

City, University of London Institutional Repository

Citation: Angelopoulos, N. (2001). Probabilistic Finite Domains. (Unpublished Doctoral

thesis, City, University of London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/30628/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

P r o b a b i l i s t i c F in i t e D o ma in s

N i c o s A n g e l o p o u l o s

P h .D. T h e s i s

D e p a r t m e n t o f C o m p u t e r Sc i e n c e

C i t y U n i v e r s i t y

April 9, 2001

T h is the sis is s u b mit t e d a s pa r t o f th e r e q u ir e me n t s f o r a Ph .D. in Co mpu t e r Sc ie n c e , in the
D e pa r t me n t of Co mp u t e r Sc ie n c e o f C i t y Un iv e r s i t y , Lo n d o n , UK.

Contents

List of Figures .. iv
List of T ab les ... vi
Acknowledgements...vii
D eclaration.. viii

1 Introduction 1
1.1 Probability T h eory .. 2
1.2 Logic for KR and Problem S o lv in g .. 2
1.3 Modelling Uncertainty.. 3
1.4 C L P ... 4
1.5 Thesis Overview ... 5

2 Computing with Measures 6
2.1 Probability T h eory .. 6

2.1.1 Foundations.. 6
2.1.2 The A xiom s.. 7
2.1.3 The P roperties.. 8
2.1.4 Interpretations.. 9
2.1.5 Why a Measure T h e o r y .. 11

2.2 Com putational.. 12
2.2.1 L o g ics ... 12
2.2.2 Logic Programming ... 13
2.2.3 Bayesian Systems... 15
2.2.4 Non Probabilistic... 16

3 Probabilistic Finite Domains 18
3.1 Objectives... 18

i

3.1.1 Sound Measure Theory .. 19
3.1.2 Intuitive Paradigm .. 19
3.1.3 Programmability... 19
3.1.4 Independence...20

3.2 Integrated Domains ...20
3.3 Variable defin ition ..20
3.4 C onditional.. 22
3.5 Conditional Variable d e fin ition ..25
3.6 Probability of Events...26
3.7 Variable Instantiation ..26
3.8 Variable Interrogation..28
3.9 Synopsis...29

4 Semantics 30
4.1 C L P ...30
4.2 Value Constraints Subschem e...31
4.3 The Parameters.. 32
4.4 Transitions .. 34

4.4.1 Consistency..34
4.4.2 In fer .. 35

4.5 Transitions S tra teg y ...36

5 Probabilistic Programs 38
5.1 The Three Curtains ...38
5.2 Enumerations... 42

5.2.1 Sampling with replacement, when order matters ...42
5.2.2 Sampling without replacement, when order matters... 43
5.2.3 Sampling without replacement when order does not m a t te r 44
5.2.4 Sampling with replacement when order does not m a tte r 45

5.3 Caesar Code ... 45
5.3.1 Problem Definition... 45
5.3.2 Modelling the Problem ...46
5.3.3 Pfd Specifics ...49
5.3.4 The P rogram ...50

5.4 Other Problems.. 52
5.4.1 B io lo g y ...53

ii

5.4.2 Dynamic Scheduling 53

6 Implementation 54
6.1 Overall..54
6.2 Techniques .. 59

6.2.1 R ation a ls ... 59
6.2.2 Detection of Cycles..59
6.2.3 Heuristic Labelling... 61

6.3 Alternative Propagation Techniques ...64

7 Experiments 65
7.1 Logical..65
7.2 Statistical... 69

8 Conclusions 76
8.1 G en era l...76
8.2 Positive P o in t s .. 77
8.3 L im itations.. 77
8.4 Future Work ... 78
8.5 Epilogue...79

A The rationals predicates 80

B The examples predicates. 83
B.l Curtains... 83
B.2 Enumeration .. 84
B.3 Caesar Encondings...85
B.4 Caesar clp(FD) predicates.. 88

C Constraint manipulating predicates. 90

iii

List of Figures

2.1 Composite S e ts .. 7

5.1 Graphs for strategies a and ¡3... 39
5.2 Clause for strategy a .. 40
5.3 Clause for strategy /?.. 40
5.4 Clause for 7 strategy...41
5.5 Clause for ordered sampling with replacement...43
5.6 Clause for ordered sampling without replacement...44
5.7 Predicates for unordered sampling without replacement.. 44
5.8 Clause for proximity method definition... 49
5.9 The caesar/3 predicate.. 50
5.10 The decode-Words/5 predicate...51
5.11 The proximity-vars/6 predicate.. 51
5.12 The miri-cardinality/4 and word-cardinality/3 predicates... 52

6.1 Clausal transformations with expand-term/2... 57
6.2 The demo predicates...58
6.3 Euclid’s Gcd Algorithm..59
6.4 Consistency example graph..60
6.5 Tree illustrating probabilistic approximation... 62

7.1 Graph and clause for 7 Strategy... 66
7.2 Curtains queries...67
7.3 Probability Tree for strategy 7 ; with ChooseWith = 1 /2 ..68
7.4 Top level predicate for Pfd solution to Caesar encodings problem................................. 70
7.5 Decoding words predicates...72
7.6 Pfd versus CLP(FD) timings comparison..74

IV

7.7 Pfd timings graph..75
7.8 CLP(FD) timings graph... 75

v

List of Tables

3.1 Definitions of Probabilistic Variables...22
3.2 Variations of Distributions... 24
3.3 Heuristic Labelling..28

5.1 A Caesar encoding example...46
5.2 Approximate dictionary frequencies (unit ~ 260).. 48
5.3 Proximity based probabilities..49

6.1 Operators Correspondence... 56
6.2 Optimal versus approximated order...63

7.1 Rational arithmetics for proximity method... 71

vi

Acknowledgements

F o r the first three years of this research I was supported my Centenary Scholarship by the
School of Informatics at the City University (London, UK). My supervisor was Dr. David R.
Gilbert of the Computer Science Department, whom I would like to thank for making me aware
of the aforementioned Scholarship and for bringing my proposal to the Research Committee’s
attention.

During those three years at City I was fortunate to interact with two distinguished col-
leagues. Dr. Herbert Wiclicky was an inspiring influence and his presence a major reason for
my decision to incorporate probabilistic notions in this thesis. Dr. Andreas Hadjiprokopis has
been a researcher keen to discuss novel approaches and a source of vast technical knowledge
and ability; whose approach to the day-to-day research was an inspiring factor in itself.

Last but not least I would like to thank Tarhata Orlanes for (among many other things)
her advice on style and her invaluable corrections on the prose.

N.A.

London
August 2000

PS. I would also like to thank my external examiners; Dr James Cussens (York University)
for his meticulous corrections and invaluable probabilistic comments, and Dr Mark Wallace
(Imperial College) for his suggestions and observations on search algorithms and constraint
research.

April 2001

v i i

Declaration

I hereby grant powers of discretion to the University Librarian to allow this thesis to be copied
in whole or in part without further reference to me. This permission covers only single copies
made for study purposes, subject to normal conditions of acknowledgement.

viii

Abstract

This thesis presents a set of programming constructs that are capable of modelling prob-
abilistic concepts and of computing with such concepts. The main objectives are to provide:
a theoretically sound, practically achievable and notationally intuitive formalism. The proba-
bilistic programming constructs are presented in the form of a system called probabilistic finite
domains, which enhances the Logic Programming paradigm with a novel constraint solver. In
doing so, we are able to take advantage of the knowledge representation power of probability.
In particular we investigate: first, the duality of the two interpretations of probability to the
problems researchers face when wishing to create a probabilistic formalism and second, the use
of probability as a unifying model for computational derivations. Some programming examples
and a simple implementation are also described.

Chapter 1

Introduction

The research described in this thesis is concerned with the study of probabilistic concepts in
some computational context. Since this is a broad description that encompasses a variety
of hybrid approaches, our aim in this introductory chapter is to give the basic theories and
technologies that are pertinent to our work.

The objective of amalgamating these technologies is the formalisation of computation over
quantities. We will thus continue our exposition by presenting some relevant research efforts
from the literature. This also serves as motivation and background material, helping the reader
to gain a basic appreciation of the technical issues involved.

With the broad boundaries of our study defined, we then present a new probabilistic for-
malism, which encompasses knowledge representation and computational methods capable of
dealing with uncertainty. Here we will refer to this formalism as probabilistic finite domains
{Pfd, for short). The constructs of Pfd are introduced as a set of primitives which are succinctly
presented within a constraint Logic Programming setting. We will provide some justification
for the choice of the particular paradigm and comment on the ability to embed these constructs
to other paradigms.

The intended purpose for Pfd, is that of a conceptual tool for sensible automated reasoning
for probabilistic problems. Where by sensible, we refer to a first step towards intelligence.
The most important objective in our work has been the creation of an effective computational
mechanism.

The sections in this Chapter are brief expositions of the various domains and technologies
that are pertinent to this thesis. We also use them to introduce some terminology and allow
clarifications of overloaded terms.

1

1.1 Probability Theory

By Probability Theory (PT) we will refer to the axiomatisation brought together by Kolmogorov
([Kol33]). In particular, the emphasis is placed in viewing Probability Theory as a mathematical
tool, while avoiding to place onto its derivative terms any logical or philosophical connotations.

Logical and philosophical issues are of paramount importance when one considers the mod-
elling and problem solving capabilities of formalisms based on probability. However, we choose
to view the axiomatic definition of probability as a machinery for mathematical reasoning (much
like we view Logic). This machinery in itself is not responsible for providing translations be-
tween the real-world and the mathematical objects. Although this is considered self evident in
some circles, it is by no means the universal consensus of viewing or understanding probability.
On the contrary, the attempts of computer scientists, seem to follow steps parallel to the ones
taken by physicists and mathematicians, prior to the inception of Probability Theory, that is,
when the theoretical explorations where very much interpretation driven.

Our exposition on interpretations and knowledge representation, using probability, assumes
some familiarity with [Rei71] and [Car62]. These texts also place the development of Probability
Theory in historical perspective (for a rigorous coverage on the historical perspective see [vP94]).
This is important for our understanding of PT since it is the product of a long process of bringing
together various fragments of research.

This thesis is self sufficient, in that it introduces most of the probabilistic concepts, that are
necessary for a reader with a computer science background to follow. More general knowledge
as discussed in most standard Probability Theory texts (such as [Fel59, Pap91]) may lead to
much deeper appreciation of the issues involved and of their importance.

Even-though probability is a widely used modelling tool, there are strong reasons to believe
that people have difficulties in reasoning with concepts involving probability based uncertainty
([G094]). This problem becomes more acute since our objective is to provide a programming
framework. This adds an extra complicating factor since the programmer needs to have a
particular execution strategy in mind.

1.2 Logic for KR and Problem Solving

Logic is the single formalism that has the longest and strongest presence in Knowledge Repre-
sentation (KR). Despite the fact that a number of alternatives have been suggested, both during
the early development of the field and more recently, Logic is the stronghold at the common
ground of a lot of research in Knowledge Representation.

2

Even more pertinent to our programming language orientation is Logic Programming,
([Kow79]) which notably bridges the space between Knowledge Representation and effective
problem solving.

In this work we have diverted from purist approaches in embedding Probabilities in Logic,
by virtue of placing such reasoning at the fringes i.e. constraint solving. This has been proven
to be a fruitful combination strategy. (The technical argumentation for this diversion is in
Chapter 2.) The integration of the two theories, has been considered as highly desirable by
many researchers, and naturally a number of approaches have been suggested. Our contribution
is a seamless and bi-directional symbiosis for the theories of Logic and Probability.

1.3 Modelling Uncertainty

Given the importance of Logic and PT, it is not a surprise that there exists a plethora of
attempts which seek to integrate them. These range from purely theoretical abstractions to
ad hoc expert systems. We will discuss some of the most well known approaches as a way of
charting the relevant research areas, while pointing out the important issues in this field of
study. However, we also include a brief discussion on formalisms which deals with uncertainty
in non-probabilistic ways, in order to provide a more complete picture.

Here we give a basic categorisation for formalisms, which will be discussed in this thesis. It
must be noted that the boundaries of the following areas are sometimes difficult to distinguish
and often arbitrary.

Probabilistic

Logics
Artificial Intelligence [Nil86]
Satisfiability [GKP88]
Statistical Knowledge [Bac90a]

Logic Programming
Uncertainties [Sha83]
Quantitative Deduction [vE86]
Bilattices and Semantics [Fit91]
Horn Abduction and Bayesian Networks [Poo93b]

3

Bayesian Systems
Evidential Support Logic Programming [Bal87]
Bayesian Networks [Pea88]
Expert systems [Nea90] (survey)
Bayesian rule-based [DHN81]

Non Probabilistic

Dempster-Shafer Theory [Sha76]

Fuzzy Logic(s) [DP80, Zad65]

This thesis will also argue and try to establish, that the role of probability in computing
with uncertainty, is analogous to logic’s role in problem solving.

1.4 CLP

We have used and extended the CLP(X) model ([JL87]) (and more specifically CLP(FD)) for
the experimental part of this work.

The particular choice provides :

• an abstract means for presenting the probabilistic reasoner,

• seamless movement between our preferred theories, (Logic and PT)

• a well defined and understood interaction between the two theories,

• support of effective programming environments,

• minimal effort in migrating to other programming paradigms and languages.

In particular, the clarity of separation and the ability to access both Logic and Probability
Theory, from a single programming paradigm, have been invaluable not only in furthering
the ideas of duality, comparison and integration of the two theories, but also in implementing
evaluation prototypes within research constraints.

From a theoretical perspective, finite domains and CLP(FD) research ([Mac77, MR93,
CD96]) allow us to cast the ingredients of the probability axioms to programming primitives.
This is an important step, that allows the development of our probabilistic machinery to develop
quite independently from any modelling restrictions. By modelling restrictions we mean the
interpretations given to the probability values in the real world. Thus, we avoid the common

4

practise of hardwiring a particular probabilistic interpretation to proposed programming con-
structs. The need for model-independent formalisms constitutes one of the central arguments
of this thesis.

The extension we provide to the operational model of CLP continues on the tradition of
generalising the interaction between the logic engine and the solver. The first wave of solvers
treated the solver as a black box ([JMSY92]). These were followed by solvers which provided the
ability to see through the solver (glass box approach) and better integration techniques ([DC93,
CFS93]). The current trends include employment of more than one solvers (hybrid approaches,
[WCJL+98]) and/or general systems for building constraint solvers ([Frii98, DBH+99]). With
Pfd we introduce a solver that can be used for guiding computation (logic engine and constraints)
in a general manner.

Finally, research from CLP has provided a convenient basis for the semantics of Pfd. Towards
this end, we have utilised and extended concepts presented in [vE97]. Our alternative view of
these concepts increases their applicability and maybe of importance to other CLP researchers.

1.5 Thesis Overview

The rest of the thesis is structured as follows. In Chapter 2 we give some of the fundamental
results of Probability Theory and briefly review some of the existing research in the area of
modelling and reasoning with uncertainty. Chapter 3 presents the syntax of probabilistic finite
domains along with small examples that illustrate how the introduced constraints can be used
to model uncertainty. The semantics of Pfd are then given in Chapter 4. This is followed by
a number of example problem areas and a description of how they can be modelled in Pfd, in
Chapter 5. These examples are then used: (a) to present a meta-interpreter that implements
Pfd (Chapter 6) and (b) to provide some feedback on the general limitation of Pfd and the
particular behaviour of the meta-interpreter (in Chapter 7). Finally, in Chapter 8 we give our
concluding remarks and comment on possible directions for future work.

5

Chapter 2

Computing with Measures

In this chapter, we present the necessary background of the thesis. The first part describes and
formalises our use of the term Probability Theory. We will state the axioms of the theory and
some basic properties. While the later part is an overview of several existing methodologies
which combine some computational model with notions of imprecision. This overview serves
two main purposes. Firstly, as an implicit definition of the kind of issues we wish to address
and secondly as the motivation for the rest of the work in this thesis.

2.1 Probability Theory

By Probability Theory we refer to the axiomatic definition put forward by Kolmogorov (in
[Kol50]). The widespread acceptance of this formulation is primarily attributed to its indepen-
dence from a particular interpretation. This was a novel property that was lacking from the
preceding statistical theories. This quality of the theory plays a major role to this work, since
our objective is to introduce a computational formalism, that although it provides probabilistic
reasoning capabilities, still does not impose a particular interpretation on such reasoning.

2.1.1 Foundations

Following a statistical exposition, we will refer to an experiment as a basic (intuitive) concept
describing a process or situation which we wish to model. For instance, the throw of a single
dice where the top-face value is observed, constitutes a simple experiment. In each experiment
we are interested in observing, predicting and describing the behaviour of all possible outcomes.
Outcomes are the atomic units of formalisation. Thus, we condition the ability to apply the

6

probabilistic machinery, on the existence of a set describing all the possible outcomes of an
experiment. This ensures that three essential ingredients are in place. Firstly, that the outcomes
are atomic, in the respect that they are indivisible. Secondly, that each outcome is unique, in
as far as that no duplicates are allowed. Thirdly, that the set needs to be an exhaustive
enumeration of all possible outcomes. This exhaustive set is defined as the Sample Space for
the experiment (represented therein by 5). In the single dice, single throw experiment, the
obvious sample space is S= {1 ,2 ,3 ,4 ,5 ,6}

In order for the abstraction of physical phenomena to mathematical objects to become
complete, we need an intuitive means of gathering atomic outcomes into meaningful groups.
We will refer to such groupings as events and from an intuitive point of view, they can be seen
as properties which can hold over parts of the sample space. Events provide an abstraction for
reasoning over sets rather than over points in S. In the dice example an event (A) could be
that of the appearance of an even face, thus A = {2 ,4 ,6 }. More formally an event is defined
as a subset of the Sample Space S.

Figure 2.1: Composite Sets

This leads to the use of algebra of sets for the construction of composite events. For events
A and B , (with A! denoting the complement to A with respect to 5) we give a diagrammatic
representation of the cases of, A', A n B, and A l lB , composite events in Figure 2.1. A
composition of particular interest is that between disjoint events. Events A and B are said to
be disjoint if and only if A n B = 0 (0 being the empty set).

2.1.2 The Axioms

The objective of the axiomatic definition of Probability, as for any concept defined axiomatically,
is to formulate a number of axioms that describe the requirements on the mathematical objects
of the theory.

Probability is a function P from sets to numbers. In particular, we are interested in the

7

events (At) of S (Aj C S, as introduced in the previous section). Thus, we will call P(A{) the
probability of event Aj. The axioms, which the function P need to satisfy, are:

i) P(A) > 0,

ii) P(S) = 1,

iii) for any k in the positive integers, and events A\,A2, . . , , Ak such that, if A.t n Aj = 0 with
i ^ j then

P(Ai U A 2 U ■ ■ ■ U Ak) — P(Ai) + P^Ag) + ■ ■ ■ + P(Ak) (2.1)

The third axiom used here is that of Finite Additivity as opposed to the other options of
Countable or Infinite Additivity. This is sufficient for the discrete and finite case which forms
the basis of our computational apparatus.

2.1.3 The Properties

We briefly present some important properties that follow from the introduced axioms. For
detailed expositions, proofs and motivation for the probabilistic significance of these properties
the interested reader is referred to standard probability texts, such as [Fel59] and [Pap91]. The
main properties of the theory that are of importance to this work are as follow :

Impossibility is ascribed as having a zero probability.

P(0) = 0 (2.2)

Monotonicity of events to their corresponding probabilities.

i f A Ç B then P{A) < P(B) (2.3)

Complementarity
P(A') = 1 - P (A)

Coverage of intersection in union of arbitrary events.

P(A U B) = P{A) + P(B) - P(A il B)

(2.4)

(2.5)

Finally, the conditional probability of an event A given the occurrence of event B , is defined
as:

P(A\B) =
P (A D B)

P(B)
(2 .6)

(for P(B) > 0).

With the mathematical abstractions of the theory in place, we will now take some space to
present its three most established interpretations. This provides a perspective to the historic
culmination towards the inception of probability and the need for an independent theory. It is
also a natural link to the discussion in the second part of this chapter.

Frequency : This is the most common interpretation and is generally associated with statis-
tics. It refers to well founded every day intuitions, where we can replace a point based
approach to reasoning by an interval based one. In the frequency based interpretation,
the probability of an event is perceived as being approximated by its relative frequency.

This is constructed by performing a number of repetitions (under identical or nearly
identical conditions) of an experiment while counting the number of times an event (A)
was observed to occur. The probability of the event is thought to be approximated by the
quotient of the times event A was observed (# (A)) over the total number of repetitions
(N).

P(A) = ^ (2.7)

Clearly, # (A) < N. The approximation is thought to improve as the number of repetitions
increase. The two values are assumed to converge as the number of repetitions tends to
infinity.

As an example of this approach, consider a coin which is thrown a number of times
(N = 100, for instance) with the number of tosses in which a head (5 = {head, tail}, A =
{head}) occurs being noted down (e.g . # (A) = 64 for instance). The value of the quotient
2.7 is taken to be the probability of event A (P(A) = .64).

The frequency based interpretation is thought to be closer to the layman’s intuitions and
it usually precedes and motivates the formal treatment of the axiomatic definition in
statistical text books.

Subjective : This is when the probability of an event is equal to the degree of personal (thus
subjective) belief that the event will occur. A traditional way of quantifying such an
immeasurable concept is through the acceptance of betting. So, someone may hold a
personal belief that a game of backgammon between players Andreas and Thanasis is
won by player Andreas with probability 3/4, if the following two statements are true.
Firstly, that the person is willing to bet three units for each unit (or more) of pay-off in
the event that player Andreas wins. Secondly, that the person is willing to bet one unit
for a three unit (or more) of pay-off in the event that player Thanasis wins.

2.1.4 Interpretations

9

Let, p(Andreas) be the probability of a win by Andreas. Trivially, we have

1 = p(Andreas) + p(Thanasis)

The number three, of the preceding paragraph is then derived, by:

P(Andreas) P(Andreas) 3/4
1 — P(Andreas) P(Thanasis) 1/4

For any event A, the quotient P(A)/1 — P(A), is what in the knowledgeable circles called
the odds of a bet. Alternative ways of quantifying the subjective probability have also
been devised more recently (particularly via abstracting the notion of pay-offs to utility).
An alternative approach which does not utilise the ideas of utility or betting odds, was
developed by de Finetti [dF31].

One major difference of the subjective approach to the frequency based one, is that we
can apply it in non-repeatable experiments. The basis of this approach was formed by
work done primarily in Philosophy and Logic. An in-depth approach to the meaning of
the two main interpretations of probability can be found in [Car62].

Classical : Historically speaking, the classical interpretation was the first approach to be
developed. This goes way back before the time of formal mathematics. In recent times it
is not presented independently, since it can be viewed as a a special case of the relative
frequency approach. Its brief presentation here serves the two purposes of: (a) providing
the historical perspective and (b) of showing that there are fundamental questions which
are common to Logic as they are to probability.

The limitation relative to frequencies, comes from the requirement that the (N) outcomes
in the sample space S, must all be equally probable alternatives. It then follows directly,
that each outcome has a probability of j j . The probability of an event, is thus formed
from the enumeration of elements in the event (A) as a proportion to the total number
of outcomes.

P{A) = y (2.9)

The cardinality of set A (|A|) in (2.9) can be read as the outcomes favouring A, while
(A) in (2.7) is the observed occurrences of A. It is possible to link the two approaches
by claiming that |A| is the observed # (A) of a special experiment. This mapping is one
directional, since there exists the obvious possibility of experiments that might not result
to equal number of observations per outcome.

