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Abstract

This paper presents a novel approach to the problem of time periodization, which involves dividing the time span of a complex
dynamic phenomenon into periods that enclose different relatively stable states or development trends. The challenge lies in find-
ing such a division of the time that takes into account diverse behaviours of multiple components of the phenomenon while being
simple and easy to interpret. Despite the importance of this problem, it has not received sufficient attention in the fields of visual
analytics and data science. We use a real-world example from aviation and an additional usage scenario on analysing mobility
trends during the COVID-19 pandemic to develop and test an analytical workflow that combines computational and interactive
visual techniques. We highlight the differences between the two cases and show how they affect the use of different techniques.
Through our investigation of possible variations in the time periodization problem, we discuss the potential of our approach to
be used in various applications. Our contributions include defining and investigating an earlier neglected problem type, devel-
oping a practical and reproducible approach to solving problems of this type, and uncovering potential for formalization and

development of computational methods.

Keywords: multivariate time series, time, visual analytics, visualization

CCS Concepts: [Human-centred computing — Visual analytics]: Visualization application domains—Visual analytics

1. Introduction

Periodisation is defined in dictionaries as the act or process of divid-
ing history into periods (e.g. [Col22]). “Periodisation is a form of
historical understanding, designed as a historiological tool for mak-
ing the past understandable, intelligible, and meaningful by dividing
itinto compartments” [Sat01]. The concept of time periodization re-
flects the view of time as both a continuum and a process of perpet-
ual change, which implies that any description of time needs to em-
phasize continuity at some points and difference at others [Blo54].
Attempts to represent continuity and differences result in defining
time periods and boundaries between them.

Time periodization is pertinent not just to history. Generally, any
process can be divided into meaningful phases. Dividing the time
during which something exists, functions, or happens into peri-
ods that can be characterized synoptically and compared to each
other [Hay98] is an instrument for analytical abstraction and syn-
thesis of general knowledge. In this function, time periodization is
used in various domains, for example:

* in marketing — to identify patterns and trends in consumer be-
haviour, such as seasonal variation in demands and changes in
preferences and interests, in order to develop effective marketing
strategies and make sensible decisions about promotions, launch-
ing new products, or pricing adjustments;

* in crime analysis — to grasp and characterize variations of crimi-
nal activities over time, which helps police offices to deploy their
resources more effectively and law enforcement agencies to de-
velop strategies for crime prevention and policing;

* in finance — to understand the developments in stock prices, in-
terest rates, and other financial indicators for developing reasoned
investment strategies and making timely decisions about buying
and selling;

* in sport analysis — to define different strategies applied by play-
ers or teams in sport games, which can help their opponents to
prepare to forthcoming games.

Data-driven time periodization, which is practised in these and
other application domains, is based on analysis of time series and/or
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event sequence data with the help of computational methods, such
as clustering, time series decomposition, and breakpoints detection
(e.g. [BPJ*20]). However, these methods alone may not produce
results that are meaningful to human analysts and convenient for
using in the further analysis or for presenting and explaining to oth-
ers. Analysts need to review the results and adjust them in accord
with domain knowledge and requirements of the further use. Re-
sults of computations can be improved by varying method parame-
ters [BPJ*20] but still may not be fully satisfactory. This is where
visual analytics combining computational techniques with interac-
tive visual interfaces can be of great help.

Using visual analytics approaches, a human analyst can intelli-
gently and flexibly combine information about varying characteris-
tics of a studied phenomenon with domain knowledge of the nature
of the changes and their relationships to the structure and proper-
ties of time [AAD*10, AAF*20]. For example, an analyst dealing
with a social phenomenon expects differences between weekdays
and weekends, whereas a climate researcher is aware of possible
effects of the solar cycle. An analyst may decide to ignore casual
abrupt variations of characteristics that break continuity of time pe-
riods and unite the differing time steps with their neighbours. How-
ever, the analyst may also deem the outstanding time steps to require
a special consideration and therefore decide to organize them in a
separate non-contiguous time period. To make such decisions and
implement them, analysts need appropriate visual representation of
data reflecting the temporal variation and tools enabling interactive
division of the time and/or modification of results of algorithmic di-
vision.

It is not unusual that dynamic phenomena under analysis consist
of heterogeneous parts whose characteristics vary in somewhat dif-
ferent ways. For example, students and working people may have
different rhythms of social activities, groups of customers may dif-
fer in their shopping behaviour, and development trends may vary
among sectors of economy. Like in periodization of historical time,
where scholars bring together individual developments of different
countries, analysts of time-related data may need to create an over-
arching division of time that respects essential features of temporal
variation pertinent to different parts but is uncomplicated and eas-
ily interpretable. As a starting point, an analyst may consider sev-
eral periodizations made individually for each of the heterogeneous
parts. The analyst can note similarities, assess the importance of
differences, take suitable time periods from different divisions, and
make adjustments to capture important patterns of temporal varia-
tion of each part while ignoring irrelevant individual features. There
is a need in interactive visual interfaces that can support integration
of several time divisions into a single overall division.

In this paper, we propose a workflow and a combination of tools
for interactive division of time into meaningful and manageable pe-
riods, which may include creation and subsequent integration of
multiple different divisions. To make the concepts clearer to the
readers, we begin with introducing a motivating example and then
present a general formulation of the time periodization problem
(Section 2). After an overview of the related work in Section 3, we
use the example to present the proposed workflow for solving the
problem and define a combination of tools can support the fulfil-
ment of this workflow (Section 4). We deem important to note that
we strive to define the tools in a general way, that is in terms of their

functions, acknowledging the possibility of different realisations. In
Section 5, we test the workflow by applying it to a different example,
which allows us to demonstrate how the approach may vary depend-
ing on properties of the data. This is followed by a discussion of our
contribution in Section 6 and final conclusion in Section 7.

2. Problem Statement
2.1. Motivating example

The SIMBAD project (“Combining Simulation Models
and Big Data Analytics for ATM Performance Analysis”,
https://www.simbad-h2020.eu/) aims to develop methods and
models for analysing and understanding the performance of the
Air Traffic Management (ATM) system in Europe. This project
responds to the need for representing the annual variation of air
traffic with simulation models that can be used for prediction and
planning. However, the ATM system is highly complex, with over
30,000 daily flights affected by the decisions and interactions of
multiple stakeholders and external variables such as seasonality,
weather and variation of demands. Consequently, the traffic flows
on different days can vary substantially, and a single simulation
model cannot accurately represent the system’s performance
throughout the year. This highlights the need to develop a system
of multiple models that can represent different periods of the
year accurately. To be practically usable, the models need to be
relatively few in number, and it must be clear when to use each
model and why. To achieve this, it is necessary to divide the 1-year
time span into well-defined periods so that each period’s traffic can
be accurately represented by a single simulation model. This task
has been in the focus of our research.

The data under analysis describe air traffic situations that existed
in numerous different time steps, such as days of a year. A traffic
situation in each time step is a spatial distribution of the air traffic.
It is characterized by a number of variables with values referring to
different spatial objects or regions, such as airports or airspace sec-
tors. These variables capture various aspects of air traffic, including
traffic volumes and performance indicators such as flight delays.

