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Abstract

The development of type 2 diabetes (T2D) is a gradual process, and the relative roles of 
impaired insulin secretion and resistance in aetiology of the disease remain controversial. 
However, it is widely recognised that both defects are present in all overt subjects with 
T2D.

The current work provides new knowledge on both methodological and pathophysiolog-
ical levels related to T2D. On the methodological level, a population-based approach, 
Bayesian hierarchical analysis (BAY), developed and was used to estimate parame-
ters of the minimal model of glucose kinetics using data collected in newly presenting 
T2D subjects to investigate insulin sensitivity and glucose effectiveness. BAY results 
were compared with the standard two-stage approach, which employs the non-linear 
regression analysis. BAY was also employed to derive and compare estimates of insulin 
sensitivity and glucose effectiveness with a full sample scheme (30 points) with those 
estimated with 12 and 13 sample schemes.

The results demonstrated that BAY, besides avoiding parameter estimation failures, 
gives a smaller unbiased estimate of the population variance for both insulin sensitivity 
and glucose effectiveness. The analysis of reduced sampling schemes with BAY sug-
gested that the adoption of the 13 sample scheme is preferable to that of the 12 sample 
scheme.

On the pathophysiological level, BAY was employed in combination with other tech-
niques to increase understanding of early progression of T2D. The research investigated 
the progression of insulin sensitivity and insulin secretion over 2 years after diagnosis 
of T2D and relationships with clinical measures of glucose control.

The results demonstrated that /3-cell function can be ameliorated for at least two years 
by adequate conventional treatments after diagnosis of T2D. The improvement in gly-
cated haemoglobin (H bAic) in the earlier years of T2D are associated with improved 
fasting and postprandial insulin pancreatic responsiveness. The results showed that the 
ability of indices of insulin sensitivity and pancreatic /3-cell responsiveness to explain 
inter-individual variability of measures of glucose control in newly presenting T2D de-
crease over time for clinical measures of glucose control, and measures of glucose and 
insulin responses to the meal tolerance test.
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HOMA
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CV
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Chapter 1

Introduction and Thesis 
Structure

1.1 Background and Motivation

Diabetes mellitus is a metabolic disorder of multiple aetiology characterised by chronic 
hyperglycaemia with disturbances of carbohydrate, fat, and protein metabolism result-
ing from defects in both insulin secretion and insulin action [36, 37, 73]. The effects of 
diabetes mellitus include long-term damage, dysfunction, and failure of various organs. 
Diabetes mellitus may present with characteristic symptoms such as thirst, polyuria, 
blurring of vision, and weight loss. In its most severe forms, ketoacidosis or a non-
ketotic hyperosmolar state may develop and lead to stupor, coma and, in absence of 
effective treatment, death. Often symptoms are not severe, or may be absent, and con-
sequently hyperglycaemia sufficient to cause pathological and functional changes may 
be present for a long time before the diagnosis is made [73, 75].

The long-term effects of diabetes mellitus include progressive development of the spe-
cific complications of retinopathy with potential blindness, nephropathy that may lead 
to renal failure, and/or neuropathy with risk of foot ulcers, amputation, Charcot joints, 
and features of autonomic dysfunction, including sexual dysfunction. People with di-
abetes are at increased risk of cardiovascular, peripheral vascular and cerebrovascular 
disease [60].

Recently compiled data show that approximately 150 million people have diabetes 
mellitus worldwide, and that this number may well double by the year 2025 [138]. 
Much of this increase will occur in developing countries and will be due to population 
growth, ageing, unhealthy diets, obesity, and sedentary lifestyles. By 2025, while most
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people with diabetes in developed countries will be aged 65 years or more, in developing 
countries most will be in the 45-64 year age bracket and affected in their most productive 
years [6].

Diabetes mellitus is classified into four types: type 1, type 2, "other specific types", 
and gestational diabetes. Each of the types extends across a clinical continuum of 
hyperglycaemia and insulinaemia. Type 2 diabetes mellitus (T2D) is characterised by 
insulin resistance in the peripheral tissues and an insulin secretory defect of the /3-cell 
[97]. This is the most common form of diabetes mellitus and is highly associated with 
a family history of diabetes, age, obesity, and lack of exercise. It accounts for about 85- 
95% of all cases of diabetes [6]. Insulin resistance and hyperinsulinaemia eventually lead 
to impaired glucose tolerance. Defective /3-cells become exhausted, further fuelling the 
cycle of glucose intolerance and hyperglycaemia. The aetiology of T2D is multifactorial 
and probably genetically based, but it also has strong behavioural components.

Several pathogenetic processes are involved in the development of T2D. These include 
processes which destroy the /3-cells of the pancreas with consequent insulin deficiency, 
and others that result in resistance to insulin action. The abnormalities of carbohydrate, 
fat, and protein metabolisms are due to deficient action of insulin on target tissues 
resulting from insulin sensitivity or lack of insulin. The development of T2D is a 
gradual process, and the relative roles of impaired insulin secretion and resistance in 
aetiology of the disease remain controversial. However, it is widely recognised that both 
defects are usually present in all overt T2D patients [37, 36, 109, 25].

In response to the on growing burden on T2D, the increasing prevalence of T2D reach-
ing epidemic proportions worldwide, and the need to improve understanding of the 
relationships between insulin secretion and insulin resistance, substantial resources are 
being allocated to assess quantitatively and adequately insulin secretion and action. 
These activities have resulted in the successful introduction of models of glucose and 
insulin kinetics for quantifying both insulin secretion and insulin action in subjects with 
T2D [32, 29, 129, 127, 16, 15, ?, 69].

Methods of population kinetics are indicated when kinetic data of different individuals 
have to be combined and when the average behaviour of a population is used to predict 
individual kinetics. The naive method of calculating weighted mean has been aban-
doned in favour of mixed/random effects models and Bayesian methods. A three-stage 
hierarchical Bayesian approach uses the individual time-concentration relationship, the 
distributional form for the kinetic parameters, optionally covariate information, and a 
prior distribution of parameters of the second-stage and the intra-individual variability

[132].
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It is now recognised that an individual approach to parameter estimation is at times 
inadequate, and it may be more appropriate to describe parameters by a probability 
distribution. This is due to the fact that probability-based parameters could be more 
appropriate in explaining significant variability in human population. Racine-Poon et 
al [106] demonstrated that collective information from modelling of individuals could 
provide a basis for learning about a form of mean underlying population characteristics. 
They showed, from the statistical inference and the modelling perspective, that it is 
of a paramount importance and of a great benefit to incorporate both a model for the 
measurement process of individual profiles and also a model of the variation of these 
individual profiles around a mean population profile, whether the main interest of study 
is in an individual or population or both.

Bearing in mind the relationships between insulin secretion and insulin resistance and 
the need to assess adequately these indices, we examined these relationships using a 
population-based Bayesian hierarchical analysis of the minimal model data to inves-
tigate insulin sensitivity and glucose effectiveness in T2D. We also examined these 
relationships over two years to investigate the pathophysiological changes.

The conceptual framework for the population-based approach will be based on the 
minimal model of glucose kinetics, mathematical and statistical procedures involving 
compartmental and random effects models, respectively. The random effects model will 
be in an hierarchical framework of the Bayesian approach. The approach will enable 
to examine critically the inter-subject variability of model parameters.

The structure of the population-based Bayesian hierarchical model is complex and 
involves a joint probability distribution for model parameters. Handling such very 
complex models is difficult, and exact, analytic tools fail to be practicable and only 
approximation methods work. The Markov chain Monte Carlo (MCMC) method is a 
general method for sampling from stochastic multivariate distributions and computing 
expectations. MCMC is particularly useful when the correlation structure is complex 
and the probability density function only known up to a proportionality constant, and 
presently, it is the only approach that is feasible for such problems.
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1.2 Aims

The general aim of this thesis is to develop and evaluate stochastic modelling and apply 
this in combination with existing deterministic approaches to advance our knowledge 
of insulin sensitivity and insulin secretion in subjects with T2D.

1.3 Objectives

The objectives can be divided into methodological and pathophysiological. The former 
relate to the development and validation of new methods, the latter to the adoption of 
newly developed methods in combination with other techniques to obtain new knowl-
edge about progression of T2D.

1.3.1 Methodological Objectives

The objectives are:

1. To adopt the Bayesian analysis in combination with hierarchical (population) 
modelling to estimate simultaneously population and individual insulin sensitivity 
Si and glucose effectiveness Sq  from data collected during IVGTT;

2. To compare the results of the Bayesian hierarchical approach with the standard 
two-stage approach, which employs non-linear regression analysis;

3. To employ the Bayesian hierarchical modelling approach to derive and compare 
estimates of Si and Sq  from the full sampling scheme (30 points) with those 
estimated from the previously suggested 12 and 13 points sampling schemes in 
subjects with newly presenting T2D.

1.3.2 Pathophysiological Objectives

In subjects with newly presenting T2D the objectives are:

1. To investigate the progression of insulin secretion and insulin resistance over two
years;
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2. To relate a change in H bAic to a change in metabolic indices (insulin resistance 
and insulin secretion) and clinical measures of glucose control;

3. To investigate the ability of insulin resistance and insulin secretion to explain 
inter-subject variability of clinical measures of glucose control in T2D over two 
years.

1.4 Thesis Structure

Chapter 2 reviews the literature. It contains a background review of glucose metabolism, 
complications, and management of T2D. This is followed by an outline of models for 
the assessment of insulin resistance and insulin secretion.

Chapter 3 outlines problems with the minimal model of glucose kinetics, that is, the 
problem of failure rates, insulin sensitivity value equal to zero, in highly insulin-deficient 
patients and the problem of parameter estimation using the non-linear regression anal-
ysis. The chapter focuses on the development of the Bayesian hierarchical analysis of 
the minimal model of glucose kinetics and its implementation. Last, we discuss the 
advantages and disadvantages of the Bayesian hierarchical analysis in relation to the 
non-linear regression approach.

Chapter 4, compares the parameter estimation capabilities of the minimal model of 
glucose kinetics using the Bayesian hierarchical analysis and the standard two-stage 
approach employing the non-linear regression analysis.

Chapter 5 employs the Bayesian hierarchical analysis to investigate the effect of reduced 
sampling schemes with IVGTT in T2D subjects. We compare the reduced sampling 
schemes with the full sampling scheme in terms of the bias of parameter estimates and 
the precision of the estimates.

Chapter 6 evaluates progression of insulin secretion, insulin resistance, and clinical 
measures of glucose and insulin using IVGTT and M TT data in T2D patients over 
two years. The metabolic indices investigated in this chapter are divided into clinical 
measures of glucose control from IVGTT, postprandial glucose and insulin responses 
to M TT, and metabolic indices.

Chapter 7 investigates the ability of metabolic indices at the time of diagnosis to predict 
the change in H bAic over time. In addition, we investigated the relationship between
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the change in H bAic and the change in metabolic settings (insulin sensitivity and 
insulin secretion) over time.

Chapter 8 assesses the ability of insulin secretion and insulin resistance to explain the 
inter-individual variability of clinical measures of glucose control in T2D over two years.

Chapter 9 provides an overall discussion of the thesis and summarises thesis achieve-
ments.

The overall conclusions of the thesis and recommendations for future work are given in 
Chapter 10.



Chapter 2

Literature Review

2.1 Glucose Metabolism

Glucose is liberated from dietary carbohydrate such as starch or sucrose by hydrolysis 
within the small intestine and is then absorbed into the blood. Elevated concentrations 
of glucose in blood stimulate release of insulin, and insulin acts on cells throughout the 
body to stimulate uptake, utilisation, and storage of glucose. It is important that the 
blood glucose level is maintained within a normal range (3.6-6.1 mmol-L'1), deviation 
of blood glucose from this normal range can result in diabetes symptoms, and if not 
treated or controlled it can result in diabetes complications and possibly death.

2.1.1 Normal Regulation of Blood Glucose

Glucose regulation and homeostasis is maintained, in part, by insulin, a pancreatic 
hormone. Insulin is formed, stored, and released by the /3-cells in the pancreas. Insulin 
binds to receptor sites on cell membranes and stimulates glucose transport proteins 
within the cell to bind with glucose and carry it into the cell, effectively reducing the 
amount of glucose in the blood. Uptake of glucose in most, but not all, body cells is 
facilitated by insulin. The tissues that utilise insulin for glucose transport or storage 
are the liver, adipose tissue, and muscle. The brain and nerve tissue are non-insulin 
dependent, that is, they do not require insulin to use glucose.

Several other hormones help to regulate blood glucose in addition to insulin. Glucagon, 
another pancreatic hormone, has an effect on blood glucose that is opposite to that of 
insulin. In fact, insulin and glucagon are the primary hormones that regulate daily 
blood glucose fluctuations. Adrenalin, a hormone from the adrenal medulla, will raise



2. Literature Review 8

blood glucose within minutes but is reserved by the body for more emergency situa-
tions. This hormone can cause uncomfortable side effects such as shakiness, tremors, 
diaphoresis, and feelings of anxiety [135].

2.1.2 Pancreas

Pancreas Anatomy and Physiology

The pancreas is a fish-shaped, grayish-pink gland about 12.7 cm long that stretches 
across the back of the abdomen, behind the stomach. It releases insulin, glucagon, and 
some enzymes of digestion. With a lumpy surface, the pancreas is divided into a head, 
a body, and a tail. Small ducts from the releasing cells empty into the main duct that 
runs the length of the organ. The main duct empties into the intestine at the same spot 
as the exit of the common bile duct. About 1 million cell units (islets of Langerhans) 
are buried in the pancreas. /3-cells of the islets release insulin, which helps control the 
body ’s use of carbohydrate, a-cells of the islets release glucagon, which counters the 
action of insulin. Other units of the pancreas release enzymes that help digest fats and 
proteins [135, 79].

Cell Types in Pancreatic Islets

Pancreatic islets house three major cell types, each of which produces a different en-
docrine product:

• Alpha cells (a-cells) secrete the hormone glucagon;

• Beta cells (/3-cells) produce insulin and are the most abundant of the islet cells;

• Delta cells (5-cells) secrete the hormone somatostatin, which is also produced by 
a number of other endocrine cells in the body.

Interestingly, the different cell types within an islet are not randomly distributed - 
/3-cells occupy the central portion of the islet and are surrounded by a "rind" of a  
and 5 —cells. Aside from the insulin, glucagon, and somatostatin, a number of other 
"minor" hormones have been identified as products of pancreatic islets cells.

Islets are richly vascularised, allowing their secreted hormones ready access to the 
circulation. Although islets comprise only 1-2% of the mass of the pancreas, they
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receive about 10 to 15% of the pancreatic blood flow. Additionally, they are innervated 
by parasympathetic and sympathetic neurons, and nervous signals clearly modulate 
secretion of insulin and glucagon.

2.1.3 Pathology of Glucose Metabolism  

Insulin Resistance

Insulin resistance occurs when the normal amount of insulin secreted by the pancreas 
is not able to promote the glucose transport to cells. To maintain a normal blood 
glucose, the pancreas secretes additional insulin. In some cases (about 1/3 of the 
people with insulin resistance), when the body cells resist or do not respond to even 
high levels of insulin, glucose builds up in the blood resulting in high blood glucose 
or type 2 diabetes. Even people with diabetes who take oral medication or require 
insulin injections to control their blood glucose levels can have higher than normal 
blood insulin levels due to insulin resistance.

Insulin resistance can be defined as an impaired biological response to either exogenous 
or endogenous insulin. The measured biological responses could reflect, in theory, 
metabolic processes (changes in carbohydrate, lipid or protein metabolism) as well as 
mitogenic processes (alterations in growth, differentiation, DNA synthesis, regulation 
of gene transcription). In vivo biological responses to insulin vary according to insulin 
concentration, exposure time, tissue delivery, and pulsatility [113, 110, 109].

Even though the glucose-insulin relationship is clinically pertinent, it is also important 
to recognise that, conceptually, insulin resistance does not have to be confined just to 
parameters of glucose metabolism. The concept of insulin resistance should apply to 
any of the biological actions of insulin, and might include its effects on lipid and protein 
metabolism, vascular endothelial function, and gene expression.

Researches have shown that obesity and physical inactivity aggravate insulin resistance 
[84]. People who are insulin resistant typically have an imbalance in their blood lipids. 
They have an increased level of triglycerides (blood fat) and a decreased level of HDL 
cholesterol. Imbalances in triglycerides and HDL cholesterol increase the risk of heart 
disease. These findings have heightened awareness of insulin resistance and its impact 
on health.
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Insulin Deficiency

Persons with type 2 diabetes have a relative insulin deficiency rather than an absolute 
deficiency as seen in type 1 diabetes. This relative insulin deficiency appears to be due 
to a limitation in the pancreatic /3-islet cell response to hyperglycaemia [80]. As much 
as 50% of the /3-islet cell mass is lost in people with type 2 diabetes when compared to 
people without diabetes. The hyperglycaemia associated with T2D would be expected 
to produce hypertrophy and hyperfunction in the /3-islet cell population, but this is 
not the case. Autoantibodies are not present, as is true in most people with type 1 
diabetes where autoantibodies are responsible for destroying the /3-islet cell population. 
The exact aetiology of this reduced /3-islet cell population in type 2 diabetes is unknown.

In a person without diabetes, insulin is secreted in a biphasic manner to a glucose stim-
ulus. The first phase occurs as stored insulin is released as a bolus. This initial surge 
of insulin serves to prime the target tissues, primarily the liver. The second phase in 
response to a glucose load is the continuous secretion of newly manufactured insulin, 
which continues until a normal glucose level is restored [36]. In a person with T2D, 
circulating insulin levels may appear normal or even elevated, but the intrinsic patterns 
of insulin secretion are altered. People with type 2 diabetes lose the acute-phase or 
pulsatile release of insulin in response to increased blood glucose concentrations. This 
has been referred to as “glucose toxicity.” /3-islet cells exposed continuously to hyper-
glycaemia become progressively less capable of responding to ensuing glucose challenges 
[108]. The large bolus of insulin release that usually follows a meal is lost, and it takes 
much longer to absorb prandial glucose.

The relative insulin deficiency is a defect in either the compensatory response of the /3- 
islet cell population to hyperglycaemia and/or an abnormality in the pattern of insulin 
secretion. In either case, this limitation in /3-islet cell function is the obligatory factor 
in the pathogenesis of type 2 diabetes [80].

2.1.4 Diabetes 

Types of Diabetes

Type 1 Diabetes. Type 1 diabetes or insulin-dependent diabetes mellitus (IDDM) 
is an autoimmune disease. An autoimmune disease results when the body’s system for 
fighting infection (the immune system) turns against a part of the body. In diabetes, 
the immune system attacks the insulin-producing /3-cells in the pancreas and destroys
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them. The pancreas then produces little or no insulin. Someone with type 1 diabetes 
needs to take insulin daily to live.

Type 1 diabetes develops most often in children and young adults, but the disorder can 
appear at any age. Symptoms of type 1 diabetes usually develop over a short period, 
although /3-cell destruction can begin years earlier.

Symptoms include increased thirst and urination, constant hunger, weight loss, blurred 
vision, and extreme fatigue. If not diagnosed and treated with insulin, a person can 
lapse into a life-threatening diabetic coma, also known as diabetic ketoacidosis [102].

Type 2 Diabetes. The most common form of diabetes is type 2 or non-insulin- 
dependent diabetes mellitus (NIDDM). About 90 to 95 percent of people with diabetes 
have type 2. This form of diabetes usually develops in adults, age 40 and older, and is 
most common in adults over age 55. About 80 percent of people with type 2 diabetes 
are overweight. Type 2 diabetes is often part of a metabolic syndrome that includes 
obesity, elevated blood pressure, and high levels of blood lipids. Unfortunately, as more 
children become overweight, type 2 diabetes is becoming more common in young people 
[102, 79].

When type 2 diabetes is diagnosed, the pancreas is usually producing enough insulin, 
but, for unknown reasons, the body cannot use the insulin effectively, a condition called 
insulin resistance. Glucose builds up in the blood and the body cannot make efficient 
use of its main source of fuel [102, 135].

The symptoms of type 2 diabetes develop gradually. They are not as sudden in onset 
as in type 1 diabetes. Some people have no symptoms. Symptoms may include fa-
tigue or nausea, frequent urination, unusual thirst, weight loss, blurred vision, frequent 
infections, and slow healing of wounds or sores.

People with impaired glucose metabolism, a state between "normal" and "diabetes," 
are at risk for developing diabetes, heart attacks, and strokes. There are two forms of 
impaired glucose metabolism, impaired fasting glucose and impaired glucose tolerance.

Impaired Fasting Glucose (IFG). A person has impaired fasting glucose when 
fasting plasma glucose is 6.1 to 6.9 mmol-L'1. This level is higher than normal but less 
than the level indicating a diagnosis of diabetes.
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Impaired Glucose Tolerance (IGT). Impaired glucose tolerance means that blood 
glucose during the oral glucose tolerance test is higher than normal but not high enough 
for a diagnosis of diabetes. IGT is diagnosed when the glucose level is 7.8 to 11.1 
mmol-L'1 2 hours after a person is given a drink containing 75 grams of glucose.

Gestational diabetes. Gestational diabetes develops only during pregnancy. Though 
it usually disappears after delivery, the mother is at increased risk of getting type 2 
diabetes later in life.

2.1.5 Screening for and Diagnosing Diabetes

American Diabetes Association Criteria for Screening for and Diagnosing 
Diabetes Mellitus

Screening Recommendations. Testing for diabetes should be considered in all 
individuals at age 45 years and above and, if normal, it should be repeated at 3-year 
intervals.

Testing should be confirmed at a younger age or be carried out more frequently in 
individuals who:

• Are obese (>  120% desirable body weight or a body mass index >  27 kg/m 2);

• Have a first-degree relative with diabetes;

• Are members of a high-risk ethnic population (e.g., African-American, Hispanic- 
American, native American, Asian-American, Pacific Islander);

• Have delivered a baby weighing >9 lb or have been diagnosed with gestational 
diabetes mellitus;

• Are hypertensive (blood pressure >  140/90) mmHg;

• Have a high-density lipoprotein cholesterol level >  0.90 mmol-L'1 and/or triglyc-
eride level >  2.82 mmol-L"1;

• On previous testing, had impaired glucose tolerance or impaired fasting glucose.
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Diagnostic Criteria.

• Symptoms of diabetes plus casual plasma glucose concentration >  11.1 mmol-L'1. 
Casual is defined as any time of day without regard to time since last meal. The 
classic symptoms of diabetes include polyuria, polydipsia, and unexplained weight 
loss;

• Fasting plasma glucose (FPG) >  7.0 mmol-L'1. Fasting is defined as no caloric 
intake for at least 8 hours;

• 2-hour postload glucose >  11.1 mmol-L'1 during an oral glucose tolerance test 
(OGTT). The test should be performed as described by the World Health Organ-
isation using a glucose load containing the equivalent of 75 g anhydrous glucose 
dissolved in water.

In the absence of unequivocal hyperglycaemia with acute metabolic decompensation, 
these criteria should be confirmed by repeat testing on a different day. The OG TT 
or FPG test may be used to diagnose diabetes; however, in clinical settings the FPG 
test is greatly preferred because of ease of administration, convenience, acceptability 
to patients, and lower cost. The OGTT is not recommended for routine clinical use.1

2.2 Type 2 Diabetes

2.2.1 Introduction

Type 2 diabetes (T2D) or mature-onset diabetes, is a chronic metabolic disorder asso-
ciated with significant morbidity and mortality. T2D usually starts in middle age or 
in the elderly. T2D is more common, constituting about 80% of diabetes in most Eu-
ropean countries and North America. It is thought to be due to both impaired insulin 
secretion and resistance to the action of insulin at its target cells. About 80% of T2D 
patients are obese [59].

2.2.2 Epidemiology and Aetiology of Type 2 Diabetes

T2D is the commonest type of diabetes. Various clinical factors which are associated 
with the disease, such as obesity, increasing age, family history of diabetes, ethnic and

Adapted from [98].
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geographical variations in its frequency, give clues to the aetiology and pathophysiology 
of T2D [40].

The prevalence of T2D increases with age and affects about 10-20% of subjects over 
the age of 65 years in many Western countries. Most subjects are diagnosed after the 
age of 40 years, the peak age of onset being 60 years [40].

There is a large variation in the frequency of T2D in different countries. The highest 
rates (50%) are found in some native American tribes, notably the Pima Indians of 
Arizona and in the South Pacific island of Nauru. Low prevalence (<1% ) is found in a 
poorly developed rural communities such as in part of Chile and China.

There are two widely advocated hypotheses about the primary etiologic factor in T2D. 
The first holds that a primary /3-cell defect causes insufficient insulin secretion, re-
sulting in hyperglycaemia. The peripheral tissues (muscle and liver) are normally 
insulin-responsive at first, but may become insulin-resistant in response to ongoing 
hyperglycaemia. The alternate hypothesis proposes that the basic underlying abnor-
mality is insulin resistance in the peripheral tissues, occurring first in the muscle tissue 
and later in the liver. The /3-cells initially compensate to maintain normal glucose 
metabolism by increasing the amount of insulin that is secreted. However, in time, 
the demand exceeds the ability to compensate. This ultimately leads to pancreatic 
exhaustion [80].

Considerable evidence exists for both theories. The first theory is supported by several 
studies showing abnormalities in insulin secretion and normal insulin action in patients 
with T2D diabetes [112]. The second is supported by other studies that find insulin 
resistance (but normal glucose metabolism) in first-degree relatives of patients with 
T2D [77]. Whether diminished insulin secretion or insulin resistance is the primary 
defect in T2D is the subject of continuing debate. Many individuals who are obese 
and have marked insulin resistance do not develop T2D and yet it appears that the 
combination of the two abnormalities is necessary for the development of T2D .

2.2.3 Complications of Type 2 Diabetes 

Short-term Complications (Acute Complications)

Acute complications may develop over hours or days, and often resolve completely with 
appropriate treatment. The recognition and management are important to preserve the 
well being of T2D patients. The acute complications for diabetes can be classified as:
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• hypoglycaemia;

• persistent hyperglycaemia;

• hyperosmolar coma;

• diabetic ketoacidosis.

Long-term Complications (Chronic Complication)

The long-term complications affect patients with T2D. These complications are respon-
sible for most of the increased morbidity, mortality, and costs associated with diabetes. 
The long-term complications are generally divided into two main categories: microvas- 
cular and macrovascular complications. Poor glycaemic control is associated with de-
velopment of microvascular (retinopathy, nephropathy, neuropathy) and macrovascular 
(cardiovascular disease) complications.

Microvascular Complications. Microvascular complications include retinopathy, 
nephropathy, and neuropathy. Diabetic retinopathy is the leading cause of blindness 
for persons aged 20 to 74 years in the United States, and at least 8,000 new cases 
are diagnosed each year [72, 4]. Because of the delay in diagnosing type 2 diabetes, 
presence of retinopathy at the time of diagnosis is not uncommon.

Diabetic neuropathies occur with approximately the same prevalence in both type 1 
and type 2 diabetes, and about 8% of people with type 2 diabetes have some degree 
of neuropathy at diagnosis [104], The disorder is more prevalent with severe diabetes 
and diabetes of long duration. Most neuropathies are distal, symmetric, cause a loss 
of sensation, and may be accompanied by autonomic neuropathies (e.g., gastroparesis) 
as well [53].

Macrovascular Complications. The three types of macrovascular complications
are

• ischaemic heart disease;

• stroke;
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• peripheral vascular disease.

Ischaemic heart disease occurs earlier and more often in people with diabetes, and 
diabetes causes women to lose their estrogen-related protection. Ischaemic heart disease 
accounts for the majority of deaths in people with diabetes (up to 60%), especially the 
type 2 population [97], This high rate of cardiovascular mortality may be partially 
explained by the high rate of cardiovascular risk factors found in the T2D population, 
i.e.

• hyperglycaemia;

• hypertension;

• dyslipidaemia;

• obesity;

• smoking.

Specific data related to differences in occurrence rates between people with type 1 and 
type 2 diabetes are lacking, but overall the mortality rates for strokes are three to five 
times greater in people with diabetes when compared to cohorts without diabetes [87].

Complications occur with both type 1 and type 2 diabetes and contribute significantly 
to the disease’s morbidity and mortality. Resource utilisation is greatly affected by these 
complications. Ischaemic heart disease and peripheral vascular disease account for 26% 
of hospital days in people with diabetes [1]. Approximately 20% of the direct health 
care expenditures related to diabetes are due to these two macrovascular complications, 
and ischaemic heart disease and strokes account for 58% of the mortality costs caused by 
premature death in those with diabetes [1]. The Diabetes Control and Complications 
Trial (DCCT) [33] demonstrated that tight glycaemic control can prevent or delay 
progression of some of the chronic complications associated with type 1 diabetes, no 
conclusive outcomes data existed for those with type 2 diabetes until recently, when 
the UKPDS demonstrated that tight glycaemic control with oral agents and insulin can 
reduce the risk of complications [57, 54],
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2.2.4 Control and Management of Type 2 Diabetes

A variety of evidence has shown the benefit of tight glycaemic control in patients 
with diabetes. The relationship between improved glycaemic control and the delay or 
prevention of complications has been reported not only in the Diabetes Control and 
Complications Trial (DCCT), but also in the United Kingdom Prospective Diabetes 
Study (UKPDS) and a smaller clinical trials performed in T2D [55, 96]. Data from 
the UKPDS show that improved blood glucose control in patients with T2D decreases 
the progression of microvascular complications by about 25 percent [57, 54].

The DCCT was a significant trial that first demonstrated the benefits of tight glycaemic 
control [33]. The goal of the DCCT was to determine if intensive insulin therapy, 
aimed at achieving near-normal levels of glucose control, would decrease the onset and 
progression of diabetes complications. Over approximately 10 years, 1,441 carefully 
selected people with type 1 diabetes were randomised into two groups. The treatment 
group received intensive therapy while the control group was treated using a standard or 
conventional insulin regimen. Intensive therapy was defined as control using an external 
insulin pump or the use of three or more daily injections combined with frequent blood 
glucose monitoring for the purpose of guiding dosing changes. Conventional therapy 
was defined as one or two daily injections with less frequent blood glucose monitoring.

In the treatment group, glycated haemoglobin (H bAic) values, a marker of long-term 
glucose control, showed a significant reduction, about 1.8%, compared to the control 
group. The average H bAic for the treatment group was 7.2% compared to a value 
of 9.0% in the control group. This decrease in H bAic values resulted in a decreased 
risk of developing microvascular complications by 50% to 75%. Unfortunately, there 
were no T2D patients included in this trial and many practitioners had difficulty in 
extrapolating the findings to the vast majority of people, especially those with T2D.

A smaller trial performed in T2D patients, the Kumomoto study, showed that tight 
glycaemic control achieved through intensive insulin therapy can delay the onset and 
progression of diabetic retinopathy, nephropathy, and neuropathy [96]. Comparable to 
the DCCT, decreases in risks of developing microvascular complications were estab-
lished. The small study population in this trial, 110 patients, coupled with generally 
non-obese Japanese patients made it difficult to generalise and extrapolate the outcomes 
of this study to a wider population where the majority of T2D patients are obese and 
on oral agents, not insulin. In addition, neither study provided data to suggest that 
improved glycaemic control will affect the increased incidence of macrovascular com-
plications experienced by the T2D population. The UKPDS, the largest and longest
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study of type 2 diabetes, was designed to specifically address whether intensive therapy 
with oral agents or insulin is beneficial.

The UKPDS was a multicentre, randomised, controlled trial designed to determine if im-
proved glycaemic control to near normal levels in newly diagnosed T2D patients would 
reduce the risk of diabetes-related complications, both cardiovascular and microvascu- 
lar. A secondary goal was to ascertain if any one agent (chlorpropamide, glyburide, 
insulin, or metformin) was more advantageous than diet alone [57, 54]. In addition, 
the recruited patients who had hypertension (39%) as well as T2D were randomised 
to “tight” or “less tight” blood pressure control to determine the value of lowering 
blood pressure. Like the blood glucose study design, a secondary aim was to determine 
whether the use of the ACE inhibitor captopril or the beta-blocker atenolol was more 
advantageous than the other [58, 56]. A total of 5102 newly diagnosed type 2 patients 
were recruited to participate in the study between 1977 and 1991. The main question 
of the study was whether reducing blood glucose was beneficial in the type 2 diabetes 
population.

The study showed that over time all patients experienced a progressive increase in blood 
glucose. This progressive deterioration in glucose control is thought to be due to the 
progressive loss of /3-islet cell function in people with type 2 diabetes [55]. However, 
intensive therapy produced a median H bAic value of 7.0% compared to 7.9% in the 
control group over the 10-year study period. This reduction in H bAic values reduced 
the risk of developing:

• any diabetes-related (microvascular and macrovascular complications and cataract 
extraction) endpoint by 12% (P =0.029);

• microvascular endpoints by 25% (P =0.0099);

• myocardial infarction by 16% (P =0.052);

• cataract extraction by 24% (P =0.046);

• retinopathy by 21% (P =0.015);

• albuminuria by 33% (P =0.000054).

The UKPDS outcomes also indicated that, similar to type 1 diabetes, microvascular 
complications in type 2 diabetes are caused by hyperglycaemia and a continuous rela-
tionship exists between blood glucose and the risks of these complications. The UKPDS 
results demonstrated that by reducing the H bAic value by one percentage point (1%),
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there is a 25% reduction in the risk of microvascular complications. Further, the risks 
can be lowered significantly even when HbAic values are <8.0%. No glycaemic thresh-
old exists for microvascular complications— the lower the H bAic value (above a normal 
of 6.2%), the lower the risk of microvascular complications.

Although approaching borderline (P =  0.052) statistical significance, there was no 
difference in cardiovascular complications. This implies that lowering blood glucose 
alone is insufficient in reducing cardiovascular morbidity and mortality in the type 2 
population. However, a continuous relationship exists between blood glucose and the 
risks of cardiovascular complications. The UKPDS results demonstrated that a one 
percentage point (1%) reduction in the H bAic value results in:

• a reduction in diabetes-related deaths by 25%;

• a reduction in all-cause mortality by 7%;

• a reduction in myocardial infarction by 18%.

No glycaemic threshold exists for cardiovascular complications— the lower the H bAic 
value (above a normal of 6.2%), the lower the risk of these complications.

The UKPDS found no differences between the pharmacological agents used. All pro-
duced the same effect on lowering HbAic values, and all were equally effective in 
reducing the risks of major clinical outcomes. The UKPDS found no increase in the 
incidence of cardiovascular death, myocardial infarction, or sudden death in patients 
treated with these agents when compared to controls. Therefore, these agents are safe 
and effective in the treatment of type 2 diabetes. When comparing sulphonylureas, 
insulin, and metformin, both sulphonylureas and insulin were associated with hypo- 
glycaemia and weight gain. Metformin caused no weight gain and had little risk of 
hypoglycaemia. Also, metformin may significantly decrease the risks of cardiovascular 
disease through these same beneficial effects (e.g. no weight gain), but the data are 
less certain due to the smaller numbers receiving metformin and the multiple crossovers 
between treatments. The UKPDS indicates that metformin may be the preferred agent 
for obese type 2 patients.

A total of 1,148 patients with both type 2 diabetes and hypertension were randomised 
to two groups: the treatment group striving for tight blood pressure control as the goal, 
and the control group striving for less tight control. Both groups were followed for a 
median of 8.4 years. The tight-control group achieved a mean blood pressure of 144/82 
mm Hg compared to a blood pressure of 154/87 mm Hg in the less tight group. This 
statistically significant reduction in blood pressure reduced the risk of developing:
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• any diabetes-related endpoint by 24% (P =0.0046);

• diabetes-related deaths by 32% (P =0.019);

• strokes by 44% (P =0.013);

• microvascular complications by 37% (P =0.0092);

• heart failure by 56% (P =0.0043);

• retinopathy progression by 34% (P =0.0038);

• deterioration of vision by 47% (P =0.0036).

