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Abstract

Multihop ad hoc networks are collection of wireless nodes dynamically forming 
a temporary network without the use of any preexisting network infrastructure 
or centralized administration. Consequently, ad hoc networks and their wireless 
links are fundamentally different from conventional stationary wireless and wired 
computer networks. In particular, incorporating the concept of TCP end-to-end 
congestion control for wireless networks is one of the primary concerns in design-
ing ad hoc networks since TCP was primarily designed and optimized based on 
the assumptions for wired networks. In this thesis, our interest lies on tackling 
the TCP instability problem since due to the nature of applications in multi-
hop ad hoc networks (e.g. emergency operation and battlefield communication), 
connection instability or starvation even for a short period of time can have a 
devastating impact on the Quality of Service and may not be acceptable for the 
end user. Through a detailed analysis and simulations, it is shown in this thesis 
that the main causes of TCP instability lie in three factors: overloading the net-
work by sending more packets than the capacity of the channel, TCP sensitivity 
to out of order packets, and the channel access unfairness when multiple TCP 
connections are sharing the medium using 802.11 MAC protocol. To reduce TCP 
instability caused by excessive packet contention drops, a novel algorithm has 
been proposed that aims to reduce packet contention by optimizing the amount 
of outstanding data in the network. To reduce TCP sensitivity to out of order 
packets, a new algorithm is proposed with the aim of performing more local re-
covery rather than end-to-end recovery. Finally, to address the TCP instability 
caused by channel access unfairness, the 802.11 binary exponential backoff algo-
rithm is replaced with a more conservative approach. In addition to addressing 
the problem of TCP instability, a 3-dimensional Markov model of 802.11 MAC is 
presented in this thesis to accurately analyze the 802.11 MAC throughput in ad 
hoc networks.

xv
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Chapter

Introduction

Wireless communications have experienced an explosive growth in recent 

years thanks to the wide availability and rapid deployment of wireless transceivers 

in a variety of computing devices such as Personal Digital Assistant (PDAs) and 

laptops. In particular, the integration of cellular systems, wireless local area net-

works (WLANs), and personal area networks (PANs) are just the beginning of the 

’’wireless revolution” with the ultimate goal of uncompromis connectivity [1,2]. 

Although infrastructure-based wireless networks enable mobile devices to get net-

work services, it takes time to set up the infrastructure network, and the costs 

associated with installing the infrastructure can be quite high. There are, fur-

thermore, situations in which user-required infrastructure is not available, cannot 

be installed, or cannot be installed in time in a given geographic area. Moreover, 

with the advance of wireless communication technology, portable computers with 

radios are being increasingly deployed in common activities. Scenarios such as 

conferences, meetings, lectures, crowd control, search and rescue, disaster recov-

ery, and automated battlefields which typically do not have central administration
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or infrastructure are becoming more and more available [3]. The nature of these 

applications should allow mobile computer users to set up a possibly short-lived 

network just for the communication needs of the moment.

For all of these reasons, ad hoc networks have gained increased attention in 

recent years thanks to their easy deployment, maintenance and application va-

riety. Since in ad hoc networks no fixed infrastructure is dedicated for relaying 

packets from sender to receiver (end-to-end), every node should act both as a 

host and as a router. To be more precise, if the end-to-end sender and receiver 

in ad hoc networks are in the transmission range (as would be defined later in 

this chapter) of each other, they form a single-hop ad hoc network. However, due 

to transmission limitations in mobile devices, in most of the cases several mobile 

nodes might be involved in relaying packets from sender to receiver. This will 

result into establishing multihop ad hoc network.

Figure 1.1 depicts the differences between the infrastructure, single-hop and mul- 

tihop mobile ad hoc networks.
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(a) Infrastructure WLAN

(b) Single Hop Ad hoc Network

(c) Multi Hop Ad hoc Network

Figure 1.1: Different WLAN formation



1.1 Ad hoc Networks Characteristics

Since the formation of multihop ad hoc networks in real scenarios is more 

likely than single-hop ad hoc networks, throughout this thesis we mainly focus 

on multihop ad hoc networks and use the terms ad hoc networks and multihop 

ad hoc networks interchangeably.

1.1 Ad hoc Networks Characteristics

Multihop ad hoc networks share many of the properties of infrastructure WLANs 

but also posses certain unique feature which are derived from the distributed 

operation and the multi-hop nature of ad hoc networks. In this section, the main 

challenges that face contention based ad hoc networks (such as IEEE 802.11) are 

reviewed briefly.1

1.1.1 Channel Interference and Signal Attenuation

Contrary to wired networks, wireless networks are prone to error losses and the 

channel is unprotected from outside interferences. In particular, signals over 

wireless medium are prone to high interference from external sources that oper-

ate in the same frequency range. For instance, microwaves and Bluetooth devices 

that operate in the same frequency range as 802.11 devices (2.4 GHz) may cause 

interference [4]. In addition, multipath fading [5] and path asymmetry [6] can 

seriously deteriorate the signal quality and system performance.

Furthermore, as the transmitted signal spreads out from the antenna in all direc-

tions, it attenuates as distance increases. More precisely, for an omnidirectional *

lrThe challenges discussed in this section are mainly from the lower layer point of view namely 
link layer and physical layer
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1.1 Ad hoc Networks Characteristics

transceiver, three ranges from the sender’s perspective may be identified [7] due 

to signal attenuation effect:

1. Transmission Range (Rtx)'- The range within which a transmitted frame 

can be successfully received by the intended receiver. Within this range, 

the Signal-to-Noise Ratio (SNR) is high enough for a frame to be decoded by 

the receiver. The transmission range is mainly determined by transmission 

power and radio attenuation.

2. Carrier Sensing Range (Rcs): The range within which the transmitter trig-

gers carrier sense detection. When this happens, the medium is considered 

busy and the sensing node defers transmission. This is usually determined 

by the antenna sensitivity.

3. Interference Range (Ri): The range within which an intended receiver may 

be subject to interference from an unrelated transmission, thereby suffering 

a loss. This range largely depends on the distance between the sender and 

the interfering node.

We should note that in general Ria; <  R̂  < Rcs, as the energy required for a 

signal to be decoded is greater than what is needed to cause interference [8].

1.1.2 Hidden and Exposed Terminal Problems

Contention based multihop ad hoc networks are subjected to two well-known 

problems known as hidden terminal and exposed terminal [9,10]. First to see 

the cause of the hidden node phenomenon, let us consider figure 1.2 where the

5



1.1 Ad hoc Networks Characteristics

transmission range of each node is determined by a circle around the node 2.

Here node C is transmitting a data packet towards node D. Meanwhile, fol-

lowing the physical carrier sensing, node E detects the channel as idle (since C is 

hidden from E). Consequently, E also start transmitting data to node D, causing 

collisions and bandwidth wastage as both data transmissions are destroyed. This 

is known as the hidden terminal problem.

In the same example, after node C reserves the channel for transmitting packet to 

node D, node B is put in the silent mode by sensing the channel idle. Hence, node 

B is unable to send any packet towards node A even this transmission does not 

interfere with node C to D ongoing transmission (since the collision occurs in the 

receiver). This phenomenon known as exposed terminal problem clearly results 

to channel usage under-utilization and substantial throughput degradation.

We should note that both the hidden and exposed terminal effects are related 

to the transmission range. As the transmission range increases, the hidden termi-

nal effect becomes less prominent because the sensing range increases. Nonethe-

less, the exposed terminal effect then becomes more prominent as a greater area 

is ’’ reserved” for each transmission.

2 In this examples and for simplicity throughout the rest of this thesis, unless otherwise 
specified, the Ri:r, R, and Rcs ranges are all assumed to be equal

Figure 1.2: Illustration of hidden and exposed terminal problems
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1.1 Ad hoc Networks Characteristics

1.1.3 Spatial Channel Reuse

Spatial channel reuse refers to the number of concurrent transmissions that may 

occur in the network without interfering with each other. To get a better under-

standing of spatial channel reuse, consider a chain topology in figure 1.3 where 

only communication between pairs could happen concurrently in turn, as long as 

each pair is 3 hops apart from the other due to transmission interference between 

nodes. For instance, in this example, nodes A—>B and D—>E may communicate 

simultaneously

Figure 1.3: Illustration of channel spatial reuse

Since at most two pairs can transmit at the same time without affecting each 

other, the spatial reuse of this string topology is 2. It should be noted that the 

spatial reuse in a particular scenario represents an optimal level of concurrency 

and any attempt of more simultaneous transmission in the network will result 

in interference and cause contention drops as would be explained thoroughly in 

chapter 4. This is clearly in contrast with wired networks where packet drops are 

mainly caused by buffer overflows at the routers.

7



1.2 Motivation

1.2 Motivation

As mentioned earlier, during recent years multihop ad hoc networks have at-

tracted considerable research interest. In particular, the de facto adoption of the 

popular IEEE 802.11 standard [11] has further fuelled the deployment of wire-

less transceivers in a variety of computing devices by ensuring inter-operability 

among vendors thereby aiding the technology’s market penetration. However, as 

initially the deployment of these wireless technological advances came in the form 

of an extension to the fixed LAN infrastructure model, the 802.11 standard was 

mostly evolved and optimized for infrastructure-based wireless LANs rather than 

ad hoc networks.

In the transport layer, to enable seamless integration of ad hoc networks with 

the Internet, TCP [12] seems to be the natural choice for users of ad hoc networks 

that want to communicate reliably with each other and with the Internet. Here 

also, despite in theory TCP should not care whether the network layer is running 

over wired or wireless connections, in practice, this does matter because TCP has 

been carefully optimized based on assumptions that are specific to wired networks. 

For instance, since bit error rates are very low in wired networks, nearly all TCP 

versions assume that packet losses are due to congestion and therefore invoke 

their congestion control mechanism in response to such losses. On the other 

hand, because of wireless medium characteristic and multihop nature of ad hoc 

networks, such networks exhibit a richer set of packet losses, including medium 

access contention drops, random channel errors and route failure where in practice 

each are required to be addressed differently. Ignoring these properties of wireless 

ad hoc networks can obviously lead to poor TCP performance as shown in many 

research studies (e.g. [13-21])
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1.2 Motivation

Not surprisingly, multihop ad hoc networks exhibit serious performance is-

sues when TCP runs over IEEE 802.11 as neither protocols have been designed 

based on the properties of such networks. This also implies that TCP’s poor 

performance in 802.11 based ad hoc networks is truly a cross layer problem which 

needs to be addressed by considering the interaction of multiple layers with each 

other [22]. In other words, any attempt to alleviate the TCP problems in ad hoc 

networks should be done through investigating the characteristics and impact of 

deployed link layer and routing protocols on TCP.

During recent years, a number of research studies have highlighted some of the 

main problems TCP encounters in ad hoc networks [6,15,21,23-29]. However, 

one of the key areas that has not attracted enough attention and needs to be 

addressed further in the deployment of TCP in ad hoc networks is the problem 

of TCP instability. This becomes more clear if we realize due to the nature of ad- 

hoc network applications (e.g. emergency operation, battlefield communication) 

the disconnectivity or starvation of one or more connections for even a short 

period of time is not acceptable and can have a devastating impact on QoS. More 

specifically, the ad hoc network users are more willing to receive a continuous and 

stable flow of data rather than sending/receiving large bulk of data instantly. This 

observation has motivated us to fully investigate the cause of TCP instability in 

ad hoc networks and propose a set of cross layer solutions to address the problem 

throughout this dissertation.

One valid argument that might arise from the above discussion in analyzing 

the TCP in ad hoc networks throughout this thesis is the legitimacy of the choice 

of IEEE 802.11 as the adopted MAC protocol in this thesis. The answer to this 

issue lies in the fact that during recent years, 802.11 technology has successfully

9



1.2 Motivation

dominated the commercial market for wireless transceiver devices and very likely 

it will keep its share. On the other hand, ad hoc networks are mostly temporary 

short lived networks that in most of the situations are not the primary mode of 

connectivity for the users [30]. Therefore, the choice of adding new wireless tech-

nology optimized for ad hoc networks might not look feasible and cost-effective 

for users at least in coming years. In addition, from the performance wise point of 

view, the study in [14] has shown that in most cases 802.11 came on top in terms 

of both TCP throughput and fairness in comparison to different MAC protocols, 

namely CSMA, FAMA [31], and MACAW [32]. Therefore, we believe the IEEE 

802.11 MAC will keep its dominance in future WLAN generations and hence is 

considered as the underlying link layer protocol in the thesis.

10



1.3 Contributions

1.3 Contributions

The goals set for this thesis derive from the motivations as listed in the previous 

section and can be outlined as follows:

• The first contribution of the thesis is a thorough and detailed analysis of 

TCP instability problem in ad hoc networks. In particular, by identifying 

different cause of TCP instability, we show the complex interaction of TCP 

and 802.11 MAC in creating instability. The significance of the results from 

this part is to identify and locate the root of the TCP instability issue in 

ad hoc networks.

• The second contribution of this work is developing an accurate analytical 

model of 802.11 MAC using 3-dimensional Markov chain. In addition, by 

using the model, the analytical values of 802.11 MAC parameters for which 

the maximum link layer throughput is achieved are calculated. The impor-

tance of such contribution is its comprehensibility in taking into account 

realistic channel conditions (e.g. random packet errors) and 802.11 MAC 

parameters (e.g. short and long retry limits) in contrast to most models 

developed so far. On the other hand, the way in which analytical link 

layer throughput is calculated has been improved by excluding the share of 

control packets throughput from the achieved throughput.

• The third contribution of the thesis is developing an algorithm that esti-

mates the optimum amount of outstanding TCP segments in the network 

for which the level of contention experienced by TCP packets are kept as 

low as possible without compromising TCP throughput. The main impli-

cation of this algorithm is to tackle a major source of TCP instability by
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adjusting the TCP transmission rate from various sources.

• The fourth contribution of the thesis is to further alleviate TCP instability 

by substituting the binary exponential backoff algorithm used in 802.11 

MAC with an alternative backoff algorithm that provides more fairness 

among contending stations while keeping the channel idle slots reasonably 

low.

• Finally, the last contribution of the thesis is to validate the correct func-

tionality of the TCP and 802.11 modules of the simulator with the results 

from testbed which was built and developed throughout this thesis.
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1.4 Structure of the Thesis

The rest of this dissertation is organized as follows. Chapter 2 covers in details 

the IEEE 802.11 MAC and TCP protocol. Further, a description of the routing 

protocol used in the simulation and testbed is presented.

Chapter 3 presents the analytical model of the operation of 802.11 MAC 

in ad hoc networks. In addition, the impact of different 802.11 parameters on 

maximum throughput theoretically achievable are investigated and discussed in 

detail.

Chapter 4 analyzes the underlying cause of TCP instability by giving a num-

ber of simple but yet important examples that will shed light on the roots of the 

problem. In particular, we first break down the TCP instability into intra-flow 

and inter-flow instability. Then, an in depth cross layer analysis of the chain 

of events occurring between different layers are discussed. Finally, the chapter 

reveals some interesting facts which will make the building blocks of our solutions 

in the next chapter to eliminate and tackle the TCP instability in multihop ad 

hoc networks.

Chapter 5 presents a set of proposed cross layer solutions that alleviate the 

instability issue in multihop ad hoc networks. Specifically, the chapter first intro-

duces TCP Contention Control that adjusts the amount of outstanding data in 

the network by taking into account the level of contention experienced by packets. 

To address the TCP instability caused by channel access unfairness seen among 

contending nodes, the chapter introduces the Fair Backoff Algorithm. In addi-

tion, to decrease TCP sensitivity to out-of-order packets, an extended version 

of the Delayed Congestion Response algorithm with the aim of performing more
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localised recovery than end-to-end recovery is proposed.

Chapter 6 presents the simulation tool and verification methodology used to 

evaluate the results. In this chapter, the simulation tool and its parameters used 

to evaluate the proposed schemes against default operation of TCP in 802.11 ad 

hoc networks are first introduced. This is then followed by a explantation of the 

testbed platform that was setup to confirm and validate the simulation tool.

Chapter 7 contains the simulation results of the proposed techniques in a 

variety of scenarios. In this section, a wide range of metrics are monitored in 

multiple layers to investigate the overall effectiveness and pros and cons of the 

new algorithms proposed in chapter 5 when they all work together.

Finally, Chapter 8 summarizes the results presented in this study and offers 

suggestions for future research in this area.
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Chapter 2
Deployment of T C P /IP  in 

Multihop Ad hoc Networks

2.1 Introduction

The main objective of this chapter is to provide background on the characteristics 

of the TCP/IP protocols used in ad hoc networks, which are referred throughout 

this thesis. As such, the chapter is organized as follows. In section 2.2, we 

investigate the IEEE 802.11 MAC standard in fine detail. Section 2.3 describes 

the operation of TCP and its end-to-end error detection/recovery mechanisms. 

Finally, section 2.4 contains a succinct description of the main operations of the 

DSR routing protocol.
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2.2 IEEE 802.11 MAC

2.2.1 General Description

The IEEE 802.11 MAC [11] specifies two modes of MAC protocol: contention- 

based service provided by the Distributed Coordination Function (DCF) and an 

optional contention-free service implemented by the Point Coordination Function 

(PCF). The PCF is based on a polling scheme and uses a Point Coordinator (such 

as access point) that cyclically polls stations, giving them the opportunity to 

transmit. The major advantage of PCF is that it can guarantee maximum packet 

delay and thus provide QoS. However, since a centralized coordinator should do 

the polling this scheme cannot be adopted in the ad hoc mode. Therefore, in this 

section we just describe the DCF mode.

The DCF in IEEE 802.11 is based on the principles of Carrier Sensing Multiple 

Access with Collision Avoidance (CSMA/CA). To overcome the hidden terminal 

problems in CSM A/CA as described before, IEEE 802.11 MAC uses the same 

technique as proposed by Karn in MACA [33]. In essence, in 802.11, the nodes 

wishing to communicate with each other use two short signaling packets called 

request to send (RTS) and clear to send (CTS) as a handshake prior to actual 

data transmission. All nodes that hear the RTS or/and CTS message(s), defer 

for the amount of time specified in Network Allocation Vector (NAV) before 

they can sample the channel again for idle status. This procedure is generally 

known as virtual carrier sensing and the channel is marked busy if either the 

physical or virtual carrier sensing mechanisms indicate the channel is occupied. 

In addition, the use of the RTS/CTS mechanism is under control of the RTS- 

Threshold attribute that can be set on a per station basis. This mechanism allows
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stations to be configured to use RTS/CTS either always, never, or only on frames 

longer than a specified length in the RTS-Threshold.

The next important feature of the 802.11 is to provide reliable link-to-link 

data delivery. This implies that the packet receiver should immediately send a 

back positive acknowledgment so that retransmission can be scheduled by the 

sender if no Medium ACK (hereafter called MACK) is received. We should note 

that the NAV contains a time value that represents the duration up to which the 

wireless medium is reserved because of the transmission of the actual data packet 

and its corresponding MACK packet.

2.2.2 Timing

One of the key deterministic factors in accessing the medium is the priority to 

access the channel, which is controlled by inter-frame space (IFS) time inter-

vals between the transmissions of frames [11]. The IFS intervals are mandatory 

periods of idle time on the transmission medium and are used for smooth func-

tioning of the medium access algorithm. Three IFS intervals are specified in the 

IEEE802.il DCF standard: short IFS (SIFS), DCF-IFS (DIFS), and Extended 

IFS (EIFS). The SIFS interval is the smallest IFS, followed by DIFS and EIFS, 

respectively.

SIFS is used when stations have seized the medium and need to keep it for 

the duration of the frame exchange sequence to be performed. This implies that 

stations that are sending MACK, and CTS can access the medium after SIFS. 

Using the smallest gap between transmissions within the frame exchange sequence 

prevents other stations, which are required to wait for the medium to be idle for a 

longer gap, from attempting to use the medium, thus giving priority to complete
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the frame exchange sequence in progress.

DIFS is used to transmit normal data frames. A station using the DCF can 

transmit if its carrier-sense mechanism determines that the medium is idle and 

its backoff timer has expired. The duration of the DIFS is defined as

D IF S  =  S IF S  +  25 (2.1)

where 5 is the value of one slot time.1

EIFS is used by the DCF whenever the physical carrier sensing has indicated 

to the MAC that a frame transmission was begun that did not result in the 

correct reception of a complete MAC frame. The EIFS is defined to provide 

enough time for another station to acknowledge what was, to this station, an 

incorrectly received frame before this station commences transmission. Reception 

of an error-free frame during the EIFS terminates the EIFS timer and brings the 

station to the normal medium access state (using DIFS). Figure 2.1(a) and 2.1(b) 

depict a timing diagram illustrating the successful transmission of a data frame 

without and with using RTS/CTS messages, respectively [11].

2.2.3 Random Backoff and Basic Access

As mentioned earlier, a station desiring to initiate transfer of data frames should 

invoke the carrier-sense mechanism to determine the busy/idle state of the medium 

Now, if the medium is busy, the station should defer until the medium is deter-

mined to be idle without interruption for a period equal to DIFS (when the *

^lot-time depends on the technology deployed in physical layer. For instance, in FHSS the 
value is 50/is and for DSSS it is 20/xs
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(a) Transmission timing of frame without use of RTS/CTS
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(b) Transmission timing of frame with use of RTS/CTS

Figure 2.1: IEEE 802.11 timing specifications

last frame detected on the medium was received correctly) or EIFS (when the 

last frame detected on the medium was not received correctly). After this DIFS 

or EIFS medium idle time, the station generates a random backoff period for 

an additional deferral time before transmitting, unless the backoff timer already
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contains a nonzero value, in which case the selection of a random number is not 

needed and not performed. This random backoff aims to minimize collisions dur-

ing contention between multiple stations that have been deferring to the same 

event. More precisely:

Backof /Time =  RandomQ * SlotTime (2-2)

where Random() is a random integer number of time slots drawn from a uniform 

distribution over the interval [0,CW]. Here, C W  (Contention Window) is an in-

teger number within the range of CW min and CWmax where the value of CW min 

and CW max depend on the adopted physical layer. For example, in DSSS physical 

layer CW min and CWmax values are 31 and 1023, respectively [11]. At the begin-

ning of each frame transmission, the C W  takes an initial value of CW min and is 

doubled every time the node is unsuccessful to transmit its frame until the C W  

reaches the value of CW max. Once it reaches the CW max, the C W  remains at the 

value of CW max until it is reset. On the other hand, the C W  is reset to CWmin 

after every successful attempt to transmit a frame or the frame is dropped after 

several tries (specified by Max-Retry-Limit as would be explained later). This 

backoff scheme is called the Binary Exponential Backoff (BEB).

After choosing the new backoff time, the node uses the carrier-sensing mecha-

nism to determine whether there is activity during each backoff slot or not. If no 

medium activity is indicated, the backoff timer is decremented by one slot-time. 

If the medium is determined to be busy at any time during the backoff process, 

then the backoff timer is suspended. When the medium becomes free again, the 

node waits for another DIFS and if it is still free, it starts to decrement its back-

off timer slot by slot. This process is repeated until the time the backoff counter
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reaches zero where the frame would be emitted then. At the receiver side (next 

hop), if the packet is received without error, the receiver issues a MACK packet 

after SIFS, confirming the receipt of the packet. This receipt of the MACK will 

also reset the C W  at the sender to CW min. Otherwise, the sender enters the 

error recovery procedure that is described in the following section.