The temporal variation of traffic characteristics can vary signifi-
cantly across different parts of the traffic network or subspaces of the
airspace, which complicates the task of time division. For instance,
seasonal or weekly variation patterns may be more pertinent to some
elements of the network (airports, regions, connections, etc.) than to
others. Furthermore, in some parts of the network, weekly variation
patterns may be more pronounced during certain seasons. The di-
versity of the temporal patterns is illustrated by the map fragments
shown in Figure 1, where time series of daily flight counts by air-
ports are represented by mosaic glyphs with colours representing
normalized deviations of the flight counts from the airport-specific
means. Itis crucial to take into account the heterogeneity of the tem-
poral variation patterns across the network while performing time
division. Otherwise, the result may unify time steps with situations
that appear similar on the overall scale but differ considerably in
some part(s) of the network. Statistical measures alone may be in-
sufficient to reveal such differences. It requires human expert knowl-
edge and reasoning to explore the heterogeneity of temporal varia-
tion patterns across the network and define time periods accordingly.
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Figure 1: Fragments of a map showing time series of daily counts of
flights (normalized by transforming to z-scores) served in airports.
The time series are represented by mosaic glyphs with columns cor-
responding to 7 days of a week and rows to 53 weeks of a year.
The values are encoded using a diverging colour scale with shades
of blue used for negative values (i.e. below the means) and red for
positive values (above the means). The map fragments demonstrate
heterogeneity of the temporal variation patterns.

2.2. General formulation

Context: A dynamic phenomenon involves multiple components
or objects with time-varying characteristics. The changes of the
characteristics of each component are represented by values of one
or more attributes (variables) specified for consecutive time steps,
which may be time moments or intervals. Hence, there is a dataset
consisting of time series of attribute values referring to different ob-
jects or components. The data cover a long extent of time, so that
the time series include a large number of time steps.

Problem: To understand and describe how the whole dynamic
phenomenon evolves over time, taking into account that its com-
ponents may have different temporal patterns of changes, the long
sequence of time steps needs to be reduced to a small number of time
periods encapsulating relatively stable states of the phenomenon or
continuing tendencies of its development. This means that charac-
teristics of the phenomenon or consecutive changes of those need
to be similar within each period and differ from other periods. The
division of the time into periods must take into account essential
differences between development patterns of diverse components
or objects in the phenomenon.

General idea of the approach: First, the set of objects or com-
ponents is divided into subsets whose members have common pat-

terns of changes. Next, time division is performed separately for
each subset based on its common pattern of change. Finally, mul-
tiple divisions are merged into a singe division by a human expert
seeking an appropriate balance between simplicity and accuracy of
capturing different patterns of change. This approach needs to be
supported by an appropriate combination of computational, visual
and interactive techniques arranged in a workflow.

3. Related Work

Problem decomposition based on partitioning data sets into sub-
sets is one of main principles of data analysis and model build-
ing [AAF*20] (sect.13.8). Partitioning usually divides a data set into
a manageable number of subsets, such that items within each sub-
set are similar and differ from items in other subsets. Geographic
partitioning was a key theme in geospatial data analysis research
for decades [AAD*10] resulting in methods that take into account
specific features of the geographic space and distributions of spa-
tial phenomena.

For temporal data, partitioning of time has been considered in the
context of the problem of data abstraction. Abstraction of tempo-
ral data results in a sequence of time intervals with discrete labels
assigned to them [HO2]. Aigner et al. state that the labels need to
convey key ideas [AMM*08, AMST11]. This aligns with the Al
view of temporal abstraction as a type of a generic interpretation
task that aims at deriving higher-level concepts [Sha97].

The problem of time partitioning and abstraction can be consid-
ered either as a supervised or as an unsupervised task [HO2]. Su-
pervised abstraction means finding time intervals where data have
certain properties defined a priori and assigning corresponding la-
bels from a given set. Unsupervised time abstraction means that no
concepts are defined in advance; they have to be learned from data.
Our work relates to the task of unsupervised time abstraction.

For supervised abstraction, there are methods detecting prede-
fined shapes in univariate time series, such as constancy, increase,
and decrease, where increase or decrease can be linear, convex, or
concave [HO2]. Aigner et al. [AMM*08, AMST11] describe ex-
amples of transformation of numeric values to categorical labels
using domain-specific rules. Computational techniques are used to
find sufficiently long time spans of stable values. The theory of
knowledge-based temporal abstraction (KBTA) developed by Sha-
har [Sha97] suggests that the task is done by matching data from
time intervals with patterns defined in domain ontology. Tempo-
ral abstractions can also be defined using event calculus [CC99].
To support this, Chittaro et al. [CCO1] developed a visual interface
where users can specify relationships between time intervals and
logical relationships between conditions. The visual language was
later extended to allow specification of durations, granularities, and
other time-related features [CO12]. Sacchi et al. [SLCBO7] propose
a data mining framework for identifying recurring temporal rela-
tionships between occurrences of user-specified patterns of interest.

For unsupervised abstraction, a possible general approach is to
identify similar parts in the time series by means of clustering
[HO2]. A well-known example is the work by van Wijk and van
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Selow [vWvS99], who applied clustering to data characterising
days of a year and showed the resulting time clusters in a calendar
view, which revealed weekly and seasonal patterns of data variation.
The idea of clustering time steps based on their features was fur-
ther developed for spatially referenced time series of attribute val-
ues [GCMLO06, AAB*10], dynamic mobility graphs [VBR*16], and
time series of spatial distributions of movement data [AAFW17].
These approaches implement a common workflow: define an ap-
propriate similarity measure (distance function) for the features of
the time steps, apply some clustering method, and visualize cluster
membership of the time steps and summary features for the clusters.

Grouping of time steps can be based on user-specified queries,
which provides the advantages of full user control, understanding
of the grouping principles and ease of interpretation of the resulting
subsets of time steps, which, however, may not form continuous pe-
riods. Computational methods for performing time queries on large
datasets were developed in temporal databases [Gad88, JCG*92].
Following the ideas of interactive and dynamic queries [Shn94,
HS04, BAP*05], a Time Mask query interface allows interactive se-
lection of time intervals with user-defined properties [AAC*17]. A
user observes an immediate feedback in visual displays of the data
after modifying query conditions. Later extensions of time query
operations [AAA*21] enable ignoring intermittent brief intervals
of query satisfaction or absence of satisfaction and adding tempo-
ral buffers before and/or after intervals selected by a query. These
operations may help users to build continuous time periods from
disjoint pieces.

Partitioning of numeric time series into time periods can be
achieved using algorithms for time series segmentation [GYD*19].
It can be combined with interactive visual techniques [BDB*16,
BBB*18], which may involve embedding of time steps into a
low-dimensional (typically 2D) space based on similarity of their
characteristics. The simplest embedding is a scatter plot where posi-
tions correspond to values of two attributes and points representing
consecutive time steps are connected by lines [Phi58]. Projection of
more complex temporal data, such as values of multiple attributes,
graphs, statistical or spatial distributions, or traffic situations, is
done by means of dimensionality reduction (DR) methods, such as
MDS[Kru64] or t-SNE [vdMHO8]. DR can be applied to individual
time steps (e.g. [VAEHBvW16]) or to previously clustered and
aggregated data [HWX*10, BWK*13]. Connecting consecutive
points by lines in such projection forms a so-called Time Curve
[BSH*16]. Different motifs in Time Curves can be interpreted
semantically as gradual or rapid changes, stable states, oscillation,
stagnation, etc. [BSH*16, vdEHBvW16]. Bernard et al. [BWS*12]
assign colours to the positions in the projection space and represent
the temporal variation of the value combinations by variation of
colours along the time axis. Recent extensions of Time Curve,
which include depiction of the point density and representation of
distribution statistics [BSP*22], allow assessing a likely number
of clusters in the data. This work connects two general approaches
to analysis of complex time-related data: time clustering and time
embedding [AAF*20].