10

A fair dice can be used as an example for this approach. Normally, due to the lack of
evidence to the contrary, one assumes that each of the faces ({ 1, 2,3 ,4 ,5 ,6}) is equally
probable and thus can assign the probability value of 1 / 6. The event of throwing an even
face is then P (A) = 3/6. Note that this is not calculated in reference to the probability
assigned to the actual outcomes. So, in this respect outcomes are treated as singleton
events.

An important feature of the classical interpretation is that it promotes a less arithmetical
evaluation in some domains. Instead of running experiments or gauging subjective ap-
proximations, one is encouraged to find symmetries in the underlying laws or structures of
the problem domain. In cases where this is possible, one can derive very precise metrics,
which come to the surface from the logical interactions. This is advantageous since there
is no need to impose a mapping from approximations onto actual values.

From the perspective of knowledge management, the classical and subjective viewpoints
are more suitable in cases where we want to move from axioms to theorems, whereas
frequency approaches are used en masse in modern science to establish connections from
theorems to more basic concepts in a mathematical theory.

2.1.5 Why a Measure Theory

When the additivity axiom is restricted to its finite version, as it is the case here (definition 2.1),
the use of a measure theoretic approach is not always necessary. On the contrary, the use of
the theory is often reduced to a glorified algebra for non-standard additions and multiplication.
One alternative approach has been suggested by Nelson (in [Nel87]). The complete analysis of
the respective merits are outside the scope of this work but we give the rationale behind our
decision. With our target of a programming paradigm in focus, we believe that probability is
the best available theory that can provide :

• a means for capturing people’s intuitions about imprecision,

• a standardised lingua franca for communicating such notions,

• people who are trained in the theory,

• compositionality, and more so, sound compositionality.

11

2.2 Computational

In this section we present and comment on a number of computational methodologies which
deal with notions of imprecision. The degree to which such notions are integrated is of course
varied across the different methodologies. Our objective was to include these that are most
likely to be neighbours of Pfd. The reader should note that this exposition does not claim
completeness of the numbers or thoroughness of presentation. Furthermore, the categorisation
used is contrived and by no means a standardised approach to the field.

2.2.1 Logics

There has been a long tradition of attempts whose target is to enhance logics with probabilistic
concepts. The interest of philosophers and mathematicians (e.g. [Bor70]) has often been keen,
and not surprisingly so, since they can be both viewed, as axiomatic theories of knowledge.
Although these are deep engaging questions, here we will concentrate on work that is more akin
to a computational oriented approach to knowledge, its representation and reasoning.

When one is mixing Logic and Probability for the purposes of representing knowledge, it is
very often the case that the resulting formalism exhibits an in-built interpretation of probability.
These are called, the epistemic and the statistical types of knowledge, which are perfectly aligned
to the subjective and the frequency interpretations of Section 2.1.4.

Research in Propositional Probabilistic Logics [Nil86, GKP88, FHM90, FH94] has provided
a clear perspective on their capabilities and limitations. The common ground is that the
semantics are done via a possible worlds route. These languages are fairly expressive from a
probabilistic perspective and have decision procedures that work well in the average case. The
main drawback is that they seem to be better at (or more natural to form systems that are)
dealing with epistemic knowledge and that the underlying Logics remain two-valued.

Work in First Order Logics include [Bac90a, Bac90b] which to some extent is based on and
enhances the propositional case. This is again, using a possible-worlds semantics but manages
to extend to the possibility of manipulating both types of probabilistic knowledge. Thus, it is
possible to have the following sentences :

[fly(x)\bird(x)\x > 0.5

[P{x) AQ{ x)\R{X)]x = [P(x)|fi(x)]x x [P(x)\R(x)]x

The resulting formalism is very expressive but unfortunately it seems unlikely that a general
procedure, which retains the computational properties of the propositional case, exists. Fur-

12

thermore, it is not obvious how general probabilistic constructs can be derived for use within
a programming paradigm. Two features that hinder this, are the use of detailed probabilistic
constructs, which are only manageable by statisticians and also the obliqueness of the system’s
compositionality.

A rather different and less known approach was introduced in [Ale88]. Aleliunas at the
first instance introduces a meta-theory for probabilistic Logics, which treat probabilities as
uninterpreted formal marks. This results to a possibility of non numerical probabilities, which
although an interesting concept; still reduces the appropriateness of probability as a name for
these formal marks.

The meta-theory is formulated by a number of axioms for Propositional Probabilistic Logics.
Some examples are then presented on how to instantiate this axiomatisation to more concrete
theories. The examples are mainly used to illustrate that the formalism is a more general than
existing ones, or that it can be used in novel ways.

This is a very insightful work that may have applications to common sense reasoning, knowl-
edge representation and to decision theory, particularly so due to the fact that it might be
capable of formalising some of the existing ad hoc approaches. The main two drawbacks are,
firstly that it is concerned with the propositional case and secondly, that its impetus to practical
problem solving has not been evaluated.

2.2.2 Logic Programming

The most effective use of Logic for programming, to date, is in the form of Logic Programming
(e.g. [Hog90, SS86, NM90]). Thus, it is not surprising that there have been a number of sug-
gestions towards a probabilistic version of Logic Programming. The first issue to be addressed
in tackling such a task, is the mapping of statistical notions that underlie Probability Theory
(such as experiment, outcomes and events as defined in 2.1) to Logic Programming constructs.

One of the issues which arises in various belief-oriented approaches is, that clauses of the
(general) form :

A i f B with Pi

B i f C with Po

must answer questions about the probability of A given C. Thus, as in any belief system,
Probabilistic Logic Programming approaches need to define the combination rules which will
provide answers to such questions.

In Logic Programs with Uncertainty ([Sha83]) we are presented with an extension to Logic
Programming for reasoning with uncertainties. The semantics of normal logic programs are

13

respected, although only a sketch of the extended semantics is given. The main novelty of this
brief paper, is the use of multi-sets for the expression of degree in which the belief in one’s
premises influences the degree of belief to a particular conclusion. The perspective taken has
a programming orientation and the multi-sets are shown to be allowing the construction of
various meta-interpreters (each implementing different combination rules). Some trivial meta-
interpreters are also sketched out. This approach is enlightening, in showing that it is quite
easy to formulate combination rules for the limited case of subjective interpretation. By doing
so, the generality of the term probability, is of course, lost.

Logic programs have also been shown to extend in a more general way through quantitative
reasoning rather than through probability. There exist two approaches in this direction, this of
van Emden (in [vE86]) and work by Fitting (see [Fit91]).

The idea was originally advocated by van Emden as an extension to standard Logic Pro-
gramming (as in [vEK76]) motivated by the use of LP in implementing expert systems (in
which one very often considers certainty measures rather than truth values). It is a general
formalism for enhancing Logic Programming with quantitative reasoning, which contains both
fuzzy and probabilistic reasoning as sub-cases. There are two Quantitative (as oppose to truth
values which are considered qualitative) concepts introduced. The first associates a certainty
factor to the implication operator, while the second extends the notion of interpretation (for
relations) by regarding them as fuzzy sets ([Zad65]). From the computational point of view,
this paper is a breakthrough since proofs are mapped into and/or trees and the weights attached
to clauses (goals at time of derivation) are seen as heuristics for guiding the general purpose
search algorithm (an a — /? search algorithm in this case).

On the other hand, Fitting ([Fit91]) uses the notion of bilattices for the extension of logic
programs, keeping the discussion primarily on the semantics while avoiding issues dealing with
the proof procedure.

In both cases, the strongly founded semantics seem better suited for fuzzy reasoning. Also,
due to the generality of these approaches, it will not be possible to take advantage of the special
features of probabilistic measures for the purposes of efficient computation.

In a very similar vein, the most recent approach to Probabilistic Logic Programming in
[Luk99] attempts to attach probabilities at the clausal level. The computability of this approach
was further investigated using the principal of maximum entropy, which is a recurrent theme
in uncertain reasoning, in [LKI99]. This approach is prototypical in illustrating why we have
chosen to avoid defining probabilities at a clausal level.

A convenient bridge to the next section is Probabilistic Horn Abduction (in [Poo93b,
Poo93a]). Which is not strictly speaking, within mainstream Logic Programming. This is an

14

instrumental way of using a standard reasoning mechanism (that of Horn Abduction) to recast
a special case mechanism (Bayesian Networks). Moreover, the resulting formalism subsumes
(the propositional based) Bayesian Networks since it is predicate based. The main strength
of Probabilistic Horn Abduction is in reasoning with conditional probabilities. As the author
mentions,

The aim was to create a simple Logic which is a compromise between epistemic
and heuristic adequacy.

From our viewpoint there are two disadvantages. Firstly, that the probabilistic part is fused
to the underlying reasoning strategy. Secondly, that although more general than Bayesian
Networks, it still suffers from their main limitations.

2.2.3 Bayesian Systems

Evidential support Logic Programming is an approach that comes from the expert systems
area, introduced by Baldwin (in [Bal87]). This is a generalisation of Logic Programming which
allows reasoning with uncertainties (both probabilistic and fuzzy notions). The main extension
to clauses is that each clause has a pair of numbers associated with it. These are the necessary
and possible supports. In this framework derivations are not theorems which follow from axioms,
but instead they are viewed as statements supported by evidence. The proposed theory was also
implemented in two systems. One being a basic extension on top of Prolog, whereas another
implementation sought to further differentiate the inference controls from the one available in
Prolog. The advantage of these systems, is that they provide a solid basis which encompasses
various alternatives to reasoning with uncertainty (fuzzy and probabilistic included). On the
other hand, one of the main disadvantages, is that no formal semantics exist, since the semantics
of Logic Programming cannot be applied to this formalism and no alternative semantics have
been proposed by the author. This approach seems to be motivated by a statistical and expert
systems background and it uses Logic Programming as a standardised form of rule inference.

There have been a variety of probabilistic methods used in expert systems (for some of
the more well known ones see [Nea90]). Their common denominator is the use of Bayesian
approaches, which normally boils down to taking advantage, in one form or another, of the
conditional dependency definition (2.6). One of the more accepted representatives was proposed
in [DHN81]. This is based in sound theoretical foundations and has been tested in some
practical applications ([DGH81]). Its main target is to deal with subjective statements in
a pragmatic way; accepting and trying to deal with problems such as inconsistencies found
in subjective statements. Thus, although the basis is the normal Probability Theory, there

15

were some generally applicable extensions introduced for dealing with networks of subjective
inference rules. Reasonings in this system is done via a probabilistic updating procedure which
can cope with peculiarities of subjective measures (there seems to be a slight confusion on the
part of authors about the distinction, but this is no more than in other similar papers written
by computer scientists). The applications presented include a hard-wired system for mineral
exploration, as well as a more adaptive system that was employed in modelling areas such as
medical diagnosis and securities analysis.

Bayesian Networks ([Pea88]) is a well researched formalism which can deal with proba-
bilistic propositions given in a graphical form. The formalism has been particularly useful for
exploratory analysis. That is, in areas where the involved variables and the exact topology
of dependencies are still under investigation and a tool with sound inference is needed for ex-
ploring different hypothesis. Such areas include decision making (particularly in medicine) and
economic modelling. Bayesian Networks are very well equipped to deal with such situations but
they are not a very suitable formalism for general probabilistic programming; this is due to two
reasons. Firstly because the mapping of the problem to (effectively) a global graph of variables
requires a rigorous statistical understanding, and secondly because probabilistic dependencies
can only be defined between values rather than random variables. This is beneficial to the
problems of an exploratory nature where the researcher goes back and forth between the defini-
tion and the analysis of the results produced (for example of such interaction methodology see
[CG98]). There is a plethora of publications on a variety of issues around Bayesian Networks,
some of the ones pertinent to this thesis are, on complexity [BFGK96, DL93], on representation,
[vdGM96b, Coo90, DP97, DvdG95].

2.2.4 Non Probabilistic

The Dempster-Shafer theory ([Sha76]) uses a non-probabilistic approach for modelling uncer-
tainty. In some respect, it is an extension since it allows for non-exhaustive coverage of possi-
bilities. The main drawback is that the combination rules are rather complicated and rigidly
derived. These create a machinery to which results are commonly connected to prescribed facts
in a un-intuitive manner. For a probabilistic view of the theory see [Kra97a].

Fuzzy systems ([Zad65, DP80, KY95]) have been very successful in control system appli-
cations. The success has been surprising to the theoretically inclined community since the
foundations of Fuzzy Logics are generally considered as unsound. The success of the appli-
cation domains with the control systems characteristics is not hindered by the unsoundness,
because the rule base in such cases is quite limited and normally represent shallow knowledge

16

(see [Elk93] for fuzzy systems’ success contributing factors). Our main argument against fuzzy
systems is not the unsoundness itself, but the fact that this leads to poor compositionality,
which sets a hard limit on the size of problems to be tackled. Computing power on the other
hard has been found to be a softer limit in comparison.

17

Chapter 3

Probabilistic Finite Domains

In this chapter we introduce the syntactic constructs of Pfd along with their intuitive meaning.
We open the discussion by presenting the set of objectives sought to be fulfilled by this work.
This set of objectives is also a good means of communicating the perspective through which we
approach probabilistic computation.

The rest of the chapter describes the novel aspects of the constructs forming Pfd. For each
of the constructs we provide its syntactic form, its intuitive meaning and the role it plays within
the formalism. The intuitive meaning is conveyed via operational and logical arguments. We
also briefly comment, on the algorithmic behaviour of the constructs and in particular identify
the most expensive operations.

Although we present the Pfd framework within a CLP(X) context, its concepts can be
integrated to different paradigms. The suitability of Logic Programming for presenting our work
becomes apparent from the use of meta-programming constructs. In this chapter we comment
on the concessions that have to be made, when considering Pfd within other programming
paradigms.

Another reason for presenting Pfd through CLP is that this approach helps to concentrate
on the novel aspects of the introduced framework. Particularly so since CLP(X) is declarative,
well understood and modular in the choice of X; the domain of discourse.

3.1 Objectives

The main design objectives for Pfd were :

• sound measure theory,

18

• intuitive paradigm,

• programmability,

• language and interpretation independence.

The choice of these particular objectives, leads to a very interesting, challenging and open
research topic. This is particularly highlighted by the fact that none of the approaches discussed
in Chapter 2, is generally thought to address all of these objectives simultaneously.

3.1.1 Sound Measure Theory

The computations within the proposed formalism should be based on a consistent measure
theory. The theory on which we base Pfd is Probability Theory. This is certainly considered as
a consistent mathematical theory.

In particular, we require the computations to be sound with respect to Probability Theory.
Thus the existence of a probabilistic formulation for every computation instigated within Pfd is
necessary. On the other hand, we should note that completeness is not one of the requirements.
The requirement of soundness and lack of completeness of Pfd with respect to PT is similar to
the relationship of LP to Logic.

3.1.2 Intuitive Paradigm

As a modelling tool Pfd should present a uniform and intuitive paradigm. Through this
paradigm the objects in the universe of discourse are mapped to mathematical entities. The
converse should also hold; by this we mean, that the results of Pfd computations should intu-
itively map to objects in the underlying universe of discourse.

By intuitiveness we mean the proximity of constructs to the probabilistic notions that hu-
mans can handle in an immediate, error-free manner.

3.1.3 Programmability

One of our main objectives has been to create useful programming constructs. To this effect
we aim towards:

• Predictable use of computational resources.

• Parameterisation for some of the provided basic primitives.

• Adaptability. The provided primitives in their entirety, should give convenient handles
for a wide variety of probabilistic computations.

19

3.1.4 Independence

The core of the system should be independent of any particular language and easy to annex
to as many programming languages as possible. Another form of independence should arise
from the way the system deals with concepts of probability, which should be irrespective of the
interpretation given to the probabilistic measures in the mathematical modelling stage.

3.2 Integrated Domains

At the very foundations of our system we have introduced a novel way of assigning probabilities
to the elements of a domain. A Probabilistic Finite Domain (Pfd) variable has two parts. On
one hand there is a finite domain, which at each stage holds the collection of possible values,
while on the other hand, there is a function that can be used to assign probabilities to the
(remaining) elements of the domain. The intuition behind this is that we do not need to mix
the two parts until it is necessary and only for as long as this is required.

The finite domain is represented by a set of elements, while the probabilistic function oper-
ates on any of the subsets of the finite domain and valuates to a set of probabilities where each
member belongs to the interval zero to one, and their summation is one.

The probability function is used to model the probabilistic behaviour of objects in the
universe of discourse. As an abstraction mechanism, it provides a concept for communicating
probabilistic behaviour, at a level were people are at ease. The separation of the probabilistic
values from the elements in the finite domain, by the introduction of a context-dependent,
transient function application has as a result a certain degree of non-monotonicity of assigned
probabilities.

In what follows it is essential that the reader keeps in mind the dual nature of Pfd variables,
in order to see how this duality is expressed by the syntactic entities and how these variables
provide modelling capabilities for real world objects.

3.3 Variable definition

The basic computational units of Pfd are the probabilistic1 variables. Probabilistic variables
have two constituents: a finite domain and a function. We will refer to this function as the
probability constructor method or simply as the variable’s method to avoid confusion with other 1

1 Probabilistic variables are in essence statistical random variables, but we shall use this alternative name due
to the non standard way in which probabilistic variables form events.

20

kinds of functions. New probabilistic variables are introduced by,

Variable Gp Method{Domain{, Arguments})

where Variable is an unbound logical variable which will only be available to Pfd constraints.
Method is the name of the probability constructor method. Domain is a list representation of
the variable’s finite domain. Finally, Arguments stands for a number (zero or more) of optional
arguments that will be passed to Method. Example usage,

Dice Gp uniform([i, ii, in, iv, v, vi\) (3-1)

Coin Gp biased-Coin([head, tail], 2/3) (3-2)

On the first example (3.1) uniform refers to a general purpose method. The intuition behind
this method is that the given variable takes valuations from its finite domain in a uniform
manner. Thus, this method assigns equal probabilities to the elements of the variable’s finite
domain. On the other hand, biased-coin refers to a program-specific method for which a defi-
nition has been locally provided. A possible meaning could be that for the domain represented
by the set {a ,b}, element a has a two-thirds probability attached. A more generic definition
(for instance a method biasedlist) could allow for the first element of the set-domain to have
a probability of two thirds attached to it, with the probability for the rest of the elements
uniformly spread over the remaining third.

The intuitive reading for Constraint 3.1 says that elements in Dice's finite domain are
equiprobable in their chance of participating in a successful derivation involving Dice. In
accordance with the dual interpretation of probability (Sect. 2.1.4) the distribution over the
variable’s domain has a double reading. Either that it expresses a programmer’s belief in the
likelihood of each element in the finite domain, or that it reflects a quantitative aspect of the
variable.

Formulas formalising the methods discussed here, are presented in Table 3.1. In Table 3.1
we : (a) formalise the description and (b) give example usage for the methods described in this
section. Note that | Fd \ denotes the cardinality of a finite domain and that the probabilities in
the examples refer to sample subsets of possible finite domains for the purposes of illustration.
The application of a single method over different subsets of a finite domain, illustrates how
probabilistic distributions are affected by the pruning of a variable’s finite domain. Note that
for singleton sets the probabilistic value is one and of course there are no provisions for empty
sets, since they denote failed computations.

By allowing locally defined probabilistic functions, we not only extend the scope of the
formalism, but also do so in a way that allows the programmer to think about and model the
behaviour of probabilistic notions in more static fashion.

21

Method Domain Options Probabilities
Methods Description

uniform [Eli, ■ ■ ■, Eln] G [1/ 1 Fd 1, • • •, 1/ | Fd |]
biased-coin [Eh, El2] [.HPrb] [HPrb, 1 - HPrb]
biasedJist [Eli, ■ ■ ■, Eln] [HPrb] [HPrb, 1 - HPrb /(| Fd | -1) , . . .]

Examples
uniform [i, ii, in, iv, v, vi] D [1/ 6, 1/ 6, 1/ 6, 1/ 6, 1/ 6, 1/ 6]
uniform [i, ii, iv, v, vi] nr [1 /5 ,1 /5 ,1 /5 ,1 /5 ,1 /5]
biased-coin [head, tail] [2/3] [2/3,1/3]
biasedJist [low, med, high] [1/ 2] [1 /2 ,1 /4 ,1 /4]
biasedJist [low, high\ [1/ 2] [1/ 2, 1/ 2]

Table 3.1: Definitions of Probabilistic Variables

Pfd facilitates program specific methods (e.g. biased.coin). At the conceptual level, this
mechanism allows for the enrichment of probabilistic behaviours available to the programmer.
The important feature is that this happens in a local fashion, where we can concentrate at
the generic probabilistic behaviour of a variable. At a technical level, the exact syntax of how
such methods are presented depends on the particular implementation of Pfd. It is sufficient to
mention here that at each invocation of a program-specific method, the Pfd system will perform
consistency checks (e.g. that the returning values are indeed forming a probability measure)
which ensure their seamless integration.

3.4 Conditional

We now show how the introduced variables are combined to form probabilistic constraints.
The constraint introduced here allows the modelling of probabilistic dependencies between
variables. The basic probabilistic concept employed here is the notion of conditionality. This
stems from Bayes’ Theorem in Probability Theory and it has been a basic construct to almost all
approaches in probabilistic reasoning. This is scarcely surprising and in effect the real question
is not whether the concept of conditionality is used, but rather how it is used.

The syntactic form of a Pfd conditional (also referred to as a conditional constraint), is:

Dependent I Qualifier

where both the Dependent and the Qualifier (LHS and RHS of the conditional respectively) are
predicates that involve one probabilistic variable and no unbound logical variables. We should

22

note, that the probabilistic variable of Qualifier is considered as a constant when it appear in
predicate Dependent. For the greatest part of this thesis we will restrict our attention to two
predicates. The equality and difference predicates = and 7L (Note that the single probabilistic
variable clause still applies.) One justification for our choice to concentrate on = and 7̂ comes
from the fact that these predicates, are almost universally available in programming languages,
thus allowing our discussions about Pfd to be more general. Another reason is that the two
predicates are intuitively closer to the finite domain nomenclature.

The conditional constraint states that whenever Qualifier holds, then predicate Dependent
also holds. Before elaborating how the previous statement interprets to probabilistic calcula-
tions, consider the following two examples :

Dice = 3 I Coin = tail (3.3)

Coin 7= tail I Dice = Random (3.4)

(Where Random is a non probabilistic variable.) The first constraint prescribes that, for the
particular pair of Dice and Coin , a toss of tail makes the Dice to always stop its roll on
a three. Whereas, the second example states that the Coin cannot assume the value tail if
the value of Dice is equal to the value of the (non-probabilistic) variable Random. Random
is required to be bound when this constraint is added to the store. Although it could be bound
to any value, in this example it is only the values in {i, ii, in, iv, v, vi} which are significant.

There are two important issues involved. Firstly, that like conditionality in Probability
Theory the introduced constraint is directional, i.e. it is not symmetric. (The effect of A on B
does not tell us everything about the effect of B on A.) The main reason from a computational
perspective for this choice, is that it provides an extra handle for producing effective compu-
tations. Secondly, the constraint provides a local way of affecting the probability assignments
of the variable involved in the LHS. This is in contrast to the global way of affecting the as-
signments provided by Gp . Thus the probability distribution for the variable in the LHS of
a conditional, prior to such a constraint, and the one after the constraint is introduced to the
store, are in general different. It is also important to note that the effects of such changes are
not calculated in an eager way, but rather on demand.