Again, no threshold exists for these complications— the lower the systolic value (above 
a normal of 130 mm Hg), the lower the risk of these complications. Both captopril 
and atenolol were equally efficacious in reducing the risks of both microvascular and 
macrovascular complications. This implies, like blood glucose control, that lowering 
blood pressure (or blood glucose) is more important than the agent used. However, the 
data indicated that lowering blood pressure in patients with type 2 diabetes may be 
difficult, and that up to one-third of the patients will require three or more agents to 
achieve the desired level of control.

2.2.5 Treatment of Type 2 Diabetes

The aims of treatment are to relieve acute symptoms, improve quality of life and prevent 
long-term complications without precipitating hypoglycaemia. Good glycaemic control 
is essential to reduce the risk of microvascular disease [57, 54]. It is estimated that at 
the time a T2D diagnosis is made, 20% of patients already have diagnosable coronary 
artery disease and retinopathy. The usual first step in treatment of T2D involves non- 
pharmacological therapies. These therapies are instituted in an effort to improve both 
good glycaemic control and to begin the process of helping patients make healthy life 
style changes.

Non-Pharmacological Treatment

Modification of the nutrition is the first task that is undertaken. Treatment goals of 
the nutrition therapy include maintenance of normal blood glucose, optimum blood 
lipid level, and weight loss. Self blood glucose monitoring (SBGM) is taught, an ex-
ercise programme within the patient’s limitations is strongly encouraged and smoking
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is discouraged. Adoption of these lifestyle changes will improve insulin sensitivity and 
lower blood glucose with favourable effects on blood pressure and lipid profile. These 
recommendations should be reinforced regularly.

Pharmacological Treatment

If treatment goals are not achieved after a trial of dietary and lifestyle changes, an oral 
hypoglycaemic should be prescribed. In the UKPDS only 23% of patients allocated 
to diet alone attained fasting plasma glucose (FPG) levels below 7.8mmol-L"1 [57, 54] 
Oral hypoglycaemics currently available include the sulphonylureas, metformin and 
acarbose. Choice of drug will depend on body weight and clinical status. Metformin 
is the drug of choice in obese patients, otherwise a sulphonylurea is prescribed. These 
medications are begun alone and if glucose control is not achieved, another class of 
drug is added.

Sulphonylureas. The sulphonylureas have been the mainstay of T2D therapy over 
40 years. There are currently six available on the market:

• chlorpropamide and tolbutamide (first generation) and

• glibenclamide, glipizide, gliclazide and glimepiride (second generation).

Sulphonylureas stimulate insulin secretion by acting directly on /3-cells [101]. They 
bind to a cell surface receptor that induces the closure of adenosine triphosphate- 
dependent potassium (K a t p ) channels, leading to membrane depolarisation and influx 
of extracellular calcium. The increase in intracellular calcium prompts insulin secretion. 
At maximum dosages, sulphonylureas can lower fasting glucose concentrations by 3.3- 
3.9 mmol-L'1 and reduce H bAic concentrations by 1.5-2% [82], Because of their insulin- 
stimulating action, these agents are associated with an increased risk of hypoglycaemia, 
especially in the elderly. Sulphonylureas may also produce weight gain [57]

Metformin. Metformin, a biguanide, improves insulin sensitivity in the liver (reduc-
ing hepatic glucose output) and in the peripheral tissues (promoting glucose uptake) 
[11]. When used at maximum dosage as monotherapy, metformin has a comparable 
efficacy to sulphonylurea in reducing FPG (2.2-3.3 mmol-L'1 reduction) and H bAic
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concentrations (1-2% reduction) [39, 45]. This agent has beneficial effects on lipid pro-
files and may even promote some weight loss [39, 45]. Its most common side effect 
is gastrointestinal disturbances. Metformin is also associated with lactic acidosis [61], 
and it should not be used in patients with impaired renal or hepatic function.

Combination Therapy. The natural history of type 2 diabetes includes progressive 
decline in the /3-cell function and concomitantly increased hyperglycaemia, which in-
variably leads to failure to achieve an adequate glycaemic control with monotherapy 
[123]. The complementary mechanism of action of available insulin secretagogues and 
insulin-sensitising agents has demonstrated an additive, and possibly even synergistic 
effects when used in combination.

Treatment with metformin and a second-generation sulphonylurea has been the most 
widely used combination. Monotherapy with metformin or glyburide produce compara-
ble levels of glycaemic control in patients with sulphonylurea failure, whereas combina-
tion therapy achieved additional reductions in FPG (S.S-S^mmol-L'1) and H bA jc (2%) 
over the effects of ongoing sulphonylurea treatment [39]. Moreover, combination ther-
apy attenuated the weight gain associated with sulphonylurea treatment and lowered 
low density lipoprotein (LDL) cholesterol and triglyceride concentrations [39]. Similar 
effects are seen with combination therapy using repaglinide and metformin [93].

Acarbose. Acarbose slows the absorption of carbohydrates through the inhibition of 
intestinal alpha-glucosidase, thus reducing postprandial hyperglycaemia. Up to two- 
thirds of patients experience significant gastrointestinal flatulence, abdominal pain, and 
diarrhoea. A slow dose escalation may limit these adverse effects, but they also reduce 
patient acceptance and limit its use as a primary therapeutic drug.

Repaglinide. Repaglinide works similarly to the sulphonylureas in that it increases 
/3-islet release of insulin. The drug can be given just before meals and still improves 
the cellular uptake of carbohydrates consumed.
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2.3 Mathematical Models to Assess Insulin Sensitivity and 
Insulin Secretion

2.3.1 Minimal M odel of Glucose Kinetics 

Introduction

There is a general consensus that the glucose clamp technique, particularly in its eug- 
lycaemic version, is the best available reference for the measurement of insulin action. 
However, the clamp technique has a number of limitations. The disadvantages of the 
clamp method are its requirements (two intravenous lines, calibrated pumps, and online 
plasma glucose level determination) and the need for trained personnel. The complexity 
in the methodology, the cost, the number of doses needed to assess a full spectrum of 
insulin resistance and the problem of achieving a steady-state limit its use to research 
laboratories. The clamp techniques cannot be adapted for the assessment of insulin 
resistance in the clinical setting.

In an attempt to develop a more practical method of measuring insulin resistance that 
could be applied to larger populations, Bergman et al developed the minimal model 

[16]-

The Minimal Model Analysis

The minimal model is a development of the intravenous glucose tolerance test (IVGTT), 
a time-dependent approach for the assessment of insulin sensitivity. The minimal model 
proposed by Bergman et al [16] accounts for both insulin and glucose concentrations 
during IVGTT by using a simple mathematical representation of the glucose-insulin 
relationships.

The minimal model describes the glucose disappearance curve with two differential 
equations. One equation represents glucose kinetics, thus assuming a single-compartment 
model for glucose distribution, the other equation describes the insulin effect, which is 
assumed to take place in the compartment remote from plasma (the effect compart-
ment). The insulin sensitivity index of the minimal model represents the link between 
insulin levels in the effect compartment and glucose disappearance from the glucose 
compartment. The fractional disappearance rate (min"1) from the glucose compart-
ment is assumed to be a linear function (Sq +S i X) where X  is the increment over the
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basal insulin concentration in the effect compartment. Si (min^-per-pmol-L'1) is the 
insulin sensitivity index and Sg  (min'1) is the glucose effectiveness.

By using the measured insulin concentration as the input to the model, insulin sen-
sitivity and glucose effectiveness are estimated by least squares fitting of the IVGTT 
glucose concentration profile.

An inherent limitation of the minimal model analysis of the IVGTT is that it requires 
a discrete insulin response, that is, insulin concentrations that rise detectably and 
consistently above basal. As a result the minimal model analysis of the IVGTT fails 
for insulin-deficient subjects, for no effect of insulin on glucose disappearance rate is 
seen. In this situation, the IVGTT protocol is modified to include an intravenous bolus 
of tolbutamide (to stimulate endogenous insulin secretion) or a brief exogenous insulin 
infusion, both administered 20 minutes after the injection of the glucose bolus.

The so-called one compartmental minimal model (1CMM) of glucose kinetics during 
IVGTT (Bergman et al [16]; Bergman et al [14]), is shown in Figure 2.1. The key 
features of this model are

• glucose kinetics are described by a single-compartmental model;

• glucose inhibition of production and simulation of utilisation is proportional to 
glucose plasma concentration;

• insulin inhibition of glucose production and simulation of glucose utilisation is 
proportional to insulin concentration in a compartment remote from plasma.

The model does assume that during an IVGTT the inhibition of glucose production and 
the stimulation of glucose utilisation have similar functional descriptions. This allows 
one to combine the controls exerted by insulin and glucose on glucose production and 
utilisation and make the model uniquely identifiable.

The one-compartmental model in its uniquely identifiable parameterisation form is 
given by

Q ( t )  — —\p\ +  X { t ) \ Q { t )  +  p iQ b  Q (0 )  — Qb +  D iv (2.1)

X(t) = -p2X(t)+p3[I(t)-Ib]

G { t )  = Q ( t )

X ( 0 )  =  0 (2.2)

(2.3)V
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where Q is the glucose mass (mg-kg"1), with Qi, denoting its basal (end-test) steady 
state value; Div the glucose dose (mg-kg'1); X  is a variable related to insulin concentra-
tion (derived from basal) in a compartment remote from plasma, X (t) =  (k4+k(i)I/ (t), 
where k4 and ko are rate parameters (min'1); I(t) is the plasma insulin concentration 
(/lU-ml'1), with Iy, denoting its basal value; G is the plasma glucose concentration, 
with G], denoting its basal (end-test) value (/rmol-L'1); V is the distribution volume 
per unit body weight (ml.kg'1); and py—ky+kg, p2=k 3 and P3=k 2 (k4+ke) are rate pa-
rameters expressed in min'1, min'1, and min'2 per /xU_1ml, respectively. Clearly one 
has Qb—GbV-

From the above 1CMM, we derive the indices of glucose effectiveness, Sg , at basal 
insulin, and insulin sensitivity, Si.

The glucose effectiveness, Sq , is given as

S g  =  i - Q Q ^ h s  =  P i V  =  S q V  (ml • min'1 • kg'1) (2.4)

and insulin sensitivity, Si, is given as

Si =  [ - Q ^ - V  =  (ml ■ m in 1 ■ kg'1 ' ( MU ■ m l'1) '1) (2.5)

where S'G =  pt and S(=

Figure 2.1: The classical one-compartment minimal model (1CMM).

The controversy [23] with this model is whether the adoption of a one-compartmental 
model is quite adequate for estimating the metabolic indices, Si and So in glucose 
kinetics during an IVGTT. It is being argued that one-compartmental minimal model 
tends to overestimate Sg  and underestimate Si when its results are compared with that 
of the analogous glucose clamp-based indices. This has recently been investigated by 
Cobelli et al using a two-compartmental minimal model [29].
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Application of the Minimal Model

The classical minimal model of glucose kinetics [16] is commonly used to estimate 
metabolic indices of glucose effectiveness (Sq ) and insulin sensitivity (Si) in vivo in 
both normal and pathophysiological conditions. Its application is widespread, and the 
model has been used to examine alterations in Si in a variety of physiological and patho-
physiological states such as in lean and obese subjects [9, 78], examining the dynamic 
interaction between glucose metabolism and endogenous insulin release in hypertension 
[95], examining the influence of positive family history of T2D on aspects of insulin re-
sistance in prepubertal children [52], and in subjects with myocardial infarction and 
the associated insulin resistance before the age of 40 years [24].

The classical minimal model of glucose kinetics is simple and has provided valuable 
epidemiological data While the test is useful for a broader number of studies in clinical 
settings, it still not suitable for population studies. This is because of the complexity 
and large number of samples, the duration of the test, the complicated data analysis, 
and the cost of the test.

Sampling Schemes

Minimal model quantitative assessment of whole body glucose metabolism during IVGTT 
involves blood sampling to estimate insulin sensitivity and glucose effectiveness. Usu-
ally, subjects are studied after an overnight fast for 12 hours. To adequately and 
accurately define the glucose/insulin-time relationships in the body, sampling with 30 
blood samples (full sampling scheme; FSS) is used. The use of the full sampling has 
limited the use of the minimal model of glucose kinetics in large population studies.

Many studies have advocated [28, 117] the use of reduced sampling schemes (RSS) in 
order to give the minimal model approach the wider application area it deserves.

2.3.2 Insulin Secretion Model 

Introduction

The insulin secretion model, see Figure 2.2, is based on the analysis of glucose and C- 
peptide secretion time-concentration profiles during the meal tolerance test [68]. The 
model gives two mechanistic d-cell indices. The first index represents fasting C-peptide 
secretion normalised (divided) by fasting glucose (fasting /3-cell responsiveness M o).
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The second index represents the ability of postprandial glucose to stimulate C-peptide 
secretion and corresponds to the C-peptide increment in secretion per unit elevation of 
postprandial glucose (postprandial /3-cell responsiveness Mi).

Insulin Secretion Model

The model assumes that C-peptide secretion is linearly related to the plasma glucose 
concentration. The linear relationship is imposed from the time of meal ingestion until 
the time plasma glucose returns to its fasting concentration. The model is described 
by a set of differential equations

=  -(/soi +  /s2i)c i( i)  +  k 12c 2(t )  +  u ( t )  ci(0) =  (2.6)

=  k2\C\(t) -  k l2c 2{t) c2(0) =  fcl^ /''21 (2.7)
M2

u { t )  =  max(0, M j ( g ( t )  -  g b) +  M 0 gb) (2.8)

0 < t  < ¿max

where ci (t) is C-peptide concentration in the central (plasma) compartment (mmol-L"1), 
c2(t) is equivalent concentration in the peripheral compartment (mmol-L'1), i.e. the 
amount of the C-peptide in the peripheral compartment per unit volume of the central 
compartment, ky are transfer rate constants (min'1), g(t) is plasma glucose concentra-
tion, u(t) is the secretion rate of C-peptide per unit volume of the central compartment 
and is constrained to non-negativity value, tmax is either 180 min or the time when 
plasma glucose returns to its fasting value, gb is the fasting glucose concentration. Mi 
(postprandial sensitivity index) represents the ability of postprandial glucose to stim-
ulate /3-cells. A change in plasma glucose by 1 mmol-L"1 results in a change in the 
C-peptide secretion rate by Mi pmol-L'1-min. Mo (fasting sensitivity index) is the 
ability of fasting glucose to stimulate /3-cells. Mo is numerically equal to the fasting 
C-peptide concentration divided by the fasting plasma glucose concentration.

The population model of C-peptide kinetics determines parameters k2i, k i2, and koi 
from a subject’s demographic data using a regression model and avoiding the need to 
assess C-peptide kinetics on an individual basis. The model parameters Mi and Mo 
are estimated using weighted regression analysis. The plasma glucose concentration

dc\ (t) 
dt

d c2( t ) 
dt
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Figure 2.2: Insulin secretion model. 

M,(g(t)-gb)+Mogb

is taken as the model input while the C-peptide concentration is taken as the model 
output.

Application of the Insulin Secretion Model

The insulin secretion model was validated in healthy subjects and subjects with T2D 
[68], Mo and Mi indices have been investigated to assess in vivo pancreatic /3-cell 
responsiveness in man to facilitate further understanding of /3-cell dysfunction and its 
relationships with other variables [68, 70, 67, 5].

2.3.3 Other Methods 

Assessment of Insulin Sensitivity

Glucose Clamp. The most accepted research method or ’gold standard’ is the eug- 
lycaemic glucose clamp technique originally developed by Andres et al [8] and widely 
studied by DeFronzo et al [38]. With the euglycaemic (or insulin) clamp technique, 
exogenous insulin is administered as a priming dose followed by a constant infusion at 
a rate designed to maintain a pre-set hyperinsulinaemic plateau; simultaneously, the 
plasma glucose concentration is clamped at the normal fasting or pre-existing level by 
means of an exogenous infusion of glucose. By doing this, insulin action is measured
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in  v i v o  under comparable conditions of stimulus (the plasma insulin concentration) 
and substrate (the plasma glucose concentration). When a steady state is attained, 
the exogenous glucose infusion rate equals the amount of glucose disposed of by all the 
tissues in the body and thus provides an estimate of overall insulin sensitivity. The 
more glucose that has to be infused per unit time, then the more sensitive the patient 
is to insulin. Conversely, the insulin-resistance patient requires much less glucose to 
maintain basal plasma glucose levels.

The advantage of this test is that the effect of insulin on fuel metabolism can be as-
sessed in the absence of the confounding effects of hypoglycaemic counterregulation, 
endogenous insulin secretion, or variable levels of hyperglycaenria. Another advantage 
is that multiple insulin actions can be assessed by using isotopes, including regula-
tion of glucose uptake and production, inhibition of lipolysis, and changes in protein 
metabolism.

The clamp technique has a number of limitations. To assess the full spectrum of insulin 
resistance, several doses of insulin may be needed, and a steady state must be achieved 
for each dose. The test does not reproduce physiological conditions, in which both 
plasma glucose and insulin change. Most importantly, the complexity and cost of the 
procedure limits its use to research laboratories, in which scientific questions can be 
addressed in limited numbers of subjects.

Two-Compartmental Minimal Model (2CM M ). The drawback of the minimal 
(one-compartmental) model of glucose kinetics has been suggested to be overcome by an 
improved version, the two-compartmental minimal model, when a second compartment 
is appended to the accessible one and a Bayesian approach is used to incorporate a priori 
knowledge on the exchange rate parameters, k2i and ki2 , between the accessible and the 
nonaccessible compartments. The results in normal subjects showed that this approach 
provides estimates of Sq and Si that are, respectively, 60% lower and 35% higher [29] 
than the corresponding indices, Sg  and Si, of one-compartmental minimal model.

The two-compartmental minimal model structure is defined by the following first order 
differential equations

Q i(t) — — \pi +  &2i +  X(t)}Q \(t) +  k\2Q2{i) +  PiQ u  Qi(0) — Qib +  D%v (2.9)

Q 2 ( t )  =  k 2 iQ i ( t )  — k u Q 2 ( t ) (2.10)<52(0) - Q26
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X(t)  =  - P 2x ( t ) + P 3 [l(t) -  Ih] X(0) =  0 (2.11)

G \ t) =  9 M  (2.12)

where Qi and Q2 (mg-kg'1) denote the glucose masses in the accessible and non- 
accessible compartments respectively, with suffix b denoting their basal steady-state 
values; V is the volume of the accessible compartment (ml-kg"1); ki2 , k2i (min'1) are 
the rates of parameters describing glucose kinetics; X is the variable related to insulin 
concentration (deviation from basal) in the compartment remote from plasma, X (t) =  
(k4+ke)I,(t) where kj, k6 are parameters (min'1); I(t) is the plasma insulin concentra-
tion (/iU-ml'1) with lb denoting basal value; G 1 is plasma glucose concentration with 
Gb denoting its basal value; P i= k i+ k 5 (min'1), P2=k 3 (min"1), P3=k 2 (k4+kc)(m in '2 • 

/iU'^ml) are rate parameters; Q ib=G bVi, Q2 (Q)—k2k^llJ from a steady-state constraint.

From the above 2CMM, we calculate the indices of glucose effectiveness, Sg , at basal 
insulin, and insulin sensitivity, Sp The glucose effectiveness, Sg , is given as

S g  =  =  PiV =  S'GV  (ml ■ min'1 ■ kg'1) (2.13)

and insulin sensitivity, Si, is given as

Sl =  tfl l t j ) d G ( t ) ŝs =  ^ 2 V  =  S>lV (ml • min"1 ■ kg"1 ■ ( /rU • mi'1) '1) (2.14)

where S'G =  p: and S(=

The 2CMM differs from the 1CMM only in allowing an exchange of glucose between 
the accessible and nonaccessible compartment.

Homeostatic Model Assessment (HOMA) and Constant Glucose Infusion 
with Model Assessment (CIGM A). With the homeostatic model assessment and 
constant infusion of glucose with model assessment approaches, insulin sensitivity is 
determined from the steady (or nearly-steady) glucose and insulin concentrations mea-
sured under basal conditions (HOMA) or after a standardised, 1 hour intravenous glu-
cose infusion (CIGMA) [65] [90]. Insulin sensitivity is expressed as an index of relative 
insulin resistance, R (dimensionless or a percentage), which is calculated as a function 
of measured glucose and insulin levels.

In HOMA, the measurement of just basal glucose and insulin concentration is sufficient 
to detect insulin resistance on a quantitative basis. However, in general it cannot be
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taken for granted that two subjects with the same value of glucose-insulin concentration 
product, that is the same R, have the same insulin sensitivity. Moreover, with HOMA 
the site of insulin resistance, hepatic versus peripheral, remains undetermined, whereas 
the standard clamp essentially assesses peripheral tissue insulin resistance. CIGMA, 
being a sort of simplified hyperglycaemia clamp, is more informative. However, the 
interpretation of R remains unclear, particularly when the insulin response is insufficient 
to stimulate glucose uptake, as occurs in insulin-deficient subjects. The important 
advantage of the HOMA and CIGMA tests is that the experiments are simple.

Quantitative Insulin Sensitivity Checked Index (QUICKI). QUICKI [76] is 
based on the steady-state (or quasi-steady-state) glucose and insulin concentrations 
that are achieved after an overnight fast. It defines insulin sensitivity as proportional 
to the inverse of the log of the product of fasting insulin and glucose concentrations.

The expression used as an index of insulin sensitivity is 

Q U I C K I  =  H og(L)+log(Oo)]

where Iq and Go are the fasting insulin and glucose. This was obtained by examining 
a variety of transformations of these fasting data and choosing the one that correlates 
best to Sldamp.

QUICKI has demonstrated good correlation with the "gold standard" method, or 
the hyperinsulinaemic euglycaemic clamp [76]. In this regard, it seems to compare 
favourably with the minimal model approach.

Insulin Concentration. Blood insulin circulation has been widely used as a sur-
rogate for estimating insulin sensitivity. A predicted output of the insulin-glucose 
feedback is that the worse the insulin resistances the higher the plasma insulin con-
centration. Both fasting and post-glucose plasma insulin levels have been used: the 
product of fasting insulin and fasting plasma glucose levels in addition to their ratio 
have likewise been proposed as proxies for insulin action. When the insulin sensitivity 
estimates obtained from these procedures are tested against insulin sensitivity measured 
by euglycaemic clamp, all are found to have a low correlations with the euglycaemic 
clamp estimates, and no matter what transformation or manipulation of the indices of 
these surrogate estimates, the correlation values remains low. This result clearly arises 
from the fact that insulin levels, in addition to tissue insulin sensitivity, also depend on
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secretion, distribution, and degradation of insulin. Glucose level on the other hand, is 
controlled by more factors than just insulin.

Insulin Tolerance Test. This is the first method developed to evaluate insulin sen-
sitivity in vivo. It is based on the measurement of rate of decay of plasma glucose level 
after a bolus injection of regular insulin (0.1 U. kg-1 body weight). On plotting plasma 
glucose concentrations measured every 5 minutes from 10 to 40 minutes after the in-
travenous injection on a semi-logarithmic scale, a linear decline is observed in most 
cases. The slope of the line, given as K i t t , can be calculated simply (0.693 divided by 
the plasma glucose half time) and used to rank insulin sensitivity, that is, the greater 
the slope the better the insulin sensitivity. The assumption behind this method is that 
the glucose system is a single compartment, from which insulin accelerates the net 
disappearance of the substrate both by promoting its uptake into target tissues and 
by shutting off the endogenous production. By also assuming a glucose distribution 
volume (usually, 200-250 ml . kg"1), a clearance rate can be calculated by:

M C R  =  E  x f l o w  r a t e  =  k V  (2-15)

where MCR is the metabolic clearance rate, k is the average disappearance rate, V  is 
the glucose distribution volume, and E is the extraction ratio. Either the K i t t  index or 
the glucose clearance is found to correlated to clamp-derived estimates of insulin sensi-
tivity [21]. K i t t  is dependent on the time interval over which it is calculated, because 
glucose disappearance is not a mono-exponential but rather a multi-exponential process.

The principal drawback of this test is hypoglycaemia, which in addition to be un-
pleasant, can cause neurological and cardiovascular side effects, particular in diabetic 
and elderly subjects with diffuse atherosclerotic disease. In addition, hypoglycaemic 
counter-regulation will antagonise the insulin effect, thereby contaminating the insulin 
sensitivity estimate.

Insulin-Suppression Test. The insulin-suppression test is a reverse clamp, by which 
the exogenous glucose infusion rate during infusion of insulin is constant while plasma 
glucose concentration is allowed to vary: at a steady state, the higher the level of 
hyperglycaemia attained the worse the insulin sensitivity. Because the experimen-
tally induced hyperglycaemia will stimulate endogenous insulin release, two different 
approaches to suppress /3-cell response have been taken, namely:
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1. The quadruple-infusion technique devised by Shen et al [114]. The main problem 
with this method is that the biological effect of adrenaline on glucose metabolism 
may be incompletely or unpredictably blocked by propranolol. In addition, adrenaline 
can cause significant disturbances of cardiac rhythm even in the present of pro-
pranolol, the use of the quadruple-infusion technique in patients is somewhat 
hazardous.

2. The modification of insulin-suppression test, first introduced by Harano et al [63], 
which has virtually replaced the quadruple-infusion technique.

Problems with the insulin-suppression test are that plasma glucose concentration may 
not stabilize satisfactory over infusion period and, in very sensitive subjects, may oc-
casionally drop below baseline.

Circulatory Model. Another method is based on the circulatory model by Mari 
et al [88]. Circulatory models represent the glucose system rather more realistically 
then compartmental models do. Glucose kinetics in the organ blocks encompassed by 
the circulatory loop are mathematically described using techniques derived from the 
so-called model-independent methods developed by Meier et al [91] and Zeirler et al 
[137]. Arbitrary assumptions such as those required by multi-compartmental analysis to 
specify model configuration are not needed. The circulatory model parameters reported 
for normal subjects and subjects with T2D agree with the respective literature values 
[89], although comparison with more established methods has yet to be made.

A comprehensive overview of insulin sensitivity measurement is provided in Ferrannini 
et al [41] and a short review is provided in [10].

Assessment of Insulin Secretion

Hyperglycaemic Clamp. The hyperglycaemic clamp [38] is the ’gold standard’ for 
assessing pancreatic responsiveness. During the hyperglycaemic glucose clamp, plasma 
glucose in rapidly elevated by an exogenous bolus and maintained by a variable infusion 
of glucose to produce a desired circulating glucose level, thus stimulating the endogenous 
insulin secretion. The extent of the stimulation is regarded as an index of pancreatic 
/3-cell responsiveness, and the response is usually evaluated in terms of plasma insulin 
concentrations. The exogenous glucose injection is followed by a frequent sampling 
schedule to enable the evolution of early pancreatic response. Samples are taken at 
basal states before the glucose administration.
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Minimal Model of C-peptide Secretion during IVGTT. The model [30] ac-
counts for the effect of glucose on C-peptide concentration during IVGTT. It provides 
the time course of C-peptide secretion CpS(t), the values of parameters 4>icp and $ 2 Cp 

which represent the first and the second phase /3-cell responsiveness to glucose respec-
tively, and koi, the C-peptide fractional clearance, i.e. the peptide disappearance in unit 
time per unit volume. CpS(t) equals /3-cell insulin secretion because of the equimolarity 
between the two peptides. Basal insulin secretion, BSR, is computed as the product 
between clearance koiand basal C-peptide concentration.

Minimal Model of Insulin Secretion during IVGTT. The model was conceived 
to account for the effect of glucose on the time course of plasma insulin [121]. It 
provides the time course of posthepatic insulin deliver IDR(t), and n, the peripheral 
fractional clearance rate of insulin. Basal posthepatic insulin delivery, BDR, is the 
product between n and the basal insulin concentration.

Combined Model of Insulin and C-peptide Secretion during IVGTT. The
use of C-peptide and insulin models allows the reconstruction of the time course of the 
hepatic insulin extraction, H(t), which is computed as the difference of CpS(t)-IDR(t), 
normalised to CpS(t) [30].

2.4 Population Modelling

2.4.1 Introduction

Population modelling consists of several stages. A kinetic model describes the flow 
of glucose emphasising several parameters for each individual. A population model 
describes the distribution of the parameters in the population as a function of sev-
eral population parameters, which in turn have a prior distribution based on existing 
knowledge. Lastly, the measurement model describes the distribution of deviations of 
the data from their expected values predicted by the glucose kinetic model.
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2.4.2 Modelling Stages 

Notation

In formulating a population model, we use the following notation. The observed 
responses corresponding to covariates xy will be denoted by yy. The number of indi-
viduals from the population will be denoted by N (so that i =  1,...,N) and the number 
of observations made on an individual will be denoted by n; (so that j =  l,...,ni). In 
general the number and values of covariates will differ from individual to individual, 
but in cases where the same sample design is used for each individual, and there are 
no missing observations, n; and xy will not require subscript i.

Individual Measurement Model

We define the structure of the kinetic model for the ith individual, i =  1,...,N. For each 
individual, we have the model:

Uij =  + e i j  (2.16)

where yy is the j th measurement, j= l,...n i, for the ith individual at time ty; f  is the model 
function; Oi is the vector of random parameters of the kinetic model; and ey is the 
zero-mean measurement error. The measurement error is assumed independent from 
observation to observation, whose variance might either be constant for all observations 
[V(ey) =  er2)] or constant within individuals but varying across individuals [V(ey) =  
of] or functionally related to the mean value f(#i,ty) [V(ey) =  cr2f(f?i,ty)].

Population Structure Model

From a sample of individuals identified as being from the same population, the same 
general form of functional relationship, f, is assumed to hold between the expected 
response and the covariates of each individual, but the parameters, Oi, determining the 
precise shape of profile for each individual are assumed to vary across the population 
in a manner of a random sample. It is then often reasonable to assume the following 
reparameterisation of the individual components of the parameter vector, that

Oi = a + 0^
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The 6i is a known function of parameter a  which does not vary across the population; 
it is known as a fixed effect, and of parameter </>j which changes across the population; 
it is known as a random effect

9 i =  g{ct,<t>i ) (2.17)

For this reason, these models are called mixed effects models. Moreover, in the paramet-
ric approach, the assumption is usually made that the random effects are normally 
distributed with mean p and covariance E

<t>i ~  N ( n ,  E ) (2.18)

this case, the population kinetic analysis problem is to estimate mean n  and covariance 
E based on the population data.

Two approaches are used to facilitate estimation of this population distribution

• the parametric approach and

• the nonparametric approach.

In the parametric approach, the population distribution is assumed to be known except 
for the population parameters, for example, the distribution can be assumed to be mul-
tivariate normal with unknown mean and covariance. Hence, the population analysis 
problem is then the estimation of both mean and the covariance. In the nonparametric 
approach, no assumption is made about the underlying population distribution, the 
entire distribution is estimated from the population data. A third approach that falls 
in-between the above mentioned approaches is called semi-nonparametric approach. 
We use only parametric approach in this study. Vicini et al [126] and a chapter on 
parameter estimation [23], provide an excellent review of population kinetic analysis 
and parameter estimation.

There are two basic classes of methods for obtaining estimates of mean /x and covariance 
E

Maximum likelihood estimation (MLE)
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• Bayesian methods.

Maximum likelihood methods are based on the maximisation of the likelihood func-
tion for the population problem, while the Bayesian methods use Bayesian inference 
approaches to estimate the full conditional population distribution.

2.4.3 Population M ethods/Statistical Methods 

Introduction

The discussion of population methods here will be focused only on two methods that 
provide estimates of population means and covariances, the standard two-stage ap-
proach, and the Bayesian approach. Therefore, both the naive averaged data approach, 
Steimer et al [118], and linearisation approach, the NONMEM [12], will not be dis-
cussed.

Two-Stage Approaches

Standard Two-Stage Approach. In the first stage, each individual’s parameters 
are estimated. In the second stage, individual estimates in the first stage serve as 
input data for the second stage calculation of the corresponding population parameters 
(p , £ ) .  Analysis of dependencies between parameters and covariates using classical 
statistical approaches (linear regression, covariance analysis, cluster analysis) may be 
included in the second stage. These methods can be nonparametric, as in the Standard 
Two-Stage approach; or parametric, as in the global two-stage approach.

Iterative Two-Stage. The iterative two-stage (ITS) method is a parametric iter-
ative method belonging to the family of expectation-maximisation (EM) algorithms, 
based in particular on the maximum a posteriori probability (MAP) empirical Bayes 
estimator. It was proposed as a possible computationally attractive alternative to the 
nonlinear mixed-effects modelling approach [118]. The ITS has been used in both phar-
macokinetics and metabolic studies to estimate population parameter mean (/r) and 
variances (£ )  from reduced data sets [128].
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Bayesian Hierarchical Models

Bayesian Method. The Bayesian method was first introduced to the population 
kinetic analysis by Wakefield et al [132], in which the Gibbs sampler was used for esti-
mating highly dimensional parameters. The Bayesian methods consider the complete 
population sample, rather then the individual as a unit of analysis. The population 
methods of analysis aim to estimate the distribution of the parameters and their re-
lationships with covariates. The method uses individual data of the observational or 
experimental type, which may be unbalanced or fragmentary, in addition to or instead 
of conventional data from traditional studies characterised by rigid and extensive de-
sign. The Bayesian population kinetic analysis exploits the statistical framework of 
nonlinear hierarchical random effects model and provides estimates of population char-
acteristics that define the population distribution of the population kinetic parameters. 
This is achieved by describing each hierarchical stage in a probability context, regarding 
every variable in the model as random and estimating directly the parameters of the 
population from the full set of individual concentration values. The individuality of the 
subject is maintained and accounted for, even when the data are sparse. See Davidian 
and Giltinan [35] for an excellent survey of two-stage methods and population kinetic 
analysis.

Hierarchical Model. Many statistical applications involve multiple parameters that 
can be regarded as related or connected in some way by the structure of the problem, 
implying that a joint probability model for these parameters should reflect the de-
pendency among them. For example, estimating metabolic indices, Si and Sg , using 
the glucose kinetics minimal model described above, Figure 2.1, with an ith individual 
having an estimated parameter 0 ly it might be reasonable to expect that estimates 8i, 

which represent a sample of individual, should be related to each other. This could be 
achieved by using an a priori distribution in which Oi are viewed as a sample from a 
common population distribution. A key feature of the hierarchical model is that the 
observed data r/jj, j =  l,...ni and i =  1,...,N, as described in Section 2.16 can be used 
to estimate an aspect of the population distribution of Oi even though the values of 6,  

are not themselves observed.

A relevant Bayesian framework for simultaneously modelling of intra-individual and 
inter-individual variability requires a three-stage hierarchical model. At the first-stage, 
intra-individual variability is characterised by a linear or nonlinear regression model
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with a model for the individual covariance structure. Inter-individual variability is rep-
resented in the second-stage through individual specific parameters, which may incor-
porate both systematic and random effects. A relevant model and statistical framework 
will be described in the next chapter, where we will consider a population approach to 
the minimal model of glucose kinetic in hierarchical form.

2.4.4 M ethods of Statistical Inference 

Introduction

In implementing the Bayesian methods, the need to evaluate integrals occurs at many 
stages. Calculating expectations, forming marginal distributions and predictive distri-
butions, eliminating nuisance parameters, and so on, all require integrals to be evalu-
ated. For relatively simple models, the integrals can frequently be determined analyt-
ically if prior information corresponds to a natural conjugate prior distribution. For 
more complex models, for example, where the conjugate distribution is inappropriate, 
numerical approximation methods are usually needed to estimate the integrals. One 
such method that is straightforward to implement and which has a wider application 
in non-linear hierarchical statistical modelling is Gibbs sampling.

