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Abstract 

In this paper, a new numerical method for simulating the breakup of ice floes in water 

waves will be presented. The method is based on Smoothed Particle Hydrodynamics 

(SPH) but several new numerical techniques are developed to address the challenges 

associated with wave-ice interaction including breakup. One of them is the new 

interaction model for fluid-ice interaction, which is not only suitable for small density 

ratio but also for large density ratio. This model may also be employed by other 

methods for dealing with general fluid-structure integration. In addition, a technique 

for modelling the separation of broken ice pieces is developed. Apart from these, 

a treatment is proposed to rectify the problem caused by unequal time steps in 

simulating ice and fluid, which is necessary for achieving higher computational 

efficiency. The numerical method is validated by comparing the numerical results with 

the experimental data available in literature, which shows that the agreement between 

them is satisfactory. On this basis, the breakup of ice floes induced by solitary waves 

and focused waves are studied. To the best of knowledge of the authors, it is the first 

method which can simulate the ice breaking in waves by two-way coupling approach.  

The results for ice breaking in solitary and focused waves have not been found so far 

in previous publications available in literature. 
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Nomenclature 

v  velocity  l fracture length 

p pressure Ym maximum heave displacement 

g gravitational acceleration Af wave amplitude  

q speed of sound G shear modulus 

n unit normal vector   

a acceleration Greek symbols 

s deviatoric shear stress   density 

c ice cohesion   viscous shear stress 

m mass of particle   kinematic viscosity 

N (M) particle numbers   stress  

W  kernel function   artificial viscous term 

h kernel smoothing length   strain rate 

V  volume of particle   Poisson’s ratio 

r position   ,  friction and dilatancy angle 

R artificial stress 
f   flexural strength 

dx initial particle spacing 
p  accumulated plastic strain 

t  time step 
ev

 
volumetric strain rate  

K bulk modulus e  deviatoric shear strain rate 

 I fluid ice
F

−
 force on an ice particle I from its 

neighbouring fluid particles 
  plastic multiplier rate 

 f ice fluid
F

−
 force on the fluid particle f from 

its neighbouring ice particles  

 

Subscripts and subscripts 

d distance from the boundary to 

particle 

t time 

dl length between particles  ,  dimensional indexs 

E Young’s modulus x , y  Cartesian coordinates 

D water depth f(l) physical quantity of fluid 

Li length of ice floe i, I(j) physical quantity of ice 

thi thickness of ice floe dum dummy particle 

H, T wave height and period  b physical quantity of boundary 

1. Introduction 

Wave-ice interaction exists in the marginal ice zone (MIZ) of ocean.  During the 

interactions, ocean waves can cause the ice to break (Squire, 2007, 2011; Kohout et al., 

2016; Steele, 1992; Herman, 2017).  The broken ice pieces have different sizes. These 

with their horizontal sizes much larger than the wavelength are called as ice sheets 

while these have their horizontal sizes in the same order of the wavelength called as ice 



floes. The broken ices can have significant effects on the performance of ships and 

structures operating in the MIZ. Therefore, there is great demanding on understand the 

mechanism of sea-ice breakup under wave impact. To do so, one may use either 

experimental or numerical methods. As indicated by its title, this paper will develop a 

numerical method and so the literature review below will focus on numerical studies. 

Different numerical approaches have been adopted for studying the ice floes and ice 

sheets. To study ice-sheet interaction with waves, researchers treated the ice sheets as 

a think elastic and plastic plate. For example, Meylan et al. (2015) used the linear 

potential flow and plastic thin-plate theories to study the flexural motion of an ice plate 

induced by ocean waves; and Wang and Shen (2011) developed a continuum 

viscoelastic model, in which an approximate solution was presented for the linear wave 

interaction with a large ice sheet.  To study ice floes, many researchers have considered 

them as a rigid block.  Bai et al. (2017) used the potential flow model and the viscous 

flow method to investigate the kinematic response of rigid ice floes in waves. Yiew 

(2017) studied collision of two rigid ice floes floating in waves.  Shen and Ackley (1991) 

also studied the collision of rigid ice floes in waves by approximating the wave field as 

a variable gravity field. Considering the ice floes as a rigid block may be suitable only 

for very small ice floes. Fewer researchers did treat the ice floes as deformable but 

nonbreaking bodies. Squire (1981) proposed a numerical model based on finite element 

techniques to compute the flexure of an arbitrarily shaped ice floe in ocean waves. 

Zhang et al. (2019) developed a two-dimensional model to study the deformation and 

stress of the ice floes.  

In the above references, the breakup of ice floes under ocean waves are fully 

neglected.  The other area of study which partially considered the ice break-up was on 

the ice floe size distribution. Dumont et al. (2011) proposed a numerical model 

incorporating a simple parameterization for ice floe breaking and a wave scattering 

model in a one‐dimensional numerical framework to study the floe size distribution in 

MIZ. Williams et al. (2013 a,b) presented a wave-ice interaction model which includes 

wave attenuation due to the presence of ice cover and the breakup of ice by the waves. 

They used a probabilistic approach to obtain the breaking criterion.  Montiel and Squire 

(2017) coupled a three-dimensional linear model of ocean wave with a parametrisation 

of flexural failure model for ice floe. They mainly focus on gaining a theoretical 

understanding of how floe size distribution evolves under repeated wave action. Based 

on a linear water wave theory and viscoelastic sea ice rheology, Mokus and Montiel 

(2021) proposed a two-dimensional numerical model for the wave-triggered sea ice 

breakup. Their model included the wave scattering and dissipation and a strain-based 

breakup parametrisation. They also focused on the ice floe size distribution. Zhang and 

Zhao (2021) presented an approximate method including a 2D ice breakup based on the 

stress break-up criterion and the MC stress break-up criterion for predicting the ice floe 

break-up under ocean wave forcing in the MIZ. Their model was also designed to 



facilitate the prediction of the ice floe size. While these investigations provided a good 

prediction of the floe size distribution, the detailed physical processes of the wave-ice 

interaction, the ice deformation and breakup were not considered.  

Toward revealing the physics of ice breakup caused by waves, several studies were 

carried out. Xu et al. (2012) proposed a discrete-element method (DEM), in which a 

given velocity field of waves was applied to each ice floe particle. The interaction 

between fluid and ice were not explicitly modelled in their work. He et al. (2022) 

presented a numerical model simulating the breakup of the ice under the regular 

incident wave based on the Computational Fluid Dynamics (CFD) -Discrete Element 

Method. Ren et al. (2021) used a peridynamics (PD) model to simulate the breakup of 

sea ice induced by regular waves with the drag forces estimated by an empirical model. 

The stress distribution and crack propagation path of the ice sheet were simulated.  In 

the cited studies, one-way coupling approach was adopted. In other words, only the 

effect of waves on sea ice was considered, but the effects of the motion and breakup of 

ice floes on fluid dynamics were ignored.   

In contrast, the present paper will consider both effects, i.e., adopting a two-way 

coupling approach. The method to be presented in this paper will be based on the 

Smoothed Particle Hydrodynamics (SPH) method. The recent extensive review on the 

SPH development may be found in Luo et al. (2021). A brief review will be only given 

below. SPH method has been widely applied to the ocean and coastal hydrodynamics 

(Morris et al., 1997; Shao and Lo, 2003; Shao, 2010; Khayyer et al., 2008; Zheng et al., 

2014; Zhang et al., 2018; You et al., 2021). Because of its nature of Lagrangian 

formulation (Jiménez et al., 2018; Ren and Park, 2023), SPH can simulate the large 

deformations and failure behaviors of solid materials effectively. A few examples are 

mentioned here. Libersky and Petschek (1991) and then by Randles and Libersky (1996) 

used the SPH for investigation of large deformation and corresponding response of a 

solid material. Bui et al. (2008) studied the large deformation and post-failure of soil. 