2.2.4 Recovery Procedure and Retransmit Limits

As stated earlier, 802.11 MAC is based on the CSM A/CA scheme in which sta-

tions are not able to detect a collision by hearing their own transmissions (in 

contrast to the CSMA/CD protocol used in wired LANs). Therefore, an imme-

diate positive acknowledgement scheme is employed to ascertain the successful 

reception of a frame. If the MACK (or CTS when a RTS is sent) is not re-

ceived at the sender within the ACK-Timeout (CTS-Timeout), the data frame 

is presumed to have collided, and the emitter schedules a frame retransmission 

with a new random backoff. This Automatic Repeat reQuest (ARQ) retries con-

tinue, for each failing frame exchange sequence until the transmission is successful 

or until the Max-Retry-Limit is reached, whichever occurs first. There are two 

Max-Retry-Limit value defined in 802.11:

• Short-Retry-Limit (SRL)

• Long-Retry-Limit (LRL)

Every station maintains the current number of short retries as well as the number 

of the long retries, where these counters are incremented and reset independently 

of each other and both of them take an initial value of zero. The short retry 

counter is incremented whenever a control frame or a short packet frame (i.e.
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smaller than RTS-Threshold) is retransmitted. Similarly, long retry counter is 

incremented whenever a long packet frame (i.e. larger than RTS-Threshold) is 

retransmitted. Retries for failed transmission attempts will continue until the 

short retry counter is equal to SRL or until the long retry counter is equal to 

LRL. When either of these limits is reached, the higher layer data packet is 

discarded from the sender MAC buffer and the C W  will be reset to CWmm. On 

the other hand, whenever a MACK is received in response to the transmitted 

data frame, both short and long retry counters are reset to 0.
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2.3 Transmission Control Protocol (TCP)

2.3.1 General Description

Most applications such as web browsing, E-mail, and FTP require reliable and 

in-order delivery of packets between two endpoints. However, the ’’ best effort” 

packet delivery service provided by the IP does not give such guarantees to the end 

hosts. To combat the above problems and provide extra services for applications, 

Transmission Control Protocol (TCP) [12] has been designed and developed to 

run on top of unreliable IP. In other words, TCP builds reliable and in-order 

delivery of data between two end hosts over an unreliable and best effort IP 

service.

Although TCP was originally designed and optimized for wired networks, in 

order to enable seamless integration of ad hoc networks with the Internet, TCP 

also seems to be the natural choice for users of ad hoc networks that want to 

communicate reliably with each other and with the Internet. However, as it will 

be shown in the next chapter, such deployment does not come without cost and if 

not carefully used can severely harm the applications in ad hoc networks. To have 

a better understanding of the TCP functionality, the details of TCP protocol will 

be reviewed in this section.

2.3.2 Process-to-Process Reliable Data Delivery

As mentioned earlier, on top of the unreliable, connectionless IP service, TCP is 

a connection-oriented protocol. To achieve this goal, TCP needs to address the 

following two issues:
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1. Connection Management

2. Data Loss Recovery

Although connection management refers to both connection establishment 

and closure, here we only briefly discuss the connection establishment procedure. 

More information on TCP connection management can be found in [12,34]. 

Connection establishment as shown in Figure 2.2 involves an exchange of syn-

chronization messages, known as the three-way handshake before data packets 

can be exchanged between end hosts. Here first the client-side chooses a random

1 3  ! 13
(P rp

Figure 2.2: TCP connection establishment

number x  for its Initial Sequence Number (ISN) and puts this number in the 

Sequence Number (Seq) field of the SYN segment. On the receipt of the SYN, 

the server host allocates the TCP buffers and variables to the connection, and 

sends a connection-granted segment (SYN-ACK) to client TCP including server 

ISN which is again a random number. Upon receiving the SYN-ACK, the client 

also allocates buffers and variables to the connection. The client host then sends 

the server yet another segment that acknowledges the server’s connection-granted

24



2.3 Transmission Control Protocol (TCP)

segment. In nutshell, the main purpose of three-way-handshaking is to prevent 

old connection initializations and data packets, from causing confusion. In addi-

tion, the endpoints may exchange some extra parameter and option information 

during this phase, such as the Maximum Segment Size (MSS).

Since the TCP data loss detection and recovery procedure play an important 

role in TCP performance in multihop ad hoc networks, the rest of this section is 

dedicated to this issue.

2.3.3 Data Loss Detection and Recovery

TCP provides reliable data delivery by using cumulative acknowledgments (ACKs) 

that are sent by the receiver to the sender for all received data. A cumulative 

ACK from a receiver for kth byte implies that all bytes prior to k have been suc-

cessfully received, and that a segment beginning at byte k has not yet arrived. A 

direct advantage of the cumulative ACK scheme is that a later acknowledgment 

covers an earlier one, which gives some robustness against the loss of ACKs. A 

complement to reliable delivery is the loss recovery; that is the ability of the 

sender to deduce that certain packets did not reach the receiver and retransmit 

them, either without any explicit request from the receiver (timer-driven retrans-

mission) or when explicitly requested by the receiver (data driven retransmission) 

as will be explained, respectively.

I- Timer Driven Retransmission (TCP Timeout)

In timer-driven recovery when the TCP sender does not receive a cumulative 

ACK for a segment within a certain interval (called Retransmission TimeOut or
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RTO), it implicitly retransmits the missing data. In other words, the RTO is the 

amount of time the sender will wait for a given datagram to be acknowledged 

before a retransmission is triggered. The value of RTO is dynamically calculated 

using a Round Trip Time (RTT), which is the interval between the sending of a 

datagram with a certain sequence number, and the time that sequence number is 

acknowledged. In practice, instead of measuring every single value of RTT, TCP 

uses RTT samples for only one segment per window. Each RTT sample (denoted 

by RTTsamp,e) is used to update a smoothed RTT value (SRTT), which retains an 

exponentially weighted moving average of the history from recent samples, the 

new SRTT is computed from the formula in equation 2.3:

SRTTestijnate — (1 -  a) * SRTTaid +  a *  RTTsampie (2.3)

Where SRTT0w is the current estimate of the round-trip time, SRTTesiimate is 

the expected RTT value for new segments and a is a constant between 0 and 

1 that controls how rapidly the SRTT response to recent RTT samples (the 

recommended value for a is | [35]). The RTO is then calculated as the expected 

smoothed RTT plus a variance factor:

RTO =  SRTTnew +  max{G, K  * RTTv a r}  (2.4)

Where G is the TCP clock granularity (e.g. 500ms) and K is generally set to 

4. The RTTvMtf is calculated as the RTT^m ^ plus a difference between expected 

RTT (SRTTesiimaie) and sample RTT (RTTsampie) as follows [36]:

RTTVARnew =  (1 — ¡3) * RTTVAR0id +  (3 * \SRTTestimate -  RTTsampie\ (2.5)
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Here f3 determines the sensitivity of the RTTy^^ to the recent segment delay 

variations and is normally set to When a timeout occurs for a transmitted 

segment, the RTO is doubled (TCP exponential back-off) and the segment is 

retransmitted.

II- Data Driven Retransmission (TCP Fast Retransmit)

When a TCP receiver receives an errorless segment, it first checks the received 

sequence number against a (sliding) window of acceptable sequence numbers. To 

see how the sliding window works at receiver, let us consider figure 2.3; Here

Rev-window

Acceptable Sequence Number

t
Rcv-nxt Available Receiver Buffer

Figure 2.3: TCP sliding window

the left edge of the receiver window (Rev-window) corresponds to the next ex-

pected byte (denoted by Rcv-nxt), which is the first among the packets required 

to complete the sequence of packets in the sequencing buffer. On the other hand, 

the right edge of the Rev-window corresponds to the available buffer size at the 

receiver (for flow control purposes as would be explained shortly). A segment 

whose sequence number does not fall within the Rev-window is discarded. Seg-

ments that their sequence number fall within the window but do not coincide 

with the left edge of the window are buffered. In both cases, the receiver sends 

an ACK asking for the current left edge of the window (Rcv-nxt). These ACKs 

are called duplicate ACKs and are mostly piggy backed on empty segments from
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the receiver. The receipt of multiple duplicate acknowledgments explicitly stim-

ulates the TCP sender to retransmit the segment that appears to be lost without 

waiting for the associated timeout event to expire. This early packet retransmis-

sion algorithm prior to RTO is therefore known as Fast Retransmit in the TCP 

standard.

2.3.4 Flow control

In addition to the reliable process-to-process data delivery, TCP provides a mech-

anism for the sender to recognize that if it is overwhelming the receiver’s buffer 

by sending data too rapidly. This mechanism known as flow control enables the 

TCP sender to react to such an event by slowing down its transmission rate. 

Therefore, flow control scheme allows a slow receiver host to throttle the sending 

rate of a faster source host, in order to avoid buffer overflow and packet drops at 

the destination. TCP uses the sliding window explained before to provide flow 

control, whereby the TCP at the receiver side, indicates in each ACK the num-

ber of bytes it can accommodate in its receive buffer. This advertised value is 

called ’’ receiver window” (rwnd) and effectively limits the number of bytes that 

the sender can have outstanding (i.e. unacknowledged) at any time.

2.3.5 Congestion Control

In a broad sense, congestion control is the ability of the sender to recognize 

that the network is overloaded and respond to this by reducing its transmission 

rate. It was added to TCP in 1987, after the Internet had suffered from what is 

called ’’ congestion collapse” [37]. The congestion control was first standardized in
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RFC2001 [38] and then updated in RFC2581 [39]. The goal of adding congestion 

control mechanism was to prevent congestion collapse by finding an appropriate 

rate of transmission for each connection dynamically. In order to dynamically 

control TC P’s transfer rate, an additional window limit called ’’ congestion win-

dow” (cwnd) was introduced which varies based on the network conditions. Then, 

the effective limit on outstanding data, called ’’send window” (swnd), is set as the 

minimum of the ’’ receiver window” (rwnd) and the congestion window (cwnd).

swnd =  minjctcnd, rwnd} (2.6)

In other words, TC P ’s effective window has a maximum value equal to the receive 

window, and the role of the congestion control mechanism is to find a window 

value between one Maximum Segment Size (MSS) and receiver window dynam-

ically regarding the network conditions. To achieve this goal, TCP operates in 

the following two phases:

• Slow Start

• Congestion Avoidance

I- Slow Start

When a connection starts, resumes after a certain idle time2 or a timeout occurs, 

slow start is performed. At the start of this phase, the congestion window is set 

to a small initial window size (IWS) which typically is one MSS [39]. Then the 

congestion window is increased by one MSS for each acknowledgment for the new

2Generally an idle time larger than RTO [39]
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data that is received. This results in the window size doubling after each window 

worth of data is acknowledged3.

The main goal of the slow start is to avoid a problem in the operation of 

the original TCP, where the sender at the start of a connection may transmit 

up to receiver window worth of data in one burst [38]. More precisely in the 

slow start phase, TCP increases the congestion window gradually toward the 

maximum value, rather than sending a full window worth of packets as soon as the 

connection is established. That is why it is called slow start despite the fact that 

the rate of increase during this phase is exponential to limit the performance loss 

while the connection operates at a small send window. After a certain threshold 

(called the slow start threshold or ssthresh) is reached, the connection moves 

into the congestion avoidance phase as will be explained in the next section. 

Note that the initial value of ssthresh can be arbitrary large and is generally set 

to the receiver window at the beginning of the connection [39]

II- Congestion Avoidance

In general, congestion avoidance consists of Additive Increase-Multiplicative De-

crease (AIMD) that aims to make TCP to operate cautiously as the congestion 

window gets close to the value at which loss previously occurred. The TCP in 

its congestion avoidance phase probes the network for resources that might have 

become available by continuously increasing the window, albeit at a lower rate 

than in slow start. At the start of this phase, TCP gently probes the available 

bandwidth (Additive Increase). More precisely, in additive increase, if the con-

gestion window is in units of packets, after each ACK is received the window is

3 When the receiver implements delayed ACKs [40], the exponential rate of increase is reduced 
to 1.5
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increased as:

cwnd =  cwnd H---- -—- (2.7)
cwnd

During this time if TCP detects the packet loss, it decreases the cwnd by a factor 

of two (Multiplicative Decrease) or it drops the cwnd to 1 MSS and goes to slow 

start depending on the type of TCP version used. It is important to note that 

in multiplicative decrease, the sender decreases its sending rate by half only once 

within one RTT regardless of the number of packet losses in that round. In 

addition, after loss detection, the ssthresh is set to half the value of cwnd at the 

time of loss.

2.3.6 TCP Versions

TCP congestion control mechanisms have evolved over time, as more was known 

about their behaviour and performance in the network, resulting in the known 

TCP versions. The most common TCP variants introduced and adopted during 

recent years include TCP Tahoe [12], Reno [35], NewReno [41], and Vegas [42], In 

the following we briefly explain the key features of the above TCP variants, with 

special emphasis on TCP NewReno as recent traffic monitoring over the Internet, 

has confirmed the popularity of TCP NewReno [43]. In addition, since in the same 

study, the deployment of the TCP selective Acknowledgment (SACK) [44] has 

been shown to be very popular in Internet, throughout this thesis TCP NewReno 

with SACK option enabled has been used. This choice can be justified as such a 

combination is the likely candidate for adoption as the reliable transport protocol 

for use over ad hoc networks and readily implementable.
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I- TCP Tahoe

In TCP Tahoe, when the congestion is detected through either TCP timeout 

or TCP receipt of three duplicate ACKs, the cwnd is reduced to 1 MSS and 

the sender enters slow start. Therefore, TCP Tahoe includes only Slow Start, 

Congestion Avoidance, and Fast Retransmit stages. Figure 2.4 shows the reaction 

of TCP Tahoe to packet loss.
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Figure 2.4: TCP Tahoe reaction to packet loss

II- TCP Reno

As was explained earlier in this chapter, when a time-out occurs, TCP interprets 

this as severe congestion in the network. On the other hand, when duplicate ACKs 

are received TCP interprets this as less severe congestion since it shows that the
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receiver has received some out-of-order packets but has failed to receive the next 

expected segment. However, TCP Tahoe treats both type of the congestion in the 

same way and sets the congestion window to 1 MSS, and enters Slow Start. This 

can lead to bandwidth underutilization in the case of the fast retransmit, mostly 

triggered by the random packet loss or packet reordering. In order to avoid this, 

TCP Reno [35] introduces a new phase, called Fast Recovery, which is entered 

after a Fast Retransmit instead of slow start in TCP Tahoe. The fast recovery 

algorithm works as follows. After receiving 3 duplicate ACKs and sending what 

appears to be the missing segment by the fast retransmit at the sender, the cwnd 

is inflated to:

cwnd =  ssthresh +  3MSS  (2-8)

Therefore, TCP stays in congestion avoidance in contrast to TCP Tahoe that en-

ters Slow Start. Here the ssthresh is half of the cwnd at which the loss occurred. 

Afterward, for each additional duplicate ACK received, the window is increased 

by one packet. The congestion avoidance is left after the receipt of the first ACK, 

which acknowledges new data. When that happens, the window is deflated back 

to ssthresh and TCP proceeds in the congestion avoidance stage [39]. The basic 

idea behind Fast Recovery is that a duplicate ACK is an indication of available 

channel bandwidth since a segment has been successfully delivered. Thus, during 

Fast Recovery the TCP sender is able to make intelligent estimates of the amount 

of outstanding data. Figure 2.5 shows the stages in TCP Reno that include slow- 

start, congestion avoidance, and fast retransmit which were carried over from the 

TCP Tahoe, and additionally the fast recovery algorithm.
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Figure 2.5: TCP Reno reaction to packet loss

III- TCP NewReno

The NewReno algorithm [41] is functionally very similar to TCP Reno. The 

difference between the two variants can be distilled to the treatment of a loss event 

during the congestion avoidance phase. TCP Reno performance significantly 

suffers when multiple packets are dropped from a window of data. This is because 

the only way Reno can recover further lost packets without timing out is through 

performing a Fast Retransmit for each. However, if the TCP sender doesn’t 

receive three duplicate ACKs after a loss (for example, because the congestion 

window is less than 4 segments), then the TCP sender has to wait for a retransmit 

timer to expire. However, retransmit timeouts have the cost of introducing a 

possibly considerable delay of waiting for the transmit timer to expire. This
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delay can be particularly long and severe in a low bandwidth network, as the 

TCP sender may not receive sufficient samples to estimate an effective upper 

bound on the RTT. For this reason, the performance of Reno can be worse than 

Tahoe’s in small RTT situations where the window size is not big enough to trigger 

fast retransmit and TCP has to wait for a timeout retransmission. To address 

this issue, TCP New-Reno includes a small change to the Reno algorithm at the 

sender that eliminates Reno’s wait for a retransmit timer timeout when multiple 

packets are lost from a window. The change concerns the sender’s behaviour 

during Fast Recovery when a partial ACK is received 4. In Reno, partial ACKs 

take TCP out of Fast Recovery by ’’ deflating” the usable window back to the size 

of the congestion window. In New-Reno, partial ACKs do not take TCP out of 

Fast Recovery. Instead, partial ACKs received during Fast Recovery are treated 

as an indication that the packet immediately following the acknowledged packet 

in the sequence space has been lost, and should be retransmitted. Thus, when 

multiple packets are lost from a single window of data, New-Reno can recover 

without a retransmission timeout, by retransmitting one lost packet per round- 

trip time until all of the lost packets from that window have been retransmitted. 

New-Reno then remains in Fast Recovery until all of the data outstanding when 

Fast Recovery was initiated have been acknowledged.

A descriptive summary of TCP Tahoe, Reno and New Reno versions is shown 

in Figure 2.6

4 Partial ACK is the ACK that does not acknowledge the highest sequence number sent at 
the point when Fast Recovery was initiated. It is thus an indication that not all data sent 
before entering Fast Recovery has been received
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Figure 2.6: Descriptive summary of TCP Tahoe, Reno and New Reno

IV- TCP SACK

TCP SACK [44] is a Reno-based TCP variant which makes use of the facilities 

provided by the Selective Acknowledgements (SACK) option of TCP [45]. The 

SACK-enabled segments provide the TCP sender with some indication of the 

status of the destination’s receiving buffer. To achieve this, the data receiver 

generates SACK information for every ACK response it produces that does not 

cover the highest sequence number in the data receiver’s queue. Hence, when 

reception of a non-contiguous segment occurs, instead of returning a duplicate
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ACK, the receiver produces a reply which contains further information in the 

header of the segment in the form of an option. The information embedded in 

the SACK response contains a list (in the form of block pairs) of some of the 

isolated data blocks in the receiver’s buffer, which have not been passed on to the 

application layer, as additional data segments are required to fill the gaps in the 

receiving sequence within the receiver’s window. Hence, in the event of packet 

loss the sender can re-send only the exact packets that have been lost in transit 

and avoid producing unnecessary retransmissions.

V - TCP Vegas

In contrast to all the above TCP versions that need to experience losses in or-

der to find the available bandwidth of the connection (reactive approach), TCP 

Vegas, which was introduced in 1994, tries to predict congestion and reduce the 

congestion window accordingly (proactive approach) [42]. More specifically, TCP 

Vegas extends New Reno’s mechanisms by using two techniques. In the first 

technique, TCP Vegas reads and records the system clock each time a segment 

is sent. When an ACK arrives, Vegas reads the clock again and does the RTT 

calculation using this time and the timestamp recorded for the relevant segment. 

Then it uses this more accurate RTT estimate to decide whether to retransmit 

the packet. The second technique gives TCP the ability to anticipate congestion, 

and adjust its transmission rate accordingly. TCP Vegas does this by monitoring 

the difference between the throughput it is expecting to see (Expected Through-

put, Texpected) and the throughput it is actually realizing (Actual Throughput,
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T actual)- In practice, T expected  is calculated as follow:

Congestion window size
(2.9)expected smallest measured RTT

In the place when TCP Vegas is started in Slow Start, the window is increased 

exponentially every other RTT. In between each consecutive increment, the win-

dow remains fixed, and the achieved throughput is compared to the expected 

throughput. If (Tactual < Texpected), the Congestion Avoidance phase is entered. 

The Congestion Avoidance algorithm is based on the calculation of the ” Diff” 

that is considered as the amount of extra data:

The goal of Vegas is to maintain the right amount of extra data in the network. 

To reach this aim, it defines two thresholds a  and (3 . Then based on equation 

2.11, the value of cwnd during next RTT is determined:

This means that when the actual throughput gets far from the expected through-

put, the more congestion there is in the network. On the other hand, when the 

actual throughput rate gets too close to the expected throughput, the connection 

is in danger of not utilizing the available bandwidth. Note that all these calcu-

lations are done once per RTT. In addition, TCP Vegas also make some minor 

modifications to some parameters, such as reducing the congestion window by

(2.10)

cwnd +  1 i f  d i f f  <  a

cwnd — < cwnd i f  (3 < d i f f  < a

cwnd — 1 i f  d i f f  > (3

(2.11)

38



2.3 Transmission Control Protocol (TCP)

1/4 instead of 1/2 after a Fast Retransmit, or starting with a window of 2 MSS 

even after a retransmit timeout rather than 1 MSS.
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2.4 Dynamic Source Routing

2.4.1 General Description

In general, there are two main routing approaches in ad hoc networks, namely the 

reactive and proactive routing paradigms. Proactive protocols (such as Optimized 

Link State Routing [46]), involve attempting to maintain routes between nodes 

in the network at all times, including when the routes are not currently being 

used [47]. They are traditionally classified as either distance-vector or link-state 

protocols and are based on exchanging periodic information regardless of outside 

events. In this approach, updates to the individual links within the networks 

are propagated to all nodes, or a relevant subset of nodes in the network, such 

that all nodes in the network eventually share a consistent view of the state of 

the network. The advantage of a proactive protocol is that there is little or no 

latency involved when a node wishes to begin communicating with an arbitrary 

node that it has not yet been in communication with. The disadvantage is that the 

control message overhead of maintaining all routes within the network can rapidly 

overwhelm the capacity of the network in very large networks, or situations of 

high mobility.

Reactive protocols (such as Dynamic Source Routing Protocol [48]), also 

known as on-demand protocols, involve searching for routes to other nodes only 

as they are needed [47], More specifically, a route discovery process is invoked 

when a node wishes to communicate with another node for which it has no route 

table entry. When a route is discovered, it is maintained only for as long as it is 

needed by a route maintenance process and inactive routes are removed at reg-

ular intervals. Reactive protocols require less control traffic to maintain routes
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that are not in use than in proactive methods. On the other hand, the main 

drawback of these methods is that the routes are often unavailable at the time 

an application first needs them. This means that applications in networks using 

one of these protocols often experience an initial delay during the time it takes 

to establish a route between the communication endpoints.

There exists another class of ad-hoc routing protocols, called hybrid protocols 

which employ a combination of proactive and reactive methods. The main idea 

behind these protocols is to maintain groups of nodes in which routing between 

members within a zone (cluster) is via proactive methods, and routing between 

different groups of nodes is via reactive methods.