Our work builds on these approaches by combining their
strengths. The research on the application of time step embed-
ding [BSH*16, vdEHBVW 16] proved to be especially important for
developing our approach.

4. Workflow and Methods

We present an analytical workflow that involves several steps. First,
we clean the data to remove any occasional variations that may ob-
scure the general patterns. Next, we divide the data into subsets that
exhibit coherent patterns of temporal variation. Once we have iden-
tified these subsets, we define specific time periods for each of them.
After this, we integrate all the subsets into a unified set of time pe-
riods. Finally, we characterize the specific features of each period
to gain a deeper understanding of the data. We have developed this
workflow using the example of the air traffic data, specifically, the
daily counts of the flight departures from airports of Europe and a
few neighbouring countries. The dataset covers the entire year of
2019, which was the last year of normal air traffic before the Covid-
19 pandemic resulted in travel restrictions.

To examine the temporal variation in flight departures indepen-
dent of airport sizes and capacities, we normalized the time series
by converting the flight counts into z-scores. This involved calculat-
ing the differences between the flight counts and the means of the
time series, and then dividing these differences by the respective
standard deviations. To provide a visual representation of the time
series, we created glyphs in the form of a matrix. Each glyph con-
sists of seven columns for the days of the week and 53 rows for the
weeks of the year. We used a diverging colour scale [HBO03] with
shades of blue for negative values (below the means) and red for
positive values (above the means) to depict the values of each cell
in the matrix.

4.1. Step 1. Clean data from occasional variations

Any real-world data set requires careful investigation of data proper-
ties and assessment of data quality [LAW*18], which includes de-
tection of incorrect, incomplete, duplicate or otherwise erroneous
data and fixing the problems thus revealed. For time series data, it is
necessary to investigate rapid changes and other kinds of surprising
patterns that may be indicative of errors or anomalies [GAM*14].
Although these unusual patterns may not be inherently wrong, they
may need to be ignored, particularly when the analysis task requires
generalization. Our goal is to capture the general features of the de-
velopment of air traffic in Europe over the year, and thus, we need
to detect and discard cases of extraordinary temporal variation that
might have occurred due to specific local conditions or occasional
circumstances. To achieve this, we use a 2D embedding technique to
project the time series into a low-dimensional space based on simi-
larities between them expressed by an appropriate distance metric.
Exceptional data samples are spatially separated from the bulk in
such an embedding. In our example, we use Euclidean distance as
the distance metric, Sammon’s mapping [Sam69] as the projection
method, and create a projection plot representing the time series by
mosaic glyphs, as shown in Figure 2.

On the left side of the projection plot in Figure 2, we see two
oddly painted mosaics, marked by black frames. The upper glyph
corresponds to Milano Linate, which has a blue stripe indicating
very low values in the period from August to October. The lower
mosaic corresponds to Istanbul Ataturk airport, indicating a sharp
drop in the number of flights after the beginning of the year. In both
cases, the manner of temporal variation is surprising. To investigate
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Figure 2: 2D space embedding (projection) of the time series re-
veals two extraordinary cases of temporal variation (marked by
black frames on the left). The encoding of the time series is the same
as in Figure 1
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Figure 3: Special cases: airports with peculiar temporal patterns
of changes and their geographical neighbours.

further, we locate these airports on the map and examine their neigh-
bourhoods, as shown in Figure 3. We notice that the glyphs of the
Istanbul Airport and Milano Malpensa demonstrate opposite colour
patterns with respect to the glyphs of Istanbul Ataturk and Milano
Linate, respectively. The most likely explanation is that Istanbul
Ataturk and Milano Linate were not used for long time periods, and
their neighbouring airports were used instead. The glyphs of these
neighbouring airports are located on the right of the projection plot
in Figure 2; they are also marked by black frames. These two glyphs
not separated from others because their respective temporal patterns
are not extraordinary. Many airports experience an increase in the
number of flights during the summer and early autumn months, such

as Milano Malpensa, and low traffic in the winter, as is the case with
Istanbul Airport.

To ensure that our analysis captures the general features of the Eu-
ropean air traffic over the year, we exclude the airports that exhibit
unusual temporal patterns as being irrelevant to the overall manner
of air traffic changes throughout the year.

4.2. Step 2. Divide data into subsets with coherent temporal
patterns

The air traffic data exhibits diverse patterns of temporal variation
with varying interplay between seasonal and weekly time cycles, as
revealed by both the map (Figure 1) and projection plot (Figure 2).
While some airports experience an increase in traffic during sum-
mer, others experience a decrease, and some have no seasonal vari-
ation. Similarly, the weekend traffic decreases in some airports and
increases in others, while there are some airports with no weekly
variation. Furthermore, some airports have differing amounts of
flights on Saturdays and Sundays. To obtain an overall time peri-
odization that adequately captures the differences between seasons
and days of the week across all or almost all airports, we group sim-
ilar time series together using partition-based clustering, such as the
popular k-means algorithm [HW79].

Partition-based clustering algorithms aim to divide data into a
specified number of groups, called clusters. In our case, we are
interested in grouping similar time series with distinct patterns of
temporal variation. Since neither the map (Figure 1) nor the projec-
tion (Figure 2) reveal clear-cut groups of similar time series sug-
gesting the “right” number of clusters k, we apply the strategy of
multiple trials. This involves increasing k until the clustering re-
sult does not reveal substantially different patterns [AAF*20]. To
some extent, this strategy is similar to what is suggested in the elbow
method [Tho53]: increase k until only small decreases of a numeric
measure of the approximation error can be gained in the follow-
ing steps. The reliability of the elbow method is questioned (e.g. in
[Sch22]) as the error decreases with increasing £ in nearly the same
way irrespective of the dataset properties. Instead of relying on a sta-
tistical measure, we emphasize the importance of clustering results
to be meaningful for analysts. Therefore, the criterion is novelty and
importance of patterns being uncovered when & increases.

To apply this criterion, we need an expressive visualization of ag-
gregated temporal patterns of members of different groups. We use
the technique demonstrated in Figure 4. For each group, the dis-
play includes a matrix with columns corresponding to the 7 days
of the week (from 1 for Monday to 7 for Sunday) and rows to the
53 weeks of the year. The squares in the cells represent aggregated
values, such as the group averages for the corresponding days. Each
group has been given a distinct colour, which is used for painting the
squares representing positive numbers, whereas white squares stand
for negative numbers. The sizes of the squares are proportional to
the absolute values. Since the individual time series consist of z-
scores, large coloured squares correspond to increased amounts of
traffic compared to the airport-specific means, large white squares
to reduced amounts of traffic, and small squares to amounts around
the means.
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Figure 4: Time aggregate matrices with rows corresponding to weeks and columns to days of the week show temporal variation of the
aggregated flight counts in five clusters of airports. On the right is the matrix of cluster 3 after cleaning from time series with irregular
patterns. Coloured and white rectangles represent, respectively, high or low traffic compared to the mean.

After conducting multiple trials, we found that the result with five
clusters (shown in Figure 4) was the most suitable. All temporal pat-
terns are distinct, and making more clusters does not reveal substan-
tially differing patterns. We used the colours of the clusters to paint
the dots representing the airports on the map in Figure 5. Although
the clusters are not well separated geographically, there are regions
where members of particular clusters are more prevalent. For exam-
ple, cluster 1 (blue) is more prevalent in the north of Europe, cluster
5 (red) in the south, and clusters 2 (burgundy) and 4 (purple) in the
centre and on the British Isles. Cluster 3 (light green) is more dis-
persed.

