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Abstract

Recently, there has been much interest in Computational Grids which provide trans-
parent access to large-scale distributed computational resources. One key issue in these 
open and heterogeneous environments is the efficient allocation of resources. Clients 
and service providers belong to different organisations and have different priorities, re-
quirements, and goals, making resource management a complex task.

Economic approaches to resource allocation can offer a solution, as they are natu-
rally decentralised, and as decisions about whether to consume or provide resources are 
taken locally by the clients or service providers. The use of currency offers incentives 
for service providers to contribute resources, while clients have to act responsibly due 
to their limited budget. To maximise the benefit of the clients, it is essential to choose 
an appropriate resource allocation protocol. There exist various economic protocols 
with different properties, however, their performance in Grid settings has not yet been 
sufficiently studied.

In this thesis, we review and classify existing work on market protocols in com-
putational clusters and Grids. We then develop a simulation model of an electronic 
marketplace and evaluate several market protocols for different computational environ-
ments, task loads, and optimisation requirements of the clients. We study situations, in 
which the tasks are independent and arrive randomly. Three scenarios are examined in 
which the clients have different requirements concerning the execution of their tasks. In 
two scenarios, the completion times of the tasks need to be minimised. In the first one, 
all tasks are equally important, whereas in the second one, they have different values 
for the clients and are weighted accordingly. In the third scenario, tasks have different 
priorities combined with hard or soft deadlines which need to be met in order to deliver 
maximum value to the clients.

The resource allocation protocols, which are evaluated, include continuous double 
auctions (CDA), periodic double auctions (PDA), and a proportional sharing protocol 
(PSP). Also, several preemptive protocols, with and without task migration, are inves-
tigated, as well as protocols, in which the service providers are allowed to set reserve 
prices. The simulation results reveal that the choice of the protocol should depend on 
the optimisation requirements of the clients, the number of resources in the system, the 
heterogeneity of these resources, the amount of load and background load in the system, 
the local scheduling policy at the resources, and the communication delays. We found 
that, in most situations, CDA leads to very good results. However, with high hetero-
geneity and load, it can be outperformed by PDA, PSP, and the preemptive protocols 
without migration. Also reserve prices can lead to performance improvements. In most 
cases, the best results are achieved by preemptive protocols which allow migration.

To verify our simulation model and thus our results, we developed a basic Grid 
computing infrastructure, that is based on the model, and carried out experiments in 
a local area network. We also demonstrated the effectiveness of our infrastructure for 
solving real-world problems by deploying a computationally intensive bioinformatics 
application.
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1 INTRODUCTION

1 Introduction

1.1 Motivation

The last four decades have seen a rapid increase in computing power and the rise and fall of 

several technologies. In the 1960s, mainframe computers took up a few hundred square feet. 

Just a decade later, the advent of the minicomputer cut down the size of systems by taking 

advantage of large-scale integration of semiconductors. During the 1980s, vector computers, 

and later parallel computers emerged. At about the same time the microcomputer age began, 

bringing PCs to the desks of the end-users.

As computers became more affordable, the need to link them up gave rise to the first 

local area networks such as the Ethernet [Metcalfe and Boggs, 1976]. By the mid- to late- 

1980s, the first network cards began to appear for the PC. Between 1989 and the early 1990s, 

an emerging wide area network — known as the Internet — started becoming the norm at 

universities in the US, Japan, and Europe. It had evolved from the ARPANET of the US 

Defense department which was first established in 1969 with just 4 nodes. The growth of 

the Internet was fueled by a rapid increase in network bandwidth and by the invention of the 

World Wide Web [Bemems-Lee, 1999] at CERN, in 1989. The Web provided the means for 

creating and organising documents with hyper-links and accessing them online transparently, 

irrespective of their location.

The increase in network bandwidth — which has grown twice as fast as the processing 

power — led to advancements in high performance computing. The availability of powerful 

PCs, workstations, and high-speed networks as commodity components has resulted in the 

emergence of computational clusters. In the top 500 list of fastest computers which solve a 

matrix factorisation problem [Strohmaier et al., accessed in 2003], clusters of PCs or work-

stations already rank among the top (with seven systems in the top 10). In recent years, the 

number of cluster systems in the top 500 has grown to more than 200, making them the most 

common high performance computing architecture.

The Internet can add a new dimension to parallel processing, as comparatively small 

computing resources such as PCs have the potential to provide vast computing power, when

1



1 INTRODUCTION

connected. And yet, many of these resources lie idle for most of the time. Millions of 

online-PCs are only involved in tasks like word processing or browsing the Internet, which 

consume very little computing power. The computing resources in many organisations are 

often severely under-utilised, especially outside of peak business hours.

At the same time, there are many individuals and organisations that have intensive com-

putations to perform but only have limited access to resources that are available to execute 

them. This disparity in resource utilisation has inspired various projects which connect mil-

lions of computers over the Internet to perform computations in areas like drug design 1, 

biology 2, and astronomy 3. Such wide-area networks of PCs are, however, only one instance 

of a much broader vision: to transform the capability and modalities of scientific research 

by providing transparent, intuitive, timely, and efficient access to distributed, heterogeneous, 

and dynamic resources. These resources include computational facilities, applications, vi-

sualisation, data, and experimental facilities, which are integrated and accessible as a single 

resource over the Internet - the Grid [Foster and Kesselman, 1998],

1.2 The Grid

Inspired by the electrical power grid’s pervasiveness, reliability, and ease of use, scientists 

in the mid-90s began exploring the design and development of an analogous infrastructure 

called the computational power Grid [Foster and Kesselman, 1998]. The vision is to build 

an environment that enables the ’’sharing, selection, and aggregation of a wide variety of ge-

ographically distributed resources including supercomputers, storage systems, data sources, 

and specialised devices owned by different organisations for solving large-scale resource-

intensive problems in science, engineering, and commerce” [Buyya, 2002], These efforts are 

driven by large-scale, resource-intensive scientific applications that require more resources 

than can be provided in a single administrative domain [Buyya, 2002].

A number of Grid platforms have been developed, such as Globus [Foster and Kesselman, 

1997], Unicore [Pallas, accessed in 2003], the Load Sharing Facility [Platform Computing,

'Find-A-Drug (http://www.find-a-drug.org), grid.org (http://www.grid.org)
2Folding@Home (http:/folding.stanford.edu)
3SETI@Home (http://setiathome.berkeley.edu/)

2
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1 INTRODUCTION

accessed in 2003], and Legion [Natrajan et al., 2001]. Also, major companies including Sun, 

IBM, and Hewlett Packard have recognised the potential of Grid Computing and provide 

their own platforms [Sun Microsystems, accessed in 2003e] and services [Hewlett Packard, 

accessed in 2003; IBM, accessed in 2003]. Common to all Grid infrastructures is the need to 

provide components which cater for communication infrastructure, data storage and move-

ment, security, task monitoring, and resource management.

Efficiently managing and allocating resources in a Grid is a far more complex task than 

in a local cluster: Users and service providers are geographically distributed and belong to 

different organisations, with heterogeneous platforms and varying reliability and availability. 

Furthermore, the parties involved have different priorities, requirements, and goals, making 

resource management even harder.

1.3 The Need for Market Protocols

Market-based approaches to resource allocation [Ferguson et a i, 1996; Sandholm, 2000; 

Wellman et al., 2001] can offer a solution to the problems of distributed ownership of 

resources and the conflicting interests of the users: Resource allocations are determined 

through the use of economic mechanisms such as auctions, in which users place explicit val-

uations ("bids”) on the resources being contended for. The use of currency offers incentives 

for service providers to contribute resources, while users have to act responsibly due to their 

limited budget. Hence, resource prices and task priorities are directly related to demand and 

supply.

To maximise the efficiency of the resource allocations, and thus the benefit to the users, 

it is essential to choose the best-performing market protocol 4. There exist various protocols 

with different properties, however, their performance in Grid scenarios has not yet been suf-

ficiently studied. When market protocols were examined, the experiments were limited to 

only a few protocols and parameter sets. What has been missing is a systematic comparison 

of different market protocols which would allow a system designer to choose the most ap-

4 A protocol defines the rules which determine how the participants of the marketplace interact and how the 
resources are allocated. It does not include the strategies of the participants for settings their prices or bids.

3



1 INTRODUCTION

propriate protocol for a given situation. In this thesis, we review and classify existing work 

on market protocols in computational clusters and Grids. We develop a simulation model 

of an electronic marketplace where CPU time is traded as a resource and evaluate several 

economic protocols for different computational environments, task loads, and optimisation 

requirements of the users.

1.4 Scenarios

Our objective is to maximise performance as experienced by the users. We model a market-

place in which users and service providers may belong to different organisations and trade 

resources in exchange for money. The users have computations which must be performed 

on certain resources and are willing to pay for the service. An example could be a scientist 

who wants to conduct a bioinformatics computation and needs several Linux PCs with the 

Globus Toolkit [Foster and Kesselman, 1997] installed. The service providers have access 

to idle resources that can execute the computation in question. The system is assumed to be 

geographically distributed, and therefore communication bandwidth and latency need to be 

taken into account.

We target the following scenarios:

• A computational cluster, e.g. a lab of PCs at a research institute or company. Users 

have a limited endowment of artificial money which can be used for buying CPU time.

• An open, geographically distributed computational Grid in which the participants be-

long to different organisations.

In both cases, CPU time is traded at a central electronic marketplace, which the partici-

pants can trust, and whose rules must be obeyed 5. Users submitting computational tasks can 

choose how much they bid for the execution of each task and may also specify deadlines.

Participants who do not comply could be penalised by the marketplace, e.g. by excluding them from 
further trade. However, this is not the topic of this thesis.

4
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Concerning the resources, we consider the following cases:

• Time-shared PCs, e.g. running under Linux. Local users may be running applications 

(such as word-processors or Internet browsers) which consume some of the CPU time 

and are considered as background load. The remaining processing power — which 

may vary over time — is made available to computational tasks from the electronic 

marketplace.

• PCs whose processing power is offered at the marketplace only at times when they 

are completely idle, i.e. when their screensavers are running. If such a policy is used, 

fewer resources are available to the marketplace. Yet, it may be more acceptable to the 

local users as it reduces the impact of the incoming tasks on the local applications.

• Space-shared multiprocessor machines on which parallel applications can be executed. 

Several applications can be run on the machines’ processors at any given time. Again, 

as there are local users, only some of the processing power is made available to the 

marketplace.

For the scenarios studied in this thesis, we make the assumption of a managed system, in 

which the market is a tool to achieve the efficient allocation of resources. Our main focus 

is on the design of the protocols which are used at the marketplace. The choice of pricing 

strategies for the Clients and Servers is not the subject of this work: We assume that these 

strategies — which may or may not be utility-maximising — can be enforced by the system. 

Money has no value as such, and hence there is no need to deal with resource accounting.

We mainly look at scenarios where PCs are the resources, as these are idle most of their 

time and can therefore offer large amounts of CPU time to computationally intensive appli-

cations. We study situations in which the computational tasks are independent 6 and arrive 

randomly. Since the task arrivals and the state of the system are not known a priori, the 

scheduling decisions need to be taken online. Three scenarios are examined in which the 

users have different requirements concerning the execution of their tasks. In two scenar-

ios the completion times of the tasks need to be minimised. In the first one, all tasks are
“Note that, in this context, we also consider a parallel application to be an independent task because it is 

allocated to just one multiprocessor machine.
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equally important, whereas in the second one, they have different values for the users and 

are weighted accordingly. In the third scenario, tasks have different priorities combined with 

hard or soft deadlines which need to be met in order to deliver maximum value to the users. 

The goal of our simulations is to determine the most suitable resource allocation protocol for 

each examined situation (w.r.t. the performance metric which is used).

We investigate the impact of parameters, such as the number of resources in the system, 

the heterogeneity of these resources, the amount of load and background load in the system, 

the local scheduling policy at the resources, and the communication delays.

1.5 Resource Allocation Protocols

We consider several market protocols, all of which use auctions [Kagel, 1995]. In auctions, 

buyers bid for resources according to a particular auction protocol. An advantage of auctions 

is that they allow an unknown resource value in a group of agents to be determined. Also, 

auctions are widely studied, easy to implement, and efficiently computable. A disadvantage 

is often the communication cost.

A very familiar auction protocol is the English auction, in which a seller advertises a 

resource whose price is gradually increased as the bids come in — and the highest bidder 

wins. A problem with English auctions is the associated communication cost which we need 

to avoid in order to maximise performance. For this reason, all our protocols are of sealed- 

bid type. In a sealed-bid auction, all buyers submit sealed bids, and the highest bidder wins. 

There is only one round of communication — without any time-consuming negotiation.

Furthermore, all our protocols can be classified as double auctions: In a double auction, 

multiple buyers and sellers submit their bids and ask prices, and matches are made by the 

marketplace. Since there are multiple buyers and sellers in our scenarios, this form of auction 

is appropriate. A double auction can either be a continuous auction, where transactions are 

carried out immediately whenever bids or offers change, or a periodic auction, in which the 

transactions are carried out only at periodic intervals.

6
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Overall, the following protocols are examined in this thesis:

• The Continuous Double Auctions protocol (CDA), which we expect to result in shorter 

response times and hence better performance than periodic auctions.

• Several adaptations of CDA in which the tasks can be preempted, both with and with-

out migration.

• Two protocols which allow the service providers to set reserve prices in order to pre-

vent the allocation of the better-performing resources to low priority tasks.

• The Periodic Double Auctions protocol (PDA) in which the transactions are carried 

out at periodic intervals only.

• The Proportional-Share Protocol (PSP) in which several tasks can execute on a re-

source, and a task’s resource share is proportional to its price bid.

• Several conventional scheduling heuristics which include Round-Robin (RR), First-in- 

First-Out (FIFO), and Shortest Job First (SJF).

In our simulations we aim to determine which resource allocation protocol is the most 

appropriate for a given situation. For three scenarios with different user requirements, we 

compare the performance of the protocols while varying the parameters of the computational 

environment.

1.6 Verification through Experiments

We verify our simulation model and thus our results by carrying out experiments in a lo-

cal area network. We determine whether the assumptions we made about communication 

delays, processing delays, etc. are valid under realistic conditions. For this purpose, we 

deploy a basic Grid computing infrastructure which we developed as part of the AgentCi- 

ties deployment grant CoMAS (Control and Management of Agents and their Services, iD: 

ACNET.02.30). This infrastructure is based on the agent platform JADE [Bellifemine et al., 

1999] and is an almost exact implementation of the simulation model. We also demonstrate
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the effectiveness of our infrastructure for solving real-world problems by using it for the 

distributed computation of the bioinformatics application PSIMAP [Dafas et al., 2003a].

1.7 Publications

Parts of the experimental work described in this thesis have been published in [Gomoluch 

and Schroeder, 2003], [Gomoluch and Schroeder, 2004], [Dafas et al., 2003b], and [Dafas et 

al., 2003a]. An earlier version of the survey on market protocols has appeared in [Gomoluch 

and Schroeder, 2001b]. In addition, the research undertaken in the course of this PhD has 

resulted in the publication of [Gomoluch and Schroeder, 2001a], [Gomoluch and Schroeder, 

2002] and [Cogan et al., 2001],

1.8 Contributions

In summary, the main contributions of this thesis are:

• A survey and classification of existing approaches to the dynamic allocation of re-

sources in computational clusters and Grids, with an emphasis on market protocols.

• The design of a simulation model of an electronic marketplace for distributed compu-

tational resources and of several protocols for the resource allocation. This model is 

suitable for both computational clusters and Grids.

• The development of a simulation framework for the evaluation of these resource allo-

cation protocols. The framework supports various scenarios, resource types, schedul-

ing policies, and resource allocation protocols. It allows to set any simulation param-

eter and to measure any statistic, thus enabling the exploration of a large parameter 

space.

• The evaluation of the market protocols through simulations. We explore the parameter 

space for three scenarios in which the clients have different requirements concerning 

the execution of their tasks. We provide guidelines for the choice of protocols in 

different situations.

8



1 INTRODUCTION

• The verification of the simulation results with an experimental Grid computing frame-

work that has been developed for this purpose. We determine in how far the real system 

behaves as we observed in the simulations. To this end, we deploy it in a cluster of 

PCs in a local area network. We also demonstrate the effectiveness of this framework 

for solving real-world problems such as the PSIMAP computation.

1.9 Report Structure

The rest of this thesis is organised as follows.

Chapter 2 presents an overview of application types that can benefit from being dis-

tributed and executed in parallel. Chapter 3 covers the properties of the hardware and soft-

ware infrastructure which need to be considered for the design of a resource allocation pro-

tocol. Chapter 4 provides a survey and classification of existing approaches to the dynamic 

allocation of resources in computational clusters and Grids, and mainly looks at market pro-

tocols. In chapter 5, we state our research objectives and discuss other work on performance 

evaluation of market protocols. We show how it relates to this thesis.

Detailed descriptions of our simulation model and the resource allocation protocols in-

vestigated in this thesis are given in chapter 6. These are followed by a hierarchical overview 

of the parameter space explored in our simulations in chapter 7. The results of our simula-

tions for the three scenarios are presented in chapters 8 to 10.

Chapter 11 gives a high-level description of our experimental Grid computing frame-

work. Chapter 12 describes the experiments with this framework which are designed to 

verify the simulation model. Chapter 13 gives guidelines for the designer of an Electronic 

Marketplace which are based on the simulation results. Chapter 14 discusses the results of 

the simulations and experiments, draws conclusions, and gives directions for future work.

An appendix follows which provides further information concerning the implementation 

of the resource allocation protocols. It also describes our simulation framework, which has 

been used for the simulations, and shows additional simulation results. Furthermore, it gives 

more details about the implementation and operation of our experimental Grid computing 

framework.
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2 OVERVIEW OF PROBLEM TYPES

2 Overview of Problem Types

Despite ever faster machines, the demand for computing power remains high in application 

areas like scientific computing and data analysis. Many computational applications are so 

large, that their execution time on a single machine would not be acceptable to the user. 

However, for certain applications, the execution time can be reduced by decomposing them 

into subtasks which can be distributed among several machines.

In order to do this in an appropriate way, it is necessary to know the characteristics of 

the application and the requirements of the user. In this chapter, we first give an overview of 

different application types. Then, we discuss the limits of the speedup that can be achieved 

when an application is executed in parallel. Finally, we introduce several metrics which can 

be used to assess the performance of a resource allocation protocol.

2.1 Embarrassingly Parallel Application

A simple but very common problem type is termed ’’embarrassingly parallel”(EP) [Fox et 

a l, 1994], The application consists of a set of independent calculations and can easily be 

parallelised, since no temporal synchronisation is involved. In practice, modest node-to-node 

communication will be required though, if only to set up the problem and to accumulate the 

results. Assuming a high computation to communication ratio, an almost linear speedup 

(see section 2.5) can be achieved for this type of computation. An example of a task graph 

representing an embarrassingly parallel application is shown in Figure 1 (left).

Problems which fall into this category include the so-called Parameter sweep applica-

tions (PSAs) [Casanova et al., 2000], in which many computations of the same type are run 

with different parameter sets. Each computation can execute independently, i.e. without 

inter-task communication or data-dependencies (task precedences). Examples of parameter 

sweep applications and other embarrassingly parallel problems can be found in bioinformat-

ics [Casanova et al., 2000; Park et al., 2001], high energy physics, and finance [Fox et al., 

1994],
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2.2 Parallel Applications with Inter-Task Communication

Another important problem type are applications which consist of several tasks which ex-

ecute in parallel but which require communication between these tasks. Regarding the 

communication pattern, this problem type can be subdivided into synchronous, loosely syn-

chronous, and asynchronous problems which will be described in this section [Fox et al., 

1994; Fox, 1992],

2.2.1 Synchronous Problems

Synchronous problems are computations on geometrically regular data domains which re-

quire synchronisation between the iterations. Examples are matrix computations such as LU 

decomposition and convolutions such as the Fast Fourier Transform. They are parallelised 

by simple domain decomposition [Fox et al., 1994; Fox, 1992], An example of a task graph 

representing a synchronous problem is shown in Figure 1 (middle).

2.2.2 Asynchronous Problems

Asynchronous problems are characterised by a temporal irregularity which makes paral-

lelisation hard. An important example are event-driven simulations, where events occur in 

spatially distributed fashion but irregularly in time. Branch-and-bound and other pruned tree 

algorithms common in artificial intelligence such as computer chess also fall into this cate-

gory [Fox, 1992], For the parallelisation the ’’data parallelism” over the space of events is 

exploited.

2.2.3 Loosely Synchronous Problems

Loosely synchronous problems are an intermediate case between asynchronous and syn-

chronous problems. They are characterised by iterative calculations on geometrically irregu-

lar domains. The computations are parallelised by irregular partitioning of the data domain. 

The processes are synchronised ’’every now and then”, typically at the end of an iteration or 

time step in a solution. Examples are irregular mesh finite element problems and inhomoge-

neous particle dynamics [Fox, 1992],

11
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2.2.4 Scalability of Parallel Applications

Synchronous and loosely synchronous problems parallelise naturally in a fashion that scales 

to large systems with many nodes. The computations typically divide into communication 

and calculation phases as given by individual iterations or time steps in a simulation. The 

efficiency depends on the problem grain size. In many cases an almost linear speedup (see 

subsection 2.5) can be achieved — and the calculations are not much affected by the syn-

chronisation.

Asynchronous problems are characterised by additional synchronisation overhead, since 

the division into communication and calculation phases is lacking. The speedup for this type 

of computations is very problem-dependent. However, large scale parallelisation is possible 

for a subclass which is referred to as loosely synchronous complex. The problem consists 

of an asynchronous collection of loosely synchronous (or synchronous) modules [Fox et a i, 

1994; Fox, 1992],

In a survey carried out in 1989, 400 applications from 84 areas have been classified. The 

survey, which might be outdated now, reports that at most 10 percent of the applications were 

truly asynchronous, whereas most applications were synchronous (40 percent) or loosely 

synchronous (36 percent). About 14 percent belonged to the embarrassingly parallel class 

[Fox et al., 1994],

2.2.5 Flexibility of a Parallel Application

A parallel — but not embarrassingly parallel — application may have different constraints 

regarding the number of machines it is allocated during its execution. Feitelson et al. [Fei- 

telson and Rudolph, 1998; Feitelson et al., 1997] give a classification of applications con-

cerning their flexibility when executed in parallel:

• Rigid Jobs: The number of processors assigned to a job is specified externally and 

cannot be changed by the scheduler.

• Moldable Jobs: The number of processors assigned to a job is determined by the 

system within certain constraints when the job is first activated, and it uses that many

12
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Figure 1: Task graphs for different problem types. Left: Embarrassingly parallel (EP) ap-
plication. Middle: Synchronous application. Right: Application represented by a directed 
acyclic graph (DAG).

processors throughout its execution 7.

• Malleable Jobs: The number of processors assigned to a job may be changed during 

the job’s execution, as a result of the system giving it additional processors or requiring 

that the job releases some.

• Evolving Jobs: The job goes through different phases which require different numbers 

of processors. The number of processors allocated may change during the execution 

in response to the job requesting more processors or relinquishing some. Each job is 

allocated at least the number of processors it requires at each point in its execution.

2.3 Applications with Subtask Dependencies

In another problem type, which can benefit from being executed in parallel, the application 

contains subtasks with data dependencies among them. It will be described in this section.

7According to [Cime and Berman, 2001b] the majority of tasks in supercomputing centres are moldable — 
98%, as the authors found in their survey.
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2.3.1 Job Shop Scheduling (Directed Graphs)

In this type of application the subtasks require the results of other subtasks before starting 

their execution, and on completion they pass their results to consecutive subtasks. The ap-

plication can be modelled with a directed graph where a node corresponds to a subtask and 

an arc represents a data transfer between two tasks [Maheswaran et al., 1999b], The graph 

may or may not contain cycles. In the latter case it is called directed acyclic graph (DAG), 

an example of which is shown in Figure 1 (right). The subtasks may execute on different 

machines and may even require different machine architectures. This problem type can be 

found in many areas including bioinformatics [Moller et al., 1999] and defence [Ali et al., 

2002], It is also very common in manufacturing where the machines are usually not comput-

ers [Pinedo, 1995].

2.3.2 Divide-and-Conquer Applications

Divide-and-conquer applications consist of subtasks which can spawn further subtasks dur-

ing their execution. The results of the child tasks are needed by their parent tasks for further 

processing. As the decomposition of the application happens on-the-fly it is very flexible 

with respect to the number of machines that are used — which is even allowed to vary during 

runtime. The application is easily parallelised by letting the programmer annotate potential 

parallelism in the form of spawn and sync constructs. Computations that can use this model 

include geometry procedures, sorting methods, search algorithms, data classification codes, 

n-body simulations, and data-parallel numerical programs [van Nieuwpoort et al., 2001].

2.4 Other Application Characteristics

In the previous sections, an overview of different application types has been given which 

can benefit from parallel execution in a distributed environment. This overview, however, 

may not necessarily cover all aspects of an application that are relevant for the choice of a 

resource allocation protocol. Further computational characteristics which need to be consid-

ered include the following [Braun et al., 1998]:
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• Granularity: What is the granularity of the application, i.e. its ratio between com-

putation and communication? In the case of fine-grain parallelism the tasks execute 

a small number of instructions between communication cycles. This may lead to a 

high communication overhead. On the other hand it facilitates load-balancing: a large 

number of ’small’ tasks can easily be distributed.

• Task Heterogeneity: Are all tasks of the same size? If not, how greatly and with 

what properties, e.g. probability distribution, do their execution times vary for a given 

hardware platform or operating system?

• Deadline: Does the application have a deadline? Is it a hard or a soft deadline?

• Temporal Distribution: Is the complete set of tasks known a priori (static application) 

or do the tasks arrive in a real-time, non-deterministic manner (dynamic application)? 

Or is it a combination of both?

• Duration: Is the duration of the tasks known before their execution?

• Priority: What is the priority of the application?

• Memory Requirements: What are the memory requirements of the application and its 

subtasks?

• Quality-of-Service Requirements: Does the application have specific quality-of-service 

requirements, such as the level of security?

2.5 Speedup

2.5.1 Definitions

As mentioned before, the aim of parallel execution of a computational task is to minimise the 

execution time. A measure for the reduction of execution time is the speedup. It is defined 

as the ratio of sequential execution time to parallel execution time of a computation. There 

is diversity in the definitions of serial execution time which results in different definitions of 

speedup [Sahni and Thanvantri, 1995]:
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In the definition of the relative speedup, the serial time is the execution time of the paral-

lel algorithm when run on a single processor of that parallel computer. The relative speedup 

describes how well the algorithm has been parallelised. Alternatively, the serial time may 

denote the time taken by the best serial algorithm. This definition is used when an absolute 

evaluation of the algorithm is required. Since it is not always possible to determine the best 

serial algorithm, the runtime of the serial algorithm used ”in practice” is often taken (real 

speedup).

2.5.2 The Limit of Speedup: Amdahl’s Law

According to Amdahl [Amdahl, 1967], the speedup of parallel execution can never be more 

than linear. Also, in any computation, there should come a point where further task divi-

sion creates more overhead than computational speedup and does not lead to a performance 

improvement. The theoretical limit for the speedup is given by Amdahl’s Law [Amdahl, 

1967]:

For the parallel algorithm, let seq be the fraction of sequential operations in the compu-

tation, and par-1-seq  the fraction that is parallelised. The potential speedup S achievable by 

a parallel computer with N  processors performing the computation is:

5=  1 - ____ I____
^  + seq ^  +  1 - p a r

When the number of processors N  is increased, the upper limit for the speedup can be 

determined as:

6max — ,[im  par . , ~  ,N-*°° tjj- +  1 — par 1 — par

In a sense this is not really a limit, since for some applications the parallel fraction in-

creases as the workload is increased (unboundedparallelism) [Sahni and Thanvantri, 19951. 

In that case the theoretical speedup may be infinite:

lim --------- =  °°
p a r - ) l 1 — par
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If we limit the question of maximum attainable speedup to a particular instance of a 

problem, then speedup is limited for those instances that have a fixed workload associated 

with them. Two factors limit the attainable speedup [Sahni and Thanvantri, 1995]:

• The total workload. If the instance represents a total workload of u units and each 

processor performs one unit of work in one unit of time, then at most u processors 

can be gainfully used, and the parallel execution time can be as low as one. The serial 

execution time will be u, and therefore speedup can not exceed u.

• The serial component. If s of the u workload units cannot be parallelised, the parallel 

run time cannot be reduced below s+1. So, the speedup cannot exceed u/(s+l).

However, there exist applications with flexible workload per instance, for which neither 

of the two factors that limit speedup may apply [Sahni and Thanvantri, 1995],

2.5.3 Loss of Speedup

In practice there are many other reasons which may limit the speedup. The following factors 

have been identified for task execution on parallel processors [Nguyen et a l, 1996], They 

are also valid for distributed computing on multiple machines:

• Idleness: At times, processors are left idle because of insufficient (coarse-grain) par-

allelism or load imbalance.

• Communication Overhead: Communication takes place if an executing task requires 

access to data that does not currently reside on its machine. Communication overheads 

appear as the processor stalls while waiting for the data. •

• System Overhead: Even sequential programs incur system overhead because of events 

such as page faults, clock interrupts, etc. Such overheads can be more significant for 

highly parallel programs because these events typically occur on every processor. The 

asynchronous nature of these events can degrade the performance of tightly-coupled 

parallel programs.
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• Parallelisation Overhead: Parallel programs typically incur computational overheads 

which are not present in sequential programs such as per processor initialisation, work 

partitioning, and locking and unlocking on entry and exit of a critical section.

According to [Nguyen et al., 1996] the parallelisation overhead and system overhead are 

typically very small compared to idleness and communication cost.

2.6 Metrics

The speedup (see section 2.5) is an important measure for the performance improvement of 

the parallel execution of a task. However, depending on the type of task and the requirements 

of the user, various other metrics can be used for the assessment of a resource allocation 

protocol. In this section an overview will be given.

2.6.1 Performance

At first, some metrics will be discussed which characterise the system performance. These 

are the completion time, completion rate, user utility, makespan, and throughput.

Completion Time

When considering performance from the application’s point of view, the metric involved is 

often one of minimising individual task completion times [Casavant and Kuhl, 1988], The 

completion time is defined as the time elapsed from when a task arrives for scheduling to 

when it completes execution. It includes both the time spent in waiting queues and time 

spent in execution. A common metric is the mean completion time of the tasks of the entire 

workload. Another metric, the weighted completion time, is the weighted sum of the indi-

vidual task completion times [Feitelson et al., 1997], The weights may be chosen according 

to task priorities or durations.

The completion time places greater emphasis on longer tasks, as opposed to short tasks. 

This is why a normalised metric called slowdown [Feitelson and Rudolph, 1998] is some-

times employed. It is defined as the runtime on a loaded system divided by the runtime on a 

dedicated system. If the tasks have different priorities, the weighted slowdown may be used.
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Completion Rate

If the workload in the system is high and the tasks to be executed have tight deadlines, not 

all of them may be able to complete on time. In the case of hard deadlines a task will fail 

if its deadline is missed. In this so-called deadline scheduling scenario [Buyya et a i, 2000; 

Fatima, 2000; Takefusa, 2001] an important performance metric will be the completion rate, 

i.e. the ratio of tasks completed on time and all tasks submitted to the system. If the tasks 

have different priorities, the weighted completion rate can be used.

User Utility

In reality, the users of a system may often have tasks with a soft deadline, rather than simply 

wanting to minimise their completion time or to meet hard deadlines. This soft deadline may 

be expressed as a utility function whose value depends on the time when the task completes 

[Chun and Culler, 2002]. At the same time, the value depends on the importance of the 

task which may be strongly varying: e.g. a company running simulations for pharmaceutical 

research may attach much more value to its tasks than another user who is running image 

processing jobs in his spare time. As the utility of a task is sensitive to its delay, it can 

be represented by a piecewise-linear function of the slowdown which is shown in Fig. 2. 

E.g. the value could remain at its maximum Vrask,initial until a given slowdown value sl\ is 

reached and then linearly decrease until a slowdown value sl2 where it becomes zero. In such 

a scenario, which can be seen as a generalised deadline scheduling scenario, the following 

cases are possible: A task has a hard deadline if s l\-sh , a soft deadline if sl\ < sl2 < °°, and 

no deadline at all if sl2 =°°.

Makespan

When dealing with a supertask which consists of many smaller tasks, a typical goal is to 

minimise a metric called makespan [Abraham et a l, 2000; Casanova, 2001], The makespan 

is defined as the time elapsed between the submission of the first task to the system and the 

completion of the last task.
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Figure 2: Time-dependent value of tasks.

Throughput

A widely used metric for evaluating the performance from the system’s point of view is the 

throughput [Casavant and Kuhl, 1988; Ferguson et a i, 1996; IEEE, 1990], It is defined as 

the amount of work that can be performed by a computer system or component in a given 

period of time. Assuming that the performance and capacity of its resources are limited, the 

aim is usually to maximise the system’s throughput.

There is an inherent conflict in trying to optimise both, an individual task’s completion 

time and the system’s throughput [Casavant and Kuhl, 1988]. The reason is that throughput 

is concerned with seeing that all tasks are making progress. Therefore an individual task 

might not obtain the best possible service.

2.6.2 Utilisation

Another important measure is the utilisation of the machines in the system. One possible 

objective is to maximise the utilisation of the system’s resources — which is compatible 

with maximising the throughput.

Another very common goal is to obtain an even balance of the load in the system. This, 

for instance, can be done by minimising the maximum load over all machines and over the
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whole time [Azar, 1998],

2.6.3 Scalability

The term scalability is used to refer to the change in performance of the parallel system as the 

problem size and machine size or number increase. Intuitively, a parallel system is scalable 

if its performance continues to improve as we ’scale’ (i.e. increase) the size of the system 

and of the problem.

2.6.4 Stability

Stability is a concept used in domains such as the physical sciences where it is regarded 

as a property of an equilibrium. An equilibrium is stable if, after a small perturbation, the 

system returns to it ’voluntarily’. For our type of system the notion of an equilibrium is 

not exactly clear. Intuitively, a system is in equilibrium when the statistical properties of 

its performance parameters remain stationary for a given variation in the system’s external 

load. Thus, instability occurs when a small perturbation of some system parameters leads to 

a sharp and persistent deviation in the systems performance indicators [Lee et al., 1998].

2.6.5 Other Metrics

In this thesis we aim to maximise the performance as perceived by the user. Therefore, we 

mainly use the perfonnance metrics that are described in subsection 2.6.1. However, there 

exist other metrics which can be relevant in some situations: •

• Communication Costs: When dealing with the amount of traffic which is caused ei-

ther by the application itself or by the scheduler, the simplest metric is the number of 

messages exchanged. Another one is the distribution of the message size.

• Fairness: In many systems the aim is to treat all users fairly and therefore ensure that 

their tasks complete eventually. Fairness can also mean being fair to the resources by 

balancing the workload so that the utilisation of the machines is approximately the 

same (see subsection 2.6.2).
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• Cost o f Task Re-Assignments: In pre-emptive resource allocation protocols (see section 

4.4), tasks are re-assigned to other machines at execution time in order to improve 

performance. However, the re-assignments can be very costly themselves and may 

even degrade performance. Possible metrics are the number of task re-assignments, 

the amount of data that needs to be transferred for the individual task, the overhead of 

packaging up the state of the task, and the transfer delay.

• Economic Efficiency: One approach to the resource allocation problem is to use com-

putational economies (see subsection 4.3.2), which value resources and aim to achieve 

an efficient match of demand and supply. In a computational economy, one possible 

objective is to achieve economic efficiency, i.e. the resource allocation mechanism 

should help to maximise the gains of the participants. In [Levy et al., 2001] the to-

tal welfare is used as a metric of the allocation efficiency. It is defined as the sum of 

the buyers’ utilities from the services they buy at the market minus the costs of these 

services for the sellers.

• Reliability: When an application is executed in an unreliable environment, a possible 

metric is the application failure probability [Ferguson et a i, 1996],

2.7 Summary

In this chapter, we gave an overview of application types that can benefit from being dis-

tributed and executed in parallel. The main emphasis was on the application’s communica-

tion requirements and dependencies between its subtasks. We then discussed the speedup 

that can be achieved through the parallel execution. In addition to the theoretical limits, 

which are stated in Amdahl’s law, we named further factors which may reduce it in prac-

tice. Finally, we introduced several metrics that can be used to evaluate a resource allocation 

protocol. In this thesis, we will focus on those metrics which assess performance from the 

user’s point of view.
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3 Infrastructure and Middleware

For the design of a resource allocation protocol, the hardware and software infrastructure of 

the system needs to be considered. This chapter will address the relevant system properties, 

which include the machine architecture, system control, and network connections. It will 

also introduce so-called middleware, which is software that enables the communication of 

applications in a distributed system. An overview of different types of middleware platforms 

will be provided.

3.1 Machine Architecture

The machine architecture comprises various architectural features such as processor type, 

processor speed, external I/O bandwidth, memory size, etc. Different machines in the system 

may or may not be able to execute a particular computational task. This will depend not only 

on the machine’s hardware architecture but also on the operating system and the software that 

is installed. For a given computation it is also necessary to know how greatly and with which 

properties the execution times vary across different machines in the system. In the simplest 

case all machines are the same, and there are no significant variations (identical machine 

case). In the related machines case the relations of execution times on different machines 

are the same for all tasks. If certain machines perform better (or worse) for different types of 

computation tasks, this is called the unrelated machine case [Azar, 1998],

3.2 System Control

The scheduler of a system, and hence the resource allocation protocol, may have different 

levels of control over its resources. Either it may have complete control over all machines in 

the system, or it may have to deal with external users which are also consuming resources. 

In the case of external users a background load on the resources will have to be assumed.

Also, one needs to distinguish between closed and open systems. In an open system the 

users and resource providers will be able to enter and leave the system over time. In such 

a system the protocol will have to deal with issues such as user authentication, admission
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control, and resource accounting. Another issue which must be considered is whether the 

number of machines under the system’s control is fixed or variable. The latter will usually 

be the case for open systems. It is also important to know how tasks — which in this context 

are usually referred to as jobs or processes — are scheduled on the individual machines. 

Can only one task execute at a time, or are the machines time-shared? In the latter case, the 

question is how the CPU time is allocated to the tasks — and whether the resource allocation 

protocol can influence it. A task’s CPU share can be proportional to its priority but also other 

issues may be considered, e.g. real-time requirements of a task, starvation of low priority 

tasks, etc. In general, the scheduling of tasks will depend on the operating system — or a 

dedicated scheduler that is used.

3.3 Network Connections

For certain types of applications, in particular communication-intensive tasks, the network 

infrastructure plays an important role. A widely used metric for network performance is 

the bandwidth (also referred to as throughput): it is defined as the amount of data that can 

be transferred between two machines per second. Latency is another essential measure of 

network performance. It describes the time passed between the dispatch of a message by 

the sender and its arrival at the receiver. Normally, it only includes the network traversal 

time. Sometimes, also the source queueing time is included in this figure [Chien and Kon- 

stantinidou, 1994], Furthermore, the time of marshalling and unmarshalling the data may 

be added to it. For the protocol design, it is important to know how the machines in the 

system are interconnected. Are all machines in a Local Area Network (LAN) or distributed 

all over the Internet? Does the system consist of a collection of workstation clusters, or are 

the machines on random geographic locations? The system might also have to deal with 

information (packet) losses and variations of the performance characteristics over time.

3.4 Middleware

Having briefly discussed the hardware infrastructure, we now introduce the software infras-

tructure, which is required for any type of distributed computing: middleware. Middleware
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is a general term for software that connects otherwise separate applications. There exist var-

ious middleware platforms with different properties and application domains. These will be 

discussed in the remaining sections of this chapter. At first, we introduce the most widely 

used middleware platforms: the message passing libraries MPI [Pacheco, 1997] and PVM 

[Geist et al., 1994] for parallel computing, and the distributed object computing platforms 

RM1 [Sun Microsystems, accessed in 2003b], CORBA [Object Management Group, 1992], 

.NET [Platt and Ballinger, 2002], and Web Services [Webopedia.com, accessed in 2004] for 

distributed systems. Next, we discuss several mobile agent platforms [Hohl, accessed in 

2003], in which code can autonomously migrate between different hosts.

Recently, middleware has been incorporated in platforms which are dedicated to Grid 

computing. As an example, we will describe the very popular Globus Toolkit [Foster and 

Kesselman, 1997], Finally, we discuss other platforms which do not target Grid Comput-

ing but can provide a powerful infrastructure, namely Jini [Sun Microsystems, accessed in 

2003c], JMS [Sun Microsystems, accessed in 2003a], JXTA [Sun Microsystems, accessed 

in 2003d] and JADE [Bellifemine et a l, 1999],

3.5 Distributed Object Computing

In the early 80s, the Unix operating system with its dedicated programming language C 

was enhanced by remote procedure calls (RPCs), which made it possible to access remote 

procedures. Similarly, Java was later extended to cater for remote method invocation (RMI) 

[Sun Microsystems, accessed in 2003b],

The heterogeneity of many different RPC implementations led to the development of 

the Common Object Request Broker Architecture (CORBA) [Object Management Group, 

1992]. The core of the object management architecture is an object request broker (ORB), 

which enables an object to request an operation execution from another, possibly remote, 

object. The objects can be very heterogeneous in the sense that they can be implemented in 

different programming languages and they can be running on different hardware platforms 

with different operating systems.

While CORBA has been designed for tightly-coupled applications, Web Services [We-
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bopedia.com, accessed in 2004] provide a standardised way of integrating loosely-coupled, 

web-based applications. They use the XML, SOAP, WSDL, and UDDI open standards over 

an Internet protocol backbone: XML is used for tagging the data, SOAP for transferring it, 

WSDL for describing services, and UDDI for listing the services that are available.

An increasingly popular framework is Microsoft’s .NET [Platt and Ballinger, 2002] which 

is compatible with Web Services and offers a similar functionality as CORBA. Interoperabil-

ity is achieved by compiling the programming language into intermediate code, a concept 

similar to the Java bytecode. Unlike in CORBA, the developer does not need to provide 

interface definitions for the communicating programs.

3.6 Message Passing Libraries (MPI, PVM)

While distributed object computing has been geared towards distributed systems in general, 

high performance computing on multi-processor platforms has motivated message-passing 

libraries. Two prominent message-passing libraries are PVM, the parallel virtual machine 

[Geist et al., 1994], and MPI, the message-passing interface [Pacheco, 1997],

MPI’s main motivation is portability of software for massively parallel processors (MPP). 

Before the standardisation of MPI, software of MPP was not re-usable, since different ven-

dors used proprietary message-passing libraries. To overcome this problem without compro-

mising advantages of proprietary solutions, MPI’s main objectives are portability of parallel 

applications, high performance, and a large set of point-to-point communication routines.

In contrast to programming MPPs with MPI, PVM allows a user to view a network of 

heterogeneous hosts as a single large parallel computer. PVM takes care of different data 

formats of the heterogeneous platforms and thus achieves portability in a more general sense 

than MPI: while MPI caters for portability of software from one platform to another, PVM 

provides the infrastructure to make different, heterogeneous platforms transparently work 

together. The network underlying PVM is also re-configurable at run-time, such that hosts 

can be added and removed and processes notified about the changing configuration.
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3.7 Mobile Agents

Mobile agents are objects comprising data and code, which can decide themselves, when to 

move to another server. This autonomy adds a further degree of flexibility: as decisions Con-

cerning migration are taken locally by the agents, they can be used to provide a decentralised 

resource allocation protocol.

