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Abstract

The work aims to derive extended robust stability results for the case of unstructured
uncertainty models of multivariable systems. More specifically, throughout the thesis,
additive and coprime unstructured perturbation models are considered. Refined robust
stabilisation problems of MIMO systems are defined and maximally robust controllers
are synthesised in a state-space form. Unstructured perturbations which destabilise
the feedback system for every optimal (maximally robust) controller are identified on
the boundary of the optimal ball, i.e. the set of all admissible perturbations with norm
equal to the maximum robust stability radius. Boundary perturbations are termed
“aniformly destabilising” if they destabilise the closed-loop system for every optimal
controller and it is shown that they all share a common characteristic, i.e. a projection
of magnitude equal to the maximal robust stability radius, along a fixed direction
defined by a pair of maximising vectors (scaled Schmidt pair) of a Hankel operator
related to the problem. By imposing a directionality constraint it is shown that it is
possible to increase the robust stability radius in every other direction by a subset of
all optimal controllers.

In order to solve this problem, super-optimisation techniques are developed. Inde-
pendently a natural extension of Hankel norm approximations, the so-called super-
optimisation problem is posed and solved explicitly for the case of one-block problems
in a state-space setting. It is thus shown that a subset of all maximally robust con-
trollers, namely the class of super-optimal controllers, stabilises all perturbed plants
within an extended stability radius /;(<5), subject to a directionality constraint.

In addition, the work is related to robust stabilisation subject to structured
perturbations. The notions of structured robust stabilisation problem, and structured
set approximation are defined in connection with the maximised set of permissible
perturbations. It is further shown that can serve as an upper bound the
structured robust stabilisation problem. The effect of as an upper bound depends
on the compatibility between the two structures, the true structure and the artificial
structure of the extended permissible set.
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Notation

h ,c m

K(s)

nfs]

dv

sup, inf, max, min
det(A), trace(A),rank(A4)
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Sets of real, complex and natural numbers

field of rational functions in s with real coefficients

the set of real polynomials in the variable s

Boundary of set V'

supremum,infimum, maximum, minimum

determinant, trace and rank of matrix 4

spectral radius of matrix 4

r-th eigenvalue of 4

largest eigenvalue (singular value) of 4

smallest eigenvalue (singular value) of 4

Inertia of a complex matrix 4 is the ordered triple of
the numbers of its positive, negative and zero eigenvalues.
transpose of A e 7Zpxm

complex conjugate transpose of A £ Cpxm (or operator)
the para-Hermitian conjugate of G(s)

Set of all proper real-rational matrix functions which are
analytic on the imaginary axis

Sets of all proper real-rational matrix functions which are
analytic in the closed RHP and closed LHP, repsectively
Subset of 7Gx, consisting of all functions with no more
than £ poles in the RHP

Woo-ball

Hankel operator associated with G(s)

f-th Hankel singular value of Gi(s)

Family of all stabilising controllers

Set of all stable closed-loop systems

Set of all stable control sensitivity functions

Throughout this thesis matrix dynamical systems appear inside parenthesis so that

they are distinguished from constant matrices which are denoted by square brackets.
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Introduction

Physical systems such as chemical processes, aerospace systems and power networks
are observed to be in general non-linear, time-varying and highly complex. In the
modelling process of large-scale multivariable systems, errors occur in the form of
disturbances, inaccuracy of measurements, neglected or unmodelled dynamics, etc. In
a simple design, the controller is synthesised so that it stabilises the mathematical
model of the process, but obviously the model represents the real system only up to
a certain degree of accuracy. Consequently, it is natural to assume that a simplified
mathematical model which does not take into account all the above factors may be
a poor indicator for controller design. Since a trade off arises between accuracy and
simplicity of the model, the controller should work for the real system as well as for the
model, i.e. it has to be robust against any errors introduced in the mathematical model.
The objective of robust control is to take into account all modelling errors (inaccuracy
of measurements, neglected or unmodelled dynamics, etc.) or disturbances, and design
controllers which meet the required stability and performance criteria not only for one
model but for a neighbourhood of models, inside which the real system is believed to
lie.

In order to solve a robust control design problem various methods may be employed.
Among them, the most mathematically sophisticated methods which search for optimal
criteria are the Tioo, and Structured singular value (//) design methods; the later being
an extension of optimal control. Further, other design methods are also used,
depending on the application. The methods include Robust eigenvalue/eigenstructure
assignment, Predictive control, Quantitative Feedback Theory (QFT), Fuzzy Logic,
Multi-objective parameter tuning, etc. For a full discussion see [Gro97]. However, the
most prominent and prolific method developed throughout the last decades has been
proved to be Hoc-optimal control together with /r, which address systematically the

effects of model uncertainty.



Tioo-optimal control is a frequency-domain optimisation method which was developed
in response to the need for a synthesis procedure that explicitly addresses questions
of modelling errors and unknown disturbances. H” control is a natural extension to
classical feedback theory for multivariable systems. The method’s basic philosophy is
to treat the worst case scenario, i.e. design a controller that stabilises the nominal

plant for the worst-case perturbation that is likely to arise.

During the last four decades the Hoo optimisation problem drew the attention initially
of mathematicians and subsequently of control theorists, as it fitted well to the
framework of engineering design. Various types of solution were developed arising
from different fields of interest - some being mathematically elegant and others being
more applicable computationally. Historically the problem was first solved using
Nevanlinna-Pick algorithm an approach based on classical interpolation theory and
complex analysis. In parallel the problem was formulated and solved in a more
general setting, using the AAK theory [AAK71],[AAK78], which reduces the problem
to a general distance problem [DC86],[Fra87],/GLD+91]. The solution in the later
formulation involves unitary dilations (see [Glo84] for the special case of one-block
distance problem), which are tools adopted from operator theory and complex function
theory. Other popular approaches are the J-spectral factorisation and the conjugate
method of J-lossless factorisation [Kim97]; the later being related to interpolation
theory. Furthermore, J-spectral factorisation was known to be related to LQ games
and as consequence, Hoo optimisation has been viewed and solved as a differential game
[BBI1] (a zero-sum game where the controller is treated as the minimising player and
disturbance is the maximising player). Perhaps the most computationally tractable
and theoretically fruitful method developed for solving Hoo problems is the state-space
approach by [DGKF89], which further led to the LMI formulation [DPO0],[GNLC95]
and its extensions to multi-objective optimisation, non-linear and time-varying control

settings.

In connection to H” optimisation problems, throughout this work, super-optimisation
theory is considered. Essentially, this is an extension of Hoo optimisation, as the
objective of super-optimisation involves the minimisation of not only the largest
singular value of the associated operator (which is the equivalent objective of Hoo
optimisation) but also of its subsequent singular values as well, in a hierarchical

manner. The rationale behind this problem is to exploit all available degrees
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of freedom. Super-optimisation was first proposed and solved by Young [You86].
Although the initial motivation was esthetic rather practical, questions later arose
on whether the methodology could also be applied to engineering problems. The
problem was subsequently posed in a state-space framework by control theorists who
developed algorithms for solving super-optimisation problems under various types of
constraints [LHG87],[TGP88], [JL93]. The problem was also formulated and solved
using polynomial methods, as reported in [KN89] and others. However, the most
computationally powerful and elegant solution methodology is that developed in [JL93]
were unitary dilations are considered. Although in this thesis the method is specialised
to the one-block Nehari problem, it has been shown that super-optimal general distance
problems can be addressed in this framework ([JL93]) together with the more general
class of Hankel norm approximations ([HJ98]).

Throughout the thesis, a simple Hoo problem is addressed, namely the robust
stabilisation problem under the presence of various types of unstructured perturbation
models [Glo86],[MG90]. Here we are interested to determine the largest possible region
in uncertainty space guaranteed to be stabilised by a controller family, in terms of
necessary and sufficient conditions. The first problem (MRSP) requires the solution of
one-block Nehari approximation. This is subsequently extended to the multivariable
case using a more refined direction-sensitive measure of robustness, using the theory
of super-optimisation.

In the thesis we study the existing theory of robust stabilisation for LTI systems
and develop a novel methodology which extend the known results using directionality
information. The improved robust stability criteria derived here are based on the
methods of [LCL+84] and certain more recent generalisations. The work of [LCL+84]
goes back to 1984, i.e. to the early era of robust control. Throughout the eighties (and
late seventies) the robust stabilisation problem was progressively linked to interpolation
and approximation theories before taking its modern form. Due to the large impact
of the approaches described in the seminal work of [Glo84] and [DC86] and other
developments related to the structured singular value, little attention was given to the
approach of [LCL+84]. Essentially the main idea in [LCL+84] which is followed in this
work, is to improve the robustness tests by placing a weak restriction on the structure of
the perturbation set. This restriction takes the form of a projection of the perturbation

onto a subspace. In contrast to the methods of [LCL+84], however, here the structural



information, provided by the restriction, is used a priori (i.e. before a compensator is
designed) and hence can be related directly to the directionality properties of robust

stabilisation.

0.1 Summary of work

In this work an exposition of control theory related to Zioo- optimal design has been
attempted. In particular, the problem of robust stabilisation under unstructured
perturbation models is recast as one-block Nehari approximation problem, whose
solution is studied in the first chapters of the thesis. The objectives of the present

work are:

* To obtain necessary and sufficient conditions for robust stabilisation and

characterise the set of all robustly stabilising controllers.

* To solve, explicitly, the maximally robust stabilisation problem under unstruc-
tured additive and coprime perturbations. As is shown in chapter 5, the solution
of these problems, involves essentially a one-block Nehari optimal approximation,
whose solution is described in chapter 4. The objective here is to use state-space
analysis to reveal the underlying structure of the family of all optimally synthe-

sised (maximally robust) controllers and the corresponding closed-loop systems.

* To derive necessary and sufficient conditions for extending the maximal robust
stability radius under directionality information. Here a refined direction-
sensitive measure of robust stabilisation appropriate for multivariable systems

is introduced and optimised using super-optimisation theory.

* In order to derive stronger robust stability criteria as described in the previous
objective, it is vital to solve the so-called super-optimal approximation problem.
Here, a detailed and complete solution to the problem is developed using
state-space techniques which removes all technical assumptions made in earlier

approaches.

* To define proximity measures between different structured uncertainty sets in
relation to the proposed methodology, and then extend the improved robust

stabilisation results to the case of structured uncertainty models.



0.1.1 Contribution of thesis

In this section we summarise the main contribution of this work.

» The problem of super-optimisation has drawn the attention of control theorists
and mathematicians for more than two decades. Here we present a computa-
tionally robust method for solving the one-block problem, using simple linear
algebraic techniques. A state-space analysis is developed so that the struc-
ture of super-optimal decomposition becomes transparent and unnecessary ill-
conditioning is avoided. The problem is solved under minimal possible assump-

tions.

* The results of this work show that a subclass of maximally robust controllers,
namely the super-optimal controllers, guarantees robustness (in terms of
stability) for a wider uncertainty set, i.e. they can stabilise additional perturbed
plants compared to a general maximally robust controller, when the plant is
subject to additive or coprime factor perturbations. The maximum permissible
uncertainty set, characterised by a norm condition, consists of all perturbations
lying inside the ball of maximal robust stability radius. It is shown that
by imposing directionality constraints on the uncertainty set, super-optimal
controllers guarantee the stabilisation of perturbations inside a set of a largest
stability radius (in addition to perturbations guaranteed to be stabilised by
optimal controllers). The extended robust stability radius is derived in closed-

form as a function of a parameter ¢¢which quantifies the directionality constraint.

* In many applications of robust control the choice of an appropriate model of
uncertainty is an important issue. The formulation of coprime robust stabilisation
problem removes some limitations of the additive and multiplicative perturbation
models related to the number of RHP poles of the perturbed and nominal
system. This motivates the generalisation of results (originally developed for
the additive case) to this type of model. However, in contrast to the analysis for
the additive case, our analysis of the coprime uncertainty model is carried out
under the simplifying assumption that the largest Hankel singular value of the
system constructed from the nominal coprime factors is simple. This is made

for notational simplicity and may removed if required without serious technical



difficulties.

A practical problem faced by every designer in robust control is whether to model
uncertainty in terms of its structure or as if it is not highly structured to avoid
that by considering unstructured models. Hence, a trade-off appears between
accuracy and conservatism which sometimes leads to either over-parameterised
or moderate design. Here, we define an abstract approximation problem which
aims to relate structured sets. Hence, it is shown that the methodology developed
throughout this thesis can be used to approximate the robust stability radius of

highly structured uncertainty sets by less structured sets.

0.2 Outline of thesis

In chapter 1 we outline main results of the mathematical framework that encompasses
robust control theory. Aspects of functional analysis and operator theory are reviewed.
The main theme of the chapter is the singular value decomposition of an operator on
function spaces and its best approximation. Most of the material is covered in standard

textbooks such as [Kre89], [Pow82],[Rud66],[Sut75],[You88] and [Pel03].

In a connection to the previous chapter, in chapter 2 we present the basic background
theory of linear multivariable systems. The space of LTI systems is shown to be
a norrned vector space (in frequency and time domains) over which, under mild
assumptions an algebra can be defined (JZHk,). Then the generalised regulator problem
is addressed and important theory related to this work, is outlined. The main objective
of this exposition is to define the framework of the stabilisation problem, studied in

chapter 3.

The theory developed in chapter 3 involves stabilisation of LTI systems, i.e. necessary
and sufficient conditions for the existence of stabilising controllers. The main result
of this chapter is the “Youla” parametrisation of all stabilising controllers in terms
of a free parameter in Zioom The stabilisation problem is therefore recast as a convex

optimisation problem via model-matching theory.

Hankel operators are defined within the rich mathematical theory reviewed in chapter
1. Over the three last decades Hankel operators have proved to be a major tool for
robust control theory and optimisation methods. In chapter 4, we study thoroughly

the Hankel operator and its main properties (norm, singular values). Approximation-
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theory type distance problems which involve the computation of the Hankel norm and
their relation to model reduction problems are also considered. In particular, a specific
Nehari-type approximation problem as developed in [Glo84],[Glo89] is of special interest

and hence an overview of these results is presented.

The main ideas of this work are developed in chapter 5. The theory behind the
results of this chapter is mostly based in [GHIOO] and [GI086]. An amalgamation
of this theory with results included in previous chapters leads to the construction of
a systematic procedure for solving the maximally robust stabilisation problem. A
detailed and concrete state-space analysis illustrates the structure of the set of all

optimal controllers.

Chapter 6 discusses the main points of the theory of super-optimisation, first introduced
in [You86]. Super-optimisation is a natural extension of Hankel-norm approximations
and hence this chapter is an extension of chapter 4. Here the one-block case is solved
using the method developed for two and four block problems in [JL93] but with further
state-space considerations. Utilising fully the structure of the one-block problem, the
state-space solution to the problem is fully illuminated. All simplifying assumptions
associated with the problem (e.g. multiplicity of the largest singular value, minimality,
etc.) are removed. Finally the application of super-optimisation theory in the solution
of the robust stabilisation problem in the matrix case is briefly discussed.

In Chapter 7 the extended stability criteria and radius for additive unstructured
perturbations are derived in the framework of the solution of CRSP. It is shown that the
set of (level-2) super-optimal controllers, a subclass of maximally robust controllers,
offers improved robust stability properties. Indeed, the set of level-2 super-optimal
controllers is precisely the class of controllers which guarantees robust stability inside
the maximum extended uncertainty set. Further, the largest possible uncertainty set is
explicitly characterised under directionality restrictions. Thereafter, its relation with
other structures is briefly discussed.

The generalisation of results presented in chapter 7 results to the case of co-prime
factor perturbations is the subject of chapter 8.

The main results and contribution of this work are summarised in the conclusions
chapter. Further, novel research directions which aim to extend the existing theory are

proposed.



Chapter 1

Mathematical Background of
Robust Control

In this chapter the mathematical background is briefly introduced, along with the
notation used in the thesis. Most of the material in this chapter is adapted from

[Kre89], [Par04], [Pel03], [Rud66], [Sut75] and [You88].

1.1 M etric Spaces

The Cartesian product X x Y of two sets X and Y is defined as a set of all ordered
pairs from X and Y, i.e. X xY = {(x,y) :x € X:y £Y}.

Definition 1.1.1. A metric space (X, d) is a set X together with a real valued function
(metric) d : X x X —1Z satisfying

(M1) d(x,y) >0forall x,y e X (non-negativity);

(M2) d(x, y) =0ifand only ifx = y (non-degeneracy);

(M3) d(x,y) —d(y,x) forall x, y € X (symmetry);

(M4) dx, y) <d(x,z)+dz y) forall x,y,z GX (triangle inequality).

Example 1.1.1. X —7I equipped with d(x,y) = \x —y| satisfies (M1)-(M4) (this is

obvious from simple properties of the real line) and thus forms a metric space.

Example 1.1.2. X = 7z equipped with dp(x,y) = (52i=i x % 2hjp)% for 1 <p < oo

form metric spaces. Here the triangle inequality (M4) is called Holder’s inequality.



Take for example the case p = 1, i.e. di(x,y) = i ~ Vil- Then (M1)-(M3) are
trivial and (M4) follows from the fact that,

ki~yil < Wi~ Z\+ \zi - yi M=1,2,...,n

=1 2=1 251
Further, by noticing that \xi~yil < \xt-z"+ -y < maxi<j<n Ixj-Zjl+maxi*” |z{-

vil we conclude that doo(x,y) := maxi<j<,, | X —il defines another metric in 7%.

Definition 1.1.2. (Induced metrics) If (X,d) is a metric space and d e 1, then
the restriction of d to A x 4 defines a metric on A. This restriction is defined by
d 1™ (a b = d@,b, Va,b£ A Sod | A x A —H is a metric induced by d and
{4, d |) becomes a metric space.

Up to now all examples involved finite dimensional vector spaces (since x and y are
finite dimensional vectors). Next, we define spaces of functions which are infinite

dimensional.

Definition 1.1.3. (Spaces of bounded and continuous functions) Let a < A
Then we define

®([a, b]) = {/ : [a, b =1Z:/ is bounded);

C([a, b)) = {f : [ab] —1Z:f is continuous).
Example 1.1.3. Take f,g £ B([a,6]) and define the sup-metric, d(f,g) =
supxef q |[f(x) —g(x)\ (ie. the least upper bound). Then (B([a, 6]),d), where d is
the sup-norm, forms a metric space. Moreover, C([a, b)) C ®([a, b) and hence the
sup-norm d induces a metric on C([a, 6]), which is also called the sup-metric but now

/, g £ C([a, b]). Note that on C([a, 6]) (but not on B([a, b])) we may also define another
metric by d(f,g) = J*|f(x) - g(x)\dx.

Remark 1.1.1. If (Xi,pi), {X2 P2) are metric spaces, there are several ways to define
a metric on X\ x X2, eg for x —(xi,x2), y = (2/1,22)" both in Xi x X2,

d\{x,y) = Pi(x1,21) + p2(x2,y2) or d"x") =max{pl(xLyl), p2(x2y2)}

Definition 1.1.4. (Isometry) Let (X d) and (X,d) be metric spaces. Then an

isometry / : X —X is a one-to-one correspondence such that

d(f(x).f(y)) =d(x,y) Mx,yeX

i.e. if the mapping / preserves distance.



Definition 1.1.5. Suppose (X,d) is a metric space. Then a mapping f : X —X is

called a contraction if there exists k, 0 < k < I, such that for every x,y G X we have

d(f(x).f{y)) < kd(x, y).

1.2 Normed Spaces

Definition 1.2.1. A normed vector space (sometimes called Pre-Banach) (X, | *|) is

a vector space X equipped with a real valued function (norm) || | : X —»1Z satisfying

(NI) |lxl > 0 for all x G X (non-negativity);
(N2) |x|| = oif and only if x = 0 (non-degeneracy);
(N3)  laa:]| = [af[[x]| (linearity);
(N4) |x+y| < ||| + |[y]l (triangle inequality).
Here x and y are arbitrary vectors in X and « is an arbitrary scalar.

Remark 1.2.1. It is easy to show that if || *| is a norm on a vector space then a

function d : X x X —IZ defined by
dix,y) = |x- yll>o0

is a metric on X. It is obvious that conditions (Ml) and (M2) hold for the above

function, d(x,y). Further,

dy,x) = |- xl = [(-Dx-y)I| = |- Ulx - yll = lx- y[=d{xy)

and
dix, z) - |x- 2V = l\x- ) + (- 2| <|[x-yl+ -zl =dx y +d(yz)

which prove that (MS) and (Mf) are satisfied. In order to prove the latter inequality
property (Nf) was used.

Hence, all properties (N1)-(N4) are satisfied by the function d which is called the
canonical metric induced by the given norm on the normed vector space X. Thus, all
norms define metrics although not all metrics arise from norms, i.e. any normed vector

space is a metric space.
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1.2.1 Norms of finite-dimensional vectors and matrices

For vectors x £ VJlor x £ Cn the Holder or p-norms are defined as follows

x\
(emnmm i<p<oo
Flip = X =
maxi<j<, laiil, p—o0
xn

An important property of the 2-norm is that it is invariant under unitary (orthogonal)
transformations; e.g. if U is such that UU* — U*U = /,, then it follows that
1[t/x||2 = x*U*Ux —x*x = ||m|||. Further, a useful relationship that holds for Holder
norms when p = 1,2,00 is

Moo < IMh < [M]i

Matrix norms are sometimes “induced” by vector norms. A matrix norm induced by

the vector p-norms is defined for 4 £ Cuxm as:
x|
9= ;
Mitpy - s I%Jl
For the special cases where p = ¢ = 1 or 2 or 00 we have that

m n

Mil1 = E mm mu»= ™axem pl Mib = [a(aa *)]i/2
-i-nj=1 -j-méAa

Besides induced matrix norms there exist other norms for matrices such as the Schatten
Sp-norms. These non-induced norms are unitarily invariant. Let Ui(4), 1 < i <
min(m, n), be the singular values of 4, i.e. the square roots of the eigenvalues of 44 *.

Then

1<p<@

£=1
Considering the limit p —>00, we can also define

which is the same as the 2-induced norm of 4. For p — 1 we obtain the trace norm

MU =
t=1

and for p = 2 the resulting norm is also known as the Frobenious norm or the Schatten

2-norm or the Hilbert-Schmidt norm of 4

m \ 2

(~ a 2080 1 = (Trace(AA+»)= - (Trace(4d*4ys
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1.3 Inner product Spaces

The inner product is considered as a generalisation of the dot product x-y — Ix\ly| cos 6,

where x, y are real vectors (say e.g. in 7/3) and 6 is the angle between them.

Definition 1.3.1. An inner product space (or Pre-Hilbert space) (X, (¢, *)) is a vector
space X, over T or C together with a complex valued function (inner product)

(e,m): X x X —C satisfying the following properties
(IT)  (x,x) > o whenever x / 0;

(12)  (xy) = px)*

(13)  (ax,y) = a(x, y) ;

149 (x+yz) <(xz) + (2.

where a is a scalar and x,y, z E X .

The inner product defined above induces a norm |x|| := yj(x, x) since all norm
conditions (NI) to (N4) are satisfied. Further, it is a fact that in every vector space
(X, (»,*)) the absolute value of the inner product of any two vectors a,b E X is less

than or equal to the product of the norms of those two vectors, i.e.

Theorem 1.3.1 (Cauchy-Schwartz inequality). Let (X, (*,*)) an inner product
space. Then

l(x,y)\ < HHjA Vx,y EX

where ||X|| ;== (x, x)I'2 and ||| = (y,y) 2

Proof. See [You88] or [Kre89]. O

Example 1.3.1. The space 77 with inner product defined by

n
Va,bE T/
is an inner product space.
Example 1.3.2. Cnxm with inner product defined by
(A,B) :=trace(A*B) = En1 Em 1 <ibi VABeC”-“
=

is an inner product space.
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1.4 Complete Spaces

Definition 1.4.1. (Cauchy sequences, completeness) A sequence {r*} in a
normed space (X, || *|) is said to be a Cauchy sequence if for every e > 0 there

exist N —N(e) >0 such that
\bm —xnll <e Vm,n > N.
In other words, the above definition states that a sequence is Cauchy if it satisfies
fIxD xnl ™" o

A normed space is said to be complete if every Cauchy sequence in it converges; such

spaces are called Banach spaces.

Definition 1.4.2. A Banach space is a complete normed linear space (complete in the

metric defined by the norm).

Example 1.4.1. The simplest Banach spaces are the real line (72) and the complex

plane (C) both equipped with the absolute value as a norm.

Definition 1.4.3. A Hilbert space is a complete inner product space.

Clearly Hilbert spaces are also Banach spaces; by definition, a Banach space where
the norm can be derived from an inner product is a Hilbert space. Another fact that
makes Hilbert spaces important is that the Euclidean space is a finite dimensional
Hilbert space, which shows the geometric intuition offered by the Hilbert space. Thus,

the notion of “orthogonality” carries over to Hilbert spaces:

Proposition 1.4.1. Let X be a Hilbert space with a closed subspace IC Then if KL is
the orthogonal complement of IC ie. IC* :={x £X :(x, k) =0, V&£ )C}, X has an

orthogonal decomposition X = ICO IL. Thus, any vector x £ X decomposes uniquely
asx —k+ k', for k £ ICand k' £ I~ Further,

ell2 = k2 + W2

which extends Pythagoras theorem.
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1.5 Isomorphism

Throughout the present work various spaces, depending on the assumptions made, are
considered. However, what is common to all of them is that they consist of a set
which is characterised by a structure. In the case of a metric space, the structure
is clearly the metric, though when a vector space is considered, the structure of the
space is described by the two algebraic operations, namely vector addition and scalar
multiplication. Often the need for describing whether two spaces of the same kind are
essentially identical or not, arises. The concept of isomorphism gives the answer when
abstract spaces are involved. Roughly speaking, isomorphism is defined as a bijective

mapping of a space X onto a space X (of the same kind) which preserves ‘structure”.

Example 1.5.1. An isomorphism 7' of a vector space X onto a vector space X
over the same field is a bijective mapping which preserves vector addition and scalar

multiplication, i.e. for all x, y GX and scalar a
T(x+y)=Tx +Ty and T(ax) = aTl(x)

Remark 1.5.1. Isomorphisms for normed spaces are vector space isomorphisms which

also preserve norms.

Definition 1.5.1. I X is isomorphic with a subspace of a vector space Y then we say

that X is embeddable in Y.

1.6 Function Spaces

1.6.1 Lebesgue Integrable Spaces

For 1 < p < oo we let £™xn(—e0, 00) denote the vector space of (Lebesgue) integrable

matrix-valued functions mapping X to Cmxn, i.e.

The norm | *||sp used here is the usual Schatten p-norm.
When p = 2 we define the Hilbert space of matrix-valued, square (Lebesgue)-integrable

functions on X with inner product
(F.G) =

14



The norm induced by this inner product is

|["NU2= ("] trace[F*(t)F(t)\dt

Similarly, we define by £ xn(—e0, 00) the set of all matrix valued functions F : IZ

Cmxn that ||.F(1)|[£® < oo where

= * =
WE@)\\c,, %,I; WH*) U, sup amax(F{t))

Figure 1.1: Geometric interpretation of Cp norms.

In general it is a fact that Cq C Cv, for p > ¢ The following simple example verifies

this rule.
Example 1.6.1. Consider the function f(t) = fort> 0 and f(t)= 0fort <0.
Then:
rOO rOO Of jr
H/WI\2=1 f2Wdt=1 = [tan(i)r = -
and

1/Wlloo = sup |/(1)| = 1
ten

So, f G E£2andf G C". On the other hand consider the function g(t) = Vid Then,

dt
W9)\\c2 = gfyde=2 =200+ DI = oo

and
ll<?()lloo = SUP Hir@)| = 1
ten
Hence, g does not belong to Ci although g G Coo-

Consider now, the Fourier transform of a function / : IZ —> Cn, f G £2(~00,00),

defined as ;@

me-"dt
¥()))
15



and the inverse fourier transform of a function / :jlIZ —Cn defined as

() =--j fljw)e]Ukdu.

Then the following theorem links naturally the Lebesgue spaces, £p{—o0, 00), with the
restricted to the imaginary axis Lebesgue spaces, £p(j72):

Theorem 1.6.1 (Plancherel). Consider the functions as defined above, then

L the map $ : £2"00,00) »£2(jA.), for any given f,g G £2(—60,00) defines an

isometry, i.e. it preserves the inner product:

{1,902 = {®f,®9)2

2. the map : £2(j77.) —¥£2(—00,00), for any given f,g G £2(j7?.) defines an

isometry, i.e. it preserves the inner product:
(/,2)2 = $ 15)2

Proof, see [DPOO], [Rud66]. m|

Further, Parseval’s identity states that

1 poo poo

\\fM\\%dn =] \\f(O\\s2ut

Hence, £2(~00,00) and £2{jP) are isometric spaces. Moreover, we say that
£ao{—00,00) and £){jlZ) are isometric spaces since the norm of Tod(—60,00) is
induced by norms from £2{—o0,00) to itself. This is a useful result which in the
sequel will give us a stronger result, a way to connect Lebesgue spaces together with

Hardy spaces.

1.6.2 Hardy Spaces

Suppose / is a complex function defined in S C C. Then if for every ¢ G S,

f1z0 = i /() f(ZO)

exists (i.e. / is differentiable at zQ) we say that / is analytic (or holomorphic) in §. A

matrix-valued function is analytic in S if every element of the matrix is analytic in S.
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Definition 1.6.1. The Hardy 'H™n := H™X'(C+) spaces are defined as the vector
spaces of all m xn (matrix) complex-valued functions F which are analytic in the open

right half complex plane (Ct) equipped with norm

IINIWeo = S[CP WF)Wp < oo, p=

where s = x +jy, x,y EIZ and | *||sp denotes the Schatten p-norm of F.

Of course, the above function F could be defined as a vector or even a scalar-valued
function. If this is the case, then instead of using the Schatten class of norms inside
the integrals we use Holder norms. In the sequel, two important to our analysis Hp

classes are discussed.

Figure 1.2: Spaces from a set theoretic point of view

Definition 1.6.2. The Hardy H2 space is the space of all m x n complex-valued
functions F(s) defined as

= {F(s) : F(s) is analytic in C+; ||F ||"2< o0}

where

in which s —x + jy, x,y GIZ
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Definition 1.6.3. The Hardy Ttoo is the space of all complex m x n functions F(s)
C " = iFis) mF(s)is analytic in Ct, ||F||Wb < o0}

where

1*1IWoo = %}E <Imoi{F' {s))

Theorem 1.6.2. (Maximum modulus) 4 function f which is continuous inside a
closed bounded set D C C as well as on its boundary dD and analytic inside D, attains

its maximum on the boundary dD of D.
Proof, see [Rud66]. O

According to the above theorem functions analytic in C+ and bounded over the ju-axis,

attain their maximum on the ju-axis (i.e. its boundary), and hence
11*1«, = sup amax(F(s)) = sup amax(F(jy)) = \\Fl\Go
seC+ 16672,

and similarly,

11k = Tr2

Remark 1.6.1. Heretofore, the capital letter denoting a Hardy or a Lebesgue norm,
shall be omitted.

1.7 Operator Theory

Suppose (A, || «1I*) and (y, | *|ly) are (real or complex) normed spaces. Then a linear
bounded operator from a normed space A to a normed space y is a linear mapping

that satisfies

(Linearity) T{ot\x1+ 02"2) = 0i\T(x\) + afTi"xf) for all x\,xi G X and 01,02 G F;
(Boundedness) ||Tx|ly < A;||x/|* for any scalar £ > 0 and for every x G X.

Here F denotes the field associated with vector space X. If only the first condition
holds then we call 7" a linear operator whereas if only the second condition is satisfied

the operator is called bounded. However, throughout this work we consider the class

of operators that satisfies both conditions and henceforth by operator we shall refer to
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a bounded linear mapping. Further, we define the induced norm of an operator 7 to

be the least k£ such that the boundedness condition holds, that is

I7x ]ly

\ x->y sup ' 17

When the spaces X and y are obvious from context, the induced norm of 7" will
be simply denoted as ||T||. Further, we shall denote the space of all bounded linear
mappings from X to y by £(X, y) and clearly C(X) will be the space of all bounded
linear operators from X to itself. It can be verified that the induced norm defined

above satisfies the properties of a norm (N1-N4).

Example 1.7.1. (Integration) A linear operator T from Clo, Y into itself can be
defined
Tx(t) = Ji x{r)dr t e [ab]

Example 1.7.2. (Multiplication) Define another linear operator from C[a, § into

itself, by
Tx(t) = tx(1).

Example 1.7.3. (Matrix) A m x n matrix T defines an operator T :Fn —»Fm by

means of

y=Tx, x GF", y £ ¥m

where F is a field.

Definition 1.7.1 ([Par04]). The nonempty, compact subset of C, called the spectrum
of an operator T E C(X), where X is a Banach space, is defined as follows:

spec(T) := {X EC:T —A/is not invertible}
Similarly, define the spectral radius of the operator T as

p(T) = nliggo |[Tn||Un = inf{||Tn||V" :n > 1}
In general, p(T) < ||T||.

Definition 1.7.2 ([Par04]). The adjoint of a bounded linear operator T : X —»y,
between two Hilbert spaces X ,y is defined by the equation:

{Tx,y) = (x, T*y)
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forallx £ X andy £ y. Clearly,

The following properties are well known. Consider operators T2and T3in C(X,y)
and ai,a2£ C Then

1. («iTi + = OL\If + «2T2
2. (TYH*=T
3 il = |m!

4. ii'tdj)- =r/r1;

Further, three important, in this content, classes of operators are:
1. the Hermitian or self adjoint operators 7" when 7 = T*
2. the Unitary operators 7 if 7% =T 1,ie. TT* = T*T =1
3. the Normal operators 7 if 7*T = TT*

Obviously, both Hermitian and unitary operators are normal.

Definition 1.7.3 (Maximising vectors [You86]). Let X and y be Hilbert spaces

and let T e C(X, jV). A maximising vector for T is a non-zero vector x e X such that
M =1IPIM

Thus a maximising vector for 7 is one at which 7" attains its norm.

1.7.1 Singular value decomposition of a matrix

Theorem 1.7.1. (SVD) IfA £ Fmxn, (F = IZ or C) then there exist unitary matrices

U u, ar EFmxm and V= ,; e F"
such that
Er O
A—U V* = TUX*
0 0 i=1

where r = rank(A). Further,
Im(A) —Im ™ yi , ... , u Jj and Ker(4) =Im "y, 5 77
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where Er = diag(ai,..., ar), with ai > 02 > mm> vr > 0 and r < min(m, n). Here,

U and Vi denote the i-th columns of matrices U and V', respectively.

Proof. See [ZDG96]. O

Remark 1.7.1. From an operator theory point of view, the matrix 4 is considered as
a linear map from the vector space Fn to the vector space Fm. Keeping in mind the

dyadic form of 4 and the fact that v*y = 5jj (since V is unitary) it follows that

Avi = E (@uivi Vi = Gy
, ¢4
So, Vj is mapped into a;jj by A. Moreover,
Avi —QU = A*Avj = apVj and AA*Uj = a2lj

which reveals that a2 is an eigenvalue of A4* or A*A4, }j is an eigenvector of A*4 and

U is an eigenvector of A4*.

Geometrically, the singular values of 4 are the principal lengths of a hyperellipsoid; in

the case of two dimensions this is described in figure 1.3.

A=U0zZV’

Figure 1.3: Singular values of 4 as a gain factor
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1.7.2 The singular values of an operator

Definition 1.7.4. ([You88],[Pow82],[Pel03]) The singular values of an operator T
between two Hilbert spaces, X andy, are defined as follows

sk(T) = inf{||T —R\\ : R £ C{X,y), rank(R) <k} k €V /{0}
Clearly, si¢r) = ||T|]. The numbers
si(T) >82(T) >... >0

are called the s-numbers or the singular values of 7. Intuitively, Sfc(T) is the distance,

with respect to the operator norm, of 7 from the set of operators of rank at most & in

c(x,y).

Remark 1.7.2. In general, operators and in extension, their singular values are of
infinite dimensions.

The operator is said to be compact if and only if

lim sn(T) = 0

n—o0

If T is a compact operator from X to V, it admits a Schmidt expansion similar to that

in Remark 1.5.1.

Definition 1.7.5 (Schmidt pair)). (/You88],[Pel03]) Let s be a singular value of an
operator between two Hilbert spaces, i.e. T £ C(X,y). Then a Schmidt pair for T
corresponding to s, is a pair (x,y) of non-zero vectors, with x £ X and y £y, such
that

Tx =sy and T*y = sx.

Obviously, a singular vector or Schmidt vector for T (where T is compact)
corresponding to s is an eigenvector of 7*7 corresponding to s2. In particular, consider

the subspaces
£+) = {x £ X : T*Tx = s}, =Wty TT*y =s)

Vectors in e | are called Schmidt vectors of T and vectors in E s are called Schmidt
vectors of T*. Clearly, x £ E  ifand only if Tx £ Es~\| and we call the pair {x, y! a
Schmidt pair of 7 if it satisfies definition 1.7.5.
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Corollary 1.7.1 (Schmidt Expansion). (/Pel03']) If T is a compact operatorf rom

a Hilbert space X to another Hilbert space y , it admits a Schmidt expansion

Tx = E si(T) (x, fi)gi, xex
>0
where {/*}*>0 is an orthonormal sequence in X and {i}i>0 is an orthonormal sequence
iny.
Definition 1.7.6. (/You88]) (Operator matrices) Let Tij e C"Xj"yf), i,j - 1.2.

The operator matrix

I'n Tu
T21 Tz
is the operator from X\ © X2 to Ti © 32 defined by
. /\../\. +
T )CZJ\ _ ( 11 T]ijj XI'CAXZA] i—1,2.
y32ia;i + T2

Operator matrices
(71 t2) :xI®x2Ny

fTx
To

:x - yloy2

are defined analogously.

Remark 1.7.3. In the case of an inner product space V if X, y are two subspaces of
V such that for every x € X andy 6 y we have (x,y) = 0, we say that X andy are
orthogonal. Further, we say that V is the orthogonal direct sum of the two subspaces

denoted as X ® y, i.e. X andy are orthogonal and X + y.

Theorem 1.7.2 (Parrott’s theorem). Let H, /C be Hilbert spaces with decomposi-
tions Hi © H2 and K\ © JO. Assume Ty —1G, (i,j = 1,2), are bounded linear

operators. Then, there exists an operator Z :/C2—I(C2 for which the operator
Qz 1L © TI2 —All © A2
is a contraction if and only if

<1 and <1

t\ T%1J

Proof. See [Pel03]. O
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1.8 Best approximation

The need to approximate a complicated function by a simpler function gives rise
to approximation theory. Among the various methods, interpolation and best
approximation are of the greatest interest as far as this work is concerned. The
difference between best approximation and interpolation problems is that in best
approximation there is no requirement for the approximation function to pass through
the data values. Typically, best approximation problems with respect to norms which

are not Hilbert space norms can hardly ever be solved explicitly.

Definition 1.8.1. (Best approximation) Let (A, ||-||) be a normed space and suppose
that any given x € X is to be approximated by ay Ey, where y is afixed subspace of
X . Further, let 6 denote the distance (the metric induced by the norm) from x toy .
Then,

6= S(x, y) —inf |[x —|
yey

If there exists ayOe y such that
Ik - 20| = $§
then yo is called a best approximation to x out ofy.

Theorem 1.8.1 (Existence [Kre89].). Let (X, | *||) be a normed space with a finite

dimensional subspace y. Then, for every x E X there exists a best approximation to x

out ofy.

Proposition 1.8.1 (Convexity [Kre89]). In a normed space (X, || *||) the set M of

best approximations to a given point x from a subspace y of X is convex.

Definition 1.8.2 (Strict convexity). A4 normed space with norm such that for all
X,y of norm I,

Ik+ 211 < 2

is called a strictly convex normed space.

Theorem 1.8.2 (Uniqueness [Kre89]). In a strictly convex normed space X there

is at most one best approximation to an x € X out of a given subspace y.

Proposition 1.8.2 ([Kre89]). Hilbert space is strictly convex.
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Throughout this work we shall consider best approximation by analytic or meromorphic
functions in the norm. As discussed in the start of the paragraph, this is normally
an untractable problem (since is a Banach and not a Hilbert space), but under
certain conditions it can be reduced to a mathematically tractable problem, which

involves the rich theory of Hankel operators.

25



Chapter 2

The General 7Yoo optimal control
problem

In a SISO system the performance of the feedback loop depends on the variation of
the loop gain over frequencies. However, extending this idea into the MIMO case
is problematic since matrix systems do not have a unique gain; in fact, ||G(s)u(s)||
depends on the direction of u(s). Hence, a main difference between a scalar (SISO)
system and a MIMO system is directionality. One possibility is to use eigenvalues
to generalise the concept of gain; however these can only be computed for square
systems and characterise system gain whenever the inputs and the outputs are in the
same direction (eigenvector direction). Moreover, eigenvalues can be very sensitive
to perturbations in the matrix elements. Hence, eigenvalues are a poor measure of
gain. The singular value decomposition (SVD) provides a useful way of quantifying
multivariable directionality, and we will see that most SISO results involving the
absolute value (magnitude) may be generalised to the multivariable case by considering
the maximum singular value of their transfer function evaluated over the imaginary axis

(frequency response) [SP96],[Mac89],[FL8S;.

2.1 Signal and system spaces

In this context, a linear system G will be defined as a linear operator over a vector
(linear) space; this is in turn defined over a field F (which for our purposes is either

7 or C) and it is equipped with the usual operations of vector addition and scalar
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multiplication over that field. The linearity of G implies that:

\ =+ (Gi + GJu —di + 2

{ V2= G2u
v = Gu= (AGu — Ay

Definition 2.1.1 (Time-invariance). [GL95] Let y(t) be the response of a system G
to input u(t). If the response to the time-shifted input u(t —T) is y(t —T), the system
is called time-invariant. Furthermore, if the system satisfies the linearity properties

discussed above, then it is said to be linear time-invariant (LTI).

By considering LTI systems we get concrete realisation of the input-output relation,

ie. if g(?) is impulse response and y(0) = o, then
= g(t)*u(t)= [ g(t-T)u(r)dT
Jo

where “*” denotes the convolution operation.

Further, norms as measures, are vital for defining the notions of stability and internal
stability. In that sense, we consider the class of all MIMO LTI systems (input-output
mappings) Q as a normed linear space which satisfies properties (N1)-(N3) from
chapter 1, definition 1.2.1. Since a linear system is a linear operator mapping elements

from the input space to elements of the output space:
G-.u-"y

has induced norm given by

liell = sup ||Gu|ly
[lul[M<i

which, in engineering terms, denotes the maximal possible gain whenever a nonzero
input is applied. Thus, the system’s norm is directly related with the type of input
and output spaces considered as signal spaces. Throughout this work continuous-time
systems are considered and hence signals are defined as functions in continuous time
domain. Further, assuming that signals are square integrable with bounded energy, we
define the input and output spaces to be Lebesgue square integrable, i.e. to belong to
the class 22(—  °°) (see chapter 1). Independently, if G is taken to be an operator
in (oo then it is implied that it maps C2(—e0, 00) input signals to C2(—e0, 00) output

signals (but not vice-versa). Further, recall from chapter 1, that the £00-norm can be
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written as /*-induced:
lie'll - lie(s)||E00GK) - sup 11Gu [lic 2(_00i00)
(-

due to Parseval’s theorem.

Remark 2.1.1. The choice of these spaces is mainly due to the fact that they admit
an ‘easy” way to calculate and optimise ||G|| within a rich and well established
mathematical framework which captures practical engineering issues and results to a

reliable model of the physical (real) process.

A pre requisite to any kind of feedback control design is stability. Hence, conditions of
stability should be defined in this context. A system is called (input-output) stable if

every bounded input signal produces a bounded output signal.

Definition 2.1.2 (External stability). A system G is BIBO stable if
Vu G£2(0,00) =hy = Gu G£2(0,00)

Hence, all LTI operators on £ 2[0, 00) are represented by functions in Hoo L

Stability of LTI systems is described by analyticity of the transfer function in the right
half plane of the complex domain. As this is defined in the frequency domain, we need
to pose a time-domain analogue which preserves the norm (isometry). Thus, define the
Hardy space TYgp to be the space of all stable LTI systems, i.e. systems whose transfer

function is analytic in the closed right-half plane, equipped with the following norm:

IGivoo = (SP AG(s)] = sup o/ G(ju)

where the last equality is due to the maximum modulus theorem (see chapter 1). The
subspace of all proper real-rational functions in 77" is denoted by Then if a
system G is stable, ||Gjjoo is bounded.

In the same vein, signals in the Laplace domain belong to the space 7i2, if they are
analytic in the open RHP, or Ttf if they are analytic in the open LHP, respectively.
Frequently, a misunderstanding arises between the notions of stability and causality.
In the following paragraph we distinguish clearly the two notions.

INotice that this means that an LTI operator on £2[0, °°) is necessarily causal, a notion which we
define later in the paragraph.
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Definition 2.1.3 (Causality). 4 system is called causal if the output up to time T

depends only on the input up to time T, for every T.

The Laplace transform formula together with its region of convergence (ROC) uniquely
specify the time function and hence causality. The next example is constructed to

support this argument.

Example 2.1.1. Let u(t) denote the one-sided step function u{t) = 1, for t > 0, and
u(t) = 0fort <0. The SISO transfer function is the Laplace transform of e~atu{t)

and of —e~atu(—t). However, the regions of convergence for these time functions are
different. When the causal exponential time function is considered, then the ROC of
g(s) is Re(s) > —a. On the other hand, if we consider the anti-causal exponential time

function, then the ROC of g(s) is Re(s) < —a.

