IT City Research Online
UNIVEREIST;]OggLfNDON

City, University of London Institutional Repository

Citation: Jirapanthong, W. (2006). A rule-based approach to software traceability to
product family systems. (Unpublished Doctoral thesis, City, University of London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/30637/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

A Rule-based Approach for Software
Traceability on Product Family Systems

Waraporn Jirapanthong

Submitted for the degree of Doctor of Philosophy

City University
Department of Computing

October 2006

tm umvm imz mBumimn NfiOulmiwtwijy

Contents

ACKNOWLEDGEMENTccoontiiiiiiitieiiiietiesnscsseeessssssstessssssssssesssssssssees XV
DECLARATION....ottiiiiietitinieetiiiseesssssisetessssssissseesssssssssessssssssssssssssss XVII
ABSTRACT ...ttt cssssse e sssssse s s s s assss s sssssssssesssssses XIX
CHAPTER 1
INTRODUCTION.....ctiiiiiitteiiiinteesinatesssssssseessssssssstsssssssssssessssssssssesssssnns 1
1.1. Hy PO £ € 8T8 ittt ettt 6
1.2. Problem Definitio n and Obje ctive S.mmmreieneerereresesensesenes 7
1.3. Contributio n of the Thesis s 8
1.4. Thes 15 OUt 1IN € wererereerrererereeererereseaeerereseseseetebesesesesesebeseseseeseseseseseassesesesensasses 9
PART I: LITERATURE REVIEW....coiiiinneiiiiiiiiiniissessseeeeissssssssns 11
CHAPTER 2
SOFTWARE TRACEABILITY ..ooitiiitiiiiiiinieiiiieteennscneceesssssnseesssssssseesssens 13
2.1. Defi nition of Traceabil ity minisrinsesesesesesessesssssssssesesenes 13
2.2. Benefitswith Software Traceabil ity mminneieeerneenrenens 15
221, ECON0MIC ASPE CT Suirimieirirrireeiesisisseesessssessssssssesesessssessssssssessssssssssessssssesesasens 15
222, Different Use of Soft ware Traceabil ity ummminiersrseresessneenens 17
2.3. Probl ems wit h Soft ware Traceabil ity .neieiseereeeessesnsrenens 25
2.4, Reference Model sand Classification fo r Traceabil ity
R T2 €10 0 Sttt 27
240, Reference Mo d el sttt seestsesseseseaenes 27
242, Classification of Traceabil it y Relation s 32
2.5. Approaches fo r Est ablishing Traceabil ity Relation s.n. 45
2.51. Manual Establishment of Traceability Relation s..n. 45
2.5.2. Semi-Automatic Establishment of Traceability Relations.... 48
2.5.3. Fully Automatic Est ablishment of Traceabil ity Relatio ns51
2.6. Representation,Recording,an d Maintenance of Traceabil ity
R T2 €10 0 Striieirireiciricce ettt 54
2.6.1. Tdentifier Tech nique ettt tesesesesenesesenens 54
2.60.2. Taggin g Tech NG Ue cmmerirneerisesseeesseseseessesesssessesesesassesesessssssessseens 55
2.6.3. Indexin g Te ch nique cuineernsieeesieseresisessesssesessesesssessssesessesssessssssess 55
2.6.4, Table Tech iq U e iirireieirisieeisirisseeesseseseessesessessssesessessesasesseseseseses 56
2.6.5. Mapping Graph Tech nique st 57
2.6.6. Mark-up Te chnique eeirienieesisieseeseesesesssesessssssssesessssesessssssesesens 57
2.6.7. Hyperlink Tech nique ieneesisseeeessesesssessssessssssssesessssesesesssesens 58
2.7. Traceability Commercial To0 01 Sumrnnieinrrineeininsssressesseseesesnns 60
270, General -Purpose To 0l suineiinensisisseseessesesssssessessssssssesens 60
2.7.2. Specific-Purpose Tools of Requirements Management .eoverenenes 61

R T T A 63

CHAPTER 3

PRODUCT FAMILY SYSTEMS....oiiiiiiiiiininntininnccnniccsnecssssseesssssesssnne 65
3.1. Intr oduction to Product Family cvevivecineinircireeeeeseeeceee 65
3.1.1. Terminologiesin Product Famil y.veonnneinnneinecccneneccsenenee 66
3.2 Problemsofthe Establishment and Maintenance of Produ ct

Fam fly Sy St € M8 tvuereirienreirisreseisieesistsseesssstssesesessesesssessesesssesessesesasessssesensans 68
3.3. Acti vitie s in the Process of Product Famil y Syst em

De Vel 0 PME N T trriiriiieiiieieeieee ettt ettt neneas !
3.3.1. Domai n Engineering cneneeneneneeeneesiestseseesereseseeseesesessesenens 73
33.2. Application Engineering e eesessesessenes 78
3.4. Methodologiesfor the Development of Product Famil y

ST ST € 1S ettt 80
34.1. Object-Oriented Methodologies. e 80
342, Feature-Oriented Methodologies . ernerninereeeneeens 89
3.5. Techniques fo r th e Development of Product Family Systems93
351, Use Case s s 93
3.5.2. UML MO d €150 @ vevvrerirererrerieirreesreesesissessesessesesseessessssessessssessssessssessessssesessenees 94
3.5.3. Feature Mo deling cinerinenirienieenieenieesieeeienesseseesessesesseessesessessesessenes 95
354, Architecture Description and Component-based Languages 97
3.6. Supporting Tools for Product Family Systems.nniecennnennnes 99
3.7. Traceabil it y of Pro du ct Family Syst e ms.cnnnevernnieeeineeenene 105
3.7.1. Exist ing Appro aches for Traceability Generat ion in Product

Fa mil § Sy St € M8 tteiiririeeeirinieeisisseeisestssesesessssesesessesssesessssessssssssesesessssesesssns 105
3.7.2. Issue s of Tra ce abili ty 7Acti vities in Product Family'Systems 108
B8, SWMMA I eorrroreseeeesssssseesesssesseees s eeees e sees e sees e eeee e see s sees e 108

PART II: THE APPROACH. ...ttt 109

CHAPTER 4

TRACEABILITY REFERENCE MODEL........riiiininneeccencnnneeen In
4.1. T0 £ 10 d U CtI0 M ot 111
4.2 Product Famil y Soft wate Artefact S 112
4.3. Traceabil it ¥ Relation seiennieeesesessesessssssessssesssssenses 133
A SUMIA T Y errerrreeeseeesessseeseee s eeeee s ses s eee s seee s seees e eese e eseesee e 148

CHAPTER 5

TRACEABILITY FRAMEWORK......ccoovntiiitiintiiiniiinnecnneecnsecseseeesenne 149
5.1. Overview of The Traceability Genera ti on Process.n. 149
5.2. Traceabil it y Rules an d Relatio n s.iineinenrenneniereeeseneeeenenns 155
5.3. Extended Function s.enncceneeeceneeeeeesesieseeseseenenene 174
53.1. Functions in XQU ey ereeieieeieeieieeereieseieeeseseseeeesesesessseseseseseaes 174
53.2. Functions In Java c 182
5 SUMMA T Y woorooreseeeseesseseese s eeeeee s e s sees e seese e s 186

vi

CHAPTER 6

XTRAQUE TOOL....iiiiitriiiiintrecccnnnrec e cssssnr e sssssses s ssssssnese s 187
6.1. OV € 1 VIE W atrtereiirtrerietttrteer ettt sesee sttt st be et sttt sa bbbt se b enesaesenene 187
6.2. Uset Int e face sttt ettt sesese s seeseeseseseenne 192
6.2.1. Specifying the Scope of Traceability Generation wmrnenes 193
6.2.2. Specifying Types of Documents and Relationships....... 194
6.2.3. Specifying Part icul art Documentsand Relatio nship Types .. 199
6.2.4. Edit ing and Testing XQuery Statemen t s 202
.30 SUMIMA £ ¥ erorerrreseseesseseseessse s esee s sees s eeese s seee s eee e eeee s eeee s 204
CHAPTER 7
MOBILE PHONE SYSTEMS - CASE STUDY...cooovvnvurrrrnrrereceirinsenissssinnnn 205
7.1. Overview of the Case St ud ¥ cocveeveirnneeeninieeiresseeeseeeeeseesesseens 205
7.2, Documentsin the Mobil e-Phone Systems.neecnnnecnrennnns 213
7.21. Feature Mode 1l of Mobil e-Phone Systems.rerrrererenerennenes 213
7.22. Subsystem Mode 1 of Mobil e-Phone Systems.nrererereriecerennns 213
7.2.3. Process Models of Mobil e-Phone Systems.nernennrennns 215
7.24. Module Models of Mobile-Phone Systems.nennnenn. 217
7.2.5. Use Cases,Class,Statechart,and Sequence Diagramsof
Mo bil e -Phone Membe £ 5 cinrieereinieieentnenieretseneeeseseseeseseeseeseenens 223
5 T SN 223
PART III: EVALUATION AND CONCLUSION......cccottviiiiinnnnnnnnenneeeeees 225
CHAPTER 8
EVALUATION AND ANALYSIS..coiiittiiiiiirertiiinnnieinecssesessssssssesssssssens 227
8.1, Evaluation OVer view wneineneeierenieeeseseesesesessssesesessesesesesens 227
8.1.1. Scenario 1: The creation of a new product member fr om
existing product family cui 230
81.2. Scenario 2:The creation of product family fr om already
EXISTING PRODUCTS.......cocoviiniiererninieemereneeeneseesesteesensesteesenseseessesensesssesessessaens 233
8.1.3. Scenario 3:Chan gesto a product member ina product famil y
236
8.1.4. Scenario 4:Change sto the core assetsofa product famil y 237
8.1.5. Scenario 5 Impact of changesto the coreassetsofa product
m FAMILY AND PRODUCT MEMBERS.........ccococeimnieriiicenneeeeneeneeeienensenenens 239
8.2. FEvaluation Result s and Analysis.enns 240
8.3, SUMIA T ¥ erererrressseessessseesssesseseeese s ssees s eee s seeee e seees e ees e 249
CHAPTER 9
CONCLUSIONS AND FUTURE WORK.....cccovivrntntnnteecccennnnsssssssnnnnns 251
9.1, Overall Conclusion S ireeennniereseseeeseeseesesesesesseseesesseseneas 251
9.2. The Fin din g senenieiiseseessssssssessessssssssessssssssesesessssessssssssssesessses 253
9.3. Fut ure Wo £k ottt 256
9.4. Fin a1 Rema 1k sttt s seenes 257

vii

APPENDICES.......ccceiviineeeeiinnne 259

APPENDIX A - XML SCHEMAS 261
A.l. XMLSchema for direct traceabil ity rul es .. 262
A2, XML Schema fo r ind ir ect traceability " UL €S e 264
A.3. XML Schema fo r Featu re mo d el e 266
A4 XML Schem a fo £ USE €A SE€ vrrrerererererererererteesesestsissesstssesstssesssssesesssesesssenes 271
A5, XML Schema fo r subsystem Mo d eierreieenrieesnesesseesesessenens 274
A.6. XML Schema fo r proce s5 MO d el ceeeeeerererereierererereretenesereresesereresenes 276
A. 7. XML Schema fo r module Mo d el eeeeeeeiereiererereiereierererenenerenenes 279

APPENDIX B - TRACEABILITY RULES ..ccociiierrrcerrecercreecenenee 281
B. 1. Direct Traceab ility "Rul €S oiiveviiverrceeeeenensesesesssssesssssssssssesnes 281
B. 2. Indirect Traceabil it y RUT € s mineieinineeiniiseeessesessssesesenns 316

APPENDIX C- EXTENDED XQUERY FUNCTIONS......cccooonieerrnenen 322
C. 1. get Tra nsiti 00 QN St t € wurvrrereierireerresisreesesestesesesessssesesessesesesessssesessssses 322
C.2. ZEtStAt € N St A €€ verererireeieiceniree e 322
C.3. et Mes52 g TN SE trerrrererireririeiiririnieee ettt 322
C4. et ODJE Ctin SE q wrrerererrieirerieieiertreieere sttt beb ettt st 323
C.5. et Class ID e 323
C.6. 2 et ClassODbie ctinSe q umireinineeeesessesssessesesssessssessssesssesesens 323
C.l ge tParentFeat ure e 323
C.8. get Cfilldre N Feat ure e 324
C.9. getFeatureo fSubSy st e Muiirieernesteeesessesssessesesesessssesens 324
CIO. getOperatio Nin Se q iireesineeeisessesesessesessssssssesessssssesessssens 324
Cll. getOperatio nin Mo d el iecirineeerininieseeseeesesesseseesessesessssssesens 324
C.2. getStateofOperatio NinStat e oo 325
CI3. get Classin Cl 2 85 innrrieinrieeenerieietresee ettt ettt ese st s e se s sene 325
Cl4d getParentofVariant Classe s eneeeeeseseeesesesesesens 326
C.15. GETPARENTOFVARIANTFEATURES........cccoooiiiiiiiiiiriciricirccccenes 327
Co16. getParent Class.neisecreesereeesseseeessee st sessesaesesaesessesessenees 328

APPENDIX D - EXAMPLE DOCUMENTS IN MOBILE-PHONE

SYSTEDMS oot 329
D. L Use Case-PMT i 330
D.2. Cla ss Diagram - PM L.t 341
D.3. Sequence Diagram - PMT . et 342
D4, Statechart Diagram- PM L 346

BIBLIOGRAPHY ..o saes 347

viii

List of Figures

Fig ure 2-1:Representing traceabil ity by using iden tifier S.mmmmenrrererrans 55
Fig ure 2-2:Representing traceabil ity by tagging attribut e s et 55
Fig ure 2- 3:Representing traceabil ity by in d eXin g vvveeererererereneereseeereenennens 56
Fig ure 2-4:Representing traceabil ity by t abl e vecevnneercnnereincneeerecneenenee 56

Fig ure 3-1: Activitiesin software product line enginecering (North rop

Fig ure 3-2:different notations fo r dif ferent typesofa feature:(a)

(I(ang et al. 1990); (b) (Griss et al. 1998, Kan getal. 1998);ar1 d

(©) Svahnberg et al.2001) e 96
Fig ure 4-1: The feature model of the mobile phon e .veeveeereerevereeenes 116
Fig ure 4-2:Featuresin textual specification language (Kang et al.
TO98) s 117
Fig ure 4 3:Feature model fo r mobile phone sy St ems . eennnerenenneenes 118
Fig ure 4-4: Use case Sending a Me 550 g ¢ ceoeeoeeeeeeereeeeieeeieeieeeieieeieieeieienes 120
Fig ure 4 5:Subsy st em model of mobile phone Sy St ems.rrrrererererereene 122
Figure 4- 6: Example of Subsyst em Mo d el wovvveevrinnieienirrieeesssieeieesiseeieiens 123
Fig ure 4 7:SMSprocess model fo r me ssaging subsyst € Mumecrrersererurennas 125
Fig ure 4- 8: SMSprocess model fo r messaging subsyst e Munnrecerrennes 127
Fig ure 4 9:The module model for shortmessaging service (SMS)
CONTROLPROCESS.......cooooiiiiiriiieeeeeeiiee et sssaees 129
Fig ure 4-10: Module model for short messaging service SMScontrol
PROUCESS. ..ot 130
Figure 4-11: An extract of a class diagramfo r product member PM7.. 131
Fig ure 4-12: Astatechart diagramfor a dig ita /_camera class.. 132
Fig ure 4-13: An extract of a sequence diagramof raking a photo ... 132

Fig ure 4-14: Examples of satisfiability,dependency, refinement,
CONILAINMENTI; AND SIMIIARTRACEABILITY RELATIONS........coovovieiicciinnee 144
Fig ure 4-15: Examples of implements,ov erimps,evolution,and different

TRACEABILITY RELATIONS.......oiiiiiiiiiiieiiciinenceneiseiscie s ssessscscsens

Fig ure 5-1: Overview of traceability gen er ation process

Figure 52 Trac ¢ [IBIit y g ¢ 1 ¢ 7070 F worreoerecrrecerriesinssinssinsssssssssssssssssssssssssssssssssnns
Figure 5-3:Traceabil tiy rule t € MPlat e eeeiieieeeeeeerereerereeeseesereesenenene
Figure 5-4:Example of containmenttraceabi lit y rule mmncernneenenes
Figu re 5-5:Example of simiiartraceability rule e
Fig ure 5-6:Result of containmenttraceability relations. . 161
Fig ure 5-7:Example of use case UC2 Transmitting Message
Fig ure 5-8:Result of similar traceability relation e 162Fig ure 5- 9
Examples of traceability relations (repetitive to Figure 4-
S S 164
Fig ure 5-10: Examples of traceability relations (repetitive to Figure 4-
1) S 165
Fig ure 5-11: Example of dependencytraceability rule e 166
Figure 5-12: Example of refinementtraceabil ity rule ccnencnneenes 167

IX

Figur e 5-13: Example of sazisfia /u'//'t)."traceabil Ity rule e 168
Fig ure 5- 14: Example of impleme ntstraceabiuty £ul e e 169
Figur e 5- 15: Example of differnttraceabil ity rul e cenreeeenirieieenennns 170
Figur e 5- 16: Example of overlialmtraceabil ity rul e mnennnneenneennnns 172
Fig ure 5-17: Example of o0v e riapstraceabiuty £ul e oo, 173
Fig ure 5- 18: A STRUCTURE OF AN USER-DEFINED FUNCTION........c.ccocoviuimnimcirinnnes 175
Fig ure 5- 19: GETTRANSITIONINSTATE FUNCTION.......ccooviemiciieiricircciicreenenes 175
Figure 5-20: Extract ofa statechart diagraMu e 176
Figure 5-21:getStateinSta te function weneeeeeeseeeseeesenens 176
FIGURE 5- 22: GEITRANSITIONINSTATE FUNCTION......occooocomrcrmsensnensesorsnessee 176
Fig ure 5-23: Extract of a sequence diagra M. 177
Fig ure 5- 24: GETOBJECTINSEQ FUNCTION........cccooviiiiiiiciireeireiceceecieeeiencnnne 177
Figur e 5- 25: GETCLASSOBJECTINSEQ FUNCTION........ccoeeeiniiemicinieeiriceienreeneeeennes 177
Fig ure 5- 26: GETCLASSINCLASS FUNCTION........coviiiiriniieiireencireieeieeicieeenenscnenne 178
Fig ure 5- 27: EXTRACT OF A CLASS DIAGRAM........ovvimiiiiiriiriceiiceeeceane 178
Fig ure 5- 28: GETPARENTFEATURE FUNCTION........ccccviiiiniiiiciiiieeeneeccanes 178
Figure 5-29: Extract of feature model cnnncenncenennereeneneereeseeeeenenes 179
Figure 5-30: getChil drenFea tu re fun ction wnnnnnnennneneeneneseseseeenene 179
Fig ure 5-31l:getFeaturcofSubsystem fun ction wummerreresereesnenens 179
Fig ure 5- 32: GETOPERATIONINSEQ FUNCTION........cocoviieiicciiicicieiecciceeireaenene 180
Fig ure 5- 33: GETOPERATIONINCLASS FUNCTION......cooimiiieiimiiieiiicicneecieeenens 180
FIGURE 5- 34:getStateofOperationinState FUNCITON....ccovvieiirenereneeeereneenes 180
Fig ure 5- 35: GETPARENTOFVARIANTFEATURES FUNCTION........coooviiiciiciiiciaes 181
Fig ure 5- 36: GETPARENTOFVARIANTCLASSES FUNCTION.......coccovvvimeiiiriiricnennes 181
HGURE 5- 37: GETPARENTCLASS FUNCTION........cocoouniiiiiiniiiiniinieeissississscieneneas 182
Fig ure 5- 38: GETQ ASSID FUNCTION........cooiiiiiiiiiiiiicieicieceeessenessseescnens 182
Fig ure 5- 39: THE DECLARATION OF A NAMESPACE REFERRING TO EXTRA
functionsin Java packag e 183
Fig ure 5-40:Cal ling an extended func tion implemented inJava ... 183
Figure 6- 1: The Architecture of XTraQue To 0l woeeeeeeeeeereeeeeeeeeene 189
Figur e 6-2: An XTraQue interface fo r specifying a scope of traceabil ity
GENERATION.......coiiiiiiiciiiiicicieieiee et 193
Figur e 6- 3: Example interface demonstrating specifying the scope of

Figur e

F‘igur e

Fig ure

Fig ure

TRACEABILITY GENFRATION BETWEEN DOCUMENTS AT THE LEVELS
OF PRODUCT LINE AND TWO PRODUCT MEMBERS, MODEL PM 7 AND
MODELPM2......oooiiiiiieineisieieisesenisis e snssanes 194
6-4: An XTraQue interface fo r specifying types of document
ARTIFACTS AND RELATIONSHIPS ACCORDING TO TRACING BETWEEN
THE PRODUCT-LINE AND TWO PRODUCT MEMBERS..............ccccovvnnee. 196

6- 5:An XTraQue interface for specifying typesof document
ARTIFACTS AND RELATIONSHIPS ACCORDING TO TRACING BETWEEN

TWO PRODUCT MEMBERS, MODEL PM1 ANDMODEL, PM2................. 198
6- 6: Example interface demonstrating specif ying of types of
DOCUMENT ARTIFACTS AND RELATIONSHIDS.........coviieiiiiciiinee 199

6-7:An XTraQue interface fo r specifying particular documents
AND RELATIONSHIPS ACCORDING TO THE SPECIFIED CRITERIA FROM

THE PREVIOUS INTERFACE (FIGURE 6-4).....c.ccccennirereiicierennieierennens 200

Fig ure

F‘ig ure

Fig ure
Fig ure

Fig ure
Figure
Fig ure
Figure
Figu re
Fig ure
Fig ure
Fig ure

Fig ure

Fig ure
Fig ure
Figu re
Fig ure
Fig ure
Figu re
Fig ure

6- 8 An XTraQue interface fo r specif ying particular documents
AND RELATIONSHIPS ACCORDING TO THE SPECIFIED CRITERIA FROM
THE PREVIOUS INTERFACE (FIGURE 6-5) ..o 201

6-9:Example interface demonstrating:displaying the context

OF AN XML-BASED DOCUMENT; AND SELECTION OF DOCUMENTIS

TYPES AND RELATIONSHIP TYPES TO BETRACED..........ccocovuiiiinnnnee 202
6-10: An XTraQue interface for creating and verifying th e

TRACEABILITY RULES ..ot 203
6-11: Example interface for creating and verifying traceabil ity

RULES. ..o 204
T-1:Internetappijecation process Model wenrerrreneienerenenesenennens 217
7-2:Module model for Internetappjjecation process model ...222
B-T1:Scenario L 231
8- 2 SCeNATI0 2 ottt bbb 233
8- 3:SCenario 3 et 236
8- 41 SCenario 4ttt 238
8- 5:8CENATI0 5 ittt 239
8-60:Traceability relationsdetected by the traceability user

and XTraQue (A),by traceability user (B),an d by XTraQue

8-7:(@a)Precision an d recall figures of each scenario;(b)

Comparison of precision and recall figures fr om five

R o I T e TS 247
D-1:Use case sending a me s5a 8¢ cummmeeenneeisereeseneneseeserneseeneeaenene 332
D-3:Use case 7aking a Pictare ensieneiessenssessesssessssessssessesessens 337
D-6:Asequence diagramMaking a ¢ all ecececenecsiecesensseesninaenas 342
D-7:Asequence diagram Se nding data cneiniscenssssssssnsenens 343
D-8 Asequence diagram Ta king a ph o#0 cooeveeeenereeeneeeneeeneceeenene 344
D-9:Asequence diagram Transfering data ccececsveeeenn, 345
D-10: Astatechart diagramof product member PMT.coeeuenneeee. 346

X1

List of Tables

Table 2-1:Different traceability relatio nships betw ee n dif ferent

Table 2-2: Comparison of techniques for tr ac ea bil it y'representation..59

Table 3-1 presentsthe classification of relatio nships betw een features:

Table 3-2: Comparison approaches fo r product famil y sy st em

devel OPMEN i

Table 4-1: Documents used in our approach ..
Table 4-2: Summary of traceabil ity rela tion groups
Table 4-3:Traceability Reference Mo d el weecenneeieniieeieeiereessseesesenes
Table 5-1: Variation of containsln Distance function with dif ferent

S B 8 L PPN

Table 5-2:Alayout of findSynonymfun citio N .eeereeereeereeerereereeeereenns
Table 5-3: Alayout of s£7ingnospace FUNCTION worvrrieirvereseeieresssssesessssssesennns
Table 5-4:Alayout of 5670 ffUNCEION woeereeerereeeeeeteteee ettt esesene
Table 5-5:Alayout of ¢h e #Distance Control function ..
Table 6-1: Ico ns in panel (@) oot nenseseaens
Table 7-1: Func d on al ities of Mobil e Phone Membe s umnnnnrnerenenenenen.
Table 7-2: Specifications of Mobil e Phone Membe 5 nrnnrnnnnennerenenenen.
Table 7-3:Modules for short messaging service (SMS) control process
MODEL....ooiiiiiiiiiciii e 218
Table 7-4: Modules for Internet application process model uvevecennne 220
Table 8-1: Documentsand traceabil ity relations for scenario 1 ... 232
Table 8-2:Documentsan d traceabil ity relations for scenario 2 ... 235
Table 8-3:Documentsan d traceability relations for scenario 3 .. 237
Table 84 Documentsan d traceabil ity relations for scenario 4 ... 238
Table 8 5 Documentsand traceability relations for scenario 5. 240

Table 8 6: Summary of documents,fil es,traceabil ity rule templates,and

INSTANTIATED TRACEABILITY RULES USED IN THE EXPERIMENTS... 241
Table 8 7:Summary of traceabil ity relationsdetected in scenario 1. 242
Table 8-8 Summary of traceability relationsdetected inscenario 2. 242
Table 8- 9:Summary of traceabil ity relations detected in scenario 3..243
Table 8-10: Summary of traceabil ity relationsdetected in scenario 4243
Table 8-11: Summary of traceability relationsdetected in scenario 5243
Table 8-12: Summary of traceabil ity relations detected in th e

[0 G ST b B s I o U U
Table 8-13: Precision an d Recall Rates (%)

Table 8-14: Summary of recall and precision ratesachieved by several

existing traceability approaches, 248

Acknowledgement

I would like to express my sincere gratitude to my supervisor Dr. Andrea Zisman
for her insight and support throughout all stages of thesis. I would also like to thank
my reviewers, Dr. Bill Karakostas and Prof. Dr. Mike Mannion for their
constructive comments. 1 am very grateful to Dhurakijpundij University, Thailand,

for the financial support they provided during the course of this study.

I am grateful to Neek Fenwick and Dr. Kelly Androutsopoulos to read drafts of the
thesis and providing valuable comments. I would also like to thank Dr. Penny Noy
and Dr. Edward Parkinson for their general advice, and Dr. Thanwadee Sunetnanta

for her constructive advice and feedback.

I would like to thank people at City U., especially Gilberto Cysneiros for his
invaluable friendship and encouragement, Cristina Arciniegas for her lovely support,
and Khaled Mahbub for his helpful feedback. Many thanks are due to Annie
Benavidis for his loving support. Thanks also go to Mark Firman, Tshiamo

Motshegwa, and Greek family for providing an appealing environment for working.

Finally, I would like to thank my parents for their untiring love, support, and
understanding through the years, my sister for encouraging me with her belief in
me, my brothers for their wonderful backup. Special thanks are given to Rathpol
Bumrungkittikul for a wonderful support through the toughest of times and for

always believing in me.

XV

Declaration

Some of the material in this thesis has been previously published in the following

papers:

Jirapanthong, W. 2004. Towards a Traceability Approach for Product Family
Systems. International Software Product Lines Young Researchers Workshop in
International S oftware Product Line Conference, Boston, MA.

jirapanthong, W., and A. Zisman. 2004. Traceability for Product Family
Systems: An XQuery Approach. International Workshop on Requirements Reuse in
System Family Engineering in International Conference on Software Reuse, Madrid, Spain.

Jirapanthong, W., and A. Zisman. 2005. Supporting Product Line Development
through Traceability. 72th Asia-Padfic Software Engineering Conference (APSEC
2005), Taipei, Taiwan.

Jirapanthong, W., and A. Zisman. 2006. XTraQue: Traceability for Product
Line Systems. Software and Systems Modeling (ander review).

I grant powers of discretion to the University librarian to allow this thesis to be

copied in whole or in part without further reference to me. This permission covers

only single copies made for study purposes, subject to normal conditions of

acknowledgement.

XVII

Abstract

Software traceability has been recognized as an important activity in software
system development. Traceability relations can improve the quality of a system
being developed, as well as reduce the time and cost associated with the
development. In particular, traceability relations can facilitate the development
process, reuse of parts of the systems by comparing artefacts, validation that a
system meets its requirements, understanding the rationale for certain design and
implementation decisions, and analysis of the implications of changes in the system.
However, support for traceability in software engineering environments and tools
are not always adequate. In addition, automatic generation and maintenance of

traceability relations are not easy tasks.

In contrast, product family systems, in which software systems share a common
set of features and new product members can be built around a set of reusable
artefacts, is considered an important paradigm for software system engineering.
Despite its importance and advances in the area, the support for common and
variable aspects among applications and the engineering of reusable and adaptable
components are difficult tasks. This is mainly due to the large number and
heterogeneity' of documents generated during the development of product family

systems.

The underlying principle of this thesis is to use of traceability to support the
difficulties associated with product family systems. More specifically, traceability can
assist with the identification of common and variable functionalities of the product
members, reduction of inconsistencies between product members, reuse of available
core assets, and establishment of relationships between product members and

product family architectures.

Xix

The thesis presents a traceability reference mode/ with nine different types of
traceability relations for eight different types of documents generated in feature-
based object-oriented methodologies, and a ride-based approach to allow automatic
generation of traceability relations in documents produced during the development
of software product family systems. The documents are represented in XML and
the different types of traceability relations are identified by using traceability rules
expressed in an extension of XQuery. The textual sentences of the XML documents
are annotated with part-of-speech assighments indicating the grammatical roles of
the various words in the sentence. The traceability rules are based on (i) the
semantic of the documents being compared, (i) the various types of traceability
relations in the product family domain, (iii) the grammatical roles of the words in
the textual parts of the documents, and (iv) synonyms and distance of words being

compared in a text.

A prototype tool called XTraQue has been developed to demonstrate and
evaluate automatic generation of traceability relations. We use a case study from
mobile phone domain to illustrate the feasibility and applicability of the approach

and to evaluate the work in terms of recall and precision measures.

Chapter 1

Introduction

In recent years we have been experiencing the proliferation of a large number of
software systems that share a common set of features and have also their own
distinct characteristics. Examples of such systems are found in the
telecommunication domain in which products including personal digital assistants
(PDAs), mobile phones, and pagers have many common characteristics. Other
examples are found in the automotive, electronics, medical imaging, and elevator
control domains. These systems are known in the literature as productfamily systems
(Ardis and Weiss 1997, Bass et al. 2003, CAFE 2003, Clements and Northrop 2002,
Clements and Northrop 2004, Staudenmayer and Perry 1996, Weiss and Lai 1999)
and are characterized as being software systems that share a common set of features
and are developed based on the reuse of core assets and addition of new

functionalities.

Various methodologies and approaches have been proposed to support the
development of software systems based on product family system development.
Examples of these methodologies and approaches are FODA (Kang et al. 1990),
FeatuRSEB (Griss et al. 1998), CAFE (CAFE 2003), FAST (Weiss 1995), FORM
(Kang et al. 1998), PuLSE (Bayer et al. 1999), and KobrA (Atkinson et al. 2000).

The above methodologies and approaches are also known as domain-engineering
approaches and emphasise a group of related applications in a domain, instead of
single applications (Northrop 2002). Their main focus is the identification and
analysis of commonality and variability principles among applications in a domain in

order to engineer reusable and adaptable components and, therefore, support

CHAPTER 1 INTRODUCTION

product family system development. However, despite its importance and advances
in the area, the support for common and variable aspects among applications and
the engineering of reusable and adaptable components are not easy tasks. This is
mainly due to the large number and heterogeneity of documents generated during
the development of product family systems. Other difficulties are concerned with
the (a) necessity of having a basic understanding of the variability consequences
during the different development phases of software products by all involved
parties (Sinnema 2004, Svahnberg and Bosch 2000, Thiel and Hein 2002), (b)
necessity of establishing relationships between product members and product family
artefacts, and relationships between product members artefacts (Bayer and Widen
2002, Mohan and Ramesh 2002), (c) poor support for capturing, designing, and
representing requirements for the whole product family and for specific product
members (Fantechi et al. 2004, Mannion et al. 2000), (d) poor support for handling
complex relations among product members (Bayer and Widen 2002, Mohan and
Ramesh 2002), and (¢) poor support for maintaining information about the

development process (Meyer 1998).

In this thesis, we advocate the use of software traceability to support the difficulties
associated with product family system development. Software traceability has been
recognized as an important activity in software system development in which
traceability relations are generated between software artefacts and between
stakeholders and software artefacts (Gotel and Finkelstein 1995). Software
traceability7can improve the quality? of the product being developed and reduce cost
and time of development (Gotel and Finkelstein 1994, Pohl 1996a, Ramesh and
Jarke 2001). It supports software developers in many activities such as verifying
requirements, ensuring completeness and supporting evolution of software systems,
enhancing maintainability, and maintaining consistency of software systems,
understanding the rationale for certain design and implementation decisions, and

analysis of the implications of changes in the system.

The need for traceability7is due to the large amount and heterogeneity7of software

artefacts that are generated during the development of software systems and the

CHAPTER 1 INTRODUCTION

lack of formalism when developing software systems. As affirmed by (Finkelstein
1991), if formal methodologies are used during the development of software system
and systems are generated from formal specifications without requiring changes to

the code, then there is no need for traceability.

Traceability can support the difficulties associated with product family systems since
traceability relations can assist with the (i) identification of common and variable
functionalities in the product members, (i) reduction of inconsistencies between
product members, (iii) reuse of core assets that are available in the product family
system, (iv) maintenance of historical information of the development process, and
(v) establishment of relationships between core assets of product family systems

and product members specification documents.

Although many approaches for software traceability have been proposed, support
for traceability in software engineering environments and tools are not always
adequate (Ramesh 2001). For example, (Bayer 2001; RTM; DOORS) assume that
traceability relations should be established manually which are error-prone, difficult,
time consuming, expensive, complex, and limited in expressiveness. Attempts have
been made to alleviate the issues associated with manual techniques and, more
recently, other approaches have been proposed to support semi-automatic or fully
automatic generation of traceability relations (Antoniol et al. 2002, Cleland-Huang et
al. 2002b, Egyed and Grunbacher 2002, Marcus and Meletic 2003, Pinheiro 2000,
Pohl 1996a, Ramesh and Dhar 1992, Sherba et al. 2003b, Spanoudakis et al. 2004).

However, in the majority of those approaches, the generated traceability relations do
not have enough semantic meanings to support the full benefits that are provided
by software traceability. Exceptions are found in the approaches proposed by
(Alexander 2003, Gotel and Finkelstein 1994, Knethen et al. 2002, Pohl 1996b,
Ramesh and Jarke 2001, Sherba et al. 2003a, Spanoudakis et al. 2004) that present
different types of traceability relations. However, these approaches do not cover
product family systems and do not tackle the similar and different perspectives

between software artefacts. Moreover, traceability practice becomes more difficult

CHAPTER 1. INTRODUCTION

and ambiguous in product family systems due to their rigidness and complexity
(Bayer and Widen 2002, CAFE 2003, Lago et al. 2004). Although the use of
traceability relations to support product family system development has been
advocated in (Atkinson et al. 2002, Bayer and Widen 2002, Berg and Bishop 2005,
CAFE 2003, Coriat et al. 2000, Dick 1999, ESAPS, Jazayeri et al. 2000, Kim et al.
2005, Lago et al. 2004, Mohan and Ramesh 2002, Plankl and Bockle 2001, PLP,
Riebisch and Philippow 2001), the majority of these approaches focus on
traceability meta models and do not provide ways of generating traceability relations

automatically.

In this thesis, we present a rule-based approach to allow automatic generation of
traceability relations between documents created during the development of product
family systems. Our work largely extends the work from (Spanoudakis et al. 2004,
Zisman et al. 2002a). This previous work proposes a rule-based approach to allow
an automatic generation of traceability' relations between different types of
requirements documents such as customer requirements specifications, use case
specification, and analysis object models. In this work, three different types of
traceability relations have been proposed, namely overlaps, requires, and realises

relations.

In contrast, the work in this thesis (a) describes a traceability' reference model with
nine different types of traceability' relations for eight different types of feature-based
object-oriented documents, and (b) supports automatic generation of all these nine
traceability relations between software artefacts of product family’s core assets (i.e.

requirements and software architecture) and software artefacts of product members.

The documents used in our approach are based on feature-based object-oriented
methodologies. A feature-based approach supports domain analysis and design,
while an object-oriented approach assists with the development of various product
members. Our approach applies the feature oriented reuse method (FORM) (Kang et al.
1998) and the unified modeling language (UML) (UML). The use of FORM is due

to several reasons, namely (a) practicality’ —FORM has been applied to several

CHAPTER 1 INTRODUCTION

industrial product family systems such as elevator control systems, electronic
bulletin board systems, yard automation systems, and PBX; (b) maturity' - FORM is
an extension of feature-oriented approach to domain analysis (FODA) (Kang et al. 1990)
and includes domain design and implementation phases; (c) extensibility - FORM is
extensible and can be extended to accommodate the object-oriented techniques for
reusable components in the architecture of product family; (d) simplicity - FORALI is
based on a feature modeling which becomes a common technique in software
engineering process and has provided a tool called ADASAL (ASADAL) to assist

developers during domain analysis and design.

On the other hand, UML has been chosen as the object-oriented methodology due
to its (a) maturity - many approaches and methodologies have been applied with
UML over the years; (b) compliance - UML is the de facto modeling language for
software analysis and design in object-oriented systems; and (c) practicality - many

commercial software tools support UML modeling.

The documents used in our approach include feature, subsystem, process, and module
models to specify the information of core assets, and wuse cases, class, statechart, and
sequence diagrams to specify the information of product members. In our approach,
the documents are represented in XML and the different types of traceability
relations are identified by using traceability rules expressed in an extension of
XQuery (XQuery). The textual sentences of the XML documents are annotated
with part-of-speech assighments indicating the grammatical roles of the various
words in the sentence. These grammatical roles are used to assist with the matching
of textual terms in the documents. The traceability rules are classified as direct rules,
i.e. rules that support the creation of traceability relations that do not depend on the
existence of other relations; and zudirect rules, i.e. rules that require the existence of
previously generated relations. In both types of rules, when a matching expected by
a rule is found, a traceability relation of the type specified in the rule is created

between parts of the documents being compared by the rule.

CHAPTER 1 INTRODUCTION

A prototype tool called XTraQue has been implemented in order to illustrate and
evaluate the work. The evaluation of the work has been performed in a mobile
phone case study. The results of this evaluation are encouraging and better than

other approaches that support automatic generation of traceability relations.

The remainder of this chapter describes the hypothesis, problem definition and

objectives, contribution, and thesis outline.

1.1. Hypothesis

The hypothesis of the work presented in this thesis is that:

It ispossible to antomatically generate traceability relations for

productfamily systems.

We advocate the fact that traceability' relations should be generated automatically,
since manual traceability generation is error-prone, time consuming, and costly,
leading to the situation in which traceability is rarely established (Bayer and Widen
2002, CAFE 2003, Lago et al. 2004). This is also the case for product family systems
in which large numbers of different artefacts are created during the development
process. We expect to reduce the effort of activity domain and application
engineering that require traceability’ practice during the development of product
family systems by enabling automatic support for traceability generation process.
Examples of the activities in domain and application engineering which requires
using traceability' relations are such as (i) verifying requirements; (i) understanding
common and variable aspects between product members; (iii) understanding the
rationale for certain requirement and design decisions, and analysis of the
implications of changes in product family systems; (iv) ensuring completeness and
supporting evolution of product family systems; and (v) maintaining consistency of

product members in a family.

1.2 Problem Definition and Objectives

1.2. Problem Definition and Objectives

More specifically, the work presented in this thesis is aimed to tackle two main
problems in the areas of software traceability and product family systems as

discussed below:

I. The Lack of Automatic Support for Traceability between
Artefacts of Product Family Systems

As discussed, there is poor support or mechanisms to establish traceability7 in
product family systems (Fantecbi et al. 2004, Lago et al. 2004). Although there are
many approaches to support establishment of traceability7in single product software
systems, these approaches cannot be used to support traceability7of product family
systems (Antoniol et al. 2002, Clements and Northrop 2002, Egyed and Grunbacher
2002, Gotel and Finkelstein 1994, Marcus and Meletic 2003, Pohl 1996b, Ramesh
and Jarke 2001, Sherba et al. 2003a). On the other hand, although some recent
approaches have been proposed to support the development of product family
systems and tackle the traceability7issue, they do not provide automatic generation
of traceability7 relations (Bayzr et al. 1999, CAFE 2003, Coriat et al. 2000, ESAPS,
Hull et al. 2002, Kim et al. 2005, Plankl and Bockle 2001, Riebisch and Philippow
2001).

Our work is focused on establishing traceability relations automatically for artefacts

generated during domain analysis and design of product family systems.

II. The Difficulty of Identifying the Semantics of Traceability
Relations in the Domain of Product Family Systems

Due to a large size, diversity, and complexity of the artefacts in product family
systems, it is difficult to identify the semantics of traceability relations in these
artefacts (Bayer and Widen 2002, Mohan and Ramesh 2002). This is particularly true
in the case of common and variable relations between product family artefacts that

are required to be considered during the development of product family systems

CHAPTER I. INTRODUCTION

(Bayer and Widen 2002, Coriat et ai. 2000, Kang et al. 1998, Mohan and Ramesh
2002, Riebisch and Philippow 2001).

Our work is aimed to generate traceability relations that provide semantics to the
relationships. Some of traceability relations are concerned with common and
variable aspects between artefacts in product family systems, while other relations
are concerned with satisfaction, containment, dependency, evolution, overlap,

implementation, and refinement aspects.

1.3. Contribution of the Thesis

The main contributions of our work are:

I. Traceability Reference Model for Product Family Systems

We have investigated which artefacts are playing the main roles in the process of
product family system development and classified relationships which exist between
those artefacts. The concepts and motivation of the classification of traceability
relations in the domain of product family systems have been initially proposed in
(Jirapanthong 2004, Jirapanthong and Zisman 2004). The traceability reference
model has been initially described in (Jirapanthong and Zisman 2005) and also
appeared in (Jirapanthong and Zisman 2000).

II. Rule-Based Approach for Generating Traceability Relations
We apply a rule-based approach for automatically establishing traceability relations
according to the traceability reference model. The concept of the rule-based
approach for traceability generation has been initially presented in (Jirapanthong
2004, Jirapanthong and Zisman 2004) and also appeared in (Jirapanthong and
Zisman 2005, jirapanthong and Zisman 2006). The rule-based approach takes into
consideration:

(@) the semantics of document types;

(b) the types of traceability relations;

(¢) the part-of-speech of the words in textual sentences in the documents; and

1.3 Contribution ofthe Thesis

(d) the synonym and distance of words in textual sentences in the documents.

ITII. Evaluation of the Rule-based Traceability Approach for
Product Family Systems

We have demonstrated the rule-based approach for generating the traceability'
relations in the domain of product family systems through five different scenarios.
Each scenario presents the experiment of generating the traceability relations that
occurs during the process of product family system development. The experiments
of the approach are applied with the XTraQite tool. The results of the generation of
traceability relations in each scenario are evaluated in order to justify the research in
this thesis. We have also illustrated the demonstration and evaluation of our work in

(Jirapanthong and Zisman 20006).

1.4. Thesis Outline

The remainder of this thesis is organized in three parts composed of eight chapters

and four appendices as described below:

Part I: Literature Review
Chapter 2 provides a survey on software traceability, including existing problems

and current approaches to support software traceability'.

Chapter 3 presents a survey on product family, including the current methods and
techniques for product family system development, as well as review of existing

approaches for traceability to product family systems.

Part II: The Approach
Chapter 4 presents the traceability' reference model, describes the different types of
documents used in our work, and introduces the classification of traceability'

relationship types for product family systems.

CHAPTER I INTRODUCTION

Chapter 5 addresses our traceability platform for product family systems. The
chapter elaborates the proposed approach including traceability rules, traceability

relations, and extra functions.

Chapter 6 discusses XTraQue, a prototype tool to allow automatic generation of

traceability relations.

Chapter 7 describes a case study of mobile phone systems used to illustrate and
evaluate our work. We present the family of mobile-phone products and its

members according to the documents of our concern.

Part III: Evaluation and Conclusion

Chapter 8 contains a description of the experiments that we have developed to

demonstrate the work and evaluates the experimental results of our work.

Chapter 9 discusses the conclusions of the thesis and directions for future work.

Appendices:
Appendix A describes XML schemas for traceability rules (direct and indirect
traceability rules) and XML schemas for some documents of our concern i.e. feature

model, use case, subsystem model, process model, and module model.

Appendix B presents the traceability' rules used in our work.

Appendix C presents the extra functions that we have implemented in XQuery

language.

Appendix D presents examples of documents created for the case study.

Part I: Literature Review

Chapter 2

Software Traceability

This chapter describes a literature of software traceability including current
problems, existing approaches, techniques and tools for traceability activities i.e.
traceability generation, representation, recording and maintenance, as well as use of
software traceability during software development life-cycle. The definition of,
benefits with, and current problems of software traceability' ate given in Section 2.1,
Section 2.2, and Section 2.3, respectively. In Section 2.4, we describe types of
traceability' relations in relation to the types of software artefacts identified for
traceability' relations. Section 2.5 illustrates existing approaches for traceability
generation. In Section 2.6, we summarise techniques for representing, recording,
and maintenance of traceability relations. Section 2.7 describes existing tools which

are used to supportt traceability' activities.

2.1. Definition of Traceability

The term traceability has been initially used as requirements traceability and is concerned
with the ability to relate requirements with all the other software artefacts generated
during the development of software system (Gotel and Finkelstein 1994). More
recently, we have been experiencing the use of the term soffware traceability, defined
by (Antoniol et al. 2000, Gotel and Finkelstein 1995, Lindvall and Sandahl. 1996,
Pohl 1996b, Ramesh and Jarke 2001, Zisman et al. 2002b) as the ability' to relate
software artefacts created during the life-cycle of software system development such
as retrieval documents, requirement specifications, analysis and design models,

source codes, and test cases.

CHAPTER 2. SOFTWARE TRACEABILITY

Gotel and Finkelstein (Gotel and Finkelstein 1994) proposed traceability relations to
be bidirectional relations in which requirements can be associated with other
software artefacts in both forward and backward directions. They classified the
categories associated with traceability', namely (a) pre-requirements specification (pre-RS)
traceability, in which traceability' relations associate requirements with source of
requirements, and (b) pos-reqnirements specification (pos-RS) traceability, in which
traceability relations associate requirements with other different artefacts generated

in different phases of development life-cycle.

Similar to (Gotel and Finkelstein 1994), Jarke (Jarke 1998) affirmed that the ability
to perform traceability can be accomplished by four different types of relations in
forward and backward directions. These relations are (a) forward from the requirements,
which relate a particular requirement forward to design artefacts, (b) backward to the
requirements, which relate a particular design artefact backward to requirements, (c)
forward to the requirements, which relate customer’s needs or source of requirements
forward to requirements, and (d) backward from the requirements, which relate

requirements backward to customer’s needs of source of requirements.

Lawrence and Bohner (Lawrence-Pfleeger and Bohner 1990) have proposed the
concepts of horigontal and vertical traceability'. By vertical traceability, they mean the
association between different types of artefacts in different phases of software
development life-cycle. By horizontal traceability, they mean the association
between same types of artefacts in different granularity levels of software
development life-cycle. The concepts are applied by (ESAPS) that use a standard V-
model to represent different artefacts from different phases in software
development and traceability between those types of artefacts such as: (a) vertical
traceability between system requirements and system test, between subsystem
requirements and subsystem test, and component requirements and component test;
(b) horizontal traceability between system requirements and subsystem

requirements, and subsystem requirements and component requirements.

14

2.2 Benefits with Software Traceability

2.2. Benefits with Software Traceability

We describe below some of the benefits associated with software traceability. We
divide these benefits into two groups. The first group is concerned with economic
aspects of software traceability while the second group is concerned with the
different ways of using software traceability7in the various activities of the software

development life-cycle.

2.2.1. Economic Aspects

Software traceability7 has been well-known as an important activity in software
development life-cycle. The desirability7of software traceability7is worth considering
in terms of its expected benefits relative to its cost. The fact is that the cost spent
for establishing traceability relations is considered an extra cost during the
development of software systems. However, the risk of not performing software
traceability7 during software system development is significant. The costs for
establishing software traceability are mainly concerned with two factors: (i) time and
(i) manpower. According to (Leishman and Cook 2002), possible risks of not
performing software traceability are: (a) a software system is not valid for delivery;
(b) a software system needs to be fully reworked after changes; and (c) the reuse of

existing software artefacts is invalid.

Currently, software traceability is mandated by many standards (IEC 1999,
UK_Ministry_of_Defence 1997) for software system development. According to
the current literature, many approaches focus on putting software traceability into
practice. A few works have been found investigating the costs and potential benefits
of providing software traceability to the software development lifecycle. Examples
of those works are (Murray et al. 2002, Ramesh et al. 1995b). The work in (Murray
et al. 2002) has shown that software traceability appeals a low cost for reasonable
benefit. The authors created a case study of three software systems and experienced
the identification of relevant artefacts and generation of traceability7 relations
between those artefacts. According to their experiments, it took 30 hours and two

engineers for establishing traceability7 relations between 19 documents. The

15

CHAPTER 2. SOFTWARE TRACEABILITY

traceability relations expressed information about a software system e.g. traceability
relations indicated whether or not all requirements have been implemented, all
design artefacts have been documented, and source codes have been implemented
accurately. The authors concluded the cost of establishing traceability is affordable
and the use of traceability relations is benefitial although they did not provide
quantitative evidences of traceability benifits. Similarly, Ramesh et al. (Ramesh et al.
1995b) created a case study of traceability implementation. The authors discussed
the cost and benefits of providing traceability in a software system. Traceability
relations were used to decrease time and effort in the development lifecycle.
According to their case study, software traceability was established with 60 work-
months but dramatically decreased the budget of software system development. The
authors discussed that establishment of software traceability increases workload and
documentation. This leaded an initial budget of the software development higher;
however, total lifecycle costs due to the development were significantly reduced.
Nonetheless, the authors did not provide any quantitative study how much the cost

was reduced.

Additionally, the use of software traceability tends to improve the software
development process. Many researches in the current literature focus on
investigating how to apply traceability relations effectively and practically. According
to (Lindvail and Sandahl 1998), traceability" relations are used for change-predicting
and conducting details to support impact analysis. The details are used to increase
the accuracy of cost estimation, and decrease time-consuming of analysis. In
addition to (Boehm 2000, Boechm et al. 2004), the reuse of software artefacts to
develop a new software system can cost around 15% of creating new artefacts.
Traceability relations assist the reuse of software artefacts by conducting details of
existing artefacts that are associated to new requirements. This concept has been
raised in (Alexander 2003, CAFE 2003, Dick 1999, ESAPS, Knethen et al. 2002,
Lindvall and K. 1996). The authors agreed applying of traceability relations increases
the proportion of reuse and decreases the cost of developing a new system. We
describe the following section the different use of traceability" relations to support

the activities in the software development process.

16

2.2 Benefits with Software Traceability

2.2.2. Different Use of Software Traceability

Software traceability can be used to assist with various activities in the development
of software systems. Examples of these activities are (a) domain impact analysis, (b)
validation, verification, and testing, (c) reuse of software artefacts, and (d)
understanding software artefacts. In this section we describe some of the

approaches that have been proposed to support those activities.

I. Domain Impact Analysis

The aim of domain impact analysis is to predict possible consequences of changes
in the software artefacts (Lindvall and Sandahl 1998, Lock et al. 1999). Software
traceability is a technique applied to support the activity of impact analysis. In
particular, traceability relations can be used to identify artefacts that have been
changed since traceability relations can associate relevant artefacts to a particular
artefact being changed. Traceability relations are realised as bi-directional links that
represent associations between two artefacts in both directions. In (Lindvall and
Sandahl 1998), domain impact analysis is defined as analyzing which artefacts of a
system are affected, and how the artefacts are affected, by a proposed change. When
a requirement is proposed to be changed, all other artefacts associated to the
requirement have to be changed to fulfill the new requirement. The authors
suggested that traceability relations assist the estimation of the cost of a proposed
change by considering which and how artefacts are affected. The authors also
suggested that the use of traceability relations is required in different situations to
support impact analysis of a proposed change. Examples of these situations are (i)
straightforward tracing between a changed requirement to other artefacts ie.
requirements, design models, source code; (i) tracing between textual references of
a changed requirement to external documents; and (iii) tracing common names
between artefacts regarding a changed requirement. In (Lock et al. 1999), the
authors proposed to apply traceability techniques to support domain impact
analysis. Their approach involves two activities namely: (i) #raceability extraction, which
generates traceability relations between artefacts for export to a database storage

system; and (i) #raceability analysis, which analyses and represents possible impact of a

17

CHAPTER 2. SOFTWARE TRACEABILITY

change using the database. However, in this work, the authors do not provide how

to generate the traceability relations.

In (Richardson and Green 2003, Richardson and Green 2004), the authors
proposed to use traceability relations to generate the effects of changes on source
codes. The traceability relations, called swrface traceability, are created between a
program specification and the corresponding synthesized code. In these work, the
synthesized codes are generated by applications namely, AUTOFILTER and GNU
C Compiler (GCC). However, the authors only described that the technique used for
the traceability generation is a lightweight technique. The small changes, called
perturbations, are created on the specifications and the effects on the synthesized

program are observed by using the traceability relations.

In (Cleland-Huang et al. 2005a), the authors proposed the Goal Centric Traceabiliy
(GCT) to support developers impact analysis on non-functional requirements. GCT
is implemented through the four phases of: (a) goa/ modeling, which is an activity of
modeling non-functional requirements with soffgoal interdependency graphs (S1G); (b)
impact detection, which traceability relations between functional model of a system and
possible effects of a change are generated; (c) goa/ analysis, which the effect on whole
system is developed according to the traceability relations created in previous phase;
and (d) decision making, which stakeholders determine the impact results and take a
decision regarding the change. In GCT, the generation of traceability relations is
implemented by using a probabilistic network model proposed in (Wong and Yao

1991, Wong and Yao 1995).

Some approaches (Cleland-Huang et al. 2002b, Dhar and Jarke 1988, Knethen
2002b, Pinheiro and Goguen 1996, Ramesh and Dhar 1992) have claimed that their
traceability techniques support domain impact analysis. In (Dhar and Jarke 1988),
the authors described a knowledge based dependency learning and prediction
mechanism regarding software artefacts in a system. In other words, traceability
relations representing the dependencies illustrate an impact between software

artefacts. The work is extended in (Ramesh and Dhar 1992). Ramesh and Dhar

18

2.2 Benefits with Software Traceability

defined an entity, namely changeproposals that appear in two sub-models of the
traceability7 reference model for high-end traceability users requirements management
and design allocation sub-models. The changeproposals entity is related to system_objectives
and requirements entities with traceability relations called generate and modify in the
requirements management sub-model while the entity is also related to design entity with
traceability relations called wodify in the design allocation sub-model. These types of
traceability relations are used to maintain the history of updated artefacts in a
system. Additionally, they defined an entity, namely systenz_subsystems_components, with
traceability relations depend _on and part_of used to support impact analysis. The
authors suggested that the depend_on traceability relations can assist the maintenance
of dependency information. The parz_of traceability relations are used to discover
dependencies within a particular artefact. In other words, the traceability relations
are used to justify which artefacts may affect a particular changed artefact. When an
artefact is created or modified, the traceability relations are used to assist in deciding

the impact on the whole system.

In (Pinheiro and Goguen 1996), domain impact analysis is achieved by two different
types of traceability relations: replace and abandoned relations. The replace relations are
used to identify which artefacts are substituted by a new or updated requirement,
while the abandoned relations are used to determine which artefacts become unused
in a system due to a changed requirement. Cleland-Huang et al (Cleland-Huang et al.
2002b) proposed a traceability approach to support the process of analyzing the
impact of a change with a concern on performance of the system by exercising
existing traceability relations to determine possible effects. The approach also
illustrates a comparison of the possible results to the original system. In (Knethen
2002a, Knethen 2002b), they described such an analysis. Egyed et al. (Egyed and
Grunbacher 2002) described that their traceability technique can also help in
analyzing the impact of a proposed change. When a proposed change is created,
new scenario is created and executed with a running system. The approach creates a

footprint reflecting the proposed change.

19

CHAPTER 2. SOFTWARE TRACEABILITY

II. Validation, Verification, and Testing

The quality of software systems relies on how the systems satisfy users’ needs.
Traceability relations are used to identify associations between artefacts created
during the development life-cycle. Finkelstein (Finkelstein 1991) pointed out a
system whose requirements have not been represented using formal methods, an aid
is required to achieve validation, verifying and testing of the requirements.
According to (IEEE-830 1998), system development requires software traceability
to assist validation, verification and testing the systems. In (Haumer et al. 2000), the
authors proposed an approach of applying traceability relations to support the
system development. The usage of a system is recorded and called Rea! World Scenes
(RWS). RWS and other observational materials recorded by using video are
structured as Rea/ World Example (RWE). RWE reflect software artefacts i.e.
requirements, design, program specifications in the system. The approach generates
traceability relations between fragments of RWE, called Rea/ World Example Fragment,
and the software artefacts. It uses these traceability relations for validation the
software artefacts in the current system against RWE. Murphy et al. (Murphy et al.
1995) presented an idea of formal specification language that supported system
validation. They described using traceability relations to support consistency
checking between requirements, designs and source codes. However, this work does

not describe different types of traceability relations existing between artefacts.

Experiments in (Ramesh and Edwards 1993) described that stakeholders earn
benefits from traceability relations in validation and verifying a system. For example,
project managers specify artefacts e.g. project plans, constraints, rules, and policies
and then assure that the specifications have been followed appropriately. Gotel et al
(Gotel and Finkelstein 1995) initially proposed that pre-traceability activities in the
system development, to assist activities of validation, verification and testing both
formal and informal requirements recorded in different ways ie. wish list, audio of
meeting, meeting transcript, initial requirements specification, email message, revised
requirements specification, and query. They suggested the generation of traceability7

relations that associate stakeholders and requirements and usage of these traceability

20

2.2 Benefits with Software Traceability

relations from requirements backward stakeholders. These assist traceability users to
assure validation, verifying and testing the requirements. In (Spanoudakis et al
1999), they are concerned with overlaps traceability relations. The work presents how
the overlap traceability’ relations are used to detect inconsistency between
requirements represented in a formal specification. Fiutem at el. (Fiutem and
Antoniol 1998) suggested that traceability relations can ensure consistency between
software artefact created during software development process. The authors present
an approach for checking the fulfillment of object-oriented design with source code
(implemented in C++). Checking is performed by applying traceability relations.
The traceability relations called as is are generated between design artefacts and
source code. These relations assist traceability users to deal with inconsistency
between design and code. The work in (NASA) proposed the software development
life-cycle and applied an activity called #raceability analysis during development
activities i.e. requirements analysis, design analysis, and implementation analysis. The
work uses traceability relations to validate and verify the satisfaction of

requirements, design and implementation.

In addition to, many traceability approaches (Letelier 2002, Pohl 1996b, Ramesh and
Jarke 2001) are aimed to support the activity of validation, verification and testing a
system. Pohl (Pohl 1996b) proposed the process-centered requirements engineering that
enable traceability activity in the system development and support validation,
verifying and testing the system. In (Ramesh and Jarke 2001), the authors proposed
the traceability meta model containing traceability reference model to support the
work in (Ramesh and Edwards 1993). In (Pinheiro 2000, Pinheiro and Goguen
1996), the authors claimed that their approach assisted the activities of validation,
verification and testing a system such as: (i) derive, refine, extract, and part o ftraceability
relations are used to describe the associations of requirements to other different
artefacts ie. design models and source code; (i) replace and abandon traceability
relations are used to identify unnecessary software artefacts existing during the
development; and (iii) zes? traceability relations are used to associate requirements
and test cases. Egyed (Egyed 2002) described two basic properties of traceability

relations: (1) bi-directionality that means a traceability relation associates two software

21

CHAPTER 2. SOFTWARE TRACEABILITY

artefacts in both two directions; and (i) #ranmsitivity that two traceability relations
relating three software artefacts can conclude another traceability relation between
two of those software artefacts. They described tracing between software artefacts in
a system by using those two properties in order to support validation and

verification the system.

ITI. Reuse of Software Artefacts

There have been many approaches (Alexander 2003, Antoniol et al. 2002, CAFE
2003, Dick 1999, ESAPS, Knethen et al. 2002, Lindvall and K. 1996) to using
traceability relations to assist with software system reuse. In (Knethen et al. 2002),
the approach is proposed for recycling requirements in a system. The authors
claimed that direct support for recycling requirements requires horizontal
traceability relations. In this work, use case specifications and UML diagrams are
used to represent requirements. The requirements are separately viewed as (a) logical-
entity, which is a textual part of requirements and (b) documentation entity, which is a
software artefact i.e. functional requirement and design class. There are two types of
models: () conceptual system model (CSM), which describes types of logical entities and
their traceability relations between requirements; and (i) conceptual documentation model
(CDM), which describes types of documentation entities and their traceability
relations between requirements. The CSM of new requirements and CDM of an
existing system are developed. Traceability relations between logical and
documentation entities are used to identify possible reused parts of existing

artefacts.

The works in (Alexander 2003) illustrate the deployment of traceability* relations in
industrials. New requirements are compared with an existing system by using
traceability relations between new and existing requirements. The traceability
relations help with diagnosis of reuse existing artefacts. Antoniol et al. (Antoniol et
al. 2002) proposed the generation of traceability* relations from existing source code
to new requirements represented in textual language. The authors suggested that the

activity helps locating possible reused source code for satisfying the new

22

2.2 Benefits with Software Traceability

requirements. In (Lindvall and K. 1996), the authors suggested that traceability
activity' helps discovering existing software artefacts i.e. design and components that
might be possible to reuse. Traceability relations are used for identification of such a

design or component relating to a new requirement.

Recently, in the domain of product family systems, there have been some
approaches that employed traceability activities in order to assist reuse. Dick (Dick
1999) suggested a rich traceability to enable supplemental artefacts for complying new
requirements to existing requirements. The idea of work is to support the reuse of
existing requirements for a new product member’s requirements by adding extra
requirements and removing unused requirements. The technique in this work is
extended in (Hull et al. 2002). The authors proposed an artefact namely satisfaction
arguments that are represented by using goal-structures charting AND/OR
decompositions. The satisfaction argument contains domain knowledge, decision
and issues artefacts in the domain of product family' systems. The aim of the
approach is to apply the rich traceability' to support the reuse of the requirements

for the product family system development.

Some projects (CAFE 2003, ESAPS) suggested traceability' activities in the product
family system development to support developers reuse of existing software
artefacts ie. requirements, design, software components, and source code to
develop new product member. Traceability relations between new requirements of
new product members and existing artefacts in product family systems are used to
identify relevant existing software artefacts to the newr product. The relevant
software artefacts (i.e. design models and reusable software components) are then

reused and integrated as a new product member in a product family.

IV. Understanding Software Artefacts
The works in (Ramesh and Edwards 1993, Ramesh et al. 1995) illustrated the
observation of issues in the software development life-cycle. The authors concluded

that stakeholders are required to understand software artefacts created during the

23

CHAPTER 2. SOFTWARE TRACEABILITY

software development process and suggested that traceability reladons can be used
by different stakeholders to understand an artefact in different specifications. For
example, software engineers need to understand requirements which are specified
by different stakeholders e.g. project managers and requirements engineers, in order

to implement the system.

In (Antoniol et al. 2002), they proposed to use traceability reladons to comprehend
existing source code. The traceability relations between source code and documents
(.e. handbook, design documents, and manual documents) support both zop-down
and bottom-up comprehension. In top-down comprehension, it provides a guideline
on where to look for details of a particular artefact, while, in bottom-up
comprehension, it provides the abstraction of artefacts. In (Maletic et al., Marcus
and Meletic 2003), the authors proposed an approach for generating traceability
relations between source codes artefacts with an emphasis on recognizing

similarities between them.

The works in (Fairley and Thayer 1997, Haumer et al. 1998, Weidenhaupt et al.
1998) illustrated that traceability relations are required to support planning and
controlling of projects. Traceability information is used to estimate and follow the
plans. In (Flaumer et al. 2000), traceability relations between existing artefacts are
used to understand the satisfaction of requirements. In addition to (Domges and
Pohl 1998, Haumer et al. 1999), the authors suggested rationale traceability relations
associated between software artefacts e.g. design decisions, alternatives, and
assumptions in a system to support system comprehension. Gotel and Finkelstein
(Gotel and Finkelstein 1994) suggested contribution traceability relations between
stakeholders and requirements. The supplement attributes e.g. stakeholders’ roles,
system’s policies, and constraints can be captured. These attributes in traceability

relations are used by stakeholders to comprehend the requirements.

Software traceability can be used during the system development process in
different activities. Many existing approaches for traceability generation have been

proposed to achieve these activities. However, the deployment of traceability

24

2.2 Benefits with Software Traceability

relations can be achieved and be more advantageous, if the traceability relations are

generated accurately, effectively and efficiently.

2.3. Problems with Software Traceability

Despite the importance of software traceability, establishing traceability relations is
not an easy task and there are many associated problems. We describe below these

problems.

I. The Difficulty to Manage Traceability in Large and Complex

Systems due to Numerous Software Artefacts

Software artefacts generated during the software development life-cycle are
numerous and diverse. Traceability activities, i.e. traceability generation, traceability
visualization, and traceability usage, require dealing with those software artefacts.
The traceability activities become more difficult when dealing with a large number

of heterogeneous software artefacts.

II. The Lack of Automadc Support for Traceability
Manual traceability establishment is error-prone, difficult, time-consuming,
expensive, complex, and limited on expressiveness. However, fully automatic

support for traceability in software engineering environments and tools are not

always adequate (Ramesh and Jarke 2001, Sherba et al. 2003b).

ITII. The Lack of Presenting of the Semantics of Traceability

Relations for Specific-Domain Systems

In general, traceability relations have different meanings and relate to different types
of artefacts. Many approaches (Alexander 2003, Dick 1999, Gotel and Finkelstein
1994, Knethen 2002a, Letelier 2002, Lindvall and Sandahl. 1996, Marcus and
Meletic 2003, Pohl 1996b, Ramesh and Jarke 2001, Zisman et al. 2002b) proposed
to classify different types of traceability relations based on different semantics

aspect. However, the majority of these approaches do not focus on the classification

25

CHAPTER 2. SOFTWARE TRACEABILITY

of traceability relations regarding some specific domains such as product family
systems (We describe the literature of product family systems and traceability for

these systems in Chapter 3).

IV. The Disjointed Process between Main Development Process

and Traceability Activities

Some existing approaches (Antoniol et al. 2000, Gotel and Finkelstein 1995,
Pinheiro and Goguen 1996, Pohl 1996b, Ramesh and Jarke 2001) proposed to
establish traceability during the creation of software artefacts. However, the
processes of software development and traceability are distinct. Stakeholders can be
confused about the best time to do traceability activity. Therefore, it is necessary to

support traceability activities after the artefacts have been created.

V. The Different Stakeholders’ Needs

Different stakeholders require different traceability information with different
perspectives and purposes of use. Software engineers need to justify if new
requirements affect an existing system and require traceability relations to support
impact analysis. Moreover, requirements engineers want to assure that all
requirements have been achieved, and to support validation and verification of the
system. Therefore, different traceability relations are needed to support different

activities for different stakeholders.

VI. The Difficulty to Trace on Distributed Artefacts from Diverse

Tools

There is a large number and heterogeneity of software artefacts in a system. The
software artefacts can be created from different tools. It becomes difficulty to

interoperate documents generated by different tools.

VII. The Fragility of Traceability Relations
Traceability relations are only beneficial to the development of software systems it

they have been established properly and correctly. Plowever, it is easy to break

26

2.3 Problems with Software Traceability

traceability in a system. More specifically, if there is a change to a system that
requires a change on some existing software artefacts, the existing traceability
relations will need to be updated. Unfortunately, it is not easy to maintain update of

traceability relations due to system’s change.

2.4. Reference Models and Classification for Traceability
Relations
Various reference models (Bayer and Widen 2002, CAFE, 2003, ESAPS, Kim et al.
2005, Lago et al. 2004, Letelier 2002, Pohl 1996b, Ramesh and Jarke 2001, Toranzo
and Castro 1999) and classification for traceability relations (Alexander 2003,
Antoniol et al. 2002, Bayer and Widen 2002, CAFE 2003, Cleland-Huang et al.
2002a, Cleland-Fluang et al. 2002b, Dick 1999, Egyed 2003, Egyed and Grunbacher
2002, Gotel and Finkelstein 1995, Hayes et al. 2003, Kim et al. 2005, Knethen
2002a, Lago et al. 2004, Lindvall and K. 1996, Malefic and Marcus 2001, Marcus and
Meletic 2003, Pinheiro and Goguen 1996, Pohl 1996b, Ramesh and Jarke 2001,
Sherba et al. 2003a, Spanoudakis et al. 2004, Zisman et al. 2002b) have been

proposed in the literature. We describe below some of these approaches.

2.4.1. Reference Models

Pohl (Pohl 1994, Pohl 1996b) proposed a traceability meta model and four
traceability reference models, namely specification model, representation model, agreement
model, and dependency model. The specification model represents information i.e. the
content of the specification independent of its representation according to some
guidelines, standards, or domain models. The representation model represents
information ie. the various representation formats used during the software
development process (e.g. natural language, graphical notations like ER diagrams or
DFDs, formal notations like O-Telos). The agreement model represents
information i.e. the different viewpoints of the stakeholders, arguments, alternative
solutions, and decisions created during the software development process. The first
three models represent traceability information while the dependency model defines

types of traceability relations to be used to relate various software artefacts

27

CHAPTER 2. SOFTWARE TRACEABILITY

according to the three models. The dependent<y model represents types of traceability
relations in five different groups called: (a) condition link; (b) content link; (c)
documentation link; (d) evolutionary link, and (e) abstraction link group. These five groups
include 18 concrete types of traceability relations that are captured between software
artefacts defined in the specification, representation, and agreement models. The condition
links are traceability relations that relate restrictions to software artefacts. The
content links are traceability relations that are concerned with the content of
software artefacts. The document links are traceability relations that relate software
artefacts to the source of the software artefacts. The evolutionary links are
traceability relations that associate between different types of software artefacts
created in different phases of software development. The abstraction links are
traceability relations that represent the abstractions and concretion of software

artefacts.

Based on experiences with the deployment of REMAP (Ramesh and Dhar 1992),
Ramesh and Jarke (Ramesh and Jarke 2001) developed two traceability reference
models for two groups of traceability' users: (a) low-end traceability users, concerned
with those users that have few years of experience in traceability and see the
importance of traceability' as a way of complying to standard; and (b) Ahigh-end
traceability users, concerned with those users that have many years of experience in
the area of traceability and see traceability as a way of guaranteeing customer
satisfaction and knowledge creation through the system development life cycle.
These two reference models, which one resembles the other, describe 50 types of
traceability relations and 31 types of entities. The reference model for low-end
traceability users contains seven types of traceability relations: derive, developedfor,
petformed_on, depend_on, inteiface_with, allocated_to, and satisfy. The reference model for
high-end traceability users contains four sub-models: () reguirements management’, (i)
rationale', (iii) design allocation', and (iv) compliance verification sub-models, and contains 43
types of traceability relations. All together, the 50 types of traceability relations
proposed in both high-end and low-end reference models are organized in four
groups namely: (a) satisfaction link, which is used to ensure that a requirement is

satisfied by a system; (b) evolution link, which is used to record the history' ot

28

2.4 Reference Models and Classificationfor Traceability Relations

documents (e.g. new, modified, and existing); (c) rationale link, which is used to
represent the rationale behind the creation of a document; and (d) dependency link,

which is used to represent dependencies between documents.