Historically, mobile agents are based on work carried out in the 80s on process migra-

tion and on distributed object computing [Shoch and Hupp, 1982; Jul et al., 1988; Artsy and 

Finkel, 1989; Douglas and Ousterhout, 19911. The combination of the two areas, i.e. to mi-

grate distributed objects was first coined in [Jul et al., 1988], However, only with the spread 

of Java, researchers became widely interested in object mobility. Java has been so crucial 

for the development of mobile agents, as it has been designed as an architecture-independent 

network-centric programming language, which provides many of the requirements to imple-

ment object mobility as a standard feature. With Java’s Remote Method Invocation (RMI) 

it is very simple to use mobile objects. RMI has been developed to support the invocation 

of methods on remote hosts, but it also caters for mobility, however, indirectly. When local, 

serialisable objects are passed as parameters to remote methods, RMI copies the object to the 

target machine. If the object at the source is then destroyed, it has effectively migrated from 

one machine to another. To support code mobility of classes used by the migrated object, 

Java provides dynamic class loading [Liang and Bracha, 1998],

Strong vs. Weak Mobility

In general, there are two types of mobility: strong mobility and weak mobility. In strong 

mobility, the execution state of the object is preserved during migration, whereas in weak 

mobility the code is restarted on arrival at the remote destination. Java only supports weak 

mobility, because it does not allow access to the execution stack. Nonetheless, it has been 

used by many mobile agent platforms.

Mobile Agent Platforms

There is an increasing number of mobile agent platforms of which a comprehensive overview 

is given by the Mobile Agent List [Hohl, accessed in 2003], In this section some well-known
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Java-based platforms will be briefly described.

Mole [Strasser et a l, 1996] was the first Java-based mobile agent framework and was 

developed at the University of Stuttgart. It provides the notion of places, the executing 

environments, where user agents are able to interact. They can communicate with the system 

resources via the so-called service-agents which are always stationary. Mole uses RMI for 

the communication and supports weak mobility.

Another popular framework is Aglets [Lange and Oshima, 1998b] which has been devel-

oped by the IBM Tokyo Research Laboratory and aims to facilitate the encoding of complex 

agent behaviour with moderate effort [Lange and Oshima, 1998a], It provides enhanced fa-

cilities that allow the agents to co-operate with web browsers and Java applets. In addition 

to RMI, Aglets allows communication via TCP sockets.

Grasshopper [Baeumer et al., accessed in 2003] has been the first mobile agent environ-

ment which is compliant to the MASIF standard [Milojicic et al., 1998], MASIF is based 

on CORBA and aims to provide inter-operability between different mobile agent platforms. 

Grasshopper also supports the FIPA specifications [FIPA, accessed in 2003], which has been 

designed to facilitate the communication between different agent platforms. The platform 

uses a proprietary ORB but can also be run using RMI or plain socket connections.

In contrast to the previous platforms, D ’Agents [Rus et al., 1997] is a Java-based platform 

which supports strong mobility: When an agent moves to another server, the complete state 

is packaged up, and the agent’s execution continues after arrival. However, this facility has 

come with a high price. In order to support this mechanism, the Java Virtual Machine had to 

be modified, and the platform will only work with this specialised JVM.

3.8 Grid Computing Platforms: Globus

There exist a number of frameworks which are dedicated to Grid Computing [Baker et al., 

2001; Foster and Kesselman, 1998]. These include Globus [Foster and Kesselman, 1997], 

Unicore [Pallas, accessed in 2003], the Load Sharing Facility [Platform Computing, accessed 

in 2003] and Legion [Natrajan et al., 2001], A very popular one is the Globus Toolkit: It 

implements parts of the Open Grid Services Architecture (OGSA) standard [Foster et al.,
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accessed in 2004], which is based on Web Services concepts and technologies. Globus 

provides a software infrastructure that enables applications to handle distributed computing 

resources as a single virtual machine. It provides a set of mechanisms for communication, 

resource discovery, resource allocation and data access, which form a basic infrastructure 

for a computational Grid. It also has a security infrastructure which allow its deployment in 

an open environment. The toolkit consists of several components each of which defines an 

interface and an implementation for various machine architectures and operating systems. 

A major drawback of the framework is that it has been developed in C language: therefore 

several versions have to be maintained for different machine architectures and operating 

systems.

3.9 Other Distributed Computing Platforms

Several other platforms do not target Grid Computing but can still provide a powerful in-

frastructure for such applications. Some well-known platforms are Jini [Sun Microsystems, 

accessed in 2003c], JMS [Sun Microsystems, accessed in 2003a], JXTA [Sun Microsystems, 

accessed in 2003d], and JADE [Bellifemine et a l, 1999]. These will be discussed in this 

section.

Jini

Jini [Sun Microsystems, accessed in 2003c] is Sun Microsystem’s proposed architecture for 

embedded network applications. It provides a lookup serxnce that enables devices to plug 

together to form an impromptu distributed system. Its communication infrastructure is not 

bound to any specific middleware. However, it is mainly used in combination with RMI. In 

contrast to mobile agent platforms, Jini does not support active or autonomous objects. How-

ever, the use of passive mobile objects in combination with Jini’s lookup service provides a 

powerful infrastructure which is suitable for many distributed applications [Waldo, 2001],

JXTA

JXTA [Sun Microsystems, accessed in 2003d] is an open source project which has been 

started by Sun. It is a set of open protocols that is supposed to allow any connected device on
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the network ranging from cell phones and wireless PDAs to PCs and servers to communicate 

and collaborate in a peer-to-peer manner. JXTA peers create a virtual network where any 

peer can interact with other peers and resources directly, even when some of the peers and 

resources are behind firewalls or are on different network transports.

Java Message Service (JMS)

In contrast to CORBA or RMI, Sun’s Java Message Service (JMS) [Sun Microsystems, ac-

cessed in 2003a] is designed for asynchronous communication in loosely coupled systems. 

It can guarantee the delivery of a message to its recipient. For a user to participate in the sys-

tem, authentication is required. JMS supports various communication mechanisms including 

publish-subscribe messaging. It is an open standard that is supported by several vendors, and 

also open source implementations are available.

Java Agent Development Framework (JADE)

JADE [Bellifemine et a i, 1999] is a very popular middleware platform in the agent research 

community in Europe. It is FIPA-compliant IFIPA, accessed in 2003] and thus can commu-

nicate with other FIPA-compliant agent platforms. JADE provides a rich API which enables 

the developer to build an agent-based distributed system with moderate effort. Among other 

features it supports agent behaviours, asynchronous messaging, and multiple communica-

tion protocols, including RMI, Corba, HTTP, and JMS. It provides mechanisms for resource 

discovery and several security features. Within a local domain it supports mobile agents via 

RMI.

3.10 Summary

In this chapter we addressed the different properties of the system’s infrastructure which need 

to be considered when distributing applications for execution on remote resources. These in-

clude the machine architecture, the network connections, and the level of control that the sys-

tem’s scheduler has over the resources. We then introduced middleware, which provides the 

software infrastructure for executing distributed applications. Several middleware platforms 

have been discussed, including message passing libraries, distributed computing platforms,
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mobile agent platforms, and Grid computing frameworks.

So far, we have discussed the relevant aspects of the applications that can benefit from 

being executed in parallel and of the systems in which they can be deployed. Since the 

objective of this thesis is to evaluate the performance of market protocols in computational 

clusters and Grids, the next chapter will provide a survey of various types of resource allo-

cation protocols for such environments.
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4 Resource Allocation Protocols

In this chapter a survey of different resource allocation protocols for computational clusters 

and Grids 8 will be given. The protocols examined here can be classified as online or dynamic 

resource allocation protocols, where the decisions concerning the allocation of tasks are 

taken at run-time. According to the direction of our work, the main focus of this survey will 

be on market protocols. However, other approaches will also be discussed.

4.1 Resource Allocation Problem

At first, we will briefly describe the resource allocation problem which will be tackled. We 

assume a system with several computational resources which are defined by their speed and 

availability. Due to background load, the latter may vary over time. Computational tasks are 

arriving to the system and need to be allocated resources. They have different priorities — 

which may or may not be time-dependent. The tasks may either be independent or be part 

of larger supertasks. The system is assumed to be geographically distributed, and therefore 

communication delays need to be taken into account.

The problem is how to allocate resources to the tasks so that a given performance metric, 

such as the mean completion time or the makespan, is optimised. This problem is NP- 

complete when computed offline 9, i.e. when all task arrivals and load variations are known 

before making the allocation decisions [Garey and Johnson, 1995]. For the online problem 

— where the events in the system are not known in advance — it is not even possible to 

obtain the optimal allocation. However, good results can be achieved with heuristics which 

will be described in this chapter.

8The differences between clusters and Grids have been briefly discussed in section 1.2: Grids are usually 
larger than clusters. Users and service providers are geographically distributed and belong to different organi-
sations, with heterogeneous platforms and varying reliability and availability. Furthermore, the parties involved 
have different priorities, requirements, and goals, making resource management even harder.

9Note that the offline-computation of a solution is only of theoretical interest. It is often used to assess the 
quality of a solution that has been computed online, i.e. at runtime.
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4.2 Classification of Resource Allocation Protocols

The aim of the resource allocation protocols discussed in this thesis is to maximise the bene-

fit of the users who want to execute their tasks on the resources. To achieve this, the allocation 

decisions need to be based on the utilisation and performance of the machines available and 

on the requirements of the tasks 10. There is a large number of different approaches which 

we classify according to the following criteria:

• State-based vs Model-based: Are the allocations based on a current snapshot of the 

system state (state-based) or on a model which predicts the system state (model-based 

or predictive)?

• Preemptive vs Non-Preemptive: Are tasks assigned to hosts once (non-preemptive) and 

then stay there, or can they migrate if it turns out at a later stage that it is advantageous 

to leave the machine {preemptive)?

• Cooperative vs Competitive: Are all parts of the system working towards a common, 

system-wide goal {cooperative) or do self-interested autonomous entities take deci-

sions regarding the use of their resources (competitive)?

• Centralised vs Distributed: Does the responsibility for the allocation of tasks reside at 

one single location (centralised) or is the decision-making distributed among several 

machines (distributed)?

The following survey is summarised in Figure 3. The table provides additional informa-

tion, such as the underlying middleware and the organisation of the system.

4.3 State-based, Non-Preemptive Resource Allocation

In state-based approaches to resource allocation, information about the current system state 

is used to decide at which host to start a task. The quality of this approach depends on the 

amount of state data available. Gathering the data is expensive but leads to more accurate

10Please note that in literature the terms scheduling and load-balancing are often used when referring to 
what we mean by resource allocation. In this thesis we will use these expressions interchangeably.
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decisions. In non-preemptive resource allocation the task cannot be migrated elsewhere once 

it was launched on a host. Since this form of resource allocation is easy to implement and 

can lead to good results, it is widely adopted. In this section we review several techniques 

which are state-based and non-preemptive. After introducing several conventional schedul-

ing heuristics we move on to systems which use market protocols.

4.3.1 Non-Competitive Protocols

Finding the optimal schedule of tasks online will often be infeasible because of the compu-

tational cost — or because the information about the system is incomplete. For this reason 

heuristics have been developed which aim to find a sufficiently good solution. Heuristics 

make assumptions about the computational tasks or the system resources. A very simple 

example is the ’’Strawman” Round-Robin protocol: it assumes that all resources perform 

equally well and that all tasks to be scheduled are equally important. In this section, several 

conventional (i.e. non-economic) heuristics will be described.

Shortest Job First (SJF), Min-min

Shortest Job First (SJF) [Chun and Culler, 2002] allocates the shortest task first for which it 

selects the best resource that is available. This strategy is useful if the goal is to minimise 

the mean slowdown of the tasks. Though, it also minimises the mean completion time. 

The idea behind it is that short tasks suffer a larger relative slowdown than longer ones if 

they are delayed by the same amount of time. Hence, allocating the shortest job first will 

usually result in a lower mean slowdown of all tasks than e.g. a first-in-first-out (FIFO) 

protocol. For the unrelated machine case a generalised version of Shortest Job First called 

Min-min [Casanova et a i, 2000; Maheswaran et a i, 1999a] can be used: Min-min tentatively 

schedules each task to each resource and computes the minimum completion time (MCT). 

For resources which are unavailable at the time, the calculation of the MCT considers the 

currently executing and already scheduled tasks. In Min-min the task with the minimum MCT 

is scheduled first. Note that in dynamic environments the calculation of the MCT requires 

estimates of the resource performance and task size, in which case this heuristic becomes a 

model-based resource allocation protocol, see subsection 4.5.
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System / Authors Protocol Computation Middleware T M PE Org
Streit et al. SJF, LJF Ind. tasks n/a S - - C

Maheswaran et al. Min-min, etc. Ind. tasks n/a S - - c
Casanova et al. Min-min, etc. PSAs n/a S - - c
Abraham et al. GA, SA, TS PSAs n/a s - - c
v. Nieuwpoort et al. RS,RP,CHS,CLS,CRS D & C Satin s - ( / ) d
Spawn Second Price Auction D & C C, RPC s / ( / ) d
Ferguson et al. Auction protocols Ind. tasks n/a s / - d
ERA First-Price Auction Processes n/a s / - d
Chun et al. First-Price Auction Ind. tasks n/a s / - C

POPCORN Auction protocols Parallel appi. Applets s / - c
CPM Economic protocols Parallel appi. RMI, JXTA s / - d
MAJIC Reverse auction Serv. requests Jini, RMI s / - C

Dynasty Brokering D & C C s / ( / ) h
OCEAN Brokering Parallel appi. Java, .NET s / - d
G-Commerce Commodity market Ind. tasks n/a s / - C

Traveler Autonomous agents Parallel appi. RMI s - / d
MATS Autonomous agents Parallel appi. Voyager s - / d
FLASH Autonomous agents Parallel appi. Voyager s - / d
Keren et al. Autonomous agents Parallel appi. n/a s - / d
Bredin et al. Proportional share Mobile agents D’Agents s / d
Harchol-Balter et al. Task runtime prediction Processes Unix m - / C

NWS Performance prediction n/a n/a m - - n/a
Challenger Bidding Ind. tasks n/a m / - d
Nimrod-G Economic protocols Globus PSAs m / - h

Abbreviations:
T: type of resource allocation (s=state-based, m=model-based), M: market protocols ( / / - ) ,  PE: allows 
pre-emption/migration ( / / - ) ,  Org: organisation (c=centralised, d=distributed, h= hierarchical), ind. tasks: 
independent tasks, PSAs: parameter sweep applications, D & C: divide-and-conquer applications, serv. 
requests: service requests.

References:
Streit et al.: [Streit, 2001], Maheswaran et al.: [Maheswaran et al., 1999a], Casanova et al.: [Casanova et al., 
2000], Abraham et al.: [Abraham et al., 2000], v. Nieuwpoort et al.: [van Nieuwpoort et al., 2001], Spawn: 
[Waldspurger et al., 1992], Ferguson et al.: [Ferguson et al., 1996], ERA: [Messer and Wilkinson, 1996], 
Chun et al.: [Chun and Culler, 2002], POPCORN: [Nisan et al., 1998], CPM: [Buyya and Vazhkudai, 2001], 
MAJIC: [Levy et al., 2001], Dynasty: [Backschat et al., 1996], OCEAN: [Padala et al., 2003], G-Commerce: 
[Wolski et al., 2001], TRAVELER :[Wims and Xu, 1999], MATS: [Ghanea-Hercock et al., 1999], FLASH: 
[Obeloer et al., 1998], Keren et al.: [Keren and Barak, 1998], Bredin et al.: [Bredin et al., 1998], 
Harchol-Balter et al.: [Harchol-Balter and Downey, 1997], NWS: [Wolski, 1997], Challenger: [Chavez et al., 
1997], Nimrod-G: [Abramson et al., 2002],

Figure 3: Overview of systems
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Longest Job First (LJF), Max-min

The opposite strategy, Longest Job First (LJF) [Streit, 2001], can be appropriate if the objec-

tive is to minimise the makespan (see subsection 2.6.1) of a set of tasks which belong to a 

larger application. The expectation is to overlap long-running tasks with short-running ones. 

A generalised version of LJF for the unrelated machine case is Max-min [Casanova et a i, 

2000; Maheswaran et al., 1999a]: It schedules the task with the maximum MCT first.

Sufferage

Sufferage also aims to minimise the application makespan. The rationale behind this heuris-

tics is that a machine should be assigned to a task that would suffer the most if not assigned 

to it. For each task its sufferage value is defined as the difference between its best MCT and 

its second-best MCT. Tasks with high sufferage value will take precedence. In [Casanova 

et al., 2000], an extended heuristic called XSufferage is proposed which is designed for the 

allocation of a parameter sweep application in a dynamic Grid environment. It takes advan-

tage of file sharing and, according to the simulation results, achieves better performance and 

is more tolerant to errors in the estimated execution times.

Search heuristics

There exist several search heuristics which aim to find a near-optimal solution to the resource 

allocation problem in a limited amount of time. Almost any optimisation goal is possible, 

such as minimising the completion times of the tasks or the makespan of a super-task. Ge-

netic Algorithms (GA), Simulated Annealing (SA), and Tabu Search (TS) are examples of 

popular greedy search heuristics. They will be briefly described in this section: •

• Genetic Algorithms (GA): Genetic algorithms (GA) are based on the genetic pro-

cess of biological organisms and are a popular technique that is used to find near- 

optimal solutions in optimisation problems. Possible solutions are encoded as chro-

mosomes, the set of which is called a population. The population is iteratively op-

erated on by the following steps until a stopping criterion is met: In the selection 

step, some chromosomes are removed and others duplicated based on their fitness 

value — a measure of the quality of the solution. This is followed by a crossover
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step where some chromosomes are paired and the corresponding components of the 

paired chromosomes are exchanged. Finally, the chromosomes are randomly mu-

tated, with the constraint that they still remain valid solutions [Abraham et al., 2000; 

Braun et al., 1999],

• Simulated Annealing (SA): Simulated Annealing (SA) exploits an analogy between the 

way in which a metal cools and freezes into a minimum energy crystalline structure 

(the annealing process) and the search for a minimum in a more general system. It is 

an iterative technique that has the ability to avoid becoming trapped at local minima: 

it uses a procedure which probabilistically allows poorer solutions to be temporarily 

considered in order to obtain a better search of the solution space. This probability is 

based on a system temperature that decreases for each iteration. As the system tem-

perature cools, it becomes more difficult for currently poorer solutions to be accepted 

[Abraham et al., 2000; Braun et al., 1999],

• Tabu Search (TS): Tabu search is a solution space search that keeps track of the re-

gions of the solution space which have already been searched so as not to repeat a 

search near these areas. It is a meta strategy for guiding known heuristics to overcome 

local optimality and has become an established optimisation approach that is rapidly 

spreading to many new fields [Abraham et al., 2000; Braun et al., 1999],

In [Braun etal ,  1999] these heuristics are applied to the offline scheduling of independent 

tasks onto heterogeneous resources in a cluster (unrelated machine case, see section 3.1). 

The aim is to minimise the makespan. The observation is that Genetic Algorithms (GA) 

perform best in most situations and also outperform other heuristics such as Min-min and 

Max-min.

The work presented in [Abraham et al., 2000] deals with the problem of how tasks can 

be allocated online to geographically distributed computational resources. For the allocation 

a global scheduler is used, and the aim is to generate the schedules in a minimum period 

of time. The authors use simulations to compare the performance of GA, SA, TS, and hy-

brid random search techniques GA-SA and GA-TS. They find that the GA-SA has better
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convergence than GA whereas GA-TS improves its efficiency.

Random Stealing, Random Pushing

Random Stealing (RS) and Random Pushing (RP) are well-known load balancing heuristics, 

used both in shared-memory and distributed-memory systems [van Nieuwpoort et al., 2001]. 

Both heuristics are distributed in the sense that scheduling decisions are taken locally by the 

processors. At the beginning of the computation, all jobs of the application are distributed 

over the processors in the system. (During the execution the number of jobs may rise, e.g. 

in case of divide-and-conquer computations, see subsection 2.3.2.) Each of the processors 

maintains a queue for jobs which are waiting for execution. In Random Stealing, each pro-

cessor executes its jobs until the queue becomes empty. Then, the processor attempts to 

steal a job from a randomly selected peer, repeating steal attempts until it succeeds. This ap-

proach minimises communication overhead at the expense of idle time: No communication 

is performed until a node becomes idle, but then it has to wait for a new job to arrive.

In Random Pushing, a processor, whose queue exceeds a certain length, takes a job from 

its queue and sends it to a randomly chosen peer. This approach aims to minimise proces-

sor idle time because jobs are pushed ahead of time, before they are actually needed, but 

comes at the expense of additional communication overhead. In [van Nieuwpoort et al., 

2001], Random Stealing, Random Pushing, and several improved variants have been eval-

uated for a range of divide-and-conquer applications (see subsection 2.3.2) in a wide-area 

setting. These variants included Cluster-aware Hierarchical Stealing (CHS), Cluster-aware 

Load-based Stealing (CLS), and Cluster-aware Random Stealing (CRS). The applications 

were implemented on top of the Satin system, a middleware in which the communication 

mechanisms of Java have been optimised for high-performance computing. In most experi-

ments, Cluster-aware Random Stealing performed better than the other approaches.

4.3.2 Market Protocols

Market-based approaches to resource allocation provide an intuitive way of representing the 

system state and balancing the workload: they value resources and aim to achieve an efficient 

match of supply and demand. They satisfy some basic requirements for a Grid setting, as
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decisions about whether to consume or provide resources are taken locally by the clients or 

service providers. The use of currency provides incentives for service providers to contribute 

resources. It also forces the clients to act responsibly, as, due to their limited budget, they 

cannot afford to waste resources. Recently, market-based approaches to resource allocation 

have received much theoretical interest [Ferguson et al., 1996; Sandholm, 2000; Wellman et 

ai, 2001], They have not only been applied to the allocation of computational resources but 

also in other fields, e.g. in 'information filtering economies’ [Christoffel, 2001; Kephart et 

al., 2001; Moss, 1999] or in the freight domain [Preist et al., 2001].

Types of Protocols

For transactions between buyers and sellers different pricing mechanisms can be employed. 

Some systems use only a price, and match offers and bids. Others employ dynamic pricing 

where the sellers set their prices and may change them at any time, depending on the buyers’ 

demand [Bredin et al., 1998; Kephart et al., 2001]. Another approach are auctions [Kagel, 

1995] where buyers bid for resources according to a particular auction protocol.

A very familiar auction protocol is the English auction, in which a seller advertises a 

resource whose price is gradually increased as the bids come in — and the highest bidder 

wins. In a Dutch auction, the auctioneer starts with a high price which is decreased until a 

buyer is willing to pay it. In a sealed-bid auction, there is only one round of communication: 

All buyers submit sealed bids, and the highest bidder wins. There are different types of 

sealed bid auctions: In a first-price auction, the winning bidder pays a price which is equal 

to his own bid, whereas in the second-price auction, he only has to pay the second highest 

bid. The idea behind the latter type of auction, which is also called Vickrey auction, is 

that buyers are encouraged to express their true valuations of the resource, thus preventing 

strategic behaviour.

A different type of auction is the double auction which is a many-to-many protocol, and 

not a 1-to-many protocol as the above. Multiple buyers and sellers submit their bids and 

ask prices, and matches are made by the marketplace. A double auction can either be a 

continuous auction where transactions are carried out immediately whenever bids or offers
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change I1, or a periodic auction in which the transactions are carried out only at periodic 

intervals.

Auctions in Clusters

Spawn [Waldspurger et al., 1992] has been among the first systems which employed market 

protocols in a computational cluster. It used Vickrey auctions for the allocation of divide- 

and-conquer applications (see subsection 2.3.2) in a cluster of workstations. Ferguson et al. 

[Ferguson et al., 1996] developed a load-balancing economy for the allocation of indepen-

dent jobs in a network of processors. These jobs have various preferences on the service they 

wish to receive: best price, best service time, or a combination of the two. Several auction 

protocols are examined including English, Dutch, Hybrid, and Sealed Bid auctions.

The ERA system [Messer and Wilkinson, 1996] provides an operating-system level 

framework for resource allocation in a network of workstations. Its goal is to dynami-

cally maximise performance whilst maintaining fairness between competing processes. A 

multiple-unit first-price auction is held at each workstation, and agents are used to dissem-

inate resource information to other markets. The auction results in proportional sharing: 

it provides response time proportional to the money paid — and hence to the relative im-

portance of the process. In an experiment, where a matrix multiplication computation was 

emulated, the framework could be shown to be scalable and low-overhead.

In a more recent work by [Chun and Culler, 2002] a first-price auction is used for the 

allocation of parallel tasks in a homogeneous computational cluster — which is modelled as 

a single but divisible resource. In simulations, the performance of the auction is compared 

to that of conventional protocols such as Shortest Job First (SJF, see subsection 4.3.1). The 

authors use the time-dependent user utility as performance metric (see subsection 2.6.1) 

which they consider to be a more realistic performance measure than e.g. the task completion 

time. The results show that using a first-price auction instead of traditional approaches can 

substantially increase the value delivered to the user.

Spawn, ERA, and the work by Ferguson use architectures in which auctions are held at 

each machine in the network. These architectures may be suitable for computational clusters

11A similar protocol is used at the New York stock exchange.
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but will be problematic for a Grid: In a Grid the communication delays are higher. Also, 

the ownership of resources is distributed, leading to security problems. The architecture 

used by Chun et al. is also limited to a cluster because the assumption of having a single, 

homogeneous resource is not valid for a Grid.

Auctions: Grid-wide

POPCORN [Nisan et al., 1998; Regev and Nisan, 1998] has been one of the first market- 

based systems to target resources on the Internet. It provides a market infrastructure that 

uses Applets to distribute large applications which can be broken up into independent com-

putations. These include Genetic Algorithms, Simulated Annealing, Brute Force Search, and 

Code Breaking. A similar approach is used in the Compute Power Market (CPM) [Buyya and 

Vazhkudai, 2001] which also targets low-end personal computing devices as idle resources of 

CPU power. The system supports various economic models including the commodity mar-

ket model, contract-net, and auctions. An important feature is its distributed infrastructure 

which consists of multiple interacting markets. Both POPCORN and the Compute Power 

Market use architectures which could be deployed in practice.

Reverse Auctions

MAJIC [Levy et al., 2001] is a marketplace for the allocation of distributed resources which 

is based on Sun’s Jini [Sun Microsystems, accessed in 2003c], The system consists of a 

central marketplace with several buyers and sellers. In contrast to the previous systems 

it handles multiple parameters in the specification of utilities of the buyers and the costs of 

each resource. When a buyer sends a service request to the marketplace, the system performs 

a reverse auction where all service providers can participate. The provider, that charges the 

lowest price, wins. The allocation efficiency of MAJIC is studied both theoretically and 

experimentally. The authors report that load-balancing is achieved as a by-product.

Brokering

Two other systems, Dynasty [Backschat et al., 1996] and OCEAN [Padala et al., 2003], 

avoid the communication overhead of auctions. Dynasty allocates the subtasks of a divide- 

and-conquer application to machines in a computational cluster. It employs a hierarchical
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brokering architecture in which the prices of the resources are periodically fixed. In addi-

tion, fees for migration and data transport services are introduced, according to the distance 

between source and destination. The local cluster brokers determine several statistics (e.g. 

load indices) and pass them up the hierarchy. Also, global knowledge is passed down. The 

brokers evaluate the qualification of their subbrokers in order to allocate the tasks efficiently.

The aim of OCEAN [Padala et al., 2003] is to provide a scalable market infrastructure 

where resources like CPU time, associated memory usage, and network bandwidth are the 

traded commodities. It operates on a peer-to-peer network for which the authors developed 

efficient matching protocols. A buyer, who is looking for resources, needs to specify resource 

requirements as well as various constraints on the acceptable sales agreement details, such 

as price details and method of payment. The buyer’s trade proposal is propagated through 

the network, maximising the number of matches found. After a successful match, the buyer 

and seller will enter detailed negotiations. OCEAN’S peer-to-peer architecture is likely to be 

more scalable than a centralised system. However, the lack of a single, trusted marketplace 

leads to additional security problems.

Commodity markets

Another type of market mechanism uses the commodity market model: at the marketplace 

an equilibrium of demand and supply is iteratively determined by adjusting prices based 

on the supply and demand functions of the producers and consumers. The authors of G- 

Commerce [Wolski et al., 2001] apply this approach to computational Grid settings. They 

study a market of hypothetical resource consumers (users and Grid-aware applications) and 

resource producers (resource owners who sell their resources on the Grid). In a simulation, 

the authors consider an independent task scenario in which they compare the performance of 

commodity markets to auctions. As performance metrics, mainly economic properties like 

equilibrium and price stability are considered. However, the utilisation of resources and the 

throughput of tasks are also compared. The authors conclude that commodity markets are a 

better choice for controlling Grid resources than auctions. An outline of how the examined 

market model could be implemented in practice is given in [Wolski et al., 2003],
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None of the above systems allows true task migration. However, Spawn and Dynasty, 

which deal with the allocation of divide-and-conquer applications (see subsection 2.3.2), 

allow tasks to send subtasks to remote machines. Preemptive protocols will be discussed in 

the following subsection.

4.4 State-based, Preemptive Resource Allocation

In state-based, non-preemptive approaches to resource allocation, the task is stuck on one 

machine once launched. However, if the environment is very dynamic, it may be advanta-

geous for a task to migrate elsewhere. Operating systems researchers already investigated 

how the allocation of resources can be optimised with mobility [Cabrera, 1986; Harchol- 

Balter and Downey, 1997]. Mobile agents [Bredin et al., 1998] add a further degree of 

flexibility: tasks become agents and can decide themselves, when and where to move to, 

with a global pattern of load-balancing emerging. Also, mobile agents allow migration to 

remote networks and are therefore suitable for computational Grids.

4.4.1 Non-Competitive Protocols

There exist a number of systems which use a mobile agent based infrastructure [Ghanea- 

Hercock et al., 1999; Obeloer et al., 1998; Bredin et al., 1998; Bredin et al., 1999; Xu and 

Wims, 2000; Wims and Xu, 1999; Keren and Barak, 1998]. Three systems, TRAVELER [Xu 

and Wims, 2000; Wims and Xu, 1999], MATS [Ghanea-Hercock et al., 1999], and FLASH 

[Obeloer et al., 1998], make specifically use of autonomous mobile agents roaming the net in 

search of the best host. The resource allocation protocols in these systems can be classified 

as cooperative.

Autonomous, mobile agents

TRAVELER [Xu and Wims, 2000; Wims and Xu, 1999] allows clients to wrap their parallel 

applications as mobile agents which are dispatched to a resource broker. The broker forms a 

parallel virtual machine atop available servers to execute the agents. Instead of hosts asking 

the broker when they have capacities, the system lets its autonomous agents roam the net
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to find servers to run on. The platform is based on RMI but has been extended to support 

strong mobility of multi-threaded agents. The system’s performance has been evaluated for 

two parallel applications: sorting and LU factorisation problems.

MATS [Ghanea-Hercock et al., 1999] uses a combination of collaborative and mobile 

agents to compute large parallel applications. The system, which has been evaluated for a 

standard Genetic Programming problem, distinguishes several agent roles: A Hive is respon-

sible for managing user interaction and determining how tasks are to be distributed, while 

Queen agents are run on local servers and control several Worker threads. Specialised light-

weight mobile agents (Scouts) are used for messaging and finding idle computer resources 

on remote workstations.

In FLASH [Obeloer et al., 1998], mobile agents are used to compute a ray-tracing ap-

plication in a cluster of workstations. A system agent maintains information of the whole 

system and passes it to nodes, which keep information about the locally residing mobile 

agents. The agents migrate through the system searching for free resources. FLASH com-

bines application and system information based load management. Therefore it is able to 

react efficiently on dynamic background load and avoids unnecessary migration of agents 

with a short life span.

Additional optimisation of communication

While most of the above systems aim to optimise CPU usage, Keren and Barak [Keren and 

Barak, 1998] also optimise an agent’s location with respect to its communication partners. 

The system is geared towards improving the overall performance by a dynamic match be-

tween the available resources and the execution requirements of the agents. This is accom-

plished by agents migrating to the hosts where the agents reside with which they communi-

cate. The authors simulated a Matrix computation, for which a 30-40% improvement could 

be achieved compared to a static placement scheme.

4.4.2 Market Protocols

In [Bredin et al., 1998], a framework is presented, which provides market-based resource 

control for mobile agents. It is based on the D’Agents platform [Rus et al., 1997] and there-
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fore allows strong mobility of the agents. The agents need to travel over certain routes in the 

network on which they need to consume computational resources. To allocate resources to 

the agents, the system uses electronic cash, a banking system, and a set of resource managers. 

In the paper, fixed pricing and dynamic pricing protocols are presented. The authors’ focus 

is on seller-adjusted pricing and sealed-bid second price auction as mechanisms for dynamic 

pricing. In another publication [Bredin et al., 2001], the authors assume the use of a market 

protocol and present an algorithm for planning a mobile agent’s itinerary. It is supposed to 

guarantee the agent’s optimal completion time. The algorithm is evaluated by discrete event 

simulations with Swarm [Minar et al., 1996], In the simulations, a network model is used 

which is created with a stochastic network topology generator.

4.5 Model-based Resource Allocation

Model-based approaches to resource allocation aim to predict the duration of the tasks and/or 

the load on the resources — and thus their performance. They are much rarer, as they involve 

two very challenging problems: how to obtain an initial model and how to adapt the model 

as time passes.

4.5.1 Non-Competitive Protocols

In the area of operating systems, some researchers explored this approach and used distri-

butions of CPU load and expected process lifetime to decide if and when to migrate tasks 

[Cabrera, 1986; Harchol-Balter and Downey, 1997].

For computational Grids, the prediction of resource performance has recently received 

much attention: The Network Weather Service (NWS) [Wolski, 1997] can forecast the load 

in global computing environments where platforms like Globus [Foster and Kesselman, 

1997] are deployed. It takes periodic measurements of deliverable resource performance 

from distributed network resources and uses numerical models to dynamically generate sta-

tistical forecasts of future performance levels. The forecasts are made available to schedulers 

and other resource management mechanisms at runtime. They allow them to determine the 

future quality of service for each resource. The authors report that the results of the pre-
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dictions are more accurate than those generated from measurements of current conditions 

alone. The approach, which is based on time-series analysis techniques, performs almost 

as well as more complex methods. It is lightweight and therefore appropriate for dynamic 

computational settings [Wolski, 1997].

4.5.2 Market Protocols

A model-based approach is also used in the Challenger system [Chavez et al., 1997] which 

simulates the allocation of independent tasks. It implements load-balancing with a market 

approach — however, without money. When a task is created, a request fo r bids containing 

its priority value and information which can be used to estimate its duration is sent to the 

agents in the network. These make bids giving the estimated time to complete that task on 

their machine 12. Important parameters, which have a major impact on the system perfor-

mance, are the message delays and errors in estimating the task’s completion time. Learning 

behaviour has been introduced in order to deal with these problems.

Another model-based resource allocation protocol is used by the Nimrod-G Resource 

Broker [Abramson et al., 2002], Nimrod-G is a resource management system for schedul-

ing parameter sweep applications (see section 2.1) on globally distributed resources with 

varying quality of service. The system is an economic-driven environment which supports 

various market protocols such as the commodity market model, posted pricing, and bargain-

ing. It predicts the future performance of the resources in the system by resource capability 

measurements and load profiling.

4.6 Summary

In this chapter a survey of different resource allocation protocols for computational clusters 

and Grids has been given. Due to the topic of this thesis, the main emphasis was on market 

protocols. However, other approaches have also been discussed. We classified the resource 

allocation protocols according to several criteria: state-based vs. model-based, preemptive 

vs. non-preemptive, cooperative vs. competitive, and centralised vs. distributed.

12This approach belongs to the class of bidding mechanisms [Casavant and Kuhl, 1988].
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5 Research Objectives and Related Work

The previous chapter gave an overview of existing work on market protocols in computa-

tional clusters and Grids and introduced several conventional scheduling heuristics. Some 

of the described systems merely try the market approach, whereas others have the objective 

to improve performance. However, what is missing, is a systematic comparison of different 

market protocols, which will allow a system designer 13 to choose the most appropriate pro-

tocol for a given situation. In this chapter, we state the objectives of this thesis and discuss 

related work.

Our objectives and assumptions can be summarised as follows:

• We aim to model a marketplace for computational resources which can be applied to 

both computational clusters and Grids. We assume that the resources are not dedicated: 

Their availability may vary due to background load, which is outside the control of the 

marketplace.

• Our main focus is on independent tasks which arrive randomly and need to be allo-

cated online. These applications are very common and easy to execute on geograph-

ically distributed infrastructures. However, we also examine cases where tasks arrive 

in bursts 14.

• As resources we consider PCs which are idle most of their time and therefore can offer 

large amounts of processing power to computationally intensive applications 15. As 

these PCs belong to different users or organisations, there is a need for a marketplace 

which can provide incentives for participation.

• We consider the market as a tool to achieve an efficient allocation of resources. Our 

main focus is on the design of the protocols which are used at the marketplace. The 

choice of pricing strategies for the Clients and Servers is not the subject of this work:

13The system designer is the person who designs the marketplace and decides which resource allocation 
protocol is used.

14This is characteristic for parameter sweep applications (see section 2.1).
15In addition to this, we examine a situation where parallel applications are allocated to multiprocessor 

machines.
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We assume a managed system which has the power to enforce these strategies. Money 

has no value as such, and hence there is no need to deal with resource accounting.

• Our objective is to maximise performance from the user’s perspective, and therefore, 

we choose the performance metrics accordingly (see subsection 2.6.1). In the first 

scenario, our goal is to minimise the average completion time of the task, and in the 

second one, their weighted completion time. In the third scenario, tasks have hard or 

soft deadlines. As performance metric, we use the weighted completion rate (for hard 

deadlines) and the aggregate user utility (for soft deadlines).

• To maximise the performance metrics, the resource allocation protocols need to avoid 

unnecessary communication. All examined market protocols are double auctions of 

sealed-bid-type (’’fire and forget”), i.e. there is no complex negotiation with multiple 

rounds. They exploit techniques such as continuous auctions, periodic auctions, pro-

portional sharing, preemption, migration, and the use of reserve prices by the Servers. 

In addition to the market protocols, several conventional scheduling heuristics are ex-

amined.

• We want to be able to determine the advantages and disadvantages of the protocols 

for different situations which are characteristic for computational clusters and Grids. 

This requires a comprehensive exploration of the parameter space. We investigate the 

impact of parameters, such as the number of resources in the system, the heterogeneity 

of these resources, the amount of load and background load in the system, the local 

scheduling policy at the resources, and the communication delays.

We are aware of only few other efforts to evaluate the performance of different market 

protocols for computational clusters or Grids. They will be described in this chapter.

5.1 POPCORN

The authors of POPCORN [Nisan etal., 1998; Regev andNisan, 1998] (see subsection 4.3.2) 

use simulations to compare several market protocols for the allocation of computational re-

sources in a globally distributed system. In the simulations, the arrivals of buyers and sellers
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are modelled by Poisson processes. The buyers have valuations for the computation of their 

tasks, which are time-dependent and are expressed by a decay function. In our thesis, a 

similar scenario will be investigated.

The examined protocols are of sealed-bid-type: They require only a single round of 

communication and are efficiently computable. However, only few protocols are studied, 

which include Vickrey Auctions, Double Auctions, and Clearinghouse Double Auctions. 

The latter auction type is similar to the technique which [Wolski et a l, 2001] refer to as the 

Commodity Market Model (see subsection 4.3.2). The main difference to our work is that 

these auctions are only carried out at periodic time intervals, rather than continuously. As 

will be shown, these periodic auctions often result in poor performance.

In their simulations, the authors use other performance metrics for the assessment of the 

protocols. The focus is on economic aspects of the system, like price stability and social 

efficiency, i.e. the generated welfare of the agents — which is not the concern of our work. 

The results show that the Clearinghouse Double Auction protocol leads to the highest eco-

nomic efficiency and the best price stability. However, the experiments are limited to a few 

parameter sets, i.e. there is no systematic exploration of the parameter space.

5.2 G-Commerce

The work presented in [Wolski et a i, 2001] investigates computational economies for con-

trolling resource allocation in computational Grid settings (’G-Commerce’, see subsection 

4.3.2). The resources are traded at a central marketplace in which several consumers and 

producers participate. Simulations are used to compare the performance of commodity mar-

kets to that of Vickrey auctions. As in the work by [Nisan et a l, 1998], all transactions are 

carried out at periodic intervals, rather than immediately.

As performance metrics, the authors examine price stability, utilisation of resources, and 

throughput of jobs. The results indicate that commodity markets perform better than Vickrey 

auctions. One interesting aspect of the examined scenario is that the producers (i.e. service 

providers) set their prices based on past revenue. We believe that this technique can help to 

improve performance in certain situations, and we will therefore implement it in two of our
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protocols (CDA-RES and HBP-RES, see subsections 6.5.2 and 6.5.7, respectively).

5.3 Work by Ferguson et al.

In the work reported in [Ferguson et al., 1996], several auction protocols (English, Dutch, 

Hybrid, Sealed-Bid) are compared to non-economic strategies. In contrast to our work, the 

studied system is a cluster of processing nodes connected by a point-to-point network, and 

not a geographically distributed infrastructure with a central marketplace. At each of the 

processing nodes, tasks are generated which migrate to other nodes and seek CPU time. In 

the system, auctions are held at each processing node, rather than centrally. We believe that, 

due to its overhead, such an approach would be hard to implement in a computational Grid. 

In the simulations, a performance metric called waiting time is used. It corresponds to the 

task completion time, that we also use as metric in one of our scenarios. Its main limitation is 

that it does not consider the different priorities of tasks. According to the authors, the results 

show that the auctions can achieve better performance levels than non-economic algorithms.

5.4 Work by Chun et al.

The authors of [Chun and Culler, 2002] use simulations to examine the performance of 

market protocols in a computational cluster. In the studied scenario, the cluster is modelled 

as a single, divisible resource consisting of identical processors, which is also fully dedicated, 

i.e. without any background load. The author’s goal is to maximise the value delivered to 

the users: Users are modelled as having a utility function for each task, which measures its 

value as a function of its slowdown (see subsection 2.6.1). A task’s value declines over time 

— which can be considered a soft deadline.

As performance metric, the authors use the aggregate utility of all tasks. We will use a 

similar performance metric in one of our scenarios, in which the tasks have time-dependent 

priorities (see chapter 10).

While the main focus of our work is on independent tasks or embarrassingly parallel 

applications, [Chun and Culler, 2002] study both, sequential and highly parallel workloads. 

In the latter case, tasks are assumed to be rigid, i.e. they require a specified number of pro-
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cessors which cannot be changed (see subsection 2.2.5). We also study a case with parallel 

workload. However, our tasks are assumed to be moldable, which according to [Cime and 

Berman, 2001b] is more common than rigid tasks.

The authors study several market protocols and conventional scheduling heuristics, all of 

which carry out the transactions only at periodic intervals. They examine first-price auctions 

in which the bids for the tasks are static and also first-price auctions where the price bids 

decrease according to the tasks slowdown 16. The performance of the auction protocols is 

compared to that of commonly used conventional scheduling heuristics, such as Shortest- 

Job-First (SJF) (see subsection 4.3.1) and PRIO-FIFO. In PRIO-FIFO, the scheduler uses a 

set of FIFO queues with different priorities (see subsection 6.5.12 for more details).