Wang et al. (2020) modelled the mixed-mode fracture using the SPH method and 

mixed-mode cohesive fracture law. Ganesh et al. (2022) presented the pseudo-spring-

based Eulerian form of SPH to model mode-I fatigue crack propagation. Mu et al. (2023) 

proposed an improved SPH method to simulate the failure process of rock with pre-

existing cracks under compression loads. The SPH method has also received 

considerable attentions in the fluid-structure interaction (FSI) problems. Bui et al. (2007) 

introduced a SPH algorithm to simulate the interactions between water and soil.  Joshi 

et al. (2019) developed an axisymmetric SPH FSI solver to simulate the collapse of a 

single cavitation bubble close to an elastic-plastic material. Antoci et al. (2007) 

proposed a SPH-based FSI solver to study the complex hydro-elastic problems. 



Khayyer et al. (2021) carried out investigations on the fluid-elastic composite structures 

interactions by using a coupled incompressible SPH-Hamiltonian SPH solver. Khayyer 

et al. (2022) proposed the 3D SPH-based Lagrangian meshfree hydroelastic solver for 

reproduction of incompressible fluid flows interacting with anisotropic/isotropic 

composite elastic structures. Ren et al. (2023) applied a SPH model to investigate the 

sloshing flow interaction with an elastic baffle. 

SPH method has also been applied to simulating ice dynamics. Gutfraind and Savage 

(1997) and Oger and Savage (1999) applied a rheology based on the Mohr–Coulomb 

yield criterion in the framework of SPH to study broken-ice fields floating on the water 

surface and moving under the effect of wind forces without water waves. Shen et al. 

(2000) presented a two-dimensional numerical model for dynamic transport and 

jamming of surface ice in rivers, in which ice dynamics is simulated by the SPH method. 

The moving ice on water surface is considered as a continuum and non-breaking. Ji et 

al. (2005) presented a viscoelastic-plastic (VEP) constitutive model for sea ice 

dynamics, where SPH method was used in the numerical simulations for ice motion 

under wind and current drags in an idealized rectangular basin without water waves. Ji 

et al. (2007) developed a hybrid Lagrangian-Eulerian (HLE) method for studying ice 

ridging under uniform current and wind field, in which ice is represented by SPH model 

with their own thicknesses and concentrations, again without considering water waves. 

Zhang et al. (2017) used the SPH method to simulate the bending and compression 

failure processes of ice block. Extending their work, Zhang et al. (2019) investigated 

the ship-ice interaction process. The effects of fluid on ice are not considered in both 

papers. They further extended their work in Zhang et al. (2019) to model the kinematic 

response and the flexural motion of ice floes in waves; however, the breakup of ice floe 

induced by waves was neglected. 

In contrast with the current literature, this paper will develop a new method based on 

SPH. The new method will adopt two-way coupling approach, i.e, taking into account 

of wave effects on ice and ice effects on waves. To our best knowledge, this is first 

paper of this kind. To tackle the challenges associated with ice breakup and two-way 

coupling, new numerical techniques will be developed. These include a new model for 

dealing with the interaction between fluid and ice and a new separation model for 

breakup of ice. Apart from these, an unequal time-step scheme for simulating ice and 

fluid is adopted and the problem caused by the unequal time-step scheme is rectified by 

an effective treatment. The rest contents of the paper are organized as follows: Firstly, 

the governing equations including constitutive model for ice are introduced briefly. 

Then, some numerical formulations of SPH method are given in Section 3. After that, 

the details of new numerical techniques are described in Section 4.  Following this, the 

convergent tests and validation on the proposed method will be carried out before 

applying the new method to study various cases for ice breaking in solitary and focusing 



waves in Section 5. 

2. Governing equations 

2.1. Equations of Fluid 

 
Fig. 1. Sketch of wave-induced breakup of ice floe 

 In this paper, the fluid (Fig. 1) is assumed to be weakly-compressible and the flow 

of fluid is governed by the mass and momentum conservation equations: 
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where  indicates the Cartesian components in x or y  directions; v ,   and p with 

subscript f is the velocity, the density, the pressure of a fluid particle f; g is the 

gravitational acceleration; 2=f fv   is viscous shear stress of fluid with 𝜇 being the 

kinematic viscosity; D Dt  is the time derivative operator following particle motions.  

For a weakly compressible fluid, the following equation of state (EOS) is used, which 

defines the relation between pressure and density: 
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where 7 =  and 

2

0f fq
B




= , 0f  is reference density, fq  is the sound speed for fluid. 

The above equations have been used widely in the SPH community, see for example, 

Bouscasse et al. (2013) and Ren et al. (2015). 

On solid boundaries of the fluid phase, the following conditions (Ma and Zhou, 2009) 

should be imposed 

    =f b v n v n
 
                                                    (4) 

       ( )f f bp  =  − n n g n a
 
                                        (5) 

where n is the unit normal vector of the solid boundaries; bv and ba are the velocity and 



acceleration of the solid boundaries, respectively. The boundary conditions on the 

interface between fluid and ice will be discussed later.  

2.2. Equations and Constitutive Model of Ice 

2.2.1 Equations of ice 

The mass conservation equation for ice (Fig. 1) is the same as Eq. (1) and just needs 

to make the changes of 
f I →  and f I→v v . The momentum equation for ice is 

written as: 

  
1I I
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g
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


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where Iv  is the velocity of ice particle I and 
I  is its density; I

 is its stress tensor.  

The stress tensor can be divided into two parts: pressure Ip  and deviatoric shear stress 

Is . Similar to Zhang et al. (2017), the pressure Ip  is defined by 3I Ip = −  and the 

stress tensor may be expressed as: 

          I I Ip s   = − +
                                              

 (7) 

in which   is the Kronecker delta and satisfy the following conditions:  = 1 for 

 =  or  = 0 for   .  

2.2.2 Constitutive Model of ice 

The constitutive model depends on the failure mode. Ice is a strain-rate-dependent 

material. At low strain rate, ice has a ductile behaviour. It fails mainly in creep and 

micro-cracking mode and can be treated as a viscous elastic material (Jordaan, 2001). 

At high strain rates (>0.001 1/s), ice exhibits the typical brittle failure mode (Schulson, 

2001); as a result, the visco-plastic effect is considered weak, and the elastoplastic 

constitutive model can be employed (Shi et al., 2017). Based on our previous study, the 

strain rate is high during failure process of ice. Thus, the same elastoplastic constitutive 

model of ice as that of Zhang et al. (2017) will be employed here. In addition, according 

to Sanderson (1988), old ice is conventionally treated as an isotropic material, and first-

year ice possesses a typical orthotropic property in its mechanical behaviours. The 

relatively simple isotropic ice model is used in this paper as our focus here is on a 

numerical method. More complex ice model considering the anisotropy, the 

temperature dependence and visco-elastic-plastic behaviours of the ice will be explored 

in the future study. 

 For completeness, the details of the ice model are given in Appendix A. This model 

was developed on the basis of Bui et al. (2008) and Deb and Pramanik (2013) for 

simulating the failure process of ice. It combines the elastoplastic constitutive model 



with the Drucker-Prager yield criterion and cohesion softening. In the model, the 

behaviour of ice is determined by the yield function ( , )F c as defined in the 

Appendix A. When ( , ) 0F c  , ice is in elastic stage and the stress and strain 

satisfies the generalized Hooke's law. When ( , ) 0F c  , ice is in the plastic state and 

the stress-strain follows a nonlinear relationship. During this stage, the stress needs to 

be corrected to keep ( , ) 0F c  . In addition, the cohesion of ice is softened to model 

the effect of fracturing or cracking. The whole procedure is illustrated in Fig. 2.  This 

model has been validated for the cases about three-point bending and four-point 

bending failures of the ice beam in our previous publications (Zhang et al. 2017 and 

Zhang et al., 2019)  

 

  

Fig. 2. Procedure of numerical implementation of the elastic–plastic ice model with 

the details given in Appendix A. 