In this study, Dynamic Source Routing protocol (DSR) [48] has been chosen 

as the routing protocol for several reasons. Firstly, DSR is very efficient in finding 

(learning) routes in terms of the number of control packets used, and does not use 

periodic control messages [49-51]. Secondly, as DSR is a source initiated routing 

protocol (in contrast to hop by hop routing), intermediate nodes do not need to 

get involved in route discovery and maintain up-to-date routing information in 

order to route the packets. This is because every packet carries a source route 

description of a path through the network. Therefore, with a cost of no additional 

packets, every node overhearing a source route learns a way to reach all nodes 

listed in the route. This form of active learning is reduces the overhead in the 

network [49,52], Finally, DSR does not use any periodic routing advertisement, 

link status sensing, or neighbour detection packets, and does not rely on these 

functions from any underlying protocols in the network. [51,52]

The DSR protocol consists of two basic mechanisms: Route Discovery and 

Route Maintenance which will be explained briefly in the following section.
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2.4.2 Route Discovery

In DSR, route discovery is performed only when the sender attempts to send a 

packet to the destination and does not already know a route. The routes that DSR 

discovers and uses are called source routes. That is, the sender learns the complete 

and ordered sequence of network hops necessary to reach the destination. Each 

packet sent from the sender carries this list of hops in its header. As a result, the 

packet size in DSR depends on the distance between the communicating nodes.

To find a route to the destination, DSR uses Route REQuest (RREQ) and 

Route REPly (RREP). More specifically, to establish a route, the sender transmits 

a RREQ message as a single local broadcast packet, which is received by all 

nodes currently within wireless transmission range of the sender. Each RREQ 

message identifies the initiator, the final destination, and also contains a unique 

Request-ID, determined by the initiator of the RREQ. Each RREQ also contains 

a route record that lists the address of each intermediate node through which this 

particular copy of the RREQ message has been forwarded. This route record is 

initialized to an empty list by the initiator of the route discovery. As the RREQ 

propagates, each host adds its own address to a record list in the RREQ packet, 

before broadcasting the RREQ on to its neighbours. Then at each node, RREQ 

message is forwarded only if all of the following conditions are met:

1. The node is not the target (destination) of the RREQ packet

2. The node is not listed in source route

3. The node has not received another RREQ with the same sender and Request- 

ID number
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4. No route information to the target node is available in its route cache.

If all are satisfied, then the relaying node also appends its IP address to the 

source route and broadcasts the packet to its neighbours . On the other hand, if 

the intermediate node finds a valid route to destination in its cache, it produces 

RREP message and sends that back towards sender.

In a nutshell, when a mobile node has a packet to send, it first consults its 

route cache to determine whether it has a valid route to the destination or not. 

If it has one, then it starts sending data. Otherwise, it initiates route discovery 

by sending RREQ packet. Each node receiving this packet checks whether it has 

an unexpired route to mentioned destination or not. If it does not have one, it 

first checks for its own address in the route record of the packet. If it does not 

find that as well, it adds its own address to route record and forwards the packet; 

otherwise, it will simply discard the packet.

2.4.3 Route maintenance

As the name indicates, the route maintenance is responsible for maintaining and 

monitoring the already established routes. Route Maintenance is again an on- 

demand operation and is only used when sender is actually sending packets to the 

ultimate destination. In other words, in DSR each node transmitting a packet 

is responsible for confirming that the packet has been received by the next hop 

along the source route. This confirmation of receipt to the next hop in the case of 

using 802.11 MAC is provided at no cost to DSR (due to the link-level acknowl-

edgement frame). If the packet is retransmitted until the maximum number of 

times (defined in MAC protocol) and no receipt confirmation is received, that
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node returns a route error message to the original sender of the packet, identify-

ing the link over which the packet could not be forwarded. When the route error 

packet is received by the sender, the sender attempts to use any other route it 

happens to know to the destination (if it had received multiple RREPs), or it 

invokes Route Discovery (after performing exponential backoff) again to find a 

new route.

2.5 Summary

This chapter reviewed the details of TCP (in the transport layer), DSR (in the 

network layer), and IEEE 802.11 MAC (in the link layer) protocols that are 

referred in the thesis and are commonly used in ad hoc networks.
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Chapter 3
Analysis of IEEE 802.11 DCF  

Operation

3.1 Introduction

It is well known that the performance of 802.11 DCF can have a significant impact 

on the achievable throughput, delay, and scalability of the ad hoc network [53— 

56]. In particular, as shown in [56], the parameters of 802.11 can have a critical 

impact on upper layer performance such as TCP in ad hoc networks. To have a 

better understanding of the operation of the 802.11 DCF, this chapter presents an 

analytical model of 802.11 to evaluate the impact of different parameters on the 

achievable throughput of 802.11 ad hoc networks. To this aim, section 3.2 first 

reviews some of the related work in modelling the operation of 802.11. Section 

3.3 presents details of the proposed model, including assumptions and model 

components. In section 3.4, the analytical throughput of the 802.11 is derived 

from the 3-D Markov chain model developed in section3.3. Section 3.5 validates
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the accuracy of this model by simulations and comparison with other analytical 

models. Finally, in section 3.6, the impact of different 802.11 parameters on 

maximum throughput theoretically achievable are investigated and discussed in 

detail.

3.2 Related Work

Since the introduction of the IEEE 802.11, a considerable amount of work has 

been done on the performance evaluation of the protocol in ad hoc networks and 

possible ways to enhance its performance especially from a throughput point of 

view. In particular, one of the earliest analyses of the throughput of DCF was 

carried out in [57] using a simplified geometrically distributed backoff model. 

A more realistic model was proposed by Bianchi [58] where the evolution of the 

back-off stage at each node is described by a Markov process; The key importance 

of Bianchi model is to use a Markov chain to capture the effect of the contention 

window and binary slotted exponential back-off procedure used by DCF in 802.11. 

However, his model did not take into account the retry limits and the effect of 

timeout values in the throughput calculation. Since then, many improvements to 

the initial Markov chain have been proposed to capture different aspects of the 

operation of 802.11 in ad hoc networks. For instance, the study in [59] further 

improved the model by considering the retry limit in the Markov model. How-

ever, it still did not address the issue of multiple retry limits as specified in the 

802.11 standard. The authors in [55] further improved the model by evaluat-

ing the analytical performance of 802.11 in ad hoc networks under unsaturated
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traffic conditions. Finally, the work by [60] takes into account the impact of hid-

den terminals in the analytical model. Despite the analytical improvement, the 

main shortcoming of the previous studies is a lack of comprehensive and accurate 

analysis of the impact of different 802.11 MAC parameters (e.g. maximum short 

and long retry limits, minimum contention window) on the achievable link layer 

throughput. To accurately model the performance of the 802.11 and to be able to 

take into account different 802.11 parameters, in the next section we extend the 

Bianchi two dimensional model into a three dimensional model by considering 

different retry limits.

3.3 Model Assumptions and Components

In order to analyze the protocol, the following assumptions are made:

• The network consists of finite number of n contending stations.

• Every station always has a packet to transmit after the completion of each 

successful transmission. In other words, the system works in throughput 

saturation that is defined as the limit reached by the system throughput as 

the offered load increases.

• The probability of a packet collision is constant and independent of the 

number of retransmissions attempts of this frame.

To describe the behaviour of 802.11, let us first denote the state space F as:

F  =  { ( i , j ,  k) : 0 <  i <  L ,  0 <  j  <  B <  S, k >  0} (3-1)
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where i is the current number of long retries, j  is the current number of the 

backoff state, and k is the current backoff counter value which can take any value 

from 0 to W j, where

Also, in our space, L is the maximum number of long retry limits, S is the 

maximum number of short retry limits and B is the maximum number of backoff 

stages in the IEEE 802.11 protocol1.

Figure 3.1 demonstrates the schematic of the proposed 802.11 three dimen-

sional Markov chain.

To better understand the behavior of the proposed Markov chain in figure 

3.1, it is important to note that one of the main features of this model which

1In default operation of 802.11, we have L=4, S=7, and B=5

(3.2)

Figure 3.1: Three Dimensional Markov chain model
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has been mostly ignored previously, is the distinction made between packets that 

require RTS/CTS exchange prior to their transmission and other packets (in-

cluding 802.11 control packets) in state transitions. We believe such a distinction 

should be accommodated in the model since the probability of packet transmis-

sion and collision for packets that do not use RTS/CTS is clearly different from 

packets that perform channel reservation prior to their transmission. To this aim, 

in figure 3.1 if a control packet or data packets smaller than the RTS-Threshold 

collides, the new state is chosen from the next row of the current plane (i.e. a 

transition along y axis). However, if a data packet larger than RTS-Threshold 

is dropped, the new state is chosen from the next row of the next plane (i.e. a 

transition along z axis). In other words, if a collision results to an increase in the 

number of short retries, the new state is chosen in the same plane. However, if 

the packet drop results in the increase in the number of long retries, a new state 

is picked up from the next plane. The rules of these transitions will be covered 

in more detail later in this section.2

Now let bij k̂ be the stationary distribution of the Markov chain stochastic 

process for a given station. Figure 3.2 depicts in more detail the states of the 

first plane ( i=0)  in the proposed Markov chain. As it can be seen, with the 

total probability of P ^ fs , the station chooses a new backoff counter from the 

next row. However, in case of a successful RTS/CTS transmission (with the 

probability of (1 — P ^ fs )), if the station successfully transmits its DATA packet 

with the probability of P //“ia the chain is reset to initial stage; alternatively if 

with the probability of P ^ ta the DATA packet is dropped, the station chooses 

its new backoff value from the plane i =  1 and the process continues. Also, it

2For simplicity and sake of argument, in the rest of this chapter we assume the RTS/CTS 
exchange is performed for all higher layer data packets and refer to such packets as DATA 
packets to distinguish them from 802.11 control packets.
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is worth mentioning that in the first plane, there are total number of S retries 

(i.e. short retry limits) before a station drops the DATA packet. In addition, 

according to equation (3.2), the number of backoff states (Wj) will not increase 

after a station reaches stage B (maximum backoff stages) and remains fixed.

Plane i=1

Figure 3 .2 : The states o f a Markov chain in plane i= 0
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Although the structure of the other planes are similar to figure 3.2, it is 

important to note that different planes do not share exactly the same number of 

states. For instance, apart from the first plane (i= 0 ), the minimum value of the 

current number of backoff stage (j) should be greater than or equal to 1. In other 

words, the first row of the plane i =  0 cannot exist in the following planes. This 

is because when the station is in plane i ^  0, it means there has been at least 

one unsuccessful transmission prior to the transition. Therefore, j  ^  0.

To obtain a better understanding of the differences between states across multiple 

planes, figure 3.3 depicts the first state of the first and last row across multiple 

planes.

Figure 3.3: The key states o f the Markov chain plane’s transition

Throughout the rest of this section, the main objective is to write down all 

the states across different planes in terms of ¿0,0,0 • To be able to do so, let 

us first note that the state transition diagram shown in figure 3.2 is governed 

by transition probabilities given in equations 3.3 to 3.6. Also, along with each 

transition probability, its transition duration is specified to enable us to calculate
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the average time that a station stays in one state.

• The backoff counter decrements and the station makes a transition from 

state (i,j,k) to state (i,j,k-l):

where a represents the system time slot.

• The station sends a RTS packet in state (i,j,0), but its RTS packet collides 

and the station reaches state (i,j+ l,k).

where P fJ s  and refer to the probability and average time of RTS collision, 

respectively.

In addition, the state transition diagram between different planes shown in 

figure 3.3 is governed by the following transition probabilities and durations:

• The station sends a RTS/CTS packet successfully in state (i,j,0), but the 

actual DATA is dropped (due to channel error, hidden terminal, etc.) and 

the station reaches state (i+ l,j+ l,k ).

P { ( i , j , k -  1)| ( i , j ,k ) }  =  1 

k 1)|( i , j ,k ) }  =  a
(3.3)

P{(hJ  +  l,fc)| (i,j,0 )} =

+ l,fc)|(*, 3 , 0 ) }  =  T £ T S

(3.4)

(3.5)
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here P ^ s  and Pĉ “ia are the probability of RTS success and DATA packet 

collision, respectively. Also, Tĉ “ia refers to the average time the channel is 

occupied when a DATA packet collision occurs.

• The station sends a DATA packet (following a successful RTS/CTS ex-

change) successfully in state (i,j,0), and therefore reaches state (0,0,k).

where P ^ a and T^“ia refer to the probability and average time of DATA 

success event.

Considering the regularity of the Markov chain shown in figures 3.2 and 3.3, we 

have the following relations for each k G (0, Wj — 1):

(3.6)

for{i  0 and 1 <  j  <  S)

)]* +  0) (3.7)
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Using the set of equations in (??) and the normalization condition, we get:

L S  W j - l

1 = EE E b̂ k
2—0 j = 0 k= 0

S - l  L S - i + l W j - 1

= E E b°’j ’k + E E E biJ’k
j=0 k=0 i= 1 j = 1 k= 0

S - l  W j  — 1 L  S  W j - 1

= E E ^ * ¥ ) +E E E f t .
j=0 k=0

=  ¿>0,0,0*
s -i

,3,0

L i= 0

2=1 j=1 fc=0

L S

w , - k
w, )

(3.8)

E (« T5y * ̂ )+E E (K1 - pcJs) (p%ta)}i w t 1
i—i i=i

Wj +  1

Although in the above equation, b0,o,o depends on both P ^ ta and P^ s , 

the value of P ^ ta can statistically be estimated by each station. This is because 

P?oita =  1 -  {p ?uca\p?ucS) and the value of (P?uca\P*ucS) can be easily estimated 

by each station since each station may keep track of two parameters. First the 

number of occasions that it has transmitted a DATA packet (after a successful 

RTS/CTS reservation) and has received a MACK for that packet. Secondly the 

total number of transmitted DATA packets. Based on the above values, the node 

at each time can statistically calculate the probability of ( P ^ a\P ^s ) as the 

ratio of the first to second parameter. Therefore, this implies that in equation 

(3.8), b0;o,o only depends on the value of P ^ fS-

To find the value of P^ s , it is sufficient to note that the probability that a 

transmitted RTS packet encounters a collision; This is the probability that in a 

time slot, at least one of the remaining contending stations (including the receiver
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itself) transmits an RTS packet. Therefore, we have:

P £ S =  1 -  M l  -  r )n~l +  (1 -  r )n) (3.9)

where r  is the probability of RTS transmission in a randomly chosen slot 

time. On the other hand, as RTS transmission occurs when the backoff counter 

reaches 0, we have:

l  s s - 1 l  s

T = X X = X k°T° + X X
i= 0 j = 0  j = 0  2=1 j = l

' l  _  ( p R T S \ s  L S

= Vo,» t _l ;iJ +EE [('-vr) W )i‘ [ f l H
Co/ 2=1 J=1

Therefore, equations (3.8), (3.9), and (??) represent a nonlinear system with 

two unknowns r and PĈT,S which can be obtained by numerical results in terms 

of different n and Pĉ “ia. Table 3.1 presents the value of r  (shown as Tdef  or 

default r) and its corresponding P^ fs  for different values of n and P ^ ta-

Table 3.1: Default r  and its corresponding P ^ [ s  under different n and P^JUa
piMta _  Q 0 0 1 p u a ta _  0 . 0 0 5 P runf a =  0 . 0 1 POP* =  0 . 0 5

n =  5 Pjg's =  0.0306 
Td ef =  0.0587

=  0.0304 
rrfe/ =  0.0585

P "P ' =  0.0301 
Tdef  =  0.0582

P " P  =  0.0282 
rde/ =  0.0562

n =  10 =  0.0987 
Tdef =  0.0541

P " / '6' =  0.0982 
Tde/ =  0.0539

=  0.0976 
Tdef =  0.0537

P "P ' =  0.0930 
rde/ =  0.0522

n — 20 p ^ 's =  0.2197 
Td ef -  0.0441

P%'8 =  0.2192 
rde/ =  0.0440

Pĉ '6' =  0.2184 
Td ef =  0.0439

P ^ P  =  0.2126 
rde/ =  0.0431

3 II o P%'» =  0.3531 
Td ef =  0.0310

=  0.3527 
rde/ =  0.0309

P " P  =  0.3522 
Tdef  =  0.0309

P o P  =  0.3478 
Tdef =  0.0306

Considering the results from table 3.1, it is interesting to note that the de-

pendency of r  on P̂ 0i ta is very marginal and almost negligible.
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3.4 Throughput Analysis

Having derived the analytical model of 802.11, it is now straightforward to cal-

culate the 802.11 analytical throughput. To this aim, let S be the normalized 

throughput, defined as the fraction of time the channel is used to successfully 

transmit DATA payload.3 *.

E[Data payload information in a slot time]
E [Length of a slot time] ' ’

Assuming the average DATA payload size as E[P], the average amount of 

DATA payload information successfully transmitted in a slot time is P £ ata P££ta E[P]. 

On the other hand, the average length of a slot time can be obtained by consid-

ering that a single slot time falls in one of the following four cases:

1. With probability 1 — ( P ^ s +  P £ j S), the slot time is empty

2. With probability P ^ s the time slot contains a unsuccessful RTS transmis-

sion

3. With probability P £ ataP ^ ta the time slot contains a unsuccessful DATA 

transmission

4. With probability P®ataP ^ f 0 the time slot contains a successful DATA 

transmission

3 As explained earlier, in this chapter DATA payload refers to upper layer packets and does
not include the control packets in link layer in contrary to [58] throughput model
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Therefore, equation 3.10 can be rewritten as:

p D a ta  p D a ta  p

s  =  ( i  -  ( p % s + p s '3)) e + (p s ^ p s t ) t B ‘° + (Pc T )  t s '8 + ( p g “ ° p s ? “ ) r s r

where a is the slot duration.

Note that in equation (??), the terms and P ^ ta indeed refer to { P ^ a\P̂ fcS) 

and (PcD0?ta\P*TcS), respectively which as explained earlier can be statistically 

computed by each node.

In order to calculate the probability of DATA packet transmission (P^ata), let us 

remember that DATA packets would be sent after a successful RTS/CTS hand-

shake. In addition, regarding 802.11 MAC timing specification, the DCF protocol 

ensures that CTS frame transmission will be successfully received at its destina-

tion (the one who sent the RTS), if the CTS frame has been issued in response 

to the RTS. Therefore:

p R T S
r sue

D R T S  
tr

i  nr( l  — t )w_1 \

V 1 (1 T)n J
=  nr(  1 -  r ) " - 1 (3.11)

Also, we have:

-pData    p R T S
*-tr  ^ S u e =  nr( 1 -  r ) " - 1 (3.12)

Finally, using the timing specifications of 802.11 MAC [11] the corresponding 

values of transition times can be calculated as follows:
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3.4 Throughput Analysis

T ° ? a =  D IF S  +  Trts +  SIFS +  5 +  +  SIFS +  5 +  (H +  E[P])

+ S IF S  +  6 +  Tack +  5

TCT  =  D IF S  +  Trts +  SIFS  +  Ttfsjimeout

TcDJ ta =  D IF S  +  Trts +  SIFS  +  8 +  Trfs +  SIFS +  Tacktirneout

Here, Tris, Tcts, and Tack represent the time required to transmit RTS, CTS, 

and MACK over the channel, respectively. Also, (or Tack_Umeout) refer

to time intervals before a station assumes its RTS transmission (or Data trans-

mission) has been unsuccessful and triggers a packet retransmission. In addition, 

H  =  PHYhdr +  M AChdr is the packet header size and 5 is the propagation delay.

58



3.5 Model Validation

3.5 Model Validation

To validate our model, we compare the analytical results of the saturation through-

put when RTS/CTS scheme is used in our model, the Bianchi model [58], the 

Wu model [59] and the simulation performed in OPNET [61]4. The values of the 

parameters used to obtain numerical results, for both the analytical model and 

the simulation are given in table 3.2. 5

Table 3.2: System parameters for MAC and DSSS PHY Layer
Packet payload 11680 bits
MAC header 224 bits
PHY header 192 bits
ACK 112 bits +  PHY header
RTS 160 bits +  PHY header
CTS 112 bits +  PHY header
Channel bit rate 2Mbps
Propagation delay 1 ¡is
Slot time 20 /is
CTS j 1 im eout 300 ps
MACK T im eout 300 fis
SIFS 10 /is
DIFS 50 ¡is

The results, depicted in figure 3.4 clearly show that the proposed analytical 

model is more accurate than Bianchi [58] and Wu [59] model.

This is mainly because both models in paper [58] and [59] overestimate the 

results of 802.11 because they do not consider the impact of different retry limits 

in the Markov chain transitions as considered in this study. More specifically, [58] 

overestimates the throughput since it does take into account any of the retry limits

and the impact of 802.11 timeout. While paper [59] improves the accuracy of the

4The details of the simulator and its parameters are given fully in chapter 6.
5The system values used in this chapter are those specified for the DSSS (Direct Sequence 

Spread Spectrum) physical layer
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3.5 Model Validation

Figure 3.4: Analytical achieved throughput of 802.11 for different number of stations

analytical results, it still fails to closely follow the behavior of 802.11 as it only 

considers a single retry limit for all packets and uses a simplified throughput 

analysis. On the other hand, our model addresses the above shortcomings by 

including the impact of both short and long retry limits in the model and refining 

the throughput calculation by eliminating the effect of ’’ fake” throughput (i.e. 

control packets throughput) from the total throughput.
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3.6 Impact of 802.11 Parameters on Through-

put

Having validated the developed 802.11 model, in this section we investigate the 

impact of different 802.11 parameters on the achieved throughput. In particular, 

the aim is to find out the optimum 802.11 parameters for which the analytical 

throughput calculated earlier would be maximum. Using the system parameters 

given in table (3.2) and based on equation ?? let us first, consider figure 3.5 

that depicts the theoretical saturated throughput of the DCF when RTS/CTS is 

enabled and P®?ta — 0.001.

Figure 3.5: 802.11 analytical throughput versus r 

It is clear that as number of stations (n), increases the throughput becomes
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3.6 Impact of 802.11 Parameters on Throughput

very sensitive to the change of r. To understand the importance of this observa-

tion, let us denote the value of r  at which the throughput is maximum (shown by 

different marks in figure 3.5) as optimum r  (ropt). Using this notation, figure 3.5 

shows as the number of nodes increases, it becomes increasingly important for 

the network to operate very close to Topt as even a slight deviation in the value of 

Topt can severely degrade the system throughput.

It is also interesting to note that in figure 3.5, the value of maximum through-

put remains almost constant under wide range of n and P ^ ta- To further support 

the above argument, table 3.3 presents the maximum throughput achieved under 

different values of P ^ ta and n.