The results show that, in comparison to traditional approaches like SJF or PRIO-FIFO, 

the first-price auction with time-dependent user valuations can substantially increase the 

value delivered to the user. The gain is higher for parallel load than for sequential load. 

However, in comparison to the first-price auction with static bids, improvements can only be 

observed for highly parallel workloads. The authors also found that preemption does not add 

significant value.

5.5 Work by Bredin et al.

In [Bredin et al., 2001; Bredin, 2001], a scenario is studied which is not typical for a compu-

tational Grid, but which could become relevant in the future. The authors simulate a system 

that provides market-based resource control for mobile agents (also see subsection 4.4.2). 

The agents need to travel over certain routes in a network, on which they consume different 

types of computational resources, for which they have to pay. The agents have different mon-

etary endowments, which reflect their priorities, and their goal is to complete their routes as 

fast as possible.

A proportional sharing protocol is proposed in which the rate, at which a job is processed, 

is proportional to the agent’s price bid. Each agent uses a strategy in which its price bid is

16We adapted this first-price auction with time-dependent price bids for our scenario with multiple resources 
which requires a double auction (CDA-TDB, see subsection 6.5.3).
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proportional to the congestion at a resource, i.e. the number of other agents already executing 

there. This protocol is compared to several traditional heuristics, including First-Come-First- 

Served (FCFS), Shortest-Remaining-Processing-Time (SRPT), and an equal-share policy. In 

SRPT, the shortest job is executed first (as in SJF), and an agent chooses a resource based on 

how many agents are already there. According to the authors, SRPT is locally optimal in the 

sense that it minimises the average waiting time at the resources.

In the simulations, both undersubscribed and oversubscribed systems are examined, and 

also the effects of network delays and errors of the job size estimation are investigated. 

The authors find that the cost of the prioritisation is about 8% of the overall performance. 

However, the market protocol allows to run important jobs even when the system is over-

subscribed, and can also operate under uncertainty and network delay.

It must be noted that the mean completion time of the agents, which is used as per-

formance metric in the simulations, does not reflect the priorities of the tasks. Hence, the 

comparison is not fair to the market protocol.

5.6 Work by Kim et al.

In [Kim et al., 2003] a scenario is studied, in which independent tasks with different pri-

orities are generated by a Poisson process and are allocated in a cluster of eight machines. 

There are different types of resources in the system, on which each task will have different 

execution times (unrelated machine case, see section 3.1). The value of a task’s execution 

depends on its completion time — which is, again, similar to one of our scenarios where 

tasks have time-dependent priorities (see chapter 10). The authors limit their experiments to 

an oversubscribed system, where there is not enough capacity to execute all tasks.

Several heuristics are compared, all of which operate in batch mode, i.e. the transactions 

are carried out only at periodic intervals. These heuristics include Max-Min, Min-Min (see 

subsection 4.3.1), and several variants which take into account the priorities of the tasks, 

such as Slack Sufferage and Max-Max. Slack Sufferage uses the Sufferage concept (see 

subsection 4.3.1), but also takes into account task priorities and deadlines. Max-Max is based 

on Min-Min but prioritises tasks with higher value. In the simulations, several situations are
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investigated: tasks with loose or tight deadlines, high and low heterogeneity of resources. In 

most of the experiments, Max-Max and Slack Sufferage provide the best results.

We believe that the studied scenario (unrelated machine case) is not very common, and 

that the related machine case (see subsection 3.1) will be a close approximation of reality 

in most situations. Also, we find it unrealistic that each task can be submitted with a set of 

estimates of completion times at the different resources. For these reasons, our thesis will 

focus on the related machine case.

5.7 Summary

In this chapter, we stated our research objectives and discussed related work on performance 

evaluation of market protocols. We pointed out the limitations of these approaches. If market 

protocols were examined for computational Grids, the experiments were limited to just a 

few protocols and parameter sets — a comprehensive exploration of the parameter space 

was missing. Furthermore, none of the work considered continuous auctions or proportional 

sharing. Task preemption and migration were only examined by [Chun and Culler, 2002] and 

[Ferguson et al., 1996], respectively, and only for computational clusters. In two other cases, 

the authors studied economic properties of the market rather than measuring the performance 

as perceived by the user.

In the next chapter, we will introduce our simulation model of an electronic marketplace 

for computational resources.
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6 Simulation Model

6.1 Introduction

For our evaluation of the market protocols, we decided to use discrete-event simulations, as 

they allow us to explore various scenarios and to use arbitrary values for parameters like 

message delays, processing delays, arrival times, etc. We use continuous — rather than 

discrete — simulation time: There are no discrete time-steps, and hence no restrictions to 

the granularity of the simulations. In this chapter, we present the model that we use for our 

simulations. A description of the simulation framework, which implements this model, can 

be found in chapter B of the appendix. We start by giving a detailed characterisation of 

the actors in the system and the underlying communication model. Next, we describe the 

sequence of interactions in the system which all the examined resource allocation protocols 

have in common. Finally, we introduce the protocols that are studied in this thesis.

6.2 Model Description

Our model represents an electronic marketplace for distributed computational resources. 

As shown in Figure 4 there are three main actors in the model, which are assumed to 

be distributed over the Internet: the Clients, the Servers and the Electronic Marketplace 

(EMP). Clients generate tasks which require computational resources for their execution. 

The Servers provide these resources: they advertise and sell them at the Electronic Mar-

ketplace. The accounts of the Clients and Servers are located at a Bank. In this section a 

detailed description of the model, its actors, and the underlying assumptions will be given. 

A summary of the main variables of the actors is shown in Figure 5.

6.2.1 Clients

There is a constant number of Clients Nciient in the system 17, each provided with an initial

amount of money (’endowment’) M. Each Client generates tasks at a rate which is modelled

l7In this thesis, we only consider the stationary case, i.e. system properties such as the number of Clients 
and Servers or the task arrival rate do not change over time — or they change so slowly that this cannot be 
noticed.
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Bank
Client accounts 
Server accounts

8) initiate 
payment

3 ) return 
/query result

EMP
Events:
Task arrival event 
Resource update event 
Task price adjustment event

2) process task query

1) send 
task query

Client i 
Endowment M 
Task generation ~ Poisson

Comp, size Sc
Deadline tD

Task

Input file size SD jn

Output file size SD out 
Task price bid pXask

5) execute 
task

6) update resource 
information

4) send task

7) return result

Server j 
Speed factor f Speed 
No. res. units N RU total 
Availability N RUavail 
Price per task unit p Serv

Background load -Poisson 
Comp, size Sc BG 
Res. units alloc NRU BG

Figure 4: Model of the marketplace

by a Poisson arrival process. Poisson processes have been chosen, since they are suitable 

for describing user session arrivals on the Internet [Floyd and Paxson, 2001]. Also, they 

are used in models describing task arrivals in supercomputing centres [Downey, 1997]. A 

Poisson arrival process has an exponential inter-arrival distribution. Its density function is 

given by / ( t ) =  X- , where X is the inverse of the mean time between two task creations.

6.2.2 Tasks

A task which is created by a Client is characterised by the size of its computation Sc (in task

units), the sizes of the input and output files So,in and So,out (in bytes), and — in the market

This is realistic if the task execution times are relatively short in comparison to the variations of the system 
properties.
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Entity Parameter Symbol Distribution
Client Number of Clients N C lie n t -

Endowment (’’money”) M -

Task inter-arrival time T exponential
Task Computation size S c -

Weight W T a sk uniform
Deadline tD -

Price bid P T a s k -
Input file size S D ,in -
Output file size S d ,o u 1 -

Server Number of Servers N s e r v -

Speed factor f S p e e d uniform
Number of resource units N w j o t a l -

Availability (res. units) ^ R U y O v a il -
Res. units allocated (task) N r u ,a llo c -
BG task res. units N r u ,b g -
BG task comp, size S c ,B G -
Price per task unit P S e r v -
Eff. exec, speed (total) S E  f f  j o t  a l -
Eff. exec, speed (task) s E f f -

Network Communication delay T c o m m lognormal

Figure 5: Summary of the main variables

protocols — its price bid pjask■ It may also have a deadline tp or a weight wrask■ We assume 

that the execution of a task can be spread over an arbitrarily large fraction of a resource. 

We only consider the case that there are no dependencies among the tasks. Also, the task’s 

memory requirements are not considered in our model.

Computation size distributions

The computation size Sc of a task (also called ’runtime’) can have different probability distri-

butions. These depend on the type of workload used. We use a probability distribution which 

is based on workload logs collected from large-scale systems in production use. We consider 

a model which uses a loguniform distribution for the job runtime [Cime and Berman, 2001a; 

Downey, 1997]. A distribution of a random variable X  is loguniform if P [X < x] ~  log (x).

6.2.3 Servers

There is a constant number of Servers Nserv in the system, which provide CPU resources to 

the Clients and charge them according to the protocol of the marketplace.
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We assume that each Server has a resource consisting of one or more resource units 

(RU). This allows us to model either time-shared resources (e.g. a stand-alone machine 

where a resource unit corresponds to a time share of its CPU) or space-shared resources (e.g. 

a multiprocessor machine where a resource unit corresponds to a processor). We further 

assume that a task can execute on several resource units in parallel and that each unit can be 

split and allocated to different tasks.

To enable modelling of resources with different speed, we introduce a speed factor fspeed, 

which is equal to 1.0 on a reference machine. On a reference machine, one resource unit will 

need one unit of simulation time (e.g. one second) to execute one task unit. Thus, if a 

constant number of resource units Nru ,cUIoc is allocated to a task with size Sc, the duration 

of its execution is given by Tr---- -------- .
°  N RU,alloc- JSpeed

Background Load

We also introduce background load on the Servers’ resources, i.e. a load generated by tasks 

which are outside the control of the EMP. We assume a Poisson distribution for the arrivals 

of background tasks, each of which has the same computation size, Sc ,b g , and the same 

number of resource units allocated, Nru ,b g - If a background task arrives at a time when no 

(or not enough) resource units are available, it is put into a queue. Background tasks waiting 

in this queue are started immediately when resources become available. This guarantees that 

the (average) resource share of background tasks is the same for any load of incoming tasks.

Scheduling policy

There are different ways of scheduling resource units to tasks which have been allocated 

by the EMP. We consider the following cases {N r u ,alloc'- number of resource units allocated, 

N r u ,avail- number of resource units available):

1. allocate all available resource units of the Server, Nru ,avail,to  the task. The number of 

allocated units, N r u ,alloc, does not change throughout the task's execution. This type of 

policy may be used for moldable parallel tasks which are executed on a space-shared 

resource (see subsection 2.2.5).
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2. allocate all available resource units of the Server, Nru ,avail’ to the task. The number of 

allocated units, Nru ^Uoc, may increase or decrease during the task’s execution due to 

changes in the background load, which is given priority. Such a policy may be used 

on a single-processor, time-shared machine which is not dedicated to the execution of 

incoming tasks — e.g. a PC in a university lab.

3. allocate all available resource units of the Server, Nr u ,avail, to the task. The number 

of allocated units, Nmj,aiioc-> maY increase or decrease during the task’s execution due 

to changes in the background load, which is given priority. Also, the task can be 

preempted by an another task with higher priority. In this case it may either suspend 

its execution or migrate to another resource.

4. allocate a fraction of the currently available resource, NRu,avau, which is proportional 

to the task’s price bid pra$k,i■ The allocated share, Nru ,allocs may increase or decrease 

during the task’s execution due to arrivals and departures of other tasks or changes in 

the background load, which is given priority. It is given by NRU,aUoc = { ^ Nru ,,maii,
i

where Y,PTask,i is the sum of all price bids at the Server, including the task’s bid itself. 

In section A.l this scheduling policy is described in more detail.

6.2.4 Electronic Marketplace (EMP)

The Electronic Marketplace (EMP) provides facilities for the Servers to advertise their re-

sources. The parameters to be published include the number of available resource units, 

Nru ,avaih the price per task unit, pserv, and the resource’s speed, fs peed■ For the Clients it 

provides means to search for a suitable resource and negotiate the price.

6.2.5 Communication Model

As the actors in our systems are distributed over the Internet, communication delays need 

to be taken into account. According to experimental results in [Schroeder and Boro, 2001], 

the communication delay Tc0mm on a network link i can be considered to be a lognormally 

distributed random variable. This observation is supported by [Floyd and Paxson, 2001].
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In our simulation model, the communication delay for a data transfer is determined by the 

latency and bandwidth of the network link and by the size of the transmitted data.

We assume that the mean ¡Jcomm and the standard deviation Ocomm of the probability 

distribution of 7comm are unique for a given network link i and that they also depend on the 

size of the data Sp to be transferred. The communication delay Tcomm on the network link 

i is lognormally distributed with mean \icomm,i = fp,i (So) and standard deviation Ocomm,i =

foA So).

The observations by [Schroeder and Boro, 2001] indicate a linear relation between the 

mean communication delay Hcomm and the size of the data Sp : Hence, for our lognormal 

distribution LN (pcommj \ocomm,i) we assume Hcomm,i =  AMi,- • SD +  B ^ .  The factors A^, and 

B^i are constants. corresponds to the inverse of the bandwidth (or throughput) and B^i 

to the network latency. Similarly, in our simulation model, the standard deviation <3c0mm,i is 

modelled using constant factors CCT;; and DCTj,. It is given by Ocomm,i — Ca,i • Sp + Daj.

Furthermore, we assume that the load of data transfers within our system is already con-

sidered in the probability distributions used. In the simulations presented here, we use a 

network topology where all actors are on different nodes, where all nodes are connected to 

each other, and where all network links are equal.

6.3 Interactions in the system

Before discussing the resource allocation protocols that are examined in this thesis, we will 

describe the sequence of interactions in the system which these protocols have in common. 

The steps (1-8) are shown in Figure 4.

Server: Registration of resources

Before any interactions at the EMP can take place, the Servers need to register their re-

source offers. These include the following parameters: the number of resource units avail-

able Nru âvaii, the speed factor fspeed, and the price per task unit pserv

Client: Task creation and query at the EMP

Tasks are created using an exponential distribution for the inter-arrival time x. For each task,
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two objects are generated. The Task Query object contains the necessary information for a 

query to the EMP: the computation size Sc, deadline to, price bid per task unit pjasb task 

ID, and a reference to the Client. On creation of a task, the Task Query object is sent to the 

EMP (step 1) and remains there until an appropriate resource is found (step 2). The Task 

Data object represents the input parameters of the task. In case of a successful query, it will 

later be sent from the Client to the Server 18.

EMP: Process task query

Each task query which arrives at the EMP is processed immediately. If a suitable resource 

is available and the task’s price bid is high enough, the resource is reserved and the query 

result is sent back to the Client (step 3). The resource is considered unavailable until the 

task completes its execution at the Server 19. If no match is found, the task will wait at the 

EMP until a suitable resource becomes available or the task’s deadline has passed. Also, for 

the market protocols a mechanism is provided which we refer to as task price adjustment-. It 

enables Task Query objects to linearly increase their price bid prask at regular time intervals 

in order to be served eventually 20. This aspect of the protocol is only used in some of the 

simulations presented in this thesis. The procedures for the main loop of the EMP and for 

the task arrival event are shown in Figure 69 and 70, respectively. The procedure for the task 

price adjustment event is described in subsection A.2.5 in the appendix.

Please note that, in order to simplify the matching of tasks to resources, only one in-

coming task query or resource update is processed at a time. In our model these events are 

serialised, as is indicated by an input queue for the EMP in Figure 4. Hence, in a ’task arrival 

event’ exactly one task is matched to N resources, and in a ’resource update event’ exactly 

one resource is matched to N tasks.

18There is an additional step in the process if resource scheduling policy 1 is used: When the Client receives 
a query result, it will contact the Server to check whether the required number of resource units is still available. 
If this is the case, the Server will reserve it, update the information at the EMP, and request the Task Data object 
to be sent by the Client. If not, the Client will have to send the Task Query object to the EMP again.

19An exception to this is the PSP protocol where several tasks can share a resource. Also, in the preemptive 
protocols, the resource is considered available to higher-priority tasks.

20In this case the Task Query object needs to contain an initial minimum price pTask,mm, a maximum price 
PTask/nax, and a negotiation time TNeg.
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Server: Task execution

After receiving a query result from the EMP, the Client sends the Task Data object to the 

Server (step 4). The Server executes the task on the number of resource units N r u ,alloc which 

have been allocated by the EMP (step 5). Hence, the effective execution speed is given by 

N r u ,alloc ■ fSpeed- Note that in resource scheduling policies 2-4, Nr UjC1hoc can vary during the 

task’s execution. Thus, the duration of the execution is not known a priori. On completion, 

the resource information at the EMP is updated (step 6) and the result of the task is sent to 

the Client (step 7). If it arrives before the deadline, a bank transfer from the Client’s to the 

Server’s account is initiated (step 8). Otherwise, the Server is penalised and receives nothing. 

Note that the accounting is not relevant to the results reported in this thesis.

6.4 Assumption: Managed System

We make the assumption of a managed system, in which the market is a tool to achieve the 

efficient allocation of resources. Our main focus is on the design of the protocols which are 

used at the marketplace. The choice of pricing strategies for the Clients and Servers is not the 

subject of this work: We assume that these strategies can be enforced by the system. Money 

has no value as such, and hence there is no need to deal with resource accounting.

If the Servers belong to the same organisation(s) as the Clients, it will not be necessary to 

incentivise the Servers to participate in the marketplace. Therefore, it will not be a problem 

to enforce their pricing strategy. If the Servers are self-interested and utility-maximising, it 

may still be possible to enforce a pricing strategy. However, it will be necessary to incentivise 

them so that they participate in the marketplace. They could be compensated in a different 

way, e.g. by receiving a flat fee on a monthly basis, depending on the capacity and availability 

of their resources.

To enforce the bidding strategy of the Clients, it will be necessary to introduce a proxy 

which sets the task price bids and submits the Clients’ queries to the marketplace 21. The 

price bids set by the proxy could be based on different parameters, such as the importance of

21For our experiments it is not relevant whether this proxy is located at the Client’s site or at the Electronic 
Marketplace.
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the Clients and their past usage of the resources.

It must be noted that, for our performance evaluation, it is not relevant how the price bids 

are determined by the proxy. What counts is the resulting probability distribution of the bids 

and the outcome of the experiment (w.r.t. to the performance metric used).

6.5 Protocol descriptions

In this section we introduce the resource allocation protocols that are studied in this thesis. 

As market protocols we examine the Continuous Double Auction Protocol (CDA), CDA 

with reserve prices, CDA with time-dependent price bids, the Proportional Share Protocol 

(PSP), the Highest Bid Protocol (HBP), HBP with thresholds, HBP with reserve prices, 

the Preemptive Protocol (PE), and the Periodic Double Auction Protocol (PDA). The non-

economic protocols include the Round-Robin Protocol (RR), the First-in-First-Out Protocol 

(FIFO), PRIO-FIFO, and the Shortest Job First Protocol (SJF).

Note that this thesis is limited to the case where CPU time is the only type of resource, 

and where only one resource is needed for the execution of a (sub)task. This is realistic 

for many computationally-intensive applications, such as the PSIMAP application which is 

examined in chapter 12. However, there exist other scenarios, in which the applications 

require bundles of different types of resources for their execution (e.g. CPU time, memory, 

storage, etc.). This combinatorial case is subject of future work and will require different 

types of protocols.

6.5.1 Continuous Double Auction Protocol (CDA)

The aim of the Continuous Double Auction Protocol (CDA) [Kagel, 1995] is to allocate 

the best possible resource to an arriving task and to prioritise tasks according to their price 

bid. CDA has been chosen, because the studied scenario requires a double auction, i.e. a 

many-to-many protocol (and not 1-to-many protocols like English or Vickrey auctions). It is 

a continuous auction where transactions are carried out immediately whenever bids or offers 

change. For our scenario, it is likely to outperform protocols where the transactions are only 

carried out at periodic intervals. In such a protocol, an arriving task would have to wait for
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the next auction — which we need to avoid in order to minimise response times. Like the 

other market protocols examined in this thesis, CDA is greedy in the sense that a task is 

assigned the best possible resource that is available at a given time.

When a Task Query object arrives at the EMP, the protocol searches all available resource 

offers and returns the first occurrence of the best match (see Figure 71). In our experiments, 

'best' means the fastest resource which satisfies the task’s constraints, i.e. which meets all 

requirements for the task’s execution (the required size and price of the resource and its 

capability to meet the task’s deadline). If no match is found, the Task Query object is stored 

in a queue. When a resource becomes available (’resource update event') and several tasks 

are waiting, the one with the highest price bid, pjasb is processed first. The pseudo code for 

this resource update event is given in Figure 72.

6.5.2 CDA with Reserve Prices (CDA-RES)

In the ’normal’ Continuous Double Auction protocol, each Server, which is available, has to 

accept any price bid of a task. However, in some situations it might be advantageous to allow 

the Servers to use reserve prices, i.e. minimum values for the task bids to be accepted. As 

will be shown by the simulations, reserve prices can help to ensure that the better-performing 

resources are available to high-priority tasks (by keeping away low-priority tasks). In the 

CDA-RES protocol, the Servers use reserve prices which are based on the Server’s average 

rate of revenue measured in the past (at periodic intervals). The idea is that this might help 

to ensure that the better resources are available to high priority tasks by keeping out low 

priority tasks. The disadvantage of this approach is that resources will be wasted. Also, it 

is possible that some low priority tasks may not be allocated any resource at all. To solve 

the latter problem, we introduced price discounts-, a Server determines its reserve price by 

calculating the average revenue in the past and deducting a fixed price discount from it. By 

choosing an appropriate value for this price discount, there will always be resources in the 

system which the low priority tasks can afford. Another way to avoid the problem of tasks 

never getting executed is to allow them to increase their prices while waiting at the EMP 

(task price adjustments, see subsection A.2.5 in the appendix).
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6.5.3 CDA with Time-Dependent Bids (CDA-TDB)

This protocol is an extension of CDA that is designed for the scheduling of tasks whose 

values depend on their timely completion 22. The EMP aims to maximise a time-dependent 

user utility which has been defined in subsection 2.6.1. Hence, it needs to deal with time- 

dependent task price bids ppask-

Whenever a resource offer becomes available, the price bids of all tasks waiting at the 

EMP need to be determined, and the task with the highest bid will be allocated to that re-

source. A task’s price bid corresponds to its expected value to the Client, when executed on 

that resource. This value is determined by the task’s slowdown, as described in subsection 

2.6.1. As a result, this value decreases while the Task Query object is waiting at the EMP. 

The main drawback of this protocol is its computational complexity. It is therefore unsuit-

able for a situation in which the number of Task Query objects or Server offers at the EMP 

is high.

6.5.4 Proportional Share Protocol (PSP)

In contrast to the other protocols described in this thesis, the Proportional Share Protocol 

(PSP) allows several tasks to execute on a Server at a time. This protocol uses the resource 

scheduling policy 4 (see subsection 6.2.3). The amount of resources allocated to a task 

depends on its price bid, prask,i> in relation to the sum of price bids 'Zprask,i ° f nil tasks 

executing on that Server, including the bid of the task itself 23. The reason for examining 

PSP is that similar protocols have been proposed for the scheduling of tasks in computa-

tional clusters [Chun and Culler, 2000; Messer and Wilkinson, 1996; Sherwani et al., 2002; 

Waldspurger, 1995], PSP can improve on CDA for certain situations like high network la-

tency and high resource heterogeneity.

When a Task Query object arrives at the EMP, all resource offers are checked in order 

to find the resource which is the fastest to execute the task and which meets the task’s con-

straints {size, price, deadline} (see Figure 73). The effective execution speed, sgyyy, is given

22Its allocation decisions are identical to CDA’s if the task price bids prask at the EMP do not change over 
time.

23The task’s resource share is proportional to its price bid, hence the name Proportional Share Protocol.
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by sEff , total =  fSpeed-M r u ,avail ■ w h e r e  N ™,avail is the number of resource units that

are available, i.e. not occupied by background tasks. Note that, due to arrivals or departures 

of tasks and background tasks, this speed may vary during the task’s execution. If no match 

is found, the task will have to wait until the next resource update event (see Figure 74) or 

a task price adjustment event. Concerning the scheduling of tasks at the Server, a detailed 

description is given in section A.l.

6.5.5 Highest Bid Protocol (HBP)

One problem with the CDA protocol is that, once a task has been allocated to a Server, no 

other task can execute there until it completes. Hence, higher priority tasks may have to wait 

or use a resource with lower speed, leading to a lower overall performance of the system. 

With the PSP protocol, higher priority tasks may still be allocated but will not take up the 

whole resource. Several tasks may have to execute at a resource in parallel, resulting in them 

all being delayed. For this reason, we introduce the Highest Bid Protocol (HBP). It allows a 

task with a higher price bid to suspend a task with a lower bid that is currently being executed 

on a Server. The suspended task(s) will resume execution once the higher priority task has 

completed 24.

When a Task Query object arrives at the EMP, all resource offers are checked in order 

to find the resource which is the fastest to execute the task and which meets the task’s con-

straints. Only resources are considered, for which the task’s price bid is high enough to 

suspend other tasks already executing there.

6.5.6 HBP with Threshold (HBP-T)

HBP-T is a version of the HBP protocol which uses a threshold that we call the bid improve-

ment factor, IFbid- The threshold determines, how many times higher the bid of a task must 

be, in order to suspend another task. The idea behind this protocol is to limit the number of 

tasks being suspended in order to reduce their completion times.

24Note that the cost of suspending and resuming tasks is not considered in our simulation model, because it 
is assumed to be small in comparison to task execution times and communication delays. It is subject of future 
work.
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6.5.7 HBP with Reserve Prices (HBP-RES)

This version of the HBP protocol uses reserve prices which are determined in the same way 

as in the CDA-RES protocol (see subsection 6.5.2). The idea is to prevent low priority tasks 

from using the better resources — which may help to avoid that they will be suspended 

during their execution.

6.5.8 Preemptive Protocol (PE)

In the Highest Bid Protocol (HBP), low priority tasks may be suspended by higher priority 

tasks and will have to wait for them to complete — even if resources are available at other 

Servers. For this reason we introduce a protocol which allows migration of tasks to other 

Servers 25. In this thesis, we refer to it as the Preemptive Protocol (PE). We distinguish 

different versions of the protocol with regard to when preemption can take place:

1. Preemption-Passive (PE-P)\ A task can only migrate if it is suspended by another task 

with a higher price bid. It will send a Task Query object to the EMP in order to obtain 

a new resource and resume execution.

2. Preemption-Active (PE-A): A  task will migrate whenever any other resource becomes 

available which can execute it at a higher speed. In this case,’available’ means that 

any task executing on that other resource has a lower price bid than the querying task. 

The migration of a task may be triggered by the completion of tasks or background 

tasks executing on other resources or by the start of a background task at its current 

resource. In such an event, the Server of the task with the highest price bid will be 

informed by the EMP, and the task will migrate.

3. Preemption with Thresholds (PE-T): A task will migrate to a resource only under con-

ditions specified by two thresholds, the speed improvement factor, IFs p e e and the bid 

improvement factor, IE  bid '■ firstly, the execution speed at the new resource must be at 

least IFspee(i-times faster, and secondly, the task’s price bid must be 7F^y-times higher

25 A survey of related work dealing with preemptive resource allocation protocols can be found in section 
4.4.
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Figure 6: Cases 1 and 2 of the interactions in the PE protocols. Case 1 can occur in both, 
PE-P and PE-A. Case 2 can only occur in PE-A.

than that of the task executing on that resource. These conditions are designed to re-

duce the number of migrations, as the associated cost may be higher than the gain. 

Note, that these thresholds can be applied to PE-P and PE-A.

Preemptions can be triggered by different types of events. We distinguish three cases 

which will be described in the following paragraph: Case 1 can occur in both, PE-P and 

PE-A, whereas the cases 2 and 3 can only occur in PE-A. The interactions of the cases 1 and 

2 are illustrated in Figure 6, and those of case 3 in Figure 7.

Case 1

1. Due to the arrival of a task to Server i, the currently executing task is suspended. The 

suspended task sends a query to the EMP.

2. The query is processed by the EMP. It is determined whether there exists any Server 

whose executing task has a smaller price bid than the querying task (from Server i). If 

there is more than one candidate, the best (i.e. fastest) one is selected for migration. If 

there is no match, the query will wait until a Server becomes available.

3. As soon as a match is found (e.g. Server j), the EMP informs Server i about it.
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4. The querying task migrates from Server i to the new Server (Server j).

5. The migrating task resumes its execution at Server j. If a task has been is executing 

Server j, it is suspended. It sends a query to the EMP, etc.

Case 2

1. The performance of Server i decreases (due to the start of a background task). The 

executing task sends a query to the EMP, while continuing its execution.

2. The query is processed by the EMP. It is determined whether there exists any Server 

which is (currently) faster than Server i and whose executing task has a smaller price 

bid than the querying task (from Server i). If there is more than one candidate, the best 

(i.e. fastest) one is selected for migration. If no match is found, the query is cancelled.

3. If a match is found (e.g. Server j), the EMP informs Server i about it.

4. Unless already completed, the querying task migrates from Server i to the new Server 

(Server j ). A task which may have previously been suspended at Server i will now be 

resumed.

5. The migrating task resumes its execution at Server j. If a task has been is executing 

there, it is suspended. It sends a query to the EMP, etc.

Case 3

1. After the completion of a task or background task at Server i the resource information 

at the EMP is updated.

2. This ’resource update event’ is processed by the EMP. Before considering any Task 

Objects that may be waiting at the EMP, it is determined whether there exist any 

Servers whose tasks can migrate to Server i. A task can migrate to Server i if its 

Server has a lower effective speed than Server i and if it has a higher price bid than the 

task executing there. If there is more than one such Server, the EMP selects the one 

which executes the task with the highest bid.
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Figure 7: Case 3 of the interactions in the PE protocols. This case can occur in PE-A but not 
in PE-P.

3. As soon as a match is found, the EMP informs that Server (in our case: Server j ).

4. The task, which is executing at Server j , migrates to Server i. A task which may have 

previously been suspended at Server j  will now be resumed.

5. The migrating task resumes its execution at Server i. If a task has been is executing at 

Server i, it is suspended. It sends a query to the EMP, etc.

6.5.9 Periodic Double Auction Protocol (PDA)

In the Continuous Double Auction Protocol, transactions are carried out immediately, when-

ever tasks arrive at the EMP or resources become available. The idea behind this approach 

is to reduce task waiting times. In the Periodic Double Auction Protocol (PDA), however, 

price bids and Server offers are allowed to accumulate, and the transactions are carried out 

only at periodic time intervals. In these transactions, preference is given to the tasks with 

the highest price bids which will then select the best resource offers. The idea behind this 

approach is that the higher priority tasks may be allocated better resources than in the CDA 

protocol. A disadvantage is that some resources remain idle during the transaction intervals, 

and that tasks have to wait longer at the EMP.
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6.5.10 Round-Robin Protocol (RR)

The Round-Robin Protocol (RR) does not use any pricing: It processes the incoming task 

queries on a first-come-first-served basis. They are matched with the next available resource 

offer which meets the task’s constraints — but which is usually not the best. For this purpose 

an iterator is used which cycles through the list of resource offers (see Figure 75). RR is far 

simpler than the market protocols because it does not use information about load or speed of 

the resources for the allocation decisions. However, it is still adequate for certain situations. 

A more detailed description of the procedures used at the EMP, which includes their pseudo 

code, is given in subsection A.2.4.

6.5.11 First In First Out (FIFO)

Unlike in the market protocols, FIFO does not use any pricing: Task queries are processed 

on a first-come-first-served basis. However, like CDA, the FIFO protocol is also greedy, as 

tasks are allocated the best, i.e. fastest, resource that is available at the time.

6.5.12 PRIO-FIFO

Supercomputing centres often use a set of FIFO queues with different priorities. As in [Chun 

and Culler, 2002], we will refer to such a protocol as PRIO-FIFO. The Client which submits 

a task to the system can assign a priority to it. This task is then added to the queue which 

corresponds to its level of priority. In each queue of the system, the waiting tasks are priori-

tised in the order of their arrival. When allocating tasks to free resources, the EMP chooses 

the earliest task in the highest priority queue which is non-empty. A Client is charged for the 

execution of its tasks according to their level of priority. Effectively, this protocol operates in 

the same way as CDA. The only difference is that it only allows coarse-grained assignment 

of priorities to tasks, as the number of FIFO queues is finite. From the system’s point of 

view, one problem is, that it may be difficult to set the charging rates for the different queues 

in a way which will result in maximum gain for the users.

Since PRIO-FIFO is a mix of CDA and FIFO, its performance is likely to lie between the
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two 26. For this reason, the performance of PRIO-FIFO is not examined in this thesis.

6.5.13 Shortest Job First (SJF)

Shortest Job First (SJF) is a greedy protocol which prioritises the shortest task. The idea 

behind this strategy is that short tasks suffer a larger relative slowdown than longer ones if 

they are delayed by the same amount of time. Hence, allocating the shortest job first will 

usually result in a lower mean slowdown of all tasks than a FIFO protocol. Furthermore, 

since a long task may take up as much CPU time as several smaller tasks, SJF may result in 

a lower mean completion time.

6.6 Model Discussion and Related Work

Our simulation model is very flexible as it allows the modelling of various cluster and Grid 

infrastructures 27. To our knowledge, the use of a single model for clusters and Grids is 

unique and has not been reported elsewhere. We consider this model to be realistic because a 

computational cluster can be seen as a special case of a Grid, which has little heterogeneity, 

small communication delays, and which is small in size.

There exist other models and frameworks for the simulation of computational Grids. 

Their purpose is either to assess different scheduling protocols in a ’clean room environment’ 

or to evaluate the performance of middleware or application software. The differences of 

these approaches to our work will be briefly discussed in this section.

SimGrid [Casanova, 2001] provides the basic functionality for the study of scheduling 

algorithms for parallel applications in distributed environments. In contrast to our work, 

which is about the allocation of independent tasks competing for resources, SimGrid consid-

ers the allocation of resources to a single, large application. Also, it uses load traces for the 

simulations whereas we use a statistical model, allowing us to adjust parameters arbitrarily 

and draw more general conclusions from our experiments.

Bricks [Aida et a i, 2000; Takefusa, 2001] is a simulator for client-server style global

26We made this observation in several experiments.
27This will be demonstrated in the following chapter.
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computing systems, which allows the evaluation of scheduling algorithms and scheduler 

components. Much emphasis is put on providing realistic models for the network traffic: 

The authors experimented with queuing systems and self-similar load traces. They validated 

their simulation model by experiments on a global computing testbed using NAS bench-

marks. As an example of the simulator’s capabilities, a deadline scheduling algorithm for 

Grid resources has been examined. In contrast to Bricks, our work uses a statistic distribu-

tion for the communication delays which is sufficiently realistic for the scenarios examined 

and also computationally less intensive.

The GridSim Toolkit [Buyya and Murshed, 2002] is a general-purpose simulator for per-

formance evaluation on the Grid. It supports the modelling and simulation of heterogeneous 

Grid resources, users and application models. It has been used to simulate Nimrod-G (see 

subsection 4.5.2) and the cluster scheduler Libra [Sherwani et a i, 2002]. In contrast to 

GridSim, our system targets the simulation of an electronic marketplace, which is an infor-

mation service and ’broker’ at the same time. Also, our system uses different load models, 

communication models, and resource scheduling protocols.

6.7 Summary

This chapter introduced the simulation model that will be used for the performance eval-

uation of the market protocols. A detailed description of the actors in the system and the 

underlying communication model has been given. Next, the interactions in the system which 

all the examined resource allocation protocols have in common have been described. We 

presented the protocols, which will be studied in this thesis. Finally, we compared our sim-

ulation model to related work.
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7 Simulations: Overview

7.1 Introduction

In this chapter, we describe the general setup of the simulations and give an overview of the 

parameter space that is explored in this thesis (see Figure 8).

(T) Task Scenarios:
What type of load is generated by the Client ? 
What performance metric is used ?

(SP) Scheduling Policy and Background Load Model
What type of resources are provided by the Servers ? 
How are tasks scheduled at these resources ?
What are the characteristics of the background load ?

(C) Communication Delays
How large are the communication delays in the system ? 
Are they caused by high latency or limited bandwidth ?

(SN) Server Number
How many Server resources are there in the system ?

(RD) Resource Diversity
How diverse are the resources in the system with respect 
to their speed ?

(L) Total Amount of Load
What is, on average, the total amount of load in the 
system compared to the overall capacity ?

(BG) Amount of Background Load
What is, on average, the total amount of background load 
on the resources compared to the overall system 
capacity ?

(TS) Task Size Distribution
What is the distribution of the computation sizes of the 
tasks?

(BS) Task Burstiness
How many tasks are submitted by the Client at a time?

Figure 8: Overview of the parameter space to be explored

7.1.1 General Setup

All simulations are carried out with the discrete-event simulation framework, which is de-

scribed in chapter B of the appendix. The total length of each simulation run is set to 1300 

time units. During this time, tasks are randomly generated by the Client. During the first 

100 time units no measurements are made. This is to ensure that the system reaches a steady 

state. After this initial period, the number of tasks which is statistically expected to be gener-

ated during an interval of 1000 time units is considered in the result. To allow these tasks to 

complete, an additional final margin of 200 time units is provided. To ensure that the results
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are statistically significant, we carry out each measurement 40 times with different random 

seeds. For each point in our diagrams, the error bars of the 95% confidence interval of the 

mean are given 28. The confidence interval is determined by the method described in section 

B.8 of the appendix. As will be shown, it is very small in most of the experiments. Hence, 

the duration and number of simulation runs are sufficiently large. In the simulated scenarios, 

it does not matter how many Clients there are in the system, because the arriving tasks are 

independent and are generated by a Poisson process. For this reason, we use only one Client 

for the task generation.

7.1.2 Task Scenarios

We distinguish several scenarios concerning the task load generated by the Client. These 

are characterised by how the generated tasks are prioritised. They require different metrics 

to evaluate the performance of the resource allocation protocols. Concerning the resource 

pricing, the Servers will accept any task price bid >0 29. We examine the following cases:

(Tl) Tasks with the same priority

All tasks in the system have the same priority (1.0) and are assigned the same price bid 

PTask,i =  1-0. The average load in the system is lower than its overall capacity. As a per-

formance metric for evaluating the protocols we use the mean of the completion times (see 

subsection 2.6.1) of all tasks that are measured during the experiment. The aim is to minimise 

this metric.

(T2) Tasks with different priorities

Tasks have different priorities (weights) which reflect their value to the Client. For the 

weights of a task wjask we use a uniform distribution [0.0,2.0] 30. In order to allow com-

28In some experiments, e.g. Figure 15 (right), the simulations were very time-consuming, and therefore only 
one simulation run has been carried out for each data point. In these cases, the confidence intervals are not 
given.

29Exceptions are the protocols CDA-RES and HBP-RES, in which the Servers use reserve prices.
,()There are two reasons for choosing a uniform distribution: Firstly, no empirical figures are available for 

the importance of tasks. Secondly, it has a high standard deviation. Thus, other distributions of task weights 
are likely to lead to results which lie between two extremes: those obtained with a uniform distribution, and 
those obtained in a scenario with identical task priorities. Our observations indicate that this is the case.
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parisons with the T1 scenario, this distribution has to be chosen such that it has the mean 

value 1.0. In the market protocols the price bid pjask °f a task is equal to its weight. As 

a performance metric we use the weighted completion time (WCT) which is defined as the 

mean of the completion times of the tasks multiplied by their weights (also see subsection 

2 .6. 1).

(T3) Tasks with different, time-dependent priorities

In the third scenario, the value of a task to the user depends on when it completes its execu-

tion ([Chun and Culler, 2002], see subsection 2.6.1). We express this value by deadlines and 

distinguish two cases: tasks with hard deadlines and tasks with soft deadlines. In the case 

where tasks have hard deadlines, their execution will only benefit the Client if completed on 

time. As a performance metric we use the weighted completion rate (WCR), which we de-

fine as the sum of weights of the tasks completed before the deadline divided by the sum of 

all task weights. Again, for the weights of the tasks, we use a uniform distribution [0.0,2.0], 

In the case where tasks have soft deadlines, a task’s value (per task unit) is expressed as 

a piecewise-linear function of the slowdown (see subsection 2.6.1). Initially, this value — 

which is proportional to the task’s price bid — is set to its maximum Vpask,initial, and remains 

there until the slowdown value sl\ is reached. Then, it linearly decreases, and at the slow-

down value sl2 it becomes zero. As a performance metric we use the average of the values 

delivered by the tasks to the Client, i.e. the average of the task values (per task unit) multi-

plied by the task sizes. For the initial value a task, Vjask,initial* we use a uniform distribution 

[0 .0 , 2 .0],

7.1.3 Scheduling Policy and Background Load Model

The next examined parameter defines the scheduling policy and background load of the 

Server resources. These depend on the machine type, operating system, and the way the 

machine is deployed. The parameters covered here include the number of resource units of 

a Server, NRu,totau the (average) Server speed factor, fspeed, the background task size, Sc ,b g , 

and the number of resource units allocated to each background task, N r u ,b g ■
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(SP1) PC with fine-grained background load

The aim of this parameter set is to model a time-shared PC where the background load 

generated by a local user only needs a fraction of the CPU time of the machine, i.e. only 

some resource units. The remaining resource units are allocated to tasks arriving from the 

EMP. The background load is given priority. Hence, the amount of resources allocated to 

an incoming task can vary during its execution — the task may even be suspended. As 

parameters we use NRU)totai = 10, f Speed = 0.1, Sc ,bg  = 1-0, and NRUjBg  = 1 31 • Note that, 

depending on the protocol that is used, this setup corresponds to the resource scheduling 

policies 2—4 which are described in subsection 6.2.3.

(SPIV) PC: Variation of the background task size

We use the same parameters as in parameter set SP1, except that the background task size, 

Sc ,b g , is varied.

(SP2) PC in screensaver mode

In this parameter set, each background task started by the local user will take up the whole 

resource, i.e. all resource units — and may suspend tasks currently executing there. Such 

a situation is characteristic for a PC which is only made available to incoming tasks if the 

screensaver is active (and hence nobody is using it at the time). The parameters are the same 

as in parameter set SP1, except that Afo/,SG = ^ ru ,total -  10.

(SP2A) PC in screensaver mode: Larger background tasks

Here the same parameters are used as in parameter set SP2, except that the background task 

size is larger (Sc ,bg =10).

(SP2V) PC in screensaver mode: Variation of the background task size

Now the same parameters are used as in parameter set SP2, except that the background task 

size, Sc,BGi is varied.

(SP3) Multi-processor machine where background tasks use some processors

The parameters are the same as in parameter set SP1. However, the scheduling policy and the

31In this parameter set, only 1/10 of a resource is allocated to each background task. In parameter set SP2 
we study the impact of allocating the whole resource to it, i.e. Nr u ,bg =W-

76



7 SIMULATIONS: OVERVIEW

type of resource that is modelled are different. We assume a space-shared multi-processor 

system, where each processor is modelled as a resource unit (N r u ,total = 10). Each incoming 

task is executed in parallel on as many resource units, N r u , as are available at the time of its 

arrival. This resource share remains constant throughout the execution 32. The task cannot 

be preempted by background load or by other tasks. This setup corresponds to resource 

scheduling policy 1 in subsection 6.2.3.

(SP4) Multi-processor machine where background tasks use the whole resource

Here the scheduling policy and resource type are the same as in parameter set SP3. The 

difference is that, when a background task arrives, it uses all units of the resource, i.e. Nru ,b g

=  N r u ,total =  10 .