Additionally, Mohan and Ramesh (Mohan and Ramesh 2002) adapted the reference
models from (Ramesh and Jarke 2001) for identifying common and variable
requirements in the domain of product family systems. The adapted reference
model includes primitives such as architectural decisions and design decisions that

reflect the common and variable requirements in the product family system domain.

Toranzo and Castro (Toranzo and Castro 1999) described a reference model for
different views of traceability users (i.e. requirements engineer, software engineers,
and project engineers). However, the reference model presents types of traceability

relations without any explicit semantics.

Letelier (Letelier 2002) proposed a reference model focusing on requirement
specifications, namely TraceableSpecification. ~ The specific types of
TraceableSpecification are: (a) IXationaleSpecification, which describes a rationale
behind a TraceableSpecification, (b) RequirementsSpecification, which is a requirement
or group of requirements, (c) TestSpecification, which define a test for a requirement,
and (d) OherUML__Specijication, which is other type of UML models to elaborate the
specification of a requirement. The reference model includes two main groups of
traceability' relations: The first group presents associations between two
TraceableSpecifications by means of aggregation and contains relations called part of.
The second group is composed of seven types of traceability relations: (a) #racelo,
which represents a traceability relation between two TraceableSpecifications; (b)
rationaleOf which represents a traceability relation between a RationaleSpecification
and TraceableSpecification; (© validatedB, which relates a
RequirementsSpecification and TestSpecification; (d) verifiedBy, which represents that
a TestSpecification verifies OthetUML_Specification; (e) assignedlo, which
represents that OtherUML_Specification relates to RequirementsSpecification; (f)

modifies, which represents the a stakeholder or group of stakeholders that modify a

29

CHAPTER 2. SOFTWARE TRACEABILITY

TraceableSpecification; and () responsibleOfi which represents the stakeholder or
group of stakeholders that are responsible for the definition and maintenance of a

TraceableSpecification.

Bayer (Bayer and Widen 2001) defined a traceability reference model that consists of
artefacts and relationships between these artefacts. The artefacts are created during
three activities of product family system development, namely scoping, architecture
design, and implementation. During the scoping activity, feature entity representing the
requirements of whole product family and product entity representing product
members of the family are created. The activity of architecture design is concerned
with three views: component view consisting of component entity, class view consisting of
class and interface entities, and data structure view consisting of data entity. During the
activity of implementation, code module, property, and property file are created. The
models contains relationships that can be categorized as three groups: (i) relations
between different types of artefacts created in different activities, namely realises and
implements-, (1) relations between different types of artefacts created in the same
activity, namely has, accesses, implements, contains, and confignres-, and (i) relations
between the same type of artefacts, namely wses, excludes, depends on, aggregates,

implements, and specialises.

In (Kim et al. 2005), the authors defined a conceptual model, called traceability map.
The model consists of artefacts created during the product family system
development process and traceability relations. In this work, the artefacts are
concerned with the creation during two sub-processes: domain engineering and
application engineering. ~ During the domain engineering sub-process, (a) the
requirements artefacts are created and defined as product line scope representing the
boundary of a product family, and (<1 model, representing common and variable
aspects in the family, and (b) the design and implementation artefacts are created
and defined as core asser. During the application engineering sub-process, (a) the
requirements artefacts are created and defined as application analysis model
representing a conceptual analysis of a product member, and application specification

analysis model representing a specification of a product member, (b) the design

30

2.4 Reference Models and Classificationfor Traceability Relations

artefacts are created and defined as application specification design model representing a
design model of a product member, and decision resolution mode! representing design
decision artefacts, and (c) the implementation artefacts are created and defined as
instantiated core asset representing specific reused assets for a product member,
integrated application design, representing the integration of a product member, and
application implementation, representing implementation artefacts of a product
member. The traceability relationships in the model can be grouped as: (a) selected
and refined that associate between different requirements artefacts; (b) realised, derived,
and c/uster that associate between requirements and design artefacts; and (c) resolved

that associates between design and implementation artefacts.

In (Lago et al. 2004), the authors defined a model, called simplified representation model
that consists of artefacts and relationships in the domain of product family systems.
The artefacts are grouped as: (a) productfamily level, composed of productfamily feature
mode! and product family feature; a product family feature model represents a feature
model for a family while a product family feature represents a single feature in a
tamily; (&) product level, composed of product feature model, product feature, product
component map, and design decision-, these artefacts represent the requirements and
design of a product member; and (c) implementation level, composed of implementation
assets representing the implementation artefacts of a product family. The model
illustrates two types of traceability relations: (a) between artefacts in different levels
such as supports and implements-, and (b) between artefacts in the same level such as
realises, composeOf requires and excludes. In (Plankl and Bockle 2001), the authors also
suggested the traceability reference model which focus the requirement artefacts in
the domain of product family systems. The model consists of derived, which
associates between the requirements of a product family and the requirements of a
product member; caused, which associates between different requirements; and Zs i

version, which associates the evolution of a requirement.

Additionally, in the projects (CAFE 2003, ESAPS), the meta model is suggested to
represent two types of traceability relations. First the wertical traceability relations

between different types of artefacts created in different phases of the development,

31

CHAPTER 2. SOFTWARE TRACEABILITY

and second the horigontal traceability relations between (a) between the requirements of
product family and the requirements of product members; and (b) between different
versions of requirements. They defined the traceability meta-model to capture the
relationships in the product family. However, the approach in (Coriat et al. 2000),
applied during the activity of domain analysis in the projects includes the traceability
activity. The authors suggested traceability relations to be grouped as () is realized by,
excluded, and inclnded between different requirements; and (i) s applied on, between

requirements and constraints.

2.4.2. Classification of Traceability Relations

In order to discuss the various types of traceability relations that have been
proposed in the literature, we follow the classification given in (Spanoudakis and
Zisman 2005). We describe below these traceability relations types and the types of

software artefacts to which the traceability relations exist.

Dependency

Dependency traceability7 relations are relations that can be used to represent the

reliance between artefacts in a system. A dependency relation may hold between

() requirements and requirements specifications — dependency traceability relations
between different requirements have been proposed in (Alexander 2003,
Knethen 20022, Knethen et al. 2002, Malefic et al., Pohl 1996a, Ramesh and
Jarke 2001, Spanoudakis et al. 2004, Zisman et al. 2002b). In (Knethen et al.
2002, Malefic et al), the dependency traceability' relations, are called casual
conformance. In (Spanoudakis et al. 2004, Zisman et al. 2002b), dependency
traceability relations are called reguires. In (Bayer and Widen 2002), depends_on
traceability relations associated between requirements called feazures,.

(b) requirements and design specifications - dependency traceability relations between
requirements and design have been suggested in (Gotel and Finkelstein 1995,
Mohan and Ramesh 2002, Ramesh and Jarke 2001). In (Ramesh and jarke

2001), dependency traceability7relations are used to assist decision making and

32

©

2.4 Reference Models and Classificationfor Traceability Relations

system management. In (Mohan and Ramesh 2002), dependency traceability
relations have been used to support activities of commonality and variability
analysis in the domain of product family system. In (Gotel and Finkelstein
1995), dependency traceability relations are called development relations. These
dependency relations are also used to represent relations between requirements
and other types of software artefacts generated during the software
development process.

requirements and scenarios, and implementation specifications —Egyed (Egyed 2003)
proposed dependency relations between requirements and scenarios and
between requirements and source code to record the history of requirements

generation and development of requirements.

Refinement

Refinement traceability relations associate two artefacts when an artefact describes

more details of another artefact. Refinement relations are proposed in (Gotel and

Finkelstein 1995, Knethen 2002a, Knethen et al. 2002, Mohan and Ramesh 2002,

Pinheiro and Goguen 1996, Pohl 1996b, Ramesh and Dhar 1992, Sherba et al.

2003b). The refinement relations are called generalises/ specialises relations in (Mohan

and Ramesh 2002, Ramesh and Dhar 1992). They suggested a refinement relation to

elaborate complexity of an artefact into the other artefact or a group of artefacts. In

other words, an artefact specifies more details about the other artefact.

@

requirements and requirements specifications —In (Gotel and Finkelstein 1995, Pohl
1996b), a refinement relation is referred as a traceability relation which holds
between requirements and requirements. In (Pohl 1996b), they classified this
type of traceability relations as r¢fines, which is used to define that a requirements
is elaborated in more details by the other requirement, and generalises, which is
used to represent a generalization of a requirements or a group of requirements.
In (Gotel and Finkelstein 1995), they called refinement traceability relations as
containment relations and relate a requirement and a combination of refined
requirements. In addition to (Bayer and Widen 2002), the authors defined
refinement traceability relations, called Jas, between two types of requirements

artefacts namely feature and product. Kim et al. (Kim et al. 2005) defined two

33

CHAPTER 2. SOFTWARE TRACEABILITY

®)

©

d

©

types of refinement relations between requirements artefacts in the domain of
product family systems, called selected and refined. In (Lago et al. 2004), the
authors suggested two tyrpes of refinement traceability relations called supports
and composedOf. Supports relations represent the requirements of a product family
fractioning to the requirements of product members while composedOfrelations
represent the mixture of the requirements of a product member. In (Plank! and
Bockle 2001), the refinement relations between requirements are called caused.
requirements and design specifications - In addition to (Kim et al. 2005), the authors
defined refinement relations, namely resolved., associating between requirements
and design artefacts in the domain of product family systems.

requirements and implementation specifications —Bayer at el. (Bayer and Widen 2001)
defined refinement traceability relations between requirements called feazure and
implementation artefacts called propersy.

design and design specifications —Examples of approaches including refinement
relations between design artefacts are (Jacobson 1992, Knethen 2002a, Mohan
and Ramesh 2002, Pinheiro and Goguen 1996, Ramesh and Jarke 2001). In
addition to (Bayer and Widen 2002), the authors suggested two types of
refinement traceability relations, called specializes and aggregates, relating between
same types of design artefacts i.e. components, class, interface, and data entities.
implementation and implementation specifications—Bayer at el. (Bayer and Widen 2002)
also defined two types of refinement traceability relations between different

implementation artefacts as contains and configures.

Evolution

Evolution traceability relations are relations that denote software artefacts that have

been changed, or an artefact that has been replaced by an other artefact during the

development, maintenance, or evolution of the system. This type of relation has

been suggested in (Gotel and Finkelstein 1995, Malefic et al. 2003, Pinheiro and

Goguen 1996, Pohl 1996b, Ramesh and Dhar 1992, Ramesh and Jarke 2001). An

evolution relation may hold between

@

requirement and requirement specifications —In (Pohl 1996b), they defined five ty'pes

of evolution relations. Three of the evolution relations represent association

34

o)

©

2.4 Reference Models and Classificationfor Traceability Relations

between different requirements and are called: (i) formalizes, when a requirement
is defined in a more formal way than another requirement specification; (i)
satisfies, when a requirement specification satisfies another requirement; and (i)
replaces, when a requirement has been substituted by another requirement
specification. In (Pinheiro and Goguen 1996), they classified two types of
evolution relations: () replace, when a requirements has been substituted by
another requirement; and (i) abandon when a requirements is not necessary
anymore. In (Malefic et al), they called this type of relations as non-causal
conformance. In (Plankl and Bockle 2001), the authors defined evolution relations,
namely 7zs in wversion, which relate between the old and new versions of
requirements.

requirement specifications and other types of artefacts generated in later phases of software
development —In (Gotel and Finkelstein 1995), evolution relations are called
temporal relations and represent the history of requirements in different phases of
development. In (Pohl 1996b), evolution relations are called e¢laborates relations
and associate an artefact from later phases in the software development process
to the particular requirement. In (Sherba et al. 2003b), evolution relations are
named: () allocated_by relations that associate a requirements to analysis or
design models; and (i) eleborated_by relations that associate requirements to
source code.

requirements and constraints specifications —In (Pohl 1996b), one type of evolution
relations has been proposed between requirements and constraints. This
relation is called based_on and represents an association between a requirement

and constraints that have influenced the generation of the requirement.

Conflict

Conflict traceability' relations are relations that denote conflicting aspects between

software artefacts in a system. This type of traceability relations has been proposed

in (Alexander 2003, Pohl 1996b, Ramesh and Jarke 2001). It represents that an

artefact has a context that may be opposed to another artefact. A conflict relation

may hold between

35

CHAPTER 2. SOFTWARE TRACEABILITY

(@) requirement and requirement specifications —In (Pohl 1996b), they defined two types

®

=

of conflict traceability relations namely: () conflicts relations represent that a
requirement, has negative influence on another requirement; and (i) contradicts
relations represent an inconsistency between two requirements.

requirement specifications and other types of artefacts generated in later phases of software
development —In (Ramesh and Jarke 2001), they defined types of traceability
relations and entities concerning the confliction. The entities are named:
decisions, which describe decision information concerning the generation of
requirements; rationale, which represents the rationale of requirements;
assumptions, which describe conclusions assumed to be true; and zssues conflicts,
which represent the confliction between requirements. Conflict relations are
named: (i) resolye relations, which associate between decision and issues conflicts
entities; (i) affect relations, which relate between requirements and decisions; (iif)
generates relations, which associate between requirements and issues conflicts;
and (iv) based on relations, which relate between requirements and rational
entities, between assumptions and rationale entities, and between rationale and

decisions entities.

Overlap

Overlap traceability relations are relations that associate two artefacts referring to

common aspects of a system. An overlap relation may hold between

() requirements and requirements specifications —Many approaches proposed ovetlap

relations between different requirements such as (Antoniol et al. 2002, Egyed
2002, Gotel and Finkelstein 1995, Hayes et al. 2003, Jarke 1998, Knethen
2002b, Knethen et al. 2002, Pohl 1996b, Ramesh and Jarke 2001, Sherba et al.
2003a, Spanoudakis and Finkelstein 1997, Spanoudakis et al. 1999, Spanoudakis
et al. 2004, Zisman et al. 2002b). In (Egyed 2002), they defined traceability
relations called commonality that associate two artefacts with a common aspect.
In (Gotel and Finkelstein 1995), they proposed overlap relations called adopts
relations between different requirements. In (Knethen 2002a, Knethen et al
2002), they defined overlap relations as representation relations and show an

association between two artefacts with the same aspect of requirements.

36

2.4 Reference Models and Classificationfor Traceability Relations

(b) requirements specifications and source of requirements that influence the generation of
requirements —In (Pohl 1996b), they defined two types of overlap relations
namely: () example_for relation that relates between requirements and scenarios;
(i) purpose relation that relates between a requirement and purpose of the
requirement; (iii) background relation that relates between a requirement and
background of the requirement; and (iv) comment relation that relates between a
requirement and comment regarding to the requirement.

(c) requirements specifications and other types o fartefacts in laterphases o fsoftware development —
In (Spanoudakis et al. 2004, Zisman et al. 2002b), overlap relations are defined
between requirements and object models. In (Pohl 1996b), they defined overlap
reladons called TestjZase_forrelations that relate a requirement and test case. In
(Antoniol et al. 2002, Marcus and Meletic 2003), they proposed ovetlap
traceability relations between requirements and source code. In (Egyed and
Grunbacher 2002), they suggested that overlap relations represent commonality
between source code and design models.

(d) scenarios and design specifications —In (Egyed 2003, Egyed and Grunbacher 2002),
they defined overlap relations between scenarios and design models ie. class
diagrams, use case diagrams, and data flows.

(€) design and design specifications—Overlap relations between different design artefacts
are proposed in (Bayer and Widen 2002, Knethen 2002a, Knethen 2002b). Motre
specifically, in (Bayer and Widen 2001), the authors suggested overlap
traceability relations associating between component and class entities created

during architecture design.

Satisfiability

Satisfiability traceability' relations are relations that show how a system satisfies the

requirements. A satisfiability' relation may hold between

(2) requirements and design specifications —Satisfiability relations between requirements
and design artefacts are proposed in (CORE, Ramesh and Jarke 2001, Zisman et
al. 2002b); In (Zisman et al. 2002b), satisfiability relations are called realise
relations. In (Bayer and Widen 2001), the authors defined satisfiability

traceability relations, called realises, relate the feature entities of the requirement

37

CHAPTER 2. SOFTWARE TRACEABILITY

®)

©

@

©

artefacts and the component entities of architecture artefacts. Kim et al. (Kim et
al. 2005) defined two types of satisfiability relations between requirements and
design artefacts in the domain of product family systems, called realised and
derived. In (Lago et al. 2004), the authors also defined satisfiability' traceability
relations, called realises, which associate between requirements of a product
member and design decision artefacts.

requirements and implementation specifications —In (Sherba et al. 2003b), satisfiability
traceability relations between a requirement and source code are named
implemented_by.

requirements and constraints specifications — Satisfiability relations between a
requirement and constraints are proposed in (Gotel and Finkelstein 1995, Pohl
1996b, Ramesh andjarke 2001).

requirements and requirements specifications —Satisfiability relations between different
requirements are proposed in (Alexander 2003, Coriat et al. 2000, Dick 1999,
Pinheiro and Goguen 1996, Plankl and Bockle 2001). In (Pinheiro and Goguen
1996), satistiability relations are called derive relations and illustrate that a
requirement is derived from another requirement. In other words, when a
requirement is satisfied, its derived requirements should also be satisfied. This
does not necessarily mean true in vice versa. In (Dick 1999), satisfiability
traceability relations are named: establishes and contributes relations. In (Coriat et al.
2000) , the satisfiability relations called as is realised by associate between non-
functional requirements and functional requirements. In (Plankl and Bockle
2001) , the authors defined satisfiability relations, namely derived, which relate
between the requirements of product family and the requirements of product
members.

design and implementation specifications —In (Sherba et al. 2003b), satistiability
traceability relations are called implemented_by and are used to relate between
design artefacts and source code. In addition to (Bayer and Widen), satisfiability
traceability relations, called zmplements, relate between class and interface entities
of architecture artefacts and code module entities of implementation artefacts.
Kim et al. (Kim et al. 2005) also defined satisfiability relations, namely resolved,

between design and implementation artefacts in the domain of product family

38

®

2.4 Reference Models and Classificationfor Traceability Relations

systems. According to (Lago et al. 2004), the authors defined satisfiability
traceability relations, called implements, which associate between design decision
artefacts and implementation asset artefact.

design and design specifications —In (Bayer and Widen 2001), three types of
satisfiability traceability relations: (i) wses, which associates between different
component entities; (i) accesses, which associates between component entities
and data entities; and (ii) #zplements, which associates between class entities and

data entities.

Rationale

Rationale traceability relations are relations that are used to connect software

artefacts concerned with decisions and arguments. Rationale traceability relations

can be found between: (i) different types of artefacts created during software

development and the rationale specifications; and (ii) same types of artefacts. For

the latter case, the rationale artefacts are included in the artefacts that are concerned

with the rationale. Thus, a rationale relation may hold between:

@

rationale artefacts and other types of artefacts —n (Ramesh and Jarke 2001), one sub-
model of traceability reference model for high-end traceability users is called a
rationale sub-model. The rationale sub-model has entities namely object that can
be software components, requirements and designs, rationale, decisions, issues_or_conflicts,
alternatives, decisions, assumptions, arguments, and critical successfactors (CSF). The types
of traceability relations in the sub-model are grouped as rationale relations and
named: based_on, affect, generate, address, influence, and depend_on. In (Letelier 2002),
rationale relations are called ratione/Of relations and associate between
RationaleSpecification and RequirementSpecification, TestSpecification, and
OtherUMf_Specijications. Additionally, In (Pohl 1996b), rationale relations are
defined in a group called condition link which consists of two types of relations
namely: (i) precondition that is used to relate a condition to a requirement which
must be fulfilled to enable an implementation of the requirement; and (i)
constraint that is used to relate a constraint to a particular software artefact

created in later phases of software development. In (Coriat et al. 2000), rationale

39

CHAPTER 2. SOFTWARE TRACEABILITY

relations, called 7s applied on, associate between requirements and constraints
specifications.

(b) requirements and requirements specifications - In (Bayer and Widen 2001), the authors
defined rationale relations, called exc/udes, that relate between different features.
Lago et al. (Lago et al. 2004) defined two types of rationale relations, called
requires and excludes, which associate between the requirements of a product
family. In (Coriat et al. 2000), two types of rationale relations, namely exc/udes
and includes by are related between different requirements to represent the

prohibitions and constitution between two requirements, respectively.

Contribution

Contribution traceability relations are relations that denote a stakeholder or group of
stakeholders who have contributed to the generation of a software artefact. Gotel
and Finkelstein (Gotel and Finkelstein 1995) initially proposed this type of
traceability relations and called the relations as pre-traceability. In (Sherba et al
2003b), two types of contribution relations are named: (i) discnssed_by relations that
associate between a requirements and a stakeholder or group of stakeholders who
has contributed to the generation of the requitement; and (i) ¢/aborated by relations
that associate a stakeholder or group of stakeholders who are contributed to source

code.

Table 2-1 shows a summary of different types of traceability relations that are
proposed by different approaches. We present the types of traceability relations by
classifying the generation of traceability relations based upon different types of
software artefacts ie. requirements, design, source code, source of requirements,

constraints, test cases, and rationale.

40

2.4 Reference Models and Classification for Traceability Relations

Table 2-1: Different traceability relationships between different artefacts

Software artefacts
Between
requirements specifications
and

requirements specifications

Between
requirements specifications
and.

design specifications
gn

Traceability relations
dependency (Alexander 2003, Bayer and Widen 2002,
Egyed and Grunbacher 2002, Gotel and Finkelstein 1995,
Knethen 2002a, Knethen et al. 2002, Maletic et al., Pohl
1996a, Ramesh and Jarke 2001, Spanoudakis et al. 2004,
Zisman et al. 2002b)
refinement (Bayer and Widen 2002, Gotel and Finkelstein
1995, Kim et al. 2005, Knethen 2002a, Knethen et al
2002, Lago et al. 2004, Mohan and Ramesh 2002, Pinheiro
and Goguen 1996, Plankl and Bockle 2001, Pohl 1996a,
Ramesh and Dhar 1992, Ramesh and Jarke 2001, Zisman
et al. 2002a)
evolution (Gotel and Finkelstein 1995, Maletic et al,
Pinheiro and Goguen 1996, Plankl and Bockle 2001, Pohl
1996a, Ramesh and Dhar 1992, Ramesh and Jarke 2001)
conflict (Pohl 1996a, Ramesh and Jarke 2001).
overlap (Antoniol et al. 2002, Egyed 2002, Egyed and
Grunbacher 2002, Gotel and Finkelstein 1995, Hayes et al.
2003, Jarke 1998, Knethen 2002b, Knethen et al. 2002,
Pohl 1996b, Ramesh and Jarke 2001, Sherba et al. 2003a,
Spanoudakis and Finkelstein 1997, Spanoudakis et al.
1999, Spanoudakis et al. 2004, Zisman et al. 2002b)
satisfiability (Alexander 2003, Coriat et al. 2000, Dick
1999, Pinheiro and Goguen 1996, Plankl and Bockle 2001)
dependency (Gotel and Finkelstein 1995, Mohan and
Ramesh 2002, Ramesh and Jarke 2001).
satisfiability (Bayer and Widen 2002, CORE, Kim et al.
2005, Lago et al. 2004, Ramesh and Jarke 2001,
Spanoudakis et al. 2004, Zisman et al. 2002b).
conflict (Ramesh and Jarke 2001).
overlap (Knethen 2002a, Knethen 2002b, Spanoudakis et
al. 2004, Zisman et al. 2002a, Zisman et al. 2002b)
refinement (Jacobson 1992, Kim et al. 2005, Mohan and

41

CHAPTER 2. SOFTWARE TRACEABILITY

Between
design specifications
and.

design specifications

Between
design specifications
and
implementation
specifications
Between
implementation
specifications
and
implementation
specifications
Between
design specifications and
scenario specifications

Between

requirements specifications

and
implementation
specifications

Between

requirements specifications

and

Ramesh 2002, Pinheiro and Goguen 1996, Ramesh and
Jarke 2001)

evolution (Gotel and Finkelstein 1995, Pohl 1996b,
Sherba et al. 2003a)

dependency (Jacobson 1992, Knaethen 2002a, Ramesh
and Jarke 2001)

refinement (Bayer and Widen 2002, Jacobson 1992,
Knethen 20022, Mohan and Ramesh 2002, Pinheiro and
Goguen 1996, Ramesh and Jarke 2001)

overlap (Bayer and Widen 2002, Knethen 2002a, Knethen
2002b)

satisfiability (Baycr and Widen 2002)

satisfiability (Bayer and Widen 2002, Kim et al. 2005,
Lago et al. 2004, Sherba et al. 2003b)

overlap (Egyed and Grunbacher 2002)

refinement (Bayer and Widen 2002)

overlap (Egyed 2003, Egyed and Grunbacher 2002)

dependency (Egyed 2002, Egyed and Grunbacher 2003)
overlap (Antoniol et al. 2002, M arcus and Meletic 2003)
satisfiability (Sherba et al. 2003a)

refinement (Bayer and Widen 2002)

dependency (Egyed 2003)

4

2.4 Reference Models and Classificationfor Traceability Relations

scenarios specifications
Between
requirements specifications
and
source of requirements
Between
requirements specifications
and
constraints specifications
Between
requirements specifications
and
test case specifications
Between
implementation
specifications
and
source of requirements
Between
rationale specifications
and
requirements specifications
Between
rationale specifications
and
design specifications
Between
rationale specifications
and
implementation
specifications
Between
rationale specifications

and

overlap (Pohl 1996b)

contribution (Gotel and Finkelstein 1995, Sherba et al.
2003a)

evolution (Pohl 1996b)

satisfiability (Gotel and Finkelstein 1995, Pohl 1996b,

Ramesh and Jarke 2001)

overlap (Pohl 1996b)

contribution (Sherba et al. 2003b)

rationale (Letelier 2002, Pohl 1996b, Ramesh and Jarke
2001)

rationale (Letelier 2002, Pohl 1996b, Ramesh and Jarke
2001)

rationale (Ramesh and Jarke 2001)

rationale (Letelier 2002)

43

CHAPTER 2. SOFTWARE TRACEABILITY

test case specifications
Between
rationale in requirements
specifications
and
rationale in requirements

specifications

rationale (Bayer and Widen 2002, Coriat et al. 2000, Lago
et al. 2004)

44

2.5 Approachesfor Establishing Traceability Relations

2.5. Approaches for Establishing Traceability Relations

In this section we describe existing approaches to support generation of traceability
relations. These approaches can be classified into three groups depending on their
level of automation namely (a) manual approaches, when the traceability relations
are generated manually by the users with or without the support of traceability tools;
(b) semi-automatic approaches, when the traceability relations are generated based
on the existence of previously manually defined relations; and (c) automatic
approaches, when the traceability relations are generated without human interaction.

We describe below these approaches.

2.5.1. Manual Establishment of Traceability Relations

As mentioned earlier, some existing approaches (Dorfman and Flynn 1984, Han
2001, Kaindl 1992, Watkins and Neal 1994) and commercial tools (CaliberRM,
DOORS, RDT, RequisitePro, RTM, TestDirector) assume the establishment of
traceability relations to be manual in which the users are supposed to specify the
elements in the documents to be traced and even the types of traceability' relations

associated with these elements.

Although some of these approaches offer tool support to assist with the activity of
traceability' generation. This support is mainly concerned with the display of the
various documents and elements to be traced, the selection of the elements to be
traced, the selection of the different types of traceability relations, and the
visualisation of the traceability' relations. In (Kaindl 1992), the author developed a
tool that allows traceability users to create and visualise traceability' relations
between software artefacts. The work is intended to support software artefacts
which are specified in natural language and wuses hypertext technique for
representing and visualising traceability relations between software artefacts.
However, the identification of traceability relations is a manual effort. In (Dorfman
and Flynn 1984), they developed a tool, called ARTS for supporting traceability

generation and visualisation. The tool allows traceability users to define the

45

CHAPTER 2. SOFTWARE TRACEABILITY

templates of software artefacts, specify the software artefacts according to the
templates, manually create traceability relations between the software artefacts, and
visualise the traceability relations by means of reports and queries. In (Watkins and
Neal 1994), they provided a tool, called ATS. The tool allows users to manually
identify traceability relations between data in a database and visualise traceability
relations by mean of pre-defined reports. In (Han 2001), the author proposed a
traceability reference model and developed a tool, called TRAM for traceability
generation. He also defined a set of templates for specifying two types of software
artefacts ie. requirements and software architecture in a system. The tool allows
traceability users to manually create traceability relations between requirements and

software architecture according to the traceability reference model.

Moreover, some existing commercial requirement management (RM) tools have
been proposed to support traceability activities, particularly traceability generation,
such as CaliberRM (CaliberRM), DOORS (DOORS), RDT [RDT), RTM (RTM),
RequisitePro (RequisitePro), and TestDirector (TestDirector). DOORS (DOORS)
is a requirements management tool developed by Telelogic that provides a
Microsoft Explorer-like and spreadsheet-like interfaces for navigating and displaying
documents. DOORS provides functionalities for capturing, tracing, and managing
software artefacts in a system. One of the major features of DOORS is its ability to
create relations between software artefacts generated by the tool. The idea is that the
tool allows users to establish traceability relations between software artefacts after
the artefacts are created. However, the tool only supports the creation of traceability

relations for the software artefacts that have been created by the tool.

Other approaches (Alexander 2003, Dick 1999) have extended DOORS (DOORS)
for capturing and recording traceability' relations. The approach in (Dick 1999) use
rich traceability technique which define traceability' relations between requirements,
and other different artefacts called satisfaction arguments. Satisfaction arguments
include domain knowledge, and decision and issues of a particular requirements, and
are represented by goal-structures charting, and AND/OR decompositions in

DOORS. In this work the traceability relations are manually established by using

46

2.5 Approachesfor Establishing Traceability Relations

DOOR. In (Alexander 2003), the author proposed an approach that apply the okre
template (Volere) for generating software artefacts, DOORS for capturing
traceability information, and hypertext techniques for representing traceability

information.

In (Ramesh and Jarke 2001), the authors defined a traceability meta model in which
traceability reference models are described. They applied experiences from applying
a conceptual model called REM.AP (Ramesh and Dhar 1992). The traceability meta
model is used as a language for defining different artefacts i.e. issues, arguments,

assumptions, decisions, constraints requirements, and design. This work is applied

with the Rationale Capture part of Andersen Consulting™ Knowledge Based Software
Assistant (KBSA) ADM tool. The tool provides functionalities: (a) creation of
artefacts according to the traceability reference models; (b) generation of traceability
relations between artefacts created by the tool; and () visualization the traceability

relations. However, those activities are performed by stakeholders.

Some approaches (Gotel and Finkelstein 1995, Haumer et al. 2000, Jarke 1998,
Kotonya and Sommerville 1998, Letelier 2002, Sutcliffe and Maiden 1998) proposed
the frameworks, techniques, and approaches of traceability in system development.
In (Gotel and Finkelstein 1995), the approach describes traceability establishment
between different requirements and between stakeholders and requirements;
however, it does not state a support for automatic generation of those traceability

relations. Itis assumed that the activity should be concerned and done manually.

Some approaches are proposed for traceability activities in the domain of product
family systems. Examples of these approaches are (Bayer and Widen 2002, Berg and
Bishop 2005, CAFE1 2003, Coriat et al. 2000, ESAPS, Istm et al. 2005, Lago et al.
2004, Mohan and Ramesh 2002, Plankl and Bockle 2001, Riebisch and Philippow
2001). However, the activities are assumed to be done manually. The authors do not

explicitly define how to achieve in an automatic way or provide tool support for the

IThe company has been currently called @cceniure.

Al

CHAPTER 2. SOFTWARE TRACEABILITY

traceability generation activity. An exception is found in (Kim et al. 2005), where the
authors suggested to use rules for traceability generation. However, they do not

define how to apply the rules in an automatic way.

2.5.2. Semi-Automatic Establishment of Traceability Relations

Some existing approaches (Cleland-Huang et al. 2002b, Egyed and Grunbacher
2002, Pinheiro and Goguen 1996, Pohl 1996b) are aimed to support an automatic
traceability generation. However, the approaches are considered as semi-automatic
since they require some manual efforts from traceability users such as specification
of artefacts to be traced or identification of the types of traceability relations. We
classify those approaches into four types depending on the techniques used. The
four types include, (a) process-centered techniques, (b) event-based techniques, (c)

scenario-based techniques, and (c) axiom-based techniques as described below.

Process-centered technique:

Pohl (Pohl 1996b) proposed an approach, called PRO-ART, to support generation
and visualization of pre-traceability under a process-centered engineering
environment. The approach depends on Reguirements Engineering Environment (REE)
in which requirements are represented as hypertext models (Pohl 1996a), extended
entity-relationship models (Pohl and Haumer 1995), structured analysis models
(Pohl 1996b), object models and behavior models (OMT), and O-Telos (Pohl
1996b). The approach provides integrated tools to support various activities in the
environment. Examples of these activities are (i) execution of the software
development process; (i) capturing of traceability relations between different
artefacts and between artefacts and stakeholders during the software development
process; and (i) visualization of traceability relations. Pohl also proposed a process
repository to record the executed processes and traceability' relations. The
traceability relations can be generated manually and automatically according to the
concrete traceability reference model for a specific system. Plowever, the concrete

traceability reference model must be manually defined. In other words, stakeholders

48

2.5 Approachesfor Establishing Traceability Relations

need to specify the structure of traceability' relationships between artefacts being

created during the development process.

Event-based technique:

In (Cleland-Huang et al. 2002b), they defined an event-based traceability framework
to support tracing different requirements. The approach particularly supports
impact analysis on both functional and non-functional requirements which are
represented in natural language. A change on requirements (ie. new, updated,
deleted and abandon requirement) drives an action of traceability generation
between requirements. The traceability' relations ate specified at the level of
document entities. In this work, a prototype tool was developed to support
generation of traceability' relations. An automatic control namely event manager can
automatically respond to an event of a change and enable activities of traceability'
generation ie. generate new traceability relations and update existing traceability'
relations. However, some events such as updating existing traceability relations

requite traceability' users to manually create the events.

Scenario-based technique:

Egy'ed and Grunbacher (Egy'ed and Grunbacher 2002) proposed a scenario-based
approach for traceability generation which is extended from (Egy'ed 2001). In
(Egyed 2003, Egyed and Grunbacher 2002), they described a prototype tool which
is claimed to automatically generate traceability' relations between model elements
(i.e. use case diagrams, class diagrams and data flow diagrams), source codes, and
scenarios (i.e. test case scenarios, usage scenarios). However, the approach requires
an Initial manual process for creating pre-defined traceability relations, called
hypothesised traces. These hypothesized traces are identified between model elements
and scenarios and are used in a second step to automatically create new traceability’
relations based on traceability rules and transitivity of the hypothesized traces. The
approach uses scenarios to discover associations while a system is running. An
association between a scenario and a particular artefact is called afoosprint. A set of

footprints and hypothesized traces are then recognised as a footprint graph. The

49

CHAPTER 2. SOFTWARE TRACEABILITY

footprint graph is represented for traceability relations between an artefact and

scenario.

Axciom-based technigues:

Pinbeiro and Goguen (Pinheiro 2000, Pinheiro and Goguen 1996) proposed an
approach for traceability generation that uses axiom techniques. In (Pinheiro and
Goguen 1996), Traceability of Object-Oriented Requirements (TOOR) is created to
provide: (i) project sperification functionality, which allows traceability users to specify
templates of artefacts (i.e. requirements, design, and source code) and define a
structure of traceability relations; (i) a functionality for instantiating artefacts; (i) a
functionality for creating traceability relations between different artefacts and
between artefacts and stakeholders; and (iv) a functionality for visualising
traceability relations. The specification of templates is applied with Functional and
Object-Oriented Programming Systems (POOPS) (Socorro 1993). Traceability' relations
are generated based on axiom techniques. Artefacts are recognized as operands and
applied with logical operators in axioms. Traceability' relations are identified when
the tool analyse the implications of axioms. The visualisation of traceability relations
is provided in three ways namely: selective, which allows traceability' users to visualise
traceability' relations according to a specific quety; nteractive, which allows traceability"
users to query related artefacts according to a particular artefact; and wonguided,
which allows traceability users to visualize all traceability' relations. However,
specifying the templates of artefacts, defining the structure of traceability relations,

and instantiating the artefacts must be done by traceability' users.

Those approaches have attempted to enable automatic support for establishing
traceability' relations. However, some of activities during the traceability' generation
process such as defining types of traceability relations to be created or identifying

types of software artefacts to be traced are still performed by manual.

50

2.5 Approachesfor Establishing Traceability Relations

2.5.3. Fully Automatic Establishment of Traceability Relations

We classify the different types of approaches that support the generation of
traceability relations in a fully automatic way into three types depending on the
techniques used to assist with this task. These three types include, (a) information
retrieval techniques, (b) rule-based techniques, and (c) hypermedia and information

integration techniques as described below.

Information Retrieval (1R) technignes:

Antoniol et al. (Antoniol et al. 2002) applied IR techniques to generate traceability
relations between source code documents represented in C++ and Java and
requirements specified in natural language. Their approach uses both a probabilistic
method and vector space model. It consists of using comments and identifier names
within the source code to find similarities in the documents. The documents are
ranked by relevance. Then the traceability relations are created based on the
relevance of the documents. The work has been experimented with two case studies
namely LEDA and Albergate. The experimental results have demonstrated high
percent of recall measurements; however, fairly low percent of precision
measurements. The authors described that both two models achieve almost the
same recall measurements. However, the vector space model returns regular recall

measurements with different numbers of documents in the experiments.

In (Maletic et al., Marcus and Meletic 2003), the authors proposed to use latent
Semantic Indexing (LSI) for establishing traceability relations between source code and
other different types of documents such as requirements, designs, and test cases.
The authors argued that their approach achieved better results than (Antoniol et al.
2002) in terms of recall and precision measurements. This approach requires full
parsed source code and analysis of documents. It takes into consideration synonyms
of context in documents. Marcus et al. argue that their approach also requires less
processing of the source code and documentation and is language, programming

language, and paradigm independent.

51

CHAPTER 2. SOFTWARE TRACEABILITY

Hayes et al. (Hayes et al. 2003) proposed to use IR techniques to improve
traceability generation. In particular, the approach applied three vector space IR
techniques: (1) wvanilla wvector retrieval, which is a classical vector IR model for
information retrieval; (i) retrieval with key-phrases, which is an extension of the
classical vector IR model that associates a list of key-phrases with documents and
develops possible relevant phrases to match between documents; and (i) #hesaurus
retrieval, which is an extension of the classical vector IR model that constructs a
thesaurus and then associates the thesaurus with vocabulary in documents. In
(Hayes et al. 2003), the approach () parses requirements as tokens, (i) ignores
unnecessary words which are not considered for matching (e.g. shall, the, for, etc.),
(i) constructs a list of tokens and thesaurus; and (iv) develops associations of
documents. According to their experiments, the approach achieves better recall
measurements but low'er precision measurements when compared to classical IR
techniques. This work has been later supported by a tool, called RETRO (Hayes et
al. 2004). The authors have demonstrated in the latter work that the tool can
facilitate the automatic traceability generation with reasonable recall and precision

measurements.

However, the generation of traceability' relations with the IR techniques does not

take into consideration the semantic of artefacts being compared.

Raile-based approaches:

In (Spanoudakis et al. 2004), a rule-based approach to support generation of
traceability relations has been proposed. The approach generates traceability’
relations between different types of requirement documents i.e. customer requirements
specification (CRS), functional requirements specification (FRS), and object model. In the
approach, traceability rules take into consideration the grammatical roles of the
terms used to specify requirements in CRS and FRS. The approach is based on
XML in which both documents and traceability' rules are represented in XMI-
format. Initial experiments have demonstrated 52-94 percent of precision and 46-95

percent of recall measurements.

52

2.5 Approachesfor Establishing Traceability Relations

The generation of traceability relations by using rule-based approaches enables the
consideration of the semantics of documents being compared and the traceability

relation.

Hypermedia and information integrators:

Sherba et al. (Sherba et al. 2003b) proposed an approach that applies hypermedia
and information integration techniques for supporting traceability activities such as
traceability generation and visualisation. This work uses techniques of information
integrators, called Infinite proposed in (Anderson et al. 2002), and open hypermedia.
The approach applies Infinite integrators for creating explicit relations and anchors
in documents. An anchor is an interested element in a document. Then, the
approach discovers implicit traceability relations between documents by using
created anchors and explicit relations. The authors described that the creation of the
anchors depends on the algorithms used by the integrators. The algorithms used by
the integrators can be IR techniques or runtime analysis. Thus, the algorithms can
be as simple as a keyword search or as complex as a LSI technique. The tool called
TraceM has been developed and provides the following functionalities: (i) registration,
which allows users to register artefacts generated by heterogeneous tools, types of
traceability relations, and new translators and integrators for supporting new types
of artefacts; (ii) scheduling, which is used to schedule the execution of translators and
integrators; (i) relationship mapping, which allows users to generate traceability
relations between documents; (iv) evolution, which allows users to update traceability
relations; (v) guery, which allows users to set an inquiry about information based
upon existing documents and traceability relations; and (vi) expors, which allows
users to visualise a summary of traceability relations according to a particular
artefact in HTML format. Since the tool is aimed to support various tools, the
approach does not depend on particular specification and programming languages.
However, the approach depends on the integrators and their applied algorithms and

do not provide the evaluation by means of precision and recall measurements.

The majority of existing approaches do not support generation of traceability

relations in a fully automatic way, although some of these approaches have

53

CHAPTER 2. SOFTWARE TRACEABILITY

attempted to achieve a fully automatic generation of traceability relations. Moreover,
some of semi- and fully- automatic approaches do not demonstrate reasonably
experimental results and none of them are provided to support domain-specific

systems such as product family systems.

2.6. Representation, Recording, and Maintenance of Traceability
Relations
Since the majority of existing approaches for traceability generation do not support
a fully automatic generation, basic techniques i.e. identifier; tagging, indexing, and table
are used to assist representation of traceability information. These representation
techniques can be done by manual or automatic. Some advanced techniques i.e.
mark-up, mappinggraph, and hyperlink are also used to represent traceability relations.
Additionally, techniques i.e. database and special repositories are used for recording
traceability relations. We describe below techniques which support activities in

representing, recording, and maintenance of traceability relations.

2.6.1. Identifier Technique

Identifier technique uses a unique number to identify an artefact in a system and runs
the number to other relevant artefacts (Sawyer et al. 1993, Sommerville 2001). In
other words, identifier technique requires identifier numbers (ID no.) being created
for each artefact. Traceability relations can be captured between identifiers. An
identifier can be composed of a unique name and supplement information ie. the
name of a system and a type of an artefact. Figure 2-1 shows an example of
identifier technique. The identifier is constructed from three dash-separated parts:
() abbreviation of a system which a requirement belongs to e.g. mobile-phone (MP);
(i) abbreviation of an artefact type e.g. user interface (UI), design model (DM),
source code (SC); and (iii) ordering number of a requirement e.g. 1, 1.1. As shown

in Figure 2-1, a requirement MP-UI-1.1 is refined a requirement MP-UI-1.

54

2.6 Representation, Recording, and Maintenance of Traceability Relations

MP-UI-1 The user interface shall have graphical menu.
MP-UI-1.1 The screen shall provide a list of graphical icons whose represents a menu
and a background.

Figure 2- 1: Representing traceability by using identifiers
This technique supports both manual and automatic approaches for generating
traceability relations and is best suited for capturing one-to-one or one-to-many
vertical traceability relations e.g. between two requirements specifications. However,
it is difficult to apply the technique to represent many-to-many and the technique
represents traceability relations without their semantics. Using identifier technique is
found in existing traceability approaches and tools such as (Alexander 2003, Dick
1999, DOORS, RequisitePro, RTM). Identifier technique has been extended by
other techniques to represent additional traceability information. We describe below

the extension of the technique.

2.6.2. Tagging Technique

Tagging technique uses added information to represent the semantic of traceability
relations in artefact specification (Sawyer et al. 1993, Sommerville 2001). As shown
in Figure 2-2, a requirement MP-UI-7 has an attribute namely Source representing
who created the requirement. The technique is suited for capturing one-to-one, one-
to-many, or many-to-many relations and supports representing traceability relations
with their semantics. Flowever, the use of this technique may make the artefact

specifications harder to read.

MP-UI-1 The user interface shall have graphical menu.
Source: product manager A
MP-UI-1.1 The screen shall provide a list of graphical icons whose

represents a menu and a background.

Figure 2- 2: Representing traceability by tagging attributes

2.6.3. Indexing Technique

Indexing technique arranges artefact specifications into a group (Kotonya and

Sommerville 1998, Sommerville and Sawyer 1997). The artefacts are identified by

55

CHAPTER 2. SOFTWARE TRACEABILITY

using identifiers. As shown in Figure 2-3, requirements wuser interface ofscreen display are
specified with identifiers MP-UI-7 to MP-UI-9. The technique is suited for
representing one-to-one and one-to-many traceability relations and traceability
relations are only readable in one direction. However, the technique represents
traceability relations without their semantics and it is hard to read in another

direction and not practical with many-to-many relations.

No. Requirements

MP-UI-1 - MP-UI-9 User interface of screen display

MP-UI-10- MP-UI-15 User interface of embedded application i.e. games, clock, calendar.
MP-UI-16, MP-UI-27 User interface of network connection

Figure 2- 3: Representing traceability by indexing

2.6.4. Table Technique

Table technique represents traceability relations in two dimensions and can represent
types of traceability' relations. Some wotk such as (Egyed 2001, Kim et al. 2005,
Kotonya and Sommerville 1998, Lindvall and K. 1996, Lindvall and Sandahl 1998,
Sommerville and Sawyer 1997) represent traceability relations by applying table
technique. The technique is suited for representing one-to-one, one-to-many, and
many-to-many relations. Table technique can support representing traceability

relations with their semantics.

MP-UI-1.1 MP-UI-1.2 MP-UI-2 MP-UI-3.1 MP-UI-3.2
MP-UI-1.1 R R
MP-UI-1.2
MP-UI-2 C
MP-UI-3.1

Figure 2- 4: Representing traceability by table

Figure 2-4 shows a requirement MP-UI-7.7 requires the requirements MP-UI-2 and
MP-UI-3.1 and a requirement MP-UI-2 has constraints to the requirement MP-U7-

56

2.6 Representation, Recording, and Maintenance of Traceability Relations

3.1. However, it is difficult to maintain with a large number of traceability relations

and possible to misread directions of traceability relations.

2.6.5. Mapping Graph Technique

Mappinggraph technique represents traceability relations with a graph. A graph shows
a scenario which and how software artefacts associate with each other. Mapping
graph technique is used to represent with semantics and extra information of
traceability relations. It can represent relationships between particular elements in a
particular document in a particular file and supports representing of one-to-one,
one-to-many and many-to-many relationships. This technique requires to be applied
in an automatic way. Examples of traceability approaches using this technique are
(Letelier 2002, Malefic et al., Pinheiro and Goguen 1996, Ramesh and Jarke 2001).
In (Letelier 2002), a graph is composed of elements of software artefacts, types of
traceability relations, and directions of traceability relations. In (Malefic et al.), the
authors defined a cluster as a set of documents, while the cluster can be
documented in different files. A graph is used to illustrate traceability' relations
between source code in different clusters and files. Ramesh and Jarke applied
KBSA-ADM tool that provides the representation of traceability relations in a graph

representing associated artefacts and types of traceability relations.

2.6.6. Mark-up Technique

Mark-np technique represents traceability relations in mark-up languages.
Representation of traceability relations with the mark-up technique can be done
manually or automatically. The technique supports representing of one-to-one, one-
to-many, and many-to-many relationships as well as their semantic. In (Gotel and
Finkelstein 1995), they defined a descriptive markup language for recording
traceability relations. The descriptive markup language is extended from HTML.
The traceability’ information captured in the markup language includes type of

traceability' relation, and related software artefacts or stakeholders. The wotk in

57

CHAPTER 2. SOFTWARE TRACEABILITY

(Spanoudakis et al. 2004, Zisman et al. 2002b) is based on XML technologies.

Traceability relations and rules are recorded in XML.

2.6.7. Hyperlink Technique

Hyperlink technique represents traceability relations as cross-links between software
artefacts. Hyperlink technique supports representing of extra information and
semantics. The technique can represent one-to-one, one-to-many, and many-to-
many relationships. The technique allows multiple data-views, complex-interface
and interrelated scenarios. The growth of Internet technologies e.g. HTML, XML
support the deployment of hyperlink technique. Recent years, the concept of
representing traceability relations with the hyperlink technique has been increasingly
implemented. Examples are the work in (Knethen 2002a, Ramesh and Jarke 2001,
Sherba et al. 2003a, SLATE).

Table 2-2 shows the comparison between different techniques for representing

traceability" relations.

58

2.6 Representation, Recording, and Maintenance of Traceability Relations

Table 2- 2: Comparison of techniques for traceability representation

Identifier Tagging Indexing Table Mapping Mark- Hyperlink
,.graPh up
Support X X X X X
representation of
traceability
relations manually
Support X X X X X X X
representation of
traceability
relations
autom atically
Support X X X X X X X
representing of
one-to-one
relationship
Support X X X X X X X
representing of
one-to-m any
relationship
Support X X X X X
representing of
m any—t()—m ﬁ.ﬂy
relationship
Support X X X X X
representing of

semantics

Existing techniques applied for recording traceability relations are database and
special repositories. Some tools (DOORS, Pinheiro and Goguen 1996, Ramesh and
Jarke 2001, RTM) represent and record traceability relations by using database. In
addition to (Pohl 1996b, Sherba et al. 2003a), the approaches defined system
development environments to particularly support traceability activities. The authors
defined special repositories for the activities. In (Pohl 1996b), they provided the
process repository for recording software artefacts and traceability relations according
to four types of reference models (as described in Section 2.4). The process
repository consists of three levels: () definition schema level' which the languages for
defining processes and traceability reference models are defined; (i) definition level,
which the process models and traceability reference models are defined; and (iii)
IRD level, which process execution, software artefacts and traceability relations are

recorded. In (Sherba et al. 2003a), the authors applied information integration

59

CHAPTER 2. SOFTWARE TRACEABILITY

environment (Anderson et al. 2002) in traceability activities. Heterogeneous software
artefacts which are translated and integrated into the environment and traceability
relations are recorded under the repository in the environment. In (Cleland-Huang
et al. 2002a, Cleland-Huang et al. 2002b), traceability relations are recorded in an

event-based traceability server.

2.7. Traceability Commercial Tools

In this section we summarise the features of commercial tools that support
traceability activities. We categorise the tools as: gemeral-purpose tools, which are
initially developed for supporting other purposes but can be used to support
traceability activities; and specific-purpose tools, which are developed for supporting
requirement management and provide some functionalities for supporting

traceability activities.

2.7.1. General-Purpose Tools

Some general-purpose tools are used to support traceability activities. It is simple
and practical for small-scale and short-term projects. General-purpose tools, for
example, include spreadsheet programs such as Lotus 1-2-3 1M (Lotus Development
Corporation), MS Excel ™ (Microsoft Corporation), and Quattro Pro 1M (Corel
Corporation), word processors and hypertext editors such as MS Word 1M
(Microsoft Corporation), WordPerfect IM(Corel Corporation), and Frame Maker IM
(Adobe Systems Inc.). Word processors provide ways to document traceability by
using techniques as lists and tables, Hypertext editors can be used to create links
between artefacts. Spreadsheet programs help keeping track of different levels of

requirements and their attributes.

However, there are three main limitations in using general-purpose tools to capture
traceability relations. These limitations are concerned with the facts that (i)
configuring of tools is time consuming, (i) tools can not integrate with other tools

nor support many simultaneous users, and (iii) tools do not provide a common and

60

2.7 Traceability Commercial Tools

consistent framework for traceability but promote immediate and ad hoc solutions.
Therefore, general-purpose tools are not appropriate for supporting extensive

requirements traceability.

2.7.2. Specific-Purpose Tools of Requirements Management

Special-purpose tools provide features such as: (a) creating documents and
recording extra information as attributes of documents e.g. date, time, name of
creator, version; (b) filtering and sorting to view documents; (¢) importing and
exporting documents between different projects; (d) maintaining of document
versions; and (e) creating reports and summaries. Additionally, some other features
may be provided by the tools: (a) graphical user interface; (b) compatibility with
other tools; and (c) support for simultaneous users. Examples of some requirements
management tools that support traceability include RequisitePro ™ (Rational
Software Corporation), Caliber-RM ™ (Technology Builders, Inc.), DOORS ™
(Telelogic AB), RTM Workshop ™ (Integrated Chipware, Inc), and CRADLE ™
(Structured Software Systems Limited) (3SL, CaliberRM, DOORS, RequisitePro,
RTM).

DOORS

DOORS (DOORS) is part of a commercial suite of requirements management tools
that are produced by Telelogic. It is designed to manage large sets of requirements
and handle hundreds of users. DOORS also supports concurrent and remote access
by many users at once. The main features of DOORS are to specify software
artefacts as well as create and maintain traceability relations between the software
artefacts. DOORS claimed that the tool can support tracing and impact analysis of
software artefacts by using impact analysis and traceability analysis relations. The
traceability relations are updated when a user has confirmed a proposed change.
There is also a function of keeping history logs to record transactions occurred to
software artefacts. However, as mentioned before, the generation of traceability
relation relies on traceability users and DOORS requires software artefacts to be

created by the tool.

61

CHAPTER 2. SOFTWARE TRACEABILITY

RequisitePro

RequisitePro (RequisitePro) is a requirement management tool that is produced by
IBM. The tool is designed to improve the communication between different
projects and enhance collaborative development. It is integrated with Microsoft
word and database to support requirements specification. The tool has
functionalities for manually generating traceability relations between requirements
created by the tool. The traceability relations supported by the tool are categorized

as evolution relations and represent the history of changes on the requirements.

CaliberRM

CaliberRM (CaliberRM) is a requirements management tool that is produced by
Borland. It is designed to facilitate collaboration, impact analysis, and
communication in system development environment. The tool is also aimed to
assist the definition and management of a proposed change. However, users are

required to identify traceability relations between requirements created by the tool.

As mentioned before, there are limitations in using general-purpose tools for
supporting traceability activities and specific-purpose tools such as DOORS,
RequisitePro, Caliber-RM, RTM are applied for traceability7activities i.e. generation,
representation, and usage. However, manual effort is still required to perform the
activities. There have been efforts to develop specific tools for supporting
requirements engineering and software traceability- as described in (Finkelstein 1991,
Finkelstein and Fuks 1989, Gotel and Finkelstein 1994, Jones et al. 1995, McMullen
1996-1997). According to the literature, a number of research tools such as
(Antoniol et al. 2002, Cleland-Huang et al. 2004, Marcus and Meletic 2003, Pinheiro
and Goguen 1996, Pohl 1996a, Sherba et al. 2003a, Zisman et al. 2002b) for
software traceability7have been developed and integrated into software development
environments. However, the following are still considered: (a) some of these tools
maintain software traceability7 for a small project. When the project grows in size,
the maintenance of the traceability relations can grow exponentially. This leads the
management of software artefacts much more difficult, time-consuming, and error-

prone; (b) those tools do not provide for supporting specific-domains of systems

62

2.7 Traceability Commercial Tools

such as product family systems; and (c) some of those tools require manual efforts
and have constraints e.g. documents must be specified in pre-defined formats by the
tools, or documents must be recorded in special repositories or defined-

development-environment.

2.8. Summary

This chapter have provided background information for software traceability. It
described the definition, current problems, existing approaches, existing techniques
and tools regarding software traceability. In next chapter we provide the review of

product family systems.

63

Chapter 3

Product Family Systems

This chapter describes a literature of product family systems including current
problems, and existing approaches, techniques and tools in the domain of product
family systems. It also presents the existing approaches and problems of traceability
activities in product family systems as well. The motivation and related
terminologies are given in Section 3.1. In Section 3.2, we describe current problems
in the domain of product family systems. Section 3.3 presents the activities during
product family system development. Section 3.4 and Section 3.5 illustrate existing
methodologies, approaches, and techniques for product family system development.
In Section 3.6, we describe existing tools which are used to support product family
system development. Section 3.7 describes the review of traceability of product

family systems.

3.1. Introduction to Product Family

Software reuse is the process of software development by using existing software
artefacts (Department__of_Defense 1996). Over the last years, approaches and
techniques for software reuse have been developed and extended. According to
(Clements and Northrop 2002, ESAPS, Weiss and Lai 1999), software reuse at the
largest level of granularity is supported by productfamily. This is to serve the reuse
practice in an organization having a large number of products, which drives issues
such as highly expensive, complex, and tedious tasks. The different exact definition

of product family will be given in Section 3.1.1.

The idea of product family was motivated by the need to systematize a number of
products more effectively and the fact that these products have a certain set of

common and special functionalities. For example, a mobile-phone company has

CHAPTER 3. PRODUCT FAMILY SYSTEMS

created a mobile-phone family that contains a set of mobile-phones. Some lower-
end mobile-phones have similar basic functionalities but different hardware
capacities to offer competitive price. Mobile-phone network communications in
some countries provide different standards of transmission and signaling and
depend on regional diversity; thereby, a company provides different support for

different regions.

3.1.1. Terminologies in Product Family

We describe below terminologies used in the domain of product family system

development.

Product Family
Initially, Parnas (Parnas 1976) defined program family as a set of software programs
constituted as a family whereby a program is developed by applying common

properties of prior programs and adding extra properties to the program.

In (Bass et al. 2003, CAFE 2003, Clements and Northrop 2004, Staudenmayer and
Pern 1996, Weiss and Lai \999), productfamily is defined as a set of products sharing
some common aspects and having some different aspects. The product family is
aimed at gaining the market share under the same business domain and marketing
factors. They also suggested product members that are products which are built-up by
applying shared assets i.e. requirements, architecture, models, and source code in a
product family. Product line and business unit are other terms found in the literature
that have the same meaning as that of product family (Ardis and Weiss 1997, Bass et

al. 2003, Clements and Northrop 2004).

According to (Bass et al. 2003, CAFE 2003, Clements and Northrop 2002,
Staudenmayer and Petty 19906), product family takes into account both hardware
and software systems. In (Clements and Northrop 2002), they suggested that a
softwareproduct line is a set of software-intensive systems sharing a common, managed

set of features that satisfy the specific needs of a particular market segment or

66

3.1 Introduction to Product Family

mission and is developed from a common set of core assets in a prescribed way. In
this thesis, we focus on and call the software systems that are developed for product

tamily as productfamily systems.

Features

The term feature has been initially used in (Kang et al. 1990). The authors defined a
feature as a prominent and distinctive aspect or characteristic of a system that is
visible to various stakeholders (e.g. end-users, domain experts, developers). In
(Bosch 2000, Gibson et al. 1997, Griss 2000, Svahnberg et al. 2001), a feature is
concerned with a logical behavior of a system that is specified as a requirement or
set of requirements (i.e. functional and non-functional requirements). In (Bailin
1990), the author suggested a different definition whereby a feature refers to any
distinctive or unusual aspect of a system that requires a decision for system
engineering. In this thesis, we use the term feature as a user-visible aspect or as a
characteristic of product family systems. A feature is related to other features and
represented in a tree structure of And/Or nodes to express common and variable

aspects within product family systems

Core Assets

Core assets (Clements and Northrop 2004) are those assets that form the basis for a
product family. Core assets include requirements, architecture, and reusable
software components, domain models, documentation and specifications, schedules,
test cases, and work plans. In (Riebisch et al. 2002), the authors also suggested that
core assets le. requirements, architectures, analysis models, design models, test
cases, and source codes are reused between different product members in a product
family. A variant term of core asset is platform that is defined in the domain of

Model-Driven Architecture (MDA).
Commonality Vs. Variability

According to (Bosch 1998, Clements and Northrop 2004, Weiss and Tai 1999),

commonality is concerned with a set of similar functionalities or aspects between

67

CHAPTER 3. PRODUCT FAMILY SYSTEMS

product members of a product family and wvariability is defined as different

functionalities or aspects between product members of a product family.

3.2. Problems of the Establishment and Maintenance of Product
Family Systems

Many approaches have been proposed to support the development of product

family systems. However, there are many associated problems which we describe in

this section

I. The Difficulty to Get Support from Organisations

Due to timing constraints, an organisation usually considers available methodologies
rather than establishing product family. Additionally, an organisation has defined
and used the current development process for a certain period of time. The
organization prefers adopting familiar and practical techniques to support the

development process rather than unfamiliar techniques.

II. The Uncontrolled Growth of Variety

Ideally, the establishment of product family needs to have a stable and clear vision
of domain; however, it needs to be flexible enough to evolve new requirements.
Practically, an organization is uncertain about requirements of product members
and develops extra options to anticipate all possible requirements (Bosch 2001,

Sinnema 2004, Svahnberg and Bosch 2000, Thiel and Hein 2002).

ITI. The Difficulty in Communication

Product family system development is a collaborative process where people from
various disciplines need to communicate each other. In other words,
communication is required to facilitate and improve the software system
development. For example, Meyer (Meyer 1998) suggested that the interaction
between stakeholders e.g. between the development team and manufacturing team
should be concerned. In addition to (Finkelstein and Guertin 1998), the authors

proposed that good communication provides the right requirements at the right

68

3.2 Problems ofthe Establishment and Maintenance ofProduct Family Systems

time and the right place. Precise requirements must be known in order to facilitate

actual implementation.

However, it is not easy to support communication between various groups of
stakeholders in an organisation. Successful communication between stakeholders
depends on various factors such as: () sufficient resources e.g. staff or tool to
facilitate the communication; (i) differences in organisational cultures; (iii) distinct
organisational structures; and (iv) stakeholders’ attitudes and aspirations.
Unsuccessful communication in an organization leads to misunderstanding and

lacks of some concepts during the development of software systems.

IV. The Difficulty of Defining Commonality and Variability

Defining commonality” and variability of product family is to thoroughly discover
the product family descriptions including all common and possible variable aspects.
However, there are two issues which cause the difficulty of the practice (Halmans
and Pohl 2003, Svahnberg and Bosch 2000, Webber and Gomaa 2002, Weiss 1998).

These issues are:

Different Perspectives

It is difficult to share views between different products and represent opinions
between different tools. For example, sales engineers can offer a new combination
of requirements, which seem perfectly reasonable from a customer viewpoint, but
appear to be unproved in the technology domain. This difficulty to describe
different perspectives of an artefact causes the difficulty’ of defining commonality'

and variability.

Lack of Knowledge
Defining commonality and variability of a product family needs stakeholders who
have enough experience, knowledge, responsibility and authority. However, it is not

easy to find stakeholders who are qualified and also available to take this task in

charge (Bosch 1998).

69

CHAPTER 3. PRODUCT FAMILY SYSTEMS

V. The Difficulty of Documenting Management

Data in product family systems rapidly grow as the number of product members in
a product family increases. Bosch (Bosch 1998) described that stakeholders need to
interpret documents and discover relevant documents; therefore, it is important to
specify the documents clearly and validly. However, there is a large number and
heterogeneity of artefacts and relationships between those artefacts in the domain of
product family systems. It is difficult to document the semantics between
documents. The difficulty of documenting management leads the following issues:
() missing semantics —documents miss to express the semantics of the context; (i)
Sfailure of interpreting the semantics —stakeholders fail to interpret the semantics of
documents; (iii) missing ofrelevant documents —stakeholders miss discovering all related
documents of interest to them; and (iv) failure ofsearching documents —it is difficult to

locate the documents efficiently and promptly.

VI. The Confliction and Dependency between Artefacts in
Product Family Systems

Ideally, a feature is an atomic unit and a set of features can be put together to fit
with a product member’s requirements. However, features are not actually
independent. Adding or removing a feature to or from a product family has an
impact on other features. Additionally, a feature is also related to other types of
artefacts in a product family. Therefore, adding or removing an artefact has also an
impact on other different artefacts. It leads a difficulty to development and

maintenance of product family systems.

VII. The Difficulty to Specialise Variability

Variability can be specialized in different phases ie. design, implementation,
compile, linking, or run-time. However, there are some difficulties in specialization
for variability such as: () feature interaction - specialization of a feature can lead other
features in a product family to have unexpected results (Bosch 2000).; and (i)

separation o f concern —some variability' are separated into different artefacts; however,

70

3.2 Problems ofthe Establishment and Maintenance ofProduct Family Systems

this can lead to the difficulty of specialization (Gomaa and Shin 2004, Svahnberg et
al. 2001).

VIII. Issues of Evolution of Product Family Systems

There are some situations that require the evolution of product family systems such
as: (i) there is a change on existing product family; and (i) the core assets of a
product family have missed some functionalities. These situations occur when the
maturity level of product family systems in an organization has grown. The
organisation requires a software process which implements new requirements and

maintains the consistency of existing systems. However, the issues of evolution are

found and defined in (Bosch 2000).

3.3. Activities in the Process of Product Family System
Development

According to the maturity level of an organization, the approaches for the

development of product family can be categorised, namely proactive, reactive, and

extractive. We describe below three types of approaches for the product family

system development.

Proactive

The proactive approach (Krueger 2001) is an approach of the product family system
development when an organization decides to analyse, design, and implement a line
of products prior to the creation of individual product members. The product
family is built-up and the core assets representing the commonality and variability
are created. All product members are then created under the scope of the product
family. The approach is viewed as a top-down developing strategy which requires
the setting of broad goals and the goals are refined in later phases of the

development.

Reactive
The reactive approach (Krueger 2001) is an approach of the product family system

development when an organization enlarges the product family systems in an

71

CHAPTER 3. PRODUCT FAMILY SYSTEMS

incremental way based on the demand for new product members or new
requirements for existing products. The core assets need to be extended and
evolved in such a way as to correspond to new requirements or new systems. This is
caused by the fact that the customer requirements considerably influence the
architecture and the design of products. On the other hand, a company that sticks
strictly to the principles of made-to-order manufacturing will not allow an
uncontrolled proliferation of variety due to the demands of individual customers.
However, in reality, many companies have a production control concept based on
customer requirements. So the problem occurs when the architecture and design of
product family systems should be maintained. This level of development takes
shorter time than the previous one since system developers only extend and adapt

the available products.

Extractive

The extractive approach (Krueger 2001) is an approach of the product family system
development when an organisation creates product family systems based on existing
product members by identifying and using common and variable aspects of these
products. The stakeholders i.e. domain experts and system developers analyse and
define the product family by taking into consideration individual products’
requirements. The approach is viewed as a bottom-up developing strategy that
begins with existing artefacts e.g. requirements specification, design and source

code, then creates the higher granularity level of each artefact as the core assets.

In the following section, we describe the activities occurred during the product
family system development process. In addition to (Bosch 2000, Clements and
Northrop 2002, Jazayeri et al. 2000, Thiel and Hein 2002), soffware product line
engineering is a methodology for developing product family systems that focuses on
activities of analysis, design, and implementation of a product family as well as the
use of the core assets inclusive common and variable artefacts potentially and

effectively for product members.

72

3.3 Activities in the Process of Product Family System Development

Figure 3-1 illustrates the main activities of software product line engineering i.e.

domain engineering and application engineering.

Feedback
- (c 3
U - N Software Product : N
Reference M- ~¥ Line Architecture -~ Reusable Software
~“JRequlrements” s__ Coitiponents™*,
Product Members’ \ \ \
Requirements Requirements . Initration and
Engineering ~ CUovremees T e w Testing
\ HP \ Product Members

Applicadon Engineering

Figure 3-1: Activities in software product line engineering adopted from (Clements
and Northrop 2004)

3.3.1. Domain Engineering

Domain engineering is a systematic process for the creation of the core assets

(Clements and Northrop 2004). There are three steps for domain engineering:

Domain Analysis

Domain Analysis is the process of identifying, collecting, organizing and
representing the relevant information in a domain, based upon the
study of existing systems and their developing histories, knowledge
captured from domain experts, underlying theory, and emerging

technolog}' within a domain (Kang et al. 1990).

73

CHAPTER 3. PRODUCT FAMILY SYSTEMS

As shown in Figure 3-1, software artefacts that are produced during the activity of
domain analysis are called reference requirements. The reference requirements define the
products and their requirements in a family. The reference requirements contain
commonality and variability of the product family. The following sub-activities

occur during the domain analysis:

I. Scoping

According to (Arango and Prieto-Diaz 1991, Ardis and Weiss 1997), domain
analysis for a product family basically starts from scoping. Scoping is to identify the
context of product members in a product family e.g functionalities and
performances. The activity is concerned with domain knowledge obtained from
domain experts and other sources such as books, user manuals, and design
documents (Nuseibeh and Easterbrook 2000). The domain experts analyse and
define the boundary of the product family and the standard terminologies in the

family. The product members are therefore defined.

II. Commonality and Variability

The activity of defining commonality and variability is to thoroughly discover and
define commonality and variability in a product family (Ardis and Weiss 1997, Weiss
1995). Many existing approaches are proposed to support the activity. Examples of
such approaches are (Ardis and Weiss 1997, Bosch 2000, Clements and Northrop
2002, Svahnberg and Bosch 2000, Weiss 1995). The determination of whether a
characteristic is a commonality or variability mostly depends on a strategic decision

of organisations.

In particular, defining commonality is the determination of whether a requirement is
served as the commonality of a product family. Defining variability is the
determination of whether a requirement is served as the variability of a product
family. Variability is represented as a set of variation points. Each variation point is a
situation that product members can be specialized differently and dependent on a

number of zariants. Variants are possible variables for each variation point. A

74

3.3 Activities in the Process of Product Family System Development

variation point is classified as: (i) optiona/— an aspect may exist in a product; (i)
alternative —an aspect can be specialized as one of the variants; and (i) opzional
alternative - an aspect can be specialized as one of the variants or does not exist
(Svahnberg et al. 2001). Variation points can appear at different phases of product
family system development i.e. analysis, design, and implementation. At the state of
domain analysis, a variability point is concerned with the highest abstraction level of

an artefact.

ITII. Planning for Product Members and Features

According to (Arango and Prieto-Diaz 1991), one of the activities in domain
analysis is to identify features of product members in a product family. The features
of a product family are planned for possible product members. In other words, the
relevant requirements of product members are associated to the features of a
product family. The common and variable aspects of a product family are

accommodated and planned for product members.

Domain Design

Domain design is the process of developing a design model from the
products of domain analysis and the knowledge gained from the study

of software requirements or design reuse and generic architectures

(Garlan and Shaw 1993).

Software artefacts that are produced during the activity of domain design are called
software product line architecture (see Figure 3-1). In (Bass et al. 2003, Jazayeri et al
2000), software architecture forms the backbone of integrating software systems and
consists of a set of decisions and interfaces which connect software components
together. Software product line architecture differs from an architecture of single
systems that it must represent the common design for all product members and
variable design for specific product members (Linden et al. 2004). The following

sub-activities occur during the domain design:

75

CHAPTER 3. PRODUCT FAMILY SYSTEMS

I. Software Product Line Architecture Definition

The activity of software product line architecture definition is to design the software
architecture that describes commonality and variability of product members. The
software product line architecture is composed of a set of architectural decisions, a

set of reusable design artefacts, and a set of optional design artefacts.

The variability in software product line architecture is called designed variability points
(Svahnberg et al. 2001). The software product line architecture can be elaborated
into different levels of granularity. At higher levels, the software product line
architecture does not entail shared artefacts between product members while at the
low levels, the software product line architecture make a distinction between

specific designs of product members.

II. Software Product Line Architecture Evaluation

The activity of software product line architecture evaluation is to evaluate the
software architecture that describes commonality and variability' of product
members. The evaluation of software product line architecture is to assure that the

architecture has the right properties and characteristics of a product family.

For the evaluation of software product line architecture, the following must be
considered: (i) the context for software product line architecture must be scoped
and planned during domain analysis; (ii) the commonality of a product family must
be elaborated in several levels of the architecture; and (i) the variability' of a
product family must be identified and provided with a set of variants for each

designed variability' point in the software product line architecture.

