasks or changes in

the background load, which is given priority. It is given by NRU,aUoc = { ^ Nru ,,maii,
i

where Y,PTask,i is the sum of all price bids at the Server, including the task’s bid itself.

In section A.l this scheduling policy is described in more detail.

6.2.4 Electronic Marketplace (EMP)

The Electronic Marketplace (EMP) provides facilities for the Servers to advertise their re-

sources. The parameters to be published include the number of available resource units,

Nru ,avaih the price per task unit, pserv, and the resource’s speed, fs peed■ For the Clients it

provides means to search for a suitable resource and negotiate the price.

6.2.5 Communication Model

As the actors in our systems are distributed over the Internet, communication delays need

to be taken into account. According to experimental results in [Schroeder and Boro, 2001],

the communication delay Tc0mm on a network link i can be considered to be a lognormally

distributed random variable. This observation is supported by [Floyd and Paxson, 2001].

58

6 SIMULATION MODEL

In our simulation model, the communication delay for a data transfer is determined by the

latency and bandwidth of the network link and by the size of the transmitted data.

We assume that the mean ¡Jcomm and the standard deviation Ocomm of the probability

distribution of 7comm are unique for a given network link i and that they also depend on the

size of the data Sp to be transferred. The communication delay Tcomm on the network link

i is lognormally distributed with mean \icomm,i = fp,i (So) and standard deviation Ocomm,i =

foA So).

The observations by [Schroeder and Boro, 2001] indicate a linear relation between the

mean communication delay Hcomm and the size of the data Sp : Hence, for our lognormal

distribution LN (pcommj \ocomm,i) we assume Hcomm,i = AMi,- • SD + B ^ . The factors A^, and

B^i are constants. corresponds to the inverse of the bandwidth (or throughput) and B^i

to the network latency. Similarly, in our simulation model, the standard deviation <3c0mm,i is

modelled using constant factors CCT;; and DCTj,. It is given by Ocomm,i — Ca,i • Sp + Daj.

Furthermore, we assume that the load of data transfers within our system is already con-

sidered in the probability distributions used. In the simulations presented here, we use a

network topology where all actors are on different nodes, where all nodes are connected to

each other, and where all network links are equal.

6.3 Interactions in the system

Before discussing the resource allocation protocols that are examined in this thesis, we will

describe the sequence of interactions in the system which these protocols have in common.

The steps (1-8) are shown in Figure 4.

Server: Registration of resources

Before any interactions at the EMP can take place, the Servers need to register their re-

source offers. These include the following parameters: the number of resource units avail-

able Nru âvaii, the speed factor fspeed, and the price per task unit pserv

Client: Task creation and query at the EMP

Tasks are created using an exponential distribution for the inter-arrival time x. For each task,

59

6 SIMULATION MODEL

two objects are generated. The Task Query object contains the necessary information for a

query to the EMP: the computation size Sc, deadline to, price bid per task unit pjasb task

ID, and a reference to the Client. On creation of a task, the Task Query object is sent to the

EMP (step 1) and remains there until an appropriate resource is found (step 2). The Task

Data object represents the input parameters of the task. In case of a successful query, it will

later be sent from the Client to the Server 18.

EMP: Process task query

Each task query which arrives at the EMP is processed immediately. If a suitable resource

is available and the task’s price bid is high enough, the resource is reserved and the query

result is sent back to the Client (step 3). The resource is considered unavailable until the

task completes its execution at the Server 19. If no match is found, the task will wait at the

EMP until a suitable resource becomes available or the task’s deadline has passed. Also, for

the market protocols a mechanism is provided which we refer to as task price adjustment-. It

enables Task Query objects to linearly increase their price bid prask at regular time intervals

in order to be served eventually 20. This aspect of the protocol is only used in some of the

simulations presented in this thesis. The procedures for the main loop of the EMP and for

the task arrival event are shown in Figure 69 and 70, respectively. The procedure for the task

price adjustment event is described in subsection A.2.5 in the appendix.

Please note that, in order to simplify the matching of tasks to resources, only one in-

coming task query or resource update is processed at a time. In our model these events are

serialised, as is indicated by an input queue for the EMP in Figure 4. Hence, in a ’task arrival

event’ exactly one task is matched to N resources, and in a ’resource update event’ exactly

one resource is matched to N tasks.

18There is an additional step in the process if resource scheduling policy 1 is used: When the Client receives
a query result, it will contact the Server to check whether the required number of resource units is still available.
If this is the case, the Server will reserve it, update the information at the EMP, and request the Task Data object
to be sent by the Client. If not, the Client will have to send the Task Query object to the EMP again.

19An exception to this is the PSP protocol where several tasks can share a resource. Also, in the preemptive
protocols, the resource is considered available to higher-priority tasks.

20In this case the Task Query object needs to contain an initial minimum price pTask,mm, a maximum price
PTask/nax, and a negotiation time TNeg.

60

6 SIMULATION MODEL

Server: Task execution

After receiving a query result from the EMP, the Client sends the Task Data object to the

Server (step 4). The Server executes the task on the number of resource units N r u ,alloc which

have been allocated by the EMP (step 5). Hence, the effective execution speed is given by

N r u ,alloc ■ fSpeed- Note that in resource scheduling policies 2-4, Nr UjC1hoc can vary during the

task’s execution. Thus, the duration of the execution is not known a priori. On completion,

the resource information at the EMP is updated (step 6) and the result of the task is sent to

the Client (step 7). If it arrives before the deadline, a bank transfer from the Client’s to the

Server’s account is initiated (step 8). Otherwise, the Server is penalised and receives nothing.

Note that the accounting is not relevant to the results reported in this thesis.

6.4 Assumption: Managed System

We make the assumption of a managed system, in which the market is a tool to achieve the

efficient allocation of resources. Our main focus is on the design of the protocols which are

used at the marketplace. The choice of pricing strategies for the Clients and Servers is not the

subject of this work: We assume that these strategies can be enforced by the system. Money

has no value as such, and hence there is no need to deal with resource accounting.

If the Servers belong to the same organisation(s) as the Clients, it will not be necessary to

incentivise the Servers to participate in the marketplace. Therefore, it will not be a problem

to enforce their pricing strategy. If the Servers are self-interested and utility-maximising, it

may still be possible to enforce a pricing strategy. However, it will be necessary to incentivise

them so that they participate in the marketplace. They could be compensated in a different

way, e.g. by receiving a flat fee on a monthly basis, depending on the capacity and availability

of their resources.

To enforce the bidding strategy of the Clients, it will be necessary to introduce a proxy

which sets the task price bids and submits the Clients’ queries to the marketplace 21. The

price bids set by the proxy could be based on different parameters, such as the importance of

21For our experiments it is not relevant whether this proxy is located at the Client’s site or at the Electronic
Marketplace.

61

6 SIMULATION MODEL

the Clients and their past usage of the resources.

It must be noted that, for our performance evaluation, it is not relevant how the price bids

are determined by the proxy. What counts is the resulting probability distribution of the bids

and the outcome of the experiment (w.r.t. to the performance metric used).

6.5 Protocol descriptions

In this section we introduce the resource allocation protocols that are studied in this thesis.

As market protocols we examine the Continuous Double Auction Protocol (CDA), CDA

with reserve prices, CDA with time-dependent price bids, the Proportional Share Protocol

(PSP), the Highest Bid Protocol (HBP), HBP with thresholds, HBP with reserve prices,

the Preemptive Protocol (PE), and the Periodic Double Auction Protocol (PDA). The non-

economic protocols include the Round-Robin Protocol (RR), the First-in-First-Out Protocol

(FIFO), PRIO-FIFO, and the Shortest Job First Protocol (SJF).

Note that this thesis is limited to the case where CPU time is the only type of resource,

and where only one resource is needed for the execution of a (sub)task. This is realistic

for many computationally-intensive applications, such as the PSIMAP application which is

examined in chapter 12. However, there exist other scenarios, in which the applications

require bundles of different types of resources for their execution (e.g. CPU time, memory,

storage, etc.). This combinatorial case is subject of future work and will require different

types of protocols.

6.5.1 Continuous Double Auction Protocol (CDA)

The aim of the Continuous Double Auction Protocol (CDA) [Kagel, 1995] is to allocate

the best possible resource to an arriving task and to prioritise tasks according to their price

bid. CDA has been chosen, because the studied scenario requires a double auction, i.e. a

many-to-many protocol (and not 1-to-many protocols like English or Vickrey auctions). It is

a continuous auction where transactions are carried out immediately whenever bids or offers

change. For our scenario, it is likely to outperform protocols where the transactions are only

carried out at periodic intervals. In such a protocol, an arriving task would have to wait for

62

6 SIMULATION MODEL

the next auction — which we need to avoid in order to minimise response times. Like the

other market protocols examined in this thesis, CDA is greedy in the sense that a task is

assigned the best possible resource that is available at a given time.

When a Task Query object arrives at the EMP, the protocol searches all available resource

offers and returns the first occurrence of the best match (see Figure 71). In our experiments,

'best' means the fastest resource which satisfies the task’s constraints, i.e. which meets all

requirements for the task’s execution (the required size and price of the resource and its

capability to meet the task’s deadline). If no match is found, the Task Query object is stored

in a queue. When a resource becomes available (’resource update event') and several tasks

are waiting, the one with the highest price bid, pjasb is processed first. The pseudo code for

this resource update event is given in Figure 72.

6.5.2 CDA with Reserve Prices (CDA-RES)

In the ’normal’ Continuous Double Auction protocol, each Server, which is available, has to

accept any price bid of a task. However, in some situations it might be advantageous to allow

the Servers to use reserve prices, i.e. minimum values for the task bids to be accepted. As

will be shown by the simulations, reserve prices can help to ensure that the better-performing

resources are available to high-priority tasks (by keeping away low-priority tasks). In the

CDA-RES protocol, the Servers use reserve prices which are based on the Server’s average

rate of revenue measured in the past (at periodic intervals). The idea is that this might help

to ensure that the better resources are available to high priority tasks by keeping out low

priority tasks. The disadvantage of this approach is that resources will be wasted. Also, it

is possible that some low priority tasks may not be allocated any resource at all. To solve

the latter problem, we introduced price discounts-, a Server determines its reserve price by

calculating the average revenue in the past and deducting a fixed price discount from it. By

choosing an appropriate value for this price discount, there will always be resources in the

system which the low priority tasks can afford. Another way to avoid the problem of tasks

never getting executed is to allow them to increase their prices while waiting at the EMP

(task price adjustments, see subsection A.2.5 in the appendix).

63

6 SIMULATION MODEL

6.5.3 CDA with Time-Dependent Bids (CDA-TDB)

This protocol is an extension of CDA that is designed for the scheduling of tasks whose

values depend on their timely completion 22. The EMP aims to maximise a time-dependent

user utility which has been defined in subsection 2.6.1. Hence, it needs to deal with time-

dependent task price bids ppask-

Whenever a resource offer becomes available, the price bids of all tasks waiting at the

EMP need to be determined, and the task with the highest bid will be allocated to that re-

source. A task’s price bid corresponds to its expected value to the Client, when executed on

that resource. This value is determined by the task’s slowdown, as described in subsection

2.6.1. As a result, this value decreases while the Task Query object is waiting at the EMP.

The main drawback of this protocol is its computational complexity. It is therefore unsuit-

able for a situation in which the number of Task Query objects or Server offers at the EMP

is high.

6.5.4 Proportional Share Protocol (PSP)

In contrast to the other protocols described in this thesis, the Proportional Share Protocol

(PSP) allows several tasks to execute on a Server at a time. This protocol uses the resource

scheduling policy 4 (see subsection 6.2.3). The amount of resources allocated to a task

depends on its price bid, prask,i> in relation to the sum of price bids 'Zprask,i ° f nil tasks

executing on that Server, including the bid of the task itself 23. The reason for examining

PSP is that similar protocols have been proposed for the scheduling of tasks in computa-

tional clusters [Chun and Culler, 2000; Messer and Wilkinson, 1996; Sherwani et al., 2002;

Waldspurger, 1995], PSP can improve on CDA for certain situations like high network la-

tency and high resource heterogeneity.

When a Task Query object arrives at the EMP, all resource offers are checked in order

to find the resource which is the fastest to execute the task and which meets the task’s con-

straints {size, price, deadline} (see Figure 73). The effective execution speed, sgyyy, is given

22Its allocation decisions are identical to CDA’s if the task price bids prask at the EMP do not change over
time.

23The task’s resource share is proportional to its price bid, hence the name Proportional Share Protocol.

64

6 SIMULATION MODEL

by sEff , total = fSpeed-M r u ,avail ■ w h e r e N ™,avail is the number of resource units that

are available, i.e. not occupied by background tasks. Note that, due to arrivals or departures

of tasks and background tasks, this speed may vary during the task’s execution. If no match

is found, the task will have to wait until the next resource update event (see Figure 74) or

a task price adjustment event. Concerning the scheduling of tasks at the Server, a detailed

description is given in section A.l.

6.5.5 Highest Bid Protocol (HBP)

One problem with the CDA protocol is that, once a task has been allocated to a Server, no

other task can execute there until it completes. Hence, higher priority tasks may have to wait

or use a resource with lower speed, leading to a lower overall performance of the system.

With the PSP protocol, higher priority tasks may still be allocated but will not take up the

whole resource. Several tasks may have to execute at a resource in parallel, resulting in them

all being delayed. For this reason, we introduce the Highest Bid Protocol (HBP). It allows a

task with a higher price bid to suspend a task with a lower bid that is currently being executed

on a Server. The suspended task(s) will resume execution once the higher priority task has

completed 24.

When a Task Query object arrives at the EMP, all resource offers are checked in order

to find the resource which is the fastest to execute the task and which meets the task’s con-

straints. Only resources are considered, for which the task’s price bid is high enough to

suspend other tasks already executing there.

6.5.6 HBP with Threshold (HBP-T)

HBP-T is a version of the HBP protocol which uses a threshold that we call the bid improve-

ment factor, IFbid- The threshold determines, how many times higher the bid of a task must

be, in order to suspend another task. The idea behind this protocol is to limit the number of

tasks being suspended in order to reduce their completion times.

24Note that the cost of suspending and resuming tasks is not considered in our simulation model, because it
is assumed to be small in comparison to task execution times and communication delays. It is subject of future
work.

65

6 SIMULATION MODEL

6.5.7 HBP with Reserve Prices (HBP-RES)

This version of the HBP protocol uses reserve prices which are determined in the same way

as in the CDA-RES protocol (see subsection 6.5.2). The idea is to prevent low priority tasks

from using the better resources — which may help to avoid that they will be suspended

during their execution.

6.5.8 Preemptive Protocol (PE)

In the Highest Bid Protocol (HBP), low priority tasks may be suspended by higher priority

tasks and will have to wait for them to complete — even if resources are available at other

Servers. For this reason we introduce a protocol which allows migration of tasks to other

Servers 25. In this thesis, we refer to it as the Preemptive Protocol (PE). We distinguish

different versions of the protocol with regard to when preemption can take place:

1. Preemption-Passive (PE-P)\ A task can only migrate if it is suspended by another task

with a higher price bid. It will send a Task Query object to the EMP in order to obtain

a new resource and resume execution.

2. Preemption-Active (PE-A): A task will migrate whenever any other resource becomes

available which can execute it at a higher speed. In this case,’available’ means that

any task executing on that other resource has a lower price bid than the querying task.

The migration of a task may be triggered by the completion of tasks or background

tasks executing on other resources or by the start of a background task at its current

resource. In such an event, the Server of the task with the highest price bid will be

informed by the EMP, and the task will migrate.

3. Preemption with Thresholds (PE-T): A task will migrate to a resource only under con-

ditions specified by two thresholds, the speed improvement factor, IFs p e e and the bid

improvement factor, IE bid '■ firstly, the execution speed at the new resource must be at

least IFspee(i-times faster, and secondly, the task’s price bid must be 7F^y-times higher

25 A survey of related work dealing with preemptive resource allocation protocols can be found in section
4.4.

66

6 SIMULATION MODEL

Figure 6: Cases 1 and 2 of the interactions in the PE protocols. Case 1 can occur in both,
PE-P and PE-A. Case 2 can only occur in PE-A.

than that of the task executing on that resource. These conditions are designed to re-

duce the number of migrations, as the associated cost may be higher than the gain.

Note, that these thresholds can be applied to PE-P and PE-A.

Preemptions can be triggered by different types of events. We distinguish three cases

which will be described in the following paragraph: Case 1 can occur in both, PE-P and

PE-A, whereas the cases 2 and 3 can only occur in PE-A. The interactions of the cases 1 and

2 are illustrated in Figure 6, and those of case 3 in Figure 7.

Case 1

1. Due to the arrival of a task to Server i, the currently executing task is suspended. The

suspended task sends a query to the EMP.

2. The query is processed by the EMP. It is determined whether there exists any Server

whose executing task has a smaller price bid than the querying task (from Server i). If

there is more than one candidate, the best (i.e. fastest) one is selected for migration. If

there is no match, the query will wait until a Server becomes available.

3. As soon as a match is found (e.g. Server j), the EMP informs Server i about it.

67

6 SIMULATION MODEL

4. The querying task migrates from Server i to the new Server (Server j).

5. The migrating task resumes its execution at Server j. If a task has been is executing

Server j, it is suspended. It sends a query to the EMP, etc.

Case 2

1. The performance of Server i decreases (due to the start of a background task). The

executing task sends a query to the EMP, while continuing its execution.

2. The query is processed by the EMP. It is determined whether there exists any Server

which is (currently) faster than Server i and whose executing task has a smaller price

bid than the querying task (from Server i). If there is more than one candidate, the best

(i.e. fastest) one is selected for migration. If no match is found, the query is cancelled.

3. If a match is found (e.g. Server j), the EMP informs Server i about it.

4. Unless already completed, the querying task migrates from Server i to the new Server

(Server j). A task which may have previously been suspended at Server i will now be

resumed.

5. The migrating task resumes its execution at Server j. If a task has been is executing

there, it is suspended. It sends a query to the EMP, etc.

Case 3

1. After the completion of a task or background task at Server i the resource information

at the EMP is updated.

2. This ’resource update event’ is processed by the EMP. Before considering any Task

Objects that may be waiting at the EMP, it is determined whether there exist any

Servers whose tasks can migrate to Server i. A task can migrate to Server i if its

Server has a lower effective speed than Server i and if it has a higher price bid than the

task executing there. If there is more than one such Server, the EMP selects the one

which executes the task with the highest bid.

68

6 SIMULATION MODEL

Figure 7: Case 3 of the interactions in the PE protocols. This case can occur in PE-A but not
in PE-P.

3. As soon as a match is found, the EMP informs that Server (in our case: Server j).

4. The task, which is executing at Server j , migrates to Server i. A task which may have

previously been suspended at Server j will now be resumed.

5. The migrating task resumes its execution at Server i. If a task has been is executing at

Server i, it is suspended. It sends a query to the EMP, etc.

6.5.9 Periodic Double Auction Protocol (PDA)

In the Continuous Double Auction Protocol, transactions are carried out immediately, when-

ever tasks arrive at the EMP or resources become available. The idea behind this approach

is to reduce task waiting times. In the Periodic Double Auction Protocol (PDA), however,

price bids and Server offers are allowed to accumulate, and the transactions are carried out

only at periodic time intervals. In these transactions, preference is given to the tasks with

the highest price bids which will then select the best resource offers. The idea behind this

approach is that the higher priority tasks may be allocated better resources than in the CDA

protocol. A disadvantage is that some resources remain idle during the transaction intervals,

and that tasks have to wait longer at the EMP.

69

6 SIMULATION MODEL

6.5.10 Round-Robin Protocol (RR)

The Round-Robin Protocol (RR) does not use any pricing: It processes the incoming task

queries on a first-come-first-served basis. They are matched with the next available resource

offer which meets the task’s constraints — but which is usually not the best. For this purpose

an iterator is used which cycles through the list of resource offers (see Figure 75). RR is far

simpler than the market protocols because it does not use information about load or speed of

the resources for the allocation decisions. However, it is still adequate for certain situations.

A more detailed description of the procedures used at the EMP, which includes their pseudo

code, is given in subsection A.2.4.

6.5.11 First In First Out (FIFO)

Unlike in the market protocols, FIFO does not use any pricing: Task queries are processed

on a first-come-first-served basis. However, like CDA, the FIFO protocol is also greedy, as

tasks are allocated the best, i.e. fastest, resource that is available at the time.

6.5.12 PRIO-FIFO

Supercomputing centres often use a set of FIFO queues with different priorities. As in [Chun

and Culler, 2002], we will refer to such a protocol as PRIO-FIFO. The Client which submits

a task to the system can assign a priority to it. This task is then added to the queue which

corresponds to its level of priority. In each queue of the system, the waiting tasks are priori-

tised in the order of their arrival. When allocating tasks to free resources, the EMP chooses

the earliest task in the highest priority queue which is non-empty. A Client is charged for the

execution of its tasks according to their level of priority. Effectively, this protocol operates in

the same way as CDA. The only difference is that it only allows coarse-grained assignment

of priorities to tasks, as the number of FIFO queues is finite. From the system’s point of

view, one problem is, that it may be difficult to set the charging rates for the different queues

in a way which will result in maximum gain for the users.

Since PRIO-FIFO is a mix of CDA and FIFO, its performance is likely to lie between the

70

6 SIMULATION MODEL

two 26. For this reason, the performance of PRIO-FIFO is not examined in this thesis.

6.5.13 Shortest Job First (SJF)

Shortest Job First (SJF) is a greedy protocol which prioritises the shortest task. The idea

behind this strategy is that short tasks suffer a larger relative slowdown than longer ones if

they are delayed by the same amount of time. Hence, allocating the shortest job first will

usually result in a lower mean slowdown of all tasks than a FIFO protocol. Furthermore,

since a long task may take up as much CPU time as several smaller tasks, SJF may result in

a lower mean completion time.

6.6 Model Discussion and Related Work

Our simulation model is very flexible as it allows the modelling of various cluster and Grid

infrastructures 27. To our knowledge, the use of a single model for clusters and Grids is

unique and has not been reported elsewhere. We consider this model to be realistic because a

computational cluster can be seen as a special case of a Grid, which has little heterogeneity,

small communication delays, and which is small in size.

There exist other models and frameworks for the simulation of computational Grids.

Their purpose is either to assess different scheduling protocols in a ’clean room environment’

or to evaluate the performance of middleware or application software. The differences of

these approaches to our work will be briefly discussed in this section.

SimGrid [Casanova, 2001] provides the basic functionality for the study of scheduling

algorithms for parallel applications in distributed environments. In contrast to our work,

which is about the allocation of independent tasks competing for resources, SimGrid consid-

ers the allocation of resources to a single, large application. Also, it uses load traces for the

simulations whereas we use a statistical model, allowing us to adjust parameters arbitrarily

and draw more general conclusions from our experiments.

Bricks [Aida et a i, 2000; Takefusa, 2001] is a simulator for client-server style global

26We made this observation in several experiments.
27This will be demonstrated in the following chapter.

71

6 SIMULATION MODEL

computing systems, which allows the evaluation of scheduling algorithms and scheduler

components. Much emphasis is put on providing realistic models for the network traffic:

The authors experimented with queuing systems and self-similar load traces. They validated

their simulation model by experiments on a global computing testbed using NAS bench-

marks. As an example of the simulator’s capabilities, a deadline scheduling algorithm for

Grid resources has been examined. In contrast to Bricks, our work uses a statistic distribu-

tion for the communication delays which is sufficiently realistic for the scenarios examined

and also computationally less intensive.

The GridSim Toolkit [Buyya and Murshed, 2002] is a general-purpose simulator for per-

formance evaluation on the Grid. It supports the modelling and simulation of heterogeneous

Grid resources, users and application models. It has been used to simulate Nimrod-G (see

subsection 4.5.2) and the cluster scheduler Libra [Sherwani et a i, 2002]. In contrast to

GridSim, our system targets the simulation of an electronic marketplace, which is an infor-

mation service and ’broker’ at the same time. Also, our system uses different load models,

communication models, and resource scheduling protocols.

6.7 Summary

This chapter introduced the simulation model that will be used for the performance eval-

uation of the market protocols. A detailed description of the actors in the system and the

underlying communication model has been given. Next, the interactions in the system which

all the examined resource allocation protocols have in common have been described. We

presented the protocols, which will be studied in this thesis. Finally, we compared our sim-

ulation model to related work.

72

7 SIMULATIONS: OVERVIEW

7 Simulations: Overview

7.1 Introduction

In this chapter, we describe the general setup of the simulations and give an overview of the

parameter space that is explored in this thesis (see Figure 8).

(T) Task Scenarios:
What type of load is generated by the Client ?
What performance metric is used ?

(SP) Scheduling Policy and Background Load Model
What type of resources are provided by the Servers ?
How are tasks scheduled at these resources ?
What are the characteristics of the background load ?

(C) Communication Delays
How large are the communication delays in the system ?
Are they caused by high latency or limited bandwidth ?

(SN) Server Number
How many Server resources are there in the system ?

(RD) Resource Diversity
How diverse are the resources in the system with respect
to their speed ?

(L) Total Amount of Load
What is, on average, the total amount of load in the
system compared to the overall capacity ?

(BG) Amount of Background Load
What is, on average, the total amount of background load
on the resources compared to the overall system
capacity ?

(TS) Task Size Distribution
What is the distribution of the computation sizes of the
tasks?

(BS) Task Burstiness
How many tasks are submitted by the Client at a time?

Figure 8: Overview of the parameter space to be explored

7.1.1 General Setup

All simulations are carried out with the discrete-event simulation framework, which is de-

scribed in chapter B of the appendix. The total length of each simulation run is set to 1300

time units. During this time, tasks are randomly generated by the Client. During the first

100 time units no measurements are made. This is to ensure that the system reaches a steady

state. After this initial period, the number of tasks which is statistically expected to be gener-

ated during an interval of 1000 time units is considered in the result. To allow these tasks to

complete, an additional final margin of 200 time units is provided. To ensure that the results

73

7 SIMULATIONS: OVERVIEW

are statistically significant, we carry out each measurement 40 times with different random

seeds. For each point in our diagrams, the error bars of the 95% confidence interval of the

mean are given 28. The confidence interval is determined by the method described in section

B.8 of the appendix. As will be shown, it is very small in most of the experiments. Hence,

the duration and number of simulation runs are sufficiently large. In the simulated scenarios,

it does not matter how many Clients there are in the system, because the arriving tasks are

independent and are generated by a Poisson process. For this reason, we use only one Client

for the task generation.

7.1.2 Task Scenarios

We distinguish several scenarios concerning the task load generated by the Client. These

are characterised by how the generated tasks are prioritised. They require different metrics

to evaluate the performance of the resource allocation protocols. Concerning the resource

pricing, the Servers will accept any task price bid >0 29. We examine the following cases:

(Tl) Tasks with the same priority

All tasks in the system have the same priority (1.0) and are assigned the same price bid

PTask,i = 1-0. The average load in the system is lower than its overall capacity. As a per-

formance metric for evaluating the protocols we use the mean of the completion times (see

subsection 2.6.1) of all tasks that are measured during the experiment. The aim is to minimise

this metric.

(T2) Tasks with different priorities

Tasks have different priorities (weights) which reflect their value to the Client. For the

weights of a task wjask we use a uniform distribution [0.0,2.0] 30. In order to allow com-

28In some experiments, e.g. Figure 15 (right), the simulations were very time-consuming, and therefore only
one simulation run has been carried out for each data point. In these cases, the confidence intervals are not
given.

29Exceptions are the protocols CDA-RES and HBP-RES, in which the Servers use reserve prices.
,()There are two reasons for choosing a uniform distribution: Firstly, no empirical figures are available for

the importance of tasks. Secondly, it has a high standard deviation. Thus, other distributions of task weights
are likely to lead to results which lie between two extremes: those obtained with a uniform distribution, and
those obtained in a scenario with identical task priorities. Our observations indicate that this is the case.

74

7 SIMULATIONS: OVERVIEW

parisons with the T1 scenario, this distribution has to be chosen such that it has the mean

value 1.0. In the market protocols the price bid pjask °f a task is equal to its weight. As

a performance metric we use the weighted completion time (WCT) which is defined as the

mean of the completion times of the tasks multiplied by their weights (also see subsection

2 .6. 1).

(T3) Tasks with different, time-dependent priorities

In the third scenario, the value of a task to the user depends on when it completes its execu-

tion ([Chun and Culler, 2002], see subsection 2.6.1). We express this value by deadlines and

distinguish two cases: tasks with hard deadlines and tasks with soft deadlines. In the case

where tasks have hard deadlines, their execution will only benefit the Client if completed on

time. As a performance metric we use the weighted completion rate (WCR), which we de-

fine as the sum of weights of the tasks completed before the deadline divided by the sum of

all task weights. Again, for the weights of the tasks, we use a uniform distribution [0.0,2.0],

In the case where tasks have soft deadlines, a task’s value (per task unit) is expressed as

a piecewise-linear function of the slowdown (see subsection 2.6.1). Initially, this value —

which is proportional to the task’s price bid — is set to its maximum Vpask,initial, and remains

there until the slowdown value sl\ is reached. Then, it linearly decreases, and at the slow-

down value sl2 it becomes zero. As a performance metric we use the average of the values

delivered by the tasks to the Client, i.e. the average of the task values (per task unit) multi-

plied by the task sizes. For the initial value a task, Vjask,initial* we use a uniform distribution

[0 .0 , 2 .0],

7.1.3 Scheduling Policy and Background Load Model

The next examined parameter defines the scheduling policy and background load of the

Server resources. These depend on the machine type, operating system, and the way the

machine is deployed. The parameters covered here include the number of resource units of

a Server, NRu,totau the (average) Server speed factor, fspeed, the background task size, Sc ,b g ,

and the number of resource units allocated to each background task, N r u ,b g ■

75

7 SIMULATIONS: OVERVIEW

(SP1) PC with fine-grained background load

The aim of this parameter set is to model a time-shared PC where the background load

generated by a local user only needs a fraction of the CPU time of the machine, i.e. only

some resource units. The remaining resource units are allocated to tasks arriving from the

EMP. The background load is given priority. Hence, the amount of resources allocated to

an incoming task can vary during its execution — the task may even be suspended. As

parameters we use NRU)totai = 10, f Speed = 0.1, Sc ,bg = 1-0, and NRUjBg = 1 31 • Note that,

depending on the protocol that is used, this setup corresponds to the resource scheduling

policies 2—4 which are described in subsection 6.2.3.

(SPIV) PC: Variation of the background task size

We use the same parameters as in parameter set SP1, except that the background task size,

Sc ,b g , is varied.

(SP2) PC in screensaver mode

In this parameter set, each background task started by the local user will take up the whole

resource, i.e. all resource units — and may suspend tasks currently executing there. Such

a situation is characteristic for a PC which is only made available to incoming tasks if the

screensaver is active (and hence nobody is using it at the time). The parameters are the same

as in parameter set SP1, except that Afo/,SG = ^ ru ,total - 10.

(SP2A) PC in screensaver mode: Larger background tasks

Here the same parameters are used as in parameter set SP2, except that the background task

size is larger (Sc ,bg =10).

(SP2V) PC in screensaver mode: Variation of the background task size

Now the same parameters are used as in parameter set SP2, except that the background task

size, Sc,BGi is varied.

(SP3) Multi-processor machine where background tasks use some processors

The parameters are the same as in parameter set SP1. However, the scheduling policy and the

31In this parameter set, only 1/10 of a resource is allocated to each background task. In parameter set SP2
we study the impact of allocating the whole resource to it, i.e. Nr u ,bg =W-

76

7 SIMULATIONS: OVERVIEW

type of resource that is modelled are different. We assume a space-shared multi-processor

system, where each processor is modelled as a resource unit (N r u ,total = 10). Each incoming

task is executed in parallel on as many resource units, N r u , as are available at the time of its

arrival. This resource share remains constant throughout the execution 32. The task cannot

be preempted by background load or by other tasks. This setup corresponds to resource

scheduling policy 1 in subsection 6.2.3.

(SP4) Multi-processor machine where background tasks use the whole resource

Here the scheduling policy and resource type are the same as in parameter set SP3. The

difference is that, when a background task arrives, it uses all units of the resource, i.e. Nru ,b g

= N r u ,total = 10 .

7.1.4 Communication Delays

The communication delay is another factor which may affect the performance of a resource

allocation protocol, in particular for a globally distributed environment. We use the commu-

nication model described in subsection 6.2.5 and consider the following cases:

(Cl) Negligible communication delay

The communication delay Tcomm is neglected. Latency is assumed to be infinitely small, and

bandwidth infinitely high. This approximation can be valid for a local cluster of resources.

(C2V) Variation of the network latency

Network latency is introduced, while the bandwidth is still infinite. The mean of the com-

munication delay ncomm — B^i is varied, and its standard deviation is set to 50% of jucomm 33 •

This setup will be realistic if the communicating agents are geographically distributed and

the exchanged messages are small in size, i.e. there are no larger data transfers.

(C3V) Variation of the transmitted data size

Now network latency is neglected while the bandwidth of the network is considered finite.

Parameter is set to 10-6 , resulting in a mean bandwidth of 1 MB per time unit. Parameter

32Tasks are considered moldable, see subsection 2.2.5.
33This value is arbitrarily chosen. However, our experiments have shown that setting it to a different value,

such as 10% or 90%, did not have much impact on the results.

77

7 SIMULATIONS: OVERVIEW

C0ti, which determines the standard deviation, is set to 50% of A ^ . The size of the input data

of the tasks So,in >s varied in order to see what happens if bandwidth is the determining factor

of the communication delay 34 35.

7.1.5 Number of Servers

For the number of Servers in the system, Nserv, we consider the following three cases:

(SN1) Computational Cluster: The number of resources in the system is rather small. We

choose Nserv = 32.

(SN2) Computational Grid: The number of resources in the system is large, which may be

the case for a computational Grid, or for a large, local cluster. We choose Nserv = 256.

(SNV) Variation of the Server number: Here we vary the Server number and see the impact

on the result.

7.1.6 Resource Diversity

Concerning diversity of resources we consider the following situations:

(RD1) Identical resources: All resources have the same speed factor fspeed=0.1. This is

likely to be the case in a local cluster of resources.

(RD2) Heterogeneous resources: We assume heterogeneous resources, which we consider

realistic for a wide-area computational Grid. For the server speed factor, / speed, we use a

uniform distribution [fSpeed,min i fSpeed,max] where f Speed ,min fspeed,av /iNserv > /speed ymax

2 ‘ fSpeed,av /Speed,min >and fSpeed,av = 0.1

(RDV) Variation of resource heterogeneity: In this parameter set, different degrees of het-

erogeneity are examined by varying the minimum speed factor fs Peed,min between 0 and

fSpeed,av = 0.1. The maximum speed factor is calculated by fs peed,max = 2 • fSpeed,av ~

fspeed,min- This choice of speed factors results in a constant total capacity of the system.

34Note that the result would be the same if the data size was constant and the bandwidth was varied.
35 Again, the reason for using the uniform distribution is that we have no empirical data available. Also, it

provides a high variance, so that it can be regarded as an extreme case.

78

7 SIMULATIONS: OVERVIEW

7.1.7 Total Amount of Load

The load in the system is generated by Poisson processes at the Clients and the Servers,

which create tasks and background tasks, respectively. We define the load factor, llotai, as

the ratio of average total load in the system and the overall system capacity 36. This ratio can

be adjusted by choosing the mean inter-arrival times of these Poisson processes accordingly.

We examine the following cases:

(LI) The average total load is set to 90% of the overall system capacity: ltotai = 0.9. At this

load level, resources may temporarily become scarce.

(LV) The average total load is varied: ltotai = [0.0 — 1.0].

7.1.8 Amount of Background Load

The overall amount of background load in the system is determined by the mean inter-arrival

times of background tasks at the Servers. We define the background load factor, Ib g -, as

the ratio of the average background load in the system and the overall system capacity. In

order to examine how the level of background load affects the performance of the resource

allocation protocols, we examine the following situations:

(BG0) There is no background load in the system: Ibg = 0.