7.1.4 Communication Delays

The communication delay is another factor which may affect the performance of a resource 

allocation protocol, in particular for a globally distributed environment. We use the commu-

nication model described in subsection 6.2.5 and consider the following cases:

(Cl) Negligible communication delay

The communication delay Tcomm is neglected. Latency is assumed to be infinitely small, and 

bandwidth infinitely high. This approximation can be valid for a local cluster of resources.

(C2V) Variation of the network latency

Network latency is introduced, while the bandwidth is still infinite. The mean of the com-

munication delay ncomm — B^i is varied, and its standard deviation is set to 50% of jucomm 33 • 

This setup will be realistic if the communicating agents are geographically distributed and 

the exchanged messages are small in size, i.e. there are no larger data transfers.

(C3V) Variation of the transmitted data size

Now network latency is neglected while the bandwidth of the network is considered finite. 

Parameter is set to 10-6 , resulting in a mean bandwidth of 1 MB per time unit. Parameter

32Tasks are considered moldable, see subsection 2.2.5.
33This value is arbitrarily chosen. However, our experiments have shown that setting it to a different value, 

such as 10% or 90%, did not have much impact on the results.
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C0ti, which determines the standard deviation, is set to 50% of A ^ .  The size of the input data 

of the tasks So,in >s varied in order to see what happens if bandwidth is the determining factor 

of the communication delay 34 35.

7.1.5 Number of Servers

For the number of Servers in the system, Nserv, we consider the following three cases:

(SN1) Computational Cluster: The number of resources in the system is rather small. We 

choose Nserv = 32.

(SN2) Computational Grid: The number of resources in the system is large, which may be 

the case for a computational Grid, or for a large, local cluster. We choose Nserv = 256.

(SNV) Variation of the Server number: Here we vary the Server number and see the impact 

on the result.

7.1.6 Resource Diversity

Concerning diversity of resources we consider the following situations:

(RD1) Identical resources: All resources have the same speed factor fspeed=0.1. This is 

likely to be the case in a local cluster of resources.

(RD2) Heterogeneous resources: We assume heterogeneous resources, which we consider 

realistic for a wide-area computational Grid. For the server speed factor, / speed, we use a 

uniform distribution [fSpeed,min i fSpeed,max ] where f Speed ,min fspeed,av /iNserv > /speed ymax

2 ‘ fSpeed,av /Speed,min >and fSpeed,av =  0.1

(RDV) Variation of resource heterogeneity: In this parameter set, different degrees of het-

erogeneity are examined by varying the minimum speed factor fs Peed,min between 0 and 

fSpeed,av =  0.1. The maximum speed factor is calculated by fs peed,max =  2 • fSpeed,av ~  

fspeed,min- This choice of speed factors results in a constant total capacity of the system.

34Note that the result would be the same if the data size was constant and the bandwidth was varied.
35 Again, the reason for using the uniform distribution is that we have no empirical data available. Also, it 

provides a high variance, so that it can be regarded as an extreme case.
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7.1.7 Total Amount of Load

The load in the system is generated by Poisson processes at the Clients and the Servers, 

which create tasks and background tasks, respectively. We define the load factor, llotai, as 

the ratio of average total load in the system and the overall system capacity 36. This ratio can 

be adjusted by choosing the mean inter-arrival times of these Poisson processes accordingly. 

We examine the following cases:

(LI) The average total load is set to 90% of the overall system capacity: ltotai =  0.9. At this 

load level, resources may temporarily become scarce.

(LV) The average total load is varied: ltotai =  [0.0 — 1.0].

7.1.8 Amount of Background Load

The overall amount of background load in the system is determined by the mean inter-arrival 

times of background tasks at the Servers. We define the background load factor, Ib g -, as 

the ratio of the average background load in the system and the overall system capacity. In 

order to examine how the level of background load affects the performance of the resource 

allocation protocols, we examine the following situations:

(BG0) There is no background load in the system: Ibg  =  0.

(BG1) The background load is 25% of the average total load: Ibg  =  0.25 •

(BG2) The background load is 50% of the average total load: Ibg  = 0.5 • llotal-

(BG3) The background load is 75% of the average total load: Ibg  — 0.75 • ltotal-

7.1.9 Task Size Distribution

Concerning the computation size Sc of the tasks in the system, we examine two cases:

(TS1) Identical task sizes: All tasks have the same size Sc=1.0.

(TS2) Loguniform distribution of task sizes: We use a loguniform distribution of the task

36The term ’load in the system’ refers to the load of tasks that have been generated but have not yet completed 
execution. These tasks may be executing or waiting to be executed.
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size 37. We choose the distribution such that its average value is 1.0, and the ratio of its 

maximum to its minimum is 10.

7.1,10 Task Burstiness

As the final parameter we consider the task burst size, BS, i.e. the number of tasks that a 

Client submits to the system at a time:

(BS1) 55=1.

(BS2) 55=10.

(BSV) BS is varied.

7.2 Realistic System Infrastructures

In the previous section, an overview of the parameter space has been given, which will be 

explored in our experiments. To give a structure to these experiments and simplify their de-

scription, we now define several realistic system infrastructures which will be studied. As 

our first infrastructure, we examine a PC Cluster, which has a small number of identical 

resources, and where communication delays are negligible. The resources are assumed to be 

single-processor PCs, and therefore the scheduling policies (SP1) and (SP2) are applicable. 

The parameter space covered by this infrastructure is given by {*, SP1-2, C l, SN1, RD1, *, 

*, *, *} 38. The second, more general infrastructure that is explored in our simulations will 

be referred to as PC Grid. In this system, PCs of different speeds are distributed over the 

Internet. The number of machines can be higher than in a cluster, and communication delays 

may no longer be negligible. Concerning the scheduling policy, the same assumptions are 

made as for the PC Cluster. The corresponding parameter space is given by {*, SP1-2, *, *, 

*, *, *, *, *}. We also briefly examine two other system infrastructures: the Supercomputing 

Cluster and Supercomputing Grid. These correspond to the PC Cluster and PC Grid infras-

tructures, respectively, except that the resource scheduling policies (SP1) and (SP2) are now 

replaced by (SP3) and (SP4). This means, that machines have multiple processors, for which

37This is motivated by a workload model for supercomputing centres (see subsection 6.2.2).
38The stands for ’any value’.

80



7 SIMULATIONS: OVERVIEW

space-sharing is used, i.e. different processors can be allocated to different users. Each task 

can spread its execution over several processors. The parameter space for the Supercomput-

ing Cluster is given by {*, SP3-4, C l, SN1, RDI, *, *, *, *}, and for the Supercomputing 

Grid by {*, SP3-4, *, *, *, *, *, *, *}.

7.3 Summary

This chapter provided the structure for our simulations and also demonstrated the flexibility 

of our simulation model which can cover various cluster and Grid scenarios. We described 

the experimental setup and the parameter space which will be explored in our simulations. 

We defined the relevant parameters, which include the type of scenario, the scheduling policy 

at the resources, the communication delays, the number of resources in the system, resource 

heterogeneity, the amount of load and background load, the task size distribution, and the 

task burstiness. Finally, we defined the different types of system infrastructures which will 

be examined.
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8 Tasks with the Same Priority

This chapter provides a systematic performance comparison of three resource allocation pro-

tocols for a scenario in which all tasks have the same priority (wjask =  1.0) and are assigned 

the same price bid prask,i =  1-0. The following protocols are examined: the Continuous 

Double Auction Protocol (CDA), the Proportional Share Protocol (PSP), and Round-Robin 

(R R )39. As a performance metric we use the mean of the completion times of all tasks that 

are measured during the experiment. An important objective is to examine the sensitivity of 

the results to different parameters. This will help to determine how general our results are. 

Also, it will limit the parameter space that needs to be studied in further experiments.

We start with the PC Cluster infrastructure, and then move on to the PC Grid infrastruc-

ture. The results for the Supercomputing Cluster and the Supercomputing Grid infrastruc-

tures are in many cases similar and can be found in chapter C of the appendix.

8.1 PC Cluster

8.1.1 No Background Load

The first experiment is defined by the parameters {Tl, SP1, C l, SN1, RD1, LV, BGO, TS1, 

BS1}. This means that we have a system with Nserv-  32 identical Servers without back-

ground load. The Servers have the resource size N r u ,total -  10 and speed factor fspeed = 

1.0. All tasks have the same size Sc=1.0 and their burst size is 1. Communication delays are 

neglected. The average total amount of load in the system is varied between 0 and 100% of 

the system capacity.

Figure 9 shows the mean completion time for the three protocols. As expected, all three 

protocols degrade, when load is increased. Since there is no difference between the re-

sources, RR and CDA perform equally well. PSP performs worse because it allocates tasks 

to Servers which are already busy. Thus, it delays tasks which are already executing. At 90% 

load its mean completion time is 19% higher.

39We do not examine FIFO, PRIO-FIFO, and CDA-TDB, because they would provide the same result as 
CDA. HBP is not examined either, because it cannot lead to any improvement in a situation in which all tasks 
have the same priority.
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Variation of Load - No Background Load

Total Load

Figure 9: Tasks with the same priority, variation of load: Since the resources are identical 
and have no background load, there is no difference between CDA and RR.

Variation of Load - With Background Load

Total Load

Variation of Load - More Background Load

Figure 10: Left: When background load is introduced, the performance of all protocols 
degrades. Now CDA performs best for all loads. RR is worst for low and medium load, and 
PSP for high load. Right: When the amount of background load is even higher, the three 
protocols degrade even more, but their order does not change.

8.1.2 Different Amounts of Background Load

These results change when background load is introduced. We examine a case where half of 

the load in the system is background load (BG2). The background tasks have the computation 

size SctBG -  TO, and are allocated N^u ,bg  = 1 resource units at a time.

As shown in Figure 10 (left), CDA provides the best results for the whole range of loads. 

RR performs worse because resources are allocated arbitrarily, whereas CDA selects the 

fastest available resource. The difference is particularly high at a load of about 60%, where 

RR’s completion time is 26% higher than CDA’s. PSP performs almost as well as CDA as
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Variation of Load - Variable Task Sizes

Total Load

Figure 11: Variation of load: Tasks with variable sizes lead to almost the same results as 
identical tasks.

long as the load is low, because it also selects the fastest available resources for the tasks. 

However, as in the previous experiment, it degrades when the load is increased.

The overall performance of the system strongly depends on the amount of background 

load on the Servers, as is shown in Figure 10 (right). In that experiment, the total load in the 

system is varied, with the difference that now three quarters of it is background load (BG3). 

If the total load is high, all protocols degrade, and their completion times are more than 50% 

higher than before.

Conclusion: When background load is introduced, CDA performs best. For low load, the 

differences between the three protocols are small. For moderate load, RR performs worst, 

and for high load, PSP does. When the share of the background load is increased, all three 

protocols degrade in a similar way.

8.1.3 Variable Task Sizes

Next, we examine the effect of having the Client submitting tasks of different sizes to the 

system. We use the same parameters as in Figure 10 (left), except that the task computation 

size Sc now has a loguniform distribution (TS2). The mean of Sc is not changed (Sc,mean =
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Variable Task Sizes - Screensaver Mode Variation of Load - Large Background Tasks

Total Load Total Load

Figure 12: Left: Variation of load in screensaver mode, where CDA and RR perform equally 
well. Right: Screensaver mode with larger background tasks: Performance degrades for all 
protocols as the tasks are suspended for a longer time.

1.0)40. Figure 11 shows that the task size distribution has little effect on the mean completion 

time. These findings are not surprising, as tasks of different sizes are treated equally by the 

examined protocols.

Conclusion: The distribution of task sizes has very little impact on the performance of the 

protocols. A loguniform distribution of task sizes led to almost the same results as identical 

task sizes. Hence, the task size distribution is a factor which can be neglected in future 

experiments — at least for these three protocols.

8.1.4 Granularity of Background Load

The granularity of the background load is a parameter which does affect the mean completion

time. In the experiment in Figure 12 (left) we use the same parameters as in Figure 11

(left), except that now each background task takes up all resource units of the Server, i.e.

Nru ,b g = 10 (screensaver mode, SP2). Not surprisingly, RR now performs equally well as

CDA, as all resources that are offered at the EMP now execute tasks at the same speed.

Apart from this difference, the results do not change much in comparison to Figure 10 (left).

However, if the size of the background task is increased to Sc ,bg  = 10-0 — as done in Figure

12 (right) — all three protocols degrade: In particular, with PSP, the completion time at 90%

40 We will not vary the mean of the task computation size, Sc, as this would have the same effect as changing 
background task size, Sc ,bg > in the opposite direction. This will be done later in Figure 13 (right).
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Background Task Sizes - Screensaver Mode
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Figure 13: Left: Variation of the background task size in screensaver mode. Right: Variation 
of the background task size for Nru ,b g = 1 •

load is now 21% higher than in Figure 12 (left).

A wider range of values for the background task Sc ,bg  is studied in Figure 13 (left). 

The experimental parameters are {Tl, SP2V, C l, SN1, RD1, LI, BG2, TS2, BS1}, i.e. we 

examine the screensaver mode, where the average total load is set to 90% and the background 

load to 45%. For Sc ,bg =0.1 the average completion time of the three protocols is only 

slightly lower than for Sc ,b g = 1-0. For higher Sc ,b g , however, a strong degradation can be 

observed (95% for CDA at Sq ,b g =40). This can be explained by the fact that tasks, which 

are suspended by background load, now have to wait for a longer time before they can 

resume execution. However, the results are still very stable over two orders of magnitude 

(Sc ,bg  =  [0.1,10.0]). Carrying out this experiment with Nr u ,bg =  ̂ (SPIV) does not result 

in any degradation, as shown in Figure 13 (right). The reason for this is that tasks do not 

get completely suspended by the finer-grained background tasks. The results even seem to 

improve for very high Sc ,b g ■ This, however, can be explained by the fact that the share of 

a resource, which is allocated to a task, is more likely to remain stable during its execution, 

as there are fewer arrivals of background tasks. Note that for the same reason the results of 

the experiment become less accurate, as can be seen by the larger confidence intervals of the 

measurements.

Conclusion:

The background task granularity has a considerable impact on the performance of the 

examined protocols: In screensaver mode, where a resource is either completely available or
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Variation of Burstiness Variation of Burstiness - Screensaver Mode

Figure 14: Left: Variation of the task burst size. Right: Variation of the task burst size in 
screensaver mode.

unavailable, the results of the three protocols are very different from the previously consid-

ered cases. RR and CDA perform equally well, whereas PSP’s performance is worse.

The size of the background tasks has little impact on the performance of the protocols 

— except in screensaver mode, where the mean completion time slowly rises with increased 

background task size. All three protocols are affected in a similar way.

8.1.5 Task Burstiness

Next, we examine the effect of changing the task burst size, BS. As parameters of the ex-

periment we choose {T1, SP1, C l, SN1, RD1, LI, BG2, TS2, BSV}. These are the same 

as in Figure 10, except that now the total load is fixed at 90%, while the burst size is varied. 

The results in Figure 14 (left) show that with increased BS also the mean completion time 

increases. This is not surprising: If the burst size is high in comparison to the number of 

resources in the system, it becomes less likely that all the tasks of a burst can be executed 

immediately. However, for low values of BS (< 5), the completion time is relatively stable. 

Note that with increased burst size the gap between RR and CDA decreases. The reason is 

that the choice of resources becomes smaller when BS is higher. Very similar observations 

could be made for the screensaver mode (SP2), for which the results are shown in Figure 

14 (right). The degradation appears to depend on the ratio of task burst size and number of 

Servers in the system. The results of an experiment where the task burst size was varied for 

256 Servers in the system is shown in Figure 15 (SN2). In comparison to Figure 14 (left),
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Variation of Burstiness - More Servers

Figure 15: Variation of the task burst size when there are 256 Servers in the system. Note 
that there is less degradation than for 32 Servers.

the sharp increase of the completion time now occurs at a higher burst size.

Conclusion: The higher the number of tasks per burst, the higher the mean completion time. 

PSP suffers most, whereas RR and CDA perform equally well. However, the degradation 

of the protocols is small as long as the burst size is small in comparison to the number of 

resources in the system.

8.2 PC Grid

Next, we study PC Grid-type infrastructures which are characterised by higher resource 

heterogeneity, higher number of resources, and higher communication delays than computa-

tional clusters. To see the impact of each of these parameters, we start off with parameters 

typical for a cluster setting and change them one by one.

8.2.1 Resource Heterogeneity

At first, we examine the impact of having different degrees of heterogeneity of resources in 

the system (RDV). In Figure 16 (left) we use the parameter set (T l, SP1, C l, SN1, RDV, 

LI, BG2, TS2, BS1}: We have 32 resources in the system, and the average total load is 

90%, half of which is background load. Task sizes have a loguniform distribution, and the
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Variation of Server Speeds Variation of Server Speeds - Screensaver Mode

Min. Server Speed / Av. Server Speed Min. Server Speed / Av. Server Speed

Figure 16: Left: Variation of the resource heterogeneity. Right: Variation of the resource 
heterogeneity in screensaver mode.

task burst size is 1. The number of resource units per background task is set to Nru ^ g  — T 

and communication delays are neglected. For the speed factor fspeed we use a uniform 

distribution, in which the minimum fs peed,min is varied between 0 and fspeed,av =  0.1. The 

maximum speed factor is calculated by fspeed,max =  2 • fspeed,av ~  fSpeed,min- Thus, in the 

diagram, we get maximum resource heterogeneity on the left, and identical resources on the 

right.

The performance of CDA slightly improves when heterogeneity is increased. At a ratio 

°f fSpeed,mint}Speed,av = 0.01562, its mean completion time is 2% lower than for identical 

resources. RR degrades slightly, by about 5%, because it does not consider speed for the 

choice of resources. PSP degrades by 9% when fspeed,min/  fSpeed,av = 0.3, but by just 3% for 

a value of = 0.01562. This result indicates that proportional sharing does not always lead to 

improvements, even when resources are heterogeneous. However, as will later be shown in 

Figure 17 (left), such a poor performance of PSP can only occur at high loads, when many 

tasks use a resource in parallel.

In screensaver mode, RR performs in a similar way as in the previous experiment. The 

results are shown in (Figure 16 (right)). CDA improves more than before. The reason is 

that speed is now the only criterion for choosing a resource: background load now does not 

play any role in the allocation decision — a resource is either available or not available. The 

results of PSP are now very irregular. Overall, an improvement can be observed for all values 

of fSpeed,mintfSpeed,av, except in the range 0.2 — 0.4.
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Different Server Speeds - Screensaver Mode Variation of the Server Number

Figure 17: Screensaver mode. Left: Variation of load when resources are heterogeneous. 
RR performs poorly for low load, while PSP outperforms CDA for moderate load. Right: 
Variation of the Server number when resources are heterogeneous.

Conclusion: As heterogeneity of resources in the system is increased, we observe a small 

improvement for CDA, a small degradation for RR, and large fluctuations for PSP. Note that 

these observations are limited to the case that the total load in the system is set to 90%. The 

results for different amounts of load will be given in the next section.

8.2.2 Resource Heterogeneity and Different Amounts of Load

Next, we examine different amounts of load in the system (LV) when resource heterogeneity 

is high (RD2, i.e. fs Peed,min = 0.0015625). Figure 17 (left) shows the result for the screen-

saver mode. For low load, CDA and PSP perform much better than for identical resources as 

the tasks are very likely to execute on faster resources.

What at first looks surprising is that RR’s performance is worse for low load than for 

moderate or high load. The reason for this is that RR chooses resources indifferently. With 

low load, the availability of slow resources will be the same as that of fast ones. For high 

load, slow resources are more likely to be in use because tasks take longer to complete. 

Hence, faster resources will be used more often, resulting in better average performance.

Another important result is that PSP performs slightly better than CDA for a total system 

load of 65% to 85%. It appears that in this range it can be advantageous to execute several 

tasks in parallel on fast resources — and slowing them all down — rather than allocating 

some tasks to slow resources.
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Conclusion: Whether a protocol improves (or degrades) with increased resource hetero-

geneity depends very much on the amount of load in the system: For very heterogeneous 

resources and moderate amounts of load, PSP can outperform CDA. RR performs much 

worse than the other protocols, if load is low or moderate.

8.2.3 Different Server Numbers

The aim of this experiment is to see the effect of the Server number on the completion 

time. In Figure 17 (right) the number of Servers Nserv in the system is varied while the load 

and background load ratios are kept constant. We examine the screensaver mode (SP2) and 

assume heterogeneous resources (RD2). Hence, the parameters are given by {Tl, SP2, Cl, 

SNV, RD2, LI, BG2, TS2, BS1}.

For all protocols, the mean completion time goes down as Nserv is increased. The reason 

is that with increased size of the market a shortage of resources is less likely, because the 

overall amount of resources offered is more stable. CDA performs best for almost all exam-

ined values. For a high Server number, PSP approaches its performance, because it becomes 

less likely that several tasks execute on a resource at the same time. RR performs worse: 

For Aserv=126 its completion time is 25% higher than CDA’s. This can be explained by its 

indifferent allocation of resources. However, for low Nserv, RR’s performance is almost the 

same as CDA’s.

An anomaly of PSP can be observed for Nserv -2, where its mean completion time is 

lower than for 3 or 4 Servers. This can be explained by the distribution of Server speeds 

(RD2). For A(sen,=2 it appears to be advantageous to concurrently execute several tasks on 

the faster resource, rather than using the slower resource.

Conclusion: For a high Server number and heterogeneous resources, all protocols improve. 

PSP’s mean completion time approaches that of CDA, whereas that of RR remains at a higher 

level.
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Variation of Network Latency - Screensaver Mode Variation of Network Latency - High Server Number

Figure 18: Screensaver mode. Left: Variation of the network latency. CDA and RR degrade 
strongly while PSP performs much better. Right: Variation of network latency when there 
are 256 Servers in the system.

Variation of Data Size - Screensaver Mode

Figure 19: Screensaver mode: Variation of the size of the input data of tasks, when bandwidth 
is limited. It has a similar effect on the overall performance as varying the network latency.

8.2.4 Communication Delays

So far, the communication delay between Clients, Servers, and the EMP has been neglected. 

In Figure 18 (left) we investigate how the performance of the protocols degrades when net-

work latency is introduced. The simulation parameters of this experiment are given by (T l, 

SP2, C2V, SN1, RD2, LI, BG2, TS2, BS1}. For the latency, we use a lognormal distribution, 

of which the mean is varied (C2V). A sharp rise of the mean completion time can be observed 

for RR and for CDA when the latency is increased over 0.04 41. This is because resources,

41Note that the reason for the ’angle’ in the slope is that only few data points are used in that experiment. 
With more data points the curve would be smoother.
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which are released, need to be advertised at the EMP before they can be used again. They 

remain idle during the communication delays, leading to a shortage of resources. For PSP. 

however, the rise is much slower. The reason is that the tasks are allocated immediately after 

arrival without waiting for resources to become available. As shown in Figure 18 (right), the 

results do not change much when the number of resources in the system is increased from 

32 to 256 (SN2).

Next, we investigate a case where the determining factor for the communication delays 

is the network bandwidth rather than the network latency. In Figure 19 the size of the input 

data of the tasks is varied (C3V). The main difference to the previous experiments is that 

now the delays only occur when tasks are sent from the Client to a Server. However, as the 

results show, this difference does not affect the relative performance of the protocols.

Conclusion: When communication delays are large in comparison to the size of the tasks, 

all protocols will degrade strongly. However, PSP can cope much better with the delays than 

RR and CDA: its degradation is much slower. This observation has been made for two cases: 

one, where all messages were treated in the same way, and the other one, where only the 

transfers of larger input data were delayed.

8.3 Summary

Distributed computing environments are diverse in their nature, ranging from local clusters 

of PCs to geographically distributed networks of heterogeneous resources (Grids). Typically, 

parameters like the number of resources, resource heterogeneity, and communication delays 

are low in a cluster, but high in a Grid.

In this chapter, we explored various realistic situations by varying these and other rel-

evant parameters. We examined the PC Cluster and PC Grid infrastructures. For these, 

we compared the performance of three protocols: the Continuous Double Auction Protocol 

(CDA), the Proportional Share Protocol (PSP), and the Round Robin Protocol (RR). We ex-

amined the sensitivity of our results to different parameters and identified those parameters 

which have considerable impact on the results.
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In addition to the PC Cluster and PC Grid infrastructures, we explored the Supercomput-

ing Cluster and Supercomputing Grid. The results from these experiments are in many cases 

similar to those of the PC infrastructures and can be found in chapter C of the appendix. An 

overview of all experiments and their parameters is given in Figure 20. Our guidelines for 

the system designer are summarised in chapter 13.

Infrastructure Figure Parameters
PC Cluster 9 Tl, SP1, Cl, SN1, RDI, LV, BGO, TS1, BS1
PC Cluster 10(left) Tl, SP1, Cl, SN1, RDI, LV, BG2, TS1, BS1
PC Cluster lO(right) Tl, SP1, Cl, SN1, RDI, LV, BG3, TS1, BS1
PC Cluster 11 Tl, SP1, Cl, SN1, RDI, LV, BG2, TS2, BS1
PC Cluster 12 (left) Tl, SP2, Cl, SN1, RDI, LV, BG2, TS2, BS1
PC Cluster 12(right) Tl, SP2A, Cl, SN1, RDI, LV, BG2, TS2, BS1
PC Cluster 13(left) Tl, SP2V, Cl, SN1, RDI, LI, BG2, TS2, BS1
PC Cluster 13(right) Tl, SPIV, Cl, SN1, RDI, LI, BG2, TS2, BS1
PC Cluster 14(left) Tl, SP1, Cl, SN1, RDI, LI, BG2, TS2, BSV
PC Cluster 14(right) Tl, SP2, Cl, SN1, RDI, LI, BG2, TS2, BSV
PC Cluster 15 Tl, SP1, Cl, SN2, RDI, LI, BG2, TS2, BSV
PC Grid 16(left) T l, SP1, Cl, SN1, RDV, LI, BG2, TS2, BS1
PC Grid 16(right) Tl, SP2, Cl, SN1, RDV, LI, BG2, TS2, BS1
PC Grid 17 (left) Tl, SP2, Cl, SN1, RD2, LV, BG2, TS2, BS1
PC Grid 17 (right) Tl, SP2, Cl, SNV, RD2, LI, BG2, TS2, BS1
PC Grid 18(left) Tl, SP2, C2V, SN1, RD2, LI, BG2, TS2, BS1
PC Grid 18(right) Tl, SP2, C3V, SN1, RD2, LI, BG2, TS2, BS1
PC Grid 19 Tl, SP2, C2V, SN2, RD2, LI, BG2, TS2, BS1
SC Cluster 79(left) Tl, SP3, Cl, SN1, RDI, LV, BG2, TS2, BS1
SC Cluster 79(right) Tl, SP3, Cl, SN1, RDI, LV, BG3, TS2, BS1
SC Cluster 80(left) Tl, SP4, Cl, SN1, RDI, LV, BG2, TS2, BS1
SC Grid 80(right) Tl, SP3, Cl, SN1, RD2, LV, BG2, TS2, BS1
SC Grid 81 (left) Tl, SP3, Cl, SNV, RD2, LI, BG2, TS2, BS1
SC Grid 81 (right) Tl, SP3, C2V, SN1, RD2, LI, BG2, TS2, BS1
SC Grid 82 Tl, SP3, Cl, SN1, RD2, LI, BG2, TS2, BSV

Figure 20: Tasks with the same priority: Overview of experiments.

In almost all situations CDA outperforms the two other protocols. PSP performed better 

only for moderate loads combined with high resource heterogeneity. It also degraded less 

than the two other protocols when communication delays were high.

Concerning the sensitivity of our results to different parameters, our main findings are:

• The distribution of task sizes has very little impact on the performance of the protocols 

and will not be examined in further experiments.
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• The higher the number of tasks per burst, the higher the mean completion time. How-

ever, the degradation of the protocols is small as long as the burst size is small in 

comparison to the number of resources in the system. In our further investigations we 

will focus on this case as it is likely to be found in Grid settings: We will use the burst 

size 1 for most of our experiments.

• An increase of background load in the system generally leads to a degradation of per-

formance. It affects all protocols in a similar way.

• The granularity of background load has a considerable impact on performance. There-

fore, both the screensaver mode and finer background load will be examined in further 

experiments.

• Resource heterogeneity is a factor which affects the examined protocols in different 

ways: Depending on the amount of load in the system, it may improve CDA and PSP, 

whereas RR will degrade.

• An increased number of resources in the system generally leads to performance im-

provements for all three protocols. However, for CDA and PSP this improvement is 

larger than for RR.

• When communication delays are introduced, CDA and RR will degrade more than 

PSP.

This scenario is relatively simple: Since all tasks have the same priority, the only useful 

feature of the market protocols is their greedy behaviour, i.e. the selection of the fastest 

resource that is available at the time. Hence, if resources become scarce, CDA and RR 

perform about equally well. We also note that, in this scenario, the generated tasks have no 

deadlines or other constraints and that the average load generated is less than 100% of the 

systems capacity. Therefore, all tasks get executed eventually, and the average load on the 

Servers is equal to the average load that is generated.

In the following chapters, scenarios will be considered where tasks have different priori-

ties or deadlines. We will introduce further resource allocation protocols, which can provide
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improvements in some of the examined situations. These protocols use features such as 

the suspension or migration of tasks, reserve prices, periodic auctions, time-dependent price 

bids, etc. As the impact of the different parameters has been examined in this chapter, we 

will be able to reduce the amount of experiments that are needed.
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9 Tasks with Different Priorities

This chapter provides a comprehensive performance comparison of different resource allo-

cation protocols for a scenario in which tasks have different priorities {weights). For these 

weights, wjasb which reflect their value to the Client, we use a uniform distribution [0.0,2.0]. 

In the market protocols, the price bid of a task pjask is equal to its weight. As performance 

metric we use the weighted completion time (WCT) which is defined as the mean of the 

completion times of the tasks multiplied by their weights (see also subsection 2.6.1).

Now that tasks have different priorities, the market protocols are expected to result in 

additional performance improvements in comparison to conventional protocols. For this 

reason, we will present a more comprehensive study where several market protocols are 

compared. These include the Continuous Double Auction Protocol (CDA), the Proportional 

Share Protocol (PSP), the Highest Bid Protocol (HBP), and the two preemptive protocols, 

PE-P and PE-A. Also, First-In-First-Out (FIFO) and the Round Robin Protocol (RR) will 

be examined. In addition to these, we will evaluate some other, more specialised protocols 

for some selected situations in order to determine whether they can lead to any improvement 

at all. These are the Periodic Double Auction Protocol (PDA), Shortest-Job-First (SJF), 

two protocols which use reserve prices for the Servers (CDA-RES and HBP-RES), and two 

protocols which use thresholds for the preemptions (HBP-T and PE-T). We start off with the 

PC Cluster infrastructure, and then move on to the PC Grid infrastructure.

9.1 PC Cluster

9.1.1 No Background Load

In the first experiment, we consider a setup with identical resources and no background load. 

It is defined by the parameters (T2, SP1, C l, SN1, RD1, LV, BGO, TS2, BS1}. This means, 

that we have a system with 32 Servers, each with the resource size Nr u jo u iI = 10 and speed 

factor fspeed = 0.1. Tasks sizes have a loguniform distribution with mean 1.0 (TS2), the task 

burst size is 1, and communication delays are neglected. In the experiment, the total amount 

of load in the system is varied (LV).
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Total Load

Figure 21: Tasks with different priorities: Variation of load, without background load.

Figure 21 shows the weighted completion time (WCT) for the examined protocols. For 

low to moderate load of up to 70%, all compared protocols perform about equally well, 

whereas for high load, the best performance is achieved by the two preemptive protocols, PE- 

P and PE-A. At 90% load, their WCT is about 4% lower than that for CDA. HBP performs 

slightly worse than CDA: at 90% load, its WCT is only about 0.8% higher: The delay of 

the low priority tasks, that are suspended, appears to outweigh the gain of the higher priority 

tasks. Not surprisingly, PSP performs even worse than HBP, as the concurrent execution of 

several tasks at the same resource delays the execution of all allocated tasks. The worst result 

is observed for RR and FIFO, because these two protocols do not prioritise tasks according to 

their weights. Since there is no difference between the resources, their results are identical.

Conclusion: For low to moderate load there is little difference between the examined proto-

cols. For high loads, neither proportional-sharing nor task suspension provides any improve-

ment over CDA. Only the two preemptive protocols outperform CDA by a small margin.

9.1.2 Background Load: Screensaver Mode

Next, we consider the case in which half of the total load in the system is background load 

(BG2). Background tasks have the computation size Sc ,bg  = 1.0, and are allocated Nru ,bg  

-  10 resource units at a time (SP2, screensaver mode). The results for CDA, SJF, PE-P, and
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P  Variation of Load - Screensaver Mode
y

Total Load

P  Variation of Load - Screensaver Mode
y

Total Load

Figure 22: Variation of load, screensaver mode.

PE-A are shown in Figure 22 (left): There is hardly any difference between the protocols for 

loads between 0 and 75%. The only exception is the PE-A protocol, whose performance is 

much better. Its WCT remains close to 1.0 until 85% load, and then slightly increases to 1.1 

at 95% load. The reason is that PE-A is able to reschedule a task when a background task is 

started at the resource — which would otherwise result in the task’s suspension.

The result for PE-P at 95% load is only 3% better than that for CDA, and the result 

for SJF is 5% worse. HBP performs about equally well as SJF (see Figure 22 (right)). As 

there are still no differences between the resources in the system, RR and FIFO perform 

equally well: At 95% load, their WCT is 14% higher than CDA’s. The poorest performance 

is observed for PSP, whose WCT at 95% load is now 16% higher than CDA’s.

We also explored the use of reserve prices by the Servers (i.e. the CDA-RES protocol). In 

Figure 23, we compared the performance of CDA-RES to that of ’normal’ CDA (i.e. where 

the Server reserve prices are set to zero). We considered different price discounts 42 for the 

reserve prices, however, no improvements were observed. Again, this can be explained by 

the fact that there are no differences in performance between the available resources. We 

also examined the PDA protocol, and it did not lead to any improvements either. Its results 

for different time intervals St between the transactions are given in Figure 83 (left) of the 

appendix.

42Note that the price discount is the value which is deducted from a Server’s average pay rate measured in 
the past. The resulting value is the Server’s reserve price.
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Total Load

Figure 23: Variation of load, screensaver mode: CDA-RES with different price discounts. 

Conclusion:

With coarse-grained background load (i.e. in screensaver mode), the differences between 

the protocols are small. The only exception is the PE-A protocol, which results in a consid-

erable improvement in comparison to all other protocols. Using reserve prices (CDA-RES) 

or periodic auctions (PDA) does not lead to any performance improvements.

9.1.3 Fine-Grained Background Load

We also examine the protocols for fine-grained background load (SP1). The results for CDA, 

FIFO, SJF, PE-P, and PE-A are shown in Figure 24 (left). Now, both preemptive protocols 

perform considerably better than CDA: At 95% load, PE-P improves the WCT by 17%. 

As PE-A is able to react to changes in the background load, its WCT is even 23% lower 

than CDA’s. For FIFO and SJF, there is hardly any difference to CDA for up to 90% load. 

However, at 95% load, FIFO’s WCT is 12% higher than CDA’s, and that of SJF is 4% higher.

Other protocols perform even worse (see Figure 24 (right)): At 95% load, PSP’s and RR’s 

WCTs are 14% and 17% higher, respectively. By far the poorest performance is observed for 

HBP: at 95% load its WCT is more than twice as high as CDA’s. The reason is that, due to 

the differences in the background load of the resources, low priority tasks are more likely to 

be suspended by high priority tasks. Their delay results in a strong degradation of the overall 

performance.
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Variation of Load - With Background Load Variation of Load - With Background Load

Figure 24: Tasks with different priorities: Variation of load, with fine-grained background 
load.
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Figure 25: Variation of load, with fine-grained background load: CDA-RES with different 
price discounts.

The above results change slightly when the share of the background load is increased. 

These results are presented in Figure 84 of the appendix.

We also investigated the CDA-RES protocol (Figure 25). We found that, in general, 

CDA without reserve prices performs better. However, for the price discount of 0.5 — which 

corresponds to 50% of the average price bids of the tasks — a small improvement can be 

observed for moderate load (i.e. 65% — 90%).

Finally, we considered the PDA protocol but no improvements were observed. The re-

sults are given in Figure 83 (right) of the appendix.
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Figure 26: Variation of burstiness, screensaver mode.

Conclusion:

For fine-grained background load, PE-A clearly outperforms PE-P, and both protocols 

perform much better than all other protocols. The poorest result has been observed for 

F1BP, which strongly degrades compared to a situation without background load. Priori-

tising shorter tasks, as in SJF, leads to small improvements when compared to FIFO but still 

results in poorer performance than CDA. Only marginal improvements could be observed 

for CDA-RES — and these were only achieved by using large price discounts.

9.1.4 Task Burstiness

Next, we examine the effect of changing the task burst size, BS. As parameters of the exper-

iment we choose {T2, SP2, C l, SN1, RD1, LI, BG2, TS2, BSV}, i.e. the resources operate 

in screensaver mode, and the total load in the system is fixed at 90%. As shown in Figure 

26 (left), the differences between CDA and the preemptive protocols become smaller with 

increased burst size. Interestingly, HBP now approaches CDA’s performance.

In contrast to the scenario where tasks have the same priorities (Figure 14), Round-Robin 

and FIFO now degrade much stronger than CDA. This is because tasks are not prioritised by 

these protocols. For BS = 45, their WCT is 86% higher than for CDA (see Figure 26 (right)). 

The performance of PSP is even poorer: Its WCT is three times as high as for CDA.
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Conclusion:

We varied the task burst size for the screensaver scenario and found that, with increased 

burst size, Round-Robin and FIFO now degrade much stronger than CDA. The preemptive 

protocols still perform best, but the gap to CDA is becoming smaller. The HBP protocol now 

performs equally well as CDA.

9.2 PC Grid

After having studied the PC Cluster, we now move on to the PC Grid-type infrastructures, 

which are characterised by higher resource heterogeneity, higher number of resources, and 

higher communication delays.

9.2.1 Resource Heterogeneity: Screensaver Mode

Initially, we examine the impact of having different degrees of heterogeneity for the resources 

in the system (RDV). We use the parameter set {T2, S2, C l, SN1, RDV, LI, BG2, TS2, 

BSl}: We have 32 resources in the system, and the average total load is 90%, half of which is 

background load. Task sizes have a loguniform distribution, and the task burst size is 1. The 

number of resource units per background task is set to Nru ,bg  — 10, and the communication 

delays are set to zero.

Figure 27 (left) shows that the performance of CDA slightly improves when heterogene-

ity is increased. At a ratio of fSpeed,min /  fSpeed,av = 0.01562, its WCT is 3% lower than for 

identical resources. RR degrades by about 5.6%, because it does not consider speed for the 

choice of resources. PSP improves by about 13% and now event outperforms CDA.

As shown in Figure 27 (right), the WCT of the HBP protocol is about twice as high as 

for the other protocols. Also, there is a strong decrease of the WCT for completely homo-

geneous resources, i.e for the case fspeed,min = fSpeed,av- It can be explained by the fact that 

the HBP protocol gives preference to idle resources when several resources with identical 

performance are available, resulting in fewer delays of the executing tasks. A small improve-

ment can be observed for the FIFO protocol, whose WCT at fspeed,min/fSpeed,av = 0.01562 

is 2.5% higher than CDA’s. The performance of the two preemptive protocols improves con-
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Different Server Speeds - Screensaver Mode Different Server Speeds - Screensaver Mode

Min. Server Speed / Av. Server Speed

Figure 27: PC Grid: Variation of resource heterogeneity, screensaver mode. Left: Results 
for CDA, PSP, and RR. Right: Results for the HBP protocol.
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Figure 28: PC Grid: Variation of resource heterogeneity, screensaver mode. Left: Results 
for FIFO, PE-P, and PE-A in comparison to CDA. Right: Results for PDA with different 
intervals between the transactions.

siderably as heterogeneity is increased (see Figure 28 (left)). PE-P’s WCT decreases by 24% 

and that of PE-A by about 34%.

We examined the effect of Server reserve prices for both, CDA and HBP, but could not 

find any improvements. The results can be found in Figure 85 of the appendix.

A more interesting observation has been made for the PDA protocol. In Figure 28 (right), 

the results for PDA with different time intervals Si between the transactions are compared 

to CDA’s results. A reduction of the WCT was obtained when Si =  0.1, though only for

fSpeed,min/ JSpeed,av 5  0.35. At fSpeed,min/ fSpeed,av ~ 0.01562, the WCT was 3% lower than 

for CDA. For Si =  0.01, only marginal improvements were observed — but for a larger range 

of ratios fSpeed,min/ JSpeed,av
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Conclusion:

When resource heterogeneity is increased in screensaver mode, considerable perfor-

mance improvements are observed for PSP and the two preemptive protocols, and small 

improvements for CDA and FIFO. In this setup, PSP even outperforms CDA. A strong degra-

dation, however, occurs for Round-Robin and HBP. We also found, that periodic auctions 

(PDA) can outperform continuous auctions when resource heterogeneity is high — provided 

that a suitable value is chosen for the time interval between the transactions. No improve-

ments were achieved by using CDA-RES or HBP-RES.

9.2.2 Resource Heterogeneity: Fine-Grained Background Load

Next, we examine different degrees of resource heterogeneity for fine-grained background 

load (SP1). The results for CDA, PSP, and RR are shown in Figure 29 (left). They are similar 

to those observed in screensaver mode (Figure 27 (left)). The main difference is that PSP 

now performs better than Round-Robin for all degrees of heterogeneity. For HBP, FIFO, 

PE-P, and PE-A, the observations from the previous experiment can also be confirmed (see 

Figure 86 in the appendix).

We also examined the CDA-RES protocol, for which the results are shown in Figure 

29 (right). In all cases, the performance improves with increased heterogeneity. However, 

only for the price discount 0.5, a better performance can be achieved than for CDA. The 

gap widens and amounts to about 9% at fSpeed,min/fSpeed,av = 0.01562. The reason is that 

the faster resources have higher prices and therefore are not available to low priority tasks. 

As a result, they are more likely to be available to high priority tasks, leading to improved 

performance — which is even better than for the PSP protocol.

Conclusion: When the resource heterogeneity is varied, the results are very similar to those 

obtained in screensaver mode. With increased heterogeneity, all examined protocols, except 

Round-Robin, improve their performance. The largest gains could be observed for PSP and 

the two preemptive protocols. A considerable improvement was also observed for CDA- 

RES, which delivers a better result than PSP.
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Different Server Speeds

Min. Server Speed / Av. Server Speed

Different Server Speeds

Min. Server Speed / Av. Server Speed

Figure 29: PC Grid: Variation of resource heterogeneity for fine-grained background load. 
Left: Results for CDA, PSP, and RR. Right: CDA-RES with different price discounts.

Total Load Total Load

Figure 30: Screensaver mode: Variation of load for heterogeneous resources.

9.2.3 Variation of Load: Screensaver Mode

As could be observed in subsections 9.2.1 and 9.2.2, some of the examined protocols can 

lead to considerable performance improvements if the heterogeneity of resources is high. 

However, in all these experiments, the average load in the system has been set to 90%. In 

this section we will examine a situation where the resource heterogeneity is high and will 

compare the protocols for different amounts of load. In the experiments, we use the parame-

ter set {T2, SP2, C l, SN1, RD2, LV, BG2, TS2, BS1}. Due to the poor performance of HBP 

in the previous experiments, we now also examine the HBP-T and HBP-RES protocols.

