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Abstract

This research tackles the issue of uncertainty due to lack of information, al-

ternatively known as Knightian Uncertainty, and its impact on option pricing. In 

the presence of such uncertainty, Probability Theory becomes restrictive and alter-

native tools are called for. In this research, we consider tools of Fuzzy Theory. We 

introduce three Option Pricing Models the first of which is a fuzzy binomial model 

based on the standard CRR binomial model. The model performs option pricing in 

a fuzzy world characterized by blurred prices. In such a world, it is no longer possi-

ble to price by replication. So we introduce a fuzzy pricing approach that employs 

Sugeno integration and fuzzy measures, and generates bounds on the possible op-

tion price. The second model is a fuzzy Black-Scholes model, which prices options 

in the presence of uncertain or fuzzy volatility. We model such volatility by estab-

lishing bounds on the corresponding fuzzy values thereby generating fuzzy bounds 

on the possible option price. Finally, the third model is an extension on an exist-

ing one period fuzzy binomial model that prices options when the underlying price 

is characterized by opacity. The option price returned by this model is dependent 

on a market parameter that summarizes its completeness. However, it is possible 

to defuzzify the last two models to obtain one crisp price that summarizes market 

information. The last two models outperform their standard counterparts.
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C hapter 1

Introduction

It has long been said that the only thing that is certain is uncertainty. One 

has to deal with uncertainty on daily basis irrespective of how aware he/she may 

be. Bertrand Russell has once said that ’’Everything is vague to a degree you do not 

realize till you have tried to make it precise.” So to capture uncertainty, we try to 

formulate approximations of the world around us. This approach is also extended to 

mathematical and scientific disciplines as well as social sciences.

However, approximations are not always easy to come by because we frequently 

stumble on imperfect or vague information, which gives rise to uncertainty. Uncer-

tainty in such instances is differentiated from risk since, in the latter case, we have 

enough information to estimate our chances or probabilities while, in the former case, 

this is not always possible. Sometimes, it is still possible to formulate approximations 

by resorting to the Principle of Insufficient Reasoning and taking up few assumptions. 

At other times, this is not enough and we need other means. As problems get more 

complex, the means of handling them get more sophisticated.

The primary tool of dealing with uncertainty has always been Probability Theory. 

Probability Theory has come a long way in solving many important problems in vari-

ous disciplines. But it requires enough information about the issue under examination. 

As a result, it may become restrictive in the presence of imperfect information, which 

motivates us to look for other alternatives. This has been recognized as far back as 

1921 by Knight in a quotation which says, ”If risk were exclusively of the nature of
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known chance or mathematical probability, there could be no reward for risk-taking; 

the fact of risk could exert no considerable influence on the distribution of income 

in any way. For if the actuarial chance of gain or loss in any transaction is ascer-

tainable, either by calculation a priori or by the application of statistical methods to 

past experience, the burden of bearing the risk can be avoided by the payment of a 

small fixed cost limited to the administrative expense of providing insurance.” ([93], 

p.46) The purpose of this research is to look at uncertainty arising from imperfect 

information, otherwise known as Knightian uncertainty, and at means of dealing with 

it particularly in Option Pricing.

Uncertainty has been dealt with independently in different disciplines. We will 

look at two such disciplines that are relevant to our research and which are Fuzzy 

Theory and Economic Theory. The difference between the two theories is that the 

former provides alternatives to Probability Theory while the latter provides appli-

cations to which such tools are applied. A common factor in both theories is that 

uncertainty is distinguished from risk, even though the decomposition of uncertainty 

is more detailed in Fuzzy Theory. On the other hand, the means of dealing with 

uncertainty in both disciplines are different. Therefore, we attempt to incorporate 

both theories into one coherent framework and transmit the information to dealing 

with options in an uncertain environment.

Options are actually exposed to such uncertainty from two sources, the options 

market itself and the financial market corresponding to the underlying asset on which 

the option is contingent. Uncertainty on the underlying generates uncertainty on the 

option itself. In particular, we will be considering the uncertainty generated by the 

underlying. There is a very important distinction between risk and uncertainty that 

needs to drawn at this point in order to avoid confusion. Options are indeed traded 

for investment purposes but they are also perceived as insurance against risk that 

arises from the behaviour of the underlying in the future. In many cases, we have 

enough information to know our risk and hence employ Probability Theory. However, 

at other times, the nature of the underlying or the market on which it is traded, as 

well as many other factors, generate uncertainty characterized by lack of information. 

In this case, we have to look for alternatives to Probability Theory. Researchers have
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been using a variety of tools and approaches that serve as alternatives to Probability 

Theory in such circumstances, as we will see during the course of Chapter 3. The 

approach we adopt to study the implications of such uncertainty on options is to price 

them in uncertain environments using Fuzzy Theory tools.

Fuzzy Theory provides us with tools of dealing with the uncertainty and impreci-

sion frequently encountered within the social sciences. Such tools may also serve as 

alternatives to Probability Theory within the appropriate problem context. In fact, 

fuzziness in economics and finance has been recognized by fuzzy experts for some 

time, who have addressed it using Fuzzy Theory tools. However, it is only until re-

cently that finance researchers have recognized the value of such tools. The most 

sophisticated applications are those in Fuzzy Option Pricing. But the applications of 

Fuzzy Theory in Economics and Finance are far from being exhausted. We believe 

that Fuzzy Theory can add significant value to Economics and Finance and has the 

potential of solving many pending issues. It is our aim in this research to illustrate 

these points.

We use the term Fuzzy Theory to include both, Fuzzy Set Theory and Fuzzy 

Measure Theory, even though they are two separate theories that have been developed 

independently. Fuzzy Set Theory has been developed before Fuzzy Measure Theory 

and has received wider popularity. Consequently, it is more ’advanced’ and it has 

been applied in a variety of fields more frequently than Fuzzy Measure Theory has. 

However, both theories are relatively new and some important concepts pertaining 

to them are still scattered in various publications. Hence, we assume the task of 

gathering and presenting them in this research.

We start Chapter 2 with the foundations of both theories and associated concepts. 

We leave the basics to the appendices for readers who are new to such approaches. 

In this chapter, we discuss important issues related to Fuzzy Set Theory such as the 

membership function and probability and possibility distributions. We also look at 

the building blocks of Fuzzy Measure Theory including fuzzy measures and fuzzy 

integration. We specifically consider elicitation approaches of the fuzzy measure that 

will be used at a later stage in this research. We consider two different nonlinear 

integration approaches, which are Sugeno Integral and Choquet Integral.
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Chapter 3 brings the uncertainty aspect in Finance Theory and Economic Theory 

in general, and Option Pricing in particular, together with that in Fuzzy Theory. For 

this purpose, we present a brief overview of Knightian uncertainty in Fuzzy Theory 

and Economic Theory, recent developments in Option Pricing and fuzziness in Eco-

nomics and Finance. Finance and Economics researchers have long been aware of 

the presence of Knightian uncertainty and of the need for alternatives to Probability 

Theory in some circumstances. On the other hand, Fuzzy Theory researchers have 

always recognized the presence of imprecision and uncertainty due to lack of infor-

mation. In fact, this is one of the basic premises of Fuzzy Theory and the reason 

why it has been founded in the first place as an alternative to Probability Theory in 

such environments. However, research in those fields has been developed separately, 

despite the fact that they can both contribute to each other, except for the relatively 

few occasions where fuzzy researchers have attempted to apply Fuzzy Theory to Fi-

nance and Economics problems that have not been examined thoroughly by Finance 

researchers further hindering the spread of Fuzzy Theory tools to Finance and Eco-

nomics. Fortunately and more recently, there have been several successful attempts 

on the part of Finance researchers to apply Fuzzy Theory to problems in Finance, 

mainly in Option Pricing. So in this chapter, we will look at how Economic Theory 

and Fuzzy Theory perceive uncertainty and at the suggested approaches to handle 

it. We also look at the applications of Fuzzy Theory in Economics and Finance as 

proposed by both Fuzzy and Finance researchers.

We will also review recent developments in Option Pricing. This is important in 

giving us an idea as to where our research stands vis-a-vis existing Option Pricing 

research. Lately, there has been a recognition of the impact of uncertainty on options 

in the form of uncertain parameters for example. As a result, several approaches have 

been proposed to handle this uncertainty. The general result has been that, in this en-

vironment, we can only obtain no-arbitrage bounds on possible option prices. We will 

examine the various tools and approaches that existing Option Pricing literature has 

employed. In this manner, we will have presented a general framework through which 

we can present our research as well as equip our reader with a comprehensive view 

of uncertainty and associated tools. In brief, we introduce two Fuzzy Option Pricing
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models plus another model that extends on an existing one. We apply those models 

to empirical data for the purpose of studying their applicability and comparability to 

other crisp models.

So starting with the first model in Chapter 4, which is our major contribution in 

this research, we present a Fuzzy Binomial Model, which builds on the CRR binomial 

OPM in a fuzzy world. We consider two aspects of uncertainty in this problem, 

one that is associated with the Bid/Ask quotations and spread and another that is 

associated with vagueness concerning future states of the world. We will not dwell 

into these issues now since we will discuss them in details in Chapter 4.

These types of uncertainties generate fuzziness around the call price, which we 

attempt to price. Due to the problem definition, it will no longer be possible to price 

using conventional tools. For a start, Probability Theory cannot be applied because 

the additivity pre-requisite becomes too restrictive. We can substitute this with Fuzzy 

Measure Theory. We introduce two new fuzzy measures, a conditional measure that 

captures the uncertainty associated with Bid/Ask quotations and spread and a regular 

one that captures the vagueness associated with future states of the world. However, 

due to fuzziness, we can no longer price the option by replication but we are able to 

reserve the preference-free characteristic in the fuzzy measures we introduce.

The general methodology involves transforming fair or model prices into observ-

able or fuzzy prices revolving around the fair ones. Then we price the option by 

backward induction across the binomial. To perform the pricing, we calculate the ex-

pectations in a risk-neutral world. However due to the nonadditive nature of the fuzzy 

measures, we can no longer use linear integration to calculate the expected value. We 

have to resort to nonlinear integration, of which we try two approaches, the Sugeno 

Integral and the Choquet Integral. In fact, we concentrate on the Sugeno Integral, 

whose use in this research represents our most important contribution, since it has 

not been used before in Finance and Economics. We apply the Choquet integral for 

comparison purposes only. Similarly to recent models in Option Pricing, we obtain 

bounds on the possible option prices that envelope and super- or sub-replicate the 

CRR or the fair model value. So, as we will see, this model is original in the idea it 

presents as well as the tools and methodology.

17



In Chapter 5, we apply the model to examples from markets characterized by 

varying levels of uncertainty. This is a specialized model that applies when uncertainty 

is high so one has to be careful when to apply it. It is not proposed as an alternative 

to existing models across all environments. As the empirical analysis shows us, it is 

only acceptable in markets characterized by high uncertainty. We look at American 

as well as European Call Options from the NASDAQ, currency and Index Options 

markets. As expected, the model performs best in the NASDAQ market and worst 

in the Index (S&P500) market due to the transparency and relatively low level of 

uncertainty of the latter.

We look at how our bounds behave when expectations are calculated using a 

Sugeno Integral as to how they behave when using a Choquet Integral. We also 

analyze the behaviour of the bounds across moneyness and expiration. Since this 

model builds on the standard CRR OPM, it is useful to look at how the bounds vis- 

a-vis that value. Finally, we look at the implications of using a historical volatility 

versus using an implied volatility.

Chapter 6 presents a Fuzzy Black-Scholes model. Fuzziness is generated by the 

uncertainty of volatility. Volatility is perhaps the only input to an Option Pricing 

Model that cannot be estimated with precision. Rather than having to have a com-

plete view of the volatility in the market, literature has frequently resorted to getting 

around this problem by using stochastic volatility models and deterministic volatility 

surfaces among others. Yet other approaches have encouraged the use of an uncertain 

volatility which is bounded by two extreme yet possible values. Our work is more in 

line with such approaches but it differs from them in the way volatility is modelled 

and in the approach to solving the problem. We model volatility as a fuzzy number 

and so we obtain a fuzzy original PDE that we solve with the help of Fuzzy Differ-

ential Calculus, which is also a new area in Fuzzy Theory that we summarize in this 

research based on scattered publications. The solution to this fuzzy PDE is a fuzzy 

Call Price that is bounded between two values and dependent on a parameter that 

can be perceived as summarizing the level of information in the market, or the level 

of market completeness or the level of confidence.

Another contribution of the model is its flexibility. The user who is interested in
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one value for the Call Price can defuzzify the Call Price to get one value summarizing 

information in the market. Alternatively, an expert may prefer to manipulate the 

parameter on which the bounds are dependent, thereby manipulating the bounds to 

suit his view of the market in the presence of varying degrees of uncertainty. It is 

also possible to use the formula to back out bounds for the implied volatility in the 

market.

In Chapter 7, we compare this model to the standard Black-Scholes OPM as well 

as to the Uncertain Volatility Model, which employs a similar idea and has been 

recently introduced. To compare it to the Black-Scholes model, we have to defuzzify 

it, establish the bounds on the implied volatility by solving an optimization problem 

and then forecast option prices in a different sample. Whereas to compare it to the 

Uncertain Volatility Model, we have to vary the ’information’ parameter and analyze 

where the values given by the latter model fit. It is also possible to substitute the 

bounds of the implied volatility and compare the bounds given by both models.

In Chapter 8, we draw a comparative analysis between existing Fuzzy Option Pric-

ing approaches. This area is still in its infancy and the corresponding applications are 

still few; in fact, there are only three published papers. However, they are compre-

hensive examples after which other applications can follow. As such, they serve to lay 

the foundations for Fuzzy Option Pricing. We will look at two fuzzy binomial models 

([110],[112]) which price options in the presence of uncertainty but within different 

problem definitions. One of the models is a one period model, so we build on it a 

mutli-period fuzzy model that serves as a rough extension. Both models use tools of 

Fuzzy Set Theory and Fuzzy Arithmetic to solve the problem. The third model [30] 

we look at employs Fuzzy Measure Theory to solve a Fuzzy Black-Scholes equation. 

We apply the models, whenever possible, to empirical data. Finally, we conclude in 

Chapter 9.
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C hapter 2

Fuzzy Set Theory and Fuzzy 

M easure Theory

Albert Einstein has once said, ” As far as the laws of mathematics refer to reality, 

they are not certain; and as far as they are certain, they do not refer to reality.” 

There has been an increasing need for modelling imprecision and uncertainty in var-

ious fields recently, which has induced researchers to come up with alternatives to or 

variations of Probability Theory and Ordinary Set Theory. Fuzzy Set Theory and 

Fuzzy Measure Theory are two prime candidates that can serve as appropriate al-

ternatives to Probability Theory and Set Theory in certain contexts especially those 

characterized by a high level of Knightian uncertainty. The fact that they have a more 

developed mathematical foundation than other alternatives, but certainly not more 

than Probability Theory and Set Theory, has also increased their popularity. Besides, 

their attempt to model approximations and patterns of human thinking makes them 

intuitive theories.

Fuzzy Set Theory and Fuzzy Measure Theory are two separate disciplines within 

Fuzzy Theory. They have also been developed independently and they target differ-

ent types of problems. Generally, Fuzzy Set Theory deals with the degree to which a 

certain element is compatible with a set while Fuzzy Measure Theory deals with the 

degree of evidence as to whether a certain element belongs to a set or not. However, 

Fuzzy Set Theory has been used more than Fuzzy Measure Theory in various appli-
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cations including engineering, finance and medicine. It is only recently that Fuzzy 

Measure Theory has witnessed an increase in popularity.

In this chapter, we will present a brief overview of the foundations of each theory. 

There are still some vague areas that experts in these theories have not agreed on; 

consequently, the definitions and concepts may sometimes be loosely used and inter-

preted in literature. However, we have tried our best to be clear and to draw sharp 

distinctions whenever possible. Besides, due to the fact that such areas are relatively 

new, significant amounts of research are increasingly introduced without being docu-

mented in reference books even though they discuss elements pertaining to the basic 

foundations especially in Fuzzy Measure Theory. We have also tried to provide as 

comprehensive a literature review as possible. The process of writing such a review 

and bringing the various pieces of literature together has been a tedious process due 

to the diversity of material. So this chapter also stands as a contribution by itself.

We will confine the literature review in this chapter to those two theories only so 

that we do interrupt the flow of concepts and their relationships. However, in the 

next chapter, we will look at other alternatives to Probability Theory. We will also 

see how literature has been dealing with Knightian uncertainty. Within the course of 

the chapter, we will also consider various applications of fuzzy theory in the finance 

and economics literature.

The chapter is divided into two parts, Fuzzy Set Theory and Fuzzy Measure 

Theory. Starting with Fuzzy Set Theory in the first section, we will look at basic 

definitions and concepts pertaining to the theory. We specifically look at the concepts 

of membership functions and possibility distributions and their comparative behaviour 

to each other and the concept of probability. In section two, we move to Fuzzy Measure 

Theory. We discuss basic concepts concentrating on the Sugeno measure, which lies 

at the heart of Fuzzy Measure Theory, and the Fuzzy Integral (or Sugeno Integral). 

We also look at approaches to constructing the fuzzy measure. Those approaches are 

scattered in various publications but we have managed to melt them down into five 

approaches and to summarize them in one section. We will also look at conditional 

as well as dual fuzzy measures. Finally, we provide a brief review of the concept of 

Choquet integration in discrete time. The Choquet Integral, which is an alternative
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to Sugeno Integration, is more popular in the finance literature perhaps because it is 

more ’conventional,’ it is more acknowledged and it converges to the Lebesgue integral 

in certain cases.

2.1 F uzzy S et T h eory

Fuzzy Set Theory has been introduced around the mid-1960s by Zadeh [149]. The 

basic idea behind this theory is to model the intrinsic imprecision and uncertainty 

prevalent in the real world. To accomplish this task, it employs approximations similar 

to those of human reasoning incorporating graded rather than precise sets with sharp 

boundaries. Zadeh emphasized that the source of uncertainty in such instances is 

the lack of ’’sharply defined criteria of class membership rather than the presence of 

random variables.” ([149], p.339)

Ever since its introduction, Fuzzy Set Theory has known increasing popularity 

and it has been applied in various areas such as pattern recognition, decision making, 

control theory and many others. We will not go over the very basics of Fuzzy Set 

Theory in this section. However, they are summarized in Appendix A so the reader, 

who is not familiar with the theory, is advised to read Appendix A before reading 

this chapter.

2 .1 .1  G rad e o f  M em b ersh ip , P o ss ib ility  an d  P r o b a b ility

The concept of grade of membership is the building block of Fuzzy Set Theory 

while the concept of a possibility distribution is the building block of Possibility 

Theory. Fuzzy Set Theory and Possibility Theory are two conceptually different 

theories, which necessarily implies that the concept of grade of membership and that 

of a possibility distribution are conceptually different. However, some literature uses 

the two terms interchangeably. So, in this chapter, we will attempt to clarify on the 

differences and similarities between the two as well as compare them to probability 

theory. We also present a literature review on the elicitation of membership functions 

and possibility distributions in Appendix A.

Fuzzy Set Theory lays the grounds for Possibility Theory by providing it with its
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mathematical tools. Zadeh [150] argues that Fuzzy Set Theory to Possibility Theory 

is just like Measure theory to Probability theory (but we will see later a different point 

of view with Sugeno [133]). Within this context, a fuzzy restriction can be viewed 

as a possibility distribution where the membership function serves as the possibility 

distribution function and a fuzzy variable is linked to a possibility distribution just 

like a random variable is linked to probability theory [150].

Zadeh [150] has introduced possibility distributions in an attempt to relate the 

Theory of Possibility to the Theory of Fuzzy Sets. In his paper, he defines a possibility 

distribution as a fuzzy restriction that acts as an elastic constraint on the values which 

a fuzzy variable can attain. We only provide a summary of his point of view here. 

Let U = {u} be our universe of discourse, F  a fuzzy set in U characterized by its 

membership function nF, and X  a fuzzy variable that assumes values in U. Let F  

act as an elastic (removable) constraint on the possible values of X  meaning that 

it is a fuzzy restriction on X.  Then the proposition " X  is F ” induces a possibility 

distribution over the values of X  that are equal to the values of u in F  such that the 

possibility of those values is equivalent to ¡jlf {u ). Hence, the possibility distribution 

function is numerically equal to the membership function /iF . The reason that F  

is a fuzzy restriction on X  is that the statement ”X  is F ” restricts the values that 

X  can assume thereby inducing a possibility distribution J][Y equivalent to F. So 

the possibility distribution is analogous to the fuzzy restriction on the variable and 

the possibility distribution function is similar to the membership function of the fuzzy 

restriction. The possibility that X  takes the value u, n x ( u), is equivalent to the grade 

of membership, fiF(u). So, effectively, fuzzy membership functions model possibility 

distributions.

Of course, the distinction has been developed and clarified more over the years. 

Bilgic and Turksen [56] argue that having fuzzy set memberships as the basis of 

gradual possibility does not mean that the concepts of fuzzy sets and possibility 

distributions are the same thing. They compare equating 7Tx(u) to ¡.iF(u) to equating 

a probability function to a frequency, which does not mean that the two are the same. 

The distinction they draw between it x (u ) and /.iF(u) centers on the interpretation 

and underlying assumptions of each concept. So ■nx{u) estimates the possibility that
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the fuzzy variable, X , assumes a value u, given the incomplete state of knowledge 

”X  is F.” Dubois and Prade [49] interpret the possibility distribution function as 

the possibility that each element of F  be a possible value of X  rather than as the 

possibility of X  belonging to F. On the other hand, /.iF{u) estimates the degree of 

compatibility of the variable X  assuming a value u with the statement " X  is F.” 

There is no incomplete information concerning the value that X  assumes in the latter 

case: we are given the precise information X  =  u and we need to estimate its degree 

of compatibility with F  or the degree to which it satisfies the statement " X  is F."

Lai and Hwang [100] also draw a distinction between the two concepts based on 

their interpretations. They consider membership functions as preference-based in the 

sense that they indicate a subjective degree of satisfaction, implying compatibility, 

while they interpret the grade of possibility as the subjective or objective degree of 

occurrence of the event. Throughout our work, we do recognize that the two terms 

are conceptually different but numerically equivalent.

2 .1 .2  D e fin it io n s

Since the introduction of Fuzzy Set Theory in the 1960s, the interpretation and 

measurement of the membership function have been controversial in the sense that no 

consensus has been reached. However, Fuzzy Set Theory is a very comprehensive and 

flexible theory that can be adapted to many real world problems involving different 

forms of uncertainty. Since the membership function is one of the building blocks of 

this theory, there is no need to have a consensus as to the form of the membership func-

tion. Fuzziness arises due to a number of different reasons and so it can assume many 

interpretations. As a result, the membership function is highly context-dependent in 

some instances and can assume various interpretations and forms depending on the 

problem for which it is being formulated and the assumed view of fuzziness. For this 

specific reason, it is very important to be careful about the shape of the membership 

function one uses. It is quite easy to find a function that satisfies the conditions of 

a membership function but it may not be easy to find one that is compatible with 

the set under consideration. Choosing a function that is not compatible can lead to
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model misspecification and this is when elicitation approaches step in.

The membership function can assume many functional forms based on the inter-

pretation of the concept of grade of membership. We will first present the formal 

definition of the membership function and then move on to present its different inter-

pretations. Assume we have a universe, U and a fuzzy set, F, then the membership 

function Hp{.) is defined as a mapping from the universe X  to the unit interval [0,1], 

that is, fiF : X  —> [0,1]. A similar definition holds for the possibility distribution, 

that is, 7T : X  —> [0,1] is a possibility distribution.

Bilgic and Turksen [56] present five different views of the membership functions 

based on the two trends in the interpretations of fuzziness, namely the subjective 

versus objective fuzziness trend and that stemming from the individual rather than 

the group trend. In brief, they divide the interpretations of the membership function 

into five categories, which are the likelihood view, the random set view, the similarity 

view, the utility view and the measurement view. The first two subscribe to the 

objective view, the third and fourth subscribe to the subjectivity view and the last 

one is a combination of both.

We will only present a briefing on each view. The reader who is interested in more 

information is referred to [56]. The likelihood view subscribes to a probabilistic setting 

in interpreting the grade of membership whereby the membership function returns the 

likelihood that the variable in question is assigned a value in the corresponding fuzzy 

set. The random set view corresponds to the membership function as an interval which 

sometimes can correspond to the a-cuts of the fuzzy set. The similarity view assumes 

there is an ideal example that fully belongs to the fuzzy set and the rest belong to the 

set with a grade that depends on their distances from the ideal example. The utility 

view examines the membership function within a decision theoretic setting whereby 

logic and utility theory can be used to arrive at the membership function’s final form. 

Finally, the measurement theoretic view maps an algebraic structure to a numerical 

one such that both the representation and the meaningfulness of the representation 

of a phenomenon are represented.

Unfortunately, there is no general consensus concerning the appropriate shape of 

a membership function or possibility distribution for a particular problem. Rather,

25



there are various ways of eliciting them, which can be highly subjective at times. So 

far, there is no comprehensive survey that documents all possible alternatives. As a 

consequence, we have done a general survey of the possible shapes such distributions 

can assume besides their elicitation methods and included them in Appendix A.

2 .1 .3  G rad e o f  M em b er sh ip  v ersu s P robability-

Given the definition of the grade of membership, one is tempted to compare it to 

the concept of probability. There is always a tendency to compare Fuzzy Set Theory 

with Probability Theory because they look similar and also because we are used to 

Probability Theory modelling uncertainty [151]. Fuzzy Set Theory and Possibility 

Theory are always inherent in human reasoning; however, Probability Theory is more 

popular when it comes to applications as it has a more developed and coherent math-

ematics backing it than the former theories do. But, in real life, we really use fuzzy 

or possibilistic statements rather than probabilistic ones. For example, if someone 

asks us if we think that it is going to rain, the answer will have inherent possibility 

rather than probability because we do not have enough information to specify a pre-

cise number; in other words, our reasoning is very fuzzy to allow us to come up with 

a fuzzy number.

Understandably, this is a very controversial subject that has been started ever 

since Fuzzy Set Theory has been introduced in the 1960s. However, sometimes the 

possibility or feasibility of comparing the two concepts has been questioned. As we 

will see later, Sugeno [133] has not been able to draw a comparison between the two 

and this is how he has come up with Fuzzy Measure Theory. Zimmerman [151] points 

out that it is hard to compare the two concepts and he attributes this to the fact that 

the comparison can be carried out on various levels (linguistic, mathematical...) and 

to the generality of Fuzzy Set Theory.

The two concepts may look the same but there is a general consensus in the lit-

erature that they are conceptually different. Probability deals with the frequency of 

occurrence of a variable while the grade of membership deals with how close or how 

compatible a given variable is with the concept of the fuzzy set under consideration. 

However, in another line of thought, Hisdal [78] questions the validity of this argu-
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ment (and also presents a reference of literature that agrees with her argument). She 

actually suggests that there is a connection between the two and introduces the TEE 

(Threshold, Error, assumption of Equivalence) model for grades of membership that 

takes into account this connection. This model asserts that a grade of membership, 

lix {x ), is an estimate of the probability that the label X  takes the value x. In a com-

parative work, Giles [71] argues that grades of membership behave like probabilities in 

many respects but they are not probabilities. Her definition of a grade of membership 

implies that it is a standardized utility but it does reduce to a probability in some 

circumstances. In fact, Giles’ definition of a grade of membership coincides with that 

of Hisdal under certain circumstances as well.

2 .1 .4  P o s s ib ility  versu s P ro b a b ility

As we can conclude from the previous analysis, possibility and probability are 

two different concepts. They both deal with the degree of occurrence of a variable but 

from different angles. So while possibility answers the question ’’What is possible?” 

probability answers the question ’’What is likely to happen?” In other words, prob-

ability tells us that an event may occur with a certain degree or chance, possibility 

tells us the degree of ease with which this event occurs. Possibility really represents 

a weaker form of information than probability because quantifying the possibility of 

occurrence of an event is less assertive and requires less information (and, hence, 

the popularity of possibility distributions with problems suffering from missing data) 

than quantifying its probability of occurrence. This, in fact, goes in parallel with 

the fact that possibility can be used when we have missing information but proba-

bility cannot. We need more information to formulate probabilities and this is why 

probabilities represent a stronger form of information.

Yet, a variable can be associated with both theories through the possibility/probability 

consistency principle. The possibility/probability consistency principle expresses a 

weak connection between probability and possibility. A high degree of possibility 

does not necessarily mean a high degree of probability and a low degree of probability 

does not have to imply a low degree of possibility. But if an event is impossible then 

it is definitely improbable. This heuristic relation is what is known as the possibil-
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ity/probability consistency principle. Zadeh [150] emphasizes that this is not a precise 

law; rather, it is an attempt to formalize the heuristic connection between probability 

and possibility which implies that a lower possibility implies a lower probability but 

not vice versa.

Based on this and on the fact that possibility distributions to possibility theory 

are like probability densities to probability theory, it is possible to draw a possibil-

ity distribution from a probability distribution and vice versa. We will confine our 

analysis to the probability to possibility distribution transformation case. There are 

two lines of thought in this area: the bijective transformation method ([56],[106],[90]) 

and the conservation of uncertainty method ([52],[56], [53],[106]).

The bijective transformation approach has been introduced by Dubois and Prade 

[52] in 1983. The basic idea behind this approach is to preserve as much information 

as possible. The intuition behind it is that possibility distributions represent a weak 

form of information whereas a probability one represents a strong form of information. 

Therefore, moving from a possibility distribution results in more information while 

moving from a probability to a possibility one results in loss of information.

This approach views a possibility measure as nested focal elements, which are 

elements corresponding to beliefs of individuals about events, and approximates it by 

means of a probability measure through interpreting each focal element as a condi-

tional probability. Consider X  = {xj | i =  l,...n}  as our universe of discourse, £) 

as a focal element, P(. | Ei) as a conditional probability uniformly distributed over 

Ei . Let pi =  P({xi}) be the probability of occurrence of Xj, nl be its possibility of 

occurrence. Then the atom of probability associated with an element i £ l  can be 

defined as,

P(s) =  ¿ p (x  I Ei)m(X) = ^  (2-1)
¿=1  x £ E i  *

where \Ei\ is the number of elements in Ei. So, effectively, one probability measure, 

which is bounded by the necessity and possibility measures, has been chosen, namely,

N(A) < P(A)  <  11(A), VA (2.2)
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Then those probability atoms can be computed directly from the possibility dis-

tribution

(2-3)
j = l

where 7Ti =  1 > 7T2 > ... > nn, and nn+\ = 0 by convention. The inverse of this 

formula is

n n

TTi = J ] m in  (pi,Pj) = ipi +  Pv (2.4)
j = 1 j = i + 1

where the x^s  are arranged in a way such that their probabilities are in descending 

orders, that is, p\ > ... > pn and pn + 1 = 0. This formula implies that a fuzzy set can 

be defined from a histogram.

Those equations imply that the shape of the possibility distribution is the same as 

that of the probability. However, the possibility distribution envelopes the probability 

one, which, in formal terms can be expressed as 7iq > , where pmax = maxj(pj),

Mi = 1,..., n.

The conservation of uncertainty method has been introduced by Klir [90] in 1990. 

This approach subscribes to a measurement theoretic view of probability/possibility 

distributions and rests on three main assumptions, the first of which is the principle 

of uncertainty and information invariance. It requires that the amount of inherent 

uncertainty must be preserved through the transformation. This implies that the 

Shannon entropy, which is the measure of uncertainty in Probability Theory, be nu-

merically equal to its probabilistic counterpart leading to the uncertainty invariance 

or principle of uncertainty conservation equation, namely,

F (p )  =  iV(7r) +  JD(7r), (2.5)

n n / \
where H (p) = Pi 1°§2 Pi is the Shannon entropy and N ( t t ) = — ^  7Ti log2 ( p h  )

¿=1  i= 2 \ l J

is nonspecificity and D{7r)
n — 1

• E  (7T* -  7T*+l) lo g2
i =  1

1-i E
j = i + 1

3 O ' - l )
is discord,

which are the possibilistic counterparts. It is also possible to replace discord and
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nonspecificity by Higashi and Klir’s logarithmic measure index.

A second assumption requires that all numerical values in one transformation be 

scaled to their counterparts in the other transformation. It forces each value 7iy to 

be a function of Pi/pi [56]. The scale can be interval scale, ratio scale, Log-interval 

scale... Finally, this approach requires that all transformations satisfy an uncertainty 

conservation principle whereby t t (u ) > p(u), V«, which means everything that is 

probable must be possible.

Based on this, Klir introduces his log-interval scale transformation
r i a

7r. =  B .1 [pi] ’
where a  6 [0,1] is a constant that can be determined by solving the corresponding 

equation. He argues that this transformation is the one that holds for all distributions 

and is unique. The drawback with this approach is that the measures of discord and 

nonspecificity are not comprehensive measures of total uncertainty [106]. Dubois and 

Prade [56] also question this assumption. Besides, they argue that this approach does 

not respect the probability/possibility consistency principle.

Dubois and Prade [56] present summary and references on a more recent approach 

on such transformations based on confidence intervals. The confidence interval is 

that corresponding to maximal probability and it is usually taken to have a degree 

of confidence of 95%. So the most specific possibility distribution consistent with the 

probability distribution is

7r(aL) =  7r(aL +  L) =  l - P ( / L), VL, (2.6)

where L is the length of the confidence interval I I  = [ai, a i  +  L\ and p{a£) = p(ai  + 

L). Therefore, the a-cut of the most specific possibility distribution 7T is the 1 — a 

confidence interval of p. Based on this approach, Lasserre has been able to transform 

a uniform probability distribution into a triangular possibility distribution. Cvinalar 

and Trussed [35] have also introduced an approach based on the confidence interval 

(in fact, we have seen their membership function earlier) and derived membership 

functions for several known pdfs.

These approaches are suitable when randomness is hard to work with so that it
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is hard to achieve a probabilistic model and uncertainty is better described within 

a fuzzy framework. They also require a large amount of data to estimate the pdf. 

Besides, a transformation from a probability distribution, usually represented by a 

normalized histogram, to a possibility distribution is justified only when a probability 

distribution is hard to come by.

Within the context of investment decisions, Gupta [76] does not recommend using 

possibility distributions and suggests transforming them into probability distribu-

tions for several reasons. The most important reason is that the information related 

to future outcomes of investment proposals is probabilistic rather than possibilistic. 

However, because the future is vague, we have to resort to possibilistic estimates. In 

line with this is the fact that a decision maker is not interested in what is possible 

in the future; rather, he/she is interested in what is likely to happen. The second 

reason falls within the scope of the type of information embedded in a probability 

or possibility distribution. He argues that, since converting from a probability to a 

possibility distribution results in loss of information, the final decision will be impre-

cise casting a higher level of risk on the decision maker. Besides, he believes that 

Probability Theory has a richer structure to work with and it is more developed than 

Fuzzy Set Theory.

In conclusion, it is very important to be aware of the models and concepts we 

have presented above. Membership functions and possibility distributions are highly 

context dependent at times and so one must be careful about using them. Besides, 

one must also be careful of the framework within which they are to be used because 

choosing an inappropriate approach will result in loss of information and wrong re-

sults. These concepts will prove to be useful later on when we work on possibilities 

of occurrences of states in the presence of uncertainty.

2.2 F uzzy M easu re T h eory

Sugeno [133] has first introduced Fuzzy Measure Theory in an attempt to com-

pare fuzziness, traditionally represented by fuzzy sets, to randomness, represented by 

probability. According to him, fuzzy sets are only extensions of ordinary sets and,
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given that the concept of probability is different from that of sets, a direct comparison 

will fail. Fuzzy measures are monotonic set functions, which are functions that make 

sets correspond to numerical values, and, hence, it is possible to compare them to 

probability measures.

Fuzzy measures are concerned with the degree to which evidence proves that a 

certain element belongs to a certain set or not. So the idea behind fuzzy measures 

is not returning the grade of membership of a particular element in a set or several 

sets under consideration, even though they admit membership functions as a special 

case; rather it has to do with whether the evidence is enough to prove it. So full 

evidence indicates full membership in the set and if we are considering more than one 

set, then the element at hand has full membership in one and only one set. However, 

the evidence or pieces of information are hardly full or perfect which gives rise to 

uncertainty. It is important to understand that, within this context, uncertainty 

arises due to information deficiency and not vagueness whereby sets do not have 

sharp boundaries.

A fuzzy measure represents this uncertainty by assigning a value which indicates 

the extent to which the variable under consideration belongs to every possible set. 

This value stands for the degree of evidence or belief or contribution of a piece of 

information that such an element belongs to a certain set. It is not necessary to work 

with fuzzy sets as well since fuzzy measures apply to both, fuzzy as well as crisp sets.

These characteristics make fuzzy measures ideal for application to problems where 

uncertainty, including Knightian uncertainty, is prevalent. As we will see in the 

next chapter, Knightian uncertainty is quite prevalent in business and economics, 

in general, and in the financial markets, in particular, which is the domain of our 

research. Given that options are contingent on the underlying asset (and we are trying 

to price options under uncertainty), they are affected by this uncertainty; let alone 

that they have a lot of such uncertainty themselves arising from the option market. 

So we will utilize those measures in our research showing their full power in option 

pricing. But before that, we need to provide a literature review on Sugeno measure 

and methods of determining it, the fuzzy integral and fuzzy conditional measures, 

which is the purpose of this chapter.
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Fuzzy measures and fuzzy integrals have been applied in a wide variety of ar-

eas. The broad categories for applications include: subjective evaluation processes 

([133],[134],[80],[115]), decision-making process ([134],[143],[135]) and learning process 

[134], The latter two utilize conditional fuzzy measures.

2 .2 .1  S u g en o  M ea su re

Suppose we observe a transaction price in the market but we do not know whether 

it belongs to the bid or ask set. It is uncertain or fuzzy for us in which set it is. Sugeno 

measure, being a special case of fuzzy measures, allows us to assign a degree measuring 

or indicating the extent to which the observed price belongs to the bid or ask sets. It is 

within this context that this measure includes the concept of grade of membership as 

a special case. The measure specifically measures the fuzziness of a set; however, the 

set under consideration does not have to be fuzzy. One possible interpretation of such 

fuzziness is the subjectivity involved in guessing. In fact, Sugeno [134] views a fuzzy 

measure as a mathematical model of subjective evaluation. Other interpretations of 

the Sugeno measure (and fuzzy measures in general) are grade of importance, degree of 

similarity, belief, evidence, likelihood, certainty, or plausibility that a specific element 

belongs to a specific set.

Assume we have a nonempty set X  and a nonempty class £ of subsets of X.  Let 

g : C —► [0, oo] be a fuzzy measure defined on (XX)-  Then, g satisfies the following:

(i) g(4>) = 0.

(ii) Monotonicity: A , B  £ (  and A c  B  = >  g(A) < g(B).

(iii) Continuity from below: An £ (, {An} is monotone such that A\  C A 2..., and
OO OO
u  An £ C = >  limg(An) =  g( |J  An).

n =  1 n n = 1
(iv) Continuity from above: An £ £, {An} is monotone such that A\ D A 2 ..., g(A\) <

OO OO
00 and f) An £ (  = >  limg(An) =  g( f |  An).

n= 1 n n= 1
g is called regular if X  £ £ and g(X)  =  1. The last two conditions are not important 

if we are considering finite sets. Now, compare those conditions to those of proba-

bility measure. Given the probability space (A,8, P), then P  satisfies the following 

conditions

(i) 0 < P(E)  < 1 for all E  £ 8 and P(E) = 1.
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oc oo
(ii) If E n E fi for 1 < n < oo and Ei fl Ej  =  $  for i ^  j ,  then P(  E  En) =  E  P{En)-

n =  1 n = 1
So a probability measure eventually satisfies the monotonicity and continuity 

properties of the fuzzy measure, which makes it a special fuzzy measure. Alternatively, 

a fuzzy measure is a set function derived by loosening the properties of probability 

measures. The value added by Fuzzy Measure Theory is that it relieves individuals 

from additivity which is a restricting condition imposed by Probability Theory and 

replaces it with monotonicity.

In fact, Klir et al. [91] draw interesting conclusions about the interaction between 

the two sets A  and B  using the sign of the inequality. So when g(AUB)  < g(A)+g(B),  

A  and B  exhibit inhibitory interaction; when g (A U B) > g (A) +  g(B), A and B  

exhibit synergetic interaction and when g (A U B)  =  g (A) +  g(B), A  and B  exhibit 

no interaction, which corresponds to the probability measure case. Of course, the 

interactions are considered with respect to the property being measured by g.

Going back to the fuzzy measure, suppose that A , B  E Ç, A n B  = 4> and AUB  E (, 

where g(A U B) =  g (A) +  g(B) +  X.g(A).g(B) and A E (—̂ ^ ,o o )  U {0} such that 

sup g =  su p ^ ç  g(A), then we say g satisfies the A-rule. g satisfies the finite A-rule 

(on £) iff there exists A as defined above and

ì n t1+ - 1
g ( [ j A ) = J  L - i

I E a ( A )
i =  1

A ^  0, 

A =  0.
(2.7)

g, satisfies a-A-rule iff there exists A as defined above and

n \ j  { n  i1 +  ^-9(A)] - 1
» ( I O - M  c o 1' " 1

¡-1 E 9(A)t i=1
If g satisfies u-A-rule on (  and there exists E  E (  

g is called a A-fuzzy measure and is denoted by g\(.). 

g\ (X)  = 1, g\(.) is also called a Sugeno Measure [140]. 

be dealing with.

In fact, the behaviour of the measure is dependent on

A 7̂  0,

A =  0.
( 2.8)

such that g{E) < oo, then 

When ([ is a cr-algebra and 

This is the measure we will

the behaviour of A.Note that
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when A =  0, g is the classical probability measure, and the A-rule, finite A-rule and 

cr-A -rule are equivalent to additivity, finite additivity and cr-additivity respectively. 

When A ^  0, g is subadditive or super additive depending on the sign of A. The 

following properties summarize the statements made so far,
n

(i) Superadditivity: A > 0 when ^  g(Ai) < g(X),
i=  1

(ii) Additivity: A =  0 when Y  g{Ai) = g(X),
2=1

n
(iii) Subadditivity: — < A < 0 when Y  g(Ai) > g(X).,

2 =  1
w here X , A , B € . ^ , A n B  =  (f> and  X  =  A U B.

Those properties also define the basic properties of the Sugeno measure. Now, we 

move on to show how it is constructed. Assume we are given a monotone sequence 

F  = F\ C F<2 C ... C Fn, then the fuzzy measure of F'  C F  is given by

^'> - 1 n  ( i + ~  i
Si£F'

— 1 < A < oo, (2.9)

where gl = g\({si}) is the fuzzy density function of the fuzzy measure and A £ 

(—l,oo), (A always has a unique root on ( —l,oo)). Note that

9 \ ( { s i , s j } )  =  g l + g 3 +  Xglg 3 ,  ̂+  j\ (2.10)

g(Fi) — g1 + g(Fi-i) + ^gzg(Fi-1)- ( 2 .11)

Generally,

k k— 1 k
9\ ( { si, sk}) = ^ 5* + A ̂  ^  glg^ + ••• + 1g1

2=1 2=1 J=2+l
g2- g k. (2. 12)

Given that g(F) = 1 for such measures, we can compute A using

9 ( F )  =  1 = i j a + A ^ ) - 1
.2=1

(2.13)

If we define H(si) to be the fuzzy distribution function, which is similar to a 

probability density function for the monotone sequence K,  then we can write
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So,

H {x) =  gx( ( - o o ,x ) ) , (2.14)

9\([a,b})
H(b) -  H{a)

1 +  AH{a) ‘ (2.15)

H( Si) -  H{si+1) 
1 +  A H(si+i)

l < i < n — 1, (2.16)

gn = H(sn), (2.17)

H{si) — 9\(Fi), Ki = {si ,si+i,. . .sn}. (2.18)

Sugeno points out that, in constructing g\( .) , it is not necessary to start with H(si ) 

first, rather we can start with gl such that 0 < gl < 1, for 1 < i < n. Note that the 

degrees of freedom of H(s ), gl and A is n. Fuzzy measures are very important for 

defining the fuzzy integral, which we will introduce in the next section.

2 .2 .2  T h e  F u zzy  In tegra l

The fuzzy integral, also known as Sugeno integral, has been introduced first in an 

attempt to model the subjective evaluation of objects embodied by fuzzy measures, 

but, later on, it has found its way into various other applications. The fuzzy integral 

is a nonlinear integral or functional, which allows it to represent fuzzy expectations, as 

opposed to probability expectation. As we will see later, it also serves as an aggregate 

means.

The fuzzy integral is computed in a different way from the Lebesgue integral. 

So while the Lebesgue integral is an additive model that utilizes addition, the fuzzy 

integral is a comparison operation that utilizes comparison operators such as the 

minimum and the maximum. Besides, we can view the Lebesgue integral as measuring 

the area under the curve but we cannot do the same for the fuzzy integral; it is viewed
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in a completely different way.

Wierschon [144] interprets the fuzzy integral as a search for an optimal grade

whose attributes are measured by a fuzzy measure and their individual characteristic 

functions are integrated with respect to a fuzzy measure. They interpret the fuzzy 

measure as a subjective scale for guessing whether an a priori unlocated element 

belongs to a certain set and also as the grade of subjective importance associated with 

an attribute. The characteristic function can be given objectively from the physical 

properties of the attribute or subjectively according to subjective evaluation. These 

two interpretations are adopted in most literature.

Consider the F-measurable space (X, 2X ) and a function h : X  —> [0,1]. Let A  

be a subset of X, then ha  is the membership function of A. The fuzzy integral over 

A  in (X , 2X ) can be defined as

sets theory and A denotes the minimum. However, it is not necessary to consider only 

(X,2x ), that is, to consider 2X as the domain of g, rather any family of sets that 

includes a monotone sequence will do and we can consider the fuzzy measure space 

(X,Q,g).  But due to some technical difficulties beyond the scope of this research 

[133], the Borel field fi can be used as the domain of g. So we will be working with 

the fuzzy measure space (X,B,g). The fuzzy measure of a fuzzy set A  is given by

of agreement between two opposite tendencies. Onisawa and Sugeno et al. [115] 

interpret the fuzzy integral as a model of the subjective evaluation of fuzzy objects

(2.19)

where g is a fuzzy measure of (X, 2-X'), o is the rule of composition (max-min) in fuzzy

(2.20)

where the fuzzy integral can take the form

l
( 2.21)
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Since, A does not have to be fuzzy and so the fuzzy integral can be expressed as

h(x)°g(. ) sup [a A g(A fl Fa)},
a€[0,l]

( 2 .22)

where Fa =  {x \ h{x) > a}  (a-cut). A  is known as the domain of integration when 

A = X,  g(A(l  Fa) is written as g(Fa). As a  increases, Fa decreases and, given that 

g is monotone, g(A D Fa) decreases as well.

Now let h(x) be a simple function on X  such that

n

h(x) = ^ 2 aiXEt(x ), 
i— 1

(2.23)

n
where X =  6 fi, and Ei fl Ej = <p (i = j).  Then we can evaluate the fuzzy

2= 1
integral independent of the value of h as

<p h(x ) ° g ( . ) =  V [ai / \g(AD Fi)],F1 = X,  (2.24)
Ja  i=1

where V denotes the maximum. It is also possible to evaluate a measurable function, 

which does not have to be bounded by 0 and 1, using the fuzzy integral and a fuzzy 

measure that is not bounded by 00 from above (i.e. not a Sugeno measure).

The fuzzy integral satisfies the following properties:

(i ) $ ao g = a,a <E [0,1],

a) §(aWh)og( . )  =  aV §hog( . ) ,

b) <f(a A h) o g[.) =  a A <f h o g(.),

c) § (hi V h2) o g(.) > § ^  o g(.) V /  h2 o g(.),

d) f  (hi A h2) og(.) < § h i  og(.) A § h2 og(.),

e) icuF  h 0 5(0 > § E ho 9( •) V §F h o £(.),

f) .fenF h 0 5(0 > § E ho  5(0 A §f  h 0 5(0-
(ii) If hi < h2, <f h\(x) o g < <j> h2(x) o g.

(iii) If E  C F, §E h(x) o g < <fF h(x) o g.

(iv) .f [ V (ai A hi)} o g{.) = y  [ai A § hi o g(.)],
1=1 2=1
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where {hn} is monotonically decreasing sequence of B-measurable and {a,} is a monoton- 

ically increasing sequence of real numbers.

(v) lim § h n og(.) = f hog( . ) .n—>oo
Assume now that X  is a finite set (note that we need not assume continuity of 

fuzzy measures in this case) such that

X  =  {xx, x 2, . . . ,xn} 

and let h be

h{xx) > h(x2) > ... > h(xn).

If h does not follow this order, it has to be re-ordered and the elements of X  renum-

bered. As such, the fuzzy integral in (X,2x ,g) can be defined as follows

h(x) o g = \ J  [h(xi) A g(A n #*)],
2 =  1

(2.25)

where Hi — {xx, x 2, ...,xn} (A  and h are still as defined previously). The fuzzy 

integral can also be written as

« n

j  h(x) og  =  \ f[h(xi)  Ag(Hi)], (2.26)
2=1

where Ht =  {xx, x2, ...,xn}.

So as we have seen, the fuzzy integral is a rather nonconventional integral. It is 

connected with monotonicity whereas the Lebesgue integral is connected with additiv-

ity. Interestingly enough Sugeno [133] showed that the difference between a Lebesgue 

integral and a fuzzy integral is not more than Namely, given a probability space 

(X,B,P), then

/  h(x)dP — J) hoP( . )  
J X Jx

1< - .
-  4

2 .2 .3  M ea su re  C o n stru c tio n

(2.27)

In this section, we present the different approaches used to estimate Sugeno 

measure, which normally boil down to estimating the fuzzy density functions. It is 

important to note that, in most literature, the A-fuzzy measure and Sugeno mea-
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sure are used interchangeably especially in practical applications. We will classify 

the approaches by which we can estimate the fuzzy density function gi into five cate-

gories: the subjective approach, probability measure transformation approach, fuzzy

distribution derivation approach, membership function approximation approach and 

statistical data approach.

Subjective Approach

This is the most popular approach in literature. It usually involves some form 

of an optimization technique. The basic idea here is to minimize an error function 

through an iteration process so that the fuzzy density function eventually approxi-

mates the subjective weights or evaluations provided by experts. Literature has dealt 

with this problem using different algorithms. When Sugeno [133] first introduced the 

theory of fuzzy measures and fuzzy integrals, he applied it to the subjective evaluation 

of female faces and pattern recognition. The corresponding optimization problems in-

volved minimizing the error between human evaluation and the fuzzy integral model 

input. In pattern recognition, he presents different subjects with a set of patterns 

and asks for their evaluation of the similarity of the patterns. We will first present 

the algorithm for the pattern recognition problem.

where P  =  {A, B}  U {C, D...} such that A  and B  are standard patterns and C, D... 

are general patterns. Therefore, w(C) would represent the membership function of 

patterns that are similar to A  but not to B. g\(.) represents the fuzzy measure and 

di is the subjectively given membership function. The process is iterated until a value 

of g\(.) is found that minimizes J .

As for the subjective evaluation problem([133], [134]), Sugeno uses the following 

algorithm,

e =  <f h(s) o g,

■*(C) = J P c ogx(.),
( c )  _

— \Sr(A)-V(B) ’'¡'(A)-'ir(B) >
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N
m inim ize J = \ j f  J2(d -  m,:)2,

i— 1
where d is the subjective overall valuation and h(s) is the subjective partial evaluation.

This is a rather indirect approach to constructing g\(.). However, it is possible to 

arrive at it directly ([134]). In the following example, the Sugeno measure is viewed 

as the grade of importance of the object under evaluation. Suppose a subject is given 

a set K  and is asked to assign a grade of importance for all subsets of K  resulting in 

d : 2a' —> [0,1]. Assume that d(.) satisfies all properties of fuzzy measures so that the 

problem now is to minimize

j = J w  £  m - gxm 2,Y eg  2k
So by minimizing J  with respect to the fuzzy densities and the parameter A, which 

differs by individuals, it is possible to arrive at a direct approximation for di by g\(.).

Wang et al. [141] use genetic algorithm to determine g1 from data, which also 

involves solving an optimization problem. Tahani and Keller [135] determine gl sub-
n

jectively or from training data and then compute A using A +  1 =  J"I (1 +  A#1). The
¿=i

fuzzy integral e = max[min(/i(xj),g{Ai))], where h : X  —> [0,1], X  = {xi,  ...,xn} and 

A-i =  {^l, —,Xi} is a partition of X ,  can then be computed given that g(Ai) can be 

determined recursively by 

9 { M )  =  9 ( { x  i}) = g 1, 

g(A)  = gl + g(Ai -1) +  \ g lg(Ai_i).

They apply this to an object recognition problem where gl is determined according 

to

sum =
hj

7 ___  p ij.dsum
su m  ’ m

gl = E bij>
3= }

where pij is performance of the classifier and dsum is the desired sum of fuzzy den-

sities, which still has an element of subjectively.

In an attempt to work with general fuzzy measures rather than specifically A- or 

Sugeno measures, Ishi and Sugeno [80] introduce the Fuzzy Measure Learning Identi-

fication Algorithm to approximate the human evaluation process mathematically. In 

broad terms, the model involves starting with arbitrary fuzzy measures and gradually
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adjusting them according to the data set. gl is regarded as the importance of the 

corresponding element as an information input. Once again, the process is iterated 

until the difference between the subjective and the model outputs goes below a certain 

tolerance level, i.e., | e |= | 2 — 2 |< tol, where z = §K h(si) o g(.), K  =  {s1,...,sn} 

representing the set of information elements and h : K  —» [0,1] is a function that 

quantifies information. Note that the index has to be altered for each set of data

such that h(si) > h(si +  1). The adjustment of g(.) depends on the adaptive gain
2 / N , 2̂

a — 7  A , where 7  and q are constants and ae = , / is the root mean
y j-1

square error. In another paper, Onisawa and Sugeno (et al.) [115] also use FLIA but 

they use factor analysis to collect the subjective judgements.

P robability  M easure Transform ation Approach

Sugeno measure can be derived from a classical probability measure by using an 

appropriate transformation. Let (X,Q,p) be a measurable space where p is a Lebesgue 

measure. Then, the composition f o p  produces a Sugeno measure iff 

f (x)  = i ( c * - l )

(Theorem 2.1,[145], p.71). This can be used to derive a Sugeno measure from a 

classical probability measure. Assume that g is a Sugeno measure defined on fi, then

([96],[97],[144],[145], [142]).

Kruse ([96],[97]) uses this approach and solves an optimization problem to arrive
/

at the fuzzy measure. Wierzchon [145] also uses this approach where he solves the 

problem using the Least Squares Method. He starts with minimizing

Gj)2J 2 =  — V  hvjm v J 
3 =  1

where Wj represents the subjective weights of Xj  C X  =  {xi , . . .xn} and Gj =

. Using the transformation, the author replaces this equation
Xi&Xj

with
m

=  (.Vj -  P j ) 2
3 =  1

where Vj =  log(1+A)(l +  Awf)  and Pj = p̂ . Using LS method
Xi&Xi
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y  =  0, i  = 1 , 2 , . . . ,  n ,  

with the constraints
n

=  Pi>  o,
2=1

the author arrives at the following equations
m on (i+ =  (a+1)2" (n+i)-n

3= 1
to compute A, and

m m

Z i =  £  v 3 d i j  =  loS(l+A) n ( l  +  ^ w j d i j )
3= 1 J=1

Pi =  22-"(z t +  1) -  1

to determine probabilities. Finally, he computes the fuzzy densities using 

^  =  i [ ( l  +  A) P i - l ] .

So, again, we see that subjectivity plays a main role in the determination A and, 

consequently, the fuzzy densities. Finally, Kruse [97] and Wenxiu [142] show that if 

/  is a fuzzy event, then

f A f d g  =  - {  +  ^(1 + A)^
but, once again, A needs to be determined.

Fuzzy D istribution  D erivation  Approach

Sugeno [133] defines a A-fuzzy measure in terms of an F-distribution function. He 

defines an F-distribution (fuzzy distribution) function, which has the same properties 

as the distribution function of a probability measure, as follows ([133], Definition 

2.7, p.16): a function with the following properties on R 1 is called an F-distribution 

function.

1. 0 < H(x ) < 1 for x  G R 1.

2. If x < y, then H(x)  < H(y).

3. lim H{x) = H(a).i —>a+0
4. lim H(x) = 0.

x —>—oo

5. lim H(x)  =  1.
x —»OO

Defining this fuzzy distribution function for a monotone sequence K  =  K\ D 

K 2 D ... D K n, Sugeno defines a A-fuzzy measure as follows 

1 = H(s1) > H ( s 2 ) > ... > H(sn) > 0,
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a i -  H ( s t ) - H ( s l+1 ) 
y  1 + A  H(s i+1) ’

5n =  H(sn)

=> #(«i) =  5A(■&») where Ki = {s*, si+i , s „ } ,

9i = 5a ({^}), 

so that
n

# 0 h ) =  i t r K 1 +  x9k) -  1] =  1,1 < i < n,
k=i

and gl is called a fuzzy density of g\. Particularly, for a half-open interval

9 ^ b\) =
g((-oo,a}) = H(a).

No practical applications are provided in the literature. Wang and Klir [140] 

provide a couple of examples in their book. They refer to the F-distribution func-

tion H(x)  as a left-continuous probability distribution function or as a distribution
I

function for g\. Wierzchon [143] tackles this point briefly. He suggests determining 

the fuzzy distribution function by having the subject order the states in some way 

xi ,X2 , ...,xn and, then, determine his judgements H(i) =  w({x\,  ...,xn}), whose num-

ber is only n\ — I  — 1 because H(I) = 1, where I  — card(W), X  is the set of possible

states of the world, and m({xj}) is the grade of credibility or importance of occur-
/

rence of state i. In another paper, Wierzchon [144] recovers an underlying probability 

distribution function P  from a fuzzy distribution function H(x) = g((—oo,x]),

9((x  i>*2]) =

P(x)  =  log(A+1)(l +  A F(x)).

M em bership Function A pproxim ation Approach

Sugeno [133] has proved that the grade of membership is a special case of the 

grade of fuzziness. Recall that the A measure (or Sugeno measure) measures the 

grade of fuzziness of a set i.e. whether a certain element belongs to the set or not 

whereas the membership function measures the grade of membership of an element 

or the degree of compatibility of this element with the set, given that we know that 

it belongs to the set.

Assume that we pick up an element xq from a set E , then
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Gr(x0 G E) = x E(x o)

where Gr(xo G E) is the grade of membership of xq  in E,  and Xe (x o) is the charac-

teristic function of E.  Then if if is a fuzzy set A, we can write 

g(x0, A) = §x  hA(x) o g(x0, .)

=  hA(x o)

where hA(xo) is the grade of membership of xq  in A.

Wenxiu [142] argues that, given a possibility distribution f (xi) = ily (i =  1 , 2 , n) 

such that /  : X  —> [0,1] and 7q G [0,1], then, for A ^  0, if /  satisfies 

i t ] !  (1 +  Xiti) — 1] — 1, 

then it can generate a (^-measure such that

9\  =  y[ II  (1 +  A7r0  -  1]
Xi ^A

Of course, here we are implicitly assuming that the possibility distribution is 

numerically equivalent to the membership function.

Statistica l D ata  A pproach

This approach involves using statistical data to arrive at an approximation of the 

fuzzy density. Leszczynski et al. [102] introduce a fuzzy clustering algorithm using 

Sugeno measure. However, they do not rely directly on human evaluation of the 

measure but they rely on actual data. They solve an optimization problem involving 

Lagrangian function and Euclidean distance to arrive at the fuzzy measure.

2 .2 .4  C o n d itio n a l F u zzy  M ea su res

Conditional fuzzy measures ([133],[137],[143]) serve as conditional probabilities. 

A fuzzy measure of Y,  ay(.  \ x), for any x  G X  is called a conditional fuzzy measure 

of Y  with respect to X.  A fuzzy measure of Y,  gy{ .), can be constructed utilizing its 

conditional fuzzy measure [137] so that

9 y ( F )  =  § x  a r ( F  I x ) 0  9 x ( - ) -  

Integrating over a measurable function, we get 

§ y  Kv) ° 9 y  =  §x  [$ y  h ( y ) o a Y (. \ x ) }  o g x

i f  [ i
=  V S % ) A  V (oy(- I x h) Ag( {x i, . . .,xh })

i = 1 (  ¿1=1

45



In fact, Sugeno ([137],[133]) was able to derive the equivalent of Bayes’ theorem 

for fuzzy measure theory utilizing this measure, namely,

§F ° x ( E  I x ) o g Y = §E ay (F \ x) o gx ,

where, within this context, gx  is called a priori fuzzy measure and ax (. \ y) is called a 

posteriori fuzzy measure. Sugeno[133] also proves the equivalent of Fubini and Radon- 

Nikodym theorems in fuzzy measure theory, whereby conditional fuzzy measures are 

the analogue of conditional probability measures.

2 .2 .5  F u zzy  D u a l M ea su res

Given a regular fuzzy measure /x, then u, such that, 

v(E) = l - f i ( E ) ,

is also a regular fuzzy measure and is known as a dual fuzzy measure. For a A-fuzzy 

measure, g\,

vx'(E ) = l - g x(E),

So for every subadditive measure g , we can construct a superadditive measure v such

that they add up to 1 and Derive v from the definition of g ,

a \ ( E )  — 1~gA(-E)9 \ { ^ )  -  1 + \ g x ( E ) ’

we get,

■(E) ( l + A  )gx (E) 
l + \ g x ( E )  '

2 .2 .6  C h o q u et In tegra l

The Choquet integral is another form of nonlinear integration which found a 

lot of popularity in the economics and finance literature in non-additive measure 

applications. In continuous-time, the Choquet integral assumes the form,
0 oo

(c) /  u(x)du = J  [v (u(x) > t) — n(Q)]dt +  f  v (u(x) > t) dt , ¡j,(fl) < oo,
-o o  o

where ¡i is the measure and 17 is the universe. n(U) =  1 in our case. When u(x) is a 

non-negative function, the integral becomes,
OO

(c) / u(x)dv =  j  u (u(x) > t ) dt. 
o

In its discrete form, the Choquet integral can be written as
n

c g(h) =  (c) /  hdg = [h(xi) -  h(xi+1)].g(Al) 
i=1
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where h(x\) > ... > h(xn), h(xn+1) =  0, — {X\ , and g(Ai) is a non-additive

measure. The Choquet integral converges to the Lebesgue one when the measure is 

additive.

It can also be written in another form,

Cg{h) =  E  h(xi).[g(Ai) -  g(Ai-i)\
i=i

where A t = {xu ..., £*}, 0 < g{Ax) < g(A2) < ... < 1, g(A0) = 0,g(An) = 1.

In a similar logic to linear conditional expectations, the conditional Choquet in-

tegral in discrete form, can be written as

C(Sj) = f  h(Sj)dg(Sj \ xh ) = £  h(Sj).\g(Sj \ x h ) -  g(Sj \ xn _i)].
u=i

2.3 C onclusion

We have presented a comprehensive yet brief literature review of the founda-

tions of Fuzzy Set Theory and Fuzzy Measure Theory. For this purpose, we have 

presented an overview of the concepts of membership function and possibility dis-

tribution touching on the distinction between them. We have also compared those 

concepts to those of a probability distribution. Besides, We have tackled the issue of 

deriving a membership function and a possibility distribution. We have also provided 

a literature review on fuzzy measures and methods of constructing them as well as 

on nonlinear integration approaches.

Those theories serve as alternatives to Probability Theory in problems charac-

terized by Knightian uncertainty and vagueness. In the next chapter, we will look 

closely at the concept of Knightian uncertainty. We will specifically consider finance 

and economics applications and see how alternatives other than Fuzzy Measure The-

ory and Fuzzy Set Theory can be utilized to deal with Knightian uncertainty. We 

will also see applications of Fuzzy Measure Theory and Fuzzy Set Theory in finance 

and economics.
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C hapter 3

Literature R eview

The previous chapter has paved the way to understanding the tools utilized in 

the models we will present during the course of this research. Those tools serve 

as alternatives to Probability Theory within the Knightian uncertainty frameworks 

and settings that we will consider. However, they are not the only alternatives to 

Probability Theory. Researchers have been able to deal successfully with problems 

characterized with Knightian uncertainty using other tools. In this chapter, we will 

look at the literature contribution to dealing with Knightian uncertainty in finance 

and economics. In addition, there is existing literature that uses fuzzy tools to deal 

with Knightian uncertainty in finance and economics. The most sophisticated treat-

ment is really in Fuzzy Option Pricing, which is exactly the area we target in our 

research. So we will also provide a literature overview of fuzziness in economics and 

finance and ways of dealing with it but we will leave Fuzzy Option Pricing to a later 

chapter (Chapter 8) where we perform a detailed study of those approaches. To avoid 

redundancy, we will only touch briefly upon this area in this chapter.

Before delving into the literature review, we need to clarify the term ’uncertainty.’ 

We, more often than not, come across uncertainty as a synonym to risk in finance 

and economics literature. However, the two terms are different, which is the reason 

why the tools of handling them are different, and consequently the reason why we are 

attempting to use alternative tools to probability.

Uncertainty has been broken down into several branches in Fuzzy Theory de-
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pending on the framework of the problem. As such, it is distinguished from risk. 

This development has been taking place independently of the Knightian uncertainty 

distinction in finance and economics. We will attempt to bring together those two 

separate fields that attempt to discuss the same matter and draw on the tools that 

researchers have introduced to deal with such uncertainty in either field.

Section one discusses Knightian Uncertainty. We look at uncertainty in Economic 

Theory and uncertainty in Fuzzy Theory. In section two, we consider recent develop-

ments in Option Pricing literature since they have comparative implications for the 

models we will be introducing later on. In the third section, we will look at fuzziness 

in economics and finance. The need for alternative tools to Probability Theory in the 

fuzzy literature has been long recognized by fuzzy researchers. However, they have 

come into notice by finance researchers only recently. Not surprisingly, the most chal-

lenging and sophisticated, and hence promising, applications are those introduced by 

finance researchers. Therefore, we will be drawing on literature from different areas 

in an attempt to present various pieces of related research, which has been developed 

independently, into one coherent framework.

3.1 K n igh tian  U n certa in ty

Risk and uncertainty are usually used interchangeably, with more association 

between risk and unfavourable outcomes. Based on this, probability has always been 

assumed to be able to model uncertainty. However, as we have mentioned in the 

introduction, the two terms are quite different and probability theory alone is not 

enough to model all forms of uncertainty. It is our goal in this section to illustrate 

the difference between risk and uncertainty by drawing on literature from Economic 

Theory as well as Fuzzy Theory.

3 .1 .1  U n c e r ta in ty  in  E co n o m ic  T h eo ry

Knight [93] has presented a detailed analysis distinguishing between risk and 

uncertainty as far as 1921. He refers to risk as the measurable uncertainty and to 

uncertainty, which has later assumed the name Knightian uncertainty, as the unmea-
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surable one. According to Knight, we have only partial knowledge of the world around 

us. Knowledge is ’’variable in degrees” and problems usually relate to those degrees 

of knowledge rather than to the presence or absence of knowledge. This necessarily 

dictates that we do not have quantitative probabilities of every possible outcome, and, 

hence, our knowledge of the future is imperfect.

So risk holds in cases where we have enough information or knowledge to derive 

distributions of outcomes and formulate our probabilities, which Knight divides into 

a priori and statistical. A priori probability can be estimated from groups of instances 

that are generated by calculations based on general principles or repetitive experi-

ments, such as the throwing of a die, while statistical probability can be estimated 

from groups of instances that are generated empirically, such as the burning of a 

building. On the other hand, uncertainty refers to those cases where we do not have 

groups of instances, or any valid basis for classifying them, and so we do not have in-

formation to formulate estimates of probability. Knight associates the term ’’objective 

probability” with risk and the term ’’subjective probability” with uncertainty.

He argues that the cases exhibiting uncertainty refer to events that are highly 

unique, which is quite prevalent, but unfortunately ignored, in business and eco-

nomics. In fact, he believes that measurable uncertainty or risk do not induce any 

uncertainty into business and so, in such cases, there can be no reward for risk-taking. 

