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Abstract 

As a popular method for modelling violent free surface flow, the incompressible Smoothed Particle 

Hydrodynamics (ISPH) based on the Lagrangian formulation has attracted a great attention 

worldwide. The Lagrangian ISPH solves the unsteady Navier-Stokes and continuity equations using 

the projection method, in which the pressure is obtained by solving the pressure Poisson’s equation 

(PPE) that is the most time-consuming part in the ISPH procedure. In this paper, the Convolutional 

Neural Network (CNN) is combined with ISPH and used to predict the fluid pressure instead of 

solving the PPE directly. Although limited attempts of using CNN for solving the PPE in Eulerian 

formulation (referred to as the Eulerian CNN framework) in mesh-based methods are found in the 

public domain, the present model is the first ISPH model supported by CNN in a Lagrangian 

formulation. The proposed model overcome several challenges associated with combining CNN 

with ISPH, including selecting the input parameters, formulating the objective functions, producing 

the training dataset and dealing with boundary conditions. Two classic free surface problems, i.e. 

the dam breaking and the wave propagation, are simulated to evaluate the performance of the 

present model. Quantitative assessments of the numerical error in terms of both the free surface 

profile and the pressure field are carried out. The assessments show that the new model does not 

only give results with satisfactory accuracy, but also requires much less computation time for 

estimating pressure if the number of particles is large, e.g., 100 thousands particles that is usually 

required in the practical ISPH simulation for free surface flow.   

Keywords: Lagrangian ISPH; PPE; machine learning; CNN; free surface flow 

1 Introduction 

The incompressible Smoothed Particle Hydrodynamics (ISPH) has become a popular method for 

modelling violent free surface flows (e.g., Shao and Lo, 2003;  Lind et al., 2012; Zheng et al., 2014; 

Gotoh and Khayyer, 2014; Zhang et al., 2018; Khayyer et al., 2021; Luo et al., 2021; Zhang et al., 

2021, 2022). The ISPH uses particles, which carry field variables (e.g., the pressure, density and 

velocity), to discretize the computational domain and solves the incompressible continuity and 

Navier-Stokes equations using the projection approach, in which a pressure Poisson equation (PPE) 

is derived and solved to find the fluid pressure. Although the ISPH models were developed using 
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both Lagrangian particles that move with the material velocity and Eulerian particles that are fixed, 

modelling the violent free surface flows requires particles to move to conform to the free surface 

and thus the Lagrangian ISPH (e.g. Zhang et al., 2021,2022) or the hybrid Eulerian-Lagrangian 

ISPH (e.g. Fourtakas et al., 2018a) are commonly used. Compared with the weakly compressible 

SPH, where the pressure is estimated using the equation of state, the ISPH generally results in a 

smoother pressure field, relatively higher convergent rate, larger time step, better energy and 

volume conservation, as reviewed by Zhang et al. (2022). However, solving the PPE in the ISPH 

often dominates the computational time.  

 

So far, researchers have been mainly working in two directions to accelerate the ISPH computing.  

The first one is to develop better numerical schemes, e.g. the Laplacian and gradient discretization 

schemes, to improve the robustness of solving the PPE and thus the ISPH models. Typical examples 

include the high-order consistent scheme proposed by Shimizu et al., (2022), the consistent quadric 

ISPH model developed by Zhang et al. (2022) and the pseudo-spectra ISPH solver proposed by 

Fourtakas et al. (2021). The applications of these schemes result in a better convergence, compared 

with the classic ISPH model, e.g. Zheng et al. (2014) and Zhang et al., (2018), and consequently 

require smaller number of particles and shorter CPU time to achieve required computational 

accuracy.  The second one is to develop massively parallel schemes supporting distributed memory 

and running in high-performance computer clusters (HPC), such as the message passing interface 

(MPI) parallelization (Guo et al., 2018; Monteleone et al., 2022) or graphics processing unit (GPU) 

computing (Chow et al., 2018). These developments allow practical cases with millions of particles 

to be simulated using HPCs to achieve satisfactory results in a reasonable time frame. It is worth 

noting that hybrid models, which couple Lagrangian ISPH models with other numerical models 

such as the fully nonlinear potential (FNPT) model (Yan and Ma, 2017; Fourtakas et al., 2018b) 

using the domain decomposition coupling strategy, have also demonstrated their effectiveness to 

improve the overall efficiency.  

 

Recently, the data-driven approach using the machine learning (ML) techniques has been 

increasingly applied to the fluid simulation (Kutz, 2017) to reconstruct the fluid field from data, e.g., 

learning the velocity and pressure field from visualization data (Raissi et al., 2020). The ML 

technique has also been used to replace the challenging and/or time-consuming part of the 

conventional computational fluid dynamics (CFD) models, such as the turbulence modelling, to 

save the overall computational time. For the machine-learning based turbulence modelling, an ML 

algorithm, e.g. the deep neural network, is trained to predict the Reynolds stress anisotropy tensor 

(Ling et al., 2016) and turbulent production term (Zhang and Duraisamy, 2015) using the database 

formed by high-fidelity numerical simulation, e.g. direct numerical simulation (DNS) or the large 

eddy simulation (LES). The trained algorithms are then fed into the Reynolds Averaged Navier-

Stokes (RANS) modelling to replace the traditional turbulence models. Compared with the DNS or 
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LES, the machine-learning supported RANS simulation can largely reserve the turbulence feature 

but reduce the computational cost significantly (Kutz, 2017). This successful research inspired the 

present work that aims to develop a Lagrangian ISPH model accelerated by the ML algorithm for 

predicting the fluid pressure instead of solving PPE.  

 

In literatures, the artificial neural network has been trained to predict the fluid pressure to replace 

the time-consuming procedure of solving the PPE in the projection-based Navier-Stokes (Yang et al., 

2016; Xiao et al., 2018) or Euler equations (Tompson et al., 2017; Dong et al., 2019) in mesh-based 

models adopting fixed Eulerian grids. Although these ML algorithms may not be directly applied to 

the Lagrangian ISPH model, reviews on key developments are given herein. Yang et al. (2016) 

trained the artificial neural network to predict the ground truth pressure with the inputs of the 

pressure at the previous frame, velocity divergence and the boundary conditions at the current time 

step. Tompson et al. (2017) introduced the Convolutional Neural Network (CNN) to handle the 

pressure projection step, aiming to release the dependence on the true solution at the previous frame 

in the approach developed by Yang et al. (2016), and to minimise the objective using the standard 

deep-learning optimization approach. Both Yang et al. (2016) and Tompson et al. (2017) proposed 

to replace the entire procedure of solving the PPE by the trained ML prediction algorithms. Xiao et 

al. (2018) trained a CNN-based deep learning model for solving the large-scale algebraic equations 

resulting from the discretized PPE, providing the discretization structure and the intermediate 

velocity field as the input.  

 

In this paper, the CNN model built in the open-access library of Torch7 (Collobert et al., 2011) is 

used as a ML model.  After being trained, the CNN model is then fed to the ISPH model (Zhang et 

al., 2018) to replace the procedure of solving the PPE, yielding a CNN-supported Lagrangian ISPH, 

referred to as ISPH_ML in the rest of the paper. As indicated above, the numerical frameworks in 

Yang et al. (2016) and Tompson et al. (2017) were developed for the Eulerian projection-based 

methods and did not consider the typical features of the present ISPH modelling for free surface 

flow, including the Lagrangian nature of the particle movements, the stability of the ISPH (e.g. 

small fraction of the density variation term introduced in the PPE in Zhang et al., 2018; 2021; 2022) 

and the free surface boundary conditions. In this work, these features will be considered during 

training and implementing processes of the CNN model. The ISPH_ML is then evaluated by two 

benchmark cases, i.e. the dam breaking and the wave propagation. Its convergent behaviour and 

computational efficiency of the ISPH_ML are also investigated.   