(BG1) The background load is 25% of the average total load: Ibg = 0.25 •

(BG2) The background load is 50% of the average total load: Ibg = 0.5 • llotal-

(BG3) The background load is 75% of the average total load: Ibg — 0.75 • ltotal-

7.1.9 Task Size Distribution

Concerning the computation size Sc of the tasks in the system, we examine two cases:

(TS1) Identical task sizes: All tasks have the same size Sc=1.0.

(TS2) Loguniform distribution of task sizes: We use a loguniform distribution of the task

36The term ’load in the system’ refers to the load of tasks that have been generated but have not yet completed
execution. These tasks may be executing or waiting to be executed.

79

7 SIMULATIONS: OVERVIEW

size 37. We choose the distribution such that its average value is 1.0, and the ratio of its

maximum to its minimum is 10.

7.1,10 Task Burstiness

As the final parameter we consider the task burst size, BS, i.e. the number of tasks that a

Client submits to the system at a time:

(BS1) 55=1.

(BS2) 55=10.

(BSV) BS is varied.

7.2 Realistic System Infrastructures

In the previous section, an overview of the parameter space has been given, which will be

explored in our experiments. To give a structure to these experiments and simplify their de-

scription, we now define several realistic system infrastructures which will be studied. As

our first infrastructure, we examine a PC Cluster, which has a small number of identical

resources, and where communication delays are negligible. The resources are assumed to be

single-processor PCs, and therefore the scheduling policies (SP1) and (SP2) are applicable.

The parameter space covered by this infrastructure is given by {*, SP1-2, C l, SN1, RD1, *,

*, *, *} 38. The second, more general infrastructure that is explored in our simulations will

be referred to as PC Grid. In this system, PCs of different speeds are distributed over the

Internet. The number of machines can be higher than in a cluster, and communication delays

may no longer be negligible. Concerning the scheduling policy, the same assumptions are

made as for the PC Cluster. The corresponding parameter space is given by {*, SP1-2, *, *,

*, *, *, *, *}. We also briefly examine two other system infrastructures: the Supercomputing

Cluster and Supercomputing Grid. These correspond to the PC Cluster and PC Grid infras-

tructures, respectively, except that the resource scheduling policies (SP1) and (SP2) are now

replaced by (SP3) and (SP4). This means, that machines have multiple processors, for which

37This is motivated by a workload model for supercomputing centres (see subsection 6.2.2).
38The stands for ’any value’.

80

7 SIMULATIONS: OVERVIEW

space-sharing is used, i.e. different processors can be allocated to different users. Each task

can spread its execution over several processors. The parameter space for the Supercomput-

ing Cluster is given by {*, SP3-4, C l, SN1, RDI, *, *, *, *}, and for the Supercomputing

Grid by {*, SP3-4, *, *, *, *, *, *, *}.

7.3 Summary

This chapter provided the structure for our simulations and also demonstrated the flexibility

of our simulation model which can cover various cluster and Grid scenarios. We described

the experimental setup and the parameter space which will be explored in our simulations.

We defined the relevant parameters, which include the type of scenario, the scheduling policy

at the resources, the communication delays, the number of resources in the system, resource

heterogeneity, the amount of load and background load, the task size distribution, and the

task burstiness. Finally, we defined the different types of system infrastructures which will

be examined.

81

8 TASKS WITH THE SAME PRIORITY

8 Tasks with the Same Priority

This chapter provides a systematic performance comparison of three resource allocation pro-

tocols for a scenario in which all tasks have the same priority (wjask = 1.0) and are assigned

the same price bid prask,i = 1-0. The following protocols are examined: the Continuous

Double Auction Protocol (CDA), the Proportional Share Protocol (PSP), and Round-Robin

(R R)39. As a performance metric we use the mean of the completion times of all tasks that

are measured during the experiment. An important objective is to examine the sensitivity of

the results to different parameters. This will help to determine how general our results are.

Also, it will limit the parameter space that needs to be studied in further experiments.

We start with the PC Cluster infrastructure, and then move on to the PC Grid infrastruc-

ture. The results for the Supercomputing Cluster and the Supercomputing Grid infrastruc-

tures are in many cases similar and can be found in chapter C of the appendix.

8.1 PC Cluster

8.1.1 No Background Load

The first experiment is defined by the parameters {Tl, SP1, C l, SN1, RD1, LV, BGO, TS1,

BS1}. This means that we have a system with Nserv- 32 identical Servers without back-

ground load. The Servers have the resource size N r u ,total - 10 and speed factor fspeed =

1.0. All tasks have the same size Sc=1.0 and their burst size is 1. Communication delays are

neglected. The average total amount of load in the system is varied between 0 and 100% of

the system capacity.

Figure 9 shows the mean completion time for the three protocols. As expected, all three

protocols degrade, when load is increased. Since there is no difference between the re-

sources, RR and CDA perform equally well. PSP performs worse because it allocates tasks

to Servers which are already busy. Thus, it delays tasks which are already executing. At 90%

load its mean completion time is 19% higher.

39We do not examine FIFO, PRIO-FIFO, and CDA-TDB, because they would provide the same result as
CDA. HBP is not examined either, because it cannot lead to any improvement in a situation in which all tasks
have the same priority.

82

8 TASKS WITH THE SAME PRIORITY

Variation of Load - No Background Load

Total Load

Figure 9: Tasks with the same priority, variation of load: Since the resources are identical
and have no background load, there is no difference between CDA and RR.

Variation of Load - With Background Load

Total Load

Variation of Load - More Background Load

Figure 10: Left: When background load is introduced, the performance of all protocols
degrades. Now CDA performs best for all loads. RR is worst for low and medium load, and
PSP for high load. Right: When the amount of background load is even higher, the three
protocols degrade even more, but their order does not change.

8.1.2 Different Amounts of Background Load

These results change when background load is introduced. We examine a case where half of

the load in the system is background load (BG2). The background tasks have the computation

size SctBG - TO, and are allocated N^u ,bg = 1 resource units at a time.

As shown in Figure 10 (left), CDA provides the best results for the whole range of loads.

RR performs worse because resources are allocated arbitrarily, whereas CDA selects the

fastest available resource. The difference is particularly high at a load of about 60%, where

RR’s completion time is 26% higher than CDA’s. PSP performs almost as well as CDA as

83

8 TASKS WITH THE SAME PRIORITY

Variation of Load - Variable Task Sizes

Total Load

Figure 11: Variation of load: Tasks with variable sizes lead to almost the same results as
identical tasks.

long as the load is low, because it also selects the fastest available resources for the tasks.

However, as in the previous experiment, it degrades when the load is increased.

The overall performance of the system strongly depends on the amount of background

load on the Servers, as is shown in Figure 10 (right). In that experiment, the total load in the

system is varied, with the difference that now three quarters of it is background load (BG3).

If the total load is high, all protocols degrade, and their completion times are more than 50%

higher than before.

Conclusion: When background load is introduced, CDA performs best. For low load, the

differences between the three protocols are small. For moderate load, RR performs worst,

and for high load, PSP does. When the share of the background load is increased, all three

protocols degrade in a similar way.

8.1.3 Variable Task Sizes

Next, we examine the effect of having the Client submitting tasks of different sizes to the

system. We use the same parameters as in Figure 10 (left), except that the task computation

size Sc now has a loguniform distribution (TS2). The mean of Sc is not changed (Sc,mean =

84

8 TASKS WITH THE SAME PRIORITY

Variable Task Sizes - Screensaver Mode Variation of Load - Large Background Tasks

Total Load Total Load

Figure 12: Left: Variation of load in screensaver mode, where CDA and RR perform equally
well. Right: Screensaver mode with larger background tasks: Performance degrades for all
protocols as the tasks are suspended for a longer time.

1.0)40. Figure 11 shows that the task size distribution has little effect on the mean completion

time. These findings are not surprising, as tasks of different sizes are treated equally by the

examined protocols.

Conclusion: The distribution of task sizes has very little impact on the performance of the

protocols. A loguniform distribution of task sizes led to almost the same results as identical

task sizes. Hence, the task size distribution is a factor which can be neglected in future

experiments — at least for these three protocols.

8.1.4 Granularity of Background Load

The granularity of the background load is a parameter which does affect the mean completion

time. In the experiment in Figure 12 (left) we use the same parameters as in Figure 11

(left), except that now each background task takes up all resource units of the Server, i.e.

Nru ,b g = 10 (screensaver mode, SP2). Not surprisingly, RR now performs equally well as

CDA, as all resources that are offered at the EMP now execute tasks at the same speed.

Apart from this difference, the results do not change much in comparison to Figure 10 (left).

However, if the size of the background task is increased to Sc ,bg = 10-0 — as done in Figure

12 (right) — all three protocols degrade: In particular, with PSP, the completion time at 90%

40 We will not vary the mean of the task computation size, Sc, as this would have the same effect as changing
background task size, Sc ,bg > in the opposite direction. This will be done later in Figure 13 (right).

85

8 TASKS WITH THE SAME PRIORITY

Background Task Sizes - Screensaver Mode

e
P

a ,
Eo

Background Task Sizes

1.6 ■

L5
0.1 1 10

Background Task Size

Figure 13: Left: Variation of the background task size in screensaver mode. Right: Variation
of the background task size for Nru ,b g = 1 •

load is now 21% higher than in Figure 12 (left).

A wider range of values for the background task Sc ,bg is studied in Figure 13 (left).

The experimental parameters are {Tl, SP2V, C l, SN1, RD1, LI, BG2, TS2, BS1}, i.e. we

examine the screensaver mode, where the average total load is set to 90% and the background

load to 45%. For Sc ,bg =0.1 the average completion time of the three protocols is only

slightly lower than for Sc ,b g = 1-0. For higher Sc ,b g , however, a strong degradation can be

observed (95% for CDA at Sq ,b g =40). This can be explained by the fact that tasks, which

are suspended by background load, now have to wait for a longer time before they can

resume execution. However, the results are still very stable over two orders of magnitude

(Sc ,bg = [0.1,10.0]). Carrying out this experiment with Nr u ,bg = ̂ (SPIV) does not result

in any degradation, as shown in Figure 13 (right). The reason for this is that tasks do not

get completely suspended by the finer-grained background tasks. The results even seem to

improve for very high Sc ,b g ■ This, however, can be explained by the fact that the share of

a resource, which is allocated to a task, is more likely to remain stable during its execution,

as there are fewer arrivals of background tasks. Note that for the same reason the results of

the experiment become less accurate, as can be seen by the larger confidence intervals of the

measurements.

Conclusion:

The background task granularity has a considerable impact on the performance of the

examined protocols: In screensaver mode, where a resource is either completely available or

86

8 TASKS WITH THE SAME PRIORITY

Variation of Burstiness Variation of Burstiness - Screensaver Mode

Figure 14: Left: Variation of the task burst size. Right: Variation of the task burst size in
screensaver mode.

unavailable, the results of the three protocols are very different from the previously consid-

ered cases. RR and CDA perform equally well, whereas PSP’s performance is worse.

The size of the background tasks has little impact on the performance of the protocols

— except in screensaver mode, where the mean completion time slowly rises with increased

background task size. All three protocols are affected in a similar way.

8.1.5 Task Burstiness

Next, we examine the effect of changing the task burst size, BS. As parameters of the ex-

periment we choose {T1, SP1, C l, SN1, RD1, LI, BG2, TS2, BSV}. These are the same

as in Figure 10, except that now the total load is fixed at 90%, while the burst size is varied.

The results in Figure 14 (left) show that with increased BS also the mean completion time

increases. This is not surprising: If the burst size is high in comparison to the number of

resources in the system, it becomes less likely that all the tasks of a burst can be executed

immediately. However, for low values of BS (< 5), the completion time is relatively stable.

Note that with increased burst size the gap between RR and CDA decreases. The reason is

that the choice of resources becomes smaller when BS is higher. Very similar observations

could be made for the screensaver mode (SP2), for which the results are shown in Figure

14 (right). The degradation appears to depend on the ratio of task burst size and number of

Servers in the system. The results of an experiment where the task burst size was varied for

256 Servers in the system is shown in Figure 15 (SN2). In comparison to Figure 14 (left),

87

8 TASKS WITH THE SAME PRIORITY

Variation of Burstiness - More Servers

Figure 15: Variation of the task burst size when there are 256 Servers in the system. Note
that there is less degradation than for 32 Servers.

the sharp increase of the completion time now occurs at a higher burst size.

Conclusion: The higher the number of tasks per burst, the higher the mean completion time.

PSP suffers most, whereas RR and CDA perform equally well. However, the degradation

of the protocols is small as long as the burst size is small in comparison to the number of

resources in the system.

8.2 PC Grid

Next, we study PC Grid-type infrastructures which are characterised by higher resource

heterogeneity, higher number of resources, and higher communication delays than computa-

tional clusters. To see the impact of each of these parameters, we start off with parameters

typical for a cluster setting and change them one by one.

8.2.1 Resource Heterogeneity

At first, we examine the impact of having different degrees of heterogeneity of resources in

the system (RDV). In Figure 16 (left) we use the parameter set (T l, SP1, C l, SN1, RDV,

LI, BG2, TS2, BS1}: We have 32 resources in the system, and the average total load is

90%, half of which is background load. Task sizes have a loguniform distribution, and the

88

8 TASKS WITH THE SAME PRIORITY

Variation of Server Speeds Variation of Server Speeds - Screensaver Mode

Min. Server Speed / Av. Server Speed Min. Server Speed / Av. Server Speed

Figure 16: Left: Variation of the resource heterogeneity. Right: Variation of the resource
heterogeneity in screensaver mode.

task burst size is 1. The number of resource units per background task is set to Nru ^ g — T

and communication delays are neglected. For the speed factor fspeed we use a uniform

distribution, in which the minimum fs peed,min is varied between 0 and fspeed,av = 0.1. The

maximum speed factor is calculated by fspeed,max = 2 • fspeed,av ~ fSpeed,min- Thus, in the

diagram, we get maximum resource heterogeneity on the left, and identical resources on the

right.

The performance of CDA slightly improves when heterogeneity is increased. At a ratio

°f fSpeed,mint}Speed,av = 0.01562, its mean completion time is 2% lower than for identical

resources. RR degrades slightly, by about 5%, because it does not consider speed for the

choice of resources. PSP degrades by 9% when fspeed,min/ fSpeed,av = 0.3, but by just 3% for

a value of = 0.01562. This result indicates that proportional sharing does not always lead to

improvements, even when resources are heterogeneous. However, as will later be shown in

Figure 17 (left), such a poor performance of PSP can only occur at high loads, when many

tasks use a resource in parallel.

In screensaver mode, RR performs in a similar way as in the previous experiment. The

results are shown in (Figure 16 (right)). CDA improves more than before. The reason is

that speed is now the only criterion for choosing a resource: background load now does not

play any role in the allocation decision — a resource is either available or not available. The

results of PSP are now very irregular. Overall, an improvement can be observed for all values

of fSpeed,mintfSpeed,av, except in the range 0.2 — 0.4.

89

8 TASKS WITH THE SAME PRIORITY

Different Server Speeds - Screensaver Mode Variation of the Server Number

Figure 17: Screensaver mode. Left: Variation of load when resources are heterogeneous.
RR performs poorly for low load, while PSP outperforms CDA for moderate load. Right:
Variation of the Server number when resources are heterogeneous.

Conclusion: As heterogeneity of resources in the system is increased, we observe a small

improvement for CDA, a small degradation for RR, and large fluctuations for PSP. Note that

these observations are limited to the case that the total load in the system is set to 90%. The

results for different amounts of load will be given in the next section.

8.2.2 Resource Heterogeneity and Different Amounts of Load

Next, we examine different amounts of load in the system (LV) when resource heterogeneity

is high (RD2, i.e. fs Peed,min = 0.0015625). Figure 17 (left) shows the result for the screen-

saver mode. For low load, CDA and PSP perform much better than for identical resources as

the tasks are very likely to execute on faster resources.

What at first looks surprising is that RR’s performance is worse for low load than for

moderate or high load. The reason for this is that RR chooses resources indifferently. With

low load, the availability of slow resources will be the same as that of fast ones. For high

load, slow resources are more likely to be in use because tasks take longer to complete.

Hence, faster resources will be used more often, resulting in better average performance.

Another important result is that PSP performs slightly better than CDA for a total system

load of 65% to 85%. It appears that in this range it can be advantageous to execute several

tasks in parallel on fast resources — and slowing them all down — rather than allocating

some tasks to slow resources.

90

8 TASKS WITH THE SAME PRIORITY

Conclusion: Whether a protocol improves (or degrades) with increased resource hetero-

geneity depends very much on the amount of load in the system: For very heterogeneous

resources and moderate amounts of load, PSP can outperform CDA. RR performs much

worse than the other protocols, if load is low or moderate.

8.2.3 Different Server Numbers

The aim of this experiment is to see the effect of the Server number on the completion

time. In Figure 17 (right) the number of Servers Nserv in the system is varied while the load

and background load ratios are kept constant. We examine the screensaver mode (SP2) and

assume heterogeneous resources (RD2). Hence, the parameters are given by {Tl, SP2, Cl,

SNV, RD2, LI, BG2, TS2, BS1}.

For all protocols, the mean completion time goes down as Nserv is increased. The reason

is that with increased size of the market a shortage of resources is less likely, because the

overall amount of resources offered is more stable. CDA performs best for almost all exam-

ined values. For a high Server number, PSP approaches its performance, because it becomes

less likely that several tasks execute on a resource at the same time. RR performs worse:

For Aserv=126 its completion time is 25% higher than CDA’s. This can be explained by its

indifferent allocation of resources. However, for low Nserv, RR’s performance is almost the

same as CDA’s.

An anomaly of PSP can be observed for Nserv -2, where its mean completion time is

lower than for 3 or 4 Servers. This can be explained by the distribution of Server speeds

(RD2). For A(sen,=2 it appears to be advantageous to concurrently execute several tasks on

the faster resource, rather than using the slower resource.

Conclusion: For a high Server number and heterogeneous resources, all protocols improve.

PSP’s mean completion time approaches that of CDA, whereas that of RR remains at a higher

level.

91

8 TASKS WITH THE SAME PRIORITY

Variation of Network Latency - Screensaver Mode Variation of Network Latency - High Server Number

Figure 18: Screensaver mode. Left: Variation of the network latency. CDA and RR degrade
strongly while PSP performs much better. Right: Variation of network latency when there
are 256 Servers in the system.

Variation of Data Size - Screensaver Mode

Figure 19: Screensaver mode: Variation of the size of the input data of tasks, when bandwidth
is limited. It has a similar effect on the overall performance as varying the network latency.

8.2.4 Communication Delays

So far, the communication delay between Clients, Servers, and the EMP has been neglected.

In Figure 18 (left) we investigate how the performance of the protocols degrades when net-

work latency is introduced. The simulation parameters of this experiment are given by (T l,

SP2, C2V, SN1, RD2, LI, BG2, TS2, BS1}. For the latency, we use a lognormal distribution,

of which the mean is varied (C2V). A sharp rise of the mean completion time can be observed

for RR and for CDA when the latency is increased over 0.04 41. This is because resources,

41Note that the reason for the ’angle’ in the slope is that only few data points are used in that experiment.
With more data points the curve would be smoother.

92

8 TASKS WITH THE SAME PRIORITY

which are released, need to be advertised at the EMP before they can be used again. They

remain idle during the communication delays, leading to a shortage of resources. For PSP.

however, the rise is much slower. The reason is that the tasks are allocated immediately after

arrival without waiting for resources to become available. As shown in Figure 18 (right), the

results do not change much when the number of resources in the system is increased from

32 to 256 (SN2).

Next, we investigate a case where the determining factor for the communication delays

is the network bandwidth rather than the network latency. In Figure 19 the size of the input

data of the tasks is varied (C3V). The main difference to the previous experiments is that

now the delays only occur when tasks are sent from the Client to a Server. However, as the

results show, this difference does not affect the relative performance of the protocols.

Conclusion: When communication delays are large in comparison to the size of the tasks,

all protocols will degrade strongly. However, PSP can cope much better with the delays than

RR and CDA: its degradation is much slower. This observation has been made for two cases:

one, where all messages were treated in the same way, and the other one, where only the

transfers of larger input data were delayed.

8.3 Summary

Distributed computing environments are diverse in their nature, ranging from local clusters

of PCs to geographically distributed networks of heterogeneous resources (Grids). Typically,

parameters like the number of resources, resource heterogeneity, and communication delays

are low in a cluster, but high in a Grid.

In this chapter, we explored various realistic situations by varying these and other rel-

evant parameters. We examined the PC Cluster and PC Grid infrastructures. For these,

we compared the performance of three protocols: the Continuous Double Auction Protocol

(CDA), the Proportional Share Protocol (PSP), and the Round Robin Protocol (RR). We ex-

amined the sensitivity of our results to different parameters and identified those parameters

which have considerable impact on the results.

93

8 TASKS WITH THE SAME PRIORITY

In addition to the PC Cluster and PC Grid infrastructures, we explored the Supercomput-

ing Cluster and Supercomputing Grid. The results from these experiments are in many cases

similar to those of the PC infrastructures and can be found in chapter C of the appendix. An

overview of all experiments and their parameters is given in Figure 20. Our guidelines for

the system designer are summarised in chapter 13.

Infrastructure Figure Parameters
PC Cluster 9 Tl, SP1, Cl, SN1, RDI, LV, BGO, TS1, BS1
PC Cluster 10(left) Tl, SP1, Cl, SN1, RDI, LV, BG2, TS1, BS1
PC Cluster lO(right) Tl, SP1, Cl, SN1, RDI, LV, BG3, TS1, BS1
PC Cluster 11 Tl, SP1, Cl, SN1, RDI, LV, BG2, TS2, BS1
PC Cluster 12 (left) Tl, SP2, Cl, SN1, RDI, LV, BG2, TS2, BS1
PC Cluster 12(right) Tl, SP2A, Cl, SN1, RDI, LV, BG2, TS2, BS1
PC Cluster 13(left) Tl, SP2V, Cl, SN1, RDI, LI, BG2, TS2, BS1
PC Cluster 13(right) Tl, SPIV, Cl, SN1, RDI, LI, BG2, TS2, BS1
PC Cluster 14(left) Tl, SP1, Cl, SN1, RDI, LI, BG2, TS2, BSV
PC Cluster 14(right) Tl, SP2, Cl, SN1, RDI, LI, BG2, TS2, BSV
PC Cluster 15 Tl, SP1, Cl, SN2, RDI, LI, BG2, TS2, BSV
PC Grid 16(left) T l, SP1, Cl, SN1, RDV, LI, BG2, TS2, BS1
PC Grid 16(right) Tl, SP2, Cl, SN1, RDV, LI, BG2, TS2, BS1
PC Grid 17 (left) Tl, SP2, Cl, SN1, RD2, LV, BG2, TS2, BS1
PC Grid 17 (right) Tl, SP2, Cl, SNV, RD2, LI, BG2, TS2, BS1
PC Grid 18(left) Tl, SP2, C2V, SN1, RD2, LI, BG2, TS2, BS1
PC Grid 18(right) Tl, SP2, C3V, SN1, RD2, LI, BG2, TS2, BS1
PC Grid 19 Tl, SP2, C2V, SN2, RD2, LI, BG2, TS2, BS1
SC Cluster 79(left) Tl, SP3, Cl, SN1, RDI, LV, BG2, TS2, BS1
SC Cluster 79(right) Tl, SP3, Cl, SN1, RDI, LV, BG3, TS2, BS1
SC Cluster 80(left) Tl, SP4, Cl, SN1, RDI, LV, BG2, TS2, BS1
SC Grid 80(right) Tl, SP3, Cl, SN1, RD2, LV, BG2, TS2, BS1
SC Grid 81 (left) Tl, SP3, Cl, SNV, RD2, LI, BG2, TS2, BS1
SC Grid 81 (right) Tl, SP3, C2V, SN1, RD2, LI, BG2, TS2, BS1
SC Grid 82 Tl, SP3, Cl, SN1, RD2, LI, BG2, TS2, BSV

Figure 20: Tasks with the same priority: Overview of experiments.

In almost all situations CDA outperforms the two other protocols. PSP performed better

only for moderate loads combined with high resource heterogeneity. It also degraded less

than the two other protocols when communication delays were high.

Concerning the sensitivity of our results to different parameters, our main findings are:

• The distribution of task sizes has very little impact on the performance of the protocols

and will not be examined in further experiments.

94

8 TASKS WITH THE SAME PRIORITY

• The higher the number of tasks per burst, the higher the mean completion time. How-

ever, the degradation of the protocols is small as long as the burst size is small in

comparison to the number of resources in the system. In our further investigations we

will focus on this case as it is likely to be found in Grid settings: We will use the burst

size 1 for most of our experiments.

• An increase of background load in the system generally leads to a degradation of per-

formance. It affects all protocols in a similar way.

• The granularity of background load has a considerable impact on performance. There-

fore, both the screensaver mode and finer background load will be examined in further

experiments.

• Resource heterogeneity is a factor which affects the examined protocols in different

ways: Depending on the amount of load in the system, it may improve CDA and PSP,

whereas RR will degrade.

• An increased number of resources in the system generally leads to performance im-

provements for all three protocols. However, for CDA and PSP this improvement is

larger than for RR.

• When communication delays are introduced, CDA and RR will degrade more than

PSP.

This scenario is relatively simple: Since all tasks have the same priority, the only useful

feature of the market protocols is their greedy behaviour, i.e. the selection of the fastest

resource that is available at the time. Hence, if resources become scarce, CDA and RR

perform about equally well. We also note that, in this scenario, the generated tasks have no

deadlines or other constraints and that the average load generated is less than 100% of the

systems capacity. Therefore, all tasks get executed eventually, and the average load on the

Servers is equal to the average load that is generated.

In the following chapters, scenarios will be considered where tasks have different priori-

ties or deadlines. We will introduce further resource allocation protocols, which can provide

95

8 TASKS WITH THE SAME PRIORITY

improvements in some of the examined situations. These protocols use features such as

the suspension or migration of tasks, reserve prices, periodic auctions, time-dependent price

bids, etc. As the impact of the different parameters has been examined in this chapter, we

will be able to reduce the amount of experiments that are needed.

96

9 TASKS WITH DIFFERENT PRIORITIES

9 Tasks with Different Priorities

This chapter provides a comprehensive performance comparison of different resource allo-

cation protocols for a scenario in which tasks have different priorities {weights). For these

weights, wjasb which reflect their value to the Client, we use a uniform distribution [0.0,2.0].

In the market protocols, the price bid of a task pjask is equal to its weight. As performance

metric we use the weighted completion time (WCT) which is defined as the mean of the

completion times of the tasks multiplied by their weights (see also subsection 2.6.1).

Now that tasks have different priorities, the market protocols are expected to result in

additional performance improvements in comparison to conventional protocols. For this

reason, we will present a more comprehensive study where several market protocols are

compared. These include the Continuous Double Auction Protocol (CDA), the Proportional

Share Protocol (PSP), the Highest Bid Protocol (HBP), and the two preemptive protocols,

PE-P and PE-A. Also, First-In-First-Out (FIFO) and the Round Robin Protocol (RR) will

be examined. In addition to these, we will evaluate some other, more specialised protocols

for some selected situations in order to determine whether they can lead to any improvement

at all. These are the Periodic Double Auction Protocol (PDA), Shortest-Job-First (SJF),

two protocols which use reserve prices for the Servers (CDA-RES and HBP-RES), and two

protocols which use thresholds for the preemptions (HBP-T and PE-T). We start off with the

PC Cluster infrastructure, and then move on to the PC Grid infrastructure.

9.1 PC Cluster

9.1.1 No Background Load

In the first experiment, we consider a setup with identical resources and no background load.

It is defined by the parameters (T2, SP1, C l, SN1, RD1, LV, BGO, TS2, BS1}. This means,

that we have a system with 32 Servers, each with the resource size Nr u jo u iI = 10 and speed

factor fspeed = 0.1. Tasks sizes have a loguniform distribution with mean 1.0 (TS2), the task

burst size is 1, and communication delays are neglected. In the experiment, the total amount

of load in the system is varied (LV).

97

9 TASKS WITH DIFFERENT PRIORITIES

Total Load

Figure 21: Tasks with different priorities: Variation of load, without background load.

Figure 21 shows the weighted completion time (WCT) for the examined protocols. For

low to moderate load of up to 70%, all compared protocols perform about equally well,

whereas for high load, the best performance is achieved by the two preemptive protocols, PE-

P and PE-A. At 90% load, their WCT is about 4% lower than that for CDA. HBP performs

slightly worse than CDA: at 90% load, its WCT is only about 0.8% higher: The delay of

the low priority tasks, that are suspended, appears to outweigh the gain of the higher priority

tasks. Not surprisingly, PSP performs even worse than HBP, as the concurrent execution of

several tasks at the same resource delays the execution of all allocated tasks. The worst result

is observed for RR and FIFO, because these two protocols do not prioritise tasks according to

their weights. Since there is no difference between the resources, their results are identical.

Conclusion: For low to moderate load there is little difference between the examined proto-

cols. For high loads, neither proportional-sharing nor task suspension provides any improve-

ment over CDA. Only the two preemptive protocols outperform CDA by a small margin.

9.1.2 Background Load: Screensaver Mode

Next, we consider the case in which half of the total load in the system is background load

(BG2). Background tasks have the computation size Sc ,bg = 1.0, and are allocated Nru ,bg

- 10 resource units at a time (SP2, screensaver mode). The results for CDA, SJF, PE-P, and

98

9 TASKS WITH DIFFERENT PRIORITIES

P Variation of Load - Screensaver Mode
y

Total Load

P Variation of Load - Screensaver Mode
y

Total Load

Figure 22: Variation of load, screensaver mode.

PE-A are shown in Figure 22 (left): There is hardly any difference between the protocols for

loads between 0 and 75%. The only exception is the PE-A protocol, whose performance is

much better. Its WCT remains close to 1.0 until 85% load, and then slightly increases to 1.1

at 95% load. The reason is that PE-A is able to reschedule a task when a background task is

started at the resource — which would otherwise result in the task’s suspension.

The result for PE-P at 95% load is only 3% better than that for CDA, and the result

for SJF is 5% worse. HBP performs about equally well as SJF (see Figure 22 (right)). As

there are still no differences between the resources in the system, RR and FIFO perform

equally well: At 95% load, their WCT is 14% higher than CDA’s. The poorest performance

is observed for PSP, whose WCT at 95% load is now 16% higher than CDA’s.

We also explored the use of reserve prices by the Servers (i.e. the CDA-RES protocol). In

Figure 23, we compared the performance of CDA-RES to that of ’normal’ CDA (i.e. where

the Server reserve prices are set to zero). We considered different price discounts 42 for the

reserve prices, however, no improvements were observed. Again, this can be explained by

the fact that there are no differences in performance between the available resources. We

also examined the PDA protocol, and it did not lead to any improvements either. Its results

for different time intervals St between the transactions are given in Figure 83 (left) of the

appendix.

42Note that the price discount is the value which is deducted from a Server’s average pay rate measured in
the past. The resulting value is the Server’s reserve price.

99

9 TASKS WITH DIFFERENT PRIORITIES

Total Load

Figure 23: Variation of load, screensaver mode: CDA-RES with different price discounts.

Conclusion:

With coarse-grained background load (i.e. in screensaver mode), the differences between

the protocols are small. The only exception is the PE-A protocol, which results in a consid-

erable improvement in comparison to all other protocols. Using reserve prices (CDA-RES)

or periodic auctions (PDA) does not lead to any performance improvements.

9.1.3 Fine-Grained Background Load

We also examine the protocols for fine-grained background load (SP1). The results for CDA,

FIFO, SJF, PE-P, and PE-A are shown in Figure 24 (left). Now, both preemptive protocols

perform considerably better than CDA: At 95% load, PE-P improves the WCT by 17%.

As PE-A is able to react to changes in the background load, its WCT is even 23% lower

than CDA’s. For FIFO and SJF, there is hardly any difference to CDA for up to 90% load.

However, at 95% load, FIFO’s WCT is 12% higher than CDA’s, and that of SJF is 4% higher.

Other protocols perform even worse (see Figure 24 (right)): At 95% load, PSP’s and RR’s

WCTs are 14% and 17% higher, respectively. By far the poorest performance is observed for

HBP: at 95% load its WCT is more than twice as high as CDA’s. The reason is that, due to

the differences in the background load of the resources, low priority tasks are more likely to

be suspended by high priority tasks. Their delay results in a strong degradation of the overall

performance.

1 0 0

9 TASKS WITH DIFFERENT PRIORITIES

Variation of Load - With Background Load Variation of Load - With Background Load

Figure 24: Tasks with different priorities: Variation of load, with fine-grained background
load.

HU
£
<u
6
H
BO

'S.
Eo
U
-o

CD

Jc
bo

Variation of Load - With Background Load
2.6 1 1---------------1---------------I-------------- 1----------- -------------------T-------------- r-------------- ,-------T

2.4 no reserve price ¡[
no price discount

2.2 price discount 0.2 -------------------- -

price discount 0.5 A/ ' }.2
1.8 / / /
1.6 / / ■

1.4 ^ ...r '

1.2
1 ____ ______ _ - : ~ " _____*_______»_______1______ 1___

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Total Load

Figure 25: Variation of load, with fine-grained background load: CDA-RES with different
price discounts.

The above results change slightly when the share of the background load is increased.

These results are presented in Figure 84 of the appendix.

We also investigated the CDA-RES protocol (Figure 25). We found that, in general,

CDA without reserve prices performs better. However, for the price discount of 0.5 — which

corresponds to 50% of the average price bids of the tasks — a small improvement can be

observed for moderate load (i.e. 65% — 90%).

Finally, we considered the PDA protocol but no improvements were observed. The re-

sults are given in Figure 83 (right) of the appendix.

1 0 1

9 TASKS WITH DIFFERENT PRIORITIES

Figure 26: Variation of burstiness, screensaver mode.

Conclusion:

For fine-grained background load, PE-A clearly outperforms PE-P, and both protocols

perform much better than all other protocols. The poorest result has been observed for

F1BP, which strongly degrades compared to a situation without background load. Priori-

tising shorter tasks, as in SJF, leads to small improvements when compared to FIFO but still

results in poorer performance than CDA. Only marginal improvements could be observed

for CDA-RES — and these were only achieved by using large price discounts.

9.1.4 Task Burstiness

Next, we examine the effect of changing the task burst size, BS. As parameters of the exper-

iment we choose {T2, SP2, C l, SN1, RD1, LI, BG2, TS2, BSV}, i.e. the resources operate

in screensaver mode, and the total load in the system is fixed at 90%. As shown in Figure

26 (left), the differences between CDA and the preemptive protocols become smaller with

increased burst size. Interestingly, HBP now approaches CDA’s performance.

In contrast to the scenario where tasks have the same priorities (Figure 14), Round-Robin

and FIFO now degrade much stronger than CDA. This is because tasks are not prioritised by

these protocols. For BS = 45, their WCT is 86% higher than for CDA (see Figure 26 (right)).

The performance of PSP is even poorer: Its WCT is three times as high as for CDA.

1 0 2

9 TASKS WITH DIFFERENT PRIORITIES

Conclusion:

We varied the task burst size for the screensaver scenario and found that, with increased

burst size, Round-Robin and FIFO now degrade much stronger than CDA. The preemptive

protocols still perform best, but the gap to CDA is becoming smaller. The HBP protocol now

performs equally well as CDA.

9.2 PC Grid

After having studied the PC Cluster, we now move on to the PC Grid-type infrastructures,

which are characterised by higher resource heterogeneity, higher number of resources, and

higher communication delays.

9.2.1 Resource Heterogeneity: Screensaver Mode

Initially, we examine the impact of having different degrees of heterogeneity for the resources

in the system (RDV). We use the parameter set {T2, S2, C l, SN1, RDV, LI, BG2, TS2,

BSl}: We have 32 resources in the system, and the average total load is 90%, half of which is

background load. Task sizes have a loguniform distribution, and the task burst size is 1. The

number of resource units per background task is set to Nru ,bg — 10, and the communication

delays are set to zero.

Figure 27 (left) shows that the performance of CDA slightly improves when heterogene-

ity is increased. At a ratio of fSpeed,min / fSpeed,av = 0.01562, its WCT is 3% lower than for

identical resources. RR degrades by about 5.6%, because it does not consider speed for the

choice of resources. PSP improves by about 13% and now event outperforms CDA.