3. SPH formulations  

In the SPH method, the quantities of a particle can be approximated by the direct 

summation of the relevant quantities of its neighbouring particles.  For convenience of 



explanation, we use subscripts f (l) and I (j) to indicate fluid and ice particles, 

respectively, in the following SPH equations. 

The continuity equation for an ice particle can be approximated as follows: 
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where mj is the mass of Particle j, 
IN  is the number of ice neighbour particles; W  is a 

kernel function, chosen as the quintic kernel proposed by Wendland (1995).  

The continuity equation for fluid will be approximated by -SPHδ scheme (Antuono 

et al., 2010) with a proper artificial diffusive term, i.e.: 

        ( ) 0
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where h is the kernel smoothing length, lV is the volume of particle l and fN  is the 

number of fluid neighbour particles, ( ) 2
2
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 ,
 in which r is 

the position vector and fl l f= −r r r . The coefficient   controls the order of magnitude 

of the diffusive term and is set to be 0.01 in this paper. More details about the -SPHδ

scheme can be found in Antuono et al. (2010). Summation is performed with 

superscripts α in Eq. (8) and (9). 

The SPH approximation of the momentum equation for fluid can be written as:  
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Note that the viscous shear stress in Eq. (2) contains second derivatives. In the 

corresponding SPH form (i.e., Eq. (10)), this term is replaced by an artificial viscous 

term 
fl , as proposed by Monaghan and Gingold (1983). 

The SPH approximation of the momentum equation for ice is similar but with the use 

of the artificial stress proposed by Monaghan (2000) and Gray et al. (2001). The main 

purpose of the artificial stress is to prevent the particle from clumping with 

neighbouring particles and to eliminate numerical instability (Swegle et al., 1995). The 

discretized form of the momentum equation for the ice particles is given by 

( )2 2
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where IR
 and 

jR  is artificial stress tensor of particles I and j , respectively; and 
Ijf  



is defined as ( ),Ij Ijf W W dx h=  with dx  being the initial particle spacing.  Summation 

is performed with β in Eq. (11). More details about the artificial stress can be found in 

Zhang et al (2017) and Gray et al. (2001). It should be noted that the artificial viscosity 

and artificial repulsive stress terms in Eq (11) may bring unexpected effect on ice 

fracture behaviors if they are properly imposed. Therefore, it is critical to select 

appropriate values of relevant coefficients. Some numerical tests of the bending and 

compression failure progress of ice in Zhang et al. (2017) and Zhang (2019) has been 

carried out to select their values, which can lead to the satisfactory results for simulating 

the fracture behaviors of ice. 

In addition, the movements of ice particles are estimated by using the XSPH method 

(Monaghan 1992), 
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where  is taken as 0.1 for the structure particle based on the suggestion of Antoci et 

al. (2007). The movement of fluid particles is estimated in the same way.  

As seen in Appendix A, one needs to estimate the strain rate of ice for estimating the 

stresses. We use the Simplified Finite Difference Interpolation (SFDI) method (Ma, 

2008) to do so. The SFDI formulas of the strain rate tensor in 2D cases can be given as:   
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in which ,x y = , ,x y =  and ,m x y= , m

jr  is the component of the position vector 

in x or y  direction. Similarly, the derivative of other variables can also be calculated by 

this method. The enhanced performance of the SFDI method in solid mechanics can be 

found in Zhang et.al (2017, 2019). 

4. Wave–ice interaction model for the breakup of ice floe 

The main original contribution of this paper lies in proposing a method for simulating 

the interaction between wave and ice floe with possible breakup of ice. The novel 

numerical techniques will be detailed in the following subsections.   

4.1. Multiple time steps  

Th ice material and water have very different material features. Their dynamics are 

controlled by different physics. In order to numerically model them correctly and 

efficiently, the time steps for them should be different. By numerical tests in this and 



our previous publications, the time step for ice should be taken as  
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where hI is the smoothing length in ice solver, 
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Following the study of Bouscasse et al (2013), the time step for fluid should be chosen 

as 

max max

0.25 min ,
f f

f

f f f

h h
t

a q v

 
    

 +
 

                          (15) 

where hf is the smoothing length in fluid solver, maxfa  and maxfv  are the maximum 

acceleration and maximum velocity of fluid, respectively with fq  being the artificial 

sound speed of fluid, set to be max=10fq u . 

Based on Eqs. (14) and (15), the maximum time step for fluid can be much larger than 

that for ice. If the former would be taken as the latter, the overall computing efficiency 

would be low and the computational time would be unnecessarily long. In order to 

achieve relatively higher computational efficiency without affecting the accuracy, the 

different time steps for ice and fluid will be used. The marching procedure is illustrated 

in Fig. 3.  

 

 

 

Fig. 3. The time marching procedure for modelling fluid and ice. 

 

 

In this procedure, the time step 
It for modelling ice is determined by Eq. (14). The 

time step for modelling fluid is then given by = f It n t  , where n is an integer which 



is selected properly to ensure that Eq. (15) is satisfied. For one time step of fluid 

modelling, such as from tk to tk+1, shown in Fig. 3, the fluid force at tk acting on the ice 

remains the same until the end of 
In t (more details will be discussed later). The 

solution of ice variables at 
In t  is transferred to fluids, and then the solution of fluid 

variables will be updated at tk+1. After that, the procedure goes on to next time step.   It 

is noted that the iteration between the fluid and ice solvers may be performed but it is 

not found unnecessary if the time steps are determined in the way described here. 

 

4.2. Interaction model between ice and fluid particles 

 

(a) 

   

(b) 

Fig. 4. A schematic diagram of fluid and ice particles at interface boundary. 

 

In the procedure above, the exchange of information between fluid and ice should 

ensure that the kinematic and dynamic conditions on their interface are satisfied, i.e., 

I f=v v                                                       (16)  

I If f If = − σ n σ n                                              (17)  



where Ifn  is the normal vector of the interface. According to Antoci et al. (2007), the 

dynamic conditions in Eq. (17) cannot be directly fulfilled when the viscous shear stress 

for fluid phase is modelled as an artificial viscosity as given in Eq. (10).  

Some studies on implementing the conditions in the SPH method have been conducted. 

An approximation of pressure gradient was used by Antoci et al. (2007). However, this 

method requires computation of the precise position of interface surface and its normal 

direction, which is difficult to achieve, especially in the cases with complex boundaries. 

In addition, the repulsive force method was proposed by Amini et al. (2011). In their 

approach, the repulsive force was not based on the clear mathematical–physical 

formulation. Due to this, the numerical complexity and instability can be caused by the 

uncertainty of the parameters. Adami et al. (2012) presented a generalized wall 

boundary method using dummy particles. Based on that method, He et al. (2017) 

developed a coupled WC-TL SPH formulation to solve hydro-elastic problems. In their 

work, an equivalent interfacial force from fluid is applied to the solid body. That 

method also needs identification of the interface particles and calculate their normal 

direction as in Antoci et al. (2007). Recently, Zhan et al. (2019) presented a unified 

approach for modeling fluid–deformable structure interfaces based on the approach 

proposed by Adami et al. (2012). These available schemes were developed to study the 

fluid–elastic structure interactions.  