 

It is pointed out that there is limit work on ML supported Lagrangian meshless methods in recent 

literature. Ladicky et al. (2015) developed an approach to accelerate the SPH using the regression 

forests. They trained a regressor to update the particle states providing the information of the 

individual forces acting on the particle. Wessels et al. (2020) developed a Neural Particle Method 
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for the solution of incompressible free surface flow governed by the Euler equations, in which 

velocity and pressure are approximated by a neural network. Bai et al. (2021) proposed a Data-

Driven SPH (DDSPH) method to implement hydrodynamic modelling in the weakly compressible 

SPH framework. Marinho (2021) presented a machine learning approach to find the optimal 

anisotropic SPH kernel, whose compact support consists of an ellipsoid that matches with the 

convex hull of the self-regulating k-nearest neighbors of a smoothing particle. Also based on the 

weakly compressible SPH framework, Woodward et al. (2021) presented a learnable hierarchy of 

parameterized and “physics-explainable” SPH informed turbulent flows simulators using both 

physics-based parameters and neural networks as universal function approximators. On this basis of 

Woodward et al. (2021), Chertkov et al. (2022) applied physics-informed machine learning to 

develop Lagrangian Large Eddy Simulation (L-LES) models described by equations generalizing 

the weakly compressible SPH formulation with extended parametric and functional freedom for 

turbulent flows. Based on the Neural Particle Method (NPM), Bai et al. (2022) developed a general 

Neural Particle Method (gNPM) for viscous hydrodynamics modeling. Li and Farimani (2022) 

applied the graph neural network to accelerate the Lagrangian fluid simulation. To the best of our 

knowledge, the ISPH_ML is the first CNN-supported Lagrangian ISPH method.   

 

 

Fig. 1 Framework of CNN-supported Lagrangian ISPH (left: flowcharts of the classic Lagrangian 

ISPH (solid arrows) and the ISPH_ML (dashed arrows); right: CNN training and testing procedure) 

2. Numerical Framework for CNN-Supported Lagrangian ISPH 

As indicated above, the PPE for solving the pressure is replaced by an CNN based ML algorithm in 
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ISPH_ML proposed in this paper. The framework of ISPH_ML is illustrated in Fig. 1, which 

includes the flowcharts for solving the fluid flow and the procedure for training and testing ML 

algorithm.  Each of the elements in the framework will be discussed below. 

 

2.1. Lagrangian ISPH  

The formulation of ISPH is well known and has been described in many references cited above. 

Only a brief discussion on it will be given here for completeness. Readers are referred to other 

references, e.g. Khayyer et al. (2020), Luo et al. (2021), Zhang et al. (2022) and so on, for more 

details. The ISPH solves the incompressible NS equation and the continuity equation,  

    
21D

p
Dt




= −  + + 
u

g u ,                                                (1) 

0 =u ,                                                                (2) 

where D/Dt is the material derivative following fluid particles and ∇ is the gradient operator; 𝜌 is 

the fluid density; u is the particle velocity; p is the pressure; g
 
is the gravitational acceleration; and 

𝜈
 
is the kinematic viscosity. On the solid boundaries, the following boundary conditions are 

imposed, 

𝐮 ∙ 𝐧 = 𝐔 ∙ 𝐧,            (3) 

𝐧 ∙ ∇𝑝 = 𝜌(𝐧 ∙ 𝐠 − 𝐧 ∙ �̇�),            (4) 

in which n is the unit normal vector of the solid boundary; U and �̇� are the velocity and acceleration 

of the solid boundary. On the free surface, the following condition is applied 

     0p =  .                                                                                        (5) 

The governing equations and boundary conditions are solved using a projection method. Assuming 

the position (𝐫𝑡) and the velocity (𝐮𝑡) of fluid particles at time t are known, the pressure, velocity 

and position of the fluid particles at the new time step, 𝑡 + ∆𝑡, where ∆𝑡 is the time step size, can be 

predicted using three stages,  

(1) Prediction (intermediate) stage: an intermediate temporal velocity 𝐮𝑖
∗  and position 𝐫𝑖

∗  of 

particle i are predicted using 

𝐮𝑖
∗ = 𝐮𝑖

𝑡 + (𝐠 + 𝜈∇2𝐮𝑖
𝑡)∆𝑡 ,                    (6) 

   𝐫𝑖
∗ = 𝐫𝑖

𝑡 + 𝐮𝑖
∗∆𝑡,                       (7) 

and the intermediate density 𝜌∗ at the particle i is calculated by 

 𝜌𝑖
∗ = ∑ 𝑚𝑗𝑊(𝐫𝑖𝑗

∗ )𝑁
𝑗=1  ,                     (8) 

where N is the number of neighbouring particles of the particle i, mj is the particle mass of 

the local particle j and 𝑊(𝐫𝑖𝑗) is a kernel function corresponding to the position vector 𝐫𝑖𝑗 =
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𝐫𝑖 − 𝐫𝑗. 

(2) Pressure projection stage: the pressure at the time step 𝑝𝑡+∆𝑡 is governed by   

   ∇2𝑝𝑡+∆𝑡 =
𝜌∇∙𝐮∗

∆𝑡
 ,                     (9a) 

which is obtained by inserting Eqs. (6) and (7) into Eqs. (1) and (2).  

According to numerical tests presented in Ma and Zhou (2009) and also suggested by Zheng 

et al. (2014), the better results for violent water waves can be obtained by using a mixed 

term on the right-hand side of Eq. (9a).  Following this, an alternative form (Zhang et al., 

2018; 2021; 2022) is applied to all internal fluid particles, 

   ∇2𝑝𝑖
𝑡+∆𝑡 = Ψ/∆𝑡 ,                                           (9b) 

where  Ψ = 𝛼
𝜌−𝜌∗

∆𝑡
+ (1 − 𝛼)𝜌∇ ∙ 𝐮∗ and 𝛼 is the blending coefficient. When 𝛼 = 0, Eq. 

(9b) is the same as Eq. (9a).  Following Zhang et al. (2018; 2021; 2022), 𝛼  is taken as 0.01 

in this work. On the solid boundary, Eq. (4) is imposed. Different schemes are available to 

impose the solid boundary condition. In this work, the solid boundaries are represented 

using the solid particles and the mirror particles generated at each time step following the 

movement of the particles near the solid boundaries (Zhang et al., 2018). Eq. (5) are 

imposed to the particles on the free surface, which are identified using the technique 

developed by Zheng et al. (2014). 

(3) Correction stage: the velocity 𝐮𝑖
𝑡+∆𝑡 and the position vector 𝐫𝑖

𝑡+∆𝑡 of particle i at t t+   are 

corrected using  

   𝐮𝑖
𝑡+∆𝑡 = 𝐮𝑖

∗ −
𝟏

𝝆
∇𝑝𝑖

𝑡+∆𝑡∆𝑡  ,                       (10)  

   𝐫𝑖
𝑡+∆𝑡 = 𝐫𝑖

𝑡 +
𝐮𝑖

𝑡+𝐮𝑖
𝑡+∆𝑡

𝟐
∆𝑡 .                       (11) 

The hybrid particle stabilization scheme proposed by Zhang et al. (2018) is also employed in this 

paper.  

 

2.2. Numerical Implementation in Classic ISPH  

Numerical discretisation schemes are needed to implement the procedure. For this purpose, the 

velocity divergence and the viscous stress term are discretised at the particle i, respectively, by 

( )
1

1
( )

N

i j i j i ij

ji

m W
 =

 = − − u u u r ,                                  (12) 

( ) ( )2 2
1

8
N

i j ij ij

i i j i ij

j i j ij

m W
d

 


  =

 + 
   =  

 + + 


u r
u r ,                                (13) 

where 𝜖  is a small number to avoid the singularity caused by 𝐫𝑖𝑗 = 0;  𝐮𝑖𝑗 = 𝐮𝑖 − 𝐮𝑗 .  These 

equations are commonly used in other SPH applications, e.g. Cleary and Monaghan (1999) and 
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Monaghan (2005). The pressure gradient in the correction stage and the left-hand side of the 

pressure boundary condition (Eq. (4)) are discretised by using the linear semi-analytical finite 

difference interpolation scheme (Zheng et al., 2018; Zhang et al., 2021;2022). For 2D problems, it 

reads 

∇𝑝𝑖 = ∑
𝑛

𝑖

𝑥𝑘𝐵𝑖𝑗
𝑥𝑚−𝑛𝑖

𝑥𝑦
𝐵

𝑖𝑗

𝑥𝑘

𝑛𝑖
𝑥𝑛

𝑖
𝑦

−𝑛
𝑖
𝑥𝑦

𝑛
𝑖
𝑥𝑦 (𝑝𝑗 − 𝑝𝑖)

𝑁
𝑗=1,𝑗≠𝑖 ,                          (14) 

where  𝑛𝑖
𝑥𝑦

= ∑
(𝐫𝑗

𝑥𝑚−𝐫𝑖
𝑥𝑚)(𝐫

𝑗

𝑥𝑘−𝐫
𝑖

𝑥𝑘)

𝑑𝑖𝑗
2 𝑊(𝐫𝑖𝑗)𝑁

𝑗=1,𝑗≠𝑖 , 𝑛𝑖
𝑥𝑚 = ∑

(𝐫𝑗
𝑥𝑚−𝐫𝑖

𝑥𝑚)
2

𝑑𝑖𝑗
2 𝑊(𝐫𝑖𝑗)𝑁

𝑗=1,𝑗≠𝑖  𝐵𝑖
𝑥𝑚 =

∑
(𝐫𝑗

𝑥𝑚−𝐫𝑖
𝑥𝑚)

𝑑𝑖𝑗
2 𝑊(𝐫𝑖𝑗)𝑁

𝑗=1,𝑗≠𝑖 , 𝑥𝑚 = 𝑥  when 𝑥𝑘 = 𝑦  or  𝑥𝑚 = 𝑦  when 𝑥𝑘 = 𝑥 , and  𝐫𝑥𝑚 is the 

component of the position vector in 𝑥𝑚 direction.  The Laplacian in Eq. (9b) is discretised as 

∇2𝑝𝑖 = ∑
4𝑚𝑗

𝜌𝑖+𝜌𝑗

(𝑝𝑖−𝑝𝑗)𝐫𝑖𝑗

𝑑𝑖𝑗
2 +𝜖2 ∙ ∇𝑖𝑊(𝐫𝑖𝑗)𝑁

𝑗=1 .
 
