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A bstract

The work aims to derive extended robust stability results for the case of unstructured 
uncertainty models of multivariable systems. More specifically, throughout the thesis, 
additive and coprime unstructured perturbation models are considered. Refined robust 
stabilisation problems of MIMO systems are defined and maximally robust controllers 
are synthesised in a state-space form. Unstructured perturbations which destabilise 
the feedback system for every optimal (maximally robust) controller are identified on 
the boundary of the optimal ball, i.e. the set of all admissible perturbations with norm 
equal to the maximum robust stability radius. Boundary perturbations are termed 
“uniformly destabilising” if they destabilise the closed-loop system for every optimal 
controller and it is shown that they all share a common characteristic, i.e. a projection 
of magnitude equal to the maximal robust stability radius, along a fixed direction 
defined by a pair of maximising vectors (scaled Schmidt pair) of a Hankel operator 
related to the problem. By imposing a directionality constraint it is shown that it is 
possible to increase the robust stability radius in every other direction by a subset of 
all optimal controllers.
In order to solve this problem, super-optimisation techniques are developed. Inde-
pendently a natural extension of Hankel norm approximations, the so-called super-
optimisation problem is posed and solved explicitly for the case of one-block problems 
in a state-space setting. It is thus shown that a subset of all maximally robust con-
trollers, namely the class of super-optimal controllers, stabilises all perturbed plants 
within an extended stability radius /¿*(<5), subject to a directionality constraint.
In addition, the work is related to robust stabilisation subject to structured 
perturbations. The notions of structured robust stabilisation problem, and structured 
set approximation are defined in connection with the maximised set of permissible 
perturbations. It is further shown that can serve as an upper bound the
structured robust stabilisation problem. The effect of as an upper bound depends 
on the compatibility between the two structures, the true structure and the artificial 
structure of the extended permissible set.

iii



Contents

Abstract iii

Table of Contents iv

List of Figures vii

Acknowledgements ix

Notation x

Abbreviations xi

Introduction 1
0.1 Summary of w ork .....................................................................................  4

0.1.1 Contribution of thesis .................................................................  5
0.2 Outline of thesis........................................................................................  6

1 Mathematical Background of Robust Control 8
1.1 Metric Spaces............................................................................................  8

1.2 Normed S p aces ......................................................................................... 10
1.2.1 Norms of finite-dimensional vectors and matrices ......................... 11

1.3 Inner product Spaces................................................................................  12
1.4 Complete S p a c e s ......................................................................................  13
1.5 Isomorphism............................................................................................... 14
1.6 Function Spaces......................................................................................... 14

1.6.1 Lebesgue Integrable Spaces ........................................................  14
1.6.2 Hardy Spaces................................................................................  16

1.7 Operator T h e o ry ......................................................................................  18
1.7.1 Singular value decomposition of a m atrix .................................... 20
1.7.2 The singular values of an operator.................................................  22

1.8 Best approximation...................................................................................  24

IV



2 The General Tioo optimal control problem 26
2.1 Signal and system spaces..........................................................................  26
2.2 State-space realisations of LTI system s..................................................  30
2.3 Internal stability of feedback interconnections ......................................  35
2.4 The standard problem.......................................................................  38
2.5 Summary .................................................................................................. 41

3 Stabilising Controllers: Parametrisation 42
3.1 Coprime Factorisation over VSHo o ...........................................................  46
3.2 Parametrisation of all stabilising controllers .......................................... 51
3.3 Parametrisation of all stable Closed-loop transfer functions.................. 53
3.4 Summary .................................................................................................. 55

4 Hankel operators in Robust Control 57
4.1 Controllability and observability opera to rs............................................  60
4.2 Hankel norm approximation and Model reduction ................................. 64
4.3 SVD of a Hankel o p e ra to r.......................................................................  68

4.4 Nehari’s Theorem...................................................................................... 73
4.5 Examples .................................................................................................. 83
4.6 Summary .................................................................................................. 84

5 Robust Stabilisation 86
5.1 Robust stability under additive perturbations ....................................... 91
5.2 The maximally robust stabilisation p ro b lem .......................................... 98

5.2.1 Optimal closed-loop approximation................................................ 109
5.2.2 Maximally robust controllers............................................................113

5.3 Summary ..................................................................................................... 119

6 Superoptimisation 121
6.1 The 1-block Super-Optimal Distance P rob lem .......................................... 123

6.1.1 The two-level super-optimal approximation problem and its
so lu tio n ............................................................................................ 124

6.1.2 State-space analysis...........................................................................135
6.2 Examples ..................................................................................................... 141
6.3 Summary - Connection with robust control................................................ 147

7 Robust Stabilisation Under Additive Perturbations 149
7.1 Introduction..................................................................................................150

v



7.2 Uniformly Destabilising Perturbations........................
7.3 Constrained Distance to Singularity...........................
7.4 Extended robust stability radius................................
7.5 Examples ....................................................................
7.6 Spectral Radius Constraint.........................................
7.7 Structures and the extended robust stab ility ............

7.7.1 Structured set approximation........................
7.8 Summary ....................................................................

8 Robust Stabilisation Under Coprime Perturbations
8.1 Introduction.................................................................
8.2 Optimal and Super-optimal approximations ............
8.3 Uniformly destabilising perturbations........................
8.4 Extended robust stability radius................................
8.5 Summary ....................................................................

Conclusion
Future Directions.................................................................

Bibliography

A Linear Fractional Transformations 

B Algebraic Riccati Equations 

C Super-optimisation
C.l Proof of proposition 6.1.4 .........................................
C.2 Proof of proposition 6.1.7 .........................................
C.3 Proof of proposition C .3 .1 .........................................

D Distance to singularity

E Robust stabilisation under additive perturbations
E. l Proof of Proposition 7.4.2 .......................................

F Robust stabilisation under coprime perturbations
F. l Proof of Theorem 8.2 .3 ............................................

155
166
170
178
184
184
185
189

190
190
195
197
203
208

210
2 1 1

213

218

220

222

222

227
233

236

241
241

247
247

vi



List of Figures

1.1 Geometric interpretation of Cp norms..................................................  15
1.2 Spaces from a set theoretic point of v iew ........................................... 17
1.3 Singular values of A as a gain factor...................................................  21

2.1 Nyquist diagram of a contractive sy s te m ........................................... 30
2.2 General feedback arrangement............................................................  35
2.3 General p l a n t .......................................................................................  38
2.4 Equivalent representation of figure 2.2 where the error signal to be

minimised is z = y — r and the input to the controller is v — r ym 
([SP96])........................................................................................................ 39

3.1 General feedback interconnection.......................................................... 42
3.2 General feedback arrangement as lower LFT.......................................  44
3.3 structure of (observer-based) stable controller.....................................  52
3.4 Controller K  as a lower LFT interconnection......................................  53
3.5 Model-matching problem.......................................................................  53
3.6 Closed loop as a lower LFT interconnection, in terms of parameter Q. . 54

4.1 Hankel Operator of a system G in the time domain, given u G £2(—oo,0]
(scalar case). Here Gu G C ^—00, 00) and is the projection of Gu G £2

into £2(0,00), by truncation.......................................................................... 60
4.2 Observability and controllability ellipsoids for (a) unbalanced and (b)

balanced system realisations.................................................................. 63
4.3 Typical singular values plot of an optimal error system G + Q for a

dynamic <f>; the largest singular value has a constant value, over all 
frequencies, which is the smallest it can be............................................... 82

5.1 Disc approximation of original uncertainty region at a frequency l jq. . . 87
5.2 Typical Nyquist diagram of uncertain system approximated by discs. . 87
5.3 Set of uncertain system s.....................................................................  88

vii



5.4 Feedback loop systems under unstructured uncertainties and the equiv-
alent generalised plant................................................................................  90

5.5 Closed-loop with additive uncertainty in the nominal p la n t .................. 92
5.6 Construction of phase angles 0i ..............................................................  97
5.7 Generalised regulator problem .....................................................................100
5.8 Equivalent block diagrams of model matching problem...............................105
5.9 Optimal generator of closed-loops - equivalent interconnections.................110
5.10 Equivalent block diagram representation of all maximally robust con-

trollers ........................................................................................................... 113
5.11 Singular values of Optimal Closed-loop.........................................................118
5.12 Plot of det{I — {G + A)K), over all frequencies u E TZ............................... 118

6.1 Super-optimisation in terms of the first two distinct super-optimal levels
- Example 6.2.1...........................................................................................  142

6.2 Super-optimisation in terms of the first two distinct super-optimal levels
- Example 6.2.2...............................................................................................144

6.3 Super-optimisation in terms of the first two distinct super-optimal levels
- Example 6.2.4...........................................................................................  146

7.1 Extended robust stability radius - The largest shaded area is the set
£{5,11*)............................................................................................................ 162

8.1 Closed-loop system under stable perturbations.......................................... 191

A.l A lower LFT interconnection representing a transfer function from w to z. 218

C.l Sketch of proof of proposition 6.1.5..............................................................233

viii



Acknowledgem ents

I would like to thank my supervisor Dr. George Halikias for his encouragement 
and guidance throughout this work. Moreover, I express my gratitude to Dr. Imad 
Jaimoukha for introducing me in the area of Robust Control. My deepest gratitude 
goes to Prof. Karcanias and the CERC, including Dr. Milonidis and my friends in the 
office.
During my PhD I passed three amazing years, in the best possible environment I could 
have and with friendships which will last for a life-time. Stathis made our every day life 
in the office unpredictable and unforgettable with his overwhelming jokes, his willing 
mood, guidance and the many fruitful discussions we had over these years. Further, the 
relation between my supervisors and myself resulted to a happy and inspiring period 
of work. Their attitude to me and the other students make me feel more a friend to 
them rather than a student.
Last and by no means least, I am most grateful to my family for their unconditional 
love and support. Without their love and understanding I would not be able to even 
start this work.

IX



“I grant the powers of discretion to the University Librarian to allow this thesis to 
be copied in whole or in part without any further reference to me. This permission 
covers only single copies made for study purposes, subject to normal conditions of 
acknowledgment”.



N otation

h ,c m

K(s)
n[s]
dV

Sets of real, complex and natural numbers 
field of rational functions in s with real coefficients 
the set of real polynomials in the variable s 
Boundary of set V

sup, inf, max, min 
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K{A)
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In{A) = (n(A),u(A),8(A))
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determinant, trace and rank of matrix A
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r-th eigenvalue of A
largest eigenvalue (singular value) of A
smallest eigenvalue (singular value) of A
Inertia of a complex matrix A is the ordered triple of
the numbers of its positive, negative and zero eigenvalues.

A' transpose of A e 7Zpxm
A* complex conjugate transpose of A £ Cpxm (or operator)

G(*r = <?(-*)•
nCoo

the para-Hermitian conjugate of G(s)
Set of all proper real-rational matrix functions which are 
analytic on the imaginary axis

i z n ^ T i n ^ Sets of all proper real-rational matrix functions which are 
analytic in the closed RHP and closed LHP, repsectively

nHooik) Subset of TZjCix, consisting of all functions with no more 
than k poles in the RHP

BHoo Woo-ball

r G
<n( rG)
K.

Hankel operator associated with G(s) 
f-th Hankel singular value of G(s) 
Family of all stabilising controllers

s Set of all stable closed-loop systems
T Set of all stable control sensitivity functions

Throughout this thesis matrix dynamical systems appear inside parenthesis so that 
they are distinguished from constant matrices which are denoted by square brackets.
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Introduction

Physical systems such as chemical processes, aerospace systems and power networks 

are observed to be in general non-linear, time-varying and highly complex. In the 

modelling process of large-scale multivariable systems, errors occur in the form of 

disturbances, inaccuracy of measurements, neglected or unmodelled dynamics, etc. In 

a simple design, the controller is synthesised so that it stabilises the mathematical 

model of the process, but obviously the model represents the real system only up to 

a certain degree of accuracy. Consequently, it is natural to assume that a simplified 

mathematical model which does not take into account all the above factors may be 

a poor indicator for controller design. Since a trade off arises between accuracy and 

simplicity of the model, the controller should work for the real system as well as for the 

model, i.e. it has to be robust against any errors introduced in the mathematical model. 

The objective of robust control is to take into account all modelling errors (inaccuracy 

of measurements, neglected or unmodelled dynamics, etc.) or disturbances, and design 

controllers which meet the required stability and performance criteria not only for one 

model but for a neighbourhood of models, inside which the real system is believed to 

lie.

In order to solve a robust control design problem various methods may be employed. 

Among them, the most mathematically sophisticated methods which search for optimal 

criteria are the Tioo, and Structured singular value (//) design methods; the later being 

an extension of optimal control. Further, other design methods are also used, 

depending on the application. The methods include Robust eigenvalue/eigenstructure 

assignment, Predictive control, Quantitative Feedback Theory (QFT), Fuzzy Logic, 

Multi-objective parameter tuning, etc. For a full discussion see [Gro97]. However, the 

most prominent and prolific method developed throughout the last decades has been 

proved to be Hoc-optimal control together with /r, which address systematically the 

effects of model uncertainty.
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Tioo-optimal control is a frequency-domain optimisation method which was developed 

in response to the need for a synthesis procedure that explicitly addresses questions 

of modelling errors and unknown disturbances. H ^  control is a natural extension to 

classical feedback theory for multivariable systems. The method’s basic philosophy is 

to treat the worst case scenario, i.e. design a controller that stabilises the nominal 

plant for the worst-case perturbation that is likely to arise.

During the last four decades the Hoo optimisation problem drew the attention initially 

of mathematicians and subsequently of control theorists, as it fitted well to the 

framework of engineering design. Various types of solution were developed arising 

from different fields of interest - some being mathematically elegant and others being 

more applicable computationally. Historically the problem was first solved using 

Nevanlinna-Pick algorithm an approach based on classical interpolation theory and 

complex analysis. In parallel the problem was formulated and solved in a more 

general setting, using the AAK theory [AAK71],[AAK78], which reduces the problem 

to a general distance problem [DC86],[Fra87],[GLD+91]. The solution in the later 

formulation involves unitary dilations (see [Glo84] for the special case of one-block 

distance problem), which are tools adopted from operator theory and complex function 

theory. Other popular approaches are the J-spectral factorisation and the conjugate 

method of J-lossless factorisation [Kim97]; the later being related to interpolation 

theory. Furthermore, J-spectral factorisation was known to be related to LQ games 

and as consequence, Hoo optimisation has been viewed and solved as a differential game 

[BB91] (a zero-sum game where the controller is treated as the minimising player and 

disturbance is the maximising player). Perhaps the most computationally tractable 

and theoretically fruitful method developed for solving Hoo problems is the state-space 

approach by [DGKF89], which further led to the LMI formulation [DP00],[GNLC95] 

and its extensions to multi-objective optimisation, non-linear and time-varying control 

settings.

In connection to H ^  optimisation problems, throughout this work, super-optimisation 

theory is considered. Essentially, this is an extension of Hoo optimisation, as the 

objective of super-optimisation involves the minimisation of not only the largest 

singular value of the associated operator (which is the equivalent objective of Hoo 

optimisation) but also of its subsequent singular values as well, in a hierarchical 

manner. The rationale behind this problem is to exploit all available degrees
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of freedom. Super-optimisation was first proposed and solved by Young [You86]. 

Although the initial motivation was esthetic rather practical, questions later arose 

on whether the methodology could also be applied to engineering problems. The 

problem was subsequently posed in a state-space framework by control theorists who 

developed algorithms for solving super-optimisation problems under various types of 

constraints [LHG87],[TGP88], [JL93]. The problem was also formulated and solved 

using polynomial methods, as reported in [KN89] and others. However, the most 

computationally powerful and elegant solution methodology is that developed in [JL93] 

were unitary dilations are considered. Although in this thesis the method is specialised 

to the one-block Nehari problem, it has been shown that super-optimal general distance 

problems can be addressed in this framework ([JL93]) together with the more general 

class of Hankel norm approximations ([HJ98]).

Throughout the thesis, a simple Hoo problem is addressed, namely the robust 

stabilisation problem under the presence of various types of unstructured perturbation 

models [Glo86],[MG90]. Here we are interested to determine the largest possible region 

in uncertainty space guaranteed to be stabilised by a controller family, in terms of 

necessary and sufficient conditions. The first problem (MRSP) requires the solution of 

one-block Nehari approximation. This is subsequently extended to the multivariable 

case using a more refined direction-sensitive measure of robustness, using the theory 

of super-optimisation.

In the thesis we study the existing theory of robust stabilisation for LTI systems 

and develop a novel methodology which extend the known results using directionality 

information. The improved robust stability criteria derived here are based on the 

methods of [LCL+84] and certain more recent generalisations. The work of [LCL+84] 

goes back to 1984, i.e. to the early era of robust control. Throughout the eighties (and 

late seventies) the robust stabilisation problem was progressively linked to interpolation 

and approximation theories before taking its modern form. Due to the large impact 

of the approaches described in the seminal work of [Glo84] and [DC86] and other 

developments related to the structured singular value, little attention was given to the 

approach of [LCL+84]. Essentially the main idea in [LCL+84] which is followed in this 

work, is to improve the robustness tests by placing a weak restriction on the structure of 

the perturbation set. This restriction takes the form of a projection of the perturbation 

onto a subspace. In contrast to the methods of [LCL+84], however, here the structural

3



information, provided by the restriction, is used a priori (i.e. before a compensator is 

designed) and hence can be related directly to the directionality properties of robust 

stabilisation.

0.1 S u m m ary o f  work

In this work an exposition of control theory related to Tioo- optimal design has been 

attempted. In particular, the problem of robust stabilisation under unstructured 

perturbation models is recast as one-block Nehari approximation problem, whose 

solution is studied in the first chapters of the thesis. The objectives of the present 

work are:

• To obtain necessary and sufficient conditions for robust stabilisation and 

characterise the set of all robustly stabilising controllers.

• To solve, explicitly, the maximally robust stabilisation problem under unstruc-

tured additive and coprime perturbations. As is shown in chapter 5, the solution 

of these problems, involves essentially a one-block Nehari optimal approximation, 

whose solution is described in chapter 4. The objective here is to use state-space 

analysis to reveal the underlying structure of the family of all optimally synthe-

sised (maximally robust) controllers and the corresponding closed-loop systems.

• To derive necessary and sufficient conditions for extending the maximal robust 

stability radius under directionality information. Here a refined direction- 

sensitive measure of robust stabilisation appropriate for multivariable systems 

is introduced and optimised using super-optimisation theory.

• In order to derive stronger robust stability criteria as described in the previous 

objective, it is vital to solve the so-called super-optimal approximation problem. 

Here, a detailed and complete solution to the problem is developed using 

state-space techniques which removes all technical assumptions made in earlier 

approaches.

• To define proximity measures between different structured uncertainty sets in 

relation to the proposed methodology, and then extend the improved robust 

stabilisation results to the case of structured uncertainty models.
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0.1.1 C ontribution  of thesis

In this section we summarise the main contribution of this work.

• The problem of super-optimisation has drawn the attention of control theorists 

and mathematicians for more than two decades. Here we present a computa-

tionally robust method for solving the one-block problem, using simple linear 

algebraic techniques. A state-space analysis is developed so that the struc-

ture of super-optimal decomposition becomes transparent and unnecessary ill- 

conditioning is avoided. The problem is solved under minimal possible assump-

tions.

• The results of this work show that a subclass of maximally robust controllers, 

namely the super-optimal controllers, guarantees robustness (in terms of 

stability) for a wider uncertainty set, i.e. they can stabilise additional perturbed 

plants compared to a general maximally robust controller, when the plant is 

subject to additive or coprime factor perturbations. The maximum permissible 

uncertainty set, characterised by a norm condition, consists of all perturbations 

lying inside the ball of maximal robust stability radius. It is shown that 

by imposing directionality constraints on the uncertainty set, super-optimal 

controllers guarantee the stabilisation of perturbations inside a set of a largest 

stability radius (in addition to perturbations guaranteed to be stabilised by 

optimal controllers). The extended robust stability radius is derived in closed- 

form as a function of a parameter d> which quantifies the directionality constraint.

• In many applications of robust control the choice of an appropriate model of 

uncertainty is an important issue. The formulation of coprime robust stabilisation 

problem removes some limitations of the additive and multiplicative perturbation 

models related to the number of RHP poles of the perturbed and nominal 

system. This motivates the generalisation of results (originally developed for 

the additive case) to this type of model. However, in contrast to the analysis for 

the additive case, our analysis of the coprime uncertainty model is carried out 

under the simplifying assumption that the largest Hankel singular value of the 

system constructed from the nominal coprime factors is simple. This is made 

for notational simplicity and may removed if required without serious technical

5



difficulties.

• A practical problem faced by every designer in robust control is whether to model 

uncertainty in terms of its structure or as if it is not highly structured to avoid 

that by considering unstructured models. Hence, a trade-off appears between 

accuracy and conservatism which sometimes leads to either over-parameterised 

or moderate design. Here, we define an abstract approximation problem which 

aims to relate structured sets. Hence, it is shown that the methodology developed 

throughout this thesis can be used to approximate the robust stability radius of 

highly structured uncertainty sets by less structured sets.

0 . 2 O u tlin e o f  th esis

In chapter 1 we outline main results of the mathematical framework that encompasses 

robust control theory. Aspects of functional analysis and operator theory are reviewed. 

The main theme of the chapter is the singular value decomposition of an operator on 

function spaces and its best approximation. Most of the material is covered in standard 

textbooks such as [Kre89], [Pow82],[Rud66],[Sut75],[You88] and [Pel03].

In a connection to the previous chapter, in chapter 2 we present the basic background 

theory of linear multivariable systems. The space of LTI systems is shown to be 

a norrned vector space (in frequency and time domains) over which, under mild 

assumptions an algebra can be defined (JZHk ,). Then the generalised regulator problem 

is addressed and important theory related to this work, is outlined. The main objective 

of this exposition is to define the framework of the stabilisation problem, studied in 

chapter 3.

The theory developed in chapter 3 involves stabilisation of LTI systems, i.e. necessary 

and sufficient conditions for the existence of stabilising controllers. The main result 

of this chapter is the “Youla” parametrisation of all stabilising controllers in terms 

of a free parameter in Tioo■ The stabilisation problem is therefore recast as a convex 

optimisation problem via model-matching theory.

Hankel operators are defined within the rich mathematical theory reviewed in chapter

1. Over the three last decades Hankel operators have proved to be a major tool for 

robust control theory and optimisation methods. In chapter 4, we study thoroughly 

the Hankel operator and its main properties (norm, singular values). Approximation-
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theory type distance problems which involve the computation of the Hankel norm and 

their relation to model reduction problems are also considered. In particular, a specific 

Nehari-type approximation problem as developed in [Glo84],[Glo89] is of special interest 

and hence an overview of these results is presented.

The main ideas of this work are developed in chapter 5. The theory behind the 

results of this chapter is mostly based in [GHJOO] and [GI086]. An amalgamation 

of this theory with results included in previous chapters leads to the construction of 

a systematic procedure for solving the maximally robust stabilisation problem. A 

detailed and concrete state-space analysis illustrates the structure of the set of all 

optimal controllers.

Chapter 6 discusses the main points of the theory of super-optimisation, first introduced 

in [You86]. Super-optimisation is a natural extension of Hankel-norm approximations 

and hence this chapter is an extension of chapter 4. Here the one-block case is solved 

using the method developed for two and four block problems in [JL93] but with further 

state-space considerations. Utilising fully the structure of the one-block problem, the 

state-space solution to the problem is fully illuminated. All simplifying assumptions 

associated with the problem (e.g. multiplicity of the largest singular value, minimality, 

etc.) are removed. Finally the application of super-optimisation theory in the solution 

of the robust stabilisation problem in the matrix case is briefly discussed.

In Chapter 7 the extended stability criteria and radius for additive unstructured 

perturbations are derived in the framework of the solution of CRSP. It is shown that the 

set of (level-2) super-optimal controllers, a subclass of maximally robust controllers, 

offers improved robust stability properties. Indeed, the set of level-2 super-optimal 

controllers is precisely the class of controllers which guarantees robust stability inside 

the maximum extended uncertainty set. Further, the largest possible uncertainty set is 

explicitly characterised under directionality restrictions. Thereafter, its relation with 

other structures is briefly discussed.

The generalisation of results presented in chapter 7 results to the case of co-prime 

factor perturbations is the subject of chapter 8.

The main results and contribution of this work are summarised in the conclusions 

chapter. Further, novel research directions which aim to extend the existing theory are 

proposed.
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Chapter 1

M athem atical Background of 
R obust Control

In this chapter the mathematical background is briefly introduced, along with the 

notation used in the thesis. Most of the material in this chapter is adapted from 

[Kre89], [Par04], [Pel03], [Rud66], [Sut75] and [You88].

1.1 M etr ic  Spaces

The Cartesian product X  x Y  of two sets X  and Y  is defined as a set of all ordered 

pairs from X  and Y, i.e. X  x Y  = {(x,y) : x € X : y £ Y}.

Definition 1.1.1. A metric space (X, d) is a set X  together with a real valued function 

(metric) d : X  x X  —> 1Z satisfying

(M l) d(x,y) > 0 for all x,y  e X  (non-negativity);

(M2) d(x, y) = 0 if and only if x = y (non-degeneracy);

(M3) d(x,y) — d(y,x) for all x, y € X  (symmetry);

(M4) d(x, y) < d(x, z) + d(z, y) for all x ,y , z  G X  (triangle inequality).

Example 1.1.1. X  — 71 equipped with d(x,y) = \x — y\ satisfies (M1)-(M4) (this is 

obvious from simple properties of the real line) and thus forms a metric space.

Example 1.1.2. X  = 7Zn equipped with dp(x,y) = (52i=i \x% ~  2h|p)% for 1 < p < oo 

form metric spaces. Here the triangle inequality (M4) is called Holder’s inequality.
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Take for example the case p = 1, i.e. di(x,y) = \xi ~ Vi\- Then (M1)-(M3) are 

trivial and (M4) follows from the fact that,

\xi~yi \  < \xi ~ Zi\ + \zi -  yi\ Mi = 1,2, . . . ,  n
n  n  n

2= 1 2=1 2=1

Further, by noticing that \xi~yi\ < \xt- z ^ + ^ - y ^  < maxi<j<n Ixj-Zjl+m axi^^ |z{-  

yi\ we conclude that doo(x,y) := maxi<j<„ |X{ — yi\ defines another metric in TZn.

Definition 1.1.2. (Induced metrics) If (X,d) is a metric space and d e l ,  then 

the restriction of d to A x A defines a metric on A. This restriction is defined by 

d 1̂4 (a, b) = d(a, b), Va, b £ A. So d |^: A x A —> H is a metric induced by d and 

{A, d |^) becomes a metric space.

Up to now all examples involved finite dimensional vector spaces (since x and y are 

finite dimensional vectors). Next, we define spaces of functions which are infinite 

dimensional.

Definition 1.1.3. (Spaces of bounded and continuous functions) Let a < b.

Then we define

®([a, b]) = { / : [a, b\ —> 1Z : /  is bounded);

C([a, b]) = { f  : [a,b] —> 1Z : f  is continuous).

Example 1.1.3. Take f ,g  £ B([a,6]) and define the sup-metric, d(f,g) = 

supxe[a 6] | f (x)  — g(x)\ (i.e. the least upper bound). Then (B([a, 6]), d), where d is 

the sup-norm, forms a metric space. Moreover, C([a, b\) C ®([a, b}) and hence the 

sup-norm d induces a metric on C([a, 6]), which is also called the sup-metric but now 

/, g £ C([a, b]). Note that on C([a, 6]) (but not on B([a, b])) we may also define another 

metric by d(f,g) = J* | f (x)  -  g(x)\dx.

Remark 1 .1 .1 . If (Xi,pi), {X2, P2) are metric spaces, there are several ways to define 

a metric on X\ x X 2, e.g. for x — (xi, x2), y =  (2/1,2/2)̂  both in X i x X 2,

d\{x,y) = Pi(xi,2/i) + p2(x2,y2) or d ^ x ^ )  = max{p1(x1,y1), p2(x2,y2)}

Definition 1.1.4. (Isometry) Let (X, d) and (X , d ) be metric spaces. Then an 

isometry /  : X  —> X  is a one-to-one correspondence such that

d(f(x ),f(y)) = d(x ,y) M x , y e X

i.e. if the mapping /  preserves distance.
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Definition 1.1.5. Suppose (X,d) is a metric space. Then a mapping f  : X  —> X  is 

called a contraction if there exists k, 0 < k < 1, such that for every x ,y  G X  we have 

d(f(x), f{y))  < kd(x, y).

1.2 N orm ed  Spaces

Definition 1.2.1. A normed vector space (sometimes called Pre-Banach) (X , || • ||) is 

a vector space X  equipped with a real valued function (norm) || • || : X  —» IZ, satisfying

(N l) || x\\ > 0 for all x G X  (non-negativity);

(N2) || x|| = 0 if and only if x = 0 (non-degeneracy);

(N3) || aa:|| = |a|||x|| (linearity);

(N4) ||x + y || < ||x|| + ||y|| (triangle inequality).

Here x and y are arbitrary vectors in X  and a is an arbitrary scalar.