As shown in Figure 27 (right), the WCT of the HBP protocol is about twice as high as

for the other protocols. Also, there is a strong decrease of the WCT for completely homo-

geneous resources, i.e for the case fspeed,min = fSpeed,av- It can be explained by the fact that

the HBP protocol gives preference to idle resources when several resources with identical

performance are available, resulting in fewer delays of the executing tasks. A small improve-

ment can be observed for the FIFO protocol, whose WCT at fspeed,min/fSpeed,av = 0.01562

is 2.5% higher than CDA’s. The performance of the two preemptive protocols improves con-

103

9 TASKS WITH DIFFERENT PRIORITIES

Different Server Speeds - Screensaver Mode Different Server Speeds - Screensaver Mode

Min. Server Speed / Av. Server Speed

Figure 27: PC Grid: Variation of resource heterogeneity, screensaver mode. Left: Results
for CDA, PSP, and RR. Right: Results for the HBP protocol.

P Different Server Speeds - Screensaver Mode
u

Different Server Speeds - Screensaver Mode

Figure 28: PC Grid: Variation of resource heterogeneity, screensaver mode. Left: Results
for FIFO, PE-P, and PE-A in comparison to CDA. Right: Results for PDA with different
intervals between the transactions.

siderably as heterogeneity is increased (see Figure 28 (left)). PE-P’s WCT decreases by 24%

and that of PE-A by about 34%.

We examined the effect of Server reserve prices for both, CDA and HBP, but could not

find any improvements. The results can be found in Figure 85 of the appendix.

A more interesting observation has been made for the PDA protocol. In Figure 28 (right),

the results for PDA with different time intervals Si between the transactions are compared

to CDA’s results. A reduction of the WCT was obtained when Si = 0.1, though only for

fSpeed,min/ JSpeed,av 5 0.35. At fSpeed,min/ fSpeed,av ~ 0.01562, the WCT was 3% lower than

for CDA. For Si = 0.01, only marginal improvements were observed — but for a larger range

of ratios fSpeed,min/ JSpeed,av

104

9 TASKS WITH DIFFERENT PRIORITIES

Conclusion:

When resource heterogeneity is increased in screensaver mode, considerable perfor-

mance improvements are observed for PSP and the two preemptive protocols, and small

improvements for CDA and FIFO. In this setup, PSP even outperforms CDA. A strong degra-

dation, however, occurs for Round-Robin and HBP. We also found, that periodic auctions

(PDA) can outperform continuous auctions when resource heterogeneity is high — provided

that a suitable value is chosen for the time interval between the transactions. No improve-

ments were achieved by using CDA-RES or HBP-RES.

9.2.2 Resource Heterogeneity: Fine-Grained Background Load

Next, we examine different degrees of resource heterogeneity for fine-grained background

load (SP1). The results for CDA, PSP, and RR are shown in Figure 29 (left). They are similar

to those observed in screensaver mode (Figure 27 (left)). The main difference is that PSP

now performs better than Round-Robin for all degrees of heterogeneity. For HBP, FIFO,

PE-P, and PE-A, the observations from the previous experiment can also be confirmed (see

Figure 86 in the appendix).

We also examined the CDA-RES protocol, for which the results are shown in Figure

29 (right). In all cases, the performance improves with increased heterogeneity. However,

only for the price discount 0.5, a better performance can be achieved than for CDA. The

gap widens and amounts to about 9% at fSpeed,min/fSpeed,av = 0.01562. The reason is that

the faster resources have higher prices and therefore are not available to low priority tasks.

As a result, they are more likely to be available to high priority tasks, leading to improved

performance — which is even better than for the PSP protocol.

Conclusion: When the resource heterogeneity is varied, the results are very similar to those

obtained in screensaver mode. With increased heterogeneity, all examined protocols, except

Round-Robin, improve their performance. The largest gains could be observed for PSP and

the two preemptive protocols. A considerable improvement was also observed for CDA-

RES, which delivers a better result than PSP.

105

9 TASKS WITH DIFFERENT PRIORITIES

Different Server Speeds

Min. Server Speed / Av. Server Speed

Different Server Speeds

Min. Server Speed / Av. Server Speed

Figure 29: PC Grid: Variation of resource heterogeneity for fine-grained background load.
Left: Results for CDA, PSP, and RR. Right: CDA-RES with different price discounts.

Total Load Total Load

Figure 30: Screensaver mode: Variation of load for heterogeneous resources.

9.2.3 Variation of Load: Screensaver Mode

As could be observed in subsections 9.2.1 and 9.2.2, some of the examined protocols can

lead to considerable performance improvements if the heterogeneity of resources is high.

However, in all these experiments, the average load in the system has been set to 90%. In

this section we will examine a situation where the resource heterogeneity is high and will

compare the protocols for different amounts of load. In the experiments, we use the parame-

ter set {T2, SP2, C l, SN1, RD2, LV, BG2, TS2, BS1}. Due to the poor performance of HBP

in the previous experiments, we now also examine the HBP-T and HBP-RES protocols.

The results for CDA, PSP, RR, and HBP are shown in Figure 30 (left). For RR, the same

observations as for the scenario described in chapter 8 (see Figure 17 (left)) have been made.

HBP’s performance is also very poor compared to CDA: Its WCT is even higher than that

for RR, when the load in the system is greater than 60%. Among these four protocols, CDA

106

9 TASKS WITH DIFFERENT PRIORITIES

Heterogeneous Resources - Screensaver Mode

Total Load

Heterogeneous resources - Screensaver Mode

Total Load

Figure 31: Variation of load for heterogeneous resources. Left: Results for PDA with differ-
ent intervals between the transactions. Right: CDA-RES with different price discounts.

Heterogeneous resources - Screensaver Scenario

Total Load

Heterogeneous resources - Screensaver Mode

Figure 32: Variation of load for heterogeneous resources. Left: PE protocol with different
thresholds (PE-T). Right: HBP protocol with different thresholds (HBP-T).

performs best, except in the range of 65% to 90% load, where it is outperformed by PSP. At

80% load, PSP is 11% better than CDA. FIFO performs about equally well as CDA for up

to 90% load, as is shown in Figure 30 (right). Still, the two preemptive protocols provide the

best results for the whole range of values. The gap to CDA widens as load is increased. Note

that the WCT for PE-A is considerably lower than for PE-P.

With PDA, only marginal improvements in comparison to CDA were achieved, as is

shown in Figure 31 (left). CDA-RES does not lead to any improvement (see Figure 31

(right)). The same is the case for CDA-RES in combination with task price adjustment 43.

The results with the negotiation times 1.0 and 10.0 are given in Figure 89 of the appendix.

The HBP protocol with reserve prices (HBP-RES) can improve performance in compar-

43This version of CDA-RES will be described in subsection 9.2.4. The mechanism for the task price adjust-
ment and the notion of negotiation time will be described in subsection A.2.5 of the appendix.

107

9 TASKS WITH DIFFERENT PRIORITIES

ison to the ’normal’ HBP protocol but still provides poorer results than the other protocols.

The results for different price discounts are shown in Figure 90 in the appendix.

We also examined the PE-T protocol, for which we enabled only ’passive’ preemption (as

in PE-P). The speed improvement factor was set to a very high value. This prevented a task

from preempting other, lower priority tasks — unless it had no resource at all. We examined

different values for the bid improvement factor, i.e. the threshold which determines how

much higher the bid of a task must be in order to preempt another task. We found that PE-T

is never better than PE-P but performs better than CDA and HBP for all the examined bid

improvement factors (see Figure 32 (left)).

Finally, we considered HBP-T, a version of the HBP protocol which uses a bid improve-

ment factor. We examined different values for this factor and compared the results to those

obtained by CDA and HBP. We found that HBP-T always outperforms HBP. Furthermore,

with the values 2.0 and 5.0, it is also better than CDA — if the amount of load in the system

is high. The results are shown in Figure 32 (right).

Conclusion:

Most of the observations that were made for heterogeneous resources, could now be

confirmed for a wider range of loads in the system. PSP performs better than CDA for

65% to 90% load. PDA, however, provides little improvement, and CDA-RES results in no

improvement at all. The same applies to HBP-RES. We also examined the HBP-T protocol

and found that it always outperformed HBP. With an appropriate choice of threshold, its

WCT was also lower than CDA’s.

9.2.4 Variation of Load: Fine-Grained Background Load

The setup which was studied in the previous section will now be examined for fine-grained

background load (SP1): The experiment is defined by the parameter set {T2, SP1, C l, SN1,

RD2, LV1, BG2, TS2, BS1}. For CDA, PSP, RR, HBP, FIFO, PE-P, and PE-A the results

are almost the same as before and are given in Figure 91 of the appendix.

The results for the PDA protocol are shown in Figure 33 (left). Compared to CDA, there

is a visible improvement for 5? = 0.1, when the load in the system is higher than 75%.

108

9 TASKS WITH DIFFERENT PRIORITIES

Variation of load - Heterogeneous Resources

Total Load

Variation of load - Heterogeneous Resources

Total Load

Figure 33: Variation of load for heterogeneous resources. Left: Results for PDA with differ-
ent intervals between the transactions. Right: CDA-RES with different price discounts.

We also examined CDA-RES with different price discounts, and found that for almost

the whole range of loads it can outperform ’normal’ CDA (see Figure 33 (right)). However,

the price discount has to be chosen carefully: For low load, ’no price discount’ leads to the

best performance, for moderate load, the best results are achieved with price discount 0.2,

and for high load, price discount 0.5 is best.

One risk of using CDA-RES is that low priority tasks may never be executed. This

may be the case if the price discount is low and load is high. To avoid this problem, we

extended CDA-RES, so that it allows tasks to adjust their prices while waiting at the EMP

(see subsection A.2.5 in the appendix). A task will start with an initial bid PTask,min, which

is linearly increased up to its maximum bid prask,max■ These price adjustments at the EMP

are carried out at periodic intervals, for which we used % = 0.1. For each task, we choose the

initial bid PTask,min such that it is proportional to its weight. The maximum bid pTask,ma* is

the same for all tasks and corresponds to the bid of the highest priority task. We considered

different negotiation times Tueg between the initial and the maximum price bid of a task. The

results for negotiation time 1.0 are given in Figure 34 (left), and those for negotiation time

10.0 in Figure 34 (right). For moderate loads, performance was best with the price discount

0.2 — with both negotiation times. For high loads, the best result was achieved with price

discount 0.5 and negotiation time 10.0.

Most of the experiments, which have been described in this subsection, have also been

carried out for a situation without any background load on the resources. The results are

109

9 TASKS WITH DIFFERENT PRIORITIES

Heterogeneous Resources - Price Negotiation Heterogeneous Resources - Price Negotiation

Total Load

Figure 34: Heterogeneous resources: CDA-RES with different price discounts. Left: Task
negotiation time 1.0. Right: Task negotiation time 10.0.

similar in most cases and are given in the Figures 87 and 88 of the appendix.

Conclusion:

With fine-grained background load, not much has changed for most of the examined

protocols. However, in contrast to the screensaver mode, PDA performs better than CDA

for loads higher than 75%. CDA-RES improves the performance for almost any amount of

load — as long as an appropriate value for the price discount is chosen. Using reserve prices

and task price adjustments can also perform better than ’normal’ CDA. At the same time it

ensures that even low priority tasks will eventually be executed.

9.2.5 Different Server Numbers

The aim of this experiment is to see the effect of the Server number on the weighted comple-

tion time. We examine the screensaver mode and set the average load in the system to 90%.

Hence, the parameters of the experiment are given by {T2, SP2, C l, SNV, RD2, LI, BG2,

TS2, BS1).

The results for CDA, PSP, RR, and HBP are shown in Figure 35 (left). With increased

number of Servers, the performance of these protocols improves. An exception is HBP,

which degrades, because, with higher number of Servers, tasks are more likely to be pre-

empted and delayed. As already observed in Figure 17 (right), Round-Robin’s WCT is

higher than for most other protocols. PSP outperforms CDA for more than 20 Servers. How-

1 1 0

9 TASKS WITH DIFFERENT PRIORITIES

Figure 35: Variation of the Server number, screensaver mode.

HU
£
4>
E
H
G
C

a.
EoU
T3<U

'S
£

Server Number - Screensaver Mode

Figure 36: Variation of the Server number, screensaver mode: Results for PDA with different
intervals between the transactions.

ever, the result of the two protocols are almost the same when there are more than 100 Servers

in the system. The reason is that a shortage of resources becomes less likely, and therefore,

tasks will not have to share a resource. FIFO and SJF also lead to the same results as CDA

when the number of Servers is increased (see Figure 35 (right)). Since tasks rarely have to

wait at the EMP, it does not matter any more, in what way they are prioritised. Again, the

two preemptive protocols perform best: With 126 Servers in the system, the WCT for PE-P

is 23% lower than CDA’s, and for PE-A, it is even 59% lower. Interestingly, PDA is the

only non-preemptive protocol which outperforms CDA for a high number of Servers (see

Figure 36). The gap between the two protocols is largest for about 100 Servers, where, with

& = 0.1, PDA’s WCT is about 7% lower than CDA’s.

I l l

9 TASKS WITH DIFFERENT PRIORITIES

p Variation of Network Latency - Screensaver Mode

Mean Network Latency

p Variation of Network Latency - Screensaver Mode
u

Mean Network Latency

Figure 37: Variation of the communication delay, screensaver mode.

Conclusion: We varied the Server number in screensaver mode and found that the results of

all protocols — except HBP — improve with increased number of Servers. The protocols

PSP, FIFO, SJF, and CDA perform about equally well. PDA however outperforms CDA,

even for a high number of Servers.

9.2.6 Communication Delays

We also examine a variation of the communication delays, as has been done in subsection

8.2.4. The simulation parameters of this experiment are given by {T2, SP2, C2V, SN1, RD2,

LI, BG2, TS2, BS1}. For the latency, we use a lognormal distribution, of which the mean is

varied (C2V).

As shown in Figure 37 (left), RR and CDA degrade more rapidly than PSP — for the

same reason as in subsection 8.2.4 (Figure 18 (left)). However, the increase is now slower

for CDA than for RR: This is because of its prioritisation of tasks and selection of the best

possible resources. The result for HBP is similar to that of PSP. The reason is that, on arrival

of a high priority task, a resource is allocated immediately, without waiting for it to become

available. Hence, resources do not remain idle during the communication delays.

For FIFO (Figure 37 (right)), a similar degradation can be observed as for Round-Robin,

because it uses the same protocol for prioritising tasks. PE-P performs better than CDA for

a mean latency of up to 0.2, beyond which it increases faster. This can be explained by the

additional communication delays which are caused by the preemptions. For PE-A, a very

sharp rise of the WCT can already be observed for a mean latency of less than 0.01. This is

1 1 2

9 TASKS WITH DIFFERENT PRIORITIES

because preemptions are more likely to occur than in PE-P and increase the delays.

Conclusion: For a high network latency, PSP and HBP degrade less than the other protocols.

The poorest performance can be observed for PE-A: This is caused by the additional com-

munication delays during the preemptions. For moderate and high communication delays,

PE-P’s performance is similar to that of CDA — in spite of the additional communication

delays.

9.3 Summary

In this chapter, we investigated the allocation of tasks with different priorities and used

the weighted completion time (WCT) as performance metric. In this section, we give an

overview of the parameters used in each experiment (see Figure 38). Also, we summarise

our findings for each protocol. Our guidelines for the system designer will be given in chap-

ter 13.

Continuous Double Auction Protocol (CDA)

Among the protocols, that do not use preemption, CDA usually provides the best perfor-

mance — or, at least, is very close to the best. However, most other protocols perform

equally well, if the load is low or the number of resources in the system is very high. Differ-

ences occur at higher loads, and are usually small in screensaver mode.

CDA with Reserve Prices (CDA-RES)

If there are differences in speed or load among the resources, CDA-RES can lead to better

performance than ’normal’ CDA. The reason is that reserve prices can help to express these

differences: The reserve prices exclude low priority tasks from using the well-performing

resources so that they remain available to high priority tasks, which may arrive at a later time.

However, performance gains could only be observed when large price discounts were used.

No improvements have been achieved in screensaver mode: It appears that the performance

of CDA-RES degrades, if there are large variations of the background load at the resources.

One risk of CDA-RES is that some low priority tasks may never be executed. However, this

problem can be dealt with by gradually increasing their price bids (’task price adjustment’).

113

9 TASKS WITH DIFFERENT PRIORITIES

Infrastructure Figure Parameters
PC Cluster 21 T2, SPI, C l, SN1, RDI, LV, BGO, TS2, BS1
PC Cluster 22 T2, SP2, C l, SN1, RDI, LV, BG2, TS2, BS1
PC Cluster 83 (left) T2, SP2, Cl, SN1, RDI, LV, BG2, TS2, BS1
PC Cluster 23 T2, SP2, C l, SN1, RDI, LV, BG2, TS2, BS1
PC Cluster 24 T2, SPI, Cl, SN1, RDI, LV, BG2, TS2, BS1
PC Cluster 84 T2, SPI, Cl, SN1, RDI, LV, BG3, TS2, BS1
PC Cluster 25 T2, SPI, Cl, SN1, RDI, LV, BG2, TS2, BS1
PC Cluster 83 (right) T2, SPI, Cl, SN1, RDI, LV, BG2, TS2, BS1
PC Cluster 26 T2, SP2, Cl, SN1, RDI, LI, BG2, TS2, BSV
PC Grid 27 T2, SP2, Cl, SN1, RDV, LI, BG2, TS2, BS1
PC Grid 28 T2, SP2, Cl, SN1, RDV, LI, BG2, TS2, BS1
PC Grid 85 T2, SP2, Cl, SN1, RDV, LI, BG2, TS2, BS1
PC Grid 29 T2, SPI, C l, SN1, RDV, LI, BG2, TS2, BS1
PC Grid 86 T2, SPI, Cl, SN1, RDV, LI, BG2, TS2, BS1
PC Grid 30 T2, SP2, Cl, SN1, RD2, LV, BG2, TS2, BS1
PC Grid 31 T2, SP2, Cl, SN1, RD2, LV, BG2, TS2, BS1
PC Grid 32 T2, SP2, Cl, SN1, RD2, LV, BG2, TS2, BS1
PC Grid 89 T2, SP2, Cl, SN1, RD2, LV, BG2, TS2, BS1
PC Grid 90 T2, SP2, Cl, SN1, RD2, LV, BG2, TS2, BS1
PC Grid 91 T2, SPI, C l, SN1, RD2, LV, BG2, TS2, BS1
PC Grid 33 T2, SPI, C l, SN1, RD2, LV, BG2, TS2, BS1
PC Grid 34 T2, SPI, C l, SN1, RD2, LV, BG2, TS2, BS1
PC Grid 87 T2, SPI, Cl, SN1, RD2, LV, BGO, TS2, BS1
PC Grid 88 T2, SPI, C l, SN1, RD2, LV, BGO, TS2, BS1
PC Grid 35 T2, SP2, C l, SNV, RD2, LI, BG2, TS2, BS1
PC Grid 36 T2, SP2, C l, SNV, RD2, LI, BG2, TS2, BS1
PC Grid 37 T2, SP2, C2V, SN1, RD2, LI, BG2, TS2, BS1

Figure 38: Tasks with different priorities: Overview of experiments.

We found that this approach can lead to better results than normal CDA.

Interestingly, the performance improvements by CDA-RES can be achieved, even though

the resources remain idle for considerable amounts of time. It appears that this ’waste’ of

processing power is outweighed by the gain for the high priority tasks — and overall, the

users can benefit from the opportunistic pricing of the Servers.

Proportional Share Protocol (PSP)

PSP will perform worse than CDA if the resources in the system are identical, as is the

case in a PC Cluster. It degrades stronger than CDA for higher loads: This is due to the

concurrent execution of several tasks on one resource. The differences become even larger

when the burstiness of the tasks is increased. However, with a high heterogeneity of resources

114

9 TASKS WITH DIFFERENT PRIORITIES

and moderate-to-high loads, PSP outperforms CDA. This performance improvement can be

attributed to two factors: Firstly, its preemptive behaviour enables arriving high priority tasks

to take much of the resource share from already executing low priority tasks — effectively

preempting them. Secondly, it might be better to allocate two tasks to one fast resource,

rather than to a fast and a slow one. PSP also outperforms the other protocols in situations

with high communication delays: It degrades less, as it does not need to check the availability

of the resources.

Highest Bid Protocol (HBP)

In all our experiments, HBP leads to poorer performance than CDA. For heterogeneous re-

sources, its results are worse than for identical resources. It appears that the delay of the

suspended low-priority tasks outweighs the gain of the high priority tasks. In contrast to all

other protocols, HBP’s WCT increases with higher number of resources. A strong degra-

dation has also been observed for a large task burst size. However, when communication

delays are introduced, HBP degrades less than most other protocols.

HBP with Threshold (HBP-T)

Due to the poor performance of HBP, we introduced the HBP-T protocol, which uses a

threshold for the preemptions of low priority tasks. We examined it for heterogenous re-

sources operated in screensaver mode and found that it outperformed HBP for all amounts

of load. Also, if an appropriate threshold was chosen, its results were better than CDA’s.

This shows that preemption without migration can lead to performance improvements —

however, there needs to be a limit for the preemptions. A disadvantage of HBP and HBP-T

is that low priority tasks may be starved. A solution could be to increase the priority of the

suspended tasks over time, or to limit the number of times a task can be preempted (as done

by [Chun and Culler, 2002]).

HBP with Reserve Prices (HBP-RES)

HBP-RES aims to reduce the number of preemptions through the use of reserve prices and

has been examined for heterogeneous resources in screensaver mode. We found that HBP-

RES can perform better than HBP for low and moderate loads. However, in comparison to

115

9 TASKS WITH DIFFERENT PRIORITIES

CDA, no improvements were observed.

Preemptive Protocol (PE)

In a PC Cluster without background load, the results for PE-P and PE-A are only marginally

better than CDA’s. In screensaver mode, PE-P’s WCT is only slightly lower than CDA’s,

whereas PE-A’s WCT is much lower than for any other protocol. With fine-grained back-

ground load, PE-P clearly outperforms CDA — and PE-A’s performance is even better.

In a PC Grid, PE-P performs clearly better than CDA, and PE-A is much better than

all other protocols. The differences remain large even for a high number of resources. The

only disadvantage of using task migration becomes evident when communication delays are

introduced: PE-P’s degradation is similar to that of CDA, and PE-A’s degradation is the

worst. Another weakness of our PE-P and PE-A protocols is that each migration may trigger

another migration. This will often result in a chain reaction which can be a huge burden on

the central marketplace — especially if the system is large 44. A possible solution to this

problem could be limiting the number of preemptions, as done by the PE-T protocol, which

has briefly been examined. Its performance will be lower than for PE-P or PE-A in ideal

situations without communication or processing delays, but it is likely to be more scalable.

Periodic Double Auction Protocol (PDA)

In the PC Cluster infrastructure, PDA did not lead to any improvements in comparison to

CDA. It appears, that the degree of heterogeneity was not sufficient in this setup. However,

in the PC Grid scenario, a considerable improvement was observed for moderate and high

loads, when a suitable interval for the time between the transactions was chosen. The im-

provement was smaller in screensaver mode, where the large variations of the background

load seem to affect the result. For a high number of resources, PDA also performed better

than CDA, with the maximum difference at 100 resources in the system. The reason why

PDA can, in some cases, lead to improvements over CDA, is that, during the transaction

period, several tasks and resources are accumulated, and better matches can be made.

44Note that our simulation model does not consider the cost of processing incoming requests at the market-
place or the cost of packaging up the execution state of tasks for migration.

116

9 TASKS WITH DIFFERENT PRIORITIES

First In First Out (FIFO)

FIFO uses a greedy strategy, and therefore leads to almost the same results as CDA when the

load is low or the number of resources is high. However, it does not take into account the

priority of the tasks, and therefore performs worse when there is considerable competition

among them — which is the case when the load in the system is high. FIFO’s performance

also degrades more than CDA’s when communication delays are introduced.

Round-Robin Protocol (RR)

Among the examined protocols, Round-Robin leads, in most cases, to the poorest perfor-

mance. It degrades with increased heterogeneity, especially if the load in the system is very

small. It improves with increased Server number, but not as much as the other protocols.

However, Round-Robin is computationally less expensive. Therefore, it can be appropriate

for a system with identical resources and low or moderate load — and, in screensaver mode,

even with high load. In such a setup, which may often be found in a computational cluster,

its results will be almost as good as CDA’s.

Shortest Job First (SJF)

In the examined situations, SJF’s performance was always better than FIFO’s and worse

than CDA’s. However, it must be noted, that the outcome of this comparison with CDA may

depend on the probability distributions used for the task priorities and task sizes.

117

10 TASKS WITH TIME-DEPENDENT PRIORITIES

10 Tasks with Time-Dependent Priorities

In reality, the users of a system will often have tasks with deadlines rather than simply want-

ing to minimise their completion times. This chapter provides a comprehensive performance

comparison of different resource allocation protocols for a scenario in which tasks have

deadlines and different weights. For the weights, we use a uniform distribution [0.0,2.0], In

this scenario, the system is de-facto oversubscribed because there are not enough resources

which are sufficiently fast to execute all tasks on time.

Concerning the deadlines, we distinguish two cases: In the first case, tasks have hard

deadlines, i.e. their execution will only benefit the Client if completed on time. In our ex-

periments, hard deadlines are expressed by different values for the deadline factor which we

define as the maximum slowdown a task may suffer without missing the deadline. As perfor-

mance metric we use the weighted completion rate (WCR), which is the sum of weights of

the tasks completed before the deadline divided by the sum of all task weights. In the second

case, tasks have soft deadlines: A task’s value (per task unit) is expressed as a piecewise-

linear function of its slowdown (see subsection 2.6.1). As a performance metric, we use the

aggregate user utility which we define as the average of the values delivered by the tasks

to the Client, i.e. the average of task values multiplied by the task sizes. We express soft

deadlines by different values of the slowdown factors sl\ and sl2 (see subsection 2.6.1).

10.1 Examined Parameter Space

We want to investigate situations with different types of deadlines and therefore need to limit

the range of other parameters. Concerning background load, we examine the screensaver

mode (SP2), which we consider to be more realistic than fine-grained background load (SP1).

However, we also study situations without any background load, for which — in chapter 9

— we made (qualitatively) similar observations as with fine-grained background load.

In addition to the protocols which were compared in chapter 9, we now also investigate

CDA-TDB which is specifically designed for situations with soft deadlines 45. Note that, in

45CDA-TDB will not be examined for situations with hard deadlines as it would operate in the same way as
CD A.

118

10 TASKS WITH TIME-DEPENDENT PRIORITIES

the experiments with soft deadlines, the time-dependent values of the tasks are only consid-

ered by the CDA-TDB protocol, whereas all other protocols use the initial price bids when

allocating tasks, i.e. they are ’blind’ to the soft deadlines. Round-Robin and HBP-RES are

not examined due to their poor performance in previous experiments. For PDA, we only

consider 8? = 0.1 for the time-interval between the transactions, as this led to the best results

in the previous chapter. For the same reason, we always choose the ’bid improvement factor’

5 for the HBP-T protocol and the ’price discount’ 0.5 for the CDA-RES protocol. In addition

to this, we examine CDA-RES for the case that no discount is used for the reserve prices.

We start with the PC Cluster infrastructure and then move on to the PC Grid infrastructure.

10.2 PC Cluster

Concerning the deadlines, we examine the following cases for the PC Cluster infrastructure:

We first consider situations where tasks have hard deadlines. We examine both ’tight’ and

’loose’ deadlines for which we use the deadline factors 1.1 and 1.5, respectively 46. Next, we

examine three different cases where tasks have soft deadlines which are expressed by the pa-

rameters sii and sl2 47. In all three cases, the parameter sl\ is set to 1.1 for all tasks, whereas

for sl2 , we use different uniform distributions. The reason for choosing uniform distributions

for 5/2 is that we want to examine situations in which tasks have different delay tolerances.

In the first case with ’tight’ deadlines this distribution is given by [1.1,1.5] (we refer to this

case as ’Soft Deadline I’). In the second case (’Soft Deadline II’) we use [1.1,3.0], and in the

third case (’Soft Deadline IIP) [1.1,10.0].

10.2.1 Hard Deadlines

In the first experiment, we examine a situation with tight deadlines, i.e. the deadline factor

is set to 1.1. The other parameters of the experiment are given by {SP2, Cl, SN1, RD1,

LV, BG2, TS2, BS1}. This means, that we have a system with Nserv- 32 Servers which are

46We consider the deadline factor 1.1 to be a tight deadline, because, for a deadline factor of less than 1.0,
no task would be able to complete on time — even when executed on an unloaded machine.

47Note that the slowdown factor si 1 determines the maximum slowdown that a task can suffer without any
loss in value. Beyond the slowdown s/2 , the value of the task becomes zero (see subsection 2.6.1 for more
details).

119

10 TASKS WITH TIME-DEPENDENT PRIORITIES

2" Screensaver Scenario - Deadline Factor 1.1

Total Load

06u
£
o3

C L

BoU
-a<D

Screensaver Scenario - Deadline Factor 1.1

Figure 39: Variation of load, screensaver mode: Tight deadlines (deadline factor 1.1).

operating in screensaver mode (SP2), each with the resource size Nr j j ,total = 10 and speed

factor fspeed - 1-0. Tasks sizes have a loguniform distribution with mean 1.0 (TS2), the task

burst size is 1, and communication delays are neglected. In the experiment, the total amount

of load in the system is varied (LV).

The results for CDA, FIFO, SJF, PE-P, and PE-A are shown in Figure 39 (left): There

is hardly any difference between the protocols for loads between 0 and 75%. The only

exception is the PE-A protocol, whose performance is much better — as was already the

case in chapter 9. Its WCR remains close to 1.0 until 85% load, and then slightly decreases

to 0.93 at 95% load. The reason for PE-A’s good performance is its ability to reschedule

a task when a background task is started at the resource — which would otherwise result

in the task’s suspension. CDA’s WCR declines to about 0.57 at 95% load. PE-P performs

better, and also the results of SJF are marginally better than for CDA. A possible reason is

that shorter tasks are likely to suffer more from being suspended by background load than

longer tasks. Therefore, it makes sense to prioritise them.

Interestingly, CDA is now also outperformed by PSP and HBP (see Figure 39 (right)).

At 95% load, HBP is 5% better than CDA and 1% worse than PE-P. PSP’s relatively good

performance may appear surprising since the resources in the system are identical. It can

be explained by the fact that PSP allows arriving high priority tasks to take some of the re-

sources being used by the other executing tasks — thus, effectively preempting them. PDAs

performance is the poorest of all protocols that are compared. This is because of the delays

1 2 0

10 TASKS WITH TIME-DEPENDENT PRIORITIES

Total Load

2 Screensaver Scenario - Deadline Factor 1.5
U£ 0.76
0 0.74
1 0.72
§ 0.7
2 0.68
Ë 0.66
U 0.64
1 0.62
w> 0.6
I 0.7 0.75 0.8 0.85 0.9 0.95

Total Load

Figure 40: Variation of load, screensaver mode: Loose deadlines (deadline factor 1.5).

which the tasks suffer during the time intervals between the transactions at the EMP. FIBP-T

is 6% better than CDA but still 2% worse than ’normal’ HBP.

We also carried out this experiment without any background load in the system (BG0).

As expected, the degradation of the protocols is much smaller than in screensaver mode. We

found that, performance-wise, the order of the protocols remains unchanged, except that SJF

now performs slightly worse than CDA. Also, due to the lack of background load, PE-P and

PE-A are identical. The results are shown in Figure 92 of the appendix.

Next, we relaxed the deadline (deadline factor 1.5), and carried out the experiment in

screensaver mode (SP2). As shown in Figure 40, the performance of the protocols improves

only slightly in comparison to the experiment with the deadline factor 1.1. The reason could

be that, whenever a task is suspended by background load, it is likely to miss its deadline

anyway. As before, PE-A’s WCR is much higher than for the other protocols. Also, PE-P

and SJF both outperform CDA if load is high.

HBP-T provides better results than FIBP, which also performs better than CDA (Figure

40 (right)). PDA’s WCR is still lower than for CDA. However, the difference is much smaller

than in the previous experiments, because tasks are less likely to miss their deadlines while

waiting for the next transaction at the EMP. In contrast to the previous experiments, PSP now

leads to a poorer performance than CDA but still performs better than PDA and FIFO.

Conclusion:

With hard deadlines, PE-A’s results are much better than for the other protocols. How-

1 2 1

10 TASKS WITH TIME-DEPENDENT PRIORITIES

Screensaver Mode - Soft Deadline I Screensaver Mode - Soft Deadline I

Total Load Total Load

Figure 41: Variation of load, screensaver mode: Soft deadlines I (tight).

ever, in contrast to the experiments in chapter 9, HBP now performs better than CDA and,

for tight deadlines, also better than HBP-T (with the bid improvement factor 5). CDA is

outperformed by PSP when deadlines are tight, and by SJF, when there is background load

at the resources (which are operated in screensaver mode).

10.2.2 Soft Deadlines

In this section, we examine three situations with soft deadlines for the tasks. The parameter

sii is always set to 1.1. In the first experiment, the resources operate in screensaver mode,

and half of the load is background load. The tasks have ’tight’ deadlines, and therefore the

distribution of si2 is given by [1.1,1.5] (’Soft Deadline I’). The results of the protocols are

given in Figure 41. As in the experiments with hard deadlines, PE-A’s performance is the

best by far. It is followed by PE-P and HBP, which both outperform CDA. SJF and PSP now

both lead to poorer results than CDA. The protocol CDA-TDB, which is designed to deal

with soft deadlines, performs better than CDA but is still worse than HBP.

For ’moderate’ deadlines (’Soft Deadline II’), the results of the protocols improve a bit,

however their order does not change (see Figure 93 in the appendix). If deadlines are relaxed

even more (’Soft Deadline IIP, see Figure 94 in the appendix), CDA-TDB provides about

the same results as normal CDA, and PSP’s performance is not much better than FIFO’s.

HBP’s result will now be slightly worse than CDA’s.

1 2 2

10 TASKS WITH TIME-DEPENDENT PRIORITIES

Conclusion:

With soft deadlines, similar observations have been made as with hard deadlines. Now,

in all examined cases, PSP and SJF perform worse than CDA. CDA-TDB — which has been

specifically designed for soft deadlines - leads to improvements over CDA only in situations,

where deadlines are tight. The same is the case for HBP, which outperforms CDA-TDB.

10.3 PC Grid

Due to the heterogeneity of resources in the PC Grid infrastructure, tasks may be able to

execute faster than in the PC Cluster. For this reason, we will investigate situations where

the deadlines are tighter than before. Concerning hard deadlines, we will examine three sit-

uations in which tasks have the deadline factors 0.6, 1.1, and 1.5. For the situations with soft

deadlines, we set the slowdown factor sl\ to 0.6 48. We will study three cases where different

uniform distributions are used for 5/2. In the first case with ’tight’ deadlines, this distribution

is given by [0.6,1.1] (we refer to this case as ’Soft Deadline IV’). In the second case (’Soft

Deadline V’) we use [0.6,3.0], and in the third case (’Soft Deadline VI’) [0.6,10.0],

10.3.1 Variation of Load: Hard Deadlines

In the first experiment, we examine a situation with tight deadlines, i.e. the deadline factor

is set to 0.6. The other parameters of the experiment are given by {SP2, Cl, SN1, RD2, LV,

BG2, TS2, BS1}. This means that we have a system with Nserv= 32 Servers which are highly

heterogeneous (RD2) and operate in screensaver mode (SP2). In the experiment, the total

amount of load in the system is varied (LV), and half of this load is background load (BG2).

The results are shown in Figure 42.

For low loads, the best results are achieved by CDA, SJF, FIFO, and PSP, whereas for

high loads, PE-A provides the highest WCR, and is followed by PE-P (Figure 42 (left)). SJF

performs slightly better than CDA. HBP-T leads to a better result than HBP, CDA, and PSP,

as is shown in Figure 42 (right), whereas PDA provides a much poorer performance. We also

48Note that, for a deadline factor of less than 0.5, no task would be able to execute on time, even when
executed on the fastest resource.