However, Bosch (Bosch 2000) suggested that the maturity of software product line
architecture can be viewed as three levels: () an under-specified architecture that
defines common aspects but does not specify differences between product
members; (ii) a specified architecture that defines both common and variable aspects

for product members; however, does not define possible variables for variable

76

3.3 Activities in the Process of Product Family System Development

aspects; and (iii) an enforced architecture that defines both common and variable

aspects covering possible variables for all product members.

Many approaches and techniques are proposed to support domain design for a
product family. Relevant existing methodologies e.g. model-based software engineering
(MBSE 1993), organisational domain modeling (ODM) (Simos 1995), synthesis (Campbell
et al. 1990), domain-specific software architecture (DSSA) program (Tracz et al. 1993),
evolutionary domain life-cycle (EDLL.C) (Gomaa et al. 1989) are applied for the
development of software product line architecture. Some general-purpose
techniques such as data flow diagrams, structured analysis and design techniques,
entity7 relationship modeling (ERM), object models (e.g. UML (UML)), view point-
oriented models (Finkelstein et al. 1990) can be also applied for the activity.
Recently a number of methodologies such as (Atkinson et al. 2000, Batory et al
2000, Bayer et al. 1999, Griss et al. 1998, Kang et al. 1998, QADA, Simos 1995,
Weiss 1995, Weiss and Lai 1999) are proposed to particularly support the activity of

domain design in the domain of product family.

Domain Implementation

Domain implementation is the process of identifying reusable
components based on the domain model and generic architecture

(Clements and Northrop 2004).

Software artefacts that are produced during the activity of domain implementation
are called reusable software components (see Figure 3-1). The activity7is focused on the
creation of reusable software components e.g. source codes and linking libraries that
are later assembled for product members. In (Szyperski 1997), a reusable software
component is a unit of composition with interfaces and independent context. The
reusable software component is created and then integrated with other reusable
software components for a particular product member. The set of reusable

components are defined independently and provide the connectors for integration

77

CHAPTER 3. PRODUCT FAMILY SYSTEMS

with other components to fit into a specific functionality. The components are
viewed as black boxes whose data and implementation details are completely hidden
and only interfaces are allowed. The development of components can be applied

with relevant existing methods such as object-oriented methods e.g. (Bosch 2000,

Szyperski 1997).

At the end of the domain engineering process, an organization is ready for
developing product members. In the following section, we describe the activities for

developing the product members in the software product line engineering.

3.3.2. Application Engineering

As shown in Figure 3-1, application engineering is another major activity of
software product line engineering. According to (Northrop 2002), application engineering
is a systematic process for the creation of a product member from the core assets
created during the domain engineering. Domain engineering assures that the
activities of analysis, design and implementation of a product family are thoroughly
performed for all product members, while application engineering assures the reuse

of the core assets of the product family for the creation of product members.

The application engineering process for a product family is comparably considered
with the process for a single system (Clements and Northrop 2004). There are
activities such as: () requirements engineering, which is a process that consists of
requirements elicitation, analysis, specification, verification, and management
(Faitley and Thayer 1997, Sommerville and Sawyer 1997, Sutcliffe and Maiden
1998); (ii) design analysis, which is a process that is concerned with how the system
functionality is to be provided by the different components of the system
(Sommerville 2000); and (iii) znfegration and testing which is a process of taking
reusable components then putting them together to build a complete system, and of

testing if the system is working appropriately.

78

3.3 Activities in the Process of Product Family System Development

Requirements Engineering

The activity of requirements engineering focuses on identifying, colleting,
organizing and representing requirements of a product member. The major
difference between requirements engineering of an individual product and a product
member is that stakeholders not only focus on the specific product but also on the
scope of product family. Technically, the requirements of product members are
defined and scoped under the domain of the product family’s requirements. A
variability point of a requirement is bound with a variant for a particular product

member during requirements engineering.

Design Analysis

Design analysis in application engineering must be consistent with the concept of
design analysis in domain engineering. This activity is to analyse and design the
architecture for a product member. Software product line architecture is refined and
specialized for a particular product member. The software architecture of the
product family is configured to fit for a product member based on the specific
product’s requirements. The configuration includes the addition and removal of

designed variability points of the product family.

In (Bosch 2000), architecture pruning is an activity that the common aspects of
software product line architecture is collected and the variable aspects for a specific
product member are specified. The composition of common and variable aspects
acquires the software architecture for a specific product member. Nonetheless, it is
possible that a software product line architecture does not fulfill the complete
design of a specific product. This needs an activity called architecture extension (Bosch
2000). The activity' extends some aspects that are not included in the software

product line architecture.
Integration and Testing

The usage of the core assets of product family and development of product

members involve the following three steps: () discovering a set of reusable

79

CHAPTER 3. PRODUCT FAMILY SYSTEMS

components for a specific product member; (i) instantiating the variability points of
the reusable components for a specific product member; and (i) integrating and

testing the reusable components for the product member.

3.4. Methodologies for the Development of Product Family
Systems

In this section, we describe existing methodologies to support product family

system development. These methodologies can be classified into two groups as (a)

object-oriented and (b) feature-oriented methodologies. We describe below these

approaches.

3.4.1. Object-Oriented Methodologies

Object-oriented methodologies have been common and popular in the development
of software systems. Many existing object-oriented methods are aimed at supporting
the development of single software systems. Recently, some object-oriented
methods have been extended and proposed for the development of product family
systems. We describe below the methods and approaches for product family system

development in the object-oriented paradigm.

COPA

Component-Oriented Platform Method (COPA) (America et al. 2000) is proposed for
product families of software-intensive electronic products ie. telecommunication,
medical imaging, and consumer electronics. COPA defined architectural and process
frameworks. The architectural framework consists of five views:

(i) Customer view - the view shows customer business models represented in

customers language or textual language.

(i) Application view —the view shows application models represented in UML

diagrams

(i) Functional view —the view shows functionalities and performances of systems

represented in use cases

80

3.4 Methodologiesfor the Development of Product Family Systems

(iv) Conceptual view —the view presents platform and product-specific components
created for a product family and product member, respectively. In COPA,
construction components are applied with some component-based techniques
such as COTS, Microsoft’s COM component model, Sun’s JavaBeans, and
OMG’s CORBA.

(v) Realisation wview — the view illustrates specific techniques e.g. hardware
infrastructure, hardware platform, operating systems. These are specified in a

textual language.

The process framework consists of three main activities:

() Productfamily engineering —this activity is driven by policy and plans of an
organisation. There are sub-activities during product family engineering such as
domain modeling, requirements formulation, and commercial and technical
design. These activities construct customer, application, and functional views.
The architecture of product family is created during product family engineering.
For example, COPA applied Koala for representing the product family
architecture. According to Figure 3-1, this activity can be comparable with the
domain analysis and domain design during domain engineering.

() Platform engineering —this activity is concerned with technology and people
management. Sub-activities can occur during platform engineering such as
standard development, cooperating between stakeholders in product family
engineering and product engineering to comprehend requirements of product
family and product members, integrating and testing for product members, and
maintenance of existing reusable components and platforms. This activity has
sub-activities that are comparable with domain engineering including domain
analysis, domain design, and domain implementation as shown in Figure 3-1.

(i) Product engineering —this activity is concerned with the customer-oriented
process. There are sub-activities during product engineering such as standard
development, cooperating with customers to understand specific requirements,
constructions of product members, and maintenance and support for product

members. According to Figure 3-1, this activity can compare with application

CHAPTER 3. PRODUCT FAMILY SYSTEMS

engineering including requirements engineering, design analysis, and integration

and testing.

In the COPA method, the authors suggested the activities in software product line
engineering and artefacts created during three activities. The artefacts are
represented in UML diagrams, use cases, textual language, Koala language

(Ommering et al. 2000), and component-based representation languages.

QAIDA

Qunality-driven Development of Software Family Architectures QADA (QADA) is a quality-
driven architecture-centric method for product family system development. The
QADA method described the development of software product line architecture.
The method includes five activities:
() Requirements engineering - this activity is aimed to capture and analyse
requirements and context model. The requirements ie. functional and non-
functional requirements and context model i.e. hardware and software interfaces
of a system, a set of constraints, rules, and standards are represented in textual
language.
(i) Conceptual architecture design —this activity is aimed to identify a conceptual
architecture which is represented with three views namely, structural view, bebavior
view, and deployment view. The structural view is concerned with conceptual
components and their relationships. The structural view is composed of three
types of artefacts: (a) list of functional responsibilities represented in textual
language; (b) table of non-functional requirements represented in text and table;
and (c) decomposition model. The behavior view is concerned with dynamic
actions and kinds of actions to which a system produces. The behavior is
represented in a collaboration model. The deployment view is concerned with
allocation of the conceptual components into hardware components. The
behavior is composed of two types of artefacts: (a) table of deployment units

represented in text and table; and (b) allocation model. Another type of artefact

82

3.4 Methodologies for the Development of Product Family Systems

generated during conceptual architecture design is design rationale which
represents design principles and rules.

(ii)) Conceptual architecture analysis - this activity focuses on qualities, commonality,
and variability of a system. Three types of artefacts are created namely: (a)
product line scope, which represents a boundary of product family; (b) faxonomy of
requirements, which describe syntactic architectural notations and are represented
in domain models, relevant architectural views; architectural styles;
environmental assumptions and constraints; and trade-off rationale; and (c)
knowledge base, which allows the evaluation of collections of architectural styles
and patterns in terms of both quality factors and concerns. The knowledge base
in QADA contains materials, quality attributes, questions that describe the
evaluation of artefacts.

(iv) Concrete architecture design —this activity focuses on providing a set of concrete
software components and definition of interfaces between components. The
activity" is concerned with three views in the activity of concrete architecture
design (structural view, behavior view, and deployment view). Firstly, the list of
functional, non-functional requirements, and decomposition model from the
conceptual architecture is designed and refined as structural diagrams that
represent concrete components, interfaces and relationship. Secondly, the
collaborative model from the conceptual architecture is defined and refined as
state diagrams and message sequence charts. Thirdly, the table of deployment units
and allocation model from the conceptual architecture are designed and refined
as deployment model.

(v) Concrete architecture analysis —this activity is aimed to assess and evaluate the
software product line architecture regarding expected changes. The analysis
method consists of five sub-activities: (a) deriving of changes from the product
line scope; (b) defining product-line architecture description; (c) defining
scenario identification; (d) evaluating the effect of scenarios; and (e) identifying

scenario interaction.

In the QADA method, the activities of domain engineering are defined. More

specifically, the activity of requirements engineering is comparable with domain

83

CHAPTER 3. PRODUCT FAMILY SYSTEMS

analysis in Figure 3-1, and the activities of conceptual architecture design,
conceptual architecture analysis, concrete architecture design, and concrete
architecture analysis are comparable with domain design in Figure 3-1. However,
the QADA method does not cover an activity of application engineering in Figure
3-1. In addition, artefacts created during theses activities are represented by using

textual language and UML diagrams.

KobrA

KobrA (Atkinson et al. 2000) is a component-based method for software product-
line engineering that is developed by Fraunhofer IESE. In the KobrA method, the
authors proposed a Komponent as a set of reusable components that satisfy a
requirement or group of requirements. The Kobra method is divided in two main
activities: (1) framework engineering, which defines a set of jComponents; and (i)
application engineering, which applies existing Komponents and constructs a product

membet.

Framework engineering consists of four activities, namely:

() Context realisation —the aim of this activity is to define properties and scope
of a product family. The businessprocess models, which describe the requirements
and constrains of a product family, and decision models, which describe common
and variable requirements of a product family, are created.

(i) Komponent specification —the aim of the activity is to describe properties of a
Komponent. The structural model, which is represented in UML class diagrams,
bebavionral model, which is represented in UML statechart diagrams, functional
model, which is represented in Operation schemas, and decision model, which is
represented in a textual language, are created.

(i) Komponent realisation —the aim of the activity' is to define the design of a
Komponent. The interaction model, which is represented in UML collaboration
diagrams, structural model, which is represented in UML class diagrams, activity
model, which is represented in UML activity diagrams, and decision model, which is

represented in a textual language, are created.

84

3.4 Methodologiesfor the Development of Product Family Systems

(iv) Component rense —this activity focuses on applying existing components to

develop new Komponent.

Application engineering consists of two activities:
() Context realisation instantiation —the activity is aimed to identify relevant
Komponents to be reused for a product member.
(i) Framework instantiation —the activity? is used to create a framework of a set of
Komponents and relationships between those Komponents for a product

member.

The Kobra method is defined to complete the activities in the development of
product family systems. More specifically, the activities of context realization,
Komponent specification, Komponent realization, and component reuse are
comparable with the activities of domain analysis, domain design, and domain
implementation as shown in Figure 3-1, respectively. Moreover, the activities of
context realization instantiation, and framework instantiation cover the activities of
application engineering including requirements engineering, design analysis, and
integration and testing in Figure 3-1. Additionally, the method is systematic, scalable
and practical for the development of product family systems. The artefacts created
in the method are based on UML diagrams and textual language that are customised

to fulfil the activities in the domain of product family systems.

PuLSE

Product Fine Software engineering (PuLSE) (Bayer et al. 1999) is a customizable
software product line engineering approach. The PuLSE method consists of four
main activities:
() Initialisation —the activity? is aimed to analyse and evaluate a situation of an
organisation.
() Infrastructure construction —the aim of this activity is to define a scope and
processes of a product family. A scope model and definitions of a product

family are created.

85

CHAPTER 3. PRODUCT FAMILY SYSTEMS

(i) Infrastructure nsage —the aim of activity is to define and create product
members.

(v) Evolution and management—the aim of activity is to evolve the product family.

The Pul.SK method consists of six technical components and three support
components. The technical components are: (i) PuLSE-BC, which is used to
support the analysis and evaluation of an organisation in the initialisation activity; (ii)
PuLSE-Eco, which is used to support an economic analysis of a product family; (i)
PuLSE-CDA, which is used to support a domain analysis of a product family; (iv)
PuLSE-DSSA, which is used to support a domain design of a product family; (v)
PuLSE-I, which is used to support the development of product member; and (vi)
PuLSE-EM, which is used to support the evolution and management of product

family.

The support components are: (i) project entrypoints, which are used to support analysis
of an organisation’ situation; (i) maturity scal, which are used to support evaluation
the adoption of product family; and (iii) organisation issues, which are used to support

maintenance of product family.

PuLSE defined the framework of components conducted by different activities. The
activity of initialization is comparable with domain analysis in Figure 3-1. The
activity of infrastructure construction has sub-activities in common with domain
analysis, domain design, and domain implementation. Moreover, the activity of
infrastructure usage is comparable with application engineering including
requirements engineering, design analysis, and integration and testing as shown in
Figure 3-1. In addition, software product line architecture and other artefacts in a

product family are represented as a set of prescribed components.

FAST

Family-oriented Abstraction, Specification and Translation (FAST) (Weiss 1995) is a

software product line method that initially described two main activities in software

86

3.4 Methodologiesfor the Development o f Product Family Systems

product line engineering. The activities, which resemble the main activities depicted
in Figure 3-1, are:
(@) Domain engineering, which defines a product family and the core assets of the
product family; and
(i) Application engineering, which develops product members by using the core

assets of the product family.

FAST describes a domain specific language AML (Application Modeling Language)
for specifying the requirements of a product family. The requirements of a product
family represented in the language are then specialized for product members.

Flowever, the definition and specification of requirements are restricted.

RSEB

Reuse-Driven Software Engineering Business (RSEB) (Jacobson et al. 1997) is
proposed to focus on achievement of business goals and improvement of business
performance. In (Jacobson et al. 1997), they proposed to apply use cases to describe
reference requirements of a product family and UML diagrams to describe the
software product line architecture. They also defined activities in the development
of product family systems:

() Requirements engineering, where variability is specified as use cases;

(i) Avrchitectural family engineering, where the software product line architecture is

created in UML diagrams;

(i) Component system engineering, where reusable components are developed; and

(iv) Application system engineering, in which product members are developed.

The activities defined in RSEB are comparable with ones shown in Figure 3-1. More
specifically, the activity of requirements engineering in RSEB is concerned about
domain analysis and requirement engineering defined in (Clements and Northrop
2004). The activities of architectural family engineering, and component system
engineering have likewise sub-activities in domain design and domain

implementation, respectively. Moteover, the activity' of application engineering in

87

CHAPTER 3. PRODUCT FAMILY SYSTEMS

RSEB covers the activities of design analysis, and integration and testing as shown

in Figure 3-1.

SPLIT

Software Product-IJne Integrated Technology (SPLIT) (Coriat et al. 2000) is a systemic
approach for the development of product family systems. SPLIT suggested a life-
cycle of the development process which consists of two activities. The activities,
which resemble the main activities depicted in Figure 3-1, are:
() Domain engineering, which reference requirements, software product line
architecture, and reusable components are created; and

(i) Application engineering, which product members are developed.

There are four approaches applied in SPLIT:
(@) The approach called SPLIT/Cloud is applied to develop the reference
requirements of product family systems. In this activity there are artefacts
created: business process, capability, functional area, force, functional
requirement, and non-functional requirement. In SPLIT, they described two
situations of requirements engineering: the first one is the development based
on existing products; and the second one is the development from scratch. The
product family system development based on existing products consists of
activities: (i) define reference requirements i.e. functional and non-functional; (ii)
identify and organize the requirements of each product member; (i) define
artefacts that represent high-level views of functional requirements of each
product member; (iv) define artefacts that represent high-level views of non-
functional requirements of each product member; (v) map high-level views of

functional and non-functional requirements to the reference requirements

The product family system development from scratch consists of activities: (i)
define the domain of a product family; (ii) scope the domain; (i) identify the
requirements of the product family; (iv) determine COTS used in the product

family domain by applying with COTS model; (v) define reference requirements

88

3.4 Methodologies for the Development of Product Family Systems

ie. functional and non-functional; (vi) define a business process; (vii) define
capabilities related to each business process; and (vii) define forces related to

each non-functional aspect.

(i) The approach called Duaisy is applied for developing software product line
architecture. In Daisy, a software system product line architecture (SSPLA)
description is based on three architectural views: (a) business view; (b)
subsystem view; and (¢) technolog}’ view. The business view represents subject
area and analysis pattern. The subsystem view represents subsystem,
architectural pattern, process, architectural guidelines, architectural constraints
and information. The technology view represents component model, computing

infrastructure and deployment. The views are represented in UML diagrams.

(iif) The approach /adder is applied for developing reusable components. In
Ladder, they suggested the transformations, composition, splitting up,
abstraction, refinement, development branch for reusable components

development as well as COTS adaptation.

(iv) The approach Wheelsis applied for supporting sub-processes during domain

engineering and application engineering in SPLIT.

The SPLIT method is applied in 1ISAPS (ESAPS) and CAFE (CAFE 2003)

projects. The method itself is composed of other methods to support each activity

in software product line engineering. Otherwise, artefacts produced by using these

methods are represented in ie. UML diagrams, use cases, component-based

representation languages.

3.4.2. Feature-Oriented Methodologies

The concept of feature-orientation is not completely new in software engineering

and there have been efforts to apply the concept of features to express aspects of a

software system. Examples of feature-oriented methods are FODA (Kang et al

89

CHAPTER 3. PRODUCT FAMILY SYSTEMS

1990), FORM (Kang et al. 1998), and FeatuRSEB (Griss et al. 1998), which are
increasingly important to software product line engineering due to several reasons:
() The fact is when developing the product family, stakeholders communicate
with each other in terms of product features. It becomes an effective media erf
communication between customers and system developers.
(i) Due to a large size and diversion of requirements for product family
systems, specifying and representing the requirements becomes primary tasks in
domain analysis as these activities are supported by the feature-oriented
methodologies.
(iii) Features can be wused as the basis for analyzing and representing
commonalities and variabilities of product members under the same product
family. Additionally, the feature-oriented methodologies offer a way to classify

various requirements.

FODA

Feature-Oriented Domain Analysis FODA) (Kang et al. 1990) is proposed to support
the activity of domain analysis. In FODA, the activities are described and cover the
activity of domain analysis depicted in Figure 3-1. Three activities are:
() Domain analysis, which focuses on scoping of a product family and
identifying product members;
() Feature analysis, which develops a list of common and variable aspects etf a
product family; and
(i) Feature modelling, which models the common and variable aspects as afeature

model.

FODA is an initial method that defines a feature model for representing common
and variable aspects of a product family. Identification of features requires domain
knowledge obtained from the domain experts and other sources such as books, user
manuals, design documents, etc. In FODA, the authors described that domain
experts and system analysts can use standard terminologies to communicate with

each other in mature and stable domains. Therefore, analyzing the domain

90

3.4 Methodologies for the Development of Product Family Systems

terminology is an effective and efficient way to identify the features of a given
domain. However, in prior to feature identification, standard terminologies and
domain scope should be done since they are not available in immature or emergent
domains. Feature models are used as a mechanism to facilitate different perceptions

of domain concepts and scope which cause confusion between stakeholders.

The authors defined three types of features: () mandatory features, which represent
the commonality of a product family; (i) a/ternative features, which are specialized
for product members; and (i) optional features, which may or may not exist in
product members. The feature model consists of elements such as: (a) a tree-structured
diagram which represents characteristics of product family; (b) a definition for each
teature; and () composition rules which are defined rationally between features. There
are two types of rules: (i) one feature requires another feature: and (ii) one feature is

includedin another feature.

FORM

Feature-Oriented Rense Method (FORM) is an extension of FODA that provides the

activities of domain analysis and the development of core assets. Three activities are

concerned:
() Feature modelling —that is a process for defining features of product family
systems. The authors proposed to apply the extension of the feature model
from FODA for representing features. They proposed the classification of with
respect features to their purpose as: (a) a set of capability features that express the
characteristics of distinct sendees, operations, functions, or performances, (b) a
set of operating environment features that represent attributes of the environment
in which an application is used and operated, () a set of domain technology
features that represent the domain of realization (e.g., navigation methods in the
aviation domain), and (d) a set of implementation technigne features that represent
implementation details at lower and more technical levels e.g. abstract data types
and sorting algorithms. Kang et al. pointed out that a domain technology

feature is more specific to a given domain and may not be usable in other

91

CHAPTER 3. PRODUCT FAMILY SYSTEMS

domains while an implementation technique feature is more generic and may be
used in other domains.

(i) Architecture modelling —that is a process for defining software product line
architectures. Artefacts created during this process are viewed a hierarchy and
consists subsystem model, process model and module model. These models are
represented the commonality and variability of the product family.

(i) Component engineering—that is a process for defining reusable components. In
(Lee et al. 2000), the authors described the technique used in the activity of
component engineering in the FORM method. The authors described principles
for the creation of reusable components by mapping features created during the
activity of feature modeling. The principles are (a) capability features can be
modeled as an object or group of objects that provide a similar set of
operations. The object or group of objects is specified with a parameter for a
particular product member; (b) operating environment features can be modeled
as an object or group of objects that provide a set of operations for different
requirements of product members; () domain technology' features are modeled
to be specific for the domain of product family; and (d) implementation
technique features should be used to implement domain-specific objects. For
example, a communication method feature (e.g. synchronized or asynchronized
communication) depends on the implementation languages or platforms.
However, the mapping of the feature model and product member is not

described.

In the FORM method, the activities of domain engineering are defined. More
specifically, the activities of feature modeling, architecture modeling, and
component engineering have likewise sub-activities in domain analysis, domain
design, and domain implementation defined in (Clements and Northrop 2004).

However, the FORM method does not cover an activity of application engineering.

92

3.4 Methodologiesfor the Development o f Product Family Systems

FeatuRSEB

Featuring KiEB (FeatuRSEB) (Griss et al. 1998) is a combination of RSEB method
(Campbell et al. 1990) and FODA (Kang et al. 1990). The FeatuRSEB method
includes the activities defined in RSEB which are requirements engineering,
architectural family engineering, component system engineering, and application
engineering. The method adapted using a feature model by adding UML-based
relationships ie. dependency and refinement. The feature model is used to represent
common and variable RSEB models. In other words, the feature model is used to

represent an association between RSEB models in a product family.

3.5. Techniques for the Development of Product Family Systems

In this section, we describe existing techniques to support product family system
development. These are (a) use cases, (b) UML modeling, (c) feature modeling, and

(d) architecture description and component-based languages.

3.5.1. Use Cases

In general, a use case (Cockburn 1997) is a textual specification language that is used
for specifying requirements. Examples of the approaches proposed to apply use
cases in the activities of product family system development are (America et al.
2000, Griss et al. 1998, Jacobson et al. 1997). In (Fantechi et al. 2004), the authors
proposed to express the requirements of product members in a product family by
extending the use case definition given by Cockburn (Cockburn 2000). The
variability is expressed in use cases by using special tags. The tags indicate the
variable requirements of a product family that need to be specialized for a product
member. They proposed three types of tags: () alternative tag, which represents
variable requirements with a predefined set of requirement variants; (ii) parametric tag,
which represents variable requirements that requires the instantiation of specific
parameters for a product member, and (iil) optional tag, which represents variable

requirements which may or may not be instantiated for a product member.

93

CHAPTER 3. PRODUCT FAMILY SYSTEMS

John at el. (John and Muthig 2002) extended use case specifications for representing
variable requirements. Use cases express variation points and variants for product
members. In addition, the authors applied the decision model to express the

relationships and dependencies between the variable requirements.

3.5.2. UML Modeling

According to the literature (America et al. 2000, Atkinson et al. 2000, Coriat et al.
2000, Gtiss et al. 1998, Jacobson et al. 1997, QADA), object modeling technique is
used in software product line engineering. Some approaches such as (Clauss 2001,
Gomaa 2004, Keepence and Mannion 1999) are proposed to adapt UML diagrams
for modeling software product family systems. Gomaa (Gomaa 2004) proposed
product line UML-based sojtivare engineering (PLUS) by using UML modeling for the
development of product family systems. PLUS applied UML diagrams to represent

the commonality and variability of product family systems.

in (Clauss 2001), they use a UML class diagram to represent software product line
architecture. They define three types of classes for expressing variability in a product
tamily: (i) variation?oint, which represents a variation point of a product family; (i)
variant, which represents an alternative of a particular variation point; and (ii)
optional, which represents an optional class . They applied two types of relationships
to assist representation of vatiability: () generalisation/specialisation, which associates
between classes typed of variationPoint and variant; and (i) association with cardinality

0... 1, which associates between any class and a class typed of optional.

In (Keepence and Mannion 1999), the authors proposed the combination of
patterns and discriminants to support representing of commonality and variability in
software product line architecture. A pattern is represented by class and object
diagrams. According to (Keepence and Mannion 1999), a discriminantis a feature that
differentiates a system from another in a product family. They defined three types
of discriminants: () single discriminants, which represent a set of mutually exclusive

teatures; (i) multiple discriminants, which represent a set of features which are not

94

3.5 Techniquesfor the Development of Product Family Systems

mutually exclusive; and (i) opzional discriminants, which are features that may or may

not be used.

The single discriminant represents an inheritance hierarchy that consists of a generic
class called base class and a set of subclasses called realm. A realm is used to represent
variants of a variation point in a product family. For the single discriminant, a
subclass in a realm can be chosen for a product member. The multiple discriminant
also represents an inheritance hierarchy that consists of a base class and realm. One
or more subclasses in a realm can be chosen for a product member. The optional

discriminant is represented by two classes with a 0..1 association.

3.5.3. Feature Modeling

This technique was initially proposed in FODA to assist the activity of domain
analysis. As described in Section 3.4., many approaches apply and extend the
definition of a feature model to support the development of product family systems.
Thus, we describe below different aspects of the feature modeling technique that

are applied in existing approaches.

I. Types of Features in a Feature Model

(i) mandatory features (Bosch 1998, Clements and Northrop 2002, Griss et al.
1998, Kang et al. 1990, Kang et al. 1998, PuL.SE, Weiss 1995) are compulsory
for product members in a family.

(i) optionalfeatures (Bosch 1998, Clements and Northrop 2002, Griss et al. 1998,
Kang et al. 1990, Kang et al. 1998, PuLSE, Svahnberg et al. 2001, Weiss 1995)
may exist in a specific product member or not.

(iii) alternative features (Bosch 1998, Clements and Northrop 2002, Kang et al.
1990, Kang et al. 1998, PuLSE, Weiss 1995) or variantfeatures (Griss et al. 1998),

are a set of possible features that can be selected for a specific product member.

Moreover, (Svahnberg et al. 2001) define a feature type externalfeatures that is a

feature unavailable in a system but needs to be satisfied by an external system.

95

CHAPTER 3. PRODUCT FAMILY SYSTEMS

II. Notations of Features in a Feature Model

As shown in Figure 3-2, a feature may be depicted as a round or a rectangle with its
name inside. Many approaches applied the feature notation defined in (Kang et al
1990). However, some approaches applied a UML class diagram for expressing
features, for example (Griss et al. 1998). Moreover, different types of a feature ie.

mandator}', optional, and alternative are represented in different notations.

Feature Feature Feature

M andatory O ptional M andatory

Feature

External

Feature Feature

A lternative

(b) (9]

Figure 3- 2: different notations for different types of a feature: (a) (Kang et al.
1990); (b) (Griss et al. 1998, Kang et al. 1998); and (c) (Svahnberg et al. 2001)

III. Relationships between Features in a Feature Model

Ideally, features are atomic units that can be put together in a product without
difficulty. However, features are generally not independent and several types of
relations can exist between them. According to (Gibson et al. 1997), feature
interaction is defined as a characteristic of a system whose complete behavior does

not satisfy the separate specifications of all its features.

The types of relationships express the rules of feature interaction. These
relationships are considered when features are selected for product members. They
represent which features must be selected together and winch features must not.

Table 3-1 shows different types of relationships between features.

96

3.5 Techniquesfor the Development of Product Family Systems

Table 3-1 presents the classification of relationships between features:
Relationship type Description

depends-on (Griss et al. 1998) Indicating that a feature relies on an existence
of another feature

mutnally exclusive (Griss et al. 1998) Indicating that two features must exist at the
same time

conflicting (Griss et al. 1998) Ilustrating that related features have
conflicting requirements.

composed-of (Kang et al. 1998), Indicating that a feature is composed of other

composition (Svahnberg et al. 2001) features

generalisation/specialisation (Kang et Indicating that a child feature is specialized

al. 1998), OR specialisation from a parent feature

(Svahnberg et al. 2001)

implemented-by (Kang et al. 1998) Indicating that a feature is implemented by
another feature

XOR specialisation (Svahnberg et Indicating that children features are mutually

al. 2001) exclusive

3.5.4. Architecture Description and Component-based
Languages
According to (America et al. 2000), the authors defined a component-based
technique supports the design and implementation of software development. The
technique includes the architecture description language, called Koalz (Ommering et
al. 2000). Koala is used to define a large diversity of product family systems. The
Koala component model is created to represent architecture of product family. In
Koala, a component consists of: (i) zuferfaces, which are communication ports
between different components; (i) connectors, which connect between different
interfaces; and (i) subcomponents, which are components in a particular
component. They define two types of interfaces: (i) provides interface, which allows
external components to use functionality implemented in a component; and (i)

requires interface, which allows a component to use functionality implemented in an

97

CHAPTER 3. PRODUCT FAMILY SYSTEMS

external component. They also define three types of connectors: (i) direct connector,
which directly connect two interfaces; (i) switch, which is a control for changing the
direction of connection between components; and (i) #odule, which is a process

existing between two interfaces.

In the Koala component model, variation points are represented by using switch
connectors. They describe that variation points are specialized during an activity7of
integration and testing in the application engineering. The Koala technique is
applied in the COPA method that defines a framework of product family system
development which is developed and used by Philips (Philips). All components in
the Koala component model are implemented as source code components and

connectors are provided for interconnection with other components.

Additionally, xA4DI.2.0 is a software architecture description language (ADL) that is
developed by (xADL2.0). xADL is an extension of xArch (xArch) by applying with
XML schemas. The language is compatible with XML technologies and XML tools.
xADL is defined to provide the representation of variability in the domain of
product family systems such as: (1) optional elements, which are parts of architecture
such as components, connector, and interfaces; and (i) variants, which provide a set
of variable aspects of the architecture. Examples of approaches applied xADL 2.0
for product family system development are (Bastarrica et al. 2006, Westhuizen and

Hoek 2002).

As described in Section 3.4, existing component-based techniques e.g. commercial Off
The-Shelf (COTS) (Dean 2002), Microsoft’s COM (COM), Sun’s JavaBeans
(JavaBeans), COBRA (COBRA) are used in the activities during domain
implementation. According to the literature (America et al. 2000, Atkinson et al.
2000, Bayer and Widen 2002, Coriat et al. 2000), the authors proposed to use
existing component-based techniques for the development of reusable components
in an activity of domain implementation. In addition to (Redondo et al. 2004), the
authors defined a component-based approach for supporting an activity7of domain

analysis in software product line engineering. The approach applied the formal and

98

3.5 Techniquesfor the Development of Product Family Systems

incremental method to represent requirements in the domain of product family
systems. The requirements are grouped as components and specified a set of

variants.

3.6. Supporting Tools for Product Family Systems

At this stage, tools for software product family system development rarely exist.
Although some existing approaches for product family system development have
provided tool support, most of the tools do not support the whole process of
product family system development. Examples of these tools are such as Koala
compiler (America et al. 2000), KoalaMaker (America et al. 2000), PuLSE-BEAT
(Schmid and Schank 2000), DIVERSITY/CDA (Bayer et a] 1999), PASTA process
modeling tool (Weiss 1995), and ASADAL (ASADAL). Additionally, some tools
have been developed by projects and companies. Examples of these tools are such
as V-Manage (ESAPS), MetaEdit+ (Metacase), and Product Line Platform
(GEARS). Some commercial requirements engineering and general tools are applied
and adopted in some existing approaches and projects. One example is that CAFA
applied commercial tools such as DOORS (DOORS), RequistePro (RequisitePro),
Rational Rose (RationalRose), Visio (Visio 2003), and XMI Toolkit (XMLToolKit)
for software product line engineering. In (Gomaa and Shin 2004), they applied the
commercial case tools ie. Rational Rose and Rose RT (RationalRose) as well as
integrate with their customised tool KBRET to support the design and generation
of the proposed architecture for product family systems. In (Lago et al. 2004), they
extended the commercial tool Togethet® ControlCentet™ (Borland) to develop
and maintain design artefacts of a product family. However those tools in current

literature still have limitations in terms of technique- and are platform-dependent.

The tools for product family systems are required to support the whole life cycle of
product family system development. As mentioned before, existing tools are only
focused on particular activities such as commonality and variability analysis and
development of core assets. Other activities such as the production of product
members from core assets, traceability between different artefacts, and evolution

and maintenance are also required supporting tools.

99

CHAPTER 3. PRODUCT FAMILY SYSTEMS

Table 3-2 presents the comparison between existing approaches for product family
system development by concerning with activities in domain engineering, activities
in application engineering, artefacts created during these activities, techniques used,

tool support provided, maturity of the approaches, and domain of the approaches.

100

Table 3-

Approaches
and Methods

COPA

QDA

Activities: Domain

engineering

Product family
engineering; Platform

engineering

Requirements
engineering;
Conceptual
architecture design;
Conceptual
architecture analysis;
Concrete architecture
design;

Concrete architecture

analysis

Activities:
Application

engineering

Product

engineering

N/A

2: Com parison approaches for product fam ily system developm en t

Generated artefacts

Business models, design
models, requirements,
platform and product-
specific components,

Product line architecture

Requirements, context
model, decomposition
model, allocation model,
collaboration model,
design rationale,
knowledge base,
structural diagrams, state
diagrams, message
sequence charts,
deployment model,

scenarios

Techniques

UML modeling, Use
case specification,
COTS, Microsoft’s
COM, Sun’s
JavaBeans, OMG’s
COBRA, Koala ADL
UML modeling

Tool support

Koala compiler,
KoalaMaker,
Code editor +

plugs-in, Visio

Commercial
UML, Visio,
Word processing

Maturity

Have been applied
by successful
industries (Phillips)

Result from the
research project

PLANA (2001)

Domains

Telecommunicatio
n, Medical
imaging,
Consumer

electronics

Information
systems,
Middleware,

Wireless services

Approaches
and Methods

KobtA

PuLSE

Activities: Domain

engineering

Context realization;
Komponent
specification;
Komponent
realization;

Component reuse

Initialisation;
Infrastructure
construction;
Evolution and

managem ent

Activities:
Application

engineering

Context

realization

instantiation;

Framework

instantiation

Infrastructure

usage

Generated artefacts

Komponents, object

models

PuLSE-BC, PuLSE-Eco,
PuLSE-CDA, PuLSE-
DSSA, PuLSE-I,
supporting components,

product line architecture

Techniques

UML modeling,
component-based

techniques

Component-based

techniques

Tool support Maturity

Commercial Instance of PuLSE
UML, Word
processing,

Configuration

managem ent

PuLSE-BEAT, Have been applied

DIVERSITY/C by industrials

DA

Domains

Information

systems

Merchandise
information
systems, Stock
market data
evaluation, CAD
systems, Human
com fort
simulations and

layout systems

Approaches Activities: Domain

and Methods engineering

Domain engineering

SPLIT

Domain engineering

FAST

RSEB

Requirements
Engineering;
Architectural family
engineering;
Component system

engineering

Activities:
Application

engineering

Application

engineering

Applications

engineering

Application
system

engineering

Generated artefacts

Requirements , software
system product line
architecture (SSPLA),
patterns, guidelines,

constraints, component

models

Requirements

Requirements, product

line architecture

Techniques

UML modeling,

COTS, component-

based techniques

D omain specific

language AML

Use case

specification, UML

modeling

Tool support

Commercial

tools

PASTA process

modeling tool

N /A

Maturity

Result from

research projects

(ESAPS and CAFE)

N /A

Domains

Telecommunicatio

Real-time systems

N/A

Approaches
and Methods

FODA

FORM

FeatuRSEB

Activities: Domain

engineering

Domain analysis;
Feature analysis;

Feature modeling

Feature modeling;
Architecture modeling;
Component

engineering

Requirements
Flngineering;
Architectural family
engineering;
Component system

engineering

Activities:
Application

engineering

N/A

N/A

Application
system

engineering

Generated artefacts

Requirements, context

model, feature model

Requirements, feature
model, subsystem model,
process model, module

model

Requirements, product

line architecture

Techniques

Feature modeling

Feature modeling

Use case
specification, UML
modeling, feature

modeling

Tool support

ASADAL

N /A

Maturity

Have been applied
and extended by

researches and

industrials since year

1990

Extension of
FODA and have
been applied by-

industries

Plxtension of RSEB

Domains

N /A

Electronic bulletin
board, Private
Branch Exchange,
Elevator Control
Systems

N/A

3.7 Traceability of Product Family Systems

3.7. Traceability of Product Family Systems

As suggested in (Boehm et al. 2004, Streitferdt 2001), traceability of product family
systems is important due to some reasons:

(@) Traceability throughout artefacts is a necessary precondition for preserving the
consistency of a product family during development and for software
development in general;

(b) Traceability activity assists the reuse of artefacts across the product family.
The benefits of product family approach depend on how effective an
organisation can reuse the core assets of a family. When the percent of reuse
is high, the cost of product member development is relatively low; and

(c) Traceability relations assist stakeholders to valid and verify software artefacts

in product family.

Generally, traceability relations are used in different proposed: (a) impact analysis of
a system; (b) validation and verifying software artefacts; (c) reuse of existing
software artefacts; and (d) understanding software artefacts (as described in Section
2.5). According to the literature, establishing traceability relations in product family
systems is expected to solve some of existing problems described in Section 3.2.
Particularly, the use of traceability reladons can (a) improve the communication
between stakeholders; (b) assist defining commonality and variability due to
different perspectives and lack of knowledge by using traceability information; (c)
assist the documentation by applying with traceability information; and (d) decrease

the confliction between artefacts by applying with traceability relations.

3.7.1. Existing Approaches for Traceability Generation in
Product Family Systems

Software traceability can be established between the core assets created during

product family development. According to Figure 3-1, traceability relations can be

generated between reference requirements, software product line architecture, and

reusable components. In addition, many traceability approaches (as described in

CHAPTER 3. PRODUCT FAMILY SYSTEMS

Chapter 2) are applied for the software system development. A few of them have
been extended to satisfy the traceability” activities in the domain of product family.
In Mohan and Ramesh 2002), the authors adopted the traceability" reference model
developed by (Ramesh and Jarke 2001) and applied the model with the e-services

family systems.

Additionally", Bayer at el. (Bayer and Widen 2002) suggested the traceability" activity"
into the PuLSE method. As described in Chapter 2, the authors defined the
traceability” reference model which consists of artefact types and relationship types
in the domain of product family systems. More specifically, the model is focused on
the artefacts created during domain engineering process. However, the authors do
not explicitly”" define how to achieve the traceability” activities or what tool supports

is provided.

In (Berg and Bishop 2005), the authors defined the conceptual model for variability
in product family systems. The model contains three ty'pes of artefacts: (i)
requirements, tepresented in use cases and feature model; architecture/ design,
represented in UML class diagrams; and (iil) source code, implemented in C++
programming language. The authors suggested traceability" between variability' in
different types of artefacts. However, they do not define the classification of
traceability relations and do not discuss of how to establish the relations.
Additionally, the work in (Riebisch and Pbilippow 2001) has been proposed to use
traceability relations for supporting the activities of product family system
development. In other words, the traceability' relations are used to identify possible
reused artefacts of existing systems for new product members. The authors
suggested the generation of traceability relations (a) between requirements and
feature implementation, (b) between design and decision, and (c) between
requirements, design decisions, and features. However, the reference model and
classification of traceability relations are not explicitly defined. The authors also
suggested the technique in (Dick 1999) for traceability" activities; however, do not

define any tool support for the activities. In this work, the traceability relations are

106

3.7 Traceability of Product Family Systems

defined in the coarse-grained level and not cover all types of artefacts in the product

family systems.

According to (Lago et al. 2004), the authors defined the model, called simplified
representation mode/\ which includes of artefacts and traceability7 relationships in the
domain of product family systems; though the traceability’ relations are defined in
the coarse-grained level. However, they do not explicitly define which techniques

are used for traceability7activities and do not provide tool support for the activities.

Additionally, the projects (CAFE 2003, ESAPS) have been concerned with the
traceability activities. The traceability7meta-model is defined; however, it does not
represent particular types of traceability relations and do not provide any tool
support for the activities. Although, the SPLIT/Cloud (Coriat et al. 2000) which is
applied during the activity of domain analysis in the projects includes the generation
of traceability relations. The method defined types of traceability relations created
between functional and non-functional requirements and between requirements and
constraints. There are no special tool support for traceability7activities, even though
the projects proposed to apply DOORS (DOORS) for supporting requirement

engineering activities.

As described in Chapter 2, in (Kim et al. 2005), the authors defined a traceability
reference model for the domain of product family systems. The model consists of
artefacts types and traceability7 relationship types. However, the authors do not
describe how to achieve the generation of traceability relations in an automatic way

or explicitly define the tool support for the traceability activities.

In (Plankl and Bockle 2001), the authors suggested an approach for domain analysis
in the software product line engineering and defined the requirements model
including traceability7 relationships between requirements artefacts. However, they

do not define how to achieve the activities.

107

CHAPTER 3. PRODUCT FAMILY SYSTEMS

3.7.2. Issues of Traceability Activities in Product Family Systems

There are two main issues that need to be tackled:

Difficulty to Establish Traceability across the Large Size and Diversity of
Software Artefacts in Product Family Systems

It is difficult to establish traceability relations in the domain of product family
systems due to the large size and diversity of software artefacts. Additionally, it is
difficult to capture the semantics of traceability relations between those artefacts.
This issue is also concerned in some approaches for traceability generation. The
examples of these approaches are such as (Alexander 2003, Knethen et al. 2002).
The authors have discussed that their approaches do not support the generation of

traceability relations in the domain of product family systems.

Inadequate Tool Support

Although traceability is recognized as an important activity in the software
development, the support of the traceability generation in the product family
systems is still rare. Some approaches (Bayer and Widen 2002, Coriat et al. 2000,
Lago et al. 2004) proposed a traceability reference model in the domain of product
family systems; however, they do not provide automatic support for generating
traceability relations. In addition, although some approaches proposed to tackle the
traceability issue in the domain of product family systems, they do not provide
automatic support (Bayer et al. 1999, CAFE 2003, Coriat et al. 2000, ESAPS, Flull et
al. 2002, Kim et al. 2005, Plankl and Bockle 2001, Riebisch and Philippow 2001).

3.8. Summary

This chapter has provided background information for product family systems. It
has presented the terminologies, existing problems, current approaches, current
techniques and current tools in the domain of product family. It also illustrated the
existing approaches and problems of traceability practice in the domain of product
family systems. In the next chapter, we present a traceability reference model for

product family systems.

108

Part II: The Approach

Chapter 4
Traceability Reference Model

This chapter describes'a traceability reference model for product family systems.
The reference model includes two main essentials. Firstly, the types of documents
represented software artefacts of product family systems are described in Section
4.2. Secondly, the classification of relationships between those documents is defined
in Section 4.3. The examples of traceability relations between software artefacts of
product family systems and the summary of traceability reference model are also

given in Section 4.3. Section 4.4 summarises of the chapter.

4.1. Introduction

As discussed in Chapter 1, we believe that a feature-based object-oriented
engineering approach is required when developing product family systems. A
feature-based approach is important to support domain analysis and domain design,
enhance communication between customers and developers in terms of product
features, and assist with the development of software product line architecture. On
the other hand, an object-oriented approach is necessary to assist with the
development of the various product members. We propose to use an extension of
the FORM (Feature-Oriented Reuse Method) methodology (Kang et al. 1998) due

to its maturity, practicality, and extensibility characteristics.

Our work concentrates on documents generated by FORM methodology such as
feature, subsystem, process, and module models, for the core assets; and object-
oriented documents such as use case specifications, class diagrams, statechart

diagrams, and sequence diagrams, for the product members.

CHAPTER 4. TRACEABILITY REFERENCE MODEL

Furthermore, our approach combines feature-oriented and object-oriented
documents and, therefore, requires a common representation of these document
types. In our approach, the documents are represented in XML. We have chosen
XML as a basis for our approach due to several reasons: (a) XML has become the
de facto language to support data interchange among heterogeneous tools and
applications, (b) the existence of large number of applications that use XML to
represent information internally or as a standard export format (e.g. Unisys XML
exporter for Rational Rose (RationalRose), Borland Together (Borland), ArgoUML
(ArgoUML)), and (¢) to allow the use of XQuery (XQuery) as a standard way of
expressing traceability rules. Moreover, the OMG promotes the use of the XML
Metadata Interchange (XMI) (XMI) to enable interchange of metadata between
modeling tools that are based on OMG-UML and metadata repositories. XMI
integrates OMG-UML modeling standards with Meta Object Facilities (MOF) and
XML-W3C standard.

For each document type used in our approach we have created XML Schemas as
shown in Appendix A. The textual sentences in the XML documents are annotated
with part-of-speech assignment by using a general purpose grammatical tagger called
CLAWS (CLAWS). This grammatical tagger assumes the British National Corpus
(Leech et al. 1994) and tags the text in a four-stage process. In the first stage, the
text to be tagged is divided into words and sentences. In the second stage, initial
POS-tags are assigned to the words based on a lexicon and tagging rules. In the
third stage, the initial tags are revised to take into consideration the context of the
words based on other rules. In the fourth stage, tags are disambiguated using
Markov Model (Poritz 1998). CLAWS has an error-rate of 1.5%. A more detailed
explanation of CLAWS can be found in (CLAWS).

4.2. Product Family Software Artefacts

The software artefacts generated during the development of product family systems
are classified in two levels, namely product line level and product member level Product

line level is concerned with the software artefacts created during activities in domain

112

4.2 Product Family Software Artefacts

engineering, while product member level is concerned with software artefacts
created during activities in application engineering to be composed as product

members in product family systems.

In the product line level, the software artefacts are divided into three types based on
the various phases in domain engineering of the product family system
development. According to the literature (see Chapter 3), the first type, known as
reference requirements is concerned with artefacts created during the domain analysis
phase. The second type, known as software product line architecture is concerned with
artefacts created during the design phase. The third type, known as rewsable software
components is concerned with artefacts created during the domain implementation

phase.

In the product member level, the software artefacts are also divided into three types
based on the various phases in application engineering of the product family system
development. The artefacts in the product member level are as concerned as the
artefacts in single software systems (Nuseibeh and Easterbrook 2000). The first type
is concerned with artefacts known as requirements specification. The second type is
concerned with artefacts such as design models. The third type is concerned with
artefacts such as sowrce code. According to the literature (Bayer and Widen 2002,
Bosch and Hogstrom 2000, Clements and Northrop 2002, Nuseibeh and
Easterbrook 2000, Weiss and Lai 1999), the composition and integration of those

artefacts develop into product members.

The work presented in this thesis is concerned with software artefacts created
during the domain analysis and design phases of product family system
development according to Figure 3-1. More specifically, we classify the software
artefacts of our concern into two dimensions. The first dimension includes the
product line and product member levels, while the second dimension includes the
two phases of the software development process. Table 4-1 presents the set of

software artefacts used in our approach for each dimension.

113

CHAPTER 4. TRACEABILITY REFERENCE MODEL

The artefacts in Table 4-1 are comparable to the artefacts proposed for product
level and product member level in the literature. For example, reference
requirements created during the domain analysis phase is comparable to feature model
(Kang et al. 1998) in Table 4-1; software product line architecture is comparable to
subsystem, process, and module models (Kang et al. 1998) in Table 4-1; requirements
specification in product member level is comparable to use case (Cockburn 1997) in
Table 4-1; and design models in product member level is comparable to cass,

statechart, and sequence diagrams (UML).

Table 4- 1: Documents used in our approach
Analysis Design
Product-Line Level Feature model Subsystem model

Process model
Module model
Product Member Level Use Case Class diagram

Statechart diagram

Sequence diagram

In the following, we described each type of artefacts and present examples of these

artefacts.

Feature Model

A feature model is a software artefact that describes the abstraction of domain
knowledge obtained from domain experts such as system users, analysts, and system
developers, as well as other sources such as books, user manuals, design documents,

and source programs. It describes the common and variable aspects (features) of a

family in a domain (Griss et al. 1998, Kang et al. 1998, Svahnberg et al. 2001).

The feature model proposed in FORM (Kang et al. 1998) is based on the feature
model from FODA (Kang et al. 1990) enhanced with a textual specification for
each feature. Therefore, a feature model has two main components: a graphical

hierarchy of features and ftextual specification. Figure 4-1 presents an example of a

114

4.2 Product Family Software Artefacts

graphical hierarchy of feature for a mobile phone product family, while Figure 4-2

presents an example of a textual specification for feature TextMessagesin Figure 4-1.

As shown in Figure 4-1, a feature is represented by a name and can be (i) mandatory,
when it must exist in the applications in the domain; (ii) gptional\ when it is not
necessary to be present in the applications in the domain; or (i) a/fernative, when it
can be selected for an application from a set of features that are related to the same

parent feature in the hierarchy.

The features can be classified into four groups namely () application capabilities,
signifying features that represent functional aspects of the applications (e.g. calling,
connectivity, personal preference, and tool features); (i) operating environments,
signifying features that represent attributes of the environment in which product
members are used and operated (e.g. network, input and output methods, and
operating system features); (iii) domain technologies, signifying features that represent

specific implementation and technological aspects of the applications in the domain

(e.g. WAP and XHTML" browser types; specific Java application support like

mobile media and wireless messaging application programming interface; SMTP,

POP3, and IMAP4” network protocol features); and (iv) mplementation techniques,
signifying features that represent more general implementation and technological
aspects of the applications, but not necessary specific for the domain (e.g. PGP and

DES encryption methods; AMR, MIDI, and MP3 sound formats; and 3GPP and

MPEG " video format features).

Feature can also be related by different types of relationships. Examples of these
relationships ate () composed_of, (ii) generalisation/specialisation, and (iii) implemented_by

relationship types.

~ W AP: Wireless Application Protocol; XHTML: Extensible HyperText M arkup Language.
A SMTP: Simple Mail Transfer protocol; POP3: Post O ffice Protocol; IMAP4: Internet M essage Access Protocol.

~ AMR: Adaptive Multi-Rate; MIDI: Musical Instrument Digital Interface; M P3: MPEG Audio Layer IIl; 3GPP: 3rd

Generation Partnership Project; and MPEG: Moving Picture Experts Group.

CHAPTER 4. TRACEABILITY REFERENCE MODEL

Figure 4-1: The feature model of the mobile phone

As shown in Figure 4-2, the textual specification represents () a name, (i) a
description, (iil) issues and decisions representing trade-offs, rationale, or justifications for
including the feature in an application, (iv) a #jpe such as application capabilities,
operating environments, domain technologies, and implementation technologies, (v)
commonality indicating if a feature is mandator)] optional, and alternative, (vi)
relationship with other features such as composed-of, implemented-by,
generalisation/specialization, (vii) composition rule tepresenting mutual dependency
and mutual exclusion relationships to indicate consistency and completeness of a
feature, if any, and (vii) allocated-to-subsystem indicating the name of a subsystem that

contains the feature, if any

116

4.2 Product Family Software Artefacts

Feature-name: Text Messages

Description: The phone can edit, send, and receive a short text message
Issues and decision: Text message over mobile phone is a way of communication
Type: Application capability

Comrnonality: Mandatory

COInpOSCd-Of: Sending Text Messages, Receiving Text Messages, Editing

Text Messages
Composition-rule: -
Allocated-to- Messaging
subsystem:

Figure 4- 2: Features in textual specification language (Kang et al. 1998).

We have developed an XML representation of the feature model based on the
textual specification. In this representation, a feature model is composed of many
features as shown in the extract of Figure 4. Each feature has a name
(<Feature_name>), a description of the feature in natural language sentences
(<Description>), a description of possible issues and decisions that may have been
raised during the feature analysis process (<Issue_and_decision>), a type (<Type>),
an element <Existential> denoting if the system is mandatory, optional, or
alternative, relationships with other features (element <Relationship> with attribute
type and the associated features represented in element <Rel_feature>), and the
subsystem name that may contain the feature (<Allocated_to_subsystem>), if any.
The contents of Feature_name, Description, hsne_and_decision, — RelJeature, and
A/ located_to_subsystem elements are marked-up with part-of-speech XML tags (XML
POS-tags) indicating their grammatical role in the sentence. For instance, the word
“Text” is maked-up with element <NN1>, denoting that “Text” is a singular
common noun; the word “Messages” is marked-up as <NN2>, denoting a plural

common noun, the word “edit” is marked-up as <VVI> denoting an infinite verb.

117

CHAPTER 4. TRACEABILITY REFERENCE MODEL

<Feature_Model>
<Feature>
<Feature_name> <NN1> Text </NNI> <NN2> Messages </NN2> </Feature_name>
<Description>
<ATO> The </ATO> <NN1> phone </NNI> <VMO0> can </VM0> <VVI> edit </VVI>
<8C>,</SC> <VVI> send </VVI> <SC>,</SC> <CJC> and </CJC> <VVI> receive </VVI>
<ATO0> a </AT0> <AJ0> short </AJ0> <NN1> text </NNI> <NN1> message </NNI>
<</
</Description>

<Issue_and_decision>
<NN1> Text </NNI> <NN1> message </NNI> <II> over </II> <JJ> mobile </JJ>

<NN1> phone </NNI> <VBZ> is </VBZ> <AT1> a </ATI> <NNI1> way </NNI>
<IO> of </IO> <NN1> communication </NNI>

< /Issueanddecision>

<Type>Application capability</Typc>

<Existential>Mandatory</Existential>

<Relationship Type="composed_of">

<Rel_feature> <VVG> Sending </VVG> <NN1> Text </NNI> <NN2> Messages </NN2>

</Rel_feature>
<Rel_feature> <VVG> Receiving <]\]VG> <NN1> Text </NNI> <NN2> Messages </NN2>

</Rel_feature>
<Rel_feature> <VVG> Editing </VVG> <NN1> Text </NNI> <NN2> Messages </NN2>
</Rel_feature>
</Relationship>
<Allocated_to_subsystem> <NN 1> M essaging </NN 1> </Allocated _to_subsystem>
</Feature>
<Feature>
<Feature_name> <VVG> Editing </VVGxNN 1> Text </NNIxNN2> Messages </NN2>
</Feature_ name>

<Description>
<ATO0> The </AT0> <NN I> phone </NN 1> <VVZ> provides </VVZ> <AT 1>an</AT 1>

<NN1> editor </NNI> <TO> to </TO> <VVI> create </VVI> <AT1> a </ATI>
<JJ> new </JJ> <NN1> text </NNI> <NNI> message </NNI> <SC>.</SC>
<VVG> Editing </VVG> <AT> the </AT> <NN1> text</NNI> <NN1> message </NNI>
<VM> can </VM> <VBI> be </VBI> <VDN> done </VDN> <1I> in </II>
<]JJ> different </JJ> <NN2> ways </NN2> <II> such </II> <II> as </II>
<NN1> alpha </NNI> <NN1> mode </NNI> <CC> and </CC> <JJ> predictive </JJ>
<NN 1> mode </NN 1>
</Description>
<Type>Application capability</Type>
<Existential>Mandatory</Existential>
<Allocated_to_subsystem> <NN 1> M essaging </NN 1> </Allocated_to_subsystem>

<Compositionrule>
<VVZ> requires </VVZ> <AT> the </AT> <NN1> text </NNI> <NN1> library </NNI>

<NN 1> feature </NN 1>
</Composition_rule>
</Feature>

</Feature_Model>

Figure 4- 3: Feature model for mobile phone systems

118

4.2 Produci Family Software Artefacts

Use Cases

Use case is a textual specification language that captures a contract between the
stakeholders of a system about its behavior (Cockburn 1997). In our work, we
represent the functional requirements of product members as use-cases based on

the template proposed in (Cockburn 1997).

In our template, a use case is represented by element (<Use_Case>) with a unique
identifier (UseCase/D), information about the product line domain (Syster) and
product member identifier (Prodnct_Member). A use case has also a title (<Title>); a
brief textual description (<Description>); the level of functionality that it describes
within a system (<Level>); pre- and post-conditions that must be satisfied before
and after its execution respectively (<Preconditions> and <Postconditions>);
primary and secondaty' actors describing the users of the use case (<Primary_actor>
and <Secondary_actors>); flow of events denoting the events that trigger the use
case and the specification of the normal events that occur within it
(<Flow_of_events>); exceptional events describing the events that not always occur
when the use case is executed (<Flxceptional events>); and Superordinate and
subordinate use cases (<Superordinate_use_case> and <Subordinate_use_case>).
As in the case of feature model, the words in the textual parts of the use case are

annotated with XML POS-tags denoting their grammatical roles.

Figure 4-4 illustrates an example of a use case Sending a Message from a mobile phone
for product member PMI1 of the mobile phone case study. The use case
(<Use_Case>) is identified with UseCase/D (“UC17), System (“MobilePhone”), and
Vroduct_Member (‘PM17”) It contains elements i.e. <Title>, <Description>, <Level>,
<Preconditions>, <Postconditions>, <Primary_actor>, <Secondary?_actors>,
<Flow_of_events>, <Event>, <Exceptional_events>, <Superordinate_use_case>,
and <Subordinate_use_case> that describe the context of the use case. Likewise,
the elements that are composed of textual descriptions are marked-up with part-of-

speech indicating their grammatical role in the sentence as XML tags.

119

CHAPTER 4. TRACEABILITY REFERENCE MODEL

<Use_Case UseCaseID="U C1” System="MobilePhone” Product_Member=vP M 17 >
<Title> Sending a Message </Title>
<Description> <ATO> The </ATO> <NN1> phone </NNI> <VBZ> is </VBZ>
<AJ0> able </AJ0> <TOO> to </TOO> <VVI> send </VVI> <AT0> a </ATO0>
<NN1> text </NNI> <NN1> message </NNI> <SC> . </SC> <AT> The </AT>
<NN 1> user </NN 1> <VM> can </VM> <VVI> specify </VVI> <AT 1> an </AT 1>
<NN1> address </NNI> <IO> of </IO> <AT1> a </ATI> <NN1> receiver </NNI>
<II> by </II> <VVG> selecting </VVG> <II> from </I[> <AT1 >a </ATI>
<NN 1> list </NNI> <IO> of </IO> <NN2> contacts </NN2> <SC> . </SC>
</Description>
<Level> User Goal </Level>
<Preconditions> <AT> The </AT> <NN 1> user </NNI> <VHZ> has </VHZ>
<VHZ> already </NHZ> <VVN> selected </VVN> <NN1> function </NNI>
<IO> of </IO> <VVG> sending </VVG> <AT1> a </AT 1> <NN 1> text </NNI>
<NN1> message </NNI> <II> from </II> <AT> the </AT> <JJ> main </JJ>
<NN1> menu <2NN1> <SC> . </SC>
</Preconditions>
<Postconditions> <AT> The </AT> <NN1> phone </NNI> <VHZ> has </VHZ>
<VVN> sent </VVN> <AT> the </AT> <NN1> message </NNI> <SC> . </SC>
< /Postconditions>
<Primary_actor> The user </Primary_actor>
<Secondary_actors/>
<Flow of events>
<Event> <AT> The </AT> <NN 1> system </NN 1> <VVZ> shows </VVZ>
<AT1> an </ATI> <NN1> editor </NNI> <IF> for </IF> <VVG> writing </VVG>
<AT1>a </AT 1> <NN 1> message </NN 1> <SC> . </SC> </Event>
<Event> <AT> The </AT> <NN 1> user </NN 1> <VVI> type </VVI> <AT 1> a </AT 1>
<NN 1> phone </NN 1> <NN 1> number </NN 1> <IO> of </IO> <AT 1> a </AT 1>
<NN1> receiver </NN I> <SC> . </SC> <AT>The</AT> <NN1> user </NNI>
<VV1> select </VVI> <AT1> a </ATI> <NN1> phone </NNI> <NN1> number </NNI>
<10> of </10> <AT 1> 2 </AT 1> <NN 1> receiver </NN1> <II> by </II>
<VVG> selecting </VVG> <II> from </II> <AT1> a </ATI> <NNI1> list </NNI>
<IO> of </IO> <NN2> contacts </NN2> <SC> . </SC> <AT> The </AT>
<NN 1> user </NN 1> <VVI> send </VVI> <AT> the </AT> <NN 1> text </NN 1>
<NN1> message </NNI> <II> to </II> <]JJ> multiple </JJ> <NN2> receivers </NN2>
<II> by </II> <VVG> inserting </VVG> <JJ> multiple </JJ> <]JJ> mobile </JJ>
<NN1> phone </NNI> <NN2> numbers </NN2> <SC>.</SC> </Event>
<Event> <AT> The </AT> <NN1> system </NNI> <VVD> displayed </VVD>
<AT> the </AT> <NN1> phone </NNI> <NN1> number </NNI> <SC> . </SC>
</Event>
<Event> <AT> The </AT> <NN1 > user </NN 1> <VV1> enter </VVI> <AT> the </AT>
<NN 1> message </NN 1> <SC> . </SC> ... </Event>

</Flow_of_events>
<Exceptional_events/>
<Superordinate_use_case/>
<Subordinate_use_case/>
</Use_Case>

Figu.te 4- 4: Use case Sending a Message

120

4.2 Product Family Software Artefacts

Subsystem Model

In FORM, the subsystem model is a graphical diagram that represents high-level
abstraction of the software product line architecture. Figure 4-5 shows an example
of subsystem model for the mobile-phone product family case study. It illustrates
functional groups of software, named as subsystersli.s) and their interactions. A
subsystem can be #ufernal\ when it exists in the product family system or external
when it does not belong to the product family system, but interacts with the internal

subsystems of the family.

An interaction represents how the subsystems communicate with each other. There
are two types of interactions 1) data flow, representing a flow of data between
subsystems and ii) controlflow, representing a flow of control between subsystems. As
shown in Figure 4-5, a subsystem model of the mobile phone product family
consists of five subsystems, namely operating, messaging, mobile Internet, network, and

calling and house-in applications subsystems.

We propose an XML representation for a subsystem model, as shown in Figure 4-6.
In our template, a subsystem model for a domain is composed of various
subsystems. Each subsystem has a name (<Subsystem_name>], has a brief textual
description (<Description>), and can be of type internal or external (<Type>). The
data and control flows between the subsystems are represented by element <Flow>
with attributes denoting the unique identifier flow_id), the type flow_type), and the
subsystems sending and receiving the flow (sender and receiver, respectively). The
complete XML representation of the subsystem model with annotated XML POS-

tags can be found in Appendix A.

CHAPTER 4. TRACEABILITY REFERENCE MODEL

mMessaging

Mobile
Internet

Network -*

Calling and
house-in
applications

f Legend --------------
r Subsystem —

1 External
----- 1 Internal

Flow
- Data

————— *a Control

Figure 4- 5: Subsystem model of mobile phone systems

Figure 4-6 shows an extract of the subsystem model from a mobile phone product
family. The extract of the subsystem model (<Subsystem_Model>) includes two
subsystems (<Subsystem>), namely
(<Description>) of a subsystem specified in natural language sentences are
represented with annotated XML POS-tags. Both two subsystems are typed of
internal. Moreover, the extract of the subsystem model includes two flows
(<Flow>), identified with ¢/ and d2. Flow ¢7 is typed of control_jlow and sent from

Operating subsystem to Messaging subsystem, while flow d2 is typed of data_flow and

Operating and Messaging. The description

sent from Messaging subsystem to Mobile Internet subsystem.

122

4.2 Product Family Sofiware Artefacts

<Subsystem_Model>
<Subsystem>
<Subsysteni_nanie> Operating </Subsystem__name>
<Description> <DD1> The </DDI> <NN1> subsystem </NNI> <VVZ> provides </VVZ>

<NN2> facilities </NN2> <IF> for </IF> <VVG> performing </VVG>
<JJ> basic </JJ> <NN2> tasks </NN2> <II> such </II> <II> as </II>
<NN1> control </NNI> <IO> if </IO> <AT> the </AT> <NN1> interaction </NN 1>
<IW> with </IW> <DB> all </DB> <NN1> control </NNI> <IO> of </10>
<AT> the </AT> <NN1> interaction </NNI> <IW> with </IW> <DB> all </DB>
<NN2> devices </NN2> <SC> , </SC> <NN 1> software </NNI> <SC> |, </SC>
<CC> and </CC> <NNO0> data </NN0> <SC> ; </SC> <NN1> support </NNI>
<IO> of </IO> <AT> the </AT> <NN 1> interaction </NN 1> <II> between </II>
<JJ> internal </JJ> <NN2> applications </NN2> <SC> (</SC> <REX> e.g. </REX>
<NN2> games </NN2> <SC> , </SC> <NNO0> multimedia </NNO0> <SC> , </SC>
<CC> and </CC> <NN 1> PC </NN 1> <NN 1> connective </NN 1> <SC>) </SC>
<SC> , </SC> <NN1> recognition </NNI> <IO> of </IO> <JJ> internal </JJ>
<NN 1> hardware </NN 1> <SC> (</SC> <REX> e.g. </REX> <NN 1> screen </NN 1>
<SC> , </SC> <NN1> keypad </NNI> <SC> , </SC> <CC> and </CC>
<NP1> Bluetooth </NPI> <SC>) </SC> <CC> and <JCC> ...

</Desctription>

<Type> internal </Type>

</Subsystem>

<Subsystem>

<Subsystem_name> Messaging </Subsystem_name>

<Description> <DD1> The </DDI> <NN1> subsystem </NNI> <VVZ> manages </VVZ>
<AT> the </AT> <NN1> exchange </NNI> <CC> and </CC>
<NN1> manipulation </NNI> <IO> of </IO> <NN2> messages </NN2> <SC> . </SC>
<PPH1> It </PPH 1> <VVZ> supports </VVZ> <MC> two </MC>
<NN2> services </NN2xSC> :</SC> <]JJ> short </JJ> <NNI1> message </NNI>
<NN1> service </NNI> <SC> (</SC> <NP1> SMS </NPI> <SC>) </SC>
<IF> for </IF> <JJ> textual </JJ> <NN2> messages </NN2> <SC> , </SC>
<CC> and </CC> <NN> multimedia </NN> <NN 1> message </NN 1>
<NN1> service </NNI> <SC> (</SC> <NNU2> MMS </NNU2> <SC>) </SC>
<IF> for </IF> <NN> multimedia </NN> <NN2> messages </NN2> <SC> . </SC>
<AT> The </AT> <NN2> services </NN2> <VBR> are </VBR> <VVN> based </VVN>
<II> on </II> <AT1> a </ATI> <NN1> store </NNI> <CC> and </CC>
<JJ> forward </JJ> <NN1> protocol </NNI> <SC> . </SC> <AT> The </AT>
<NN1> subsystem </NNI> <VVZ> interacts </VVZ> <IW> with </IW>
<JJ> short </JJ> <NN1> message </NNI> <NN1> service </NNI>
<NN2> centers </NN2> <SC> (</SC> <NP1> SMSC </NPI> <SC>) </SC>
<CC> or </CC> ...

</Desctription>

<Type> internal </Type>

</Subsystem>

<Flow flow jd = “cl” flow_type = “control_flow” sender = “Operating”
receiver = “M essaging”/>
<Flow flow_id = "d2” flow_type = “data_flow” sender = “M essaging”

receiver = “Mobile Internet”/>

</Subsystem_Model>

Figure 4- 6: Example of Subsystem Model

123

CHAPTER 4. TRACEABILITY REFERENCE MODEL

Process Model

FORM proposes each subsystem in the subsystem model to be refined by one or
many process modelip). The process model is a graphical diagram that represents the
middle-level of the software product line architecture as shown in Figure 4-7. The
process model is composed of many processes that refine the behavior of a
particular subsystem, many messages that represent the communication between

processes, and shared data that may be used by the processes.

Each process can be categorized as resident or transient depending if the process
belongs to the subsystem (Kang et al. 1998). The resident process is allocated in the
subsystem and the fransient process exists outside the subsystem, but appears having
messages exchanging to a resident process in the model. Additionally, a process can
also be classified as multiple or single, depending on the necessary number of
instances of a process to perform a task. The process model also represents the
messages exchanged between the various processes and the data shared by a
process. The messages can be () closely-coupled, which supports synchronized
communication (implemented by a protocol of message/ reply), and (i) loosely-coupled,
which supports an asynchronized communication (implemented by message guene)

(Gomaa 1993). Shared data includes database, reports, and files.

As shown in Figure 4-7, short messaging service (SMS) process model represents the
processes that exist in a Messaging subsystem (as shown in Figure 4-5). The SMS
process model includes resident processes (i.e. edit process, control process, check
signal process, notification process, and short messaging service (SMS) control process) and
multiple processes (L.e. #pdate remotely process and short messaging sendee center (SMSC)

process).

124

4.2 Product Family Software Artefacts

Figure 4- 7: SMS process model for messaging subsystem

We propose an XML representation for process models, as shown in Figure 4-8.
The XML specification for process model used in our approach for Messaging
subsystem is shown in Figure 4-7. A process model (<Process_Model>) has a unique
identifier (ProcessModez/D) and the name of the respective subsystem
(Subsystem_name). Bach process (<Process>) in the model may have an optional
attribute referencing the shared data storage (shared_data). A process is specified by a
name (<Process_name>), has a textual description (<Description>), can be
concerned with multiple or single activities (<Activity>), and can be of type resident
or transient (<Type>). The messages exchanged between the various processes
(<Message>) are represented by a unique identifier /message_id); a type [mesage_type)
that can be closely_coupled, when it supports synchronize communication, or
loosely_coupled, when it supports asynchronous communication; and the processes

receiving and sending the message [sender and receiver). The shared data storage

125

CHAPTER 4. TRACEABILITY REFERENCE MODEL

(<Shared_data>) has identifier and type attributes (data_id and #pe). Examples of
process models in XML with XML POS tags are found in Appendix A.