Remark 1.2.1. It is easy to show that if || • || is a norm on a vector space then a 

function d : X  x X  —> IZ defined by

d(x, y) = ||x -  y\\ > 0

is a metric on X . It is obvious that conditions (Ml) and (M2) hold for the above 

function, d(x,y). Further,

d(y,x) = ||y -  x\\ = | |( - l ) (x -y ) | |  = | -  l|||x  -  y|| =  ||x -  y || = d{x,y)

and

d(x, z) -  ||x -  z\\ = \\(x -  y) + (y -  z)|| < ||x -  y|| + \\y -  z\\ = d(x, y) + d(y, z)

which prove that (MS) and (Mf) are satisfied. In order to prove the latter inequality 

property (Nf) was used.

Hence, all properties (N1)-(N4) are satisfied by the function d which is called the 

canonical metric induced by the given norm on the normed vector space X. Thus, all 

norms define metrics although not all metrics arise from norms, i.e. any normed vector 

space is a metric space.
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1.2.1 N orm s of finite-dim ensional vectors and m atrices

For vectors x £ VJ1 or x £ Cn the Holder or p-norms are defined as follows

Flip :=
(e m n m m  i < p < oo

m a x i< j< „  |ajj| , p  — oo
x =

X\

xn

An important property of the 2-norm is that it is invariant under unitary (orthogonal) 

transformations; e.g. if U is such that UU* — U*U =  /„ then it follows that 

]|t/x||2 = x*U*Ux — x*x = ||m|||. Further, a useful relationship that holds for Holder 

norms when p = 1, 2, oo is

IMloo < IMh < |M|i

Matrix norms are sometimes “induced” by vector norms. A matrix norm induced by 

the vector p-norms is defined for A £ Cnxm as:

11,11 ||^x||fl
Ml Ip,? := SUP ’I u j ]

x ^ o  I F I I p

For the special cases where p = q = 1 or 2 or 00 we have that
m  n

Mil1 = E m m  m u »  = ™ax e m p I. Mib = [a (a a *)]i/2
- i- n j=1 - j - m ¿=1

Besides induced matrix norms there exist other norms for matrices such as the Schatten 

Sp-norms. These non-induced norms are unitarily invariant. Let Ui(A), 1 < i < 

min(m, n), be the singular values of A, i.e. the square roots of the eigenvalues of AA*. 

Then

1 < p < OO
,¿=1

Considering the limit p —> 00, we can also define

IMIlSoo ' ^ m a x ^ A )

which is the same as the 2-induced norm of A. For p — 1 we obtain the trace norm
m

M U  =
t=1

and for p =  2 the resulting norm is also known as the Frobenious norm or the Schatten 

2-norm or the Hilbert-Schmidt norm of A

(
m  \  2

^ a 2 ( A )  I =  (Trace(AA * ) ) 2 =  ( Trace(A*A ) ) s
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1.3 Inner p rod u ct Spaces

The inner product is considered as a generalisation of the dot product x-y — \x\\y\ cos 6, 

where x, y are real vectors (say e.g. in 7l3) and 6 is the angle between them.

Definition 1.3.1. An inner product space (or Pre-Hilbert space) (X , (•, •)) is a vector 

space X , over 7Z or C, together with a complex valued function (inner product) 

(•,■): X  x X  —> C satisfying the following properties

(II) (x, x) > 0 whenever x / 0;

where a is a scalar and x,y, z E X .

The inner product defined above induces a norm ||x|| := yj(x, x) since all norm 

conditions (Nl) to (N4) are satisfied. Further, it is a fact that in every vector space 

(X, (•,•)) the absolute value of the inner product of any two vectors a,b E X  is less 

than or equal to the product of the norms of those two vectors, i.e.

Theorem 1.3.1 (Cauchy-Schwartz inequality). Let (X, (•,•)) an inner product 

space. Then

(12) (x,y) = (y,x)*\

(13) (ax, y) = a(x, y) ;

(14) (x + y,z) < (x,z) + (y,z).

\(x,y)\ < H H j/II Vx, y E X

where ||x|| := (x, x)1̂ 2 and ||i/|| := (y,y)1̂ 2.

Proof. See [You88] or [Kre89]. □

Example 1.3.1. The space TZn with inner product defined by
n

Va, b E TZn

is an inner product space.

Example 1.3.2. Cnxm with inner product defined by
n m

(A,B) := trace(A*B) = E E  <ib‘i V A B e C ”-“
¿=1 j=1

is an inner product space.
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1.4 C o m p lete  Spaces

Definition 1.4.1. (Cauchy sequences, completeness) A sequence {rr*.} in a 

normed space (X, || • ||) is said to be a Cauchy sequence if for every e > 0 there 

exist N — N(e) > 0  such that

\\xm — xn\\ < e V m ,n > N.

In other words, the above definition states that a sequence is Cauchy if it satisfies

II II m ,n—>oo||xTO xn\\ * 0

A normed space is said to be complete if every Cauchy sequence in it converges; such 

spaces are called Banach spaces.

Definition 1.4.2. A Banach space is a complete normed linear space (complete in the 

metric defined by the norm).

Example 1.4.1. The simplest Banach spaces are the real line (7Z) and the complex 

plane (C) both equipped with the absolute value as a norm.

Definition 1.4.3. A Hilbert space is a complete inner product space.

Clearly Hilbert spaces are also Banach spaces; by definition, a Banach space where 

the norm can be derived from an inner product is a Hilbert space. Another fact that 

makes Hilbert spaces important is that the Euclidean space is a finite dimensional 

Hilbert space, which shows the geometric intuition offered by the Hilbert space. Thus, 

the notion of “orthogonality” carries over to Hilbert spaces:

Proposition 1.4.1. Let X  be a Hilbert space with a closed subspace 1C. Then if K.L is 

the orthogonal complement of 1C, i.e. 1Ĉ  := {x £ X  : (x, k) = 0, V & £ )C}, X  has an 

orthogonal decomposition X  = 1C © 1CL. Thus, any vector x £ X  decomposes uniquely 

as x — k + k', for k £ 1C and k' £ 1C1-. Further,

\\x\\2 = \\k\\2 + \\k>\\2

which extends Pythagoras theorem.
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1.5 Isom orph ism

Throughout the present work various spaces, depending on the assumptions made, are 

considered. However, what is common to all of them is that they consist of a set 

which is characterised by a structure. In the case of a metric space, the structure 

is clearly the metric, though when a vector space is considered, the structure of the 

space is described by the two algebraic operations, namely vector addition and scalar 

multiplication. Often the need for describing whether two spaces of the same kind are 

essentially identical or not, arises. The concept of isomorphism gives the answer when 

abstract spaces are involved. Roughly speaking, isomorphism is defined as a bijective 

mapping of a space X  onto a space X  (of the same kind) which preserves “structure”.

Example 1.5.1. An isomorphism T  of a vector space X  onto a vector space X  

over the same field is a bijective mapping which preserves vector addition and scalar 

multiplication, i.e. for all x, y G X  and scalar a

Remark 1.5.1. Isomorphisms for normed spaces are vector space isomorphisms which 

also preserve norms.

Definition 1.5.1. If X  is isomorphic with a subspace of a vector space Y  then we say 

that X  is embeddable in Y.

1.6 F u n ction  Spaces

1.6.1 L ebesgue Integrable Spaces

For 1 < p < oo we let £™xn(—oo, oo) denote the vector space of (Lebesgue) integrable 

matrix-valued functions mapping X  to Cmxn, i.e.

The norm || • ||sp used here is the usual Schatten p-norm.

When p = 2 we define the Hilbert space of matrix-valued, square (Lebesgue)-integrable 

functions on X  with inner product

T(x + y ) = T x  + Ty  and T(ax) = aT(x)

(F,G) : =
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The norm induced by this inner product is

||^IU2 = (^J trace[F*(t)F(t)\dt

Similarly, we define by £ ^ xn(—oo, oo) the set of all matrix valued functions F : 1Z 

Cmxn that ||.F(i)||£oo < oo where

\\F(t)\\c„ = SUP WH*)Us«, =sup amax(F{t))ten ten

Figure 1.1: Geometric interpretation of Cp norms.

In general it is a fact that Cq C Cv, for p > q. The following simple example verifies 

this rule.

Example 1.6.1. Consider the function f(t) = for t > 0 and f ( t ) = 0 for t < 0. 

Then:
r°° r°° (jf jr

l l/WI\c2 = l  f 2W dt = l  = [ta n ( i)r  = -

and

ll/Wlloo = sup |/(i)| = 1
ten

So, f  G £2 and f  G C^. On the other hand consider the function g(t) = —t==- Then,V 1+1*1

\\9(t)\\c2 = g2{t)dt = 2
dt

1 + t
=  2 [ln(l +  i)]“  =  00

and

ll< ?(i)lloo =  sup Iflr(i)| =  1 
ten

Hence, g does not belong to Ci although g G Coo-

Consider now, the Fourier transform of a function /  : 1Z —> Cn, f  G £ 2 (~ 00,00), 

defined as
/ OO

m e - ^ d t
-OO
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and the inverse fourier transform of a function /  : jlZ —> Cn defined as

f ( t ) := - - j  f(juj)e]UJtdu.

Then the following theorem links naturally the Lebesgue spaces, £p{—oo, oo), with the 

restricted to the imaginary axis Lebesgue spaces, £p(j7Z):

Theorem 1.6.1 (Plancherel). Consider the functions as defined above, then

1. the map $ : £ 2^—00, 00) —» £ 2(jA.), for any given f ,g  G £ 2( —00, 00) defines an 

isometry, i.e. it preserves the inner product:

{¡,9)2 = {®f,®9) 2

2. the map : £ 2(j7?.) —i► £ 2(—00, oo), for any given f ,g  G £ 2( j7?.) defines an 

isometry, i.e. it preserves the inner product:

(/,?)2 = $ _15)2

Proof, see [DPOO], [Rud66]. □

Further, Parseval’s identity states that
1 poo poo

\ \ fM \ \ % d »  =  J  \\f(t)\\s2dt

Hence, £ 2(~ 00, 00) and £ 2{jP) are isometric spaces. Moreover, we say that 

£ao{—00, 00) and £ 00{jlZ) are isometric spaces since the norm of T00(—00,00) is 

induced by norms from £ 2{—00, 00) to itself. This is a useful result which in the 

sequel will give us a stronger result, a way to connect Lebesgue spaces together with 

Hardy spaces.

1.6.2 H ardy Spaces

Suppose /  is a complex function defined in S' C  C. Then if for every zq  G S,

/(*) -  f ( z0)f ' (z0) := limZ—>ZQ Z -  z0

exists (i.e. /  is differentiable at zQ) we say that /  is analytic (or holomorphic) in S. A 

matrix-valued function is analytic in S if every element of the matrix is analytic in S.
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Definition 1.6.1. The Hardy 'H™xn := H™X"(C+) spaces are defined as the vector 

spaces of all m x n  (matrix) complex-valued functions F which are analytic in the open 

right half complex plane (C+) equipped with norm

where s = x + jy , x ,y  ElZ and || • ||sp denotes the Schatten p-norm of F.

Of course, the above function F  could be defined as a vector or even a scalar-valued 

function. If this is the case, then instead of using the Schatten class of norms inside 

the integrals we use Holder norms. In the sequel, two important to our analysis Hp 

classes are discussed.

Definition 1.6.2. The Hardy H2 space is the space of all m x n complex-valued 

functions F(s) defined as

ll̂ llWco := SUP \\F(8)\\Sp < 00 , p = 00
seC+

Figure 1.2: Spaces from a set theoretic point of view

:= {F(s) : F(s) is analytic in C+, ||F ||̂ 2 < 00}

where

in which s — x + jy , x ,y  G 1Z.
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D efinition 1.6.3. The Hardy Ttoo is the space of all complex m  x n functions F(s)

C "  := i F is) '■ F (s) is analytic in C+, ||F ||Woo < 00}

where

ll*1IWoo = SUP <7max{F {s))
s£C-j.

Theorem 1.6.2. (Maximum modulus) A function f  which is continuous inside a 

closed bounded set D C C as well as on its boundary dD and analytic inside D, attains 

its maximum on the boundary dD of D.

Proof, see [Rud66]. □

According to the above theorem functions analytic in C+ and bounded over the ju-axis, 

attain their maximum on the ju -axis (i.e. its boundary), and hence

11*11««, = sup amax(F(s)) = sup amax(F(jy)) = \\F\\Coo
seC+ 1/67?,

and similarly,

11*11«, = 11*11 r2
Remark 1.6.1. Heretofore, the capital letter denoting a Hardy or a Lebesgue norm, 

shall be omitted.

1.7 O perator T h eory

Suppose (A, || • II*) and (y, || • ||y) are (real or complex) normed spaces. Then a linear 

bounded operator from a normed space A to a normed space y  is a linear mapping 

that satisfies

(Linearity) T{ot\x 1 + 02^2) =  oi\T(x\) + afTi^xf) for all x\ ,xi  G X  and 01,02 G F; 

(Boundedness) ||Tx||y < A;||x||* for any scalar k > 0 and for every x G X.

Here F denotes the field associated with vector space X.  If only the first condition 

holds then we call T  a linear operator whereas if only the second condition is satisfied 

the operator is called bounded. However, throughout this work we consider the class 

of operators that satisfies both conditions and henceforth by operator we shall refer to
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a bounded linear mapping. Further, we define the induced norm of an operator T  to 

be the least k such that the boundedness condition holds, that is

\T\ x->y sup II Tx lly
\x 1X

When the spaces X  and y  are obvious from context, the induced norm of T  will 

be simply denoted as ||T||. Further, we shall denote the space of all bounded linear 

mappings from X  to y  by £(X,  y)  and clearly C(X)  will be the space of all bounded 

linear operators from X  to itself. It can be verified that the induced norm defined 

above satisfies the properties of a norm (N1-N4).

Example

defined

1.7.1. (Integration) A linear operator T from C[o, b] into itself can be

Tx(t) = f x{r)dr 
J a

t e [a, b].

Example 1.7.2. (M ultiplication) Define another linear operator from C[a, b] into 

itself, by

Tx(t) = tx(t).

Example 1.7.3. (M atrix) A m x n matrix T defines an operator T : Fn —» Fm by

means of

y = T x , x G F", y £ ¥m

where F is a field.

Definition 1.7.1 ([Par04]). The nonempty, compact subset of C, called the spectrum 

of an operator T  E C(X), where X  is a Banach space, is defined as follows:

spec(T) := {X E C : T  — A/is not invertible}

Similarly, define the spectral radius of the operator T  as

p(T) := lim ||Tn||1/n = inf{||Tn||1/" : n > 1}
n —>oo

In general, p(T) < ||T||.

Definition 1.7.2 ([Par04]). The adjoint of a bounded linear operator T  : X  —» y ,  

between two Hilbert spaces X ,y  is defined by the equation:

{T x , y ) = (x, T*y)
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for all x £ X  and y £ y .  Clearly,

The following properties are well known. Consider operators T2 and T3 in C(X, y)  

and ai,a2 £ C. Then

1. («iTi + = OL\Tf + «2T2

2. (T*)* =  T

3. ¡|r*|| = ||T|!

4. ii'rJj)- = r/ r ;

Further, three important, in this content, classes of operators are:

1. the Hermitian or self adjoint operators T  when T  =  T*.

2. the Unitary operators T  if T* = T_1, i.e. TT* = T*T = I

3. the Normal operators T  if T*T = TT*.

Obviously, both Hermitian and unitary operators are normal.

Definition 1.7.3 (Maximising vectors [You86]). Let X  and y  be Hilbert spaces 

and let T  e C(X, jV). A maximising vector for T is a non-zero vector x e X  such that

M  = IP I M

Thus a maximising vector for T  is one at which T  attains its norm.

1.7.1 Singular value decom position  o f a m atrix

Theorem 1.7.1. (SVD) If A £ Fmxn, (F = IZ or C) then there exist unitary matrices

U u 1 , a r. E Fmxm and V = vi , e F"

such that

A — U

where r = rank(A). Further,

ui , ... , u

Er 0 

0 0
V* = TUX*

i= 1

Im(A) — Im  ^ j and Ker(A) = Im   ̂ -Vr -\-l 5 7̂7
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where Er = diag(ai, . . . ,  ar), with ai > 02 > • ■ ■ > vr > 0 and r < min(m, n). Here, 

Ui and Vi denote the i-th columns of matrices U and V , respectively.

Proof. See [ZDG96]. □

Remark 1.7.1. From an operator theory point of view, the matrix A is considered as 

a linear map from the vector space Fn to the vector space Fm. Keeping in mind the 

dyadic form of A and the fact that v*vj = 5ij (since V is unitary) it follows that

Avi = E (TjUjUj Vj =  CTjUj

, ¿=1

So, Vj is mapped into crjUj by A. Moreover,

Avj — OjUj => A*Avj = a2jVj and AA*Uj = a2Uj

which reveals that a2 is an eigenvalue of A A* or A* A, Vj is an eigenvector of A* A and 

Uj is an eigenvector of AA*.

Geometrically, the singular values of A are the principal lengths of a hyperellipsoid; in 

the case of two dimensions this is described in figure 1.3.

A = UZV’

Figure 1.3: Singular values of A as a gain factor
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1.7.2 The singular values of an operator

Definition 1.7.4. ([You88],[Pow82],[Pel03]) The singular values of an operator T  

between two Hilbert spaces, X  and y ,  are defined as follows

sk(T) = inf{||T — R\\ : R £ C {X ,y ), rank(R) < k} k € jV /{0}

Clearly, S i ( T )  = ||T||. The numbers

si(T) > S2(T) > ... > 0

are called the s-numbers or the singular values of T. Intuitively, Sfc(T) is the distance, 

with respect to the operator norm, of T  from the set of operators of rank at most k in

c ( x , y ) .

Remark 1.7.2. In general, operators and in extension, their singular values are of 

infinite dimensions.

The operator is said to be compact if and only if

lim sn(T) = 0
n —> oo

If T  is a compact operator from X to V, it admits a Schmidt expansion similar to that 

in Remark 1.5.1.

Definition 1.7.5 (Schmidt pair)). ([You88],[Pel03]) Let s be a singular value of an 

operator between two Hilbert spaces, i.e. T  £ C(X,y) .  Then a Schmidt pair for T  

corresponding to s, is a pair (x , y) of non-zero vectors, with x £ X  and y £ y , such 

that

Tx = sy and T*y = sx.

Obviously, a singular vector or Schmidt vector for T  (where T  is compact) 

corresponding to s is an eigenvector of T*T corresponding to s2. In particular, consider 

the subspaces

£(+) = {x £ X  : T*Tx =  s2x }, = {y £ y  : TT*y = s2y}

Vectors in e \ are called Schmidt vectors of T  and vectors in E s are called Schmidt 

vectors of T*. Clearly, x £ E if and only if Tx £ Es~\ and we call the pair {x, y} a 

Schmidt pair of T  if it satisfies definition 1.7.5.
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Corollary 1.7.1 (Schmidt Expansion). ([Pel03']) If T  is a compact operator f  rom 

a Hilbert space X  to another Hilbert space y , it admits a Schmidt expansion

Tx =  E si(T) (x, fi)gi, x e x
i> 0

where {/*}*>o is an orthonormal sequence in X  and {<7i}i>o is an orthonormal sequence 

in y .

T —

Definition 1.7.6. ([You88]) (Operator matrices) Let Tij e C^Xj^yf), i , j  

The operator matrix
Tn Tu  

T21 T22

is the operator from X\ © X2 to Ti © 3̂ 2 defined by 

x i \ _  ( ^ i i ^ i + T12x 2\J y32ia;i + T22:r2 J
Operator matrices

(?i t 2) : x 1® x 2 ^ y

fTx

=  1, 2 .

T Xi Ç Xîj i — 1, 2.

To
: x  -  y 1 ©  y 2

are defined analogously.

Remark 1.7.3. In the case of an inner product space V if X , y  are two subspaces of 

V such that for every x € X  and y 6 y  we have (x, y) = 0, we say that X  and y  are 

orthogonal. Further, we say that V is the orthogonal direct sum of the two subspaces 

denoted as X  ® y , i.e. X  and y  are orthogonal and X  + y .

Theorem 1.7.2 (Parrott’s theorem). Let H, /C be Hilbert spaces with decomposi-

tions Hi © H2 and K\ © JC2. Assume : Ttj —> ICi, (i,j = 1, 2), are bounded linear 

operators. Then, there exists an operator Z  : /C2 —> IC2 for which the operator

Q z TLi © TL2 —> All © A!2

is a contraction if and only if

t )
\T21J

< 1 and < 1

Proof. See [Pel03]. □
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1.8 B est ap p roxim ation

The need to approximate a complicated function by a simpler function gives rise 

to approximation theory. Among the various methods, interpolation and best 

approximation are of the greatest interest as far as this work is concerned. The 

difference between best approximation and interpolation problems is that in best 

approximation there is no requirement for the approximation function to pass through 

the data values. Typically, best approximation problems with respect to norms which 

are not Hilbert space norms can hardly ever be solved explicitly.

Definition 1.8.1. (Best approximation) Let (A, ||-||) be a normed space and suppose 

that any given x € X  is to be approximated by a y E y ,  where y  is a fixed subspace of 

X . Further, let 6 denote the distance (the metric induced by the norm) from x to y . 

Then,

6 = S(x, y)  — inf ||x — y\\
ycy

If there exists a y0 e y  such that

Ik -  2/o|| = <5

then yo is called a best approximation to x out o fy .

Theorem 1.8.1 (Existence [Kre89].). Let (X , || • ||) be a normed space with a finite 

dimensional subspace y . Then, for every x E X  there exists a best approximation to x 

out o fy .

Proposition 1.8.1 (Convexity [Kre89]). In a normed space (X, || • ||) the set M of

best approximations to a given point x from a subspace y  of X  is convex.

Definition 1.8.2 (Strict convexity). A normed space with norm such that for all 

x, y of norm 1,

I k +  2/11 <  2

is called a strictly convex normed space.

Theorem 1.8.2 (Uniqueness [Kre89]). In a strictly convex normed space X  there 

is at most one best approximation to an x € X  out of a given subspace y .

Proposition 1.8.2 ([Kre89]). Hilbert space is strictly convex.
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Throughout this work we shall consider best approximation by analytic or meromorphic 

functions in the norm. As discussed in the start of the paragraph, this is normally 

an untractable problem (since is a Banach and not a Hilbert space), but under 

certain conditions it can be reduced to a mathematically tractable problem, which 

involves the rich theory of Hankel operators.

25



Chapter 2

The General 7Yoo optim al control 
problem

In a SISO system the performance of the feedback loop depends on the variation of 

the loop gain over frequencies. However, extending this idea into the MIMO case 

is problematic since matrix systems do not have a unique gain; in fact, ||G(s)u(s)|| 

depends on the direction of u(s). Hence, a main difference between a scalar (SISO) 

system and a MIMO system is directionality. One possibility is to use eigenvalues 

to generalise the concept of gain; however these can only be computed for square 

systems and characterise system gain whenever the inputs and the outputs are in the 

same direction (eigenvector direction). Moreover, eigenvalues can be very sensitive 

to perturbations in the matrix elements. Hence, eigenvalues are a poor measure of 

gain. The singular value decomposition (SVD) provides a useful way of quantifying 

multivariable directionality, and we will see that most SISO results involving the 

absolute value (magnitude) may be generalised to the multivariable case by considering 

the maximum singular value of their transfer function evaluated over the imaginary axis 

(frequency response) [SP96],[Mac89],[FL88j.

2.1 S ignal and sy stem  spaces

In this context, a linear system G will be defined as a linear operator over a vector 

(linear) space; this is in turn defined over a field F (which for our purposes is either 

7Z or C) and it is equipped with the usual operations of vector addition and scalar
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multiplication over that field. The linearity of G implies that:

\ =>• (Gi + G2)u — 2/i + 2/2
{  V2 =  G 2u

y = Gu => (AG)u — Ay

Definition 2.1.1 (Time-invariance). [GL95] Let y(t) be the response of a system G 

to input u(t). If the response to the time-shifted input u(t — T ) is y(t — T), the system 

is called time-invariant. Furthermore, if the system satisfies the linearity properties 

discussed above, then it is said to be linear time-invariant (LTI).

By considering LTI systems we get concrete realisation of the input-output relation, 

i.e. if g(t) is impulse response and y(0) = 0, then

=  g ( t ) * u ( t ) =  [  g ( t - T ) u ( r ) d T  
Jo

where “ * ” denotes the convolution operation.

Further, norms as measures, are vital for defining the notions of stability and internal 

stability. In that sense, we consider the class of all MIMO LTI systems (input-output 

mappings) Q as a normed linear space which satisfies properties (N1)-(N3) from 

chapter 1, definition 1.2.1. Since a linear system is a linear operator mapping elements 

from the input space to elements of the output space:

G - . u - ^ y

has induced norm given by

lie'll = sup ||Gu||y
||u||M< i

which, in engineering terms, denotes the maximal possible gain whenever a nonzero 

input is applied. Thus, the system’s norm is directly related with the type of input 

and output spaces considered as signal spaces. Throughout this work continuous-time 

systems are considered and hence signals are defined as functions in continuous time 

domain. Further, assuming that signals are square integrable with bounded energy, we 

define the input and output spaces to be Lebesgue square integrable, i.e. to belong to 

the class 222(— °°) (see chapter 1). Independently, if G is taken to be an operator 

in Coo then it is implied that it maps C2(—oo, oo) input signals to C2(—oo, oo) output 

signals (but not vice-versa). Further, recall from chapter 1, that the £oo-norm can be
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written as /^-induced:

lie 'll -  lie (s)||Jc00(jK) -  sup ||Gu ||jc 2(_00i00)
11̂11 £2 ( — 00,00) — 1

due to Parseval’s theorem.

Remark 2.1.1. The choice of these spaces is mainly due to the fact that they admit 

an “easy” way to calculate and optimise ||G|| within a rich and well established 

mathematical framework which captures practical engineering issues and results to a 

reliable model of the physical (real) process.

A pre requisite to any kind of feedback control design is stability. Hence, conditions of 

stability should be defined in this context. A system is called (input-output) stable if 

every bounded input signal produces a bounded output signal.

Definition 2.1.2 (External stability). A system G is BIBO stable if

Vu G £ 2(0, 00) =h y = Gu G £ 2(0, 00)

Hence, all LTI operators on £ 2[0, 00) are represented by functions in Hoo L 

Stability of LTI systems is described by analyticity of the transfer function in the right 

half plane of the complex domain. As this is defined in the frequency domain, we need 

to pose a time-domain analogue which preserves the norm (isometry). Thus, define the 

Hardy space TYqo to be the space of all stable LTI systems, i.e. systems whose transfer 

function is analytic in the closed right-half plane, equipped with the following norm:

l|G||woo := SUP ^[G(s)] = sup o[G(ju)\
Re(s)> 0 u g R

where the last equality is due to the maximum modulus theorem (see chapter 1). The 

subspace of all proper real-rational functions in Ti^ is denoted by Then if a

system G is stable, ||G||oo is bounded.

In the same vein, signals in the Laplace domain belong to the space 7i2, if they are

analytic in the open RHP, or Ttf if they are analytic in the open LHP, respectively.

Frequently, a misunderstanding arises between the notions of stability and causality.

In the following paragraph we distinguish clearly the two notions.

1Notice that this means that an LTI operator on £2[0, °°) is necessarily causal, a notion which we 
define later in the paragraph.
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Definition 2.1.3 (Causality). A system is called causal if the output up to time T  

depends only on the input up to time T , for every T .

The Laplace transform formula together with its region of convergence (ROC) uniquely 

specify the time function and hence causality. The next example is constructed to 

support this argument.

Example 2.1.1. Let u(t) denote the one-sided step function u{t) = 1, for t > 0, and 

u(t) = 0 fo rt < 0. The SISO transfer function is the Laplace transform of e~atu{t) 

and of —e~atu(—t). However, the regions of convergence for these time functions are 

different. When the causal exponential time function is considered, then the ROC of 

g(s) is Re(s) > —a. On the other hand, if we consider the anti-causal exponential time 

function, then the ROC of g(s) is Re(s) < —a.

Remark 2.1.2. For a causal LTI system, a necessary condition is that the region 

of convergence is to the right of the rightmost pole (in the s-domain) of the Laplace 

transform. Furthermore, a requirement for an LTI system to be causal and stable is 

that the region of convergence is to the right of the rightmost pole (in the s-domain) of 

the Laplace transform and all the poles are in the left-half plane.

Remark 2.1.3. The time domain analogue of Hoo is £oo[0, oo), which defines all 

causal systems. All anti-causal systems, i.e. systems whose impulse response lies in 

Coo{—oo, 0] are isometric to Tt^, the set of all anti-stable LTI systems.

Example 2.1.2 ([Kim97]). Consider a transfer function

1
G(s) = ¿> T

Then the infinity norm is calculated as:

||G||oo = sup

a a > 0.

1
y/ui2 + cr

1
a

Example 2.1.3 ([Kim97]). Consider a transfer function

s + (3G(s)
s + a a > 0.

Then,

IIGHoo = sup
u)2 + /32 = sup(l - cr 1/2

= maxjl, —  } 
aa;2 +  a 2 ^ uj2 + a2'

Along with the definition of a contractive operator given in chapter 1 (see def. 1.1.5 

and section 1.7), contractive systems are defined:
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Definition 2.1.4 (Contractive systems). A system is called 7 -contractive (or simply 

contractive if 7 = 1) if its induced norm is less than or equal to 7 , i.e. ||G|| < 7 . If 

||G|| < 1, the system is called strictly contractive.

Figure 2.1: Nyquist diagram of a contractive system

Definition 2.1.5. A system G is called j-allpass if it satisfies

= G~G = 721

Hence, as a consequence, its induced norm ||G|| is equal to 7 .