123

10 TASKS WITH TIME-DEPENDENT PRIORITIES

Total Load Total Load

Figure 42: PC Grid: Variation of load, screensaver mode. Tight deadlines (deadline factor
0 .6).

Total Load

S' No Background Load - Deadline Factor 0.6

Total Load

Figure 43: PC Grid: Variation of load, no background load. Tight deadlines (deadline factor
0 .6) .

examined the performance of the CDA-RES protocol but could not find any improvements in

comparison to CDA. This has also been the case for all other situations where the resources

operated in screensaver mode.

Next, we examine a situation without any background load (Figure 43 (left)). Again, for

low load, the preemptive protocols are clearly outperformed by the non-preemptive ones, and

PE-A’s WCR is now the lowest. Even for very high load, PE-A’s results are very poor and

only marginally better than FIFO’s. At 95% load, PE-P performs better than most protocols,

and CDA’s and SJF’s WCRs are about 8% lower. HBP-T provides even better results, for all

amounts of loads (see Figure 43 (right)), whereas those of PDA are the poorest. PSP’s WCR

at 95% load is 11% lower than HBP-T’s, and that of HBP about 20%. The highest WCR for

all amounts of load is achieved by CDA-RES. This has been observed for the case that no

124

10 TASKS WITH TIME-DEPENDENT PRIORITIES

S' No Background Load - Deadline Factor 0.6

aj 1

I 0.9
I 0.8
1 0.7
S 0.6o
U 0.5
’S 0.4
’S) 0.3
£ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Total Load

Figure 44: Variation of load, no background load: Results for CDA-RES with different price
discounts. Again, tight deadlines are used (deadline factor 0.6).

S' Screensaver Mode - Deadline Factor 1.1 S Screensaver Mode - Deadline Factor 1.1

Total Load

Figure 45: Variation of load, screensaver mode: Moderate deadlines (deadline factor 1.1).

price discounts are used (see Figure 44).

In the next experiment, whose results are shown in Figure 45, we use the same parameters

as in Figure 42, except that now the tasks have ’moderate’ deadlines (deadline factor 1.1).

In contrast to the previous experiments, PE-A performs best when load is low. At 95% load,

SJF leads to better results than CDA. PE-P performs about equally well as CDA, and PE-A

is slightly worse. As shown in Figure 45 (right), HBP’s results are the worst for (almost)

all amounts of load. PSP now also perform worse than CDA, and the WCR of FIBP is even

lower. HBP-T leads to the best results when load is high, whereas PDA still performs worse

than CDA.

When the deadlines are relaxed even more (deadline factor 1.5), PE-A performs best for

125

10 TASKS WITH TIME-DEPENDENT PRIORITIES

Total Load Total Load

Figure 46: Variation of load, screensaver mode: Loose deadlines (deadline factor 1.5).

all amounts of load (see Figure 46 (left)). PE-P’s WCR is much lower than PE-A’s, and at

95% load, it outperforms both SJF and CDA. HBP-T’s performance (shown in Figure 46

(right)) is comparable to that of PE-P, whereas PSP and HBP now have a lower WCR than

FIFO. As before, PDAs WCR is lower than CDA’s but the difference is now smaller and

only occurs for higher loads.

Conclusion:

In a PC Grid, the choice of protocol will depend not only on the deadline but also on

the amount of load in the system. With tight deadlines and low loads, HBP-T is best, and

the non-preemptive protocols perform almost equally well. If load is increased, PE-A will

perform best, except for a situation where there is no background load in the system, in

which case CDA-RES is best. For moderate deadlines, PE-A provides the best results when

load is low, whereas HBP-T is best if load is high. With loose deadlines, PE-A’s WCR is

much higher than for the other protocols, and HBP’s WCR is the lowest.

10.3.2 Variation of Load: Soft Deadlines

Now we study situations in which tasks have soft deadlines. The parameter sl\ is always set

to 0.6. In the first experiment, the resources operate in screensaver mode, and half of the

load is background load. The tasks have ’tight’ deadlines, and therefore the distribution of

sl2 is given by [0.6,1.1] (’Soft Deadline IV’).

PE-A (Figure 47 (left)) provides by far the highest user utility for all amounts of load

126

10 TASKS WITH TIME-DEPENDENT PRIORITIES

Screensaver Mode - Soft Deadline IV

Total Load

Figure 47: Variation of load, screensaver mode
scaling in the right figure.

Screensaver Mode - Soft Deadline IV

: Soft deadlines IV (tight). Note the different

and is followed by PE-P. For low loads, all other protocols (except HBP) perform about

equally well as PE-P, whereas for high loads their results are much worse. The poorest

performance for high load has been observed for PSP. As shown in Figure 47 (right), CDA-

TDB’s performance is better than for all other non-preemptive protocols. However, even at

95% load its user utility is only slightly higher than CDA’s. The results of SJF and FIFO are

both below CDA’s.

Similar observations have been made for the situations with moderate and loose deadlines

(’Soft Deadline V’ and ’Soft Deadline VI’). The results are given in the Figures 95 and 96

of the appendix.

Conclusion:

In contrast to the situation with hard deadlines, PE-A and PE-P now clearly outperform

the other protocols. CDA-TDB does not offer much improvement in comparison to CDA.

It performs considerably worse than PE-A and PE-P, even though these protocols do only

consider static priorities. The poorest performance has been observed for PSP, HBP, and

FIFO.

10.3.3 Different Server Numbers: Hard Deadlines

The aim of this experiment is to see the effect of the Server number on the weighted com-

pletion rate. We start with the case that tasks have tight deadlines (i.e. deadline factor = 0.6).

127

10 TASKS WITH TIME-DEPENDENT PRIORITIES

Figure 48: Variation of the Server number,
factor 0.6).

We examine the screensaver mode and set the average load in the system to 90%. Hence, the

remaining parameters of the experiment are given by {SP2, Cl, SNV, RD2, LI, BG2, TS2,

BS1}.

The results are shown in Figure 48. We found that, with increased number of resources,

the performance of SJF, HBP-T, CDA, PSP, and PDA improves. Interestingly, SJF provides

by far the highest WCR when there are 251 Servers in the system. It is followed by HBP-T,

PSP, and CDA. The latter two perform about equally well. PDA also improves but still has a

lower WCR than CDA. A degradation can be observed for HBP, PE-P, FIFO, and PE-A. For

251 Servers, PE-A’s WCR is the lowest.

We made similar observations for a situation where there is no background load in the

system. The only exception is CDA-RES, which provides better results than any other pro-

tocol. The results are shown in Figure 97 and 98 of the appendix.

We also examined a situation with moderate deadlines (deadline factor 1.1). The results

are shown in Figure 99 of the appendix. For a high number of Servers, HBP-T’s result is best.

It is followed by CDA and SJF. PE-P’s WCR remains almost constant as the Server number

is increased. The same is the case for PSP — however at a lower level. FIFO improves and

approaches the performance of PE-P, whereas for HBP and PE-A, a strong degradation can

be observed. In a situation with loose deadlines (deadline factor 1.5, see Figure 49), clearly

the best results can be achieved with PE-A. HBP-T and PDA are next, and perform about

equally well. For 251 Servers, the protocols CDA, SJF, FIFO, and PE-P all provide about the

128

10 TASKS WITH TIME-DEPENDENT PRIORITIES

S' Screensaver Mode - Deadline Factor 1.5 S Screensaver Mode - Deadline Factor 1.5

Figure 49: Variation of the Server number, screensaver mode: Loose deadlines (deadline
factor 1.5).

same WCR, which is about 1% lower than for HBP-T. Although PSP improves with higher

Server number, its WCR still remains considerably lower than CDA’s. By far the poorest

performance has been observed for HBP — which is also the only protocol, whose WCR

decreases for a higher Server number.

Conclusion:

With 90% load in the system and a high number of Servers, SJF and HBP-T provide

the best performance, if deadlines are tight. With moderate deadlines, HBP-T and CDA

perform best, whereas with loose deadlines, PE-A clearly outperforms the other protocols

and is followed by HBP-T and PDA.

10.3.4 Different Server Numbers: Soft Deadlines

Next, we study situations in which tasks have soft deadlines, starting with the case ’Soft

Deadline IV’ which is examined in Figure 50. With increased number of Servers, the results

of all protocols (except HBP) improve. For 251 Servers, PE-A’s performance is far better

than for the other protocols. It is followed by PE-P whose result is about 45% lower. CDA,

FIFO, SJF, and TDB lead to the same user utility, which, for 251 Servers, is 60% lower than

for PE-A. The lowest WCRs have been observed for HBP and PSP.

For situations with moderate and loose deadlines, similar observations have been made.

The results can be found in Figure 100 and 101 in the appendix.

129

10 TASKS WITH TIME-DEPENDENT PRIORITIES

Screensaver Mode - Soft Deadline IV Screensaver Mode - Soft Deadline IV

Figure 50: Variation of the Server number, screensaver mode: Soft deadlines IV (tight).

Conclusion:

With soft deadlines and a high number of Servers, similar observations have been made

in all the examined situations (i.e. tight, moderate, and loose deadlines): PE-A performs best

and is followed by PE-P. The protocols CDA, FIFO, SJF, and TDB are next and lead to about

the same performance, whereas the poorest results are observed for PSP and HBP

10.3.5 Communication Delays

Finally, we investigate situations where the communication delays are varied. We only con-

sider some of the protocols and focus on a situation with hard deadlines. The other simulation

parameters are given by {SP2, C2V, SN1, RD2, LI, BG2, TS2, BS1}. This means that there

are 32 Servers in the system, and that the average load is set to 90%. Half of this load is

background load, and the resources operate in screensaver mode. For the network latency,

we use a lognormal distribution of which the mean is varied (C2V).

The results for tight deadlines (deadline factor 0.6) are shown in Figure 51. As expected,

the WCR of all protocols decreases to zero. However, the best performance for moderate

latencies (about 0.005 to 0.05 time units) can be observed for the PE-P protocol (see Figure

51 (right)). PSP’s and SJF’s WCRs now decrease faster than CDA’s, and the same is the case

for PE-A. For a situation without background load, PE-P also leads to the best results (see

Figure 102 in the appendix).

When deadlines are relaxed (’moderate deadlines’, i.e. deadline factor 1.1), the best re-

130

10 TASKS WITH TIME-DEPENDENT PRIORITIES

û£ Screensaver Scenario - Deadline Factor 0.6 ccU
£

Q.BoU

Screensaver Scenario - Deadline Factor 0.6

Mean Network Latency

Figure 51: Variation of the communication delay, screensaver mode: Tight deadlines (dead-
line factor 0.6).

Screensaver Scenario - Deadline Factor 1.1 c- Screensaver Scenario - Deadline Factor 1.1

Figure 52: Variation of the communication delay, screensaver mode: Moderate deadlines
(deadline factor 1.1).

suits will be obtained with CDA (see Figure 52). The fastest degradation can be observed for

PE-A (Figure 52 (right)). The reason why PE-A now degrades faster is that, with moderate

deadlines, there are more tasks in the system than with tight deadlines. Hence, there are more

(time-consuming) preemptions, and tasks are less likely to complete.

Similar observations have been made for a situation with loose deadlines (see Figure 103

in the appendix).

Conclusion:

We compared several protocols for situations where the communication delays are varied.

We found that, for tight deadlines, PE-P performs best, whereas for moderate and loose

deadlines, CDA leads to the best results.

131

10 TASKS WITH TIME-DEPENDENT PRIORITIES

10.4 Summary

In this chapter, we investigated the allocation of tasks with time-dependent priorities. As a

performance metric, we used the weighted completion rate (WCR) (for hard deadlines) and

the aggregate user utility (for soft deadlines). In this section, we give an overview of the

parameters used in each experiment (see Figure 53). Also, we summarise our findings for

each protocol. Our guidelines for the system designer will be given in chapter 13.

Infrastructure Figure Deadline Parameters
PC Cluster 39 hard / tight SP2, C l, SN1, RD1, LV, BG2, TS2, BS1
PC Cluster 92 hard / tight SP2, Cl, SN1, RD1, LV, BG0, TS2, BS1
PC Cluster 40 hard / loose SP2, C l, SN1, RD1, LV, BG2, TS2, BS1
PC Cluster 41 soft / tight SP2, Cl, SN1, RD1, LV, BG2, TS2, BS1
PC Cluster 93 soft / moderate SP2, Cl, SN1, RD1, LV, BG2, TS2, BS1
PC Cluster 94 soft / loose SP2, Cl, SN1, RD1, LV, BG2, TS2, BS1
PC Grid 42 hard / tight SP2, Cl, SN1, RD2, LV, BG2, TS2, BS1
PC Grid 43 hard / tight SP2, Cl, SN1, RD2, LV, BG0, TS2, BS1
PC Grid 44 hard / tight SP2, Cl, SN1, RD2, LV, BG0, TS2, BS1
PC Grid 45 hard / moderate SP2, Cl, SN1, RD2, LV, BG2, TS2, BS1
PC Grid 46 hard / loose SP2, Cl, SN1, RD2, LV, BG2, TS2, BS1
PC Grid 47 soft / tight SP2, Cl, SN1, RD2, LV, BG2, TS2, BS1
PC Grid 95 soft / moderate SP2, Cl, SN1, RD2, LV, BG2, TS2, BS1
PC Grid 96 soft / loose SP2, Cl, SN1, RD2, LV, BG2, TS2, BS1
PC Grid 48 hard / tight SP2, Cl, SNV, RD2, LI, BG2, TS2, BS1
PC Grid 97 hard / tight SP2, Cl, SNV, RD2, LI, BG0, TS2, BS1
PC Grid 98 hard / tight SP2, Cl, SNV, RD2, LI, BG0, TS2, BS1
PC Grid 99 hard / moderate SP2, Cl, SNV, RD2, LI, BG2, TS2, BS1
PC Grid 49 hard / loose SP2, Cl, SNV, RD2, LI, BG2, TS2, BS1
PC Grid 50 soft / tight SP2, Cl, SNV, RD2, LI, BG2, TS2, BS1
PC Grid to o soft / moderate SP2, Cl, SNV, RD2, LI, BG2, TS2, BS1
PC Grid 101 soft / loose SP2, Cl, SNV, RD2, LI, BG2, TS2, BS1
PC Grid 51 hard / tight SP2, C2V, SN1, RD2, LI, BG2, TS2, BS1
PC Grid 102 hard / tight SP2, C2V, SN1.RD2, LI, BG0, TS2, BS1
PC Grid 52 hard / moderate SP2, C2V, SN1, RD2, LI, BG2, TS2, BS1
PC Grid 103 hard / loose SP2, C2V, SN1, RD2, LI, BG2, TS2, BS1

Figure 53: Tasks with time-dependent priorities: Overview of experiments.

Continuous Double Auction Protocol (CDA)

In the investigated scenarios, CDA’s results are among the best when compared to other non-

preemptive protocols. For the PC Cluster, there are usually not many differences between

most of the protocols for up to 70% load. In a PC Grid, CDA outperforms the preemptive

protocols if deadlines are tight and loads are low. Like in the scenario in chapter 9, CDA

132

10 TASKS WITH TIME-DEPENDENT PRIORITIES

also improves when the number of Servers in the system is increased. When communication

delays are increased, the degradation of CDA is similar to that of most other protocols.

CDA with Reserve Prices (CDA-RES)

CDA-RES has only been examined for the PC Grid, as it cannot lead to improvements in the

PC Cluster. Again, we found that, when resources operate in screensaver mode, CDA-RES

never leads to improvements over CDA. However, for a situation with tight deadlines and

without background load, we found that it performs better than any other protocol. Its best

performance is achieved if no discounts are used for the reserve prices. A possible reason

for this good performance is that, with tight deadlines, only a small fraction of the tasks can

be executed on time. Hence, the reserve price helps to ensure that the high priority tasks get

executed.

CDA with Time-Dependent Bids (CDA-TDB)

In situations with soft deadlines, CDA-TDB is marginally better than normal CDA. It only

makes a difference if load is high and deadlines are tight. We also found that, for a high

number of Servers in the system, CDA-TDB’s advantage over CDA disappears. This is in

line with the observations of [Chun and Culler, 2002], who used a similar technique for the

allocation of parallel tasks in computational clusters (see section 5.4): These indicate that

large improvements can only be achieved for highly parallel load, and not for sequential

load. However, for our scenario, we could not confirm the authors’ finding that ’preemption

does not add significant value’, as CDA-TDB is clearly outperformed by the preemptive

protocols.

Proportional Share Protocol (PSP)

In a PC Cluster, PSP now outperforms CDA, provided that the tasks have hard and tight

deadlines. The same is the case for the PC Grid, where the difference to CDA increases with

the load. This observation, however, has not been made for situations with soft deadlines, in

which PSP led to a poor performance. The reason could be that the time-dependent values

of the tasks are not considered by PSP: Hence, it will allocate tasks whose values have

considerably decreased — and will delay tasks whose values are still high. PSP improves

133

10 TASKS WITH TIME-DEPENDENT PRIORITIES

when the number of Servers is increased — but not as much as CDA which, in most cases,

performs better. When communication delays are introduced, PSP’s performance is similar

to CDA’s — which is different from the observations made in chapter 9.

Highest Bid Protocol (HBP)

In contrast to the experiments in chapter 9, HBP’s performance is now comparable to that

of the other protocols. In the PC Cluster, it’s results are better than CDA’s, especially for

tight deadlines. For the PC Grid infrastructure, HBP performs better than CDA only for

hard and tight deadlines, and only if there is background load in the system. A very strong

degradation of HBP has been observed for loose deadlines: Again, as in chapter 9, the delay

of the suspended tasks outweighs the gain of the high priority tasks. Unlike most other

protocols, HBP degrades when the number of Servers in the system is increased. This is

caused by the increased number of preemptions.

HBP with Threshold (HBP-T)

HPB-T is always among the best protocols. It outperforms both, CDA and HBP, but, in most

situations, its results are not as good as PE-A’s. In the PC Grid, however, HBP-T may even

outperform PE-A, provided that deadlines are tight and load is moderate. Unlike the HBP

protocol, HBP-T improves for a high number of Servers.

Preemptive Protocol (PE)

In situations with background load on the resources, the protocols PE-P and PE-A usually

lead to the best results. In a PC Cluster, PE-A’s performance is best by far, and PE-P is

better than all the other protocols. The same is the case for a PC Grid — if the tasks have

soft deadlines. For hard and loose deadlines, PE-A outperforms all other protocols, whereas

for tight or moderate deadlines, results are mixed. If communication delays are introduced

and task deadlines are tight, PE-P performs best, and PE-A’s WCR is only slightly lower.

However, in situations with moderate and loose deadlines, a strong degradation of PE-A can

be observed.

Periodic Double Auction Protocol (PDA)

In most examined situations, PDA’s results are worse than CDA’s, and the differences are

134

10 TASKS WITH TIME-DEPENDENT PRIORITIES

largest if deadlines are tight. The reason for this poor performance is the delay between the

transactions at the Electronic Marketplace (EMP). The only exception is a situation where

deadlines are loose and the number of Servers is high.

First In First Out (FIFO)

As in the experiments in the previous chapter, FIFO’s performance only matches that of

CDA, if loads are low or moderate, i.e. when there is little competition among the tasks.

With increased number of Servers, FIFO degrades, if deadlines are tight, but improves if

deadlines are loose. In the latter case it will perform equally well as CDA.

Shortest Job First (SJF)

In most of the experiments, SJF’s performance is below CDA’s. Only for hard and tight

deadlines, SJF’s results are better. However, this observation has only been made for situa-

tions where there is background load on the resources (which operate in screensaver mode).

For hard and tight deadlines, SJF’s result also improves faster than CDA’s, when the number

of Servers in the system is increased. The reason, why SJF performs better for hard than for

soft deadlines, is probably that the performance metric used in the latter case considers the

task sizes in the weighting.

135

11 EXPERIMENTAL GRID COMPUTING FRAMEWORK

11 Experimental Grid Computing Framework

11.1 Introduction

So far, we have compared the performance of various market protocols via discrete-event

simulation. Yet it remains to be shown that the marketplace and the protocols of the sim-

ulation model are implementable and able to operate in a real computational environment.

Also, we need to determine whether the assumptions we have made about communication

delays, processing delays, etc. are valid under realistic conditions. This chapter describes our

basic Grid computing framework which we use for the validation of our simulation results.

The framework has been developed as part of the AgentCities deployment grant CoMAS 49,

and has also been used for the distributed computation of the PSIMAP application [Dafas

et ah, 2003a]. It is based on the agent platform JADE [Bellifemine et a l, 1999] and is an

almost exact implementation of the simulation model. JADE has been chosen, because it

gave us more flexibility in implementing our architecture than dedicated Grid Computing

frameworks such as the Globus Toolkit [Foster and Kesselman, 1997], The implementation

in JADE also required less effort than standard technologies like RMI and JINI, since it sup-

ports agent behaviours, asynchronous messaging, and multiple communication protocols.

11.2 Objectives

Overall, with our Grid computing framework we plan to achieve the following objectives:

Proof of concept: We want to demonstrate that the simulated system is realistic by im-

plementing it on the Java-based agent platform JADE. Issues to be resolved include the

performance and load measurement at the resources, the passing of data and code between

machines in a geographically distributed environment, and the specification of task and re-

source constraints.

49Control and Management of Agents and their Services, iD: ACNET.02.30.

136

11 EXPERIMENTAL GRID COMPUTING FRAMEWORK

Deployment: We want to show that the framework can be deployed on a PC cluster in a local

area network. Our experiments will be limited to a cluster scenario, i.e. large communication

delays — as they occur in globally distributed networks — will not be studied. They have

only been examined in the simulations.

Verification of simulation results: We aim to determine in how far the simulation results

are valid. In particular, we want to find out, for which loads and numbers of resources the

system behaves as in the simulations, and what the impacts of processing and communication

delays are.

Applications: We want to show that real-world problems can be solved by this experimental

framework. We will run a bioinformatics computation called PSIMAP. It is an example of

a parameter sweep application which is submitted to the system as a burst of independent

computations. Note that our Electronic Marketplace is a multi-user system where each user

may submit such a computation.

11.3 General Description

The architecture and the interaction protocols of our framework are almost the same as in

the simulation model which we described in chapter 6.

As shown in Figure 54, it consists of Clients, who want to execute tasks on resources,

Servers, who provide these resources, and an Electronic Marketplace (EMP). The Electronic

Marketplace allows Servers to advertise the resources and Clients to query them.

Whenever a Client sends a request to the EMP, it needs to specify the task’s size, price

bid, and constraints such as the task deadline, minimum resource speed, etc. At the EMP,

the requests of the Clients are matched with the Servers’ offers which contain the resource’s

speed, price, and current availability (in % of the total CPU capacity).

The resource’s speed is given in MFLOPS, i.e. in millions of floating point operations

per second. This figure is based on the execution of a sparse-matrix benchmark (see section

D.3 in the appendix). Similarly, a task’s computational size is specified in megaflops times

milliseconds (MFLOPS*ms). Using these measures enables us to obtain a close estimate of

137

11 EXPERIMENTAL GRID COMPUTING FRAMEWORK

Bank
Client accounts
Server accounts

8) initiate
payment

EMP
Events:
Task arrival event
Resource update event
Task price adjustment event

2) process task query

3) return
/query result

1) send
task query

Client i
Endowment M
Task generation ~ Poisson

5) execute
task

6) update resource
information

4) send task

7) return result

Server j
Speed factor f Speed
No. res. units N RUtotal
Availability N RU>avail
Price per task unit p Serv

Background load -Poisson
Comp, size Sc BG
Res. units alloc NRUBG

Figure 54: Model of the marketplace which has been implemented in our Grid computing
framework.

how long a task will execute on a given resource.

Different protocols for the resource allocation have been implemented. These include

the Continuous Double Auction Protocol (CDA), Continuous Double Auction with time-

dependent price bids (CDA-TDB), Shortest Job First (SJF), First-In-First-Out (FIFO), and

Prioritised First-In-First-Out (PRIO-FIFO).

11.4 Implementation

This section gives a brief overview of the most important features of our framework. More

information about the implementation and the operation of the framework is given in chapter

D of the appendix.

138

11 EXPERIMENTAL GRID COMPUTING FRAMEWORK

11.4.1 Communication

Within the system, we use RMI-style communication, i.e. the actors communicate via mes-

sages which contain a string of characters and a set of objects. The string represents a method

which is to be invoked on the receiving agent, and the objects are the arguments to be passed

to that method. The Java Reflection API is used for translating the string into the agent’s

method. Thus, a message handler is not needed.

This messaging facility is built on top of JADE and therefore allows to pass messages

by using multiple communication protocols including RMI, Corba, HTTP, and JMS. This

facilitates the communication between actors at geographically distributed locations.

11.4.2 Tasks

In our framework, a task is specified as a set of Java classes, which can be sent out from

a Client for execution on a remote Server. The most important features of this framework,

which concern the execution of tasks, are described below:

Interfaces for computational tasks. In order to deploy a computational task in our frame-

work, the task needs to implement an interface which is described in section D.4. If a larger

application is to be split up into smaller tasks which will be distributed and executed re-

motely, it also needs to implement an interface which is given in section D.5.

Passing input and output data. The input data is wrapped up in a serializable Java object

so that it can be transmitted inside a FIPA message over any communication protocol. The

same applies to the result data that is returned after the execution. To allow the transmission

of code, Java classes (i.e. their bytecode) can be loaded over any protocol supported by

JADE.

Specification of task and resource constraints. Our framework provides means for the

Clients and Servers to specify constraints, which need to be met when matching tasks to

resource offers. This feature is described in section D.6 of the appendix.

139

11 EXPERIMENTAL GRID COMPUTING FRAMEWORK

Class loading mechanism. A class loader has been implemented which can pass Java

classes from a Client to a remote Server in order to execute them there. The Java classes

are specified by their file names and paths on the Client’s harddisk. Unless these classes are

already available at the Server, their bytecode is read from these files, serialised, and sent

to the Server. The bytecode is transmitted inside ordinary FIPA messages which JADE can

send via RMI, Corba, HTTP, or JMS. At the Server, it is loaded, instantiated and executed.

11.4.3 Servers

The Servers in our system have been provided with the following facilities:

Measurement of the resource speed. When Servers register their resources at the EMP, they

need to provide information about the resource’s speed. To achieve this, our framework runs

a benchmark at the Server resources which return their speed in MFLOPS. More information

about this benchmark is given in section D.3 of the appendix.

Measurement of the resource utilisation. To obtain the current load at the Server resources,

the Unix command vmstat is used which monitors the resource at regular time intervals. This

method requires a Unix or GNU/Linux operating system — it is not available for Windows.

Resource scheduling policy. The Servers in our framework support the second of the

scheduling policies which are described in subsection 6.2.3: It is assumed that the resource

is time-shared, and that background load is given priority: the latter is achieved by executing

our platform and our tasks with the lowest available priority, which can be expressed by us-

ing the n ice command under Unix. The resource share, that is available to the framework,

is allocated exclusively to one executing task, which cannot be suspended or preempted.

Protocols which use proportional sharing, task suspension, or preemption are too hard to im-

plement — unless modifications are made to the operating system (GNU/Linux) or the Java

virtual machine 50.

50 We used JDK 1.4 in our experiments. Unfortunately, Java up to version 1.5 does not have the capability
to safely suspend and resume threads from outside. To our knowledge, this problem does not exist in the
.NET framework [Platt and Ballinger, 2002]. Also, efforts are underway to provide resource control for Java
[Czajkowski et al., 2003].

140

11 EXPERIMENTAL GRID COMPUTING FRAMEWORK

11.5 Summary

In this chapter we have given an overview of our experimental Grid computing framework

which serves as a proof-of-concept for our simulation model. We described our approach

to resolve issues such as performance and load measurement at the resources, the passing

of data and code between the machines, and the specification of the task and resource con-

straints. More details about the implementation and operation of this framework are given in

chapter D of the appendix.

In the next chapter we will deploy our framework in a cluster of PCs in order to verify

our simulation results. We will also show how it can be used for the execution of a parameter

sweep application taken from bioinformatics.

141

12 EXPERIMENTS

12 Experiments

12.1 Objectives

In this chapter, we will show that the simulated system can operate in a real computational

environment. To this end, we will deploy our experimental Grid computing framework,

which is based on our simulation model, in a cluster of PCs in a local area network.

We will determine in how far the real system behaves as we observed in the simulations.

In our experiments, we will study the impact of communication and processing delays on the

performance of the Electronic Marketplace (EMP). We will also examine situations, in which

the influence of the communication and processing delays is negligible. Comparing the

results of these experiments to those obtained by our simulations should show whether our

simulation model is correct. Finally, we will demonstrate the effectiveness of our framework

for solving real-world problems by deploying a computationally intensive bioinformatics

application.

12.2 Experimental Setup

In this section, we will first introduce the hardware and software infrastructure that is used

in our experiments. Next, we will describe how performance measurements at the machines

are carried out, and how load is generated by the Clients. Finally, we specify the parameters

which are common to all our experiments.

12.2.1 Hardware and Software Infrastructure

The Client and the EMP are run on a dual-processor Pentium III (1GHz, 512 MB RAM)

machine using GNU/Linux, Sun’s JDK 1.4.2, and JADE version 2.6 [Bellifemine et a l,

1999]. The Servers are started up on separate 700 MHz Pentium III machines (512 MB

RAM), which are distributed over several student labs of the university. Those machines use

GNU/Linux, Blackdown JDK 1.4.1 and JADE version 2.6.

142

12 EXPERIMENTS

12.2.2 Performance Measurements and Load Generation

The speed of each machine is measured by running a benchmark which determines its per-

formance in MFLOPS (see section D.3). This MFLOPS figure is based on a sparse-matrix

multiplication taken from the SciMark2 benchmark [Pozo and Miller, accessed in 2003], For

the machines which were used in this experiment, an average performance of 64.9 MFLOPS

has been determined. The standard deviation of these measurements has been between 0.1

and 0.3 MFLOPS. Since the hardware architecture of the machines is identical, it is probably

caused by measurement inaccuracies or background load.

The load generated by the Clients consists of tasks which execute the same sparse matrix

multiplication that has been used by the benchmark. The computation size of each task can

be specified by passing its MFLOPS*ms value as parameter 51. Hence, it is possible to

determine how long a task will execute on a machine whose performance is known.

12.2.3 General Experimental Parameters

The total length of each experiment is set to 4400 seconds. During this time, tasks are

generated by the Client. No measurements are made in the first 400 seconds: This is to

ensure that the system reaches a steady state. After this initial period, the number of tasks

which are statistically expected to be generated during an interval of 3600seconds (= 1 hour)

is considered in the result. To allow these tasks to complete, an additional final margin of

400 seconds is provided. For these experiments, it does not matter how many Clients there

are in the system. Therefore, we use only one Client for the generation of tasks. During

the experiment, each Server measures, at 10 second intervals, the current availability of its

machine (in %). If it has significantly changed since the last measurement, this information

is updated at the EMP 52.

To achieve the objectives stated in section 12.1, it is not necessary to examine all pro-

tocols and scenarios. We examine only the CDA protocol, and only for the scenario where

5'The code of the tasks has been calibrated by executing it on a machine, whose MFLOPS figure has previ-
ously been measured by the benchmark.

52Note that this is not supposed to happen because our experiments are carried out at times when the ma-
chines are not used by the students. However, we found that, even if a machine is used, the background load is
likely to be negligible.

143

12 EXPERIMENTS

tasks have different priorities. We have chosen CDA because it is the most studied protocol

in our simulations. A detailed description of how the experiment is carried out is given in

section D.8 of the appendix.

12.3 Results

In this section, the results of our experiments will be discussed. We will vary both the

generated load and the number of resources in the system.

12.3.1 Variation of Load — 10 Servers

With the terminology introduced in chapter 7, our first experiment can be defined by the

parameters {T2, SP1, Cx, (10 Servers), RD1, LV, BGO, TS1, BS1}. Note that the commu-

nication delays are beyond our control. Tasks have different weights, for which we use a

uniform distribution [0.0,2.0] (T2), and their price bids are proportional to these weights. As

performance metric, we use the weighted completion time (WCT), which is defined as the

mean of the completion times of the tasks multiplied by their weights. We use 10 identical

Servers (RD1) without background load (BGO). The Server performance of 64.9 MFLOPS

is represented by the resource size Nru ,total = 100 and speed factor fspeed = 0.649 53. All

tasks have the same computational size (TS1), and the task burst size is set to 1 (BS1). In the

experiment, the total amount of load in the system is varied (LV).

The task size is a critical parameter in the experiment, as it determines how sensitive

the results are to communication and processing delays. In order to be able to compare our

results to those obtained in the simulations, we express the duration of the execution of the

task in time units, whose size needs to be defined. In our experiments, the task size is chosen

such that the task will need 1 time unit for its execution on a resource in the system. Hence,

the task size is calculated by multiplying the size of a task unit by the Server performance

(64.9 MFLOPS). Since the task size is proportional to the size of a time unit, the latter will

have impact on the result. For this reason, we use different sizes for the time unit in our

5■'Note that the values for the resource sizes and speed factors are different from those used in the simulations.
However, they are chosen in such proportions that they lead to the same results.

144

12 EXPERIMENTS

Figure 55: Variation of load for 10 Servers: Results of CDA for different sizes of a task unit.

experiment: 20s, 50s, and 100s.

The results of the first experiment for different values of a time unit are shown in Figure

55, where they are compared to the results of the simulation. For 70% load, the results of the

experiment with 100s time units are about the same as those obtained in the simulations. For

time units of 20s or 50s, the WCT is about 6 % higher. The gap between the experimental

results and the simulation results becomes wider with increased load: At 95% load, time

units of 100s lead to a 4% higher WCT than in the simulations. For 50s time units, it is 36%

higher, and for 20s time units even 62% higher. We found that, with time units of 20s or

50s, not all tasks are able to complete when load is high. With 50s time units, this has been

observed for 95% load, and with 20s time units, already for 90% load.

A possible reason for the differences between the simulation results and the experiments

could be the fact that, in our experiments, we used smaller samples than in the simulations,

and that no confidence interval has been given for the results. To rule this out, we ran

simulations with exactly the same random seed and samples sizes as in the corresponding

experiments. The results of the experiments and the simulations — both for different sizes of

a task unit — are given in Figure 56. The figure shows that there are considerable differences

between the simulations with different sizes for a task unit and the properly conducted simu-

lations, for which a confidence interval is given (’simulation: ideal’). However, in all cases,

the WCT in the experiments is much higher than in the corresponding simulations. Hence,

145

12 EXPERIMENTS

H
U
£

CO
JD
'o-
EO

U
-aaj
J e5P
'S
£

1.6

1.4

1.2

Variation of Load - 10 Servers

experiment: 20s
experiment: 50s

experiment: 100s
simulation: 20s
simulation: 50s

simulation: 100s
simulation: ideal

0.75
-I-
0.8 0.85
Total Load

0.9 0.95

Figure 56: Variation of load for 10 Servers: Comparing the experimental results to simulation
results with the same random seed and sample sizes.

the limited number of samples in our experiment is not responsible for the large differences

between simulations and experiments.

Conclusion: For all amounts of load, the WCT in the experiments is higher than in the

simulations, and the gap becomes wider with increased load. We ruled out that the limited

number of samples in the experiment is responsible for the large difference between the

experiments and the simulations. We found that, the smaller the task size, the larger is the

WCT. It also appears that, for high loads and small task sizes, the system is not able to cope

with the load — even though it is still below 100%. This scarcity of resources could be

caused by delays introduced by the processing of tasks at the Electronic Marketplace.

12.3.2 Variation of Load — 32 Servers

In this experiment, we use the same parameters as before, except that, now, there are 32

Servers in the system. The results are shown in Figure 57. At 70% load, the results for all

time unit sizes match the simulation results. If the load is increased to 85%, a considerable

difference can be observed for the experiment with 20s time units, where the WCT is about

8.5% higher than in the simulations. For 50s time units, the WCT is only 0.5% higher, and

for 20s even 0.5% lower than in the simulations. The latter could be caused by measurement

inaccuracies or the limited number of samples in the experiments.

146

12 EXPERIMENTS

Total Load

Figure 57: Variation of load for 32 Servers: Results of CDA for different sizes of a task unit.