As an example of how a conditional constraint can influence the distributions of probabilistic
variables, consider the following two variables :

Dice 1 Gp uniform([i, ii, iii, iv, v, vi]) (3-5)

Dice2 €p uniform ([i,ii,iii,iv ,v ,v i]) (3-6)

23

Variable Distribution
Dice 1 [i — 1/ 6, it — 1/ 6, iii — 1/ 6, iv — 1/ 6, v — 1/ 6, vi — 1/ 6]
Dice 2 [i — 1/ 6, ft — 1/ 6, iii — 1/6 ,iv — 1/ 6, v — 1/ 6, vi — 1/ 6]

Dice 2 = iii 1 D icel# iv
Dicel [i — 1/ 6,** — 1/ 6, iii — 1/ 6, iv — 1/ 6, v — 1/ 6, vi — 1/ 6]
Dice 2 [i - 1 /36, ii - 1 /36, iii - 31 /36, iv - 1/36, v - 1/36, vi - 1/36]

Table 3.2: Variations of Distributions

For the two variables Dice 1 and Dice2 we give, in Table 3.2, their respective static dis-
tributions2. In rows two and three are the distributions immediately after the declarations
of Constraints 3.5 and 3.6 respectively. In rows five and six, are their distributions after the
addition to the store of the following constraint :

Dice 2 = in 1 D icel^ iv (3-7)

The intuitive reading is that all faces of Dice 1 apart from face iv are only compatible to face
iii of Dice2 . The finite domain elaboration of what compatible refers to, is that combinations
of elements such as ii (Dice 1) and v (Dice2) are deemed inconsistent. Furthermore, Pfd adds
a probabilistic elaboration, in that it changes the probabilistic distributions of variable D ice2 .
The variable’s distribution before the constraint is [1 /6 ,1 /6 ,1 /6 ,1 /6 ,1 /6 ,1 /6], while the one fol-
lowing the addition of the conditional constraint to the store is [1/36,1/36,31/36,1/36,1/36,1/36]
The reduction to most of the values reflect the change in how probable elements are to appear
in a solution given the new constraint. Each of the one-thirty-sixths is derived from :

P'(D ice 1 = iv) * P'(D ice 1 = X) (X £ { i , ii, iv, v, vi})

(where P' is the probability prior to the constraint.) Whereas, for the third face we have :

(P '(D ice 1 = A") * P(uniform ([iii])) + P'(D ice2 ^ iv) * P '(D icel — iii)
X

, 1 , 1 „ 1 , 1 1 , 1 1= (- * 1 -1— * 1 -1— * 1 H— * 1 H— * 1) -I— * -
v6 6 6 6 6 ' 6 6

31
36

When it is the case that Dice 1 = iv then the prior distribution of D icel is used. This
is because Qualifier predicate is false, thus the distribution of D ice2 remains unchanged.
On the other hand, when the Qualifier holds, the distribution of Dependent is re-evaluated

2broadly speaking consider this as the distribution at a particular point of the computation, (fully defined in
Section 3.8)

24

(P(uniform ([ni]))). Note that the only elements of Dice2 which are considered in this case
are the ones that make the predicate in the LHS true.

An interesting reading for the distribution of Dice 1, is that it assigns to each element its
share of times it is expected to appear in the solution space. Possible interpretations of this
statement include : (a) the expected relative frequencies (belief or statistics oriented) to a single
solution or (b) the expected relative frequencies over multiple solutions. We should also note
that there is no implied ordering of events, the two variables continue to act independently.

In a similar vein, we define the conditional difference constraint which is of the form :

DependentVar I* QualifierVar

where DependentVar and QualifierVar are probabilistic variables. The intuitive reading for
the constraint is that the values of the variables have to be different. (The directionality actually
only constrains the value of DependentVar to be different than that of QualifierVar - once
this has a specific value.) Like in the case of the conditional constraint, this can potentially
influence the probabilistic distribution of DependentVar .

The corresponding formulation in terms of the conditional is :

VX e fd {V i) • V2 ^ X I V i = X

3.5 Conditional Variable definition

There is also an alternative way for variable definitions, which covers some special cases. This
constraint combines the variable definition with a conditional constraint. The conditional defi-
nition constraint takes the form:

Variable Gp Method{Domain) I* QualifierVar with Probability

where the probability distribution of a variable hinges on a conditional difference. More specif-
ically Variable takes values from Domain, with the value of the QualifierVar being
assigned the probability of (1 - Probability), and Method is used to construct the probability
distribution for the remaining elements of the domain.

Unlike the effect of conditional constraint which is local, the conditional definition is used
to define a global, fundamental causal relationship between two variables. The behaviour of the
conditional definition follows that of the simple definition of variables and of the conditional
constraint. An alternative way to view this constraint is by considering it as a special case of
a probabilistic method that allows for another probabilistic variable as one of its arguments.

25

3.6 Probability of Events

The constraints introduced so far deal with the declaration of variables and that of constraints
upon variables; in short, with adding information to the store. In this section we describe how
information can be derived from the store. Pfd provides a single construct to this effect,

Probability is p(Predicate) (3-8)

where Predicate is similar to the predicates in the conditional constraint, except for the single
probabilistic variable restriction. In detail, Predicate is an arbitrary term that has no unbound
logical variables. Again for reasons of stability and uniformity across different programming
languages, we will mainly consider the identity and difference predicates (= and ^). The logical
variable Probability, after the encounter of Constraint 3.8, will be bound to the total probability
with which the probabilistic arguments to Predicate satisfy it. The term satisfy it, stands for the
applications that return true and in contrast to those that return false. (Clearly, the assigned
value must satisfy, 0 < Probability < 1 .)

This constraint provides in Pfd a concept that intuitively maps to the statistical concept of
events (as defined in Sec. 2.1). For example, we can ask for the probability of the following two
events :

SingleFace is p(D ice=2)

TwoFaces is p (D icel=D ice2)

Provided that all of Dice, Dice 1 and Dice2 are defined as shown earlier and that these
variables are not participating in any other constraints, then both SingleFace and TwoFaces
will assume the value of one-sixth. In the first example, this follows from the number of
elements in the domain (six) and the variable’s distribution (uniform). The second example is
more interesting, since it demonstrates how Pfd uses simple intuitive concepts to model notions
that are not as intuitive to the layman. A large proportion of people when presented with the
question of the likelihood of two dice having the same value give the answer of one-thirty-sixth.

3.7 Variable Instantiation

The next construct is concerned with the assignment of specific values to a probabilistic variable.
It is of the following form,

labeliy ariable, Select, Value, ValProb, CurrentProb)

26

The overall behaviour of label is to instantiate Value to an element of Variable's fi-
nite domain and Probability to the element’s probability. This is done by using Select (an
identification for the selection method to be used) for choosing between the different elements
and their assigned probabilities. In a Logic Programming environment, this is best captured
by a backtrack-able predicate. Each time a different Value is returned CurrentProb holds the
summation of values in Probability encountered up to the current stage.

As an example of a selection method we have,

label(Coin, domain .or der, V alue, Probability, Current)

Provided Coin refers to a well behaved coin, the two ways in which the above succeeds,
are :

label(head, domain-order, head, 1/ 2, 1/ 2)

label(tail, domain-order, tail, 1/ 2, 1)

Although in the Logic Programming case the use of Value might seem superfluous (Coin is
instantiated to the same term) it is included because (a) it is a useful device for other program-
ming paradigms, and (b) it allows alternatives implementation within Logic Programming.

In a similar vein we define :

label (Variables, Select, Values, ValPrbs, BranchPrb, CurrPrb)

This variation is particularly suited for specialised algorithms, which work better when con-
sidering more than one variable while labelling. Seen from a constraint programming point of
view these valuations are a general form of non-binary constraint (an active area of research
in constraint programming). The production of different selection methods is meant to cater
for general probabilistic problem solving and their evolution is much harder than the other
constructs of Pfd. As part of this research we have completed two algorithms implementing
multi-variable labelling. One is an accurate but inefficient method. While the other is an
efficient but approximate labelling method (based on a generic heuristic).

The first method has as its selection identifier the asC-probability token. It can be used via
a call of the form :

label([Coin 1, Com2], asc-probability,Vals, VIPrbs, BranchPrb, CurrPrb)

The results of this call for the two coins defined with the biased_coin method (Constraint 3.2)
are given in Table 3.3. This selection method is guaranteed to give the most likely combinations
first.

27

Coirli £p biased-Coin([head,tail], 2/3).
Coirli Gp biased-Coin{[head, tail], 1/3).

Coin 1 Coinl Value 1 Value2 Prbl Prbl BrPrb CurPrb

head tail head tail 2/3 2/3 4/9 4/9
head head head head 2/3 1/3 2/9 6/9
tail tail tail tail 1/3 2/3 2/9 8/9
tail head tail head 1/3 1/3 1/9 9/9

Table 3.3: Heuristic Labelling

In contrast, the second selection method does not guarantee that the valuation will occur
in descending order of likelihood. The identifier for the selection is max-unique-alt . This
identifies an approximating method that uses, what we here call the maximum alternative
heuristic, to assign values to each of the variables. The second method can be used by a similar
call :

label(Coins, max -unique Jilt, Vais, ValPrbs, BranchPrb, CurrentPrb)

The main difference from the first method is that the results, rows in Table 3.3, are not necessar-
ily retrieved in a top-to-bottom fashion. This is because the bookkeeping required lead to very
expensive computations. Instead, the heuristic approach reduces the amount of bookkeeping
but cannot guarantee that the combinations will be assigned in the most likely order.

3.8 Variable Interrogation

Here we present some predicates that retrieve information about the state of probabilistic
variables in the current store. These are important computational units that can help determine
branching decisions.

Static Distribution. At any point of the computation all the current information associated
with a variable can be represented by a list of pairs. Each pair holding an element value
along with its probability. We will refer to this list of pairs as the static probability of a
variable.

Using the predicate static_distribution(+PVariable, —ElemPrbs), the programmer can
access this information for a particular variable.
ElemPrbs include all remaining elements of the P V ariable ’s finite domain paired to its

28

corresponding probabilities. The probabilités are calculated by taking into consideration
all the current conditionals that involve PVariable at their LHS (Dependent predicate).

The complexity of finding a variable’s static distribution, closely matches the complexity
of calculating the probability of events. The main difference is that we need to replace the
variables in the event Predicate by the single variable, for which we seek to determine
its distribution. This becomes more apparent when considering the following definition
for the distribution of variable A":

{< El, ElPrb > -V E le fd {X) A ElPrb is p (A = El)} (3.9)

where fd (X) is the finite domain of variable X .

Derived. A whole suit of derived information concerning a probabilistic variable can be cal-
culated from the static distribution in the usual Logic Programming fashion. In what
follows we provide descriptions for some of the predicates that we will be referring to in
later chapters.

• Predicate domain_.cardinality(+ PVariable, —Cardinality), with Cardinality being
the number of possible values for the probabilistic variable PVariable.

• With maximal(+PVariable, —M axElem , —M axPrb) the most probable element
(M axElem) in PVariable’s static distribution can be accessed. Variable MaxPrb
will hold the element’s probability.

• Similarly, minimal(+PVariable, —MinElem, —MinPrb) provides the least prob-
able element (M inElem) in PVariable’s static distribution. Variable MinPrb will
hold the element’s probability.

3.9 Synopsis

As a postscript to this chapter we emphasise some of the key points of probabilistic finite
domains.

• Support of local (conditional constraint) and global change (method declarations and
composite event probability).

• Use of directionality in conditionals is a computational compromise similar to the direc-
tionality of Logic Programming clauses and their computational rationale.

• Pfd is extensional and provides no intentional or analytical means for calculating event
probabilities.

29

Chapter 4

Semantics

This chapter exposes a semantic formalisation of Pfd . One of the main benefits of CLP is that
it presents a generic means of providing formal semantics for Pfd . We will follow a slightly non
traditional formalisation of the CLP scheme since it is a better match for the work at hand.
Moreover the selected approach is more concisely presented in the literature.

4.1 CLP

Constraint enhancements within Logic Programming have been used to address two of its
shortcomings. The most widely researched one is the ability to incorporate domain-wide efficient
algorithms; such as consistency techniques and linear equation solving. Another shortcoming
addressed is that of the collapse of the semantics with regard to real number arithmetics. The
issues which Pfd attempts to address are different and twofold. Firstly, to facilitate probabilistic
reasoning and secondly, to allow generic introspection of the proof procedure based on the
probabilistic reasoning constructs.

In detailing the semantic properties of Pfd, computations we will follow the value constraints
subscheme for CLP ([vE97]). The name reflects the subscheme’s applicability to situations
where possible values, of a constraint variable, can be efficiently represented as sets. This thesis
argues that this is also true for Pfd . Moreover we show that this is an intuitive way for capturing
the operational notion of the static distribution of probabilistic variables. Another reason for
choosing this subscheme is the fact that it presents a mathematically cleaner framework, when
compared with the general CLP scheme ([JL86, JM94]).

30

4.2 Value Constraints Subscheme

In this section we will review the value subscheme of CLP. We gather together the results which
exist in the literature and are of relevance to the original work that follows in the succeeding
sections. In our exposition of the value subscheme, we follow [vE97].

CLP replaces the Herbrand base of LP, with parametrised semantic domains which are
characterised by tuples of the form, (£,2?, £ ,T) . Where £ is a signature, describing function
and relation symbols that can occur in constraints. T),C and T are the £ specific structure, class
and theory respectively. Computation with respect to program V for goal G is described in terms
of derivations. The result of a successful derivation is constraint c for which V ,T (= V[c —» G].

A derivation, is in turn described by a sequence of transitions. Transitions are functions on
states, each state characterised by a triplet of the form (A ,C ,S). Where A is a set of atoms,
implicitly thought as the conjunction of these atoms and C with S being sets of constraints,
also thought as implicitly conjoined. The constraint sets, named active (C) and passive (5),
jointly form the constraint store. The initial state is (G , 0,0) and for final state (0, C, S) we
have

V, T f= V[(C A S) -> Q] .

The transitions possible may be any of the following four :

Resolution.
(A U g , (7,5*) —yr (A U 2?, C, S U {si — t\ . . . sn —

when there exists rule pred(ti, . . . , tn) <- B in V for selected a = pred(s i , s n). This
corresponds to the unfolding step of LP clauses. If no suitable rule exists in V then we
have :

(A U a ,C ,5) —>r fail

Constraint transfer.

(A U c, C, S) ->c (A, C,SU {c })

for selected constraint c. This is where constraints that appear in A, are added to the
store.

Store management.

(A ,C ,S) ->i (A ,C\S')

with (C ',S ') = in fer(C ,S). This transition allows generic store management.

31

(A ,C ,S) —ts fail

if ->consistent(C): otherwise :

(A ,C ,S) . (A ,C ,S)

In the general CLP scheme, passive constraints are normally those which can not be added
to the active constraints (typically because no effective procedure for deriving information from
them exists). The infer step (—»¿) in that case requires that

2> V[(C" A S') ** (C A S)] •

The existence of passive constraints accommodates situations such as the inability of the
CLP(R) solver to cope with non linear constraints.

The value constraint subscheme, on the other hand, uses passive constraints as a canonical
representation of constraint variables. In this light, S is a set of unary predicates of the form
v(V). Where v is a denotation for some subset of D. Moreover, the subscheme requires a less
strict form for the infer step,

V (= V[(C" A S') —> (C A 5)] .

In what follows we will use Uj(Vf) to refer to the denotation of variable V) in a particular store.
For a complete treatment and motivation for the value constraints subscheme the reader is

encouraged to seek the original publication ([vE97]). Here we apply the minimum necessary
material from the above publication that are need for developing the semantics of Pfd. The
appeal of the subscheme to this end is twofold. Firstly, the redefinition of passive and active
constraints is more natural in capturing the intuitions behind probabilistic variables, than
the standard definition. Secondly, although we can treat probability numbers as quotients
of very long integers, which allows for extremely accurate representation, still the subscheme
provides an extra safety net, for the semantically clean incorporation of machine arithmetics as
approximation to its mathematical counterpart.

4.3 The Parameters

Our first task is to instantiate the semantic domain (E ,'D ,C ,T). In this section we describe a
semantic domain suitable for Pfd .

The signature E specifies function symbols, { I , I*, sd, l, £p,p }. (We abbreviate label and
static-distribution to l and sd respectively.) Each of the defined functions corresponds to a
constraint described in the previous chapter. The arity and types of each function symbol are :

Consistency test.

32

• I* (VU V2) —> D where each V) is a probabilistic variable.

• Ì (P ti ,P t2) —> D where each Pt{ is of the form p(Vj,s). With s = s i , f . . , s n a number
of constants and p is a predicate symbol (p £ II).

• Gp j : Fd —» D. Where Fd is the powerset of constants.

• p : Pt —» Q. With Q being the rational fractions < 1.

• / : £) —>• (H , Q). Where H are atoms in the Herbrand base.

• sd : D -A- S . S being the powerset of constant-fraction pairs.

V has two parts. The first is the set of values D and the second defines the structures
that hold over D (predicates and functions specified by £). In Pfd the domain D is the set
described by, { (/ , {(s*, qi)}) ■ Si £ H,qi £ Q }. Where s is a constant, q is a rational number
(represented by quotient of the form Inti/Int2 where Inti and Int2 are positive integers, such
that Inti < Int2) and / is a function identifier also expressed in £Pj. . The interpretations
are :

. X = sd (V)*> V = (f ,X)

• X = 1{V) * * (V = (/ , S) A X £ S)

• let Pti = pred(Vi,s) and Pti(sj) = pred(Vi/sj, s)

X = p(Pti) G)- Vi = (/ , Si) A ^ <7j • (s, q) G Si A V \~ Pti(s)

• X = £P f(S) G> X = (/ , R) A (Vs £ (s,q) G R) A /(S) = f?

• -X" — -P̂ l I P t2 L = { L1 • V52 A (s2, 2̂) (E A

f ,ifPbP*2S2
H

I *' 52 , otherwise

}

/\ X = {< s , q > X I £ L A q = ^ qi}
V(s,qi)el

where *' : D x Q -* D

such that Ar { (s j, r ,) • V i(sj, qi) £ R A Qi*q]

33

• X = Pti I Pt-i -O- as above by replacing V h Pt\{s\) with s' ^ s2

The class of E-formulas £, describes all valid constraints. These are formed from the vari-
ables and function symbols in E and the logical connectives {A , V, ->}. The axioms of theory T
used here is based on Probability Theory and is explicated by the infer derivations.

4.4 Transitions

The store in the CLP scheme is split into active and passive constraints sets (C and S). The
intuition to this approach is that C will hold all the constraints over which an efficient algorithm
operates. Constraints in S are candidates for transfer to C if certain conditions are met at
some point of the computation. A familiar example of this behaviour is the delay of non-linear
constraints in CLP(R) until they become linear.

The value constraints subscheme relays different roles for these sets. The form of active
constraints is, C = {u i(V i),. . . vn(yn)} where each Vi is a value predicate of £ depending
on C. For each V* in S corresponds a single Vi(Vi) in C. The subscheme leaves it to the
constraint management to decide what happens to constraints in S once they are added to
the store via a constraint transfer (—>c). This approach is motivated by the existence of a
canonical representation for each variable (its value at each stage of the computation). One of
the immediate results is that there exists a generic characterisation for the notions of local and
global consistency.

The appeal of value constraints for Pfd is the notion of canonical representation. Local and
global consistencies are not important here, since they are not used for deriving probabilistic
information from the store. In Pfd each Vi maps to an elements in D.

4.4.1 Consistency

We start detailing the remaining two transitions from the simpler one. Intuitively speaking the
store may become inconsistent in any of the following three ways: (a) there are no possible
values left for some variable, (b) there exist a cyclic conditional dependency, or (c) redefinition
of a probabilistic variable. These three cases are formalised by the following statements.

• 3Vi(Vi) £ C ■ Vi(Vi) = (/ , (0,-R)) —► ~iConsistent(C, S) .

• 3V)Vj ■ cond(Vi, Vj) £ S A Vj £ dep(Vi, S) —> - <Consistent(C, S)

where cond(Vi,Vj) = Pti I* Ptj or cond(Vi,Vj) = Pti I Ptj

34

and dep(V, S) = } U dep(Vj,S) ■ cond(V, Vj) £ S .
j

• 3Vi ■ S = {£ Py(Vi)} U 5 ' A £pfl(Vj) £ S' —* ~<Consistent(C, S) .

4.4.2 Infer

The store management transition (—>*) is where additions to the store (in the passive store S)
are reflected to the denotations of the variables involved (kept in the active store C). Here we
will give a characterisation of how given a consistent S we can evaluate its unique set of variable
denotations (C) . Each denotation in C reflects a static distribution.

(C ,{X = l(v i(V i))}U S ')
, if Vi(Vi) £ C A

S = {X = l(V i)}U S'

in fer(C , S) = <
(C ,{X = sd(vi (Vi)) }u S ')

(C ,{X = p (v i(Vi)) }U S ')

, if Vi(Vi) £ C A
S = { X = sd(Vi)}US'

, if Vi{Vi)GC A
S — {X = p(Vi)} U S'

{(¡>{%,t{S),S),S) , otherwise

In the above definition of infer(C,S) the first three cases deal with the situations that require
no change in C. These constraints require information about a particular variable, but do not
change the probabilistic information held in the store. In each of this cases, the syntactic form
of the constraint (in S) triggers a value to be assigned to its logical variable according to the
corresponding function in T>. The fourth case deals with the remaining possibilities, which leave
S unchanged. At the same time it replaces C with the new variable denotations that distill the
probabilistic knowledge accumulated in S. This is achieved by the following functions.

e(S) = {vi(Vi) | Mi Vi = £pf(Fd) £ S where Vi(Vi) denotes &Pf(F d)}

<KV,L,S)
•K{<*(viW ,V,S)) U V },L ',S)

<

, if L = {Vi(Vi)} U L'
A dep(Vi,S) Ç V

V , otherwise (L = 0)

35

a (v iW ,V ,S) = <
a ico n tH y iiV ^ V jiY j^ S ')

, i f Vj(Vj) e F A

S = {coruKYuVj) U S'}

, otherwise

The intuition behind e(S) is that it is the set of definitional denotations for all probabilistic

the conditional denotation that is incrementally added to V. Finally a(uj(Vj), V, S) constructs
the conditional denotation for a variable from its definitional one, according to the conditional
constraints in S and the variable denotations in V.

Function e is trivially finitely computable. Similarly for a although for the correct result it
is required that

This follows immediately from the definition of dep and the condition dep(Vi,V) C V in <j>. In
turn the correctness of 4> depends on the truth of

This statement is true whenever consistent(C, S) holds (second case in the definition of con-
sistency).

4.5 Transitions Strategy

The purpose of the transitions is to transform, preferably in a finite number of steps, the
initial state (G, 0,0) to the final store (0,G, S). To achieve this we present some rules and
restrictions for the order of their application. These rules and restrictions collectively formulate
the transitions strategy.

A common approach to defining such a strategy is via notions such as fair application of
transitions and applications until an invariant state is reached. In Pfd there are simpler means
of defining such a strategy. This is mostly due to: (a) the importance of static distributions as
a value representation, and (b) the ability to characterise D solely in terms of functions.

The importance of controlling the application of transitions has already been highlighted
in the previous section; where the correctness of ->r require a consistent store (ensured by a
preceding ->c). In full the rules governing transition application are: •

• —>r can only be followed by ->r or —>c .

variables in S. Function (j>(V,L,S) constructs the desired C by depleting L and generating

Vj • cond(Vi,Vj) e S -> Vj e V .