Remark 2.1.2. For a causal LTI system, a necessary condition is that the region
of convergence is to the right of the rightmost pole (in the s-domain) of the Laplace
transform. Furthermore, a requirement for an LTI system to be causal and stable is
that the region of convergence is to the right of the rightmost pole (in the s-domain) of

the Laplace transform and all the poles are in the left-half plane.

Remark 2.1.3. The time domain analogue of Hoo is £00[0, 00), which defines all
causal systems. All anti-causal systems, i.e. systems whose impulse response lies in

Coo{—o0, 0] are isometric to Tt", the set of all anti-stable LTI systems.

Example 2.1.2 ([Kim97]). Consider a transfer function

1
G(s):(?Ta a > 0.

Then the infinity norm is calculated as:

1
yui2+cr a

Example 2.1.3 ([Kim97]). Consider a transfer function

IGlloo = sup

+
G(s) s+ a > o.
s+ a
Then,
w2+ /32 cr 1z )
= = 1 - = —_
[IGHoo = sup wot a2 A sup( w2+ a2 maxjl, " }

Along with the definition of a contractive operator given in chapter 1 (see def. 1.1.5

and section 1.7), contractive systems are defined:
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Definition 2.1.4 (Contractive systems). A system is called 7 -contractive (or simply
contractive if 7 = 1) if its induced norm is less than or equal to 7, i.e. |G|l < 7. If

G| < 1, the system is called strictly contractive.

Figure 2.1: Nyquist diagram of a contractive system

Definition 2.1.5. 4 system G is called j-allpass if it satisfies
= G~G =721

Hence, as a consequence, its induced norm ||Gl| is equal to 7.
From an engineering point of view, plotting the singular values of an all-pass system
we see that they all have a constant value of 1, over all frequencies (GG~ = [ =

AI(GG~) = 1= 4i(G) = 1).

2.2 State-space realisations of LTI systems

A linear transformation of a finite dimensional vector space into another finite
dimensional vector space can be represented by means of different matrices, depending
on the particular choice of bases in the vector spaces. Among all, there exist choices
of bases which result in matrices of “standard” forms, called canonical forms. Such
transformations preserve certain characteristics of the vector spaces (e.g. the rank of
a matrix), called the invariants under the transformation. In control theory, however,

motivation for such transformations usually arise from practical considerations. The
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study of an equivalence class, the so-called similarity transformations is of great interest
in this particular work. In the sequel, standard results of such linear transformations
are presented.

The realisation of a real-rational transfer-matrix G(s) = C(sl —A)~IB + D is written

as
A B

C D

G =(A,B,C,D) or G =

Proposition 2.2.1 (Equivalence). Assume two LTI systems Gy and Gz have
realisations (Ay, By, C\, Dy) and (A2, #2,62, D2), respectively. Then Gy and G2 are
said to be equivalent systems if and only if

CyeMtBx= C2eMtB2 and Dy = D2.
Proof, see [Ros70]. ]

Definition 2.2.1. A4 realisation (A,B, C, D) for a system G is called minimal if there
does not exist a realisation for G with smaller state dimension. Then, the McMillan
degree deg(G) is equal to the dimension of the state vector in a minimal realisation of

the system.

Controllability and observability are two notions which play a very important role
in the structural analysis of control systems. Controllability is concerned with the
ability of “steering” the state x(?) from an initial value x(#0) to the origin in finite
time T, i.e. x(7) = 0, T > t0 by means of an appropriate control u(?), t0 <t < T.
Further, observability is concerned with the ability of determining in the “unforced”
case u(t) = o (uniquely) the initial state x(z0) from knowledge of the system output
(), te fOT]

Proposition 2.2.2. 4 system (4,B,C, D) with deg(4) = n, is controllable if and only

if the controllability matrix
cary — B AB An~IB

has rank n. Further, the system is observable if and only if the observability matrix

C

CA
Oca

CAn—l
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has rank equal to n.

Proposition 2.2.3. A system G admits a minimal realisation (4,B, C, D) if and only
if (4,C) is observable and (A,B) is controllable.

Proof see [ZDGY6], m|

Theorem 2.2.1 (Kalman canonical decomposition). There always exists non-

singular coordinate transformation x = Tx so that every state-space representation

A,B,C, D) is equivalent to the following structure:
@ 4o o M3 o ‘
Xd _ Az AG AB Az Xd | Fs

Xoo 0 o A o Xo 0
Xd 0 O Ag A Xed o)
Xoo
Xed
V= Cwo o C,0 o + Du
XTCO
Xo

The state variables corresponding to the vector x are both controllable and observable,
x@ is controllable but unobservable, Xco is observable but uncontrollable, and Xcd is

uncontrollable and unobservable.
Proof, see [ZDGY6]. |

Corollary 2.2.1. Consider a realisation (A, B,C, D) corresponding to a system G.
Then,

1. if the system is not controllable there exists an equivalent realisation

) ' BI
d=r1ar-1= A" A2 B=TB =

0 A O2 (2.1
C=CT-1= ¢\ o D=D

in which (An, fix) is controllable.

2. if the system is not observable there exists an equivalent realisation

A1 o B1
A=TAT-1= B =TB —
A> b2 2.2

C=CT~X= o On
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in which (An, Ci) is observable.

Definition 2.2.2. The system (A, B) is denoted as stabilisable, if the matrix A22 in
the normal form (2.1) is stable.

Definition 2.2.3. The system (A,C) is denoted as detectable, if the matrix A2z in the
normal form (2.2) is stable.

Proposition 2.2.4. Controllability (stabilisability) and observability (detectability)

remain invariant under similarity transformations.
Proof, see [ZDGY6]. i

Proposition 2.2.5. The transfer function remains invariant under similarity trans-

formations.
Proof, see [ZDG96],[Ros70] |

Definition 2.2.4. /[MG90] Suppose G is a stable system with minimal state-space
realisation (A4, B,C, D). Then the associated controllability gramian, Wc, and

observability gramian, W0, are defined as:

POO

VRC:= / eAtBB'eAtdt

Jo
wo:= | eA'tC CeAtdt
Jo
Further, these are the unique, positive definite solutions to the following Lyapunov
equations:
AWC+ WA'+ BB'= 0
A'W0+ Wad + C'C =0
respectively.

Proposition 2.2.6 (Balanced Realisation). Suppose Wc and WQ satisfy the

controllability and observability Lyapunov equations, respectively, of a realisation

(4,B,C,D) of a stable system G. Then there exists an equivalent realisation

(A, B, C, D) with gramians Wc and WQ under a similarity transformation T such that
Si Si

S2
We:=Twa'= WG = (T~)'WO0T~1 =

33



where £1,£2,£3 are diagonal and positive definite.
Further, if the original realisation is minimal then there exists a transformation such

that We = WQ—£, where £ = diag(a\, (5, m., an). Here, n is the McMillan degree

of the system and > az2> ... > an > 0 are the Hankel singular values, defined by
a = \\(Wowg).
Proof, see [ZDGY6]. ]

Definition 2.2.5. [ZDG96] Suppose G(s) =(A, B,C, D) is minimal.  Then the
eigenvalues of A are called the poles of G(s).

Definition 2.2.6 (Multivariable zeros). [BC85/,[Kar01]

1. A complex number zq £ C is called a system zero of the system realisation if the
system matrix
zql —A B
C D

2.3)

is rank deficient. The system zeros are invariant under similarity transformations

and constant linear feedback.
2. Suppose that there exist complex numbers zG and z( which make the matrices

zol - A
C

rank deficient. Furthermore, suppose there exist numbers z@ for which both of
these matrices are simultaneously rank deficient. All such numbers are called
decoupling zeros and this set is subdivided into the sets of input-decoupling zeros

(zG), output-decoupling zeros (zco) and input-output decoupling zeros (z(@).

3. The zeros of the transfer matrix G(s) are called the transmission zeros and can

be found from the Smith-McMillan form of G{s).

f. The following identity holds:

{system zeros! = {transmission zeros}U{input-decoupling zeros}

Ufoutput-decoupling zeros} - {input-output decoupling zeros)

Remark 2.2.1. Systems with no decoupling zeros are said to be least order (minimal).
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Remark 2.2.2. When the system matrix (2.3) is square and nonsingular, the zeros of

the system are exactly the invariant zeros of the system.

Remark 2.2.3. Consider a system with realisation (A, B,C, D). Then the input-
decoupling zeros of (A, B,C, D) are uncontrollable eigenvalues of A, and the output-
decoupling zeros are the unobservable eigenvalues of A. Note that in the case when
(4, B,C, D) is controllable and observable, the zeros of the system, the invariant zeros,

and the transmission zeros (zeros of the transfer matrix) all coincide.

Heretofore, by zeros we shall referring to system zeros, unless stated otherwise.

2.3 Internal stability of feedback interconnections

Consider the feedback interconnection in figure 2.2 and define an extra set of three

signals: el :=v, e2:=d+ u and e3:= ym Wy + n

Figure 2.2: General feedback arrangement

Grouping the terms together:

1 0 Is fe3
-K I 0 e2 - d

o O W [n)

Definition 2.3.1 (Well posedness). The feedback system of figure 2.2 is well-posed
if and only if the 3x3 matrix, above, is nonsingular for s = j 0o.

The transfer matrix defining the input-output map is then given as:

1

10 A (r
e2 — -K / 0 d
w 1o ¢ ) w
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Remark 2.3.1. If'the transferfunctions ofG and K are proper, well-posedness implies

that the nine transfer functions from (r,n,d) —>(ei,e2,e3) exist and are proper.

Definition 2.3.2. The feedback system given in figure 2.2 is called internally stable if

each of the nine transfer functions from (r,n,d) —>(ei,e2,e3) is stable.

Remark 2.3.2 (External vs Internal stability). [t should be noted here that
internal stability is a stronger requirement than (external) input-output stability as
defined at the start of this chapter (definition 2.1.2), since it also takes into account

the potential RHP pole-zero cancellations.

The following example considers the SISO case of a feedback loop which is input-output

stable but not internally stable.

Example 2.3.1. /GL95] Consider the SISO plant and controller

+3
S

—s s
9%s) g0 K(S)=
It can be observed that an unstable pole-zero cancellation in Re(s) > 0 occurs
when the product g(s)k(s) is formed. Further, the transfer function from r to e\ is
(1 —g(s)k(s))~1= 2+2)’ which is stable. However, the closed-loop transfer function
from r to e2 is k(s)(1- g(s)k(s))~1 = which is unstable due to the closed-
loop pole at the origin. Therefore, the feedback loop is not internally stable for this

particular plant and controller.

Internal stability becomes a more complicated property when considering MIMO
plants. For example, consider the transfer matrix, H{s) which has

poles and zeros at the same location in C but not in the same input-output “channel”.
From a balanced realisation of H(s), it may then shown that it has modes A= —
and A= —2 which imply that the realisation is both controllable and observable and
therefore minimal. Moreover, a loop having H(s) as the closed-loop transfer function

is internally stable.

Example 2.3.2. Consider

28
G(s) = s

2s
s—1
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Then the unstable pole s = 1 of the controller does not appear in the product GK,

(0}
GOKs) =
SH 3H
Further, one of the feedback-loop transfer matrices
%
KN +GK)-1=
4s2

(s—D(s-fD(s+3)

/ias unstable poles and thus the feedback system is not internally stable.

Theorem 2.3.1 (Internal Stability). [DC86] Consider a minimal realisation

A B\ B2
G(s) £+ «c¢1 D\\ D\2
c2 D2 42

Then there exists a proper real-rational transfer matrix K achieving internal stability
of the feedback configuration offigure 2.2, if and only if the pair (A, B2) is stabilisable
and the pair (4, C2) is detectable.

Proof, see [DC86]. O

In the sequel, a standard test for feedback loop stability, namely the Nyquist criterion
for multivariable systems is discussed. ~Another important theorem which gives
necessary and sufficient conditions for closed-loop stability is the small gain theorem
which will be discussed in the following paragraph, where the standard Hoo control

problem is considered.

Theorem 2.3.2 (Nyquist stability). [AntOl] Consider figure 2.2 where d = n =
0. Then given the square MIMO system G(s)K(s), let T be the Nyquist plot of
det{l + G(s)K(s)) 2. Assuming that T does not pass through the origin, the number
of unstable closed loop poles of the unity-feedback configuration in figure 2.2 is equal to

the sum of

* the number of times T encircles the origin in a clockwise direction, plus

* the number of unstable open-loop poles of G(s)K(s).

2In the case of positive feedback, i.e. in figure 2.3, we use the Nyquist plot of det(I —G(s)K(s))
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Obviously, the number of clockwise encirclements of the origin may be negative (due to
unstable pole-zero cancellations).

As a result, the closed-loop system is stable if and only if, the number of unstable poles
of G(s)K(s) is equal to the number of anticlockwise encirclements of the origin by the

Nyquist plot F.

Proof. For a complete treatise of MIMO Nyquist diagrams and homotopy arguments
refer to [VinOl]. O

24 The standard 7i* problem

Consider the following general feedback arrangement:

Figure 2.3: General plant

where w contains all exogenous inputs and model error outputs, the signal u is the
controller output, the signal y is the controller input signal (measurements, references)
and the signal 2 contains all the exogenous outputs. The overall control objective is
to minimise the norm of the closed-loop transfer function between w an 2 by designing
an appropriate controller K.

Let P(s) be a partitioned system with a state-space realisation given by

- A B! p2
2/\
P(s) = (Pn | = ¢l Pn D22

\p21 P22)

g2 P2 42

Then

Pii — Ci(sl —A) IBj + Dij
is a state-space realisation of |, for i,j = 1,2. A linear fractional transformation of

the partitioned system P and another system K, as appears above, is defined as
W K) =Pn+PnK(I- P2P)-1P2
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which is the closed-loop transfer function, 7wz, from w to z. Next, we outline important
results for the observable and controllable parts of a generalised plant and its relation

with the system zeros. For further discussion we refer to [KarOl].

Proposition 2.4.1. Consider the above generalised regulator problem. Then, if Wc

and W0 are the controllability and observability gramians of P respectively,
1. the number of system zeros of Puis) in C+ = rank(Wc),
2. the number of system zeros of P2\{s) in C+ = rank(W(),
3. every unobservable mode of the closed-loop system is a zero Pn(s) and
M every uncontrollable mode of the closed-loop system is a zero of P2\{s).
For (3) and (4), well posedness conditions must be satisfied.
Proof, see [LH87]. ]

Example 2.4.1. Formulation of the control diagram described by figure 2.2 in terms

of a generalised plant. Here:

Figure 24" Equivalent representation of figure 2.2 where the error signal to be
minimised is z = y —r and the input to the controller is v = r —ym ([SP96)).



Then.
z=y—+—Gu+ Gd— = Iwi—Iw2+ Ouq+ Gu

v=r—ym=r—Gu—Gd—n = —wi+ Iw2—w3—Gu
So, the transfer matrix from (w uj to (z Vvj is equal to Ti(P,K), where

(G -1 0 G
-G / -/ -G

P =

Problem 2.4.1 (Standard Tioo problem). The Td"-optimal regulation is the problem

of determining a controller with transfer-matrix K that:
L. internally stabilises the closed loop system,

2. minimises the infinity norm |T|joo of the closed-loop transfer matrix T =

Pi(P,K) from the external input w to the control error z (see figure 2.3).
Suppose that P(s) have the realisation given in the start of the paragraph.
Assumption 2.4.1. Suppose the following assumptions hold:

(Al) (A,B2) is stabilisable and (4, C2) is detectable.

A-jul
(A2) jut 52 has full column rank for all 1o E 71
Ci D\2
A-jul Bi
(A3) Ju l has full row rank for all 1o EIZ.
c?2 D2

(A4) D2 and D2 have full rank.

The first assumption is made so that a stabilising controller exists. The other three
assumptions ensure that P2 and P21 have full column and full row rank respectively,
on the imaginary axis, including infinity.

If P12 and P2\ are both square then the above problem is called of the first kind.
However, if P12 or P2i is non-square then the problem is called of the second kind and
further if the the case where both Pi2 and P21 are non-square occurs, then the problem
is called of the third kind. The solution of the last two cases involves an iterative

method to achieve optimality, the so-called 7 iteration [DC86],[ZDG96].
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(A 5) Throughout this work we shall consider an extra assumption which relaxes the
problem and avoids the 7-iteration. In particular, we assume that Pi2 and P21 are

generically square.

Theorem 2.4.1 (Small Gain theorem). Consider figure 2.3 and let P G TTH" and
K G IZTioo. Then, the feedback loop is well-posed and internally stable for all K with:

T Moo <\ ifand only if |P|loo <7
2. Halloo < * */ and only if ||P|loo < 7
where 7 > 0.

Proof, see [ZDG96],[GLI5]. |

2.5 Summary

In this chapter we defined all important notions which are fundamental for the further
development of our work in the consequent chapters. Initially, this chapter links the
mathematical ideas presented in chapter 1 with the control framework which we follow
in the sequel. In particular, the notions of signal and system spaces were related to
function spaces and input-output stability was defined via the induced norm of the
Hardy space Hoc- Further, it was aimed here to formulate the general Hoc optimal
control problem and give all necessary assumptions needed throughout this work. In the
sequel, together with assumptions (2.4.1) we will always assume minimal realisations
(with stabilisable and detectable parts) and internal stability to the feedback loops.
Further, extensive use of similarity transformations will be made in order to derive, via

Kalman decomposition, minimal realisations.
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Chapter 3

Stabilising Controllers:
Parametrisation

In this chapter stability conditions are described for feedback interconnections of
LTI multivariable systems. A pre-requisite for stability of feedback systems is well
posedness, a notion which was briefly discussed in the previous chapter. Assuming that
this condition is satisfied, a controller that stabilises the closed loop system may then
be designed such that the infinity norm of the closed loop remains bounded. Extending
this idea and using the so-called “Youla parametrisation” [YJB76a],[ YJB76b], the set of
all stabilising controllers is characterised in a generalised regulator setting. The general
feedback structure considered here is described in the figure below, or equivalently in
figure 2.2 in chapter 2 (with » = 0 and positive feedback). Suppose that G ( the plant)

has p inputs and m outputs, then K (the controller) will have m inputs and p outputs.

Figure 3.1: General feedback interconnection.

First, consider the equations corresponding to figure 3.1:
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(n

\lJ2

and

The transfer function from the input signals to the output signals is described by
/ JO- KGY'K (Im- KG)~IKG
\(/p- GK)~IGK (Im ~ KG)~IG
K(Ip- GK)-1 K{IP- GI<YIG  ul
{Ip- GK)~IGK {lp- KG)-IG w2
= W(G,K)
First note that K{Ip—GK) 1= {In—KG) IK. To show this, note
K{IP- GK)-1- {Im- KG)-X =
={Im- KGYYYm - KG)K - K{Ip - GK)}{Ip- GK)-1
={Im- KGYYK - KGK -K +KGK}{IP- GK)-1=0
which proves the claim.
From the above analysis we see that the transfer function, mapping input signals to
error signals, is equal to (Iptm- FT)-1 By assumption the matrix {Iptm- FT) is
nonsingular and thus,
M =/ (Ip-GI<yl {Ip—GK)~IG | /«A
\e2  |K{lp- GK)-1 Im- K{IP- GK)-1G) L]

- H(G,K)
Remark 3.0.1. In order for H{G,K) and W{G,K) to be defined as proper transfer-
functions we require det{I —GK) = det{I—KG) ™ 0, that is the feedback configuration
at the above figures be well posed.
In order to establish internal stability it is necessary and sufficient to prove that each
of the four transfer function matrices of H{G, K) are in IZH(0G An equivalent way to
define internal stability is in terms of the transfer matrix from (rq, rq) to (21,22} To

show the connection note that 7'(1 —FT)-1= W =H = T~XW. Further,
H={I—FT)-1=*«(/- FT)H =1 =H —FTH =/
P =F-"H-1)!!-1=T-1=H{H - iy'F
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Hence,
H=HH- )~'FW =>H-1=FW =>#=/+FW
=>W=F~\H -/)=F(H- 1)

The only dynamical parts in the above relation are W and H, therefore
W E TlHoo H £ TZHoo

Remark 3.0.2. Consider the generalised regulator feedback structure in figure 3.2.

Consider also figure 3.1 where G has been substituted by Gz - the block (2,2) partition

of G. Then, given a controller K the feedback system is internally stable if and only if
the system in figure 3.2 is internally stable (see [DPOO] lemma 35.f).

Figure 3.2: General feedback arrangement as lower LFT.

We say that G in figure 3.2 is stabilisable if there exists a (proper real-rational) K which
stabilises it internally. Then K is said to be admissible. Note that an obvious non-
stabilisable G (partitioned as Gn to @2) is Giz = G21 = G2 = 0 and Gn unstable.
If this is the case, then according to figure 3.2 the unstable part of the plant is not
connected with u and y and so G\\ is neither controllable from u nor observable from

». Hence, not every G is stabilisable.
Consider G partitioned as
A Bi1 »p2

Cl Dn D2
C2 Dz D=

Corollary 3.0.1 ([DPOQ)). Suppose that (4, B2,C2), which corresponds to Gz2, is
stabilisable and detectable. Then the system in figure 3.1 is internally stable if and
only if the transfer function from («1,12) to (ei,e2) is in VSHoa.
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Now consider the system equations corresponding to figure 3.2. Here the inputs of the

plant are w and u and the outputs are 2 and y, respectively. So,

w
x=Ax+ B\ B>
u
and
z Cl Dn D22 174
v <h_ D2zt D= u

On the other hand, the controller input and output signals are y and u, respectively.

Thus,
xk —Ak Xk + Bxy
u = CKxK+ DKy

Combining the above equations we obtain the following state-space description of the

closed loop system:
x =Ax + B\WW+ B2U

xk = Ak Xk + BKy

and
I -dk u o CK x o]
+ w
—Dox 1 y C2 O xk Do
Then, the "-matrix of the closed-loop realisation from w to 2 is
4 0 b2 0 I  ~Dk o !
Ad = + i
0 4k 0 5o -D» I | O
, / -Dk . . S .
whenever the matrix is nonsingular (which is equivalent to well-
—De2 I

posedness).

The next theorem establishes a connection between internal stability and the state-

space model of the closed loop.

Theorem 3.0.1. The system offigure 3.2 is internally stable if and only if I - D22DK
is invertible and Ad is asymptotically stable, that is it has no eigenvalues in the closed

right half plane.
Proof. Straightforward from previous analysis. o
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3.1 Coprirne Factorisation over 7ZHe

The set of rational functions 7Z(s) has the algebraic structure of a field. This is not
true for the set of stable rational functions because a stable rational function is not
always stably invertible: the rational function ~ is stable but has no inverse in the
set of stable rational functions. The adequate structure for the description of the set
of stable rational functions is that of a ring.

The main point of this section is that we can always write a proper real-rational transfer
matrix as a ratio of two coprime stable proper real-rational transfer matrices. This
powerful result is due to coprime factorisation theory which has been studied from
system and operator theorists. In general, the subject has been studied over different
rings (or rather algebras). However, throughout this work we shall consider the most
prominent, to us, algebra which is IZTtoo, the algebra of real-rational bounded analytic

functions on the half plane.

Definition 3.1.1 ([MG90]). Any square, invertible, transfer function matrix satisfy-
ing U U~Il 6 VSHuao is called a unit in TTH.™

Definition 3.1.2 ([F093]). Let G be a proper (real) rational matrix-valued function.

Then the factorisation

1. G = NM~I is called a right factorisation (RF) of G if N, M are stable proper
(real) rational functions and M is invertible with proper inverse (M is square
and det(M) " 0).

If N, M are right coprime, i.e. if there exists stable rational functions U,V such
that

VM -UN =/,
then the factorisation is called right coprime factorisation (RCF).

2. G = M-1iV is called a left factorisation (LF) of G if N, M are stable proper
(real) rational functions and M is invertible with proper inverse (M is square
and det(M) 7" 0).

If N, M are left coprime, i.e. if there exists stable rational functions U,V such

that
MV - NU —/,

then the factorisation is called a left coprime factorisation (LCF).
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Remark 3.1.1. From the first Bezout identity we get that

VM —UN =1 = =1

In other words, N and M have the same number of columns and a statement equivalent
to the above definition is that the matrix is left invertible in VHoo wmSimilarly,

the second Diophantine equation can be written as

MV - NU=/=»(M -N =1

which reveals that M and N have the same number of rows and that equivalently to the

LCF definition, the matrix JM Nj is right invertible in VH".

Proposition 3.1.1. Let G = NM~Xbe a not necessarily coprime, right factorisation
equals the McMillan degree of G then N and

M are right coprime.
Dually, let G — M~IN be a, not necessarily coprime, left factorisation of G. If the
McMillan degree of (~N MY equals the McMillan degree of G then N and M are left

coprime.
Proof, see [F093]. O

It is possible to represent any proper real-rational transfer matrix function in terms of
a pair of asymptotically stable, proper real-rational transfer matrices which are left,
right or both left and right (doubly) coprime. The following result originally appeared

in [NJB84] in a more general setting.

Proposition 3.1.2 ([NJB84],[DP00]). Given a proper (real) rational matrix-valued

function G, there exist both right and left coprime factorisations
G=NM-1=M~IN

satisfying

for appropriate functions U, V, U, V in VSHoo.

47



Here we reproduce an already known proof. This is done for continuation of arguments
since the following construction is important for understanding the further development

of the theory.

Proof. The proof is constructive. Assume
G(s)
C D

with (A, B, C) stabilisable and detectable. The state space model of the realisation is

x = Ax + Bu

vy —Cx+ Du
where 4, B,C, D are real matrices.
Now choose a real matrix F such that AF := 4 —BF is stable and define the vector

v = u + Fx and the matrix CF := C —DF. Then the state space model can written

as
x = AFx + Bv
u=(-F)x +v
vy = CFx+ Dv
Now the transfer matrix from v to u is
AF B
M{s) = M(s)~l =
-F
and that from v to y is
Ar B
N(s) 1 /
cF D

Therefore,

u=Mv, y=Nv

Then it is routine algebra to check that y = NM [u, ie. G= NM~I.

s B Af B
NM-1=
F I ‘CfD
Af BF B Af o0 o
— o 4 B %~ o 4 B
,chFD cv C D
A B
=G
C D
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I -1
where T =
0 7

Similarly by choosing a matrix H so that AH = 4 - HC is stable and defining

Bh = B —HD we construct

An H
M(s) = =M (s)-1 =
-C 1
Ah  Bh
N(s) =
cC D

Then it is easy to see that G —M IN, by using appropriate transformations:

A H Ax  Bn

Mtsy'Nis) =
c I cC D
A HC HD A 0 B
o A- HC B- HD o A-HC B-HD
C C D C 0 D

A-HC o B- HD
0 A B G
0 C D

I 1 0 7
where T\ := and T2 =
0 7 1l o

Thus, we have obtained four matrices in [ZHgq satisfying the first condition G =

NM~X= M~IN. Further, the second objective is met by defining the other four

matrices as:
s A . A
P Cus i P
Cr -F o
S Ah “ s -H
Bh ’ U(S) Ah
F F 0

or, in a more compact form

A-HC pBp H
F 1 0
-C -D ]

49



and

A-BF B H
S F I o0
cF D 1

It can be easily shown that the product of the last two systems is equal to the unit
matrix /, by removing all uncontrollable and unobservable modes. The computations

are omitted. O

Corollary 3.1.1 (Existence [ZDG96]). Let G be a proper real-rational matrix and
G = NM~X= M~XN be corresponding RCF and LCF over IZILoo. Then there exists
a controller

KO0= UoVo-1= Vo~Uo
with U0,Vo,V0, U0 in TTHsuch that
G -U0 IM UQ _

-N M) \N €W
Furthermore, let F and H be such that A —BF and A —HC are stable. Then a

1

particular set of state space realisations for these matrices can be given by

A-BF B H
-F I 0
C-DF D I

A-HC B- HD H
F 1 0
-C -D /
Proof. From observer theory we apply state feedback and output injection to find a

controller that achieves internal stability; for example

A- BF- HC- HDF H
K0 .:=

Then, factorise K0 as:

KO0= U0 1—Vo Uy

i.e. in terms of doubly coprime factors. The result follows using proposition 3.1.2. O
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In the sequel a complete characterisation of the set of all stabilising controllers K, with
respect to a free parameter Q, is given. This will be the setting for formulating and

solving optimisation problems in this work.

3.2 Parametrisation of all stabilising controllers
The main result of this section is summarised in the Theorem below:

Theorem 3.2.1 ([Fra87]). The set of all (proper real-rational) controllers K

stabilising G is parameterised by the formulae

K = U+ MO){V+NQ)-I
= (V + ON)~I(U + OM)

where Q GIZItoo and det(I —DQ(00)) ~ 0 (D = G(00)).
Proof, see [Fra87],[DP00]. |

Remark 3.2.1. The proof of Theorem 3.2.1 is constructive and is based on figure 3.3.
The dashed box describes the observer-based controller, which is connected with the free
parameter (). Note that the only restriction on Q 6 TZHoo is that the well-posedness
condition det(I —DQ(00)) ~ 0 is satisfied. This condition is redundant if G(s) is
strictly proper.

In the light of Theorem 3.2.1 the set of all stabilising controllers has the following

(bilinear) form:
K=U+MQ)(V+NQ)-I= E+ MQO)[V(II+ V"NQ)}-1

= U+ MO)(I+ VANQY'V-1=U{I+ V NQYW -1+ MO(I + V~INQ)-1V~I

Now rewrite (/ + VANQ)-11in the form A + BQ(I + VAN Q )- 1. Equating the two
terms and post-multiplying by 7 + V~INQ, gives:
I =A(I +V-INQ) +BQ
=A+{B +AV-XN)Q

Hence,

A=1 B=-4AV-'N =-V-'N
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Figure 3.3: structure of (observer-based) stable controller.

By substitution:
K = U{I —V~INQ(I + V-'NQY V- 1+ MQ(I + VANQ, » - i
= UV.1+ (M - UV~IN)Q(I + V~INQ)~1V~I
- Kn + KuQ(I —K22Q) 1K21
Consider now the transfer matrix K0 of the following form
A-BF-HC H B

-F 0 7
-C I 0

M —UV~IN
-V~IN

Then, every stabilising controller K can be expressed as a lower linear fractional
transformation of a transfer matrix Ka and a free parameter Q £ 7ZIloo (assuming
the well-posedness condition is satisfied - see remark 3.2.1).

Thus, the set of all real-rational stabilising controllers is

K = {Fi(Ko,Q):QeKH oo
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Figure 3.4: Controller K as a lower LFT interconnection.

3.3 Parametrisation of all stable Closed-loop trans-

fer functions

The model-matching problem is formulated as shown in figure 3.5. Suppose Tu (s),
Ti2(s) and Tai(s) are stable proper transfer functions. Then the model-matching
problem is to find a stable transfer function Q(s), such that it minimises the 7-foo-norm
of Tn —T12QT21. This is a hypothetical control problem in which 7 is interpreted as
the model and 7i2QT=21 describes a cascade connection of the plant and the controller.
A distinction of the problem is made depending on the size of matrices Ti2 and T2J;
either both 7u and T2 are square matrices, or one of these transfer matrices is non-
square, or both of the transfer matrices are non-square. Then the problem is defined

to be of the first kind, the second kind and the third kind respectively.

Figure 3.5: Model-matching problem.

Attempting to connect the theory of model-matching with the theory of previous

paragraphs consider:

A Bx »2

* ¢ Dn D2

C2 Do D=
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in which by assumption (™4, B2, C2) is stabilisable and detectable. Then there exist left

and right coprime factorisations for the (2,2) block,
G2 = N2Mé1- M2 IN2
and appropriate VSH” transfer matrices which satisfy the doubly Bezout identity

Vv -ud (m2 w
oy (3-1)
-n2 Mp/ \n2 w

Every stabilising controller of G2 can be expressed as

K = {2+ M2Q)(V2+ N2Q)~x

= {2+ QON2)~\U2+ QM2)

where Q G IZTtoo. Then, the principal aim of the generalised regulator problem (see
chapter 2) is to minimise, in the infinity norm sense, the closed-loop transfer matrix
Ti(G,K), ie. min/s: [|[M/(G, it")||0Q provided the controller K stabilises the plant.
Hence, the choice is to be made among the set of all stabilising controllers, which
has already been characterised in terms of the parameter O G Hoc above.
Further, it is possible to express the closed loop transfer function in terms of QO and

VSHoo matrices Tu, Ti2 and T2l, according to the following figure.

Figure 3.6: Closed loop as a lower LFT interconnection, in terms of parameter Q.

Hence, the problem can be recast in a model matching setting. The connection appears

via the following theorem:
Theorem 3.3.1 (Model matching [Fra87]). Consider the figures above. Then
1. Tij GTZioo for 1 <i,j <2.

2. Defining K as above (i.e. such as in Theorem 3.2.1), the transfer function from
w to z is given by

T =Tn—TIROT2L
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i.e. the closed-loop is affine in Q.

Proof. The proof again is constructive and can be found in various textbooks. However,
the construction here is vital for constructing similar theoretical developments in the

following chapters (chapter 5). Define,
Tn Gn T GI2M2U2G21
Tn w——Gi12M2

T2 .= M2G2
Obviously, all matrices 7, for 1 < i,j < 2 belong to 7ZHoq.

The closed loop transfer matrix is given by taking the following lower linear fractional
transformation:
2= [Gu + GI1A7 - KG22)~IKG 2i }w
Substitute G2 = N2Mffi and K = (V2+ QN2)~l{U: + QM?2) into (7- KG22)-1I:
(I - KG22)-1=1[/- (V2+ QN \U2 + QM2)iVaM=2 1]-1
=[/- {2+ ON2Y\U2N2M fx+ QM2N2M f1)}-1
= [I- 2+ QiV2)-1(/2aM2M21- M,-1+ ON2M2M f1)}-1
=[- (v2+ ON2)-\V2+ ON2- MfI])}-1
=[1-1 + {12+ ON2)~IM2"1)]-1= M2{V2+ QN2)
where in the third equality we used the blocks (1,1) and(2,l) of equation (3.1). Then,
(/- g22% )-Ik = M2(t72+ OM2)
and the closed loop transfer function becomes

Gn + Gi2(7 —KGz22) IKGz = Gu+ Gi2M2([72+ QM2)G2j

Gn + Gi2M2UkG21 + (Gi2M2)<5(M2G2i)

: IT'n —T12Q0T2

and the claim is proved. o

3.4 Summary

Throughout this chapter stability conditions for a wide class of general feedback
interconnections were established. It was then shown how BIBO stability is linked to
asymptotic stability of the closed-loop state-space model; assuming the well-posedness

condition is satisfied, the condition of stabilisability and detectability of the state-
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space model is necessary and sufficient for internal stability. Next, using the theory
of coprime factorisation over the ring of stable proper real rational matrices it was
shown that G £ PXoc can always be factorised as G = NM ~1, where N,M are two
stable proper real rational matrices (i.e. in IZHoo), independently of the inertia of
its poles. Following this result, the existence of a controller in 7ZHoo which stabilises
the closed loop was established using observer-based methods with state feedback and
output injection. Moreover, it was shown that the set of all stabilising controllers
is parameterised in an LFT form (“Youla” or “Q” parametrisation), that is every
stabilising controller of the feedback system of figure 3.2 can always be represented as
an observer based controller connected with a free parameter Q £ Ji®. Concluding,
via model matching, the set of all stable closed-loop transfer matrices is shown to
admit a parametrisation in terms of (. Then, in the light of the standard regulator
problem (2.4.1), minimising ||JF;(P,11)||@ over all K's which make the closed loop
transfer function stable is equivalent to the minimisation of \\7n —T12QT13Hx, over all
Q £ Hao. This fact comes from the later paragraph of this chapter and the solution of
the particular minimisation problem leads to the so-called Nehari approximation which

is studied in the following chapter.
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Chapter 4

Hankel operators in Robust Control

This chapter reviews the theory of Hankel operators, an important and wide class of
operators, which was originally developed in the field of functional analysis and operator
theory and which is also strongly related to modern control theory. Research on Hankel
operators is still active in both areas, and thus the main objective of this chapter is
to establish links between the two domains. In particular, it is shown that Hankel
operators are successfully applied to model reduction theory as an approximation
method, namely Hankel norm (best) approximation, and Zioo control (Nehari problem).
Throughout the chapter we shall consider a causal, bounded input-output operator G
mapping £ 2(—e0, 00) to £ 2(—e0, 0o) described by the state space convolution,

(Gu) = f CeAi~DBu(T)dT

oo

where A4 is a Hurwitz matrix and (4, B, C) is a minimal realisation. Taking the Laplace
transform of this equation implies that G(s) = C(s[—A4)~IB is a strictly proper transfer

function in IZTtoo, i.c.

A B
G = G 7ZT4r
G 0

Remark 4.0.1 (Causality and 7  [DPO00]). 4 system is called causal if the output
up to time T depends only on the input up to time T, for every T. 1 Further, we say
that a system G is stable if y = Gu is in £2(0,00) whenever u G £2[0,00). Hence,
all LTI operators on £2(0,00) are represented by functions in Tioo. Notice that this
means that an LTI operator on £2[0,00) is necessarily causal. On the contrary an
LTI operator on £ 2(—e0,00) need not be causal; a time-invariant operator G mapping
£2(—00,00) to £2(—e0,00) is causal if and only if it maps £ 2[0,00) to £2[o,00), ie.

1All real-time physical systems are causal because time moves forward. However, causality does not
apply to systems processing recorded signals, e.g. taped sports game vs. live broadcast.
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it maps every function that is zero for negative time to a function which is also zero

on the negative time axis.

Example 4.0.1. The (bilateral) Laplace transform of both e~atu(t) (causal) and
—e~atu(—t) (anti-causal) is —bj (where u(t) denotes the unit step). However, the
region of convergence (ROC) is different, implying that ROC must be known to uniquely
determine the transfer function. For a causal system ROC is to the right of the
rightmost pole (in the s-domain) of the Laplace transform; for a causal stable system
ROC is to the right of the rightmost pole (in the s-domain) of the Laplace transform
and all the poles are in the left-half plane.

Decompose £ 2(—e0, 00) as £2(—e0, 0] ® £2[0, 00). Then, a general LTI causal system

G can be visualised by the following map:

A/-\ =(GnG12\ (u\ :(tg oW 4 |
\y+) \G2 G22) [u+d \Tg fG) Vnsl
where
y+ G £2[0,00)
V- G £2(—o00, 0]
<
uted?[0,00)
u_ GC£(—o0, 0]
Note that causality implies G2 = 0. Further, 7G and 7G are Toeplitz operators while
Fg is a Hankel operator. Clearly, the Hankel operator maps ‘past” inputs (« ) to

“future” outputs (y+) and so

Fe @ Gf(—00,01 —>T2[0,00)

or, equivalently

o

(rGu){t) == P+Gu @y *+ Jf Ced™~GBu(r)dT

— 00

= P+CedAt | e-ATBu(r)dT

for arbitrary inputs # G £2(-00,0]. Here P+ denotes the projection operator
£2(-00,00) —£2[0,00). In order to establish a link between time and frequency

domains we make the following observation.
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Observation 4.0.1. It is afact that C® —H”™ © H” and thus a system G E C@ can

be decomposed into a strictly causal and an anti-causal part, i.e.
G(s) = Gc(s) + G(oo) + Ga(s).

Here Gec E 'HOO>Ga E and G(00) is the constant part of the system which in a
state space realisation corresponds to its ‘D’ matrix (direct feed-through matrix) and
it can be absorbed in either Gc(s) or Ga(s) (here we absorb D into Ga). However for
any u GHf

TGt = P+(Gu) = P+(Gau)

since the equivalent frequency-domain definition of the Hankel operator is
rG:Hi - n2

Hence, the Hankel operator associated with a G G (oo depends only on the strictly
causal part of G, that is if G G H" then v+ G = 0. Therefore there is no loss of

generality in taking G G Hoo as it was assumed at the beginning of this section.

Remark 4.0.2. An alternative definition of a Hankel operator in the time-domain,

not adopted here but used by many researches, is to define it as a mapping
rG:£n0,°0)-+"[0,00)
The equivalence of the two definitions follows from the following argument. Consider

y(ty= /| Ced" TBu{r)dr

oo

and set v (t ) = u (—t ). Substituting £ = —¢,

10 100
yt) =/ Ced Bu(-0(-d0 =J/ Ced" B v ("

J oo

and so

Tgv : £2[0,00) —£2[0,00)

In this framework the Hankel operator is ‘induced” by the anti-causal part of the system.
However, the original definition of the Hankel operator is more intuitively appealing
from a signals/systems viewpoint and extends naturally to the theory presented in the

next chapter.
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Figure 4-1: Hankel Operator of a system G in the time domain, given u £ 02(—eo, 0] (scalar
case). Here Gu £ £2(—00,00) and Tqu is the projection of Gu £ £2 into £2(0,00), by
truncation.

In the sequel, it is shown how the notions of controllability and observability are
connected with the above definition of the Hankel operator. The construction of two
auxiliary operators, namely the controllability (Tc) and observability (dc) operators,
is largely motivated by the fact that the Hankel operator can be written as their

composition.

4.1 Controllability and observability operators

Consider the autonomous LTI system given by
x(t) = Ax(t), x(0) = xo Gn
y(1) = Cx(1)
Definition 4.1.1. The observability operator is defined as follows
To: 7" -> £2[0,00)
\/Go = Cedtxo=: y(t) x0€ 7n,t > .

Clearly, the above definition shows that if y(?) is known over an interval [0, T] and the
system is observable it is possible to determine the initial condition xg uniquely and
hence every x(?) for t e [0, 7). Further, it can be shown that the unobservable space is

the kernel of this operator, i.e. Mca = fcer(TO) (see [DPOO]).
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Remark 4.1.1. The adjoint of the observability operator is given as:

% :C2[0,00) »U n
Kf= | eAMC*{(r)dT
Jo
where € £2(0, 00).

Recalling the observability gramian definition from chapter 2, it is easy to check that
Wo=n*o

and so2

rank(W0) = rank{"*0" Q —rank(™0) = n —dim(ker(ty0))

which is equal to the dimension of the observable subspace. We can also give the
following geometric interpretation: The “observation energy” of the state xq, that the

output trajectory y(z) = Cedtxofor ¢ > 0 produces, is measured as:
lly|l2 := x(0)* "jf°° eAHC*CeAtdt)j x(0) = x*Wax(

Thus the observability gramian reflects the effect of initial states on the “output energy”
of the system when the input is zero. If W0is nearly singular then there exist states
which have low ‘“observation energy” in the sense that |[t/||2 is small [Wei02], Define
now:

SO:= | Wffo:x0G7n and || = 1j

Since Wa is positive semi-definite in general, and positive definite if and only if the
system is observable, this set is an ellipsoid with the i-th eigenvector of W012 giving
the direction of the principal axis of the ellipsoid and the corresponding eigenvalue
represents the length of each axis. The span of all eigenvectors corresponding to the

1
zero eigenvalues of W is precisely the unobservable space, Mc a-

Dually, along similar lines the controllability characteristics of the system can now be

defined:
Definition 4.1.2. The controllability operator is defined as follows
Tc:£2(—e0,0] > Un

/ e~ArBu(r)dT — | eArBu(—I)dr =: x0
@ JO

2f T is a finite rank operator then rank(T) = rank{T*) = rank(T*T). Further, if T : 70 —=U,
where U is any Hilbert space, then rank(A) —n —dim(ker(T)).
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Remark 4.1.2. By definition '3c is not defined on the full domain of G. However, it
can be extended to the full space by defining £ 2(0,00) to be in its null space.
The above definition makes sense if'it is considered as the response of a system described
by

x(t) = Ax(t)+ Bu(t) x(—00)= 0
to an input function u G £ 2(—e0, 0], where the output is the state trajectory. Then from
the controllability operator definition it is easy to determine the input with minimum
energy ||ull2 which drives the state to x(0) = xoat time zero. It also follows easily that
the controllability gramian is given as the composition of controllability operator and
its adjoint, i.e.

We = <M>:
Hence, note thatg
rank{We) =rank”""l) = rankle) = dim(image{9c))
which is the dimension of the controllable subspace. Again, consider
eA'tBB*eMdtS  x(0) =
and define the set
fc=| WPx :x GTin\Ix\\| =1}

Geometrically this represents an ellipsoid, the so-called controllability ellipsoid, for
which an analysis similar to the observability case applies (see [DP00]). Thus, the

controllability gramian measures the “degree of controllability” of a given state.

The following equivalent definition of the Hankel operator follows from the above

discussion.

Definition 4.1.3. (Hankel operator) The Hankel operator of a system G G £oo, in-

terms of the observability and the controllability operators, is given as
TG= ToI'C

At this point the concept of the balanced realisation of a system can be introduced.
This is a minimal realisation in which both gramians are equal and take the form of a

3Take 7 : X —y, a mapping between two Hilbert spaces. Then the rank of 7 is defined by
rank(T) = dim{image(T)).
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diagonal matrix £ = diag(al(rG),a2(rQG),... ,CT,(rG)). Here, ai(rG) > a2(rG), >
sn(rG) > 0 are called the Hankel singular values and as the name reveals they are
the singular values of the Hankel operator TG (see def. 1.7.4). Note that a balancing
similarity transformation always exist for stable minimal systems. Further, note that
the Hankel singular values are system invariants, that is whenever the basis of the state

space is transformed (under similarity transformations) they remain unchanged.

Now suppose the system is balanced, so
WC= W0=E = diag(al(TG),a2(TG),.. .,an(TG))
as defined above. The minimal energy cost to reach the i-th state component

Xg d 0O .. 010 .. O

is given by
1
e*VE, 1e-= e*£ lei =
a*(rQ

whereas if the system is released from this state, the output energy will be

llylli = ei Wo( = elEej = <Ti(1G)

T
>

Balanced realization

(a) unbalanced ellipsoids (b) balanced ellipsoids

Figure 4.2: Observability and controllability ellipsoids for (a) unbalanced and (b)
balanced system realisations.