From an engineering point of view, plotting the singular values of an all-pass system 

we see that they all have a constant value of 1, over all frequencies (GG~ = I  =>

Ai(GG~) = 1 => ai(G) =  1).

2.2 S ta te -sp a ce  rea lisation s o f LTI sy stem s

A linear transformation of a finite dimensional vector space into another finite 

dimensional vector space can be represented by means of different matrices, depending 

on the particular choice of bases in the vector spaces. Among all, there exist choices 

of bases which result in matrices of “standard” forms, called canonical forms. Such 

transformations preserve certain characteristics of the vector spaces (e.g. the rank of 

a matrix), called the invariants under the transformation. In control theory, however, 

motivation for such transformations usually arise from practical considerations. The
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study of an equivalence class, the so-called similarity transformations is of great interest 

in this particular work. In the sequel, standard results of such linear transformations 

are presented.

The realisation of a real-rational transfer-matrix G(s) = C (sl — A)~lB + D is written 

as

G =(A,B,C,D) or G =

Proposition 2.2.1 (Equivalence). Assume two LTI systems Gy and G2 have 

realisations (Ay, By, C\, Dy) and (A2, # 2 , 6 2 ,  D2), respectively. Then Gy and G2 are 

said to be equivalent systems if and only if

CyeMtBx = C2eMtB2 and Dy = D2.

A B

C D

Proof, see [Ros70]. □

Definition 2.2.1. A realisation (A , B, C, D) for a system G is called minimal if there 

does not exist a realisation for G with smaller state dimension. Then, the McMillan 

degree deg(G) is equal to the dimension of the state vector in a minimal realisation of 

the system.

Controllability and observability are two notions which play a very important role 

in the structural analysis of control systems. Controllability is concerned with the 

ability of “steering” the state x(t) from an initial value x(t0) to the origin in finite 

time T, i.e. x(T) = 0, T > t0 by means of an appropriate control u(t), t0 < t < T. 

Further, observability is concerned with the ability of determining in the “unforced” 

case u(t) = 0 (uniquely) the initial state x(t0) from knowledge of the system output 

y(t), t e [t0,T ].

Proposition 2.2.2. A system (A , B , C, D) with deg(A) = n, is controllable if and only 

if the controllability matrix

Ca b  — B AB An~lB

has rank n. Further, the system is observable if and only if the observability matrix

C

Oc a
CA

CAn — 1
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has rank equal to n.

Proposition 2.2.3. A system G admits a minimal realisation (A , B, C, D) if and only 

if (A , C) is observable and (A , B) is controllable.

Proof see [ZDG96], □

Theorem 2.2.1 (Kalman canonical decomposition). There always exists non-

singular coordinate transformation x = Tx so that every state-space representation 

(.A , B,C, D) is equivalent to the following structure:

1
00

1

A-co 0 4̂i3 0

' 
O<u

1___

1-----00
|cq

1___

Xcd A21 ACô A23 A24 Xcd tal O
I

= +
Xco 0 0 A5o 0 Xco 0

Xcd 0 0 A43 Acó Xcd 0

V = Cco 0 C,0 0

Xco

X cd

x-

X;
uco

'C O

+ Du

The state variables corresponding to the vector xco are both controllable and observable, 

xCo is controllable but unobservable, Xco is observable but uncontrollable, and Xcd is 

uncontrollable and unobservable.

Proof, see [ZDG96]. □

Corollary 2.2.1 . Consider a realisation (A, B,C, D) corresponding to a system G. 

Then,

1. if the system is not controllable there exists an equivalent realisation

Â =  T A T -1 =

C = C T -1 =

An Ai2

0 Â22

c \  o1

B = TB  =
B1

Ô2

D = D

in which (An, fix) is controllable.

2. if the system is not observable there exists an equivalent realisation 

A = T A T -1 =

C = CT~X =

A11 0 B 1
B = TB —

A22 b 2_

0 11
•Cl

( 2 . 1)

( 2.2)
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in which (An, Ci) is observable.

Definition 2.2.2. The system (A, B) is denoted as stabilisable, if the matrix A22 in 

the normal form (2.1) is stable.

Definition 2.2.3. The system (A,C) is denoted as detectable, if the matrix A22 in the 

normal form (2.2) is stable.

Proposition 2.2.4. Controllability (stabilisability) and observability (detectability) 

remain invariant under similarity transformations.

Proof, see [ZDG96]. □

Proposition 2.2.5. The transfer function remains invariant under similarity trans-

formations.

Proof, see [ZDG96],[Ros70] □

Definition 2.2.4. [MG90] Suppose G is a stable system with minimal state-space 

realisation (A, B,C, D). Then the associated controllability gramian, Wc, and 

observability gramian, W0, are defined as:

VPC:=
POO

/  eAt BB' eAtdt
Jo

POO

W0 := /  eA'tC’CeAtdt
Jo

Further, these are the unique, positive definite solutions to the following Lyapunov 

equations:

AWC + WCA' + BB' = 0 

A'W0 + WaA + C'C = 0

respectively.

Proposition 2.2.6 (Balanced Realisation). Suppose Wc and WQ satisfy the 

controllability and observability Lyapunov equations, respectively, of a realisation 

(A , B , C, D) of a stable system G. Then there exists an equivalent realisation 

(A, B , C, D) with gramians Wc and WQ, under a similarity transformation T  such that

Wc := TWCT' =

Si Si

S2 0
WG := (T~l)'W0T~l =

0 S3

0 0

33



where £ 1, £ 2, £3 are diagonal and positive definite.

Further, if the original realisation is minimal then there exists a transformation such 

that Wc = WQ — £, where £  = diag(a\, (T2, ■ . ., an). Here, n is the McMillan degree 

of the system and > a2 > ... > an > 0 are the Hankel singular values, defined by 

Oi = \ \(W 0Wc).

Proof, see [ZDG96]. □

Definition 2.2.5. [ZDG96] Suppose G(s) =(A, B,C, D) is minimal. Then the 

eigenvalues of A are called the poles of G(s).

Definition 2.2.6 (M ultivariable zeros). [BC85],[Kar01]

1. A complex number zq £ C is called a system zero of the system realisation if the 

system matrix
zqI  — A B 

C D
(2.3)

is rank deficient. The system zeros are invariant under similarity transformations 

and constant linear feedback.

2. Suppose that there exist complex numbers zCi and z0i which make the matrices

A - B
zoiI  -  A 

C

rank deficient. Furthermore, suppose there exist numbers zCOi for which both of 

these matrices are simultaneously rank deficient. All such numbers are called 

decoupling zeros and this set is subdivided into the sets of input-decoupling zeros 

(zCi), output-decoupling zeros (zco) and input-output decoupling zeros (zCOi).

3. The zeros of the transfer matrix G(s) are called the transmission zeros and can 

be found from the Smith-McMillan form of G{s).

f. The following identity holds:

{system zeros} = {transmission zeros}U{input-decoupling zeros}

U{output-decoupling zeros} - {input-output decoupling zeros}

Remark 2.2.1. Systems with no decoupling zeros are said to be least order (minimal).
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Rem ark 2.2.2. When the system matrix (2.3) is square and nonsingular, the zeros of 

the system are exactly the invariant zeros of the system.

Rem ark 2.2.3. Consider a system with realisation (A, B,C, D). Then the input-

decoupling zeros of (A, B,C, D) are uncontrollable eigenvalues of A, and the output-

decoupling zeros are the unobservable eigenvalues of A. Note that in the case when 

(A, B , C, D) is controllable and observable, the zeros of the system, the invariant zeros, 

and the transmission zeros (zeros of the transfer matrix) all coincide.

Heretofore, by zeros we shall referring to system zeros, unless stated otherwise.

2.3 In tern a l s ta b ility  o f feedback in tercon n ection s

Consider the feedback interconnection in figure 2.2 and define an extra set of three 

signals: e\ := v, e2 := d + u and e3 := ym '■= y + n.

Figure 2.2: General feedback arrangement

Grouping the terms together:

I  0 I s f e 3

- K  I  0 e2 = d

0 1 Q W [n )

Definition 2.3.1 (Well posedness). The feedback system of figure 2.2 is well-posed 

if and only if the 3 x 3  matrix, above, is nonsingular for s = j oo.

The transfer matrix defining the input-output map is then given as:

f  I 0 A
-1

( r \

e2 = - K / 0 d

W l  0 -G ’ ) W
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Remark 2.3.1. If the transfer functions ofG and K  are proper, well-posedness implies 

that the nine transfer functions from (r,n ,d ) —> (ei,e2,e3) exist and are proper.

Definition 2.3.2. The feedback system given in figure 2.2 is called internally stable if 

each of the nine transfer functions from (r,n,d) —> (ei,e2,e3) is stable.

Remark 2.3.2 (External vs Internal stability). It should be noted here that 

internal stability is a stronger requirement than (external) input-output stability as 

defined at the start of this chapter (definition 2.1.2), since it also takes into account 

the potential RHP pole-zero cancellations.

The following example considers the SISO case of a feedback loop which is input-output 

stable but not internally stable.

Example 2.3.1. [GL95] Consider the SISO plant and controller

9{s)
—s

7 + 1 ' k(s) =
s + 3

s

It can be observed that an unstable pole-zero cancellation in Re(s) > 0 occurs 

when the product g(s)k(s) is formed. Further, the transfer function from r to e\ is 

(1 — g(s)k(s))~1 = 2̂ +2)’ which is stable. However, the closed-loop transfer function 

from r to e2 is k(s)( 1 -  g(s)k(s))~1 = which is unstable due to the closed-

loop pole at the origin. Therefore, the feedback loop is not internally stable for this 

particular plant and controller.

Internal stability becomes a more complicated property when considering MIMO

plants. For example, consider the transfer matrix, H{s) which has

poles and zeros at the same location in C, but not in the same input-output “channel”. 

From a balanced realisation of H(s), it may then shown that it has modes A = — 1 

and A = — 2 which imply that the realisation is both controllable and observable and 

therefore minimal. Moreover, a loop having H(s) as the closed-loop transfer function 

is internally stable.

Example 2.3.2. Consider

G(s) =
2s 

s—1
2s 

s—1
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Then the unstable pole s = 1 of the controller does not appear in the product GK,

G(s)K(s) =

Further, one of the feedback-loop transfer matrices

0
2 2 

S+l 3+1

*
4 s2

K^I + G K )-1 =
(s —l)(s-f l)(s+3)

/ias unstable poles and thus the feedback system is not internally stable. 

Theorem 2.3.1 (Internal Stability). [DC86] Consider a minimal realisation

A B\ B2

G(s) ± c1 D\\ D\2

c2 D2\ d 22

Then there exists a proper real-rational transfer matrix K  achieving internal stability 

of the feedback configuration of figure 2.2, if and only if the pair (A, B2) is stabilisable 

and the pair (A , C2) is detectable.

Proof, see [DC86]. □

In the sequel, a standard test for feedback loop stability, namely the Nyquist criterion 

for multivariable systems is discussed. Another important theorem which gives 

necessary and sufficient conditions for closed-loop stability is the small gain theorem 

which will be discussed in the following paragraph, where the standard Hoo control 

problem is considered.

Theorem 2.3.2 (Nyquist stability). [AntOl] Consider figure 2.2 where d = n =

0. Then given the square MIMO system G(s)K(s), let T be the Nyquist plot of 

det{I + G(s)K(s)) 2. Assuming that T does not pass through the origin, the number 

of unstable closed loop poles of the unity-feedback configuration in figure 2.2 is equal to 

the sum of

• the number of times T encircles the origin in a clockwise direction, plus

• the number of unstable open-loop poles of G(s)K(s).

2In the case of positive feedback, i.e. in figure 2.3, we use the Nyquist plot of det(I — G(s)K(s))
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Obviously, the number of clockwise encirclements of the origin may be negative (due to 

unstable pole-zero cancellations).

As a result, the closed-loop system is stable if and only if, the number of unstable poles 

of G(s)K(s) is equal to the number of anticlockwise encirclements of the origin by the 

Nyquist plot F.

Proof. For a complete treatise of MIMO Nyquist diagrams and homotopy arguments 

refer to [VinOl]. □

2.4 T h e stand ard  T i ^  problem

Consider the following general feedback arrangement:

Figure 2.3: General plant

where w contains all exogenous inputs and model error outputs, the signal u is the 

controller output, the signal y is the controller input signal (measurements, references) 

and the signal 2 contains all the exogenous outputs. The overall control objective is 

to minimise the norm of the closed-loop transfer function between w an 2 by designing 

an appropriate controller K.

Let P(s) be a partitioned system with a state-space realisation given by

Then

P(s) = ( Pn Pl2̂
A B ! b 2

\ = c 1 Pn D\2
\p21 P2 2)\ / g 2 P>21 d 22

Pii — C i ( s l  — A ) l B j  +  Dij

is a state-space realisation of , for i, j  = 1, 2. A linear fractional transformation of 

the partitioned system P and another system K, as appears above, is defined as

W  K) = Pn + P nK (I -  P22P ) - 1P21
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which is the closed-loop transfer function, Twz, from w to z. Next, we outline important 

results for the observable and controllable parts of a generalised plant and its relation 

with the system zeros. For further discussion we refer to [KarOl].

Proposition 2.4.1. Consider the above generalised regulator problem. Then, if Wc 

and W0 are the controllability and observability gramians of P respectively,

1. the number of system zeros of Puis) in C+ =  rank(Wc),

2. the number of system zeros of P2\{s) in C+ = rank(W0),

3. every unobservable mode of the closed-loop system is a zero Pn(s) and 

4■ every uncontrollable mode of the closed-loop system is a zero of P2\{s).

For (3) and (4), well posedness conditions must be satisfied.

Proof, see [LH87]. □

Example 2.4.1. Formulation of the control diagram described by figure 2.2 in terms 

of a generalised plant. Here:

Figure 2.4-' Equivalent representation of figure 2.2 where the error signal to be 
minimised is z = y — r and the input to the controller is v = r — ym ([SP96]).

W1 d

w2 = r

w3 n

iw  : = z — e = y — r\ v — r — ym = r — y — n



Then.

z = y — r — Gu + Gd — r = Iw i — Iw2 + Ouq + Gu 

v = r — ym = r — Gu — Gd — n = —Iw  i + Iw  2 — Iw  3 — Gu

So, the transfer matrix from (w û j to (̂ z v'j is equal to Ti(P,K), where

P :=
( G - I  0 G 

1-G  /  - /  -G

Problem  2.4.1 (Standard Ttoo problem). The Td^-optimal regulation is the problem 

of determining a controller with transfer-matrix K  that:

1. internally stabilises the closed loop system,

2. minimises the infinity norm ||T||oo of the closed-loop transfer matrix T  = 

Pi(P ,K ) from the external input w to the control error z (see figure 2.3).

Suppose that P(s) have the realisation given in the start of the paragraph.

Assumption 2.4.1. Suppose the following assumptions hold:

( A l )

(A 2)

(A3)

(A4)

(.A ,B 2) is stabilisable and (A, C2) is detectable.

A -  j u l b 2 has full column rank for all lo E 71
-

Ci D\2

A - j u l B i
has full row rank for all lo ElZ.

c 2 D21

D\2 and D2! have full rank.

The first assumption is made so that a stabilising controller exists. The other three 

assumptions ensure that P12 and P21 have full column and full row rank respectively, 

on the imaginary axis, including infinity.

If P12 and P2\ are both square then the above problem is called of the first kind. 

However, if P12 or P2i is non-square then the problem is called of the second kind and 

further if the the case where both Pi2 and P21 are non-square occurs, then the problem 

is called of the third kind. The solution of the last two cases involves an iterative 

method to achieve optimality, the so-called 7 iteration [DC86],[ZDG96].

40



(A 5) Throughout this work we shall consider an extra assumption which relaxes the 

problem and avoids the 7 -iteration. In particular, we assume that Pi2 and P21 are 

generically square.

Theorem 2.4.1 (Small Gain theorem ). Consider figure 2.3 and let P G TTH^ and 

K  G IZTioo. Then, the feedback loop is well-posed and internally stable for all K  with:

T M o o  < \  if and only if ||P||oo < 7

2. Halloo <  ̂ */ and only if ||P||oo < 7

where 7 > 0.

Proof, see [ZDG96],[GL95]. □

2.5 Sum m ary

In this chapter we defined all important notions which are fundamental for the further 

development of our work in the consequent chapters. Initially, this chapter links the 

mathematical ideas presented in chapter 1 with the control framework which we follow 

in the sequel. In particular, the notions of signal and system spaces were related to 

function spaces and input-output stability was defined via the induced norm of the 

Hardy space Hoc- Further, it was aimed here to formulate the general Hoc optimal 

control problem and give all necessary assumptions needed throughout this work. In the 

sequel, together with assumptions (2.4.1) we will always assume minimal realisations 

(with stabilisable and detectable parts) and internal stability to the feedback loops. 

Further, extensive use of similarity transformations will be made in order to derive, via 

Kalman decomposition, minimal realisations.
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Chapter 3

Stabilising Controllers: 
Param etrisation

In this chapter stability conditions are described for feedback interconnections of 

LTI multivariable systems. A pre-requisite for stability of feedback systems is well 

posedness, a notion which was briefly discussed in the previous chapter. Assuming that 

this condition is satisfied, a controller that stabilises the closed loop system may then 

be designed such that the infinity norm of the closed loop remains bounded. Extending 

this idea and using the so-called “Youla parametrisation” [YJB76a],[YJB76b], the set of 

all stabilising controllers is characterised in a generalised regulator setting. The general 

feedback structure considered here is described in the figure below, or equivalently in 

figure 2.2 in chapter 2 (with n = 0 and positive feedback). Suppose that G ( the plant) 

has p inputs and m  outputs, then K  (the controller) will have m  inputs and p outputs.

Figure 3.1: General feedback interconnection.

First, consider the equations corresponding to figure 3.1:
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(
and V\

\!J2

The transfer function from the input signals to the output signals is described by

/  (JTO -  K G Y 'K  

\ ( / p -  GK)~lGK
(.Im -  KG)~lKG  

(Im ~ KG)~1G

K (Ip -  G K )-1 

{Ip -  GK)~lGK

K{IP -  GI<YlG 

{Ip -  K G )-lG

u l

U2

= W(G,K)

First note that K{Ip — GK ) 1 = {Im — KG) 1K . To show this, note

K{IP -  G K )-1 -  {Im -  K G )-XK =

= {Im -  K G Y Y Y m  -  KG)K  -  K{Ip -  GK)}{Ip -  G K )-1

= {Im -  K G Y Y K  -  KGK - K  + KGK}{IP -  G K )-1 = 0 

which proves the claim.

From the above analysis we see that the transfer function, mapping input signals to 

error signals, is equal to (Ip+m -  F T )-1. By assumption the matrix {Ip+m -  FT) is 

nonsingular and thus,

M  = /  (I p - G I < y 1 {Ip — GK)~1G \  /«A
\ e 2/  \K{Ip -  GK ) - 1 Im -  K{IP-  GK) - 1G)  L J

V------------------------- v------------------------- '
=  H(G,K)

Remark 3.0.1. In order for H{G,K) and W{G,K) to be defined as proper transfer- 

functions we require det{I — GK) = det{I — KG) ^  0, that is the feedback configuration 

at the above figures be well posed.

In order to establish internal stability it is necessary and sufficient to prove that each 

of the four transfer function matrices of H{G, K) are in IZH0G. An equivalent way to 

define internal stability is in terms of the transfer matrix from (rq, rq) to (2/1, 2/2)- To 

show the connection note that T(I — F T )-1 = W => H = T~XW . Further,

H = {I — F T )-1 = * •(/- FT)H = I  => H — FTH  = /

=► T = F -^ H  -  I ) ! ! -1 => T - 1 = H{H -  i y 'F
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Hence,

H = H(H -  I)~ 'FW  = > H -I  = FW  = > #  = /  + FW  

=> W = F ~ \H  -  /)  = F(H -  I)

The only dynamical parts in the above relation are W  and H , therefore

W  E TlHoo H £ TZHoo

Remark 3.0.2. Consider the generalised regulator feedback structure in figure 3.2. 

Consider also figure 3.1 where G has been substituted by G22 - the block (2,2) partition 

of G. Then, given a controller K  the feedback system is internally stable if and only if 

the system in figure 3.2 is internally stable (see [DPOO] lemma 5.f).

w

1

Figure 3.2: General feedback arrangement as lower LFT.

We say that G in figure 3.2 is stabilisable if there exists a (proper real-rational) K  which 

stabilises it internally. Then K  is said to be admissible. Note that an obvious non- 

stabilisable G (partitioned as Gn to G22) is G12 = G21 =  G22 = 0 and Gn unstable. 

If this is the case, then according to figure 3.2 the unstable part of the plant is not 

connected with u and y and so G\\ is neither controllable from u nor observable from 

y. Hence, not every G is stabilisable.

Consider G partitioned as

A B1 b 2
s c1 Dn D\2

c2 D21 D22

Corollary 3.0.1 ([DPOO]). Suppose that (A, B2,C2), which corresponds to G22, is 

stabilisable and detectable. Then the system in figure 3.1 is internally stable if and 

only if the transfer function from («1,1/2) to (ei,e2) is in VSHoa.
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Now consider the system equations corresponding to figure 3.2. Here the inputs of the 

plant are w and u and the outputs are 2 and y, respectively. So,

w
x = Ax + B\ B2

u

and

On the other hand, the controller input and output signals are y and u , respectively. 

Thus,

z Cl Dn D\2 W
= x +

y_ <h_ D21 D22 u

x k  — Ak Xk  + Bxy  

u = CKxK + DKy

Combining the above equations we obtain the following state-space description of the 

closed loop system:

x = Ax + B\W + B2U 

x k  = Ak Xk  + BKy

u 0 CK x
+

0

y C2 0 x k D21

and
I  - d k

—D22 I
Then, the ^-matrix of the closed-loop realisation from w to 2 is

I  ~D k  

— D22 I

w

A 0 b 2 0
Ad =

0 Ak _
+

0 B k _

— 1 1
O

1-----___
1

----
1

O

whenever the matrix 

posedness).

/  - D k  

— D22 I
is nonsingular (which is equivalent to well-

The next theorem establishes a connection between internal stability and the state- 

space model of the closed loop.

Theorem 3.0.1. The system of figure 3.2 is internally stable if and only if I  -  D22D K 

is invertible and Aci is asymptotically stable, that is it has no eigenvalues in the closed 

right half plane.

Proof. Straightforward from previous analysis. □
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3.1 Coprirne F actorisation  over 7 Z H œ

The set of rational functions TZ(s) has the algebraic structure of a field. This is not 

true for the set of stable rational functions because a stable rational function is not 

always stably invertible: the rational function ^  is stable but has no inverse in the 

set of stable rational functions. The adequate structure for the description of the set 

of stable rational functions is that of a ring.

The main point of this section is that we can always write a proper real-rational transfer 

matrix as a ratio of two coprime stable proper real-rational transfer matrices. This 

powerful result is due to coprime factorisation theory which has been studied from 

system and operator theorists. In general, the subject has been studied over different 

rings (or rather algebras). However, throughout this work we shall consider the most 

prominent, to us, algebra which is IZTtoo, the algebra of real-rational bounded analytic 

functions on the half plane.

Definition 3.1.1 ([MG90]). Any square, invertible, transfer function matrix satisfy-

ing U, U~l 6 VSHao is called a unit in TTH.^.

Definition 3.1.2 ([F093]). Let G be a proper (real) rational matrix-valued function. 

Then the factorisation

1. G = NM ~l is called a right factorisation (RF) of G if N, M are stable proper 

(real) rational functions and M is invertible with proper inverse (M is square 

and det(M) ^  0).

If N , M are right coprime, i.e. if there exists stable rational functions U,V such 

that

VM  - U N  = /,

then the factorisation is called right coprime factorisation (RCF).

2. G = M -1iV is called a left factorisation (LF) of G if N , M are stable proper 

(real) rational functions and M is invertible with proper inverse (M is square 

and det(M) 7̂  0).

If N, M are left coprime, i.e. if there exists stable rational functions U,V such 

that

MV -  NU — /,

then the factorisation is called a left coprime factorisation (LCF).
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Remark 3.1.1. From the first Bezout identity we get that

VM  — UN = I  => = I

In other words, N  and M have the same number of columns and a statement equivalent

to the above definition is that the matrix is left invertible in VHoo ■ Similarly,

the second Diophantine equation can be written as

M V  -  NU = /  =» ( M - N = I

which reveals that M and N  have the same number of rows and that equivalently to the

LCF definition, the matrix (JM N j is right invertible in V H ^.

Proposition 3.1.1. Let G = NM ~X be a, not necessarily coprime, right factorisation

M are right coprime.

Dually, let G — M~lN be a, not necessarily coprime, left factorisation of G. If the 

McMillan degree of (̂ —N M ĵ equals the McMillan degree of G then N and M are left 

coprime.

It is possible to represent any proper real-rational transfer matrix function in terms of 

a pair of asymptotically stable, proper real-rational transfer matrices which are left, 

right or both left and right (doubly) coprime. The following result originally appeared 

in [NJB84] in a more general setting.

Proposition 3.1.2 ([NJB84],[DP00]). Given a proper (real) rational matrix-valued 

function G, there exist both right and left coprime factorisations

equals the McMillan degree of G then N and

Proof, see [F093]. □

G = N M -1 = M~lN

satisfying

for appropriate functions U, V, U, V in VSHoo.

47



Here we reproduce an already known proof. This is done for continuation of arguments 

since the following construction is important for understanding the further development 

of the theory.

Proof. The proof is constructive. Assume

G(s)
A B

C D

with (A, B , C) stabilisable and detectable. The state space model of the realisation is

x = Ax + Bu

y — Cx + Du

where A, B,C, D are real matrices.

Now choose a real matrix F such that AF := A — BF  is stable and define the vector 

v := u + Fx and the matrix CF := C — DF. Then the state space model can written 

as

x = AFx + Bv 

u = (-F )x  +  v

y = CFx + Dv
Now the transfer matrix from v to u is

M{s) =

and that from v to y is

AF B

- F I
M(s)~l =

A B

F I

N(s) iS
A f B

cF D
Therefore,

u = M v , y = Nv

Then it is routine algebra to check that y = N M _1u, i.e. G = NM ~l . 

N M -1 =S
A B A f B

F I . C f
D

A f BF B

— 0 A B T_

. C f
DF D

A B
=: G

C D

A f 0 0

0 A B

cv C D
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where T  :=
I  - I  

0 I
Similarly by choosing a matrix H so that AH := A -  HC  is stable and defining 

Bh  := B — HD  we construct

M(s) =
Ah H

=> M (s)-1 =
A H

-C I C I

N(s) =
Ah Bh

C D

Then it is easy to see that G — M 1N, by using appropriate transformations:

M tsy 'N is )  =
A H AH Bh

C I C D

A HC HD A 0 B

0 A - HC B -  HD 0 A - H C B - H D

C C D C 0 D

t 2
A - H C  0 

0 A

where T\ :=
I  I 

0 I

0

and T2 :=

B -  HD 

B

C

0 I

1 0

D

A B

C D
G

Thus, we have obtained four matrices in IZHqo satisfying the first condition G = 

NM~X = M~lN . Further, the second objective is met by defining the other four 

matrices as:

, U(S) i  

, Ù(s)

S Ap H

. C f
I

S Ah Bh

F I

Ap H

- F 0

S Ah - H

F 0

or, in a more compact form

A - H C Bh H
S

F I 0

- C - D I
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and
A - B F B H

s
- F I 0

cF D I

It can be easily shown that the product of the last two systems is equal to the unit 

matrix /, by removing all uncontrollable and unobservable modes. The computations 

are omitted. □

Corollary 3.1.1 (Existence [ZDG96]). Let G be a proper real-rational matrix and 

G = NM~ X = M~XN be corresponding RCF and LCF over IZTLoo. Then there exists 

a controller

K0 = UoVo-1 = Vo^Uo 

with U0,Vo,V0, U0 in TTHs uch  that

= ICo -U 0\ IM  UQ 

- N  M )  \ N  V0

Furthermore, let F and H be such that A — BF and A — HC are stable. Then a 

particular set of state space realisations for these matrices can be given by

A - B F B H
S - F I 0

C -  DF D I

A - H C B -  HD H
S F I 0

- C - D /

Proof. From observer theory we apply state feedback and output injection to find a 

controller that achieves internal stability; for example

K0 :=
A -  BF -  HC -  HDF H

Then, factorise K0 as:
- l ,

K0 = UqV0 1 — Vo Uq 

i.e. in terms of doubly coprime factors. The result follows using proposition 3.1.2. □
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In the sequel a complete characterisation of the set of all stabilising controllers K, with 

respect to a free parameter Q, is given. This will be the setting for formulating and 

solving optimisation problems in this work.

3.2 P aram etr isa tion  o f all sta b ilis in g  controllers

The main result of this section is summarised in the Theorem below:

Theorem 3.2.1 ([Fra87]). The set of all (proper real-rational) controllers K  

stabilising G is parameterised by the formulae

K  = (U + MQ){V + N Q )-1

= (V + QN)~1(U + QM)

where Q G IZTtoo and det(I — DQ(oo)) ^  0 (D = G(oo)).

Proof, see [Fra87],[DP00]. □

Remark 3.2.1. The proof of Theorem 3.2.1 is constructive and is based on figure 3.3. 