It is always possible to insure against such type of uncertainty. According to Knight, 

uncertainty can be reduced using six approaches. The first approach is the ’’consoli-

dation” approach and it involves using groups of cases rather than separate instances 

because the larger the group, the lower the uncertainty. The second approach is the 

’’specialization” approach and it accommodates for different views of individuals re-

garding it. The third, fourth and fifth approaches are control of the future, increased 

power of prediction and ’’diffusion” of the consequences of untoward contingencies, 

which is closely associated with the consolidation approach. The sixth approach is 

directing industrial activity towards lines involving a minimal degree of uncertainty.

Before moving on to present other literature, we would like to present an inter-

esting observation which Knight notes and which is a little bit out of line here but 

relevant to our research later. Knight observes that classes of objects do overlap
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sometimes. But scientific thinking drives us to eliminate such statements by trying to 

interpolate from other general facts about the history of the subject crisp statements 

related to its occurrences or non-occurrences. Yet, it is not always possible to achieve 

that. However, in our case, we do not have to worry about this because we will allow 

for overlapping classes of objects using Fuzzy Set Theory.

Keynes [88] recognizes the fact that probabilities cannot always be measurable 

and numerically estimated due to lack of rational basis or our lack of apprehension 

of evidence, that is, in our terminology, due to our incomplete or lack of knowledge. 

He associates with such probabilities risks that are not insurable. He also recognizes 

the existence of vague knowledge but does not attempt to deal with it due to its 

complexity. He also considers cases where probability does not exist.

Another important insight that Keynes draws is that additivity does not always 

hold. In particular, he questions the soundness of the mathematical expectations 

as measuring our preferences given different courses of action. In other words, he 

questions whether the undesirability of a particular course of action should rightfully 

increase in direct proportion to the increase of attaining its object rather than by more 

than proportionately and, hence, accommodating for the risk assumed. As we will see 

later, we mend this drawback by using expectations that are means of compromise 

rather than additive.

Ellsberg [60] analyzes the assertion that all uncertainties reduce to risk and, hence, 

one can always formulate numerical or qualitative probabilities. He finds that this 

does not hold. To illustrate his point, Ellsberg provides a betting example that allows 

one to measure subjective probabilities of the subjects in an experiment. The example 

involves two urns containing red and black balls. The total number of balls in either 

urns is known but the ratio of red to black is not known for the first urn; however, this 

ratio for the second urn is 50 red to 50 black. A gambler is asked to bet on drawing 

a specific colour using four scenarios.

The first two scenarios involve betting on one colour from one urn, for example, 

betting on drawing red from the first urn or drawing black from the first urn as well. 

The third and fourth scenarios involve betting on a specific colour from either urn, 

for example, betting on drawing red from the first urn or drawing red from the second
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urn. Basically, the first two scenarios involve a choice of colour but one urn. The 

third and fourth scenarios involve one colour but choice of urn. The gambler is not 

allowed to choose an urn or a colour.

Biases aside, the typical response for the first two scenarios is indifference. As 

for the third and fourth scenarios, the majority prefers betting on the second urn 

where the probabilities are known while only a minority prefers betting on the first 

urn where the probabilities are unknown. The implication of this experiment is that 

people, in general, prefer to act on known probabilities or to avoid ambiguity but 

it is not possible to infer the additive subjective probabilities from such choices. So 

probabilities cannot be formulated and, hence, uncertainty does not reduce to risk 

always.

Interestingly enough, Knight has also presented a similar example ([93], p.218). 

He considers one urn and assumes that one man does not know the composition of 

red and black balls in it while another does. So we can assume that the first man 

assumes equal chances of drawing a red ball or a black ball but we can also assume 

that the right probability is that corresponding to the knowledge of the second man 

but the first man does not know it. However, when it comes to taking a decision of 

conduct, Knight argues that the man will assume the equal chances case. Ellsberg 

argues that Knight contradicts his uncertainty view in this case because it implies 

that people can always resort to the Principle of Insufficient Reasoning and so they 

will not be interested in Knightian uncertainty when it comes to decisions of conduct.

In fact, Ellsberg wrote his paper in an attempt to examine closely Savage axioms 

(besides Knightian uncertainty). He shows that they do not always hold. However, 

Raiffa [126] attempts to prove that such axioms always hold and carries an experiment 

within the classroom setting. We are not really interested with these specific applica-

tion in our research. We are, in fact, drawing on Raiffa’s paper because of a comment 

he has made, within the context of his experiment, and which says ” I found that when 

relative frequencies or so-called objective probabilities were given in numerical form 

as data of a decision problem, then these were often used in computing various indices 

(e.g., expected or actuarial values) which served as a guide to action. But if certain 

uncertainties in the problem were in cloudy or fuzzy form, then very often there was
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a shifting of gears and no effort at all was made to think deliberately and reflectively 

about the problem.” ( [126], p.691) We believe that the reason that subjects, in the 

presence of cloudy or fuzzy uncertainties, do not think deliberately and reflectively 

about the problem is the fact that they are thinking in terms of probabilities. We 

do believe that had the subjects approached the problem from a different angle, they 

would have been able to deal better with such uncertainties. Within the course of our 

research, we will attempt to fix this problem by using possibilities or other measures 

that are especially tailored for such cases.

We find ourselves more in line with Fellner [65]. He recognizes the existence of 

nonadditive subjective probabilities, which he calls uncorrected but attempts correct-

ing them to be able to calculate mathematical expectations. Uncertainty, in this case, 

is measured by the nonadditivity, which he calls distortion, of those uncorrected sub-

jective probabilities. Our research is similar in the sense that we will be working with 

nonadditive measures but we will not correct them; rather, we use fuzzy expectations 

instead of mathematical expectations that require additivity.

More recently, Knightian uncertainty and nonadditive probabilities started finding 

an appeal in the economic literature. Curley and Yates [37] do recognize uncertainty 

due to insufficient information. They distinguish between two types of uncertainty, 

which are uncertainty related to the occurrences of an outcome and uncertainty re-

lated to the likelihood of the outcomes. Interestingly enough, they distinguish between 

ambiguity and uncertainty. They believe that uncertainty about a decision’s outcome 

is captured by probabilities, so we can infer that they meant by this uncertainty risk, 

in our terminology. On the other hand, they also recognize an uncertainty of ’’am-

biguity,” which we infer to be the Knightian uncertainty in our terminology. They 

define ambiguity as uncertainty related to the ’’processes by which outcomes are de-

termined, and has been characterized as uncertainty about the outcome probabilities 

themselves.” ([37], p.274) Based on this, they deal with ambiguity, or Knightian un-

certainty, using ’’uncertain probabilities,” which are characterized by intervals defined 

by their ranges and centers. The greater the range, the higher the ambiguity. They 

argue that people tend to exhibit ambiguity avoidance and they find out that the 

degree of ambiguity avoidance increases with the center.
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Schmeidler [127] deals with such uncertainty, which has to do with the occurrences 

of the state itself, using nonadditive probabilities. He argues that such measures can 

transmit or record (vague) information that additive probabilities cannot. He com-

bines both subjective and objective probabilities. Objective probability, viewed as a 

physical concept, is a special case of the subjective or personal one and is prevalent 

when there is no Knightian uncertainty. This does not impose an additivity assump-

tion over the probabilities. To compute the expectations using such probabilities, 

Schmeidler uses the Choquet Integral (hence, the Choquet expected utility model) 

which allows nonadditive probabilities (and converges to the Lebesgue integral in 

the case of additive probabilities so that the corresponding expectations converge to 

mathematical expectations). He also introduces the notions of uncertainty aversion, 

uncertainty attraction and uncertainty neutrality in analogy to their risk counterpart. 

He argues that additive probabilities correspond to the uncertainty neutrality case.

Dow and Werlang [46] study the impact of uncertainty in an investment decision 

problem. Such uncertainty arises from the uncertainty of the underlying asset itself. 

They deal with this uncertainty using subjective nonadditive probabilities and they 

argue that if those probabilities add up to less than one, then uncertainty aversion 

prevails. They show that the highest price an agent is willing to buy the asset at is 

the asset’s expected value (using Choquet integral) over the nonadditive probabilities 

and the lowest price he is willing to sell the asset at is the expected value of selling 

the asset short. Those two prices embody only beliefs and uncertainty aversion and 

not attitude to risk. The authors also draw implications for insurance whereby they 

argue that, based on such logic, there will be a range of prices for which the agent 

can fully insure.

In another paper, they [47] attempt to interpret the high stock price volatility 

within a Knightian uncertainty framework given that the stock market is influenced 

by many factors that induce a high degree of such type of uncertainty. They again 

utilize nonadditive probabilities that reflect uncertainty aversion. However, in this 

case, the event and its complement add up to less than one and the difference serves 

as a measure of the uncertainty of the corresponding event from the agent’s point of 

view. They also use the Choquet integral to compute expectations.
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Epstein and Wang [61] study the determination of asset prices under Knightian 

uncertainty using an extended Bayesian model, namely the multiple-prior model, that 

allows a distinction between risk and uncertainty. They use an uncertainty adjusted 

probability kernel that is allowed to be multivalued (to accommodate uncertainty). 

They also account for uncertainty aversion.

Epstein [62] has recently tried to introduce a definition of uncertainty aversion. 

However, he does not distinguish between vagueness, ambiguity and Knightian uncer-

tainty; we will differentiate between those terms later on when we study uncertainty 

in fuzzy set theory. The value added with this new definition is that it is also suitable 

for applications within a Savage framework (and it assumes eventwise differentiabil-

ity of utility but this is not relevant here). The model is more general than the 

multiple-priors and the Choquet expected utility models.

In the literature we have considered so far, no formal definition of ambiguity 

has been presented. It is only recently that Epstein and Zhang [63] have attempted 

defining ambiguity formally. The interesting feature about such a theory is that it 

endogenizes unambiguous events. However, the definition is quite long and out of 

line with our research that we will not present it in this document but the reader is 

referred to the corresponding paper for a meaningful definition.

In summary, most of the work done on uncertainty in economics accounts for 

Knightian uncertainty using non-additive probabilities and some form of adapted 

utility model such as the Choquet expected utility and the multiple-priors models. 

In the following section, we will look at different aspects of uncertainty and different 

ways of dealing with it.

3 .1 .2  U n c e r ta in ty  in  F u zzy  T h eo ry

As we have seen in the previous section, probability, irrespective of what its 

proponents (especially Bayesian statisticians) say, is not enough to model uncertainty 

and it may fail if used within an unsuitable problem definition. There are many ways 

by which we can deal with this problem and we will explore them in the following 

chapter. At this point, however, we will analyze the problem from a Fuzzy Theory 

point of view.
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Probability, in fact, models the randomness aspect of uncertainty. But, as we have 

seen in the previous section, randomness is not really the only aspect of uncertainty. 

There are uncertainties arising due to factors other than chance and so they are 

not random and cannot exactly be modelled by probability theory. We will merge 

those uncertainties under a broad title for now and call it fuzziness until we are well 

equipped to draw a distinction between the two terms.

Both probability and fuzzy theory deal with uncertainty numerically and they 

share some structural similarities (such as commutativity, associativity and distribu- 

tivity among sets). In fact, in the chapters to follow, we will carry a deeper comparison 

between elements of Probability Theory and elements of Fuzzy Set Theory and Fuzzy 

Measure Theory but, at the moment, we will suffice by keeping the comparison at a 

conceptual level.

The root of dissimilarity between the two is the treatment of the event and its 

negation. Probability theory draws a sharp edge between the two to be able to 

distinguish between the two concepts. Fuzzy theory, on the other hand, does not 

distinguish between the two. In other words, in probability theory, it is assumed that 

we can distinguish between an event and its negation but, in fuzzy theory, we do 

not have this restriction and the two entities can actually overlap. In the real world, 

especially within our context the financial markets, we cannot always differentiate 

between an event and its negation, which has important implications particularly for 

incomplete contracts or contingent claims [129].

Kosko [95] presents a very interesting paradox within this framework. He measures 

the fuzziness of a set A  by how much the superset ACUA,  where Ac is the complement 

of A, is a subset of its own subset A  fl Ac. In Probability Theory, this is impossible 

and P( A c fl A  | Ac U A) =  P(<j> \ X )  =  0, where X  is the sample space or sure event 

and (f) is the empty set or impossible event. On the other hand, in Fuzzy Theory, 

we do not classify the world as black or white; we do have grey areas and, perhaps, 

plenty of them.

Kosko defines fuzziness as event ambiguity, that is, it measures the degree to which 

an event occurs. Randomness, on the other hand, deals with whether or not an event 

will occur. As Kosko puts it, ’’Whether an event occurs is random. To what degree it
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occurs is fuzzy.” ([95], p.213) Of course, the event itself can be ambiguous and we can 

question its occurrences which will produce the probability of a fuzzy event but this is 

another story now. To illustrate the distinction further, Kosko gives a very interesting 

example: suppose that there is a 50% chance that there is an apple in the refrigerator, 

which can be arrived at using subjective or objective probability tools. Now suppose 

there is half an apple in the refrigerator. These are two physically distinct events 

or ’’states of affair,” as Kosko calls them, that have the same numerical uncertainty. 

The first refers to randomness and the second to fuzziness.

Fuzziness is a type of deterministic uncertainty that does not dissipate with the 

release of new information like randomness does, that is, fuzziness is inherent to the 

definition of the event itself. If we use Probability Theory alone in the presence of 

ambiguity, the sample-space will still have the same ambiguity after randomness is 

eliminated because information clarifies the degree of occurrences. It is only until we 

use tools of fuzzy theory, that we can eliminate or accommodate this ambiguity.

So far, we have been using fuzziness, ambiguity and uncertainty interchangeably. 

In fact, those terms model different entities and it is time to draw a distinction 

between the three terms. Klir [89] divides uncertainty into vagueness and ambiguity. 

Vagueness deals with linguistic uncertainty, that is, with uncertainty associated with 

sets that do not have sharp boundaries. This is particularly prevalent when it is 

hard to draw distinctions in the real world, for example, between an event and its 

negation. Vagueness is usually modelled by Fuzzy Set Theory, specifically, grades of 

membership. Fuzziness is really associated with vagueness.

On the other hand, ambiguity deals with one-to-many relationships, that is, with 

instances involving several alternatives among which the choice is indeterminate. It 

is usually modelled by Fuzzy Measure Theory. As we will see in later chapters, this 

theory represents the uncertainty associated with whether a certain element of the 

universe of discourse, which is not a priori allocated to any subset of this universe, 

belongs to the set (which is a subset of the universe of discourse) under consideration.

The difference between vagueness and ambiguity can be further illustrated using 

Dowlatshahi et al.’s definitions ([48], definition 9.1.1, p.289) keeping in mind that they 

establish those definitions within the context of linguistics; however, there is no reason
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to believe that this cannot be applicable to other contexts. Vagueness arises when we 

have more than one interpretation but there are no grounds on which to decide on the 

best interpretation. Ambiguity, on the other hand, admits grounds for the decision 

but they point to more than one alternative. Vagueness is relative to a view or 

perspective, whereby each view or perspective provides a different interpretation, but 

ambiguity is not. However, they argue that vagueness is more general than ambiguity 

but we do not agree with that; we, generally, assume the position that the two entities 

are two distinctive types of the more general concept of uncertainty.

Ambiguity, in turn, can be further divided into three types. The first type is non-

specificity or imprecision of evidence. Specificity has to do with the values a variable 

can assume in a subset or the alternatives a decision situation can assume. Nonspeci-

ficity arises when such alternatives or values or interpretations are left undecided. It 

involves the size of the subset. So the larger the subset, that is the more alternatives 

involved, the less specific the characterization is, and, obviously, when the subset is 

a singleton, that is involving one alternative, the situation or the characterization is 

fully specific.

The second type of ambiguity is conflict or dissonance in evidence and is associated 

with the disjoint subsets of the universe of discourse to which the element under 

consideration may belong. The evidence on one subset could conflict with evidence 

on the others. The harder for us to distinguish between evidence or alternatives, the 

greater the dissonance. The third type of ambiguity has to do with those subsets that 

do not overlap or partially overlap. So we will have partially or totally conflicting 

evidence on the subsets. This type of ambiguity has the meaning of confusion in 

evidence. In fact, those last two types of ambiguity are quite similar.

We have seen in the previous section how incompleteness of information gives rise 

to Knightian uncertainty. But we have not established a link between this uncertainty 

and the four types of uncertainty within the context of fuzzy theory yet. Dowlatshahi 

et al. [48] divide incompleteness into two types: internal incompleteness which has 

to do with the lack of information in a framework and external incompleteness where 

the framework itself is incomplete. However, they treat incompleteness as a separate 

entity to vagueness and ambiguity. We, of course, do not agree with this view. We
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Figure 3-1: General Uncertainty Framework

tend to view incompleteness as one of the causes that give rise to uncertainty, whether 

in the form of ambiguity or vagueness.

In fact, we tend to agree with Klir’s point of view [90] on this issue. Incomplete-

ness is a form of information deficiency or, using a better description, is imperfect 

information. In such instances, information can be incomplete, imprecise, vague or 

contradictory and so it gives rise to different types of uncertainties.

Figure 3.1 shows a map of the decomposition of uncertainty and tools that deal 

with each decomposition. Several approaches have been proposed to measure the 

amount of uncertainty in a system. We will not talk about them now but we have 

collected a comprehensive literature review in Appendix B.
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3.2 O p tion  P ric in g

The models we present in this research build upon the CRR OPM or the Black- 

Scholes OPM. Those models serve as fair price models, that is, they are assumed 

to hold in a ’perfect’ market. Given the assumptions they impose, one does not 

expect them to be empirical models. Nevertheless, they are still used by practitioners 

but this is really an issue of simplicity and self-fulfilling prophecy. In our opinion, 

it is not ’scientifically’ correct to assume that those models are the right ones just 

because the market uses them. As support to this statement we point to the general 

agreement that the Black-Scholes OPM generally underprices in-the-money options 

and overprices out-of-the-money ones.

According to Bhattacharya [11], testing Option Pricing Models usually falls into 

testing three hypotheses:

1. mathematical structure of the formula,

2. measurement of inputs and outputs such as simultaneity issues, and

3. efficiency of the options market.

In our research, we are more concerned with the third point. Models that give a 

single no-arbitrage or fair price impose stringent assumptions that cannot be met in 

actual trading markets. In fact, recent developments in Option Pricing have been 

more inclined towards establishing an interval of no-arbitrage prices rather than a 

single price.

In a frictionless market, options can be priced by a ’no-arbitrage’ strategy, whereby 

the option is hedged against the underlying asset such that the portfolio earns the 

riskless rate of return, and is rebalanced continuously until expiry. However, perfect 

replication is not possible in an imperfect market such as listed option markets. Lit-

erature has tackled various market imperfections and studied their impact on option 

pricing. The general finding is that those market imperfections impose wide bounds 

on equilibrium option prices rather than the one price model output given under a 

perfect market. This also has implications for hedging and for testing Option Pricing 

Models.

Before exploring this literature, we need to make a clarification on the use of the
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term ’imperfection.’ It is quite frequent to come across this term in Option Pricing 

literature (such as [67],[57]) as it is the case in Economic Theory. The idea behind 

using this term has to do with the fact that replication or arbitrage strategy, which is 

the main approach for pricing options in complete markets and the approach by which 

the Black-Scholes and CRR OPMs are derived, is only possible in a frictionless market. 

The fair price models assume a frictionless market and so for those models to hold, 

we need to have a ’perfect’ market in the sense that the corresponding market has to 

satisfy the assumptions imposed by those models. Deviations from those assumptions 

will give rise to imperfections such that option replication, and hence the application 

of fair price models, is no longer possible and other approaches are called for. These 

’imperfections’ give rise to market incompleteness.

One of the most important market imperfections is uncertain volatility. The Black- 

Scholes model assumes a constant volatility, which is not observed in actual options 

markets. So given that volatility is assumed constant by a fair price (or ’perfect’) 

model, it follows that it can be considered a market imperfection if it violates the 

assumption of this fair price model.

Volatility fluctuates a lot in the financial markets. It is the hardest input to 

estimate in an Option Pricing Model and there is no general consensus on how it 

must be estimated. Even historical or realized volatility differs from the actual one 

depending on the statistical technique used. Volatility is important because it affects 

the risk in options arbitrage by directly affecting the fair or model price of the option. 

It also affects the return of such a strategy since an agent who has a better estimate 

of the market volatility, that is an estimate closer to the true volatility, will be able 

to earn more than the riskless rate of return.

There have been some successful attempts at modelling volatility as a stochas-

tic volatility or as a deterministic volatility surface while preserving the no-arbitrage 

principle. However, those models are only appropriate within certain problem frame-

works. Besides, stochastic volatility models have been criticized as complicated espe-

cially in the presence of a market risk parameter while deterministic volatility surfaces 

have been accused of mispricing. In either case, we will not really go in details into 

those approaches because they are beyond the scope of our research. We are really
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interested in uncertain volatility models whereby the volatility is known to fluctuate 

within a band and so it is no longer possible to price by replication. The alternative 

in such instances is to establish bounds on the value a volatility can assume which in 

turn gives rise to portfolio super- or sub-replication leading to bounds on the option 

price itself.

Another important imperfection is the existence of transaction costs in actual 

markets. This imperfection also leads to bounds around the fair price of the option 

such that arbitrage opportunities do not exist. Other imperfections include portfolio 

constraints, short selling constraints among others, which we will see in the following 

literature review.

Figlewski [67] studies the implications of market imperfections such as uncertain 

volatility, transaction costs, indivisibility and rebalancing at discrete intervals on op-

tion pricing and hedging, more precisely on the no-arbitrage strategy. The author 

argues that, in a frictionless market, arbitrage drives the price of an option to its 

fair Black-Scholes value. However, the presence of imperfections creates friction in 

the market, and, consequently, one can only establish bounds on the option price. 

The option price will be free to fluctuate within those bounds such that no arbitrage 

is possible since it would be costly to do so. His methodology involves setting up 

an experiment that is based on simulated data and introduces those imperfections 

one by one subsequently comparing them to the Black-Scholes OPM value. Jameson 

and Wilhelm [81] confirm this finding. They argue that uncertain volatility and the 

inability to rebalance continuously, or the sigma and gamma of an option, generate 

nondiversifiable risks that account for a significant proportion of the bid-ask quotes 

entailing important implications for theoretical bounds on option pricing, which is in 

line with Figlewski’s argument.

A more recent stream of literature that attempts arriving at no-arbitrage bounds 

using various complex mathematical approaches has emerged and it is usually referred 

to as portfolio sub- or super-replication. It generally targets pricing and hedging 

in incomplete markets characterized by various imperfections like transaction costs, 

uncertain volatilities and others. The problem in incomplete markets, other than the 

fact that replication is not possible, is that there exists more than one martingale
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measure that is equivalent to the initial probability measure and among which the 

choice is indeterminate. Therefore, instead of one no-arbitrage price, one would get 

a range of no-arbitrage prices.

Edirisinghe et al. [57] look at the effect of transaction costs and trading con-

straints, such as lot size and position limits, on the portfolio replication. Their 

approach is to minimize the initial cost of the terminal payoff required to super- 

replicate the desired payoff irrespective of the agent’s preferences. The problem is 

developed as a nonlinear programming problem which is then reformulated as linear 

programming and two stage recursive models. A binomial tree in discrete space is 

constructed where the final solution, after switching to the linear programming ap-

proach, is path dependent so that the number of constraints grows exponentially as 

the trading frequency increases and a global optimum is computationally difficult to 

reach. As a consequence, they work with a reduced binomial tree where the agent’s 

decisions are conditioned on the stock price and time, and not on the path followed. 

Besides, the tree grows only quadratically with the trading frequency and so a global 

optimum is easier to reach. The cost of replicating the option increases as trading 

costs increase such that, at a certain point, there is no trading. The authors argue 

that the super-replicating strategy in the presence of transaction costs starts off with 

a larger investment than that with no transaction costs but involves less trading up 

to expiry and it is no longer optimal to rebalance at each period. However, because 

of the exponential growth and integer constraints, the authors develop a two-stage 

dynamic programming model whereby the value function grows only quadratically 

and not exponentially so it is computationally more efficient. Based on this model, 

a set of conditions impose policy actions which entails revising the portfolio only if 

the corresponding marginal gain more than offsets the cost of trading. It involves 

using in the first stage a backward recursive model to minimize the amount by which 

the generated cash flow based on the initial wealth is lower than the desired one and 

then, in the second stage, the minimum initial wealth that makes this difference zero 

is computed.

Avellaneda et al. [5] consider the scenario whereby volatility is uncertain and 

they allow it to fluctuate within a band bounded by a maximum and a minimum
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possible volatility that can be chosen subjectively or statistically. Those bounds 

lead to a new non-linear (parabolic) PDE, which the authors refer to as the Black- 

Scholes-Barenblatt BSB equation. The BSB equation is in fact a generalization of the 

Black-Scholes diffusion equation and converges to it in the crisp case (one volatility 

value). Solving this equation leads to two consecutive bounds for the option price 

where the volatility values used in the equation are selected based on the convexity 

of the value function. The authors argue that the agent can short an option at the 

upper bound price and risklessly hedge it using the hedge ratio corresponding to this 

price since it is the minimal initial possible cost. On the other hand, they can long an 

option at the lower bound price, which serves as the maximal bid value, with a hedge 

ratio corresponding to the lower bound price. They also solve the equation is discrete 

time using trinomial trees and finite differences. They show that the equation can be 

used for hedging using other derivatives.

Jouini and Kallal [82] study portfolio super-replication under short sales con-

straints and different borrowing and lending rates. The authors argue that a no-

arbitrage condition for assets that cannot be sold short is to have supermartingale 

price processes while for those that can only be sold short is to have a submartingale 

price process. The super- and submartingale probability (risk-neutral) measures go 

into the pricing equation to give us the bounds for the set of option prices. The 

upper bound is the minimal initial cost needed to super-replicate a desired payoff, i.e. 

an agent will not agree to pay more than this amount for the option, and the lower 

bound is the maximum amount that can be borrowed against it, that is an agent 

would not agree to sell the option at less than this amount. The authors argue that 

those bounds are the tightest possible bounds in such a market that can be obtained 

irrespective of agents’ preferences. For the diffusion case, they derive a PDE, which 

they solve numerically.

El Karoui and Quenez [58] work with a stochastic dynamic approach to solve 

the problem of pricing in an incomplete market. They also obtain a range of prices 

whereby the upper price serves as a selling price and is hedged by a portfolio consisting 

of one riskless asset and a number of risky assets, and the lower bound corresponds 

to a buying price.
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Cvitanic and Karatzas [38] study the problem of super-replication in the presence 

of transaction costs using an optimization problem to maximize utility. The authors 

define shadow state price densities and use them to solve the marginal utility and 

its dual problem. The optimal portfolio is then the inverse of the marginal utility 

evaluated at the shadow price-density. The upper bound of the set of option prices 

is the minimal hedging price, which is quite high, for example, it is equal to the 

underlying asset’s price in the case of European options (buy and hold strategy), which 

makes the model impractical. The authors also find that under certain conditions, it 

is optimal not to trade.

Karatzas and Kou [86] consider hedging American options under portfolio con-

straints in the form of restrictions on borrowing and short-selling as well as restrictions 

on investments in certain assets using martingale theory and stochastic processes. 

They introduce an interval for no-arbitrage prices whereby any price lying outside 

the interval is an arbitrageable price. Those bounds correspond to a supermartin-

gale measure. Under convex constraints, they find that the lower bound that sub-

replicates the desired portfolio is equivalent to the payoff and the upper bound that 

super-replicates it is less than or equal to the underlying asset’s initial price. In a 

market with convex coefficients, they find that the lower hedge bound corresponds 

to the initial payoff while the upper bound corresponds to the expectations of the 

terminal payoff.

Cvitanic et al [39] establish a closed-form solution for portfolio super-replication

of European options in the presence of portfolio constraints. Again, they find that

the minimal super-replicating strategy associated with the upper bound corresponds

to a buy and hold strategy, that is buy the underlying and hold it until maturity,

which also holds for general path-dependent options. Their work is an extension to 
/

that of Cvitanic and Karatzas [38] whereby they reach a closed form solution using 

PDE, stochastic control and martingale theory tools. They solve the problem in a 

Markovian continuous time setting whereby the minimum hedge price is given by the 

supremum of the expectations of the claim over all supermartingale measures.

Frey and Sin [69] compute no-arbitrage bounds for European options under a 

stochastic volatility constraint. Those bounds correspond to the infimum and the
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supremum of the range of possible prices. They correspond to the most expensive 

sub-replication and the cheapest super-replication strategy respectively. For a general 

stochastic volatility model, they find that the infimum is greater or equal to the 

expected value of the payoff while the supremum is less than or equal to the underlying 

price, which means that the cheapest superreplication strategy is to hold the stock. 

This is, of course, not quite a contribution and other models are called for. So the 

authors introduce subjective bounds on the volatility. To hedge the option, they 

introduce a tracking error that measures the deviation between the terminal payoff 

and the one it is supposed to replicate, which is the based on the Black-Scholes model. 

So if this error is positive, it means that the agent’s terminal value of the hedge 

portfolio will always cover the option payoff. A similar result has been obtained by 

El Karoui et al. [59].

Frey [70] studies super-replication in a stochastic volatility model. However, be-

cause all superhedging in stochastic volatility models results in a price that is too 

high such as the buy and hold case, the author introduces bounds on the stochastic 

volatility that can be subjective or derived from historical data and serve as a con-

fidence interval. The value process is characterized by an optimal stopping problem 

within the context of the Black-Scholes model. The author finds that the super hedg-

ing price of a European option under stochastic volatility is equivalent to the value 

of the corresponding American option under constant volatility.

Perrakis and Lefoll [120] look at the implications of transactions costs on American 

options with dividends and study their pricing and hedging across the binomial tree. 

The underlying asset is assumed to be of physical delivery rather than cash settlement. 

The presence of transaction costs naturally leads to bounds for prices whereby exercise 

is sometimes dependent on the holder’s preferences. They have been able to establish 

replication, but with a more complex approach than that of the binomial tree, for 

both the bid and the ask. But it is conditional for the Bid case and depends on a 

transactions cost parameter.

In summary, in an imperfect market, we can only get no-arbitrage range of prices, 

whereby any value beyond the upper and lower bounds can be an arbitrageable price. 

As we have seen, common approaches utilize tools of probability and martingale the-
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ories, stochastic control and optimization models. We will be using Fuzzy Measure 

Theory and Fuzzy Set Theory to price options in the presence of Knightian uncer-

tainty. Knightian uncertainty fits into the framework by giving rise to market incom-

pleteness due to lack of information. As we have seen in Chapter 2, fuzzy tools are 

appropriate for modelling such uncertainty and imprecision so it will be worthwhile to 

examine which problems in finance and economics that have been solved using such 

tools, which will be presented in the following section.

3.3 F uzzy R eason in g  in E conom ics and F in ance

Fuzzy theory is a logical approach for solving problems in economics and finance. 

Fuzzy Set Theory and Fuzzy Measure Theory offer researchers flexibility in dealing 

with economics and finance problems especially that decision makers are sometimes 

faced with a high level of uncertainty whereby precision is no longer feasible. Using 

Fuzzy Theory, it is possible to accommodate imprecision and to incorporate natural 

language if necessary into the problem. The decision maker does not really have 

to summarize information into one precise number. Another important point is the 

nonlinearity of data in the sense that changes are not proportional all the time. Data 

in economics and finance are sometimes nonlinear or non-proportionate, for example, 

twice the input does not mean twice the output or an increase in stock price does 

not result in proportional increase in expected return. Sometimes, this can have an 

impact on the final output. In those circumstances, Fuzzy Theory is an appropriate 

candidate.

Generally, the approaches that have been used so far utilize tools of Fuzzy Set 

Theory. However, recently, more applications have been utilizing tools of Fuzzy Mea-

sure Theory especially for complex applications involving option pricing and credit 

risk. Such tools come in handy when it is hard to measure states or preferences 

and additivity becomes too restrictive. The applications utilizing Fuzzy Set Theory 

are numerous but we will restrict the review to a collection of papers that provide a 

comprehensive representation of the models or approaches used generally.
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3.3.1 Fuzziness in  Econom ics

Baumont [9] studies the influence of business experience in the evolution of the 

labor market structure. Since Probability Theory ’fails’ when there is lack of informa-

tion, the author resorts to Possibility Theory since it accounts for human perceptions 

about the future as well as discounts unpredictable events and, in this particular 

example, it models job preferences and promotions better than probability theory 

does. So she studies the possibility of getting a job with given abilities and then the 

possibility of getting a job with new acquired abilities or work experience. The major 

finding is that the labor market structure converges in possibility into a stable state.

Ponard [121] studies the contribution of Fuzzy Set Theory to the foundations of 

economics. To this end, he considers three models: fuzzy economic choice, fuzzy 

economic calculation and fuzzy general economic equilibrium. In the first problem, 

he considers imprecise preferences and incorporates them using a fuzzy or max-min 

utility function. A fuzzy economic calculation framework is introduced to model those 

imprecise preferences and fuzzy utility. Finally, the fuzzy model of general equilibrium 

studies the compatibility of fuzzy partial equilibria of consumers and producers. The 

author reaches the conclusion that fuzzy theory has major contribution to economics 

via imprecise preferences and fuzzy utility and is, in fact, able to solve problems that 

classical theory is not able to solve.

Billot [12] provides a comparative review of the use of Fuzzy Set Theory and 

nonadditive probabilities in economics. He concludes that the nonadditive probability 

approach has found wider acceptance in the economics circle than Fuzzy Set Theory.

Finally, Buckley ([18],[19]) solves a fuzzy Leontief’s open input-output problem. 

Fuzziness lies in the imprecise coefficients, which are represented by fuzzy numbers. 

As a result, output is comprised of parametric bounds. In the same papers, he solves 

a fuzzy demand-supply model by, again, fuzzifying the coefficients in the respective 

differential equation.
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3.3.2 Fuzziness in  F inance

Fuzzy reasoning seems to be more popular in financial applications than in eco-

nomics ones. Besides, the applications tend to be more sophisticated since here, we 

will actually see applications of Fuzzy Measure Theory and nonlinear integration. 

However, there is a general tendency to get the final value or function in terms of 

parametric bounds, which can be quite subjective at times. Most of the fuzzy finan-

cial applications tend to be investment problems with few exceptions of Fuzzy Option 

Pricing.

Tanaka et al. [136] address the problem of decision making at higher level since 

it is characterized by a higher degree of imprecision than it is at a lower level. The 

problem, which is particularly an investment problem, is defined by fuzzy actions, 

states and information. However, they do also introduce probabilities to represent 

the uncertainty of the occurrence of the fuzzy objects, hence, combining randomness 

(probability) and fuzziness (meaning of events). They deal with the problem using 

membership functions, probabilities and fuzzy utility functions from which they are 

able to derive worth and quantities of information. Their model is a nonparametric 

model but the membership functions are subjectively determined.

Buckley [16] tackles the problem of ranking investment proposals characterized by 

fuzzy cash flows, fuzzy project duration and fuzzy interest rates. He represents the 

fuzziness by fuzzy numbers, that are special types of fuzzy sets. He uses standard 

fuzzy arithmetic, which is quite different from classical arithmetic. The projects are 

then ranked based on their fuzzy net present value. The proposals are eventually con-

sidered equally best. The author [17] uses a similar approach to solve an elementary 

compound interest problem. He uses fuzzy numbers to represent fuzzy cash flows, 

fuzzy interest rates and fuzzy number of periods and gets a fuzzy present value and 

a fuzzy future value utilizing standard fuzzy arithmetic. In arriving at the final deci-

sion, he utilizes the max-min approach. In a later paper, Buckley [18] solves a fuzzy 

internal rate of return problem where cash flows are uncertain and, hence, represented 

by fuzzy numbers. The author solves a fuzzy equation to arrive at parametric bounds 

for the internal rate of return IRR.
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Ostermark [116] tackles portfolio management using a fuzzy mathematical pro-

gramming approach. He particularly works with a fuzzy Capital Asset Pricing Model 

(CAPM) to make it a more realistic model. Fuzziness enters into the framework 

through the coefficients of the policy constraints since they generally have an element 

of imprecision in them.

Li Calzi [26] attempts to establish a general setting for the fuzzy mathematics of 

finance. Unlike Buckley, he does not restrict himself to the compound interest model, 

rather he deals with the foundations and extends it to models such as the discount 

model.

Benanchenhou [7] works on another portfolio management problem. She intro-

duces an intelligent (fuzzy) trading system, which includes a fuzzy rule extraction 

tool that formulates membership functions, extracts rules and then use those rules 

for trading. So the fuzzy system fuzzifies time series, derives membership functions, 

extracts rules, executes those rules, evaluates them and then defuzzifies the result. 

The results are quite dependent on the degree to which the membership functions 

overlap such that the higher the degree of overlap, the less successful the results.

Kuchta [98] also works on an investment (choice) problem. The author extends 

the classical capital budgeting problem into a fuzzy one which involves comparing 

projects dependent on fuzzy cash flows, duration time, and required rate of return. 

The approach followed involves replacing the fuzzy objects with fuzzy numbers but 

here standard arithmetic rather than fuzzy arithmetic is used. The value of the 

project is represented by a parametric bound but no specific approach for comparing 

fuzzy numbers was specified.

Gupta [76] adopts a rather nonconventional approach. He does acknowledge that 

investment problems have a high degree of imprecision. However, he does not recom-

mend working with possibility distributions but suggests transforming them to prob-

ability distributions instead. He argues that converting from probability to possibility 

distributions results in loss of information. Probability theory has a well developed 

mathematics to support it and, most importantly, managers are more interested in 

what is likely to happen rather than what will possibly happen. So he presents a new 

possibility/probability consistency principle and models fuzzy cash flows by normal
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probability distributions using this principle.

Simonelli [129] extends classical common knowledge theory into the fuzzy case. 

Her model has particular implications for ’incomplete contracts’ in the financial mar-

kets since Fuzzy Theory does not require an agent to discriminate between an event 

and its negation while classical Probability Theory does. She introduces a new parti-

tion whereby states of the world are described by fuzzy events where their uncertainty 

of occurrence is described by probability theory. The model is able to establish fuzzy 

interactive knowledge between two agents concerning their expectations about those 

probabilities and derives conditions for no-arbitrage opportunities based on the agents’ 

interactive knowledge.

Yao and Lin [148] derive an optimal fuzzy profit from a fuzzy demand function 

and a linear cost function. The fuzzy demand function can be quadratic or linear 

with fuzzy coefficients. The results are only similar to the classical case when the 

fuzzy case converges to the crisp case but they are different when the fuzzy and crisp 

cases are different. The author recommends treating the problem in the fuzzy sense 

in the latter case.

Wu [146] prices three complementary products such that the fuzzy profit is max-

imized in a perfect competition. Fuzziness arises from the fact that the demand 

function cannot be precisely defined like in the monopolistic case. It is achieved by 

fuzzifying the coefficients, that is by replacing them with fuzzy numbers. The fuzzy 

demand functions are maximized for all cases and then combined to yield an optimal 

solution.

More sophisticated applications of Fuzzy Theory to Finance Theory have really 

been introduced more recently. Muzzioli and Torricelli ([110], [112]) have been the 

first to introduce Fuzzy Set Theory to Option Pricing. They apply their technique to 

binomial option pricing. In their first paper ([110]), they introduce a one period fuzzy 

binomial model where fuzziness is characterized by an opaque payoff. We extend this 

model in our research to the mutliperiod case and compare it to the CRR model. 

In their second paper ([112]), they introduce a multi-period fuzzy binomial model 

whereby fuzziness arises from opacity of future states of the world. The two papers 

will be discussed thoroughly in Chapter 8.
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On the other hand, Cherubini, and Cherubini and Della Lunga ( [30],[31],[32]) have 

probably been the first (and so far the only ones) to publish work on applications of 

Fuzzy Measure Theory to option pricing and other advanced financial applications 

in an attempt to model Knightian uncertainty. He uses fuzzy measures and their 

duals to establish parametric bounds on the value under consideration. Cherubini 

interprets the defining parameter as an indicator of uncertainty.

In [32], the authors introduce a fuzzy VaR model that discounts liquidity risk by 

establishing bounds on the possible values VaR can assume. They look at VaR as the 

difference between the forward value of a position in a risky asset and a protective put 

that is deep out of the money. Fuzzy Measure Theory steps into the picture when a 

probability interval is used instead of a precise value for the probability distribution.

In [31], the authors apply their approach to the valuation of corporate claims. 

They follow Merton’s model of valuing such claims whereby they are valued as a 

derivative written on the value of the assets of the firm. The challenge in the real world 

is coming up with a precise estimate of the probability distribution of the underlying, 

which is close to impossible. So the authors resort to Fuzzy Measure Theory to induce 

a set of probabilities over an interval. The bounds of this probability set define the 

upper and lower value for the derivative. Using these bounds, they arrive at bounds to 

the yield to maturity of corporate bonds, which serve directly in computing the credit 

spread. Finally, they value a default put option, which is decomposed into default 

probability and loss given default, implied by corporate debt. Again, the probability 

distribution cannot be estimated directly so intervals have to be used instead, which 

leads to intervals in the default put option. In the same manner, he evaluates a 

corporate bond in [30]. Our interest lies in Fuzzy Option Pricing, which has been 

witnessing increasing popularity lately. We have not dwelled into those models in 

details now since we have dedicated one whole chapter (Chapter 8) for this issue with 

a comparative study.
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3.4  C onclu sion

In this chapter, we have brought together related research from different areas 

and presented them within a coherent framework. We have specifically looked at 

uncertainty and the various approaches of dealing with it in both Fuzzy Theory as 

well as Economic Theory. This is important for clarifying the general framework 

of the problems we will be tackling as well as how the solution tools we will use 

compare with alternative tools. We have also presented a literature review on recent 

developments in Option Pricing Theory, which is relevant because we propose a similar 

solution structure but using different tools. Besides, it helps us formulate a picture 

as to how our models fit within the Option Pricing literature given that we attempt 

to use fuzzy tools in this area. Finally, we have considered fuzziness in economics 

and finance because it is also important to know where we stand vis-a-vis existing 

’fuzzy literature.’ Alongside the previous chapter which has laid the foundations 

of Fuzzy Theory, this chapter equips the reader with the necessary background to 

understanding the models that we present in the rest of this research. Starting with 

the next chapter, we present a Fuzzy Binomial Model which is a variation of the CRR 

OPM. It targets Option Pricing in a world characterized by high uncertainty. The 

model incorporates tools of both Fuzzy Set Theory as well as Fuzzy Measure Theory 

and will provide the most original contribution of this research.
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C hapter 4

Fuzzy Binom ial OPM

We have presented a literature review in the previous chapters combining research 

from different areas into one coherent framework, thereby laying the foundations for 

the models that will be forward. In this chapter and the following ones, we will 

introduce models that employ fuzzy tools to address new as well as existing problems 

that have been traditionally addressed by conventional mathematical tools.

In this chapter, we consider the effect of uncertainty, generated by lack of infor-

mation and vagueness, on option pricing. Conventional probabilistic tools can be 

restrictive in such circumstances due to the additivity requirement. So we relax this 

requirement by using a specific class of nonadditive measures, namely, fuzzy mea-

sures which we have detailed in chapter two. The general methodology involves using 

a preference-free fuzzy expectation pricing approach whereby expectations are com-

puted using nonlinear integration. However, due to the prevailing uncertainty, we 

can only obtain a range of possible option prices instead of one fair value. So the 

bounds will be derived by performing the fuzzy expectation operations over the fuzzy 

measures and their duals. To calculate the expectations, we consider two approaches 

to nonlinear integration, namely, the Sugeno Integral and the Choquet integral. The 

next chapter presents the empirical applications of the model.

We start by stating the problem definition or the intuition after which we move to 

describe the technical approach. To this end, we define the fuzzy measures irrespective 

of preferences and then we present the model using both Sugeno integration as well

74



as Choquet integration to compute fuzzy expectations.

4.1 In tu itio n

Asset prices in the financial markets sometimes deviate from equilibrium prices 

depending on the level of opacity and illiquidity associated with the asset such that 

the more illiquid and opaque the asset is, the more frequent the deviation. One 

of the important factors that contribute to this deviation is Knightian uncertainty, 

which, in turn, can arise due to different reasons. We consider two sources of such 

uncertainty. The first one is associated with the Bid/Ask spread while the second has 

to do with vagueness associated with possible future states. In this model, we are 

more concerned with the uncertainty associated with the underlying asset itself and 

how this uncertainty is transmitted into the option price.

At any single instance of time, there is a multiplicity of Bid/Ask prices, that is, 

several Bid/Ask quotations from different sources come through at one instance of 

time. Besides, the observable price at which a trade is done is not known to be a 

bid or an ask precisely. As Lyons ([103]) says, ” ... there is no way to determine on 

the basis of broker data available whether the bid or offer was cleared by any given 

transaction.” (p. 335) This creates uncertainty or fuzziness around transaction prices. 

This type of uncertainty is due to lack of information.

There is another aspect to the uncertainty generated by the Bid/Ask spread. The 

actual spread, which is based on transaction data, is usually less than the actual 

quoted spread, which is based on screen quotations. This spread is usually calculated 

based on consecutive transaction prices. So when this spread is low, the volatility 

in prices, as measured by the difference in prices, is expected to be low because the 

corresponding transaction prices will be somewhere between the close quotations and 

vice versa. Price volatility, as well as the size of the spread, are positively related 

to uncertainty as we will see later on. In other words, a high volatility and a wider 

spread are associated with higher uncertainty. This point is particularly important 

for the conditional fuzzy measure that we define later on. However, both points are 

closely related and the measure will be designed to accommodate both of them.
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On the other hand, there is vagueness associated with the future state of the asset 

especially in periods of high uncertainty. This is due to lack of evidence about future 

states of the universe and has to do with possible occurrences of those states. It is very 

important to stress that such types of uncertainty are important depending on the 

level of liquidity and transparency of the asset. Generally, they are more important 

the more illiquid the asset and the higher the level of opacity.

We propose that such issues have particular implications for option pricing even 

though similar scenarios have not been considered previously. In such circumstances, 

it is no longer possible to use equilibrium models such the Black-Scholes model and 

the CRR binomial model. The fuzziness associated with the underlying is transmitted 

to the option itself and conventional tools will be either too restrictive or too complex 

to deal with such problems. Fuzzy tools provide an easier and a more appropriate 

alternative.

It is best to handle the problem in discrete time. For this specific purpose, the 

CRR binomial model is the primary candidate to illustrate the problem and tackle it 

thereafter. The CRR model is built around a set of fair unobservable prices that are 

supposed to hold in equilibrium. However, within the framework we are considering, 

we actually observe fuzzy prices that revolve around those unobservable ones and 

accommodate uncertainty. When uncertainty is high, those deviations are wider and 

so the fair option price that is based on the fair unobservable underlying prices is no 

longer ’fair.’ As the uncertainty increases, other approaches are needed to handle this 

issue and at some point it is no longer possible to obtain one precise value for the 

option; rather, we can only get a range of possible prices. To handle option pricing 

in such a fuzzy setting, we propose a fuzzy approach, which will be outlined in the 

following section.

4.2  T h e G eneral F uzzy P ric in g  A pproach: T h e S o lu tion  

Fram ew ork

In this section, we outline the basic fuzzy pricing approach, which will be de-

scribed in details in the following sections. As we have mentioned earlier, the CRR
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binomial model is based on a set of hypothetical unobservable (asset) prices that hold 

in ’equilibrium.’ However, depending on the market under consideration and the level 

of transparency and liquidity, we quite often observe deviations from those prices. We 

consider the case where we can only observe fuzzy prices that move around those un-

observable ’equilibrium’ prices. In such instances, those fuzzy prices are the actual 

prices that determine the option price.

We propose that the reasons why those observed prices deviate from equilibrium 

prices in this example are the uncertainty aspects that we have talked about in the pre-

vious section. Observed prices, unlike equilibrium prices, accommodate uncertainty 

and so the actual option price, unlike the model option price, reflects uncertainty.

To handle the pricing in such instances, we propose a new fuzzy approach in dis-

crete time, which builds upon the existing CRR model and which is called the Fuzzy 

Binomial Model (FBM). The underlying information structure is still Markovian but 

we impose fuzziness on top of it such that the fuzzy prices revolve around the fair 

prices. Those fuzzy prices serve as a proxy for observable prices that accommodate 

uncertainty. As a result, we get a fuzzy binomial tree (Figure 4-1) discounting uncer-

tainty. This uncertainty is incorporated and transmitted into the final fuzzy model 

value via fuzzy measures and expectations.

In the previous section, we have distinguished between two types of uncertainty 

within the context of our model, the first of which has to do with the Bid/Ask spread 

and the second has to do with vagueness of future states of the world. To capture 

such uncertainties, we resort to Fuzzy Measure Theory. Fuzzy Measure Theory is 

better able to handle such uncertainties than Probability Theory is because the latter 

is too restrictive in this case due to the fact that it requires additivity and, hence, 

complete information.

To model the uncertainty generated by the Bid/Ask spread, we introduce a con-

ditional fuzzy measure that attempts to relate the spread to the volatility of prices. 

The volatility of prices, which is usually a measure of uncertainty, is measured by the 

absolute change between two consecutive transaction prices. For transparency issues, 

it is better to estimate the spread from transaction prices even though it is also possi-

ble to use the quoted spread as a proxy keeping in mind that the latter is wider than
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the former. When this spread is wide, the change in prices is expected to be high and 

vice versa. So, as such, we can say that the spread is generating volatility in prices. 

Of course, as we will see later, there are several determinants of the Bid/Ask spread 

but we are interested in the uncertainty aspect and consequently in how this spread 

generates volatility in prices. In brief, uncertainty leads to a wider Bid/Ask spread 

and higher volatility, and the conditional measure attempts to capture this.

On the other hand, we capture the vagueness associated with future states of the 

world by regular fuzzy measures. This is easy to illustrate within the context of the 

binomial model. For example, when we say the ’up state,’ we do not necessarily 

mean one number capturing this statement; rather, it can be a range of values that 

satisfy this criteria with varying degrees. So, given the binomial model, those values 

revolve around the number summarizing the ’up state’ and which is given by the 

fair or equilibrium value. This is particularly useful in periods characterized by high 

uncertainty and partial information.

In summary, we incorporate uncertainty into our model by introducing a set of 

fuzzy measures that translates the set of equilibrium or unobservable prices into a 

new set of prices, which accommodate uncertainty and serve as a proxy to observable 

prices, using fuzzy conditional measures. This translates in our model into transform-

ing the existing payoff based on fair prices into a fuzzy one. Then, this set of new 

prices or payoffs is used to arrive at the final value of the option using fuzzy expecta-

tions or fuzzy integration over a new set of regular fuzzy measures. This process gives 

us the upper bound for the set of option prices. To get the lower bound, we introduce 

the dual measures of the sets of regular and conditional fuzzy measures and use the 

same basic model. It is important to stress that those measures are independent of 

investors’ beliefs and preferences so the model is also preference-free.

4 .2 .1  A  N o te  on  th e  F u zzy  P r ic in g  A p p ro a ch

Pricing of options in complete markets rests on two important concepts, repli-

cation and risk-neutrality. In such a world, the Equivalent Martingale Measure is 

unique. So pricing under such a measure must yield a no-arbitrage price. However, 

replication actually lies at the heart of arbitrage pricing so that the particular choice
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of the probability measure is no longer relevant. Problems arise in incomplete markets 

where replication is no longer possible and the Equivalent Martingale Measure (EMM) 

is no longer unique as we have seen in Section 3.2. So the concepts of risk-neutrality 

and EMM are more important in such circumstances.

A risk-neutral economy is a hypothetical economy whereby all discounted price 

processes are martingales. Of course, this is only a tool that facilitates arbitrage 

pricing and it is not consistent with the real world. What this concept implies is 

that the best estimate for the expected price is the currently prevalent one. However, 

an investor is much better off investing all his money in a risk-free asset rather than 

undertaking a risky investment that is expected to have the same value it currently 

has. Yet, this concept seems somehow to be working quite well for pricing derivatives.

Some researchers try to preserve this risk-neutrality argument within an incom-

plete market setting by choosing a measure that preserves the martingale property. 

Others have considered alternative measures that are not necessarily martingales 

([57],[109]). The corresponding models can be invariant as well as sensitive to the 

chosen underlying probability measure [109]. In the first case, it is not necessary to 

specify the probability process describing the distribution of the underlying at ma-

turity. Portfolio super-replication approaches fall under this category as expected. 

They are usually solved by linear programming, relative entropy minimization, and 

PDE approach methodologies. In the second case, the pricing depends on the chosen 

probability measure so subjectivity and investor preferences may enter into the pic-

ture. Mean-variance hedging approaches fall into this category. They can be solved by 

utility maximization or risk minimization among others. However, the expectations 

are taken over the actual or the subjective (not necessarily martingale) probability 

measure ([57],[109]).

Our pricing methodology is more consistent with the second category. The basic 

purpose behind using this approach is to model the fuzziness in the real world so the 

actual pricing methodology does not assume a risk-neutral economy. Moreover, since 

this fuzziness generates market incompleteness, replication is no longer possible.

The fuzzy pricing approach we adopt involves calculating the fuzzy payoff and 

then discounting this value backward at the risk-free rate using fuzzy expectations
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over the preference-free fuzzy measures, which gives us one bound on the option. To 

get the other bound, we compute the discounted expectations over the dual measures.

To clarify the fuzzy methodology, we will explain the model from a CRR ’window.’ 

The parameters in the CRR binomial model are calculated by matching the drift 

and variance in discrete time to those corresponding to the asset’s distribution in 

continuous time. The value of the option is then calculated by discounting back the 

payoff at maturity at the risk-free rate assuming a risk-neutral world. However, it 

is also possible to perform the pricing by replication such that, at each node, the 

following conditions are satisfied,

A Su + rB = C 

A Sd + rB  = C

where A and B  are the amounts of risky asset and riskless asset that have to be 

held, S  is the value of the underlying asset, r is the risk-free rate, u and d are the 

proportions by which the asset price goes up or down respectively and C is the value 

of the option at the corresponding node calculated using expectation pricing where 

the martingale measure, otherwise known as risk-neutral probability, is equivalent to, 

P = — ,-r  u — d

In the real world, this is actually not possible due to uncertainty and investors’ 

expectations. In the fuzzy world we are specifically considering, this is not possible 

due to the uncertainty scenarios under consideration, which give rise to market in-

completeness. We can perform an equivalent fuzzy expectation approach discounted 

at the risk-free rate and using preference-free fuzzy measures. In the binomial model, 

the risk-neutral valuation involves discounting the payoff, which is based on S, at the 

risk-free rate using the risk-neutral probabilities. In the fuzzy binomial model, the 

risk-neutral valuation involves discounting the fuzzy payoff, based on a fuzzy S, at 

the risk-free rate using the non-additive preference-free fuzzy measures. However, it 

is more complex to deal with the replication issue.

A similar analogy is an option on a non-traded event whereby valuation is per-

formed by discounting expectations of future cashflows. However, it is not possible 

to perfectly replicate the option and one has otherwise to consider an asset that is 

highly correlated to the corresponding asset. In our model, the option is indeed on
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a traded asset but the fuzziness makes it impossible to replicate it and we can only 

resort to the portfolio it is supposed to be replicating, namely, that which prevails in 

the absence of uncertainty. This portfolio corresponds to the one in the CRR model. 

To deal with this issue, we can introduce a tracking error that super-replicates this 

portfolio if it is positive, sub-replicates it if it is negative and replicates it if it is zero. 

The intuition behind this analysis is that the fuzzy binomial tree is built around the 

CRR one. In the absence of uncertainty, the CRR model and the corresponding op-

tion price prevail, which makes the model the obvious candidate. However, we will 

leave this matter to future research since it is beyond the scope of this research.

It is quite understandable that some readers maybe worried about performing the 

expectations over measures that have not been proved to be martingales. However, 

the reader must not perceive the model from a ’conventional’ risk-neutral point of 

view because the underlying assumptions no longer hold. We are now performing the 

pricing in a fuzzy world where prices are blurred but still rest on the fair model prices. 

Perhaps future research will be able to formalize arbitrage in such a fuzzy world and 

set guidelines for testing it.

In fact, option pricing in incomplete markets has seen several applications whereby 

expectations are carried over a measure that is determined subjectively or statistically 

(refer to [57],[109] for examples). In theory, this is not supposed to happen but the 

problem framework frequently imposes such paths. In our case, we have been able 

to avoid subjectivity by developing measures using fuzzy tools and existing data, 

which is similar to a statistical approach, but we have not been able to study their 

risk-neutrality since, by assumption, risk-neutrality no longer holds.

In the following sections, we will go into the technicalities of the fuzzy pricing 

approach from defining the measures to carrying out the fuzzy expectations. Deter-

mining the fuzzy measures has been a tricky issue. As we have repeatedly mentioned, 

in the CRR model as well as in most lattice methods, we match the mean and vari-

ance across the tree to those corresponding to the distribution in continuous time. 

However, we can no longer do this in a fuzzy setting because, first, we do not know 

how the distribution will look like in a fuzzy world and second, we cannot formulate 

the equations due to non-additivity and nonlinear operators. So the best we can do is
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define those measures independently using conventional fuzzy approaches whenever 

possible making sure they are preference-free. Similarly, defining the fuzzy expecta-

tions, especially the conditional one, has been a very tedious operation since it has 

not been done before, neither in Finance Theory nor in Fuzzy Theory. So, in fact, 

this model extends contributions to both areas. The following sections analyze those 

matters in detail.

4.3  T h e C on d ition al Fuzzy M easure

4 .3 .1  D e fin it io n

This section presents the conditional fuzzy measure, which has two purposes. 

First, it attempts to capture the uncertainty generated by the spread. Second, it 

serves as an indication as to what extent an observed transaction price is a bid or 

an ask. As we have mentioned earlier, one cannot know affirmatively whether an 

observed transaction price is a bid or an ask, which generates information uncertainty. 

Literature usually resorts to guessing or inferring from data whether the transaction 

price is a bid or an ask. Moreover, it is not possible to estimate probabilities for this 

purpose due to lack of information. Therefore, fuzzy measures serve as a suitable 

alternative.

The conditional fuzzy measure we introduce captures such uncertainty and pro-

vides a tool by which one can guess how much the price under consideration is a bid 

or an ask based on the magnitude and direction of movement of next period’s price. 

If the price goes up in the next period, then the current price is most likely to be an 

ask but if it goes down, then the current price is most likely to be a bid.

It is very important, and quite interesting too, to note that the bid and ask 

sets themselves do not have to be disjoint. They can be overlapping, that is, for 

a particular state, there are always two sets the bid and the ask but the price can 

belong to either based on the consecutive price. Besides, guessing that a price is in 

the bid set does not necessarily mean that it is not also in the ask set with a different 

degree which does not necessarily ’’complement” , in the traditional meaning of the 

word, the degree to which this price can be in the bid set due to nonadditivity. It
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necessarily follows that knowing or approximating the degree to which the price under 

consideration belongs to the bid (ask) set will not permit us to infer the degree to 

which it belongs to the ask (bid) set unless the degree of nonadditivity is known.

Section 2.2.3. provides a comprehensive overview of constructing fuzzy measures. 

We adopt the distribution approach because it does not involve any subjectivity. 

Thus, the conditional fuzzy measure, which is a distance measure, is of the form

y  n  1 spread >

where H  is a fuzzy distribution just like a probability distribution, AP  corresponds to 

the change in transaction prices between period to and the next period t\ and serves 

as a measure of the volatility of prices, and spread corresponds to period to bid-ask 

spread. This measure tries to capture the uncertainty or fuzziness generated by the 

spread on spot prices. We consider the absolute change because we are interested in 

the magnitude of the change and not its direction of movement. If we do actually 

discount the direction of movement, the measure will be very low for negative change, 

which is counter-intuitive because it is known that volatility and uncertainty are 

higher when there is a negative change and so the measure must give a high value 

instead of a low one.

Empirical Analysis shows that an appropriate distribution for this measure is the 

t-distribution due to fat tails. So the final form of g is,

5 =  i ( ^ S ^ ° /  =  4)>
where dof  stands for degrees of freedom and t stands for the Student t distribution.

The measure is dependent on the size of the spread and the corresponding volatility 

of spot prices. It measures the volatility of prices generated by the spread. So when 

the spread is low (high) with respect to the volatility in prices, the measure is high 

(low). Generally, a high value of the measure signals that the spread is generating 

volatility in the spot prices and vice versa. There are three scenarios that need to 

be considered when analyzing the measure whereby the first two involve one of the 

variables changing in one direction with respect to the other and the third involves the 

change of both. In essence, this is quite contingent on the interplay of those variables 

and outside factors influencing them. To clarify this matter, a brief literature review 

emphasizing the determinants of the Bid/Ask spread and touching upon its interaction
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with the volatility of prices follows.

4 .3 .2  D e te r m in a n ts  o f  th e  B id /A s k  S p read

There is well documented literature on the Bid/Ask spread (BAS) and its deter-

minants in both equity and foreign exchange markets, which fall within the scope of 

this research. The spread has been observed to display seasonality, i.e., intra-day and 

weekly pattern, in both foreign exchange and equity markets ([1], [105],[72],[10],[14]). 

An interesting observation is that the BAS tends to be smaller in currency markets 

than in equity markets, which can be due to economies of scale, lower variance and 

less dealer’s expected losses due to asymmetric information [10].

Broadly speaking, the two major schools of thought on determinants of the BAS 

spread divide those determinants into inventory-based models and information-based 

models. Specifically, the major factors that are emphasized in the literature are 

immediacy [41], asymmetric information or the adverse selection problem ([6], [131], 

[36], [73], [99], [77], [1], [132], [68], [103]), uncertainty ([79],[36]) and inventory control 

([3],[77],[132]). Information and uncertainty are the most relevant factors within the 

context of g and they will be highlighted the most.

There is an inverse relationship between immediacy and the BAS since higher 

immediacy leads to lower waiting costs. The relationship between asymmetric infor-

mation and the BAS is not as clear-cut since it is dependent on two other factors. The 

theory behind asymmetric information that there are informed traders, with whom 

the dealer cannot win due to their superior private information, and uninformed or 

liquidity-motivated traders, with whom the trader always wins due to their low in-

formation level and sole interest in liquidity. So the trader always sets the BAS as 

a trade-off between the two whereby setting a wide BAS limits losses to informed 

traders but may lead to losing potential gains from uninformed ones. Thus, in gen-

eral, the spread is wider the better the informed trader’s private information or the 

higher the percentage of informed traders relative to liquidity-motivated traders or 

the higher the elasticities of the expected supply and demand functions of liquidity 

traders.

Information is very important within the context of g since it affects the measure
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through the spread. There is wide evidence in the literature ([6],[132],[105]) that the 

spread widens when there is a sizable information change. Like information, uncer-

tainty generally has a positive relation with the spread in that higher uncertainty 

results in a wider BAS. Literature concentrates on transactions uncertainty (specif-

ically uncertainty related to the timing of transactions) and information or return 

uncertainty, which is more relevant to this analysis. It can be measured by risk, 

volatility and price level interchangeably. There is a general agreement in the litera-

ture ([3],[79],[36],[105],[10]) on a positive relation between risk, as measured by stock 

variance or volatility, and spread. Therefore, a wider spread is usually associated with 

a higher volatility in prices. Interestingly enough, the share price level and the spread 

seem to have a direct relation such that as the price increases, the spread widens, 

which is really the opposite of what g measures.

Uncertainty and risk also play a large role in the foreign exchange literature. They 

are usually reflected by the variation of the spot rate. The risk is generally exchange 

rate risk but Overturf [117] includes credit risk as well. Large variability in the spot 

rate is usually associated with wide BAS ([66],[10],[14],[72]). However, Bollerslev [14] 

argues that it is possible for the bid and ask to move in the same direction in the 

presence of more uncertainty such that the size of the spread is not affected.

The positive relation between the spread and uncertainty about the future level of 

exchange rate holds in all literature ([66],[2],[117],[15],[72],[14]). Dealers do not usually 

know whether the customer is a buyer or seller so they have to set a quote at which 

they will be indifferent to this issue. Given that dealers quote spreads based on the 

last piece of information they have got, they know that as they are quoting, rates can 

be changing. So they have to quote a spread that reflects what they believe is going 

on in the market. This reflects uncertainty due to lack of information about the level 

of exchange rates; in other words, dealers base their quotes at time t on information 

available at time t-1 (information at time t is missing or insufficient). Besides, rates 

could change from the time the bank accepts an order to the time it covers its position 

resulting in a profit or a loss. So dealers protect themselves by quoting a wider BAS 

especially when uncertainty is accompanied by large fluctuations.

Fieleke [66] uses three measures to test the effect of uncertainty on the spread,
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which are variations in covered interest differential, change in the exchange rate and 

actions, and announcements of government officials. The first two variables seem to 

have a more important effect than the last one. He assumes uncertainty is exogenous. 

On the other hand, Overturf [117] argues that transaction costs represent uncertainty 

at times of large fluctuations, which effectively means that uncertainty is endogenous. 

He measures risk or uncertainty by the standard deviation of the exchange rate.

Glassman [72] divides the spread into a transaction costs component and a risk 

component. The risk component is considered a measure of exchange rate uncertainty. 

It is affected by the frequency of transactions and the volatility of prices calculated 

from exchange rate changes. Interestingly enough, she finds an opposite effect of 

the frequency of transactions in foreign exchange markets than in securities markets, 

where there is a negative relation between the spread and the frequency of transac-

tions. But she finds consistent results concerning the positive relation between the 

spread and price volatility in the foreign exchange markets similar to the securities 

market. Boothe [15] also measures risk by exchange rate volatility. The spread is 

expected to widen in response to an increase in the price level. Demsetz [41] asserts 

a positive relation between the spread and the price level but the relation is not clear 

as to whether it holds with a short-term, long-term or present price level.

In an interesting survey on dealers’ quoting process in Tokyo, Hong Kong and Sin-

gapore, Cheung and Wong [33] present some new findings. According to their survey, 

the majority of dealers base their spread on market convention. The primary reasons 

for deviating from market convention, generally quoting a wider spread, are liquid-

ity and uncertainty triggered by unexpected news release, increased market volatility 

and unexpected change in market activity. These two factors are also important for 

analyzing inventory costs. But they also support the asymmetric information theory. 

A wider spread always signals new information that the dealer may not be aware of. 

They also find that speculation plays an important role whereby it increases market 

volatility.

A relevant determinant of the spread is market liquidity because it dictates the size 

of the spread, which in turn affects the magnitude of the measure. Market liquidity 

and the spread are inversely related ([6],[36],[99]). As for the inventory control effect



on the BAS, the results in existing literature are contradictory ([79], [77],[10],[103]). 

Other factors influencing the spread include competition ([41],[105], [131],[36],[66]) 

and trading activity ( [41],[36],[73],[105] [66],[72],[10]), which are both inversely related 

to spread except for Glassman[72], transaction size and order costs, which have a 

direct relation with the spread, and foreign exchange restrictions in the form of taxes 

or impediments to trading, which are only pertinent to the foreign exchange market 

and have an inverse relation with the spread. However, these factors are beyond the 

scope of this research and, hence, they will not be given much emphasis.

4 .3 .3  B A S  effect

Therefore, there are many factors that influence the BAS and volatility of prices 

and it is hard to isolate the effect of each factor alone. So, by relating the volatil-

ity in prices to the spread, g is concentrating on the uncertainty aspect, specifically 

information uncertainty because the volatility of prices, as measured by the absolute 

change in prices, is a measure of information uncertainty. When the spread is esti-

mated based on transaction prices, this measure captures the volatility generated by 

the spread. If the market maker sets a wide spread, the change in transaction prices 

is expected to be wide and vice versa. It is in this sense the spread can generate 

volatility in prices.

When there is information uncertainty, both volatility and the spread change but 

when there is transaction uncertainty, then only the spread widens. When the spread 

is wide but the change in spot prices is low, the measure is low indicating that the 

spread is not generating volatility in prices.

When both variables change, then the magnitude of the measure depends on the 

size of change in each variable. When the spread is narrow but the change in spot 

prices is high, then the measure is high meaning that the spread is indeed generating 

volatility in the spot prices. At first glance, this may seem counter-intuitive; for 

example, if the spread is narrow on average but the level of prices can be high such 

that a small change in the spread leads to high volatility in prices.