L ^ 0 —> Vi(Vi) G L A dep(Vi, S) Ç V .

36

• —>c is always followed by —>g .

• —>i can only be followed by —>r or —>c .

• —>s is always followed by — .

Finally, we note that although the characterisation of —>r involves a re-evaluation for all
the variables from their definitional distribution, it is very often the case that this can be done
incrementally. This depends on knowledge of the form for the preceding —>c transition.

37

4

Chapter 5

Probabilistic Programs

In this chapter we show how some well known problems can be modelled in Pfd . These problems
are mainly drawn from the area of statistics. The key questions for this chapter include the
following. How can intuitive causal probabilistic declarations be part of a sound model ? Is it
possible to model analytical reasoning with the extensional tools of Pfd ?

5.1 The Three Curtains

One of the staple examples that lecturers use for cautioning freshers with, is the Monty Hall
problem. This problem is an example of case where even in seemingly simple situations, intuition
may lead to erroneous conclusions. Although people can readily deal with the probabilities on
the constituent parts, still they have difficulty in combining these probabilities even in this
limited example.

The general form of this game involves a contestant (also referred to as the player, P) being
offered a choice of three curtains (A, B and C). One of the curtains veils a car while the other
two hide a goat, each. Once the contestant expresses his choice the host, reveals a goat from
behind one of the remaining two curtains, which has not been chosen by the player. At this
stage of the game there are two closed curtains remaining. The host then asks the contestant
whether he wishes to change his mind or to stay with the original choice. The player at this
stage has to make his final decision. If the player chooses the curtain veiling the car, then we
say the player won the car or simply that he won.

Given this description the students are then asked to form an opinion on whether defining
a strategy for the player’s final choice has an influence to player’s chances of winning the car.

38

Usually the are two candidate strategies offered to them: (a) player continues with original
choice, (/?) player swaps the original choice. Most students seem to agree in that there is no
difference in the chances of these two strategies.

Statistical analysis reveals that strategy (3 leads to a better chance of success p(/3) — | (we
denote the success of strategy ¡3 by p(/3) and similarly for any remaining strategies). Whereas,
the probability of a win under strategy a is p(a) = In the later case the derivation is straight
forward since the player’s second choice carries the same probability as that of the first choice;
which, being an uneducated guess between three indistinguishable objects, is equal to |. On
the other hand, for any original choice in strategy ¡3, the chances of the car being behind the
not-chosen curtains is |. This is so, because the prior probability of the car being behind
the curtain, which was opened by the host is also incorporated. An alternative derivation of
p(/3) when we have p(a) is by using the fact that the two strategies are complimentary and
exhaustive, thus

1 = p(a) + p((3) =>p(fi) = |

In general terms the player’s dilemma can be captured in a single strategy (7) where the
choice of swapping the original curtain occurs with a probability ps. Strategy a is the special
case when ps = 0 and (3 is equivalent to ps = 1. Based on 7 the chances given a particular ps
are, p(7) =

Gift First

(a) a Strategy (b) /3 Strategy

Figure 5.1: Graphs for strategies a and ¡3.

We start modelling the problem with a schematic representation for strategies a and ¡3 in
Figure 5.1. In these graphs, nodes represent probabilistic variables and solidly drawn edges
mark constraints between variables (labelled and directed accordingly). Dashed edges labelled

39

with a question mark indicate that the probability of the event on the right side of the question
mark is assigned to the variable on the left side. The predicate is applied on the two connected
variables and direction is not important in this case.

Our main reason for including these graphs is to illustrate the level at which the programmer
is required to think about probabilities in Pfd. At the global level he needs to decide which
objects of the real world become variables in the program and for each variable to define its
overall probabilistic behaviour. At the local level, connections between probabilistic objects are
confined to a minimum by constraints involving exactly two variables.

curtains(a , Pr)
G ift £p uniform([a,b,c\) ,
First Gp uniform ([a,b,c]) ,
Reveal €p uniform ([a,b,c]) ,
Reveal I* G ift ,
Reveal I* First ,
Second = First ,
Pr is p {Second=Gift) .

Figure 5.2: Clause for strategy a.

curtains(¡3, Pr)
G ift 6P uniform([a,b,c\) ,
First €p uniform([a,b,c]) ,
Reveal Gp uniform ([a,b,c\) ,
Second Gp uniform ([a,b,c]) ,
Reveal I* G ift ,
Reveal I* First ,
Second I* First ,
Second I* Reveal ,
Pr is p (Second=Gift) .

Figure 5.3: Clause for strategy /?.

In Figures 5.2, 5.3 and 5.4 we give clauses for the three strategies. The first argument of
clauses curtains/2,3 is simply a strategy identifying atom, while the last one is the probability
of winning the car when following the respective strategy. The clause for strategy 7 has an
extra argument which should be instantiated to ps. In all three cases G if t, F irst and Reveal

40

curtains(7 , SwapWith, Pr)
G ift gp uniform ([a,b,c\) ,
First gp uniform ([a,b,c\) ,
Reveal gp uniform([a,b,c\) ,
Second g p uniform([a,b,c\) I* First with SwapWith ,
Reveal I* G ift ,
Reveal I* First ,
Second I* Reveal ,
Pr is p(Second=G ift) .

Figure 5.4: Clause for 7 strategy.

are mapped to uniformly distributed probabilistic variables, each having three possible values.
G ift is a straightforward representation of the curtain concealing the gift. In the absence of
other evidence we assume that the gift is placed randomly. In a similar way, First models the
player’s first choice. Variable Reveal is more interesting, since one could argue that the host
has at most a choice between two rather than three curtains. Some times the host does not
have a choice at all, since the car cannot be revealed. By using the complete finite domain we
believe that the process of problem solving is better facilitated. When an object is declared, the
programmer is encouraged to think about the generic (probabilistic) behaviour of the object.
This is very much followed in our clauses.

Furthermore, there are some common constraints. The fact that the revealed curtain cannot
be the concealing one is captured by Reveal I* G ift. Similarly, it cannot be the player’s first
choice, thus we have Reveal I* First. These are directional constraints (as described in 3.4)
that work in very similar way to Logic Programming clauses. Ideally, in both cases is that we
only need to express the logical relationship between the variables, but in practice the choice
of a particular expression may lead to more efficient computations. The final goal, in all three
clauses, assigns the probability of the win event to the logic variable Pr. A win is achieved
when the values for Second and G ift coincide, this being tested with Second = G ift.

In strategy a (clause in Fig 5.2) the player’s decision to proceed with the first choice made,
is elegantly captured by the unification of a logical variable, Second to the probabilistic
variable First. In strategy ¡3, Second becomes a probabilistic variable, with the constraint
Second I* First, capturing the always-swap strategy. Finally, for strategy 7 we need an
extra parameter (SwapWith) which will control the preference between the two choices, at the
player’s second decision. With this at hand, we use the conditional probability definition to

41

capture the definitional dependency of Second to F irst, by

Second £p uniform ([a,b,c])* First with SwapWith

This constraint states that the variable, Second, assumes the same value as that of First
(this need be a scalar value and not a set) with probability 1 — SwapWith and the rest of the
values in its finite domain ({a, b, c} here) with a probability of SwapWith (uniformly distributed
between them).

5.2 Enumerations

The first step in trying to determine probabilities of events is to count the number of different
possibilities. In statistics the different methods devised for assisting with such tasks are col-
lectively known as methods of enumeration. For the significance of these methods in statistics
and an excellent introduction to the field the reader is advised to follow [Fel59j. Here we will
focus on the four methods of enumeration which are most well known. The objective is not
that of competing in terms of efficiency to any other methodology, but rather to show that the
extensional mechanism of Pfd can yield correct results for such analytical methods.

The enumeration methods we will be looking at, deal with cases where a number of objects
are selected from a collection of alternatives. In particular, they can deal with two orthogonal
qualities of such tasks. The first is whether one draws the objects with replacement. While the
second is whether the order in which objects are drawn is significant. For each case we give, a
brief example, the analytical formula, and a Pfd clause that models this method. For further
mathematical analysis, of the methods the reader is referred to any standard textbook dealing
with statistics and Probability Theory. Here, we will refer to the process of choosing (r) objects
from a collection of (n) alternatives, as sampling.

5.2.1 Sampling with replacement, when order matters

As an example of such sampling, consider a digi-code that is formed from four digits each drawn
from ({0, . . . ,9}) when digits are taken one at the time, noted down, and replaced before the
next digit is drawn. We are interested in counting how many different ordered combinations
exist. (Order matters, means that code 0123 is distinguishable from code 3012.) The analytical
formula for this is nT, where n is the number of alternatives (here n = 10) and r the number of
objects drawn (r=4).

In the clause presented in Figure 5.5 the digi-code is represented by a list of probabilistic
variables all having uniformly distributed domains. In addition, each variable ranges over the

42

ordered_with_replacemement(R, Fd, Pr)
n_pfd_vars(R, uniform (Fd), Code),
nj"andom-selection(R, Fd, Assigned).
Pr is p(CWe=Assigned) .

Figure 5.5: Clause for ordered sampling with replacement.

same finite domain, which is the list of all digits. Predicate n-pfd-vars/3 creates the list of
R variables (Code), each defined with probabilistic method uniform over the finite domain
Fd. (For a complete definition of the n-pfd^vars/3 predicate, see Appendix B.) The rest of the
predicate helps us test the validity of our claim. (The predicate n-randomselection/3 creates
a random list, Assigned, of R elements chosen from the Fd list of elements.) Thus for the
particular four digit code example a query of the form

? — orderedjwithjreplacemement(A, [0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9], Pr).

should instantiate Pr to the chances of a randomly single combination which is yp-.

5.2.2 Sampling without replacement, when order matters

If in the previous code example, we are not allowed to replace digits after each draw, then
all the dig-codes that include repetitions of digits are automatically barred. This constitutes
sampling without replacement. The analytical formula giving the number of arrangements in
the unordered case is,

n! = p n
(n - r) l

These are known as the permutations of n objects taken r at a time. In the particular example
presented above (n=10,r=4) we have,

P ” = H I = io * 9 * 8 * 7 = 5040

The clause in Figure 5.6 defines a digi-code by means of the mpfd-vars/3 predicate as done
for the replacing case. The new element is that all variables in the list Code, are now required to
hold a distinct value. This is achieved by using the predicate (see appendix B) distinct/1 , which
simply posts a number of pairwise conditional differences constraints. Due to the symmetry
of the problem, directionality is of no importance in this example. Again we test by mean of
a random list. The extra twist is that a query to this predicate may return a Pr = 0 since
Assigned may include repetitions of digits. In all other cases Pr =

43

ordered_without_replacemement(R, Fd, Pr)
n.pfd_vars(R, uniform (Fd), Code),
distinct(Code),
n_random_selection(R, Fd, Assigned).
Pr is p(CWe=Assigned) .

Figure 5.6: Clause for ordered sampling without replacement.

5.2.3 Sampling without replacement when order does not matter

In many situations the elements from the sampling space may fall in categories that make them
indistinguishable for the purposes of an enumeration. This scenario is often met in situations
of repeated experiments. As an example, consider the number of the different signals one can
send when using 3 yellow and 4 red flags on a single post. The distinguishable arrangements
are often called, the combinations of n objects taken r at a time. The number of combinations
is calculated by :

CT
7!

4!3!
= 35

un_ordered_without_replacemement(R, Fdl, Fd2, Pr)
append(Fdl, Fd2, Fd),
length(Fdl, LI),
n_pfd_vars(R, uniform (Fd), Code),
split_on(LI, Code, Vsl, Vs2),
map_constr_pwise(Vsl, XI @ < Y l I Y l, XI, Y1),
map_constr_pwise(Vs2, X2 @ < Y2 I Y2, XI, Y l),
n_random_selections(R, Fd, Assigned),
Pr is p(C ode=Assigned) .

map_constr_pwise([], .Constraint, _Lv, _Rv).
map_constr_pwise([_F], .Constraint, _Lv, _Rv).
map.constr.pwise([F,S||T], Constraint, Lv, Rv)

copy_term((Constraint)-Lv-Rv, (Instance)-F-S),
call(Instance),
map.constr_pwise([S||T], Constraint, Lv, Rv).

Figure 5.7: Predicates for unordered sampling without replacement.

44

In Figure 5.7 we give the two sets of values (Fdl and Fd2) that correspond to the collections
of objects in the indistinguishable pools. The main novel predicate is the mapping of constraint
X l@ < IT I IT in a pairwise fashion down the elements, of the two lists. This is an exten-
sional means for capturing the fact that within each list, elements are indistinguishable and
thus we impose an order on them as to avoid undesirable repetitions. For instance if yn stands
for the nth yellow flag, in essence we do not allow the arrangement because the
position of 3/2 violates the positioning constraint. In the analytical description that combination
is indistinguishable from 3/13/22/3 ^ 1 4̂- Similar to the other clauses a call to the procedure
will instantiate Pr to the probability of a single arrangement, which in this case is 55.

5.2.4 Sampling with replacement when order does not matter

This can be viewed as a special case of sampling without replacement when order does matter,
since it can be reduced to listing r 0’s for the objects to be selected and n-1 —’s for the number
of different groups available. If we then extend the example with the flags, to the case where
there is a sufficiently large number of flags for six different colours from which we wish to make
signals of 10 flags, one particular listing would be :

00|0 |00|0000||0

Which reads as selecting 2 flags from colour one, 1 from second colour, 2 from third, 4 from the
fourth, none from the fifth and 1 from the sixth colour. The formula is

(6 - 1 + 10)! _ 15!
c :n — 1+r = 30030

6!(10 — 1)! 6!9!
Since this case is a specialisation of the non-replacement one, it is obvious that the clause

in Figure 5.7 can be used.

5.3 Caesar Code

The curtains problem (Section 5.1) illustrated the expression of probabilistic causation and how
Pjd can be used to compute over such relations. In this Section we will concentrate on how Pfd
can be used to reason with statistical information.

5.3.1 Problem Definition

The Caesar encoding is one of the earliest encoding schemes. The basic idea is that each letter
of the alphabet is encoded by another (unique) letter and that each letter in the encoding
correspond to a single decoded character (see Table 5.1 for an example of a valid encoding).

45

diet, chars encoded chars
m w
0 f

p r
r y
s m
t V

u n
V i

diet, chars encoded chars
a t
b s
c b
d a
e 0
h h
i c
1 p

dictionary words amicable cohered euphoria mutant shame verb
Caesar encoding twebtspo bfhoyoa onrhfyct wnvtdv mhtwo loys

Table 5.1: A Caesar encoding example.

The specifics of an encoding include information such as whether one is pooling from lower
and upper case letters, or where space and other special characters are encoded. In the re-
maining of this section, we will be looking at the encoding of letters that are encoded in lower
case character codes. More specifically, we show how a number of encoded words drawn ran-
domly from a dictionary can be decoded back to their original character codes. The dictionary
used is the one found in Unix operating systems (/ etc/share/words) which contains more than
20000 words. From this dictionary we sampled words of at least four characters (no uniqueness
constraint was imposed on this rule). As a final assumption we state that all legal decodings
appear in the dictionary.

Note that this formulation of the problem is in effect harder to solve than the case where
words are picked from written text. This is because in the text based version we have extra
information on word frequencies and about the frequency of two and three letter. With this
information the size of the space is reduced while the statistics become more reliable.

5.3.2 Modelling the Problem

In Pfd terms, the first important question in modelling a problem is “Which objects in the
problem will be the variables?” . Here the obvious candidate is one variable per encoded letter.
It thus follows that each variable takes values over all the decoded characters. The more
interesting part is the probabilities attached to each possible value.

Before determining the probabilities, we give an example of how variables can be used to

46

model the Caesar coding and what a solution might look like. As an example, consider an
encoded word such as ‘bfhoyoa’ from the words in Table 5.1. The desired outcome is a variable
assignment that reflects the original word, which in this case is the dictionary word ‘cohered’.

We choose to represent each input character code by a single logical variable AY The
subscript of each such variable, is a reference which relates the variable to the ith lower case
encoded letter. So for instance, the encoded letter ‘b ’ is represented by X 2. The domain of
each of these variables are the letters of the alphabet under decoding. This in our discussions,
will be the set of lower case character codes. Thus ‘bfhoyoa’ will be represented by

< X 2, X 6 ,X 8 ,X 1 5 ,X 2 5 ,X 1 5 ,X 1 > (5.1)

with
Xi G { a , . . . , z}

The desired solution for this example reads :

< X -2 — c, X q — o, X 8 — h, A" 15 — e, X 25 — r , X\ — d >

Trying to solve the full problem as modelled so far, can be computationally very expensive.
For instance the possible combinations for a four letter word are :

26 * 25 * 24 * 23 = 358800

In addition to this, consider the fact that any four letter word (in the dictionary) is as likely to
appear as a combination as any other one. Also, we note that the consistency techniques come
into play after we start instantiating some variables.

The classical approach in minimising the number of combinations which one will have to
consider, before finding the solution, is to superimpose the two frequencies as to obtain likeli-
hood measures that can guide searching. The first frequency we refer to, is the relative number
of occurrences of a single character in the dictionary. While the second is that of characters in
the encoded message. The intuition behind this approach is that letters which appear often in
the dictionary are likely to appear equally often in the message.

In the approach we follow, the frequency of a letter in the encoded message (also referred
to as encoded character code) is used as a marker. The frequencies of letters in the dictionary
(dictionary character codes) are then compared to this marker. These comparisons, produce a
number of proximity metrics. Each metric is indicative of the likelihood of the encoded character
code to be an encoding of a particular dictionary character code. These proximity metrics are
then normalised to produce the probability distribution over the finite domain ({a, ...,2}).

47

For instance consider variable X 2 of our previous example (5.1). This variable corresponds to
the encoded character ‘b ’ . We will denote the encoded characters with E{, with the subscript
relating each encoded character to a single variable. The particular code has a frequency
(according to the data in 5.2) of ^ derived by :

number o f times E2 occurs
fVGQ{E2) — ---total number o f characters

This frequency is used as a marker. From this a number of proximity measures are obtained,
indicating the fitness of the dictionary character frequencies to that of the marker. To do this,
we use the absolute value of the difference between the two numbers,

prox(E i,C j) = | freq(Ei) - freq{C j) \

Where freqlCf) are frequencies appearing in Table 5.2 (These are simplified numbers, approx-
imating frequencies from the full dictionary.)

Ci freqtCj)
S 18
t 16
u 7
V 2
w 1
X 1
y 4
Z 1

E C i 260

Ci freq(C'i)
a 24
b 8
c 14
d 12
e 31
f 5

g 8
h 6
i 23

Ci freq(Cj)

j 0
k 1
1 14

m 6
n 20
0 16

p 4

q 0
r 18

Table 5.2: Approximate dictionary frequencies (unit ~ 260).

The final step in obtaining a distribution is to normalise the proximity figures. This process
is often used for the derivation of a probability function from an arbitrary one. In so far as
it concerns this example, our main task is to ensure that the values of the proximity num-
bers correspond to fractions that sum to one. Following well known practice in normalisation
techniques we define :

P & u C j)
prox(Ej, Cj)

Y,kprox(E i,Ck)

Where p(X i,C j) reads as the probability of variable Xi having the value Cj. Table 5.3 shows a
number of variables, their corresponding encoded characters and parts of each variable’s derived

48

Xi Ei f(Ei) p(X i,a) p(Xi,b) p(X i,c) p(Xi,d) out o f

X 1 a 5/38 5883 5731 5788 5769 /149500
x 2 b 2/38 1898 1942 1993 1980 /49900

A ;j c 2/38 1898 1942 1993 1980 /49900
X 4 d 1/38 1588 1740 1683 1702 /43775
X 5 e 6/38 7508 7356 7413 7394 /191750

Table 5.3: Proximity based probabilities.

probability. The collated formula derived from the above is :

p{X i,C j)

f r e q (E j)

J2 , f recl(E‘)
freq(C i)

T,k I f re(l(Ei) - f req{Ck) \
(5.2)

5.3.3 Pfd Specifics

Having defined the finite domains involved and the associated probability distribution, it is now
straightforward to capture the variable definition with a user-defined function as described in
Section 3.3. The definition appear in Figure 5.8. Its constituents refer to the Pfd rationals
library (Appendix A) and it implements Equation 5.2.

probabilistic-method(proximity(Fd,Marker,Frqs,Probs))
rationalsu3ubtractJist_from(Frqs, Marker, Subtr),
mapdist(rationals_abs, Subtr, Absl),
rationals_addJist(Absl, Sum),
rationalsjsubtract_list_from(Absl, Sum, Diffs),
rationals-to.probabilities(Diffs, Probs).

Figure 5.8: Clause for proximity method definition

The intuitive reading, is that the proximity probabilistic method constructs a list of proba-
bilities Probs each corresponding to a single domain value in Fd (Fd is the finite domain of the
variable). To construct these probabilities the input frequencies (in Freqs) are subtracted from
a (Pivot) rational value, followed by the normalisation of the results from subtractions. This ex-
ample illustrates the use of extra arguments in probabilistic method constructions (Section 3.3).
An example of variable definition using this method is :

Letter 6P proximity([a, b, c], 1/2, [1/3,1/4, 2/3])

49

Apart from the definition of probabilistic finite domains, we need a method for searching
through the search space for candidate solutions. We achieve this through the general purpose
labelling introduced in Section 3.7. In particular, we use :

label(Vars, max^unique-alt, Vais, ValPrbs, BranchPrb, CurrPrb).

The unique qualifier helps to guide the generation of values and according to our modelling is
correct. The heuristic selection is used since minor re-orderings to the order of valuations are
of no particular importance. This is due to the fact that we are looking for few solutions over
a multitude of valuations (the sieving is through checks to the dictionary). On the other hand,
the heuristic selection provides superior execution behaviour.

5.3.4 The Program

After placing the foundations in the preceding sections, we now proceed in presenting the top-
most predicates that compose our Pfd solution to the Caesar encoding problem. For a complete
listing of all the predicates the reader is referred to Appendix B.

% caesar(+EncodedWs, +Dict, -DecodedWords) :-
caesar(EncodedWs, Diet, DecodedWs) :-

dictionaryJnfo(Diet, DictWs, Freqs, AlphaBeto),
count_occurrances(EncodedWs, Codes, Counts, Sum),
proximity_vars(Codes, Counts, Sum, AlphaBeto, Freqs, Vars),
substitutejwithjvars(EncodedWs, Codes, Vars, WordsVs),
decode_words(WordsVs, Vars, DictWs, Codes, DecodedWs).

Figure 5.9: The caesar/3 predicate.

The caesar/3 predicate (5.9) provides an entry point to the decoding procedure. Its declar-
ative reading is that DecodedWs are a valid decoding of the words in EncodedWs which are
words drawn from Diet. Note that by words we will refer to a list of words, each represented, in
the usual Prolog style, as a list of characters. The validity of words is expressed against the inter-
nal dictionary. Further to the procedural reading of caesar/3, the analysis of the input words to
find the encoding characters and their frequencies, is achieved with count-occurrences/4- The
necessary probabilistic variables are then defined in proximity-vars/6. The most important
information needed therein, are the two frequencies to be super-imposed (Counts and Freqs).
After being declared, the variables are formed into words by means of replacing the encoded

50

character codes in substitute-with-vars/4 ■ The final goal (decode-words/5) starts the recursive
part of the solution.