                          (15) 

The ISPH implemented using Eq. (9b) together with Eqs. (12) – (15) is referred to as the classic 

ISPH (Zhang et al., 2018) in the paper for the convenience. The corresponding flowchart is 

illustrated by the solid arrows in Fig. 1.   

2.3 CNN-supported Lagrangian ISPH  

As shown in Fig.1, the main difference between the classic and ISPH_ML lies in the way to find the 

pressure.  In the classic ISPH, the pressure is found by solving Eq. (9b), while it is predicted by a 

ML in ISPH_ML.  This section will discuss the issues related to coupling the ML with ISPH, 

training and testing the ML, and implementing the ML. The model for ML is based on CNN in this 

paper.   

  

(a) CNN structure 



8 

 

 
(b) Convolutional operation 

 

Fig. 2 Illustration of convolutional neural network (CNN) 

 

2.3.1. Coupling CNN with Lagrangian ISPH  

The CNN, introduced by LeCun et al. (1990), is inspired by the natural visual perception 

mechanism of the living creatures and has been shown to have extraordinary performance for 

dealing with many problems. The network is composed of four parts as shown in Fig. 2 (a): (i) input 

layer; (ii) convolutional layers; (iii) fully-connected layers and (iv) output layer.  The convolutional 

layers extract the main features of the input data.  The fully-connected layers build the relations 

between the main features and output variables as done by a normal neural network.   

 

Each of the convolutional layers usually consists of convolution, activation (or application of 

nonlinearity) and pooling. Convolution performs the convolutional operation (i.e., dot product of 

matrixes) between the input data and a set of learnable filters, which also called as kernels. A kernel 

is a square matrix of discrete numbers, with a typical size of 3 × 3, as illustrated in Fig. 2(b), which 

is also used in this paper.  Dot product of the kernel with corresponding elements in the input data 

gives one value representing a feature of data.  With sliding the kernel over all the input data, a 

feature map is formed.  Performing the similar convolution for each of kernels, a number of the 

feature maps are obtained as seen in Fig. 2(a).    A featured value at location (i, j) in the kth feature 

map of lth layer, , ,

l

i j kh , can be mathematically expressed as 

, , ,

l l T l l

i j k k i j kh b= +w x                                                                                                                (16) 

where 
l

kw  and 
l

kb  are the weight vector and bias term of the kth kernel of the lth layer respectively, 

and ,

l

i jx  is the input patch centered at location (i, j) of the lth layer.   During or after the convolution, 
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activation (or application of nonlinearity) is usually performed in order to introduce the 

nonlinearities.  Among the possible activation options, the Rectified linear unit (ReLU) function is 

the most popular and used in this paper, which basically converts all the negative feature values into 

zero.  After convolution with the activation, the pooling may be applied to the feature maps, which 

basically means selecting representative features and discarding others.  Often used method, also 

employed in this paper, for pooling is to select the maximum in a 2×2 submatrix of a feature map.  

This part aims to reduce the dimension of the data, speeds up the process and eliminate the issue of 

overfitting.  

 

After performing one or more convolution layers, a number of features maps are extracted.  On this 

basis, one or more fully-connected layers may be applied to establish the relation between the 

features (treated as inputs) and the output variables (which is the pressure values in this work), with 

learnable weights, in a way similar to a normal neural network.  

 

After training using the structure illustrate in Fig. 2(a), a relation (a kind of implicit function) 

between the input variables and the output is established,  in which the relative importance of 

variables is reflected by weighting in the network coefficients (denoted as cp) that are determined in 

the convolutional and fully-connected layers.  For convenience, the relation is named as fCNN 

hereafter.  More information about CNN can be referred to Gu et al. (2018) and Pinaya et al. (2020).  

 

In the ISPH_ML, the trained CNN model is used to predict the pressure. The flowchart of the 

ISPH_ML has been illustrated by the dashed arrows in Fig. 1. Procedure for coupling CNN model 

with ISPH is summarised below with a slightly more details than the figure:    

(1) Find the intermediate velocity 𝐮𝑖
∗  and position 𝐫𝑖

∗  of particle i using Eq. (6) and (7), 

respectively, after finding the solution at time t. 

(2) Calculate the intermediate density 𝜌∗ and velocity divergence ∇ ∙ 𝐮∗ using Eq. (8) and Eq. 

(12), respectively; 

(3) Identify the free surface particles using the method proposed by Zheng et al. (2014) and 

generate the instantaneous solid particles and corresponding mirror particles using the 

method developed by Zhang et al. (2018); 

(4)  Predict the pressure 𝑝𝑖
𝑡+∆𝑡 at fluid particles (excluding all the boundary particles) using the 

trained CNN model with the pressure at the free surface particle is enforced to be zero, i.e. 

Eq. (5);  

(5) Estimate the pressure 𝑝𝑏
𝑡+∆𝑡 at solid boundary particles with position vector of 𝐫𝑏 using the 

pressure at the neighbouring fluid particles by (Adami et al., 2012), 
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𝑝𝑏 =
∑ 𝑝𝑗

𝑁
𝑗=1 𝑊(𝐫𝑏𝑗)−(𝐠−�̇�)∙∑ 𝜌𝑗(𝐫𝑗−𝐫𝑏)𝑁

𝑗=1 𝑊(𝐫𝑏𝑗)

∑ 𝑊(𝐫𝑏𝑗)𝑁
𝑗=1  

,                        (17) 

in which N is the total number of fluid particles in the influence domain of Particle b.  

(6) Correct the velocity 𝐮𝑖
𝑡+∆𝑡 and the position vector 𝐫𝑖

𝑡+∆𝑡 of all the particles at t t+   using 

Eq. (10) and Eq. (11), respectively, where the pressure gradient in Eq. (10) is evaluated 

using Eq. (14). 

 

Compared with the classic ISPH formulated using Eqs. (1) – (15), the distinguished feature of 

ISPH_ML is the way to evaluate the pressure  𝑝𝑖
𝑡+∆𝑡 i.e., Steps (4) – (5), using the CNN model to 

replace directly solving the PPE (Eq. (9b)).   

  

The CNN model is trained with the objective of minimising the difference between the predicted 

pressure and the corresponding data in the training dataset. However, due to the nature of machine 

learning algorithm, the pressure predicted by ML may not be exactly same as the solution obtained 

by directly solving Eq. (9b) (Tompson et al., 2017). There may be many reasons for this to happen.  

One of them is related to implementation of boundary conditions: i.e. the free surface and solid 

boundary conditions, that play a critical role on the water wave problems. In the existing work 

(Yang et al., 2016; Hasegawa et al., 2020; Peng et al., 2021), the boundary conditions are included 

in the training process and prediction model. Following the practice, the information about free 

surface particles is involved in both the training and prediction process in our work. To do so, a flag 

denoted by fs is created.  fs = 1 for free surface particles and fs = 0 otherwise.  fs will be fed to the 

CNN model as a part of input parameters during training and predicting processes. When predicting 

the pressure at Step (4), the pressure at all free surface particle with fs = 1 is enforced to be zero. 