Now, because of the non-increasing ordering of the Hankel singular values in a balanced
realisation, the state components with low indices are “easy to observe” (output energy
is large) and at the same time ‘“easy to reach” (the minimal control energy needed to

reach these states is small). The opposite conclusion applies to states with high indices.
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4.2 Hankel norm approximation and Model reduc-
tion

In the case of linear time-invariant multivariable systems the dimension of the state
space reflects the complexity of the system. So, the larger the dimension, the more
difficult it is to design the system. In addition, modern control techniques such as 72"
and LQG typically produce controllers of order at least equal to that of the plant (and
usually higher because of the inclusion of weights). Hence, model reduction methods
try to reduce the order of the model prior to controller design, or to reduce the controller
at the final stage (or both). Reducing the model’s order means that, if the dimension
of the state space is too large, then it is desired to derive another system that has a
realisation in a space of smaller dimension and whose input-output properties do not
differ significantly from the properties of the initial system. If the system has a transfer
function G which is a stable rational function then it admits a balanced realisation such
that the dimension of the state space is equal to the McMillan degree of G. This is the
most common case and hence the model reduction problem is normally posed in this

framework.

Problem 4.2.1. Given a high order linear time-invariant stable model G, find a low

order stable approximation G, in the sense that
IIG-GHoo

is minimum.

In general, this is considered to be an untractable problem, and hence it is recast as
a Hankel norm approximation, which is another way of measuring the closeness of
two transfer functions. The later method is physically well motivated and admits a
satisfactory solution related to the original problem 4.2.1. In the sequel, characteristics,

properties and norm bounds of the Hankel operator are discussed.

Theorem 4.2.1. (Kronecker) Suppose G is a linear system with Hankel operatorTc,
and suppose rankfilc) is finite. Then a minimal realisation of G has state-dimension

equal to rankiTc)- Equivalently, for A E [Znxn,
(4,B,C,D) is minimal rank(TG)=n
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Proof. First notice the fact that
rankiTc) = rank(™ c) = ranfc(4"™\I/oOl/\I/*) = rank(WOWc)
only if part (<) Sylvester’s inequality gives
rankiTc) = rank{WOWc) < mm{rank(WQ0), rank{Wc¢)}

Now, the rank of observability and controllability gramians are at most » (when
rank(kFO) = n then the system is observable and respectively controllable when

rank(Wc) = n). So
n < mm{rank(W0), rank[Wc)} =mn = min{rank(W0),rank(Wc)}
=n —rank{yV0) = rank(Wc)

Hence, the system is controllable and observable.
if part (=»): The other Sylvester inequality gives
rank{TG) = rank(WOWc) > rank(W0) + rank{Wc) —n = n

by noticing that the system is observable and controllable, that is rank{WQ =
rank(Wce) = n.

d

Definition 4.2.1. The induced norm by the Hankel operator (or simply Hankel norm)
of a system G € T7Xoo is defined as follows

v70°° M T)\\idr

may

A standard result from operator theory (see def. 1.7.4) is that |[Fg | = oi” g).

By comparing the definitions of Hankel and Hx norms it follows immediately that the
Hankel norm of a system is bounded above by its infinity norm. This is due to the fact
that for arbitrary unit energy input in £2(— IITe || is the least upper bound on
the energy of the future output and |icjj0o is the least upper bound on the energy of

the total output. This is restated more formally in the following proposition:
Proposition 4.2.1. The Hankel norm satisfies

lirdl < Lell
where ||6|| is the induced norm from C2(—eo,00) to itself, i.e. |G| = [|G|loo-
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Proof. The projection P+ has norm |[P+|joo = 1 ([Kre89], theorem 9.1-1). Hence,

lIrG| = \P+G U-00,0 I <[P +[[[|G 1"-00,0
= IIG k 2(-00,0] I < Halloo

a

Observation 4.2.1. Take F to be any anti-causal system; if u £ 00,0] then
(Fu)(t) is zero fort > 0. So, the future output remains unaffected by the addition of

any anti-causal system and it is immediate from the above proposition that

||1‘G|| < ||IG-Flloo

However, as seen in the previous section the Hankel operator is intimately related to
the observability and controllability gramians. Thus, its norm should be also somehow

related to these two notions. The connection is made exact in the next proposition.

Proposition 4.2.2. The Hankel norm of the system G is the induced-norm of its

Hankel operator and satisfies
[IrGl| = (Amax(wOw c)) K
In fact spec(r*Gr G) — spec(WOWc) U {0}.

Proof. Tg is a finite rank operator (Kronecker’s theorem) and it is bounded by its
(induced) norm. Hence, it is compact ([You88]). Further, its adjoint and their product
r GI'G are compact operators ([Kre89], theorem 8.2-5]), with the later being a self-
adjoint and positive operator ((rGr Gx, x) —{TGx, r Gr) = ||rGx ||2> 0).

It is a fact that ||TG| = |[[r€£rG* = (p(r"rG)5 ([DPOO], prop.3.15-3.16 4).
Also spec(T*rG) = spec(®* " 0®c) = spec("*Tol'c4*) U {0} = spec(VFdFc) U
{0}. The eigenvalues of WOWC are real and positive, since spec(H/oMt) U {0} =
spec(WfWoW() O

Example 4.2.1. Suppose,

1—S 1 1

2(s+1) s+I1~2 Gs(s) + Gafy)

G(s)

4In general, for any linear bounded operator 7, ||T|| > p(7). In the present case we have equality
since the operator is self adjoint.
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Clearly, from above, ||Glloo = | and ||Gs|loo = 1, which agrees with the triangle
inequality ||1GS + Galloo < ||GSl|loo + ||Gal|loo- Further, in order to compute the Hankel

norm of G we isolate its strictly causal part which has a realisation:

-1 1 a b
Gs(s) 2
1 (0] c 0

Computing the gramians from the Lyapunov controllability and observability equations:
2aWec+be "W c=-"a = t{=WJ()
Then, WA¥V0=\ and thus, according to proposition 4-2.2,
|GIU = VAmax(WcW() =
Hence, via this example, it is shown that the extreme case ||Tc|| = ||G|loo can occur.
Observation 4.2.2. For any G, Gr E Co
|G - Grfoo> ||rG Gr| = l|rG- r Gr

The inequality is true due to the Proposition 4-2.1. In order to check the last equality,
note that if

A Agt BG
) § B4 and Gr = 9t
Cg o oGr o
then
Ag o Bg
G-Gr = o Agt -bG

e c@d o

By definition, given an input u(t), the time domain Hankel operator of the last transfer

matrix is
Ao 0
@17 B
FG-Gr® = f G Cav 0 A% 9 u(rydr
—€ -BGr
eAG(t-r) 0 Bg
di

N .
- Jf O} 156 rar - Jf p8Gu (r)d T {Io=T e
—© —60
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Theorem 4.2.2. Suppose G has a minimal realisation of order n. Then for any Gr of
order r < n,

I[IG-GVII >ar+1(rG)
where *(Tg) > "(Tg) > ww> CliiXc) > 0 are the Hankel singular values of G.

Proof. Kronecker’s theorem implies that rankle) = »n and rank(TGr) = r. Recalling

definition 1.7.4 (chapter 1), the singular values of a linear operator are defined as 5
ar(G) = 1inf {||G —A|| :rank(X) <r} r EJ\f/{0}

when G and X share the same input-output spaces and rank(G) > r. Take T* such

that rank(Fjy) = r, then
+i(rG) = inf{||rG- x| :rank(Tx) =r <r+ 1}
Hence, ar+i(rG) < ||Tg —Tx|| and so from observation 4.2.2
G- alleo > ||[rGGr| = 1|rG- 1 Gr| > art1(rG)

as required. O

4.3 SVD of a Hankel operator

According to the definition of the singular value decomposition (or Schmidt decompo-
sition) of linear bounded operators (corollary 1.7.1), the SVD of Hankel operators is

next defined.

Definition 4.3.1. (Hankel SVD) The Schmidt decomposition of Tg is given by the
following dyadic form
rGu=y~jrv Wj
i=
in which Vi 6 £2(—e0,0] and wi € £2(0,00) are sets of orthonormal functions. The
pair (vi, Wi) corresponding to the Hankel singular value at := «"Fg) is called a Schmidt

pair. From orthogonality it follows that
r GVi = Clil
PGWi= aivl
SHere or denotes the r-th singular value of the linear operator and not the r-th Hankel singular

value. However, for a completely stable system, the Hankel singular values coincide with that, induced
by the operator, singular value.

68



Remark 4.3.1. By taking the dyadic form of the above definition and setting u = v,
then TcVj = ai(viTvi)wi- Orthonormality implies that (vj,Vi) = 1 wheneveri = j
and zero otherwise. Hence, TcVi = <IiW. By taking the adjoint of the dyadic form the

second equation can be similarly proved.

It is important from a control theoretic point of view to link the definition of Schmidt
pairs with the notions of controllability and observability. This can be done as follows:
Take YcVi = <JW and pre-multiply by T£. Substituting VGWi = <J¥ it follows that
T "TcUi = al*GWi, ie. FGIGV = (cq)2*. Suppose now that (cq)2 is a nonzero
eigenvalue of T"Tc. Further, consider the time-domain analog of F~Tc, which equals

T*T*TOFC Then, there exists a nonzero Vi G £2[0,00) satisfying
= {ai)2Vi
Pre-multiplying the above equation by Tc and defining aq := T cnj,
WeW oXi = (0i)2Xi

Hence, (using the spectrum argument in proposition 4.2.2) aq is the eigenvector of

W0 corresponding to the eigenvalue (cq)2.

Remark 4.3.2. Note that for a balanced realisation, ie. Wc = W0 = E =

diag{o\,02,.. man), then Xi = \faiei, where & is the i-th standard basis vector.

Continuing the analysis in the time-domain, an implicit characterisation of time-domain

Schmidt vectors can be obtained. We first write, T = 4/*4/* where

(
AO-.nn ¢ 20,00) T ;:£20,00)->ft"
Toxo= Cedtxo=: y(t), (v € £20,00)) NK f=r eAMC*(r)dT

with / G £2(0,00), and

r
Tc: £2(—o00, 0] Un *®e . Hn —>£ 2(—00, 0]
(Teri)(d) = e~A*TBu(T)dT = /S8° eA*TBu(-r)dT =: x(0 T*a:0 = B*e~AHx(
Thus

Fg : £2[0, 00) —> £ 2(—00,0]
()

(rGy)(t) = (KKy)(t) =B*e—A,tJ/ eA"C*y(r)dr
0
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In order to find the singular values of Tc, suppose that at is a singular value with v

the corresponding eigenvector of r*Tc, i.e. = olv. Let
y :=TG = CeAtxo
where

x0= e AtBv(r)di

J—0

Then,
PGTGy = Gy = B¥e~A"tWkQ

which must be equal to u|v. Hence,
B¥e~A"tWk Q= olv Z>v(t) —B*e~AHW(k(@~2 € £2(—00,0] 4.1)

Take now  to be the ;-th eigenvector of Tcr”- Then , further simple computations

show that
rGr™ =rGB*e-A'tWaxo = CeAt  e-AIBB*e-A,tWox(dT
= CeAtWcWko= CeAta\xo

which suggests that y(?) := CeAtxois the eigenvector of r Grg corresponding to the

i-th eigenvalue, of. However, by assumption it is known that this eigenvector is i so
Wi —Cedixq. (4.2)

Alternatively, the Schmidt vectors (in the Laplace domain) can be obtained via the

following algorithm ([Fra87],[GL95],[ZDG96]):
Algorithm 4.3.1. (Schmidt pairs)

step 1. Separate the system into causal and anti-causal parts

G = Ge+ Ga

step 2. Find a minimal realisation of Gc .

step 3. Find the controllability and observability gramians by solving the following

Lyapunov equations :

AWC+ W'+ BB'=0
WA+ A W0+ C'C =0
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step 4. Find
70 = AmaX(WcW)

step 5. Find x & 7Zn : such that WeW@ = 7of, a 70, and define £ := y"WoX.
Then,

VEoX = 70C ¢
step 6. Define

vis) :=B'{sl +A4')-"
w(s) = C(s/ —A)-1®.

Thus, the Laplace transform of a Schmidt pair can be written in terms of transfer
matrix functions,

v(s) = e TTH", w(s) ennz (4.3)

o~ A x
©) C o
Remark 4.3.3. Ifa is a nonzero singular value of To of multiplicity one, then clearly
the corresponding Schmidt pair is uniquely determined up to modulo scaling. However,
there exist other maximising vectors (see definition 1.7.3), i.e. vectors for which Tc
attains its norm. A particular construction which we shall consider later in chapter
6, is made in [JL93]. The latter and that in [LHGS8Y], construct maximising vectors
in IZHoo and TZH" which form scaled version of Schmidt vectors in IZH2 and TTHf,

respectively.

Remark 4.3.4 (Multiplicity considerations). Consider a stable system G with
(4, B, C) a balanced realisation. Assume that the Hankel singular values are a\ =
see= gr > ar+1> e**> an > 0. Further, define | to be the normal rank of the Laplace
transform of the matrix formed by the r Schmidt vectors of VG corresponding to ox.

G =(4, B,C) and hence V(s) and VL(s) are given by
V(s)= B'isl +A')-1- e FLU""™" ™ af'P Xi x2

and

jy(s) = C(sl - A)~IQe 7'2Xr, 0 = Xi x2
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where P and Q are the controllability and observability matrices of G =(4, B,C) and
the Xi$ are r linearly independent eigenvectors of QP corresponding to the eigenvalue
of-

In particular, if (4,B,C) is balanced (Remark 4.3.2), P — Q = diag(<yi/r,£2), and
thus E = Er and 0 = ajEr (where Er denotes the first r-columns of the n x n unit

matrix), so that
Vis) = a\B'(sl + A)~lEr e and W(s) = C(sl - A)~lEre HU2
Thus,
| :=rankR(s)V~(s) > lim [sV~(s)] = rank (ETB) =: rank (B1)

and

[ == ranhji"s) W(s) > lim [sW(s)] = rank (CEr) =: rank (Ci)

where we partitioned B' = B[ Bb: and C= C, Cz2 . It isfurther shown in [Glo86]
that these two inequalities are actually equalities. Thus | < min(p, m, r) and | can be

easily determined from the balanced realisation of G.

The following example, constructed in MATLAB, illustrates the argument of Remark

4.3.4:

Example 4.3.1. Consider a G £ [IZlloo with the following minimal balanced

realisation:

1 3%fio
-1 -1 14075 vTO/5  (2VTo)/5
1 6vdo
4B -3 -4 1407 5 (2V/10)/5  (4\/10)/5
1 3vdo 1 eVlo 1 | |
C 140.7 "5 1+07 5 0.7
410/5 (2VT0)/5 1 0 0
(2V/To)/5  (4VTo)/5 1 0 0

Then, the gramians are equal to

1 0 O
E= 01 o
0 0 07
and we observe that the largest Hankel singular value of G (o\ = a2 = 1) has

multiplicity 2. Further, we compute the Schmidt pair corresponding to the largest
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Hankel singular value, according to algorithm 4-3.1 and remark 4-3.2.

! 3 1+10.7 3‘/5010 1o
q T ! 4 107 500
B Qi i eVw

Vis) = C ' 1+%).7 3Vsdo 1+07°'s 0.17 00

JTO /5 (2v/10)/5 1 0 0

_ 5 (4v/10)/5 1 0 0

and
-1 -1 170 -1 o
P -3 -4 7% -0 1
s ez 1_3vd0 1_6%o 1

W = 0775 10T S @ oo
xTO/5 (2vTO)/5 1 0O O
(2VTO0)/5  (4-V10)/5 1 o o

Then, the normal rank of V(s) and W(s) is | = rank(Bi) — rank{C\) = 1 < r.
Further, taking the transfer functions of the Schmidt pair,

1 /s+ 03361 0 0.63246 1.2649

Vis) =
Pv(is) | 0 s - 0.5462 1.2649 2.5298
where pv{s) = (s —6.155)(s2—0.2733s + 0.2321), and

1 (s- 03361 0 0.63246 1.2649
VI(s) =
Pw(s) | 0 s+ 0.5462, 1.2649 2.5298

where pm(s) = (s 4-6.155)(s2+ 0.2733s + 0.2321). Then,
V~(s)V(s)= 1 - W~{s)W(s)
where, p(s) = pv(s)pw(s). The fact that V~(s)V(s) = W~(s)W(s) is a characteristic

property that all Schmidt pairs share ([Fra87]).

4.4 Nehari’s Theorem

Throughout this section consider the problem of finding the distance (by means of the

induced norm) from an matrix function G to

dist(G,71-) :=inf{||G - Qoo : Qe }.
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i.e. we want to approximate, in the C" —norm sense, a given unstable (i.e. mixed
pole-inertia) transfer matrix by an antistable one. A lower bound for the distance can

be immediately obtained. Fix O G Then

116 - Qo > tPHG - Q) 1" —ead 1| = |[1G- ron = ||IG]

The last equality is due to the fact that Tq = 0.

Surprisingly, it is shown that the infimum of the infinity norm attains the Hankel norm
of G for a class of O G The result was proved (in a more general context) during
the seventies and it is due to Adamjan, Arov and Krein [AAK71],[AAK78]. It is known
as the AAK theorem or equivalently in operator theory better known as approximation
by meromorphic (matrix-valued) functions and it is considered to be the cornerstone
of model reduction techniques involving Hankel norm approximation. The optimal

solution to the general A4K problem is ([Glo89],[ZDG96], [GL9S)) :

inf  1GQlloo = inf ||G-Q - O+lw = inf ||G-Q+|h = afh(rC)
Qe”;(fc)Cfoo Q-en?” Q+ en "
k < deg(G) o+ deg(Q+) < k
deg(Q+) < k
k < deg(G)
Note that O € =0 = Q- + 0+ where O- e o+ G and deg{Q+) < k.

Obviously, if deg(Q+) > deg(G) (i.e. the Hankel operator r G+ can have higher rank
than rG) then the solution is trivial by selecting O+ = G

Nehari (1957) first solved the special form of problem (k —0) for the case of scalar
discrete time systems. The solution is known as the Nehari theorem [Neh57] or simply,
in functional analysis terms, best approximation by analytic functions. The Nehari
theorem is restricted by the assumption that G G ie. it involves the best
approximation of a stable system G by an antistable system Q. Throughout the present
work, the Nehari problem is considered for continuous time multivariable systems; thus
the problem is posed as follows:
inf ||G-Qlloo = [|Tg| =: 0q(rG) (Nehari’s Theorem)
QeHoo
The problem with inverse inertia operators involves approximating a G G by

O G 'Hto- This is a Nehari-type problem :
iy 116G - Qoo = [[rAs)
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Similarly for inverse (mixed) inertia operators, the 4 4 K problem is formulated as :

inf  [GQUoo = inf ||G-Q - QHoo = inf [|G(-5)-0 \l,,
OSH+,WCCoo Q+en+ Q- e««,
k< deg(G(-5)) 0- EK* deg(Q_)<k

deg(0") < k

k < deg(G(—s))

Remark 4.4.1. On certain occasions, in this work, the precise definition of the distance
problem may vary depending on the nature of the application. In our framework the
standard formulation of approximation problem will involve the minimisation of the
infinity norm of G + Q where G £ H'Hfo and Q £ TTH+ . The solution of this problem
is exactly the same as the one already described (Nehari), with the only difference that Q
is replaced by —Q and thus, the state-space formulae are changed by means of changing
the sign in the ‘B and ‘D’ part of Q. Note that the inertia properties of the transfer
matrices remain the same. Further, we restrict ourselves to the case of real rational

matrix functions G(s) for which an explicit solution exists [Glo84],[Glo89].

Theorem 4.4.1. (Suboptimal approximation) Take G £ Then, there exists
J £ TTHfa such that

G+J\ j
(1) Ga+ J m» (e © + J P is 7-allpass, where
yo 0 Ji J22,
7 > 0-i(rG).
(2) [J22dlm< 7-

Then, all suboptimal approximations Q £ H™ such that
|G + Qoo <7

are given by

Q=W ,r IBH-00)

The proof of this theorem constructs a square system J such that the “error” system
E := Ga+ J is 7-allpass, ie. E~(s)E(s) = 72/ (> ai(rG)). From an engineering
point of view this is the same as saying that the first (largest) singular value of E is
constant at 7 over all frequencies u £ IZ U {00}. Plotting the singular values of E
in a Bode diagram, it is clear that the largest singular value of £ will be described

dynamically by a flat line at a level 20 log10(7) db. Thus the first singular value, which
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is essentially the infinity norm, is minimised optimally to 7 but sub-optimally in terms
of tfi(rG) < 7.

The system J generates all Q 6 such that the error system £ = G+ Q is 7-
contractive. According to the proof all such Q can be written in terms of a lower linear
fractional transformation of J ¢ 7ZH” and a $ which is permitted to be anything

7 _l-contractive (i.e. in the 7~174(b ball). Noting that
G+0=G+ =G+ Jn + Ji2§ (I —2£) 1An = Fi(Ga+ J, >

it is clear that Q has the same input-output dimensions as G, on further noticing
that Ju has the same input-output dimensions with G, J has the same input-output
dimensions with Ga, an embedding of G. Consequently, if J is such that Ga+ J is 7-
allpass then (due to theorem 4.3.3 [GL95]) the LFT of a 7-allpass system together with
any 7“”contractive $ will be a 7-contractive system, which in this case is the error
system, E. In future, the system J will be referred as a generator, since it “generates”

all suboptimal approximations Q.

Proof. Here it is not intended to get a full account of the numerous technicalities
of the construction and hence the proof will only outline the main ideas presented
in ([Glo89], Theorem 3.1) where the complete proof can be found. Although all 7-
suboptimal Nehari extensions Q are characterised here, the fact that these generate

the full solution set is not proved and the reader is referred to [Glo89].

Suppose, without loss of generality, that G has a balanced realisation (4,B, C) such
that

AS+ £A'"EBB1=0
AS+£A+CC =0

Further, augment G such that

A B o
s A Ba
C oo
Ca O
O 0 O
and define
A B
C °e



where 4, B,C and De are yet to be defined. Then,

A o Ba
B
Ei=Ga+J = A€ °° o A B
Ce Fe
Ca C De
Let
E 1
Se:=
i Er-1

to be the controllability grammian6 of £, where T := E2—727. Clearly, 4, B,C
and De should be chosen such that Ee satisfies the Lyapunov controllability equation.
However, this condition is guaranteed (implied) by the requirement that £ is 7-allpass.

The requirement is true if and only if the conditions below are met:

AeEe+ EeHg + BeBee —0
DeDle = i 2lptm
DeB'e+ CeEe= 0

Expanding the first and third equations gives:

A 0 E / < _ﬁ- S Ba 00
+ + Ba B' —
A i sr-1 i Er-1 o Al B 00
E 1
DPB'" B'" + a (C 0O
I ST“1

Then, it is immediate that

C .= —Cali - DeBa
B:=T-\EBa+ CaDe)
A =—A"- BBa

Clearly, an appropriate De that satisfy the above would be:

o 7/
De 7

7/ 0

O

6Here, we construct “out of the air” a specific gramian. An approach with all possible Se is
considered in ([Glo84], lemma 8.2).
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Properties of generator J

Observe that since HJ22llm < 7 then Ju(joS) is nonsingular (invertible) for every
to E TZU {00} and in particular D12 is invertible. This is confirmed by the realisations

above, since the system zeros of J12 are given as:
\i(A -B 2DfaCl) = \i(-A"), Vi

(see [Ros70]). Hence we deduce that J\i has no transmission zeros on the imaginary
axis and hence J12(jo;) has full rank over all frequencies > E 7ZU {00}. Dually, the

same argument applies to J21.

It is a fact (see [GL95], lemma 4.1.2, p.137) that every unobservable mode of the natural
realisation ofEi(E,Q) is a system zero of Eu = J\ghe. the (1,2)-blockof the first

term that appears in the LFT), provided that <¥ has a minimal realisationandthat
the closed-loop is well-posed. Similarly, every uncontrollable mode of the realisation

of Ei(E, ) is a system zero of E2 = Jar (he. the (2,1)-block of the first term that
appears in the LFT).

Now, by construction, £ = Ga + J satisfies E~E —EE~ = q2/. Expanding the later

equation we get

i(GHjnr PsA g tdu el =(iz o\ (4)
Vo unsy VI W o Tau

Then from the (1,1) partition of equation (4.4), for each vy G 7ZU {00},
(G+ In)~(G+ Ju)(juj) =721 - (J21J2i){juj)

A{G+ In)~(G + Jn)(ju)} = A{72] —(Tal2)(Gw)}

A{G+ In)~(G + Jn)(ju)} =72h —A{(Ja]J2)(jw)}

A{(G+ In)~(G + Jn)(juj)} <721
But note that J2i(jI() has full rank over all &« G IZU o0, so A(J£/J2{)(ju) > 0. Then,

A{G+ Jn) (G+Jn)(u)} <72
[IG+ Jn |loo < 7

that is G+ Jn is 7-strictly contractive.

Next, consider the (2, 2) partition of the above matrix identity. This gives:

JoojJoo =7 J~ J\2Jn
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Then a similar analysis as in partition (1,1) shows that

ke 77" H2ko N 7

To conclude, E is 7-allpass and E=zi(jco) has full rank, and thus, via (Theorem 4-3.3,
[GL95]) it follows that O = Ei(E, 4 is 7-strictly contractive, for any € ~1BICY.

Now choose 7 = ¢f := ~(Tc). According to Theorem 4.4.1, the suboptimal
approximation gives ||G + Qoo < 7, which in this case makes the error system

contractive (and not strictly contractive) in terms of cip

|G + <Boo < en

Next consider the problem of characterising the set of all optimal approximations

0G such that the infimum :

inf |G+ =<k
Q:Wn“ Qoo

is attained. The procedure is similar to the suboptimal approximation, but now a more
refined treatment of the problem is needed since, for example, the multiplicity of the

largest Hankel singular value becomes an issue here.

Theorem 4.4.2. (Optimal approximation) Suppose G G Then there exists

an optimal approximation Q G Ti" such that
IIC? + Qlloo = [|rG|]|=:a1

Further, an optimal Q may be chosen so that Q G TZIL o-
Proof. The proof is constructive and it is presented via the following algorithm. o

Algorithm 4.4.1 ([Glo89]). Without loss of generality we consider G to have a
balanced realisation such that
Ae + IA'+ BB ' =o
AT, + EA+ CC=o0
Here,
I o
£ := >0
0 £

where o\ > a2 > mm> cn r > o are the Hankel singular values of G and r is the

multiplicity of the largest Hankel singular value. Further, £ = diag(a2,..., an _r).
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1. Partition the transfer matrix conformally, i.e.

roon—r m
r o n—r
r An Aiz2 r Bi
A = , B = C= p & C2
n—r A2i a2 n—r 59

2. The (1,1) block from the Lyapunov equations of G, using the above conformal
partitioning, give

“An —Aln — (<) 2BiB[ —(<T) 2C[Ci

Hence by [Glo89], lemma 2.2, there exists a Oi(YG)-unitary matrix

m P-1
Vv aiDn Di2
m —I D2 0

where | = rank(Ci) = rank(Bi) (see remark 4-3-4), su°h that

C[ o Det+ Bi o =0

3. Using the same notation as in suboptimal approximation problem, define the

augmented systems Ga and J. Then the corresponding error system is given
by E = Ga+ J, ie

nr A2 Az 0 b2 0]
E n-r o o 4 Bi b2
p Cl c¢c2 Ci (JiDn Diz

m-1 0O 0 cz2 D2 0

Further, define

n—r 0] E In+r
n—r O n# er-1

to be the controllability gramian with F := (£)2- (cri)2n r.
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4- Now, define

B, =Y -\tB 2+ axC2Du )
B2:=T-1C2Dl2

A = —A2—BiB?

C\  —€2 —&DiuiB2

Cz2:= —D2\B2
~ 7™1 D12
D2 0

5. Then all Nehari extensions ofG are given byQ = EfiJ, &) = Ti
where $ € (crfij"BTC"

The above construction can be verified using the allpass equations of £. Since E is 7-
allpass, G+Q is o7—allpass, with ||G+Ql||joo = (- Further, it is proved that all solutions
are generated by the above LFT form, so now J acts as an optimal generator ([Glo89],
theorem 4.1). The analysis is similar to that for sub-optimal approximations, but in this
case E21 has full row rank whereas Ei2 has full column rank on the extended imaginary
axis. The following proposition shows that the Schmidt vectors of the corresponding
Hankel operator are intimately linked with optimal Nehari extensions and in the scalar

case define the optimal Nehari extension uniquely.

Proposition 4.4.1 ([ZDG96]). Suppose G £ TZTC" such that

lengollG-QIICD= al(rQ

Then
(G{s) - Q(s)vis) = (<ri(tQ)w(s).

Further, in the case where G(s) is a scalar function (i.e. SISO system) then,
Q) =Gk)-(, ,(ro
is the unique solution to the Nehari problem.

Proof. The proof is based on simple Hilbert space properties and it is given in

[ZDG96]. Suppose H(s) := (G(s) —Q(s))v(s)| observe also that Tgv £ 7i7i2 and

&1
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Singular Values

Frequency (rad/sec)

Figure 4.3: Typical singular values plot of an optimal error system G+ Q for a dynamic
<£; the largest singular value has a constant value, over all frequencies, which is the
smallest it can be.

that P+H = P+(Gv) = rGv. Then,

o <\\lnh - tgv 2
= \H\ + WTGv\\I-(H,rGv) - (r Gv,H)
<UH\ + ||rQu)2- (H p+rGv) - (p+rGv, h )

=m [ + ||IG1||2 (rGv,i¢v) - (rGv, rGv)

WA+ WrG WV-WWTGN2- (r Gy, rGy)

m I - (rGv,rGv) =\l \I- (v,I'GGl)
=m [l - M?G)2vyv)=m [ - M rQG)2IMl2
G- OMI - (@Rl < s - OWloMI - (al(rQ)2|up2

=0

Hence, ||H- Q||| = 0 = H = TG, ite. (G(s) - Q(s))v(s) = TGQu(s) =
(ai(rQ))iw(s). O
In the case that G is scalar valued, Q is uniquely determined by QO(s) = G(s) —

4'(rG) < Nevertheless, it should be noted that a complete characterisation of Q in

terms of the Schmidt pair, in the multivariable case, is considered to be an open issue

&2



for further research.

4.5 Examples

The examples in this section summarise the main points of the previous paragraphs.
In particular, the Nehari approximation is considered for both scalar and multivariable
cases. At first, in the scalar case only the computation of Schmidt vectors is required
in order to specify the (unique) Nehari extension, whereas in the multivariable case the
algorithm 4.4.1 is followed without the need of computing a Schmidt pair. The first

example makes use of proposition 4.4.1:

Example 4.5.1. Find the Nehari extension, Q E of the strictly proper G E
TZHoo defined as follows
G(s) = 2y/2s + A
9 s2+ Vas+ 1
A corresponding state-space model is
-y/2 -1 _
A= , B C=2V2 4, D=0
1 (0}
By computing its gramians:
1
0] 6V 8
wr= 212 E wi=
0 L 8§ 06\2

it is easy to find the Hankel singular values,
M Tc), a2(rG)) = (Xi(WOWe), | AWOWQ) = (V2 + 1, V2-1).
Then, following algorithm (4-3.1),

.. e, r—2(x/2 —1)

Vol ’ 2(y/2 - l)
and the Schmidt vectors corresponding to the largest Hankel singular value of G are
. . —2(\/2—)(s + 1) 2(v/2-1)(s- 1)\
W =
@iEWie) = T eyt

Following Proposition 4-4-fi the (unique) Nehari extension of the scalar valued system

G(s) is

= GS - H,A A =
w v, %’(g) s2+ v/2s + 1 )
_(-y/2 - Ds2+ {y/2- 2)s+ (3 - y/2)
s2+ Vas+ 1
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Example 4.5.2 ([Glo84]). Find the Nehari extension of the following transfer

function:
39s2+ 105s + 250

(s+2)(s + 5)2
Obviously, G G T1.77" aml hence, it is asked to find the distance from G to

G(s) =

Firstly, take a balanced state-space realisation of G(s),

-9 4 -4 -6
A= 4 -2 4 ,B= = C= -6 2 -1 D=0
4 -4 -1 1

with gramians equal to

£=010
0 0 05
Then, the Nehari extension of G(s), Q(s), is constructed using Algorithm 4-4-1 and

has the following state-space realisation:

2 10 2
,B=& , 5= 2125 D =-2
-8 5 -2
It is observed that the Hankel singular values of Q are 1 and 0.5. Then,

- 6s2+ 13s - 90
) = 350 7430

such that G + Q is ai(J'G)-allpass, i.e.

G+ Qo= 1 =~ (rG =2
Alternatively, a Qait such that G —Qait is cMTGQG-allpass can be constructed according

to Remark 4-4-1 and is given by:

i 6s2- 13s+ 90
Qai(s) 365 7430

4.6 Summary

In this chapter Hankel operators were defined and their role in control theory (e.g.
observability and controllability operators) and model reduction was described. The

need to approximate systems in the norm brought Hankel norm approximation
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into control theorists attention, as an upper bound, since "Ho norm approximation is a
difficult problem not yet solved. A key point for understanding and solving the HNA is
the Schmidt decomposition of Hankel operators which was extensively used by operator
theorists. However, in the case of rational approximation an elegant solution, based
only on state-space methods, was given by Glover [Glo84],[Glo89] which was studied
towards the end of the chapter.

Nehari approximation is extensively used in the following chapter as an important
tool to robustness synthesis, where the need arises to approximate anti-stable rational
matrix functions (i.e. inverse inertia problems). As shown here, the same theory
applies, but with opposite inertia considerations. It is then proved that the smallest
Hankel singular value of the anti-stable part of the open loop system is a robustness
measure. Further, in chapter 6 extensions of Nehari approximation of rational (anti-
stable) matrix functions are developed for matrix-valued problems in the sense that all

degrees of freedom are exploited to minimise additional objectives.
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Chapter 5

Robust Stabilisation

In general, physical systems are typically highly complex, nonlinear and time-varying.
However, it depends on the designer’s judgement to some extent, whether to describe
the real system by a complex model or make assumptions that relax the complexity
of the system. From a platonic point of view a model can never represent exactly the
true system but is only an approximation. Hence, uncertainty always arises in the
modelling process with a trade off appearing between the degree of complexity and the
degree of accuracy (in terms of approximation). Throughout this work, as discussed in
previous chapters, only linear time-invariant systems are considered. This assumption
is well suited to the present mathematical framework used for control design but, on
the other hand, it should also somehow fit to a pragmatic description of the physical
problem, so that the gap between model and reality is minimised.

Uncertainty in feedback systems appears mainly in the form of unmodelled or neglected
dynamics, parameter variations or nonlinear effects. In order to restore accuracy
(despite the assumptions of linearity and time-invariance), uncertainty can be treated
as an LTI system for which the only a priori information is an upper bound of'its “size”.
In this type of analysis, the ‘size” of the system is described by a metric induced by
the operator (or in engineering terms the system’s transfer function) and the degree of
complexity is typically measured by the system’s McMillan degree.

In order to introduce the main idea of this discussion, an example is presented next in

which uncertainty arises in the form of parameter variations.

Example 5.0.1 (Parametric uncertainty [SP96]). Consider the uncertain system

GJs) = —#k e~es, 2<k 6t <3
PW 1

TS +

At each frequency, parameter variation (inside the ranges specified above) defines



a region of complex numbers, Gp{juj). In general, such uncertainty regions have

complicated shapes with up to 2n vertices for n uncertain parameters (see figure 5.1).

Figure 5.1: Disc ap- Figure 5.2: Typical Nyquist
prox1mat10n .Of orig- diagram of uncertain system
inal uncertainty re- approximated by discs.
gion at a frequency

aQ

Thus a good approximation to the original (complex) uncertainty region may be
obtained by bounding it by a larger disc-shaped region using a frequency-by-frequency
scheme. The disc is centred around the value of the chosen nominal plant (i.e. the
plant for which uncertainty is equal to zero) at each frequency. Further, the uncertainty
radius is defined by the vertex furthest from the centre. Generalising the idea in
higher dimensions (i.e. MIMO systems), the uncertainty is modelled as a frequency
dependent norm-bounded LTI system, A(ju>). The norm constraint is described by
o(A(Guj)) < \W(ju))\, for all 1o, where W(ju>) characterises the assumed maximum
model uncertainty at various frequenciesl. However, the filter W is usually omitted
since it is possible to normalise the uncertainty by defining a uniform bound of 1, at
all frequencies, i.e. defining A := IT 1A so that |[A(s)Hoc < 1. The set (family)
of all these perturbed systems can be visualised in figure 5.3; Each perturbation A,
inside the uncertainty ball, results in a slightly different model. This ball is centred
at the nominal plant and any perturbation lying inside the ball is a contractive
system (operator). Summarising, the complete robust control model is the entire
set description which captures the uncertain or unmodelled/neglected aspects of the

IW(juj) is often estimated by experimental data and it cannot, by any means, be theoretically
derived in a trivial sense.
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assumed physical system. The size of the model set is constrained by setting a bound

on its size, i.e. specifying the norm of A.

Figure 5.3: Set of uncertain systems

The difference between the model and the true system may be represented in
several ways. For multivariable systems the three simplest and most commonly used

perturbation models are described below:

1. Ga (s) —Go(s) + Aa(s)

2. 6a () = (/+ Am(s))Go(s) or 6. (s) = Gq(s)(I + Am(s))

3. Ga(s)= (M(s) + Am (s))-1(N(s) + AN(s))
where Aa represents an additive perturbation, Am a multiplicative (or proportional)
perturbation, defined at the system’s outputs, and [AM, Ajy] represent the factors of a
coprime perturbation model. Here, Go is the nominal plant or the best estimate of the

true plant. Further, some additional technical assumptions may need to be enforced

in this description. These will be presented in detail later in the chapter.

Example 5.0.2 ([Mac89]). Consider Am = 0.1 = Aa. Then for the multiplicative

uncertainty case :

[[Ga —Goljoo = ||[AmGol|joo < llArolloollGolloo < 0.1||Gol|oo
i.e. the size of the perturbation is at most 10% of Go. On the other hand taking
Ao= 0.1,
||GA -Golloo = HAJoo < 0.1

i.e. the size of the perturbation in this case is less than the constant value of 0.1.



Remark 5.0.1. Multiplicative uncertainty is simply a weighted form of additive

uncertainty. In particular,

(I+ A m)Go = Go + A mGo =: GO+Aa

by defining Aa := A mGo-
Consider now the following figures (next page) based on the stability analysis of chapter
3. Here it is shown that all three perturbation models defined above, can be written

in the form of an upper LFT :
Ga = PYP, A) = P2+ P21A(/ - PnA)-1"

For example, it can be easily shown that the additive uncertainty model corresponds

(Pn(s) = (1)
\ftiw  JfcMy 1/

It follows in this case that:
FUP, A) := P2+ P2aA(/ - Ph A) 1Pr2= Go+ A
Further, the multiplicative uncertainty model is generated by

(0 £o(s)\ (5.2)
vV G°(SV

whereas the coprime uncertainty model can similarly obtained (see [MG90]). An

interesting observation, worth noting, is that Pn(s) (the (1, 1) block of the generalised

plant) for the case of additive and multiplicative uncertainties is equal to 0, whereas

on the other hand, in the case of coprime perturbation models Pn(s) contains also a

nonzero term.

In this general LFT framework we pose the following problem:

Problem 5.0.1 (Robust stabilisation). Consider the general uncertain plant in
figure 5.4(a). Then, find a controller such that the closed loop system is stable over a
set of uncertainties2*A which satisfy the norm bound HAHoo < e.

A necessary condition of robustness is internal stability. It is obvious that in order to
stabilise the family of perturbed plants, in which the nominal plant is also included,

2 The problem above is defined for the general class of unstructured perturbations. Again, if we refer
to the case of additive or multiplicative type of uncertainties, an extra constraint on the perturbation
set should be considered. This ‘technical assumption” will be introduced later.

&9



(a) (b)

©

(d)

Figure 5.4: Feedback loop systems under unstructured uncertainties and the equivalent
generalised plant.
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internal stability of the nominal plant should be achieved, i.e. according to the notation
of chapter 3, the feedback system H(G,K) of figure 3.1 should be internally stable.
Assuming that this condition is satisfied, one way of addressing robust stabilisation is
by means of the small gain theorem (see chapter 2, Theorem 2.4.1) of the LFT inter-
connections of the perturbation and the closed-loop system. Since the perturbation is
norm bounded, the nominal closed-loop systems should have norm less or equal than
the inverse of this bound, so that the overall closed-loop of figure 5.4(a) is stable for

every admissible perturbation.

For certain classes of unstructured uncertainty models the perturbed plant is
constrained to have same number of RHP poles as the nominal plant. This condition
applies to additive and multiplicative perturbation models and makes it necessary to
prove robustness theorems via homotopy arguments (rather than via the small gain

theorem).

5.1 Robust stability under additive perturbations

Assume G € The closed loop system of figure 5.5 (with A = 0) is internally
stable if and only if it is well-posed, i.e. det(/—G(00)K(00)) ~ 0 and the four transfer

functions («1,12) —(ei,e2) given by

(/ - GK)~I (I —GK)~IG
h(g,k) (5.3)
K(I-GK)-1 I —K(I —GK)~IG
are all in AI'HA@ Define S = (I —GK)~X Then we need det(/ —GK)(oo) ~ 0 and
5,KS, SG, I —KSG £ IZHoo, in order to ensure internal stability of the feedback

system (see chapter 3, figure 3.1).

Now let GA = G+ A, as shown in figure 5.5, known as an additive uncertainty model.
Here A is an LTI system and belongs to a class of perturbations for which there is
no a priori information about its structure (i.e. on how the uncertainty is distributed
among the elements A" of A), but only an upper bound of its “size” at each frequency
(measured via the largest singular value).

Assuming that controller K(s) stabilises internally Gs), it is often required to

determine whether for a specific e > o0 the closed-loop remains internally stable for
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Figure 5.5: Closed-loop with additive uncertainty in the nominal plant

all A with norm ||A]] < e This is an analysis problem, in contrast to a synthesis
problem which further aims to design a controller (or characterise the family of all
controllers) with the corresponding robust-stability properties. In the sequel we define
the robust stabilisation problem for the special case of additive perturbations and show
how it can be recast as an minimisation problem. The latter can be viewed as a
suboptimal approximation problem in terms of the uncertainty ball (figure 5.3). The
optimal solution to the problem is obtained when the stability radius is maximised
(maximally robust stabilisation problem). Next we define the family of all permissible

perturbations A and give certain technical conditions.

Definition 5.1.1 ([Glo86]). A permissible perturbation, A, is one such that A GVe
where

vexvSulra

and
Ve ={4 :AGnnoy HA" <e}
V= {A :A enCoo- (P, 0) =rlFuP, 4)) UA" <e}

where P is the generalised (augmented) plant (5.1), and r]() denotes the number of
closed RHP poles of a transfer function, counted in the McMillan degree sense.

Definition 5.1.2 ([Glo86]). The feedback system in figure 5.5, denoted as H(G,K),
is e-robustly stable if and only if H(G + A,K) is internally stable for all A G Ve.
Further, if there exists K such that H(G,K) is e-robustly stable then (G,e) is said
to be robustly stabilisable. Here, e is referred to as the robust stability radius of the

feedback system.
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Remark 5.1.1. Note that G and G+ A are required to have only the same number

but not (necessarily) the same poles in the closed RHP.

Remark 5.1.2 (Generalised Nyquist Criterion). Assume a A permissible (see
definition 5.1.1), such that A E Tt and further, let Dr be the Nyquist contour as in
Theorem 2.3.2. Suppose now that H(G,K) is e-robustly stable. Then H(G + (34,K)

is internally stable for every 3 E [0,1],

Consider the contour
r>=det[(/- (G+ (BA)K)(s)}, s e Dr,(3e [0,1]

As 3 varies between 3 = 0 and (3 = 1, Tp deforms continuously without crossing the
origin, making rj(G) + rj(K) anticlockwise encirclements around it (recall, straight from

definition 5.1.1, vj(G) = r](G+ A)), for each (3. Thus,
det [(/ -G K - (34K)(s)\ » 0, sE DR, GBE [0,1]
Now, observe that
det(I - G K - (34K) =det(l - GK)det(l - (3AK(I - GK)-1)
and (/| —GK)~Xis well-defined on DR. Hence, we conclude that
det [(/ - (34T)(s)} /0, Vs € DR, B E [0,1]
where T := K(/ —GK)- 1, and thus

det [(/ —AT)s)] ~ 0, Vs EDr

To get the idea behind of the above definition note that we extend the notion of stability
discussed before, in the sense that now our objective is to design a controller that not
only stabilises the nominal plant but a whole family of plants. Of course it is assumed
that the family contains the nominal system and hence by stabilising the whole family
we also stabilise the nominal system. Consequently, we can say that robust stability is

the ability of a closed-loop system to remain stable in the presence of modelling errors.

Theorem 5.1.1 ([MG90]). Let G E then H(G,K) is e-robustly stable if and
only if H(G,K) is internally stable and

WK(I-GK)-"\\x <r'
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Proof. [MG90], Theorem 3.3. O

Theorem 5.1.1 implies that the robust stabilisation problem can be formulated as a
(sub-optimal) Hoo optimisation problem. However, by minimising the "~ norm of
a transfer matrix we effectively minimise the maximum energy transfer between the
energy of the input and output signals of the corresponding transfer function. In other
words, if we choose a controller K that minimises ||K(/ —G/0 -1||oo, we then minimise
the energy of the output signal e2 (control effort) due to the external input signal u\.
The transfer function K (I —GK)~J is often referred as the “control sensitivity” of the

feedback system.