% decode_words(+WordsVs, +Vars, +DictWords, +ChrCodes, -DecodedWs).
decode.words([], -Vars, -DictWs, -CharCodes, []).
decode_words(WordsVs, Vars, DictWs, CharCodes, DecodedWs)

min.cardinality_word(WordsVs, BestWordVs, UnqVsWord, RestWs),
label(UnqVsWord, max-unique-alt, Val, dVIProbs, _Prob, _AccProb)
wordcodes_to_guess(UnqVsWord, WordVs, Vais, Guess),
wordin_dict_words(Guess, DictWs),
decode_words(RestWs, Vars, DictWs, CharCodes, DecodeWs).

Figure 5.10: The decode-words/5 predicate.

Predicate decode.words/5 (Fig.5.10) is where the management of guessing words takes place.
The overall task of decoding the code is broken down into: (a) by finding a good first word to
decode, (b) have a guess on this and (c) recurse to acquire guesses for any remaining words.
More specifically min.cardinality-word/'4 provides a means for selecting the next candidate
word, its main intuition based on the number of uninstantiated variables within each word and
moreover on the population of the domain for each such variable. The variables in the chosen
word are then passed to the label/6 Pfd primitive, which provides combinations of values for
them. Combinations are then reformulated into a single word (wordcodes-to-guess/4) that
correspond to the candidate word (we refer to these re-formulations as guesses). Each guess is
then checked against the dictionary (wordJmdict-Words/2) with the goals being backtracked
upon, until a guess is found in the dictionary words. Upon having a valid guess, the predicate
recurses to complete the easier task of decoding the remaining words.

% proximity_vars(+CharCodes, -fOccurances, +Sum, +Fd, +Frqs, -Vars).
proximity.vars([], [], -Sum, _Dom, _Frqs, []).
proximity_vars([Code|Codes], [Occ|Occs], Sum, Dom, Frqs, [V|Vs]).

V Gp proximity (Dom, Occ/ Sum, Frqs) ,
proximity_vars(Codes, Occs, Sum, Dom, Prbs, Vs).

Figure 5.11: The proximity.vars/6 predicate.

Predicate proximity -vars/'6 implements a straight forward list traversal procedure, but in-
cludes a good example of a real world use for the probabilistic variable declaration operator

51

(ep). The arguments to the proximity term, match the first three arguments to the probabilistic

method of Figure 5.8.

% min_cardinality_word(+WordsVs, -BestWord, -UnqVsWord, -RestWs)
min_cardinality_word([H|T], BestWord, UnqVsWord, RestWs)

remove-duplicates) H, NoDplH),
word_cardinality(NoDplH, 0, HCard),
min_cardinality-word(T, NoDplH, H, HCard, WordReps),
WordReps = UnqVsWord-Word,
selects(Word, [H|T], Rest).

% word.cardinality(+Vars, +AccCard, -FinCard).
word_cardinality([], Card, Card).
word_cardinality([H|T], AccCard, WCard) :-

domain-cardinality(H, HCard),
NxAcc is HCard + AccCard,
word_cardinality(T, NxAcc, WCard).

Figure 5.12: The miri-cardinality/4 and uiord-cardinality/3 predicates.

The final predicates presented here (the full program is in Appendix B) are the ones which
deal with the selection of a good candidate word for decoding. The interesting work is happens
within word-cardinality/3, where the cardinality of a word is equal to the summation of the
cardinalities of its constituent variables. (The cardinality of a single variable is supplied by
the Pfd predicate domain ̂ cardinality / 2 , as defined in Section 3.8.) Minimisation over word
cardinality means we concentrate on the word that has minimum degrees of freedom to become
a guess. This provides a simple yet highly effective (in this case) selection criterion amongst
different words. While the computation is at its first stages (when all variables are uninstanti-
ated), the selection procedure will pick one of the words with the minimum number of letters.
As the computation proceeds, the words with the minimum number of uninstantiated variables
will be easily identified and selected.

5.4 Other Problems

As a final remark to this chapter we list some areas in which Pfd might be applied successfully.
We also present marginal argumentation on how and why the techniques introduced in this

52

chapter can be used to solve problems in these areas.

5.4.1 Biology

In certain applications of Nuclear Magnetic Resonance (NMR), spectroscopy biologists need
to match experimental data to a best fitting protein structure. The probabilities involved are
of two kinds. On one hand, there are probabilities on the observed values, while on the other
hand, they are chain continuation likelihoods. The nature of the problem is very similar to the
codes example we have presented. The main difference is that the two probabilities are not so
much superimposing, but rather interlocking to each other.

Another problem comes from the area of molecular biology and in particular from protein
packing. The goal is to predict the folding of side-chains of a protein. The current approaches
use specialised algorithms that may or may-not take into account that certain foldings are
more likely than others. The main drawback of these algorithms is that they are pieces of
codes, which are only good in performing this particular task. But protein folding is only a
means in itself thus more compositional tools would be of help.

One way to model this problem within Pfd is to use the likelihood of foldings to drive the
search of solutions. (Via a multi-variable labelling.) The challenging programming required,
will be to identify less significant (peripheral) chains which do not alter the topology of the
protein.

Furthermore, we believe that biologists will benefit and be able to better utilise computing
resources with the abstract notion of probability presented by Pfd and the declarative style of
programming in which it is so naturally embedded.

5.4.2 Dynamic Scheduling

Dynamic scheduling refers to scheduling in environments where one is trying to schedule un-
foreseeable or uncertain tasks or events that affect availability of tasks. (Similarly one may con-
sider dynamic planning.) Most current approaches deal with these problems at the rescheduling
level, where usually one is concerned with keeping information about previous decisions at hand,
in the event that rescheduling might occur.

Pfd can be used in these areas to unify uncertainty about task availability, as well as about
uncertainty in the domain of discourse. Thus, all reasoning and meta-reasoning can be consid-
ered at a single level.

53

Chapter 6

Implementation

In this chapter we present a prototype system implementing most of the Pfd constructs. Firstly
we discuss some of the syntactical issues and the overall architecture of the system. This is
followed by a brief description of some techniques employed. We have tried to describe the
system implementing Pfd in such a fashion as to provide insight to the task of implementing
Pfd under any programming language.

6.1 Overall

We have built an evaluation system that implements the majority of the Pfd constructs. For
ease of reference we will refer to the code implementing Pfd as the system or meta-interpreter.

Important interactions between Pfd and the meta-interpreter :

• Pfd and the system had a gradual and interleaved development,

• feedback from the system was paramount since our research hopes to produce a practical
programming language subset,

• the system proves that Pfd is highly integrative.

The system has been implemented as a meta-interpreter in Prolog. Its two main differences
from standard Logic Programming meta-interpreters are the use of a store to carry the con-
straints information (which is a technique from CLP) and the use of built-in transformations
to map Pfd to Prolog clauses. The result is a robust shell based on high level programming
constructs. This has been an invaluable help to our research since fundamental changes in Pfd
itself were possible to be integrated within minimal amount of time and programming effort.

54

The first part of the meta-interpreter is in essence performing a consultation/compilation
step. During this phase, programs are read-in and clauses are asserted in the internal database.
These clauses are of a syntactic form that facilitate execution during the next step. Execution
refers to the phase where queries are answered against the internal database in the normal
Prolog interaction. A query is in general, a conjunction of goals. In this system, each of the
goals belong to one of two main categories. A goal can either be a Prolog clause, in which case
normal unfolding takes place, or it might be a constraint, in which case some interaction with
the store will take place. (Unless otherwise stated or easily inferred from the context, we will
use the term constraint to refer to Pfd constraints.)

Constraints are the means for updating and interrogating a global (i.e. query-wide) data
structure. In accordance with established constraint research we refer to this structure as the
store. Operations on the store must perform two main duties. Firstly, that the addition of new
conditional constraints does not introduce cyclic (conditional) dependencies and secondly, that
when calculating the probability of events, all current information are taken into consideration.
It is important to note, that unlike other constraint systems, the Pfd store does a minimal
amount of pro-active consistency checking.

From a probabilistic perspective pro-active consistency is not appealing; particularly when
considering the objectives and restrictions of Pfd. From a finite domains perspective, the story
of course is a different one, since consistency checking is a major area of research with important
results and well established techniques. In this regard, we have introduced the novel notion
of decoupling the domain elements from particular probability values. This in effect, ensures
that Pfd will be able to work along side existing finite domain solvers, thus compositionally
incorporating the best consistency techniques.

The meta-interpreter does not depend on any Prolog system specifics since it is largely
written in pure Prolog and when this was not possible ISO standard compliant code had been
used. The original platform was SICStus Prolog, which provided a reliable system that is widely
used in academic institutions. One particularly useful feature of the platform, is its arbitrarily
long integer arithmetic capabilities. On the other hand, the meta-interpreter has already been
ported (minimal changes) to a freely available Prolog system (SWI Prolog), thus making it
easier for people to evaluate and use it.

The first step in realising Pfd is to approximate the introduced operators by more machine
friendly character combinations. The correspondence of operators is given in Table 6.1. (Note
that entries appearing on the fourth column are the actual declarations of the operators, defining
precedence and association.) The compilation of the meta-interpreter’s operators, is achieved
with a number of predicates that are used by the Prolog engine while reading program clauses.

55

Description Pfd meta declaration

Var Defn. e p pin op(950, xfy, (pin))
Conditional 1 / op(900, xfy, (/))
Cond. Different 1* / # op(900, xfy, (/#))
Qualifier Eq. = = -
Qualifier Diff. # -

Table 6.1: Operators Correspondence

Some of these predicates are presented in Fig. 6.1. The entry point for the compilation is
via term.expansion/2. The order is important since these clauses change the behaviour of the
program that reads them in. Transformation of each term culminates in the assertion of a
pfd-clause/2, the first argument being the head, while the second is the body of the clause.

The answering of queries is handled by the customary demo predicate. Within each iteration
of the demo/4 predicate (Fig 6.2) the meta-interpreter tries to reduce a selected goal. There are
three possibilities to the identity of the selected goal. Two of the alternatives deal with Prolog
predicates. Prolog predicates are either user defined ones, in which case they are unfolded and
their body is added to the goals to be proven, or they are built-ins, in which case predicates
are funnelled through to the underlying Prolog system. Both of the preceding cases make
no use of the information held in the store. Store interactions are solely managed when the
selected goal is a constraint. For the sake of brevity, we refrain from presenting more code here,
but the interested reader can find the top-level predicates concerned with store interaction in
Appendix C.

Here we give a description of store interactions. This is achieved by splitting the constraints
into three categories and providing accounts for each category.

Additions to the store. When adding conditional constraints we need to check for cycles. Thus,
we need to make sure that in when the selected goal is a conditional constraint then the
Qualifier variable (Section 3.4) does not dependent on Dependent variable. Whereas,
variable definitions have to make sure that the variable in question is of the correct form.

Derivation of information from the store. The common characteristic in this case is that the
store remains unaffected, while some information is extracted from it. In the case of
information about a specific variable, this is a straightforward matter.The more interest-
ing case is when we enquire about the probability of a predicate. The benefit of using
Prolog for our implementation, is that probabilistic variables within the predicate can be
substituted with (eventually all) alternative values and then test the validity of the pred-

56

expand_pfcLgoal((Left/Right), pfd_con(cond(ExpL,ExpR)))
expand_constraint(Left, ExpL),
expand_constraint(Right, ExpR).

expand_pfd_goal((VarL/#VarR), pfd_con(diff(VarL,VarR))).

expand_pfd_goal((Var pin Method), pfd_con(prin(Var,MethodStr)))
expand_rnethod(Method, MethodStr).

expand_pfd-goal(Var is p(Predicate), pfd_con(prob(Predicate,Var))).

expand-pfd_goal(AnythingElse, AnythingElse).

term_expansion(Clause, (:- true))
(Clause = (Head:-Goals) — >

expand_body(Goals, ExpGoals),
ensuredist(ExpGoals, ListOfGoals),
assertz(pfd_clause(Head,ListOfGoals))

>
assertz(pfd_clause(Clause,[]))

Figure 6.1: Clausal transformations with expand-term/2.

57

icate (call execution). The information derived, in that case, is the sum of products of
probabilities of all variable valuations for which the predicate is true (execution succeeds).

Constriction of variable information. One or more variables, which are present in the store
valuate to single values. Upon backtracking all possible valuations occur. In the sake of
uniformity these constrictions in the meta-interpreter are implemented as singleton sets.
A more performance-aware approach might allow atom entities in the domains.

As a final, but important, note to the discussion about the overall architecture of our system,
we comment on the internal representation of probabilistic variables. Our choice has been to
represent probabilistic variables as atoms1. In this respect we lose some of the power Prolog
variables posses. What is gained is the ability to have an extra syntactic handle for manipulating
internal objects. This was an important feature while developing a prototype, which may be
altered in improved implementations of Pfd within Prolog.

demo([], Store, Store).
demo(Goals, InStore, OutStore) :-

goal_select(Goals, Selected, Rest),
demo(Selected, Rest, InStore, OutStore).

demo(PfdClause, Goals, InStore, OutStore)
pfd_clause(PfdClause, Body),
body.and_goals(Body, Goals, NxGoals),
demo(NxGoals, InStore, OutStore).

demo(pfd.con(Constraint), Goals, InStore, OutStore)
constraint_to_store(Constraint, InStore, NxStore),
demo(Goals, NxStore, OutStore).

demo(Goal, Goals, InStore, OutStore) :-
prolog_predicate(Goal, InStore, MoreGoals),
body.and_goals(MoreGoals, Goals, NxGoals),
demo(NxGoals, InStore, OutStore).

Figure 6.2: The demo predicates.

'e.g. of the internal representation of a variable, 1224.

58

6.2 Techniques

In this section we take a closer look to some lower level algorithmic issues of the system. Where
possible we will present them in as abstract means as possible, in order to make the technical
argumentation applicable to the general task of implementing Pfd in any programming language.

6.2.1 Rationals

Probabilities throughout the system are represented as rationals. In particular, in the form of
quotients, which have an integer numerator and an integer denominator (with the restriction,
denominator ^ 0). Our task has been greatly assisted by the presence of fast arithmetic
operations for arbitrary long integers, in the implementation platform and an ancient algorithm
for finding the greatest common divisor (Gcd) of two integers. (The algorithm is attributed to
Euclid.)

gcd(M, N, C)
(N = := 0 ->

C is M

NewN is M mod N,
gcd(N, NewN, C)

Figure 6.3: Euclid’s Gcd Algorithm.

The Prolog code for Gcd is given in Fig 6.3. This code is used in operation between
rationals (notably addition and subtraction) and for removing common factors present in both
the numerator and the denominator of a single rational. The algorithmic analysis of these
techniques is outside the scope of this thesis since they have been researched and analysed
widely in the literature. What is important from our standpoint, is that we have used this
algorithm as a successful means for implementing the arithmetics of probabilities.

6.2.2 Detection of Cycles

When adding constraints to the store, the system checks for cyclic dependencies which may later
lead to inaccuracies in the evaluation of probabilities for some event. As noted in the previous
Section, additions to the store occur when dealing with variable definitions and conditional
constraints. Our discussion here is pertinent to conditional constraints and to conditional vari-

59

able definition (in as far as this is a shorthand for a variable definition and a single conditional
constraint).

The main reason why cycles are disallowed has to do with the directionality of the conditional
constraint. For example, the constraint 1 = 21 h #3 should be read as, variable X takes the
value two when the value of variable Y is other than three. From an operational perspective,
whenever X appears in a predicate for which we seek a probability, its value will be conditioned
over the possible values of Y . Which in turn, requires the distribution of Y. If now, Y depends
on X , we arrive at the point where the determination of the distribution of X , depends on
having a distribution for the same variable. Thus, what we need to ensure is that Y does not,
in any number of steps, conditionally depend on X .

An example of a cyclic dependency occurs in the following :

1 = 21 T # 3, . . . , Y = 4 I Z — 1, , Z # 3 I X # 1

The behaviour of the system upon encountering this cycle is that of printing an error message
and terminating execution.

In order to facilitate the detection of cycles, a graph of dependencies is kept in the store.
This is a directed acyclic graph. The nodes of the graph are the probabilistic variables in the
store and edges represent a depends.on relationship. A consistent graph for part of our example
above is shown in Fig. 6.4. When the final constraint (Z # 3 I X # 1) appears, the graph is
checked for the existence of a path from A" to Z . Since such a path exists, the addition of
(Z depends-on A') would introduce a cycle to the graph and is therefore barred.

X ------- ► Y ------- ► V

W - - - - - - - - - Z

Figure 6.4: Consistency example graph.

The operation for finding a path between two given nodes in a graph, can be implemented
in fairly inexpensive fashion2. The standard algorithm runs in 0{n logn) time, where n is the
number of nodes in the graph (here this is the number of probabilistic variables, occurring in
conditional constraints). The operation will occur m times, where m is the number of conditional
constraints.

2 particularly so, for directed acyclic graphs

60

6.2.3 Heuristic Labelling

One of the reasons why probability has not been used in many practical systems is because of
efficiency considerations. Here we will show how in some cases we can employ generic heuristic
to overcome this drawback. By heuristics, we refer to rules that operate on some locality of a
particular area and which are used to provide, either an approximation to a globally optimal
value, or a globally suboptimal solution. The need for such an approximation, is normally due
to the fact that the calculation of the global value requires computations that are far more
expensive than the heuristic ones. The drawback in many approaches which use heuristics,
is that the heuristics are treated as first class objects, in which case the semantics of the
computation are tainted by the semantics of the heuristic, which in more cases than not, are
not sound.

Pfd takes a different approach, in that it always maintains the soundness of the computation,
but allows for the use of heuristics to alter the order in which results are found. This is achieved
by allowing, in controlled situations, to trade efficiency for accuracy in the order in which
valuations occur.

One way of defining the notion of order accuracy more precisely is by introducing the
sequence e, of the form

e = (1, . . . , n)

Let e' then denote a permutation of the original order (e) of elements ((1 ,.. .n)). We quantify
how accurate a valuation is by means of M, where :

M (e') = £
2=1

M takes values in the interval [0,1] with M = 0 iff e = e' .
The heuristic handle provided by Pfd is the label constraint (in particular the labelling of

n variables). Here we will concentrate on the max-unique jalt selection method (Section 3.7)
although similar techniques can be applied to alternative heuristic labelling schemes. This
constraint has the form,

label (Variables, max-unique-alt, Values, VIPrbs, BrPrb,TotPrb)

The objective is to provide one Value for each variable in Variables. Each Value has an associ-
ated probability (in VIPrbs). BrPrb is the product of all the Value probabilities, denoting the
current branch’s overall probability. TotPrb is the summation of all the branch probabilities
for the valuations considered so far. Furthermore max-unique-alt prompts for all Values to
be unique. The desired behaviour is that the constraint will succeed a number of times (upon

61

backtracking) where each subsequent success bounds BrPrb to a value smaller than any of
the preceding ones. So for instance, the first time the constraint succeeds, we want the most
probable combination of Values (marked by the maximum BrPrb).

Finding the most probable combination is an expensive operation that in the average case
has 0(n!) behaviour. In addressing this problem, we devised an algorithm that is polynomial
in finding a good candidate, but which does not guarantee that the found candidate is the
valuation with the next best BrPrb value.

This is a search algorithm that traverses the space of possible valuations according to an
approximation heuristic. Each partially instantiated branch3 upon introduction to the tree gets
assigned a value which approximates the branch’s final probability. At each stage the children of
the most promising branch are added to the tree (in the case of a leaf, its Values are returned
to the top level). Thus, at a random time the tree is expected to have branches at various
depths (essentially a form of best-first search).

X: 1

.1 .15 .15 .1 .2 .1 .15 .05

Leaves, (X,Y,Z):Prb

Nodes, Var:Heuristic

Figure 6.5: Tree illustrating probabilistic approximation.

A very simple tree, exemplifying the approximation process, is drawn in Fig. 6.5. There are
three variables involved, each with two possible values. Non-leaf nodes are labelled by a variable
(getting instantiated at that level) and a heuristic metric. Leaves are labelled by the list of
values assigned to the variables and their corresponding probabilities. Note that the particular
numbers are only used for the purposes of illustration and do not have any other meaning
attached to them. The important notion is the difference between optimal and approximated

3partially instantiated branch: having a mix of instantiated and uninstantiated variables

62

order. These are juxtaposed in Table 6.2.

Optimal Heauristic
(b, a, a) : .2 (b, a, a) .2
(a, a, b) : .15 (b,a,b) .1
(a, b, a) : .15 (a,b, a) .15
(6, b, a) : .15 (a, 6, b) .1
(a, a, a) : .1 (a, a, a) .1
(a,b,b) : .1 (a, a, b) .15
(b,a,b) : .1 (6, b, a) .15
(b, b, 6) : .05 (b,b,b) .05

Table 6.2: Optimal versus approximated order.

Children of a selected branch are found by instantiating one of the still free Variables to
one of its possible Values (starting with the most probable one). The particular metric serving
max-unique Jilt is

M etric — ParentM etric + f(M arginalPrb — MaxAlternativePrb)

where M etric and ParentM etric are the obvious variables. MarginalPrb is the probability
of the instantiated variable to assume the particular value, which differentiates this child from
its siblings. MaxAlternativePrb is the max probability assigned to this value in any of the
non selected variables. Function / ensures that the resulting number is an integer value within
certain limits. These limits are evaluated when setting up the labelling and depend on the
number of variables and the number of alternative values for each variable.

In the meta-interpreter, the search tree has been implemented as a binary tree, with each
node being an autonomous representation of the branch from root to itself. When consider-
ing Pfd within alternative programming paradigms, it will be more appropriate to use arrays
(indexed by each branch’s Metric) and/or link lists. The experimental performance of the algo-
rithm has been very encouraging and has shown that the main resource that is used extensively
is memory. We do not consider this to be a characteristic of the algorithm itself, but rather the
representation of the tree within Prolog. In an imperative language this can be implemented
as an array (the higher the index the most promising the branches) or a linked list. Although
arrays can be implemented in Prolog, the drawback in doing so, is that in order to have a handle
to the structure, the structure itself has to be passed as argument. Thus collapsing the array
manipulation to that of trees. Our experiments have shown that the array version is slightly
slower than the tree-based one.

63

Our final note for this algorithm, is that we view it as an illustration of gaining performance
within a sound semantics environment. The importance of the particular metric used, or the
particular implementation are thus secondary.

6.3 Alternative Propagation Techniques

The methods for effecting probabilistic propagation we presented so far are not very elaborate
in the way they try to achieve their aims. The reason for this is twofold. Firstly, because in this
thesis we are primarily concerned with other aspects of Pfd. And secondly, because its likely
that resarch from sister areas might be able to be adopted.

Probabilistic propagation in Pfd is akin to propagation in graphical models, which is a
fruitful research area, and in particular to propagation in Bayesian Networks. More specifically,
the task of calculating the probability of an event (as defined in 3.6) can be seen as analogous
to that of calculating the posterior probability of a variable in a Bayesian Network. This
Bayesian Network can be constructed on demand, from the Pfd constrains in the store. The
main difference is that the conditional constraints cannot be mapped statically to Bayesian
Network edges. This mapping can only happen as part of the Pfd propagation procedure.

Still, research in Bayesian Networks, have valuable results that might be beneficial for Pfd.
These include: better propagation properties in Networks with particular characteristics, such
as singly connected graphs (polytrees, [Pea88]) and approximating techniques for propagation
in Bayesian Networks ([Nea90]) and graphical models, such as the iterative decoding algorithm
([WLK95]).