126

4.2 Product Family Software Artefacts

<Process_Model ProcessModellD = “PI1- Subsystem _name = “Messaging”>
<Process>
<Process_name> Short Messaging Service (SMS) Control </Process,,name>
<Description> <AT> The </AT> <NN1> process </NNI> <WZ> perfoims <AVZ>
<AT> the </AT> <NN> delivery </NN> <CC> and </CC> <NN1> receiving </NNI>
<IO> of </IO> <AT1> a </ATI> <JJ> short </JJ> <NN1> message </NNI> <II> to </II>
<AT1> a </ATI> <JJ> short </JJ> <NN1> message </NNI> <NN 1> service </NNI>
<NN1> center </NNI> <SC> (</SC)> <NP1>SMSC </NPI> <SC>) </SC>
<SC> .</SC> <AT> The </AT> <NP1> SMSC </NPI> <VBZ> is </VBZ>
<VVN> connected </VVN> <II> to </II> <AT> the </AT>
<NN1> telecommunication </NNI> <NN1> network</NN 1>
<SC> (</SC> <REX> e.g. </REX> <NNU> GSM </NNU> <SC> , </SC>
<NP1> HSCSD </NPI> <SC> |, </SC> <CC> and </CC> <NN1> EDGE </NNI>
<SC>) </SC> <II> through </II> <AT> the </AT> <]JJ> short </))>
<NN 1> message </NNI> <NN 1> service </NN1> <NN 1> gateway </NN 1>
<JJ> mobile </JJ> <JJ> switching </JJ> <NN1> center </NNI> <SC> (</SC>
<NP1> SMS </NPI> <NP1> GMSC </NPI> <SC>) </SC> <SC> . </SC>
<AT> The </AT> <NN1> process </NNI> <RR> also </RR> <VVZ> attaches </VVZ>
<JJ> extra </JJ> <NN1> infonnation </NNI> <II> about </II> <NP1> SMSC </NPI>
<II> in </II> <AT1> a </ATI> <]JJ> short </JJ> <NN1> message </NNI> <SC> . </SC>
</Description>
<Activity>multiple</Activity>
<Type>resident</Type>
</Process> ...
<Process shared_data = “d 17>
<Process__name> Edit </Process_name>
<Description> <DD1> This </DDI> <NN1> process </NNI> <VVZ> performs </VVZ>
<AT> the </AT> <NN1> composition </NN 1> <10> of </10> <AT1> a </ATI>
<JJ> short </JJ> <NN1> message </NNI> <SC> . </SC> <AT> The </AT>
<JJ> short </JJ> <NN 1> message </NNI> <VVZ> contains </VVZ> <ATI1> a </ATI>
<NN2> receivers </NN2> <NN1> address </NNI> <CC> and </CC>
<NN1> context </NNI> <SC> . </SC> <AT> The </AT> <NN1> process </NNI>
<VVZ> provides </VVZ> <AT1> a </ATI> <NN1> list </NNI> <IO> of </I0>
<NN2> contacts </NN2> <CC> and </CC> <AT1> a </ATI> <NN1> set </NNI>
<IO> of </10> <NN 1> template </NNI> <]JJ> short </J]> <NN2> messages </NN2>
<SC> .</SC> <AT> The </AT> <NN 1> process </NN 1> <VVZ> supports < fIW Z>
<MC> two </MC> <NN 1> editing </NNI> <NN2> modes </NN2> <REX> i.e. </REX>
<NN 1> alpha </NN 1> <NN 1> mode <NN 1> <CC> and </CC> <JJ> predictive </JJ>
<NN 1> mode <NN 1> <SC> . </SC> <AT> The </AT> <NN 1> alpha </NN 1>
<NN1> mode <NN1> <VVZ> accepts </VVZ> <]JJ> alphanumeric </JJ> <SC> . </SC>
<AT> The </AT> <]JJ> predictive </JJ> <NN1> mode </NNI> <VVZ> predicts </VVZ>
<AT1>a </AT 1> <NN 1> word </NN 1> <II> from </II> <AT1>an </AT 1>
<NN 1> input </NN 1> <NN1> keystroke </NN 1> <SC> . </SC> </Description>
<Activity>single</Activity>
<Type>resident</Type>
</Process>
<Message message_id="m7_trigger" message_type="closely-coupled"
sender="Short M essaging Service (SMS) Control" receiver="Notification"/>

<Message message_id="m8_response” message_type="closely-coupled"
sender="Notification" receiver="Short Messaging Service (SM S) Control"/> ...

<Shared_data data_jd="d 1" type="database"/>
W Prnrp«« 1VTarlpl®

Figure 4- 8 SMS process model for messaging subsystem

127

CHAPTER 4. TRACEABILITY REFERENCE MODEL

Module Model

In FORM, each process in the process model is further refined in a module model. A
module model is represented as a graphical diagram that represents the low-level of
the software product line architecture. Figure 4-9 represents the module model for

Short Messaging Service SMS Controlprocess of Messaging subsystem.

A module model represents a hierarchical structure of the various modules
composing a process and their interactions. The modules are classified into four
groups related to the different groups of features (see earlier described) namely (i)
service modules, which support the functionality of the systems and correspond to
application capability features; (i) environment biding modules, which represent the
running environment of the system and correspond to the operating environment
teatures; (i) technique hiding modules, which represent the technology domain aspects
of the system and correspond to the domain technologies features; and (iv) wzility
modules, which represent general purpose aspects of the system and correspond to

implementation techniques features.

We propose an XML representation for module models as shown in Figure 4-10.
The XML specification for module model used in our approach for process Short
Messaging Service (SMS) Control is shown in Figure 4-9. A module model
(<Module_Model>) has a unique identifier ModuleMode/ /D), the corresponding
process (Process_name), and is composed of various modules (<Modules>) and links
(<Link>). FEach module has a name (<Module_name>), a description
(<Description>), and a type (<Type>). The type of a module is concerned with the
detail of its code implementation ranging from skeleton (code outline), zemplate (more
detailed code without parameter specifications), to precoded (complete code). The
links have a #ype (uses or inherits) and the source and destination modules. Examples of
module models in XML with POS tags used in our approach are found in Appendix
A

128

4.2 Product Family Software Artefacts

Two modules can be associated by links. The methodology suggests two types of
links: (1) uses, signifying that a module uses another module; and (i) berits,

signifying that a module inherits another module.

Figure 4- 9: The module model for short messaging service (SMS) control process
of messaging subsystem

CHAPTER 4. TRACEABILITY REFERENCE MODEL

<Module_Model ModuleModellD = “MM1” Process_name = “Short Messaging Service SMS
Control”>

<Module>

<Module_name> Short Messaging </Module_name>

<Description> <AT> The </AT> <JJ> maximum </JJ> <NN1> length </NNI> <IO> of </IO>
<AT1> a </ATI> <NN1> text </NN 1> <NN 1> message </NNI>
<VBZ> is </VBZ> <MC> 160 </MC> <NN2> characters </NN2>
<SC> , </SC> <NN2> numbers </NN2> <SC> |, </SC> <CC> or </CC>
<DD> any </DD> <]JJ> alphanumeric </JJ> <NN1> combination </NNI>
<SC> .</SC> <DD1> This </DDI> <NN1> module </NNI>
<RR> also </RR> <VVZ> supports </VVZ> <IF> for </IF>
<NN1> non-text </NNI> <VVN> based </VVN> <]JJ> short </JJ>
<NN2> messages </NN2> <1121 > such </lI21> <II22> as </I122>
<JJ> binary </JJ> <NN1> fonnat </NNI> <DDQ> which </DDQ>
<SC> , </SC> <VBZ> is </VBZ> <VVN> used </VVN> <IF> for </IF>
<NN1> ring </NNI> <NN2> tone </NN2> <CC> and </CC>
<NN2> logo </NN2> <NN2> services </NN2> <SC> . </SC>

</Description>
<Type> precoded </Type>
</Module>

<Link type=Mnherit" source="Short Messaging" destination="Messaging Edit"/>

</Module_Model>
Figure 4-10: Module model for short messaging service SM'S control process

Class, Statechart, and Sequence Diagrams

The design of product members are described in UML class, statechart, and
sequence diagrams. In our approach, these diagrams are represented in XMI format
(XMI). We present here extracts of a class diagram (Figure 4-11), statechart diagram

(Figure 4-12), and sequence diagram (Figure 4-13) used in our case study.

130

ImageFormat

-formatSize:byte
-formatName:String

PCConnect

+connectvold
«mdisconnectvoid
*transferData:void
»searchAPair:void

SystemControl

-lastActiorrString

-time:float

-power:float

*-selectSendMethod:void

4.2 Product Family Software Artefacts

Interface

+setUp:void
+synchronise:void
» disconnectvoid

»sendData:void

*-operateToolApplication:void

displayDatavoid
<-dialCall:void
*setData:void
<-setFunction:void

<-operateNetwork:void

<-acknowledge:void
» disconnectYoid

SignalControl

*-sendData:void
*acknowledge:void

Infrared

+disconnect:void
+searchAPair:void
+corinect:void
+transferData:void

Bluetooth

» transferData:void
»searchAPair:void
» connectvold

» disconnectvoid

Call

-perlodCalldouble
-dialNoJnt

ueceiveCall:void
«mendCalNvoid
r-establishCall:void
<-divertCall:void

NetworkControl DisplayScreen

-networkType:String
-status:String

-sizeY:double
-sizeX:double
+establishConnection:void » displaySetting:void

» displayFunctionMenu:void
» showSendMethod:void

w*-disconnectConnection:void
wbrestoreConnectiorvvoid

» displayTimeStamp:void

» displayAcknowledge:void

*-dIsplay:vold
» operation! :void

X X

GraphicColourScreen

+displayFunctionMenu:void

+graphicSetting:vold

Figure 4- 11: An extract of a class diagram for product member PM 1

131

TextScreen

+displayFunctionMenu:void

CHAPTER 4. TRACEABILITY REFERENCE MODEL

Figure 4-12: A statechart diagram for a digital camera class

Figure 4-13: An extract of a sequence diagram of taking a photo

132

4.3 Traceability Relations

4.3. Traceability Relations

Based on our study and analysis of the mobile phone domain, our study and
experience with software traceability, the types of traceability relations proposed in
the literature (Bayer and Widen 2002, Mohan and Ramesh 2002, Pohl 1996b,
Ramesh and Jarke 2001), and the semantics of the documents of our concern, we
have identified nine different types of traceability relations between the various
documents used in our approach. As shown in Table 4-2, the traceability relations

are classified in six different groups.
Group 1: Relations between documents in the product line level and documents in
the product member level (e.g. feature model vs. use case of PM1).

Group 2: Relations between documents of the same type for different product

members (e.g. class diagram of PM1 vs. class diagram of PM2).

Group 3: Relations between documents of different types for the same product

member (e.g. use case of PM1 vs. class diagram of PM1).

Group 4: Relations between documents of different types for different product

members (e.g. use case of PM1 vs. class diagram of PM2).

Group 5: Relations between documents of the same type for the same product

member (e.g. use case UC1 of PM1 vs. use case UC2 of PM1).

Group 6: Relations between different documents in the product line level (e.g.

feature model vs. subsystem model).

133

Table 4- 2: Summary oftraceability relation groups

Feature Subsyste Process Module Use Class Sequence Statechart Use Class Sequence Statechart

Model m Model Model Model Case_ Diagram®. Diagram 1 Diagram 1 Case_ 2 Diagram Diagram Diagram 2

1 1 _2 2
Feature G6 G6 G6 Gl Gl Gl Gl Gl Gl Gl Gl
Model
Subsyste GG G6 G6 Gl Gl Gl Gl Gl Gl Gl Gl
m Model
Process G6 G6 G6 Gl Gl Gl Gl Gl Gl Gl Gl
Model
Module Go6 G6 Go6 Gl Gl Gl Gl Gl Gl Gl Gl
Model
Use Gl Gl Gl Gl G5 G3 G3 G3 G2 G4 G4 G4
Casel
Class Gl Gl Gl Gl G3 G5 G3 G3 G4 G2 G4 G4
Diagram_
1
Sequence Gl Gl Gl Gl G3 G3 G5 G3 G4 G4 G2 G4
Diagram_

1

Statechart
Diagram_
1

Use
Case_2

Class
Diagram
2

Sequence
Diagram_
2
Statechart
Diagram_
2

Feature

Model

Gl

Gl

Gl

Gl

Gl

Subsyste
m Model

Gl

Gl

Gl

Gl

Gl

Process

Model

Gl

Gl

Gl

Gl

Gl

Module

Model

Gl

Gl

Gl

Gl

Gl

Use

Case_

G3

G2

G4

G4

G4

Class
Diagram_

G3

G2

Sequence
Diagraml

G3

G4

G2

Statechart

Diagram 1

G5

G2

Use
Case_2

G5

G3

G3

G3

Class
Diagram
2

GI

G3

G5

G3

G3

Sequence
Diagram
J2
Gl

G3

G3

G5

G3

Statechart
Diagram 2

G2

G3

G3

G3

G5

CHAPTER 4. TRACEABILITY REFERENCE MODEL

Each of these groups can assist software development from different perspectives.
For instance, relations in group 1 assist with the identification of reusable
components; relations in group 2 and group 4 support comparisons between
various product members in a product family; relations in group 3 and group 6
assist with better understanding of each product member and the core assets of
product family, respectively; and relations in group 5 allow for the identification of
evolution aspects in a product member and, therefore, supports the decision of
when a new product member should be created. According to those groups, we
have identified nine different types of traceability relations between the various
documents described in the previous section. The nine types of traceability' relations
are not mutually exclusive. One or many types of traceability’ relations can exist
between two particular artefacts. An example of each relation is given in figures 4-

14 and 4-15. A description of each relation is given below.

Satisfiability. In this type of relation an element el safisfies an element e2, if el
meets the expectation and needs of e2. A satisfiability relation may be arranged into
group 1, group 3, group 4, or group 6, and hold between

(@) the description of a subsystem, process, or module model and the description of
a feature in a feature model (group 0);

(b) the description of a subsystem, process, or module model and a feature in a
feature model (group 0);

() an operation or attribute of a class in a class diagram and the description of a
use case or the description of a feature in a feature model (group 1, group 3, or
group 4);

(d) a transition in a statechart diagram and the description of a use case or the
description of a feature in a feature model (group 1, group 3, or group 4);

(e) a sequence of events in a sequence diagram and the description of a use case or

the description of a feature in a feature model (group 1, group 3, or group 4).

Dependency: In this type of relation an element el depends on an element e2, if the

existence of el relies on the existence of e2, or if changes in e2 have to be reflected in

136

4.3 Traceability Relations

el. A dependency relation may be arranged into group 1, group 3, group 4, or group 6,

and hold between

@

®)

©

@

©

®

G)

®

the description of a use case and the description of a feature in a feature model
(group 1);

an operation or attribute of a class in a class diagram and the description of a
use case or a feature in a feature model (group 1, group 3, or group 4);

a sequence of events in a sequence diagram and the description of a use case or
a feature in a feature model (group 1, group 3, or group 4);

a message in a sequence diagram and an operation of a class in a class diagram
(group 3 or group 4);

a transition in a statechart diagram and the description of a use case or a feature
in a feature model (group 1, group 3, or group 4);

a transition in a statechart diagram and a class in a class diagram (group 3 or
group 4);

a subsystem in a subsystem model, a process in a process model, or a module in
a module model and a feature in a feature model (group 6);

a class in a class diagram and a subsystem in a subsystem model, a process in a
process model, or a module in a module model (group 1);

a message in a sequence diagram and a transition in a statechart diagram, a

message in a process model, or a message in a module model (group 1).

Overlap: In this type of relation an element el overlaps with an element e2, if el and

e2 refer to common aspects of a system or its domain. This is a bi-directional

relation. An overlap relation may be arranged into group 1, group 3, or group 4, and

exists between

@

®)

the description of a feature in a feature model and a class in a class diagram, a
state in a statechart diagram, or an object or message in a sequence diagram
(group 1);

the description of a use case and a class in a class diagram, a state in a statechart

diagram, or an object or message in a sequence diagram (group 3 or group 4);

137

CHAPTER 4. TRACEABILITY REFERENCE MODEL

©

@

©

®

G)

®

a class in a class diagram and a state in a statechart diagram or an object in a
sequence diagram (group 3 or group 4);

an operation or attribute of a class in a class diagram and an operation or
attribute of an object in a sequence diagram (group 3 or group 4);

a state in a statechart diagram and a message in a sequence diagram (group 3 or
group 4);

a feature in a feature model and a use case (group 1);

a feature in a feature model and a subsystem in a subsystem model, a process in
a process model, or a module in a module model (group 1);

the description of a process in a process model or the description of a
subsystem in a subsystem model and a transition in a statechart diagram or a
message in a sequence diagram (group 1);

the description of a subsystem in a subsystem model, the description of a
process in a process model, or the description of a module in a module model

and a class in a class diagram (group 1).

Evolution-. In this type of relation an element el evolves o an element €2, if el has

been replaced by e2 during the development, maintenance, or evolution of the

system. An evolution relation occurs between document models of the same type for

the product member(s) in a family (group 5). This relation may hold between

elements in

@
®)
©
d

use cases;
class diagrams;
statechart diagrams;

sequence diagrams.

Implements-. In this type of relation an element el mplements an element e2, if el

executes ot allows for the achievement of e2. An zmplements relation may be arranged

into group 1, group 3, or group 4, and hold between

@

a class or an operation of a class in a class diagram and a feature in a feature
model, flow of events in a use case, or the description of a use case (group 1,

group 3, or group 4);

138

4.3 Traceability Relations

(b) a sequence of events in a sequence diagram and a feature in a feature model,
flow of events in a use case, or the description of a use case (group 1, group 3, or
group 4);

(0 a transition in a statechart diagram and a feature in a feature model, flow of

events in a use case, or the description of a use case (group 1, group 3, or group

4).

Refinement: This type of relation associates elements in different levels of
abstractions. A refinement relation identifies how complex elements can be broken
down into components and subsystems, and how elements can be specified in more
details by other elements. Thus, an element el refines an element e2, when el
specifies more details about e2. A refinement relation may be arranged into group 1,
group 2, group 3, group 4, group 5, or group 6, and hold between

(@) the description of a subsystem in a subsystem model, the description of a
process in a process model, or the description of a module in a module model
and a feature in a feature model (group 0);

(b) a process model and a subsystem in a subsystem model (group 0);

() a module model and a process in a process model (group 0);

(d) a class in a class diagram, a sequence of events in a sequence diagram, or part of
a statechart diagram and an event in a use case (group 2, group 3, group 4, or
group 5);

(¢) an objectin a sequence diagram and a class in a class diagram (group 2, group 3,
group 4, or group 5);

(f) a message in a sequence diagram and an operation of a class in a class diagram
(group 2, group 3, group 4, or group5);

(9 a transaction and its corresponding source and target states in a statechart
diagram and a message in a sequence diagram (group 2, group 3, group 4, or
group 5);

(h) a class in a class diagram and a subsystem in a subsystem model (group 1);

(i) a sequence of events in a sequence diagram and a process in a process model or

a module in a module model (group 1);

139

CHAPTER 4. TRACEABILITY REFERENCE MODEL

() a set of transitions in a statechart diagram and a process in a process model or a
module in a module model (group 1);
(k) elements in different class diagrams, statechart diagrams, sequence diagrams,

and use cases (group 3 or group 4).

Containment: In this type of relation an element el conzains an element e2, when el
is a document, or an element in a document, that uses an element e2, or a set of
elements from a different document. This relation may be arranged into group 1,
group 2, or group 5, and hold between

(@) ause case and a feature in a feature model (group 1);

(b) a subsystem in a subsystem model, a process in a process model, or a module in
a module model and classes in a class diagram, when these elements contain the
classes (group 1);

(o) a process model and a sequence of events in a sequence diagram or transitions
in a statechart diagram (group 1);

(d) sequence or statechart diagrams and classes in a class diagram (group 2 or group

5).

Similar: This type of relation occurs between documents of the same type for
different product members (group 2). This relation assists with the identification of
common aspects between various product members. A siwilar relation is a bi-
directional relation that may hold between elements in

(a) use cases;

(b) class diagrams;

(o) statechart diagrams;

(d) sequence diagrams.

A similarrelation between elements el and e2 depends on the existence of a relation
between el and another element e3 and a relation between e2 and element e3. For
example, a use case ucl is similar to a use case uc2, if both ucl and uc2 hold a

containment relation with a feature f1.

140

4.3 Traceability Relations

Similar relations between two elements can be derived from other relations based

on the following inference rules:

(@) Owverlap relations-, if an element el overlaps an element e3, and an element e2
overlaps element e3, then element el is similar to element e2;

(i) Containment relationsg if an element el contains an element e3 and an element e2
contains element e3, then element el is similar to element e2;

(i) Satisfiability relations-, if an element el satisfies an element €3 and an element €2
satisfies element e3, then element el is similar to element e2;

(iv) Refinement relations-, if an element el refines an element e3 and an element e2
refines element e3, then element el is similar to element e2;

(v) Dependency relations-, if an element el depends on an element €3 and an element e2
depends on element e3, then element el is similar to element e2;

(Vi) Implements relations-, if an element el implements an element €3 and an element

e2 implements element e3, then element el is similar to element e2.

Different: This type of relation also occurs between documents of the same type
for different product members (group 2). This relation assists with the identification
of variable aspects between various product members. More specifically, a different
traceability relation expresses the different specialization of a particular variation
point between two product members. A different relation is a bi-directional relation
that may hold between elements in

(a) use cases;

(b) class diagrams;

(c) statechart diagrams;

(d) sequence diagrams.

A different relation between an element el and e2 depends on the existence of a
relation between el and another element €3, and a relation between e2 and another
clement e4, where €3 and e4 are variants of the same variability' point (e.g.
subclasses of the same superclass, sibling features of the same parent feature). For

example, a use case ucl is different from a use case uc2, when there are two

141

CHAPTER 4. TRACEABILITY REFERENCE MODEL

subclasses cl and c2 of the same parent class ¢, where cl smplements ucl and 2
ifuplements uc2. Consider the two use cases related to the display of text message (ucl)
and display ofgraphical message (uc2) on mobile phones. Suppose a class diagram with
class Display_Screen (c) with subclasses Text Screen (cl) and Graphic_Colonr_Screen
(c2). The Display_Screen class has an operation display, which is inherited by classes cl
and c2. In this case, el implements ucl, e2 implements uc2, and ucl and uc2 are

different, although they have the same general purpose (display ofmessage).

Different relations between two elements can be derived from other relations based

on the following inference rules:

(@) Overlap relations: if an element el overlaps an element €3, an eclement e2
overlaps an element e4, and element €3 is a variant of element e4, then elements
el and e2 are different;

(i) Containment relation: if an element el contains an element €3, an element e2
contains an element e4, and element €3 is a variant of element e4, then elements
el and e2 are different;

(i) Satisfiability relations: if an element el satisfies an element €3, an element e2
satisfies an element e4, and element €3 is a variant of element e4, then elements
el and e2 are different;

(iv) Implements relations: if an element el implements an element €3 and an
element e2 implements an element e4, and element €3 is a variant of element e4,

then elements el and e2 are different.

Figure 4-14 and Figure 4-15 show examples of each traceability relation being
created between the examples of documents described in Section 4.2. Due to
simplification, we only present the extract of each document. As shown in Figure 4-
14, a dependency traceability relation holds between a subsystem Messaging in a
subsystem model and a feature Text Messages in a feature model; a satisfiability
traceability relation holds between the description of a module Short Messaging in a
module model and a feature TexzMessages in a feature model; a refinement traceability
relation holds between a process model PI and a subsystem Messaging in a subsystem

model; two containment traceability' relations hold between use cases (UCT and UC2)

142

4.3 Traceability Relations

and a feature TextMessagesin a feature model; and a similar traceability relation holds
between two use cases UCT and UCZ2 and based on containment traceability relations
existing between use cases UCT and UCZ2 and a feature Text Messages in a feature

model.

As shown in Figure 4-15, an overlap traceability relation holds between an operation
takingPhoto of a class Camera in a class diagram and an operation fakingPhoto of an
object Camera in a sequence diagram; an evolution traceability’ relation holds between
two statechart diagrams (SD7 and SD2)\ two implement traceability relations hold ()
between an operation takingPhoto of a class Camera and the description of a use case
UC3, and (ii) between an operation fakingPhoto of a class CameraZoom2x in a class
diagram and the description of a use case UC4 and a different relation holds between
two use cases UC3 and UC4. Examples of traceability rules to identify these

traceability relations in Figure 4-14 and Figure 4-15 will be described in Chapter 5.

143

CHAPTER 4. TRACEABILITY REFERENCE MODEL

FeatureModel» . N <MVodule Motel>.,.
7 G yFeature* 04- Satigh Ui ®NVodule>
<Feamip_narre> Text Messages <Ibdule_name>Short Messaging
</Feature_name> «/Modulename >
-Description» The phone can edit, send, and «Description The maximumlength ofa
receive a short text message. textrm:ssageis 100
characters, nubers, or any
*Description;» al C
conhimation. ‘This module
<Allocatedtosttbsystern» Massaging also Suppotts for non-
</Allocated to_siibsyst«n>.,. tﬁthaSCdShOftl’fESSagﬁS ()
eFeature ... «/Desctiption
Feature Model * - Module
«/Module Model»
Dependency Refinement
<Subsystem Moded>
Subsystermy 04— <Process Model ProcessiVodellD ="'P1”
>0 <Subsystemyjiame >Messaging O Subsystem narre =
</Subsystem_name> ‘Messaging”™
«Description The subsystem the «Process»
exchange and manipulation of <Phocess_mine™> Short Messaging Setvice
messages. It supports two SMS) Contrd
SCIVICES ... </Process_maine>
<Desctiption «/Process»
«/Subsystetm ... «/Process Model-
- "Subsystem Modeb»
Containment Containment
Use_Case UseCaselD="1 7 e Case UseCaselD="UCT”
T Syster=MohilePhone” Sin dor Systern="MohilePhone”
Poduct Mebe™=PMI”> Product Menber="PM2”>
«Title» Sendinga Message «/Titlo» «Title» Tansmitting Messages «/Title»

«Description» The phoneis able to sexd a
texct message. "The user can
specify an address ofa
receiver of the message ...

Descriptiony ...

« Use Case»

«Description» The phoreis able to tuznsmit
a short text message. "The
short text message can be sent
to ane of ANy feceivers .

*Description ...

«/Use Casor

Figure 4-14: Examples Ofsatisfiability, dependency, refinement, containment, and
similar traceability relations

144

E Different
<Use__Case UscCaselD="UC3 == n
~ System="MobilePhone” ~

Product_Member="P M 17>
<Titie> Taking Photo </Title>
<Description> The phone has an integrated

VGA camera.. The phone can
take a photo using a VGA

camera....
</Desctiption>
c/Use Case>
r~
Implements

P Implen ents

CameraApplication

CameraZoom2:
-*p MakePhoto:void (4

+takePhoto:void|
+displayArea.void
+savePhoto:void
+displayPhoto:void

*displayArea:void
+savePhoto:void
+displayPhoto:void

Overlaps

4.3 Traceability Relations

<Use_Case UseCaseID="UC4"
> g System="MobilePhone”
Product_Member="PM 27>
:‘Title> Taking Photo </Title>
:Description> The phone has an integrated digital
camera. The phone can fake a

photo using VGA cameraZ oom Ix

c/Description> ...
<Use Case>

1.1.1.1 :display/Vea()lvoid
1.1.12: displayO Aoidj

¢ ti 11:takePhotoQ: ¢id

Figure 4-15: Examples of implements, overlaps, evolution, and different traceability
relations

145

CHAPTER 4. TRACEABILITY REFERENCE MODEL

Table 4-3 presents a summary of our traceability reference model. In the table, each
cell contains the different types of traceability relations that may exist between the
artefacts described in the row and column of that cell. In the table we do not
represent the exact elements that are related in the different artefacts, but represent
the types of the artefacts. The direction of the relation is represented from a row /7]
to a column jj/. Thus, a relation type #/_typein a cell [i/[j] signifies that /7] is related
to [j] though reljype” (e.g. “subsystem model satisfies feature model”). The traceability
relations that are bi-directional appear in the two correspondent cells for that

relation.

146

Table 4- 3: Traceability Reference M odel

Feature Subsyste Process Module Use Case Class Statechart Sequence
Model m Model Model Model Diagram Diagram Diagram
Feature Overlap Overlap Overlap Overlaps — Overlaps ~ Owerlaps
Model
Subsyste Saisfies Contains
m Model Depends_on
Refines
Overlap
Process Satisfies Refines Contains ~ Contains Contains
Model Depends_on
Refines
Overlap
Module Satisfies Refines Contains
Model Depends_on
Refines
Overlap
Use Case Contains Similar Overlaps — Overlaps ~ Owerlaps
Depends_on Different
Evolyes

Class Satisfies Refines Refines Refines Satisfies Similar Overlaps Owerlaps
Diagram Depends_on Depends_on Depends_on Depends_on Depends_on Different

Overlaps Overlaps ~ Evolyes
Implements Dmplements
Refines
Statechart Satisfies Refines Refines Satifies Depetids_on Similar Overlaps
Diagram Depends_on Depends_on Depends_on Depends_on Owverlaps — Different Refines
Overlaps Overlaps ~ Contains Ewvolves
Dmplements Dmplements
Refines
Sequence Satisfies Refines Refines Satisfies Depends_on Overlaps — Similar
Diagram Depends_on Depends_on Depends_on Depends_on Overlaps Different
Overlaps Overlaps ~ Refines Evolves
Dnmplensents Implements — Contains

Refines

4.4. Summary

This chapter described a traceability reference model for product family systems. It
has presented the software artefacts used in our approach and the different types of
traceability relations that exist between these artefacts. In the next chapter, we

describe our approach to allow automatic generation of those traceability relations

148

Chapter 5

Traceability Framework

This chapter elaborates the approach on how to establish the traceability relations
on the domain of product family systems. We present the framework of traceability
to the software product family systems according to the traceability reference model
described in previous chapter. This chapter illustrates the main process,
methodology and techniques of our approach. Section 5.1 gives an overview of the
traceability generation process. Section 5.2 describes traceability rules, traceability
relations, and examples of direct and indirect traceability rules. Section 5.3 describes
the extended functions implemented in XQuery and Java. Section 5.4 summarises

the chapter.

5.1. Overview of The Traceability Generation Process

Our approach is based on the extensible markup language (XML) technolog)' since

there are several reasons:

(@ XML has become the de facto language to support data interchange among

heterogeneous tools and applications;

(b) the existence of large number of applications that use XML to represent
information internally or as a standard export format (e.g. Unisys XML exporter for

Rational Rose (IBM), Borland Together (Borland), ArgoUML (ArgoUML) , and

(¢ XML allows the use of XQuery (W3C) as a standard way of expressing

traceability' rules.

CHAPTER 5. TRACEABILITY FRAMEWORK

The XML documents used in our approach are based on XML schemas. We have
created XML schemas for the feature models, subsystem models, process models,
module models, and use cases. These XML schemas are described in Appendix A.
Our work also adopts XQuery (W3C) as a rule representation language due to

several reasons:

(@) XQuery is powerful for retrieving data in XML documents;
(b) XQuery is compatible with XML and Java environment; and
(© XQuery is extensible and flexible and, therefore, it enables extensions of the

language, when necessaty'.

Apart from the embedded functions offered by XQuery, it is possible to add new
functions and commands. We have extended XQuery to support the representation
of consequence part of the rules, i.e. the actions to be taken when the conditions are
satisfied, and to support extra functions to cover some of the traceability relations.
More specifically, these functions have been implemented in XQuery and java and
are concerned with the identification of specific elements in the documents and
words that are synonyms, or textual comparison. These functions are explained in
more details in Section 5.3. Our traceability framework focuses on the generation of
traceability' between the software artefacts in the domain of product family systems.
Figure 5-1 presents an overview of the traceability' generation process, which is

composed of three main stages, namely":

(@ Annotation of textual sentences in the documents with part-of-speech (POS)
assignments (Grammatical Tagging), using CLAWDS C7 (CLAWS). The documents
that mainly contain textual sentences (i.e. use cases, feature model, subsystem
model, process model, and module model) are annotated with POS tags. The
POS tags generated by CLAWS are converted into XML tags are shown in the
examples in Figures 4-3, 4-4, 4-6, 4-8, and 4-10. Our approach can also support
tagging of diagram elements (e.g. subsystem, process, and module model

names).

150

5.1 Overview of The Traceability Generation Process

(b) Creation of documents in XML format (XML Creation), based on the XML
schemas and the POS tags generated by CLAWS, or based on an XMI format
(XMI), as described in Chapter4.

(© Generation of direct and indirect traceability relations (Traceability Generation),

based on traceability rules and extra functions.

Grammatical
lagging

Figure 5- 1: Overview of traceability generation process
The traceability generation process is illustrated in Figure 5-2. More specifically,

traceability relations are generated by a Traceability Generator component that we have

developed with is formed by two sub-components.

151

CHAPTER 5. TRACEABILITY FRAMEWORK

(2) Raij'einference sub-component is responsible for:

e identifying the traceability rules that are related to different types of documents
to be traced and different types of traceability relations to be generated, and

e instantiating the placeholders for the document types in the identified rules with
the names of the documents to be traced (see Section 5.2). The information
about the traceability documents to be traced and traceability relations to be

generated are given by the user (see Chapter 6).

(b) The rule parser sub-component is responsible for executing the identified and
instantiated rules. It uses the XML-formatted documents, extra functions, and
WordNet 2.0 (WordNet) to assist with the identification of synonyms. The direct
and indirect traceability relations resulting from the execution of the rules are
represented in XML documents (Direct_Trace_Rel.xml and
Indirect_Trace_Rel.xml, respectively). The document with direct traceability

relations is used as input to the rule parser to generate indirect traceability relations.

Figure 5- 2: Traceability generator

152

5.1 Overview of The Traceability Generation Process

The traceability generation process can fit with some existing methods for product
family system development according to the current literature. Examples of those

methods are such as FODA, FORM, and FeatuRSEB.

Additionally, the traceability rules used by #raceability generator have been created
based on:

() semantic of the documents being compared;

(i) the various types of traceability relations in the product family domain;

(iif) the grammatical roles of the words in the textual parts of the documents; and

(iv) synonyms and distance of words being compared in a text.

Case (i): As an example of case (i), a rule for comparing feature and use case
models take into consideration the fact that a feature model specifies requirements
at the product line level, while use cases describe requirements for product members
which may be more specific. Therefore, it may be necessary to traverse the hierarchy
of a feature and investigate if one or more children of a feature appear in the use
case. Similarly, a sequence diagram describes the order in which messages are
exchanged between various class objects and, therefore, rules for comparing
operations in classes and sequence of messages in a sequence diagram should be

used.

Case (ii): Regarding case (ii), the types of traceability relations also play an
important role in the various traceability rules. It is not necessary to create
traceability rules for identifying evolution relations between elements in feature
models and class diagram, feature models and sequence diagram, or feature models
and statechart diagrams since such relations do not exist between the above
documents (evolution relations exist between documents of the same type for the

same product member).

Case (iii): Considering case (iii), it is a common approach that names given by
software engineers for the main elements in class, sequence, and statechart diagrams

do not contain certain types of words such as articles, coordinating and

153

CHAPTER 5. TRACEABILITY FRAMEWORK

subordinating conjunctions, singular and plural determiner, comparative and
superlative adjectives, etc. Therefore, when comparing e.g. descriptions of use cases
and feature names, or flow of events in use cases with elements in the above
diagrams (e.g. classes, messages, operations, and transitions), the above types of

wotrds do not need to be considered.

More specifically, words are not concerned when they are annotated with POS tags
such as articles (e.g. the, no, a, an, ever}7, conjunctions (e.g. and, or, but, because),
determiners (e.g. whose, these, which, this, that, any, some, all, half, little, much,
few, several, many, such), adjectives (e.g. old, able to, willing to), pronouns (e.g. he,
his, him), adverbs (e.g. more, less, however, about, when, where, now, tomorrow),
and interjections (e.g. oh, yes, um). In the other words, the words annotated with
POS tags and categorized as verb or moun in texts are considered. Examples of POS
tags categorized as noun are NN1, which is a singular common noun (e.g. book,
girl), NN2, which is a plural common noun (e.g. books, girls), and examples of POS
tags categorized as verb are WO, which is a base form of lexical verb (e.g. give,
work), W D, which is past tense of lexical verb (e.g. gave, worked), W G, which is
verb-ing participle of lexical verb (e.g. giving, working), W I, which is infinitive (e.g.
to give, to work), W N, which is past participle of lexical verb (e.g. given, worked),

and W Z, which is -s form oflexical verb (e.g. gives, works).

Case (iv): With respect to case (iv), the multiplicity of stakeholders participating in
the development of the system, the different phases of software product line
engineering (domain analysis vs. domain design), and the different level of
specialization of the system (product line vs. product members) may lead to the use
of different words to represent the same thing. More specifically, our approach
supports the use of equivalent words to specify documents. As described, our work
has applied WordNet 2.0 as the database of synonyms and Java APIL, Java WordNet
Ubrary (JWNL), to access the WordNet database.

Furthermore, the existence of two or more words in a paragraph description does

not imply that the paragraph is related to these words, in particular when the words

154

5.1 Overview of The Traceability Generation Process

appear in different sentences in the paragraph or in different phrases in the same
sentence. As an example consider part of a paragraph describing some
functionalities of a mobile phone in a use case as shown below, and the operation
receive_callQ) in class Phone. In this case, although the paragraph contains the words
“receive” and “call”, the text in the paragraph is not concerned with the “receive of
calls”, but with “receive of textual messages” and the time allowed for international
calls. If the distances of the words in the paragraph were not taken into
consideration, the operation would have been incorrectly related to the description

of the use case.

<Description> The phone should be able to send and receive textual messages. (...)

An international phone call should not last more than 10 minutes.

(o)

<\Description>

We describe below traceability rules being used and traceability relations being

created by traceability generator.

5.2. Traceability Rules and Relations

In our approach, the generation of traceability relations is based on the use of

traceability rules due to some reasons:

(a) it enables automatic traceability;

(b) it allows for a standard way of representing criteria for identifying traceability
relations lLe. equivalent words from different text, appropriate distance of words
in a text, grammatical roles of words in a text, and various types of traceability
relations;

(o) it supports the processing of large-sized documents and the creation of a large
number of traceability relations; and

(d) it supports consideration into the semantics of documents which express the

interdependencies between a product family.

155

CHAPTER 5. TRACEABILITY FRAMEWORK

As below, we describe the template of traceability rules being used in our approach.

Traceability Rules

We use two different types of traceability rules, namely (a) direct traceability rules and
(b) indirect traceability rules. Type (a) is concerned with traceability rules for direct
relations between two independent elements such as satisfiability, dependency,
ovetlaps, evolution, implements, refinement, and containment relations; while type
(b) is concerned with traceability rules for relations that depend on the existence of

other relations such as similar and different relations.

TRACEJRULE RulelD =RJD
RuleType = Rule_Type
DocTypel = DocTypeName
DocType2 = DocTypeName
QUERY

[DECLARE Namespace]

[DECLARE Functions]

[DECLARE Variables]

for $variable_name 1in doc(DocTypelPlaceholder)//XPathExpression

$variable_name2 in doc(DocTypelPlaceholder)//XPathExpression

where
fi(fi+ 1. (fi+j(*))...)
QUERY_END
ACTION
RELATION RulelD =R]JD

Type = Relation_Type

DocTypel = DocTypeName

DocType2 = DocTypeName
ELEMENT Document = DocName ElementTypel] $variable_namel
/XpathExpression]

ELEMENT Document = DocName

[

[

[ElementType2]

[ElementTypel] $variable_name2
[

/XpathExpression]

[ElementType2]
[RelationType {XpathExpression) {XpathExpression}]
[RelationType {XpathExpression) {XpathExpression}]

ACTION_END
TRACE _RULE _END

Figure 5- 3: Traceability rule template
Figure 5-3 shows a general template for direct and indirect traceability rules. In the

template, elements between square brackets (“[,“]”) are optional, and

fi(fi+1...(fi+j(*))..*) are embedded XQuery functions or the extra functions that

156

5.2 Traceability Rules and Relations

we have developed. The XML Schema for our traceability rules can be found in
Appendix A. Both types of traceability rules are composed of three main parts, as
described below. An example of a traceability rule for a containment traceability
relation between use cases and feature models is shown in Figure 5-4 and an
example for similar relation is shown in Figure 5-5. We explain below the different

parts in a traceability rule.

Part 1. It consists of the rule identification and contains a unique Ruk/'D,
description of the type of the rule (RuleType), and descriptions of the types of
documents associated with the rule (DocTypel, DocType?). The rule type is based on
the type of traceability relation generated by the rule. In the case of direct
traceability rules, attributes DocType/ and DoclType? contain the names of the
different types of documents used in our approach (Figure 12); while for indirect
traceability rules, attributes DocType/ and Doclype? refer to the
XML_Base_Relationship document that contains the results of previously identified

relations (Figure 5-5).

Part 2: It is represented by element <Query> and consists of XQuery statements.

This part is composed of three other subparts.

The first subpart (dec/are) is optional and contains declaration of namespaces,
variables, or extra functions used in the rule. In our approach, the extra functions
that we have developed are either implemented as XQuery statements (viz.
XQuery_functions) or as Java classes (viz. Java_functions). The XQuery_functions
are declared as function. The Java_functions are represented as java packages and
declared as namespace. Figure 5-4 shows an example of these declarations for Java

functions. The example in Figure 5-5 does not make use of any declaration.

The second subpart (for) identifies elements of the documents (Doclype/ and
DocTypeZ) to be compared and bind these elements to variables §izem1 and Sitem?2,
respectively ($variable_namel and $variable_name2 in Figure 5-3). Initially, the

elements to be compared are described in XPath (XPath) expressions associated

157

CHAPTER 5. TRACEABILITY FRAMEWORK

with placeholders that represent the types of documents to be traced. The
placeholders for the documents to be traced are automatically substituted by specific
document names (file names) after the user has indicated these documents by using
the traceability tool (see Chapter 6). The examples in Figure 5-4 and Figure 5-5
show the values for §item1 and §itens2 already instantiated with the document names
(UseCase_UCl.xml and Feature_MP.xml in Figure 5-4 with the XPath expressions
for the respective elements, and Direct_Trace_Rel.xml in Figure 5-5 with XPath
expressions for relations of type containment). In the case of indirect traceability rules
fiteml and $item2 always refer to Direct_Trace_Rel.xml. Flowever, the type of the
relation given by the XPath expression (\\Relation|[@type=" “]) differ depending

on the rule type.

The third subpart {where) describes the condition part of the rule that should be
satisfied in order to create a traceability relation. The condition part can use a
secjuence, conjunction, or disjunction of XQuery in-built functions (e.g. somze,
contains, satisfies) or the extra XQuery or Java functions that we have implemented.
Depending on the rule, the condition part also takes into consideration the XML

POS-tags in the textual parts of the documents.

In the example of Figure 5-4, the rule verifies if the words (or their set of synonyms)
in element Title of UseCase_UCIl appear in the Deseription of a feature in
Feature_ MP.xml, at an appropriate distance (Java class checkDistanceControl). The rule
checks for synonyms, by using WordNet (WordNet), of any possible form of the
main vertb (W1, W B, VVG, WO) and of any possible form of the noun (NNO,
NN1, NN2, NPO) of the verb-phrase in the title of the use case. In Figure 5-5, the
rule verifies if there are two relations of type containment in Direct_Trace_Rel.xml
document between a use case and a feature model such that the feature names are

the same (Element[2]) and the use cases are different (Element]l]).

Part 3: It is represented by element (<Action>) and describes the consequence part of
the rule. It specifies the action(s) to be taken if the conditions in Part 2 are satisfied.

The consequence part describes the type of traceability' relation to be created

158

5.2 Traceability Rules and Relations

(attribute Type) and the elements that should be related through it in the documents
described in the for part of the rule (element <Element>). For the case of direct
traceability rules, an extra element associated with each element (ElementType2 in
Figure 5-3) may be used to indicate the exact type of elements in the respective
documents that were satisfied by the rule, when necessary. The extra element
represented by ElementTypel in Figure 5-3 is used when the content of
Svanable_namel or §variable_name?2 is of type string and it is necessary to represent the
XML element that this content represents (see rules R4 and R6 in Figure 5-12 and
Figure 5-14 for examples). For the case of indirect traceability rules, a special
element is used to represent how the elements being compared are similar or
different (RelationType in Figure 11). The content of element <Action> is used to
compose the refurn part of XQuery. The implementation of an action consists of
writing the information in the <Action> part, in the XML relation document
(Direct_Trace_Rel.xml and Indirect_Trace_Rel.xml). As in Part 2, the placeholders
of the specific document models to be associated are instantiated based on the

uset’s input

cTraceRule Ru/eID-"R\" RuleType="comainment"
DocTypel/="Use Case” Doc7ype2="Feature Model”>

<Query>
declare namespace s="javaisynonym.s";
declare namespace d="java:distanceControl.d";

for $item] in doc("file:///c:/UseCase_UCI ,xml1")/AJse_Case,
$item2 in doc("file:///c:/Feature_MP.xml")//Feature_Model/Feature
where
d:checkDistanceControl($item2/Description,
s:setof(s:findSynonym ($item1/Title/VVI),s:findSynonym ($item 1/title/VVB),
s:findSynonym ($item1/TitleP/V O), s:findSynonym ($item1/ Title/VV G)),
s:setof(s:findSynonym ($item1/Title/NNO), s:findSynonym ($item1/Title/NN1),
s:findSynonym ($item1/Title/NPO0),s:findSynonym ($item1/ Title/NN 2)))
</Query>
<Action>
<Relation R #/e/D -“R 1” 7ype="containment”
D ocTypel-’Use Case” Doc7'_ype2="Feature Model”>
<ElementD ocument-“file:///c:/UseCase_UClLxm1”> {$item1/Title) </Element>
<Element Document=“file:///c:/Feature_MP.xm1”> {$item2/Feature_name} <Description/>
</Element>
</Relation>
</Action>
</TraceRule>

159

file:///c:/UseCase_UCl
file:///c:/Feature_MP.xml")//Feature_Model/Feature
file:///c:/UseCase_UCl.xml%E2%80%9D
file:///c:/Feature_MP.xml%E2%80%9D

CHAPTER 5. TRACEABILITY FRAMEWORK

Figure 5- 4. Example of containment traceability rule

In Figure 5-4 a relation of type containment is created between the title of use case
UseCase_UCI (first <Element>) and the feature name in Feature_MP.xml
document that satisfies the condition part of the rule (second <Element>)
represented by XPath expressions. An element <Description> is used to indicate
that the relation is between the title of the use case and the description of the
feature. In Figure 5-5, a relation of type similaris created between the titles of the
two use cases (both elements <Element>) together with an extra element
representing how the two use cases are similar, ie. through a containment relation

with the feature (element <Containment>).

<TraceRule Ru/ID="R2" RuleType="similar"
Doc7ypr:/:”X ML-Based-Rer Z)oc7yp62:"X ML-Based-Rel”>
<Query>
for $iteml in doc("file:///c:/Direct_TraceRel.xrnl")//Relation[@ Type=""containment”],
$item 2 in doc("file:///c:/Direct_TraceRel.xml")//Relation[@ Type="containmenf']
where
$iteml/@DocTypel="Use Case” and $iteml/ @D ocType2="Feature Model” and
$item2/@DocTypel="Use Case” and $item2/@DocType2="Feature Model” and
string($item1l/Element[2]) = string($item2/Element[2]) and
1 $iteml/Element[1]/@Document != $item2/Element[1l]/@Document

</Query>
<Action>
<Relation Ru/eID="R2” Type = "similar" Term ="use case contains feature model”>
<Element>{$item 1/Element! 1]/@Document} {$item 1/Element! 1;/Title} </Element>
<Element>! $item2/Element[1]/@Document} (Sitem2/Element[1]/Title} </Element>
<Containment>(Sitem 1/Element[2]/@Document} {Sitem 1/Element[2] /Feature_name |
</Containment>
</Relation>
</Action>
</TraceRule>

Figure 5- 5: Example of similar traceability rule

Traceability Relations
An example of rule R1 in Figure 5-5 exists between use case UCl of product
member PM_1 entitled Sending a Message (Figure 4-4) and feature named Text

Messages (Figure 4-3). A containment telation is created since a synonym (send) of

verb <VVG> Sending </VVG> and noun <NN1> Message </NNI> appear in

160

file:///c:/Direct_TraceRel.xrnl")//Relation[@Type=%E2%80%99'containment%E2%80%9D
file:///c:/Direct_TraceRel.xml")//Relation[@Type=%E2%80%9Dcontainmenf'

5.2 Traceability Rules and Relations

the description of the feature at an appropriate distance; ie., a sequence of a
conjunction of verbs (<VVI> send </VVI> <SC>,</SC>, <CJC>and</CJC>,
<WI> receive</WI>), followed by a qualifier of the noun message (<ATO0>
a</AT0> <AJO>short</AJ0> <NN1> text </NNI>), separate the words send

and message. The result of rule Rl for use case UC1 and feature Text Messages are

shown in Figure 5-6.

<Relation_Document>
<RelationR#/e/D = “R\" 7ype="containment”
DocTypel="Use Case" DocType2="T:eMuK Model">
<Element Document="file:///c:/UseCase_UClxm1”>
<Title> <VVG> Sending </VVG> <ATO0> a </AT0> <NN1> Message </NNI>
</Title>
</Element>
<Element Document=""file:///c:/Feature_ MP.xmI">
<Feature,name> <NN1> Text </NNI> <NN2> Messages </NN2>
<Description></Description>
< /Feature_name>
</Element>
</Relation>
<Relation R#/e]D = ‘R 1” 7ype="containment”
DocTypel="\]se Case” Doc7y/te2- Feature Model”>
<Element Document="file:///c:/UseCase_UC2.xm1”>
<Title> <VVG> Transmitting </VVG> <NN2> Messages </NN2> </Title>
</Element>
<Element Document="file:///c:/Feature_ MP.xm1”>
<Feature_name> <NN1> Text </NNI> <NN2> Messages </NN2>
<Description></Description>
</Feature_name>
</Element>
</Relation>

</Relation_Document>

Figure 5- 6: Result of containment traceability relations
Another example of rule R1 also exists between use case UC2 of product member

PM_2 entitled Transmitting Messages in Figure 5-7 and feature Text Messages in Figure

4-3. In this case, a containment relation is also created, as shown in Figure 5-6.

161

file:///c:/UseCase_UCl.xml%E2%80%9D
file:///c:/Feature_MP.xml
file:///c:/UseCase_UC2.xml%E2%80%9D
file:///c:/Feature_MP.xml%E2%80%9D

CHAPTER 5. TRACEABILITY FRAMEWORK

<Use_case UseCaselD="T]JC2” System ="MobilePhone’ Praduct_Member=""PM 2°'>
<Title> <VVG> Transmitting </VVG> <NN1> Message </NNI> </Title>
<Description>

..<NNI>phone</NNI> <VMO >can</VM O xV V I>send</VV I>...
</Description>

</Use case>

Figure 5- 7: Example of use case UC 2 Transmitting Message

As shown in Figure 5-0, the use cases UC1 Sending a Message and UC2 Transmitting
Messages have containment traceability relations with the same feature Text Messages
(Figure 4-3). In this case, a similar relation is created by the deployment of the rule

R2 (Figure 5-5) as shown in Figure 5-8.

<Relation R#le/D ="R2" Type ="similar" Term = "use case encompass feature model">
<Element Document="file:///c:/UseCase_UCI .xmI">
<Title> <VVG> Sending </VVG> <ATO0> a </AT0> <NN1> M essage </NNI>
</Title>
</Element>
<Element Document="file:///c:/UseCase_UC2.xm1">
<Title> <VVG> Transmitting </VVG> <NN2> M essages </NN2> </Title>
</Element>
<Containment Document="file:///c:/Feature_ MP.xm1">
<Feature_name> <NNI>Text</NNI> <NN2>Messages</NN2>
</Feature_name>
</Containment>
</Relation>

Figure 5- 8: Result of similar traceability relation

Our approach use XML for representing traceability relations due to some reasons:
(@ It guarantees the representation of large number of relations that are
automatically created by traceability generator;

(b) It allows the maintenance and visualization of traceability”" relations by using
common commercial XML-based applications e.g. XML-spv, TurboXML, or
general-purposed applications e.g. web browsers, text editors; and

(o) It allows the retrieval of traceability” relations by using XQuery statements.

162

file:///c:/UseCase_UCl
file:///c:/UseCase_UC2.xml
file:///c:/Feature_MP.xml

5.2 Traceability Rules and Relations

More specifically, all traceability" relations are represented in XML documents. The
direct relations and indirect relations are separately recorded in
“Direct_TraceRel.xml” and “Indirect_TraceRel.xml”, respectively. Additionally, the
logs of the traceability activity are recorded in XML documents
(“Instantiated_Direct_TraceRule.xml” and “Instantdated_]ndirect_TraceRule.xml”

for direct and indirect relations respectively).

Examples of Direct and Indirect Traceability Rules

Apart from the examples of traceability” rules for containment and similar relations
shown in Figures 5-4 and 5-5, in this subsection we present examples of traceability
rules for each of the other traceability relation types used in our work. These
traceability rules follow from the examples shown in Figure 4-14 and Figure 4-15.
We repeat these figures below as Figure 5-9 and Figure 5-10, respectively, to

facilitate understanding.

CHAPTER 5. TRACEABILITY FRAMEWORK

Containm ent Containment
Li
<Use Case UseCaselD="UCT? AUse Clase UseCaselD="UC2?

Systerr="MohilePhone” Sin tinr —r Systerr="MohilePhone” ’

Product Merrber="PM 2> Product Merber="PMI">
<Title> Sendinga Message </Title> <Title> Thansmitting Messages </Title>
<Description> 'The phoneis able to #end a <Description> 'The phoneis able to #ransmit

textmessage. 'The user can a short textmessage. The
specify an address ofa short text message can be sent
receiver of the message .. - tooneormany recetvers
«mDescription'- ... «Description
</Use_Case>

</Use_Case>

Figure 5- 9: Examples of traceability relations (repetitive to Figure 4-14)

164

Different
<Use_Case UseCaseIDZ”UCB’E

Systemn="MohbilePhone”

Product Metmber="PMI">
<Titlc> Taking Photo </Title>
<Description> The phone has an mtegmted

VGA camrera.. The phone can

take aphoto usinga VGA
canerda. ...
</Desctiption>
c/Use_Case>
Implements

Implen ents

CameraApplication

CameraZoom2: :

%0 Ha.kePhoto:void‘ | CX-
+displayArea:void
+savePhoto:void
+displayPhoto:void

+takePhoto:void|
+displayArea:void
+savePhoto:void
+displayPhoto:void

— Overlaps

5.2 Traceability Rules and Relations

<Use_Case UseCaselD="UC#”’
oy Syster="MobilePhone”’
k Product Mermber="PM2">
cTitle> Taking Photo </Title>
cDesctiption> The phOl’EhaS an mtegratcd chgltal
carrera. 'The phone can Zake it
photo wsing VGA cameraZoomlx

</Description> ...
<Use Case>

1.1.1.1 :display/VeaOfvoid
1.1.1.2: display():voidj

- t r 1:takePhoto():|j."ia
-g:1"1.M :display().wJB-

Figure 5- 10: Examples of traceability relations (repetitive to Figure 4-15)

Rule R3: Dependency

As shown in Figure 5-11, this rule can establish a dependency relation between a

subsystem in a subsystem model and a feature in a feature model when the name of

the subsystem is the same as the content of element <Allocated_to_Subsystem> in

a feature model. In this case, the feature has been allocated to the subsystem and

CHAPTER 5. TRACEABILITY FRAMEW ORK

any change in the feature has to be reflected in the subsystem. In this rule an
XQuery function (normalige-spaceQd) is used to remove any XML sub-elements and
white spaces composing the content of elements <Subsystem_name> and
<Allocated_to_Subsystem>. According to Figure 5-9, a dependenty relation exists
between subsystem Messaging and feature Text Messages, since this feature is allocated
to subsystem Messaging. The relation is created between the name of subsystem in
SubsystemModelxm! (first <Element>) and the feature name in Feature_ MP.xm!/

(second <Element>).

<TraceRule Ru/eID="R3" RuleType="dependency"
DocTypel="Subsystem Model" DocType2="¥za\mzg Model">

<Query>

for sitem! in doc(“file://c:/SubsystemModel.xml1”)//Subsystem /Subsystem _name.
$item 2 in doc(“file://c://Feature,MP.xmr)//Feature_Model/Feature

/Allocated_to_Subsystem
where

normalize-space($item]) = normalize-space(Sitem 2)
</Quety>
<Action>
<Relation R #/eID = "R 3" 7y/je="dependency"
i>o0c7y/je7="Subsystem Model" DocType2="Fealuve Model">
<Element D o cum ent-ile://c:/Subsystem Model.xm > {Sitem 1} </Hement>
<Eel’l’ﬂ1tDocument:“file://c://Feature_MP.xml”> {$item?2/../Feature_name}
</Element>
</Relation>
</Action>
</TraceRule>

Figure 5-11: Example of dependency traceability rule

Rule R4: Refinement

As shown in Figure 5-12, this rule can establish a refinement relation between a
process model and a subsystem when the content of the attribute Subsysien_name of
the process is the same as the name of the subsystem. This rule uses the Java
function stringnospacef) to compare the names of the elements without white spaces.
An example of a refinement traceability relation from this rule exists between
subsystem Messaging and process model P7 as shown in Figure 5-9. The relation is
created between the identifier of the process model ProcessModelxm/ represented in
<ProcessModellD> (in the first <Element>) and the name of subsystem in

SubsystemModelxm! (second <Element>).

166

file://c:/SubsystemModel.xml%E2%80%9D)//Subsystem/Subsystem_name
file://c://Feature%E2%80%9EMP.xmr)//Feature_Model/Feature
file://c:/SubsystemModel.xmr
file://c://Feature_MP.xml%E2%80%9D

5.2 Traceability Rules and Relations

cTraceRule Ru/eID = 'R4" [mlary/>"tefinement"
7)0c7y/?1>7="Process Model" DocType2="Subsystem Model">
<Query>

declate nam espace d="java:distanceControl.d";

for $item! in doc(“file://c:/ProcessModel.xmt’)//Process_Model
Sitem2 in doc(“file://c:/SubsystemModel.xmr)//Subsystem_Model/Subsystem

/Subsystem _name

whetre

d:stringnospace($iteml/ @ Subsystem _name) = d:stringnospace($item2)
</Query>
<Action>
<Relation R #/eID = "RA" T ype—'xefinement”
DocTypel-'"Process Model" ZJoc7y>pe2="Subsystem Model">
<Eeﬂ'ﬁl’ltDocument:“file://c:/ProcessModel.xml”>
<ProcessModellD> {Siteml/@ ProcessModellD) </ProcessModellD >

</Hement>
<Element D ocum ent=“file:/ /c:/Subsystem Model.xmr> {$item 2 } </Hement>
</Relation>
</Action>
</TraceRule>

Figure 5- 12: Example of refinement traceability rule

Rule R5: Satisfiability

As shown in Figure 5-13, this rule can establish a sa#isfiability relation between the
description of a module model and a feature when the name of a feature appears in
the description of a module model at an appropriate distance. This rule uses
constainsInDistanceQ) extra function to verify if the name of the feature, or any of its
synonyms, is in the description of the module. A variation of this rule takes into
consideration the name of a feature and the name of its parent feature when such
parent exists. An example of a safisfiability traceability relation from this rule is
shown in Figure 5-9 between feature TextMessages and the description of module
named Short Messaging. The relation is created between the name of module in
ModuleModelxm! (first <Element>) and the feature name in Feature_MP.xm/ (second

<Element>).

167

file://c:/ProcessModel.xmr%E2%80%99)//Process_Model
file://c:/SubsystemModel.xmr)//Subsystem_Model/Subsystem
file://c:/ProcessModel.xml%E2%80%9D
file://c:/SubsystemModel.xmr>{$item2

CHAPTER 5. TRACEABILITY FRAMEW ORK

<TraceRuleR #/¢/D -'R5" /?H /eType="satisfiability"
DocTypel="Modu\e Model" D oc7y/?e2="Feature Model">

<Query>

declare nam espace d="java:distanceControl.d";

for Sitem1 in doc(“file:/ /c:/ModuleModel.xm1”)//Module_Model/Module/Description,
$item 2 in doc(“file://c:/Feature_MP.xmzt’)//Feature_Model/Feature
/Feature_name
whete d:containsInDistance($item] $item 2)

</Quety>
<Action>
<Relation R x/eID ="R5" 7Type="satisfiability"
DocTypel="Modu\e Model" DocType2="Feature Model">
<Element D ocum ent= “file://c:/ModuleModel.xm >
{$item 1/../M odule_name} </Eel’l’ﬂ]t>
<Element D ocument=“file:/ /c:/Feature_MP.xm1”>{ Sitem2} </Hement>
</Relation>
</Action>
</TraceRule>

Figure 5-13: Example ofsatisfiability traceability rule

Rule R6: Implements

As shown in Figure 5-14, this rule can establish an mplements relation between an
operation of a class in a class diagram and a use case when the description of the use
case contains the name of the operation and the name of the class of this operation.
According to Figure 5-10, examples of implements traceability relations from this rule
exist (1) between use case UC3 and operation take/?hoto:void of class Camera and (i)
between use case UC4 and operation zakel hoto:void of class CameraZoom2Pi. A
relation of type implements is created between the names of the class (<Class>) and
the name of the operation of the class (<Operation>) in UMLT_PM7.xm/ (first
<Element>) and the title of use case UseCase_UC3.xm/ (second <Element>). An
element <Description> is used to indicate that the relation holds between the

operation of the class and the description of the use case.

168

file://c:/ModuleModel.xml%E2%80%9D)//Module_Model/Module/Description
file://c:/Feature_MP.xmr%E2%80%99)//Feature_Model/Feature
file://c:/ModuleModel.xmr

5.2 Traceability Rules and Relations

cTraceRule R /1D ="R6" /?H/c7y/?e="implements"
y p
DocTypel="C\ass Diagram" DocType2="1\]se Case">
P g P
<Query>
declare nam espace UML="org.omg.xminamespace. UML";
deClaIenamespace d="java:distanceControl.d";

for $item] in doc(“file://c:/UMLI_PM1l.xm1”)//UM L:Classifier.feature
/UML:Operation/@name,
$item 2 in doc(“file://c:/UseCase_UC3.xm1”)//Use_Case
let $tl := $iteml/../../../@name

where

d:containsInDistance($item2/Description, Stl) and

d:containslnDistance($item2/D escription,Sitem]1)

</Quety>
<Action>
<RelationR #/e/D -'R6" ry/>e="implements"
DocTypel="Class Diagram" D ocT ype2="Use Case">
<Element Document= “file://c:/UMLI_PMlLxm1”> <Class> {$tl} </Class>
<Operation> {$item 1} </Operation> </Emﬂ’]t>
<Element Document=“file://c:/UseCase_UC3.xm1”> {§item2/Title} <Description/>
</Hement>
</Relation>
</Action>
</TraceRule>

Figure 5-14: Example of implements traceability rule

Rule7: Different

This example is one of the rules for identifying a djfferent traceability relation which
represents the interdependency of a variation point between two product members.
As shown in Figure 5-15, this rule can establish a different relation between two use
cases when there are two mplements relations between two different use cases and
two different classes, and these classes are subclasses of the same superclass. In
order to support this case, the rule uses gerParentofCariantClasses() and getC/assIDQ
extra functions. As shown in Figure 5-10, an example of a djfferent traceability
relation from this rule exists between use cases UC3 and UC4 that have mplements
relations with the operation zakePhotoivoid of the class Camera and the operation
takePhoto:void of the class CameraZoom2x, respectively. Whereas the classes Camera

and CameraZoom2x are subclasses of the class Camera/ Ipplication.

169

file://c:/UMLl_PMl.xml%E2%80%9D)//UML:Classifier.feature
file://c:/UseCase_UC3.xml%E2%80%9D)//Use_Case
file://c:/UMLl_PMl.xml%E2%80%99%E2%80%99
file://c:/UseCase_UC3.xml%E2%80%9D

CHAPTER 5. TRACEABILITY FRAMEWORK

<TraceRule Ru/eID="R7" RuleType="A\iitxtnC
£>0c7y/?e7="XML-Based-Rel" Z)ocrype2="XML-Based-Rel">
<Query>

declare namespace UML="org.omg.xminamespace. UML";
declare function local:getParentClass(Schild as xs:string) as item ()
{ for Sitem A in doc(“file://c:/UMLI_PMI1 .xm1”)//UML:Generalization
/JUML_Generalization.child
where $item A/UML:Class/@ xmi.idref = $child
return SitemA/../UML:Generalization.parent/ UM L:Class
3
declare function local:getParentofVariantClasses(Sone as xs:string, $two as
xs:string)as item ()
{ for Siternl in doc(“file://c:/UMLI_PMLxm!”)/AJML:Generalization
/UML:Generalization.child,
$item2 in doc(“file://c:/UMLI_PMI .xm1”)//UML:Generalization
/UML:Generalization.child
where
($item1/UM L:Class/ @ xmi.idref = $one and
$item2/UML:Class/ @ xmi.idref = $two and
local:getParentClass(Sitem1l/ UM L:Class/ @ xmi.idref) =
local:getParentClass($item2/UML:Class/ @ xmi.idref) and
local:getParentClass($item1/UML:Class/ @ xmi.idref) != "" and
$item1/UML:Class/@ xmi.idref != $item2/UML:Class/ @ xmi.idref)
return local:getParentClass($item1l/ UM L:Class/ @ xmi.idref)
%
declare function local:getClassID (§name as xs:string)as xs:string
{ for SitemB in doc(“file://c:AJMLI_PMLxm1”)//UML:Class/@name
where SitemB = Sname
return $itemB/../@ xmi.id
5
for Sitem 1 in doc("file:///c:/Direct_TraceRel.xml")//Relation[@ Type="implements"],
$item2 in doc("file:///c:/Direct_TraceRel.xml")//Relation[@ Type="implements”]
where
$iteml/@DocTypel ="Class Diagram" and Siteml/@D ocType2="Use Case" and
$item2/@DocTypel="Class Diagram" and $item2/@DocType2="Use Case" and
(string(Sitem1l/Element[2]/@ D ocument) !=
string(Sitem2/Element[2]/@ D ocument)) and
($item1/Element[l]/@Document = $item2/Element[l]/@Document) and
($item 1/Element!1]/Class != $item2/Element[l]/Class) and
local:getParentofVariantClassesf
local:getClassID (string($item1/Element[1]/Class/@name)),
local:getClassID (string($item2/Element[l]/Class/@name))) 1= ""
</Quety>
<Action>
<Relation Rulell)= "R7" Type="different" Term="¢/ass implements use case">
<Element> (Sitem 1/Element! 2]/@Document}
{Sitem 1/Element[2]/Title }</Element>
<Element> {$item2/Element[2]/@Document}
{Sitem 2/ Element[2]/ Title y</Element>
<Implements> jstring(Sitem 1/Element! 1]/Class)}</Implements>
<Implements> {string($item2/Element[l]/Class) } </Implements>
<Va.l’iant0f>{local:getParentClass(local:getClasle
(Sitem 1/Element[1]/Class/@ nam ¢)) }</VariantOf>
</Relatlon> </Action> </TraceRule>

Figure 5-15: Example of different traceability rule

170

file://c:/UMLl_PMl
file://c:/UMLl_PMl.xml%E2%80%9D)/AJML:Generalization
file://c:/UMLl_PMl
file://c:AJMLl_PMl.xml%E2%80%9D)//UML:Class/@name
file:///c:/Direct_TraceRel.xml")//Relation[@Type="implements
file:///c:/Direct_TraceRel.xml")//Relation[@Type="implements%E2%80%9D

5.2 Traceability Rules and Relations

Rule R8: Overlaps

This rule can establish an overlaps relation between a sequence and class diagram
when there is an operation in the sequence diagram with the same name as an
operation of a class in a class diagram and the class of the object of the operation in
the sequence diagram is the same as the class of the operation in the class diagram.
Due to simplication, Figure 5-14 does not show the full declaration of extra
functions implemented in XQuery (rOperationinSeqQ, getOb/ ectinSeq(),
getClassObjectinSeqO, getClassinClassQ, and getOperationinClassQ). The explanation and
complete declaration of the functions can be found in Section 5.3 and Appendix C,
respectively. This rule also uses an XQuery function s#zng() to remove whitespace
occurred at the beginning and end of the name of an operation. According to Figure
5-10, an example of an overlaps traceability relation from this rule exists between
operation fakePhototvoid of class Camera and operation fakePhoto:void in the sequence
diagram. The relation is created between the object (<Object>) and the operation
(<Operation>) in the sequence diagram represented in UMLT Pw 1xml (first
<Element>). And the class (<Class>) and the operation (<Operation>) in the class

diagram represented in UMLT_Pm 1.xm/ (second <Element>).

CHAPTER 5. TRACEABILITY FRAMEW ORK

<TraceRule R#/eID="R8" RuleType="overlaps"
DocTypel="sequence diagram" DocType2="class diagram">

<Query>

let $x1 := local:getO perationinSeq()
for $x2 in Sx 1
for $x3 in local:getO bjectinSeq(Sx2)
for Sx4 in local:getClassO bjectinSeq($x3)
for $x5 in local:igetClassinClass($x4, “CD _phone”)
let $x6 := $x5/UM L:Classifier.feature/UML:O peration
where $x2/../ ../ ../ ../@name = “SD_phone” and
(string($x6/ @ name)) = (string($x2/@ name))
</Quety>
<Action>
<Relation R #/eID = "R8" 7'ype="overlaps"
DocTypel="sequence diagram" DocType2
<Element Document= “file:/ /c:/UMLI_PMI1 ,xm1”>
<Object> Sx2/../../../../../../@name </Object>
<Operation> Sx2/@name </Operation> </Eﬂ'rﬂ]t>
<Een£nt Document= “file://c:/UMLI_PMI .xm1”>
<Class> {$x5/@name} </Class>
<Operation> j$x6/@name) </Operation> </Eenﬂ1t>

="c\ass diagram" >

</Relation>
</Action>
</TraceRule>

Figure 5-16: Example of overlaps traceability rule

Rule 9: Evolution

This rule can establish an evolution relation between two state diagrams when the
parameters of the same signals are different in the two state diagrams. As shown in
Figure 5-17, rule R9 checks (a) if the names of the diagrams being compared are the
same, (b) if the names of the transitions are the same, (c) if the names of the actions
are the same, (d) if the signal events are the same, (¢) if the signals are the same, and
() if the parameters of the signals are different. An example of an evolition
traceability relation from this rule is shown in Figure 5-10 between the two extracts
of the sequence diagrams. The relation is created between the name of a transition
(<Transition>) together with the parameter of the transition (<Parameter>) in
UMLT]JPMT1.5xm! (first <Element>) and the name of a transition (<Transition>)
together with the parameter of the transition (<Parameter>) in UML2_PM/.xml

(second <Element>).

file://c:/UMLl_PMl
file://c:/UMLl_PMl

5.2 Traceability Rules and Relations

cTraceRule R #/eID="R9" RM/c7y/?e="evolution"
DocTypel="Statechm Diagram" D ocType2 = "Statechart Diagram">
<Query>

for $item! in doc(“file://c:/UMLI_PMlLxm!”)//UML:Transition,
$item 2 in doc("“file://c:/UML2_PMI ,xm1”)/AJML:Transition

where
$x1/../UML:Diagram /@name = Sx2/./ UML:Diagram /@ name and
$xl/@name = $x2/@name and
$x1/UML:Transition.effect/ UML:ActionSequence/UML:ActionSequence.action
/UML:UninterpretedAction/@name =
$x2/UML:Transition.effect/UML:ActionSequence/ UM L:ActionSequence.action
/UML:UninteipretedAction/@ name and
$x1/UM L:Transition.trigger/Behaviora] _Elements.State_Machines.Event
/@ xmi.idref = $x1/../UML:SignalEvent/@ xmi.id and
$x2/UM L:Transition.trigger/Behavioral_Elements.State,,Machines.Event
/@ xmi.idref = $x2/../UML:SignalEvent/ @ xmi.id and
$x1/../UML:SignalEvent/@name = $x2/../UML:SignalEvent/@name and
$x1/../UML:SignalEvent/UML:SignalEvent.signal/Behavioral_Elements.Common
_Behavior.Signal/ @ xmi.idref = $x1/../UML:Signal/ @ xmi.id and
$x2/../UML:SignalEvent/UML:SignalEvent.signal/Behavioral_Elements.Common
_Behavior.Signal/ @ xmi.idref = $x2/../UML:Signal/ @ xmi.id and
$x1/../UML:Signal/@name = $x2/../UML:Signal/@name and
Sx1/../UML:Signal/@ xmiid/UML:DataType/@ xmi.id =
$x1/../UML:Event.Parameter/UML:Parameter/UML:Parameter,type
/Foundation.Core.Classifier/ @ xmi.idref and
$x2/../UML:Signal/ @xmiid/UML:DataType/@ xmi.id =
$x2/../UML:Event.Parameter/UML:Parameter/UML:Parameter.type
/Foundation.Core.Classifier/@ xmi.idrefand
$x1/../UML:Event.Parameter/UML:Parameter/@name !=
$x2/../UML:Event.Parameter/UML:Parameter/@name

</Query>
<Action>
<Relation R #/e]D ="R9" 7ype="evolution"
DocTypel="Sfdtechmt Diagram" Doc7ype2="Statechart Diagram">
<Element Document= “file:/ /c:/UML I_PM l.xml”>
<Transition> {Sx 1/@nam e} </Transition>
<Parameter> {$xI/../UML:Event.Parameter/UML:Parameter/@name }
</Parameter>
</Hement>
<Element Document= “file://c:/UML2_PM 1.xm1”>
<Transition> {Sx2/@name) </Transition>
<Parameter> {$x2/../UML:Event.Parameter/UML:Parameter/@name}
</Parameter>
</Hement>
</Relation>
</Action>
</TraceRule>

Figure 5-17: Example of overlaps traceability rule

173

file://c:/UMLl_PMl.xml%E2%80%9D)//UML:Transition
file://c:/UML2_PMl
file://c:/UML
file://c:/UML2_PM

CHAPTER 5. TRACEABILITY FRAMEWORK

Additionally, we have developed 63 traceability' rule templates from which 51 are for
direct traceability' relations and 12 are for indirect traceability relations (see in
Appendix B). We have used all those 03 traceability' rule templates in our
experiments (see in Chapter 8). The following subsection describes the extended

functions that we have implemented to support the traceability rules.