Gibbs Sampling

Gibbs sampling is based on Markov chain Monte Carlo (MCMC) methods [49, 120, 115]. 
MCMC is a general method for sampling from stochastic multivariate processes and 
computing expectations. This idea was first used by Wakefield et al [132] for population 
PK models using a Gibbs sampler. The idea behind such methods is to construct a 
Markov chain whose stationary distribution is the required posterior distribution.

Metropolis-Hasting methods

A drawback of the Gibbs sampler is that conditional distributions must be known com-
pletely but, in most applications, these distributions are only known to within a con-
stant of proportionality. Such is the case of our, non-standard, conditional distribution 
of the parameters that will be described in the model formulation and implementation 
section in Chapter 3, where we will not know the constant of proportionality. This 
prevents the use of a Gibbs sampler, but there are other methods that can still be
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used. The best known of these methods is the Metropolis-Hastings algorithm, which 
we describe briefly below.

The Metropolis-Hastings algorithm was developed by Metropolis and subsequently gen-
eralised by Hastings [92, 64].

Let q ( 9 , 9 )  be an arbitrary proposal density such that

I  q ( 0 , 9 ) d 9  =  1 (2.19)

Also let U(0, 1) denote the uniform distribution over (0,1). Then, a general version of 
the Metropolis-Hastings algorithm for sampling from a posterior distribution n (9\D )  

can be described as follows:

M etropolis -H ast ings  A lgorithm .

Step 0. Choose an arbitrary starting point 9q and set i =  0.

Step 1. Generate a candidate point 6* from q { 9 .) and u  from U(0, 1).

Step 2. Set 0i+1 =  9* if u <  a(0j,0*) and 9i+ \ — 9 , otherwise, where the acceptance 
probability is given by

a ( 9 , 9 )  =  min {
n (9 \ D )g {6 ,9 )

n (9 \ D )q (9 ,9 ) , 1} (2.20)

Step 3. Set i =  i +  1 and go to Step 1.

The described Metropolis-Hastings algorithm is very general. The Gibbs sampler is 
obtained as a special case of the Metropolis-Hastings algorithm choosing an appropriate 
q ( 9 , 9 )  [47, 27]. The performance of the above algorithm depends on the choice and 
the spread of a proposed distribution density q of interest [27].
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Methodological Development



Chapter 3

Bayesian Hierarchical Modelling 
of Minimal Model of IVG TT

3.1 Introduction

The homeostasis of glucose, involving the secretion of its controlling hormone insulin 
by the pancreas, has been the object of both mathematical and statistical models over 
the last fifty years [3, 26, 20]. As a result, numerous models have been proposed to 
quantify the whole-body glucose and insulin kinetics.

The minimal model, introduced in 1979 by Bergman et al [16] to estimate whole-body 
glucose and insulin kinetics from the intravenous glucose tolerance test (IVGTT) data, 
has become an invaluable method. The usefulness of the minimal model approach is 
demonstrated by the growing number of published studies, on both small and large 
scale [5, 94, 107].

In vivo glucose tolerance is determined by both insulin-dependent and non-insulin- 
dependent processes. Two important metabolic parameters related to these two pro-
cesses are estimated by the minimal model - insulin sensitivity (Si), which characterises 
insulin action on glucose kinetics, and glucose effectiveness (Sg ), which characterises 
the ability of glucose to promote its own disposal at basal insulin.

Despite the potential advantages of the minimal model analysis in studying glucose 
metabolism, including its cost-effectiveness and being a single-test procedure, one re-
ported problem with minimal model studies is that, in a number of subjects, especially 
those with T2D, insulin sensitivity Si is calculated as Si = 0 .  The occurrence of Si 
values indistinguishable from zero ("zero Si") in large clinical studies has not been 
fully understood and whether it represents a physiological relevant phenomenon or a
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manifestation of modelling deficiency remains to be investigated. This is because the 
minimal model analysis of the IVGTT data requires a discrete insulin response (i.e. 
insulin concentration that rises detectably and consistently above basal). As a result, 
the minimal model analysis of the IVGTT fails for highly insulin-deficient subjects, 
where no effect of insulin on glucose disappearance rate is seen [50, 128].

It has been documented that the minimal model fails in up to 50% cases of subjects with 
highly insulin-deficient subjects [44]. Although with insulin modification, the inclusion 
of an intravenous bolus of tolbutamide (to stimulate endogenous insulin secretion) or 
a brief exogenous insulin infusion, both administered 20 min after the injection of 
the glucose bolus and careful data analysis, the failure rate is normally around 10%. 
Hence, the use of Si for measuring insulin sensitivity in vivo is more widely accepted. 
Godsland and Walton [50] documented higher failure rates of 61% without modification, 
and showed the importance of basal glucose levels to improve the success rate.

The problem of zero Si values from the minimal model analysis has been attributed to a 
possible manifestation of modelling deficiency. Nearly all the minimal model data anal-
ysis strategies employed in the literature use a non-linear regression analysis (NLR), 
employing a gradient-type estimation algorithm to obtain point estimates of insulin sen-
sitivity and glucose effectiveness [100] and, by means of the Fisher information matrix, 
a measure of its uncertainty expressed as the standard deviation (SD) can be obtained. 
However, the NLR approach has difficulties in handing possible asymmetries in the 
probability distribution of the estimates, as a result, negative values are included in the 
confidence interval. The above interpretation difficulties of the "zero Si" has generated 
a wider interest in finding more sophisticated parameter estimation techniques than 

NLR.

Recently, several others techniques have been proposed to improve the precision of pa-
rameter estimates from the minimal model, among them is the Bayesian analysis with 
the most widely used Markov chain Monte Carlo computational/simulation strategies 
[48]. The generalised Metropolis Hastings algorithm and the Gibbs sampler have made 
significant advances as a result of their efficient forms of parameter estimation proce-
dures. These have been adopted to estimate insulin sensitivity and glucose effectiveness 
by analysing data on an individual basis [103] aiming to reduce the minimal model fail-
ures and to provide physiologically plausible confidence intervals (credible intervals 
within the context of the Bayesian analysis) of the estimates.

The present study extends these recent advances and reports on a population-based 
hierarchical Bayesian analysis of the minimal model data. The combination of the 
Bayesian methodology and the hierarchical analysis promised to be suitable to re- 
duce/avoid the minimal model failures and extract correctly and in full all information
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Table 3.1: Characteristics of subjects with newly presenting T2D (N =  65; mean ±  
SE).

such as inter-individual variability from the experimental data. The use of the popula-
tion analysis is also for the first time investigated for T2D subjects.

3.2 Subject and Experimental Protocol

3.2.1 Subjects

Subjects with newly presenting T2D according to WHO criteria participated in the 
study, see Table 3.1. The study was approved by the Bro Taf Local Research Ethics 
Committee, Cardiff, UK.

3.2.2 Experimental Protocol

The subjects were admitted on the study day to the Diabetes Research Unit, Llandough 
Hospital (Penarth, UK). Subjects were studied after an overnight fast for 12 hours and 
underwent the insulin-modified intravenous glucose tolerance test (IVGTT) consisting 
of a 300mg-kg'1 glucose bolus per body weight given at 0 minute over 2 minutes, followed 
by an insulin injection of O.OSU-kg"1 at 20 minutes [99]. Blood samples were collected

60, 70, 80, 90, 100, 120, 150 and 180 minutes for measurement of plasma glucose and 
insulin.

3.2.3 Analytical Techniques

Plasma glucose concentration was assayed using the glucose oxidase method (Yellow 
Spring Analyser, YSI 2300, USA; intra-assay CV <  2%). Insulin was assayed us-
ing immunoassay utilising monoclonal antibodies (Dako Diagnostics, Ely, Cambs, UK; 
intra-assay CV <  5%). Sample collected from the patients were sent to the laboratory

Age (years) 
Gender 53/12 (m/f)

30.0 ±  0.7
11.0 ±  0.4

54 ±  1

BMI (kg-m"2) 
FPG (mmol-L'1)
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immediately. Blood samples were then centrifuged (2000g, 5mins) in a refrigerated 
(4°C) centrifuge and the plasma put into aliquot and frozen at -20°C immediately. 
Samples remained frozen until assayed.

3.3 Model Specification

3.3.1 Minimal M odel of Glucose Kinetics

The one compartment minimal model (1CMM) of glucose kinetics, in Figure 3.1, de-
fines insulin sensitivity (Si, ability of insulin to enhance the net glucose disappearance 
from plasma) and glucose effectiveness (Sg , ability of glucose to promote its own dis-
posal) [16, 15]. It is described in its uniquely identifiable paranreterisation form by two 
differential equations

Q ( t )  =  — [pi + X ( t ) ] Q ( t )  + p i Q b  Q { 0 )  =  Qb +  D iv (3.1)

X ( t )  =  - P2X ( t ) + p 3[ m  -  I b) X (0 ) =  0 (3.2)

9 «  =  ^  (3-3)

where Q is glucose mass (mg-kg"1) with Qi, denoting its basal (end-test) steady state 
value; Div is the amount of the exogenous glucose dose (mg-kg-1) injected at time 
0 min; X  is a variable related to insulin concentration in compartment remote from 
plasma, X (t) =  (k4+k6)I'(t), where k4 and kc are rate parameters(min : ); I(t) is plasma 
insulin concentration (/zU-ml'1) with fi, denoting its basal value; g is plasma glucose 
concentration with gi, denoting its basal (end-test) value; V  is the distribution volume 
per unit body weight (ml-kg-1); and p4 =  ki+ks, p2 =  ka and p3 =  k2 (k4+k 6) are rate 
parameters expressed in min-1 , min-1 and rnirm/iU-1 ml, respectively. Clearly one has

Qb =  gbV .

From the above 1CMM, we derive glucose effectiveness Sg  at basal insulin as

S g  =
d Q ( t ) .
d g { t )

and insulin sensitivity Si as

=  p i V  =  S'G V  (ml • min-1 ■ kg'.-(h (3.4)

S i =  [ -
d Q j t ) 

d l ( t ) d g ( t )
— V  =  S ^V
P2

(ml • min-1 ■ kg-1 per p\J ■ ml"1) (3.5)
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where SJ =  ^  and S'G — pi. Glucose concentration from values 0 to 8 minutes are 
excluded from the parameter estimation process.

Figure 3.1: The classical one compartment minimal model (Bergman et al [16]).

3.3.2 Three-Stage Hierarchical Model

A three-stage hierarchical model will be postulated. It allows variability in the concen-
tration to be separated into intra-individual and inter-individual components.

First stage model (intra-individual variation)

Let C;j denote the plasma concentration of glucose during IVGTT of individual i at 
time tj, i =  1,...,N and j =  l,...,n;.

The concentration is obtained as

o2
Cij =  g ( 9 i , t i j ) +  eij e i j ~ N ( 0 ,  ) (3.6)

T c

where g is a solution to the minimal model Equations 3.1-3.3 (inputs such as glucose 
dose and plasma insulin were omitted for clarity); 6i denotes a vector of individual- 
specific parameters =  pu , p2i, p3i, and V jj; ey is the random term representing 
the multiplicative measurement error, and the model specification error and other un-
accounted variability, whose coefficient of variation is assumed constant within and 
between individuals; and r 2 denotes intra-individual precision parameter for concen-
tration of IVGTT data. The random term ey is drawn from a normal distribution with 

a zero mean and an unknown variance • c
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We denote the first stage distribution by

g { c i \ 0 i , T c) (3.7)

where q  is a vector of measurements, q  =  (cii,...Cini). We write the likelihood function 
for IVGTT parameters of a particular individual as

l{Oi,rc) =  g(ci I Oi,Tc) (3.8)

Second stage model (inter-individual variation)

The population approach assumes that the parameter vector is drawn from a parametric 
distribution

Gi ~  p e {. | 4>e )

In particular pg(. \ <ps ) may represent multivariate normal in which case 4>e =  (/ig, 
Eg) where p g  represents a population mean parameter and Eg represents a population 
scale matrix and where p 0 is a vector of length pg and Eg is a matrix of dimension 

Pe x  P o-

lli this study we assumed pg(. \ <j>g) to arise from a multivariate log-normal distri-
bution guaranteeing non-negativity of parameters and we also assumed no covariate 

relationships.

Third stage model

At this stage the vague priors representing "lack" of prior knowledge for the population 
parameters r c, and Eg were specified.

The priors chosen for our analysis were

Tq rs-' G a ( a c , be) (3.9)

fjie ~  N ( c 0 , C q ) (3.10)

I“ 1 ~  W ( r g ,  (rgRg)-1 ) (3.11)
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where G a ( a c, bc), N ( c g ,  C g ) ,  and W ( r g ,  (rgRtf) : ) denote Gamma, normal, and Wishart 
distributions, respectively.

The values eg, R#, and a c represent prior guesses for the relevant parameters and C g ,  

rg, and bc represent the precision of these estimates. The values of priors specified for 
these parameters are

fig ~  N o r m a l

( 106 0 0 0 \

0,
0 106 0 0
0 0 106 0

\ 0 0 0 106 )

Y,e W h i s a r t

( 50 0 0 0 \

4,
0 50 0 0
0 0 50 0

V 0 0 0 50 /

t c ~  G a m m a ( 0 .001,0.001)

(3.12)

(3.13)

(3.14)

Figure 3.2 shows the model for IVGTT as a directed acyclic graph (DAG) [116]. The 
graph represents local relations among variables.

3.3.3 Statistical Considerations

In this section, we describe the statistical relationship associated with the Bayesian 
analysis of the minimal model. Inference with the Bayesian technique is performed 
mainly on the posterior distribution of the unknown parameters of the model.

Concentration data from IVGTT were collected in N individuals. We denote the data 
by C ;= (cii,... ,qni). The notation represents the fact that there may be missing con-
centration data. The data were collected at time points ty, i =  1,...,N and j =  l,...,ni. 
The individual unknown parameters are 0  =  ( 0 1, . . . ,  On )-

We summarised the three stages of the hierarchy as follows.
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Figure 3.2: A directed acyclic graph for the population analysis of the minimal model. 
Dashed squares denote fixed quantities, while solid squares denote observed quanti-
ties (concentrations). Solid arrows are probabilistic dependencies, while dashed arrows 
show functional (deterministic) relationships; t is measurement time, qj is glucose mea- 
surment during IVGTT, g is a nonlinear function to predicted glucose concentration 
during IVGTT, t q , ¡Jie and E# are prior population parameters.

Stage one

The likelihood function is given as
N N

Y [ l ( 0 i , T c) =  J | s (q  | O i,T c ) (3.15)
i=1 i=1

Stage two

The likelihood function for the population parameters of N individuals is given as

N

Y [p e (O i  I <t>e)
t=i

(3.16)
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Stage three

The third stage specifies priors for some of the parameters and the joint distribution 
of the prior is assumed to be the product of independent prior distributions for each 
component

P ( M l * o , E o ) )  x p (t c) (3.17)

Taking the product of Equations 3.15, 3.16 and 3.17, we define the joint posterior 
distribution for all our parameters for N individuals as:

N

p ( 0 ,  Tc, (t>e I c) oc JJ[g(ci | 6,, t c )] (3.18)
1=1 

N

X n [p (0 t  I (j>o)\ X p ( r c) x p{(/)e) 
i=  1

In Equation 3.18, we are interested in the marginal distributions which are obtained 
by integrating out all other parameters except the parameter of interest. Due to the 
nonlinear nature of the first stage of the above model, the integral of the marginal 
distribution of the parameters of interest is analytically intractable. Also the large 
dimensionality of the parameter space makes it impossible to use numerical integration.

For many such nonlinear, nonconjugate hierarchical models that arise in practice, more 
advanced computational methods, such as Markov chain Monte Carlo (MCMC) meth-
ods, are necessary. The methods conveniently summarise by random draws of the 
posterior distribution of model parameters. The exact number of simulation draws 
depends on the form of the posterior distribution, the estimates of interest, and the 
summaries required. The key to the Markov chain is to create a Markov process whose 
stationary distribution is specified, say q (6  | c), and run the simulation long enough so 
that the distribution of the draws is close enough to the target distribution p (6  | c).

3.4 Data Analysis

3.4.1 Solving for g(t)

In this section we describe the solution for the nonlinear function g(t). The nonlinear 
function was solved by both analytic and numerical methods. Equations 3.1-3.3 repre-
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sent a first-order initial-value problem and were solved numerically using a fourth-order 
Runge Kutta method.

The solution for X (t), Equation 3.2, was obtained analytically and substituted into 
Equation 3.1 before solving the latter numerically.

Assume plasma insulin I(t) to be piecewise linear; the analytic solution for Equation
3.2 is obtained with the following algorithm

Step 0 Set working variable XO =  0, i =  1
Step 1 Set slope S = [i'|i~1i
Step 2 Solution on [tj_i, t;] is obtained as

X { t )  =  ^ { S { t i - t i_ l ) + I l - S t i - I b} - ^ S + [ X 0 - ^ ( I l - h )  +  1̂ S ] e - ^ u - ti- ^  (3.19) 
P2 V2 V2

Step 3 Set XO =  X(tj) and i =  i +  1
Step 4 If i <  N goto Step 2 otherwise terminate

where I; is the plasma insulin measurement at t; and N + l is the number of measure-
ments.

Substituting X (t) into Equation 3.1, the numerical solution is obtained by using a 
fourth-order Runge Kutta method on

Q ( t )  =  X A Q ( t ) + P l Q b (3.20)

Q ( 0 ) =  Qb +  Diy

where X A — —\p\ +  X (t)].

The minimal model was parameterised in terms of 9  =  [log(pi), log(p2), log(j^), 
log(V)].

3.4.2 M odel Implementation

We employed for the calculations the public domain WinBUGS program [85] extended 
by a purpose-made module implementing the numerical solution of Equations 3.1 and 
3.2. The WinBUGS program adopted the Metropolis-Hastings algorithm [92] to cal-
culate a single chain with 26,000 samples (with thinning of 4), from which the first 
6,000 samples were discarded and the remaining 20,000 samples were used in further 
analyses.
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The calculations were performed on a PC running the MS Windows 98 operating system 
with 512MB RAM and a single 650MHz Pentium processor. The generation of the chain 
with 26,000 samples took approximately 12 hours.

The WinBUGS extensibility code (the purpose-made module) for implementing the 
numerical solution is shown in Appendix A.

3.4.3 M C M C  Convergence Monitoring

The diagnostics criteria in Convergence Diagnostics and Output Analysis Software 
(CODA) [17] described below were used to assess convergence of the MCMC chains.

• Geweke method: This was done by dividing the chain into "windows", containing 
the first 10% and the last 50% of the iterates. For stationary assessment, the 
mean of the values early and late in the sequence should be similar. The con-
vergence diagnostic test Z is the difference between these 2 means divided by the 
asymptotic standard error of their difference. As the chain length — oo the sam-
pling distribution of Z—> N(0,1) if the chain converged. The results for the chain 
provide no evidence against convergence, for all the parameters, see Appendix B, 
Table B .l for the result of this test. This approach could also be used to assess 
whether thinning is necessary.

• Raftry and Lewis method: This was also used to assess convergence to the station-
ary distribution. The CODA output also reported the minimum number of up-
dates that were needed to estimate the specified quartile to the desired precision. 
CODA also reported the total number updates for each variable. In the results 
in Appendix B, Table B.2, values of I (Dependence factor) much greater than 
1.0 indicate high within-chain correlations probable convergence failure (Raftery 
and Lewis (1992a) suggest that I > 5.0 often indicates problems). In this case 
reparameterisation of the model is advised.

• Heldelberger and Welch method: This method indicates ’passed’ if the stationary 
test is passed. The method also reported the number of updates to keep and the 
number to discard at the initial stage. The results in Appendix B, Table B.3 
suggest convergence was achieved for all parameters.

Convergence criteria of the chains were also assessed by monitoring parameter mixing 
history in WinBUGS, see Appendix B, Figure B .l.
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3.5 Statistical Analysis

Summary statistics were in terms of posterior medians, credible intervals, and quartiles 
of the WinBUGS outputs.

3.6 Results

3.6.1 Plasma Glucose and Insulin

Individual measurements for plasma glucose and insulin concentration data are shown 
in Figure 3.3.

Figure 3.3: Plasma glucose (top panel) and plasma insulin (bottom panel) during insulin 
modified IVGTT in newly presenting T2D. Individual measurements are plotted (N =  
65).

40

35

CDC/Î
8 20 3

15 ¡Si I
Q.

5 l
0

0 30 60 90 120 150 180

time (min)
10000

%  1000
E
CL

COE
ro 10Q.

30 60 90 120 150 180

time (min)
0



3. Bayesian Hierarchical Modelling of Minimal Model of IVGTT 54

Figure 3.4: The posterior density of the population mean (thick line) and the posterior 
density of individual values (thin line) for insulin sensitivity (top panel) and glucose 
effectiveness (bottom panel) estimated with the Bayesian hierarchical analysis, see text 
for details.

3.6.2 Bayesian Hierarchical Analysis

Individual values of pi, p2 , P3 and V (obtained as posterior median estimates) of 
Bayesian hierarchical analysis of the minimal model are shown in Appendix C, Table 
C . l .

The Bayesian hierarchical analysis provided estimates of SpAY and S§AY in all subjects 
with good precision (16%, range: 3 - 56%; 14%, range: 7-18%). Individual values and 
precisions of S fAY and Sq AY are given in Appendix C, Table C.2.

Population statistical summaries (posterior median estimates, credible intervals and 
inter-quartile ranges) of pi, p2 , P3 , V, S fAY and Sq AY are given in Table 3.2.

The posterior densities of the population mean of S fAY and Sq AY are shown in Figure 
3.4. The posterior densities of individual values of S[!A'' and SpAY are also shown.

The overall estimate of the measurement error is 3.0% (3.1%, 3.3%) (median, 95% 
credible interval).

The population densities in Figure. 3.4 (thick lines) are narrow and nearly symmetrical. 
This shows that the population means for the two parameters are well defined and
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Table 3.2: Population characteristics of the minimal model with the Bayesian hierarchical 
analysis (SfAY and Sq AY) during the insulin-modified IVGTT in subjects with newly presenting 
T2D.

Median (95% Cl)* Interquartile range

pi (10'2 x min'1) 1.53 (1.41 - 1.64) 0.46
P2 (10'2 x min'-*-) 5.35 (4.58 - 5.13) 3.43
P 3  (10"  ̂X min"^pinol-L“1) 5.65 (4.07 - 7.56) 1.17
V (10'2 x L-kg'1) 138.4 (133.8 - 144.3) 3.27
SgAY (10‘ 2 x min'1) 1.53 (1.41 - 1.64) 0.46
S j3 A Y  (iq -5 x  mjn-l per pmol-L'1) 1.07 (0.82 - 1.36) 1.43
* posterior median estimate and 95% credible interval of mean

their credible intervals are symmetrical around the mean. The posterior density of the 
individual values of insulin sensitivity in Figure 3.4. (thin line, top panel) is skewed 
to the right specifying that individuals with newly presenting T2D diabetes have very 
low insulin sensitivity with a most likely value (the mode) of 0.2 x 10"5 min'1 per 
pmol L"1 but that there is also a non-negligible number of individuals with ten (and 
more) fold higher insulin sensitivity. Individual values of glucose effectiveness are nearly 
symmetrically distributed around the most likely value of about 1.5 x 10'2 min'1 with 
a small inter-individual variability (nearly no subject below 0.7 x 10'2 min"1 or above 
2.7 x 10"2 min"1.

3.7 Discussion

The results illustrate the use of the Bayesian hierarchical analysis to estimate individual 
insulin sensitivity and glucose effectiveness with the minimal model analysis of IVGTT. 
The method has been used in pharmacokinetics and also in metabolic studies [132, 130, 
106] as a result of recent developments in Monte Carlo Bayesian statistical computing, 
which have alleviated some of the problems that could hamper the alliance between 
statistics and physiological modelling.

The main motivation for this study came from two major criticisms regarding the va-
lidity of Si and Sg  estimates from the minimal model analysis of IVGTT. First, Sg  is 
suspected to be overestimated [29, 43, 105] and Si underestimated [105, 44, 29] by the 
minimal model. Second, the occurrence of Si values indistinguishable from zero that 
is common in large clinical studies and the uncertainty of its physiological meaning.
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The first criticism is related to the validation of the minimal model-derived Sg  and 
Si, whose importance has recently been emphasised and investigated [29]. The other 
serious question about the validity of the minimal model analysis is the occurrence 
of zero Si values [71, 61]. It is unclear whether this represents a physiologically rel-
evant phenomenon or a manifestation of modelling deficiency. Given the widespread 
application of the minimal model estimation technique and in view of the difficulties 
identified with nonlinear regression (NLR) approach, we examined the performance of 
the minimal model analysis of glucose kinetics data from T2D employing the Bayesian 
analysis.

The Bayesian inference treats unknown parameters as random variables. Hierarchical 
models exploit the flexibility this approach offers. The estimation of parameters of the 
hierarchical model using the Bayesian inference is termed Bayesian hierarchical analysis 
and such a procedure provides a natural setting for the analysis of data from IVGTT. 
Hence, we employed the Bayesian hierarchical framework for minimal modelling of 
glucose kinetics.

The methodology presented in this study has five key features; a physiological model, 
experimental data, a population model, prior information of the population parame-
ters, and the Bayesian inference. Each of these features cannot work in isolation. The 
combination of these features facilitates the simultaneous estimation of the model pa-
rameters with the motives of pooling strengths to improve the precision of the estimates 
of each parameter, and of allowing for certainty in such estimates.

The Bayesian hierarchical analysis adopts two sets of assumptions. The first assumption 
is related to the underlying distribution of the parameters of interest. Secondly, prior 
distributions have to be specified. The log-normal distributions were adopted for the 
parameters of interest following an independent analysis, data not shown, and satisfying 
physiological constraints. The log-normal distribution provides positive estimates of the 
parameters and also positive credible intervals.

The identification of forms of the underlying distributions for sources of variability in a 
nonlinear hierarchical model is a difficult statistical task. We assumed a normal distri-
bution with a zero mean and unknown variance for the measurement errors. Another 
approach for modelling measurement errors is to use a heavy-tailed distribution. Some 
researchers have shown how the t-distribution, instead of the normal distribution can 
easily be adopted for modelling the measurement errors [46]. The t-distribution is wider 
and flatter than the normal distribution. In the WinBUGS program, a t-distribution 
on v  degrees of freedom can be specified directly as a sample distribution, with priors 
being specified for its scale and location. The problem with a t-distribution is what
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value of degrees of freedom should be used. Also, the use of multivariate t-distribution 
tends to increase the estimation accuracy of the inter-individual variances by guarding 
against the outlying individuals [132, 130, 48]. A multivariate normal distribution is 
assumed for this study, WinBUGS does not generate a multivariate t-distribution at 
the time of this study.

The Bayesian hierarchical model is more expensive in terms of computation time. The 
model estimation took about 12 hours on a desk-top PC. This compares less favourably 
with non-linear regression analysis with several seconds needed to run a single subject. 
However, when compared to the overall time-scale of population studies which normally 
take months to complete, the increase in computational time is negligible as it provides 
an information rich picture about individual and population parameters and improves 
precision of the estimates.

One advantage of the Bayesian hierarchical analysis is that it provides realistic cred-
ible intervals. The population posterior median estimate and credible interval for Si 
(median(CI) — 1.07(0.82 - 1.36) x 10'5 ; min"1 per pmol-L"1) and Sg  (median(CI) =  
1.53 (1.41 - 1.64) x 10"2 ; min"1) and other parameters from the Bayesian hierarchical 
analysis were realistic with plausible credible intervals.

The Bayesian hierarchical model provides useful quantitative assessment of uncertainty 
in the population, i.e. it measures the population characteristics rather than a single 
set of parameters representing the "average person".

Pillonetto et al [103] proposed the use of the Bayesian approach to reanalyse large 
databases of epidemiological studies [94, 107, 124], because the method offers a com-
prehensive and robust approach to model estimation. It will however also be useful to 
reanalyse these databases employing the Bayesian hierarchical framework we presented 
in this study, as it gives a better understanding of the spread of the inter-individual 
variability in the population.

3.8 Conclusion

We showed that the Bayesian hierarchical analysis is an appealing and feasible method 
to estimate population and individual insulin sensitivity and glucose effectiveness with 
the minimal model of the insulin-modified IVGTT.



Chapter 4

Comparison of Bayesian 
Hierarchical and Standard 
Two-Stage Approaches

4.1 Introduction

In the previous chapter we developed and evaluated a population-based approach to 
facilitate simultaneous estimation of individual and population insulin sensitivity and 
glucose effectiveness with the minimal model of insulin-modified IVGTT. We demon-
strated that the Bayesian hierarchical analysis is an appealing and feasible approach.

In this study, our interest is to compare the parameter estimation capabilities of the 
minimal model of glucose kinetics using the Bayesian hierarchical analysis (BAY) and 
the standard two-stage approach using the non-linear regression (NLR) analysis, which 
tends to overestimate the population covariance matrix.

The concept of the Bayesian population analysis exploits the insight that nonlinear 
mixed-effects models are equivalent to the "nonlinear hierarchical models" modelling 
structure. The hierarchy has three stages and the details of the model and implemen-
tation methods were provided in Section 3.3.2 and 3.4, Chapter 3. The approach has 
enjoyed much interest recently, especially as a result of methodological advances and 
increased computational speed.
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4.2 Subjects and Experimental Design

We employed IVGTT data from 65 newly presenting T2D subjects as described in 
Section 3.2.

4.3 Data Analysis

4.3.1 Bayesian Hierarchical Approach

An illustrative outline of the Bayesian analysis is shown in Figure 4.1. The analysis 
includes the development of a hierarchical model with individual and population 
fig  and Tig parameters as explained in Section 3.3.2, Chapter 3.

In the first stage, the relationships between the glucose and insulin concentrations, and 
time are modelled for a particular individual. In the second stage, the glucose kinetic 
parameters 6 , defining individual profiles are assigned some distributional form. A 
Bayesian model then requires a third stage in which prior distributions are specified.

As explained earlier, we adopted ’vague’ (non-informative) prior distributions repre-
senting a lack of information about parameter values. Each stage of the hierarchy and 
the data analysis are described in detail in Section 3.3.2 and 3.4, Chapter 3.

4.3.2  Standard Two-Stage Approach

The principles of the standard two-stage approach are shown in Figure 4.2. In the first 
stage, a weighted non-linear regression analysis is employed to estimate the individual 
parameters 6 , and a %.

Using least squares as the estimation procedure (or, equivalently, maximum likelihood 
under the assumption of normal distribution of measurement errors), we obtain esti-
mates of Oi by minimising

where Wj are the weights reflecting the relative uncertainty attached to individual mea-
surements. The weight was defined as the reciprocal of the variance of the measurement 
error. The CV of the measurement error was assumed at the level of 1.5%.

(4.1)
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Figure 4.1: Bayesian hierarchical analysis of the minimal model indices. Individual Si and 
Sq  values are estimated in parallel with the population characteristics (the mean and the 
standard deviation). All indices are treated as random variables and the estimation involves 
determining their probability density functions. Log-normal population distribution is assumed 
to reflect that Si and Sg  can attain only non-negative values. The Bayesian hierarchical analysis 
facilitates "information" flow between individuals (individual estimate depends on the measured 
glucose and insulin data and also on the population mean and standard deviation, which is in 
turn influenced by other individual values) and also results in estimates with higher precision 
contributing with a greater weight to the population characteristics.
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We used the IS_CIBA package program (Insulin Sensitivity from Ciba, Ciba-Geigy Ltd, 
CH-4002 Basle Switzerland 1995 Author: Dr. G. H. Mehring /  Medical Department /  
Biometrics Date of version: September 221“1, 1998), which employs non-linear regression 
analysis to carry out parameter estimation.

In the second stage, the resulting estimates are combined into an estimate of geometric 
mean 6  and the geometric variance .S'? as

V

e

o2
N N~

\ i=i

(geometric mean)

(geometric variance)

(4.2)

(4.3)

from which the 95% confidence intervals of population SjNUi and Sq LR were calculated.
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Figure 4.2: The standard two-stage analysis of minimal model derived insulin sensitivity Si 
and glucose effectiveness Sq - In Stage 1, individual Si and Sq  values are estimated from 
experimental data with the use of a non-linear regression parameter estimator. In Stage 2, the 
individual values are used to calculate the population mean and the standard deviation (or 
another measure of variability) with individual values contributing equally irrespective whether 
they are estimated with high or low precision.

4.4 Statistical Analysis

Summary statistics of the results are given in terms of geometric means, medians, 
confidence intervals, credible intervals, and quartiles. The degree of relationships among 
variables was assessed by Spearman’s correlation coefficient (rs).

4.5 Results

4.5.1 Standard Two-Stage Analysis

The individual results are presented in Appendix D, Tables D.1-D.2. Estimates of 
glucose effectiveness (Sq LG) were obtained in all 65 subjects with acceptable precision 
(12%, 4% - 127%; median, range). Unlike Sq LR, the non-linear regression analysis suc-
cessfully estimated insulin sensitivity (S^LR) in all but four subjects, resulting in a 6% 
failure rate, see Appendix D, Table D.2. Estimation ’failure’ is defined for any individ-
ual with a CV greater than 150%. The overall precision of the individual estimates of 
p^LR was satisfactory (21%, 7% - 211%; median, range). The overall precision of the 
individual estimates of V NLR was very good (2%, 1% - 10%; median, range). Population 
statistical summaries of S^LR, Sq LR, P2 LR and V NLR are given in Table 4.1.
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Table 4.1: Population characteristics of the minimal model with the Bayesian hierarchical 
analysis (SRAY, SqAY, pRAY and VBAY) and the standard two-stage analysis (S fLR, Sq LR, 
p^LR and VNLR) during the insulin-modified IVGTT in subjects with newly presenting T2D.

Mean (95% Cl of Mean)* Interquartile range

SpAY (10  ̂ x min"l pmol-L'1) 1.07 (0.82 - 1.36) 1.43f
gNLR (iq -5 x jujjj-1 pmol-L'l) 1.23 (0.97 - 1.56) 1.84

SBAY (10-2 x  min-l)

sgLR (10 '2  x min"l)
1.53 (1.41 - 1.64) 0.46f
1.45 (1.32 - 1.59) 0.53

p ? AY (10"2 x min"1) 
p^LR (10"2 x min"1)

5.35 (4.58 - 6.13) 3.43f
5.71 (4.87 -6.68) 3.82

yBAY (iq -2 x  nil-kgd) 13.8 (13.40 - 14.30) 3.30f
yNLR (iq -2 x  mPkg-1) 14.0 (13.60 - 14.50) 3.30
*CI stands for credible intervals for the Bayesian estimates; for two-stage 
estimates, geometrical mean and its confidence interval are reported.
■¡■Calculated from the sample generated from the posterior population 
distribution.

4.5.2  Comparison of the Standard Two-Stage and Bayesian Hierar- 
chal Analysis

The results are presented in Figures 4.3-4.6. The non-linear regression analysis failed 
in Subjects # 5 , # 6 , #31, and #44  to estimate insulin sensitivity with acceptable 
precision, whereas the Bayesian hierarchical analysis returned insulin sensitivity in 
these four subjects with acceptable precision (range of CV 46 - 59%). These four 
insulin sensitivity values were in the lower quartile and were 1st, 4th, 9th, and 14th 
lowest among the studied group at 0.21, 0.28, 0.39, and 0.50 x 10'5 min"1 per pmol L"1. 
Their posterior density functions are shown in Figure 4.5.