The focus of this paper is to model the wave-ice interaction with possible ice breakup, 

which was not considered previously. For this purpose, a new coupling scheme is 

proposed. In this scheme, similar to Adami et al. (2012) and Zhang et al. (2019), some 

ice particles in the support domain of the fluid particle near the interface, e.g. i1, i2….i7 

in Fig. 4(a), are considered as dummy particles for the corresponding fluid particle f. 

These dummy particles are regarded as the continuous fluid phase to fluid particles near 

the interface boundary. Consequently, the dummy particles make contributions to the 

continuity and momentum equations of its neighbour fluid particles. With these dummy 

particles, there will be extra terms in Eq. (9) and (10) for the fluid particles near the 

interface. They are respectively  
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where the variables with subscript dum represent these from dummy particles, and N1 

is the number of dummy particles in the neighbour of the fluid particle concerned. Eq. 

(18a) is to ensure that the density of fluid is correctly estimated. Each term on the right-

hand side of Eq. (18b) represents a force from dummy particle on the fluid particles. 

Overall, Eq. (18b) approximates the force acting on fluid from ice.  

Following Bouscasse et al. (2013) and Ren et al. (2015), the force on an ice particle 



I from its neighbouring fluid particles (Fig. 3b) can be estimated by the following 

equation  
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,

,
I fluid ice

N
i dum f if

I f if

f fuid i dum f i

p p W
F m m

x



 −



 + 
= − −    

                      (19) 

where N2 is the number of fluid particles in the neighbourhood of the ice particle. Since 

=fi f if iW x W x   −  , the interacting force between each pair of interacting particles 

I and f in Eq. (18b) and (19) can have the same modulus and opposite direction.  

Therefore, the momentum conservation for each pair can be ensured and the dynamic 

condition in Eq. (17) can be approximately met if the variables of the dummy particles 

are properly assigned. It is noted that the interaction forces between ice and fluid act 

exactly on the interface in theory. However, in the numerical practice, they are 

equivalently distributed into a small domain near the interface in the SPH formulation.   

In this paper the density for ice near its boundary does not take into account of the 

effects of fluid particles. The sound speed for ice is much larger than the sound speed 

for fluid. Thus, the density fluctuation of the ice model can be much less than that of 

fluid particles. In addition, the motion of an ice particle (e.g., I) is much similar to that 

of its neighbouring particles (e.g., j) due to the cohesion and thus the corresponding 

velocity difference between the ice particles is small. As a result, the density fluctuation 

of ice particles calculated from Eq. (8) can be negligible, and so the density for an ice 

particle near the boundary can be estimated quite accurately even without considering 

the contributions from fluid particles. However, the story may be different for the ice 

particles near the fracturing surface. These ice particles tend to separate from their 

neighbouring particles, and so the velocity difference between an ice particle (e.g., I) 

and its neighbouring particle (e.g., j) can be significant, which may cause some density 

fluctuation. Nevertheless, the fluctuation may have relatively weak effects on the ice 

dynamics as the stresses becomes small for these particles as seen in Eq. (11). This 

issue may need to be further explored in future work. One may have noticed from the 

above discussions that the key issue is how to assign the position, volume, density, 

velocity and pressure to the dummy particles as well as how these dummy variables are 

adopted. For ease of implementation, the position, volume and density of the dummy 

particles are made equal to these of corresponding ice particles calculated by Eq. (8) 

and (11). The velocity and pressure of the dummy particles will be discussed separately 

in the next two subsections.   

4.3. Velocity on dummy particles  

The velocity of dummy particles plays three roles: involved in the momentum 

equation of dummy particles discussed in next section; used for estimating the gradient 

of velocity in evaluating the density of fluid in Eq. (18a); and for estimating the viscous 

terms in Eq. (18b) and (19). Different treatments may be applied according to Macia et 



al. (2011) and Bouscasse et al. (2013). For the first and second roles, the velocity of 

dummy particles are assigned as the velocity of ice particles following the suggestion 

of Morris et al. (1997), which is acceptable based on our numerical tests.    

For estimating the viscous term, the velocity 
dumv  of a dummy particle can be 

obtained by imposing the non-slip boundary condition,  

( ) 1bd bd bd
dum b b f b f

bf bf bf

d d d

d d d

 
= + − = + −  

 

v v v v v v                      (20) 

which is similar to that suggested by Takeda et al. (1994), where the vb and vf  are the 

velocities of the boundary and fluid particles, respectively; and dbd and dbf are the 

distances from the boundary to the dummy and fluid particles, respectively. Since one 

dummy particle interact with several fluid particles, the resulting 
dumv  is estimated by 

summing all contributions of neighbour fluid particles f using the kernel function as 

weight 
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v                       (21) 

where vb is assumed to be the actual velocity of the ice particle nearest to the interface. 

The evaluation of bd

bf

d

d
will be discussed in next section.  

4.4. Pressure on dummy particles  

The pressure pi,dum of a dummy particle in Eq. (18b) and Eq. (19) needs to be 

estimated from the fluid particles. This pressure is only used for the computations of 

interactions between fluid and ice particles, different from the pressure of the ice floe. 

Nevertheless, the derivation of the pressure at the dummy particles should be based on 

the fact that the kinematic condition (Eq. 16) needs to be met and the pressure to be 

equal to the pressure on the interface when the point concerned approaches to the 

interface (Eq. 17). The derivation of this pressure pi,dum is given bellow. 

Considering the pair of fluid particle f and the dummy particle i as shown in Fig. 5, 

the line connecting them intersects the interface at point s. For the fluid particle f near 

the interface surface, the momentum equation of fluid for determining the dummy 

pressure is assumed to be given                                  

                                                          
f f

f

d p

dt 


= − +

v
g                                             (22) 

In the equation, the viscosity is ignored. There are three reasons for doing so. One is 

to obtain a simpler and easy-implemented expression for pi,dum. The second is that the 

interaction between wave and ice considered here is dominated by the wave dynamics 



with the viscosity playing less important role. The third is that the results are acceptable 

as demonstrated in the sections below.     

Similarly, the momentum equation for the dummy particles is written as   

                        idumI

I

pd

dt 


= − +

v
g                                            (23) 

It is noted that the velocity and density of the dummy particle have been taken as the 

velocity and density of ice at the same position as discussed in the previous section. 

 

 

 

     

  

Fig. 5. Interaction between fluid and ice particles at interface boundary: the red 

circled particles, which are the nearest to the midpoint s of the particle pair i-f, are 

used to approximatively estimate dlsf and dlis. 

 

 

Based on Eq. (22), we have: 

              
( ) 1s ff sf sf

fsf sf sf

p pd

dt 

−
 = −  + 

v dl dl
g

dl dl dl
                        (24) 

where sfdl  is a vectorial length along the line of point s and the fluid particle f (Fig. 5) 



and ps is the pressure at point s, which leads to: 

           
f

s f f sf f sf

d
p p

dt
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v
dl g dl                              (25) 

Similarly, according to Eq. (23), we have: 
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v
dl g dl                              (26) 

where 
isdl  is a vectorial length along the line of particle i and point s (Fig. 5).  

Combining Eq. (25) and (26) gives 
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Rearranging it, we obtain: 
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It is noted that the above expression is obtained by using the fact that the pressure on 

both side of the interface equals to the pressure on the interface. In addition, according 

to the kinematic interface condition, we have 

                        
f I

l l

d d

dt dt
 = 

v v
e e                                              (29) 

where le  is the unit vector along the line of s-f in Fig. 5.    