Within the context of the fuzzy binomial model, this measure contributes to trans-

forming the crisp payoff into a fuzzy payoff. However, it also has some relevant ap-
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plications in financial markets that are characterized by opacity and a high level of 

uncertainty such as NASDAQ and the foreign exchange market, particularly, appli-

cations that try to study price volatility and spread behaviour as well as inferring 

the degree to which a transaction price is a bid or an ask but this is beyond the 

scope of this research. At the moment, we will be concentrating on its contribution 

to computing fuzzy expectations. However, to compute fuzzy expectations, we need a 

measure indicating the possibility of occurrence of states of the world, which we will 

do in the next section.

4.4  T h e S ta te  M easure

This section introduces the fuzzy measure that captures uncertainty related to 

future states of the world. This measure is the equivalent of the risk-neutral proba-

bilities in a fuzzy world. It is useful for computing both the fuzzy payoff and fuzzy 

expectations. It actually measures the possibility of occurrence of a certain state. 

Since it does not require as much information as a probability measure does, it is 

very useful in periods characterized by fuzziness and lack of information.

To derive the state measure, we can use one of three approaches. We can either 

induce a membership function for the up and down states, or induce a possibility 

distribution from an existing probability distribution or transform a fuzzy measure 

from a risk-neutral probability measure. In the first two approaches, we do not have 

a fuzzy per se. However, given that a grade of membership is a special case of the 

fuzzy measure which also implies that a possibility distribution is also a special case 

of the fuzzy measure (Chapter 2), we will consider the three concepts numerically 

equivalent. In the following subsection, we will consider each approach separately.

4 .4 .1  A p p ro a ch es  to  d e term in in g  th e  S ta te  M ea su re  

M em bership Function A pproxim ation

This approach corresponds to the parametrized membership function approach 

which subscribes to the similarity view of the grade of membership (Appendix A). It 

relies on comparing the value of an object to a prototype, which is the value that the



object is supposed to assume in an ideal setting. The basic idea behind this approach 

is that the membership function is related to the similarity between the object and 

the prototype and inversely related to the distance between them. As Appendix A 

shows, there are many forms which the membership function can assume depending 

on the context. Let us consider the simple form ([56])

Mx) =  i r f e
where d(x) is the distance between the up or down price and the prototype. Medasani 

et al. [106] argue that it is possible for d{x) =  1/x. However, because it has been 

proved that the relation between a physical entity and human perception is generally 

exponential, they suggest using a better distance function which is 1 /exp(—a(x — b)), 

where a and b are two parameters defining the slope of the membership function and 

the inflection point, which is the point reflecting the tendency in the subject’s attitude 

to change from being rather positive to rather negative, respectively.

Pal and Majumdar [118] present a general form for the membership function 

fi(x) =  g{d(X,  C)}, where d(X,C)  is the weighted distance between the object 

and the prototype. However, they do include g(x) = [1 +  d(X,  C)]-1 and ¡i{x) — 

exp[—d(X, C)\ as two simple forms for the membership function. The distance has 

the form

d{X,C) = (X - C ) ' A ( X  - C ) ,

where X  = [xi, ...,xi\r}' is the feature vector, C  =  [ci, ...,Cyv]' is the prototype vector 

and A is a symmetric positive definite weight matrix. The values for C  and A can be 

estimated from a set of data, assuming that the form of the membership function is 

known.

Chaudhuri and Majumdar [28]) work on exactly the same problem. Their esti-

mates of C and A  in the presence of statistical information and with respect to a 

measurement scale are 

C = E(Y),

An =  [<7"i(y)] Aij = 0, i ^  j,

where E(.) and <7j(.) denote, respectively, the expectation vector and the standard 

deviation of the i-th feature, and Y  is the feature measurement vector of the proto-

type. However, according to the authors the disadvantages of this approach are that

89



assuming the protoype and the distance related to the expected value and the inverse 

of the standard deviation is quite restrictive, and it requires a relatively large number 

of the prototype, which may not be available at all times. So they introduce another 

non-statistical approach, which we will not present here because it is irrelevant to the 

research at this point but the reader is referred to their paper [28]. Nevertheless, this 

approach is particularly relevant to our problem as we will see later.

Lai and Hwang [100] cite Zimmerman and Zysno’s [152] functions,

d(x) =  exp(—a(x — b)),

l+ e x p ( —a(x—b)) ’

for the distance measure and the membership function, where a and b are semantic 

parameters from a linguistic point of view. They represent the slope and the inflection 

point respectively.

So far we have worked with protoypes and known mathematical expressions for 

the membership function. However, this is not the case always but we will not dwell 

on this subject much because it is not relevant to our problem; the interested reader is 

referred to ([49], [28], [118]). For the reader interested in scaling, this measure is more 

meaningful on an interval or ratio scale. The reason for that is that we are interested 

in the degree of similarity between our object and the prototype meaning that we 

are dealing with metric distances, which are more informative on an interval or ratio 

scale ([56],[100]). In fact, Lai and Hwang [100] present an interesting approach to 

adapt the membership function into subjective preferences involving transformation 

into interval scale and least squares of deviation. However, we do not have to worry 

about this now because we have excluded subjectivity from the beginning.

P robability  to  P ossib ility  D istribution  Transform ation

”... the proper framework for information analysis is possibilistic rather than proba-

bilistic in nature...” (Zadeh [150]). Since we are dealing with informational uncertainty 

and its effect on option pricing, we are tempted to induce a possibility distribution 

from the probability distribution, which can accommodate other alternatives than the 

up or down prices. This is effectively like saying that in a coin toss experiment, we 

do not necessarily have a head or tail, rather it is possible that the coin rolled away
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or landed on its edge or that we have an unfair coin and so we do not have complete 

randomness [52], Traditionally, we ignore such cases and confine ourselves to head or 

tail [64] but here we do not have to do this anymore. The analogy for the binomial 

tree is that the price overshoots up or down or remains the same. But we cannot 

quantify this uncertainty of occurrence with probability theory because we do not 

have enough information so we resort to possibility theory. Besides, transformations 

are meaningful when we have uncertainty combination with heterogeneous sources 

[53] of, for example, statistical data, linguistic data..., which is applicable within our 

context.

Applying this approach to our problem can be quite a tricky issue. First, we do not 

know how the probability distribution will look like in a fuzzy world. Second, if we do 

know it, we are much better off using it because then it means we have full information 

about possible states of the world and transforming the probability distribution to a 

possibility one means we will be losing valuable information. However, this issue will 

remain open for future research.

P robability  M easure Transform ation

Using this approach, we can derive a transformation of risk-neutral probabilities. 

Generally, we can derive a A—fuzzy (or Sugeno) measure from a classical probability 

measure by using an appropriate transformation (Chapter 2). Let (X,Q,p) be a mea-

surable space where p is a Lebesgue measure. Then, the composition f o p  produces 

a Sugeno measure iff 

/(:r) =  ± ( c * - l )

(Theorem 2.1,[145], p.71). Assume that g is a Sugeno measure defined on 8, then
_  lo g ( l+ A ,g ( ^ ) )  

lo g ( l+ A )

=► 9(A) =

([96],[97],[144],[145], [142]).

Therefore, in our case, we can transform the risk-neutral probabilities into non-

additive (Sugeno) measures. Hence, fuzzy measures for the up and down states are, 

respectively,

9 m = .
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g[down) =  ^ ^ ------- ,

where p{up) and p(down) are the risk neutral probabilities. So we have only one 

unknown, which is A.

We can think of A as the uncertainty aversion factor. However, the problem is how 

to determine A such that it is not subjective. So let us assume that we are in a risk- 

neutral economy. Then, A will be modelling the uncertainty aversion, which cannot 

be captured by probabilistic models. What this tells us is that even if an economy 

is risk-neutral, it can still exhibit degrees of uncertainty aversion. Using pricing in a 

risk-neutral economy and fuzzy expectations, we have the following equation 

S exp[(Rd -  Rf)jj]  = {[Su A g({Su})] V [Sd A g({Su , Sd})]},

If we substitute for g({Su} the transformation equation and replace g({Su, Sd}) = 

1, we will obtain one equation with one unknown, A. This equation has to be solved 

numerically. So from the value we get for A, we can obtain the values for the Sugeno 

measures for the up and down states at each node and then solve for the call price. 

This approach involves a high level of unjustified complexity so it is also left for future 

research. The approach that is most appropriate for our problem is the membership 

function elicitation approach. Since only a two state space will be considered, a 

membership function is induced for each of the up and down states.

4 .4 .2  T h e  F in a l F orm  o f  th e  S ta te  M ea su re

The state measure is derived using the parametrized membership function ap-

proach which subscribes to the similarity view of the grade of membership (Appendix 

A.5). This approach relies on comparing the value of an object to a prototype, which 

is the value that the object is supposed to assume in an ideal setting. The basic 

idea behind this approach is that the membership function is related to the similarity 

between the object and the prototype and inversely related to the distance between 

them. There are many forms which the membership function can assume depending 

on the context. The general form adopted is,

=  1 + f (d ( x ) )

where f(d(x))  is a function of the distance between the up or down price and the 

prototype and it can take on many forms. Since we are assuming that the measure is
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numerically equivalent to the membership function, we will use the standard notation 

g rather than g for the state measure from now on.

The up or down state, as it is, is a linguistically vague concept. So its meaning 

can be formally represented by the membership function. Besides, it is not known for 

sure which state will occur so even if the state is measured or defined precisely, that 

is, a precise number is associated with the state, such as Su  in the crisp binomial 

tree, there will still be problems concerning its degree of occurrence.

At any point in time, there is an expected price that is believed to prevail ideally 

and which will serve as a prototype in the membership function definition. So any 

other price that occurs will be a divergence from this value and its similarity to the 

prototype will be measured by its membership function which will depend on the 

deviation between the sample and the prototype. The degree of importance with 

which a particular state will occur or the possibility of occurrence of the considered 

state or the degree to which a certain price is compatible with the notion of an up or 

down state, depending on how the measure is interpreted, is dependent on the price’s 

distance from the prototype.

The prototype within the fuzzy binomial model’s setting corresponds to the ex-

pected price in a risk-neutral world, which is, irrespective of subjective preferences 

and avoiding information context dependency, E(S) = exp[(Rd — Rf)jj]So for foreign 

exchange and E(S)  =  exp[i?-^]S'o for equity, where R^ is the domestic risk free rate 

of return, R f  is the foreign risk free rate of return, R  is the risk-free rate, r  is the 

time to maturity, N  is the number of steps in the binomial tree and So is the current 

price.

The distance function f(d(x))  in the membership function is of the form a(Sn — 

E(S))b. So as Sn approaches E(S), d gets smaller and the grade of membership gets 

larger meaning that,

1. the up or down price closely resembles the prototype if the membership function 

assumed to measure how closely the sample resembles the prototype.

2. the up or down price has a high possible degree of occurrence if the membership 

function is considered numerically equivalent to the possibility distribution.

3. the up or down price has a high degree of belonging to the set of possible states
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(not necessarily observable) for next period if the membership function is interpreted 

as a special case of Sugeno measure.

4. the degree of evidence that a particular state will occur is high or the degree of 

importance with which a particular state will occur is high.

The empirical form of f (d (x )) has been calibrated to 3(Sn — E(S))2. So the 

membership function has the form,

9(Sn) = i+^ s n-E(S))2 ■
The function is peaked at E(S),  with a value that is equivalent to one, and then 

decreases symmetrically as Sn deviates from E(S).

For the reader interested in scaling, this measure is more meaningful on an in-

terval or ratio scale. The reason for that is that we are interested in the degree of 

similarity between our object and the prototype meaning that we are dealing with 

metric distances, which are more informative on an interval or ratio scale.

4.5  T h e M od el

In this section, we put all pieces together and introduce a fuzzy mathematical 

model. Figure 4-1 shows the structure of the fuzzy binomial tree. The underlying 

structure is that corresponding to the conventional binomial tree as shown by the solid 

lines in the figure. Imposing fuzziness on top of the structure, we get the observable 

prices revolving around the ’equilibrium’ prices as the dashed lines show. For every 

branch in the tree, there exist two conditional fuzzy measures and two state measures 

dependent on the direction and magnitude of the change in price from one period to 

the next. Figures 4-1 and 4-2 show an example of a two period model. The tree for 

the underlying asset’s price evolution has to be projected one step further to that 

corresponding to the Call tree or the valuation period because the conditional fuzzy 

measures for the second period are dependent on the prices in the third period.

Each branch has two conditional measures, namely,

g[C,/S,+1_up} =  7 a ) . 4l.

g[C,/SM _down] =

where Ct is the payoff at period t, St+i_up (St+i _down) is the price next period
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Figure 4-1: Stock Price Evolution in a Fuzzy World

Fuzzy payoff

Fuzzy payoff

Fuzzy payoff

Figure 4-2: Call Valuation in a Fuzzy World
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in case an upward (downward) movement in the tree is realized and St is the price

at period t. The same analysis holds for state measures. Those fuzzy state and

conditional measures are combined with the crisp payoff in a fuzzy mathematical

formula to get the conditional expectations of each payoff at each point in time. This

case is quite unusual because the value of the measure rather than the magnitude of

the price is conditional on next period’s prices, that is,
J St+i_up  zot+i = {up_state}

* h i + i ( r o t + i j  —  \ ,
| St+i__down wt+i = {down_state}

J S) w t+1 = {up_state}
1 )  —  < ,

I St Tut+1 = {down__state)
with the above conditional measures. Notice that St does not really change values 

depending on next period’s prices, rather its measure does. Because this measure is 

not additive, this will lead to a price different from the one currently prevalent. This 

is why spot prices always need to be projected one step further to maturity. This 

will produce a set of new prices that embody uncertainty. This new set of spot prices

induces a fuzzy payoff,
) Ct zuw  = {up_state}

Ct{wt+1) = <
1 Ct tnt+ 1 = {down _state]

which is propagated through the tree by fuzzy expectations. So, in essence, a set 

of fuzzy measures generates a new set of prices using fuzzy conditional expectations. 

The following analysis details the process.

4 .5 .1  D e r iv in g  th e  N e w  S et o f  P r ices

To transform the call payoff based on the conditional fuzzy measure, conditional 

fuzzy expectations are used, according to ([133],[143]),

C(Sj ) =  j) j  h(Sj) o g(Sj | x) o g(x), (4.1)

where C{Sj ) is the new transformed payoff, Sj (where j  = 1, ...,iV, N  is the number 

of steps in the binomial tree) is the spot price at maturity for the j th  state, h(Sj) = 

l"S‘> non-transformed payoff, g(Sj \ x ) is the fuzzy measure conditional

on next period’s prices and g(x) is the degree of occurrence or importance of the
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price next state. A change of numeraire (so the call value is in terms of asset units 

rather than currency) in the non-transformed call payoff h(Sj) has been introduced 

for comparison purposes because both fuzzy measures are bounded between 0 and 1 

so we need our function to be bounded between 0 and 1 as well. The non-transformed 

payoff h(Sj) only depends on current period’s price irrespective of next period’s prices 

while the transformed one C(Sj) depends on both.

This equation translates to,

C(S3) = V h(S,) A
¿=1

V  I xh)  A c /d x ! ,. . . ,^ } )
Lh=l

(4.2)

where A and V are the comparison operators standing for minimum and maximum 

respectively, I  =  {1,2} is the number of possible states (equivalent to up and down) 

and Xi1 is next period’s price. g(Sj | Xq) must be arranged in decreasing order on 

{xi, If the value of h(Sj) changes depending on the next state, then it must

be ordered in decreasing order as well.

Of course, the problem has to be solved numerically; however, the algorithm is 

not hard to implement. To illustrate the algorithm, a one period model is considered 

but it will be generalized into a multi-period model later on. Assuming that, from 

each node, there are two branches or two possible states, there must be two payoffs 

at maturity, which can be transformed as follows,

C(SU) = V 
2=1

i S ^ _ K  A V {g{Su,i 1 x h ) Ap({xi,. \

l/ 21 = 1 )

Sd’iK K A V W u x h) ■1 x i\})
l 21=1 J

C ( s d) = V
i = 1

But since the spot price does not really change values, SUji = Su  and Sd i =  Sd. Let 

the up state assume the value i = 1 and the down state assumes i = 2. Then, the 

transformed payoffs will be

C(SU) =  [(Su~kk )+ a  (g(Su | Su2) A g d S u 2} )^

| [(^Su^K]_ ^  (g(Su | Su2) A ^({5u2})] V [IALl AH a  (g(Su \ Sud) A g({Su2, Sud 

C(Sd) — [(Sd~^)+ a  (g(Sd | Sud) A

{ [ - - / / - -  A (9 (Sd I Sud) A i?({5ud})] V [LS*jp± A (g(Sd \ Sd2) A g({Sud, Su2 

Note that g({Su2, Sud}) = g(X) = 1 because we are assuming that we only have two
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states of nature and that the conditional measures are indeed arranged in decreasing 

order, that is, g(Su \ Su2) > g(Su \ Sud). In fact, throughout the tree, the fuzzy 

measure conditional on the up-state is always greater than that conditional on the 

down-state. So those equations in the current form, but not necessarily, the same 

variables hold throughout the tree. To illustrate this idea further, recall the equations 

for the conditional measures,

9(SU |S « 2) =  i ( 5 g ^ , 4 ) ,

where the spread is assumed to be constant and abs stands for absolute. So the only 

factor that affects the comparison operation is the numerator, which is the absolute 

change between prices at time t +  1 and the price at time t. The change in price 

between two time periods, t and t +  1, is always a function of the price at time t and 

either (u — 1) in the case of an up movement or abs(d, — 1) in the case of a down 

movement. However, given that we will be working with the binomial tree for equity 

and forex options valuations, we have u =  exp(cr^/^) and d = -  for equity options 

and u = exp[(Rd -  R f )~  +  cry/jj] and d =  exp[(Rd -  R f ) j j  -  Vy/j?} for foreign 

exchange options. So (u — 1) > abs(d — 1) for equity options but (u — 1) < abs(d — 1) 

for currency options always. This means that, for equity options, (S_up - Sj) > 

a6s(S__down - Sj) always. So g(Sj |S_up) > g(Sj |S_down) always meaning that the 

measure conditional on the up-state is always greater than the measure conditional 

on the down-state, provided that they both branch from the same state. This analysis 

translates, in the one period model example, to (Su2 — Sud) < abs(Sud — Su) and 

so g(Su | Su2) > g(Su \ Sud). The opposite analysis holds for currency options. The 

next step would be to calculate the call price using fuzzy expectations throughout the 

tree.

4 .5 .2  V a lu in g  th e  C all O p tio n

Given a two state space, namely, X  — {aq, aq}; the fuzzy measures of the up and down 

states are defined as g1 = g\({xi} ) ,g2 = g\({x 2 })> respectively, and g(X) = 1. To 

compute the Sugeno integral, the function or set under integration has to be ordered 

in a decreasing sequence, e.g. consider X  =  {aq, aq ,..., xn} and define a function h



such that h{x\) > h(x2) > ... > h(xn). So when X  is a finite set, the function has 

to be ordered according to size and the elements of X  have to be renumbered. The 

solution to the fuzzy integral is

/, n

j  h(x) o g = \ J  [h(xi) A g(Hi)\, (4.3)
i= 1

so, in a multiperiod model, the call price will have the form

N

C„ = jrE(C) = ± i , C ( S j ) o g(Hj) = 1  \J[C(Sj)  A 9({Si.....Sj})], (4.4)
J j=1

where E(C)  is the fuzzy expectations, R  =  exp[i?d * j^} is the discount factor, Hi = 

{Si, ¿>2, •••, Si} and C(Sj) is arranged in decreasing order.

Therefore, considering the previous example on the one period model, the expected 

call price at time 0 has the form,

Co =  ^{[C(SU) A <7({Sn})] V [C(Sd) A g({Su, Sd})]}, 

keeping in mind that g({Su, Sd}) =  g(X) = 1 since there are two states where 

g(X) — 1 by definition, and assuming that C(SU) > C(Sd), which does not necessarily 

have to be the case. We always have to compare those two quantities and arrange the 

fuzzy or Sugeno integral accordingly. For American options, the exercise condition is 

evaluated at every node.

The fuzzy densities g(up_state) and g(down_state), equivalent to g(Su) and 

g(Sd), are given by the membership function approximation given above. The nota-

tion g will be used instead of g  for the state measures and g(S \ .) for the conditional 

fuzzy measures.

Those measures, alongside fuzzy integration, return the upper bound of the set 

of option prices. The lower bound is computed using the same model but with the 

dual measures of the conditional fuzzy measures and the state measures, which is 

introduced in the next section.
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4 .5 .3  T h e  D u a l F u zzy  M ea su res

Section 2.2.5 presents the theory behind dual fuzzy measures. This section

presents an application whereby they are utilized to their full power and used along-

side the fuzzy integral to get the lower bound of the set of option prices. Given the 

conditional fuzzy measures,

g(S_current /S_up ) =  t ( - - UI,~ ^ - ^ rren\  4),

g{b _current/b _aown) =  i(—---- spread------- ,4),

1 =  g_up  +  g_down +  A * g up * g_down.

such that g_up  and g down are A-complements of each other, that is,

g{S _cur rent /S  _down) =  /+A” p, 

g{S _cur rent /S  _up) =

then the dual fuzzy measures can be defined as,

v up =  1 — g(S current/ S_down) — 

v_down = 1 — g(S _cur rent/ S  _up) =

(1-f A )g(S _ cu rren t  /  S  _up)  
l+ \ g ( S _ c u r r e n t /S _ u p )  ’ 

( l+ \ )g ( S  _ curren t  /  S  _down)  
l + \ g ( S _  current / S _  down)

The same analysis holds for the state measures which have the general form

9  —  1 + 3 ( S u p — S e x p ’

^ — d o iU T l l - \ - 3 ( S d o w n — S e x p ( R * j y ) ) 2  ’

whereby their dual fuzzy measures are defined by,

v __up = 1 — g _down = 

v _down =  1 — g _up  =

( l+ \ ) g _ u p  
1+Ag _ u p  ’ 

(1+A)g down 
1+Ag_down '

The next step is just to plug those values in the Fuzzy conditional expectations and

the fuzzy expectation formulae in a similar manner to the above approach used to 

evaluate the upper bound.

4 .5 .4  A n a ly z in g  T h e  F u zzy  D e n s it ie s

This section analyzes the fuzzy densities of the conditional measures and the 

state measures and their interaction. The analysis will be carried over the equity 

options model but the same analysis holds for currency options. The fuzzy densities 

for the up and down states from any node in the tree are

9 l  =  f f i i ^ l } )  =  l+ 3 ( 5 « p - 5 e x p ( / i* ^ ) ) 2 > a n d
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9  9 { { ^  2 }) X + 'i^S  d o w n — S e x p ( R * j j ) ) ' 2 ’

where S  is underlying asset’s price at time 0, R  is the risk-free rate of return, r  is the 

time to maturity, N  is the number of steps in the tree, and Sup and Sdown are the up 

and down prices which can assume any values of Sun, Sdn and Suxdn~x depending 

which node is being considered. Use the normalization condition,

9 1 + 9 2 +  Xg1g 2 =  1,
which is derived from,

*w = i = i [n(i+V)--i,i=i
Substituting for g,1and g2,

A = 9(Sup — S exp(R * j j) )2(Sdown — S exp(R * j^))2 — 1, 

which has a unique root in the interval (—1, + 00). So A can assume any sign depending 

ultimately on the distance between the price of the node under examination and the 

expected risk-neutral price, which in turn depends on the number of steps in the tree 

and on the branch under examination, particularly, whether it is closer to the center 

or edges. When the number of steps is low or the node is closer to the center, A is 

negative meaning that gi + g2 > g{X) and the measure is subadditive while its dual 

is superadditive. So the two states display inhibitory interaction with respect to the 

occurrence of the spot price meaning that their joint contribution is smaller than the 

sum of their individual contributions. As the number of steps increases or the node 

moves towards the edges of the tree, A increases until it crosses zero meaning that 

the measure becomes additive and the two states do not interact. When it increases 

beyond zero, the measure becomes superadditive and its dual superadditive. The two 

states in this case exhibit synergetic interaction meaning that their joint contribution 

is higher than the sum of their individual contributions.

As for the densities of the conditional fuzzy measures, they are defined by,

9(- I Sup) =  t ( § s i ) ,

»(• I Sdown) =  t ,

which ultimately depends on (u — 1) and \d — 1| since S  is the current price and 

Sup and Sdown are next period’s prices. The same above analysis holds here but 

the equation for A is not as explicit. Generally, when the market is liquid and the 

spread is narrow, the densities tend to be large and the measure is subadditive leading
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to a superadditive dual measure. In a market characterized by illiquidity and high 

uncertainty, the spread is wide, the densities are low and the measure is superadditive 

meaning that its dual is subadditive. However, given this particular definition of the 

conditional measure, it cannot be less than 0.5 since the argument is not allowed to 

be less than zero. So A > 0 only, meaning that the measure in this particular instance 

can only be additive or superadditive and the dual measure can be also additive or 

subadditive.

4 .5 .5  T h e  F u zzy  E x p e c te d  V alue: A  F in a l C o m m en t

We need to make one final comment about the approach we use above. Kandel 

[69] argues that averages are not ’natural realities;’ rather, they are artificial con-

structs that allow us to understand reality. So using the fuzzy expected value instead 

of the average is a more natural way of representing central tendency. This is exactly 

what the fuzzy binomial approach attempts. For a start, we do not have to restrict 

ourselves to the exhaustiveness restriction imposed by probability theory whereby 

every point has to be confined into a well defined set [69]. Besides, extreme obser-

vations do not affect the final result and they are eliminated through the max-min 

composition rule. So what we get is roughly a mirror of conventional probability the-

ory measures of central tendency in fuzzy environments. The max-min composition 

approach is a particularly powerful approach since it rests on maximizing a minimum 

value.

Comparing our approach involving fuzzy expectation or a fuzzy expected value to 

the conventional approach involving probabilistic expectation or roughly an average, 

we notice that essentially our fuzzy expected value can be used as an alternative to 

the average. An average is the sum of weighted observations which span the whole 

space. A fuzzy expected value is, on the other hand, a compromise between those 

observations as well as their ’weights.’ So all we do is get a compromise between 

those observations, which is roughly what we do with an average. In fact, Kandel 

[69] shows that the fuzzy expected value is very close to measures of central tendency 

and it may sometimes be a better approximation to the mean because it does not get 

affected with extreme values.

102



In fact, Sugeno has shown that the difference between the fuzzy expected value 

and Lebesgue integration is only It is also possible to use Choquet integral, in 

the spirit of economic and fuzzy option pricing approaches that utilize nonadditive 

measures, instead of the fuzzy integral as the following section shows.

4.6  T h e C h oq u et In tegral A pproach

Section 2.2.6 presents Choquet integration in discrete time. In this section, the 

Choquet integral replaces the Sugeno integral in the fuzzy binomial model. We are 

interested in the behaviour of the Choquet integral as compared to that of the Sugeno 

integral especially that economic and finance applications use this type of integration 

when it comes to nonlinear integration and non-additive measure. In the following 

chapter, empirical applications, which compare those two types of nonlinear integra-

tion, are presented.

Using the definition of the Choquet integral in discrete time, such that monotonic-

ity is preserved and whereby,

Cg(h) =  (c) I  h.dg = ,[g(Ai) -  g(A-i )]  (4.5)
2=1

and A, = {xu  0 < g(Ax) < g{A2) < ... < 1, g{A0) =  0,g{An) =  1, we get,

E[N  =  Su  /  Y  = Su2] =  (c) ¡ N d g  =  g  N.[g(N /  A )  -  g(N  /  A - 1)]

=  N.\g(N /  A{) -  g~(N /  ^ 0)] +  N.[g(N /  A 2) -  g(N  /  A )]. 

But g(N  /  A q) = 0 and g(N  /  A 2) = g{N /  An) =  1 by definition. So,

E[N = Su /  Y  =  Su2} = N.[g(N /  ^ i )  -  0] +  N.[l -  g(N  /  A x)} = N.

So the Choquet integral does not seem to be able to capture the fuzzy payoff like the 

fuzzy or Sugeno integral does. And the fuzzy payoff is the same as the non-fuzzy one, 

meaning that the spread has no effect on the payoff.

Working backward through the tree and using the Choquet integral in discrete 

time, we get

Cg{h) = ¿(c) f  h.dg = h(xi).[g(Al) -  g ( A - 1)]

=  i  {(Su -  K)+[g(Ai) -  g(A0)} + (Sd -  K)+[g{A2) -  s(A )]}  .
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But g(A0) = 0,g(An) = g(A2) =  1. So

Cg(h) = ±{[(Su -  K)+ -  (Sd -  K ) +]g{A\) +  (Sd -  K)+}

= -  K)+ -  (Sd -  K)+]g({Su}) + (Sd -  K)+}.

Therefore, the only measure that seems to affect the call is the state measure 

or, more specifically, the deviation of the spot price from the expected one since it is 

the basis of the state measure. This state measure still serves the role of risk neutral 

probabilities in a fuzzy, uncertain world. As for the case with Sugeno integration, 

this gives the upper bound for the set of options. The lower bound is computed by 

substituting the duals of those fuzzy measures.

Walley [139] shows that the Choquet integral does not define lower expectations 

properly if lower measures, which are the duals in our case, are not 2-monotone. A 

measure is 2-monotone if

g(A U B ) +  g(A n B) > g(A) +  g(B), 

which in our case translates to, using the proper notation for the duals, 

v(A  U B) + v(A  fl B) > v(A) +  v(B),

where A  represents the ’up’ state and B  represents the ’down’ state. However, because 

we have assumed that the ’up’ and ’down’ states span the whole universe 

v ( A u B )  =  1, 

and,

v(A  fl B) =  u(<l>) =  0,

by definition. So the equation boils down to whether,

1 > v(A) + v(B),

which is dependent on the level of non-additivity of the duals. In its current form, 

the equation means that the dual measures must be superadditive. This will vary 

depending on which node in the tree we are valuing the measures at. If we are close 

to the center, then the measures themselves are high and so their duals are very low, 

whereby they sum to less than one (superadditive) and the above equation holds. 

However, as we move towards the edges, those duals become increasingly subadditive 

and the above equation will not hold. So, in general, we cannot say that the duals 

are 2-monotone and the Choquet integral is expected to perform poorly, which will 

be examined in the next chapter.
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4 .7  C onclu sion

In this chapter, we have presented a fuzzy binomial model. The model deals with 

fuzzy prices revolving around crisp model prices and their impact on the call value. 

The first step is to fuzzify the crisp prices by means of conditional fuzzy measures 

and conditional fuzzy expectations and the second step is to value the call using fuzzy 

measures and fuzzy expectations. To this end, we have defined preference-free fuzzy 

measures and nonlinear operators in discrete time.

This chapter extends contributions to both Fuzzy Theory and Finance Theory. In 

both cases, the exact definition of both fuzzy measures is original. The conditional 

fuzzy expectations are also original. As for Finance Theory, we are not aware of 

any previous work that incorporates Sugeno integration or fuzzy expectation in this 

sense. Moreover, the specific fuzzy pricing approach that has been followed is a new 

methodology to pricing in a fuzzy world. Finally, the types of uncertainty considered 

and their impact on option pricing have not been taken into consideration in any 

previous option pricing models. We only need to consider how this model fares when 

it is applied to actual financial applications. In the next chapter, we will study 

empirical applications of the Fuzzy Binomial Model. To this end, we consider markets 

with different levels of opacity and liquidity and analyze the results.

105



C hapter 5

The Fuzzy Binom ial Model: 

Empirical Applications

In the previous chapter, we have introduced the Fuzzy Binomial Model within 

a theoretical setting. The model attempts to price options in the presence of un-

certainty, which gives rise to market incompleteness. Therefore, we can only obtain 

a range of possible option values rather than one value. The model utilizes fuzzy 

measures and fuzzy or nonlinear integration.

In this chapter, we will study the empirical behavior of the model. The application 

has to target markets with a high level of uncertainty. We consider two such markets, 

NASDAQ as well as currency options markets. However, we also consider S&P 500 

options, which is traded in a transparent market, for comparative purposes. The 

model performs best in uncertain markets as expected.

We do not restrict the application to one type of option. Instead, we look at both 

American and European options and analyze the performance of the model across 

each type. We find out that the model gives better results for American options for 

reasons that we will discuss later. We also vary the volatility estimation approach so 

we study the performance of the model when we use historical versus implied volatility. 

The results are mixed in the sense that using implied volatility is better in some cases 

than using the historical one and vice versa. We do not confine the application to 

Sugeno integration but we also test the model using Choquet integration. We find out
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that, as expected, the Sugeno integration is better within this model framework than 

the Choquet one (particularly because, as we have shown in the previous section, the 

dual fuzzy measures are not 2-monotone).

The model and the underlying problem are new to the literature so there are no 

other models to which it can be compared. However, since it builds on the ’fair-value’ 

binomial model, we find it appropriate to look at where the binomial model values 

stand vis-a-vis our model results. The latter tends to envelope the former with some 

variations depending on the application considered.

We start by laying down the general methodology in section 1, which also incor-

porates an analysis of the empirical behaviour of the measures as well as the general 

model. The data and results analysis are introduced and discussed for each market in 

separate sections. We start with the NASDAQ market, which is presented in section 

2, followed by the currency options and Indexed option markets in sections 3 and 4 

respectively. We finally summarize and conclude in section 5.

5.1 G eneral M eth o d o lo g y

The model is solved numerically using Visual C ++  code. Originally, the program 

has been written in VBA/Excel macros but, as the system complexity increases, the 

program slows down and sometimes crashes. The methodology follows the model 

outline detailed in chapter 4 such that the payoff is first transformed to accommodate 

fuzziness at the end of the period using fuzzy conditional measures and conditional 

fuzzy expectations. Then, discounted fuzzy expectations are computed across the 

tree in a backward manner to arrive at the final call price. However, there are certain 

minor issues that need to be sorted out empirically. The most important issue is the 

treatment of the crisp payoff. Due to the comparison operators, we cannot use the 

crisp payoff as it is since it has to be compared to the conditional measures and the 

state measures, which are bounded between 0 and 1 by definition. So we transform 

its value into a comparable one using a change of numeraire such that it is given in 

terms of shares rather than in terms of currency.

Another issue is the evolution of the BAS across the tree. It makes sense to get
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the implied spread from the tree, that is, using the spot price evolution across the 

tree rather than assuming a constant spread based on historical data. The simplest 

model is, of course, Roll’s estimator, which is

spread = 2^/-cov(Apt, Apt+1), (5.1)

where Apt and Apt+\ are the price changes at times t and t + 1 respectively, and cov 

stands for covariance. However, there are several drawbacks with using this estimator 

and which are particularly unpleasant for this specific problem. For a start, it assumes 

an informationally efficient market, which contradicts the basic underlying premises 

of the fuzzy binomial model and the conditional measure. Second, it assumes that the 

probability of two consecutive increases or decreases in prices is zero, which does not 

hold for the outer edges of the tree. Third, positive covariances will create a problem. 

So, in the last two cases, there will be no approximation to the spread, which can 

be treated as missing observations but some sort of approximation to the spread will 

still be needed to be able to apply the fuzzy binomial model. There are other spread 

measures in the literature, which make up for this problem but are very cumbersome 

at this point especially that our intention is to illustrate the model rather than study 

the behaviour of the spread across the tree. So, given that a constant spread across 

the tree is too restrictive, we will allow the spread to evolve across the tree in a similar 

manner to that of the underlying asset. The logic behind this approach is that if the 

underlying asset’s price is allowed to evolve in a certain way, then the bid and ask 

prices, and consequently the spread, must also be allowed to evolve in the same way.

For the purposes of computing the conditional fuzzy measure and the fuzzy payoff, 

the trees for the evolution of underlying prices and spread always have to be projected 

one step further to the maturity of the option. The deviation of each of those projected 

prices from the risk-neutral price serves as the basis to computing the state measures. 

This risk-neutral price is an ideal or hypothetical price that is not really supposed to 

occur in reality. If it does occur, then it gets a fuzzy density of one and the rest of 

the sets are not likely at all and, hence, assume fuzzy densities of zero (Lemma 2.3, 

[102]). So, for our present purposes, we will assume that such a state does not coexist
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with the up and down states.

Wide bounds will be established on the set of possible option prices whereby the 

upper bound is determined by using the conditional fuzzy and state measures, and the 

lower bound is determined using the corresponding measures’ duals. The models are 

computed using implied as well as historical volatility and a comparison is carried out 

between the two to study their implications under a Sugeno integral. Bounds are also 

computed using the Choquet integral approach and the results are compared to those 

obtained using the Sugeno or fuzzy integral. We also account for the implications 

of using volatility generated by different methods. We particularly employ historical 

and implied volatility estimates and compare the results generated by each approach.

The same basic algorithm is used for all options considered with minor varia-

tions. The algorithm for American options accommodates early exercise and that 

for currency options accommodates foreign and domestic risk-free rates and other 

modifications they impose on the tree.

5 .1 .1  E m p ir ica l B eh a v io u r  o f  th e  F u zzy  M ea su res

In this section, the empirical behaviour of the conditional fuzzy measures and 

the state measures is examined. Looking closely at the conditional measure, we can 

easily show that the measure corresponding to an upward movement, g{. \ Sup), is 

proportional to (u — 1) spSr̂ ad (since the spread and spot S  at each node are multiplied 

by the same factor), and that corresponding to a downward movement, g(. \ Sdown), 

is proportional to \d — 1| sp̂ ad, where Sup refers to the asset’s price after an upward 

movement from any node in the tree, Sdown corresponds to a downward one, So cor-

responds to the initial asset’s price, and spread is the initial spread on the underlying 

(the evolution of the spread and spot cancels out since they are both multiplied by 

the same factor because the tree is recombinant).

For equity options, u — e x p and d = 1 so the conditional measures cor-

responding to the two states for equity options are dependent on volatility, time to 

maturity, number of steps in the tree, initial underlying asset’s price and initial spread 

on that underlying. Due to the relationship between u and d, the conditional mea-

sure for the up state diverges from that of the down state as u increases (d decreases)
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while it converges to that of the down state otherwise. So, as the volatility of the 

asset increases, holding everything else constant, the conditional measure for the up 

state increases while that for the down state decreases. A similar behavior is observed 

for long-term options provided that the number of steps is constant. However, if the 

number of steps is increased, we notice the opposite behavior.

On the other hand, for forex options, u = exp [(Rd — R f ) jj  + a y / ^ ]  and 

d = exp [(Rd — Rf) j j  — Vy/jf] so the conditional measures for currency options are 

dependent on volatility, time to maturity, number of steps in the tree, initial under-

lying asset’s price, initial spread on that underlying, and domestic and foreign risk 

free rates. One can observe that the effects of time to maturity and risk-free rates are 

more pronounced for conditional measures of forex options than for those of equity 

options. They are also dependant on one more factor, which is the foreign risk-free 

rate. Generally, the conditional measures corresponding to an upward movement tend 

to increase with an increase in volatility and time to maturity while those correspond-

ing to a downward movement tend to decrease when volatility and time to maturity 

increase. As the number of steps increases, both conditional measures decrease. For 

a very liquid asset (narrow spread, $/£) or an asset with a high price level (S&P 500 

index), the conditional measures are relatively low. Finally, they are higher when 

domestic interest rates are higher than foreign interest rates.

The effects of the spot and spread on the conditional measures are equivalent for 

both markets. In absolute terms, as the spot price increases or the spread decreases, 

holding everything else constant, the conditional measures for both states will increase 

and vice versa. But, as we have seen in Chapter 2, there is a direct relationship 

between the spread and the price level so the value of the measure will depend on the 

interplay between those two factors. When the price level is high, the spread is also 

expected to be high but the absolute value of the measure really depends on how the 

two values compare with each other. In liquid and transparent markets, the spread is 

generally low and so the measure is expected to be high. Alternatively, in illiquid or 

uncertain markets, the spread is usually wide and so the measure is expected to be 

low.

The state measures are not really constant; they are quite dependent on the node of
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the tree they are evaluated at. The form for the state measures is , , ----- -—-—„.„..a

whereby S  current corresponds to the underlying asset’s price at the node at which 

the state measure is being evaluated and E(S)  is equivalent to Sq exp(Rjj)  for equity 

and So exp [(Rf — Rd)jf]- Clearly, S  _current  is a variable but E(S)  is a constant. 

Therefore, the state measures are dependent on the node price (which ultimately 

depends on the un and dn factors where n =  {0, . . .,N}), the risk free rate(s) and time 

to maturity. In the short run, that is for a low number of steps, an increase in time 

to maturity leads to an increase in the state measure but not with direct proportion. 

But, as the number of steps increases, the effect of S_current  takes over for the outer 

edges of the tree and the relation between the time to maturity and the state measure 

becomes inversely proportional and the state measure is quite low. However, around 

the center, the state measure is high irrespective of the time to maturity (since the 

effect tends to cancel out when time to maturity in both S_current  and E(S)  is 

considered simultaneously), which is logical because the underlying asset’s price is 

quite close to the prototype or the expected preference-free price.

So, as the above analysis shows, the volatility and the initial price level of the un-

derlying asset, the time to maturity of the option, the risk-free rate and the number 

of steps in a binomial tree affect both conditional and state measures. However, mon-

eyness has no effect on either of them. A similar analysis holds for the dual measures 

since they are the other side of the coin so that dual measures corresponding to an up-

ward measure behave in an opposite manner to the fuzzy measures corresponding to 

the downward move (due to additivity) and, similarly, dual measures corresponding to 

a downward move behave in an opposite manner to the fuzzy measures corresponding 

to the upward move.

5 .1 .2  E m p ir ica l B eh a v io u r  o f  th e  G en era l M o d e l

The set of fuzzy measures influences the behaviour of the general model first 

through the fuzzy payoff and then through the propagation across the tree. The 

definition of the fuzzy payoff for equity as well as for forex options depends on the 

comparative sizes of the fuzzy densities. The value of g(. | Sup) is proportional to 

(u — 1) and the value of g(. \ Sdown) is proportional to \d — 1|.
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In the case of equity options, where d =  ^ and u > 1, \d — 1| < (u — 1) always 

because j2— ] < (u — 1) while for forex options, \d — 1| > (u — 1). This means that, 

for equity options, g(. \ Sup) > g(. | Sdown) and vice versa for forex options. So the 

final form of the fuzzy payoff at each node for equity options is,
[̂ SuXdn~ l -Kd+... A (g(Suxdn~x I Sux+1dn~x) A g{{Sux+1dn- x})]W 

C{Suxdn- x) =  < [{SuXdn7 ^ -K)+ A (,g(Suxdn~x \ Sux+ldn~x) A g{{Sux+ldn~x})\

^ {Su*d^-K)+ A ^ Suxdn-x | Suxdn~x+1) A g({Sux+1dn~x, Suxdn 
and that for forex options is,

[{Su-d^-K)+ A ^ Suxdn-x | Suxdn-x+1) A g({Sux dn~x+1})} V

C{Suxdn~x) = < A (g(Suxdn~x I A g({Suxdn- x+l}))

 ̂ v (̂Su»d"-»-K)+ A Suxdn~x | 5rix+1dn- 1) A 5({Sux+1dn- x,5 u xd?1 
where Suxdn~x is the price at the current node or, using the above terminology,

S_current, Sux+1dn~x is next period’s price corresponding to an upward move, 

Suxdn~x+l is next period’s price corresponding to a downward move and 

g({Sux+1dn~x, Suxdn~x+1} = 1. It is clearer now how the comparative sizes of the 

variables influence the fuzzy payoff.

The state measures tend to be the most cumbersome variables. It is hard to 

know which state measure, that is the one corresponding to an upward move or 

the one corresponding to a downward move, is greater than the other. Generally, 

towards the outer edge of the upper half of the tree (when the half is considered with 

respect to E ( S ) and not the initial asset’s price), the state measure corresponding 

to a downward move is greater than the measure corresponding to an upward move 

since the corresponding price is closer to the expected one E ( S ) and vice versa for the 

lower half. Around the center, the comparative sizes of the state measures depend on 

the node under consideration, more specifically, they depend on where the expected 

price line falls in between the two branches coming out of the node. The relative 

weights of upward and downward states fluctuate depending on the values of those 

measures, which has further implications for the empirical behaviour of the model as 

the following analysis shows.

Given a call option, the payoff will be zero in the half of the tree lying below the 

initial asset’s price line. Hence, irrespective of the values of the fuzzy measures, which 

are greater than zero, the fuzzy payoff will be zero. The picture is not as clear for

-Z+1})]

-X+1})]
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the upper half of the tree. There are different scenarios depending on the node under 

consideration. At nodes that are very close to the center, the crisp payoff plays the 

major role in determining the fuzzy payoff because it will assume the minimum value 

among all variables. Towards the upper edge of the tree, it is not really expected to 

play a major role because it assumes a high value. However, the final result will still 

depend on the values of the measures and how they compare to the crisp payoff and 

to each other.

This influences the final call price by evaluating the fuzzy expectations at each 

node,

for C(Suxdn~x) < C{Sux- 1dn~x+1),and where g({Suxdn- x , Sux- ldn~x+l}) = 1. 

Therefore, the expected Call price at each node is dependent on the fuzzy pay-

off and its possibility of occurrence as given by the corresponding state measure. 

Around the center, the fuzzy payoff is expected to play the major role since the state 

measures will be high and so they will be ruled out by the minimum operation. Ac-

cording to the above analysis, this means that the crisp payoff is expected to play 

the major role. Towards the upper edge of the tree, the fuzzy payoff correspond-

ing to a lower state measure is expected to take over since it will be compared with 

g({Suxdn~x, Sux~1dn~x+1}), which is equal to one, in the second part of the integral 

and with the state measure corresponding to the complement state in the first part 

of the integral, which will be very low. So, due to the maximum operator, it will win 

over. In this setting, that is the one corresponding to the upper edge of the tree, the 

values of the crisp payoff can be quite high due to the maximum operator and the 

fact that it will be the minimum in the last part of the conditional fuzzy expectations. 

But, fortunately and due to the definition of the fuzzy expectations, such high values 

will be ruled out by the minimum operator across the tree. Ultimately, those values 

will be influenced by input variables like volatility and time to maturity, which has
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to be studied empirically as we show in the following sections.

5.2 N A S D A Q  O ptions

The NASDAQ options we consider are those corresponding to options written 

on Dell and Microsoft, which are American-type options. The NASDAQ market 

has a high level of uncertainty due to opacity unlike physical equity exchanges. So 

we expect the model application corresponding to those options to outperform that 

corresponding to the currency and index options we consider in later sections.

We will first describe the data set and then present the results. As we have 

mentioned earlier, we will establish the bounds using fuzzy measures for one bound, 

and their duals for the other, as well as fuzzy expectations. We also consider the two 

approaches to computing the expectations, namely, the Sugeno or fuzzy integration 

approach and the Choquet integration approach. This comparison illustrates the 

implications of using different nonlinear integration approaches to the same problem 

as well as the same input variables. Moreover, we look at the implications of using 

a historical volatility estimation approach as opposed to using an implied volatility 

one.

5 .2 .1  D a ta  S et

The data sets for both Dell and Microsoft Call options have been quoted on 

the 10th of May 2002 from the Bloomberg database. Each data set is comprised 

of moneyness, current stock price (S), strike price (X), risk-free rate (r), dividend 

yield (q), annualized time to maturity (tyr), annualized volatility (implied volatility 

in this table), spread on the underlying (spread), and bid, ask and last prices for 

the option. The options expire on the Saturday of the third Friday of every month. 

For computation purposes, the zeroes in bid, ask and last columns correspond to no 

quotations. The dividend yields for both asset’s are zero. Moneyness is determined 

by the ratio of the current stock price (S ) to the strike (X), namely, 

if > 1.02, then the option is in-the-money (ITM), 

if y  < 0.98, then the option is out-of-the-money (OTM), and
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if 0.98 < y  < 1-02, then the option is at-the-money (ATM).

The data will be categorized according to moneyness and expirations for comparison 

purposes.

Implied volatilities are those corresponding to the options under consideration. 

Historical volatilities are quoted from Bloomberg corresponding to short-term volatil-

ity (30 day), medium-term volatility (60 day) and long-term volatility (90 day) 

whereby they are matched with the maturity of the option. Dell options expire in 

May 2002, June 2002, August 2002, November 2002, January 2003 and January 2004. 

Microsoft options expire in May 2002, June 2002, July 2002, October 2002, January 

2003 and January 2004. Short-term volatility is associated with May 2002 expira-

tion, medium-term volatility is associated with June 2002 and long-term volatility is 

associated with the longer maturities.

5 .2 .2  R e su lt  A n a ly s is

Appendix C displays the results for Dell and Microsoft options individually. Table 

1C shows the results of applying the fuzzy binomial model to Dell options using 

Sugeno integration. It also shows the results of computing the expectations using 

Choquet integration. For comparative purposes, the binomial model value as well 

as the market bid, ask and last quotations are included. The table illustrates the 

behavior across different moneyness and expirations. The results are computed using 

implied volatility. Since there are no quotations for the bid or last at times, the 

implied volatility corresponding to the ask price is used.

The ’Dual Fuzzy’ column stands for the lower bound for the range of possible 

option prices while the ’Fuzzy’ column stands for the upper bound. Both bounds are 

computed using Sugeno expectations. The difference between the two is that the latter 

employs the conditional fuzzy measures and the state ones while the former uses the 

corresponding duals. The ’Fuzzy Spread’ column represents the spread or difference 

between the ’Fuzzy’ and the ’Dual Fuzzy’ values. The ’Binomial’ column shows 

the values given by the binomial model. Finally, the ’DualChoquet’ and ’Choquet’ 

columns stand for the lower and upper bounds of the call price respectively using 

Choquet integration.
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We shall compare the results across different maturities and moneyness. To be 

able to understand the results, we need to understand the general behaviour of the 

determinants of the bounds across the tree. The payoff increases as we move towards 

the outer edges since it is directly proportional to the spot price, which increases as 

we move in that direction. Exactly the opposite behaviour is observed for the state 

measures since they are inversely related to the spot. The conditional measures are 

independent of the behaviour of the spot price because the spread is assumed to evolve 

in the same way as the spot price and so the effect cancels out.

There is a common general pattern for the bounds across different moneyness for 

all maturities (Figure 5-1). Generally, the dual fuzzy model converges to the fuzzy one 

for very deep in-the-money options, that is the lower bound converges to the upper 

bound. As the option becomes less in-the-money, the bounds grow farther apart with 

a wide difference until the option becomes at-the-money where it reaches a maximum. 

Then this difference starts decreasing as the option becomes out-of-the-money and it 

keeps getting smaller until it matches the spread for deep out-of-the-money options. 

But the problem with out-of-the-money options quoted data is that it is not always 

reliable due to illiquidity, which is also clear in Table 1C and Figure 5-1.

This behaviour is observable whether we use the implied volatility for the specific 

moneyness we are considering or whether we use the same at-the-money implied 

volatility for all moneyness. This implies that the strike is playing the major role 

for a single maturity especially that the state measures and the conditional measures 

are not really affected by the moneyness. The strike affects the final model values 

through its impact on the fuzzy payoff and the early exercise condition for American 

options. For very deep-in-the-money options, the effect of the strike takes over that 

of the fuzzy measures and so the two bounds converge. Recall that the strike, and 

consequently the payoff and the early exercise condition, is the same for the fuzzy 

model and its dual while the fuzzy measures are different. As we move away from 

deep in-the-money options, the fuzzy measures seem to be more important where they 

become the most important for at-the-money options.

The conditional measures are quite low, which makes their duals quite high. The 

effect of the conditional measures is propagated through the fuzzy payoff or the early
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exercise condition. The fuzzy measures are ruled out by the maximum operator except 

when the state measures and the crisp payoff are very low themselves. This tends 

to take place around the center. This behaviour is specifically observable for at-the- 

money options where the payoff around the center is quite low. We emphasize the 

effect of the payoff in this case because the state measures and conditional measures 

are really the same across different moneyness for a single maturity.

Therefore, for a single maturity, each bound decreases in value as the strike in-

creases indicating that the strike is playing the major role through the fuzzy payoff 

and the early exercise condition since the state measures and the conditional mea-

sures are not affected by moneyness. The bounds converge for deep in-the-money 

options and start to diverge as we move more towards at-the-money where maximum 

divergence is reached. Then, they start converging again as we move more towards 

out-of-the-money. The payoff is the most important factor for deep in-the-money 

options where the effect of the measures is almost negligible due to the maximum 

operators. The measures, especially the conditional ones, become more important 

around the center specifically for at-the-money case. Since the dual measures are the 

mirror images for the measures, the ’Dual Fuzzy’ model exhibits exactly the opposite 

behaviour to the ’Fuzzy’ one.

The spread between those bounds does not really reflect that in the market nor 

is it expected to do so. Rather those bounds generally envelope the bid/ask quota-

tions quoted in the market, which is clear in the sample options in Figure 5-2. The 

maximum difference or spread between the two bounds occurs for options with the 

shortest maturity and then it decreases systematically as the time to maturity in-

creases (Figure 5-4). Generally, those bounds as well as the difference between them 

grow smaller as the time to maturity increases. This spread pattern is also observed 

across different maturities (Figure 5-5). So as the time to maturity increases, the 

spread systematically decreases. Therefore, the spread seems to have patterns across 

different strikes and maturities but not volatilities.

When the time to maturity is varied, the bounds are consistently lower and closer 

for options with the same strike. For some deep in-the-money options, values are 

the same for the same strike irrespective of the different values of volatility, time to
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Figure 5-1: Dell Option prices for different maturities. Dual Fuzzy, Fuzzy and Bino-
mial OPM results were computed using implied volatility.

maturity and the risk-free rate across various maturities, except for those with very 

long maturity, in a similar manner to those values given by the CRR tree. This 

empahsizes the earlier point we have made about the importance of the strike for 

deep in-the-money options. The same observation is recorded for deep out-of-the- 

money options, except that it is not the case for the values given by the CRR model. 

For other in-the-money and out-of-the-money options, the values are different across 

different maturities. The results for at and out-of-the-money options are not reliable 

for very long maturities. As Figure 5-1, they are well below the quoted bid and ask 

prices.

The value given by the binomial model always falls between those bounds. This 

serves as an empirical proof to our earlier reasoning that the binomial model gives a 

price that is based on fair or unobservable prices while, empirically, prices revolving 

around the fair ones are observed. The final outcome is a set of observable prices 

bounded by two extremes in between which the option price can assume any value.

The same pattern of behaviour is observed for the Dual Choquet and Choquet 

OPMs, which use Choquet rather than Sugeno integration. The bounds follow the 

same behaviour of option prices, that is the prices they give have the same decreasing 

and increasing patterns as actual option prices. However, they tend to be very wide
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Figure 5-2: Dell Option prices with May maturity. Dual Fuzzy, Fuzzy and Binomial 
OPM are computed using implied volatility.
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Figure 5-3: Dell option prices for different maturities. Dual Fuzzy, Fuzzy and Bino-
mial are computed using implied volatility.
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Spread

Figure 5-4: Fuzzy spread representing the difference in call prices given by the fuzzy 
and dual fuzzy OPM.

Figure 5-5: Dell option prices across different maturities. Dual Fuzzy, Fuzzy and 
Binomial OPMs are computed using implied volatility.
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due to severe underpricing on the Dual Choquet OPM part rendering the model 

useless. The Dual Choquet OPM significantly underprices the option and the Choquet 

overprices it but with a much lower proportion. As a result, the bounds are very wide 

as Table 1C (Appendix C) shows. However, the Choquet OPM is not really bad 

and perhaps can be used with a fuzzy volatility similar to the approach used in the 

following chapter. But when it is combined with the Dual Choquet one, the results 

are not practical. This has already been expected since, as we have shown in the 

previous chapter, the dual measures are not 2-monotone and so the Dual Choquet 

(lower expectation) is expected to perform poorly.

The conditional measure plays no role here. The values are determined by the 

state measures and their duals. The state measures are quite low towards the outer 

edges of the tree especially as the number of steps increases. However, this is balanced 

by the high payoff at those nodes. It is quite high around the center, which balances 

the low payoff there. Because the conditional measure plays no role, the results are 

quite high for the ’Choquet’ bound. The ’DualChoquet’ displays the mirror image of 

the ’Choquet’ behaviour. When the state measures are high, their duals are low. So 

whenever the payoff is high, the duals are high and whenever the payoff is low, the 

duals are low. So towards the outer edges, both the duals and the payoff are high. 

Similarly, both quantities are low towards the center. However, the weight of the 

nodes towards the outer edge of the tree is low and the effect tends to diminish as we 

move backward through the tree.

This proves that, within the context of this problem, Choquet integration does 

not really model uncertainty like Sugeno integration does. The reader at his point is 

reminded that the Choquet integration approach does not capture the fuzziness of the 

payoff because the conditional measures cancel out due to the use of linear operators 

as well as the definition of the Choquet integral. Sugeno integration is better able 

to capture the fuzzy payoff due to the nonlinear operators. A possible reason for the 

shortcoming of Choquet integration in this model is that it converges to the Lebesgue 

integral while the Sugeno one does not. It is possible that this small deviation, arising 

from nonlinear operators, between the Sugeno and Lebesgue integrals is what counts 

for the success of the Sugeno integral for this particular problem.
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Finally, the fact that the model (using Sugeno integration) is not affected by 

volatility is emphasized in Table 2C. This table shows the results when we use histor-

ical, rather than implied, volatility. The results are very similar to those in Table 1C, 

whereby implied volatility is used for valuation. However, it is interesting to note that 

the binomial option value sometimes coincides with the bounds, which are convergent 

in this case, for deep in-the-money options. In general, we observe the same pattern 

of behaviour and indeed very similar values when we use historical volatility as we do 

when we use implied volatility.

The behavior of the model for Miscrosoft options is pretty much the same as it 

is for Dell options. However, for Microsoft options, the spread tends to be wider 

and there is a slightly more significant difference between the results reported using 

implied volatility from those reported using historical volatility. Tables 3C and 4C in 

Appendix C report the results and the corresponding data set.

Figure 5-6 plots a graph of option prices across different maturities versus the strike 

price. Almost the same pattern of behaviour observed for Dell options is observed for 

Microsoft options except that for the case of Microsoft options, the bounds are more 

well behaved for out-of-the-money options than they are for Dell options. The bounds 

are convergent for very deep in-the-money options and then they grow wider until 

they reach their widest closer to at-the-money. They envelope the bid and ask prices 

for other observations. However, they are not very reliable for very long maturity.

The spread also exhibits the decreasing pattern prevalent for Dell options (Figure 

5-7). But volatility seems to affect the results for Microsoft options more than it does 

for Dell options. Figure 5-8 plots the fuzzy spread obtained using implied volatility 

with that obtained using historical volatility against the strike price. There is no 

systematic pattern for the behaviour of either spread. Rather they can vary randomly 

but there is a general tendency for the bounds to be wider in the case of historical 

volatility than that in the case of implied volatility.

There is an interesting observation pertaining to the bounds’ behaviour. At some 

point the bounds flip, which is also the case for Dell options, but it is an infrequent 

observation. However, for Microsoft options, it occurs twice for the set under consid-

eration using an implied volatility but once using historical volatility for an option
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that is well in-the-money and with shorter maturity. Both observations correspond 

to the same strike, which is 35 while the spot is 58. This can be due to the behaviour 

of the measures and their duals and their interplay with the payoff across the tree 

since the payoff by itself is the same for the two bounds. However, this behaviour 

is not really expected or justified but it can be that in such instances the duals are 

generally higher than the corresponding measures. Volatility definitely plays a role 

in those cases since a different volatility value can make the bounds flip or unflip. It 

influences the values through every term in the fuzzy payoff as well as the backward 

induction and it is very hard to isolate the effects of each especially in the presence 

of nonlinear operators.

The historical volatility in this case is half the implied volatility. Besides, bounds 

corresponding to historical volatility are not as convergent to each other for deep 

in-the-money options as those corresponding to implied volatility are. But for out-of- 

the-money options, especially deep ones, the results are almost the same. The only 

difference between the two really lies for in-the-money options, especially those close 

to at-the-money. Table 5C in Appendix C illustrates this analysis. On the other hand, 

the Choquet model performs better when using historical volatility. It overprices a 

little bit when it is computed using implied volatility but it gives much better results 

when computed using historical volatility (Tables 3C and 4C in Appendix C). So for 

the purposes of using uncertain volatility to price options, it is better to use historical 

volatility based estimations for the interval of volatility than use the implied one.

5.3 C urrency  O ptions

5 .3 .1  D a ta  S et

The forex option we consider is a European option on $ /£  listed on the Philedel- 

phia Stock Exchange on the 17th of September 2001 as quoted from Bloomberg data-

base. This is an illiquid option written on a liquid asset. Since the underlying price 

is quoted in lots of 100, we have multiplied the spread by 100 as well for consistency 

purposes. The domestic and foreign risk-free rates are respectively taken from the US 

and UK LIBOR. The option has November 2001, December 2001, March 2002 and
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Figure 5-6: Option prices for Microsoft Options for all maturities across the strike 
price. The Dual Fuzzy, Fuzzy and Binomial OPM results are computed using implied 
volatility.

■oTO0)k_D.</> F u z z y  S  p r e a d

Figure 5-7: Fuzzy Spread corresponding to implied volatility across all maturities 
versus strike price.
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Figure 5-8: Comparison between the fuzzy spread obtained using implied volatility 
and that obtained using historical volatility.

September 2002 expirations. They expire on the Friday before the third Wednesday 

of the expiry month.

5 .3 .2  R e su lt  A n a ly s is

Tables 6C and 7C in Appendix C report the results for the given data set. As the 

tables show, the results for this option using the dual fuzzy and fuzzy models are not as 

good as they are for the previous ones. One possibility is that, judging by the narrow 

spread and relatively low implied (and historical) volatility, the underlying asset is not 

characterized by a high uncertainty like the NASDAQ stocks. Another possibility is 

that those models perform better for American options than for European options like 

the one at hand. A third possibility is that the option is illiquid and so it necessarily 

dictates wider bounds than expected.

Empirically, the conditional measure for this option is higher than that for Dell 

and Microsoft ones while the payoff, for a comparative level of moneyness, is much 

lower. The state measures are roughly similar. Besides, this currency option is 

European and there is no early exercise condition. So the upper (’Fuzzy’) bound is 

relatively high (vis-a-vis the ask quote) because the high values for the measures are 

not really balanced out by the early exercise condition, which will be low in this case
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if it did exist, as it is the case for the Dell and Microsoft options. As a result, the 

high values are propagated through the tree. On the other hand, the lower bound is 

so low because the payoff is very low while the duals are very high so they get ruled 

out by the minimum operator.

The bounds do envelope the Bid/Ask quotations but they are very wide for in- 

the-money and at-the-money options. An interesting observation is that they can be 

convergent for out-of-the-money options rather than in-the-money options like the 

NASDAQ options case. For the bounds to converge, they have to agree on a value, 

which is the payoff in this case. The payoff is expected to play the most important role 

since it is the only variable that is not different for the two bounds while the measures 

and their duals are quite different. It is generally lower for out-of-the-money options 

than it is for options with different moneyness while the measures are the same. So 

this low value takes over the measures’ values through the minimum operation.

Another difference is that the spread or the difference between those bounds tends 

to be greatest for in-the-money options decreasing gradually until the option becomes 

out-of-the-money where it becomes acceptable (Figure 5-9). The payoff as well as 

measures tend to be quite high around the center so the result of the minimum 

operation will be high anyway. Towards the outer edges of the tree (specifically 

upper), the payoff is very high but the measures are low so the high value of the 

payoff is ruled out. However, the latter result does not survive as we compare it 

to values closer to the center using the maximum operation due to the high values 

around the center. This leads to a high value for the upper bound for in-the-money 

options, which decreases as the payoff decreases. On the other hand, the lower bound 

is very low because, towards the center, the duals in this case will be low but the 

payoff will be high while, towards the edges, the duals will be high but the payoff will 

be low. So either way the low value is taking over due to the minimum operation. 

A closely related issue is that the behaviour of the upper bound captures market 

behaviour, that is, the bound decreases as the strike increases. However, we do not 

note the same observation for the lower bound. This again can be due to the payoff 

as the above analysis shows.

Unlike the NASDAQ options, the results obtained using a historical volatility are
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much better than those obtained using an implied volatility. In the former case, 

the bounds are narrower and so the spread is smaller (Table 8C in Appendix C). 

Historical volatility is lower than implied volatility. So the payoff will be smaller and 

the measures will be moderate in the sense that they are not as high around the 

center nor are they as low towards the outer edges and so the corresponding duals 

will be also moderate. This means that the upper bound will be lower since the values 

around the center, that ultimately determine its value, are lower now. On the other 

hand, the lower bound is higher now because the dual measures are generally higher.

The results are shown in Figure 5-10. As can be seen from the plot, the model gen-

erally underprices out-of-the-money options but overprices in-the-money ones. The 

dual fuzzy model is not stable and tends to be nondecreasing in a counter manner to 

the behaviour of actual option prices. The fuzzy model gives closer results to the ask 

price than the modified binomial model does in the presence of historical volatility. 

However, it returns a higher value than the ask for short maturities but a lower one 

for longer maturities.

The results for the Choquet and Dual Choquet approach, using both historical 

and implied volatility, give a lower spread but show systematic underpricing. The 

high payoff is constantly being made smaller through multiplication by the low state 

measure towards the edges. On the other hand, it is low towards the center while the 

state measure is high but it is not high enough to overcome the low payoff. So the 

overall effect is lower values. However, the bounds still exhibit the decreasing pattern 

associated with increasing strike for Call option prices.

5.4  In d ex  O ptions

5 .4 .1  D a ta  S et

The option under consideration here is an S&P500 option (European). The 

data is quoted on the 24th of July 2002 from Bloomberg database. It includes as 

well historical volatility and risk-free rate data. Such options have expirations of 

August 2002, September 2002, October 2002, December 2002, March 2003, June 2003, 

December 2003 and June 2004. They expire on the Saturday of the third Friday of
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Figure 5-9: Comparison between fuzzy spreads obtained using historical and implied 
volatilities versus the strike price.

Strike (X)

Figure 5-10: Forex option prices for all maturities versus the strike price. The Dual 
Fuzzy, Fuzzy and Binomial OPM prices were obtained using historical volatility.
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the expiration month.

5 .4 .2  R e su lt  A n a ly s is

We see similar scenarios for S&P 500 index options as we have seen for the $ /£  

currency option that we have just analyzed. Much of the analysis we have carried out 

in the previous section holds here. Both bounds capture the decreasing behaviour of 

Call option prices as the strike increases. However, there is considerable underpricing 

as Tables 9C and IOC in Appendix C show and many times the bounds flip such that 

the fuzzy model prices are less than the dual ones. So, in this case, the upper bound 

is given by the dual fuzzy model and the lower one is given by the fuzzy model.

The values are generally more extreme due to the higher level of the index. For 

example, the measures tend to be very low towards the outer edges of the tree but 

very high towards its center and so their duals will be behave in an exactly opposite 

way. This translates to more extreme values in the bounds, which will be very wide. 

The bounds flip for the same reason. For the ’Fuzzy’ bound, the very low payoff 

towards the center wins over the very high measures through the minimum operation 

while it loses to the very low measures towards the outer edges where it assumes a 

very high value again due to the minimum operation. So the values will be very low. 

On the other hand, the ’Dual Fuzzy’ bound is higher than the ’Fuzzy’ one because 

both the payoff and the duals will be high or low at the same time (since the duals 

are the mirror image of the fuzzy ones).

The historical volatility results, shown in Figure 5-11, are better than the implied 

volatility ones, which again proves our point about the high values. The historical 

volatility is lower than the implied volatility and so all the variables will be consistently 

lower. The dual fuzzy model behaves better in this case than fuzzy one as expected 

because it has relatively more moderate variables. It is also more stable unlike the 

previous two options we have considered so far. It actually behaves better than the 

binomial model in the presence of historical volatility. But for the implied volatility 

case, the binomial model fares better than both the fuzzy and dual fuzzy ones even 

though the latter gives very close results to it. The spread is also very wide. It is 

much wider for implied volatility calculations than it is for historical volatility ones
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Figure 5-11: S&P 500 option prices across all maturities versus the stock price. The 
Fuzzy, Dual Fuzzy and Binomial OPMs are computed using historical volatility

Figure 5-12: Fuzzy Spread for S&P 500 options based on historical and implied 
volatilities (pink corresponds to a fuzzy spread with implied volatility and the other 
with historical)

(Figure 5-12).