The dashed box describes the observer-based controller, which is connected with the free 

parameter Q. Note that the only restriction on Q 6 TZHoo is that the well-posedness 

condition det(I — DQ(oo)) ^  0 is satisfied. This condition is redundant if G(s) is 

strictly proper.

In the light of Theorem 3.2.1 the set of all stabilising controllers has the following 

(bilinear) form:

K  = (U + MQ)(V  + N Q )-1 = (£7 + MQ)[V(I  + V ^ N Q) } - 1

= {U + MQ)(I  + V ^ N Q Y 'V - 1 = U{I + V ^ N Q Y W - 1 + MQ(I  + V~lNQ)- lV~l

Now rewrite ( / + V ^ N Q ) - 1 in the form A + BQ(I  + V ^ N Q )-1. Equating the two 

terms and post-multiplying by I  + V~lNQ , gives:

I = A(I + V - 1NQ) + BQ 

= A + { B  + A V - XN)Q

Hence,

A = I, B = - A V - 'N  = - V - 'N
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Figure 3.3: structure of (observer-based) stable controller.

By substitution:

K  = U {I — V~1NQ(I + V - ' N Q Y ^ V - 1 +  MQ(I + V ^ N Q ) ^ - 1 

= UV - 1 + (M -  UV~1N)Q(I + V~l NQ)~l V~l 

=  Kn  +  K \2 Q(I — K22Q) 1K21

Consider now the transfer matrix K0 of the following form

M — UV~1N  

- V ~ lN

A - B F - H C H B

- F 0 I

- C I 0

Then, every stabilising controller K  can be expressed as a lower linear fractional 

transformation of a transfer matrix Ka and a free parameter Q £ TZTLoo (assuming 

the well-posedness condition is satisfied - see remark 3.2.1).

Thus, the set of all real-rational stabilising controllers is

K = {Fi(K0 , Q ) : Q e K H 00}.
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Figure 3.4: Controller K  as a lower LFT interconnection.

3.3 P a ra m etr isa tio n  o f  all stab le  C losed -loop  tran s-

fer fu n ction s

The model-matching problem is formulated as shown in figure 3.5. Suppose Tu (s), 

Ti2(s) and T2i (s ) are stable proper transfer functions. Then the model-matching 

problem is to find a stable transfer function Q(s), such that it minimises the 7-foo-norm 

of Tn — T12QT21. This is a hypothetical control problem in which Tn  is interpreted as 

the model and Ti2QT21 describes a cascade connection of the plant and the controller. 

A distinction of the problem is made depending on the size of matrices Ti2 and T2J; 

either both Tu  and T2i are square matrices, or one of these transfer matrices is non-

square, or both of the transfer matrices are non-square. Then the problem is defined 

to be of the first kind, the second kind and the third kind respectively.

Figure 3.5: Model-matching problem.

Attempting to connect the theory of model-matching with the theory of previous 

paragraphs consider:

A Bx b 2
s

Ci Dn D\2

c 2 D21 D22
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in which by assumption (̂ 4, B2, C2) is stabilisable and detectable. Then there exist left 

and right coprime factorisations for the (2, 2) block,

G22 := N2M¿-1 -  M2 lN2

and appropriate VSH^ transfer matrices which satisfy the doubly Bezout identity

= 1 (3-1)

Every stabilising controller of G22 can be expressed as

V2 -u2\ (m2 u2

- n 2 M2 / \ n 2 v2

K  = {U2 + M2Q)(V2 + N2Q)~x 

= {V2 + QN2)~\U 2 + QM2)

where Q G IZTtoo. Then, the principal aim of the generalised regulator problem (see 

chapter 2) is to minimise, in the infinity norm sense, the closed-loop transfer matrix 

Ti(G,K), i.e. min/s: ||^:/(G, it')||0O, provided the controller K  stabilises the plant. 

Hence, the choice is to be made among the set of all stabilising controllers, which 

has already been characterised in terms of the parameter Q G Hoc above.

Further, it is possible to express the closed loop transfer function in terms of Q and 

VSHoo matrices Tu, Ti2 and T21, according to the following figure.

7 —_____
1 „ ^12

Ta21 0

Q

Figure 3.6: Closed loop as a lower LFT interconnection, in terms of parameter Q.

Hence, the problem can be recast in a model matching setting. The connection appears 

via the following theorem:

Theorem 3.3.1 (Model matching [Fra87]). Consider the figures above. Then

1. Tij G TZTioo for 1 < i , j  < 2.

2. Defining K  as above (i.e. such as in Theorem 3.2.1), the transfer function from 

w to z is given by

T  = T n — T12QT21.
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i.e. the closed-loop is affine in Q.

Proof. The proof again is constructive and can be found in various textbooks. However, 

the construction here is vital for constructing similar theoretical developments in the 

following chapters (chapter 5). Define,

Tn Gn T G12M2U2G21 

Tn  ■— —G12M2 

T21 := M2G21

Obviously, all matrices Tj, for 1 < i , j  < 2 belong to TZHoq.

The closed loop transfer matrix is given by taking the following lower linear fractional 

transformation:

2 = [Gu + G12(7 -  KG22)~lKG2i]w

Substitute G22 = N2Mffi and K  = (V2 + QN2)~l {U2 + QM2) into (7 -  KG22) -1:

(I -  KG22)-1 = [/ -  (V2 + QN2y \U 2  + QM2)iV2M2- 1]-1

= [/ -  {V2 + QN2Y\U2N2M fx + QM2N2M f1)}-1 

= [I -  (V2 + QiV2) -1(l/2M2M2- 1 -  M,-1 + QN2M2M f1)}-1 

= [I -  (v2 + QN2)-\V2 + QN2 -  M f1)}-1 

= [ I - I  + {V2 + QN2)~lM2"1)]-1 = M2{V2 + QN2)

where in the third equality we used the blocks (1,1) and(2,l) of equation (3.1). Then,

(/ -  g 22k ) -1k  = M2(t72 + QM2)

and the closed loop transfer function becomes

Gn + Gi2(7 — KG 22) 1KG21 =  G11 + Gi2M2([72 + QM2)G2j

= Gn + G12M2U2G21 + (Gi2M2)<5(M2G2i )

=: Tn — T12QT21

and the claim is proved. □

3.4 Sum m ary

Throughout this chapter stability conditions for a wide class of general feedback 

interconnections were established. It was then shown how BIBO stability is linked to 

asymptotic stability of the closed-loop state-space model; assuming the well-posedness 

condition is satisfied, the condition of stabilisability and detectability of the state-
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space model is necessary and sufficient for internal stability. Next, using the theory 

of coprime factorisation over the ring of stable proper real rational matrices it was 

shown that G £ PXoc can always be factorised as G = N M ~l , where N ,M  are two 

stable proper real rational matrices (i.e. in IZHoo), independently of the inertia of 

its poles. Following this result, the existence of a controller in TZHoo which stabilises 

the closed loop was established using observer-based methods with state feedback and 

output injection. Moreover, it was shown that the set of all stabilising controllers 

is parameterised in an LFT form (“Youla” or “Q” parametrisation), that is every 

stabilising controller of the feedback system of figure 3.2 can always be represented as 

an observer based controller connected with a free parameter Q £ Ji^. Concluding, 

via model matching, the set of all stable closed-loop transfer matrices is shown to 

admit a parametrisation in terms of Q. Then, in the light of the standard regulator 

problem (2.4.1), minimising ||JF;(P, i i )||00 over all K's which make the closed loop 

transfer function stable is equivalent to the minimisation of \\Tn  — T12QT13H00, over all 

Q £ Hao. This fact comes from the later paragraph of this chapter and the solution of 

the particular minimisation problem leads to the so-called Nehari approximation which 

is studied in the following chapter.
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Chapter 4

Hankel operators in R obust Control

This chapter reviews the theory of Hankel operators, an important and wide class of 

operators, which was originally developed in the field of functional analysis and operator 

theory and which is also strongly related to modern control theory. Research on Hankel 

operators is still active in both areas, and thus the main objective of this chapter is 

to establish links between the two domains. In particular, it is shown that Hankel 

operators are successfully applied to model reduction theory as an approximation 

method, namely Hankel norm (best) approximation, and Tioo control (Nehari problem). 

Throughout the chapter we shall consider a causal, bounded input-output operator G 

mapping £ 2(—oo, oo) to £ 2(—oo, oo) described by the state space convolution,

(Gu)(t) := f  CeA{t~T)Bu(T)dT
J —  O O

where A is a Hurwitz matrix and (A, B, C) is a minimal realisation. Taking the Laplace 

transform of this equation implies that G(s) = C (sI—A)~1B is a strictly proper transfer 

function in IZTtoo, i.e.

G =
A B

G 0
G 7Z.T~ir

Remark 4.0.1 (Causality and 7 [DP00]).  A system is called causal if the output 

up to time T  depends only on the input up to time T, for every T. 1 Further, we say 

that a system G is stable if y = Gu is in £2(0,00) whenever u G £ 2[0 , 00). Hence, 

all LTI operators on £2(0,00) are represented by functions in Tioo. Notice that this 

means that an LTI operator on £ 2[0 ,oo) is necessarily causal. On the contrary an 

LTI operator on £ 2(—00, 00) need not be causal; a time-invariant operator G mapping 

£ 2(—00,00) to £ 2(—00,00) is causal if and only if it maps £ 2[0,oo) to £ 2[0, oo), i.e.

1 All real-time physical systems are causal because time moves forward. However, causality does not 
apply to systems processing recorded signals, e.g. taped sports game vs. live broadcast.
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it maps every function that is zero for negative time to a function which is also zero 

on the negative time axis.

Example 4.0.1. The (bilateral) Laplace transform of both e~atu(t) (causal) and 

—e~atu(—t) (anti-causal) is —bj (where u(t) denotes the unit step). However, the 

region of convergence (ROC) is different, implying that ROC must be known to uniquely 

determine the transfer function. For a causal system ROC is to the right of the 

rightmost pole (in the s-domain) of the Laplace transform; for a causal stable system 

ROC is to the right of the rightmost pole (in the s-domain) of the Laplace transform 

and all the poles are in the left-half plane.

Decompose £ 2(—oo, oo) as £ 2(—oo, 0] ® £ 2[0, oo). Then, a general LTI causal system 

G can be visualised by the following map:

A / - \  =  ( G n  G 12\  ( u . \  = ( t g  0 W u \

\y+)  \G 2i G22)  [ u +J \Tg  f G)  Vn+yl

where
y+ G £ 2[0 ,oo)

V- G £ 2(—oo, 0]
<

u+ e d ? [  0,oo)

u_ G C£(—oo, 0]

Note that causality implies G12 = 0. Further, TG and TG are Toeplitz operators while 

Fg  is a Hankel operator. Clearly, the Hankel operator maps “past” inputs («_) to 

“future” outputs (y+) and so

F g  : G f(—oo, 0] —> T 2 [0, o o )

or, equivalently

( rGu){t) := P+Gu ¿2 ( — OO,0] -* +
r°
/ CeA^~G Bu(r)dT

J — OO

= P+CeAt / e- ATB u (r )d T

for arbitrary inputs u G £ 2( - o o ,0]. Here P+ denotes the projection operator 

£ 2 ( - o o , o o ) —> £ 2[0,oo). In order to establish a link between time and frequency 

domains we make the following observation.
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Observation 4.0.1. It is a fact that C^ — H ^  © H ^ and thus a system G E CQ0 can 

be decomposed into a strictly causal and an anti-causal part, i. e.

G(s) = Gc(s) + G(oo) + Ga(s).

Here Gc E 'H00> Ga E and G(oo) is the constant part of the system which in a 

state space realisation corresponds to its “D” matrix (direct feed-through matrix) and 

it can be absorbed in either Gc(s) or Ga(s) (here we absorb D into Ga). However for 

any u G H f

T Gu = P+(Gu) = P+(Gau)

since the equivalent frequency-domain definition of the Hankel operator is

r G : H i  -  n 2

Hence, the Hankel operator associated with a G G Coo depends only on the strictly 

causal part of G, that is if G G H^  then r G = 0 . Therefore there is no loss of 

generality in taking G G Hoo as it was assumed at the beginning of this section.

Remark 4.0.2. An alternative definition of a Hankel operator in the time-domain, 

not adopted here but used by many researches, is to define it as a mapping

r G :£ n O ,° o ) -+ ^ [0,oo)

The equivalence of the two definitions follows from the following argument. Consider

y(t) = / CeA^ T̂ Bu{r)dr
J  —  O O

and set v ( t ) = u ( — t ).  Substituting £ := —t ,
rO roo

y(t) = /  CeA^ B u ( - 0 ( - d 0  = /  CeA^ B v ( ^
J  oo J 0

and so

Tgv : £ 2[0,oo) —> £ 2[0,oo)

In this framework the Hankel operator is “induced” by the anti-causal part of the system. 

However, the original definition of the Hankel operator is more intuitively appealing 

from a signals/systems viewpoint and extends naturally to the theory presented in the 

next chapter.
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Figure 4-1: Hankel Operator of a system G in the time domain, given u £ 02(—oo, 0] (scalar 
case). Here Gu £ £2(—oo,00) and Tq u  is the projection of Gu £ £2 into £2(0,00), by 
truncation.

In the sequel, it is shown how the notions of controllability and observability are 

connected with the above definition of the Hankel operator. The construction of two 

auxiliary operators, namely the controllability (Tc) and observability (dc) operators, 

is largely motivated by the fact that the Hankel operator can be written as their 

composition.

4.1 C on tro llab ility  and ob servab ility  op erators

Consider the autonomous LTI system given by

x(t) = Ax(t), x(0) = xo G 7Zn 

y(t) = Cx(t)

Definition 4.1.1. The observability operator is defined as follows

T0 : 7̂ n -> £ 2[0, oo)

\I/Oxo = CeAtx0 =: y(t) x0 € 7Zn, t > 0.

Clearly, the above definition shows that if y(t) is known over an interval [0, T] and the 

system is observable it is possible to determine the initial condition xq uniquely and 

hence every x(t) for t e [0, T). Further, it can be shown that the unobservable space is 

the kernel of this operator, i.e. Mc a  = fcer(T0) (see [DP00]).
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Remark 4.1.1. The adjoint of the observability operator is given as:

% :C 2[0,oo ) ^ U n
POO

K f =  /  eA*TC* f(r)dT  
Jo

where f  € £ 2(0, 00).

Recalling the observability gramian definition from chapter 2, it is easy to check that

Wo = n * o

and so2

rank(W0) = rank{^*0̂  Q) — rank(^0) = n — dim(ker(ty 0))

which is equal to the dimension of the observable subspace. We can also give the 

following geometric interpretation: The “observation energy” of the state x q , that the 

output trajectory y(t) = CeAtx0 for t > 0 produces, is measured as:

||y||2 := x(0)* ^jf°° eAHC*CeAtdt)j x(0) = x*Wox0

Thus the observability gramian reflects the effect of initial states on the “output energy” 

of the system when the input is zero. If W0 is nearly singular then there exist states 

which have low “observation energy” in the sense that ||t/||2 is small [Wei02], Define 

now:

S0 := | W f £0 : x0 G 7Zn and ||a:o|| = 1 j

Since Wa is positive semi-definite in general, and positive definite if and only if the
1

system is observable, this set is an ellipsoid with the i-th eigenvector of W02 giving

the direction of the principal axis of the ellipsoid and the corresponding eigenvalue

represents the length of each axis. The span of all eigenvectors corresponding to the
1

zero eigenvalues of W f is precisely the unobservable space, Mc a -

Dually, along similar lines the controllability characteristics of the system can now be

defined:

Definition 4.1.2. The controllability operator is defined as follows 

Tc : £ 2(—00,0] -> Un

/0 roo

e~ArBu(r)dT — / eArBu(—T)dr =: x0

•00 J 0
2If T is a finite rank operator then rank(T) = rank{T*) = rank(T*T). Further, if T : 7Zn —> U, 

where U is any Hilbert space, then rank(A) —n — dim(ker(T)).
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Rem ark 4.1.2. By definition '3/c is not defined on the full domain of G. However, it 

can be extended to the full space by defining £ 2(0, 00) to be in its null space.

The above definition makes sense if it is considered as the response of a system described 

by
x(t) = Ax(t) + Bu(t) x (—00) = 0

to an input function u G £ 2( —00, 0], where the output is the state trajectory. Then from 

the controllability operator definition it is easy to determine the input with minimum 

energy ||u||2 which drives the state to x(0) = x0 at time zero. It also follows easily that 

the controllability gramian is given as the composition of controllability operator and 

its adjoint, i.e.

Wc = <M>:

Hence, note that3 *

rank{Wc) = r a n k ^ ^ l )  = ra n k le )  = dim(image{9 c))

which is the dimension of the controllable subspace. Again, consider

eA'tBB*eMd t Sj  x (0 )  =

and define the set

£c := | W P x  : x G Tin,\\x\\ = l }

Geometrically this represents an ellipsoid, the so-called controllability ellipsoid, for 

which an analysis similar to the observability case applies (see [DP00]). Thus, the 

controllability gramian measures the “degree of controllability” of a given state.

The following equivalent definition of the Hankel operator follows from the above 

discussion.

Definition 4.1.3. (Hankel operator) The Hankel operator of a system G G £00, in- 

terms of the observability and the controllability operators, is given as

TG = T0TC

At this point the concept of the balanced realisation of a system can be introduced.

This is a minimal realisation in which both gramians are equal and take the form of a

3Take T : X —> y,  a mapping between two Hilbert spaces. Then the rank of T is defined by
rank(T) = dim{image(T)).
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diagonal matrix £  = diag(a1 ( rG), a2( rG) , ... ,CT„(rG)). Here, a i( rG) > a2( rG), >

<7n(rG) > 0 are called the Hankel singular values and as the name reveals they are 

the singular values of the Hankel operator TG (see def. 1.7.4). Note that a balancing 

similarity transformation always exist for stable minimal systems. Further, note that 

the Hankel singular values are system invariants, that is whenever the basis of the state 

space is transformed (under similarity transformations) they remain unchanged.

Now suppose the system is balanced, so

WC = W0 = E = diag(a1(TG),a2(TG) , .. . ,a n(TG))

as defined above. The minimal energy cost to reach the i-th state component

Xq d 0 ... 0 1 0 ... 0

is given by

e*VF„ 1e,- = e*£ 1ei =
1

cr*(rG)
whereas if the system is released from this state, the output energy will be

||y||i = ei WoCi = eJEej = <Ti(rG)

(a) u n b a la n c e d  e llip so id s

T
B a la n c e d  re a liz a tio n

►

(b )  b a la n c e d  e llip so id s

Figure 4.2: Observability and controllability ellipsoids for (a) unbalanced and (b) 
balanced system realisations.

Now, because of the non-increasing ordering of the Hankel singular values in a balanced 

realisation, the state components with low indices are “easy to observe” (output energy 

is large) and at the same time “easy to reach” (the minimal control energy needed to 

reach these states is small). The opposite conclusion applies to states with high indices.
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4.2 H ankel norm  ap p roxim ation  and M od el reduc-

tio n

In the case of linear time-invariant multivariable systems the dimension of the state 

space reflects the complexity of the system. So, the larger the dimension, the more 

difficult it is to design the system. In addition, modern control techniques such as TL^ 

and LQG typically produce controllers of order at least equal to that of the plant (and 

usually higher because of the inclusion of weights). Hence, model reduction methods 

try to reduce the order of the model prior to controller design, or to reduce the controller 

at the final stage (or both). Reducing the model’s order means that, if the dimension 

of the state space is too large, then it is desired to derive another system that has a 

realisation in a space of smaller dimension and whose input-output properties do not 

differ significantly from the properties of the initial system. If the system has a transfer 

function G which is a stable rational function then it admits a balanced realisation such 

that the dimension of the state space is equal to the McMillan degree of G. This is the 

most common case and hence the model reduction problem is normally posed in this 

framework.

Problem  4.2.1. Given a high order linear time-invariant stable model G, find a low 

order stable approximation G, in the sense that

IIG-GHoo

is minimum.

In general, this is considered to be an untractable problem, and hence it is recast as 

a Hankel norm approximation, which is another way of measuring the closeness of 

two transfer functions. The later method is physically well motivated and admits a 

satisfactory solution related to the original problem 4.2.1. In the sequel, characteristics, 

properties and norm bounds of the Hankel operator are discussed.

Theorem 4.2.1. (Kronecker) Suppose G is a linear system with Hankel operatorTc, 

and suppose rankfiTc) is finite. Then a minimal realisation of G has state-dimension 

equal to rankiTc)- Equivalently, for A E 1Znxn,

(A ,B ,C ,D ) is minimal rank(TG)= n
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Proof. First notice the fact that

rankiTc) = rank(^ c) = ranfc(4'*\I/0\I/c\I/*) = rank(W0Wc)

only i f  part (<t=): Sylvester’s inequality gives

rankiTc) = rank{W0Wc) < mm{rank(W0), rank{Wc)}

Now, the rank of observability and controllability gramians are at most n (when 

rank(kF0) = n then the system is observable and respectively controllable when 

rank(Wc) = n). So

n < mm{rank(W0), rank[Wc)} =$■ n = min{rank(W0),rank(Wc)}

Hence, the system is controllable and observable.

i f  part (=»): The other Sylvester inequality gives

rank{TG) = rank(W0Wc) > rank(W0) + rank{Wc) — n = n

by noticing that the system is observable and controllable, that is rank{WQ) = 

rank(Wc) = n.

□

Definition 4.2.1. The induced norm by the Hankel operator (or simply Hankel norm) 

of a system G € 7?Xoo is defined as follows

A standard result from operator theory (see def. 1.7.4) is that ||Fg || = o i^ g ).

By comparing the definitions of Hankel and Hx  norms it follows immediately that the 

Hankel norm of a system is bounded above by its infinity norm. This is due to the fact 

that for arbitrary unit energy input in £ 2(— | | T g || is the least upper bound on 

the energy of the future output and ||G||oo is the least upper bound on the energy of 

the total output. This is restated more formally in the following proposition:

Proposition 4.2.1. The Hankel norm satisfies

where ||G|| is the induced norm from C2(—oo , o o )  to itself, i.e. ||G|| = ||G ||oo-

=> n — rank{yV0) = rank(Wc)

m  a y
v7o°° M T)\\idr

lirdl < lie'll
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P roof. The projection P+ has norm ||P+||oo =  1 ([Kre89], theorem 9.1-1). Hence,

||rG|| = \\P+G U2(-oo,0] II < ||P +||||G l^-oo,0]

=  IIG  k 2(-oo,0] II <  H a llo o

□

Observation 4.2.1. Take F to be any anti-causal system; if u £ oo,0] then

(Fu)(t) is zero fo r t > 0. So, the future output remains unaffected by the addition of 

any anti-causal system and it is immediate from the above proposition that

||rG|| <  | | G - F | | o o

However, as seen in the previous section the Hankel operator is intimately related to 

the observability and controllability gramians. Thus, its norm should be also somehow 

related to these two notions. The connection is made exact in the next proposition.

Proposition 4.2.2. The Hankel norm of the system G is the induced-norm of its 

Hankel operator and satisfies

||rG|| = (A max(w0w c))k*

In fact spec(r*Gr G) — spec(W0Wc) U {0}.

Proof. Tg  is a finite rank operator (Kronecker’s theorem) and it is bounded by its 

(induced) norm. Hence, it is compact ([You88]). Further, its adjoint and their product 

r GTG are compact operators ([Kre89], theorem 8.2-5]), with the later being a self- 

adjoint and positive operator ((rGr Gx, x) — {TGx, r G:r) = | |rGx ||2 > 0).

It is a fact that ||TG|| = | |r £ rG||* = (p (r^ rG))5 ([DPOO], prop.3.15-3.16 4). 

Also spec(T^rG) = spec(® *^^0®c) = spec(^*T0Tc4'*) U {0} = spec(VF0lFc) U 

{0}. The eigenvalues of W0WC are real and positive, since spec(H/0VFc) U {0} = 

spec (W fW oW f) □

Example 4.2.1. Suppose,

G(s)
1 — s 

2(s + 1)
1 1

s + 1 ~ 2
Gs(s) + Ga(s)

4In general, for any linear bounded operator T, ||T|| > p(T). In the present case we have equality 
since the operator is self adjoint.
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s - 1 1 a b

1 0 c 0

Clearly, from above, ||G||oo = \  and ||Gs ||oo = 1, which agrees with the triangle 

inequality ||GS +  G a ||oo <  ||GS||oo +  ||Ga ||oo- Further, in order to compute the Hankel 

norm of G we isolate its strictly causal part which has a realisation:

Gs(s) =

Computing the gramians from the Lyapunov controllability and observability equations:

2 aWc + b2 ^ W c = -^-a = l- { = W 0)

Then, WCW0 = \  and thus, according to proposition 4-2.2,

||G|U = VA max(WcW0) =

Hence, via this example, it is shown that the extreme case ||Tc|| = ||G||oo can occur. 

Observation 4.2.2. For any G, Gr E Coo

||G -  Gr ||oo > ||rG_Gr || = l|rG -  r Gr||

The inequality is true due to the Proposition 4-2.1. In order to check the last equality, 

note that if
A n P f

and Gr =

then

5 Ag Bg

Cg 0

Agt BCr

CGr 0

Ag 0 Bg

G -G r  = 0 Agt - b Gt

. Cg cGr 0

By definition, given an input u(t), the time domain Hankel operator of the last transfer 

matrix is

(FG-Gru)(t) := f
J —c

- fJ  —o

Gg  Cgv

Cg CGr

A o  0 
0 A&r (t~T) Bg

- B Gr
u(r)dr

e AG( t - r )  o

0 e^Gr(i-T)
o

Bg

-BGr_
u{r)dn

=  f CGeAa{t T)BGu(T)dT -  f CGTeAGr(t T)BGru ( r ) d T {Tgu -T c
J —oo J—oo

rv)(t)
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Theorem 4.2.2. Suppose G has a minimal realisation of order n. Then for any Gr of 

order r < n,

IIG-GVII > a r+1( r G)

where ^ (T g ) > ^ (T g ) > ■ • ■ > CTniXc) > 0 are the Hankel singular values of G.

Proof. Kronecker’s theorem implies that ran k le )  = n and rank(TGr) = r. Recalling 

definition 1.7.4 (chapter 1), the singular values of a linear operator are defined as 5

ar(G) = inf {||G — A|| : rank(X) < r} r E J\f/{0}

when G and X  share the same input-output spaces and rank(G) > r. Take T* such 

that rank(Fjy) = r, then

<rr+i(rG) = inf{||rG -  r x || : rank(Tx) = r < r + 1}

Hence, crr+i(rG) < ||Tg  — Tx|| and so from observation 4.2.2

IIG -  alleo > ||rG-Gr || = l|rG -  r Gr|| > ar+1( rG)

as required. □

4.3 S V D  o f a H ankel op erator

According to the definition of the singular value decomposition (or Schmidt decompo-

sition) of linear bounded operators (corollary 1.7.1), the SVD of Hankel operators is 

next defined.

Definition 4.3.1. (Hankel SVD) The Schmidt decomposition of Tg  is given by the 

following dyadic form
n

r Gu = y ^ j ^ v ^ W j
i=l

in which Vi 6 £ 2(—oo,0] and u>i € £ 2(0, 00) are sets of orthonormal functions. The 

pair (v ì, Wi) corresponding to the Hankel singular value at := ct^F g ) is called a Schmidt 

pair. From orthogonality it follows that

r  GVi = CTiWi

r*G W i =  a i v l

5Here or denotes the r-th singular value of the linear operator and not the r-th Hankel singular 
value. However, for a completely stable system, the Hankel singular values coincide with that, induced 
by the operator, singular value.
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Remark 4.3.1. By taking the dyadic form of the above definition and setting u = Vj ,  

then TcVj = cri(vjTvi)wi- Orthonormality implies that (vj,Vi) = 1 whenever i = j  

and zero otherwise. Hence, TcVi = <JiWi. By taking the adjoint of the dyadic form the 

second equation can be similarly proved.

It is important from a control theoretic point of view to link the definition of Schmidt 

pairs with the notions of controllability and observability. This can be done as follows: 

Take YcVi = <JiWi and pre-multiply by T£. Substituting VGWi = <JiVi it follows that 

T^TcUi = aiV*GWi, i.e. FGTGVi = (cq)2̂ . Suppose now that (cq)2 is a nonzero 

eigenvalue of T^Tc. Further, consider the time-domain analog of F^Tc, which equals 

T*T*T0'FC. Then, there exists a nonzero Vi G £ 2[0,oo) satisfying

Pre-multiplying the above equation by Tc and defining aq := Tcnj,

W c W 0X i =  ( O i ) 2X i

Hence, (using the spectrum argument in proposition 4.2.2) aq is the eigenvector of 

WCW0 corresponding to the eigenvalue (cq)2.

Remark 4.3.2. Note that for a balanced realisation, i.e. Wc = W0 = E = 

diag{o\,o2, .. ■, an), then Xi = \faiei, where e* is the i-th standard basis vector. 