This ensures that the free surface boundary condition, i.e. Eq. (5), is satisfied. As for the solid 

boundary condition for pressure, we tried similar thing but we found that the larger error would be 

observed if the Neumann boundary conditions on the solid boundary (Eq. (4)) are imposed during 

training and testing stage. To avoid this, the solid boundary is not imposed during the 

training/testing. When implementing the trained model to predict the pressure, the pressure at the 

particles on the solid boundary are estimated directly using Eq. (17). This does not only ensure a 

satisfactory implementation of the solid boundary condition (Eq. (4)), but also avoid involving extra 

input parameter to indicate the solid particles and consequently, improve the efficiency of the ML 

model. This may not be perfect and need to be improved in future. However, the results presented 

below will show that the treatment is satisfactory. 

 

The second one is that the overall accuracy of fCNN is affected by the database to be used for training 

and by the parameters involved in deriving the fCNN. To produce the database with high accuracy, we 

use the consistent quadric ISPH (ISPH_CQ), developed by the authors of this paper (Zhang et al., 

2022) and to be briefed in the following section. The method has quadric convergent property and 
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results in a significantly higher accuracy than the classic ISPH formulated by Eqs. (1) – (15) shown 

in the cited paper. This is analogy to the idea adopted in the turbulence modelling (Ling et al., 2016; 

Zhang and Duraisamy, 2015) that use the higher-fidelity modelling solutions (such as the DNS and 

the LES results) to build a model used by lower-fidelity RANS simulation. The parameters for 

deriving fCNN should reflect the hydrodynamic characteristics, which will be discussed in Section 

2.3.4.   

 

2.3.2. Training and testing database 

As indicated above, we use the ISPH_CQ to produce the numerical results for the training and 

testing database.  The governing equations, boundary conditions and procedure of the ISPH_CQ are 

the same as the classic ISPH illustrated in Fig. 1, but the numerical discretisation schemes for the 

gradient and Laplacian operations are formulated by the quadric SFDI (Yan et al., 2020), which are 

given by 

∇𝑝𝑖 = ∑ 𝚽𝑗𝑖
𝑔

(𝑝𝑗 − 𝑝𝑖)
𝑁
𝑗=1 ,                           (18) 

∇𝟐𝑝𝑖 = 𝑰T ∑ 𝚽𝑗𝑖
𝑠 (𝑝𝑗 − 𝑝𝑖),𝑁

𝑗=1                      (19) 

respectively, where 𝑰 = [1 1 1]T and  

      𝚽𝑗𝑖
𝑔

= 𝑴1𝑞,𝑖
−1 (

𝑊(𝐫𝑗𝑖)

𝑑𝑗𝑖
2 𝒒𝑗𝑖 − ∑

𝑊(𝐫𝑘𝑖)

𝑑𝑘𝑖
2 𝒒𝑘𝑖

𝑁
𝑘=1 (𝐫𝑘𝑖

(2𝑐)
)

T

𝑴2𝑐,𝑖
−1 𝑊(𝐫𝑗𝑖)

𝑑𝑗𝑖
4 𝐫𝑗𝑖

(2𝑐)
−

                    ∑
𝑤𝑘𝐼

𝑑𝑘𝑖
2 𝒒𝑘𝑖𝚷𝑘𝑖

T 𝑴2𝑠,𝑖
−1 𝚪𝑗𝑖

𝑁
𝑘=1 ) 

 

     (20) 

     𝚽𝑗𝑖
𝑠 = 2𝑴2𝑠,𝑖

−1 (𝚪𝑗𝑖 − ∑
𝑤𝑘𝐼

𝑑𝑘𝑖
4 𝚷𝑘𝑖𝑮𝑘𝑖

T 𝚽𝑘𝑖
𝑔𝑁

𝑘=1 ),                              (21) 

where 𝐫𝑗𝑖
(2𝑠)

= [𝑥𝑗𝑖
2 𝑦𝑗𝑖

2 𝑧𝑗𝑖
2]

T
, 𝐫𝑗𝑖

(2𝑐)
= [𝑥𝑗𝑖𝑦𝑗𝑖 𝑥𝑗𝑖𝑧𝑗𝑖 𝑦𝑗𝑖𝑧𝑗𝑖]T  and dji is the distance between 

particle i and its neighbouring particle j. The definitions of matrices in Eq. (19) and (20), including 

𝑴2𝑐,𝑖 , 𝚷𝑗𝑖 ,   𝑴2𝑠,𝑖 ,   𝑮𝑗𝑖  ,  𝒒𝑗𝑖 , 𝚪𝑗𝑖  and  𝑴1𝑞,𝑖 , can be found in Yan et al. (2020) and Zhang et al. 

(2021, 2022). The velocity divergence and the viscous term are discretised, respectively, by 

∇ ∙ 𝐮𝑖 = ∑ 𝚽𝑗𝑖
𝑔

∙ (𝐮𝑗 − 𝐮𝑖)𝑁
𝑗=1 ,                     (22) 

∇ ∙ (𝜈𝑖∇𝐮𝑖) = ∑ 𝜈𝑖𝚽𝑗𝑖
𝑠 ∙ (𝐮𝑗 − 𝐮𝑖)𝑁

𝑗=1 .                   (23) 

For each free surface problem considered in this paper, a random selection of the test conditions 

will be considered. For example, in the dam breaking problem, we use different values of the water 

column hight and width to form a series of cases for the database, which are randomly selected in a 

practical range. Each case will be run by using the ISPH_CQ and the particle position vector rt, 

velocity 𝐮𝑡 , intermediate position r*, intermediate velocity u*, intermediate density 𝜌∗  and fluid 

pressure 𝑝𝑡 at specific timesteps will be recorded. From these field data, one can post-process other 

parameters if required, e.g. the velocity divergence and the dynamic pressure field �̂�
𝑡
. The flowchart 

of training and testing the CNN model is illustrated on the right column of Fig. 1.  
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Fig. 3 Illustration of the Background Mesh and ISPH particles 

 

2.3.3 Background Mesh mapping particle-based data with grid-structured CNN architecture  

As illustrated in Fig.2, the convolution operation and the neural networks in CNN are specifically 

designed to work with grid-structured inputs which include strong spatial dependencies in local 

regions of the grid (Pinaya et al., 2020).  However, in the Lagrangian ISPH simulation, particles are 

moving following their material velocities and may be artificially shifted for achieving better 

particle stabilisation and satisfactory particle distribution. The above-mentioned field data resulted 

from the ISPH simulation corresponds to the moving particle positions which are irregularly 

distributed generally. Such dataset cannot be directly dealt with by the CNN model. To overcome 

this problem, a background mesh (Fig.3) is introduced. The field data corresponding to irregularly 

distributed particles will be mapped to that at the node of the background mesh by using an 

appropriate interpolation. The latter will be used in the CNN training and runtime prediction. The 

background mesh covers the entire computational domain and the mesh size is taken as the initial 

particle spacing dx. Once the background mesh is established in the initial time step, it will not be 

changed for all other time steps. One may use high-order interpolation, for the convenience of the 

ISPH implementation, we use the kernel interpolation. For any node I in the background mesh, the 

physical quantity fg,I is estimated using 

f𝑔,𝐼 = ∑ 𝑓𝑝,𝑗𝑊(𝒓𝐼𝑗)𝑁
𝑗=1 / ∑ 𝑊(𝒓𝐼𝑗)𝑁

𝑗=1                    (24) 

where N is the number of ISPH particles in the influence domain of Node I, which is a circular 

region centred at I with a radius of rbm; 𝑓𝑝,𝑗  is the corresponding physical quantity at the ISPH 

particle with a local particle number j. After the mapping, the CNN uses the field data 

corresponding to the background mesh to proceed the learning and training, resulting a trained CNN 

function fCNN. During the runtime prediction, the trained CNN model is also expected to receive the 

same grid-structured data. After the pressure at all nodes of the background grid is predicted using 
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the trained CNN model, the kernel-based interpolation is used again to give the pressure at the ISPH 

particles,   

f𝑝,𝑖 = ∑ 𝑓𝑔,𝐽𝑊(𝒓𝑖𝐽)𝑁
𝐽=1 / ∑ 𝑊(𝒓𝑖𝐽)𝑁

𝐽=1 ,                        (25) 

where fp,i is the physical quantity, i.e. the predicted pressure, at the particle i, N is the number of 

background nodes in the influence domain of the particle i with a radius of ri; 𝑓𝑔,𝐽  is the 

corresponding value at the background node with a local number J.  It is noted that the interpolation 

seems to not work well in the region that particles are dispersed due to violent motion of the free 

surface, such as splashing. However, these dispersed particles will be judged as free surface 

particles on which pressure will be imposed to be zero, and thus the accuracy of the interpolation 

does not actually affect the results.  The idea of using background mesh to assist and support the 

particle methods is not new. In the classic ISPH (Zhang et al., 2018) and the ISPH_CQ (Zhang et al., 

2022), it has been used to assist the particle searching. It is also used to enhance the δ-SPH for 

ocean engineering applications (You et al., 2021). However, in the present numerical framework 

and the ISPH_ML, it is an essential step to make satisfactory data exchange between the ISPH and 

the CNN.   