Figure 6 shows a 2D projection of the time series involved in
clustering. The colours of the glyph boundaries indicate the clus-

ter affiliations. The glyphs for cluster 3 are highly dispersed in the
projection space and even appear on opposite sides of it, indicating
that the time series are quite dissimilar. This explains why the aggre-
gate temporal pattern of cluster 3 in Figure 4 is not as pronounced as
the others. By visual comparison, we find out that only three glyphs
located at the right edge of the plot have similar patterns of tempo-
ral variation, exhibiting high traffic amounts during the weekends of
the cold seasons. These patterns correspond to Marrakech, Tenerife
and Gran Canaria airports. The remaining time series are dissimi-
lar to each other and members of other clusters. It is reasonable to
exclude these exceptional time series from the process of defining
general time periods. After removing these time series, the time ag-
gregate matrix of cluster 3 changes, as shown on the right side of
Figure 4.
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Figure 5: The cluster membership of the airports is represented by
circle colours.

Figure 6: In a 2D projection, cluster affiliations of the airports are
represented by colours of the glyph boundaries. The members of
cluster 3 (light green) are highly dispersed in the projection space
due to their low similarity.

4.3. Step 3. Define time periods for the data subsets

Figure 4 suggests that each group of airports may require its specific
division of the time into periods of low, average, and high traffic in-
tensity. A general tool to fulfil partitioning tasks is partition-based
clustering, for example using k-means. For time division, cluster-
ing needs to be applied to data characterising time steps, that is to
the distributions of the flights over the airports in our case. We de-
scribe each time step by feature vectors consisting of the airport-
associated values and apply clustering to these feature vectors sep-
arately for each group of airports. To choose a suitable number of

Figure 7: 2D projections of the time steps based on the similarities
of the flights distributions over the airports of each group. The dots
representing the time steps are coloured according to their member-
ship in k-means time clusters.

clusters and check whether clustering results adequately capture the
general patterns of temporal variation, we use 2D projections of
the time steps obtained by applying dimensionality reduction (Sam-
mon’s mapping) to the same feature vectors. To see the patterns, we
encode the positions in the projection space by colours using a con-
tinuous two-dimensional colour scale as shown in Figure 7. These
colours are then used in a display called time arranger, which is pre-
sented in Figure 8. In a time arranger, time steps are represented by
coloured blocks arranged in a matrix layout, where columns cor-
respond to days of the week and rows to weeks of the year. In the
upper part of Figure 8, the colours of the blocks are taken from the
2D projections of the time steps shown in Figure 7. It should be
noted that the colour assignments for the time steps based on pro-
jection are not consistent across airport groups. This is because the
time steps for each group are described by a unique combination of
variables (corresponding to the airports of this group). There is no
way to project them onto a common space, making it impossible to
achieve colour consistency.

The patterns of continuous colour variation observed in the time
arrangers reveal the interplay of different patterns of seasonal and
weekly variation of air traffic in the groups of airports. The pres-
ence of seasonal changes is particularly prominent in groups 2 and
5 and is not observed in group 1. However, group 1 shows high dis-
similarity of Saturdays and Sundays from the weekdays and from
each other. Saturdays are substantially different from the other days
in groups 2 and 4, whereas Tuesdays and Fridays are dissimilar to
the other weekdays in groups 3 and 5. As the observed patterns are
complex, a pragmatic strategy is to define time periods that capture
seasonal changes and characterize each period in terms of the spe-
cific weekly variation of that period. This may imply the need to
model the traffic of different days of the week in each time period.

In the lower row of time arrangers in Figure 8, the blocks are
coloured according to the results of partition-based clustering, with
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Figure 8: The time steps are represented by coloured bricks arranged in rows corresponding to the weeks and columns to days of the week.
In the upper row of time arrangers, the bricks are coloured according to the positions of the time steps in the projections (Figure 7). In the
lower row, the brick colours represent the cluster affiliations of the time steps.

each colour representing one of the clusters. The same colour-
coding is used for the dots representing the time steps in the projec-
tion plots in Figure 7. Additionally, the size of the blocks in the lower
row of time arrangers indicates the proximity of the time steps to the
centres of their respective clusters. Larger blocks correspond to core
cluster members, while smaller blocks indicate borderline members.

The purpose of partition-based clustering is to facilitate time pe-
riodization for analysts by generating draft partitions rather than re-
quiring them to define time periods from scratch. However, these
partitions should not be considered strict and precise, as peripheral
members of a cluster may be more similar to members of other clus-
ters than to their own core members. Therefore, analysts may need
to modify cluster boundaries to adapt to their analysis goals. In sug-
gesting draft divisions, it is desirable for the clustering results to be
simple and easily interpretable. The clustering results shown in the

lower part of Figure 8 adhere to this criterion, with 3 or 4 clusters for
each group of airports that capture the most prominent features of
the observed temporal variation in the corresponding time arranger
in the upper row.

To achieve the goal of defining a universal time periodization,
one might consider using algorithmic clustering to obtain a com-
mon time division for all airports. However, it is often difficult to
guarantee that all significant patterns have been accurately captured
in the clustering result. Figure 9 illustrates this point. We applied
the k-means clustering algorithm to the daily value distributions of
all five airport groups combined (after the exclusion of the outliers),
with the number of clusters increasing from 6 (left) to 10 (right). To
ensure colour consistency across multiple clustering runs, we used
similarity-aware colour assignment to the clusters [AAFW17]. The
visible pattern mainly reflects the variations of the largest groups 2
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Figure 9: Results of automatic clustering of the days by similarity
of the daily value distributions over the airports from all groups.
From left to right: 6, 8, and 10 clusters.

and 5, while the smaller groups remain under-represented. This ex-
periment demonstrates that automated clustering cannot replace a
human analyst’s thoughtful definition of unified time periods. Each
subset of data must receive appropriate attention to ensure reliable
time periodization.

4.4. Step 4. Define integrated time periodization

This step of the time periodization workflow is performed using the
timeline display as demonstrated in Figure 10. In the display, the
horizontal dimension represents time, and the horizontal bars rep-

resent sequences of time steps (in this case, days). The colours of
the bar segments correspond to the spatial projections of the steps
(Figure 7) in the upper part of Figure 10 and to the colours of the au-
tomatically generated time clusters (Figure 8, bottom) in the lower
part of the figure.

The linear arrangement of the time step colours in the timeline
display creates stripy patterns that highlight weekly variation but
make it difficult to perceive longer time periods. To alleviate this
issue, a time mask filter [AAC*17] can be applied to hide the week-
ends. Figure 12 demonstrates the effect of this filtering. The con-
tinuous bar in the original timeline display is transformed into a
sequence of rectangles. Although continuity is broken, the spaces
between the rectangles do not attract as much attention as the colour-
ful stripes in Figure 10, allowing for better perceptual unification of
neighbouring rectangles with similar colours, as prompted by the
Gestalt laws [Met06].

Figure 11 displays the interactive tools used to define time peri-
ods. The main operations include importing time partitions (referred
to as “time classes”) from an existing division, creating a new time
class, and defining an interval by dragging along the time axis. The
interval gets the label of the currently active time class, indicated by
a selected radio button. Any time steps previously labelled by other
time classes are re-labelled.