Continuing the analysis in the time-domain, an implicit characterisation of time-domain 

Schmidt vectors can be obtained. We first write, T^ = 4/*4/*, where

= {ai)2Vi

(
^ 0 -.nn c 2[o,oo)

Tox0 = CeAtxo =: y(t), (y € £ 2[0, oo))

T ; : £ 2[0,oo )-> ft"

 ̂ K f  = r  eA*TC* f(r)dT

with /  G £2(0,00), and

r
**c : H n —> £ 2(—00, 0] 

T*a:o = B*e~AHx0
T c : £ 2(—00, 0] U n

(T cri)(i) =  e~A*TBu(T)dT  =  /0°° eA*TB u ( - r ) d T  =: x0

Thus

F g  : £2[0, 00) —> £ 2(—00,0]
OO

(rGy)(t) = (K K y )(t)  = B*e-A,t /  eÂ C*y(r)dr
Jo
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In order to find the singular values of Tc, suppose that at is a singular value with v 

the corresponding eigenvector of r^Tc, i.e. = o\v. Let

y :=TGv = CeAtx0

where

Then,

xQ= e At B v(r)di 
J  — OO

T*GTGv = r*Gy = B*e~A' tW0xQ 

which must be equal to u\v. Hence,

B*e~A"tW0xQ = o\v  =*> v(t) — B*e~AHW0xQa~2 € £ 2(—oo,0] (4.1)

Take now to be the ¿-th eigenvector of Tcr^- Then , further simple computations 

show that

r Gr ^  = r GB*e-A' tWox0 = CeAt e-ATBB*e-A,tWox0dT

= CeAtWcW0x o = CeAta\x 0

which suggests that y(t) := CeAtx0 is the eigenvector of r Grg  corresponding to the 

i-th eigenvalue, o f .  However, by assumption it is known that this eigenvector is iuit so

Wi — CeAtx q. (4.2)

Alternatively, the Schmidt vectors (in the Laplace domain) can be obtained via the 

following algorithm ([Fra87],[GL95],[ZDG96]):

Algorithm 4.3.1. (Schmidt pairs)

step 1. Separate the system into causal and anti-causal parts

G = Gc + Ga

step 2. Find a minimal realisation of Gc .

step 3. Find the controllability and observability gramians by solving the following 

Lyapunov equations :

AWC + WCA' + BB' = 0 

W0A + A'W0 + C'C = 0
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step 4. Find

7o =  A maX(WcW0)

step 5. Find x & 7Zn : such that WcWQx = 7o£, a: 7̂  0, and define £ := y^WoX. 

Then,

= 70x

VFoX = 70C •

step 6. Define

v{s) := B '{sl + A ') - ^  

w(s) := C(s/ — A)-1® .

Thus, the Laplace transform of a Schmidt pair can be written in terms of transfer 

matrix functions,

v(s) =

1
1 Sly

1

B'

----
1

O e TTH ,̂ w(s)
A x

C 0
e n n 2 (4.3)

Remark 4.3.3. If a is a nonzero singular value of To of multiplicity one, then clearly 

the corresponding Schmidt pair is uniquely determined up to modulo scaling. However, 

there exist other maximising vectors (see definition 1.7.3), i.e. vectors for which Tc 

attains its norm. A particular construction which we shall consider later in chapter 

6, is made in [JL93]. The latter and that in [LHG89], construct maximising vectors 

in IZHoo and 7ZH^ which form scaled version of Schmidt vectors in IZH2 and TTHf, 

respectively.

Remark 4.3.4 (M ultiplicity considerations). Consider a stable system G with 

(A, B, C) a balanced realisation. Assume that the Hankel singular values are a\ = 

• • • = ar > ar+1 > • • • > crn > 0. Further, define l to be the normal rank of the Laplace 

transform of the matrix formed by the r Schmidt vectors of VG corresponding to ox. 

G =(A, B , C) and hence V(s) and VL(s) are given by

V(s) =  B 'is l + A ')-1- e FLU1,771 x r  1^1 a f 'P Xi x2

and

jy(s) = C(sl -  A)~1Q e 7̂ 2Xr, 0  = Xi x2
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where P and Q are the controllability and observability matrices of G =(A, B,C) and 

the Xi’s are r linearly independent eigenvectors of QP corresponding to the eigenvalue

of-

In particular, if (A ,B ,C ) is balanced (Remark 4.3.2), P — Q = diag(<7i / r , £ 2), and 

thus E = Er and 0  = ajEr (where Er denotes the first r-columns of the n x n unit 

matrix), so that

V(s) = a\B '(sI + A!)~lEr e and W(s) =  C (sl -  A)~lEr e HU2

Thus,

and

l := rankR(s)V~(s) > lim [sV~(s)] = rank (E'rB ) =: rank (B1)

l := ranhji^s)W(s) > lim [sW(s)] = rank (CEr) =: rank (Ci)

where we partitioned B' = B[ B '2 C, C2 . It is further shown in [GI086]and C =

that these two inequalities are actually equalities. Thus l < min(p, m, r) and l can be 

easily determined from the balanced realisation of G.

The following example, constructed in MATLAB, illustrates the argument of Remark 

4.3.4:

Example 4.3.1. Consider a G £ IZTLoo with the following minimal balanced 

realisation:

A B

C 0

- 1 - 1 1 3%/io 
1+0.7 5 v TO/5 (2VTo ) /5

- 3 - 4 1 6vd0 
1+0.7 5 ( 2 \ / l0 ) /5 ( 4 \ / l0 ) /5

1 3vdo 
1+0.7 5

1 eVTo 
1+0.7 5

1
0.7 1 1

a/ 1 0 /5 (2V T 0)/5 1 0 0

(2 \/T o ) /5 (4VTo ) /5 1 0 0

Then, the gramians are equal to

E =
1 0 0 

0 1 0 

0 0 0.7

and we observe that the largest Hankel singular value of G (o\ = a2 = 1) has 

multiplicity 2. Further, we compute the Schmidt pair corresponding to the largest
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Hankel singular value, according to algorithm 4-3.1 and remark 4-3.2.

V(s) =
-A'

B'

1 3 1 3vd0  
1+0.7 5 1 0

1--------
CN

1 4 1 6vdo
1+0.7 5 0 1

1 3VdO i  e V w 1 0 0
0

1+0.7 5 1+0.7 5 0.7

a/ T O / 5 ( 2 v / l 0 ) / 5 1 0 0

1 1 Cn ( 4 v / l 0 ) / 5 1 0 0

and

W(s) =S
A e 2

C 0

- 1 - 1 1 3vd0 
1+0.7 5 - 1 0

-3 -4 1 6\/To
1+0.7 5 -0 1

1 3vd0 1 6%/l0 1 0 01+0.7 5 1+0.7 5 0.7
x/TO/5 (2 v T0)/5 1 0 0

(2VT0)/5 (4-\/l0)/5 1 0 0

Then, the normal rank of V(s) and W(s) is l = rank(Bi) — rank{C\) = 1 < r. 

Further, taking the transfer functions of the Schmidt pair,

V(s) =
1 / s + 0.3361 0

Pv(s) \ o s - 0.5462

0.63246 1.2649 

1.2649 2.5298

where pv{s) = (s — 6.155)(s2 — 0.2733s + 0.2321), and 

1VT(s) =
( s -  0.3361 0

Pw(s) \ 0 s + 0.5462,

0.63246 1.2649 

1.2649 2.5298

where pm(s) = (s 4- 6.155)(s2 + 0.2733s + 0.2321). Then, 

V~(s)V(s)=  1 -  W~{s)W(s)

where, p(s) = pv(s)pw(s). The fact that V~(s)V(s) = W~(s)W(s) is a characteristic 

property that all Schmidt pairs share ([Fra87]).

4.4  N e h a r i’s T heorem

Throughout this section consider the problem of finding the distance (by means of the 

induced norm) from an matrix function G to

dist(G ,7i-) := inf{||G -  Q||oo : Q e }.
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i.e. we want to approximate, in the C^ —norm sense, a given unstable (i.e. mixed 

pole-inertia) transfer matrix by an antistable one. A lower bound for the distance can 

be immediately obtained. Fix Q G Then

l|G  -  QWoo > IIP+(G -  Q) l ^ —oo,0] || =  ||rG -  r o l l  =  ||rG||

The last equality is due to the fact that Tq  = 0.

Surprisingly, it is shown that the infimum of the infinity norm attains the Hankel norm 

of G for a class of Q G The result was proved (in a more general context) during 

the seventies and it is due to Adamjan, Arov and Krein [AAK71],[AAK78]. It is known 

as the AAK theorem or equivalently in operator theory better known as approximation 

by meromorphic (matrix-valued) functions and it is considered to be the cornerstone 

of model reduction techniques involving Hankel norm approximation. The optimal 

solution to the general AAK  problem is ([Glo89],[ZDG96], [GL95]) :

inf IIG-Qlloo = inf ||G-Q_ -  Q+\\oo = inf ||G -Q +||h  =  crfc+1( rG)
Q e ^ ; ( f c ) C £ o o  Q - e n ^  Q +  e n ^

k  <  d e g ( G )  Q +  d e g ( Q + ) <  k

d e g ( Q + ) <  k 

k  <  d e g ( G )

Note that Q € => Q = Q- + Q+, where Q- e Q+ G and deg{Q+) < k.

Obviously, if deg(Q+) > deg(G) (i.e. the Hankel operator r G+ can have higher rank 

than r G) then the solution is trivial by selecting Q+ = G.

Nehari (1957) first solved the special form of problem (k — 0) for the case of scalar 

discrete time systems. The solution is known as the Nehari theorem [Neh57] or simply, 

in functional analysis terms, best approximation by analytic functions. The Nehari 

theorem is restricted by the assumption that G G i.e. it involves the best

approximation of a stable system G by an antistable system Q. Throughout the present 

work, the Nehari problem is considered for continuous time multivariable systems; thus 

the problem is posed as follows:

inf ||G-Q ||oo = ||Tg || =: oq(rG) (N ehari’s Theorem)
Q e H o o

The problem with inverse inertia operators involves approximating a G G by 

Q G 'Hto- This is a Nehari-type problem :

inf | |G -  Q||oo = ||rG(_s)||ncH+
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Similarly for inverse (mixed) inertia operators, the A A K  problem is formulated as :

inf IIG-QUoo =  inf ||G -Q _ -  Q+Hoo = inf ||G (-s )-Q_\\„
QSH+,WCCoo Q + en  + Q- e « « ,

k  < d e g ( G ( - s ) )  Q -  E K ‘  d e g ( Q _ ) < k

d e g ( Q ^ )  <  k  

k  <  d e g ( G (  — s) )

Rem ark 4.4.1. On certain occasions, in this work, the precise definition of the distance 

problem may vary depending on the nature of the application. In our framework the 

standard formulation of approximation problem will involve the minimisation of the 

infinity norm of G + Q where G £ H'Hf0 and Q £ TTH+ . The solution of this problem 

is exactly the same as the one already described (Nehari), with the only difference that Q 

is replaced by —Q and thus, the state-space formulae are changed by means of changing 

the sign in the “B ” and “D” part of Q. Note that the inertia properties of the transfer 

matrices remain the same. Further, we restrict ourselves to the case of real rational 

matrix functions G(s) for which an explicit solution exists [Glo84],[Glo89].

Theorem 4.4.1. (Suboptimal approximation) Take G £ Then, there exists

J £ TTHfa such that

( g  0
(1 ) Ga + J ■—

yo 0
7 > o-i(rG).

(2) || J22II00 < 7-

Then, all suboptimal approximations Q £ H^  such that

||G + Q||oo < 7

+
G + J\\ j \2

J‘.21 J‘.
is 7 -allpass, where

22,

are given by

Q  =  W , r l BH-00)

The proof of this theorem constructs a square system J  such that the “error” system 

E := Ga + J is 7-allpass, i.e. E~(s)E(s) = 72/  (> a i( rG)). From an engineering 

point of view this is the same as saying that the first (largest) singular value of E is 

constant at 7 over all frequencies u £ IZ U {00}. Plotting the singular values of E 

in a Bode diagram, it is clear that the largest singular value of E  will be described 

dynamically by a flat line at a level 20 log10(7 ) db. Thus the first singular value, which
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is essentially the infinity norm, is minimised optimally to 7 but sub-optimally in terms 

of tfi(rG) < 7 .

The system J  generates all Q 6 such that the error system E  := G + Q is 7- 

contractive. According to the proof all such Q can be written in terms of a lower linear 

fractional transformation of J  e 7ZH^ and a $ which is permitted to be anything 

7 _1-contractive (i.e. in the 7~1740o ball). Noting that

G + Q = G + = G + Jn  + Ji2$ (I — </22<f>) 1 An = Fi(Ga + J, 5>)

it is clear that Q has the same input-output dimensions as G, on further noticing 

that Ju has the same input-output dimensions with G, J  has the same input-output 

dimensions with Ga, an embedding of G. Consequently, if J  is such that Ga + J  is 7- 

allpass then (due to theorem 4.3.3 [GL95]) the LFT of a 7-allpass system together with 

any 7 “ ̂ contractive $  will be a 7-contractive system, which in this case is the error 

system, E. In future, the system J will be referred as a generator, since it “generates” 

all suboptimal approximations Q.

Proof. Here it is not intended to get a full account of the numerous technicalities 

of the construction and hence the proof will only outline the main ideas presented 

in ([Glo89], Theorem 3.1) where the complete proof can be found. Although all 7- 

suboptimal Nehari extensions Q are characterised here, the fact that these generate 

the full solution set is not proved and the reader is referred to [Glo89].

Suppose, without loss of generality, that G has a balanced realisation (A , B, C) such 

that

AS + £A' E B B 1 = 0 

A'S + £A + C C  = 0

Further, augment G such that

and define

A B 0
s

C 0 0

0 0 0

A B

C °e

A Ba

Ca 0
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where À , B , C  and D e are yet to be defined. Then,

E := G a + J = Ae
Ce

Be
A

0

0

A

Ba

B
E>e _

Ca C De

Let

Se :=
E I 

i  E r - 1

to be the controllability grammian6 of E, where T := E2 — 727. Clearly, A, B , C 

and De should be chosen such that Ee satisfies the Lyapunov controllability equation. 

However, this condition is guaranteed (implied) by the requirement that E  is 7-allpass. 

The requirement is true if and only if the conditions below are met:

Ae Ee + EeHg + BeB'e — 0 

DeD'e = i 2Ip+m 

DeB'e + Ce Ee = 0

Expanding the first and third equations gives:

A 0 E /

1---—̂1w
 

1 __ [0
 

1__

Ba 0 0
+ + B'a B' —

0 A i  s r - 1 i  E r - 1 0 A! B 0 0

DP. B' B' + a  C
E I  

I  ST“ 1

Then, it is immediate that

0 0

C  := —CaTi -  DeB'a 

B := T - \E B a + C'aDe)

A := —A' -  BB'a

Clearly, an appropriate De that satisfy the above would be:

De
0 7 /

7 /  0

□
6Here, we construct “out of the air” a specific gramian. An approach with all possible Se is 

considered in ([Glo84], lemma 8.2).
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P ro p erties  o f  gen era to r  J

Observe that since HJ22II00 < 7 then Ju(joS) is nonsingular (invertible) for every 

to E TZU {00} and in particular D12 is invertible. This is confirmed by the realisations 

above, since the system zeros of J 12 are given as:

\ i( A - B 2Df21C1) = \ i(-A '), Vi.

(see [Ros70]). Hence we deduce that J\i has no transmission zeros on the imaginary 

axis and hence J 12(jo;) has full rank over all frequencies u> E TZ U {00}. Dually, the 

same argument applies to J21.

It is a fact (see [GL95], lemma 4.1.2, p.137) that every unobservable mode of the natural 

realisation of Ei(E,Q) is a system zero of Eu = J\2 (he. the ( l ,2)-block of the first

term that appears in the LFT), provided that <F has a minimal realisation and that

the closed-loop is well-posed. Similarly, every uncontrollable mode of the realisation 

of Ei(E, <L) is a system zero of E2i = J21 (he. the (2, l)-block of the first term that 

appears in the LFT).

Now, by construction, E = Ga + J  satisfies E~E — EE~ = q2/. Expanding the later 

equation we get

i ( G + j n r  j s A / g + . / u  Ju \  = ( i 2i  o \  ( 44)
V Jn J22)  V J 21 W  \  0 7 2/J

Then from the (1,1) partition of equation (4.4), for each uj G 7Z U {00},

(G + Jn )~(G + Ju)(juj) = 721 -  (J21J2i ){j u j)

A {(G + Jn)~(G + Jn)(ju)} = A {721 — (T21 J2i)(jw)}

A {(G + Jn)~(G + Jn)(ju )} = 72h — A{(J21 J2i)(jw)}

A {(G + Jn)~(G + Jn)(juj)} < 721

But note that J2i( jL0) has full rank over all cu G 1Z U 00, so A( J£[ J2{)(ju) > 0. Then,

A ({G + Jn) (G + Jn)(ju)}  < 72/

||G +  Jn  ||oo < 7

that is G + Jn is 7-strictly contractive.

Next, consider the (2, 2) partition of the above matrix identity. This gives:

J22J22 = 7 J ~ J\2J n
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Then a similar analysis as in partition (1,1) shows that

11 »T22 11 oo 7 ^  11 -£'22 11 oo ^  7

To conclude, E  is 7-allpass and E2i(jco) has full rank, and thus, via (Theorem 4-3.3, 

[GL95]) it follows that Q = Ei(E, 4>) is 7-strictly contractive, for any <f> € 'y~1BTĈ 0.

Now choose 7 = cf\ := ^(Tc). According to Theorem 4.4.1, the suboptimal 

approximation gives ||G + Q||oo < 7 , which in this case makes the error system 

contractive (and not strictly contractive) in terms of crp

||G + <3||oo < cn

Next consider the problem of characterising the set of all optimal approximations 

Q G such that the infimum :

inf ||G + QHoo = <Ji
QeWoo

is attained. The procedure is similar to the suboptimal approximation, but now a more 

refined treatment of the problem is needed since, for example, the multiplicity of the 

largest Hankel singular value becomes an issue here.

Theorem 4.4.2. (Optimal approximation) Suppose G G Then there exists

an optimal approximation Q G Ti^  such that

||C? +  Q | | o o  =  | | r G | | = : a 1

Further, an optimal Q may be chosen so that Q G TZTL̂ o-

Proof. The proof is constructive and it is presented via the following algorithm. □

Algorithm 4.4.1 ([Glo89]). Without loss of generality we consider G to have a 

balanced realisation such that

A £  +  TiA! +  B B ’ = 0 

A'T, + EA + C'C = 0

Here,
<j\Ir 0

£  :=  > 0  
0 £

where o\ > a2 > ■ ■ ■ > cn_r > 0 are the Hankel singular values of G and r is the 

multiplicity of the largest Hankel singular value. Further, £ := diag(a2, . . . ,  crn_r).
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1. Partition the transfer matrix conformally, i.e.

r n — r m

r An A i 2 r Bi
A = , B =

n — r A2i a 22 n — r . 52 .

r n — r

C = p Cx C2

2. The (1,1) block from the Lyapunov equations of G, using the above conformal 

partitioning, give

—An — A!n — (<Ji) 2B i B[ — (<7i) 2C[Ci

Hence by [Glo89], lemma 2.2, there exists a Oi(Y G)-unitary matrix

De :=
V

m — l

m P -  l
aiDn D i2

D2i 0

where l = rank(Ci) = rank(Bi) (see remark 4-3-4), su°h that

C[ 0 De + Bi 0 = 0

3. Using the same notation as in suboptimal approximation problem, define the 

augmented systems Ga and J. Then the corresponding error system is given 

by E  := Ga + J , i.e.

Further, define

E

r n-r n-r m p-l

r An > to 0 Bi 0

n-r A2i A22 0 b 2 0

n-r 0 0 A B i b 2

p Cl c 2 Ci (JiDn D i2

m-l 0 0 c 2 D2i 0

r n — r n — r

r (7i Ir 0 0

n — r 0 E In—r

n — r 0 In—r e  r - 1

to be the controllability gramian with F := (£)2 -  (cri)2/ n_r .
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4- Now, define

B, := Y - \ t B 2 + axC'2Du ) 

B2 := T -lC'2D l2 

A := —A22 — B i B '2 

C\ —C2Yj — &1D11B2

C2 := —D2\B '2

~ _  7^11 D 12 

D2\ 0

5. Then all Nehari extensions ofG are given byQ = EfiJ, d?) = Ti 

where $  € (crfij^BTC^.

A B

C D

The above construction can be verified using the allpass equations of E. Since E is 7- 

allpass, G+Q is 07—allpass, with ||G+Q||oo = Q\- Further, it is proved that all solutions 

are generated by the above LFT form, so now J  acts as an optimal generator ([Glo89], 

theorem 4.1). The analysis is similar to that for sub-optimal approximations, but in this 

case E21 has full row rank whereas E i2 has full column rank on the extended imaginary 

axis. The following proposition shows that the Schmidt vectors of the corresponding 

Hankel operator are intimately linked with optimal Nehari extensions and in the scalar 

case define the optimal Nehari extension uniquely.

Proposition 4.4.1 ([ZDG96]). Suppose G £ 7ZTC  ̂ such that

inf | | G - Q ||00 = a1( rG)
Qento

Then

('G{s) -  Q(s))v{s) = (<ri(rG))w(s).

Further, in the case where G(s) is a scalar function (i.e. SISO system) then,

Q(s) = G(s) -  ( „ , ( r o ) ) h h

is the unique solution to the Nehari problem.

Proof. The proof is based on simple Hilbert space properties and it is given in 

[ZDG96]. Suppose H(s) := (G(s) — Q(s))v(s)\ observe also that Tg v  £ 7i7i2 and
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Singular Values

Frequency (rad/sec)

Figure 4.3: Typical singular values plot of an optimal error system G + Q for a dynamic 
<f>; the largest singular value has a constant value, over all frequencies, which is the 
smallest it can be.

that P+H = P+(Gv) = rGv. Then, 

o < \ \ h - t g v \\22

= \\H\\l + \\TGv \ \ l - ( H , r Gv ) - ( r Gv ,H )

< \\H\\l + ||rGu||2 -  (H, p+rGv) -  (p+r Gv, h )

=  m l  +  ||rGu||2 -  (rGv , t g v ) -  ( rGv, r Gv)

= \\H\\l + \\rGv \ \ l - \ \ T Gv\\22 - ( r Gv , r Gv)

= m l  -  ( rGv, r Gv) = \\h \\1 -  (v, r Gr Gu)

= m l  -  M ? G))2(v,v) = m l  -  M r G))2IMl2 

= ll(G -  Q M l -  (cri(rG))2||u||2 < \\g  -  QWloMl -  (a1(rG))2||u||2 

= 0

Hence, ||H -  r Ĝ ||| = 0 => H = TGv, i.e. (G(s) -  Q(s))v(s) =  TGu(s) = 

(a i(rG))iw(s). □

In the case that G is scalar valued, Q is uniquely determined by Q(s) = G(s) — 

tj\ (rG) • Nevertheless, it should be noted that a complete characterisation of Q in 

terms of the Schmidt pair, in the multivariable case, is considered to be an open issue
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for further research.

4.5 E xam p les

The examples in this section summarise the main points of the previous paragraphs. 

In particular, the Nehari approximation is considered for both scalar and multivariable 

cases. At first, in the scalar case only the computation of Schmidt vectors is required 

in order to specify the (unique) Nehari extension, whereas in the multivariable case the 

algorithm 4.4.1 is followed without the need of computing a Schmidt pair. The first 

example makes use of proposition 4.4.1:

Example 4.5.1. Find the Nehari extension, Q E of the strictly proper G E

TZHoo defined as follows

G(s) :=
2y/2s + A 

s2 + V 2s + 1

A = , B

A corresponding state-space model is 

-y /2 - 1

1 0

By computing its gramians:

Wr =

c = 2\/2 4 , D = 0.

1
2V2 0

, w 0 =
6V 2 8

0 1
2V2. 8 6\/2

it is easy to find the Hankel singular values,

M T c ), a2( rG)) = (Xi(W0Wc), \ 2(W0WC)) =  (V2 +  l , V 2 - l ) .

Then, following algorithm (4-3.1),

r—2(x/2 — 1)

2(y/2 - l )
and the Schmidt vectors corresponding to the largest Hankel singular value of G are

—2(\/2 — l)(s + 1) 2(v/2 - l ) ( s -  1) \

x - V2 

V2 J
,  ̂=

(ui(s),Wi(s)) =
s2 -  V is + 1 + \/2 s + 1

Following Proposition 4-4-fi the (unique) Nehari extension of the scalar valued system 

G(s) is

Q(s)  =  G(s) -  a ,  A A  =  4  _  ( V 2  +  1 )

W v ; W! (s) s2 + v/2s + 1
_ (-y/2  -  l)s2 + {y /2 -  2)s + (3 -  y/2)

s2 + V 2s + 1
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Example 4.5.2 ([Glo84]). Find the Nehari extension of the following transfer 

function:

G(s) := 39s2 + 105s + 250
(s + 2)(s + 5)2

Obviously, G G 77.77̂  am1 hence, it is asked to find the distance from G to 

Firstly, take a balanced state-space realisation of G(s),

-9 4 -4 - 6

A = 4 -2 4 , B = 2

4 -4 - 1 1

C = -6 2 - 1 D = 0

with gramians equal to
2 0 0 

£ = 0 1 0  

0 0 0.5

Then, the Nehari extension of G(s), Q(s), is constructed using Algorithm 4-4-1 and 

has the following state-space realisation:

2 10
, B = \

2
, 5  = 2 2.5

- 8 5 3 - 2
D = -2

It is observed that the Hankel singular values of Q are 1 and 0.5. Then,

- 6s2 + 13s -  90
Q(s) = 3s2 -  7 + 30

such that G + Q is ai(J'G)-allpass, i.e.

IIG + QIloo = l|rG|| = ^(rG) = 2

Alternatively, a Qait such that G — Qait is c^fTG)-allpass can be constructed according 

to Remark 4-4-1 and is given by:

6s2 -  13s + 90
Qa/i(s) 3s2 — 7 + 30

4.6 Sum m ary

In this chapter Hankel operators were defined and their role in control theory (e.g. 

observability and controllability operators) and model reduction was described. The 

need to approximate systems in the norm brought Hankel norm approximation
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into control theorists attention, as an upper bound, since "Hoo norm approximation is a 

difficult problem not yet solved. A key point for understanding and solving the HNA is 

the Schmidt decomposition of Hankel operators which was extensively used by operator 

theorists. However, in the case of rational approximation an elegant solution, based 

only on state-space methods, was given by Glover [Glo84],[Glo89] which was studied 

towards the end of the chapter.

Nehari approximation is extensively used in the following chapter as an important 

tool to robustness synthesis, where the need arises to approximate anti-stable rational 

matrix functions (i.e. inverse inertia problems). As shown here, the same theory 

applies, but with opposite inertia considerations. It is then proved that the smallest 

Hankel singular value of the anti-stable part of the open loop system is a robustness 

measure. Further, in chapter 6 extensions of Nehari approximation of rational (anti-

stable) matrix functions are developed for matrix-valued problems in the sense that all 

degrees of freedom are exploited to minimise additional objectives.
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Chapter 5

Robust Stabilisation

In general, physical systems are typically highly complex, nonlinear and time-varying. 

However, it depends on the designer’s judgement to some extent, whether to describe 

the real system by a complex model or make assumptions that relax the complexity 

of the system. From a platonic point of view a model can never represent exactly the 

true system but is only an approximation. Hence, uncertainty always arises in the 

modelling process with a trade off appearing between the degree of complexity and the 

degree of accuracy (in terms of approximation). Throughout this work, as discussed in 

previous chapters, only linear time-invariant systems are considered. This assumption 

is well suited to the present mathematical framework used for control design but, on 

the other hand, it should also somehow fit to a pragmatic description of the physical 

problem, so that the gap between model and reality is minimised.

Uncertainty in feedback systems appears mainly in the form of unmodelled or neglected 

dynamics, parameter variations or nonlinear effects. In order to restore accuracy 

(despite the assumptions of linearity and time-invariance), uncertainty can be treated 

as an LTI system for which the only a priori information is an upper bound of its “size”. 

In this type of analysis, the “size” of the system is described by a metric induced by 

the operator (or in engineering terms the system’s transfer function) and the degree of 

complexity is typically measured by the system’s McMillan degree.

In order to introduce the main idea of this discussion, an example is presented next in 

which uncertainty arises in the form of parameter variations.

Example 5.0.1 (Parametric uncertainty [SP96]). Consider the uncertain system

GJs) = — k— e~es, 2 < k, 6, t  < 3
P W  T S  +  1

At each frequency, parameter variation (inside the ranges specified above) defines



a region of complex numbers, Gp{juj). In general, such uncertainty regions have 

complicated shapes with up to 2n vertices for n uncertain parameters (see figure 5.1).

Figure 5.1: Disc ap-
proximation of orig-
inal uncertainty re-
gion at a frequency
CJQ.

Figure 5.2: Typical Nyquist 
diagram of uncertain system 
approximated by discs.

Thus a good approximation to the original (complex) uncertainty region may be 

obtained by bounding it by a larger disc-shaped region using a frequency-by-frequency 

scheme. The disc is centred around the value of the chosen nominal plant (i.e. the 

plant for which uncertainty is equal to zero) at each frequency. Further, the uncertainty 

radius is defined by the vertex furthest from the centre. Generalising the idea in 

higher dimensions (i.e. MIMO systems), the uncertainty is modelled as a frequency 

dependent norm-bounded LTI system, A(ju>). The norm constraint is described by 

o(A(juj)) < \W(ju))\, for all lo, where W(ju>) characterises the assumed maximum 

model uncertainty at various frequencies1. However, the filter W  is usually omitted 

since it is possible to normalise the uncertainty by defining a uniform bound of 1, at 

all frequencies, i.e. defining A := IT_1A so that ||A.(s)Hoc < 1. The set (family) 

of all these perturbed systems can be visualised in figure 5.3; Each perturbation A, 

inside the uncertainty ball, results in a slightly different model. This ball is centred 

at the nominal plant and any perturbation lying inside the ball is a contractive 

system (operator). Summarising, the complete robust control model is the entire 

set description which captures the uncertain or unmodelled/neglected aspects of the

1W(juj) is often estimated by experimental data and it cannot, by any means, be theoretically 
derived in a trivial sense.
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assumed physical system. The size of the model set is constrained by setting a bound 

on its size, i.e. specifying the norm of A.