5.3. Extended Functions

The satisfaction of all possible conditions for the traceability relations such as
considering grammatical structures of the sentences in the documents and
synonyms requires a need for extra functions to allow the traceability' generator to
identify the relations. The extended functions can be classified in two main groups.
One group is concerned with functions that have been implemented in XQuery'
(viz. XQuery and the other group with functions implemented in java (viz. java
functions). Additionally, XQuery language allows us to add new functions and
commands in its own and other languages. Extra functions implemented in XQuery'
are concerned with the retrieval of specific elements in the documents, whereas the
functions implemented in java are concerned with the manipulation with textual
aspects in the documents. We present below the extended functions that are

implemented in two languages i.e. in XQuery and in Java.

5.3.1. Functions in XQuery

As mentioned, the extended functions represented in XQuery are concerned with
functions that identify specific elements in the documents used in our approach
such as state in a statechart diagram, classes in a class diagram, messages and objects
in a sequence diagram, and features in a feature model. Generally, an XQuery'

function declaration is composed of two parts as shown in Figure 5-18.
Part I: It is concerned with the name and signature of the function. It contains:

(@) declarejunction keywords to start the declaration of the function;

(i) /ocal: keyword which defines the scope of a function;

174

5.3 Extended Functions

(iii) the name of the function; and

(@iv) the input and output parameters of the function when applicable.

Part II: It is concerned with the definition of the function {Jundion body), which
consists of XQuery statements. The function body can include built-in XQuery

functions or other extended functions implemented in XQuery or Java.

declare function 1local: function-name (“variable-name as input)
as output
1
function-body
1;

Figure 5- 18: A structure of a user-defined function

In the following, we present each of the extra XQuery functions. A complete

declaration of these functions with their respective body is shown in Appendix C.

I. getTransitioninState

declare function local :getTransitioninState() as item()*
Figure 5-19: getTransitioninState function

The gefT'ramitioninState function identifies the set of transitions in a statechart
diagram (Figure 5-19). The function does not take any input parameters and returns
a sequence of one or more transitions (that appear in XMP document as
UML:Transition elements) in a statechart diagram. The result of this function
appears as item() in XQuery. For instance, according to the extract of a statechart
diagram (shown in Figure 5-20), the getTransitioninState function returns a set of

transitions - {transition 4, transition 4, transition ¢}.5

5See details in XMI specification OMG.XMI.

175

CHAPTER 5. TRACEABILITY FRAMEWORK

Figure 5- 20: Extract of a statechart diagram

II. getStateinState

declare function local :getStateinState ($transition as node|())
as item()

Figure 5- 21: getStateinState function

The getStateinState function identifies the state of a transition in a statechart diagram
(Figure 5-21). The function takes a transition as an input (appearing in an XMI
document as an UML:Transition element) and returns the state (appearing as an
UML:SimpleState element) of the transition. The result of this function appears as
itemQ in XQuery. According to the previous example (Figure 5-20), the

getStateinS'tate function for transitions « or b returns state X.

ITI. getMessageinSeq

declare function local :getMessageinSeq(as item()*

Figure 5- 22: getTransitioninState function

The getMessageinSeq function identifies the set of messages in a sequence diagram
(Figure 5-22). The function takes no input parameter and returns a sequence of one
or more messages (appearing in an XMI document as an UML:Link element) in a
sequence diagram. The result of this function appears as itemQ* in XQuery.
According to an example of a sequence diagram in Figure 5-23, the

getMessageinSeq function returns a set of messages — (message 4, message 4,

message t}.

176

5.3 Extended Functions

IV. getObjectinSeq

declare function local:getObjectinSeq($link as node()) as
item ()

Figure 5- 24: getObjectinSeq function

The getObjectinSeq function identifies the object that receives a message in a sequence
diagram (Figure 5-24). In general a message in a sequence diagram represents the
communication between two objects. The function takes a message as an input
parameter (appearing in an XMI document as an UML:Link element) and returns
the object (appearing in the XMI document as an UMLrObject element) that
receives the message. The result of this function appears as item() in XQuery.
According to the example in Figure 5-23, the getObjectinSeq function returns

object Y (as the UML:Object element) for message b as input parameter.

V. getClassObjectinSeq

declare function 1local:getClassObjectinSeq($object as node())
as item()

Figure 5- 25: getClassObjectinSeq function

The getClassObjectinSeq function identifies the class of an object in a sequence
diagram (Figure 5-25). The function takes an object as the input parameter and
returns its class (as appearing as itemQ in XQuery). According to the example in
Figure 5-23, the getClassObjectinSeq function takes object Y as input parameter and

returns class Y ’(as the UML:Class element) whereby the object is instantiated.

CHAPTER 5. TRACEABILITY FRAMEW ORK

VI. getClassinClass

declare function 1local:getClassinClass ($diagram as xs:string)
as item()*

Figure 5- 26: getClassinClass function

The getClassinClass function identifies classes in a class diagram (Figure 5-26). The
function takes as input parameter the name of the class diagram, and returns the
classes in the diagram (appearing as UML:Class elements). The result of this
function appears as itemQ* in XQuery. For instance, according to the extract of a
class diagram (shown in Figure 5-27), the gesClassinClass function returns a set of

classes - {class CO, class C7, class C2j.

VII. getParentFeature

declare function local:getParentFeature ($child as xs:string) as
item ()

Figure 5- 28: getParentFeature function

The getParentFeature function identifies the parent feature of a feature in a feature
model (Figure 5-28). The function takes as input a feature name and returns the
name of its parent feature, if available. The output of the function is a sequence of
words with part-of-speech tags as itemQ in XQuery. For example, Figure 5-29
shows an extract of a feature model. In the figure, feature # has a parent feature

and children features 4 and . Moreover, feature » has another child feature /which

178

5.3 Extended Functions

has children features/ and & When the function has feature 7 as its input parameter,

it returns feature name 77 as the parent feature of feature 7

VIII. getChildrenFeature

declare function local:getChildrenFeature ($parent as xs:string)
as item()*

Figure 5- 30: getChildrenFeature function

The getChildrenFeature function identifies the set of children features of a feature in a
feature model (Figure 5-30). The function takes a feature name as its input
parameter and returns the sequence of children-feature names as itemQ* in XQuery,
if available. The output of the feature is a sequence of words with part-of-speech
tags. According to the previous example, when function geChildrenFeature has

feature name # as its input parameter, it returns the sequence of children-feature 4

and 7

IX. getFeatureofSubsystem

declare function local:getFeatureofSubsystem ($subsystem as
xs:string) as item()*

Figure 5- 31: getFeatureofSubsystem function

The getFeatureofSubsystem function identifies the set of features used by a subsystem
in a subsystem model (Figure 5-31). The function takes as input parameter the name

of a subsystem and returns a sequence of one or more feature names as itemQ* in

179

CHAPTER 5. TRACEABILITY FRAMEWORK

XQuery, if available. An example of the use of this function is illustrated by
considering Figure 5-9. When function getFeatureofSubsystems has subsystem name

Messaging, it returns feature Text Messages.

X. getOperationinSeq

declare function local:getOperationinSeq() as item()*

Figure 5- 32: getOperationinSeq function

The getOperationinSeq function identifies the set of operations in a sequence diagram
(Figure 5-32). The function does not take any input parameter and returns the
operations (appearing in XMI document as UML:Operation elements) in the
diagram. The result of this function appears as itemQ* in XQuery. An example of
the use of this function is illustrated by considering Figure 5-23. The function

getOperationinSeq returns operations aaaf), bbb(), and .

XI. getOperationinClass

declare function local:getOperationinClass (S$class as node!))
as item()*

Figure 5- 33: getOperationinClass function

The getOperationinClass function identifies the set of operations of a class in a class
diagram (Figure 5-33). The function takes a class as its input parameter and returns
a set of operations of the class as itemQ* in XQuery. An example of the use of this
function is illustrated by considering Figure 5-27. The function gefOperationinClass

has class C7 and returns operation Op7 ().

XII. getStateofOperationinState

declare function localjgetStateofOperationinState ($Soperation as
node ()) as item

Figure 5- 34: getStateofOperationinState function

180

5.3 Extended Functions

The getStateofOperationinS'tate function identifies the state in a statechart diagram that
receives an event when the event represents an operation (Figure 5-34). The
function takes an operation (appearing in XMI document as an UML:Operation
clement) and returns a sequence of one or more states (appearing as
UML:SimpleState elements) in statechart diagram of which name are given as the

particular operation name. The result of this function appears as itemQ in XQuery.

XIII. getParentofVariantFeatures

declare function local:getParentofVariantFeatures (Sone as
node (), S$Stwo as node()) as item()

Figure 5- 35: getParentofVariantFeatures function

The getParentofl”arian/Features function identifies the parent feature of two features
that are either alternative or optional feature in a feature model (Figure 5-35). The
function takes as input parameters the names of two features and returns a node
representing the parent feature in a feature model as itemQ in XQuery, when these
features are alternative or optional features and they have the same parent feature.
According to the example in Figure 5-29, when function geParentojl ariantFeature has

alternative features; and £ as its input parameters, it returns the parent feature /

XIV. getParentofVariantClasses

declare function local:getParentofVariantClasses ($one as
xs: string, S$two as xs:string) as
item ()

Figure 5- 36: getParentofVariantClasses function

The getV arentof\ "mriantClasses function identifies the generalized class (supetclass) of
two classes that are specialized (subclass) (Figure 5-36). The function takes as input
parameters the names of two classes and returns a node representing the generalized

class in a class diagram as itemQ) in XQuery, if available. As shown in Figure 5-27,

181

CHAPTERS. TRACEABILITY FRAMEWORK

the function getParentofVariantClasses has the names of classes C7 and C2 and

returns class CO.

XV. getParentClass

declare function local:getParentClass ($child as xs:string) as
item ()

Figure 5- 37: getParentClass function

The getParentClass function identifies the generalized class of a class in a class
diagram (Figure 5-37). The function takes as input parameter the name of a class
and returns a node representing the generalized class in a class diagram as item(Q) in
XQuery, if available. According to the example in Figure 5-27, the function

getParentClass has the name of class C7 and returns class CO.

XVI. getClassID

declare function local:getClassID ($Sname as xs:string) as
xs:string

Figure 5- 38: getClassID function

The getClassID function identifies the identifier of a class in a class diagram (Figure
5-38). The function takes as input parameter the name if a class and returns a string

representing the identifier (ID) of the class.

5.3.2. Functions In Java

As mentioned, the extended functions implemented in java are concerned with
functions that manipulate with textual aspects in the documents. More specifically,
these functions tackle specific string manipulation issues such as synonyms, distance

between words in a sentence or paragraph, and concatenation of string.

Generally, a java function is specified as part of a package. In our work, we have

implemented two packages, namely package synonmym that contains function

182

5.3 Extended Functions

findSynonym, and package distanceControl that contains functions containsIlnDistance,
stringNoSpace, setoff, and checkDistanceContro/ The declaration of a java function is
shown in Figure 5.39. As shown in the figure, the java function is declared as

namespace and attributed to a variable namespace.

declare namespace variable-namespace ="java:package.class";

Figure 5- 39: the declaration of a namespace referring to extra functions in Java
package

Calling a function can be appeared in the second and third subparts of Part 2 of the
traceability rules (as shown in Figure 5-3). It contains the variable-namespace which
is used as a prefix for extra functions, followed by a colon a name of function,
and a parameter(s) (if required). The template of calling an extended function

implemented in java is shown in below figure.

variable-namespace: function-name{”“variable-name as input)
as output

Figure 5- 40: Calling an extended function implemented in Java

Currently we have developed five java functions as presented below. In the
following, the description of the java functions present how these functions are
called in XQuery statements and the signature of these functions in java. The

complete codes of these functions are described in Appendix Y.

I. containsInDistance ()

The containsInDistance function is a Boolean function that determines if a text
contains certain words, or their synonyms, at an appropriate distance and considers
their part-of-speech. The text may be paragraph, a sentence, or words annotated
with POS-XML tags. An appropriate distance means the existence of words

appearing in the same sentence. As shown in Table 5-1, there are variation of this

CHAPTER 5. TRACEABILITY FRAMEWORK

function with different types and numbers (two or three) of parameters. In java, the
parameters can be of type s#ring (a word or many words in a text that is recognized
in XQuery language as xststring), arraylist 6(a textual paragraph with POS-XML tags
which appears as a sequence of XML dements in a XML-formatted document and

recognized in XQuery language as xstelement"), and objecfi (a textual paragraph with

POS-XML tags which appears as a sequence of XML nodes in a XML-formatted

document and is recognized in Xquery language as xs:node”).

Table 5- 1: Variation of containsInDistance function with different parameters

Xquery statement Java signature

a) r containsInDistance(public static boolean
$words 1 as nodeQ, containsInDistance
Yomrds2 as xs:string, (Objectwords 1,
Yarords3 as xsistring) Stringwords2,
as as:Boolean String words3)
b) i containsInDistance (public static boolean
Yomrds1 as nodeQ, containsInDistance
Yo>ond2 as xs:string) {Objectwords 1,
as xs:boolean Stringwords2)
¢) r containsInDistance(public static boolean
Swords/ as element()¥, containsInDistance
$jvords2 as xs:string) (Arraf'l] st words 1,
as xs:boolean Stringwords2)
d) containsInDistance (public static boolean
Yavords1 as nodeQ, containsOInDistance
| o2 as nodeQ, {Objectwords 1,
$words3 as element()*) Objectwords2,
as xstBoolean Avrray!]stwords3)
e) & containsInDistance(public static boolean
Yomrds1 as nodeQ, containsOInDistance
Yomrds2 as nodeQ) {Objectwords 1,
as xs:boolean Obyjectwords2)

6]ava d"ﬂy/]_]:fl‘is applied to represent a sequence of an XML node or an XML element
7 see details in W3C. XQuery.
8Java Objé’ﬁ‘is applied to represent an XML node or an XML element
9 see details in W3C. XQuery.

184

5.3 Extended Functions

II. fmdSynonymQ

ThefindSynonym function identifies a set of synonyms for a word. As shown in Table
5-2, this function taka word as an input parameter of type string in Java and returns
a set of synonyms represented as arraylist in Java, or null if the word has no

synonyms. The synonyms are identified based on WordNet (WordNet).

Table 5- 2: A layout offindSynonym function

XQuery statement Java signature
s: findSynonym($word as public staticA4.rrayl]st
xs:string)as elementQ* findSynonym (S#ing strlnput)

III. stringnospaceQ

The stringnospace function returns a string without white spaces. As shown in Table
5-3, the function takes a sequence of words as its input parameter and returns a

string with the concatenation of these words without whitespaces.

Table 5- 3: A layout of stringnospace function

XQuery statement lava signature
r: stringnospace(S«'W.r as public static Szing
xs:string)as xs:string stringnospace ($#ring str)

IV. setof()

The setof function returns a set of words composed by the input parameters. As
shown in Table 5-4, the function takes four parameters of array lists and returns a

composed array list.

CHAPTER 5. TRACEABILITY FRAMEWORK

Table 5- 4: A layout of setoffunction

XQuery statement Java signature
< setof(St/ as elementl)*, public static Arrayl]st
{12 as element!)*, setof{ Arrayljst s1,
Sti as element(Q¥, Arrayljst s2,
Js4 as element!)*) Arrayljst s3,
as item(Q* Arrayljst s4)

V. checkDistanceControl()

The checkDistanceContro/ function is a Boolean function that identifies if the set of
synonyms of two words are associated in a textual paragraph. More specifically, the
paragraph contains two words, or ones of their synonyms and the existence of these
words must appear in the same sentence in the paragraph. The function takes as
input parameters a text and two sets of synonyms and returns true if the text
contains some of the words in the two sets of synonyms at an appropriate distance.
As shown in Table 5-5, the function takes three input parameters: first is typed of
string in Java and also recognized as xs:string in XQuery language; second and third

are arrayList in Java and xml elements in XQuery.

Table 5- 5: A layout of checkDistanceControl function

XQuery statement Java signature
& checkDistanceControl public static boolean
(Slongstring as xststring, checkDistanceControl(
si as elementl)*, String Description,
s2 as element!)*) as xs:boolean Arrayl]stsi, Arrayljst s2)

5.4. Summary

This chapter has presented the traceability framework to support traceability
generation in product family systems. It also described and gave examples of
different types of traceability rules. In addition, it presented the various types of

extra functions that we have implemented.

186

Chapter 6

XTraQue Tool

This chapter presents the prototype tool called TTTraOune that we have implemented
to demonstrate and evaluate our work. It aims to illustrate how the XTraQue tool
can facilitate the traceability activity by generating traceability relations according to
the traceability reference model in Chapter 4. Section 6.1 describes the overview and
functionalities of the XTraQue tool. Section 6.2 presents the interfaces of the tool.

Section 6.3 summarises the chapter.

6.1. Overview

In order to evaluate and demonstrate our approach, we have implemented a
prototype tool called XTraQue. We envisage the use of our tool as a general
platform for automatic generation of traceability relations and support for product
family system development. The tool has been implemented in java and uses Saxon
to evaluate XQuery statements. The extra functions not supported by XQuery, as

described in Section 5.3., have also been implemented in Java.

Figure 6-1 illustrates the architecture of XTraQue tool. The tool is composed of
seven components, namely:

(@) XTraQue Interface—This component provides the user interfaces for a user to
interact with the tool ranging from the types of documents to be traced, to
the types of relations, and family of products.

(b) Document ldentifier—This component identifies a set of relevant documents to

be traced based on the input from the X TraQue Inteface component.

CHAPTER 6. XTraQue TOOL

(c) Rule Template 1dentifier —This component identifies a set of traceability rule
templates that are related to the documents and relations to be traced based
on inputs to the XTraQue Interface component.

(d) Traceability Rule Editor - This component verities XQuery statements in
traceability rule templates and displays the results of the XQuery statements.

(€ Rufe Instantiator —This component creates a set of instantiated traceability
rules by replacing the placeholders of the document types in the identified
traceability rule templates with the names of the documents to be traced.
The identified traceability rule templates and the names of the documents
are derived from the Ruwle Template Identifier and Document ldentifier,
respectively.

(O Traceability Relation Generator—This component generates traceability relations
by executing the traceability rules created by the Rule Instantiator.

(@) Traceability Relation Presenter —This component records and presents the

traceability relations generated by the Traceability Relation Generator.

According to Figure 6-1, the XTraQue Interface component is responsible for
communication with a user for: (a) specifying the criteria for traceability generation;
and (b) entering a new traceability rule to be verified. Consider in Case (a), the
Document ldentifier component identifies a set of documents and the Rule Template
Identifier identifies a set of traceability rule templates corresponding the criteria
derived from the XTraQue Interface component. The Rule Instantiator component is
responsible for creating a set of instantiated rules by instantiating the placeholders
for the documents identified by the Document ldentifier component in the rule
templates identified by the Rule Template Identifier component. The Traceability Relation
Generator component is responsible for (i) executing the instantiated rules created by
the Rule Instantiator component and extra functions used in the rules; and (i)
generating traceability relations between the identified documents. The Traceability
Relation Presenter component is responsible for recording and representing the
relations created by the Traceability Relation Generator component in XML documents.

However, consider Case (b), the Traceability Rule Editor component is responsible for

188

6.1 Overview

() verifying XQuery statements in traceability rule templates derived from the

XTraQue Interface component and (ii) displaying its results.

Figure 6- 1: The Architecture of XTraQue Tool

The various components of the XTraQue tools support various functionalities.
These functionalities include:
(i) Traceability Selection, which is concerned with the specification of the documents

to be traced and the types of relations to be created;

189

CHAPTER 6. XTraQue TOOL

() Traceability Creation, which is concerned with the generation of direct and
indirect traceability relations based on the input given in (i);

(i) Traceability Presenter, which is concerned with the recording and representation
of the traceability relations generated in (if); and

(v) Trace Rule Editor, which is concerned with the visualization and testing of new
traceability rules.

In the following, we explain these functionalities in more details.

I. Traceability Selection

In order to support this functionality, the tool provides sophisticated user interfaces
in which a user can select to establish traceability relations between different levels
of documents. According to the traceability reference model (in Chapter 4), two
levels of documents are namely product line level and product member level. More

specifically, this functionality allows the user to create the relations between:

(@ documents of two specific product members,
(b) documents at the level of product line and one specific product member,
and

() documents at the level of product line and two specific product members.

Case (a) supports the generation of traceability relations in groups 2, 3, 4, and 5, as
described in Chapter 4. Case (b) supports the generation of traceability relations in

groups 1, 3, 5, and 6. Case () supports the generation of traceability relations in all

groups.

For any of cases (a) to (c) above, the user can select to trace all the documents
related to the levels of product line and product members, or to specify which

documents to be traced based on:

e type of documents (e.g. all use cases, class, statechart, and sequence
diagrams of the product member level, or all feature, subsystem, process,

and module models of the product line level);

190

6.1 Overview

* particular document names; or

* types of traceability relations.

In this latest case, the types of documents to be traced are selected depending on
the documents that can be associated with a specific relation type. For example, an
implements relation may exist between class diagram and feature models or use cases,
sequence diagrams and feature models or use cases, and statechart diagram and
feature models or use cases. Therefore, documents created during domain design at
the product line level (i.e. subsystem, process, and module models) will not be
selected to be traced in this case. Moreover, the tool will not attempt to establish
implement relations between documents that have been selected but do not hold the

relation type (e.g. feature model and use case).

In the case that the user selects to trace all documents or documents based on first
two cases above (type of documents and particular document names), the tool also
allows the user to specify the types of relations to be traced. The user can select to
trace the documents for all traceability relations for any of those two cases. In
Section 6.2, we show user interfaces for this functionality and an example of using
the interfaces in which the traceability user has selected the types of artefacts to be

traced and the types of traceability relations.

II. Traceability Creation

The generation of direct and indirect traceability relations is executed by the
components in XTraQue tool ie. Document Identifier, Rule Template Identifier, Rule
Instantiator, and Traceability Relation Generator. This functionality reflects Traceability
Generator process described in Section 5.1. For each pair of documents, the tool
identifies traceability rule templates associated with the documents, instantiates the
placeholders for the document types in the rule templates, generates direct relations

in XML format and indirect relations based on the direct ones also in XML format.

191

CHAPTER 6. XTraQue TOOL

The tool also applies the extra functions implemented in XQuery and Java

languages, if applicable.

Since the XTraQue tool allows a user to select to trace all documents of product
family systems or specific documents, the tool can generate traceability relations in
different levels of granularity, namely:

* atthe level of two product members;

* at the level of product line and product member(s);

* at the level of particular documents in the product line; and

* at the level of particular documents in product member(s).

III. Traceability Presenter
The generated traceability relations are recorded and represented in XML
documents. Moreover, the XTraQue tool also keeps track of the traceability activity

by specific log files represented as XML documents.

IV. Traceability Rule Editor

The XTraQue tool allows for the creation of new traceability rules and the
execution of these rules in order to verify their correctness before including these
rules in the set of traceability rule templates to be used by the tool. After the
traceability user is satisfied with a new rule, this rule can be inserted in the
document containing all the traceability" rule templates. In Section 6.2, we show a
user interface for this functionality and an example of using the interface for the

case in which the user has created a new rule and verified its correctness.

6.2. User Interfaces

This section illustrates the user interfaces of the XTraQue tool and describes how a
user can execute the various activities supported by the tool. We illustrate the use of

the tool by giving examples based on the mobile-phone systems (see Chapter 7).

6.2 User Interfaces

6.2.1. Specifying the Scope of Traceability Generation

As shown in Figure 6-2, this interface supports the functionality of Traceability
Selection. The interface consists of three main parts:
(@) a panel representing a product family with its various product members (in
this case, a mobile-phone family with three product members ie. PMI1,
PM2, and PM3);
(b) a panel consisting of three menus of options for specifying the scope of
traceability activity; and

(©) a command button (“Go”) for moving to the next interface.

The panel 4 is for specifying the scope of traceability generation. According to the
traceability reference model, the product family systems consist of two levels:
product line and product member.
* The first menu of options in the panel is for specifying traceability besween
product members or betweenproduct line andproduct member(s) (see Figure 6-3).
* The other two menus of options are for specifying the names of product

members to be traced (see Figure 6-3).

193

CHAPTER 6. XTraQue TOOL

The various options in panel 4 allows a traceability user to specify the scope of
traceability (i) between one product line and one product member, (i) between one

product line and two product members, or (iii) between two product members.

As shown in Figure 6-3, the user firstly considers the situation in which wants to
generate traceability relations between documents at the levels of product line and
two product members. Secondly, the user specifies two product members, namely

model PM1 and mode/ PM?2. Then the user selects to move to the next interface.

Figure 6- 3: Example interface demonstrating specifying the scope of traceability
generation between documents at the levels of product line and two product
members, model PM1 and model PM2

6.2.2. Specifying Types of Documents and Relationships

As shown in Figure 6-4, this interface also supports the functionality of Traceability
Selection. The interface follows from the interface in Figure 6-2. It allows a user to

specify the types of documents and relationships to be traced and consists of four

main parts:

194

@

(b)

d

6.2 User Interfaces

a panel that is composed of three sub-panels, namely requirement, design, and
architecture. Each sub-panel contains different icons representing the various
types of documents of each development phase. The requirement sub-panel
contains use case and feature model icons representing documents produced
during the analysis phase. The design sub-panel contains class diagram, statechart
diagram and sequence diagram icons representing documents produced during
the design phase of the product-members. The architecture sub-panel contains
subsystem model, process model and module model icons representing documents
produced during the design phase of the product-line. Table 6-1 shows all
the icons representing the various documents.

a list that shows nine types of traceability relations supported by the
approach. This allows the traceability user to select one or many relations
types to be generated.

a panel that shows the selected documents to be traced.

a panel with two buttons “Go” and “Trace All”, which either presents the
next interface or executes the traceability generation for the selected

documents and relations, respectively.

195

CHAPTER 6. XTraQue TOOL

Figure 6- 4. An XTraQue interface for specifying types of document artifacts and
relationships according to tracing between the product-line and two product
members

The information shown in panel & depends on the scope of traceability generation
that the user has specified in the previous interface (Figure 6-2). According to the
example in Figure 6-3, the scope of traceability generation is specified between a
product line and two product members, mode/ PM 1 and mode/ PM2. Thus, in this
case, panel # (Figure 6-4) shows documents in all three sub-panels i.e. reguirements,

design, and architecture.

As shown in Figure 6-4, thete are three icons {mse case PM1, use case PM2 and feature
model) in sub-panel requirements, six icons (class diagram PMI, class diagram PM2,
statechart diagram PM/, statechart diagram PM2, sequence diagram PMT, and sequence
diagram PMZ2) in sub-panel design, and three icons (subsystem model, process model, and

module model) in sub-panel architecture.

196

6.2 User Interfaces

Table 6- 1: Icons in panel (a)

Sub-panel Icon Documents
Requirements C P Use case
UseCze
Requirements Feature model

Tsciure MdeN

Design o1 Class diagram
Design & 0 Sequence diagram
Disgram
Design V> Statechart diagram
State Chart
ucr
Architecture I Module model
viocUeModEZ
Architecture % Process model
Ptocsss Moriz
, G) cip
Architecture Subsystem model

Subaystern
MuuM

Consider the situation in which the scope of traceability generation is between two
product members, wode/ PM 1 and mode/ PM2. In this case, panel « shows only two
sub-panels requirements and design (as shown in Figure 6-5), with icons #se case PM1,
use case PM2, class diagram PM1, class diagram PM2, statechart diagram PAI1, statechart
diagram PM2, sequence diagram PM1, and sequence diagram PM?2.

197

CHAPTER 6. XTraQue TOOL

m _ dialisi

REQUIREMETNS

Use Case Use Case

SELECTED ARTIFACTS Relation Type
satisfiability
refinement
implements
dependency
evoluation
containment
overlap
similar
different®

Figure 6- 5: An XTraQue interface for specifying types of document artifacts and
relationships according to tracing between two product members, model PM1 and
model PM2

Figure 6-6 illustrates how to work with the interface.
» Firstly, the user selects a type of document by clicking on its respective icon
in panel @, which is then displayed in panel «
* Secondly, the user selects one or many relationship type(s) from the list in
panel &
* Next, the user either selects the “Go” button to move to next interface or
the “Trace All” button to execute the generation of traceability relations for
all selected documents according to the specified criteria (i.e. systems,

document types, and relationship types)

198

6.2 User Interfaces

W EEEEEEEEE JP.ixj
File Options
REQUREMETNS DESIGN ARCHITECTUFtE
$3 0 u=

Subsystem

Use Case J1 Use Ccbb Class Diaron State Chart MulU Process Model

Diagram Oass Diacrem

%o

Sdutciie
State Chart Diagram

Figure 6- 6: Example interface demonstrating specifying of types of document
artifacts and relationships

6.2.3. Specifying Particular Documents and Relationship Types

As shown in Figure 6-7, this interface also supports the functionality Traceability
Selection. 1t follows from the interface in Figure 6-4 and allows a user to specify and
visualize specific documents of the types selected in the previous interface. This
interface consists of:

(@) a panel that lists the types of documents following from the selected
documents from the previous interface (Figure 6-6). The lists of documents
are categorized as product line and product memberlevels. The example in Figure
6-7 shows three lists of documents, namely product line, PM1, and PM2. The
product line list has two types of documents, feature model and subsystem
model. The PM7 list has two types of documents, use case and class
diagram. The PM2 list has one type of documents, use case; since these have

been the documents selected in the previous interface (see Figure 6-6).

199

CHAPTER 6. XTraQue TOOL

(b) a panel that displays lists of document names of the document types shown
in panel « to be selected by the user. The selected documents from panel b
are then listed in a panel e

(c) a panel that displays the content of a selected document.

(d) a list that shows nine types of relationships. This, again, allows a user to
specify the types of relationships to be generated.

(¢) a panel that shows selected documents to be traced.

(® a panel with three buttons, namely “Trace”, “Reset”, and “Save Trace”,
which are related to actions for generating traceability relations, resetting the

selection, and saving the selecdon, respectively.

Figure 6- 7: An XTraQue interface for specifying particular documents and
relationships according to the specified criteria from the previous interface (Figure
6-4)

The example shown in Figure 6-7 follows from the documents selected in the
example in Figure 6-6. This shows the case in which the user has selected
documents use case and class diagram for product member PMT, use case for product

member PM2, feature modeland subsystem modelfrom the previous interface.

200

6.2 User Interfaces

File Options

Types of software artefacts

t —rrerrarme - —-meeee
C3 localtexmf

o- C3 MSOCache
C3 MyResearch

o- C3 N-Gage

o- C3PM1

» C3 PM2

«- C3 PM3

Lookup for: PM1 -- C3PM4

clais diagram
Istatechartdiagram

sequence diagram

None A.dIProgram files..

“i latnaron-—— —
*+ C3 localtexmf —j
® C3 MSOCache
0"[13 My Research
0-QN-Gage
&-C3PMI
0- C3 PM2
="C3PM3
Lookup for: PM2 o-[3 PM4
ci~“l.Rroarani.files..... ... v

iure caie
class diagram
statechart diagram

sequence diagram

None

Figure 6- 8: An XTraQue interface for specifying particular documents and
relationships according to the specified criteria from the previous interface (Figure

6-5)

However, Figure 6-8 shows the case in which the user has selected documents se
case, class diagram, sequence diagram and statechart diagram of product member PM7 and
use case, class diagram, sequence diagram and statechart diagram for product member PM2

from the previous interface (see Figure 6-5 and Figure 6-0).

Figure 6-9 shows how to work with the interface.
e Firstly, the user selects a type of document from the list in panel @ The tool
displays a list of documents according to the specific type in panel 4
* Secondly, if the user selects a particular document in the list in panel 4, the

content of the document is then shown in panel ¢ and the document is

listed in panel ¢ (see Figure 6-9).

* Thirdly, the user specifies the types of traceability relations from the list in

panel d

201

CHAPTER 6. XTraQue TOOL

* Optionally, the traceability user selects the “Trace All” button to generate
the traceability relations (according to the information in panels 4 and ¢),
the “Reset” button to start the selection again, or the “Save Trace” button

to save the selection.

------ | CAifii ™iy_ar r&imocl «Featur i%ifyi'Myvw.wS.org*OOl/XMLSchDrnainstance"™

T'i Feature_MP.xml \ vAFeature» 3
[D Feature_MP_backup.xml 1 f «Feature_name»*NN1 >Bluetooth«/NNI >«/Feature_name>\
) b) \% «Description»)
\/‘ j Feature_MP_refined.xml / N. «NN1 >Bluetooth</NN1 »
ij*mall_Feature_MP.xmly' 1 «WZ»enables«JWZ*
3cAMI/use_casJk functionalreqspec xminsxst="httpj 0rg/20G1/XML jetarice" e
o PMI_UCIxmIV tion="C:'XTraOue_TEST\8Use_Case_Descripticns\Use_Case xscfA
Q PM1_UC2xml \ <Use..Case UseCaselD="7650_UCr Bvstem="Mob\e Phone” Family..Member=765

Q PM1_UC3xml \ «WG»Making «/WG»\

«ATO»a«/ATO» Je%
Z3 c;/PM2/use_case «functionalregspec xminsxsi-'http;iAwww.w3.0rg/20G1/XMLSch instance"xsi:nol
D PM2.UC1xml tion="C:\XTraQue_TES'nuse_case\Use_Case.xscT» *
Q PM2 .UC2.xml «Use_Case UseCaselD-“B600_UC2‘ System="Mobile Phone" Family_Memberr'660
e, «Titlen

Q PM2_UCSxml «WO»Taking«WG»

<ATQra«W/ATO>
<l >

Figure 6- 9: Example interface demonstrating: displaying the context of an XML-
based document; and selection of documents types and relationship types to be
traced

6.2.4. Editing and Testing XQuery Statements

As shown in Figure 6-10, this interface supports the functionality Traceability Rule
Editor. This interface consists of:
(@) a panel for editing XQuery statements.
(b) a panel that has six buttons:
* “New” button for resetting the content in panel 2\
¢ “Load” button for loading an existing XQuery statement recorded in a file,;

¢ “Save” button for recording an XQuery statement in panel # in a file;

202

http://www.w3.org/20G1/XMLSchema-instance%22xsi:noNamespaceSche

6.2 User Interfaces

* “Run!” button for execution the XQuery statement in panel z and the
results are then displayed in panel 7
* “Reset” button for resetting the content in panel 1, and

* “SaveResult” button for recording the results in panel ¢in a file.

(c) a panel for displaying the results of executing the XQuery statement in panel

@

Figure 6-11 illustrates an example where a user works with the interface.
* Firstly, the user edits XQuery statements in panel a
e Secondly, the user selects an action by clicking a button.

* Finally, the user selects “Run!” button to execute the XQuery statement.

The results are shown in the panel «

203

CHAPTER 6. XTraQue TOOL

Figure 6- 11: Example interface for creating and verifying traceability rules

6.3. Summary

This chapter has presented the XTraQue tool including its functionalities and user
interfaces. The chapter has illustrated the use of the tool to support the automatic

generation of traceability relations.

204

Chapter 7

Mobile Phone Systems —Case Study

This chapter presents the case study of mobile-phone systems. Section 7.1 describes
the overview of the case study. Section 7.2 illustrates the documents in the systems.

Section 7.3 summarises the chapter.

7.1. Overview of the Case Study

The objectives of the creation of the case study are:

() to study the activities during the development of product family systems i.e.
domain analysis and domain design for product family, and requirements
engineering and design for product members; and

(i) to demonstrate and evaluate our approach.

The case study has been developed based on study, analysis, and discussions of
mobile-phone domain, and ideas in (Nokia) (OMA). Mobile-phone systems are
created based on marketing demands which requires a variety of products. In this
way, a number of documents are created by stakeholders ranging from market
researchers, to requirements engineers, product-line engineers, software analysts,
and software developers. Our case study is composed of a family of mobile-phone
with three mobile-phone members, namely PM7, PM2, and PM3 that we have
created. Each member has shared and specialized functionalities with the family.
The product members are aimed to satisfy different targets of customers e.g. trendy,

luxurious, budget, and high-technology customers.

CHAPTER 7. MOBILE PHONE SYSTEMS - CASE STUDY

The list of functionalities and specifications of the mobile-phone members in our
case study are shown in Table 7-1 and Table 7-2, respectively. We describe below

the details of each mobile-phone product member.

PM1

The product member PM1 is expected to be a trendy phone and targeted for young
people. As shown in Table 7-1 and Table 7-2, the product member PM1 has some
basic functionalities such as wake and receive calls using GSM 900 and 1800 and send and
receive text messages. 1t has also advanced functionalities such as (a) send and receive
multimedia messages which supports a user to store, download and send pictures and
voice with a message, (b) access Internet which allows a user to browse and download
data based on WAP 1.2.1 technology, (c) email systems which supports the email
protocol e.g. SMTP, POP3, and IMAP4, and (d) support Java technologies e.g. CLDC
and MIPD. Furthermore, the phone model has advanced features such as (i) Zake

photos using V'GA camera, (i) hand-free speaker, (iil) connect via Bluetooth, and (v) infrared.

PM2

The product member PM2 offers an elegant design and is targeted for users who
use a mobile phone for assisting business. As shown in Table 7-1 and Table 7-2, the
product member PM2 has basic functionalities such as wake and receive calls nsing
GSM 900, 1800 and 1900 and send and receive text messages. 1t also has functionalities
such as (a) send and receive multimedia messages which supports a user to store,
download and send pictures and voice with a message, (b) access Internet which allows
a user to browse and download data based on WAP 2.0 and XHTML technologies,
(¢) email system which supports the email protocol e.g. SMTP, POP3, and IMAP4,
and (d) support Java technologies e.g. CLDC, MIPD, Wireless messaging API, and
Mobile media API. Moreover, PM2 has extra features such as () Zakephotos using

V'GA camera with 2x digital spom, and (i) play RealOne tunes and videos.

PM3
The target customers of the product member PM3 are users who enjoy extensive

games and music. PM3 introduces a new category of phone games. It has extra

206

7.1 Overview ofthe Case Study

devices like mobile game deck, hand-speaker, Bluetooth and USB, and extra plug-in
applications like MP3 player, and stereo FM radio. PM 3 offers advanced
functionalities such as (a) send and receive multimedia messages which supports a user to
store, download and send pictures and voice with a message, (b) access Internet which
allows a user to browse and download data by supporting WAP 1.2.1 and XHTML
technologies, (c) email systemr which supports the email protocol e.g. SMTP, POP3,
and IMAP4, and (d) supporting]ava technologies e.g. CLDC, MIPD, Wireless messaging
API, and Mobile media API.

207

CHAPTER 7. MOBILE PHONE SYSTEMS - CASE STUDY

Table 7- 1: Functionalities of Mobile Phone Members

Functionality
FI: Make and receive calls using GSM 900
F2: Make and receive calls using GSM 1800
F3: Make and receive calls using GSM 1900
F4: Hold and swap a call
F5: Receive and update voice mail
F6: Display and update time and date
F7: Set alarm and time
F8: Record, display, and manipulate call logs
F9: Play games
F10: Update calendar
FI 1: Add, delete, and update preferences
FI2: Add, delete, and update contacts
F13: Include calculator
F14: Take photos using VGA camera
FI'S: Take photos using VGA camera with 2x digital zoom
FI6: FM radio
FI7: Email system using SMTP, POP3, or IMPA4
PI'8: Hand-free speaker
F19: Send and receive text messages
F20: Send and receive multimedia message
F21: Play RealOne format tunes and video
F22: Play and record MP3 format tunes
F23: Record and update video (clips)
F24: Play 3GPP video format
F25: Play Real Video format
F26: Access Internet using WAP 1.2.1
F27: Access Internet using WAP 2.0
F28: Access Internet using WAP XHTML
F29: Connect via Bluetooth transfer data
F30: Connect via Infrared transfer data
F31: Connect via USB
F32: Play MIDI formatted tunes
F33: Play AMR formatted tunes
F34: Play AAC formatted tunes
E35: Play MP3 formatted tunes
F306: Play WAV formatted tunes
F37: Play True Tones formatted tunes
F38: Compose and play MIDI formatted ring tones
F39: Record and update voice messages
FA40: Transfer data via SyncML and TCP/IP
F41: Support CLDC Java technology
F42: Support MIPD Java technology
F43: Support Wireless messaging AP Java technology
F44: Support Mobile media API Java technology

208

PM1

KT HHEHE KT AT AT MK

MR KA

o

MR A

HKH MK

=
T o e T o T T B < B NNNNNMNNMNNMNE

PO KA KKK

PM3

PP KA KA KA K

T B Sl S

MR A KK HH I AT HE MK KX

Table 7- 2: Specifications of M obile Phone M em bers

Specifications

Size

Display and User
Interface

Integrated VGA
digital camera

Video Recorder

PM1

Weight: 154¢
Dimensions: 114 x 56 x 26 mm, 138
cc

Illuminated high-contrast, full-
graphics colour display
Graphical user interface
Joystick with five-way navigation

Image capture at 640 x 480
resolution

N/A

PM2

* Weight: 122 g (with BL-5C battery)
* Dimensions: 108.6 x 58.2 x 23.7mm, 113cc

* Bright active matrix TFT colour display

* 65,536 colours

* 176 x 208 pixels

* Graphical user interface with selectable
themes

* 5-way joystick navigation

* 040 x 480 pixel resolution; standard,
portrait, and night modes; 2x digital zoom;
self-timer

* Video Recorder: Select picture size QCIF
(176x144) or subQCIF (128x906); audio
on/off; 2x digital zoom

PM3

Weight: 137 ¢
Dimensions: 134 x 70 x 20 mm

TFT, 4096 colors
Screen size: 176 x 208 pixels
Five-way directional controller

N/A

N/A

Specifications

RealOne Player

Memory Functions

Messaging

Wireless Connectivity

PM1
N/A

Phonebook: Up to 500 names
SMS: Up to 100 messages of text
MMS: Up to 50 messages of
multimedia

Calendar notes: 100-250 notes
(depending on the length of the
notes

To do list: Up to 30 notes

3.6 MB internal shared memory

Text/Multimedia messaging:
combine picture, text, voice clip
Email protocols: SMTP, POP3, and
IMAP4

Infrared
Bluetooth

PM2

RealOne Player: Playback and stream
RealMedia and 3GPP-compliant content

Phonebook: Up to 500 names

SMS: Up to 100 messages of text

MMS: Up to 50 messages of multimedia
Calendar notes: 100-250 notes

To do list: Up to 30 notes

6 MB internal shared memory

Memory card slot for additional user
memory.

Text/Multimedia messaging: combine
image, video, text and voice clip
Email over GSM data, HSCSD, and
GPRS

Email protocols: SMTP, POP3, and
IMAP4

Bluetooth
Infrared
USB

PM3
N/A

¢ Phonebook: Up to 800 names
¢ SMS
e MMS: Up to 65 messages of

multimedia
e (Calendar notes: 100
e To-do list:

* 3.4 MB internal shared memory
* Memory catd slot for additional user
memory

* Text/Multimedia messaging: Combine
image, video, text and voice clip

* Email over GSM data, HSCSD, and
GPRS

* Email protocols: SMTP, POP3, and
IMAP4

¢ Bluetooth

Specifications

Browsing

Data Transfer

Call Management

Java™ Applications

PM1

Browser supporting WAP 1.2.1 over
GSM, HSCSD, and GPRS.

Up to 43.2 kilobits per second in
high-speed circuit switched data

networks

Up to 40.2 kilobits per second in
GPRS networks

* Contacts: Advanced contacts database
with support for multiple phone and
email details per entry, also supports
thumbnail picture and groups

* Speed dialling

* Logs: Keeps lists of your dialled,

received, and missed calls

Automatic redial

* Automatic answer (works with

compatible headset or car kit only)

Supports Fixed Dialling Number,

which allows calls only to predefined

numbers

* Conference call

Supporting Java™ MIDP 2.0
applications

PM2

Browser supporting WAP 2.0 over GSM,
HSCSD, and GPRS
Advanced XHTML browser

Up to 40.2Kbps in GPRS networks
Up to 43.2Kbps in HSCSD networks

Contacts: Advanced contacts database
with support for multiple phone and email
details per entry, also supports thumbnail
picture and groups

Speed dialling

Logs: Keeps lists of your dialled, received,
and missed calls

Automatic redial

Automatic answer (works with compatible
headset or car kit only)

Supports Fixed Dialling Number, which
allows calls only to predefined numbers
Conference call

Supporting Java™ MIDP 2.0
applications

PM3

* Browser supporting WAP 2.0 over
GSM, HSCSD, and GPRS

e Advanced XHTML browser

* Lip to 43.2Kbps in GPRS networks
¢ Lip to 43.2Kbps in HSCSD networks

Contacts: Advanced contacts database

with support for multiple phone and

email details per entry, also supports

thumbnail picture and groups

* Speed dialling

* Logs: Keeps lists of your dialled,
received, and missed calls

* Automatic redial

* Automatic answer (works with
compatible headset or car kit only)

* Supports Fixed Dialling Number, which
allows calls only to predefined numbers

* Conference call

* Supporting Java™ MIDP 2.0
applications

Specifications

Voice Features

Operation

Operation System

Power Management

PM1

Voice recorder
Integrated handsfree speaker

GSM 900, GSM 1800

Symbian OS

Battety Cell BLB-2 830 mAh Li-Ion

PM2

Voice recorder

GSM 900, GSM 1800, GSM1900
networks

Symbian OS

Standard battery (BL-5C) 850 mAh,Li-

Ton

PM3

Voice recorder
Integrated handsfree speaker

GSM 900, GSM 1800, GSM1900
networks

Symbian OS

Standard, Li-Ion 850 mAh (BL-5C)

7.2 Documents in the Mobile-Phone Systems

7.2. Documents in the Mobile-Phone Systems

The following sections discuss the documents created in the case study, according
to the traceability reference model in Section 4.2. There is a single instance of the
feature and subsystem models, but there exist various instances of the process and
module models, as well as there exist many instances of use cases, class, statechart,
and sequence diagrams. Some examples of these documents in XML format are
shown in Appendix D. The complete set of the documents for the mobile-phone

family and its three product members can be found at (XTraQue).

7.2.1. Feature Model of Mobile-Phone Systems

As illustrated in Figure 4-1, the feature model in the case study of mobile-phone
system has 129 features which are mandatory, representing common features,

alternative and optional, tepresenting different features between product members.

For example, all product members must provide waking a call, receiving a call, screen
server, wallpaper, andgame, calendar, and clock features. However, the product members
can support different zetwork feature such as CSD, GPRS, GSM, PISCSD, and
EDGE. Furthermore, the associations between features are analyzed and captured
in the feature model e.g. the product member which provides a browser feature has

also WAP or XFITML features.

7.2.2. Subsystem Model of Mobile-Phone Systems

We designed five subsystems for mobile-phone systems as shown in Figure 4-5. The

brief descriptions of each subsystem are listed as follows:

I. Operating Subsystem
This subsystem provides facilities for performing basic tasks in the mobile-phone
systems. Examples of these tasks are: (a) controlling the interaction with all devices,

software, and data; (b) performing the interaction between internal applications (e.g.

213

CHAPTER 7. MOBILE PHONE SYSTEMS . CASE STUDY

games, multimedia, and PC connective); (¢) responding to internal hardware (e.g.
screen, keypad, and Bluetooth), different types of input data (e.g. air signal,
keystroke, screen touch, voice) and different types of output data (e.g. air signal,

screen-display, voice).

II. Messaging Subsystem

This subsystem manages the exchange and manipulation of messages. It supports
two services: short message sendee (SMS) for textual messages, and multimedia
message sendee (MMS) for multimedia messages. The services are based on a store
and forward protocol. The subsystem interacts with short message sendee centers
(SMSC) or multimedia message service centers (MMSC) to receive an incoming

message and to fonvard an outgoing message.

III. Mobile Internet Subsystem

This subsystem manages the interaction between wireless networks and tools such
as plug-in applications (e.g. for online games and for mobile browser) and extra
hardware (e.g. mobile game desk and 3G PCMCIA data card) for supporting mobile
internet applications. The subsystem supports some special functionalities e.g.
editing and browsing mobile web pages by using WML and XHTML techniques.
The subsystem is also able to activate 24-hour connectivity7 and support mobile
functions e.g. playing online games, managing personal online data, entertaining

(playing online radio and video), and servicing online banking.

IV. Network Subsystem

This subsystem supports the communication between different network protocols
and maintenance of the network coverage of the mobile-phone devices. It manages
a network protocol for passing data over a mobile phone network e.g. GSM, GPRS,
HSCSD, CSD and EDGE. Moreover, the subsystem supports different network
protocol architectures, for examples, TCP, IPv4, IPv6, MSCHAP v2, IPSec,
TCP/IP plug-in framework, WAP stack, and Multiple PDP context.

214

7.2 Documents in the Mobile-Phone Systems

V. Calling and Applications Subsystem

This subsystem provides the telephony management (e.g. creating and responding
phone calls), supports fundamental functions (e.g. a multimode API), and enables
the interworking of house-in applications (e.g. electronic games, clock and radio). In
particular, the subsystem provides the multimode telephony to enable integrating
the rest of the applications interworking and the creation of advanced data services
based on global network standards including GSM (Phase 2), GPRS (14, Class B),
CDMAZ2000 (Ix), EDGE (ECSD, EGPRS), and WCDMA (r4).

7.2.3. Process Models of Mobile-Phone Systems

We created two process models ie. short messaging service (SMS) process model
(as shown in Figure 4-7), and Internet application process model (as shown in

Figure 7-1). We describe below these process models.

I. Short Messaging Service (SMS) Process model

Short messaging service (SMS) process model is a refinement of the messaging
subsystem. The process model illustrates the activities of sending a short text
message. The system verifies the network signal, and then interacts with the short
messaging service (SMS) center. When a phone user has created a short text message,
the system sends off the message and waits for a notification. The process model
has (a) four resident processes, namely cwntrol\ check signal, edit, and notification-, (b) one
multiple process, namely short messaging service (SMS) control, and () two transient
processes, namely short messaging service center (SMSC), and wupdate remotely. We describe

below each of the above processes:®

* Control- This process initiates an action of sending a short message when a
mobile-phone user has created a short text message and displays an
acknowledgement to the user. The process keeps the sent message in the
mobile-phone memory.

* Check signal- This process performs checking if a signal has been established

and is ready for messaging.

215

CHAPTER 7. MOBILE PHONE SYSTEMS - CASE STUDY

Update remotely —T'his process is to allow update of remote data.

E dit+—This process performs the composition of a short message. The short
message contains a receiver’s address and context. The process provides a
list of contacts and a set of template short messages. The process supports
two editing modes ie. alpha mode and predictive mode. The alpha mode
accepts alphanumeric. The predictive mode predicts a word from an input
keystroke.

Short Messaping Sendee (SMS) Control - This process performs deliver)7 and
receives of a short message to a short message sendee center (SMSC) that
connects the telecommunication network (e.g. GSM, HSCSD, and EDGE)
through the short message sendee gateway mobile switching center (SMS
GMSC). This process also attaches extra information about SMSC in a short
text message.

Short messaging sendee center (SMSC) - This process is instantiated by wessaging
sendee centre (MSC) and responds a message from the SMS control process.
The MSC broadcasts the message to the base station systems (BSS) and the base
transceiver stations (BTSs) page the destination MSC.

Notification —This process is to notify incoming messages and acknowledge

of sending a short text message.

II. Internet Application Process Model

Internet application (I4) process model is refined for the mobile Internet subsystem.

The process model illustrates the activities of accessing the Internet from a mobile-

phone set. Initially, the system maintains the reception in order to access the

Internet. When the system has received a message from an external process, it

enables taking an action ie. downloading software, restoring data, or launching

applications. The process model has five resident processes, namely #rigger, download

software, lannch application, restore data, and maintain receptions, and one transient process,

namely control. We describe each of the processes:®

Trigger—This process is to notify incoming data to a mobile-phone system.

7.2 Documents in the Mobile-Phone Systems

* Contro/l —This process initiates an action of accessing the Internet. The
process then interacts with other processes in order to perform
downloading software, launching an application, or restoring data. The
process keeps the log of transactions in mobile-phone memory.

* Maintain reception - This process performs the maintenance of reception
between a mobile-phone handset and telecommunication network.

* Download software - This process performs downloading software in order to
support launching an application on a mobile-phone handset.

* haunch application - This process performs launching an application that
interacts the Internet.

* Restore data — This process performs restoring data in mobile-phone

memory.

Tngger /

Legend -—----mmm- ——

— Process mmmmmemm
/Namo / Resident
/gam?7 Trlulskot

4T1.w>T Muli.pk-

— Message
~Ei Message queue

Message/ Reply
Shared <

Figure 7-1: Internet application process model

7.2.4. Module Models of Mobile-Phone Systems

We created two module models i.e. the module model (as shown in Figure 4-9) for
the process model short messaging service (SMS) control, and the module model (as

shown in Figure 7-2) for the process model Internet application.

217

CHAPTER 7. MOBILE PHONE SYSTEMS - CASE STUDY

I. Module Model for Short Messaging Service (SMS) Control Process Model

This module model illustrates a set of modules and their associations to perform

messaging. It contains 18 modules which include (a) 3 service modules, (b) 1

environment bhandling module, (c) 10 technique biding modules, and (d) 4 w#ility modules.

Table 7-3 presents the description and type of each module.

Table 7- 3: Modules for short messaging service (SMS) control process model

Module
Messaging controller
Connecting

Data controller

Multi-network

Signaling controller

10 Interface controller

18dit controller

Output Interface

Input/ Output Interface

Input Interface

Display

Touch screen

Type
Precoded
Precoded

Precoded

Precoded

Template

Precoded

Precoded

Skeleton

Skeleton

Skeleton

Precoded

Precoded

218

Description
Controlling the messaging.
Establishing a network
communication.
Controlling internal data of mobile-
phone handset.
Responding multi-networks.
Providing algorithms for
maintenance the mobile-phone
reception and supporting different
mobile-phone networks.
Providing software interfaces for
input and output devices of a mobile-
phone handset.
Managing an editor
Managing output devices of a mobile-
phone handset.
Managing input and output devices
of a mobile-phone handset.
Managing input devices of a mobile-
phone handset.
Displaying data to output devices of a
mobile-phone handset.

Managing a touch screen of a mobile-

7.2 Documents in the Mobile-Phone Systems

phone handset.

Keypad Precoded Managing a keypad of a mobile-
phone handset.

Joystick Precoded Managing a joystick of a mobile-
phone handset.

Texctual display Precoded Managing a textual display of a
mobile-phone handset to support
displaying text.

Web display Precoded Managing a graphical display of a
mobile-phone handset to support
displaying web pages

Timer Precoded Setting and displaying time

Data encryption Precoded Encrypting and decrypting data.

II. Module Model for Internet Application Process Model

The module model illustrates a set of modules and their associations to perform
activities in the Internet application process model. The model contains 22 modules
which include (a) 4 service modules, (b) 2 environment handling modules, (c) 13 technigue
hiding modules, and (d) 3 ##ility modules. Table 7-4 presents the description and type

of each module.

219

CHAPTER 7 MOBILE PHONE SYSTEMS - CASE STUDY

Table 7- 4: Modules for Internet application process model

Module

Application controller
Connecting

Data controller

Mobile-phone Internet
application controller
Multi-network.

Multi-platform

Signaling controller

10 Interface controller

WAP controller

BSmailing

JavaTM support technique

Device Interface

Output Interface

Input/ Output Interface

Type
Precoded

Precoded

Precoded

Precoded

Precoded
Precoded

Template

Precoded

Precoded

Template

Template

Skeleton

Skeleton

Skeleton

220

Description

Controlling a running (local)
application.

Establishing a network
communication.

Controlling internal data of mobile-
phone handset.

Controlling a running Internet
application.

Responding multi-networks.

Responding multi-platform
applications

Providing algorithms for
maintenance the = mobile-phone

reception and supporting different
mobile-phone networks.

Providing software interfaces for
input and output devices of a mobile-
phone handset.

Controlling WAP browsing
Providing algorithms for composing
an emails and supporting different
emailing protocols.

Managing Java-based plug-ins.
Managing interfaces for extra devices
of a mobile-phone handset e.g. game
desk, PDA, computers.

Managing output devices of a mobile-
phone handset.

Managing input and output devices

Input Interface

Display

Touch screen

Keypad

Joystick

Web display

Timer

Data encryption

Skeleton

Precoded

Precoded

Precoded

Precoded

Precoded

Precoded
Precoded

221

7.2 Documents in the Mobile-Phone Systems

of a mobile-phone handset.
Managing input devices of a mobile-
phone handset.

Displaying data to output devices of a
mobile-phone handset.

Managing a touch screen of a mobile-
phone handset.

Managing a keypad of a mobile-
phone handset.

Managing a joystick of a mobile-
phone handset.

Managing a graphical display of a
mobile-phone handset to support
displaying web pages

Setting and displaying time

Encrypting and decrypting data.

Environment Hiding

Technique Hiding

<NOtwork>
Signalling
controller

Connecting

Phone system

Applications controller

Mobile Internet //
applicabon

controller

Multi network

10
Interface
controller
Device Interface
Output Interface Input/ Output Interface Input Intefaoe
Display- Touch screen Keypad Joystick
oM
o Data encryption
Web display ! — Timer

Figure 7- 2: Module model for Internet application process model

Data controller

7.2 Documents in the Mobile-Phone Systems

7.2.5. Use Cases, Class, Statechart, and Sequence Diagrams of
Mobile-Phone Members

The use cases are used to elaborate the satisfaction of the functionalities for each

product member. We have created four use cases for product member PM1, and

four use cases for product member PM2. The four use cases for product member

PM1 are: (i) sending a message, (i) making a call, (i) faking a picture, and (Iv) sending

emails. The four use cases for product member PM2 are: (i) waking a call, (i) taking a

photo, (iii) sending emails, and (iv) transmitting messages.

Moreover, we have created:

(@) a class diagram for each product member PM1, PM2, and PM3. Figure 4-11
shows an extract of the class diagram of product member PM3;

(b) a statechart diagram for each product member PM1 and PM2. Figure 4-12
shows a sample statechart diagram of product member PM2; and

(o) four sequence diagrams for product member PM1, and four sequence diagrams
for product member PM2. Figure 4-13 shows an extract of a sequence diagram of

product member PM2.

7.3. Summary

This chapter has illustrated an overview of the mobile-phone system case study and
details of mobile-phone family and its members. The documents are created
according to the traceability reference model presented in Section 4.2. and used for

demonstration and evaluation our approach that will be presented in Chapter 8.

223

Part III: Evaluation and Conclusion

Chapter 8

Evaluation and Analysis

In this section, we evaluate and analyze our work. Section 8.1 describes an overview
of our evaluation, the different scenarios used to evaluate our work, and an outline
of how the evaluation was conducted. Section 8.2 presents the results of the

evaluation and analyze these results. Section 8.3 summarises the chapter.

8.1. Evaluation Overview

Our work has been evaluated in order to demonstrate the hypothesis described in

Chapter 1 that the work can support

Auntomaticgeneration oftraceability relationsfor

productfamily systems

In this evaluation, we have conducted five sets of experiments related to five
different scenarios of product family system development. The objectives of these

experiments were to evaluate:

(@) how effective XTraQue tool is able to identify relevant documents and files,
apply the various traceability rule templates, and create instantiated traceability
rules from the templates; and

(b) how effective XTraQue tool is able to generate the traceability relations

automatically.

CHAPTER 8. EVALUATION AND ANALYSIS

For objective (a), the evaluation was conducted by comparing the number of
expected and applied documents, numbers of expected and applied files, numbers
of expected and applied traceability rule templates, and numbers of expected and
applied instantiated rules. For the case of objective (b), we have measured the

precision and recallof the relevant traceability relations generated by XTraQue.

We have used the following standard definition of recall and precision given in
(Faloutsos and Oard. 1995). The authors described that precision measure
represents the proportion of retrieved documents which are relevant and recall
measure represents the proportion of relevant documents retrieved. More
specifically, we applied the precision measure to represent the proportion of
generated traceability relations which are valid and recall measure to represent the
proportion of valid traceability relations which are generated. The use of precision
and recall measurements in traceability literature is also found in (Antoniol et al
2002; Marcus and Meletic 2003; Flayes et al. 2004; Spanoudakis et al. 2004; Cleland-

Fluang et al. 2005b). As the following, the precision and recall are calculated by:

Precision = |STn UT |/ |ST |
Recall = |STn UT |/ |UT |
where
* ST is the set of traceability7relations detected by XTraQue;
* UT is the set of traceability relations which are identified by the traceability

user, and

* j X |denotes the cardinality of the set X.

The use of recall and precision measures to evaluate traceability approaches have
been advocated in (Antoniol et al. 2002, Cleland-Fluang et al. 2005b, Hayes et al.
2004, Spanoudakis et al. 2004). Moreover, recall and precision measures are

considered common measures for quality results of traceability relation generation.

228

8.1 Evaluation Overview

The scenarios used in our evaluation were based on two main factors. The first
factor was concerned with the different ways in which organizations can develop
product family systems. As proposed in (Krueger 2001) and described in Section

3.3, organisations can develop product family systems in three different ways:

(@ when an organisation decides to analyze, design, and implement a line of
products prior to the creation of individual product members /proactive approach)-,
(b) when an organisation enlarges the product family systems in an incremental
way based on the demand for new product members or new requirements for
existing products (7eactive approach!)-, and

(o) when an organisation creates a product family based on existing product
members by identifying and using common and variable aspects of these

products (extractive approach).

These approaches are not mutually exclusive and can be used in combination. For
instance, it is possible to have product family systems initially created in an

extractive way to be incrementally enlarged over time by using a reactive approach.

The second factor was concerned with the stakeholders involved in the product
family system development process. Various stakeholders may be involved in this
process ranging from market researchers, to product managers, requirement
engineers, product-line engineers, software analysts, and software developers. These
stakeholders contribute in different ways to the product family system development
process, have distinct perspectives of the system, and have distinct interests in
different aspects of the product family systems. For example, a market researcher
may be interested in the requirements and features of a new product member to be
developed, while a software developer may be interested in the design and
implementation aspects of this new product member. Therefore, the stakeholders
would be interested in different types of documents and traceability relations
associated with these documents that may assist them in their various tasks during

system development.

229

CHAPTER 8. EVALUATION AND ANALYSIS

In order to take into consideration the various ways of developing product family
systems, the heterogeneity of stakeholders, documents, and traceability relation

types. The five scenarios used in our experiments include:

(@) the creation of a new product member from existing product family;

(b) the creation of product family from already existing products;

(¢) changes to a product member in a product family;

(d) changes to the core assets of a product family; and

() impact of changes to the core assets of a product family to a product

member.

For each of these scenarios we have identified the stakeholders involved in the
process and the types of documents and traceability' relations according to the
traceability' reference model (see Chapter 4) that are related to the scenarios. We

describe these five scenarios in the following subsections.

8.1.1. Scenario 1: The creation of a new product member from
existing product family

This situation occurs when an organisation wants to enlarge its system and creates a

new product member. In this case, traceability relations can be used to support the

evolution of software systems and reuse of existing parts of the system. As shown in

Figure 8-1, the stakeholders involved in this scenario are:

(@ market researchers that are responsible to identify the feasibility of
producing a new product and the features that this new product should
include from a commercial point-of-view;

(b) requirements engineers and product managers that specify the requirements
of the new product;

(o) product line engineers, product managers, and software analysts that
identify which aspects in the core assets of a product family are related to

the new product;

230

8.1 Evaluation Overview

(d) software analysts and software developers that analyse existing product
members and identify the commonality' and differences between existing
product members and the new product; and

(e) software developers that design the new product by reusing parts of existing
product members and specifying new aspects of the product being

developed.

For this scenario, supposed the situation in which the product family systems
contain product member PM2 and the new product member to be developed is
PM1 from our case study (see Chapter 7). As shown in Chapter 7, consider that the
requirements of PM1 have been specified in four different use cases. In order to be

able to identify the similarities and differences between PM1 and PM2, the parts of

231

CHAPTER 8. EVALUATION AND ANALYSIS

PM1 that can be reused from PM2, and the parts of PM1 that need to be developed,
it is necessary to compare various documents including feature model of a product

family, use cases of PM1 and PM2, and class, sequence, and statechart diagrams of

PM2.

The types of documents to be compared and the relevant traceability relations
associated with these documents for this scenario are shown in Table 8-1. As
presented in the table, the direction of a relation is represented from a row [i] to a

column [j] and bi-directional relations appear in two correspondent cells for that

relation™T The set of use cases of PM1 and PM2 need to be compared with the
feature model of a product family in order to support the identification of
similarities and differences between use cases of PM1 and PM2. In addition, all
class, sequence, and statechart diagrams of PM2 are compared with the use cases of
PMI1 to assist with the identification of which elements of PM2 design models can
be reused. It is also necessary to compare all class, sequence, and statechart
diagrams of PM2 with the use cases of PM2 to assist with the identification of
similarities and differences between use cases of PM1 and PM2. Moreover, the
class, sequence, and statechart diagrams of PM2 need to be compared in order to

support the identification of the elements that can be reused when designing PM1.

Table 8-1: Documents and traceability relations for scenario 1

Feature Use Case Use Case Class Sequence
Model Pmi) rmM2) Diagram Diagram
(PM2) (M)

Use Case Contains Similar

(Pmi) Different

Use Case Contains Similar

Pm2) Different

Class Satisfies Satisfies

Diagram Dmplements — Implements

rM2) Refines Refines

Sequence Satisfies Satisfies Refines

Diagram DImplements — Implements Contains

(PM2) Refines Refines

Statechart Satisfies Satisfies Contains Refines

Diagram Implements — Implements

rm2) Refines Refines

10 This will also be the case for tables 8-2, 8-3, 8-4, and 8-5.

232

8.1 Evaluation Overview

8.1.2. Scenario 2: The creation of product family from already
existing products

In this case, traceability relations can be used to support the identification of

variable and common aspects of existing products in order to create a product

family. As shown in Figure 8-2, the stakeholders involved in this scenario are:

(@) product managers that identify which aspects of the product members
should be part of the product line;

(b) product line engineers, software analysts, and software developers that
design the documents at the product line level; and

(o) software analysts and software developers that develop the documents at the

product line level.

For this scenario, supposed the situation in which the organization has product
members PM1 and PM2 from our case study (see Chapter 7) and would like to
create a product family that composes these two members. In this case, all the

domain analysis and design models of product members PM1 and PM2 need to be

233

CHAPTER 8. EVALUATION AND ANALYSIS

compared in order to assist with identification of the information that are
represented the core assets of the product family. More specifically, similarities and
differences between PM1 and PM2 are identified in order to assist the creation of
the documents at the product line level (according the traceability reference model
in Chapter 4). It is necessary to compare various documents including use cases of

PM1 and PM2, and class, sequence, and statechart diagrams of PM1 and PM2.

The types of documents to be compared and the relevant traceability relations
associated with these documents for this scenario are shown in Table 8-2. All class,
sequence, and statechart diagrams of PM1 and PM2 need to be compared with the
user cases of PM1 to assist with the identification of which elements of design
models can be deployed for product member PM1. It is also necessary to compare
all class, sequence, and statechart diagrams of PM1 and PM2 with the use cases of
PM2 to assist with the identification of which elements of design models can be
deployed for product member PM2. Moreover, the use cases of PM1 and PM2 need
to be compared, and the class, sequence, and statechart diagrams of PM1 and PM2
need to be compared in order to support the identification of which elements are

similar and different.

234

Use Case

(PM1)
Use
(PM2)
Class
Diagram
(PMI)
Sequence
Diagram
(PMI)
Statechart
Diagram
(PMI)
Class
Diagram
(PM2)
Sequence
Diagram
(PM2)
Statechart
Diagram
(PM2)

Case

Use Case
(PM1)

Similar
Different
Satisfies
Implements
Refines
Satisfies
Dimplements
Refines
Satisfies
Implements
Refines
Satisfies
Implements
Refines
Satisfies
Implements
Refines
Satisfies
Implements
Refines

Table 8- 2: Documents and traceability relations for scenario 2

Use Case
(PM2)

Similar
Different

Satisfies
Implements
Refines
Satisfies
Implements
Refines
Satisfies
Implements
Refines
Satisfies
Implements
Refines
Satifies
Implements
Refines
Satisfies
Implements
Refines

Class Sequence Statechart

Diagram Diagram Diagram

®M) @MI) (PMI)

Refines

Contains

Contains Refines

Similar

Different

Refines Similar

Contains Different

Contains Refines Similar
Different

Class
Diagram
(PM2)

Similar
Different

Refines

Contains

Contains

Refines
Contains

Contains

Sequence
Diagram
(PM2)

Similar
Different

Refines

Refines

Statechart
Diagram
(PM2)

Similar
Different

8.1 Evaluation Overview

8.1.3. Scenario 3: Changes to a product member in a product
family

In this scenario traceability relations can be used to support the analysis of the

implications of changes in the system. As shown in Figure 8-3, the stakeholders

involved in this scenario are:

(@) software analysts that specify changes to be done in a design part of a
product member; and
(b) software analysts and software developers that identify the effects of these

changes in the other related design software artefacts.

For this scenario, supposed the situation in which the organisation has developed
the core assets of mobile-phone systems with product members PM1 and PM2
from our case study, and that changes are done to product member PMI.
Therefore, it is necessary to evaluate how these changes will affect the other design
models of PM1 and if these changes also affect the other product members in the
product family that may be related to the changes (PM2 in this scenario). The types
of documents to be compared and the relevant traceability relations associated with

these documents for this scenario are shown in Table 8-3.