Subjects # 5 , # 6 , and #44 had the lowest, and subject #31 had the 7th lowest precision 
as determined by the Bayesian hierarchical analysis (59%, 58%, 53%, 46%). Otherwise 
there was no apparent difference in the shape of the posteriors, which would provide a 
further insight into the failure of the non-linear regression analysis. This suggests that 
the non-linear regression analysis tends to fail in subjects with low and poorly defined 
insulin sensitivity.
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Figure 4.3: Comparison of the minimal model indices determined by the Bayesian hierarchi-
cal analysis (S fAY and SRAY; median of the posterior density function) and the non-linear 
regression analysis (S fLR and Sq LR) in subjects with newly presenting type 2 diabetes (N 
=  65). Top panel compares Si estimates, bottom panel compares Sg  estimates. Two Sq LR 
estimates with lowest precision (CV of the estimate given in bottom panel) differed most from 
their corresponding SRAY values. Solid lines represent the unity slope.

S|BAY (10-5 x mjn-1 per pmo| |_"1)

Sg BAY (10’2 x min"1)

The posterior density functions of subjects across a range of insulin sensitivities are 
shown in Figure 4.6.

Individual insulin sensitivities estimated by the two approaches were highly correlated 
(rs =  0.98, P <  0.001). However, the correlation in the lower 20% centile of the insulin 
sensitivity range was significantly lower than the correlation in the upper 80% centile 
(rs =  0.71 vs rs =  0.99; P <  0.001) further supporting the notion that the non-linear 
regression analysis has difficulties at low insulin sensitivities. The non-linear regression 
tended to provide slightly higher insulin sensitivity estimates, see Figure 4.3. The 
difference was not considered clinically significant. The inset in the top panel of Figure
4.3 highlights the comparison at lower values of insulin sensitivity.

The precisions of individual insulin sensitivity estimates provided by the two methods 
were highly correlated (rs =  0.82, P <  0.001) and were similar in extent although the



4. Comparison of Bayesian Hierarchical and Standard Two-Stage
Approaches 64

Figure 4.4: Comparison of population characteristics of minimal model indices determined 
by the Bayesian hierarchical analysis (SpAY and SRAY; mean and 95% credible interval of 
a log-normal posterior distribution) and the non-linear regression analysis (Sjx,LIi and Sq LR; 
geometric mean and 95% confidence interval of the mean) in subjects with newly presenting 
type 2 diabetes (N =  65).
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Bayesian hierarchical analysis gave a tighter range. This is most likely due to the 
hierarchical nature of the analysis, i.e. borrowing strength across individuals.

A different picture emerged when considering glucose effectiveness. Estimates provided 
by the two methods were still highly correlated (rs =  0.77, P <  0.001) but were not 
proportional (the unity line is different from a projected regression line, see Figure 4.3). 
The non-linear regression gave a wider range of glucose effectiveness. There were large 
differences in several subjects and these were generally in estimates with low precision 
as returned by the non-linear regression analysis, see Figure 4.3.

The precision of glucose effectiveness was not correlated between the two methods (rs 
=  0.12, P =  NS). The Bayesian hierarchical analysis returned estimates with identical 
precision as judged by the median but with a tighter dispersion (2 vs 16% SD of the 
precision) explained again by the ability of the Bayesian hierarchical analysis to borrow 
of strength across individuals.

The comparison of population characteristics is shown in Figure 4.4. In the case of 
Bayesian analysis, the mean and the credible interval were directly extracted from the 
posterior density of the population mean, and the interquartile range was obtained 
from a simulated posterior distribution of an individual parameter. In the case of non-
linear regression analysis, the characteristics correspond to the log-normal distribution
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Figure 4.5: Posterior density function of individual insulin sensitivity derived by Bayesian 
hierarchical analysis in subjects where non-linear regression analysis failed (#5, #6, #31, and 
#44).
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Figure 4.6: Posterior density function of insulin sensitivity derived by Bayesian hierarchical 
analysis (solid line) and point estimate obtained by the non-linear regression analysis (solid 
circle) in sample subjects representing a spectrum of insulin sensitivities. Each row includes 
subjects from successive quartiles starting with the lowest quartile.
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of the parameter. There was no statistical difference between the two methods as 
demonstrated by overlapping confidence and credible intervals. However, the Bayesian 
hierarchical analysis gave tighter estimates as indicated by a smaller interquartile range 
for both insulin sensitivity and glucose effectiveness by 20% and 15%, respectively.

4.6 Discussion

The traditional method to analyse data with the minimal model is a standard two- 
stage approach (STS). The model parameters 0 t, Equation 3.6, are identified in each 
subject separately, and the mean /.tg and the covariance Eg of the population are 
established as the sample mean and covariance. The main drawbacks of this approach 
are that equal weight is given to each individual’s parameter estimate, though some 
estimates are more accurate than others and the method requires sufficient data for 
each individual to obtain the individual’s parameter estimates. This approach has 
been shown to overestimate the population covariance [35]. These problems have led to 
attempts to develop more refined two stage approaches, the global two-stage and the 
iterative two-stage [118].

The first population kinetics alternative using a nonparametric approach was developed 
by Mallet [86]. An additional approach for population kinetics analysis, that lies be-
tween parametric and nonparametric, was proposed by Davidian and Gallant [34]. All 
the above approaches use the method of maximum likelihood as the basis for estima-
tion. A Bayesian hierarchical approach was introduced to population kinetics analysis 
by Wakefield et al [132],

In this study, we investigated two methods to estimate both individual and population 
kinetic parameters of the minimal model, the Bayesian hierarchical approach (BAY) 
and the standard two-stage (STS) approach. The Bayesian hierarchical analysis has 
been proved effective in a number of applied and simulated studies [132, 131, 126, 2],

We found that both STS and BAY approaches gave similar results for the population 
mean and variance. However, the Bayesian hierarchical analysis has less variability in 
the individual precisions of Si [SpAY CV: 15% (2-67%) vs SpLR CV 12% (4-127%); 
median (range)] and Sg  [Sr a y  CV: 13% (7-18%) vs Sq LR CV: 15% (5-104%); me- 
dian(range)], thus giving more confidence in the estimates. The hierarchical Bayesian 
analysis allows the calculation of more precise individual estimates for all subjects in-
cluding those where the STS parameter precisions are unacceptable.

The minimal model of IVGTT employing the traditional non-linear regression experi-
enced a modest failure rate of 6% in subjects with low insulin sensitivity. The Bayesian
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hierarchical analysis avoids the minimal model failures The results of this study demon-
strate that the Bayesian hierarchical analysis is an appealing method to estimate insulin 
sensitivity and glucose effectiveness with the minimal model of IVGTT.

The advantage of the Bayesian hierarchical analysis over the standard two-stage ap-
proach is that it can improve on a drawback of the standard two-stage approach by 
offering a robust approach to model estimation [35]. It improves estimation in the data 
sets by borrowing strength across individuals. It provides a tighter credible interval 
of the population mean/median and also a tighter interquartile range, see Table 4.1. 
In the present study, a reduction in the interquartile range by 10-20% was observed 
despite including in the analysis subjects with very low insulin sensitivity values that 
were failed by the non-linear regression analysis. The Bayesian hierarchical analysis 
is able to accommodate differences in precision of the individual estimates; individ-
ual estimates with higher precision will influence to a greater extent the population 
characteristics such as the mean and the covariance matrix.

Unfortunately, different estimation approaches often converge to different sets of values 
or fail to converge at all. Bennett and Wakefield [13] made such a comparison for three 
population approaches implemented in commercially available software and explained 
how the problem of parameter estimation could confound the analyst’s judgement of 
the correct model.

It would be beneficial to compare the performance of different population approaches 
(e.g. the iterative two-stage, NONMEN and the Bayesian hierarchical analysis) with the 
standard two-stage approach using the minimal model of IVGTT in both healthy and 
T2D subjects. The comparison could employ simulated data, in order to evaluate bias 
and the precision of these different estimation approaches. Such a comparison would 
provide further details about the merit of these approaches to estimate individual and 
population insulin sensitivity and glucose effectiveness with the minimal model.

4.7 Conclusions

The Bayesian hierarchical analysis was compared with the standard two-stage approach. 
Besides avoiding parameter estimation failure, the Bayesian hierarchical analysis pro-
vides reliable estimates of the population parameters, and allows estimation of individ-
ual parameters with very good precision.
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Evaluating Reduced Sampling 
Schemes with the Bayesian 
Hierarchical Modelling

5.1 Introduction

Steil et al [117] suggested that the number of blood samples that are required for 
estimating Si and Sg  in healthy subjects and subjects with diabetes can be reduced from 
the original 32 [full sampling schedule (FSS)] to 12 [reduced sampling schedule (RSS)] 
with a minor loss in precision, making the technique useful for population studies. 
The use of RSS has a considerable number of advantages in the experimental design It 
potentially reduces the experimental cost, labour, patient discomfort and can be carried 
over easily to paediatric populations. As a result, many reports have been published 
on reduced sampling protocols involving insulin-modified IVGTT in T2D [31, 117, 28]. 
Most of these approaches are limited to the standard two-stage technique for parameter 
estimation.

Recently, a population-based approach, an iterative two-stage technique, has been in-
vestigated [126, 128] and has been shown to improve precision compared to the standard 
two-stage approach. The strength of the population-based estimation technique is that 
the knowledge about the underlying population can be employed in the estimation 
process bringing about an improvement in the estimates of population and individual 
characteristics.

The present study employs the minimal model of glucose kinetics, in the Bayesian 
hierarchical framework as in the previous two chapters, to investigate the effect of 
reduced sampling schemes involving insulin-modified IVGTT in T2D patients.
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We employed IVGTT data from 65 newly presenting T2D subjects as described in 
Section 3.2.

5.3 Sampling Schemes

The blood samples for the assessment of the changes in plasma glucose and insulin 
concentrations were drawn for three hours after the bolus administration according to 
a schedule comprising 30 samples (0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 19, 22, 23, 24, 
25, 27, 30,40, 50, 60, 70, 80, 90, 100, 120, 150 and 180 minutes), see Section 3.2.2 for the 
experimental protocol. This frequent or full sampling schedule will be denoted as FSS 
and its parameter estimation results will be utilised as the reference. The parameter 
estimates of the full sample scheme are denoted by Sx(30) and Sq (30) f°r estimates of 
insulin sensitivity and glucose effectiveness, respectively. The investigation of sampling 
schemes with the Bayesian hierarchical will follow the work by Steil et al [117] and 
Coates et al [28]. The first reduced sampling scheme (RSS) included 12 samples drawn 
at 0, 2, 4, 19, 22, 30, 40, 50, 70, 90 and 180 minutes [117] and parameter estimates are 
denoted by and SG(i2)- The second reduced sample scheme, 13 sample scheme,
included an additional sample data at 25 minutes [28] and parameter estimates are 
denoted by SI(i3) and SG(13).

5.4 Data Analysis

We employed the minimal model in combination with the Bayesian hierarchical analysis, 
as described in Section 3.4, to estimate values of model parameters using both full and 
reduced sampling schemes (30, 12, and 13 samples).

5.5 Statistical Analysis

The reduced sampling schemes were assessed in terms of

• Comparability with the full sampling scheme using the Bland Altman plot [18];
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• Bias of estimates (the presence of systematic errors) calculated as the percentage 
relative error [%REs =  100%(fu11-¿e,fuced)];

• Precision of estimates expressed (CV) of parameter estimates.

The Wilcoxon’s signed rank test was used to evaluate the bias of the reduced sampling 
schemes. Summary statistics for Si and Sg  estimates were obtained in terms of posterior 
median estimates, credible intervals, and interquartile ranges (IQRs).

Figure 5.1: Comparison of the full and reduced sampling schemes. The top left panel plots Si 
determined by the full sampling scheme (regarded as the reference measurement) against the 
difference between Si(i3) determined by the 13 sample scheme and Si; the top right panel plots 
a similar relationship using Si(i2) determined by the 12 sample scheme; the two bottom panels 
plot corresponding relationships for Sg -
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5.6 Results

Estimated Si and Sg  are given in Appendix E, Table E .l and E.2, together with 
corresponding CVs and %REs.
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Table 5.1: Relative error of the 13 sample scheme and the 12 sample scheme during the 
insulin-modified IVGTT in subjects with newly presenting T2D (N =  65).

Median %RE 95% Cl* P-value

Slf 131 ( 10  ̂ x min 1 per pmol-L ■*■) 4.66 (-0.47, 6.81) 0.899

Si(i2) ( 10 0 x min'1 per pmol-L'1) -1.67 (-10.64, 3.00) 0.902

SG(13) ( 10'2 xm in '1) -9.30 (-13.13, -6.41) 0.009

SG(12) ( lO ^ xm in '1) 5.95 (3.14, 8.47) 0.006
* Confidence interval of the median.

Table 5.2: Population characteristics of the minimal model with the Bayesian hierarchical 
analysis with the full-sampling scheme (30 samples), the 13-sample scheme, and the 12-sample 
scheme during the insulin-modified IVGTT in subjects with newly presenting T2D(N =  65).

Median (95% Cl* ) Interquartile Range

Si(3Q) (lO'5 x min'1 pmol-L'1) 1.06 (0.82 - 1.36) (0.57 - 2.01)
Sf(i3) (lO'5 x min'1 pmol-L'1) 1.03 (0.78 - 1.33) (0.58 - 1.95)
Sf(i2) (lO'5 x min-'*' pmol-L'1) 1.16 (0.92 - 1.42) (0.70 - 1.87)

SG(30) (10’ 2 x mm'1) 1.53 (1.41 - 1.64) (1.31 - 1.77)

SG(13) (10'2 x min'1) 1.69 (1.58 - 1.81) (1.57- 1.82)

SG(12) (10’ 2 x min'1) 1.47 (1.32 - 1.61) (1.36 - 1.59)
* Credible interval.
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Figure 5.2: Histogram of Si relative errors (%RE) comparing the bias and accuracy of estima-
tion of the 13 sample scheme (top panel) and the 12 sample scheme (bottom panel). Unbiased 
estimates have distribution centred around 0. Accuracy can be gauged from the spread of the 
distribution (the smaller the better) (N =  65).
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Figure 5.3: Histogram of Sq  relative errors (%RE) comparing the bias and accuracy of estima-
tion of the 13 sample scheme (top panel) and the 12 sample scheme (bottom panel). Unbiased 
estimates have distribution centred around 0. Accuracy can be gauged from the spread of the 
distribution (the smaller the better) (N =  65).
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5.6.1 Bias of Estimates

Table 5.1 gives summarises of the bias introduced by the reduced sampling schemes. 
The results of Si estimates imply statistical support for %RE of the median values equal 
to zero, indicting unbiased estimates by RSS. The estimated %RE of Sg  showed biased 
estimates by RSS. The 13 sample scheme overestimated Sg  [%RE median =  -9.30%, 
Cl =  (-13.13, -6.41)], while the 12 sample scheme underestimated Sg  [%RE median =  
5.95%, Cl =  (3.14, 8.47)].

The visual comparison of individual estimates of insulin sensitivity and glucose effec-
tiveness by the full, the 13 sample, and the 12 sample schemes is shown in Figure 5.1. 
From the clinical viewpoint, the 13 sample scheme provided identical individual esti-
mates of Si as the full sampling scheme (-0.1 ±  0.2 x 10'5 min"1 per pmol L"1; mean ±
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Figure 5.4: The posterior densities of the population mean (top panel) and the posterior 
densities of individual values (bottom panel) for insulin sensitivity estimated with the Bayesian 
hierarchical analysis using different sampling schemes.

S i (1 O ' 5 x m i n ' 1 p e r p m o l L ' 1 )

S|  ( 1 0 ' 5  x m i n ' 1 p e r  p m o l L ' 1 )

SD of the deviation between the 13 sample and the full sampling scheme). The 12 sam-
ple scheme gave a slightly biased estimate, i.e. overestimated low and underestimated 
high insulin sensitivity, and gave results on the borderline of clinical acceptance (-0.1 
±  0.4 x 10'5 min'1 per pmol L"1; mean ±  SD of the deviation between the 12 sample and 
the full sampling scheme). The difference in the precision of the individual estimates 
between 13 and 12 sample schemes is illustrated by the histograms in Figures 5.2-5.3

Both the 13 sample and the 12 sample schemes gave unacceptable individual estimates 
of glucose effectiveness (Sq ), see Figure 5.1. The two sampling schemes gave biased 
estimates indicating that these two sampling schemes do not contain sufficient data to 
estimate individual values of glucose effectiveness (0.1 ±  0.2x 10"2 min'1; -0.1 ±  0.3x 
10"2 min"1).

The three sampling schemes gave similar population mean values of insulin sensitivity 
and glucose effectiveness, see Table 5.2, although 95% Cl just failed to overlap for 
glucose effectiveness estimated by the full and the 13 sample scheme.
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Figure 5.5: The posterior densities of the population means (top panel) and the posterior den-
sities of individual values (bottom panel) for glucose effectiveness estimated with the Bayesian 
hierarchical analysis using different sampling schemes.

5.6.2 Precision of Estimates

The precision of Si expressed as CV of the parameter estimate was almost identical 
among the three sampling schemes. It was 16% (Cl: 12%, 23%), 18% (Cl: 14%, 25%), 
and 15% (Cl: 13%, 19%) for S^o), Sp^), and Si(12), respectively. Counter intuitively, 
the precision of Sg  was improved with the reduced sampling schemes. It was 14% (Cl: 
13%, 15%), 10% (Cl: 9%, 10%), and 11% (Cl: 10%, 11%) for SG(30), SG(13), and SG(12), 
respectively. The improvement is explained by a tighter population spread (reduced 
inter-individual variability with reduced sampling schemes), which propagates through 
the hierarchical model into tighter posterior density functions of individual estimates.

5.7 Discussion

The Bayesian hierarchical analysis offers the possibility to estimate parameters not 
only from dense data, but also from relatively sparse data (or from a combination of
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dense and sparse data). The approach allows the analysis of data from a variety of 
unbalanced designs.

This study was motivated by the affinity of the hierarchical population analysis to 
analyse such data coupled with its potential to improve precision of parameter estimates 
when compared with nonlinear regression analysis.

The main aim was to investigate further the work of Steil et al [117] and Coates et 
al [28] on reduced sampling schemes with the Bayesian hierarchical framework. The 
advantage of analysing the complete population sample rather than the individual as a 
unit as compared to the previous work by Steil et al [117] and Coates et al [28] is that the 
population method of analysis estimates the population distribution of the parameters 
in addition to individual parameter estimates. A similar population approach with the 
minimal model of glucose kinetics in healthy subjects, the iterative two-stage approach 
(ITS) by Vicini and Cobelli [128], showed that the population estimation improves 
substantially the precision of parameter estimates with both full and reduced sampling 
schemes.

Our analysis assessed the bias, the precision and the accuracy of Si and Sg  from RSS 
during the insulin modified IVGTT in T2D subjects.

Unlike the results by Coates et al [28] in which a significant bias was introduced by 
the 12 sample scheme (Si(i2)) in the form of underestimation of the individual Si, the 
percent relative error (%RE) demonstrated the absence of bias with 13 and 12 sample 
schemes for Si. The results of achieving unbiased Si from RSS in this study could 
be attributed to a better form of the parameter estimation approach. %RE of Sg  
demonstrated the presence of a bias with the RSS. Sg  was overestimated with the 13 
sample scheme and underestimated with the 12 sample scheme. These results agreed 
with those by Coates et al [28] and similar to their interpretation, they are judged not 
clinically significant.

The population characteristics, the population median, gave similar values of Si for 
both the full and the reduced sampling schemes. This is demonstrated by overlapping 
CIs for the posterior density functions. Similar results were obtained for the population 
characteristics of Sq -

Si from the reduced sampling schemes was estimated with acceptable precision, the 
distribution of %RE near 0 indicating a closer agreement. The introduction of the 25 
min time-point resulted in an improvement in the precision of the estimation of the Si 
from the 13 sample scheme when compared with the 12 sample scheme. The precision 
of Sg  from the reduced sampling schemes was unacceptable and markedly reduced for
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the 13 sample scheme. While the 13 sample scheme overestimated individual Sq , the 
12 sample scheme underestimated the individual Sq -

The precision of estimates (CV) for Si was similar for all sampling schemes. The 
results for Sq  gave smaller CV for the reduced sampling schemes compared with the 
full sampling. The CV obtained for reduced sampling schemes for Si appeared smaller 
than those reported by Coates et al [28]. The precision of estimates obtained for reduced 
sampling schemes for both Si and Sg  was within the acceptable range.

5.8 Conclusions

Our analysis of reduced sampling schemes with the Bayesian hierarchical analysis sug-
gests that the adoption of the 13 sample scheme is preferable to that of the 12 sample 
scheme. This is in agreement with an observation made by Coates et al [28], who also 
recommended the 13 sample scheme. This scheme provides accurate estimates of indi-
vidual and population insulin sensitivity, and population estimates of glucose effective-
ness. However, it does not give accurate estimates of individual glucose effectiveness. 
The 12 sample scheme provides accurate estimates of population insulin sensitivity and 
glucose effectiveness but not individual estimates of these two parameters. It appears 
that the addition of a single sample after insulin modification substantially improves 
accuracy of the calculations.



Part II

Progression of Type 2 Diabetes



Chapter 6

Progression of Insulin Resistance 
and Insulin Secretion

6.1 Introduction

In the previous chapters, we developed and evaluated a stochastic model using data 
collected in newly presenting T2D subjects to estimate parameters with the minimal 
model of glucose kinetics. In the present chapter and Chapters 7 and 8, we will em-
ploy the population parameter estimation approach in combination with deterministic 
approaches to advance our knowledge of insulin sensitivity and insulin secretion in 
subjects with T2D followed over 2 years.

Three separate objectives relating to the progression of insulin sensitivity and insulin 
secretion will be investigated. In the present chapter, the primary objective is to study 
the progression of insulin sensitivity and insulin secretion, taking into consideration 
some covariates (BMI) in 54 newly presenting T2D subjects. Our primary objective in 
Chapter 7 is to investigate relationships between the progression of treatment efficacy as 
measured by H bAic and initial conditions of metabolic settings at diagnosis and change 
in metabolic settings over 2 years. We will investigate the inter-subject variability of 
clinical measures of glucose control during IVGTT and M TT in the same 54 subjects 
over 2 years in Chapter 8.

The analysis of the progression of the impaired insulin secretion and action is con-
founded by the need for the subjects to be treated and since the studied subjects were 
not randomly allocated to individual treatments, it is impossible to separate treatment 
effects from other variables. Thus, the results will reflect the natural progression of 
insulin secretion and insulin action, the effectiveness of the treatments, and subjects’
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lifestyle. However, a separate analysis of diet treated subjects (16 out of 54 subjects 
over 2 years) will be carried out to contrast diet and oral pharmacological treatments.

T2D is a progressive disease characterised by deteriorating glycaemic control even after 
an adequate treatment intervention. Both the development and progression of T2D 
have been attributed to complex dynamic interactions between insulin tissue sensitivity 
and insulin secretion to maintain glucose homeostasis. Various longitudinal studies 
investigated measures of glucose control to evaluate relationships with the onset and 
progression of diabetes complications [96, 57, 54, 58].

The most recent study, the United Kingdom Prospective Diabetes Study (UKPDS), 
has provided a better insight into the progression of the indices of clinical measures of 
glucose control in T2D patients with various treatment approaches, using both phar-
macological therapy and diet. In spite of this, the nature of the progression of indices 
that constitute both insulin sensitivity and insulin secretion is still not fully under-
stood. Moreover, no study was able to show how glycaemic control is related to the 
progression of insulin resistance and insulin secretion.

This study investigated progression, over two years, of sets of parameters identified dur-
ing IVGTT and MTT. The parameter set consists of clinical measures of glucose control 
(FPG, FPI and HbAic), postprandial glucose response (AUCciucose, CMax,Glucose) and 
postprandial insulin response (A U C insuiin, CMax,insulin) to MTT, measures of insulin 
sensitivity and glucose effectiveness (Si and Sg ), a composite measure of insulin sensi-
tivity, disposition index (Di), and measures of pancreatic responsiveness (Mi, M o, and

AIR q ).
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Table 6.1: Characteristics of newly diagnosed subjects with T2D (N =  54; mean± SE (range)).

Age (years)
Gender 
BMI (kg-m'2) 
FPG (mmol-L'1)

56 ±  1 (36-74)
43/11 (m/f)
30.3 ±  0.6 (18.6-42.4 
11.0 ±  0.5) (6.3-18.4)

Table 6.2: IVGTT and MTT sample schemes over two years (N=54).

IVGTT Sample Scheme MTT Sample Scheme
FSS RSS Total FSS RSS Total

Year 0 52 2 54 49 5 54

Year 1 49 5 54 54 0 54

Year 2 54 0 54 54 0 54

6.2 Subject and Experimental Protocol

6.2.1 Subjects

A total number of 278 subjects with newly presenting T2D according to WHO criteria 
participating in a longitudinal study over 2 years [year 0 (baseline), year 1, and year 
2] were considered (Diabetes Research Unit, Llandough Hospital, Penarth, UK). Prom 
the set, 54 (19.4%) subjects were selected based on the data selection criteria given in 
Table 6.3.

The characteristics of the 54 subjects with newly presenting T2D selected for the lon-
gitudinal analysis from the database are shown in Table 6.1. The study was approved 
by the Bro Taf Local Research Ethics Committee, Cardiff, UK.
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Table 6.3: Data selection criteria for longitudinal study of subjects with T2D (N=54).

Data Selection Criteria MTT IVGTT

Data profiles used C-peptide, Insulin and Glucose Insulin and Glucose

Pretest samples Either of these (-30 or 0 
minutes sample) must be 
available

Either of these (-30, -15 
or 0 minutes sample) must 
be available

Accepted missing values 
for reduced sampling 
schemes

2 missing values accepted, at 
most 1 missing within to 0-180 
minutes; Either of 210 and 
240 minutes sample must 
be available

2 missing values accepted, 
at most 1 missing within 
0-180 minutes.

Accepted missing values 
for full sampling 
schemes

3 missing values accepted, at 
most 2 consecutive values

4 missing values accepted, 
at most 3 consecutive values

End test samples Either of these (210 or 240 
minutes samples) must be 
available

Treatments Subjects must have 
treatment data

Subjects must have 
treatment data

Table 6.4: Treatment allocation for newly diagnosed subjects with T2D.

Treatment Year 0 Year 1 Year 2

No Treatment 54
Diet - 23 16
Sulphonylureas - 6 7
Metformin - 16 14
Metformin + Sulphonylureas - 9 17
Total 54 54 54
Sulphonylureas: Gliclazide and Glibenclamide.
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6.3 Experimental Protocol

Selected subjects were studied over 2 years, at year 0 (baseline), 1, and 2. The subjects 
were admitted on the study day to the Diabetes Research Unit, Llandough Hospital 
(Penarth, UK). The subjects were studied after an overnight fast for 12 hours. On one 
occasion, the subjects underwent the insulin-modified intravenous glucose tolerance test 
(IVGTT) consisting of a OOOmg-kg'1 glucose bolus per body weight given at 0 minute 
over 2 minutes, followed by an insulin injection of O.OfiU-kg'1 at 20 minutes. Blood 
samples were collected at (-30), (-15), (-1), (0), 1, (2), 3, (4), 5, 6, 7, (8), 10, 12, 14, 
16, (19), (22), 23, 24, 25, 27, (30), (40), (50), 60, (70), 80, (90), 100, 120, 150 and 
(180) minutes for measurement of plasma glucose, insulin, and C-peptide. The values 
in the brackets indicate a reduced sampling scheme, which was adopted for a subset of 
subjects, see Table 6.2 for number of subjects with full and reduced IVGTT sampling 
schemes over two years.

On a separate occasion, on average of one month after the IVGTT, each subject un-
derwent a meal tolerance test (M TT). The meal was mainly solid with a small amount 
of juice and milk. It consisted of 15g Weetabix, lOg skimmed milk, 250ml pineapple 
juice, 50g white chicken, 60g wholemeal bread, lOg of polyunsaturated margarine. To-
tal energy was 482 cal; total carbohydrate was approximately 75g. The meal was eaten 
within 10 minutes. Blood samples were collected at (-30), (-1), (0), 1, 10, 20, (30), 40, 
50, (60), 75, (90), (120), (150), (180), (210) and (240) min for measurement of plasma 
glucose, insulin, and C-peptide. The values in the brackets indicate a reduced sampling 
scheme, which was adopted for a subset of subjects, see Table 6.2 for the number of 
subjects with full and reduced M TT sampling schemes over two years.

6.3.1 Analytical Techniques

Plasma glucose concentration was assayed using glucose oxidase method (Yellow Spring 
Analyser, YSI 2300, USA; intra-assay CV <  2%). Insulin and C-peptide were assayed 
using monoclonal antibodies method (intra-assay CV <  5%) and CV <  6% respec-
tively). Samples collected from the patients were sent to the laboratory immediately. 
Blood samples were then centrifuged (2000g, 5mins) in a refrigerated (4°C) centrifuge 
and the plasma put into aliquot and frozen at -20°C immediately. Samples remained 
frozen until assayed.
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6.4 Data Analysis

6.4.1 Data Selection Criteria

Tables 6.3 presents the criteria employed for the data selection. A total of 54 out of 278 
subjects satisfied the specified criteria. The treatments were both non-pharmacological 
and pharmacological. At year 1, the treatment was mainly related to dietary and exer-
cise advice alone. Other pharmacological therapies, Metformin and sulphonylureas or 
their combination, were then followed as required, see Table 6.4 for treatment patterns.

6.4.2 Estimating Metabolic Indices 

Estimating Si and Sg

The Bayesian hierarchical analysis of the minimal model of IVGTT data gave estimates 
of metabolic indices (Si and Sg ). Si and Sg  measure insulin sensitivity and glucose 
effectiveness, respectively. See Section 3.4 for details of the Bayesian hierarchical anal-
ysis. The analysis was run for each year separately.

Estimating AIR g  and Di

The first phase insulin response (AIRg ; a measure of pancreatic /3-cell responsiveness) 
was calculated as the incremental area under the curve from 2-8 minutes during the 
IVGTT. The disposition index (Dp a composite measure of insulin sensitivity and 
pancreatic /3-cell responsiveness) was obtained as a product of AIRq  and Si (Di =  
AIRg  x  S i ).

Estimating M o and Mi

The insulin secretion model, see Section 2.3.2, Figure 2.2, implemented in the Pancre-
atic Responsiveness package (CPR version 1.0, developed by Roman Hovorka and H. 
C. Subasinghe, MIM Centre, City University, UK, 1997) was used to estimate indices 
of pancreatic /3-cell responsiveness Mo and Mi from M TT data. Mo represents fasting 
prehepatic insulin secretion divided by fasting plasma glucose and expresses the ability 
of fasting glucose to stimulate C-peptide secretion. Mi represents the increase in pre-
hepatic insulin secretion given an increment in postprandial glucose and expresses the 
ability of postprandial glucose to stimulate C-peptide secretion.
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Estimation of Clinical Measures of Glucose Control and Insulin Responses 
to M TT

Fasting plasma glucose (FPG) and fasting plasma insulin (FPI) were estimated as 
mean pretest values of IVGTT and M TT experiments. Cmax.Glucose and Cmax,Insulin 
were the maximum incremental plasma glucose and insulin concentrations during M TT. 
AUCGlucose and AUCw„ii„ were the incremental area under the curve of plasma glucose 
and insulin, respectively, during M TT from 0 to 180 minutes.

6.5 Statistical Analysis

All analyses were conducted using SPSS version 11.5 (SPSS Inc. Chicago, Illinois). 
Variables that were not normally distributed were log transformed before analysis and 
the results were expressed as means and confidence intervals (Cl). For ease of visual-
isation, data are presented in the measured untransformed scale. Significant changes 
over time were assessed by two-way ANOVA allowing for both subject and time effects. 
Statistical significance was declared at P <  0.05.

6.6 Results

6.6.1 Clinical Measures of Glucose Control

FPG and H bAic decreased significantly (P < 0.001) from baseline (year 0) to year 1 
and 2, see Figures 6.1 and Table 6.5. In year 0-1, FPG decreased by 20%, with no 
change in year 1-2, see Table 6.5. Over two years, H bAic changed significantly (P <  
0.001), see Figure 6.1. The decrease for years 0-2 was 13%, with a decrease of about 
22% in year 0-1 and a returne to 87% of its baseline value in year 2.

FPI significantly increased in years 0-2 (P <  0.02), with an 11% increase in year 0-1, 
see Figure 6.1, and a 6% increase in year 1-2. The differences over years 0-2 remained 
significant after adjusting for BMI (P <  0.04), see Table 6.5.

Similar analyses were performed for 16 subjects treated with diet over years 0-2. The 
results showed significant changes in year 0-1 in both FPG and H bA ic, similar to 
the results obtained for all 54 subjects, see Figure 6.2. A significant decrease was 
also observed in FPG in years 0-2, but not in H bAic, see Figure 6.2. FPI remained 
unchanged over the two years.
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Table 6.5: Progression of clinical measures of glucose control over two years after presentation 
of T2D (N=54).

Clinical measures of 
glucose control Year Mean* 95% Cl** P-valuef

FPG (mmol-L"1) 0 10.6 (10.1, 11.0)
FPG (mmol-1/1) 1 8.4 (8.0, 8.8) 0.000
FPG (mmol-L'l) 2 8.5 (8.1, 8.9)

FPI (pmoMY1) 0 57.6 (53.5, 62.1)
FPI (pmol-IT1) 1 63.9 (59.3, 68.9) 0.042
FPI (pmol-L"1) 2 65.6 (60.9, 70.7)

HbAl c  (%) 0 7.6 (7.3, 8.0)
HbA1C (%) 1 6.1 (5.8, 6.4) 0.000
HbAl c (%) 2 6.6 (6.4, 7.1)
* Geometric mean after adjustment for BMI. 
** Cl stands for confidence interval.
f  ANOVA.

6.6.2 Plasma Glucose, Insulin, and C-peptide Profiles During IV G T T  
and M T T .

The profiles of plasma glucose, insulin, and C-peptide during IVGTT and M TT in years 
0-2 are shown in Figure 6.3.

During IVGTT, the effect of exogenous insulin given at 20mins to lower plasma glucose 
was clearly visible. The glucose bolus failed to stimulate an immediate insulin response 
at the start of the experiment, resulting in a paradoxical temporary suppression of 
insulin secretion.

During M TT, the glucose and insulin levels remained elevated throughout the experi-
ment and peaked within 60-100mins. The paradoxical suppression of endogenous insulin 
secretion was not present. Diet treated subjects had lower glucose profiles, see Figure 
6.5. Plasma glucose, insulin, and C-peptide profiles for different treatment regimens in 
year 1-2 are given in Figures 6.6 and 6.7.
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Figure 6.1: Geometrical mean and 95% confidence interval for clinical measures of glucose 
control in all subjects (N=54).
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Figure 6.2: Geometrical means and 95% confidence interval for clinical measures of glucose 
control in diet treated subjects (N=16).
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6.6.3 Indices of Postprandial Glucose and Insulin Responses to M T T

Plasma glucose and insulin responses to M TT showed significant changes over two 
years, see Table 6.6. Both AUCciucose and Cmax,Glucose were reduced in years 0-2 (P 
<  0.001). The reductions were present in year 0-1 with an 18% drop observed for 
AUCGlucose and a 6% drop for CmaXiGiucose, see Figure 6.8. The drops over years 0-2 
for both variables were 18% and 12%, respectively. The significant differences for years 
0-2 remained after adjusting for BMI.