 

2.3.4 Input parameters and predicted pressure 

Yang et al. (2016) proposed to use the pressure at the previous time step and the intermediate 

velocity divergence 
u  at the current step, together with the solid boundary conditions that are 

realised by a geometry field, as the input data. Tompson et al. (2017) suggested to release the 

dependence on the solution at the previous time step, as it may cause accumulation of the error. 

They only used the intermediate velocity divergence 
u  and the geometry field as the input data. 

Despite the facts that Yang et al. (2016) and Tompson et al. (2017) designed the training for the 

PPE in the Eulerian mesh-based methods, we select the input parameters based on their work.   

 

The intermediate velocity divergence ∇ ∙ 𝐮∗  in Yang et al. (2016) and Tompson et al. (2017) 

corresponds to the right-hand side of the PPE, i.e. 
𝜌∇∙𝐮∗

∆𝑡
 in Eq. (9a).  However, the PPE in the present 

ISPH model is written as a blended form, i.e. Eq. (9b), of which the right hand side is Ψ/∆𝑡 . The 

introduction of the density variation term is to improve the numerical stability of the ISPH.   

Analogically, we use Ψ as one of the input parameters. Following Yang et al. (2016), we also 

consider the pressure at the previous time step as we found in our preliminary tests that involvement 

of the pressure at the previous time step can improve the prediction of the pressure. The results will 

be discussed in the following section.  Furthermore, the water wave is driven by the gravity and the 

viscous effects may be significant in the case with breaking waves. These effects are taken into 
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account through the calculation of the intermediate velocity, 𝐮∗, we also involve 𝐮∗ as one of input 

parameters. With this a better performance of the ISPH-ML can be achieved than without 

considering 𝐮∗ as an input parameter. The geometry field is not needed here, which are critical in 

Yang et al. (2016) and Tompson et al. (2017) to specify the solid boundary, since the pressure 

boundary condition is approximated using Eq. (17). However, as indicated above, the flag 

specifying the free surface particle is required to consider the free surface boundary condition.   

 

Unlike the existing works (Yang et al., 2016; Tompson et al., 2017; Xiao et al., 2018; Dong et al., 

2019), in the present work, the dynamic pressure pd instead of the total pressure is learnt during the 

training phase and predicted in the runtime prediction. The total pressure is then obtained by 

summing the predicted dynamic pressure and the static pressure. The static pressure can be directly 

calculated using the particle position without the need of prediction. There are two reasons for 

doing so. One is that the dynamic pressure is significantly smaller than the total pressure in a large 

part of the fluid domain. It dominates only near the free surface and during a short duration of 

violent impact. However, the dynamic pressure is critical for achieving a satisfactory accuracy for 

the gravity driven free surface flow. Therefore, a model trained toward a minimized error in the 

dynamic pressure can reduce the adverse effect of the prediction error by the CNN. Secondly, the 

static pressure is only correlated with the position of the particles and can be evaluated exactly.  If it 

would be predicted by CNN model, the error in estimating this part would be unnecessarily 

introduced.   

 

Based on the above discussions, the field data of Ψ, 𝐮∗, fs and 𝑝𝑑
𝑡   are used as the input data in order 

to learn a model to predict the dynamic pressure �̂�𝑑
𝑡+Δ𝑡. The function fCNN from input to output by 

the CNN model can be represented as follows: 

�̂�𝑑
𝑡+Δ𝑡 = 𝑓𝐶𝑁𝑁(Ψ, 𝐮∗, 𝑝𝑑

𝑡 , 𝑓𝑠 , 𝑐𝑝, 𝐼𝐶),                       (26) 

where 𝑐𝑝 is the network coefficients determined during training process of CNN model as discussed 

in Section 2.3.1.  In Eq. (26), IC is the identification character representing a specific class of 

physical problems, such as IC = ‘dam’ indicating dam breaking problems while IC= ‘sol’ indicating 

solitary wave propagation.  IC is specified by users, which does not directly affect the training and 

output of training in this paper.     

 

2.3.5. Objective function  

In the CNN model, the function fCNN is established during the training process by minimising the 

error between the target and actual pressure, which is represented by an objective function. 

Different objective functions lead to different measurement of errors and perhaps different 

prediction of the pressure.  Based on our preliminary tests, the objective function 𝑓𝑜𝑏𝑗 used in this 

work is the sum of squared L-2 norm of the difference between the predicted dynamic pressure and 
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actual values, which is defined as follows:  

𝑓𝑜𝑏𝑗 = ∑ (�̂�𝑑,𝑖 − 𝑝𝑑,𝑖)
2𝑁

𝑖=1  ,                             (27) 

where �̂�𝑑,𝑖  and 𝑝𝑑,𝑖  are the predicted dynamic pressure and the actual dynamic pressure at the 

background node i obtained from the training database. The objective function can also be the sum 

of weighted squared L-2 norm of the divergence of the predicted velocity as used in Tompson et al. 

(2017) or the multi-objective loss function including the difference between the target pressure and 

actual values and the divergence of velocity as in Xiao et al. (2018). In addition, embedding the 

satisfaction of the physical law (PPE) into the objective function of the network may improve the 

physical consistency and accuracy of the trained model. However, these have not been tested in this 

work but may be attempted in our future work.  

3. Numerical Study 

In this section, two benchmark applications are considered to investigate the performance of the 

numerical framework for modelling the free surface flow, which will be evaluated by quantitative 

comparisons of the ISPH_ML results with the experimental data and other numerical results.  

3.1. Dam-break flow  

The dam-break flow is a classical validation test case for Lagrangian fluid simulations. In this test, a 

rectangular column of water is confined by a rectangular tank as shown in Fig. 4. The width and 

height of water column are L and H, respectively. D is the length of horizontal section of water tank 

and a pressure sensor P1 is located on the right wall at a vertical distance of h1 from the bottom.   

 

 
Fig. 4 Schematic view of dam break flow  

 

In order to train the CNN model  𝑓𝐶𝑁𝑁(Ψ, 𝐮∗, 𝑝𝑑
𝑡 , 𝑓𝑠 , 𝑐𝑝, 𝑑𝑎𝑚), a series of ISPH_CQ simulations 

have been carried out. All variables and parameters are non-dimensionalised using D.  These cases 

for this purpose are selected in such a way that the lengths and heights of the water column are 

h1 
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randomly specified in the ranges of L/D = 0.2~0.5 and H/D = 0.2~0.5 with D = 2.0 m. According to 

the convergent investigation, the initial particle spacing of 0.01 m and a time step size of 0.001 s are 

used in the ISPH_CQ simulation. It is well understood that the richness of the data in the training 

and testing sets plays critical role in securing satisfactory accuracy of  𝑓𝐶𝑁𝑁(Ψ, 𝐮∗, 𝑝𝑑
𝑡 , 𝑓𝑠, 𝑐𝑝, 𝑑𝑎𝑚). 

In the preliminary work, training/testing data sets with different number of cases are considered. Fig. 

5 illustrates the random variations of a training set of 70 cases/scenes and a testing set of 30 

cases/scenes.  For each case/scene, 128 frames with 0.006 s time interval are produced for the 

training. These frames cover the entire process from the initial condition to the occurrence of the 

violent impact on the right side of the tank.    

 

0.2 0.3 0.4 0.5

0.2

0.3

0.4

0.5

0.6

 training data

 testing data

 

 

H
/D

L/D
 

Fig. 5 Variation of the heights and lengths of the water column used in training data set and test data 

set 

 

  

         

(a)                                                        (b) 

    

(c)                                                         (d) 
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Fig. 6 The particle distributions and pressure contour at t = 0. 45s for the cases with (a) ISPH_ML 

with 10 scenes in training set and 10 scenes in the testing set, (b) ISPH_ML with 20 scenes in 

training set and 20 scenes in the testing set, (c) ISPH_ML with 70 scenes in training set and 30 

scenes in the testing set, and (d) ISPH_CQ (L= 0.25D,
 
H = 0.5D and D = 2.0 m) 

 

We first discuss how the number of training and testing scenes affect the results. For this purpose,  

Fig. 6 is plotted, in which the particle distribution and pressure contour at t = 0. 45s for the cases 

with L= 0.25D,
 
H = 0.5D and D = 2.0 m are compared. These results  shown in Fig. 6 (a) – (c) are 

obtained by using the ISPH_ML in which the dynamic pressure is predicted by 

𝑓𝐶𝑁𝑁(Ψ, 𝐮∗, 𝑝𝑑
𝑡 , 𝑓𝑠, 𝑐𝑝, 𝑑𝑎𝑚) which is trained/tested using different numbers of scenes, i.e. 10 scenes 

in the training set and 10 scenes in the testing set (Fig. 6a), 20 scenes in the training set and 20 

scenes in the testing set (Fig. 6b), 70 scenes in the training set and 30 scenes in the testing set (Fig. 