The Dual Choquet model does not give good results at all as expected. But the 

Choquet one is not bad actually and it is not affected by changes in volatility like 

the other models especially the binomial one, that is, it gives similar results for both 

historical and implied volatilities. It is actually quite close to the ’Dual Fuzzy’ one. 

Generally, the behaviour of those two bounds is very similar to that of the $ /£  option 

bounds and the same analysis holds here.
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5.5 C onclu sion

In summary, we have applied the model to sample options from the NASDAQ, 

currency and Index option markets using Sugeno as well as Choquet integration. 

We have analyzed the performance of the model in the presence of implied versus 

historical volatility. We have also looked at how the binomial model is placed within 

those different approaches.

Within the sample considered, the model holds best for American NASDAQ op-

tions. For the European options, it holds better for forex options than for index 

options. The upper and lower bounds, given by the fuzzy and dual fuzzy values re-

spectively, are acceptable for American options but quite wide sometimes for currency 

and Index options. Generally, the fuzzy model is more stable than its dual. But the 

dual fuzzy one is able to detect errors in data better than the fuzzy one does. It 

tends to behave erratically when the input parameters are wrong, for example, we 

have had data entry errors in the implied volatility and time to maturity for S&P 

500 but, due to the unreasonable values returned by the dual fuzzy model, we have 

been able to detect them. On the technical side, Sugeno integration performs better 

than the Choquet integration approach within this framework. Finally, the results 

corresponding to the different volatility estimates are mixed.

As we have seen in the previous chapter, the model has been built on ’fuzzifying’ 

the binomial model, which gives fair prices, to accommodate market uncertainty. 

The problem, as well as the specific solution approach (namely the use of Sugeno 

integration), that have been proposed in our research have never been considered 

before in the finance literature nor have they been considered in the fuzzy literature. 

However, the model does have practical applications and is not only a hypothetical 

model. It is quite interesting to see how fuzzy integration as well as fuzzy measures 

can provide sophisticated tools to tackle tough issues in finance.

In the chapters to follow, we will consider ’conventional’ fuzzy option pricing 

approaches. In the next chapter, we look at option pricing in the presence of a 

fuzzy volatility. We use fuzzy set theory to model the latter and then use fuzzy 

differential calculus to solve the problem. Those tools are used more by fuzzy experts
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to tackle problems in finance and particularly in options pricing theory. Besides, the 

problem itself has been tackled several times by finance researchers using stochastic 

control problems and differential calculus so we will look at the tools and the solution 

approach fuzzy theory has to offer.

132



C hapter 6

Fuzzy Black-Scholes M odel

In this chapter, we tackle the problem of uncertain volatility. Volatility is the 

input that is the most uncertain and the hardest to estimate in an Option Pricing 

Model. This uncertainty leads to uncertainty in determining a fair option value and 

gives rise to market incompleteness. Therefore, the issue of estimating the volatility 

that has to go into an Option Pricing Model has motivated researchers over the years 

to come up with various alternatives to deal with volatility.

This has often raised the question of which volatility estimate is the best to input 

into an Option Pricing Model. The usual approaches involve using stochastic volatil-

ity models, local volatility estimates or deterministic volatility surfaces. Generally, 

empirical estimates usually generate a single number representing a complete view of 

the market’s volatility at a particular instance of time. More recently, several success-

ful approaches in option pricing literature ([5],[69]) attempting to model volatility as 

an interval rather than as a precise number have been initiated. The general idea is to 

restrict the volatility path to a ’band’ in which volatility can assume any value. This, 

in turn, generates no-arbitrage bounds on the value the option price can assume.

In this chapter, we consider the same concept but a different approach. Particu-

larly, we use tools of Fuzzy Set Theory and Fuzzy Differential Calculus. We model 

uncertain volatility as a fuzzy number and work with its a-cuts to fuzzify the basic 

PDE and its solution. We do not really introduce a new model; rather, we amend the 

Black-Scholes OPM such that it accommodates a volatility band.
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The fuzzy approach that we utilize here is different from the one we have utilized 

in the previous chapter. Our work here is more in line with existing Fuzzy Option 

Pricing literature such as that of Cherubini [30], Della Lunga and Cherubini ([31],[32]), 

and Muzzioli and Torricelli ([110],[112]). The general structure involves using Fuzzy 

Set Theory to derive a fuzzy PDE and then employing Fuzzy Differential Calculus to 

arrive at a fuzzy Black-Scholes equation. This is due to the fact that fuzzy volatility 

transmits fuzziness into the diffusion equation, which has to be solved now using 

Fuzzy Differential Calculus tools. Fuzzy Differential Calculus is a relatively new area. 

Several solution approaches have been suggested in the literature (for a review of those 

approaches, refer to Appendix D). In our model, we consider two solution approaches; 

we will first study the existence of the Buckley Feuring Solution (BFS) to the diffusion 

equation; if it does not exist, we will study the existence of the Seikkala Solution (SS). 

But, first, a literature overview of solving fuzzy PDEs, which are essential for solving 

our problem, is presented. The background to solving such equations lies in solving 

fuzzy equations and fuzzy differential equations, which are summarized in Appendix 

D as well (in fact, the reader is strongly advised to review those models before reading 

this chapter). There are different approaches by which a single equation can be solved 

and a solution does not always exist in the fuzzy case even though it can exist in the 

crisp case.

This model differs from the previous one in that it is parametric, in the sense 

that it depends on a market parameter a, and utilizes Fuzzy Set Theory rather than 

Fuzzy Measure Theory. This market parameter is assumed to summarize the degree 

of market completeness or incompleteness such that the Black-Scholes OPM can be 

used within a complete, as well as incomplete, market setting. So, by manipulating 

this factor, we will be able to allow the model to converge to the standard Black- 

Scholes model and to generate a fair option value under a complete market setting or 

to generate no-arbitrage bounds on the option value that envelope the standard Black- 

Scholes fair option value. This will be analyzed within a worst case/best case scenario 

framework. We will also be able to generate a defuzzified option value based on 

the Muzzioli-Torricelli defuzzification approach whereby a constrained optimization 

problem is performed on the fuzzy option value to deduce the ’implied’ volatility
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bounds from the market.

In this chapter, we present the theoretical model and in the following chapter, 

we consider empirical applications. To this end, we carry out a comparison between 

the defuzzified fuzzy Black-Scholes option value and the standard Black-Scholes one. 

We also carry out a comparison between the uncertain volatility model [5], which is 

finding increasing popularity in the option pricing literature, and our Fuzzy Black- 

Scholes model. Usually, in such models, the bounds on volatility can be estimated 

subjectively, or based on historical behaviour, or deduced from the volatility smile. In 

our case, we consider two different approaches in establishing bounds on volatility in 

our empirical application. The first approach involves utilizing the implied volatility 

bounds deduced from the market by solving the constrained optimization problem. 

The second approach involves subjective estimates based on the implied Black-Scholes 

volatility such that it lies in between. The performance of the Fuzzy Black-Scholes 

model and the Uncertain Volatility one vis-a-vis each other and vis-a-vis the Black- 

Scholes model is analyzed.

This model extends contributions to both Fuzzy Theory and Option Pricing The-

ory with more emphasis on the latter. As far as Option Pricing Theory is concerned, 

we introduce Fuzzy Differential Calculus applications into this theory and provide an 

extension to existing approaches that model uncertain parameters. We also utilize 

an approach by which a volatility band can be deduced from the market, that is, we 

will be able to deduce between what values the market thinks the volatility should 

be confined by using the Muzzioli-Torricelli defuzzification approach [112]. We also 

provide a general framework, which can tackle both complete and incomplete market 

cases. Last but not least, we will be able to provide worst case and best case scenarios 

which are particularly useful in an uncertain environment. The advantage of a worst 

case scenario is that it protects an investor against adverse events.

As for the contribution to Fuzzy Theory, we present as comprehensive a docu-

mentation on Fuzzy Differential Calculus as possible. As we have mentioned earlier, 

Fuzzy Differential Calculus is a new area and the majority of research is scattered 

in various papers. So we try to combine various approaches together. Besides, fuzzy 

finance is still in its infancy and the majority of models in Fuzzy Theory that tackle
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applications in Finance Theory are trivial (apart from Fuzzy Option Pricing which 

has been tackled by ’finance’, rather than ’fuzzy’, experts). We contribute to extend-

ing a more practical approach in line with the increasing literature in fuzzy option 

pricing.

We start with a brief literature review of the various approaches proposed for solv-

ing fuzzy equations, fuzzy differential equations and fuzzy partial differential equa-

tions. Appendix D provides more elaboration on fuzzy derivatives. Then we move 

on to fuzzify the Black-Scholes PDE, starting with the basic PDE, and its solution, 

which is the Black-Scholes call option value. We consider two solution approaches 

and study the associated conditions that have to be satisfied. Finally, we establish 

the final form of the model and carry out a worst case/best case scenario analysis, 

with empirical applications to follow in the next chapter.

6.1 S o lv in g  F uzzy P artia l D ifferen tia l E q u ation s

6 .1 .1  B u ck ley -F eu r in g  S o lu tio n

Appendix D presents a brief overview of solving fuzzy equations and fuzzy differ-

ential equations, which serve as the background to the solution approaches reviewed 

in this section. In solving fuzzy differential equations, Buckley and Feuring [21] in-

troduce a new solution approach. In [20], they apply their new solution concept to 

solve fuzzy partial differential equations. They define the elementary fuzzy partial 

differential equation (FPDE) as 

<p(Dx,Dy)U(x,y) = F(x ,y ,k )

F ( x , y , k ) is a continuous function for (x,y) € I\ x I 2 and k — (ki ,. .. ,kn) is a 

vector of constants,

ip(Dx,D y) is an operator which is a polynomial in Dx and Dy, the partials w.r.t. 

x  and y respectively with constant coefficients.

U(x, y) is a continuous function with continuous partials in x  and y with (x, y) G

h  x h ,

where I\ — [0, Mi], I2 =  [0, M2], and Mi, M2 > 0.

The equation can be subject to boundary conditions of different forms. The solution
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to the FPDE with boundary conditions is 

U(x, y) = G(x,y,k,c),

where k and c are constants. But they are uncertain. Hence, we can model this 

uncertainty by substituting triangular fuzzy numbers for them. The solution approach 

goes as follows

(i) Fuzzify the crisp PDE to obtain the elementary FPDE and compute F  from F  

using the extension principle (F(x,y,  K)). Also, U becomes U, which maps I\ x I 2 

to fuzzy numbers, i.e., U(x,y ) =  Z, which is a fuzzy number. The fuzzified PDE is

ip(Dx,D y)U(x:y) = F (x ,y ,K )

with fuzzy boundary conditions such as: 1/(0, y) = Ci,U(x,0)  =  C 2, •••, 17(0, y) = 

9 i(y\C/i) ,U(x,0 ) =  f i (x;  C5)... We get gi and f t from y, and fo using the extension 

principle.

Let Y(x,y)[a] = [yi(x,y,a),y2 (x,y,a)},

F(x,y)[a\ = [F1(x ,y ,a ) ,F 2 (x,y,a)}, 

where yi(x,y,at) = min{G(x,y,k,c) \ k G K{a],c 6 C[a]}, 

y2 (x ,y ,a)  =  max{G(x, y, k, c) | k £ K[a],c G C[or]},

Fi(x ,y ,a) = min{F(x,y ,k) \ k £ K[a]},

F2 (x,y, a) =  max{F(x,y, k) \ k £ K[a}}.

(ii) Let r (x ,y ,a) = [ip(Dx, Dy)y\(x,y,  a),ip(Dx, Dy)y2 {x,y,a)}

Assuming y i(x ,y ,a ) have continuous partials so that ip(Dx, Dy)yi(x,y,a)  is contin-

uous for all (x,y) in I\ x I2, and all a , i  =  1,2. If T(x,y ,a)  defines the a-cuts of a 

fuzzy number for all (x,y) in I\ x I2, and all a , i  = 1 , 2, then Y ( x , y ) is differentiable 

and

(p(Dx,Dy)Y(x,y)[a] = T (x ,y ,a )

Therefore, for Y(x,y )  to be a BFS to the FPDE, the following conditions must hold

a) Y(x ,y )  is differentiable.

b) Y(x,y )  satisfies ip(Dx,Dy)Y(x,y)  = F (x ,y ,K )

c) Y(x ,y )  satisfies the boundary conditions.

(iii) Therefore, Y(x ,y )  is a BFS (without considering boundary conditions) if Y(x,  y) 

is differentiable and ip(Dx,Dy)Y(x,y)  =  F(x ,y ,K ) ,  in other words,

ip(Dx,D y)yi(x,y,a) = Fi(x,y ,a)
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ip(Dx,D y)y2 ( x , y ,a ) =  F2 ( x , y ,a ) 

Sufficient conditions for the existence of BFS

These are the same as the ones imposed for solving FODEs. However, in this case, 

the authors ignore boundary conditions because each one needs separate studying and 

so they omit the constant Cj from the problem. Hence,

U(x,y) = G (x ,y ,k )

=*• Y(x,y )  = G(x,y, K).

6 .1 .2  Seik k a la  S o lu tio n

If Y{x,y)  is not a BFS, then we have to look for the Seikkala Solution (SS). Let 

U(x,y)[a] = [ui(x,y,a),u2 (x,y,a)]. We have to solve the following system of FPDEs 

cp(Dx,Dy)u i (x ,y ,a ) =  Fi(x,y ,a)  

ip(Dx,Dy)u2 ( x ,y ,a ) =  F2 (x,y,a)  

with boundary conditions, e.g. U(0,y) — C i ,U (M i ,0 ) = C2,

« i(0,y, a) =  cn(a), 

u2 (0 , y ,a )  =  c12(a), 

u i(M i ,y ,a )  = c2i(a), 

u2 (M2 , y , a ) =  C22 (u).

So Ui(x,y,a) is a solution to the system if [ni(^,y,a),'U2(3;,i/,Q!)] define the a-cut of 

a fuzzy number. Then, U(x,y) is the SS.

Therefore, we have also seen various approaches to solving Fuzzy Equations, DEs 

and PDEs. The next step will be applying these approaches to the heat diffusion 

equation and, derive a fuzzy Black-Scholes OPM.

6.2 T h e C risp M od el

The model is the basic Black-Scholes OPM but adapted to accommodate uncertain 

volatility. So rather than using one precise value for volatility, we allow the use of an 

interval bounded by an upper and lower volatility value that bound the true volatility 

value. Those bounds can be subjective or inferred from historical data. They lead to
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intervals of option prices that are dependent on a market completeness factor. The 

original PDE is,

1 d2l n2 c2___
2 dS 2

C{S,t) + dC(S,t)
dt +  (r -  £>0)S

9C (5,i)
95

— rC(S,t)  = 0, ( 6 .1)

and its solution is the Black-Scholes equation,

C{S, t) = Se~DotN(di)  -  Ee~rTN{d2) (6.2)

where d1 = ln(s )+(r ^ ° +<a ) r ,
1 O y / T

and d2 = in(-f )+o--Po-y)r
O y f r

= d i -  a yfr.

The first step would be to fuzzify this PDE and then move on to apply fuzzy differ-

ential calculus tools.

6.3  F uzzification  o f  P D E

Assuming volatility is the only variable that is uncertain and can be modelled 

by fuzzy set theory, we will fuzzify it by substituting fuzzy triangular numbers for it, 

whereby a = (cri, <r2, a 3 ) with a-cuts a =  [a\(a), 02(0:)], where

(Ti(a) =  (fj2 -  cri)a +  cri, 

u2(a) =  (cr2 — <73)0 +  03.

This means that d\ and d2 are also fuzzy and can be defined in terms of a-cuts. 

However, to write down their equations in terms of the a-cuts of the volatility, we

need to know the sign of their first derivatives w.r.t. volatility. Hence, 
d<h _  rz _ ln(E)+(r Po+%~)T
do =  \ / T o2y/r

which is positive iff ^  > (r -  D0)r +  ln (J |), meaning that the a-cuts of d\ =  [ 

d n (a ) ,d\2 {a)\ can be written as follows

dll(a) =  H i ) H r - D o ^ )r' cri(a)vT

dJ2(a) = l n ( 4 ) + ( r - D 0 +  ^ h T ) r  
CT2(a)Vr ’

otherwise, i.e. when ^  is negative,
=  l n ( # ) + ( r - £ > 0+ ^ % i ) r  

^2(a)y/r ’dll (<*)

=  ln(f)+( r - Z ^ ) r
'  G \ [ O L ) s / r
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Similarly,
ddo rz ln( l)  + (r--Do-i# ) r
da -  V T a2 ^  >

which is positive iff ^  < — ( r  — D q ) t  — In (J(), meaning that the a-cuts of (¿2 — [

(¿21 (a), ¿¿22(ĉ )] can be written as follows
ln(f  )+(i’--Do + f4 ^ )r(¿21 (a) = 

^22(0) =

CTl(a)v/r
ln(~f )+(r--po+f:2|^ ) T

a2{o)Vr ’
<3rfiotherwise, i.e. when ^  is negative,

2̂1 (a) =  

2̂2 (a ) =

K|)+(c-Oo+- -)r
a2(a)y/r ’

ln( f  )+ (r' - ' Do +  f 4 ^ ) r
(Ji(a)\/f

Therefore, the equations for (¿land (¿2 depend on the moneyness and the maturity 

of the option. Table 1C in Appendix C shows the bounds for the fuzzy volatility 

estimated from the implied volatilities of the bid and ask quotations. This is effectively 

like saying ’The volatility is around the mid value.’ So, given that volatility is a 

triangular fuzzy number by definition, we choose the lower and upper limits to be 2% 

higher and 2% lower respectively (of course, the 2% is only an example and we can 

have variations of it). Then, we compute the a-cuts of the fuzzy volatility as shown 

above and substitute them in (¿land (¿2. Alternatively, we can work with the fuzzy 

volatility itself, rather than fuzzy (¿iand A-

To fuzzify the PDE, let us first write it in the following form:

< p (D s,D t) U ( S , t )  =  F (S , t ,< r) , (6.3)

we get:

2
a 2 S 2

[rC(S,t)
d C ( S , t )

dt
(r -  D0)S

d C ( S ,  t) 
d S

(6.4)

hence,

AAs, A )  = A sA , (6.5)
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U(S,t) =  C (S ,t) . (6.6)

Let S £ I 1 =  [0, Mi] and t £ I 2 = [0,M 2], where Mi > 0 and M 2 > 0. Now, we 

can fuzzify it. Using the extension principle, compute F ( S , t ,a ) from F(S,t ,a) .  The 

function C (S , t ) becomes C(S , t ) so that C maps I\ x I 2 to fuzzy numbers, that is, 

C(S , t ) =  Z  where Z  is a fuzzy number. We get,

F( S ,  *’<') = J s * |rC (S’() “  -  <r  -  , (6.7)

C (5,t) =  G(S,t,ar) =  Se~DotN(di) -  E e - rTN(d2). (6.8)

We get the following fuzzy PDE,

ip(Ds ,D t)C(S,t) = F(S,t,&).  (6.9)

Now, fuzzify G by computing Y(S, t)  =  G(S,t ,a)  using the extension principle. Let 

y(S',i)[a] =  [yi(S,t ,a),y2 (S,t,a)},

F(S,t ,a)[a} = [Fi (S , t ,a ) ,F 2 (S,t,a)], 

where

y i(S ,t ,a )  =  min{G(5,t,cr) \ a £ <j[a]}, 

y2 (S , t , a ) =  max{G(5, i, a) | cr 6 ff[a]},

F^S 1, t, a, a) =  min{F(S, t,a) \ a £ <7[a]},

F2 (S, t , a , a) =  m&x{F(S, t,a) \ a £ fxfa;]}., 

for all S , t  and a. Define

r(S ’, t ,a )  =  [ip(Ds ,D t)y1(S,t,a),ip(Ds ,D t)y2 (S , t , a )], (6.10)

If T(5, t, a) defines the a-cuts of a fuzzy number, then Y (S , t) is differentiable and we 

can write
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<p(Ds ,D t)Y(S ,t)[a}  =  r ( S , t , a ) . (6.11)

6.4  F uzzy S o lu tion s

6 .4 .1  B u ck ley -F eu r in g  S o lu tio n

Recall that for Y ( S , t ) to be a BFS (Buckley-Feuring Solution), we should have,

(i) Y (5, t) is differentiable,

(ii) Y(S ,t )  satisfies the PDE <p(Ds, Dt)Y(S,t)[a] = F ( S , t , a ,a ) i.e. 

ip(Ds ,D t)yi(S,t)[a\ =  F1(S , t ,a ,a) ,

<p(Ds ,D t)y2 {S,t)[a] =  F2 (S,t ,a ,a) ,

(iii) Y (S , t) satisfies the boundary conditions:

C7(0,t) = 0,

<7(5, f) = m ax(5-F ,0),

(7(5, t) w 5 as 5  —> oo.

Recall also that the sufficient condition for the existence of a BFS, assuming that

Y ( S , t ) is differentiable and ignoring boundary conditions, is

d G d F  ^  n  
3 a  da ^  U ’

otherwise, Y ( S , t ) is not a BFS and we have to look for the Seikkala Solution SS. 

Therefore, we will proceed by checking for the existence of the BFS and, if it does 

not exist, we move on to SS.

For the solution to be a BFS, it has to satisfy its sufficient condition. So after 

fuzzifying F  and G, we find their first derivatives w.r.t. a 

(i) f  =  S e - D̂ N \ d x) ^  -  E e ~ ^ N \ d 2) ^

= 5 e -DorlV '(d i)^  -  Ee~TTN \ d 2)%fe + Ee~rTN'(d2) ^ ,

But Se~D°TN'(d\) = Ee~rTN'(d2) (substituting N'(x) = ^ ^ e ~ 2x2and the 

equations for d\ and d2), we get

=  Ee~rTN'(d2 )y/r > 0 always. Hence, for BFS to exist, ^  must be

positive.
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W  -  = $ £  VC -  f  -  (r -  D0 )S§ ] +  J n ,  [ r f  -  £  ( f ) -  (r -  D „ ) S £ ( $ )]9 F

Calculating each term separately, we find

(a) vega f  =  S e ^ l v W ^  -  Ee— iV'(d2) ^

=  Se~DoTN \ d x) ^  -  Ee~rTN'(d2) ^ -  +  Ee~rT N'(d2)^/r 

= Se~D°TN'(dx) ^ ,

(b) delta fg  =  e~D°TN(dx) + Se~DoT N'{dx)%± -  Ee~rTN \ d 2)dd.2
d S

But

=  e

M i dd?
9 5 —  9 5

9 C — p - D 0t
9 5 —  c

r9di _  ddp - 
1 9 5  9 5  -

A W ,
1 5(fo 

5£(c) theta f f  =  D0 S e - D*TN ^ + S e - 0 ^ N ' ( d x) ^ - r E e - rTN(d 2) - E e ~ rTN'(d2 y-

= DoSe~D°T N (dx)+Se~D°T N' (dx) ^ - —rEe~rT N(d 2 )—Se~D°T N' (dx) ^ -  +

S e - DoTN \ d x) { ^ )

but —rEe~rT N(d2) =  —rSe~D°T N (dx) + rC

=► =  rC  -  S e -^ iV id O fr  -  D0] -  ^

-  rC -  Se~D°rN (dx)[r - D 0] - % %

= r C ~ S ( r - D o ) 1 g - £ % ,

Ml J L ( S > C )  — r dC_ _  Q( _  r\ \ J L ( § £ L \ __L 9C. _  -g. g2.g
W  9cr 1 d t  > ~  T  d a  U ^ )  d a  V 9 5  > 2 r  9 ct  2 t  9 cr2

\ 9 d i_(dC) — p~DoT N ' (d A l-__
d a  v 9 5  /  e  JV l “ 1 /  9 a  ’but

J  M l  _  —\ / f  ln (5 /g )  , u r g y / r - f i  Dp+a'2/2)Ty/r  
9(7 <72T <72T

_  - 1  rln (5 /E ) _  (g2/ 2 - r + D o ) C r -i 
a  1 c r , / r  a  1a i cr Cr

\̂ 2<7= >  ) =  - e - ^ i V 'K ) ^

_ M2 9g
a S y /r  da  ’

and 0  =  ~§^{Se~D°TN'(dx)y/r)

= S e - D°Ty/ f N " ( d i ) M5(7

= - S e - ^ y / r N " ^ )

but IV 'W  = —dxN'(dx)
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u ' o y r  2r  2 r  J do

EoS L - ^ h \ r C - r C  + S ( r - D 0)!§  +Substituting in we get

- (r - A>)Sfgl + -  rig -  (r -  D o ) ^ f  +  ¿ f  +  +  (

Do ) S ^ ~ 2 S -

o dC  
2 r 9ct r —

t S o/ t  do ■

—4 r_o_9Cl i 2 [ I 3C  i di d? dC  l 
2 r 9cr J <r2 S 2 I-2t  do  ' 2r  9 < r-I~  <J35 2

_ - 1  dC  , d u b  dC
o ^ S ^ t  do ' o ^ S ^ t  do

= (*<¡2 -  l ) ( ^ ) g

Recall that for BFS to exist, ^  > 0 must hold. But ^  > 0 iff d\d,2 > 1- There 

are three cases to consider:

(i) at-the-money (call) options: S k , E  = b  In(S/E)  «  0

d-i =

d,2 =

(r-£)0+V)T 
---’

(r-D o-^)r
O y f r

, , _  f f r Do + ^ ) f f - P o .- %-)T _  [ (r -g p )2— <74/4 ]t“1«2 — „2 — „2

dxd2 > 1 iff K^-P°I2-^ 4/4k  > ! ( ^ ) 2r  -  4 r  > 0

But if cr > >  (a —> oo), the first term —> 0 and the d\d2 —> —oo 

= >  < 0 and BFS does not exist.

However, if a < < = >  (r~aP° )2 > >  and < < , then d\d2 > 1 

=i> > 1 and BFS exists. Therefore, we have a change of sign for at the money

call options.

(ii) out-of-the-money options: S  < E  =>- In (S/E) < 0 

did2 =  dx(di -  ct^/t ) = d\ -  d i a ^ r  +  ^  ^
o y r \  2 O^T

—  ( d l  2 > 4

l n ( 5 / E ) + ( r - D 0 +  ̂ ) i
O y / r

\ n { S / E ) + { r - D 0+±

oyr
2

n 2

Os/r

\n (S / E )+ rT —DpT 
Oy/r

1 2



\n (S /E )+ rT —DpT 
<J y/T 4" > 1did,2 > 1 iff

If o —> Too, the first term becomes infinitesimal while the second term becomes 

very large meaning that < 0 and, hence, the BFS does not exist. However, if 

it  < < , the first term becomes a positive very large number while the second becomes 

infinitesimal, which means that > 0 and BFS would exist. Moving on to the 

effect of the stock price and the exercise price, we know that for out-of-the-money 

calls S < E  ==>■ -g € ]0,1 [ = >  ln(Jf) 6 ]— oo,0[. So for deep out-of-the-money calls, 

S  «  E  ==>• In Jf —> —oo = »  (in Jf) 2 > >  and d\d,2 > 1 = >  fy  > 0 and BFS exists 

unless a > > , where the case at hand will have to be studied individually. Therefore, 

we again have a change of sign.

As it is the case for in-the-money calls, S > E  =>• -J! £ ]1, oof = >  In Jf £ ]0, oof. 

Therefore, the same analysis as in the out-of-the-money calls case holds here and, 

hence, we have a change of sign once again. However, the numerator in the first term 

(in (¿1^2) f°r in-the-money calls will always be larger than that for out-of-the-money 

ones.

When the BFS exists, the solution to the fuzzy PDE is

Yi(S,t,a) = Se~D°TN ( H  ) Ee rATln(” )+(r~P ° ~ ^ ^ ) T
'  <Ti(a)y/r )■

6 .4 .2  Seik k a la  S o lu tio n

For the case where BFS does not exist, we have to look for the SS. Let C(S , t)[a] =  

[cj(5, t,a),C2 (S, i,a)]. Hence, we have to solve the following system of partial differ-

ential equations,

$ sC1 (S ,t ,a)  = 

^ C 2 (S ,t ,a)  =

2
CTj(a)52

2

[rCl(S ,i,a ) -  -  (r -  D0 ) S ^ ^ } ,

[rC2 (S, t, a) -  ^ § ^ 1  -  (r -  D0 ) S ,

subject to

Ci(0,i) =  0,

Ci(S,t) =  max(S — E, 0), 

Ci(S,t) «  S  as S  —> 00,

i  =  1,2. 

The solution is
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cr?(a)
Ci(S,t, a) = S e - D°TN Cn{* )+{r~D°t-~^~-^ )  -  Ee~rTN( ln( f  )+(r- Do -  Zĵ r!- ) t  -,

CTi (a) y / f  > '  <Ti( Oi)yfr

i  =  1 , 2 .

SS exists if 

[c1(S , t ,a ) ,c 2 {S,t,a)]

defines the a-cuts of a fuzzy number. Since Ci(S, t, a) are continuous and C\(S , t, 1) = 

C2(S, t, 1), we only have to check if f j 1 > 0 and < 0. Starting with 4^-, we get

^  =  S e - ^ N ' i d , ) ^  -  E e - ^ N \ d 2) ^

¿ =  1 , 2,ddj _  ddj d a d a )  
d a  da i(a )  da  :

ln( l )  + (r~Po+^ ) ' i
o 2 s/ t

ddi
da =  \ / T  -

l n ( | )  +  ( r - - D 0 - ^ ) r  

* ^ <r2yrr
dd? 
da

a x >  0,
<9(72 ( a )  __

da 0 2  -  03 < 0.

After some calculation, we get
c>di
da

ddi
da

^ r + D 0r - \ \ n ^ ) + r r \
a 2y/r

: r + g 0 r - I n ( - | ) - r T  

a 2 s/r

(a2 -  o-i ),

(cr2 -  o"i) ■

Substituting in and using ~Se~D°rN'(dx) = Ee~rrN'(d2), we get

d- t = S e - D° 'N \ d l ) [ ^ - d- £

= 5 e -p<>TAl'(di) ((t 2 -  ax) V? > 0.

Similarly, for ^  and working with cr2 — cr3, we get 

f a  =  Se~D°TN'(dx) (a2 -  o3) ^  < 0.

Therefore, Cx(S,t, 1) =  C2 (S,t, 1) do define the a-cuts of a fuzzy number and so SS 

always exists.

6.5 A lgorith m

1 . Start with BFS.

1.1. Fuzzify the PDE by computing F  and G from F  and G using the extension 

principle.

1.2. Test the sufficient condition for the existence of the BFS: since ^  > 0 always, 

the BFS exists iff ^  > 0. But > 0, only if d\d2 > 1. So if this does not hold,
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look for the SS. If BFS exists, then the solution has the form 

Yi(S,t,a) =  -  Ee~rTN (Ĥ§)+(r~D o -£4 Si)r '
a (a)y/r >'

2. If BFS does not exist, we have to check for the existence of the Seikkala solution.

2.1. Write the solution in terms of a-cuts and derive the system of Partial Differential 

Equations.

2.2. Check if those a-cuts define the a-cuts of a fuzzy number by testing whether 

> 0 and < 0. If they do, then the SS exists and the solution is defined as

Ci(S , t ,a ) =  -  E e ~ ^ N {

i =  1, 2.

I n ( | ) + ( r - D 0- ^ ) r ,

C7i(a)^T '

6.6  A n alysis

This model can be used within a complete as well as an incomplete market setting 

depending on the level of a  assumed. It returns no-arbitrage bounds on the call value 

or a range of the possible no-arbitrage prices a call value can assume. However, it is 

also possible to defuzzify the call value and get one crisp number, which is independent 

of a, as we will see in the following chapter.

a  can be viewed as summarizing the level of market completeness. Other plausible 

interpretations of a  are confidence level or information level. It can assume any value 

between 0 and 1. From a fuzziness point of view, the case where a  =  0 corresponds 

to complete fuzziness while that where a  =  1 corresponds to complete ’crispness.’ 

Within the context of our model, a  =  0 corresponds to ’total’ market incompleteness, 

or highest level of uncertainty, and widest bounds on the uncertain parameter and the 

corresponding option price while a  =  1 corresponds to market completeness, or no 

uncertainty, and the bounds on the uncertain parameter and option price converge 

to one certain value. As a increases, the ’level’ of market completeness increases 

and the bounds converge or tighten. The case where it assumes a value of 1 is the 

Black-Scholes case, hence, our interpretations of a  as measuring the level of market 

completeness since the Black-Scholes OPM is assumed to hold within a complete 

market setting.

Using this framework, it is possible to carry out a historical study of the values
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a has assumed whereby the Black-Scholes call value is assumed to be the fair price 

and observable prices are only deviations of it. However, for the purpose of calcu-

lating the no-arbitrage bounds, a can be estimated subjectively or historically. For 

emerging markets, a plausible value of a should be below 0.5 while for more developed 

markets, it should be above 0.5 and approaching one as the market approaches ’total 

completeness.’

The major contribution of this model is that it gives no-arbitrage range for option 

values in an uncertain environment such that anything inside this range is possible, 

without having to assume anything about its probability of occurrence, while anything 

outside it is impossible or arbitrageable. But it is still possible to get one crisp number 

even though, as we will see in the following section, it is possible to argue that the 

value-added does not really justify the computational cost involved.

Therefore, in the presence of an uncertain parameter, it is best to deal with a 

range of possible option prices. So, given that any value inside the range is possible 

and that we do not have any information about its probability of occurrence, it is 

plausible to work with a best case and a worst case scenario. Of course, it is not 

sensible to assume a best case scenario since we can incur huge losses if events turn 

around negatively. A worst case scenario is reasonable to assume especially in the 

presence of high uncertainty since anything better will be good and even if such a state 

does actualize, we would be properly hedged assuming we had properly discounted it. 

On the downside, we may suffer from an opportunity loss since we do not discount 

or use all information. The underlying assumption of the previous statement is that 

a worst case scenario entails or requires the least information. In such a case, our 

model can be used as a correction by manipulating the level of a  as we will see in the 

following chapter.

Assuming very high uncertainty and from an objective point of view, a = 0 

corresponds to a worst case scenario since in that case, we have complete fuzziness 

and the parameter under consideration, such as volatility in this case, is ’maximally’ 

uncertain or fuzziest. The bounds we get on such a parameter and the corresponding 

bounds generated on the option price itself are widest. On the other hand, a =  1 

corresponds to a best case scenario since we do not have uncertainty and the uncertain
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parameter’s bounds converge to its most possible value. In this instance, the range 

of option prices also converge to one value, which is the Black-Scholes market. In 

the case where uncertainty is not, or is not expected to be, very high, the expert can 

manipulate a  to the level he/she finds appropriate.

Thus, the best way to utilize this model depends on the expert. If the expert 

desires one value and does not wish to lose information, it is possible to use a defuzzi-

fication process with minimal loss of information. If the level of uncertainty is very 

high, it is best to assume the worst case/best case scenario analysis presented above. 

On the other hand, the expert can always manipulate a  to the level of uncertainty 

he/she thinks is appropriate.

6 .7  C onclu sion

Therefore, in this chapter, we have presented a model that prices options in the 

presence of uncertain volatility, which can also be applied in the presence of other 

uncertain parameters, such as uncertain dividends or interest rates. Option Pric-

ing Theory has tackled this matter using standard tools including stochastic control 

methods and Partial Differential Equations, as we have seen in Chapter 3 and will 

talk more in detail about one such approach, namely the Uncertain Volatility Model 

[5], in the following chapter. In our model, we have used a different approach, which 

involves Fuzzy Theory.

We model the uncertain volatility as a fuzzy number. This fuzziness generates 

fuzziness in the basic Black-Scholes diffusion equation, which has to be solved using 

Fuzzy Differential Calculus, and its solution, which is the call value. This means that 

we obtain a range of possible values for the option price, which depends on a parameter 

a  summarizing the level of market completeness. Existing Option Pricing Models that 

deal with uncertain parameters agree on the fact that an uncertain parameter has to 

generate bounds on option pricing, in other words, in the presence of uncertainty, we 

no longer get one no-arbitrage value, rather we get no-arbitrage bounds for the option 

price in between which any value is possible. In such instances, it is best to work with 

a worst case/best case scenario analysis.
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However, in our case, it is possible to defuzzify the fuzzy price to get a crisp 

number or one value, that best summarizes information, instead of a range. Besides, 

our model is quite simpler than other equivalent models in Option Pricing Theory 

and allows the expert to manipulate the width of the bounds since those bounds tend 

to be quite wide as most of the results given by the latter models show. Finally, it 

accommodates more than one uncertain parameter at once easily, which is not offered 

by other approaches.

This model is also different from the Fuzzy Binomial Model that we have presented 

in Chapter 4 even though both models tackle uncertainty and utilize some form 

of Fuzzy Theory. The Fuzzy Binomial Model deals with uncertainty using fuzzy 

measures of a fuzzy event but this model does not really consider measures; rather, 

it works within the same framework as the crisp approach but introduces fuzziness 

into it. So it implicitly assumes working with the probability of a fuzzy event with 

no explicit definition.

The following chapter will present an empirical application and a comparison 

between this model and the Black-Scholes OPM as well as the Uncertain Volatility 

Model [5]. We will also look at the empirical application of the worst case/best case 

scenario analysis and the behaviour of the bounds as a  is varied.
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C hapter 7

The Fuzzy Black-Scholes Model: 

Empirical Applications

In the previous chapter, we have seen a fuzzified form of the Black-Scholes OPM 

that accommodates uncertain parameters. We have particularly considered uncertain 

volatility and fuzzified the Black-Scholes model accordingly so that we do not have the 

restriction of the constant volatility assumption anymore. In this chapter, we consider 

empirical applications as well as comparisons to existing Option Pricing Models.

In the first part, we defuzzify the fuzzy call option value using the Muzzioli- 

Torricelli defuzzification approach [112] to get a crisp number independent of a. This 

approach facilitates analyzing the predictive power of the fuzzy Black-Scholes OPM 

as well as comparing it to the standard Black-Scholes equation. In the second part, we 

compare it to the Uncertain Volatility Model [5], which is the most popular approach 

in modelling uncertain volatility in the existing option pricing literature.

7.1 F uzzy B lack-Scholes O P M  vs B lack -S ch oles O P M

7 .1 .1  M e th o d o lo g y

In this section, we will be comparing the forecasting ability of the Fuzzy Black- 

Scholes (FBS) model to that of the Black-Scholes (BS) one. This is a two-fold process. 

The first stage involves deducing the implied volatilities from these models using a
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training set. The second stage involves using those implied volatilities in testing sets 

by matching strikes and expirations to forecast option prices. The results of the two 

models will be compared on the basis of the RMSE and RMSE as percentage of price.

In the FBS case, we need to get three values ( c i , ^ , ^ )  for the volatility (section 

6.3) that describe the fuzzy number by training the model on a given data set. Then, 

we have to input those values into the fuzzy model and get a defuzzified forecasted 

value for a different out-of-sample test. For the BS model, we get the implied volatility 

using the same training data set we have used for training FBS and then use this 

implied volatility to forecast prices using the testing data set. We compare the implied 

volatilities as well as the root mean square error, RMSE, and RMSE as percent of 

price of both models.

We follow the algorithm outlined in section 6.5 in the previous chapter to write 

the coding for FBM. To be able to obtain the implied volatilities, we use the Muzzioli- 

Torricelli defuzzification approach [112]. The authors solve the following problem,

mimD(C, PT) = f ( C -  PT ) 2 d a + f  (C -  PT ) 2 da, 
pr o o

where D is the metric distance between a crisp number and a fuzzy number, and from 

the first order condition, it follows that

Pt  = \  I  (C + C) da. 
o

This is substituted into

D(C, PT) = f ( C -  PT ) 2 d a +  f ( C -  PTf  da, 
o o

which can be written as,

D{C, PT) =  f  (C l  +  G2) da -  2P f

The square root of this metric is an index of fuzziness measuring the dispersion of the 

fuzzy prices around the defuzzified one.

The optimization problem we look at is constrained by,

a € [0, 1]

<J\ < a <2 < 03.

We solve the non-linear constrained minimization problem using Excel Solver, 

which implements the Generalized Reduced Gradient (GRG2) nonlinear optimization 

code. However, if we build the whole model in Excel, it will crash due to technical 

constraints. So we have built a C ++  COM object (dll) that has all the calculation
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code and then created an object of COM type in VBA code in a dynamic Excel 

spreadsheet that allows the user to access the functions in the COM object. So 

effectively, the training data set has been entered in Excel and then a VBA function 

is called through which the input data is passed and gets processed in C ++ COM. 

The COM object computes the distance between the FBS option value and the market 

option value (Last) to be minimized. The result is passed back to the VBA function 

and displayed in the spreadsheet. Another VBA macro has been built that calls the 

Excel Solver from VBA and performs the minimization technique subject to the given 

constraints. On the other hand, to compute the implied volatilities for the BS model, 

we have used a simple Newton-Raphson technique and implemented it in Excel/VBA.

This gives us the implied volatilities for both models, which will be used for 

forecasting the call option price using a separate testing data set. To forecast the 

call option prices, we build a C ++  console application that takes as input the testing 

data set with the implied volatilities and returns results for the FBS and BS option 

values, and the root mean square errors for both models.

7 .1 .2  D a ta  S et

To test the models, we look at S&P 500 index options because it is the most 

actively traded European option. We consider three market data sets: a training one 

and two out-of-sample testing one. The training set has been quoted on the 24th of 

July 2002 at 16:46 and is comprised of 134 observations. The out-of-sample testing 

sets are quoted such that they allow us to study the implications of the degree of 

closeness of the training set to the testing set on the performance of the models. The 

first testing set corresponds to same day closing prices, namely 24th July 2002, as the 

training set. The second set has been quoted on the 4th of October 2002.

Each data set consists of quotes for underlying, strike, interest rates, dividend 

yield and expiration. Interest rates are those rates corresponding to TB of matching 

maturities with the options. The expiration is used to compute the time to expiry. 

There are usually March, June, August, September, October and December expira-

tions with the option expiring on the Saturday after the third Friday of each month. 

We use the first set to calculate the implied volatilities. The implied volatilities cor-
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responding to a particular expiration and strike from the training set are matched to 

similar expirations and strikes in the testing sets. Those values, alongside the second 

data set, are used to run the comparative results.

7 .1 .3  R e su lt  A n a ly s is

Tables IE and 2E in Appendix E show the results for the option values using both 

models as well as implied volatilities for 24th July and 4th October sets respectively. 

Also shown are moneyness and expirations. ITM, OTM and ATM in the moneyness 

column stand for in-the-money, out-of-the-money and at-the-money respectively. The 

BS implied volatility is given by sigmaBS and the FBS implied volatilities are given 

by sigmal, sigma2 and sigma3. As Table 2E shows, we do not have forecasting results 

for the whole set of options quotations for that day because we do not have matching 

information for the whole set.

As figure 7-1 shows, the FBS implied volatilities sometimes coincide for sigmal 

and sigma2, or sigma2 and sigma3 except for some deep-out-of-the-money options. 

The reason that sigmal and sigma2 or sigma2 and sigma3 sometimes coincide is due 

to the way the volatility constraint is defined since we allow for equality between the 

mid and the extremes so we do get an interval sometimes. The BS implied volatility 

tends to be enveloped by the FBS implied volatilities except for deep-out-of-the- 

money options where it exceeds the upper bound but it is never below the lower 

bound. However, it can be between sigmal and sigma2 or sigma2 and sigma3. The 

observations where the BS implied volatility is closer or overshoots the FBS implied 

volatilities also correspond to the widest spread between the FBS upper and lower 

volatility bounds. On the other hand, the observations where the BS implied volatility 

is closer to the lower FBS lower volatility bound correspond to the smallest spread 

between the two bounds. Sometimes, the bounds coincide for at-the-money options.

As for the valuation, the two models produce very close numbers. However, their 

performance depends on how close the testing set is to the training set. For the July 

testing set, the RMSE and RMSE as percent of price for FBS model are 23.4674 and 

1.31694 respectively while those for BS model are 24.0083 and 1.55599 respectively. 

So, generally, the FBS model gives better results than the BS model. For the October
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Im p lied Vo

Figure 7-1: Implied volatilities of the BS and FBS models

B S vs  F B S  (Ju ly S et)

Figure 7-2: FBS and BS call option values for the July forecasting set

testing sets, there is general underpricing for both models, which increases as the 

option moves in or out-of-the-money. The least underpricing occurs for at-the-money 

options. The corresponding RMSE and RMSE as percent of price for the FBS and BS 

models are 20.1728 and 0.41685, and 20.0986 and 0.486109 respectively. So, generally, 

the BS model performs slightly better than the FBS one. Figures 7-2 and 7-3 show 

the prediction results for both forecasting sets. There is general overpricing for in- 

the-money options but underpricing as the option goes out-of-the-money and it is 

systematic for both models.

Interestingly enough, the two models seem to perform better for the testing set 

that is farther from the training set, that is, they give better results for the October 

testing set than they do for the July one. This indicates that the closeness of the 

training to the testing set is not really very relevant. Rather, what is relevant is the 

input data going into both models. The October testing set has closer data to the
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B S vs F B S (O r Sat)

Figure 7-3: FBS and BS call option values for the October forecasting set

training set, for example, the underlying price of this set is closer to the underlying 

price of the training set than the July testing set price is even though the time to 

expiries do not match exactly. However, the training set under consideration is not 

comprehensive and, hence, one has to be careful when training those models to have 

as comprehensive a data set as possible. When the user is working with a small 

training data set and the circumstances change or the behaviour of the data changes, 

the results are expected be offline, irrespective of where the testing set stands vis-a-vis 

the training one.

This is actually a drawback of the FBS model, which is the also the case for the 

BS model, because it means that it has to be trained on a new data set every time the 

settings change, which happens quite often in the financial markets. The alternative 

is to train the model on a comprehensive data set. On the other hand, if the FBS 

model is used to look at the volatility of the market, then it can be very helpful 

because it gives the trader bounds on the values the market views volatilities and, 

consequently, gives him a margin of error.

Another drawback is that it is computationally cumbersome, which can make it 

quite slow if the appropriate hardware is not available. A possible solution is to build 

the whole system in C ++, that is, to program the optimization code in C + +  because 

that definitely speeds up the computation and to use a powerful machine. Besides, 

with a data set of 134 observations, which is not considered a large data set, Excel 

has crashed several times and the results have been lost.

It is also possible to use market data to determine a, signalling the level of market
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information or incompleteness of market. The estimation of a  can be subjective but 

it is also possible to study its value and behaviour pattern historically and draw 

implications or use the result for forecasting. In the following section, we will consider 

such applications. Besides, we will be comparing the bounds on the call value we get 

using the FBS model to those we get using the Uncertain Volatility Model.

7.2 F uzzy  B lack -S ch oles O P M  vs U n certa in  V o la tility  

M od el O P M

In the previous section, we have seen how the FBS model fairs vis-a-vis the BS 

model by defuzzifying the call price and calculating the implied volatility bounds from 

market data. In this section, we will study how the FBS model fairs vis-a-vis other 

option pricing models that address uncertain parameters. As we have mentioned 

earlier, we will be particularly considering the Uncertain Volatility (UV) model that 

has been proposed by Avellaneda et al [5]. This model extends an approach for 

pricing and hedging derivative securities in an uncertain volatility environment where 

the volatility is bounded between two values. This, in turn, generates bounds on the 

possible no-arbitrage price an option can assume. So it will be appropriate to look at 

the FBS bounds and analyze them in the light of the UV bounds. We will start by a 

brief review of the UV model and then move to present the methodology and result 

analysis.

7 .2 .1  T h e  U n c e r ta in  V o la tility  (U V ) M od el: A  B r ie f  R e v ie w

Avellaneda et al [5] have introduced a model for pricing and hedging derivative 

securities in an uncertain environment. They consider uncertain volatility so that 

rather than having to summarize a complete view of volatility as a single number, 

one is allowed to bound volatility between two extremes and allow it to fluctuate or 

assume any value in between those extremes such that <7m¡n < a < crraax. As a result, 

the option value must lie between two no-arbitrage bounds where the upper bound 

and the lower bound satisfy the following two equations respectively,
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where the expectations are taken over the set of possible probability paths P, and 

Fj(Stj) represents the stream of cashflows characterizing the derivative security.

The PDE has the following form,

m im  + r -  w(s,t)) + ^  (gf) s2^|jw] = o
As the PDE shows, the volatility is dependent on the convexity of the option. 

So the best way of utilizing this model is by considering it within the context of a 

worst case/best case scenario. In the case of a long position, the worst case scenario 

dictates assuming the volatility coincides with the lower bound, that is, a min =  a and 

vice versa for the corresponding best case scenario. In the case of a short position, the 

worst case scenario dictates assuming the volatility coincides with the upper bound, 

that is, (j =  <rmax and vice versa for the best case scenario. This analysis can be 

summarized by the following equations for the bounds of the option price where W + 

stands for the best case case scenario and W~  stands for the worst case scenario,

<7

and

a

( <Pw±\ _
d S 2 )

( c f w - \  _
 ̂ 8 S2

d2\V
as2
a2w 
as2

> 0

< 0

a2w 
~asT —< 0

a2w
~asT > 0

7 .2 .2  D a ta  an d  M e th o d o lo g y

As we have mentioned earlier, we have to view the FBS result in terms of bounds 

rather than a defuzzified value. We also need to calculate the bounds given by the 

UV model. To this end, we have built an Excel spreadsheet with VBA macros that 

implement the models. For the FBS model, we have followed the algorithm presented 

in the previous chapter. We do not go for the defuzzification approach, rather we vary 

a  to get the bounds. For the UV model, we use the finite difference scheme proposed 

by the authors [5]. They propose the following parameters for the trinomial tree,
^ —— ĝ max V At~\~V At
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U d  —  e  (Jm axV 'A i+T ’A f >

pu = p ( l ~  CTmâ )  ,

Pm =  1 2 p,

and

Pu = P ( l  +  ,
cr2 1where „ *g‘n < p < -k.

We have used the same data sets corresponding to S&P 500 Index options as the 

previous section. We basically adopt two main approaches. In the first approach, we 

consider the implied volatility values that we have obtained in the previous section 

where for the UV model <Ji =  crmin and a 2 =  crraax. We consider three sets for the 

applications. The first set is the July training set that we have used to deduce bounds 

for market implied volatility, namely, the July 24th interday snapshot. The second 

set is the July forecasting set, which corresponds to July 24th close. The third set is 

the October forecasting set.

The volatility values that are input into the models are the ones calculated in the 

previous section based on the July training set. So these values will be fed, alongside 

other inputs, into the models for each set. The intuition behind including the July 

training set in the applications is that we want to study how the bounds behave if 

they are fed the exact volatility from the market irrespective of the forecasting power 

of the model. On the other hand, the July forecasting and October forecasting sets 

applications include an element of forecasting power in them.

In the second approach, we consider subjective bounds for the volatility. We 

assume that the most possible volatility, or <72, is the one corresponding to the BS 

implied volatility and we allow <j\ and cr3 to vary by —0.1 and +0.1 respectively. So 

we get the same volatility spread for all moneyness and expirations. The data set we 

have used for this application is the July training set because we want to study how 

the Call option bounds will vary around the Last price irrespective of the forecasting 

power of the model under consideration. So <12 will be the market implied volatility 

corresponding to the specific option.
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Figure 7-4: Spread of the FBS and UV bounds for the July training set across all 
maturities.

7 .2 .3  R e su lt  A n a ly s is

The results are shown in tables 3 through 7 in Appendix E. Tables 3E, 4E and 

5E present the results for the July training set, the July forecasting set and the 

October forecasting set respectively. They show the UV bounds and the FBS bounds 

corresponding to an a  of 0, 0.5 and 0.1 across different moneyness and maturities. 

The tables also show the Last (or settlement) price for each option. Table 6E displays 

the results for the approach that imposes subjective bounds on the volatility across 

various moneyness and maturities. It also shows the Last price. Table 7E shows how 

the bounds of the FBS model change as a changes.

In line with the analysis of the UV bounds, UV1 (in the tables) corresponds to 

the worst case option price if we are long the option but best case scenario if we are 

short. On the other hand, UV2 corresponds to best case scenario if we are long the 

option but worst case scenario if we are short. For the FBS model, the worst case 

scenario corresponds to an a =  0 because it corresponds to maximum fuzziness and 

uncertainty and, as the tables show, the bounds are widest. The best case scenario 

corresponds to a — 1 because it corresponds to a minimum uncertainty case. As the 

tables show, the bounds, in this case, converge to one value, that of the BS OPM.

The FBS bounds corresponding to an a  =  0 seem to be, on average, wider than 

the UV bounds as measured by the spread in figure 7-4 shows. This figure also shows
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F B S  a n d  U V  (J u ly  T r a in in g  Se t )

Expiration

Figure 7-5: FBS and UV bounds across all maturities for the July training set

that the width of the UV bounds seems to be matching the FBS bounds corresponding 

to an a = 0.5. This pattern is quite consistent across all sets. This can be due to the 

fact that the FBS model, by definition, is more comprehensive and especially tailored 

for high uncertainty scenarios.

However, both bounds show the same pattern of behaviour. As tables 3E through 

7E show and as expected, bounds for both models widen as the bounds on volatility 

widen. The results show that the highest spread corresponds to at-the-money options, 

perhaps because they are the ones most sensitive to volatility. Figure 7-5 presents 

a graph of the actual bounds rather than the spread. The wide bounds correspond 

to observations around at-the-money options. This pattern is consistent across all 

maturities and all testing sets. However, it seems to be more emphasized for longer 

dated options. UV bounds and FBS bounds corresponding to a  =  0.5 seem to be 

quite close or similar.

However, as the tables and figures show, one of the FBS bound corresponding 

to a = 0 mostly coincides with the FBS value corresponding to an a  =  1. This 

is again due to the equality constraint imposed on the volatility constraint in the 

optimization problem. When the bounds on the volatility do not coincide, the former 

bounds envelope the latter one. It is also empirically obvious that the FBS bounds 

narrow as a increases until they finally converge to the BS value when a = 1. In fact,
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Figure 7-6: FBS and UV spread across all maturities

there are two cases where the FBS bounds converge, holding everything else constant. 

The first case corresponds to a  =  1 as tables 3E through 7E show. The second case 

is when sigma converges to one value, as some observations in tables 3E to 5E show. 

Table 7E shows this behavior more explicitly as a assumes values of 0,0.5,0.75, 0.9 

and 1. It is also clear in figure 7-4 how the spread, as a measure of the width on the 

bounds, decreases, meaning that the bounds are narrowing down, as a  decreases. In 

general, FBS bounds corresponding to a =  0 envelope the Last price but it is not the 

case for the UV ones.

These patterns are actually emphasized when we introduce subjective bounds. 

This approach allows us to analyze the models irrespective of their forecasting power. 

It is actually clearer how the bounds vary across different maturities and moneyness. 

The volatility has a fixed spread in this case. However, as figure 7-7 shows, the 

bounds for both UV and FBS, corresponding to all values of a  < 1, are widest for 

at-the-money and, not very deep, out-of-the-money options. So the spread is highest 

for those observations as figure 7-6 shows. So we actually observe the same pattern 

irrespective of the forecasting power of the model; however, they tend to be more 

emphasized when we introduce subjective bounds on the volatility.
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F B S  a n d  U V  (S u b je c t iv e  v o l  b o u n d s )

Figure 7-7: Bounds for the UV and FBS models using subjective volatility bounds

7.3 C onclu sion

Therefore, we have studied in this chapter empirical and comparative applications 

of the FBS model. As we have seen, it is possible to get one crisp value from the FBS 

model summarizing market information. It is also possible to derive market implied 

volatilities in the form of bounds on the possible values a volatility can assume. 

Comparing it to the BS model, it seems to have more predictive power than the BS 

model does.

It is also possible to work with uncertain volatility to derive bounds on the option 

price in the presence of uncertainty. In such instances, it is safer to work with bounds 

rather than single values. So we have analyzed the empirical behavior of the FBS 

model and compared it to that of the UV model. As we have seen, the model’s 

bounds can be manipulated according to the expert’s personal opinion or historical 

analysis. However, in the presence of high uncertainty, it is best to follow the worst 

case/best case scenario analysis we have carried earlier. In general, the FBS model 

is more comprehensive and more flexible than the UV model. But both models show 

the same pattern of behavior, namely, their bounds widen as we move more towards 

at-the-money and longer-term options, perhaps because there is more uncertainty 

associated with those options.

This provides potential for applying the model to other uncertain parameter prob-
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lems. It also means that we do not really have to resort to complex solutions every 

time we have an uncertain parameter since this model serves as an underlying plat-

form or prototype that can be used for other uncertain parameters such as uncertain 

dividends, interest rates, etc... It also extends more potential for providing solutions 

to finance using fuzzy theory, which is finding more applications in option pricing as 

the next chapter shows.
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C hapter 8

F u z z y  Option Pricing: A  

Comparative Approach

In the previous four chapters, we have presented two Fuzzy Option Pricing models 

with empirical applications. We have also seen applications of Fuzzy Theory to finance 

and economics in Chapter 3. The applications have been relatively simplistic and 

targeting investment decision making in most of the cases. In this chapter, we will 

explore existing literature on applications of Fuzzy Theory to Option Pricing, which 

is a more recent stream of literature. But those applications are relatively scarce in 

comparison to fuzzy applications in finance and economics. The existing trustworthy 

research that we are aware of boils down into three papers. This maybe due to the fact 

that finance researchers are not really exposed to the full potential of Fuzzy Theory 

yet. Most fuzzy finance research is carried out by fuzzy researchers and thus tends to 

be trivial from a finance and economics point of view. However, given that the fuzzy 

applications to Option Pricing Theory are being introduced by finance researchers who 

are more familiar with existing Option Pricing problems, the applications turn out 

to be the most sophisticated applications of Fuzzy Theory to finance and economics, 

and may also serve as laying the foundations for Fuzzy Option Pricing.

We will present a literature review of the existing three papers on Fuzzy Option 

Pricing, two of which utilize tools of Fuzzy Set Theory while the other utilizes tools 

of Fuzzy Measure Theory. So we will start with the Muzzioli-Torricelli approaches
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which basically build on the existing CRR OPM within a fuzzy framework and devise a 

fuzzy solution using Fuzzy Set Theory. They actually introduce two different models 

whereby the first is a one period model and the second is a mutliperiod one that 

solve different problems. We extend the one-period model for comparative purposes 

at a later stage. We then move on to the Cherubini approach, which incorporates 

Fuzzy Measure Theory and Choquet integration. Cherubini introduces a fuzzy Black- 

Scholes OPM. We attempt to draw a comparison between those existing models. 

Unfortunately, this attempt has been hampered either by technical fall backs of the 

models or lack of explicit definitions.

8.1 T h e M uzzio li-T orricelli M od els

Muzzioli and Torricelli ([110],[112]) combine Fuzzy Set Theory with binomial 

option pricing. In the first paper, they introduce a one period model for pricing a 

call option with a fuzzy payoff. In the second paper, they introduce both a one and 

a multi-period model to price a European call option on an underlying asset that has 

an opaque price under different states of the world.

8 .1 .1  T h e  M T M 1  M o d el

In their first paper [110], the authors present a one period model for pricing an 

option on an asset with a fuzzy price at the end of the period. The opacity of the price 

can be contributed to many factors that are summarized in the information level, a, 

of the market. In their pricing methodology, the authors price the option both by 

replicating the portfolio and by using risk-neutral valuation.

Triangular fuzzy numbers (Appendix A) are used to model the fuzzy price of 

the asset after one period such that Pf- = <  01/ 02/03 >, with level sets P^(a) = 

[01(a), 02(0:)] and characterized by the following membership function,
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0, 0 < x  < ai;

pR(x)
x~ai a.2—ai ’
x —ar-i 
a-2 —0 ,3  ’

ai < x  < <22;

a2 < x  < a3;

0, x > a3;

The notation PP(x), in this case, stands for the membership or characteristic function. 

Then, Pf- induces a possibility distribution over the value of x equivalent to the 

membership function. The no-arbitrage principle still holds and is expressed as,

a i ( a )  <  P0fl(l +  r ) <  o3(a),

where P<p is the initial price of the underlying asset.

Let K  denote the exercise price and assume that a\(a) < K  < a3(a). So the 

fuzzy payoff of the call at the end of the period is

P p  =  max[0, PP — K] = max[0, ai — K ,a 2 — K , a3 — K). (8.1)

For the payoff to satisfy no-arbitrage and a\(a) < K  < a2 (a), it is defined only for 

a < a, where

S  =  min[a* (K ), a* (P0fl( 1 +  r) ), a** {K ), a** (P0fi( 1 +  r ) )]

<*” <j) = %E%,j = K,PjKl + r).

In terms of a-cuts,

P p  =  max[0, o3(a) — K], (8.2)

which is not a triangular fuzzy number.

The authors first construct a portfolio that replicates the payoff of a call option. 

Assume that IVj represents the number of units of asset i, where i =  {M, R}, with M  

representing the money market account and R  representing the risky asset. Then,

Pp = N m P ?  + N r P ?.

Substituting cr-cuts and employing some mathematics, the authors arrive at
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m _  iVfl[ai+a(a2-ai)] 
iV M  —  ( 1 + r )  >

» r  _  0,3(1—a )  —K + a 2 a
R ~  (1— a ) ( a 3— a i )

Finally, P0C =  N MP0M + N RP0R.

Alternatively, the authors use the risk neutral valuation approach, where

p c  = ^ E [ l f ]

The risk-neutral probabilities are computed according to the standard approach ex-

cept that a-cuts are used for the up and down jumps denoted by u and d respectively. 

The triangular fuzzy number representing the movement of the price is < d /m /u  >, 

where u = -§^,m =  -§R,d = with a-cuts [d(a),u(a)}. After some algebra, the
M) M) M>

authors finally arrive at the following values for the risk neutral probabilities,

(1 +  7-) -  d(a) 
u(a ) — d(a) ’ 

u(a ) — (1 +  r) 
u(a) — d(a)

The final value of the fuzzy call is

(8.3)

„<7 a3(l — a) -  K  + a2a  |"PnK(l +  r) -  m -  a (a2 -  a i)] /0 ^
P° “  (l -  aKas -  oj) * l ( 1 + r )  J '  l8'4)

As the equation shows, the fuzzy call price does not really have the conventional fuzzy 

form in the sense that it is not constrained between two numbers, an upper bound 

and a lower bound, where it can assume any value in between depending on the level 

of a. Rather, it is one value that is dependent on a or the level of information as the 

authors call it.

The authors study the first derivative of the call w.r.t. the various variables. In 

summary, they find out that the fuzzy call has the same properties as the standard 

call option w.r.t. the strike price, interest rate and the underlying price. The fuzzy 

call is decreasing in a, the information level, meaning that as information increases,
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volatility decreases leading to a decrease in the value of the call, which is similar to 

the standard call case. As for the upper and lower bounds, ci\ and a3 respectively, of 

the underlying price, there is an inverse relation between the call price and the lower 

bound and a direct relation between the call and the upper bound, which makes sense 

because as the lower bound increases or the upper bound decreases, volatility declines 

and so does the call price.

Within the context of the binomial model, the price in the downward state, D, 

corresponds to the lower bound and that in the upward state, U , corresponds to 

the upper bound, namely, P-^(D) = a\ and PjR(i7) =  03. Using the conventional 

notations employed in the standard binomial model, this is equivalent to saying that 

the price of the underlying at maturity is bounded by the ’up’ and ’down’ prices, that 

is, Sd < < Su. However, usually the upper and lower bounds are defined as the

least possible so this implies that Su  and Sd  are least possible.

Comparing the results of their model to those of the standard binomial OPM, the 

authors find out that the latter is only a special case of the former corresponding to 

a = 0. This is actually a counter-intuitive result in the fuzzy sense since the case 

where a  =  0 corresponds to the support of the fuzzy set of the various values the 

underlying price can take and, consequently, it corresponds to the case of ’extreme 

fuzziness’ where all the values are possible, of course, depending on their membership 

grade. But the standard binomial result has to refer to the no-fuzziness case, namely, 

a  =  1. However, a cannot be one; otherwise, the number of shares and the risk- 

neutral probabilities will be indeterminate.

Usually in Fuzzy Theory when a  =  0, the bounds, or a-cuts, are the widest and 

when a = 1, the bounds converge to one value, corresponding to the crisp case. As we 

have seen, the issue of a  is quite tricky and unusual in this problem. In this setting, 

the bounds on the underlying are widest or fuzziest when bounded by the up and down 

states as given by the binomial tree and then they get smaller as a increases meaning 

they get less fuzzy until a reaches one, where the state E(S)  actualizes. In this 

case, the future price or the bounds of the future price converge to the most possible 

price, E(S),  corresponding to complete certainty. However, since by definition of the 

risk-neutral probabilities that a  cannot be one, this state cannot actualize. So the
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model does not really converge to a crisp case, or more specifically, a crisp case for 

this model does not exist, and so it holds only under high uncertainty. It does not 

converge to the standard binomial case because it is not based around the binomial 

prices; rather, it is bounded by those prices, which are least possible in this setting 

and will be the first to go out of the picture as a increases.

However, taking a closer look at the model, we can see that it is actually the 

underlying price that is bounded by two values that are dependent on a. So the 

previous analysis holds only for the underlying. As for the call price, it is not the 

case. The call price is not really bounded by a-cuts; rather, it is one value that 

is dependent on a. So a can no longer be interpreted as summarizing the level of 

fuzziness in the conventional sense. In fact, it is quite an unconventional interpretation 

or view of a.

However, the model, as it stands now, is not very practical in the sense that it 

is not ready yet for empirical applications but it serves as laying the foundations of 

option pricing in discrete time using Fuzzy Set Theory. For the purpose of comparing 

it to other Fuzzy Option Pricing Models, we will extend this model to the multi-period 

case.

T he E xtended  M TM 1 M odel

Extending this model to a multiperiod model can be quite tricky. We will pre-

serve the same assumptions that the MTM1 assumes but we will add to it one more 

assumption which is the fact that the most expected underlying price at any period is 

the preference-free expected price (martingale). To avoid confusion, we will be using 

the standard binomial model notations, namely, S  for the price of the underlying or 

risky asset rather than P^.  There are two possibilities for extension. The first possi-

bility involves binding the future price from below by the lowermost state and from 

above by the uppermost state, for example, in a three period model, Sd3 < P^  < Su3 

if the price is to be modelled by a triangular fuzzy number. But if the price is to be 

modelled by a different fuzzy number, such as the trapezoidal one, then the choice of 

the vertices will be an issue. In both cases, the model will get very complicated as 

the number of steps in the tree increases. The second possibility is within a binomial
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model setting. It considers the future price at each node in a similar manner to the 

one-period model. So, for example, if we are at node Sud2, the future price will be 

bounded by Sud3 from below and Su 2d2 from above; similarly, at the adjacent node 

Su 2d, the future price will be bounded by Su2d? from below and Su3d from above. 

Following this approach, the model can be extended into the multi-period case. This 

is better than the other possibility and so we will utilize it to extend the model into 

the multi-period case.

In such a setting, the price is completely vague and fuzzy in the future, which 

makes the model quite appropriate for pricing options in periods of very high uncer-

tainty. The future price is opaque then and is only known to be bounded between 

two values. Besides, because of the very high prevalent uncertainty, we can only view 

the price as opaque on a period by period case. In other words, we do not look at 

the price as opaque three periods from now into the future; rather, we look at it from
ft

this period to the next one, and then in the next period, we look at it to the following 

period and so on, depending on which node we are at.

Within a general binomial setting, there are no longer up and down states but 

there is a continuum of possible states bounded from above by the most possible state 

and from below by the least possible state, for example, in a one period model, the 

price will be bounded by Su  in the up state and Sd in the down state. Those bounds 

are given by the standard up and down jump factors. So the underlying structure is 

given by the standard binomial tree and fuzziness is imposed over it such that the 

bounds on the underlying are given by the binomial prices.