At 95% load, the results for 50s time units are 5% higher and for 20s time units even 5%

higher. However, for 100s time units, a difference of only 0.5% has been observed. As in the

experiment with 10 Servers, not all tasks were able to complete for the time unit sizes 20s

and 50s. This observation could be made at the same load levels as before.

Conclusion: For 32 Servers in the system, similar observations have been made as in the

experiment with 10 Servers. However, this time the differences between simulation and

experiments are smaller.

12.3.3 Variation of the Number of Servers — 80% Load

In the next experiment, we set the average load in the system to 80% and vary the number

of Servers. This experiment can be represented by the parameter set {T2, SP1, Cx, SNV ,

RD1, (80% load), BG0, TS1, BS1}. The results are shown in Figure 58.

For a low Server number, the weighted completion times are higher than for a high Server

number — in both the simulations and the experiments. However, large differences can be

observed between the results with different sizes of a time unit: With 5 Servers and 20s

time units, the WCT is about 50% higher than in the simulations, and for 50s time units still

10%. For task unit size 100s, however, the results are very close to those observed in the

simulations, and this difference remains small for all examined Server numbers. With 100s

147

12 EXPERIMENTS

Server Number

Figure 58: Variation of the Server number for 80% load in the system: Results of CDA for
different sizes of a task unit.

time units, the largest difference has been observed for 20 Servers, where the WCT is only

about 4% higher than in the simulations. The differences between all time unit sizes decrease

as the Server number is increased, and for 70 Servers an almost exact match can be observed.

In this experiment all the measured tasks were able to complete their execution. The

reason is that, at 80% load, a scarcity of resources was less likely to occur than for higher

loads.

Conclusion:

With 80% load in the system and a low Server number, the differences between the

results for the different task sizes and the simulation results are high, whereas for a high

Server number, there is almost no difference at all. It appears that, for this ’moderate’ load

of 80%, our system scales well when the number of Servers is increased — even for small

task sizes and hence a large number of queries to the EMR

12.3.4 Variation of the Number of Servers — 90% Load

Next, we varied the number of Servers for the case that the average load in the system is

set to 90% (see Figure 59): With 5 Servers, differences are now larger than in the previous

experiment: For 20s time units, the WCT is 90% higher than in the simulations, and for 50s

time units it is about 30% higher. For task unit size 100s, the WCT is still 5.3% higher.

148

12 EXPERIMENTS

Server Number

Figure 59: Variation of the Server number for 90% load in the system. Results of CDA for
different sizes of a task unit.

As previously observed, the differences become smaller, when the number of Servers is

increased to 70: With 20s time units, the WCT is about 7% higher than in the simulations,

and for 50s time units it is still 3% higher. However, for 100s time units, there is less than a

1% difference to the simulations.

The load in the system has been high in this experiment. Therefore, in some measure-

ments, not all tasks were able to complete. For a time unit size of 50s, this was the case

when the Server number was set to 5. When the size of a task unit was set to 20s, all tasks

completed only for the measurement with 50 Servers in the system.

Conclusion: For 90% load in the system, similar observations have been made as for 80%

load, except that now there are larger differences between the results for different task sizes

and the simulation results.

12.4 Deployment of a Bioinformatics Application

So far, we have shown that our simulated system is implementable and can operate in a real

computational environment. We also investigated the validity of our simulation model and

the scalability of our Electronic Marketplace (EMP). Next, we will demonstrate the effec-

tiveness of our framework for solving real-world problems by deploying a computationally

149

12 EXPERIMENTS

intensive bioinformatics application called PSIMAP on our cluster of Linux PCs.

12.4.1 The PSIMAP Computation

PSIMAP [Park et a l, 2001 ; Dafas et a l, 2003a] is a bioinformatics application which is writ-

ten in Java. Its aim is to determine the physical interactions between protein domains, which

are fundamental to the workings of a cell. To study the large-scale patterns and evolution of

the interactions, Park et al. view protein interactions in terms of whole protein families that

interact with each other. In the computation of PSIMAP, a protein structure interaction map

is derived from known structures which are obtained from a protein database. Running the

full computation on one single machine would take several months. However, the applica-

tion consists of repeated computations of the same algorithm with different parameter sets

and is therefore a parameter sweep application (see section 2.1). It can easily be partitioned

into independent subproblems that do not require any communication and can therefore be

distributed over a loosely coupled network of computers. In [Dafas et a l, 2003a], several ef-

ficient algorithms are described which can, depending on the level of the required accuracy,

reduce the computation time on a single machine to several weeks (days). By distributing it

on a cluster of PCs, it can be further reduced to hours (minutes). The latter will be described

in this section.

12.4.2 Distributing the Computation

To run the PSIMAP computation, we use one Client which submits all tasks of the com-

putation to the Electronic Marketplace (EMP). At the EMP, we use the Continuous Double

Auction Protocol (CDA) for the allocation of the resources to these tasks. Initially, the pa-

rameter space of the PSIMAP computation needs to be partitioned into separate parameter

sets, each of which is wrapped up into a task which can be computed independently. Given a

number c of machines, we split the parameter space into n > c sets which are (almost) equal

in terms of estimated execution times, c sets will execute in parallel at any time, while the

remaining sets have to wait at the EMP until machines become available. If a small value is

chosen for n, the load may not be evenly balanced, leading to poor performance. The reason

150

12 EXPERIMENTS

Percentage of Task Completed

Time (min)

Figure 60: ’Short’ PSIMAP computation: Percentage of completed tasks over time. The
CDA protocol has been used for the resource allocations.

for this is that the estimates are not very accurate, so that the variation of execution times of

the sets can be large. To this end, we choose n » c, as it achieves a better load balancing,

and thus a shorter overall computation time. Also, we give higher priorities to parameter

sets with large estimated execution times: The weights of the tasks submitted to the EMP

(and thus their price bids) are proportional to their sizes. This results in overlapping long

computations with short ones, leading to a further reduction of the overall computation time.

12.4.3 Experimental Results

In the first experiment, we run the ’short’ PSIMAP computation in which only the protein

interactions at domain-to-domain level — rather than atom-to-atom level — are determined.

The whole input data for the computation consists of 8800 parameter sets which are split up

into 2000 tasks of about the same size. 76 machines are used for the experiment, in which

we measure the percentage of completed tasks over time. Its results are given in Figure 60.

The diagram shows that the computation is completed after 19 minutes. Compared to the

computation on a single PC, which takes 4-5 hours, a speedup of 20 has been achieved. The

reason for this low speedup is that the tasks concurrently read information from the database,

which leads to delays and idleness of the machines.

Next, we repeat the experiment with the same parameters, except that we now deploy the

151

12 EXPERIMENTS

Percentage of Task Completed

Time (min)

Figure 61: ’Long’ PSIMAP computation: Percentage of completed tasks over time. The
CDA protocol has been used for the resource allocations.

’long’, more accurate PSIMAP computation where the interactions are determined at atom-

to-atom level. 72 machines are used in the experiment. The results in Figure 61 show that

the computation of tasks has finished after 20 minutes. The slope of the graph increases over

time. This is caused by the resource allocation protocol which prioritises long-running tasks

and allocates the shorter tasks later. The reason why the computation takes only marginally

longer than in the previous experiment is the larger problem size, which leads to a better

load-balancing and utilisation of the machines. In comparison to the computation on a single

machine, which takes about 20 hours, a speedup of 60 has been achieved.

In the final experiment, we do not only deploy the long version of the PSIMAP appli-

cation but also write the results into a database. The database access can lead to delays if

several tasks perform the access concurrently — and will result in an idleness of the ma-

chines. To deal with this problem, each task executes multiple threads (3), and thus allows

the interleaving of computation and communication. The result of the experiment, for which

68 machines have been used, is given in Figure 62. It shows that the whole computation

completes after about 900 minutes (15 hours). The long duration of the computation is

caused by a time-consuming operation on hash tables, which is performed when writing to

the database.

152

12 EXPERIMENTS

Percentage of Task Completed

Figure 62: ’Long’ PSIMAP computation where the results are written to the database: Per-
centage of completed tasks over time. The CDA protocol has been used for the resource
allocations.

Conclusion:

The distributed computation of the PSIMAP application demonstrated the effectiveness

of our framework for solving real-world problems. The speedup of the computation can

be almost linear, provided that the application itself is scalable and not compromised by

communication delays.

12.5 Discussion

To validate our simulation model, we carried out experiments with different tasks sizes,

loads, and numbers of resources in the system. Although our experimental setup did not

allow us to examine situations with heterogeneous resources, background load, or commu-

nication delays, we were still able to demonstrate that the system is implementable and will

operate as predicted by the simulations. We found that, for large task sizes, the experimental

results are very close to the simulation results. When smaller tasks are deployed, a higher

relative delay of the tasks can be observed.

On the one hand, the differences between simulation and experiments become larger

when the load in the system is increased. At a certain point, which depends on the size of the

tasks, the system is no longer able to cope with the load. In spite of the amount of generated

153

12 EXPERIMENTS

load being less than 100%, there appears to be a scarcity of resources in the system. It could

be caused by delays introduced by the processing of tasks which are waiting at the Electronic

Marketplace.

On the other hand, the differences between simulation and experiments become smaller

as the number of resources in the system is increased. The system scales — as long as there

are enough resources available to serve the tasks. This is even the case for the experiment

in which the task sizes are small, and therefore the number of queries to the Electronic

Marketplace is high.

The differences between simulations and experiments are not caused by the communica-

tion delays in the system: In an experimental setup, we measured the message delay between

two Jade platforms located at the machines of the EMP and of a Server. The average delay

was about 12ms, i.e. 0.06% of the execution time of the smallest tasks in our experiments

(20s). It can therefore be neglected. Hence, the differences between the simulations and the

experiments are likely to be caused by the processing delays at the EMP.

We must note that, in our experiments, there are several factors which could lead to

inaccuracies of the results. These include possible variations of the performance or load

of the machines or network connections. Also, there could be errors in the measurements

of Server speed or in setting the size of the tasks. As a result, the computations of the

tasks could take longer or shorter than required and affect the outcome of the experiment.

However, there is a close match between experiments and simulations in situations where we

would intuitively expect it (i.e. for low load and a high number of resources). This shows

that these errors cannot be very large.

By carrying out experiments with the PSIMAP application we also demonstrated the ef-

fectiveness of our framework for solving real-world problems. However, we must note that

the PSIMAP application does not exploit the full potential of our Electronic Marketplace,

because all its tasks belong to the same user and are all submitted at the beginning of the ex-

periment. The allocation of computational resources is therefore relatively straightforward.

This is usually not the case in Computational Grids which are open systems with multiple

users, who may belong to different organisations. In Grid settings, like the ones examined in

154

12 EXPERIMENTS

our simulations, multiple users submit applications like PSIMAP and compete for resources,

making resource allocation a more complex task.

An observation, which we made during our experiments is that, for an infrastructure

like our university computer labs, the background load will be very small — even at times

when it is frequently used by students. Therefore the ’no background load’ case, which was

examined in some of our simulations, is already a very close approximation of reality —

unless the machines are operated in screensaver mode. However, this observation may not

be representative for other environments.

12.6 Summary

In this chapter, we have shown that our simulated system is implementable and can operate

in a real computational environment. This has been achieved by deploying our experimental

Grid computing framework, which is based on our simulation model, in a local area network.

We also investigated the validity of our simulation model and the scalability of our Electronic

Marketplace (EMP). Overall, the results indicate that the system operates as predicted, as

long as the tasks are large and the system is not overloaded. It also scales well with the

number of resources. In addition to these experiments, we demonstrated the effectiveness of

our framework for the distributed execution of real-world applications, such as PSIMAP.

155

13 DESIGNER’S GUIDELINES

13 Designer’s Guidelines

13.1 Introduction

In the chapters 8 to 10, the performance of different market protocols and conventional pro-

tocols has been examined for various scenarios. The aim of this chapter is to give guidelines

for the designer of an electronic marketplace. The question to be answered is: Which proto-

col can be recommended in a given situation ?

13.2 Tasks with the Same Priority (Tl-Scenario)

For the Tl-Scenario we examined the sensitivity of three protocols 54 to the variation of dif-

ferent parameters. Since all tasks have the same priority in this scenario, little improvement

can be expected from the other market protocols. The recommendations for the PC and Su-

percomputing infrastructures are shown in the two tables in Figure 63. Note that the first part

of each table shows the results for cluster infrastructures, (i.e. resource diversity: none, as

specified in the second column, RD1). The second part of each table shows the results for

the Grid infrastructures (resource diversity: high, RD2).

For the entries in our tables we use the following terminology: The communication delay

is considered ’low’, if the mean latency is < 0.01, ’moderate’ if it is in the range 0.01-0.05,

and ’high’ if it is > 0.05. The Server number is ’high’, if > 110. Regarding the task sizes,

the term ’variable’ means that the task sizes have a loguniform distribution (TS2). The load

is considered ’low’, if it is < 50%, ’moderate’ if it is in the range 50%-90% and ’high’ if >

90%.

For the background load share, i.e. the fraction of the total load being background load,

we choose the following values: ’medium’ for a 50% share (BG2) and ’high’ for a 75% share

(BG3). Regarding the granularity of the background load, the term ’fine-grained’ represents

the cases SP1 (for PC infrastructures) and SP3 (for Supercomputing infrastructures), i.e. 1

out of 10 resource units is allocated to each arriving background task. The term ’coarse-

54For the PC infrastructures, we examined CDA, RR, and PSP. For the Supercomputing infrastructures we
examined CDA and RR.

156

13 DESIGNER’S GUIDELINES

PC Cluster & Grid infrastructures:

Ref.
Nr.

Res.
Divers.

Comm.
Delays

Serv.
No.

Task
Size

Load BG Load
Share

BG Load
Granul.

BG Task
Size

Burst
Size

Recom-
mend.

1 none none 32 ident. any none - - low CDA,RR
2 none none 32 ident. any med./high fine medium low CDA
3 none none 32 var. any medium fine low-high low CDA
4 none none 32 var. any medium coarse low-high low CDA,RR
5 none none 32/256 var. high medium fine medium high CDA,RR
6 none none 32 var. high medium coarse medium high CDA,RR
7 high none 32 var. any medium fine medium low CDA
8 high none 32 var. med. medium coarse medium low PSP.CDA
9 high none 32 var. high medium coarse medium low CDA
10 high none high var. high medium coarse medium low CDA
11 high high 32 var. high medium coarse medium low PSP

Supercomputing Cluster & Grid infrastructures:

Ref.
Nr.

Res.
Divers.

Comm.
Delays

Serv.
No.

Task
Size

Load BG Load
Share

BG Load
Granul.

BG Task
Size

Burst
Size

Recom-
mend.

12 none none 32 var. any med./high fine medium low CDA
13 none none 32 var. any medium coarse medium low CDA.RR
14 high none 32 var. any medium fine medium low CDA
15 high none high var. high medium fine medium low CDA
16 high high 32 var. high medium fine medium low CDA.RR
17 high none 32 var. high medium fine medium high CDA.RR

Abbreviations:
Ref. Nr.: reference number of the parameter set. Res. Divers.: degree of resource diversity/heterogeneity.
Comm. Delay: communication delay. Serv. No.: number of Servers in the system. Task Size: task size
distribution (identical vs. variable). BG Load Share: fraction of the total load being background load. BG
Load Granul.: granularity of the background load. BG Task Size: size of the background tasks. Burst Size:
number of tasks submitted at a time. Recomm.: Recommendation for the system designer.

Figure 63: Guidelines for the Tl-Scenario in which all tasks have the same priority. This
scenario has been examined in chapter 8.

grained’ represents the cases SP2 and SP4 in which the background tasks are allocated the

whole resource. We assume the background task size to be ’medium’ if it is equal to the

average size of the tasks submitted by the Client. For the burst size, i.e. the number of tasks

submitted at a time, we consider two cases: In the case ’low’ the burst size is much smaller

than the number of Servers in the system 55, and in the case ’high’ it is comparable to the

number of Servers.

55We used the value 1 in the simulations.

157

13 DESIGNER’S GUIDELINES

Recommendations

As shown in Figure 63, the CDA protocol performs best in most situations. The PSP pro-

tocol can be recommended for a situation in which the communication delays in the system

are high (parameter set Nr. 11). It may also outperform CDA for a situation where the re-

source heterogeneity is high and the load is moderate (Nr. 8). RR performs equally well as

CDA for the parameter sets {1, 4, 5, 6, 13, 16, 17}. In these situations there is no choice

between resources of different quality. Therefore, RR should be given preference because it

is computationally less expensive than CDA.

13.3 Tasks with Different Priorities (T2-Scenario)

The recommendations for the T2-Scenario are given in Figure 64. In all examined situations

the background task size is set to ’medium’. The protocols CDA, PSP, HBP, PE-P, PE-A,

FIFO, and RR have been examined for all parameter sets. For the other protocols the study

has been limited to some parameter sets: SJF has been examined for {2, 3, 5, 6, 8}, PDA for

{2, 3, 5, 6, 7, 8}, and CDA-RES for {2, 3, 5, 6, 7}. HBP-RES, HBP-T, and PE-T have been

examined for parameter set Nr. 6.

Recommendations

In most situations, PE-A is far better than all other protocols, and it is followed by PE-P.

However, we must note that the cost of suspending and resuming the preempted tasks has not

been considered in our simulation model. Also, the cost of processing the tasks at the EMP

— which will be higher for the preemptive protocols — has not been considered. Therefore,

this recommendation is only valid for situations in which these costs are negligible.

If task migration is not possible (e.g. for implementation reasons) or not desirable (e.g.

for security or performance reasons) CDA can be recommended. However, if there is a large

number of Servers in the system and the load is high, PDA peforms better. The HBP-T

protocol, which has only been examined for parameter set 6, can also outperform CDA. For

high resource heterogeneity and moderate-to-high loads (Nr. 5 and 7), PSP may also perform

better than CDA. If communication delays are high (Nr. 9), the preemptive protocols do not

158

13 DESIGNER’S GUIDELINES

PC Cluster & Grid infrastructures:

Ref.
Nr.

Res.
Divers.

Comm.
Delays

Serv.
No.

Task
Size

Load BG Load
Share

BG Load
Granul.

Burst
Size

Recommenda-
tion

1 none none 32 van any none - low 1 .PE-A/P
2.CDA 3.HBP

2 none none 32 van any medium coarse low l.PE-A 2.PE-P
3.CDA

3 none none 32 van any medium fine low l.PE-A 2.PE-P
3.CD A

4 none none 32 van high medium coarse high l.PE-A 2.PE-P
3.CDA

5 high none 32 var. any none - low l.PE-A 2.PE-P
3.CDA, PSP

6 high none 32 van any medium coarse low 1 .PE-A 2.PE-P
3.HBP-T

7 high none 32 van any medium fine low 1 .PE-A 2.PE-P
3.CDA, PSP

8 high none high van high medium coarse low l.PE-A 2.PE-P
3. PD A

9 high high 32 van high medium coarse low l.PSP 2.HBP
3.CDA

Abbreviations:
Ref. Nr.: reference number of the parameter set. Res. Divers.: degree of resource diversity/heterogeneity.
Comm. Delay: communication delay. Serv. No.: number of Servers in the system. Task Size: task size
distribution (identical vs. variable). BG Load Share: fraction of the total load being background load. BG
Load Granul.: granularity of the background load. Burst Size: number of tasks submitted at a time.

Figure 64: Guidelines for the T2-Scenario in which the tasks have different priorities. This
scenario has been examined in chapter 9.

perform very well: now PSP performs best and is followed by CDA and HBP.

13.4 Tasks with Time-Dependent Priorities (T3-Scenario)

The recommendations for the T3-Scenario are shown in Figure 65 (PC Cluster) and 66 (PC

Grid). As additional parameters we introduce the type of deadline that is used, i.e. ’hard’

vs. ’soft’ and ’tight’ vs. ’moderate’ vs. ’loose’. In all examined situations, the task sizes are

variable (T2), the task burst size is set to 1, and the background task size is ’medium’. The

protocols CDA, PSP, HBP, PE-P, PE-A, FIFO, and SJF have been examined in all situations.

CDA-TDB has only been examined for situations where the tasks have soft deadlines ({4, 5,

13, 18}). PDA and HBP-T have been examined for the parameter sets (1, 2, 3, 6, 7, 8, 9, 10,

11, 12, 14, 15, 16, 17} and CDA-RES for the parameter sets (6, 7, 14}.

159

13 DESIGNER’S GUIDELINES

Recommendations

In the PC Cluster scenario, PE-A provides a far better performance than the other protocols.

It is followed by PE-P. If task migration is not possible or desirable, HBP or HBP-T will be

the best choice — depending on the type of deadline that is used. CDA can be recommended

for the case ’soft & loose deadlines’ (Nr. 5) 56.

PC Cluster infrastructure:

Ref.
Nr.

Res.
Divers.

Deadline
Type

Comm.
Delays

Serv.
No.

Load BG Load
Share

BG Load
Granul.

Recommenda-
tion

1 none hard / tight none 32 any none - 1 .PE-A/P
2.HBP, HBP-T

2 none hard / tight none 32 any medium coarse l.PE-A 2.PE-P
3.HBP

3 none hard / loose none 32 any medium coarse l.PE-A 2.PE-P
3.HBP-T

4 none soft / tight,
soft / mod.

none 32 any medium coarse 1 .PE-A 2.PE-P
3.HBP

5 none soft / loose none 32 any medium coarse l.PE-A 2.PE-P
3.CDA

Abbreviations:
Ref. Nr.: reference number of the parameter set. Res. Divers.: degree of resource diversity/heterogeneity.
Deadline Type: type of task deadline (hard vs. soft / tight vs. moderate vs. loose). Comm. Delay: commu-
nication delay. Serv. No.: number of Servers in the system. BG Load Share: fraction of the total load being
background load. BG Load Granul.: granularity of the background load.

Figure 65: Guidelines for the T3-Scenario in which the tasks have different, time-dependent
priorities. This scenario has been examined in chapter 10. In this table, the results for the PC
Cluster infrastructure are given.

The recommendations for the PC Grid infrastructures depend on the amount of load in

the system. For the situation ’hard & tight deadlines’ without any background load in the

system (Nr. 6) CDA-RES performs best for all amounts of load and is followed by HBP-T

and PSP. When coarse-grained background load is introduced, CDA, FIFO, SJF, and PSP

perform best when load is low (Nr. 7). PE-A is best if load is high and is followed by HBP-T

and PE-P (Nr. 8). For moderate deadlines PE-A can be recommended if the load is low (Nr.

9) — unless task migration is not possible, in which case CDA, SJF, or HBP-T should be

used instead. If the load is high (Nr. 10), the HBP-T protocol performs best and is followed

by SJF and CDA. For the situation ’hard & loose deadlines’ (Nr. 11 and 12), PE-A performs

56Note that HBP-T has not been tested for situations with soft deadlines.

160

13 DESIGNER’S GUIDELINES

best for all amounts of load. If task migration is not possible, HBP-T should be used instead,

or — for low load — CDA or SJF which perform about equally well. With soft deadlines

(Nr. 13) , PE-A performs best among all examined protocols. It is followed by PE-P and

CDA-TDB.

PC Grid infrastructure:

Ref.
Nr.

Res.
Divers.

Deadline
Type

Comm.
Delays

Serv.
No.

Load BG Load
Share

BG Load
Granul.

Recommenda-
tion

6 high hard / tight none 32 any none - 1. CDA-RES
2. HBP-T 3.PSP

7 high hard / tight none 32 low medium coarse CDA, FIFO, SJF,
PSP

8 high hard / tight none 32 med.
/ high

medium coarse 1. PE-A
2. PE-P, HBP-T

9 high hard / mod. none 32 low medium coarse 1 .PE-A 2.CDA,
SJF,HBP-T

10 high hard / mod. none 32 med.
/ high

medium coarse 1.HBP-T 2.SJF
3.CD A

11 high hard / loose none 32 low medium coarse l.PE-A 2.CD A,
SJF,HBP-T,PE-P

12 high hard / loose none 32 med.
/ high

medium coarse 1. PE-A
2. HBP-T, PE-P

13 high soft none 32 any medium coarse 1 .PE-A 2.PE-P
3.CDA-TDB

14 high hard / tight none high high none - l.CDA-RES
2.SJF 3.HBP-T

15 high hard / tight none high high medium coarse l.SJF 2.HBP-T
3.PSP,CD A

16 high hard / mod. none high high medium coarse 1.HBP-T 2.CDA
3.SJF

17 high hard / loose none high high medium coarse l.PE-A 2.HBP-T
3.PDA

18 high soft none high high medium coarse l.PE-A 2.PE-P
3.CDA,SJF,FIFO

19 high hard / tight mod.
/ high

32 high none
/ medium

coarse 1. PE-P
2. CDA, HBP

20 high hard/mod.,
hard/loose

mod.
/ high

32 high medium coarse l.CDA 2.PE-P
3.HBP

Abbreviations:
Ref. Nr.: reference number of the parameter set. Res. Divers.: degree of resource diversity/heterogeneity.
Deadline Type: type of task deadline (hard vs. soft / tight vs. moderate vs. loose). Comm. Delay: commu-
nication delay. Serv. No.: number of Servers in the system. BG Load Share: fraction of the total load being
background load. BG Load Granul.: granularity of the background load.

Figure 66: Guidelines for the T3-Scenario in which the tasks have different, time-dependent
priorities. This scenario has been examined in chapter 10. In this table, the results for the PC
Grid infrastructure are given.

161

13 DESIGNER’S GUIDELINES

Next, we consider situations in which the number of Servers and the load in the sys-

tem are high. CDA-RES can be recommended for the situation ’hard & tight deadlines’ if

there is no background load in the system (Nr. 14). It is followed by SJF and HBP-T. If

coarse-grained background load is introduced, SJF performs best for the case ’hard & tight

deadlines’ (Nr. 15) and HBP-T for the case ’hard & moderate deadlines’ (Nr. 16). With

’hard & loose deadlines’ PE-A performs best (Nr. 17). If task migration cannot be used,

HBP-T and PDA can be recommended. For situations where tasks have soft deadlines (Nr.

18) PE-A performs best and is followed by PE-P. Among the non-preemptive protocols CDA,

CDA-TDB, SJF, and FIFO can be recommended.

The recommendations for situations with high communication delays and high loads

depend on the type of deadline that is used 57. For hard and tight deadlines (Nr. 19) PE-P

performs best. CDA and HBP come next and can therefore be recommended for the case

that task migration is not possible. For hard and moderate/loose deadlines (Nr. 20) CDA

provides the best results. It is followed by PE-P and HBP.

13.5 Comment

This chapter provided guidelines for the system designer regarding the choice of the best

performing protocol for a given situation. We made the assumption of a managed system (see

section 6.4) in which the pricing strategies of the Clients and Servers are enforced in order

maximise the performance for the Clients. Hence, our recommendations would be different

if the Clients and Servers were free to choose strategies which maximise their utility.

Also note that each recommendation is made for a situation in which the statistical prop-

erties of the system such as the load, background load, number of resources, etc. are constant.

However, in reality these properties may vary over time. Therefore it will be necessary to

implement the marketplace in a way that allows to change the protocol at runtime in order to

provide the best possible performance to the Clients.

57Note that only few protocols have been examined here.

162

14 SUMMARY AND FUTURE WORK

14 Summary and Future Work

In this chapter we discuss our simulation model and draw conclusions from our simulations

and experiments. We briefly compare our observations to the results of the related work.

Next, we describe the scenarios in which the marketplace could be deployed and discuss the

implementation and scalability aspects that need to be addressed. Finally, we give directions

for future work.

14.1 The Model

For our performance evaluations, we have chosen discrete-event simulation, as it allows us to

arbitrarily set parameters determining message delays, processing delays, arrival times, etc.

Concerning task arrivals and task size distributions, we decided to use synthetic workloads.

This gave us the flexibility to explore situations with different amounts and granularity of

load. To provide a realistic model, we used distributions that are based on workload logs

collected from large-scale systems in production use. Similarly, for modelling communi-

cation delays, we used distributions which are based on empirical data. Interestingly, in

both cases, we found that the choice of distribution 58 did not have much impact on the re-

sults of our simulations. What mattered was the average value chosen for the task sizes or

communication delays. For this reason, we believe that using more realistic workload or

communication models would not make much difference either.

Regarding the network infrastructure of the system, we used a simple model: All network

links between the actors were identical and therefore led to the same mean communication

delays 59. Similarly, in an experiment, where the transmission of large data has been ex-

amined, we chose the same data sizes for all tasks. The reason for these choices is that we

wanted to examine the impact of different communication delays: We assumed that the mean

of all communication delays in the system is the main factor which determines the result.

What has not been considered in our simulation model, are processing delays at the

central marketplace. They are likely to be negligible for small or medium-size systems in

58We experimented with different values for the standard deviation of the random variable.
59Note that network delays were only varied in some of the experiments and neglected otherwise.

163

14 SUMMARY AND FUTURE WORK

which the marketplace is not queried frequently. In fact, our experiments in the lab show

that these processing delays are very small in a moderately-loaded, medium-size system.

These delays may increase if more queries are sent to the marketplace — which is likely to

be the case for large systems. However, our experiments in the lab did not give us enough

information for deriving such a model, as the results were biased by other factors. Also, such

a model would depend on the implementation and the system hardware.

14.2 Simulations

For our simulations, we first gave an overview of the parameter space to be explored in the

simulations. Then, we examined three different scenarios with different requirements of the

users. We compared several market protocols and conventional resource allocation protocols.

In this section we will describe our research process and present a summary of the results.

Finally, we give a critique on the simulations.

Initial Scenario: Tasks with the Same Priorities

Initially, we investigated a simple scenario where all tasks have the same priority, and their

average completion times have to be minimised. In such a scenario, the only useful feature

of the market protocols is their greedy behaviour which results in the choice of the best per-

forming resource at a given time. As market protocols, we examined the Continuous Double

Auction Protocol (CDA) and the Proportional Sharing Protocol (PSP). For various scenarios,

which are characteristic for computational clusters and Grids, we determined which of these

two protocols is best and how great the benefit over a simple Round-Robin protocol can be.

To determine how general our results are, we studied the sensitivity of the different protocols

to various parameters. We found that in almost all situations CDA outperformed the two

other protocols. PSP performed better only for moderate loads combined with high resource

heterogeneity. It also degraded less than the two other protocols when communication de-

lays were high. Our main focus in the simulations was on PC infrastructures. However,

we also considered a scenario, where parallel applications were allocated to multiprocessor

machines, and found that in many cases the results are similar.

164

14 SUMMARY AND FUTURE WORK

Tasks with Different Priorities

Next, we examined a scenario that is more realistic for a computational Grid in which the

clients and service providers belong to different organisations: Tasks have different priori-

ties for their clients which are expressed by different price bids. To maximise performance

from the clients’ point of view, these priorities need to be considered for the resource allo-

cation by the marketplace. For this reason, we used the weighted completion time of the

tasks as performance metric: The higher the priority of a task, the more important is its

early completion. Based on the experiences from the initial scenario, we could concentrate

our experiments on scenarios and parameter sets which we considered relevant. We also

introduced further resource allocation protocols, which can provide improvements in some

of the examined situations. These protocols used features such as the suspension or migra-

tion of tasks, reserve prices, periodic auctions, time-dependent price bids, etc. Where some

protocols failed, improvements were made (e.g. FIBP-T).

Tasks with Time-Dependent Priorities

Finally, we considered a scenario which we believe is even more realistic for a Grid setting:

The objective of the users is not just to have their tasks executed as fast as possible, but to

meet certain deadlines which can be hard or soft. Similar scenarios have been investigated by

[Chun and Culler, 2000], [Kim et al., 2003], and [Nisan et a i, 1998], We used performance

metrics which reflect the value delivered to the users. These are the weighted completion

rate (for hard deadlines) and the aggregate user utility (for soft deadlines). We considered

those protocols whose results were promising in the previous scenario and also examined one

protocol which has specifically been designed for situations with soft deadlines (CDA-TDB).

In the following, we will summarise our findings for the different protocols:

Exclusive Allocation of Resources without Preemption

The exclusive allocation of resources without preemption, as used by the Continuous Double

Auction Protocol (CDA), will often lead to good results. Differences between CDA and the

other protocols will occur at high loads in the system, i.e. when there is a strong competition

for resources. In most cases, CDA is the better than the conventional scheduling protocols

165

14 SUMMARY AND FUTURE WORK

RR, FIFO, and SJF, as it prioritises tasks according to their bids, and resources according to

their performance. Usually, it is also better than the Proportional-Sharing Protocol (PSP).

Proportional Sharing of Resources

When the heterogeneity of the resources is high, proportional sharing may be preferable to

the exclusive allocation of resources. In such situations, the Proportional Sharing Protocol

(PSP) will outperform CDA — provided that the load in the system is not too high, and

the weighted completion time (WCT) of the tasks is used as performance metric. PSP also

copes better with high communication delays. Furthermore, it performs better than CDA in

a situation where the tasks have tight deadlines, and the weighted completion rate (WCR) is

used as performance metric.

Preemption: Suspension of Tasks

With the Highest Bid Protocol (HBP), we examined a protocol that allows to suspend low

priority tasks in favour of high priority tasks in order to improve the overall performance.

However, we observed that, in most cases, HBP leads to a poorer performance than CDA:

It appears that the delay of suspended tasks outweighs the gain of the suspending tasks. We

found that a solution to this problem is to use thresholds for the preemptions (as in the HBP-T

protocol). With the right choice of threshold, HBP-T outperforms both CDA and HBP.

Preemption: Task Migration

We considered two protocols which enable the migration of tasks whose execution has al-

ready started. The first, PE-P (passive), allows the migration of a task only when preempted

by another task. The second, PE-A (active) enables task migration whenever a better re-

source becomes available. With just a few exceptions, such as situations with high commu-

nication delays or tight deadlines, PE-A’s results are far better than for the other protocols,

and PE-P’s results come next. One weakness of PE-P and PE-A, however, is that each mi-

gration may trigger another migration. This will often result in a chain reaction which —

in reality — can be a huge burden on the central marketplace. A possible solution to this

problem could be limiting the number of preemptions, as done by the PE-T protocol.

166

14 SUMMARY AND FUTURE WORK

Use of Reserve Prices

The use of reserve prices (as in CDA-RES) can lead to better results than ’normal’ CDA if

there are differences in speed or background load among the resources. It can be a good

solution in situations where the preemption of tasks is not possible or desirable. One risk

of such a protocol is, however, that some low priority tasks may never be executed: This

problem can be dealt with by gradually increasing their price bids or by enforcing price

discounts at the resources. We must note that the comparison of CDA and CDA-RES only

makes sense in a system, in which the Servers do not try to maximise their gain: In a free

market, the service providers will set their reserve prices anyway.

Time-Dependent Task Priorities

The protocol CDA-TDB has specifically been designed for situations in which the tasks have

soft deadlines: It bases the allocation decisions on the current price bids of the tasks, which

are decreasing over time, as they reflect the actual values of the tasks. In our experiments,

it did not lead to considerable improvements in comparison to ’normal’ CDA with static

price bids, and also, it was clearly outperformed by the preemptive protocols. Furthermore,

a serious disadvantage of CDA-TDB is that it is computationally expensive. As we found in

some limited trials with our experimental Grid computing framework, this can considerably

delay the processing of tasks at the marketplace.

Periodic Auctions

While most of the auction protocols described in the related work in chapter 5 are periodic,

all of our protocols — except PDA — are continuous, i.e. they carry out the transactions

immediately. We opted for continuous auctions as we expected better performance. In fact,

in most of our experiments the Periodic Double Auction Protocol (PDA) turned out to be less

efficient than the Continuous Double Auction Protocol (CDA). Exceptions, however, can be

found in situations with highly heterogeneous resources and moderate to high amounts of

loads. We also observed improvements for situations where tasks had loose deadlines and

the number of resources was high.

167

14 SUMMARY AND FUTURE WORK

Conventional Scheduling Heuristics

In scenarios where tasks have different priorities it is obvious that market protocols lead to

better results than those protocols which do not consider these priorities for the resource

allocations. Yet, in order to determine in which situations the market protocols can make a

difference, we examined several conventional scheduling heuristics, which include Round-

Robin (RR), First-In-First-Out (FIFO), or Shortest-Job-First (SJF). Our results show that,

with the market protocols, substantial improvements are achieved in situations with high

loads and high heterogeneity of resources.