The results for CDA, PSP, RR, and HBP are shown in Figure 30 (left). For RR, the same 

observations as for the scenario described in chapter 8 (see Figure 17 (left)) have been made. 

HBP’s performance is also very poor compared to CDA: Its WCT is even higher than that 

for RR, when the load in the system is greater than 60%. Among these four protocols, CDA
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Heterogeneous Resources - Screensaver Mode

Total Load

Heterogeneous resources - Screensaver Mode

Total Load

Figure 31: Variation of load for heterogeneous resources. Left: Results for PDA with differ-
ent intervals between the transactions. Right: CDA-RES with different price discounts.

Heterogeneous resources - Screensaver Scenario

Total Load

Heterogeneous resources - Screensaver Mode

Figure 32: Variation of load for heterogeneous resources. Left: PE protocol with different 
thresholds (PE-T). Right: HBP protocol with different thresholds (HBP-T).

performs best, except in the range of 65% to 90% load, where it is outperformed by PSP. At 

80% load, PSP is 11% better than CDA. FIFO performs about equally well as CDA for up 

to 90% load, as is shown in Figure 30 (right). Still, the two preemptive protocols provide the 

best results for the whole range of values. The gap to CDA widens as load is increased. Note 

that the WCT for PE-A is considerably lower than for PE-P.

With PDA, only marginal improvements in comparison to CDA were achieved, as is 

shown in Figure 31 (left). CDA-RES does not lead to any improvement (see Figure 31 

(right)). The same is the case for CDA-RES in combination with task price adjustment 43. 

The results with the negotiation times 1.0 and 10.0 are given in Figure 89 of the appendix.

The HBP protocol with reserve prices (HBP-RES) can improve performance in compar-

43This version of CDA-RES will be described in subsection 9.2.4. The mechanism for the task price adjust-
ment and the notion of negotiation time will be described in subsection A.2.5 of the appendix.
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ison to the ’normal’ HBP protocol but still provides poorer results than the other protocols. 

The results for different price discounts are shown in Figure 90 in the appendix.

We also examined the PE-T protocol, for which we enabled only ’passive’ preemption (as 

in PE-P). The speed improvement factor was set to a very high value. This prevented a task 

from preempting other, lower priority tasks — unless it had no resource at all. We examined 

different values for the bid improvement factor, i.e. the threshold which determines how 

much higher the bid of a task must be in order to preempt another task. We found that PE-T 

is never better than PE-P but performs better than CDA and HBP for all the examined bid 

improvement factors (see Figure 32 (left)).

Finally, we considered HBP-T, a version of the HBP protocol which uses a bid improve-

ment factor. We examined different values for this factor and compared the results to those 

obtained by CDA and HBP. We found that HBP-T always outperforms HBP. Furthermore, 

with the values 2.0 and 5.0, it is also better than CDA — if the amount of load in the system 

is high. The results are shown in Figure 32 (right).

Conclusion:

Most of the observations that were made for heterogeneous resources, could now be 

confirmed for a wider range of loads in the system. PSP performs better than CDA for 

65% to 90% load. PDA, however, provides little improvement, and CDA-RES results in no 

improvement at all. The same applies to HBP-RES. We also examined the HBP-T protocol 

and found that it always outperformed HBP. With an appropriate choice of threshold, its 

WCT was also lower than CDA’s.

9.2.4 Variation of Load: Fine-Grained Background Load

The setup which was studied in the previous section will now be examined for fine-grained 

background load (SP1): The experiment is defined by the parameter set {T2, SP1, C l, SN1, 

RD2, LV1, BG2, TS2, BS1}. For CDA, PSP, RR, HBP, FIFO, PE-P, and PE-A the results 

are almost the same as before and are given in Figure 91 of the appendix.

The results for the PDA protocol are shown in Figure 33 (left). Compared to CDA, there 

is a visible improvement for 5? =  0.1, when the load in the system is higher than 75%.
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Variation of load - Heterogeneous Resources

Total Load

Variation of load - Heterogeneous Resources

Total Load

Figure 33: Variation of load for heterogeneous resources. Left: Results for PDA with differ-
ent intervals between the transactions. Right: CDA-RES with different price discounts.

We also examined CDA-RES with different price discounts, and found that for almost 

the whole range of loads it can outperform ’normal’ CDA (see Figure 33 (right)). However, 

the price discount has to be chosen carefully: For low load, ’no price discount’ leads to the 

best performance, for moderate load, the best results are achieved with price discount 0.2, 

and for high load, price discount 0.5 is best.

One risk of using CDA-RES is that low priority tasks may never be executed. This 

may be the case if the price discount is low and load is high. To avoid this problem, we 

extended CDA-RES, so that it allows tasks to adjust their prices while waiting at the EMP 

(see subsection A.2.5 in the appendix). A task will start with an initial bid PTask,min, which 

is linearly increased up to its maximum bid prask,max■ These price adjustments at the EMP 

are carried out at periodic intervals, for which we used % =  0.1. For each task, we choose the 

initial bid PTask,min such that it is proportional to its weight. The maximum bid pTask,ma* is 

the same for all tasks and corresponds to the bid of the highest priority task. We considered 

different negotiation times Tueg between the initial and the maximum price bid of a task. The 

results for negotiation time 1.0 are given in Figure 34 (left), and those for negotiation time 

10.0 in Figure 34 (right). For moderate loads, performance was best with the price discount 

0.2 — with both negotiation times. For high loads, the best result was achieved with price 

discount 0.5 and negotiation time 10.0.

Most of the experiments, which have been described in this subsection, have also been 

carried out for a situation without any background load on the resources. The results are
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Heterogeneous Resources - Price Negotiation Heterogeneous Resources - Price Negotiation

Total Load

Figure 34: Heterogeneous resources: CDA-RES with different price discounts. Left: Task 
negotiation time 1.0. Right: Task negotiation time 10.0.

similar in most cases and are given in the Figures 87 and 88 of the appendix.

Conclusion:

With fine-grained background load, not much has changed for most of the examined 

protocols. However, in contrast to the screensaver mode, PDA performs better than CDA 

for loads higher than 75%. CDA-RES improves the performance for almost any amount of 

load — as long as an appropriate value for the price discount is chosen. Using reserve prices 

and task price adjustments can also perform better than ’normal’ CDA. At the same time it 

ensures that even low priority tasks will eventually be executed.

9.2.5 Different Server Numbers

The aim of this experiment is to see the effect of the Server number on the weighted comple-

tion time. We examine the screensaver mode and set the average load in the system to 90%. 

Hence, the parameters of the experiment are given by {T2, SP2, C l, SNV, RD2, LI, BG2, 

TS2, BS1).

The results for CDA, PSP, RR, and HBP are shown in Figure 35 (left). With increased 

number of Servers, the performance of these protocols improves. An exception is HBP, 

which degrades, because, with higher number of Servers, tasks are more likely to be pre-

empted and delayed. As already observed in Figure 17 (right), Round-Robin’s WCT is 

higher than for most other protocols. PSP outperforms CDA for more than 20 Servers. How-

1 1 0



9 TASKS WITH DIFFERENT PRIORITIES

Figure 35: Variation of the Server number, screensaver mode.
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Figure 36: Variation of the Server number, screensaver mode: Results for PDA with different 
intervals between the transactions.

ever, the result of the two protocols are almost the same when there are more than 100 Servers 

in the system. The reason is that a shortage of resources becomes less likely, and therefore, 

tasks will not have to share a resource. FIFO and SJF also lead to the same results as CDA 

when the number of Servers is increased (see Figure 35 (right)). Since tasks rarely have to 

wait at the EMP, it does not matter any more, in what way they are prioritised. Again, the 

two preemptive protocols perform best: With 126 Servers in the system, the WCT for PE-P 

is 23% lower than CDA’s, and for PE-A, it is even 59% lower. Interestingly, PDA is the 

only non-preemptive protocol which outperforms CDA for a high number of Servers (see 

Figure 36). The gap between the two protocols is largest for about 100 Servers, where, with 

& =  0.1, PDA’s WCT is about 7% lower than CDA’s.
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p  Variation of Network Latency - Screensaver Mode

Mean Network Latency
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u
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Figure 37: Variation of the communication delay, screensaver mode.

Conclusion: We varied the Server number in screensaver mode and found that the results of 

all protocols — except HBP — improve with increased number of Servers. The protocols 

PSP, FIFO, SJF, and CDA perform about equally well. PDA however outperforms CDA, 

even for a high number of Servers.

9.2.6 Communication Delays

We also examine a variation of the communication delays, as has been done in subsection 

8.2.4. The simulation parameters of this experiment are given by {T2, SP2, C2V, SN1, RD2, 

LI, BG2, TS2, BS1}. For the latency, we use a lognormal distribution, of which the mean is 

varied (C2V).

As shown in Figure 37 (left), RR and CDA degrade more rapidly than PSP — for the 

same reason as in subsection 8.2.4 (Figure 18 (left)). However, the increase is now slower 

for CDA than for RR: This is because of its prioritisation of tasks and selection of the best 

possible resources. The result for HBP is similar to that of PSP. The reason is that, on arrival 

of a high priority task, a resource is allocated immediately, without waiting for it to become 

available. Hence, resources do not remain idle during the communication delays.

For FIFO (Figure 37 (right)), a similar degradation can be observed as for Round-Robin, 

because it uses the same protocol for prioritising tasks. PE-P performs better than CDA for 

a mean latency of up to 0.2, beyond which it increases faster. This can be explained by the 

additional communication delays which are caused by the preemptions. For PE-A, a very 

sharp rise of the WCT can already be observed for a mean latency of less than 0.01. This is
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because preemptions are more likely to occur than in PE-P and increase the delays.

Conclusion: For a high network latency, PSP and HBP degrade less than the other protocols. 

The poorest performance can be observed for PE-A: This is caused by the additional com-

munication delays during the preemptions. For moderate and high communication delays, 

PE-P’s performance is similar to that of CDA — in spite of the additional communication 

delays.

9.3 Summary

In this chapter, we investigated the allocation of tasks with different priorities and used 

the weighted completion time (WCT) as performance metric. In this section, we give an 

overview of the parameters used in each experiment (see Figure 38). Also, we summarise 

our findings for each protocol. Our guidelines for the system designer will be given in chap-

ter 13.

Continuous Double Auction Protocol (CDA)

Among the protocols, that do not use preemption, CDA usually provides the best perfor-

mance — or, at least, is very close to the best. However, most other protocols perform 

equally well, if the load is low or the number of resources in the system is very high. Differ-

ences occur at higher loads, and are usually small in screensaver mode.

CDA with Reserve Prices (CDA-RES)

If there are differences in speed or load among the resources, CDA-RES can lead to better 

performance than ’normal’ CDA. The reason is that reserve prices can help to express these 

differences: The reserve prices exclude low priority tasks from using the well-performing 

resources so that they remain available to high priority tasks, which may arrive at a later time. 

However, performance gains could only be observed when large price discounts were used. 

No improvements have been achieved in screensaver mode: It appears that the performance 

of CDA-RES degrades, if there are large variations of the background load at the resources. 

One risk of CDA-RES is that some low priority tasks may never be executed. However, this 

problem can be dealt with by gradually increasing their price bids (’task price adjustment’).
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Infrastructure Figure Parameters
PC Cluster 21 T2, SPI, C l, SN1, RDI, LV, BGO, TS2, BS1
PC Cluster 22 T2, SP2, C l, SN1, RDI, LV, BG2, TS2, BS1
PC Cluster 83 (left) T2, SP2, Cl, SN1, RDI, LV, BG2, TS2, BS1
PC Cluster 23 T2, SP2, C l, SN1, RDI, LV, BG2, TS2, BS1
PC Cluster 24 T2, SPI, Cl, SN1, RDI, LV, BG2, TS2, BS1
PC Cluster 84 T2, SPI, Cl, SN1, RDI, LV, BG3, TS2, BS1
PC Cluster 25 T2, SPI, Cl, SN1, RDI, LV, BG2, TS2, BS1
PC Cluster 83 (right) T2, SPI, Cl, SN1, RDI, LV, BG2, TS2, BS1
PC Cluster 26 T2, SP2, Cl, SN1, RDI, LI, BG2, TS2, BSV
PC Grid 27 T2, SP2, Cl, SN1, RDV, LI, BG2, TS2, BS1
PC Grid 28 T2, SP2, Cl, SN1, RDV, LI, BG2, TS2, BS1
PC Grid 85 T2, SP2, Cl, SN1, RDV, LI, BG2, TS2, BS1
PC Grid 29 T2, SPI, C l, SN1, RDV, LI, BG2, TS2, BS1
PC Grid 86 T2, SPI, Cl, SN1, RDV, LI, BG2, TS2, BS1
PC Grid 30 T2, SP2, Cl, SN1, RD2, LV, BG2, TS2, BS1
PC Grid 31 T2, SP2, Cl, SN1, RD2, LV, BG2, TS2, BS1
PC Grid 32 T2, SP2, Cl, SN1, RD2, LV, BG2, TS2, BS1
PC Grid 89 T2, SP2, Cl, SN1, RD2, LV, BG2, TS2, BS1
PC Grid 90 T2, SP2, Cl, SN1, RD2, LV, BG2, TS2, BS1
PC Grid 91 T2, SPI, C l, SN1, RD2, LV, BG2, TS2, BS1
PC Grid 33 T2, SPI, C l, SN1, RD2, LV, BG2, TS2, BS1
PC Grid 34 T2, SPI, C l, SN1, RD2, LV, BG2, TS2, BS1
PC Grid 87 T2, SPI, Cl, SN1, RD2, LV, BGO, TS2, BS1
PC Grid 88 T2, SPI, C l, SN1, RD2, LV, BGO, TS2, BS1
PC Grid 35 T2, SP2, C l, SNV, RD2, LI, BG2, TS2, BS1
PC Grid 36 T2, SP2, C l, SNV, RD2, LI, BG2, TS2, BS1
PC Grid 37 T2, SP2, C2V, SN1, RD2, LI, BG2, TS2, BS1

Figure 38: Tasks with different priorities: Overview of experiments.

We found that this approach can lead to better results than normal CDA.

Interestingly, the performance improvements by CDA-RES can be achieved, even though 

the resources remain idle for considerable amounts of time. It appears that this ’waste’ of 

processing power is outweighed by the gain for the high priority tasks — and overall, the 

users can benefit from the opportunistic pricing of the Servers.

Proportional Share Protocol (PSP)

PSP will perform worse than CDA if the resources in the system are identical, as is the 

case in a PC Cluster. It degrades stronger than CDA for higher loads: This is due to the 

concurrent execution of several tasks on one resource. The differences become even larger 

when the burstiness of the tasks is increased. However, with a high heterogeneity of resources

114



9 TASKS WITH DIFFERENT PRIORITIES

and moderate-to-high loads, PSP outperforms CDA. This performance improvement can be 

attributed to two factors: Firstly, its preemptive behaviour enables arriving high priority tasks 

to take much of the resource share from already executing low priority tasks — effectively 

preempting them. Secondly, it might be better to allocate two tasks to one fast resource, 

rather than to a fast and a slow one. PSP also outperforms the other protocols in situations 

with high communication delays: It degrades less, as it does not need to check the availability 

of the resources.

Highest Bid Protocol (HBP)

In all our experiments, HBP leads to poorer performance than CDA. For heterogeneous re-

sources, its results are worse than for identical resources. It appears that the delay of the 

suspended low-priority tasks outweighs the gain of the high priority tasks. In contrast to all 

other protocols, HBP’s WCT increases with higher number of resources. A strong degra-

dation has also been observed for a large task burst size. However, when communication 

delays are introduced, HBP degrades less than most other protocols.

HBP with Threshold (HBP-T)

Due to the poor performance of HBP, we introduced the HBP-T protocol, which uses a 

threshold for the preemptions of low priority tasks. We examined it for heterogenous re-

sources operated in screensaver mode and found that it outperformed HBP for all amounts 

of load. Also, if an appropriate threshold was chosen, its results were better than CDA’s. 

This shows that preemption without migration can lead to performance improvements — 

however, there needs to be a limit for the preemptions. A disadvantage of HBP and HBP-T 

is that low priority tasks may be starved. A solution could be to increase the priority of the 

suspended tasks over time, or to limit the number of times a task can be preempted (as done 

by [Chun and Culler, 2002]).

HBP with Reserve Prices (HBP-RES)

HBP-RES aims to reduce the number of preemptions through the use of reserve prices and 

has been examined for heterogeneous resources in screensaver mode. We found that HBP- 

RES can perform better than HBP for low and moderate loads. However, in comparison to
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CDA, no improvements were observed.

Preemptive Protocol (PE)

In a PC Cluster without background load, the results for PE-P and PE-A are only marginally 

better than CDA’s. In screensaver mode, PE-P’s WCT is only slightly lower than CDA’s, 

whereas PE-A’s WCT is much lower than for any other protocol. With fine-grained back-

ground load, PE-P clearly outperforms CDA — and PE-A’s performance is even better.

In a PC Grid, PE-P performs clearly better than CDA, and PE-A is much better than 

all other protocols. The differences remain large even for a high number of resources. The 

only disadvantage of using task migration becomes evident when communication delays are 

introduced: PE-P’s degradation is similar to that of CDA, and PE-A’s degradation is the 

worst. Another weakness of our PE-P and PE-A protocols is that each migration may trigger 

another migration. This will often result in a chain reaction which can be a huge burden on 

the central marketplace — especially if the system is large 44. A possible solution to this 

problem could be limiting the number of preemptions, as done by the PE-T protocol, which 

has briefly been examined. Its performance will be lower than for PE-P or PE-A in ideal 

situations without communication or processing delays, but it is likely to be more scalable.

Periodic Double Auction Protocol (PDA)

In the PC Cluster infrastructure, PDA did not lead to any improvements in comparison to 

CDA. It appears, that the degree of heterogeneity was not sufficient in this setup. However, 

in the PC Grid scenario, a considerable improvement was observed for moderate and high 

loads, when a suitable interval for the time between the transactions was chosen. The im-

provement was smaller in screensaver mode, where the large variations of the background 

load seem to affect the result. For a high number of resources, PDA also performed better 

than CDA, with the maximum difference at 100 resources in the system. The reason why 

PDA can, in some cases, lead to improvements over CDA, is that, during the transaction 

period, several tasks and resources are accumulated, and better matches can be made.

44Note that our simulation model does not consider the cost of processing incoming requests at the market-
place or the cost of packaging up the execution state of tasks for migration.
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First In First Out (FIFO)

FIFO uses a greedy strategy, and therefore leads to almost the same results as CDA when the 

load is low or the number of resources is high. However, it does not take into account the 

priority of the tasks, and therefore performs worse when there is considerable competition 

among them — which is the case when the load in the system is high. FIFO’s performance 

also degrades more than CDA’s when communication delays are introduced.

Round-Robin Protocol (RR)

Among the examined protocols, Round-Robin leads, in most cases, to the poorest perfor-

mance. It degrades with increased heterogeneity, especially if the load in the system is very 

small. It improves with increased Server number, but not as much as the other protocols. 

However, Round-Robin is computationally less expensive. Therefore, it can be appropriate 

for a system with identical resources and low or moderate load — and, in screensaver mode, 

even with high load. In such a setup, which may often be found in a computational cluster, 

its results will be almost as good as CDA’s.

Shortest Job First (SJF)

In the examined situations, SJF’s performance was always better than FIFO’s and worse 

than CDA’s. However, it must be noted, that the outcome of this comparison with CDA may 

depend on the probability distributions used for the task priorities and task sizes.
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10 Tasks with Time-Dependent Priorities

In reality, the users of a system will often have tasks with deadlines rather than simply want-

ing to minimise their completion times. This chapter provides a comprehensive performance 

comparison of different resource allocation protocols for a scenario in which tasks have 

deadlines and different weights. For the weights, we use a uniform distribution [0.0,2.0], In 

this scenario, the system is de-facto oversubscribed because there are not enough resources 

which are sufficiently fast to execute all tasks on time.

Concerning the deadlines, we distinguish two cases: In the first case, tasks have hard 

deadlines, i.e. their execution will only benefit the Client if completed on time. In our ex-

periments, hard deadlines are expressed by different values for the deadline factor which we 

define as the maximum slowdown a task may suffer without missing the deadline. As perfor-

mance metric we use the weighted completion rate (WCR), which is the sum of weights of 

the tasks completed before the deadline divided by the sum of all task weights. In the second 

case, tasks have soft deadlines: A task’s value (per task unit) is expressed as a piecewise- 

linear function of its slowdown (see subsection 2.6.1). As a performance metric, we use the 

aggregate user utility which we define as the average of the values delivered by the tasks 

to the Client, i.e. the average of task values multiplied by the task sizes. We express soft 

deadlines by different values of the slowdown factors sl\ and sl2 (see subsection 2.6.1).

10.1 Examined Parameter Space

We want to investigate situations with different types of deadlines and therefore need to limit 

the range of other parameters. Concerning background load, we examine the screensaver 

mode (SP2), which we consider to be more realistic than fine-grained background load (SP1). 

However, we also study situations without any background load, for which — in chapter 9 

— we made (qualitatively) similar observations as with fine-grained background load.

In addition to the protocols which were compared in chapter 9, we now also investigate 

CDA-TDB which is specifically designed for situations with soft deadlines 45. Note that, in

45CDA-TDB will not be examined for situations with hard deadlines as it would operate in the same way as 
CD A.
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the experiments with soft deadlines, the time-dependent values of the tasks are only consid-

ered by the CDA-TDB protocol, whereas all other protocols use the initial price bids when 

allocating tasks, i.e. they are ’blind’ to the soft deadlines. Round-Robin and HBP-RES are 

not examined due to their poor performance in previous experiments. For PDA, we only 

consider 8? =  0.1 for the time-interval between the transactions, as this led to the best results 

in the previous chapter. For the same reason, we always choose the ’bid improvement factor’ 

5 for the HBP-T protocol and the ’price discount’ 0.5 for the CDA-RES protocol. In addition 

to this, we examine CDA-RES for the case that no discount is used for the reserve prices. 

We start with the PC Cluster infrastructure and then move on to the PC Grid infrastructure.

10.2 PC Cluster

Concerning the deadlines, we examine the following cases for the PC Cluster infrastructure: 

We first consider situations where tasks have hard deadlines. We examine both ’tight’ and 

’loose’ deadlines for which we use the deadline factors 1.1 and 1.5, respectively 46. Next, we 

examine three different cases where tasks have soft deadlines which are expressed by the pa-

rameters sii and sl2 47. In all three cases, the parameter sl\ is set to 1.1 for all tasks, whereas 

for sl2 , we use different uniform distributions. The reason for choosing uniform distributions 

for 5/2 is that we want to examine situations in which tasks have different delay tolerances. 

In the first case with ’tight’ deadlines this distribution is given by [1.1,1.5] (we refer to this 

case as ’Soft Deadline I’). In the second case (’Soft Deadline II’) we use [1.1,3.0], and in the 

third case (’Soft Deadline IIP) [1.1,10.0].

10.2.1 Hard Deadlines

In the first experiment, we examine a situation with tight deadlines, i.e. the deadline factor

is set to 1.1. The other parameters of the experiment are given by {SP2, Cl, SN1, RD1,

LV, BG2, TS2, BS1}. This means, that we have a system with Nserv- 32 Servers which are

46We consider the deadline factor 1.1 to be a tight deadline, because, for a deadline factor of less than 1.0, 
no task would be able to complete on time — even when executed on an unloaded machine.

47Note that the slowdown factor si 1 determines the maximum slowdown that a task can suffer without any 
loss in value. Beyond the slowdown s/2 , the value of the task becomes zero (see subsection 2.6.1 for more 
details).
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Figure 39: Variation of load, screensaver mode: Tight deadlines (deadline factor 1.1).

operating in screensaver mode (SP2), each with the resource size Nr j j ,total = 10 and speed 

factor fspeed -  1-0. Tasks sizes have a loguniform distribution with mean 1.0 (TS2), the task 

burst size is 1, and communication delays are neglected. In the experiment, the total amount 

of load in the system is varied (LV).

The results for CDA, FIFO, SJF, PE-P, and PE-A are shown in Figure 39 (left): There 

is hardly any difference between the protocols for loads between 0 and 75%. The only 

exception is the PE-A protocol, whose performance is much better — as was already the 

case in chapter 9. Its WCR remains close to 1.0 until 85% load, and then slightly decreases 

to 0.93 at 95% load. The reason for PE-A’s good performance is its ability to reschedule 

a task when a background task is started at the resource — which would otherwise result 

in the task’s suspension. CDA’s WCR declines to about 0.57 at 95% load. PE-P performs 

better, and also the results of SJF are marginally better than for CDA. A possible reason is 

that shorter tasks are likely to suffer more from being suspended by background load than 

longer tasks. Therefore, it makes sense to prioritise them.

Interestingly, CDA is now also outperformed by PSP and HBP (see Figure 39 (right)). 

At 95% load, HBP is 5% better than CDA and 1% worse than PE-P. PSP’s relatively good 

performance may appear surprising since the resources in the system are identical. It can 

be explained by the fact that PSP allows arriving high priority tasks to take some of the re-

sources being used by the other executing tasks — thus, effectively preempting them. PDAs 

performance is the poorest of all protocols that are compared. This is because of the delays
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Figure 40: Variation of load, screensaver mode: Loose deadlines (deadline factor 1.5).

which the tasks suffer during the time intervals between the transactions at the EMP. FIBP-T 

is 6% better than CDA but still 2% worse than ’normal’ HBP.

We also carried out this experiment without any background load in the system (BG0). 

As expected, the degradation of the protocols is much smaller than in screensaver mode. We 

found that, performance-wise, the order of the protocols remains unchanged, except that SJF 

now performs slightly worse than CDA. Also, due to the lack of background load, PE-P and 

PE-A are identical. The results are shown in Figure 92 of the appendix.

Next, we relaxed the deadline (deadline factor 1.5), and carried out the experiment in 

screensaver mode (SP2). As shown in Figure 40, the performance of the protocols improves 

only slightly in comparison to the experiment with the deadline factor 1.1. The reason could 

be that, whenever a task is suspended by background load, it is likely to miss its deadline 

anyway. As before, PE-A’s WCR is much higher than for the other protocols. Also, PE-P 

and SJF both outperform CDA if load is high.

HBP-T provides better results than FIBP, which also performs better than CDA (Figure 

40 (right)). PDA’s WCR is still lower than for CDA. However, the difference is much smaller 

than in the previous experiments, because tasks are less likely to miss their deadlines while 

waiting for the next transaction at the EMP. In contrast to the previous experiments, PSP now 

leads to a poorer performance than CDA but still performs better than PDA and FIFO.

Conclusion:

With hard deadlines, PE-A’s results are much better than for the other protocols. How-
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Figure 41: Variation of load, screensaver mode: Soft deadlines I (tight).

ever, in contrast to the experiments in chapter 9, HBP now performs better than CDA and, 

for tight deadlines, also better than HBP-T (with the bid improvement factor 5). CDA is 

outperformed by PSP when deadlines are tight, and by SJF, when there is background load 

at the resources (which are operated in screensaver mode).

10.2.2 Soft Deadlines

In this section, we examine three situations with soft deadlines for the tasks. The parameter 

sii is always set to 1.1. In the first experiment, the resources operate in screensaver mode, 

and half of the load is background load. The tasks have ’tight’ deadlines, and therefore the 

distribution of si2 is given by [1.1,1.5] (’Soft Deadline I’). The results of the protocols are 

given in Figure 41. As in the experiments with hard deadlines, PE-A’s performance is the 

best by far. It is followed by PE-P and HBP, which both outperform CDA. SJF and PSP now 

both lead to poorer results than CDA. The protocol CDA-TDB, which is designed to deal 

with soft deadlines, performs better than CDA but is still worse than HBP.

For ’moderate’ deadlines (’Soft Deadline II’), the results of the protocols improve a bit, 

however their order does not change (see Figure 93 in the appendix). If deadlines are relaxed 

even more (’Soft Deadline IIP, see Figure 94 in the appendix), CDA-TDB provides about 

the same results as normal CDA, and PSP’s performance is not much better than FIFO’s. 

HBP’s result will now be slightly worse than CDA’s.
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Conclusion:

With soft deadlines, similar observations have been made as with hard deadlines. Now, 

in all examined cases, PSP and SJF perform worse than CDA. CDA-TDB — which has been 

specifically designed for soft deadlines -  leads to improvements over CDA only in situations, 

where deadlines are tight. The same is the case for HBP, which outperforms CDA-TDB.

10.3 PC Grid

Due to the heterogeneity of resources in the PC Grid infrastructure, tasks may be able to 

execute faster than in the PC Cluster. For this reason, we will investigate situations where 

the deadlines are tighter than before. Concerning hard deadlines, we will examine three sit-

uations in which tasks have the deadline factors 0.6, 1.1, and 1.5. For the situations with soft 

deadlines, we set the slowdown factor sl\ to 0.6 48. We will study three cases where different 

uniform distributions are used for 5/2. In the first case with ’tight’ deadlines, this distribution 

is given by [0.6,1.1] (we refer to this case as ’Soft Deadline IV’). In the second case (’Soft 

Deadline V’) we use [0.6,3.0], and in the third case (’Soft Deadline VI’) [0.6,10.0],

10.3.1 Variation of Load: Hard Deadlines

In the first experiment, we examine a situation with tight deadlines, i.e. the deadline factor 

is set to 0.6. The other parameters of the experiment are given by {SP2, Cl, SN1, RD2, LV, 

BG2, TS2, BS1}. This means that we have a system with Nserv= 32 Servers which are highly 

heterogeneous (RD2) and operate in screensaver mode (SP2). In the experiment, the total 

amount of load in the system is varied (LV), and half of this load is background load (BG2). 

The results are shown in Figure 42.

For low loads, the best results are achieved by CDA, SJF, FIFO, and PSP, whereas for

high loads, PE-A provides the highest WCR, and is followed by PE-P (Figure 42 (left)). SJF

performs slightly better than CDA. HBP-T leads to a better result than HBP, CDA, and PSP,

as is shown in Figure 42 (right), whereas PDA provides a much poorer performance. We also

48Note that, for a deadline factor of less than 0.5, no task would be able to execute on time, even when 
executed on the fastest resource.
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Figure 42: PC Grid: Variation of load, screensaver mode. Tight deadlines (deadline factor
0 .6).
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Figure 43: PC Grid: Variation of load, no background load. Tight deadlines (deadline factor
0 .6) .

examined the performance of the CDA-RES protocol but could not find any improvements in 

comparison to CDA. This has also been the case for all other situations where the resources 

operated in screensaver mode.

Next, we examine a situation without any background load (Figure 43 (left)). Again, for 

low load, the preemptive protocols are clearly outperformed by the non-preemptive ones, and 

PE-A’s WCR is now the lowest. Even for very high load, PE-A’s results are very poor and 

only marginally better than FIFO’s. At 95% load, PE-P performs better than most protocols, 

and CDA’s and SJF’s WCRs are about 8% lower. HBP-T provides even better results, for all 

amounts of loads (see Figure 43 (right)), whereas those of PDA are the poorest. PSP’s WCR 

at 95% load is 11% lower than HBP-T’s, and that of HBP about 20%. The highest WCR for 

all amounts of load is achieved by CDA-RES. This has been observed for the case that no
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Figure 44: Variation of load, no background load: Results for CDA-RES with different price 
discounts. Again, tight deadlines are used (deadline factor 0.6).
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Figure 45: Variation of load, screensaver mode: Moderate deadlines (deadline factor 1.1).

price discounts are used (see Figure 44).

In the next experiment, whose results are shown in Figure 45, we use the same parameters 

as in Figure 42, except that now the tasks have ’moderate’ deadlines (deadline factor 1.1). 

In contrast to the previous experiments, PE-A performs best when load is low. At 95% load, 

SJF leads to better results than CDA. PE-P performs about equally well as CDA, and PE-A 

is slightly worse. As shown in Figure 45 (right), HBP’s results are the worst for (almost) 

all amounts of load. PSP now also perform worse than CDA, and the WCR of FIBP is even 

lower. HBP-T leads to the best results when load is high, whereas PDA still performs worse 

than CDA.

When the deadlines are relaxed even more (deadline factor 1.5), PE-A performs best for
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Total Load Total Load

Figure 46: Variation of load, screensaver mode: Loose deadlines (deadline factor 1.5).

all amounts of load (see Figure 46 (left)). PE-P’s WCR is much lower than PE-A’s, and at 

95% load, it outperforms both SJF and CDA. HBP-T’s performance (shown in Figure 46 

(right)) is comparable to that of PE-P, whereas PSP and HBP now have a lower WCR than 

FIFO. As before, PDAs WCR is lower than CDA’s but the difference is now smaller and 

only occurs for higher loads.

Conclusion:

In a PC Grid, the choice of protocol will depend not only on the deadline but also on 

the amount of load in the system. With tight deadlines and low loads, HBP-T is best, and 

the non-preemptive protocols perform almost equally well. If load is increased, PE-A will 

perform best, except for a situation where there is no background load in the system, in 

which case CDA-RES is best. For moderate deadlines, PE-A provides the best results when 

load is low, whereas HBP-T is best if load is high. With loose deadlines, PE-A’s WCR is 

much higher than for the other protocols, and HBP’s WCR is the lowest.

10.3.2 Variation of Load: Soft Deadlines

Now we study situations in which tasks have soft deadlines. The parameter sl\ is always set 

to 0.6. In the first experiment, the resources operate in screensaver mode, and half of the 

load is background load. The tasks have ’tight’ deadlines, and therefore the distribution of 

sl2 is given by [0.6,1.1] (’Soft Deadline IV’).

PE-A (Figure 47 (left)) provides by far the highest user utility for all amounts of load
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Figure 47: Variation of load, screensaver mode 
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and is followed by PE-P. For low loads, all other protocols (except HBP) perform about 

equally well as PE-P, whereas for high loads their results are much worse. The poorest 

performance for high load has been observed for PSP. As shown in Figure 47 (right), CDA- 

TDB’s performance is better than for all other non-preemptive protocols. However, even at 

95% load its user utility is only slightly higher than CDA’s. The results of SJF and FIFO are 

both below CDA’s.

Similar observations have been made for the situations with moderate and loose deadlines 

(’Soft Deadline V’ and ’Soft Deadline VI’). The results are given in the Figures 95 and 96 

of the appendix.

Conclusion:

In contrast to the situation with hard deadlines, PE-A and PE-P now clearly outperform 

the other protocols. CDA-TDB does not offer much improvement in comparison to CDA. 

It performs considerably worse than PE-A and PE-P, even though these protocols do only 

consider static priorities. The poorest performance has been observed for PSP, HBP, and 

FIFO.

10.3.3 Different Server Numbers: Hard Deadlines

The aim of this experiment is to see the effect of the Server number on the weighted com-

pletion rate. We start with the case that tasks have tight deadlines (i.e. deadline factor = 0.6).
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Figure 48: Variation of the Server number,
factor 0.6).

We examine the screensaver mode and set the average load in the system to 90%. Hence, the 

remaining parameters of the experiment are given by {SP2, Cl, SNV, RD2, LI, BG2, TS2, 

BS1}.

The results are shown in Figure 48. We found that, with increased number of resources, 

the performance of SJF, HBP-T, CDA, PSP, and PDA improves. Interestingly, SJF provides 

by far the highest WCR when there are 251 Servers in the system. It is followed by HBP-T, 

PSP, and CDA. The latter two perform about equally well. PDA also improves but still has a 

lower WCR than CDA. A degradation can be observed for HBP, PE-P, FIFO, and PE-A. For 

251 Servers, PE-A’s WCR is the lowest.

We made similar observations for a situation where there is no background load in the 

system. The only exception is CDA-RES, which provides better results than any other pro-

tocol. The results are shown in Figure 97 and 98 of the appendix.

We also examined a situation with moderate deadlines (deadline factor 1.1). The results 

are shown in Figure 99 of the appendix. For a high number of Servers, HBP-T’s result is best. 

It is followed by CDA and SJF. PE-P’s WCR remains almost constant as the Server number 

is increased. The same is the case for PSP — however at a lower level. FIFO improves and 

approaches the performance of PE-P, whereas for HBP and PE-A, a strong degradation can 

be observed. In a situation with loose deadlines (deadline factor 1.5, see Figure 49), clearly 

the best results can be achieved with PE-A. HBP-T and PDA are next, and perform about 

equally well. For 251 Servers, the protocols CDA, SJF, FIFO, and PE-P all provide about the
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Figure 49: Variation of the Server number, screensaver mode: Loose deadlines (deadline 
factor 1.5).

same WCR, which is about 1% lower than for HBP-T. Although PSP improves with higher 

Server number, its WCR still remains considerably lower than CDA’s. By far the poorest 

performance has been observed for HBP — which is also the only protocol, whose WCR 

decreases for a higher Server number.

Conclusion:

With 90% load in the system and a high number of Servers, SJF and HBP-T provide 

the best performance, if deadlines are tight. With moderate deadlines, HBP-T and CDA 

perform best, whereas with loose deadlines, PE-A clearly outperforms the other protocols 

and is followed by HBP-T and PDA.

10.3.4 Different Server Numbers: Soft Deadlines

Next, we study situations in which tasks have soft deadlines, starting with the case ’Soft 

Deadline IV’ which is examined in Figure 50. With increased number of Servers, the results 

of all protocols (except HBP) improve. For 251 Servers, PE-A’s performance is far better 

than for the other protocols. It is followed by PE-P whose result is about 45% lower. CDA, 

FIFO, SJF, and TDB lead to the same user utility, which, for 251 Servers, is 60% lower than 

for PE-A. The lowest WCRs have been observed for HBP and PSP.

For situations with moderate and loose deadlines, similar observations have been made. 

The results can be found in Figure 100 and 101 in the appendix.
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Screensaver Mode - Soft Deadline IV Screensaver Mode - Soft Deadline IV

Figure 50: Variation of the Server number, screensaver mode: Soft deadlines IV (tight). 

Conclusion:

With soft deadlines and a high number of Servers, similar observations have been made 

in all the examined situations (i.e. tight, moderate, and loose deadlines): PE-A performs best 

and is followed by PE-P. The protocols CDA, FIFO, SJF, and TDB are next and lead to about 

the same performance, whereas the poorest results are observed for PSP and HBP

10.3.5 Communication Delays

Finally, we investigate situations where the communication delays are varied. We only con-

sider some of the protocols and focus on a situation with hard deadlines. The other simulation 

parameters are given by {SP2, C2V, SN1, RD2, LI, BG2, TS2, BS1}. This means that there 

are 32 Servers in the system, and that the average load is set to 90%. Half of this load is 

background load, and the resources operate in screensaver mode. For the network latency, 

we use a lognormal distribution of which the mean is varied (C2V).

The results for tight deadlines (deadline factor 0.6) are shown in Figure 51. As expected, 

the WCR of all protocols decreases to zero. However, the best performance for moderate 

latencies (about 0.005 to 0.05 time units) can be observed for the PE-P protocol (see Figure 

51 (right)). PSP’s and SJF’s WCRs now decrease faster than CDA’s, and the same is the case 

for PE-A. For a situation without background load, PE-P also leads to the best results (see 

Figure 102 in the appendix).

When deadlines are relaxed (’moderate deadlines’, i.e. deadline factor 1.1), the best re-
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Figure 51: Variation of the communication delay, screensaver mode: Tight deadlines (dead-
line factor 0.6).
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Figure 52: Variation of the communication delay, screensaver mode: Moderate deadlines 
(deadline factor 1.1).

suits will be obtained with CDA (see Figure 52). The fastest degradation can be observed for 

PE-A (Figure 52 (right)). The reason why PE-A now degrades faster is that, with moderate 

deadlines, there are more tasks in the system than with tight deadlines. Hence, there are more 

(time-consuming) preemptions, and tasks are less likely to complete.

Similar observations have been made for a situation with loose deadlines (see Figure 103 

in the appendix).

Conclusion:

We compared several protocols for situations where the communication delays are varied. 

We found that, for tight deadlines, PE-P performs best, whereas for moderate and loose 

deadlines, CDA leads to the best results.
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10.4 Summary

In this chapter, we investigated the allocation of tasks with time-dependent priorities. As a 

performance metric, we used the weighted completion rate (WCR) (for hard deadlines) and 

the aggregate user utility (for soft deadlines). In this section, we give an overview of the 

parameters used in each experiment (see Figure 53). Also, we summarise our findings for 

each protocol. Our guidelines for the system designer will be given in chapter 13.

Infrastructure Figure Deadline Parameters
PC Cluster 39 hard / tight SP2, C l, SN1, RD1, LV, BG2, TS2, BS1
PC Cluster 92 hard / tight SP2, Cl, SN1, RD1, LV, BG0, TS2, BS1
PC Cluster 40 hard / loose SP2, C l, SN1, RD1, LV, BG2, TS2, BS1
PC Cluster 41 soft / tight SP2, Cl, SN1, RD1, LV, BG2, TS2, BS1
PC Cluster 93 soft / moderate SP2, Cl, SN1, RD1, LV, BG2, TS2, BS1
PC Cluster 94 soft / loose SP2, Cl, SN1, RD1, LV, BG2, TS2, BS1
PC Grid 42 hard / tight SP2, Cl, SN1, RD2, LV, BG2, TS2, BS1
PC Grid 43 hard / tight SP2, Cl, SN1, RD2, LV, BG0, TS2, BS1
PC Grid 44 hard / tight SP2, Cl, SN1, RD2, LV, BG0, TS2, BS1
PC Grid 45 hard / moderate SP2, Cl, SN1, RD2, LV, BG2, TS2, BS1
PC Grid 46 hard / loose SP2, Cl, SN1, RD2, LV, BG2, TS2, BS1
PC Grid 47 soft / tight SP2, Cl, SN1, RD2, LV, BG2, TS2, BS1
PC Grid 95 soft / moderate SP2, Cl, SN1, RD2, LV, BG2, TS2, BS1
PC Grid 96 soft / loose SP2, Cl, SN1, RD2, LV, BG2, TS2, BS1
PC Grid 48 hard / tight SP2, Cl, SNV, RD2, LI, BG2, TS2, BS1
PC Grid 97 hard / tight SP2, Cl, SNV, RD2, LI, BG0, TS2, BS1
PC Grid 98 hard / tight SP2, Cl, SNV, RD2, LI, BG0, TS2, BS1
PC Grid 99 hard / moderate SP2, Cl, SNV, RD2, LI, BG2, TS2, BS1
PC Grid 49 hard / loose SP2, Cl, SNV, RD2, LI, BG2, TS2, BS1
PC Grid 50 soft / tight SP2, Cl, SNV, RD2, LI, BG2, TS2, BS1
PC Grid to o soft / moderate SP2, Cl, SNV, RD2, LI, BG2, TS2, BS1
PC Grid 101 soft / loose SP2, Cl, SNV, RD2, LI, BG2, TS2, BS1
PC Grid 51 hard / tight SP2, C2V, SN1, RD2, LI, BG2, TS2, BS1
PC Grid 102 hard / tight SP2, C2V, SN1.RD2, LI, BG0, TS2, BS1
PC Grid 52 hard / moderate SP2, C2V, SN1, RD2, LI, BG2, TS2, BS1
PC Grid 103 hard / loose SP2, C2V, SN1, RD2, LI, BG2, TS2, BS1

Figure 53: Tasks with time-dependent priorities: Overview of experiments.