Remark 5.1.3. As initially discussed in the chapter, uncertainty size is a function
depending on frequency. A uniform bound on uncertainty size can be accommodated
via weighting functions which usually normalise the experimental estimates of the gain
at several frequencies wo In this framework, by introducing a weighting function W
(which can be assumed to be in H”", without loss of generality), robust stability is
imposed by requiring \\WK(I —GK)-1 < e 1. The weight can be absorbed inside
the generalised plant by re-defining:

the weights are appended to the original system. Hence, without loss of generality, using
the sub-multiplicative property of the Hoo norm (Banach algebra property) it is always
possible to restate the robust stabilisation problem in terms of weighting functions, using
this technique.

The following proposition shows that when solving the robust stabilisation problem we

can assume without loss of generality that G G TZH".

Proposition 5.1.1 ([Glo86]). Assuming G G IZCow with decomposition G = G\ + Gz
such that Gf, G2 G TTHoo, Gi(00) = 0, then (G, e) is robustly stabilisable if and only if

where the infimum is taken over all K\ that internally stabilise H{G\,K{) and such
that det(I —G2Ki)(o0) ™ 0.
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Proof. The proof is based on letting K\ be such that H(G1i, K1) is robustly stable and
defining K := K \(I + G2Ki)~1 See [Glo86] for details. O

Remark 5.1.4. Proposition 5.1.1 above implies that the solution to the robust
stabilisation problem is effectively constrained only by the anti-stable part of the plant.
For the special case that G £ IZhioo C IZCoo, the above proposition is simply proved
by setting K\ = 0. As the open-loop plant is already stable, obviously no controller is
needed to stabilise it. Thus, to simplify the solution of the robust stabilisation problem
we can assume without loss of generality G £ TThtf™

Theorem 5.1.1 gives necessary and sufficient conditions for robust stabilisability for
the e-ball of perturbations V¢. The necessity part of the proof in [Vid85] proceeds
via a homotopy argument based on the continuous deformation of the Nyquist plot of
the nominal plant. To establish sufficiency, the existence of a boundary destabilising
perturbations is proved ([Vid85]) by an explicit construction; in fact, it is shown that
such destabilising perturbations (i.e. A £ dVe, |Aljoo = e) can be assumed to be in
dV& C dvt.

The problem of constructing boundary destabilising perturbations is formally posed

below. Algorithm 5.1.1 which follows the problem is adapted from the proofin [Vid85].

Problem 5.1.1. Suppose T(s) is the transfer-function of the unperturbed (nominal)
system in figure 5.5 corresponding to an e-robust stabilising controller. Find A £ 'RTHX

such that

det(I - A(juo)T(juj0) = 0,  liAlcc 0))

for some frequency luo £ [0, 00).
The problem is solved by explicitly constructing such a destabilising perturbation. The

method is presented via the next algorithm. For a more general setting of the problem

see [Vid85], Theorem 4, pp. 273-279.

Algorithm 5.1.1 (Destabilising Perturbation). LetT(s) = K(I—GK)~[ £ IZHoo
be the transfer function corresponding to a nominal system G £ with minimal
realisation T(s) = Ct (sI —At )~1Bt + Dt - Further, leta(T(ju(0)) = Hltbq. There are
three possible cases: either ao = 0 ora;0= 00 or uiq is some finite frequency (which can
be assumed positive). In the sequel, it is shown that the cases ofuq = 0 and coo0 = 00

can be grouped into one case:
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Case i : wo= 0 or Wo= 00. //cjq= 0, then as At is invertible (since T G IZTtoo):
T(jujo)= T(0) = -Ct A "Bt Gftpxm
If itio = oo
T(ju>0) = T{oo0) = G7"xm

Then T(jio0) /tas a 5VT)

r(jwo) = c/ev'’

with U,V real orthogonal, i.e. U G IZpxp and V. G Rmxm. A destabilising additive

perturbation in this case is constructed as follows:

0(p—1)x1 O(p_i)x(m—1)

which is a real constant matrix.

Case 2 : luo GTEH\{0}. Let
T(jco0) —Ct Uojgl —At) 1Bt

and consider its SVD :
Tjuwo) = UYW

Define:

0(p—)x1  0(p—)x(m—)
So, at the critical frequency ojo, det(I —T (juo)A,iestab(jiOo)) = 0. However, in this case
UV may be complex (and thus also A”stab, as defined above).
To construct a stable, real-rational destabilising perturbation we use an interpolation
argument. Take the first column ofV, v\, which is in general a complex-valued column

vector. Write all non-real elements of vi in polar form:

and force 9 G (0,n), Vi G{1,2,... ,n}, by inverting, if necessary, the positive sign of
pWi, ie. setp = —pM for alli such that 9% £ (0,:.) (Where pv. = (—1,1)). Otherwise
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set pv. —pVi. Further, select appropriate . . > 0 such that arg(jcu—af) —&og(jj +.:) =
9i. Then, define

s— (XL

Py
v(s) =

An stan
ie. Vi(s) = pVij i for all non-real entries of vi and Vi(s) = Vu for all i such that Vu
is real.
Note that v(s) interpolates v\ at s = jooo. Geometrically this is described in figure 5.6.
In order to select pole-zero pairs (—a.i,oti) with a, > 0 such that arg(  y') = 9 note
that as the location of cfi (and —a.i) varies continuously over the positive (respectively
negative) real axis, 9; varies continuously in the interval (0,71). Therefore, for any
9 G (0,7) there exists (exactly one) pole-zero pair (—a*, V) such that arg("°~"1) = 9i.
Simple trigonometry gives

Lt .
tan — =>qil = rrotan

Figure 5.6: Construction of phase angles 9

Further, define fa 5 and pUis in a similar manner so that

Pux~ 1

Punej*n_

is interpolated by

- s-01

) ;T ——

S-Pn

H;, S+Pn_
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ats = jcoo- Then, an additive destabilising perturbation in TTHoo, with || A’stafellko> =
is defined as follows:

stchy = OiCTﬁu>0))V(S)u’(S)

Remark 5.1.5. By adding Adestab to the nominal plant, the number of unstable poles
remain the same, in both cases. If the critical frequency is wq = 0 or log = 00, then
Adestab is a constant real matrix and hence is irrelevant to the poles of G + Adestabm On
the other hand, if100is finite then Adestab is a stable dynamical system and thus, it does
not affect the number of unstable poles of G+ Adestab either.

5.2 The maximally robust stabilisation problem

Up to this point, in terms of figure 5.3, necessary and sufficient robust stability
conditions were given which characterise all perturbed plants inside the open ball
of radius HIUNL. Further, in the previous paragraph, an explicit construction of a
destabilising perturbation (algorithm 5.1.1) proves the existence of such perturbations
on the boundary of this ball. Next we consider the problem of maximising the robust-
stability radius (in the case of additive perturbations) and of characterising the family
of all controllers that guarantee this maximum robust stability margin. We first make

the following definition.

Definition 5.2.1. 4 controller K is maximally robust if H(G,K) is e-robustly stable

for the maximum value of e for which (G,e) is robustly stabilisable.

Following the above definition and proposition 5.1.1, the maximally robust stability

problem for the case of additive unstructured perturbations can be stated as follows:

Problem 5.2.1 (MRSP). Given any G € TTH" such that G(oo) = 0 find eQ) the

maximum value of e, such that (G,K) is e-robustly stable.

A mathematical formulation to the above problem follows directly from Theorem 5.1.1:
fp = 70=min||A'(/-Gif)-1]j® 54

where S is the set of all stabilising controllers of G, ie. all K(s) for which
H(G,K) 6 Hoc- Note that eo ——and it is defined as the maximal robust stability
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radius. The procedure we shall follow to solve (5.4) is described in four steps. At
first we pose the MRSP in a generalised regulator framework (see chapter 2, problem
24.1), i.e. we embed the given nominal plant Go into an augmented system P, so
that the control set-up of figure 5.5 is reformulated as a lower LFT of a generalised
plant and the desired controller. Then we derive a coprime factorisation for Go via
the solution of certain Diophantine equations, or equivalently via choosing appropriate
state feedback and output injection matrices. Thereafter, by using the results presented
in chapter 3, we parameterise the family of all stabilising controllers for MRSP and
hence reformulate the original problem to a model-matching setting. The final part
involves the reduction to a Nehari approximation problem, whose solution was outlined
in chapter 4 (algorithm 4.4.1). As the procedure discussed here relies on a state-space
analysis, for reasons of clarity we make the following assumption which does not involve

any loss of generality.

Assumption 5.2.1. Let Gj be defined according to proposition 5.1.1 and assume
without loss of generality that its realisation is balanced. For the sake of simplicity from
now on we shall use the notation G and refer to the realisation of G\ in proposition
5.1.1. Thus, take G to be an anti-stable system with minimal balanced realisation

(4,B, C) which satisfies
AT+TA-C'C=0
AT, + TA! - BB' =0

in which T > 0 is given by

0 @l

and o\ > (2> we> an r = mm—on > 0 are the Hankel singular values of G. Here, r
denotes the multiplicity of the smallest Hankel singular value of G. In the sequel we use
the fact that any realisation G can befactorised as the quotient of two stable (coprime)

transfer matrices.

Generalised regulator framework. Now consider the generalised regulator prob-

lem which is described below.
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K

Figure 5.7: Generalised regulator problem

Here,

{(z[a] _ {’P‘“ (&) .F'lﬁ.'.'}\\l {u[aj\

\wle)f  \Puls) Pals}f \u(s)/

uis) = K{shyis)
Using simple calculationa it is verified that
r=FP Kw
whare
FP K)y= P+ PRl — Py Py

in the lower bneer frocliond lensgfronelion of P oaod K. Becall from chapter 2,
problem 2.4.1, that the generalised regulator problem is stated as follows:
Given P, find K (if it exista) such that:

1. The loop iz internally stable
2 || FF R, <y

for a chosen level v & B, The Lrsl comdition guacaniees the stabilicy of the nominal
closed-loop syatemn, a requirament whick s fundameontal for any feedback control aystem
design and 15 related to Lhe exdstence of the teansfer functions appearing in {53},

belonging to M. Now define

P]_]_ b P‘u S A U I -
play = [ Ple) Al ]) & ) (5.5)
Puls) Fals) I Gls)

It is easy to check that the upper LFT interconnection of nncertainty A and the
gencralised plant Pis) defined above ia identical 1o Lhe additive uncertainly model, i.e.

FulP &)= P+ F"a]ﬂlif - F'11-ﬂ:|_lF'n =fr4 A
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Further, considering the lower linear fractional transformation
HP,K)=pn+ PnK(I - P2K)-1Pz2 = K(I - GK)-1

where the RHS describes the closed-loop transfer function of the nominal plant G
whose infinity norm we want to minimise as in (5.4). The maximally robust stabilisation
problem can be expressed in the general LFT framework, where the generalised plant

has the form of (5.5). In particular, (5.4) is equivalent to

min |\HP ;OIL = 70 = %o (5-6)

The controller that minimises (5.6), which is not necessarily unique 3 must, in the
first place, be a stabilising controller for the nominal plant G Hence, the set of all

maximally robust controllers forms in general a subset of all stabilising controllers.
Diophantine Equations and Coprime factorisation. Take Pz GG
with left and right coprime factorisation

G=NM~]=M~XN

where N, N,M,M € 'IZI100. Then there always exist matrices U U,V,V € VSH*

satisfying the following two Diophantine equations

VM - UN =/, MV -NU =1
or more generally,
ul
(m (5.7)
\N  VJ

which will be referred to as the generalised Diophantine (Bezout) identities.

Proposition 5.2.1. Let F,H be such that a(A —BF) ¢ C_ and a(A —HC) C C..
Then,

P \ A-BF B H
u S
/ ) -F I o
n v
C o [
A-HC B H
Vv -U .
F I o
-N M
-C o /

3for MIMO plants generically it is not unique but a continuum infinite set of controllers
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are stable state-space realisations of the coprime factors M, N, M, N and of U V, U, V
satisfying the Diophantine equation. Now choose F = |TE“1 and H = E~1C". Then
A —BF and A —HC are asymptotically stable. Further, with this choice, M and M

are inner.

Proof. Assume without loss of generality that (4,B,C) is a minimal balanced

realisation (see assumption 5.2.1). Then,

A—BF —A —BB'E«“1= (AE - BB')'L~l= —£A'E"1

so that
a{A - BF) C C_
Similarly,
A-HC =A4- E~IC'C=E I(EA- CC)=-E’"'E
and so
a(A- HC) C C_
Further,
A-BB'T,-1 B E-JC
M u S
/ 0
I\ 4
C 0 /
A- E-1C'C B E~IC>
s BE-1 [ 0
-C 0 I
Hence,

A-E 1C,C B E"IC' A-BB'E-1 B E_1C
B'E-1 7 0 -B'E-1 7 0
-C 0 7 C 0 7

4 /M U
M/u v
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Then,

A-7Z-'C'C -BB'E-1+E-X'C B E-IC
vo.gy (M 0 >- BB'Y,-I B E_IC'
N M) 4 B'E“1 -B'E“1 I 0
-C C 0 I
A- E~IC'C  (-BBEI+EICC-4 0 0
+BB'E~1+4- Tr'C'C)
0 A-BB'E-1 B E-IC'
B'E-1 0 I 0
-C 0 0 I
A- E-IC'C 0 0 0
0 A- BBE“l B E_IC
B'E-1 0 I 0
-C 0 0o/

Removing the uncontrollable modes

gives

and thus verifies the generalised Bezout identities. Further,

A-BB'S“1
NM~I =
C
A-BB'E“1
C
A- BB'S"1
0
C
A-BB'Y~I
0
C
T
=G
C 0

Remark 5.2.1. The particular selection of state feedback F

B
0

A-BB'E-1 B

-B'Y~I 1
B
0
BB'E*1 B
T B
0 0

A-BB'Z-1+BB'Y,-1
B'F—+

BB'Y-1+A- BB'Y-I- 4 O
A B
C 0

O

BE-1 and output

injection H = E~IC' in proposition 5.2.1 guarantees that M, M are inner (MM~ =1,

MM~ =1 and M, M G RIHX). This also follows via a routine state-space calculation

which is omitted.
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Parametrisation of all Stabilising Controllers. It is well known (Youla
parametrisation) that every stabilising controller can be written in the following

bilinear form (see chapter 3, Theorem 3.2.1):

K =(U+MO)(V+NQ)-1=(U+MO)[V(I + VAN Q)]-1
={U+MQ)(I+ V-INQ)-IV~I=U{l+ V-INQ)~IV~I+ MQO{I + VANQy W -1
where O G TZlioo and all other transfer matrices are as defined in chapter 3.

Equivalently in an LFT form, the set of all stabilising controllers is given by K —

Ti{KO0,Q), where Ko is the generator of all stabilising controllers, given by

A-BF-HC H B
-F o [
-C I o

M —UV~IN
~V~IN

for appropriate matrices /' and H (see chapter 3). Selecting /' and H according to

proposition 5.2.1, the generator of all real-rational stabilising controllers K takes the

form
]2 A- BB'Y,-1- Z-'C'C B
Ko (K1 ig : S A- o I (58)
\K 2i
-C 1 0

Hence, the set of all stabilising controllers is given by the set
JC:={K: K =Ft{K0,Q), OGTZH"}

which depends on a parameter Q, varying freely in 'HX) and a fixed controller generator
Ko as defined in (5.8). Hence, the above parametrisation transforms the original
Tioo optimisation problem over the class of stabilising controllers (problem 5.0.1 and
Theorem 5.1.1) to an equivalent optimisation of an affine function of a parameter
(O) which varies freely over Hoom Using the generalised regulator framework, already
derived for the class of additive perturbations, we are now able to construct controllers
K from the set ICwhich robustly stabilise the plant G, in the sense that both criteria
of (2.4.1) are satisfied for a subclass of /IC However, a complete characterisation of all
maximally robust controllers, expressed directly in terms of the plant realisation, still

requires some further investigation.
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Reduction to Nehari problem via Model-matching. A model matching

problem is of the form: Find a matrix Q G PTioo so that
QO Gargmin \Tn - T12QT2i

for Tij G TZHoo, i,j = 1,2. The solution of such problems have already been studied

in chapter 3. In connection with the previous paragraphs it can be shown that

™ T
Pi(P, K) = Fi(T,Q) for an appropriate selection of 7 = G TZHor,, as

Tx (0]
shown in figure 5.8.

(a) (b)

(c)

Figure 5.8: Equivalent block diagrams of model matching problem.

For the MRSP the three matrix functions are obtained (see [Fra87]) by:

Tn w=Pu + Pi2MUP21 = MU
T12 := PaaM —M
T2\ .= MP2\ - M

Each belongs to 7ZILoo, a fact that follows immediately from the co-primeness

properties of the factorisation. Then,

PI(P,K) = {Tn + T12QT2 : Qe KH"} 59)
= {MU +MOM : Q GKHoo}

Now, recall from equation (5.7) that

-MU +UM=0=>MU=UM
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Further, from remark 5.2.1 M and M are inner. Therefore,
Ft(P,K) = {UM +MQOM :Qenn o}
={([/+MQ)M : QenTioo}
Next we need to find the optimal, in the 7im sense, QO E TCH" that solves the model-

matching problem in this case. Consider the following 7C" optimisation. Since M and

M are inner:

mm (U+MQO)M

QeKHa
A Jlu+ MQJL (5.10)
WM~U\n

and Q is a stable operator.

Remark 5.2.2 ([Fra87]). IfT\2 and T2 are square but not inner, the transformation
from a model-matching problem to a Nehari approximation problem can be achieved
using two additional inner-outer factorisations [Pel03]: Bring in such factorisation
T\e = T{2T%2 and T21 = T21121, with T{2 and T21 square inner and T°2, T21 square outer

Hoo functions (i.e. units). Then
m - r2QT21,, = ||T,, - T'nT&QTtiAL

= ||(r;s2)~r,(ri)~ - 7y2Qi?,||,, = ;IPi2)-T 11(r ‘1)-> - ’
Now the map Tt" —Tf2TLooT2l, Q —Q := Tf20T2X is a bijection, so

min \Tn -T uQT21\0 = min \{Ti2y Tn (T2iy - QHg,
(rHoc (¥Ho

which is a Nehari approximation problem.  Clearly, the inner nature of M and
M  (guaranteed by the choice of F and H, remark 5.2.1) makes these two extra
factorisations redundant.

Further, a simple state-space analysis shows that:

A-BF -HC H B

A-BF H B A-HC H 0
0 A-HC H 0

F 0 I C I 0
—F 0 0 I

0 I (1] 0 0 I
0 -c 1l o
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and further

(u m\ (m o\ _ Jum m\ (MU m) (Tii TR

\[ O0jl0lj~\M 0)~\M 0j \T2 0
Summarising, we have shown that the maximally robust stability problem can be
reformulated into a model-matching framework whose solution is equivalent to a Nehari

approximation problem of the form

_min |fi+ QL=[|A~[ltf (= lirVII)
The solution of Nehari problems has been previously studied. Here we want to
approximate R (:= M~U), an anti-stable system, by a stable system O As discussed
earlier, there exists a generator J of all optimal solutions such that H-R+QHoo =

Further, as already shown in chapter 4, all optimal approximations of R are given by

where 70=||i?||//- In the sequel, we derive the state-space model of R in terms of the
realisation of G Thereafter, we characterise all optimal Q.f as an LFT interconnection

and relate it to the maximally robust stabilisation problem.

Now,
-Ai + Yr'BB' o]
R = M~U = 0 A-BB'E“1 E~IC’
B’ -B'E-1 0

Then by applying the transformation

I -E~
B o [
we have
-A! + E~IBB' 0 -E ~2C
R = 0] A- BBT-1 E-1C"
B’ 0] 0]

—A'+ E~BB' YrX
_ B’ 0 (5.13)

;i E(—a'+ E_IH5)E_1 E_IC"

—B'E“1 0
A E-iC’ Ar B,
-B'E -1 0 op ©
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where T\ = E. Clearly, the above realisation for R is minimal and balanced. Note that
since G was assumed to be in 7 so is R. By expanding the gramian (Lyapunov)
equations, in assumption (5.2.1), it is straightforward to show that R has observability

and controllability gramians equal to

CT"r o

0] E-1

E“1
where an is the minimum Hankel singular value of G(—s) and hence, e“1 = qois

the largest Hankel singular value of R(—s), of (assumed) multiplicity . Partition R

conformally with E-1 as :

A\\r A\2Zr Bir An A2
R = A2X% A22 B2R = A 2x a 22 E~C'
CR C2R O -B 2E-1 0
Then,
Q = Fi(J,crnBHoo) (5.15)

where the “Glover generator” of all optimal approximations is given by

A B\ b2
¢« Du D (5.16)
c2 dX O

as in chapter 4, algorithm 4.4.1, whith

A=-A'2: r-J(E I, .. - C2RDn)B2R

Bx= -T-\£-xB2R-C'2RDn)

B2= T~IC2RDi2 (5.17)
Cx= C2Rt~1- DuB2R

C2——D2iB2R

Note that in (5.17) we substitute —E 1 instead of E [, due to assumption 5.2.1; Recall
in chapter 4, algorithm 4.4.1 the gramian E satisfies n'E + EH+ C'C = 0 (i.e. different
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inertia). Further, straight substitution from the state-space description of R, gives

a =-a+tr 1(ir2c£+ -2 1)e 2 -1

B\=-r-"E -~ +S-"aDn)

B2=—< 1E 152512 (5.18)
Cl = -8 25S-2- DuCjE"1

C2= -D2iC2Z~]

and

r = (-E“D2 -Car _ I (5.19)

Remark 5.2.3. The matrix D is chosen to be orthogonal with Dn = 7CB” so that it
satisfies the all-pass equations given in [Glo84/mIn the framework of robust stabilisation
we get:

Cr oDt o, 3z o =0

equivalently, in terms of the nominal plant:

D11 D)2
on B\ o + a-2C( o
D2 o
implying that B\Dn = <hiC[ and that £t-Di2 = 0. These results will be used

extensively in the following state-space analysis.

It is now clear that if R € RTCfo then J £ IZHoo and so Q £ RTtoo- Therefore by
choosing among all Q £ [ZTtoo those that are optimal, we can parameterise the desired

set of all maximally robust controllers via (5.8).

5.2.1 Optimal closed-loop approximation

The MRSP in (5.4) involves the minimisation of the infinity norm of an appropriate
closed-loop transfer-matrix, 7’ ;= K (I —GK)~X Having already defined these optimal
transfer-matrices rather implicitly, a more direct approach to the problem is attempted
here. A cancellation analysis is carried out in order to understand completely, with the
aid of loop transformations, the nature of the resulting optimal closed-loop systems. In
particular, full characterisation of their structure and inertia properties are the main
issues examined here.

Consider the model matching problem (5.9), described by figure 5.8, but further restrict
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O to have the form (5.15), i.e. to be an optimal approximation of the equivalent Nehari
problem (5.10). Then, the optimal closed-loop transfer-matrix in terms of the optimal
parameter QOpt is :
Topt = (U+ MQopt) M

= UM + MQoptM

= UM +M(Jn +J2t(/- J2")_1J2)M

=(U+MJn +MJ2f(J - J22$)-1J2DM

'U+MJn MJn

, 9 M ="(TgnT)M
Ja J

The term Tgen is easily decomposed as:

U+ MJn{I-OJn)-1 MJ2\ _ U+MJn MJ2|
y J21 -0, J)j y Ja J2
where * denotes the Redheffer product (see Appendix A). The decomposition is

visualised in figure 5.9.

@ ®)

Figure 5.9: Optimal generator of closed-loops - equivalent interconnections.

Note that M is inner and $ is anything contractive in anBTioo- Therefore, Tgn will
generate all Hoo optimal closed-loop systems, i.e. it is the generator of all K (I —GK) "1
such that K internally stabilises the nominal plant and |\K(7 —GA")“1||@O= qo= —.
Assume that the “Glover generator” has state-space realisation J =(A, B,C, D). Then

the state equations of the star (Redheffer) interconnection are

x=(A- BB'Z-"x + + Bw £ — Ag+ B\Z + B2U2
yi = —BYi~Ix +w w= + Duz + (heu2
Z= Ui y2= C2%+ D2z
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using the realisation in (5.11) and hence, the state-space of Tgen(s) is obtained as:

X A—-55'E“1 5Ci « E-iC'+ BDn BDi2 U

0 I Bi b2 W2
J L L
Vi —-5'E“1 ¢1 X Dii D\2 ul
— +
2 0 Da o *i9

The generator of all optimal closed-loop transfer-matrices 7gen is:

An - aZlBiB[ A1z —Bir2r * —BiB"2il~2 - BjOnCakf -1 < 1Ci + A1 £#11 B1D 12
A21 —On 1B2B! A22 ~ B2B2E 1 - b 2b2£~2- B2Du C2Z E_1CE£ + B2£>n B2012
0 0 ~af4r-(BE-2¢h +S-16200 )e2e -1 -f-i(@-2C/+g-iB2Bu) _r.-1g-1B28 12
-b 22 1 -Bizi;-2- 0iiC2E-1 Su D\2
0 0 —D21C2E- 1 D21 0

Next, we eliminate all uncontrollable modes to reduce the state-dimension of Tgen.

Consider the similarity transformation

/ o o
Ti= o I TE
oo [
Then,
510 =c~NCo+b2dsi-tet-"e-2" +e~tbadu)
= E-'Co + B2Dn - E~IC2- B2Dn =0
and

5(2,2) = B2D\2—B2Di2= 0

Moreover, straightforward computations give,

AR3) = -TEAZ + (E“ 1« + 525ii)C2E“1- B2B2"~2- B2DIIC2~1- ("22 -

= 1ET'2+s 1c22 1-b22£-2- ADEr+b2 2

= v%2+e lc22 1->0Er+B2WBA(r - E~2)

= (er“2/ - R“2)E A2+ S-~C zirl- /R2S(S“2- a~2I) - (T“26 282

= <26 "2- T~A2+E _1(EylR2+ A22%) £-1- A2t~ - a-2B2B2+ e 2yl0F
a~2{%A224 A22% - B 2B} = Q

Further,
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>1(1,3) = -BXB2Y,~2- BIDn C2*~1- (AL2- Bi-BaET"Er = BXB2(T- E"2)- BXDIXCZE“1- >12Er
= °n2BiB'2- BxDIxC2E“1- T12Er = ¢-2BxB2- BXDXIC2E“1- AI2£{£-2- a~2])
= <2BxB2- BXXCZE-1- A12S-1 + a“212E = a~2(-anA2]) - AI2E“1- BiDn"E“l
=-~"2-"E-1-B*nCaE-1=-"21 - "E “l+0"CIC"T1I

= -andl2+C "E “1=0

and

0(1,3) = -B2£~2- DuCifrl+ B2E_1Er = -B 2E“2+ BNE“2- a“2/) - ;nC E“1
=~<2»H2- Suce-1

Note that (last line in partition >1(1,3)) we used the fact that BxDn = —o~ICX due

to remark 5.2.3. Then Tgen is equal to

An ~<hlBiB; ALR—BiB H 1 0 0 0
421 — & *BrB'i A22 —B2Brry A 0 0 0
0 0 cuDtrod(f~202+ t- IB2b11)c2t ~1 -tr— (fr2* +c-1b2d,) -r-lg-1s2S 12
—<I~1B[ -<t~2b2~611C28S-1 D11 £12
0 b 2c2r-i £21

Removing all uncontrollable modes, the optimal closed-loop transfer-function, Tgen, is

given by

-A2+r-J(S-2C0+ Z-1B2Dn )C2X* -r-"E “2" +t~[B2Dn) — 1E 1R2D12
-a-2Bb5- DnC» -1 Du Dxe
—D2\C2Y~ d2X o

or equivalently, the generator of all optimal closed-loop approximations is

A Bx b2
-cr~2Bb- DnC2S5-1 Dn d X (5.20)
£o dXx O

in the sense that all optimal closed-loops have the form Topt = J)(T gen <M where
$e (Bl-Loo and M is a known all-pass matrix function. Note that deg(Tgen) <n —r
where 7 is the McMillan degree of G and r is the multiplicity of the largest singular

value of Te-
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5.2.2 Maximally robust controllers

Having obtained a state-space formulation for the generator of all optimal closed-
loop transfer-matrices, we proceed to characterise the family of all maximally robust
controllers, using a state-space approach, i.e. to derive a closed-form state-space
model of all maximally robust controllers, described by the figure below. Using the
LFT interconnection derived for the family of all stabilising controllers, the set of all
maximally robust controllers is obtained by setting O equal to QO0pt, the solution set of

the equivalent Nehari approximation problem.

Figure 5.10: Equivalent block diagram representation of all maximally robust
controllers

The above figure describes the set of all maximally robust controllers,

Gyt = Ti{K0,Ti}J, (TnBHoo))

where $ € anBHoo, be. anything contractive inside the an-ball. The generator of all
K € /Copt, is defined by

/gne+ boo™J
and thus, according to the RHS interconnection of figure 5.10, satisfies the following

set of equations:

(i) :x=(4- BB'E“1- YTIXxC'C)x + £ _1C"ui + Bw (iv) :£=~ + Bxz+ B2
o (i) :yi =BT ~k+w (v) :w = cit + Duz+ DXk
(iii) 1z —Cx + u) (vi) 122 = C2i + D2xz
(5.21)

Now substitute 5.21(m) into 5.21 (iv):

w = C\£—D\\Cx + DnUi + (5.22)
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Substituting (5.22) into 5.21(1) we get

x=(A- BB'Tj-1- T~IC'C)x+ (E*CV + BC"2- BDnCx + BDnui+ BDuuz

Ax =(A- BB'E-1- E~IC'C - BDnC)x + BC\Z+ (E_1C"+ BDu)U + {BD12)uz=

(5.23)
Also substituting 5.21(m) into 5.21(zu):
£=AZ—B\Cx + B\w\ + B 2.2
or equivalently
Z— —B\Cx + AZ + B\Ui + B2u2
Rewrite 5.21(h ) as
vyl —B'S k+ C\Z—D\\Cx + DVWU\ + Dl2uz
=myi = (—PD\\C —BYi )x + C\Z+ -DnUi + Dl2uz
So 5.21 (vi) becomes
y2 = (=D2\C)x + C2Z+ D2\U\
Hence, the equivalent state-space description, of Kgen is given by:
X A- BB's<i1- E~IC'C- BDnC BCi x E~IC'+ BDn BDn
= +
—B\C A Bi b2 _
. \ 1
Vi DuC-BE-1cl x , Du Dz .
ya - d 2 c2 . D2 . u
1e,
_ ak Bk
Q Dk
where,
Au-a*B*-a”CiCi-BiDnCi AL- - BIDI1IC2 BXi
IK A21-<¢-IB2B'1-X - 1Q2Ci -B 2D1IC] A22- B2B2Z~1-£~1C2C2- B2Du C2 B2C\
—BiCi -BX2 4
<m IC[ + BiDu BiDx 0 o
Bk = v.-ic2+ B2Du  B2Dx2 = + B2Du  B2Dx2
Bi b2 Bi b2
K -DIICI-a~IB] -DuC2- B"T-1 Cx
—D2C\ -D2\C2 c2
Du Diz
Dk
D2 0
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Next, apply the similarity transformation

/ 0o o
ol TE

oo [

Then, a cancellation analysis shows that the generator of all maximally robust
controllers has McMillan degree of at most » —. This agrees with a standard result
of Hoo theory [HLG93]. Straightforward algebra, shows that

Bk (2,1) =E-1C' + B2Dn - (S-1* +B2Dn)=0
Bk {2,2) =B2Di2—B2Di2= 0
and
Ak 23)=- YZA'2+ E~C"E" 1+ BzSnCaE"1- B2B2Z~2- B2Dn C2Z~1- d2XxE
+ B2B2T+ E_1C2C2E + B2Dn C2YZ + (E~IC2C2 + B2DUC2)(-YZ)
=- (E-2- a21)ZA2+E-"CzE-1- B2B2Z~2- A2(E“2- <2)E + B2B2(Z~2- a-2I)
+E -AC ~ir2- a~2)E+ B23iiC2E + (E~IC2C2+ B25iiC2)(-rE)
= - E-1yl2+ g2¥iA2 + E- IC2C2%~1- B2B2Z~2- T "E“1+ o “2A2FE + B2B2Z~2
- a~2B2B2+E 1C2C2E“1- £2E 1C2C2E+ B25nCXE + (E-~"Ca + B25n C2)(-rE)
=E-1CC2[E-2- €“Y]E + B2DnC2E + (ST~Ca + B25nC2)(-rE)
=(E_1C2+ B2Dn)C2TT, - (E~C2C2+ B2Dn C)T%= 0

Further,

A*(2,2) =A2- B2B2E"1- E _1C2C2- B2DUC2+ Z{Z~2C"C2+ Y,-IB2DxIC2) = d2 - B2B2Z~I
Ak 2,1) =A21 - o 1" - ErC'Cx - B2SnCi+ (E"1® +B”*n )" =A2l-a”~B "

and

Ak {1,3) = —BIB2T~2- B\DiiC2T,~1- (A2- BiB2E 1- "C"Ca - B*nCairE
=—BXB2Z 2—B\DiiC2Yi 1—di2rs + BxB2T+ unlC[C2YZ + BiDn C2YYi
=- BxB2E-2- AIAE-2- «~2)E + BB'(E~2- €-2) + "~ (~(E -2- €“2)E
+ BXDXC2(—E 2+ 1)E
= —AXE 1+ an2AXE —an2B\B"2+ an IC[C2Z 1—an3CX2E —an2B\DiiC2Z
= —AXE 1+ an24\2Y —an2(AXZ + anA2l) + an 1(B21E + enAXQ)E
=—ADE 1+ 0-2A12E —a~24AX7 —an IA2l + an142] + AXE 1=0
Also,
Ak (3,3)

-A'2+ T~iB-2C2C2E-1+r1-1E-1B2BLC2E 1- t"E "2 + Z-IB2DIYC2YZ
= A'2+r-tfe-2Xx2-1+r_1EL1BS5MNCE 1-r*"E*c*rs - B2b Ixc 2vt
=-A'2+ Y~It~2C2C2{%-2 - Y)E+ Y-1E~IB2b 11C2(b~2~ T)E

=- A2 +<T2r-1E-22C2E+a-"Z"B*nC:zE
=-4'2+ + B2Dn JC2E
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Finally,

cKG,3)=- b%.~2- Dnc2f-1+([duc2+s'E-"Er
- - B'2~2- D1lc28~1+ DU CZ5{%~2- a~21) + B2(&~2 - a~2I)

-a~20nC2t - a~2B2= -cj-2{B2+ Dn C2X)
C*(2,3) = - D"CiY,-1+ O2AC2E = D2 C2[T- E~2]S = -a - 2D2IC2t

In conclusion, all maximally robust controllers are generated by the following system:
-A'2+ (@7-2r- 1IE-1(S-1C*+ B2Dn )C2% -T-1{t-2C2+ E-'SjOu)

Kgn — ~a~2(B2+ Dn C2Z) DI\ DD
5 - 2D2XC2% d 2 0

or in terms of the “Glover generator” (5.16):

'"-Afn-a-'é& i? b2

Kgn = Dn D\

-a~2D2lC2E D2l o
It is now clear that the McMillan degree of Kgen is at most n —r from which the
existence of optimal controller with this degree bound follows (set the contraction ¥
equal to a constant matrix). The main results are now summarised in the following

corollary:

Corollary 5.2.1. Problem 5.4 or equivalently 5.6 has a continuum of solutions given

by the set of all maximally robust controllers,
Kopt = Fi(K gen, <»

where Kgen is the generator of all maximally robust controllers with state-space
description given by (5.24) and $  anUan-contraction, i.e. & G toBhioo. In other
words, connecting such a controller in the feedback loop 5.5 effects to the minimisation
of the norm of the control sensitivity function (u\ —>e2) and all optimal functions are
parameterised as

Topt = Fi{Tgea, $)M

where Tgen is the generator of all optimal control sensitivity functions and has state-

space description as given in (5.20). Here, M is a known allpass function.

Further, we demonstrate all major results of this chapter in the following example:
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Example 5.2.1. Consider the following 3 x 3 anti-stable system:

1 1 1 L [¢] o
2 4
1 L 1 0] L 0]
2 4 2
A B 1 1 1 1 1 o
s 4 4 3 2
C ! o ! o [¢] (o]
o 2 2
(o) L ! (o) o o
2 2
[¢] 0] (0] 0] [¢] [¢]

The realisation is balanced with gramian

0.25 0 0
0 0.25 0
0 0 0.75

and Hankel singular values {cr3,a2,01} = {0.25,0.25,0.75} (according to the notation
of assumption 5.2.1). Note that the multiplicity ofo.25 is two (a3 = a2). The generator

of all maximally robust controllers as found in (5.24),

1.1667 8 g 0 0

16 -4 0 0 0

Ak Bk
= 16 0 -4 0o 0

Ck Dk
0 0 0 0o 4
0 0 0 4 0

Take now a random stable 1x 1 system 4,

-0.6048 0.1720 0.3032 -0.5883

B> 0.0168 -0.0352 -0.0044 2.1832
Dy, -0.1567  0.0466 0.0478 -0.1364
0.0003 0.0030 0.0002 0

such that ||3>lo0 = o.22727 < o.25. Then, we can construct one maximally robust
controller, Kqt —IFi(Kgen $), for which the corresponding optimal closed loop Taqx =
Kagx(I —GKqr)~l has Hankel singular values as plotted in the figure below.

From the plot, it is clear that the norm ofTqn is equal to 12db or,

1
\\FII\\(X}= 1020 ~ 4
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Optimal Closed-loop: «op{(I-G K op()’

Figure 5.11: Singular values of Optimal Closed-loop.

Further, we construct the following perturbation according to algorithm 5.1.1:

-1 1 1 0.1347 02106 O

0 -17.6753 0 -4.7629 0 0

Aa Ba 0 0 -0.7242 0 -0.3050 O
Ca DA 0 -0.8619 -0.8619 -0.1161 -0.1815 0
1.0143 -0.5071 -0.5071 -0.0683 -0.1068 O

0 0 0 0 0 0

The perturbation has norm e* = 0.25 and as shown by the generalised Nyquist plot

det(1-(GO*A)K)(o>0)

Figure 5.12: Plot of det(I —(G + A)K), over all frequencies lo ElZ.

displayed in the following figure it is a destabilising perturbation when the above optimal

118



controller is used. It is further observed that all four transfer functions of (5.3) have
two marginally unstable poles, (i.e. placed on the ju axis). Note that this agrees with
Nyquist plot of det[I —(Go + A)K] (figure 5.12) which can be seen to pass through the

origin.

53 Summary

In this chapter, a discussion of model uncertainty was the launching point to formulate
the robust stabilisation problem. The main aim of this chapter was to derive solution
criteria for the maximally robust stabilisation problem for additive perturbations using
a state-space approach.

In particular, it was shown that under assumption 5.2.1 the maximally robust
stabilisation problem can be reformulated into an H”" synthesis problem, i.e. one
involving the design of a stabilising controller K that minimises the infinity norm
of the closed-loop system 7wz = Pi(P,K). Here, P is the generalised plant defined
directly from the nominal plant G, assumed anti-stable with no loss of generality.
Solving this minimisation, defines the maximum norm HAH" of the perturbations that
can be stabilised. This is a well known problem, whose solution was derived in detail.
The solution follows from the fact that the set of all stabilising controllers can be
parameterised in bilinear form (or equivalently via a lower LFT) in terms of a free
parameter Q GH ", be.

K =FIl(KoQ)

Here, K¢ was obtained from the right and left coprime factorisations of G satisfying two
Diophantine equations. The advantage of this parametrisation is that the initial, hard-
to-solve, Hoo optimisation problem can be reduced to a convex optimisation problem,
by applying model-matching theory. Until this point, the theory was in the standard
framework and had been outlined in previous chapters. Next the set of all stable
closed-loop functions was considered. It was shown that this can be expressed in affine

form, i.e.
Twz := Pi(P, K) = Tt(P,PfKo, Q) = PfT, Q) =T,, + T120T=

with QO G Hoo a free parameter.
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The optimisation hence involves a model matching problem and for this application

(maximally robust stabilisation) the matrices 7\2 and 72\ are square and have full rank.

In such cases, the problem is said to be of the first kind [LH87]. The optimisation can

now be reformulated as a Nehari-type approximation problem:
nlgirﬂlT/\Hoo =Q1g11;g |+ Qoo=1IM = </T) = al’l[;kG)’

where R £ R'H")- From theory outlined in chapter 4, all optimal extensions Q are

given in terms of the following LFT:

O=RiUS$)

where J £ RfHoo “generates” all optimal approximations whenever connected with any
(ai(r”™))-1 -contractive (or equivalently an(T"-contractive) system < The generator
of all optimal closed-loop systems was subsequently expressed as an affine map of
£ a,(Tg)BHoo. Finally, the maximum robust stability radius was obtained in terms

of the smallest Hankel singular value of the plant, i.e.
ec = an(r G

The contribution made throughout this chapter is a detailed state-space analysis for
both the optimal closed-loop transfer-matrices and all maximally robust controllers,
showing in particular through various cancellations the existence of optimal controllers
of state dimension not exceeding n —, where 7 is the McMillan degree of the nominal
plant [HLG93]. Further, the overall study resulted in a thorough and concrete analysis,
which is directly implementable, giving rise to elegant formulae and a clear overview
of the maximally robust stabilisation problem.

Concluding, the problem of uniqueness should somehow be restored. How can we
choose a controller with some “additional” robust characteristics within this optimal
set? Is this controller unique? By setting <F= 0 it is very well known that the controller
satisfies some extra performance characteristics, i.e. guarantees the minimisation of an
entropy integral (e.g. see [LH87]). However, the issue examined in this thesis is that
of extending the robust stability and hence a complete answer to the above questions
is given in the next two chapters where super-optimisation is introduced and linked to

the maximally robust stabilisation problem.
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Chapter 6

Superoptimisation

“..0n the assumption that God is an engineer as well as geometer, I am
inclined to expect that the stronger minimisation condition, seeming so

mathematically ‘tight’, will have physical significance ...
N.J. Young, 1986.

In Nehari approximation problems we seek to minimise

Qei)rvlifmnp + QHoo (6.1)
where R 6 1ZCpfm (or R € TZ7i"pxm without loss of generality). Throughout this
chapter we study the matrix case min(p, m) > 1 Further, depending on the kind of
application O, may be further constrained to have a zero block row and/or column.
Then the problem is said to be a two-block or a four-block distance problem. In this
thesis we consider only one-block problems. The motivation initially arose from the
fact that MRSP is a one-block problem as well, but also later, it is shown that the
structure of one-block problems permits a deeper and thorough state-space analysis
of this independent problem (super-optimisation), which is one of the novelties of the
particular chapter.
By introducing the new notation sf(R) = ||R||oo the approximation problem posed in

(6.1) above can be rewritten as:
Si(R) .= _inf  s?(R +Q) (6.2)
Qew+'mm

where S|(R) will be referred to as the optimal level of R. The set of all optimal

approximations of R is defined by

Si(R) ={0 e :s?(R +0) =Sl (6.3)
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Note that s\(R) := ai(R~) is the Hankel norm of R £ [Z'H"pxm. Since, in
general, the solution of this problem is not unique, we can define a stronger version of
optimality, by requiring that the sequence of the suprema (taken over /u £ 7ZU {oo})
of all singular values of the “error” system (R + Q)(joj) is minimised lexicographically.
This stronger version of the problem was first proposed by Young and was defined
as super-optimisation. The main motivation, arising from esthetic considerations, was
to restore uniqueness to the solution of the matrix Nehari problem, by showing in
[You86] the existence of a unique super-optimal approximation QsupmNevertheless, in
the present work and also others (e.g. [PF85]) it is argued that super-optimisation fits
naturally within the modern robust control-theoretic framework, and can be used to
define hierarchical optimisation problems in which additional performance and stability

objectives can be addressed [PF85], [GHIOO].

Problem definition. A formal definition of the problem follows. Firstly, define
s°°(R) = sup €i/R(wj)], i=1,2,..., min(p, m).

If p and m are both greater than 1, then we define recursively the first and subsequent

super-optimal levels of R as
(R) = ] °°(R + = 1,2,..., mi .
Si(R) Q&lﬁfz(lg)s R+0) i=12,..., min(p,m) (6.4)
and the set of all z-th level super-optimal approximations of R as
Si(R) = {0 £ <§ i(f?) :s>°(f?+ Q) = Si(R)} z= 1,2,..., min(p, m).

In other words, we seek among all super-optimal approximations at the (i —)-th level
<Sj_i(/t!) a set for which Si(R) is minimised (it turns out that the infimum in (6.4)
is always attained). This set is not a singleton in general (apart from the case of
i = min(p, m)), but forms a subset of all (i —1)-th level super-optimal approximations
of R, Si-i(R). Due to the lexicographic nature of the problem, it is clear that
every element of Si(R) is also an element of Si-i(R), i.e. that the super-optimal

approximation sets nest as:
So{R) DS1{R)D ...D Si(R)D ...D Smm(p,m)(R)

Note that for i = 1, (6.4) is taken to be a Nehari extension problem and hence we define
So(R) := 7i”pxm. The super-optimal approximation problem ([SODP]) considered in

this thesis can be formally defined as follows:
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Problem 6.0.1. [SODP], Given a G G 7ZH "pxm, find the (unique) matrix-function

Osup € Ti™ pxm which minimises the sequence

s°(G+ Q) = (sf(G + 0), s2(G+ Q),...,s7(G + Q)

with respect to the lexicographic ordering, where k = min(p, m).