64

Chapter 7

Experiments

In this chapter we present some experimental results. The meta-interpreter of Chapter 6 is used
to answer queries against examples taken from Chapter 5. We use the three curtains example
to illustrate the logical derivations possible with Pfd, while the Caesar coding example is used
to show some of the statistical inferences possible. The main motivation for this juxtaposition
is to strengthen the argument that Pfd can deal with problems from both interpretations of
probability (Section 2.1.4).

7.1 Logical

The machine readable program for the Curtains example (Section 5.1) is derived from the pre-
sented code by a straightforward application of the translations in Table 6.1. (For completeness
all the example programs are included in Appendix B.)

In this section we will look at strategy 7 in greater detail (its graphical representation and
code are given in Fig. 7.1). We choose to concentrate on this strategy, since it is the most
general one. Note that similar and somewhat simpler analyses hold for the other two strategies.

In Fig. 7.2, we show four queries and their results when executed within the meta-interpreter.
In the first query we ask for all the simple1 strategies and their probability of success. In the
second one, we ask for the probability of success when players take a fifty-fifty approach in
choosing their final curtain (strategy 7). The remaining two queries demonstrate that strategy
7 (Fig. 7.1) at its extremities (zero and one) collapses into strategies a and ¡3, respectively.

Figure 7.3 shows a tree-like structure which illustrates how the result of the second query
1 these are strategies a and /3

65

Gift First

curtains(gamma, SwapWith, Pr)
Gift pin uniform([a,b,c]),
First pin uniform([a,b,c]),
Reveal pin uniform([a,b,c]),
Second uniform([a,b,c]) / # First with SwapWith,
Reveal / # Gift,
Reveal / # First,
Second / # Reveal,
Pr is p(Second=Gift).

Figure 7.1: Graph and clause for 7 Strategy.

66

?- curtains(Strategy, Probability).
Strategy = alpha
Probability = 1 /3 ;
Strategy = beta
Probability = 2/3;

no
?- curtains(gamma, 1/2, Probability).

Probability = 1/2;
no
?- curtains(gamma, 0/1, Probability).

Probability = 1 /3 ;
no
?- curtains(gamma, 1/1, Probability).

Probability = 2/3;
no

Figure 7.2: Curtains queries.

is derived. The four leftmost labels at the top of the figure, correspond to the variables in the
program. Aligned underneath each variable, are values the variable assume at particular stages
of the computation. Edges are labelled with the probability with which variables assume the
value at the rightmost end of the edge. (The tree should be read from left to right.) The two
labels at the top right hand side of Figure 7.3, mark columns that hold product values. The
first product column labelled Probabilities, holds the probability attached to each branch; while
the second one, only records the probability of branches, for which the strategy was successful
(Second = G ift). These two columns are also totalled vertically to provide the total probability
of the traversal (equal to one) and the probability of success (one-half).

The importance of the presented tree is that it has a dual reading. In one reading it can
be used to map the computation of the Pfd program. The second more common reading, is
provided by probabilistic texts when attempting to illustrate the validity of the result. This
illustration is often necessary since the result differs from the one people assume when asked
to consider this example. (Commonly people claim that strategies a and /? lead to identical
likelihood of success.) This tree, in probabilistic circles, is known as the game tree. The
traversal of the tree, within the meta-interpreter in this example, is triggered by the constraint
Pr is p(Second=Gift) .

67

Figure 7.3: Probability Tree for strategy 7 ; with ChooseWith = 1/2.

68

The final probability is computed in time proportional to

0 < I I Vi) = 0(| First | * | G ift | * | Reveal |) (7.1)

where | V) | is the cardinality2 of variable V) . In general, the variables which participate in 7.1
are those that appear in Predicate; where (Predicate) is the one for which we seek a probability
of success, by a constraint of the form

Pr is p (Predicate)

Also included to this calculation are all variables to which the predicate’s variables depend
upon. Thus in this example, the predicate variables are G ift and Reveal while First is
included because of the Reveal/ff First constraint. Substituting in 7.1 for the cardinalities of
the three variables, we get :

0 (3 * 3 *3) = 0(27) (7.2)

The main two tasks executed twenty seven times are an arc consistency algorithm and a
meta-call. Arc consistency is achieved in polynomial time and the meta-call incurs a constant
time cost.

7.2 Statistical

The Caesar encodings program can be naturally split into two parts. In the first part, we set
up the variables to model the problem. Here we will see how a domain specific probabilistic
method is used. In the second part, we analyse the behaviour of the generic approximated
algorithm, which provides the computational horsepower for solving the problem.

In this section we repeat some of the code presented in Section 5.3. This is done for ease of
reference. Here we are interested in analysing the execution behaviour of the code, rather than
its modelling properties (as it was the case in Section 5.3). Our starting point in this analysis
is the caesar/7 predicate (Fig.7.4). Its arguments read :

E n c o d e d W s the encoded words (represented as a list of lists of character codes).

Diet identifies the dictionary from which EncodedWs were drawn and the dictionary words
against which any decoding guesses, will be tested against.

D e c o d e d W s are the decoded words. The form is that of EncodedWs but the place of each of
its variables, is occupied by the corresponding decoded letter.

69

% caesar(+EncodedWs, +Dict, ?DecodedWs)
caesar(EncodedWs, Diet, DecodedWs)

dictionaryJnfo(Diet, DictWs, Freqs, AlphaBeto),
count_occurrances(EncodedWs, Codes, Counts, Sum),
proximity .vars (Counts, Total, Alphabet, Freqs, Vars, Codes),
word.codes_to.vars(EncodedWs, Codes, Vars, WordVars),
decode_words(WordVars, Codes, DictWs, Vars, DecodedWs).

proximity _vars([], .Total, .Dorn, _Prbs, [], []).
proximity .vars ([Code-Occs|T], Total, Dom, Prbs, [Hv|Tv], [Code|Tc])

Hv pin proximity(Dom,Prbs,Occs/Total),
proximity_vars(T, Total, Dom, Prbs, Tv, Tc).

probabilistic_method(proximity(Fd,Marker,Frqs,Prbs))
rationals_subtractJist.from(Frqs, Marker, Subtr),
maplist(rationals-abs, Subtr, Abstr),
rationals_add_list(Abstr, Total),
rationals_subtractJist-from(Abstr, Total, Diffs),
rationals_to_probabilities(Diffs, Prbs).

Figure 7.4: Top level predicate for Pfd, solution to Caesar encodings problem.

70

The predicate, firstly gets all the necessary information pertaining dictionary Diet with dic-
tionary Jnfo/4, and then it derives similar information for EncodedW s with count.occurances/4,
so it will be able to set up one probabilistic variable for every encoded letter (proximity-vars/6).
The input letters are then replaced in the words, by the corresponding variables. Having set
up all the necessary structures, the predicate calls decode-words/5 which will try and solve the
problem. In the code shown in Fig.7.4, we also give the definition of the probabilistic method,
used in declaring the probabilistic variables in our Caesar program. The predicates within the
proximity method, refer to the rationals library which are part of the meta-interpreter (Ap-
pendix A). The declarative reading for all the rational predicates used here are tabulated in
Table 7.1.

The approach we have taken in decoding a given set of words, is to select one word at
each stage, guess a combination of values for its free variables, and finally check whether the
combination of values renders the word as a valid dictionary entry. The remaining words are
then decoded. Some important points of our approach :

• Selection of words is of paramount importance to the overall efficiency.

• The decoding of one word instantiates a number of variables; this in turn, reduces the
choices available within the remaining words. Thus, each decoding makes the guessing of
consecutive words a much easier task. In effect the crux of the problem is to correctly
guess the first selected word.

• Alternative guesses are selected upon failure.

rationals predicate declarative reading
subtract Jist_from([i?i, R2 , ...], Rm, Ls) L s — \Rjn -^15 Rm R2 7 • • •]
abs(jRi , R,2) R-2 =| R\ |
adddist([Ri , R2, ■ ..], RSUm) Rsum ~ ¿2/i Li
to_probabilities([i?i, R<2 , ...],

Rsum •> [-^pl 5 Rp2 •> • • •])
Rpi — Ri/ Rsum

Table 7.1: Rational arithmetics for proximity method.

The decoding of words is implemented in the predicate decode-words/5 , of Figure 7.5. The
selection of the encoded word to be decrypted at any stage, is achieved by a simple yet effective
means. The word selected is the one with the least degrees of freedom. By degrees of freedom,

^number of elements in the variable’s domain

71

we refer to the product of (unique) letters in a word, multiplied by the elements in each variable’s
finite domain3. This is implemented in a straightforward manner by min.cardinality.word/5,
which employs the Pfd constraint domain .cardinality / 2 (Fig. 7.5).

% decode_words(-(-WordsVs, +Vars, +DictWords, +ChrCodes, -DecodedWs).
decode_words([], .Vars, _DictWs, _CharCodes, []).
decode_words(WordsVs, Vars, DictWs, CharCodes, DecodedWs)

min_cardinality_word(WordsVs, BestWordVs, UnqVsWord, RestWs),
label(UnqVsWord, max .unique.alt , Vais, .VIProbs, -Prob, .AccProb),
wordcodes_to.guess(UnqVsWord, WordVs, Vais, Guess),
wordJn.dict.words(Guess, DictWs),
decode_words(RestWs, Vars, DictWs, CharCodes, DecodeWs).

% mimcardinality_word(+WordsVs, -BestWord, -UnqVsWord, -RestWs) :-
min_cardinality_word([H|T], BestWord, UnqVsWord, RestWs)

remove_duplicates(H, NoDplH),
word_cardinality(NoDplH, 0, HCard),
min_cardinality_word(T, NoDplH, H, HCard, WordReps),
WordReps = UnqVsWord-Word,
selects(Word, [H|T], Rest).

% word_cardinality(+Vars, +AccCard, -FinCard).
word_cardinality([], Card, Card).
word_cardinality([H|T], AccCard, WCard)

domain_cardinality(H, HCard),
NxAcc is HCard + AccCard,
word.cardinality(T, NxAcc, WCard).

Figure 7.5: Decoding words predicates.

In the core of the above predicates, resides the label/6 constraint. Its declarative reading is
that a number of variables are instantiated to their most likely combination. The misfortune
is that searching for the most likely combination requires a breadth-first search; since we are
unable to order the combinations until we have seen all of them. This would deem our solution
to the Caesar encodings impossible by todays computational powers.

3 in the interest of uniformity we will consider instantiated variables as having an one element finite domain

72

In order to avoid this limitation, we use the generic4 heuristic labelling method of Section
6.2.3, which trades accuracy of order for usage of computational resources. Note that, it is the
order that is compromised, (i.e. the first set of values assigned by the procedure might not be
the most likely one) and not the underlying semantics (i.e. incorrect probability attached to
branches or to domain elements).

By using the approximate labelling we have achieved some encouraging results. Obvi-
ously these cannot compete with specialised imperative programs in solving the particular
problem. Our main objective is to show that the declarative formalism of Pfd, even via a
meta-interpretation, can address some non-trivial problems.

In the Caesar encoding problem, the hardest word to decode is the first one; very often
by a great difference from the second. For the solution presented here, as well as most of the
solutions in the literature, the ease by which the solution is found is determined by the closeness
of the two letter frequencies (dictionary versus encoded). This in turn is inversely dependent
on the number of words to decode. The more words to decode, the more likely it is that we
have a better match between the frequencies, thus increasing the chances to find the solution
within a certain number of steps.

In Figure 7.6 we give the comparative timings for a Pfd and a CLP(FD) solution 5 to a Caesar
decoding experiment. The x-axis enumerates number of words chosen from the dictionary, while
on the y-axis are the execution times in seconds. In these experiments each of the decoded word
has at least four distinct letters and the guessed words are tested against the restricted set of
the input words rather than the whole dictionary. The difference in absolute execution time in
favour of Pfd is expected to be larger than what is suggested by the graph in Fig. 7.6, since
CLP(FD) is implemented natively, whereas Pfd relies on an extra layer of meta-interpretation.

In the curve corresponding to the Pfd solution (explicated with error-bars equal to the
population’s standard deviation, in Fig. 7.7) the near constant execution time for the range
of thirty to one hundred words indicates that the benefits of having better precision (at the
one hundred end) is negated by the extra time taken to guess and search through more words.
The same argument holds for the corresponding deviations. The most important cut-off point
is at the fifty words mark. At this point the statistical information becomes very unreliable,
although it still performing better than the uneducated-guess case. A main factor seems to be
that the most commonly letters are being selected in better than random order. In Fig. 7.8
we give the complete execution graph for the CLP(FD) case (the predicates implementing our

4 in the sense that it does not depend on the particular problem
5the CLP(FD) solution is identical to the P fd program apart from variable definitions, these are given in

Appendix B.4, and labelling, where we have used the standard left-to-right labelling provided in CLP(FD)
systems

73

1200
clp(FD) — I---

pfd

1000

800

600

400

200

0 0 20 40 60 80 100

Figure 7.6: Pfd versus CLP(FD) timings comparison,

approach can be found in Appendix B.4).
One encouraging factor in the analysis of performance, for the Pfd program, is that approx-

imately half of the execution time is consumed in garbage collection. The main data-structure
that contributes to this is the max-unique-alt labelling procedure’s tree structure. This
will be substantially reduced in an OO or imperative implementation of Pfd or even in Prolog
systems that implement Pfd labelling natively.

In concluding this section it is worth noting that by approximating the order of results we:
(a) do not compromise the semantics of Pfd and (b) are able to deal with global dependencies,
of probabilistic execution order, in a transparent manner.

J__________________________L

74

1200

Figure 7.8: CLP(FD) timings graph.

75

Chapter 8

Conclusions

In this final chapter we present some concluding remarks. In particular, we comment on P fd ’s
positive aspects, as well as on its limitations. Also we include some directions for future work.

8.1 General

In this thesis we have presented a novel set of constructs that allow programming with proba-
bilistic concepts. Probabilistic Finite Domains are intended to be a practical means for general
purpose programming with such concepts. Towards this we have employed and extended a
number of different technologies.

In particular :

Logic Programming. Although Pfd can be annexed to a variety of programming language, we
have shown how Logic Programming leads to a formalism with greater expressive power.

Finite Domains. As a convenient abstraction for the ascription of elementary probabilities to
computational units.

Constraint (Logic) Programming. A clean means for attaching probabilistic finite domains to
Logic Programming.

Our approach sheds some new light into the ideas of constraint solving, in that the techniques
and algorithms presented here, are not so much concerned with constraint solving per se.
Instead, we progress to the idea of constraints as a special knowledge base, which can assist
the process of problem solving. On the other hand, we are able to take advantage of Finite
Domains constraint solving, via the separation of a variable’s domain and its probabilistic

76

behaviour (captured via method functions). Through this separation, probabilistic behaviour
is captivated at a level which is intuitive to a human reasoner.

Based on the elementary probabilities, we provide means of calculating probabilities of com-
posite events; in accordance with the axioms of Probability Theory. As a result, we have shown
that Pfd is capable of dealing with probabilistic problems, irrespective of the interpretation
(belief versus frequencies) imposed when modelling particular problems.

8.2 Positive Points

In the light of Pfd as an extension to Logic Programming, for general problem solving, we are
able to claim an array of positive points. These include:

• Probabilistic constructs are compositional. This is an important property for any ap-
proach that seeks to improve the programming capabilities of probabilistic languages.

• Ability to take advantage of constraint propagation in Finite Domains.

• Integration of transparent probabilistic function that capture human intuitions at a local
level.

• Provision of conditional constraints which differentiate probabilistic causation from the
purely logical one, while it allows accountability of resource usage.

• Use of a generic labelling algorithm for semantically consistent approximation.

• Prototype implementation, which has promoted experimentation and initial evaluation.

8.3 Limitations

On the other hand, we have identified a number of points, which, either limit the applicability
of Pfdar need further investigation. These include:

• The calculation of composite event probabilities, involves computations that are time
proportional to the factorial of number of variables involved.

• Evaluation of Pfd programs’ behaviour for problems which use composite event probabil-
ities for driving computational decisions. •

• The current arsenal of probabilistic methods is limited to the ones needed in our evaluating
examples.

77

The restriction against mutual dependencies, in conditional constraints, might be overly
restraining.

8.4 Future Work

In addressing some of the identified limitations and in further evaluation of the possible benefits
of Pfd, we propose a number of key issues on which future work should be directed. We group
these in three categories: technical improvements, further evaluation, and extensions.

Technical Improvements.

• Investigate algorithms and the different semantics of allowing cyclic dependencies.
In our current work, we chose to concentrate in disallowing all such dependencies,
since there is no universal way of interpreting the probabilistic meaning of cyclic de-
pendencies. Further research may provide, either special cases where this is possible,
or a new generic way for calculating such probabilities.

• Construct more probabilistic methods, to make the system more readily useful to a
wider audience and suits of problems. These methods might be both generic ones
such as normal or embrace particular areas such as card-deck.

Further Evaluation.

• Continue to apply Pfd to different problems. These should be drawn both from
belief based and from frequent based interpretations of probability. In particular,
seek problems that take advantage of probabilities for directing the computation.

• Use experience from the application to different problem areas, to realise approxima-
tions which are pertinent to particular kinds of probabilistic settings. An example
of such an approximation is the labelling method presented in this thesis.

Extension.

• A far more challenging question is how to enhance Pfd with analytical, intentional,
formulas. For example 7 strategy in the curtains example, has a simple analytical
formulation,

p(W)
1 + w

3

The reason that this was not included in our analysis is because such formulations
normally require expert analysis and do not give compositional handles. On the

78

other hand, in most cases they provide enormous computational savings. Thus, it
would be worthwhile to investigate whether they can be integrated in Pfd along with
the extensional constraints.

8.5 Epilogue

Probabilistic concepts, along with randomised and other non-deterministic ones, have been
attracting a lot of attention in recent years. This is as a result of the maturity of deterministic
approaches, for which we have started to get a better understanding of their capabilities and
limitations. As a direct consequence of this, researchers are attempting to refine the abstractions
available by turning to more general concepts. In this light, we see Probability Theory as a
definite candidate abstraction.

In this work, we concentrated in programming languages research. Programming languages
are one of the most valuable assets to humanity. Their contribution to society in their short,
yet so influential, life is manifested in our every day lives. It is thus important to induce
their amalgamation with the more general abstractions of Probability. When this is done in a
successful manner the benefits to and quality of programs will increase dramatically.

The formalism we have proposed here (Pfd) raises some interesting question in these areas.
We also put forward some innovative answers. We hope that these help clarify some of the
issues involved and promotes discussion at a higher level.

We view programmers as creators of abstractions and hope that concepts such as those
introduced by our work, assist them in producing more effective abstractions.

7 9

Appendix A

The rationals predicates

7, r a t i o n a l s _ a d d i t i o n (+R1, +R2, -R3) R3 = R1 + R2.

r a t i o n a l s _ a d d i t i o n (LNom / L D n m , R N o m / R D n m , S i m p l i f i e d)

r a t i o n a l s _ l c d _ f a c t o r s (LDnm, RDnm, R e s Dnm, LFctr, R F c t r),

R e s N o m is L N o m * L F c t r + R N o m * RFctr,

r a t i o n a l s _ s i m p l i f y (R e s N o m / R e s D n m , S i m p l i f i e d).

7, r a t i o n a l s _ s u b t r a c t i o n (+ R 1 , +R2, -R3) R 3 = R1 - R2.

r a t i o n a l s _ s u b t r a c t i o n (LNom / L D m n , R N o m / R D n m , R e s N o m / R e s D n m)

r a t i o n a l s _ l c d _ f a c t o r s (LDnm, RDnm, R e s D n m , LFctr, R F c t r),

R e s N o m is L N o m * L F c t r - R N o m * RFctr.

7, r a t i o n a l s _ m u l t i p l i c a t i o n (+R1, +R2, -R3) R3 = R1 * R 2 .

r a t i o n a l s _ m u l t i p l i c a t i o n (Noml / D n m l , N o m 2 / D n m 2 , S i m p l i f i e d)

R e s N o m is N o m l * Nom2,

R e s D n m is D n m l * D n m 2 ,

r a t i o n a l s _ s i m p l i f y (R e s N o m / R e s D n m , S i m p l i f i e d).

7, r a t i o n a l s _ d i v i s i o n (+R1, +R2, -R3) R3 = R1 / R 2 .

r a t i o n a l s _ d i v i s i o n (N o m N o m / N o m D n m , D n m N o m / D n m D n m , S i m p l i f i e d)

R e s N o m is N o m N o m * DnmDnm,

R e s D n m is N o m D n m * DnmNom,

r a t i o n a l s _ s i m p l i f y (R e s N o m / R e s D n m , S i m p l i f i e d).

80

7, r a t i o n a l s _ s i m p l i f y (+R, - S i m p l e R).

r a t i o n a l s _ s i m p l i f y (N o m / D n m , S N o m / S D n m) :-

gcd(Nom, Dnm, G c d),

S N o m is N o m // Gcd,

S D n m is D n m // Gcd.

'/, r a t i o n a l s _ l c d _ f a c t o r s (+Natl, +Natl, -LCD, -Factl, - F a c t 2).

r a t i o n a l s _ l c d _ f a c t o r s (NatOne, NatT w o , LCD, O n e Fact, T w o F a c t)

gcd(N a t O n e , N a t Two, G C D),

O n e F a c t is N a t T w o // GCD,

T w o F a c t is N a t O n e // GCD,

L C D is O n e F a c t * T w o F a c t * GCD.

7. gcd(+Intl, +Int2, - G c d).

g c d (M, N, C) :-

(N = : = 0 -> C is M

; N e w N is M m o d N,

g c d (N, NewN, C)

) .

7. r a t i o n a l s _ a b s (+R, - A b s R).

r a t i o n a l s _ a b s (N o m / D n m , A b s N o m / D n m) :-

(N o m =< 0 ->

A b s N o m is a b s (Nom)

A b s N o m is N o m

) .

7. r a t i o n a l s _ t o _ p r o b a b i l i t i e s (+Rats, +Sum, - P r o b s) :-

r a t i o n a l s _ t o _ p r o b a b i l i t i e s (Rats, Sum, P r o b s) :-

r a t i o n a l s _ i n v e r t (Sum, MUs),

r a t i o n a l s _ a l l _ m u l t i p l y _ l i s t (Rats, MUs, P r o b s).

7. s u b t r a c t _ l i s t _ f r o m (+Rats, +0mni, - S u b R a t s).

81

s u b t r a c t _ l i s t _ f r o m ([] , _Omni, []).

s u b t r a c t _ l i s t _ f r o m ([HIT], Omni, [DiffHIDiffT]) :-

D i f f H is Omni - H,

s u b t r a c t _ l i s t _ f r o m (T, Omni, D i f f T).

7. r a t i o n a l s _ a d d _ l i s t (+Rats, - S u m) :~

r a t i o n a l s _ a d d _ l i s t ([H|T], Res)

r a t i o n a l s _ a d d _ l i s t (T, H, Res).

7. r a t i o n a l s _ a d d _ l i s t (+Rats, +Acc, - S u m).

r a t i o n a l s _ a d d _ l i s t ([], Ans, A n s).

r a t i o n a l s _ a d d _ l i s t ([HIT], Acc, Res)

r a t i o n a l s _ a d d i t i o n (H, Acc, N e w A c c),

r a t i o n a l s _ a d d _ l i s t (T, N e w Acc, Res).