Table 3.3: Maximum achievable throughput for different number of nodes under vary-
ing P?0?ta

n — 5 n = 10 n =  20 n =  40
p ^ r a= oooi Thmax =  0.81164 Thmax =  0.80972 Thmax -  0.80879 Thmax -  0.80832
P ^ ta= 0.005 Thmax =  0.8111 Thmax =  0.80918 Thmax =  0.80824 Thmax =  0.80777
p n>ata= o o i Thmax =  0.81042 Thmax =  0.80849 Thmax =  0.80755 Thmax =  0.80708
P £ ? ta= 0.05 Thmax =  0.80475 Thmax =  0.80277 Thmax -  0.80181 Thmax =  0.80132
13 Data_A i
^col “ U1 Thmax =  0.79709 Thmax =  0.79503 Thmax =  0.79404 Thmax =  0.79354

To find out the value of r  at which throughput is maximum (i.e. Topt), equa-

tion ?? can be rewritten as follow:

S
E\P]

(3.13)

As T ^ ta,P ^ ta, and E[P\ are constant, the throughput S is maximized when
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the following expression is maximized:

p R T S

I _  { p R T S  i pR T S \  i pR T S rn*R T S  -1 O sue ' r  col J ' r col x col

where T ;P S =  T ^ / a

By substituting the P ^ fs from equation (3.9), equation (3.14) becomes:

(3.14)

nr (1 — r)n 1
(1 -  r)n +  T*£TS [1 -  (nr (1 -  r)n_1 +  (1 -  r)n)] 

nr
r̂*RTS ~~~

(! -  T) +  (1 -r)n-l -  T*STS( 1 + 7 1 T -T )
(3.15)

Taking the derivative of equation (??) with respect to r, and imposing it 

equal to 0, we obtain, after some simplifications, the following equation:

((>  -  4  +  ( T * p r  -  +  -  -  r ) ) + r  ( l  -  "  <» "  » > ) )

(3.16)

It is very interesting to note that according to equation (3.16), the optimum 

r at which maximum throughout occurs is solely dependent on number of con-

tending stations (n). Table 3.4 presents the optimum r for different number of n 

using equation (3.16.)

Table 3.4: Optimum r at which 802.11 throughput is maximum
n — 5 Topt =  0.0480

n =  10 Topt =  0.0229
n =  20 T0pt =  0.0112
n =  40 Topt =  0.0055

Comparing the default values of r  (r^e/)  shown in table (3.1) and the optimum 

r  (Topt) shown in table (3.4), it is obvious the default values of 802.11 parameters
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3.6 Impact of 802.11 Parameters on Throughput

tend to overshoot the optimum r  in which the maximum throughput is achieved. 

In other words, while for a given number of contending stations, there exists an 

optimal value of packet transmission probability at which 802.11 achieves the 

highest throughput, the current version of 802.11 does not operate around this 

optimum packet transmission probability. As shown earlier in figure 3.5, this 

can severely degrade 802.11 performance as the throughput becomes extremely 

sensitive to the value of r  as the number of contending stations increases.

In order to tune the Tdef to ropi, let us remember that r  is the sum of 

stages in the Markov chain. Therefore, there are three parameters that can effect 

the value of r: Number of Planes (i.e. Long Retry Limit or L), Number of rows 

in each plane (i.e. Short Retry Limit or S), and Contention window size (i.e Wo). 

Therefore, the issue of finding the optimal r  becomes finding the corresponding 

values of L, S, and Wq . However, before that, let us investigate the impact of 

S, L, and Wo on the value of r. This can be very useful since it can shed light 

on the main parameter that can substantially change r. To this aim, figure 3.6 

depicts the impact of changing different MAC parameters on r  under different 

number of stations and P ^ ta.
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(a) Impact of maximum short retry limits on r
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(b) Impact of maximum long retry limits on r
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(c) Impact of minimum contention window size on r

Figure 3.6: The impact of different 802.11 MAC parameters on r
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3.6 Impact of 802.11 Parameters on Throughput

Surprisingly enough, it is obvious that the value of r  is highly sensitive to 

change of W0 (CWmin) while the number of long retry limits almost has no impact 

on r. Meanwhile, for S>5, the value of r  remains almost constant regardless of 

the change in maximum number of short retry limits. Therefore, the issue of 

changing the value of default r  towards optimum r  can be mainly achieved by 

adjusting the value of W0.

Based on the above discussion, figure 3.7 presents the optimum W0 for different 

number of n at which r^ / =  ropt and the 802.11 throughput is maximized.

Figure 3.7: Optimum value of Wq for different number of nodes

Unfortunately, in the 802.11 standard, the value Wo is hardwired in the PHY 

layer details, and thus it cannot be made dependent on n. As a consequence 

of this lack of flexibility, the throughput specially in the large networks can be 

significantly lower than the maximum achievable.
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3.7 Summary

In addition, it is very important to note that though the results in figure 3.6 

suggest the negligible impact of S and L on 802.11 throughput, their values can 

dramatically change the TCP performance. More discussion of this issue will be 

given in the next chapter when we investigate the role of retry limits on TCP 

instability.

3.7 Summary

In this chapter, we proposed a 3-d Markov chain to accurately model the per-

formance of 802.11 when the RTS/CTS mechanism is used. The importance of 

the proposed model was to examine the impact of different retry limits used by

802.11 MAC. Based on this modified model, an optimum value of packet transmis-

sion probability was calculated at which the achieved throughput is maximized. 

However, it was also shown that the current parameters of 802.11 do not oper-

ate around this optimum value and as a consequence this results in a dramatic 

throughput degradation. It was then determined that the value of W0 is the 

main parameter to adjust the probability of packet transmission to its optimum 

value. However, due to the lack of flexibility to vary the value of Bo, the through-

put specially in the large networks can be significantly lower than the maximum 

achievable.

67



Chapter

TCP Instability in Multihop Ad 

hoc Networks

4.1 Introduction

Connection instability refers to a situation where the receiver (data sink) does not 

receive any packets for a period of time and therefore the connection throughput 

drops to zero. Due to the nature of applications in multihop ad hoc networks (e.g. 

emergency operation and battlefield communication), connection instability in 

these networks has always attracted a considerable amount of research interest as 

disconnectivity or starvation even for a short period of time can have a devastating 

impact on the QoS and may not be acceptable for the end user. In other words, 

ad-hoc network users would prefer to receive a continuous and stable flow of data 

rather than sending/receiving large bulk of data instantly. In particular, as shown 

by a number of studies (e.g. [15,19,26,29,62,63]), the instability problem becomes 

more severe when applications use a reliable end-to-end delivery protocol such as
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4.2 Intra-flow Instability

TCP as their end-to-end transport protocol in 802.11 multihop ad hoc networks.

To have a better understanding of the problem and therefore to be able to 

address it more appropriately, this chapter revisits the TCP instability by giving 

a number of simple yet important examples that will shed light on the roots of 

the problem. In particular, we use an in depth cross layer analysis of the chain of 

events occurring between different layers and reveal some interesting facts which 

will make the building blocks of the solutions in the next chapter.

To this aim, this chapter divides the TCP instability problem into two broad cat-

egories named as intra-flow and inter-flow instability, where the former is caused 

by the interaction of nodes belonging to the same TCP connection, while the lat-

ter happens when nodes belonging to different connections interact. In sections 

4.3 and 4.3, the main causes of each of the above instabilities are explained and 

the major related work that have addressed them are reviewed, respectively.

4.2 Intra-flow Instability

4.2.1 Description

By definition, intra-flow instability refers to the situation where the successive 

transmissions of packets in a single TCP flow interfere with each other (link 

layer intra-flow interference) and result in large number of contention related 

packet drops and hence TCP instability in the network. Therefore, we begin our 

discussion of TCP intra-flow instability by reviewing different types of intra-flow 

interference and their impact on TCP instability.
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4.2.2 Intra-flow Interference

As mentioned earlier, the intra-flow interference refers to situations where trans-

mission interference in a single TCP flow causes packet drop in the network. 

When TCP runs over 802.11, the intra-flow interference can be broken down into 

the following categories:

1. Interference of TCP packets with each other

2. Interference between TCP packets and 802.11 control packets

3. Interference of 802.11 control packets with each other

Here, TCP packets refer to either TCP DATA or TCP ACK packets and

802.11 control packets include MACK (802.11 acknowledgments) and RTS/CTS 

if used.

To investigate and explain each category, in all subsequent analysis it is as-

sumed one TCP flow is running on a 6 hop chain from node A (as data source) 

to node G (as data sink) and the transmission range of nodes is shown by a circle 

around them. Also, without the loss of generality, as an initial value all stations 

are assumed to have an NULL NAV field and RTS/CTS message is used only for 

TCP DATA packets.

I- TCP Packets Self Interference

In principle, the TCP packets self interference is caused by two effects. One is 

the interference caused between TCP DATA (TCP ACK) packets transmission 

with each other which prevents concurrent transmissions within a neighborhood 

area. For instance, as shown in figure 4.1, a transmission from node A interferes
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4.2 Intra-flow Instability

with node C, which cannot simultaneously communicate with node D. Similarly, 

a transmission by node D may cause a collision at node B.

- - .....  Channel reuse range

Figure 4.1: TCP packets self interference

This type of interference can harm TCP mainly in two ways. Firstly, it 

greatly decreases the TCP throughput in ad hoc networks since in most occa-

sions very few simultaneous packet transmissions can occur in the network. For 

instance, in the above example, links A-B and E-F represent maximum possible 

concurrent channel usage while if link D-E is active, only one simultaneous trans-

mission is possible. The other impact of such interference is on increasing the 

end-to-end delay. This is also because a successful transmission can occur only if 

nodes within the spatial channel reuse of that node are silent during the entire 

transmission. This means packets have to wait for a relatively long period of 

time in the node’s buffer before the node can get a chance to access the channel. 

Therefore, the packets in multihop connections experience longer queuing delay 

and hence larger end-to-end delay.

The second part of the TCP self interference is caused by interference between
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TCP DATA and TCP ACK packets along the forward and return paths, respec-

tively. In essence, this interference can specially result in TCP ACK drop as there 

are larger number of TCP DATA frames on the forward route compared to the 

smaller number of the TCP ACK packets in the return path. So, the medium will 

be on average mostly accessed by TCP DATA frames and as a result significant 

amount of ACKs will be lost because of collisions while accessing the channel.

II- TCP and 802.11 Control Packets Interference

The other type of intra-flow interference in the link layer happens between the 

TCP packets (TCP DATA or TCP ACK) and one of the 802.11 control packets 

(RTS, CTS , or MACK). However, it is important to note that regarding 802.11 

MAC timing specification, the DCF protocol ensures that CTS frame transmis-

sion will be successfully received at its destination (the one who sent the RTS), if 

the CTS frame has been issued in response to the RTS. This is because successful 

RTS frame transmission silences all the nodes in the neighborhood of the source 

either for a duration specified in the duration field of the RTS or for EIFS time 

(if collision occurs) which is large enough to transmit a CTS. Therefore, the CTS 

frame cannot collide with any frame at the source. Using a similar argument, it 

can be concluded that a successful TCP frame transmission ensures a successful 

MACK frame transmission. Thus, there cannot be CTS and MACK frames drop 

at the intended destination (the node who is waiting to receive the packet) be-

cause of medium contention. Figures 4.2 to 4.4 review the most common scenarios 

where a control packet and a TCP packet collide and are dropped as a result of 

this type of interference. Below each figure there is also a brief description of the 

sequence of events leading to the packet drop.
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• Scenario 1 1

Figure 4.2: RTS & TCP DATA collision

1. Station D has TCP DATA to send to E. Therefore, it initiates RTS trans-

mission towards node E

2. Station E transmits CTS back to D and consequently D starts transmitting 

TCP DATA to E

3. Meanwhile B has a TCP DATA to send to C, thus starting its own RTS 

handshake.

4. Due to ongoing TCP DATA transmission between D and E, the B ’s RTS is 

dropped at C.

5. B resends the RTS after an exponential backoff; however due to large size 

of TCP DATA, in most of the cases all RTS retransmissions (7 by default)
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are collided at C, resulting in TCP DATA drop at B

• Scenario 2

CTS CTS4 .............►
Data Data....  —■ »

M ACK M ACK » ,  ACK
------------ •vC--------

Figure 4.3: TCP ACK & MACK collision 1

1. Station D has TCP DATA to send to E. So, it starts initiating RTS trans-

mission.

2. Station E transmits CTS back to D and consequently D starts transmitting 

TCP DATA to E

3. Station E sends an MACK at the end of successful reception of TCP DATA.

4. At the same time the TCP ACK is flowing back from G to F. where G is 

not aware of any ongoing transmission between E and D.

5. Collision happens at F between TCP ACK frame and unintended MACK 

received by F and TCP ACK is dropped.
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• Scenario 3

CTS CTS-------------  ■■>

ACK

MACK

Figure 4.4: TCP DATA & MACK collision

1. Station D has TCP DATA to send to E. So, it starts initiating RTS trans-

mission.

2. Station E transmits CTS back to D and consequently D starts transmitting 

TCP DATA to E

3. Meanwhile station G sends a TCP ACK to F.

4. Upon reception of TCP ACK, F triggers an MACK transmission to G. Note 

that in general F cannot send anything as it has updated its NAV by D ’s 

CTS. However, regarding the 802.11 standard, the MACK should be sent 

immediately irrespective of NAV duration.

5. Collision happens at E between the transmitted MACK and ongoing TCP 

DATA. So TCP DATA will be dropped despite of successful RTS/CTS 

transmission and needs to be retransmitted.
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III- 802.11 Control Packets Self Interference

The last type of intra-flow interference we consider, happens between 802.11 

RTS and CTS control packets if the RTS/CTS handshake is used prior to data 

transmission. We should note that collision of RTS and CTS packets are expected 

from time to time and indeed part of their natural design to avoid data packet 

collisions. However, their frequent loss can waste channel resources and have 

undesirable and negative impact on the performance of higher layers. On the 

other hand, the self interference between the RTS and CTS control packets can 

cause failure of the channel reservation scheme and lead to a loss of data packets 

as well. Figure 4.5 depicts a typical scenario of control packet self interference 

and loss of TCP packets as a result.

Figure 4.5: 802.11 control packets collisions

Here B starts an RTS-CTS handshake with C before transmitting a TCP 

packet. The CTS reply from C is received by B correctly, but it is not received 

by D, which is hidden from B, due to a collision with an RTS packet sent from E 

to F. This happens because E, being far away from both B and C, does not hear 

either the RTS or the CTS packet and is unaware of the communication between 

B and C. Node B assumes that the channel is successfully reserved and proceeds
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with transmission of the data packet to C. Therefore, the TCP transmission from 

B is vulnerable to interference from D, which has not been able to set its NAV 

accordingly, and may initiate a transmission to any of its neighbours before the 

data transmission is over.

4.2.3 Intra-flow Interference and Intra-flow Instability

Having reviewed the three types of intra-flow interferences, this section explains 

how such interference (which happen at the link layer), can create TCP intra-flow 

instability. However, before that and to show the damaging impact of intra-flow 

interference on TCP stability, let us review figure 4.6 that shows the change of 

congestion window (cwnd) and the instances of TCP retransmissions in a static 

6  hop 802.11 ad hoc chain topology similar to one shown in figure 4.1. Here, to 

confine the packet losses to contention drop, its is assumed the channel is error- 

free, no routing messages are exchanged between the nodes and all nodes have 

infinite buffers. Therefore, the packet losses and retransmissions are restricted to 

intra-flow interference related drops.

It is clear from the result in figure 4.6 that intra-flow interference can trigger 

a large number of TCP retransmissions, TCP congestion window fluctuation and 

therefore TCP instability.

To explain further how intra-flow interference can cause TCP instability, let us 

recall from section 2 .2  that if a node cannot reach its adjacent node within the 

limited number of allowed retries (MAC-Retry-Limit), it will drop the packet. 

Such TCP packet (contention) drop can result in TCP instability in two ways; 

In the first situation, such contention drops trigger a route failure and hence
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Figure 4.6: Illustration of TCP congestion window size in a 6  hop chain topology

route discovery process at the source1. During this process and while the new 

route is established, as no packet can be sent out at the TCP sender, the TCP 

receiver will experience a period of time where it does not receive any packet 

and hence experience instability [64], This type of intra-flow instability can be 

therefore referred as re-routing instability. It is important to note that the TCP 

packet losses during re-routing instability are primarily recovered through the 

TCP timeout retransmission mechanism since the route discovery stage can be 

very long compared to the TCP RTO value.

The other impact of TCP intra-flow interference that may result in TCP 

instability can be traced back to frequent packet losses since such frequent losses 

can trigger multiple congestion window drops and TCP retransmissions during 

a short period of time (as shown in figure 4.6). Such frequent losses result in 

creating out of order packet delivery at the TCP receiver and therefore TCP 

instability. For that reason, we refer to this type of intra-flow instability as out

1Here source means data packet source which can be either the TCP sender or receiver
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of order instability. It should be noted that unlike the re-routing instability, out 

of order instability generally triggers TCP fast retransmit at the sender due to 

duplicated ACKs resulting from out of order packet deliveries.

One interesting question that may arise here is which of the two TCP loss 

recovery algorithms (timeout and fast retransmit) are triggered more when the 

only source of packet loss is contention drops? The answer to this question is 

very important as it can help us to find out which of the above TCP intra-flow 

instabilities (rerouting instability or out of order instability) happen more often 

in the network. Then based on that, it is easier to find out the parameter(s) that 

can be tuned to decrease the number of false TCP retransmissions and therefore 

alleviate the TCP instability. Figure 4.7, depicts the average number of TCP 

retransmissions triggered by fast retransmit and TCP timeout individually over 

a different number of hops in a chain topology.

18 

16 
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I  12 t
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w>Bg5 8
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Figure 4.7: Cause of TCP retransmissions in a 6-hop chain topology 

It is quite interesting that in all scenarios, a high percentage of the false TCP

□ TCP Fast Retransmit

□ TCP Timeout

1 2 3 4 5 6

Hop Count
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retransmissions are triggered because of the receipt of duplicate ACKs. This 

clearly shows the high sensitivity of the default TCP to the current number of 

duplicate ACKs before retransmitting the packet and invoking congestion control 

in multihop ad hoc networks. In other words, the current threshold value of 

the fast retransmit duplicate ACK (3 as specified in RFC 2581 [39] in wired 

networks) seems to be very small in wireless multihop ad hoc networks as the 

packet reordering can happen very often due to frequent packet contention drops.

4.2.4 Discussion

Having shown the negative impact of intra-flow interference on TCP instability, 

the next question is how it is possible to minimize the intra-flow packet interfer-

ence in multihop ad hoc networks? The answer to this question is not straight-

forward as each type of intra-flow interference discussed above are different in 

nature and therefore need to be addressed separately. For instance, TCP packets 

or 802.11 control packets self interference can be best eliminated by designing a 

smart decentralized link layer scheduler that coordinates the concurrent trans-

mission between different pairs to maximize the channel utilization and minimize 

the number of collisions. On the other hand, TCP with 802.11 control packets 

interference is best to be addressed by reconsidering the link layer timing spec-

ifications, packet transmission coordination and prioritization. However, such 

schemes can be quite topology dependent and confined to specific scenarios. This 

is obviously hard to achieve in dynamic multihop ad hoc network environments 

where the topology of the network is changing rapidly and it is not feasible to 

propagate global topology information to individual nodes. More importantly, 

due to scarce channel resources, it is simply unrealistic to broadcast information
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regarding the topology and the current activity of nodes across the network.

As a next alternative solution which indeed makes the building blocks of 

the next chapter, we propose to alleviate all types of intra-flow interferences 

discussed above by controlling the amount of outstanding data in the network.

It should be noted that, though this approach does not fully solve the individual 

causes of intra-interference explained before, it addresses the problem by reducing 

unnecessary intra-flow interference and its adverse effects on TCP instability. To 

better understand this, let us recall from section 2.3 that the performance of TCP 

directly depends on the swnd which its optimal value should be proportional to 

bandwidth-delay product (BDP) of the entire path of the data flow [17,65]. It 

is important to note that exceeding this threshold does not bring any additional 

performance enhancement, but only leads to increased buffer size in intermediate 

nodes along the connection. On the other hand, as shown in [15,17,26,66], the 

BDP of a TCP connection over multihop 802.11 networks tends to be very small. 

This is mainly because in 802.11 MAC, the number of packets in flight is limited 

by the per-hop acknowledgements at the MAC layer. Such a property is clearly 

quite different from wire-line networks, where multiple packets can be pushed 

into a pipe back-to-back without waiting for the first packet to reach the other 

end of the link [67]. Therefore, as compared with that of wired networks, ad hoc 

networks running on top of 802.11 MAC, have much smaller BDP. However, as 

shown in [15,26], TCP grows its congestion window far beyond its optimal value 

and overestimates the available BDP.

To get a better understanding of how TCP overestimates the available bandwidth- 

delay product in ad hoc networks, consider a simple scenario in figure 4.8 where 

all nodes can only access their direct neighbours.
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A B O D E

Figure 4.8: Initial stage of buffer queues in a 4 hop chain topology

Here a TCP connection is running from node A to E and all nodes have at 

least one packet to send in the forward direction. In addition, the congestion 

window size is also equal to 8  packets. Let us assume nodes B and D initially 

win the channel access and start to transmit their data (either a TCP packet 

or an RTS packet) into the network at the same time. Soon after both stations 

start transmitting their data, the packet from B—>C collides with the interference 

caused by the D—>E transmission. Following this case, node A is very likely 

to win access to the channel and starts transmitting several consecutive packets 

towards B before releasing the channel. Meanwhile, since B is unable to access 

the channel it buffers the new packets in addition to packet(s) already in its buffer 

and starts building up its queue (figure 4.9).

6
8 5 2
7 4 3 1

A B C  D E

Figure 4.9: Illustration of bufFer queue build up in a 4 hop chain topology

This results in an artificial increase of the RTT delay measured by the sender 

as node B now becomes the bottleneck of the path. Such situation leads to 

an overestimate of the length of available data pipe and therefore an increase
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of the TCP congestion window and hence more network overload in the next 

RTT. Figure 4.10 summarizes the chain of actions that occur following a network 

overload and lead to TCP intra-flow instability (instability cycle).

Figure 4.10: Intra-flow instability cycle

The instability cycle initially starts when increasing the network overload 

(stage 1 ) causes more contention among nodes as all of them try to access the 

channel (stage 2). On the other hand, when the level of contention goes up, 

more packets need to be retransmitted as the probability of collision increases 

with the increasing level of contention (stage 3). This in turn introduces extra 

network overload and therefore closing the inner part of the cycle (stage 1—»stage 

2—»stage 3—»stage 1). This cycle is continued until one or more nodes cannot reach 

its adjacent node within a limited number of tries (specified by the MAC Retry
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Limit in 802.11 MAC standard) and drop the packet. This packet contention 

loss is then recovered by the TCP sender either through TCP fast retransmit or 

through TCP timeout (stage 4). In both cases, TCP drops its congestion window 

resulting in a sharp drop in number of newly injected packets to the network 

(stage 5) and therefore giving the network the opportunity to recover. However, 

soon after TCP restarts, it creates network overload again by overestimating the 

available BDP of the path, and the cycle repeats.

4.2.5 Related Work

During recent years, many studies have shown that limiting the amount of out-

standing data in the network can greatly improve TCP performance. In an early 

paper by Gerla et.al. [14], the authors showed by simulations that TCP perfor-

mance degrades for congestion window greater than 1 packet when the MAC 

layer offers no MACK protection; They further showed that, with the MACK 

protection, certain performance gain can be realized by allowing a slightly larger 

congestion window (2-3 packets).