Prices of the underlying are represented by triangular numbers such that Si = <  

«1/ 02/03 >. Since the underlying will be bounded by the up and down states, then 

a\ =  Sui~ ldn~i+l and <13 =  Su^dn~^ which leaves out 02, which is by definition 

the most possible value. A logical approximation to the most possible value is the 

preference-free expected price at any point, given by E(S) — 5,_ 1 * exp(R-h) or 

(1 + r )  * Si-i .  It is also possible to approximate by Sul lrfn i+̂ + Su3dn 3 so that we 

have a symmetrical triangular number but the first approach is really more intuitive 

and makes more sense within the context of this problem. Figure 8-1 shows a two- 

period extended MTM1 model. There is a continuum of prices in every state bounded
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Figure 8-1: The Extended MTM1 in a two-period setting.

by the up and down states and the expected price falls almost in the middle.

The vertices of the triangular number can be used to establish a —cuts or, con-

sequently, bounds on the possible range of prices in each state. Those bounds will 

lead to bounds on the risk-neutral probabilities as given by equation 8.3 such that the 

value given by the upper bound returns the risk-neutral probability of occurrence of 

the upper bound of the price and similarly for the lower bounds. Those risk-neutral 

probability bounds have special implications for the incomplete market case.

As mentioned before, in an incomplete market, there is no one unique no-arbitrage 

probability measure; rather, there is a set of possible probability measures that satisfy 

the no-arbitrage principle among which the decision is left indeterminate. The bounds 

given by the risk-neutral probabilities in the MTM1 model behave as limits on the 

possible values a probability measure in incomplete markets can assume. So the 

extended model serves as a model for pricing options in discrete-time in an incomplete 

market.

In summary, at each node, we have a continuum of possible states or possible prices 

the stock can assume in the future. This leads to a continuum of possible risk-neutral 

probability measures. Within the context of incomplete markets, this range represents
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the range of possible probability measure values a risk-neutral probability measure 

can assume. Within the context of the standard binomial model, the maximum price 

a share can assume is the price corresponding to an up state and the minimum it can 

assume is that corresponding to a down state. The expected price is E(S),  which 

does not by condition actualize but theoretically has the highest possibility (similar 

to our fuzzy binomial model). The same holds for probability measures. The exact 

values, that are assumed, are dependent on a parameter a, which can be interpreted 

as summarizing the level of market information or market incompleteness. So by 

a  =  1, it means that the model cannot hold for a complete market scenario. But 

if we assume that the model is true, then we can infer that the market cannot be 

complete or no one can have full information, which is quite realistic.

To price the option, we use the risk-neutral valuation approach. It is important 

to emphasize that this is not a fuzzy version of the binomial tree so we cannot use 

the standard binomial model logic to price the option. In other words, there are no 

payoffs corresponding to an up and down state. Instead, each continuum of prices 

results in one payoff that is bounded from above and below and is not necessarily a 

triangular fuzzy number. For example, assuming a one-period setting, the continuum 

of prices is bounded by Su  and Sd and the whole range results in a fuzzy payoff that 

also depends on E(S)  and has two bounds. Given that E(S)  differs according to the 

node we are standing at, it will result in a non-recombinant tree for call prices despite 

the fact that it is recombinant for the share price. The reason for that is that the 

lower bound of the call price for one state does not coincide with the upper bound of 

the lower adjacent state.

So we start off with computing the risk-neutral probability bounds which differ 

across states. We also compute the call payoff bounds dependent on the share price 

bounds. Then we discount the payoff across the tree using the risk-neutral probabil-

ities and fuzzy arithmetic. We illustrate the method using a two-period model and 

then the extension to a multi-period scenario is straightforward.

Assuming triangular fuzzy numbers, the general form for any price will be P  = <  

01/ 02/03 > and for the stock price it will be Si = <  Sdown/ E(S) / Sup >, which 

translates into Sni —< Su^dn~i/ E(S ) / Sui+ldn~i~l >. Figure 8-2 shows the frame-
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Figure 8-2: The two-period Extended MTM1 share and call trees.

work for the model. It illustrates the difference between the binomial model and the 

extended MTM1. Note the range of possible values for a given price bounded by the 

binomial values.

52i = <  Sud /S u exp (R ^ )  /  Su 2 >, 

so the a-cuts or bounds for 52i are,

521 (a) =  5ud +  a(Suexp(Rjy)  — Sud),

Slx (a ) =  Su 2 +  a(Suexp(Rjj )  — Su2),

where the superscripts 1 and 2 stand for the lower and upper bounds respectively. 

Similarly,

522 = <  Sd2 /Sd exp (R j j ) / Sd,2 >,

522(a) =  Sd2 +  a(Suexp(Rjy) — Sd2),

S 22 (a) = Sud +  a(Suexp(Rjj )  — Sud) ,

and

5 n  = <  Sd/Sexp(R jy ) /Su  >,

5 ii(a) =  Sd + a(Suexp(Rjy) — Sd), 

5 ii (a) =  Su  +  a(Su  exp (Rjf)  — Su).
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In a similar approach to equations 8.1 and 8.2, the call payoffs will be translated

to,

C\ i(a) =  m ax[0,5^(a) -  K],

C$i (a) =  max[0, S21 (a) — K],

and

C$2 (a) = max[0,S'212(a) -  K\,

C$2 {a) = max[0, S$2 (a) -  K\.

where K  is the strike price. Using risk-neutral valuation and the same logic employed 

in deriving equations 8.3, we get

C ' l l i “ ) =  1+ R  + q f C $ i ( O L ) \  ,

Cn(a)  =  y Tr  [qi2C$2{a) + q fC$2{a)] .

Therefore, the final call price is

Co =  Tf7i l9 i ,C 111(a )+ 9 j1Cf1(Q)].

So the call price is not bounded between values that are dependent on a. Instead, 

it is one price that is dependent on the level of information or degree of market 

incompleteness. Note that interval arithmetic is employed to arrive at the final value 

of the call (Appendix A).

Generally, the usefulness of a model lies in its forecasting power. For this reason, 

we need to get an objective value that is not dependent on a subjective parameter. 

In other words, we need to change the fuzzy value we get from this equation into a 

non-fuzzy one or crisp one; in other words, we need to defuzzify it.

The two most frequently used defuzzification or decomposition methods are: com-

posite moments or centroid method and composite maximum or maximum height 

method. The centroid or center of gravity method calculates the weighted mean of 

the fuzzy region. It is the most widely used method because defuzzified values move 

smoothly around the output fuzzy region, it is easy to calculate and it can be applied 

to both singleton and fuzzy output set geometries.

Concerning the composite maximum method, the point with the highest truth 

value is chosen. However, if it is ambiguous such as lying on a plateau, any of the 

following techniques will be chosen: average maximum, center of maximums and 

simple composite maximum. This method applies to a narrower class of problems
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than the centroid technique because the expected value here is sensitive to a single 

rule that dominates the fuzzy region as well as the expected value tends to jump 

among frames as the fuzzy region changes shape. However, it is more qualified for 

a wider range of applications that assess the maximum of a fuzzy property. For our

purposes, we consider the center of gravity method (COG), whereby,
J c{a)da

c = ° — ------ ,
f  ada 
0

where C(a) is the call price dependent on the level of a, and C  is the crisp call price. 

Of course, the denominator evaluates to 1. In section 8.3, we analyze the forecasting 

power of this model and compare it to the standard CRR model.

8 .1 .2  T h e  M T M 2  M o d el

In their second paper [112], Muzzioli and Torricelli introduce a multiperiod fuzzy 

binomial model for pricing European call options using the risk-neutral valuation ap-

proach. Fuzziness in this case stems from the vagueness of future possible states of 

the world and it is transmitted into the model through a fuzzy volatility that leads 

to fuzziness in the u and d factors in the CRR binomial tree. The risk-neutral prob-

abilities and the stock price are, consequently, fuzzy, that is, they are represented by 

weighted intervals rather than point estimates. This model is appropriate for situa-

tions where the up and down states are fuzzy that is in periods of lower uncertainty 

than that within the MTM1 context. Figure 8-3 illustrates the basic idea behind 

MTM2. It is characterized by a fuzzy up and a fuzzy down state rather than a vague 

future price as in extended MTM1 (Figure 8-1).

Volatility is modelled as a fuzzy triangular number, and, because u > 1 and pro-

portional to volatility, it can also be modelled as a triangular fuzzy number defined 

by u\ =  eai' ^ , U 2 =  and u$ =  eCT3v/̂ .  Similarly, d can be modelled by trian-

gular fuzzy numbers but since it is inversely proportional to volatility and u, it must 

be defined as d\ — d^ — ^  and dj, — T- (using fuzzy arithmetic). This, in turn, 

induces possibility distributions for the stock price and the risk-neutral probabilities. 

The standard risk-neutral valuation approach yields
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Figure 8-3: A rough sketch of MTM2 in a two period setting.

1 1 pa 1

Pnd Pnu 
1 + r  1+r P u _ P o _

whereby Pq is the initial stock price, Pd and pu are, respectively, the down and up 

risk-neutral probabilities and r  is the risk-free rate. In the presence of fuzziness, u 

and d can be replaced by their a-cut intervals such that,

ui(a) — ui + a(u 2 -  ui), 

u2 (a) = u 3 + a(u2 -  u3), 

u(a) = [ui(a),u2 (a)] ,

and similarly for d(a) = [di(a),d2 (a)]. Solving the fuzzy systems, the authors estab-

lish the intervals for the risk-neutral probabilities as
( l + r ) - d 3 + q ( d 3 - d 2) ( l + r ) - d i ~ a ( d 2- d i )

1 1 3 — d z — a ( u 3 —  U 2 ~ £¿3 +<¿2) ’ “ l —d i + a ( u 2 —  u \ —  d ? + d i )  ’

u i + a ( u 2 -  Mi) — ( 1 + 0  M3—ct(u3—U2) —(1 + r )
M l — d i + a ( « 2 — « 1 — d 2 + d i )  ’ U 3 — d 3 + a ( u 3 —U 2 — d 3 + d 2 )  ’

where pH+Pd =  1 and pu +p2 = 1 so that pi and pi are dual measures. The fuzzy risk- 

neutral probability distributions are not necessarily triangular fuzzy numbers; rather 

their shapes depend on the shape of u and d. The case where a =  1 corresponds to 

the crisp case where each interval collapses to a point estimate.

P u =  \P u ,P u \ =  

Pd =  \jPd,Pd\ =
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The authors use their model to price a European call option. They start with a 

one period model and then move on to a two period model from which the extension 

into a multi-period model is straightforward. The exercise price is assumed to lie 

between the lowest and highest bounds of the option price such that,

PodJ3+1u^~:’-1 < X  < P0d{u^~j ,

where j  = 0...n — 1. The stock price at maturity can assume any of the following 

values,

Pq&u? =  (jPod\u{, Pod^ui}, Pod^u^  , 

where i , j  =  0, ...,n,and i = n — j.

In the one-period model,

Pod-3 < X  < PqU\

The call payoff in the ’down’ state is C(d) =  0 and that in the ’up’ state is C(u) =  

(P0u — X).  Therefore, the call payoff at the end of the period is C(u) = (PqUi —

X , P qU2 — X , P qU3 — X). The call price at time t =  0, Co, can be determined using 

the risk-neutral valuation approach; hence,

C0 = TP-r E[Cl] = TP-r [pu *C(u)\

P oU i - X+ aPo (u 2 - u i )  (1 + r)—d3+a(rf3—d2)
1+r U3 — (¡3 — a(u 3 —U2 — (¡3 +d 2 ) ’

PoU3 —X - a P o ( u 3 - U 2 ) ( l + r ) - d 1 —a(d 2 - d 1)
1 +r u i —d i —a(u 2 —u i —d2 +di)

The interval for the call price is fuzziest when a = 0 and least fuzzy when a = 1. 

The latter case corresponds to the complete market scenario and the call price in this 

case corresponds to that given by the standard binomial approach. This case also 

corresponds to the most possible value case meaning that the interval for the call 

price is built around the most possible or crisp or complete market value for the call 

price. As for the shape of the call price, it is increasing in a  in the left bound and 

decreasing in a  in the right bound. However, it is concave or convex in either cases 

depending on the sign («2 — d-2)(PoU3 — X )  — (u\ — di)(Pou2 — X)- It is linear when 

(«2 ~ d2 )(PoU3 — X )  = (wi — d1)(P0u2 — X).  For the multiperiod case, the call price 

is not necessarily a triangular fuzzy number due to standard fuzzy arithmetic. 

Similarly, the call price for the two period case is

= >  Co =  \Cq ,C0] =
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Co — [Co, Co] = ( l + r ) 2

( l + r ) - d 3 + g ( d 3 - d 2) A 2
«3— <¿3 — g(« 3— U 2 ~ (¿3 +^ 2 ) /

rv
{Pq u \ -  X  +  aP0(«2 -  wf)) *

-  x  -  api,{4 -  « ¡ ) ) .  j

The fuzzy volatility is derived by solving the following non-linear optimization 

problem,

min £  (Pr(<7i,<x2,cr3)
<7'l,Cr 2,<73 j _ 2

M

such that a 1 < <72 < 03 and < erCAt < e<Ji\fKt  ̂ anc[ wpere pT js the

theoretical price, Pm  is the market price and n is the number of observations. In 

implementing the model, Px corresponds to the defuzzified price while, in comparing 

with the binomial model, it is the binomial price. To compute the defuzzified price, 

the authors use their defuzzification approach, which we have outlined in the previous 

chapter. They argue that the defuzzified price is different from the binomial one 

because it discounts market information, which further serves in arbitraging. They 

implement their model using DAX-index options. Within the sample they consider, 

the fuzzy model outperforms the binomial one.

This model converges to the binomial model in the complete market case (a =  1) 

where there is perfect information. So it relates the option price to the level of 

information quite well. However, problems arise when we need to defuzzify the model 

in a multiperiod setting using the metric defined above. The problem is that the 

integrand is unbounded, that is, as the number of steps increases, the integrand 

increases indefinitely particularly because the upper bound for the call price goes 

to infinity as the number of steps goes to infinity. So the model will not converge 

in this case. Of course, in a two period binomial model, similar to the one the 

authors consider, does not suffer of this drawback but there will be no convergence 

for the model as a whole. To overcome this problem, we have to use a metric that 

incorporates a weighting that is inversely proportional to the number of steps in the 

tree. However, the model remains important as laying the foundations for Fuzzy 

Option Pricixrg. Finally, this model and the previous one serve as a good example 

of uncertainty versus risk since the risk-neutral probabilities, which are measures of 

risk, are dependent on a, which can serve as a measure of fuzziness or uncertainty. 

So we have a case of coexisting risk and uncertainty.
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8.2 T h e C herubini M od el C M

In [30], Cherubini uses g\-fuzzy measures and nonadditive expected utility model 

for option pricing. The standard utility approach is modelled as,

U =  f  u(x)dH = I H(x  : u(x) > a)da,

while that of Cherubini, called the ^-u tility  approach, is defined using a Choquet 

integral as

U* = f  g\(x : u(x) > a)da =  f  d a>

where H(.) is a probability distribution whose support is defined on the set of non-

negative real numbers. In fact,

9 \ 0  : u(x) > a) = 1 -  g\(-oo,  a) = ( / ^ ( a ) ) 

because g \ (—oo,a) =  H (a ) and so g\(u(x) > a) serves as the A-complement to 

g \(—oo,a). So the author is distorting expected utility by A, which he defines as 

an indicator of uncertainty to arrive at a parametrization of non-additive expected 

utility.

Cherubini defines a set of probability functions as a set of probability measures, 

which he refers to as the core of bounded from below and from above by the

^-measures, whereby

m ,  A) =  { P  : g»(A)  > P(A) > g«{A),MA G9,A* =  ,

where P  defines the probability measures of the set, G is a cr-field and g^O  represents 

the pA-measures defined using the probability distribution approach HQ. The core 

is non-empty if the measure is convex meaning that A can assume values only in the 

interval (0, oo). So the measure is subadditive.

This results in two bounds for the expected utility model, a lower one defined as

U*(H,\) = j da =  min |y  u{x)dP : P  G T(H, A) j , (8.5)

and an upper one defined by
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U*(H, A) =  U*(H, A*) =  j y j f ^ a yj  da =  max |  f u (x )d p  '■ p  G T(i7,A) j  ,

( 8 .6)

using lower and upper Choquet integrals respectively. Since A can only be in the 

interval (0,oo), A* lies in (—1,0) so the dual fuzzy measures are superadditive.

Cherubini applies his approach to corporate debt valuation and levered fuzzy 

replication (or fuzzy Black-Scholes equation). Our interest is, of course, in the second 

application. In this model, the author establishes bounds for the set of possible option 

prices, which he refers to as bid-ask bounds. Cherubini looks at the Black-Scholes 

equation as a levered option replication method whereby the agent buys the stock 

and borrows against it an amount of money K,  which is the strike, maturing at a 

certain point in the future. This replicated portfolio is equivalent to a call option 

at maturity and so the value of the call option is the value of the asset plus a debt 

contract. Since such a portfolio has to be customized in an unofficial market, fuzzy 

valuation seems more plausible than standard approaches.

The lower and upper bounds for the call option price or the Bid/Ask quotes are 

defined as

c*(V, t; K)  =  V(t) -  exp [- r ( T  -  t)] E* [min (V(T) ,K)  \ V( t )] ,

c*(V, t; K) = V(t) -  exp [- r(T  -  t)} E* [min (V(T) ,K)  \ V(t)} , 

where r is the risk-free rate, (T — t) is the time to maturity, E* is the non-additive 

expectation evaluated using Choquet integration in continuous time, V(T)  is the value 

of the underlying asset at maturity and K  is the strike price. Choquet integration is 

evaluated in the same manner as in equations 8.5 and 8.6 where H{.) is the lognormal 

distribution. In the presence of additivity, the model converges to the Black-Scholes 

value.

The author applies this approach to a snapshot of S&P500 Index call options, 

quoted on the 7th of March 1997, and recovers parametric bounds for the option 

price dependent on A. To make the Bid/Ask spread plausible (around 1 dollar), A is 

calibrated to 0.08. The continuous-time Choquet integration is evaluated using the 

Romberg method. The consecutive empirical results show that the model’s spread
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increases as the strike increases or as the option gets more out-of-the-money even 

though the implied volatility tends to decrease. The author interprets this increase in 

spread as resulting from an increase of uncertainty since as the strike increases, the 

levered position increases leading to this increase in uncertainty irrespective of the 

uncertainty on the underlying as modelled by the implied volatility.

We have tried to replicate the model but we came across basic impediments that 

hindered us from obtaining reasonable results. Of the most important issues are 

the approximations for the standard deviation and mean employed in the lognormal 

distribution that is supposed to recover the price. Another problem lies in the limits 

of the integral or the expectations on the right-hand side of the equation. Cherubini 

is not explicit about this matter even though it is quite crucial for the result. Finally, 

the dividends do not seem to play any part in the formula even though they are quite 

important. We have considered some assumptions of our own but the results have 

not been very useful so this model is excluded from the comparative study.

8 .2 .1  O th er  M o d e ls

There are other models proposed in the literature that employ a logic similar to 

that employed in fuzzy applications. We will mention those models briefly. However, 

we will not analyze them thoroughly since they are out of the scope of this research. 

The first model has been proposed by Walley and De Souza [138]. They use imprecise 

probabilities in analyzing the impact of uncertainty and indeterminacy on energy op-

tions. They introduce a probabilistic decision-theoretic approach whereby a decision 

has to be made as to whether to invest in solar energy or not.

Another model has been proposed recently by Muzzioli and Torricelli [111]. They 

extend the Derman-Kani implied tree for option pricing to account for illiquidity as 

well as put-call parity violations. To this end, they deal with intervals of probabili-

ties and stock prices rather than precise values. Consequently, the expectations are 

computed using Choquet integration over intervals in discrete time. The intervals 

are established by deriving two implied trees using call and put options separately. 

Those intervals impose interval bounds on the option price as well which the authors 

interpret as Bid/Ask prices.
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8.3 E m pirical A n alysis

In this section, we will study empirical applications of the models we have ref-

erenced in this chapter. As we mentioned earlier, we have not been able to get 

reasonable results for the Cherubini model, particularly, because some of the basic 

assumptions are missing. As for the Muzzioli-Torricelli (MTM2) model, we have not 

been able to get reliable results either because the integrand is not bounded and so 

the model does not converge. So it has not been possible to derive implied volatilities. 

However, with a different defuzzification technique, the model is expected to fair quite 

well. Therefore, we will only be analyzing the extended Muzzioli-Torricelli (MTM1) 

model and comparing it to the CRR binomial model.

8 .3 .1  M T M 1  O P M  v s C R R  B in o m ia l O P M

M ethodology

In this section, we analyze the forecasting ability of the extended MTM1 model 

and compare it to that of the CRR binomial model. The implementation in this 

case is much simpler than it is for the FBS model. It involves building a C+-1- 

rnodel that returns the option values and root mean square errors. As we have seen 

earlier, extended MTM1 returns an option price, rather than option bounds, that is 

dependent on a. So, by using the centroid defuzzification method, we can get one 

crisp option value that summarizes market information.

D ata  Set

The data set we use is that of S&P 500 index options quoted on the 24th of July. 

It is made up of the underlying price, strike, interest rates, dividend yields, expirations 

and volatility. The volatility corresponds to the Black-Scholes implied volatility. We 

consider all expirations, namely, March, September, November and December. The 

model does not have to be trained and can be automatically tested on any data set.
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R esult A nalysis

Table 7E in Appendix E shows the results for the option value calculations using 

MTM1 and CRR binomial models. The RMSE and RMSE as percent of price for 

both models are 15.7332 and 0.227716 for the former model and 15.9341 and 0.248146 

for the latter indicating that MTM1 is a little bit better than the CRR one. This 

tells us that the system complexity does not justify the value added in such a market 

characterized by transparency and a low level of Knightian uncertainty. However, in 

a market characterized by illiquidity and Knightian uncertainty, it is useful to apply 

the model. Another important issue is the defuzzification technique used, which is 

the centroid method. This method is similar to a weighted mean. Since the fuzzy call 

price is a triangular number that is almost symmetric around the most possible price 

which is close to the crisp price, the result is very close to the CRR value.

If we view MTM1 model as summarizing the market information, we can conclude 

that the level of information does not make much of a difference probably because of 

the high level of transparency and liquidity of the option under consideration. Table 

7E shows that both models predict prices that are close to the Ask price rather than 

the Last price.

8.4  C onclu sion

In this chapter, we have provided a review of existing literature on Fuzzy Option 

Pricing. This is a relatively new area in option pricing and those models serve as 

laying the foundations for Fuzzy Option Pricing. We have looked at models that 

fuzzify the CRR OPM and the Black-Scholes OPM using Fuzzy Set Theory as well 

as Fuzzy Measure Theory. We have also extended a one period model introduced by 

Muzzioli and Torricelli into a multiperiod setting.

We have also attempted to carry an empirical comparative study. Unfortunately, 

we have not been able to do that for two of the existing models, MTM2 and CM. 

MTM2 assumes a defuzzification technique using a quadratic metric distance which 

implies that the model does not converge as the number of steps increase. The Cheru-

bini model lacks explicit definitions for the practical application to be performed. We
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have been, however, able to carry an empirical application of the extended MTM1 

and the results returned have been very much similar to that of the CRR model. The 

complexity of the model and the computational burden does not really justify using 

the model when Knightian uncertainty is not prevalent. It becomes useful in a market 

characterized by a high level of uncertainty.
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C hapter 9

Conclusion

In this research, we have tackled the issue of uncertainty in the financial markets 

with specific emphasis on its implications for Option Pricing Theory. The approach 

we adopt is a pricing approach whereby we consider the impact of uncertainty on 

options and then we develop an Option Pricing Model, which accommodates the 

type of uncertainty under consideration. Such uncertainty is initiated by lack of 

information; it is also known as Knightian uncertainty. The issue of uncertainty is 

not a new one. However, it has been approximated by risk for a long while due to 

several reasons, the most important of which is the lack of sophisticated tools that can 

handle such problems. As a result, Probability Theory has been employed to handle 

all types of problems irrespective of whether the problem is characterized by risk or 

uncertainty. With the increasing complexity of problems, it has become evident that 

alternatives to Probability Theory that relax the additivity constraint are needed.

Consequently, several alternatives have been introduced and applied successfully 

to various fields such as engineering, finance and medicine. In our research, we have 

considered two of such alternatives, Fuzzy Set Theory and Fuzzy Measure Theory 

motivated by the fact that they have considerable potential in solving problems in 

finance and economics that has been proved successful by applications to problems 

having similarities to those in finance and economics as well as by the fact that the 

existing applications of fuzziness in finance and economics are still in their infancy. 

The existing applications of Fuzzy Theory in finance and economics tend to be trivial
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unfortunately despite their capacity to solve complex problems. An exception to 

those applications is Fuzzy Option Pricing, which has been introduced by finance 

researchers. Existing literature on Fuzzy Option Pricing, even though it boils down 

to few papers, serves as laying down the basic foundations for this new area.

We have viewed the issue of uncertainty and tools to handle it from as comprehen-

sive a point of view as possible. Uncertainty in general has been separately developed 

in Economics Theory as well as in Fuzzy Theory. So we have gathered literature from 

both fields and presented them within one coherent framework. We have also looked 

at recent developments in Option Pricing Theory which are important for compar-

isons with our models. Besides, we have presented a literature review on fuzziness in 

finance and economics to make clear the placement of our models in Fuzzy Theory. 

The major contribution of all literature reviews is that they bring different areas of 

research together.

On the technical side, we have documented important issues in Fuzzy Set Theory 

from independent research, which is scattered in various forms of literature. We 

have particularly considered controversial issues such as the comparative behaviour 

and definitions of the membership function, possibility distributions and probability 

distributions. We have also presented the basics of Fuzzy Measure Theory. Our 

major contribution here is the section on the fuzzy measure elicitation approaches, 

which are also scattered in different applications and publications. Naturally, we 

have incorporated nonlinear integration, dual measures, conditional fuzzy measures 

and Choquet integration as well. There are also very important concepts that have 

been included in the appendices so that we do not get involved in matters beyond the 

scope of our research.

Being fully equipped with the necessary literature and tools, we have moved to 

present our Fuzzy OPMs. Those models boil down to three models, two of which 

are new and one is an extension to an existing Fuzzy OPM. In the first model, we 

consider pricing in a fuzzy environment whereby fuzziness is associated with the BAS 

as well as with states of the world. We have utilized Fuzzy Measure Theory and 

Fuzzy Integration to establish bounds on option prices in this case. The model we 

have developed extends contributions to both Fuzzy Theory and Option Pricing The-
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ory. The major contribution lies in the use of the conditional expectations and the 

corresponding mathematics involved. This model exhibits the first Sugeno integral 

application in the finance and economics literature.

We have also applied the model to empirical data spanning examples from the 

currency, NASDAQ and Index option markets. The types of options that have been 

considered are American as well as European. The model has given the best results 

for American (NASDAQ) stock options, where the NASDAQ market is characterized 

with the highest uncertainty among the three markets that have been tackled.

However, the bounds are still relatively wide and, in very few observations, flip 

for long-term expirations (except for SP500 Index options, where those observations 

are more frequent). So further work in this area needs to be done. Another issue 

that needs consideration is calculating the implied volatilities from this model. This 

is quite a tricky issue because of the comparison operators. Finally, the model is still 

open for hedging techniques. The challenge in this case comes from two sources, the 

bounds for the call price and fuzziness. One suggestion is to introduce a tracking 

error function that measures the difference between the theoretical portfolio, which 

is the one corresponding to the standard CRR binomial model, and the one that is 

supposed to be hedged. If the tracking error is positive, then the actual portfolio 

super-replicates the theoretical one. If it is zero, it replicates it and if it is negative it 

sub-replicates it. Another approach is to replicate the upper bound and lower bound 

separately using fuzzy values. This should be done for both bounds so, at each node, 

we have a minimum and a maximum number of stocks and bonds to be held. The 

problem with this approach is that it tends to be messy over multiple periods. Of 

course, those approaches serve only as guidelines and still need to be implemented 

and tested.

In the second model, we have fuzzified the Black-Scholes OPM using Fuzzy Set 

Theory and Fuzzy Differential Calculus. Fuzzy Differential Calculus is still in its in-

fancy so we have had to go through the difficult task of collecting and refining the 

existing literature. The source of fuzziness is the uncertain volatility which is preva-

lent in certain circumstances in the options markets. The fuzzy volatility generates 

fuzziness in the final call price, which means that again we establish bounds on the
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value a call option can assume.

We have also provided empirical applications of this model. Our findings show 

that, using the Muzzioli-Torricelli defuzzification approach [112], this model beats the 

standard Black-Scholes model perhaps because it summarizes the level of information 

in the market better. Besides, the volatility bounds that have been suggested by this 

model bound the Black-Scholes implied volatility, which better reflects the market’s 

behaviour. Those bounds are expected to be wider when market uncertainty increases 

but this is still open for further research. In fact, since this model converges to the 

Black-Scholes model in the complete market case, it can be exploited to measure the 

level of market completeness or to measure the degree by which the Black-Scholes 

model deviates from the market. We have also compared our model to the Uncertain 

Volatility Model [5], which has been witnessing increased popularity lately. The 

bounds of our model tend to envelope those of the Uncertain Volatility one. It is also 

possible to manipulate a to change the width of the bounds.

Our third model is an extension of the one-period Muzzioli-Torricelli Fuzzy Bi-

nomial Model [110] into a multi-period setting, whereby fuzziness is characterized by 

an opaque future asset price. This model also converges to the standard CRR model 

so it can serve as a measure of market completeness. Using the center of gravity 

defuzzification technique, we have been able to get a value for the call option and to 

show that it does actually beat the CRR model.

Finally, we have drawn a comparative study on existing Fuzzy Option Pricing 

Models, which provide the foundation for Fuzzy Option Pricing. Three models are 

examined for this purpose. MTM1, which is a one-period model, has been extended 

(our third model) to facilitate comparison. The second model is MTM2 but we 

have not been able to obtain results for this model since it does not converge given 

the proposed type of defuzzification technique. The third model is the Cherubini 

model but again replication has not been possible due to lack of explicit definitions. 

The model that seems to give the best results is the extended Muzzioli-Torricelli 

multi-period Fuzzy Binomial Model. Generally, those models tend to have a common 

drawback, which is the fact that they are slow so some pruning and use of sophisticated 

machines are needed to make them practical in a fast pace market.
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A p p en d ix  A

Basics of Fuzzy Set Theory

This appendix introduces the basics of Fuzzy Theory. However, our intention is 

not to analyze this theory in detail but to present the concepts that will be relevant 

for further understanding of our research. So we will stick to the basics only. The 

reader who is familiar with these basics may choose to skip this part.

A .l  F uzzy S ets

Zadeh defines fuzzy sets as ”a class with a continuum of grades of membership.” 

([149], p.339) To illustrate this idea, let X  be a space of points, or a universe, with a 

generic element x  so that X  — {x}, and let A  be a set in X.  A  is called a fuzzy set 

if it is characterized by a membership or characteristic function /xA(x) whose value 

denotes the grade of membership of x  in A. fiA(x) associates with each element x  in 

X  a value in the real interval [0,1], whereby a higher value designates a higher grade 

of membership. In contrast, if A  were an ordinary set, its membership function will 

take two values only: 0 or 1.

A .1.1 S o m e P r o p e r tie s  o f  F u zzy  S e ts

- The support of A  is: supp A  =  {x € X , iiA{x) > 0}.

- The height of A is: hgt A = sup /r^z).
x&X
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- The a-cut A a of A  is: A a =  {x G X,[ iA(x) > a}, a-cuts are also called level 

sets.

- A  is said to be normalized iff 3x G X , n A{x) =  1..

- A  is said to be an empty set iff Vx G X , ¡iA{x) =  0..

- A  is said to be convex iff: /l ia  (Axi  +  (1 — A)£2) > m i n ( / r ^ ( x i ) , V x i  G 

X, X2 € X ,  a G [0,1];

A  is convex iff its a-cuts are convex.

A . 1.2  O p era tio n s  on  F u zzy  S ets

The arithmetic operations on fuzzy sets are different from those on ordinary sets. 

However, there is no agreement as to how a particular operation is to be carried out 

and there are quite many definitions. The union and intersection of two fuzzy sets 

are denoted as the maximum and minimum respectively. Particularly interesting is 

the complement. The complement of a fuzzy set A  is defined as nA(x) =  1 — HA{x). 

This means that the fuzzy set and its complement can actually overlap. Sugeno [133] 

has introduced another definition for complement known as A-complement, such that

A G (- l,o o ) ,
„ -ir \ -  i-MaW
V A \ X ) -  l + \ / i A (x)-

A .2 F uzzy N um b ers

A fuzzy number is essentially a fuzzy set. There are several definitions of fuzzy 

numbers in the literature. Dubois and Prade ([49], p.26) define a fuzzy number as a 

convex normalized fuzzy set A of the real line such that:

(a) 3!xo G A, nA{x0) =  1 (xo is called the mean value of A).

(b) /j ,j4 is piecewise continuous.

Goetschel and Voxman ([75], Definition 1.1, p.87) refer to an earlier definition by 

Dubois and Prade whereby a fuzzy number is a fuzzy set ¡i : R 1 —> I  — [0,1] with the 

properties:

(i) ¡1 is upper continuous,

(ii) //(x) =  0 outside of some interval [c, d].
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(iii) there are real numbers a and 6, c < a < b < d, such that m is strictly 

increasing on [c,a], strictly decreasing on [b,d], and fx(x) = 1 for each x  6 [a, b\.

The authors alter this definition slightly and introduce two other conditions in-

stead of (i) and (iii):

(i’) [i is upper semicontinuous (u.s.c.),

(iii’) there are real numbers a and b, c < a < b < d, such that /x is increasing on 

[c,a], decreasing on [b,d\, and fx(x) =  1 for each x  £ [a,b\.

These changes are initiated in order to resolve the inconsistency in Dubois and 

Prade’s definition (because it allows c =  d\ therefore, the resulting fuzzy number could 

be a real number) and to allow defining a metric for the family of fuzzy numbers G 

so as to study the topological properties of fuzzy numbers.

In a later paper, Goetschel and Voxman ([75], p. 31) view fuzzy numbers from a 

different perspective. They accept the above definition and add to it the following: 

Define Cr(/x), for 0 < r < 1, as:

Cr(/x) = {(x,r)  | fi(x) > r} if 0 < r < 11, 

cl(supp n) if r = 0,

where cl(supp ¡x) is the closure of the support of /x. Then, /i is a fuzzy number iff:

(i) Cr(fi) is a closed and bounded interval for each r, 0 < r < 1, and

(ii) C\ (p.) ^  </>.

Thus, a fuzzy number is characterized by the endpoints of the interval Cr. The 

authors represent the fuzzy number /r by the parameterized triplets:

{a(r),b(r),r) \ 0 < r < 1},

where a(r) denotes the left endpoint of Cr(fi) and b(r) denotes the right endpoint. 

Therefore, the fuzzy number is characterized by the endpoint functions a and b.

The authors introduce a list of sufficient conditions ([75], Theorem 1.1, p. 32) that 

a: R 1 —> I  =  [0,1] and b: R 1 —> /  =  [0,1] must satisfy so that ¡x : R l —> /  =  [0,1], 

defined by fx(x) = sup{r | o(r) < x < b(r)}, is a fuzzy number with the above 

parameterization. These conditions are:

(i) a is a bounded increasing function,

(ii) 6 is a bounded decreasing function,

(iii) o(l) < 6(1),
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(ii) rii(a) is upper semi-continuous and increasing on [ni(0),ni(l)];

(iii) 712(a) is upper semi-continuous and decreasing on [712(1) ,712(0)].

A .3 Fuzzy V ectors

If V  is a subset of Rn with membership function y = ¡i{x \ V), then V  is a fuzzy 

vector iff:

(i) y =  ¡jl { x  I V) is u.s.c.

(ii) V(a)  is compact, simply connected, and arcwise connected for 0 < a  < 1, and

(iii) V(l) is not empty.

In fact, when n = 1, V  becomes a real fuzzy number so, basically, a fuzzy vector 

is only a generalization of a fuzzy number, n  > 2. ([19])

A .4 In terval A n alysis

As we will see in solving fuzzy equations, interval arithmetic is very important in 

certain approaches to solving fuzzy equations. In interval analysis ([108]), a number 

is viewed as an interval and, hence, characterized by the two endpoints: [a, b] = {x : 

a < x < b}. However, what we really need from interval analysis for our purpose is 

interval arithmetic:

Let Y  = [2/1,2/2] and X  =  where 2/1 < 2/2 and x\ < x 2

(i) X  +  Y  =  [xi + y i ,x2 + 2/2]

(ii) - X  =  [ - x 2 , - x i ]

(iii) X  -  Y  = [xx -  2/2, %2 ~ V\]

(iv) \ / X  =  [I/X2, l/aq], provided the interval X  does not contain 0. If X  contains 

zero, then it is unbounded and cannot be represented as an interval with endpoints 

that are real numbers.

(v) X  - Y  ■.

xi ■ 2/1 =  min(x1y1 , x iy 2 ,X2y i , x 2y2) 

x 2 -y2 = max(xiyi, X\y2, x2y i , x 2y2) 

we obtain 9 cases based on the signs of the endpoints:

1. xi > 0,T/i > 0 : X  • Y  =  [xiyi ,x2y2]
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2. xi  < 0 < x2,yi > 0 ■. X  Y  = [x xy2 , x 2y2]

3. x 2 < 0, t/i > 0 : X  ■ Y  = [xiy2 , x 2yi]

4. xi  >  0,2/1 <  0 <  y2 : X  ■ Y  = [x2yu x 2y2]

5. x2 < 0, yi < 0 < y2 : X  ■ Y  = [x:y2, x xyi\

6. xi > 0,y2 < 0 : X  • Y  = [x2y i , x i y 2]

7. x x < 0 < x 2 ly2 < 0 : X  • Y  =  [x2y i , x i y x]

8. x 2 < 0, y2 < 0 : X  ■ Y  =  [x2y2, xij/i]

9. xi < 0 < x2,yi < 0 < y2 : 

x\  ■ yi = min(xiy2 , x 2yi) 

x 2 -y2 = max(xiyi ,x 2y2)

(vi) x / y  = x  • (i/y)
Algebraic Properties of interval arithmetic 

X  +  (Y  +  Z) = (X  + Y) + Z  

X { Y Z )  = (.X Y ) Z  

X  +  Y  = Y  + X  

X Y  = Y X

o + x  = x  + o = x  

o x  = XO = 0 
I X  = X1 = x

x (Y  +  Z) = x Y  +  x Z ; x  is real and Y  and are Z  intervals 

X ( Y  + Z) = X Y  + X Z ; if Y Z  > 0

A .5 M em b ersh ip  F unction  E lic ita tio n  M eth o d s

Generating membership functions (or possibility distributions) is not a trivial 

task. There are no general guidelines that one can follow to arrive at a final form 

for the membership function, rather the membership function tends to have many 

functional forms which can be adapted to the problem at hand. As we have seen 

above, there are different interpretations for the membership function which result in 

different lines of thought for the function generation. Based on that, authors tend to 

have different categories for the functional forms.
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Lai and Hwang [100] divide elicitation methods into two approaches, axiomatic 

and semantic, based on earlier work by Giles [71]. The axiomatic approach is similar 

to utility theory in that it subscribes to mathematical considerations whereas the 

semantic approach concentrates on the interpretations of the terms. Chaudhuri and 

Majumder [28] divide membership function elicitation methods into two approaches 

according to the availability or non-availability of mathematical expressions for the 

membership function.

We prefer to divide the elicitation methods into two broad categories, namely, 

subjective and objective approaches. Subjective approaches are based on preferences 

or perceptions while objective approaches are based on training data or mathematical 

concepts rather than subjective preferences. Most of the examples we will see rely 

on the first approach because most of the work done so far tends towards modelling 

subjective phenomenon and interpreting linguistic vagueness. However, lately, the lit-

erature has been witnessing increased interest in generating the membership function 

using a set of data.

Subjective approaches map perceptions about vague concepts into numerical struc-

tures. Based on that, they utilize tools from measurement theory and scaling (a good 

reference on measurement and scaling of membership functions is [113]). There are 

many techniques that try to elicit membership functions based on preferences.

1. Polling ([56],[49],[106]): This approach corresponds to the likelihood view of mem-

bership functions. A subject is presented with the object and asked whether this 

object belongs to a set. The subject is expected to provide ”Yes/No” answers.

2. Direct Rating ([56],[106],[113]): This approach can be applied to a single individual 

or a group. The subject is asked to explicitly give the grade of membership of an 

object in a set (characteristic...). Such methods require evaluation measurement to 

be at least on an interval scale.

3. Reverse Rating ([56],[106],[113]): This approach can also be applied to a single 

individual as well as to a group. However, in this approach, the subject is given the 

membership function and asked to give the object that would best suit such a grade 

of membership. It also requires evaluation to be measured on at least a membership 

scale.
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4. Interval Estimation [56]: This approach undertakes the random set-view of the 

membership function. The subject is asked to give an interval that describes or 

includes a fuzzy set. It is believed that this approach deals with the uncertainty 

rather than the vagueness aspect.

5. Membership Exemplification ([56],[49]): This approach relies on partial information 

to elicit a membership function. A subject is asked to give values for the membership 

function of a fuzzy set at certain points and then the membership function of the set 

is elicited from this partial information.

6. Pairwise Comparison ([56],[106]): This approach involve comparing the member-

ship function of one set with that of another. It requires evaluation on a ratio scale.

7. True-Valued Approach [100]: The basic idea behind this approach is that the 

degree of membership of an element x  in set A, fj,A(x), is numerically equivalent to 

the truth value of the statement ’x  is A,’ v(x  is A).

8. Interpolation [29]: This approach subscribes to the measurement theory view of 

membership functions. Measurement theory provides an axiomatic framework for in-

terpolating the membership function, which is based on subjective preferences. Chen 

and Otto [29] use it within the context of design engineering. They collect data for 

the grade of membership of some points from experts (i.e. subjective data) and try 

to interpolate the membership function for the rest of the data points. However, 

since the membership function is constrained (boundedness, and monotonicity and 

convexity conditions) which hinders the application of usual interpolation schemes, 

such as least squares or spline methods, they introduce a constrained interpolation 

method using the Bernstein polynomials and an algorithm for computing shape pre-

serving quadratic splines. In fact, their approach is very close to that of subjective 

probabilities. The basic idea is to introduce a flexible interpolation method which 

can accommodate for the discontinuities in the membership function. This can be 

accomplished by segmenting the membership function into pieces subject to certain 

end-conditions.

9. Payoff Function ([71],[100]): This approach subscribes to the utility view of the 

concept of grade of membership. It considers that the assertion ’x is A’ instead of the 

statement itself to be fundamental and to be identified by the payoff function across
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different states of the world similar to decision theory.

10. Parametrized Membership functions ([106],[100],[56],[28]) subscribe to the simi-

larity view. They rely on parameters or a distance measure between the observation 

and an ideal one. The most popular forms of such a membership function are

P ( ^ )  l-fexp (a—bx) ’

^ x )  =  T + f e ) >

=  1+f(d(x)) ’

1 exp ( — a ( x — b ) )  ’

where a and 6 are parameters that can be determined from statistical data.

11. Conjugate Gradient Search Technique [27]: This approach was presented in an 

attempt to introduce a Fuzzy Delphi Method. It allows fitting continuous mathemat-

ically explicit membership functions to discrete membership functions. It provides an 

estimation of the bounds of the membership function based on interval-valued surveys 

elicited from experts.

Medasani et al. [106] argue that subjective approaches usually lack a ’general 

category’ like the maximum likelihood for estimating probability densities. But they 

attribute that to the fact that we do not yet fully understand human perception of 

vagueness.

Now we move on to present objective approaches to generating a membership 

function. We will divide those approaches into two categories: those that deal with 

heuristic methods and those that deal with training data. We will start with the 

former approach.

Heuristic approaches ([106],[100]) use a predefined shape for membership func-

tions. The functions can be made suitable for the problem at hand; however, it is not 

easy to tune the parameters especially for complex problems. Heuristic approaches in-

clude piecewise linear functions and piecewise monotonic functions. In the following, 

we present a summary of such membership functions.
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Zimmerman’s linear function: fi(x) =  1 — ^

Tanaka, Uejima and Asai’s triangular function: fi(x) =
1 - if a — a < 

otherwise

x

piecewise linear: /i(x) =  <

0 if x < a

if a < x < b

1 if b < x  < c 

if c < x  < d

piecewise linear: /z(x) =  <

if x > d

if x < a

j t ~ x  H— if a < x < bb—a a—b — —

S-function: S(x\a,b,c) = <

where b = ^4

7r-function: n(x;a,b,c) =

x—a
c—a

if x > b 

if x < a 

if a < x  < b

1 2 i c^a) i f b < X <C

if X > c

S (x ; c — 6, c — c)

1 =  S(x; c,c+%,c + b)

if x < c 

if x > c

piecewise monotonic function: //(x) = exp(—b(x — a)2)

Svarowski’s sin function: ¡i{x) =   ̂  ̂sin (x — , x  G [a,b]

Zadeh’s unimodal functions: Hyounq{x) 1+[ ^ 1
if x  > 25

if x  < 25

*«<*) =
if x  > 50

I 0 if x < 50
2

Dimitru and Luban’s power functions: /r(x) =  ^  +  1, x  G [0, a]

K x ) = ~  2a + ®G[0,a]
Lai and Hwang [100] acknowledge some of the functional forms presented above 

but categorize them differently and add some other forms too. They actually combine 

functional forms for preference-based membership functions as well as possibility dis-

< a + a
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tribution and put them in 4 categories. They categorize Zadeh’s unimodal functions, 

Dimitru and Luban’s power functions and Svarowski’s sin function under membership 

functions based on heuristic determination category, which is the first category.

They consider Zimmerman’s linear function and Tanaka, Uejima and Asai’s sym-

metric triangular function under membership functions based on reliability concerns 

with respect to the particular problem, which is the second category. But they also

add to this category the following membership functions,
Hannan’s piecewise linear function: ¡x{x) =  ^  • aj \x — aj\ +  fix + r, j  — 1,..., N

a

P

. _  f a - u . w  
1 2 ’
_  (tjv+i+b)

2 ’
_  (sjy+i+si) 

' ~  2

OO

where ¡jl{x ) — t{X + Si, for each segment i, at_i < x <

Leberling’s hyperbolic function: n(x) =   ̂ +  (5) tanh(a(x — 6)), —00 < x < 

where a is a parameter.

Sakawa and Yumine’s exponential and hyperbolic inverse functions, respectively:

H(x) = c(l - e x p  x e [ a , b ],

¡x(x) =  ̂ +  ctanh_1(d(x — 6)), 

where c and d are parameters.

Dimitru and Luban’s function: fi(x) = 

where a ia parameter.

Dubois and Prade’s L-R fuzzy number: ¡j,(x) =  <

where L(.) and R(.) are reference functions.
The third category encompases the functional forms for the membership functions

based on more theoretical demand. Under this category, they present the following

forms,

{ap(x) if apia:) < 1 

0 otherwise

where a £ [0, 1] is a parameter and p(x) is the probability density function

l ( ^ ) if x < a

if x > b

1 if a < x  < b
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0

Svarovski’s function: fi(x) = <

if x < a 

if a < x < b 

if b < x < c

if x > c

K (x  — a) 2 

K 2x 2 +  K xx + K q 

1

where K , K q , K i , and K 2 are parameters.
The fourth and final category that Lai and Hwang present is that corresponding

to membership functions that serve as a model for human concepts. Such membership

functions include
Hersh and Caramazza’s function: ¡i{x) =   ̂+  dj^,

where d(x) =  1 for ”yes” answers and d(x) =  —1 for ”no” answers, and r 

is a confidence value. In fact, this function has been determined empirically 

in an attempt to model the implications of context on the interpretation of 

a set of linguistic terms.

— cZimmerman and Zysno’s function: y,(x) = \  +  Q) 1+exp(_a(x_fc)) 

which is, in fact, another function that utilizes distance.

Dombi’s function: /z(x) =  »

where s is the characteristic value of the shape. It is the intersection value of 

y =  [¿(x) and y =  x.

There are other functions, which are generally used for possibility distributions 

and are quite popular in the literature especially with fuzzy numbers.

1. Arc tangent: y  =  ——(s(?~m)) +  0.5

where s is the scalar fact and m  is the midpoint

2. Gaussian: fj, =  exp 0 .5 (^ IS)2j

where s is the standard deviation and m  is the mean

3. Inverse: /z =  (1+a(^_c)fc)

where a is the scalar fact, b is the power and c is the starting value

4. Linear: y,=<

1

1

c +  k(x — a)

b = d = l , x  < c 

d = f  = l ,c  < x 

b ^ d , d ^ f , a < x < c , k  =  ^

f  * k(x — c)
where a is the starting point, b,

c < x  < d, k = d—b
a —c

d and f are 110, c is the midpoint, and e is the last
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point.
1 x > c

/  \ 20.5 1 x —a \
\ b - d  J a < x <b

( \ 21 - 0-5 ( i f f ) b < x < c

0 x < a

5. Sigmoidal: fi =  <

where a is when the curve is at its minimum (close to zero), b is when the curve 

is at its midheight (close to 0.5), and c is when it is at its maximum.

6. Triangular: fi =  <

where a < b < c are the three vertices of the triangle.

0 x  < a
x —a
b—a a < x < b
x —c b < x  < cb—c

0 x > c

0 0 < x < a
x —a a < x  < bb—a

l b < x  < c
x —d c < x  < dc—d

0 x  > d

7. Trapezoidal: fi=<

where a < b < c < d are the four vertices of the trapezoid.

8. Fuzzy Normal Distribution: fi{x) = exp[—k(x — a)2] 

where k > 0 and a € Di.
exp[k(x — a)], x < a

9. Fuzzy Sharp Gamma Distribution: fi{x) =
exp[—k(x — a)], x > a

where k > 0 and a 6 3ft.

10. Fuzzy Cauchy Distribution: /j,(x) = 1+Q̂ _ a^ , 

where a > 0 and (3 is positive even.

Clearly, we do need to estimate the parameters for the membership functions. This 

can be quite a tricky issue actually after defining the membership function. There are 

some attempts in the literature to estimate such parameters. Kai-Yuan [25] presents 

an approach to estimating the parameters of a normal fuzzy number (or membership 

function). As we will see later, Dishkant [43] introduces a new approach based on 

many-valued logic to estimate parameters.
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It is also possible to elicit a possibility distribution from a probability distribu-

tion ([49] ,[106]). So if we agree that membership functions are numerically equivalent 

to possibility distributions, it is possible to generate membership functions from his-

tograms, given that normalized histograms can be treated as probability distributions 

and, in the presence of a large data sample, this can be used to approximate a pdf 

[106]. We will not dwell into this approach much now because we will elaborate more 

on it later on.

As for the objective approaches, they generally depend on training data. In what 

follows, we will present the most popular techniques that are utilized in this area.

1. Fuzzy KNN Algorithm [106]: The fuzzy K-nearest neighbor algorithm is a popular 

objective approach. It is applied to a set of data whereby it assigns a membership 

value to a sample vector. This membership function describes what fraction of the 

vector rests in the defined classes. So rather than assigning the vector to a defined 

class, it assigns class memberships to the test or sample vector. Consider X  — 

{xi,X2, ...,x ra} a set of labeled samples. Then, the membership function of a vector 

x in class i is

A

where /i,̂ - is the membership of the j th  labeled vector in the ith  class, dj is the distance 

between the test vector x and the jth  labeled vector and m is  a real number greater 

than 1 that represents the strength of the fuzzy distance function.

2. Neural Networks and Neuro-Fuzzy Techniques ([56], [106]): Neural networks can 

be used to generate membership functions from a set of data. Generally, a multilayer 

feedforward network is used. The empirical justification for using this approach is that 

the activation function of the neural network is very similar to some of the functional 

forms of the membership function, which we have presented earlier. It is also possible 

to use neural-fuzzy approaches by using a fuzzy neuron.

The advantage of such approaches is that it allows generating complex membership 

functions due to the nonlinearity of the network. However, their disadvantage is that 

the shape of the membership function can not be known in regions for which there is 

no data. But it is possible to make up for this by using artificial data with desired

t(x ) .  3 =  1________ 3____________

£  (¿r)(m_1)
J  =  1 3
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output values [106].

3. Fuzzy Clustering Techniques ([7],[56],[106]): These approaches are recommended 

for generating membership functions when sufficient data is available. Medasani et al. 

[106] provide a relatively comprehensive summary of two fuzzy clustering techniques, 

the Fuzzy C-Means method and the Robust agglomerative mixture decomposition, 

that can be used. Benachenhou [7] utilizes fuzzy logic in trading. To this end, she 

needs to use a method to fuzzify time series. So she uses clustering techniques to 

extract the size of the membership function. She also presents a summary of two 

clustering techniques that have been used to fuzzify time series.

However, we will only present a general outline here. In general, the output data 

is partitioned into clusters or classes, which is then projected on the input data to 

generate clusters and select the variables involved in the input-output relation. The 

shape of the membership functions have to be determined. They allow a graduated, 

rather than crisp, assignments of the data to clusters ranging between 0 and 1. Divide 

the data into three groups for model building and testing. Note that clustering 

techniques involve a distance measure. Usually the data space used is based on the 

Euclidean norm so one has to carry further analysis before using membership functions 

that are based on non-Euclidean norms.

4. Many-Valued Logic Approach ([43],[85]): This approach is based on Lukasiewicz 

many-valued logic tw. Dishkant [43] introduces a Limit Theorem, which defines a 

membership type

p(z) =  max{l — \c(z  — a)2, 0},

but the parameters c and a remain unknown. So he suggests an approach to parameter 

estimation where he interprets unknown parameters as fuzzy variables.

The basic idea is to find an optimal estimate to of a fuzzy parameter A. to £ T is 

a an optimal estimate of A  if 

3 t \ A(t) -> AA(t),

is true in tw, where XA(t) is the membership function of A  such that AA : T  —> [0,1] 

and T is an arbitrary set of the parameter values. It is possible to have more than 

one optimal estimate or none at all. In fact, the above condition implies that A  ̂ is 

maximal for to as a value of t which can be translated to
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to =  arg max (t).

Assume that we have ¡iA(x,t) as a truth value of the assertion ”If A  assumes a 

value t, then the fuzzy variable S  assumes a value x,” and that ¡i : X  x T  —» [0,1] is 

a priori known. We can arrive at the optimal estimate to by utilizing empirical data 

which can be subjectively drawn or experimentally obtained. This empirical data 

spans the truth values ¡ik of statements:”^  takes a value xk ” where k =  1,2 ,...,n . 

So empirical situation in tw can be defined by the condition

A (f i (xk, t ) <-*■ Mfc),
1 < k < n

where f\  denotes the multinomial rigid conjunction (returns the minimum of two
l < k < n

functions). This condition also serves as the membership function of the parameter A  

which now becomes a fuzzy variable. Therefore, the optimal estimate to to A  becomes 

to = arg min max \fi(xk,t) — ¡ik \ .
t 1< k < n

In fact, Dishkant utilizes this formula to arrive at an equivalent of the maximum 

likelihood approach in Probability Theory, which is not relevant now but the interested 

reader is referred to [43]. Effectively, Dishkant has established a formula for the 

membership function of a fuzzy variable, which is the sum of many fuzzy variables 

with known membership functions.

There are other examples dealt with in the literature. Lai and Hwang reference 

other less known approaches to eliciting membership functions such as hard c-means 

algorithm, fuzzy alternative to regression analysis, magnitude estimation etc... ([100], 

section 2.3.2.4). Dubois and Prade [49] mention a deformable prototype approach, 

which is similar to other distance approaches but different in that the prototype is de-

formed such that a maximal similarity is obtained. They also talk about the relative 

preference method, which utilizes eigenvalues. The membership values are calculated 

from sets of data representing relative membership values between different elements 

in a set. They also present comparison of subsets and filter function approaches. The 

former approach derives a set of inequalities that describe membership values based 

on which fuzzy subset better matches the fuzzy set under consideration. The latter 

approach is a filter function that identifies membership functions of fuzzy sets that 

model adjectives. It depends on the location of the neutral point and the transi-

tion between membership and nonmembership. In another book [56], they provide
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references on approaches involving mathematical derivation and others deriving con-

tinuous membership functions from discrete points. They also present literature that 

draws comparisons among scaling and elicitation methods.
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A p p en d ix  B

U ncertainty M easures and 

N onadditive M easures

B . l  U n certa in ty  M easures

In this section, we present an overview of the various measures of uncertainty. 

Even though this is not directly related to our research but it is important to include 

it because it is relevant within the framework of uncertainty and we have to clarify the 

difference between such measures and nonadditive measures, which are at the core 

of our research. In fact, it is the different theories lying behind those nonadditive 

measures that give rise to different interpretations of uncertainty.

Measures of uncertainty measure the amount of uncertainty itself in the system 

while nonadditive measures try to model or capture it. The usual measure of uncer-

tainty in Probability Theory is the Shannon entropy. On the other hand, in Fuzzy 

Theory, there is more than one measure. Given that we have different types of uncer-

tainty, we have different measures of it which will be presented within the framework 

of Evidence Theory.

The first type of uncertainty is vagueness. Measures of vagueness are also known 

as measures of fuzziness or, sometimes, as indices of fuzziness. As the name implies, 

those measures indicate the degree to which the set is fuzzy, that is, the membership 

of elements in this set is ambiguous. It reflects the difficulty in trying to assess which
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elements belong to a fuzzy set and which do not.

There are several measures of fuzziness that have been proposed in the literature. 

Generally, a measure of vagueness or fuzziness is a function 

/  : P(X)  -  M

where X  is the universe of discourse, P(X)  is the power set of X.  Any measure 

of fuzziness has to satisfy three requirements, the first of which is unique while the 

other two depend on the meaning associated with the degree of fuzziness. The unique 

requirement entails that the degree of fuzziness must be zero for all crisp subsets of 

the power set, that is, if a subset A  is crisp or, in other words, has sharp distinctive 

boundaries or not fuzzy, its degree of fuzziness given by f(A)  has to be zero. The 

second requirement deals with measures of fuzziness as comparison of sharpness be-

tween subsets so that if A  is sharper than B  (A < B), then f (A)  < f (B) .  The third 

requirement states that the degree of fuzziness of a set should be maximal only for a 

subset that is perceived as maximally fuzzy.

Having defined the basic requirements, we now move on to present such measures 

([89],[90], [55],[83]).

1. De Luca and Termini’s measure:

f i A ) = -  E [/Lt(z)log2Mz) + (l-/Ll(a0)1°g2(1-Abt0i;))]>xex
where ¡xA{x) is the grade of membership which is  ̂ for a maximally fuzzy set. So for 

A < B  and for all x  € X  :

Ha(x)  ̂Vb(x) for Vb(x) < b
HA(X) > Vb(x) for Vb(x)  ̂b

2. Kaufmann’s index of fuzziness: This measure is defined in terms of a metric 

distance so that

f ( A ) = E \Ha (x ) ~ V b (x )1
x £ X

when the Hamming distance is used, and

f ( A ) = (  E 1^a (x ) - ^ b (x )}2') ,
\xex  J

when the Euclidean distance is used; other distances can be used as well such as the 

Minkowskian class of distances

f w(A) = (  E  1̂ a (x ) ~ ,
VxeX /
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where w E [1, oo]; obviously this last measure can serve as a generalization of the 

other two.

3. Higashi and Klir’s measure:

Aw(A) = DC]W(Z, Z c) -  DC,W(A ,AC), 

where DCiW(A, Ac) is a distance from the Minkowski class defined as

DCtW(A ,Ac) =

and

8c,a(x) = IVa(x) - c(/J-a(x))I.
Z  is a crisp set and c stands for the complement. This is based on Yager’s requirement 

that an index of fuzziness has to reflect the lack of discriminating between an event 

and its complement.

As for measures of ambiguity, they are broadly described via plausibility measures 

and belief measures (equivalent to upper and lower probabilities respectively). We will 

not introduce those measures now since we will be talking since we have talked about 

them indetail in Chapter 2. However, we like to note that, given that probability 

measures are perceived as a special type of plausibility measures, they can be used 

to measure ambiguity. Since there are three distinct types of ambiguity, we have to 

introduce the measures that govern them and which are embedded in plausibility and 

belief measures.

For the nonspecificity of evidence, there are four possible measures (([89],[90],[55]).

1. Hartley’s measure of information:

I (N)  = K 0 logbN,

where N  is the total number of alternatives and K q is an arbitrary positive constant. 

It is associated with the ambiguity related to the selection of one element from a set 

of possible alternatives.

2. U-uncertainty:
l

U{7r) =  f  log2 | c(7r,a) | da , 
o

where 7r is a normalized possibility distribution and | c(n, a) | is the cardinality of the 

a-cut. This is a possibilistic measure of uncertainty.

3. Yager’s measure:

E
x £ X

cW
°c ,A ( x )
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a(n) =  1 — f  rv— ,v ' J c(7T,a) ’0
which is another possibilistic measure but less justified than the U-uncertainty one. 

It is perceived as a possibilistic counterpart to hyperbolic entropy.

4. Generalized U-uncertainty:

Um{m) = E m(̂ )l°g2 I A  I)
A C X

where m(A)  is a basic probability assignment. This is a U-uncertainty measure gen-

eralized to plausibility and belief measures.

As for dissonance or confusion in evidence cases, there exist three measures.

1. Shannon Entropy:
n

H(P) = -T,Pi\°gPi,
2 — 1

where p is a probability distribution. So it is only meaningful for probability measures.

2. Yager’s measure of dissonance:

E(m)  =  E  rn(A)Con(Bel, Bel^),
A C X

Con(Beli} Bel2) =  — log(l — k),

= E  rni(Ai) ■ m 2(Bj), At n Bj = 0,

where Con(Beli, Bel2) is the weight of conflict between the two beliefs and Bel stands 

for the belief function representing the basic probability assignment m. This measure 

of dissonance is also written as,

E(m) = — E  rn(A) In PI (A).
A C X

Maximal ambiguity in this case is obtained when m(A) is scattered over, but 

equally assigned to, a maximal number of disjoint subsets. Notice that E , the mea-

sure of dissonance here, and U , regular or generalized U-uncertainty, serve opposing 

purposes whereby the former discriminates among probability measures but not fuzzy 

sets and vice-versa for the latter.

3. Measure of confusion:

C(m) = -  E  m(A)  log2 Bel(A),
A C X

which is maximal when m  is uniformly distributed among the largest possible number 

of subsets of X  such that none of them is a subset of the other. This measure shows 

that the greater the number of subsets and the more uniform the distribution, the 

higher our confusion by evidence will be.

1
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A measure of uncertainty can also be considered a measure of information in the 

sense that the amount of uncertainty eliminated (due to new information) is the same 

as the amount of information gained. But the measure of uncertainty as a measure 

of information does not involve pragmatic or semantic aspects of information, that is, 

information based on uncertainty does not include any pragmatic or semantic aspect 

but represents the necessary core that any semantic or pragmatic information must 

contain. In all cases, this is not directly relevant to our research and so we will 

limit the discussion to this point. We move on to present nonadditive measures that 

capture such uncertainties and which form the basis of our research.

B .2  N o n a d d itiv e  M easures

Probability Theory is only a part of classical Measure Theory. Restricted by the 

additivity assumption imposed by classical Measure Theory, mathematicians started 

developing theories that challenge this theory. The first of those is the theory of ca-

pacities developed by Choquet. Later on, more practical theories encompassing non-

additive measures have been introduced. In 1967, Dempster introduced a new theory 

that involves upper and lower probabilities and, hence, admits a range of probabili-

ties within an interval. The theory has been later developed by Shafer and became 

to what is known now as the Dempster-Shafer or Evidence Theory. It introduces two 

nonadditive measures where one is superadditive, known as a belief measure, and the 

other is subadditive, known as a plausibility measure. The two measures induce each 

other, that is, it is enough to know one to infer the other.

In 1978, Zadeh [150] introduced Possibility Theory. We have talked about this the-

ory in detail during the course of our research. As we have seen, possibility measures 

are special cases of plausibility measures and, hence, they also arise from Evidence 

Theory. They are usually associated with necessity measures. More recently, Walley 

introduced imprecise probabilities.

We will be presenting all of those measures in this appendix. However, our main 

focus will be on a theory that has been developed in 1974 by Sugeno. Sugeno ( 

[133],[134]) has introduced Fuzzy Measure Theory, which includes the nonadditive
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measures, known as fuzzy measures, and the nonlinear integral, known as Sugeno 

or fuzzy integral, in an attempt to compare probabilities to fuzzy sets. We will not 

dwell much on this topic here since we have devoted an entire chapter (Chapter 2) 

to analyze it. However, we like to note that, sometimes, the term ’’fuzzy measure” is 

used as a general term to all nonadditive measures such that all nonadditive measures 

we have mentioned so far become special cases of it.

B .2 .1  D em p ster -S h a fer  T h eo ry

This theory is based on evidential reasoning. That is it allows us to develop 

partial beliefs based on pieces of evidence that convey vague, imprecise or incomplete 

information. The basic element in this theory is a function t o , known as a basic 

probability assignment, where 

m :  2X -+[0,1], 

m{4>) =  0,

£  m (A) =  h
A C X

where X  is a finite set that could represent the set of alternatives or solutions. When 

m(A) > 0, the subsets A  are known as focal subsets making up 3. (9, t o) represents 

the body of evidence that entails a piece of information. It is within this framework 

that m(A) represents the confidence level of the subset A  as a representative of the 

piece of information. Another way to look at m(A) is as the degree of belief that a 

certain element of X  belongs to A.

However, it is in fact allocated to ignorance so that as m(A) increases, ignorance 

increases because A  is viewed as an imprecise observation. The focal subsets do not 

have to be disjoint and they do not have to span the entire set X .  Focal subsets 

represent mutually exclusive possible values of a variable. In such cases, information 

is known to be disjunctive. But information can also be conjunctive, that is, each 

focal subset can represent a set of values that the variable can take.

B .2 .2  B e lie f  and  P la u s ib ility  M ea su res

Those measures are associated with the basic probability assignment such that
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Bel (A) = £  m (B),
B C A

Pl (A )=  £  m(B),
BnA^cf)

Pl{A) = 1 -B e l ( A ) ,

where Bel and PI stand for belief and plausibility measures respectively. Belief mea-

sures indicate the weight of evidence characterizing subsets of A. On the other hand, 

plausibility measures indicate the weight of evidence that does not focus on A.

When all focal subsets are singletons, both measures converge to the probability 

measures (in fact, a probability measure is a special plausibility measure), m  is usually 

a probability assignment on 2 X but in this case, it is usually a usual probability 

assignment. When the focal subsets are not singletons, the following inequalities 

hold,

superadditivity:L?e/(A U 5) > Bel (A) +  Bel(B) — Bel (A fl B), 

subadditivity:P/(A n B) < Pl(A) +  Pl(B) -  Pl(A  U B).

B .2 .3  N e c e s s ity  an d  P o ss ib ility  m ea su res

When the focal subsets are nested such that 7s =  {A\  C A 2 C ... C An}, 

the bodies of evidence is called consonant. This gives rise to two new nonadditive 

measures which are special cases of belief and plausibility measures. Those measures 

are possibility, which is a special plausibility measure, and necessity, which is a special 

belief measure. A possibility measure is defined by taking the supremum of the 

possibility distribution. It was first introduced by Zadeh [150] in 1978. Let 7r be a 

possibility distribution function such that 

7T : AT —> [0,1],

Pos(A) = 11(A) =  sup7r(x),

Nec(A) =  1 -n ( A ) ,

where Pos (or II) stand for the possibility measure and Nec(A) stands for the necessity 

measure. Those measures usually satisfy the following inequalities 

Pos{A U B) = max [Pos(A),Pos(B)],

Nec{A n B) = min [Nec(A), Nec(B)} .

The possibility distribution can in fact be related to the basic assignment m  (we 

will talk in detail about possibility distributions in the following chapter). Let n = \X\

213



be the cardinality of X  and order Xi such that ix{xi) is monotonically increasing for 

i =  1 Therefore,
n

n f a )  = E  m j ,
j=i

which can also be written as 

rrn =  n(xi) -  7r(xi+1).