236

8.1 Evaluation Overview

Table 8- 3: Documents and traceability relations for scenario 3

Class
Diagram
(PMI)
Sequence
Diagram
(PMI)

Statechart
Diagram
(PMI)
Class
Diagram
(PM2)
Sequence
Diagram
PM2)

Statechart
Diagram
(PM2)

Class
Diagram
(PM))

Depends_on
Overlaps
Refines
Contains
Depends_on
Overlaps
Contains
Similar

Depends_on
Overlaps
Refines
Contains
Depends_on
Overlaps

Contains

Sequence
Diagram
(PMI)
Overlaps

Overlaps
Refines

Overlaps

Similar

Overlaps
Refines

Statechart
Diagram
(PM))
Overlaps

Overlaps

Overlaps

Overlaps

Similar

Class
Diagram
(PM2)

Similar

Depends_on
Overlaps
Refines
Contains
Depends_on
Overlaps
Contains

Depends_on
Overlaps
Refines
Contains
Depends_on
Overlaps
Contains

Sequence
Diagram
(PM2)
Overlaps

Similar

Overlaps
Refines

Overlaps

Overlaps
Refines

Statechart
Diagram
(PM2)
Overlaps

Overlaps

Similar

Overlaps

Overlaps

8.1.4. Scenario 4: Changes to the core assets of a product family

In this case, we are interested in investigating how traceability relations can be used

to support the evolution and analysis of the impact of the changes to the core assets

of a product family. More specifically, this scenario is concerned with changes on

the documents at the product line level (according to the traceability reference

model in Chapter 4) due to the addition of new features to the product family. As

shown in Figure 8-4, the stakeholders involved in this scenario are:

(a) market researchers that identify new features of the system; and

(b) product-line engineers that identify which aspects in the core assets of the

237

features to the other documents at the product line level.

product family are related to the new features and the effect of these new

CHAPTER 8. EVALUATION AND ANALYSIS

Figure 8- 4: Scenario 4

For this scenario, supposed the situation in which the organisation has developed
product family systems from our case study, and that changes are done to the
documents at the product line level. Therefore, it is necessary to evaluate how these
changes will affect the other documents in the product family. The types of
documents to be compared and the relevant traceability relations associated with
these documents for this scenario are shown in Table 8-4. In this case, all the
documents at the product line level are compared in order to assist with the

identification of information that may be affected by change at this level.

Table 8- 4: Documents and traceability relations for scenario 4

Feature Subsystem Process Module
model model model model
Subsyste Satisfies
m model Depends_on
Refines

Process Satisfies Refines
model Depends_on

Refines
Module Satisfies Refines

model Depends_on
Refines

238

8.1 Evaluation Overview

8.1.5. Scenario 5: Impact of changes to the core assets of a
product family and product members

In this case, we are interested in investigating how traceability relations can be used

to support the impact of changes made at the core assets of a product family to

product members. This is a small scenario and is concerned with changes at the

subsystem of a product family and the impact of these changes in a class diagram.

As shown in Figure 8-5, the stakeholders involved in this scenario are:

(@) product line engineers that identify the changes to be done at the subsystem;
and
(b) software analysts and developers that identify the effect of these changes at

the product member design documents.

Figure 8- 5: Scenario 5

For this scenario, consider the situation in which we want to analyze the impact of
changes at the subsystem model to the class diagram of product member PM3 from
our case study. Although changes at the subsystem model can also have impact at
other documents at the product member design level (sequence and statechart
diagrams), in this experiment we only analyze the relations between subsystem
models and class diagram. The types of documents to be compared and the relevant

traceability relations for this scenario are shown in Table 8-5.

239

CHAPTER 8. EVALUATION AND ANALYSIS

Table 8- 5: Documents and traceability relations for scenario 5

Class Diagram

Subsystem Contains
Model

8.2. Evaluation Results and Analysis

In this section, we present the results of our evaluation for objectives (a) and (b)

described in Section 8.1 and analyze these results.

In the experiments we deployed a total of 63 traceability rule templates that have
been instantiated depending on the documents used in each experiment and the
traceability relations to be identified. Table 8-6 shows, for each experiment, a
summary of the number of documents, number of files, number of (direct and
indirect) traceability rule templates, and number of (direct and indirect) instantiated
rules that were expected to be used and that have been actually used by the tool. In
the table, we consider the number of documents to be different to the number of
files since class, sequence, and statechart diagrams of the same product member are

represented in the same XMI file due to the nature of XML

As seen in Table 8-6, the number of documents, files, traceability rule templates,
and instantiated rules expected and the number actually used are the same. In other
words, the performance of the XTraQue tool is consistent. The results are
consistent across all five scenarios, involving different types of documents,

traceability relations, and different sizes of documents and files.

More specifically, in scenarios 1, 2, and 3, the high numbers of instantiated rules
were expected to be created; whereas, in scenarios 4 and 5, the low numbers of
instantiated rules were expected to be created. This is due to the different types of
documents, number of files, and number of traceability relation types used in these
scenarios. These results indicate that the performance of identifying documents,

files, traceability rule templates and creating instantiated traceability rules by the tool

240

8.2 Evaluation Results and Analysis

is consistent across small or large sets of documents and files, and different types of

traceability’ relationships.

Table 8 6: Summary of documents, files, traceability rule templates, and
instantiated traceability rules used in the experiments

Scenario Scenario Scenario Scenario Scenario

1 2 3 4 5
No. of expected documents 15 20 12 6 2
No. of applied documents 15 20 12 6 2
No. of expected files 10 10 2 6 2
No. of applied files 10 10 2 6 2
No. of expected direct traceability 17 15 1 7 2
rule templates
No. of applied direct traceability rule 17 15 11 7 2
templates
No. of expected indirect traceability 8 h 5 0 0
rule templates
No. of applied indirect traceability 8 h 5 0 0
rule templates
Total no. of expected traceability rule 25 26 16 7 2
templates
Total no. of applied traceability rule 25 26 16 7 2
templates
No. of expected instantiated direct 100 192 80 1 aT-
traceability rules
No. of actually instantiated direct 100 192 80 11 2
traceability rules
No. of expected instantiated indirect 8 1 5 0 0
traceability rules
No. of actually instantiated indirect 8 1 5 0 0
traceability rales
Total no. of expected instantiated 108 203 85 11 2
traceability rales
Total no. of actually instantiated 108 203 85 1 2
traceability rales

Tables 8-7 to 8-11 show a summary of the number of traceability relations, for each
respective relationship type, manually detected by the user (UT) and automatically
detected by XTraQue (ST) in each scenario. As shown in Table 8-7 to 8-11, in each
scenario, the numbers of various traceability relations are different. For example, in
scenario 1, the tool generated 19 containment traceability' relations but 172 implements

traceability relations (see Table 8-7). This indicates that the numbers of traceability”

241

CHAPTER 8. EVALUATION AND ANALYSIS

relations being created for each relationship type are not necessarily similar,

although they are generated across the same set of documents and files.

Additionally, the numbers of traceability relations for the same type of traceability
relationships are not necessarily similar when they are generated in different
scenarios involved different documents and files. For example, the tool generated
322 satisfiability traceability relations in scenario 2 (see Table 8-8) but 15 satisfiability

relations in scenario 4 (see Table 8-10).

Moreover, the number of traceability relations being generated depends on the
number of relevant documents and files, and traceability relationship types. In
scenario 1, 2, and 3, the number of traceability relations are high due to the number
of relevant documents and files (see Table 8-6), and many types of traceability
relationships (see Sections 8.1.1, 8.1.2, and 8.1.3); while in scenarios 4 and 5, the
number of relations are fairly low due to the smaller number of relevant documents
and files (see Table 8-6), and less types of traceability relationships (see Section 8.1.4
and 8.1.5). Particularly, in scenario 5 (see Table 8-11), the number of traceability
relations being created is very small due to the small number of relevant documents

and files, and only one type of traceability relationship being used.

Table 8- 7: Summary of traceability relations detected in scenario 1

Types of traceability relations UT ST
No. of iﬂfp/€lﬁ€ﬂf£traccabilit§Y relations identified 166 172
No. of J&Zl‘lﬁdbl/zﬁ/ traceability relations identified 154 154
No. of [0}7l‘ﬂf}’liﬂ€ﬂl‘tmceability relations identified 23 19
No. of Véjliﬂemeﬂftraceabilit§' relations identified 176 180
No. of Similartraceability relations identified 333 333
No. of different traceability relations identified 329 341

Table 8- 8: Summary of traceability relations detected in scenario 2

Types of traceability relations UT ST
No. of Z.I?Zp/(?iﬂé’ﬂf‘ftraceability relations identified 388 410
No. of Satisfiability traceability relations identified 324 322
No. of [0}7l‘ﬂf}’liﬂ€ﬂl‘tmceability relations identified 16 16
No. of m][ﬂemeﬂftraceability relations identified 348 342
No. of §imilartraceability relations identified 1404 1402
No. of dgﬁm}’ll‘traceability relations identified 8 16

242

8.2 Evaluation Results and Analysis

Table 8- 9: Summary of traceability relations detected in scenario 3

Types of traceability relations UT ST
No. of dependency traceability relations identified 28 28
No. of gverlaps traceability relations identified 28 28
No. of containment traceability relations identified 20 20
No. of refinementtraceability relations identified 52 60
No. of similartraceability relations identified 126 130

Table 8-10: Summary of traceability relations detected in scenario 4

Types of traceability relations UT ST
No. of satisfiability traceability relations identified 20 15
No. of dependency traceability relations identified 2 2
No. of refinement traceability relations identified 4 4

Table 8- 11: Summary of traceability relations detected in scenario 5

Types of traceability relations UT ST
No. of containment traceability relations identified 6 6

Additionally, Table 8-12 shows, for each scenario, a summary of the number of
traceability relations detected and grouped as direct, indirect, and total traceability
relations and the number of traceability relations in the intersection of the relations
generated by XTraQue tool and manually identified by the user. In the table, STtud
is the set of traceability relations detected by XTraQue; STdmtis the set of direct
traceability relations detected by XTraQue; STidmtis the set of indirect traceability
relations detected by XTraQue. UTtis the set of traceability relations identified by
traceability user; UTdmg is the set of direct traceability relations identified by
traceability user; and UTindmt is the set of zndirect traceability relations identified by

traceability user.

243

CHAPTER 8. EVALUATIONAND ANALYSIS

Table 8- 12: Summary of traceability relations detected in the experiments

Scenario Scenario Scenario Scenario Scenatio

1 2 3 4 5

UTdh-ect 519 1076 128 26 6
ST direct 525 1090 136 21 6
| ST direct C/ UTdirect 502 1046 112 17 5
UTindirect 333 1412 126 0 0
STindirect 341 1418 130 0 0
| STindirect # UTindirect 282 1208 105 0 0
UT total 852 2488 254 26 6
STtotal 866 2508 266 21 6
| STtotal ~ UTtotal | 784 2254 217 17 5

As shown in Table 8-12, for scenarios 4 and 5, the cells corresponding to the
number of indirect traceability relations (UTindmt and STindmd) contains value zero
(0) since these scenarios do not involve indirect traceability relations, and not
because the tool cannot generate these relations or the use cannot identify these
relations manually. Moreover, the high number of traceability relations detected in
scenarios 1 and 2 is due to the number of document types and traceability7relation
types used in these scenarios, as well as the specific documents that are related
through the various relation types. For instance, in scenario 1, there are (a) four use
case documents for PM1 and four use case documents for PM2 that are related in
terms of three different types of traceability7 relations (satisfies, implements, and
refines) with one class diagram, four sequence diagrams, and one statechart diagram;
(b) four use case documents for PM1 and four use case documents for PM2 that are
related in terms of contains relations with feature model; (¢) four use case
documents of PM2 that are related to four use case documents of PM1 in terms of
similar and different relations; (d) four sequence diagrams of PM2 that are related in
terms of refines and contains relation types with one class diagrams and in terms of
refines relation with one statechart diagram; and (e) one class diagram that is related
in terms of contains relations with one statechart diagram. A similar and more

complex situation occurs in scenario 2.

Figure 8-6 shows charts comparing the numbers of traceability7relations generated

by the user and XTraQue tool in each scenario (as shown in Table 8-12). Each chart

244

8.2 Evaluation Results and Analysis

has three columns, namely A representing a number of traceability relations
generated by both user and XTraQue tool (|sTwai n UTtd|); B number of
traceability relations detected by the user (UT,ad); and C number of traceability

relations generated by XTraQue tool (ST totai).

Figure 8- 6: Traceability relations detected by the traceability user and XTraQue
(A), by traceability user (B), and by XTraQue (C) in five experiments

Table 8-13: Precision and Recall Rates (%0)

Scenario Scenario Scenario Scenario Scenario Average

1 2 3 4 5
Precision of generating 95.6 95.9 82.3 81.0 83.4 87.6
direct relations
Precision of generating 82.7 85.2 80.7 - - 82.8
indirect relations
Precision of generating 90.5 89.8 81.6 81.0 83.4 85.3
allrelations
Recall of generating 96.7 972 87.5 654 83.4 86.0
direct relations
Recall of generating 84.7 85.5 83.4 - 84.5
indirect relations
Recall of generating a// 92.0 90.6 85.4 65.4 83.4 83.3
relations

Table 8-13 shows the results of our experiments for each scenario in terms of recall
and precision rates including the number of direct and indirect traceability relations
identified by the users and by the tool. The traceability relations generated by the
tool in each different scenario were compared against traceability relations manually
identified by users with substantial experience and training in software engineering
and product family systems. Additionally, for scenarios 4 and 5, the cells

corresponding to the precision and recall rates of generating indirect relations do

245

CHAPTER 8. EVALUATIONAND ANALYSIS

not show any values since these scenarios do not involve the generation of indirect

relations as mentioned earlier (see Table 8-12).

The results shown in Table 8-13 provide positive evidence about our approach to
automatic generate traceability relations at a high level of recall and precision. The
results show that direct traceability relations have higher precision and recall values
when compared to indirect traceability relations (scenarios 1, 2, and 3). This is due
to the fact that indirect traceability relations are generated based on direct
traceability relations and in the cases of incorrect direct traceability relations
generated by the tool, or missing direct traceability relations by the tool, these will
interfere with the precision and recall of the indirect traceability relation. More
specifically, the incorrect and missing direct traceability relations will cause a lower
precision, while the missing direct traceability relations will contribute to a lower
recall. Moreover, scenario 4 has the lowest recall when compared with the other
scenarios. We attribute this to the fact that this scenario has the lowest number of
direct rule templates with respect to the different types of traceability rules used in
the scenario when compared to scenarios 1, 2, and 3 (scenario 5 is cjuite a small
scenario to be considered in this case). For example, scenario 1 has 17 direct rule
templates for four different types of direct relations, scenario 2 has 15 rule
templates for four different types of direct relations, and scenario 3 has 11 rule
templates for four different types of direct relations, while scenario 4 has only seven
rule templates for three different types of relations. Therefore, the number of direct
traceability relations generated by XTraQue for scenario 4 is smaller than the
number of traceability relations identified by the user. In the other scenarios we
observe an inversion of this situation (i.e., number of direct traceability relations
generated by the tool is higher than the ones generated by the users). The addition
of new traceability' rules for satisfiability, dependency, and refinement relations for

documents at the product line level cause an increase in the recall.

We applied the bar chart to compare the precision and recall in the experiments.
Figure 8-7 (a) and Figure 8-7 (b) show that the precision figures in all the scenarios

and the recall figures in all the scenarios are not so significant. On average, the

246

8.2 Evaluation Results and Analysis

performance of our approach in terms of precision and recall measurements in five
scenarios seems to be consistent (see Figure 8-7 (a)). Particularly high are the
precision values in all five scenarios (ranging from 81.0% to 95%) and the recall
values in scenario 1, 2, 3, and 5 (ranging from 83.4% to 92.0%). Although the recall
value in scenario 4 is slightly lower than the others in different scenarios, the value
for 65.4% of recall is still comparable to the average recall value achieved in
(Spanoudakis et al. 2004) and higher than the average recall value achieved in
(Antoniol et al. 2002).

The charts in Figure 8-7 (b) show that the precision values from five scenarios are
ranging from 81.0% to 90.5% and the recall values are ranging from 65.4% to
92.0%. These rates indicate that the precision values and recall values achieved bv
our approach are fairly consistent, although the generation of traceability relations
were performed between various numbers of documents, files, and different types

of traceability relationships.

Figure 8- 7: (a) Precision and recall figures of each scenario; (b) Comparison of
precision and recall figures from five scenarios

Overall, the average precision measured, 85.3%, and average recall measured 83.3%,
in our experiments are encouraging results. According to Table 8-14, it shows the
summary of recall and precision measurements achieved by several existing
traceability approaches. In the table, our precision results are better than, and our
recall results are comparable to, the results achieved in the approach (Antoniol et al.
2002) that support automatic generation of traceability relations between

requirements specifications and source code based on probabilistic and vector space

247

CHAPTER 8. EVALUATION AND ANALYSIS

information retrieval approaches. In their work, they have managed to achieve 61%
of recall and 56.5% of precision. The results achieved in this work are also better
than the results of the work for automatic generation of traceability7 relations
between textual documents representing requirements, use cases, and analysis
models of software systems (Spanoudakis et al. 2004). In this case, the authors have
achieved 09.6% of recall and 77.2% of precision. Similarly, the results achieved in
our work are also better than the results achieved in (Hayes et al. 2004). The authors
applied three vector space IR techniques to enhance the generation of traceability7
relations and have achieved 39.2% of precision and 80.9% of recall. Although the
results achieved in the work (Cleland-Huang et al. 2005b) have achieved 90.2% of

recall, they have achieved fairly low 20.6% of precision.

Table 8-14: Summary of recall and precision rates achieved by several existing

traceability approaches
Approach Average Recall (%) Average Precision (%)
(Antoniol et al. 2002) 61.0 56.5
(Cleland-Huang et al. 2005b) 90.2 20.6
(Spanoudakis et al. 2004) 69.6 77.2
(Hayes et al. 2004) 80.9 39.2
Our approach 83.3 85.3

The results of our experiments have demonstrated our initial hypotheses and that
XTraQue can be effectively used to automatically generate traceability relations for
product family systems. Of course, 100% of recall and precision are the ultimate
goal of any tool. However, to the best of our knowledge, none of the existing

approaches managed to achieve this goal.

Additionally7 the time spent during the generation of the traceability7relations in the
five scenarios used in our evaluation varies depending on the size of the documents
and the number of various relationship types. For example, scenarios 1 and 2 took
longer to be executed than scenarios 4 and 5 that are significantly smaller.
Moreover, the textual characteristics of some of the documents and the number of
rules that may exist for a certain relationship type also contributes to an increase of

the processing time. However, our XTraQue tool allows a user to select specific

248

8.2 Evaluation Results and Analysis

documents and traceability relationship types to be processed in an interaction. This
feature of the tool can be used to assist and control the amount of time during

traceability generation.

8.3. Summary

This chapter have illustrated the experiments and their results. We have observed
the effectiveness of the tool as well as evaluated the results of traceability generation
by applying with the precision and recall measurements. In addition to, the
explanations of results have been given. The evaluation and analysis leads to the

conclusion of this thesis that will be presented in next chapter.

249

Chapter 9

Conclusions and Future work

We provide in this chapter the conclusions, findings, and future work of this thesis.
Section 9.1 presents the overall conclusions. The findings of this thesis and the
future work are described in Section 9.2 and Section 9.3, respectively. The final

remarks are listed in Section 9.4.

9.1. Overall Conclusions

The research in this thesis has contributed to enable traceability of product family

systems in an automatic way. We summarize below the contributions in this thesis.

A traceability reference model for product family systems —In this thesis, we
proposed a traceability reference model for product family systems in Chapter 4.
The concepts and motivation are derived from the background in Chapters 2 and 3.
The model is composed of two main components. Firstly, it includes a set of
documents created during the development of product family systems. Our
approach applied the feature oriented rense method (FORM) and the wnified modeling
langnage (UML). Eight types of documents are concerned with these methods,
namely: (a) feature model used to represent reference requirements of product family
systems; (b) subsystem model, (c) process model, and (d) module model used to represent a
software product line architecture; (¢) use case used to represent requirements of
product members; and (1) class diagram, () sequence diagram, and (h) statechart diagram

used to represent design models of product members.

Secondly, the model includes the classification of traceability relationships between

these documents. Two groups of traceability relationships are defined, namely: (i)

CHAPTER 9. CONCLUSIONSAND FUTURE WORK

direct, which are traceability relations being identified straightforwardly between
documents; and (ii) zzdirect, which are traceability7relations being identified based on
the existing direct traceability7relations. The direct traceability relations are classified
in seven types, namely: (a) iplements relations holding between two documents that
an artefact in a document executes or allows for the achievement of an artefact in
another document; (b) containment relations holding between two documents that an
artefact in a document uses another artefact in another document; (c) refinement
relations holding between two documents that a document specifies more details
about another document; (d) satisfiability relations holding between two documents
that an artefact in a document meets the expectation and needs of another artefact
in another document; (€) over/ap relations holding between two documents that refer
to common aspects of a system; (f) dependency relations holding between two
documents that an artefact in a document relies on the existence of another artefact
in a document; and (g) evolution relations holding between two documents that are
evolved during the product family system development. Additionally, the indirect
traceability7relations are classified in two types, namely: (a) siwilar relations holding
between two documents of the same type and assisting with the identification of
common aspects between various product members; and (b) different relations
holding between two documents of the same type for different product members
and assisting with the identification of variable aspects between various product

members.

The rule-based approach for generating the traceability relations - In this
thesis, we proposed a rule-based approach for enabling traceability activities in the
domain of product family systems in Chapter 5. A set of traceability rules is
developed and used to justify the identification of traceability7 relations
automatically. Two groups of traceability7rules, namely direct and indirect, support for
the creation of direct and indirect traceability7 relations, respectively. The rules are
expressed in an extension of XQuery that includes extra functions implemented in
XQuery and Java languages. The identification of traceability relations is based upon
four criteria as follows: (a) semantics of document types, (b) types of traceability7

relations, (c) part-of-speech of words in textual sentences, and (d) synonyms and

252

9./ Overall Conclusions

distance of words being compared in a text. When the conditions in a rule are

verified, traceability relations are generated and represented in XML documents.

The demonstration and evaluation of the approach - The prototype tool in
Chapter 6, called XTraQite, is implemented in Java to facilitate the demonstration
and evaluation of the approach in Chapter 8. The tool also encompasses Saxon as
an XQuery processor. The main functionalities of the tool are namely: (a) Traceability
Selection, specitying documents to be traced and the types of traceability relationships
to be created; (b) Traceability Creation, identifying traceability relations according to
the criteria from Traceability' Selection; (c) Traceability Presenter, recording and
representing the traceability' relations identified by Traceability' Creation; and (d)

Traceability Title Editor, testing and displaying results of a traceability' rule.

Additionally, a case study of mobile-phone systems in Chapter 7 is used for
demonstration and evaluation the approach. Five scenarios are created to
demonstrate different situations of traceability activities in the product family
system development, involving (a) establishing traceability relations between
different types of documents; (b) identifying different types of traceability' relations;
and (¢) suppotting different stakeholders. The experiments of traceability' generation
have been evaluated by considering two criteria: (i) identifying relevant documents,
identifying traceability rule templates, and creating instantiated traceability rules; and
(i) generating traceability’ relations. For the latter criteria, the precise and recall

measurements are used.

9.2. The Findings

This thesis has shown that some degree of laborious process in generating
traceability relations for a large number of heterogeneous documents can be
reduced with the tool support implemented. Traceability activities i.e. generation,
recording, and representation of traceability relations are done in an automatic way.
The generation of traceability relations captures the semantics that are represented

through the traceability' relationship types. The relations are identified between, at

253

CHAPTER 9. CONCLUSIONS AND FUTURE WORK

least, two documents. Some traceability relations such as indirect relations are
created based upon two direct relations. An indirect relation therefore draws
associations between three documents. More specifically, similar and different
traceability relations are identified between two documents of the same type
whereas the documents have a same relationship type to another document of
another type. As shown in this thesis, the results of generation are measured by
using precision and recall rates. The average precision measured as 85.3% and average
recall measured as 83.3%. The results achieved by the research in this thesis are

better than the results achieved in existing traceability approaches.

Additionally, this thesis has demonstrated different aspects to other existing

approaches. We describe below the aspects:

* Enables traceability of product family systems: Although some existing
approaches (Alexander 2003, Antoniol et al. 2002, Bayer and Widen
2002, Cleland-Huang et al. 2002b, Dick 1999, Egyed 2003, Gotel and
Finkelstein 1995, Hayes et al. 2003, Kim et al. 2005, Knethen 2002a,
Lago et al. 2004, Letelier 2002, Lindvall and K. 1996, Malefic and
Marcus 2001, Marcus and Meletic 2003, Pinheiro and Goguen 1996,
Polil 1996b, Ramesh and Jarke 2001, Sherba et al. 2003a, Toranzo and
Castro 1999) suggested traceability activities in the software system
development, they do not supportt traceability of product family systems.
Neither the traceability reference models nor classification of traceability
relations are proposed for identifying common and variable aspects in
the domain of product family systems. In this thesis, we defined the
traceability reference model and classification of traceability relations in
the domain of product family systems.

* Enables the automatic generation of traceability relationsfor the domain ofproduct
family systems: Although some existing approaches (Bayer and Widen
2002, CAFE 2003, Dick 1999, ESAPS, Kim et al. 2005, Riebisch and

Philippow 2001, Toranzo and Castro 1999) proposed the traceability

254

9.2 The Findings

activities in the domain of product family systems, they do not provide
tool support or define the process for achieving the activities. In this
thesis, we have provided the XTraQue tool for enabling traceability
generation, recording and representation in an automatic way. The tool
has sophisticated and user-friendly interfaces to facilitate the activities.

* Generates traceability relations in different levels of granularity: In this thesis,
different relationships are generated between documents created from
different activities of the development life cycle for product family
systems. Two views of the relationships can be categorized: (a) coarse-
grained associations such as traceability relations between different
product members, and between core assets and product members; and
(b) fine-grained associations such as traceability relations between
elements in documents. However, some existing approaches (Kim et al.
2005, Lago et al. 2004, Leite and Breitman, Riebisch and Philippow
2001, Toranzo and Castro 1999) defined the traceability relations in
product family systems either for fine-grained or course-grained

associations, but not for both.

The research in this thesis has demonstrated the possible situations of the use of
traceability' relations during the development of product family systems. We

describe below the use for its different purposes:®

* Reuse: The research in this thesis has found that the degree of reusing
core assets of product family systems affects the cost of the
development of the systems. The cost of the product family system
development depends on the proportion of reuse of the core assets for
the development of product members. However, the poor reuse would
have caused higher cost to the product family system development.
Traceability relations are used to assist the development by reducing the
cost Le. effort and time. Since it is a common situation that stakeholders

such as software engineers need to relate the existing software artifacts

255

CHAPTER 9. CONCLUSIONS AND FUTURE WORK

to new requirements in order to assist the development of the new
requirements. The research in this thesis has demonstrated that
traceability relations can be used to facilitate such activities in the
situation.

* Understanding: The research in this thesis has shown that different
stakeholders, who have different experiences in the product family
system development process, have different perspectives regarding to
software artefacts. Traceability relations enable stakeholders to
comprehend the associations between the artefacts in an easier way.
Coarse-grained associations such as common and variable aspects
between product members and fine-grained associations such as ones
between elements in different artefacts are illustrated though traceability
relations and can facilitate the understanding of the generated

documents.

9.3. Future Work

A number of possible directions for further investigations have been identified. We
provide in this section future work of the research in this thesis, what needs to be

done to improve the approach and to increase the benefits of the approach:e

* Visualisation: As shown in this thesis, a large number of traceability
relations can be generated across product family system documents. It is
therefore believed that the approach could be extended and enhanced to
support a better way of visualizing the relations in various perspective
views. In addition, sophisticated techniques for visualization could
support the use of traceability relations more efficiently.

* Domain Implementation: The research in this thesis has focused on
two main activities of product family system development i.e. analysis

and design. The approach could be expanded to cover the activity of

256

9.3 Future Work

implementation in order to complete the whole life-cycle of the
development of product family systems.

* Document specification: As shown in this thesis, the activities of
traceability start after the creation of the various artefacts. It is therefore
believed that the approach could benefit by providing tool support for
the specification of documents.

* Tracing between different product families: As shown in this thesis,
the approach can enable traceability practice in a single product family.
However, it is believed that the approach could equally benefit from
support traceability between different product families.

* Reduction of traceability generation time: As shown in this thesis,
the traceability generation can take a long time to be processed
depending on the size, number, and types of documents and
relationships. More work needs to be done to optimize the processing

time.

9.4. Final Remarks

This thesis has presented the rule-based approach for software traceability on
product family systems. The research in this thesis has been contributed to:

provide the background of traceability to software systems (Chapter 2);

provide the background of product family systems (Chapter 3);

present the traceability reference model (Chapter 4);

present the framework of automatic traceability generation process in product

family systems (Chapter 5);

illustrate the XTraQue tool (Chapter 06);

provide a case study in the domain of mobile-phone systems (Chapter 7); and

demonstrate and evaluate the approach (Chapter 8).

257

Appendices

Appendix A - XML Schemas

APPENDIX A - XML SCHEMAS

A.1. XML Schema for direct traceability rules

+ Rulesgj.....

* RulelDJ * RuleType« *QocTypel ™, j* DocType2@
sting____ 7 string___ TV [string i
+ Queryg
string ..]
+ RulelDg I* Typeg ;j* DocTypel
string. siting .1, wMstring i

O ¢ TraceRuley,

262

J* Documentg
Lstrin g

+ Descriptiong
+ Class.

+ Object »
string

+ ChildJ
Lstring_____J

Link g

>

;¢ IncomingTransitiong
)| Striny !

-y ¢ Operation.
string

PSystem.

A+ ProcessModellDg
if tring _
>l¢ ModuleModeilD »
1string

Aj ¢ Preconditions |

q .

’ij ‘Parametere

Jstr

£\ « DocType2

" H strin; -

A.l XML Schemafor direct traceability rules

<?xml version="1.0" encoding="UTF-8"?>

=n

<xs:schema elementFormDefault="qualified" attributeFonnD efault="unqualified"
xmlns:xs="http:/Avww.w3.0rg/2001/XMLSchema">
<xs:element name="Rules">
<xs:complexType>

<xs:sequence>

<xs:element nanie="TraceRule" maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:element name="Query" type="xs:string" />

<xs:element name="Action ">
<xs:complexType>
<xs:sequence>
<xs:element name="Relation">
<xs:complexType>
<xs:sequence>

<xs:element name="Element" minOccurs="2" maxOccurs="2">

=n

<xs:complexType mixed="true">

<xs:sequence>

—n

<xs:elenient name="Description" type="xs:string

"minOccurs="0" maxOccurs="unbounded" />

_n

<xs:element name="Class" type= '

xs:string” minOccurs="07>
—n

<xs:element name="Object" type="xs:string" minOccurs="0"/>

_n

<xs:element name="Child" type="xs:string" minOccurs="0"/>

<xs:element name="Link" type="xs:string" minOccurs="0"/>

<xs:element name="State” type="xs:string" minOccurs="0"/>

<xs:element name="IncomingTransition" type=""

xs:string"
minOccurs=20"/>

=n

<xs:element name="'Operation" type="xs:string" minOccurs="()'7>

_n

<xs:element name="S8ystem" type="xs:string" minOccurs="0"/>

<xs:element name="ProcessModellD" type="xs:string"
minOccurs="0"/>

<xs:element name="ModuleModel[D" type="xs:string”

minOccurs="0"/>

_n

<xs:element name="Preconditions" type="xs:string"
minOccurs="0"/>
<xs:element name="Event" type="xs:string" minOccurs="0"/>

=n

<xs:element name="Transition" type="xs:string" minOccurs="0"/>

_n

<xs:element name= "Parameter" type="xs:string" minOccurs="0"/>

</xs:sequence>

_n

<xs:attribute name="Documenl" type=

xs:string" use="optional" />

</xs:complexType>
</xs:element>

</xs:sequence>

_n

<xs:attribute name="RuieID" type=

xs:string" use="required" />

=n

<xs:attribute name="Type" type=

=n

xs:string" use="required" />

_n

<xs:attribute name="DocTypel" type=

xs:string" use="optional" />

_n

<xs:attribute name="DocTypel2" type=

xs:string" use="optional" />

</xs:complexType>
</xs:element>
</xs:sequence>

</xs:complexType> </xs:element> </xsisequence>

=n

<xs:attribute name="RuleID" type="xs:string" use="required" />

=n

<xs:attribute name="RuleType" type=

xs:string" use="required" />

—_n

<xs:attribute name="DocTypel " type=

=n

xs:string" use="required" />

_n

<xs:attribute name="DocType2" type=

xs:string" use="required" />

</xs:coinplexType> </xs:element> </xs:sequence> </xs:complexTypex/xs:element> </xs:schema>

263

APPENDIX A - XML SCHEMAS

A.2. XML Schema for indirect traceability rules

* RulelDe, * RuleTypeg * DocTypels * DocType2|
string string s WDS, ! ?xkk
+ Query
string
* RulelDg * Typeg *+ Term«
[string string string
> ¢ Elementi
H string

?h:RuIesg + TraceRuleg . DependencyQM

string
+ Containment|
K string

(*"j # Evolution?
~ jstring
+ Action«! + Relationg
_- y\ v
\ i ¢ OverlapJ

string

\X ¢ Satisfiability.
String

;ry & ¢ ImplementsE
) string

RefinementJ
“string

+ VariantOf.
string *

264

A.2 XML Schemafor indirect traceability rules

<?xml version="1.0" encoding="UTF-8"?>

_n

<xs:schema elementFormDefault="qualified" attributeFormDefault="unqualified"

xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:element name="Rules">
<xs:complexType>
<xs:sequence>
<xs:element name="TraceRule" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="Query" type="xs:string'7>
<xs:element name="Action">
<xs:complexType>
<xs:sequence>
<xs:element name="Relation">
<xs:complexType>
<xs:sequence>
<xs:element name="Element" type="
maxOccurs="2'7>
<xs:choice maxOccurs="2">
<xs:element name="Dependency" type="
maxOccurs="2"/>
<xs:element name="Containment" type="xs:string" minOccurs="0"
maxQOecurs="2'7>
<xs:element name="Evolution" type=ixs:string" rminOccurs="0"
maxOccurs="2'7>
<xs:element name="Implements" type="xs:string" minOccurs="0"
maxOccurs="2'7>
<xs:element name="Ovei'lap" type="xs:string" minOccurs="0"
maxOccurs="2'7>
<xs:element name="Satisfiability" type="xs:string" minOccurs="0"
maxOccurs="2'7>
<xs:element name= 'Refmement" type="
maxOccurs="2'7>
</xs:choice>
<xs:element name="VariantOf' type="xs:string" minOccurs="0'7>
</xs:sequence>
<xs:attribule name=,RuleID” type="xs:string" use="required'7>

"]

<xs:attribute name="Type" type="xs:string" use="required"/>
<xs:attribute name="Term" type="xs:string" use="required'7>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute name="RuleID" type="xs:string" use="required'7>

—n

<xs:attribute name="RuleType" type="xs:string" use="required'7>

"]

<xs:attribute name="DocTypel" type="xs:string" use="required'7>
<xs:attribute name="DocType2" type="xs:string" use="required"/>
</xs:complexType>
</xs:element>

</xs:sequencex/xs:complexType> </xs:elementx/xs:schema>

xs:string" minOecurs="2"

xs:string”" minOccurs="0"

xs:string" minOccurs="0"

265

http://www.w3.org/2001/XMLSchema

APPENDIXA - XML SCHEMAS

A.3. XML Schema for Feature model

¢ Feature nameE
¢ Description *

ff ¢ Issue_and_decisionE

¢ Typeg
string
¢ Feature Modeln ¢ Feature M .EX|stent|aII
<z*) E string
*typeg
strina
¢ RelationshipE _ ¢ Rei featureE

¢ Allocated_to_subsystemg

¢ Composition_rule

266

A3 XML SCHEMA FOR FEATURE MODEL

<2xml version="1.0" encoding="UTF-8"2>

<1-- edited with XM LSPY v2004 rei. 4 U (http://www .xmlspy.com)by W araporn (Jirapanthong) —>

<xs:schema clemenlForm Default="qualified" attributeForm D efault="unqualiried"
xminsixs="http://www.w3.0rg/2001 /XM LSchem a">

<xsielement name="Feature ,M odel">
<xsicomplexType>
<xsisequence>
<xs:ielementname="Fecature” maxOccurs="unbounded">
<xsicomplexType>
<xsisequence>
<xsielementname="Fecature_name">

<xs:icomplexType>

<xsichoice rnaxOccurs="unbounded">
<xs:ielementname="PRP" type="xs:string" minOccurs="0"/>
<xs:ielementnaine="JJ" type="xs:string" minO ccurs="0'7>

<xsielementname="CC" type="xs:slring" minOccurs="0"/>

<xsielementname="DDI" type="xs:string" minOccurs="0"/>

<xsielementname="VBZ" type="x.s:string" minOccurs="0'7>
<xsielementname="TO" type="xs:string” minOccurs="0'7>
<xsielementname="V VI" type="xs:string" minO ccurs="0"7>

<xsielementname="VVZ" type="xs:string" minOccurs="0'7>

<xs:element ifame="RG" type="xs:string" minOccurs="0'7>
<xs:ielementname="DB” type="xs:string" minOccurs="0'7>
<xsielement name="H" type="xs:string" minOccurs="0'7>
<xs:ielement name="112" type="xs:string" minO ccurs="0'7>
<xsielement name=,AT" type="xs:string” minOccurs="0'7>
<xsielementname="ATO0" type="xs:string" minO ccurs="0"7>
<xsielementname="NNI" type="xs:string” minOccurs="07>
<xsielement name="NN2" type="xs:string” minO ccurs="0'7>
<xsielement name="VMO0" type="xs:string" minO ccurs="0'7>
<xsielementname="V VI” type="xs:string" minOccurs="0'7>

<xs:element name="CJS" type="xs:string" minOccurs="0'7>

<xsielementname="CJC" type="xs:string” minOccurs="0'7>
<xsielementname="VBB" type="xs:string" minOccurs="0'7>
<xs:ielementname="VVB" type="xs:string" minOccurs="0'7>
<xsielementname="AJ0" type="xs:string" minOccurs="0"/>
<xs:elenientname="SC" type="xs:string" minOccurs="0'7>

<xs:ielementname="10" type="xs:string” minOccurs="0'7>

<xsielementname="AJO0" type="xs:string" minOccurs="0'7>
<xs:ielementname="A.IC" type="xs:string" minOccurs="0'7>

<xsielement name="A.IS" type="xs:string" minOccurs="0'7>

<x.sielementname="ATO" type="xs:string" minOccurs="0"/>

<xsielement name="ATI" type="xs:striiig” minO ccurs="0'7>
<xsielementname="A /P" type="xs:string" minOccurs="0'7>
<xsielementname="AV Q" type="xs:string" minOccurs="0'7>
<x,siclement name="CJC type="xs:string" minOccurs="0'7>
<xs:ielementname="CJS" type="xs:string" minOccurs="0'7>
<xsielementname="CJT" type="xs:string” minOccurs="0'7>
<xsielementname="CRD" type="xs:string" minO ccurs="0'7>
<xs:ielementname="DPS" type=Ixs:string! minOccurs="0'7>

<xsielement name="DTO0" type="xs:string” minO ccurs="0'7>

<xs:element name="DTQ" type minOccurs="0'7>

Xsistring

<xsielementname="EX 0" type="xs:string" minOccurs="0'7>

267

http://www.xmlspy.com
http://www.w3.org/2001/XMLSchema

APPENDIX A - XML SCHEMAS

<xs:ielementname="ITJ" type="xs:string" minO ccurs="0"/>
<xs:clementname="VVB" type="xs:string” minOccurs="0"/>
<xs:ielement name="NNO" type="xs:string" minO ccurs="'10"/>
<xs:ielementname="NNr' type="xs:string" minOccurs="0'7>
<xs:clement name="NN2" type="xs:string" minOccur.s="0"/>
<xs:clementname="NPO" type="xs:string” minOccurs="0'7>
<xsielementname="NULL" type="xs:string" minOccurs="0"/>

<xsielementname="ORD" type="xs:string" minOccurs="0'7>

<xs:clementname="PNI" type="xs:string" minOccurs="0"/>
<xs:clementnarac="PNP" type="xs:slring" minOccurs="0'7>
<xs:ielementname="PN X ” type="xs:string" minOccurs="0"7>
<xs:element name="PN Q" type="xs:.string” minOccurs="0"/>
<xs:clementname="POS" type="xs:string” minO ccurs="0'7>
<xsielementname="PRE" type="xs:string” minOccurs="0"7>
<xsielementname="PUL" type="xs:string” minOccurs="0'7>
<xsielement name="PUN ” type="xs:string" minOeccurs="0'7>
<xsielementname="PU Q" type="xs:string" minOeccurs="0'7>

<xs:elementname="PUR" lype="xs:string” minOccurs="0'7>

<xsielement name="TOO" type="xs:string” niinO ccurs="0'7>
<x.sielement name="UNC" type="x.s:string" minOccurs="()'7>
<xs:ielementname="VBB" type="xs:string"” minOccurs="0'7>
<xs:ielementname="VBD " type="xs:string" minOccurs="0'7>
<xs:ielemenl name="VBG" type="xs:string” minOccurs="0'7>

<xs:element name

xs:string" minOccurs="0'7>

<xs:ielement name="VBZ" type="xs:string" minOccurs="0'7>

<xsielementname="VDB" type="xs:string" minOccurs="0'7>
<xsielement name="VDD" type="x.s:string" minO ccurs="0'7>
<xsielement name="VDG” type="xs:string" minOccurs="0'7>
<xs:ielement name="VDI" lype="xs:string" minOccurs="0'7>

<xsielementname="VDN" type="xs:string” minOccurs="0'7>

<xsielementname="VDZ" type="xs:string" minOccurs="0'7>
<xsielementname="VHB" type="xs:string" minOccurs="0'7>
<xsielement name="VHD" type="xs:,string! minOccurs="0"/>
<xsielementname="VHG" type="xs:string" minOccurs="0"/>
<xsielementname="V HI" type="xs:string" minOccurs=10'7>

<xs:element name="VHN" type="xs:string" minOccurs="0"/>

<xsieleraent name="VHZ" type="xs:string” minOccurs="0"/>
<xs:ielementname="VM O" type="xs:string"” minOccurs="0"/>
<xsielementname="VVO" type="xs:string" minOccurs="0"/>
<xs:elementname="VVB 'type="xs:stiing" minOccurs="0"/>
<xsielement name="V VD" type="x.s:string” minO ccurs="0'7>
<xs:clementname="VVG" type="xs:string" minOccurs="0'7>
<xsielementname="V VI" type="xs:string" minOccurs="0'7>
<xsielement name="VVN" type="xs:string" minOccurs="0"/>
<xsielementname="VVZ" type="xs:string” minOccur.s="0"/>
<xs:element name="XXO" type="xs:string" minOccurs="0"/>

<xs:element name="ZZ0" type=

xsistring” minOccurs="()"/>
<xsielement name="IF" type="xs:string" minOeccurs="0'7>
<xs:ielementname="IW " type="xs:string" minOccurs="0'7>
<xsielementname="REX" type="xs:string" minO ccurs="0'7>

<xs:element name="NPI " type="x

tring” minO ccurs="0"/>

<xs:element name="PPHI" type="xs:string" minOeccurs="0'7>

<xs:elementname="M C" type="xs:string" minOccurs="0"/>

<xs:ielement name="NN" type="xs:string” minOccurs="0"/>

<xsielement name="NNU2" type="xs:string” minOccurs="0"/>

268

A.3 XML SCHEMA FOR FEATURE MODEL

<xsielement name="VBR " type="xs:string" minOccurs="0'7>

<xs:ielementname="RL" type="xs:string” minOccurs="0'7>

<xs:elementname="RPK " type="xs:string" minOccurs="0"/>

<xsielementname="RR" type="xs:string" minOccurs="0"/>
<xsielement name="AVO" type="xs:string" minOccurs="0'7>
<xsielement name="VBN" type="xs:string" minO ceurs="0"/>
<xsielementname="CS" type="xs:string” minOccurs="0'7>
<xsielement name="VM " type="xs:string" minO ccurs="0'7>
<xs:clementname="CST" type="xs:string" minOccurs="0'7>
<xsielementname="X X" type="xs:string” minOccurs="0'7>
<xs:clement name="APPGE" type="xs:string" minOccurs="0"/>

"0'7>

<xsielement name="M D ” type="x.s:string" minO ccurs
<xsielement name="JK” type="xs:string" minOccurs="0'7>
<xs:elementname="RP" type="xs:string” minOccurs="0'7>
<xsielementname="FU" type="xs:string" minO ccurs="0"7>
<xsielement name="DD" type="xs:string" minO ccurs="0'7>

<x.sielementname="DD 1" type="xs:string” minOccurs="0'7>

<xsielementname="DD2" type="xs:.string" minOccurs="()'7>

<xsielementname="NNU" type="xs:string" tninO ccurs="0'7>
<xsielementname="RT” type="xs:string” minO ccurs="0"7>
<xsielement name="RRR” type=Ixs:slring” minO ccurs="0'7>

<xsielementname="BCL" type="xs:string” minOccurs="0"/>

<xs:element name="NNTI" type="xs:string" minO ccurs="()'7>
<xsielement name="NNT2" type="xs:string" minO ccurs="0'7>
<xs:element name="M CI" type="xs:string" minOccurs="0'7>
<xsielement name="M C2" type="xs:string" minOccurs="0'7>
</xs:choice>
</xs:icomplexType>
</xs:element>
<xs:element name="Description">
<xs:icomplexType>

<xs:ch0>2<ce maxOccurs="unbounded">

<7xs:choice>
</xsicomplexType>
</xs:elem ent>
<xs:element name="Issue_and_decision" ininOccurs="0">
<xs:icomplexType>

<xs:choi>¢(‘<e maxOccurs="unbounded">

</xs:choice>
</xsicomplexType>
</xs:element>
<xs:element name="Type" type="xs:string'7>
<xs:element narae="E xistential" type="xs:string'7>
<xs:element name="Relationship" minOccurs="0">
<xsicomplexType>
<xsisequenee>
<xs:elementname="Rel_ feature" minOccurs="0"maxOccurs="unbounded">
<xsicomplexType>

<xs:chgice maxOccur.s="unbounded">

¥

</xs:choice>
</xs:icomplexType>
</xs:element>
</xsisequence>
<xs:attribute name="type" type="xs:string" use="required'7>
</xsicomplexType>

</xs:element>

269

APPENDIX A - XML SCHEMAS

<xs:clementname—"A llocated to_system " minOccurs=

<xsicomplexType>
<xs:choice maxOccurs="unbounded”>
B
</xs:ichoice>
</xsicomplexType>

</xs:element>
minOccurs="0">

<xs:ielementname="Composition_rule"

<xsicomplexType>
<xs:choice maxOccurs="unbounded">

</xs:choice>
</xsicomplexType>
</xs:element>
</xs:sequence>

</xsicomplexType>

</xs:elem ent>
</xs:sequence>
</xs:icomplexType>
</xs:element>

</xs:schema>

Note: <xs: choice> has sub elements e.g.

270

=rO>

PRP,], CC, DDI, etc.

as shown earlier.

A.4 XML Schemafor use case

A.4. XML Schema for use case

¢ UseCaselDg ¢+ Systemg ¢ Product Memberg
.string string string
. TitIeE

Descriptiong
¢ Levell
string
G ¢ PrecondltlonsE)

W + Postconditions .

¢ Primary_actorg

¢ Use Case string
y ¢ Secondary_actorS|
- '[string
TriggerE
¢ Flow of eventsr
¢+ Event
) E

y ¢ Exceptional_eventsE
*; % Superordinate_use_caser

I.® ¢ Subordinate use case .

271

APPENDIX A - XML SCHEMAS

<?xml version=" 1.0" encoding="UTF-8"?>
<xs:schema elementFormDefault="qualified" attributeFormD efault="unqualified"
xmlns:xs="http://www.w3.0rg/20()]/XMLSchema'>
<xs:element name="Use_Case">
<xs:complexType>
<xs:sequence>
<xs:element narae="Title">
<xs:complexType>

<xs:c>L10ice maxOccurs="unbounded">

< /xs:choice>
</xs:complexType>
</xs:element>
<xs:element name="Description">
<xs:complexType>

< xs:c)lgoice maxOccurs="unbounded">

</xs:choice>
</xs:complexType>
</xs:elcment>

_n

<xs:element name="Level" type= '

xs:string" minOecurs="0"/>

" minOccurs="0">

<xs:element name="Preconditions
<xs:complexType>
<xs:choice maxOccurs="unbounded">
*
</xs:choice>
</xs:complexType>
</xs:element>
<xs:element name="Postconditions" minOccurs="0">
<xs:complexType>

<xs:choice maxOccurs="unbounded">

N
< /xs:choice>
</xs:complexType>
</xs:element>
<xs:element nanie="Primary_actor">
<xs:complexType>

<xs:(>:kh0ice maxOccurs="unbounded">

</xs:choice>
</xs:coraplexType>
</xs:element>
<xs:element name="Secondary_actors" minOccurs="'0">
<xs:complexType>

< xs:c)l;oice maxOccurs="unbounded">

</xs:choice>

</xs:compiexType>

</xs:element>

272

http://www.w3.org/20()l/XMLSchema

A.4 XML Schemafor use case

<xs:element name="How_of_events’>
<xs:complexType>
<Xs:

<ss:element name="Tiigger" minCocurs="0">
<xs:conplexType>
<xs:choice maxQOccurs="unbounded">

</xs:choice>
</xs:complexType>
</xs:elenent>
<xs:elenrent name="Fvent’” maxQccurs="unbounded'">
<ss:complexType>
<xs:c>boioe maxQocurs—="unbounded'™>

</xs:choice>
</xs:complexType>
/</xs:elerrfnt>
</xs:
sl
</xs:lerrent>
<ss:elerment name="Exceptional_events” minOocurs="0">

<xs:conplexType>
<xs:(;boioe maxQccurs="unbounded'"™>

</xs:choice>
</xsxomplexType>
</xs:elerrent>
<ss:element mame="Superordinate use_case” minOccurs="0"">
<xs:complexType>
<$:cpoiw maxQoours="unbounded' ">

</xs:choice>
<fxs:complexType>
</xselerrent>
<xs:element name="Subordinate_use_case" minQOccurs="0">
<ss:complexType>
<xs:c£10ice maxQccurs="unbounded'™>

</xs:choice>
</xs:complexType>
</xs:elerment>

</xs:
<xsattribute name="UseCasel D" type="xs:string" use="roquired"/>
<xsattribute name="System" type="xs:string' use="required"/>
<xsattribute name="Family_Member" type="xs:string'" use="required"/>

</xs:comrplexType>

</xs:elerrent>
</xs:scherm>

Note: <xs: choice> has sub elements e.g. PRP, JJ, CC, DD1, etc. as shown eatlier.

273

APPENDIX A - XML SCHEMAS

A.5. XML Schema for subsystem model

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema elementFonnDefault="qualified" attributeForm D efault

xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:eleraent name="Subsystem_Model">
<xs;complexType>
<xs:sequence>
<xs:element name="Subsystem" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="Subsystem_name”>
<xs:complexType>

<xs:choice maxOccurs="unbounded">

*
< /xs:choice>
</xs:complexType>
</xs:element>
<xs:element name="Description">
<xs:complexType>

< xs:c)L)oice maxOccurs="unbounded">

</xs:choice>
</xs:complexType>
</xs:element>
<xs:element name="Type" type="xs:string" />
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Flow" maxOccurs="unbounded">
<xs:complexType>
<xs:attribute name="flow_id" type="xs:string" use="required'7>

=n =n

<xs:attribute name="now_type" type= ="

xs:string" use='"'required" />

<xs:attribute name="sender" type="xs:string" use="required7>

_n

<xs:attribute name="receiver" type= ="

xs:string" use="required" />
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>

</xs:schema>

274

unqualified”

http://www.w3.org/2001/XMLSchema

A.5 XML Schemafor subsystem model

Note: <xs: choice> has sub dements e.g. PRP,JJ, CC, DD1, etc. as shown earlier.

275

APPENDIX A - XML SCHEMAS

A.6. XML Schema for process model

276

A.6 XML Schemafor process model

<?xml version="1.0" encoding="UTF-8"?>

=n ="

<xs:schema elementFormDefault="qualified" attributeFormDefault="unqualified"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema'>
<xs:element name="Process_Modd" >
<xs:complexType>

<xs:sequence>

<xs:element naine="Process" maxOccurs="unbounded">

<xs:complexType>
<xs:sequence>
<xs:eleraent name="Process_name'" >
<xs:complexType>

<xs:choice maxOccurs="unbounded">
se

< /xs:choice>
</xs:complexType>
</xs:element>
<xs:element name="Description">
<xs:complexType>

<xs:c>¥oice maxOccurs="unbounded">

</xs:choice>
</xs:complexType>

</xs:element>

<xs:element name="Activity" type="xs:string" />
—n

<xs:element name="Type" type="xs:string" />
</xs:sequence>

=n =n

<xs:attribute name="shared_data” type="xs:string" use="optional" />
</xs:complexType>

</xs:element>

<xs:element name="Message" maxOccurs="unbounded">

<xs:complexType>

=n =n

<xs:attribute name="message_id" type=

xs:string" use="required" />

=n =n

<xs:attribute name="message_type" type=

_n

xs:string" use="required" />

—n =n

<xs:attribute name="sender" type=

—n

xs:string" use="required" />

—_n ="

<xs:atlribute name= "receiver" type= ="

xs:string" use="required" />
</xs:complexType>

</xs:element>

<xs:element name="Shared_data" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>

=» =n

<xs:altribute name="data_id" type="xs:string" use="required" />

_n

<xs:attribute name="data_type" type=

—n

xs:string" use="required" />
</xs:complexType>
</xs:element>
</xs:sequence>

_n

<xs:attribute name="ProcessModelID" type=

xs:string" use="required" />

_n

<xs;attribute name="Subsystem_naine" type= ="

xs:string" use="required" />
</xs:complexType>
</xs:element>

</xs:schema>

Note: <xs: choice> has sub elements e.g. PRP, JJ, CC, DD1, etc. as shown earlier.

277

http://www.w3.org/2001/XMLSchema

APPENDIX A - XML SCHEMAS

A.7. XML Schema for module model

* ModuleModellDg ® Process_name g
.string string
¢ Module_Modelg_
MS ¢ Linkr »typef * sourceJ * destination|
string string J string _

278

A. 7TXML Schema for module model

<xml version="1.0" encoding="UTF-8'"?>
<xs: scherm cementFormDefault="qualified" attributeFormDefault="unqualified"
xrmins:xs="http:/ /wwww3.0t/2001 /}"(MLS(‘hcrm'

e

<xs:element name=' > Model'">
<xs:complexType>
<XS:

:sequence>
<xs:element name="Module" maxQOccurs="unbounded'">
<xs:complexType>
<Xs:

<xs:element name="Module_name'>

<xs:complexType>
<xs:cﬂboice maxOccurs= inbounded'"™>

</xs:choice>
</xs:complexType>
</xs:clerrent>
<ss:element mame="Description'™>
<xs:complexType>
<xs:choice maxOccurs="unbounded >

</xs:choice>
</xs:complexType>
</xs:elerment>
<xs:element mame="Type" type= Xks:stting'"/>
</xs:sequence™
</xs:complexType>
</xs:lerrent>
<ss:element name="Tink" maxQOccurs="unbounded"™>
<xs:conpliXType> y
<xsattribute name="type'" type="xs:string’" use=Trequired"/>
<xs:altribute name=" 'tsgﬁcet'ype = 'xstfjsl?i;gng" use="required" />
<xs:atttibute name="destination” type="xs:stting" use="required"/>
</xs:complexType>
</xs:lerrent>
</xs: g
<ssattribute name="ModuleModelID" type="xs:string" use="required 7>
<xsattribute name="Process_name" typegxs:snirg?g use= 'ﬁpﬁ&r' />
</xs:complexType>
</ss:elerrent>
</xs:schenm>

Note: <xs: choice> has sub elements e.g. PRP,)|, CC, DD1, etc. as shown earlier.

279

http://www.w3.org/2001/XMLSchema

Appendix B —T'raceability Rules

B.1.Direct Traceability Rules

<TraceRule RuleID="R10" RuleType="satisfiability" DocTypel="Subsystem Model"
DocType2="Feature Model">
<Query>

—

declare namespace s=“ava:distanceControl.d”;

declare function local:getParentFeature($child as xs:string) as item ()
1

for Sitem A in doc(A£2A£)//Relationship/Rel_feature

where normalize-space(§item A)= normalize-space(Schild)

return $itemA/../../Feature_name

b

forSitem1 in doc(ALIAL)//Subsystem /Description,
$item2 in doc(AL2A[f)//Feature_Model/Feature/Feature_nanie
=

where local:getParentFeature(string($item 2))

and s:containsInDistance($item],Sitem 2, local:getParentFeature(string($item 2)))

</Query>
<Action>
<Relation RuleID="R10" Type="satisfiability" DocType 1""Subsystem Model"
DocType2="Feature Model">
<Element Document=""> {§iteml/../Subsystem _name) </Element>
<Element Document=""> {Sitem2} </Element>
< /Relation>
</Action>
</TraceRule>
<TraceRule RuleID="R1 1" RuleType="implements" DocTypel="Class Diagram"
DocType2="Feature Model">
<Query>
declare namespace UML="org.omg.xmi.namespace. UML";

declare namespace s=“ava:distanceControl.d”;
declare function local:getClassinClass($diagram as xs:string) as item ()*

for SitemE in

doc(AL1IAL)//UML:Diagram /UML:GraphElement.contained/UML:GraphNode/UML:GraphElem
entsemanticModel/UML:UmllSemanticModelBridge/UML:UmllSemanticM odelBridge.elemen
t/UML:Class

where

SitemE/../. name = Sdiagram

return Sitem E
%

let $cl := local:getClassinClass(*1*)

APPENDIX B - TRACEABILITY RULES

for SitemO in $cl

for §item1 in

doc(ALIAL)/AJML:Namespace.ownedElement/UML:Class/UM L:Classifier.feature/UML:O perat
ion

for $item2 in doc(AL2A[)//Feature_Model/Feature/Description

let $tl := $iteml/../../@name

where Siteml/../../@xmi.id = $itemO /@ xmi.idref

and s:containsInDistance($item 2, Siteml/ @ name, $tl)

</Query>
<Action>
<Relation RulelD ="R1 1" Type="implements" DocTypel="Class Diagram"
DocType2="Feature Model”>
<Element Document=""><Class> {$tl }</Class>
<Operation> {$item 1/@nam e }</Operation></Element>
<Element Document=""> ($item2/../Feature_name) </Element>
< /Relation>
</Action>
</TraceRule>
<TraceRule RuleID="R12" RuleType="dependency" DocTypel="Use Case"
DocType2="Feature Model”>
<Query>

declare namespace s=“java:distanceControl.d”;
declare function local:getChildrenFeature(Sparent as xs:string) as item ()*

for $item A in doc(AL2A[f)//Feature/Relationship/Rel_feature
where normalize-space($itemA/../../Feature_name)= normalize-space(Sparent)

return Sitem A

b

for Sitem! in doc(A L1A[)//Use_Case/Preconditions,
$item2 in doc(AL2AL")//Feature_Model/Feature/Feature_name

where localigetChildrenFeature(string($item2)) 1= ""

and s:containsInDistance($iteml],$item 2, local:getChildrenFeature(string($item 2)))

</Query>
<Action>
<Relation RuleID="R12" Type="dependency" DocTypel="Use Case"
DocType2="Feature Model">

<Element Document=""> {Sitem 1/..ATitle} <Preconditions/>
</Element>
<Element Document=""> {Sitem2}
<Child> {local:getChildrenFeature(string($item2))} </Child>
</Element>
< /Relation>
</Action>

</TraceRule>
<TraceRule RuleID="R13" RuleType-'dependency”DocTypel-"Process Model"
DocType2="Feature Model”>

282

B.l Direct Traceability Rules

<Query>
declare namespace w="java:synonym.s";

declare function local:getFeatureofSubsystem (Ssubsystem as xs:string) as item/)*
for Sitem A in doc(A£2A[f)//Feature_Model/Feature/Allocated_to_Subsystem
where normalize-space($item A)= normalize-space($subsystem)

return $item A /Sitem A /../Feature_name
%

for Sitem 1in doc(AfIA[L)//Process_Model

let $t2 := local:getFeatureofSubsystem (string($item1/ @ Subsystem _name))

</Query>
<Action>
<Relation RuleID="R13" Type="dependency" DocTypel="Process Model"
DocType2="Feature Model">
<Element Document=""">
<ProcessModellD > {Sitem 1/@ProcessModellD }</ProcessModelID> </Element>
<Element Document=""> {St2} </Element>
< /Relation>
< /Action>
< /TraceRule>
cTraceRule RuleID="R14" RuleType="containment" DocTypel="Use Case"
DocType2="Feature Model">
<Query>

— <

declare namespace s=“Gava:distanceControl.d”;

declare function local:getParentFeature($child as xs:string) as item ()
for Sitem A in doc(AL£2A[f)//Relationship/Rel_feature
where normalize-space($item A)= normalize-space(Schild)

return SitemA/../../Feature_name
I8

forSitem1 in doc(ALIAL)//Use_Case/Description,
$item2 in doc(AL2A[f)//Feature_Model/Feature/Feature_name

where s:containsInDistance($item1,§item 2, local:getParentFeature(string(§item 2)))

</Query>
<Action>
<Relation RuleID="R14" Type="containment" DocTypel="Use Case"
DocType2="Feature Model">
<Element Document=""> {Sitem 1/../Title} <Description/>
</Element>
<Element Document=""> {Sitem2} </Element>
< /Relation>
</Action>
< /TraceRule>
<TraceRule RuleID="R15" RuleType="containment” DocTypel="Process Model"
DocType2="Class Diagram">
<Query>

declare namespace UML="org.omg.xminamespace. UML";

283

APPENDIX B-TRA CEABILITY RULES

—

declare namespace s=“Java:distanceControl.d”;

for Sitem1 in doc(A £2A£)//UM L:Classifier.feature/UML:O peration/ @ name
for $item2 in doc(A£IAL)//Process/Description
let St1 := $iteml/../../../@name

where s:containsInDistance($item 2,§iteml1, $tl)
</Query>
<Action>
<Relation RuleID="R15" Type="containment" DocTypel="Process Model"
DocType2="Class Diagram">
<Element Document=""> {§$item2/../Process_name} <Description/>
</Element>
<Element Document=""> <Class>{St1}</Class> <Operation> {Siteml} </Operation>
</Element>
< /Relation>
</Action>
< /TraceRule>
<TraceRule RuleID="R16" RuleType="refinement" DocTypel="Module Model"
DocType2="Process Model”>
<Query>

declare namespace w="java:synonym .s";

for Sitem! in doc(AL2A L)/ /Process_Model/Process
let $item2 := doc(ALIA L)/ /Module_Model
where W:stringnospace(string($iteml/Proccss_nam e))=

w:stringnospace($item2/@ Process_name)

</Query>
<Action>
<Relation RuleID="R16" Type="refinement" DocTypel="Module Model"
DocType2="Process Model">
<Element Document=""> <ModuleModelID > {$item2/@ M oduleM odellD }
</ModuleModelIDx/Element>
<Element Document=""> {§iteml/Process_name} </Element>
</Relation>
</Action>
< /TraceRule>
<TraceRule RuleID="R17" RuleType="overlaps" DocTypel="Statechart Diagram"
DocType2="Use Case">
<Query>

—»

declare namespace UML="org.omg.xmi.namespace. UML";

—

declare namespace s=“java:distanceControl.d”;

declare function local:getTransitioninState() as item ()*

for Sitem F in
doc(ALIAL)//UML:GraphElement.semanticModel/UML:UmllSemanticM odelBridge/UML:Uml
ISemanticM odelBridge.element/ UM L:Transition

return SitemF
I8

declare function local:getStateinState($transition as node()) as item ()

284

B. I Direct Traceability Rules

1
for SiternG in doc(A £IA £)//UML:Sim pleState

where $iteniG /UML:StateVertex.incoming/UML:Transition/@ xmi.idref =
$transition/ @ xmi.idref

return $item G
);

let Sitem1 := local:getTransitioninState()

for $tl in $iteml

for $item 2 in local:getStateinState($tl)

for $item3 in doc(Af£2A[f)//Use_Case/Flow_of_events/Event

where s:containsInDistance($item 3, Sitem2/@name)

</Query>
<Action>
<Relation RuleID="R17" Type="overlaps" DocTypel="Statechart Diagram"
DocType2="Use Case">
<Element Document=""> <State> {$item2/@name} </State>
<IncomingTransition> {$tl/@ xmi.idref} </IncomingTransition> </Element>
<Element Document=""> {Sitem3/../../Title} <Event/>
</Element>
< /Relation>
</Action>
</TraceRule>
<TraceRule RuleID="R9" RuleType="evolution" DocTypel="Statechart Diagram"
DocType2="Statechart Diagram">
<Query>
for Sitem1 in doc(A£IAL)//UML:Transition,
Sitem2 in doc(A £2A L)/ AJML:Transition

where

$x1/../UML:Diagram/@name = $x2/./ UML:Diagram/@name and $xl/@name = $x2/@name
and

$x1/UM L:Transition.effect/UML:ActionSequence/UML:ActionSequence.action/UM L:Uninteipr
etedAction/@name =

$x2/UM L:Transition.effect/UML:ActionSequence/UML:ActionSequence.action/UML:Uninterpr
etedAction/@name and

$x1/UM L:Transition.trigger/Behavioral_Elements.State_Machines.Event/ @ xmi.idref =
$x1/../UML:SignalEvent/ @ xmi.id and

$x2/UM L:Transition.trigger/Behavioral_Elements.State_Machines.Event/@ xmi.idref =
Sx2/../UML:SignalEvent/ @ xmi.id and

Sx1/../UML:SignalEvent/@name = $x2/../UML:SignalEvent/@name and
Sx1/../UML:SignalEvent/UML:SignalEvent.signal/Behavioral_Elements.Common_Behavior.Sig
nal/@ xmiidref = $x1/../UML:Signal/ @ xmi.id and
$x2/../UML:SignalEvent/UML:SignalEvent.signal/Behavioral_Elements.Common_Behavior.Sig
nal/@ xmi.idref = $x2/../UML:Signal/@ xmi.id and

$x1/../UML:Signal/@name = $x2/..AJM L:Signal/@name and

Sx1l/../UML:Signal/@ xmiid/UML:DataType/@ xmi.id =
Sxl/../UML:Event.Parameter/UML:Parameter/UML:Parameter.type/Foundation.Core.Classifier/
@ xmi.idref and $x2/../UML:Signal/@xmiid/UML:DataType/@ xmi.id =
Sx2/../UML:Event.Parameter/UML:Parameter/UML:Parameter.type/Foundation.Core.Classifier/
@ xmi.idrefand $x1/../UML:Event.Parameter/UML:Parameter/@name !=
$x2/../UML:Event.Parameter/UML:Patameter/@name

</Query>

285

APPENDIX B - TRACEABILITY RULES

<Action>

<Relation RuleID="R9" Type="evolution" DocTypel="Statechart Diagram"
DocType2="Statechart Diagram">
<Element Document="">
<Transition> {$x1/@name} </Transition>
<Parameten> {$x1/../UML:Event.Parameter/UML:Parameter/@ name) </Parameter>
</Element>
<Element Document="">
<Transition> {Sx2/@name } </Transition>
<Parametei> {$x2/../UML:Event.Parameter/UML:Parameter/@name} </Parameter>
</Element>
</Relation>
</Action>
< /TraceRule>
cTraceRule RuleID="R18" RuleType="implements" DocTypel="Sequence Diagram"
DocType2="Use Case">
<Query>

—»

declare namespace UML="0org.omg.xmi.namespace. UML";

—

declare namespace s=“java:distanceControl.d”;

declare function local:getM essageinSeq() as item ()*

for $item A in
doc(ALIAL)//UML:GraphElement.semanticModel/UML:UmlISemanticModelBridge/UML:Um|
ISemanticM odelBridge.element/ UM L:Link

return $item A

declare function local:getO bjectinSeq(Slink as node()) as itemO

for $itemB in doc(A L1 A[L)//UML:Link
where $itemB/@ xmi.id = $link/ @ xmi.idref
return $itemB/UML:Link.connection/UML:LinkEnd/UML:LinkEnd.instance/UML:O bject

2

declare function local:getObjectinM odel(§object as node()) as item ()*

{

for $item C in doc(AL1AL)//UML:Object
where $itemC/@ xmi.id = $object/ @ xmi.idref
return $item C/UM L:Instance.classifier/UM L:Class

b
declare function local:getClassO bjectinSeq($class as node()) as item ()

for SitemD in doc(A £1A[L)//UML:Class
where $itemD /@ xmiid = $class/ @ xmi.idref

return Sitem D

declare function local:getClassinClass($class as nodeQ, Sdiagram as xs:string)as item ()*

286

B. I Direct Traceability Rules

for SitemE in

doc(AL1A£)//UML:Diagram /UML:GraphElement.contained/UML:G raphNode/UML:G raphElem
ent.semanticModel/UML:Uml]SemanticM ode|Bridge/UML:UmllSemanticModelBridge.clemen
t/UML:Class

where $itemE/../../../../../patentinode()/ @name = $diagram

return SitemE

b

let Sitem1 := local:getM essageinSeq()

for St1in Siteml

for$item 2 in local:getO bjectinSeq($tl)

for Sitem 3 in local:getO bjectinM odel($item 2)
for $item 4 in local:getClassO bjectinSeq($item 3)

for Sitem 6 in doc(A£2A[)//Use_Case/Description
whete s:icontainsInDistance($item 6, Sitem4/@ name)

</Query>
<Action>
<Relation RuleID="R18" Type="implements" DocTypel="Sequence Diagram"
DocType2="Use Case" >
<Element Document=""> <Class> {$item4/@name}</Class> <Link> {St1}</Link>
</Element>
<Element Document=""> {Sitem6/../Title) <Description/></Element>
</Relation>
</Action>
< /TraceRule>
<TraceRule RuleID="R19" RuleType="refmement" DocTypel="Sequence Diagram"
DocType2="Use Case">
<Query>
declare namespace UML="org.omg.xmi.namespace. UML";

—

declare namespace s=“java:distanceControl.d’;

declare function local:getM essageinSeq() as item ()*

for Sitem A in
doc(ALIAL)//UML:GraphElement.semanticModel/UML:UmllSemanticM odelBridge/UML:Uml
ISemanticM odelBridge.element/UM L:Link

return Sitem A

%

declare function local:getO bjectinSeq(Slink as node()) as item ()

for Sitem B in doc(A £1A[)//UML:Link
where SitemB/@ xmi.id = $link/ @ xmi.idref
return SitemB/UML:Link.connection/UML:LinkEnd/UML:LinkEnd.instance/UML:O bject

)

declare function local:getObjectinM odel($object as node()) as item ()*

{

287

APPENDIX B - TRACEABILITY RULES

for $item C in doc(A L1A£)//UML:Object
where $itemC/@ xmi.id = $object/ @ xmi.idref
return $item C/UM L:Instance.classifier/UML:Class

b

declare function local:getClassO bjectinSeq($class as node()) as item ()
for SitemD in doc(A L1A[f)//UML:Class
where $itemD /@ xmiid = $class/ @ xmi.idref

return $item D

declare function local:getClassinClass($class as node(), Sdiacram as xs:string)as item ()*

for $itemE in

doc(AL1AL)//UML:Diagram /UML:GraphElement.contained/UML:GraphNode/UML:GraphElem
ent.semanticModel/UML:Uml 1SemanticM odelBridge/UML:Uml1SemanticModelBridge.clemen
t/UML:Class

where $itemE/../../../../../patentinode()/ @name = Sdiagram

return Sitem E

let $item]l := local:getM essageinSeq()

for $tl in $item 1l

for §item 2 in localzget()biectinSeq(fﬁtl)

for $item 3 in local:getO bjectinM odr:l(Sitem 2)
for $item 4 in local:getClassO bjectinSeq($item 3)

for $item 6 in doc(AL2A L)/ /Use_Case/Description
where s:containsInDistance($item 6, $item4 /@ name)