To define time periods, we use the interactive tools as follows.
First, we import the partitions from the time division for airport
group 5 (Figure 10, lowest bar). The imported divisions appear in
a dedicated row of the timeline display, highlighted in the middle
of Figure 12. We then select the radio button of class 2 (cyan) and
redefine the period using brushing to simplify the definition of the
summer time period, which now stretches from June till the end of
September. Next, we consider the time clusters and corresponding
projection-based colour variations of the other airport groups. The

LR

\
JEELELEREECRRCRRE  ERRE RN Erinn|

Trnen

Figure 10: In a timeline display, each horizontal bar represents a sequence of time steps represented by coloured segments. The colours in the
upper part correspond to the positions of the time steps in the 2D projections shown in Figure 7. In the lower image, the colours correspond

to the time clusters presented in Figure 8.

Finish defining time classes
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Import existing time classes
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Figure 11: Controls for interactive time periodization.
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10 N. Andrienko & G. Andrienko / It’s About Time: Analytical Time Periodisation

Figure 12: [n the highlighted row of the time line display, time periods have been interactively defined by considering the continuous colour
variation patterns in the upper part of the display and the divisions of the time steps into clusters shown in the lower part. Saturdays and
Sundays have been filtered out to facilitate focusing on long-term variation.

01-2019 02-2018 03-2019 04-2019 05-2019 06-2018

07-2019 08-2018 08-2019 10-2018 11-2019 12-2018

Figure 13: The time periods that have been defined.

divisions into time clusters are shown in the lower part of the time-
line display and the colour variations in the upper part. The rows
are arranged symmetrically with respect to the central row where
the periods are defined.

Using the operations of adding a new time class and brushing
along the time axis, we define time periods as shown in the middle
of Figure 12. The red colour is assigned to New Year and Christ-
mas, while purple and violet periods reflect variations in groups 2
and 4. The time interval from the second week of March to the end
of April is divided into two periods (green and light blue) to reflect
variations in groups 3 and 4. May and October are considered suffi-
ciently similar to have the same time class (blue). After defining the
periods, we cancel the time filter and make the periods continuous
by brushing over them.

The final periods are shown in Figure 13 along the timeline and
arranged by weeks and days of the week in Figure 14, left. Two of
the seven time periods (coloured in red and blue) consist of two dis-
joint parts appearing in the first and second halves of the year. How-
ever, as mentioned earlier, there is weekly variation of the air traffic
in each period, requiring separate modelling of traffic for days with
substantial differences in flight distribution. To understand how each
period should be modelled, we need to compare the flight distribu-
tions of different days of the week. A possible approach is described
in the next section.

4.5. Step S. Characterize the time periods

The purpose of dividing the time span of a dynamic phenomenon
into periods is to represent its development as a series of states or
trends that occurred at specific times and in a particular sequence.
These states or trends should be easy to comprehend and describe.
During the process of time periodization, we did not consider the

W

.

I

Figure 14: On the left, the time periods are arranged weekly, simi-
lar to Figure 8. On the right, the time periods are shown in rows of a
matrix. Each row corresponds to a statistical summary of flight dis-
tributions for different days of the week (matrix columns). The bar
charts show the median relative flight amounts (i.e. normalized dif-
ferences from the mean) for five groups of airports. At the bottom,
standard deviations from the period means for the airport groups
are represented by bar lengths.

characteristics of the phenomenon at different times, but instead fo-
cused on indications that suggested when one state or trend was re-
placed by another. Now it is time to describe the time periods in
terms of the data. However, since the data are complex, they need
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to be aggregated in order to facilitate understanding. To capture the
differences between days of the week within each time period, data
aggregates must be computed for all combinations of time periods
and days of the week. Flight distributions for each combination can
be aggregated by groups of airports. The resulting aggregates are
displayed in a matrix in Figure 14. The rows correspond to the time
periods and columns to days of the week. Each cell contains a bar
chart with five bars corresponding to the groups of airports, display-
ing the deviations of flight amounts from the average. The bar charts
at the bottom of Figure 14 represent averaged standard deviations
from the period’s means.

The matrix in Figure 14 serves a dual purpose. Firstly, it provides
insight into the general characteristics of flight distributions across
the time periods, allowing for comparisons to be made. For example,
periods 4 and 5 exhibit increased flight amounts in all airport groups
except for group 3, while period 3 is near average, and periods 1 and
6 show relatively low air traffic. Additionally, there are visible dif-
ferences between weekends and weekdays for each period. Notably,
group 3 experiences high amounts of flights in periods 1-3 and 6-7,
while traffic in the other groups significantly decreases.

Secondly, the matrix shows how to break down the modelling
task for each period. For all periods, separate models are required
for Saturdays and Sundays. However, for periods 1, 2, and 7, two
models can be used to represent Saturdays and Sundays together.
The Christmas and New Year period (7) requires separate models
for each weekday. For periods 3-5, one model can represent all
weekdays. Periods 1 and 2 require specific models for Monday
+ Thursday, Tuesday + Wednesday, and Friday, while period 6
requires weekdays to be divided between Monday + Friday and
Tuesday to Thursday.

The specific aim of this analysis was to assist domain experts
and modelling specialists in representing air traffic throughout the
year using a sufficient number of simulation models. The result was
highly valued by our project partners, who are domain experts in the
field. They found the time periods and corresponding distributions
to be very clear and well-aligned with their domain knowledge, in-
dicating that our approach was effective in achieving its goal.

Taking a more general perspective, we have developed a system-
atic approach for analysing and describing the development of dy-
namic phenomena. The key idea is to decompose the development
process into manageable components by identifying relatively sta-
ble states or trends. To achieve this, we divided time into periods
where the state or trend of the phenomenon remained relatively con-
stant. We devised a combination of techniques to facilitate time pe-
riodization and defined a sensible sequence of steps to arrive at our
desired outcome. This analytical workflow enabled us to better un-
derstand the phenomenon and effectively model its behaviour over
time. With the aim of exploring the potential generalization of our
approach, we shall now apply it to a different dataset.

5. Testing and Elaborating the Approach

In order to validate and refine our approach, we will apply it to a
new dataset that differs from the air traffic example in several ways.
First, this dataset is multivariate, containing six time-dependent at-
tributes. Second, although the weekly cycle strongly affects the tem-

poral variation of the data, we will disregard the cyclic patterns in
our analysis because we focus on the long-term development of
the phenomenon. Third, the phenomenon under investigation is ex-
pected to involve prolonged trends, in which the attributes change
continuously in a steady manner, in addition to the relatively stable
states as found in the air traffic example. Unlike the air traffic case,
we do not have specific users or applications in mind for the analysis
results of this study. Our primary aim from the research perspective
is to assess the generalization potential of our approach for other
applications. The goal of the presented analysis scenario will be to
understand the evolution of the society’s reaction to a pandemic. We
shall describe the analysis in less detail than in the previous exam-
ple, giving primary attention to the adaptations of the workflow and
methods to the differing properties of the second usage scenario.

5.1. COVID-19: Google Mobility Trends

We shall analyse a subset of the publicly available data set of Google
Mobility Trends [Goo22]. The data is gathered from anonymized
information provided by apps such as Google Maps, which records
how people’s movements have changed during the pandemic. The
data consist of daily visitor numbers to specific categories of places
(e.g. grocery stores, parks, train stations, etc.) relative to baseline
days before the pandemic outbreak. Baseline days represent a nor-
mal value for each day of the week and are given as the median
value over the five-week period from 3 January to 6 February 2020.
The data thus consist of the deviations from the normal values ex-
pressed in percent of the normal values. Positive values mean in-
creased numbers of visits to a certain category of places and nega-
tive values have the opposite meaning.