14.3 Simulations: Critique

The simulation results show that, in computational clusters and Grids, market protocols can

provide an efficient allocation of resources which will benefit the users. The choice of the

appropriate protocol, however, depends on various parameters, including load, resource het-

erogeneity, communication delays, etc. Guidelines for how to use these results have been

given in chapter 13. It should be noted that we examined our protocols for systems, which

are stationary, i.e. whose statistical properties, such as the task arrival rate, don’t change

over time. If these statistical properties change, e.g. for different times of the day or the

year, our results will still be valid, as long as the duration of the tasks is relatively small. For

situations where this is not the case, the protocols may have to be adapted, and predictive

techniques may lead to improvements.

The Market as a Tool

In this thesis, we considered the market as a tool to maximise performance from the Clients’

perspective. It could be argued that this will only be applicable in managed systems where

the Servers do not have the objective to maximise their gain (e.g. where the resources are col-

lectively owned by the users). However, we found that trying to maximise the performance

for the Clients does not necessarily contradict the objectives of the Servers. The strategic

behaviour of the Servers can even be exploited in a way that maximises performance.

Our results for the CDA-RES protocol show that allowing the Servers to set reserve

prices can improve performance. The reason is that reserve prices can help to express the

168

14 SUMMARY AND FUTURE WORK

differences in speed and load among the resources: The reserve prices exclude low priority

tasks from using the well-performing resources so that they remain available to high priority

tasks, which may arrive at a later time. These performance improvements by CDA-RES are

achieved, even though the resources remain idle for considerable amounts of time. It appears

that this ’waste’ of processing power can be outweighed by the gain for the high priority

tasks — and overall, the users can benefit from the opportunistic pricing of the Servers.

A problem with using reserve prices is that some low priority tasks may never be allo-

cated to any resource. In a managed system this problem can be solved by enforcing price

discounts at the Servers or by gradually increasing the task price bids (’task price adjust-

ment’). However, in a free market, it will not be possible to use these techniques. Instead,

the Clients will behave strategically and will therefore increase the bids of their tasks if they

expect this to be beneficial to them — and hence provide a form of ’task price adjustment’.

In a free market in which the CDA protocol is used at the EMP, the Servers will need the

ability to set reserve prices in order to maximise their benefit. However, if the a preemptive

or proportional sharing protocol is used at the EMP, the Servers will not necessarily benefit

from setting reserve prices, because the resource allocations can be changed whenever tasks

with higher price bids arrive.

Type of Auction and Bidding Strategies

In this thesis, we assumed a managed system and therefore did not have to consider pric-

ing/bidding strategies and resource accounting. Therefore, if we replaced the first-price auc-

tions by second-price auctions, our simulation results would not be affected because the

allocation decisions at the marketplace would remain unchanged (except for CDA-RES and

PSP). However, for a system that is not managed, the choice of protocol (i.e. first-price vs.

second-price) may have a considerable impact on the results because it determines the dom-

inant strategies of the Clients and Servers, and hence the allocation decisions. The choice of

the bidding strategy will become important in a scenario in which a Client has to allocate its

limited funds to several tasks which it submits to the EMP (e.g. as part of parameter sweep

applications, DAGs, etc.). This is subject of future work.

169

14 SUMMARY AND FUTURE WORK

14.4 Experiments

With our experimental Grid computing framework we have shown that our Electronic Mar-

ketplace is implementable and can operate in a real computational environment. Although

experimental and light-weight, the framework resolves many practical issues of distributed

computing, which include the performance measurements at the resources, the measurement

of load information, and the passing of data and code between Clients and Servers. Due

to the JADE platform, which provides HTTP and various other communication protocols, a

deployment of our framework in a geographically distributed system is possible: We enabled

it to transfer Java code to remote machines via any of the protocols supported by JADE.

By running our framework in a local area network, we investigated the validity of our

simulation model and the scalability of our Electronic Marketplace (EMP). Overall, the

results indicate that the system operates as predicted, as long as the communication-to-

computation ratio is small and the system is not overloaded. It also scales well with the

number of resources. In addition to these experiments, we demonstrated the effectiveness

of our framework for the distributed execution of real-world applications, such as PSIMAP.

The main limitation of our experiments is that they have only been carried out in a local area

network, which did not allow us to examine situations with heterogeneous resources and

communication delays.

14.5 Comparison to Related Work

There have been only few other efforts to evaluate the performance of market protocols for

computational clusters and Grids. These are described in chapter 5 in more detail. In most

cases, the examined scenarios are slightly different and therefore the results are not directly

comparable to ours.

Grid Settings

The authors of POPCORN [Nisan et al., 1998; Regev and Nisan, 1998] examined the per-

formance of several market protocols in a geographically distributed system. In contrast to

our work, the authors studied economic properties of the market, such as price stability and

170

14 SUMMARY AND FUTURE WORK

economic efficiency, rather than measuring performance from the user’s perspective. Also,

the evaluation was limited to periodic auctions which, according to our results, are less effi-

cient than continuous auctions. Mechanisms such as proportional sharing, task preemption,

or migration, which — as we found — can lead to considerable performance improvements,

have not been examined either.

In the work reported in [Wolski et al., 2001], different market protocols were examined

for a Grid setting. Again, the performance metrics were different than in our work: They

included the job throughput, utilisation of resources, and price stability. The experiments

were also limited to protocols with periodic transactions.

Cluster Settings

In [Chun and Culler, 2002], market protocols were examined for a computational cluster

which was modelled as a single, divisible resource consisting of identical processors. The

authors studied a scenario where tasks had soft deadlines. They found that a first-price

auction can outperform conventional scheduling protocols like SJF. They also observed that,

for sequential workload, the use of auctions with time-dependent price bids does not lead to

considerable improvements over auctions with static price bids. In spite of the differences

in the setup, both observations are consistent with our findings for CDA-TDB, CDA, and

SJF. However, the authors also found that the preemption of tasks ’does not add significant

value’: This observation could not be confirmed by our experiments, in which the preemptive

protocols clearly outperformed CDA and CDA-TDB.

The authors of [Kim et al., 2003] studied the unrelated machine case for a cluster set-

ting and therefore required a different type of resource allocation protocols. Yet, in the

experiments, the best results have been achieved with those protocols which considered task

priorities when allocating resources. This is consistent with our findings.

The work by [Ferguson et al., 1996] examined a cluster setting in which auctions were

carried out at each processing node. Due to the differences in the setup, the authors’ results

cannot be compared to our results. However, their general observation, that market protocols

can achieve better performance levels than non-economic protocols, has been confirmed by

our simulations.

171

14 SUMMARY AND FUTURE WORK

Resource Control for Mobile Agents

The authors of [Bredin et al., 2001; Bredin, 2001] examined a proportional sharing proto-

col for the allocation of computational resources to mobile agents. They observed an 8%

overhead for this market protocol in comparison to a locally optimal, non-economic proto-

col. This observation does not contradict our findings, as the authors did not consider the

different priorities of the tasks in their performance metrics.

14.6 Applicability

In this section, we briefly describe the scenarios in which the marketplace could be deployed.

We also discuss the implementation and scalability aspects that need to be addressed.

Scenarios

Our Electronic Marketplace could be deployed in various environments. Regarding the type

of system infrastructure, we distinguish the following two cases: The first is a local cluster

of identical resources which is small in size, and the second a Grid in which the resources

are heterogeneous and geographically distributed. In both cases the resources can be PCs

or multiprocessor machines. Regarding the ownership of resources which are offered at the

marketplace, we envisage the following scenarios:

• The resources are owned by just one organisation, e.g. a research institution or com-

pany, which provides access only to its users, e.g. students or employees.

• The resources are collectively owned by different users or organisations to which the

users belong. •

• The resources are part of a web-farm owned by one single organisation, and the incom-

ing service requests of external users are prioritised on the basis of the importance of

the users, their past usage, etc. If the services are offered for free, resource accounting

will not be needed.

• Both users and resource providers belong to different organisations. In such an envi-

ronment, the issues of security and resource accounting are harder to resolve. Also,

172

14 SUMMARY AND FUTURE WORK

the resource providers will be maximising their revenue — which is not necessarily

the case in the other scenarios.

Implementation

From the implementation point of view, non-preemptive protocols like CDA are the simplest.

Also, since the allocations of the tasks cannot be changed during their execution, they are

the most reliable from the user’s point of view. We found that the implementation of the

preemptive and proportional sharing protocols is not straightforward, as it requires the ability

to suspend and resume executing threads or other ways to control resource consumption. At

the present time, this functionality is not supported by Java — which JADE needs to run —

but efforts are underway to solve this problem [Czajkowski et al., 20031. Task migration, as

used by PE-P and PE-A, is even harder to implement. Unless the program code is written

in a way that facilitates migration, it will require strong mobility (see section 3.7): The

complete execution state of a task has to be packaged up, in order to resume execution on the

new Server. This facility is not provided by standard Java but has been implemented by the

D’Agents mobile agent platform [Rus et al., 1997], which uses a modified virtual machine.

Scalability

Bearing in mind that, in reality, computational tasks are at least a few minutes long, and

the marketplace is able to process several requests per second, our central marketplace will

scale for hundreds, if not thousands of resources. As we found in our experiments, this will

already be the case with our experimental framework which is written in Java. With a more

efficient implementation, an even better performance could be achieved. Beyond a certain

point, however, it will be necessary to distribute the marketplace.

14.7 Future Work

The work presented in this thesis can be extended in several directions, which concern the

simulation model, protocol design, and implementation. These will be described in this

section.

173

14 SUMMARY AND FUTURE WORK

Simulation Model

We could extend our simulation model by considering the processing delays at the central

marketplace. This may be needed for the modelling of larger systems, in which the market-

place is queried frequently. Another extension — essential to the modelling of data-intensive

applications — would be to consider memory requirements in the resource allocations. Our

simulation model should allow the tasks to specify requirements for the memory or storage

space needed, and model the resources accordingly. A further improvement, which could be

relevant for the deadline-scenarios, concerns the task computation sizes: In reality they are

often not known before their execution and only estimates can be given. The real task sizes

should therefore be modelled as random variables.

To examine a real, geographically distributed system, more sophisticated models may

be needed for the communication delays. These could be queuing-theoretic or based on

data obtained from real network traces. Also, more realistic network infrastructures could

be used for the simulations. Furthermore, our simulation model could be used to study a

system that provides market-based resource control for mobile agents ([Bredin et al., 2001;

Bredin, 2001], see section 5.5). Another scenario, which we believe is relevant to Grid

computing and which should be considered as future work, is the scheduling of applications

with subtask dependencies (see subsection 2.3.1). Our model could also be extended to cover

the combinatorial case in which each application requires a bundle of different resources for

its execution (e.g. different machines, memory & storage space, network bandwidth, etc.).

Protocol Design

Regarding the design of the resource allocation protocols, it would be interesting to examine

whether hybrid approaches can lead to any performance improvements. E.g. one could

combine proportional sharing or preemption with reserve pricing, thresholds, or periodic

auctions. In the scenario where tasks have deadlines (see chapter 10), protocols could be

considered which not only consider the priority of tasks but also their urgency.

What should also be investigated is whether the use of performance prediction (see sec-

tion 4.5) can improve the results. In some limited trials we examined a version of CDA which

uses estimates of the load on the resources for its allocation decisions. However, we could

174

14 SUMMARY AND FUTURE WORK

not find any considerable improvements. Yet, performance prediction may lead to better re-

sults in other scenarios. Another challenging task would be to enhance the pricing strategies

of the Servers, so that they maximise their utility 60. Similarly, the bidding strategies for the

Clients could be improved.

Implementation

Concerning the implementation of the marketplace, the most important extension would

be to actually deploy protocols which use proportional sharing or the preemption of tasks.

This is currently not possible with Java. However, possible solutions would be to (i) use a

modified Java virtual machine ([Suri, 2000], e.g.), (ii) use a framework that controls resource

consumption through bytecode rewriting [Binder et al., 2001], or (iii) schedule processes at

the operating system level.

In this thesis we assumed that system properties such as the load, background load, num-

ber of resources, etc. remain constant. However, in reality these properties may vary over

time. Therefore it will be necessary to extend the marketplace in a way that allows to change

the protocol at runtime in order to provide the best possible performance to the Clients.

Furthermore, to make the marketplace more scalable, it might be necessary to distribute it

over several machines. In [Wolski et al., 2003], an architecture is proposed which consists of

several branches which store replicated and synchronised information about the demand and

supply. We find that a scalable marketplace does not necessarily have to be geographically

distributed — rather the machines could be located at the same site. In fact, Napster 61 and

eBay 62 are examples which show that centralised systems may even scale on a global level.

In any case, the resource allocation protocols would have to be adapted to deal with the

replicated data structures and the distributed processing of queries. Yet, by doing this, the

operational behaviour of the protocols as described in this thesis would not necessarily have

to change.

To finally deploy the marketplace, issues such as security, trust, and resource accounting

have to be dealt with.

60In [Bredin, 20011, such strategies have been developed for resource control in mobile agent systems.
61 http://www.napster.com
62http://www.ebay.com

175

http://www.napster.com
http://www.ebay.com

A RESOURCE ALLOCATION PROTOCOLS

A Resource Allocation Protocols

A .l Resource scheduling policy: Proportional sharing

In this chapter, we describe resource scheduling policy 4 (see subsection 6.2.3), which uses

proportional sharing, in more detail.

In this policy, several tasks can execute on a Server at a time. The amount of resources

allocated to a task, Nru ^Uoc, depends on its price bid, pjask,i> in relation to the sum of price

bids X PTask,i of all tasks executing on that Server, including the bid of the task itself. It is

given by

Nr U, alloc
PTask,i

X PTask,i
Nr u ,avail)

where Nru ,avail is the total number of available resource units.

Every time a task or background task starts or completes execution on the Server, the

other tasks need to be rescheduled. The tasks’ resource shares change, and so does their

execution speed. At such events, the effective execution speed sgf f j of each executing task i

is determined, and its completion event is rescheduled. First, the overall effective execution

speed of the Server S£ff,total needs to be calculated. It is given by:

sEff,total — fSpeed ' ^RU,avail-

From this, the new effective execution speed of the task, 5£//,(, can be obtained. It

depends on the overall effective execution speed of the Server, on the price bid of task i, and

on the sum of the price bids of all executing tasks. It is given by:

sEff,i = SEf fitotal •
PTask,i
YjPTask,i

The task’s remaining size to be executed Sc ,r ,ì is calculated by

$C,R,i — Sc,R,i,prev (f tprev) ' sEff, ,i,prev

176

A RESOURCE ALLOCATION PROTOCOLS

In this equation, Sc,R,i,Prev is the remaining size of the task at the previous rescheduling

event at time tprev. t is the current time and S£f f ^prev the effective execution speed of task i

at the previous re-scheduling event. The remaining execution time T£xeCtPji of task i is given

by:

r y , _ ^C,R,i
1Exec.R.i —

s m , i

The completion event of task i is rescheduled for time t + T£xec,R,i■ The procedures for

the main loop of the Server and for the rescheduling of executing tasks are given in Fig. 67

and Fig. 68, respectively.

177

A RESOURCE ALLOCATION PROTOCOLS

SERVER CODE:

while (experiment is running) {
switch (event) {

task start event: // when a task is received from a Client
add task to the list of executing tasks;
increase sum of price bids;
RESCHEDULE EXECUTING TASKS;
break;

task completion event:
remove task from the list of executing tasks;
decrease sum of price bids;
update sum of price bids information at the EMP;
send task result to the Client;
RESCHEDULE EXECUTING TASKS;
break;

background task start event :
update resource information at the EMP;
RESCHEDULE EXECUTING TASKS;
break;

background task completion event:
process waiting background tasks (if any);
update resource information at the EMP;
RESCHEDULE EXECUTING TASKS;
break;

}
}

Figure 67: Proportional sharing: Main code

RESCHEDULE EXECUTING TASKS:

calculate the effective execution speed of the Server;
for all tasks i currently executing:

calculate the effective execution speed for task i;
calculate the remaining size of task i to be executed;
calculate the remaining execution time for task i;
(re-)schedule the completion event of task i;

Figure 68: Proportional sharing: Rescheduling of tasks

178

A RESOURCE ALLOCATION PROTOCOLS

A.2 Resource allocation protocols

To give the reader more insight into the operation of the resource allocation protocols exam-

ined in this thesis, we provide the pseudo code of the most important procedures. Also, a

more detailed description of the Round-Robin Protocol will be given.

A.2.1 Procedures common to all protocols

EMP MAIN LOOP:

while(experiment is running) {
wait for a new event;
switch (event) {

task arrival event:
PROCESS TASK QUERY (Task Query object);
break;

server resource update event:
RESOURCE UPDATE EVENT (resource offer);
break;

task price adjustment event:
TASK PRICE ADJUSTMENT EVENT;
break;

}
}

Figure 69: Main loop of the EMP

PROCESS TASK QUERY

if (task deadline has passed) {
discard the Task Query object;

}
else {

QUERY FOR SERVER (size, price, deadline);
if (query successful) {

send the query result to the task's Client;

}
else {

add the Task Query object to the
list 'taskQueryObjectList';

indicate that 'taskQueryObjectList' is not sorted;

}

Figure 70: Processing a task query at the EMP

179

A RESOURCE ALLOCATION PROTOCOLS

A.2.2 Continuous Double Auction Protocol (CDA)

QUERY FOR SERVER (size, price, deadline):

starting from the beginning of the list of resource offers:
check all resource offers in order to find the 'best'
(cheapest/fastest) offer which meets the task's
constraints {size, price, deadline);

if (successful) {
tag the best resource offer to indicate that it is reserved;
return the result;

}
else {

return null as result;

}

Figure 71: Continuous Double Auction Protocol: Query by a task

PROCESS RESOURCE UPDATE EVENT (resource offer):

if ('taskQueryObjectList' is not sorted) {
sort 'taskQueryObjectList' according to the price bids
in descending order;

indicate that 'taskQueryObjectList' is sorted;

starting from the beginning of the 'taskQueryObjectList':
- search 'taskQueryObjectList', until the first task is found for which

the resource offer is acceptable w.r.t. {size, price, deadline);
- while doing this: remove those Task Query objects from

'taskQueryObjectList' for which the deadline has passed;

if (successful) {
tag this resource offer to indicate that it is reserved;
send the query result to the task's Client;
remove Task Query object from 'taskQueryObjectList';

Figure 72: Continuous Double Auction Protocol: Resource update event

180

A RESOURCE ALLOCATION PROTOCOLS

A.2.3 Proportional-Share Protocol (PSP)

QUERY FOR SERVER (size, price, deadline):

starting from the beginning of the list of resource offers:
check all resource offers in order to find the offer that is
the fastest to execute the task and which meets the task's
constraints {size, price, deadline}. (This takes into account
the current background load and sum of price bids on that
Server);

if (successful) {
add the task's price bid to the sum of price bids of the
Server offer which was chosen;
return the result;

}
else {

return null as result;

}

Figure 73: Proportional Share Protocol: Query by a task

PROCESS RESOURCE UPDATE EVENT (resource offer) :

if ('taskQueryObjectList' is not sorted) {
sort 'taskQueryObjectList' according to the price bids
in descending order;

indicate that 'taskQueryObjectList' is sorted;

}

starting from the beginning of the 'taskQueryObjectList' :

- search 'taskQueryObjectList' until the first task is found for which
the resource offer is acceptable w.r.t. {size, price, deadline};

- while doing this: remove those Task Query objects from
'taskQueryObjectList' for which the deadline has passed;

if (successful) {
send the query result to the task's Client;
add the task's price bid to the sum of price bids of the

Server offer which was chosen;

remove Task Query object from 'taskQueryObjectList';

Figure 74: Proportional Share Protocol: Resource update event

181

A RESOURCE ALLOCATION PROTOCOLS

A.2.4 Round-Robin Protocol (RR)

In the Round-Robin Protocol no pricing is used. The incoming task queries are matched

with the next available resource offer which meets the task’s constraints but which is usually

not the best. For this purpose, an iterator (called ’serverListlterator’) is used which cycles

through the list of resource offers (see Fig. 75).

QUERY FOR SERVER (size, deadline):

count = 0;
listSize = size of the list of resource offers;

do {
get the resource offer at the current position of the iterator
in the list of resource offers (called 'serverListlterator');

if (resource offer is available
&& meets the task's constraints) {

tag the resource offer to indicate that it is reserved;
serverListlterator = (serverListlterator+l) MODULO listSize;
return the result;

}

serverListlterator = (serverListlterator+l) MODULO listSize;
count++;

} while(count<listSize);

return null as result;

Figure 75: Round-Robin Protocol: Query by a task

On arrival of a Task Query object at the EMP, the list of resource offers is searched until

a resource is found which satisfies the task’s constraints {size, deadline}. The search starts

at the current position of the iterator. In case of a success, the resource offer is reserved. The

iterator is incremented and the result returned. Otherwise, the iterator is also incremented

and the next resource offer is considered. This step is repeated until all resource offers have

been checked or a match has been found. If the query is successful, the result is sent to the

task’s Client. Otherwise, the Task Query object remains at the EMP until a suitable resource

becomes available. It is stored in a list called ’taskQueryObjectList’.

Whenever a resource becomes available, the Task Query objects in this list are processed

182

A RESOURCE ALLOCATION PROTOCOLS

in the order of their arrival, until the resource offer is taken or all elements have been checked

and no match was found (see in Fig. 76). In case of a match, the iterator of the list of resource

offers (called ’serverListlterator’) is moved to the next position.

PROCESS RESOURCE UPDATE EVENT (resource offer):

listSize = size of the list of resource offers;
starting from the beginning of the 'taskQueryObjectList' :

- search 'taskQueryObjectList', until the first task is found for which
the resource offer is acceptable w.r.t. {size, deadline);

- while doing this: remove those Task Query objects from
'taskQueryObjectList' for which the deadline has passed;

if (successful) {
tag this resource offer to indicate that it is reserved;
send the query result to the task's Client;
remove Task Query object from the 'taskQueryObjectList';
serverListlterator = (serverListlterator+l) MODULO listSize;

}

Figure 76: Round Robin Protocol: Resource update event

A.2.5 Task Price Adjustment Event

If enabled, the task price adjustment event (see pseudo code in Figure 77) occurs at regular

time intervals — as long as the experiment is running. At first, the price bid prask of each

TaskObject in ’taskObjectList’ is adjusted according to:

l t tCreation T n eg / \
P T a sk — PTask,m ax H 77. ‘ \PTask,m ax PTask,m in)

I N eg

fo r tCreation f f tCreation "P 'f'lVeg

In this equation PTask,max is the maximum price the task is willing to pay and PTask,min

the minimum price that is initially requested. The price depends linearly on the time which

is left to the end of the negotiation time T^eg\ The parameters used are the task deadline, to,

the task creation time tcreation> the (maximum) negotiation time T^eg, and the current time, t.

If the negotiation time has passed, the price is fixed at its maximum PTask,max-

183

A RESOURCE ALLOCATION PROTOCOLS

PROCESS TASK PRICE ADJUSTMENT EVENT:

if (experiment is running){

schedule the next TASK PRICE ADJUSTMENT EVENT;

}
for (each task in 'taskObjectList') {

adjust price;

}
sort 'taskObjectList' according to the price bids in descending order;

indicate that 'taskObjectList' is sorted;

for (each task in 'taskObjectList') {

if (task deadline has passed) {

remove TaskObject from 'taskObjectList';

}
else {

QUERY FOR SERVER (size, price, deadline);

if (query successful) {

infinitesimal delay to avoid concurrent events;

send the query result to the task's Client;

remove TaskObjects from 'taskObjectList';

}
else {

if (task price bid < lowest Server price) {

exit method;

}
}

}
}

Figure 77: Task price adjustment event

184

B SIMULATION FRAMEWORK

B Simulation Framework

B.l Introduction

This chapter provides an overview of our simulation framework which has been used for the

experiments described in this thesis. Also, we will describe the method that we used for

dealing with randomness in the experiments.

B.2 Discrete-Event Simulation

Simulation can help to evaluate different resource allocation protocols before their imple-

mentation and without depending on a particular hardware infrastructure, network topology,

or middleware. To simulate distributed systems, discrete-event simulation can be used. Basi-

cally, a discrete-event simulation operates with a list of events (in virtual time) and a central

simulator object that executes these events in order. During the execution of the events, new

events may be generated which will be added to the list.

The reason for choosing discrete-event simulation for our experiments is that it allows to

arbitrarily set parameters determining message delays, processing delays, arrival times, etc.

Hence, one does not depend on a particular system and can explore a strategy for different

scenarios.

B.3 Choice of language and package

A discrete-event simulation can easily be implemented in Java or other object-oriented pro-

gramming languages. As an alternative, a dedicated simulation language like SIMULA [Poo-

ley, 1987] can be used.

We opted for Java because of prior experience with this language and because of the avail-

ability of various open-source simulation packages, which saved us a lot of programming

effort. Also, writing the simulation in Java later enabled us to re-use large parts of our code

when implementing our basic Grid Computing framework (see chapter 11). General-purpose

simulation packages, which are based on Java, include Simjava [Howell and McNab, 1998],

185

B SIMULATION FRAMEWORK

Silk [Kilgore and Burke, 2000], and Desmo-J [Page et al., 2000], Other systems like Swarm

[Minar et al., 1996] or RePast [Collier, accessed in 2003] are designed for agent-based sim-

ulation. We have chosen Simjava (version 1.2), as it is open-source and relatively small, and

therefore easy to control. It provides the core functions of a discrete-event simulator which

we extended with additional Random number generators, statistical functions, and message

passing capabilities. Furthermore, it uses continuous — rather than discrete — time, which

enables us to choose arbitrary values for the delays, without any limitations introduced by

discrete timesteps. In Simjava, all simulated actors are represented by Sim_entity objects

which have their own threads and which may interact with each other. During the simulation,

each thread may be started and stopped by the simulator according to the events which are

stored in the event list. Also, it may create new events.

B.4 Simulation Framework: Base Package

Our simulation framework comprises several Java packages: a Base package, a statistical

package, a random number generation package, and several packages which are specific to

particular protocols. The Base package classes ClientBase, EMPBase, and Ser\>erBase con-

tain basic functionality for the Clients, the EMP, and the Servers. Most of this functionality

is used by all resource allocation protocols. In the protocol-specific packages, these classes

are extended by classes called Client, EMP, and Server. A brief overview of the classes in

the Base package is given below:

• Account: the bank account for the Clients and Servers. It contains a method for trans-

ferring money to (or from) it.

• Bank: the bank which holds the accounts.

• ClientBase'. contains the basic functionality of the Clients, like storing and sending

tasks and collecting the results after their execution. It creates computational tasks

with exponential inter-arrival rate and sends requests to the EMP. •

• CommEntity: the base class for all communicating entities which have their own

186

B SIMULATION FRAMEWORK

thread, reside on a network node, and are able to communicate via remote method

invocation — or passing of events. It extends the Sim_entity class.

• Commlnterface: an interface for all communicating entities which reside on network

nodes and are able to communicate via remote method invocation. Currently, it is only

implemented by the CommEntity class. However, it could also be used for objects

without active threads.

• EMPBase: the base class of the electronic marketplace. It defines all the basic func-

tionality that the electronic marketplace requires. This class can be extended to add

extra features to the EMP if necessary.

• EMP Query Re sulf. contains the result of a task’s query to the EMP.

• EMPResourceAd: contains the parameters of a Server’s resource offer {'ad') at the

EMP.

• Helper, uses Java’s reflection classes and can be used for a method invocation where

the method name is passed as a string. It is needed for the remote method invocation

or other invocations that are carried out after a certain delay.

• Messenger-, used for the invocation of methods on objects which are accessible via a

Commlnterface.

• Methodlnvocation: wraps up the information which is used for the invocation of a

method on an object represented by a Commlnterface. The method invoked is repre-

sented by a string.

• Network-, contains a network topology represented by a list of network links. It is

able to calculate the communication delay on a Network link specified by two network

nodes. •

• NetworkLink: contains the characteristics of a network link which are relevant to the

communication delay.

187

B SIMULATION FRAMEWORK

• Parameters: stores the input parameters that are used for the simulation. It is able to

print out its member variables (types and values) and to change these by reading from

an input file. It uses Java reflection classes to manipulate the values. The class also

has facilities to write results to a file, etc.

• Resource: represents a resource of a Server. It is characterised by a number of resource

units which can be allocated to one or more tasks. It is associated with a Server.

• ServerBase: the Base class for the Servers. It contains the basic functionality that is

required for a Server and can be extended.

• Statistics: stores the statistics which are recorded during an experiment.

• StatisticsRecorder: records certain statistics at periodic intervals and writes them to a

file.

• SuperTask: this class can be used for representing a chain (pipeline) of computational

tasks which may require different resources. (This scenario is not examined in this

thesis.)

• TaskData: represents a computational task and contains all parameters that describe it.

A TaskData object needs to be sent to a Server for execution.

• TaskObject: contains the information necessary for a tasks’s resource query at the

EMP. The actual task is represented by a TaskData object.

B.5 Simulation Framework: Protocol-specific Packages

The simulation framework contains several protocol-specific packages which cover the func-

tionality necessary for one or more protocols. These packages include the classes Client,

EMP, Server, and Startup. The latter is used for starting a simulation with the correspond-

ing protocol. A list of these packages and of the protocols, which they implement, is given

below:

• CDA: Continuous Double Auction Protocol, CDA-RES Protocol, PDA Protocol

188

B SIMULATION FRAMEWORK

• SAP: Seller-Adjusted Pricing Protocol, FIFO Protocol

• RRP: Round-Robin Protocol

• PSP: Proportional Share Protocol

• HBP: Highest Bid Protocol, HBP-T Protocol

• PE: Preemptive Protocol (PE-P, PE-A, and PE-T)

• UCV: CDA-TDB, PRIO-FIFO, and SJF

There are two further packages in our framework which contain protocols that have not

been discussed in this thesis. These are:

• RRQ: Round-Robin with Server Queues

• MCT: Minimum Completion Time Protocol

B.6 Running a Simulation

The simulation is started by executing the Startup class of the protocol-specific package to

be used. In the command line, the name of the file is passed from which the values for the

input parameters will be read. These values are written into variables in the Parameter class.

An example of a file containing input parameters is shown in chapter E.

The Startup class initialises an output trace which allows to log the events and values

of the variables during the simulation. Each entry that is written to the trace consists of the

name of the actor, which it is written by, a time stamp, and the output message.

Next, the Startup class initialises a StatisticsRecorder object, which records the values

of important variables at periodic intervals and writes them to a file. These provide the user

with snapshots of the system state at these recording events. The recorded variables include

the total number of tasks created, tasks completed, tasks discarded, tasks currently in the

system, tasks querying for a resource, and tasks executing. Furthermore, the average load

and background load at the Servers, the average task completion time, and the average prices

(ask, bid, and transaction) are reported.

189

B SIMULATION FRAMEWORK

Then, all actors in the system are created and the simulation is started. The actors extend

the CommEntity class which is able to perform a delayed RMI-style invocation of methods

on other CommEntity objects. This is implemented using Java’s reflection classes and is

easy to use, as the actors do not require a message handler. The communication delays are

determined by the Network class.

During the simulation, certain variables are recorded by using Observational objects

from our statistical package. Variables which are recorded include the mean waiting times,

execution times, and completion times of the tasks, the amount of load and background load

at the Servers, the prices of Clients and Servers, and many other variables. For each variable,

several statistical figures, such as mean, standard deviation, minimum, and maximum, are

recorded. After the experiment, a comprehensive summary of all statistics will be displayed,

plus additional information, such as the task completion rate.

Our random number generator is based on Java’s util.Random package. To avoid cor-

relation between different random variables (e.g. task inter-arrival time or communication

delays), we use a separate random stream for each random variable which is initialised with

a separate random seed. Distributions which are supported by our random number genera-

tor include the uniform distribution, normal distribution, lognormal distribution, loguniform

distribution, and bi-modal normal distribution. To ensure that the simulations are repeatable,

the random seeds are not based on the system clock.

B.7 Experiments with Parameter Variation

Many of our experiments require to measure some specified variables, while one or more in-

put parameters are varied. To implement this exploration of the parameter space, we wrapped

up the above simulation framework by an external Java program.

There are two ways of running the simulator: either a single simulation is run and a com-

prehensive summary of all statistics is obtained, or a set of specified parameters is examined

for a subset of the parameter space. In the latter case, the external program reads the default

values for the input parameters from a file like the one shown in chapter E. These values are

used as a basis for the experiments. The external program then uses/or-loops to assign new

190

B SIMULATION FRAMEWORK

Base.Parameters SAPricingTag none
Base.Parameters totalLoadRatio none
Base.Parameters BGLoadRatio none

Base.Statistics recordedTasksCompletedOnTime none
Base.Statistics
Base.Statistics

obsTimelnSystem mean
obsWeightedCompletionTime mean

Figure 78: Example file which specifies the parameters to be recorded

values to some chosen parameters. For each simulation run, the values of these parameters

are overridden, and a new input file is created. The Startup class of the simulation frame-

work is then executed with this newly created input file. In addition to this input file, the

parameters to be recorded in all the simulation runs need to be specified in a separate file.

An example of such a file is given in Figure 78. Each entry in this file represents a parameter

to be recorded. It consists of three parts: the name of the class where the parameter can be

found, the name of the object where the parameter is stored, and the name of the field within

this object that will be recorded.

For instance, if the object is of type Observational, then the field can be the mean, stan-

dard deviation, number of recordings, etc. If the object is a primitive type like double, then

’none’ must be specified as field name. For each simulation run, the simulator will write a

new line to an output file where the values of these variables are recorded.

B.8 Dealing with Randomness of the Results

As random numbers are used in the simulations, there is a certain degree of uncertainty when

determining the mean of the variable which is measured (e.g. the completion time of tasks).

In this section we will explain how we dealt with this problem in our experiments.

There are several commonly used methods of obtaining a reliable value for the mean.

These include using long enough measurement intervals, repeating each simulation run many

times with different random seeds, and ensuring that the measurements are made in a steady-

state of the system. However, these methods are insufficient as it remains unclear how re-

liable the value obtained for the mean is. Therefore, in addition to the methods described

above, we determined the confidence interval of the mean.

191

B SIMULATION FRAMEWORK

We chose a method, which is used for simulations by many researchers in the field, and

which is described in [Jain, 1991], The method consists of conducting m replications of the

simulation run using different random seeds. In each replication, n measurements are made

(in the system’s steady state).

At first, a mean of the measured variables needs to be calculated for each replication i. It

is given by

Next, an overall mean for all replications is computed:

From these values, the variance of the means of the replications needs to be determined:

The confidence interval for the mean of the measured random variable is given by:

The parameter z \ - a/2 determines the width of the confidence interval. We decided to use

the 95% confidence interval which is commonly used in science. For the 95% confidence

interval, zi_a/2 has the value 1.96.

For the above formula to be valid, the number of replications, m, has to be chosen high

enough (> 30). We used m = 40 in our experiments, which resulted in narrow confidence

intervals for most cases.

1 " ̂= - X x ij-
W 4— 1

J m _ 9
Var (x) = ------- (xi - x) .

m — 1

192

C ADDITIONAL SIMULATION RESULTS

C Additional Simulation Results

In this part of the appendix, additional simulation results will be given.

C.l Tasks with the Same Priority: Supercomputing Cluster

In this and the following section we will explore the Supercomputing Cluster and the Su-

percomputing Grid infrastructures. We only examine RR and CDA because PSP requires

time-shared resources. The question to be answered is in how far these results differ from

those observed for the PC Cluster and PC Grid.

C.1.1 Different Amounts of Load

The first experiment is defined by the parameters {Tl, SP3, C l, SN1, RD1, LV, BG2, TS2,

BS1}. This means that we have a system with Nsen>= 32 identical space-shared resources.