To limit the amount of outstanding data in the network, [62] proposed to 

adjust the maximum window size parameter to 4 packets as this is the smallest 

value of window size for facilitating the fast retransmission scheme for TCP con-

nections running over IEEE 802.11 based ad-hoc networks.

The authors in [19] showed that due to the spatial reuse and transmission in-

terference property of the IEEE 802.11 MAC layer protocol in a chain topology, 

a sensible choice is to set TCP congestion window to where h is the length 

of the chain. They further showed that TCP tends to overshoot this optimal 

value and operates at a larger window size as we explained earlier. In the same
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paper, the authors proposed Link-layer Random Early Detection (LRED), which 

aims to control the TCP window size by tuning the link-layer dropping proba-

bility according to the perceived channel contentions. In essence, similar to the 

RED algorithm [6 8 ] with a linearly increasing drop curve as the queue size ex-

ceeds a minimum value, LRED increases its packet dropping probability when 

the link-layer contention level, measured by the retransmission counts, exceeds 

a minimum threshold. To this aim, in LRED the link layer maintains a moving 

average of the number of packet retransmissions and the head-of-line packet is 

dropped/marked with a probability based on this average retransmission count. 

In particular, at each node, if the average retransmission count is smaller than 

a minimum threshold, the head-of-line packets are transmitted as usual. When 

the average retransmission count becomes larger, the dropping/marking proba-

bility is set as the minimum of the computed dropping probability and an upper 

bound. It was shown that LRED can provide an early sign of network overload 

to the transport layer protocol and therefore force the TCP sender to reduce its 

transmission rate.

The authors in [69] propose Slow Congestion Avoidance to limit TCP’s window 

growth rate to a level below the standard of one segment per RTT. This is in-

tended to reduce the number of packets in the network without putting hard 

constraints on the maximum window size. In particular, the slow congestion 

avoidance modification increases the window size by one segment after a given 

number of round trip times with successful acknowledgment receptions.

In a different approach, [17] turned the problem of setting TC P’s optimal con-

gestion window into identifying the BDP of a path in ad hoc networks. They 

first showed that, independent of the MAC layer protocol being used, the upper
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bound of the BDP of a path cannot exceed NxS where N is the number of round- 

trip hops and S is the size of the TCP data packet, assuming similar bottleneck 

bandwidth along the forward and return paths. In other words, they showed the 

number of outstanding data in the network in ad hoc networks cannot exceed the 

round-trip hop-count (RTHC) of the path. Then based on the 802.11 MAC layer 

protocol, they showed in a chain topology, a tighter upper bound exists which is 

approximately | of the RTHC of the path. Based on this tighter bound, they 

proposed an adaptive congestion window setting strategy to dynamically adjust 

TCP’s congestion window according to the current RTHC of its path.

To decrease the amount of channel contention in the network, the authors 

in [22] present a cross layer approach named Adaptive TCP that adaptively ad-

just the TCP maximum window size according to the number of RTS retransmis-

sions at the MAC layer at the TCP sender to control the number of data packets 

in the network and thus decrease the channel contention.

In a similar effort, Dynamic Delayed ACK proposed in [70] aims to reduce the 

contention in the wireless channel, by decreasing the number of TCP ACKs trans-

mitted.

The focus of [71] for alleviating self-contention is on contention between packets 

belonging to the same transport layer flow. The authors propose Quick Exchange 

and Fast Forward which are both extensions to 802. l l ’s RTS/CTS mechanism, 

to reduce intra-flow interference. Quick Exchange allows to exchange two pack-

ets in opposite directions by using only one exchange of RTS/CTS information. 

By adding an extra duration header to the first data transmission the network 

allocation vector of all other nodes in range is extended appropriately. A packet 

in the opposite direction with a piggy-backed ACK can then be sent directly,
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i. e. without a second RTS/CTS. After both transmissions the original sender 

completes the procedure with an additional ACK. Fast Forwarding speeds up the 

forwarding of a packet in the downstream direction. Like Quick Exchange there is 

only one exchange of RTS/CTS information. But here the ACK is piggy-backed 

with a new RTS packet for forwarding. This way, packets are forwarded faster 

over multiple hops to avoid self contention with other packets of the same flow. 

The authors in [72] propose to assign a higher priority for the medium access to a 

node that has just received a packet. This is to give ’’downstream” packet trans-

missions a higher priority and thus to alleviate intra-flow interference. In addition, 

a hop-by-hop backward-pressure scheme keeps upstream nodes from sending fur-

ther packets until the previous ones have been forwarded. This mechanism is 

tightly coupled to the 802.11 RTS/CTS mechanism, allowing the receiving node 

to send a negative CTS (NCTS) in order to signal that it is not willing to receive 

another packet of a certain flow. The upstream node then has to wait until its 

next hop explicitly gives the permission to continue.

In [64], the authors studied the interaction between the transport and the on- 

demand routing protocols, and showed that the utility of TCP in 802.11 multihop 

networks lies in the ability to keep the routing information robust and stable. To 

fix the problem, they proposed a Fractional Window increment (FeW) scheme for 

TCP to prevent the over-reaction of the on-demand routing protocol by limiting 

TCPs aggressiveness. In essence, using FeW, the TCP congestion window grows 

by a fractional rate 1 /a  (packets) at every round trip-time, where a is the probing 

rate.

To address the negative impact of the high probability of out of order packet
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delivery in ad hoc networks, TCP-DOOR (Detection of Out-of-Order and Re-

sponse) [73] attempts to detect and respond to out-of-order packet delivery events 

and thus avoiding invoking unnecessary congestion control. In order to detect 

out of order packets, ordering information is added to TCP ACKs and TCP data 

packets and out of order detection is carried out at both ends in the following 

way: the sender detects the out of order ACK packets and the receiver detects 

the out-of-order data packets. If the receiver detects out of order packets, it 

notifies the sender. Once the TCP sender knows of an out of order condition, 

it may take one of the two responsive actions: temporarily disabling congestion 

control or instant recovery during congestion avoidance. The first action means 

that, whenever an out of order condition is detected, the TCP sender will keep 

its state variables such as RTO and the congestion window size constant for a 

specific period. The second action means that, if during the specific last period, 

the TCP sender has already entered the state of congestion avoidance, it should 

recover immediately to the state prior to such congestion avoidance.

Finally, in a completely different approach, Wireless TCP (WTCP) [74] uses 

rate base scheme (that does not use ACKs for self-clocking) rather than the 

window-base transmission control to eliminate sending bursts of traffic into net-

works. WTCP uses the ratio of the inter-packet separation at the receiver and 

the inter-packet separation at the sender as the primary metric for rate control 

rather than packet loss and retransmit timeouts. As a result, WTCP reduces the 

effect of non-congestion related packet loss on the computation of transmission 

rate.
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4.3 Inter-flow Instability

Unlike the intra-flow instability that is caused by the interaction of nodes belong-

ing to the same connection, TCP inter-flow instability is mostly observed when 

multiple flows compete to access the shared channel. More precisely, inter-flow 

instability refers to the situation where for a period of time, one or more TCP 

connections is able to monopolize the channel resources at the expense of other 

contending connections. This implies when multiple connections are sharing the 

channel, some connections may experience a period of time where no packet can 

be received by their TCP receiver and hence experience an instability. Therefore, 

in a broad sense it can be claimed that TCP inter-flow instability is closely linked 

to the unfairness problem in multihop ad hoc networks. In the next subsection, 

we further verify the inter-flow instability and unfairness relationship and discuss 

in fine detail the main causes of unfairness in multihop ad hoc networks.

4.3.1 Fairness and Inter-flow Instability

To investigate the cause of inter-flow instability, we begin our discussion by ana-

lyzing a simple cross topology shown in figure 4.11 where connection 1 runs from 

node A to node G and connection 2 runs from nodes H to node M.

To start with, let us consider the case where nodes C and J are competing in 

their first attempt to access node D (which is shared between the 2 connections). 

As the contention windows (C W ) at both stations are very small (e.g. less than 

31) the transmission of RTSs of nodes C and J may very likely overlap partially, 

and as a result there will be a collision. The collision may occur several times 

until the C W  s are large enough to allow either node to get control of the medium
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Figure 4.11: A 6 hop cross topology with two connections

[75]. In particular, one of the two nodes (let us say, node C) may select a small 

backoff time from its CW , while the other node (i.e., J) selects a large value 

resulting in letting the C-D RTS/CTS handshake to be successfully completed. 

Once the data transfer is completed, node C resets its C W  and backoff before 

initiating another handshake. However, the remaining backoff timer at node J 

may be large compared to the backoff timer at node C, which is drawn from 

the range [0, CW min\. In that case, nodes C and D may exchange several more 

frames (belonging to connection 1) before node J’s back-off timer reduces to zero. 

Whenever the backoff timer at node J reduces to zero, node J starts transmitting 

to node D. However, as the C W  at node C is equal to CWrnin (because of previous 

successful transmission) the contention is most likely to result in a collision. After 

the collision, node C doubles its C W  from CWmin whereas node J doubles its 

C W  from a larger value {C W  »  CWmin) as it could not succeed in its previous
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transmission. Therefore, the C W  at node J is very likely greater than that at C 

and node C is more likely to get control of the medium again!

This obviously brings connection 2 into TCP instability situation as connec-

tion 2  has been starved during this period and is unable to send its data to 

the destination. Even worse, this process (i.e., several packet transmissions from 

connection 1) may repeat several times if the J—>D RTS/CTS handshake starts 

around the same time as B—>C or E—>F RTS/CTS handshakes; as in all cases 

node D will still be reserved by connection 1.

The simulation results shown in figure 4.12, fully support the above argu-

ment and confirm that the BEB algorithm used in 802.11 MAC can cause severe 

inter-flow instability for one or more connections in multihop ad hoc networks. 

Note that the results in figure 4.12 are obtained with the assumption that both 

connections are using UDP and no routing information is exchanged between the 

nodes. In this manner, the possible cause of inter-flow instability originated from 

the routing and TCP are eliminated and therefore it is possible to narrow down 

the problem to the operation of BEB in 802.11 MAC.
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Figure 4.12: Inter-flow instability of two UDP connections over 802.11

Having analyzed the role of BEB on connection instability, let us consider 

figure 4.13 where both connections in figure 4.11 now run TCP and the DSR 

routing protocol is deployed over 802.11 MAC.

Figure 4.13: Inter-flow instability of two TCP connections over 802.11
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It is clear that running TCP and also adding the routing scheme has deterio-

rated the connections stability. This can be because of couple of reasons; first of 

all the extra routing messages will create additional overhead in the network and 

therefore create higher inter-flow interference. In addition, the unfairness will 

trigger a number of false route failures and other problems discussed in section 

4.2.3. On the other hand, the channel access unfairness created by BEB will also 

trigger a number of false TCP congestion control drops and therefore more insta-

bility as discussed in section 4.2.4. Therefore, from a comparison between figure 

4.12 and 4.13, it can be concluded that the main cause of inter-flow instability 

lies in the operation of 802.11 BEB algorithm rather than the TCP itself (under 

the test conditions).

Having shown the close relationship between the inter-flow instability and 

the fairness aspect of the channel access, in the next subsection we review the 

key issues in analyzing fairness in contention based channel access schemes. This 

analysis can be very useful as it can help us to quantify the inter-flow instability in 

different scenarios and therefore measure the level of inter-flow instability between 

competing connections using the fairness metric as will be explained below.

4.3.2 Fairness Horizon

In its simplest form, the fairness of a contention-based channel access protocol 

refers to its ability to allocate the channel resources (e.g. bandwidth) equally 

between contending nodes. Based on the length of the time over which we observe 

the system, the fairness can be defined on a short-term or a long-term basis. 

Intuitively, short term fairness of an algorithm refers to its ability to provide 

equitable access to resources over short time scales while long term fairness, in
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contrast, measures the amount of resources assigned over a longer time scale. For 

two main reasons we are more interested in the short-term fairness rather than 

long term fairness. First of all, short-term fairness implies long-term fairness but 

not vice versa. Secondly, as we will see later in this section, the long-term fairness 

does not guarantee connection stability while short-term fairness implies stability.

Since time scale is the key element in determining short-term or long-term 

fairness, the next step is to precisely define the time scale and its impact on 

fairness analysis. To this aim, let us consider two traces of packet arrivals shown 

in figure 4.14 where nodes A and B act as data source and both compete for 

access to the data sink at node C.

1 A | A | A | A | A | A | A | A | A | A |

| A | A | A l A | A | A | A | A | A | A |

Figure 4.14: An example on traces of fairness horizon
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For simplicity and without loss of generality, assume node C is receiving data 

either from node A or B every second. The trace of packet arrival at node C 

shown in figure 4.14(a) is an ideal TDMA-style trace, and we can easily argue 

that it exhibits perfect fairness independent of the time horizon one considers. 

In contrast, in the second trace (figure 4.14(b)) the fairness becomes dependent 

on the time horizon in which we look at the system. For instance, if we look 

at the entire sequence of packet arrival at node C, we realize both node A and 

B have sent the same amount of data (8  packets each) to node C and therefore 

the system is fair. Similarly, If the fairness horizon is set to 8 , then in each 

contiguous sequence of 8  seconds, node C has indeed received an equal number 

of A ’s and B’s packets and therefore the system is fair. However, if the fairness 

horizon is considered to be 4 seconds on times, then the trace of packet arrivals 

at node C lacks fairness, as either node A or B capture the channel for a period 

of 4 seconds causing the other node to starve during that time. Therefore, while 

over 8  seconds both connections can be considered stable, over the time horizon 

of 4, the connections appear unstable! To address this issue and measure the 

relative fairness in contention-based channels we use the sliding window method 

(SWM), proposed in [76]. SWM starts with a packet trace of channel accesses 

and slides a window of size W  across it, as shown in figure 4.15 for a window of 

size 4 {W  =  4).

AAABAAAABBBBBBBBAAABB
J ------- -**- V____ J ------- -*>\______ /

Y= 0.5
'A

Figure 4.15: Illustration of the fairness sliding window
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Here, the elements in the first window are the first 4 elements of the sequence, 

AAAB. We refer to the elements within a window as a snapshot. So as the 

window slides one element at a time, we obtain a series of snapshots, where for 

each snapshot the fractions of A ’s (7 4 ) and B ’s (7 b ) is computed. Now, for 

each snapshot, the fairness within it can be measured using a per-snapshot Jain’s 

fairness index [77] as defined below:

N  ZUli)2
After sliding the window through the entire sequence, we end up with a sequence 

of fairness values. We then calculate the average of all these values where this 

average corresponds to the fairness metric associated with window size W  and 

the process is repeated with increasing window size. In this way, we will first have 

the big picture of the system fairness and also the relative fairness according to 

the wide range of time scales all in one graph.

4.3.3 Related Work

During recent years, many studies have addressed the TCP inter-flow instability 

and in particular the role of 802.11 backoff algorithm on TCP fairness in 802.11 

based ad hoc networks. In an early work by Gerla et al [14], they investigated 

TCP fairness over different MAC protocols, namely FAMA [31], MACAW [32] and 

IEEE 802.11 [11]. In all the investigated scenarios, IEEE 802.11 always came top 

in terms of both throughput and fairness. In [78], the authors investigated TCP 

fairness over IEEE 802.11 MAC in ad hoc wireless networks and suggested the 

operation of 802.11 is the primary underlying reason that trigger TCP unfairness.
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To improve 802.11 MAC fairness, [79] introduced Distributed Contention 

Control, where each station regularly computes a value called Slot Utilization, 

i.e. the ratio between the number of busy slots over the number of available slots 

during a period of time where this value reflects the level of usage of the radio 

channel. Whenever a backoff expires and a frame is ready to be transmitted, a 

transmission probability is computed according to the slot utilization value and 

to the number of unsuccessful previous transmission attempts. This additional 

contention level makes emitters restrain from transmitting whenever the medium 

becomes overloaded, preventing collisions and therefore enhancing the protocol 

performances.

By using a very similar concept, the study in [80] aims to improve fairness 

by releasing, in a probabilistic way, transmission opportunities granted by the 

standard backoff protocol. In particular, each station attempts to equalize the 

slot utilization it achieves with the slot utilization its neighbour stations get, 

such as to eliminate unfair channel allocation situations. To compensate for the 

reduction in total network throughout caused by refraining from transmitting, 

they have proposed a credit-based scheme that grants backoff-free transmission 

opportunities to the emitters as a reward for participating to the good operation 

of the network.

In [81], the authors proposed an algorithm called P-MAC where the con-

tention window is determined dynamically, based on the time passed waiting for 

the channel, on the idle time and on the estimated number of stations in the 

contention area.

In Adaptive Transmission Control algorithm proposed in [82], each node es-

timates the number of active nodes within the contention range, as well as its
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bandwidth share. The estimated number of active nodes is then used by a node 

to dynamically determine its fair share. Then based on the amount of devia-

tion between actual and fair share, the node adjust its contention window. Simi-

larly, in [83] each station continuously estimates its throughput and the aggregate 

throughput of the rest of stations it contends with. Then, the station calculates 

a fairness index, which determines by how much the station should adjust its 

contention window.

The authors in [84] propose Probabilistic NAV (PNAV), where according to 

a varying probability, a node waits for an extra duration after its NAV expires to 

access the channel after each transmission. This delay is a function of both the 

node and other nodes use of the medium and helps the hidden connection access 

the channel. It was shown this algorithm is very effective in order to give other 

nodes the possibility to gain access to the medium.

The authors in [85] propose a backoff scheme called Impatient Backoff Al-

gorithm (IBA) where nodes decrease their contention window when their packet 

collide or are unable to send, thereby becoming more aggressive. On the other- 

hand, nodes increase their contention window following each successful packet 

transmission. To stabilize the system due to frequent collisions, the algorithm is 

combined by resetting the mean contention window when it gets too low.

In [8 6 ], the authors proposed a scheme called Neighborhood RED, which is 

an extension of the RED [6 8 ] to ad hoc wireless networks. The authors show 

by detecting early congestion and dropping packets proportionally to a flows 

channel bandwidth usage, the NRED scheme is able to improve TCP fairness. 

In particular, in NRED each node keeps estimating the size of its neighborhood 

queue where a nodes neighbourhood consists of the node itself and the node’s
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which can interfere with this node’s signals. Once the queue size exceeds a certain 

threshold, a drop probability is computed by using the algorithm from the original 

RED scheme. Thus, the NRED scheme is basically a distributed RED suitable 

for ad hoc wireless networks.

Finally using a different approach, the experiments discussed in [87], have 

illustrated the strong Signal to Noise Ratio (SNR) dependence of channel capture 

behavior with the IEEE 802.11 MAC protocol. A SNR differential as small as 

5dB was shown to result in capture for the stronger connection.

4.4 Summary

In this chapter we considered the TCP instability by dividing the problem into 

two broad categories named as intra-flow and inter-flow instability.

It was first shown the intra-flow instability associated with the interaction of 

nodes belonging to the same TCP connection is primarily caused by the high 

number of contention drops in the link layer. The intra-flow instability was further 

divided into rerouting instability and out-of-order instability where the former is 

caused by the process of route failure and route discovery at the source while the 

latter happens due to frequent and random TCP packet losses in the network and 

the creation of out-of-order packets at the receiver. Using analysis, it was shown 

that the major contribution to intra-flow instability is created by out-of-order 

instability. In addition, the importance of controlling the amount of outstanding 

data in the network was highlighted as a simple and effective solution to alleviate 

the intra-flow problem.

In the second part of the chapter, we investigated the cause of inter-flow
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instability in the presence of two or more connections that share the channel. 

It was first shown that channel capture serves as the primary reason behind 

TCP inter-flow instability and the operation of 802.11 binary exponential backoff 

algorithm was identified as the primary cause of channel access unfairness. To 

clarify the close link between fairness and inter-flow instability and therefore to 

quantify and compare the inter-flow instability in different scenarios, an analysis 

of fairness horizon was also given in this chapter.
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Chapter

Cross Layer Contention Control

5.1 Introduction

Given the observations and explanations in chapter 4, it is clear that there are 

a number of different reasons behind TCP instability. In particular, it was con-

cluded that the following events are the primary cause of TCP instability in

802.11 multihop ad hoc networks:

• Large numbers of packet contention drops caused by intra-flow interference

• TCP’s early response to frequent packet reordering in the network

• Channel access unfairness caused by the 802.11 binary exponential backoff 

algorithm

This chapter presents detailed implementations of the proposed solutions to 

address each of the above issues separately. In essence, section 5.2 presents TCP 

ConTention Control (TCTC) that addresses TCP intra-flow instability by con-

trolling the amount of outstanding data in the network. Section 5.3, introduces
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Delayed Congestion Response with Extended Link-layer Retransmission (DCR- 

ELR) that aims to overcome the problem of TCP’s high sensitivity to out of order 

packet delivery in multihop ad hoc networks. Finally, in section 5.4, the details 

of the Fair backoff Algorithm (FBA) that alleviates TCP inter-flow instability by 

modifying the backoff algorithm used in 802.11 MAC will be presented.

5.2 TCP Contention Control

5.2.1 Description

As discussed in 4.2.4, a high percentage of intra-flow interference and therefore 

contention drops can be eliminated by decreasing the amount of traffic in the 

network. However, this can be a very challenging task. On the one hand, if 

the amount of data in the network is reduced bellow the bandwidth delay prod-

uct (BDP) of that flow, the channel resources are under-utilized. On the other 

hand, any increase above the BDP does not bring an additional performance 

enhancement, but only leads to increased buffering in intermediate nodes along 

the connection and other consequences as discussed earlier. Therefore, the main 

question in limiting the traffic load is how to properly set the amount of out-

standing data in the network to achieve maximum throughput while minimizing 

the queueing delay experienced by individual packets.

In this section, this issue is addressed by introducing a cross layer solution called 

TCP ConTention Control (TCTC). In simple words, TCTC adjusts the TCP 

transmission rate to minimize the level of unnecessary contention in the interme-

diate nodes. To this aim, during fixed probe intervals, the TCP receiver monitors 

both the achieved throughput and the level of contention experienced by packets
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during that interval1. Then, based on these observations, the receiver estimates 

the optimum amount of traffic maximize the throughput and minimize the con-

tention delay for each connection. Finally, TCTC propagates the information 

back to the sender to adjust its transmission rate.

Using this information, the TCP sender now sets its transmission rate not merely 

based on the level of congestion in the network and the available buffer size at the 

receiver but also on the level of medium contention experienced by intermediate 

nodes. More precisely, while TCP congestion control adjusts the TCP transmis-

sion rate to avoid creating congestion in the intermediate network buffers, TCP 

contention control adjusts the TCP transmission rate to avoid creating queue 

buildup in the intermediate network buffers.

Since the key element in TCTC is optimum TCP flight size, the next subsec-

tion explains how TCTC estimates the optimum TCP flight size.

5.2.2 Optimum Load Estimation

To estimate the optimum amount of traffic that should be sent by the sender 

to get the maximum throughput while keeping the contention delay minimum, 

TCTC defines a new variable called TCP Contention Window (ctwnd). The value 

of the ctwnd is determined according to the TCTC states as defined below:

• Fast Probe

When a TCP connection is established, the TCTC enters the Fast Probe 

state where the ctwnd is increased exponentially. This is very similar to the 

TCP slow start phase in TCP congestion control where the TCP sender

1 we will explain in section 5.2.3 how the contention delay is calculated by TCTC

103



5.2 TCP Contention Control

probes the available bandwidth in a short time. The Fast Probe is also 

entered after the network is recovered back from Severe Contention state 

explained shortly.