Figure 5.3: Set of uncertain systems

The difference between the model and the true system may be represented in 

several ways. For multivariable systems the three simplest and most commonly used 

perturbation models are described below:

1. Ga (s ) — Go(s) + Aa(s)

2. G a ( s ) = (/ + Am(s))Go(s) or G a ( s ) = Gq(s )(I + Am(s))

3. Ga (s ) = (M(s) + Am (s ) ) - 1 ( N ( s ) + AN (s))

where Aa represents an additive perturbation, Am a multiplicative (or proportional) 

perturbation, defined at the system’s outputs, and [AM, Ajy] represent the factors of a 

coprime perturbation model. Here, Go is the nominal plant or the best estimate of the 

true plant. Further, some additional technical assumptions may need to be enforced 

in this description. These will be presented in detail later in the chapter.

Example 5.0.2 ([Mac89]). Consider A m = 0.1 = Aa. Then for the multiplicative 

uncertainty case :

||Ga  — Go||oo =  ||AmGo||oo < IIArolloollGolloo <  0.1||Go||oo

i.e. the size of the perturbation is at most 10% of Go. On the other hand taking 

Ao = 0.1,

| |GA - G o l l o o  =  H A J o o  <  0.1

i.e. the size of the perturbation in this case is less than the constant value of 0.1.



Remark 5.0.1. Multiplicative uncertainty is simply a weighted form of additive 

uncertainty. In particular,

(I  +  A m ) G o  =  G o  +  A m G o  = :  Go + A a

by defining Aa := A mGo-

Consider now the following figures (next page) based on the stability analysis of chapter 

3. Here it is shown that all three perturbation models defined above, can be written 

in the form of an upper LFT :

Ga  = PU(P, A) = P22 + P21A (/ -  PnA )-1̂

For example, it can be easily shown that the additive uncertainty model corresponds

(Pn( s )  ;= (51)
\ f t i w  JfcM y 1/

It follows in this case that:

FU(P, A) := P22 + P21 A(/ -  Ph A)_1P12 =  G0 + A

Further, the multiplicative uncertainty model is generated by

(0 £o(s)\ 

V  G°(SV
(5.2)

whereas the coprime uncertainty model can similarly obtained (see [MG90]). An 

interesting observation, worth noting, is that Pn(s) (the (1, 1) block of the generalised 

plant) for the case of additive and multiplicative uncertainties is equal to 0, whereas 

on the other hand, in the case of coprime perturbation models Pn(s) contains also a 

nonzero term.

In this general LFT framework we pose the following problem:

Problem 5.0.1 (Robust stabilisation). Consider the general uncertain plant in 

figure 5.4(a). Then, find a controller such that the closed loop system is stable over a 

set of uncertainties2 * * A which satisfy the norm bound HAHoo < e.

A necessary condition of robustness is internal stability. It is obvious that in order to

stabilise the family of perturbed plants, in which the nominal plant is also included,
2 The problem above is defined for the general class of unstructured perturbations. Again, if we refer

to the case of additive or multiplicative type of uncertainties, an extra constraint on the perturbation
set should be considered. This “technical assumption” will be introduced later.
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(a )  (b)

(c)

(d)

Figure 5.4: Feedback loop systems under unstructured uncertainties and the equivalent 
generalised plant.
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internal stability of the nominal plant should be achieved, i.e. according to the notation 

of chapter 3, the feedback system H(G,K)  of figure 3.1 should be internally stable. 

Assuming that this condition is satisfied, one way of addressing robust stabilisation is 

by means of the small gain theorem (see chapter 2, Theorem 2.4.1) of the LFT inter-

connections of the perturbation and the closed-loop system. Since the perturbation is 

norm bounded, the nominal closed-loop systems should have norm less or equal than 

the inverse of this bound, so that the overall closed-loop of figure 5.4(a) is stable for 

every admissible perturbation.

For certain classes of unstructured uncertainty models the perturbed plant is 

constrained to have same number of RHP poles as the nominal plant. This condition 

applies to additive and multiplicative perturbation models and makes it necessary to 

prove robustness theorems via homotopy arguments (rather than via the small gain 

theorem).

5.1 R o b u st sta b ility  under ad d itive  p ertu rb ation s

Assume G € The closed loop system of figure 5.5 (with A = 0) is internally

stable if and only if it is well-posed, i.e. det(/ — G(oo)K(oo)) ^  0 and the four transfer 

functions («1,112) —> (ei,e2) given by

(/ -  GK)~l (I — GK)~1G 

K ( I - G K ) - 1 I  — K (I — GK)~lG

are all in rTl'HOCl. Define S  == (I — GK)~X. Then we need det(/ — GK)(oo) ^  0 and 

5, KS, SG, I  — KSG  £ IZHoo, in order to ensure internal stability of the feedback 

system (see chapter 3, figure 3.1).

Now let GA = G + A, as shown in figure 5.5, known as an additive uncertainty model. 

Here A is an LTI system and belongs to a class of perturbations for which there is 

no a priori information about its structure (i.e. on how the uncertainty is distributed 

among the elements A^ of A), but only an upper bound of its “size” at each frequency 

(measured via the largest singular value).

Assuming that controller K(s) stabilises internally G(s), it is often required to 

determine whether for a specific e > 0 the closed-loop remains internally stable for

h (g , k ) (5.3)
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Figure 5.5: Closed-loop with additive uncertainty in the nominal plant

all A with norm ||A|| < e. This is an analysis problem, in contrast to a synthesis 

problem which further aims to design a controller (or characterise the family of all 

controllers) with the corresponding robust-stability properties. In the sequel we define 

the robust stabilisation problem for the special case of additive perturbations and show 

how it can be recast as an minimisation problem. The latter can be viewed as a 

suboptimal approximation problem in terms of the uncertainty ball (figure 5.3). The 

optimal solution to the problem is obtained when the stability radius is maximised 

(maximally robust stabilisation problem). Next we define the family of all permissible 

perturbations A and give certain technical conditions.

Definition 5.1.1 ([Glo86]). A permissible perturbation, A, is one such that A G V e

where

v e ± v Sf u VUi

and

VSc = {A  : A G n n oo; HA^ < e}

VUc = {A  :A  enCoo-, „(P, 0)) = rj(lFu(P, A)) U A ^ < e}

where P is the generalised (augmented) plant (5.1), and r](.) denotes the number of 

closed RHP poles of a transfer function, counted in the McMillan degree sense.

Definition 5.1.2 ([Glo86]). The feedback system in figure 5.5, denoted as H(G,K),  

is e-robustly stable if and only if H(G + A ,K ) is internally stable for all A G V e. 

Further, if there exists K  such that H(G,K) is e-robustly stable then (G,e) is said 

to be robustly stabilisable. Here, e is referred to as the robust stability radius of the 

feedback system.
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Remark 5.1.1. Note that G and G + A are required to have only the same number 

but not (necessarily) the same poles in the closed RHP.

Remark 5.1.2 (Generalised Nyquist Criterion). Assume a A permissible (see 

definition 5.1.1), such that A E T>t and further, let Dr  be the Nyquist contour as in 

Theorem 2.3.2. Suppose now that H(G,K) is e-robustly stable. Then H(G + (3A,K)  

is internally stable for every ¡3 E [0,1],

Consider the contour

r> = det [(/ -  (G + (3A)K)(s)}, s e Dr ,(3e  [0, 1]

As ¡3 varies between (3 = 0 and (3 = 1, Tp deforms continuously without crossing the 

origin, making rj(G) + rj(K) anticlockwise encirclements around it (recall, straight from 

definition 5.1.1, rj(G) = r](G + A)), for each (3. Thus,

det [(/ - G K  -  (3AK)(s)\ ^  0, sE  DR, (3 E [0,1]

Now, observe that

det (I - G K -  (3AK) = det(I -  GK)det(I -  (3AK(I -  GK) -1) 

and (/ — GK)~X is well-defined on DR. Hence, we conclude that 

det [(/ -  (3AT)(s)} / 0 ,  Vs € DR, (3 E [0,1] 

where T := K (/ — GK)-1, and thus

det [(/ — AT)(s)] ^  0, Vs E D r

To get the idea behind of the above definition note that we extend the notion of stability 

discussed before, in the sense that now our objective is to design a controller that not 

only stabilises the nominal plant but a whole family of plants. Of course it is assumed 

that the family contains the nominal system and hence by stabilising the whole family 

we also stabilise the nominal system. Consequently, we can say that robust stability is 

the ability of a closed-loop system to remain stable in the presence of modelling errors.

Theorem 5.1.1 ([MG90]). Let G E then H(G,K) is e-robustly stable if and

only if H(G,K) is internally stable and

\ \K( I -GK) - ' \ \ x < r '
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Proof. [MG90], Theorem 3.3. □

Theorem 5.1.1 implies that the robust stabilisation problem can be formulated as a 

(sub-optimal) Hoo optimisation problem. However, by minimising the H ^  norm of 

a transfer matrix we effectively minimise the maximum energy transfer between the 

energy of the input and output signals of the corresponding transfer function. In other 

words, if we choose a controller K  that minimises \\K(I — G,/ 0 -1||oo, we then minimise 

the energy of the output signal e2 (control effort) due to the external input signal u\. 

The transfer function K( I  — GK )~J is often referred as the “control sensitivity” of the 

feedback system.

Rem ark 5.1.3. As initially discussed in the chapter, uncertainty size is a function 

depending on frequency. A uniform bound on uncertainty size can be accommodated 

via weighting functions which usually normalise the experimental estimates of the gain 

at several frequencies uo. In this framework, by introducing a weighting function W 

(which can be assumed to be in H ^, without loss of generality), robust stability is 

imposed by requiring \\WK(I — GK )-1 < e_1. The weight can be absorbed inside

the generalised plant by re-defining:

the weights are appended to the original system. Hence, without loss of generality, using 

the sub-multiplicative property of the Hoo norm (Banach algebra property) it is always 

possible to restate the robust stabilisation problem in terms of weighting functions, using 

this technique.

The following proposition shows that when solving the robust stabilisation problem we 

can assume without loss of generality that G G TZH^.

Proposition 5.1.1 ([Glo86]). Assuming G G IZCoo with decomposition G = G\ + G2 

such that G f, G2 G TTHoo, Gi(oo) = 0, then (G, e) is robustly stabilisable if and only if

where the infimum is taken over all K\ that internally stabilise H{G\,K{) and such 

that det(I — G2K i )(oo) ^  0.
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Proof. The proof is based on letting K\ be such that H(G i, K i) is robustly stable and 

defining K  := K \(I + G2Ki)~1. See [GI086] for details. □

Remark 5.1.4. Proposition 5.1.1 above implies that the solution to the robust 

stabilisation problem is effectively constrained only by the anti-stable part of the plant. 

For the special case that G £ IZhioo C IZCoo, the above proposition is simply proved 

by setting K\ = 0. As the open-loop plant is already stable, obviously no controller is 

needed to stabilise it. Thus, to simplify the solution of the robust stabilisation problem 

we can assume without loss of generality G £ TThtf^.

Theorem 5.1.1 gives necessary and sufficient conditions for robust stabilisability for 

the e-ball of perturbations V t. The necessity part of the proof in [Vid85] proceeds 

via a homotopy argument based on the continuous deformation of the Nyquist plot of 

the nominal plant. To establish sufficiency, the existence of a boundary destabilising 

perturbations is proved ([Vid85]) by an explicit construction; in fact, it is shown that 

such destabilising perturbations (i.e. A £ dVe, ||A||oo = e) can be assumed to be in 

dVSc C d v t .

The problem of constructing boundary destabilising perturbations is formally posed 

below. Algorithm 5.1.1 which follows the problem is adapted from the proof in [Vid85].

Problem 5.1.1. Suppose T(s) is the transfer-function of the unperturbed (nominal) 

system in figure 5.5 corresponding to an e-robust stabilising controller. Find A £ 'RTH(X, 

such that

det(I -  A( ju0)T(juj0)) = 0, IIAIIoc 1
0))

for some frequency lu0 £ [0, 00).

The problem is solved by explicitly constructing such a destabilising perturbation. The 

method is presented via the next algorithm. For a more general setting of the problem 

see [Vid85], Theorem 4, pp. 273-279.

Algorithm 5.1.1 (Destabilising Perturbation). LetT(s) = K( I  — GK)~l £ IZHoo 

be the transfer function corresponding to a nominal system G £ with minimal

realisation T(s) = Ct (s I  — A t )~1Bt  + Dt - Further, leta(T(ju0)) = HTHoq. There are 

three possible cases: either coo = 0 ora; 0 = 00 or uiq is some finite frequency (which can 

be assumed positive). In the sequel, it is shown that the cases of uq = 0 and coo = 00 

can be grouped into one case:
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Case i : wo = 0 or Wo = oo. / / cjq = 0, then as A t  is invertible (since T  G IZTtoo):

T(jujo) = T(0) =  -C t A ^ B t  G f tpxm

If iü0 = oo

T(ju>0) = T{oo) = G 7 ^ xm

Then T(jio0) /tas a 5VT)

r(jwo) =  c/ e v "

with U,V real orthogonal, i.e. U G IZpxp and V G 'R,mxm. A destabilising additive 

perturbation in this case is constructed as follows:

So, at the critical frequency ojo, det(I — T(juo)A,iestab(jiOo)) = 0. However, in this case 

U, V may be complex (and thus also A^stab, as defined above).

To construct a stable, real-rational destabilising perturbation we use an interpolation 

argument. Take the first column ofV, v\, which is in general a complex-valued column 

vector. Write all non-real elements of vi in polar form:

and force 9i G (0, n), Vi G {1,2, . . .  ,n}, by inverting, if necessary, the positive sign of 

pVi, i.e. set p = —pVi for all i such that 9i £ (0, i t ) (where pv. = ( — 1,1)). Otherwise

0 ( p —l ) x l  0 ( p _ i ) x ( m — 1)

which is a real constant matrix.

Case 2 : lu0 G 7£+\{0}. Let

T(jco0) — Ct UojqI  — A t ) 1B t

and consider its SVD :

T(ju)o) = UYW

Define:

0 (p —l ) x l  0 ( p —l ) x ( m —1)

V\ =
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set pv. — pVt. Further, select appropriate a t  > 0 such that arg(jcu — af) — &rg(juj + a i )  = 

9i. Then, define

v(s) :=
Pv l

s —  (Xl

s+cu

Pvn
S - O t n

s+an
i.e. Vi(s) = pVij ^ i for all non-real entries of vi and Vi(s) = Vu for all i such that Vu

is real.

Note that v(s) interpolates v\ at s = jooo. Geometrically this is described in figure 5.6. 

In order to select pole-zero pairs (—a.i,oti) with a, > 0 such that arg( yt' ) = 9i note 

that as the location of cti (and —a.i) varies continuously over the positive (respectively 

negative) real axis, 9; varies continuously in the interval (0, 7r). Therefore, for any 

9i G (0, 7r) there exists (exactly one) pole-zero pair (—a*, cVj) such that arg(^°~”i) = 9i. 

Simple trigonometry gives

tan
L-t ̂
— => a.i = n>o tan

Figure 5.6: Construction of phase angles 9i 

Further, define fa ’s and pUi’s in a similar manner so that

Pux̂ 1

P un e j * n _

is interpolated by
— S - 0 1
Pu\ •s+/3i

Pu„ S - P n

S + P n _
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at s = jcoo- Then, an additive destabilising perturbation in TTHoo, with || A ŝtafell«» =

is defined as follows:

*destab»  := °i (,T(ju>o))
v(s)u'(s)

Remark 5.1.5. By adding Adestab to the nominal plant, the number of unstable poles 

remain the same, in both cases. If the critical frequency is wq = 0 or loq = oo, then 

Adestab is a constant real matrix and hence is irrelevant to the poles of G + Adestab■ On 

the other hand, if lo0 is finite then Adestab is a stable dynamical system and thus, it does 

not affect the number of unstable poles of G + A destab either.

5.2 T h e m ax im ally  robust s ta b ilisa tio n  prob lem

Up to this point, in terms of figure 5.3, necessary and sufficient robust stability 

conditions were given which characterise all perturbed plants inside the open ball 

of radius HTÛ ,1. Further, in the previous paragraph, an explicit construction of a 

destabilising perturbation (algorithm 5.1.1) proves the existence of such perturbations 

on the boundary of this ball. Next we consider the problem of maximising the robust- 

stability radius (in the case of additive perturbations) and of characterising the family 

of all controllers that guarantee this maximum robust stability margin. We first make 

the following definition.

Definition 5.2.1. A controller K  is maximally robust if H(G,K) is e-robustly stable 

for the maximum value of e for which (G, e) is robustly stabilisable.

Following the above definition and proposition 5.1.1, the maximally robust stability 

problem for the case of additive unstructured perturbations can be stated as follows:

Problem 5.2.1 (MRSP). Given any G € TTHf^ such that G(oo) = 0 find eQ, the 

maximum value of e, such that (G, K) is e-robustly stable.

A mathematical formulation to the above problem follows directly from Theorem 5.1.1:

£p  = 7o = m in ||A '( /-G if ) - 1||00 (5.4)

where S  is the set of all stabilising controllers of G, i.e. all K(s) for which 

H(G,K) 6 Hoc- Note that e0 — — and it is defined as the maximal robust stability
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radius. The procedure we shall follow to solve (5.4) is described in four steps. At 

first we pose the MRSP in a generalised regulator framework (see chapter 2, problem 

2.4.1), i.e. we embed the given nominal plant Go into an augmented system P, so 

that the control set-up of figure 5.5 is reformulated as a lower LFT of a generalised 

plant and the desired controller. Then we derive a coprime factorisation for G0 via 

the solution of certain Diophantine equations, or equivalently via choosing appropriate 

state feedback and output injection matrices. Thereafter, by using the results presented 

in chapter 3, we parameterise the family of all stabilising controllers for MRSP and 

hence reformulate the original problem to a model-matching setting. The final part 

involves the reduction to a Nehari approximation problem, whose solution was outlined 

in chapter 4 (algorithm 4.4.1). As the procedure discussed here relies on a state-space 

analysis, for reasons of clarity we make the following assumption which does not involve 

any loss of generality.

Assumption 5.2.1. Let Gj be defined according to proposition 5.1.1 and assume 

without loss of generality that its realisation is balanced. For the sake of simplicity from 

now on we shall use the notation G and refer to the realisation of G\ in proposition 

5.1.1. Thus, take G to be an anti-stable system with minimal balanced realisation 

(A , B, C) which satisfies

A'T + T A -  C'C = 0 

AT, + TA! -  BB' = 0

in which T > 0 is given by

Gn 0

E =

0 (T i

and o\ > (72 > ■ • • > crn_r = ■■■ — on > 0 are the Hankel singular values of G. Here, r 

denotes the multiplicity of the smallest Hankel singular value of G. In the sequel we use 

the fact that any realisation G can be factorised as the quotient of two stable (coprime) 

transfer matrices.

Generalised regulator framework. Now consider the generalised regulator prob-

lem which is described below.
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Further, considering the lower linear fractional transformation

H P , K ) := pn  + PnK(I  -  P22K ) - 1P21 = K( I  -  GK ) - 1

where the RHS describes the closed-loop transfer function of the nominal plant G, 

whose infinity norm we want to minimise as in (5.4). The maximally robust stabilisation 

problem can be expressed in the general LFT framework, where the generalised plant 

has the form of (5.5). In particular, (5.4) is equivalent to

min \ \ H P  ¿OIL = 7o := 7  (5-6)e0

The controller that minimises (5.6), which is not necessarily unique 3 must, in the 

first place, be a stabilising controller for the nominal plant G. Hence, the set of all 

maximally robust controllers forms in general a subset of all stabilising controllers.

Diophantine Equations and Coprime factorisation. Take P22 G G 

with left and right coprime factorisation

G = NM~l = M~XN

where N, N , M , M  € '1ZTL00. Then there always exist matrices U, U,V,V  € VSH.^ 

satisfying the following two Diophantine equations

VM -  UN = /, MV - N U  = I

or more generally,
( m  u\
\ N  V J

which will be referred to as the generalised Diophantine (Bezout) identities.

(5.7)

Proposition 5.2.1. Let F,H be such that a(A — BF) Ç C_ and a(A — HC) Ç C_. 

Then,

f M  u\

[ n  v )

V -U

- N M

A - B F B H
S

- F I 0

C 0 I

A - H C B H
S F I 0

- C 0 /

3for MIMO plants generically it is not unique but a continuum infinite set of controllers
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are stable state-space realisations of the coprime factors M, N, M, N  and of U, V, U, V 

satisfying the Diophantine equation. Now choose F = ¿TE“ 1 and H = E~1C'. Then 

A — BF and A — HC are asymptotically stable. Further, with this choice, M and M 

are inner.

Proof. Assume without loss of generality that (A , B , C) is a minimal balanced 

realisation (see assumption 5.2.1). Then,

A — BF — A — B B 'E “ 1 = (A E  -  BB')'L~l = —E A ' E " 1

so that

a{A -  BF) C C_

Similarly,

A - H C  = A -  E~lC'C = E_1(EA -  C’C) = - E ’ ^ 'E

and so

a (A -  HC) C C_

Further,
A -B B 'T ,-1 B E -JC'

s / 0
C 0 /

M u
IV V

Hence,

A -  E-1C"C B E~1C>
s B 'E-1 I 0

-C 0 I

- A / M 1/
M / u V

A -  E_1C,C' B E " 1C"
B'E-1 7 0

-C 0 7

A - B B '  E -1 B E_1C'
-B 'E -1 7 0

C 0 7
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Then,

V
-N

A -Z - 'C 'C -B B 'E -1 + E- XC'C B E-1C'

-B) (  M 0 >1 -  BB'Y,-1 B E_1C"
M ) u B'E“1 -B ' E“1 I 0

-C C 0 I

A -  E~lC'C (-BB 'E_1 + E_1C'C -  A 0 0
+BB'E~1 + A -  Tr'C'C)

0 A - B B '  E -1 B E- lC'
B' E -1 0 I 0

-C 0 0 I

A -  E- lC'C 0 0 0
0 A -  BB'E“1 B E_1C'

B' E -1 0 I 0
-C 0 0 /

Removing the uncontrollable modes gives

and thus verifies the generalised Bezout identities. Further,

NM~l =
A - B B 'S “1 B

C 0

A - B B '  E“1 B
C 0

A - B B '  E -1 B
-B 'Y ~ l I

T -1

A -  B B 'Z -1 + BB'Y,-1
'v—lB'E

-i

A -  BB'S "1 BB' E“1 B
0 T B
C 0 0

A -B B 'Y ~ l B B 'Y -1 + A -  B B 'Y -1 -  A 0
0 A B
C C 0

T B
C 0

= G

□

Remark 5.2.1. The particular selection of state feedback F = BE-1 and output 

injection H = E~lC' in proposition 5.2.1 guarantees that M, M are inner (MM~ = I , 

MM~ = I and M, M  G 'R1H00). This also follows via a routine state-space calculation 

which is omitted.
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Parametrisation of all Stabilising Controllers. It is well known (Youla 

parametrisation) that every stabilising controller can be written in the following 

bilinear form (see chapter 3, Theorem 3.2.1):

K = (U + MQ)(V + NQ ) - 1 = (U + MQ)[V(I + V ^ N Q ) ] - 1

= {U + MQ)(I  + V - lNQ) - lV~l = U{I + V - lNQ)~lV~l + MQ{I + V ^ N Q y W - 1

where Q G TZTioo and all other transfer matrices are as defined in chapter 3. 

Equivalently in an LFT form, the set of all stabilising controllers is given by K, — 

Ti{K0, Q), where K 0 is the generator of all stabilising controllers, given by

M — UV~lN  

- V ~ lN

A - B F - H C H B
5 - F 0 I

- C I 0

for appropriate matrices F and H (see chapter 3). Selecting F and H according to 

proposition 5.2.1, the generator of all real-rational stabilising controllers K  takes the 

form

r ,  ( K11 k 12\
A -  BB'Y,- 1 -  Z-'C 'C B

S i«031K0 = = 0 1
\ K 2i k 22) -c I 0

(5.8)

Hence, the set of all stabilising controllers is given by the set

JC:={K: K  = Ft{K0, Q) , Q G TZH^}

which depends on a parameter Q, varying freely in 'H00) and a fixed controller generator 

K 0 as defined in (5.8). Hence, the above parametrisation transforms the original 

Tioo optimisation problem over the class of stabilising controllers (problem 5.0.1 and 

Theorem 5.1.1) to an equivalent optimisation of an affine function of a parameter 

(Q) which varies freely over Hoo■ Using the generalised regulator framework, already 

derived for the class of additive perturbations, we are now able to construct controllers 

K  from the set 1C which robustly stabilise the plant G, in the sense that both criteria 

of (2.4.1) are satisfied for a subclass of 1C. However, a complete characterisation of all 

maximally robust controllers, expressed directly in terms of the plant realisation, still 

requires some further investigation.
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Reduction to Nehari problem via Model-matching. A model matching 

problem is of the form: Find a matrix Q G PTioo so that

Q G argmin \\Tn  -  T12QT2i

for Tij G TZHoo, i , j  = 1,2. The solution of such problems have already been studied 

in chapter 3. In connection with the previous paragraphs it can be shown that
T\\ T12

P i(P, K) = Fi(T,Q) for an appropriate selection of T = 

shown in figure 5.8.

G TZHor,, as
T21 0

(a) (b)

(c )

Figure 5.8: Equivalent block diagrams of model matching problem.

For the MRSP the three matrix functions are obtained (see [Fra87]) by:

Tn ■= Pu + P12MUP21 = MU 

T12 := P21M — M 

T2\ := MP2\ - M

Each belongs to TZTLoo, a fact that follows immediately from the co-primeness 

properties of the factorisation. Then,

Pl(P,K) = {Tn + T12QT21 : Q e K H ^ }
_  (5-9)

= {MU + MQM  : Q G KHoo}

Now, recall from equation (5.7) that

- M U  + UM = 0 => MU = UM
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Further, from remark 5.2.1 M  and M are inner. Therefore,

Ft(P,K) = {UM + MQM : Q e n n 0o}

= {([/ + MQ)M : QenTioo}

Next we need to find the optimal, in the 7i00 sense, Q E TCH^ that solves the model-

matching problem in this case. Consider the following TC^ optimisation. Since M  and 

M  are inner:

mm
Q eK Ha

(.U + MQ)M

A ]lu + MQ]L

A  w~u + 0 | | <

\\M~U\H

(5.10)

and Q is a stable operator.

Rem ark 5.2.2 ([Fra87]). If T\2 and T2i are square but not inner, the transformation 

from a model-matching problem to a Nehari approximation problem can be achieved 

using two additional inner-outer factorisations [Pel03]: Bring in such factorisation 

T\2 = T{2T °2 and T21 = T21T21, with T{2 and T21 square inner and T°2, T21 square outer 

Hoo functions (i.e. units). Then

Ill’ll -  r 12QT21||„  =  ||T„ -  T'nT& Q TtâAL

= ||(r;2)~ r„ (r i)~  -  7y2Qi?,||„ = ¡IPi2) - T 11(r ‘1)-> -  |„

Now the map Tt^ —> Tf2TLooT21, Q —> Q := Tf2QT2X is a bijection, so 

min \\Tn - T u QT21\\00 = min \\{Ti2y T n (T2iy  -  QH«,
QeHoc QeHoo

which is a Nehari approximation problem. Clearly, the inner nature of M and 

M (guaranteed by the choice of F and H, remark 5.2.1) makes these two extra 

factorisations redundant.

Further, a simple state-space analysis shows that:

A - B F H  B A - H C H  0

- F 0 I - C I  0

0 I  0 0 0 I

A - B F  - H C  H  B

0 A - H C  H  0

—F  0

0 - c
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and further
( u  m \  ( m  o\ _ / U M  m \  _ ( MU m \  ( Tii T12
\ I  O j \  0 l j ~ \ M  0 )  ~ \ M  0 j  \T2i 0

Summarising, we have shown that the maximally robust stability problem can be 

reformulated into a model-matching framework whose solution is equivalent to a Nehari 

approximation problem of the form

min ||fi + Q L = ||Ä ~ |ltf  (= lirVII)
V c  / v / T o o

The solution of Nehari problems has been previously studied. Here we want to 

approximate R (:= M~U), an anti-stable system, by a stable system Q. As discussed 

earlier, there exists a generator J  of all optimal solutions such that H-R+QHoo =

Further, as already shown in chapter 4, all optimal approximations of R are given by

where 70 = ||i?||//- In the sequel, we derive the state-space model of R in terms of the 

realisation of G. Thereafter, we characterise all optimal QJs as an LFT interconnection 

and relate it to the maximally robust stabilisation problem.