Note that 7r(:rn+1) =  0 by convention and 7r(aq) = 1. Given that a membership func-

tion is numerically equivalent to a possibility distribution, we can infer that a fuzzy 

set is a consonant body of evidence. Dubois and Prade [55] differentiate between 

those measures and probability measures. The former arise from imprecise but con-

sonant pieces of information (nested subsets) while probability measures stem from 

elementary focal subsets (singletons).

B .2 .4  A  F u zzy  D em p ster -S h a fer  T h eo ry

A fuzzy basic assignment can be defined as 

m : P ( X ) - + [  0,1],

where P(X)  is the fuzzy power set or the set of all fuzzy subsets of X .  Plausibility 

and belief measures can now be defined as,

Bel (A) = E  fh(J3) 
b g 5

1 — max min (1 — nA(x), nB(x))
x £ X

max min {¡iA (x) , fiB (x)) 
x £ X

PI(A) = E  rh(B)
s e  5

where /j ,a (:r) and Hb {x ) are the grades of membership of x  in fuzzy sets A  and B,

respectively, and 9  is the set of all fuzzy focal elements associated with in.

B .2 .5  F u zzy  M ea su res

We have already discussed fuzzy measures in detail in chapter two so we only 

include it here for the purpose of being comprehensive. Evidence Theory, Possibility 

Theory and Probability Theory are all special cases of the more general Fuzzy Measure 

Theory which necessarily means that the corresponding measures are also special cases 

of fuzzy measures as well. This is, of course, the general agreement in the literature 

but there are still some controversies over the truth of such assertions [124],
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B .2 .6  Im p rec ise  P r o b a b ilit ie s

As we have seen, the additivity requirement in classical Probability Theory is 

quite restrictive since it imposes estimating probability with a precise number and 

requires a clear distinction between an event and its negation. But imperfect infor-

mation due to many widespread sources is widely prevalent and to be able to model 

those situations, we have to relax the precision assumption. This can be done using 

imprecise probabilities which generally involve an interval defined by a lower and an 

upper probability value. They represent minimum and maximum acceptable rates 

respectively. This theory induces decision making to satisfy principles of coherence 

and avoiding sure loss.

The idea behind the introduction of imprecise probabilities is to introduce a unified 

theory that can accommodate all types of uncertainty and include all measures as 

special cases. Imprecise probabilities are supposed to include the measures we have 

discussed so far as special cases and adds to them other more general measures. 

Walley [139] presents those measures in order of increasing generality manner as

1. necessity and possibility measures

2. belief and plausibility measures

3. Choquet capacities of order 2

4. coherent upper and lower probabilities

5. coherent upper and lower previsions

6. sets of probability measures

7. sets of desirable gambles

8. partial preference ordering.

Model 9 is supposed to be a special case of models 5-8 so it does not exactly fit in 

this list

9. partial comparative probability ordering.

Of course, as we have seen in the literature on fuzzy measures, fuzzy measures are 

supposed to include models 1, 2 and 6. Walley refers to fuzzy measures as capacities 

or capacities of order 1. It is not in our interest to try to sort out the differences 

in points of view, if there are any, nor are we interested in a detailed analysis of
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imprecise probabilities so we will only confine our analysis in to a brief overview of 

each of these models. We have already seen models 1 and 2 so we only have to present 

the remaining.

C hoquet C apacities o f order 2

Let Q be our sample space or the set of all possible states. In the first four 

models, it is enough to define only the lower probabilities because the upper one can 

be derived from it. So if we define P(A) as a lower probability, the upper probability 

can be derived using P(A) — 1—P(AC), where A £ I ,  a set of subsets of and c 

stands for conjugate. It has to satisfy the following requirements

P(4>) = o,

m  =  i,

o <P{A) < 1.

It is said to be a Choquet capacity of order 2 if it satisfies the following

P(A  U B)+P(A  n B) > P (A)+P(B).

C oherent Lower Probabilities

Coherent lower probabilities serve as a lower envelope of a set of probability mea-

sures. A lower probability is coherent iff there exists a non-empty set of probability 

measures, M,  such that

P{A) = inf{P(A) : P  € M}.

The shortcomings of such types of probabilities that hinders their generality are 

their inability to model comparative probability judgements and to determine unique 

conditional probabilities. However, their most important shortcoming within our 

context is their inability of determining unique lower or upper expectations.

C oherent Lower Previsions

A gamble is defined as a mapping from il to 5?. If A is a non-empty set of 

gambles, then a lower prevision can be defined as 

P  : A  -► R.
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It is called coherent if it forms an envelope for a set of linear expectation such that, 

assuming M  is a set of probability measures,

P(A)  =  inf{EP(A) : P  € M},

where Ep(A)  stands for the expectations of A  with respect to P. The conjugate 

upper prevision is determined using 

P {A) = - P ( - A ) .

When X  is a linear space of gambles, P(A)  has to satisfy three axioms

1. P(A) > inf{X(tu) : zu G f2},

2. P(cA) = cP(A), c>  0,

3. £(,4  +  13) >£(A)+P(B).

Unlike coherent lower probabilities, coherent lower previsions are able to model 

comparative probabilities, and determine expectations and conditional probabilities. 

They can also solve the problem of missing information. However, they have two 

main shortcomings. When P(A) = 0,they cannot determine conditional lower previ-

sions P(. | A), which is important when updating lower previsions after observing A. 

Besides, they cannot distinguish preference from weak preference.

Sets o f P robability  M easures

Sets of probability measures reduce to a single measure in the presence of precise 

probabilities. A closed convex set of probability measures is the set off all such mea-

sures that are have lower previsions as their lower envelope and that have expectations 

that dominate the lower prevision. The convexity assumption is not really necessary 

and such sets, when not considered in combination with others, do not change be-

haviour in the absence of convexity. Those measures are more informative than lower 

previsions but they still have the same drawbacks.

Sets o f D esirable Gam bles and Partial Preference Orderings

Assume that X  is the set of all gambles whereby a gamble assumes the same 

definition given to it in section 4.6.3. Let D denote the set of desirable gambles, 

which is a subset of X.  It is called coherent if it satisfies the following axioms, 

assuming that A, B  € X
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1. if A E D and 0 > A  then A  ^ D,

2. if A E D and A  > 0 then A E D,

3. if A E D and c E  then c A E D,

4. if A E D and B E D then A  G D,

where A > B  means that A > B  and A(zu) > B(zu), for vu E Vt. A coherent set 

of desirable gambles is a convex cone of gambles allowing only positive gambles and 

excluding negative ones.

A partial preference ordering > is a partial ordering of the gambles in A. So 

that A > B  implies that A  is preferred to B. There is a one-to-one correspondence 

between sets of desirable gambles and coherent partial preference ordering, which 

implies that both models are equally general. This correspondence is defined by A > 

B  holds iff A — B E D. However, sets of desirable gambles are simpler mathematically 

than coherent partial preference ordering. Those models include all information in 

previous models in imprecise probabilities and add additional information that allows 

conditioning on 0 and differentiates between preference and weak preference.
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APPENDIX C

Table 1C: This table shows the option bounds for Dell stock options using fuzzy as well as Choquet integration. The binomial option value is 
also shown for comparative purposes. Black-Scholes implied volatility is used in the calculations.

Moneyness Expiration Bid Ask Last Dual Fuzzy Fuzzy Fuzzy Spread Binomial DualChoguet Choguet
ITM May-02 17.30 17.60 15.40 17.44 17.44 0.00 17.60 2.56 19.28
ITM May-02 14.90 15.10 16.50 14.94 14.94 0.00 15.10 1.56 16.69
ITM May-02 12.40 12.60 14.90 12.44 12.44 0.00 12.60 1.03 13.98
ITM May-02 9.90 10.10 9.00 9.94 10.30 0.36 10.10 0.69 11.37
ITM May-02 7.40 7.60 8.00 7.44 7.98 0.54 7.60 0.44 8.73
ITM May-02 5.00 5.20 5.30 4.94 5.80 0.86 5.20 0.26 6.13
ITM May-02 2.75 2.85 2.80 2.44 3.67 1.23 2.85 0.11 3.51

ATM May-02 0.95 1.05 0.95 0.06 1.92 1.86 1.05 0.00 0.95
OTM May-02 0.10 0.25 0.15 0.00 0.75 0.75 0.25 0.00 0.00
OTM May-02 0.00 0.10 0.10 0.00 0.33 0.33 0.10 0.00 0.00
OTM May-02 0.00 0.05 0.05 0.00 0.17 0.17 0.05 0.00 0.00
OTM May-02 0.00 0.05 0.05 0.00 0.11 0.11 0.05 0.00 0.00
OTM May-02 0.00 0.05 0.05 0.00 0.08 0.08 0.05 0.00 0.00
OTM May-02 0.00 0.05 0.05 0.00 0.06 0.06 0.05 0.00 0.00
ITM Jun-02 7.50 7.70 8.10 7.44 8.04 0.60 7.70 0.44 8.76
ITM Jun-02 5.20 5.40 5.70 4.94 5.70 0.76 5.40 0.26 6.19
ITM Jun-02 3.20 3.40 3.50 2.67 3.59 0.93 3.40 0.12 3.65

ATM Jun-02 1.60 1.70 1.85 0.13 1.93 1.80 1.70 0.01 1.09
OTM Jun-02 0.50 0.65 0.75 0.00 0.74 0.74 0.65 0.00 0.00
OTM Jun-02 0.15 0.25 0.20 0.00 0.32 0.32 0.25 0.00 0.00
OTM Jun-02 0.00 0.10 0.10 0.00 0.17 0.17 0.10 0.00 0.00
OTM Jun-02 0.00 0.10 0.00 0.00 0.11 0.11 0.10 0.00 0.00
OTM Jun-02 0.00 0.10 0.00 0.00 0.08 0.08 0.10 0.00 0.00
ITM Aug-02 17.30 17.60 0.00 17.44 17.44 0.00 17.60 13.07 19.22
ITM Aug-02 14.90 15.10 0.00 14.94 14.94 0.00 15.10 1.71 16.62
ITM Aug-02 12.40 12.60 11.70 12.44 12.44 0.00 12.60 1.03 13.92
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Moneyness Expiration Bid Ask Last Dual Fuzzy Fuzzy Fuzzy Spread Binomial DualChoquet Choquet
ITM Auq-02 10.10 10.30 9.40 9.94 9.94 0.00 10.30 0.69 11.42
ITM Auq-02 7.80 8.00 6.00 7.44 7.81 0.37 8.00 0.45 8.87
ITM Auq-02 5.50 5.80 6.00 4.94 5.58 0.64 5.80 0.26 6.27
ITM Auq-02 3.70 3.90 4.40 2.73 3.61 0.88 3.90 0.12 3.75
ATM Auq-02 2.20 2.35 2.55 0.20 1.84 1.63 2.35 0.01 1.22
OTM Auq-02 1.15 1.25 1.45 0.00 0.79 0.79 1.25 0.00 0.00
OTM Auq-02 0.50 0.65 0.60 0.00 0.32 0.32 0.65 0.00 0.00
OTM Auq-02 0.10 0.25 0.30 0.00 0.17 0.17 0.25 0.00 0.00
OTM Auq-02 0.05 0.20 0.20 0.00 0.11 0.11 0.20 0.00 0.00
OTM Auq-02 0.00 0.10 0.10 0.00 0.08 0.08 0.10 0.00 0.00
OTM Auq-02 0.00 0.10 0.05 0.00 0.06 0.06 0.10 0.00 0.00
ITM Nov-02 8.30 8.50 8.40 7.44 7.91 0.47 8.50 0.48 8.93
ITM Nov-02 6.30 6.50 6.50 5.36 5.79 0.43 6.50 0.27 6.41
ITM Nov-02 4.60 4.80 4.80 2.84 3.65 0.81 4.80 0.13 3.91

ATM Nov-02 3.10 3.30 3.40 0.30 1.82 1.51 3.30 0.01 1.37
OTM Nov-02 2.05 2.20 2.05 0.00 0.76 0.76 2.20 0.00 0.00
OTM Nov-02 1.20 1.35 1.35 0.00 0.34 0.34 1.35 0.00 0.00
OTM Nov-02 0.65 0.80 1.00 0.00 0.17 0.17 0.80 0.00 0.00
OTM Nov-02 0.35 0.50 0.60 0.00 0.10 0.10 0.50 0.00 0.00
OTM Nov-02 0.15 0.30 0.00 0.00 0.08 0.08 0.30 0.00 0.00
ITM Jan-03 17.30 17.70 0.00 17.44 17.44 0.00 17.70 203.63 19.12
ITM Jan-03 15.10 15.40 14.80 14.94 14.94 0.00 15.40 36.48 16.62
ITM Jan-03 12.80 13.00 13.60 12.44 12.44 0.00 13.00 2.79 14.10
ITM Jan-03 10.60 10.80 11.30 9.94 9.94 0.00 10.80 1.14 11.54
ITM Jan-03 8.60 8.80 9.40 7.61 7.96 0.35 8.80 0.64 8.98
ITM Jan-04 17.90 18.10 15.80 17.44 17.44 0.00 18.10 42508.85 19.18
ITM Jan-04 15.80 16.20 15.00 14.94 14.94 0.00 16.20 46949.38 16.73
ITM Jan-04 13.50 14.30 15.20 12.44 12.44 0.00 14.30 13495.68 14.17
ITM Jan-04 11.90 12.20 12.30 9.94 9.94 0.00 12.20 1096.32 11.49
ITM Jan-04 10.20 10.40 9.90 8.18 7.44 -0.74 10.40 313.81 9.00
ITM Jan-04 8.70 8.90 9.00 5.66 5.66 0.00 8.90 180.32 6.57
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Moneyness Expiration Bid Ask Last Dual Fuzzy Fuzzy Fuzzy Spread Binomial DualChoquet Choquet
ITM Jan-04 7.20 7.50 7.80 3.13 3.27 0.14 7.50 91.69 4.14
ATM Jan-04 6.00 6.40 6.50 0.63 1.74 1.11 6.40 73.01 1.71
OTM Jan-04 5.00 5.10 5.30 0.00 0.79 0.79 5.10 24.38 0.01
OTM Jan-04 3.90 4.30 4.40 0.00 0.32 0.32 4.30 21.28 0.00
OTM Jan-04 2.55 2.85 2.70 0.00 0.10 0.10 2.85 9.81 0.00
OTM Jan-04 1.65 1.80 1.90 0.00 0.06 0.05 1.80 4.57 0.00
OTM Jan-04 1.00 1.15 1.15 0.00 0.03 0.03 1.15 2.87 0.00
OTM Jan-04 0.50 0.75 0.80 0.00 0.03 0.02 0.75 2.16 0.00
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Table 2C: This table shows the option bounds for Dell stock options using fuzzy as well as Choquet integration. The binomial option value is
also shown for comparative purposes. Historical volatility is used in the calculations.

Moneyness Expiration Bid Ask Last Dual Fuzzy Fuzzy Fuzzy Spread Binomial DualChoquet Choquet
ITM May-02 17.30 17.60 15.40 17.44 17.44 0.00 17.44 2.33 18.38
ITM May-02 14.90 15.10 16.50 14.94 14.94 0.00 14.94 1.49 15.88
ITM May-02 12.40 12.60 14.90 12.44 12.44 0.00 12.44 1.00 13.38
ITM May-02 9.90 10.10 9.00 9.94 10.31 0.37 9.95 0.66 10.88
ITM May-02 7.40 7.60 8.00 7.44 8.03 0.59 7.45 0.43 8.38
ITM May-02 5.00 5.20 5.30 4.94 5.82 0.88 4.95 0.25 5.89
ITM May-02 2.75 2.85 2.80 2.44 3.73 1.29 2.57 0.11 3.39

ATM May-02 0.95 1.05 0.95 0.04 1.91 1.87 0.84 0.00 0.89
OTM May-02 0.10 0.25 0.15 0.00 0.77 0.77 0.15 0.00 0.00
OTM May-02 0.00 0.10 0.10 0.00 0.33 0.33 0.01 0.00 0.00
OTM May-02 0.00 0.05 0.05 0.00 0.18 0.18 0.00 0.00 0.00
OTM May-02 0.00 0.05 0.05 0.00 0.11 0.11 0.00 0.00 0.00
OTM May-02 0.00 0.05 0.05 0.00 0.08 0.08 0.00 0.00 0.00
OTM May-02 0.00 0.05 0.05 0.00 0.06 0.06 0.00 0.00 0.00
ITM Jun-02 7.50 7.70 8.10 7.44 7.89 0.45 7.54 0.44 8.64
ITM Jun-02 5.20 5.40 5.70 4.94 5.72 0.78 5.28 0.26 6.14
ITM Jun-02 3.20 3.40 3.50 2.53 3.71 1.18 3.26 0.12 3.62

ATM Jun-02 1.60 1.70 1.85 0.15 1.87 1.72 1.83 0.01 1.13
OTM Jun-02 0.50 0.65 0.75 0.00 0.74 0.74 0.93 0.00 0.00
OTM Jun-02 0.15 0.25 0.20 0.00 0.33 0.33 0.43 0.00 0.00
OTM Jun-02 0.00 0.10 0.10 0.00 0.18 0.18 0.18 0.00 0.00
OTM Jun-02 0.00 0.10 0.00 0.00 0.11 0.11 0.07 0.00 0.00
OTM Jun-02 0.00 0.10 0.00 0.00 0.08 0.08 0.03 0.00 0.00
ITM Auq-02 17.30 17.60 0.00 17.44 17.44 0.00 17.48 2.36 18.72
ITM Auq-02 14.90 15.10 0.00 14.94 14.94 0.00 14.99 1.52 16.22
ITM Auq-02 12.40 12.60 11.70 12.44 12.44 0.00 12.50 1.02 13.73
ITM Auq-02 10.10 10.30 9.40 9.94 10.23 0.29 10.05 0.68 11.23
ITM Auq-02 7.80 8.00 6.00 7.44 8.02 0.58 7.72 0.44 8.74
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Moneyness Expiration Bid Ask Last Dual Fuzzy Fuzzy Fuzzy Spread Binomial DualChoguet Choquet
ITM Aug-02 5.50 5.80 6.00 4.94 5.82 0.88 5.64 0.26 6.25
ITM Aug-02 3.70 3.90 4.40 2.73 3.62 0.89 3.91 0.12 3.75

ATM Aug-02 2.20 2.35 2.55 0.23 1.76 1.53 2.58 0.01 1.26
OTM Aug-02 1.15 1.25 1.45 0.00 0.78 0.78 1.64 0.00 0.00
OTM Aug-02 0.50 0.65 0.60 0.00 0.34 0.34 1.00 0.00 0.00
OTM Aug-02 0.10 0.25 0.30 0.00 0.17 0.17 0.60 0.00 0.00
OTM Aug-02 0.05 0.20 0.20 0.00 0.11 0.11 0.35 0.00 0.00
OTM Aug-02 0.00 0.10 0.10 0.00 0.08 0.08 0.20 0.00 0.00
OTM Aug-02 0.00 0.10 0.05 0.00 0.06 0.06 0.11 0.00 0.00
ITM Nov-02 8.30 8.50 8.40 7.44 7.84 0.40 8.20 0.45 8.89
ITM Nov-02 6.30 6.50 6.50 5.34 5.75 0.41 6.37 0.27 6.40
ITM Nov-02 4.60 4.80 4.80 2.84 3.66 0.82 4.84 0.13 3.91
ATM Nov-02 3.10 3.30 3.40 0.34 1.80 1.46 3.62 0.02 1.43
OTM Nov-02 2.05 2.20 2.05 0.00 0.77 0.77 2.66 0.00 0.00
OTM Nov-02 1.20 1.35 1.35 0.00 0.30 0.30 1.94 0.00 0.00
OTM Nov-02 0.65 0.80 1.00 0.00 0.18 0.18 1.40 0.00 0.00
OTM Nov-02 0.35 0.50 0.60 0.00 0.11 0.11 1.01 0.00 0.00
OTM Nov-02 0.15 0.30 0.00 0.00 0.08 0.08 0.72 0.00 0.00
ITM Jan-03 17.30 17.70 0.00 17.44 17.44 0.00 17.55 2.49 18.83
ITM Jan-03 15.10 15.40 14.80 14.94 14.94 0.00 15.11 1.62 16.35
ITM Jan-03 12.80 13.00 13.60 12.44 12.44 0.00 12.74 1.10 13.87
ITM Jan-03 10.60 10.80 11.30 9.94 9.94 0.00 10.53 0.75 11.38
ITM Jan-03 8.60 8.80 9.40 7.44 7.90 0.46 8.54 0.50 8.90
ITM Jan-04 17.90 18.10 15.80 17.44 17.44 0.00 17.89 603.97 18.84
ITM Jan-04 15.80 16.20 15.00 14.94 14.94 0.00 15.71 452.74 16.35
ITM Jan-04 13.50 14.30 15.20 12.44 12.44 0.00 13.71 362.00 13.87
ITM Jan-04 11.90 12.20 12.30 9.94 9.94 0.00 11.93 301.51 11.43
ITM Jan-04 10.20 10.40 9.90 8.17 7.44 -0.73 10.35 258.30 9.00
ITM Jan-04 8.70 8.90 9.00 5.67 5.67 0.00 8.97 225.89 6.57
ITM Jan-04 7.20 7.50 7.80 3.17 3.17 0.00 7.78 200.69 4.14

ATM Jan-04 6.00 6.40 6.50 0.67 1.55 0.88 6.74 180.52 1.72
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Moneyness Expiration Bid Ask Last Dual Fuzzy Fuzzy Fuzzy Spread Binomial DualChoquet Choquet
OTM Jan-04 5.00 5.10 5.30 0.00 0.60 0.60 5.86 164.09 0.01
OTM Jan-04 3.90 4.30 4.40 0.00 0.32 0.32 5.09 150.41 0.00
OTM Jan-04 2.55 2.85 2.70 0.00 0.11 0.11 3.87 128.93 0.00
OTM Jan-04 1.65 1.80 1.90 0.00 0.05 0.05 2.96 112.81 0.00
OTM Jan-04 1.00 1.15 1.15 0.00 0.03 0.03 2.29 100.27 0.00
OTM Jan-04 0.50 0.75 0.80 0.00 0.02 0.02 1.78 90.25 0.00
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Table 3C: This table shows the option bounds for Microsoft stock options using fuzzy as well as Choquet integration. The binomial option value
is also shown for comparative purposes. Black-Scholes implied volatility is used in the calculations.

Moneyness Expiration spread Bid Ask Last Dual Fuzzy Fuzzy Fuzzy Spread Binomial DualChoquet Choquet
ITM May-02 0.01 29.20 29.40 30.30 29.30 29.30 0.00 29.40 1.34 31.24
ITM May-02 0.01 26.70 27.00 24.50 26.80 26.80 0.00 27.00 1.11 28.74
ITM May-02 0.01 21.70 22.00 19.50 21.80 21.80 0.00 22.00 0.75 23.61
ITM May-02 0.01 16.70 16.90 14.60 16.80 17.27 0.47 16.90 0.49 18.33
ITM May-02 0.01 11.70 12.00 13.70 12.08 12.57 0.49 12.00 0.30 13.26
ITM May-02 0.01 6.90 7.00 7.40 6.80 7.99 1.19 7.00 0.16 8.02
ITM May-02 0.01 4.50 4.70 4.90 4.51 5.76 1.26 4.70 0.09 5.48
ITM May-02 0.01 2.45 2.70 2.60 1.99 3.70 1.71 2.70 0.04 2.93

OTM May-02 0.01 0.30 0.40 0.45 0.00 0.97 0.97 0.40 0.00 0.00
OTM May-02 0.01 0.00 0.10 0.05 0.00 0.27 0.27 0.10 0.00 0.00
OTM May-02 0.01 0.00 0.05 0.05 0.00 0.12 0.12 0.05 0.00 0.00
OTM May-02 0.01 0.00 0.05 0.05 0.00 0.07 0.07 0.05 0.00 0.00
OTM May-02 0.01 0.00 0.05 0.10 0.00 0.05 0.05 0.05 0.00 0.00
OTM May-02 0.01 0.00 0.05 0.00 0.00 0.03 0.03 0.05 0.00 0.00
OTM May-02 0.01 0.00 0.05 0.05 0.00 0.03 0.03 0.05 0.00 0.00
OTM May-02 0.01 0.00 0.05 0.00 0.00 0.02 0.02 0.05 0.00 0.00
ITM Jun-02 0.01 31.60 31.90 32.60 31.80 31.80 0.00 31.90 1.71 33.79
ITM Jun-02 0.01 29.10 29.40 0.00 29.30 29.30 0.00 29.40 1.36 31.15
ITM Jun-02 0.01 26.70 26.90 0.00 26.80 26.80 0.00 26.90 1.11 28.59
ITM Jun-02 0.01 21.70 21.90 0.00 21.80 21.80 0.00 21.90 0.75 23.45
ITM Jun-02 0.01 16.50 17.30 14.40 17.45 16.80 -0.65 17.30 0.50 18.56
ITM Jun-02 0.01 12.00 12.20 13.70 12.24 12.24 0.00 12.20 0.31 13.29
ITM Jun-02 0.01 7.60 7.80 8.30 7.19 7.99 0.80 7.80 0.16 8.27
ITM Jun-02 0.01 5.60 5.80 6.30 4.67 5.78 1.12 5.80 0.10 5.73
ITM Jun-02 0.01 3.90 4.00 3.90 2.14 3.63 1.49 4.00 0.04 3.17

OTM Jun-02 0.01 1.45 1.55 1.50 0.00 0.97 0.97 1.55 0.00 0.00
OTM Jun-02 0.01 0.40 0.50 0.45 0.00 0.27 0.27 0.50 0.00 0.00
OTM Jun-02 0.01 0.05 0.15 0.10 0.00 0.12 0.12 0.15 0.00 0.00
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Moneyness Expiration spread Bid Ask Last Dual Fuzzy Fuzzy Fuzzy Spread Binomial DualChoquet Choquet
OTM Jun-02 0.01 0.00 0.20 0.05 0.00 0.07 0.07 0.20 0.00 0.00
OTM Jun-02 0.01 0.00 0.20 0.05 0.00 0.05 0.05 0.20 0.00 0.00
OTM Jun-02 0.01 0.00 0.20 0.00 0.00 0.03 0.03 0.20 0.00 0.00
OTM Jun-02 0.01 0.00 0.20 0.00 0.00 0.02 0.02 0.20 0.00 0.00
OTM Jun-02 0.01 0.00 0.20 0.00 0.00 0.02 0.02 0.20 0.00 0.00
OTM Jun-02 0.01 0.00 0.20 0.00 0.00 0.02 0.02 0.20 0.00 0.00
ITM Jul-02 0.01 26.50 26.90 24.00 26.80 26.80 0.00 26.90 1.10 28.54
ITM Jul-02 0.01 21.30 22.30 19.90 21.80 21.80 0.00 22.30 0.78 23.62
ITM Jul-02 0.01 16.80 17.10 17.10 16.80 17.34 0.54 17.10 0.50 18.40
ITM Jul-02 0.01 12.10 12.90 14.00 12.41 12.41 0.00 12.90 0.31 13.52
ITM Jul-02 0.01 8.10 8.30 9.20 7.27 7.74 0.47 8.30 0.16 8.31
ITM Jul-02 0.01 6.10 6.60 6.60 4.77 5.72 0.95 6.60 0.10 5.82
ITM Jul-02 0.01 4.60 4.80 4.70 2.23 3.54 1.31 4.80 0.04 3.30

OTM Jul-02 0.01 2.10 2.35 2.30 0.00 0.95 0.95 2.35 0.00 0.00
OTM Jul-02 0.01 0.85 0.95 0.90 0.00 0.27 0.27 0.95 0.00 0.00
OTM Jul-02 0.01 0.30 0.35 0.35 0.00 0.12 0.12 0.35 0.00 0.00
OTM Jul-02 0.01 0.05 0.15 0.15 0.00 0.07 0.07 0.15 0.00 0.00
OTM Jul-02 0.01 0.00 0.20 0.10 0.00 0.05 0.05 0.20 0.00 0.00
OTM Jul-02 0.01 0.00 0.20 0.05 0.00 0.03 0.03 0.20 0.00 0.00
OTM Jul-02 0.01 0.00 0.20 0.05 0.00 0.02 0.02 0.20 0.00 0.00
OTM Jul-02 0.01 0.00 0.20 0.05 0.00 0.02 0.02 0.20 0.00 0.00
OTM Jul-02 0.01 0.00 0.05 0.10 0.00 0.02 0.02 0.05 0.00 0.00
OTM Jul-02 0.01 0.00 0.20 0.05 0.00 0.01 0.01 0.20 0.00 0.00
OTM Jul-02 0.01 0.00 0.20 0.05 0.00 0.01 0.01 0.20 0.01 0.00
ITM Oct-02 0.01 29.30 29.50 29.20 29.30 29.30 0.00 29.50 1.41 30.97
ITM Oct-02 0.01 26.70 27.10 30.50 26.80 26.80 0.00 27.10 1.28 28.52
ITM Oct-02 0.01 21.60 22.60 20.60 21.80 21.80 0.00 22.60 1.10 23.64
ITM Oct-02 0.01 17.70 17.80 18.50 17.56 16.80 -0.76 17.80 0.55 18.53
ITM Oct-02 0.01 13.40 13.60 14.30 12.52 12.52 0.00 13.60 0.34 13.55
ITM Oct-02 0.01 9.60 9.80 9.80 7.47 7.47 0.00 9.80 0.18 8.56
ITM Oct-02 0.01 7.70 8.10 8.40 4.94 5.60 0.65 8.10 0.11 6.05
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Moneyness Expiration spread Bid Ask Last Dual Fuzzy Fuzzy Fuzzy Spread Binomial DualChoquet Choquet
ITM Oct-02 0.01 6.30 6.60 6.50 2.43 3.70 1.28 6.60 0.06 3.55

OTM Oct-02 0.01 3.90 4.10 4.00 0.00 0.98 0.98 4.10 0.01 0.00
OTM Oct-02 0.01 2.20 2.40 2.30 0.00 0.27 0.27 2.40 0.00 0.00
OTM Oct-02 0.01 1.20 1.25 1.20 0.00 0.12 0.12 1.25 0.00 0.00
OTM Oct-02 0.01 0.55 0.70 0.65 0.00 0.07 0.07 0.70 0.00 0.00
OTM Oct-02 0.01 0.25 0.35 0.40 0.00 0.04 0.04 0.35 0.00 0.00
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Table 4C: This table shows the option bounds for Microsoft stock options using fuzzy as well as Choquet integration. The binomial option value
is also shown for comparative purposes. Historical volatility is used in the calculations.

Moneyness Expiration spread Bid Ask Last Dual Fuzzy Fuzzy Fuzzy Spread Binomial DualChoquet Choquet
ITM May-02 0.01 29.20 29.40 30.30 29.30 29.30 0.00 29.31 1.31 30.42
ITM May-02 0.01 26.70 27.00 24.50 26.80 26.80 0.00 26.81 1.08 27.92
ITM May-02 0.01 21.70 22.00 19.50 21.80 21.98 0.18 21.81 0.73 22.92
ITM May-02 0.01 16.70 16.90 14.60 16.80 17.34 0.54 16.81 0.48 17.92
ITM May-02 0.01 11.70 12.00 13.70 11.80 12.52 0.72 11.82 0.30 12.92
ITM May-02 0.01 6.90 7.00 7.40 6.80 7.89 1.09 6.87 0.15 7.92
ITM May-02 0.01 4.50 4.70 4.90 4.30 5.76 1.46 4.57 0.09 5.42
ITM May-02 0.01 2.45 2.70 2.60 1.98 3.81 1.83 2.65 0.04 2.92

OTM May-02 0.01 0.30 0.40 0.45 0.00 0.98 0.98 0.52 0.00 0.00
OTM May-02 0.01 0.00 0.10 0.05 0.00 0.27 0.27 0.05 0.00 0.00
OTM May-02 0.01 0.00 0.05 0.05 0.00 0.12 0.12 0.00 0.00 0.00
OTM May-02 0.01 0.00 0.05 0.05 0.00 0.07 0.07 0.00 0.00 0.00
OTM May-02 0.01 0.00 0.05 0.10 0.00 0.05 0.05 0.00 0.00 0.00
OTM May-02 0.01 0.00 0.05 0.00 0.00 0.03 0.03 0.00 0.00 0.00
OTM May-02 0.01 0.00 0.05 0.05 0.00 0.03 0.03 0.00 0.00 0.00
OTM May-02 0.01 0.00 0.05 0.00 0.00 0.02 0.02 0.00 0.00 0.00
ITM Jun-02 0.01 31.60 31.90 32.60 31.80 31.80 0.00 31.84 1.61 33.14
ITM Jun-02 0.01 29.10 29.40 0.00 29.30 29.30 0.00 29.35 1.32 30.65
ITM Jun-02 0.01 26.70 26.90 0.00 26.80 26.80 0.00 26.85 1.09 28.15
ITM Jun-02 0.01 21.70 21.90 0.00 21.80 22.14 0.34 21.86 0.74 23.15
ITM Jun-02 0.01 16.50 17.30 14.40 16.80 17.14 0.34 16.88 0.49 18.16
ITM Jun-02 0.01 12.00 12.20 13.70 11.80 12.48 0.68 11.98 0.30 13.16
ITM Jun-02 0.01 7.60 7.80 8.30 7.14 7.83 0.69 7.51 0.16 8.17
ITM Jun-02 0.01 5.60 5.80 6.30 4.64 5.68 1.04 5.61 0.10 5.67
ITM Jun-02 0.01 3.90 4.00 3.90 2.14 3.58 1.44 4.02 0.04 3.17

OTM Jun-02 0.01 1.45 1.55 1.50 0.00 1.00 1.00 1.82 0.00 0.00
OTM Jun-02 0.01 0.40 0.50 0.45 0.00 0.26 0.26 0.70 0.00 0.00
OTM Jun-02 0.01 0.05 0.15 0.10 0.00 0.12 0.12 0.23 0.00 0.00
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Moneyness Expiration spread Bid Ask Last Dual Fuzzy Fuzzy Fuzzy Spread Binomial DualChoquet Choquet
OTM Jun-02 0.01 0.00 0.20 0.05 0.00 0.07 0.07 0.07 0.00 0.00
OTM Jun-02 0.01 0.00 0.20 0.05 0.00 0.05 0.05 0.02 0.00 0.00
OTM Jun-02 0.01 0.00 0.20 0.00 0.00 0.03 0.03 0.00 0.00 0.00
OTM Jun-02 0.01 0.00 0.20 0.00 0.00 0.03 0.03 0.00 0.00 0.00
OTM Jun-02 0.01 0.00 0.20 0.00 0.00 0.02 0.02 0.00 0.00 0.00
OTM Jun-02 0.01 0.00 0.20 0.00 0.00 0.02 0.02 0.00 0.00 0.00
ITM Jul-02 0.01 26.50 26.90 24.00 26.80 26.80 0.00 26.89 1.09 28.23
ITM Jul-02 0.01 21.30 22.30 19.90 21.80 21.80 0.00 21.90 0.74 23.24
ITM Jul-02 0.01 16.80 17.10 17.10 16.80 17.20 0.40 16.95 0.49 18.25
ITM Jul-02 0.01 12.10 12.90 14.00 12.20 12.60 0.40 12.15 0.30 13.26
ITM Jul-02 0.01 8.10 8.30 9.20 7.20 8.01 0.81 7.88 0.16 8.27
ITM Jul-02 0.01 6.10 6.60 6.60 4.70 5.51 0.81 6.08 0.10 5.77
ITM Jul-02 0.01 4.60 4.80 4.70 2.20 3.75 1.55 4.55 0.04 3.28

OTM Jul-02 0.01 2.10 2.35 2.30 0.00 0.93 0.93 2.34 0.00 0.00
OTM Jul-02 0.01 0.85 0.95 0.90 0.00 0.27 0.27 1.08 0.00 0.00
OTM Jul-02 0.01 0.30 0.35 0.35 0.00 0.12 0.12 0.45 0.00 0.00
OTM Jul-02 0.01 0.05 0.15 0.15 0.00 0.07 0.07 0.17 0.00 0.00
OTM Jul-02 0.01 0.00 0.20 0.10 0.00 0.04 0.04 0.06 0.00 0.00
OTM Jul-02 0.01 0.00 0.20 0.05 0.00 0.03 0.03 0.02 0.00 0.00
OTM Jul-02 0.01 0.00 0.20 0.05 0.00 0.03 0.03 0.01 0.00 0.00
OTM Jul-02 0.01 0.00 0.20 0.05 0.00 0.02 0.02 0.00 0.00 0.00
OTM Jul-02 0.01 0.00 0.05 0.10 0.00 0.02 0.02 0.00 0.00 0.00
OTM Jul-02 0.01 0.00 0.20 0.05 0.00 0.01 0.01 0.00 0.00 0.00
OTM Jul-02 0.01 0.00 0.20 0.05 0.00 0.01 0.01 0.00 0.00 0.00
ITM Oct-02 0.01 29.30 29.50 29.20 29.30 29.30 0.00 29.49 1.34 30.93
ITM Oct-02 0.01 26.70 27.10 30.50 26.80 26.80 0.00 27.01 1.10 28.44
ITM Oct-02 0.01 21.60 22.60 20.60 21.80 21.80 0.00 22.10 0.75 23.46
ITM Oct-02 0.01 17.70 17.80 18.50 17.40 16.80 -0.60 17.38 0.50 18.48
ITM Oct-02 0.01 13.40 13.60 14.30 12.40 12.40 0.00 13.05 0.32 13.49
ITM Oct-02 0.01 9.60 9.80 9.80 7.40 8.02 0.61 9.35 0.17 8.51
ITM Oct-02 0.01 7.70 8.10 8.40 4.90 5.52 0.61 7.78 0.11 6.02
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Moneyness Expiration spread Bid Ask Last Dual Fuzzy Fuzzy Fuzzy Spread Binomial DualChoquet Choquet
ITM Oct-02 0.01 6.30 6.60 6.50 2.40 3.63 1.23 6.41 0.05 3.52

OTM Oct-02 0.01 3.90 4.10 4.00 0.00 0.94 0.94 4.22 0.01 0.00
OTM Oct-02 0.01 2.20 2.40 2.30 0.00 0.24 0.24 2.69 0.01 0.00
OTM Oct-02 0.01 1.20 1.25 1.20 0.00 0.12 0.12 1.66 0.01 0.00
OTM Oct-02 0.01 0.55 0.70 0.65 0.00 0.06 0.06 1.00 0.00 0.00
OTM Oct-02 0.01 0.25 0.35 0.40 0.00 0.05 0.05 0.59 0.00 0.00
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Table 5C: This table shows a comparison between the behaviour of the bounds and corresponding spread for Dual Fuzzy and Fuzzy binomial 
OPMs using implied versus historical volatility (for Microsoft stock options).

implied volatility historical volatility

Moneyness Expiration sigma (hist) spread dot Bid Ask Last Dual Fuzzy Fuzzy Fuzzy Spread Dual Fuzzy Fuzzy Fuzzy Spread
ITM May-02 0.5231 0.01 4.00 29.20 29.4 30.3 29.30 29.30 0.00 29.30 29.30 0.00
ITM May-02 0.5231 0.01 4.00 26.70 27 24.5 26.80 26.80 0.00 26.80 26.80 0.00
ITM May-02 0.5231 0.01 4.00 21.70 22 19.5 21.80 21.80 0.00 21.80 21.98 0.18
ITM May-02 0.5231 0.01 4.00 16.70 16.9 14.6 16.80 17.27 0.47 16.80 17.34 0.54
ITM May-02 0.5231 0.01 4.00 11.70 12 13.7 12.08 12.57 0.49 11.80 12.52 0.72
ITM May-02 0.5231 0.01 4.00 6.90 7 7.4 6.80 7.99 1.19 6.80 7.89 1.09
ITM May-02 0.5231 0.01 4.00 4.50 4.7 4.9 4.51 5.76 1.26 4.30 5.76 1.46
ITM May-02 0.5231 0.01 4.00 2.45 2.7 2.6 1.99 3.70 1.71 1.98 3.81 1.83

OTM May-02 0.5231 0.01 4.00 0.30 0.4 0.45 0.00 0.97 0.97 0.00 0.98 0.98
OTM May-02 0.5231 0.01 4.00 0.00 0.1 0.05 0.00 0.27 0.27 0.00 0.27 0.27
OTM May-02 0.5231 0.01 4.00 0.00 0.05 0.05 0.00 0.12 0.12 0.00 0.12 0.12
OTM May-02 0.5231 0.01 4.00 0.00 0.05 0.05 0.00 0.07 0.07 0.00 0.07 0.07
OTM May-02 0.5231 0.01 4.00 0.00 0.05 0.1 0.00 0.05 0.05 0.00 0.05 0.05
OTM May-02 0.5231 0.01 4.00 0.00 0.05 0 0.00 0.03 0.03 0.00 0.03 0.03
OTM May-02 0.5231 0.01 4.00 0.00 0.05 0.05 0.00 0.03 0.03 0.00 0.03 0.03
OTM May-02 0.5231 0.01 4.00 0.00 0.05 0 0.00 0.02 0.02 0.00 0.02 0.02
ITM Jun-02 0.4273 0.01 4.00 31.60 31.9 32.6 31.80 31.80 0.00 31.80 31.80 0.00
ITM Jun-02 0.4273 0.01 4.00 29.10 29.4 0 29.30 29.30 0.00 29.30 29.30 0.00
ITM Jun-02 0.4273 0.01 4.00 26.70 26.9 0 26.80 26.80 0.00 26.80 26.80 0.00
ITM Jun-02 0.4273 0.01 4.00 21.70 21.9 0 21.80 21.80 0.00 21.80 22.14 0.34
ITM Jun-02 0.4273 0.01 4.00 16.50 17.3 14.4 17.45 16.80 -0.65 16.80 17.14 0.34
ITM Jun-02 0.4273 0.01 4.00 12.00 12.2 13.7 12.24 12.24 0.00 11.80 12.48 0.68
ITM Jun-02 0.4273 0.01 4.00 7.60 7.8 8.3 7.19 7.99 0.80 7.14 7.83 0.69
ITM Jun-02 0.4273 0.01 4.00 5.60 5.8 6.3 4.67 5.78 1.12 4.64 5.68 1.04
ITM Jun-02 0.4273 0.01 4.00 3.90 4 3.9 2.14 3.63 1.49 2.14 3.58 1.44

OTM Jun-02 0.4273 0.01 4.00 1.45 1.55 1.5 0.00 0.97 0.97 0.00 1.00 1.00
OTM Jun-02 0.4273 0.01 4.00 0.40 0.5 0.45 0.00 0.27 0.27 0.00 0.26 0.26
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implied volatility historical volatility

Moneyness Expiration sigma (hist) spread dot Bid Ask Last Dual Fuzzy Fuzzy Fuzzy Spread Dual Fuzzy Fuzzy Fuzzy Spread
OTM Jun-02 0.4273 0.01 4.00 0.05 0.15 0.1 0.00 0.12 0.12 0.00 0.12 0.12
OTM Jun-02 0.4273 0.01 4.00 0.00 0.2 0.05 0.00 0.07 0.07 0.00 0.07 0.07
OTM Jun-02 0.4273 0.01 4.00 0.00 0.2 0.05 0.00 0.05 0.05 0.00 0.05 0.05
OTM Jun-02 0.4273 0.01 4.00 0.00 0.2 0 0.00 0.03 0.03 0.00 0.03 0.03
OTM Jun-02 0.4273 0.01 4.00 0.00 0.2 0 0.00 0.02 0.02 0.00 0.03 0.03
OTM Jun-02 0.4273 0.01 4.00 0.00 0.2 0 0.00 0.02 0.02 0.00 0.02 0.02
OTM Jun-02 0.4273 0.01 4.00 0.00 0.2 0 0.00 0.02 0.02 0.00 0.02 0.02
ITM Jul-02 0.3893 0.01 4.00 26.50 26.9 24 26.80 26.80 0.00 26.80 26.80 0.00
ITM Jul-02 0.3893 0.01 4.00 21.30 22.3 19.9 21.80 21.80 0.00 21.80 21.80 0.00
ITM Jul-02 0.3893 0.01 4.00 16.80 17.1 17.1 16.80 17.34 0.54 16.80 17.20 0.40
ITM Jul-02 0.3893 0.01 4.00 12.10 12.9 14 12.41 12.41 0.00 12.20 12.60 0.40
ITM Jul-02 0.3893 0.01 4.00 8.10 8.3 9.2 7.27 7.74 0.47 7.20 8.01 0.81
ITM Jul-02 0.3893 0.01 4.00 6.10 6.6 6.6 4.77 5.72 0.95 4.70 5.51 0.81
ITM Jul-02 0.3893 0.01 4.00 4.60 4.8 4.7 2.23 3.54 1.31 2.20 3.75 1.55

OTM Jul-02 0.3893 0.01 4.00 2.10 2.35 2.3 0.00 0.95 0.95 0.00 0.93 0.93
OTM Jul-02 0.3893 0.01 4.00 0.85 0.95 0.9 0.00 0.27 0.27 0.00 0.27 0.27
OTM Jul-02 0.3893 0.01 4.00 0.30 0.35 0.35 0.00 0.12 0.12 0.00 0.12 0.12
OTM Jul-02 0.3893 0.01 4.00 0.05 0.15 0.15 0.00 0.07 0.07 0.00 0.07 0.07
OTM Jul-02 0.3893 0.01 4.00 0.00 0.2 0.1 0.00 0.05 0.05 0.00 0.04 0.04
OTM Jul-02 0.3893 0.01 4.00 0.00 0.2 0.05 0.00 0.03 0.03 0.00 0.03 0.03
OTM Jul-02 0.3893 0.01 4.00 0.00 0.2 0.05 0.00 0.02 0.02 0.00 0.03 0.03
OTM Jul-02 0.3893 0.01 4.00 0.00 0.2 0.05 0.00 0.02 0.02 0.00 0.02 0.02
OTM Jul-02 0.3893 0.01 4.00 0.00 0.05 0.1 0.00 0.02 0.02 0.00 0.02 0.02
OTM Jul-02 0.3893 0.01 4.00 0.00 0.2 0.05 0.00 0.01 0.01 0.00 0.01 0.01
OTM Jul-02 0.3893 0.01 4.00 0.00 0.2 0.05 0.00 0.01 0.01 0.00 0.01 0.01
ITM Oct-02 0.3893 0.01 4.00 29.30 29.5 29.2 29.30 29.30 0.00 29.30 29.30 0.00
ITM Oct-02 0.3893 0.01 4.00 26.70 27.1 30.5 26.80 26.80 0.00 26.80 26.80 0.00
ITM Oct-02 0.3893 0.01 4.00 21.60 22.6 20.6 21.80 21.80 0.00 21.80 21.80 0.00
ITM Oct-02 0.3893 0.01 4.00 17.70 17.8 18.5 17.56 16.80 -0.76 17.40 16.80 -0.60
ITM Oct-02 0.3893 0.01 4.00 13.40 13.6 14.3 12.52 12.52 0.00 12.40 12.40 0.00
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im plied volatility historical volatility

Moneyness Expiration sigma (hist) spread dot Bid Ask Last Dual Fuzzy Fuzzy Fuzzy Spread Dual Fuzzy Fuzzy Fuzzy Spread
ITM Oct-02 0.3893 0.01 4.00 9.60 9.8 9.8 7.47 7.47 0.00 7.40 8.02 0.61
ITM Oct-02 0.3893 0.01 4.00 7.70 8.1 8.4 4.94 5.60 0.65 4.90 5.52 0.61
ITM Oct-02 0.3893 0.01 4.00 6.30 6.6 6.5 2.43 3.70 1.28 2.40 3.63 1.23

OTM Oct-02 0.3893 0.01 4.00 3.90 4.1 4 0.00 0.98 0.98 0.00 0.94 0.94
OTM Oct-02 0.3893 0.01 4.00 2.20 2.4 2.3 0.00 0.27 0.27 0.00 0.24 0.24
OTM Oct-02 0.3893 0.01 4.00 1.20 1.25 1.2 0.00 0.12 0.12 0.00 0.12 0.12
OTM Oct-02 0.3893 0.01 4.00 0.55 0.7 0.65 0.00 0.07 0.07 0.00 0.06 0.06
OTM Oct-02 0.3893 0.01 4.00 0.25 0.35 0.4 0.00 0.04 0.04 0.00 0.05 0.05
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Table 6C: This table shows the option bounds for $/£ currency options using fuzzy as well as Choquet integration. The binomial option value is
also shown for comparative purposes. Black-Scholes implied volatility is used in the calculations.

Moneyness Expiration Bid Ask Last Dual Fuzzy Fuzzy Binomial DualChoquet Choquet
ATM Nov-01 3.47 3.72 0 0.4023 4.8310 3.7213 0.0646 2.1539
ATM Nov-01 2.92 3.17 0 0.4075 3.8305 3.1700 0.0566 1.2216
ATM Nov-01 2.51 2.67 0 0.4150 3.4867 2.6711 0.0503 0.3126
ATM Nov-01 2.04 2.19 0 0.4416 2.8345 2.1907 0.0427 0.0031
ATM Nov-01 1.66 1.81 0 0.4432 2.1263 1.8104 0.0424 0.0000
OTM Nov-01 1.33 1.48 1.45 0.4453 1.7598 1.4808 0.0420 0.0000
OTM Nov-01 1.05 1.2 0 0.4457 1.4351 1.2000 0.0420 0.0000
ATM Dec-01 3.82 4.07 0 0.2287 4.4491 4.0705 0.2168 1.7576
ATM Dec-01 3.3 3.55 0 0.2290 4.1876 3.5517 0.2109 0.9787
ATM Dec-01 2.82 3.07 0 0.2309 3.1929 3.0701 0.2037 0.2171
ATM Dec-01 2.05 2.2 0 0.2480 2.1785 2.2015 0.1748 0.0000
OTM Dec-01 1.71 1.86 0 0.2489 1.6935 1.8604 0.1734 0.0000
OTM Dec-01 1.42 1.57 0 0.2471 1.4983 1.5691 0.1763 0.0000
OTM Dec-01 1.16 1.31 0 0.2477 1.2472 1.3109 0.1754 0.0000
ITM Mar-02 5.2 5.45 0 0.0695 5.1118 5.4515 1.7574 0.7125

ATM Mar-02 4.18 4.43 0 0.0713 3.8963 4.4310 1.6921 0.2541
ATM Mar-02 3.3 3.55 0 0.0729 2.9328 3.5501 1.6404 0.0008
OTM Mar-02 2.56 2.81 0 0.0738 1.8678 2.8086 1.6098 0.0000
ITM Jun-02 5.58 5.83 0 0.0388 4.7486 5.8275 3.6489 0.1061

ATM Jun-02 4.62 4.87 0 0.0395 3.9964 4.8721 3.5690 0.0365
ATM Jun-02 3.78 4.03 0 0.0400 2.5046 4.0318 3.5062 0.0003
OTM Jun-02 3.05 3.3 0 0.0406 1.5402 3.2986 3.4439 0.0000
ITM Sep-02 7.09 7.34 0 0.0210 6.6602 7.3394 6.7970 0.0115
ITM Sep-02 6.07 6.32 0 0.0214 4.7103 6.3229 6.6498 0.0069

ATM Sep-02 5.15 5.4 0 0.0219 4.1579 5.3971 6.5087 0.0023
ATM Sep-02 4.33 4.58 0 0.0223 2.2082 4.5827 6.3799 0.0000
OTM Sep-02 3.61 3.86 0 0.0226 1.6727 3.8606 6.2769 0.0000
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Table 7C: This table shows the option bounds for $/£ currency options using fuzzy as well as Choquet integration. The binomial option value is
also shown for comparative purposes. Historical volatility is used in the calculations.

Moneyness Expiration Bid Ask Last Dual Fuzzy Fuzzy Binomial DualChoquet Choquet
ATM Nov-01 3.47 3.72 0 1.8972 4.8791 2.7044 0.0111 2.3818
ATM Nov-01 2.92 3.17 0 1.9103 4.1958 2.1233 0.0042 1.3876
ATM Nov-01 2.51 2.67 0 1.9234 3.3473 1.6259 0.0003 0.3987
ATM Nov-01 2.04 2.19 0 1.9365 2.7382 1.2157 0.0003 0.0025
ATM Nov-01 1.66 1.81 0 1.9496 2.2741 0.8837 0.0003 0.0000
OTM Nov-01 1.33 1.48 1.45 1.9225 1.9225 0.6256 0.0003 0.0000
OTM Nov-01 1.05 1.2 0 1.4559 1.4559 0.4307 0.0003 0.0000
ATM Dec-01 3.82 4.07 0 1.0420 4.8421 2.9299 0.0142 2.3310
ATM Dec-01 3.3 3.55 0 1.0492 4.0456 2.3798 0.0073 1.3445
ATM Dec-01 2.82 3.07 0 1.0564 3.3621 1.9010 0.0032 0.3814
ATM Dec-01 2.05 2.2 0 1.0707 2.3930 1.1504 0.0030 0.0000
OTM Dec-01 1.71 1.86 0 1.0779 1.9111 0.8705 0.0030 0.0000
OTM Dec-01 1.42 1.57 0 1.0851 1.4309 0.6463 0.0029 0.0000
OTM Dec-01 1.16 1.31 0 1.0923 1.1812 0.4705 0.0029 0.0000
ITM Mar-02 5.2 5.45 0 0.2573 5.3939 4.1471 0.1785 2.6941

ATM Mar-02 4.18 4.43 0 0.2608 4.1653 3.1102 0.1623 1.0480
ATM Mar-02 3.3 3.55 0 0.2644 2.9405 2.2615 0.1540 0.0014
OTM Mar-02 2.56 2.81 0 0.2680 1.7195 1.5972 0.1500 0.0000
ITM Jun-02 5.58 5.83 0 0.1193 5.6361 4.5178 0.7663 1.4926

ATM Jun-02 4.62 4.87 0 0.1210 3.6789 3.5482 0.7419 0.5582
ATM Jun-02 3.78 4.03 0 0.1226 2.6300 2.7336 0.7226 0.0011
OTM Jun-02 3.05 3.3 0 0.1243 1.5868 2.0661 0.7066 0.0000
ITM Sep-02 7.09 7.34 0 0.0676 6.6079 5.8197 1.8520 0.9686
ITM Sep-02 6.07 6.32 0 0.0685 5.3568 4.7707 1.8122 0.5792

ATM Sep-02 5.15 5.4 0 0.0695 3.7584 3.8558 1.7734 0.2010
ATM Sep-02 4.33 4.58 0 0.0704 2.8594 3.0714 1.7377 0.0009
OTM Sep-02 3.61 3.86 0 0.0714 1.8799 2.4103 1.7043 0.0000
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Table 8C: This table shows a comparison between the behaviour of the bounds and corresponding spread for Dual Fuzzy and Fuzzy binomial 
OPMs using implied versus historical volatility (for $/£ currency options).

implied volatility historical volatility

Moneyness Expiration Bid Ask Last Dual Fuzzy Fuzzy Fuzzy Spread Dual Fuzzy Fuzzy Fuzzy Spread
ATM Nov-01 3.47 3.72 0 0.4023 4.8310 4.4287 1.8972 4.8791 2.9819
ATM Nov-01 2.92 3.17 0 0.4075 3.8305 3.4230 1.9103 4.1958 2.2855
ATM Nov-01 2.51 2.67 0 0.4150 3.4867 3.0717 1.9234 3.3473 1.4239
ATM Nov-01 2.04 2.19 0 0.4416 2.8345 2.3929 1.9365 2.7382 0.8017
ATM Nov-01 1.66 1.81 0 0.4432 2.1263 1.6831 1.9496 2.2741 0.3245
OTM Nov-01 1.33 1.48 1.45 0.4453 1.7598 1.3145 1.9225 1.9225 0.0000
OTM Nov-01 1.05 1.2 0 0.4457 1.4351 0.9894 1.4559 1.4559 0.0000
ATM Dec-01 3.82 4.07 0 0.2287 4.4491 4.2204 1.0420 4.8421 3.8001
ATM Dec-01 3.3 3.55 0 0.2290 4.1876 3.9587 1.0492 4.0456 2.9964
ATM Dec-01 2.82 3.07 0 0.2309 3.1929 2.9620 1.0564 3.3621 2.3057
ATM Dec-01 2.05 2.2 0 0.2480 2.1785 1.9305 1.0707 2.3930 1.3223
OTM Dec-01 1.71 1.86 0 0.2489 1.6935 1.4446 1.0779 1.9111 0.8332
OTM Dec-01 1.42 1.57 0 0.2471 1.4983 1.2512 1.0851 1.4309 0.3458
OTM Dec-01 1.16 1.31 0 0.2477 1.2472 0.9995 1.0923 1.1812 0.0889
ITM Mar-02 5.2 5.45 0 0.0695 5.1118 5.0423 0.2573 5.3939 5.1366

ATM Mar-02 4.18 4.43 0 0.0713 3.8963 3.8250 0.2608 4.1653 3.9045
ATM Mar-02 3.3 3.55 0 0.0729 2.9328 2.8600 0.2644 2.9405 2.6761
OTM Mar-02 2.56 2.81 0 0.0738 1.8678 1.7940 0.2680 1.7195 1.4515
ITM Jun-02 5.58 5.83 0 0.0388 4.7486 4.7098 0.1193 5.6361 5.5168

ATM Jun-02 4.62 4.87 0 0.0395 3.9964 3.9569 0.1210 3.6789 3.5579
ATM Jun-02 3.78 4.03 0 0.0400 2.5046 2.4645 0.1226 2.6300 2.5074
OTM Jun-02 3.05 3.3 0 0.0406 1.5402 1.4996 0.1243 1.5868 1.4625
ITM Sep-02 7.09 7.34 0 0.0210 6.6602 6.6392 0.0676 6.6079 6.5403
ITM Sep-02 6.07 6.32 0 0.0214 4.7103 4.6889 0.0685 5.3568 5.2883

ATM Sep-02 5.15 5.4 0 0.0219 4.1579 4.1361 0.0695 3.7584 3.6889
ATM Sep-02 4.33 4.58 0 0.0223 2.2082 2.1860 0.0704 2.8594 2.7889
OTM Sep-02 3.61 3.86 0 0.0226 1.6727 1.6501 0.0714 1.8799 1.8085
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Table 9C: This table shows the option bounds for S&P 500 index options using fuzzy as well as Choquet integration. The binomial option value
is also shown for comparative purposes. Black-Scholes implied volatility is used in the calculations.

Moneyness Expiration Bid Ask Last Dual Fuzzy Fuzzy Binomial DuallChoquet Choquet
ITM Auq-02 89.50 92.50 91.00 50.1661 87.5705 92.5035 0.1340 87.2191
ITM Auq-02 69.60 72.60 66.50 49.8387 62.6074 72.6110 0.0968 62.3541
ITM Auq-02 51.60 54.60 45.00 37.6443 37.6443 54.5964 0.0612 37.4915

ATM Auq-02 36.00 38.00 35.00 12.6812 12.6812 38.0049 0.0268 12.6305
ATM Auq-02 30.70 33.70 33.00 2.6960 4.6252 34.9381 0.0158 2.6859
ATM Auq-02 25.80 28.80 26.80 0.0142 1.2730 28.7819 0.0111 0.0000
ATM Auq-02 23.90 25.00 22.00 0.0143 1.4240 25.0043 0.0099 0.0000
ATM Auq-02 21.50 24.50 20.00 0.0144 0.5718 24.5169 0.0109 0.0000
ATM Auq-02 17.90 20.30 13.70 0.0145 0.3333 20.3017 0.0103 0.0000
ATM Auq-02 14.60 16.00 15.00 0.0147 0.1587 16.0124 0.0094 0.0000
ATM Auq-02 12.00 13.60 8.80 0.0149 0.1136 13.6106 0.0095 0.0000
ATM Auq-02 10.10 11.00 9.50 0.0151 0.0694 10.9905 0.0092 0.0000
ATM Auq-02 8.20 9.00 7.90 0.0152 0.0611 8.9929 0.0084 0.0000
ATM Auq-02 7.00 7.80 7.80 0.0153 0.0477 7.7991 0.0087 0.0000
ATM Auq-02 5.00 6.00 6.00 0.0156 0.0386 5.9927 0.0090 0.0000
ATM Auq-02 4.40 4.50 4.50 0.0157 0.0313 4.5006 0.0079 0.0000
ATM Auq-02 2.60 3.20 2.60 0.0160 0.0222 3.2010 0.0084 0.0000
ITM Sep-02 100.40 103.40 85.00 16.6947 87.3819 103.3946 0.3599 85.2005
ITM Sep-02 81.80 84.80 77.00 18.6054 62.4726 84.7994 0.2975 60.9081
ITM Sep-02 64.80 67.80 59.00 20.8223 37.5632 67.8266 0.2394 36.6198
ATM Sep-02 49.70 52.70 48.60 12.6539 12.6539 52.7052 0.1863 12.3353
ATM Sep-02 44.20 47.20 33.00 2.6902 2.6902 48.5482 0.1797 2.6226
ATM Sep-02 39.10 42.10 29.00 0.0858 2.5298 42.1144 0.1559 0.0001
ATM Sep-02 36.80 39.80 31.90 0.0863 0.6328 39.8093 0.1536 0.0000
ATM Sep-02 34.70 37.70 29.50 0.0869 0.6370 37.7174 0.1524 0.0000
ATM Sep-02 30.30 33.30 30.70 0.0879 0.2891 33.3209 0.1461 0.0000
ATM Sep-02 26.40 29.40 22.00 0.0890 0.1648 29.4222 0.1415 0.0000
ATM Sep-02 22.90 24.50 19.00 0.0900 0.1142 24.5081 0.1256 0.0000
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Moneyness Expiration Bid Ask Last Dual Fuzzy Fuzzy Binomial DuallChoquet Choquet
ATM Sep-02 18.40 20.80 18.80 0.0916 0.0560 20.7860 0.1282 0.0000
ATM Sep-02 17.00 19.40 14.00 0.0921 0.0566 19.4155 0.1265 0.0000
ATM Sep-02 15.80 18.20 14.10 0.0926 0.0430 18.1888 0.1260 0.0000
ATM Sep-02 14.60 17.00 0.00 0.0931 0.0433 17.0126 0.1248 0.0000
ATM Sep-02 11.90 14.30 14.30 0.0942 0.0354 14.3092 0.1180 0.0000
OTM Sep-02 10.10 12.50 11.40 0.0952 0.0285 12.5099 0.1173 0.0000
ITM Oct-02 104.80 107.80 0.00 11.7294 87.2313 107.7986 0.8715 82.5381
ITM Oct-02 86.70 89.70 77.00 13.1733 62.3649 89.7080 0.7471 58.9999
ITM Oct-02 54.50 57.50 51.00 12.6321 12.6321 57.4831 0.5137 11.9471

ATM Oct-02 41.50 44.50 42.00 0.1877 0.5136 44.4884 0.4437 0.0000
ATM Oct-02 30.70 33.70 22.90 0.1934 0.1346 33.7080 0.4017 0.0000
ATM Oct-02 22.20 25.20 18.40 0.1991 0.0615 25.2122 0.3743 0.0000
ATM Oct-02 15.10 17.50 14.50 0.2048 0.0373 17.5074 0.3275 0.0000
ATM Oct-02 10.10 12.50 8.60 0.2105 0.0243 12.4762 0.3105 0.0000
ATM Oct-02 6.70 8.20 6.00 0.2162 0.0150 8.2027 0.2790 0.0000
ATM Oct-02 4.30 5.50 4.50 0.2218 0.0115 5.5085 0.2641 0.0000
ATM Oct-02 2.65 3.80 3.50 0.2287 0.0086 3.8042 0.2707 0.0000
ATM Oct-02 1.95 2.70 0.00 0.2332 0.0069 2.6964 0.2596 0.0000
ATM Oct-02 1.15 1.90 0.00 0.2389 0.0062 1.8919 0.2596 0.0000
ATM Oct-02 0.60 1.35 0.00 0.2446 0.0050 1.3480 0.2608 0.0000
ATM Oct-02 0.50 1.05 0.00 0.2503 0.0043 1.0456 0.2729 0.0000
ATM Dec-02 306.70 310.70 296.00 2.0732 309.8278 310.6966 18.1500 263.6000
ITM Dec-02 214.00 217.00 205.00 3.8563 210.7463 217.0064 8.2750 179.0000
ITM Dec-02 170.80 173.80 181.00 4.8044 161.2056 173.7718 6.3430 136.8000
ITM Dec-02 130.60 133.60 123.00 6.1343 111.6648 133.6158 4.7260 94.7100
ITM Dec-02 94.40 97.40 94.00 7.9434 62.1241 97.4297 3.4707 52.6501
ITM Dec-02 78.40 81.40 0.00 8.9393 37.3537 81.4188 3.0129 31.6431
ITM Dec-02 63.80 66.80 61.00 10.0764 12.5833 66.7811 2.6091 10.6548

ATM Dec-02 50.80 53.80 48.70 0.5564 1.3970 53.7871 2.2813 0.0000
ATM Dec-02 39.90 42.90 36.50 0.5732 0.1668 42.9066 2.0698 0.0000
ATM Dec-02 30.70 33.70 22.90 0.5901 0.0618 33.7173 1.8977 0.0000
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Moneyness Expiration Bid Ask Last Dual Fuzzy Fuzzy Binomial DuallChoquet Choquet
ATM Dec-02 22.10 25.10 20.00 0.6070 0.0337 25.1304 1.6438 0.0000
ATM Dec-02 16.10 18.50 16.00 0.6238 0.0214 18.5114 1.4717 0.0000
ATM Dec-02 12.20 13.00 10.00 0.6407 0.0152 13.0085 1.2931 0.0000
ATM Dec-02 8.10 9.60 6.50 0.6575 0.0110 9.6010 1.2399 0.0000
ATM Dec-02 6.00 7.50 6.00 0.6710 0.0095 7.5021 1.2068 0.0000
ATM Dec-02 2.85 4.00 2.50 0.7081 0.0055 3.9952 1.1908 0.0000
ATM Dec-02 1.15 1.90 1.65 0.7418 0.0042 1.9001 1.0733 0.0000
ATM Mar-03 136.60 139.60 133.00 3.8490 111.0809 139.6175 19.7190 73.9700
ATM Mar-03 101.80 104.80 0.00 4.9871 61.7992 104.7931 14.2056 41.0769
ITM Mar-03 71.70 74.70 75.00 6.4286 12.5175 74.6853 10.3787 8.3046
ITM Mar-03 58.70 61.70 58.00 1.3670 1.0948 61.7012 8.9763 0.0000

ATM Mar-03 47.60 50.60 44.90 1.4084 0.1255 50.6232 8.0350 0.0000
ATM Mar-03 37.50 40.50 29.50 1.4498 0.0472 40.4668 7.0423 0.0000
ATM Mar-03 29.80 32.80 24.00 1.4912 0.0337 32.8218 6.6174 0.0000
ATM Mar-03 22.80 25.80 18.50 1.5326 0.0195 25.8084 6.0218 0.0000
ATM Mar-03 17.30 19.70 16.80 1.5741 0.0163 19.6925 5.3835 0.0000
ATM Jun-03 143.20 146.20 140.00 2.4594 110.5545 146.1605 62.7560 53.8500
ATM Jun-03 109.70 112.70 93.50 3.1668 61.5064 112.7239 44.3236 29.8693
ITM Jun-03 79.70 82.70 66.00 4.1862 12.4582 82.6927 30.4574 6.0331
ITM Jun-03 67.10 70.10 68.00 2.4086 0.8371 70.1139 26.5514 0.0000

ATM Jun-03 55.30 58.30 48.40 2.4815 0.0970 58.2774 22.6310 0.0000
ATM Jun-03 45.40 48.40 40.50 2.5545 0.0571 48.4405 20.1994 0.0000
ATM Jun-03 37.20 40.20 38.10 2.6275 0.0377 40.1911 18.6756 0.0000
ATM Jun-03 219.10 222.10 0.00 1.5859 208.6926 222.0942 113.5070 103.8000
ATM Jun-03 178.60 181.60 0.00 2.0835 159.6346 181.6092 76.6486 79.1960
ITM Jun-03 142.10 145.10 140.00 2.5847 110.5767 145.0693 57.0960 54.6800
ITM Jun-03 108.80 111.80 93.50 3.2861 61.5187 111.8312 41.2208 30.3306
ITM Jun-03 78.90 81.90 66.00 4.3248 12.4607 81.8847 28.5773 6.1263
ITM Jun-03 66.30 69.30 68.00 2.3587 0.8530 69.3374 24.9674 0.0000

ATM Jun-03 54.70 57.70 48.40 2.4302 0.0984 57.6901 21.5128 0.0000
ATM Jun-03 44.80 47.80 40.50 2.5017 0.0581 47.8313 19.1607 0.0000
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Moneyness Expiration Bid Ask Last Dual Fuzzy Fuzzy Binomial DuallChoquet Choquet
ATM Jun-03 36.70 39.70 38.10 2.5732 0.0382 39.6672 17.7917 0.0000
ATM Jun-03 29.40 32.40 32.00 2.6446 0.0198 32.4287 16.2500 0.0000
ATM Jun-03 23.10 26.10 23.50 2.7161 0.0158 26.0976 14.8196 0.0000
ATM Jun-03 18.40 20.80 22.50 2.7876 0.0103 20.8055 13.5816 0.0000
ATM Jun-03 14.80 17.20 25.50 2.8448 0.0087 17.2255 12.7096 0.0000
ATM Jun-03 10.60 13.00 12.50 2.9305 0.0063 12.9755 11.8022 0.0000
ATM Jun-03 8.30 9.80 7.50 3.0020 0.0057 9.8125 10.6473 0.0000
ATM Jun-03 6.10 7.60 12.00 3.0735 0.0051 7.5851 10.0782 0.0000
ATM Jun-03 4.50 5.70 5.30 3.1450 0.0040 5.7011 9.3392 0.0000
ATM Dec-03 123.30 126.30 112.00 1.7139 60.5191 126.2852 312.7810 5.2200
ATM Dec-03 95.40 98.40 86.00 2.1399 12.2583 98.3384 223.4292 1.0499
ITM Dec-03 81.20 84.20 0.00 2.5368 0.5854 84.1966 171.7934 0.0000
ITM Dec-03 71.60 74.60 82.00 2.6092 0.1464 74.6088 167.1807 0.0000

ATM Dec-03 61.50 64.50 0.00 2.8376 0.0674 64.5077 148.5073 0.0000
ATM Dec-03 51.90 54.90 74.00 3.1455 0.0248 54.8904 128.0466 0.0000
ATM Dec-03 44.00 47.00 0.00 3.3726 0.0177 47.0217 116.5040 0.0000
ATM Dec-03 36.30 39.30 35.00 3.7270 0.0136 39.3149 11.1762 0.0000
ATM Dec-03 30.40 33.40 48.00 3.9301 0.0106 33.4257 94.5283 0.0000
ATM Dec-03 25.90 28.90 46.00 4.1669 0.0085 28.9162 87.3523 0.0000
ATM Dec-03 20.10 24.10 25.50 4.2691 0.0069 24.1198 85.4810 0.0000
ATM Dec-03 16.70 18.70 15.00 4.9224 0.0051 18.6962 69.8130 0.0000
ATM Dec-03 13.20 15.20 34.00 5.2724 0.0045 15.2020 63.7658 0.0000
ATM Dec-03 10.50 12.50 11.50 5.5192 0.0039 12.5151 60.2510 0.0000
ATM Dec-03 6.90 7.90 8.50 6.3023 0.0032 7.8983 50.6713 0.0000
ATM Dec-03 4.30 5.10 5.00 6.8773 0.0026 5.0775 45.5126 0.0000
ATM Jun-04 236.30 239.30 217.00 0.3187 182.1240 239.3420 16658.0000 0.0000
ATM Jun-04 200.70 203.70 0.00 1.1967 172.6728 203.7274 894.6380 0.3800
ATM Jun-04 86.70 89.70 105.00 1.6250 153.7705 185.0888 525.1003 0.3390
ITM Jun-04 167.40 170.40 184.00 0.8310 106.5146 170.4644 2059.2000 0.0000
ITM Jun-04 236.30 239.30 217.00 0.0949 87.6123 239.0570 1006738.0000 0.0095
ITM Jun-04 200.70 203.70 0.00 0.1980 78.1611 203.7049 86673.3800 39512.0000
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Moneyness Expiration Bid Ask Last Dual Fuzzy Fuzzy Binomial DuallChoquet Choquet
ITM Jun-04 137.30 140.30 154.50 1.0275 59.2588 140.3463 1426.9600 74804.0000
ITM Jun-04 110.50 113.50 203.50 1.2539 12.0030 113.4771 1020.8400 60122.0000
ITM Jun-04 86.70 89.70 105.00 1.5254 0.1069 89.7417 738.3695 3.0000
ITM Jun-04 66.60 69.60 58.30 1.8207 0.0285 69.6550 556.3046 0.0000

ATM Jun-04 58.10 61.10 69.00 1.9621 0.0187 61.1309 495.8467 0.0000
ATM Jun-04 50.00 53.00 45.00 2.1377 0.0134 53.0578 433.4462 0.0000
ATM Jun-04 43.00 46.00 0.00 2.2988 0.0101 46.0357 388.2157 0.0000
ATM Jun-04 38.10 41.10 62.00 2.4132 0.0078 41.1246 361.6630 0.0000
ATM Jun-04 26.20 30.20 29.50 2.6807 0.0052 30.2289 312.9018 1.0000
ATM Jun-04 19.10 21.10 23.00 3.1795 0.0038 21.1143 240.7829 6.0000
ATM Jun-04 12.90 14.90 23.00 3.5771 0.0029 14.9234 203.3274 2.0000
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Table IOC: This table shows the option bounds for S&P 500 index options using fuzzy as well as Choquet integration. The binomial option
value is also shown for comparative purposes. Historical volatility is used in the calculations.