The Servers have the resource size = 10 and speed factor fspeed = 1-0. The task

computation size Sc has a loguniform distribution, and the burst size is 1. Communication

delays are neglected. The average total amount of load in the system is varied between 0 and

100% of the system capacity, and half of this load is background load. Background tasks

have the computation size Sc ,bg = 10 and are allocated Nru ^ g = 1 resource units at a time.

As shown in Figure 79 (left), CDA provides the best results for the whole range of loads.

RR performs worse because resources are allocated arbitrarily, whereas CDA selects the

fastest available resource. Unlike for the PC infrastructures, the gap between CDA and RR

does not close for higher loads. Overall, the completion time of both protocols is higher

than in the PC Cluster infrastructure (Figure 13 (left)). The reason is that the resource share

allocated to a task remains constant even when a background task completes execution. The

free resource units either remain idle or are allocated to other tasks.

However, in contrast to the PC Cluster infrastructure, the performance now does not

degrade much when the background load in the system is increased (BG3). As shown in

Figure 79 (right), the mean completion times for CDA and RR are now only marginally

higher than before. The reason is that background load is no longer prioritised. Hence, for

193

C ADDITIONAL SIMULATION RESULTS

Variation of Load - Multiprocessor Machines Variation of Load - Multiprocessor Machines

Figure 79: Supercomputing Cluster. Left: Variation of load in the system. Right: Variation
of load when background load is higher.

a task it does not make much difference if it competes with other tasks or with background

load.

Conclusion: CDA performs better than RR. The gap is wider than for the PC infrastructures

where time-shared resources have been used. This is due to the fragmentation of resources,

which is caused by allocating constant resource shares to the tasks. We also found that

increasing the share of background load within the total load does not make much difference

to the results as background load is not given priority.

C.1.2 Granularity of Background Load

As in the PC scenario, the completion time of the tasks is also affected by the granularity of

the background tasks. In the experiment in Figure 80 (left) we use the same parameters as

in Figure 79 (left), except that now each background task takes up all resource units of the

Server, i.e. Nr u ,bg - 10 (SP4). As for the PC infrastructure, RR now performs equally well

as CDA because all resources that are available execute at the same speed. Note that the two

protocols perform much better than in the PC Cluster infrastructure (in Figure 13(right)),

because background load does not have priority, and because resources are not fragmented

as in Figure 79 (left).

Conclusion: Like for the PC infrastructures, the granularity of the background load has

a large impact on the performance of the protocols. The difference is that the protocols’

194

C ADDITIONAL SIMULATION RESULTS

Multiprocessor Machines, Whole Resource Allocated

Total Load

Different Server Speeds - Multiprocessor Machines

Figure 80: Left: Supercomputing Cluster. Variation of load in the system when background
load takes up the whole resource. Right: Supercomputing Grid. Variation of load in the
system when resources are heterogeneous.

performance improves in a situation where the resources are either completely available or

unavailable (SP4).

C.2 Tasks with the Same Priority: Supercomputing Grid

Finally, we examine a Supercomputing Grid infrastructure which is characterised by higher

resource heterogeneity, higher number of resources, and higher communication delays than

computational clusters. Compared to the PC Grid infrastructures, the only difference is the

scheduling policy.

C.2.1 Resource Heterogeneity

First, we examine different amounts of load in the system (LV) when resource heterogeneity

is high (RD2, i.e. fspeed,min = 0.0015625). The parameters of the experiment are given by

{T1, SP3, C l, SN1, RD2, LV, BG2, TS2, BS1}. The results are shown in Figure 80 (right).

For the whole range of loads, CDA performs much better than RR.

Conclusion: With heterogeneous resources, RR performs worse than CDA, now even for

lower loads. The differences are much larger than for the PC infrastructures.

195

C ADDITIONAL SIMULATION RESULTS

Server Number - Multiprocessor Machines Variation of Network Latency - Multiprocessor Machines

Figure 81: Supercomputing Grid. Left: Variation of the Server number. Right: Variation of
the network latency.

C.2.2 Different Server Numbers

Next, we vary the number of Servers, N serv- As parameters we choose {Tl, SP3, C l, SNV,

RD2, LI, BG2, TS2, BS1}, i.e. the total load is fixed at 90% (LI) and resources are hetero-

geneous (RD2). The results are shown in Figure 81 (left). As already observed in Figure 17

(right), the mean completion time of the protocols improves as Nserv is increased. However,

now the mean completion time of Round-Robin remains at a very high level (> 6). This

can only be explained by the fragmentation of the space-shared resources. Since in Round-

Robin resources are allocated arbitrarily, it is very likely that tasks are sent to resources

where already tasks are being executed. Their resource share will remain constant until their

completion, leading to longer execution times.

Conclusion: Like in the PC Grid, the performance of CDA improves considerably with

increased number of Servers. The difference is that now, RR’s mean completion time remains

at a high value, and the gap between the two protocols becomes wider.

C.2.3 Communication Delays

As for the PC infrastructures, we also examine the impact of network latency. The simulation

parameters of the experiment shown in Figure 81 (right) are given by (T l, SP3, C2V, SN1,

RD2, LI, BG2, TS2, BS1). Except for the scheduling policy they are the same as in Figure

18 (left).

196

C ADDITIONAL SIMULATION RESULTS

Variation of Burstiness - Multiprocessor Machines

Figure 82: Supercomputing Grid: Heterogeneous resources. Variation of the task burst size.

A sharp rise of the mean completion time can be observed for RR and for CDA, when

the latency is increased over 0.1. Note that this rise occurs for a higher latency than in Figure

18 (left). The reason could be that due to the fragmentation of resources, the Servers are less

likely to remain completely idle, resulting in fewer resources being wasted.

Conclusion: Regarding variations of the communication delays, similar observations could

be made as for the PC infrastructures.

C.2.4 Task Burstiness

Finally, we examine the effect of changing the task burst size, BS. As parameters of the

experiment we use {Tl, SP3, C l, SN1, RD2, LI, BG2, TS2, BSV}. These are the same

as in Figure 80 (right), except that now the total load is fixed at 90%, while the burst size

is varied. The results in Figure 82 show that with increased BS the mean completion time

increases. This observation is similar to that in Figure 14 (left). Note that the gap between

RR and CDA decreases when BS is increased.

Conclusion: Varying the task burst size leads to similar results as in the PC infrastructures.

197

C ADDITIONAL SIMULATION RESULTS

C.3 Tasks with Different Priorities: PC Cluster

C.3.1 With Background Load

We examined the PDA protocol for the experiment defined by the parameters (T2, SP2, Cl,

SN1, RD1, LV, BG2, TS2, BS1} which is described in subsection 9.1.2. In Figure 83 (left),

the results of PDA with different time intervals 81 between the transactions are compared to

CDA’s results. In none of the cases any improvement could be observed. As expected, a

very small 51 = 0.01 leads to almost the same result as CDA. The same observations have

been made with fine-grained background load, for which the results are shown in Figure 83

(right).

HU
Variation of Load - Screensaver Mode HU

Variation of Load - With Background Load

Figure 83: Tasks with different priorities: PDA with different time intervals between the
transactions. Left: Coarse-grained background load (screensaver mode, SP2). Right: Fine-
grained background load (SP1).

C.3.2 More Background Load: Fine-Grained Background Load

The parameters chosen for the experiments in Figure 84 (left and right) are almost the same

as in Figure 24. The only difference is that now the average background load amounts to

75% of the average total load in the system (BG3). The difference between HBP and the

other protocols is now smaller. For low and moderate loads HBP outperforms Round-Robin.

Also, PSP’s performance is now closer to that of CDA.

Conclusion: As the share of background load in the system is increased, HBP and PSP

perform relatively better (than before) when compared to the other protocols.

198

C ADDITIONAL SIMULATION RESULTS

Variation of Load - More Background Load
<J

Total Load

Variation of Load - More Background Load
u

Total Load

Figure 84: Tasks with different priorities: Variation of load, more (fine-grained) background
load.

C.4 Tasks with Different Priorities: PC Grid

C.4.1 Resource Heterogeneity: Screensaver Mode

In Figure 85, some additional results are given for the experiment which has been described

in subsection 9.2.1.

E—U&
sH

D.
BoU
■a

Different Server Speeds - Screensaver Mode

no reserve pnce
no price discount

price discount 0.2

f -

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Min. Server Speed / Av. Server Speed

HU&
0)
B
H

Q.
Bo
T3

Different Server Speeds - Screensaver Mode

HBP, no reserve price
HBP, no price discount

HBP, price discount 0.2
HBP, price discount 0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Min. Server Speed / Av. Server Speed

Figure 85: PC Grid: Variation of resource heterogeneity, screensaver mode. Left: CDA-RES
with different price discounts. Right: HBP-RES with different price discounts.

199

C ADDITIONAL SIMULATION RESULTS

C.4.2 Resource Heterogeneity: Fine-Grained Background Load

In Figure 86, we provide the results of HBP, FIFO, and the preemptive protocols for the

experiment described in subsection 9.2.2.

Different Server Speeds Different Server Speeds

Min. Server Speed / Av. Server Speed

Figure 86: PC Grid: Variation of resource heterogeneity for fine-grained background load.
Left: Results for HBP. Right: Results for CDA, FIFO, PE-P, and PE-A.

C.4.3 Variation of Load: No Background Load

In this experiment, we use the same parameters as in subsection 9.2.4, except that there is no

background load in the system. The parameters of this experiment are given by {T2, SPI,

C l, SN1, RD2, LV1, BGO, TS2, BS1}. The results are shown in the Figures 87 and 88.

Heterogeneous resources - No Background Load

Total Load

Heterogeneous resources - No Background Load

Total Load

Figure 87: Variation of load for heterogeneous resources, no background load.

2 0 0

C ADDITIONAL SIMULATION RESULTS

Heterogeneous Resources - No Background Load Heterogeneous resources - No Background Load

Total Load

Figure 88: Variation of load for heterogeneous resources, no background load. Left: Results
for PDA with different intervals between the transactions. Right: CDA-RES with different
price discounts.

C.4.4 Variation of Load: Screensaver Mode

Figures 89 and 90 show additional results to the experiments which have been described in

subsection 9.2.3.

g 2.5
Price Negotiation - Screensaver Mode

£ no reserve ptfice
<D no discount, nt jl.O

2 discount 0.2, nt=j 1.0 ------- /
eo discount 0.5. ttul.O •'

| / .
1 /

i X

u
Q.
Eo

1.5

U
T3

1

0.5
£ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Total Load

Heterogeneous Resources - Price Negotiation

Figure 89: Screensaver mode and heterogeneous resources: CDA-RES with different price
discounts. Left: Task negotiation time 1.0. Right: Task negotiation time 10.0.

2 0 1

C ADDITIONAL SIMULATION RESULTS

Heterogeneous resources: HBP with reserve prices

Total Load

Figure 90: Variation of load for heterogeneous resources: HBP-RES with different price
discounts.

C.4.5 Variation of Load: Fine-Grained Background Load

In Figure 91, we give additional results to the experiments which have been described in

subsection 9.2.4.

Variation of Load - Heterogeneous Resources

Total Load

Variation of Load - Heterogeneous Resources

Total Load

Figure 91 : Fine-grained background load: Variation of load for heterogeneous resources.

2 0 2

C ADDITIONAL SIMULATION RESULTS

C.5 Tasks with Time-Dependent Priorities: PC Cluster

C.5.1 PC Cluster

Figures 92 to 94 show additional results for the situations which have been examined in

section 10.2.

2 No Background Load - Deadline Factor 1.1

Total Load

2 No Background Load - Deadline Factor 1.1

Total Load

Figure 92: Variation of load, no background load. Tight deadlines (deadline factor 1.1).

Screensaver Mode - Soft Deadline II Screensaver Mode - Soft Deadline II

Total Load Total Load

Figure 93: Variation of load, screensaver mode: Soft deadlines II (moderate).

203

C ADDITIONAL SIMULATION RESULTS

Screensaver Mode - Soft Deadline III Screensaver Mode - Soft Deadline III

Total Load Total Load

Figure 94: Variation of load, screensaver mode: Soft deadlines III (loose).

C.5.2 PC Grid: Variation of Load

In this subsection, we show some additional results for the experiments which are described

in subsection 10.3.2.

Screensaver Mode - Soft Deadline V

Total Load

Figure 95: Variation of load, screensaver mode: Soft deadlines V (moderate).

204

C ADDITIONAL SIMULATION RESULTS

Screensaver Mode - Soft Deadline VI

Total Load

Figure 96: Variation of load, screensaver mode: Soft deadlines VI (loose).

C.5.3 PC Grid: Different Server Numbers

Here, we show some additional results for the experiments where the number of Servers in

the system is varied (see subsections 10.3.3 and 10.3.4).

(S' No Background Load - Deadline Factor 0.6 ¡2 No Background Load - Deadline Factor 0.6

Figure 97: Variation of the Server number, no background load: Tight deadlines (deadline
factor 0.6).

205

C ADDITIONAL SIMULATION RESULTS

p¿ No Background Load - Deadline Factor 0.6

Figure 98: Variation of the Server number, no background load: Results of CDA-RES with
different price discounts when tight deadlines are used (deadline factor 0.6).

Screensaver Mode - Deadline Factor 1. Screensaver Mode - Deadline Factor 1.

Figure 99: Variation of the Server number, screensaver mode: Moderate deadlines (deadline
factor 1.1).

Screensaver Mode - Soft Deadline V Screensaver Mode - Soft Deadline V

Figure 100: Variation of the Server number, screensaver mode: Soft deadlines V (moderate).

206

C ADDITIONAL SIMULATION RESULTS

Screensaver Mode - Soft Deadline VI Screensaver Mode - Soft Deadline VI

Figure 101: Variation of the Server number, screensaver mode: Soft deadlines VI (loose).

207

C ADDITIONAL SIMULATION RESULTS

C.5.4 PC Grid: Communication Delays

Next, we provide some more results for the experiments where communication delays are

varied (see subsection 10.3.5).

No Background Load - Deadline Factor 0.6 c- No Background Load - Deadline Factor 0.6

(deadline factor 0.6).

Screensaver Scenario - Deadline Factor 1.5

Mean Network Latency

Figure 103: Variation of the communication
(deadline factor 1.5).

Screensaver Scenario - Deadline Factor 1.5

Mean Network Latency

delay, screensaver mode: Loose deadlines

208

D EXPERIMENTAL FRAMEWORK: ADDITIONAL INFORMATION

D Experimental Framework: Additional Information

This part of the appendix provides additional information about the implementation and

operation of our experimental Grid computing framework which has been used in thesis.

Like the simulation framework, our experimental framework comprises several Java

packages: a Base package, a statistical package, a random number generation package, and

several packages which are specific to particular protocols. The statistical package and ran-

dom number generation package are almost identical to the corresponding packages in the

simulation framework which are described in chapter B.

D.l Base package

Most of the classes in the Base package have exactly the same purpose as the corresponding

classes in the simulation framework. These include: Account, Bank, ClientBase, EMPBase,

EMPQueryResult, EMPResourceAd, Helper, Methodlnvocation, Parameters, Resource,

ServerBase, Statistics, StatisticsRecorder, TaskData, and TaskObject.

These classes are described in section B.4. They had to be adapted because the actors

in our Grid framework have to communicate via facilities provided by the JADE platform

rather than putting messages into the event queue of a discrete-event simulation package. In

addition to the above classes, the Base package includes the following other classes:

• ClassData: stores the bytecode of classes. It is Serializable and therefore can be

transported in a message.

• FuturelnvocationBehaviour: a CommEntity's behaviour which provides the means for

executing a method on that CommEntity after a specified delay.

• LANRunBase: base class used for wrapping up a Jade platform which is used for

starting up an experiment. It needs to be extended by a protocol-specific class. •

• MyClassLoader: a class loader which has been designed for passing bytecode inside a

Jade message for execution on a remote Server.

209

D EXPERIMENTAL FRAMEWORK: ADDITIONAL INFORMATION

• ProcessRequestBehaviour: a CommEntity's behaviour which will process messages in

the background, which have been received by Jade’s ReceiverBehaviour. Whenever

a Messagelnvocation object is received, it is executed immediately. This behaviour

never terminates.

• ReaderThread: a thread which is used for monitoring the CPU utilisation of a Server’s

resource and which is running in the background. The monitoring requires a Unix or

Linux system which provides the vmstat command.

• RemoteStartup: used for creating agents at remote machines and receiving parameters

that are needed for the experiment. It is also used for synchronising the measured

simulation time at the beginning of an experiment.

• Startup Agent, base class for a Jade agent which starts up an experiment. It needs to be

extended by a protocol-specific class.

• TaskResult: contains the result of the task after its execution on a remote Server. It

also contains the address of its Client and the task’s ID.

D.2 Protocol-specific Packages

The functionality, which is specific to a particular protocol, is contained in a separate pack-

age. In our experiments, we have been using the GCDA package 63. It contains the following

protocols: Continuous Double Auctions (CDA), Continuous Double Auctions with time-

dependent price bids (CDA-TDB), PRIO-FIFO, and Shortest Job First (SJF). The package

includes the classes Client, EMP, Server, and other classes, which are used for starting up

the experiment. Among the latter, the most important ones are:

• LANRunl: telnets to remote machines and spawns new processes. On each of these

machines, it executes LANRunRemote. LANRunl requires the expect package [Libes,

1994] to be installed in order to run the login scripts.

63GCDA stands for Generalised Continuous Double Auction Protocol.

2 1 0

D EXPERIMENTAL FRAMEWORK: ADDITIONAL INFORMATION

• LANRunRemote: needs to be run at the remote machines which are used in the exper-

iment. It starts a Jade platform on which a RemoteStartup agent is created.

• LAN Startup Agent: starts the experiment at the local machine. This class is started up

by LANRunl.

D.3 Benchmark package

The framework also provides a benchmark package which contains the classes used for the

performance measurement at the Servers. It also includes the computational task which is

used in our experiments. The Benchmark class is used for measuring the speed of the Server

resource (in millions of floating point operations per second, MFLOPS). It executes a sparse-

matrix multiplication that is provided by additional classes which are part of the SciMark2

benchmark [Pozo and Miller, accessed in 2003]. The ModifiedBenchmark class is an adap-

tation of the Benchmark class which is designed to execute a sparse matrix multiplication

whose computation size can be specified in MFLOPS*milliseconds. Hence, given the size

of the computation, it is possible to tell how long the computation will run on a Server re-

source whose MFLOPS figure is known. The ModifiedBenchmark class is needed for the

experiments which are designed to verify our simulation results.

D.4 Interface for a Computational Task

In order to use a computational task in our framework, it needs to implement the interface

shown in Figure 104. When the task is executed on a remote machine, the method execute-

Task will be called. The input parameters of the task are wrapped up in a Serializable object

which needs to be passed as argument to this method. After the task’s execution, the method

getTaskResult will be called by the Server. It will return the result object, which will then be

sent to the Client.

Note that there are other parameters, which are needed for a task’s execution, and which

have to be specified when creating a TaskData object at the Client. These are the name of the

main class of the task (which implements this interface) and a list of all other classes which

2 1 1

D EXPERIMENTAL FRAMEWORK: ADDITIONAL INFORMATION

public interface ComputationalTask {
/** Execute a task
* ©param parameters the task's input parameters */

void executeTask(Serializable parameters);

/** Get the task's result after its execution
* ©return Serializable the task's result */

Serializable getTaskResult();

}

Figure 104: Interface for the computational task to be implemented

are needed for its execution. This list is only required if the classes need to be loaded to the

remote machine.

D.5 Interface for a Parameter Sweep Application

This interface is designed for parameter sweep applications. Such applications need to ex-

ecute the same code many times with different parameters. Therefore, they can easily be

split up into many smaller tasks which can be distributed and executed independently. To

run such an application — which we refer to as 'super task' — it needs to implement the

ComputationalSuperTask interface whose code is shown in Figure 105.

To split up the super task, the method divideSuperTask needs to be called in which the

parameter n specifies how many tasks are created. The method returns an array of Serial-

izable objects, each of which wraps up an individual task’s input parameters. To execute a

task, both the code and its specific input parameters need to be sent to the remote Server.

When the Client receives the result of a task’s execution, it needs to be passed to the method

collectTaskResults.

D.6 Specifying Task and Resource Constraints

Our framework allows to specify constraints and goal functions when matching tasks to

resource offers. A task’s query is wrapped up by a TaskObject, and a resource offer at

the EMP is represented by an EMPResourceAd object. These classes can be extended: By

212

D EXPERIMENTAL FRAMEWORK: ADDITIONAL INFORMATION

public interface ComputationalSuperTask {
/** Return an array of n serializable objects which
* wrap up the input parameters of the tasks.
* @param n number of tasks
* ©return Serializable!] input parameters of all tasks */

Serializable!] divideSuperTaskfint n);

/** Collect the result of a task
* ©param result result of the task
* ©param i ID of the task
* ©return int number of tasks completed so far */

int collectTaskResults(Serializable result, int i);

/** OPTIONAL: Get the computation size of a Task
* ©param n number of tasks in the super task
* ©return double task computation size in MFLOPS*ms */

double getTaskComputationSize(int n);

}

Figure 105: Interface for a parameter sweep application

overriding the methods described below, a task’s or resource’s constraints can be customised.

In the following, we will describe a mechanism of our framework which deals with task

and resource constraints:

Checking if a query is still active

For each TaskObject, which is processed by the EMP, it needs to be determined whether the

query is still active or whether it has expired (e.g. due to the task’s deadline which may have

passed). This is done by calling its method taskConstraintsDiscard which will return 1, if

the task should be removed from the EMP, and 0 otherwise.

Checking if a resource satisfies the task’s constraints

Each EMPResourceAd, which is considered for execution of a task, needs to be passed as pa-

rameter to the method taskConstraints of the TaskObject. This method determines whether

the resource offer satisfies the task’s constraints. These constraints may express the require-

ment of a particular machine architecture, operating system, or software package — or the

resource’s capability to meet the task’s deadline. As result, the method will return two argu-

ments: The first one indicates whether the constraints are satisfied (l:yes, 0:no). The other

213

D EXPERIMENTAL FRAMEWORK: ADDITIONAL INFORMATION

argument may be used for passing results which can be used as a shortcut in the further pro-

cessing by the methods described below. It may help to avoid repeated computations of the

same parameter.

Determine the task’s goal function for a resource

If there exist several EMPResourceAds which satisfy a task’s constraints, it needs to be deter-

mined which one is best. This is done by evaluating it with respect to a task’s goal function

(i.e. preference). The TaskObject’s method taskGoalFunction is called, passing the EM-

PResourceAd as parameter, together with additional parameters that have been returned by

the method taskConstraints. The method taskGoalFunction will return the value of the goal

function of this task for the case that it is executed on that resource. It may depend on price,

speed, or any other parameters.

Determine a Server’s goal function for a task

When several tasks are competing for a resource which satisfies their constraints, it needs

to be determined which one is best from the Server’s perspective (e.g. which one pays the

highest price, is the largest, etc.). This is achieved by calling the method serverGoalFunction

of the EMPResourceAd object for each task that is checked. The TaskObject and further

parameters, which may have been returned by the method taskConstraints, are passed to

serverGoalFunction as arguments. The result is the Server’s goal function which needs to

be maximised.

D.7 Random Numbers, Statistics, and Parameter Variation

The generation of random numbers and measurement of statistics is almost the same as in

the simulation framework described in chapter B. One difference is that the Statistics, which

are recorded on remote machines, need to be passed back after the experiment.

As in the simulation framework, it is possible to carry out experiments with parameter

variations. In this case the experiment is repeatedly run while one or more of its input

variables are varied (see section B.7). Several specified variables can be measured.

214

D EXPERIMENTAL FRAMEWORK: ADDITIONAL INFORMATION

D.8 Running an Experiment

This section provides a brief description of how the experiments with our Grid framework

are carried out.

Reading the experimental parameters

An experiment is started by executing the LANRunl class of the GCDA package. In the

command line, the name of the file needs to be specified, from which the values for the

input parameters will be read. The values read from that file are written into variables in the

Parameter class and will be used in the experiment. The input file looks similar to the one

used in our simulation framework (see chapter E).

Creating platforms on remote machines

Next, the names of the remote machines, on which the Servers will be run, are read from

another file. A script written with the expect package [Libes, 1994] is used to log onto each

of these remote machines. A Jade platform is started there, and a RemoteStartup agent is

created.

Initialising the local platform

LANRunl creates a LAN Startup Agent on the local machine. It has a similar function as the

Startup object in our simulation framework (see chapter B): It initialises an output trace

which allows to log the events and values of the variables during the experiment. This

LAN Startup Agent initialises the StatisticsRecorder object which will record the values of

important variables at periodic intervals, writing them to a file. Then, all actors that will run

on the local machine are created: the EMP, the Bank, and the Client.

Initialising the remote platforms

The parameters of the experiment are also sent to all RemoteStartup agents which reside on

the remote machines. Like the LAN Startup Agent, each RemoteStartup agent initialises an

output trace and a StatisticsRecorder on its machine. After a small delay, all RemoteStartup

agents are requested to create the Server agents. Each Server agent sends a message to the

215

D EXPERIMENTAL FRAMEWORK: ADDITIONAL INFORMATION

Bank to open its account. It also starts monitoring its CPU utilisation (in %) which is done by

using the Unix command vmstat. Next, the Server uses the Benchmark class to measure its

speed in MFLOPS*ms. Finally, it registers its resource offer (speed, availability, and price)

at the EMP.

Starting the experiment

The LANStartupAgent waits for a long enough time in order to allow the speed measurements

at the Server resources to finish. After this delay, all agents are started. Those running on

remote machines are activated by notifying their RemoteStartup agent. At the start of the

experiment, the local time of each agent is synchronised by recording the current value of

the system clock at its machine. This value will be used as an offset for all future time

measurements (i.e. for all measurements, this offset will be deducted from the value of the

system clock). Since this reset of the timer is carried out at approximately the same moment

for all agents in the system, their time measurements will be comparable throughout the

experiment. Also, the termination time of the experiment is scheduled. On the local machine,

this is done by the LANStartupAgent, and on the remote machines by the RemoteStartup

agents. Furthermore, the Poisson arrival process for the task generation by the Client is

activated.

Completing the experiment

At the termination event, the RemoteStartup agents send the recorded statistics to the local

machine. All statistics, that have been collected locally and at the remote machines, are made

available to the user by printing them to the screen (or an output file).

216

E EXAMPLE OF AN INPUT FILE

E Example of an Input File

Finally, we give an example of an input file which specifies the parameters used by our

simulation framework which is described in chapter B. A similar input file is used by our

experimental Grid Computing framework (see chapter 11).

//INPUT/OUTPUT FILES:
//---------------------------

topologyFileName topology.txt

loadTraceFileName loadtrace.txt

traceFileName outtrace.txt

recorderFileName outrecorder.txt

variablesFileName invar.txt

// topology data file name

// load trace data file name

// trace of the experiment

// record of time-dependent variables

// to be used for series of experiments

variablesOutputFileName outvar.txt // to be used for series of experiments

autotraceTag 0

//--------------------------------

//SIMULATION PARAMETERS:
//----------------------

// enable/disable Simjava's (internal)

// trace

initDelay 0.000000000001 // there must be a delay between the

// startup of the entities to avoid

// randomness of the scheduler

minimalDelay 0.000000000001 // something similar; used for the

// taskPriceAdjustmentEvent()

initialSeed 1020775884309 // one simulation run should also be

// carried out with other seeds

statisticsRecorderlnterval 7.7777

statistics

// interval for recording

runLength 1000.0 // duration of the experiment

initialRecordingMargin 100.0 // statistics should only be recorded

// after an initial margin - before the

// system gets to its steady state

finalRecordingMargin 50.0 // the creation/completion of task

// executions should only be recorded

// in the statistics if the tasks are

217

E EXAMPLE OF AN INPUT FILE

fixedTaskNumberTag 0

// started well before the end of the

// experiment

// (t < runLengh-finalRecordingMargin)

// tag indicating whether as many

// tasks are recorded as would

// (statistically) be expected in the

// recording interval

// (0: disabled, 1: enabled)

/ / --------------------------

//SYSTEM PARAMETERS:

/ / --------------------------

scenarioTag 0

numberResourceTypes 8

clientNumbers 1

serverSpeedRatioMin 0.1

serverSpeedRatioMax 0.1

serverNumbers 10

serversResourceMin 10

serversResourceMax 10

serverRandomTag 0

resourceSchedulingTag 3

// tag indicating the type of scenario

// 0: independent tasks, 1 resource type

// 1: tasks with pipeline structure

// and different resource types

// only for scenarioTag=l:

// number of resource types

// since all tasks (or supertasks) are

// treated independently, it does not

// matter by how many clients they are

// created

// minimum speed ratio of the Servers

// maximum speed ratio of the Servers

// number of servers

// minimum number of resource units

// per Server

// MUST be the same as the min value

// indicates whether the resource size

// and/or speed ratio distributions are

// random (1) or deterministic (0)

// scheduling policy

// 2: space-shared

// 3: time-shared

// 4: proportional sharing

// 5: suspension of tasks enabled

// 6: preemption of tasks enabled

218

E EXAMPLE OF AN INPUT FILE

networkDelayTag 0

latencyScalingFactorB 1.0

latencyScalingFactorD 1.0

throughputScalingFactorA 1.0

throughputScalingFactorC 1.0

minValueScalingFactor 1.0

networkDistTag 0

// tag indicating whether the topology

// file is used (1) or whether the

// network links between all actors

// are identical (0)

// scaling factor for the mean of the

// network latency

// Means: the values for 'meanB' will

//be multiplied by this value

// scaling factor for the stdev of the

// network latency ('stdevD')

// scaling factor for 'meanA'

// (inverse of the throughput)

// scaling factor for 'stdevC'

// (inverse of the throughput)

// scaling factor for the min value of

// the communication delay

// tag indicating whether network

// delays are deterministic or random

// (0: deterministic. 1: random)

/ / ----------------------------------

//LOAD RELATED PARAMETERS:
/ / ----------------------------------

taskSizeMin 1.0 //
taskSizeMax 1.0 //

taskDataSize 0 //

resultDataSize 0 //

taskDeadlineTag 0 //

//

taskDeadlineFactorMin 100.0 //
taskDeadlineFactorMax 100.0 //

totalLoadRatio 0.8 //

//

//

//

min. computational size of a task

max. computational size of a task

in this scenario

no large data transfers

tag indicating whether deadlines are

used (0: no, 1: yes)

minimum deadline factor

maximum deadline factor

total average load in the system in

relation to the system's capacity

(both Client task load and

Server background load)

219

E EXAMPLE OF AN INPUT FILE

taskWeightTag 0 //

//

//

//

//

//

//

//

//

taskWeightMin 0.0 //

taskWeightMax 2.0 //

taskWeightMeanLow 1.0 //

taskWeightStDevLow 0.5 //

taskWeightMeanHigh 100.0 //

taskWeightStDevHigh 50.0 //

taskWeightFractionLow 0.9 //

//

tag indicating whether task weights

are used

0: all task weights are set to 1.0

1: uniform dist between taskWeightMin

and taskWeightMax

2: bimodal normal distribution,

Parameters: taskWeight...

MeanLow, StDevLow, MeanHigh,

StDevHigh, FractionLow

tag=l: minimum task weight

maximum task weight

tag=2: mean value of the lower mode

stdev of the lower mode

mean value of the higher mode

stdev of the higher mode

fraction of samples belonging

to the lower mode

taskBurstSize 1 // number of tasks in a burst

BGLoadTag 1

BGTaskSize 1.0

BGAllocatedUnits 1

allocated to

BGLoadRatio 0.45

BGLoadFactorMin 1.0

// background load enabled/disabled

// computational size of a background task

// number of resource units

// a background task (on which it will

// execute in parallel)

// total average background load on the

// Servers in relation to the system's

// capacity

// if Servers have different mean BG load,

// (and the means are uniformly

// distributed): The load ratio of the

// server with the minimal load is set to

// BGLoadFactorMin*BGLoadRatio. In order

// to maintain the average load ratio

// BGLoadRatio, the load factor of the

// server with the highest load is set to:

// BGLoadFactorMax = 2-BGLoadFactorMin.

// If all Servers should have the same

// mean background load, simply set

// BGLoadFactorMin to 1.0

220

E EXAMPLE OF AN INPUT FILE

randomiseExecutionTag 0

taskRunTimeStDev 1.732050808

loadTraceTag 0

loadTraceSize 24

loadTraceTimeStep 20.0

// tag indicating whether the actual

// execution time of the task at the

// Server is random (with normal

// distribution):

// 0 (deterministic):

// actual exec, time = task runtime

// 1 (random): positively truncated

// normal distribution with

// mean = task runtime

// stdev = sqrt(taskRunTimeStDev)

// * task runtime

// if the actual execution time is

// random, this is its standard deviation

// (this value is normalised to the mean

// i.e. the real stdev will be

// mean * taskRunTimeStDev)

// tag deciding whether the average

// background load of the Servers

//is set according to the load

// trace read from a file (0:n, l:y)

// if loadTraceTag==l:

// number of samples in the load trace

// if loadTraceTag==l:

// time step between two samples of the

// load trace

// -- FOR scenarioTag==l (supertask-scenario)

meanTaskNumber 10

minTaskNumber 1

maxTaskNumber 100

// for scenarioTag==l:

// mean number of tasks per supertask

// (exponential distribution)

// for scenarioTag==l:

// min. number of tasks per supertask

// (exponential distribution)

// for scenarioTag==l:

// max. number of tasks per supertask

// (exponential distribution)

/ / --------------------------

//PROTOCOL-SPECIFIC:

221

E EXAMPLE OF AN INPUT FILE

/ / --------------------------

clientMoney 100000000000.0

deadlineSafetyMargin 0.0

SAPricingTag 1

serverUnitPriceMax 0.0

serverUnitPriceMin 0.0

serverReservationPriceMax 0.0

serverPriceUpdateTimeStep 1.0

serverPriceDiscount 0.0

taskPriceAdjustmentTag 0

// Endowment of the Client, this amount

// does not matter much at the moment

// (all tasks are autonomous)

// when using task deadline:

// the safety margin to be used by the

// EMP when deciding whether a resource

// will complete it on time. This is to

// consider communication delays.

// how Servers adjust their prices

// 0: no price adjustment

// 1: adjustment according to current load

// 2: adjustment according to past revenue

// for SAPricingTag==l:

// the maximum Server price

// These values are used to obtain the

// distribution of minimum prices

// (reservation prices) of the Servers.

// for SAPricingTag==2:

// interval between the price updates of

// a Server

// for SAPricingTag==2:

// amount to be deducted when calculating

// the reservation price from the past

// revenue

// 0: no taskPriceAdjustmentEvents

// (i.e. tasks do not adjust their

// price bids)

// 1: taskPriceAdjustmentEvents

// IN ADDITION TO immediate processing

// of tasks or resource updates

// 2: FOR CDA: taskPriceAdjustmentEvents

// WITHOUT immediate processing of task

// or resource updates

// 3: FOR CDA: no immediate processing,

// i.e. offers and bids are matched at

// periodic intervals ONLY, HOWEVER,

// WITHOUT price adjustment (NOTE: FOR

// ANY OTHER PROTOCOL THIS TAG WILL

// DISABLE TASK PRICE ADJUSTMENTS!!!)

222

E EXAMPLE OF AN INPUT FILE

identicalPricesTag 0 // if set to 1: all task price bids are

// identical allowing a shortcut in the

// simulation

taskPriceAdjustmentlnterval 0.1 // interval between price

adjustments

// of tasks

resourceSelectionTag 1 // as a task looking for resources:

// 0: select cheapest resource

// 1: select fastest resource

taskSelectionTag 0 // as a Server looking for tasks:

// 0: maximise unit price

// 1: maximise overall payment

// 2: maximise task size

predictionTag 0

predictionUpdatelnterval 10.0

// tag indicating that load prediction

// is used (0: no, 1-3: yes).

// 1: window, 2: mean over all values

// 3: mean over all values in each

// interval of a prediction period

// This is relevant to scheduling

// policies 3-5.