7, r a t i o n a l s _ a l l _ m u l t i p l y _ l i s t (+Rats, + F a c t o r , - M u l t i R a t s).

r a t i o n a l s _ a l l _ m u l t i p l y _ l i s t ([] , _R, []).

r a t i o n a l s _ a l l _ m u l t i p l y _ l i s t ([H|T], Multi, [MTH|MsTT])

r a t i o n a l s _ m u l t i p l i c a t i o n (H, Multi, M T H),

r a t i o n a l s _ a l l _ m u l t i p l y _ l i s t (T, Multi, M s T T).

7. r a t i o n a l s _ i n v e r t (+R, - O n e O v e r R).

r a t i o n a l s _ i n v e r t (N o m / D n m , N N m / N D m)

(Norn > 0 ->

N N m = Dnm,

N D m = Norn

)
(Norn = 0 ->

w r i t e (e r r o r (d i v i s i o n _ b y _ z e r o , r a t i o n a l s _ i n v e r t / 2)),

n l , abort

N N m = - Dnm,

N D m = Norn

))•

82

Appendix B

The examples predicates.

B .l Curtains

°/0 c u r t a i n s (? S t r a t e g y , -P r o b)

c u r t a i n s (alpha, Pr)

G i f t p i n u n i f o r m ([1,2,3]),

F i r s t p i n u n i f o r m ([1,2,3]),

R e v e a l p i n u n i f o r m ([1,2,3]),

R e v e a l /# Gift,

R e v e a l /# First,

S e c o n d /# Reveal,

S e c o n d = First,

Pr is p (S e c o n d = G i f t) .

c u r t a i n s (beta, Pr)

Gift p i n u n i f o r m ([1,2,3]),

F i r s t p i n u n i f o r m ([1,2,3]),

R e v e a l p i n u n i f o r m ([1,2,3]),

R e v e a l /# Gift,

R e v e a l /# First,

S e c o n d /# First,

S e c o n d /# Reveal,

Pr is p (S e c o n d = G i f t) .

83

7, c u r t a i n s (+ S t r a t e g y , + C h o o s e O t h e r W i t h , - P r o b)

c u r t a i n s (gamma, C h o o s e O t h e r W i t h , Pr)

Gift p i n u n i f o r m ([1,2,3]),

F i r s t p i n u n i f o r m ([1,2,3]),

R e v e a l p i n u n i f o r m ([1,2,3]),

R e v e a l /# Gift,

R e v e a l /# First,

S e c o n d p i n u n i f o r m ([1,2,3]) /# F i r s t w i t h C h o o s e O t h e r W i t h ,

S e c o n d /# Reveal,

Pr is p (S e c o n d = G i f t) .

B.2 Enumeration

’/, o r d e r e d _ w i t h _ r e p l a c e m e n t (+ R o b j e c t s , + F r omFd, - C o d e P r o b)

o r d e r e d _ w i t h _ r e p l a c e m e n t (R, Fd, Pr)

n _ p f d _ v a r s (R, u n i f o r m (F d) , C o d e),

n _ r a n d o m _ s e l e c t i o n s (R, Fd, A s s i g n),

Pr is p(C o d e = A s s i g n).

7, o r d e r e d _ w i t h o u t _ r e p l a c e m e n t (+ R o b j e c t s , + F r omFd, - C o d e P r o b)

o r d e r e d _ w i t h o u t _ r e p l a c e m e n t (R, Fd, Pr)

n _ p f d _ v a r s (R, u n i f o r m (F d) , C o d e),

d i s t i n c t (C o d e),

n _ r a n d o m _ s e l e c t i o n s (R, Fd, A s s i g n),

Pr is p(C o d e = A s s i g n).

7. n _ p f d _ v a r s _ l (+N, +Pfd, - T h e N P f d V a r s).

n _ p f d _ v a r s _ l (0, _Pfd, []).

n _ p f d _ v a r s _ l (N, Pfd, [VarlVars])

N > 0,

V a r p i n Pfd,

N x N is N - 1,

n _ p f d _ v a r s _ l (NxN, Pfd, Vars).

84

Z n _ r a n d o m _ s e l e c t i o n s (+N, +Set, - S e l e c t e d)

n _ r a n d o m _ s e l e c t i o n s (N, Fd, A s s i g n) :-

l e n g t h (Fd, Lim i t),

n _ r a n d o m _ s e l e c t i o n s (N, Limit, Fd, A s s i g n).

“/, n _ r a n d o m _ s e l e c t i o n s (+N, +Lim i t , +Set, - S e l e c t e d).

n _ r a n d o m _ s e l e c t i o n s (0, „Limit, „List, []).

n _ r a n d o m _ s e l e c t i o n s (N, Limit, List, [H|T]) :-

N > 0,

r a n d o m (1, Limit, R n d),

nt h l (Rnd, List, H),

N x N is N - 1,

n _ r a n d o m _ s e l e c t i o n s (NxN, Limit, List, T).

’/, d i s t i n c t (+ P f d V a r s).

d i s t i n c t ([])•

d i s t i n c t e [HIT]) :-

d i s t i n c t (T, H),

d i s t i n c t e T).

y, d i s t i n c t e +P f d V a r s , + P f d V a r).

d i s t i n c t e [], _ I n v).

d i s t i n c t e [H I T] , Inv) :-

H /# Inv,

d i s t i n c t e T, Inv).

B.3 Caesar Encondings

°/(c a e s a r (+ E n c o d e d W s , +Dict, - D e c o d e d W s).

c a e s a r (E n c o d e d W s , Diet, D e c o d e d W s) :-

d i c t i o n a r y _ i n f o e Diet, DictWs, Freqs, A l p h a B e t o),

c o u n t _ o c c u r r a n c e s e E n c o d e d W s , Codes, Counts, S u m),

p r o x i m i t y _ v a r s (Counts, Sum, AB, Freqs, Vars, C o d e s),

w o r d _ c o d e s _ t o _ v a r s e E n c o d e d W s , Codes, Vars, W o r d V a r s),

85

7, d e c o d e _ w o r d s (+W o r d s V s , +Vars, + D i c t W o r d s , + C h r C o d e s , - D e c o d e d W s).

d e c o d e _ w o r d s ([] , _Vars, _DictWs, _C h a r C o d e s , []).

d e c o d e _ w o r d s (W o r d s V s , Vars, D i c tWs, C h a r C o d e s , D e c o d e d W s)

m i n _ c a r d i n a l i t y _ w o r d (W o r dsVs, B e s t W o r d V s , U n q V s W o r d , R e s t W s),

labe l (U n q V s W o r d , u n i q u e _ h e u r i s t i c , Val, _Vl P r o b s , _Prob, _ A c c P r o b),

w o r d c o d e s _ t o _ g u e s s (U n q V s W o r d , W o r dVs, Vais, G u e s s),

w o r d _ i n _ d i c t _ w o r d s (Guess, D i c t W s),

d e c o d e _ w o r d s (Rest W s , Vars, DictWs, C h a r C o d e s , D e c o d e W s).

7, p r o x i m i t y _ v a r s (+ C o unts, +Sum, +Dom, +Prbs, -Pvars, - C o d e s).

p r o x i m i t y _ v a r s ([], _Sum, _Dom, _Prbs, [], []).

p r o x i m i t y _ v a r s ([C-0s|T], Sum, Dorn, Prbs, [Hv|Tv], [C|Tc])

H v p i n p r o x i m i t y (D o m , P r b s , O s / S u m) ,

p r o x i m i t y _ v a r s (T, Sum, Dorn, Prbs, Tv, Tc).

•/. w o r d _ c o d e s _ t o _ v a r s (+Words, +Cod e s , +PVars, + C o d e s).

w o r d _ c o d e s _ t o _ v a r s ([], _Codes, _Vars, [])

!

w o r d _ c o d e s _ t o _ v a r s ([H|T], Codes, Vars, [HCode|TCode]) :-

I
• >

w o r d _ c o d e s _ t o _ v a r s (H, Codes, Vars, H C o d e),

w o r d _ c o d e s _ t o _ v a r s (T, Codes, Vars, T C o d e).

w o r d _ c o d e s _ t o _ v a r s (Code, Codes, Vars, V a r)

n t h l (Nthl, Codes, C o d e),

n t h l (Nthl, Vars, V a r).

7, m i n _ c a r d i n a l i t y _ w o r d (+ W o r d s , -Word, - U n q V s W o r d , - R e s t W o r d s).

m i n _ c a r d i n a l i t y _ w o r d ([HIT], Word, U n q V s W o r d , Rest)

r e m o v e _ d u p l i c a t e s (H, N o D p l H),

w o r d _ c a r d i n a l i t y (NoDplH, 0, H C a r d),

m i n _ c a r d i n a l i t y _ w o r d (T, NoDplH, H, HCard, U n q V s W o r d , W o r d),

s e l e c t _ o n c e (Word, [H|T], R e s t).

decode_words(WordVars, Codes, DictWs, Vars, DecodedWs).

86

7, m i n _ c a r d i n a l i t y _ w o r d (+Words, +No D p W r d , +Word, +Min, -NoDpWrd, - W o r d).

m i n _ c a r d i n a l i t y _ w o r d ([] , N o D pWrd, Word, _ C u r r M i n , N o D p W r d - W o r d) .

m i n _ c a r d i n a l i t y _ w o r d ([H|T], C r N o D p W r d , Curr W , C u r rMin, W o r d R e p s)

r e m o v e _ d u p l i c a t e s (H, N o D p l H),

w o r d _ c a r d i n a l i t y (NoDplH, 0, H C a r d),

(H C a r d =< C u r r M i n ->

N x M i n is HCard,

N x N d p W r d = NoDplH,

N x W = H

J

N x M i n is CurrMin,

N x N d p W r d = C r N oDpWrd,

N x W = C u r r W

),
m i n _ c a r d i n a l i t y _ w o r d (T, NxN d p W r d , NxW, NxMin, W o r d R e p s).

y, w o r d _ c a r d i n a l i t y (+Word, +A c c C a r d , - C a r d).

w o r d _ c a r d i n a l i t y ([], Card, C a r d) .

w o r d _ c a r d i n a l i t y ([H | T] , AccCard, W C a r d)

d o m a i n _ c a r d i n a l i t y (H, H C a r d),

N x A c c is H C a r d + AccCard,

w o r d _ c a r d i n a l i t y (T, NxAcc, W C a r d).

7. w o r d _ v a r s _ t o _ c o d e s (+Word, +Vars, + C o des, - C o d e s).

w o r d _ v a r s _ t o _ c o d e s ([], _Vars, _Codes, []).

w o r d _ v a r s _ t o _ c o d e s ([HVlTVs], Vars, Codes, [HClTCs])

n t h l _ v a r s (Vars, HV, 1, N t h l),

nt h l (Nthl, Codes, HC),

w o r d _ v a r s _ t o _ c o d e s (TVs, Vars, Codes, T C s).

’/, n t h l _ v a r s (Vars, Var, Acc, Nthl).

n t h l _ v a r s ([H I T] , V, Acc, Nthl)

(H = = V ->

N t h l is Acc

87

N x A c c is Acc + 1,

n t h l _ v a r s (T, V, NxAcc, Nthl)

).

°l, w o r d c o d e s _ t o _ g u e s s (+ W o r d U n q V s , +Wo r d V l s , + U n q V a l s , - W o r d V l s).

w o r d c o d e s _ t o _ g u e s s ([], WordV l s , _Vals, W o r d V l s).

w o r d c o d e s _ t o _ g u e s s ([HvrlTvrs], WordV r s , [Hvl|Tvls], W o r d V l s)

s u b s t i t u t e (Hvr, W o r d V r s , Hvl, N x W o r d V r s),

w o r d c o d e s _ t o _ g u e s s (Tvrs, N x W o r d V r s , Tvls, W o r d V l s).

B.4 Caesar clp(FD) predicates.

'/» N e e d s S I C S t u s 3.7

e n s u r e _ l o a d e d (l i b r a r y (c l p f d)).

/ A d o p t e d f r o m p f d s o l u t i o n to d e a l w i t h clp(FD) s o l u t i o n

y, of the c a e s a r d e c oding.

c a e s a r (E n c o d e d W s , C o u nts, _Sum, A l p h a B e t o , Freqs, Vars, D e c o d e d W s)

A l p h a b e t o = [F i r s t | R e s t] ,

last(Rest, Last),

p r o x i m i t y _ v a r s (Counts, First, Last, Freqs, Vars, C o d e s),

a l l _ d i s t i n c t (V a r s),

w o r d _ c o d e s _ t o _ v a r s (E n c o d e d W s , Codes, Vars, W o r d V a r s),

d e c o d e _ w o r d s (W o r d V a r s , Codes, Vars, D e c o d e d W s).

p r o x i m i t y _ v a r s ([], _First, _Last, _Prbs, [], []).

p r o x i m i t y _ v a r s ([C o d e - _ 0 c c s I T] , First, Last, _Prbs, [HvlTv], [CodelTc])

H v in F i r s t . . L a s t ,

p r o x i m i t y _ v a r s (T, First, Last, Prbs, Tv, Tc).

w o r d _ c a r d i n a l i t y ([], Card, C a r d).

w o r d _ c a r d i n a l i t y ([H|T], AccCard, W C a r d)

f d _ s i z e (H, H C a r d),

N x A c c is H C a r d + AccCard,

88

word_cardinality(T, NxAcc, WCard).

l a b e l _ n (Vars, V a i s)

l a b e l i n g ([leftmost], V a r s),

V a i s = Vars.

89

Appendix C

Constraint manipulating
predicates.

7, c o n s t r a i n t _ t o _ s t o r e (+ C o n s t r a i n t , + I n S t o r e , - O u t S t o r e)

7, C a s e 1: L a b e l N v a r iables.

c o n s t r a i n t _ t o _ s t o r e (l a b e l _ n (M e t h o d , V a r s , V a l s , P r o b , A c c P r) , In, Out)

s t o r e _ e n q u i r e (In, [act(Active)]),

a c t i v e _ s e l e c t s _ d e l (Vars, Acti v e , V a r T o D a t a L i s t , R e m A c t),

d a t a _ c h o i c e s _ f o r _ l a b e l _ n (V a r T o D a t a L i s t , Meths, Fds, Nds),

m e t h o d _ p f d _ c o n s t r a c t _ a c t _ m a n y (Meths, Fds, OrderOp, RemAct, P a i r s),

r e t r a c t a l l ((p r o b a b i l i t y _ s u m (V a r s , _ A n y 0 1 d A c c P r))),

a s s e r t (p r o b a b i l i t y _ s u m (V a r s , 0 / l)),

p r o b e _ n (Method, Pairs, Vals, _ V a l P r b s , P r o b),

d a t a _ u p d a t e _ d m n s (Vais, V a r T o D a t a L i s t , N e w V a r T o D a t a),

a c t i v e _ a d d i t i o n s (N e w V a r T o D a t a , RemA c t , N e w A c t),

d e p e n d e n t _ v a l u e s _ s a t i s f i e s _ a l l (Nds, Vais, N e w A c t),

p r o b a b i l i t y _ s u m (Vars, O l d A c c P r),

r e t r a c t a l l ((p r o b a b i l i t y _ s u m (V a r , _ V O A))),

r a t i o n a l s _ a d d i t i o n (OldAccPr, Prob, C u r r P r b),

a s s e r t (p r o b a b i l i t y _ s u m (V a r , C u r r P r b)),

s i n g l e _ u p d a t e _ s t o r e (a c t (N e w A c t) , In, Out).

9 0

7, C a s e 2: L a b e l a s i n g l e v a r iable.

c o n s t r a i n t _ t o _ s t o r e (l a b e l (V a r , L M e t h , V a l , P r o b , A c c P r) , In, Out)

s t o r e _ e n q u i r e (In, [act(Active)]),

a c t i v e _ s e l e c t s _ d e l ([V a r] , A c t ive, [V a r - V a r D a t a] , R e m A c t),

r e t r a c t a l l ((p r o b a b i l i t y _ s u m (V a r , _ A n y 0 1 d A c c P r))),

a s s e r t (p r o b a b i l i t y _ s u m (V a r ,0/1)),

d a t a _ c h o i c e s ([m t d (M e t h o d) , d m n (F d) , n d s (N d)] , V a r D a t a),

m e t h o d _ p f d _ c o n s t r a c t _ a c t (Meth o d , Fd, RemAct, CnDom, C n P r o b s),

p r o b e (LMeth, CnDom, C n P robs, Val, P r o b),

d e p e n d e n t _ v a l u e _ s a t i s f i e s _ a l l (Nd, Val, A c t i v e),

p r o b a b i l i t y _ s u m (Var, O l d A c c P r),

r e t r a c t a l l ((p r o b a b i l i t y _ s u m (V a r , _ V O A))),

r a t i o n a l s _ a d d i t i o n (Ol d A c c P r , Prob, A c c P r),

a s s e r t (p r o b a b i l i t y _ s u m (V a r ,AccPr)),

d a t a _ u p d a t e (d m n (V a l) , V a r Data, N e w D a t a),

a c t i v e _ a d d i t i o n s ([V a r - N e w D a t a] , R e m A c t , N e w A c t),

s i n g l e _ u p d a t e _ s t o r e (a c t (N e w A c t) , In, Out).

i C a s e 3: P r o b a b a b i l i s t i c in operator.

c o n s t r a i n t _ t o _ s t o r e (p r i n (V a r ,M e t h o d) , In, Out)

s t o r e _ e n q u i r e (In, [c n t (C o u n t) . a c t (A c t i v e) , r t s (R o o t s) , g r (G r a p h)]),

m u s t _ b e (v a r (V a r)),

n u m b e r _ c h a r s (Count, N u m b C s),

a p p e n d (Numb C s , [0 ’_], E s c C s),

a t o m _ c h a r s (Var, E s c C s),

N x t C o u n t is C o u n t + 1,

(M e t h o d S t r = (M e t h o d , R e f V a r , C n s t r , P r o b) ->

r a t i o n a l s _ i s _ r a t (Prob, R a t P r b),

O u t M e t h o d S t r = (N o r m M e t h o d , R e f V a r , C n s t r , R a t P r b) ,

g r a p h _ a d d _ c o n s t r a i n t (R e f Var, Cnstr, Var, Graph, N e w G r),

N e w R t s = Roots,

Nds = [R e f V a r - C n s t r] ,

a c t i v e _ s e l e c t s _ d e l ([R e f V a r] , A c t ive, [R e f V a r - R e f D a t a] , M i d A c t),

d a t a _ s w a p (r q r (R e q B y) , R e f D a t a , N e w R e q B y , N e w V D t),

o r d _ a d d _ e l e m e n t (ReqBy, Var, N e w R e q B y),

91

M e t h o d = M e t h o d S t r ,

O u t M e t h o d S t r = N o r m M e t h o d ,

o r d _ a d d _ e l e m e n t (Roots, Var, N e w R t s),

N e w G r = Graph,

N d s = [],

S e c A c t = A c t i v e

),
m e t h o d _ n o r m a l i s e (Method, N o r m M e t h o d , F d),

o r d _ a d d _ e l e m e n t (SecAct, V a r - [O u t M e t h o d S t r , F d ,N d s ,[]], N e w A c t),

s t o r e _ u p d a t e (In,

[r t s (N e w R t s) ,a c t (N e w A c t) ,c n t (N x t C o u n t) , g r (N e w G r)] ,

Out) .

'/, C a s e 4: C o n d i t i o n a l .

c o n s t r a i n t _ t o _ s t o r e (c o n d i t i o n a l (D e p V a r C n , R e f V a r C n) , In, Out)

b i _ u n c o n d i t i o n a l _ c o n s t r a i n t (D e p V a r C n , D e p Wch, DepVar, D e p V a l),

b i _ u n c o n d i t i o n a l _ c o n s t r a i n t (R e f V a r C n , R e f W c h , RefVar, R e f V a l),

Reqs = (R e f W c h - R e f V a l . D e p W c h - D e p V a l) ,

c o n s t r a i n t _ t o _ s t o r e _ c o n d i t i o n a l (DepV a r , RefV a r , Reqs, In, Out).

I C a s e 5: C o n d i t i o n a l y - d i f f e r e n t c o n straint.

c o n s t r a i n t _ t o _ s t o r e (c o n d _ d i f f (D e p V a r ,V a r) , In, Out)

c o n s t r a i n t _ t o _ s t o r e _ c o n d i t i o n a l (D e p Var, Var, c o n d_diff, In, Out).

*/, Case 6: P r o b a b a b i l i s t i c in operator.

c o n s t r a i n t _ t o _ s t o r e (p r o b (C o n s t r , P r o b) , Store, S t o r e)

p f d _ p r e d i c a t e (Constr, P r l g C n s t r , PfdVs, P r l g V s),

v a r i a b l e s _ t o _ r o o t s _ a c t i v e (PfdVs, Store, Roots, A c t i v e),

f i n d a l l (Br a n c h P r ,

(p r o b e _ v a r i a b l e s (Roots, Active, [], Prob e d , 1/1, B r a n c h P r),

p r o b e d _ p r e d i c a t e _ i s _ i n _ e v e n t (P r l g C n s t r , PfdVs, PrlgVs, P r o b e d)

),
P r o b a b i l i t i e s

active_additions([RefVar-NewVDt], MidAct, SecAct)

9 2

),
r a t i o n a l s _ a d d _ l i s t (P r o b a b i l i t i e s , P r o b).

7, C a s e 7: D o m a i n c a r d i n a l i t y of a variable.

c o n s t r a i n t _ t o _ s t o r e (d o m a i n _ c a r d i n a l i t y (V a r , C a r d) , Store, S t o r e)

m u s t _ b e (p f d _ v a r (V a r)),

s i n g l e _ e n q u i r y _ f o r _ s t o r e (a c t (A c t i v e) , S t o r e),

a c t i v e _ s e l e c t s ([Var], Active, [Var-VarData]),

d a t a _ c h o o s e (d m n (F d) , V a r D a t a),

l e n g t h (Fd, C a r d).

7, v a r i a b l e s _ t o _ r o o t s _ a c t i v e (+Vars, +Store, - R e s R o o t s , - R e s A c t i v e)

v a r i a b l e s _ t o _ r o o t s _ a c t i v e (Vars, Store, R e s R o o t s , R e s A c t i v e)

s t o r e _ e n q u i r e (Store, [a c t (A c t i v e) , r t s (R o o t s) , g r (G r a p h)]),

g r a p h _ v a r i a b l e s _ r e a c h (Vars, Graph, [], R e a c h),

a c t i v e _ s p l i t _ r o o t s (Active, Roots, Reach, Re s R o o t s , R e s A c t i v e).

7, c o n s t r a i n t _ t o _ s t o r e _ c o n d i t i o n a l (+ D e pVar, +Var, +Reqs, +In, -Out)

c o n s t r a i n t _ t o _ s t o r e _ c o n d i t i o n a l (DepVar, Var, Reqs, In, Out)

s t o r e _ e n q u i r e (In, [a c t (A c t) , g r (G r a p h) , r t s (R o o t s)]),

a c t i v e _ s e l e c t s _ d e l ([V a r , D e p V a r] , Act, [V a r - V D t , D e p V a r - D p V D t] , M i d A c t),

d a t a _ a d d _ n e e d s (Reqs, Var, D p V D t , N e w D p V D t),

d a t a _ a d d _ r e q u i r e d (DepVar, diff, V D t , Roots, N e w V D t , N e w R o o t s),

a c t i v e _ a d d i t i o n s ([V a r - N e w V D t , D e p V a r - N e w D p V D t] , M i d Act, N e w A c t),

g r a p h _ a d d _ c o n s t r a i n t (Var, diff, DepVar, Graph, N e w G r a p h),

s t o r e _ u p d a t e (In, [a c t (N e w A c t) , g r (M e w G r a p h) , r t s (N e w R o o t s)] , Out).