Moneyness Expiration Bid Ask Last Dual Fuzzy Fuzzy Binomial DuallChoquet Choquet
ITM Aug-02 89.50 92.50 91.00 87.5705 87.5705 87.3297 0.1218 87.4226
ITM Auq-02 69.60 72.60 66.50 62.6074 62.6074 62.3794 0.0844 62.5095
ITM Aug-02 51.60 54.60 45.00 37.6443 39.6698 37.8119 0.0495 37.5995

ATM Aug-02 36.00 38.00 35.00 12.6812 15.8368 16.5149 0.0167 12.6926
ATM Aug-02 30.70 33.70 33.00 2.6960 7.1853 10.2906 0.0042 2.7306
ATM Aug-02 25.80 28.80 26.80 0.0142 2.6197 5.7941 0.0009 0.0000
ATM Aug-02 23.90 25.00 22.00 0.0143 1.3400 4.1640 0.0009 0.0000
ATM Aug-02 21.50 24.50 20.00 0.0144 0.8119 2.9160 0.0009 0.0000
ATM Aug-02 17.90 20.30 13.70 0.0145 0.3355 1.3001 0.0008 0.0000
ATM Aug-02 14.60 16.00 15.00 0.0147 0.1821 0.5095 0.0008 0.0000
ATM Aug-02 12.00 13.60 8.80 0.0149 0.1244 0.1768 0.0007 0.0000
ATM Aug-02 10.10 11.00 9.50 0.0151 0.0839 0.0535 0.0007 0.0000
ATM Aug-02 8.20 9.00 7.90 0.0152 0.0731 0.0281 0.0007 0.0000
ATM Aug-02 7.00 7.80 7.80 0.0153 0.0537 0.0069 0.0007 0.0000
ATM Aug-02 5.00 6.00 6.00 0.0156 0.0392 0.0007 0.0006 0.0000
ATM Aug-02 4.40 4.50 4.50 0.0157 0.0339 0.0003 0.0006 0.0000
ATM Aug-02 2.60 3.20 2.60 0.0160 0.0243 0.0000 0.0006 0.0000
ITM Sep-02 100.40 103.40 85.00 87.3819 87.3819 86.7914 0.1275 86.2124
ITM Sep-02 81.80 84.80 77.00 62.4726 62.4726 61.9054 0.0900 61.6233
ITM Sep-02 64.80 67.80 59.00 37.5632 39.6955 37.5227 0.0550 37.0530

ATM Sep-02 49.70 52.70 48.60 12.6539 14.7862 16.6506 0.0221 12.5011
ATM Sep-02 44.20 47.20 33.00 2.6902 6.9604 10.5678 0.0095 2.6853
ATM Sep-02 39.10 42.10 29.00 0.0858 2.3495 6.1202 0.0061 0.0000
ATM Sep-02 36.80 39.80 31.90 0.0863 1.2010 4.4862 0.0059 0.0000
ATM Sep-02 34.70 37.70 29.50 0.0869 0.7274 3.1987 0.0058 0.0000
ATM Sep-02 30.30 33.30 30.70 0.0879 0.3492 1.5084 0.0056 0.0000
ATM Sep-02 26.40 29.40 22.00 0.0890 0.1819 0.6324 0.0053 0.0000
ATM Sep-02 22.90 24.50 19.00 0.0900 0.1219 0.2380 0.0051 0.0000
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Moneyness Expiration Bid Ask Last Dual Fuzzy Fuzzy Binomial DuallChoquet Choquet
ATM Sep-02 18.40 20.80 18.80 0.0916 0.0701 0.0436 0.0048 0.0000
ATM Sep-02 17.00 19.40 14.00 0.0921 0.0613 0.0235 0.0047 0.0000
ATM Sep-02 15.80 18.20 14.10 0.0926 0.0541 0.0123 0.0046 0.0000
ATM Sep-02 14.60 17.00 0.00 0.0931 0.0482 0.0062 0.0045 0.0000
ATM Sep-02 11.90 14.30 14.30 0.0942 0.0388 0.0015 0.0043 0.0000
ATM Sep-02 10.10 12.50 11.40 0.0952 0.0304 0.0003 0.0041 0.0000
ITM Oct-02 124.10 127.10 121.20 112.0977 113.3502 111.2282 0.1634 639.0000
ITM Oct-02 104.80 107.80 0.00 87.2313 88.4838 86.3618 0.1235 86.3355
ITM Oct-02 86.70 89.70 77.00 62.3649 63.6174 61.4955 0.0863 61.7233

ATM Oct-02 54.50 57.50 51.00 12.6321 16.3954 13.2943 0.0187 12.5851
ATM Oct-02 41.50 44.50 42.00 0.1877 1.4031 1.3399 0.0028 0.0000
ATM Oct-02 30.70 33.70 22.90 0.1934 0.1888 0.0173 0.0023 0.0000
ATM Oct-02 22.20 25.20 18.40 0.1991 0.0738 0.0000 0.0019 0.0000
ATM Oct-02 15.10 17.50 14.50 0.2048 0.0390 0.0000 0.0016 0.0000
ATM Oct-02 10.10 12.50 8.60 0.2105 0.0241 0.0000 0.0013 0.0000
ATM Oct-02 6.70 8.20 6.00 0.2162 0.0166 0.0000 0.0010 0.0000
ATM Oct-02 4.30 5.50 4.50 0.2218 0.0122 0.0000 0.0008 0.0000
ATM Oct-02 2.65 3.80 3.50 0.2287 0.0089 0.0000 0.0006 0.0000
ATM Oct-02 1.95 2.70 0.00 0.2332 0.0075 0.0000 0.0004 0.0000
ATM Oct-02 1.15 1.90 0.00 0.2389 0.0061 0.0000 0.0003 0.0000
ATM Oct-02 0.60 1.35 0.00 0.2446 0.0052 0.0000 0.0002 0.0000
ATM Dec-02 0.50 1.05 0.00 0.2503 0.0044 0.0000 0.0001 0.0000
ITM Dec-02 306.70 310.70 296.00 173.6136 309.8278 308.3260 0.6530 649.0000
ITM Dec-02 214.00 217.00 205.00 208.3363 210.7463 209.2445 0.3790 850.0000
ITM Dec-02 170.80 173.80 181.00 161.2056 161.2056 159.7038 0.2737 81.0000
ITM Dec-02 130.60 133.60 123.00 111.6648 111.6648 110.1630 0.1833 850.0000
ITM Dec-02 94.40 97.40 94.00 62.1241 63.7628 60.6235 0.1051 58.2993
ITM Dec-02 78.40 81.40 0.00 37.3537 38.9924 36.0001 0.0698 35.0021

ATM Dec-02 63.80 66.80 61.00 12.5833 15.8641 14.0890 0.0366 11.8082
ATM Dec-02 50.80 53.80 48.70 0.5564 1.2105 2.4479 0.0193 0.0000
ATM Dec-02 39.90 42.90 36.50 0.5732 0.1856 0.1356 0.0169 0.0000
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Moneyness Expiration Bid Ask Last Dual Fuzzy Fuzzy Binomial DuallChoquet Choquet
ATM Dec-02 30.70 33.70 22.90 0.5901 0.0717 0.0021 0.0147 0.0000
ATM Dec-02 22.10 25.10 20.00 0.6070 0.0377 0.0000 0.0128 0.0000
ATM Dec-02 16.10 18.50 16.00 0.6238 0.0240 0.0000 0.0110 0.0000
ATM Dec-02 12.20 13.00 10.00 0.6407 0.0165 0.0000 0.0094 0.0000
ATM Dec-02 8.10 9.60 6.50 0.6575 0.0121 0.0000 0.0080 0.0000
ATM Dec-02 6.00 7.50 6.00 0.6710 0.0098 0.0000 0.0070 0.0000
ATM Dec-02 2.85 4.00 2.50 0.7081 0.0061 0.0000 0.0047 0.0000
ATM Mar-03 1.15 1.90 1.65 0.7418 0.0044 0.0000 0.0031 0.0000
ITM Mar-03 136.60 139.60 133.00 111.0809 111.0809 108.3987 0.2599 518.0000
ITM Mar-03 101.80 104.80 0.00 61.7992 61.7992 59.1426 0.1769 49.5880

ATM Mar-03 71.70 74.70 75.00 12.5175 14.7916 14.8663 0.1043 9.9521
ATM Mar-03 58.70 61.70 58.00 1.3670 1.2408 3.6801 0.0829 0.0000
ATM Mar-03 47.60 50.60 44.90 1.4084 0.1878 0.4591 0.0746 0.0000
ATM Mar-03 37.50 40.50 29.50 1.4498 0.0723 0.0269 0.0671 0.0000
ATM Mar-03 29.80 32.80 24.00 1.4912 0.0380 0.0007 0.0602 0.0000
ATM Mar-03 22.80 25.80 18.50 1.5326 0.0233 0.0000 0.0539 0.0000
ATM Jun-03 17.30 19.70 16.80 1.5741 0.0163 0.0000 0.0481 0.0000
ITM Jun-03 143.20 146.20 140.00 110.5545 110.5545 106.3130 0.3929 117.0000
ITM Jun-03 109.70 112.70 93.50 61.5064 61.5064 57.3847 0.3013 39.0120
ATM Jun-03 79.70 82.70 66.00 12.4582 14.8730 15.2513 0.2212 7.7553
ATM Jun-03 67.10 70.10 68.00 2.4086 1.2213 4.5504 0.1938 0.0000
ATM Jun-03 55.30 58.30 48.40 2.4815 0.1956 0.8333 0.1775 0.0000
ATM Jun-03 45.40 48.40 40.50 2.5545 0.0703 0.0901 0.1624 0.0000
ATM Jun-03 37.20 40.20 38.10 2.6275 0.0380 0.0057 0.1484 0.0000
ITM Jun-03 219.10 222.10 0.00 168.4801 208.6926 204.2912 0.6171 86.0000
ITM Jun-03 178.60 181.60 0.00 159.6346 159.6346 155.2333 0.4942 49.0000
ITM Jun-03 142.10 145.10 140.00 110.5767 110.5767 106.1753 0.3887 846.0000
ITM Jun-03 108.80 111.80 93.50 61.5187 61.5187 57.2392 0.2975 39.3895

ATM Jun-03 78.90 81.90 66.00 12.4607 14.8760 15.1548 0.2175 7.8337
ATM Jun-03 66.30 69.30 68.00 2.3587 1.2215 4.5071 0.1904 0.0000
ATM Jun-03 54.70 57.70 48.40 2.4302 0.1957 0.8223 0.1743 0.0000
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Moneyness Expiration Bid Ask Last Dual Fuzzy Fuzzy Binomial DuallChoquet Choquet
ATM Jun-03 44.80 47.80 40.50 2.5017 0.0703 0.0885 0.1595 0.0000
ATM Jun-03 36.70 39.70 38.10 2.5732 0.0380 0.0055 0.1458 0.0000
ATM Jun-03 29.40 32.40 32.00 2.6446 0.0238 0.0002 0.1331 0.0000
ATM Jun-03 23.10 26.10 23.50 2.7161 0.0162 0.0000 0.1214 0.0000
ATM Jun-03 18.40 20.80 22.50 2.7876 0.0118 0.0000 0.1106 0.0000
ATM Jun-03 14.80 17.20 25.50 2.8448 0.0098 0.0000 0.1025 0.0000
ATM Jun-03 10.60 13.00 12.50 2.9305 0.0074 0.0000 0.0913 0.0000
ATM Jun-03 8.30 9.80 7.50 3.0020 0.0061 0.0000 0.0828 0.0000
ATM Jun-03 6.10 7.60 12.00 3.0735 0.0050 0.0000 0.0748 0.0000
ATM Dec-03 4.50 5.70 5.30 3.1450 0.0043 0.0000 0.0675 0.0000
ITM Dec-03 154.70 157.70 236.00 108.7800 108.7800 106.7335 1.0061 68.0000
ITM Dec-03 123.30 126.30 112.00 60.5191 60.5191 58.8723 0.8747 10.0503

ATM Dec-03 95.40 98.40 86.00 12.2583 15.2159 18.7824 0.7597 1.9103
ATM Dec-03 81.20 84.20 0.00 8.1139 1.1206 7.4293 0.7097 0.0000
ATM Dec-03 71.60 74.60 82.00 8.3597 0.1946 2.1820 0.6650 0.0000
ATM Dec-03 61.50 64.50 0.00 8.6056 0.0699 0.4668 0.6232 0.0000
ATM Dec-03 51.90 54.90 74.00 8.8515 0.0355 0.0717 0.5840 0.0000
ATM Dec-03 44.00 47.00 0.00 9.0974 0.0228 0.0081 0.5471 0.0000
ATM Dec-03 36.30 39.30 35.00 9.3432 0.0158 0.0007 0.5125 0.0000
ATM Dec-03 30.40 33.40 48.00 9.5891 0.0116 0.0000 0.4799 0.0000
ATM Dec-03 25.90 28.90 46.00 9.7858 0.0096 0.0000 0.4553 0.0000
ATM Dec-03 20.10 24.10 25.50 10.0809 0.0072 0.0000 0.4204 0.0000
ATM Dec-03 16.70 18.70 15.00 10.3267 0.0058 0.0000 0.3931 0.0000
ATM Dec-03 13.20 15.20 34.00 10.5726 0.0049 0.0000 0.3674 0.0000
ATM Dec-03 10.50 12.50 11.50 10.8185 0.0042 0.0000 0.3431 0.0000
ATM Jun-04 6.90 7.90 8.50 11.3102 0.0032 0.0000 0.2985 0.0000
ATM Jun-04 4.30 5.10 5.00 11.8020 0.0025 0.0000 0.2587 0.0000
ITM Jun-04 236.30 239.30 217.00 124.2657 182.1240 185.9503 2.1058 374.0000
ITM Jun-04 200.70 203.70 0.00 126.2699 172.6728 176.4991 2.0574 95.0000
ITM Jun-04 86.70 89.70 105.00 130.2785 153.7705 157.5968 1.9650 1.6615
ITM Jun-04 167.40 170.40 184.00 106.5146 106.5146 110.3486 1.7571 569.0000
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Moneyness Expiration Bid Ask Last Dual Fuzzy Fuzzy Binomial DuallChoquet Choquet
ITM Jun-04 236.30 239.30 217.00 87.6123 87.6123 91.4945 1.6821 0.7343
ITM Jun-04 200.70 203.70 0.00 78.1611 78.1611 82.1205 1.6461 0.6335
ITM Jun-04 137.30 140.30 154.50 59.2588 59.2588 63.6832 1.5770 0.4501

ATM Jun-04 110.50 113.50 203.50 19.7029 15.3739 24.1580 1.4194 0.0783
ATM Jun-04 86.70 89.70 105.00 20.9344 0.1672 4.5125 1.2806 0.0000
ATM Jun-04 66.60 69.60 58.30 22.1658 0.0350 0.3518 1.1574 0.0000
ATM Jun-04 58.10 61.10 69.00 22.7815 0.0224 0.0702 1.1008 0.0000
ATM Jun-04 50.00 53.00 45.00 23.3972 0.0156 0.0112 1.0473 0.0000
ATM Jun-04 43.00 46.00 0.00 24.0129 0.0114 0.0015 0.9965 0.0000
ATM Jun-04 38.10 41.10 62.00 24.5055 0.0091 0.0002 0.9578 0.0000
ATM Jun-04 26.20 30.20 29.50 25.8601 0.0058 0.0000 0.8590 0.0000
ATM Jun-04 19.10 21.10 23.00 27.0915 0.0041 0.0000 0.7780 0.0000
ATM Jun-04 12.90 14.90 23.00 28.3230 0.0031 0.0000 0.7043 0.0000
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A p p en d ix  D

Fuzzy Differential Calculus

D .l  F uzzy  D erivatives

D . l . l  D u b o is -P r a d e  d er iv a tiv e

Dubois and Prade ([50],[125]) deal with differentiation of ordinary functions at 

a fuzzy point and differentiation of fuzzy functions at a non-fuzzy point. In general, 

both approaches yield a fuzzy value.

In the first case, there is uncertainty about the value of the derivative at a fuzzy 

point due to the uncertainty about the precise location of this point. Let /  be a 

differentiable mapping from [a, b] C if x 9i, with derivative / '.  Let Xo be the fuzzy 

point with support S ( X 0) =  x  G 3? | Hx0(x ) > 0} C [a,b\ at which we want to 

differentiate / .  Then, / ' ( X q )  is the fuzzy set of the possible values of f  at a point 

whose possible positions are restricted by X q . is defined by its membership function 

using the extension principle:

Vf>(x0)(y) =  sup ¡ix  „(a;)
S G / ' - ! ( y )

Of course, if / ' (x) is constant on S ( X q), then / ' ( X q) is non-fuzzy.

In the second case, assume that /  is a non-fuzzy mapping from [a, b] to the set of 

fuzzy sets of 5?, where / ( x) is normalized, continuous, support-bounded and strictly 

convex f (x)  is a fuzzy number. f (x)  can be viewed as the possibility distribution 

of a priori possible values at x, where x is an ordinary point belonging to [a,b\, of an 

imprecise mapping roughly specified by / .
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Let /+  and f ~  be the upper and lower a-curves of /  respectively. If /+  and f ~  

are differentiable on [a,b], then the fuzzy value of f ( x o) of the derivative of /  at xq  

can be defined by its membership function:

Vf'(x0)(y) =  SUP y
h\y=h! (xo)

where S[w(f)] = { / " , / +  \ a e  ]0 ,l[} |J{ /i}  and fi ~ ( / “ ) =  fi ~ (/+ ) =
w ( / )  r a ( / )

a,/x ~ (/i) =  1. In other words, 
w ( / )

y f { x 0){y) = sup{« I y = (fa)' (xo),e e {+, -}
where V x, / Q(x) =  {y | /xF^ ( y )  > a} is closed, 

fa = sup f a (x) and f -  = inf f a (x), 

and f ' (x)  can be found by differentiating /+  and f ~:

fa(xo) =  [ f a \ x o) J a i xo)], 
which holds if it satisfies the following conditions:

(i) f a ( xo ) < f i ' ( x  o),Va,

(h) a  < /? = >  [ /“ '(x0) , /+ '(x 0)] 2  [ // (x o )  , / / ( x o ) ] ,

(iii) U m //(x 0) =  /a '(® o ),lim //(x 0) =  /+ '(x 0).

However, this derivative is not always a fuzzy number so Buckley and Feuring 

suggested defining / '( x 0) = 1, V x  satisfying x 2 (t, 1) < x < x 2 (t, 1) whenever x2(t, 1) < 

x2(t, 1). Then DPDX(i) will be a fuzzy number.

D .1 .2  P u r i-R a le sc u  D er iv a tiv e

Puri and Ralescu ([125],[21],[54]) use the Hausdorff metric for this derivative 

whereby D(X( t ) ,Z ( t )) =  supH(X(t)[a],Z(t)[a]),  where X(t)  and Z(t) are fuzzy 

numbers for t € I. They generalize Radstorm Embedding theorem to define the 

differential of a fuzzy function. To do so, they propose a theorem ([125], Theorem 

2.2, p. 555) whereby they prove that: 3 a normed space x  such that Fq (X)  can be 

embedded isometrically into x> where F0 (X)  is a subset of F( X)  the set of fuzzy 

subsets of X.  Denoting this embedding by j  : F0PO  —*• Xo> then the fuzzy function
A

F : U —> Fo(X) is called differentiable at xo E U if the map F  =  j  oF  is differentiable

at xo ( [125], Definition 3.1, p. 556), i.e. F  is differentiable at xo G U if 3 a linear
-  /

bounded operator: F'{xo) : X  —> Y  such that: lim [|| F(x) — F(xo) -  F  ( x q ) ( x  -
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They then extend the concept of Hukuhara difference to define their differential.

So they define a fuzzy function F: U —> Fo(9in) to be H-differentiable at xq  6 U if 

3 DF(x q ) € Fo(3?n) , such that:

lira [(F(xo +  h))-F(xo))/h] =  DF(xo), and
h —>o+
lim [(F(x0)) -F (x 0 -  h))/h] =  DF(x0),

h —>o+
and both limits exist. Non-standard fuzzy subtraction, namely Hukuhara difference, 

is employed here ([125], Definition 3.2, p. 557). In their discussion of this derivative,

Dubois and Prade [54], and Buckley and Feuring [21] note that this derivative F^(xo)

=  [ f a ( x o) i fa ixo)] =  -DF(x o ) is always a fuzzy number. However, Dubois and 

Prade [50] show that it does not always exist.

D .1 .3  G o e tsch e l-V o x m a n  d er iv a tiv e

Goetschel and Voxman [75] define the derivative f \ x o) of /  : JR1 —> F, where F  is 

a subset of the topological vector space V  =  {(o(r), b(r) ,r) \ 0 < r < 1-, a : I  1R1 and 

b : /  -> R 1 are bounded functions}. A fuzzy number here is represented by the 

parametrized triplets {(a(r), b(r), r) | 0 < r  < 1}, where a and b are the endpoint 

functions. The derivative is defined as: 

f ( x )  = lim [(f(x +  h)) -  f{x))/h),
h,—>o

/'(x )(a ) =  [f i (x,a), f t (x,a)],  

with the limit being taken with respect to the metric D:

D({(a(r),b(r),r) | 0 < r < 1}, {(c(r), d(r), r) | 0 < r < 1}) =  sup{max{|a(r) -  b(r) \ , |c(r) — d{r) |} 

0 < r < 1}}

Note that D and V  together form a topological vector space. The authors prove 

that f { x )  exists for each x  € 5R1 if ax and bx are continuos, where ax and bxare the 

partial derivatives of a and b and w.r.t. x  ([75], Theorem 2.3, p. 34). They also prove 

that in a neighborhood N of a point xq  s  ¡ft1, if the families {ax(r,x ) | r  € 1} and 

{bx(r, x) | r € / }  exist and are equicontinuous w.r.t. x  at x q , then f { x o) exists ([75],

Theorem 2.4, p. 35).

Goetschel and Voxman also present the Fundamental Theorem of Fuzzy Calculus,
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which says: Suppose /  : R1 —> Q is a continuos fuzzy function and let F{x) =  j f(t)dt.  

Then F'(x) exists and F'(x) — f (x)  ([75], Theorem 3.5, p. 40).

Buckley and Feuring ([2]) note that the subtraction employed in the definition 

of the GVD is not standard fuzzy subtraction. Using standard fuzzy subtraction, 

[f(x + h) -  f(x)][a] =  [fi(x + h,a) -  f 2 (x, a), f 2{x + h,a)  -  f i (x,  a)],but using the 

subtraction employed in GVD, [f(x + h) — f(x)][a\ = [fi(x +  h, a) — f \ (x,  a), / 2(:r + 

h,a)  — / 2(:r, a)]. Note also that if TV is a fuzzy number, —TV is not. So GVD f ( x )  

may not be a fuzzy number, then —f'(x)  is a fuzzy number.

D .1 .4  S eik k ala  d er iv a tiv e

We have already talked in details about this derivative, so we will only define it 

briefly. Denote a mapping x : I  —> E,  where /  is a real interval and E  is the set of all 

upper semicontinuous normal convex fuzzy numbers with bounded a-level intervals. 

Then, x  is a fuzzy process with a-level sets:

[x{t)]a =  [x%(t),x%(t)], t e l , 0 < a  < 1,

with derivative SDJV(f) =  [x'(t)]a — [(x^)'(t), (x%)'(t)], which is a fuzzy derivative for 

all t e l .

X

D .1 .5  K a n d e l-F r ied m a n -M in g  d er iv a tiv e

Buckley and Feuring [21] present a summary of this derivative. In this case, fuzzy 

numbers do not necessarily have to have compact support. The metric used for this 

derivative is:

DP(X(t),Z(t))  =  max{[/ \xi(t ,a) -  zi(t, a)\p da\l/p , [ /  |x2(i,a ) -  22(i, a ) |p da}1̂ } ,
o _  o

where X(t)(a)  =  [x\(i, a), x2(i, a)] andZ (i)(a) =  [z\(t,a),Z2 (t,a)] define fuzzy num-

bers.

The derivative f ' (x)  has the same definition as GVD. If it exists, then: 

f ( x ) ( a )  = [f[(x,a), f i (x,a)],

which is always a fuzzy number Vi € / .  However, f (x)  is differentiable at to € /  if

there is a fuzzy number f ( x o) such that:
¡X(to +  h) — X(to) ,

hm Dp [----------- ------------ , f { x  0)] =  0
h—»o n
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But the subtraction in this case is not standard as well. They use the same approach 

as that used to define GVD.

D .2  R ela tio n sh ip s b etw een  D eriva tives and b etw een  So-

lu tion s

Theorem 1: ([21], Theorem 3.1, p. 46)

1. If the Goetschel-Voxman derivative (GVDX(i)) exists and is a fuzzy number 

for each t G I, then Seikkala Derivative (SDX(f)) exists and GYDX(t )  = SDX(t).

2. If the Puri-Ralescu derivative (DPV (t)) exists, then SDX(t) exists and PRDA (t) 

=  SD X(t).

3. If the Kandel-Friedman-Ming derivative (KFMX(f)) exists, then SDX(f) exists 

and KFMDV(f) =  SDX(t).

4. If SDX(t)  exists and if x x{t ,a) and x'2 (t,a)  are both continuous in a for each 

t G / ,  then SDX(t)  = DPDX(t).

Theorem 2: ([21], Theorem 3.2, p. 46) Assume the continuity condition holds. If 

SDX(t)  exists, then SDX(t)  = DPDX(t)  =  GVDX(t) =  PRDX(i) =  KFMDX(f). 

Theorem 3: (Theorem 3.3, p.47) Assume the continuity condition holds. If one of the 

derivatives SD, GVD and it is a fuzzy number, PRD, or KFMD exist, then so do the 

others and they are all equal.

Theorem 4:([21], Theorem 4.2, p.49)

1. If BFS =  Y(t),  then SS =  Y(t).

2. If PRS =  X(t),  then SS -  X(t).

3. If KFMS = X(t) ,  then SS =  X(t).

where BFS, SS, PRS and KFMS stand for the Buckley-Feuring solution, Seikkala 

solution, Puri-Ralescu solution and Kandel-Friedman-Ming solution respectively. 

Theorem 5: ([21], Theorem 4.3, p. 49))

1. If BFS =  Y(t)  and PRDY(t)  exists, then PRS -  Y(t).

2. If BFS =  Y(t)  and KFMDF(f) exists, then KFMS =  Y(t).

Theorem 6: ([21], Theorem 4.4, p. 49)

Assume the continuity condition holds and /  =  [0, M], where M  > 0.

251



1. If SDX(t )  exists, then SS =  PRS =  KFMS.

2. If BFS — Y(t)  and the continuity holds for Y(t),  then BFS =  SS = PRS = 

KFMS.

Theorem 7: ([21], Theorem 4.5, p. 49)

1. If PRS =  A(t) and the derivative condition (refer to Solving Fuzzy Differential 

Equations, item II) holds, then BFS = X(t).

2. If SS =  X(t)  and the derivative condition holds, then BFS =  X(t).

3. If KFMS = A (t) and the derivative condition holds, then BFS =  X(t).

D .3  S o lv in g  F uzzy E q u ation s

Several methods have been proposed for solving fuzzy equations. We will consider 

the extension principle approach, and the cc-cuts and interval arithmetic approach.

D .3 .1  E x te n s io n  P r in c ip le  A p p roach

Considering an equation of the form y = / ( a q , ..., xn) ( f  : R n —* R), this approach 

goes as follows [23],

1. Substitute triangular fuzzy numbers A , for x,.

2. Obtain Y  using the extension principle:

/i(y | Y) = sup{min{p,(aq | A,)} | /(aq, ...,xn) = y } : 1 < i < n

3. Get the united extension of /

tt{a) = {y | y = f ( x ) , x  G A  ( a ) }

where X(a)  =  A i(a )x ...x A „ (a ) ,a n d  A j(a) =  [xji(a),Xi2(«)] is a closed interval 

because y =  ¡i{xi \ X ¿) is continuous.

4. Define W,  a fuzzy subset of the real numbers, by:

/x(y | W)  =  sup{a | y G f2(a)}

where the supremum of the empty set, i.e. when there are no values for aq, is zero. 

The authors prove that W  = Y,  and, if /  is continuous, W(a)  =  Y(a)  — Q(a).

To evaluate the fuzzy equation, Buckley [19] outlines the extension principle ap-

proach for solving a fuzzy quadratic equation with only one variable of the form A 

A 2 +  B  A  =  C :
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D e n o t e  t h e  s e t  o f  a l l  v a lu e s  o f  (ax* 2 +  bx), w h e r e  x  E X ( a ) ,  a E A ( a ), b E B ( a ) ,  

b y  S i  (a)  =  ( a ) ,  62 ( a ) ] .  G iv e n  t h a t  X ( a )  =  [x\ ( a ) ,  X2 ( a ) ] ,  t h e n  t o  s o lv e  t h e

e q u a t io n  fo r  X , w e  h a v e  t o  h a v e  Si (a) = C(a)  w h e r e  C(a) = [ c i ( a ) ,  0 2 (a )] , S o  w e  

s e t  0 j ( a )  =  C j ( a ) ,  i  = 1 , 2 ,  a n d  s o lv e  t h e  t w o  e q u a t io n s  fo r  £ i ( a )  a n d  £ 2 (0 ) .

In  a n  e a r l ie r  p a p e r ,  B u c k l e y  a n d  Q u  [2 2 ] u s e  t h e  e x t e n s io n  p r in c ip le  a p p r o a c h  

t o  s o lv e  v a r io u s  l in e a r  a n d  q u a d r a t ic  f u z z y  e q u a t io n s .  H o w e v e r ,  t h e y  o n ly  t a c k le  

e x is t e n c e  a n d  c o m p u t a t io n ,  b u t  n o t  u n iq u e n e s s ,  o f  t h e  s o lu t io n .  T h e y  a ls o  c o n s id e r  

r e a l  a s  w e ll  a s  c o m p le x  s o lu t io n s .  W e  w il l  c o n f in e  t h e  o v e r v ie w  t o  r e a l  f u z z y  n u m b e r s  

o n ly .  N o t e  t h a t  a ll  p a r a m e t e r s  a n d  v a r ia b le s  a r e  c o n s id e r e d  t r ia n g u la r  f u z z y  n u m b e r s .

Linear Equations

1 . A + X  = C 

E x i s t e n c e  o f  S o lu t io n

A  s o lu t io n  X  t o  t h e  a b o v e  e q u a t io n  e x is t s  iff: 

ci — ai < C2 — a 2 <03 — 03.

C o m p u t a t i o n  o f  S o lu t io n

X  is  a  t r i a n g u la r  f u z z y  n u m b e r ,  w h e r e b y  

X  =  ( c i  — a i  <  C2 — 02 <  C3 — 0 3 ),

([2 2 ], T h e o r e m  1 , p . 4 5 ).

2 . A X  = C

A s s u m e  z e r o  d o e s  n o t  b e lo n g  t o  t h e  s u p p o r t  o f  A.

E x i s t e n c e  o f  S o lu t io n  ( a s s u m in g  0  d o e s  n o t  b e l o n g  t o  t h e  s u p p o r t  o f  A) A  s o lu t io n  

e x is t s  i f f

a) A s s u m in g  z e r o  d o e s  n o t  b e lo n g  t o  t h e  s u p p o r t  o f  C:

a i c 2 >  c i a 2 a n d  03C2 <  C3CI2 w h e n  A >  0 , C >  0 ;

a iC 2  <  c i( i2  a n d  <2302 > w h e n  A <  0 , C < 0 ;

a 3c 2 >  c i a 2 a n d  aiC2 < 03(12 w h e n  A > 0 , C < 0 ;

Q3C2 <  C1CI2 a n d  a iC 2  >  C3CI2 w h e n  A <  0 , C >  0 ;

b )  A s s u m in g  z e r o  b e lo n g s  t o  t h e  s u p p o r t  o f  C ( c 2  =  0 ):

Z e r o  b e lo n g s  t o  t h e  s u p p o r t  o f  X .
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C o m p u t a t i o n  o f  S o lu t io n

a) Zero does not belong to the support of C :

xi(ct) = C\(a) /  a i(a ), x^a) = 02(a) /  02(a) when A  > 0, C > 0;

x\(a) =  02(a) /  02(a), 2:2(a) =  ci(a) /  a i(a ) when A < 0, C < 0;

x i(a) =  ci(a) /  02(a), X2(a) = 02(a) /  a i(a ) when A > 0, C < 0;

X\(a) =  02(a) /  01(a), X2(a) =  ci(a) /  02(a) when A < 0, C > 0;

b) Zero belongs to the support of C := >  X2 = 0

X\(a) =  ci (a) /  02(a), X2(a) =  02(a) /  02(a) when A > 0; 

x i(a) =  02(a) /  a i(a), X2(a) =  ci(a) /  o ^ a ) when < 0;

([22], Theorem 3, p.46)

3. A X  + B = (J

This equation boils down to equation 2 above. So substitute ci(a) — 61(a) and 

0 2 (a) — 62(a) for ci (a) and 02(a) respectively, and ci — 61, 02 — 62 and 03 — 63 for ci, 

C2 and 03 respectively in case 2.([22], Theorem 6, p.48)

Q uadratic Equations

1. A X 2 = C

Assirme that zero does not belong to the support of A. But since X  > 0, we 

must have C > 0 and C < 0.

E x i s t e n c e  o f  S o lu t io n

S o lu t io n s  X\  >  0 a n d  X2 = —X\  e x is t  i f f

a ) aiC2 > C1U2 a n d  CI3C2 < 030,2 w h e n  A > 0, C > 0;

b) aiC2 < C1O2 and 0302 > 0302 when A < 0, C < 0.

C o m p u t a t i o n  o f  S o lu t io n

Let U — X 2 =>■ you can solve the equation as A U = C. Then, compute X \
— —0 5

a c c o r d in g  t o  X \  =  U

2. A X 2 + B  = C

Let c* = Ci — 6j, i =  1,2,3.

E x i s t e n c e  o f  S o lu t io n

Solutions X\ > 0 and X2 — —X\ exist iff:
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c) c* > 0 for all i, cqc*2 > c\a2 and < c^a2 when A > 0;

d) c* < 0 for all i, aic  ̂ < 0^02 and CI3C2 > 0302 when A < 0;

Computations of Solution

Let U =  X~ > 0 = >  you can solve the equation as A U = C*. Then, compute 

X \  according to X j =  U°'5. ([22], Theorem 9, p.48)

3. A X 2 + B X  = C

To solve those equations, we need to take the a-cuts of the parameters and vari-

ables. Therefore, we obtain two simultaneous equations. The authors obtain eight 

cases for those simultaneous equations based on the sign of A, B  and X  (see Table 1, 

Appendix D, [22]).

Existence of Solution

a) Case P ( l , l )  : A > 0, B  > 0 and X  > 0, a solution exists in this case iff 

0 < x\ < X2 < £3 and:

c2 -  ci > (a2 -  ai)x\  + (62 -  bi)x2

C3 -  c2 > (a3 -  a2)xj +  (63 -  b2)x3

b) Case P (2,2) : A < 0, B < 0 and X  > 0, a solution exists in this case iff 

O < X 1 < X 2 < X 3  and:

c2 -  ci > (a2 -  ai)xl +  (62 -  bx)x3

C3 -  c2 > (a3 -  a2)x\ +  (63 -  b2)x2

c) Case iV(l,2) : A > 0,B < 0 and X  < 0, a solution exists in this case iff 

X 1 < X 2 < X 3 < O  and:

C2 -  ci > (a2 -  ai)xj  +  (63 -  b2)x2

C3 -  c2 > (a3 -  a2)xj + (61 -  b2)xi

d) Case iV(2,1) : A < 0,B > 0 and X  < 0, a solution exists in this case iff 

xi < x2 < X3 < 0 and:

c2 -  ci > (o2 -  a{)x\ +(b3 -  b2)xi

c3 -  c2 > (a3 -  a2)x | +  (&! -  62)x 2

The authors do not present sufficient conditions for the existence of (real) solutions 

to the remaining four cases because they are complicated and too restrictive. To solve 

them, the authors wrote a computer program and inputted many values for the fuzzy 

parameters but never really found a combination that could solve the equations (i.e.
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give a real fuzzy number as a solution). ([22], Theorem 13, p. 49)

Therefore, the extension principle approach is very restrictive and many fuzzy 

equations do not have a solution, not even a complex one. So the authors introduce 

a new solution concept, as we will see later. In a later paper, Buckley and Qu ([23]) 

consider equations of the form y = / ( a q ,..., xn). They particularly consider two cases 

1. One variable appears more than once in f ( x Then, we compute Y(a) = 

0 (a ) by substituting all a* in Xi(a) for Xi, for 1 < i < n, in f ( x i ,. . . ,x n). But the 

same a\ has to be substituted for all the x\ in /(aq , ...,xn).

The problems with this approach are that it is not always easy to determine S'i(a), 

and it is not possible to get a solution all the time even for simple fuzzy equations.

D .3 .2  a -C u ts  an d  In terva l A r ith m e tic  A p p ro a ch

Consider the equation of the form y =  / ( a q , ..., xn). Let V(a) =  f(X\(a ) , ..., X n(a)), 

where V(a) is computed using interval arithmetic. The following arithmetic opera-

tions will be needed to evaluate the fuzzy equation:

(M N)(a) = M{a) N(a)

(M ± N) (a) =  M (a) ±  N(a)

(M /  N)(a) = M{a) N ~ \ a )

where the right hand sides of the equalities are calculated using interval arithmetic. 

However, one must not mistakenly conclude that, as a result, (A + B X 2)(u) = 

A(a) +  B(a)(X(a))2 holds because not all fuzzy numbers A, B , and X  generate an 

equality.

Before moving on to the computation of the solution, we will present the com-

parison Buckley draws between the extension principle solution, denoted by Y(a), 

and this solution, denoted by V ( a ) .  We would expect Y (a) c V ( a )  (see inclusion 

monotonicity above). However, we will not always get Y(at) = V(a), meaning that, 

in general, we can not use a-cuts to evaluate fuzzy equations. In ([19], p. 3), Buck- 

ley argues that the a-cuts approach produces a fuzzier solution than the extension 

principle approach does.

To illustrate this point, he considers a quadratic equation of the form y = ax2+bx. 

Therefore, we find the a-cuts of Y(a) by computing the intervals: Q(a) = {ax2 +bx \

256



x  G X(a) ,  a G A{a), b G B(a)},  while we find V(a)  by using interval arithmetic: 

V(a)  =  {ax\X2 + bx% \ Xi G X(at), i = 1,2,3, a G A(a), b G B(a)}.  Therefore, we use 

one value of x, x\ — X2 = x% =  x, in computing Y (a) but three different values of x 

to compute V(a).  Hence, Y(a)  is a proper subset of U(a), which is fuzzier.

D .4  S o lv in g  F uzzy D ifferentia l E q u ation s

D .4 .1  Seikkala  S o lu tio n

Seikkala [128] considers the initial value problem: 

x'(t) =  f ( t , x( t ) ) ,x(  0) =  x 0

He presents two solutions: one using the extension principle approach (and which is 

the solution which Buckley and Feuring refer to as Seikkala Solution later on), and 

another using the extremal solution approach. Before proceeding, we should present 

the two properties, which Seikkala defines for a-level sets to represent a fuzzy number 

(and vice versa). They are:

1. Inclusion Property: [a“ ,of] [a i , a2l’0 -< a  ri ¡3, i.e., a“ ri ri a"

2. Continuity Property: [ lira a“fc, lim a ^ ]  =  [a“ , a^],whenever (a^) is a nondecreas-
k—>oo k—>oo

ing sequence converging to a *. G (0,1]

The initial value problem has a deterministic function / ,  which is a continuous 

mapping: 5R+ x 5ft —> 5ft and a fuzzy initial value x q , where xois a fuzzy number in E  

(E is the set of all upper semicontinuous normal convex fuzzy numbers with bounded 

a-level intervals) with a-level intervals: [xo]a =  [^q i> *02]> 0 -< a  < 1. Now, we move 

to present the two solutions.

E xtension  Princip le A pproach

Using the extension principle of Zadeh, we can define f ( t , x) ,  where x  is a 

fuzzy number, as:

f ( t , x ) ( s )  =  s u p { x ( r )  : s =  / ( f , r ) } , s  G 5ft 

= >  [ f {t ,x) ]a =  [ m i n { / ( f , i i )  : u  G [x%,x%]} ,max{f ( t , u)  : u  G [ x ? , x f ] } ]  

w h e re  x  G E  w ith  \x\a — [x“ ,X2],0 -< a <  1
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But since the fuzzy derivative of a fuzzy process x  is:

[x'{t)}a = [(xf)'(t), (x%Y(t) ] , 0  -<a<  1

=>• x : 5ft+ —* E  is a fuzzy solution to the initial value problem on interval I  = [0, T) 

if:

(®i)'(*) =  min{f ( t ,u)  : u G [xf(t), x f (*)]}, (af)(0) =  X&

(*“ )'(*) =  m ax{/(t,u) : u G [x?(i), xf (i)]}, (x£)(0) =  xg2 

where t G /  and 0 -< a < 1. Thus, if we can solve the equation uniquely, all we have 

to do is prove that [x“ (f), x 2 (t)], 0 -< a < 1, define a fuzzy number x(t) in E.  For the 

equation to have a unique solution, /  has to satisfy a generalized Lipschitz condition:

| f ( t , x ) — f ( t , x ) |< g(t, | x  — x \),t > 0, and x , x  G 5ft2, where g : 5ft+ x 5ft —> 5ft is a 

continuous mapping such that r —> g(t ,r) is nondecreasing.

E xtrem al Solution  A pproach

Using this approach, we have to solve the crisp initial value problems (sep-

arately)

x'(t) = f( t ,x( t )) ,  x(0) =  xgj,

& x'(t) = f ( t ,x(t )) ,  x(0) =  x%2.

Then, we study the dependence of the solution on a. The following equations should 

define a fuzzy process

x  : -> E,  for [3 G [0,1],tp > 0,

[®(<)]a =  ( 3 < a <  1,

& [x(t)]a = {x{(t),x^(t)}, 0 < a  < /?,

where x“ (i) & x 2 (t) are the minimal and maximal solutions of the two initial value 

problems.

D .4 .2  B u ck ley -F eu r in g  S o lu tio n

Buckley and Feuring [21] also consider the initial value problem 

y'{t) = f ( t , y , k ) ,  y(0) =  c,

where y =  g(t, k, c) defines the solution to this equation, and the parameters ki 

and the initial condition c are uncertain. This uncertainty is modeled by respectively
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substituting triangular numbers K{ (hence, K  = ( K 1( . . . ,Kn) becomes a fuzzy vector)

and C for them. Hence, y becomes a fuzzy function Y(t),  where AY _ — —
—  = f ( t , Y , K ) ,  Y(0) = C

The sufficient conditions for the uniqueness of the solution (p.43) are

1. (0,c) is in 9R.

2. f is continuous in 3? (k is held fixed).

3. -J- is continuous in !R. 
dy

Continuity is always assumed. The continuity condition (p.46) holds when x[(t,a) is 

continuous on /  x [0,1], i = 1,2.

Several solutions (see Appendix D) are analyzed in this paper besides the authors’ 

new solution. However, the authors finally consider two solutions: Seikkala Solution 

(denoted by SS) and Buckley-Feuring Solution (denoted by BFS) due to a set of rela-

tionships between the various derivatives (see Appendix E). Besides, some solutions 

are discarded because they are not always equal to a fuzzy number.

The BFS solution approach goes as follows
dY ____— —
—  = f ( t , Y , K ) ,  Y(0) = C.

Let K(a) = K\[a] x ... x K n[a\,

4?(a) =  K ( a ) x C[cc], 0 < a < 1

Assume 4>(0) C K  x C so that g will be continuous on I  x <F(a) for all a, then 

Step I: Fuzzify the crisp solution y — g(t ,k,c) to obtain Y  =  g( t ,K,C)  using either 

one of

• the extension principle approach,

• the a-cuts approach, where Y(t)[a] =  [yi(t ,a),y2 (t,a)}

yi ( t , a ) =  min{g(t, k , c) | k G K[a], c € C[a]}, 

y2 (t,a) — max{g(t,k,c) \ k G K[a], c G C[o:]}, 

t G I, a  G [0,1], I  is a closed bounded interval which includes zero

• the united extension approach

define Q(a) =  {g(t,k,c) \ (k , c) G 4?(a)},
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Y(t)(x) = sup{a | x E il(a)},

t e l ,  a € [0,1],
where Y(t)(x)  is the membership function of Y(t).

= >  V(i)[a] =  Q(a) and Y(t)  is a fuzzy number for all t e l .  (Theorem 2.1, p.

44)

Step II: Assume that yi( t ,a) is differentiable for all t E I, a E [0,1]. Denote the 

partial of y^(i,a) with respect to t by y[(t, a), i = 1,2. Let 

r ( t ,a )  =  [y[(t,a),y'2 {t,a)\

If T(a) defines the a-cuts of a fuzzy number, for all t e l , then Y(t)  is differentiable 

and

—Jp-[a ] =  r {t,a) = [y[(t,a),y'2 (t,a)\, for all t e l ,  a e [0,1].

Note that this equation is the derivative of Y(t)[a] = [yi(f,a),y2(i,a)] and so we can 

write it as — (Y(t)[a\).

Step III: In order for Y(t)  to be a solution, the fuzzy initial value problem (FIVP) 

 ̂  ̂ must exist. To check the FIVP, we need to compute the a-cutsmust hold and
dt

of f ( t , Y , K ) ,  where

f { t ,Y,K)[a]  = [ f i ( t ,a) , f 2 (t,a)], 

f \ i t ,  a) = min{ f ( t , y , k )  \ y e  Y(t)[a], k E K[a]}, 

f 2 (t,a) =  max{ f ( t , y , k )  \ y E Y(t)[a], k E K[a}}, 

t E I , Q € [0,1].

Hence, Y(t)  must satisfy the following equations

y'i(t,a) = f l i t ,  a), 

y'2 {t,a) = h i t ,  a), 

3/1 (0, a) =  ci (a),

y2(0,a) =  c2(a), 

where C[a\ — [ci(a), c2(a)].

This solution does not solve all fuzzy equations as we will see later. The conditions

iderivative condition) for the existence of BFS i.e. BFS =Yft),  provided that the

Seikkala derivative (SDV(i)) exists for t e l ,  are ([21], Theorem 4.1, p. 48)

^ > 0  ^ > 0ay oc
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K
d h > 0 ,

i — 1 ...n. If any of these conditions is violated, then Y (t) does not solve the equation.

In this case, we would have to look for the Seikkala solution (SS). Note that 

when ^  < 0 and
' dk

^  > 0, yi(t, a) =  g(t ,k2 (a),ci(a)) and y2 (t,a) =  g(t,ki(a),  0 2 (a)),
O ~ A

when y c > 0 and > 0, y i ( t , a )  =  p(i,fci(a),ci(a)) and y2 (t,a) =  g ( t , k 2 ( a ) ,  c 2 ( a ) ) ,  

when > O a n d ^  < 0, f i ( t , a )  = f ( t , y i ( t , a ) , k 2 ( a )) and / 2(t,a ) =  f ( t , y 2 ( t , a ) , k i ( a ) ) ,

r \  r  s-) -P

when < O an d -^  > 0, =  /(*> 2/2(i, «), ^l(«)) a n d /2(i,a ) =  f ( t , y i ( t , a ) , k2(a)).

We have already talked about the Seikkala solution. However, the approach Buck- 

ley and Feuring refer to is the extension principle approach. Namely, SS is a solution 

to the FIVP, such that SS =  X(t),  if the Seikkala derivative (SDX(t)) exists and 

SDX( t )  = f ( t , X( t ) , K) ,

X(0) = C,

which is equivalent to 

x\( t ,a)  =  f i ( t ,a) ,

X2{Pl 12(̂ 1 0)1 

xi(0 ,a) =  ci (a), 

x2(0, a) =  c2 (a),

where C[a\ = [ci(a), c2 (a)], and /  is as defined above. If [x\( t ,a) ,x2 (t,a)] define the 

a-cuts of a fuzzy number X(t) ,  then SS —X(t).  Recall that sufficient conditions for 

[xi( t ,a) ,x2 (t,a)] to define the a-cuts of a fuzzy number are ([21], p.44)

• x\( t ,a)  and x 2 (t,a) are continuous on I  x [0,1].

• x\ (t,a) is an increasing function of a  for each t E I.

• x 2 (t,a) is a decreasing function of a  for each t E I.

• x i(t, 1) < x 2 (t, 1) all t E I.
In fact, SS is the most general solution to the FIVP (refer to Appendix A for a 

summary of relationship between various solutions). So in solving equations, as we
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will see in the following applications, we will look first for BFS and, if does not exist, 

look for SS.

In an earlier paper, Buckley and Feuring [20] have used this approach in solving 

elementary fuzzy partial differential equations. However, the FPDEs are elementary 

in the sense that their solutions are elementary (no Bessel functions, Fourier series...).
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APPENDIX E

Table IE: This table shows the comparative option values for FBS and BS PPM for
S&P 500 Index Options as of close of 24th July 2002

Moneyness Expiration Last sigma BS sigmal sigma2 sigma3 FBS Value BS Value
ITM Aug-02 123.20 0.31353 0.26164 0.31968 0.31968 119.52079 119.69317
ITM Aug-02 100.70 0.24645 0.24164 0.24796 0.24796 94.45801 94.45941
ITM Aug-02 79.30 0.22368 0.21556 0.21556 0.24729 70.80056 70.79295
ITM Aug-02 59.80 0.29346 0.25988 0.30454 0.30454 55.40911 55.40513
ITM Aug-02 52.60 0.32668 0.27392 0.34427 0.34427 51.58117 51.56812
ITM Aug-02 45.80 0.31100 0.26761 0.32541 0.32541 43.91728 43.91604
ITM Aug-02 42.60 0.28352 0.25600 0.29262 0.29262 38.32030 38.32435

ATM Aug-02 39.50 0.28348 0.25294 0.29347 0.29347 35.45985 35.47315
ATM Aug-02 33.70 0.25342 0.24443 0.25631 0.25631 27.16164 27.16918
ATM Aug-02 28.50 0.30305 0.26361 0.31422 0.31422 27.30145 27.45095
ATM Aug-02 23.70 0.25884 0.24296 0.26368 0.26368 18.82390 18.85635
OTM Aug-02 19.90 0.31120 0.21200 0.32192 0.32192 18.72341 20.31454
OTM Aug-02 17.95 0.28744 0.28743 0.28743 0.28743 16.37026 16.37117
OTM Aug-02 14.55 0.32253 0.24421 0.33261 0.33261 15.51851 16.57639
OTM Aug-02 9.80 0.36471 0.22037 0.34723 0.34723 12.17049 16.23749
OTM Aug-02 8.60 0.35885 0.20927 0.32840 0.32840 9.75587 14.49281
OTM Aug-02 5.20 0.43847 0.19793 0.32443 0.32443 6.07091 16.54793
ITM Sep-02 129.40 0.26301 0.23583 0.27100 0.27100 122.62985 122.65956
ITM Sep-02 108.50 0.25326 0.24423 0.25623 0.25623 100.72160 100.72178
ITM Sep-02 88.60 0.27998 0.25528 0.28820 0.28820 84.50662 84.49812
ITM Sep-02 70.20 0.21005 0.20291 0.20291 0.23146 58.05915 58.05190
ITM Sep-02 63.40 0.21428 0.20796 0.20796 0.23320 52.08019 52.07716
ITM Sep-02 57.10 0.24752 0.24211 0.24932 0.24932 51.00409 51.00417
ITM Sep-02 54.20 0.24526 0.24115 0.24588 0.24813 47.86832 47.86849
ATM Sep-02 51.00 0.27904 0.25057 0.28836 0.28836 50.40671 50.42640
ATM Sep-02 44.90 0.24349 0.23972 0.24376 0.24671 39.82694 39.82788
ATM Sep-02 39.90 0.24390 0.24002 0.24427 0.24701 35.22603 35.22759
ATM Sep-02 35.00 0.27511 0.22114 0.28928 0.28928 35.42438 35.87123
OTM Sep-02 28.40 0.24479 0.24052 0.24551 0.24752 25.43166 25.43497
OTM Sep-02 26.50 0.25475 0.24098 0.25901 0.25901 25.19724 25.23247
OTM Sep-02 24.70 0.30043 0.19589 0.30874 0.30874 27.51484 30.47870
OTM Sep-02 18.70 0.27369 0.25216 0.27973 0.27973 21.74188 21.85864
OTM Sep-02 15.90 0.26615 0.24927 0.27093 0.27093 18.06445 18.14648
ITM Oct-02 153.80 0.21868 0.20250 0.20250 0.26474 144.79864 144.71978
ITM Oct-02 111.90 0.24510 0.24057 0.24614 0.24757 104.72523 104.72448
ITM Oct-02 74.90 0.25965 0.24733 0.26375 0.26375 72.50419 72.50352
ITM Oct-02 58.90 0.20682 0.17964 0.17964 0.28550 48.40863 48.52965

ATM Oct-02 44.90 0.22283 0.21074 0.21074 0.25792 39.18762 39.24360
OTM Oct-02 33.20 0.23437 0.23198 0.23198 0.24147 31.38255 31.38581
OTM Oct-02 23.30 0.22233 0.20273 0.20273 0.27242 20.87824 21.20338
OTM Oct-02 16.10 0.22532 0.20846 0.20846 0.26722 15.28266 15.55496
OTM Oct-02 10.75 0.23175 0.22908 0.22908 0.23947 11.76008 11.76760
OTM Oct-02 7.15 0.24478 0.24031 0.24552 0.24732 9.71029 9.72297
OTM Oct-02 4.20 0.46472 0.19362 0.39732 0.39732 19.38530 36.92764
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Moneyness Expiration Last siqma BS siqmal siqma2 siqma3 FBS Value BS Value
ITM Dec-02 201.40 0.22225 0.20374 0.20374 0.27187 193.57236 193.50090
ITM Dec-02 158.20 0.25377 0.24396 0.25699 0.25699 153.58484 153.58566
ITM Dec-02 118.10 0.23105 0.22805 0.22805 0.24004 111.89493 111.89229
ITM Dec-02 82.40 0.22748 0.22372 0.22372 0.23876 78.79241 78.79149
ITM Dec-02 67.00 0.21707 0.20904 0.20904 0.24106 62.63373 62.64053

ATM Dec-02 53.40 0.19374 0.15175 0.15175 0.30597 44.02739 44.89017
OTM Dec-02 41.60 0.21002 0.16945 0.16945 0.31381 37.79027 38.83298
OTM Dec-02 31.40 0.21552 0.18178 0.18178 0.29949 30.79692 31.69614
OTM Dec-02 23.20 0.21002 0.15759 0.15759 0.30619 20.62927 23.48697
OTM Dec-02 16.80 0.19520 0.19520 0.19520 0.19520 15.05346 15.05346
OTM Dec-02 11.90 0.22761 0.15686 0.15686 0.31026 11.91571 16.69783
OTM Dec-02 9.05 0.21212 0.17133 0.17133 0.26427 8.79614 11.02967
OTM Dec-02 3.60 0.28900 0.15951 0.15951 0.29818 4.86140 16.34617
OTM Dec-02 1.90 0.23017 0.22319 0.22319 0.25064 4.40008 4.37563
ITM Mar-03 163.20 0.23228 0.22941 0.22941 0.24090 158.27127 158.26716
ITM Mar-03 90.50 0.21285 0.20612 0.20612 0.23304 87.75242 87.74966
ITM Mar-03 75.50 0.20176 0.17920 0.17920 0.26868 71.25739 71.31530

ATM Mar-03 62.00 0.17750 0.14944 0.14944 0.25673 51.67245 52.06559
OTM Mar-03 50.10 0.18258 0.14791 0.14791 0.27374 42.63334 43.58256
OTM Mar-03 39.90 0.18312 0.14795 0.14795 0.26871 33.86269 35.19409
OTM Mar-03 31.20 0.19234 0.19234 0.19234 0.19234 30.67144 30.67144
OTM Mar-03 23.90 0.22897 0.22187 0.22187 0.24995 34.71167 34.72171
ITM Jun-03 168.20 0.17870 0.14941 0.14941 0.26302 152.79749 152.37038
ITM Jun-03 131.20 0.17595 0.16168 0.16168 0.21880 115.51752 115.42899
ITM Jun-03 97.90 0.21280 0.20595 0.20595 0.23333 97.70943 97.70698
ITM Jun-03 83.30 0.18470 0.15814 0.15814 0.26332 75.00499 75.10531
ATM Jun-03 69.60 0.18649 0.14960 0.14960 0.29146 63.80649 64.35025
OTM Jun-03 57.80 0.20164 0.15874 0.15874 0.31900 58.85336 59.85780
OTM Jun-03 48.50 0.20339 0.15817 0.15817 0.31991 50.06410 51.62340
OTM Jun-03 39.50 0.19452 0.14867 0.14867 0.30092 38.41942 40.73859
OTM Jun-03 31.70 0.20823 0.15837 0.15837 0.31838 35.94511 38.69469
OTM Jun-03 228.80 0.22584 0.21327 0.21327 0.26120 38.34687 38.48707
OTM Jun-03 20.70 0.20105 0.14753 0.14753 0.28978 22.10089 26.39608
OTM Jun-03 14.80 0.25568 0.11277 0.11277 0.29083 12.84651 37.41728
OTM Jun-03 11.30 0.22193 0.17047 0.17047 0.30882 19.62206 23.05899
OTM Jun-03 8.45 0.19262 0.15038 0.15038 0.24947 9.92258 12.66481
OTM Jun-03 6.45 0.44827 0.28152 0.50128 0.50128 86.78869 86.89326
ITM Dec-03 180.00 0.19066 0.15587 0.15587 0.29244 163.99257 163.54600
ITM Dec-03 145.60 0.18761 0.17303 0.17303 0.23144 130.40934 130.34442
ITM Dec-03 114.80 0.22526 0.22069 0.22069 0.23897 118.99131 118.99130

ATM Dec-03 88.00 0.24537 0.24262 0.24466 0.24954 105.76084 105.76165
OTM Dec-03 65.60 0.18529 0.14749 0.14749 0.28329 58.53673 60.13548
OTM Dec-03 47.40 0.23048 0.22277 0.22277 0.25319 64.81684 64.85160
OTM Dec-03 39.90 0.23628 0.23404 0.23404 0.24297 60.61155 60.61461
OTM Dec-03 34.70 0.19510 0.19357 0.19357 0.19962 38.61550 38.61863
OTM Dec-03 26.80 0.25445 0.09982 0.09982 0.31545 21.73239 56.37200
OTM Dec-03 22.10 0.24244 0.23996 0.24138 0.24695 46.22470 46.22907
OTM Dec-03 17.60 0.19706 0.13131 0.13131 0.27519 17.57136 25.09672
OTM Dec-03 14.20 0.26350 0.24176 0.27060 0.27060 45.30200 45.31283

264



Moneyness Expiration Last sigma BS siqmal slgma2 slgma3 FBS Value BS Value
ITM Jun-04 192.90 0.25331 0.24646 0.25559 0.25559 202.37002 202.36891
ITM Jun-04 159.70 0.39889 0.09365 0.50866 0.50866 244.24368 241.74708
ITM Jun-04 129.40 0.23725 0.23540 0.23540 0.24281 143.62891 143.62874
ATM Jun-04 103.75 0.17714 0.14910 0.14910 0.25885 91.16495 91.51110
OTM Jun-04 80.40 0.21359 0.18918 0.18918 0.28530 91.14159 91.34841
OTM Jun-04 70.60 0.17777 0.14862 0.14862 0.25850 63.83310 64.59017
OTM Jun-04 61.50 0.23546 0.23282 0.23282 0.24334 86.62404 86.62813
OTM Jun-04 47.00 0.19008 0.14747 0.14747 0.28621 48.38961 51.62174
OTM Jun-04 33.80 0.19290 0.14829 0.14829 0.28259 37.22546 41.18129
OTM Jun-04 24.20 0.21369 0.15658 0.15658 0.31549 35.53719 41.47445
OTM Jun-04 16.70 0.21369 0.15658 0.15658 0.31549 28.90000 33.78092
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Table 2E: This table shows the comparative option values for FBS and BS PPM for
S&P 500 Index Options as of close of 4th October 2002

Moneyness Expiration Last siqmaBS sigmal sigma2 siqma3 FBS Value BS Value
ITM Nov-02 94.90 0.31353 0.26164 0.31968 0.31968 82.42211 82.93652
ITM Nov-02 75.70 0.24645 0.24164 0.24796 0.24796 58.38240 58.38758
ITM Nov-02 58.20 0.22368 0.21556 0.21556 0.24729 38.57830 38.59264

ATM Nov-02 42.80 0.29346 0.25988 0.30454 0.30454 31.89697 31.90591
OTM Nov-02 29.90 0.28352 0.25600 0.29262 0.29262 20.35740 20.36088
OTM Nov-02 23.40 0.25342 0.24443 0.25631 0.25631 12.60884 12.61505
OTM Nov-02 19.60 0.30305 0.26361 0.31422 0.31422 14.49264 14.61665
OTM Nov-02 16.30 0.25884 0.24296 0.26368 0.26368 8.43823 8.46026
OTM Nov-02 12.10 0.31120 0.21200 0.32192 0.32192 8.63127 9.78783
OTM Nov-02 6.75 0.36471 0.22037 0.34723 0.34723 6.48013 9.61524
OTM Nov-02 3.85 0.43847 0.19793 0.32443 0.32443 3.00049 11.18055
ITM Dec-02 87.10 0.26301 0.23583 0.27100 0.27100 67.36550 67.45358
ITM Dec-02 70.40 0.25326 0.24423 0.25623 0.25623 50.34091 50.34480

ATM Dec-02 55.50 0.27998 0.25528 0.28820 0.28820 40.98672 40.98893
OTM Dec-02 44.80 0.21428 0.20796 0.20796 0.23320 22.80353 22.80250
OTM Dec-02 42.40 0.24752 0.24211 0.24932 0.24932 25.67379 25.67384
OTM Dec-02 40.00 0.24526 0.24115 0.24588 0.24813 23.54861 23.54869
OTM Dec-02 35.50 0.27904 0.25057 0.28836 0.28836 24.87593 24.88852
OTM Dec-02 31.30 0.24349 0.23972 0.24376 0.24671 17.06853 17.06899
OTM Dec-02 27.40 0.24390 0.24002 0.24427 0.24701 14.54075 14.54154
OTM Dec-02 22.30 0.27511 0.22114 0.28928 0.28928 14.57612 14.85763
OTM Dec-02 15.30 0.30043 0.19589 0.30874 0.30874 10.90920 12.77520
ITM Mar-03 175.30 0.46472 0.19362 0.39732 0.39732 166.49400 182.76564
ITM Mar-03 136.70 0.22225 0.20374 0.20374 0.27187 110.25709 110.34840
ITM Mar-03 102.00 0.25377 0.24396 0.25699 0.25699 80.86917 80.87571