6c). Fig. 6(d) shows the corresponding ISPH_CQ result for comparison. As can be seen, with the 

increase of the numbers of scenes in the training/testing data set, the pressure distribution becomes 

smoother and closer to the corresponding ISPH_CQ result (Fig. 6d). Despite that the accuracy of 

the ISPH_ML can be further improved by increasing the volume of the database, we will use the 

test database formed by the cases shown in Fig. 6(c) for further investigation of ISPH_ML 

behaviours.  

 

 

 

 

 

 

  

 

(a) Pressure by the trained model with input parameters similar to Tompson et al. (2017)   

 

(b) Pressure by the trained model with input parameters similar to Yang et al. (2016) 
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(c)  Pressure by the trained model with input parameters adopted in the present study 

Fig. 7 Pressure contour at t = 0. 4s computed by the ISPH_ML with CNN models trained by using 

different input parameters for the case with L= 0.25D,
 
H = 0.5D and D = 2.0 m 

 

As discussed in Section 2.3.4, the input parameters play an important role on the performance of the 

trained function 𝑓𝐶𝑁𝑁. To shed some light on the improved performance of the input parameters 

chosen by the present model, the input parameters similar to Yang et al. (2016) and Tompson et al. 

(2017) have also attempted. The same data sets shown in Fig. 5 are used for three different options.  

Fig. 7 compares the pressure contour at t = 0.4 s computed by the ISPH_ML with the CNN model 

trained by using different input parameters for the same case as shown in Fig. 6.  In terms of input 

parameters proposed by Tompson et al. (2017) (Fig. 6a) and those by Yang et al., (2016) (Fig. 7b), 

the difference is that the latter involves the pressure at the previous time step. Clearly, the pressure 

distribution shown in Fig. 7(b) is more reasonable and smoother than that shown in Fig. 7(a). This 

implies the effectiveness of involving the pressure at the previous time step on improving the 

performance of the CNN model. Compared with the input parameters used by Yang et al. (2016) 

(Fig. 7b), the present model has additional input parameter 𝐮∗. A further improved performance of 

the result in Fig. 7c than that in Fig. 7b suggests the necessity of involving 𝐮∗ as one of the input 

parameters. It may be worth noting that the input parameters proposed by Yang et al. (2016) and 

Tompson et al. (2017) may work well with Eulerian projection method and different objective 

functions. In the Lagrangian framework for the ISPH application, the present model has shown its 

superiority in all cases considered in our preliminary studies.  Due to the length limit of the paper, 

we only present Fig. 7 for demonstration.   It is also worth noting that the trained function 

𝑓𝐶𝑁𝑁(Ψ, 𝐮∗, 𝑝𝑑
𝑡 , 𝑓𝑠, 𝑐𝑝, 𝑑𝑎𝑚) may not work well at the initial stage due to involvement of 𝐮∗ and the 

pressure at the previous time steps.  A simple way to avoid this is to implement the 

𝑓𝐶𝑁𝑁(Ψ, 𝐮∗, 𝑝𝑑
𝑡 , 𝑓𝑠, 𝑐𝑝, 𝑑𝑎𝑚) after t=TML, where TML is specified by users.  Before this instant, Eq. 

(9b) is used to find the pressure like the classic ISPH.  Our tests (not present here) shows that 

results are not very sensitive to the value of TML as long as it is large enough for building up the 

sufficient information for 𝐮∗ and pressure at the previous time steps. 
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Fig. 8 Comparisons of dam break flow (a) water front; and (b) water column height with 

experimental data (Martin and Moyce, 1952) in the case with L= 0.25D,
 
H = 0.5D and D = 2.0 m 

 

With the above-mentioned preliminary studies, the present ISPH_ML with 

𝑓𝐶𝑁𝑁(Ψ, 𝐮∗, 𝑝𝑑
𝑡 , 𝑓𝑠, 𝑐𝑝, 𝑑𝑎𝑚) is used and its accuracy and convergence are discussed below.  The 

first case considered is the same as that used in Fig. 6 and Fig. 7, i.e. L= 0.25D,
 
H = 0.5D and D = 

2.0 m, which has been experimentally studied by Martin and Moyce (1952).  However,  the initial 

particle spacing and the time step sizes are taken as 0.0083 m and 0.0005s respectively, which is 

different from the parameters for generating the training/test data.  One reason for making the 

difference is for demonstrating that the ISPH_ML can use a wider range of computational 

parameters once 𝑓𝐶𝑁𝑁(Ψ, 𝐮∗, 𝑝𝑑
𝑡 , 𝑓𝑠, 𝑐𝑝, 𝑑𝑎𝑚)  is trained.  TML =0.2s in this case. Fig. 8 displays the 

wave front and water column height of dam break flow. For the purpose of comparison, the 

corresponding results of the classic ISPH (Zhang et al., 2018), ISPH_CQ (Zhang et al., 2022) and 

the experimental data are also plotted.  It is observed that the ISPH_ML results agree well with the 

experimental data, especially the water column height shown in Fig. 8 (b). The ISPH_ML results 

are almost identical to the corresponding results by ISPH_CQ, which is used to produce the data 

sets for training the 𝑓𝐶𝑁𝑁(Ψ, 𝐮∗, 𝑝𝑑
𝑡 , 𝑓𝑠, 𝑐𝑝, 𝑑𝑎𝑚). The relative difference between the ISPM_ML and 

ISPH_CQ results of water front and water column height in Fig. 8 are approximately 1%.  More 

discussion about the difference will be given in Section 3.3.  

 

            

     

(a) ISPH  
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(b) ISPH_ML 

       

(c) ISPH_CQ 

Fig. 9 The particle distributions with pressure contours at t = 0.5 s (left column) and t = 0.55 s (right 

column) (L= 0.25D,
 
H = 0.5D, D = 2.0 m and dx = 0.0083 m) obtained by using different ISPH 

models 

 

Attention is also paid to the pressure field at different time during the simulations. Fig.6 (c) and (d) 

have illustrated the results at t = 0.45 s, which represents a typical feature of pressure characteristics 

before the wave impact on the right-end wall, in the case with L= 0.25D,
 
H = 0.5D and D = 2.0 m. 

More results at different time instants after the occurrences of the impact in the same case are 

shown in Fig. 9. As observed from Fig.9, the pressure distribution results from the ISPH_ML is 

almost as smooth as other conventional ISPH results. The free surface location and the formation of 

the breaking jet in the ISPH_ML simulation are visually comparable to the corresponding results 

from the ISPH and ISPH_CQ. Quantitatively, the pressure time histories recorded at the pressure 

monitoring point P1, which is placed on the right end wall and 0.1 m (h1 = 0.1 m) above the tank 

bed, are displayed and compared in Fig. 10. The results from all ISPH models exhibit a typical 

feature of violent wave impact, i.e. a sharp rising of pressure. Taking the ISPH_CQ result as the 

reference value, the present ISPH_ML slightly overestimate the peak pressure, whereas the classic 

ISPH underestimate the peak pressure. The relative errors of the ISPH_ML and the classic ISPH in 

terms of the peak pressure are at a similar level, i.e. approximately 10%, which is acceptable for 

violent wave impact problems. It is also interesting to observe that there is much less fluctuation in 

the pressure time history produced by the ISPH_ML.  
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Fig. 10 Time histories of the pressure recorded at P1 in the cases with different ISPH models (L= 

0.25D,
 
H = 0.5D and D = 2.0 m; h = 0.1 m)  

 

 

     

(a) ISPH 

     

(b) ISPH_ML 

     

(c) ISPH_CQ 

Fig. 11 Particle distributions with pressure contours at t = 0.55 s (left column) and t = 0.6 s (right 

column) (L = 0. 5D,
 
H = 0.25D and D = 3.0 m) obtained by using different ISPH models 
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Fig. 12 Time histories of the pressure recorded at P1 in the cases with different ISPH models (L = 0. 