• Slow Probe

Slow probe is entered when the receiver realizes that both the achieved 

throughput and the packet contention delay have decreased compared to 

the last probe interval. In this situation, the receiver concludes the network 

is being under-utilized and tries to gradually increase the amount of newly 

injected data into the network by adding one MSS to ctwnd in every probe 

interval (additive increase)

• Light Contention

If after changing the amount of injected data to the network, both the 

throughput and the level of packet contention delay are increased, the 

TCTC enters Light Contention state. In Light Contention state, the TCTC 

slowly decreases the ctwnd by one MSS per probe interval to control the 

amount of outstanding data in the network while avoiding unnecessary re-

duction in TCP throughput by implementing additive decrease. In other 

words, the Light contention state is entered when the network is in early 

states of overload.

• Severe Contention

Severe Contention state is entered whenever the receiver sees an increase 

in the level of contention delay while the achieved throughput has been de-

creased. This situation is a clear sign of network overload since it shows the
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push of more data into the network has just increased the amount of con-

tention experienced by individual packets without increasing the through-

put seen by the receiver. This situation can also happen if suddenly the 

level of contention in the network increases (e.g. a second connection starts 

using the intermediate nodes). To combat this, the TCTC sets its ctwnd 

to 2*MSS to force the sender to minimize its transmission rate.

The pseudo code in Algorithm 1 , summarizes the calculation of ctwnd in these 

different phases.

Algorithm 1 PSEUDO CODE OF CALCULATING CTWND IN DIFFERENT STATES

1- If A Throughput ^  1 then 
2: if A Contention 1 then
3: T C P  .C  ontention =  T C P  .Contention — TCP̂ ContenuSi / /  Light

Contention
4: else
5: TCP-Contention =  T C P  JO ontention +  M SS  /  /  Fast Probe
6: end if
7: else
8- if A Contention ^ 1 then
9: TCP-Contention  =  TCP.Contention  +  2 * M SS  / /  Severe Con-

tention
10: else
11: TCP.Contention =  TCP.Contention  +  Tcp^cmLwwn / /  Slow

Probe
12: end if
13: end if
14: if TCP.Contention  <  2 * M SS  then
15: TCP.Contention =  2 * M SS
16: end if

It is important to note that because of the TCP Delayed ACK algorithm [8 8 ], 

the minimum ctwnd in TCTC is set to 2*MSS to make sure at least 2 segments
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are in the network and can trigger the transmission of a TCP ACK at the receiver 

without waiting for maximum ACK delay timer to expire.

As it can be seen in Algorithm 1 , the condition for which the different states 

are entered is according to the value of two parameters named Delta Throughput

(^ T h r o u g h p u t) and Delta CoTlteutiOTl ¿AC on ten tion •

Deltaj'hrcmghputi which is calculated according to formula 5.1, simply compares the 

amount of data received by the receiver (in Bytes) in the current probe interval 

(probe-new) and the last probe interval (probe-old)

_  (data received)pro;,e_»eM, * (probe -  old)
Throughput (data received) prob e -o id  * (probe — new)

Deltacontention  on the other hand compares the average amount of contention 

delay experienced by all packets during the current probe interval with the average 

contention delay experienced by packets during the last probe interval. In the 

next subsection, we explain how D eltac ontention acquires the required information 

on the contention delay values.

5.2.3 Contention Delay Measurement

As discussed earlier, the main objective of measuring contention delay is to reflect 

the current level of contention in the network. The first metric that is generally 

available and can be used to measure the level of contention is medium access 

delay. However, using medium access delay to measure contention delay can be 

misleading for two reasons:
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1. Generally, medium access delay is recorded from the time a packet is in-

serted in the MAC layer buffer until the packet is sent to the physical layer 

for transmission. Therefore, it includes both the queueing and contention 

delays where the latter is from the time a node places the first fragment of 

that packet at the beginning of a buffer until the packet leaves the buffer for 

actual transmission on the physical layer. However, this can be problem-

atic as the ratio between queueing and contention delay is unknown. To see 

how queueing delay can provide wrong information on current state of the 

contention, let us consider a snapshot (at different time) of a MAC buffer 

in an arbitrary node A shown in figure 5.1.

W Amm At

T=0

«  I At
T=1

A4 AT A3 At A4 A3 K>.

T==3 T=8

A4 A3 m m m i A4

T=12 T=14

V//AAA//Am
T=15

Figure 5.1: The impact of queueing and contention delay on medium access 
delay

At T=0, node A has one packet (Al) inside its buffer. At time T=lm s, 

packet A2 arrives in the buffer and at time T=3ms, packets A3 and A4 

are added in the tail of node A ’s buffer. At T = 8 ms, node A finds the
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chance to transmit packet A1 towards the data sink. This means A l ex-

perienced a contention delay of 8 ms (CDAi=8 ms) while its queueing delay 

is zero (QDyu=0). At time T=12ms, A2 is also successfully transmitted 

which implies experiencing a contention delay of 4ms and a queueing de-

lay of 7ms CD/42=4ms, QDy42= 8 - l = 7 ms. Using similar calculations, we 

get CDA3=14-12=2ms, QDA3= 1 2 -3 = 9 ms, CD.44=15-14=lms, QD^4=14- 

3=llm s. As shown in table 5.1, though the measured media access delay 

for all packets is more or less the same (8  to 1 1 ms), the contention delay 

experienced by packet A l is 8  times higher than A4 contention delay. In 

other words, while clearly the medium access contention around node A at 

time T=0 is much higher than at time T=14ms, the media access delay 

increases marginally at time T=14ms compared to time T=0.

Table 5.1: Summary of link layer delays in the example given in figure 5.1
Packet
Number

Contention Delay 
(CD)

Queueing Delay 
(QD)

Media Access Delay

A l 8 0 8

A2 4 7 11

A3 2 9 11

A4 1 11 12

2. Medium access delay does not take into account the delay of retransmitted 

packets. This can provide misleading information on the level of contention 

since as in 802.11 MAC, acquiring the channel even after RTS/CTS reser-

vation does not necessarily imply a successful transmission.

To address the above problems, TCTC uses contention delay as a primary 

measurement of the level of channel contention where the contention delay timer
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inside each node only resets to zero when the node receives a MACK. In this 

manner the contention delay includes the period for the successful RTS/CTS 

exchange, if this exchange is used for the packet. In addition, the contention 

delay for a retransmitted packet will start from time the original packet was 

placed at the head of the buffer for the first time until the corresponding MACK 

is received. If after reaching the maximum retry limit, the packet cannot be 

transmitted, the value of contention delay is added to the contention delay of the 

next packet.

The value of measured contention delay is then inserted inside the Contention 

Delay Field (CDF) using the optional field in 802.11 MAC. More precisely, each 

packet records the contention delay it experienced in each node and adds the new 

contention delay to the CDF. In this manner, the Cumulative Contention Delay 

(CCD) experienced by each packet along the path is delivered to the final receiver 

(TCP receiver). The TCP receiver then calculates the value of Contention Delay 

per Hop (CDH) by dividing the CCD by total number of hops traversed by that 

specific packet. The main property of CDH is its independence from number of 

hops traversed by the packet. Finally the receiver derives the Mean Contention 

Delay per Hop (MCDH) by calculating the mean value of CDH received during 

each probe interval.

Having the value of MCDH, the Deltacontenticm as shown in equation 5.2 is 

derived by comparing the MCDH received by the receiver in current probe interval 

(probe-new) and the last probe interval (probe-old)

A C ontention
M C D H ,probe—new

M C D Hprobe—old
(5.2)
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5.2.4 Contention Delay Field

To carry the value of CDF inside a packet, we use the extended IEEE 802.11 MAC 

protocol packet format with optional fields inside the MAC header as suggested 

in [89]. In essence, a new field called ’’ options” is proposed as a variable length 

field which extends standard MAC header. To perform separation of the data 

encapsulated into the frame from the MAC header, the option contains a Header 

Length field which specifies the entire length of the MAC header, including the 

list of options. In addition, each option consists of option type, length and data 

as shown in figure 5.2. The Length field is required to handle the case when a 

node does not support the corresponding option and therefore the knowledge of 

the option’s length makes skipping the current option easier, jumping to the next 

one for processing.

------------------------------------------------------ MAC Header -------------------------------------------------►

Bytes: 2 2 6 6 <5 2 6 Variable 0-2312 4

Figure 5.2: Options-enabled IEEE 802.11 data frame

Since in the proposed model, the only option being used is the CDF field, the

802.11 data packet supporting contention delay field is similar to figure 5.3 with 

the Frame Control value of 101000.
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•«-----------------------------------------------------  MAC Head« -------------------------------------------------►

Bvtrs: 2 2 6 6  6 2 6 2  0-2212 -I

Frame Duration Address 1 Address 2 Address 3 Sequence Address 4 CDF Frame FCS
C on tro l i d Control Body

Figure 5.3: CDF-enabled IEEE 802.11 data frame

Note that here we have introduced a new type of data packet using the avail-

able reserved types in the Frame Control field of the MAC header of data frames. 

In particular, our frame ’’ type” is equal to ” 10” (Data packet) and the ’’ subtype” 

is set to ” 1000” as an indication of CDF-enabled data frame. This is to provide 

backward support within the existing IEEE 802.11 standard specification, since 

a CDF-enabled data frame should be of a different type with respect to a normal 

data frame.

5.2.5 Propagating the Contention Delay Information

Having calculated the optimum value of network overload over the next period of 

the probe interval, the next question is how to propagate this information (which 

is stored in ctwnd) back to the sender so the TCP sender can adjust its trans-

mission rate accordingly. To answer that, let us recall from section 2.3.4 that the 

TCP sender cannot have a number of outstanding segments larger than the rwnd 

which is advertised by its own receiver. By default, the TCP receiver advertises 

its available receiving buffer size, in order to avoid saturation by a fast connection 

(flow control). We propose to extend the use of rwnd to accommodate the value 

of ctwnd in order to allow the receiver to limit the transmission rate of the TCP 

sender also when the path used by the connection exhibits a high contention and 

frame collision probability as well as its default flow control mechanism. In other
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words, when TCTC is used, the new value of rwnd becomes the minimum of 

the available buffer size of the receiver (available receiver buffer) and the current 

value of ctwnd as shown below in equation 5.3.

rwnd =  Mw(available receiver buffer, ctwnd) (5-3)

5.2.6 Choice of Probe Interval

It is clear from the above discussions that the choice of probe interval at the 

receiver can affect the performance of TCTC. Too large probe interval means 

that TCTC responds too slowly to contention changes in the network while too 

small probe interval will make TCTC sensitive to contention delay experienced 

by individual packets and therefore leads to ctwnd fluctuation. Heuristically, the 

probe interval of one RTT seems to be the natural and reasonable choice as it 

gives the receiver enough time to monitor the packets it received during one RTT 

and then sets its recommendation of sender’s transmission rate (using ctwnd) 

for the next RTT. However, to provide the receiver with the correct and up to 

date information on the impact of the previous ctwnd on the level of network 

contention, the ctwnd should be updated in every other RTT. Therefore, we 

recommend the ctwnd gets updated every 2*RTT and remains fixed between two 

updates. In this way, the receiver can make sure the packets it has received 

are sent into the network after the sender has applied the changes imposed by 

the receiver in the last probe interval. Having the value of the TCTC probe 

interval, the other major issue is that the TCP receiver (which is running the 

TCTC algorithm) is unaware of connection’s RTT2. This problem can be solved

2 assuming the receiver is not sending any data packets towards TCP sender or there is a 
route asymmetry between sender and receiver
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by using the fact that according to [90], in a small to medium size ad hoc networks 

the congestion window size (i.e. number of packets sent per RTT) does not 

grow beyond 5 packets. Therefore, considering this estimation together with 

the discussion given earlier, the probe interval in receiver can be defined as the 

period in which 2*5=10 packets are received. Note that although this is a rough 

estimation, it clearly solves our design objectives of probe interval which is merely 

to determine the frequency of updating TCTC. More details on the impact of 

probe interval on the performance of TCTC are given in chapter 7.
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5.3 Delayed Congestion Response-Extended Link 

layer Retransmission

5.3.1 Description

As explained earlier in 4.2.3, due to the frequent packet contention losses in mul-

tihop ad hoc networks, packet reordering can happen quite often. Such frequent 

packet reordering can harm TCP performance in several ways [70,73,91]. First of 

all, it will cause the TCP sender to use fast retransmit to resend a data segment 

that was not lost, hence wasting bandwidth. Secondly, TCP assumes that loss is 

an indication of network congestion, and so a sender perceiving reordering as loss 

will also incorrectly reduce the data transmission rate. Thirdly, segment reorder-

ing causes interruptions to TCPs ACK clock, thereby causing its transmission to 

be more bursty. The above argument in addition with the results given in figure 

4.7 lead us to two main conclusions:

• To avoid unnecessary packet retransmissions, the sensitivity of TCP to du-

plicate ACKs should be decreased in multihop ad hoc networks.

• The current 802.11 link layer retry limits appear to be too low in multihop 

ad hoc networks where nodes are not necessarily within the interference 

range of each other.

To first address the TCP sensitivity to duplicate ACKs, this section describes 

the Delayed Congestion Response (DCR) as was introduced in [92]. Then a 

modified version of DCR with Extra Link-layer Retransmission (DCR-ELR) is 

proposed to alleviate the TCP sensitivity to packet reordering while giving extra
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opportunity for link layer local recovery.

5.3.2 Delayed Congestion Response

The basic idea behind Delayed Congestion Response (DCR) [92] is when both con-

gestion and non congestion losses can occur, a simple solution would be to let the 

link layer mechanisms recover from the losses due to contention and the transport 

protocol to recover from the losses due to congestion. In other words, the DCR 

modifications aim to change the time at which the Fast Retransmit/Recovery 

algorithms are triggered. To this aim, the receipt of duplicate ACKs in TCP- 

DCR is assumed to be caused by non-congestion errors, for one RTT [92]. If 

the packet is recovered through the link layer retransmission mechanism before 

the end of this delay period (indicated by the receipt of a cumulative ACK ac-

knowledging the lost packet), DCR proceeds as if the packet loss never occurred. 

However, if the packet is not recovered by link layer retransmission by the end 

of the delay period, DCR protocol triggers the congestion recovery algorithms 

of fast retransmission and recovery. By doing this, DCR effectively changes the 

paradigm that all losses are due to congestion to the paradigm that all losses are 

due to non-congestion related errors for a period of one RTT.

5.3.3 Extra Link layer Retransmission

The key factor in the efficiency of the DCR algorithm is to recover the non-

congestion related data losses at the link layer while the congestion control is 

postponed. However, as shown in [56,93], the current 802.11 link layer retry limits
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appear to be too low in multihop ad hoc networks and considerable number of non-

congestion related losses are still recovered by TCP. To see the negative impact 

of TCP end-to-end recovery instead of 802.11 local recovery in ad hoc networks, 

consider figure 5.4 where node A is sending packets to node E. Let us assume,

Figure 5.4: Comparison of the end-to-end and local recovery in ad hoc networks

node D cannot transmit its data after MAC-Retry-Limit (5.4(a)). In the default 

operation of 802.11, shown in 5.4(b), if the MAC cannot succeed in accessing the 

medium in limited tries at any hop, the packet should be retransmitted by TCP 

from the sender and start contending for the medium from the first hop again. 

This is obviously very inefficient as the packet has already used a considerable 

channel resources to get to node D and it is obviously a waste of channel resources 

to deliver the packet from node A to node D again. To tackle this problem, using 

the Extended Link layer Retransmission (ELR) approach shown in 5.4(c), after
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node D runs out of its MAC_Retry_Limit, the node is given the chance to try 

for another MACJLimit_Retry before giving up and dropping the packet. As it 

would be shown in chapter 7, the combination of DCR with ELR dramatically 

reduces the number of TC P’s end-to-end recoveries and therefore improves the 

TCP stability.
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5.4 Fair Backoff Algorithm

5.4.1 Description

In section 4.3.1 it was shown that channel access unfairness is the primary cause 

of TCP inter-flow instability. To tackle this issue, this section proposes a new 

scheme called Fair Backoff Algorithm (FBA) that aims to create a relatively 

simple and fair channel access algorithm between contenting nodes. To realize 

the design principles of FBA, let us recall that the main cause of channel access 

unfairness lies in the simple fact that the 802.11 backoff algorithm always acts 

in favour of the last successful node who accessed the channel. To address this 

problem, the binary exponential backoff algorithm is replaced with FBA that 

uses a dynamic access priority approach according to each node’s perspective on 

the level of contention and its own channel access history. The main features 

of FBA are its simplicity, easy implementation and the fact that it does not 

require any control message exchange between competing nodes in 802.11 based 

ad hoc networks. Details of the FBA implementation are described further in the 

remainder of this section.

5.4.2 states

Since the Contention Window (C W ) is the main parameter used in each node 

to access the channel, FBA changes the C W  in each node according to three 

different states as shown in figure 5.5.
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Figure 5.5: Different node states in the FBA scheme

• Normal

This state is entered when the station

-  has data to send in its buffer

— it has either recovered from a failed channel access or it has failed to 

gain the channel after a successful transmission.

The main purpose of this state is to improve short-term fairness and thus 

stability by assigning relatively large C W  to nodes in this state and there-

fore decreases the probability of a collision between contending nodes.

• Restrictive

Following a successful channel access in the Normal state, the node enters 

a Restrictive state where the probability of node’s channel access decreases 

according to the number of consecutive channel access events and increases 

with its buffer size. This state has been designed to force the successful
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nodes to release the channel in favour of others while giving higher priority 

to the congested nodes compared to non-congested ones.

• Greedy

If the node is unsuccessful after choosing its initial backoff within the Nor-

mal state, it will enter the Greedy state where the station takes high priority 

to access the channel by choosing relatively smaller contention window com-

pared to successful stations. This state is included to prevent nodes from 

getting starved for a long period of time.

5.4.3 Contention Window Calculation

Having defined the possible states, now each node calculates its new C W  accord-

ing to the rule given in equation 5.4

C W

CW-min x Tradeof f  „co Normal

CW min x [1 +  Success x (1  — B u fferreo)] Restrictive 

CWmin x Failed Greedy

(5.4)

Here ” Success” and ” Failed” are the number of consecutive successful and consec-

utive failed channel access tries (and not necessarily failed transmission try) seen 

by each node, respectively. We have also defined two other variables called the 

’’Tradeoff Coefficient” (Tradeoff-co) and ’’ Buffer Coefficient” (Buffer-co) which 

are both critical to the performance of the algorithm.

Tradeoff-co is an integer number between 1 (i.e. C W  =  CWmm) and anc  ̂^

basically is designed to address the high probability of collisions between stations
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that are in Normal state. To see the necessity of the Tradeoff-co, consider the 

situation when a node in restrictive state fails to access the channel and chooses 

at most 2*CWmin for its next retransmission. Meanwhile, a hidden node(s) in 

greedy state which has successfully gained the channel after unsuccessful trans-

missions chooses CW min for its next packet transmission. As shown in [75], with 

such low contention window it is very likely that the transmission from these two 

nodes will collide and both stations will enter the Greedy state. Tradeoff-co aims 

to prevent such collisions in Normal state by assigning relatively large contention 

windows to such nodes. This will firstly result in smaller number of packet colli-

sions, and secondly will improve short-term fairness as it gives immediate equal 

opportunity to nodes coming from different states regardless of their prior state. 

On the other hand, a large value of Tradeoff-co will result in a greater number 

of idle slots in the channel which obviously degrades the achieved throughput. 

Therefore, the value of Tradeoff-co can be seen as the design tradeoff between 

the achieved fairness and the throughput. More information on the impact of 

Tradeoff-co on system performance is given in Chapter 7 where the simulation 

results are presented and discussed.

The next parameter is Buffer-co which is a number between 0 and 1 and gives 

higher priority to nodes who are situated in a more congested area of the network. 

Another design goal behind Buffer-co is to control the unnecessary increase of the 

contention window in scenarios where only two nodes are communicating with 

each other. In this scenario, without the presence of Buffer-co, the successful node 

will continuously go to Restrictive state as it is the only node to send. However, 

Buffer-co will compensate by decreasing the contention window as number of 

packets inside the sender buffer increases, hence limiting the long idle period
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between successive transmissions.

Therefore, the Buffer-co can be described as:

0

B u f fe r  — co — < B u f  fe r -T h r e s h m in 
Threshm ax —Threshm in

1

B u ffe r  <  Threshmin 

Threshmin ^  B u ffe r  ^  Thresh max 

B u ffe r  >  Threshmax
(5.5)

where Buffer is the current number of packets inside the MAC buffer; Threshmaa, 

and Threshmin are chosen to be 20% and 80% of the maximum buffer size, re-

spectively. Note that the value of Buffer-co parameters are chosen similar to the 

RED [6 8 ] active queue management scheme.
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5.5 Summary

In this chapter, we proposed three separate solutions called TCTC, DCR-ELR, 

and FBA to address TCP instability problems as outlined in chapter 4. While 

TCTC and FBA were primarily designed to tackle TCP intra-flow and inter-flow 

instability, respectively, DCR-ELR aimed to reduce the number of TCP end-to- 

end packet loss recoveries.

The main idea behind TCTC was to adjust the TCP transmission rate to min-

imize the level of unnecessary contention in the intermediate nodes without de-

grading end-to-end throughput. This was done at the TCP receiver and by com-

paring the achieved throughput and the level of contention delay experienced 

by packets during consecutive probe intervals. After estimating the optimum 

transmission rate, the receiver propagates back the information to TCP sender 

through its receiver window option which is naturally used for flow control.

In the second proposal, DCR-ELR, the Delayed Congestion Response algorithm 

was combined with Extended Link layer Retransmission to first combat the TCP 

sensitivity to a large number of out of order packets (through DCR) and secondly 

to perform contention loss recovery in the link layer rather than in the transport 

layer (through ELR).

Finally, in last section, the FBA algorithm is proposed to replace the 802.11 BEB 

in order to tackle the channel access unfairness seen by contending nodes.
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Chapter 6
Simulation Modelling

6.1 Introduction

To measure and evaluate the efficiency of the proposed algorithms, simulation 

was used in this research. This choice was done for two main reasons. Firstly, 

the distributed nature of ad hoc networks together with the fact that the be-

haviour of a node is dependent not only on its neighbours’ behaviour, but also 

on the behaviour of other unseen nodes makes the analysis of multi-hop network 

extremely difficult [94,95]. In particular, as shown in Chapter 3, deriving an 

analytical model with reasonable degree of accuracy (e.g. considering hidden 

terminal problem and interaction between TCP and 802.11) includes numerous 

variables and constraints whereby the level of complexity rises rapidly with re-

spect to the number of variables taken into account. Secondly, the choice of a 

real testbed implementation was ruled out mainly because most of the off-the- 

shelf commercial wireless cards (including the wireless cards used in our testbed) 

do not provide the users with full control over the card configuration and some
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options. On the other hand, in order to implement and validate the proposed 

algorithms discussed in chapter 5, there was a clear need to change the card set-

tings. For all these reasons, simulation was the best available option remained to 

implement and evaluate the proposed schemes. On the other hand, to validate 

the accuracy of the simulator, a customized testbed was built and used in this 

study which would be discussed later in the chapter.