Now,
-A i + Y r 'B B ' 0

R := M~U = 0 A - B B '  E“ 1 E ~lC'

B' - B '  E- 1 0

Then by applying the transformation

T =
I

0

- E -1

I

we have

-A ! + E ~lBB' 0 - E  ~2C

R = 0 A -  B B T - 1 E -1C"

B' 0 0

—A' + E ~XBB' Y r2C

- B' 0

Ti E ( —A '  +  E _1H 5 ' ) E _1 E _1C"

—B' E “ 1 0

A E - l C ' Ar B r

- B '  E - 1 0 . ° R 0

(5.13)
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where T\ = E. Clearly, the above realisation for R is minimal and balanced. Note that 

since G was assumed to be in 7 so is R. By expanding the gramian (Lyapunov) 

equations, in assumption (5.2.1), it is straightforward to show that R has observability 

and controllability gramians equal to

E“ 1
CT^/r 0

0 E- 1

where an is the minimum Hankel singular value of G(—s) and hence, er“ 1 = q0 is 

the largest Hankel singular value of R(—s), of (assumed) multiplicity r. Partition R 

conformally with E-1 as :

A \ \ r A \2r B i r A n A \2

R  = A 2Xr A 22r B2R = A 2x a 22 E ^ C '

C\R C2R 0 - B '2 E - 1 0

Then,

Q =  Fi(J,crnBHoo) (5.15)

where the “Glover generator” of all optimal approximations is given by

A B\ b 2

Cx Du D\2

c 2 d 2X 0

(5.16)

as in chapter 4, algorithm 4.4.1, whith

A = -A'22 +  r - J(E - 1B 2 r  -  C2RDn)B2R 

Bx = - T - \ £ - xB2R-C '2RDn)

B2 = T~lC2RDi2 

Cx = C2Rt ~ l -  Du B'2R 

C2 — —D2i B2R

(5.17)

Note that in (5.17) we substitute — E 1 instead of E 1, due to assumption 5.2.1; Recall 

in chapter 4, algorithm 4.4.1 the gramian E satisfies n 'E  + EH + C'C = 0 (i.e. different
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inertia). Further, straight substitution from the state-space description of R , gives

and

a  = - a '2 2 + r _1( i r 2c£ + z - 1b 2d 11)c 2z - 1

B\ = - r - ^ E - ^  + S -^ a D n )

B2 = —r _1E_15 25 12 (5.18)

C l  =  - ß 2 S - 2 -  D u C j E " 1

C2 = - D 2iC2Z~l

r  = (- -E“ 1)2 -C2r _ Jr (5.19)

Remark 5.2.3. The matrix D is chosen to be orthogonal with Dn = 7 CB^ so that it 

satisfies the all-pass equations given in [GI084]■ In the framework of robust stabilisation 

we get:

C\r  0 D + ° n  1 B \ R  0 = 0

equivalently, in terms of the nominal plant:

on B\ 0
D11 D\2

D2i 0
+ a - 2C( 0

implying that B \D n = <Jn1C[ and that -£>i -D12 =  0. These results will be used 

extensively in the following state-space analysis.

It is now clear that if R € RTCfo then J  £ IZHoo and so Q £ RTtoo- Therefore by 

choosing among all Q £ IZTtoo those that are optimal, we can parameterise the desired 

set of all maximally robust controllers via (5.8).

5.2.1 O ptim al closed-loop approxim ation

The MRSP in (5.4) involves the minimisation of the infinity norm of an appropriate 

closed-loop transfer-matrix, T := K (I — GK)~X. Having already defined these optimal 

transfer-matrices rather implicitly, a more direct approach to the problem is attempted 

here. A cancellation analysis is carried out in order to understand completely, with the 

aid of loop transformations, the nature of the resulting optimal closed-loop systems. In 

particular, full characterisation of their structure and inertia properties are the main 

issues examined here.

Consider the model matching problem (5.9), described by figure 5.8, but further restrict
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Q to have the form (5.15), i.e. to be an optimal approximation of the equivalent Nehari 

problem (5.10). Then, the optimal closed-loop transfer-matrix in terms of the optimal 

parameter Q0pt is :

Topt = (U + MQopt)M 

= UM + MQoptM

= UM + M(Jn + J 12<f>(/ -  J22̂ )_1 J2i )M

= (U + MJ n  + M J12f ( J  -  J22$ )-1 J21)M 

'U + M Jn M Jn  

J21 J22
,$  M = ^ (T gen,T)M

The term Tgen is easily decomposed as:

lU +  MJn {I-O J n )-1 MJ12 \ _ U + MJn MJl2 \ 
y J21 -Ttt(0, J ) j  y J21 J22 J

where * denotes the Redheffer product (see Appendix A). The decomposition is 

visualised in figure 5.9.

(a) (b)

Figure 5.9: Optimal generator of closed-loops - equivalent interconnections.

Note that M  is inner and $ is anything contractive in anBTioo- Therefore, Tgen will 

generate all Hoo optimal closed-loop systems, i.e. it is the generator of all K (I — GK ) " 1 

such that K  internally stabilises the nominal plant and \\K(I — GA')“1||0O = q0 = —. 

Assume that the “Glover generator” has state-space realisation J  =(A, B , C, D). Then 

the state equations of the star (Redheffer) interconnection are

x = (A -  B B 'Z -^ x  + + Bw

yi = —B'Yi~lx + w

Z  =  Ui

£ —  A £  +  B \ Z  +  B 2U 2 

w = + Du z + -Ch2u2

y2 =  C2£ + D2\z

n o



using the realisation in (5.11) and hence, the state-space of T’gen(s) is obtained as:

X A — 5 5 'E “ 1 5Ci x E-iC ' +  BDn B D i 2 Ul
— +

0 I Bi b 2 _ U2
J L L

Vi — 5 ' E “ 1 C l X Di 1 D\2 Ul
— +

V2 0

1_
_

_ D2i 0 *¿2

The generator of all optimal closed-loop transfer-matrices Tgen is:

A n  -  a 7x1 B i B [ A 12  — B i ^ 2 ^  * — B iB '2î l ~ 2 -  B j Ô n C a Ê - 1 <Tn  1 C i  +  ^ 1  £*11 B 1D 12

A 21 — O n 1 B 2 B 'i A 22 ~  B 2B 2E 1 - b 2b '2£ ~ 2 -  B 2 D u C 2 Z E _ 1 C£ +  B 2 £>n B 2 Ô12

0 0 - a ^2 +  r - ‘ ( Ê - 2 c ^  +  S - 1b 2Ô h ) c 2ê - 1 _ r - i (â - 2 C / +  g - i B 2 ß u ) - r - l £ - 1B 2 ß 12

- b '2 2 _1 - B i z i ; - 2 -  Ô i i C 2 Ê - 1 S u D \2

0 0 — D 2 1C 2 Ê - 1 D 21 0

Next, we eliminate all uncontrollable modes to reduce the state-dimension of Tgen. 

Consider the similarity transformation

Ti =

Then,

/ 0 0

0 I TE

0 0 I

5 (2, l) = e  ~lc '2 + b 2d 1 i -  t e t - ^ e - 2̂  + e ~1b 2d u )

= Ê-'Co + B2Dn  -  E~lC2 -  B2Dn = 0

and

5(2, 2) = B2D\2 — B2D i2 = 0 

Moreover, straightforward computations give,

A(2,3) = -TÊA’22 + (Ê“1«^ + 5 25 i i )C2Ê“1 -  B2B'2̂ ~2 -  B2D11C2^~ 1 -  (^22 -

= -rÊT '22 + s _1c 2c 2s _1 -  b 2b '2£ -2 -  A22Êr + b 2b '2t  

= - v %a '22 + ê _1c 2c 2ê _1 -  >i22Êr + ß 2ß^(r -  Ê~2)

=  (er“ 2/  -  Ê “ 2) Ê ^ 2 +  S - ^ C z i r 1 -  / 122S ( S “ 2 -  a ~ 2I )  -  (T“ 2ß 2ß 2 

= <t “2Ê ^ 2 -  T,~lA'22 + E_1(Êyl22 + A'22t ) £ - 1 -  A22t~ l -  a -2B2B'2 + er“2yl22Ê 

= a~2{%A'22A A22t - B 2B'2} = Q

Further,
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>1(1,3) = - B XB2Y,~2 -  B1Dn C2̂ ~1 -  (A12 -  Bi-BaET^Er = BXB'2(T -  E"2) -  BXD1XC2E“1 -  >l12Er 

= °n2BiB'2 -  BxDlxC2E“1 -  T12Er = (t - 2BxB'2 -  BXDX1C2E“1 -  A12£{£-2 -  a~2I)

= <r~2BxB'2 -  BXDXXC2E -1 -  >112S-1 + cr“2>l12E = a~2(-a nA'21) -  A12E“1 -  B iD n ^ E “1 

= - ^ ^ 2i -  ^ E -1 -  B ^ n C a E - 1 = - ^ 2 1  -  ^ E “ 1 + o ^ C l C ^ T 1 

= -  an>l12 + C ^ E “ 1 = 0

and

0(1,3) = -B 2£~2 -  D u C ifr1 + B2E_1Er = - B ’2E“2 + B^(E“2 -  a “2/) -  ¿nC^E“1

= ~ < 2b 2 -  5 u c 2e - 1

Note that (last line in partition >1(1,3)) we used the fact that BxDn = —o~lC'X) due 

to remark 5.2.3. Then Tgen is equal to

A n  ~ <*n 1 B i B [ A 12 — B i  B ^ H  1 0 0 0
A21  — &n * B ^ B ' i A22 — B2 B ^ ^ j  ^ 0 0 0

0 0 - a '22 + r - 1(£~2c '2 + t - 1B2b l l )c2t ~ 1 - r —‘ ( f r 2^  +  e - 1b 2d „ ) - r - l g - 1s 2S 12
— <T~ 1 B [ -<t ~2b '2 ~ 611C2S-1 D l l £l2

0 0 - b 2i C 2T . - i £>21 0

Removing all uncontrollable modes, the optimal closed-loop transfer-function, Tgen, is 

given by

- A '22 + r - J(S-2Ĉ  + Z - 1B2Dn )C2X- > - i - r - ^ E “2̂  + t ~ lB2Dn ) —r _1E_1R2D12

- a - 2B '2 -  DnC^ - 1 Du
—D2\C2Y>~i d 2X

or equivalently, the generator of all optimal closed-loop approximations is

Dx2

0

A Bx b 2
s -cr~2B '2 -  Dn C2S - 1 Dn d X2

£2 d 2x 0

(5.20)

in the sense that all optimal closed-loops have the form Topt = J)(Tgen, <f>)M, where 

<f> e (JnBl-Loo and M  is a known all-pass matrix function. Note that deg(Tgen) < n  — r 

where n is the McMillan degree of G and r is the multiplicity of the largest singular 

value of Te-

r n



5.2.2 M axim ally robust controllers

Having obtained a state-space formulation for the generator of all optimal closed- 

loop transfer-matrices, we proceed to characterise the family of all maximally robust 

controllers, using a state-space approach, i.e. to derive a closed-form state-space 

model of all maximally robust controllers, described by the figure below. Using the 

LFT  interconnection derived for the family of all stabilising controllers, the set of all 

maximally robust controllers is obtained by setting Q equal to Q0pt, the solution set of 

the equivalent Nehari approximation problem.

Figure 5.10: Equivalent block diagram representation of all maximally robust 
controllers

The above figure describes the set of all maximally robust controllers,

1C opt := Ti{K0, Ti{J, (TnBHoo))

where $ € anBHoo, be. anything contractive inside the crn-ball. The generator of all 

K  € /Copt, is defined by

-/Cgen • bbo ^ J

and thus, according to the RHS interconnection of figure 5.10, satisfies the following 
set of equations:

( i )  : x =  ( A  -  B B ' E “ 1 -  YTxC'C)x +  £ _1C"ui +  B w  

• ( i i )  : yi = —B'T,~1x + w 

( i i i )  : z — —Cx + u\

( i v )  : £  =  ^  +  Bxz +  B2u2

( v )  : w  =  C i £  +  Du z + DX2U2

( v i )  : ?/2 =  C 2i  +  D 2x z

(5.21)

Now substitute 5.21(m) into 5.21 (iv):

w = C\£ — D\\Cx + DnUi + (5.22)
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Substituting (5.22) into 5.21 (i) we get

x = (A -  BB'Tj- 1 -  T,~lC'C)x + ( E ^ C V  + BC^Z -  BDn Cx + BDn ui + BDu u2 

^ x  = ( A -  B B 'E- 1 -  E~lC'C -  BDn C)x + BC\Z + (E_1C" + BDu )Ul + {BD12)u2

(5.23)

Also substituting 5.21(m) into 5.21(zu):

£ = AZ — B\Cx + B \ U \  + B 2 u 2

or equivalently 

Rewrite 5.21(h ) as

Z — —B\Cx +  ÂZ +  B\U i +  B 2 u 2

y\ — —B' S 1x + C\Z — D\\Cx + D\\U\ + D\2u2 

=>■ yi = (—D\\C  — B'Yi 1)x + C\Z + -DnUi + D\2u2 

So 5.21 (vi) becomes

y2 =  (—D 2\ C ) x  +  C2Z +  D 2\U\

Hence, the equivalent state-space description, of Kgen is given by:

x

z_
Vi 

y2_
i.e,

A -  BB'S “ 1 -  E ~lC'C -  BDnC BCi X E  ~lC' + BDn BDn Ul
= +

—B\C A _z_ Bi b 2 _ u2
L - J

- D u C - B ’ E- 1 c1 X Du D\2 U i

+
- d 21c c2 _ e _ D2\ 0 u2

a k B k
■**gen = Cj Dk

where,

IK
A u - a ^ B ^ - a ^ C i C i - B i D n C i  A12 -  -  B1D11C2 BXCi
A21-<t - 1B2B'1- X - 1C!2Ci - B 2D11C1 A22-  B2B'2Z~1 - £ ~ lC'2C2-  B2Du C2 B2C\ 

— Bi Ci - B XC2 Â

<7n 1C [  +  B i D u B i DX2 0 0

B k  = Y . - l C'2 + B2D u B2D x2 = + B2Du B2Dx2

B i b 2 B i b 2

CK =

Dk

-D 11C1- a ~ 1B[ -D u C2 -  B'^T,-1 Cx 
— D2\C\ -D 2\C2 c 2

Du Di2
D2i 0
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Next, apply the similarity transformation

/  0 0 

0 I  TE 

0 0 I
Then, a cancellation analysis shows that the generator of all maximally robust 
controllers has McMillan degree of at most n — r. This agrees with a standard result 
of Hoo theory [HLG93]. Straightforward algebra, shows that

Bk (2,1) = E -1C' + B2Dn -  (S -1̂  + B2Dn ) = 0 

Bk {2, 2) =B2Di2 — B2Di2 = 0
and

Ak {2,3) = -  YZA'22 + E ^ C ^ E " 1 + BzSnCaE"1 -  B2B2Z~2 -  B2Dn C2Z~1 -  d 22rE 

+ B2B'2T + E_1C2C2rE + B2Dn C2YZ + (E ~lC'2C2 + B2DUC2)(-YZ)

= -  (E-2 -  cr~21)ZA22 + E - ^ C z E -1 -  B2B'2Z~2 -  A22(E“2 -  <7~2/)E + B2B'2(Z~2 -  a -21) 

+ E - ^ C ^ i r 2 -  a~2I )E + B2i3iiC2rE + (E~lC'2C2 + B25iiC 2)(-rE )

= -  E-1yl22 + <j ~2YiA'22 + E- lC'2C2%~1 -  B2B'2Z~2 -  T ^E “1 + o-“2A22E + B2B'2Z~2 

-  cr~2B2B2 + E_1C2C'2E“1 -  £7“2E_1C2C2E + B25 n C2rE  + (E -^ C a  + B25 n C2)(-rE) 

= E -1C^C2[E-2 -  <t “2/]E + B2DnC2rE + (S T ^C a + B25 n C 2)(-rE )

=(E_1C2 + B2Dn)C2TT, -  (E~xC'2C2 + B2Dn C2)T% = 0 

Further,
A* (2,2) =A22 -  B2B'2E"1 -  E_1C2C2 -  B2DUC2 + Z{Z~2C^C2 + Y,-lB2DxlC2) = d 22 -  B2B'2Z~l 

Ak {2,1) =A21 -  cr“ 1̂  -  E^C'Cx -  B25 n Ci + (E"1̂  + B ^ n ) ^  = A21 -  a ^ B ^  

and
Ak { 1,3) = — B1B'2T,~2 -  B\D i i C2T,~1 -  (A12 -  Bi B2E_1 -  ^C ^C a  -  B ^n C airE  

= — BXB2Z 2 — B\D i i C2Yi 1 — d i2r s  + BxB2T + un lC[C2YZ + Bi Dh C2YYi 

= -  BxB'2E -2 -  A12(E-2 -  ct~2/)E + BXB'(E~2 -  <t - 2I) + ^ ^ ( ^ ( E - 2 -  <t “2/)E 

+ BX-DXXC2(—E 2 + r)E

= — AX2E 1 + an 2AX2E — an 2B\B'2 + an 1C[C2Z 1 — crn 3CX(72E — an 2B\D i i C2Z 

= — AX2E 1 + crn2A\2Y, — an2(AX2Z + anA21) + crn1(J421E + ernAx2)E 

= — A2XE_1 + o-“2A12E — a~2AX2Z — crn 1A21 + an 1 A'2l + AX2E 1 = 0

Also,
Ak (3,3) = -A '22 + T~i :B -2C'2C2E -1 + r -1E-1B2B1iC2E_1 -  r ^ E " 2̂  + Z,-1 B2D1X)C2YZ

= - A '22 + r - 1e - 2c ĉ2e - 1 + r_1E_1B25 11c2E_1 -  r^ E ^ c ^ rs  -  B 2b lxc 2v t  

= - A '22 + Y~l t ~ 2C'2C2{%-2 -  r)E + Y -1E~1B2b 11C2(b~2 -  T)E 

= -  A22 + <T-2r - 1E -2̂ C 2E + a - ^ Z ^ B ^ n C z E  

= - A '22 + + B2Dn ]C2 E
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Finally,

c K(i,3) = -  b '2y.~2 -  Dn c 2£ -1 + (d u c 2 + s 'Ê -^ Ê r
=  -  B'2è~2 - D 11c2è~1 + D U C2%{%~2 - a~21) + B 2(è~2 - a~2I) 

=  -  a~2D n C2t - a~2B 2 = -cj-2{B'2 +  D n C2X)

C* (2,3) = -  D^CiY,-1 + Ô2iC2rÊ = D2i C2[T -  Ê~2]S = - a - 2D21C2t

In conclusion, all maximally robust controllers are generated by the following system:

-A'22 + (7-2r - 1Ê -1(S -1Ĉ  + B2Dn )C2è - T - l { t - 2C2 + Ê -'S jÔ u)
K —zvgen — -a ~ 2(B’2 + Dn C2Z) D\\ D12

-<j - 2D2XC2% d 2 i 0

or in terms of the “Glover generator” (5.16):

' - A f n - a - ' ê & î ? b 2

K  =1 vgen Dn D\2

-a ~ 2D2lC2 E D2\ 0

It is now clear that the McMillan degree of Kgen is at most n — r from which the 

existence of optimal controller with this degree bound follows (set the contraction <F 

equal to a constant matrix). The main results are now summarised in the following 

corollary:

Corollary 5.2.1. Problem 5.4 or equivalently 5.6 has a continuum of solutions given 

by the set of all maximally robust controllers,

K opt = F i(K gen, <3>)

where Kgen is the generator of all maximally robust controllers with state-space 

description given by (5.24) and $  anU crn-contraction, i.e. d> G toBhioo. In other 

words, connecting such a controller in the feedback loop 5.5 effects to the minimisation 

of the norm of the control sensitivity function (u\ —> e2) and all optimal functions are 

parameterised as

Topt = Fi{Tgea, $ ) M

where Tgen is the generator of all optimal control sensitivity functions and has state- 

space description as given in (5.20). Here, M is a known allpass function.

Further, we demonstrate all major results of this chapter in the following example:
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Example 5.2.1. Consider the following 3 x 3  anti-stable system:

1
2 1

1
4

1
2 0 0

- 1 1
2

1
4 0 1

2 0

s A B 1
4

1
4

1
3

1
2

1
2 0

C 0
1
2 0

1
2 0 0 0

0 1
2

1
2 0 0 0

0 0 0 0 0 0

The realisation is balanced with gramian

0 .25 0 0

0 0.25 0

0 0 0 .7 5

and Hankel singular values {cr3 , a2, 0 1 } = { 0 .2 5 ,0 .2 5 ,0 .7 5 }  (according to the notation 

of assumption 5.2.1). Note that the multiplicity of 0 .2 5  is two (a3 = cr2). The generator 

of all maximally robust controllers as found in (5.24),

1 .1 6 6 7 1
8

1
8 0 0

16 - 4 0 0 0
Ak Bk

:= 16 0 - 4 0 0
Ck Dk

0 0 0 0 4

0 0 0 4 0

Take now a random stable l x l  system 4>;

- 0 .6 0 4 8 0 .17 2 0 0 .3 0 32 - 0 .5 8 8 3

-B<j> 0 .0 16 8 - 0 .0 3 5 2 - 0 .0 0 4 4 2 .18 3 2

D$, - 0 . 1 5 6 7 0.0466 0.0 478 - 0 .1 3 6 4

0.0003 0.0030 0 . 0 0 0 2 0

such that ||3>||oo = 0 .2 2 7 2 7  <  0 .2 5 . Then, we can construct one maximally robust 

controller, Kopt — lFi(Kgen,$), for which the corresponding optimal closed loop Topt = 

Kopt(I — GKopt)~l has Hankel singular values as plotted in the figure below.

From the plot, it is clear that the norm ofTopt is equal to 12db or,

\\Topt\\oc = IO 20 ~  4
1

117



Optimal Closed-loop: «op|(l-G K op()’

Figure 5.11: Singular values of Optimal Closed-loop.

Further, we construct the following perturbation according to algorithm 5.1.1:

-1 1 1 0.1347 0.2106 0

0 -17.6753 0 -4.7629 0 0

A a Ba 0 0 -0.7242 0 -0.3050 0

Ca DA 0 -0.8619 -0.8619 -0.1161 -0.1815 0

1.0143 -0.5071 -0.5071 -0.0683 -0.1068 0

0 0 0 0 0 0

The perturbation has norm e* = 0.25 and as shown by the generalised Nyquist plot

det(1-(G0*A)K)(jo>0)

Figure 5.12: Plot of det(I — (G + A)K), over all frequencies lo ElZ.

displayed in the following figure it is a destabilising perturbation when the above optimal
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controller is used. It is further observed that all four transfer functions of (5.3) have 

two marginally unstable poles, (i.e. placed on the ju  axis). Note that this agrees with 

Nyquist plot of det[I — (Go + A)K] (figure 5.12) which can be seen to pass through the 

origin.

5.3 Sum m ary

In this chapter, a discussion of model uncertainty was the launching point to formulate 

the robust stabilisation problem. The main aim of this chapter was to derive solution 

criteria for the maximally robust stabilisation problem for additive perturbations using 

a state-space approach.

In particular, it was shown that under assumption 5.2.1 the maximally robust 

stabilisation problem can be reformulated into an H ^  synthesis problem, i.e. one 

involving the design of a stabilising controller K  that minimises the infinity norm 

of the closed-loop system Twz = Pi(P,K). Here, P is the generalised plant defined 

directly from the nominal plant G, assumed anti-stable with no loss of generality. 

Solving this minimisation, defines the maximum norm HAH  ̂ of the perturbations that 

can be stabilised. This is a well known problem, whose solution was derived in detail. 

The solution follows from the fact that the set of all stabilising controllers can be 

parameterised in bilinear form (or equivalently via a lower LFT) in terms of a free 

parameter Q G H ^, be.

K  = Fl(K0,Q)

Here, Kq was obtained from the right and left coprime factorisations of G satisfying two 

Diophantine equations. The advantage of this parametrisation is that the initial, hard- 

to-solve, Hoo optimisation problem can be reduced to a convex optimisation problem, 

by applying model-matching theory. Until this point, the theory was in the standard 

framework and had been outlined in previous chapters. Next the set of all stable 

closed-loop functions was considered. It was shown that this can be expressed in affine 

form, i.e.

Twz := Pi(P, K ) = Tt (P, PfKo, Q)) = P fT , Q) = T„ + T12QT21 

with Q G Hoo a free parameter.

119



The optimisation hence involves a model matching problem and for this application 

(maximally robust stabilisation) the matrices T\2 and T2\ are square and have full rank. 

In such cases, the problem is said to be of the first kind [LH87]. The optimisation can 

now be reformulated as a Nehari-type approximation problem:

minllT̂ Hoo = min ||Æ + Q||oo = IM  =: <Ti {Tr ) =: * ,
k  Qen oo an[iG)

where R £ R'H^0- From theory outlined in chapter 4, all optimal extensions Q are 

given in terms of the following LFT:

Q = R iU $ )

where J £ RfHoo “generates” all optimal approximations whenever connected with any 

(a i(r^))-1 -contractive (or equivalently an(T^-contractive) system <f>. The generator 

of all optimal closed-loop systems was subsequently expressed as an affine map of 

<f> £ a„(Tg )BHoo. Finally, the maximum robust stability radius was obtained in terms 

of the smallest Hankel singular value of the plant, i.e.

ec = crn( r G)

The contribution made throughout this chapter is a detailed state-space analysis for 

both the optimal closed-loop transfer-matrices and all maximally robust controllers, 

showing in particular through various cancellations the existence of optimal controllers 

of state dimension not exceeding n — r , where n is the McMillan degree of the nominal 

plant [HLG93]. Further, the overall study resulted in a thorough and concrete analysis, 

which is directly implementable, giving rise to elegant formulae and a clear overview 

of the maximally robust stabilisation problem.

Concluding, the problem of uniqueness should somehow be restored. How can we 

choose a controller with some “additional” robust characteristics within this optimal 

set? Is this controller unique? By setting <F = 0 it is very well known that the controller 

satisfies some extra performance characteristics, i.e. guarantees the minimisation of an 

entropy integral (e.g. see [LH87]). However, the issue examined in this thesis is that 

of extending the robust stability and hence a complete answer to the above questions 

is given in the next two chapters where super-optimisation is introduced and linked to 

the maximally robust stabilisation problem.
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Chapter 6

Superoptim isation

“...On the assumption that God is an engineer as well as geometer, I am 

inclined to expect that the stronger minimisation condition, seeming so 

mathematically “right”, will have physical significance ...”

N.J. Young, 1986.

In Nehari approximation problems we seek to minimise

inf p  + QHoo (6.1)
Qewipxm

where R 6 1ZCpf f m (or R € TZ7i^pxm without loss of generality). Throughout this 

chapter we study the matrix case min(p, m) > 1. Further, depending on the kind of 

application Q, may be further constrained to have a zero block row and/or column. 

Then the problem is said to be a two-block or a four-block distance problem. In this 

thesis we consider only one-block problems. The motivation initially arose from the 

fact that MRSP is a one-block problem as well, but also later, it is shown that the 

structure of one-block problems permits a deeper and thorough state-space analysis 

of this independent problem (super-optimisation), which is one of the novelties of the 

particular chapter.

By introducing the new notation s f ’(R) = ||R||oo the approximation problem posed in 

(6.1) above can be rewritten as:

Si(R) := inf s ? ( R  + Q) (6.2)
Qew+’pxm

where S\(R) will be referred to as the optimal level of R. The set of all optimal 

approximations of R is defined by

Si(R)  := {Q e  :s? (R  + Q) = Sl} (6.3)
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Note that s\(R) := ai(R~) is the Hankel norm of R £ lZ'H^pxm. Since, in 

general, the solution of this problem is not unique, we can define a stronger version of 

optimality, by requiring that the sequence of the suprema (taken over lu £ TZ U {oo}) 

of all singular values of the “error” system (R + Q)(joj) is minimised lexicographically. 

This stronger version of the problem was first proposed by Young and was defined 

as super-optimisation. The main motivation, arising from esthetic considerations, was 

to restore uniqueness to the solution of the matrix Nehari problem, by showing in 

[You86] the existence of a unique super-optimal approximation Qsup■ Nevertheless, in 

the present work and also others (e.g. [PF85]) it is argued that super-optimisation fits 

naturally within the modern robust control-theoretic framework, and can be used to 

define hierarchical optimisation problems in which additional performance and stability 

objectives can be addressed [PF85], [GHJOO].

Problem definition. A formal definition of the problem follows. Firstly, define

s°°(R) := sup <Ti[R(juj)], i = 1,2, . . . ,  min(p, m ).

If p and m are both greater than 1, then we define recursively the first and subsequent 

super-optimal levels of R as

Si(R) := inf s°°(R + Q) i = 1,2, . . . ,  min(p, m) (6.4)Q&Si-i(R)
and the set of all z-th level super-optimal approximations of R as

Si(R) := {Q £ <Sj_i(f?) : s°°(f? + Q) = Si(R)} z = 1 , 2, . . . ,  min(p, m).