G

9 3

Bibliography

[Abr96] Samson Abramsky. Semantics of interaction. In Proc. of 21st Int. Coll, on Trees in
Algebra and Programming - C A A P’96, Linköping, volume 1059 of Lecture Notes
in Computer Science, page 1. Springer-Verlag, 1996.

[AH94] M. Abadi and J. Y. Halpern. Decidability and expressiveness for first-order logics
of probability. Information and Computation, 112(1): 1 36, 1994. A preliminary
version appears in Proceedings of the 30th Annual Conference on Foundations of
Computer Science, 1989, pp. 148-153.

[Ale88] Romas Aleliunas. A new normative theory of probabilistic logic. In Proceedings of
the Canadian A I Conference, pages 67-74. Morgan Kaufman, 1988.

[Bac90a] Fahiem Bacchus. Lp, a logic for representing and reasoning with statistical knowl-
edge. Computational Intelligence, 6:209-231, 1990.

[Bac90b] Fahiem Bacchus. Representing and Reasoning With Probabilistic Knowledge. A
Logical Approach to Probability. Artificila Intelligence. MIT Press, 1990.

[Bac96] Rolf Backofen. Controlling functional uncertainty. In Wolfgang Wahlster, editor,
Proceedings of 12th European Conference on Artificial Intelligence, pages 557-561.
John Wiley & Sons, Ltd, 1996.

[Bal87] J. F. Baldwin. Evidential support logic programming. Journal of Fuzzy Sets and
Systems, 24:1-26, 1987.

[Bay 63] T. R. Bayes. An essay towards solving a problem in the doctrine of chances.
Philosophical Transactions of the Royal Society, 53:370-418, 1763.

[BFGK96] Craig Boutilier, Nir Friedman, Moisés Goldszmidt, and Daphne Koller. Context-
specific independence in bayesian networks. In Proceedings of the 12th Annual

94

Conference on Uncertainty in AI (UAI), pages 115-123, Portland, Oregon, August
1996.

[BGHK93] Fahiem Bacchus, Adam J. Grove, Joseph Y. Halpern, and Daphne Roller. Statisti-
cal foundations for default reasoning. In Proceedings of the 13i/i International Joint
Conference on Artificial Intelligence (IJCAI), pages 563-569, Chambéry, France,
August 1993.

[BK97] Christel Baier and Marta Kwiatkowska. Domain equations for probabilistic pro-
cesses. Electronic Notes in Theoretical Computer Science, 7:20, 1997.

[Bor70] L. Borkowski, editor. Logical Foundations of Probability Theory. Jan Lukasiewicz.
North-Holland, 1970.

[Bre94] Richard P. Brent. Uses of randomness in computation. Technical Report TR-CS-
94-06, Australian National University, June 1994.

[Car62] Rudolf Carnap. Logical Foundations of Probability. The University of Chicago
Press, 1962.

[CD96] Philippe Codognet and Daniel Diaz. Compiling constraints in clp(fd). Journal of
Logic Programming, 27, 1996.

[CFS93] Philippe Codognet, Francois Fages, and Thierry Sola. A metalevel compiler of
clp(fd), and its combination with intelligent backtracking. In Alain Colmerauer and
Frédéric Benhamou, editors, Constraint Logic Programming: Selected Research,
chapter 23, pages 437-456. The MIT Press, Cambridge, Mass., 1993.

[CG98] Veerle M. H. Coupe and Linda C. van der Gaag. Practicable sensitivity analysis of
bayesian belief networks. Technical Report UU-CS-1998-10, University of Utrecht,
1998.

[CMG97] J. Laurie Snell Charles M. Grinstead. Introduction to Probability. American Math-
ematical Society, 1997.

[Coo90] Gregory F. Cooper. The computational complexity of probabilistic inference using
bayesian belief networks. Artificial Intelligence, 42(2-3):393-405, 1990.

[Daw] A. P. Dawid. Conditional independence for statistics and AI. Lecture Notes,
Cambringe, 1997.

95

[DBH+99]

[DC93]

[dF31]

[DGH81]

[dH98]

[DHN81]

[DL93]

[DP80]

[DP97]

[DS97]

[Daw79]

[DvdG95]

A. P. Dawid. Conditional independence in statistical theory (with discussion). J
of R Stat. Soc. B, 41:1-31, 1979.

B. Demoen, M. Garcia de la Banda, W. Harvey, K. Marriott, and P. Stuckey.
An overview of HAL. In In Proceedings of Principles and Practice of Constraint
Programming, pages 174-188, October 1999.

Daniel Diaz and Philippe Codognet. A minimal extension of the warn for clp(fd).
In David S. Warren, editor, Proceedings of the Tenth International Conference on
Logic Programming, pages 774-790, Budapest, Hungary, June 1993. MIT Press.

Bruno de Finetti. Sul significato soggettivo della probabilità. Fundamenta Math-
ematicae, 17:298-329, 1931.

Richard 0 . Duda, John Gascnig, and Peter Hart. Model design in the prospector
consultant system for mineral exploration. In Bonnie Lynn Webber and Nils J.
Nilsson, editors, Readings in Artificial Intelligence, pages 334-348. tioga, 1981.

J.I. den Hartog. Comparative semantics for a process language with probabilistic
choice and non-determinisim. Technical Report IR-445, Vrije Universiteit Amster-
dam, http://www.cs.vu.nl/ tcs, February 1998.

Richard 0 . Duda, Peter E. Hart, and Nils J. Nilsson. Subjective bayesian methods
fo rule-based inference systems. In Bonnie Lynn Webber and Nils J. Nilsson,
editors, Readings in Artificial Intelligence, pages 192-199. Tioga, 1981.

Paul Dagum and Michael Luby. Approximating probabilistic inference in bayesian
belief networks is np-hard. Artificial Intelligence, 60(1): 141-153, 1993.

Didler Dubois and Henri Prade. Fuzzy Sets and Systems. Theory and Applications,
volume 144 of Mahematics in Science and Engineering. Academic Press, 1980.

Adnan Darwiche and Judea Pearl. On the logic of iterated belief revision. Artificial
Intelligence, 29(1-2) :1—29, 1997.

Alex Dekhtyar and V. S. Sabrahmanian. Hybrid probabilistic programs. In Pro-
ceedings of the Fourteenth International Conference on Logic Programming, 1997.

Marek J. Druzdzel and Linda C. van der Gaag. Elicitation of probabilities for
belieff networks: Combining qualitative and quaantitative information. In Eleventh
Annual Conference on Uncertainty in Artificial Intelligence (UAI-95), pages 141-
148, Montreal, Canada, August 1995.

96

http://www.cs.vu.nl/

[Eps77]

[Fab96a]

[Fab96b]

[Fel59]

[FH94]

[FHK96]

[FHM90]

[Fit88]

[Fit91]

[Frii98]

[Elk93]

[Gam97]

Charles Elkan. The paradoxical success of fuzzy logic. In National Conference on
Artificial Intelligence (A A A I’93), July 1993.

Richard A. Epstein. The Theory of Gambling and Statistical Logic. Academic
Press, 1977.

Zdenek Fabian. Information and entropy of continuous random variables. Tech-
nical Report 694, Instute of Computer Science, Academy of Sciences of the Czech
Republic, 1996.

Zdenek Fabian. On the relation between gnostical and probability theories. Tech-
nical Report 671, Instute of Computer Science, Academy of Sciences of the Czech
Republic, April 1996.

William Feller. An Introduction to Probability Theory and Its Applications. Math-
ematical Statistics. Willey, 2nd edition, 1959.

Ronald Fagin and Joseph Y. Halpern. Reasoning about knowledge and probabil-
ity. Journal of the ACM, 41(2):340-367, 1994. A preliminary version appears in
Proceedings of the Second Conference on Theoretical Aspects of Reasoning About
Knowledge, 1988, pp. 277-294.

Nir Friedman, Joseph Y. Halpern, and Daphne Roller. Context-specific indepen-
dence in bayesian networks. In Proceedings of the 12th Annual Conference on
Uncertainty in A I (UAI), pages 1305-1312, Portland, Oregon, August 1996.

R. Fagin, J.Y. Halpern, and N. Megiddo. A logic for reasoning about probabilities.
Information and Computation, 87:78-128, 1990.

Melvin Fitting. Logic programming on a topological bilattice. Fundamenta Infor-
maticae, 11:209-218, 1988.

Melvin Fitting. Bilattices and the semantics of logic programming. Journal of
Logic Programming, 11(1 and 2):91—116, July 1991.

Thom Friihwirth. Theory and practice of constraint handling rules. Journal of
Logic Programming, 37(1-3), October 1998.

Dani Gamerman. Marko Chain Monte Carlo. Stochastic Simulation for Bayesian
Inference. Texts in Statistical Science Series. Chapman & Hall, 1997.

97

[G094]

[GZ97]

[Hal90]

[Hal97]

[HG97]

[Hod97]

[Hog90]

[Jae97]

[JL86]

[JL87]

[GKP88]

[JM94]

George Georgakopoulos, Dimitris Kavvadias, and Christos H. Papadimitriou.
Probabilistic satisfiability. Journal of Complexity, 4:1-11, 1988.

Alan Gernham and Jane Oakhill. Thinking and Reasoning. Blackwell Publishers,
1994.

Joshua Grass and Shlomo Ziberstein. Planning information gathering under un-
ceertainty. Technical Report CMPSCI 97-32, University of Massachusetts at
Amherst, May 1997.

Joseph Y. Halpern. An analysis of first-order logics of probability. Artificial In-
telligence., 46:311-350, 1990. A preliminary version appears in Proceedings of the
11th International Joint Conference on Artificial Intelligence (IJCAI 89), 1989, pp.
1375-1381.

Joseph Y. Halpern. A logical approach to reasoning about uncertainty: a tutorial.
In X. Arrazola, K. Korta, and F. J. Pelletier, editors, Discourse, Interaction, and
Communication, pages 141-155. Kluwer, 1997.

Petr Hajek and Lluis Godo. Deductive systems of fuzzy logic (a tutorial). Technical
Report V-707, Institute of Computer Science, Academy of Sciences of the Czech
Republic, Czech Republic, February 1997.

W. Hodges. Compositional semantics for a language of imperfect information.
Logic Journal of the IGPL, 5(4):539-563, 1997.

Christopher John Hogger. Essentials of Logic Programming. Graduate texts in
Computer Science. Oxford University Press, Oxford, 1990.

Manfred Jaeger. Relational Bayesian Networks. In Proceedings of UAI-97, San
Francisco, CA, 1997. Morgan Kaufmann.

Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. Technical
Report 86/74, Monash University, Victoria, Australia, june 1986.

Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. In POPL’87:
Proceedings lfth ACM Symposium on Principles of Programming Languages, pages
111-119, Munich, 1987. ACM.

Joxan Jaffar and Michael J. Maher. Constraint logic programming: A survey.
Journal of Logic Programming, 19/20:503-581, 1994.

98

[JMSY92] Joxan Jaffar, Spiro Michaylov, Peter Stuckey, and Roland Yap. An abstract ma-
chine for CLP(7?.). In Proceedings ACM SIGPLAN Symposium on Programming
Language Design and Implementation (PLDI), San Francisco, pages 128-139, June
1992.

[JMSY94] Joxan Jaffar, Michael Maher, Peter Stuckey, and Roland Yap. Beyond finite do-
mains. In Alan Borning, editor, Principles and Practice of Constraint Program-
ming, volume 874 of Lecture Notes in Computer Science. Springer, may 1994.
(PPCP’94: Second International Workshop, Orcas Island, Seattle, USA).

[Joh93] C. W. Johnson. A probabilistic logic for the development of safety-critical, inter-
active systems. International Journal Of Man-Machine Studies, 1993.

[Jon89] Claire Jones. Probabilistic Non-determinism. PhD thesis, University of Edinburgh,
Edinburgh, Great Britain, August 1989.

[Jos92] Cliff Joslyn. Possibilistic semantics and measurement methods in complex systems.
In Bilal Ayyub, editor, In Proceedings of the 2nd Int Symposium on Uncertainty
Modeling and Analysis (ISUMA ’92), pages 208-215, IEEE Computer Society, 1992.

[JPM98] Cristina Sernadas Javier Pinto, Amilcar Sernadas and Paulo Mateus. Non-
determinism and uncertainty in the situation calculus. Technical Report 98-PSSM-
probsc, Instituto Superior Tecnico, Lisboa, Portugal, April 1998.

[KH96] Daphne Roller and Joseph Y. Halpern. Irrelevance and conditioning in first-order
probabilistic logic. In Proceedings of the 12th Annual Conference on Uncertain ty
in AI (UAI), pages 569-576, Portland, Oregon, August 1996.

[KM92] D. Roller and N. Megiddo. A logic for approximate reasoning. In Proceedings
of the Third International Conference on Principles of Knowledge Representation
and Reasoning (KR), pages 153-164, Cambridge, Massachusetts, October 1992.

[Kol33] A. N. Rolmogorov. Grundbegriffe der Wahrscheinlichkeitsrechnung. Verlag von
Julius Springer, Berlin, 1933.

[Kol50] A. N. Rolmogorov. Foundations of the Theory of Probability. Chelsea Publishing
Co., 1950. Tranlation from the German original.

[Kow79] Robert Ivowalski. Logic for Problem Solving. Artificial Intelligence. Elsevier, New
York, 1979.

99

[Kra97a]

[Kra97b]

[Kra98]

[KY95]

[Lev93]

[LKI99]

[LLW96]

[LMM95]

[LMS95]

[Koz98]

[1PW92]

Dexter Kozen. Set constraints and logic programming. Information and Compu-
tation, 142(1):2—25, April 1998.

Ivan Kramosil. Probabilistic analysis of Dempster-Shafer theory. Part one. Tech-
nical Report 716, Academy of Science of the Czech Republic, 1997.

Ivan Kramosil. Probabilistic first-order predicate calculus with doubled nonstan-
dard semantics. Technical Report 714, Academy of Science of the Czech Republic,
1997.

Ivan Kramosil. Probabilistic analysis of Dempster-Shafer theory. Part two. Tech-
nical Report 749, Academy of Science of the Czech Republic, 1998.

George J. Klir and Bo Yuan. Fuzzy Sets and Fuzzy Logic: theory and applications.
Prentice-Hall, 1995.

Leonid A. Levin. Randomness and non-determinism. Journal of Symbolic Logic,
58(3):1102-1103, April 1993.

Thomas Lukasiewicz and Gabriele Kern-Isberner. Probabilistic logic programming
under maximum entropy. In 5th European Conference on Symbolic and Quantita-
tive Approaches to Reasoning with Uncertainty, volume 1638 of Lecture Notes in
Artificial Intelligence, pages 279-292, London, UK, 1999. Springer.

Jimmy H. M. Lee, Ho-fung Leung, and Hon-wing Won. Towards a more efficient
stochastic constraint solver. In Second International Conference on Principles and
Practice of Constraint Programming (CP96), pages 338-352, Cambridge, Mas-
sachusetts, USA, August 19-22 1996.

E. Lamma, P. Mello, and M. Milano. A meta constraint logic programming ar-
chitecture for qualitative and quantitative temporal reasoning. Technical Report
DEIS-LIA-001-95, University of Bologna (Italy), 1995. LIA Series no. 5.

P. Lincoln, J.C. Mitchell, and A. Scedrov. Stochastic interaction and linear logic.
In J.-Y. Girard, Y. Lafont, and L. Regnier, editors, Advances in Linear Logic,
volume 222 of London Mathematical Society Lecture Notes Series, pages 147-166.
Cambridge University Press, 1995.

Thierry le Provost and Mark Wallace. Domain independent propagation. In
FGCS’92, Tokyo, June 1992.

100

[LS94b]

[Luk99]

[LY92]

[Mac77]

[Mat93]

[MR93]

[MS98]

[Nea90]

[Nea93]

[Nel87]

[Nil86]

[LS94a] Laks V.S. Lakshmanan and Fereidoon Sadri. Modeling uncertainty in deductive
databases. In Proceedings of the Int. Conf. on Database Expert Systems and Appli-
cations, number 856 in Lecture Notes in Computer Science, pages 724-733, Athens,
Greece, September 1994. Springer.

Laks V.S. Lakshmanan and Fereidoon Sadri. Probabilistic deductive databases.
In Proceedings of the Int.Logic Programming Symp., (ILPS’9f), Ithaca, NY, US,
November 1994. MIT Press.

Thomas Lukasiewicz. Probabilistic logic programming. In 13th biennial European
Conference on Artificial Intelligence, pages 388-392, Brighton, Uk, August 1999.

F.C. Lam and W.K. Yeap. Bayesian updating: on the interpretation of exhaustive
and mutually exclusive assumptions. Artificial Intelligence, 53(2-3):245—254, 1992.

Alan K. Mackworth. Consistency in networks of relations. Artificial Intelligence,
8:99-118, 1977.

Ludek Matyska. Logic programming with fuzzy sets. Technical Report
TCU/CS/1993/4, City University, London, Great Britain, December 1993.

Ugo Montanari and Francesca Rossi. Finite domain constraint solving and con-
straint logic programming. In Alain Colmerauer and Frédéric Benhamou, editors,
Constraint Logic Programming: Selected Research, chapter 11, pages 201-222. The
MIT Press, Cambridge, Mass., 1993.

Kim Marriott and Peter J. Stuckey. Programming with Constraints: An Introduc-
tion. MIT Press, 1998.

Richard E. Neapolitan. Probabilistic Reasoning in Expert Systems: Theory and
Algorithms. John Willey & Sons, 1990.

Radford M. Neal. Probabilistic inference using markov chain monte carlo methods.
Technical Report CRG-TR93-1, Dept, of Computer Science, University of Toronto,
September 1993.

Edward Nelson. Radically Elementary Probability Theory. Number 117 in Annals
of Mathematics Studies. Princeton University Press, 1987.

Nils J. Nilsson. Probabilistic logic. Artificial Intelligence, 28:71-87, 1986.

101

[NM90] Ulf Nilsson and Jan Maluszynski. Logic, Programming and Prolog. John Wiley,
Chichester, England, 1990.

[Pap91] Athanasios Papoulis. Probability, Random Variables and Stochastic Processes.
McGraw-Hill, 3rd edition, 1991.

[Pea86] Judea Pearl. Fusion, propagation, and structuring in belief networks. Artificial
Intelligence, 29:241-288, 1986.

[Pea88] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufman, San Mateo, 1988. Revised second printing.

[Pea94a] Judea Pearl. Bayesian networks. Technical Report R-217, University of California,
1994. In M. Arbib (Ed.), Handbook of Brain Theory and Neural Ne tworks, MIT
Press, 149-153, 1995.

[Pea94b] Judea Pearl. Three statistical puzzles. Technical Report R-217, University of
California, May 1994.

[Poo93a] David Poole. Logic programming, abduction and probability: a top-down any-
time algorithm for estimating prior and posterior probabilities. New Generation
Computing, ll(3-4):377-400, 1993.

[Poo93b] David Poole. Probabilistic horn abduction and bayesian networks. Artificial In-
telligence, 64:81-129, 1993.

[Pug90] William Pugh. Skip lists: A probabilistic alternative to balanced trees. Commu-
nications of the ACM, June 1990.

[PvdG96] N. B. Peek and L. C. van der Gaag. A case-based filter for diagnostic belief
networks, 1996.

[Rei71] Hans Reichenbach. The Theory of Probability. University of California Press, 1971.
Translated from German Edition of 1949.

[Ros96] Sheldon M. Ross. Stochastic Processes. John Wiley & Sons, 2nd edition, 1996.

[Rub95] Ronitt Rubinfeld. Randomness and computation, 1995. Lecture Notes.

[Sha76] Glenn Shafer. A Mathematical Theory of Evidence. Princeton University Press,
1976.

102

[SS86]

[SS97]

[TN94]

[Van88]

[Van89]

[vdGB97]

[vdGM96a]

[vdGM96b]

[vdGM97]

[vE86]

[vE97]

[vEK76]

[Sha83] Ehud Y. Shapiro. Logic programs with uncertainties: A tool for implementing rule-
based systems. In Proceedings of IJCAI’83, pages 529-532. William Kauffman,
1983.

Leon Sterling and Ehud Shapiro. The Art of Prolog: Advanced Programming
Techniques. Logic Programming. MIT Press, Cambridge, Mass, 1986.

R. Salustowicz and J. Schmidhuber. Probabilistic incremental program evolution.
Evolutionary Computation, 5(2):123-141, 1997.

Ahmed Y. Tawfic and Eric Neufeld. Temporal bayesian networks. In TIME-94,
An International Workshop on Temporal Representation and Reasoning, Pensacola
Beach, Florida, May 1994.

Pascal Van Hentenryck. A constraint approach to mastermind in logic program-
ming. SIGART Newsletter, 103:31-35, January 1988.

Pascal Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press,
Cambridge, MA, 1989.

Linda C. van der Gaag and Hans L. Bodlaender. Comparing loop cutsets and
clique trees in probabilistic inference. Technical Report UU-CS-1997-42, University
of Utrecht, 1997.

Linda C. van der Gaag and J.-J.Ch. Meyer. Characterizing normal forms for infor-
mational independence. Technical Report UU-CS-1996-21, University of Utrecht,
1996.

Linda C. van der Gaag and J.-J.Ch. Meyer. The dynamics of probabilistic struc-
tural relevance. Technical Report UU-CS-1996-47, University of Utrecht, 1996.

Linda C. van der Gaag and J.-J.Ch. Meyer. Informational independence: Models
and normal forms. Technical Report UU-CS-1997-17, University of Utrecht, 1997.

Maarten H. van Emden. Quantitative deduction and its fixpoint theory. Journal
of Logic Programming, 3(l):37-54, April 1986.

Maarten H. van Emden. Value constraints in the CLP scheme. Constraints,
2(2):163-183, October 1997.

Maarten H. van Emden and Robert A. Kowalski. The semantics of predicate logic
as a programming language. Journal of the ACM, 23:733-742, 1976.

103

[vP94] Jan von Plato. Creating Modern Probability. Cambridge Studies in Probability,
Induction, and Decision Theory. Cambridge University Press, 1994.

[Wan96] Yongge Wang. Randomness and Complexity. PhD thesis, Universität Heidelberg,
Germany, 1996.

[WCJL+98] Mark Wallace, Yves Caseau, Eric Jacquet-Lagreze, Helmut Simonis, and Gilles Pe-
sant. CP98 Workshop on Large Scale Combinatorial Optimisation and Constraints.
Electronic Notes in Discrete Mathematics, 1, 1998.

[Whi89] Joe Whittaker. Graphical Models in Applied Multivariate Statistics. John Wiley
& Sons Ltd, 1989.

[WLK95] N. Wiberg, H.-A. Loeliger, and R. Kotter. Codes and iterative decoding on general
graphs. European Trans, on Telecommun, 6:513-525, 1995.

[Wut92] Beat Wuthrich. Towards probabilistic knowledge bases. Technical Report ECRC-
92-09, ECRC, München, Germany, 1992.

[Wut93] Beat Wuthrich. Learning probabilistic rules. Technical Report ECRC-93-03,
ECRC, München, Germany, January 1993.

[Zad65] Lofti A. Zadeh. Fuzzy sets. Information and Computation, 8(3):338-353, June
1965.

104