</Query>
<Action>
<Relation RuleID="R19" Type="refinement" DocTypel="Sequence Diagram?”
DocType2="Use Case">
<Element Document=""><Class> {§item4/@name}</ClassxLink> {$tl }</Link>
</Element>
<Element Document="">{Sitem6/../Title) <Description/> </Element>
< /Relation>
</Action>
< /TraceRule>
<TraceRule RuleID="R20" RuleType="satisfiability" DocTypel="Sequence Diagram"
DocType2="Use Case">
<Query>

—_n

declare namespace UML="org.omg.xminamespace. UML";

— <

declare namespace s=“ava:distanceControl.d”;

declare function local:getM essageinSeq() as item ()*

{

288

B. I Direct Traceability Rules

for Sitem A in
doc(ALIAL)//UML:GraphElement.semanticModel/UML:UmliSemanticM odelBridge/UML:UiTil
ISemanticM odelBridge.element/ UM LiLink

return $iteniA

declare function local:getO bjectinSeq(Slink as node()) as item ()

for SitemB in doc(A £1A[)//UML:Link
where $itemB/@ xmi.id = $link/ @ xmi.idref
return $itemB/UML:Link.connection/UML:LinkEnd/UML:LinkEnd.instance/UML:O bject

3
declare function local:getObjectinM odel($object as node()) as item ()*

{

for SiteniC in doc(A £IA £)//UML:Object
where $itemC/@ xmi.id = $object/ @ xmi.idref
return $item C/UM L:Instance.classifier/ UM L:Class

1
declare function local:getClassO bjectinSeq($class as node()) as item ()

for SitemD in doc(AL1A[L)//UML:Class
where $itemD /@ xmi.id = $class/@ xmi.idref

return $item D

declare function local:getClassinClass($class as node(), $diagram as xs:string)as item ()*

|

for SitemE in

doc(AL1AL)//UML:Diagram /UML:GraphElement.contained/ UML:GraphNode/UML:GraphElem
ent.semanticModel/UML:Uml 1SernanticM odelBridge/UML:Uml1SemanticM odelBridge.elemen
t/UML:Class

where $itemE/../../../../../parentinode()/ @name = Sdiagram

return $item B

I

let Sitem1 := local:getM essageinSeq()

for Stl in Siteml

for Sitem 2 in locakgetO bjectinSeq(Stl)

for Sitem 3 in local:getO bjectinM odel($item 2)
for Sitem 4 in local:getClassO bjectinSeq(Sitem 3)

for Sitem 6 in doc(A£2A[)//Use_Case/Description
where s:containsInDistance($item 6, $item4/@name)
</Query>
<Action>

<Relation RuleID="R20" Type="satisfiability" DocTypel="Sequence Diagram"
DocType2="Use Case">

289

APPENDIX B - TRACEABILITY RULES

<Element Document=""> <Class> {$item4/@ name)</Class> <Link> {§tl }</Link>
</Element>
<Element Document=""> {$item6/../ Title}<Description/>
</Element>
< /Relation>
</Action>
< /TraceRule>
<TraceRule RuleID ="R2r RuleType="implements" DocTypel="Class Diagram"
DocType2="Use Case">
<Query>
declare namespace UML="org.omg.xminamespace. UML";

— <

declare namespace s=“ava:distanceControl.d”;
for Sitem A in d()c(A£lA£)//UML:Class

for Sitem1 in doc(ALIA L)/ /UML:Classifier.feature/UML:O peration/@name
for $item2 in doc(AL2A[L)//Use_Case

letSt1:=Sitemlname

where
sicontainsInDistance(Sitem 2/ Title, $tl)
and

s:icontainsInDistance(Sitem2/Description,$item 1)

</Query>
<Action>
<Relation RuleID="R21" Type="implements” DocTypel="Class Diagram"
DocType2="Use Case">
<Element Document=""> <Class> {Stl } </ClassxOperation> {Sitem]1 }</Operation>
</Element>
<Element Document=""> {§item2/Title)<Description/>
</Element>
< /Relation>
</Action>
</TraceRule>
<TraceRule RuleID="R22" RuleType="containment" DocTypel="Use Case"
DocType2="Feature Model">
<Query>

declare namespace s=“java:distanceControl.d”;

for
Sitem1 in doc(A L1 AL)//Use_Case,
Sitem2 in doc(A£2A[)//Feature_Model/Feature

where

s:containsInDistance(Sitem 1/Description, Sitem2/Feature_name)

</Query>
<Action>
<Relation RuleID="R22" Type="containment" DocTypel="Use Case"
DocType2="Feature Model">
<Element Document=""> {Siteml/Title) </Element>

290

B. I Direct Traceability Rules

<Element Document=""> {Sitem2/Feature_name) </Element>
</Relation>
</Action>
< /TraceRule>
<TraceRule RuleID="R23" RuleType="refinement" DocTypel="Statechart Diagram"
DocType2="Sequence Diagram">
<Query>

—_n

declare namespace UML="org.omg.xmi.namespace. UML";

declare function local:getO perationinSeq() as item ()*

for Sitem A in
doc(AL2AL)//UML:GraphElement.semanticModel/UML:UmllSemanticModelBridge/UML:Uml
ISemanticM odel Bridge.element/UML:O peration

return $item A

declare function local:getO perationinM odel($operation as node()) as item ()*

{

for Sitem C in doc(A £2A £)//UML:Classifier.feature/UML:O peration
where $item C/@ xmi.id = $operation/ @ xmi.idref

return Sitem C

declare function local:getStateofO perationinState($operation as node()) as item ()

for SitemD in doc(ALIAL)//UML:SimpleState
where $itemD /@name = $operation/@name

return SitemD

forSitem1 in local:getO perationinSeq()
for Sitem 2 in locahgetO perationinM odel(Sitem)

for$item 3 in local:getStateofO perationinState($item 2)

</Query>
<Action>
<Relation RulelD="R23" Type="refinement” DocTypel="Statechait Diagram"
DocType2="Sequence Diagram">
<Element Document=""> <State>{ $item3 /@ name} {Sitem3/@ xmi.id } </State>
</Element>
<Elenrent Document=""> <Object>{$item2/../../@name| </Object>
<Operation> {$item2/@name}</Operation> </Element>
< /Relation>
</Action>
</TraceRule>
<TraceRule RuleID="R24" RuleType="implement" DocTypel="Class Diagram"
DocType2-"Use Case">

291

APPENDIX B - TRACEABILITY RULES

<Qucry>

declare namespace UML="org.omg.xmi.namespace. UML";

— <

declare namespace s=“java:distanceControl.d”;

for Sitem 1in doc(AL1AL)//UML:Class/@name

for Sitem2 in doc(A£2A[)//Use_Case/Description

where

s:containsInDistance($item 2,Sitem I)

</Query>
<Action>
<Relation RuleID="R24" Type="implement" DocTypel="Class Diagram"
DocType2="Use Case”>
<Element Document=""> <Class>(Sitem 1}</Class> </Element>
<Element Document-"">{Sitem2/../Title}</Element>
</Relation>
</Action>
< /TraceRule>
<TraceRule RuleID="R25" RuleType="containment" DocTypel="Statechart Diagram?”
DocType2="Class Diagram">
<Query>

— <

declare namespace s=“java:distanceControl.d”;

—»

declare namespace UML="0org.omg.xminamespace. UML";

for Sitem A in doc(AL1AL)//UML:CompositeState.subvertex/UM L:Sim pleState
for Sitem C in doc(AL£2A[)//UML:Classifier.feature/UML:O peration

where s:contains!nDistance($itemC/@ name, $itemA/@name)

</Query>
<Action>
<Relation RuleID="R25" Type="containment" DocType I="Statechart Diagram"
DocType2="Class Diagram">
<Element Document=""> <State> {$itemA/@name} </State></Element>
<Element Document=""> <Class> {SitemC/../../@name}</Class>
<Operation> {SitemC/@ nam ¢ }</Operation></Element>
</Relation>
</Action>
< /TraceRule>
<TraceRule RuleID="R26" RuleType="overlap" DocTypel="Class Diagram"
DocType2="Statechart Diagram">

<Query>
declare namespace w="java:synonym.s";
declare namespace UML ="org.omg.xminamespace. UML";

for Sitem 1in doc(AL1A[L)//UML:Classifier.feature/UML:O peration,
Sitem2 in doc(A£2A L)/ /UML:CompositeState.subvertex/UML:SimpleState

292

B. I Direct Traceability Rules

where
$iternl/@ name = $item2/@name

</Query>
<Action>
<Relation RuleID="R26" Type-'overlap" DocTypel="Class Diagram"
DocType2="Statechart Diagram">
<Element Document=""> <Class> {$item!/../../@name} </Class>
<Operation> {$iteml/@name} </Operadon> </Element>
<Element Document=""xState>{ $item2/@name) </State>
</Element>
< /Relation>
< /Action>
< /TraceRule>
<TraceRule RuleID="R27" RuleType="overlap" DocTypel="Sequence Diagram"
DocType2="Class Diagram">

<Query>
declare namespace w="java:synonym.s";
declare namespace UML ="org.omg.xminamespace. UML";

for Sitem1 in doc(A £1A[L)//UML:Object,
Sitem2 in doc(A£2A£)//UML:Class

where

$iteml/@name = $item2/@name

</Query>
<Action>
<Relation RuleID="R27" Type="overlap" DocTypel="Sequence Diagram"
DocType2="Class Diagram">
<Element Document=""> <Object> ($item]l/@ xmi.id} {Siteml/@name} </Object>
<7Element>
<Element Document=""> <Class> {$item2/@ xmi.id} { Sitem2/@name} </Class>
</Element>
</Relation>
</Action>
< /TraceRule>
<TraceRule RuleID="R28" RuleType="refinement" DocTypel-'Module Model"
DocType2="Process Model">
<Query>

declare namespace w="java:synonym.s";

for Sitem1 in doc(AL2A[)//Process_Model/Process
let $item2 := doc(A L 1AL)//Module_Model

where
w:stringnospace(string($iteml/Process_name))= w:stringnospace($item2/@ Process_name)
</Query>
<Action>
<Relation RuleID="R28" Type="refinement" DocTypel="Module Model"
DocType2="Process Model">
<Element Document=""> <ModuleModelID>{ Sitem2/@ ModuleModellD }

293

APPENDIX B - TRACEABILITY RULES

{Sitem2/@ Process_name}</ModuleModellD> </Element>
<Element Document=""> { $iteml/Process_name } </Element>
< /Relation>

</Action>
< /TraceRule>
<TraceRule RuleID="R29" RuleType="dependency" DocTypel="Statechart Diagram"
DocType2="Feature Model">

<Query>

declare namespace UML="org.omg.xmi.namespace. UML";

—

declare namespace s=‘java:distanceControl.d”;

declare function local:igetTransitioninState() as item ()*

for SitemF in

doc(ALIAL)//UML:GraphElement.semanticModel/UML:Uml 1SemanticModelBridge/UML:Uml
ISemanticM odelBridge.element/ UM L:Transition

return $itemF

declare function local:getTransitioninState($transition as node()) as itemO*
1

for $item G in doc(AL1AL)//UML:SimpleState

where $item GAJM L:StateVertex.incomingAJM L:Transition/@ xmi.idref =
Stransition/ @ xmi.idref

return $item G

let Sitem1 := local:getTransitioninState()

for $tl in Siteml

for $item 2 in local:igetT ransitioninState(Stl)
for $item 3 in doc(A£2A[f)//Feature/Description
where

sicontains!nDistance($item 3, $item2/@name)

</Query>
<Action>
<Relation RuleID="R29" Type="dependency" DocTypel="Statechart Diagram"
DocType2="Feature Model">
<Element Document=""> <State> |$item2/@name} </State>
<IncomingTransition>(St1l/@ xmi.idref}</IncomingTransition> </Element>
<Element Document=""> {§item3/../Feature_name} </Element>
< /Relation>
</Action>
< /TraceRule>
cTraceRule RuleID="R30" RuleType="dependency" DocTypel="Sequence Diagram"
DocType2="Feature Model">
<Query>

declare namespace UML="org.omg.xmi.namespace. UML";

declare namespace s=“java:distanceControl.d”;

294

B. 1 Direct Traceability Rules

declare function locakgetMessageinSeqQQ as item()*

for SitemA in

doc(AL1A[)//UML:GraphElement.sernanticModel / UML: UmllSemanticMode] Bridge/ UML:Uml
ISemanticModelBridge.element/UML:Link

return SitemA

declare function local:getObjectinSeq($link as node()) as item()

f{orSitemB in doc(A£1 Af)//UMI:Tink

where $iteniB/@xmi.d = $link/@smi.idref

return $itemB/UML:Link.connection/ UML:LinkFind /UML:LinkEnd.instance/ UML:Object
5

declare function local:getObjectinModel($object as node()) as item()*
{

for SitemC in doc(A£1A£)//UMI:Object
where $itemC/(@xmi.id = $object/(@xmi.idref
return SitemC/UML: Instance.classifier/ UMI:Class

declare function local:getClassObjectinSeq($class as node()) as item()

1 A A
for SitemD in doc(A£ Af)//UML:Class
where $itemD/(@xmi.id = $class/(@xmi.idref

return SitemD

declare function local:getClassinClass(Sclass as node(), Sdiagram as xs:string)as item()*

f{or SiAterrlE in

doc(Af1Af)//UML:Diagram/UML:GraphElement.contained/ UML: GraphNode/ UML: GraphElem
ent.semanticModel/ UML:UmlISemanticModelBridge/ UML: UmllSemanticModelBridge.clemen
t/UML:Class

where $itemEy/../../../../ ../ parent:node() /(@name = Sdiagram

return SitemE

I8

let Siteml :=local:getMessageinSe

for St1in Siteml 8 8 0

for Sitem?2 in local:getObjectinSeq(Stl)

for $item3 in local:getObjectinModel ($item?2)

for Sitem4 in local:getClassObjectinSeq($item3)

for Sitemé in doc(Af2A/)//Feature/Desctiption
where s:containsInDistance($itemo, Sitermd/(@name)

</Query>
<Action>

295

APPENDIX B - TRACEABILITY RULES

<Relation RuleID="R30" Type="dependency" DocTypel="Sequence Diagram"
DocType2="Feature Model">
<Element Document=""> <Class> {$item4/@name)</Class><Link> {$tl }</Link>
</Element>
<Element Document=""> {§item6/../Feature_name} <Description/>
</Element>
< /Relation>
</Action>
< /TraceRule>
<TraceRule RuleID="R31" RuleType="containment" DocTypel ="Subsystem Model"
DocType2="Class Diagram">
<Query>

—_n

declare namespace UML="org.omg.xmi.namespace. UML";

— e

declare namespace s=“java:distanceControl.d”;
declare function local:igetClassinClass($diagram as xs:string) as item ()*

for SitemE in

doc(AL2Af)//UML:Diagram /UML:GraphElement.contained/UML:GraphNode/UML:GraphElem
ent.semanticModel/UML:UmlISemanticM odelBridge/UML:UmllSemanticM odelBridge.elemen
t/UML:Class

where

SitemE/.. A ./ ..name = Sdiagram

return Sitem E

b
let $cl := local:igetClassinClass("CD _phone")
for SitemO in $cl

forSitem1 in

doc(AL2Af)//UML:Namespace.ownedElement/UML:Class/UM L:Classifier.feature/UML:O perat
ion

for $item2 in doc(A L1 A[L)//Subsystem /D escription

let Stl := $iteml/../../@name

where
Sitem1/../../@xmi.id = Sitem ()/ @ xmi.idref
and

s:icontainsInDistance($item 2, $item]l/ @ name)

</Query>
<Action>
<Relation RulelD="R31" Type="containment" DocTypel-'Subsystem Model"
DocType2="Class Diagram">

<Element Document=""> {$item2/../Subsystem _name}</Element>
<Element Document=""> <Class>{Stl } </ClassxO peration> {$item1} </Operation>
</Element>

< /Relation>
</Action>
</TraceRule>
<TraceRule RuleID="R32" RuleType="containment" DocTypel ="Process Model"
DocType2="Sequence Diagram">
<Query>

296

B.l Direct Traceability Rules

declare namespace UML="org.omg.xmi.namespace. UML";
declare namespace s=“java:distanceControl.d”;
declare function local:getM essageinSeq() as item ()*

for Sitem A in
doc(AL2A[)//UML:GraphElernent.semanticModel/UML:UmllSemanticM odelBridge/UML:Uml
ISemanticM odelBridge.element/UM L:Link

return $item A

declare function local:getO bjectinSeq(Slink as node()) as item ()

for SitemB in doc(A£2A[f)//UML:Link
whete $itemB/@ xmiid = $link/ @ xmi.idref
return $itemB/UML:Link.connection/UML:LinkEnd/UML:LinkEnd.instance/UML:O bject

%
declare function local:getO bjectinM odel(§object as node()) as item ()*

(

for Sitem C in doc(A£2A£)//UML:Object
where $item C/@ xmi.id = $object/ @ xmi.idref
return $item C/UM L:Instance.classifier/UM L:Class

b

declare function local:getClassO bjectinSeq($class as node()) as item ()
for SitemD in doc(AL£2A[)//UML:Class
where $itemD /@ xmi.id = $class/@ xmi.idref

return $item D

declare function local:getClassinClass($class as node(), Sdiagratn as xs:string)as item ()*

fir Sitem E in

doc(AL£2A[f)//UML:Diagram /UML:GraphElement.contained/UML:GraphNode/UML:GraphElem
ent.semanticMode]/UML:Uml 1SemanticModelBridge/UML:Uml1SemanticM odelBridge.clemen
t/UML:Class

where $itemE/../../../../../patentinode()/ @name = Sdiagram

return $itemE
%

let Sitem1 := local:getM essageinSeq()

for St1 in Sitem 1

for Sitem 2 in locakgetO bjectinSeq(Stl)

for Sitem 3 in local:getO bjectinM odel($item 2)
for Sitem4 in local:getClassO bjectinSeq($item 3)

for Sitem 6 in doc(A};lAg)//Process_ModeI/Process/Description

297

APPENDIX B - TRACEABILITY RULES

where s:containsInDistance($item 6, Sitem4/@name)

</Query>
<Action>
<Relation RuleID="R32" Type="containment" DocTypel="Process Model"
DocType2="Sequence Diagram">

<Element Document=""> {$item6/../Process_name} <Description/>

</Element>

<Element Document-'"><Class> {Sitem4/ @name}</ClassxLink> {St1} </Link>
</Element>

< /Relation>
</Action>
< /TraceRule>
<TraceRule RuleID="R33" RuleType="containment" DocTypel="Process Model"
DocType2="Statechart Diagram">
<Query>

declare namespace UML="org.omg.xmi.namespace. UML";
declare namespace s=“java:distanceControl.d”;

declare function local:igetTransitioninState() as item ()*

for SitemF in

doc(AL2AL)//UML:GraphElement.semanticModel/UML:Uml 1SemanticModelBridge/UML:Uml
ISemanticM odelBridge.element/UML:Transition

return SitemF

3
declare function local:igetStateinState($transition as node()) as item ()

for SitemG in doc(A£2Af)//UML:SimpleState
where $item G /UM L:StateVertex.incoming/UM L:Transition/@ xmi.idref =
Stransition/@ xm i.idref

return Sitem G

let Sitem 1 := local:getTransitioninState()

for St1in Sitem 1

for Sitem 2 in local:getStateinState(Stl)

for Sitem3 in doc(A L1 A[)//Process/Description
where

s:icontainsInDistance($item 3, Sitem2/@name)

</Query>
<Action>
<Relation RuleID="R33" Type="containment" DocTypel="Process Model"
DocType2="Statechart Diagram">
<Element Document=""> {§item3/../Process_name} </Element>
<Element Document=""> <State>{ Sitem2/@ name) </State>

<IncomingTransition>jSt1l/@xmi.idref}</IncomingTransition>

298

B. I Direct Traceability Rules

</Element>
< /Relation>

</Action>
< /TraceRule>
<TraceRule RuleID="R34" RuleType="satisfiability" DocTypel="Statechart Diagram"
DocType2="Use Case">

<Query>

declare namespace UML="org.omg.xminamespace. UML";

—

declare namespace s=“ava:distanceControl.d”;
declare function local:getTransitioninState() as item ()*

for Sitem F in
doc(ALIAL)//UML:GraphElement.semanticModel/UML:UmllSemanticModelBridge/UML:Uml
ISemanticM odelBridge.element/UM LiT ransition

return $itemF

declare function local:igetStateinState($transition as node()) as item ()

1

for SitemG in doc(AL1AL)//UML:SimpleState

where $item G /UM L:StateVertex.incoming/UM L:Transition/@ xmi.idref =
$transition/@ xmi.idref

return Sitem G

let Sitem1 := local:getTransitioninState()
for St1in Sitemi
forSitem 2 in local:getStateinState (§tl)
for Sitem3 in doc(A£2A[)//Use_Case/Description
where
sicontainsInDistance($item 3, $item2/@name)
</Query>
<Action>
<Relation RuleID="R34" Type="satisfiability" DocTypel-'Statechart Diagram"
DocType2="Use Case">
<Element Document=""> <State> {$item2/@name} </State>
<IncomingTransition> {$tl/@ xmi.idref } </IncomingTransition> </Element>
<Element Document=""> {Sitem3/../Title}</Element>
</Relation>
</Action>
</TraceRule>
<TraceRule RuleID="R35" RuleType="refinement" DocType 1="Statechart Diagram"
DocType2="Use Case">
<Query>

—_n

declare namespace UML="org.omg.xminamespace. UML";

declare namespace s=“Java:distanceControl.d”;

declare function local:getTransitioninState() as item ()*

{

299

APPENDIX B - TRACEABILITY RULES

for Sitem F in
doc(AL1AL)//UML:GraphElement.semanticModel/UML:UmllSemanticM odelBridge/UML:Uml
ISemanticM odelBridge.clement/UM L:Transition

return Sitem F

declare function Tocal:getStateinState($transition as node()) as item ()

for SitemG in doc(A£IAL)//UML:SimpleState

where $item G /UM L:StateVertex.incoming/UML:Transition/ @ xmi.idref =
$transition/@ xmi.idref

return Sitem G

let Sitem 1 := local:getT ransitioninState()

for Stl in Siteml

for Sitem2 in local:getStateinState($tl)

for Sitem3 in doc(AL2A[f)//Use_Case/Flow_of_events/Event
where

sicontainsInDistance($item 3, $item2/@name)

</Query>
<Action>
<Relation RuleID="R35" Type="refinement" DocTypel="Statechart Diagram"
DocType2="Use Case">
<Element Document=""> <State>{$item2/(@name) </State>
<IncomingTransition>{ $tl/@ xmi.idref } </IncomingTransition> </Element>
<Element Document="">{Sitem3/../../Title} <Event/></Element>
< /Relation>
</Action>
< /TraceRule>
<TraceRule RuleID="R36" RuleType="implements" DocTypel="Statechart Diagram"
DocType2="Use Case">
<Query>

declare namespace UML="org.omg.xminamespace. UML";

— <

declare namespace s=“ava:distanceControl.d”;

declare function local:getTransitioninState() as item ()*

{

for SitemF in
doc(AL1AL)//UML:GraphElement.semanticModel/UML:Uml 1SemanticM odelBridge/UML:Uml
ISemanticM odelBridge.element/UML:Transition

return SitemF

declare function local:getStateinState($transition as node()) as item ()
for SitemG in doc(A L1AL)//UML:SimpleState

where $item G /UM L:StateVertex.incoming/UM L:Transition/@ xmi.idref =

Stransition/@ xm i.idref

300

B. I Direct Traceability Rules

return $item G

let $item 1 := local:getTransitioninState()

for $tl in Sitem1

for $item 2 in local:getStateinState (§tl)

for Sitem3 in doc(A£2A[)//Use_Case/Flow_of_events/Event
where

s:contains!nDistance($item 3, $item2/@name)

</Query>
<Action>
<Relation RuleID="R36" Type="implements" DocTypel="Statechart Diagram"
DocType2="Use Case">
<Element Document="""'> <State> {§item2/@name} </State>
<IncomingTransition> {$tl/@ xmi.idref} </IncomingTransition> </Element>
<Element Document=""> {$item3/../../Title} </Element>
< /Relation>
</Action>
< /TraceRule>
<TraceRule RuleID="R73" RuleType="satisfiability" DocTypel="Class Diagram"
DocType2="Use Case">

<Query>
declare namespace UML="org.omg.xmi.namespace. UML";

—

declare namespace s=“ava:distanceControl.d”;

for Sitem1 in doc(A L 1A L)/ /UML:Classifier.feature/UML:O peration/ @ name
for Sitem2 in doc(A£2A[)//Use_Case/Description

let $t1 := $iteml/../../../@name
where

s:containslnDistance($item 2,$item 1, § tl)
</Query>
<Action>
<Relation RuleID="R73" Type-'satisfiability" DocTypel="Class Diagram"
DocType2="Use Case">
<Element Document=""> <Class>{St1}</Class> <Operation> {Sitem 1 } </Operation>
</Element>
<Element Document=""> {Sitem2/../Title} <Description/>
</Element>
< /Relation>
</Action>
</TraceRule>
<TraceRule RuleID="R37" RuleType="implements" DocTypel="Class Diagram"
DocType2="Feature Model”>

<Query>
declare namespace UML="org.omg.xmi.namespace. UML";

declare namespace s=“java:distanceControl.d”;

301

APPENDIX B - TRACEABILITY RULES

declare function local:getClassinClass($diagram as xs:string) as item ()*

f

for $itemE in

doc(AL1AL)//UML:Diagram /UML:GraphElement.contained/UML:GraphNode/UML:GraphElem
ent.semanticModel/UML:Uml 1SemanticModelBridge/UML:Uml1SemanticM odelBridge.elemen
t/UML:Class

where

$itemE/../../../../../../@name = Sdiagram

return SitemE

)5
let $cl := local:getClassinClass(*1*)
for $itemO in Scl

for Sitem1 in

doc(ALIAL)//UML:Namespace.ownedElement/UML:Class/UM L:Classifier.feature/UML:O perat
ion

for $item2 in doc(AL2A[f)//Feature,Model/Feature

let $tl := Siteml/../../@name

where

Sitem1/../../@xmi.id = $item O /@ xmi.idref

and

sicontainsAInDistance($item2/Feature_name, $t1)
and

s:containsInDistance($item2/Description, $iteml/@ name)

</Query>
<Action>
<Relation RuleID="R37" Type="implements" DocTypel="Class Diagram"
DocType2="Feature Model">

<Element Document=""> <Class> {Stl }</Class>

<Operation> {$item 1/@nam e }</Operation> </Element>
<Element Document=""> {Sitem2/Feature_name}</Element>
< /Relation>

</Action>
< /TraceRule>
<TraceRule RuleID="R38" RuleType="dependency" DocTypel="Use Case"
DocType2="Feature Model">

<Query>

— <

declare namespace s=“java:distanceControl.d”;

declare function local:getChildrenFeature($parent as xs:string) as item ()*

{

for Sitem A in doc(AL£2A[f)//Feature/Relationship/Rel_feature
where

normalize-space(Sitem A /../../Feature_name)= normalize-space($parent)

return
Sitem A

I3

302

B. I Direct Traceability Rules

for
Sitem1 in doc(A L1A[f)//Use_Case/Description,
$item2 in doc(AL2AL")//Feature_Model/Feature/Feature_name

where
local:igetChildrenFeature(string(Sitem 2)) 1= ""
and

s:containsInDistance($item,§iteni2, local:getChi]ldrenFeature(string($item 2)))

</Query>
<Action>
<Relation RuleID="R38" Type="dependency" DocTypel="Use Case"
DocType2="Feature Model">
<Element Document=""> {Sitem 1/../Title} </Element>

<Element Document=""> {Sitem 2)
<Child>{ local:getChildrenFeature(string($item 2))} </Child>
</Element>

< /Relation>
</Action>
< /TraceRule>
<TraceRule RuleID="R39" RuleType="dependency" DocTypel="Use Case"
DocType2="Feature Model">
<Query>

declare namespace s=“ava:distanceControl.d”;

declare function local:getParentFeature($child as xs:string) as item ()

for Sitem A in doc(A£2Af)//Relationship/Rel_feature

where
normalize-space($item A)= normalize-space($child)

return

Sitem A /../../Feature_name

%

for

Sitem1 in doc(ALIAL)//Use_Case/Description,

$item 2 in doc(AL2AL")//Feature_Model/Feature/Feature_name

where
local:igetParentFeature(string($item 2)) 1= ""
and

s:containsInDistance($item 1,Sitem2, local:getParentFeature(string(Sitem 2)))

</Query>
<Action>
<Relation RuleID="R39" Type="dependency" DocTypel="Use Case"
DocType2="Feature Model">

<Element Document=""> {Siteml/../Title} </Element>

<Element Document=""> {Sitem2}
<Child>{ local:getChildrenFeature(string($item2))} </Child>
</Element>

< /Relation>

303

APPENDIX B - TRACEABILITY RULES

</Action>
< /TraceRule>
<TraceRule RuleID="R40" RuleType="satisfiability" DocTypel="Process Model"
DocType2="Feature Model">

<Query>

—

declare namespace s=“java:distanceControl.d”;

declare function local:getParentFeature($child as xs:string) as item ()
!
for $item A in doc(AL2A[)//Relationship/Rel_feature

where
normalize-space($item A)= normalize-space($child)

return

SitemA/../../Feature_name
);

for

Sitem 1in doc(Af 1AL)//Process_Model/Process/Description,
$item 2 in doc(AL2A[f)//Feature_Model/Feature/Feature_name
where
local:getParentFeature(string(§item2)) 1=""
and

s:containsInDistance($item] ,Sitem 2, local:getParentFeature(string(Sitem 2)))

</Query>
<Action>
<Relation RuleID="R40" Type="satisfiability" DocTypel="Process Model"
DocType2="Feature Model">
<Element Document=""> {Siteml/../Process_name} </Element>
<Element Document="">{§item2} </Element>
< /Relation>
</Action>
< /TraceRule>
<TraceRule RuleID="R41" RuleType="satisfiability" DocTypel-"Process Model"
DocType2="Feature Model ">
<Query>

declare namespace s=“ava:distanceControl.d”;

declare function local:getChildrenFeature($parent as xs:string) as item ()*

{

for Sitem A in doc(A£2A[)//Feature/Relationship/ReLfeature

where

normalize-space($item A /../../Feature_name)= nonnalize-space(Sparent)

return

Sitem A
%
for

Sitem 1in doc(AL1AL)//Process_Model/Process/Description,
Sitem 2 in doc(A£2A[)//Feature_Model/Feature/Feature_name

304

B. I Direct Traceability Rules

where
loca]:getCbildrenFeature(string($item 2)) 1= ""
and
s:containsInDistance($item,$item 2, local:getChildrenFeature(string($item 2)))
</Query>
<Action>
<Relation RuleID="R41" Type="satisfiability" DocTypel="Process Model"
DocType2="Feature Model">
<Element Document=""> {$iteml/../Process_name} </Element>
<Element Document=""> {§item2) </Element>
< /Relation>
</Action>
< /TraceRule>
<TraceRule RuleID="R42" RuleType="satisfiability" DocTypel="Module Model"
DocType2="Feature Model">
<Query>

declare namespace s=“ava:distanceControl.d”;

declare function local:getParentFeature($child as xs:string) as item ()
<
for Sitem A in doc(A£2A[)//Relationship/Rel_feature

where
normalize-space($item A)= normalize-space(§child)

return

SitemA/../../Feature_name

for

Sitem] in doc(A L1AL)//Module_Model/Module/Description,
Sitem2 in doc(A £f2A[f)//Feature_Model/Feature/Feature_name
where
local:igetParentFeature(string($item 2)) 1= ""
and

s:containsInDistance($item1,§item 2, local:getParentFeature(string($item 2)))

</Query>
<Action>
<Relation RuleID ="R42" Type="satisfiability" DocTypel="Module Model"
DocType2="Feature Model">
<Element Document=""> {§item!l/../Module_name} </Element>
<Element Document=""> {$item2} </Element>
</Relation>
< /Action>
</TraceRule>
<TraceRule RuleID="R43" RuleType="containment" DocTypel="Module Model"
DocType2="Class Diagram">
<Query>
declare namespace UML="org.omg.xmi.namespace. UML";

—

declare namespace s=“java:distanceControl.d”;

for Sitem 1 in doc(A£2Af)//UML:Classifier.feature/UML:O peration/@name
for Sitem2 in doc(ALIAL")//Module/Description

305

APPENDIX B - TRACEABILITY RULES

let St1 :=Siteml/./@name
where

s:containsInDistance($item 2,$iteml, $tl)

</Query>
<Action>
<Relation RuleID="R43" Type="containment" DocTypel="Module Model"
DocType2="Class Diagram">
<Element Document=""> {§item2/../Module_name} <Description/>
</Element>
<Element Document=""xClass> {§tl }</Class> <Operation> {Siteml }</Operation>
</Element>
< /Relation>
</Action>
< /TraceRule>
<TraceRule RuleID="R86a” RuleType="satisfiability" DocTypel="Subsystem Model"
DocType2="Feature Model">
<Query>

—

declare namespace s=“Java:distanceControl.d”;

declare function local:getParentFeature($child as xs:string) as item ()
for Sitem A in doc(AL£2A[f)//Relationship/Rel_feature

where
normalize-space(Sitem A)= normalize-space(Schild)

return

Sitem A /../.,/Feature,,name
%

for
Sitem1 in doc(A L1 AL)//Subsystem/Description,
Sitem 2 in doc(A£2A[f)//Feature_Model/Feature/Feature_name

where
nonnalize-space(local:getParentFeature(string($item 2))) = ""
and

s:containsInDistance(§item 1,$item 2)

</Query>
<Action>
<Relation RulelD ="R44" Type="satisfiability" DocTypel="Subsystem Model
DocType2="Feature Model">

<Element Document=""> {$iteml/../Subsystem_name} </Element>
<Element Document=""> {Sitem2} </Element>
</Relation>
</Action>

< /TraceRule>

306

B. I Direct Traceability Rules

<TraceRule RuleID="R45" RuleType="satisfiability" DocTypel="Process Model"
DocType2="Feature Model">
<Query>

declare namespace s=“ava:distanceControl.d”;
declare function local:getParentFeature($child as xs:string) as item ()
for Sitem A in doc(A£2Af)//Relationship/Rel_feature

where
normalize-space(Sitem A)= normalize-space($child)

return

SitemA/../../Feature_name

I8

for
Sitem1 in doc(A L1A[L)//Process_Model/Process/Description,
$itenr2 in doc(AL2A[f)//Feature_Model/Feature/Feature_name

where

normalize-space(local:getParentFeature(string($item2))) =""
and

s:containsInDistance($item 1,Sitem 2)

</Query>
<Action>
<Relation RuleID="R45" Type="satisfiability" DocTypel="Process Model"
DocType2="Feature Model">
<Element Document=""> {$iteml/../Process_name} </Element>
<Element Document=""> {Sitem2j </Element>
< /Relation>
< /Action>
< /TraceRule>
<TraceRule RuleID="R46" RuleType="satisfiability" DocTypel="Module Model"
DocType2="Feature Model">
<Query>

declare namespace s=“Java:distanceControl.d”;
declare function local:igetParentFeature($child as xs:string) as item ()
for Sitem A in doc(A£2Af)//Relationship/Rel_feature
where
normalize-space($item A)= normalize-space(Schild)

return

Sitem A /../../Feature_name
%

for
Sitem1 in doc(A £1A £)//Module_Model/Module/Description,

307

APPENDIX B - TRACEABILITY RULES

$item2 in doc(AL2A[f)//Feature_Model/Feature/Feature_name

where

normalize-space(local:getParentFeature(string($item 2))) = ""
and

s:containslnD istance($item ,$item 2)

</Query>
<Action>
<Relation RuleID="R46" Type="satisfiability" DocTypel="Module Model"
DocType2="Feature Model">

<Element Document=""> {$iteml/../Module_name} </Element>
<Element Document=""> {$item2} </Element>
< /Relation>
</Action>

< /TraceRule>
<TraceRule RuleID="R47" RuleType="dependency" DocTypel="Class Diagram"
DocType2="Feature Model">

<Query>

declare namespace UML="org.omg.xminamespace. UML?”;

—

declare namespace s=“java:distanceControl.d”;

declare function local:getClassinClass($diagram as xs:string) as item ()*

for $itemE in

doc(AL1AL)//UML:Diagram /UML:GraphElement.contained/UML:GraphNode/UML:GraphElem
ent.semanticModel/UML:UmllSemanticM odelBridge/UML:UmllSemanticM odel Bridge.elemen
t/UML:Class

where

SitemE/../../../../../../@name = Sdiagram

return $itemE

b

declare function local:getParentFeature($child as xs:string) as item ()

{

for $item A in doc(AL2A[)//Relationship/Rel_feature

where
normalize-space($item A)= normalize-space($child)

return

$item A/../../Feature_name

%

let Scl := Tocal:getClassinClass(*1*)

for $item () in Scl

for Sitem1 in

doc(AL1AL)//UML:Namespace.ownedElement/UML:Class/UM L:Classifier.feature/UML:O perat

ion

for $item2 in doc(A£2A[L)//Feature_Model/Feature/Description

308

B. I Direct Traceability Rules

let $t1 := Siteml/../../@name

where

$iteml/../../@ xmiid = $item ()/ @ xmi.idref

and

s:icontainsInDistance($item 2, $iteml/ @ name, $tl)
and

normalize-space(local:getParentFeature(string($item2/../Feature_name))) |=

</Query>
<Action>
<Relation RuleID="R47" Type="dependency" DocTypel="Class Diagram"
DocType2="Feature Model">
<Element Document=""> <Class> {Stl }</Class>
<Operation> {$item 1/@nam e}</Operation> </Element>
<Element Document="">
{local:getParentFeature(string($item2/../Feature_name))} </Element>
< /Relation>
</Action>
< /TraceRule>
<TraceRule RulelD="R48" RuleType="dependency" DocTypel="Sequence Diagram"
DocType2="Class Diagram">
<Query>

declare namespace UML="org.omg.xmi.namespace. UML";

declare function local:getM essageinSeq() as itemQ*

for Sitem A in

doc(AL1AL)//UML:GraphElement.semanticModel/UML:Uml1SemanticM ode]|Bridge/UML:Uml

1SemanticM odelBridge.element/ UM L:Link

return $item A

declare function local:getO bjectinSeq(Slink as node()) as item ()

for Sitem B in doc(A L1A[L)//UML:Link
where $itemB/@ xmi.id = $link/ @ xmi.idref

return $itemB/UML:Link.connection/UML:LinkEnd/UML:LinkEnd.instance/UML:O bject

2

declare function local:getO bjectinM odel(§object as node()) as item ()*

{

for Sitem C in doc(A£1A£)//UML:Object
where $itemC/@ xmi.id = $object/ @ xmi.idref

return $item C /UM L:lnstance.classifier/UM L:Class

declare function local:getClassO bjectinSeq($class as node()) as item ()

{

309

APPENDIX B-TRA CEABILITY RULES

for $itemD in doc(A£IA[)//UML:Class
where $itemD /@ xmi.id = $class/@ xmi.idref

return SitemD

2

declare function local:getClassname2($class as node()) as item ()*
for SitemD 2 in doc(A£2A[)//UML:Class
where $itemD2/@name = $class/@name

return $itemD 2

declare function local:getClassinClass($class as node(), Sdiagram as xs:string) as item ()*

fir $item E in
doc(A£2A£)//UML:Diagram/UML:Graphh’lement.contained/UML:Grathode/UML:GraphElem
ent.semanticModel/UML:UmllSemanticModelBridge/UML:UmllSemanticModelBridge.elemen
t/UML:Class

where SitemE /@ xmi.idref = $class/@ xmi.id

and $itemE/./../../../../../@name = Sdiagram

return SitemE

b

let Sitem1 := local:getM essageinSeq()

for $tl in Sitem1

for $item2 in local:getO bjectinSeq(Stl)

for Sitem3 in local:getO bjectinM odel($item 2)

for $item 4 in local:getClassO bjectinSeq($item 3)
for $item4_1 in local:getClassname2(§item 4)

for $item5 in local:igetClassinClass($item 4 _1,%2%*)
where

Stl/../ ../ ../ ./ .../ @name = *1 *

and

local:getParentClass($item4_1/@ name) = ""

</Query>
<Action>
<Relation RuleID="R48" Type="dependency" DocTypel="Sequence Diagram"
DocType2="Class Diagram">
<Element Document="">{$t/../../../../../../@xmiid} {$d/../../../../../../@name| {Stl}
{$item2; {Sitem3}</Element>
<Element Document=""> {local:getParentClass($item4_1/@name)} </Element>
< /Relation>
</Action>
</TraceRule>
<TraceRule RulelD="R49" RuleType="evoluation" DocTypel="Use Case" DocType2="Use
Case">
<Query>

declare namespace s=“java:distanceControl.d”;

for Sitem1 in doc(AL1A[L)//Use_Case/Title,

310

B. 1 Direct Traceability Rules

$item 2 in doc(AL2A[)//Use_Case/Title

where
$iteml/../@ UseCaselD = $item2/../@UseCaselD and
$iteml/../@ System = $item1/../@ System and
$iteml/../@Product_Member = $item2/../@Product_Memher and
s:containsInDistance($iteml, $item 2)
</Query>
<Action>
<Relation RuleID="R49" Type="evoluation”" DocTypel="Use Case"
DocType2="Use Case">
<Element Document=""> {§$iteml/../@ UseCaselD ({Sitem 1}
<System > {$item l/]@ System } {Sitem 1/.,/@Product_Member} </System>
</Element>
<Element Document=""> {§item2/../@ UseCaselD} {Sitem?2)
<System > {$item2/../@ System } {S$item2/../@Product_Member} </System>
</Element>
< /Relation>
< /Action>
</TraceRule>
<TraceRule RuleID="R50" RuleType="evoluation” DocTypel="Class Diagram"
DocType2="Class Diagram">
<Queiy>

declare namespace UML="org.omg.xmi.namespace. UML";

—

declare namespace s=“java:distanceControl.d”;

declare function local:getClassinClass($diagram as xs:string) as item ()*
{ for SitemE in
doc(ALIAL)//UML:Diagram /UML:GraphElement.contained/ UML:GraphNode/UML:GraphElem
entsemanticModel/UML:UmllSemanticModelBridge/UML:UmllSemanticM odelBridge.elemen
t/UML:Class
where
$itemE/../../../../../../@name = Sdiagram

return SitemE

2

let $cl := local:getClassinClass(*1*)
let $cl12 := local:getClassinClass(*2*)

for SitemO in Scl
for SitemOO in $cl2

for Sitem1 in doc(A£1A£)//UML:Class
for Sitem2 in doc(A£2A £)//UML:Class

where

(Sitem 1/ @ xmi.id = $item O /@ xmi.idref
and

Sitem2/@ xmi.id = SitemO O /@ xmi.idref
and

311

APPENDIX B - TRACEABILITY RULES

sicontainsInDistance($item2/ @ name, $iteml/@ name))
</Query>
<Action>
<Relation RuleID="R50" Type="evoluation” DocTypel="Class Diagram"
DocType2="Class Diagram”>
<Element Document=""> {§item] }</Element>
<Element Document="">jSitem2j</Element>
< /Relation>
</Action>
< /TraceRule>
<TraceRule RuleID="R51" RuleType="dependency" DocTypel="Class Diagram"
DocType2="Use Case”>
<Query>
declare namespace UML="org.omg.xminamespace. UML";

—

declare namespace s=“java:distanceControl.d”;

for $item A in
doc(A£lA£)//UML:Diagmm/UML:GraphElement.contained/UML:Grathode/UML:GmphEleni
entsemanticModel/UML:UmllSemanticM odelBridge/UML:UmllSemanticModelBridge.clemen
t/UML:Class

for$item 1 in
doc(ALIAL)//UML:Package/UML:Namespace.ownedElement/UML:Class/UM L:Classifier.featu
re/UML:Operation/@name

for $item?2 in doc(A£2A£)//Use_Case

let St1 := $iteml/../../../@name

where

SitemA/../../../../../patentinode()/ @name = *1*
and

$iteml/../../../@xmi.id = $item A/ @ xmi.idref
and

s:icontainsInDistance($item 2/ Title, $t 1)
and

s:containsInDistance($item2/Description, $iteml)

</Query>
<Action>
<Relation RuleID="R51" Type="dependency" DocTypel="Class Diagram"
DocType2="Use Case">

<Element Document=""xClasss> {$tl)</Class> </Element>
<Element Document=""> {Sitem 2/ Title }</Element>
< /Reladon>
</Action>

</TraceRule>
<TraceRule RuleID="R52" RuleType="dependency" DocTypel="Statechart Diagram"
DocType2="Use Case">

<Query>

declare namespace UML="org.omg.xmi.namespace. UML";

—

declare namespace s=“java:distanceControl.d”;

312

B. I Direct Traceability Rules

declare function local:getTransitioninState() as item ()*
for Sitem F in
doc(ALIAL)//UML:GraphElement.semanticModel/UML:Uml 1SemanticM odelBridge/UML:Uml
ISemanticModelBridge.element/ UM L:Transition

return SitemF

declare function local:igetStateinState($transition as node()) as item ()

for SitemG in doc(A L1 AL)//UML:SiinpleState
where $item G /UM L:StateVertex.incoming/@ xmi.idref = $transition/ @ xmi.id

return Sitem G

b

let Sitem1 := local:getTransitioninState()
for Stl in Siteml

for Sitem 2 in local:getStateinState (§tl)
for Sitem3 in doc(Af£2A[)//Use_Case/Description

for SitemE in
doc(AL1A[L)//UML:Diagram /UML:GraphElement.contained/ UML:GraphNode/UML:GraphElem
ent.semanticMode!/UML:Uml 1SemanticM odelBridge/UML:Um! 1SemanticM odelBridge.elemen
t/UML:Class

where $itemE/@name =$item2/../parent:node()/@name
and SitemE/../../../../../patentinode()/@name = *1*

and s:containsInDistance($item 3, Sitem2/@name)

</Query>
<Action>
<Relation RuleID ="R52" Type="dependency” DocTypel="Statechart Diagram"
DocType2="Use Case">
<Element Document=""> {Sitem2} </Element>
<Element Document=""> {Sitem3/../Title} </Element>
< /Relation>
< /Action>
< /TraceRule>
<TraceRule RuleID="R53" RuleType="dependency" DocTypel="Sequence Diagram"
DocType2="Use Case">

<Query>

—_n

declare namespace UML="org.omg.xmi.namespace. UML";

—

declare namespace s=“ava:distanceControl.d”;

declare function local:getM essageinSeq() as item ()*

{

313

APPENDIX B - TRACEABILITY RULES

for SiternA in
doc(AL1AL)//UML:GraphElement.semanticModel/UML:Uml 1SemanticModelBridge/UML:Uml
1SemanticM odelBridge.element/UML: Link

return Sitem A

declare function local:getO bjectinSeq($link as node()) as item ()

for SitemB in doc(A L1 Af)//UML:Link
where $itemB/@ xmi.id = $link/ @ xmi.idref

return $itemB/UML:Link.connection/UML:LinkEnd/UML:LinkEnd.instance/UML:O bject
%

declare function local:getO bjectinM odel(Sobject as node()) as item ()*

{

for SiternC in doc(ALIAL)//UML:Object
where $item C/@ xmi.id = Sobject/@ xmi.idref

return $item C /UM L:Instance.classifier/UML:Class

declare function local:getClassO bjectinSeq($class as nodeO) as item ()
for SitemD in doc(A£1AL)//UML:Class
where $itemD /@ xmiid = $class/@ xmi.idref

return $itemD

declare function local:getClassinClass($class as node(), Sdiasram as xs:string)as item ()*
{ for SitemE in
doc(ALIAL)//UML:Diagram /UML:GraphElement.contained/UML:GraphNode/UML:GraphElem
ent.semanticModel/UML:UmllSemanticModelBridge/UML:UmllSemanticModelBridge.elemen
t/UML:Class
where $itemE/@name =$class/@name
and SitemE/../../../../../parent:node()/@name = Sdiagram

return SitemE
%

let Sitem1 := local:getM essageinSeq()

for St1in Siteml

for Sitem 2 in local:getO bjectinSeq(Stl)

for Sitem 3 in local:getO bjectinM odel($item 2)
for $item 4 in local:getClassO bjectinSeq($item 3)

for Sitem5 in local:getClassinClass($item 4, *1%)

for Sitem 6 in doc(AL2A[)//Use_Case/Description

314

B. 1 Direct Traceability Rules

where s:containsInDistance($item 6, $item 5)

</Query>
<Action>
<Relation RuleID ="R53" Type="dependency" DocTypel="Sequence Diagram"
DocType2="Use Case">
<Element Document=""> (Sitem5} </Element>
<Element Document=""> {$item6/../Title} </Element>
< /Relation>
</Action>

< /TraceRule>

315

APPENDIX B - TRACEABILITY RULES

B.2. Indirect Traceability Rules

<TraceRule RuleID="R54" RuleType="similar" DocTypel="XML-Based-Rel"
DocType2="XML-Based-Rel">
<Query>

for $item1 in doc("file:///c:/Direct_TraceRel.xml")//Relation[@ Type="implements"],
Sitem 2 in doc("file:///c:/Direct_TraceRel.xml1")//Relation[@ Type="implements"]

where $iteml/@ D ocTypel="Use Case” and Siteml/@ DocType2 ="Sequence Diagram"
and $item2/@DocTypel="Use Case" and Sitem2/@DocType2="Sequence Diagram"
and (string($item]/Element[2]/Link) = string($item2/Element[2]/Link))

and ($item!l/Element[l]/@Document != Sitem2/Elementf 1]/@Document)

and ($iteml/Element[2]/@Document = Sitem2/Element[2]/@D ocument)

</Query>
<Action>
<Relation RuleID="R54" Type="similar" Tenn="sequence diagram implements use case">
<Element>{ Sitem 1/Elementl1]/@Document| {$item 1/Elementf 1(/Title } </Element>
<Element>{ $item2/Element[l]/@Document} {$item2/Element[1]/ Title }</Element>
<Implenrents> {Sitem 1/Element[2]/@ Document}{Sitem 1/Element[2]/Link}
</Implements>
< /Relation>
</Action>
< /TraceRule>
*cTraceRule RuleID="R55" RuleType="different" DocTypel="XML-Based-Rel"
DocType2="XML-Based-Rel">
<Query>

declare function local:getParentFeature($child as xs:string) as item ()

for Sitem A in
doc(AL2A[)//Relationship/Rel_feature
where normalize-space(Sitem A)= normalize-space(Schild)

return Sitem A/../../Feature_name

b

declare function local:getParentofVariantFeatures($one as node(), Stwo as node())as item ()
fir Sitem 1in doc(AL2A[)//Feature,

Sitem2 in doc(A£2A[f)//Feature

where (normalize-space(Sitem1/Feature_name) = normalize-space(Sone)

and normalize-space($item2/Feature_name) = normalize-space(Stwo)

and local:getParentFeature(Siteml/Feature_name) =
local:getParentFeature(Sitem2/Feature_name)

and local:getParentFeature(Siteml/Feature_name) 1= ""

and normalize-space($iteml/Feature_name) != normalize-space(Sitem2/Feature_name)
and Sitem1/Existential = Sitem 2/Existential

and (Siteml/Existential = "Optional” or Sitem1/Existential = "Alternative"))

return true()
3

for Sitem1 in doc("file:///c:/Direct_TraceRel.xml")//Relation[@ Type="containment"],
Sitem 2 in doc("file:///c:/Direct_TraceRel.xmr’)//Relation[@ Type="containment"]

316

file:///c:/Direct_TraceRel.xml")//Relation[@Type="implements
file:///c:/Direct_TraceRel.xml")//Relation[@Type="containment
file:///c:/Direct_TraceRel.xmr%E2%80%99)//Relation[@Type=%E2%80%9Dcontainment

B.2 Indirect Traceability Rules

where §iteml/@DocTypel ="Use Case" and $iteml/@DocType2="Feature Model"

and $item2/@DocTypel="Use Case" and Sitem2/@DocType2="Feature Model"

and (string($iteml/Element[l]/@ Document) != string($item2/Element[l]/@ D ocument))

and ($iteml/Element[2]/@Document = $item2/Element[2]/@Document)

and ($iteml/Element)2]/Feature_name != $item2/Element[2]/Feature_name) and
local:igetParentofVariantFeatures(Siteml/Element[2]/Feature_name,$item2/Element[2]/Feature_n

ame)

</Query>
<Action>
<Relation RuleID="R55" Type="different" Term="use case contains feature model">
<Element>{ $item 1/Element) 1]/@Document}{§item 1/Element) 1]/ Title}</Element>
<Element>{ $item 1/Element[1]/@Document) {$item2/Element[1]/ Title) </Element>
<Containment> {$item!/Element[2]/Feature_name}</Containment>
<Containment> {$item2/Element[2]/Feature_name}</Containment>
<VariantO f> {local:getParentFeature($item 1/Element[2]/Feature name) 1
</VariantO f>
< /Relation>
</Action>
</TraceRule>
<TraceRule RuleID="R56" RuleType="similar" DocTypel="XML-Based-Rel"
DocType2="XML-Based-Rel">
<Query>

declare namespace UML="org.omg.xmi.namespace. UML";

for Sitem1 in doc("file:///c:/Direct_TraceRelxml")//Relation[@ Type="satisfiability"],
$item 2 in doc("file:///c:/Direct_TraceRel.xml")//Relation[@ Type="satisfiability"]
where

$iteml/@DocTypel -'Class Diagram" and $iteml/@DocType2="Use Case" and
$item2/@D ocTypel="Class Diagram" and Sitem2/@DocType2="Use Case"

and

(string($item1/Element[1]/Class) = string($item2/Element)l]/Class))

and ($iteml/Element[l]/@Document = $item2/Element[l]/@ D ocument)

and ($iteml/Element|2]/@Document != Sitem2/Element[2]/@D ocument)

</Query>
<Action>
<Relation RuleID="R56" Type="similar" Term ="class diagram satisfies use case">
<Element> {$iteml/Element[2]/@Document} j$iteml/Element[2]/Title}</Element>
<Element> {$item2/Element[2]/@Document} {$item2/Element[2]/Title}</Element>
<Satisfiability> {$item 1/Element) 1]/@Document} {$item 1/Element) 1]/Class}
< /Satisfiability>
< /Relation>
</Action>
</TraceRule>
<TraceRule RuleID="R57" RuleType="similar" DocTypel="XML-Based-Rel"
DocType2="XML-Based-Rel">
<Query>

declare namespace UML="org.omg.xminamespace. UML";
for Sitem 1 in doc("file:///c:/Direct_TraceRel.xml1")//Relation[@ Type="implements"],

Sitem 2 in doc("file:///c:/Direct_TraceRel.xml")//Relation[@ Type="implements"]

where

317

file:///c:/Direct_TraceRel.xml")//Relation[@Type="satisfiability
file:///c:/Direct_TraceRel.xml")//Relation[@Type="satisfiability
file:///c:/Direct_TraceRel.xml")//Relation[@Type="implements
file:///c:/Direct_TraceRel.xml")//Relation[@Type="implements

APPENDIX B - TRACEABILITY RULES

Siteml/@DocTypel ="Class Diagram" and $iteml/@DocType2="Use Case" and
$item2/@DocTypel="Class Diagram" and $item2/@DocType2="Use Case"

and

(string(Sitem1/Element([l]/Class) = string($item2/Element[l]/Class))

and (Siteml/Element} 1]/@Document = $item2/Element[1]/@Document)

and (Sitem 1/Element[2]/@Document != Sitem2/Element[2]/@Document)

</Query>
<Action>
<Relation RuleID="R57" Type="similar" TeiTn="class diagram implements use case">
<Element>{ $item 1/Element[2]/@Document) {$item 1/Element[2]/Title}</Element>
<Element>j$item2/Element[2]/@Document} {$item2/Element[2]/Title}</Element>
<Implements>| Sitem 1/Element[1]/@Document} {Sitem 1/Elementf1]/Class}
</Implements>
< /Relation>
</Action>
</TraceRule>
<TraceRule RuleID="R58" RuleType="similar" DocTypel="XML-Based-Rel"
DocType2="XML-Based-Rel">
<Query>

—_n

declare namespace UML="org.omg.xmi.namespace. UML";

for $item1 in doc("file:///c:/Direct_TraceRel.xml")//Relation[@ Type="satisfiability"],
Sitem2 in doc("file:///c:/Direct_TraceRel.xml1")//Relation[@ Type="satisfiability"]
where

Siteml/@DocTypel ="Class Diagram" and Siteml/@DocType2="Use Case” and
Sitem2/@DocTypel="Class Diagram" and Sitem2/@DocType2="Use Case"

and

(stringfSitem1 /Element} 1]/Class) = string($item2/Element[l]/Class))

and (Sitem 1/Element}l]/@Document = $item2/Element[1]/@Document)

and (string($item1/Element[2]/@Document) != string(Sitem2/Element[2]/@ D ocument))
and (string($iteml/Element[2]/Title) 1= "")

and (string($item2/Element[2]/Title) 1= "")

</Query>
<Action>
<Relation RuleID="R58" Type="similar" Term="class diagram satisfies use case”>
<Element> {Sitem 1/Element[2]/@Document} {Sitem 1/Element[2]/Title}</Element>
<Element> {Sitem2/Element}2]/@Document} (Sitem2/Element[2]/Title}</Element>
<Satisfiability> { Sitem 1/Element} 1]/@Document} {Siteml/Element} 1|/Class)
< /Satisfiability>
< /Relation>
</Action>
</TraceRule>
<TraceRule RuleID="R59" RuleType="similar” DocTypel="XML-Based-Rel"
DocType2="XML-Based-Rel">
<Query>

—_n

declare namespace UML="org.omg.xminamespace. UML";

for Sitem 1in doc("file:///c:/Direct_TraceRel.xml1")//Relation[@ Type="dependency"],
Sitem2 in doc("file:///c:/Direct_TraceRel.xml1")//Relation[@ Type="dependency"]

318

file:///c:/Direct_TraceRel.xml")//Relation[@Type="satisfiability
file:///c:/Direct_TraceRel.xml")//Relation[@Type="satisfiability
file:///c:/Direct_TraceRel.xml")//Relation[@Type="dependency
file:///c:/Direct_TraceRel.xml")//Relation[@Type="dependency

B.2 Indirect Traceability Rules

where

$iteml/ @D ocTypel ="Sequence Diagram" and Siteml/@DocType2="Use Case" and
$item2/@D ocTypel="Sequence Diagram" and Sitem2/@DocType2="Use Case"

and

(string(Sitem 1/Element!2]/Link) = string(Sitem2/Element[2]/Link))

and (Siteml/Element[2]/@ Document = $item2/Element[2]/@ Document)

and (Siteml/Elementl.l]/@Document != Sitem2/EJement[l]/@Document)

and (string($iteml/Element! 1]/Title) 1= "")

and (string($item 2/ Element[l]/ Title) 1="")

and $iteml/e/UML:Link/@ xmi.idref = $item2/e/UML:Link/ @ xmi.idref

</Query>
<Action>
<Relation RuleID="R59" Type="similar" Term="sequence diagram depends on use case">
<Element> {§item 1/Element! 1]/@Document} {Sitem 1/Element!1j/Title}</Element>
<Element> {$item2/Element[1;/(©Documentj {$item2/Element[1;/Title)</Element>
<Implements> {$iteml/Element[2]/@Document) {Siteml/Element[2]/Link}
</Implements>
< /Relation>
</Action>
< /TraceRule>
<TraceRule RuleID="R60" RuleType="similar" DocTypel="XML-Based-Rel"
DocType2="XML-Based-Rel">

<Query>
declare namespace UML="org.omg.xmi.namespace. UML";

for Sitem 1in doc("file:///c:/Direct,, TraceRel.xmI")//Relation[@ Type="refinement"],
Sitem2 in doc("file:///c:/Direct_TraceRel.xmz")//Relation[@ Type="refinement”]
where

' and

Siteml/@ D ocTypel ="Statechart Diagram" and Sitem!/@ D ocType2="Sequence Diagram"
Sitem2/@D ocTypel="Statechart Diagram" and Sitem2/@ D ocType2="Sequence Diagram"
and

(string($item1/Element! 1;/Object) = string($item2/Element[1;/Object))

and (string($item 1/Element! 1;/Operation) = string($item2/Element[l{/O peration))

and ($iteml/Element[l]/@Document = Sitem2/Element[lj/(©Document)

and (Siteml/Element[2]/<© Document != §item2/Element[2]/@ D ocument)

</Query>
<Action>
<Relation RulelD -'R60" Type-'similar” Term="statechart diagram refines sequence
diagram ">
<Element> {Sitem 1/Element[2]/@Document}
{Siteml/Element[l]/Object} {Siteml/Operation) </Element>
<Element> {$§item2/Element[2;/(©Document}
{$item2/Element[lj/Object) {Sitem2/O peration} </Element>
<Implements>{Sitem 1/Element! I;/(©Document)
{Sitem 1/Element[1;/State} </Implements>
< /Relation>
< /Action>
< /TraceRule>
<TraceRule RuleID="RG61" RuleType="similar" DocTypel="XML-Based-Rel"
DocType2="XML-Based-Rel">
<Query>

319

file:///c:/Direct%E2%80%9ETraceReI.xmI")//Relation[@Type="refinement
file:///c:/Direct_TraceRel.xmr')//Relation[@Type="refinement%E2%80%9D

APPENDIX B - TRACEABILITY RULES

declare namespace UML="org.omg.xminamespace. UML";

for $item1 in doc("file:///c:/Direct_TraceRel.xml")//Relation[@ Type="refinement"],
Sitem 2 in doc("file:///c:/Direct,, TraceRel.xml1")//Relation[@ Type="refinement"|

where

$iteml/@DocTypel ="Sequence Diagram" and Siteml/@DocType2="Class Diagram" and
$item2/@DocTypel="Sequence Diagram" and $item2/@DocType2="Class Diagram"

and

(string($item1/Element[l]/Object) = string($item2/Element([l]/0bject))

and (Sitem 1/Element! 1]/@Document = $item2/Element[1]/@Document)

and ($iteml/Element[2]/@Document != §item2/Element[2]/@Document)

</Query>
<Action>
<Relation RuleID="R61" Type="similar" Term ="sequence diagram refines class diagram">
<Element> {$iteml/Element[2]/@Document} {Siteml/Element!2]/Class}</Element>
<Element> {$item2/Element[2]/@Document} {$item2/Element[2]/Class)</Element>
<Refinement> {Siteml/Element[l]/@Document} {Siteml/Element[l]/Object}
< /Refinement>
< /Relation>
</Action>
</TraceRule>
<TraceRule RuleID="R62" RuleType="similar" DocTypel="XML-Based-Rel"
DocType2="XML-Based-Rel">
<Query>

declare namespace UML="org.omg.xmi.namespace. UML";

for $item! in doc("file:///c:/Direct_TraceRel.xmr’)//Relation[@ Type="dependency"],
Sitem 2 in doc("file:///c:/Direct_TraceRel.xml1")//Relation[@ Type="dependency"]
where

Siteml/@DocTypel ="Class Diagram" and $iteml/@DocType2="Use Case" and
Sitem2/@DocTypel="Class Diagram" and $item2/@DocType2="Use Case"

and

(string(Sitem 1/Element! 1J/Class) = string($item2/Element([l]/Class))

and ($iteml/Element[2]/@Document != Sitem2/Element[2]/@ D ocument)

and ($iteml/Element[l]/@Document = $item2/Element[l]/@Document)

</Query>
<Action>
<Relation RuleID="R62" Type="similar" Term ="class diagram implements use case">
<Element> {$item 1/Element!2]/@ Document} {$item 1/Element[2]/Title}</Element>
<Element> {$item2/Element[2]/@Document} {$item2/Element[2]/Title)</Element>
<Implements>(Sitem 1/Element! 1]/@Document} {Sitem 1/Element!1]/Class}
</Implements>
< /Relation>
</Action>
< /TraceRule>
<TraceRule RuleID="R63" RuleType="different" DocTypel="XML-Based-Rel"
DocType2="XML-Based-Rel">
<Query>

320

file:///c:/Direct_TraceRel.xml")//Relation[@Type="refinement
file:///c:/Direct%E2%80%9ETraceRel.xml")//Relation[@Type="refinement
file:///c:/Direct_TraceRel.xmr%E2%80%99)//Relation[@Type="dependency
file:///c:/Direct_TraceRel.xml")//Relation[@Type="dependency

B.2 Indirect Traceability Rules

declare namespace UML="org.omg.xmi.namespace. UML";

declare function local:getParentClass($child as xststring) as item ()
for Sitem A in doc(A L1 AL)//UML:Generalization/UML_Generalization.child

where
$item A /UML:Class/ @ xmi.idref = Schild

return

SitemA/../UML:Generalization.parent/UML:Class

%

declare function local:getParentofVariantClasses($one as xs:string, Stwo as xs:string)as item ()
{ for $item] in doc(AL2AL)//UML:Generalization/UML:G eneralization.child,
$item2 in doc(A L2A L)/ /UML:Generalization/UML:G eneralization.child
where
(Sitem!l/UML:Class/ @ xmi.idref = $one and
$item2/UML:Class/ @ xmi.idref = $two and
local:getParentClass($item1/ UM L:Class/ @ xmi.idref) =
local:getParentClass($item2/UML:Class/ @ xmi.idref) and
local:getParentClass($item1/UML:Class/ @ xmi.idref) != "" and
Sitem1/UML:Class/ @ xmi.idref != $item2/UML:Class/ @ xmi.idref)
return local:getParentClass($iteml/ UM L:Class/@ xm i.idref)
¥
declare function local:getClassID ($name as xs:string)as xs:string
| for $itemB in doc(AL2AL)//UML:Class/@name
where $itemB = Sname
return $itemB/../@ xmi.id
13
for Siteinl in doc("file:///c:/Direct_TraceRel.xmr)//Relation[@ Type="implements"],
$item 2 in doc("file:///c:/Direct_TraceRel.xml1")//Relation[@ Type="implements"]
where
$iteml/@DocTypel ="Class Diagram" and $iteml/@DocType2="Feature Model" and
$item2/ @D ocTypel="Class Diagram" and $item2/@DocType2="Feature Model"
and
(string($item 1/Element[2]/Feature_name) = string($item2/Element[2]/@ Feature))
and ($iteml/Element!l]/@Document = $item2/Element[l]/@ D ocument)
and (Sitem1/Element! 1]/Class != Sitem2/Element[1]/ Class)
and
local:getParentofVariantClasses(local:getClassID (Siteml/Element[l]/Class/@ name),local:getCla
ssID ($item2/Element[l]/Class/ @ name))

</Query>
<Action>
<Relation RuleID="R63" Type="different" Term ="class implements feature">
<Element>{ $item 1/Element[2]/Feature_name}</Element>
<Element> {$item2/E]ement[2]/Feature_name) </Element>
<Implements> {$iteml/Element[l]/Class)</Implements>
<Implements> {Sitem2/Element! 1]/Class } </Implements>
<VariantO f> {local:getParentClass(local:getClassID ($iteml/Element! 1]/Class/@name))}
</VariantO f>
</Relation>
< /Action>

< /TraceRule>

321

file:///c:/Direct_TraceRel.xmr)//Relation[@Type="implements
file:///c:/Direct_TraceRel.xml")//Relation[@Type="implements

Appendix C —Extended XQUERY Functions

C.l.getTransitioninState

declare function local:getTransitioninState() as item()*

{

for S$itemF in

doc (£££) //UML:GraphElement.semanticModel/UML:UmllSemanticModelBri
dge/UML:UmllSemanticModelBridge.element/UML:Transition

return S$itemF

}i

C.2. getStateinState

declare function local:getStateinState($Stransition as node()) as
item ()

gor $itemG in doc (£££)//UML:SimpleState

where

$itemG/UML:StateVertex.incoming/UML:Transition/@xmi.idref =
Stransition/@xmi.idref

return $itemG

}i

C.3. getMessageinSeq

declare function local:getMessageinSeqg(as item()*

{

for $itemA in

doc (£££) //UML:GraphElement .semanticModel/UML:UmllSemanticModelBri
dge/UML:UmllSemanticModelBridge.element/UML:Link

return S$itemA

i

C.4 getObjectinSeq

C.4. getObjectinSeq

declare function local:getObjectinSeq($1link as node()) as item()

{

for $itemB in doc (£££)//UML:Link

where $itemB/@xmi.id = $1ink/@xmi.idref

return
$itemB/UML:Link.connection/UML:LinkEnd/UML:LinkEnd.instance/UML:0
bject

1

C.5. getClassID

declare function local:getClassname (Sname as xs:string) as
xs:string

{

for $itemB in doc(£££)//UML:Class/Oname

where $itemB = S$name

return $itemB/../0Oxmi.id

b

C.6. getClassObjectinSeq

declare function local:getClassObjectinSeqg($Sdiagram as xs:string)
as item()

for S$itemE in

doc (£££) //UML:Diagram/UML:GraphElement.contained/UML:GraphNode/UM
L:GraphElement.semanticModel/UML:UmllSemanticModelBridge/UML:Umll
SemanticModelBridge.element/UML:Class

where $ 1 t em E / / § n a m e = $diagram

return S$itemE

}i

C.7. getParentFeature

declare function local:getParentFeature (Schild as xs:string) as
item ()

for S$itemA in doc (£££)//Relationship/Rel feature
where
normalize-space ($itemA)= normalize-space ($child)

return

$itemA/../../Feature name

b

323

APPENDIX C- EXTENDED XQUERYFUNCTIONS

C.8. getChildrenFeature

declare function local:getChildrenFeature ($parent as xs:string)
as item()*

{

for $itemA in doc (£££)//Feature/Relationship/Rel feature

where -
normalize-space ($itemA/../../Feature name)= normalize-

space ($parent)

return

SitemA

}

C.9. getFeatureofSubsystem

declare function local:getFeatureofSubsystem ($subsystem as
xs:string) as item()*

gor $itemA in

doc (£££) //Feature Model/Feature/Allocated to Subsystem
where

normalize-space ($itemA)= normalize-space ($subsystem)

return SitemA/S$itemA/../Feature name

bi

C.10. getOperationinSeq

declare function local:getOperationinSeqg(as item()*

{

for $itemA in

doc (£££) //UML:GraphElement .semanticModel/UML:UmllSemanticModelBri
dge/UML:UmllSemanticModelBridge.element/UML:Operation

return $itemA

}i

C.ll. getOperationinModel

declare function local:getOperationinModel (Soperation as node ())
as item()*

for $itemC in doc (£££)//UML:Classifier.feature/UML:Operation
where $itemC/@xmi.id = S$Soperation/Oxmi.idref
return S$itemC

}i

324

C 12 getStateofOperationinState

C.12. getStateofOperationinState

declare function localrgetStateofOperationinState ($Soperation as
node ()) as item|)

for $itemD in doc (£££)//um 1 :SimpleState

where $itemD/@name = S$operation/Oname

return $itemD

bi

C.13. getClassinClass

declare function local:getClassinClass ($diagram as xs:string) as
item()*

for S$itemE in

doc (A£1Af) //UML:Diagram/UML:GraphElement.contained/UML :GraphNode/
UML:GraphElement.semanticModel/UML:UmllSemanticModelBridge/UML :Um
USemanticModelBridge.element/UML:Class

where

$ i t em E / § n a m e = $diagram

return S$itemE

}i

C.14. getParentofVariantClasses

declare function local:getParentofVariantClasses (Sone as node(),
Stwo as node ())as item()

for S$iteml in

doc (A£2Af) //UML:Generalization/UML Generalization.child,
Sitem2 in

doc (A£2Af) //UML:Generalization/UML Generalization.child

where

where

($iteml/UML:Class/0Oxmi.idref = S$Sone

and

Siteml/UML:Class/@xmi.idref = $two

and local:getParentClass ($iteml/UML:Class/Oxmi.idref) =
local:getParentClass ($item2/UML:Class/0xmi.idref)

and local:getParentClass ($iteml/UML:Class/Oxmi.idref) != "" and
Siteml/UML:Class/Oxmi.idref != $item2/UML:Class/0Oxmi.idref)
return local:getParentClass ($iteml/UML:Class/0Oxmi.idref)

b

325

APPENDIX C- EXTENDED XQUERYFUNCTIONS

C.15. getParentofVariantFeatures

declare function local:getParentofVariantFeatures ($one as node (),
Stwo as node ())as item()
for $iteml in doc (A£2Af)//Feature,