The approach followed here involves the reduction of the lexicographic minimisation
into a hierarchy of ordinary 7-foo-optimisation (Nehari-extension) problems of progres-
sively reduced input-output dimensions, whose solution is well known in the literature

[Glo84], [Glo89], [ZDG96], [GLI5] and has been presented in chapter 4 of the thesis.

6.1 The 1-block Super-Optimal Distance Problem

At this point the work is organised in two parts. In the first part transfer function
approach is followed. The solution of optimal and suboptimal Nehari approximations
are restated in a more abstract setting than in chapter 4; subsequently a new block-
diagonal generator of all optimal Nehari extensions is presented. A crucial difference
here is that the generator is constructed with the aid of rational all-pass matrix
functions and is reminiscent of the partial singular value decomposition of constant
matrices. This analysis is carried out in the first part of the chapter. The later part
involves a concrete state-space analysis which reveals the structure of the diagonal form
of the generator and solves the super-optimal optimisation problem in a hierarchical
setting. The chapter concludes with the presentation of numerous examples which

support the derived results.

In contrast to other parallel solutions of the problem reported in the literature the

main contribution of the present work is as follows:§

(1) The solution is derived in a concrete state-space setting with minimal assumptions
(no minimality or balanced form of the realisation of the system which is
approximated is assumed and the largest Hankel singular value of the associated
Hankel operator is permitted to have arbitrary multiplicity). The analysis
allows for the derivation of generically minimal realisations of the super-optimal
approximation which establishes tight McMillan degree bounds of the solutions

and removes potential ill-conditioned numerical procedures at the intermediate
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steps of the algorithm. In particular, all assumptions involved in previous results,
e.g. McMillan degree bounds, interlacing inequalities between Hankel singular
values and super-optimal levels, existence of solutions of certain ARE’s, etc. are
removed and these results (with suitable modifications) are shown to carry over

to the solution of the general problem.

(i) In contrast to existing techniques ([LHG89],[TGP88]), the method does not
depend explicitly on the diagonalising properties of Schmidt pairs of a sequence
of Hankel operators generated during the construction process. Thus, several
unnecessary preliminary scaling steps are eliminated, together with certain
conceptual difficulties related to the multiplicity of Hankel singular values. The
present approach ([JL93]) depends on a conceptually simple matrix dilation
technique and the interplay between the optimal and suboptimal Nehari

generators.

6.1.1 The two-level super-optimal approximation problem

and its solution

The approach for solving the SODP adopted in this work is based on all-pass dilation
techniques. First the system to be approximated, R(s), is embedded in an all-pass
system H () of higher dimensions (note that R(s) is taken to lie in for compatibility
with existing Hoo optimal-control literature). This acts as a “generator” of the optimal
solution set of the Nehari extension problem, as all solutions can be obtained via a LFT
of H(s) with the ball of Hoo of radius s™1 (i.e. the set of all stable sjf”contractions)
[Glo89]. Next, a sub-block of the optimal generator H(s) is dilated to define a new
square all-pass system H(s), of lower dimensions compared to those of H(s). Exploiting
the all-pass nature of H(s) and H(s) and the fact that they share a common block, two
diagonalising transformations of H(s) can be defined from certain sub-blocks of H(s)
and H(s). The diagonalisation is analogous to the partial singular-value decomposition
of constant matrices and makes the minimisation of the second super-optimal level
transparent.

First, the general solution of the optimal Nehari-extension problem is given under

minimal assumptions:
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Theorem 6.1.1 (Optimal Nehari approximation). Censider B € BH_ ™0

with reabisalion A =

where MA) € Co.  Then there emals £, €

oo
RplEtmoaEtn-ll cod thay all Q € HUP® sueh that [|[R 4+ Qo = |R7 | = &

[ Nehari eptimal approdimations of i) are given by
Q= AlQa, 57! BHE 1)

Here [ < minip, e, 1) és defined in remark §.1.8, where v derefes the multiplicity of
the lovgest sinowlar value of Ty, Further,

Ay | B Bya
P Gha | =
= =4 Ca [ e {6.5)
o Glag
3 ' Coa | L0 D

The corresponding "ervor” sysbem is given by

B B R+ . Ay | B
oo [ Hez _ &ha ! T "I « | A Ba 6.6)
H'Zl H22

Qn | Qe - Cir | P
where | Hegllw < 81 and Qi € Ha, ford, 7 € {1, 2}, Further, HH~ = H~H = A1 and
the following set of equations ie sefisfied [ "all-puss™ cquolions):

FalQp = GuFn = S?.i’
Do, = DyDy = &3
Ayl + Qudy + CpCr =10
APy + PgAly + ByBy =10
Dylly + ByQu =10
DBy~ CgPy =0
Here Py and Qg are the gramions of the realisation of H given in (.6},

Proof. See [Glo&4] where detailed formulae are included; see alo [TLS3] and
[GLD+ 0], O

Remark 6.1.1. The reabisotion of H need not be gssumed minimal.  fowever, we
regudre that AA) C . If R hus MeMillan degree n, it can be shown [Glo86) that &,
given in (8.5) has degree n — v; wn addifion, 2,{Q,) = @A), 1= 1,2 n -1
[Glossf, [GLAS|.
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Remark 6.1.2. Integer parameter | which is used to define the input and output
dimension of Q=22 is the normal rank of the Laplace transform of the matrix formed
by the r Schmidt vectors ofTji~ corresponding to o\. In the notation of Theorem 6.1.1
R~ = (—A"C', —B’') and hence U(s) and V(s) are given as

UGs)y=-C(sl - 4 GKHz2,nxrt E=a(lP x| x2 ... «xr

and

Vis) = -B\sl + AD)~IQ en pxr, 0 = xi x> r

where P and Q are the controllability and observability matrices of R —(4,B,C) and
the Xis are r linearly independent eigenvectors of QP corresponding to the eigenvalue
a\. In particular, if {A, B,C) is balanced, P = Q = —diag"j/,., £2), and thus E = —Er
and 0 = af2Er (where Er denotes the first r-columns of the n X n unit matrix), so

that U(s) = C(sl —A)~IEr GTtf and V(s) = —s\B\sl + A')~1Er G H2m Thus,
rankTiis) U~(s) > 1_'1r>n00[si/~(s)] = rank (CEr)

and

rankjz(s)V(s) > {im [sy(s)] = rank (ETB)

It is shown in [Glo86] that these two inequalities are actually equalities; further, the
normal rank of U(s) and V(s) is equal, since Rank (CEr) = Rank (ETB), as can
be verified by the equality ErC'CEr = EvrBB'Er, which follows easily from the all-pass
equations (6.7). Thus | < min(p, m, r) and | can be easily determined from the balanced

realisation of R.

Remark 6.1.3. In the present work, the gramians of H are not considered to be
balanced. The above set of equations is known as the set of ‘all-pass” equations.

Partitioning conformally with (6.5), these can be written in full (for easy future
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reference) as:

” Pi Ps Q1 Q3 s\I o
i .
Py P2 Qs Qe o s\I
(i) Du D Dn Da s\l 0 B8 O D\
DZ O 4 O o su |2, ol px of
A" o ] A 0 a O Cc
(in) Q1L Qs QU Qs + q _,
0 Qs Q2 Qs Q2 O A e 0 (@
A 0 . . AI O B O BI
(iv) Pi ps N Pi Py N .
o Ag Pi P Pi P2 0 Aq Bgl Pp O px
' l B’ . y
(V) D'n D21 c Cq n B,i Qi Qs
Dn O 0 (g2 O pr Qs Q2
Du ~ B’ C / ]
i) u "2 N Gql  Pi Ps
D21 O O Bl 0 Cq2 P33 P2
6.8
Next, using H2 = Q2 G y"Arn-i)x{Pi) llg 22| < Sl from Theorem 6.1.1),

we construct an si-allpass matrix function H, corresponding to a new system R &
Hod from j°s 1) block. It is shown that H acts as a si-suboptimal
Nehari generator of R, i.e. that the LFT of H with the s”-ball of H” generates the

set
{$£ Tp-0x(m-0 . \\R + \all < SI}

Using this structure, it is possible to construct all level-two super-optimal approxima-
tions of R, which lie inside the set of all optimal approximations, O, of R. By choosing
all QO inside the subset, the corresponding ‘“error” systems R + Q will now minimise
the first as well as the second super-optimal levels of R, i.e. this subset defines the
super-optimal approximations of R with respect to the first two levels. The method
can be repeated using a recursive procedure until all degrees of freedom have been

exhausted.

The construction of H is based on the following proposition, first stated at a transfer
function level. A state-space construction of H follows, proving that it acts as an

Si-suboptimal Nehari generator of the anti-stable projection of its (1,1) block.
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Proposition 6.1.1. Let H2 be defined in theorem 6.1.1 with ||*22|oo < sie® Then,

1. There exists a square transfer matrix H2i E TIWififi )x(m d such that #21#21 =
s\ - H2H22 and H~I E

2. There exists a square transfer matrix Hiz E JZIC~)x'p~I>such that H12H 12 =
s\I - H2H2 and H~} E n n fifi)x{p~1).

3. The system

-H\2H2H2 Hio
H=21 H=

is in [ZC™m 2)x(mtP 2) and is Si-allpass. Further, let —Hi2H22H=21 = R + On
where R E RTCfo am™ On £ RTito- Then ||R~|n < S).

Proof. For parts (1) and (2) see [ZDG96], Corollary 13.22. The proof follows from a
detailed construction involving elements from the theory of algebraic Riccati equations
and spectral factorisation, which is briefly discussed in appendix B. The proof that H
is in £oo and is si-allpass follows from [GIo86] and can be verified directly by showing
that HH~ —s\/. Finally, to show that |[R~||// < si, note that since H. (or Hz1) is
a unit of 7loo and H is sj-allpass, then ||//n|loo < Si- Write Hn —R + On where
R E and On E . Then, using Nehari’s theorem

WR~W\nr = _inf. \I\RF + ATHoo 5: \|R + Qnlloo = lI*nlloo < Si
XtH/o

which completes the proof. i

Remark 6.1.4. Since S\ = &i(R~) the inequality ofpart (3) says that ai(R) < <Ji(R~).
As shown later in this section this can be strengthened to cri(R) < ar+i(R~), where r

is the multiplicity of the largest Hankel singular value of R~.

A detailed state-space construction of H and its properties are given in Theorem 6.1.2

below.
Theorem 6.1.2. Consider

Ho2 = Q2 f A Bp E ft+ M xfe-0O, HQ22II00 < §i

C@o
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defined in Theorem 6.1.1. Then there exist unique stabilising solutions P2 and Q2 to

the following algebraic Riccati equations:
AgP2+ P*q + BeBe+ Sj 2P 2CeCq2P %—o
AqQ2+ Q2Aq+ CpCq + sj 2Q2B@B 2= o

respectively. Define:

(6-9)

R :=Q2P2- sll (6.10)

Then R is non-singular. Further, there exists a Qa € Tito"Ptm 2Ax<ptm 2™ with

realisation
s, //g8 BR
fQu op o sy (6.11)
W21
_C,2 si/ 0
where

Cql — sj 1Bg2
Bq - —si lP2C'e

(6.12)

so that Q = Fi(Qa,Sj1 BTt" 1)x(m 1)) is the set of all s\—suboptimal Nehari extensions

of a system R G 9 defined as:
5
(6.13)
c O
in which
A = ~{Aq+ sf2P2CeCqly = -A'q- sfC 'eCqgP:2
B- -S"(CYq, (6.14)
C=s5?B'¢R
The corresponding ‘error system”
H =Ra+ Qa= (6.15)
is si-allpass and has a realisation
A o B 0
B
H = fRTQn Qe .« © A Bq Be (6.16)
y Oaa Q=2 c G o si/
o Cg si/ o
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which satisfies the following set of all-pass equations:

AtiQn + Qti'djt + Cfi-Gif —0
AjjP-jj + h-fjdjj + B-fjBjj = 0
DjqCjf + BYQ-fj = 0

Dh Blr + C7IP" =0

(6.17)

Ds D = DjjDjj = s\l
PiOIT—QttPr = s\i

in which Qi and PH are the gramians of the realisation of H given in (6.16).

Proof. The proof is based on [Glo84]; see also [JL.93] and [GLD+91] for a more general
setting. Here we outline the sequence of logical arguments. The existence of solutions
of the two Riccati equations (6.9) follows from standard theory of spectral factorisation
and the bounded real-lemma (see Lemma 6.1.1 in the next section) and relies on the
fact that HQe2llw < Si- Details and additional properties of the two solutions are
included in Appendix B. Since the two stabilising solutions are chosen, 4 defined
in equation (6.14) is anti-stable and thus R G Systems Qa and R correspond
to the stable and anti-stable projections of H given in Proposition 6.1.1 which also
shows that H is si-all pass. For a state-space based proof one needs to verify the
all-pass equations given in (6.17) and expanded in (6.18) below; this is straightforward
using the realisations given in Theorem 6.1.1 and the two Riccati equations (6.9). To
show that R is non-singular, first note that P2 and Q2 are the controllability and
observability gramians, respectively, of the realisation of Qa given in equation (6.11),
so that aj(Qa) = Amax(P2Q2) A standard argument (e.g. see the early part of the
proof of Theorem 6.1.4 which does not rely on any state-space arguments) shows that
<1 (Qa) < ar+i(P) < cri(R~) = Si. Thus p(P202) <  and thus R is nonsingular.
Finally, the fact that Qa generates all si-suboptimal Nehari extensions of R follows
from the inertia properties of 4 and 4 and the all pass-nature of H [GIo86]; the proof
reduces to showing that the invariant zeros of the realisations of Q2 (or Q2I) given
in (6.16) lie in the open right-half plane, which follows readily by a simple calculation
using the fact that A(A) C C+ o

Remark 6.1.5. Expanding the compact form of the all-pass equations given in Theorem
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6.1.2 we get

A o Qi r! Qi +! 1 o0 C' o c cq
(i) * - * -
0 R Q2 -R Q@i 0o A cvi 0 Ce
o A i pi I Al o B o B T
(ii) + + =0
0 4 I P2 i P2 0 4 Bgl Bgqz O
o sj C Cq B'" BII . -R'
(iii) * T4 O =0
S\ o cq_ ° Bgl -R Q2

o @ ’B’B'qI+CCqI Pi I

(iv) =0
S 0 1o pr d°o &| 1 P2
Q2R' I p2 -r! s\ o

v

i B 1 0o o s\

(6.18)

where P\ = Q2R and, Q1 —P2R.
In the sequel, a significant result involving the diagonal form of super-optimal
approximation is derived. The proofs of the following theorems combine all results

derived in this chapter up to this point.

Diagonalisation with multiplicity considerations. The following theorem con-

structs a diagonalising transformation of H and solves the level-two SODP.

Theorem 6.1.3. Let H and H be as defined in Theorems 6.1.1 and 6.1.2, respectively.

Then

llir]],, = SI(R) =s2(R) = ... =sfiR) > sl+i(R) = |[irlltf
Further,

Si(R) = S2(R) = ... = SfiR) = PfiQa,sf1 BHg-W™-y)
and

Sl+1(R) = HQa,Ru(Q~a\SI(R))} OMR)
where Qa and Qa are defined in Theorems 6.1.1 and 6.1.2.

Proof. We adapt the proof of [JL93] Theorem 3 to our setting. First note that since
HH~ = H~H = s\I and HH~ = H~H = s\l, it follows that

Hn H2z1 = -H 21H22, Hn = -HnH 22H~u, (6.19)
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H2IH., = s\l - H2H~ = H2IH~ (6.20)

and
H"Hn = s\l - H~H== H~H12 (6.21)
Define
VI := Hi2H ~» and W+ = H%jT£ (6.22)
Then (6.20) implies that
VEVE = Ip-i and ITriTx - Im-i (6-23)

It can be readily verified from a state-space calculation (see next section) that
V. G 7ito>I5/Pand W+ E 'H"'m~l>xm Thus there exist complementary inner and

co-inner factors, respectively, such that
Vo=(v V*)e Hfp*p and IT:=(w Wx)e

are square-inner and square anti-inner, respectively [ZDG96], [GL95]. Thus, using

(6.19) and the definitions (6.22), we obtain

vZ2hi2=hu~h ~h12=h- h :2h 12=h 12

(6.24)
H2IW+ = H2IH2]H~~ = H2IH2IH~~ = H2l
V~Hn W+ =V£{HuH2IHn =
(6.25)
= —Hi2H2H2i —Hii
It follows that
v~Hnw v~HnW+ v~H?2
IT 0
; VEHnw Hn Hn (6.26)
(0]

H2iw Har H2>

Now, since V and IT are all-pass and H is si-allpass, the system on the RHS of
equation (6.26) is si-allpass. But since H is also si-allpass (Theorem 6.1.2), we have
that iTHu W+ = 0, v~H12 = 0, V=Hnw = 0, H2lw = 0, and v~Hnw is si-allpass
and can be written as v~Hnw = Si<)(s), for some / x [/ all-pass matrix-function a(s)

(generically / = 1 and hence a(s) is scalar). Taking linear fractional transformations
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with the set sx1 B7i" “x(m ” and using the results of Theorem 6.1.2 and Theorem

6.1.1 shows that:

S\0L 0 627)
0 TtH,s"
or equivalently,
SIG 0
V~[R + SI(R)} W (6.28)
0 R+S(R,S!

Since a(s) G //lxl(s) and is all-pass (in fact anti-inner as shown in the next section),

it follows that:
R~\\n =si(R) = S2(R) = ... = sji?) > siti(R) = || ~||/r
and

SI(R) =S2(R) = wm=St(R) =HQa,sS B U fl)Am-1))

which is the set of all optimal Nehari extensions of R. Further, since all optimal Nehari
extensions of R are also si-suboptimal extensions of R, i.e. Si(R) C S(R, si), it follows
that

sl+1(R) = SI(R) = \\R~\h

and

(v

=R+ QOn +VL(S1(R)-Q)WZ
(6.29)

by observing that

Sia 0 Sla 0 1"
V~HUW = R+On V w
0 Hn 0 R+ 0>

Using the definitions of of Vi and W= in (6.22) and cancelling R from both sides of
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equation (6.29), we can write:

S2(R) — OQn + Q12Q12 (<5i(-*) — Q)Q=21 Q=
Ouv Q12012 Q11Q2l Q21 Q12012

= Fx
021021 o]
where
n ~ 12012 (V11021 (21 12012
K = 9n~ 012020102 Qx Q120 HQa.0a)
021021 o]
using a series of calculations (see appendix C). This completes the proof. O

“Interlacing” inequalities of super-optimal levels. The following Theorem
establishes bounds on the super-optimal levels. The proof is similar to a parallel
result in [LHG89], but the assumption involving the multiplicity of the largest Hankel

singular value of R~ is removed.

Theorem 6.1.4 (Super-optimal level bounds). The (I + 1)-th super-optimal level is
bounded above by the (r + 1)-th Hankel singular value of R~, i.e.

gi(£~) = Sit1(R) < art1(iT) < Si{R) = {R) = ... = si{R) = cri(R~)
Proof. The proof follows from the following sequence of inequalities:

&i+r(R ) —&i(Qa) i =1,2 .n—r
= inf 1+ Moo

inf  [|i2+ Qa+ e

| Vg o )
> inf ) o /. {R+ Qa+ ")

> inf |[?7a+ Qa+ "

> inf [|IQa + “l|oo

= %i(Qa)
where the set (*- 1) is already defined in chapter 4. The first equality follows from
Theorem 6.1.1. The second equality is a statement of the AAK Theorem [GIo86], while
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the third equality holds since R £ 7I* and can be absorbed in 'ir. The first inequality
follows from the fact that J+ and W= are contractive, while the second inequality
follows from Theorem 6.1.3 and the fact that Vff and W+ are both in 7 Finally,
the third inequality follows from the fact that R £ while the last equality is a
restatement of the AAK Theorem.

Setting i = 1 in the above inequality shows that ar+i(R~) > a1(Qa). Now, using
(6.18), it follows that

0?fir) =HPM =\{q2+ p2r)=1i(02P2) ="(0a)

and so R~ and Qa have identical Hankel singular values. In particular, si+i(R) =

ai(R-) < arti(R~) using the result of Theorem 6.1.3. O

Remark 6.1.6. The result of Theorem 6.1.4 may be propagated to establish upper

bounds for the subsequent super-optimal levels sicr), i > [+ 1.

Remark 6.1.7. The early part of the proof (which does not rely on any state-space
based arguments) may be used to show that <)\Qn) < ar+i(R~) < ai(R~) = sfrom

which it follows immediately that R defined in Theorem 6.1.2 is non-singular.

6.1.2 State-space analysis

In this section we develop a state-space analysis of the solution to the super-optimal
distance problem. At this point we shall use some background material which is
presented in appendix B and it is related to algebraic Riccati equations and spectral
factorisations. The main results are derived from the “Bounded-real lemma” presented

in appendix B.

Lemma 6.1.1. Let G £ IZIlloo with G(s) = C(sl —A)~IB and assume that (4, B)
and (C,A) are stabilisable and detectable, respectively. Then, the following conditions
are equivalent:

A Halloo < 7

A4 7-2BB' o .
2. The Hamiltonian H = has no pure imaginary eigenvalues
-C'C A’

3. H £ dom(Ric)
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Proof. 145 2 See [ZDG96], lemma 4.7.

2 <5 3. See [ZDGY6], Theorem 13.6.

As an immediate consequence of the above Lemma we get the following result:

Proposition 6.1.2. The algebraic Riccati equations (6.9) (Theorem 6.1.2) have

(unique) positive-semidefinite stabilising solutions P2 and Q2 respectively.

Proof. Since A qis asymptotically stable, the conditions of stabilisability and detectabil-

ity of Lemma 6.1.1 are trivially satisfied. Further, the fact that HQe2llm < Si (see

Theorem 6.1.1) shows that the two Hamiltonian associated with equations (6.9) are

free of imaginary axis eigenvalues and that (unique) stabilising solutions P2 and Q=2 to

these two equations exist. The fact that P2 > 0 and Q2> 0 follows from [ZDG96]. ©O

Our next result shows that the two Riccati equations (6.9) are intimately related.

Proposition 6.1.3. Let P2 be the stabilising solution of Riel,
AqP2+ P24q+ s12P2Ce(Cq2P2+ BB —0
so that X(Aq+ sf2P2CeCq2) C C_ and its associated Hamiltonian

Aq s?C'eCe
Bg2B e -A.

H\ =

Let also Q2 be the stabilising solution of Ric2:
AqQ2+ Q24q+ sy202B@B'eQ2+ CeeCe —0
so that X(Aq+ Si2BeBeQ2) C C_ and its associated Hamiltonian

Aq S| ‘BeB g
-C'eCe -4’

H2=

(6.30)

(6.31)

Then Hi and H2 have identical spectra. In particular there exists a similarity

transformation R so that
(Ag+ 2P2C@Cq2) —R (Aq+ Sj2BEB'®Q2)(R )

where R is defined (6.10).
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Proof. Take —_
0 Su 0/ & o

af © /0 _o &
Note that 7 = T~/. Then by inspection, - TH2T~1 = Hi and hence the first
claim is true (since we know from Appendix B that the spectrum of a Hamiltonian

is symmetrical with respect to jw-axis). Define

I of 1 oT
TP := & Tpl- I
-Pi | pi 1

and observe that

I 0} K  HeCpCe I °
Iv-«?"_}\ _ _ = é
‘_L - 2 <— B@B? AQ =g i
a;+sfxggp? ST @ i
i
0 —fAq + 2P2CeCql)
Similarly, define
I 0 I 0
T ':= = =
I -Q2 1 > el Q2 1
so that
ool Ag  SlBgBg I 0
—Q2 1 CeCe -A' Q2 1
Aqf §1 -BeB@g= s12BeB e b
O '+ sf202B@B)
Thus,
Hi = -TH2T -
Hi = TpHiTpl

Hi - TqlloTq 1™~ Hi = Tq IHZTq

Using the three above equations
Hi = -TTq X¥{2TqT~x =Hi = -TpTTq 1H2TQT~1T f1
Further,

HOTQT-Tp1)-1- —71,774 1H2 => HiT,TTq 1= -TPTT"lH2
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and

(TpTTq )-'~ = —H2TQT~ITp1»H TpTTq ) = ~(Tp TTq DH2 (6.33)
with
I 0 0 S I 0 i Q2 I
IpTTq 1= =S
P2/ sj O Q= i -r' -p2
and
I 0 0 sri1/ 1 P2 1
TqgT~1T-1=
—Q02 1 sj O P2 —R 02

Writing equation (6.33) in full:

A'q+ s(2CeCqP 2 s"C'C e Oz
-(Ag+ siz2P2C"2Cq2) -R -Pi

_‘5® - Ag+ Sj BeBgQ2 sl BB
r' p2 0 —(Aq+ 5] Q2B@BQ)

From the (2,1) partition of the above equation, we have (Aq+ sf2P2C@pCq)R =
R (Ag+ s12B@eB@Q2). So,

(Aq + sx2P2CeCq2) = R'(Aq + Si2BeBeQ2)(R,)~1
which proves the second claim. O

Remark 6.1.8. Note that this proposition implies that the “ZE’ matrices of the state

space realisations ofV+ and W= , defined in (6.22), have the same spectrum.
Proposition 6.1.4. Define

Vx w=Hi2H72 and = HN\H~
Then, Vx and Wf) have, the following realisations:

Aq Sj Bq2Cq! «1 IB(_P
gl —sj 1IDXCq sflDn

7+ =
and

—s5i1Bq\C Bgl - sf1Bql
s1lCq sj 1D2
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with corresponding controllability and observability gramians:
Yv=~(R')-IPo, Xv=Q2-Q 2
Yw=P2-P 2, Xw=-P1

In particular, the following matrix inequalities hold: P2 > P2 > 0 and Q2> Q2> 0.

Proof. See appendix C. o

Complementary inner factorisation. The matrix functions /+ and which
were constructed in proposition 6.1.4 are parts of inner matrix functions. Theorem

6.1.3 relies on the construction of two inner complements v and w~ so that (v V)

w : o
and are square inner. To find realisations for v and w, we can apply Lemma

VAir/
13.31 from [ZDG96] which uses the gramians of the realisations of V+ and Wfi. This

is outlined next, together with concrete realisations of v and w~.

Corollary 6.1.1. Let Vj_,Wfi be as defined in proposition 6.1.4- Then there exists
a complementary inner factor of v and a complementary co-inner factor of w,

respectively, such that
rw- (» ©=1"d (>)

are square inner. Further, V € I[ZHfa4pp and W G7 Concrete realisations
of v~ and w are given as:
5 —Aq—s1202B@Be Cql+ Sj2028@D|[2
_(Dt2)'Cql(Q2-Q 2t (DUY

5 "' -A'q-5s?C'CqeP2 (P2- P2)'BqlD#f
—Bgl —S12D2iCqP2

respectively.

Proof. This follows immediately from Lemma 13.31 in [ZDG96]. o
Observation 6.1.1. Along with Remark (4-3.3), the pair (v, w) as constructed in
corollary 6.1.1 forms a scaled Schmidt pair corresponding to the largest Hankel singular

value of R~. Observe thatv~,w £ TZHoo (i.e. they have a ‘D’ matrix), where Schmidt
vectors by definition belong to 7ZHz2 and VOTJ, respectively (i.e. strictly proper).
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Inertia properties of all-pass function ct(s). In the final part of this section we
develop a state space realisation of the allpass system o(s) defined in the proof of
Theorem 6.1.3 and show that it is anti-inner. The proof is based on a lengthy state
space calculation which reveals numerous pole-zero cancellations. We first need the

following two results.

Proposition 6.1.5. Let O, P be the observability and the controllability gramians,
respectively, of a system having state space realisation G =(4, B,C).  Then, (i)

Af(Q) C Ar(C) and (ii) Ai(P) QM(B).
Proof, (i) Let £foe Ker(Q),£0” 0. Then, Qfa= 0. Consider the Lyapunov equation:
A'Q+Q04+C'C=0=C(A'Q+ QA4+ C'C)to=0=»CH=0
and hence 4Af(Q) C Af(C). A similar argument proves part (ii). mi
Proposition 6.1.6. In previously defined notation:
@) [T- (Q2- Q2)f(Q2- Q2)\ CqlDf2 =0, and
(i) [I- (P2- P2)t(P2- P2)] BqlDfi = 0.

Proof, (i) First note that from Proposition 6.1.4 (Q2—Q2) is the observability gramian
of (Aq + sf2BeB@Q2,Cq + s(2D12B@Q2). It follows, using Proposition 6.1.5 that
AffQ2 - Q2 C Af[Cqg + sf2DI2B@Q2\, or equivalently, 1I/Cql + sf202B@D12\ C
K/Q2- Q2. Thus,

n[(C'ql + s fO 2B@D[2)D (3] = n[C'qIDfi) C n[C'ql + s (202B@D\J]

and hence 74CqlD-2\ C IZ[Q2 - Q2] The result now follows on noting that

I —(Q2—02Y(Q2~ Q2)] projects orthogonally onto AffQ2—Qfi. Part (ii) follows
dually on noting that P2—~P2 is the controllability gramian of the realisation of Wfi

given in Proposition 6.1.4. O

Proposition 6.1.7. The s\-allpass system s\a(s) E defined in the proof of

Theorem 6.1.3 can be written as a parallel system interconnection Sja(s) = cci(s) +

az(s),

A 0 Bai
sidt(s) A 0 -a;-s-2cqkqp? Baz
_cai ) (Dti'DnDh
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in which
Ba\| BD2+Pa(P: P:"BgiD"i
Ba2 = (P2- P2)tP9iD2I
Cai :== -(P"2)'CN(Q2- Q)tQ' + (Zz"'C
Ca, :=-(AR)C, 1(Q2-g2t"

/n particular, a E P B ffixi and deg(a) < 2n —r.

Proof, see Appendix C. O

6.2 Examples

Throughout this section some examples of level-two super-optimal approximations
are considered. Most of the examples considered here are pathological cases with
interesting properties. The first example is carefully constructed to illustrate the non-

generic case of remark 6.1.2 and example 4.3.1.

Example 6.2.1. Consider the following anti-stable system1 with realisation:

1 1 17230 vres @vioys

Au Ai2 Bi 3 4 157990 @uioys  @vioys

A2 a2 v2 = P W 1 1

Ci C 0 VIU/5  (2VIO)/5 1 0 0
_(2Vi0)/5s  (4-10)/5 1 0 0

where B —C'. Then, the realisation is balanced with gramians equal to

1 0 0
E= 010
0 0 07

and so the multiplicity on the largest Hankel singular value is equal to r —2. On the
other hand, | = rank(Bi) = rankiCf) = 1 <r. In addition, we construct the generator
of all si-suboptimal Nehari extensions,

1 0.045176 s+ 0.5112
a;,S) —
Qafs) s +0.6443 <4+ 05112 039216

INote that R(s) is essentially G(-s) of example 4.3.1, in chapter 4 (i.e. inverse inertia problem).
Hence, the Schmidt vectors found in example 4-3-1 correspond here to the largest singular value of

r R(-s)-
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and find the appropriate functions

034698
R() = oy @ 03888

such that |J?adfl(s) + Qa(s)|loo < si and |R(S) + Q|loo = s2. The super-optimal

approximation is given by

1 /047153(s + 0.5165) 0.26424(s + 0.6258)
s+ 0512y 26424(s + 0.6258)  0.86788(s + 0.933)

Qsopt

so that
(s+0.5112)(s+6.155)
V~ESOptW _ VN(R + QSWW _ ! (s—0.5112) (s—6.155)

0.33941(s+0.5112)
$—0.5112

The resulting super-optimal singular values are plotted in figure 6.1.

Super-optimal approximation: R +

Frequency (radisec)

Figure 6.1: Super-optimisation in terms of the first two distinct super-optimal levels -
Example 6.2.1.

Here,
{s\(R + QOsopt), s2(R + QOsopt)} — {1; 0.3394}

The above example shows that the proposed method works in the pathological case
of » > [ A misleading argument based on a fallacy would be that since r = 2, we
minimise the first three (r + 1) super-optimal levels. However, in this example we
look at the non-generic case where /(= 1) < r, which implies that the / + [/ (=2) first
super-optimal levels are effectively minimised. Next, we consider another example, this

time with a simple largest Hankel singular value of R(s).
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Example 6.2.2 (Pseudo-Diagonal). Suppose, we have the following anti-stable

system in the pseudo-diagonal form:

Iz 4y2

R ( ) — )/2 |Z; A 0 01 S)Lz Szl‘
8- 1 L 10 2 4y2
s—2 st

with realisation
1 0 0 2

0 2 10

Ve 1/(V2) © O
Ve ~l/(v/i2) 0 0

172(s) 4

This realisation is balanced with gramians:

2 0
0 025

Clearly, = 2 and s2= 0.25(= 1/4). Further,

1 /0.015873 2(s + 2)
Q) - 542063 o542 10159

with Q22(s) = (Z1ogg)* Following the main steps of the procedure presented in this
chapter, we obtain R(s) = ~ and Q = 0.25. Then, in this case,

Ospt # v\ v2 1l 2
-f A 8 2
so that
B A,
5- 5-1
dSopt " Gsopt — (542 SH)I
82((5- 2)) T 13/
and
| & o
P Goljw = 1649
U 4 (5-2),

The super-optimal singular values are plotted in figure 6.2.

In this case,
{si(R + QOsopt), «2(R + Qsopt)} = {2,0.25}

as expected.
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Super-optimal approximation: R + Q

Frequency (rad/sec)

Figure 6.2: Super-optimisation in terms of the first two distinct super-optimal levels -
Example 6.2.2.

Remark 6.2.1. Since the left and right matrices multiplying are

orthogonal, the super-optimal approximation can be obtained directly by solving two

independent scalar Nehari extension problems, i.e.

in + 9i|loo — 2
g%%’\éo otll

with ¢t = 2 so thatel = "~ +2=2 " ; and

. 1 1
min s - 2+Q%—4

with g pt —\ so that e2= N2+ | = |fr§. The super-optimal solution must then have
the form
11 ) .
D 20 01 g  y/i
Gort L .10 AR
L2 &£2J oL 8 —

which agrees with the solution obtained by the general algorithm presented above.

The following example is a diagonal system having same super-optimal levels with the
previous, pseudo-diagonal system. It is interesting though to compare the optimal and

super-optimal Nehari extensions.
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Example 6.2.3 (Diagonal). Here consider the diagonal system

1 0 2 0
0 s 0 2 0 1

R(s) = 1
5.9 2.0 0 0

The realisation again, as in the above example, is balanced with corresponding gramians:

2 0

0 0.25
Clearly, Sj = 2 and s2= 0.25(= 1/4). In this case,

1 /0.015873 2(5 + 2)

Oa -
§+2.063 1 25+ 2)  1.0159

and again Q2(s) = 72(s) = é2 an™ Q = 0-25. However,

QOsopt

so that
(6-D

&3/

( 205+

Issopi R QOsopt

and 0
m+ QOsopt): S2(i? + Qsopy)} = 12, 0.25}
which are equal to Hankel norms of the diagonal elements and also coincide with the

super-optimal singular values of the pseudo-diagonal example.

Next, an anti-stable (strictly proper) system, randomly generated in MATLAB, is

considered:

Example 6.2.4. Suppose,

9.2328 3.3876 0.1764 -1.8379
7.4865 4.5641 0.0894 -0.9135

0.0102 0.5162 0 0
1.8339  0.7364 0 0
0.2137 -0.1840 0 0
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with
0.1846 0

0 0.0923
Here si = 0.1846 and s2—2.1887 x 10 4. In addition,

Q%&g¥= ( ijo36 -0.0006093
88 5+2.88

and
0.0011036
R(S) s—2.88
-0.0006093
S
so that
/ 0.0011036 \ 0.18461 A
s—2.88 0 0 ( 0 5+2.88 0
» -0.0006093 +
Hayg s Qa 0006093 () () 0 0 0.18461
0.0011036
v 0 00, 0.18461 coomoss
Then, Q = 0.1032. Further,
Super-optimal approximation: R +
210 Vo VY e, . Tt
=20 -
30 -
40 «
-60 -
=70 -
80 —_— " 4
H) 10°1 10 10 10 10 10

Frequency (radisec)

Figure 6.3: Super-optimisation in terms of the first two distinct super-optimal levels -
Example 6.2.4-

1 0.00029007(s - 25.2) —6.00099203(s - 83.12)
0.017534(s + 3.878) -0.18252(s + 3.884)
A 0.0019413(s + 6.167) -0.021276(s + 6.021)

@sort ¢ 1 788
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So

/ 0.00029007(s+111)(s+13.85)(s+1.345) -0.00099203(s+383.4)(a+12.44)(a+1.348) \

(s—12.45)(s+2.88)(s—1.348) (s—12.45)(s+2.88)(a—1.348)
0.017534(s+12.48)(s+1.36)(s—1.552) —0.18252(a+12.45) (a+1.348) (s—1.558)
(s—12.45) (s+2.88)(s—1.348) (a—12.45)(a+2.88)(a—1.348)
0.0019413(s—10.96)(s+12.93)(s+1.349) —0.021276(s—11.01)(a+12.44)(a+1.348)

\ (s—12.45) (s-f2.88) (s—1.348) (s—12.45)(a+2.88)(a—1.348) /

and
0.00019161(a+2.891)(a+2.868)

VNESWZ‘W (a—2.88)(s+2.88)

—0.00010579(a+2.895)(a+2.864)
(a—2.88)(a+2.88)

6.3 Summary - Connection with robust control

Super-optimisation is essentially a problem of hierarchical optimisation, which involves
a nested optimisation problem of the same form, but progressively reduced input-
output (and state) dimension. Here we consider approximations of proper (real)
rational matrix functions and thus the generic number of nested minimisation problems
is equal to min(p, m), after which the available degrees of freedom are exhausted.
Throughout the chapter we considered approximations of the first two distinct super-
optimal levels which is a generic step for solving the full super-optimisation problem via
a recursive procedure ([JL93]). Note that similar to Nehari approximations in chapter
4, minimisation of each super-optimal level requires the solution of one optimal and one
suboptimal Nehari approximation problem, progressively of reduced dimensions. The
method presented here does not make any use of Schmidt vectors and is totally based
on state-space methods, involving the solution of Riccati inequalities, which make the
proposed algorithm computationally robust compared to other existing methods. Of
course, since closed-form state-space realisations have been derived, it is preferable to
dispense with the intermediate steps completely and assemble directly the updated

super-optimal solution at each step of the algorithm.

Super-optimal controllers. Super-optimisation has many potential applications in
robust control, however, in this thesis we focus on robust stabilisation. This problem
has already been discussed in chapter 5, and its optimal solution was derived in terms
of the smallest Hankel singular value of the anti-stable part of the nominal plant. In
particular, in the optimal version of the problem, we seek to minimise the infinity
norm of an appropriate closed-loop transfer-matrix or equivalently to maximise the

size of the uncertainty set, i.e. the radius of an open 7-foo-ball in which all permissible
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perturbations lie. However, in the matrix case, the associated Nehari problem can
have many optimal solutions and, in general, the optimal robust stability radius is
tight only for the “weakest perturbation direction”, i.e. the direction that stability is
most easily lost, when an optimal (maximally robust) controller is chosen. As shown in
the following chapter, in the case of additive perturbations this direction is described by
the Schmidt vectors of a Hankel operator associated with the problem, corresponding
to the smallest Hankel singular value of the nominal plant (see chapter 5).

In a connection to super-optimisation, by minimising the two largest closed-loop
singular values in a lexicographic fashion, it is possible to extend the robust stability
further in certain directions, and thus guarantee the stabilisation of a wider uncertainty

set. This topic will be analysed in full in the next chapter.
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Chapter 7

Robust Stabilisation Under
Additive Perturbations

The ideas developed throughout this chapter are based on those in [GHIOO] but here,
they are extended in various directions. The problem of extending the maximal robust
stability is reduced to a frequency-by-frequency type of argument and thus, it is
shown that the notions of rank-reducing and destabilising perturbations for constant
matrices and dynamical systems, respectively, are intimately related. A key result for
establishing the connection between the two notions is the distance to singularity of
a complex matrix subject to structured constraints, which is derived in terms of the
first two (distinct) singular values of the associated matrix. Note that the first two
(distinct) singular values of a level-two super-optimal matrix function, at any given
frequency we E 17 are the first two distinct super-optimal levels, (si,s/+i). Further,
stability of the feedback system is lost, if at a given frequency the Nyquist criterion is
violated. In the matrix case, by imposing directionality constraints along the direction
defined by the largest singular value, a finer measure of “distance to singularity” can
be defined which subsequently can be used in the dynamical system case to extend
the robust stability radius for additive perturbations (using the available degrees of
freedom which are present in the multivariable case). The optimum solution is shown
to be associated with the solution of a super-optimal Nehari extension problem; thus,
the results of the last two chapters form the basis for the further developments reported

here.
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7.1 Introduction

At this point, for reasons of clarity, we outline the formal notation used; this is based

on results of the previous two chapters.

Assumption 7.1.1. Consider a nominal plant G G TZ7i"pxrn, with balanced
realisation G =(A, B, C) of McMillan degree n and with a smallest (nonzero) Hankel
singular value of multiplicity ». Further, A G TZCoo denote the uncertainty around
the nominal plant, which is assumed to be unstructured; ie. there is no a priori
information for A, except for a frequency bound on its norm, which we denote1 as
|Alloo < e. Then, suppose that the uncertainty enters into the model of G additively
and that all permissible perturbations satisty the technical assumption made in chapter
5

v(G) = tj(G+ A) (7.1)

where /() denotes the number of poles in the right half of the complex plane, counted
in a McMillan degree sense. Note that in the next chapter, where we consider other

types of perturbation, assumption 7.1 is removed. m

Under these assumptions recall that the transfer functions of all stable control-
sensitivity functions described by figure 5.5 (problem 2.4.1, proposition 5.1.1) belong
to the set

r = {K(I —GK)~l :K G/C}

where JCdenotes the set of all internally stabilising controllers of G. Further, as shown
earlier, there exists a subset of controllers, /Ci(G), which minimises the Tioo-norm of

T GT, ie. for any K GK|,
Ti= {rGT:||T||O=rrl}CT (7.2)

where 1rq is the maximum robust stability radius. Equation (7.2) describes the
solution set of the maximally robust stabilisation problem (MRSP), under additive
perturbations. Note that explicit state-space formulaec were derived in chapter 5 for
all optimal closed-loop approximations (TJ) and the family of all maximally robust
controllers (JCi). The problem of characterising the set 71 in (7.2) involves the following

ht is important to notice that the size (i.e. norm) of A is bounded by a strict inequality.
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rii;= inf r|joo= E}f

where R G 77.77" is defined in (5.10) and (5.13). A key property of 77 is its balanced
realisation, which can be obtained directly from a balanced realisation of G. In chapter
5 it was proved that each Hankel singular value of R is equal to the inverse of the

corresponding Hankel singular value of plant G (multiplicities included). Hence,
rfi1= inf IR+ Qloo = 07(1«) = (a,,(rG))_1

Essentially, this is a level-1 super-optimisation problem (in terms of the definition of
chapter 6) and hence the set of all optimal control-sensitivity functions admits the

following diagonal decomposition:

0
Ti =Y{a) X(s) (7.3)
(R+ Q)(s)1
where R G 7TH"p~I'x’'m~l\ X and Y are appropriate square inner matrices to be
defined in the sequel, a(s) G 77¢,ixi (where / < r is defined in chapter 6) is anti-inner

and

O0={0en00:\\R + Qlloo< r"y

where Q is the set of all rj*-suboptimal approximations of R. Note that in terms of
the notation in chapter 6, sx(R) := rfl and S := Q.

Along similar lines with the definitions of Chapter 6, we define the set of ;-th
super-optimal control-sensitivity transfer functions by % if any 7 G % minimises
lexicographically the sequence {si(7), s2{T),..., Sj(T)}. Clearly, % C C o C
Tj CT. In the same way, the corresponding to % set of controllers is denoted by /Q.
However, if multiplicity / > 1 occurs in, say, the first super-optimal level, then we say
that K2 is the corresponding set of controllers corresponding to 7i+X (i.e. we do not

count multiplicities on the indexing of controller sets).

Lemma 7.1.1 (Level-2 Superoptimisation). The set can be parameterised as
Asxa(s) 0] 0] A
Tl+1 =Y1(s) 0  sitab(s) 0 N(s)
vV O 0] R(s) + <5+

where XX Yx are square inner, a(s),b(s) are anti-inner functions and SitX —

{S GHoc : ||R(s) + 5|joo < st+1}, for some R G 77 .
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Proof. In the light of (5.9) and (5.10), the set of all optimal control sensitivity matrix
functions 7\ takes the following equivalent forms:
T = {[U+ MFl{Qa,s?BHAQ] M} (= Ti{Tgen,
= {UM + MFIl{Qa stiBH@Q)M}
=M {M~U + FtiQa, s"BHoc)} M
=M {R(s) + Qopl(s)} M

and hence Qg is chosen to be the set of all optimal Nehari extensions, in the sense
that for any Og¢ G Qg we have \\R(s) + Qopi(s)|loo = Si- Now, using the notation of

chapter 6 (see Theorem 6.1.1) % can be written as

Ti = M{R + Qopt} M

S\Ot{s)
= MV W~M
0 R(s) +Jrn(Qas11B7i00)]
sia(s) 0 sia(s) 0
= MV W~M =:Y(s) X(s)
0 R(s) +(Si 0 f2s) TS

for some R(s) such that ||*(s) + <Sl||® < Si. Now, 741 C T\, and it is formed whenever
we restrict ourselves to a subset of S7, i.e. whenever the set of all S+i-optimal Nehari
extensions {Q : ||/?7(s) + Qlloo = s;+1} is considered in the place of <S (recall si+ < Si).