Then, substituting Eq. (29) into Eq. (28), we can obtain the following equation: 
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The pressure pi,dum of particle i  due to the action of a single fluid particle f can then 

be obtained from 
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Considering all its neighbour fluid particles, the pressure of the dummy particle is 

then given by 
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where M is the fluid particles which affect the dummy particle concerned. Clearly, it 

needs to calculate the values of dlsf and dlis. Here, we propose a numerical technique to 

approximatively estimate dlsf and dlis. Firstly, we identify two ice particles, e.g., i1, i2 



and the two fluid particles, e.g., f1, f2 in the common part of the support domains of 

particle i and f (Fig. 5), which are the nearest to the midpoint s of the line i-f. If the 

number of the particles close to the interface in the common part is less than two, i 

and/or f can be set to be one of i1, i2 or f1, f2, plus one other ice or fluid particle to ensure 

2 ice particles and 2 fluid particles are always identified. Then the position of the 

midpoint, s , of the above four particles can be obtained:  

           
1 2 1 2

=( ) / 4.s i i f f+ + +x x x x x                                     (33) 

With this, we can calculate the 
isdl and 

sfdl , which are the distance from particle i to

s and the distance from particle s  to f , respectively. In addition, 
isdl  and 

sfdl are 

assumed to satisfy the following relationship: 

                 =is is

sf sf
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Apart from these, it is easily obtained that 

                      is sf ifdl dl dl+ = .                                            (35) 

Combining Eq. (34) and (35) leads to  
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This numerical technique does not require the explicit information of the interface 

surface. Furthermore, the way of evaluating dlsf and dlis can be directly extended to 

complex three-dimensional fluid-structure coupling problems including the broken up 

in future work. Using Eq. (36), bd

bf

d

d
 in Eq. (20) and (21) can be approximated by 

=bd is

bf sf

d dl

d dl
. 

The above derivation is inspired by Adami et al. (2012) for determining the pressure 

of dummy particles to model solid wall boundaries. Their equation for dummy pressure 

was given as  
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where 
ba  is the acceleration of a solid wall. In their derivation, just the kinematic 

condition (acceleration of a solid wall equal to that of the fluid as in Eq. (16)) was 

imposed without requesting the pressure on the interface to be the same. Comparing the 

new equation Eq. (32) with Eq. (37), one can see that the latter is the special case of 

former, i.e., Eq. (32) reduced to the form of Eq. (37) when I f = . Our numerical tests 



in section 5 show that Eq. (37) does not work well for modelling the problems with 

large density ratios. It is worthy to point out that the new equation Eq. (32) is not only 

suitable for simulating the wave-ice interaction, but also for other fluid-structure 

interaction (FSI) problems even with high density difference between different phases. 

4.5. Interacting force treatment for unequal time steps 

For the particles near the interface, the momentum equations for fluids and ice should 

include the interaction forces given in Eq. (18b) and (19), respectively, that is   
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If Eqs. (38) and (39) are solved simultaneously, the interaction forces between the ice 

particles and fluid particles satisfies the action–reaction principle as discussed previously. 

When the time step for the fluid is close to that of the structure model, e.g., in Zhang et 

al. (2019), the interaction forces between the structure particles and fluid particles can be 

approximately equal to each other in magnitude. However, when the unequal time steps, 

=f It n t  , are adopted as discussed for Fig. 3, the variables for the ice are updated every 

time step 
It , while the variables for the fluid field are updated only at ft . It means 

that the forces exerting on the ice particles from fluid particles are updated at each of 

time steps
It , while the forces from the ice particles on the fluid particle are updated 

only at ft . As a result, the interaction forces between the fluid and ice particles cannot 

be equal in magnitude because of the asynchronous updating, which will cause larger 

errors in computations. 

In order to rectify this problem, a treatment is proposed here. In this treatment, when 

executing the ice solver at the time step tk (Fig. 3), the force on the ice particle from 

fluid particles 
 I fluid ice

F

−
 in Eq. (19) is calculated using the variables at tk. Then this force 

is kept unchanged at following time steps 
k

It t+  , 2k

It t+  ,….. ( 1)k

It n t+ −   until 

the next time step 
k

It n t+   (Fig. 3). At this time, the fluid field variables are updated 

using the ice variables at 
k

It n t+  . The process then continues to the next time steps. 

The numerical analysis in Section 5.1 shows this treatment can lead to better results 

than updating the interaction force at each step for ice simulation. 

4.6. Separation model of ice particle breakup  

After breakup of ice floe, the two smaller ice pieces (Fig. 6) will lose their interaction 

physically. But in the SPH algorithm, the particles on both sides of the crack may still 

interact with each other if they are in support domain (Fig.6a), which will add 

unphysical contributions to the particles. Therefore, we need to find an effective 



technology to solve this problem. There are two issues about this. One is how to identify 

if the particles are separated by the crack, and the other is how to deal with the equations 

of the identified particles. The second issue can be addressed straightforwardly, i.e., 

just removing their interaction. The first issue will be addressed in the following 

paragraphs.  

  

 

(a) 

  

(b) 

Fig. 6. A schematic diagram of fluid and ice particles after breakup. 

To identify if particles are separated by a crack, an auxiliary function, which is 

inspired by the interaction model employed in peridynamic method (Silling and Askari, 

2005), is used and defined as: 

+ST = −ξ η ξ                                              (40) 

where =  −ξ x x  is the initial relative position between two particles with their 

positions at x  and x , respectively; ( ) ( )= , ,t t −η u x u x is the relative displacement 

between the two particles at time t with ( ), tu x  being the displacement of the particle 

at x , +ξ η represents the relative position between particles at the current time t. When 



the value of ST is larger than a critical value, the concerned particles are judged as 

separated by a crack. 

There will be two scenarios associated with identifying the breakup. The first scenario 

is where some fluid particles penetrate the crack while in the second one there is no 

fluid particle in the crack. To consider the different scenarios, the following two steps 

are followed: 

(1) Check if ST>ST0 with 0

0.5
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       >1.0

    1.0

dx dx
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dx dx

  


 

ξ

ξ
 , where dx is the initial 

particle spacing.  If no, there is no crack.  If yes, check will be further performed 

to find if there is any fluid particle between the pair, such as i and j2 in Fig. 6(b).  

For doing so, a virtual point at the midpoint of this particle pair and its sub-domain 

of r=1.5dx are looked at. If there are fluid particles in the sub-domain, it is 

determined that this particle pair i and j2 are separated by fluid particles and so a 

crack has appeared. If no fluid particles are found in the domain, perform the next 

step. 

(2) Check if ST>1.0dx after performing the previous step without finding any 

fluid particles between the pair. If no, there is no crack. If yes, the pair of the ice 

particles concerned is judged as separated by a crack.   

For all the pairs of the particles judged as separated by a crack, the interaction 

between them will be completely removed. 

The above proposed method does not require explicit information about the geometry 

of the ice floe. Thus, it is easy to implement and has a potential to be extended to dealing 

with complex three-dimensional fluid-ice coupling problems in future.  

5. Numerical results and discussions 

5.1. Breaking of ice floe by regular waves 

In this section, the breakup of ice floe induced by regular waves is simulated. Main 

purpose here is to carry out convergent tests for finding suitable number of particles to 

be used, validate the numerical results by experimental data available and show the 

evidence that the new numerical techniques proposed in this paper work well. 

As shown in Fig. 1, the length of wave tank is 24 m, the initial still water depth is D 

= 0.4 m. The ice floe floating on the water surface has density ρ = 890 kg/m3 and 

Poisson’s ratio   = 0.33. According to Zhang et al. (2017), the friction angle is selected 

to be 36o and the dilatancy angle φ one-third of the friction angle (φ = / 3  ). Regular 

waves are generated by using a piston wavemaker. The motions of the wavemaker can 

be found in the Gotoh et al. (2004). The other parameters for the ice floes and wave 

conditions used in the numerical tests are given in Table 1, unless mentioned otherwise. 