AUCinsniin and Cmaxj lisuiin also changed significantly (P <  0.001) over years 0-2, see 
Table 6.6. AUCinsuiin increased by 53% in year 0-1 and dropped by 5% in year 1-2. 
Unlike AUCinsuiin, the change is reversed in Cmax.insulin, which was reduced by 33% in 
year 1-2, with a drop of just 2% in year 0-1. Figures 6.8 and 6.9 show the proportional 
changes in mean values in year 0-1 and year 1-2 for glucose and insulin responses to 
M TT in subjects and all diet treated subjects, respectively, before adjusting for BMI.
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Figure 6.3: Plasma glucose, insulin, and C-peptide mean profiles during IVGTT (left panels) 
and MTT (right panels) in year 0, 1, and 2 (N—54).

Figure 6.4: Plasma glucose, insulin, and C-peptide mean profiles during IVGTT (left panels) 
and MTT (right panels) in year 0, 1, and 2 (N=16).

Figure 6.5:
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Figure 6.6: Plasma glucose and insulin mean profiles for different treatment regimens during 
IVGTT in year 1 (left panels) and year 2 (right panels) (N=54).

Year 1 Year 2

Figure 6.7: Plasma glucose and insulin mean profiles for different treatment regimens during 
MTT in year l(left panels) and year 2 (right panels) (N=54).
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Table 6.6: Progression of post-prandial glucose and insulin responses to MTT over two years 
after presentation of T2D (N=54).

Postprandial responses to MTT Year Mean* 95%CI** P-valuef

AUCQi1]rnsft (mmol-L"1 per 80min) 0 589 (551, 626)
AUCQjucose (mmol-L“1 per 80min) 1 485 (448, 523) 0.000
AUCQiucose (mmol-L“1 per 80min) 2 488 (450, 526)

AUCinsnpT1 (mmol-L“1 per 80min) 0 20.78 (18.25, 23.63)
AUCy^s,,!^ (mmol-L“1 per 80min) 1 31.66 (27.83, 36.02) 0.000
AUCjnsujin (mmol-L“1 per 80min) 2 29.14 (25.53, 33.25

'-'max,Glucose(mm°hL ) 0 5.16 (4.90, 5.42)

^max, Glucose (mm°bL ) 1 4.86 (4.63, 5.12) 0.005

^max, Glucose (mm°l ' L’ 1 ) 2 4.57 (4.34, 4.81)

^max,Insulin (Pm°l'L ) 0 292 (259, 330)

^max,Insulin (Pm°l'L ) 1 288 (256, 325) 0.000
^max,Insulin (l)in°l-L ) 2 196 (174, 221)
* Geometric mean after adjustment for BMI. 
** Cl stands for confidence interval.
f ANOVA

All these changes persisted after adjusting for BMI.

6.6.4 Metabolic Indices

Table 6.7 shows progression of insulin sensitivity and insulin secretion over years 0-2. Si 
and Sg  did not change over years 0-2. The disposition index Di increased significantly 
(P <  0.001) in year 0-1 by 46% with no significant change in year 1-2. The proportional 
change in year 1-2 was just 4%. The trend for years 0-2 in Di persisted after adjusting 
for the BMI, see Table 6.7 and Figure 6.10.

Si, Sg , and Di in diet treated subjects showed no significant differences over the two 
years, see Figure 6.11.

Measures of insulin secretion, Mo and AIRq , increased significantly in year 0-1. The 
proportional increases in both variables were 31% and 26%, respectively. Mi showed
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Figure 6.8: Geometrical mean and 95% confidence interval for postprandial glucose and insulin 
responses to MTT (N=54).
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Figure 6.9: Geometical mean and 95% confidence interval for postprandial glucose and insulin 
responses to MTT in diet treated subjects (N=16).
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no significant change over the years. Even after adjusting for BMI. The trend for M o 
and AIR(; remained after adjusting for BMI. Figure 6.11, demonstrates no significant 
change in year 0-1 and years 0-2 in M o, Mi, and AIRq  in diet treated subjects.

6.7 Discussion

Impaired insulin secretion and insulin resistance are major determinants of the dys-
régulation of glucose metabolism in T2D subjects. The resultant hyperglycaemia and 
hyperinsulinimia result in microvascular and macrovascular complications that com-
prise the main cause of morbidity and mortality in T2D.

The goal of any form of treatment is to reduce the risk of such complications by improv-
ing glycaemic control. Improved understanding of the pathophysiology and progression 
of the disease will support the development of rational therapeutic approaches based
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Table 6.7: Progression of metabolic indices over two years after presentation of T2D (N=54).

Metabolic Index Year Mean* 95%CI** P-valuef

Sj x lO’ ^min’ 1 per pmol-L’ 1) 0 1.12 (0.97, 1.29)
Sj x 10’  ̂(min’ 1 per pmol-L’ 1) 1 1.30 (1.13, 1.49) 0.300
Sj x 10’  ̂(min’ 1 per pmol-L’ 1) 2 1.17 (1.02, 1.34)

Sq  x 1 O’ 2 (min’ 1 ) 0 1.51 (1.47, 1.54)
Sq  x 1 O’ 2 (min’ 1 ) 1 1.49 (1.45, 1.52) 0.070
Sq  x 1 O’ 2 (min’ 1 ) 2 1.54 (1.51, 1.58)

AIRq  (pmol-L’ 1 per 6min) 0 325 (296, 358)
AIRq  (pmol-L’ 1 per 6min) 1 409 (372, 449) 0.000
AIRq  ( pmol ■ L’  1 per 6min) 2 471 (428, 518)

Dj x 10"  ̂ (min“-'- per 6min) 0 364 (311, 425)
Dj x 10’  ̂ (min’ 1 per 6min) 1 532 (455, 621) 0.000
Dj x 10’  ̂ (min’ 1 per 6min) 2 549 (470, 625)

Mj x 10"9 (min’ -'') 0 16.40 (13.85, 19.43)
Mj x 10’ 9 (min- -*-) 1 19.38 (16.36, 22.94) 0.206
Mj x 10’ 9 (min’ 1) 2 15.82 (13.33, 18.75)

Mq  x 10’ 9 (min’ 1) 0 4.81 (4.28, 5.42)
Mq  x 10‘ 9 (min’ 1) 1 6.30 (5.58, 7.06) 0.020
Mq  x 10’ 9 (min’ 1) 2 5.24 (4.65, 5.90)
* Geometric Mean after adjustment for BMI. 
** Cl stands for confidence interval.
fANOVA
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Figure 6.10: Geometical mean and 95% confidence intervals for metabolic indices in all 
subjects (N=54).
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Figure 6.11: Geometical means and 95% confidence interval for metabolic indices in 
diet treated subjects (N=16).
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2.2

on the relationships between impaired glucose-induced insulin secretion and insulin 
resistance and resultant effects.

To increase the understanding of the early progression of T2D, we investigated the 
progression of both insulin resistance and insulin secretion and associated clinical mea-
sures of glucose control over two years after diagnosis. Insulin resistance and insulin 
secretion have been well described in numerous studies [41, 36, 67, 109, 122], but only a 
few studies have examined their development over a of period years [97, 55, 57, 54, 83].

The study investigated 54 newly presenting T2D subjects over two years. Subjects were 
referred directly after diagnosis by their GPs. The subjects had no prior treatment or 
any dietary advice for diabetes before undergoing M TT and IVGTT. Subjects were put 
on intensive dietary therapy alone for the first 6 months of diagnosis. The subjects’ 
elevated FPG levels were reviewed after 6 months and 12 monthly for two years. The 
outcomes of the reviews determined the type of therapies.

All 54 subjects were placed on intensive dietary therapy for 6 months after diagnosis. 23 
subjects remained on the intensive dietary therapy at the end of the first year and the



6. Progression of Insulin Resistance and Insulin Secretion 94

remaining 31 subjects elevated to one or a combination of pharmacological therapies. 
Only 16 subjects remained with the dietary therapy at the end of the second year and 
38 on pharmacotherapies.

The progression of glucose control and metabolic indices in this study reflects the combi-
nation of long-term degenerative development of insulin resistance and insulin secretion, 
the effectiveness of non-pharmacological and pharmacological therapies (sulphonylureas 
and Metformin) and the subjects’ lifestyle. Sulphonylureas improve /3-cell function but 
are associated with weight gain. Metformin improves insulin sensitivity [57, 54]. The 
long-term assessment of the progression of impaired insulin secretion and insulin action 
in this study is confounded by the need to treat the subjects and since the treatments 
were not randomly allocated, it is impossible to separate the treatment effects from 
the natural progression of insulin secretion and action over the two years. A robust 
statistical technique of separating treatment effect in this type of study design is the 
generalised linear mixed effect model technique, which was not employed here.

The presence of elevated fasting FPG at the baseline is an indication that the disruption 
of the normal relationship between /3-cell function and insulin sensitivity is already well 
established in these subjects. The mean value of FPI at the baseline was within the 
range observed in normal subjects.

Fasting plasma glucose fell over years 0-2, which was associated with improved fasting 
/3-cell responsiveness. Insulin sensitivity did not change.

The decrease in FPG over the two years demonstrated the need for intensive conven-
tional pharmacological therapy. The failure of diet therapy alone was reported by Levy 
et al in their 10 years follow-up diet study in T2D subjects [83]. They showed that a 
progressive rise in FPG was associated with a progressive fall in an index of pancreatic 
/3-cell function. They also reported no change in insulin sensitivity over the years.

The results of the present study showed that insulin sensitivity and glucose effectiveness 
were unchanged over 2 years, even with the conventional pharmacological therapies and 
progressive decrease in HbAic-

The disposition index Di increased significantly in year 0-1 by 46% with no significant 
increase in year 1-2. This demonstrated that an improvement of /3-cell function to 
compensate for insulin resistance is most effective in the first year of treatment and is 
maintained in the second year.

Both fasting /3-cell responsiveness and first phase insulin secretion, M o and AIRq , 
improved significantly in years 0-2. The proportional increases in both variables are
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31% and 26%, respectively. Mi showed no significant change over the years. The im-
provement of both M o and AIRq  over the two years demonstrated that an adequate 
conventional treatment of T2D subjects early after diagnosis can have a profound im-
provement on the well being of the /3-cell [57, 54].

6.8 Conclusions

We conclude that indices of insulin resistance and glucose effectiveness (Si and Sg ) do 
not improve over time in spite of the early therapeutic intervention in T2D subjects. 
Indices of insulin secretion (Mo and AIRq ) improved over years with main improvement 
in year 0-1.

The above analyses demonstrated that the progressive nature of T2D is rather due 
to the steady decline in the /3-cell function, which can be ameliorated by adequate 
conventional treatment for at least two years after diagnosis of T2D.



Chapter 7

Progression of H bA ic

7.1 Introduction

Monitoring blood glucose control is considered the cornerstone of diabetes care [51]. 
The Diabetes Control and Complications Trial (DCCT), a ten-year landmark study, 
demonstrated clearly that maintaining near-normal blood glucose levels significantly 
lowers a person’s risk of developing complications related to type 1 diabetes [113]. 
Monitoring blood glucose control includes several different components: blood glucose 
testing, urine ketone testing, and glycated haemoglobin testing (haemoglobin A le, gly-
cosylated haemoglobin).

The UKPDS, the largest and the longest study of T2D, was the first to provide evidence 
of the benefit of tight glycaemic control in T2D. The UKPDS has demonstrated that a 
tight glycaemic control with oral agent and insulin combined with intensive monitoring 
could reduce complications and give a better quality of life for people with T2D. UKPDS 
data showed that a median decrease of 0.9% of H bAic level led to risk reduction in 
multiple areas, including diabetes related end-points and microvascular complications.

An assessment of long-term blood glucose control is best made by measuring H bAic 
every three or four months. HbAic is used because it correlates well with the average 
concentration and reflects improvements occurring gradually over time [19]. H bAic can 
be used to judge the treatment efficacy. An H bAic measurement refers to a series of 
stable haemoglobin components formed by the combination of glucose and haemoglobin 
[51]. Individuals with higher levels of blood glucose will have higher levels of glycated 
haemoglobin. Because the haemoglobin components are stable, the level provides an 
average indication of the overall blood glucose levels over two to three months period.

In the previous chapter, the early progression of T2D was evaluated. In the present 
chapter, the focus is on describing in detail the relationship between progression of
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H bAic and initial conditions at the diagnosis of T2D with the aim to establish whether 
certain metabolic settings are more favourable for an early improvement of glucose 
control. The second objective is to map the temporal relationship between H bAic and 
other variables to establish the associations leading to rational treatment decisions.

7.2 Subjects and Experimental Protocol

We studied 54 subjects with newly presenting T2D as described in Chapter 6, Section 
6.2, over 2 years.

7.3 Statistical Analysis

All analyses were conducted using SPSS version 11.5 (SPSS Inc. Chicago, Illinois). 
Variables that were not normally distributed were log transformed before analysis. 
Spearman’s correlation analysis with a Boniferroni correction was used to examine the 
associations between the outcome variable quantifying treatment efficacy (a change in 
H bA ic) and other variables (basal values of BMI, FPI, H bAic, and metabolic indices).

The stepwise linear analysis was used to relate changes in H bAic to basal values and 
changes in BMI, FPI, and metabolic indices.

7.4 Results

7.4.1 Relating Changes in H bA ic (A H b A lc ) to Metabolic Settings 
at T 2D  Diagnosis

Table 7.1 shows the associations between changes in H bAic and the basal values of 
metabolic indices (BMI, FPI, AIRq , M i , Mo , Sq , Si , and Di).

Basal values of FPI, M o, and Mi showed positive significant correlation with a change 
in H bAic in year 0-1, (rs =  0.45, P < 0.01), (rs =  0.61, P <  0.001), (rs =  0.54, P 
<  0.001), respectively. The strongest correlation in year 0-1 was between a change in 
H bAic and its basal value. None of the basal values showed any significant association 
with the change in H bAic in year 1-2. The overall change in H bAic over year 0-2 was 
significantly correlated with FPI, M o, and Mi, (rs =  0.63, P <  0.001), (rs =  0.74, P <
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0.001), (rs =  0.56, P <  0.001), respectively. AIRG also showed a positive correlation 
with an increasing trend with the change in H bAic over the two years.

The graphical representation of AH bA ic against Si, Mi, and M o is shown in Figures 
7.1-7.3. Figure 7.1 a-c demonstrates a lack of relationship between changes in H bAic 
and the basal value of Si- Figures 7.2-7.3 (a-c) show the relationships between changes 
in H bAic and the basal values of Mo and Mi. Subjects with low basal values of Mo 
and Mi had their H bAic values improved to the greatest extent, while subjects with 
high basal values of Mo and Mi did not experience any improvement in H bAic •

The results of the stepwise regression analysis are shown in Table 7.2. Out of the 
predictor indices (BMI, FPI, AIRG, M i , M o, Sq , Si , Di ), only Mo contributed signifi-
cantly to the variation in AH bA ic (year 0-1) (Mo =  0.58, P <  0.001, and R2 =  33%).
In year 1-2, only AIRG and Sq  contributed significantly to the variation in A H bA ic 
(year 1-2) (AIRg  =  0.38, P <  0.01; SG =  0.27, P <  0.05, and R2 =  18%). For A H bA ic 
in years 0-2, only basal Mo and AIRG significantly contributed to its variation (M o =  
0.50, P <  0.01; AIRg  =  0.32, P <  0.05, and R 2 =53%). Mo and AIRq  accounted for 
about 53% of the total variation in change in H bAic over the two years.

Including basal H bAic among the predictor variables, the results of the stepwise regres-
sion analysis are shown in Table 7.3. Out of the predictor indices (BMI, FPI, AIRG, Mi, 
M o, SG, Si, D i , H bA ic), only basal H bAic contributed significantly to the variation 
in A H bA ic in year 0-1 (H bAic =  -0.82, P <  0.001, and R2 =  67%). In year 1-2, only 
basal AIRg  and SG contributed significantly to the variation in A H b A ic■ (AIRG =  
0.55, P <  0.01; H bAic =  0.37, P <  0.0,1 and R 2 =  27%). For A H bA ic, in years 0-2, 
basal H bA ic, M o and AIRG significantly contributed to its variation (H bAic =  -0.47,
P <  0.001; AIRg  =  0.26, P <  0.05, SG =  0.24, P <  0.05, and R2 =66%). H bA ic, M0 
and AIRg  accounted for about 66% of total variation in change in H bAic over the two 
years.

7.4.2 Relating Change in Glycated Haemoglobin to Change in Metabolic 
Indices, Change in Body Mass Index, and Change in Fasting 
Plasma Insulin

The correlation coefficients between changes in metabolic indices and changes in H bAic 
are given in Table 7.4.

Changes in M o (rs =  -0.59, P <  0.001) and Mi (rs =  -0.40, P <  0.01) were negatively 
correlated with treatment efficacy (A H bA ic) in the first year. The change in H bAic 
in year 1-2 showed no significant correlation with any of these parameters. The overall
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Table 7.1: Spearman’s coefficients correlation between a change (year 0-1, year 1-2, and year 
0-2) in HbAic and basal values of BMI, FPG, HbAic, insulin sensitivity, and pancreatic re-
sponsiveness (AIRg , Mi , Mq , Sq , Si , Di ).

Basal Values

BMI FPI AIRg Mi M0 Sg Si Di HbAic

Ai-oH bA^ç 030* 0.45** 0.34* 0.54*** 0.61*** -0.25 -0.17 -0.23 -0.82***

A2-lHbA;iC 0.24 0.31* 0.39** 0.22 0.27* 0.33* -0.22 0.13 0.13

A2-oHbA^(2; 0.36** 0.63*** 0.59*** 0.56*** 0.74*** -0.10 -0.21 0.42** -0.75***

*P < 0.05; **P < 0.01; ***P < 0.001 (corrected for multiple comparisons using Boniferroni 
correction).

Table 7.2: Results of the stepwise linear regression analysis (z-scores). Dash (-) indi-
cates independent variable (BMI, FPI, AIRg , M i , Mo , Sq , Si , and Di) not selected 
during the regression analysis to explain the change (year 0-1, year 1-2, and year 0-2) 
in the dependent variable (H bAic).

Basal Values

BMI FPlt AIr |; Mj M^ sj; STf Dj R2+

A i_oH bA ic - - 0.58**** 0.33

A 2_iH bA ic - 0.38** 0.27* 0.18

A 2-oHbA1ç - 0.32* 0.50*** 0.53

*P < 0.05; **P < 0.01; ***P < 0.001 (corrected for multiple comparisons
using Boniferroni correction); f data log transformed; +  adjusted R2.
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Table 7.3: Results of the stepwise linear regression analysis (z-scores) including basal HbAic 
among the predictor variables. Dash (-) indicates independent variable (BMI, FPI, AIRq , Mi , 
Mo, Sg , Si , Dj , and HbAic) not selected during the regression analysis to explain the change 
(year 0-1, year 1-2, and year 0-2) in the dependent variable (HbAic).

Basal Values

BMI FPlt AIR(f, M| Sk S| d | HbA|r  R2+

Ai-oH bA ^ç - - - - - -0 82**** 0.67

A 2_iH bA ic - - 0.55** - - - 0.37* 0.27

A 2-oH bA iç - - 0.26* 0.24* - - -0.47*** 0.66

*P < 0.05; **P < 0.01; ***P < 0.001 (corrected for multiple comparisons 
using Boniferroni correction); f  data log transformed; + adjusted R^.

treatment efficacy (A H bA ic) over two years showed similar, but reduced, significant 
negative correlations with M o (rs =  -0.49, P <  0.001) and Mi (rs =  -0.36, P <  0.01).

A stepwise linear regression analysis was performed to investigate which changes in 
metabolic settings (ASi, ASg , AM i , A M o , and ADi), and ABMI could best describe 
changes in H bAic (A H bA ic), see Table 7.5. The combination of changes in M o, Mi, 
and So in year 0-1 explained 43% of variation in treatment efficacy in year 0-1. Only 
M o was selected in the stepwise regression analysis in year 1-2 and it explained 6% 
variation in change of H bAic in year 1-2. Only 29% of the overall variation in the 
treatment efficacy measured by a change in H bAic over two years was explained by 
M o and Sg -

An examination of the relationship between Mo and Mi over the two years showed 
a positive correlation with a decreasing trend (Mo vs Mi at year 0: rs=  0.73, P <  
0.001; at year 1: rs=  0.52, P <  0.001; at year 2: rs=  0.45, P <  0.001). The analysis 
of the relationship between a change in Mo to a change in Mi also indicated a positive 
significant association (rs=  0.48, P <  0.01).
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Table 7.4: Correlations between a change in HbAic and a change in BMI, FPG, and metabolic 
settings over year 1 (N =  54), year 2 (N =  52), and both years combined (N =  106).

Change (Year 1 - Year 0)

AHbAic
ABMI
-0.34

AAIRg
-0.00

AMi
-0.40*

AM0
-0.59***

ASg
0.27

ASi
-0.17

ADi
-0.23

Change (Year 2 - Year 1)

AHbAic
ABMI

0.13
AAIRq

-0.13
AMi
-0.19

AM 0
-0.20

ASg
-0.12

ASi
-0.10

ADi
-0.13

Change (Year 1 - Year 0 and Year 2 - Year 1)

AHbAic
ABMI
0.01

AAIRg
-0.02

AMi
-0.36*

AM0
-0.52*** P

 >
 

^
 o ASi

-0.21
ADi
-0.17

Spearman’s correlation coefficients are reported.
*P < 0.05; **P < 0.01; ***P < 0.001 (corrected for multiple 
comparison using Boniferroni correction).

7.5 Discussion

The relationship between H bAic and metabolic settings (insulin sensitivity and insulin 
secretion) over time is not fully understood. We have evaluated the relationship between 
changes in H bAic and basal values of insulin secretion, insulin sensitivity, and changes 
in metabolic settings over time.

The analysis indicated significant relationships between a change in H bAic and basal 
values of Mi and Mo- The analysis showed that subjects with low basal values of Mi 
and M o experienced the largest improvement in H bAic •

Subjects with low Mo and Mi have severely reduced /0-cell responsiveness. It appears 
that it is possible to bring about the largest improvement in glucose control in such sub-
jects. This is also confirmed by the relationship between basal H bAic and the change 
in H bAic, which indicates that subjects with the poorest glucose control experience 
greatest improvement in the first two years after diagnosis of T2D.

The improvement in H bAic is accompanied by improvement in fasting (M o) and also 
postprandial (Mi) /3-cell responsiveness. This is consistent with the notion that /3-cell
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Table 7.5: A stepwise linear regression analysis between a change in HbAjc and a change in 
BMI and metabolic settings over year 1 (N =  54), year 2 (N =  52) and both years combined 
(N =  106).

Change (Year 1 - Year 0)

AHbAic
ABMI
-0.32**

AAIRg AM i AM0
-0.47***

ASq
0.26*

ASi AD i r 2+
0.43

Change (Year 2 - Year 1)

AHbAic
ABMI AAIRq AM ï AM0

-0.28*
ASg ASi AD ï r 2+

0.06

Change (Year 1 - Year 0 and Year 2 - Year 1)

AHbAic
ABMI AAIRg AMi AM 0

-0.51***
ASg
0.19*

ASi ADi r 2+
0.29

*P < 0.05; **P < 0.01; ***P < 0.001.
Standardised scores (z-scores) of the regression coefficients are reported.
Dash (-) indicates independent variables not selected during regression analysis. 
+ adjusted R2
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responsiveness is the major determinant of glucose control at the presentation of T2D. 
Reversal of /3-cell failure is accompanied by improved H bAic.

Improvement in H bAic showed no relationship with change in insulin sensitivity and 
glucose effectiveness. The highest amount of variation in the improvement of H bAic 
was explained in year 0-1 using BMI, Mo, and Sc indices.

7.6 Conclusions

T2D subjects with low basal values of Mo and Mi improved H bAic over two years to 
a greater extent than their counterparts with high basal values of M o and Mp

This suggests that naive treatment in the early years of T2D improves H bAic by 
improving Mo and Mp The treatment efficacy improved over two years but the best 
results were achieved in the first year after the diagnosis. About 43% variations in 
H bAic were explained by M o, BMI, and Sc in the first year.
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Figure 7.1: Relationships between a change in HbAic with insulin sensitivity (Si) at time of 
diagnosis.
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Figure 7.2: Relationships between a change in HbAic with post-prandial pancreatic /3-cell 
responsiveness ( M i)  at time of diagnosis.
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Figure 7.3: Relationships between a change in HbAic with basal pancreatic beta-cell respon-
siveness (Mq ) at time of diagnosis.
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Figure 7.4: Scatter plots describing a change in HbAic (year 0-1 and year 1-2) aganist a 
change in metabolic indices Si, Mi, and Mq .
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Chapter 8

Explaining Inter-Subject 
Variability of Glucose Control

8.1 Introduction

In the last two chapters, we evaluated the early progression of T2D over 2 years and 
the relationship between the progression of H bAic and basal values of metabolic set-
tings and other variables. In the present chapter, we will focus on whether indices of 
insulin sensitivity and insulin action are able to explain inter-individual variability of 
clinical measures of glucose control such as fasting plasma glucose and insulin, glycated 
haemoglobin, and the glucose and insulin responses to a meal over 2 years.

The pathogenesis of T2D is multifactorial involving both genetic and environmental 
factors. Genetic factors include defective pancreatic /3-cell function and abnormal in-
sulin action in target cells. Hyperglycaemia also impairs /3-cell function and insulin 
action ("glucose toxicity") [42]. Environmental influences include obesity, age, lack of 
physical activity, and a high fat diet. Prenatal nutrition is also thought to determine 
predisposition to the disease. T2D can also occur secondary to other diseases and drugs 
[133, 134, 136, 81]. Various indices of both insulin resistance and insulin secretion have 
been investigated to understand the complexity of pathogenesis of T2D [7, 133].

In a recent cross-sectional study, it has been shown that Mi and M o were the most in-
formative variables to explain inter-individual variability of clinical measures of glucose 
control in newly presenting T2D. It was possible to explain 70-80% inter-individual 
variability of FPG, FPI, H bAic , and insulin responses to M TT, and 25-40% of glucose 
responses to M TT [5].

No longitudinal study has explained the characteristics and associations of the trend
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among these factors in detail. The aim of this study was to assess whether the explained 
inter-individual variability at baseline as reported in [5] is maintained over the years. 
In this study, a total of 54 subjects with newly presenting T2D, as described in Section 
6.2, were studied over two years.

8.2 Subjects and Experimental Protocol

The same 54 subjects with newly presenting T2D described in Chapter 6, Section 6.2, 
were studied over 2 years of therapeutic intervention.

8.3 Statistical Analysis

The statistical analyses were carried out using SPSS for Windows Version 11.5 (SPSS 
Inc., Chicago, IL, USA) and MINITAB Release 13.32 (MINITAB). Spearman’s corre-
lation analysis with a Boniferroni correction was used to assess the relationships be-
tween independent variables (clinical measures of glucose and postprandial glucose and 
insulin responses to M TT) and dependent variables (metabolic indices). Exploratory 
data analyses were performed to assess the distribution of both independent and depen-
dent variables and appropriate transformations were carried out to ensure normality 
for regression analysis. A stepwise regression analysis was used to relate the measures 
of metabolic indices to the clinical measures of glucose control. The analysis of variance 
was used to calculate the extent of explained inter-subject variability.

8.4 Results

8.4.1 Correlation Analysis Over Year 0-2

Table 8.1 presents Spearman’s correlations between the measures of glucose control, 
and indices of insulin sensitivity and pancreatic /3-cell responsiveness over two years.

In year 0, FPG was negatively correlated with all measures of pancreatic responsiveness 
AIRg , M i , Mo , and Dj  (AIRG: rs =  -0.52; P <  0.001, M r rs =  -0.50; P <  0.001, M0 : 
rs =  -0.64; P <  0.001, Dp rs =  -0.53; P <  0.001). In year 1, only AIRG and Dj 
were significantly negatively correlated with FPG. While the same magnitude of the 
correlation coefficient was maintained for Di (rs =  -0.54, P <  0.001) as in year 0, the
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relationship with AIRq  (rs =  -0.35, P <  0.05) was reduced and borderline significant. 
The relationship between FPG and Di continued into year 2 but weakened (Dp rs =  
-0.35, P <  0.05). In year 2, Mi showed a weak negative correlation with FPG (P < 
0.05).

Table 8.3 shows similar correlation results for the 16 diet treated subjects. FPG was 
significantly correlated with Mo only in year 1 (P <  0.001). FPG showed no significant 
relationship with any of the indices of insulin sensitivity and pancreatic responsiveness 
in year 1. FPG only correlated with AIRq  in year 2.

Unlike FPG, FPI was positively correlated with all measures of pancreatic responsive-
ness (AIRq , M i , and M o), (FPI vs AIRq : rs =  0.83, P <  0.001, FPI vs Mp rs =  0.39, 
P <  0.05, FPI vs M o: rs =  0.65, P <  0.001) and negatively correlated with Si (FPI vs 
Sp rs =  0.47, P < 0.001). Sp AIRq , and Mo maintained these associations with FPI 
over the two years, and while the magnitude of the relationship is constant across the 
two years for AIRq , it increased and decreased over time for Si and M o, respectively, 
see Table 8.1. Similar investigations on 16 diet treated subjects showed AIRq  to be 
significantly correlated with FPI over 2 years, Table 8.3.

At year 0, H bAic showed a negative significant association with all measures of pancre-
atic responsiveness and the disposition index (H bAic vs AIRg : rs =  -0.43, P <  0.01, 
HbAlc  vs Mp rs =  -0.62, P <  0.001, HbA10 vs M0 : rs =  -0.64, P <  0.001, Dp rs 
=  -0.44, P <  0.01). In the subsequent years, H bAic showed no significant association 
with any of the indices of insulin sensitivity, and was weakly negatively associated with 
Dp Mp and M o in year 1. In the 16 treated diet subjects, the only variable with 
significant association with H bAic was Mi in year 0.

Postprandial insulin indices (CmaX)insuiin and AUCinsuiin) were positively correlated with 
all measures of insulin responsiveness (AIRg , Mp and M o) at baseline year 0. This 
pattern was repeated in year 1 and with an additional significant negative correlation 
with insulin sensitivity. In year 2, both Cmax,Insulin and AUCinsuim showed a positive 
correlation with Mi and a negative correlation with Sp

8.4.2 Explained Inter-individual Variability in Year 0, 1, and 2

The results of the stepwise regression analysis to identify explanatory variables (Sp Sg , 
AIR q , Dp Mp and M o) for clinical measures of glucose control (FPG, FPI, H bA ic, 
Cmax,Glucose > AUCq i u cos e i CmaX)insuiin and AUCinsuim) are shown in Table 8.2 and Figure 
8.1. M o and D i explained about 60% of variation in FPG in year 0, 36% variation with
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an additional explanatory variable Mi in year 1, and only 14% variation was explained 
with one explanatory variable Di in year 2. The total variation explained in year 0, 
1, and 2 in FPI is 77% (Si, AIRg , and M o), 75% (AIRg , D i , M i , and M o), and 68% 
(AIRg  and Di) respectively. Di and Mo explained 44% of the total variation in H bAic 
in year 0, 40% variation was explained by Si, Mi and Mo in year 1, and only 10% in 
year 2 by Si.

The variations in all postprandial glucose and insulin responses to M TT explained by 
one or more parameters of insulin sensitivity and pancreatic /3-cell responsiveness range 
from 16% to 60%, see Table 8.2. In year 0, the variation of all postprandial glucose and 
insulin responses to M TT was explained by the indices of pancreatic responsiveness Mi 
and Mo- In year 1, a substantial extent of the variation was explained by Mi while 
the overall variation was explained by both indices of insulin sensitivity and pancreatic 
/3-cell responsiveness, a large proportion was due to both Mi and Mq  •



8. Explaining Inter-Subject Variability of Glucose Control 112

Table 8.1: Spearman’s correlation coefficients between measures of glucose control (FPG, FPI, 
1 ! C’( , income ? Gmax, Glucose » AUCi11Suiin, and Cmax,insulin) and. indices of insulin sensitivity and 

pancreatic /3-cell responsiveness (Si, Sq , AIRg , Di , Mq , and Mi) in year 0, 1, and 2 (N =  54).

Year Si Sg AIRg Di Mi Mo

FPG 0 -0.14 0.24 -0.52*** -0.53*** -0.50*** -0.64***
FPG 1 -0.28 -0.09 -0.35* -0.54*** -0.31 -0.27
FPG 2 -0.18 -0.22 -0.25 -0.35* -0.39 -0.26

FPI 0 -0.47*** 0.05 0.83*** 0.21 0.39* 0.65***
FPI 1 -0.53*** 0.33** 0.82*** 0.04 0.24 0.55***
FPI 2 -0.61*** -0.12 0.81*** 0.04 -0.03 0.37*

H bAicf 0 -0.08 0.24 -0.43** -0.44** -0.62*** -0.64***
HbAicf 1 -0.34 0.14 -0.04 -0.37* -0.30 -0.30*
H bAicf 2 -0.32 -0.01 0.30 -0.06 -0.22 0.12

Cmax,Glucose 0 -0.12 0.15 -0.16 -0.26 -0.55*** -0.25
Cmax, Glucose 1 -0.14 0.03 -0.04 -0.23 -0.32* -0.01
Cmax, Glucose 2 -0.12 0.10 -0.17 -0.28 -0.28 -0.12

Cmax, Insulin 0 -0.28 -0.05 0.58*** 0.21 0.68*** 0.76***
Cmax,Insulin 1 -0.50*** 0.29 0.61*** -0.05 0.55*** 0.44**
C m ax,Insulin 2 -0.42** -0.03 0.34 -0.14 0.51*** 0.13

AUCciucose 0 -0.17 0.12 -0.23 -0.37 -0.67*** -0.39*
AUCoiucose 1 -0.35 0.17 -0.08 -0.49*** -0.36* -0.02
AUCoiucose 2 0.40* 0.02 0.41** -0.09 -0.49*** 0.13

AUCinsulin 0 -0.28 -0.03 0.54*** 0.18 0.66*** Q

AUCinsulin 1 -0.55*** 0.35 0.58*** -0.14 0.56*** 0.45**
AUCinsulin 2 -0.42** -0.11 0.31 -0.16 0.52*** 0.10
*P < 0.05; **P < 0.01; ***P < 0.001 (corrected for multiple comparison using 
Boniferroni correction). 
f  N =  52
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8.5 Discussion

T2D is characterised by defects in insulin secretion and insulin action [37, 75]. The 
development of T2D is a gradual process, and the relative role of impaired insulin 
secretion and resistance in the aetiology of the disease remain controversial. However, 
it is widely recognised that both defects are usually present in all patients with overt 
disease [37, 25].

In recent years, attempts have been made at understanding the complex relationships 
between insulin resistance and insulin secretion, and how these relationships affect 
glucose control. Several studies have quantified the associations between various clinical 
measures of glucose control, and measures of insulin resistance and insulin secretion to 
explain associations between the two sets of indices on presentation of T2D [5, 83].

Prospective studies that examined insulin resistance and impaired insulin secretion 
as risk factors for diabetes have demonstrated that the defects in insulin secretion 
and insulin action are independent predictors of the clinical measures of the disease 
[133, 22, 62, 61]. This study investigated insulin secretion and insulin resistance over 
two years after presentation of T2D and evaluated the relationship of these indices with 
measures of glucose control and the amount of variability explained by insulin secretion 
and resistance.

By analysing the data obtained from 54 newly presenting T2D subjects, following a 
naive treatment protocol, who had their insulin resistance and insulin secretion quanti-
fied with the use of the Bayesian hierarchical minimal model and the insulin secretion 
model, we investigated the relationships between these variables over two years.