Then for all super-optimal extensions QOsgx (with respect to the first two levels),

%+ — M {R + QGsopt M

( sia(s) 0
_ W~M
MY (s o
\ y 0 R(s)+<5H J
( Sids) o 0 \
I o h O
= o  sitib(s) 0] W~M
0 0
0 0 R(s) + Si+i
Asia(s) 0
Yx{8) 0] 0] Xi(*)
V © o Rfs) +'SHj

for some R(s) such that |\R(s) + <SHi|loo < sj+1. This result is based on a recursive

application of the methodology described in chapter 6 for the first two (distinct) super-
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optimal levels. O

Remark 7.1.1. An important observation that can be made between the form (7.3) and
that of lemma 7.1.1 is that the transfer matrices X(s) and Xi(s) (and respectively Y(s)
and Y"s)) share the same first | columns (respectively, rows). This follows immediately
from the proof of Lemma 7.1.1 above (%+\ C T\). In addition these columns are
essentially the maximising vectors ofTn (see corollary 6.1.1), scaled by the inner matrix

Sfunctions M and M, respectively.

Problem Definition. The set of all permissible perturbations corresponding to

optimal controllers is given by

Vri(G) = {Ae T7£x : ||All«, <n, WG) =r{G+ A)}. (7.4)
Further, we define the boundary of this set,

dVri(G) = {Ae nc” 1Al =n, vG)=WVG+ A)}. (7.5)

Here 7| is the robust stability radius, ie. rx := d(TM~t/) = £/<3) (recall R(s) :=
M~U(s) - see chapter 5). This corresponds to the maximisation of the size of the
non-destabilising uncertainty set (measured as a norm), i.e. the radius of an open
Hoo-ball in which all permissible non-destabilising perturbations lie. However, in
the multivariable case, this maximisation of robustness is tight only for the “weakest
perturbation direction”, i.e. the direction that stability is most easily lost.

In a connection to super-optimisation, it is possible to impose a tighter optimisation
criterion with the objective of minimising the singular values of the control-sensitivity

function in a lexicographic fashion. Hence, we pose the following problem:

Problem 7.1.1. Given a nominal plant and an uncertainty set as defined in
assumption 7.1.1, how much (if possible) can the maximal robust stability be extended
along different directions by making a selection among the continuum of all optimal
(maximally robust) controllers? In what sense, if any, can the super-optimal controller
considered to be the ‘best”? What is the description of the extended uncertainty set,

guaranteed to be stabilised by this controller? O

A motivating example showing that there exist permissible non-destabilising perturba-
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tions, lying outside the 71-ball, for certain choices of optimal controllers follows. The

example is special a case of that in [Nym95], for the case where uncertainty enters to

the model in terms of an additive perturbation.

Example 7.1.1 (Extended set of permissible perturbations). Assume G G

with super-optimal decomposition of the corresponding closed-loop transfer

function, T G Tk:

( §idi(s) O 0 O \
UTV - 0 sitiaz(s) 0 0
0 0 o}

y O 0 o  SfOfo(s)

where k = min (p,m,n) and aj(s) are all-pass functions. Set e = sx1 such that the

plant is e-robustly stabilisable by K GKk, due to Theorem 5.1.1. Then let

o000 0
s

0 Si+1 0 0

0 0 0

o 0 0

Further, define the following class of perturbations:
Et= T Uvsf U
with
Ve ={4 :AGnnooy HAN <e}
Vik ={4 :AGVUno, | | AH”" <g¢g

Vid = (A :AGUCx (G = NG+ A), fIA"1V"1AIU < e}
where 1/(.) denotes the number of closed RHP poles of a transfer function, counted in
the McMillan degree sense. Note that the setT>st remains as in definition 5.1.1, chapter

5. On the other hand, observe that A-1 is contractive so that
[HA-A-"AIU < ||A]l, < e

Then, we say that the set V VU is weaker than T (see definition 5.1.1), which implies
that

v(CVI
and the super-optimal controller guarantees stabilisation of all A G Ve. O
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In general, Nyman gives a rather implicit description of the extended set of permissible
perturbations. In contrast, this work aims to characterise the maximum possible
extended set, in terms of directionality properties and define the maximum robust
stability radius along different directions in a form which is more useful for controller
design. At first, in the following paragraph, it is shown that there exist perturbations
which are destabilising for every optimal closed-loop transfer function, T, and have
norm equal to e := (si(T))-1, i.e. destabilising perturbations which lie on the boundary
of the optimal (maximum-radius) open ball of perturbations which are guaranteed to
be stabilised by every optimal-controller. Such (uniformly) destabilising perturbations
can be chosen to be real-rational. Thereafter, we prove that perturbations of this type
share a common characteristic - they all have the same worst case “projection” in
a specific direction, specified by the maximising vectors (scaled Schmidt pair) of the

Hankel operator related to the problem.

7.2 Uniformly Destabilising Perturbations

In the introductory part of this chapter the existence of permissible perturbations
outside ball of radius rq was established (example 7.1.1). On the other hand, we have
not yet identified minimum norm perturbations which destabilise an optimal closed-
loop transfer function. Given any specific optimal controller K G fC\, it is clear from
the optimal solution of the MRSP that at least one Aj GdVri(G) can be chosen such
that (G+ A1,Ki) £ S (see algorithm 5.1.1). The next lemma establishes a stronger
result, i.e. the existence of Ai GdVri(G) for which (G+Aj, Kfi) 0 S for every K e IG.

This generalises a corresponding lemma of [GHIOO]:

Lemma 7.2.1 (Existence). /GHJOO] There exist A GdVri(G) such that (G+A, K) "
S for every K GJC\. Furthermore, A can be chosen to be stable real-rational matrix

functions.

Proof. The proof'is adapted from [GHIOO]. It is constructive and it is based on the fact
that every optimal closed-loop system (optimal control sensitivity transfer function)
can be written in the form (7.3). Hence define, at any frequency wjo G7Z the complex
matrix:

na(juj0) 1 o

Ao= X~(juj0) Y~(Gu0) GCnxp
(0} (0}
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Now, following the technique of Algorithm 5.1.1 we can use an “interpolation” argument
to construct A(s) G IZTtoo of norm ||A(s)|| = rf1 such that A @u>0) = Ao (details are
omitted). Further, for every I< GTG(<T G T) we can write

det(I - A(wo)T(ju0) = det(I - AoT(ju>0)) = 0

and hence

det{l - (G+ AgK)(ju}0) =o=>» H(G+ AOK) £8§
O

All perturbations (not necessarily real-rational) as constructed in lemma 7.2.1 will be

called uniformly destabilising. Formally, we give the following definition:

Definition 7.2.1 (Uniformly destabilizing perturbations). A4ny A G dVri(G)
which destabilizes (G, K) for every K G K\ is called a uniformly destabilizing

perturbation. ]

Remark 7.2.1. It is crucial to note that any perturbation within this class is
destabilising for every optimal control-sensitivity transfer function T G T\. Moreover,
all frequencies are ‘equally critical’] in the sense that the generalised Nyquist theorem
can be made to fail at an arbitrary frequency u0, i.e. det(I —AT(ju>(0)) = o for every
T GTi. =

Now define x7(s) and y(s), to be the first /-rows and /-columns of X(s) and U(s),
respectively, as defined in equation (7.3). Then, in the following lemma we prove
that every (boundary) uniformly destabilising perturbation must have a projection of

magnitude rq along a certain “worst” direction, defined by yja>) and xT(juj), u G 7/

Lemma 7.2.2 (Directionality). /GHIOO] Let A G &Dri(G) be a (uniformly)
destabilising perturbation of G for every K G /Ci. Then, there exists an ujo G 77,
such that

\WT (o) A (juoy(juiO\ = n (7.6)

Proof. Suppose A G dVri(G) is a uniformly destabilising perturbation, ie. that
(Go+ A,K) S for every K G/Cx Let 3G [0,1] and consider the family of Nyquist
plots obtained by mapping the standard contour o, via de:s1 —(G + (34)K] for
a fixed K G K\ Since (Go+ /?A, K) G S for every 3 G [0,1) the contours  do not
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cross the origin and encircle it 7j(G) + rj(K) times in the counter-clockwise direction.
Since (Go+ A, K) * S, by continuity of deformation 7p we must have that 0 6 G, i.e.
that there exists uia G 7Z such that

det[I- (G+ A)K](juO) =0
or equivalently,
det[/l -G K - AK](ju0) = 04» det/lI- AK(I - G Kyl]{juj)) =0
since det/I —GK](jioo) 7*0. Thus,
det[I —AT] (jool)) —0

where 7 = K (I —GK)~I.

Furthermore, all T ¢ 71 admit parametrisation as in equation (7.3) where HR+ Qlloo <
rfl, and Q € <S. Define <EXs) := (R + Q)(s). Then it is always possible to choose a
T 6 T\ which admits the parametrisation of equation (7.3) and satisfies2 ||$|joo < rfL
This is fixed by the choice of Q 6 Recall now (see chapter 5) that this Q

parameterise the controller (Youla parametrisation)
K=U+MQ)(V+NQ)-1

For the choice of QO G<S we made above, it is clear that K € K\ So if A destabilises
G for every K G IQ, it is also destabilising for the controller above which depends
on the value of O, determined by the approximation UHoo < r| /- Since the Nyquist
deformation argument presented earlier applies to every K € /Ci, it also applies to the
specific controller in K1 chosen above, i.e. the one corresponding to |<&f < sj I Thus,

there exists a frequency we G/Z such that

det < Xjwodiuoviyo 900 © - 0 (1.7)

0 $C7w0)

due to equation (7.3). Next, define

- -

An Ar T. &
A= ) = A AGjul) yi(juoa(ui() Y"jujo)
Aa Az _XLU»o)\

2In general for such <€ ||$]loo < r7h
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T i | _

Note that || f{junj and |y,|[j¢..-ﬂ}m{ju_5j ?’_[_g'.;._ll,]| aré partitions of the evaluation
X {5un) ' r

of X (s) and ¥'(3) [the later invalves an extra term e(jw,}) ot a given frequency w,, 1.2

they are complex malriees. Then, (7.7) is weitten

-:leu:J h—r Ay - Ay juw,)
I_ b ey Ay Ao — D@ () '

Agsume now for contradiclion thal f; — v & is non-gingular. Then, & Schur-type

argument, mives,
det { I — v Au | det { (Fn-s — By (5,))

-~ . o -} _
B (5= A) A} =0

Further,
, . o .
det {fm_.; - (ﬂlﬂ + r,‘lﬂ'iz] (fl - rf’ﬂnu} ﬂuﬂ) ';":_'i'l-l-'c!]'} =0
—det { Iy = Fo (8,1770) Bl } = 0
However, ||| < 77" [[#7 ]l = [¥le = lalle = 1 and {|&f = 1y, by initial

agsumption. Then, ||A]| < #; and so from basic LFT properties (see [GL3G], Theorem

4,3.1) we conclude that ||, {i-'l.,f‘] 1.&) | < . Hence,

Fu (B ) @tiwn)| < | A (A0 0) 120w, | <1

1.2,

1-7

Fu(Borp ) qa[jw..]] 20 g [l Fu (B 1) B{pa)| >0
| = det { I — Fo (ﬁ,r;in) 'lﬁ'[jr...l,,]} 40
which contradicts our varlier sssumption. Thus,
det {L —1--1".5.”} =0= (A =0
= A = = MA L) == p(Ay) 2
but recall that |7 (ju, ]| = [wijuws)]l = [le(fuo)]| = 1 and |A(fws][| = ri. Then from
shuve arguments
ry =[] Cwa) Il Geodll 3 Gerad e (o) | = 1(2T Sgna){fua)|
= p (] (e Aiw, ) Gela(fua)) =
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So,
p(xJ(juo) A (woyilju)oa(jui0) = rq (7.8)
Further,
x"(jujo)A(jojo)yi(jujo)ajujO)\l = 1q
or, equivalently
xT(juo)A(ulo)y(jUo)\\ = ri (7.9

since a(juj0) is unitary. =

Remark 7.2.2. In [GHIOO] condition (7.6) is interpreted as a ‘directionality”
property. Consider the vector space of complex valued matrices A E Cnxn over C

It is easy to show that in this space we can define an inner product (see chapter 1):
(4,B) = trace(B*A)

which induces the Frobenious norm:

(4, A) = ||A||* = trace(A4*4) =E E M 2

3=1 ¢é=1

The Cauchy-Schwartz inequality then gives:
\{A4,B)\<\\4\\r Bl

and we can think of \(4, B)\ as the magnitude of the projection of A along the
‘direction” B. In particular, when B has rank one, B — uv* for two vectors u and
v, we can write |(A,uv*)\ = \trace(vu*A)\ = \u*Av\. Thus, imposing the constraint
lu*Au| < 4 can be interpreted as limiting the magnitude of the projection of A along
the direction defined by B = uv*. D

In Lemma 7.2.2 it is shown that the condition
\WXTGu)AGw)y(Gu)\\ = ri1

for some u E 77, is necessary for a A GdVri(G) to be destabilising for every K E KL
As a consequence of this result, a sufficient condition that a boundary permissible

perturbation is not uniformly destabilising is that

\WXTGuj)A(juj)y(Gu)\\ <ri (7.10)
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for some u £ 17 or equivalently

||IzTAylloo < ri

Moreover a tighter condition that a boundary perturbation should satisfy in order not
to be uniformly destabilising, is together with the restriction (7.10) to impose a further

restriction on the spectral radius of x74y, i.e.
pixTAya) <ri (7.11)

Note that here the all-pass matrix function a(s) is included. Constraints (7.10) and
(7.11)) effectively impose structure on the set of additive perturbations and may be
used to investigate the possible increase of the robust stability radius along different
directions. Clearly, note that if we restrict p(xTAya)(= |jar Ayal|00) = H"Aj/Hoo < &
for any < ri, then the second condition (7.11) becomes redundant, in the sense that
M| = @) = p(A) < 4 The choice of constraint gives rise to two different problems
with the later (i.e. considering both restrictions (7.10) and (7.11) simultaneously)
having a more technically complicated solution. Initially, we ignore condition (7.11)
and develop tractable stability conditions for the first case, i.e. characterise the largest
possible permissible uncertainty set that satisfies (7.10) and the corresponding robust

stability radius.

Example 7.2.1. Take a perturbation A := X (s)~Ai(s)Y (s)~, where

and with X (s),Y(s) and a(s) as defined in equation (7.3) and assume that rj(G+ A4)
r)(G). We observe that HAjHo = T. =: ri and hence, A lies on the boundary of the
n-ball. Further, A is destabilising (det(I- AT) = 0). The ‘directionality”property of

this perturbation is obtained as:

xTAy\w= [xTX~A1y~y|l®

Now define the perturbation A = where
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Take 4 < f\- Again, we note that ||Aljoo = 1q and so A is on the boundary of r\-ball.

However, it can be shown that A now is not a destabilising perturbation. Check that
xTAy\w= TXA2Y-y\w

/ @ a(s)~7/ o \ 1
- h o
@) & — 0
which shows that the necessary (directionality) condition fails. o

Up to this point, it has been shown that there exist both permissible perturbations
outside the 71-ball and uniformly destabilising perturbations on the boundary of the
ball, the later possessing an identical projection along a particular worst direction,
defined at an arbitrary frequency. Hence, it may be deduced that ri-ball is not
necessarily the largest possible set of permissible perturbations, if the degrees of
freedom of the optimal controller set are taken into account. In order to characterise
the “extended” set, it is natural to impose a restriction to its structure by considering
perturbations which have a projection of magnitude less than rq along the worst
direction, defined by {xT,y;} uniformly in frequencies w £/Z. A natural way to describe

this condition is in terms of an arbitrary but fixed parameter 8 £ (0,1], such that
H"AyHoo < rq(l - 5) (7.12)

is always satisfied for the new perturbation set. Thus, the extended set of permissible

perturbations is defined as:
£SM={A4A6 V(G) : H"AylU <n(l - 6)} (7.13)
where
V,(G) ={A € ncoo:|Alloc <P, v(G) =n(G+ A)}

according to equation (7.4). Note that the “direction” constraint is essentially a form of
structure that the extended set is equipped with. Then the following stronger version

of the MRSP is posed:

Problem 7.2.1 (structured robust stability radius). Given 5 £ [0,1], find
p*(8) = supp so that every
A 6 £(8p)UT>ri(G)

is guaranteed to be stabilised for some K £ K\ and characterise the set of optimal

controllers K .
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Intuitively, we expect p<d) > ri, for every 5 e (0,1] and further that p*(5i) > ;i*(52)
for é1 > ;2 i.e. if we impose a tighter (structured) constraint ||xTAy|| < 7(1 —;) the
constrained robust stability radius should increase. In the sequel, we consider
two problems which arise from the above definitions: The first is intended to determine
and characterise //*(5). This problem involves matrix distance to singularity, a notion
which will be discussed in the following section. Secondly, it will be shown that fX*%5)
is an increasing function of the gap between the two largest singular values of an
associated Hankel operator. Since the first super-optimal level is fixed for all K e fCi,
the problem reduces to the minimisation of the second largest singular value (uniformly
in frequency), i.e. super-optimisation. For both problems a closed-form solution will

be provided, as shown in the following sections.

Figure 7.1: Extended robust stability radius - The largest shaded area is the set £(S, ;;*).

Parametric constraint. It can be argued that depending on the value of 5, the
strength of the imposed structural constraint varies. Of course we have defined
implicitly that p* > ri, since all A e 77 need to be stabilised and hence for any

5 e [0, 1], the set of controllers that maximise p*(<5) is a subset of the set of all optimal
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controllers, K- Formally, we shall denote this subset by /Cf, and so
K\ CIG

Note that if 5 = 0 the constraint ||xTA?/|| < ri defining the set £(3,p) is redundant
since HAlloo < rx and |x|joo = Moo = 1 and therefore 5(0,//) = V” Thus, in this
case, the maximisation problem takes the form: sup//, such that all A £ Pn (G) are
stabilised by some K FE /Cx, so that the optimal solution is /;*(0) = rxand ;C° = ;C\

Further, since
{A : H*Aylloo < rx(1 - 4} D {A : H*AyH«, < rx(l - i2)}

whenever 0 < 5X< S2 < I, we have that /Cfi C /C2. In the sequel it is shown that the
sets /Cx, S E (0,1] are identical and coincide with the set /C2, the set of all super-optimal
controllers with respect to the first two levels.

As the constraint in (7.10) suggests, the robust stability of perturbed plants inside
the extended permissible uncertainty set (“structured robust stability radius” ball of
problem 7.2.1) can be examined on a frequency by frequency basis to ensure that the
generalised Nyquist criterion (Theorem 2.3.2) is not violated. When looking at the
closed-loop transfer function at each frequency independently, the robust stabilisation
problem becomes a constant distance to singularity problem. In the sequel we pose

problem 7.2.1 in frequency-by-frequency framework.

Problem 7.2.2 (Constrained Maximum Robust Stability). Find the set of
controllers which supremise p(S) under the constraint that G+A is robustly stabilisable
for all A E Vri(G) U£(S,p). Equivalently, determine
d4>) = sup {d : det(Im- A (ju>)T(ju)) = 0,
for all A £ {||JAGW)| < d) D N\xT(uj)AGu)yGuj)\\ <)}

over all frequencies u EIZ. Here we take g) := rx(1 —5), 6 E (0,1]. O

Remark 7.2.3. The second part of the problem is essential to the solution of the first
part. In particular, we search for the maximum norm that permissible perturbations are

allowed to have, such that the generalised Nyquist criterion is not violated. In addition,

all such perturbations should satisfy the constraint (7.10), for all frequencies wFE IZ.00

The approach we follow to solve problem 7.2.2 is to consider first an equivalent problem

at a given frequency > E/Z, i.e. a simplified problem involving distance to singularity
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of complex matrices. In particular, the simplified problem is now in “relative” form.
The problem can be easily recast into an “absolute” form whose theory is studied

intensively in the next section.

Lemma 7.2.3 (Relative to absolute distance to singularity). Suppose that

T G Gpxm has singular value decomposition,

s O E O
T=U V= u u2 Vi v
0 O 0O o
with E = diag(ai,... ,&, cpti,..., at), ol = ... =g > o1 > ... > at> 0. Let Vi and

U be the first I-columns ofV and U, respectively, and let 0 < erf1 be given. Define

5fx = {ECC“ " ||£|| <d}’ 4)
W) = (££ C'% :\WIEU\ < 48,

and

d(0) = sup {d :det(/m- ET) ~ 0 for all E GB™pn <)} (7.15)

Then the later maximisation problem can be recast as
&) =sup {d :det(E-1 - E) +0 for all £ G{E GBud :\\En | <0}} (7.16)
where En denotes the (1,1) leading | x | sub-block of E := V{EU\. Equivalently,
d¥) =sup [d :det(E_1- E) =0 for all £ e {E g Btx\| : H*nlU < 0}} (7.17)

and the minimum is attained.
Proof. This is a straightforward generalisation of a parallel result in [GHJ00]. O

Remark 7.2.4. Condition |arAy|| < 0, essentially enforces a structure on the
perturbation set. The objective is to maximise the size of the set E(6,p), and hence
the magnitude of the non-destabilising permissible perturbation set, on the basis of this
structure. Later we shall see that only a partial characterisation of this structure is

needed. |

At this point, it is interesting to visualise the effect of this restriction to the perturbation

set. We consider the following example:
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Example 7.2.2. Consider the unstable block-diagonal system:

1 (0] (0] vo4d O O
(0] 2 (0] (0] 1 0
(al 0 o"
’ . 0 0 1 0 o0 2
n —1/\/2 2\/2 b
U s—2 s-1 S o o
n I/vj2  2/V2 0 00
| U a—2 s-1/
(0] -I/V2 V2 (0] 0O O
0] 1/\/2 /2 0O 0O

The realisation of G is balanced since the corresponding gramians are equal to:

20 0o 0
0 411_ 0
0 0o 2

So, the smallest Hankel singular value of G is equal to Further, the scaled Schmidt

pair of the corresponding system R (see definition) is

1

0 1 00

kv—iv—i‘

and hence, using appropriate parts of the doubly coprirne factorisation of G we deduce

/ >
(s-1)\

s+1

{y,XT} 1= {MV,W"’M} — < 0 -(el « 0) -

\ 1 ° l >
which are all-pass functions. Then, at an arbitrary frequency

L A
|l€eTAyY|| < f = | ) ‘ . <o=|An|< &

g s

where A is any permissible perturbation. So, in this case the restriction involves directly

the norm of the (1,1) element of A. O

Remark 7.2.5. If in the above example we assume that ||Al| = ri and that [ =
(1 —5)rl; 5 £[0,1), then (1 —) is essentially the percentage reduction of ||Al| relative

to the maximal unstructured robust stability radius ri . i
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The analysis in the example above assumes constant matrices, i.e. perturbations that
are evaluated at each frequency wo 6 7Z This is the framework followed in the
next paragraph as well, and it is based purely on linear algebraic arguments. This
is motivated by the fact that all frequencies are considered “equally critical”, whenever
optimal controllers are employed. In order to solve problem 7.2.2, it is crucial to
understand first the simplified version of the problem (involving complex matrices)
and hence the next paragraph outlines some important results for “structured distance

to singularity” problems.

7.3 Constrained Distance to Singularity

Constrained distance to singularity will provide us the optimal structure that a
perturbation must have (optimal in the sense of the parametric restriction) so that
it has the minimum possible norm and in the same time it is rank-reducing. First, we

outline some standard results in matrix theory and distance to singularity problems.

Problem 7.3.1. Consider the square matrix

o1t 0 0 O
0 o2 0 O
0 O 0
0 0 O

such that 0 < ox < a2 < mm< an. Then find for A £ C"X"
7 = rmn|/A]] (= min 7(A))

st. deti¥, —A) = 0

Remark 7.3.1. Any A of the form

0
A:
0 Ax
makes
o) o)
S- A=
0 £ —A=>



which is clearly rank deficient. Here E is a conformal partition of E. The norm of A
is equal to 9\ for all A such that ||A.22]1 < (). i
This is a standard result of (absolute) distance to singularity, known as the Eckard-
Young theorem. A problem related to that outlined in the previous section is to consider
the case when we restrict the largest singular value of A to be less or equal than 0
which is strictly less than the smallest singular value of E, ci. The solution to the

problem is well-known [LCL+84] and is summarised next:

Lemma 7.3.1 (constrained distance to singularity). Let A be a square non-
singular complex matrix which has a singular value decomposition A = UT,V’, where
E = diag(oi, a2,---,an) with 0 < al < o2 < e+ < on and denote by u\ and N the
columns of U and V, respectively, corresponding to the smallest singular value, a\.

Then all E which minimise
7 = min{||£?j : det{A —E) —O0, \(uiVi,E)\ < 0}

are given by

o v O
E=U u -0 o v
O O Ps

where Ps is arbitrary except for the constraint
IPS| < WJo1O + 0T - ) (7.18)

and v is given by
v =(G) + 92(Zi - (WeJ, 9 G[0,2n).

The minimum value of 7(0) is given by the righthand side of (7.18).
Proof, see [LCL+84], [JH+06], [GHJ0O]. O
Example 7.3.1 ([LCL+84]). Let A be given by

1 00
A= 040
009

then find the minimum norm matrix E so that det(A —E) —O.
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If E is unconstrained,

10 O
E= 0
0 Ea

where |i?s|| < 1 but otherwise Es is arbitrary.

Consider now the case where we impose a constraint on en:
4P= 1 A _
len| . (<a”d) =1)

Then, all optimal rank-reducing matrices E have the form

1 srje
N

E = 3pje oo
2'e 2
0 o €33

where |€33| < ||i?|| = PP ~ 1.58 and 0 is arbitrary.

A full treatment of structured distance to singularity problems under various
constraints which generalise the above results are found in [JHH+06]. In particular,
we are interested for the case where the largest singular value has multiplicity greater
than one. The proof of the following theorem is quite technical and involves a sequence

of lemmas which can be found together with their proofs in the appendix D.
Assumption 7.3.1. Suppose that T G Cnxn has a singular value decomposition

alJi o0
T=UEV Ui 2 ¢ £2 «—diag(ai+ti,***, )

o £2 T
with Ui, Vi G Cnxl. Assume that o\ = we= cq > <i+1 > ***> on > 0, and define
A :=£-1=diag(Ai,A2)

where A\ = axli == cq 1t and A2 := diag(aiti,..., an) with0 < Q = = ai < a;+1 <

**w< a,,. Further, define E\ =} QOni
Then the next theorem holds:

Theorem 7.3.1 (Distance to singularity). Let everything be defined as in

assumption 7.3.1. Then, the minimum distance to singularity

7 = min{||A| : det(4 —A) = 0, ||£'(AEi] < < 5i(™)}
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is given by
7 = \A/+i<zi - (ai+1- ai)o

Further, all perturbations in the set
= {A GCnxn : ||A|| =7, det(A-4) =0, \E[ALi|| < < aj}

have the following structure:

An 7A3lA2
A =
7 AsArs 72771 A,A33j

where An GClxl, |An || < () but is otherwise arbitrary, and

4] = An Ays

is any n x n optimal 7-completion of An. Further,
A= A2
A3 A4

is an optimally structured perturbation for the distance to singularity problem where A
is constrained to have its first | x | block equal to zero, as defined in Lemma D.0.1 in

appendix.
Proof. See appendix D. The proof involves a series of lemmas. i
Example 7.3.2. Take An = ()i 4 < 7. Then choosing A73,A31,A33 to be real
symmetric, one possible 7 -completion of An is the following:

# (VV - 021 IR
- (V72- 02) 4 # |HA% A
Then it can be verified that ||A7| = 7-

A?

Similarly, we could choose
A (V72- 02 1 A, Axg
(V72- 02) & - L\‘.QQ A3

Keeping the first choice from above, we now take

o 0 ye; O
o QB 0 0 0 0
A =
A3 A4 yes 0 0 0
S 0 0 0



so that

¢ 0 -\Jt2- &2 o

An 7a ™a?2 0 £ 0 0
bAaAl], T2E{f {A, A3z} _ vV - & o +* 0
0 0 0 0

Hence, ||£,| =7 and det(A —E) = 0.

The second choice in the above example will be used extensively in the next section.

In the sequel, we state one of the main results of this chapter:

Corollary 7.3.1 (Relative to absolute distance to singularity). Assume

everything as defined in Lemma 7.2.3 and Theorem 7.3.1. Then,

d = -0 .. Cl‘l

cici+i &+

all E e V{4>) such that det{Im- ET) =0 and ||£|| = d4>) are of the form

b

A 7TAJ1A2 0
8 => TAAB 727 {AABj O
e 0 44
where 1" 441 < d<F) and
An 7A31A2
= d4)

7A3A13 72.F;jA,A33j

Hence if the two (distinct) largest singular values of a complex matrix 7 are known
then the minimum norm of the set of all rank-reducing perturbations (i.e. distance to
singularity) and the optimal structure of this set, are a priori known. The nature of
this structure depends on the multiplicity of the largest singular value of 7 and other

constraints that are imposed, e.g. on the spectral radius.

7.4 Extended robust stability radius

In the previous paragraph an “optimal” structure to the set of all permissible
rank-reducing perturbations was determined such that it minimises the distance to

singularity of complex matrices which have multiplicity greater than 1 on their largest
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singular value. Further, Problem 7.2.2, Lemma 7.2.3 and Corollary 7.3.1 linked the
problem of robust stability under the constraint uncertainty set (7.13) with the distance
to singularity problem, in a frequency-by-frequency Nyquist-type of argument. In a
connection with those results, in this paragraph we show that the extended robust
stability radius is a function of the two (distinct) largest super-optimal singular values
of the closed-loop transfer function and so it is maximised by choosing a super-optimal
controller K G /C2. This arises naturally from the fact that the two largest (distinct)
singular values of any closed-loop 7" G 7/4+1 evaluated at any frequency /oo G IZ (i.e. the

complex matrix 7'(juo)) are equal to the first two super-optimal levels, si and Si+1.

Proposition 7.4.1. Given a nominal plant G as in 7.1.1 and any A G Vri j£(0, p(8))

where
M == 5¢e [0,1]
and
f5,p0) ={AeV,, G : H-Aylloo <1 - 5)}
in which

TVE(G) —{A GToo : [[Alloo < p(S), 7AG) = 1[G+ A)}

then IE+ A, K) GS, for each K G/C2.

Essentially the proposition states that any perturbed plant inside the /*(;)-ball (for any
value of 6 G [0,1]) is stabilisable by every super-optimal controller K GJ2.

Proof. Recall that T —K (I —GK) 1and choose a K G /C2so that T G Ti+1. It is well

known (Lemma 7.1.1) that any 7 G admits the following decomposition

"sia(s) 0 0] \
T = Yi(s) 0  sitib(s) 0 X i(s)
V o o R(s) + <$tij

where X\, Y\ are square inner, a(s),b(s) are all-pass functions and ||R(s) + S(+i/joo <
s/+1. Obviously, /C2 C Kx and so %+ C T\ which implies that (G+ A, K) GS for any
A G VrimHence, we only examine the case where A G£(8,f],(5)).

For a fixed value of 5 G (0,1], let

— < IAHo < [58)  [hrAjfilo < £< o (7.19)
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where #:= ri(1 —5). Assume now for contradiction that such A is destabilising. Then

there exists a frequency o G IZ so that
det(I - tA(juo)T(ju0) =0, 0<£<1 (7.20)

Of course, T'(ju0) is a complex matrix which, in the light of the above decomposition,
has its two largest (distinct) singular values equal to si and sj+i, respectively. Further,
considering the constraint (7.19) and equation (7.20), the problem can be viewed
as in Lemma 7.2.3. Then, corollary 7.3.1 states that the minimum norm of a
destabilising perturbation is equal to n(6) which implies that (7.20) is true only
for [|£EA(iv)|| > Therefore, equation (7.20) gives a contradiction and any
perturbation A G Vri U£{8, n(S)) is stabilisable by each K e K 2. o

Later on, in Theorem 7.4.1, it will be shown that fi(5) given in proposition 7.4.1 is the
maximum extended robust stability radius p*(S), and that Iz = /Cf, for each S G (0,1].

Now, consider the following problem:

Problem 7.4.1. Given that the original plant has multiplicity r (greater than one) on
its smallest Hankel singular value, construct a A G TZlLoo (7AG) = r](G+ A)), s.t.

(i) ||Aljoo = \jji ("77+ Tr)’
(n) ||lzTAylloo < ri(l - 5),
(in) (G+ A, K) is unstable VK G /2.

where [ is the multiplicity ofs\ (see chapter 6). i

The solution of the above problem is constructive and it is outlined by the following
algorithm (whose proof follows in Proposition 7.4.2). First, recall Lemma 7.1.1 in which

T GTi+i VK G K= is written in the form
sia(s) 0 0 A
T =Yi(s) 0  sitib(s) 0 Xi(s)
0 o  (R+0)Ns)j
in which Vi(s) and Ad(s) are square inner matrices, a(s),b(s) are all-pass functions
and ||A + QIU < sjti- In addition, Yi(s) and F(s) {X(s) and Xi(s), respectively)
share the same first /-columns (rows), which are denoted by y(s)(x7(s)), where X(s)
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and Y are defined in equation (7.3). To fix notation, let 7 G TitX C IZH

Y\ G RTty p, Xi G RIGffi™with ¥C¥y = Ip and XxX f = Im. Further, a G TTH(JxI
and b G IZIGIx] with aa~ —Ii and bb~ = 1 so that R G TZTC"P 1 "xp 1 " with
min{p — —1,m —[ —1} > o.

Algorithm 7.4.1. The algorithm consists of five steps:

step 1 Define the all-pass function
a(s) o o "
Y2:=YI o 6s) 0
0O 0 [p.-i)
step 2 Compute left and right co-prime factorisations of the columns of X ' and the rows

of Yff, respectively; both with inner denominators.

(dix o o o
0O d2 o o
*p = (ni n2 nr =: N1D1
O o 0
O 0O 0 dar 7

and
dx 0o o o

0 o
yr= ©° d2 n2 DaNo

O 0O mm O
ooodpJ\h,d

where Nx,N2,df1,df1 G TZHoo, NXN2 are square inner and di,dx are scalar
all-pass functions.
step 3 Pick any wo G7Z Then write for eachi = {1,2,..., [+ 1}:
diw0) = e3¢ and di(ju>0) = e3*
where — 7 < fa, fa < 7T.

(recall that \di(jujO)\ = 1, since the dfis) are chosen to be scalar all-pass)

step 4 Define two diagonal inner matrices

ax Q1
Ax= , A2 —

cgti ogti

such that afifa) are stable, all-pass functions that interpolate dt 1{di 1). Thus,
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case 1: Ifo <pi < (0 <pi <) then set

s- P s - Pi\
S+Pl S+Pl)

OLi

where a§ (£+S) =h > > (aS(fef) =" >°)
case 2: If—v <pi <0 (—x < pi < 0) i/ien set

5~ Pi ~(s-pi)\
S+ Pi s + Pi )

<‘i=

where arg (gp f) =t +&>o, (arg (g+g) =t +&>0)

case 3: Ifpi =0 (pi =0) orpi = -n (pi = -7r) i/ien set

« = 1 orai——1, respectively (a, = 1 or & ——1).

step 5 Denote the matrix consisting of the first | + 1 columns (rows) of N\(Nz2) by
IVii(iVa )  Then define the destabilising (to all optimal closed-loop transfer

functions) perturbation:

Ph Jo
A = NnAi o A2Nz
vo O -p
where p = =ri(l —=5, = y/j2—p2 and

1

TP = gry & P

Then,

d

Remark 7.4.1 (on step 2). The (scaled) Schmidt vectors corresponding to the first
super-optimal level are matrix functions (because in general their multiplicity | > ).
However, the columns are linearly independent to each other. Hence, the vector nature

of each co-prime factorisation, follows. D

Remark 7.4.2 (on step 4). The interpolating functions, as constructed in step 4, are
needed for the proof of problem 7-4-1, part (in). These are constructed to be stable so
that A e TZHod so pi > 0, Pi > 0 for all i. O

174



The rationale behind this algorithm is to construct a dynamic perturbation which
interpolates all dynamic parts of every optimal control sensitivity matrix function and
hence effectively reduces the problem to a constant distance to singularity problem. In
previous analysis it was shown that all optimal control sensitivity transfer matrices have
the same /-largest singular values, which remain constant over all frequencies and are
equal to the first super-optimal level, Si(G). Similarly, all (Z+ 1)-th level super-optimal
approximations also have their (Z+ 1) singular values constant over all frequencies.
Knowing the first two distinct singular values of a constant matrix the problem becomes

equivalent to constructing a minimum norm rank-reducing perturbation.

Proposition 7.4.2. Let A(s) be constructed according to Algorithm 7.4-1. Then A(s)
has the following properties:

(i) A(s) G TiHoo

(i) HAD = 7{%)

(in) H"Aj/lloo = ¢

(iv) det[Im - A(ju>0)T(jLoo)) =0 VT GT.
Proof. See Appendix E. m|
Consequently, the algorithm constructs a destabilising perturbation for all Z+ 1)-
super-optimal control sensitivity functions (see Appendix E). Further, this particular
perturbation lies on the boundary of 7 (<>)-ball which reveals the fundamental similarity

between this construction and the construction of a destabilising perturbation to all

optimal control sensitivity functions (which lie on the boundary of ri-ball).

Theorem 7.4.1. (CMRS) [GHIOO] Let Ti C be as defined in equation (7.3).
Let xT and y be the first row and column of X and Y, respectively, and define Vn
and £(5,p) as in equations (7.4) and (7.13), respectively, for some fixed 5 G [0,1]. Let
p*(S) be the supremum of p such that there exists a K for which (G+ A, K) GS for
every A G Vri U£(S,p). Then, for each 5, the supremum of extended robust stability

is given by

Si+1 51 /
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where Si and si+1 are the first two distinct super-optimal levels o fT with Si = ri' m

Proof. The construction of destabilising perturbation in algorithm 7.4.1 together
with Proposition 7.4.1 show that the constrained maximum robust stability radius
for any K G I is given by /P(5). Next, consider K G ICilC2- In this case,
there exists a frequency ao so that 7 = K (I - GK)~1 has its first two (largest)
distinct singular values equal to Si (of multiplicity /) and W(R(ju0) + Qju>0)), with
5! > a(R(juj0) + Q(ju)) > si+1 (since T * 7/+1). Then, using a procedure similar to
Proposition 7.4.2, it is always possible to construct a perturbation A 6 RTLfffp in the

interior of £(3, such that
Al = 1fj? +1R< \xTAyWoo = +>
where
I la(R(judo)+ QO@Guj0)

for which (G+ A4,K) » S. Thus, fi*?5) is the supremum of the constrained robust
stability radius among all K G IG (and also among all K G IC since every perturbation

inside V7 is required to be stabilised). i
The next results are immediate from the theorem:
Proposition 7.4.3. The following three statements hold:

1 Foreach 0< 6 <1,

(G+A4,K)g S for every A ¢ VriUS(S, p*(d)), if and only if, K ¢ /[C2

2. (a) For the (extreme) case where 6 = (),
£(0,y*(0)) = Vri
(b) For each K ¢ 1c2,

(G+A4,K)g S for every A ¢ [ £, fi*(5)).

<5efo,i]

3. Let an and on-r-\ denote the two smallest (distinct) Hankel singular values of

G(—s) with an-r-i > oy. Then, an immediate lower bound is given by
p*(5) > yjSanan-r-1+ (1 - fyer*
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Proof. Part (1.) follows immediately from Proposition 7.4.1 and Theorem 7.4.1. Part
(2a.) is immediate consequence of the definitions. Further, part (2b.) is proved by
using part (2a.) and part (1.). Part (3.) follows from the fact that Si = af1 and
54 < crflr (see chapter 6, Theorem 6.1.4). O

To summarise, the main result is that for any parameter 5 G (0,1], the maximum
constrained robust stability radius is /x*(8) and is achieved by choosing any K e IC.
In fact, all perturbed systems inside this ball are stabilisable by any controller K if
and only if K G/C2.

Further, we may think of 5 as the amount of “structure” imposed to the problem.
Clearly, the “more” structure we impose, the largest is the structured stability radius
(note that as expected x¥(6) is an increasing function of S). However, no matter
what $is (in the interval 0 < 5 < 1), n*{6) is achieved by the set of super-optimal
controllers K2, and hence each super-optimal controller K G/C2 guarantees to stabilise

all A GU.zjo1] A<S)) (note that Dn = £(0, xN0))).

Computation of S. In simulation experiments the need of specifying a 5 G [0,1]
such that a A is constructed with HAHo = n*(6) and H"Aj/Hoo = * appears to be
not trivial. Therefore, in the sequel a method for deriving an appropriate pair {;, A}
is presented:

Consider first a perturbation A and assume that for an unspecified 5, it satisfies

|Alloo = n%(S) and HatAyHA = Then:

where 'p = asiggil. Thus,

I"Aylloo ~ 1-35
I flo a/1+

Solving in terms of 5,

P— =T72" S2- 26+ 1= q2+ 72
T dp 2" S2 1= q2 <
ie.

S2—(2+ 2" +1—52=0
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with solutions

G, _ @F72)EV/Q47V)2- 4(1- 72

=1+ Cf+17"72V+ 742+ 472
By selecting the solution

S¢=1+ Nyl4T72p+ 7402+ 472

it is guaranteed that 5* e [0,1]. Further, by defining

A A yI+6
¢ \'Nf a
it is guaranteed, by construction, that ||Aneiljjoo = II*T Areit;?|oo S -

7.5 Examples

In this section we present examples which verify certain aspects of the derived
theoretical results. As it was shown before (Lemma 7.2.1 and Lemma 7.2.2) there
exist boundary perturbations A which are destabilising for every optimal controller.

The examples given below verify some of the derived results.
Example 7.5.1. Consider a nominal plant with the following balanced realisation:

29688 -6.3584 15299  0.9490
46752 29189 -1.7270 -1.8414

-1.7570 -0.3720 0 0
0.3923 24970 0 0
and gramians equal to
0.5459 0
E =
0 1.0917

so that, an = 0.5459 =: s11.

One maximally robust controller is computed as:

-16.1058 -1.7104  1.1866
Ko = 109709 15194 -0.3393
93899 09425 -0.2105
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The observer-based generator of all stabilising controllers is:

-8.906 -5.33 -3219 0718 153 0.949
11.22  -8.757 -0.3407 2287 -1.727 -1.841

-2.803 1582 0 0 1 0

-1.739 1687 0 0 0 1

1.757 0.372 1 0 0 0

-0.3923 -2.497 0 1 0 0

and further

-2.969 -2.338 153 0.949 -2.969 -9.35 -3219 07188
1272 -2919 -1.727 -1.841 M A 3.179 -2.919 -0.3407 2287
-2.803  1.582 1 0 ’ -1.757 -0.372 1 0
-1.739  1.687 0 1 0.3923  2.497 0 1

are inner factors of the coprime factorisation of Go, which are needed in later analysis.
The second super-optimal level is s2 = 0.13955. Further the unique level-2 super-

optimal controller is:

-2.9688 -2.3376 64237 0 0 0
31792 -12.5940 -8.8623 0 -4.7201  3.1716
-3.4707 -3.5208 -6.1439 0 -1.7176 11541
0 0 0 -6.1439 0 0
0 31676 29015 0 15033 -0.4111
0 22834  2.0916 0 0.9683  -0.0947

The maximising vectors Mv and w~M are found to be:

-6.1439 34707 35208 -1.7176 1.1541
0 -2.9688 -9.3504 -3.2188 0.7188
0 31792 -2.9189 -0.3407 2.2872
-5.5319 1.800 09072 -0.9760 0.2179

-2.9688 -2.3376 64237 -1.8003
127168 -2.9189 -8.8623 24382

0 0 -6.1439 34272
-2.8027  1.5819 29015 -0.8498
-1.7385 16867 20916 -0.5271
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Then the following perturbation can be constructed which destabilises the feedback loop
above when the optimal controller K is employed:

Further, the perturbation was constructed such that ||a;TA?/||D
0.54585 =: jj- and | Alloo =

-1.1907
s -0.0437
-0.1045
-0.1284

12646 0.1982
-0.2103  -1.3281
-0.0807 0
-0.0959 0

0.0943
0.4195
0
0

= ~

= 0.19531 <

= 1.6182, where 5= 0.6422. The first table shows the

poles of the four closed-loop transfer functions (see equation (5.3)), when the maximally

robust controller Kqt is connected. A necessary and sufficient condition of internal

stability is that these four transfer-functions have stable poles.

However, note that

there exists one unstable pole corresponding to each transfer function and hence the

feedback loop is unstable.

Pi(Hu )

-2.858+5.47171
-2.858-5.47171

-6.2408+01
-1.4833+01

0.0023569+01

pi(H21)
-2.858+547171  -2.858+5.47171
-2.858-5471711  -2.858-54717
-6.2408+01 -6.2408+01
-1.4833+0i -1.4833+0i

0.0023569+01

0.0023569+01

Pi(H22)

-2.858+5.47171

-2.858-54717
-6.2408+01
-1.4833+01

0.0023569+01

On the other hand the same perturbation is stabilised by the super-optimal controller

Ksqxm The second table shows the poles of the four closed-loop transfers when the

super-optimal controller is connected to the loop; in this case all poles are stable.