It is noted that in Table 1 and hereafter, a length scale is nondimensionalised by the 

water depth D and the time by t t g D→ . The parameters selected in this section is 

based on Wang et al. (2000), whose experimental results will be used for the validation.   

 

Table 1 Parameters for ice floe and regular wave. 

Parameters Case A Case B 

Elastic modulus of ice  E  (MPa) 138.65 18.5125 

Flexural strength of ice 
f ( kPa)              29.5 12.5 

Length of ice floe 𝐿𝑖  3.75 2.00 

Thickness of ice floe thi 0.05 0.05 

Wave height (H) 0.0375 0.1 

Wave period (T) 5.94 7.43 

Ratio of ice length to wavelength 0.77 0.31 

 

5.1.1. Convergent tests  

The convergent tests are carried out for Case A, potentially requiring more particles.  

For these tests, the initial particles are uniformly distributed but the number of particles 

is varied. The simulation proceeds to the time after the ice floe has broken up.  The 

numerical results of the fracture length measured from the left edge of ice floe to the 

breaking point are presented in Fig. 7 with N being the different total particle numbers 

for water and ice. In Fig. 7(a), the blue colour represents the water particles while the 

other colours denote the level of accumulated plastic strain ( p defined in Appendix A) 

of ice particles.  The relative error lEr  presented in Fig. 7b is calculated by 0 0lEr l l l= − , 

where l is the computed fracture length and 0l  is the corresponding length from 

experimental data given by Wang et al. (2000).  The figure shows that the numerical 

fracture length becomes closer to the experimental value and the error is reduced with 

the increase of particle numbers. One can see from the figure that the reduction rate of 

the error become quite small when the particle number increases from N = 216675 

(Log(N)~5.3) to N = 601875 (Log(N)~5.8). The results corresponding to N = 385200 

are then considered to be convergent. The initial particle size, i.e, dxi  = dxf   = 0.0125 

corresponding to N = 385200  will be adopted in the following sections.  
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     (a)                                                                 (b) 

Fig. 7. The fracture length obtained by using different number of particles: (a) particle 

configuration after the breakup observed; (b) relative error in the fracture length 

5.1.2. Comparison with experimental results  

In this subsection the numerical results will be compared with the experimental data 

by Wang et al. (2000). The wave-induced breakups of model ice floes under different 

conditions are considered.  

The fracture length is first examined. For this purpose, Case A and B given in Table 

1 are simulated by using the numerical method with N = 385200. The configurations at 

three-time steps after the breaking up are shown in Fig. 8 for Case A and in Fig. 9 for 

Case B, respectively. Same as in Fig.7, the blue colour represents the water particles 

while the other colours denote the level of accumulated plastic strain of ice particles. It 

can be seen that the accumulated plastic strain is quite large at the breaking point while 

it is near zero in other parts of the ice floe, indicating that the quantity is a good indicator 

for the breaking point. The fracture lengths obtained by the numerical method are 

compared in Table 2 together with the experimental data from Wang et al (2000). It is 

noted that the experimental values in the table are different from those of Wang et al 

(2000). That is because they are nondimensionalised here while they are dimensional in 

the reference. The relative errors between the experimental and numerical results are also 

presented in the table. It can be seen that the error of the numerical results is less than 

4.5%, which is considered to be acceptable.   It is noted that the fracture section of the ice 

floe is largely normal to the propagation direction of waves in the experiment and so the 

response of the ice floe to the waves can be considered approximately as two-dimensional.  



That is the reason why our numerical method can match acceptably with the experimental 

data in Wang et al (2000). 
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(a1) t = 80.38  
 

 

 (a2) t = 81.16  
 

 

(a3) t = 81.94  

Fig. 8. Particle configurations of ice floe after breakup is observed (Case A) 
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(b1) t = 64.21  
 

 

 (b2) t = 64.97  

 

(b3) t =65.91  

Fig. 9. Particle configurations of ice floe after breakup is observed (Case B) 

  



Table 2  Fracture lengths. 

Case Experimental data Numerical lengths Relative error 

A 1.625 1.5675 3.54% 

B 0.875 0.9125 4.29% 

     

  

(a1) t = 63.15 

  

(a1) t = 64.97 

  

(a1) t = 66.93 

Fig.10. Snapshots illustrating distribution of particles along with pressure field 

xx :  

    

(a1) t = 63.15 

   

(a1) t = 64.21 



   

(a1) t = 66.31 

Fig.11. Snapshots illustrating distribution of particles along with stress field of ice floe 

 

Fig. 10 shows the spatial distribution of pressure in Case B. From Fig. 10, the 

developed wave-ice interaction method can provide quite smooth and consistent 

pressure fields particularly near the interface. Fig. 11 shows the stress distribution for 

the ice floe in Case B. As illustrated by this figure, the stress fields of ice floe are 

reasonably smooth as well. 

The total displacement (Ym) of the ice floe is then examined. For this purpose, the 

displacement is measured from a trough to a peak in the time history of the ice heaving 

motions at its middle, and averaged over a few periods. The parameters for the cases 

here are the same as those in Case A and Case B except for the incoming wave height.  

Fig. 12 depicts the comparison of the numerical displacement and the experimental 

data. 
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Fig. 12. Comparison of maximum heave displacements in middle of floe of SPH 

results with experimental data with different Li/L.   

 

In general, the displacement Ym increases with the wave height. Under the same wave 

height, the smaller value of Li/L leads to larger displacement Ym. Overall speaking, the 

present simulation gives the results which are quite close to the experimental data, 

though there are some visible discrepancies.    

The minimum wave height 
minH  leading to the ice floe breaking is examined next. 

To obtain the values of 
minH  and compare them with the experimental data, the specific 

cases associated with Fig. 4 in Wang et al (2000) are considered. The parameters for 



the cases are given in Table 3. For each case, the numerical simulations are sequentially 

carried out for different values of 
fgH   with an increment of 0.0025. The value 

leading to an accumulated plastic train of about 0.1 is considered to be the minimum 

wave height 
minH  generating breakup. Fig. 13 shows the nondimensional minimum 

wave heights in terms of 
min fgH  versus the ratio of ice floe length to the wavelength

iL L , in which the numerical results are denoted by ‘SPH’ and the experimental data 

presented by Wang et al (2000) denoted by ‘EXP’. 

 

Table 3 Parameters of different cases. 

ith L  

 

Case ID  

 

Length 

of ice 

floe Li 

 

Wave 

period T 

Elastic modulus  

E  (MPa) 

 

Flexural strength  

f (kPa) 

0.0133 
C 3.75       5.94 234.8856 60.6 

D 3.75 7.43 234.8856 60.6 

0.025 

E 1.9 7.43 18.824 13.68 

F 2.0 4.95 25.896 15.6 

G 2.0 5.94 21.528 15.6 

0.0328  
H 1.65 4.95 22.07 29.48 

I 1.5 3.47 25.9458 16.6 
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Fig. 13. Comparison of the minimum wave height 
min fgH  versus the 

iL L  

between numerical results and experimental data.  

 

It can be seen from Fig. 13 that the minimum wave height decreases with the increase 

of 
iL L . For the similar value of 

iL L , such as these near 0.8, the corresponding 

minimum wave height increases with the increase of 
ith L . It is also found that the 

numerical minimum wave heights are in quite good agreement with the experimental 

data.  

In summary, the comparisons of fracture length, the heaving motion and minimum 



wave height for breaking up described in this sub-section demonstrate that the 

numerical method presented in the paper can give reasonably good results close to 

experimental data. 