Continuous Double Auction Protocol (CDA)

In the investigated scenarios, CDA’s results are among the best when compared to other non- 

preemptive protocols. For the PC Cluster, there are usually not many differences between 

most of the protocols for up to 70% load. In a PC Grid, CDA outperforms the preemptive 

protocols if deadlines are tight and loads are low. Like in the scenario in chapter 9, CDA
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also improves when the number of Servers in the system is increased. When communication 

delays are increased, the degradation of CDA is similar to that of most other protocols.

CDA with Reserve Prices (CDA-RES)

CDA-RES has only been examined for the PC Grid, as it cannot lead to improvements in the 

PC Cluster. Again, we found that, when resources operate in screensaver mode, CDA-RES 

never leads to improvements over CDA. However, for a situation with tight deadlines and 

without background load, we found that it performs better than any other protocol. Its best 

performance is achieved if no discounts are used for the reserve prices. A possible reason 

for this good performance is that, with tight deadlines, only a small fraction of the tasks can 

be executed on time. Hence, the reserve price helps to ensure that the high priority tasks get 

executed.

CDA with Time-Dependent Bids (CDA-TDB)

In situations with soft deadlines, CDA-TDB is marginally better than normal CDA. It only 

makes a difference if load is high and deadlines are tight. We also found that, for a high 

number of Servers in the system, CDA-TDB’s advantage over CDA disappears. This is in 

line with the observations of [Chun and Culler, 2002], who used a similar technique for the 

allocation of parallel tasks in computational clusters (see section 5.4): These indicate that 

large improvements can only be achieved for highly parallel load, and not for sequential 

load. However, for our scenario, we could not confirm the authors’ finding that ’preemption 

does not add significant value’, as CDA-TDB is clearly outperformed by the preemptive 

protocols.

Proportional Share Protocol (PSP)

In a PC Cluster, PSP now outperforms CDA, provided that the tasks have hard and tight 

deadlines. The same is the case for the PC Grid, where the difference to CDA increases with 

the load. This observation, however, has not been made for situations with soft deadlines, in 

which PSP led to a poor performance. The reason could be that the time-dependent values 

of the tasks are not considered by PSP: Hence, it will allocate tasks whose values have 

considerably decreased — and will delay tasks whose values are still high. PSP improves
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when the number of Servers is increased — but not as much as CDA which, in most cases, 

performs better. When communication delays are introduced, PSP’s performance is similar 

to CDA’s — which is different from the observations made in chapter 9.

Highest Bid Protocol (HBP)

In contrast to the experiments in chapter 9, HBP’s performance is now comparable to that 

of the other protocols. In the PC Cluster, it’s results are better than CDA’s, especially for 

tight deadlines. For the PC Grid infrastructure, HBP performs better than CDA only for 

hard and tight deadlines, and only if there is background load in the system. A very strong 

degradation of HBP has been observed for loose deadlines: Again, as in chapter 9, the delay 

of the suspended tasks outweighs the gain of the high priority tasks. Unlike most other 

protocols, HBP degrades when the number of Servers in the system is increased. This is 

caused by the increased number of preemptions.

HBP with Threshold (HBP-T)

HPB-T is always among the best protocols. It outperforms both, CDA and HBP, but, in most 

situations, its results are not as good as PE-A’s. In the PC Grid, however, HBP-T may even 

outperform PE-A, provided that deadlines are tight and load is moderate. Unlike the HBP 

protocol, HBP-T improves for a high number of Servers.

Preemptive Protocol (PE)

In situations with background load on the resources, the protocols PE-P and PE-A usually 

lead to the best results. In a PC Cluster, PE-A’s performance is best by far, and PE-P is 

better than all the other protocols. The same is the case for a PC Grid — if the tasks have 

soft deadlines. For hard and loose deadlines, PE-A outperforms all other protocols, whereas 

for tight or moderate deadlines, results are mixed. If communication delays are introduced 

and task deadlines are tight, PE-P performs best, and PE-A’s WCR is only slightly lower. 

However, in situations with moderate and loose deadlines, a strong degradation of PE-A can 

be observed.

Periodic Double Auction Protocol (PDA)

In most examined situations, PDA’s results are worse than CDA’s, and the differences are
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largest if deadlines are tight. The reason for this poor performance is the delay between the 

transactions at the Electronic Marketplace (EMP). The only exception is a situation where 

deadlines are loose and the number of Servers is high.

First In First Out (FIFO)

As in the experiments in the previous chapter, FIFO’s performance only matches that of 

CDA, if loads are low or moderate, i.e. when there is little competition among the tasks. 

With increased number of Servers, FIFO degrades, if deadlines are tight, but improves if 

deadlines are loose. In the latter case it will perform equally well as CDA.

Shortest Job First (SJF)

In most of the experiments, SJF’s performance is below CDA’s. Only for hard and tight 

deadlines, SJF’s results are better. However, this observation has only been made for situa-

tions where there is background load on the resources (which operate in screensaver mode). 

For hard and tight deadlines, SJF’s result also improves faster than CDA’s, when the number 

of Servers in the system is increased. The reason, why SJF performs better for hard than for 

soft deadlines, is probably that the performance metric used in the latter case considers the 

task sizes in the weighting.
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11 Experimental Grid Computing Framework

11.1 Introduction

So far, we have compared the performance of various market protocols via discrete-event 

simulation. Yet it remains to be shown that the marketplace and the protocols of the sim-

ulation model are implementable and able to operate in a real computational environment. 

Also, we need to determine whether the assumptions we have made about communication 

delays, processing delays, etc. are valid under realistic conditions. This chapter describes our 

basic Grid computing framework which we use for the validation of our simulation results. 

The framework has been developed as part of the AgentCities deployment grant CoMAS 49, 

and has also been used for the distributed computation of the PSIMAP application [Dafas 

et ah, 2003a]. It is based on the agent platform JADE [Bellifemine et a l, 1999] and is an 

almost exact implementation of the simulation model. JADE has been chosen, because it 

gave us more flexibility in implementing our architecture than dedicated Grid Computing 

frameworks such as the Globus Toolkit [Foster and Kesselman, 1997], The implementation 

in JADE also required less effort than standard technologies like RMI and JINI, since it sup-

ports agent behaviours, asynchronous messaging, and multiple communication protocols.

11.2 Objectives

Overall, with our Grid computing framework we plan to achieve the following objectives:

Proof of concept: We want to demonstrate that the simulated system is realistic by im-

plementing it on the Java-based agent platform JADE. Issues to be resolved include the 

performance and load measurement at the resources, the passing of data and code between 

machines in a geographically distributed environment, and the specification of task and re-

source constraints.

49Control and Management of Agents and their Services, iD: ACNET.02.30.
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Deployment: We want to show that the framework can be deployed on a PC cluster in a local 

area network. Our experiments will be limited to a cluster scenario, i.e. large communication 

delays — as they occur in globally distributed networks — will not be studied. They have 

only been examined in the simulations.

Verification of simulation results: We aim to determine in how far the simulation results 

are valid. In particular, we want to find out, for which loads and numbers of resources the 

system behaves as in the simulations, and what the impacts of processing and communication 

delays are.

Applications: We want to show that real-world problems can be solved by this experimental 

framework. We will run a bioinformatics computation called PSIMAP. It is an example of 

a parameter sweep application which is submitted to the system as a burst of independent 

computations. Note that our Electronic Marketplace is a multi-user system where each user 

may submit such a computation.

11.3 General Description

The architecture and the interaction protocols of our framework are almost the same as in 

the simulation model which we described in chapter 6.

As shown in Figure 54, it consists of Clients, who want to execute tasks on resources, 

Servers, who provide these resources, and an Electronic Marketplace (EMP). The Electronic 

Marketplace allows Servers to advertise the resources and Clients to query them.

Whenever a Client sends a request to the EMP, it needs to specify the task’s size, price 

bid, and constraints such as the task deadline, minimum resource speed, etc. At the EMP, 

the requests of the Clients are matched with the Servers’ offers which contain the resource’s 

speed, price, and current availability (in % of the total CPU capacity).

The resource’s speed is given in MFLOPS, i.e. in millions of floating point operations 

per second. This figure is based on the execution of a sparse-matrix benchmark (see section 

D.3 in the appendix). Similarly, a task’s computational size is specified in megaflops times 

milliseconds (MFLOPS*ms). Using these measures enables us to obtain a close estimate of
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Figure 54: Model of the marketplace which has been implemented in our Grid computing 
framework.

how long a task will execute on a given resource.

Different protocols for the resource allocation have been implemented. These include 

the Continuous Double Auction Protocol (CDA), Continuous Double Auction with time- 

dependent price bids (CDA-TDB), Shortest Job First (SJF), First-In-First-Out (FIFO), and 

Prioritised First-In-First-Out (PRIO-FIFO).

11.4 Implementation

This section gives a brief overview of the most important features of our framework. More 

information about the implementation and the operation of the framework is given in chapter 

D of the appendix.
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11.4.1 Communication

Within the system, we use RMI-style communication, i.e. the actors communicate via mes-

sages which contain a string of characters and a set of objects. The string represents a method 

which is to be invoked on the receiving agent, and the objects are the arguments to be passed 

to that method. The Java Reflection API is used for translating the string into the agent’s 

method. Thus, a message handler is not needed.

This messaging facility is built on top of JADE and therefore allows to pass messages 

by using multiple communication protocols including RMI, Corba, HTTP, and JMS. This 

facilitates the communication between actors at geographically distributed locations.

11.4.2 Tasks

In our framework, a task is specified as a set of Java classes, which can be sent out from 

a Client for execution on a remote Server. The most important features of this framework, 

which concern the execution of tasks, are described below:

Interfaces for computational tasks. In order to deploy a computational task in our frame-

work, the task needs to implement an interface which is described in section D.4. If a larger 

application is to be split up into smaller tasks which will be distributed and executed re-

motely, it also needs to implement an interface which is given in section D.5.

Passing input and output data. The input data is wrapped up in a serializable Java object 

so that it can be transmitted inside a FIPA message over any communication protocol. The 

same applies to the result data that is returned after the execution. To allow the transmission 

of code, Java classes (i.e. their bytecode) can be loaded over any protocol supported by 

JADE.

Specification of task and resource constraints. Our framework provides means for the 

Clients and Servers to specify constraints, which need to be met when matching tasks to 

resource offers. This feature is described in section D.6 of the appendix.
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Class loading mechanism. A class loader has been implemented which can pass Java 

classes from a Client to a remote Server in order to execute them there. The Java classes 

are specified by their file names and paths on the Client’s harddisk. Unless these classes are 

already available at the Server, their bytecode is read from these files, serialised, and sent 

to the Server. The bytecode is transmitted inside ordinary FIPA messages which JADE can 

send via RMI, Corba, HTTP, or JMS. At the Server, it is loaded, instantiated and executed.

11.4.3 Servers

The Servers in our system have been provided with the following facilities:

Measurement of the resource speed. When Servers register their resources at the EMP, they 

need to provide information about the resource’s speed. To achieve this, our framework runs 

a benchmark at the Server resources which return their speed in MFLOPS. More information 

about this benchmark is given in section D.3 of the appendix.

Measurement of the resource utilisation. To obtain the current load at the Server resources, 

the Unix command vmstat is used which monitors the resource at regular time intervals. This 

method requires a Unix or GNU/Linux operating system — it is not available for Windows.

Resource scheduling policy. The Servers in our framework support the second of the 

scheduling policies which are described in subsection 6.2.3: It is assumed that the resource 

is time-shared, and that background load is given priority: the latter is achieved by executing 

our platform and our tasks with the lowest available priority, which can be expressed by us-

ing the n ice  command under Unix. The resource share, that is available to the framework, 

is allocated exclusively to one executing task, which cannot be suspended or preempted. 

Protocols which use proportional sharing, task suspension, or preemption are too hard to im-

plement — unless modifications are made to the operating system (GNU/Linux) or the Java 

virtual machine 50.

50 We used JDK 1.4 in our experiments. Unfortunately, Java up to version 1.5 does not have the capability 
to safely suspend and resume threads from outside. To our knowledge, this problem does not exist in the 
.NET framework [Platt and Ballinger, 2002]. Also, efforts are underway to provide resource control for Java 
[Czajkowski et al., 2003].
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11.5 Summary

In this chapter we have given an overview of our experimental Grid computing framework 

which serves as a proof-of-concept for our simulation model. We described our approach 

to resolve issues such as performance and load measurement at the resources, the passing 

of data and code between the machines, and the specification of the task and resource con-

straints. More details about the implementation and operation of this framework are given in 

chapter D of the appendix.

In the next chapter we will deploy our framework in a cluster of PCs in order to verify 

our simulation results. We will also show how it can be used for the execution of a parameter 

sweep application taken from bioinformatics.
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12 Experiments

12.1 Objectives

In this chapter, we will show that the simulated system can operate in a real computational 

environment. To this end, we will deploy our experimental Grid computing framework, 

which is based on our simulation model, in a cluster of PCs in a local area network.

We will determine in how far the real system behaves as we observed in the simulations. 

In our experiments, we will study the impact of communication and processing delays on the 

performance of the Electronic Marketplace (EMP). We will also examine situations, in which 

the influence of the communication and processing delays is negligible. Comparing the 

results of these experiments to those obtained by our simulations should show whether our 

simulation model is correct. Finally, we will demonstrate the effectiveness of our framework 

for solving real-world problems by deploying a computationally intensive bioinformatics 

application.

12.2 Experimental Setup

In this section, we will first introduce the hardware and software infrastructure that is used 

in our experiments. Next, we will describe how performance measurements at the machines 

are carried out, and how load is generated by the Clients. Finally, we specify the parameters 

which are common to all our experiments.

12.2.1 Hardware and Software Infrastructure

The Client and the EMP are run on a dual-processor Pentium III (1GHz, 512 MB RAM) 

machine using GNU/Linux, Sun’s JDK 1.4.2, and JADE version 2.6 [Bellifemine et a l, 

1999]. The Servers are started up on separate 700 MHz Pentium III machines (512 MB 

RAM), which are distributed over several student labs of the university. Those machines use 

GNU/Linux, Blackdown JDK 1.4.1 and JADE version 2.6.
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12.2.2 Performance Measurements and Load Generation

The speed of each machine is measured by running a benchmark which determines its per-

formance in MFLOPS (see section D.3). This MFLOPS figure is based on a sparse-matrix 

multiplication taken from the SciMark2 benchmark [Pozo and Miller, accessed in 2003], For 

the machines which were used in this experiment, an average performance of 64.9 MFLOPS 

has been determined. The standard deviation of these measurements has been between 0.1 

and 0.3 MFLOPS. Since the hardware architecture of the machines is identical, it is probably 

caused by measurement inaccuracies or background load.

The load generated by the Clients consists of tasks which execute the same sparse matrix 

multiplication that has been used by the benchmark. The computation size of each task can 

be specified by passing its MFLOPS*ms value as parameter 51. Hence, it is possible to 

determine how long a task will execute on a machine whose performance is known.

12.2.3 General Experimental Parameters

The total length of each experiment is set to 4400 seconds. During this time, tasks are 

generated by the Client. No measurements are made in the first 400 seconds: This is to 

ensure that the system reaches a steady state. After this initial period, the number of tasks 

which are statistically expected to be generated during an interval of 3600seconds (= 1 hour) 

is considered in the result. To allow these tasks to complete, an additional final margin of 

400 seconds is provided. For these experiments, it does not matter how many Clients there 

are in the system. Therefore, we use only one Client for the generation of tasks. During 

the experiment, each Server measures, at 10 second intervals, the current availability of its 

machine (in %). If it has significantly changed since the last measurement, this information 

is updated at the EMP 52.

To achieve the objectives stated in section 12.1, it is not necessary to examine all pro-

tocols and scenarios. We examine only the CDA protocol, and only for the scenario where

5'The code of the tasks has been calibrated by executing it on a machine, whose MFLOPS figure has previ-
ously been measured by the benchmark.

52Note that this is not supposed to happen because our experiments are carried out at times when the ma-
chines are not used by the students. However, we found that, even if a machine is used, the background load is 
likely to be negligible.
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tasks have different priorities. We have chosen CDA because it is the most studied protocol 

in our simulations. A detailed description of how the experiment is carried out is given in 

section D.8 of the appendix.

12.3 Results

In this section, the results of our experiments will be discussed. We will vary both the 

generated load and the number of resources in the system.

12.3.1 Variation of Load — 10 Servers

With the terminology introduced in chapter 7, our first experiment can be defined by the 

parameters {T2, SP1, Cx, (10 Servers), RD1, LV, BGO, TS1, BS1}. Note that the commu-

nication delays are beyond our control. Tasks have different weights, for which we use a 

uniform distribution [0.0,2.0] (T2), and their price bids are proportional to these weights. As 

performance metric, we use the weighted completion time (WCT), which is defined as the 

mean of the completion times of the tasks multiplied by their weights. We use 10 identical 

Servers (RD1) without background load (BGO). The Server performance of 64.9 MFLOPS 

is represented by the resource size Nru ,total = 100 and speed factor fspeed = 0.649 53. All 

tasks have the same computational size (TS1), and the task burst size is set to 1 (BS1). In the 

experiment, the total amount of load in the system is varied (LV).

The task size is a critical parameter in the experiment, as it determines how sensitive 

the results are to communication and processing delays. In order to be able to compare our 

results to those obtained in the simulations, we express the duration of the execution of the 

task in time units, whose size needs to be defined. In our experiments, the task size is chosen 

such that the task will need 1 time unit for its execution on a resource in the system. Hence, 

the task size is calculated by multiplying the size of a task unit by the Server performance 

(64.9 MFLOPS). Since the task size is proportional to the size of a time unit, the latter will 

have impact on the result. For this reason, we use different sizes for the time unit in our

5■'Note that the values for the resource sizes and speed factors are different from those used in the simulations. 
However, they are chosen in such proportions that they lead to the same results.
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Figure 55: Variation of load for 10 Servers: Results of CDA for different sizes of a task unit.

experiment: 20s, 50s, and 100s.

The results of the first experiment for different values of a time unit are shown in Figure 

55, where they are compared to the results of the simulation. For 70% load, the results of the 

experiment with 100s time units are about the same as those obtained in the simulations. For 

time units of 20s or 50s, the WCT is about 6 % higher. The gap between the experimental 

results and the simulation results becomes wider with increased load: At 95% load, time 

units of 100s lead to a 4% higher WCT than in the simulations. For 50s time units, it is 36% 

higher, and for 20s time units even 62% higher. We found that, with time units of 20s or 

50s, not all tasks are able to complete when load is high. With 50s time units, this has been 

observed for 95% load, and with 20s time units, already for 90% load.

A possible reason for the differences between the simulation results and the experiments 

could be the fact that, in our experiments, we used smaller samples than in the simulations, 

and that no confidence interval has been given for the results. To rule this out, we ran 

simulations with exactly the same random seed and samples sizes as in the corresponding 

experiments. The results of the experiments and the simulations — both for different sizes of 

a task unit — are given in Figure 56. The figure shows that there are considerable differences 

between the simulations with different sizes for a task unit and the properly conducted simu-

lations, for which a confidence interval is given ( ’simulation: ideal’). However, in all cases, 

the WCT in the experiments is much higher than in the corresponding simulations. Hence,
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Figure 56: Variation of load for 10 Servers: Comparing the experimental results to simulation 
results with the same random seed and sample sizes.

the limited number of samples in our experiment is not responsible for the large differences 

between simulations and experiments.

Conclusion: For all amounts of load, the WCT in the experiments is higher than in the 

simulations, and the gap becomes wider with increased load. We ruled out that the limited 

number of samples in the experiment is responsible for the large difference between the 

experiments and the simulations. We found that, the smaller the task size, the larger is the 

WCT. It also appears that, for high loads and small task sizes, the system is not able to cope 

with the load — even though it is still below 100%. This scarcity of resources could be 

caused by delays introduced by the processing of tasks at the Electronic Marketplace.

12.3.2 Variation of Load — 32 Servers

In this experiment, we use the same parameters as before, except that, now, there are 32 

Servers in the system. The results are shown in Figure 57. At 70% load, the results for all 

time unit sizes match the simulation results. If the load is increased to 85%, a considerable 

difference can be observed for the experiment with 20s time units, where the WCT is about 

8.5% higher than in the simulations. For 50s time units, the WCT is only 0.5% higher, and 

for 20s even 0.5% lower than in the simulations. The latter could be caused by measurement 

inaccuracies or the limited number of samples in the experiments.
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Total Load

Figure 57: Variation of load for 32 Servers: Results of CDA for different sizes of a task unit.

At 95% load, the results for 50s time units are 5% higher and for 20s time units even 5% 

higher. However, for 100s time units, a difference of only 0.5% has been observed. As in the 

experiment with 10 Servers, not all tasks were able to complete for the time unit sizes 20s 

and 50s. This observation could be made at the same load levels as before.

Conclusion: For 32 Servers in the system, similar observations have been made as in the 

experiment with 10 Servers. However, this time the differences between simulation and 

experiments are smaller.

12.3.3 Variation of the Number of Servers — 80% Load

In the next experiment, we set the average load in the system to 80% and vary the number 

of Servers. This experiment can be represented by the parameter set {T2, SP1, Cx, SNV , 

RD1, (80% load), BG0, TS1, BS1}. The results are shown in Figure 58.

For a low Server number, the weighted completion times are higher than for a high Server 

number — in both the simulations and the experiments. However, large differences can be 

observed between the results with different sizes of a time unit: With 5 Servers and 20s 

time units, the WCT is about 50% higher than in the simulations, and for 50s time units still 

10%. For task unit size 100s, however, the results are very close to those observed in the 

simulations, and this difference remains small for all examined Server numbers. With 100s
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Server Number

Figure 58: Variation of the Server number for 80% load in the system: Results of CDA for 
different sizes of a task unit.

time units, the largest difference has been observed for 20 Servers, where the WCT is only 

about 4% higher than in the simulations. The differences between all time unit sizes decrease 

as the Server number is increased, and for 70 Servers an almost exact match can be observed.

In this experiment all the measured tasks were able to complete their execution. The 

reason is that, at 80% load, a scarcity of resources was less likely to occur than for higher 

loads.

Conclusion:

With 80% load in the system and a low Server number, the differences between the 

results for the different task sizes and the simulation results are high, whereas for a high 

Server number, there is almost no difference at all. It appears that, for this ’moderate’ load 

of 80%, our system scales well when the number of Servers is increased — even for small 

task sizes and hence a large number of queries to the EMR

12.3.4 Variation of the Number of Servers — 90% Load

Next, we varied the number of Servers for the case that the average load in the system is 

set to 90% (see Figure 59): With 5 Servers, differences are now larger than in the previous 

experiment: For 20s time units, the WCT is 90% higher than in the simulations, and for 50s 

time units it is about 30% higher. For task unit size 100s, the WCT is still 5.3% higher.
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Server Number

Figure 59: Variation of the Server number for 90% load in the system. Results of CDA for 
different sizes of a task unit.

As previously observed, the differences become smaller, when the number of Servers is 

increased to 70: With 20s time units, the WCT is about 7% higher than in the simulations, 

and for 50s time units it is still 3% higher. However, for 100s time units, there is less than a 

1% difference to the simulations.

The load in the system has been high in this experiment. Therefore, in some measure-

ments, not all tasks were able to complete. For a time unit size of 50s, this was the case 

when the Server number was set to 5. When the size of a task unit was set to 20s, all tasks 

completed only for the measurement with 50 Servers in the system.

Conclusion: For 90% load in the system, similar observations have been made as for 80% 

load, except that now there are larger differences between the results for different task sizes 

and the simulation results.

12.4 Deployment of a Bioinformatics Application

So far, we have shown that our simulated system is implementable and can operate in a real 

computational environment. We also investigated the validity of our simulation model and 

the scalability of our Electronic Marketplace (EMP). Next, we will demonstrate the effec-

tiveness of our framework for solving real-world problems by deploying a computationally

149



12 EXPERIMENTS

intensive bioinformatics application called PSIMAP on our cluster of Linux PCs.

12.4.1 The PSIMAP Computation

PSIMAP [Park et a l, 2001 ; Dafas et a l, 2003a] is a bioinformatics application which is writ-

ten in Java. Its aim is to determine the physical interactions between protein domains, which 

are fundamental to the workings of a cell. To study the large-scale patterns and evolution of 

the interactions, Park et al. view protein interactions in terms of whole protein families that 

interact with each other. In the computation of PSIMAP, a protein structure interaction map 

is derived from known structures which are obtained from a protein database. Running the 

full computation on one single machine would take several months. However, the applica-

tion consists of repeated computations of the same algorithm with different parameter sets 

and is therefore a parameter sweep application (see section 2.1). It can easily be partitioned 

into independent subproblems that do not require any communication and can therefore be 

distributed over a loosely coupled network of computers. In [Dafas et a l, 2003a], several ef-

ficient algorithms are described which can, depending on the level of the required accuracy, 

reduce the computation time on a single machine to several weeks (days). By distributing it 

on a cluster of PCs, it can be further reduced to hours (minutes). The latter will be described 

in this section.

12.4.2 Distributing the Computation

To run the PSIMAP computation, we use one Client which submits all tasks of the com-

putation to the Electronic Marketplace (EMP). At the EMP, we use the Continuous Double 

Auction Protocol (CDA) for the allocation of the resources to these tasks. Initially, the pa-

rameter space of the PSIMAP computation needs to be partitioned into separate parameter 

sets, each of which is wrapped up into a task which can be computed independently. Given a 

number c of machines, we split the parameter space into n >  c sets which are (almost) equal 

in terms of estimated execution times, c sets will execute in parallel at any time, while the 

remaining sets have to wait at the EMP until machines become available. If a small value is 

chosen for n, the load may not be evenly balanced, leading to poor performance. The reason
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Percentage of Task Completed

Time (min)

Figure 60: ’Short’ PSIMAP computation: Percentage of completed tasks over time. The 
CDA protocol has been used for the resource allocations.

for this is that the estimates are not very accurate, so that the variation of execution times of 

the sets can be large. To this end, we choose n »  c, as it achieves a better load balancing, 

and thus a shorter overall computation time. Also, we give higher priorities to parameter 

sets with large estimated execution times: The weights of the tasks submitted to the EMP 

(and thus their price bids) are proportional to their sizes. This results in overlapping long 

computations with short ones, leading to a further reduction of the overall computation time.

12.4.3 Experimental Results

In the first experiment, we run the ’short’ PSIMAP computation in which only the protein 

interactions at domain-to-domain level — rather than atom-to-atom level — are determined. 

The whole input data for the computation consists of 8800 parameter sets which are split up 

into 2000 tasks of about the same size. 76 machines are used for the experiment, in which 

we measure the percentage of completed tasks over time. Its results are given in Figure 60. 

The diagram shows that the computation is completed after 19 minutes. Compared to the 

computation on a single PC, which takes 4-5 hours, a speedup of 20 has been achieved. The 

reason for this low speedup is that the tasks concurrently read information from the database, 

which leads to delays and idleness of the machines.

Next, we repeat the experiment with the same parameters, except that we now deploy the
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Percentage of Task Completed

Time (min)

Figure 61: ’Long’ PSIMAP computation: Percentage of completed tasks over time. The 
CDA protocol has been used for the resource allocations.

’long’, more accurate PSIMAP computation where the interactions are determined at atom- 

to-atom level. 72 machines are used in the experiment. The results in Figure 61 show that 

the computation of tasks has finished after 20 minutes. The slope of the graph increases over 

time. This is caused by the resource allocation protocol which prioritises long-running tasks 

and allocates the shorter tasks later. The reason why the computation takes only marginally 

longer than in the previous experiment is the larger problem size, which leads to a better 

load-balancing and utilisation of the machines. In comparison to the computation on a single 

machine, which takes about 20 hours, a speedup of 60 has been achieved.

In the final experiment, we do not only deploy the long version of the PSIMAP appli-

cation but also write the results into a database. The database access can lead to delays if 

several tasks perform the access concurrently — and will result in an idleness of the ma-

chines. To deal with this problem, each task executes multiple threads (3), and thus allows 

the interleaving of computation and communication. The result of the experiment, for which 

68 machines have been used, is given in Figure 62. It shows that the whole computation 

completes after about 900 minutes (15 hours). The long duration of the computation is 

caused by a time-consuming operation on hash tables, which is performed when writing to 

the database.
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Percentage of Task Completed

Figure 62: ’Long’ PSIMAP computation where the results are written to the database: Per-
centage of completed tasks over time. The CDA protocol has been used for the resource 
allocations.

Conclusion:

The distributed computation of the PSIMAP application demonstrated the effectiveness 

of our framework for solving real-world problems. The speedup of the computation can 

be almost linear, provided that the application itself is scalable and not compromised by 

communication delays.

12.5 Discussion

To validate our simulation model, we carried out experiments with different tasks sizes, 

loads, and numbers of resources in the system. Although our experimental setup did not 

allow us to examine situations with heterogeneous resources, background load, or commu-

nication delays, we were still able to demonstrate that the system is implementable and will 

operate as predicted by the simulations. We found that, for large task sizes, the experimental 

results are very close to the simulation results. When smaller tasks are deployed, a higher 

relative delay of the tasks can be observed.

On the one hand, the differences between simulation and experiments become larger 

when the load in the system is increased. At a certain point, which depends on the size of the 

tasks, the system is no longer able to cope with the load. In spite of the amount of generated
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load being less than 100%, there appears to be a scarcity of resources in the system. It could 

be caused by delays introduced by the processing of tasks which are waiting at the Electronic 

Marketplace.

On the other hand, the differences between simulation and experiments become smaller 

as the number of resources in the system is increased. The system scales — as long as there 

are enough resources available to serve the tasks. This is even the case for the experiment 

in which the task sizes are small, and therefore the number of queries to the Electronic 

Marketplace is high.

The differences between simulations and experiments are not caused by the communica-

tion delays in the system: In an experimental setup, we measured the message delay between 

two Jade platforms located at the machines of the EMP and of a Server. The average delay 

was about 12ms, i.e. 0.06% of the execution time of the smallest tasks in our experiments 

(20s). It can therefore be neglected. Hence, the differences between the simulations and the 

experiments are likely to be caused by the processing delays at the EMP.

We must note that, in our experiments, there are several factors which could lead to 

inaccuracies of the results. These include possible variations of the performance or load 

of the machines or network connections. Also, there could be errors in the measurements 

of Server speed or in setting the size of the tasks. As a result, the computations of the 

tasks could take longer or shorter than required and affect the outcome of the experiment. 

However, there is a close match between experiments and simulations in situations where we 

would intuitively expect it (i.e. for low load and a high number of resources). This shows 

that these errors cannot be very large.

By carrying out experiments with the PSIMAP application we also demonstrated the ef-

fectiveness of our framework for solving real-world problems. However, we must note that 

the PSIMAP application does not exploit the full potential of our Electronic Marketplace, 

because all its tasks belong to the same user and are all submitted at the beginning of the ex-

periment. The allocation of computational resources is therefore relatively straightforward. 

This is usually not the case in Computational Grids which are open systems with multiple 

users, who may belong to different organisations. In Grid settings, like the ones examined in
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our simulations, multiple users submit applications like PSIMAP and compete for resources, 

making resource allocation a more complex task.

An observation, which we made during our experiments is that, for an infrastructure 

like our university computer labs, the background load will be very small — even at times 

when it is frequently used by students. Therefore the ’no background load’ case, which was 

examined in some of our simulations, is already a very close approximation of reality — 

unless the machines are operated in screensaver mode. However, this observation may not 

be representative for other environments.

12.6 Summary

In this chapter, we have shown that our simulated system is implementable and can operate 

in a real computational environment. This has been achieved by deploying our experimental 

Grid computing framework, which is based on our simulation model, in a local area network. 

We also investigated the validity of our simulation model and the scalability of our Electronic 

Marketplace (EMP). Overall, the results indicate that the system operates as predicted, as 

long as the tasks are large and the system is not overloaded. It also scales well with the 

number of resources. In addition to these experiments, we demonstrated the effectiveness of 

our framework for the distributed execution of real-world applications, such as PSIMAP.
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13 Designer’s Guidelines

13.1 Introduction

In the chapters 8 to 10, the performance of different market protocols and conventional pro-

tocols has been examined for various scenarios. The aim of this chapter is to give guidelines 

for the designer of an electronic marketplace. The question to be answered is: Which proto-

col can be recommended in a given situation ?

13.2 Tasks with the Same Priority (Tl-Scenario)

For the Tl-Scenario we examined the sensitivity of three protocols 54 to the variation of dif-

ferent parameters. Since all tasks have the same priority in this scenario, little improvement 

can be expected from the other market protocols. The recommendations for the PC and Su-

percomputing infrastructures are shown in the two tables in Figure 63. Note that the first part 

of each table shows the results for cluster infrastructures, (i.e. resource diversity: none, as 

specified in the second column, RD1). The second part of each table shows the results for 

the Grid infrastructures (resource diversity: high, RD2).

For the entries in our tables we use the following terminology: The communication delay 

is considered ’low’, if the mean latency is < 0.01, ’moderate’ if it is in the range 0.01-0.05, 

and ’high’ if it is > 0.05. The Server number is ’high’, if >  110. Regarding the task sizes, 

the term ’variable’ means that the task sizes have a loguniform distribution (TS2). The load 

is considered ’low’, if it is <  50%, ’moderate’ if it is in the range 50%-90% and ’high’ if > 

90%.

For the background load share, i.e. the fraction of the total load being background load,

we choose the following values: ’medium’ for a 50% share (BG2) and ’high’ for a 75% share

(BG3). Regarding the granularity of the background load, the term ’fine-grained’ represents

the cases SP1 (for PC infrastructures) and SP3 (for Supercomputing infrastructures), i.e. 1

out of 10 resource units is allocated to each arriving background task. The term ’coarse-

54For the PC infrastructures, we examined CDA, RR, and PSP. For the Supercomputing infrastructures we 
examined CDA and RR.
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PC Cluster & Grid infrastructures:

Ref.
Nr.

Res.
Divers.

Comm.
Delays

Serv.
No.

Task
Size

Load BG Load 
Share

BG Load 
Granul.

BG Task 
Size

Burst
Size

Recom-
mend.

1 none none 32 ident. any none - - low CDA,RR
2 none none 32 ident. any med./high fine medium low CDA
3 none none 32 var. any medium fine low-high low CDA
4 none none 32 var. any medium coarse low-high low CDA,RR
5 none none 32/256 var. high medium fine medium high CDA,RR
6 none none 32 var. high medium coarse medium high CDA,RR
7 high none 32 var. any medium fine medium low CDA
8 high none 32 var. med. medium coarse medium low PSP.CDA
9 high none 32 var. high medium coarse medium low CDA
10 high none high var. high medium coarse medium low CDA
11 high high 32 var. high medium coarse medium low PSP

Supercomputing Cluster & Grid infrastructures:

Ref.
Nr.

Res.
Divers.

Comm.
Delays

Serv.
No.

Task
Size

Load BG Load 
Share

BG Load 
Granul.

BG Task 
Size

Burst
Size

Recom-
mend.

12 none none 32 var. any med./high fine medium low CDA
13 none none 32 var. any medium coarse medium low CDA.RR
14 high none 32 var. any medium fine medium low CDA
15 high none high var. high medium fine medium low CDA
16 high high 32 var. high medium fine medium low CDA.RR
17 high none 32 var. high medium fine medium high CDA.RR

Abbreviations:
Ref. Nr.: reference number of the parameter set. Res. Divers.: degree of resource diversity/heterogeneity. 
Comm. Delay: communication delay. Serv. No.: number of Servers in the system. Task Size: task size 
distribution (identical vs. variable). BG Load Share: fraction of the total load being background load. BG 
Load Granul.: granularity of the background load. BG Task Size: size of the background tasks. Burst Size: 
number of tasks submitted at a time. Recomm.: Recommendation for the system designer.

Figure 63: Guidelines for the Tl-Scenario in which all tasks have the same priority. This 
scenario has been examined in chapter 8.

grained’ represents the cases SP2 and SP4 in which the background tasks are allocated the 

whole resource. We assume the background task size to be ’medium’ if it is equal to the 

average size of the tasks submitted by the Client. For the burst size, i.e. the number of tasks 

submitted at a time, we consider two cases: In the case ’low’ the burst size is much smaller 

than the number of Servers in the system 55, and in the case ’high’ it is comparable to the 

number of Servers.

55We used the value 1 in the simulations.
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Recommendations

As shown in Figure 63, the CDA protocol performs best in most situations. The PSP pro-

tocol can be recommended for a situation in which the communication delays in the system 

are high (parameter set Nr. 11). It may also outperform CDA for a situation where the re-

source heterogeneity is high and the load is moderate (Nr. 8). RR performs equally well as 

CDA for the parameter sets {1, 4, 5, 6, 13, 16, 17}. In these situations there is no choice 

between resources of different quality. Therefore, RR should be given preference because it 

is computationally less expensive than CDA.

13.3 Tasks with Different Priorities (T2-Scenario)

The recommendations for the T2-Scenario are given in Figure 64. In all examined situations 

the background task size is set to ’medium’. The protocols CDA, PSP, HBP, PE-P, PE-A, 

FIFO, and RR have been examined for all parameter sets. For the other protocols the study 

has been limited to some parameter sets: SJF has been examined for {2, 3, 5, 6, 8}, PDA for 

{2, 3, 5, 6, 7, 8}, and CDA-RES for {2, 3, 5, 6, 7}. HBP-RES, HBP-T, and PE-T have been 

examined for parameter set Nr. 6.

Recommendations

In most situations, PE-A is far better than all other protocols, and it is followed by PE-P. 

However, we must note that the cost of suspending and resuming the preempted tasks has not 

been considered in our simulation model. Also, the cost of processing the tasks at the EMP 

— which will be higher for the preemptive protocols — has not been considered. Therefore, 

this recommendation is only valid for situations in which these costs are negligible.

If task migration is not possible (e.g. for implementation reasons) or not desirable (e.g. 

for security or performance reasons) CDA can be recommended. However, if there is a large 

number of Servers in the system and the load is high, PDA peforms better. The HBP-T 

protocol, which has only been examined for parameter set 6, can also outperform CDA. For 

high resource heterogeneity and moderate-to-high loads (Nr. 5 and 7), PSP may also perform 

better than CDA. If communication delays are high (Nr. 9), the preemptive protocols do not
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PC Cluster & Grid infrastructures:

Ref.
Nr.

Res.
Divers.

Comm.
Delays

Serv.
No.

Task
Size

Load BG Load 
Share

BG Load 
Granul.

Burst
Size

Recommenda-
tion

1 none none 32 van any none - low 1 .PE-A/P 
2.CDA 3.HBP

2 none none 32 van any medium coarse low l.PE-A 2.PE-P 
3.CDA

3 none none 32 van any medium fine low l.PE-A 2.PE-P 
3.CD A

4 none none 32 van high medium coarse high l.PE-A 2.PE-P 
3.CDA

5 high none 32 var. any none - low l.PE-A 2.PE-P 
3.CDA, PSP

6 high none 32 van any medium coarse low 1 .PE-A 2.PE-P 
3.HBP-T

7 high none 32 van any medium fine low 1 .PE-A 2.PE-P 
3.CDA, PSP

8 high none high van high medium coarse low l.PE-A 2.PE-P 
3. PD A

9 high high 32 van high medium coarse low l.PSP 2.HBP 
3.CDA

Abbreviations:
Ref. Nr.: reference number of the parameter set. Res. Divers.: degree of resource diversity/heterogeneity. 
Comm. Delay: communication delay. Serv. No.: number of Servers in the system. Task Size: task size 
distribution (identical vs. variable). BG Load Share: fraction of the total load being background load. BG 
Load Granul.: granularity of the background load. Burst Size: number of tasks submitted at a time.

Figure 64: Guidelines for the T2-Scenario in which the tasks have different priorities. This 
scenario has been examined in chapter 9.

perform very well: now PSP performs best and is followed by CDA and HBP.

13.4 Tasks with Time-Dependent Priorities (T3-Scenario)

The recommendations for the T3-Scenario are shown in Figure 65 (PC Cluster) and 66 (PC 

Grid). As additional parameters we introduce the type of deadline that is used, i.e. ’hard’ 

vs. ’soft’ and ’tight’ vs. ’moderate’ vs. ’loose’. In all examined situations, the task sizes are 

variable (T2), the task burst size is set to 1, and the background task size is ’medium’. The 

protocols CDA, PSP, HBP, PE-P, PE-A, FIFO, and SJF have been examined in all situations. 

CDA-TDB has only been examined for situations where the tasks have soft deadlines ({4, 5, 

13, 18}). PDA and HBP-T have been examined for the parameter sets (1, 2, 3, 6, 7, 8, 9, 10, 

11, 12, 14, 15, 16, 17} and CDA-RES for the parameter sets (6, 7, 14}.

159



13 DESIGNER’S GUIDELINES

Recommendations

In the PC Cluster scenario, PE-A provides a far better performance than the other protocols. 

It is followed by PE-P. If task migration is not possible or desirable, HBP or HBP-T will be 

the best choice — depending on the type of deadline that is used. CDA can be recommended 

for the case ’soft & loose deadlines’ (Nr. 5) 56.

PC Cluster infrastructure:

Ref.
Nr.

Res.
Divers.

Deadline
Type

Comm.
Delays

Serv.
No.

Load BG Load 
Share

BG Load 
Granul.

Recommenda-
tion

1 none hard / tight none 32 any none - 1 .PE-A/P 
2.HBP, HBP-T

2 none hard / tight none 32 any medium coarse l.PE-A 2.PE-P 
3.HBP

3 none hard / loose none 32 any medium coarse l.PE-A 2.PE-P 
3.HBP-T

4 none soft / tight, 
soft / mod.

none 32 any medium coarse 1 .PE-A 2.PE-P 
3.HBP

5 none soft / loose none 32 any medium coarse l.PE-A 2.PE-P 
3.CDA

Abbreviations:
Ref. Nr.: reference number of the parameter set. Res. Divers.: degree of resource diversity/heterogeneity. 
Deadline Type: type of task deadline (hard vs. soft / tight vs. moderate vs. loose). Comm. Delay: commu-
nication delay. Serv. No.: number of Servers in the system. BG Load Share: fraction of the total load being 
background load. BG Load Granul.: granularity of the background load.

Figure 65: Guidelines for the T3-Scenario in which the tasks have different, time-dependent 
priorities. This scenario has been examined in chapter 10. In this table, the results for the PC 
Cluster infrastructure are given.

The recommendations for the PC Grid infrastructures depend on the amount of load in 

the system. For the situation ’hard & tight deadlines’ without any background load in the 

system (Nr. 6) CDA-RES performs best for all amounts of load and is followed by HBP-T 

and PSP. When coarse-grained background load is introduced, CDA, FIFO, SJF, and PSP 

perform best when load is low (Nr. 7). PE-A is best if load is high and is followed by HBP-T 

and PE-P (Nr. 8). For moderate deadlines PE-A can be recommended if the load is low (Nr. 

9) — unless task migration is not possible, in which case CDA, SJF, or HBP-T should be 

used instead. If the load is high (Nr. 10), the HBP-T protocol performs best and is followed 

by SJF and CDA. For the situation ’hard & loose deadlines’ (Nr. 11 and 12), PE-A performs

56Note that HBP-T has not been tested for situations with soft deadlines.
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best for all amounts of load. If task migration is not possible, HBP-T should be used instead, 

or — for low load — CDA or SJF which perform about equally well. With soft deadlines 

(Nr. 13) , PE-A performs best among all examined protocols. It is followed by PE-P and 

CDA-TDB.