ATM Mar-03 72.10 0.23105 0.22805 0.22805 0.24004 49.32066 49.32069
OTM Mar-03 59.20 0.22748 0.22372 0.22372 0.23876 37.93444 37.93410
OTM Mar-03 47.80 0.21707 0.20904 0.20904 0.24106 27.06333 27.06135
OTM Mar-03 37.80 0.19374 0.15175 0.15175 0.30597 15.79794 15.91874
OTM Mar-03 29.40 0.21002 0.16945 0.16945 0.31381 13.43478 13.61621
OTM Mar-03 22.85 0.21552 0.18178 0.18178 0.29949 10.26862 10.42519
OTM Mar-03 16.80 0.21002 0.15759 0.15759 0.30619 6.03452 6.74743
OTM Mar-03 12.30 0.19520 0.19520 0.19520 0.19520 3.40220 3.40220
OTM Mar-03 9.50 0.22761 0.15686 0.15686 0.31026 3.38083 4.81466
OTM Mar-03 4.55 0.21212 0.17133 0.17133 0.26427 1.14572 1.46376
OTM Mar-03 2.43 0.28900 0.15951 0.15951 0.29818 0.76521 3.95455
ITM Sep-03 152.90 0.23017 0.22319 0.22319 0.25064 125.53529 125.55091

ATM Sep-03 92.50 0.23228 0.22941 0.22941 0.24090 70.48842 70.48841
OTM Sep-03 80.00 0.21285 0.20612 0.20612 0.23304 54.08103 54.08017
OTM Sep-03 68.50 0.20176 0.17920 0.17920 0.26868 41.64318 41.64935
OTM Sep-03 58.10 0.17750 0.14944 0.14944 0.25673 26.97159 27.08586
OTM Sep-03 48.90 0.18258 0.14791 0.14791 0.27374 22.03929 22.39438
OTM Sep-03 40.70 0.18312 0.14795 0.14795 0.26871 17.00776 17.55244
OTM Sep-03 33.60 0.19234 0.19234 0.19234 0.19234 15.51551 15.51551
ITM Dec-03 159.90 0.22865 0.22137 0.22137 0.25012 131.08524 131.09774
ITM Dec-03 128.70 0.17841 0.14944 0.14944 0.26184 85.51420 85.69536
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Moneyness Expiration Last sigmaBS sigmal sigma2 sigma3 FBS Value BS Value
ATM Dec-03 101.10 0.17573 0.16144 0.16144 0.21865 59.26932 59.26886
OTM Dec-03 88.70 0.21260 0.20572 0.20572 0.23327 61.47959 61.47853
OTM Dec-03 77.30 0.18452 0.15811 0.15811 0.26271 42.85646 42.86574
OTM Dec-03 66.80 0.18633 0.14956 0.14956 0.29096 35.59806 35.74857
OTM Dec-03 57.40 0.20150 0.15857 0.15857 0.31893 33.52371 33.87934
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Table 3E: This table shows the comparative option values for the Call option bounds of
FBS and UV PPM for S&P 500 Index Options corresponding to July training set

Money Expiry Last UV 1 UV2 FBS1_0 FBS2 0 FBS1 0.5 FBS2 0.5 FBS1 1 FBS2 1
ITM Auq-02 91 89.45 90.67 89.32 91.60 90.37 91.60 91.60 91.60
ITM Aug-02 66.5 67.19 67.47 66.25 66.58 66.42 66.58 66.58 66.58
ITM Aug-02 45 43.63 45.57 44.41 46.80 44.41 45.59 44.41 44.41
ATM Aug-02 35 29.14 32.66 31.82 36.06 33.94 36.06 36.06 36.06
ATM Aug-02 33 23.29 28.72 27.88 34.71 31.29 34.71 34.71 34.71
ATM Aug-02 26.8 18.73 23.37 22.59 28.21 25.39 28.21 28.21 28.21
ATM Aug-02 22 16.89 20.03 19.35 22.88 21.12 22.88 22.88 22.88
OTM Aug-02 20 14.47 17.75 17.11 20.96 19.03 20.96 20.96 20.96
OTM Aug-02 13.7 12.44 13.44 12.90 13.96 13.43 13.96 13.96 13.96
OTM Aug-02 15 8.51 12.18 11.66 16.06 13.83 16.06 16.06 16.06
OTM Aug-02 8.8 6.55 7.98 7.63 9.20 8.40 9.20 9.20 9.20
OTM Aug-02 9.5 0.85 4.11 3.88 11.49 7.39 11.49 11.49 11.49
OTM Aug-02 7.9 8.26 8.26 7.90 7.90 7.90 7.90 7.90 7.90
OTM Aug-02 7.8 1.18 3.97 3.76 9.24 6.29 9.24 9.24 9.24
OTM Aug-02 6 0.10 1.60 1.50 7.73 4.10 7.73 7.73 7.73
OTM Aug-02 4.5 0.04 1.01 0.96 5.90 2.94 5.90 5.90 5.90
OTM Aug-02 2.6 0.00 0.29 0.27 3.62 1.40 3.62 3.62 3.62
ITM Sep-02 85 90.33 90.33 86.79 86.79 86.79 86.79 86.79 86.79
ITM Sep-02 77 73.45 76.77 73.92 78.04 75.95 78.04 78.04 78.04
ITM Sep-02 59 58.76 60.29 57.76 59.41 58.59 59.41 59.41 59.41
ATM Sep-02 48.6 42.64 47.05 44.90 49.83 47.37 49.83 49.83 49.83
ATM Sep-02 33 30.13 33.94 31.92 36.25 31.92 34.08 31.92 31.92
ATM Sep-02 29 26.42 29.87 28.04 31.88 28.04 29.96 28.04 28.04
ATM Sep-02 31.9 31.84 32.91 31.08 32.17 31.63 32.17 32.17 32.17
OTM Sep-02 29.5 29.53 30.58 28.88 29.93 29.24 29.76 29.59 29.59
OTM Sep-02 30.7 23.15 28.02 26.47 32.11 29.29 32.11 32.11 32.11
OTM Sep-02 22 21.76 22.78 21.46 22.46 21.75 22.25 22.04 22.04
OTM Sep-02 19 18.81 19.77 18.47 19.43 18.76 19.24 19.05 19.05
OTM Sep-02 18.8 7.02 13.14 12.20 21.05 16.51 21.05 21.05 21.05
OTM Sep-02 14 13.62 14.50 13.47 14.34 13.78 14.22 14.09 14.09
OTM Sep-02 14.1 11.29 13.41 12.46 14.65 13.54 14.65 14.65 14.65
OTM Sep-02 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
OTM Sep-02 14.31 0.96 5.84 5.27 17.54 10.88 17.54 17.54 17.54
OTM Sep-02 11.4 7.31 9.93 9.21 12.14 10.64 12.14 12.14 12.14
ITM Oct-02 121.2 122.19 124.08 119.52 121.77 120.62 121.77 121.77 121.77
ITM Oct-02 77 72.79 78.74 74.73 83.95 74.73 79.23 74.73 74.73
ATM Oct-02 51 52.06 53.30 50.18 51.45 50.68 51.32 51.19 51.19
ATM Oct-02 42 39.60 42.46 39.73 42.76 41.24 42.76 42.76 42.76
OTM Oct-02 22.9 8.85 20.21 18.26 37.00 18.26 27.50 18.26 18.26
OTM Oct-02 18.4 11.94 18.16 16.49 24.20 16.49 20.29 16.49 16.49
OTM Oct-02 14.5 14.04 15.47 14.16 15.53 14.16 14.84 14.16 14.16
OTM Oct-02 8.6 2.50 7.36 6.55 15.14 6.55 10.55 6.55 6.55
OTM Oct-02 6 1.77 5.17 4.59 10.57 4.59 7.33 4.59 4.59
OTM Oct-02 4.5 3.99 4.71 4.30 5.12 4.30 4.70 4.30 4.30
OTM Oct-02 3.5 3.11 3.50 3.22 3.67 3.39 3.61 3.55 3.55
OTM Oct-02 0 2.15 2.53 2.30 2.66 2.43 2.61 2.56 2.56
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Money Expiry Last UV 1 UV2 FBS1_0 FBS2 FBS1 0.5 FBS2_0.5 FBS1 1 FBS2.1
OTM Oct-02 0 1.36 1.65 1.50 1.77 1.60 1.73 1.69 1.69
OTM Oct-02 0 0.85 1.05 0.97 1.16 1.03 1.13 1.10 1.10
OTM Oct-02 0 0.52 0.66 0.61 0.75 0.66 0.73 0.71 0.71
ITM Dec-02 296 317.29 317.29 308.33 308.33 308.33 308.33 308.33 308.33
UM Dec-02 205 218.21 218.21 209.24 209.24 209.24 209.24 209.24 209.24
ITM Dec-02 181 168.68 171.17 162.63 188.17 173.07 188.17 188.17 188.17
UM Dec-02 123 122.44 128.10 120.40 131.17 120.40 125.52 120.40 120.40
ITM Dec-02 94 95.89 98.46 91.93 94.69 93.31 94.69 94.69 94.69
ATM Dec-02 61 62.90 65.63 60.29 63.14 60.29 61.71 60.29 60.29
ATM Dec-02 48.7 49.02 52.45 47.79 51.42 47.79 49.61 47.79 47.79
OTM Dec-02 36.5 31.87 38.44 34.61 42.19 34.61 38.39 34.61 34.61
OTM Dec-02 22.9 2.95 17.21 14.47 49.02 14.47 31.13 14.47 14.47
OTM Dec-02 20 2.33 14.67 12.62 43.21 12.62 27.12 12.62 12.62
OTM Dec-02 16 2.35 12.17 10.53 33.43 10.53 21.22 10.53 10.53
OTM Dec-02 10 0.15 5.47 4.38 29.22 4.38 15.05 4.38 4.38
OTM Dec-02 6.5 7.60 7.60 6.50 6.50 6.50 6.50 6.50 6.50
OTM Dec-02 6 0.01 2.33 1.78 21.75 1.78 9.45 1.78 1.78
OTM Dec-02 2.5 0.03 1.24 0.99 8.29 0.99 3.69 0.99 0.99
OTM Dec-02 1.65 0.00 0.27 0.20 8.41 0.20 2.48 0.20 0.20
ITM Mar-03 133 137.95 142.97 131.45 137.70 131.45 134.54 131.45 131.45
ATM Mar-03 75 79.40 82.71 74.14 77.58 74.14 75.86 74.14 74.14
ATM Mar-03 58 56.04 63.37 55.96 64.13 55.96 60.04 55.96 55.96
OTM Mar-03 44.9 26.13 44.71 38.18 65.14 38.18 51.60 38.18 38.18
OTM Mar-03 29.5 9.68 26.89 21.87 52.83 21.87 37.02 21.87 21.87
OTM Mar-03 24 4.08 19.43 15.62 50.14 15.62 32.14 15.62 15.62
OTM Mar-03 18.5 2.09 14.35 11.19 41.85 11.19 25.47 11.19 11.19
OTM Mar-03 16.8 19.97 19.97 16.80 16.80 16.80 16.80 16.80 16.80
ITM Jun-03 140 146.85 153.37 137.99 146.08 137.99 142.00 137.99 137.99
ITM Jun-03 93.5 82.66 98.83 84.59 120.56 84.59 102.33 84.59 84.59
ATM Jun-03 66 57.82 72.63 60.99 81.01 60.99 71.01 60.99 60.99
ATM Jun-03 68 67.35 76.08 65.56 75.31 65.56 70.44 65.56 65.56
OTM Jun-03 48.4 25.42 48.33 39.22 76.03 39.22 57.55 39.22 39.22
OTM Jun-03 40.5 11.44 35.48 28.43 77.24 28.43 52.44 28.43 28.43
OTM Jun-03 38.1 7.09 31.27 24.79 79.03 24.79 51.17 24.79 24.79
ITM Jun-03 140 147.01 153.41 138.03 145.94 138.03 141.95 138.03 138.03
ITM Jun-03 93.5 82.45 98.74 84.49 120.86 84.49 102.43 84.49 84.49
ATM Jun-03 66 57.81 72.63 61.00 80.99 61.00 71.00 61.00 61.00
ATM Jun-03 68 67.40 76.09 65.58 75.27 65.58 70.42 65.58 65.58
OTM Jun-03 48.4 25.29 48.27 39.17 76.19 39.17 57.60 39.17 39.17
OTM Jun-03 40.5 11.36 35.43 28.39 77.35 28.39 52.48 28.39 28.39
OTM Jun-03 38.1 7.10 31.28 24.81 79.00 24.81 51.16 24.81 24.81
OTM Jun-03 32 3.79 24.75 19.24 71.90 19.24 44.38 19.24 19.24
OTM Jun-03 23.5 1.47 16.63 12.56 58.67 12.56 33.89 12.56 12.56
OTM Jun-03 22.5 0.95 15.31 11.47 58.42 11.47 32.86 11.47 11.47
OTM Jun-03 25.5 16.12 27.08 22.14 35.85 22.14 28.79 22.14 22.14
OTM Jun-03 12.5 0.14 7.07 4.95 38.85 4.95 19.15 4.95 4.95
OTM Jun-03 7.5 0.00 1.32 0.79 34.85 0.79 12.41 0.79 0.79
OTM Jun-03 12 0.22 6.86 5.16 36.02 5.16 17.98 5.16 5.16
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Money Expiry Last UV 1 UV2 FBS1_0 FBS2_0 FBS1 0.5 FBS2 0.5 FBS1 1 FBS2 1
OTM Jun-03 5.3 0.07 3.03 2.05 17.48 2.05 7.94 2.05 2.05
ITM Dec-03 236 155.47 196.85 174.39 256.55 215.45 256.55 256.55 256.55
ITM Dec-03 112 96.07 120.19 98.44 152.94 98.44 125.51 98.44 98.44
ATM Dec-03 86 79.44 97.95 79.76 104.70 79.76 92.25 79.76 79.76
ATM Dec-03 0 112.53 115.53 97.95 100.97 99.03 100.54 100.11 100.11
OTM Dec-03 82 88.52 96.08 80.01 87.96 80.01 83.99 80.01 80.01
OTM Dec-03 0 92.10 95.18 79.67 82.70 80.75 82.27 81.84 81.84
OTM Dec-03 74 84.03 87.02 72.81 75.80 73.25 74.75 73.70 73.70
OTM Dec-03 0 74.87 77.94 64.42 67.39 65.48 66.97 66.54 66.54
OTM Dec-03 35 5.97 30.59 21.87 76.03 21.87 47.74 21.87 21.87
OTM Dec-03 48 44.58 55.88 44.96 57.20 44.96 51.02 44.96 44.96
OTM Dec-03 46 52.02 55.76 45.13 48.63 45.13 46.87 45.13 45.13
OTM Dec-03 25.5 30.34 32.68 25.00 27.02 25.00 26.00 25.00 25.00
OTM Dec-03 15 0.00 3.33 1.51 66.30 1.51 25.93 1.51 1.51
OTM Dec-03 34 38.48 41.24 33.15 35.58 33.39 34.61 33.64 33.64
OTM Dec-03 11.5 0.03 5.46 3.27 41.79 3.27 18.35 3.27 3.27
OTM Dec-03 8.5 0.30 5.80 3.85 25.20 3.85 12.45 3.85 3.85
OTM Dec-03 5 0.00 0.73 0.33 26.42 0.33 7.76 0.33 0.33
ITM Jun-04 217 235.27 246.65 211.90 232.73 211.90 221.99 211.90 211.90
ITM Jun-04 0 247.41 249.51 215.88 218.30 216.74 217.95 217.61 217.61
ITM Jun-04 105 198.37 198.37 157.60 157.60 157.60 157.6Q 157.60 157.60
ITM Jun-04 184 194.93 205.51 174.88 187.05 180.95 187.05 187.05 187.05
ITM Jun-04 217 153.11 192.04 162.32 235.22 198.79 235.22 235.22 235.22
ITM Jun-04 0 184.51 187.41 158.30 161.41 159.41 160.97 160.52 160.52
ITM Jun-04 154.5 175.36 179.44 151.36 155.55 153.45 155.55 155.55 155.55
ATM Jun-04 203.5 56.71 81.58 54.56 252.31 155.34 252.31 252.31 252.31
OTM Jun-04 105 123.50 127.18 104.08 107.76 104.08 105.92 104.08 104.08
OTM Jun-04 58.3 29.33 62.70 44.85 98.98 44.85 71.67 44.85 44.85
OTM Jun-04 69 42.01 74.75 57.20 104.64 57.20 80.75 57.20 57.20
OTM Jun-04 45 16.36 46.41 32.21 84.32 32.21 57.57 32.21 32.21
OTM Jun-04 62 71.80 76.81 60.75 65.75 60.75 63.24 60.75 60.75
OTM Jun-04 29.5 2.52 24.29 15.72 74.17 15.72 42.48 15.72 15.72
OTM Jun-04 23 1.16 17.12 11.09 62.82 11.09 33.91 11.09 11.09
OTM Jun-04 23 0.44 14.62 9.48 69.20 9.48 35.15 9.48 9.48
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Table 4E: This table shows the comparative option values for the Call option bounds of
FBS and UV PPM for S&P500 Options corresponding to July forecasting set

Money Expiry Last UV 1 UV2 FBS1 0 FBS2_0 FBS1 0.5 FBS2_0.5 FBS1 1 FBS2 1
ITM Auq-02 123.2 119.62 120.07 118.63 119.86 119.15 119.86 119.86 119.86
ITM Auq-02 100.7 95.57 95.73 94.33 94.50 94.41 94.50 94.50 94.50
ITM Auq-02 79.3 70.81 71.80 70.44 71.92 70.44 71.14 70.44 70.44
ITM Auq-02 59.8 51.03 53.87 52.70 56.32 54.48 56.32 56.32 56.32
ITM Auq-02 52.6 43.20 47.93 46.84 53.18 49.97 53.18 53.18 53.18
ITM Auq-02 45.8 36.38 40.87 39.81 45.29 42.54 45.29 45.29 45.29
ITM Auq-02 42.6 33.65 36.71 35.67 39.20 37.43 39.20 39.20 39.20
ATM Auq-02 39.5 30.03 33.37 32.47 36.46 34.46 36.46 36.46 36.46
ATM Auq-02 33.7 26.02 27.17 26.26 27.46 26.86 27.46 27.46 27.46
ATM Auq-02 28.5 19.98 24.29 23.47 28.58 26.02 28.58 28.58 28.58
ATM Auq-02 23.7 16.10 17.97 17.29 19.34 18.31 19.34 19.34 19.34
OTM Auq-02 19.9 5.15 11.49 10.94 21.36 16.06 21.36 21.36 21.36
OTM Auq-02 17.95 16.84 16.84 16.37 16.37 16.37 16.37 16.37 16.37
OTM Auq-02 14.55 5.03 10.18 9.70 17.50 13.51 17.50 17.50 17.50
OTM Auq-02 9.8 1.05 5.24 4.96 14.72 9.51 14.72 14.72 14.72
OTM Auq-02 8.6 0.58 3.80 3.59 11.97 7.42 11.97 11.97 11.97
OTM Auq-02 5.2 0.06 1.42 1.36 7.89 4.06 7.89 7.89 7.89
ITM Sep-02 129.4 122.80 124.29 120.91 123.23 122.01 123.23 123.23 123.23
ITM Sep-02 108.5 102.11 103.09 99.90 101.00 100.44 101.00 1 0 1  . o q 101.00
ITM Sep-02 88.6 81.04 84.45 81.50 85.52 83.49 85.52 85.52 85.52
ITM Sep-02 70.2 56.65 59.81 57.10 60.96 57.10 59.01 57.10 57.10
ITM Sep-02 63.4 50.65 53.73 51.18 54.81 51.18 52.98 51.18 51.18
ITM Sep-02 57.1 51.57 52.62 50.19 51.28 50.73 51.28 51.28 51.28
ITM Sep-02 54.2 48.53 49.55 47.24 48.31 47.60 48.14 47.96 47.96
ATM Sep-02 51 43.08 48.23 46.00 51.88 48.94 51.88 51.88 51.88
ATM Sep-02 44.9 40.29 41.37 39.23 40.33 39.55 40.10 39.87 39.87
ATM Sep-02 39.9 35.46 36.54 34.61 35.72 34.95 35.50 35.29 35.29
ATM Sep-02 35 20.88 29.18 27.40 38.10 32.74 38.10 38.10 38.10
OTM Sep-02 28.4 25.34 26.40 24.79 25.85 25.16 25.70 25.55 25.55
OTM Sep-02 26.5 22.05 24.66 23.16 25.88 24.52 25.88 25.88 25.88
OTM Sep-02 24.7 6.59 16.31 15.04 31.75 23.23 31.75 31.75 31.75
OTM Sep-02 18.7 16.51 20.10 18.81 22.73 20.75 22.73 22.73 22.73
OTM Sep-02 15.9 14.33 16.92 15.88 18.80 17.33 18.80 18.80 18.80
ITM Oct-02 153.8 147.54 148.96 143.85 147.98 143.85 145.66 143.85 143.85
ITM Oct-02 111.9 107.78 108.65 104.15 105.04 104.50 104.95 104.86 104.86
ITM Oct-02 74.9 71.48 74.05 70.35 73.22 71.78 73.22 73.22 73.22
ITM Oct-02 58.9 34.91 46.68 43.48 63.24 43.48 53.33 43.48 43.48
ATM Oct-02 44.9 32.25 39.66 36.93 45.97 36.93 41.45 36.93 36.93
OTM Oct-02 33.2 31.63 33.35 30.94 32.72 30.94 31.83 30.94 30.94
OTM Oct-02 23.3 10.95 19.51 17.86 30.07 17.86 23.86 17.86 17.86
OTM Oct-02 16.1 7.67 14.29 13.01 22.29 13.01 17.51 13.01 13.01
OTM Oct-02 10.75 11.18 12.59 11.41 12.82 11.41 12.11 11.41 11.41
OTM Oct-02 7.15 9.30 10.13 9.19 10.03 9.50 9.92 9.81 9.81
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Money Expiry Last UV 1 UV2 FBS1 0 FBS2_0 FBS1_0.5 FBS2 0.5 FBS1 1 FBS2 1
OTM Oct-02 4.2 0.01 2.72 2.42 26.10 11.90 26.10 26.10 26.10
ITM Dec-02 201.4 199.86 201.34 192.40 197.60 192.40 194.61 192.40 192.40
ITM Dec-02 158.2 158.73 160.35 152.22 154.05 153.12 154.03 154.05 154.05
ITM Dec-02 118.1 116.58 118.67 111.33 113.60 111.33 112.46 111.33 111.33
ITM Dec-02 82.4 80.87 84.13 77.92 81.42 77.92 79.67 77.92 77.92
ITM Dec-02 67 59.51 66.20 60.67 68.52 60.67 64.59 60.67 60.67
ATM Dec-02 53.4 19.66 38.73 34.38 72.95 34.38 53.68 34.38 34.38
OTM Dec-02 41.6 13.61 32.95 28.88 64.68 28.88 46.67 28.88 28.88
OTM Dec-02 31.4 10.87 27.22 23.81 52.06 23.81 37.70 23.81 23.81
OTM Dec-02 23.2 2.17 14.63 12.63 45.75 12.63 28.36 12.63 12.63
OTM Dec-02 16.8 16.98 16.98 15.05 15.05 15.05 15.05 15.05 15.05
OTM Dec-02 11.9 0.23 6.60 5.45 33.65 5.45 17.82 5.45 5.45
OTM Dec-02 9.05 0.93 6.49 5.38 20.16 5.38 11.93 5.38 5.38
OTM Dec-02 3.6 0.01 1.80 1.45 17.89 1.45 7.58 1.45 1.45
OTM Dec-02 1.9 2.49 4.41 3.79 6.33 3.79 4.98 3.79 3.79
ITM Mar-03 163.2 168.09 170.20 157.69 160.03 157.69 158.85 157.69 157.69
ITM Mar-03 90.5 88.68 95.71 85.76 93.75 85.76 89.75 85.76 85.76
ITM Mar-03 75.5 55.23 73.32 64.35 91.99 64.35 78.17 64.35 64.35
ATM Mar-03 62 31.23 50.99 43.22 77.00 43.22 60.13 43.22 43.22
OTM Mar-03 50.1 17.81 39.60 32.81 72.22 32.81 52.42 32.81 32.81
OTM Mar-03 39.9 10.56 29.91 24.77 61.56 24.77 42.86 24.77 24.77
OTM Mar-03 31.2 35.90 35.90 30.67 30.67 30.67 30.67 30.67 30.67
OTM Mar-03 23.9 30.54 37.91 32.70 40.78 32.70 36.71 32.70 32.70
ITM Jun-03 168.2 158.60 164.70 146.44 173.51 146.44 158.75 146.44 146.44
ITM Jun-03 131.2 117.41 127.30 111.32 128.34 111.32 119.65 111.32 111.32
ITM Jun-03 97.9 100.54 108.88 95.32 104.87 95.32 100.09 95.32 95.32
ITM Jun-03 83.3 55.90 77.88 65.53 103.41 65.53 84.49 65.53 65.53
ATM Jun-03 69.6 34.89 61.73 50.80 102.75 50.80 76.83 50.80 50.80
OTM Jun-03 57.8 24.01 53.80 44.17 102.95 44.17 73.53 44.17 44.17
OTM Jun-03 48.5 15.04 44.00 35.47 94.21 35.47 64.57 35.47 35.47
OTM Jun-03 39.5 7.77 31.92 25.23 78.91 25.23 51.40 25.23 25.23
OTM Jun-03 31.7 5.11 28.84 22.51 77.60 22.51 49.06 22.51 22.51
OTM Jun-03 228.8 27.85 41.24 34.37 50.44 34.37 42.28 34.37 34.37
OTM Jun-03 20.7 1.38 15.98 11.83 55.34 11.83 31.80 11.83 11.83
OTM Jun-03 14.8 0.00 4.42 2.86 48.84 2.86 21.40 2.86 2.86
OTM Jun-03 11.3 1.18 13.63 10.55 49.56 10.55 28.04 10.55 10.55
OTM Jun-03 8.45 0.48 7.03 5.01 26.90 5.01 14.28 5.01 5.01
OTM Jun-03 6.45 6.45 37.69 32.21 105.81 67.17 105.81 105.81 105.81
ITM Dec-03 180 167.24 179.27 152.85 199.06 152.85 174.74 152.85 152.85
ITM Dec-03 145.6 133.83 148.48 124.77 147.50 124.77 136.01 124.77 124.77
ITM Dec-03 114.8 130.46 137.66 117.03 124.89 117.03 120.96 117.03 117.03
ATM Dec-03 88 119.95 123.02 104.53 107.62 104.99 106.53 105.44 105.44
OTM Dec-03 65.6 24.41 57.57 43.39 104.24 43.39 73.63 43.39 43.39
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Money Expiry Last UV 1 UV2 FBS1_0 FBS2 0 FBS1_0.5
LT>
d

I
C\J
C/)
COL

L FBS1 1 FBS2 1
OTM Dec-03 47.4 62.87 75.25 61.47 74.89 61.47 68.16 61.47 61.47
OTM Dec-03 39.9 68.57 72.63 59.65 63.51 59.65 61.58 59.65 59.65
OTM Dec-03 34.7 46.23 48.84 38.01 40.44 38.01 39.22 38.01 38.01
OTM Dec-03 26.8 0.00 7.15 4.20 82.60 4.20 37.41 4.20 4.20
OTM Dec-03 22.1 52.60 55.53 45.24 48.04 45.53 46.92 45.81 45.81
OTM Dec-03 17.6 0.24 10.31 6.80 54.55 6.80 27.21 6.80 6.80
OTM Dec-03 14.2 35.78 46.20 37.09 48.08 42.50 48.08 48.08 48.08
ITM Jun-04 192.9 229.10 232.46 199.56 203.31 201.43 203.31 203.31 203.31
ITM Jun-04 159.7 136.72 143.69 107.49 290.91 197.21 290.91 290.91 290.91
ITM Jun-04 129.4 167.64 171.15 142.73 146.34 142.73 144.53 142.73 142.73
ATM Jun-04 103.75 69.90 102.29 77.12 133.17 77.12 105.25 77.12 77.12
OTM Jun-04 80.4 66.04 100.39 78.71 128.40 78.71 103.59 78.71 78.71
OTM Jun-04 70.6 34.62 69.16 49.76 106.27 49.76 77.85 49.76 49.76
OTM Jun-04 61.5 100.51 106.06 85.27 90.69 85.27 87.98 85.27 85.27
OTM Jun-04 47 11.96 45.73 31.63 100.10 31.63 64.82 31.63 31.63
OTM Jun-04 33.8 5.74 32.79 22.26 84.56 22.26 51.62 22.26 22.26
OTM Jun-04 24.2 2.60 27.66 18.62 90.09 18.62 51.55 18.62 18.62
OTM Jun-04 16.7 1.11 20.80 13.46 80.15 13.46 43.16 13.46 13.46
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Table 5E: This table shows the comparative option values for the Call option bounds of
FBS and UV PPM for S&P500 Options corresponding to October forecasting set

Money Expiry Last UV 1 UV2 FBS1_0 FBS2J3 FBS1_0.5 FBS2 0.5 FBS1 1 FBS2 1
ITM Nov-02 94.9 79.12 81.31 79.76 83.35 81.46 83.35 83.35 83.35
ITM Nov-02 75.7 59.05 59.50 58.02 58.50 58.26 58.50 58.50 58.50
ITM Nov-02 58.2 36.52 39.10 37.81 40.90 37.81 39.35 37.81 37.81
ATM Nov-02 42.8 25.15 29.27 28.28 33.10 30.69 33.10 33.10 33.10
OTM Nov-02 29.9 14.94 18.30 17.50 21.31 19.40 21.31 21.31 21.31
OTM Nov-02 23.4 11.23 12.32 11.77 12.89 12.33 12.89 12.89 12.89
OTM Nov-02 19.6 7.86 11.45 11.01 15.67 13.30 15.67 15.67 15.67
OTM Nov-02 16.3 6.17 7.61 7.22 8.85 8.02 8.85 8.85 8.85
OTM Nov-02 12.1 0.52 3.34 3.11 10.64 6.49 10.64 10.64 10.64
OTM Nov-02 6.75 0.10 1.71 1.58 8.37 4.40 8.37 8.37 8.37
OTM Nov-02 3.85 0.00 0.34 0.32 4.16 1.63 4.16 4.16 4.16
ITM Dec-02 87.1 63.30 66.62 64.19 68.43 66.29 68.43 68.43 68.43
ITM Dec-02 70.4 49.74 51.32 49.10 50.76 49.93 50.76 50.76 50.76
ATM Dec-02 55.5 34.97 39.22 37.39 42.19 39.79 42.19 42.19 42.19
OTM Dec-02 44.8 20.10 23.29 21.90 25.52 21.90 23.71 21.90 21.90
OTM Dec-02 42.4 25.39 26.40 24.90 25.93 25.42 25.93 25.93 25.93
OTM Dec-02 40 23.45 24.42 22.97 23.95 23.30 23.79 23.64 23.64
OTM Dec-02 35.5 17.66 22.22 20.96 26.19 23.56 26.19 26.19 26.19
OTM Dec-02 31.3 16.80 17.72 16.58 17.49 16.84 17.30 17.10 17.10
OTM Dec-02 27.4 14.23 15.06 14.07 14.92 14.33 14.76 14.59 14.59
OTM Dec-02 22.3 4.50 9.58 8.82 16.56 12.54 16.56 16.56 16.56
OTM Dec-02 15.3 0.41 3.80 3.42 13.68 7.94 13.68 13.68 13.68
ITM Mar-03 175.3 155.56 157.59 150.67 172.73 159.54 172.73 172.73 172.73
ITM Mar-03 136.7 108.96 114.07 107.92 117.58 107.92 112.51 107.92 107.92
ITM Mar-03 102 81.77 84.07 78.98 81.50 80.24 81.50 81.50 81.50
ATM Mar-03 72.1 50.28 52.72 48.68 51.25 48.68 49.96 48.68 48.68
OTM Mar-03 59.2 37.50 40.58 37.13 40.34 37.13 38.73 37.13 37.13
OTM Mar-03 47.8 22.36 28.21 25.44 31.96 25.44 28.68 25.44 25.44
OTM Mar-03 37.8 1.03 10.40 8.95 37.56 8.95 22.36 8.95 8.95
OTM Mar-03 29.4 0.82 8.85 7.60 32.33 7.60 18.94 7.60 7.60
OTM Mar-03 22.85 0.83 7.16 6.11 23.96 6.11 14.13 6.11 6.11
OTM Mar-03 16.8 0.02 2.58 2.08 20.39 2.08 9.38 2.08 2.08
OTM Mar-03 12.3 3.84 3.84 3.40 3.40 3.40 3.40 3.40 3.40
OTM Mar-03 9.5 0.00 0.91 0.69 14.33 0.69 5.35 0.69 0.69
OTM Mar-03 4.55 0.00 0.40 0.34 4.54 0.34 1.71 0.34 0.34
OTM Mar-03 2.425 0.00 0.07 0.05 4.59 0.05 1.05 0.05 0.05
ITM Sep-03 152.9 130.07 135.55 123.88 130.54 123.88 127.18 123.88 123.88
ATM Sep-03 92.5 74.83 78.20 69.61 73.12 69.61 71.37 69.61 69.61
OTM Sep-03 80 52.16 59.61 52.02 60.27 52.02 56.14 52.02 52.02
OTM Sep-03 68.5 23.07 40.99 34.93 61.92 34.93 48.33 34.93 34.93
OTM Sep-03 58.1 7.78 24.29 19.46 50.09 19.46 34.34 19.46 19.46
OTM Sep-03 48.9 3.08 17.24 13.85 47.82 13.85 29.94 13.85 13.85
OTM Sep-03 40.7 1.55 12.85 9.91 39.92 9.91 23.72 9.91 9.91
OTM Sep-03 33.6 18.85 18.85 15.52 15.52 15.52 15.52 15.52 15.52
ITM Dec-03 159.9 136.93 143.29 129.08 137.13 129.08 133.08 129.08 129.08
ITM Dec-03 128.7 72.79 89.97 76.67 112.29 76.67 94.31 76.67 76.67
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Money Expiry Last UV 1 UV2 FBS1..0 FBS2 0 FBS1_0.5 FBS2_0.5 FBS1 1 FBS2 1
ATM Dec-03 101.1 50.46 65.03 54.39 73.91 54.39 64.16 54.39 54.39
OTM Dec-03 88.7 60.27 68.78 59.12 68.56 59.12 63.84 59.12 59.12
OTM Dec-03 77.3 20.39 41.97 34.08 69.39 34.08 51.59 34.08 34.08
OTM Dec-03 66.8 8.30 30.43 24.16 70.64 24.16 46.86 24.16 24.16
OTM Dec-03 57.4 4.71 26.76 20.98 72.43 20.98 45.77 20.98 20.98
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Table 6E: This table shows the comparative option values for the Call option bounds of
FBS and UV PPM for S&P500 Options using volatility subjective bounds

Money Expiry Last UV 1 UV2 FBS1_0 FBS2_0 FBS1_0.5 FBS2_0.5 FBS1„1 FBS2_1
ITM Auq-02 123.20 119.48 119.82 118.34 124.45 119.11 122.21 120.41 120.41
ITM Auq-02 100.70 94.53 95.83 94.42 104.20 96.10 101.10 98.37 98.37
ITM Auq-02 79.30 69.74 73.04 71.66 85.18 74.44 81.33 77.71 77.71
ITM Auq-02 59.80 45.44 51.28 50.05 66.84 53.89 62.38 58.04 58.04
ITM Auq-02 52.60 37.26 45.59 44.46 62.72 48.84 58.02 53.38 53.38
ITM Auq-02 45.80 28.43 37.47 36.46 55.53 41.12 50.69 45.87 45.87
ITM Auq-02 42.60 23.48 32.50 31.72 51.11 36.49 46.21 41.33 41.33
ATM Auq-02 39.50 21.09 31.19 30.26 50.02 35.17 45.06 40.11 40.11
ATM Auq-02 33.70 14.56 25.14 24.33 44.46 29.36 39.43 34.40 34.40
ATM Auq-02 28.50 8.78 19.15 18.43 38.62 23.47 33.57 28.52 28.52
ATM Auq-02 23.70 5.58 15.44 14.86 34.77 19.77 29.75 24.74 24.74
OTM Auq-02 19.90 3.05 11.80 11.28 30.59 15.94 25.64 20.75 20.75
OTM Auq-02 17.95 1.63 9.23 8.73 27.49 13.17 22.62 17.83 17.83
OTM Auq-02 14.55 0.95 7.31 7.08 24.94 11.18 20.20 15.59 15.59
OTM Auq-02 9.80 0.39 5.14 4.85 21.07 8.36 16.60 12.32 12.32
OTM Auq-02 8.60 0.12 3.37 3.22 18.25 6.27 13.95 9.92 9.92
OTM Auq-02 5.20 0.03 1.98 1.93 14.60 4.24 10.73 7.23 7.23
ITM Sep-02 129.40 121.14 124.16 120.80 138.78 124.21 133.41 128.49 128.49
ITM Sep-02 108.50 96.41 101.56 98.29 120.05 102.85 113.92 108.14 108.14
ITM Sep-02 88.60 72.12 80.17 77.07 102.49 82.82 95.68 89.09 89.09
ITM Sep-02 70.20 48.93 60.46 57.68 86.27 64.54 78.91 71.65 71.65
ITM Sep-02 63.40 41.07 54.30 51.81 81.49 59.07 73.96 66.47 66.47
ITM Sep-02 57.10 32.25 46.03 43.90 74.35 51.43 66.68 59.03 59.03
ITM Sep-02 54.20 28.68 43.14 40.87 71.67 48.52 63.94 56.22 56.22
ATM Sep-02 51.00 25.17 40.37 38.07 69.16 45.82 61.37 53.59 53.59
ATM Sep-02 44.90 18.90 34.35 32.39 63.87 40.27 56.01 48.14 48.14
ATM Sep-02 39.90 13.55 29.01 27.39 58.99 35.29 51.10 43.19 43.19
ATM Sep-02 35.00 8.11 23.16 21.45 52.90 29.26 45.00 37.11 37.11
OTM Sep-02 28.40 4.51 17.78 16.82 47.59 24.31 39.76 31.98 31.98
OTM Sep-02 26.50 3.64 16.31 15.18 45.60 22.52 37.81 30.10 30.10
OTM Sep-02 24.70 2.84 15.01 13.80 43.83 20.97 36.08 28.44 28.44
OTM Sep-02 18.70 1.25 10.96 10.11 38.66 16.66 31.10 23.73 23.73
OTM Sep-02 15.90 0.59 8.34 7.63 34.83 13.64 27.45 20.34 20.34
ITM Oct-02 153.80 147.20 148.29 143.02 160.32 145.61 154.55 149.56 149.56
ITM Oct-02 111.90 98.06 105.86 101.28 130.04 107.60 122.20 114.66 114.66
ITM Oct-02 74.90 51.66 66.39 62.47 97.83 71.06 88.81 79.88 79.88
ITM Oct-02 58.90 30.31 47.06 43.69 81.11 53.00 71.73 62.36 62.36
ATM Oct-02 44.90 14.43 32.06 29.74 68.03 39.31 58.46 48.89 48.89
OTM Oct-02 33.20 5.17 20.94 19.00 56.57 28.18 47.04 37.56 37.56
OTM Oct-02 23.30 1.37 13.14 11.55 46.92 19.74 37.63 28.52 28.52
OTM Oct-02 16.10 0.16 6.83 5.85 37.49 12.46 28.66 20.22 20.22
OTM Oct-02 10.75 0.02 3.48 3.04 30.57 8.08 22.32 14.71 14.71
OTM Oct-02 7.15 0.00 1.54 1.24 23.94 4.61 16.47 9.88 9.88
OTM Oct-02 4.20 0.00 0.61 0.44 18.25 2.44 11.72 6.31 6.31
ITM Dec-02 201.40 199.60 199.87 190.59 206.70 192.18 200.50 195.54 195.54
ITM Dec-02 158.20 150.08 151.40 142.46 168.74 146.57 160.28 152.73 152.73
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Money Expiry Last UV 1 UV2 FBS1 0 FBS2 0 FBS1 0.5 FBS2 0.5 FBS1_1 FBS2_1
ITM Dec-02 118.10 100.62 106.56 98.31 136.07 106.27 125.60 115.56 115.56
ITM Dec-02 82.40 53.03 68.45 61.84 108.37 73.13 96.52 84.75 84.75
ITM Dec-02 67.00 33.84 54.29 48.51 97.51 60.74 85.25 72.99 72.99
ATM Dec-02 53.40 36.95 65.02 60.59 110.40 73.09 98.00 85.56 85.56
OTM Dec-02 41.60 18.03 44.18 39.77 89.70 52.19 77.19 64.67 64.67
OTM Dec-02 31.40 8.68 31.14 28.27 77.27 40.21 64.81 52.43 52.43
OTM Dec-02 23.20 3.15 21.18 18.32 65.16 29.27 52.92 40.91 40.91
OTM Dec-02 16.80 0.67 12.20 10.46 53.75 19.87 41.92 30.53 30.53
OTM Dec-02 11.90 0.07 6.51 5.27 43.81 12.72 32.59 22.08 22.08
OTM Dec-02 9.05 0.01 3.85 3.02 37.63 8.98 26.97 17.24 17.24
OTM Dec-02 3.60 0.00 1.13 0.78 26.26 3.87 17.18 9.53 9.53
OTM Dec-02 1.90 0.00 0.31 0.18 18.58 1.64 11.07 5.28 5.28
ITM Mar-03 163.20 154.19 156.58 142.34 180.65 149.02 168.99 158.25 158.25
ITM Mar-03 90.50 56.94 73.06 62.67 121.72 77.06 106.75 91.83 91.83
ITM Mar-03 75.50 34.80 55.31 46.01 107.71 61.41 92.30 76.86 76.86
ATM Mar-03 62.00 17.67 40.82 33.57 96.46 49.32 80.79 65.07 65.07
OTM Mar-03 50.10 6.76 30.12 23.82 86.33 39.19 70.57 54.84 54.84
OTM Mar-03 39.90 2.53 21.80 17.33 78.18 31.77 62.50 46.91 46.97
OTM Mar-03 31.20 0.54 14.69 10.96 68.77 23.84 53.32 38.23 38.23
OTM Mar-03 23.90 1.63 19.90 15.97 73.74 29.05 58.37 43.38 43.38
ITM Jun-03 168.20 158.23 162.07 143.36 192.84 152.92 178.54 165.03 165.03
ITM Jun-03 131.20 109.37 118.30 101.51 162.20 115.15 146.06 130.26 130.26
ITM Jun-03 97.90 61.60 79.95 66.04 135.37 83.07 117.89 100.43 100.43
ITM Jun-03 83.30 39.56 62.74 49.99 121.95 68.00 104.02 86.03 86.03
ATM Jun-03 69.60 21.74 47.95 37.43 110.66 55.80 92.44 74.15 74.15
OTM Jun-03 57.80 9.12 35.13 26.46 99.50 44.48 81.14 62.78 62.78
OTM Jun-03 48.50 2.37 24.38 17.43 88.74 34.36 70.40 52.20 52.20
OTM Jun-03 39.50 5.51 31.87 25.82 97.07 42.83 78.75 60.61 60.61
OTM Jun-03 31.70 1.53 21.97 16.39 84.62 31.85 66.53 48.82 48.82
OTM Jun-03 228.80 0.17 12.36 8.85 72.33 21.99 54.66 37.68 37.68
OTM Jun-03 20.70 0.03 8.46 5.75 65.36 17.13 48.08 31.75 31.75
OTM Jun-03 14.80 0.00 4.68 2.83 56.13 11.55 39.59 24.40 24.40
OTM Jun-03 11.30 0.00 2.50 1.48 49.49 8.20 33.65 19.51 19.51
OTM Jun-03 8.45 0.00 1.60 0.79 43.92 5.89 28.82 15.74 15.74
OTM Jun-03 6.45 0.01 4.98 3.32 52.39 11.15 36.75 22.72 22.72
ITM Dec-03 180.00 166.27 175.04 147.18 214.84 161.79 196.42 178.57 178.57
ITM Dec-03 145.60 118.04 131.19 105.97 183.50 124.11 163.39 143.49 143.49
ITM Dec-03 114.80 71.11 93.35 72.50 158.13 93.75 136.71 115.22 115.22
ATM Dec-03 88.00 30.55 62.52 45.34 134.98 67.88 112.74 90.37 90.37
OTM Dec-03 65.60 7.21 38.56 25.99 114.92 47.57 92.38 69.86 69.86
OTM Dec-03 47.40 0.84 21.38 13.91 98.03 32.67 75.65 53.69 53.69
OTM Dec-03 39.90 0.18 15.86 9.30 89.56 26.03 67.45 46.02 46.02
OTM Dec-03 34.70 0.04 11.38 6.36 82.87 21.22 61.06 40.19 40.19
OTM Dec-03 26.80 0.00 6.65 3.58 74.20 15.71 52.93 33.03 33.03
OTM Dec-03 22.10 0.00 4.66 2.13 67.60 12.08 46.89 27.90 27.90
OTM Dec-03 17.60 0.00 2.81 1.20 61.51 9.16 41.43 23.44 23.44
OTM Dec-03 14.20 0.00 1.47 0.57 55.20 6.52 35.89 19.08 19.08
ITM Jun-04 192.90 183.83 185.70 145.47 216.41 158.43 195.74 176.05 176.05
ITM Jun-04 159.70 136.72 141.51 104.51 189.70 123.19 166.95 144.58 144.58
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Money Expiry Last UV 1 UV2 FBS1 0 FBS2J3 FBS1 0.5 FBS2JD.5 FBS1 1 FBS2 1
ITM Jun-04 129.40 93.18 123.07 94.39 191.44 118.61 167.28 142.97 142.97
ATM Jun-04 103.75 52.61 90.54 65.28 167.02 90.98 141.89 116.53 116.53
OTM Jun-04 80.40 20.92 59.91 41.29 144.38 66.93 118.66 92.80 92.80
OTM Jun-04 70.60 9.42 46.86 29.75 131.93 54.56 106.07 80.20 80.20
OTM Jun-04 61.50 4.69 38.44 23.68 124.26 47.42 98.37 72.63 72.63
OTM Jun-04 47.00 0.83 24.08 14.13 109.79 35.03 84.10 58.94 58.94
OTM Jun-04 33.80 0.04 13.01 6.69 93.74 23.20 68.65 44.74 44.74
OTM Jun-04 24.20 0.00 7.16 3.23 81.50 15.81 57.27 34.84 34.84
OTM Jun-04 16.70 0.00 3.24 1.28 69.83 10.02 46.73 26.16 26.16
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Table 7E: This table shows the comparative option values for the Call option bounds of
FBS and UV PPM for S&P500 Options showing behaviour of FBS bounds fwrt a)

Money Expiry FBS1_0 FBS2_0 FBS1_0.5 FBS2_0.5 FBS2_0.75 FBS2_0.75 FBS1_1 FBS2_1
ITM Aug-02 118.34 124.45 119.11 122.21 119.70 121.25 120.41 120.41
ITM Aug-02 94.42 104.20 96.10 101.10 97.17 99.69 98.37 98.37
ITM Aug-02 71.66 85.18 74.44 81.33 76.03 79.48 77.71 77.71
ITM Aug-02 50.05 66.84 53.89 62.38 55.94 60.19 58.04 58.04
ITM Aug-02 44.46 62.72 48.84 58.02 51.10 55.69 53.38 53.38
ITM Aug-02 36.46 55.53 41.12 50.69 43.49 48.27 45.87 45.87
ITM Aug-02 31.72 51.11 36.49 46.21 38.90 43.76 41.33 41.33
ATM Aug-02 30.26 50.02 35.17 45.06 37.63 42.58 40.11 40.11
ATM Aug-02 24.33 44.46 29.36 39.43 31.88 36.91 34.40 34.40
ATM Aug-02 18.43 38.62 23.47 33.57 25.99 31.04 28.52 28.52
ATM Aug-02 14.86 34.77 19.77 29.75 22.25 27.24 24.74 24.74
OTM Aug-02 11.28 30.59 15.94 25.64 18.33 23.19 20.75 20.75
OTM Aug-02 8.73 27.49 13.17 22.62 15.48 20.21 17.83 17.83
OTM Aug-02 7.08 24.94 11.18 20.20 13.35 17.88 15.59 15.59
OTM Aug-02 4.85 21.07 8.36 16.60 10.30 14.43 12.32 12.32
OTM Aug-02 3.22 18.25 6.27 13.95 8.03 11.89 9.92 9.92
OTM Aug-02 1.93 14.60 4.24 10.73 5.66 8.93 7.23 7.23
ITM Sep-02 120.80 138.78 124.21 133.41 126.26 130.88 128.49 128.49
ITM Sep-02 98.29 120.05 102.85 113.92 105.42 110.98 108.14 108.14
ITM Sep-02 77.07 102.49 82.82 95.68 85.91 92.36 89.09 89.09
ITM Sep-02 57.68 86.27 64.54 78.91 68.07 75.2 7 71.65 71.65
ITM Sep-02 51.81 81.49 59.07 73.96 62.76 70.21 66.47 66.47
ITM Sep-02 43.90 74.35 51.43 66.68 55.22 62.85 59.03 59.03
ITM Sep-02 40.87 71.67 48.52 63.94 52.36 60.07 56.22 56.22
ATM Sep-02 38.07 69.16 45.82 61.37 49.70 57.48 53.59 53.59
ATM Sep-02 32.39 63.87 40.27 56.01 44.21 52.07 48.14 48.14
ATM Sep-02 27.39 58.99 35.29 51.10 39.24 47.14 43.19 43.19
ATM Sep-02 21.45 52.90 29.26 45.00 33.18 41.05 37.11 37.11
OTM Sep-02 16.82 47.59 24.31 39.76 28.13 35.86 31.98 31.98
OTM Sep-02 15.18 45.60 22.52 37.81 26.29 33.94 30.10 30.10
OTM Sep-02 13.80 43.83 20.97 36.08 24.68 32.24 28.44 28.44
OTM Sep-02 10.11 38.66 16.66 31.10 20.15 27.39 23.73 23.73
OTM Sep-02 7.63 34.83 13.64 27.45 16.92 23.86 20.34 20.34
ITM Oct-02 143.02 160.32 145.61 154.55 147.43 151.94 149.56 149.56
ITM Oct-02 101.28 130.04 107.60 122.20 111.06 118.38 114.66 114.66
ITM Oct-02 62.47 97.83 71.06 88.81 75.45 84.33 79.88 79.88
ITM Oct-02 43.69 81.11 53.00 71.73 57.67 67.04 62.36 62.36
ATM Oct-02 29.74 68.03 39.31 58.46 44.10 53.68 48.89 48.89
OTM Oct-02 19.00 56.57 28.18 47.04 32.85 42.29 37.56 37.56
OTM Oct-02 11.55 46.92 19.74 37.63 24.08 33.04 28.52 28.52
OTM Oct-02 5.85 37.49 12.46 28.66 16.23 24.38 20.22 20.22
OTM Oct-02 3.04 30.57 8.08 22.32 11.24 18.42 14.71 14.71
OTM Oct-02 1.24 23.94 4.61 16.47 7.05 13.04 9.88 9.88
OTM Oct-02 0.44 18.25 2.44 11.72 4.16 8.85 6.31 6.31
ITM Dec-02 190.59 206.70 192.18 200.50 193.64 197.84 195.54 195.54
ITM Dec-02 142.46 168.74 146.57 160.28 149.44 156.37 152.73 152.73
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Money Expiry FBS1_0 FBS2_0 FBS1 „0.5 FBS2 0.5 FBS2 0.75 FBS2 0.75 FBS1 1 FBS2 1
ITM Dec-02 98.31 136.07 106.27 125.60 110.80 120.51 115.56 115.56
ITM Dec-02 61.84 108.37 73.13 96.52 78.91 90.62 84.75 84.75
ITM Dec-02 48.51 97.51 60.74 85.25 66.86 79.12 72.99 72.99
ATM Dec-02 60.59 110.40 73.09 98.00 79.32 91.78 85.56 85.56
OTM Dec-02 39.77 89.70 52.19 77.19 58.43 70.93 64.67 64.67
OTM Dec-02 28.27 77.27 40.21 64.81 46.29 58.61 52.43 52.43
OTM Dec-02 18.32 65.16 29.27 52.92 35.03 46.88 40.91 40.91
OTM Dec-02 10.46 53.75 19.87 41.92 25.09 36.16 30.53 30.53
OTM Dec-02 5.27 43.81 12.72 32.59 17.22 27.22 22.08 22.08
OTM Dec-02 3.02 37.63 8.98 26.97 12.88 21.96 17.24 17.24
OTM Dec-02 0.78 26.26 3.87 17.18 6.41 13.15 9.53 9.53
OTM Dec-02 0.18 18.58 1.64 11.07 3.17 7.93 5.28 5.28
ITM Mar-03 142.34 180.65 149.02 168.99 153.40 163.48 158.25 158.25
ITM Mar-03 62.67 121.72 77.06 106.75 84.42 99.28 91.83 91.83
ITM Mar-03 46.01 107.71 61.41 92.30 69.13 84.58 76.86 76.86
ATM Mar-03 33.57 96.46 49.32 80.79 57.20 72.94 65.07 65.07
OTM Mar-03 23.82 86.33 39.19 70.57 47.00 62.70 54.84 54.84
OTM Mar-03 17.33 78.18 31.77 62.50 39.31 54.71 46.97 46.97
OTM Mar-03 10.96 68.77 23.84 53.32 30.92 45.72 38.23 38.23
OTM Mar-03 15.97 73.74 29.05 58.37 36.10 50.81 43.38 43.38
ITM Jun-03 143.36 192.84 152.92 178.54 158.75 171.65 165.03 165.03
ITM Jun-03 101.51 162.20 115.15 146.06 122.59 138.10 130.26 130.26
ITM Jun-03 66.04 135.37 83.07 117.89 91.73 109.15 100.43 100.43
ITM Jun-03 49.99 121.95 68.00 104.02 77.02 95.03 86.03 86.03
ATM Jun-03 37.43 110.66 55.80 92.44 64.98 83.30 74.15 74.15
OTM Jun-03 26.46 99.50 44.48 81.14 53.61 71.96 62.78 62.78
OTM Jun-03 17.43 88.74 34.36 70.40 43.22 61.28 52.20 52.20
OTM Jun-03 25.82 97.07 42.83 78.75 51.65 69.65 60.61 60.61
OTM Jun-03 16.39 84.62 31.85 66.53 40.21 57.61 48.82 48.82
OTM Jun-03 8.85 72.33 21.99 54.66 29.62 46.06 37.68 37.68
OTM Jun-03 5.75 65.36 17.13 48.08 24.15 39.76 31.75 31.75
OTM Jun-03 2.83 56.13 11.55 39.59 17.59 31.77 24.40 24.40
OTM Jun-03 1.48 49.49 8.20 33.65 13.40 26.31 19.51 19.51
OTM Jun-03 0.79 43.92 5.89 28.82 10.32 21.97 15.74 15.74
OTM Jun-03 3.32 52.39 11.15 36.75 16.56 29.49 22.72 22.72
ITM Dec-03 147.18 214.84 161.79 196.42 170.00 187.40 178.57 178.57
ITM Dec-03 105.97 183.50 124.11 163.39 133.71 153.40 143.49 143.49
ITM Dec-03 72.50 158.13 93.75 136.71 104.48 125.97 115.22 115.22
ATM Dec-03 45.34 134.98 67.88 112.74 79.14 101.57 90.37 90.37
OTM Dec-03 25.99 114.92 47.57 92.38 58.67 81.11 69.86 69.86
OTM Dec-03 13.91 98.03 32.67 75.65 43.01 64.60 53.69 53.69
OTM Dec-03 9.30 89.56 26.03 67.45 35.77 56.62 46.02 46.02
OTM Dec-03 6.36 82.87 21.22 61.06 30.37 50.46 40.19 40.19
OTM Dec-03 3.58 74.20 15.71 52.93 23.93 42.75 33.03 33.03
OTM Dec-03 2.13 67.60 12.08 46.89 19.46 37.12 27.90 27.90
OTM Dec-03 1.20 61.51 9.16 41.43 15.70 32.10 23.44 23.44
OTM Dec-03 0.57 55.20 6.52 35.89 12.12 27.08 19.08 19.08
ITM Jun-04 145.47 216.41 158.43 195.74 166.88 185.73 176.05 176.05
ITM Jun-04 104.51 189.70 123.19 166.95 133.70 155.69 144.58 144.58
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Money Expiry FBS1 0 FBS2_0 FBS1 0.5 FBS2 0.5 FBS2_0.75 FBS2 0.75 FBS1 1 FBS2 1
ITM Jun-04 94.39 191.44 118.61 167.28 130.79 155.14 142.97 142.97
ATM Jun-04 65.28 167.02 90.98 141.89 103.78 129.24 116.53 116.53
OTM Jun-04 41.29 144.38 66.93 118.66 79.86 105.74 92.80 92.80
OTM Jun-04 29.75 131.93 54.56 106.07 67.32 93.12 80.20 80.20
OTM Jun-04 23.68 124.26 47.42 98.37 59.92 85.46 72.63 72.63
OTM Jun-04 14.13 109.79 35.03 84.10 46.76 71.42 58.94 58.94
OTM Jun-04 6.69 93.74 23.20 68.65 33.56 56.50 44.74 44.74
OTM Jun-04 3.23 81.50 15.81 57.27 24.75 45.75 34.84 34.84
OTM Jun-04 1.28 69.83 10.02 46.73 17.37 36.04 26.16 26.16
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Table 8E: This table shows the comparative option values for MTM1 and CRR PPM
for S&P 500 Index Options quoted on 24th July 2002

Moneyness Expiration Bid Ask Last MTM1 Value CRR Value
ITM Aug-02 89.50 92.50 91.00 92.2009 92.6213
ITM Aug-02 69.60 72.60 66.50 72.2259 72.7426
ITM Aug-02 51.60 54.60 45.00 54.2085 54.2891

ATM Aug-02 36.00 38.00 35.00 37.6079 38.3207
ATM Aug-02 30.70 33.70 33.00 34.5058 34.7258
ATM Aug-02 25.80 28.80 26.80 28.3928 28.9063
ATM Aug-02 23.90 25.00 22.00 24.6101 25.3082
OTM Aug-02 21.50 24.50 20.00 24.0934 24.8932
OTM Aug-02 17.90 20.30 13.70 19.8928 20.4789
OTM Aug-02 14.60 16.00 15.00 15.6353 15.7846
OTM Aug-02 12.00 13.60 8.80 13.2324 13.7935
OTM Aug-02 10.10 11.00 9.50 10.6343 11.2465
OTM Aug-02 8.20 9.00 7.90 8.6523 9.0282
OTM Aug-02 7.00 7.80 7.80 7.4714 7.5234
OTM Aug-02 5.00 6.00 6.00 5.6867 6.0995
OTM Aug-02 4.40 4.50 4.50 4.2102 4.5920
OTM Aug-02 2.60 3.20 2.60 2.9459 2.9973
ITM Sep-02 100.40 103.40 85.00 102.8372 103.7549
ITM Sep-02 81.80 84.80 77.00 84.2479 84.7875
ITM Sep-02 64.80 67.80 59.00 67.2074 68.1630

ATM Sep-02 49.70 52.70 48.60 52.1201 52.9597
ATM Sep-02 44.20 47.20 33.00 47.9467 48.1709
ATM Sep-02 39.10 42.10 29.00 41.5268 42.0765
ATM Sep-02 36.80 39.80 31.90 39.2288 40.0513
OTM Sep-02 34.70 37.70 29.50 37.1201 38.1316
OTM Sep-02 30.30 33.30 30.70 32.7253 33.8498
OTM Sep-02 26.40 29.40 22.00 28.8298 29.7314
OTM Sep-02 22.90 24.50 19.00 23.9590 24.1766
OTM Sep-02 18.40 20.80 18.80 20.2711 20.8951
OTM Sep-02 17.00 19.40 14.00 18.8759 19.6665
OTM Sep-02 15.80 18.20 14.10 17.6782 18.5651
OTM Sep-02 14.60 17.00 0.00 16.4691 17.3871
OTM Sep-02 11.90 14.30 14.30 13.7761 14.5156
OTM Sep-02 10.10 12.50 11.40 11.9911 12.3367
ITM Oct-02 124.10 127.10 121.20 126.4795 127.0783
ITM Oct-02 104.80 107.80 0.00 107.1699 108.2427
ITM Oct-02 86.70 89.70 77.00 89.0664 89.2304

ATM Oct-02 54.50 57.50 51.00 56.8527 57.7166
ATM Oct-02 41.50 44.50 42.00 43.8645 44.7100
OTM Oct-02 30.70 33.70 22.90 33.0627 34.1793
OTM Oct-02 22.20 25.20 18.40 24.6020 24.9439
OTM Oct-02 15.10 17.50 14.50 16.9362 17.9107
OTM Oct-02 10.10 12.50 8.60 11.9702 11.9779
OTM Oct-02 6.70 8.20 6.00 7.7345 8.3879
OTM Oct-02 4.30 5.50 4.50 5.0791 5.2893
OTM Oct-02 2.65 3.80 3.50 3.4551 3.7772
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Moneyness Expiration Bid Ask Last MTM1 Value CRR Value
OTM Oct-02 1.95 2.70 0.00 2.3761 2.7062
OTM Oct-02 1.15 1.90 0.00 1.6285 1.6346
OTM Oct-02 0.60 1.35 0.00 1.1320 1.2740
OTM Oct-02 0.50 1.05 0.00 0.8479 1.0156
ITM Dec-02 306.70 310.70 296.00 310.3583 310.3980
ITM Dec-02 214.00 217.00 205.00 216.4134 216.8023
ITM Dec-02 170.80 173.80 181.00 173.1552 173.7260
ITM Dec-02 130.60 133.60 123.00 132.8530 134.1365
ITM Dec-02 94.40 97.40 94.00 96.6239 97.2543
ITM Dec-02 78.40 81.40 0.00 80.6111 82.1297

ATM Dec-02 63.80 66.80 61.00 66.0348 66.9328
ATM Dec-02 50.80 53.80 48.70 53.0403 53.9185
OTM Dec-02 39.90 42.90 36.50 42.1359 43.5982
OTM Dec-02 30.70 33.70 22.90 32.9595 33.4203
OTM Dec-02 22.10 25.10 20.00 24.4317 25.4377
OTM Dec-02 16.10 18.50 16.00 17.8277 18.8072
OTM Dec-02 12.20 13.00 10.00 12.4274 12.7303
OTM Dec-02 8.10 9.60 6.50 9.0532 9.8187
OTM Dec-02 6.00 7.50 6.00 6.9737 7.5467
OTM Dec-02 2.85 4.00 2.50 3.6027 4.0283
OTM Dec-02 1.15 1.90 1.65 1.6216 1.7021
ITM Mar-03 136.60 139.60 133.00 138.7629 140.1048
ITM Mar-03 101.80 104.80 0.00 103.8815 105.1383

ATM Mar-03 1.70 74.70 75.00 73.8117 74.7287
ATM Mar-03 58.70 61.70 58.00 60.8291 61.7253
OTM Mar-03 47.60 50.60 44.90 49.7326 51.4103
OTM Mar-03 37.50 40.50 29.50 39.6577 40.6919
OTM Mar-03 29.80 32.80 24.00 32.0101 32.5951
OTM Mar-03 22.80 25.80 18.50 25.0229 26.3636
OTM Mar-03 17.30 19.70 16.80 18.9529 19.8506
ITM Jun-03 143.20 146.20 140.00 145.2266 146.2500
ITM Jun-03 109.70 112.70 93.50 111.6482 113.4101

ATM Jun-03 79.70 82.70 66.00 81.6938 82.6244
ATM Jun-03 67.10 70.10 68.00 69.1127 70.0224
OTM Jun-03 55.30 58.30 48.40 57.3164 59.1602
OTM Jun-03 45.40 48.40 40.50 47.4597 49.0001
OTM Jun-03 37.20 40.20 38.10 39.2995 39.3879
ITM Jun-03 219.10 222.10 0.00 221.2839 222.0826
ITM Jun-03 178.60 181.60 0.00 180.6176 181.9137
ITM Jun-03 142.10 145.10 140.00 144.1522 145.2286
ITM Jun-03 108.80 111.80 93.50 110.7638 112.4880

ATM Jun-03 78.90 81.90 66.00 80.8959 81.8253
ATM Jun-03 66.30 69.30 68.00 68.3458 69.2543
OTM Jun-03 54.70 57.70 48.40 56.7327 58.5667
OTM Jun-03 44.80 47.80 40.50 46.8596 48.3709
OTM Jun-03 36.70 39.70 38.10 38.7926 38.8310
OTM Jun-03 29.40 32.40 32.00 31.5340 32.7615
OTM Jun-03 23.10 26.10 23.50 25.2390 26.7140
OTM Jun-03 18.40 20.80 22.50 19.9637 20.7094
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Moneyness Expiration Bid Ask Last MTM1 Value CRR Value
OTM Jun-03 14.80 17.20 25.50 16.4603 16.7643
OTM Jun-03 10.60 13.00 12.50 12.2902 13.2611
OTM Jun-03 8.30 9.80 7.50 9.1302 9.9302
OTM Jun-03 6.10 7.60 12.00 6.9985 7.0507
OTM Jun-03 4.50 5.70 5.30 5.1925 5.6156
ITM Dec-03 154.70 157.70 236.00 156.5681 156.6882
ITM Dec-03 123.30 126.30 112.00 125.0816 127.3556
ATM Dec-03 95.40 98.40 86.00 97.1412 98.0799
ATM Dec-03 81.20 84.20 0.00 83.0201 83.9366
OTM Dec-03 71.60 74.60 82.00 73.4150 75.4734
OTM Dec-03 61.50 64.50 0.00 63.3654 65.5587
OTM Dec-03 51.90 54.90 74.00 53.7775 55.1150
OTM Dec-03 44.00 47.00 0.00 45.9258 46.2613
OTM Dec-03 36.30 39.30 35.00 38.2320 39.7404
OTM Dec-03 30.40 33.40 48.00 32.3447 34.1679
OTM Dec-03 25.90 28.90 46.00 27.8457 29.3556
OTM Dec-03 20.10 24.10 25.50 23.1095 23.4479
OTM Dec-03 16.70 18.70 15.00 17.8296 18.6872
OTM Dec-03 13.20 15.20 34.00 14.3406 15.5413
OTM Dec-03 10.50 12.50 11.50 11.6676 12.7026
OTM Dec-03 6.90 7.90 8.50 7.2484 7.6004
OTM Dec-03 4.30 5.10 5.00 4.5193 5.1440
ITM Jun-04 236.30 239.30 217.00 237.8941 239.9074
ITM Jun-04 200.70 203.70 0.00 202.6886 204.0861
ITM Jun-04 86.70 89.70 105.00 184.1261 185.6660
ITM Jun-04 167.40 170.40 184.00 169.1172 170.1196
ITM Jun-04 236.30 239.30 217.00 236.7908 241.0986
ITM Jun-04 200.70 203.70 0.00 201.7212 205.4582
ITM Jun-04 137.30 140.30 154.50 138.9681 141.5432
ATM Jun-04 110.50 113.50 203.50 112.1193 113.0539
OTM Jun-04 86.70 89.70 105.00 88.3661 90.5324
OTM Jun-04 66.60 69.60 58.30 68.2920 70.4139
OTM Jun-04 58.10 61.10 69.00 59.7884 60.6644
OTM Jun-04 50.00 53.00 45.00 51.7847 52.6108
OTM Jun-04 43.00 46.00 0.00 44.7740 46.5894
OTM Jun-04 38.10 41.10 62.00 39.8643 41.9719
OTM Jun-04 26.20 30.20 29.50 28.9928 29.8492
OTM Jun-04 19.10 21.10 23.00 20.0620 21.2808
OTM Jun-04 12.90 14.90 23.00 13.9063 15.0931
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