The subset we use for testing our approach contains data for 60
countries of Europe, Asia, and North America. The data cover the
time period of the length of 501 days from 15 February 2020 (Sat-
urday) to 30 June 2021 (Wednesday). The time graphs in Figure 15
show the time series of the values of the six attributes included
in the Google dataset. All attribute names in the original data end
with a constant expression ‘percent change from baseline’. We shall
thus use only the first parts of the attribute names, which are ‘retail
and recreation’, ‘grocery and pharmacy’, ’parks’, ‘transit stations’,
‘workplaces’, and ‘residential’. Each time graph in Figure 15 corre-
sponds to one of the attributes. The horizontal axis represents time.
The temporal variation of the values for each country is represented
by aline in grey. The thick black line shows the variation of the daily
median from the whole set of 60 countries.

The prominent “saw teeth” pattern visible in all time graphs
emerges due to the usual weekly cycle of human activities. However,
these obvious weekly fluctuations are not of interest for the analysis.
The time needs to be divided into periods capturing the major pat-
terns and trends in the development of the phenomenon (i.e. human
mobility behaviour) irrespective of the weekly variation.

5.2. Disregarding weekly fluctuations

As in the first usage scenario, it is valid to expect that the charac-
ter of temporal variation is not the same in all components of the
phenomenon, that is countries. Hence, we shall try to divide the set
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retail and recreation percent change from basaline

Figure 15: Mobility trends: daily time series.

of countries into groups with similar mobility behaviours over time.
As before, we shall use partition-based clustering. However, to dis-
regard the weekly fluctuations and, simultaneously, reduce the di-
mensionality of the data, we apply clustering to the time series of
weekly averages computed from the original time series of daily val-
ues. The clustering is applied to the time series of all attributes taken
together, that is to 60 feature vectors consisting of 72 x 6 = 432
values (72 weeks and 6 attributes). After multiple trials, we obtain
a reasonable division of the countries into 6 groups.

The weekly time series for the groups are shown in the time
graphs in Figure 16. The time graphs are arranged in rows by the
groups (the topmost row corresponds to the whole set of countries)
and in columns by the attributes. The multi-colour bar on the left
shows the colours assigned to the groups of countries. The same
weekly time series are represented in an aggregated form by seg-
mented graphs in Figure 17. Each bar covers a time interval of
6 weeks. The coloured segments represent the proportions of the
countries with attribute values belonging to different ranges. The
segments are painted using a diverging colour scale from Color-
Brewer [HBO3], with shades of blue corresponding to lower value
ranges and shades of red to higher value ranges. The differences
between the groups of countries are clearly seen in both figures.

Average from retail a... Average from grocer..| Average from parks p.. Amage from transi.., Average from workplac... Average from residenti..

Figure 16: Time series of the weekly averages for the whole set of
countries (top) and for 6 groups of countries.

werage from retail an. | Average from grocer. | Average from parks p_ | Average from transit | Average from workpla.| Average from residen.

w [ | e

ItMHHWLHHWUWHﬂIWUIH\W
A P

Figure 17: The time series of the weekly averages represented in
an aggregated form by segmented bars.

nada

United States

Figure 18: The colours of the circles represent the affiliations of the
countries to the groups. The circles are positioned in the locations
of the country capitals.

The affiliations of the countries to the groups are represented by the
colours of the circles on the map in Figure 18. The colours are the
same as in Figure 16 and Figure 17.

For defining the groups of countries, it was sufficient to use the
low resolution data, that is the weekly averages. However, for defin-
ing time periods, it is preferable to use the original daily resolu-
tion, because important changes in the development trends may be
lost due to the aggregation by the weeks. Nevertheless, we need to
disregard the obvious differences between the human mobility be-
haviours on the weekdays and on the weekends. For this purpose,
we apply time filtering, which excludes the data for Saturdays and
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Figure 19: Left: A 2D projection of the combinations of attribute values corresponding to the country group 1. Points representing consecutive
time steps (excluding weekends) are connected by lines. Right: Colour variation from the 2D projection is reflected in the backgrounds of the
time graphs showing the variation of the attribute values for the countries of the group 1.

Sundays from the analysis. The following steps of the analysis will
be applied to the filtered data.

5.3. Dealing with multiple attributes

In contrast to our first scenario, our analysis here involves studying
patterns that encompass changes in several attributes. However, it is
not feasible to consider the variation of every attribute in the same
way as we did previously. We need a representation that integrates
values of all six attributes. Therefore, we rely on low-dimensional
(2D) projections of the data, similarly to the first scenario (Figure 7).
In this case, however, we apply the dimensionality reduction algo-
rithm to the combinations of values of all six attributes. We do this
for each group of countries and thus obtain six projections, which
are coloured as in the first scenario. For example, a projection for
group 1 is shown on the left of Figure 19. To interpret and validate
the projection results, we transfer the colours from the projections
to time graphs showing the attribute values, as demonstrated on the
right of Figure 19 for the country group 1. As can be seen, the colour
variations effectively capture both the sudden shift in mobility be-
haviours that occurred in mid-March 2020 and the gradual changes
that took place over time.

Seeing that the character of the colour variation is representative
of the joint development of the multiple attributes, we can rely on it
in performing the time division. For this purpose, colours from the
projections are transferred to a timeline display, which is shown at

the top of Figure 20. As noted before, the data have been filtered
to exclude the values for Saturdays and Sundays, which have not
been included in the projections. Therefore, the colouring of the hor-
izontal bars in the timeline display is interrupted by grey segments
that correspond to the weekends. However, the regularly positioned
breaks in the colouring can be easily ignored without hindering the
perception of the colour variation along a bar induced by Gestalt
laws, such as figure-ground, similarity, proximity, and continuation
[Met06].

5.4. Dealing with development trends

In the previous example, the phenomenon being studied could
be broken down into distinct states that corresponded to differ-
ent seasons and days of the week, with no gradual transitions be-
tween them. In the current example, when weekends are ignored,
there are also periods of relative stability that can be treated as
stable states. These states appear in a 2D projection as compact
groups of close points [BSH*16, vdEHBvW16]. However, transi-
tions between states are generally smooth and prolonged, with small
changes occurring over time. Such sequences of small changes,
called trends, appear in a projection as elongated arrangements
of points resembling paths. One of such “paths” is highlighted in
Figure 19, left. It is important to identify not only stable states
but also periods of different trends in the joint development of
the attributes. Partition-based clustering may not be effective in
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Figure 20: Top: Colour variation from 2D projections of the combinations of attribute values corresponding to 6 groups of countries. Middle:
Results of time steps clustering for the groups of countries. Bottom: Unified time periods defined interactively.

identifying these periods, as it only considers pairwise similarities
and cannot account for the sequential arrangement of data items.
This can result in arbitrary breaks in the sequence, such as dividing
a “path” into two or more “round” “clusters”.

To analyse trends in the development of multiple groups, we need
to combine information from different projections. This is done by
transferring the colours of the positions in the projections to a time-
line display, as shown in the upper part of Figure 20. In this display,
atrend in a projection is represented as a bar segment with coherent
colour changes along the time axis. For example, the “path” high-
lighted in Figure 19, left, is translated to a segment in the upper bar
of the display in Figure 20, top, where shades of green gradually
change to more yellowish tones and then to orange. By observing
multiple coloured bars in the timeline display, we can detect abrupt
changes in the colour shades, which indicate changes in the state
or trend of a group. The time step when the change occurred is a
candidate for becoming a boundary between two time periods, but
we also look at the other bars to see if they contain abrupt colour
changes around the same time step. If they do, we set a common
break that takes the average or earliest time step of change from
several groups. By repeating this procedure, we can define the time
periods that reflect the stable states and trends in the development
of multiple groups.