5D,
 
H = 0.25D and D = 3.0 m; h1 = 0.1 m)  

 

The case shown in Figs. 8-10 falls in the range of the training/testing data sets, although it is not 

identical to any training/testing cases (Fig. 5).  Here, the ISPH_ML is applied to another dam 

breaking cases that is slightly beyond the main range of the training/testing data sets. In this case, L 

= 0. 5D,
 
H = 0.25D and D = 3.0 m. The particle distributions and pressure contours at different time 

steps are shown in Fig. 11. Like what has been seen in Fig. 9, the agreements between the 

ISPH_ML results and the results from other ISPH models are also good. The corresponding time 

histories of the pressure recorded at P1 are compared in Fig. 12. It is found that the ISPH_ML and 

the classic ISPH result in similar peak pressure that are slightly lower than the ISPH_CQ result. 

This implies the present ISPH_ML can deliver satisfactory results for a dam breaking case beyond 

the main range of training/testing data sets, suggesting it has a potential to be made more general.   

 

In order to further validate the ISPH_ML, another dam breaking case studied experimentally by 

Lobovský et al. (2014) is considered , where the dimensions L
 
= 0.37 D , H

 
= 0.37 D  and D

 
= 

1.61 m are used. The particle size and time step in this case are taken as the same as the case for the 

results in Fig. 8 and 10.  Fig. 13 illustrates the particle distributions by using different ISPH 

methods at two instants. Again, one can see that overall particle distributions and pressure fields 

computed by ISPH_ML as shown in Fig. 13(b) are similar to the results from ISPH_CQ in Fig. 

13(c). The time histories of pressure at P1 with height h1 = 0.08 m computed by different ISPH 

methods are compared with the experimental data of Lobovský et al. (2014) in Fig. 14. The relative 

error of the ISPH_ML in term of the peak pressure is about 5.3% as compared with the 

experimental peak pressure.  

 

 



23 

 

 

       

(a) ISPH    

  

(b) ISPH_ML 

          

(c) ISPH_CQ 

Fig. 13 Particle distributions with pressure contours at t = 0.3 s (left column) and t = 0.36 s (right 

column) ( L
 
= 0.37 D , H

 
= 0.37 D  and D

 
= 1.61 m) obtained by using different ISPH models 
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Fig. 14 Time histories of the pressure recorded at P1 in the cases with different ISPH models ( L
 
= 

0.37 D , H
 
= 0.37 D  and D

 
= 1.61 m; h1 = 0.08 m, dx = 0.0083m) 
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3.2. Solitary wave propagation  

The second benchmark problem considered here is the solitary wave propagation. The schematic 

diagram of the wave tank to perform the test is shown in Fig. 16, in which h is the solitary wave 

height, D is the water depth and L is the length of the wave tank. The wave is generated by the 

wavemaker on the left end of the tank using the approach in Ma and Zhou (2009). The right end of 

the tank is a vertical wall.  Before the wave reflected from the right end wall, the free surface can be 

described by the Boussinesq equation (Lee et al., 1982). The problem has been investigated in our 

previous work using the classic ISPH and ISPH_CQ (Zhang et al., 2021; 2022).  

 

 

Fig. 16 Schematic wave tank for solitary wave  

 

In this benchmark test, the CNN model 𝑓𝐶𝑁𝑁(Ψ, 𝐮∗, 𝑝𝑑
𝑡 , 𝑓𝑠, 𝑐𝑝, 𝑠𝑜𝑙) is trained using a new set of 

training/testing data also generated by the ISPH_CQ. The length of the tank is taken as 10 m. All 

training and testing cases are randomly specified using h ranging from 0.2D to 0.4D, whereas 

different values of 0.25 m, 0.275 m and 0.3 m are assigned for D. According to the preliminary 

study, 40 training cases/scenes and 20 testing cases/scenes are used. Each case produces 256 frames 

of data with a time interval of 0.0125 s. According to the convergent test, the initial particle spacing 

and the time step size used by the ISPH_CQ to generate the dataset are 0.0125 m and 0.00125 s, 

respectively. The trained CNN model 𝑓𝐶𝑁𝑁(Ψ, 𝐮∗, 𝑝𝑑
𝑡 , 𝑓𝑠, 𝑐𝑝, 𝑠𝑜𝑙)  is then incorporated with the 

ISPH_ML model for predicting the pressure in simulating the cases with different solitary wave 

heights. The corresponding results are compared with the other ISPH results and the solution from 

the Boussinesq equation (Lee et al., 1982).   
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Fig. 17 Particle distributions and pressure contour obtained by the ISPH_ML in the case of solitary 

wave with h = 0.2D at (a) t= 2.6 s; (b) t= 3.2 s and (c) t= 3.6 s (D = 0.25 m, L = 8 m, the orange line 

is the results from the Boussinesq equation, Lee et al., 1982) 

 

 

 

 

 

Fig. 18 Particle distributions and pressure contour obtained by the ISPH_ML in the case of solitary 

wave with h = 0.28D at (a) t= 2.6 s; (b) t= 3.2 s and (c) t= 3.6 s (D = 0.25 m, L = 8 m; the orange 

line is the results from the Boussinesq equation, Lee et al., 1982) 
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Fig. 17 and Fig. 18 illustrate the pressure contour obtained by the ISPH_ML in the cases with h = 

0.2D and h = 0.28D, respectively. In these cases, the water depth D = 0.25 m and the tank length L 

= 8 m. For the purpose of comparison, the wave profile predicted using the Boussinesq equation 

(Lee et al., 1982) are also plotted together (thick line on the free surface). As indicated above, 

Zhang et al. (2021,2022) has compared the numerical results by the classic ISPH and the ISPH_CQ 

with the Boussinesq solution, and satisfactory agreements have been demonstrated. For clarity, the 

corresponding results are not shown in Fig. 17 and Fig. 18, but will be displayed in the following 

section. These figures do not only demonstrate a smooth pressure distribution but also confirms a 

good agreement in predicting the wave profiles. The relative errors between the ISPH_ML and the 

Boussinesq solution in terms of the solitary wave height are about 2.8% for h = 0.2D and 4.3% for h 

= 0.28D. While the relative errors in wave height with h = 0.28D are about 2.3% for ISPH and 1.2% 

for ISPH_CQ. 
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Fig. 19 Time histories of the volume of the fluid in the case of solitary wave (h = 0.28D m and dx = 

0.0125 m) 

 

Mass/volume and energy conservation are other important criteria to assess the performance of a 

numerical method. Fig. 19 depicts the time histories of the fluid volume (equivalent to the mass 

with a little change fluid density) of the whole domain in the solitary wave case with h = 0.28D. It 

is observed that ISPH_ ML exhibits a satisfactory performance in volume conservation, although its 

result is slightly larger than the theoretical value. The maximum error of the volume, defined by 

max( ) /m i t tErr V V V= −  where Vi   is the volume values from numerical results at different time step 

and Vt is the theoretical value, is about 0.53% for ISPH_ML, 0.27% for ISPH and 0.19% for 

ISPH_CQ in Fig 19. On the other hand, the performances of the ISPH models in terms of energy 

conservation are also examined.  Fig. 20 depicts the time histories of the total energy for the same 

case as that shown in Fig. 19. In this case, the wavemaker feeds the energy into the fluid and, 

consequently, the fluid energy increases until the wavemaker stops. During the wavemaker moves, 

all models give similar results, which increase with the time. After the wavemaker stops, the energy 
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in the tank is expected to remain as a constant. Taking the ISPH_CQ result from t = 2.0 s to t = 5.0 s 

in Fig 20 as the reference, the average error of the total energy is about 0.067% for ISPH_ML and 

0.046% for ISPH. Generally, the total energy of the fluid in the ISPH_ML simulation is well 

reserved after the wavemaker stops.  
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Fig. 20 Time histories of the total energy in the case with solitary wave propagation (h = 0.28D) 

 

3.3. Convergent behaviour and Computational Efficiency  

The discussions in Section 3.1 and 3.2 focus mainly on the accuracy and the smoothness of the 

pressure field. The comparisons shown above confirm a satisfactory accuracy of the ISPH_ML, 

compared to experimental data, theoretical and other numerical results. In addition, the convergent 

behaviours and the computational efficiency are extremely important for any numerical method. 

The existing CNN supported solvers in Eulerian frame by Yang et al. (2016), Tompson et al. (2017), 

Xiao et al. (2018), Dong et al. (2019), and other machine learning supported particle methods by 

Ladicky et al. (2015), Wessels et al. (2020), Li and Farimani (2022), all showed the significant 

improvement of the computational efficiency, but did not investigate the convergence behaviour. 