// time interval for the updates of

// the load predictions

predictionWeightingFactor 0.5 //if load prediction is used: this is

// the relative weight of the historical

// information for calculating the

// estimate (the remaining weight is

// assigned to the current value of

// the load)

bidPredictionWeightingFactor 0.5 // if load prediction is used: similar

//as above, but instead of the load this

// factor is used for the estimation of

// the sum of price bids (in PSP) or the

// highest price bid (HBP)

loadWindowSize 10 // for predictionTag==l: the number of

// load samples stored

// for predictionTag==3: the number of

// intervals in a period used for

// prediction

priceBidWindowSize 10 // for predictionTag==l: the number of

223

E EXAMPLE OF AN INPUT FILE

// price bid samples stored

// for predictionTag==3: it is set to

// the same value as loadWindowSize

predictionlntervalLength 20.0 // for predictionTag==3: length of an

// interval within a prediction period

// (it makes sense to set it to the

// same value as the loadTraceTimeStep)

minExecutionSpeed 0.0 // RELEVANT TO THE PSP PROTOCOL:

// minimum effective execution speed

// requested by the tasks at the EMP

endowmentDistributionTag 0 // determines how the endowment of a task

// depends on its weight

// 0: polynomial: price ~ weight " n

// 1: exponential: price n weight

// (n is the endowmentDistributionOrder)

endowmentDistributionOrder 1.0 // the 'n' (order) for the distribution of

// the endowment: e.g. for 'polynomial'

// with n=l: price ~ weight (linear)

recalculateSumTag 0 // relevant to the PSP protocol:

// indicates whether, on completion of

//a task, the Server should recalculate

// the sum of price bids (1), or just

// deduct the difference from the last

// figure (0)

clientUnitPriceMin 1.0

clientUnitPriceMax 1.0

upperPriceLimitMin 1.0

// base price of the Clients' tasks

// the actual price bid of a task is

// calculated by multiplying the base

// price by the task's weight

// (these parameters must be identical)

UCVProtocolTag 0 // for the UCV protocol package:

// tag indicating which protocol

//is used: (0:CDA, 1 :PRIO_FIFO, 2:SJF)

slowA 0.0 // only for the UCV protocol: if task

// slowdown<=slowA, the price bid is zero

slowB 0.0 // only for the UCV protocol: if

// slowA<slowdown<slowB, the price bid

// rises from zero to the maximum

slowl 0.1 // if slowB<slowdown<=slowl, the max

224

E EXAMPLE OF AN INPUT FILE

//
slow2 0.2 //

slow2Max -999.9 //

//

//

//

DFactor 0.0 //

//

//

//

priceQueueA 0.0 //

priceQueueB 0.0 //

priceQueueC 0.0 //

negotiationTime 0.1 //

//

//

activeMigrationTag 1 //

//

speedlmprovementFactor 1. 0 //

//
bidlmprovementFactor 1 .0 //

//

//

//

subTaskMinimumFactor 0 .75 //

//

subTaskMaximumFactor 1 ..25 //

//

value is delivered

if slowdown>=slow2, nothing is paid

if a uniform distribution is used for

variable 'slow2' of the tasks:

slow2 is min value, slow2Max is max

value (-999 = disabled)

only for UCV-CDA protocol:

factor for the differential component

(i.e. the speed of decline in value)

in determining the task's priority

only for the PRIO-FIFO protocol:

prices of the three FIFO queues

(priceQueueA>priceQueueB>priceQueueC)

if task price adjustment == 1 OR 2:

the duration until a task reaches

its maximum price bid

only for PE (resourceSchedulingTag==6)

allow active migration

only for PE: increase of effective

speed needed for preemption

only for PE: increase of the bid

needed for preemption

if (scenarioTag == 1) AND

(taskPriceAdjustmentTag == 1 OR 2):

factor used for the initial bid of

subtasks

factor used for the final bid of

subtasks

225

REFERENCES

References

[Abraham et al., 2000] A. Abraham, R. Buyya, and B. Nath. Nature’s Heuristics for
Scheduling Jobs on Computational Grids. In Proc. o f the 8th Inti. Conference on Ad-
vanced Computing and Communications (ADCOM 2000), Cochin, India, December 2000.

[Abramson et al., 2002] D. Abramson, R. Buyya, and J. Giddy. A computational economy
for Grid computing and its implementation in the Nimrod-G resource broker. Future
Generation Computer Systems (FGCS) Journal, 18(8): 1061—1074, October 2002.

[Aida et al., 2000] K. Aida, A. Takefusa, H. Nakada, S. Matsuoka, S. Sekiguchi, and U. Na-
gashima. Performance evaluation model for scheduling in global computing systems. Inti.
Journal o f High-Performance Computing Applications, 14(3):268-279, Fall 2000.

[Ali et al., 2002] S. Ali, J.-K. Kim, H. J. Siegel, A. A. Maciejewski, Y. Yu, S. B. Gundala,
S. Gertphol, and V. K. Prasanna. Greedy Heuristics for Resource Allocation in Dynamic
Distributed Real-Time Heterogeneous Computing Systems. In Proc. o f the Inti. Confer-
ence on Parallel and Distributed Processing Techniques and Applications, PDPTA ’02,
Las Vegas, Nevada, June 2002.

[Amdahl, 1967] G. Amdahl. Validity of the single-processor approach to achieve large scale
computing capabilities. In Proc. o f the AFIPS Conference, pages 483-485. AFIPS Press,
1967.

[Artsy and Finkel, 1989] Y. Artsy and R. Finkel. Designing a process migration facility: the
Charlotte experience. Computer, 22(9):47-56, 1989.

[Azar, 1998] Y. Azar. On-line load balancing. In Online Algorithms - The State o f the Art,
pages 178-195. Springer, 1998.

[Backschat et al., 1996] M. Backschat, A. Pfaffinger, and C. Zenger. Economic-based dy-
namic load distribution in large workstation network. In Proc. o f the 2nd Inti. Euro-Par
Conference, volume 2, pages 631-634, Lyon, France, 1996. Springer.

LBaeumer et al., accessed in 2003] C. Baeumer, M. Breugst, S. Choy, and T. Magedanz.
Grasshopper - a universal agent platform based on OMG MASIF and FIPA stan-
dards. http://www.grasshopper.de/download/doc/GrasshopperAndStandards.pdf, acces-
sed in 2003.

[Baker et al., 2001] M. Baker, R. Buyya, and D. Laforenza. The Grid: A Survey on Global
Efforts in Grid Computing. Technical Report 2001/92, Monash University, Melbourne,
Australia, May 2001.

226

http://www.grasshopper.de/download/doc/GrasshopperAndStandards.pdf

REFERENCES

[Bellifemine et al., 1999] F. Bellifemine, A. Poggi, and G. Rimassa. JADE - A FIPA-
compliant agent framework. In Proc. o f the 4th Inti. Conference and Exhibition on the
Practical Application o f Intelligent Agents and Multi-Agents (PAAM'99), pages 97-108,
London, UK, 1999.

[Bemems-Lee, 1999] T. Bernems-Lee. Weaving the Web: The Past, Present, and Future o f
the World Wide Web by its Inventor. Orion Publishing Group, 1999.

[Binder et al., 2001] W. Binder, J. Hulaas, A. Villazon, and R. Vidal. Portable Resource
Control in Java: The J-SEAL2 Approach. In Proc. o f the Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA’Ol), Tampa Bay, Florida,
October 2001. ACM Press.

iBraun et al., 1998] T. D. Braun, H. J. Siegel, N. Beck, L. Bölöni, M. Maheswaran, A. I.
Reuther, J. P. Robertson, M. D. Theys, and B. Yao. A taxonomy for describing match-
ing and scheduling heuristics for mixed-machine heterogeneous computing systems. In
Proc. o f the 17th IEEE Symposium on Reliable Distributed Systems, pages 330-335, West
Lafayette, Indiana, October 1998. IEEE.

[Braun et al., 1999] T. D. Braun, H. J. Siegel, N. Beck, L. Bölöni, M. Maheswaran, A. I.
Reuther, J. P. Robertson, M. D. Theys, B. Yao, D. Hensgen, and R. F. Freund. A Com-
parison Study of Static Mapping Heuristics for a Class of Meta-tasks on Heterogeneous
Computing Systems. In Proc. o f the 8th Heterogeneous Computing Workshop (HCW’99),
April 1999.

[Bredin et al., 1998] J. Bredin, D. Kotz, and D. Rus. Market-based Resource Control for
Mobile Agents. In Proc. o f the 2nd Inti. Conference on Autonomous Agents, Mineapolis,
USA, 1998. ACM Press.

[Bredin et al., 1999] J. Bredin, D. Kotz, and D. Rus. Economic Markets as a Means of
Open Mobile-Agent Systems. In Proc. o f the Workshop on Mobile Agents in the Context
o f Competition and Cooparation (MAC3) at the Third Inti. Conference on Autonomous
Agents AA99, Mineapolis, USA, May 1999. ACM Press.

[Bredin et al., 2001] J. Bredin, D. Kotz, D. Rus, R. T. Maheswaran, C. Imer, and T. Basar. A
Market-Based Model for Resource Allocation in Agent Systems. In A. Omicini, F. Zam-
bonelli, M. Klusch, and R. Tolksdorf, editors, Coordination o f Internet Agents — Models,
Technologies, and Applications. Springer, 2001.

[Bredin, 2001] J. Bredin. Market-based control o f mobile-agent systems. PhD thesis, Dart-
mouth College, New Hampshire, USA, 2001.

227

REFERENCES

[Buyya and Murshed, 2002] R. Buyya and M. Murshed. GridSim: A toolkit for the model-
ing and simulation of distributed resource management and scheduling for Grid comput-
ing. Concurrency and Computation: Practice and Experience (CCPE), May 2002.

[Buyya and Vazhkudai, 2001] R. Buyya and S. Vazhkudai. Compute Power Market: To-
wards a market-oriented Grid. In Proc. o f the 1st Inti. Conference on Cluster Computing
and the Grid, CCGrid 2001, Brisbane, Australia, 2001. IEEE.

[Buyya etal., 2000] R. Buyya, J. Giddy, and D. Abramson. An Evaluation of Economy-
based Resource Trading and Scheduling on Computational Power Grids for Parameter
Sweep Applications. In Proc. o f the 2nd Workshop on Active Middleware Services, Pitts-
burgh, USA, 2000. Kluwer.

[Buyya, 2002] R. Buyya. Economic-based Distributed Resource Management and Schedul-
ing for Grid Computing. PhD thesis, Monash University, Melbourne, Australia, 2002.

[Cabrera, 1986] L. F. Cabrera. The influence of workload on load balancing strategies. In
USENIX Summer Conference, pages 446-58, 1986.

[Casanova et al., 2000] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman. Heuris-
tics for Scheduling Parameter Sweep Applications in Grid Environments. In Proc. o f the
9th Heterogeneous Computing Workshop (HCW’00), pages 349-363, May 2000.

[Casanova, 2001] H. Casanova. Simgrid: a Toolkit for the Simulation of Application
Scheduling. In Proc. o f the 1st ACM/IEEE Inti. Symposium on Cluster Computing on
the Grid (CCGrid 2001), Brisbane, Australia, May 2001.

[Casavant and Kuhl, 1988] T. L. Casavant and J. G. Kuhl. A Taxonomy of Scheduling in
General-Purpose Distributed Computing Systems. IEEE Transactions on Software Engi-
neering, 14(2): 141-154, 1988.

[Chavez et al., 1997] A. Chavez, A. Moukas, and P. Maes. Challenger: A Multi-agent Sys-
tem for Distributed Resource Allocation. In Proc. o f the 1st Inti. Conference on Au-
tonomous Agents, Marina del Ray, CA, USA, 1997. ACM Press.

[Chien and Konstantinidou, 1994] A. A. Chien and M. Konstantinidou. Workloads and Per-
formance Metrics for Evaluating Parallel Interconnects (Position Paper). IEEE TCCA
Newsletter, Fall 1994.

[Christoffel, 2001] M. Christoffel. Cooperation and Federation of Traders in an Informa-
tion Market. In Proc. o f the AISB Symposium on Information Agents for E-Commerce
(AISB’01 Convention), University of York, UK, March 2001.

228

REFERENCES

[Chun and Culler, 2000] B. N. Chun and D. E. Culler. Market-based Proportional Resource
Sharing for Clusters. Technical Report CSD-1092, University of California at Berkeley,
Computer Science Division, January 2000.

[Chun and Culler, 2002] B. N. Chun and D. E. Culler. User-centric Performance Analysis
of Market-based Cluster Batch Schedulers. In Proc. o f the 2nd IEEE/ACM Symposium on
Cluster Computing and the Grid (CCGrid 2002), Berlin, May 2002. IEEE/ACM.

[Cime and Berman, 2001a] W. Cirne and F. Berman. A Comprehensive Model of the Super-
computer Workload. In Proc. o f the 4th Workshop on Workload Characterization, Austin,
Texas, 2001. IEEE.

[Cirne and Berman, 2001b] W. Cime and F. Berman. A Model for Moldable Supercomputer
Jobs. In Proc o f the 15 th Inti. Parallel & Distributed Processing Symposium (IPDPS), San
Francisco, CA, 2001. IEEE.

[Cogan etal., 2001] P. Cogan, J. Gomoluch, and M. Schroeder. A Quantitative and Qual-
itative Comparison of Distributed Information Processing using Mobile Agents realised
in RMI and Voyager. Inti. Journal o f Software Engineering and Knowledge Engineering
(IJSEKE), 11 (5):583—606, October 2001.

[Collier, accessed in 2003] N. Collier. RePast: An Extensible Framework for Agent Simu-
lation. http://repast.sourceforge.net/docs/repastJntro_final.doc, accessed in 2003.

[Czajkowski et al., 2003] G. Czajkowski, S. Hahn, G. Skinner, P. Soper, and C. Bryce. A
Resource Management Interface for the Java Platform. Technical Report TR-2003-124,
Sun Microsystems, May 2003.

[Dafas et al., 2003a] P. Dafas, D. Bolser, J. Gomoluch, J. Park, and M. Schroeder. Fast and
Efficient Computation of Domain-Domain Interactions from known Protein Structures in
the PDB. In Proc. o f the German Conference on Bioinformatics, Munich, Germany, June
2003.

[Dafas et al., 2003b] P. Dafas, J. Gomoluch, A. Kozlenkov, and M. Schroeder. Structural
Protein Interactions: From Months to Minutes. In Proc. o f Parallel Computing 2003
(ParCo2003), Dresden, Germany, September 2003.

[Douglas and Ousterhout, 1991] F. Douglas and J. Ousterhout. Transparent process migra-
tion: design alternatives and the Sprite implementation. Software Practice and Experi-
ence, 21(8):757-85, 1991.

[Downey, 1997] A. B. Downey. A Parallel Workload Model and Its Implications for Pro-
cessor Allocation. In Proc. o f the 6th Inti. Symposium on High Performance Distributed
Computing, Portland, Oregon, August 1997. IEEE Computer Society Press.

229

http://repast.sourceforge.net/docs/repastJntro_final.doc

REFERENCES

[Fatima, 2000] S. Shaheen Fatima. TRACE - an adaptive organizational policy for MAS.
In Working Notes o f UKMAS 2000 - The Third UK Workshop on Multi-Agent Systems, St
Catherine’s College, Oxford, UK, December 2000.

[Feitelson and Rudolph, 1998] D. G. Feitelson and L. Rudolph. Metrics and Benchmarking
for Parallel Job Scheduling. In D. Feitelson and L. Rudolph, editors, Job Scheduling
Strategies for Parallel Processing, IPPS/SPDP’98 Workshop (Lecture Notes in Computer
Science), volume 1459, pages 1-24. Springer, Orlando, Florida, 1998.

[Feitelson et a l, 1997] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sevcik, and
P. Wong. Theory and Practice in Parallel Job Scheduling. In D. Feitelson and L. Rudolph,
editors, Job Scheduling for Parallel Processing: IPPS’97 Workshop (Lecture Notes in
Computer Science), volume 1291. Springer, Geneva, Switzerland, 1997.

[Ferguson et al., 1996] D. F. Ferguson, C. Nikolaou, J. Sairamesh, and Y. Yemini. Economic
Models for Allocating Resources in Computer Systems. In Market-Based Control: A
Paradigm for Distributed Resource Allocation. World Scientific, 1996.

[FIPA, accessed in 2003] FIPA. FIPA Specifications, http://www.fipa.org/specifications/in-
dex.html, accessed in 2003.

[Floyd and Paxson, 2001] S. Floyd and V. Paxson. Difficulties in simulating the Internet.
IEEE/ACM Transactions on Networking, 9(4):392-403, 2001.

[Foster and Kesselman, 1997] I. Foster and C. Kesselman. Globus — A Metacomputing
Infrastructure Toolkit. Inti. Journal o f Supercomputer Applications, 11(2): 115—128, 1997.

[Foster and Kesselman, 1998] Ian Foster and Carl Kesselman, editors. The Grid: Blueprint
for a New Computing Infrastructure. Morgan Kauffman, 1998.

[Foster et al., accessed in 2004] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. The
Physiology of the Grid, http://www.globus.org/research/papers/ogsa.pdf, accessed in
2004.

[Fox et al., 1994] G. C. Fox, R. D. Williams, and P. C. Messina. Parallel Computing Works.
Morgan Kaufmann Publishers, Inc., 1994.

[Fox, 1992] G. C. Fox. Lessons from Massively Parallel Applications on Message Passing
Computers. IEEE Computer, pages 103-114, 1992.

[Garey and Johnson, 1995] M. R. Garey and D. S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. Freeman and Co., 1995.

[Geist et al., 1994] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sun-
deram. PVM: Parallel Virtual Machine. MIT Press, 1994.

230

http://www.fipa.org/specifications/in-dex.html
http://www.fipa.org/specifications/in-dex.html
http://www.globus.org/research/papers/ogsa.pdf

REFERENCES

[Ghanea-Hercock et al., 1999] R. Ghanea-Hercock, J. C. Collis, and D. T. Ndumu. Co-
operating Mobile Agents for Distributed Parallel Processing. In Proc, o f the Third Inti.
Conference on Autonomous Agents (AA99), Mineapolis, USA, May 1999. ACM Press.

[Gomoluch and Schroeder, 2001a] J. Gomoluch and M. Schroeder. Flexible Load Balancing
in Distributed Information Agent Systems. In Proc. o f the ACAI 2001 and EASSS 2001
Student Sessions, Prag, Czech Republik, July 2001. Czech Technical University in Prague.

[Gomoluch and Schroeder, 2001b] J. Gomoluch and M. Schroeder. Information agents on
the move. Software Focus, 2(2):31—36, Summer 2001.

[Gomoluch and Schroeder, 2002] J. Gomoluch and M. Schroeder. Flexible Load Balancing
in Distributed Information Agent Systems. In V. Marik, O. Stepankova, H. Krautwur-
mova, and M. Luck, editors, Multi-Agent Systems and Application 11. Selected Revised
Papers: 9th ECCAI-ACAI/EASSS 2001, AEMAS 2001, HoloMAS 2001, LNAI 2322.
Springer, 2002.

[Gomoluch and Schroeder, 2003] J. Gomoluch and M. Schroeder. Market-based Resource
Allocation for Grid Computing: A Model and Simulation. In Proc. o f the First Inti.
Workshop on Middleware for Grid Computing (MGC2003), Rio de Janeiro, Brazil, June
2003.

[Gomoluch and Schroeder, 2004] J. Gomoluch and M. Schroeder. Performance Evaluation
of Market-based Resource Allocation for Grid Computing. To appear in Concurrency
and Computation: Practice and Experience, 2004.

[Harchol-Balter and Downey, 1997] M. Harchol-Balter and A. B. Downey. Exploiting pro-
cess lifetime distributions for dynamic load-balancing. ACM Transactions on Computer
Systems, 15(3):253-285, 1997.

[Hewlett Packard, accessed in 2003] Hewlett Packard. HBTC - Hewlett-Packard and grid
computing, http://www.hp.com/techservers/grid/, accessed in 2003.

[Hohl, accessed in 2003] F. Hohl. The Mobile Agent List, a repository of mobile agent
systems, http://mole.informatik.uni-stuttgart.de/mal/mal.html, accessed in 2003.

[Howell andMcNab, 1998] F. Howell and R. McNab. Simjava: A Discrete Event Simu-
lation Package for Java with Applications in Computer Systems Modelling. In Proc. o f
the First Inti. Conference on Web-Based Modeling and Simulation, San Diego, CA, USA,
January 1998.

[IBM, accessed in 2003] IBM. IBM Grid Computing home page, http://www-l.ibm.com-
/grid/, accessed in 2003.

231

http://www.hp.com/techservers/grid/
http://mole.informatik.uni-stuttgart.de/mal/mal.html
http://www-l.ibm.com-/grid/
http://www-l.ibm.com-/grid/

REFERENCES

[TF. F. R 1990] IEEE. IEEE Standard Computer Dictionary: A Compilation o f IEEE Standard
Computer Glossaries. IEEE, New York, 1990.

[Jain, 1991] R. Jain. The Art o f Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling, chapter 25, pages 430-
431. Wiley-Interscience, 1991.

[Jul et al., 1988] E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-grained mobility in the
Emerald system. ACM Transactions on Computer Systems, 6(1): 109—33, 1988.

[Kagel, 1995] J. H. Kagel. Auctions: A Survey of Experimental Research. In J. H. Kagel
and A. E. Roth, editors, The Handbook of Experimental Economics, chapter 7, pages
501-580. Princeton University Press, 1995.

[Kephart et a l, 2001] J. O. Kephart, J. E. Hanson, and A. R. Greenwald. Dynamic Pricing
by Software Agents. Computer Networks, 32(6):731-752, March 2001.

[Keren and Barak, 1998] A. Keren and A. Barak. Adaptive Placement of Parallel Java
Agents in a Scalable Computer Cluster. In Proc, o f the Workshop on Java for High-
Performance Network Computing, Stanford University, Palo Alto, CA, USA, February
1998. ACM Press.

[Kilgore and Burke, 2000] R. A. Kilgore and E. Burke. Object-Oriented Simulation of Dis-
tributed Systems using Java and Silk. In Proc. o f the Winter Simulation Conferences
(WSC’00), Orlando, Florida, USA, December 2000.

[Kim et a l, 2003] J.-K. Kim, S. Shivle, H. J. Siegei, A. A. Maciejewski, T. D. Braun,
M. Schneider, S. Tideman, R. Chitta, R. B. Dilmaghani, R. Joshi, A. Kaul, A. Sharma,
S. Sripada, P. Vangari, and S. S. Yellampalli. Dynamic Mapping in a Heterogeneous En-
vironment with Tasks Having Priorities and Multiple Deadlines. In Proc. o f the 17th Inti.
Parallel and Distributed Processing Symposium (IPDPS 2003), Nice, France, April 2003.
IEEE.

[Lange and Oshima, 1998a] D. B. Lange and M. Oshima. Mobile Agents with Java: The
Aglet API. World Wide Web Journal, 1998.

[Lange and Oshima, 1998b] D. B. Lange and M. Oshima. Programming and Deploying
Java Mobile Agents with Aglets. Addison-Wesley, 1998.

[Lee et a l, 1998] L. C. Lee, H. S. Nwana, D. T. Ndumu, and P. De Wilde. The stability,
scalability and performance of multi-agent systems. BT Technology Journal, 16(3):94—
103, July 1998.

232

REFERENCES

[Levy et al., 2001] L. Levy, L. Blumrosen, and N. Nisan. OnLine Markets for Distributed
Object Services: the MAJIC system. In Proc. o f the 3rd USENIX Symposium on Internet
Technologies and Systems, San Francisco, CA, USA, 2001.

[Liang and Bracha, 1998] S. Liang and G. Bracha. Dynamic class loading in the Java Vir-
tual Machine. In Proc. o f the Conference on Object Oriented Programming Systems Lan-
guages and Applications (OOPSLA’99), pages 36-44, Denver, CO, USA, 1998. ACM
Press.

[Libes, 1994] D. Libes. Exploring Expect. O’Reilly & Associates, 1994.

[Maheswaran et al., 1999a] M. Maheswaran, S. Ali, H. J. Siegel, D. A. Hensgen, and R. F.
Freund. Dynamic mapping of a class of independent tasks onto heterogeneous computing
systems. Journal o f Parallel and Distributed Computing, 59(2): 107-131, 1999.

[Maheswaran et al., 1999b] M. Maheswaran, T. D. Braun, and H. J. Siegel. Heterogeneous
Distributed Computing. In J. G. Webster, editor, Encyclopedia o f Electrical and Electron-
ics Engineering, pages 679-690. John Wiley & Sons, New York, NY, 1999.

[Messer and Wilkinson, 1996] A. Messer and T. Wilkinson. Power to the process. In Work-
shop on Parallel, Emergent, and Distributed Computing, Reading,UK, May 1996. MIT
Press.

[Metcalfe and Boggs, 1976] R. Metcalfe and D. Boggs. Ethernet: Distributed Packet
Switching for Local Computer Networks. In Proc. o f the National Computer Conference,
volume 19, 1976.

[Milojicic et al., 1998] D. Milojicic, M. Breugst, I. Busse, J. Campbell, S. Covaci, B. Fried-
man, K. Kosaka, D. Lange, K. Ono, M. Oshima, C. Tham, S. Virdhagriswaran, and
J. White. MASIF: The OMG Mobile Agent System Interoperability Facility. Personal
Technologies, 2:117-129, 1998.

[Minar et al., 1996] N. Minar, R. Burkhart, C. Langton, and M. Askenazi. The Swarm Sim-
ulation System, A Toolkit for Building Multi-Agent Simulations, http://www.swarm.org,
June 1996.

[Moller et al., 1999] S. Moller, U. Leser, W. Fleischmann, and R. Apweiler. EDIT-
toTrEMBL: A distributed approach to high-quality automated protein sequence annota-
tion. Journal o f Bioinformatics, 15(3):219—227, 1999.

[Moss, 1999] S. Moss. The cost of rational agency. Technical Report 99-51, Manchester
Metropolitan University, Centre for Policy Modelling, 1999.

233

http://www.swarm.org

REFERENCES

[Natrajan et al., 2001] A. Natrajan, M. Humphrey, and A. S. Grimshaw. Capacity and Ca-
pability Computing in Legion. In Proc, o f the 2001 Inti. Conference on Computational
Science, San Francisco, CA, May 2001.

[Nguyen et a l, 1996] T. D. Nguyen, R. Vaswani, and J. Zahorjan. Parallel application char-
acteristics for multiprocessor scheduling policy design. Lecture Notes in Computer Sci-
ence, 1162:175-199, 1996.

[Nisan et a i, 1998] N. Nisan, S. London, O. Regev, and N. Camiel. Globally distributed
computation over the Internet - the POPCORN project. In Proc. o f the 18th Inti. Confer-
ence on Distributed Computing Systems, Amsterdam, Netherlands, 1998. IEEE.

[Obelôer et a i, 1998] W. Obelôer, C. Grewe, and H. Pals. Load management with mobile
agents. In Proc. o f the 24th EUROMICRO Conference, pages 1005-1012, 1998.

[Object Management Group, 1992] Object Management Group. The Common Object Re-
quest Broker: Architecture and Specification. Wiley, 1992.

[Pacheco, 1997] PeterS. Pacheco. Parallel Computing with MPI. Morgan Kaufmann, 1997.

[Padala et a l, 2003] P. Padala, C. Harrison, N. Pelfort, E. Jansen, M. P. Frank, and
C. Chokkareddy. OCEAN: The Open Computation Exchange and Arbitration Network,
A Market Approach to Meta computing. In Proc. o f the Inti Symposium on Parallel and
Distributed Computing (ISPDC’03), Ljubljana, Slovenia, 2003.

[Page et a l, 2000] B. Page, T. Lechler, and S. Claassen. Objektorientierte Simulation in
Java mit dem Framework DESMO-J. Libri Books on Demand, 2000.

[Pallas, accessed in 2003] Pallas. UNICORE, http://www.unicore.de, accessed in 2003.

[Park et a l, 2001] J. Park, M. Lappe, and S. A. Teichmann. Mapping Protein Family Inter-
actions: Intramolecular and Intermolecular Protein Family Interaction Repertoires in the
PDB and Yeast. Journal o f Molecular Biology, 307:929-938, 2001.

[Pinedo, 1995] M. Pinedo. Scheduling. Theory, Algorithms, and Systems. Prentice Hall,
1995.

[Platform Computing, accessed in 2003] Platform Computing. Platform LSF 5. http:-
//www.platform.com, accessed in 2003.

[Platt and Ballinger, 2002] D. S. Platt and K. Ballinger. Introducing Microsoft .NET. Mi-
crosoft Press, 2002.

[Pooley, 1987] R. J. Pooley. An Introduction to Programming in SIMULA. Blackwell Sci-
entific Publications, 1987.

234

http://www.unicore.de
http://www.platform.com

REFERENCES

[Pozo and Miller, accessed in 2003] R. Pozo and B. Miller. SciMark 2.0. http://math.nist-
.gov/scimark2/index.html, accessed in 2003.

[Preist et al., 2001] C. Preist, A. Byde, C. Bartolini, and G. Piccinelli. Towards agent-based
service composition through negotiation in multiple auctions. In Proc. oftheAlSB Sympo-
sium on Information Agents for E-Commerce (AISB’01 Convention), University of York,
UK, March 2001.

[Regev and Nisan, 1998] O. Regev and N. Nisan. The POPCORN Market — an Online
Market for Computational Resources. In Proc. o f the First Inti. Conference on Information
and Computation Economies, Charleston, South Carolina, USA, 1998. ACM Press.

[Rus et al., 1997] D. Rus, R. Gray, and D. Kotz. Transportable information agents. Journal
of Intelligent Information Systems, 9, 1997.

[Sahni and Thanvantri, 1995] S. Sahni and V. Thanvantri. Parallel computing: Performance
metrics and models. Technical report, Computer Science Department, University of
Florida, May 1995.

[Sandholm, 2000] T. Sandholm. Distributed Rational Decision Making. In G. Weiss, editor,
Multi-agent systems. MIT Press, 2000.

[Schroeder and Boro, 2001] M. Schroeder and L. Boro. Does the restart method work? Pre-
liminary results on efficiency improvements for interactions of web-agents. In Proc. o f the
Workshop on Infrastructure fo r Agents, MAS, and Scalable MAS (at Agents’01), Montreal,
Canada, 2001.

[Sherwani et al., 2002] J. Sherwani, N. Ali, N. Lotia, Z. Hayat, and R. Buyya. Libra: An
Economy driven Job Scheduling System for Clusters. In Proc. o f the 6th Inti. Conference
on High Performance Computing in Asia-Pacific Region (HPC Asia 2002), Bangalore,
India, December 2002.

[Shoch and Hupp, 1982] F. Shoch and J. Hupp. The Worm programs - Early experience
with a distributed computation. Communications o f the ACM, 25(3): 172-80, 1982.

[Strasser et al., 19961 M. Strasser, J. Baumann, and F. Hohi. Mole — a Java based mobile
agent system. In Proc. ofECOOP’96, Workshop on Mobile Object Systems, Linz, Austria,
1996. Springer.

[Streit, 2001] A. Streit. On job scheduling for HPC-clusters and the dynp scheduler. In
Proc. o f the 8th Inti. Conference on High Performance Computing (HiPC), Hyderabad,
India, December 2001. Springer.

235

http://math.nist-.gov/scimark2/index.html
http://math.nist-.gov/scimark2/index.html

REFERENCES

[Strohmaier et al., accessed in 2003] E. Strohmaier, J. Dongarra, H. Meurer, and H. Si-
mon. 22nd TOP500 List. Supercomputer Conference (SC2003), accessed in 2003.
http://www.top500.org/lists/2003/11/.

[Sun Microsystems, accessed in 2003a] Sun Microsystems. Java Message Service API -
Java Message Service Tutorial, http://java.sun.com/products/jms/tutorial/index.html, ac-
cessed in 2003.

[Sun Microsystems, accessed in 2003b] Sun Microsystems. Java Remote Method Invoca-
tion - Distributed Computing for Java, http://java.sun.com/marketing/collateral/javarmi-
.html, accessed in 2003.

[Sun Microsystems, accessed in 2003c] Sun Microsystems. Jini architectural overview.
http://wwws.sun.com/software/jini/whitepapers/architecture.pdf, accessed in 2003.

[Sun Microsystems, accessed in 2003d] Sun Microsystems. Project JXTA Technology:
Creating Connected Communities. http://www.jxta.org/project/www/docs/JXTA-Exec-
Brief-032803.pdf, accessed in 2003.

[Sun Microsystems, accessed in 2003e] Sun Microsystems. Sun Cluster Grid Architec-
ture. http://wwws.sun.com/software/gridware/SunClusterGridArchitecture.pdf, accessed
in 2003.

[Suri, 2000] N. Suri. An Overview of the NOMADS Mobile Agent System. In Proc. o f
ECOOP’2000, Nice, France, 2000.

[Takefusa, 2001] A. Takefusa. Bricks: A Performance Evaluation System for Scheduling
Algorithms on the Grid. In Proc. o f the JSPS Workshop on Applied Technology for Science
(JWAITS 2001), San Diego Supercomputer Center, University of California, San Diego,
USA, January 2001.

[van Nieuwpoort et a i, 2001] R. van Nieuwpoort, T. Kielmann, and H. E. Bal. Efficient
Load Balancing for Wide-Area Divide-and-Conquer Applications. In Proc. o f the Sympo-
sium on Principles and Practice o f Parallel Programming (PPOPP’01), Snowbird, Utah,
USA, 2001. ACM Press.

[Waldo, 2001] J. Waldo. Mobile code, distributed computing, and agents. IEEE Intelligent
Systems, 16(2), March/April 2001.

[Waldspurger et a i, 1992] C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephart, and
W. S. Stornetta. Spawn: A Distributed Computational Economy. IEEE Transactions on
Software Engineering, 18(2): 103—117, 1992.

236

http://www.top500.org/lists/2003/11/
http://java.sun.com/products/jms/tutorial/index.html
http://java.sun.com/marketing/collateral/javarmi-.html
http://java.sun.com/marketing/collateral/javarmi-.html
http://wwws.sun.com/software/jini/whitepapers/architecture.pdf
http://www.jxta.org/project/www/docs/JXTA-Exec-Brief-032803.pdf
http://www.jxta.org/project/www/docs/JXTA-Exec-Brief-032803.pdf
http://wwws.sun.com/software/gridware/SunClusterGridArchitecture.pdf

REFERENCES

[Waldspurger, 1995] C. A. Waldspurger. Lottery and Stride Scheduling: Flexible Propor-
tional-Share Resource Management. PhD thesis, Department of Electrical Engineering
and Computer Science, Massachusetts Institute of Technology, MA, USA, 1995.

[Webopedia.com, accessed in 2004] Webopedia.com. Web Services. http://www.webope-
dia.com/TERMAV/Web_services.html, accessed in 2004.

[Wellman et al., 2001] M. P. Wellman, W. E. Walsh, P. R. Wurman, and J. K. MacKie-
Mason. Auction protocols for decentralized scheduling. Games and Economic Behavior,
35:271-303,2001.

[Wims and Xu, 1999] B. Wims and C. Xu. Traveler: A Mobile Agent Based Infrastructure
for Global Parallel Computing. In Proc. o f the First Inti. Symposium on Agent Systems and
Applications (ASA’99)/ThirdInti. Symposium on Mobile Agents (MA’99), Palm Springs,
California, October 1999. IEEE.

[Wolski et al., 2001] R. Wolski, J. S. Plank, J. Brevik, and T. Bryan. Analyzing market-
based resource allocation strategies for the computational Grid. Inti. Journal o f High
Performance Computing Applications, 15(3):258—281, Fall 2001.

[Wolski et al., 2003] R. Wolski, J. Plank, and J. Brevik. G-Commerce - Building Computa-
tional Marketplaces for the Computational Grid. Technical Report CS-00-439, University
of Tennessee, 2003.

[Wolski, 1997] R. Wolski. Implementing a Performance Forecasting System for Metacom-
puting: The Network Weather Service. In Proc. o f the ACM/IEEE SC97 Conference,
1997.

[Xu and Wims, 2000] C.-Z. Xu and B. Wims. A Mobile Agent Based Push Methodology
for Global Parallel Computing. Concurrency: Practice and Experience, 14(8):705-726,
2000.

237

http://www.webope-dia.com/TERMAV/Web_services.html
http://www.webope-dia.com/TERMAV/Web_services.html