6.2 Simulation Environment

In order to conduct simulations, the OPNET (OPtimized Network Engineering 

Tool) [61] simulator has been used in this work. OPNET was chosen primarily 

because it was a proven simulation tool utilized in several previous studies in ad 

hoc networks (e.g. [18,29,96]) and provides a comprehensive set of simulation and 

modelling products for the development and performance analysis of TCP over

802.11 wireless ad hoc networks. In addition to providing a rich library of mod-

els for implementations, OPNET is an open model source code with integrated 

debugging and analysis which enabled us to trace the packets and events across 

different layers. In essence, by integrating custom codes into OPNET Debugger 

(ODB), special care could be taken to determine whether the implementation of 

the new algorithms would function as designed and that the system would not 

exhibit unwanted side-effects.
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6.2.1 OPNET Modeler

OPNET Modeler1 uses an object-oriented and discrete-event environment for the 

development of models and simulation scenarios. Simulation models in OPNET 

Modeler are organized in a hierarchy consisting of three main levels in which 

each level of hierarchy represents different aspects of the complete model being 

simulated: the project editor, node editor and process editors (Figure 6.1).

Figure 6.1: O PN E T simulator hierarchy 

1The OPNET Modeler 11.5 was used in this work
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The project editor refers to the simulation scenario or simulation network. 

It defines the network layout, the nodes and the configuration of attributes of 

the nodes comprising the scenario. The node models are at the second level in 

the hierarchy and consist of an organized set of modules describing the various 

functions of the node. The modules in the nodes are implemented using process 

models, the lowest level in the hierarchy. Process models consist of finite state 

machines, definitions of model functions, and a process interface that defines the 

parameters for interfacing with other process models and configuring attributes.

6.2.2 Assumptions and Parameters

In the simulations performed throughout this dissertation, the following assump-

tions were used:

• Nodes have sufficient power to function and the number of nodes in a given 

topology remains constant throughout the simulation time. At no time 

does a node run out of power or malfunction because of lack of power. 

Equivalently, the wireless transceivers are active at all times.

• Transmissions are not affected by random errors. Transmissions may still 

interfere with each other; however a node will always successfully decode 

a transmission provided it is within transmission range of the source and 

there is no interfering transmission.

• All nodes are equipped with IEEE 802.11 transceivers and unless otherwise 

stated the RTS/CTS mechanism for packets larger than RTS-Threshold is 

employed on these wireless devices.
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• The signal propagation model used is the Two-Ray Ground model [97] 

where signals propagate from sender to receiver in an open environment

• The simulation area is defined to be 1 0 0 0 x 1 0 0 0 m where the transmission 

range of each node is confined to 1 0 0  meters based on the testbed imple-

mentation results presented in [90],

• Nodes are assumed to be static and the topology is fixed. The main reason 

behind this assumption is to isolate the packet losses and avoid unwanted 

routing phenomena such as network partitioning. Note that this assumption 

in any way does not invalidate the results shown in the thesis as the primary 

focus in this work is to investigate the impact of link layer parameters on 

transport layer and vice versa regardless of node mobility.

In addition to the above assumptions, the detailed default simulation parameters 

and settings for TCP, routing and wireless LAN are shown in figure 6.2, 6.3, and 

6.4, respectively.
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6.2 Simulation Environment

s  TCP Parameters
|-Version/Flavor
(-Maximum Segment Size (bytes)
[-Receive Buffer (bytes)
(-Receive Buffer Adjustment
(-Receive Buffer Usage Threshold (of RCV BUFF)
(-Delayed ACK Mechanism
(-Maximum AGE Delay (sec)
(-Maximum ACK Segments 
|-Slow-Start Initial Count (MSS)

(...)

Unspecified
1460
65535
None
0.0
Segment/Clock Based 
0.200 
2 
1

(-Fast Retransmit 
(-Duplicate ACK Threshold 
(-Fast Recovery 
(-Window Scaling 
(-Selective ACK (SACK) 
(-ECN Capability 
|-Segment Send Threshold 
(-Active Connection Threshold 
(-Nagle Algorithm 
(-Kam's Algorithm 

IB Timestamp

Enabled
3
New Reno
Disabled
Enabled
Disabled
Byte Boundary
Unlimited
Disabled
Enabled
Disabled

|—Initial Sequence Number 
BJ Retransmission Thresholds 
(-Initial RTO (sec)
|-Minimum RTO (sec) 
(-Maximum RTO (sec) 
(-RTT Gam 
(-Deviation Gain 
(-RTT Deviation Coefficient 
(-Timer Granularity (sec) 
(-Persistence Timeout (sec)

0

Attempts Based
3.0
1.0
64
0.125
0.25
4.0 
0.5
1.0

Figure 6 .2 : T C P  settings used in the simulation
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6.2 Simulation Environment

s DSF Parameters ' r  ■ H
B Route Cache Parameters (.')

|-Max Cached Routes Infinity
|-Route Expiry Timer (seconds) 300
fi Route Cache Export Do Not Export

B Send Buffer Parameters (...)
|-Max Buffer Size (packets) Infinity
L Expiry Timer (seconds) 30

B Route Discovery Parameters (...)
[-Request Table Size (nodes) 64
[-Maximum Request Table Identifiers (identifiers) 16
[-Maximum Request Retransmissions (retransmissions) 16
[-Maximum Request Penod (seconds) 10
[-Initial Request Period (seconds) 0.5
[-Non Propagating Request Timer (seconds) 0.03
L Gratuitous Route Reply Timer (seconds) 1

B Route Maintenance Parameters (...)
[-Maximum Buffer Size (packets) 50
[-Maintenance HoldoffTime (seconds) 0.25
[-Maximum Maintenance Retransmissions (retransmissions) 2
L Maintenance Acknowledgement Timer (seconds) 0.5

[-DSR Routes Export Do Not Export
[-Route RepEes using Cached Routes Enabled
[-Packet Salvaging Enabled
[-Non Propagating Request Disabled
h Broadcast Jitter (seconds) uniform (0, 0.01)

Figure 6.3: D SR settings used in the simulation
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o  Wireless LA N  Parameters

|-BSS Identifier 
(-Access Point Functionality 
(—Physical Characteristics 
(-Data Rate (bps)

0 Channel Settings 
(-Bandwidth (MHz)
LMin Frequency (MHz)

(-Transmit Power (W)
(-Packet Reception-Power Thre.. 
|-Rts Threshold (bytes) 
1-Fragmentation Threshold (byte: 
|-CTS-to-self Option 
(- Short Retry Limit 
(-Long Retry Limit 
(-AP Beacon Interval (secs) 
(-Max Receive Lifetime (secs) 
(-Buffer Size (bits)
|-Roaming Capability 
(-Large Packet Processing 

EO PCF Parameters

( -)
Auto Assigned 
Disabled 
Direct Sequence 
2 MBps

( -)
Physical Technology Dependent
BSS Based
0.005
-95
512
None
Disabled
7
4
0.02
0.5
256000
Disabled
Drop
Disabled

Figure 6.4: 802.11 settings used in the simulation
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For the sake of clarity, some of the simulation parameters are discussed in the 

following text.

To minimize the possibility of simulation stochastic nature errors, each simulation 

set is repeated four times, each with a different random seed 2. For scenarios where 

the system instantaneous behaviour is of interest (e.g. packet delay, queue size, 

etc.), the simulation set with the minimum TCP throughput deviation is chosen 

and presented as a result. Otherwise, the simulation results are averaged over 

the four sets and presented.

In each set, a TCP connection is set between two selected nodes to facilitate a 

FTP transfer session for the duration of the simulation. The overall simulation 

time is set to 600 seconds where in the first 50 seconds, the results are not taken 

into account to eliminate the initial bias effects (e.g. route setup, connection 

establishment, etc.). The simulation time, set to 10 minutes, is chosen in order 

to examine TCP performance over bulk file transfers application. This is mainly 

because the focus of this thesis is the behaviour of TCP when the network is close 

to its saturation and the full spectrum of TCP congestion control mechanisms is 

utilized over substantial time periods. Transferring small files such as web pages 

is too short that may only activate the slow start mechanism and is not adequate 

to trigger TCP instability.

2the repetition of 4 experiments were chosen as the difference in data results variation was 
negligible
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6.3 Simulation Validation

In order to validate the simulation tool used and to ensure that the simulation 

results are fairly representative of real world systems, we setup a small multihop 

ad hoc network testbed consisting of 5 nodes. Figure 6.5 shows a logical view of 

the different scenarios implemented in the testbed.

A B C

(b) 2 hops

A B C D

(c) 3 hops

A B C D E

(d) 4 hops

Figure 6.5: Testbed topologies

The nodes were positioned so that they have only one upstream and one 

downstream neighbour. For instance, in figure 6.5, node A can only transmit and 

listen to node B. Node B has nodes A and C within its radio range and so on. 

This setup is necessary to ensure that routes would be using similar links in every 

test. The wireless connection between the nodes were verified by monitoring the
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ping results. A good connection was identified when there were few or no packet 

losses. To verify that multihop communications are possible, a ping operation 

with -R option was performed from the TCP sender to the TCP receiver and vice 

versa.

6.3.1 System Components

In the testbed, five different nodes were used in which three of them were laptops 

and the two other were desktop computers. To make sure the hardware differences 

(e.g. CPU speed, memory size, USB speed, etc.) between the nodes do not impose 

any restriction on system performance, extra attention was oaid. In particular, 

all nodes were using the same wireless interface (802.l lg  US Robotic USR5422 

USB key [98]) and all nodes in the testbed were running the Linux-Suse 10.1 with 

kernel 2.6.17. The wireless cards were using the DSSS physical layer operating at 

the nominal bit rate of 11Mbps. To support the wireless card drivers in Linux, 

NDISwrapper version 1.23 was used [99]. The benefit of NDISwrapper is that 

it uses the Windows NDIS (Network Driver Interface Specification) driver for 

wireless cards and allow the Windows driver of wireless card driver to be used 

under Linux.

6.3.2 Testbed Environment

All experiments were performed in an indoor environment. To be able to com-

pare the simulation and testbed results, the same parameters discussed in 6 .2 .2  

were applied with the exception that the data rate 11 Mbps was chosen for the 

simulation to match the nominal speed of the wireless cards.
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6.3 Simulation Validation

One major difference that existed between the settings in our testbed and 

simulation was the use of static routing instead of DSR reactive routing in the 

testbed. This choice was made due to enormous number of link breakages and 

instabilities encountered when the DSR-UU [100] implementation was used in the 

testbed as a routing algorithm candidate.

The antenna of the wireless cards were covered with foil shielding tape to 

reduce their transmission and communication range. This works since copper 

changes the effective antenna impedance, thus inducing an impedance mismatch 

with the card circuitry resulting in less power being delivered on the air interface. 

This configuration was mainly done to accomplish repeatable tests by placing the 

nodes in a close geographical locations where all nodes were subjected to similar 

source of errors. It is important to note that according to the results conducted 

in [1 0 1 ], covering the cards does not have any observable effect on the cards other 

than reducing their range (and causing them to heat up a little faster).

The method used for the experimentations, was a file transfer between two se-

lected nodes over a certain amount of time ( 2 0 0  seconds), on network topologies 

shown earlier in figure 6.5.

Finally, to minimize transmission errors caused by interference from other IEEE

802.11 devices (from other offices that cannot be turned off) and people move-

ment around the building, the tests were performed during late evening hours. 

We repeated each experiment four times and averaged the collected results.

6.3.3 Experimental Results and Data Gathering

In order to validate the simulation results, several experiments were performed 

and a number of measurements were taken using TCPdump [102], TCPtrace [103],
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WeblOO [104], and Ethereal [105]. In particular, the main parameter of interest 

was accumulated TCP goodput with and without the use of RTS/CTS. Figure 

6 .6  depicts the overall goodput achieved in both simulation and testbed over a 

series of multihop chain topology.

Figure 6.6: Comparison of testbed (with static routing) and simulation (with dy-
namic routing) results

Despite the results in figure 6 .6  suggesting there is a non-negligible gap be-

tween simulation and testbed results, the goodput drop pattern in both scenarios 

closely match. In particular, in both scenarios the use of RTS/CTS improves the 

TCP goodput and the main TCP goodput drop occurs between the 1-hop and 

2-hops topologies. It is very important to note that such a non-negligible gap 

between testbed and simulation results can be easily explained by recalling the 

fact that our testbed benefits from static routing while DSR routing protocol has 

been used in deriving the simulation results. To better understand the impact
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of routing protocol on system performance, figure 6.7 shows the TCP aggregated 

goodput when static routing is used in both the simulation and the testbed.

Figure 6.7: Comparison of testbed and simulation results both under static routing

The results are in fact quite promising as they show only a marginal gap 

between the results obtained from simulation and testbed when the same routing 

settings are applied.

Therefore, we can summarize the simulations performed in the OPNET can 

closely imitate the behaviour of TCP and 802.11 protocols in real implementations 

and thus can be used as a reasonably trusted means of performance investigation 

in the next chapter.
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6.4 Summary

In this chapter, we mainly described the methodology used to evaluate and val-

idate the work conducted in the thesis. We briefly explained why OPNET was 

chosen as the simulation tool. Then the accuracy of the simulator was compared 

against the results obtained from a real testbed implementation. Although some 

differences between the numerical results gathered from these two tools were ob-

served in different scenarios, the pattern in measured information matched quite 

closely with each other. In other words, despite the different channel characteris-

tics and assumptions in the simulation with the real world implementation, such 

that the results did not exactly match, the OPNET simulator closely followed the 

standard protocol behaviour implemented in existing off-the-shelf wireless cards. 

Therefore, this observation in addition to information obtained from ODB pro-

vides evidence for the reliability of the result's obtained from simulations in the 

next chapter.
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Chapter 7
Simulation Results and Analysis

7.1 Introduction

After defining the set of cross layer solutions in Chapter 5 and the simulation 

model in Chapter 6 , this chapter presents a study of the simulation results. In 

order to fully study the proposed schemes1, a number of simulations with different 

topologies and parameters have been conducted in this study. In particular, to 

evaluate the efficiency of the proposed algorithms on intra-flow instability, a set 

of chain topologies with varying number of hops and network conditions has been 

used in section 7.2. In section 7.3, a set of cross topologies with different number 

of hops has been used to measure the effectiveness of the proposed schemes in 

tackling the inter-flow instability problem. Finally, to investigate the impact of 

the proposed algorithm on both intra-flow and inter-flow instability, section 7.4 

presents the results in various mesh topologies.

dn this chapter, the term ’’ default algorithms” or for short ’’ default” refers to the case where 
the standard version of 802.11 MAC and TCP protocols with parameters given in section 6.2.2 
are used. On the other hand, the term ’’ proposed algorithms” or for short ’’ proposed” refers to 
modified 802.11 MAC and TCP protocols with changes proposed in chapter 5
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Before starting to explain the simulation results, it is important to first discuss 

the metrics that have been used to analyze the performance of the proposed 

schemes against the default algorithms. To this aim and to fully investigate 

different aspects of system performance, a wide range of metrics across different 

layers have been chosen to accurately evaluate the performance of the proposed 

algorithms. In particular, the following metrics have been considered:

• Goodput: The goodput of each TCP connections is defined as the number 

of bytes of the TCP data connection correctly delivered to the receiver, 

such that byte and all previous bytes of the stream were delivered with no 

missing TCP segments. The goodput result is in of particular interest as it 

is one of the primary metrics to evaluate TCP performance.

• TCP segment delay: TCP segment delay is measured from the time a TCP 

segment is submitted to the IP layer in the sender until its corresponding 

ACK is received. To see the importance of this metric, let us recall that 

in general, TCP instability refers to the situation where a TCP receiver 

does not receive the TCP packets from the sender in a timely manner. 

Therefore in non-varying channel conditions, TCP segment delay can be 

used as a measurement of TCP stability across the network

• Number of TCP retransmissions: In an error-free channel, TCP retrans-

missions (caused either by fast retransmit or timeout) can be used as an 

indication of TCP ability to control congestion in the network and eliminate 

unnecessary TCP retransmission due to contention related packet loss.

• Fairness index: The fairness index is calculated using the fairness window 

technique described in section 4.3.2. More precisely, the fairness window
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mechanism starts with a trace of channel accesses and slides a window of 

size w seconds across the packets arrived from different connections and 

compute the fairness for every window. After sliding the window through 

the entire sequence we end up with a sequence of fairness values. Then, we 

calculate its average where this average corresponds to the fairness metric 

associated with window size of w seconds. The process is repeated with 

increasing window sizes, and then the average fairness values versus the 

window size are plotted. A sliding window method is useful because in this 

way both short term and long term fairness can be illustrated together. 

To calculate the fairness of a given window size, w, the ratios of packet 

arrivals from each connection over that window are calculated. Let 7 * be 

the fraction of packets from connection i that arrived during the window 

and N  be the total number of connections competing for network resources. 

Finally, by using the Jain’s fairness index [77], we have:

p (E£i 7<)2

where absolute fairness is achieved when Fj =  1 and absolute unfairness is 

achieved when Fj =  l/N.

• Average number of buffered packets and queueing delay: These two link 

layer metrics can be used interchangeably to indicate the level of congestion 

in the network when are compared across different scenarios.

• Average backoff slots: This statistic is the average time a node has to wait 

before accessing the channel and it can be used as a metric to indicate the 

amount of time a channel is ” wasted” in an idle state.
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• Link layer packet drop: The link layer packet drop is basically the amount of 

higher layer packets that have been dropped in the link layer either because 

of buffer overflow or exceeding the 802.11 retry limits. This metric can be 

quite useful as it can shed light on the actual cause of higher layer packet 

drops in the link layer.

• Average Link layer Attempt (ALA): As the name suggests, Average Link 

layer Attempt shows the average number of attempts to transmit a link 

layer packet successfully to next hop and is calculated as follows:

ALA

N  C
S  (TransmittedPackets)i .

i=lj=l
~N  C

£  (SuccessfullyTransmittedPackets)j • 
i=i j=i

(7.2)

Here, C  is the total number of connections and N  is the total number of 

nodes in each connection.

There are a number of situations where ALA can be useful. For instance, 

it can be used to measure the effectiveness of the medium access algorithm 

in collision avoidance. Also, it can be used as a power consumption metric 

where a smaller ALA suggests less amount of energy is consumed to transmit 

one packet.

To eliminate the repetition of similar results, in the rest of this chapter and 

according to the specific scenarios, only some of the above metrics would be used 

to measure the system performance across the network.
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7.2 Chain Topology

In this section, the results under varying number of hops in a single flow chain 

topology are presented. The importance of analyzing the results in a chain topol-

ogy is that it enables us to investigate different aspects of intra-flow instability 

in isolation from inter-flow instability.

First, let us review figure 7.1 which shows the underlying cause of TCP packet 

drops in the link layer under varying number of hops in a chain topology. The im-

portance of this figure is to determine the roots of TCP retransmissions triggered 

from the link layer.

As it can be seen, a majority of higher layer packets are dropped because 

of excessive contention between competing nodes in the default algorithm. This
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clearly confirms the discussion given in subsection 4.2.2 on the impact of intra-

flow packet interference on TCP performance. Meanwhile, figure 7.1 suggests 

that still a considerable number of packets are dropped because of congestion in 

the network as a result of large number of outstanding data in the network. These 

two issues are clearly addressed using the proposed algorithm where the TCTC 

almost reduces the TCP packet drops to zero by limiting TCP flight size and 

therefore controlling both congestion and contention in the network. In addition, 

most of the packet drops are recovered locally in the link layer through the use 

of the DCR-ELR algorithm.

One issue that needs to be addressed in figure 7.1 is the sharp increase of packet 

drops due to contention and buffer overflow in a 3-hop chain. The increase in the 

contention related drops can be explained by the introduction of hidden terminals 

in the forward path in a 3-hop chain in contrast to 1-hop and 2-hops scenarios. 

For the increase in buffer overflow related packet drops, we believe the increase is 

mainly due to the channel contention reuse feature of the 802.11 which is 3 hops 

as described in section 4.2.2. In particular, since in a 3-hop chain topology, there 

can be only one transmission at a time, packets are kept in buffers for longer 

period of time and therefore there is a higher possibility of packet drop due to 

buffer overflow.

To evaluate the TCP stability, let us consider the results of the TCP segment 

delay shown in 7.2.
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7.2 Chain Topology

(a) 1 hop (b) 2 hop

(c) 3 hop (d) 4 hop

100 2 0 0  300  4 0 0  500  600
Time (sec)

(e) 5 hop (f) 6 hop

Figure 7.2: TCP segment delay in a chain topology
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As it is obvious from the results shown in figure 7.2, TCP segments in the 

proposed scheme experience a lower and less fluctuating delay in contrast to the 

default algorithm. More specifically, while using the proposed scheme the TCP 

segments delay fluctuation is on average 3% in each scenario, the figure rises up 

to 44% when the default algorithm is employed. Furthermore, while the TCP 

segment delay is bounded between 8  to 40 ms depending on number of hops 

traversed by the packet in the proposed algorithm, the TCP packets segment 

delay can be as high as 800ms in the default algorithm which implies a high 

sensitivity of packet delay to hop counts. It is also interesting to note that the 

TCP instability in the default algorithm becomes more serious, as the number of 

hops increases.

While the above results confirm the improvement of the TCP stability when 

the proposed schemes are deployed, it is very important to make sure that such 

stability has not been achieved in the cost of compromising TCP goodput. To this 

aim, figure 7.3 presents the aggregated TCP goodput achieved across different 

number of hops.

The results are very promising as it shows there is on average 34% goodput 

improvement in all scenarios when the proposed schemes are applied in compar-

ison to using default protocols.

Finally, to evaluate the efficiency of the proposed algorithm in controlling the 

level of congestion and unnecessary contention in the network, let us consider the 

number of TCP retransmissions for both schemes as shown in figure 7.4.

The results show that in comparison to the default algorithm, the proposed 

scheme has dramatically reduced the number of TCP retransmissions by control-

ling the amount of outstanding data in the network. In addition, the dramatic
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Figure 7.3: TCP goodput in a chain topology

Figure 7.4: Average number of TCP retransmissions in a chain topology

cut in the number of TCP retransmissions can be traced back to DCR-ELR. This 

is because as DCR postpones TCP’s reaction to large number of out-of-order 

packet deliveries, ELR recovers most of the failed link layer packet drops locally
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and therefore only a very small number of end-to-end recoveries are triggered 

from TCP.

It is important to note that the reduction in TCP retransmissions without any 

reduction in TCP goodput clearly demonstrates the efficiency of the proposed al-

gorithm in utilizing channel resources and tuning TCP sender transmission rate 

close to its optimum value.