While clustering may not always successfully distinguish be-
tween stable states and prolonged trends, it can still be a helpful tool
for time periodization. It can generate time clusters that serve as a
starting point for time division, instead of creating time periods from
scratch in an entirely interactive manner. In the middle of Figure 20,
the timeline display shows the results of partition-based clustering
of the time steps. By comparing these cluster-based bars with the
projection-based bars, we can identify which clusters adequately
encompass some of the stable states or trends visible in the
projection-based bars. These clusters can then be imported and
used as an initial time division. In our example, we began by using
the time clusters created for group 5 and added a few clusters
generated for group 6. We then continued to modify the initial

division interactively until we arrived at the final time periods
shown at the bottom of Figure 20.

In the first scenario, we characterized the time periods by aver-
aging the flight distributions (Figure 14). This approach was rea-
sonable because the development of air traffic mainly consists of
stable states that can be adequately represented by average distri-
butions. However, averaging is not suitable for representing devel-
opment trends. To understand and describe what was happening in
the different time periods, we use time graphs with the periods rep-
resented by background colours, as shown in Figure 21. To sim-
plify the task of characterizing trends, we represent the variation of
the mobility behaviours in each group of countries by time series
of the medians of the value distributions in consecutive time steps.
To smooth out weekly fluctuations, we applied temporal smoothing
to the original time series before aggregating them by the groups.
The spaces between the lines representing the group time series are
painted in gray. This allows us to see clearly when groups behaved
similarly and when their behaviours significantly diverged. To inves-
tigate developments in any particular group, we interactively select
the group, and the corresponding lines in the time graphs become
marked in black. For example, in Figure 21, the lines for group 1 are
marked. This approach enables us to describe time periods in terms
of common and differing states or trends of groups of countries.

5.5. Conclusion from both scenarios

We have considered two distinct scenarios in order to investigate the
time periodization problem comprehensively, reveal possible vari-
ants related to features of the data and focus of the analysis, and
determine how these variations affect the analysis workflow and the
use of analytical techniques. The results of our studies are summa-
rized in Table 1.

6. Discussion

In this paper, we have introduced time periodization as a general
type of analysis problem and presented two examples of solving it
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retail and recreation percent change from baseline (smoothed), median
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Figure 21: Time periods are represented by background colours in the time graphs showing temporal patterns of the mobility development in
the six groups of countries. Each group is represented in each time graph by a time series of the medians of the value distributions in consecutive
time steps. Smoothing by a sliding window of the length of 7 days have been applied to the original time series before the aggregation to hide

the weekly fluctuations.

Table 1: Variations of data features, analysis focuses, and the corresponding analysis operations.

Data or task features

Challenges & opportunities

Technique, way of application

Data: single time-variant attribute,
periodic variation

Data: multiple time-variant attributes

Data: multiple time-variant
attributes, periodic variation
Task feature: periodic variation is

irrelevant

Data development feature: relatively
stable states and short transitions;
subtask: define periods

Data development feature: relatively
stable states and short transitions;
subtask: characterize periods

Data development feature: includes
trends and prolonged smooth
transitions between states

Opportunity: investigate and compare periodic
patterns of value variation using compact
representations

Challenge: patterns of joint variation of attribute
values are hard to visualise, perceive, and
compare

Challenge: patterns of periodic variation of all
attributes are hard to investigate visually

Challenge: difficult to ignore periodic
fluctuations and focus on overall trends
Opportunity: data can be simplified by
filtering or smoothing

Opportunity: different states are easy to
distinguish visually and computationally (by
clustering)

Opportunity: stable states can be summarised
and visualised in an aggregated form

Challenge: different trends involving multiple
attributes are difficult to detect visually
Challenge: partition-based clustering cannot
adequately separate trends

time matrix, applied to groups of components (Figure 4)

Multiple time graphs and/or segmented bar charts
arranged by the attributes and groups of components
(Figs. 16,17)

Time filtering: select parts of the time cycles for
visualisation and investigation (Figs. 19,20)

Time filtering: exclude irrelevant parts of the time
cycles from the analysis (Figs. 19, 20) Temporal
smoothing: by a sliding window of the length equal to
the time cycle length (Figure 21)

Projection and clustering applied to the value
distributions in the time steps Projection: shows the
approximate number of states (Figure 7)
Partition-based clustering: separates the states
(Figure 8)

Summarisation of value distributions for time periods
Visualisation of the summarised value distributions
(Figure 14)

Projection applied to the value distributions in the time
steps Projection plot: shows states as point clusters
and trends as paths (Figure 19) Projection colours
transferred to timeline display: states and trends are
recognised from colour similarities and variation
along the time axis (Figure 20)

for data with different characteristics of temporal variation. With

the aim to provide a flexible and adaptable framework for time pe-

riodization, which can accommodate the diverse properties of data
and analysis objectives, we have devised a generic workflow that
comprises abstract steps or operations rather than relying on spe-

cific methods and software tools.

6.1. Workflow and methods

The steps of the workflow are: (1) detect diverse patterns of temporal
development among components of the studied phenomenon and
define groups of components with similar patterns; (2) represent the

temporal development of each group by colour variation; (3) jointly
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consider the colour variations of the groups, identify stable states
and trends in the group developments, and interactively define time
periods enclosing states or trends of multiple groups.

The first step can be performed with the help of partition-based
clustering applied to the time series of attribute values associated
with different components of the phenomenon. Clustering is a com-
monly used technique for analysing multidimensional data and mul-
tiple time series. Visualizations of cluster summaries are utilized to
assess the quality and interpretability of the clustering results and
find appropriate parameter settings. Different visualizations can be
suggested depending on the number of attributes and the presence
or relevance of cyclic temporal variations; see Table 1.

The second step relies on projecting time steps onto a 2D space
based on the similarities of the corresponding value distributions.
Here we build on the research performed by Bach et al. [BSH*16]
and van den Elzen et al. [vdEHBvW16], who used projections for
analysis of complex dynamic phenomena, classified possible spa-
tial patterns that can emerge in such projections, and explained their
meanings. However, our analysis problem requires joint considera-
tion of patterns from multiple projections, which cannot be achieved
by using several projection plots alone. To address this issue, we
propose a visualization that combines these patterns in a single view
by encoding the positions in the plots with colours, which are used
to represent the positions in a timeline display. This approach is sim-
ilar to the use of scarf plots, where colours represent eye-tracking
positions over a computer screen [AACF22].

As is well known, representing high-dimensional data in low-
dimensional embeddings is prone to errors, which can be of two
types: missed similarity, where similar items are positioned too far
apart, and false similarity, where dissimilar items are positioned
too close together [KP11]. Achieving an appropriate trade-off be-
tween these two types of errors depends on the analysis goals and
data properties. Temporally-dependent data, in particular, often ex-
hibit similarity between neighbouring time steps, so preserving lo-
cal neighbourhoods can be important for capturing their temporal
structure. Neighbour embedding (NE) algorithms [ Yan05, YPK13],
which aim to place nearest neighbours close together in the embed-
ding space at the expense of higher distortions of mid- and long-
range distances, can be well-suited for this purpose. Examples of
NE methods include t-SNE [vdMHO08], which we found helpful in
the second usage scenario that involved prolonged trends (after ex-
cluding irrelevant weekends). However, when such trends are ab-
sent, other projection methods, such as MDS [Kru64] or Sammon’s
mapping [Sam69], may be more appropriate. It is worth noting that
the impact of different embedding methods and their parameters on
the results requires further investigation.