The subjects in this study were between 36-74 year old. The subjects followed intensive 
dietary management for the first 6 months after diagnosis. The introduction of the 
dietary restriction was designed to improve insulin secretion capacity and not to improve 
insulin sensitivity [66]. Subjects were transferred to pharmacological therapies aimed 
at altering the metabolic processes after the failure of the intensive dietary treatment.

The above analyses showed that at the time of presentation of T2D, the fasting and 
postprandial pancreatic /3-cell responsiveness (Mo and Mi) play a major role in explain-
ing the fasting glucose (FPG) level and postprandial glucose responses (Cmax,Glucose 
and AUCciucose) to MTT. These associations with fasting plasma glucose disappeared 
completely after a year. The postprandial glucose response to M TT (AUCciucose) main-
tained a weaker association with the postprandial /3-cell responsiveness (Mi) over the 
two years.
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Table 8.2: Results of the stepwise linear regression in the form of z-scores (regression coefficients 
when all variables are expressed in standardised form) (N =  54).

Year Si Sg AIRg Dl Mi Mo r 2+

FPG 0 -0.43*** -0.55*** 0.59
FPG 1 - - - -0.51*** -0.26** -0.26** 0.36
FPG 2 - - - -0.39* - - 0.14

FPI 0 -0.23* _ 0.68*** _ _ 0.17* 0.77
FPI 1 - - 0.83*** -0.28** -0.16* 0.24* 0.75
FPI 2 - - 0.90*** -0.20* - - 0.68

HbAicf 0 - - _ -0.25* _ -0.57*** 0.44
HbAicf 1 -0.59*** - - - -0.28** -0.46*** 0.40
HbAjct 2 -0.35** - - - - - 0.10

Cm ax, Glucose 0 - - - - -0.89*** 0.40* 0.38
Cm ax, Glucose 1 -0.31** - - - 0.37* - 0.13
C m  ax, Glucose 2 " " - - - " -

Gm ax, Insulin 0 - - - - - 0.78*** 0.59
C m  ax, Insulin 1 -0.35** - 0.31* - 0.34** - 0.50
Gmax,Insulin 2 -0.39** - 0.25* -

Q  72 * * * -0.51*** 0.44

A U C d u c o s e 0 - - - _ -0.68*** _ 0.45
A U C o iu co se 1 - - - -0.49*** -0.44*** - 0.33
A U C o iu co se 2 - 0.37** - -0.30* - - 0.16

A U C i n s u i i n 0 - - _ _ 0.32* 0.46** 0.52
A U C insuiin 1 -0.41** - 0.29* - 0.33* - 0.55
A U C insu iin 2 -0.70*** - - 0.28* q  77 * * * -0.57*** 0.49
*P < 0.05; **P < 0.01; ***P < 0.001.
Dash(-) indicates that the independent variables (Si, Sq , AIRq , Di , Mo and Mi) did not enter the 
the regression formula for the dependent variables (FPG, FPI, Cmax,Glucose, CmaX)illsuiin, AUCciucose 
and AUCinsuiin).
+  Adjusted R2 for BMI; f N =  52.
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Table 8.3: Spearman’s correlation coefficients between measures of glucose control (FPG, FPI, 
AUCg lucose} Cmax,Glucose, AUCinsuiin, and Cmax,insiiiin) and indices of insulin sensitivity and 
pancreatic /8-cell reponsiveness (Si, Sq , AIRg , Di , Mo , and in diet treated subjects in year 
0, 1, and 2 (N =  16).

Year Si Sg AIRg Di Mi Mo

FPG 0 -0.19 0.12 -0.33 -0.39 -0.41 -0.73**
FPG 1 0.04 -0.21 -0.59 -0.48 -0.01 -0.24
FPG 2 -0.16 -0.53 -0.70* -0.60 0.11 -0.17

FPI 0 -0.53 0.31 0.76** 0.02 0.08 0.14
FPI 1 -0.40 0.17 0.78*** 0.29 0.46 0.39
FPI 2 -0.21 -0.23 0.67* 0.32 0.33 0.59

HbAic 0 -0.07 0.47 -0.16 -0.22 -0.63* -0.54
HbAic 1 -0.17 0.17 0.06 0.14 0.15 -0.19
HbAic 2 -0.00 -0.12 0.48 0.40 0.31 0.31

Cm ax,Glucose 0 -0.09 0.38 -0.26 -0.23 -0.71** -0.36
Cm ax,Glucose 1 -0.08 -0.19 -0.17 -0.14 -0.31 -0.18
Cm ax,Glucose 2 -0.40 -0.12 -0.22 -0.34 0.15 0.07

Cmax,Insulin 0 -0.25 0.20 0.38 0.12 0.65** 0.69**
Cmax,Insulin 1 -0.20 0.02 0.79*** 0.58 0.24 0.16
Cmax,Insulin 2 -0.32 -0.16 0.61 0.28 0.73** 0.27

AUCq  lucose 0 -0.31 0.27 -0.32 -0.46 -0.68** -0.62
A U C o iu co se 1 -0.57 0.32 -0.51 -0.90*** 0.04 -0.39
A U C  g  lucose 2 -0.69** -0.24 -0.27 -0.61 0.28 -0.15

A U C insuiin 0 -0.28 0.21 0.35 0.07 0.70** 0.58
A U C insniin 1 -0.29 0.21 0.80*** 0.44 0.47 0.33
A U C insuiin 2 -0.29 -0.30 0.58 0.27 0.77** 0.16
*P < 0.05; **P < 0.01; ***P < 0.001 (corrected for multiple comparisons using 
Boniferroni correction)
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Table 8.4: Results of the step-wise linear regression in the form of z-scores (regression coeffi-
cients when all variables are expressed in standardised form) (N =  16).

Year Si Sg A IR g Di Mi M 0 r 2+

FPG 0 -0 .67** 0.41
FPG 1 - - -0.57* - - - 0.27
FPG 2 - -0.48** -0 71*** - - - 0.70

FPI 0 -0.28* _ 0.83*** _ -0 .39** _ 0.82
FPI 1 - - 0.80*** - - - 0.61
FPI 2 - - 0.64** - - 0.45* 0.48

H b A jc 0 _ _ _ _ _ -0 .55* 0.25
H b A 10 1 - - - - - - -

H b A lc 2 - - - - - - -

Cmax, Glucose 0 - - - - -0 .62** - 0.35

Gmax,Glucose 1 - - - - - - -

Cmax, Glucose 2 - - - - - -

Gmax,Insulin 0 -0.32* - - _ - 0.90*** 0.73

Gmax,Insulin 1 - - 0.79*** - - - 0.59

Gmax,Insulin 2 - - 0.70*** - 0.58** - 0.61

A U C G lu cose 0 _ - _ _ _ -0 .60* 0.31

A U C G lu cose 1 - - - -0 .81*** - - 0.65

A U C G lu cose 2 - - - -0 .66** - - 0.39

A U C l n s u i i n 0 - - _ _ 0.72** _ 0.48
A U C i n s u l i n 1 - - q  7 7 * * * - - - 0.58

A U C lnsu iin 2 - - 0.96*** -0.42** 0.96*** -0 .58*** 0.90
*P < 0.05; **P < 0.01; ***P < 0.001.
Dash(-) indicates that the independent variables (Sp Sg , AIRg , Di , Mo and Mi) did 
not enter the regression formula for the dependent variables (FPG, FPI, C maXiGlucose> 

Gm ax,Insulin; AUCq i ucose and A U C in su lin )- 
+ Stands for adjusted R2 for BMI.
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Postprandial glucose responses (CmaXjGiucosc and A U C c i u c o s e )  were negatively corre-
lated with postprandial /3-cell responsiveness ( M i ) ,  while insulin responses ( C m ax,insulin 

and AUCinsniin) were positively correlated with all measures of pancreatic responsive-
ness ( A I R q , M () and M i ) .

Fasting plasma insulin and the acute insulin response to IVGTT (AIRq ), a measure 
of /3-cell well being, were consistently highly positively correlated over the two years. 
FPG was negatively correlated with Dp the association was stronger in year 0 and 
year 1 when compared with year 2. Di has already been reported for its usefulness in 
characterising the overall state of glucose metabolism [74],

Clinical measures of glucose metabolism except fasting plasma insulin (FPI) failed to 
demonstrate associations with insulin sensitivity (Si). The lack of significant association 
between FPG and Si is consistent with the results reported by Reaven [110] and Levy 
et al [83]. Reaven failed to find a relation between FPG and Si in nonobese individuals 
and T2D subjects. Likewise, Levy et al documented that a fall in /3-cell function is 
closely followed by a rise in FPG in their 10-year prospective study of newly presenting 
T2D, without a significant change in Sp However, Van Haeften et al [125] found an 
association between fasting plasma glucose and insulin sensitivity estimated by the 
hyperglycaemic clamp in normal and impaired glucose tolerance subjects.

It is recognised that BMI is another determinant of insulin secretion in addition to the 
ambient plasma glucose levels. Obese insulin-resistant individuals secrete more insulin 
than lean insulin sensitive individuals at comparable plasma glucose levels. From results 
of the relationship between FPG and Si in this study, it is unclear why there was a lack 
of associations at the baseline. As recently pointed out by Reaven [111], because of 
the feedback between plasma glucose concentration and insulin secretion, it is virtually 
impossible to develop diabetes due to the severity of insulin resistance found in most 
T2D subjects unless the capacity to secrete additional amount of insulin to compensate 
for insulin resistance is impaired. Thus, hyperglycaemia may be considered prima facie 
evidence for impaired insulin secretion.

FPI and insulin sensitivity are negatively correlated with an increasing trend over the 
two years. This relationship supported the methodological validity of estimating insulin 
sensitivity with insulin modified IVGTT.

At the baseline the inter-individual variability of clinical measures of glucose control 
was explained by only Mo and Mi with the exception of that of FPI, which was ex-
plained mainly by AIRq . In year 1, both Si and Di were selected in the regression 
analysis in addition to M o and Mp In year 2, Mo was not selected at all. About 70% 
of inter-individual variability was consistently explained in FPI mainly by AIRq  .
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The results have also confirmed that both Mo and Mi were most informative in assessing 
the inter-individual variability of clinical measures of glucose at the time of presentation. 
The amount of explained variability ranges from 44% to 76% at the time of presentation 
of T2D and decreases over the years, ranging from 36% to 70% in year 1, and 10% to 
68% in year 2. Various reasons could explain the reduced variability over time. The 
reasons leading to the reduced explained variability are unclear.

The results of the associations between all 54 subjects and the 16 diet treated subjects 
are comparable over the two years. Fewer significant associations in the diet treated 
group resulted from a smaller sample size. However, the trend of the associations over 
the two years between Mo and FPI was reversed in the diet treated subjects, and 
between AIRq  and FPG.

8.6 Conclusions

We conclude that the ability of indices of insulin sensitivity and pancreatic /3-cell re-
sponsiveness to explain inter-individual variability of clinical measures of glucose con-
trol in newly presenting T2D decrease over time for all clinical measures of glucose 
control and measures of glucose and insulin responses to M TT with the exception of 
inter-individual variability in FPI and postprandial insulin response (Cmax,insulin and 
AUCinsuUn), which remained the same over the two years.
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Figure 8.1: Explained inter-individual variability of clinical measures of glucose control using 
indices of insulin resistance and pancreatic /3-cell responsiveness.
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Chapter 9

Final Discussion

The primary aim of this thesis was to employ the Bayesian hierarchical modelling ap-
proach to investigate methodological issues concerning parameter estimation of the 
minimal model of glucose kinetics using data collected during IVGTT, with the objec-
tive to avoid failures of the non-linear regression analysis.

The secondary aim was to use the Bayesian hierarchical modelling techniques in com-
bination with other modelling techniques on data collected during IVGTT and M TT 
to improve our understanding of the pathophysiology of T2D on a longitudinal basis.

Type 2 diabetes results from the inability of the pancreas to augment insulin secretion 
in the presence of insulin resistance [37, 119]. Various methods have been developed to 
measure insulin secretion and insulin action - a methodological review has been given 
in Chapter 2.

The minimal model of glucose kinetics using IVGTT has become an invaluable method 
to estimate insulin sensitivity [5, 94, 107]. In spite of the wider application of the 
model, one reported problem with the minimal model studies is that, in a number of 
subjects, especially with T2D, insulin sensitivity (Si) is calculated as S i= 0 with the 
non-linear regression analysis [100]. The occurrence of Si indistinguishable from zero is 
yet to be understood. This has been attributed to a possible manifestation of modelling 
deficiency. Solutions to the problem have generated a wider interest in finding more 
sophisticated parameter estimation techniques for more physiological values of Si and at 
the same time improving the parameter estimates of the minimal model. Among these 
techniques is the Bayesian analysis with MCMC parameter estimation. In Chapter 3 
we adopted the Bayesian analysis in a hierarchical framework to estimate Si and Sq  
aiming to reduce the minimal model failures.

A population kinetic model combines individual and population parameters. The indi-
vidual parameters quantify the kinetics of a particular individual to estimate the intra-



9. Final Discussion 121

individual variability, while population kinetic parameters quantify population mean 
kinetics to estimate the inter-individual variability. The identification of these sources 
of variability and consequent parameter estimation in a non-linear hierarchical model, 
such as the minimal model of glucose kinetics, has its pitfalls. The traditional stan-
dard two-stage parameter estimates, obtained by fitting a kinetic model to individual 
data and then combining the individual parameter estimates to derive the population 
estimates, have been shown to overestimate the population covariance [35].

In Chapter 4, we compare the parameter estimation capabilities of the minimal model 
of glucose kinetics using the Bayesian hierarchical analysis and the standard two-stage 
approach, which employed the non-linear regression analysis for the individual parame-
ters estimation. The Bayesian hierarchical analysis has proved effective in a number of 
applied and simulated studies and it is less difficult to implement in view of recent ad-
vances in statistical computation techniques and particularly in the MCMC techniques.

Our results from the Bayesian hierarchical analysis gave reliable estimates of the pop-
ulation parameters, with tighter credible intervals of the population mean/median pa-
rameters and also tighter interquartile ranges. This demonstrated the advantage of the 
Bayesian hierarchical analysis over the standard two-stage approach.

In Chapter 5, the Bayesian hierarchical analysis also demonstrated its ability to handle 
both dense data and relatively sparse data with the minimal model of glucose kinetics 
in T2D subjects. The approach can accommodate data from a variety of unbalanced 
designs.

The Bayesian hierarchical analysis gave reliable and unbiased estimates of Si for 12 and 
13 sample schemes, with acceptable precision of Si estimates. The successful estimation 
of Si without a loss in precision makes the technique useful for population studies by 
reducing cost, labour, and complexity of the studies.

In Chapter 6, we investigated the early progression of T2D subjects to increase our 
understanding of insulin resistance and insulin secretion and their associated clinical 
measures of glucose control over two years after diagnosis. The progressive nature of 
T2D with various treatments was demonstrated by the UKPDS [57]. In this chapter 
we investigated the trends in metabolic settings (insulin resistance and insulin secre-
tion), clinical measures of glucose and insulin, clinical measures of glucose control, and 
postprandial glucose and insulin responses to M TT in 54 T2D subjects.

We showed that insulin sensitivity and glucose effectiveness do not change over time, 
irrespective of the early therapeutic intervention, although a progressive decrease in 
H bAic within the normal range reflected an association with a lower degree of insulin
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resistance which could be attributed to treatment effects. Separating treatment effects 
was impossible since the subjects were not randomised with respect to the treatment 
allocation.

We also demonstrated that indices of insulin secretion (Mo and Mi) showed significant 
improvement only in year 0-1 and deteriorated after year 1 in spite of the treatment.

Our investigations demonstrated that the progressive nature of T2D is rather due to 
the steady decline in /3-cell function, which can be ameliorated, at least for two years, 
by adequate conventional treatments starting after the diagnosis.

In Chapter 7, we demonstrated that subjects with lowest values of insulin secretion 
as measured by Mo and Mi can expect to achieve the highest improvement in H bAic 
if accompanied by improved Mo and Mi values. The results showed that the best 
improvement in H bAic is achieved in the first year after diagnosis.

The knowledge about the inter-individual variability in clinical measures of glucose 
control and postprandial glucose and insulin responses to M TT in T2D subjects was 
extended in Chapter 8 [5]. We related insulin resistance and secretion to clinical mea-
sures of glucose and insulin from IVGTT and M TT to increase our understanding of 
T2D pathology and the relationships among these sets of indices over two years.

The results of the analyses demonstrated changes and associations between model based 
indices of pancreatic /3-cell responsiveness and indices describing the clinical measures 
of glucose and insulin responses. The analyses showed that at the time of presentation, 
fasting and postprandial pancreatic /0-cell responsiveness plays major role in explaining 
fasting glucose and postprandial glucose responses to M TT. These associations with 
fasting plasma glucose disappeared completely with measures of pancreatic /3-cell re-
sponsiveness (M o and Mi) after year 1, except for the postprandial glucose response 
to M TT (AUCoiUCOse) j where the association was maintained but was weaker.

Postprandial glucose meal responses were negatively correlated with postprandial /3-cell 
responsiveness (Mi), while postprandial insulin meal responses were positively corre-
lated with all measures of pancreatic responsiveness (AIRq , M o, and Mi) suggesting 
that the elevated postprandial insulin responses to meals are reliable indices for assess-
ing 0-cell well-being. Fasting plasma insulin was shown to be a consistent and reliable 
index of insulin sensitivity over the two years.

Our results demonstrated that both Mo and Mi were most informative in assessing 
the inter-individual variability of clinical measures of glucose control at the time of 
presentation. The amount of explained variability ranged from 44% to 76% at the time
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of presentation of T2D and decreased over the years ranging from 36% to 70% in year 
1 and 10% to 68% in year 2. Similar results were obtained in a cross-sectional study by 
Albarrak et al [5] who found that the postprandial pancreatic responsiveness was the 
most powerful explanatory index of an impaired glucose control.



Chapter 10

Conclusions

The Bayesian hierarchical analysis with the minimal model of glucose kinetics of IVGTT 
is an appealing approach to estimate insulin sensitivity. The method avoids model 
failures and can conveniently accommodate both dense and relatively sparse data sets 
making the approach more acceptable for different target populations and experimental 
protocols.

The application of the Bayesian hierarchical analysis with the minimal model of glucose 
kinetic and of the insulin secretion model on a longitudinal basis has improved our 
understanding of T2D pathology at presentation and over a period of two years.

10.1 Achievement of Objectives

The achievements can be divided into two parts, namely, the methodological and patho-
physiological.

The methodological achievements are outlined as follows:

• we have developed the minimal model of glucose kinetics within the Bayesian 
hierarchical framework. This approach facilitates simultaneous estimation of in-
dividual and population parameters;

• the Bayesian hierarchical analysis avoids parameter estimation failures and gives 
a smaller unbiased estimate of the population variance for both Si and Sg ;

• the parameter estimation capabilities of the minimal model of glucose kinetics 
using the Bayesian hierarchical analysis and the standard two-stage approach 
were successfully compared. The Bayesian hierarchical analysis provided reliable
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estimates of the population parameters and allowed individual parameters to be 
estimated with good precision.

The successful implementation of the Bayesian hierarchical model to estimate insulin 
sensitivity and glucose effectiveness amounts to a significant contribution to the biomed-
ical field.

Further achievements constitute new knowledge about pathophysiology of T2D:

• indices of insulin sensitivity and glucose effectiveness (Si and Sg ) did not improve 
over time in spite of the early therapeutic intervention;

• indices of insulin secretion (Mo and AIRg ) improved over years 0-2 with a signif-
icant improvement in year 0-1. Mi deteriorated over the two years in diet treated 
subjects;

• an improvement in HbAic was associated with an improvement in M o and Mp 
About 43% of improvement in HbAic was explained by BMI, M o, Sg  in year 1, 
while about 29% was explained in year 2;

• M o and Mi were most informative in assessing the inter-individual variability of 
clinical measures of glucose at the time of presentation. The amount ranged from 
44% to 76% at the time of presentation of T2D and decreased over the 2 years, 
ranging from 36% to 70% in year 1, and 10% to 68% in year 2.

The investigation of the progression of insulin sensitivity and insulin secretion over two 
years after diagnosis increases our understanding of the early progression of T2D. This 
is a contribution in the pathophysiological field.

10.2 Future Work

Several research questions were raised during the course of the study. Recommendations 
for future research in methodological and clinical aspects are as follows.

It is recommended to implement a t-distribution assumption for the measurement error 
with the minimal model of glucose kinetic using the Bayesian hierarchical analysis. The 
problem associated with using the t-distribution is deciding what value of v  (the degrees 
of freedom) should be used.
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It is recommended to compare the performance of the parameter estimation capabilities 
of the minimal model of glucose kinetic using the Bayesian hierarchical analysis, the 
iterative two-stage analysis, and other population approaches in different pathophysio-
logical states.

Understanding of the progression of T2D still relies solely on an understanding of 
complex dynamic interactions between insulin tissue sensitivity and insulin secretion. 
A statistical analysis of the progression of T2D using a generalised linear mixed effect 
model will be beneficial for adjusting for the treatments effects in the data employed 
in this study.



Part III

Appendices



Appendix A

Appendix A contains the WinBUGS specification of the Bayesian hierarchical model 
and the WinBUGS extensibility codes used for the implementation of the Bayesian 
hierarchical analysis with the minimal model, Section 3.4, Chapter 3.
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WinBUGS Code
model
{
unmu.beta[l] < - exp(mu.betafi]) #  for monitoring purpose 
unmu.beta[2] < - exp(mu.beta[2]) 
unmu.beta[3] < - exp(mu.beta[3]) 
unmu.beta[4] < - exp(mu.beta[4])

samp.tran[l:4]~dmnorm(mu.beta[] , R[ , ]) 
samp[l] < - exp(samp.tran[l] - samp.tran[4]) 
samp[2] < - exp(samp.tran[3]) 
samp[3] < - exp(samp.tran[3] +  samp.tran[2]) 
samp[4] < - exp(samp.tran[4]) 
samp[5] < - exp(samp.tran[2])

for(i in l:ind)
{
beta[i ,1:4] dmnorm(mu.beta[] , R[ , ]) 
rameter j in individual i. 
betainf[i ,l:2]~dmnorm(muinf.beta[] , Rinf[ , ]) 
eter j in individual i.

thetafi, 1] < - exp(beta[i , 1] - betafi , 4]) 
theta[i, 2] < - exp(beta[i , 3]) 
thetafi, 3] < - exp(beta[i , 3]+beta[i , 2]) #  ln(SI) =

beta[2] /m in per mU/1
thetafi, 6] < - exp(beta[i , 4]) #  ln(V)

=  beta[4] 1/kg
theta[i, 4] < - 1.0 #  ln(K12) =  betainf[l]

/m in
theta[i, 5] < - 0.0 #  ln(K21) =  betainf[2]

/m in

#  loop over the subjects

#  betafi , j] represents pa- 

#  betafi , j] represents param-

#  ln(SG) =  betafi] /m in
#  ln(P2) =  beta[3] /m in

slfi] <-theta[i,3]/theta[i,2]/6.0 #  insulin sensitivity min per pmol/1 
Plfi] <-theta[i,l] #  glucose effectiveness per min

#  generate measueremnts and predictions 
for(j in off.data.startl[i]:off.data.endl[i])
{
cl[i , j] dnorm(modell[i, j] , inw arlfij]) #  c lfij]  represents

concentration j in individal i
modellfi, j] < - shola.model(theta[i,l:6], timelfj], 1.6653, i, 1, 1) #  predicted glucose 

concentration for IVGTT
inwar lfij] < - tauCl/(m odell[i ,j]*modell[i,j])
}

}  #  end of i loop
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mu.beta[l:4] ~dmnorm(mean[], prec[ , ])
R [l:4 , 1:4] ~dwish(Omega[ , ], 4) 
tauCl ~dgamma(0.001, 0.001)
C V l< -l/sq rt(tau C l)
#  calculate correlation matrix 

for (i in 1:4) {
for (j in 1:4){

S4[i,j] < - inverse( R[,],i,j)
}

}
sigma[l]<-sqrt(S4[l,l]) #  SDs 
sigma[2]<-sqrt(S4[2,2]) 
sigma[3]<-sqrt(S4[3,3]) 
sigma[4]<-sqrt(S4[4,4]) 
r[l,l] < - 1.0
r[1,2] < - S4[l,2] /  (sqrt(S4[l,l]) *sqrt(S4[2,2])); #  correlation
r[l,3] < - S4[l,3] /  (sqrt(S4[l,l]) *sqrt(S4[3,3]));
r [1,4] < - S4[l,4] /  (sqrt(S4[l,lj) *sqrt(S4[4,4]));
r[2,l] < - r[1,2]
r[3,l] <- r[l,3]
r[4,l] < - r [1,4]
r[2,2] <- 1.0
r[2,3] < - S4[2,3] /  (sqrt(S4[2,2]) *sqrt(S4[3,3])); 
r[2,4] < - S4[2,4] /  (sqrt(S4[2,2]) *sqrt(S4[4,4])); 
r[3,2] < - r [2,3] 
r[4,2] < - r[2,4] 

r[3,3] < - 1.0
r[3,4] < - S4[3,4] /  (sqrt(S4[3,3]) *sqrt(S4[4,4])); 
r[4,3] < - r[3,4] 

r[4,4] < - 1.0
} end of winbugs program

list(

ind =  65,

timel =  c(
0.00,1.00,2.00,3.00,4.00,5.00,6.00,7.00,8.00,10.00,12.00,14.00,
16.00,20.00,22.00,23.00,24.00,25.00,27.00,30.00,40.00,50.00,60
.00,70.00,80.00,90.00,100.00,120.00,150.00,180.00),

off.data.startl =  c(
9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
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9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
9, 9, 9, 9, 9
),

off.data.endl =  c(
30, 30, 30, 30, 30, 30, 30, 30, 30, 30,
30, 30, 30, 30, 30, 30, 30, 30, 30, 30,
30, 30, 30, 30, 30, 30, 30, 30, 30, 30,
30, 30, 30, 30, 30, 30, 30, 30, 30, 30,
30, 30, 30, 30, 30, 30, 30, 30, 30, 30,
30, 30, 30, 30, 30, 30, 30, 30, 30, 30,
30, 30, 30, 30, 30
),

c l  =  structure(
.Data =  c(10.40 , 12.70 , 18.70 , 22.50 , 20.80 , 19.80 , 18.90 , 18.50 
17.20 , 16.80 , 16.40 , 15.90 , 15.90 , 15.70 , 15.60 , 15.60 , 15.60 
15.00 , 13.50 , 12.20 , 11.70 , 11.20 , 10.40 , 10.10 , 9.60 , 9.00 , 
7.90 ,

, 17.80 
, 15.40 , 
8.40 ,
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7.70 , 20.80 , 25.10 , 24.00 , 22.10 , 20.60 , 20.10 , 19.20 , 18.50 ,
17.30 , 16.70 , 16.20 , 15.80 , 14.90 , 15.10 , 14.90 , 14.60 , 14.30
11.30 , 9.70 , 8.50 , 7.50 , 7.30 , 6.80 , 6.60 , 6.20 , 5.90
), .Dim =  c(65,30)),

Omega =  structure(
.Data =  c(
0 .02 , 0 , 0 , 0 ,
0 , 0 .02 , 0 , 0 ,
0 , 0 , 0 .02, 0 ,
0, 0, 0, 0.02),
.Dim =  c(4,4)),

Rinf =  structure(
.Data =  c(
77.86, -70.07,
-70.07, 77.86
),
.Dim =  c(2,2)),

mean =  c(0,0,0,0), 
muinf.beta =  c(-2.66,-2.99),

prec =  structure(
.Data =  c(
0 .000001,0,0 ,0, 
0 ,0.000001,0,0, 
0,0,0 .000001,0, 
0 ,0 ,0 ,0.000001 
), .Dim =  c(4,4))
)

17.80 ,
, 13.50 , 
, 5.50
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list (
mu.beta =  c(0,0,0,0), 
tauCl =  1,

beta =  structure(
.Data =  c(
-3.730, -9.309, -3.35, -2.049,

-3.730, -9.309, -3.35, -2.049
), .Dim =  c(65,4)),

samp.tran =  c( -3.730, -9.309, -3.35, -2.049),

betainf =  structure (
.Data =  c(
-2.425, -2.847,

-2.425, -2.847 
), .Dim =  c(65,2)),

R =  structure(.Data =  c ( l ,0,0,0,
0,1,0,0, 

0 ,0 ,1 ,0 , 
0, 0 , 0,1 

) ,

Dim =  c(4,4))
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WinBUGS Extensibility Codes Used for Numerical Inte-
gration

MODULE MathDESolve;

IMPORT
GraphNodes,
TextMappers, TextModels, TextViews,
Converters, Files, Math, Views;

(*nlnd =  number of individuals;
nTimel =  number of observations for IVGTT;
nTimeM =  number of observations for MTT;
nlnits =  number of initial values for the System of ODEs;
nMax =  maximum number of obervation times. *)

CONST
nlnd =  65; nTimel =  30; nTimeM =  14; nlnits =  2; nMax =  MAX(nTimeI, nTimeM); 

TYPE
Vector =  POINTER TO ARRAY OF REAL;
VecPair =  ARRAY 2 OF Vector;

VAR
insulin: ARRAY 2 OF ARRAY nlnd OF ARRAY nMax OF REAL;
allTimes : ARRAY 2 OF ARRAY nMax OF REAL;
inits: ARRAY 2 OF ARRAY nlnd OF ARRAY nlnits OF REAL;

thetaReal: POINTER TO ARRAY OF REAL;
solution, parameters: POINTER TO ARRAY OF ARRAY OF VecPair; 
sTemp, pTemp: Vector;

PROCEDURE NumTimes (form: INTEGER): INTEGER;
BEGIN

CASE form OF 
|0: RETURN nTimel 
¡1: RETURN nTimeM 
END

END NumTimes;

PROCEDURE SolutionReady (ind, form, nPar: INTEGER): BOOLEAN; 
CONST

eps =  1.0E-20;
VAR

solutionReady: BOOLEAN; 
i: INTEGER;

BEGIN
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solutionReady :=  TRUE;
i== 0;
WHILE (i <  nPar) & solutionReady DO

IF ABS(thetaReal[i] - parameters[ind, form] [1] [i]) >  eps THEN 
solutionReady :=  FALSE END;
INC(i)

END;
IF solutionReady THEN RETURN TRUE END; 
solutionReady :=  TRUE; 
i :=  0;
WHILE (i <  nPar) k  solutionReady DO

IF ABS(thetaReal[i] - parameters[ind, form][0][i]) >  eps THEN 
solutionReady :=  FALSE END;
INC(i)

END;
IF solutionReady THEN

pTemp :=  parameters [ind, form][0]; sTemp :=  solution[ind, form][0]; 
parametersfind, form][0] :=  parameters [ind, form][l]; solution[ind, form][0]

solution [ind, form][l];
parametersfind, form][l] :=  pTemp; solution[ind, form][l] :=  sTemp; 
RETURN TRUE 

ELSE RETURN FALSE 
END

END SolutionReady;

PROCEDURE Timelndex (time: REAL; form: INTEGER): INTEGER; 
CONST

eps =  1.0E-20;
VAR

nTimes, i: INTEGER; found: BOOLEAN;
BEGIN

found :=  FALSE;
nTimes :=  NumTimes(form);
i : =  0;
WHILE (i <  nTimes) k  found DO

IF ABS(time - allTimes[form, i]) <  eps THEN found :=  TRUE END; 
INC(i)

END;
ASSERT(found, 56);
RETURN i - 1 

END Timelndex;

PROCEDURE RK (dose: REAL; ind, form, model, nPar: INTEGER); 
CONST
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T =  10; (* number of steps*)
(*dt =  0.05;*) (* time step size *) (* deb *)
eps =  1.0E-10;

VAR
i, m, p: INTEGER;
KStepl, KStep2, KStep3, KStep4, LStepl, LStep2, LStep3, LStep4,
TT, insl, ins2, ins3, ins4, previous, current, insulinb, qBasal, q l, q2, ddt, S, 

X0: REAL;
gal, ga2, ga4, Aga, Bga, Cga, FI : REAL; (* this is for gut absorption *)
PI, P2, P3, K12, K21, V, F, K13, K34, K45: REAL; 
partRemlns, partRemlnsl : REAL; 
dt: REAL; (* time steps*)

temp : REAL; (* debug*)
BEGIN

(* PI :=  0.024;
P2 :=  0.0351;
P3 :=  0.00000318;
K12 :=  0.0885;
K21 :=  0.0580;
V  :=  0.129;

*)
PI :=  thetaReal[0];
P2 :=  thetaRealfl];
IF (P2 > =  1.0E30) THEN 

P2 :=  1.0E30 
END;
IF (P2 < =  1.0E-30) THEN 

P2 :=  1.0E-30 
END;
P3 :=  thetaReal[2];
K12 :=  thetaReal[3];
K21 :=  thetaReal[4];
V  :=  thetaReal[5];
IF (model > =  2) & (model < = 6 ) THEN 

F :=  thetaReal[6];
K13 :=  thetaReal[7];

END;
IF (model =  3) OR (model =  4)THEN 

K34 :=  K13 +  thetaReal[8];
END;
IF (model =  4) THEN

K45 :=  K34 +  thetaReal[9];
END;
insulinb :=  inits[form, ind, 0];
qBasal :=  inits[form, ind, 1]; (* basal mass in q l *)
q l :=  qBasal*V;
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IF (model =  1) THEN
ql :=  ql+dose; (* initial value for IVGTT for q l *)

END;
q2 :=  K21*(qBasal*V)/K12; (* initial value for IVGTT for q2 *)
KStepl :=  0.0; KStep2 :=  0.0; KStep3 :=  0.0; KStep4 :=  0.0;
LStepl :=  0.0; LStep2 :=  0.0; LStep3 :=  0.0; LStep4 :=  0.0; 
insl :=  0.0; ins2 :=  0.0; ins3 :=  0.0; ins4 :=  0.0; X0 :=  0; 
previous :=  0.0; T T  :=  0.0;

IF ( model -  4) THEN
FI :=  F*dose*K45*K34/ (K34-K45);
Aga :=  F1*K13/(K13-K45); (* auxilaries for gut absoprtion *)
Bga :=  F1*K13/(K13-K34);
Cga :=  -F1*K13/(K13-K34) +  F1*K13/(K13-K45);

END;

P :=  1;
solution [ind, form][0][0] :=  qBasal;
WHILE p <  NumTimes(form) DO (* loop through time-points *)

current :=  allTimes[form, p];
ASSERT(ABS(TT - previous) <  eps, 33); 
ddt :=  current - previous;

S :=  (insulin[form, ind, p] - insulin[form, ind, p - 1]) /  ddt; 
dt :=  ddt/T ;
(*T :=  SHORT(ENTIER(Math.Round(ddt /  dt) +  eps));*) 
m :=  0;
partRemlns :=  P3/P2*(insulin[form, ind, p-l]-S*previous-insulinb) 
-P3/(P2*P2)*S;

partRemInsl:= X0-P3 /P2*(insulin[form, ind, p - 1] - insulinb)+P3/ 
(P2*P2)*S;
WHILE m <  T DO

insl :=  partRemIns+P3/P2*S*(TT) +  partRemlnsl* 
Math.Exp(-P2 *( TT-previous));

CASE model OF (* gut absorption contribution *)
|1: gal:= 0;
¡2: g a l:=  F*dose*Math.Exp(-K13*TT)*K13;
¡3: ga l:=  F*dose*K34/(K13-K34)*

(Math.Exp(-K34*TT)-Math.Exp(-K13*TT))*K13;
|4:gal:= Aga*Math.Exp(-K45*TT)-Bga*

Math.Exp(-K34*TT)-Cga*Math.Exp(-K13*TT);
|5:gal:= F*dose*K13*K13*TT*Math.Exp(-K13*TT);