In addition to transport layer metrics, a number of measurements have also 

been performed in the link layer to evaluate the performance of the proposed 

algorithms in particular from the power efficiency point of view. As the first 

link layer metric, figure 7.5 shows the average time in milliseconds that packets 

are kept in queues before being transmitted into the network. The results from 

this figure can be used to measure the level of congestion as well as the relative 

amount of time wasted in queues in different scenarios.
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(a) 1 hop

Default
Proposed

200  300  400
Time (sec)

(b) 2 hop

(c) 3 hop (d) 4 hop

(e) 5 hop (f) 6 hop

Figure 7.5: Queueing delay in a chain topology
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The results suggest the proposed algorithm keeps the queueing delay and 

hence the number of packets in the buffer very low and almost fixed during the 

simulation time and across all number of hops. It is worth mentioning again that 

such a decrease in the queueing delay has been achieved without compromising 

the TCP goodput. In other words, the new algorithm has merely reduced the 

unnecessary buffering of packets in the network.

As a second link layer metric, figure 7.6 presents the average number of back-

off slots before a station accesses the channel. This metric is of particular interest 

to us in a single flow chain topology since it provides a way to monitor any possi-

ble impact of replacing the 802.11 backoff algorithm (BEB) with FBA. Especially, 

let us recall from section 5.4 that FBA was designed to provide fairness between 

contending stations by the introduction of a Restrictive state where the probabil-

ity of a node’s channel access decreases according to the number of consecutive 

channel access events and increases with its buffer size. However, with this ap-

proach there is a danger of introducing higher delays in the case of single flow 

where none of the nodes are shared by any other connection. In addition, the 

introduction of Tradeoff-co that was added to reduce the probability of packet 

collision in the Normal state can have a negative impact on the number idle slots 

in the network.
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(a) 1 hop (b) 2 hop

Time (sec) Time (sec)

(c) 3 hop (d) 4 hop

(e) 5 hop (f) 6 hop

Figure 7.6: Link layer contention window size in a chain topology
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The results from figure 7.6 rule out such scenarios and confirm in the case 

of no inter-flow contention from other connections, the new algorithm does not 

introduce a considerable amount of channel idle slots in comparison to the default 

operation of 802.11 BEB. Indeed, apart from the 1-hop and 2-hops scenarios, the 

channel idle slots have been decreased using the proposed algorithm. This ob-

servation is mainly due to unnecessary contention in the default algorithm and 

therefore choosing large contention window size by nodes after consecutive col-

lisions. Note that the negligible change of backoff slots in the proposed scheme 

during the observation period, further verifies the more stable and predictable 

behavior of the system compared to default algorithm. The higher number of 

backoff slots in the 1-hop and 2-hops topologies can be explained by FBA’s con-

servative approach in the Normal state.

Finally, figure 7.7 compares the average number of link layer attempts (ALA) 

before a packet is successfully transmitted to its next hop. This metric as ex-

plained earlier can essentially be used as an indication of relative power consump-

tion efficiency of different algorithms.

Figure 7.7: Average link layer attempts in a chain topology
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From the results presented, it can be claimed that on average 32% less trans-

missions are required in the proposed scheme compared to the default one to 

deliver the same amount of link layer data traffic. In other words, the proposed 

algorithm can reduce the number of unnecessary packet transmissions by a factor 

of one third and therefore can save considerable amount of energy.

7.2.1 Impact of Probe Interval

In subsection 5.2.6, the probe interval was introduced as the number of samples 

in which the receiver updates its contention delay window (ctwnd). As discussed 

there, the main importance of the probe interval is to determine the sensitivity of 

the receiver to the contention delay information received from individual packets. 

Note that the choice of the probe interval becomes important when for any reason 

(e.g. start of new connection in the interference range of one or more of the nodes 

along that connection), the level of contention experienced by packets changes 

during the connection period. To simulate such a scenario, we used a topology 

shown in figure 7.8 where connection 1 (from node A o B) starts at time 0 and 

runs until the end of simulation while connection 2 (from node F to G) starts at 

time 250 seconds and lasts for 100 seconds.
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Connection 2 
----------------------►

Figure 7.8: 4 hop chain topology with interference

To show the impact of different probe intervals on system performance, the 

average number of buffered packets across all nodes has been used as shown in 

figure 7.9.

Time (sec)

Figure 7.9: Impact of probe interval choice on buffer size
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The results confirm first of all a short probe interval (e.g. 2 packets) can 

lead to fluctuation and therefore instability in the network as the calculation of 

ctwnd becomes very sensitive to the contention delay experienced by individual 

packets. On the other hand, if a large probe interval such as 50 packets is chosen, 

the convergence time (i.e. the time it takes for the algorithm to adjusts itself 

to new situation) can be considerable (as large as 60 seconds). This is definitely 

unacceptable since if during the probe interval time, the contention level increases 

(e.g. time 250 seconds in figure 7.9 when connection 2 starts), connection 1 will 

experience a severe delay and packet retransmissions as node B does not update 

its ctwnd before the end of current probe interval. On the other hand, if during the 

probe interval time, the contention level decreases (e.g. time 350 seconds in figure 

7.9 when connection 2 stops), the channel resources would be underutilized as 

node B restricts node A from accessing the newly available bandwidth. Although 

the exact value of the optimum probe interval depends on individual situations, 

the simulation results suggest values close to 1 0  packets satisfy the objectives of 

introducing the probe interval.
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7.3 Cross Topology

The main objective of this section is to evaluate the effectiveness of the FBA 

scheme in tackling the channel access unfairness as described in 4.3.1. To this 

aim, as shown in figure 7.10 a number of cross topologies with 2 connections are 

used.

2

Connection 1 

Connection 2

(a) 2x2 (b) 4x4

(c) 6x6

Figure 7.10: Cross topologies with different hop count
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The different hop counts in figure 7.10 was considered to make sure the op-

eration of FBA does not depend on the length of the connection. However, in 

order to be able to compare the results between two connections, both contending 

connections in each scenario will run over the same number of hops.

To evaluate the TCP stability in the cross topology, let us investigate figure

7.11 which depicts the average TCP segment delay across both connections.

Time (sec) Time (sec)

(a) 2x2 (b) 4x4

Figure 7.11: TCP segment delay in a cross topology

Similar to the results presented earlier in the chain topology, the TCP packets 

in all cross topologies experience lower and less fluctuating delay on their way to 

receiver. We should note that the peaks in figure 7.11 correspond to situations
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where one of the connections capture the channel and therefore the packets for 

other connection starves.

Figure 7.12 compares the average number of TCP retransmissions in the default 

and proposed algorithms.

Cross Topology

Figure 7.12: TCP retransmissions in a cross topology

It is observed that the proposed algorithms have kept the number of TCP 

retransmissions very low by controlling the amount of outstanding data in the 

network (because of TCTC), more local recovery rather than end-to-end recovery 

(because of DCR.-ELR) and avoiding the channel capture by one of the connec-

tions (because of FBA).

Before comparing the connection’s goodput and further verifying the fairness in 

accessing the channel resources, let us recall from section 5.4 that fairness among 

multiple connections was provided using the FBA algorithm that consisted of sev-

eral states namely Normal, Restrictive, and Greedy. While the maximum value 

of contention window was deterministic in the Restrictive and Greedy state, its 

value was dependent on a new variable called Tradeoff-co in the Normal state. 

As mentioned there, this coefficient was a tradeoff between fairness and achieved
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goodput. The next section investigates the impact of Tradeoff-co on system per-

formance in more details.

7.3.1 Impact of the Tradeoff Coefficient

To investigate the impact of Tradeoff-co on the TCP goodput, let us consider 

the 4x4 cross topology shown in figure 7.10b. First, figure 7.13 compares the 

fairness index between 2  connections using the default and proposed scheme (with 

different value of Tradeoff-co).

Figure 7.13: Fairness index in a 4x4 cross topology

It is clear that the introduction of new backoff algorithm has resulted in 

higher fairness (both short and long term) improvement over the default algo-

rithm between contending connections. More specifically, the fairness improve-

ment becomes considerable for Tradeoff-co larger than 1. This is expected since as
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explained in section 5.4, the Tradeoff-co was introduced to provide equal oppor-

tunities for contending stations by increasing the minimum contention window. 

On the other hand, a larger contention window means providing better fairness 

(especially short-term fairness) as the probability of collisions is reduced between 

contending nodes. However, as the Tradeoff-co increases so does the contention 

window size as more idle channel slots are introduced in the system. This implies 

we should expect a degradation of the TCP goodput as Tradeoff-co is increased. 

The results depicted in figure 7.14, confirm the above statement and show the 

inverse impact of Tradeoff-co on TCP goodput.

Time (sec)

(a) Default
Time (sec)

(b) Proposed (Tradeoffco=l)

Figure 7.14: TCP goodput in a 4x4 cross topology
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Note that the change of channel fairness and TCP goodput stability versus 

Tradeoff-co can also clearly be extracted by comparing the change of transmitted 

TCP sequence number in both connections shown in figure 7.14.

To be able to compare the aggregated TCP goodput, table 7.1 presents the av-

erage TCP goodput achieved by connection 1 and 2 .

Table 7 . 1 :  TCP goodput in a 4x4 cross topology
Goodput 
(Connection 1)

Goodput 
(Connection 2)

Goodput (Av-
erage)

Default 186.18kbps 113.45kbps 149.81kbps
Proposed (Tradeoff-co=l) 237.09kbps 174.10kbps 205.6kbps
Proposed (Tradeoff-co=10) 196.36kbps 171.63kbps 184.01kbps
Proposed (Tradeoff-co=20) 138.18kbps 130.90kbps 134.54kbps

As the results from figure 7.13 and table 7.1 suggest, despite the 35% increase 

of aggregated TCP goodput using Tradeoff-co=l, the fairness index has improved 

by small margin. On the other hand, while the fairness has been dramatically 

improved using the Tradeoff-co=20, there is a 10% reduction in TCP goodput. 

Therefore, the choice of Tradeoff-co is simply a tradeoff between goodput and 

fairness. Based on simulation results in different scenarios, our recommendation 

for Tradeoff-co value is a number between 5 to 10 as it delivers an acceptable 

combination of fairness and TCP goodput.

161



7.4 Mesh Topology

7.4 Mesh Topology

To further verify the effectiveness of the proposed schemes in more realistic sce-

narios, two different sets of experiments are performed in a mesh topology as 

explained in the following section.

7.4.1 Identical Flows

The main objective of this section is to measure the effectiveness of the TCTC, 

FBA and DCR-ELR scheme in alleviating both intra-flow and inter-flow insta-

bility when multiple identical connections share the channel resources. To this 

aim, in the first mesh topology scenario shown in figure 7.15, there are in total 

6 TCP sender/receiver pairs all running over 6 hops. The connections have been

Sender 4 Sender 5 Sender 6

Receiver 4 Receiver 5 Receiver 6

Figure 7.15: 6x6 mesh topology with identical flows
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setup in a way that all connections run over 6 hops and the adjacent connections 

are 2 hops away from each other to avoid the hidden connection problem and 

therefore become identical. To evaluate the TCP instability, the change of TCP 

sequence number during simulation time has been used as the main parameter 

in this section. This is because while TCP sequence number can be used for 

stability comparison, it also includes the information on aggregated goodput and 

fairness and therefore it eliminates having multiple graphs to compare different 

aspects of the TCP stability using the default and proposed algorithms.

Figure 7.16 illustrates the change of TCP sequence number in mesh topology 

given in figure 7.15 with identical flows.
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Figure 7.16:
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Illustration of TCP instability in a mesh topology with identical flows
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There are couple of interesting points that can be extracted from figure 7.16. 

First of all, the introduction of proposed scheme considerably improves the sta-

bility of all TCP connections. We believe such stability has been mainly achieved 

thanks to TCTC approach in controlling the amount of outstanding data in the 

network. This can be more clear if we notice that in connections using the de-

fault algorithm, the TCP goodput starts dropping sharply a short time after the 

connections start. This clearly validates the existence of TCP instability loop 

explained in subsection 4.2.4 where soon after the connection starts, the TCP 

sender transmits more data than the network can handle resulting in excessive 

contention and packet drops.

The other interesting point in figure 7.16 is the lower goodput of connection 1 

and 4. To investigate the cause of this observation, a detailed packet trace was 

performed in OPNET debugger (ODB). The main finding and explanation was 

that the level of contention is always higher in the first few nodes at the begin-

ning of the connection. Since Sender 1 and 4 in figure 7.15 share the same next 

hop, the probability of collision in that shared node is higher than other nodes. 

This higher probability of collision results in extra recovery time and therefore 

the TCP goodput is less in comparison to the other connections.

To have a better perspective on fairness between different TCP connections in 

our mesh topology, figure 7.17 compares the TCP short and long term fairness 

between all 6 connections under default and proposed algorithms.
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Figure 7.17: Fairness index in a mesh topology

Note that here the absolute fairness and unfairness is achieved when fairness 

index is equal to 1 and 0.16, respectively. The figure clearly supports the im-

provement of fairness between all connections using the proposed scheme mainly 

thanks to FBA.

7.4.2 Random Flows

In the second set of experiments, we run simulations in a mesh topology where 

50 nodes are distributed randomly in a area of 1000m x 1000m and 6 random 

TCP source/receiver pairs are chosen as shown in figure 7.18.

Note that the main difference between the random and identical flows in the 

used mesh topology is twofold: Firstly, connections can have a different number
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Sender 2

Figure 7.18: 6x6 mesh topology with random flows

of hops with respect to each other. Secondly, nodes can be shared between more 

than 2 connections.

Similar to section 7.4.1, the TCP sent sequence number is used to compare sta-

bility and aggregated goodput. However, since connections can run over different 

number of hops, the TCP sequence number of different connections cannot be 

compared against each other. In addition, the fairness measurements described 

earlier in this chapter cannot be used to evaluate the fairness between different 

connections as the connections are not identical. Therefore, the results presented 

here can only be used for TCP stability measurements.

Figure 7.19 shows the TCP sent segment sequence number across all connections.
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(a) Connection 1 (b) Connection 2

(c) Connection 3 (d) Connection 4

(e) Connection 5 (f) Connection 6

Figure 7.19: TCP goodput in a random topology
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The results suggest the overall improvement of TCP stability and goodput 

for all connections using the proposed scheme. However, in some connections 

(e.g. Connection 3 and 5), the TCP goodput fluctuations is not negligible and 

there are occasions where the connection cannot send any packet to the network 

for a period of time. Through detailed investigation of packet traces in the ODB, 

it has been realized that such a problem mainly occurs in connections where one 

or more of the intermediate nodes are shared between many connections (usually 

more than 3). In particular, the results of the packet trace shows the FBA 

algorithm in such situations cannot function appropriately as the FBA restricts 

the frequent channel access by the shared node (by forcing the node to stay in 

the Restrictive state). However, by putting the node in the Restrictive mode, 

the shared node cannot relay all the packets it receives from multiple connections 

which can lead to unfairness and instability.

7.5 Summary

This chapter presented the simulation results of the effectiveness of the new algo-

rithms on TCP and 802.11 performance. To be able to investigate the effectiveness 

of proposed algorithms on intra-flow and inter-flow instability separately and also 

together, a variety of chain, cross, and mesh topologies were chosen. Also, due 

to cross layer impact of 802.11 and TCP on each other, a wide range of metrics 

across both layers were selected to have a fuller picture of the impact of the pro-

posed scheme on the performance of both layers. The results were promising as 

it validated the arguments made in Chapter 4 regarding the cause of intra-flow 

and inter-flow instability. In addition, it was shown the introduction of TCTC,
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DCR-ELR, and FBA in tackling the individual causes of TCP instability without 

any compromise in achieved throughput. On the other hand, it was also realized 

that the proposed backoff algorithm cannot be as effective as expected in scenarios 

where one or more of the intermediate nodes are shared among many connections. 

Nevertheless, the proposed package will always outperform the default algorithm 

and therefore it is worth being deployed in the network.

170



Chapter 8
Conclusion and Future Directions

8.1 Summary of Thesis

Ad hoc networks have enjoyed significant research attention in the last few years 

thanks to their easy deployment, maintenance and application variety. To en-

able seamless integration of ad hoc networks with the Internet and to provide 

reliable end-to-end connections, TCP seems to be the natural choice for users of 

ad hoc networks that want to communicate reliably with each other and with 

the Internet. However, the TCP protocol and its parameters were devised for 

wired networks. Based on assumptions that are challenged in an ad hoc networks 

environment, mainly due to the wireless nature of the shared medium, random 

channel errors and route failure. Similarly, the IEEE 802.11 standard was mostly 

evolved and optimized for infrastructure-based WLANs rather than ad hoc net-

works. As shown , such discrepancies may lead to unpredictable behaviour and 

performance degradation of TCP in ad hoc networks. Of particular interest in 

this thesis was to investigate the TCP instability issue seen in ad hoc networks.
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Based on various simulation observations and analysis, the TCP instability was 

broken down into two main categories namely intra-flow and inter-flow instability. 

First it was shown a critical source of TCP intra-flow instability lies in the TCP 

window mechanism which controls the amount of traffic sent into the network. 

To tackle the problem, a cross layer algorithm called TCP Contention Control 

(TCTC) was proposed to adjust the amount of outstanding data in the network 

based on the level of contention experienced by packets as well as the throughput 

achieved by connections. The main features of this algorithm were its flexibility 

and adaptation to the network conditions.

It was also realized that channel capture serves as the primary reason behind 

TCP inter-flow instability. Through simple examples, it was then shown that the 

operation of 802.11 binary exponential backoff algorithm plays an important role 

in channel access unfairness. To overcome TCP inter-flow instability, a modified 

backoff algorithm called Fair Backoff Algorithm (FBA) was introduced to provide 

fair channel access between contending stations. The main design issue of FBA 

was to adjust the contention window size by taking into account the previous 

history of channel access in addition to number of packets waiting in the node’s 

buffer.

In parallel to TCTC and FBA, a modified version of Delayed Congestion Re-

sponse (DCR) called DCR-Extended Link layer Retransmission (DCR-ELR) was 

introduced to alleviate the TCP sensitivity to high numbers of packet reorderings 

due to frequent contention losses in ad hoc networks. The main feature of the 

proposed algorithm was to provide the link layer with extra chances of local loss 

recovery due to high cost of the TCP end-to-end recovery procedure.

To evaluate the impact of the proposed algorithm, OPNET simulations were 

used. To validate the accuracy of the simulator, a series of simple experiments
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were performed on a real testbed and it was shown the simulation results closely 

match with testbed results. Finally through an extensive set of simulations, it 

was shown that the combination of the proposed schemes can dramatically im-

prove TCP stability without compromising other network metrics especially the 

TCP goodput.

In addition to addressing TCP instability in ad hoc networks, a new and 

accurate 3 dimensional Markov model of the operation of 802.11 DCF was also 

presented. The objective of developing this model was to analyze the impact of

802.11 parameters on link layer throughput. Using mathematical analysis, it was 

shown the default parameters of 802.11 DCF result in substantial throughput 

degradation. It was also realized, to optimize the link layer throughput, the 

minimum contention window size should be adjusted according to the number 

of contending stations. However, in the 802.11 standard, the value of minimum 

contention window is hardwired in the 802.11 physical layer details, and thus 

it cannot be made dependent on the number of stations. As a consequence of 

this lack of flexibility, it was shown that the throughput especially in the large 

networks, can be significantly lower than the maximum achievable.

8.2 Directions for Future Work

In the course of this research, several prospects for future work have become evi-

dent and some issues may be the subject for further study. These are summarized 

below.

• The evaluation presented in this thesis assumes a homogeneous context, i.e. 

where all nodes in the network implement the proposed schemes and are all
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well functioning. In reality, however any proposed alterations are deployed 

gradually in a network and communicating clients are expected to function 

adequately in a mixed environment, one research prospect along these lines 

would involve examining existing solutions in such heterogeneous settings 

and determining whether a gradual adoption is a viable option.

• During the analytical analysis of the operation of 802.11 DCF, the impact 

of hidden terminals on control packets was ignored to simplify the model. 

In addition, the network was assumed to operate in a saturated traffic. To 

get a more realistic model, these assumptions should be removed.

• Throughout this thesis, different metrics such as segment delay, TCP good- 

put, and fairness index were used to analyze and compare TCP instability in 

different scenarios. However, there is a clear need to be able to quantify the 

instability parameter by developing a metric that takes into account differ-

ent instability perspectives such as delay variation, instantaneous through-

put, and aggregated goodput.

• One area that requires extra attention is the concept of the fair allocation 

of channel resources. In particular, as shown in this thesis, the approach 

of providing per node fairness can be sometimes problematic in ad hoc 

networks as nodes which are shared between more connections should get 

more channel resources. However, the per node fairness approach cannot 

address this issue without the exchange of information packets between 

neighboring nodes in ad hoc networks which does not seem to be realistic 

or at least recommended. Therefore, more study is required to combined 

the concept of per node fairness with per flow fairness.
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• Improving the performance of TCP in multi-hop ad hoc networks is truly a 

cross-layer problem. In other words, it is essential to consider the interac-

tion of different layers when optimizing the TCP performance. One of the 

major areas that can dramatically improve the operation of TCP in ad hoc 

networks is the role that the routing protocols play. In particular, a further 

study is required to analyze the interaction of TCP, the routing protocol 

and the 802.11 MAC protocol.

• One of the main features of the TCP Contention Control proposed in this 

chapter was its compatibility with all TCP versions as it does not require 

any changes in TCP congestion control algorithm. This can be very useful 

in heterogeneous networks (wire +  wireless) where the same TCP can be 

used in both networks. Therefore, comprehensive simulations should be 

conducted to evaluate the capability of the proposed schemes when the 

connection is expanding from wire to wireless networks or vice versa.

8.3 Conclusion

In general, to fully benefit from the flexibility and advantages of multihop ad hoc 

networks, there is a clear need for improvement of the way TCP operates in such 

networks. In particular, the main objective of this research was to investigate 

thoroughly the problem of TCP instability in multihop ad hoc networks.

The main contributions of this work are twofold. Firstly, a comprehensive 

analytical model of IEEE 802.11 DCF in ad hoc networks was developed. Based 

on the analytical results, it was realized that for a given number of stations, 

there exists an optimal value of packet transmission probability at which 802.11

175



8.3 Conclusion

achieves the highest throughput. However, the actual probability of packet trans-

mission in current 802.11 standard is much higher than its optimum value hence 

causing dramatic 802.11 throughput degradation.

Secondly, by addressing the TCP instability problem by separating it into intra-

flow and inter-flow instability, it was shown the large number of outstanding TCP 

packets in the network, the TCP high sensitivity to duplicate acknowledgments, 

TCP recovery instead of link layer recovery for contention drop packets, and the 

unfair 802.11 backoff algorithm are the primary causes of TCP instability. For 

each of the above issues, a solution was proposed and through extensive simula-

tions, it was shown the combination of the proposed schemes can dramatically 

improve TCP stability without compromising other network metrics especially 

TCP goodput.

As discussed earlier in this chapter, there are still a variety of interesting 

research issues that can be the subject of future investigations. One important 

area is to consider solutions for intra-flow instability by improving both per node 

and per flow fairness. Furthermore, more simulations and testbed experiments are 

required to be conducted in order to fully evaluate the scalability and effectiveness 

of the proposed algorithms in heterogenous networks.
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