PC Grid infrastructure:

Ref.
Nr.

Res.
Divers.

Deadline
Type

Comm.
Delays

Serv.
No.

Load BG Load 
Share

BG Load 
Granul.

Recommenda-
tion

6 high hard / tight none 32 any none - 1. CDA-RES
2. HBP-T 3.PSP

7 high hard / tight none 32 low medium coarse CDA, FIFO, SJF, 
PSP

8 high hard / tight none 32 med.
/ high

medium coarse 1. PE-A
2. PE-P, HBP-T

9 high hard / mod. none 32 low medium coarse 1 .PE-A 2.CDA, 
SJF,HBP-T

10 high hard / mod. none 32 med.
/ high

medium coarse 1.HBP-T 2.SJF 
3.CD A

11 high hard / loose none 32 low medium coarse l.PE-A 2.CD A, 
SJF,HBP-T,PE-P

12 high hard / loose none 32 med.
/ high

medium coarse 1. PE-A
2. HBP-T, PE-P

13 high soft none 32 any medium coarse 1 .PE-A 2.PE-P 
3.CDA-TDB

14 high hard / tight none high high none - l.CDA-RES 
2.SJF 3.HBP-T

15 high hard / tight none high high medium coarse l.SJF 2.HBP-T 
3.PSP,CD A

16 high hard / mod. none high high medium coarse 1.HBP-T 2.CDA 
3.SJF

17 high hard / loose none high high medium coarse l.PE-A 2.HBP-T 
3.PDA

18 high soft none high high medium coarse l.PE-A 2.PE-P 
3.CDA,SJF,FIFO

19 high hard / tight mod.
/ high

32 high none 
/ medium

coarse 1. PE-P
2. CDA, HBP

20 high hard/mod.,
hard/loose

mod. 
/ high

32 high medium coarse l.CDA 2.PE-P 
3.HBP

Abbreviations:
Ref. Nr.: reference number of the parameter set. Res. Divers.: degree of resource diversity/heterogeneity. 
Deadline Type: type of task deadline (hard vs. soft / tight vs. moderate vs. loose). Comm. Delay: commu-
nication delay. Serv. No.: number of Servers in the system. BG Load Share: fraction of the total load being 
background load. BG Load Granul.: granularity of the background load.

Figure 66: Guidelines for the T3-Scenario in which the tasks have different, time-dependent 
priorities. This scenario has been examined in chapter 10. In this table, the results for the PC 
Grid infrastructure are given.
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Next, we consider situations in which the number of Servers and the load in the sys-

tem are high. CDA-RES can be recommended for the situation ’hard & tight deadlines’ if 

there is no background load in the system (Nr. 14). It is followed by SJF and HBP-T. If 

coarse-grained background load is introduced, SJF performs best for the case ’hard & tight 

deadlines’ (Nr. 15) and HBP-T for the case ’hard & moderate deadlines’ (Nr. 16). With 

’hard & loose deadlines’ PE-A performs best (Nr. 17). If task migration cannot be used, 

HBP-T and PDA can be recommended. For situations where tasks have soft deadlines (Nr. 

18) PE-A performs best and is followed by PE-P. Among the non-preemptive protocols CDA, 

CDA-TDB, SJF, and FIFO can be recommended.

The recommendations for situations with high communication delays and high loads 

depend on the type of deadline that is used 57. For hard and tight deadlines (Nr. 19) PE-P 

performs best. CDA and HBP come next and can therefore be recommended for the case 

that task migration is not possible. For hard and moderate/loose deadlines (Nr. 20) CDA 

provides the best results. It is followed by PE-P and HBP.

13.5 Comment

This chapter provided guidelines for the system designer regarding the choice of the best 

performing protocol for a given situation. We made the assumption of a managed system (see 

section 6.4) in which the pricing strategies of the Clients and Servers are enforced in order 

maximise the performance for the Clients. Hence, our recommendations would be different 

if the Clients and Servers were free to choose strategies which maximise their utility.

Also note that each recommendation is made for a situation in which the statistical prop-

erties of the system such as the load, background load, number of resources, etc. are constant. 

However, in reality these properties may vary over time. Therefore it will be necessary to 

implement the marketplace in a way that allows to change the protocol at runtime in order to 

provide the best possible performance to the Clients.

57Note that only few protocols have been examined here.

162



14 SUMMARY AND FUTURE WORK

14 Summary and Future Work

In this chapter we discuss our simulation model and draw conclusions from our simulations 

and experiments. We briefly compare our observations to the results of the related work. 

Next, we describe the scenarios in which the marketplace could be deployed and discuss the 

implementation and scalability aspects that need to be addressed. Finally, we give directions 

for future work.

14.1 The Model

For our performance evaluations, we have chosen discrete-event simulation, as it allows us to 

arbitrarily set parameters determining message delays, processing delays, arrival times, etc. 

Concerning task arrivals and task size distributions, we decided to use synthetic workloads. 

This gave us the flexibility to explore situations with different amounts and granularity of 

load. To provide a realistic model, we used distributions that are based on workload logs 

collected from large-scale systems in production use. Similarly, for modelling communi-

cation delays, we used distributions which are based on empirical data. Interestingly, in 

both cases, we found that the choice of distribution 58 did not have much impact on the re-

sults of our simulations. What mattered was the average value chosen for the task sizes or 

communication delays. For this reason, we believe that using more realistic workload or 

communication models would not make much difference either.

Regarding the network infrastructure of the system, we used a simple model: All network 

links between the actors were identical and therefore led to the same mean communication 

delays 59. Similarly, in an experiment, where the transmission of large data has been ex-

amined, we chose the same data sizes for all tasks. The reason for these choices is that we 

wanted to examine the impact of different communication delays: We assumed that the mean 

of all communication delays in the system is the main factor which determines the result.

What has not been considered in our simulation model, are processing delays at the 

central marketplace. They are likely to be negligible for small or medium-size systems in

58We experimented with different values for the standard deviation of the random variable.
59Note that network delays were only varied in some of the experiments and neglected otherwise.
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which the marketplace is not queried frequently. In fact, our experiments in the lab show 

that these processing delays are very small in a moderately-loaded, medium-size system. 

These delays may increase if more queries are sent to the marketplace — which is likely to 

be the case for large systems. However, our experiments in the lab did not give us enough 

information for deriving such a model, as the results were biased by other factors. Also, such 

a model would depend on the implementation and the system hardware.

14.2 Simulations

For our simulations, we first gave an overview of the parameter space to be explored in the 

simulations. Then, we examined three different scenarios with different requirements of the 

users. We compared several market protocols and conventional resource allocation protocols. 

In this section we will describe our research process and present a summary of the results. 

Finally, we give a critique on the simulations.

Initial Scenario: Tasks with the Same Priorities

Initially, we investigated a simple scenario where all tasks have the same priority, and their 

average completion times have to be minimised. In such a scenario, the only useful feature 

of the market protocols is their greedy behaviour which results in the choice of the best per-

forming resource at a given time. As market protocols, we examined the Continuous Double 

Auction Protocol (CDA) and the Proportional Sharing Protocol (PSP). For various scenarios, 

which are characteristic for computational clusters and Grids, we determined which of these 

two protocols is best and how great the benefit over a simple Round-Robin protocol can be. 

To determine how general our results are, we studied the sensitivity of the different protocols 

to various parameters. We found that in almost all situations CDA outperformed the two 

other protocols. PSP performed better only for moderate loads combined with high resource 

heterogeneity. It also degraded less than the two other protocols when communication de-

lays were high. Our main focus in the simulations was on PC infrastructures. However, 

we also considered a scenario, where parallel applications were allocated to multiprocessor 

machines, and found that in many cases the results are similar.
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Tasks with Different Priorities

Next, we examined a scenario that is more realistic for a computational Grid in which the 

clients and service providers belong to different organisations: Tasks have different priori-

ties for their clients which are expressed by different price bids. To maximise performance 

from the clients’ point of view, these priorities need to be considered for the resource allo-

cation by the marketplace. For this reason, we used the weighted completion time of the 

tasks as performance metric: The higher the priority of a task, the more important is its 

early completion. Based on the experiences from the initial scenario, we could concentrate 

our experiments on scenarios and parameter sets which we considered relevant. We also 

introduced further resource allocation protocols, which can provide improvements in some 

of the examined situations. These protocols used features such as the suspension or migra-

tion of tasks, reserve prices, periodic auctions, time-dependent price bids, etc. Where some 

protocols failed, improvements were made (e.g. FIBP-T).

Tasks with Time-Dependent Priorities

Finally, we considered a scenario which we believe is even more realistic for a Grid setting: 

The objective of the users is not just to have their tasks executed as fast as possible, but to 

meet certain deadlines which can be hard or soft. Similar scenarios have been investigated by 

[Chun and Culler, 2000], [Kim et al., 2003], and [Nisan et a i, 1998], We used performance 

metrics which reflect the value delivered to the users. These are the weighted completion 

rate (for hard deadlines) and the aggregate user utility (for soft deadlines). We considered 

those protocols whose results were promising in the previous scenario and also examined one 

protocol which has specifically been designed for situations with soft deadlines (CDA-TDB).

In the following, we will summarise our findings for the different protocols:

Exclusive Allocation of Resources without Preemption

The exclusive allocation of resources without preemption, as used by the Continuous Double 

Auction Protocol (CDA), will often lead to good results. Differences between CDA and the 

other protocols will occur at high loads in the system, i.e. when there is a strong competition 

for resources. In most cases, CDA is the better than the conventional scheduling protocols
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RR, FIFO, and SJF, as it prioritises tasks according to their bids, and resources according to 

their performance. Usually, it is also better than the Proportional-Sharing Protocol (PSP).

Proportional Sharing of Resources

When the heterogeneity of the resources is high, proportional sharing may be preferable to 

the exclusive allocation of resources. In such situations, the Proportional Sharing Protocol 

(PSP) will outperform CDA — provided that the load in the system is not too high, and 

the weighted completion time (WCT) of the tasks is used as performance metric. PSP also 

copes better with high communication delays. Furthermore, it performs better than CDA in 

a situation where the tasks have tight deadlines, and the weighted completion rate (WCR) is 

used as performance metric.

Preemption: Suspension of Tasks

With the Highest Bid Protocol (HBP), we examined a protocol that allows to suspend low 

priority tasks in favour of high priority tasks in order to improve the overall performance. 

However, we observed that, in most cases, HBP leads to a poorer performance than CDA: 

It appears that the delay of suspended tasks outweighs the gain of the suspending tasks. We 

found that a solution to this problem is to use thresholds for the preemptions (as in the HBP-T 

protocol). With the right choice of threshold, HBP-T outperforms both CDA and HBP.

Preemption: Task Migration

We considered two protocols which enable the migration of tasks whose execution has al-

ready started. The first, PE-P (passive), allows the migration of a task only when preempted 

by another task. The second, PE-A (active) enables task migration whenever a better re-

source becomes available. With just a few exceptions, such as situations with high commu-

nication delays or tight deadlines, PE-A’s results are far better than for the other protocols, 

and PE-P’s results come next. One weakness of PE-P and PE-A, however, is that each mi-

gration may trigger another migration. This will often result in a chain reaction which — 

in reality — can be a huge burden on the central marketplace. A possible solution to this 

problem could be limiting the number of preemptions, as done by the PE-T protocol.
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Use of Reserve Prices

The use of reserve prices (as in CDA-RES) can lead to better results than ’normal’ CDA if 

there are differences in speed or background load among the resources. It can be a good 

solution in situations where the preemption of tasks is not possible or desirable. One risk 

of such a protocol is, however, that some low priority tasks may never be executed: This 

problem can be dealt with by gradually increasing their price bids or by enforcing price 

discounts at the resources. We must note that the comparison of CDA and CDA-RES only 

makes sense in a system, in which the Servers do not try to maximise their gain: In a free 

market, the service providers will set their reserve prices anyway.

Time-Dependent Task Priorities

The protocol CDA-TDB has specifically been designed for situations in which the tasks have 

soft deadlines: It bases the allocation decisions on the current price bids of the tasks, which 

are decreasing over time, as they reflect the actual values of the tasks. In our experiments, 

it did not lead to considerable improvements in comparison to ’normal’ CDA with static 

price bids, and also, it was clearly outperformed by the preemptive protocols. Furthermore, 

a serious disadvantage of CDA-TDB is that it is computationally expensive. As we found in 

some limited trials with our experimental Grid computing framework, this can considerably 

delay the processing of tasks at the marketplace.

Periodic Auctions

While most of the auction protocols described in the related work in chapter 5 are periodic, 

all of our protocols — except PDA — are continuous, i.e. they carry out the transactions 

immediately. We opted for continuous auctions as we expected better performance. In fact, 

in most of our experiments the Periodic Double Auction Protocol (PDA) turned out to be less 

efficient than the Continuous Double Auction Protocol (CDA). Exceptions, however, can be 

found in situations with highly heterogeneous resources and moderate to high amounts of 

loads. We also observed improvements for situations where tasks had loose deadlines and 

the number of resources was high.
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Conventional Scheduling Heuristics

In scenarios where tasks have different priorities it is obvious that market protocols lead to 

better results than those protocols which do not consider these priorities for the resource 

allocations. Yet, in order to determine in which situations the market protocols can make a 

difference, we examined several conventional scheduling heuristics, which include Round- 

Robin (RR), First-In-First-Out (FIFO), or Shortest-Job-First (SJF). Our results show that, 

with the market protocols, substantial improvements are achieved in situations with high 

loads and high heterogeneity of resources.

14.3 Simulations: Critique

The simulation results show that, in computational clusters and Grids, market protocols can 

provide an efficient allocation of resources which will benefit the users. The choice of the 

appropriate protocol, however, depends on various parameters, including load, resource het-

erogeneity, communication delays, etc. Guidelines for how to use these results have been 

given in chapter 13. It should be noted that we examined our protocols for systems, which 

are stationary, i.e. whose statistical properties, such as the task arrival rate, don’t change 

over time. If these statistical properties change, e.g. for different times of the day or the 

year, our results will still be valid, as long as the duration of the tasks is relatively small. For 

situations where this is not the case, the protocols may have to be adapted, and predictive 

techniques may lead to improvements.

The Market as a Tool

In this thesis, we considered the market as a tool to maximise performance from the Clients’ 

perspective. It could be argued that this will only be applicable in managed systems where 

the Servers do not have the objective to maximise their gain (e.g. where the resources are col-

lectively owned by the users). However, we found that trying to maximise the performance 

for the Clients does not necessarily contradict the objectives of the Servers. The strategic 

behaviour of the Servers can even be exploited in a way that maximises performance.

Our results for the CDA-RES protocol show that allowing the Servers to set reserve 

prices can improve performance. The reason is that reserve prices can help to express the
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differences in speed and load among the resources: The reserve prices exclude low priority 

tasks from using the well-performing resources so that they remain available to high priority 

tasks, which may arrive at a later time. These performance improvements by CDA-RES are 

achieved, even though the resources remain idle for considerable amounts of time. It appears 

that this ’waste’ of processing power can be outweighed by the gain for the high priority 

tasks — and overall, the users can benefit from the opportunistic pricing of the Servers.

A problem with using reserve prices is that some low priority tasks may never be allo-

cated to any resource. In a managed system this problem can be solved by enforcing price 

discounts at the Servers or by gradually increasing the task price bids (’task price adjust-

ment’). However, in a free market, it will not be possible to use these techniques. Instead, 

the Clients will behave strategically and will therefore increase the bids of their tasks if they 

expect this to be beneficial to them — and hence provide a form of ’task price adjustment’.

In a free market in which the CDA protocol is used at the EMP, the Servers will need the 

ability to set reserve prices in order to maximise their benefit. However, if the a preemptive 

or proportional sharing protocol is used at the EMP, the Servers will not necessarily benefit 

from setting reserve prices, because the resource allocations can be changed whenever tasks 

with higher price bids arrive.

Type of Auction and Bidding Strategies

In this thesis, we assumed a managed system and therefore did not have to consider pric- 

ing/bidding strategies and resource accounting. Therefore, if we replaced the first-price auc-

tions by second-price auctions, our simulation results would not be affected because the 

allocation decisions at the marketplace would remain unchanged (except for CDA-RES and 

PSP). However, for a system that is not managed, the choice of protocol (i.e. first-price vs. 

second-price) may have a considerable impact on the results because it determines the dom-

inant strategies of the Clients and Servers, and hence the allocation decisions. The choice of 

the bidding strategy will become important in a scenario in which a Client has to allocate its 

limited funds to several tasks which it submits to the EMP (e.g. as part of parameter sweep 

applications, DAGs, etc.). This is subject of future work.
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14.4 Experiments

With our experimental Grid computing framework we have shown that our Electronic Mar-

ketplace is implementable and can operate in a real computational environment. Although 

experimental and light-weight, the framework resolves many practical issues of distributed 

computing, which include the performance measurements at the resources, the measurement 

of load information, and the passing of data and code between Clients and Servers. Due 

to the JADE platform, which provides HTTP and various other communication protocols, a 

deployment of our framework in a geographically distributed system is possible: We enabled 

it to transfer Java code to remote machines via any of the protocols supported by JADE.

By running our framework in a local area network, we investigated the validity of our 

simulation model and the scalability of our Electronic Marketplace (EMP). Overall, the 

results indicate that the system operates as predicted, as long as the communication-to- 

computation ratio is small and the system is not overloaded. It also scales well with the 

number of resources. In addition to these experiments, we demonstrated the effectiveness 

of our framework for the distributed execution of real-world applications, such as PSIMAP. 

The main limitation of our experiments is that they have only been carried out in a local area 

network, which did not allow us to examine situations with heterogeneous resources and 

communication delays.

14.5 Comparison to Related Work

There have been only few other efforts to evaluate the performance of market protocols for 

computational clusters and Grids. These are described in chapter 5 in more detail. In most 

cases, the examined scenarios are slightly different and therefore the results are not directly 

comparable to ours.

Grid Settings

The authors of POPCORN [Nisan et al., 1998; Regev and Nisan, 1998] examined the per-

formance of several market protocols in a geographically distributed system. In contrast to 

our work, the authors studied economic properties of the market, such as price stability and
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economic efficiency, rather than measuring performance from the user’s perspective. Also, 

the evaluation was limited to periodic auctions which, according to our results, are less effi-

cient than continuous auctions. Mechanisms such as proportional sharing, task preemption, 

or migration, which — as we found — can lead to considerable performance improvements, 

have not been examined either.

In the work reported in [Wolski et al., 2001], different market protocols were examined 

for a Grid setting. Again, the performance metrics were different than in our work: They 

included the job throughput, utilisation of resources, and price stability. The experiments 

were also limited to protocols with periodic transactions.

Cluster Settings

In [Chun and Culler, 2002], market protocols were examined for a computational cluster 

which was modelled as a single, divisible resource consisting of identical processors. The 

authors studied a scenario where tasks had soft deadlines. They found that a first-price 

auction can outperform conventional scheduling protocols like SJF. They also observed that, 

for sequential workload, the use of auctions with time-dependent price bids does not lead to 

considerable improvements over auctions with static price bids. In spite of the differences 

in the setup, both observations are consistent with our findings for CDA-TDB, CDA, and 

SJF. However, the authors also found that the preemption of tasks ’does not add significant 

value’: This observation could not be confirmed by our experiments, in which the preemptive 

protocols clearly outperformed CDA and CDA-TDB.

The authors of [Kim et al., 2003] studied the unrelated machine case for a cluster set-

ting and therefore required a different type of resource allocation protocols. Yet, in the 

experiments, the best results have been achieved with those protocols which considered task 

priorities when allocating resources. This is consistent with our findings.

The work by [Ferguson et al., 1996] examined a cluster setting in which auctions were 

carried out at each processing node. Due to the differences in the setup, the authors’ results 

cannot be compared to our results. However, their general observation, that market protocols 

can achieve better performance levels than non-economic protocols, has been confirmed by 

our simulations.
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Resource Control for Mobile Agents

The authors of [Bredin et al., 2001; Bredin, 2001] examined a proportional sharing proto-

col for the allocation of computational resources to mobile agents. They observed an 8% 

overhead for this market protocol in comparison to a locally optimal, non-economic proto-

col. This observation does not contradict our findings, as the authors did not consider the 

different priorities of the tasks in their performance metrics.

14.6 Applicability

In this section, we briefly describe the scenarios in which the marketplace could be deployed. 

We also discuss the implementation and scalability aspects that need to be addressed.

Scenarios

Our Electronic Marketplace could be deployed in various environments. Regarding the type 

of system infrastructure, we distinguish the following two cases: The first is a local cluster 

of identical resources which is small in size, and the second a Grid in which the resources 

are heterogeneous and geographically distributed. In both cases the resources can be PCs 

or multiprocessor machines. Regarding the ownership of resources which are offered at the 

marketplace, we envisage the following scenarios:

• The resources are owned by just one organisation, e.g. a research institution or com-

pany, which provides access only to its users, e.g. students or employees.

• The resources are collectively owned by different users or organisations to which the 

users belong. •

• The resources are part of a web-farm owned by one single organisation, and the incom-

ing service requests of external users are prioritised on the basis of the importance of 

the users, their past usage, etc. If the services are offered for free, resource accounting 

will not be needed.

• Both users and resource providers belong to different organisations. In such an envi-

ronment, the issues of security and resource accounting are harder to resolve. Also,
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the resource providers will be maximising their revenue — which is not necessarily 

the case in the other scenarios.

Implementation

From the implementation point of view, non-preemptive protocols like CDA are the simplest. 

Also, since the allocations of the tasks cannot be changed during their execution, they are 

the most reliable from the user’s point of view. We found that the implementation of the 

preemptive and proportional sharing protocols is not straightforward, as it requires the ability 

to suspend and resume executing threads or other ways to control resource consumption. At 

the present time, this functionality is not supported by Java — which JADE needs to run — 

but efforts are underway to solve this problem [Czajkowski et al., 20031. Task migration, as 

used by PE-P and PE-A, is even harder to implement. Unless the program code is written 

in a way that facilitates migration, it will require strong mobility (see section 3.7): The 

complete execution state of a task has to be packaged up, in order to resume execution on the 

new Server. This facility is not provided by standard Java but has been implemented by the 

D’Agents mobile agent platform [Rus et al., 1997], which uses a modified virtual machine.

Scalability

Bearing in mind that, in reality, computational tasks are at least a few minutes long, and 

the marketplace is able to process several requests per second, our central marketplace will 

scale for hundreds, if not thousands of resources. As we found in our experiments, this will 

already be the case with our experimental framework which is written in Java. With a more 

efficient implementation, an even better performance could be achieved. Beyond a certain 

point, however, it will be necessary to distribute the marketplace.

14.7 Future Work

The work presented in this thesis can be extended in several directions, which concern the 

simulation model, protocol design, and implementation. These will be described in this 

section.
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Simulation Model

We could extend our simulation model by considering the processing delays at the central 

marketplace. This may be needed for the modelling of larger systems, in which the market-

place is queried frequently. Another extension — essential to the modelling of data-intensive 

applications — would be to consider memory requirements in the resource allocations. Our 

simulation model should allow the tasks to specify requirements for the memory or storage 

space needed, and model the resources accordingly. A further improvement, which could be 

relevant for the deadline-scenarios, concerns the task computation sizes: In reality they are 

often not known before their execution and only estimates can be given. The real task sizes 

should therefore be modelled as random variables.

To examine a real, geographically distributed system, more sophisticated models may 

be needed for the communication delays. These could be queuing-theoretic or based on 

data obtained from real network traces. Also, more realistic network infrastructures could 

be used for the simulations. Furthermore, our simulation model could be used to study a 

system that provides market-based resource control for mobile agents ([Bredin et al., 2001; 

Bredin, 2001], see section 5.5). Another scenario, which we believe is relevant to Grid 

computing and which should be considered as future work, is the scheduling of applications 

with subtask dependencies (see subsection 2.3.1). Our model could also be extended to cover 

the combinatorial case in which each application requires a bundle of different resources for 

its execution (e.g. different machines, memory & storage space, network bandwidth, etc.).

Protocol Design

Regarding the design of the resource allocation protocols, it would be interesting to examine 

whether hybrid approaches can lead to any performance improvements. E.g. one could 

combine proportional sharing or preemption with reserve pricing, thresholds, or periodic 

auctions. In the scenario where tasks have deadlines (see chapter 10), protocols could be 

considered which not only consider the priority of tasks but also their urgency.

What should also be investigated is whether the use of performance prediction (see sec-

tion 4.5) can improve the results. In some limited trials we examined a version of CDA which 

uses estimates of the load on the resources for its allocation decisions. However, we could
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not find any considerable improvements. Yet, performance prediction may lead to better re-

sults in other scenarios. Another challenging task would be to enhance the pricing strategies 

of the Servers, so that they maximise their utility 60. Similarly, the bidding strategies for the 

Clients could be improved.

Implementation

Concerning the implementation of the marketplace, the most important extension would 

be to actually deploy protocols which use proportional sharing or the preemption of tasks. 

This is currently not possible with Java. However, possible solutions would be to (i) use a 

modified Java virtual machine ([Suri, 2000], e.g.), (ii) use a framework that controls resource 

consumption through bytecode rewriting [Binder et al., 2001], or (iii) schedule processes at 

the operating system level.

In this thesis we assumed that system properties such as the load, background load, num-

ber of resources, etc. remain constant. However, in reality these properties may vary over 

time. Therefore it will be necessary to extend the marketplace in a way that allows to change 

the protocol at runtime in order to provide the best possible performance to the Clients.

Furthermore, to make the marketplace more scalable, it might be necessary to distribute it 

over several machines. In [Wolski et al., 2003], an architecture is proposed which consists of 

several branches which store replicated and synchronised information about the demand and 

supply. We find that a scalable marketplace does not necessarily have to be geographically 

distributed — rather the machines could be located at the same site. In fact, Napster 61 and 

eBay 62 are examples which show that centralised systems may even scale on a global level. 

In any case, the resource allocation protocols would have to be adapted to deal with the 

replicated data structures and the distributed processing of queries. Yet, by doing this, the 

operational behaviour of the protocols as described in this thesis would not necessarily have 

to change.

To finally deploy the marketplace, issues such as security, trust, and resource accounting 

have to be dealt with.

60In [Bredin, 20011, such strategies have been developed for resource control in mobile agent systems.
61 http://www.napster.com
62http://www.ebay.com
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A Resource Allocation Protocols

A .l Resource scheduling policy: Proportional sharing

In this chapter, we describe resource scheduling policy 4 (see subsection 6.2.3), which uses 

proportional sharing, in more detail.

In this policy, several tasks can execute on a Server at a time. The amount of resources 

allocated to a task, Nru ^Uoc, depends on its price bid, pjask,i> in relation to the sum of price 

bids X PTask,i of all tasks executing on that Server, including the bid of the task itself. It is 

given by

Nr U, alloc
PTask,i 

X PTask,i
Nr u ,avail)

where Nru ,avail is the total number of available resource units.

Every time a task or background task starts or completes execution on the Server, the 

other tasks need to be rescheduled. The tasks’ resource shares change, and so does their 

execution speed. At such events, the effective execution speed sgf f j  of each executing task i 

is determined, and its completion event is rescheduled. First, the overall effective execution 

speed of the Server S£ff,total needs to be calculated. It is given by:

sEff,total — fSpeed ' ^RU,avail-

From this, the new effective execution speed of the task, 5£//,(, can be obtained. It 

depends on the overall effective execution speed of the Server, on the price bid of task i, and 

on the sum of the price bids of all executing tasks. It is given by:

sEff,i = SEf fitotal •
PTask,i
YjPTask,i

The task’s remaining size to be executed Sc ,r ,ì is calculated by

$C,R,i — Sc,R,i,prev (f tprev) ' sEff, ,i,prev
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In this equation, Sc,R,i,Prev is the remaining size of the task at the previous rescheduling 

event at time tprev. t is the current time and S£f f ^prev the effective execution speed of task i 

at the previous re-scheduling event. The remaining execution time T£xeCtPji of task i is given 

by:

r y ,  _ ^C,R,i
1Exec.R.i —

s m , i

The completion event of task i is rescheduled for time t + T£xec,R,i■ The procedures for 

the main loop of the Server and for the rescheduling of executing tasks are given in Fig. 67 

and Fig. 68, respectively.
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SERVER CODE:

while (experiment is running) { 
switch (event) {

task start event: // when a task is received from a Client 
add task to the list of executing tasks; 
increase sum of price bids;
RESCHEDULE EXECUTING TASKS; 
break;

task completion event:
remove task from the list of executing tasks; 
decrease sum of price bids;
update sum of price bids information at the EMP; 
send task result to the Client;
RESCHEDULE EXECUTING TASKS; 
break;

background task start event :
update resource information at the EMP;
RESCHEDULE EXECUTING TASKS; 
break;

background task completion event:
process waiting background tasks (if any); 
update resource information at the EMP;
RESCHEDULE EXECUTING TASKS; 
break;

}
}

Figure 67: Proportional sharing: Main code

RESCHEDULE EXECUTING TASKS:

calculate the effective execution speed of the Server; 
for all tasks i currently executing:

calculate the effective execution speed for task i; 
calculate the remaining size of task i to be executed; 
calculate the remaining execution time for task i; 
(re-)schedule the completion event of task i;

Figure 68: Proportional sharing: Rescheduling of tasks
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A.2 Resource allocation protocols

To give the reader more insight into the operation of the resource allocation protocols exam-

ined in this thesis, we provide the pseudo code of the most important procedures. Also, a 

more detailed description of the Round-Robin Protocol will be given.

A.2.1 Procedures common to all protocols

EMP MAIN LOOP:

while(experiment is running) { 
wait for a new event; 
switch (event) {

task arrival event:
PROCESS TASK QUERY (Task Query object); 
break;

server resource update event:
RESOURCE UPDATE EVENT (resource offer); 
break;

task price adjustment event:
TASK PRICE ADJUSTMENT EVENT; 
break;

}
}

Figure 69: Main loop of the EMP

PROCESS TASK QUERY

if (task deadline has passed) { 
discard the Task Query object;

}
else {

QUERY FOR SERVER (size, price, deadline); 
if (query successful) {

send the query result to the task's Client;

}
else {

add the Task Query object to the 
list 'taskQueryObjectList'; 

indicate that 'taskQueryObjectList' is not sorted;

}

Figure 70: Processing a task query at the EMP
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A.2.2 Continuous Double Auction Protocol (CDA)

QUERY FOR SERVER (size, price, deadline):

starting from the beginning of the list of resource offers: 
check all resource offers in order to find the 'best' 
(cheapest/fastest) offer which meets the task's 
constraints {size, price, deadline);

if (successful) {
tag the best resource offer to indicate that it is reserved; 
return the result;

}
else {

return null as result;

}

Figure 71: Continuous Double Auction Protocol: Query by a task

PROCESS RESOURCE UPDATE EVENT (resource offer):

if ('taskQueryObjectList' is not sorted) {
sort 'taskQueryObjectList' according to the price bids 
in descending order;

indicate that 'taskQueryObjectList' is sorted;

starting from the beginning of the 'taskQueryObjectList':
- search 'taskQueryObjectList', until the first task is found for which 

the resource offer is acceptable w.r.t. {size, price, deadline);
- while doing this: remove those Task Query objects from 

'taskQueryObjectList' for which the deadline has passed;

if (successful) {
tag this resource offer to indicate that it is reserved;
send the query result to the task's Client;
remove Task Query object from 'taskQueryObjectList';

Figure 72: Continuous Double Auction Protocol: Resource update event
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A.2.3 Proportional-Share Protocol (PSP)

QUERY FOR SERVER (size, price, deadline):

starting from the beginning of the list of resource offers:
check all resource offers in order to find the offer that is 
the fastest to execute the task and which meets the task's 
constraints {size, price, deadline}. (This takes into account 
the current background load and sum of price bids on that 
Server);

if (successful) {
add the task's price bid to the sum of price bids of the 
Server offer which was chosen; 
return the result;

}
else {

return null as result;

}

Figure 73: Proportional Share Protocol: Query by a task

PROCESS RESOURCE UPDATE EVENT (resource offer) :

if ('taskQueryObjectList' is not sorted) {
sort 'taskQueryObjectList' according to the price bids 
in descending order;

indicate that 'taskQueryObjectList' is sorted;

}

starting from the beginning of the 'taskQueryObjectList' :

- search 'taskQueryObjectList' until the first task is found for which 
the resource offer is acceptable w.r.t. {size, price, deadline};

- while doing this: remove those Task Query objects from
'taskQueryObjectList' for which the deadline has passed;

if (successful) {
send the query result to the task's Client; 
add the task's price bid to the sum of price bids of the 

Server offer which was chosen; 

remove Task Query object from 'taskQueryObjectList';

Figure 74: Proportional Share Protocol: Resource update event
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A.2.4 Round-Robin Protocol (RR)

In the Round-Robin Protocol no pricing is used. The incoming task queries are matched 

with the next available resource offer which meets the task’s constraints but which is usually 

not the best. For this purpose, an iterator (called ’serverListlterator’) is used which cycles 

through the list of resource offers (see Fig. 75).

QUERY FOR SERVER (size, deadline):

count = 0;
listSize = size of the list of resource offers; 

do {
get the resource offer at the current position of the iterator 
in the list of resource offers (called 'serverListlterator');

if (resource offer is available 
&& meets the task's constraints) {

tag the resource offer to indicate that it is reserved; 
serverListlterator = (serverListlterator+l) MODULO listSize; 
return the result;

}

serverListlterator = (serverListlterator+l) MODULO listSize; 
count++;

} while(count<listSize); 

return null as result;

Figure 75: Round-Robin Protocol: Query by a task

On arrival of a Task Query object at the EMP, the list of resource offers is searched until 

a resource is found which satisfies the task’s constraints {size, deadline}. The search starts 

at the current position of the iterator. In case of a success, the resource offer is reserved. The 

iterator is incremented and the result returned. Otherwise, the iterator is also incremented 

and the next resource offer is considered. This step is repeated until all resource offers have 

been checked or a match has been found. If the query is successful, the result is sent to the 

task’s Client. Otherwise, the Task Query object remains at the EMP until a suitable resource 

becomes available. It is stored in a list called ’taskQueryObjectList’.

Whenever a resource becomes available, the Task Query objects in this list are processed
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in the order of their arrival, until the resource offer is taken or all elements have been checked 

and no match was found (see in Fig. 76). In case of a match, the iterator of the list of resource 

offers (called ’serverListlterator’) is moved to the next position.

PROCESS RESOURCE UPDATE EVENT (resource offer):

listSize = size of the list of resource offers; 
starting from the beginning of the 'taskQueryObjectList' :

- search 'taskQueryObjectList', until the first task is found for which 
the resource offer is acceptable w.r.t. {size, deadline);

- while doing this: remove those Task Query objects from 
'taskQueryObjectList' for which the deadline has passed;

if (successful) {
tag this resource offer to indicate that it is reserved; 
send the query result to the task's Client; 
remove Task Query object from the 'taskQueryObjectList'; 
serverListlterator = (serverListlterator+l) MODULO listSize;

}

Figure 76: Round Robin Protocol: Resource update event

A.2.5 Task Price Adjustment Event

If enabled, the task price adjustment event (see pseudo code in Figure 77) occurs at regular 

time intervals — as long as the experiment is running. At first, the price bid prask of each 

TaskObject in ’taskObjectList’ is adjusted according to:

l t tCreation T n  eg / \
P T a sk  — PTask,m ax  H 77. ‘ \PTask,m ax PTask,m in)

I N  eg

fo r  tCreation f  f  tCreation "P 'f'lVeg

In this equation PTask,max is the maximum price the task is willing to pay and PTask,min 

the minimum price that is initially requested. The price depends linearly on the time which 

is left to the end of the negotiation time T^eg\ The parameters used are the task deadline, to, 

the task creation time tcreation> the (maximum) negotiation time T^eg, and the current time, t. 

If the negotiation time has passed, the price is fixed at its maximum PTask,max-
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PROCESS TASK PRICE ADJUSTMENT EVENT:

if (experiment is running){

schedule the next TASK PRICE ADJUSTMENT EVENT;

}
for (each task in 'taskObjectList') { 

adjust price;

}
sort 'taskObjectList' according to the price bids in descending order; 

indicate that 'taskObjectList' is sorted; 

for (each task in 'taskObjectList') { 

if (task deadline has passed) {

remove TaskObject from 'taskObjectList';

}
else {

QUERY FOR SERVER (size, price, deadline); 

if (query successful) {

infinitesimal delay to avoid concurrent events; 

send the query result to the task's Client; 

remove TaskObjects from 'taskObjectList';

}
else {

if (task price bid < lowest Server price) { 

exit method;

}
}

}
}

Figure 77: Task price adjustment event
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B Simulation Framework

B.l Introduction

This chapter provides an overview of our simulation framework which has been used for the 

experiments described in this thesis. Also, we will describe the method that we used for 

dealing with randomness in the experiments.

B.2 Discrete-Event Simulation

Simulation can help to evaluate different resource allocation protocols before their imple-

mentation and without depending on a particular hardware infrastructure, network topology, 

or middleware. To simulate distributed systems, discrete-event simulation can be used. Basi-

cally, a discrete-event simulation operates with a list of events (in virtual time) and a central 

simulator object that executes these events in order. During the execution of the events, new 

events may be generated which will be added to the list.

The reason for choosing discrete-event simulation for our experiments is that it allows to 

arbitrarily set parameters determining message delays, processing delays, arrival times, etc. 

Hence, one does not depend on a particular system and can explore a strategy for different 

scenarios.

B.3 Choice of language and package

A discrete-event simulation can easily be implemented in Java or other object-oriented pro-

gramming languages. As an alternative, a dedicated simulation language like SIMULA [Poo- 

ley, 1987] can be used.

We opted for Java because of prior experience with this language and because of the avail-

ability of various open-source simulation packages, which saved us a lot of programming 

effort. Also, writing the simulation in Java later enabled us to re-use large parts of our code 

when implementing our basic Grid Computing framework (see chapter 11). General-purpose 

simulation packages, which are based on Java, include Simjava [Howell and McNab, 1998],
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Silk [Kilgore and Burke, 2000], and Desmo-J [Page et al., 2000], Other systems like Swarm 

[Minar et al., 1996] or RePast [Collier, accessed in 2003] are designed for agent-based sim-

ulation. We have chosen Simjava (version 1.2), as it is open-source and relatively small, and 

therefore easy to control. It provides the core functions of a discrete-event simulator which 

we extended with additional Random number generators, statistical functions, and message 

passing capabilities. Furthermore, it uses continuous — rather than discrete — time, which 

enables us to choose arbitrary values for the delays, without any limitations introduced by 

discrete timesteps. In Simjava, all simulated actors are represented by Sim_entity objects 

which have their own threads and which may interact with each other. During the simulation, 

each thread may be started and stopped by the simulator according to the events which are 

stored in the event list. Also, it may create new events.

B.4 Simulation Framework: Base Package

Our simulation framework comprises several Java packages: a Base package, a statistical 

package, a random number generation package, and several packages which are specific to 

particular protocols. The Base package classes ClientBase, EMPBase, and Ser\>erBase con-

tain basic functionality for the Clients, the EMP, and the Servers. Most of this functionality 

is used by all resource allocation protocols. In the protocol-specific packages, these classes 

are extended by classes called Client, EMP, and Server. A brief overview of the classes in 

the Base package is given below:

• Account: the bank account for the Clients and Servers. It contains a method for trans-

ferring money to (or from) it.

• Bank: the bank which holds the accounts.

• ClientBase'. contains the basic functionality of the Clients, like storing and sending 

tasks and collecting the results after their execution. It creates computational tasks 

with exponential inter-arrival rate and sends requests to the EMP. •

• CommEntity: the base class for all communicating entities which have their own
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thread, reside on a network node, and are able to communicate via remote method 

invocation — or passing of events. It extends the Sim_entity class.

• Commlnterface: an interface for all communicating entities which reside on network 

nodes and are able to communicate via remote method invocation. Currently, it is only 

implemented by the CommEntity class. However, it could also be used for objects 

without active threads.

•  EMPBase: the base class of the electronic marketplace. It defines all the basic func-

tionality that the electronic marketplace requires. This class can be extended to add 

extra features to the EMP if necessary.

• EMP Query Re sulf. contains the result of a task’s query to the EMP.

• EMPResourceAd: contains the parameters of a Server’s resource offer {'ad') at the 

EMP.

• Helper, uses Java’s reflection classes and can be used for a method invocation where 

the method name is passed as a string. It is needed for the remote method invocation 

or other invocations that are carried out after a certain delay.

• Messenger-, used for the invocation of methods on objects which are accessible via a 

Commlnterface.

• Methodlnvocation: wraps up the information which is used for the invocation of a 

method on an object represented by a Commlnterface. The method invoked is repre-

sented by a string.

• Network-, contains a network topology represented by a list of network links. It is 

able to calculate the communication delay on a Network link specified by two network 

nodes. •

• NetworkLink: contains the characteristics of a network link which are relevant to the 

communication delay.
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• Parameters: stores the input parameters that are used for the simulation. It is able to 

print out its member variables (types and values) and to change these by reading from 

an input file. It uses Java reflection classes to manipulate the values. The class also 

has facilities to write results to a file, etc.

• Resource: represents a resource of a Server. It is characterised by a number of resource 

units which can be allocated to one or more tasks. It is associated with a Server.

• ServerBase: the Base class for the Servers. It contains the basic functionality that is 

required for a Server and can be extended.

• Statistics: stores the statistics which are recorded during an experiment.

• StatisticsRecorder: records certain statistics at periodic intervals and writes them to a 

file.

•  SuperTask: this class can be used for representing a chain (pipeline) of computational 

tasks which may require different resources. (This scenario is not examined in this 

thesis.)

• TaskData: represents a computational task and contains all parameters that describe it. 

A TaskData object needs to be sent to a Server for execution.

• TaskObject: contains the information necessary for a tasks’s resource query at the 

EMP. The actual task is represented by a TaskData object.

B.5 Simulation Framework: Protocol-specific Packages

The simulation framework contains several protocol-specific packages which cover the func-

tionality necessary for one or more protocols. These packages include the classes Client, 

EMP, Server, and Startup. The latter is used for starting a simulation with the correspond-

ing protocol. A list of these packages and of the protocols, which they implement, is given 

below:

• CDA: Continuous Double Auction Protocol, CDA-RES Protocol, PDA Protocol
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• SAP: Seller-Adjusted Pricing Protocol, FIFO Protocol

• RRP: Round-Robin Protocol

• PSP: Proportional Share Protocol

• HBP: Highest Bid Protocol, HBP-T Protocol

• PE: Preemptive Protocol (PE-P, PE-A, and PE-T)

• UCV: CDA-TDB, PRIO-FIFO, and SJF

There are two further packages in our framework which contain protocols that have not 

been discussed in this thesis. These are:

• RRQ: Round-Robin with Server Queues

• MCT: Minimum Completion Time Protocol

B.6 Running a Simulation

The simulation is started by executing the Startup class of the protocol-specific package to 

be used. In the command line, the name of the file is passed from which the values for the 

input parameters will be read. These values are written into variables in the Parameter class. 

An example of a file containing input parameters is shown in chapter E.

The Startup class initialises an output trace which allows to log the events and values 

of the variables during the simulation. Each entry that is written to the trace consists of the 

name of the actor, which it is written by, a time stamp, and the output message.