Only Li and Farimani (2022) briefly compared the ML results for different time step sizes. In this 

section, the convergence property of the ISPH_ML and its computational efficiency are discussed.  
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Fig. 21 Particle distributions and pressure contour for a case about dam breaking from ISPH_ML 

with different particle size: (a) dx = 0.02m; (a) dx = 0.0167m; (c) dx = 0.0125m and (d) dx = 0.01m 

at t = 0. 6s (L= 0.25D,
 
H = 0.5D and D = 2.0 m) 
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Fig. 22 Averaged errors Erra (L-2 norm) of numerical results of ISPH_ML in the cases with 

different initial particle spacings (L= 0.25D,
 
H = 0.5D and D = 2.0 m; ISPH_CQ results are taken as 

the reference values) 

 

The first case demonstrated here is the dam breaking case shown in Figs. 8 – 10, i.e. L= 0.25D,
 
H = 

0.5D and D = 2.0 m. Different initial particle spacings ranging from 0.0083 m to 0.02 m are used. 

For all these cases, the time step size is determined by (dt/dx)=(dt0/dx0), where dt0 =0.001s and 

dx0=0.01m are the time step and initial particle spacing used by ISPH-CQ which has been tested to 

be appropriate. Fig. 21 illustrates the particle distributions and pressure contour from ISPH_ML 

with different initial particle spacings. It is found that despite the use of coarse particle resolution, 

the pressure distribution is reasonably smooth; the free surface profile seems not be different 

significantly, except for the area near the overturning jet.  
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Due to limited availability of the experimental data, we use the results from ISPH_CQ simulation 

with dx = 0.01 m as the reference values. The averaged errors are defined by, 
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where yi,n is the results (water column height, water front or the pressure at P1) at different time 

steps obtained by the present ISPH_ML and the yi,f denotes the corresponding results from the 

ISPH_CQ simulation, N is the total number of time steps in the duration of simulation,  𝑡√𝑔/𝐻 = 

0.0 to 1.7. The errors of different variables estimated in this way for different initial particle spacing 

are shown in Fig. 22. As shown by the figure, the averaged errors of the ISPH_ML are reduced as 

the particle spacing decreases, largely following a linear rate (parallel to the linear sloping line 

marked ‘k=1’), the same rate as the classic ISPH (Zhang et al., 2021; 2022).  
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Fig. 23 Comparisons of solitary wave profiles at t = 3.2 s between analytical and ISPH_ML results 

with initial particle spacings (h = 0.07 m) 

 

In the 2nd demonstration case, we consider the solitary wave propagation with h = 0.28D m (Fig. 

18).  Different initial particle spacings ranging from 0.008 m to 0.0208 m is used in the convergence 

investigations with the time step determined by (dx*dt)=(0.00125/0.0125). Fig. 23 illustrates the 

free surface profiles at t = 3.2 s (Fig. 18 (b)) obtained by ISPH_ML model and the corresponding 

analytical solution of the Boussinesq equation (Lee et al., 1982). It is observed that as the initial 

particle spacing reduces, the numerical result becomes closer to the analytical solution. In order to 

further investigate the convergence property of the ISPH_ML model, the corresponding errors of 

the free surface profiles with initial particle spacings are given in Fig. 24. The errors in this case are 

also estimated by Eq. (28) but yi,n and yi,f  are taken as the wave elevation at i-th particle recorded 

from the numerical simulation and that calculated by the Boussinesq equation; N is the total number 

of particles in the sub-domain specified by x = [2.6 4.6] m as seen in Fig. 23, around the wave crest. 

For the purpose of comparison, the corresponding results from the classic ISPH and ISPH_CQ are 

also plotted together. To assist the evaluation of the convergent rate, two slopping lines representing 
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linear (k = 1) and quadric convergent rates (k = 2) are also plotted. It is found that the ISPH_CQ 

exhibits a quadric convergent rate when the particle resolution is coarse and reduces to a slower 

convergence, significantly improved compared with the classic ISPH, which is linear. This further 

justified the reason why the ISPH_CQ is used to produce the training/testing data sets, in addition to 

the evidence given in our previous publication (Zhang et al., 2022). More importantly, the 

ISPH_ML and the classic ISPH show a clear linear convergence rate towards a similar accuracy 

when the particle spacing is small enough. It firmly concludes that the ISPH_ML with properly 

trained CNN model can lead to the same accuracy as the classic ISPH.  

 

-2.2 -2.0 -1.8 -1.6 -1.4
-1.8

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

k=1

 ISPH

 ISPH_ML

 ISPH_CQ

 

 

L
o
g
(E
rr
a)

Log(dx)

k=2

 

Fig. 24 Averaged errors Erra (L-2 norm) of numerical results in the solitary wave propagation cases 

with different particle spacing (h = 0.28D)  

 

Table 1: Case configurations for the solitary wave propagation 

Case  D (m) L (m) dx (m) N 

1 0.25 10 0.01 25,000 

2 0.25 40 0.01 100,000 

3 0.25 80 0.01 200,000 

4 0.5 80 0.01 400,000 

5 0.5 160 0.01 800,000 

 

To show the efficiency of the ISPH_ML, the CPU time spent by the pressure prediction using the 

𝑓𝐶𝑁𝑁(Ψ, 𝐮∗, 𝑝𝑑
𝑡 , 𝑓𝑠, 𝑐𝑝, 𝑠𝑜𝑙) in the ISPH_ML is compared with that used for directly solving the 

corresponding PPE in the ISPH model. For this purpose, the case of solitary wave is considered 

with different computational parameters given in Table 1. All these cases are run on a workstation 

with Intel Xeon E5-2667 CPU at 3.3 GHz, 16.0 GB RAM and NVIDIA GeForce GTX 1070 with 8 

GB of RAM. Fig. 25 compares the average CPU time used in one time step for predicting the 

pressure using CNN model 𝑓𝐶𝑁𝑁(Ψ, 𝐮∗, 𝑝𝑑
𝑡 , 𝑓𝑠, 𝑐𝑝, 𝑠𝑜𝑙) in the ISPH_ML and for directly solving the 

PPE in the classic ISPH. This figure clearly demonstrates a significant speed-up of the ISPH_ML 

compared to the classic ISPH as the number of particles is higher than 100k, which is very popular 

scenario in practices. For example, at 800k particles, the CPU used by the ISPH_ML is about one 

eighth of that used by the classic ISPH.   
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Fig. 25 Averaged CPU time used for pressure prediction per step for the case of solitary wave 

propagation 

4. Conclusion 

The paper presents a CNN-supported ISPH model, ISPH_ML, for simulating the free surface flow.  

In this model, the pressure projection part in the classic ISPH, i.e. solving the PPE, is replaced by 

the trained CNN model. Although the CNN technique has been widely used in literature, this paper 

makes several original contributions to combine it with ISPH, including the selection of the input 

parameters, implementation of the boundary condition, mapping the particle-based field data to 

grid-structured CNN architecture. To the best of our knowledge, this is the first CNN-supported 

ISPH model in literature.  

 

The developed ISPH_ML is applied to two classic benchmark problems, i.e. the dam-breaking flow 

with violent impact and the solitary wave propagation. The accuracy, convergence and the 

computational efficiency of the ISPH_ML are discussed in detail. It is concluded that (1) the 

ISPH_ML exhibits a linear convergence, the same as the classic ISPH; (2) both the ISPH_ML and 

the classic ISPH converge to a similar accuracy; and (3) the particle kinematics and the pressure 

distribution obtained by the ISPH_ML are visually comparable to the corresponding results by the 

classic ISPH. Such capacity of ML supported ISPH in reproducing the real physics has not been 

found in literature, to the best of our knowledge.    

 

More importantly, investigation of the computational efficiency of the ISPH_ML suggests that 

pressure prediction using the trained CNN model show a significant superiority in terms of CPU 

time over directly solving the PPE when the number of particles exceeds 100k, which is usually 

required for modelling violent free surface flow, and that the more particles are involved, the more 

CPU time is saved.  
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However, the model bears some limitations and can be improved in future work. For example, only 

one specific objective function is considered in the paper; other appropriate objective functions, e.g., 

including the satisfaction of the physical law (PPE), may further improve the generalization and 

accuracy of the trained model. In addition, this paper has considered only the CNN model; other 

machine learning models may be attempted, which might be better than the CNN model. 

Furthermore, this paper attempts only two-dimensional problems; its capacity for three-dimensional 

problems should be explored.        
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