END;

KStepl :=  dt*(-(P l+K 21+insl)*ql+K 12*q2+gal+Pl*qB asal*V ); 
LStepl :=  dt*(K21*ql-K12*q2);
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ins2 :=  partRem Ins+P3/P2*S*(TT+dt/2) +  partRemlnsl* 
Math.Exp(-P2 * (TT+dt/2-previous));
CASE model OF (* gut absorption contribution *)

|1: ga2:=0;
¡2: ga2:= F*dose*Math.Exp(-K13*(TT+dt/2))*K13;
¡3: ga2:= F*dose*K34/(K13-K34)*

(M ath.Exp(-K34*(TT+dt/2))-M ath.Exp(-K13*
(TT+dt/2)))*K 13;

|4: ga2:=Aga*M ath.Exp(-K45*(TT+dt/2))-Bga* 
M ath.Exp(-K34*(TT+dt/2))-Cga* 
M ath.Exp(-K13*(TT+dt/2));

|5: ga2:= F*dose*K13*K13*(TT+dt/2)* 
M ath.Exp(-K13*(TT+dt/2));

END;
KStep2 :=  d t*(-(P l+ K 21+ins2)*(q l+ K S tepl/2)+  
K12*(q2+LStepl/2)+ga2+Pl*qBasal*V);
LStep2 :=  dt*(K 21*(ql+K Stepl/2)-K 12*(q2+LStepl/2));

ins3 :=  ins2;
KStep3:= dt*(-(P l+K 21+ins3)*(ql+K Step2/2)+  
K12*(q2+LStep2/2)+ga2+Pl*qBasal*V);
LStep3 :=  dt*(K21*(ql+KStep2/2)-K12*(q2+LStep2/2));

ins4 :=  partRemIns+P3/P2*S*(TT+dt) +  partRemlnsl* 
Math.Exp(-P2 * (TT+dt-previous));
CASE model OF (* gut absorption contribution *)

|1: ga4:=0;
|2: ga4:= F*dose*Math.Exp(-K13*(TT+dt))*K13;
¡3: ga4:= F*dose*K34/(K13-K34)*

(M ath.Exp(-K34*(TT+dt))-M ath.Exp(-K13*(TT+dt)))*
K13;

|4: ga4:= Aga*Math.Exp(-K45*(TT+dt))-Bga*
M ath.Exp(-K34*(TT+dt))-Cga*M ath.Exp(-K13*(TT+dt)); 

|5: ga4:= F*dose*K13*K13*(TT+dt)*Math.Exp(-K13* 
(T T +dt));

END;
KStep4 :=  dt*(-(Pl+K21+ins4)*(ql+KStep3)+K 12* 
(q2+LStep3)+ga4+Pl*qBasal*V);
LStep4 :=  dt*(K21*(ql+KStep3)-K12*(q2+LStep3));

q l :=  q l +  (1 /  6) * (KStepl +  (2 * KStep2) +
(2 * KStep3) +  KStep4);
q2 q2 +  (1 /  6) * (LStepl +  (2 * LStep2) +
(2 * LStep3) +  LStep4);
IF (ql <  0.0) THEN 

q l :=  1.0E-10 
END;

(* check for nonnegativity *)
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IF (q l > 1.0E5) THEN 
q l :=  1.0E5 

END;
IF (q2 <  0.0) THEN 

q2 :=  1.0E-10 
END;
IF (q2 >  1.0E5) THEN 

q2 :=  1.0E5 
END;
T T  :=  TT  +  dt; (* time increment *)
INC(m)

END; (* end of m-loop *)

X0 :=  partRemIns+P3/P2*S*(TT) +  partRemInsl*Math.Exp(-P2 * 
(TT-previous));

solution[ind, form][0][p] :=  q l /  V; 
previous :=  current;
INC(p);

temp :=  q l /V ; IF ((p =  31) &  (model =  4)) THEN 
ASSERT(insulinb =  0, 111); (* debug *) END;
END; (* end of p-loop *)
(* once we have evaluated the solution we need to store the parameters that 
correspond to it *)
i :=  0; WHILE i <  nPar DO parameters[ind, form][0][i] :=  thetaReal[i]; INC(i)

END;
END RK;

PROCEDURE InitSolution;
VAR

i, j, k: INTEGER;
BEGIN

NEW(solution, nlnd, 2); 
i :=  0;
WHILE i <  nlnd DO

j : = 0 ;
WHILE j <  2 DO

k :=  0; WHILE k <  2 DO NEW(solution[i, j][k], nMax); INC(k)
END;

INC(j)
END;
INC(i)

END;
NEW(sTemp, nMax)

END InitSolution;
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PROCEDURE InitParameters (nPar: INTEGER);
VAR

i, j, k, 1: INTEGER;
BEGIN

NEW(thetaReal, nPar);
NEW(parameters, nlnd, 2);
i== 0;
WHILE i <  nlnd DO

j ~ 0 ;
WHILE j <  2 DO

k :=  0;
WHILE k <  2 DO

NEW(parameters[i, j][k], nPar);
1 :=  0; WHILE 1 <  nPar DO parameters[i, j][k][1] :=  MIN(INTEGER);

INC(l) END;
INC(k)

END;
INC(j)

END;
INC(i)

END;
NEW(pTemp, nPar)

END InitParameters;

PROCEDURE SolveShola* (theta: ARRAY OF GraphNodes.Node; time, dose: 
GraphNodes.Node;

ind, form, model: INTE-
GER): REAL;

VAR
nPar, i: INTEGER; value: REAL;

BEGIN
nPar :=  LEN(theta);
IF parameters =  NIL THEN InitParameters(nPar) END; 
i :=  0; WHILE i <  nPar DO thetaReal[i] :=  theta[i].Value(); INC(i) END;
IF SolutionReady(ind, form, nPar) THEN

value :=  solution[ind, form][l][TimeIndex(time.Value(), form)]
ELSE
RK(dose.Value(), ind, form, model, nPar);

value :=  solution[ind, form][0][TimeIndex(time.Value(), form)]
END;
RETURN value 

END SolveShola;

PROCEDURE GetData; 
CONST

path =  "data\rsrc";
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VAR
loc: Files.Locator; v: Views.View; ask: BOOLEAN;
conv: Converters.Converter; fileName: Files.Name; t: TextModels.Model;
s: TextMappers.Scanner; i, j, k, nTime: INTEGER;

BEGIN
loc :=  Files.dir.This(path);
ask :=  (loc =  NIL) OR (loc.res #  0);
conv :=  NIL;
fileName :=  "te-i-mod65_data"; 
v :=  Views.01d(ask, loc, fileName, conv);
ASSERT(v #  NIL, 57);
WITH v: TextViews.View DO

t :=  v.ThisModel(); s.ConnectTo(t); s.SetPos(O); 
i :=  0; (* define scanning loops for insulin *)
WHILE i <  2 DO

nTime :=  NumTimes(i);
j :=  0;
WHILE j <  nlnd DO 

k :=  0;
WHILE k <  nTime DO

s.Scan;
ASSERT((s.type =  TextMappers.int) OR 

(s.type =  TextMappers.real), 58);
IF s.type =  TextMappers.real THEN insulin[i, j, k] :=  

s.real ELSE insulinfi, j, k] :=  s.int END;
INC(k)

END;
INC(j)

END;
INC(i)

END;
i :=  0; (* define scanning loops for time *)
WHILE i <  2 DO

nTime :=  NumTimes(i);
j :=  0;
WHILE j <  nTime DO

s.Scan; ASSERT((s.type =  TextMappers.int) OR 
(s.type =  TextMappers.real), 59);

IF s.type =  TextMappers.real THEN allTimes[i, j] :=  
s.real ELSE allTimes[i, j] :=  s.int END;

INC(j)
END;
INC(i)

END;
i :=  0; (* define scanning loops for inits *)
WHILE i <  2 DO

nTime :=  NumTimes(i);
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WHILE j <  nlnd DO 
k :=  0;
WHILE k <  nlnits DO

s.Scan; ASSERT((s.type =  TextMappers.int) OR 
(s.type =  TextMappers.real), 60);

IF s.type =  TextMappers.real THEN initsfi, j, k] :=  
s.real ELSE inits[i, j, k] :=  s.int END;

INC(k)
END;
INC(j)

END;
INC(i)

END
END

END GetData;

PROCEDURE Init;
BEGIN

thetaReal :=  NIL;
solution :=  NIL; parameters :=  NIL; 
sTemp :=  NIL; pTemp :=  NIL; 
InitSolution;
GetData;

END Init;
BEGIN

Init

END MathPKShola.
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MODULE MathPKShola;
(* form =  IVGTT (1) or M TT (2) 

model =  1: IVGTT model only
2: IVGTT +  M TT (One Compantment)
3: IVGTT +  M TT (Two Compantment)
4: IVGTT +  M TT (Three Compantment) 

ind =  individual number (1, 2, 3, ...) *)
IMPORT

PKLinkSingleDose,
GraphLogical, GraphNodes,
MathDESolve;

TYPE
Node =  POINTER TO RECORD (PKLinkSingleDose.Node) 

ind, form, model: INTEGER 
END;

Factory =  POINTER TO RECORD (GraphNodes.Factory) END;
VAR

fact-: GraphNodes.Factory;

PROCEDURE (node: Node) Set (IN args: GraphNodes.Args; OUT res: INTE-
GER);

CONST
eps =  1.0E-10;

VAR
len, i, off, size: INTEGER;

BEGIN
res :=  0;
WITH args: GraphLogical.Args DO

ASSERT(args.vectors[0].base #  NIL, 21); len :=  LEN(args.vectors[0].base); 
ASSERT(args.vectors[0].start > =  0, 21);
ASSERT(args.vectors[0].size >  0, 21);
ASSERT(args.vectors[0].step >  0, 21);
size :=  args.vectors[0].size; NEW(node.theta, size);
i :=  0;
WHILE i <  size DO

off :=  args.vectors[0].start +  i * args.vectors[0].step;
AS SERT (len >  off, 21); 

node.theta[i] :=  args.vectors[0].base[off];
INC(i)

END;
ASSERT(args.scalars[0] #  NIL, 21); node.time :=  args.scalars[0]; 
ASSERT(args.scalars[l] #  NIL, 21); node.dose :=  args.scalars[lj; 
ASSERT(args.scalars[2] #  NIL, 21); node.ind :=

SHORT(ENTIER(args.scalars[2].Value() - 1 +  eps));
ASSERT(args.scalars[3] #  NIL, 21); node.form :=

SHORT(ENTIER(args.scalars[3].Value() - 1 +  eps));
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ASSERT(args.scalars[4] #  NIL, 21); node.model
SHORT(ENTIER(args.scalars[4].Value() +  eps))

END 
END Set;
PROCEDURE (node: Node) Value (): REAL;
BEGIN

RETURN MathDESolve.SolveShola(node.theta, node.time, node.dose,
node.ind, node.form, node.model);

END Value;

PROCEDURE (f: Factory) New (option: INTEGER): GraphNodes.Node; 
VAR node: Node;
BEGIN

NEW(node); node.Init; RETURN node 
END New;
PROCEDURE Install*;
BEGIN

GraphNodes.SetFactory(fact)
END Install;
PROCEDURE Init;
VAR f: Factory;
BEGIN

NEW (f); fact :=  f 
END Init;

BEGIN
Init

END MathPKShola.



Appendix B

Appendix B includes three tables. Each table gives the results of CODA’s diagnostic 
criteria (Geweke, Raftry and Lewis, and Heldelberger and Welch) used to assess the 
convergence of MCMC chains in Section 3.4, Chapter 3. The appendix also contains 
the plot of the iteration history of model parameters.



B. 146

Table B .l: Geweke convergence diagnostic (Z-score).

Iterations used =  6000:10999 
Thinning interval =  1 
Sample size per chain =  5000

Fraction in 1st window =  0.1 
Fraction in 2nd window =  0.5

Variable unmubeta

unmu.beta[l] -0.397
unmu.beta[2] 0.533
unmu.beta[3] 2.640
unmu.beta[4] -0.419

Table B.2: Raftery and Lewis convergence diagnostics.

Iterations used =  6000:10999 
Thinning interval =  1 
Sample size per chain =  5000

Quantile =  0.025 
Accuracy =  + / -  0.005 
Probability =  0.95

Variable Thin Burn-in Total Lower bound Dependence factor
GO (M) (N) (Nmin) (I)

unmu.beta[l] l 3 4293 3746 1.15
unmu.beta[2] l 2 3995 3746 1.07
unmu.beta[3] l 4 4955 3746 1.32
unmu.beta[4] l 3 4470 3746 1.19
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Table B.3: Heidelberger and Welch stationarity and interval halfwidth tests.

Iterations used =  6000:10999 
Thinning interval =  1 
Sample size per chain =  5000

Precision of halfwidth test =  0.1

Variable Stationary test #  of iters, to keep #  Of iters to discard C-vonM stat

unmu.beta[l] passed 5000 0 0.349
unmu.beta[2] passed 5000 0 0.116
unmu.beta[3] passed 4500 500 0.196
unmu.beta[4] passed 4000 1000 0.441

Halfwidth test Mean Halfwidth

unmu.beta[l] passed 0.0021200 3.69e-006
unmu.beta[l] passed 0.0000645 3.15e-007
unmu.betafl] passed 0.0534000 2.12e-004
unmu.betafl] passed 0.1390000 9.20e-005
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Figure B .l: Plots of iteration history for the model parameters.
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Appendix C

Appendix C has two tables for results in Chapter 3. The first table shows individual 
parameter estimates of the minimal model with BAY in 65 newly presenting T2D 
subjects. The second table shows individual estimates of glucose effectiveness and 
insulin sensitivity using the minimal model with BAY in the same 65 subjects.
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Table C .l: Individual parameter estimates of the minimal model with the Bayesian 
hierarchical analysis of the insulin-modified IVGTT in subjects with newly presenting
T2D.

Subject Pi
(10' 2X min'1)

P2
(10' 2X min'1)

P3
(10"5X min'2pmol-L'1)

V
( ml-kg'1)

1 1.53* 3.81* 0.97* 151.7*
2 1.42 4.47 1.42 156.6
3 1.42 9.58 16.93 115.7
4 1.51 4.49 0.58 122.5
5 1.54 3.50 0.44 151.3
6 2.74 6.30 1.45 107.9
7 2.45 5.94 8.23 127.0
8 1.56 5.28 3.92 138.6
9 1.80 4.49 1.28 139.3
10 1.60 4.36 0.86 139.7
11 1.14 7.46 7.21 149.8
12 1.25 4.37 3.31 134.6
13 1.38 5.02 6.45 143.7
14 1.39 6.48 6.13 120.8
15 1.37 5.36 8.77 145.7
16 1.14 5.75 7.68 144.6
17 1.60 4.58 0.74 134.0
18 2.68 8.39 49.96 146.9
19 1.61 5.15 0.95 116.0
20 1.63 4.93 2.80 127.5
21 1.63 5.33 3.16 141.2
22 1.70 5.16 2.99 157.2
23 1.31 5.35 6.50 154.7
24 1.59 5.85 9.42 174.1
25 1.13 3.43 6.56 151.1
26 1.48 5.10 4.99 168.3
27 1.70 5.25 1.92 141.9
28 1.55 7.44 14.74 155.6
29 1.53 5.10 1.59 154.9
30 1.33 6.66 7.63 147.8
31 1.84 4.59 1.37 146.6
32 1.13 4.95 4.79 139.9
33 1.76 4.34 1.37 135.3
34 1.56 4.20 2.08 168.7
35 1.42 4.28 1.09 135.6

* Median of posterior density function.



Table C.l continues

Subject Pi
(10' 2x min'1)

P2
(10' 2X min'1)

P3
(10"5x min'2/iU-ml"1)

V
( ml-kg"1)

36 1.19* 4.76* 6.63* 111.1*
37 1.55 4.55 1.78 154.9
38 1.41 4.23 6.51 157.2
39 1.84 7.17 18.77 123.5
40 1.62 3.85 0.87 146.3
41 1.52 7.40 8.90 145.7
42 1.42 7.27 16.04 121.0
43 1.68 4.49 1.38 160.4
44 1.62 3.60 0.62 175.9
45 1.28 5.03 1.94 134.7
46 1.46 5.42 3.57 112.7
47 1.53 5.68 3.23 153.0
48 1.64 7.10 4.76 139.4
49 1.03 6.31 10.68 135.5
50 1.92 7.14 5.36 143.6
51 1.66 6.35 3.69 140.9
52 1.67 7.07 5.93 161.8
53 1.28 8.13 18.31 108.8
54 1.48 4.23 5.62 138.6
55 1.42 6.10 6.19 132.8
56 1.45 5.18 4.24 132.9
57 1.70 6.58 2.67 115.5
58 1.55 7.38 15.81 134.5
59 1.50 5.22 14.29 123.1
60 1.76 5.71 1.35 129.0
61 1.66 4.71 2.87 143.5
62 1.57 5.21 1.75 127.4
63 1.57 4.08 2.49 135.1
64 1.72 4.90 1.14 126.1
65 1.67 5.13 1.95 115.5

* Median of posterior density function.
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Table C.2: Individual estimates of glucose effectiveness Sg  and insulin sensitivity Si 
using the minimal model with the Bayesian hierarchical analysis of the insulin-modified 
IVGTT in subjects with newly presenting T2D.

Subject Sg

(10' 2x min'1)

CV

(%)

Si
(10' 5x min' 1 

pmol-L'1)

CV

(%)
1 1.53* 12** 0.42* 48**
2 1.42 14 0.54 32
3 1.42 17 2.95 5
4 1.51 7 0.22 48
5 1.54 13 0.21 49
6 2.74 13 0.39 56
7 2.45 16 2.33 14
8 1.56 15 1.23 18
9 1.80 14 0.48 37

10 1.60 12 0.33 46
11 1.14 18 1.62 7
12 1.25 15 1.27 15
13 1.38 13 2.15 6
14 1.39 16 1.58 12
15 1.37 13 2.73 3
16 1.14 16 2.24 11

17 1.60 10 0.27 42
18 2.68 7 9.91 4
19 1.61 8 0.31 41
20 1.63 14 0.94 21
21 1.63 15 0.99 15
22 1.70 16 0.98 22
23 1.31 14 2.03 7
24 1.59 17 2.70 8
25 1.13 14 3.19 5
26 1.48 17 1.65 12
27 1.70 16 0.61 29
28 1.55 15 3.30 5
29 1.53 15 0.52 26
30 1.33 16 1.91 7
31 1.84 12 0.50 45
32 1.13 13 1.61 14
33 1.76 13 0.53 30
34 1.56 17 0.83 24
35 1.42 13 0.43 41

* Median of posterior density function.
** Precision of parameter estimate expressed as the CV of the 
posterior density function.
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Table C.2 continues

Subject Sg

(10"2x min"1)

CV

(%)

Si
(10"2 x min" 1 

pmol-L'1)

CV

(%)
36 1.19* 16** 2.33* g**
37 1.55 16 0.66 34
38 1.41 13 2.57 4
39 1.84 8 4.36 3
40 1.62 12 0.38 36
41 1.52 16 2.01 8
42 1.42 13 3.68 3
43 1.68 16 0.52 35
44 1.62 12 0.28 53
45 1.28 12 0.64 23
46 1.46 12 1.10 16
47 1.53 15 0.95 23
48 1.64 15 1.12 10
49 1.03 16 2.82 5
50 1.92 17 1.26 14
51 1.66 17 0.98 16
52 1.67 17 1.41 7
53 1.28 13 3.76 3
54 1.48 13 2.21 5
55 1.42 13 1.69 6
56 1.45 14 1.37 16
57 1.70 13 0.68 17
58 1.55 13 3.57 4
59 1.50 9 4.56 3
60 1.76 13 0.40 37
61 1.66 13 1.02 30
62 1.57 12 0.56 31
63 1.57 14 1.02 25
64 1.72 13 0.38 41
65 1.67 13 0.63 20

* Median of posterior density function.
** Precision of parameter estimate expressed as the CV 
of the posterior density function.



Appendix D

Appendix D has two tables. The first table shows the results of individual glucose 
effectiveness of the minimal model with the Bayesian hierarchical analysis and with the 
nonlinear regression analysis. The second table shows the results of individual insulin 
sensitivity of the minimal model with the Bayesian hierarchical analysis and with the 
nonlinear regression analysis.
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Table D .l: Glucose effectiveness of the minimal model with the Bayesian hierarchical 
analysis (Sq AY) and with the nonlinear regression analysis (Sq LR) estimated during the 
insulin-modified IVGTT in subjects with newly presenting T2D.

Subject cBAY
bG

(10"2 x min"1)
CV
(%)

cNLR
bG

(10"2 x min"1)
CV
(%)

%RE
(%)

1 1.53* 12** 1.40* g***

2 1.42 14 1.18 17 17
3 1.42 17 0.92 36 35
4 1.51 7 1.57 17 -4
5 1.54 13 1.20 44 22

6 2.74 13 3.28 12 -20
7 2.45 16 3.51 8 -43
8 1.56 15 1.52 15 3
9 1.80 14 2.04 9 -13
10 1.60 12 1.86 5 -16
11 1.14 18 0.22 104 81
12 1.25 15 0.92 16 27
13 1.38 13 1.38 19 0
14 1.39 16 1.19 20 14
15 1.37 13 1.38 38 -0
16 1.14 16 0.68 29 40
17 1.60 10 1.77 7 -11

18 2.68 7 2.72 38 -1
19 1.61 8 1.73 7 -7
20 1.63 14 1.67 10 -2
21 1.63 15 1.60 11 2
22 1.70 16 1.64 11 4
23 1.31 14 1.07 15 18
24 1.59 17 1.34 16 16
25 1.13 14 1.11 33 2
26 1.48 17 1.16 13 22
27 1.70 16 1.73 8 -2
28 1.55 15 1.37 31 12
29 1.53 15 1.38 12 10
30 1.33 16 0.88 19 34
31 1.84 12 2.03 13 -11
32 1.13 13 0.95 33 15
33 1.76 13 1.90 8 -8
34 1.56 17 1.31 13 16
35 1.42 13 1.17 14 18

* Median of posterior density function.
** Precision of parameter estimate expressed as the CV of the 
posterior density function.

gBAY _ gNLR
*** Percent age relative error calculated as 100%( G QBAY<~:— )•



Table D.l continues

Subject oBAY
bG

(10"2 x min'1)
CV
(%)

oNLR
bG

(10 '2 x min'1)
CV
(%)

%RE
(%)

36 1.19* 16** 1.01* 20**
37 1.55 16 1.18 11 24
38 1.41 13 1.49 26 -6
39 1.84 8 1.92 35 -5
40 1.62 12 1.58 6 2

41 1.52 16 1.15 31 25
42 1.42 13 1.42 38 -0

43 1.68 16 1.62 13 4
44 1.62 12 1.61 15 1

45 1.28 12 1.18 19 8

46 1.46 12 1.46 10 -0

47 1.53 15 1.32 15 14
48 1.64 15 1.48 18 10

49 1.03 16 3.77 59 -266
50 1.92 17 2.01 21 -5
51 1.66 17 1.57 17 6
52 1.67 17 1.19 43 29
53 1.28 13 1.17 28 9
54 1.48 13 1.64 18 -11

55 1.42 13 1.34 26 5
56 1.45 14 1.35 12 7
57 1.70 13 1.81 8 -7
58 1.55 13 1.56 44 -1

59 1.50 9 1.61 38 -7
60 1.76 13 1.70 7 3
61 1.66 13 1.53 11 8
62 1.57 12 1.59 11 -1
63 1.57 14 1.52 8 3
64 1.72 13 2.04 5 -19
65 1.67 13 1.75 8 -5

* Median of posterior density function.
** Precision of parameter estimate expressed as the CV of the 
posterior density function.

gBAY _ gNLR
«♦percentage relative error calculated as 100%( G q ray G— )■
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Table D.2: Insulin sensitivity of the minimal model with the Bayesian hierarchical 
analysis (S^AY) and with the nonlinear regression analysis during the insulin-
modified IVGTT estimated in subjects with newly presenting T2D.

Subject SBAY

(10"5 x min' 1 
per pmol-Lf1

c v  s f LR
(10‘ 5 x min' 1 

) (%) per pmol-L'1^

CV

> (%)

%RE

(%)
1 0.42* 48** 1 .00* 24** -140***
2 0.54 32 0.72 23 -34
3 2.95 5 3.12 5 -6

4 0.22 48 0.17 127 21

5 0.21 49 NA NA NA
6 0.39 56 NA NA NA
7 2.33 14 2.22 14 5
8 1.23 18 1.28 16 -4
9 0.48 37 0.47 31 1

10 0.33 46 0.08 102 75
11 1.62 7 2.08 6 -29
12 1.27 15 1.58 8 -25
13 2.15 6 2.48 7 -16
14 1.58 12 1.72 10 -9
15 2.73 3 2.82 6 -3
16 2.24 11 2.78 9 -24
17 0.27 42 0.13 57 52
18 9.91 4 10.83 13 -9
19 0.31 41 0.18 58 41
20 0.94 21 0.95 15 -1

21 0.99 15 1.00 9 -1

22 0.98 22 1.02 12 -4
23 2.03 7 2.18 5 -7
24 2.70 8 2.77 4 -2

25 3.19 5 3.32 8 -4
26 1.65 12 1.82 5 -10
27 0.61 29 0.57 15 7
28 3.30 5 3.35 6 -1

29 0.52 26 0.57 16 -9
30 1.91 7 2.12 5 -11
31 0.50 45 NA NA NA
32 1.61 14 1.98 26 -23
33 0.53 30 0.55 19 -4
34 0.83 24 1.03 10 -24

* Median of posterior density function.
** Precision of parameter estimate expressed as the CV of the
posterior density function.

*** Percent age relative error was calculated as 100% ( )•
1\T A Qf unric fo r  fu ilo ri Qt  o o tim o fo  ( (~̂ \T \  1



Table D.2 continues

Subject sBAy

(10'5 x min'1 
per pmol-L'1)

CV

(%)

gNLR

(10-5 x min'1 
per pmol-L'1)

CV

(%)

%RE

(%)
35 0.43* 41** 0.85* 22** -99***
36 2.33 9 2.53 7 -8
37 0.66 34 0.97 12 -48
38 2.57 4 2.65 6 -3
39 4.36 3 4.62 10 -6
40 0.38 36 0.53 12 -41
41 2.01 8 2.22 10 -10
42 3.68 3 3.78 6 -3
43 0.52 35 0.55 26 -6
44 0.28 53 NA NA NA
45 0.64 23 0.75 28 -16
46 1.10 16 1.12 13 -2
47 0.95 23 1.10 16 -15
48 1.12 10 1.17 9 -4
49 2.82 5 3.22 5 -14
50 1.26 14 1.22 15 3
51 0.98 16 1.00 12 -2
52 1.41 7 1.45 6 -3
53 3.76 3 3.83 5 -2
54 2.21 5 2.22 6 -0
55 1.69 6 1.73 9 -2
56 1.37 16 1.50 12 -9
57 0.68 17 0.62 11 8
58 3.57 4 3.73 7 -5
59 4.56 3 4.78 9 -5
60 0.40 37 0.42 17 -5
61 1.02 30 1.38 18 -35
62 0.56 31 0.53 29 5
63 1.02 25 1.17 12 -14
64 0.38 41 0.15 47 61
65 0.63 20 0.60 14 5

* Median of posterior density function.
** Precision of parameter estimate expressed as the CV
of the posterior density function.

***Percentage relative error was calculated as 100%( 

NA stands for failed Si estimate (CV > 150%).

gBAY _ gNLR
~1 s®AyI )•



Appendix E

Appendix E includes two tables. Each table shows individual results of the full sample 
and the reduced sample schemes using the minimal model with the Bayesian hierarchical 
analysis in subjects with newly presenting T2D.
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Table E .l: Glucose effectiveness estimated with the full-sample scheme (Sq (3o) ) j the 
13 sample scheme (S g ( i 3) ) ,  and the 12 sample scheme (S g ( i 2) )  and associated relative 
error (%RE) using the minimal model with the Bayesian hierarchical analysis during 
the insulin-modified IVGTT in subjects with newly presenting T2D. ***

Full-Sample 13-Sample 12-Sample
Subject SG(30)

(10"2 x min1)
CV
(%)

SG(13)
(10‘2 x min'1)

CV
(%)

%RE
(%)

SG(12)
(10'2 x min"1)

CV
(%)

%RE
(%)

1 1.53* 12** 1.67* g** 1.45*
2 1.42 14 1.68 9 -18 1.43 11 -1
3 1.42 17 1.70 11 -19 1.56 11 -10
4 1.51 7 1.59 7 -6 1.46 10 3
5 1.54 13 1.64 10 -7 1.41 12 9
6 2.74 13 1.88 12 31 1.54 11 44
7 2.45 16 1.86 11 24 1.52 11 38
8 1.56 15 1.71 9 -10 1.46 10 6
9 1.80 14 1.76 10 2 1.47 11 18
10 1.60 12 1.69 9 -5 1.46 11 9
11 1.14 18 1.65 9 -44 1.46 10 -28
12 1.25 15 1.63 10 -30 1.45 10 -16
13 1.38 13 1.65 9 -19 1.44 10 -4
14 1.39 16 1.64 10 -18 1.47 10 -6
15 1.37 13 1.62 9 -18 1.40 10 -2
16 1.14 16 1.60 9 -41 1.43 10 -26
17 1.60 10 1.70 9 -7 1.47 11 8
18 2.68 7 1.94 12 28 1.64 17 39
19 1.61 8 1.68 8 -4 1.50 10 7
20 1.63 14 1.69 10 -3 1.46 10 11
21 1.63 15 1.73 10 -6 1.47 10 10
22 1.70 16 1.78 11 -5 1.46 12 14
23 1.31 14 1.69 9 -29 1.44 10 -10
24 1.59 17 1.79 12 -12 1.46 13 8
25 1.13 14 1.54 11 -37 1.36 12 -20
26 1.48 17 1.73 11 -16 1.44 12 3
27 1.70 16 1.77 10 -4 1.48 11 13
28 1.55 15 1.78 11 -15 1.51 13 3
29 1.53 15 1.73 10 -13 1.46 12 5
30 1.33 16 1.71 9 -28 1.48 10 -11
31 1.84 12 1.76 10 4 1.47 11 20
32 1.13 13 1.62 9 -43 1.49 10 -32
33 1.76 13 1.75 10 1 1.48 11 16
34 1.56 17 1.78 11 -14 1.44 13 7
35 1.42 13 1.60 9 -12 1.43 11 -0

* Median of posterior density function.
** Precision of parameter estimate expressed as the CV of the posterior density function.
***Percentage relative error calculated as 100%(— ■■ ' uce<*).
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Table E.l continues

Full-Sample 13-Sample 12-Sample
Subject Sg (30) CV SG(13) CV %RE SG(12) CV %RE

(10"2 x min"1) % (10“2 x min"1) % % (10'2 x min"1) % %
36 1.19* 16** 1.55* 2 2 ** -30*** 1.46* 12** -22***
37 1.55 16 1.72 10 -11 1.46 12 6
38 1.41 13 1.61 10 -15 1.37 11 3
39 1.84 8 1.80 8 2 1.61 10 12
40 1.62 12 1.69 9 -4 1.44 11 11
41 1.52 16 1.76 10 -15 1.50 10 2
42 1.42 13 1.64 9 -15 1.50 11 -6
43 1.68 16 1.78 11 -6 1.44 12 14
44 1.62 12 1.72 10 -6 1.43 13 12
45 1.28 12 1.60 9 -25 1.44 10 -13
46 1.46 12 1.63 10 -12 1.49 11 -2

47 1.53 15 1.73 10 -13 1.46 11 5
48 1.64 15 1.78 10 -9 1.50 10 9
49 1.03 16 1.57 9 -52 1.46 10 -41
50 1.92 17 1.82 11 6 1.50 11 22
51 1.66 17 1.78 10 -7 1.49 11 11
52 1.67 17 1.78 10 -6 1.47 12 12
53 1.28 13 1.62 10 -26 1.54 11 -20
54 1.48 13 1.65 9 -12 1.42 10 4
55 1.42 13 1.64 8 -16 1.45 9 -2
56 1.45 14 1.68 9 -16 1.49 10 -3
57 1.70 13 1.70 10 0 1.49 11 12
58 1.55 13 1.67 9 -8 1.49 10 4
59 1.50 9 1.55 9 -3 1.42 11 6
60 1.76 13 1.76 10 0 1.50 10 15
61 1.66 13 1.73 9 -4 1.48 11 11
62 1.57 12 1.68 9 -7 1.47 10 6
63 1.57 14 1.71 10 -9 1.47 10 6
64 1.72 13 1.71 10 0 1.49 11 14
65 1.67 13 1.69 10 -1 1.48 10 11

* Median of posterior density function.
** Precision of parameter estimate expressed as the CV of the posterior density function.
***Percentage relative error calculated as 1 0 0 % ( ~ ,r€jduced)
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Table E.2: Insulin sensitivity estimated with the full-sample scheme (Sj(3Q) ), the 13 
sample scheme (Sj(i3)), and the 12 sample scheme (S 1(12)) and associated percentage 
relative error (%RE) using the minimal model with the Bayesian hierarchical analysis 
during the insulin-modified IVGTT in subjects with newly presenting T2D.