Sitem2 in doc (A£2Af)//Feature

where (normalize—space($iteml/Feature7name) = normalize-
space ($Sone)
and normalize-space($Sitem2/Feature name) = normalize-space ($two)

and local:getParentFeature($iteml/Feature name) =
local:getParentFeature ($item2/Feature name)
and local:getParentFeature($iteml/Feature name) [E

and normalize-space($iteml/Feature name) = normalize-

space ($item2/Feature name)

and $iteml/Existential = $item2/Existential

and ($iteml/Existential = "Optional" or $iteml/Existential =
"Alternative"))

return local:getParentFeature (Siteml/Feature name)

b

C.16. getParentClass

declare function local:getParentClass($child as xs:string) as
item ()

{

for $itemA in
doc (A£1A£) //UML:Generalization/UML Generalization.child

where
SitemA/UML:Class/0Oxmi.idref = $child

return

SitemA/../UML:Generalization.parent/UML:Class
}i

326

Appendix D — Example Documents in

Mobile-Phone Systems

APPENDIX D - EXAMPLE DOCUMENTS IN MOBILE-PHONE SYSTEMS

D.1. Use Case —PM1

<?xml version="1.0" encoding="UTF-8"?>
<Use_Case UseCaseID="UCI" System="MobilePhone” Product_Member="PM1"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="Z:\web\XTraQue\Use_case.xsd">

<Title>
<VVG>Sending</VVG>
<ATO0>a</ATO>
<NN 1>Message</NN 1>
</Title>

<Description>
<ATO>The</ATOxNNI>phone</NNIXxVBZ>is</VBZ><AJO>able</AJO>
<TOO>to</TOOxVVI>send</VVIXATO>a</ATOxNN 1>text</NN 1>
<NN 1>message</NN 1><SC>.</SCxAT>The</ATxNN 1>user</NN 1>
<VM>can</VMxVVI>specify</VVIxAT1>an</ATIxNNI>address</NNI>
<IO>0f</IOXxAT 1>a</AT 1xN N 1>receiver</NN I1xII>by</II>
<VVG>selecting</VVGxII>from</IIxAT 1>a</AT1xN N 1>list</NN 1>
<IO>0f</IOxNN2>contacts</NN2xSC>.</SC>
</Description>
<Level> Primary task</Level>
<Preconditions>
<AT>The</ATxNN 1>user</NN 1><VHZ>has</VHZxVHZ>already</VHZ>
<VVN>selected</VVNxNNI>function</NNIxIO>o0f< /10>
<VVG>sending</VV G xAT 1>a</AT1xN N 1>lexI</NNI1>
<NNI>message</NNlIxn>from</IIxAT>the</ATxJJ>main</JJ>
<NN 1>menu</NN 1xSC>.</SC>
< /Preconditions>
<Postconditions>
<AT>The</ATxNN 1>phone</NN1xVHZ>has</VHZxVVN >sent</V VN>
<AT>the</ATxNN 1>message</NN 1xSC>.</SC>
< /Postconditions>
<Primary_actor> The user </Primary_actor>
<Secondary_actors/>
<Flow_of_events>
<Event>
<AT>The</ATxNNI>system</NNIxVVZ>shows</VVZ>
<AT 1>an</AT1xN N 1>editor</NN 1> <IF>for</IF>
<VVG>writing</VVGxAT 1>a</AT 1xN N | >message</NN 1>
</Event>
<Event>
<AT>The</ATxNN 1>user</NN 1xN N 1>key-in</NN 1>
<AT 1>a</AT1xN N 1>phone</NN 1xN N 1>number</NN 1>
<I0>0i'</IO x AT 1>a</AT1xN N 1>receiver</NN 1>
<SC>.</SCxRR>Moreover</RRxSC>,</SCxAT>the</AT>
<NN 1>user</NN 1><V VI>select</VVIxAT 1>a</AT 1>
<NNI>phone</NN 1xN N 1>number</NN 1><IO0O>0f</I10>
<AT 1>a</AT1xN N 1>receiver</NN 1><II>by</II>
<VVG>selecting</VVGxII>from</II><AT 1>a</AT1>
<NNI>list< /NN 1><I0>0f</IOxNN2>contacts</NN2>

328

http://w

D. 1 Use Case - PM1

<SC>.</SC><VVO>Note</VVO><AT>the</ATxNNI>user</NNI>
<VVI>send</VVIxAT>the</ATxNN 1>text</NN 1>

<NN 1>message</NN 1xII>to< /IIx]J]>multiple</]J]>
<NN2>receivers</NN2xII>by</II><VVG>inserting</VVG>
<JJ>multiple</JJxJ]J>mobile</JJxN N 1>phone</NN 1>
<NN2>numbers</NN2xSC>.</SC>

</Event>

<Event>
<AT>Thc</ATxNNI>system</NNIxVVD>displayed</VVD>
<AT>the</ATxN N 1>phone</NN 1><NN 1>number</NN 1>

AV g

</Event>

<Event>
<AT>The</ATxN N 1>usetr</NN1x V VI>enter</VVI>
<AT>the</ATxNN 1>message</NN 1><SC>.</SC>
<RR>Otherwise</RRxDD 1>This</DD 1x V BZ>is</VBZ>
<VVN>lirmted</VVNxII>under</1IxAT>the</AT>
<JJ>maximum</JJxNN 1>size</NNIxIO>0f</I0>
<VVG>sending</VVGxAT>the</ATxNN 1>text</NN 1>
<NN I>message</NN IxSC>.</SC>

</Event>

<Event>
<AT>The</ATxNNI>system</NNIxVVD>displayed</VVD>
<AT>the</ATxNN 1>message</NN1><S8C>.</SC>
<VVO>Note</VVOxCST>that </CSTxAT>the</AT>
<NN2>events</NN2xVBR>are</VBRxXX>not</XX>
<JJ>sequential</JJxNN2>processes</NN2xSC>.</SC>

</Event>

<Event>
<AT>The</ATxNN 1>usetr</NN 1x V VZ>confirms</VVZ>
<VVG>sending</VVGxAT>the</ATxNNI>message</NNI>

VA g

</Event>

<Event>
<AT>The</ATxNN 1>system</NN 1><VVZ>establishes</VVZ>
<AT>the</ATxNNI>connection</NNIxIF>for</IF>
<VVG>sending</VVGxSC>.</SC>

</Event>

<Event>
<CS>If</CSxAT>the</ATxNN 1>connection</NN 1>
<VBZ>is</VBZxRR>properly </RRxVVN>set</VVN>
<SC>,</SCxAT>the</ATxN N 1>system</NN 1>
<VVZ>sends</VV Z x AT >the</ATxN N 1>message</NN 1>
<SC>.</SCxRR>Otherwise</RRxSC>,</SC>
<CS>if</CSxAT>the</ATxNN1>system</NNI>
<VVZ>displays</VVZxAT 1>an</AT1><]JJ>alert</JJxII>to</II>
<AT>the</ATxNNI1>user</NNIxIF>for</IF>
<APPGE>its</APPGExNN2>circumstances</NN2xSC>.</SC>

</Event>

329

APPENDIX D - EXAMPLE DOCUMENTS IN MOBILE-PHONE SYSTEMS

<Event>
<CS>After</CS><VVN>completed</VVNxAT>the</AT>
<NN 1>sending</NN1><SC>,</SCxAT >the</AT>
<NN 1>system</NN1x V VZ>disconnects</VVZxAT>the</AT>
<NN 1>connection</NN 1><SC>.</SC>
</Event>
<Event>
<AT>The</ATxNN 1>phone</NN 1><VVZ>displays</VVZ>
<AT>the</ATxNNI>status</NN 1xIO>o0f< /10>
<VVG>sending</VVGxCC>and</CCxVVZ>keeps</VVZ>
<AT 1>a</AT1xN N 1>log</NN 1><I10>o0f</I0>
<VVG>sending</VVGxSC>.</SC>
</Event>
</Flow_of_events>
<Exceptional_events/>
<Superordinate_use_case/>
<Subordinate_use_case/>
</Use_Case>

Figure D -1: Use case sending a message

330

D.l Use Case-PM 1

<Use_Case UseCaseID="UC2" System="Mobile Phone" Product_Member="PM1"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:znoNamespaceSchemaLocation="Z:\web\XTraQue\Use_case.xsd”>

<Title>
<VV G>Making</VVG>
<ATO0>a</ATO>
<NN 1>call</NN 1>
</Title>

<Description>
<AT0>The</ATOxNN 1>phone</NN 1><VBZ>is</VBZ>
<AJO>able</AJOXxTOO>to</TOO> <VVI>make</VVI>
<ATO0>a</ATOxNN 1>call</NN1><SC>.</SCxAT0>The</ATO0>
<NN 1>user</NN1><VMO0>can</VMO0xV Vi>select</VVI>
<AT0>a</ATO0xAJO0>calling</AJOxNN 1>phone</NN 1>
<NN1>number</NN1><PRP>from</PRPxATO>a</ATO>
<NN 1>list</NN1><PRF>o0f</PRFxNN 1>phone</NN 1>
<NN2>numbers</NN2xDTQ>which</DTQxVBB>are</VBB>
<VVN>restored</VVNxPRP>in</PRPxATO>the</ATO>
<NNO0>data</NNOxNN 1>collection</NN 1><CJC>o0r</CJC>
<VVB>enter</VVBxATO>the</ATOxNNI>number</NNI>
<PRP>via</PRPxNN 1>keypad</NN1xSC>.</SCxC]JS> After</CJS>
<ATO0>the</ATOxNN I>user</NNIx V VZ>confirms</VVZ>
<ATO0>a</ATOxNN 1>calling</NNIxATO>the</ATO>
<NN 1>phone</NN1x V VZ>establishes</VVZxATO0>the</AT0>
<NN 1>line</NN1xN N 1>connection</NN 1><TOO>to</TOO>
<VVi>create</VVIXATO>a</ATOxNN 1>call</NN 1>
<SC>.</SCxCJS>1f</CJSxRR>properly</RRxVDN >done</VDN >
<ATO0>the</ATOxNN 1>phone</NN 1xVVZ>dials</VVZ>
<PRP>for</PRPxATO>a</ATOxNN 1>response</NN 1>
<PRP>from</PRPxATO>the</ATOxNN 1>receiver</NN 1>
<SC>.</SCxAVO>Otherwise</AVOxATO>the</ATO>
<NN 1>phone</NN 1><VVZ>informs</VVZxATO0>the</ATO0>
<NN 1>user</NN1x AT0>a</ATOxNN 1>problem</NN 1>
<PRP>0on</PRPxATO>the</ATOxNN 1>connection</NN 1>
<PRF>of</PRF> <VVG>dialling</VVGxSC>.</SC>
<PRP>In</PRP> <ATO0>the</ATOxNN 1>case</NN 1>
<CJT>that</CJTxATO>the</ATOxNNI1>destination</NNI1>
<NN 1>phone</NN 1><VBZ>is</VBZxV VN>engaged</VVN>
<CJC>0r</CJCxXX0>not</XX0xAJ0>able</AJ0>
<TOO>to</TOO> <VVI>reach</VVIxATO0>the</ATO0>
<NN 1>signal</NN 1><AT0>the</ATOxNN 1>phone</NN 1>
<NN2>responses</NN2xAT0>a</ATOxNN 1>voice</NN 1>
<NN 1>message</NN 1><PRP>to</PRP><ATO0>the</AT0>
<NN 1>uset</NN1><PRP>for</PRPxDPS>its</DPS>
<NN2>circumstances</NN2xSC>.</SC>

</Description>

<Level>Primary task</Level>

<Preconditions>
<AT>The</ATxNN 1>user</NN 1><VHZ>has</VHZ>
<VVN >selected</VVNxNNI>function</NNIx10 >o0f< /10 >
<VVG>making</VVG xAT 1>a</AT 1xN N 1>call</NN 1>
<II>from</IIxAT>the</ATx]JJ>main</JJxN N 1>menu</NN 1>
<SC>.</SCx/Preconditions> ...

<Postconditions>
<AT>The</ATxNNI>phone</NNIxVBZ>is</VBZx]J]>ready</JJ>
<IF>for</IFxMD>next</MDxNN2>actions</NN2xSC>.</SC>

</Postconditions>

<Primary_actor>The user</Primary_actor> ...

331

http://www

APPENDIX D - EXAMPLE DOCUMENTS IN MOBILE-PHONE SYSTEMS

ASecondary_actors>-</Secondary_actors>

<Flow_of_events>

<Trigger/>

<Event>

</Event>

<Event>

</Event>

<Event>

</Event>

<Event>

</Event>
<Evenl>

</Event>

<Event>

</Event>

<Event>

</Event>

<Event>

</Event>

<AT>The</AT> <NN 1>phone</NN 1><VBZ>is</VBZ>
<JJ>ready</JJ><TO>to</TOxVVI>make</VVI>
<AT 1>a</AT1><NNI>call</NN 1><SC>.</SC>

<AT>The</AT><NN 1>user</NN 1x VVZ>selects</VVZ>
<AT 1>a</AT1xN N 1>phone</NN 1xN N 1>number</NN 1>
<II>from</IIxAT 1>a</AT1xN N 1>list</NN 1>
<IO>0f</IOxNN2>contacts</NN2xCC>or</CC>
<VVZ>enters</VVZxAT 1>a</AT1xN N I>phone</NN 1>

%\Iﬁ?mber</NN 1x 1 1>via</IIxNN 1>keypad</NN 1>

<AT>The</AT> <NN 1>user</NN 1><VVZ>confirms</VVZ>
<V V>G27aking</VVG x AT 1>a</AT 1><NN 1>call</NN 1>

<

<AT>The</ATxNN 1>system</NN 1xVVZ>establishes</VVZ>
<AT>the</ATxNN 1>line</NN 1xN N 1>connection</NN 1>

<</

<CS>If'</CSxAT>the</ATxNNI>connection</NNI1>
<VBZ>is</VBZxRR>properly</RRxVVN>set</VVN >
<8C>,</SCxAT>the</ATxN N 1>phone</NN 1>
<VVZ>dials</VVZxAT>the</ATxN N 1>number</NN 1>
<II>to</IIxAT>the</ATxNN I>destination</NN 1>
<SC>.</SCxRR>Otherwise</RRxAT>the</AT>
<NNI>phone</NNIxVVZ>informs</VVZxAT>the</AT>
<NN 1>user</NN I1xIF>for</IF><AT>the</AT>
<JJ>existing</JJxNN2>problems</NN2xSC>.</SC>

<CS>If</CSxAT>the</ATxNN 1>destination</NN 1>

<NN 1>phone</NN 1xVBZ>is</VBZx]J]>engaging</J]>
<CC>o0r</CCxXX>not</XXxJK>able</JK>
<TO>to</TOxVVI>reach</VVIxSC>,</SC>
<AT>the</ATxNN 1>phone</NNIxVVZ>informs</V VZ>
<AT>the</ATx N N2>users</NN 2><IF>for</IF>
<APPGE>its</APPGExNN2>circunistances</NN2xSC>.</SC>

<AT>The</ATxNNI>user</NNIxVVZ>confirms</VVZ>
<VVG>hanging</VVGxRP>up</RPxAT>the</AT>
<NN 1>call</NN1xSC>.</SC>

<AT>The</ATxNNI>phone</NNI1> <VVZ>disconnects</VVZ>
<AT>the</ATxNN 1>connection</NN 1xSC>.</SC>

332

DA Use Case-PM1

<Event>
<AT>The</AT><NN 1>phone</NN 1><VVZ>shows</VVZ>
<NN 1>usage</NN1xI10 >0f< /IO xV VG>makmg</VVG>
<AT 1>a</AT 1xN N 1>call</NNI1><II>to</II>
<AT>the</ATxNN 1>user</NN 1><SC>.</SC>
</Event>
<Event>
<AT>The</ATxNN 1>phone</NN 1><VVZ>keeps</VVZ>
<AT1>a</ATIxN N 1>log</NNIxN N 1>file</NN 1>
<10 >0f</I0xVVG>making</VVGxATI1>a</ATIl>
<NN 1>call</NN 1> <II>at</IIxAT >the</AT>
<NN 1>moment</NN 1><II>in< /IIxAT>the</AT>
<NN>data</NNxNN 1>storage</NN 1><SC>.</SC>
</Event>
</Flow_of_events>
<Exceptional_events/>
<Superordinate_use_case/>
<Subordinate_use_case/>

</Use_Case>

Figure D- 2: Use case making a cali

333

APPENDIX D . EXAMPLE DOCUMENTSIN MOBILE-PHONE SYSTEMS

<Use_Case UseCaseID="UC3" System="Mobile Phone" Product_Member="PMI1"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="Z:\web\XTraQue\Use_case.xsd">

<Title>
<VVG>Taking</VVG>
<ATO0>a</ATO>
<NN 1>picture</NN 1>
</Title>

<Description>
<AT0>The</ATOxNN 1>phone</NN 1><VBZ>is</VBZ>
<VVN>integrated</VVNxPRP>with</PRPxATO>a</ATO>
<AJO>digital</AJOxNN 1>camera</NN 1><SC>.</SC>
<PNP>1t</PNPxVVZ>enables</VVZxATO>a</ATO>
<NN 1>user</NN 1><VVG>taking</VVGxCJC>and</CJC>
<VVG>restoring</VVGxATO>a</ATOxNNI>picture</NNI>
<PRP>in</PRPxATO>the</ATOxNN 1>phone</NN 1>
<SC>.</SCxAT0>The</ATOxNN 1>photo</NN 1>
<NN 1>file</NN 1><VBZ>is</VBZxNPO>JPG</NPO>
<NN1>format</NNI><SC>.</SCxATO>The</ATO>
<NNI>photo</NN 1><VBZ>is</VBZ> <AV0>possibly</AV 0>
<VVN >taken</VVNxC]JS>as</CJS> <CRD>one</CRD>
<PRF>o0f</PRFxCRD>three</CRDxAJO>optional</AJO>
<NN2>types</NN2xAV0>i.e.</AVOxNN 1>general</NN 1>
<NN 1>night</NN 1><CJC>and</CJCxNN 1>portrait</NN 1>
<DTQ>which</DTQxVBB>are</VBBxAJO >different</AJO >
<AJ0>sized</AJ0xSC>.</SCxAV0>Also</AVO0><ATO0>the</ATO0>
<NN2>photos</NN2xCJT>that</CJTxVBB>are</VBB>
<VVN>kept</VVNxPRP>in</PRPxATO>the</AT()xNN 1>phone</NN 1>
<VMO>can</VMOxVBI>be</VBIxVVN >viewed</VVN >
<CJC>and</CJCxVVN>deleted</VVNxAVO >afterwards</AVO >
<SC>.</SC>

</Description>

<Level>Primary task</Level>

<Preconditions> <AT>The</AT>
<NN 1>user</NN 1xVHZ>has</VHZxVVN >selected</VVN >
<NN 1>function</NN 1> <I0>0f</I0OxVVG>taking</VVG>
<AT 1>a</AT 1xN N 1>photo</NN 1><II>from</IIxAT>the</AT>
<JJ>main</JJxNNI1>menu</NNI1xSC>.</SCx/Precondilions>

<Postconditions>
<AT>The</ATxNN 1>phone</NN 1xVVD >took</VVDxAT 1>a</AT 1>
<NN 1>photo</NN1><CC>and</CCxVVD>kept</VVDxPPH 1>it</PPH !>
<il>as</II><AT 1>a</AT 1><]JJ>JPG-formatted</JJ> <NN 1>fiie</NN 1>
<II>in</IIxAPPGE>its</APPGEx]JJ>temporary</JJxNNI>memory</NNI1>
<NN 1>storage</NN 1><BCL>in</BCLxBCL>o0rder</BCLxTO>to</TO>
<VBI>be</VBIxVVN >restored</VVNxAT>the</ATxNN>data</NN >
<NNI>collection</NNIxRRR>later</RRRxRP>0on</RPxSC>.</SC>
<RT>Then</RT><AT>The</ATxNN 1>phone</NN 1x V BZ>is</VBZ>
<JJ>ready</JJxIF>for</IFxVVG>capturing</VVGxMD >next</MD >
<NN2>shots</NN2xSC>.</SCx/Postconditions>

<Primary_actor>The user</Primary_actor>

<Secondary_actors>-</Secondary_aclors>

<Flow_of _events>
<Trigger/>
<EventxAT>The</ATxNN 1>system</NNIxVVZ>shows</VVZ>
<AT 1>a</AT 1xN N 1>list</NNI1><I0>0f</I0x]J]J>optional</]JJ>
<NN2>types</NN2xSC>.</SCxNN2>Types</NN2xIF>for</IF> ...

334

http://www

D.l Use Case-PM 1

< VVG>taking</VVG><AT 1>a</AT 1xN N 1>photo</NN 1><REX>i,e.</REX>
<NN 1>general</NN 1><NNT I>night</NNT 1><CC>and</CC>
<NN 1>portrait</NN 1><SC>.</SCx/Event>

<Event>
<AT>The</ATxNN 1>user</NN 1><VVZ>selects</VVZ>
<M Cl>one</MCIxIO>o0r</IOx]JJ>optional</JJxNN2>types</NN2>
<8C>.</SCxNN2>Typcs</NN2xIO>0f</[0OxVVG>taking</VVG>
<AT 1>a</AT 1xN N 1>photo</NN 1><S8C>.</SC>

</Event>

<Event>
<AT>The</ATxN N 1>system</NNIxVVZ>shows</VVZxAT>the</AT>
<NNI>scenario</NNIxlI>on</I[xAT>the</ATxNNI>screen</NNI>

AV g

</Event>

<Evenl>
<AT>The</ATxN N 1>user</NN1><NN2>clicks</NN2xAT>the</AT>
<NN 1>button</NN 1><II>0on</IIxAT>the</ATxNN 1>phone</NN 1>
<TO>to</TOxVVI>capture</VVIxATI>a</ATIxN N 1>shot</NNI1>
<SC>.</SC>

</Event>

<Event>
<AT>The</ATxNN 1>system</NN 1><VVZ>displays</VVZ>
<AT>the</ATxNN 1>shot</NN1x VVN>done</VV N xI I>at</II>
<AT>the</ATxNN 1>moment</NN 1xSC>.</SCx/Event>

<Event>
<AT>The</ATxNN 1>system</NN1xVVZ>pops</VVZ>
<RP>up</RPxAT1>a</AT1xN N 1>request</NN1><I0>o0f</10>
<VVG>restoring</VVGxAT>tlie</ATxNN 1>shot</NN 1xII>as</II>
<AT 1>a</AT1xN N 1>photo</NN 1><II>in</IIxAT>lhe</AT>
<NN 1>phone</NN1><SC>.</SC>

</Evcnt>

<Event>
<CS>If</CSxAT>the</ATxNN 1>user</NNIxVVZ>wants</VVZ>
<T0>to</TO><VVI>keep</VVI><AT>the</ATxN N 1>shot</NN 1>
<SC>.</SCxAT>the</ATxNN 1>system</NN 1><VVZ>restores</VVZ>
<AT>the</ATxN N 1>photo</NN 1><II>as</IIxAT 1>a</AT 1>
<NN 1>file</NN 1xII>in< /IIxAT>the</ATxNN >data</NN >
<NN 1>collection</NN 1><SC>.</SC>

</Event>

<Event>
<AT>The</ATxNNI>system</NNIxVVZ>shows</VVZxAT>lhe</AT>
<NN 1>scenario</NN 1><II>on</IIxAT>the</ATxNN 1>screen</NN 1>
<TO>to</TOxVBI>be</VBIx]J]>ready</JJxIF>for</IFxMD >next</MD >
<NN2>snapshots</NN2xSC>.</SC>

</Event>

</Flow_of_events>

<Exceptional_events/>

<Superordinate_use_casex/Superordinate_use_case>

<Subordinate_use_casex/Subordinate_use_case>

</Use_Case>

Figure D- 3: Use case taking a picture

335

APPENDIX D - EXAMPLE DOCUMENTS IN MOBILE-PHONE SYSTEMS

<Use_Case UseCaseID="UC4" System="Mobile Phone" Product_Member="PM I"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="Z:\web\XTraQue\Use_case.xsd">
<Title>
<NN 1>Sending</NN 1>
<VVZ>emails</VVZ>
</Title>
<Description>
<AT0>The</ATO0> <NN 1>user</NNI><VBZ>is</VBZxAJ0>able</AJ0>
<TOO>to</TOO><VVI>send</VVIXNN2>emails</NN2>
<PRP>with</PRPxNN 1>attachment</NN 1><PRP>via</PRP>
<NNI>network</NNIxNN2>protocols</NN2xAV0>e.g.</AV0>
<NPO>SMTP</NPOxUNC>POP3</UNCxUNC>IMAP4</UNC>
<SC>.</SCxATO>The</ATOxNNI>user</NN IxVM O >can</VMO >
<VVI>specify</VVIXATO>the</ATOxNN 1>address(s)</NN 1>
<PRF>o0f</PRFxNN2>recipient(s)</NN2xPRP>by</PRP>
<VVG>selecting</VVGxPRP>from</PRPxATO>a</ATO>
<NN 1>list</NN I1xPRF>0f</PRFxNN2>contacts</NN2>
<DTQ>which</DTQxVBB>are</VBBxVVN >restored</VVN>
<PRP>in</PRPXxATO>the</ATOxNNU>data</NNOxNN 1>collection</NN 1>
<PRF>0f</PRFxATO>the</ATOxNN 1>phone</NN 1><CJC>o0r</CJC>
<VVB>enter</VVBxPRP>via</PRP><NN 1>keypad</NN 1>
<SC>.</SCxATO>The</ATOxNNI>user</NNIxVMO>can</VMO >
<VVI>send</VVIXNN2>emails</NN2xPRP>to</PRP><AJ0>multiple</AJ0>
<NN2>receivers</NN2xPRP>in</PRPxCRD>one</CRD>
<NNI>time</NNIxSC>.</SCxVVG>Sending</VVGxVBZ>is</VBZ>
<VVN>limited</VVNxPRP>undetr</PRPxATO>the</ATO>
<AJ0>maximum</AJOxNN 1>size</NN 1><SC>.</SCxAT0>The</ATO0>
<NN 1>user</NNIlx VMO0>can</VMO0xV VI>attach</VVIxDT0>some</DTO0>
<NN2>files</NN2xPRF>0f</PRFxNN2>notes</NN2xNNO0>txt</NNO0>
<NN2>photos</NN2xNNO0>jpg</NNO0xCJC>and</CJCxNN2>images</NN2>
<NNO0>jpg</NNOxPRP>in</PRPxVVG>sending</VVGxNN2>emails</NN2>
<SC>.</SCxAT0>The</ATOxNN 1>phone</NN 1x V VZ>keeps</VVZ>
<AT0>a</ATOxNN 1>log</NN 1><NN 1>file</NN 1><PRF>o0f</PRF>
<VVG>sending</VVGxATO0>an</ATOxNNI>email</NNI>
<PRP>in</PRPXxATO>the</ATOxNNI>storage</NNIxATO>the</ATO>
<NN 1>uset</NN 1><VMO0>can</VMO0xVVI>view</VV1>
<CJC>and</CJCxVVI>delete</VVIxATO0>the</ATOxNN 1>log</NN 1>
<NN2>files</NN2xAV0>later</AVOxAVP>0on</AVP><SC>.</SC>
</Description>
<Level>Primary task</Level>
<Precondilions>
<AT>the</ATxNNI>user</NNIxVHZ>has</VHZxRR>already</RR>
<VVN >selected</VVN=xAT 1>a</AT1xN N 1>function</NN 1>
<I0>0f</I0OxVVG>sending</VVGxAT 1>an</ATIxNN 1>email</NN 1>
<II>from</IIxAT>the</ATx]J]>niain</JJxNN 1>menu</NN 1>
</Preconditions>
<Postconditions>
<AT>the</ATxVHZ>phone</VHZxVHZ>has</VHZxVVN>sent</VVN>
<NNI>email</NNIxII>to</IIxAT>the</ATxNN2>receiver(s)</NN2>
<CC>and</CCxVBN>been</VBNxVVG>showing</VVG>
<AT>the</ATx N N1>response</NN 1x 1 [>to</II><AT>the</AT>
<NN 1>user</NN 1>
< /Postconditions>
<Primary_actor>The user</Primary_actor>
<Secondary_actors>-</Secondary_actors>
<Flow_of _events>
<Trigger/>
<Event> <AT>the</ATxNNI>system</NNIxVVZ>shows</VVZ>
<AT 1>an</AT 1xN N 1>editor</NN 1><VVN>composed</VVN>
<I0>0f</I0O><AT 1>a</AT 1><NN 1>text</NN 1><NN 1>box</NN 1>
<IF>for</IFxVVG>specifying</VVGxAT>the</AT>
<NN1 >email</NNI1xN N 1>address(s)</NN 1> ...

336

http://www

DA Use Case-PMI1

<IO>o0f</IOxNN2>receiver(s)</NN2xCC>and</CC>
<AT 1>a</AT1X JJ>blank</JJxN N 1>note</NN1>
<IF>for</IFxVVG>writing</VVGxATI>a</ATI>
<NN 1>message</NN 1>

</Event>

<Event>
<AT>The</ATxN N 1>user</NN 1xVVZ >inserts</VVZ>
<AT1>an</AT 1xN N | >email</NN 1x N N 1>address(s)</NN 1>
<IO>0f</IOxNN2>receiver(s)</NN2xII>by</II>
<VVG>selecting</VVGxII>from</IIxAT 1>a</AT 1>
<NN1>list</NN1xIO>0f</IOxNN2>contacts</NN2>
<VVG>restoring</VVGxII>in</IIxAT>the</AT>
<NN>data</NNxNN 1>collection</NN 1X10 >o0f< /10 >
<AT>the</ATxNN 1>phone</NN1><CC>o0r</CC>
<VVG>entering</VVGxII>via</nxNNI>keypad</NNI>
<VVO0>Note</VVOxCST>that</CSTx AT>the</AT>
<NN1>user</NN1><VM>can</VMxVVI>send</VVI>
<AT>the</ATxNNI>email< /NNIxII>to</II>
<JJ>multiple</JJxNN2>receivers< /NN 2xII>by</II>
<VVG>separating</VVGxAT>the</ATxNNI>email</NNI>
<NN2>addresses</NN2xIW>with</IWxFU>*</FUxSC>.</SC>

</Event>

<Event>
<AT>The</ATxNN 1>user</NN1><VM>can</VM>
<VVI>enter</VVIXxAT>the</ATxN N1>message</NN 1>

</Event>

<Event>
<AT>The</ATxNN 1>user</NN1><VM>may</VM>
<VVI>attach</VVIxAT>the</ATxNN 1>email</NNI>
<IW>with</IWxDD>any</DDxNN2>files</NN2>
<IO>0f</IOXxNN2>notes</NN2xNNU>txt</NNU>
<NN2>photos</NN2xNNU>jpg</NNUxCC>and</CC>
<NN2>images</NN2xNNU>jpg</NNUxCST>that</CST>
<VBR>are</VBRx]J]>available</JJxII>in</I1I>
<AT>the</ATx N N1>phone</NN1><RR>Otheiwise</RR>
<DD 1>this</DD 1><VBZ>is</VBZxVVN>limited</VVN >
<II>under</IIxAT>the</ATx]JJ>maximum</JJ>
<NN 1>size</NN 1xI0 > 0f< /IOxVVG>sending</VVG>
<NN2>emails</NN2xVV0>Note</VVOxCST>that</CST>
<AT>the</ATxN N 1>event</NN 1x 1 0>0f</I0>
<MC>2</MCxMC>3</MCxCC>and</CCxMC>4</MC>
<VBR>are</VBRxXX>not</XXxJJ>sequential</JJ>
<NN2>processes</NN2x/Event>

<Event>
<AT>The</ATxNN 1>user</NN 1x VVZ>con firms</VVZ>
<VVG>sending</VVGxAT>the</ATxNNI>email</NN 1>

</Event>

<Event>
<AT>The</ATxNN 1>phone</NN1><VVZ>estab]ishes</VVZ>
<AT>the</ATxN N 1>connection</NN 1><IF>for</IF>
<NN1>email</NN1x V VG>sending.</VVG>

</Event>

<Event>
<CS>if</CSxAT>the</ATxNN 1>connection</NNI1>
<VBZ>is</VBZxRR>properly</RR> <VVN>Set</VVN>
<AT>the</ATxN N 1>phone</NN1x V VZ>sends</VVZ>
<AT>the</ATxN N1>email</NN IxII>via< /0>
<AT>the</ATxNNI>network</NN 1><NN2>protocols</NN2>
<RR>Otherwise</RRxCS>If</CSxAT>the</AT>
<NN1>phone</NN1x VVZ>informs</VV Z x AT >the</AT>
<NN2>users</NN2xIF>for</IFxAPPGE>its</APPGE >
<NN?.">rirriimstanrp.s<'/NN2>

337

APPENDIX D - EXAMPLE DOCUMENTS IN MOBILE-PHONE SYSTEMS

</Event>

<Event>

</Event>

<Event>

</Event>

</Flow_of_events>

<CS>After</CSxVVN>completed</VVN><AT>the</AT>
<VVG>sending</VVGxAT>the</ATxNN 1>email</NN 1>
<AT>the</ATxNN 1>phone</NN 1xVVZ>disconnects</VVZ>
<AT>the</ATxNN 1>connection</NN 1>

<AT>The</ATxN N1>phone</NN1><VVZ>shows</VVZ>
<AT>the</ATxNNI>status</NNIxIO>of</I10>
<VVG>sending</VV G><AT>the</ATxNN 1>email</NN 1>
<RT>then</RTx V VZ>keeps</VVZxAT 1>a</AT 1>

<NN 1>log</NN1xN N 1>file</NN 1><I0>o0f</10>
<VVG>sending</VVGxAT>the</ATxNN]>email</NNI>
<n>at</IIxAT>the</ATxNN 1>moment</NN 1xII>in</II>
<AT>the</ATxNN>data</NNxNN 1>storage</NN 1>

<Exceptional_events/>

<Superordinate_use_casex/Superordinate_use_case>

<Subordinate_use_casex/Subordinate_use_case>

</Use_Case>

Figure D- 4: Use case sending emails

338

D.2. Class Diagram - PMI

Data OataCoSection Keypadinterface
-itemTypelDrint
-itemindex int “eyinvoid
-numStoredint
-itemType:Strmg +getOataltemvoid
+showListData:void
sdisplayOataltern:void #newOatattem void
«deleteDataltem void
seditDataltemvoid
+getDataltemvoid
snewDataltemvoid
+ saveDalaltemvoid
K
ComactProfile Image knageFoimat Interface
~voice mt -imageT, ize byte lastAction String
-emailVoiceSoundFormat -formatName String ~ -time float ssetiipvold
editD: _emailPi ~sendD: +sendD -powerfloat #synchronise void
«displayOataltem void +sendDataltem void ~displayD +editD: sdisconnectvoid
+displayD: i +edItD: ~edItD: +displayD: +selectSendMethodvoid

+sendDataltemvoid
+displayDataltemvoid

~formatsizebyte
~formatNameString

+connectvoid

«sendDatavoid
~operateToolApplicationvoid
+dispiayData void

«dialCall void

+setOatavoid
ssetFunctionvoid
+operateNetwodevoid
+acknowledgevoid
+disconnectvoid

+sendDatavoid

stransierData void
+searchAPairvoid

+disconnectvoid

+connectvoid +connectvoid
stransfertiatavoid edisconnectvoid

stransferData void
*searchAPairvoid +searchAPairvoid

sreceiveCall:void
«endCallvoid
+establishCallvoid
+divertCall:void

Figure D- 5: A class diagram of product member PM1

Keypad

+selectOptionvoid
+showListSendMethodvoid
+showListOpbonvoid
+selectSendvoid
+selectSendMethodvoid
+setDatavoid

+takePhoto void
+displayAreavoid
+savePhoto.void
sdisplayPhotovoid

APPENDIX D - EXAMPLE DOCUMENTS IN MOBILE-PHONE SYSTEMS

D.3. Sequence Diagram - PMI

Figure D- 6: A sequence diagram Making a call

340

D.3 Sequence Diagram - PM 1

Figure D- 7: A sequence diagram Sending data

341

APPENDIX D - EXAMPLE DOCUMENTS IN MOBILE-PHONE SYSTEMS

Figure D- 8 A sequence diagram Taking a photo

342

D.3 Sequence Diagram - PMI

Figure D- 9: A sequence diagram Transfering data

343

D.4. Statechart Diagram —PM1

Figure D- 10: A statechart diagram of product member PM1

BIBLIOGRAPHY

3SL. CRADLE, from http://3sl.co.uk

Alexander, 1. 2003. SemiAutomatic Tracing of Requirement Versions to Use Cases
- Experience and Challenges, the 2nd International Workshop on Traceability in
Emerging Forms o fSoftware Engineering (TEFSE 2003), Montreal, Canada.

America, P., H. Obbink., J. Muller, and R Van Ommering. 2000. COPA: A
Component-Oriented Platform Architecting Method for Families of
Software Intensive Electronic Products. Tutorial in: The First Conference on
Software Product Une Engineering (SPECT), Denver, Colorado.

Anderson, K. M., S. A. Sherba, and W. V. Lepthien. 2002. Towards Large-Scale
Information Integration. Pages 524-535. the 24th International Conference on
Software Engineering, Otlando, FL, USA.

Antoniol, G., G. Canfora, G. Casazza, and A. De Lucia. 2000. Information Retrieval
Models for Recovering Traceability Pages 40-51. IEEE Infernational
Conference on Software Maintenance (ICSM'00), San Jose, CA.

Antoniol, G., G. Canfora, G. Casazza, A. D. Lucia, and E. Merlo. 2002. Recovering
Traceability Links between Code and Documentation. IEEE Transactions on
Software Engineering 28: 970-983.

Arango, G., and R. Prieto-Diaz. 1991. Domain Analysis Concepts and Reseach
Directions. Domain Analysis and Software Systems Modelings-. 9-31.

Ardis, M. A.,; and D. M. Weiss. 1997. Defining Families: The Commonality Analysis.
Pages 649-650. the 19th International Conference on Software Engineering. ACM
Press New York, NY, USA, Boston, Massachusetts, United States.

ArgoUML. from http://argouml.tigris.org/project.html.

ASADAL. from selab.postech.ac.kr/form/.

Atkinson, C, J. Bayer, C. Bunse, E. Kamsties, O. lLaitenberger, R. Laqua, D.
Muthig, B. Paech, J. Wust, and J. Zettel. 2002. Component-based Product Une
Engineering with UME. Addison-Wesley.

Atkinson, C., J. Bayer, and D. Muthig. 2000. Component-based product line

development: The KobrA approach. Pages 289-310. #he 15t Software Product
Une Conference, SPEC. Kluwer, Denver, Colorado, USA.

http://3sl.co.uk
http://argouml.tigris.org/project.html

BIBLIOGRAPHY

Bailin, S., et al. 1990. KAPTUR: Knowledge Acquisition for Preservation of
Tradeoffs and Underlying Rationale. Pages 95-104. Proceedings of the 5th
Annnal Knowledge-Based Software Assistant Conference, Liverpool, NY,Rome, NY:
Rome Air Development Center.

Bass, L., P. Clements, and R. Kazman. 2003. Soffware Architecture in Practice. Addison-
Wesley Professional.

Bastarrica, M. C., N. Hitschfeld-Kahler, and P. Rossel. 2006. Product Line
Architecture for a Family of Meshing Tools. Pages 403 - 406. 9th International
Conference on Software Reuse (ICSR], Turin, Italia.

Batory, D., R. Cardone, and Y. Smaragdakis. 2000. Object-Oriented Frameworks
and Product-Lines. Pages 227-247. the 1st Software Product-Line Conference
Denver, Colorado, United States.

Bayer, J., O. Flege, P. Knauber, R Laqua, D. Muthig, K. Schmid, T. Widen, and].-
M. DeBaud. 1999. PuLSE: A methodology to develop software product
lines. Pages 122-131. the Fifth ACM SIGSOFT Symposium on Software
Rensability (SSR'99), Los Angeles, CA, USA.

Bayer, J., and T. Widen. 2001. Introducing Traceability to Product Lines. Pages 409-
416. the 4th International Workshop on Software Product-Family Engineering (PFE
2001). Springer-Verlag, Bilbao, Spain.

—. 2002. Introducing Traceability to Product Lines, Software Product-Family
Engineering. Pages 409-416. the 4th International Workshop, PFE 2001.
Springer Verlag, Bilbao, Spain.

Berg, K., and J. Bishop. 2005. Tracing Software Product Line Variability - From
Problem to Solution Space. Pages 111-120. SAICSIT 2005.

Boehm, B. 2000. Software Cost Estimation with Cocomo II. Upper Saddle River, NJ:
Prentice Hall.

Boehm, B., A. W. Brown, R. Madachy, and Y. Yang. 2004. A Software Product Line
Life Cycle Cost Estimation Model. Pages 156-164. Proceedings of the 2004
International Symposium on Empirical Software Engineering. Los Alamitos, CA:
IEEE Computer Society7 Redondo Beach, CA.

Borland. Borland Together Control Center 6.2.
Bosch, J. 1998. Product-Line Architectures in Industry: A Case Study. Pages 544 -

554. the 21st International Conference on Software Engineering. IEEE Computer
Society7Press, Los Angeles, California, United States.

346

BIBLIOGRAPHY

—. 2000. Design and Use of Software Architectures: Adopting and Evolving a Product-line
Approach. Addison Wesley.

+—. 2001. Software Product Lines: Organizational Alternatives, the 23rd International
Conference on Software Engineering.

Bosch, J., and M. Hogstrom. 2000. Product Instantiation in Software Product Lines:
A Case Study. Pages 147-162. the Second International Symposium on Generative
and Component-Based Software Engineering (GCSE 2000). Springer-Verlag
London, UK.

CAFE. 2003. from http://www.esi.es/en/projects/cafe/cafe.html.
CaliberRM. from http://www.starbase.com.

Campbell, G. H,,Jr., S. R. Faulk, and D. M. Weiss. 1990. Introduction To Synthesis,
INTRO_SYNTHESIS_PROCESS-90019-N. Software Productivity Consortinm,
Herndon, VA, USA.

Clauss, M. 2001. Modeling variability with UML. GCSE 2007 - Young Researchers
Workshop.

CLAWS, from https://www.comp.lancs.ac.uk/ucrel/claws.

Cleland-Huang, J., C. K. Chang, and Y. Ge. 2002a. Supporting Event Based
Traceability through Pligh-Level Recognition of Change Events, the 261h
Annual International —~ Computer — Softivare and — Applications — Conference
(COMPSAC'02), Oxford, England.

Cleland-Huang, J., C. K. Chang, G. Sethi, K. jawaji, H. Hu, and J. Xia. 2002b.
Automating Speculative Queries through Event-based Requirements
Traceability. International Requirements Engineering Conference, Fissen, Germany.

Cleland-Huang, J., R. Settimi, O. BenKhadra, E. Berezhanskaya, and S. Christina.
2005a. Goal-centric traceability for managing non-functional requirements.
Pages 362 - 371 the 27th international conference on Software engineering. ACM
Press New York, NY, USA, St. Louis, MO, USA.

Cleland-Pluang, J., R. Settimi, C. Duan, and X. Zou. 2005b. Utilizing Supporting
Evidence to Improve Dynamic Requirements Traceability. 73# IEEE
International Conference on Requirements Engineering (RE'OS).

Cleland-Huang, J., G. Zemont, and W. Lukasik. 2004. A Heterogeneous Solution

for Improving the Return on Investment of Requirements Traceability 72z
IEEE International Reguirements Engineering Conference (RE'04).

347

http://www.esi.es/en/projects/cafe/cafe.html
http://www.starbase.com
https://www.comp.lancs.ac.uk/ucrel/claws

BIBLIOGRAPHY

Clements, P., and L. Northrop. 2002. Software Product Lines: Practices and Patterns.
Addison-Wesley, Boston, MA.

—. 2004. A Framework for Software Product Lines Practice.
http://www.sei.cmu.edu/productlines/framework.html

COBRA, from http://www.omg.otrg/.

Cockburn, A. 1997. Structuring Use-Cases With Goals, journal of Object-Oriented
Programming Sep/Oct: 35-40.

—. 2000. \V7iting Effective Use Cases. Addison-Wesley, Boston

COM. from http://www.microsoft.com/com/default.mspx.

CORE, from www.vtcorp.com.

Coriat, M., J. Jourdan, and F. Boisbourdin. 2000. The SPLIT Method. Pages 147-
166. the First Software Product Unes Conference (SPLCT), Denver, Colorado,

USA.

Dean, J. G., A. (Eds.) 2002. COTS-Based Software Systems. First International
Conference, ICCBSS. Springer-Verlag, Orlando, FL, USA.

Department_of_Defense. 1996. Software Reuse Executive Primer. Falls Church,
VA.

Dhar, V., and M. Jarke. 1988. Dependency Directed Reasoning and Learning in
Systems Maintenance Support. IEEE Transactions in Software Engineering 14:

211-227.

Dick,]. 1999. Rich Traceability.
http://www.telelogic.com/industries/telecoms/papers.cfm

Doémges, R., and K. Pohl. 1998. Adapting Traceability Environments to Project
Specific Needs. Communications ofthe ACM 41: 54-62.

DOORS, from www.telelogic.com/products/doors.

Dorfman, M., and R F. Flynn. 1984. Arts - An Automated Requirements
Traceability' System. Thejournal ofSystems and Software 4: 63-74.

Egyed, A. 2001. A Scenario-Driven Approach to Traceability', the 23rd International
Conference on Software Engineering (ICSE 2001), Toronto, Canada.

348

http://www.sei
http://www.omg.org/
http://www.microsoft.com/com/default.mspx
http://www.vtcorp.com
http://www
http://www.telelogic.com/products/doors

BIBLIOGRAPHY

—. 2002. Reasoning about Trace Dependencies in a Multi-Dimensional Space, he
15t International Workshop on Traceability, co-located with ASE 2002, Edinburgh,
Scotland, UK.

—. 2003. A Scenario-Driven Approach to Trace Dependency Analysis. IEEE
Transactions on Software Engineering 9.

Egyed, A., and P. Grunbacher. 2002. Automatic Requirements Traceability: Beyond
the Record and Replay paradigm, zhe 17th IEEE International Conference on
Automated Software Engineering (ASE), Edinburgh, UK.

Egyed, A., and P. Grunbacher. 2003. Towards Understanding Implications of Trace
Dependencies among Quality Requitements, #he 2" International Workshop on
Traceability in Emerging Form Software Engineering fTIEFSE'03).

ESAPS. from http://www.esi.es/en/Projects/esaps/esaps.html.

Fairley, R. E., and R H. Thayer. 1997. The Concept of Operations: The Bridge
from Oper-ational Requirements to Technical Specifications in M. Dorfman
and T. R.], eds. Software Engineering. IEEEComp. Press, Los Alamitos, CA.

Faloutsos, C., and D. W. Oard. 1995. A Survey of Information Retrieval and
Filtering Methods. Dept, of Computer Science, Univ. of Maryland.

Fantechi, A., S. Gnesi, G. Lami, and E. Nesd. 2004. A Methodology for the
Derivation and Verification of Use Casees for Product Lines. Pages 255-
264. the 3rd International Conference, SPEC 2004. Springer Verlag, Boston, MA,
USA.

Finkelstein, A. 1991. Tracing Back from Requirements. IEE Colloguinm on Tools <&
Techniquesfor Maintaining Traceability During Design.

Finkelstein, .4, and H. Fuks. 1989. Multi-Party Specification Pages 185-199. 57
International Workshop on Software Specification <<>Design.

Finkelstein, A., J. Kramer, and M. Goedicke. 1990. ViewPoint Oriented Software
Development. Pages 337-351. 3rd International Workshop Software Engineering
<its Applications. Cigref EC2 V1.

Finkelstein, W., and J. A. R. Guertin. 1998. Integrated Logistics Support. The Design
Engineering Link, IFS Publications. Springer Verlag.

Fiutem, R., and G. Antoniol. 1998. Identifying Design-Code Inconsistencies in
Object-Oriented Software: a Case Study. Pages 94 the International Conference
on Software Maintenance table o fcontents (ICSM).

GEARS, from http://www.biglever.com/

349

http://www.esi.es/en/Projects/esaps/esaps.html
http://www.biglever.com/

BIBLIOGRAPHY

Gibson, P., B. Mermet, and D. Méry. 1997. Feature Interactions: A Mixed Semantic
Model Approach in O'Regan and Flynn, eds. st Irish Workshop on Formal
Methods IWFM97), Dublin.

Gomaa, FL. 1993. Software Design Methodsfor Conclurent and Real-Time Systems. Addison
Wesley.

—. 2004. Designing Software Product Unes with UMU From Use Cases to Pattern-based
Software Architectures. Addison Wesley Professional.

Gomaa, H., R. Faitley, and L. Kerschberg. 1989. Towards an evolutionir}' domain
life cycle model. In Workshop on Domain Modelingfo r Software Engineering.

Gomaa, H., and AL E. Shin. 2004. A Multiple-View Meta-modeling Approach for
Variability' Management in Software Product Lines. Pages 274-285 in J.
Bosch and C. Krueger, eds. 875 International Conference (ICSR 2004). Springer
Verlag, Madrid, Spain.

Gotel, O., and A. Finkelstein. 1994. An Analysis of the Requirements Traceability
Problem. Pages 94 -101. the First International Conference on Requirements,
England.

—. 1995. Contribution Structure. Pages 100-107. the Second IEEE International
Symposinm on Reguirements Engineering (RE'95). IEEE Computer Society Press,
York.

Griss, M. L. 2000. Implementaring Product-Line Features with Component Reuse.
the 6th International Conference on Software Reuse. Springer-Verlag, Austria.

Griss, M. L., J. Favaro, and M. d. Alessandro. 1998. Integrating feature modeling
with the RSEB. Pages 76-85 in P. Devanbu and j. Poulin, eds. #e 5th
International Conference on Software Reuse. IEEE Computer Society' Press.

Halmans, G., and K. Pohl. 2003. Communicating the Variability of a Software-
Product Family to Customers, journal of Software and Systems Modeling.
Springer.

Han, J. 2001. TRAM: A Tool for Requirements and Architecture Management.
Pages 060-68. the Australasian Computer Science Conference. IEEE Computer
Society', Gold Coast, Queensland, Australia.

Haumer, P., P. Heymans, M. jarke, and K. Pohl. 1999. Bridging the Gap Between
Past and Future in RE: A Scenario-Based Approach, the Fourth IEEE
International Symposium on Requirements Engineering (RE'99), University of
Limerick, Ireland.

350

BIBLIOGRAPHY

Haumer, P., M. Jarke, K. Pohl, and K. Weidenhaupt. 2000. Improving reviews of
conceptual models by extended traceability to captured system usage.
Interacting with ComputersJournal13: 77-95.

Haumer, P., K. Pohl, and K. Weidenhaupt. 1998. Requirements Elicitation and
Validation with Real World Scenes. IEEE Transactions on Software Engineering
(ISE), Special Issue on Scenano Management 24: 1036-1054.

Hayes, J. H., A. Dekhtyar, and J. Osborne. 2003. Improving requirements tracing
via information retrieval. Pages 138-147. 71#h IEEE International Conference on
Reqguirements Engineering. IEEE Computer Society, Washington, DC, USA.

Hayes, J. H., A. Dekhtyar, S. K. Sundaram, and S. Howard. 2004. Helping Analysts
Trace Requirements: An Objective Look 72#h IEEE International Conference on
Requirements E ngineering.

Hull, E., K. Jackson, and J. Dick. 2002. Reguirements Engineering. Springer-Verlag,
London.

IEC. 1999. Functional Safety? Safety-Related Systems. International Standard IEC
(International Electrical Commission) 61508.

IEEE-830. 1998. IEEE Recommended Practice for Software Requirements
Specifications. IEEE Standard 830-1998.

Jacobson, 1. 1992. Object-Oriented Software Engineering: A Use Case Driven Approach.
Addison-Wesley Professional.

Jacobson, L, M. Griss, and P. Jonsson. 1997. Software Reuse: Architecture, Process and
Organisation for Business Success. Addison-Wesley Professional.

Jarke, M. 1998. Requirement Tracing, Association for Computing Machinery.
Associationfor Computing Machinery. Communications of the ACM 41.

JavaBeans. from http://java.sun.com/products/javabeans/

Jazayeri, M., A. Ran, and F. V. D. Linden. 2000. Software Architecture for Product
Families: Principles and Practice. Addison-Wesley Pub (Sd).

Jirapanthong, W. 2004. Towards a Traceability Approach for Product Family
Systems. International Software Product Lines Young Researchers Workshop in
International Software Product Line Conference, Boston, MA.

Jirapanthong, W., and A. Zisman. 2004. Traceability for Product Family Systems:

An XQuery Approach. International Workshop on Requirements Reuse in System
Family Engineering in International Conference on Software Rense, Madrid, Spain.

351

http://java.sun.com/products/javabeans/

BIBLIOGRAPHY

—. 2005. Supporting Product Line Development through Traceability. 72#h Asia-
Pacific Software Engineering Conference (APSEC 2005), Taipei, Taiwan.

—. 2006. XTraQue: Traceability for Product Line Systems. Software and Systems
Modeling (under review).

John, I, and D. Muthig. 2002. Tailoring Use Cases for Product Line Modeling.
REPE'02, Essen, Germany.

Jones, D. A, J. F. Nallon, D. M. York, and J. Simpson. 1995. Factors Influencing
Requirement Management Toolset Selection, the 5th Annual International
Symposium ofthe INCOSE. INCOSE, St. Louis, USA.

Kaindl, FL. 1992. The Missing Link in Requirements Engineering. Software Engineering
NotesJune: 498-510.

Kang, K., S. Cohen, J. Hess, W. Novak, and A. Peterson. 1990. Feature-Oriented
Domain Analysis (FODA) Feasibility Study. Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA.

Kang, I< C, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh. 1998. FORM: a feature-
oriented reuse method with domain-specific architectures. Annals of Software
Engineering 5. 143-168.

Keepence, B., and M. Mannion. 1999. Using Patterns to Model Variability in
Product Families. IEEE Software 16: 102-108.

Kim, S. D., S. H. Chang, and H. J. La. 2005. Traceability Map: Foundations to
Automate for Product Line Engineering. IEEE. Pages 274-281. 3rd ACIS
International Conference on Software Engineering Research, Management <&
Applications(SERAOS).

Knethen, A. v. 2002a. Automatic Change Support Based on a Trace Model, #he 75t
International Workshop on Traceability in Emerging Forms of Software Engineering
(TEFSE ’02), Edinburgh.

—. 2002b. Change-Oriented Requirements Traceability. Support for Evolution of
Embedded Systems, the International Conference on Software Maintenance (1CSAT
02).

Knethen, A. v., B. Paech, F. Kieclaisch, and F. Houdek. 2002. Systematic Recycling
through Abstraction and Traceability'. Pages 273-282. IEEE Joint bit.

Requirements Engineering Conference. IEEE Computer Society', Essen, Germany.

Kotonya, G., and 1. Sommerville. 1998. Reguirements Engineering, Process and Technigues.
John Wiley & Sons.

352

BIBLIOGRAPHY

Krueger, C. W. 2001. Software Mass Customization,
http:/ /www.biglever.com/papers/BigLleverMassCustomization.pdf.

Lago, P., E. Niemela, and H. V. Vliet. 2004. Tool Support for Traceable Product
Evolution. Pages 261-269. the Eight European Conference on Software Maintenance
and Reengineering (CSMR), Tampere, Finland.

Lawrence-Pfleeger, S., and S. Bohner. 1990. A Framework for Software
Maintenance Metrics. IEEE Conference on Software Maintenance.

Lee, K., K. C. Kang, W. Chae, and B.W. Choi. 2000. Feature-based Approach to
Object-Oriented Engineering of Applications for Reuse. Soffware-Practice and
Experience 30: 1025-1046.

Leech, G., R. Garside, and M. Bryant. 1994. CLAWS4: The Tagging of the British
National Corpus. Pages 622-628. the 15th International Conference on
Computational Unguistics (COEING 94), Kyoto, Japan.

Leishman, T. R., and D. A. Cook. 2002. Requirements Risks Can Drown Software
Projects. STSC CrossTalk April.

Leite, J. C. S. d. P, and K. K Breitman. 2003. Experience Using Scenarios to
Enhance Traceability, the 2ni International Workshop on Traceability in Emerging
Forms ofSoftware Engineering (TEFSE'03). Montreal, Canada.

Letelier, P. 2002. A Framework for Requirements Traceability in UML-based

Projects, proceedings of the 1st International Workshop on Traceability for Emerging
Forms ofSoftware Engineering (TEFSE' 02), Edinburgh, UK.

Linden, F. v. d., J. Bosch, E. Kamsties, K. K"ans"al"a, and H. Obbink. 2004.
Software Product Family Evaluation. Pages 110-129. the Third International
Software Product Une Conference, SPEC 2004. Springer Boston, MA, USA.

Lindvall, M., and K. Sandahl. 1996. Practical Implications of Traceability. Software
Practice and Experience 26: 1161-1180.

Lindvall, M., and K. Sandahl. 1998. Traceability Aspects of Impact Analysis in
Object-Oriented Systems. Soffware Maintenance Research and Practice 10: 37-57.

Lock, S., A. Rashid, P. Sawyer, and G. Kotonya. 1999. Systematic Change Impact
Determination in Complex Object Database Schemata. Pages 31-40.
ECOOP.

Maletic, J. L, and A. Marcus. 2001. Supporting Program Comprehension Using
Semantic and Structural Information. ICSE.

353

http://www.biglever.com/papers/BigLeverMassCustomization.pdf

BIBLIOGRAPHY

Maletic, J. L, E. V. Munson, A. Marcus, and T. N. Nguyen. 2003. Using a Hypertext
Model for Traceability Link Conformance Analysis. Pages 47-54. the 2nl
International Workshop on Traceability in Emerging Fomis of Software Engineering
JTEFSE'03). Montreal, Canada.

Mannion, M., O. Lewis, H. Kaindl, G. Montroni, and J. Wheadon. 2000.
Representing Requirements on Generic Software in an Application Family
Model. Pages 153-169. ICSK

Marcus, A., and J. L Meletic. 2003. Recovering Documentation-to-Source-Code
Traceability Links using Latent Semantic Indexing. Pages 125-137. the 25¢h
IEEE/ACM International Conference on Software Engineering (ICSE'03),
Portland, OR, USA.

MBSE. 1993. Model-Based Software Engineering.
http://www.sei.emu.edu/technology/mbse/is.html.

McMullen, L. W. 1996-1997. Requirements Management Technolog)' Overview.
Report o /INCOSE Tools Database Working Group 1996-1997.

MDA. from http://www.omg.org/mda/.
Metacase, from http://vavw.metacase.com/papers/.
Meyer, B. 1998. Object Oriented Software Construction. Prentice-Hall.

Mohan, K., and B. Ramesh. 2002. Managing variability with Traceability in product
and Service Families. In proceedings of the 35th Hawaii International Conference on
System Sciences. IEEE.

Murphy, G. C., D. Notkin, and K. Sullivan. 1995. Software Reflexion Models:
Bridging the Gap Between Source and Pligh-Level Models. Third ACM
SIGSOF'T Symp. Foundations ofSoftware Eng. Oct: 18-28.

Murray, L., A. Griffifths, P. Lindsay, and P. Strooper. 2002. Requirements
Traceability for Embedded Software - an Industry Experience Report. Pages
63-09. In proceedings of the 6th LASTED Software Engineering and Applications
conference (SEA 2002). ACTA Press

NASA. Preferred Reliability Practices: Independent Verification and Validation of
Embedded Software. Pages Practice No. PD-ED-1228. Marshal Space
Flight Centre.

Nokia, from http://www.forum.nokia.com/main.html.

Notthrop, L. M. 2002. SEI's Software Product Line Tenets. IEEE Software 19: 32-
40.

354

http://www.sei
http://www.omg.org/mda/
http://vavw.metacase.com/papers/
http://www.forum.nokia.com/main.html

BIBLIOGRAPHY

Nuseibeh, B., and S. Easterbrook. 2000. Requirements Engineering: A Roadmap,
In: The Future of Software Engineering. ACM-IEEE: 37-46.

OMA. from www.openmobilealliance.org/.

Ommering, R v., F. v. d. Linden, and J. Kramer. 2000. The Koala component
model for consumer electronics software. IEEE Computer33: 78-85.

OMT. from http://www.omg.org/.

Parnas, D. 1976. The Design and Development of Program Families. IEEE
Transactions on software engineering SE-2.

Philips, from http://www.philips.com.

Pinheiro, F. 2000. Formai and Informai Aspects of Requirements Tracing. Position
paper in proceedings of 3rd Workshop on Requirements Engineering (III WER), Rio
de Janeiro, Brazil.

Pinheiro, F. A. C,, and J. A. Goguen. 1996. An Object-Oriented Tool for Tracing
Requirements. I[EEE Software 13: 52-64.

Plankl, j., and G. Bockle. 2001. Modeling Concepts for Product Families.
Reguirements Modeling and Traceability. ESAPS report.

Pohl, K. 1994. The Three Dimensions of Requirements Engineering: A Framework
and Its Applications. Information Systems 19: 243-258.

—. 1996a. PRO-ART: Enabling Requirements Pre-Traceability. Pages 76. #he 2nd
International Conference on Requirements Engineering (ICRE 96), Colorado, USA.

—. 1996b. Process-Centered Requirements Engineering. John Wiley & Sons.

Pohl, K., and P. Haumer. 1995. HYDRA: A Hypertext Model for Structurig
Informal Requirements Representations, the 2nd workshop on Requirements
Engineering: Foundation of Softamre Quality (REFSQ' 95). Augustinus, Aachen,
Germany, Jyvaskyla, Finland.

Poritz, A. B. 1998. Hidden Markov Models: A Guide Tour. Pages 7-13. International
Conference on Aconstics, Speech and Signal Processing. IEEE., New York.

PuLSE. from http://mw.iese.fhg.de/PuLSE/.

QADA. from http://www.vtt.fi/ele/research/soh/projects/families/qada.htm.

355

http://www.openmobilealliance.org/
http://www.omg.org/
http://www.philips.com
http://mw.iese.fhg.de/PuLSE/
http://www.vtt.fi/ele/research/soh/projects/families/qada.htm

BIBLIOGRAPHY

Ramesh, B., and V. Dhar. 1992. Supporting Systems Development Using
Knowledge Captured During Requirements Engineering. IEEE Transactions
in Software Engineering June 1992: 498-510.

Ramesh, B., and M. Edwards. 1993. Issues in the Development of a Requirements
Traceability Model. Pages 256-259. International Symposinm on Requirements
Engineering.

Ramesh, B., and M. Jarke. 2001. Towards Reference Models for Requirements
Traceability. IEEE Transactions on Software Engineering 277: 58-93.

Ramesh, B., T. Powers, C. Stubbs, and M. Edwards. 1995a. Implementing
Requirements Traceability: A Case Study. Pages 89-95. the Second IEEE
International Symposinm on Requirements Engineering, Y ork, United Kingdom.

Ramesh, B., C. Stubbs, T. Powers, and M. Edwards. 1995b. Lessons Learned from
Implementating Requirements Traceability. STSC CrossTalk April.

RationalRose. from
http://www.vtt.fi/ele/research/soh/projects/families/qada.htm.

RDT. from http://www.vtt.fi/ele/research/soh/projects/families/qada.htm.

Redondo, R. P. D, M. L. Nores, J. J. P. Aris, A. F. Vilas, J. G. Duque, A. G. Solla,
B. B. Martinez, and M. R. Cabrer. 2004. Supporting Software Variability by
Reusing Generic Incomplete Models at the Requirements Specification
Stage. Pages 1-10. 8#h International Conference, ICSR 2004, Madrid, Spain.

RequisitePro. from http://www.rational.com.

Richardson, J., and J. Green. 2003. Traceability through Automatic Program
Generation. 2nd International Workshop on Traceability in Emerging Eonns of
Software Engineering, Montreal, Canada.

—. 2004. Automating Traceability for Generated Software Artifacts. Pages 20-24
Sept. 2004 19th International Conference on Automated Software Engineering, Linz,
Austria.

Riebisch, M., K. Bollert, D. Streitferdt, and 1. Philippow. 2002. Extending Feature
Diagrams with UML Multiplicities, the 62h world conference on Integrated Design
and Process Technology (IDPT 2002), Pasadena, CA.

Riebisch, M., and L Philippow. 2001. Evolution of Product Lines Using
Traceability. Workshop on Engineering Complex Object-Oriented Systems for
Evolution in OOPSL.A 2001, Tampa Bay, Florida, USA.

RTM. from www.chipware.com.

356

http://www.vtt.fi/ele/research/soh/projects/families/qada.htm
http://www.vtt.fi/ele/research/soh/projects/families/qada.htm
http://www.rational.com
http://www.chipware.com

BIBLIOGRAPHY

Sawyer, P., A. Colebourne, and Sommerville. 1993. The MOG user interface
builder: a mechanism for integrating application and user interface. Inferacting
with Computers 5: 315-332.

Schmid, K., and M. Schank. 2000. PuLSE-BEAT —A Decision Support Tool for
Scoping Product Lines. Pages 65-75. the International Workshop on Software
Architecturesfor Product Families. Springer-Verlag

Sherba, S. A., K. M. Anderson, and M. Faisal. 2003a. A Framework for Mapping
Traceability Relationships, the 2nd International Workshop on Traceability in
Emerging Forms ofSoftware Engineering fIEFSE 2003), Canada.

—. 2003b. A Framework for Mapping Traceability Relationships, #he Second
International Workshop on Traceability in Emerging Forms of Software Engineering
(TEFSE'03), In conjunction with the 18th IEEE International Conference on
Automated Software Engineering, Montreal, Quebec, Canada.

Simos, M. 1995. Organization Domain Modelling (ODM).

Sinnema, M., et al. 2004. COYAMOF: A Framework for Modeling Variability in
Software Product Families, the third international conferences, SPEC.

SLATE, from http:// tdtech.com.

Socorro, A. 1993. Design, Implementation and Evaluation of a Declarative Object-
Oriented Programming Language. Computing Eaboratoiy. Oxford University,
Oxford.

Sommerville, 1. 2000. Soffware Engineering. Addison Wesley.

Sommerville, L, and P. Sawyer. 1997. Reguirements Engineering—A Good Practice Guide.
John Wiley & Sons, New York.

Spanoudakis, G., and A. Finkelstein. 1997. Overlaps among Requirement
Specifications. Workshop on Living with Inconsistency in ICSE 97 Boston, USA.

Spanoudakis, G., A. Finkelstein, and D. Till. 1999. Overlaps in Requirements
Engineering. Automated Software Engineering 6: 171-198.

Spanoudakis, G., and A. Zisman. 2005. Software Traceability: A Roadmap. Advances
in Software Engineering and Knowdledge Engineering 3, Recent Advances,: 273-7.

Spanoudakis, G., A. Zisman, E. Pérez-Mifiana, and P. Krause. 2004. Rule-based

Generation of Requirements Traceability Relations, journal of Systems and
Software 72: 105-127.

357

BIBLIOGRAPHY

Staudenmayer, N. S., and D. E. Perry. 1996. Session 5: Key Techniques and Process
Aspects for Product Line Development, the 10th International Software Process
Workshap.

Streitferdt, D. 2001. Traceability for System Families. Pages 803-804. ICSE 2001.

Sutcliffe, A. G., and N. A. M. Maiden. 1998. The Domain Theory for Requirements
Engineering. IEEE Trans 24: 174-196.

Svahnberg, M., and J. Bosch. 2000. Issues Concerning Variability' in Software
Product Lines, the Third International Workshop on Softivare Architectures for
Product Families. Springer Verlag, Berlin Germany.

Svahnberg, M., J. Gurp, and J. Bosch. 2001. On the Notion of Variability in
Software Product Lines. Pages 45-55. the Working IEEE /IFIP Conference on
Software A rchitecture (WICSA 20017).

Szyperski, C. 1997. Component Software: Beyond Object-Oriented Programming. Addison-
Wesley Professional

TestDirector. from http://www.mercuryinteractive.com/products/ testdirector.
Thiel, S., and A. Hein. 2002. Systematic Integration of Variability7into Product Line
Architecture Design. Pages 130 - 153 the Second International Conference on

Software Product Eines (SPEC2). Springer-Verlag.

Toranzo, M., and J. Castro. 1999. A comprehensive traceability model to support
the design ofinteractive systems. Pages 283-284. ECOOP Workshops.

Tracz, W., L. Coglianese, and P. Young. 1993. A domain-specific software
architecture engineering process outline. SIGSOFT Software Engineering Notes
18:40-49.

UML. from http://www.uml.otg.

UK_Ministry_of_Defence. 1997. Def Stan 00-55: Requirements for Safety7Related
Software in Defence Equipment.

Visio. 2003. http://www.microsoft.com/office/visio/prodinfo/overview.mspx.
Volere. from www.volere.co.uk.

Watkins, R., and M. Neal. 1994. Why and How of Requirements Tracing. IEEE
Software 11: 104 -106.

358

http://www.mercuryinteractive.com/products/testdirector
http://www.uml.org
http://www.microsoft.com/office/visio/prodinfo/overview.mspx
http://www.volere.co.uk

BIBLIOGRAPHY

Webber, D., and H. Gomaa. 2002. Modeling variability with the variation point
model. Pages 109-122. International Conference on Software Rense. Springer
Vetlag.

Weidenhaupt, K., K. Pohl, M. Jarke, and P. Haumer. 1998. Scenario Usage in
System Development. IEEE Softivare 15: 34 - 45

Weiss, D. 1995. Software Synthesis: The FAST Process, the International Conference on
Computing in High Energy Physics (CHEF'), Rio de Janeiro, Brazil.

—. 1998. Commonality Analysis: A Systematic Process for Defining Families. Second
International Workshop on Development and Evolution of Softivare Architectures for
Product Families.

Weiss, D., and C. T. R. Lai. 1999. Software Product-Line Engineering: A Family-Rased
Software Development Process. Addison Wesley, Reading, MA.

Westhuizen, C. v. d., and A. v. d. Ploek. 2002. Understanding and Propagating
Architecutural Changes. Pages 95-109. WICSA.

Wong, S. K. M, and Y. Y. Yao. 1991. A probabilistic inference model for
information retrieval. Information y stems 16: 301-321.

—. 1995. On Modeling Information Retrieval with Probabilistic Inference. ACM
Transactions on Information Systems 13: 38-68.

WotdNet. from http://wordnet.princeton.edu/.

xADL2.0. from http://www.ist.uci.edu/projects/xarchuci/.

xArch. from http://www.ist.uci.edu/projects/xarch/.

XML from http://www.omg.org/technology/document/xmi.html

XMLToolKit. from http://www.alphaworks.ibm.com/tech/xmitoolkit.

XPath. from http://www.w3.org/TR/xpath.

XQuery. from http://www.w3.0tg/TR/xquery/.

XTraQue. XTraQue. http://www.soi.city.ac.uk/~2j406/XTraQue/

Zisman, A., G. Spanoudakis, E. Perez-Minana, and P. Krause. 2002a. Towards a
Traceability Approach for Product Families Requirements, the 3rd ICSE

Workshop on Softivare Product Lines: Economics, Architectures, and Implications,
Orlando, USA.

359

http://wordnet.princeton.edu/
http://www.isr.uci.edu/projects/xarchuci/
http://www.isr.uci.edu/projects/xarch/
http://www.omg.org/technology/document/xmi.html
http://www.alphaworks.ibm.com/tech/xmitoolkit
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xquery/
http://www.soi.city.ac.uk/~aj406/XTraQue/

BIBLIOGRAPHY

—. 2002b. Tracing Software Requirements Artefacts. The 2003 International Conference
on Software Engineering Research and Practice (SERF' 03), Las Vegas, Nevada,
USA.

360