Next, the Startup class initialises a StatisticsRecorder object, which records the values 

of important variables at periodic intervals and writes them to a file. These provide the user 

with snapshots of the system state at these recording events. The recorded variables include 

the total number of tasks created, tasks completed, tasks discarded, tasks currently in the 

system, tasks querying for a resource, and tasks executing. Furthermore, the average load 

and background load at the Servers, the average task completion time, and the average prices 

(ask, bid, and transaction) are reported.
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Then, all actors in the system are created and the simulation is started. The actors extend 

the CommEntity class which is able to perform a delayed RMI-style invocation of methods 

on other CommEntity objects. This is implemented using Java’s reflection classes and is 

easy to use, as the actors do not require a message handler. The communication delays are 

determined by the Network class.

During the simulation, certain variables are recorded by using Observational objects 

from our statistical package. Variables which are recorded include the mean waiting times, 

execution times, and completion times of the tasks, the amount of load and background load 

at the Servers, the prices of Clients and Servers, and many other variables. For each variable, 

several statistical figures, such as mean, standard deviation, minimum, and maximum, are 

recorded. After the experiment, a comprehensive summary of all statistics will be displayed, 

plus additional information, such as the task completion rate.

Our random number generator is based on Java’s util.Random package. To avoid cor-

relation between different random variables (e.g. task inter-arrival time or communication 

delays), we use a separate random stream for each random variable which is initialised with 

a separate random seed. Distributions which are supported by our random number genera-

tor include the uniform distribution, normal distribution, lognormal distribution, loguniform 

distribution, and bi-modal normal distribution. To ensure that the simulations are repeatable, 

the random seeds are not based on the system clock.

B.7 Experiments with Parameter Variation

Many of our experiments require to measure some specified variables, while one or more in-

put parameters are varied. To implement this exploration of the parameter space, we wrapped 

up the above simulation framework by an external Java program.

There are two ways of running the simulator: either a single simulation is run and a com-

prehensive summary of all statistics is obtained, or a set of specified parameters is examined 

for a subset of the parameter space. In the latter case, the external program reads the default 

values for the input parameters from a file like the one shown in chapter E. These values are 

used as a basis for the experiments. The external program then uses/or-loops to assign new
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Base.Parameters SAPricingTag none
Base.Parameters totalLoadRatio none
Base.Parameters BGLoadRatio none

Base.Statistics recordedTasksCompletedOnTime none
Base.Statistics 
Base.Statistics

obsTimelnSystem mean 
obsWeightedCompletionTime mean

Figure 78: Example file which specifies the parameters to be recorded

values to some chosen parameters. For each simulation run, the values of these parameters 

are overridden, and a new input file is created. The Startup class of the simulation frame-

work is then executed with this newly created input file. In addition to this input file, the 

parameters to be recorded in all the simulation runs need to be specified in a separate file. 

An example of such a file is given in Figure 78. Each entry in this file represents a parameter 

to be recorded. It consists of three parts: the name of the class where the parameter can be 

found, the name of the object where the parameter is stored, and the name of the field within 

this object that will be recorded.

For instance, if the object is of type Observational, then the field can be the mean, stan-

dard deviation, number of recordings, etc. If the object is a primitive type like double, then 

’none’ must be specified as field name. For each simulation run, the simulator will write a 

new line to an output file where the values of these variables are recorded.

B.8 Dealing with Randomness of the Results

As random numbers are used in the simulations, there is a certain degree of uncertainty when 

determining the mean of the variable which is measured (e.g. the completion time of tasks). 

In this section we will explain how we dealt with this problem in our experiments.

There are several commonly used methods of obtaining a reliable value for the mean. 

These include using long enough measurement intervals, repeating each simulation run many 

times with different random seeds, and ensuring that the measurements are made in a steady- 

state of the system. However, these methods are insufficient as it remains unclear how re-

liable the value obtained for the mean is. Therefore, in addition to the methods described 

above, we determined the confidence interval of the mean.
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We chose a method, which is used for simulations by many researchers in the field, and 

which is described in [Jain, 1991], The method consists of conducting m replications of the 

simulation run using different random seeds. In each replication, n measurements are made 

(in the system’s steady state).

At first, a mean of the measured variables needs to be calculated for each replication i. It 

is given by

Next, an overall mean for all replications is computed:

From these values, the variance of the means of the replications needs to be determined:

The confidence interval for the mean of the measured random variable is given by:

The parameter z \ - a/2 determines the width of the confidence interval. We decided to use 

the 95% confidence interval which is commonly used in science. For the 95% confidence 

interval, zi_a/2 has the value 1.96.

For the above formula to be valid, the number of replications, m, has to be chosen high 

enough (> 30). We used m =  40 in our experiments, which resulted in narrow confidence 

intervals for most cases.

1 " ̂= - X x ij-
W  4— 1

J m _ 9
Var (x) = ------- (xi -  x) .

m — 1
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C Additional Simulation Results

In this part of the appendix, additional simulation results will be given.

C.l Tasks with the Same Priority: Supercomputing Cluster

In this and the following section we will explore the Supercomputing Cluster and the Su-

percomputing Grid infrastructures. We only examine RR and CDA because PSP requires 

time-shared resources. The question to be answered is in how far these results differ from 

those observed for the PC Cluster and PC Grid.

C.1.1 Different Amounts of Load

The first experiment is defined by the parameters {Tl, SP3, C l, SN1, RD1, LV, BG2, TS2, 

BS1}. This means that we have a system with Nsen>= 32 identical space-shared resources. 

The Servers have the resource size = 10 and speed factor fspeed = 1-0. The task

computation size Sc has a loguniform distribution, and the burst size is 1. Communication 

delays are neglected. The average total amount of load in the system is varied between 0 and 

100% of the system capacity, and half of this load is background load. Background tasks 

have the computation size Sc ,bg  = 10 and are allocated Nru ^ g  = 1 resource units at a time.

As shown in Figure 79 (left), CDA provides the best results for the whole range of loads. 

RR performs worse because resources are allocated arbitrarily, whereas CDA selects the 

fastest available resource. Unlike for the PC infrastructures, the gap between CDA and RR 

does not close for higher loads. Overall, the completion time of both protocols is higher 

than in the PC Cluster infrastructure (Figure 13 (left)). The reason is that the resource share 

allocated to a task remains constant even when a background task completes execution. The 

free resource units either remain idle or are allocated to other tasks.

However, in contrast to the PC Cluster infrastructure, the performance now does not 

degrade much when the background load in the system is increased (BG3). As shown in 

Figure 79 (right), the mean completion times for CDA and RR are now only marginally 

higher than before. The reason is that background load is no longer prioritised. Hence, for
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Variation of Load - Multiprocessor Machines Variation of Load - Multiprocessor Machines

Figure 79: Supercomputing Cluster. Left: Variation of load in the system. Right: Variation 
of load when background load is higher.

a task it does not make much difference if it competes with other tasks or with background 

load.

Conclusion: CDA performs better than RR. The gap is wider than for the PC infrastructures 

where time-shared resources have been used. This is due to the fragmentation of resources, 

which is caused by allocating constant resource shares to the tasks. We also found that 

increasing the share of background load within the total load does not make much difference 

to the results as background load is not given priority.

C.1.2 Granularity of Background Load

As in the PC scenario, the completion time of the tasks is also affected by the granularity of 

the background tasks. In the experiment in Figure 80 (left) we use the same parameters as 

in Figure 79 (left), except that now each background task takes up all resource units of the 

Server, i.e. Nr u ,bg -  10 (SP4). As for the PC infrastructure, RR now performs equally well 

as CDA because all resources that are available execute at the same speed. Note that the two 

protocols perform much better than in the PC Cluster infrastructure (in Figure 13(right)), 

because background load does not have priority, and because resources are not fragmented 

as in Figure 79 (left).

Conclusion: Like for the PC infrastructures, the granularity of the background load has 

a large impact on the performance of the protocols. The difference is that the protocols’
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Multiprocessor Machines, Whole Resource Allocated

Total Load

Different Server Speeds - Multiprocessor Machines

Figure 80: Left: Supercomputing Cluster. Variation of load in the system when background 
load takes up the whole resource. Right: Supercomputing Grid. Variation of load in the 
system when resources are heterogeneous.

performance improves in a situation where the resources are either completely available or 

unavailable (SP4).

C.2 Tasks with the Same Priority: Supercomputing Grid

Finally, we examine a Supercomputing Grid infrastructure which is characterised by higher 

resource heterogeneity, higher number of resources, and higher communication delays than 

computational clusters. Compared to the PC Grid infrastructures, the only difference is the 

scheduling policy.

C.2.1 Resource Heterogeneity

First, we examine different amounts of load in the system (LV) when resource heterogeneity 

is high (RD2, i.e. fspeed,min = 0.0015625). The parameters of the experiment are given by 

{T1, SP3, C l, SN1, RD2, LV, BG2, TS2, BS1}. The results are shown in Figure 80 (right). 

For the whole range of loads, CDA performs much better than RR.

Conclusion: With heterogeneous resources, RR performs worse than CDA, now even for 

lower loads. The differences are much larger than for the PC infrastructures.
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Server Number - Multiprocessor Machines Variation of Network Latency - Multiprocessor Machines

Figure 81: Supercomputing Grid. Left: Variation of the Server number. Right: Variation of 
the network latency.

C.2.2 Different Server Numbers

Next, we vary the number of Servers, N serv- As parameters we choose {Tl, SP3, C l, SNV, 

RD2, LI, BG2, TS2, BS1}, i.e. the total load is fixed at 90% (LI) and resources are hetero-

geneous (RD2). The results are shown in Figure 81 (left). As already observed in Figure 17 

(right), the mean completion time of the protocols improves as Nserv is increased. However, 

now the mean completion time of Round-Robin remains at a very high level (> 6). This 

can only be explained by the fragmentation of the space-shared resources. Since in Round- 

Robin resources are allocated arbitrarily, it is very likely that tasks are sent to resources 

where already tasks are being executed. Their resource share will remain constant until their 

completion, leading to longer execution times.

Conclusion: Like in the PC Grid, the performance of CDA improves considerably with 

increased number of Servers. The difference is that now, RR’s mean completion time remains 

at a high value, and the gap between the two protocols becomes wider.

C.2.3 Communication Delays

As for the PC infrastructures, we also examine the impact of network latency. The simulation 

parameters of the experiment shown in Figure 81 (right) are given by (T l, SP3, C2V, SN1, 

RD2, LI, BG2, TS2, BS1). Except for the scheduling policy they are the same as in Figure 

18 (left).
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Variation of Burstiness - Multiprocessor Machines

Figure 82: Supercomputing Grid: Heterogeneous resources. Variation of the task burst size.

A sharp rise of the mean completion time can be observed for RR and for CDA, when 

the latency is increased over 0.1. Note that this rise occurs for a higher latency than in Figure 

18 (left). The reason could be that due to the fragmentation of resources, the Servers are less 

likely to remain completely idle, resulting in fewer resources being wasted.

Conclusion: Regarding variations of the communication delays, similar observations could 

be made as for the PC infrastructures.

C.2.4 Task Burstiness

Finally, we examine the effect of changing the task burst size, BS. As parameters of the 

experiment we use {Tl, SP3, C l, SN1, RD2, LI, BG2, TS2, BSV}. These are the same 

as in Figure 80 (right), except that now the total load is fixed at 90%, while the burst size 

is varied. The results in Figure 82 show that with increased BS the mean completion time 

increases. This observation is similar to that in Figure 14 (left). Note that the gap between 

RR and CDA decreases when BS is increased.

Conclusion: Varying the task burst size leads to similar results as in the PC infrastructures.
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C.3 Tasks with Different Priorities: PC Cluster

C.3.1 With Background Load

We examined the PDA protocol for the experiment defined by the parameters (T2, SP2, Cl, 

SN1, RD1, LV, BG2, TS2, BS1} which is described in subsection 9.1.2. In Figure 83 (left), 

the results of PDA with different time intervals 81 between the transactions are compared to

CDA’s results. In none of the cases any improvement could be observed. As expected, a

very small 51 = 0.01 leads to almost the same result as CDA. The same observations have 

been made with fine-grained background load, for which the results are shown in Figure 83 

(right).

HU
Variation of Load - Screensaver Mode HU

Variation of Load - With Background Load

Figure 83: Tasks with different priorities: PDA with different time intervals between the 
transactions. Left: Coarse-grained background load (screensaver mode, SP2). Right: Fine-
grained background load (SP1).

C.3.2 More Background Load: Fine-Grained Background Load

The parameters chosen for the experiments in Figure 84 (left and right) are almost the same 

as in Figure 24. The only difference is that now the average background load amounts to 

75% of the average total load in the system (BG3). The difference between HBP and the 

other protocols is now smaller. For low and moderate loads HBP outperforms Round-Robin. 

Also, PSP’s performance is now closer to that of CDA.

Conclusion: As the share of background load in the system is increased, HBP and PSP 

perform relatively better (than before) when compared to the other protocols.
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Variation of Load - More Background Load
<J

Total Load

Variation of Load - More Background Load
u

Total Load

Figure 84: Tasks with different priorities: Variation of load, more (fine-grained) background 
load.

C.4 Tasks with Different Priorities: PC Grid

C.4.1 Resource Heterogeneity: Screensaver Mode

In Figure 85, some additional results are given for the experiment which has been described 

in subsection 9.2.1.
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Figure 85: PC Grid: Variation of resource heterogeneity, screensaver mode. Left: CDA-RES 
with different price discounts. Right: HBP-RES with different price discounts.
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C.4.2 Resource Heterogeneity: Fine-Grained Background Load

In Figure 86, we provide the results of HBP, FIFO, and the preemptive protocols for the 

experiment described in subsection 9.2.2.

Different Server Speeds Different Server Speeds

Min. Server Speed / Av. Server Speed

Figure 86: PC Grid: Variation of resource heterogeneity for fine-grained background load. 
Left: Results for HBP. Right: Results for CDA, FIFO, PE-P, and PE-A.

C.4.3 Variation of Load: No Background Load

In this experiment, we use the same parameters as in subsection 9.2.4, except that there is no 

background load in the system. The parameters of this experiment are given by {T2, SPI, 

C l, SN1, RD2, LV1, BGO, TS2, BS1}. The results are shown in the Figures 87 and 88.

Heterogeneous resources - No Background Load

Total Load

Heterogeneous resources - No Background Load

Total Load

Figure 87: Variation of load for heterogeneous resources, no background load.
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Heterogeneous Resources - No Background Load Heterogeneous resources - No Background Load

Total Load

Figure 88: Variation of load for heterogeneous resources, no background load. Left: Results 
for PDA with different intervals between the transactions. Right: CDA-RES with different 
price discounts.

C.4.4 Variation of Load: Screensaver Mode

Figures 89 and 90 show additional results to the experiments which have been described in 

subsection 9.2.3.

g 2.5
Price Negotiation - Screensaver Mode

£ no reserve ptfice
<D no discount, nt jl.O

2 discount 0.2, nt=j 1.0 -------  /
eo discount 0.5. ttul.O .........  •'

|  /  . 
1 /

i  X

u
Q.
Eo

1.5

U
T3

1

0.5
£ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Total Load

Heterogeneous Resources - Price Negotiation

Figure 89: Screensaver mode and heterogeneous resources: CDA-RES with different price 
discounts. Left: Task negotiation time 1.0. Right: Task negotiation time 10.0.
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Heterogeneous resources: HBP with reserve prices

Total Load

Figure 90: Variation of load for heterogeneous resources: HBP-RES with different price 
discounts.

C.4.5 Variation of Load: Fine-Grained Background Load

In Figure 91, we give additional results to the experiments which have been described in 

subsection 9.2.4.

Variation of Load - Heterogeneous Resources

Total Load

Variation of Load - Heterogeneous Resources

Total Load

Figure 91 : Fine-grained background load: Variation of load for heterogeneous resources.
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C.5 Tasks with Time-Dependent Priorities: PC Cluster 

C.5.1 PC Cluster

Figures 92 to 94 show additional results for the situations which have been examined in 

section 10.2.

2  No Background Load - Deadline Factor 1.1

Total Load

2  No Background Load - Deadline Factor 1.1

Total Load

Figure 92: Variation of load, no background load. Tight deadlines (deadline factor 1.1).

Screensaver Mode - Soft Deadline II Screensaver Mode - Soft Deadline II

Total Load Total Load

Figure 93: Variation of load, screensaver mode: Soft deadlines II (moderate).
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Screensaver Mode - Soft Deadline III Screensaver Mode - Soft Deadline III

Total Load Total Load

Figure 94: Variation of load, screensaver mode: Soft deadlines III (loose).

C.5.2 PC Grid: Variation of Load

In this subsection, we show some additional results for the experiments which are described 

in subsection 10.3.2.

Screensaver Mode - Soft Deadline V

Total Load

Figure 95: Variation of load, screensaver mode: Soft deadlines V (moderate).
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Screensaver Mode - Soft Deadline VI

Total Load

Figure 96: Variation of load, screensaver mode: Soft deadlines VI (loose).

C.5.3 PC Grid: Different Server Numbers

Here, we show some additional results for the experiments where the number of Servers in 

the system is varied (see subsections 10.3.3 and 10.3.4).

(S' No Background Load - Deadline Factor 0.6 ¡2 No Background Load - Deadline Factor 0.6

Figure 97: Variation of the Server number, no background load: Tight deadlines (deadline 
factor 0.6).
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p¿ No Background Load - Deadline Factor 0.6

Figure 98: Variation of the Server number, no background load: Results of CDA-RES with 
different price discounts when tight deadlines are used (deadline factor 0.6).

Screensaver Mode - Deadline Factor 1. Screensaver Mode - Deadline Factor 1.

Figure 99: Variation of the Server number, screensaver mode: Moderate deadlines (deadline 
factor 1.1).

Screensaver Mode - Soft Deadline V Screensaver Mode - Soft Deadline V

Figure 100: Variation of the Server number, screensaver mode: Soft deadlines V (moderate).
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Screensaver Mode - Soft Deadline VI Screensaver Mode - Soft Deadline VI

Figure 101: Variation of the Server number, screensaver mode: Soft deadlines VI (loose).
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C.5.4 PC Grid: Communication Delays

Next, we provide some more results for the experiments where communication delays are 

varied (see subsection 10.3.5).

No Background Load - Deadline Factor 0.6 c- No Background Load - Deadline Factor 0.6

(deadline factor 0.6).

Screensaver Scenario - Deadline Factor 1.5

Mean Network Latency

Figure 103: Variation of the communication 
(deadline factor 1.5).

Screensaver Scenario - Deadline Factor 1.5

Mean Network Latency

delay, screensaver mode: Loose deadlines
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D Experimental Framework: Additional Information

This part of the appendix provides additional information about the implementation and 

operation of our experimental Grid computing framework which has been used in thesis.

Like the simulation framework, our experimental framework comprises several Java 

packages: a Base package, a statistical package, a random number generation package, and 

several packages which are specific to particular protocols. The statistical package and ran-

dom number generation package are almost identical to the corresponding packages in the 

simulation framework which are described in chapter B.

D.l Base package

Most of the classes in the Base package have exactly the same purpose as the corresponding 

classes in the simulation framework. These include: Account, Bank, ClientBase, EMPBase, 

EMPQueryResult, EMPResourceAd, Helper, Methodlnvocation, Parameters, Resource, 

ServerBase, Statistics, StatisticsRecorder, TaskData, and TaskObject.

These classes are described in section B.4. They had to be adapted because the actors 

in our Grid framework have to communicate via facilities provided by the JADE platform 

rather than putting messages into the event queue of a discrete-event simulation package. In 

addition to the above classes, the Base package includes the following other classes:

• ClassData: stores the bytecode of classes. It is Serializable and therefore can be 

transported in a message.

• FuturelnvocationBehaviour: a CommEntity's behaviour which provides the means for 

executing a method on that CommEntity after a specified delay.

• LANRunBase: base class used for wrapping up a Jade platform which is used for 

starting up an experiment. It needs to be extended by a protocol-specific class. •

• MyClassLoader: a class loader which has been designed for passing bytecode inside a 

Jade message for execution on a remote Server.
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• ProcessRequestBehaviour: a CommEntity's behaviour which will process messages in 

the background, which have been received by Jade’s ReceiverBehaviour. Whenever 

a Messagelnvocation object is received, it is executed immediately. This behaviour 

never terminates.

• ReaderThread: a thread which is used for monitoring the CPU utilisation of a Server’s 

resource and which is running in the background. The monitoring requires a Unix or 

Linux system which provides the vmstat command.

• RemoteStartup: used for creating agents at remote machines and receiving parameters 

that are needed for the experiment. It is also used for synchronising the measured 

simulation time at the beginning of an experiment.

• Startup Agent, base class for a Jade agent which starts up an experiment. It needs to be 

extended by a protocol-specific class.

• TaskResult: contains the result of the task after its execution on a remote Server. It 

also contains the address of its Client and the task’s ID.

D.2 Protocol-specific Packages

The functionality, which is specific to a particular protocol, is contained in a separate pack-

age. In our experiments, we have been using the GCDA package 63. It contains the following 

protocols: Continuous Double Auctions (CDA), Continuous Double Auctions with time- 

dependent price bids (CDA-TDB), PRIO-FIFO, and Shortest Job First (SJF). The package 

includes the classes Client, EMP, Server, and other classes, which are used for starting up 

the experiment. Among the latter, the most important ones are:

• LANRunl: telnets to remote machines and spawns new processes. On each of these 

machines, it executes LANRunRemote. LANRunl requires the expect package [Libes, 

1994] to be installed in order to run the login scripts.

63GCDA stands for Generalised Continuous Double Auction Protocol.
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• LANRunRemote: needs to be run at the remote machines which are used in the exper-

iment. It starts a Jade platform on which a RemoteStartup agent is created.

• LAN Startup Agent: starts the experiment at the local machine. This class is started up 

by LANRunl.

D.3 Benchmark package

The framework also provides a benchmark package which contains the classes used for the 

performance measurement at the Servers. It also includes the computational task which is 

used in our experiments. The Benchmark class is used for measuring the speed of the Server 

resource (in millions of floating point operations per second, MFLOPS). It executes a sparse- 

matrix multiplication that is provided by additional classes which are part of the SciMark2 

benchmark [Pozo and Miller, accessed in 2003]. The ModifiedBenchmark class is an adap-

tation of the Benchmark class which is designed to execute a sparse matrix multiplication 

whose computation size can be specified in MFLOPS*milliseconds. Hence, given the size 

of the computation, it is possible to tell how long the computation will run on a Server re-

source whose MFLOPS figure is known. The ModifiedBenchmark class is needed for the 

experiments which are designed to verify our simulation results.

D.4 Interface for a Computational Task

In order to use a computational task in our framework, it needs to implement the interface 

shown in Figure 104. When the task is executed on a remote machine, the method execute- 

Task will be called. The input parameters of the task are wrapped up in a Serializable object 

which needs to be passed as argument to this method. After the task’s execution, the method 

getTaskResult will be called by the Server. It will return the result object, which will then be 

sent to the Client.

Note that there are other parameters, which are needed for a task’s execution, and which 

have to be specified when creating a TaskData object at the Client. These are the name of the 

main class of the task (which implements this interface) and a list of all other classes which
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public interface ComputationalTask {
/** Execute a task
* ©param parameters the task's input parameters */ 

void executeTask(Serializable parameters);

/** Get the task's result after its execution
* ©return Serializable the task's result */ 

Serializable getTaskResult();

}

Figure 104: Interface for the computational task to be implemented

are needed for its execution. This list is only required if the classes need to be loaded to the 

remote machine.

D.5 Interface for a Parameter Sweep Application

This interface is designed for parameter sweep applications. Such applications need to ex-

ecute the same code many times with different parameters. Therefore, they can easily be 

split up into many smaller tasks which can be distributed and executed independently. To 

run such an application — which we refer to as 'super task' — it needs to implement the 

ComputationalSuperTask interface whose code is shown in Figure 105.

To split up the super task, the method divideSuperTask needs to be called in which the 

parameter n specifies how many tasks are created. The method returns an array of Serial-

izable objects, each of which wraps up an individual task’s input parameters. To execute a 

task, both the code and its specific input parameters need to be sent to the remote Server. 

When the Client receives the result of a task’s execution, it needs to be passed to the method 

collectTaskResults.

D.6 Specifying Task and Resource Constraints

Our framework allows to specify constraints and goal functions when matching tasks to 

resource offers. A task’s query is wrapped up by a TaskObject, and a resource offer at 

the EMP is represented by an EMPResourceAd object. These classes can be extended: By
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public interface ComputationalSuperTask {
/** Return an array of n serializable objects which
* wrap up the input parameters of the tasks.
* @param n number of tasks
* ©return Serializable!] input parameters of all tasks */ 

Serializable!] divideSuperTaskfint n);

/** Collect the result of a task
* ©param result result of the task
* ©param i ID of the task
* ©return int number of tasks completed so far */ 

int collectTaskResults(Serializable result, int i);

/** OPTIONAL: Get the computation size of a Task
* ©param n number of tasks in the super task
* ©return double task computation size in MFLOPS*ms */ 

double getTaskComputationSize(int n);

}

Figure 105: Interface for a parameter sweep application

overriding the methods described below, a task’s or resource’s constraints can be customised.

In the following, we will describe a mechanism of our framework which deals with task 

and resource constraints:

Checking if a query is still active

For each TaskObject, which is processed by the EMP, it needs to be determined whether the 

query is still active or whether it has expired (e.g. due to the task’s deadline which may have 

passed). This is done by calling its method taskConstraintsDiscard which will return 1, if 

the task should be removed from the EMP, and 0 otherwise.

Checking if a resource satisfies the task’s constraints

Each EMPResourceAd, which is considered for execution of a task, needs to be passed as pa-

rameter to the method taskConstraints of the TaskObject. This method determines whether 

the resource offer satisfies the task’s constraints. These constraints may express the require-

ment of a particular machine architecture, operating system, or software package — or the 

resource’s capability to meet the task’s deadline. As result, the method will return two argu-

ments: The first one indicates whether the constraints are satisfied (l:yes, 0:no). The other
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argument may be used for passing results which can be used as a shortcut in the further pro-

cessing by the methods described below. It may help to avoid repeated computations of the 

same parameter.

Determine the task’s goal function for a resource

If there exist several EMPResourceAds which satisfy a task’s constraints, it needs to be deter-

mined which one is best. This is done by evaluating it with respect to a task’s goal function 

(i.e. preference). The TaskObject’s method taskGoalFunction is called, passing the EM- 

PResourceAd as parameter, together with additional parameters that have been returned by 

the method taskConstraints. The method taskGoalFunction will return the value of the goal 

function of this task for the case that it is executed on that resource. It may depend on price, 

speed, or any other parameters.

Determine a Server’s goal function for a task

When several tasks are competing for a resource which satisfies their constraints, it needs 

to be determined which one is best from the Server’s perspective (e.g. which one pays the 

highest price, is the largest, etc.). This is achieved by calling the method serverGoalFunction 

of the EMPResourceAd object for each task that is checked. The TaskObject and further 

parameters, which may have been returned by the method taskConstraints, are passed to 

serverGoalFunction as arguments. The result is the Server’s goal function which needs to 

be maximised.

D.7 Random Numbers, Statistics, and Parameter Variation

The generation of random numbers and measurement of statistics is almost the same as in 

the simulation framework described in chapter B. One difference is that the Statistics, which 

are recorded on remote machines, need to be passed back after the experiment.

As in the simulation framework, it is possible to carry out experiments with parameter 

variations. In this case the experiment is repeatedly run while one or more of its input 

variables are varied (see section B.7). Several specified variables can be measured.
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D.8 Running an Experiment

This section provides a brief description of how the experiments with our Grid framework 

are carried out.

Reading the experimental parameters

An experiment is started by executing the LANRunl class of the GCDA package. In the 

command line, the name of the file needs to be specified, from which the values for the 

input parameters will be read. The values read from that file are written into variables in the 

Parameter class and will be used in the experiment. The input file looks similar to the one 

used in our simulation framework (see chapter E).

Creating platforms on remote machines

Next, the names of the remote machines, on which the Servers will be run, are read from 

another file. A script written with the expect package [Libes, 1994] is used to log onto each 

of these remote machines. A Jade platform is started there, and a RemoteStartup agent is 

created.

Initialising the local platform

LANRunl creates a LAN Startup Agent on the local machine. It has a similar function as the 

Startup object in our simulation framework (see chapter B): It initialises an output trace 

which allows to log the events and values of the variables during the experiment. This 

LAN Startup Agent initialises the StatisticsRecorder object which will record the values of 

important variables at periodic intervals, writing them to a file. Then, all actors that will run 

on the local machine are created: the EMP, the Bank, and the Client.

Initialising the remote platforms

The parameters of the experiment are also sent to all RemoteStartup agents which reside on 

the remote machines. Like the LAN Startup Agent, each RemoteStartup agent initialises an 

output trace and a StatisticsRecorder on its machine. After a small delay, all RemoteStartup 

agents are requested to create the Server agents. Each Server agent sends a message to the
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Bank to open its account. It also starts monitoring its CPU utilisation (in %) which is done by 

using the Unix command vmstat. Next, the Server uses the Benchmark class to measure its 

speed in MFLOPS*ms. Finally, it registers its resource offer (speed, availability, and price) 

at the EMP.

Starting the experiment

The LANStartupAgent waits for a long enough time in order to allow the speed measurements 

at the Server resources to finish. After this delay, all agents are started. Those running on 

remote machines are activated by notifying their RemoteStartup agent. At the start of the 

experiment, the local time of each agent is synchronised by recording the current value of 

the system clock at its machine. This value will be used as an offset for all future time 

measurements (i.e. for all measurements, this offset will be deducted from the value of the 

system clock). Since this reset of the timer is carried out at approximately the same moment 

for all agents in the system, their time measurements will be comparable throughout the 

experiment. Also, the termination time of the experiment is scheduled. On the local machine, 

this is done by the LANStartupAgent, and on the remote machines by the RemoteStartup 

agents. Furthermore, the Poisson arrival process for the task generation by the Client is 

activated.

Completing the experiment

At the termination event, the RemoteStartup agents send the recorded statistics to the local 

machine. All statistics, that have been collected locally and at the remote machines, are made 

available to the user by printing them to the screen (or an output file).
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E Example of an Input File

Finally, we give an example of an input file which specifies the parameters used by our 

simulation framework which is described in chapter B. A similar input file is used by our 

experimental Grid Computing framework (see chapter 11).

//INPUT/OUTPUT FILES:
//---------------------------

topologyFileName topology.txt 

loadTraceFileName loadtrace.txt 

traceFileName outtrace.txt 

recorderFileName outrecorder.txt 

variablesFileName invar.txt

// topology data file name

// load trace data file name

// trace of the experiment

// record of time-dependent variables

// to be used for series of experiments

variablesOutputFileName outvar.txt // to be used for series of experiments

autotraceTag 0

//--------------------------------

//SIMULATION PARAMETERS:
//----------------------

// enable/disable Simjava's (internal) 

// trace

initDelay 0.000000000001 // there must be a delay between the 

// startup of the entities to avoid 

// randomness of the scheduler

minimalDelay 0.000000000001 // something similar; used for the 

// taskPriceAdjustmentEvent()

initialSeed 1020775884309 // one simulation run should also be 

// carried out with other seeds

statisticsRecorderlnterval 7.7777 

statistics

// interval for recording

runLength 1000.0 // duration of the experiment

initialRecordingMargin 100.0 // statistics should only be recorded 

// after an initial margin - before the 

// system gets to its steady state

finalRecordingMargin 50.0 // the creation/completion of task 

// executions should only be recorded 

// in the statistics if the tasks are
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fixedTaskNumberTag 0

// started well before the end of the 

// experiment

// (t < runLengh-finalRecordingMargin )

// tag indicating whether as many 

// tasks are recorded as would 

// (statistically) be expected in the 

// recording interval 

// (0: disabled, 1: enabled)

/ / --------------------------

//SYSTEM PARAMETERS:

/ / --------------------------

scenarioTag 0

numberResourceTypes 8

clientNumbers 1

serverSpeedRatioMin 0.1 

serverSpeedRatioMax 0.1

serverNumbers 10

serversResourceMin 10

serversResourceMax 10 

serverRandomTag 0

resourceSchedulingTag 3

// tag indicating the type of scenario 

// 0: independent tasks, 1 resource type 

// 1: tasks with pipeline structure 

// and different resource types

// only for scenarioTag=l:

// number of resource types

// since all tasks (or supertasks) are 

// treated independently, it does not 

// matter by how many clients they are 

// created

// minimum speed ratio of the Servers 

// maximum speed ratio of the Servers

// number of servers

// minimum number of resource units 

// per Server

// MUST be the same as the min value

// indicates whether the resource size 

// and/or speed ratio distributions are 

// random (1) or deterministic (0)

// scheduling policy

// 2: space-shared

// 3: time-shared

// 4: proportional sharing

// 5: suspension of tasks enabled

// 6: preemption of tasks enabled
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networkDelayTag 0

latencyScalingFactorB 1.0

latencyScalingFactorD 1.0

throughputScalingFactorA 1.0

throughputScalingFactorC 1.0

minValueScalingFactor 1.0

networkDistTag 0

// tag indicating whether the topology 

// file is used (1) or whether the 

// network links between all actors 

// are identical (0)

// scaling factor for the mean of the 

// network latency

// Means: the values for 'meanB' will 

//be multiplied by this value

// scaling factor for the stdev of the 

// network latency ('stdevD')

// scaling factor for 'meanA'

// (inverse of the throughput)

// scaling factor for 'stdevC'

// (inverse of the throughput)

// scaling factor for the min value of 

// the communication delay

// tag indicating whether network 

// delays are deterministic or random 

// (0: deterministic. 1: random)

/ / ----------------------------------

//LOAD RELATED PARAMETERS:
/ / ----------------------------------

taskSizeMin 1.0 //
taskSizeMax 1.0 //

taskDataSize 0 //

resultDataSize 0 //

taskDeadlineTag 0 //

//

taskDeadlineFactorMin 100.0 //
taskDeadlineFactorMax 100.0 //

totalLoadRatio 0.8 //

//

//

//

min. computational size of a task 

max. computational size of a task

in this scenario 

no large data transfers

tag indicating whether deadlines are 

used (0: no, 1: yes)

minimum deadline factor 

maximum deadline factor

total average load in the system in 

relation to the system's capacity 

(both Client task load and 

Server background load)
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taskWeightTag 0 //

//

//

//

//

//

//

//

//

taskWeightMin 0.0 //

taskWeightMax 2.0 //

taskWeightMeanLow 1.0 //

taskWeightStDevLow 0.5 //

taskWeightMeanHigh 100.0 //

taskWeightStDevHigh 50.0 //

taskWeightFractionLow 0.9 //

//

tag indicating whether task weights 

are used

0: all task weights are set to 1.0 

1: uniform dist between taskWeightMin 

and taskWeightMax 

2: bimodal normal distribution, 

Parameters: taskWeight...

MeanLow, StDevLow, MeanHigh, 

StDevHigh, FractionLow

tag=l: minimum task weight 

maximum task weight

tag=2: mean value of the lower mode 

stdev of the lower mode 

mean value of the higher mode 

stdev of the higher mode 

fraction of samples belonging 

to the lower mode

taskBurstSize 1 // number of tasks in a burst

BGLoadTag 1

BGTaskSize 1.0

BGAllocatedUnits 1 

allocated to

BGLoadRatio 0.45

BGLoadFactorMin 1.0

// background load enabled/disabled

// computational size of a background task

// number of resource units

// a background task (on which it will 

// execute in parallel)

// total average background load on the 

// Servers in relation to the system's 

// capacity

// if Servers have different mean BG load, 

// (and the means are uniformly 

// distributed): The load ratio of the 

// server with the minimal load is set to 

// BGLoadFactorMin*BGLoadRatio. In order 

// to maintain the average load ratio 

// BGLoadRatio, the load factor of the 

// server with the highest load is set to: 

// BGLoadFactorMax = 2-BGLoadFactorMin.

// If all Servers should have the same 

// mean background load, simply set 

// BGLoadFactorMin to 1.0
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randomiseExecutionTag 0

taskRunTimeStDev 1.732050808

loadTraceTag 0

loadTraceSize 24

loadTraceTimeStep 20.0

// tag indicating whether the actual 

// execution time of the task at the 

// Server is random (with normal 

// distribution):

// 0 (deterministic):

// actual exec, time = task runtime

// 1 (random): positively truncated

// normal distribution with

// mean = task runtime

// stdev = sqrt(taskRunTimeStDev)

// * task runtime

// if the actual execution time is 

// random, this is its standard deviation 

// ( this value is normalised to the mean 

// i.e. the real stdev will be 

// mean * taskRunTimeStDev )

// tag deciding whether the average 

// background load of the Servers 

//is set according to the load 

// trace read from a file (0:n, l:y)

// if loadTraceTag==l:

// number of samples in the load trace

// if loadTraceTag==l:

// time step between two samples of the 

// load trace

// --  FOR scenarioTag==l (supertask-scenario)

meanTaskNumber 10

minTaskNumber 1

maxTaskNumber 100

// for scenarioTag==l:

// mean number of tasks per supertask 

// (exponential distribution)

// for scenarioTag==l:

// min. number of tasks per supertask 

// (exponential distribution)

// for scenarioTag==l:

// max. number of tasks per supertask 

// (exponential distribution)

/ / --------------------------

//PROTOCOL-SPECIFIC:
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/ / --------------------------

clientMoney 100000000000.0

deadlineSafetyMargin 0.0

SAPricingTag 1

serverUnitPriceMax 0.0 

serverUnitPriceMin 0.0 

serverReservationPriceMax 0.0

serverPriceUpdateTimeStep 1.0

serverPriceDiscount 0.0

taskPriceAdjustmentTag 0

// Endowment of the Client, this amount 

// does not matter much at the moment 

// (all tasks are autonomous)

// when using task deadline:

// the safety margin to be used by the 

// EMP when deciding whether a resource 

// will complete it on time. This is to 

// consider communication delays.

// how Servers adjust their prices 

// 0: no price adjustment 

// 1: adjustment according to current load 

// 2: adjustment according to past revenue

// for SAPricingTag==l:

// the maximum Server price 

// These values are used to obtain the 

// distribution of minimum prices 

// (reservation prices) of the Servers.

// for SAPricingTag==2:

// interval between the price updates of 

// a Server

// for SAPricingTag==2:

// amount to be deducted when calculating 

// the reservation price from the past 

// revenue

// 0: no taskPriceAdjustmentEvents 

// (i.e. tasks do not adjust their

// price bids)

// 1: taskPriceAdjustmentEvents

// IN ADDITION TO immediate processing

// of tasks or resource updates

// 2: FOR CDA: taskPriceAdjustmentEvents

// WITHOUT immediate processing of task

// or resource updates

// 3: FOR CDA: no immediate processing,

// i.e. offers and bids are matched at 

// periodic intervals ONLY, HOWEVER,

// WITHOUT price adjustment (NOTE: FOR 

// ANY OTHER PROTOCOL THIS TAG WILL 

// DISABLE TASK PRICE ADJUSTMENTS!!!)
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E EXAMPLE OF AN INPUT FILE

identicalPricesTag 0 // if set to 1: all task price bids are 

// identical allowing a shortcut in the 

// simulation

taskPriceAdjustmentlnterval 0.1 // interval between price

adjustments

// of tasks

resourceSelectionTag 1 // as a task looking for resources:

// 0: select cheapest resource 

// 1: select fastest resource

taskSelectionTag 0 // as a Server looking for tasks:

// 0: maximise unit price 

// 1: maximise overall payment 

// 2: maximise task size

predictionTag 0

predictionUpdatelnterval 10.0

// tag indicating that load prediction 

// is used (0: no, 1-3: yes).

// 1: window, 2: mean over all values 

// 3: mean over all values in each 

// interval of a prediction period 

// This is relevant to scheduling 

// policies 3-5.

// time interval for the updates of 

// the load predictions

predictionWeightingFactor 0.5 //if load prediction is used: this is 

// the relative weight of the historical 

// information for calculating the 

// estimate (the remaining weight is 

// assigned to the current value of 

// the load)

bidPredictionWeightingFactor 0.5 // if load prediction is used: similar 

//as above, but instead of the load this 

// factor is used for the estimation of 

// the sum of price bids (in PSP) or the 

// highest price bid (HBP)

loadWindowSize 10 // for predictionTag==l: the number of 

// load samples stored 

// for predictionTag==3: the number of 

// intervals in a period used for 

// prediction

priceBidWindowSize 10 // for predictionTag==l: the number of
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E EXAMPLE OF AN INPUT FILE

// price bid samples stored

// for predictionTag==3: it is set to

// the same value as loadWindowSize

predictionlntervalLength 20.0 // for predictionTag==3: length of an 

// interval within a prediction period 

// (it makes sense to set it to the 

// same value as the loadTraceTimeStep)

minExecutionSpeed 0.0 // RELEVANT TO THE PSP PROTOCOL:

// minimum effective execution speed 

// requested by the tasks at the EMP

endowmentDistributionTag 0 // determines how the endowment of a task 

// depends on its weight 

// 0: polynomial: price ~ weight " n 

// 1: exponential: price n weight 

// (n is the endowmentDistributionOrder)

endowmentDistributionOrder 1.0 // the 'n' (order) for the distribution of 

// the endowment: e.g. for 'polynomial'

// with n=l: price ~ weight (linear)

recalculateSumTag 0 // relevant to the PSP protocol:

// indicates whether, on completion of 

//a task, the Server should recalculate 

// the sum of price bids (1), or just 

// deduct the difference from the last 

// figure (0)

clientUnitPriceMin 1.0 

clientUnitPriceMax 1.0 

upperPriceLimitMin 1.0

// base price of the Clients' tasks 

// the actual price bid of a task is 

// calculated by multiplying the base 

// price by the task's weight 

// (these parameters must be identical)

UCVProtocolTag 0 // for the UCV protocol package:

// tag indicating which protocol 

//is used: (0:CDA, 1 :PRIO_FIFO, 2:SJF)

slowA 0.0 // only for the UCV protocol: if task 

// slowdown<=slowA, the price bid is zero

slowB 0.0 // only for the UCV protocol: if 

// slowA<slowdown<slowB, the price bid 

// rises from zero to the maximum

slowl 0.1 // if slowB<slowdown<=slowl, the max
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E EXAMPLE OF AN INPUT FILE

//
slow2 0.2 //

slow2Max -999.9 //

//

//

//

DFactor 0.0 //

//

//

//

priceQueueA 0.0 //

priceQueueB 0.0 //

priceQueueC 0.0 //

negotiationTime 0.1 //

//

//

activeMigrationTag 1 //

//

speedlmprovementFactor 1. 0 //

//
bidlmprovementFactor 1 .0 //

//

//

//

subTaskMinimumFactor 0 .75 //

//

subTaskMaximumFactor 1 ..25 //

//

value is delivered 

if slowdown>=slow2, nothing is paid

if a uniform distribution is used for 

variable 'slow2' of the tasks: 

slow2 is min value, slow2Max is max 

value (-999 = disabled)

only for UCV-CDA protocol: 

factor for the differential component 

(i.e. the speed of decline in value) 

in determining the task's priority

only for the PRIO-FIFO protocol: 

prices of the three FIFO queues 

(priceQueueA>priceQueueB>priceQueueC)

if task price adjustment == 1 OR 2: 

the duration until a task reaches 

its maximum price bid

only for PE (resourceSchedulingTag==6) 

allow active migration

only for PE: increase of effective 

speed needed for preemption 

only for PE: increase of the bid 

needed for preemption

if (scenarioTag == 1) AND 

(taskPriceAdjustmentTag == 1 OR 2): 

factor used for the initial bid of 

subtasks

factor used for the final bid of 

subtasks
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