Pi(Hn)
-2.858+5.47191
-2.858-5.47191
-0.013915+0i

-1.4785+01
-6.1735+01
-2.9439+5.45221
-2.9439-5.45221
-6.1439+01

Pi(Hn )
-2.858+5.4719i
-2.858-5.47191
-0.013915+0i

-1.4785+01
-6.1735+01
-2.9439+5.4522i
-2.9439-5.4522i
-6.1439+01

Pi(H2i)
-2.9439+5.4522i
-2.9439-5.4522i
-2.858+5.47191
-2.858-5.47191
-0.013915+01
-1.4785+0i
-6.1735+0i
-6.1439+0i

Pi(H22)
-2.9439+5.4522i
-2.9439-5.4522i
-2.858+5.47191
-2.858-5.4719i
-0.013915+0i
-1.4785+01
-6.1735+01
-6.1439+0i

Hence, the particular perturbation A constructed above is destabilising to the optimal

closed-loop, i.e. (Go+ A, Kopt) ™ <S where on the other hand (Go+ A, Ksopt) GS.
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In the previous example we considered the simple case where the smallest Hankel
singular value of the nominal plant has multiplicity one. In the following example
we study the case where the smallest Hankel singular value of the nominal plant has
multiplicity larger than one (two) and the constraint posed on the perturbation is

specified in terms of its norm (directionality). Again we follow a state-space analysis.

Example 7.5.2. Consider a nominal plant with the following balanced realisation:

1.1737  -1.3187 17698 05584 -0.4715 1.3261
20211 05016 0.6891 09819 -0.1061 0.0662
s -L.1173 -1.2526 11179 -0.1396 -1.6694 12492
0.7688  0.6729 -1.7194 0 0 0
-1.2924 -0.0312 -0.7927 0 0 0
0.1770  0.7253  -0.8845 0 0 0
and gramians equal to
0.9767 0 0
0 0.9767 0
0 0 1.9533
and thus, an = 0.9767 =: sji .
One maximally robust controller is computed as:
-3.0487 -0.8789 0.8039 -0.0779
-3.6984 -0.6687 -0.0607 -0.7684
RIE= 7006 01414 02886 00061
-0.3942  -0.2618 0.9208  0.1890
compute
-1.1737 -2.0211 05587 0.5584 -0.4715 1.3261
13187 -0.5016 0.6263 09819 -0.1061 0.0662
~-3.5396 -1.3781 -1.1179 -0.1396 -1.6694 12492
05717 -1.0054 00715 1 0 0
04827 0.1086  0.8547 0 1 0
-1.3578 -0.0678 -0.6395 0 0 1

and
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-1.1737
1.3187
-0.8849
0.7688
-1.2924
0.1770

S

-2.0211  2.2347
-0.5016  2.5052
-0.3445 -1.1179
0.6729 -1.7194
-0.0312  -0.7927
0.7253  -0.8845

0.7872
0.6889
-0.8803
1
0
0

-1.3233
-0.0319
-0.4058

0

1

0

0.1813
0.7426
-0.4528
0
0
1

which are inner factors of the doubly coprime factorisation of the nominal plant Gg.

Moreover, the second super-optimal level is Se = 0.1216 and the unique super-optimal

controller is:

-1.1737 -2.0211 0.5587 -0.8580 0 0 0 0
1.3187 -0.5016 0.6263 -0.9619 0 0 0 0
-0.8849 -0.3445 -2.4324 -0.6730 0 -1.2463 12835 -0.2137
s 17285  0.6730 -0.8559 -1.5560 0 -0.8115 08357 -0.1391
0 0 0 0 -1.5560 0 0 0
0 0 -1.8151  -0.9292 0 -0.6757 -0.0640 -0.7620
0 0 0.7703 03943 0 0.06006 -0.3266 0.0794
0 0 -0.2258 -0.1156 0 -0.2875 09087 0.2124
The corresponding maximising vectors (scaled Schmidt pair) are:
-1.5560 -1.7285 -0.6730 0.8559 -0.8115 0.8357 -0.1391
0 -1.1737 -2.0211 22347 07872 -1.3233 0.1813
s 0 1.3187 -0.5016 25052  0.6889 -0.0319 0.7426
0 -0.8849 -0.3445 -1.1179 -0.8803 -0.4058 -0.4528
21154 10755 09413 -1.5230 0.7148 -0.3219 0.6208
-1.5328 -1.0658 03062 -1.1109 .o .0.00 0.8877  0.4603
-1.1737 -2.0211 05587 -0.8580 -0.5603  1.4067
13187 -0.5016 0.6263 -0.9619 -0.9852  0.0953
-3.5396 -1.3781 -1.1179 -0.6730 0.0397 1.6976
0 0 0 -1.5560 -2.8761  0.6933
-0.5717 -1.0054 0.0715 -0.9292 -0.9966 0
04827 0.1086 08547 03943 00782 -0.3040
-1.3578 -0.0678 -0.6395 -0.1156 0.0250  0.9527

Pick 5 = 0.3609. The following perturbation is constructed such that ||xTAyl|D =
and HAH¢, = n(5) = 1.8729.

A

= 0.6242 < 0.9767 =:
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-1.4651  3.6437 0.1326 -0.5491 11746  -1.9955
0.6349 -3.1794 -0.5857 00431 -0.8775 -0.3038
s 05241 -43411 -1.3983 -0.4441 06327  1.6165
-0.0383 -0.1137 -0.0359 0 0 0
-0.0171  0.0589  0.1457 0 0 0
-0.0329 -0.0127 -0.1445 0 0 0

The table below shows that this perturbation is destabilising for the optimal controller
Kopt. The table summarises the poles of the four closed-loop transfer functions. Among

them there is one unstable pole for all transfer functions and hence the closed-loop is

unstable.
Pi(Hn) Pi(Hu) Pi(H21) Pi{H22)
-3.9522+0i -3.9522+01 -1.1718+2.37451 -1.1718+2.37451
-3.0238+01 -3.0238+01 -1.1718-2.37451 -1.1718-2.3745i
-1.1718+2.3745] -1.1718+2.3745i -3.0238+0i -3.0238+0i
-1.1718-2.37451 -1.1718-2.37451 -3.9522+01 -3.9522+01
0.00045493+01 0.00045493+0i  -0.50675+0.20291i -0.50675+0.202911

-0.50675+0.202911
-0.50675-0.202911

-0.50675+0.20291i

-0.50675-0.202911

-0.50675-0.202911

0.00045493+01

-0.50675-0.202911

0.00045493+01

However, when connecting the super-optimal controller Ksopt, as theory suggests, the
perturbed closed-loop is stabilised because the perturbation lies inside the ball of the
extended permissible perturbation set. In this case, as shown in the table below, the

four closed-loop transfer functions have stable poles.

Pi(Hu ) Pi(HI2) Pi(H2I) Pi{H22)
-3.9498+01 -3.9498+01 -1.2457+2.3798i -1.2457+2.3798i
-2.9929+01 -2.9929+01 -1.2457-2.3798i -1.2457-2.37981

-1.1718+2.3741] -1.1718+2.3741i -0.30174+01 -0.30174+01

-1.1718-2.374H
-0.017093+01

-1.1718-2.3741i
-0.017093+01

-1.1718+2.3741i
-1.1718-2.3741i

-1.1718+2.3741i
-1.1718-2.37411

-0.50228+0.19514i  -0.50228+0.195141 -3.9498+01 -3.9498+01
-0.50228-0.195141  -0.50228-0.19514i -2.9929+01 -2.9929+01
-1.2457+2.3798i -1.2457+2.3798i -0.017093+0i -0.017093+01
-1.2457-2.3798i -1.2457-2.37981  -0.50228+0.19514i  -0.50228+0.195141
-0.30174+01 -0.30174+01 -0.50228-0.19514i  -0.50228-0.19514i
-1.556+01 -1.556+01 -1.556+01 -1.556+01
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7.6 Spectral Radius Constraint

Throughout this chapter, mainly for simplicity reasons, we selected to constrain the
norm of the perturbation set along a specified worst direction (equation 7.10). This
is essentially a structural constraint, which was proved to be efficient for the purposes
of extending the robust stability radius in other directions. However, Lemma (7.2.2)
suggests that there are more degrees of freedom that can be exploited, by means of
imposing alternative-type constraints. One possibility is to formulate the directionality
constraint simultaneously in terms of a norm-constraint and a spectral radius constraint
(7.11). The analysis of this problem is similar to the previous case of CRSP except
for additional technical complications in the solution of the corresponding distance to
singularity argument.

In addition, formulating appropriate bounds in terms of the spectral radius constraint
appears to be difficult problem in comparison to the norm constraint (which in the case
of block-diagonal uncertainty models is equivalent to the solution of an LMI1 [JH+06]).
For this reason we will not pursue this problem further on the thesis and the efficient
solution to the problem in terms of simultaneous norm and spectral radius constraints

will be a topic of future research.

7.7 Structures and the extended robust stability

One of the major results of this chapter (Theorem and Proposition 7.4.1) is the fact
that any super-optimal controller guarantees stability not only to every perturbed plant
inside the e*-ball, but further to all (additively) perturbed plants which lie outside the
e*-ball and inside the ;t*(5)-ball provided the corresponding perturbations possess a
given “structure” specified by parameter 5. In other words, the class of the later
perturbations has norm greater or equal to € and the perturbations are “structured”
because they are constrained along a certain direction (see (7.13)). We should note
here that e*-ball is the optimal ball and hence the uncertainty set cannot be extended
norm-wise (as € would not be optimal if this was the case). However, the only way
to include perturbations of norm greater than €* in the non-destabilising permissible
uncertainty set (and hence extend the uncertainty set) is by imposing constraints on the

structure of perturbations (7.12). Hence, S quantifies the imposed structure in relative
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terms, e, as o percentige of €, Clearly a super-optimal controller is at least as good
as any other optimal contraller for all nneertainkies inside Lhe «* ball. I, bowever, ihe
uncertainty set is poorly modelled and the true plant happens to lie owtaide the e
optimal ball, then there is a possibility that the super-optimal controller will atahbilise
the true plant. Howewver, this is an "unatructured uncertainty” point of view. In the
following paragraph we discuss the sarme problew rom Lhe viewpoint of how close this

sot can approximate sets of structured perturbationa.

7.7.1 Structured set approximation

The structured maximally robust stabilization problem is posed as follows:

Problem 7.7.1. Marmimize the mbusd stebilidy radive of Go, vver he family of all
stokiliaing controllers, corresponding Lo he permissible uncertointy set of all addifive

pertnrhations possessing o strocture, Equivelently, we write the problem ns:
S [r [+ A& K) e 8, wA g Difructurey

where

'I:':“Hu" = '[.lf.'l . 4'.1 = RlczxL-"lIi_m: = T, F.lll::'l:;ﬂ] s Il":G'} + L\"]?

and A preserves the defined structure on its elementr}

ar i the light of definition 5.1.1,
-D:rnlcmm — {_.ﬂ - ‘l &= -DTI—I-DHNF.ME}
wherg Driredere denales the sel of all A with o given structure, ]

Examples of D27 are normalised perturbations of disgonal form (steuctured
singular value p, [PDG3)), perturbations with norm bounds on blocks of their elements
{the generalised jb, see [CENGHa), [CFNIEL|), or any other set with a spatial seructure.

Iet vy he a maximiser of problem 7.7.1. Then abviously,
rp = e ol
Theorem T7.7.1. Consider o (mormalized) structured uncerloindy set

Brptrecture _ A g patructure A | L w1} C H,
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where j)structure denotes an arbitrary structure (e.g. block diagonal, etc. ).

Suppose that
Jo = max I[xTAy|l@

N\ (z:slv_l’(_) jystructur
and set 5a .= 1—8. Then p*(50) is a lower bound of the maximum structured robust

stability radius (relative to the given structure), i.e.
F*50) < sup{" :3Ks.t.(Go+ A,K) £5, VA e Vstructure, ||A|| < p)

Further, any K £ I3 guarantees a structured robust stability radius of at least pf(50),

and H*S0) > €* (the maximal unstructured robust stability radius) provided that 50" o.

Proof. Follows immediate from theorem 7.4.1 and proposition 7.4.3 since:

{A £ V’uchwre . A || < g £(80,H*(60)

and all A £ £(80,p*(80)) are stabilised by every K £ J2. O

Note that for comparison (compatibility) reasons, in the above theorem we scale by —
the normalised set. In that line, the theorem essentially states that the extended robust
stability, f.%50), serves as a better upper bound the structured robust stabilisation
problem, than the maximal robust stability e* In the case where a designer ignores
the structure of the uncertainty (because the problem is unsolvable, difficult or for
any other reason) the extended robust stability radius is then closer to the structured
robust stability radius. In addition, if the structure is somehow “compatible” with the
artificial structure imposed in problem 7.2.2 then this upper bound can be tight. Now,

some examples supporting the ideas discussed above are presented.

Compatibility issues

Throughout this chapter, we considered the following three sets:

1
O — A = —

£ |Alloo < S
- 1 1

V)= A:= ]IA11||oo<IS— and TIAlloo < 2o+ -
si Si \S(+1 s
1

T51—1 4 = : HAH, <

SIS (+i
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As it was shown before, 7° C T>f'and V) CPj. The question examined in the following
examples, is how compatible are the above sets (whose stability radius is well known)

with a structured set.

Example 7.7.1. Assume that G(s) is a diagonal system with multiplicity 2 on its
smallest Hankel singular value and that the first two (distinct) super-optimal levels are
Si = 0.5, sit1 = 0.2. Because of the diagonal form of the system we make the extra
assumption that the Schmidt pair corresponding to the first super-optimal level (si) are
equal toxT =y'= | o , times an all-pass function. Further, suppose the uncertainty
set is described by additive perturbations A with norm bound BARE, < Then the
maximal robust stability radius is given by € = -F. However, suppose the uncertainty

is actually of the form

( sind cos9

Gtrue(s) —G(S)+  —<cos9 sind *
% %k
| * /
where denotes terms which remain unstructured. Then

sing  cos9 *\ .
I. sin6 cos9
0

xT/\y\\ee —cos 9 sin# *

Il
-

—c0s 9 sin9
£ £ ES

Solving in terms of 5 the equation:

TAyl|c
FTAYIE
we define 5 .= 1 —s=si. Then, the extended robust stability radius is
1 o 1 1+ S;+1 — Si
_ 4 ’ 35> ¢*
n*w = \hgﬁi \S/+1 Si SIS/+i

Remark 7.7.1. From theory, the Schmidt pair is always point-wise orthogonal which

1
supports the choice in the above example. Assuming that xT= y' m ? 7% 00

J5 "715 0 0
we would get 6 = 0.1910 and hence p*(5) = 2.2685, still larger than &*. O

Example 7.7.2 (Complex diagonal structure P>TLf0)). Consider the unit ball of
KTices

<A = . <SieH+1xI, Halloo <1
0 ..o Sn@s)y

BrHa:¢
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Assume S\(R) > s2(R) > 0, | = 1 and let xj (s) and yi(s) denote the i-th element of
xT and y, respectively. Let also Zj(s) —xj(s)yi(s). Then

max  H*AyHoo = = max \|'S”6ix"y,
A6BPHA+ AzWBVZo =1
max ;1 >
A 1

The maximum is attained on the boundary. Hence, write now each S in a polar form

8= 4i*
n n i

max || SZiWeo = max maxlY—e™z4ju)]
<=4 19 *£[0,2%) weK | Si

1 .
— max max| e’zA4ju)l
Si 0i6[0,27r) veil 22:11

1 g
= —max max
Si [0,271) 2v !

00

- ] ! (T uj \ > =
St AL L
Note that the Cauchy-Schwartz inequality implies that:

\j r Zi(juj)\2 = \J2xJ{ju)yifjuj)\2< (A2\xJ(ju)\2) (5 I/iGw)P =1
= = \i=1 =1

and hence 46G< 1. Setting So = 1 —<o shows that
1-*0
/F¥(«) S
is a lower bound of the maximal robust stability radius relative to 'DIJ0- Note that
p*@0) > & = sf1 for every 6o = 0 and that ymax = max"g-R. {| Yli=i "iICMI} can be
easily obtained (e.g. graphically). i

The examples above show that a priori information about the structure of the
perturbations set implies better robustness. Then, of course, it is only arguable of
how “robust” results can someone achieve using the artificial structure in (7.12) (i.e.
how tight as an upper bound), compared to the robust stabilisation problem were the
true structure is fully exploited. In this line, it should be noted that links between
the complex structured singular value - a highly structured set - and the discussed

structure were reported in [GHIOO] and [JHH06], for the constant matrix case.
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7.8 Summary

In this chapter we considered additive perturbation models where the smallest Hankel
singular value of the nominal plant had multiplicity / > 1. It is known from previous
chapters that the maximal robust stability is achieved by designing controllers which
minimise the infinity norm of the control sensitivity transfer function; these functions
are described by the term “optimal” and the problem of maximising the robust stability
radius is known as the maximally robust stabilisation problem. The solution to the
later problem involves a Nehari approximation whose solutions are obtained via an

all-pass dilation technique.

In this chapter it was proved that on the boundary of the ball there exist perturbations
which are destabilising for all optimal feedback systems and therefore are called
uniformly destabilising. Further, all such perturbations have a projection of magnitude
equal to the maximal robust stability radius (ri) along a worst direction determined
by the maximal Schmidt vectors of the associated Hankel operator. It is proved
that all frequencies are equally critical, in the sense that the Nyquist criterion can
be violated at an arbitrary frequency i« E TZ by constructing appropriate boundary
perturbations. Hence, the only way to extend the uncertainty set is on the basis of
its structure. It is shown that by imposing a parametric constraint on this projection,
H*Aylloo < ri(l —¢), 5 E [0,1), i.e. partially characterising an “optimal” structure
to define permissible perturbations, the uncertainty set can be extended to a ball with

radius up to

This is the maximum possible extended robust stability region of perturbed plants.
It was shown that every super-optimal controller K £ I guarantees stability for
any perturbation lying inside the y*(5)-ball. Finally, the chapter has presented an
interpretation of this result in the case of perturbations with arbitrary structure
and a method which guarantees robust stabilisation in this case using super-optimal

controllers.

189



Chapter 8

Robust Stabilisation Under
Coprirne Perturbations

Until this point we have considered uncertainty on the nominal plant to arise as an
additive perturbation. Of course, modelling uncertainty is not a trivial task and thus
there are several types of unstructured uncertainty used in the modelling process,
depending on the application. A popular type for modelling uncertainty is to consider
all admissible perturbed plants, around the nominal plant, expressed in terms of stable
co-prime factors. Although this may seem to be an “artificial” way for modelling
uncertainty, it possesses certain advantages over other perturbation types. Its main
advantage over additive and multiplicative types of uncertainty is the complete removal
of technical assumption (7.1) which means that the nominal and perturbed plants are
allowed to have different number of poles in the right half plane. Co-prime factors
uncertainty in the framework of robust stabilisation problem was first studied in [Vid85]
and thereafter the theory was successfully applied to various problems by [MG90]. The
theoretical results developed throughout this chapter aim to derive stronger solutions

to the maximally robust stabilisation problem in the multivariable case.

8.1 Introduction

The control setup we are interested in is shown in figure 8.1. Consider the following

generalised plant:

8.1)
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where P22 := G denotes the plant and admits normalised lcf and ref:
G=NM-1=MIN

respectively.  Recall that the coprime factors satisfy the following Diophantine

equations:

(V. -fI\ (M ul (10 .

where N N,M, M, U,U,V,V 6 TZHoo. Further, it is assumed here without loss of

generality that the coprime factors are normalised and hence,
MM~ + NN~ =/, M~M + N~N =1 (8.3)
are satisfied as well.

Definition 8.1.1. A perturbation on the nominal plant G is said to be permissible for

the control setup in figure 8.1, if'it can be written as A := (Y\N A 6 T>st where

Tsew—{A : A GIZHoo, |AHoo < e} .

Figure 8.1: Closed-loop system under stable perturbations

It can be verified that the perturbed plant G& of figure 8.1 is the same with the upper
LFT of the generalised plant ([MG90], [ZDG96], [GL95]):

PUP, A) = (M + Am)-“(IV+ A n)
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as shown in figure 5.4(a), of chapter 5. Further, the lower LFT is

(I - GK)~xM~I

Definition 8.1.2. Consider the (nominal) feedback system (G,K) in Figure 8.1 with
A = 0. If (G, K) is internally stable we say that K stabilises G and write K & IC or
equivalently (G, K) GS. Further, (G, K) is said to be e-robustly stable if and only if
(Ga,K) GS for every A G TSc. i

In the framework of generalised regulator problem 2.4.1, the next theorem gives
necessary and sufficient conditions for the coprime perturbations robust stabilisation

problem:

Theorem 8.1.1 (Robust Stabilisation). [Vid85], [MGY90] Let G GI1ZCoo admit left
and right coprime factorisations G = NM~Il = M _IN, respectively. Then (G, K) is
e-robustly stable if and only if (G, K) GS and HIHoo < e_1 where

T = (I-GKy'M -1

is the corresponding closed-loop system.
Proof. See [MG90], Theorem 3.3. O

It follows immediately that the robust stability radius e is maximised by solving:

If a controller K stabilises G then it is well-known that it can be written in the bilinear
form K = (U+ MQO){V + NQ)~I, where Q G Tioo and all other terms are defined as

in equation (8.2). Then, the closed-loop transfer function is equal to

T = (/ - GK)~1M~1
J)
K| 1V EN = (u +MQ
\ V+ NO
vooM
v @
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Following the standard procedure developed in chapter 5 ([Fra87], [GIo86]) the
maximum robust stabilisation problem can be reduced to a Nehari approximation,

by considering, the following sequence of norm preserving transformations:

nmu im+nQu

oo

oo

where we defined 72 := and have used equation (8.2). Thus:

Vv

(8.4)

so that
WM~U+ N~V +Q\w=vV —I1

and

Txt:= VYLOOP U =Jm~U +N~Vf, +1)= {€)m (8.5)
using the Nehari theorem.
Hence, the computation of the maximal stability radius involved in the co-prime factor
robust stabilisation problem reduces to a Nehari approximation problem. A state-
space parametrisation of all optimal solutions to this problem is well known (see
[Glo84]). This solution proceeds via the derivation of a state-space realisation of

R = M~U + N~V.

Proposition 8.1.1. /[MGY90] Assume G 6 AbCoo with a (minimal) state-space

realisation:
A B

C o

Then G has an essentially unique normalised right and left co-prime factor represen-

G:
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tation G= NM-1 = M [N (i.e. unique up to multiplication by unitary matrices from

the right and left, respectively). Further,
A- BB'X B ZC'

M u g
-B'X I 0
N vV
C o /
and
A-7ZC'C B ZC'
S Bx I o
-C o [

where X and Z are the unique stabilising solutions of the algebraic Riccati equations:
AX+XA-XBB'X+C'C=0

and
AZ+ ZA! - ZC'CZ+BB'=0

respectively.

Proof. See chapter 3, Proposition 3.1.2. Also, see [MG90], Propositions 2.21 and

2.22.

Straight substitution from the Lemma above shows that:
-A1+ XBB' -{I +XZ)C'
B’ 0

(8.6)

after using an appropriate similarity transformation to remove the unobservable part.
Thus R e RRifa- The following theorem gives equivalent conditions for robust

stabilisability.

Theorem 8.1.2. A controller K stabilises G = NM~] —M~IN and satisfies
(/- GK)-IM~I <7

if and only if either condition 1 or 2 below holds:

L R\ <

<y/1~T7~2

Proof. The equivalence with condition 2 is proved in [MG90]. Then using norm

preserving transformations the first claim can also be proved. o
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8.2 Optimal and Super-optimal approximations

As shown in the previous section the set of all internally stabilising controllers K and

the corresponding set of all stable closed-loop systems T are parameterised as:
£={&+MQO)(V+NQ)-1:0E 0}
and

0'.QcH-

respectively. In order to parameterise the set of all optimal (maximally robust)
controllers C K and the corresponding set of optimal closed-loop systems  C T,
we need to solve a Nehari approximation problem, defined in equation (8.4). The set

of all optimal solutions is parameterised in the following theorem.

Assumption 8.2.1. To simplify notation it is assumed throughout this chapter that

the largest singular value o/ T r is simple (non-repeated).

Theorem 8.2.1 (Optimal Nehari approximation). Consider R £ TIH(Opxm with

realisation (4,8 ., Cr,0) defined in equation (s.s) with aca.) C C+. Then there
exists Qa e Tifttr+rn-DHP+m-1) such thar aw 4 e , for which ||/?+ QIU =

HIAl = Si (Nehari optimal approximations of R), are given by
Q=HQa,s(1
The corresponding ‘error” system is given by

H.o R+ Qu Qn 8.7)

Q21 QZ

where |*22 |loo < si- Further, HH~ = H~H = blfpand
Proof. See (as in chapter 6) [Glo84]; see also [JL93] for a more general setting. ]
It then follows from Theorem 8.2.1 that

[CG= U+ MQO)(V+NQy1:0€ "(Qasfi BHe);

and

O-.0c¢ TI{Qa,Sil (8.8)
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A more revealing parametrisation of 71 for our purposes can be obtained via the method
used to construct super-optimal approximations (see chapter 6 and 7). Before stating

this parametrisation we need the following result.
Theorem 8.2.2. Consider everything as defined in Theorem 8.2.1. Then

() There exist square inner matrix functions:

Vo (v Vi) and W~ = v
w7
such that
V~ o Hn Hn IT o SS9 o
0 1 H21 Hoze 0 1 0 H
where a(s) is scalar anti-inner,
(ii) H can be decomposed as
H=R+Qu RO, ouw o
0 0 0n Q=
where R € and Qio GRH".

M 52("=1" 1
(iv) All si-suboptimal approximations of R are generated as Q = RfiQa, sI"1
Proof. See chapter 6, Theorem 6.1.3. O

It follows from the definition of R and equation (8.4) that generating the optimal ap-
proximations of 7 implicitly requires the parametrisation of all optimal approximation
of R. The following theorem exploits Theorems 8.2.1 and 8.2.2 and gives a pseudo-

diagonal decomposition of the set 7p.

Theorem 8.2.3 (Optimal and Super-Optimal Decompositions). Consider
everything as defined in Theorems 8.2.1 and 8.2.2. Then

(i) The set of all optimal closed-loop transfer functions, 7) can be parameterised as:

Asia(s) 0] A
o) R +r,(Oas”
1\ —Y © A
1 o)

\ AL 7 /
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where
Y = and X = W~
are square all-pass.

(ii) The set of all level-2 super-optimal closed-loop transfer functions, T2 can be

parameterised as:

(sia(s) O ‘ '
0  s2b(s) 0]
(2=y1 0] 0 R +SfiR) X,
1 0 0
0 1 0
0 0 dn

where Yi (X\) has common first column (row) with Y (X). Further, both Y\ and
Xi are square all-pass and S2(R) and R are as defined in Lemma 7.1.1.

(in) The first two super-optimal levels of T are (y/s\ + 1, y/s\ + 1) where (s1,S2) are

the first two super-optimal levels of R.
Proof. See appendix F. O

Corollary 8.2.1. The maximum robust stability radius is given by

ek = 1
vsit |
Proof. Immediate from Theorems 8.1.1 and 8.2.3. O

8.3 Uniformly destabilising perturbations

It is well known that co-primeness (as a property) of a perturbed plant is eventually lost
outside the ri-ball, where 7| is the maximum robust stability radius ([Vid85],[MG90]);
i.e. the minimal distance §= [|[A* A"H for which (N + AN M + AM) fails to be
a co-prime pair cannot be smaller than & This is natural as such perturbed systems
cannot be stabilised by any compensator, as they have a pole/zero cancellation in the
RHP. Moreover, it is well known that in this case 5 > r| is general. Of course, under

such perturbations the plant is the nearest unstabilisable plant and in [MG90], p.59,
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a simple example verifies this brief discussion. In particular, Vidyasagar constructs
such perturbations in [Vid85], pp. 280-281. At the present work we do not intend to
discuss any further this phenomenon. Nevertheless, we are interested in characterising
all uniformly destabilising perturbations which, as it will be shown later, exist on the
boundary of rr ball and which cannot be stabilised by any optimal controller. Formally

we define,

Definition 8.3.1. 4 A e dI>sE is called uniformly destabilising if (G+ A, K) ™ S for
every K £ IC\. D

Example 8.3.1 (Destabilising perturbation). Suppose p — m = n — 2, and
assume aT E T\. Recallfrom Lemma 8.2.3 that such T admits factorisation T = YTX,
s.t. XX~ =Y~Y =1 Take

1
a(s)' g4

A & °)

0

Clearly, ||Alloo = A—, ie. it lies on the boundary of r\-ball. Define A = X~AY~

V si+1

and pick any frequency wjo EIZ so that,

det(l - AT)(jiog) = det{l - X~AY~YTX){ju()
=det(l - XX~AY~YT)(juO) = det(I- AT){jul)

but
(AT){ju) =
( s\afjui0) 0 \
0 1 0 0 [r +SAR)) (jUo)
0 -sio(ji'w0) O 1 o
\% 0 1
So,
0O O
det(I —AT)(juj0) = det =0
01

Although this A may not be permissible (as A "~ Tloo in general) it is possible to
‘interpolate” A at 100, i.e. define A(s) E TCH" A(jua) = A(ju() and repeat the
above argument to show that generalised Nyquist criterion is violated and hence A is a

destabilising perturbation for T. D

198



The point of example 8.3.1 suggests that there exist destabilising perturbations to
every optimal closed-loop transfer matrix on the boundary of the ig-ball. The next
Lemma establishes this formally and shows that such perturbations can be chosen
to be real-rational. The proof of the Lemma (which is omitted) relies on a direct
construction of such perturbations using the techniques of [Vid85] (chapter 7). The
construction reveals that all frequencies are “equally critical”, in the sense that such
perturbations can be constructed so that the generalised Nyquist stability criterion of
the open-loop perturbed system can be violated at an arbitrary frequency (including

zero and infinity).

Lemma 8.3.1 (Existence). There exists A = " /IN N 6 dI>se such that
{(M+ AAD-1(V+ An ), K} £ S for every K € /Ci. Furthermore, A can be chosen to

be a stable real-rational matrix function.
Proof. See Lemma 7.2.1, chapter 7. m

Lemma 8.3.2. Consider the two vectors:

£(s) = L M(s) \1v(s) and ip(s) = ([ ﬁN(S) \I w(s)N
j \ M-(s)

where v(s) and w(s) are the first columns ofV(s) and W(s), respectively, defined in
Theorem 8.2.2. Then

(1) £(s),%j(s) € KCoc, £~(s)f(s) = ip~(s)il>(s) = 1 and (£(s),ip(s)) are point-wise
orthogonal, i.e. ij;~(s)£(s) = o.

(ii) Let ysc(s) := —?== (sia(s)f(s) + *>(s)). Then ysc(s) e TiC" and y~(s)ysc(s) =
Vv si+
1.

Proof, (i) The result follows immediately from the fact that

(see equations (8.2) and (8.3)).

(i) The result follows since
y7cVsc = - . 71(sia~ r +
= gszI(siiﬂ + AN =1
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using the fact that a~(s)a(s) = a(—s)a(s) = 1 since a(s) is scalar anti-inner and using

the point-wise orthogonality of (£(s),">(s)) established in part (i). m

The next Lemma shows that a necessary condition for a A € dVSe to be uniformly
destabilising is that it is aligned with a particular direction at an arbitrary frequency.
For simplicity we continue to assume that si(R) > S2{R) > 0 (according to assumption

8.2.1).

Lemma 8.3.3. Let A E dV384, be a uniformly destabilising perturbation of G. Then,

there exists an ojo E R U {oo} such that

[I"Aj/aclloo = x T(jcuo)A (jujo)ysc(jujo) = &*

Proof. Take any $ E with [ < Si so that $£Sj Dx(m  and define the
controller K = (U + MQ)(V + NQ)_1 where Q = Ri(Qa,$)- Further consider the

corresponding closed-loop system

sia(s) O\
0 F
T =
1 0
0 1

as defined in Theorem 8.2.3. Here we define ~ = R + tFi(Qa, $)m Clearly K E IG and
T E Tx. Since f34 is an admissible stabilising perturbation for every 3 £ [0,1) and
(Ga,K) £ S, there exists uo E RU {oo} such that det(/ —A(u>0) T(juj()) = 0. Hence,

the matrix
s\a(ju)0) 0
%
I - A(ju>0)Y(jio0) (M) X(ju0)
1 (6]
0 /

is singular. Partition X(ju>() and Y(ju®) as follows:

X(jLoo)
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and

M -N" v Kt 0 0
y ulo) 7o)
N M~ 0O 0 w W=
'M -N
(v Kil) woOWi_) (j"0)

vi Yix 12 y2t

Note that yi = £(joj() and y2 = 4>(ju() where £(s) and ip(s) are defined in Lemma
8.3.2. Further, define:

Sn 12 (13 ;14
AR B

A (jwo) =

T
x
1 TAGuO) ( yia(juj0) YI£ y2 Y2t)

Next, introduce a suitable permutation matrix P which interchanges the second and

third block columns of A (ji>(), i.e. define

Jl (13 12 14

2l B A A,

Clearly ||A(ja»0)|| = ||A|| = e* Then, singularity of I- 4 (ju o) T(jcu() is now equivalent

to: '

A = A(Loo)P

>
u o \
r s11 12 ;13 o w
det <y - (N ¢ R °© =0
\[2a 2 B AT 1 ()
k 1° 1 ) >
or
1 — ¢nS1 — é13 —(é12® (jv0) + ¢é14-0
det < =0
— (é21s1 + ¢é23) Irm-1 — é22 — é241j
Assume now for contradiction that
1- ¢nSi- a3” o (8.9)

Then, expanding the determinant,
(1- ¢nSi- ji3)det{/mi- ;2"(jAO) - ;24 -
((21S1+ é23)(1—;nsi—13) 1(¢128 0”0+ (14H)} = 0
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or by using the permutation introduced above, we can write in LFT terms:

s M)

det <fm-1- Tu A, =0 (8.10,

Now, from standard LFT contractive properties:

Tu A, St <gt= oo
Vsi+i

Also, ||T(jcjO)|| < sj by assumption, which implies that

V(juo
7 = VW*U"oW + 1< yjsi +1 = (%) 1
and so,
T A si Viiwo) <
I

which contradicts the singularity of the matrix in (8.10). Thus contrary to the initial
assumption,

1—5nSi —¢13=0 AlISj + 3= 1

or by direct substitution,

xXid (ju0) (yia(jujO)si + y2) = 1

Ax T(juo)A(jujo)ysclju() = ! =e
vsit |

where xT(s) denotes the first row of X(s) and ysc(s) is defined in Lemma 8.3.2. Thus
|[xr (5)A(s)?/sc(s)||a > e* However, since x~x = y~ysc = 1 and ||Aljoo = ¢&* we

conclude that |[x:rAyscllm= ¢&* i

Remark 8.3.1. We can interpret the condition x T{juo)A{jujo)ysc{jbj0) = e* as follows:

Define an inner product over Cpxm (the space of p x m complex matrices) as:
(A,B) = trace(B*A)
whenever A, B E Cpxm. Then we can write:

xT(juo)A(jujo)ysc(juj0) = trace (ysc(jLoo)x T (jLoo)A(jLoov))
= (A(juo),Eo)=e*

where Eo = x(—jujo)y'sc(—juj(), which means that A has a projection of €* in the
direction defined by Ea. i
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8.4 Extended robust stability radius

Lemma 8.3.3 shows that all uniformly destabilising perturbations A are constrained
to have a projection equal to €* along the fixed direction x (—ujo)y'sc(—juj() at some
frequency w0 This means that it is impossible to extend the robust stability radius
along this direction, using a subset of all maximally robust controller Ki (assume that
we still want to stabilise all A £ Moreover, all frequencies are equally critical,
in the sense that we can construct uniformly destabilising perturbations such that
the generalised Nyquist criterion is violated at an arbitrary frequency. Thus, we can
only hope to extend the robust stability radius (beyond e*) at directions other than
¢ x(-ju)y'sc(-juj)), w e U U {ooj.

To motivate the formulation of an optimisation problem which allows us to extend
the robust stability radius in all directions (other than the “most critical” direction),
consider the following “distance to singularity” problem:

Let A be a n x n complex non-singular matrix with singular value decomposition
A = UEV* = Zi=i °iuivt with S = diag(<Ti,u2,..., an), ei > g2 > ...n,,_ 2> a,, i >
an > 0. What is the minimum norm perturbation ||E|| such that 4 —F is singular?
It is well known that the unique solution is given by the rank 1 matrix Eo = anunv*
so that HKl = gn. Thus in this case hEovn —on or (unv*, Ea) —an. Thus Eahas a
projection an in the most critical direction (umv*, ). Suppose now that we constrain
the magnitude of the projection of allowable perturbations in this direction, i.e. impose
the restriction that

\(unv* E0Q)\ < o

for some non-negative constant < an. Since now the new minimum-norm
singularising perturbation cannot have a projection of magnitude on in the most-critical
direction, we expect the constrained optimal distance to singularity 7(0) to be larger
than an; further, the tighter the constraint (o decreases), the more 7(0) should deviate

from «,. The full solution to the problem is provided by Lemma 7.3.1, in chapter 7.

Remark 8.4.1. In Lemma 7.3.1, an and an_1 are fixed and so the constrained distance
to singularity 7P is a function only of g. Suppose that somehow we could influence
the level of assuming that an and g) are fixed. Then, in order to maximise

we would have to maximise on-\, i.e. make the gap ct,, 1—an as large as possible, an

observation which motivates super-optimisation used later in the section. i
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Motivated by the above result we proceed as follows: Suppose we impose a structure

on the permissible uncertainty set, by defining the set:
- {A € VS : Hx*AyMoo < (1 —5e*}

where

= {a GHOC : IIAHoo < p)

Then we formulate the following optimisation problem:

Problem 8.4.1 (Constrained maximum robust stabilisation). For a fixed 6,

0 < $< 1, find all K that solve:
max{" : (CA,K) G<Sfor all A GS(o, p) U P>set}
and the corresponding maximum value p —p*(6). O

Remark 8.4.2. (i) Note that since we still require that all A G T>sa are stabilised, the
set of optimal controllers which solve CMRS must be a subset of Ki. (ii)) When 5= 0
the constraint ||xr Ay"Hoo < (1 —5)e* is redundant (i.e. no structure is imposed) and

thus £(0, p) = T>s"; hence in this case the solution to the CMRS problem is trivial and
is given by Xept = /Ci and p*(o) = e*. i

The solution of the CMRS problem is summarised in the last theorem of this chapter.
Note that (si,S2) denote the first two super-optimal levels of R and we assume that
si > s2. Further, /Ci denotes the set of all optimal (maximally robust) controllers and
/C2 the set of all super-optimal controllers with respect to the first two levels, so that
K2 Q K,\. First consider a parametrisation of the families of optimal and super-optimal

(level-2) feedback loops, in terms of the first super-optimal singular values.
Theorem 8.4.1 (Closed Loop Decompositions - Alternative Form). Consider

the decompositions in Theorem 8.2.3. Then,

(i) The set of all optimal closed-loop systems may be parameterised as:

\Zsi +1 0
=6 (Q X
@ 0 M(Q;s) ©

ie. in terms of its first super-optimal singular value. Here 0(Q;s) G

satisfies 0~© = Im and X (s) is square allpass, as previously defined in Theorem 8.2.3.
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Further, as Q varies in the set

Si —{Q € 'Ho : \\R 4- <5|loo < Si}

M(Q-,s) is well-defined, and satisfies 1 < g (M(Q;ju)) < |IM(Q;s)||o® < yjs\ + 1 for
al UE IZ

(ii) The set of all level-2 super-optimal closed-loop systems may be parameterised as:

( Vsi+1 0 o °
Ti —Qi(Q] s) 0 \/SfT T 0 Xi(s)
0] 0 M(Q]s) J

i.e. in terms of its first two distinct super-optimal singular values. Here Q(Q;s) E
£(ptm)x(m) safas’es o~@ = jm anc[ Xi(s) is square allpass, as previously defined in

Theorem 8.2.3. Further, as Q varies in the set

832 — {0 € Ttoo : 1-R + Qloo < s2}

M(Q;s) is well-defined and satisfies 1 < jui)) < WM(Q] 9)|joo < \/s\| + 1 for
allu E 71

Remark 8.4.3. The above decompositions are reminiscent of partial singular value
decompositions for constant matrices. The term M{Q\s) (and similarly M(Q\s))
appearing in the diagonal in the above form is essentially a spectral factor of I +
(R + Q)~(R -F Q), following the notation of Theorem 8.2.3. Hence it can always be
assumed a minimum-phase stable system (i.e. M(Q] s), M(Q; s)-1 E TZTtoo) without

loss of generality.

Proof, (i) For any Q E Si perform the spectral factorisation:

$:=/+(@R+Q0)~R+Q) =M(0;,s)M{Q;s) (8.11)

which is well-defined since > 0, for every o E 71 (e.g. see [ZDG96], Corollary
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13.20). Routine algebra verifies that

/ sia(s) o A
\Ai+1
. o ([R+QM-\0-s) YW+ o
Ti = X
R 0 o Mgy
\Ai+
Voo M~\0:s) )
Asia(s) o "
R
1 (0]
Vo 7 )

where O GSi. Further, in terms of the above form writing Q(Q, s) = Y(s)P(Q,s) we
get that P~(Q,s)P(Q,s) = Im and hence 0~(Q, s)O(Q, s) = Im. Setting s = ju in
(8.11) gives:

SGu) =1+ R+ Q)*R+ Q)(uj) = M*{Q-ju)M{QO-ju)
and so

a? =\t M\Q-ju)M{O-juj) =1+0? (R+0)ju) >1

and the claim is proved.
(ii) This is essentially identical to the proof of part (i) but using the form of 72 given
in Theorem 8.2.3. Here

0 := (i?(s) 1i72(s) ©#(0,s))

sa® o \
\/si+1
0 9 (0}
S2+ 1
0 0

1
° vs2+l 0
Vo 0 M~\0-s)
O

As shown in the proof of Theorem 8.4.1, both 0(Q;s) and 0i(Q;s) have their first
column common:

1 s
o1 (viSia(s) +y2)
Vsi+1
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This vector coincides with ysc (as defined in Lemma 8.3.2) which essentially shows how
this construction is connected with the imposed directionality constraint. Moreover,
i?2 is formed in a similar line and hence, the first two columns of Oi(Q;s) are clearly
independent of the choice of O G S2- Exploiting this and the fact that the spectral
factor (in the super-optimal decomposition) has norm less than s2, it is possible to apply
the already known theory of chapter 7, based on distance to singularity arguments

(recall Theorem 7.4.1 and set /=1) and thus derive refined robust stability properties.
Theorem 8.4.2. In previously defined notation the following statements hold:

1. For each 6 G [0,1],

A

1-0

= + > e*
vvsiH INVAITT s+ 1

with equality only in the case 5= 0. Here yjs\ + 1 and y sf+1 are the first two

(distinct) super-optimal levels of T with yjs\| + 1= (e%)-1.
2. For each 0 < 5 <1 the following two statements are equivalent:

@ [{M+ Am)'1™ + Ajv),KYy GS for every A G UL(S, /i%(S)),

(b) K GJ.

3. (@) S(O,p*0)) = VSet,
(b) for each K G/2,

(M +AM)-\N +AN),K GS

for every A G LUio.i]

Proof. By exploiting the structure of the set of super-optimal closed-loop approxima-
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tions in Theorem 8.4.1, the proof becomes identical to those of Theorem 7.4.1 and

Proposition 7.4.3. O
As expected the constrained robust stability radius is a strictly increasing function
of 8 with //*(0) = e* Moreover, for a fixed <50 and §j, increases as Sz is reduced.
Thus, we may expect a significant increase in when the gap between the largest

two singular values is significantly large. Further, for each <570 the set of optimal
controllers is the same, namely IC?. Thus each super-optimal controller guarantees the
stability of all perturbations in the union of the sets Ugjol] /***(£)) which contains

the the ball of radius €* as a subset.

8.5 Summary

Throughout the chapter the robust stabilisation problem was posed in terms of
perturbed plants which admit coprime factorisation. This is called the coprime robust
stabilisation problem and its solution involves a series of similar arguments to those
presented in chapter 7, i.e. robust stabilisation under additive perturbations. The main
difficulty here was to define an appropriate scaling of the maximal Schmidt pair of a
sequence of Hankel operators so that the set of all optimal (and super-optimal) closed
loop systems admit a “pseudo-diagonal” decomposition where in the diagonal entries
the super-optimal singular values of 7 appear. For this an extra step involving spectral
factorisations (depending on the set of all suboptimal approximations) required. In
particular, all super-optimal singular values of 7 are expressed in terms of the super-
optimal singular values of the associated system R. Hence, it is shown that the maximal

robust stability radius is

Vsi(R) -1 si(T)

Further, using the appropriately scaled Schmidt vectors, it is shown that all
destabilising perturbations of norm €* have a projection of the same magnitude along
a particular worst-direction. Hence it is possible to extend the uncertainty set which is
non-destabilising for a subset of optimal controllers, in the same way as in chapter 7,
i.e. by imposing a parametric constraint on the allowable projection of perturbations
along this direction. The problem is then reduced to a constrained maximal robust

stabilisation problem whose solution has been derived in chapter 7, and hence the proof
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is based on the same arguments. The extended robust stability radius is given in terms

of the first two closed-loop super-optimal singular values

1-6

+ > ¢t
NASl+1 y/4+1 \A‘7+1

H¥(5) =

Moreover, as in chapter 7, it is proved that any perturbed plant lying inside the x*/6)-
ball is stabilisable by each level-2 super-optimal controller /C2. Note that in contrast
to chapter 7, throughout this chapter the assumption of non-repeated singular values
was made mainly to avoid messy indexing. In view of the theory developed in chapter
7, this assumption can be removed without any serious technical difficulties.