To represent positions in an embedding, we use a 2D colour
space called Cube Diagonal Cut B-C-Y-R (Blue-Cyan-Yellow-
Red), which was rated highly in a task-based evaluation study of
22 colour maps [BSM*15]. It provides about 585 noticeably differ-
ent colours, which is a relatively high number, and is therefore well
suited for localization and identification tasks, which are critical for
matching colours in the timeline display to positions in the embed-
ding space. However, this colour map is not optimal for accurately
representing distances between points in the 2D space. Colour maps

like CIELUYV or CIELAB [Sch07] are designed for perceptual uni-
formity, but have a more limited range of distinguishable colours,
ranging from 193 to 423 colours in different versions [BSM*15].
In the proposed approach to time periodization, precise estimation
of projection distances is not necessary. A broader range of dis-
tinguishable colours can help detect periods of stability, gradual
changes, and abrupt changes more effectively.

Partition-based clustering of time steps based on similarity of data
distributions can be used to obtain an initial variant of time divi-
sion subject to interactive revision. This is more convenient and ef-
ficient than to define time periods from scratch. Clustering may be
especially suitable when the development of the phenomenon under
study consists of several relatively stable states and short transitions
between them, as we had in the first usage scenario. According to
[BSH*16] and [vdEHBVW16], stable states appear in a projection
as dense concentrations of points (see Figure 7), which can sug-
gest suitable parameter settings for the partition-based clustering.
In the presence of development trends or long smooth transitions
between states (Figure 19, left), partition-based clustering may be
of limited utility.

There are numerous options available for designing and imple-
menting interactive techniques that facilitate the creation and editing
of time periods. While exploring the entire design space is beyond
the scope of our research, we would like to emphasize the impor-
tance of enabling time filtering. Time filtering is valuable for han-
dling periodic changes and can help analysts ignore specific times
(e.g. holidays) or, conversely, concentrate on specific times.

6.2. Generalizability and application scope

Time periodization can serve two main purposes: description and
prediction [ALA*18]. Description involves creating a simplified
and understandable representation of a behaviour that can be used
for comparison or communication to various stakeholders. On the
other hand, predictive modelling is useful when a behaviour is
expected to repeat, especially periodically. For example, in our first
usage scenario involving air traffic, the behaviour is known to occur
repeatedly each year; so, time periodization was used to decompose
the task of predictive modelling into subtasks focusing on periods
of relative stability of the air traffic distribution properties. Our
second usage scenario analysing changes in mobility behaviour in
response to a pandemic was primarily focused on description rather
than prediction.

Here are a few additional examples of tasks where time periodiza-
tion is relevant and our approach could be useful. It could be used to
identify and describe patterns in car parking occupancy over time,
such as peak hours or days with lower demand. By dividing the data
into meaningful time periods, analysts can identify trends and fluc-
tuations in occupancy that can be used to optimize the use of avail-
able parking spaces through the development of a pricing policy. For
example, by identifying the times when demand is highest, parking
facilities can increase prices to maximize revenue.

Our approach can help companies to identify patterns in the shop-
ping behaviours of different customer groups over time, such as
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changes in preferences or spending habits. By defining relevant
time periods, analysts can gain insights into the factors that drive
customer behaviour and develop more targeted marketing strate-
gies for different customer segments. This can help companies to
increase engagement and sales by better understanding and meet-
ing their customers’ needs.

Time periodization can also be useful in studying and describ-
ing the playing behaviour of a football team over the course of a
game. By dividing the game into meaningful time periods, journal-
ists and analysts working for media can characterize and compare
team behaviours in a way that is interesting and understandable to
the public. Coaches and team analysts can use these insights to iden-
tify which aspects of the team’s playing behaviour are contributing
to their success or failure and develop more effective strategies for
future games.

6.3. Constraints and limitations

While our approach can be applied to a wide range of dynamic phe-
nomena represented by multivariate time series, there are certain
constraints and limitations to consider. One key assumption is the
existence of meaningful time periods (i.e. differentiable stages in the
development or functioning), which may not always be the case.
Another constraint of the approach is the number of components
that can be considered. The approach includes separate time division
for each component and interactive integration of multiple divisions
into a unified sequence of periods. This requires a human analyst to
consider all variations together. However, as the number of compo-
nents increases, the complexity of the analysis may become unman-
ageable. This may call for prioritizing the most relevant components
for the analysis and exploring the trade-offs between complexity and
interpretability. Additionally, the use of dimensionality reduction to
handle multiple attributes can lead to specific challenges, such as
sparsity issues when dealing with high-dimensional data.

One more constraint is related to the number of time steps in the
time series, which is technically limited by the display resolution,
as each time step requires at least one pixel in the timeline view.
Additionally, the nature and rate of colour variation along the time-
line can further limit the length of time series that can be effectively
analysed, as a high number of abrupt changes can be difficult for
human perception.

Also, the granularity of the time steps [AMST11] needs to match
the intended scale of the analysis. For example, if the behaviour be-
ing studied occurs on an annual cycle, using minute-by-minute or
even hourly data may not be appropriate. In such cases, it may be
necessary to aggregate or downsample the data to a coarser temporal
resolution. However, the use of data reduction techniques may lead
to loss of information and potential bias, which need to be care-
fully evaluated. The choice of appropriate granularity depends on
the specific properties of the phenomenon being studied, such as
the duration of the cycles or the rate of change of the variables.

The existing limitations highlight the importance of careful con-
sideration of the specific problem domain and the potential trade-
offs between the accuracy and interpretability of the resulting peri-
odization.

6.4. Directions for extension and future research

To address the constraints regarding time series length and granu-
larity, our approach can be extended to involve a combination of
computational and interactive visual techniques that allow for ex-
ploration and refinement of the time periodization. By iteratively
adjusting the granularity of the time steps and, as a result, the length
of the time series, analysts can refine their understanding of the un-
derlying patterns in the data. For example, COVID-19 data could
be initially aggregated by weekly time intervals to identify main
stages in the pandemic’s development. Analysts could then exam-
ine each stage in more detail and possibly further subdivide it using
the daily data.

As a potential direction for future research, we see a possibility to
formalise the time division problem as a problem of multi-criteria
optimization and to develop computational methods for solving this
problem and suggesting candidate solutions to analysts. Possible
criteria include

* number of time periods — to be minimized;

¢ homogeneity of periods in terms of chosen similarity measures —
to be maximized;

* homogeneity of changes between consecutive time steps within
the periods — to be maximized;

¢ number and frequency of distinct transitions between periods — to
be minimized;

* regularity of repeated transitions between time periods — to be
maximized.

7. Conclusion

In this paper, we have presented our approach to time periodiza-
tion for analysing and modelling behaviours of dynamic phenomena
represented by multivariate time series. Our investigation was mo-
tivated by the observation that the problem of time division has not
been fully considered in visual analytics and data science research.
Through examples, we have defined the problem and developed a
practical approach to solve it.

We have also explored various properties of data and goals of
analysis that can impact the choice of analysis techniques and ways
of using them. While our approach relies heavily on visual and in-
teractive techniques, our investigation has revealed the possibility of
formalizing this problem. This could open up opportunities to de-
velop computational methods that can assist analysts in their work.

Overall, our research contributions include the definition and in-
vestigation of a previously neglected problem type, a practical and
reproducible approach to solving problems of this type, and the po-
tential for formalization and development of computational meth-
ods. We believe that our approach can be useful in various fields, in-
cluding transportation, marketing, and sports analysis, and we hope
that it can inspire future research in the area of time periodization.
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