5.1.3 Volumetric strain rate ev  of ice 

It has been indicated in Section 2.2.2 that the constitutive model depends on strain 

rate. To justify the constitutive model used this paper, the volumetric strain rate ev  of 

the ice near the breaking point is given in Fig. 14 for Case A and Case B.  It shows that 

the maximum strain rate is about 0.02 1/s for Case A and 0.05 1/s for Case B, 

respectively. This indicates that the failure of ice is at high strain rates (higher than 

0.001 1/s). At this relatively high strain rate, the failure mode should be brittle 

(Schulson, 2001) and so the visco-plastic effect is weak. Therefore, it is reasonable to 

use the elastic-plastic constitutive model for the simulation of wave-induced breakup 

of the ice floe in this paper. 
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Fig. 14. Time history of the volumetric strain rate of ice near breaking point 
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Fig. 15. Comparisons of fracture lengths for wave-induced breakup of ice floe 

obtained by (a) using Eq. (37) and (b) Eq. (32) both at t = 81.16 

5.1.4. Effect of new formulation for pressure of the dummy particle 

In Section 4.4, a new method, Eq. (32), for determining the pressure on dummy 

particles to correctly model wave-ice interaction is proposed, which explicitly includes 



a term associate with density ratio, compared to the existing formulation Eq. (37). Its 

effectiveness will be shown in the section. For this purpose, Case A is simulated using 

Eq. (32) and Eq. (37) respectively, in which the density ratio is 0.89. The fracture 

lengths are illustrated in Fig. 15. Compared with the experimental results discussed 

above, the error in fractur length predicted by using Eq. (32) is 3.54% while it is 6.77% 

by using Eq. (37). The difference is not much for this case as the density ratio is not 

very far from 1. 

To further demonstrate the effectiveness of Eq. (32), another case with a large density 

ratio of 0.1 is considered by using the two different formulations. All other parameters 

are the same as for Fig. 15. The deformations of ice obtained by using Eq. (32) and (Eq. 

(37) are depicted in Fig. 16. One can observe that the deformation of ice predicted by 

Eq. (37) looks to be unreasonable and non-physical with the lower part of ice having a 

quite large strain rate and being discontinuous with the upper part of ice. In addition, 

the simulation process collapsed immediately after t = 0.134. In contrast, the reasonable 

deformation obtained by using Eq. (37) is observed in Fig. 16(b). This demonstrates the 

new formulation given in Eq. (32) can be used for modelling wave-structure problems 

with the large density difference. 
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(a)                                                                 (b)   

Fig. 16. Comparisons of ice deformation simulated by (a) using Eq. (37) at t = 0.134 

and (b) Eq. (32) at t = 75.0  

5.1.5. Effect of interacting force treatment for unequal time steps  

A simple treatment for the force on the ice particle by its neighbouring fluid particles 

 I fluid ice
F

−
 for unequal time steps was introduced in Section 4.5. To demonstrate its 

effectiveness, Case A is simulated with or without applying the treatment using the 

same parameters for Fig. 8. The configuration of particles with applying the treatment 

has been shown in Fig. 8. The configuration without applying it is similar, but the 

fracture length is different. If the treatment is not applied, the fracture length is 1.462 

and its error compared with experimental data is 10.07%. They are significantly 

different from these obtained by applying the treatment as given in Table 2, where we 

have seen that the fracture length is 1.5675 and the error is only 3.54%. This 

demonstrates that the simple treatment given in Eq. (39) can significantly improve the 

accuracy of numerical results.  



5.1.6. Effect of Separation model of ice particle breakup  

Section 4.6 proposed a new separation model of ice particles after they breakup. The 

effectiveness of the model will be examined in this section. For this purpose, Case B is 

simulated with or without applying the model using the parameters for Fig. 9. Fig. 17 

gives the comparison of the numerical results at three-time instants. The results in Fig. 

17(b) with applying the model show that after the ice breaks up, the two pieces split 

farther and water comes in between them, which is reasonable. However, the results in 

Fig. 17(a) without applying the model do not fully reflect the reasonable phenomenon. 

In particular, the ice pieces become somewhat reconnected at t = 70.09 after the two 

pieces are separated by water at t = 68.82. Physically, this is not correct. This 

investigation confirms that separation model of ice particle breakup does work and 

work reasonably well.   
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Fig. 17. Wave-induced breakup of the ice floe: (a) without applying the separation 

model; and (b) applying the separation model at different time instants: t = 66.93 (a1 

and b1); t = 68.82 (a2 and b2); t = 70.09 (a3 and b3)   

5.2. Breakup of ice floe induced by solitary waves 

In this part, the breakup of an ice floe caused by a solitary wave is discussed. The 

solitary wave is generated by using piston wave maker in the same way as in Ma and 

Zhou (2009).  The size of the numerical tank and relevant parameters of ice floe are the 

same as those in Case A except for these of waves. Different wave heights will be 

considered. 

Fig. 18 gives the comparison of the failure process of the ice floes under different 

wave heights (H = 0.15, 0.225 and 0.3). Fig. 18(a) depicts the deformation of ice floes 

when the solitary wave crest is about at their middle. Fig. 18(b) shows the deformation 

when the wave crests near the right end of the ice floes while Fig. 18(c) gives the 

deformation when the wave crest propagates to a point at a distance of about one ice-

length after its right end. The corresponding times are different in the figures because 



the wave propagating speeds are different for different wave heights. This figure shows 

that the ice floes first undergo the upward bending in middle part under the solitary 

wave crest and begin to failure. Then they become broken. After that the broken ice 

pieces are separated from each other and slightly drifts downstream. The distance 

drifted increases with the wave hights. In addition, the overtopping of water on the ice 

floes can be observed, in particular in the cases for the larger heights. The figure also 

shows that the ice floe is likely to break into more pieces with the increase in the wave 

height. The length of each piece is not significantly different.   
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(a) Ice deformation when wave crest is near the middle of ice floes 
 

 

 

 

 

(b) Ice deformation when wave crest is near the end of ice floes 

 

 



 

 
(c) Ice deformation after wave crest passes ice floes  

Fig. 18. Comparison of failure process of ice floe in solitary waves with different 

wave heights. In each subplot, H = 0.15, 0.225 and 0.3, respectively, from top to 

bottom) 

To further illustrate the broken ice behaviour, the relationship between the length of 

the first ice piece Lf  at the upwave side and wave height H is shown in Fig. 19. Overall, 

the values of Lf  is decreasing with the increasing of solitary wave height. And the length 

Lf decreases rapidly before H = 0.225, then the rate of decrease slows down when the 

wave height H >0.3. However, at the wave height of 0.275, the length is significantly 

larger than others. We also carried out simulations of the cases with the wave height 

being 0.24 and 0.25 (not shown in here) and obtained similar Lf  as 0.275. This point 

needs to be further investigation in future work. 
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Fig. 19. Length of first ice piece at upwave side Lf via wave heights. 

5.3. Breakup process of ice floe induced by focused wave groups 

Extreme wave events occur in many places including deep water and shallow water. 

Such events are often modelled by using a focused wave group. In this section, a study 

is carried out on the breakup process of ice floe induced by focused wave groups.  

Firstly, the numerical method described in this paper is validated for the case of 

simulating the focused waves only by comparing its results with experimental data in 

Baldock et al. (1996). The focused wave group is generated by using a piston 

wavemaker in the same way as that in Ma (2007). The displacement of the wavemaker 

is given by summing 29 wave components of equal amplitude. The focus point is set to 



be 20.0 from the wave maker and the focus time is set to be 56.95, respectively. Fig. 20 

gives the comparisons of the time history of the focused wave elevations at the focus 

point between the experimental data and the numerical results for different specified 

amplitude Af. Because the actual focal time differ for different value of Af (Baldock et 

al., 1996; Westphalen et al., 2012), the focal time are all shifted to zero to compare with 

one another in the Fig. 20. It can be seen that the numerical results agree well with those 

measured in the physical tank tests although there is slight underestimation at the wave 

crests. 
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Fig. 20. Time history of the wave elevation at the focal point: (a) Af = 0.055; (b) Af = 

0.095. 