As a final comment, the similarity of results in chapters 7 and 8 motivates future
research on a unified approach to the robust stabilisation problem under various
unstructured perturbation models (including weighting functions), which can be

described by a general LFT framework.
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Conclusion

In control theory, many design problems may be recast as problems, one of which
is central to the present work, namely the maximally robust stabilisation problem
for classes of unstructured perturbations. Initially, when no uncertainty enters into
the model, it is desired to design a controller that stabilises the nominal plant. In
Hoo terms, we seek to find a stabilising controller that minimises the Hoo-norm of
the closed-loop transfer-function. This can be achieved using the model-matching
theory and Youla parametrisation, a methodology which characterises the family of all
stabilising controllers and it is studied in chapter 3. Nevertheless, uncertainty always
appears in real processes. By choosing the additive uncertainty scheme, in chapter 5
the robust stabilisation problem is posed. Using elements from approximation theory
(Nehari approximation) which are developed in chapter 4, an explicit solution to the
problem is given, with emphasis to the extreme case of destabilising perturbations
lying on the boundary of the uncertainty ball (figure 5.3). It is further proved in
chapters 7 and 8 that all such perturbations have a worst “projection” along the same
direction. In chapter 5 an explicit expression for the maximum robust stability radius
is derived by solving the maximally robust stabilisation problem and characterising the
optimal solution set by means of a linear fractional map. All optimal closed-loops and

maximally robust controllers are further obtained in a closed (state-space) form.

Independently, the problem of super-optimisation was considered, motivated by the
fact that it is a form of hierarchical optimisation which restores uniqueness of solutions
of the Nehari approximation problem in the matrix case (chapter 6). Exploiting the
first two (distinct) super-optimal levels it is proved in chapter 7 that the maximally
robust stabilisation problem admits a larger class of permissible perturbations, when
a certain structure is imposed (7.12), (7.13). As a result this “superset” of non-
destabilising perturbations is characterised explicitly and conditions for robust stability

are derived (theorem 7.4.1). Then, the class of super-optimal controllers is identified
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as the subset of all maximally robust controllers which guarantees robust stability for
this extended set of non-destabilising perturbations. All results of chapter 7 involve
the additive unstructured perturbation model (assumption 7.1.1) whereas equivalent
results in chapter 8 are derived in the set up of the coprime unstructured perturbations

model (assumption 8.2.1).

Another point of view of the extended robust stability was presented in chapter 7. An
abstract notion of structured set approximation was defined, in terms of the artificially
structured set in (7.13) and supported via numerical examples. The idea is to extend
the results to robust stabilisation problems involving arbitrary uncertainty structures
and obtain tight bounds of the structured robust stabilisation using the developed

technique.

Future Directions

* It is intended to generalise the work of the last two chapters in a general LFT
framework which considers all kinds of unstructured perturbations. Weighting
(performance) matrices will be also considered, which may lead to formulation of
two-block or four-block problems. Then a direct comparison of the different
unstructured uncertainty models in a (real) control design will show the
quantitative difference of the robust stability radius which may occur between

the models.

* In chapter 7 we defined an “artificial” structure to the extended permissible
uncertainty set (equation (7.13)) and showed by examples that if other structures
are compatible with this set, then the extended robust stability radius (theorem
7.4.1) can be a tight upper bound to the structured robust stabilisation problem.
More effort is needed in this direction, by extending the idea of structured
set approximation (problem 7.7.1) for other structures and quantifying the gap

between these sets using this upper bound.

* As a special case of the above point, in [GHIOO] and [JH+06] it was argued that
this method can be used to compute a tractable upper bound of the structured
singular value, by avoiding the D-iteration. However, this idea has only been

explored for constant matrices and we intend to extend it to the dynamic case.
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* The extended robust stability properties offered by super-optimal controllers
can be used for closed-loop system identification. This involves the redefinition
of the nominal plant such that it is in the ‘“centre” of the extended set with
radius /*(<5). Connections between closed-loop identification and Tf*-control are
already established (see [GBC+99],[Hja05],[DdHO5]) which motivates the present

objective.

* Links with 7-foo-based loop-shaping methods ([MG90]) related to directionality
can be explored. Note that this method relies on the re-definition of the open-
loop system using weighting functions and defines the controller via the solution
of a maximally robust coprime-factor controller (for the weighted system).
The objective used here may be applied to define a more refined measure of robust

stability on the case of structured uncertainty.

* The problem of simultaneous Hoo stabilisation has been treated by many authors,
among them those in [SGKP02], where the problem is tackled by defining an
appropriate nominal plant via the solution of a two-block Nehari extension
problem, for which a maximally robust controller is subsequently design in the
hope that all plants which need to be stabilised are enclosed inside the guaranteed
robust stability region. Again the extended robust stability radius provided
by the method proposed in this work is potentially useful for deriving stronger

simultaneous stabilisation conditions.
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Appendix A

Linear Fractional Transformations

Linear fractional transformation are also known as Mobius transformations. Let
P G7\(mi+me)x(pi+P2) bg partitioned as

p = Pll P12
P21 P>

Then we define two classes of linear fractional transformations (LFTs) as the maps
HP, *): nPXme nmiXp\ pufp,*): npiXmi -* n neXpe
defined by
HP,K)w=pn +PnK(l - P22K)~IP2I

HP,K) :- P2+ p2A(/ - PnA)-17
for some matrices K ,A of appropriate dimensions. Here, the existence of the inverses

1s assumed to be well-defined.

Figure A.l: A lower LFT interconnection representing a transfer function from w to z.

Example A.0.1. Consider the transfer matrix
G(s)=D +C(sl- A)~IB =D + C:Y(I -SA -1)-1B = PUP, 31)
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where P\\ := A, »j> := B, v»2i := C and P2 w=D.
Another important class of LFTs is the Redheffer or star product. For appropriately
partitioned matrices P, K such that (/ - P22Aui) is invertible, we define

Pi(P,Kn) PU(I - KnP22)-IKu
P*K :=
KIZ(I- P 22P 11) - 1P 2i P22)
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Appendix B

Algebraic Riccati Equations

Let 4, O and R be real n-by-n matrices with QO and R symmetric. The Algebraic
Riccati equation (ARE) is then defined by the matrix equation:

A'X+XA +XRX +0=0

Associated with the above equation, the Hamiltonian matrix is defined by

g AR

-0 —A'
Further, define
o -1
J =
I o

where J' = J-1 and so J2= —/. It follows easily that
J-IHJ =-JHJ =—H'

and hence H is similar to —". Therefore, the spectrum of H is symmetric with respect
to the imaginary axis. Now, observe that ARE is a quadratic equation and thus it
may have many solutions in Gixn. One of the solutions is when X is real and 4 + RX
is stable (stabilising solution) - if such a solution exists then it is unique. To see this
assume for contradiction that there exist X| and X2 such that 4 + RX1and 4 + RX2
are both stable. Then

A'X\| + XiA + X\RXi + Q = 0

and

A'X2+ X2A+ XoRX2+ Q=0
Subtracting the two equations gives:
A'X1+ X] A+ XIRX1 - A'X2- X2A - X2RX2= 0

220



or
(X!- X)(A+ RXr) + (A+ RX2)\X1- X2 =0

since R, Xt are symmetric (with i —1,2). Now both 4 + RXi and 4 + RX2 are stable
by assumption, so the only solution of the above equation is when X| —X2= 0. Hence

X! —X2 and the claim of uniqueness is proved.

Summarising, the spectrum of a Hamiltonian matrix, H, is symmetric with respect to
the imaginary axis. Further, under mild assumptions, among all solutions of the ARE
there exists a unique solution such that 4 + RX is stable, which from now on will be
denoted by X = Ric(H). It is crucial to realise that if X is the stabilising solution
then H has no eigenvalues on the imaginary axis. This can be shown by observing that

under a similarity transformation
I o I o A +RX R
H
-a:l i a: / 0 -(A+ Rxy
Then, it is clear that
\(H) = A/A+ RX) UA(-(A + RX))
For necessary and sufficient conditions for the existence of a stabilising solution and

its proof refer to [ZDG96], [Kim97] and [Fra87].

Lemma B.0.1 (Bounded Real Lemma). Let G GRTtoo with G(s) = C(sI—A)~IB
and assume (A,B), (C,A) are stabilisable and detectable, respectively. Then, the
following conditions are equivalent

im||Glloo<7

A4 7~2BB' L :
2. The Hamiltonian H — has no pure imaginary eigenvalues
-C'C A’
3. H Gdom(Ric)

Proof. 1 2. See [ZDG96], lemma 4.7.

2 3. See [ZDG96], Theorem 13.6. O

Remark B.0.1. Condition 3 suggests that if (A, B) is stabilisable and {C A) is
detectable then the unique stabilising solution of ARE

A'X + AZA+ XBB'X +C'C=0

(i.e. there exists X which stabilises A := A + 'v"BB'X) is positive semi-definite
[Kim97], corollary 3.11.
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Appendix C

Super-optimisation

C.1 Proof of proposition 6.1.4
Proposition. Define

Vi:=I1I2Hn and W+ .:=H"H~~
Then, Vi and have, the following realisations:

Aq—SxIB@Cqi  sx 1B g2
Cg\ —s1 1D12Cql sfipi2

N

and
Ag —S IBgC@2 Bgi— IBgD 2

stICe sfID21

w3 =
with corresponding controllability and observability gramians:
Vi=-(i7")-1P2, Xy Q> Q>
Yw—P2—Po>, Xw——P\
In particular, the following matrix inequalities hold: P2 > P2 and Q2> Q2-

Proof. The proof is broken into separate sections. The first part is verified by simple
state-space calculations. This is followed by deriving the gramians for the derived re-
alisations of Vi and W+

1.8tate-space realisations:

222



B g2 Aq —S 1Bq2Cql  Si 1B
Gp1 B2 Sf'Cq, sfl
A  ~S11Bq2Cg  sliBp
= 0 Aq-Sj1BeCq SfiBeg
_¢qd ~SiDizcg i D
' Aq 0 0
0 Aq-sjiBggCq srl®
Cqd Ggi —xiDi2Cq Si~12

— Q12Q12 >

-1
where T = By removing the uncontrollable terms,

Aqg —Sj1B@Cqi  si 1842
Cgl ~ s11Di2Cqi  si 1Di2

N

Similarly,
C oA ) ~A'q + Sf'C'qX, SHIC
Wi =g lag 2 S 44 q+Sf'Clq P2
- D §1 % 1 sfl

"% "C'eBd  siCyq !
N 0 -A'q+S8"°C'q"¢X SHICe
A AR 21 Si b 21
0 0
0 -Aq+S"C'q” SlCeq

ny sxID21Bql - Bql s~ilD2l _

-A'+ sr1C'2Bgl ’\Cq2

si1D21Bql - Bgl ~ 5 1

2a. Controllability and Observability gramian of V+: Take the controllability gramian

of /& That is

(Aq - sf1Bg2Cql)Yv + Yv(A'q- sflCqlBq2) + sf2BeBe =0

or
(Ag+ Sj B@eBeQ2)Yv+ Yv(Aq+ s1 OB@Bq2) + s1~BeBe —0
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Multiply from the left by R’ and multiply from the right by R.

R\Aq+s?B@BeQ2)YvR + R'Yv(A'q+ sfO B @Bq@2)R + sfR 'BeB¢R =0
From proposition 6.1.3, we have

(Aqg+ s"B @B@Q2) = (R')-\Aq+ s fP 2CeCq)R!
Thus,
{Agq+ s fP 2CeCx2)R'YVR + R'YVR(A'q+ sfC 'eeCqeP2) + s "TtB @B¢R = 0 (C.])
Compare this with the all-pass equation:
AgO1+QI4A +C'C =0

written out in full as:

(~Aq- s? P2CeCep)Ox+ Q1(-A'q- sfC'eCeP2)+ sfR'BeB¢?R =0 (C2)
Subtracting (C.1) from (C.2) shows that

Ww=-(R'yI"

since the matrix 4q+ Sy2P2CeCe is asymptotically stable (i.e. its spectrum lies in
the open left half plane).

Recall first the following Lyapunov equation, derived from all-pass equations (6.8(m))22,
AqQ2+ Q249+ CqlCqg + CeeCe = 0
Further, from all-pass equation (6.18(z))2,2 we get the Riccati equation
AqQ2+ Q24q+ si2QiBeBeQ2+ CeCe= 0
Now, let the observability gramian of the derived realisation of V4 be Xv. Then:

Xv(Ag—Sj1BeCq) + (Aqg—Sj 1CqlBe) Xv
+ (Cqgl - s"C'qlD12)(Cql - s?D 12Cql) = 0

Substituting
Cq = —sx1BgQ:=
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gives:
Xv{Aq+ s12B@eB@Q2) + (A'q+ s1202B@B'e)Xv
+ (Cqgl + s fQ 2BeD[2)(Cql + sx2DX2B'eQ2) =0
which can be expanded as:
XVvAq+ Sj2XvB@B'eQ2+ AgXv+ sx202B@BeXv + CqlCql
+ s1202"q2D'12Cqg + 512CqlDx2B@Q2+ sxAD2B@D'2Di2BeQ2= 0
But from (6.8(u))22 we get that D/2DX = s\I. Hence,
XVvAq+ si2XvB@eB@Q2+ A'qXv+ sx2Q2B@B'eXv+ CqlCq
+ si 2Q27°q2D\2Cq + sj 20D \2B )2+ sj 2Q02BeEBga)2- o

In the sequel we show that Xv= 02—z is the unique solution of the above equation.

The term on the left hand side of the equation can be written as:
@ —q2 -+ 5 2AQ2 —Q2)BeBgQ2+ AqQ2— Q2
+ Si 202B@B@(Q2—02) + CqlCql + Si 202B@D'12Cqgi
+ Si 2CqlDi2B@Q2 + Sj 202B @B'eQ-2
or, equivalently as:
Q24q—Q24q+ Sj 202B@BeQ2—S] 102B@BeQ2+ AqQ02—Aq0:2
+ Sj 202B@B@Q2 —Sj 202B@B@Q2+ CeCgX+ Sj Q2B@DX¥Cq
+ 81 2C¢Di2B@Q2+ sx202B@B'eQ2
By subtracting the Riccati from the Lyapunov equation we get
§i1202B@B@Q2+ Sj 202B@BeQ2+ sx2Q2BeD12CgX+ sx2CqlDi2B'eQ2
= §j 202B@(BgeQ2+ Dn Cq1) + s12(Q2B@ + CqlD\2)B'eQ2
= 0=: RHS
using all-pass equation (6.8(u))2>-
2b. Controllability and Observability gramians ofW=: First note that

s ' -A'qtsilCeBq si'C'2
silD2IB'ql - Bql silDb
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implies that
Aq- sj 1B@C@ Bd ~ si IBgDX
Si'Cql S\lDa

Hence, the controllability gramian Yw of this realisation satisfies:
(Ag- s"B qlCq)Yw+ YwA'q- sxICeB'q@2)+ (Bgl - s? B qlD21){B'ql - sxID21B'¢Y = 0
Substituting
Bq =s"PtC'#
this can be written as:
(Ag+ sx2P2CpCq) YW+ YwA'q+ sfC 'eCeP2) + BqlBql
+ sx2BqlD'2xCqeP 2+ sx2P2CqgeD21Bql + sx AP 2CqeD 21D'2XCqpP2 = 0

From all-pass equation (6.8(n))22 we get that D21D21 = D2\D'2X—s1/. When this is

substituted in the above equation we get:
AqYw + sx2P2CeCeYw+ YwA'q+ sx2YwCeCeP2+ BqlBql
+ §j 2BgiD'21CP2 + s12P2Cq@D2iB'ql + Sj 2P 2CqeCqeP2= 0

Assume Yw = P2—P 2. Next we show that with this assumption Yw satisfies the above

equation.
LHS := AgP2- AqP2+ sx2P2Cq@CqP2- sfP 2CeCeP2+ P24'q- P24'q
+ sx2P2C@CqP2- s fP 2CeCeP2+ BqlBql + st 2BqlD'2xCqP 2
+ sx2P2CqgD21Bql + sx2P2CqeCqP 2
= AqP2+ P24'q- AqP2- P24'q- sx2P2C@CqP2+ BqlBql
+ s fP 2Ce(CeP2+ D21BgXY + sx2{P2Cte + BgiD'2§Cq2P2
Now, (6.8(nz))22 shows that BgD'2X+ P2Cq = 0. Thus,
AqP2+ P24'q- AqP2- P24'q- sx2P2C@eCeP2+ BqlBgql = 0 =: RHS
The last equation is derived by subtracting the all-pass equation (6.18(r1))2,2 from
(6.8(fn))22- This gives:
AgP2+ P24'q+ BqlB'gX- AqP2- P24'q- B@B'¢X= 0
Using Bqi := —sx[P2C¢ this can be written as:
AqP2+ P24'q- AqP2- P24'q- sxIP2CgeCqgP2+ BqlB'¢X= 0
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Next we find the observability gramian of the realisation of W=. This is the unique

solution of the Lyapunov equation:
K - Si'CVvKy)XW+ Xw(Aq- s"B qlCql) + s"C'eCee = 0
or, equivalently
(A'q+ sfC'eCpP2)Xw+ Xw(Aq+ si2P2CeCq2) + s"C'eCq = 0

Now by definition,
Qi = P:R and Px:= Q2(R)~1

Further, the all-pass equation (6.18(n))n,
APi+ PiA'+ BB'=0
implies that
A - a? CeCeP2)Pi + Pi{--Aq- s P20@Cq) + s "C'eCq = 0

Therefore, Xw = —P\. O

C.2 Proof of proposition 6.1.7

Proposition. The si-allpass system sicr(s) G 7ZC* 1 defined in the proof of Theorem

6.1.3 can be written as a parallel system interconnection sio:(s) = ai(s) + «2(5),

A 0 Bai
Sla(s) = 0 - S\2Cq2Cq2P2 Boiz
cd Ca2 (cfe)Dnr>i

in which
Bai := BD2l+ P,(P2- P2)"BgiD i
Ba2 = (P2- P"BgiD"

-(Di2)'Cql(Q2- Q2)]05+ (D12)'C
Ca2 :=-(Di2)'Cql(Q2-0Q 2)m

Cai :

In particular, « G ma and deg(a) <2n —r.
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Proof. The proof follows a sequence of detailed state-space calculations. First,

A o B
i , Aq 51 202Bq2B@ Cql + sf202Bq2D]2
v  Hu = 0 Bql
(Df2y cql(Q2— 2Y a)'
W ) C CqY °n

Aq Si202B@2B@2 BqCT Z\C Clq\Cq + Z\Cql T
0 A 0 B
0 0 A Bq\
_(Dfyeql(Q2-0 ¢ (Dtyc {Di2ycql  (DtiDn _
~Aq—si 2028282 Ck +Zk cyicq + 21¢,  Cqin
0 A 0 B
0 0 Agq Bql
(Di2ycql(Q2-0 2y (DtiYC (D ti'Du
in which Z\ = s1202B@D[2, using D12Dn = 0. Further, using a similarity

transformation 7 ':

I 0Q2—02
r= 0 1 0
0 0 1

we can write:

-A'q-sy 202Bq2Be  CqlC + ZiC (Q2—Q2)Bqi + CqlDu

v Hu = 0 A B
(Df2)'Cqi(Q2-0 2t (D1i'C (Dti)'Dn
3 $2 g5
o A B
$3 4 $6
We next form:
% % -Alg-s - 2CeCepP2 (P2- P)fBgD2
v~Huw = 0 A B
-B'qi - sy2D21CP2 Di,
$3 %4 $6
$2 *5(-s;, - sfD '21C,2P2) ADfi
0 4 - sf BDi,
0 O -A'q- S f2CeCq2P 2 (P2- P2yBqlDfi
$3 $4 M-B'qi - sy2D2Ic @y 2) hBf
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Now
-4(1,1) — Aq s1202B@Be
,(1,2) = CqIC + s"Q 2B@eD'12C
—A903 —034 —sx202B@BeQ3
by using the all-pass equations (6.8(u))2i and (6.8(m))2i- In addition,
“4(1,3) = —(02—02)Bq\B'gl —Sj 2(02—02)Bq\D'2ICq2P> —CqID n B gl
- sfC'qlDu D2lCgP2
= -(Qa - Q2)BqlBql - s~1{Q2 - 02)BqlD21C@P2- CqlDu Bql
on noticing that Dn D21 = 0 (from all-pass (6.8(m))(i,2)). Moreover,
A(2,3)= -BB'ql - sfBD 21CqgP>2
A(3,3)= -A'q- s32C@CqP2
B(1)= (Q2- Q2)BgDi + CqlDn Dz
B(2)= BD=z
B(3) = (P2- P2)]BqlD i
C{l) = {Di2)'Cql{Q2-Q 2)’
C{2) = (Di2)'C
C{3)= -{Di2)’DuBqgl - s?(Dt-2yDn D21CqP2
= -(Di2)'DnBql
The expression for C(3) is due to the fact that Dn D21 = 0 (from all-pass (6.8(m))(i,2)).

Apply now, the similarity transformation

/ Qa © /' -Qz O
T= o I o =Ta1= o i o
o o / o o [
Then, we have that 4{1,2) = —4(1,1)03+ 4(1,2) + 034{2,2) = 0. Further,
-4(1,3) =.4(1,3) + Q34(2,3)
= - (Q2- Q2)BgB'ql - sf(Q 2- Q2)BqlD21CqP2
- CqlDn Bgl + Q3(-BB'ql - sfBD '21CgP2)
=- (Q2- Q2)BgB'ql - sf(Q 2- Q2 BqlD21CgP:2
- CqlDn Byl - - 5$3203BD'2l CeP 2)
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Next note that the all-pass equation (Dh Ch + BHQH = 0)(ii2) implies that:
B'Os + BgiQ2—Du Cqi —D21Ce
= (03B = -Q2Bgl - CqlDn - CgD=
> 0"*BB'ql = -Q'2BqIBql - CqlDn Byl - CqD2IBYl
= (3BD21 = —(2BqlD21 - CqlDn D21 - CgeD21D21 = J2P2Cee - s\Ce

Note from all-pass (6.8(m)) that Dn D21 = 0 and that D2iD21 = s\I. Further, taking
(Dh Bn + CHPH —0)(22) we deduce that BD5 — P2Cq2. Thus,

"4(1;3) = —(0Q2—02)BgiBql —sx2(02—Q2)BqgiD21Cq2P: —CqlDn B'ql
+ Q2BqlBql + + Cqg2D2iB'ql - sfQ '2P"C'q2Cq2P2
+ Cq2Cq2P2
= Q2BqlBql - s~(Q2- Q2)BqD2ICg2P2+ Cq2D2iB'ql
- §\1202P2Cq2Cq2P > + Cq2Cq2P 2
= Q2BqlBd - sj 2Q2Bq\D21C@P: + si 2Q02Bq\D'2lCqeP2
+ C@D2IBd - sfQ'2P2CeCqP2+ CeCqeP2
— Q2BqlBq —s12Q2Bq\D2"Cq2P: + sj 2Q2Bq\D2CGy2P:
- Cq2Cqe P2- $202P2Cq2Cq2P: + Cq2Cq2P 2

by observing that D2iBgl = -C ¢2P2 (from all-pass (6.8(m))(2))- Now, take the last
two terms of the above equation:

-SfQ "2PN\C@2C@P2 + Cq2Cq2P2 = s~ (sll - Q2P2)C'q2Cq2P2
= S (Q'3P3)C'qg2Cq2P 2
= —s/203BD b CqpP2
where all-pass (6.8(vi))2i gives D2\B' = —Cg@P3 => PsCe = —BD?2l. Thus, we have
A(l, 3) = Q2BqiB'ql —s1202B¢iD21CqeP2+ Sj 202B gD 21CqP2
- Cq2Cq2P: - $2Q'zBD'2ICq2P2
—Q2Bq\B'gl + (—Sj 202Bq\ + Sj 202Bgi —sx20'3B)D 21Cq2P:
- C@Cq2P2

by taking the term D21CgP2 as common factor. Now, recall from all-pass (6.8(u))(i2)
B’'Q3+ BqlQ2+Dn Cqgl + CeeD21 = 0 or equivalently O3B+ Q2Bqgl = -C qlDn -C'gD-=1.
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In addition, from all-pass equations we get that Dn D2j = 0 and that D2\D2 = sil.

Hence, we have
(1) 3) —Q2BqiB'ql —CqpCqpP2+ {—Q2Bq\ + Q2Bq\ —(3B)s12D'2l CeP 2
=02BqlBql - CeeCqpP2+ s"Q 2BqlD21CqeP2+ CeCeP2
but BgiD21 = ~P2Ct and BqlBql = - A qP2- P24'q- B@Bqg2 Substituting,
A(l, 3) = Q2BqlBYql - CeCqpP2+ sfQ 2BqlD21CeeP2+ CeCqP:2
= QA~AqgP2- P2A'q- BpBQ) - CeCqpP2- sfQ 2P2CepCqP2
+ Cogcqgp?
= Q2(-A qP2- P24'q- BeBg- sfP 2CeCeP2) - CeCqpP2
+ Cqcqp:?
= Q2(("2 - + 4¢gP2- P2)+ - P2)CeCqP2)
—C@CqpP2+ CepCpP2=: 4
since -B @Be = A,P2+ P24 9+ sj2P2CeCqP2. Further,

I -053 o
CT«1= 72 (Dy)'C -0 / o
o o /

Z2 -Z203+ (Di))'C -{Di2)'DnBg
where Z2 := (D"2)'Cql(Q2- Q2Y and
I Q 0 (Q2—0-)BgD2+ C'//n/24
TB= o /o
o o / (P2- P2)tPg” 1
(O2—Q2)-Ba -D1+ C"1Dn-Ca + O3BD 21
BD
(P2- P2)tPYP X

{02Bgi —Q2Bgi + C"Dn + Q4-S)"!

(P2- P2yBglD"

{-C'eD21-Q 2Bql)D" Q2BqgiD 21
BDx = BDy
(P2- P2)tPdP & (P2- P2)tPoP=
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So, v"HuW has a realisation:

—A'q—Sj 202B@Bip 0 $ Q2Bg\D2i
0 A -BB'ql - s2B D21CqpP2 BDii
0 0 -A'q- s 2CeCpP2  (P2- P2)tf?9 D
72 -Z203+ (D&yc -{Di2)'Dn Bql (DkYDnDk
-A'q—s1~QeBeBe o] o] 0]
0 A -BB'ql - sfB D 21CqP:2 BDi1
0 0 -A'q - S\2CpCpP2  (P2- P2)tpglPd
Z202 -z 208+ (D&yc C(3) (Dti'DnDk

where we have used the transformation

I o Q2{P2—P2) I 0 -Q2(P2-P2)
T= © @) =T“1= o© o)
00 1 00 /

Also,
C(3) = -(Diz2yCql(Q2-Q 2)'Q2(P2- P2) - (Diz2)'Dn Byl
B{1)- —Q2BgD2 + Q2(P>— P2)\P2— P BqiD"i
=-Q2{I- 0p2- P2yt(?2 - P2)} BgiD2l = o
due to corollary 6.1.6. Further,
A(l, 3) = Q2(P2- P2) [~A'q- sx2CeCq@P2] - [-a;- s?Q2B@eBql] Q2(P2- P2)
+ Q2(P2- P2)A'q+ Q24q(P2- p2) +s5fQ 2(P2- P2)CeeCqP2
+ CeCqe(P2—P2)
=0
Hence, v~Hn w has a realisation:
A -BB'ql - sx2BD'2lCqP 2 BD*
0 -A'q - s\2CeCeP 2 (P, - IVyB"Di,
-2 2%+ (z"yc —Z202(P2- P2)- (Di2)'DuBq (Di2)'Dn D21

T p3

Finally, applying the similarity transformation 7' := shows that:
o /
A o] Bai
sia(s) = 0 -A'q- S2CeCeP-:2 Ba
cQ e (Dti'DnDi,
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where

Bai == BD" + I\(P2- P2yBqlD"
Ba2 = (P2- P2yBgqlDi

Cdi :- -(DnYCAQ* ~ Q2YQ3 + (Dw)'C
Ca :=-(Dj;2vCql(Q2-0 2)'R

This completes the proof. m

C.3 Proof of proposition C.3.1

Proposition C.3.1. K = Ti(Qa,Qal), where

o (K1 ‘1Y /Qn —qi2gi2 Qriger @1 01201
K21 0) \ 00 2 0

Figure C.I: Sketch of proof of proposition 6.1.5.

Proof. The argument is summarised in figure 6.1. The proof'is carried out at a transfer

function level. Take

K = (ki1 -~122 _ (Qn — Q12012 Q11Q21 Q21 Q12Q12
\/v2t 0 ) \ Q21Q21 0
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Then
ANi(K,X) = Kn + KI2XK2I

= Q0n ~ QuQu QuQ2 Q2 + Q12012 XQ21 O

= Qu + Q12012 (X —Qn)Q1 Q1
Let Y := Fu(Qa\x). Then

HQa,Fu{Q~\X)) = HQa,Y) - QI + q12v(s - qz2v)-10 =

Hence, we want to prove that

Qvlﬂ(- Qn)O~ =Y(/ - Q~Y)-.

First we obtain an expression for Qa . Partitioning Qa1 conformally Qal

On Q1
Oz Q22

QOa Qa

Expanding the above equation gives:
(55) : TOn +$Qa =1
(56) : TQu+ FQx=0=*T = -<FQ2Q-2
(57): +vga=0=>n=-"0QnQn
(58) : "Qr+ FlIQz=/

Substituting (S6) into (S5)

—&Q022012 Qu T ™2 =1 -miXQ21~ Q22012 Q11) =
u$ =(Q2a—022012 0On)
=$ ¥ =—(02a —Q022012Qii) Q22012

Further, substituting (S7) into (S8)
AQiz= —2QlIQa Q2 =1 =% = (Ql2—QlIQ2 Q)
= Q — —(Q12 ~ QuQ2 Q22) QuQa2l
So, the inverse of Qa is
—Q2l —0220120n) 1Q22Ql2 Q2 Q220120n)
(Q2—QuQ2 Q22 (Q2—QuQ21Q22) "QuQ2t
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Now let

Y =Fu(Q :\x )= -(Q 12~ OnQz2iQ 22)-10n0~2i +
+ Qe~ Q1 @2 N[/ + Qa~ @2Qu) "e2e2)| @2 ~ Q2QrqQu)
which is equivalent to
(Oz ~QuQ2 Q22)Y(Q2 —022012Qll) =
—QIIQ2I (Q21 ~ Q22012 Q1l) + X/ + (21 — Q22012 QIl) 1022012M 1
and thus
(Q12 = Q1121 O22)Y (o7 ~ Qe2gr2(n)[-" + (02 — Qe2Q12 01) Qe2Qi2X| =
= - OnQ2i(Q2i~ 0220120n)V + (Q2 - 022012 On)~"022012X] + X
= —QuQ2t [Qor ~ Q22012 On + Q22012 X] + X
= —QuQ2 [Qar d' Q22012 (X —QII)] + X
=X —Qn —QuQz1 Q2202 (X - Qn)
Summarising,
(Q2—QuQ2 Q22)Y(Q2 —Q22Q12 Q1Y+ (Q2 Q22Q12Q11) Q22Q12X]
— [ —Q11Q21 Q22Q12](X —Q11)

Noticing that

(02 = QQ1 QY + (Q2 ~ Q2012 Q1) tqzzanzxq — QM * Q212 x =)

(shown above) we get,

(Q2—QuQ21 Q22)Y[Q2 + Q22Q12(X —Qn)] = /1 —QuQ21 Q22Q12](X —Qn)
multiplying form the right both sides by (X —Qn) Q12 gives
(Ql2—QuQ2l Q22)Y[Q2 (X —Qn) 10\2+ Q2] = (Q2~ QuQ2 Q22)

="Y[Q21(X -Q 1)-1Qi2 + Q22] = /

=MQ2(X - Q) 1Ql2+ Q)= Y_1

=HQ2i (x - Qii) 1Qi2+ Q2]Y =1

=HQ2i(x - Qii)—2Qu]Y = I - Q=Y

="Y(/ - Q2Y)-1= (Q2(X- Qii)_1Qi2) 1

which proves the initial claim. O
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Appendix D

Distance to singularity

Throughout this section we summarise important results in distance to singularity
matrix problems (for a complete treatment see [JH+06]). A distance to singularity

type of problem involves in finding matrix A such that
det{A —A) =0

under certain constraints that A may have. Here we are interested in deriving the
minimum distance to singularity which is usually referred to as the minimum (induced)
norm of a matrix A that is also rank reducing to 4. This is an “absolute” distance to

singularity problem and without loss of generality, 4 may be considered diagonal:

detf{A- A)=0 det(UZV - A)=0" del([/(£- UAV)V) =10
det(U)det(E - U'AV")det(V)= 0" det(Y, - U'AV') =0

by considering the singular value decomposition 4 = UHV. Observe that ||C/'AV/| =
|Al|l. Throughout the chapter we examine distance to singularity problems where the
rank-reducing perturbation has structural constraints in terms of its norm and spectral
radius. Further, we assume multiplicity on the smallest singular value of A, greater
than one, motivated by the theory developed in chapter 7.

The first result outlined here concerns the case when the rank reducing perturbation

is constrained to have a zero first block.

Problem D.0.1. Let

0 0 0
m n-m

0 A-22 0 0
m A 0

A = 0 0 3 0
n-m 0 Ai
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and assume that ai < a(A2), 0 < a3 < g (Auw) and ax < a3. Further, define
Ex =, omxm-m - Find the minimum norm of all rank-reducing perturbations
A, which are constrained to have their first m x m block equal to zero. Equivalently,

solve the following problem:

7omX¥n := min{||A|| :det(A - A), E(AEx = Omxm}
Then determine the optimal structure of such perturbations. O
The solution of the problem is given via the following lemma.

Lemma D.0.1. Consider everything as defined in problem D.0.1. Then the structured

distance to singularity is
[Omwan=TVw* (=: VAAMA"M))
All optimal rank-reducing to matrix A perturbations have the following form:

0 0 0 \/alasg 0 0

0 0 0 0 A 13 A 14

0 0 0 0 A 23 A 24

>

I

_ =
=

Il

=

S

0 0 0 0 0

> 0
o Y
> &
N
| S

T

0 A 31 A 32 0 A 33 A 34

0 A 41 A 42 0 A 43 A 44

Proof. The proof'is identical with that in [JH+06], where a scaled version of the problem

is considered. m
The following lemma is an auxiliary result needed in later analysis.

Lemma D.0.2. Let H = Hn  Hn and U be complex matrices and assume that for

H2 H=
any ax > 0, (axI - Ffn U)~l, Flfff and Hff exist. If H is 77-unitary for some 7 > 0,

Hn  square, a\l —Hu is nonsingular and ||Lfn|| < a\ then
™ (7,071 = \\(@flI - Hu)-\i2 - aflHx)
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Proof. The proof'is identical with that in [JH+06], where a scaled version of the problem

1s considered. O

Lemma D.0.3. Let
~Im O O O
~iIm O O Mm@ O O
0O A O O o
o o O
0 < al < am+1 < e < an. Further define E\ as define in problem D.0.1 and let
An € Cmxm be given. Assuming that ||An|| < () < and that (ai/ —An) is

nonsingular, then

min [An | = min 7
det(A - A) =0 72/ - aiAn)(ai/ - An)_1| = amtl
E[AEi = an 7 >ai

Sketch of proof. Here we adopt standard all-pass dilation theory in order to construct
7-unitary completions for the given block An. Note the importance of conditions
||[An|| < « and det(ail —An) o0, so that the (off diagonal term of the) dilated
matrices have full rank. Hence, we construct matrices A]', A,, of dimensions 2m x 2m
and 2n x 2n, respectively, such that ||A]|| = |AJ|| =7 (and which also share the same
first block, An).

Further, we construct the upper LFT’s of the inverse of dilation Aq and A4, A,

respectively:
XI = [(AJ)-'n]
and
and observe that
all=7_1

from Lemma D.0.2. Further, after some algebra, it can be shown that the first m x m

block of  is equal to zero.

Then the idea is to show that the original problem

min 7
det(A —A)= 0

7 = 1A ii|l

E[AEX= An
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is equivalent to solving a distance of singularity of the form given in problem D.0.1, i.e.
min 7
det{X\ - $£) =0

11*¥111=7*1

EVQ\E| = omxm
where the optimal rank-reducing perturbation is constrained to have zeros in its first
m x m block. The solution of this problem is already known and hence using Lemma

D.0.2 it is shown that the problem is equivalent to

min 7
WH2I —0iAu)(ai7 —An)-1| = am+i
7> ax
and thus the claim is proved. For a complete proof see [JH+06], Lemma 3.7. i

Remark D.0.1. Lemma D.0.3 gives the minimum norm of a rank-reducing perturba-
tion to a diagonal matrix A which has multiplicity greater than ome, on its smallest
singular value. Here, as before, the perturbation is constrained to have norm largest
than the smallest singular value of A. Further, from Lemma D.0.3 it is possible to
obtain implicitly the structure of the optimally rank-reducing perturbation. Note that if

70 denotes the optimal distance to singularity, then
$1°= Tu[(A2°)-\A] T* A= Tu[A?, <&] (D.])
directly from Lemma D.0.2.

Remark D.0.2. Lemma D.0.3 requires (assumes) the a priori knowledge of a An. In
[JH+06], Lemma 3.11 generalises the result for any An & Cnxm : ||An|| <  and
such that (aj —An)-1 exists and is bounded. However, here we shall not need this

generalisation.

Lemma D.0.4. Assume everything defined as in problem D.0.1 and consider all
perturbations A G Cnxn, such that E[AE\ G

AJU = (EiAE, GCmxm p(E[AED < +u H A H < fa}

where 0 < fa < fa < Oi. Then every optimally rank-reducing perturbation A which is

constrained such that E[AEi ¢ A" ™ is similar to the following structure:

0, j<*
q @j-i-l&éiisj > i
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i.e., for every optimal A, its m x m block E[AEi is always similar to the particular

upper triangular Toeplitz matrix. Further the structured distance to singularity

728 ,,3= min{[[A[| : det(4 -A=0,EJAB, ¢ A "}

remain invariant under the transformation and it is given by

701,42 = \Jal + G- @

where

at \
( (“T'-A * . * )-1 1

“m+ 1 - al am+1-al

Proof. Too technical and not of present interest, therefore omitted. For complete proof

see [JH+06], O
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Appendix E

Robust stabilisation under additive
perturbations

E.1 Proof of Proposition 7.4.2

Proposition. Let A(s) be constructed according to Algorithm 7.4.1. Then A(s) has

the following properties:
(i) A(s) € 717100
(ii) ||Alloo = *(0)
(in) H"Aj/lloo = ()
(iv) det[Im - A(jujo)T(jLoo)l = OV T e T.

Proof, (i) Follows immediately since Nu, N2i, 4\ and A2 are all TZH" functions.
(ii) Write

Vo

h
A= 0]
o -0

where ua = \J72—j)2. Then,
A2=diag" 2+ ul 02+ "2,..., de +vD, 02,02+ va}
—diag{f2,72,..., 72,92,y2}
Also noting that Nf/Nn = /; A2i =/, we have
AA~ = T™idiAA2N2i AfAAN({

=NnA AfN -
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Thus

4 Wo = %%\ max Nn (juj)Ai(juj)A24% (ju)N (1 (juj)

= max A,  A24%(uj)NZi(juj)Nn(juj)A1(jcj)
Yy

= max A, = X 7

and hence HAHo = 7.

(in) Note that X |\ X~ = Im. Hence, writing X" = N\Di, implies that:

di \

1 2 HEW nn
xy{l’l n

or, equivalently,

ch
‘ di om 0
ni e*c m TH ' M
HH 0 m
\
Then considering the upper blocks of the above equation:
! a)
xT( m ni T+ ' H ~(h om;)
dr
AV
Take JVn to be the first /+ 1-columns of N\. Then,
( dx \
xT ( ni ni ni+1 p =(/,jo)
aj+ /
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i.e.

xTNn (s) = 0

v dt\s) 7
or

ai(s
I di (s) (¢)
xtNuAI(s) =

! i) . V aj(s)

by picking appropriate interpolating .Ai(s) as defined in algorithm 7.4.1. Then, note

that
[ 1
(E.D
xTNuAdiu>0) = 1 h o
Dually,
( aics) ~ ( omits)
A2N21y(s) — y(s)
dl(S) M s)
V n;+i(s) !
and
( di \
Yi = {y(s)<i(s) *) = (n?{s) e+ n~(s))
Vv dl) J
where denotes irrelevant terms to the present analysis. Then
( d |
y(s)a(s) = ( hi(s) ra’(s) )
v ir )
and so,
( &i(s) \ * \
"
A2N21ya(s) =
ai(s) Oii
\ E
or
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aici

ad21
A2N21ya(s)
aid, 1
Vv O,
and hence
A 2(jLoo) N 21(ju>o)y(jLoo)a(juj) :=
(0}
so that after some computations
Vo
iMi
xTAya(s) = xTNnAdA 0 A2Nz2lya(s)
- O - -
/ axdxiaxdll
az2d21a2d
aidt latdl 1
and hence
|xr Ay|loo = |[xTAya(s)||00= 0
PP £Sill \
/ - AT =/ - iVnAj ' 0o  A2N2X2 @ Xx
vo 0 -() v R+ Oj
So,

det[Im- A (juo)T(jujO)\ = det[Im- NnAiAA2N21Y2UKXi]
= det[Im—X\N\\A\A A 2N2{Y=T\

Now by construction,

[+l
X\NnAi(jujO) =  i+1 h+1

m-I-1 0]
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and

] I+l pl-l
A2N21Y2(joul)) —
I+ h+1 0
so that,
sth 0 0
11+
x 1n 11a 1a a 2n 21y 2u I+ 0 <1+ O
0
0 0 =
VoSi4-1
pSill
0 0
VoSi 0 ~ 4 >5i+1
0 0
(E.3)

The instability of the closed-loop under such perturbation is verified by (E.3) and the

following argument which involves determinants:
det(Im—AT) = det <

and this is equal to zero if and only if

o
$I+1"0

det < . (E4)
-Sivo . i+ siti4>

In order to prove (E.4) we use the following Schur argument, which is true for matrices

A,B,C,D (see [AntOl]):

A B I BD~I A—BD~IC 0 I 0
Cc D o [ 0 D D~IC 1

A B )
Hence, in order to show that the determinant of is equal to zero, it suffices
C D
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to show that 4 — B D ~ IC looses rank, or in this problem framework,

(- Sup)Il - (1 + SitI<t>) 1 —S\Vo 0
0

sisi+1r (1 + si+1g9)l 0

=1 _ s\l -
=1 _ s\l 0 0

(1 - Si0) - sisi+ivri + S/H+10)-1 0

0 (i - si4>)ii-1
looses rank. Indeed, substituting * = 72- 02:

1- Si0 - SiSl+ilz (I + st+10)_1

= (1 + Si+10)_1 ¢+ + — Si0 — SiS;+ir2 - S”Ni+ 172+ SiSi+i(f)2}
= (1 + Si+1")-1 ( 1+ S/+10- s|(j) - SiSi+i(— v — 4+ T-2)y1=0
t S1S/+1 Sj+1 Si J
using the fact that 7 = yj Therefore,

det(Im- A(jujo)T(julo)) = 0 =>det(Im- ((G+ A)(jwoK(juj0)) = 0
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Appendix F

Robust stabilisation under coprirne
perturbations

F.l Proofof Theorem 8.2.3

Theorem. Consider everything as defined in Theorems 8.2.1 and 8.2.2. Then

(i) The set of all optimal closed-loop transfer functions, 71 can be parameterised as:

sia(s) 0 \
0 R + FtiQa, sy
0 — iQa, sy1 X
1 0
0 I
where
M -N~ V 0
Y = and X = W~
N M~ 0 w,

are square all-pass.
(Hi) The first two super-optimal levels of 7" are (i/sf+ T, yjs| + 1) where (si, «2) are

the first two super-optimal levels of R. Hence e¥= A—.
Vsi+l
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Proof of (i). Consider everything as defined in Theorems 8.2.1 and 8.2.2. Then write,

t = (m (r +HQ"s"bh <)\
I\N M~){ 1 )

(Hn + Hi2U (I-H 2U)-1H2) +

where U € sx1BH). Further, we isolate the all-pass part so that

and

H:-Vj_H — He — Hee

Substituting,

U{l - h22u)-1h 21 >
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M -N~
N M~

where

U1 - H2U)-IH2AWZ

from right, we get

Ti =

or

Proof of (ii). Immediate from a recursive argument of part (i) proof.

Proof of (in). Recall that

(hu _tv ot U )SI o\ (w~ oO\Ww

\Hn Ve V. V 0 H) V° 'V

where we partition
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Then
H\iv(s) = mSia(s)~ii;(s) 117~ (s)1|2=si IMs)]||2
Huw(s) = sia(s)v(s) IT/1i% ()12 = 5i [lu (s)]]2
and so |[n]|2= IMI2 (recall \la(s)|| = 1). Further,

H-Hnw(s) = sia(s)H"1v(s) = sla(s)a~(s)w(s) = s\w(s) (F.1)
and hence w is a singular vector of Hn - Respectively,
HnH"v(s) = slv(s) (F.2)

Straight from definition, take a Tq¢ £ 7\. Then,

'M -N M —N~\ fR+ Qopt|
ToxloRR — ((R + QoptY 1 N AT N M- I
/ \' /Rt (ypt \
= {(R+ Qopt)~ i) | | = (R+ OQptY(R + Qopt) + 1
and so
T~tTgrw(s) = (R + Ot Y{R + QoR)w{s) + w(s)
T:ptTopMs) = (si+ Dw(s)
Hence

Wlopth - \]s\ + 1
On the other hand,

TptTopw(s) = (si + Yw(s) mToxIgntTptw(s) = (si + 1) Toptw(s)

/M -AT
w(s) = (s?+ 1) w(s)
N M~
(R + Qoptyw(s) M N~ (R+ Qopt)w(s)
=4+ N M w(s)
I M
j —(S1+ 1)
| N
2 (M _]V”
si+ 1)
u
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