Subject
Full-Sample 13-Sample 12-Sample

$1(30)
(10~5 x min 1 
per pmol-L'1)

CV

(%)

S i(i3)
(10-5 x min'1 
per pmol-L'1)

CV

(%)

%RE

(%)

$1(12)
(10'5 x min'1 
per pmol-L'1)

CV

(%)

%RE

(%)
1 0.42* 48** 0.34* 45** 0.55* 32** -33***
2 0.54 32 0.39 38 27 0.60 27 -12

3 2.95 5 2.91 7 1 2.43 9 18
4 0.22 48 0.25 47 -14 0.45 36 -109
5 0.21 49 0.18 46 11 0.28 33 -36
6 0.39 56 0.89 29 -129 1.27 18 -226
7 2.33 14 2.50 14 -7 2.59 12 -11
8 1.23 18 1.15 18 7 1.28 15 -4
9 0.48 37 0.53 31 -11 0.69 22 -46
10 0.33 46 0.33 44 -1 0.54 31 -67
11 1.62 7 1.57 9 3 1.65 10 -2
12 1.27 15 1.00 20 21 0.95 18 25
13 2.15 6 2.00 9 7 2.10 8 2
14 1.58 12 1.60 13 -1 1.54 13 3
15 2.73 3 2.60 6 5 2.10 7 23
16 2.24 11 1.88 14 16 1.85 14 17
17 0.27 42 0.30 40 -11 0.46 28 -70
18 9.91 4 9.87 4 0 8.31 5 16
19 0.31 41 0.33 43 -8 0.51 29 -67
20 0.94 21 0.90 20 4 1.02 16 -8
21 0.99 15 0.95 17 4 1.02 15 -3
22 0.98 22 0.92 22 6 0.95 17 3
23 2.03 7 1.74 9 14 1.67 9 17
24 2.70 8 2.52 12 7 2.39 12 12
25 3.19 5 2.78 9 13 2.61 10 18
26 1.65 12 1.54 15 6 1.60 15 3
27 0.61 29 0.67 27 -10 0.75 20 -23
28 3.30 5 3.34 7 -1 3.36 7 -2
29 0.52 26 0.53 26 -1 0.60 21 -15
30 1.91 7 1.82 9 5 1.89 9 1
31 0.50 45 0.63 35 -28 0.92 22 -85
32 1.61 14 1.15 22 29 1.12 20 31
33 0.53 30 0.54 26 -3 0.65 19 -23
34 0.83 24 0.68 27 18 0.76 21 8

* Median of posterior density function.
** Precision of parameter estimate expressed as the CV of the posterior density function.
***Percentage relative error calculated as 1 0 0 % ( r('d|1(,od)_
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Table E.2 continues

Subject
Full-Sample 13-Sample 12-Sample
s l(30)

(10"5 x min' 1 

per pmol-L"1)

CV

(%)

Si(i3)
(HP1 x min"1 
per pmol-L"1)

CV

(%)

%RE

(%)

Sl(l2)
(10"5 x min"1 
per pmol-L"1)

CV

(%)

%RE

(%)
35 0.43* 41** 0.35* 44** 0.51* 35** -18***
36 2.33 9 1.95 12 17 1.69 13 28
37 0.66 34 0.59 37 10 0.71 28 -8

38 2.57 4 2.47 7 4 2.37 7 8

39 4.36 3 3.85 4 12 2.84 4 35
40 0.38 36 0.33 34 13 0.42 26 -11

41 2.01 8 1.96 10 3 1.85 10 8

42 3.68 3 3.84 5 -4 3.36 6 9
43 0.52 35 0.45 35 13 0.59 24 -13
44 0.28 53 0.27 50 7 0.48 34 -69
45 0.64 23 0.44 33 31 0.49 26 24
46 1.10 16 1.01 19 8 1.02 17 7
47 0.95 23 0.85 25 11 0.96 20 -0
48 1.12 10 1.20 10 -8 1.27 9 -14
49 2.82 5 2.56 7 9 2.65 8 6

50 1.26 14 1.42 14 -12 1.46 13 -15
51 0.98 16 0.89 17 9 0.78 14 21

52 1.41 7 1.45 9 -3 1.24 10 12

53 3.76 3 3.56 5 5 3.07 6 18
54 2.21 5 2.06 7 7 2.09 7 6

55 1.69 6 1.75 7 -3 1.70 7 -1
56 1.37 16 1.22 18 11 1.47 16 -7
57 0.68 17 0.72 16 -7 0.76 14 -13
58 3.57 4 3.79 6 -6 3.34 6 6

59 4.56 3 4.74 5 -4 4.17 5 9
60 0.40 37 0.47 30 -18 0.66 21 -65
61 1.02 30 0.94 27 9 1.03 22 -1
62 0.56 31 0.57 29 -2 0.71 22 -27
63 1.02 25 0.87 25 14 1.05 18 -2

64 0.38 41 0.43 36 -13 0.58 26 -52
65 0.63 20 0.70 17 -11 0.82 14 -30

* Median of posterior density function.
** Precision of parameter estimate expressed as the CV of the posterior density function. 
***Percentage relative error (%RE) calculated as 100%( 1̂1̂
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A B S T R A C T

W e adopted Bayesian analysis in combination with hierarchical (population) modelling to estimate 
simultaneously population and individual insulin sensitivity (S|) and glucose effectiveness (Sg ) with 
the minimal model of glucose kinetics using data collected during insulin-modified intravenous 
glucose tolerance test (IVGTT) and made comparison with the standard non-linear regression 
analysis. After fasting overnight, subjects with newly presenting Type II diabetes according to 
World Health Organization criteria (n =  65; 53 males, 12 females; age, 54 +  9 years; body mass 
index, 30.4 ± 5 .2  kg/m2; means ±  S.D.) underwent IVGTT consisting of a 0.3 g of glucose bolus/kg 
of body weight given at time zero for 2 min, followed by 0.05 unit of insulin/kg of body weight 
at 20 min. Bayesian inference was carried out using vague prior distributions and log-normal 
distributions to guarantee non-negativity and, thus, physiological plausibility of model parameters 
and associated credible intervals. Bayesian analysis gave estimates of S| in all subjects. Non-linear 
regression analysis failed in four cases, where Bayesian analysis-derived S| was located in the lower 
quartile and was estimated with lower precision. The population means of S| and Sg  provided 
by Bayesian analysis and non-linear regression were identical, but the interquartile range given by 
Bayesian analysis was tighter by approx. 20% for S| and by approx. 15% for Sg - Individual insulin 
sensitivities estimated by the two methods were highly correlated (rs =0.98; P < 0.001). However, 
the correlation in the lower 20% centile of the insulin-sensitivity range was significantly lower 
than the correlation in the upper 80 % centile (r$ =  0 .71 compared with rs =  0.99; P < 0 .001). We 
conclude that the Bayesian hierarchical analysis is an appealing method to estimate S| and Sg , as it 
avoids parameter estimation failures, and should be considered when investigating insulin-resistant 
subjects.

INTRODUCTION

The minimal model analysis of intravenous glucose 
tolerance test (IVGTT) data has become an invaluable 
method to estimate insulin sensitivity (Si) and glucose ef-
fectiveness (S g ) .  The analysis has been used in both small- 
and large-scale studies, such as the Insulin Resistance

Atherosclerosis study [1] and the FUSION (Finland- 
United States Investigation on NIDDM  genetics) study 
[2].

The insulin modification of IVGTT addressed the 
early problems with the minimal model ‘failures’, i.e. 
the situation when the minimal model analysis returns 
5) indistinguishable from ‘zero’ or the precision of 5)
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is too low. Nevertheless, it has been documented [3] 
that the minimal model fails in up to 50 % of cases in 
highly insulin-resistant subjects, although, with insulin 
modification and careful data analysis, the failure rate 
is normally approx. 10%. Godsland and Walton [4] 
reported even higher failure rates with a high-glucose 
dose (0.5 g/kg), but without modification, and showed 
the importance of basal glucose levels to improve the 
success rate.

The standard minimal model data analysis employs 
the non-linear regression technique to obtain estimates 
of and Sq [5]. Alternative calculation techniques have 
become available recently, specifically the Bayesian 
analysis with the so-called Markov chain Monte Carlo 
computational strategies [6], These have been adopted 
to estimate Si and Sg  by analysing data on an indi-
vidual basis [7,8], with the aim of reducing minimal 
model failures and providing physiologically plausible 
confidence intervals [CIs; credible intervals (Crls) within 
the context of Bayesian analysis] of the estimates.

Recently, a population-based approach [9], an iterative 
two-stage technique, has been investigated with reduced 
sampling and has been shown to improve precision 
compared with the standard non-linear regression ap-
proach. The strength of the population-based estimation 
techniques is that the knowledge about the underlying 
population distribution (usually normal or log-normal) 
can be employed in the estimation process, bringing 
about an improvement in the estimates of population and 
individual characteristics.

The present study extends these recent advances and 
reports on a Bayesian hierarchical analysis of the minimal 
model data. The combination of Bayesian methodology 
and hierarchical analysis (see Appendix for comments 
on Bayesian and hierarchical analyses) promises to be 
suitable to reduce/avoid minimal model failures and to 
extract correctly, and in full, all information, such as inter-
subject variability, from the experimental data. The use of 
population analysis is also reported for the first time for 
subjects with Type II diabetes.

METHODS

Subjects and experimental protocol
Subjects with newly presenting Type II diabetes ac-
cording to World Health Organization criteria partici-
pated in the study [» =  65; 53 males, 12 females; age 54 +  9 
(33-71) years; body mass index 30.4 ±5 .2  (20.9—43.4) kg/ 
m2; mean +  SD (range)]. The study was approved byBro 
Taf Local Research Ethics Committee, Cardiff, U.K., and 
all subjects gave written informed consent.

The subjects were admitted to the Diabetes Research 
Unit, Llandough Hospital, Penarth, U.K. following an 
overnight 12 h fast and underwent IVGTT consisting 
of a 0.3 g of glucose bolus/kg of body weight given at

time zero over 2 min, followed by 0.05 unit of insulin/kg 
of body weight (Actrapid; N ovo Nordisk, Denmark) at 
20 min. Blood was taken via an indwelling intravenous 
cannula, which was inserted into the antecubital fossa vein 
and connected via a three-way tap to a slow running saline 
infusion to maintain the patency of the vein. Samples were 
taken at -  30, -  15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 
19, 22, 23, 24, 25, 27, 30, 40, 50, 60, 70, 80, 90, 100, 120, 
150 and 180 min for measurement of plasma glucose and 
insulin.

Assays
Glucose was assayed using glucose oxidase method [YSI 
2300, Yellow Springs Analyzer; Yellow Springs Instru-
ments, Yellow Springs, OH, U.S.A.; intra-assay coeffi-
cient of variation (CV) < 2 %]. Insulin was assayed using 
immunoassay utilizing monoclonal antibodies (Dako 
Diagnostics, Ely, Cambs., U.K.; intra-assay CV < 5 %).

Data analysis

Minimal m odel of glucose to leran ce  during  IVGTT
The minimal model defines Si (ability of insulin to 
enhance the net glucose disappearance from plasma) and 
individual Sg  (ability of glucose to promote its own 
disposal) [10,11] and is described by two differential 
equations

dgt/di =  -  (pi +  xt) ■ gt +  p, • gb g0 =  D / V  (1)

dxt/d i =  -  pi ■ xt +  pi ■ (it -  t'b) x0 =  0 (2)

where g, is the plasma concentration of glucose, it is 
the plasma insulin concentration, xt is a variable associ-
ated with the remote insulin compartment, gb is the 
(end-experimental) basal glucose concentration, ¿b is 
the (end-experimental) basal insulin concentration, D 
is the amount of exogenous glucose injected at time 0, 
p\,pi andp3 are model parameters and V is the volume 
of the distribution. Si is given as the ratio of pslpi, and 
Sg  is given b y p\. Glucose concentrations from 0-5 min 
were excluded from the parameter estimation with all 
parameter estimation approaches.

Bayesian h ierarch ica l analysis
An illustrative outline of the Bayesian analysis is shown 
in Figure 1. The analysis included the development of 
a hierarchical model with individual and population 
parameters.

Within the context of the Bayesian analysis, prior 
distributions of parameters were specified. We adopted 
‘vague’ (non-informative) prior distributions represent-
ing the lack o f prior information about parameter values. 
The prior distributions were ‘updated’ from glucose and 
insulin measurements adopting the Bayes theorem giving 
the individual posterior distributions. These posterior 
distributions ‘correspond’ to point estimates derived

©  2003 The Biochemical Society
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Figure I Bayesian hierarchical analysis of the minimal model indices
Individual T| and 1G values were estimated in parallel with the population characteristics (the mean and S.D.). All indices were treated as random variables and 
the estimation involves determining their probability density functions. Log-normal population distribution is assumed to reflect that 5\ and f G can attain only 
non-negative values. The Bayesian hierarchical analysis facilitates 'information’ flow between individuals (individual estimate depends on the measured glucose and 
insulin data and also on the population mean and S.D., which is, in turn, influenced by other individual values) and also results in estimates with higher precision 
contributing with a greater weight to the population characteristics.

by the non-linear regression analysis in the sense that 
they contain the result of the estimation procedure [12]. 
However, the posterior distributions are information- 
rich and can be used, for example, to determine di-
rectly the precision of the estimate using a measure 
of dispersion, such as the 95 % CrI or the CV of the 
posterior distribution.

The Bayesian analysis demands the form of underlying 
distributions to be specified. We assumed that individual 
parameters such as Si and Sg  are log-normally distributed, 
guaranteeing their non-negativity, and thus the physio-
logical plausibility of associated 95 % CrI. We denote 
S,BAY and Sq bay as Bayesian estimates of Si and Sg  
respectively.

Individual estimates of SiBAY and SGBAY were calculated 
as medians of the posterior distributions and the precision 
of the estimates as the CV of the posterior distributions. 
The median was chosen as it is a more robust measure 
than the mean (subsequent analysis indicated, however, 
that median and mean of individual estimates are nearly 
identical). Owing to the nature o f the Bayesian analysis, 
population parameters (mean, CrI and interquartile 
range) are not obtained by statistical evaluations of 
individual results, but rather as an integral part of the 
Bayesian analysis. This reflects that individual parameters 
estimated with higher precision contribute with ‘greater’ 
weight to the population characteristics.

For the calculations, we employed the public domain 
WinBUGS program [13] extended by a purpose-made 
module implementing the numerical solution of eqns (1) 
and (2). The WinBUGS program adopted the Metropolis- 
Hastings algorithm [14] to calculate a single chain with

26 000 samples (with thinning of four), from which the 
first 6000 samples were discarded and the remaining 
20 000 samples were used in a further analysis. Conver-
gence criteria of the chain were tested using the Geweke 
method and the Raftery-Lewis method implemented in 
the CO D A  package [15]. The calculations were per-
formed on a computer running the Microsoft Windows 
NT operating system with 512 MB RAM and a single 
650 MHz Pentium processor. The generation of the chain 
with 26 000 samples took approx. 12 h.

Further details about the Bayesian hierarchical analysis 
are given in the Appendix.

Standard two-stage m inim al model analysis
The two-stage minimal model analysis is the traditional 
method to determine population values. In the first stage, 
a weighted non-linear regression analysis was employed 
to estimate the model parameters and, specifically, Si 
and Sg  were denoted SiNLR and Sg n lr  respectively. The 
weight was defined as the reciprocal of the variance of 
the measurement error [16]. The CV of the measurement 
error of unlabelled glucose was assumed at the level of 
1.5 %. The parameter estimation procedure provided the 
precision of a parameter estimate expressed as the CV 
of the parameter estimate from the Fisher information 
matrix [16].

In the second stage, the population (geometric) mean 
and 95 % C l of SiNLR and SGNLR was calculated.

Statistical analysis
Values are reported as means (95 % Cl for two-stage 
analysis or CrI for the Bayesian hierarchical analysis).

©  2003 The Biochemical Society
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The results of the Bayesian analysis are reported as 
medians of the posterior density functions, reflecting that 
medians are more robust than means. SPSS for Windows 
V9.0 (SPSS Inc., Chicago, IL, U.S.A.) was used to carry 
out statistical calculations associated with the two-stage 
analysis. Si and So estimated by the two methods were 
correlated using Spearman correlation (rs) to account 
for skewed distributions. The correlation coefficients for 
20:80% centiles of Si were compared using Fisher z 
transformation [17],

RESULTS

Plasma glucose and plasma insulin
Plasma insulin and glucose data are shown in Figure 2.

Bayesian hierarchical analysis
The Bayesian analysis provided estimates of S iBAY and 
Sq BAY in all subjects with good precision [16 % (3-59 %) 
and 14% (7-18% ) respectively; median (range)]. Preci-
sion o f individual estimates of />2 BAY and VBAY was also 
good [19 % (8 %-41 % ) and 4 % (3 % -7  %)]. Population 
characteristics of S iBAY, S g b a y , p 2 BAY and V BAY are given 
in Table 1.

The posterior density of the population mean of S iBAY 

and Sg bay is shown in Figure 3. The posterior density 
of individual values of 3"iBAY and S g b a y  is also shown 
(obtained by sampling from the population posterior 
distribution, see Appendix for details).

The population mean densities in Figure 3 (thick lines) 
are narrow and nearly symmetrical. This means that the 
population mean for the two parameters is well defined 
and its Crls are symmetrical around the mean. The in-
dividual density of Si in Figure 3 (upper panel, thin line)
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Figure 2 Plasma glucose (upper panel) and plasma insulin 
(lower panel) during insulin modified IVGTT in newly pre­
senting Type II diabetes
Individual profiles are plotted (n =  65).

is skewed to the right, specifying that individuals with 
newly presenting Type II diabetes have very low Si, with a 
most likely value (the mode) of 1.2 x 10-5 min-1 ■ 
pmol-1 • 1_1, but that there is also a non-negligible number 
of individuals with 10 (and more)-fold higher Si. In-
dividual values of So are nearly symmetrically distributed 
around the most likely value of approx. 1.5 x 10-2 min-1,

Table I Population characteristics of the minimal model with the Bayesian hier­
archical analysis (S|BAY, SGBAY, P2BAY and VBAY) and the standard two-stage analy­
sis (S|NLR, S g n l r . P2NLR and yNLR) during the insulin-modified IVGTT in subjects 
with Type II diabetes (n = 65)
T o r  the Bayesian hierarchical analysis characteristics (i| BAY, i c BAY, />2 BAY and 1BAY), the interval is the Crl, 
and for the standard two-stage analysis (i|N LR, 1g NLR. />2 NLR and I N LR) the interval is the Cl. ^Calculated 
using a sampling approach: the posterior distribution of the population parameters was used to generate a sample 
containing 20 000 individual i| and 1G (see Appendix for details). I BAYand 1N LR, Bayesian and non-linear 
regression analysis estimate of K respectively.

Population characteristic Mean ( 9 5 %  interva l)* In terquartile range

1 ,“ '  (x I 0 “ s • m in“ 1 • p m o l-1 - I - ' ) 1.07 (0 .8 2 -1 .3 6 ) l .4 3 |
i , NLR ( x  10 s - m in“ 1 - pmol 1 - 1 " 1) 1.23 (0 .9 7 -1 .5 6 ) 1.84

V "  ( x  10 2 • m in- 1 ) 1.53 (1 .41— 1.64) 0 .4 6 ]
i GHLI1 ( x  10 2 - m in * 1) 1.45 (1 .3 2 -1 .5 9 ) 0.53

/>21AY ( x  IO- 2  • m in- 1 ) 5.35 (4 .5 8 -6 .1 3 ) 3 .4 3 ]

Plm ( x IO - 2  - m in - 1) 5.71 (4 .8 7 -6 .6 8 ) 3.82

P  ( x I O - 2 - I“ 1 - kg“ 1) 13.8 (1 3 .4 -1 4 .3 ) 3-3$
P  ( x  I 0 " 2 • I“ 1 - leg ') 14.0 (1 3 .6 -1 4 .5 ) 3.3
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Figure 3 Posterior density of the population mean (thick 
line) and the posterior density of individual values (thin line) 
for S| (upper panel) and Sg (lower panel) estimated with 
the Bayesian hierarchical analysis
See text for details.

with a small inter-subject variability (nearly no subjects 
below 0.7 x 10-2 min-1 or above 2.7 x 10-2 min-1).

Standard two-stage analysis
The non-linear regression analysis successfully estimated 
SiNLR jn ajj kut four sut3ject;s (a £ % failure rate) when 
the CV of the parameter estimate was ^>150%. The 
precision of the remaining 5in l r  estimates was acceptable 
[12% (4-127% ); median (range)]. Estimates of 1>g n l r  

were obtained in all subjects with an acceptable precision 
[15% (5-104% )]. Precision of individual estimates of 
/>2 NLR was satisfactory [21 % (7-211 %)]. Precision of in-
dividual estimates of VNLR was very good [2 % (1-10 %)]. 
Population characteristics of 5'iNLR, S g n l r , p2NLK, and 
VNLR are given in Table 1.

Comparison of the standard two-stage 
and Bayesian hierarchical analysis
The non-linear regression analysis failed to estimate Si 
with precision in subjects #5, #6, #31 and #44, whereas 
the Bayesian hierarchical analysis returned Si in these four 
subjects with acceptable precision (range of CV 46-59 %). 
These four Si values were in the lower quartile and were

1st, 4th, 9th and 14th lowest among the studied group 
at 0.21, 0.28, 0.39, and 0.50 x 10"5 min-1 -pmol-1 • l-1. 
Their posterior density function is shown in Figure 4. 
Subjects #5, #6 and #44 had the lowest, and subject 
#31 had the 7th lowest precision, as determined by the 
Bayesian hierarchical analysis (59% , 58% , 53%  and 
46 % respectively). Otherwise, there was no apparent 
difference in the shape of the posterior density functions, 
which would provide a further insight into the failure 
of the non-linear regression analysis. This suggests that 
the non-linear regression analysis tends to fail in subjects 
with low and poorly defined Si.

Individual Si values estimated by the two methods 
were highly correlated (rs =  0.98; P <  0.001). However, 
the correlation in the lower 20 % centile of the Si 
range was significantly lower than the correlation in the 
upper 80 % centile (r$ =  0.71 compared with r$ =  0.99; 
P <  0.001), supporting further the notion that the non-
linear regression analysis has difficulties at low-insulin 
sensitivities. The non-linear regression tended to provide 
slightly higher Si estimates, as shown in Figure 5. The 
difference was not considered clinically significant. 
The inset in the upper panel of Figure 5 highlights the 
comparison at lower values of Si.

The precision of individual Si estimates provided by 
the two methods was highly correlated (rs =  0.82; P <
0. 001) and was similar in extent, although the Bayesian 
hierarchical analysis gave a tighter range. This is most 
probably due to the hierarchical nature of the analysis,
1. e. borrowing of strength across individuals.

A different picture emerged when considering Sg - 
Estimates provided by the two methods were still 
highly correlated (rs =  0.77; P <  0.001), but were not 
proportional (the unity line is different from a projected 
regression line; Figure 5). The non-linear regression gave 
a wider range of Sq . There were large differences in 
several subjects and these were generally in estimates with 
low precision, as returned by the non-linear regression 
analysis (Figure 5).

The precision of Sg  was not correlated between the two 
methods (rs =  0.12; P =  not significant). The Bayesian 
hierarchical analysis returned estimates with identical 
precision as judged by the median, but with a tighter dis-
persion (2 % compared with 16 % S.D. of the precision), 
explained again by the ability o f the Bayesian hierarchical 
analysis to borrow of strength across individuals.

The comparison of population characteristics is shown 
in Table 1. In the case of the Bayesian analysis, the mean 
and CrI were directly extracted from the posterior density 
of the population mean and the interquartile range was 
obtained from a simulated posterior distribution o f an in-
dividual parameter (Figure 3). In the case of the non-linear 
regression analysis, the characteristics correspond to the 
log-normal distribution of the parameter. There was 
no statistical difference between the two methods as 
demonstrated by overlapping CIs and Crls. However,
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SlBAV(10'5x min'1 permU/l) SlBAYf10 Ex m in1 per mU/l)

Figure 4 Posterior density function of individual S| derived by Bayesian hierarchical analysis in subjects where non-linear 
regression analysis failed
Subjects # 5 ,  # 6 , # 3 1 and # 4 4  were used.

the Bayesian hierarchical analysis gave tighter estimates, 
as indicated by a smaller interquartile range for both Si 
and Sg  by 20 % and 15 % respectively.

DISCUSSION

The present study demonstrates that the Bayesian 
hierarchical analysis is an appealing method to estimate 
population and individual Si and Sq  with the minimal 
model analysis of IVGTT. The appeal is due to the reliab-
ility of the parameter estimation process (100 % success 
rate) underpinned by coherent theoretical foundations of 
the methodology.

The Bayesian hierarchical analysis avoids minimal 
model failures, which occur in subjects that combine low 
Si and low precision of its estimate, as shown in the 
present study. We experienced a modest failure rate of 
6 % with the use of insulin modification and the standard 
non-linear regression analysis. The failure rate is expected 
to increase with the use of protocols without insulin 
or tolbutamide modification, as the insulin stimulus is 
invariably smaller and inadequate to estimate Si in the 
insulin-resistant state. In such studies, the Bayesian hier-
archical analysis will have a greater impact and will avoid 
a potential bias toward a higher estimate of population 
Si (this bias was not statistically significant in the present 
study).

An independent estimate of Si is not available. Ideally, 
our present results should be confirmed by, for example, 
clamp studies. However, the results are consistent as the 
failures occur in subjects with low sensitivity. The re-
liability of the Bayesian hierarchical analysis is inferred 
from an excellent correlation with the non-linear re-
gression analysis.

The Bayesian hierarchical approach is computationally 
demanding and cumbersome to deal with changes in the 
data set, i.e. adding a new subject or eliminating an outlier 
requires a completely new run. This should not be a 
problem in laboratory (non-epidemiological) studies due 
to shorter runs, but particular care needs to be exercised 
when dealing with data sets of our size or larger. In this 
situation, it becomes essential to prepare data well to 
avoid wasteful long runs.

The individual Bayesian method [8] is an alternative 
approach, which is more flexible (but overall the compu-
tation complexity is similar) than the Bayesian population 
approach and avoids ‘ failures’ using a ‘ somewhat’ in-
formative prior distribution. The Bayesian individual 
analysis specifies that Si above a certain fixed threshold 
is less probable. The Bayesian population analysis avoids 
this assumption. The distribution of 5) within the stud-
ied population co-determines Si within a particular in-
dividual. We believe that the latter is more appropriate 
as it exploits information present in a particular subject 
group.
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S,BAV (10'5 x min*1 per pmol L'1)

Figure 5 Comparison of the minimal model indices de­
termined by the Bayesian hierarchical analysis (S|BAY and 
Sg BAY) and the non-linear regression analysis (S |NLR 
and Sg n l r ) in subjects with newly presenting Type II 
diabetes
Upper panel, comparison of the S\ estimates. Lower panel, comparison of the 
Tg  estimates. Two T g NLR estimates with lowest precision (CV of the estimate 
given in the lower panel) differed most from their corresponding Tg BAY values. 
Solid lines represent the unity slope. The inset in the upper panel highlights the 
comparison at lower values of S>. n =  65.

The Bayesian hierarchical analysis adopts two sets of 
assumptions. First, the type of the underlying distri-
butions needs to be chosen. Secondly, prior distributions 
have to be specified. The type of underlying distributions 
for parameters, i.e. the log-normal distribution, adopted 
by the present study is both compatible with results of 
the standard two-stage analysis (results not shown) and 
physiologically feasible. It provides positive estimates of 
the parameters and also positive Crls. We adopted a vague 
non-informative prior distribution, which was sufficient 
to obtain well-defined population and individual posteri-
ors. This contrasts with the Bayesian ‘ individual’ analysis 
[8], which required a somewhat informative prior distri-
bution for Si to avoid large Crls associated with Si, 
suggesting that additional information has to be pro-
vided for the individual Bayesian analysis to compensate 
for the lack of information about the underlying popu-
lation characteristics.

The Bayesian hierarchical analysis is ‘ expensive’ in 
terms of the computational time. The calculations took

approx. 12 h on a mid-specification computer. This 
compares less favourably with the non-linear regression 
analysis with several seconds needed to run a single sub-
ject. However, compared with the overall time-scale of 
epidemiological studies, which normally take months to 
complete, the increased computational time is negligible. 
The appeal of the Bayesian approach originates from its 
ability to provide theoretically coherent plausible in-
dividual, population and precision estimates. However, 
care needs to be taken during data preparation to avoid 
wasteful runs.

An alternative, computationally faster, population- 
based approach is the iterative two-stage analysis, which 
has been shown to improve precision of minimal model 
parameters with reduced sampling using unmodified 
IVGTT in healthy subjects [9]. The method is computa-
tionally attractive and implements an empirical Bayesian 
hierarchical estimator. A full comparison using a common 
data set of the Bayesian hierarchical analysis and the iter-
ative two-stage method is warranted to explore whether 
simplifications made by the latter method influence 
results at low Si as observed with the standard two-stage 
analysis.

Our analysis of a mid-size group of newly presenting 
Type II diabetes subjects gave a modest 6 % failure rate 
of the non-linear regression analysis. This small failure 
rate could be attributed to frequent sampling, a relatively 
high dose of insulin (0.05 unit/kg of body weight) and 
a high accuracy of analytical techniques. The failures 
occurred in subjects with very low S\. Any relaxation 
of the conditions given above is likely to give a higher 
failure rate, most likely in subjects with low Si, distorting 
the population characteristics.

We have evaluated further the Bayesian hierarchical 
analysis with a small number of subjects when the popu-
lation distribution is likely to be estimated with a lower 
confidence. We have carried out an analysis on a subset 
containing nine subjects, including two subjects failing Si 
estimation, with the non-linear regression analysis. The 
results demonstrated that Bayesian hierarchical analysis 
is suitable for smaller subject groups too. All nine subjects 
provided well-defined Sq estimates (CV of parameter es-
timates < 25 %) and acceptable Si estimates (CV < 90 %; 
higher CV values for lower Si). Individual Si estimates 
were highly correlated among the full set and the subset 
(r =  0.99; P <  0.001) without introducing bias (P =  not 
significant; paired Student’s t test). A  similarly high 
correlation (r =  0.98; P < 0.001) and a lack of bias (P =  not 
significant) were observed for Sq .

Population analysis with the minimal model of 
the tolbutamide-modified IVGTT has been reported 
using the non-linear mixed effect model implemented 
within the NONMEM package for healthy subjects [18]. 
The authors reported improved precision of population 
estimates compatible with our present results, but the po-
pulation variability was very similar between the standard
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two-stage analysis and the NONMEM results. The 
authors [18] did not report NONMEM-derived individ-
ual estimates of Si and Sg , although these can be in 
principle obtained with the so-called ‘post-hoc’ option.

Population kinetics methods have become essential to 
study drug pharmacokinetics. The knowledge o f popu-
lation variability facilitates the design of efficacious and 
safe dosing schemes. The size of population studies nor-
mally prevents a complex experimental set-up and only 
limited number of samples per subject can be taken; 
however, this does not prevent the use of population 
approaches.

The physiological modelling field is following the 
trend. The main appeal of the present application is due to 
the avoidance of estimation failures. However, as the 
computational and conceptual complexity of Bayesian 
methods is considerable, the development of more user- 
friendly tools is needed to support wider deployment.

The simplest methods to assess Si, such as HOM A [19] 
and QUICKI [20], rely on fasting glucose and insulin. 
These techniques estimate so-called basal Si, whereas 
most techniques measure stimulated Si [21]. Basal Si pri-
marily reflects sensitivity of endogenous glucose produc-
tion, whereas stimulated sensitivity also contains the 
sensitivity of glucose disposal [22]. When stimulated Si is 
of interest, the Bayesian hierarchical analysis is a method 
to be considered, especially in insulin-resistant subjects 
with or without Type II diabetes.

In conclusion, Bayesian hierarchical analysis is an 
appealing method to estimate population and individual 
Si and Sq  with the minimal model of the insulin-modified 
IVGTT. The method avoids parameter estimation failures 
and gives a smaller unbiased estimate of the population 
dispersion for both Si and Sg -

APPENDIX

Comments on Bayesian analysis
The Bayesian analysis is underpinned by a formula 
derived from the Bayes theorem

p{P I c) ex p(c\ P)p(P) (3)

which states that the probability p(P \ c) of parameters P 
given measurements c is proportional to the product of 
the so-called likelihood p{c \ P), and the prior probability 
of P, p(P). In our case, c represents a vector of plasma 
glucose measurements, and P represents a vector of para-
meters. The vector P can be conveniently divided into 
three components P = {£ ,/t ,, Z }: | contains individual 
parameters (e.g. individual Si and Sg ), p  contains popu-
lation means (e.g. mean Si and mean Sg ) and X contains 
population variance-covariance (e.g. the intersubject 
variability of Si and Sg ).

The probability p(P \ c) represents the posterior prob-
ability as it denotes probability of P after we observed

c. Assuming, for the sake of simplicity, that P includes 
just one parameter, say Si for one subject, p(P \ c) defines 
a probability density function, which assigns probability 
for all possible values o f S¡.

The calculation of posterior probability is the objective 
of the Bayesian analysis. It should be stressed that the 
posterior probability is ‘ richer’ than the estimate pro-
vided by the non-linear regression analysis. For example, 
the Bayesian analysis returns avalué (probability) for each 
value of Si, whereas non-linear regression analysis returns 
just one value, the point estimate of S¡. The Bayesian 
analysis enables the assessment of multimodal solutions 
(there might be two or more parameter values that 
provide a good fit to the data).

Another method, the maximum a posteriori Bayesian 
analysis works in a similar way to the non-linear re-
gression analysis and returns a value at which the pos-
terior probability attains its maximum value.

The Bayesian analysis requires the provision of the 
prior probability p(P), i.e. probability of P prior to 
having any observation. Two conceptual types o f prior 
probability can be considered, either informed or vague. 
The former specifies that certain values are more likely 
than others, the latter that all values occur with a similar 
probability. The property of the former is that we bring 
into the calculations our informed prior knowledge, but 
the drawback is that the prior knowledge might be too 
strong and influence the results, possibly too much. The 
latter avoids the use of informed knowledge (even if 
available) and makes the Bayesian analysis driven by the 
observations.

Comments on hierarchical analysis
As described above, the vector P includes individual 
parameters (§) and population parameters ( p  and Z). 
Mixing up individual and population parameters contri-
butes to the difficulties with the specification and solution 
of Bayesian problems.

The hierarchical analysis separates levels and simplifies 
the specification of the problem and the calculation of the 
solution. The first level describes how observations are 
obtained from individual parameters, i.e. the likelihood 
p(c |£) is defined from the minimal model equations. 
The second stage describes how individual parameters 
are obtained (drawn from) population parameters, i.e. 
the likelihood p(i, I p ,  Z) is defined using the equation 
representing the chosen population probability distri-
bution such as the log-normal distribution. The third and 
final stage describes how the population parameters are 
drawn from prior distributions.

Technical details of the Bayesian 
hierarchical analysis of the minimal model
A Bayesian framework for modelling the time-varying 
glucose profile during IVGTT and inter-individual 
variability requires a three-stage hierarchical model. At
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the first stage, glucose values g,y in subject i at time tj were 
obtained as the solution to eqns 1 and 2

gij =  g ■ (tj.pu, p2i, Si,, V,) ■ (1 +  eij) (4)

where p\„ pu Su and V, are parameters of subject z, 
Eij is the random term representing the multiplicative 
measurement error and the model specification error 
and other unaccounted variability. The random term £,y 
is drawn from a normal distribution with a zero mean 
and an unknown variance a1. Our earlier investigations 
(results not shown) suggested that reparameterization 
with pu, p2„ Su and V, is preferable (converges faster) 
to the original parameterizationpu,p2i,pu and Vn where
Si, =pii/pii-

The second stage is characterized by making assump-
tions about individual parameters. In particular, we as-
sumed that the individual parameters are drawn from a 
multivariate log-normal distribution guaranteeing non-
negativity of parameters

The main purpose of the Bayesian inference [24] is to 
determine the posterior probability of unknown quan-
tities such as individual parameters pu, p2l, Su and V, 
and population parameters \i, £  and a2. For our model, 
this cannot be achieved by direct (analytical) compu-
tation. Instead, sampling techniques such as the Markov 
chain Monte Carlo method [6] have to be used. These 
sampling techniques provide a large sample of the pos-
terior distributions normally running into thousands to 
tens of thousands of samples.

The posterior distributions were summarized by the 
median, the mean and 95 % CrI respectively.

The posterior distribution of the parameters /i and 
£  was used to generate 20 000 samples of individual 
parameters, which determined the individual posterior 
distributions (thin line) in Figure 3.

ACKNOWLEDGMENTS

(pu. pa. Si,, go,') ~  LNORM AL • (//,, £ ) (5)

where ¡1  is an unknown population mean vector, £  is 
an unknown covariance matrix and LNORM AL is the 
log-normal distribution.

At the third stage, prior distributions for population 
parameters fi, £ , and a2 were specified. These prior dis-
tributions were vague representing ‘ lack’ of prior 
knowledge

P

£

a - 2

Normal

Wishart

Ao6 0 0 0 ^
0, 0 106 0 0

0 0 106 0
1° 0 0 106,

(  50 0 0 o )

4, 0 50 0 0
0 0 50 0

1 ° 0 0 50)

Gamma(0.001, 0.001)

(6)

These prior distributions specify virtually ‘ flat’ distribu-
tions, i.e. they indicate that all values occur with nearly the 
same probability. In principle, informative prior distri-
butions could be used as there is a wealth of informa-
tion about parameters of the minimal model in various 
populations. However, in the present study, we limited 
the use of such information in order to allow the ex-
perimental data to drive the estimation process, although 
information is contained in the form of chosen distri-
bution, e.g. log-normal for individual parameters.

A general discussion about the form of vague prior 
distribution can be found in the literature, for example 
Gamerman [23].

Eqn (6) implements the common assumption that 
population parameters are not correlated, but allows the 
posterior estimates to demonstrate correlation.
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