 

Secondly, the breakup of ice floe induced by the focused wave group is studied. The 

focused waves are generated in the same way in Fig. 20 but the focal point and focal 

time is set to be 25 and 100, respectively. The middle of the ice floe is initially set at 

the focal point. The relevant parameters of ice floe are the same as those in the Case A 

described above but the length of ice floe may be changed when necessary. 

The breakup of ice at different time instants under different wave amplitudes are 

illustrated in Fig. 21. Fig. 21(a) shows that the ice floe fails in bending before the focal 

time. The wave overtopping on the ice floe at the left end can be observed like what has 

been observed in Fig. 18 for solitary waves. As shown in Fig. 21(b), when the wave 

groups focus approximately near the focal point, the ice floe breaks up particularly in 

the case with larger wave amplitudes. Especially, there is always a crack near the 

specified focal point. With the focused wave group continues to move forward and pass 

through the ice floe, the breaking ice pieces are separated from each other as shown in 

Fig. 21(c). In addition, for the case with larger wave amplitude, the ice floe is broken 



into shorter but more pieces. 
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(a) t = 97.06  
 

 

 

 

 

 

(b) t = 99.05  
 

 

 

 

 



 

(c) t = 110.93 

Fig. 21. Comparison of breakup process at different time instants under different wave 

amplitudes (from top to bottom for each instant: Af  = 0.05, 0.075 and 0.1 respectively) 

 

To further examine how the wave amplitude affects the number of fragmented ice 

pieces after ice floes are broken, the cases with a range of wave amplitudes and with 

different ice length are simulated. The results are shown in Fig. 22, in which Nf  denotes 

the fragmented number of ice. As can be seen, the number of fragmented ice pieces 

generally increase with the increase of the wave amplitude. In addition, the larger the 

length Li of ice floe is, the more pieces the ice floe breaks into under the same wave 

amplitude. Compared with the cases for solitary waves, the ice floe is easier to be 

broken and broken into more pieces under the action of the focused wave groups. 
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Fig. 22. Comparison of the number of ice pieces under the different length of ice floe 

and the different wave amplitude Af. 

Conclusion 

    This paper presents a new numerical method for simulating wave-ice interaction with 

possible breakup of ice. Two-way coupling approach is adopted, i.e, both effects of 

water on ice and ice on water are considered.  The method is based on the SPH method 

but several new numerical techniques are developed to address the challenges 

associated with wave-ice interaction. These include a new model for dealing with the 

interaction between the fluid and ice. In this model, the kinematic and dynamic 

conditions on the interface between ice and fluid are considered, and the density 

difference between ice and fluid is taken in account. These also include a separation 

model for dealing with breakup of ice. The separation model is easy to be implement 



and may be extended to deal with three dimensional problems. Apart from these, to 

improve the computational efficiency, an unequal time-step scheme for simulating ice 

and fluid is adopted and the problem caused by the unequal time-step scheme is 

rectified by a simple but effective treatment.    

The numerical method is validated by experimental data available in literature. The 

heave displacement of ice, the fracture length of broken ices and the minimum wave 

height which causes ice breakup under action of regular waves are examined. Various 

parameters are considered, including different wave heights, different wave lengths, 

different physical properties of ice and different lengths of ice floes. In all the cases 

examined, the numerical results agree satisfactorily with experimental data. Numerical 

studies are also carried out on the effectiveness of the new techniques developed in this 

paper. These studies demonstrate that the techniques work well in simulating wave-ice 

interaction, and particularly the breakup of ice in waves.   

The numerical method is employed to model the interaction of ice floes with solitary 

waves and focused wave groups. It has been found that the length of broken ice piece 

decreases with the increase of solitary wave height. However, the length does not 

change significantly when the wave height is large enough, such as >0.3 for the cases 

studied. For the cases associated with focused waves, it is found that there is always a 

crack near the specified focal point. It is also found that the ice floe is easier to be 

broken and broken into more pieces under the action of the focused wave groups than 

solitary waves, even subjected to waves with smaller height. As far as we know, there 

has been no study on the ice breaking behaviours caused by solitary and focused waves. 

Nevertheless, these results associated with solitary and focused waves need to be 

validated by experiments, which are now unavailable in public domain. 

 The numerical method may be extended to three dimensional problems in future 

studies.   
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Appendix A. Equations of the ice constitutive model and cohesion 

softening 

A.1. Elastoplastic constitutive equation of ice 

According to Bui et al. (2008) and Deb and Pramanik (2013), the stress tensor   



in the elastic-plastic ice model is firstly estimated by: 

 d   = 

 

 
                                                    (A.1)  

where the stress rate of the tensor   is defined by: 
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in which 
1

3
eve     = −  is the deviatoric shear strain rate tensor, 

ev

 is the rates of 

the volumetric parts of the elastic strain tensor, s is the deviatoric shear stress tensor, 

(3(1 2 ))K E = −  is the elastic bulk modulus, (2(1 ))G E = +
 
is the shear modulus, 

E  is Young’s modulus and   is the Poisson’s ratio. The plastic multiplier rate   is 

given by: 
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with the parameter   and   are defined in terms of the friction angle  and dilatancy 

angle 𝜑 as 
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The components of the strain rate  are given by: 
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In the above equations, ( , )F c  is the Drucker–Prager yield function (Deb et al 

2013) and can be expressed as:                                                                                

                     
2 1( , ) ( ) ( )F c J s I c     = + −

                           
(A.6) 

where c  is the ice cohesion given in Eq. (A. 9) ; 
2 ( )J s  is the second invariant of the 

stress tensor, and 
1( )I   is one third of the first invariant of the stress tensor. The 

parameter   is defined as ( )6cos 3(3 s  in ) −= . ( , ) 0F c   means that ice 

behaves like an elastic material while ( , ) 0F c   indicates that ice undergoes the 

plastic deformation with ( , ) 0F c =  representing the yield surface. 

The stress tensor estimated in Eq. (A.1) may have numerical error and lead to so-called 

tension cracking or unphysical stress state moving away from the yield as discussed by 

Bui et al. (2008). To rectify the problem, the correction must be performed as suggested 



by Bui et al. (2008). That is, when ( , ) 0F c  , i.e.,
2 1( ) ( )J s I c    − + , the 

stresses are further modified as  
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where ( )1 2sfr I c J = − +  is called as the scaling factor. In the summary, the stresses 

used in the ice dynamics equation are determined by  
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A.2. Cohesion softening 

To model the failure behaviour of ice affected by fracturing, the strain softening 

(Whyatt and Board, 1991) is considered by modifying the cohesion of ice as suggested 

by Deb and Pramanik (2013):   

                0max( , )p rkc cc −=
 
                                 (A.9) 

where ( )( )0 tanc t c tc     = −  with
c and 

t being compression and tension 

strength which has the relationship ( ) ( )( )1sin c t c t    −= − + . The compression 

strength 
c  can be about third times the flexural strength f . The k is the specific 

softening coefficient and  rc is a residual value. The k  and  rc  are taken as 0.1 and 

0 50c , respectively, based on our numerical tests of the bending and compression 

failure progress of ice in Zhang et al. (2017). The accumulated plastic strain p  
is 

estimated by 
p = .  
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