In other words, we seek among all super-optimal approximations at the (i — l)-th level 

<Sj_i(/t!) a set for which Si(R) is minimised (it turns out that the infimum in (6.4) 

is always attained). This set is not a singleton in general (apart from the case of 

i = min(p, m)), but forms a subset of all (i — l)-th level super-optimal approximations 

of R , Si-i(R). Due to the lexicographic nature of the problem, it is clear that 

every element of Si(R) is also an element of Si-i(R), i.e. that the super-optimal 

approximation sets nest as:

S0{R) D S 1{ R ) D .. .D S i(R )D .. .D  Smm(p,m)(R)

Note that for i = 1, (6.4) is taken to be a Nehari extension problem and hence we define 

So(R) := 7 i ^ pxm. The super-optimal approximation problem ([SODP]) considered in 

this thesis can be formally defined as follows:
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Problem  6.0.1. [SODP], Given a G G 7Z H ^pxm, find the (unique) matrix-function 

Qsup € Ti^ pxm which minimises the sequence

s°°(G + Q) = (sf(G  + Q), s?(G  +  Q), . . . ,  s ? ( G  + Q))

with respect to the lexicographic ordering, where k =  min(p, m).

The approach followed here involves the reduction of the lexicographic minimisation 

into a hierarchy of ordinary 7-foo-optimisation (Nehari-extension) problems of progres-

sively reduced input-output dimensions, whose solution is well known in the literature 

[Glo84], [Glo89], [ZDG96], [GL95] and has been presented in chapter 4 of the thesis.

6.1 T h e 1-b lock  S u p er-O p tim al D ista n ce  P rob lem

At this point the work is organised in two parts. In the first part transfer function 

approach is followed. The solution of optimal and suboptimal Nehari approximations 

are restated in a more abstract setting than in chapter 4; subsequently a new block- 

diagonal generator of all optimal Nehari extensions is presented. A crucial difference 

here is that the generator is constructed with the aid of rational all-pass matrix 

functions and is reminiscent of the partial singular value decomposition of constant 

matrices. This analysis is carried out in the first part of the chapter. The later part 

involves a concrete state-space analysis which reveals the structure of the diagonal form 

of the generator and solves the super-optimal optimisation problem in a hierarchical 

setting. The chapter concludes with the presentation of numerous examples which 

support the derived results.

In contrast to other parallel solutions of the problem reported in the literature the 

main contribution of the present work is as follows: (i)

(i) The solution is derived in a concrete state-space setting with minimal assumptions 

(no minimality or balanced form of the realisation of the system which is 

approximated is assumed and the largest Hankel singular value of the associated 

Hankel operator is permitted to have arbitrary multiplicity). The analysis 

allows for the derivation of generically minimal realisations of the super-optimal 

approximation which establishes tight McMillan degree bounds of the solutions 

and removes potential ill-conditioned numerical procedures at the intermediate
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steps of the algorithm. In particular, all assumptions involved in previous results, 

e.g. McMillan degree bounds, interlacing inequalities between Hankel singular 

values and super-optimal levels, existence of solutions of certain ARE’s, etc. are 

removed and these results (with suitable modifications) are shown to carry over 

to the solution of the general problem.

(ii) In contrast to existing techniques ([LHG89],[TGP88]), the method does not 

depend explicitly on the diagonalising properties of Schmidt pairs of a sequence 

of Hankel operators generated during the construction process. Thus, several 

unnecessary preliminary scaling steps are eliminated, together with certain 

conceptual difficulties related to the multiplicity of Hankel singular values. The 

present approach ([JL93]) depends on a conceptually simple matrix dilation 

technique and the interplay between the optimal and suboptimal Nehari 

generators.

6.1.1 T he tw o-level super-optim al approxim ation problem  

and its solution

The approach for solving the SODP adopted in this work is based on all-pass dilation 

techniques. First the system to be approximated, R(s), is embedded in an all-pass 

system H(s) of higher dimensions (note that R(s) is taken to lie in for compatibility 

with existing Hoo optimal-control literature). This acts as a “generator” of the optimal 

solution set of the Nehari extension problem, as all solutions can be obtained via a LFT 

of H(s) with the ball of Hoo of radius s "̂1 (i.e. the set of all stable sjf ̂ contractions) 

[Glo89]. Next, a sub-block of the optimal generator H(s) is dilated to define a new 

square all-pass system H(s), of lower dimensions compared to those of H(s). Exploiting 

the all-pass nature of H(s) and H(s) and the fact that they share a common block, two 

diagonalising transformations of H(s) can be defined from certain sub-blocks of H(s) 

and H(s). The diagonalisation is analogous to the partial singular-value decomposition 

of constant matrices and makes the minimisation of the second super-optimal level 

transparent.

First, the general solution of the optimal Nehari-extension problem is given under 

minimal assumptions:

124





Rem ark 6.1.2. Integer parameter l which is used to define the input and output 

dimension of Q22 is the normal rank of the Laplace transform of the matrix formed 

by the r Schmidt vectors ofTji~ corresponding to o\. In the notation of Theorem 6.1.1 

R~ = (—A',C', —B') and hence U(s) and V(s) are given as

U(s) = -C ( s l  -  A G KH 2 ,nxrt E = a ( lP X\ X2 . . .  x r

and

V{s) = - B \ s l  +  A!)~lQ e n p2xr, 0  = X i  x 2 x r

where P and Q are the controllability and observability matrices of R — (A , B , C) and 

the Xi’s are r linearly independent eigenvectors of QP corresponding to the eigenvalue 

a\. In particular, if {A, B , C) is balanced, P = Q = —diag^j/,., £ 2), and thus E = —Er 

and 0  = a f2Er (where Er denotes the first r-columns of the n x n unit matrix), so 

that U(s) = C (sl — A)~lEr G Ttf and V(s) = —s \B \s I  + A')~1Er G H 2■ Thus,

rankTiis)U~(s) > lim [si/~(s)] = rank (CEr)
S —>00

and

rankjz(s)V(s) > lim [sy(s)] = rank (E'rB )
s — >00

It is shown in [GI086] that these two inequalities are actually equalities; further, the 

normal rank of U(s) and V(s) is equal, since Rank (CEr) = Rank (E'rB ), as can 

be verified by the equality E'rC'CEr =  E'rBB'Er, which follows easily from the all-pass 

equations (6.7). Thus l < min(p, m, r) and l can be easily determined from the balanced 

realisation of R.

Remark 6.1.3. In the present work, the gramians of H are not considered to be 

balanced. The above set of equations is known as the set of “all-pass” equations. 

Partitioning conformally with (6.5), these can be written in full (for easy future
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reference) as:

(i)

(ii)

(in)

(iv)

(v)

(vi)

Pi Ps Q 1 Q3 's\I 0

pir s P2_ Q's Q2 0 s\I

Du D12 D'n D'21 s \ l

D2i 0 d [2 0 0

A' 0 Q 1 Qs
+

Qi Qs

0 Q's Q2 Q's Q2

0

s\I

A

0

1
53

Q

D\2

<Ncf 
___1

----1
O

D2i

----1
O

0
+

a 0 C cql
A C'ql 1cs

bT 0 Cq 2
A 0

0 Ag

Pi ps

Pi P2
+

Pi Ps

Pi P2

A' 0 

0 A'q
+

B

Bql

0

Pq2

D'n D'21 c Cql
+

B' B, i Qi Qs

D'n 0 0 Cq2_ 0 Bk Q's Q2

D u ^12 B'
+

C Cql Pi Ps

D21 0 0 B 'q 2. 0 Cq2_ p1-r 3 P2_

B'

0 B*

= 0

= 0

( 6 .8)

Next, using H22 = Q22 G y^Arn-i)x{P-i) ||q 22|| < Sl from Theorem 6.1.1),

we construct an si-allpass matrix function H , corresponding to a new system R E 

Hoo’ from ĵ s 1) block. It is shown that H acts as a si-suboptimal

Nehari generator of R , i.e. that the LFT of H with the s^-ball of H ^  generates the 

set
{ $ £  7^(p-0x(m-0 . \\R + \a\\ < Sl}

Using this structure, it is possible to construct all level-two super-optimal approxima-

tions of R , which lie inside the set of all optimal approximations, Q, of R. By choosing 

all Q inside the subset, the corresponding “error” systems R + Q will now minimise 

the first as well as the second super-optimal levels of R , i.e. this subset defines the 

super-optimal approximations of R with respect to the first two levels. The method 

can be repeated using a recursive procedure until all degrees of freedom have been 

exhausted.

The construction of H is based on the following proposition, first stated at a transfer 

function level. A state-space construction of H follows, proving that it acts as an 

Si-suboptimal Nehari generator of the anti-stable projection of its (1,1) block.
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Proposition 6.1.1. Let H22 be defined in theorem 6.1.1 with ||̂ 22 ||oo < s'i • Then,

1. There exists a square transfer matrix H 2i E TThfififi l)x(m d such that # 2 1  # 2 1  =  

s\I  -  H 22H22 and H~l E .

2. There exists a square transfer matrix H 12 E 'JZTĈ ~l')x p̂~l'> such that H 12H 12 = 

s \I  -  H22H22 and H~} E n n (fifil)x{p~l).

3. The system

-H\2H22H  21 

H 21

H 12

H22

is in lZC^+m 2i)x(m+P 2;) and is Si-allpass. Further, let —H i 2H22H 21 = R + Qn 

where R E RTCfo am  ̂Qn £ RTito- Then | | jR ~ ||h  <  S\.

Proof. For parts (1) and (2) see [ZDG96], Corollary 13.22. The proof follows from a 

detailed construction involving elements from the theory of algebraic Riccati equations 

and spectral factorisation, which is briefly discussed in appendix B. The proof that H 

is in £oo and is si-allpass follows from [GI086] and can be verified directly by showing 

that HH~ — s\l. Finally, to show that ||R~||// < si, note that since H J2 (or H21) is 

a unit of TLoo and H is sj-allpass, then ||//n||oo < Si- Write H n — R + Qn where 

R E and Qn E . Then, using Nehari’s theorem

\\R~\\h  =  inf  \\RF +  ATHoo 5: \\R +  Qnlloo =  ll^ n llo o  <  Si
XtHZo

which completes the proof. □

Remark 6.1.4. Since S\ = &i(R~) the inequality of part (3) says that ai(R) < <Ji(R~). 

As shown later in this section this can be strengthened to cri(R) < crr+i(R~), where r 

is the multiplicity of the largest Hankel singular value of R~.

A detailed state-space construction of H and its properties are given in Theorem 6.1.2 

below.

Theorem 6.1.2. Consider 

H22 = Q22 —
s ’  A Bq2

cq 2 0

E f t+ .M x fe -O , HQ22II00 < si
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defined in Theorem 6.1.1. Then there exist unique stabilising solutions P2 and Q2 to 

the following algebraic Riccati equations:

AqP2 + P̂ q̂ +  Bq2Bq2 + Sj 2P2Cq2Cq2P% — 0

_  _  ( 6 -9 )
A'qQ2 + Q2Aq +  C'q2Cq2 + S j 2Q2Bq2B'q2Q2 =  0

respectively. Define:

R := Q2P2 -  s \l (6 . 1 0 )

Then R is non-singular. Further, there exists a Qa € Tito^P+m 2l',x<'p+m 2l̂  with

realisation

where

f  Qu 

\^21

>1 , //gl Bq2
s

Cq J 0 S i/

_ C , 2 s i / 0

(6. 11)

Cql — S j 1 Bq2Q2 

Bq 1 =  — S i lP2C'q2
(6 . 1 2 )

so that Q = Fi(Qa, S j1 BTt^  i)x(m l) ) is the set of all s\ — suboptimal Nehari extensions 

of a system R G 9 defined as:

5

c 0
(6.13)

in which

A = ~{Aq +  s f 2P2C'q2Cq2y = -A'q -  s fC 'q2Cq2P2 

B =  -S-^C'q,

C = s?B'q2R

The corresponding “error system”

H = Ra + Qa =

is si-allpass and has a realisation

H := f  R  +  Qn Q12 

y Q 21 Q 22

A 0 B 0

s 0 A Bql Bq2

c Cq 1 0 S i/

0 Cq2 S i / 0

(6.14)

(6.15)

(6.16)
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which satisfies the following set of all-pass equations:

A’t ïQ'h  + Qt i'Aj t  +  Cfi-Cjf — 0

AjjP-jj + h-fjAjj +  B-fjBjj =  0 

DjqCjf + B ĵQ-fj = 0

Dh B!r  + C7TP^ = 0 

D~h D~h  = DjjDjj =  s \ l  

PffQjT — Qt t Ph  = s\ i

(6.17)

in which Q-fi and PH are the gramians of the realisation of H given in (6.16).

Proof. The proof is based on [Glo84] ; see also [JL93] and [GLD+91] for a more general 

setting. Here we outline the sequence of logical arguments. The existence of solutions 

of the two Riccati equations (6.9) follows from standard theory of spectral factorisation 

and the bounded real-lemma (see Lemma 6.1.1 in the next section) and relies on the 

fact that HQ22II00 < Si- Details and additional properties of the two solutions are 

included in Appendix B. Since the two stabilising solutions are chosen, A defined 

in equation (6.14) is anti-stable and thus R G Systems Qa and R correspond

to the stable and anti-stable projections of H given in Proposition 6.1.1 which also 

shows that H is si-all pass. For a state-space based proof one needs to verify the 

all-pass equations given in (6.17) and expanded in (6.18) below; this is straightforward 

using the realisations given in Theorem 6.1.1 and the two Riccati equations (6.9). To 

show that R is non-singular, first note that P2 and Q2 are the controllability and 

observability gramians, respectively, of the realisation of Qa given in equation (6.11), 

so that aj(Qa) = Amax(P2Q2)- A standard argument (e.g. see the early part of the 

proof of Theorem 6.1.4 which does not rely on any state-space arguments) shows that 

<7i (Qa) < crr+i(P) < cri(R~) = Si. Thus p(P2Q2) < and thus R is nonsingular. 

Finally, the fact that Qa generates all si-suboptimal Nehari extensions of R follows 

from the inertia properties of A and A and the all pass-nature of H [GI086]; the proof 

reduces to showing that the invariant zeros of the realisations of Q12 (or Q21) given 

in (6.16) lie in the open right-half plane, which follows readily by a simple calculation 

using the fact that A(Â) Ç C+. □

Remark 6.1.5. Expanding the compact form of the all-pass equations given in Theorem
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6.1.2 we get

(i)

(ii)

(iii)

(iv)

(v)

A' 0 Q i r ' Qi -r ! 1 0 C' 0 c c ql
+ +

0 R Q 2 - R

---
1

CN
IO* 0 A C'vi 0 Cq 2_

A 0 A i
+

Pi I A! 0
+

B 0 B' Cal
__

__
1

= 0
0 A I P2 i P2 0 4 Bql Bq2 0

0 s j C C qi
+ B' B 9l' Qi -R ' = 0

S\I 0 _° c q2_ _° B'q2\ - R  Q2

---
--

1
o Cd

__
_1 B' B'ql +

c  Cql Pi I = 0
S\I 0 L° Bk 1--

- o p to 1__ 1 P2_

Q2R ' I p 2r  - r ! s \I  0

1---
- "til to 1__
_ I Q2 0 s\I

=  0

(6.18)

where P\ = Q2R and, Q1 — P2R.

In the sequel, a significant result involving the diagonal form of super-optimal 

approximation is derived. The proofs of the following theorems combine all results 

derived in this chapter up to this point.

Diagonalisation with multiplicity considerations. The following theorem con-

structs a diagonalising transformation of H and solves the level-two SODP.

Theorem 6.1.3. Let H and H be as defined in Theorems 6.1.1 and 6.1.2, respectively. 

Then

| | i r | |„  = Sl(R) = s 2(R) = ... = sfiR) > sl+i(R) = ||irlltf

Further,

Si(R) =  S2(R) = .. .  = SfiR) = PfiQa, s f 1 BHg-W™ -»)

and

Sl+1(R) = HQa,Ru(Q~a\Sl(R))} Q M R )  

where Qa and Qa are defined in Theorems 6.1.1 and 6.1.2.

Proof. We adapt the proof of [JL93] Theorem 3 to our setting. First note that since 

HH~ = H~H = s \I  and HH~ = H~H = s \ l , it follows that

Hn H21 = - H 21H22, H n = -H n H 22H~u, (6.19)
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and

H ^ H n  = s \l  -  H~H22 =  H~H 12 (6.21)

Define

VI := H12H ~2 and W± := H% jT£  (6.22)

Then (6.20) implies that

H21H2 1  =  s \ l  -  H 22H ~  = H 21H ~  (6.20)

V£V± = Ip-i and ITriTx -  Im-i (6-23)

It can be readily verified from a state-space calculation (see next section) that 

Vj_ G 7itoJ>~l'>y'P and W± E 'H^'rn~l'>xm. Thus there exist complementary inner and 

co-inner factors, respectively, such that

V := ( v V± ) e  H £ p*p and IT := ( w W± ) e

are square-inner and square anti-inner, respectively [ZDG96], [GL95]. Thus, using 

(6.19) and the definitions (6.22), we obtain

v ? h 12 = h u~h ~ h 12 = h - h :2h 12 = h 12

H21W± = H21H21H~~ = H21H 2lH~~ = H21
(6.24)

V~Hn W± = V£Hu H21Hn  =

=  —H i2H22H2i — H  ii
(6.25)

It follows that

IT 0 

0 I

v~Hn w v~HnW± v~H 12

V£Hn w H n H n
H2iw H21 H22

(6.26)

Now, since V and IT are all-pass and H is si-allpass, the system on the RHS of 

equation (6.26) is si-allpass. But since H is also si-allpass (Theorem 6.1.2), we have 

that iTH u W± = 0, v~H12 = 0, V±Hn w = 0, H21w = 0, and v~Hn w is si-allpass 

and can be written as v~Hn w = Si<y(s), for some l x l all-pass matrix-function a(s) 

(generically l = 1 and hence a(s) is scalar). Taking linear fractional transformations

132



with the set sx 1 B7i^ ^x(m  ̂ and using the results of Theorem 6.1.2 and Theorem 

6.1.1 shows that:

S\OL 0

0 Tt(H ,s ^
(6.27)

V~[R + S!(R)} W (6.28)

or equivalently,
SiCt 0

0 R + S(R,S!)

Since a(s) G 1llxl(s) and is all-pass (in fact anti-inner as shown in the next section), 

it follows that:

R~\\h  = si(R) =  S2(R) =  . . .  =  S j ( i ? )  >  si+i(R) =  | | ^ ~ | | / r

and

S 1(R) = S 2(R) = ■■■ = S t(R) = H Q a , s S  B U f l)Am- l))

which is the set of all optimal Nehari extensions of R. Further, since all optimal Nehari 

extensions of R  are also si-suboptimal extensions of R, i.e. Si(R)  C S(R,  s i), it follows 

that
sl+1(R) = Sl(R) = \\R~\\h

and

(v

= R + Qn + VL(S1(R )-Q )W Z
(6.29)

by observing that

V~HUW =
Sia 0

0 H
R + Qn V

Sia 0
W"

11 0 R + Qii >

Using the definitions of of Vi and W± in (6.22) and cancelling R from both sides of
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equation (6.29), we can write:

S2(R) — Qn +  Q12Q12 (<5i(-^) — Q)Q2i Q21

= Fx
Q\1 Q12Q12 Q11Q2I Q2I Q12Q12

Q21Q21 0

where

K  := Qn ~ Q12Q12 Q11Q21 Q21 Q12Q12 

Q21Q21 0
H Q a ,Q a )

using a series of calculations (see appendix C). This completes the proof. □

“Interlacing” inequalities of super-optimal levels. The following Theorem 

establishes bounds on the super-optimal levels. The proof is similar to a parallel 

result in [LHG89], but the assumption involving the multiplicity of the largest Hankel 

singular value of R~ is removed.

Theorem 6.1.4 (Super-optimal level bounds). The (l + 1 )-th super-optimal level is 

bounded above by the (r + 1 )-th Hankel singular value of R~, i.e.

<7i(£~) = Si+1(R) < ar+1(iT) < Si{R) = S2{R) = ... = si{R) = cri(R~)

Proof. The proof follows from the following sequence of inequalities:

&i+r(.R ) — &i(Qa) i = 1, 2 . ,n  — r

= inf IIQa + l̂loo

inf || i? + Qa + ^llc

> inf
1)

Vff 0 

0 / ,
{R + Qa + ^)

> inf ||I?a + Qa + ^1

>  i n f  ||Q a  +  ^ l|o o

= °i(Qa)

where the set (* -  1) is already defined in chapter 4. The first equality follows from 

Theorem 6.1.1. The second equality is a statement of the AAK Theorem [GI086], while

134



the third equality holds since R £ TL̂  and can be absorbed in 'ir. The first inequality 

follows from the fact that V± and W± are contractive, while the second inequality 

follows from Theorem 6.1.3 and the fact that Vff and W± are both in 7 Finally, 

the third inequality follows from the fact that R £ while the last equality is a

restatement of the AAK Theorem.

Setting i = 1 in the above inequality shows that ar+i(R~) > cr1(Qa). Now, using 

(6.18), it follows that

o?{ir) = H P M  = \ { q 2'r 'p 2r ) = \i(Q 2P2) = ^ ( Q a)

and so R~ and Qa have identical Hankel singular values. In particular, si+i(R) = 

ai(R-) < crr+i(R~) using the result of Theorem 6.1.3. □

Remark 6.1.6. The result of Theorem 6.1.4 may be propagated to establish upper 

bounds for the subsequent super-optimal levels S i ( R ) ,  i > l + 1.

Remark 6.1.7. The early part of the proof (which does not rely on any state-space 

based arguments) may be used to show that <J\(Qa) < ar+i(R~) < ai(R~) = s f r o m  

which it follows immediately that R defined in Theorem 6.1.2 is non-singular.

6.1.2 S tate-space analysis

In this section we develop a state-space analysis of the solution to the super-optimal 

distance problem. At this point we shall use some background material which is 

presented in appendix B and it is related to algebraic Riccati equations and spectral 

factorisations. The main results are derived from the “Bounded-real lemma” presented 

in appendix B.

Lemma 6.1.1. Let G £ IZTLoo with G(s) = C(sl — A)~lB and assume that (A, B ) 

and (C ,A ) are stabilisable and detectable, respectively. Then, the following conditions 

are equivalent:

A Halloo < 7

2. The Hamiltonian H =
A 7 - 2BB'

-C 'C  A'
has no pure imaginary eigenvalues

3. H £ dom(Ric)

135



Proof. I 45 2. See [ZDG96], lemma 4.7.

2 <5 3. See [ZDG96], Theorem 13.6. □

As an immediate consequence of the above Lemma we get the following result:

Proposition 6.1.2. The algebraic Riccati equations (6.9) (Theorem 6.1.2) have 

(unique) positive-semidefinite stabilising solutions P2 and Q2 respectively.

Proof. Since Aq is asymptotically stable, the conditions of stabilisability and detectabil-

ity of Lemma 6.1.1 are trivially satisfied. Further, the fact that HQ22II00 < Si (see 

Theorem 6.1.1) shows that the two Hamiltonian associated with equations (6.9) are 

free of imaginary axis eigenvalues and that (unique) stabilising solutions P2 and Q2 to 

these two equations exist. The fact that P2 > 0 and Q2 > 0 follows from [ZDG96]. □

Our next result shows that the two Riccati equations (6.9) are intimately related.

Proposition 6.1.3. Let P2 be the stabilising solution of R ie l,

AqP 2 + P 2 A'q + s1 2P 2C'q2Cq2P 2 + Bq2 B 'q2 — 0 

so that X(Aq + s f 2P2C'q2Cq2) C C_ and its associated Hamiltonian

H\ =
A'q s?C'q2Cq2

Bq2B 'q2 -A.

Let also Q2 be the stabilising solution of Ric2:

AqQ2 +  Q2Aq + sy 2Q2Bq2B'q2Q2 + Cq2Cq2 — 0 

so that X(Aq + S i2Bq2B'q2Q2) C C_ and its associated Hamiltonian

Aq Sj “Bq2B 'q7
H2 =

-C'q2Cq2 -A '

(6.30)

(6.31)

Then Hi and H2 have identical spectra. In particular there exists a similarity 

transformation R so that

(Aq + 2P2Cq2Cq2) — R (Aq + Sj2Bq2B'q2Q2)(R ) (6.32)

where R is defined (6.10).
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Proof. Take

T =
0 Sj 1I 0 /

1
to 1—* K"-l o

i
o**—1T—1CO1 /  0 1 o to ^ 

1 1—I 1__
_

Note that T  = T~l . Then by inspection, - TH 2T ~1 = Hi and hence the first 

claim is true (since we know from Appendix B that the spectrum of a Hamiltonian 

is symmetrical with respect to jw-axis). Define

TP :=
I

1---o

=► Tp1 -
I

1------
o

- P i 1__ Pi I

and observe that

I  0 ---
-1

1--
-- 1 "t)l to

i 
^

K  H 2C'q2Cq2

-Bq2Bq2 -AQ
—2 rv

l

1—
i

1----------
O

h
a

l
to

----------1

a ; + s f2c'q2c q2p 2 s f zc q2c q2

0 — (Aq + 2P2Cq2Cq2)
Hi

Similarly, define

so that

Tq '.=
I  0

-Q2 I
=> T Q l =

I  0

Q2 I

i----o*—1

—Q2 I

Aq Sl 2Bq2B'qq2
-C'q2Cq2 -A'

I  0

Q2 I

Aq + S ,  2Bq2B '2Qq f  *1 Dq2Dq2<̂2 s1 2Bq2B 'q2

CA '+ s f 2Q2Bq2B 'q2)
= :  Ho

Thus,
Hi = - T H 2T ~ 1

Hi = TpHiTp1

Hi  =  Tq I IoTq 1 ^  H i  = Tq 1H 2Tq

Using the three above equations

Hi = -T T q XH2Tq T~x => H i = - T p TTq 1 H2TQT~1T f 1

Further,

HiiTQT-'Tp1)-1 =  — T p T T q 1H 2 =» H i T p T T q 1 =  -T PTT^lH2
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and

(Tp TTq 1) - ' ^  =  —H2TQT~1T p1 =► H^Tp TTq 1) = ~(Tp TTq 1)H2 (6.33)

with

and

Tp TTq 1 =

Tq T~1T - 1 =

I  0 0 Sj lI I  0

P 2 / s j 0 Q 2 i

I  0 0 s r 1 / 1

—Q2 I s j 0 P2

= Si
Q2 I  

- r ' - p 2

P2 I

—R —Q2

Writing equation (6.33) in full:

A'q + s (2C'q2Cq2P2 s ^ C 'C q2

- ( Aq + s i 2P2C'2Cq2)
Q2

-R -P i

1C4
IO1

r ' p 2

Aq + Sj Bq2Bq2Q2 s1 Bq2B 'q2

0 — (Aq + Sj Q2Bq2B 'q2)

From the (2,1) partition of the above equation, we have (Aq + s f 2P2Cq2Cq2)R = 

R (Aq + s1 2Bq2Bq2Q2). So,

(Aq + s-x2P2C'q2Cq2) = R'(Aq + S i2Bq2Bq2Q2)(R ,)~1

which proves the second claim. □

Remark 6.1.8. Note that this proposition implies that the “Æ’ matrices of the state 

space realisations ofV± and W± , defined in (6.22), have the same spectrum.

Proposition 6.1.4. Define

Vx ■= H12H72 and := H ^H ~“211 1 21

Then, V± and Wf) have, the following realisations:

V± =

and

WZ =

Aq S j Bq2Cq! « 1  1Bq2

Cql — S j 1DX2Cql s f lDn

— 5 j 1 Bq\ Cq2 Bql -  s f 1Bql

S 1 lCq2 S j 1D2i
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with corresponding controllability and observability gramians:

Yv = ~ (R ')-lPo, X v = Q2 - Q 2 

Yw = P2 - P 2, X w = - P 1.

In particular, the following matrix inequalities hold: P2 > P2 > 0 and Q2 > Q2 > 0. 

Proof. See appendix C. □

Com plem entary inner factorisation. The matrix functions V± and which 

were constructed in proposition 6.1.4 are parts of inner matrix functions. Theorem 

6.1.3 relies on the construction of two inner complements v and w~ so that (v Vj_)

and
w

are square inner. To find realisations for v and w, we can apply Lemma
V ^ r  /

13.31 from [ZDG96] which uses the gramians of the realisations of V± and Wfi. This 

is outlined next, together with concrete realisations of v and w~.

Corollary 6.1.1. Let Vj_,Wfi be as defined in proposition 6.1.4- Then there exists 

a complementary inner factor of v and a complementary co-inner factor of w, 

respectively, such that

rw -  (» K l )  (s), := i ”  J (>)
are square inner. Further, V € lZHf4 pxp and W  G 7 Concrete realisations 

of v~ and w are given as:

5 —A'q — s1 2Q2Bq2B 'q2 C'q 1 + Sj 2Q2Bq2D[2

_ (Dt2)'Cql(Q2 - Q 2)t (DÙY

5 ' -A 'q - s ? C 'q2Cq2P2 (P2 -  P2)'B qlD£1

— B'ql — S1 2D2iCq2P2

respectively.

Proof. This follows immediately from Lemma 13.31 in [ZDG96]. □

Observation 6.1.1. Along with Remark (4-3.3), the pair (v, w) as constructed in 

corollary 6.1.1 forms a scaled Schmidt pair corresponding to the largest Hankel singular 

value of R~. Observe thatv~,w £ TZHoo (i.e. they have a “D” matrix), where Schmidt 

vectors by definition belong to 7ZH2 and VOTf, respectively (i.e. strictly proper).

139



Inertia properties of all-pass function ct(s). In the final part of this section we 

develop a state space realisation of the allpass system o(s) defined in the proof of 

Theorem 6.1.3 and show that it is anti-inner. The proof is based on a lengthy state 

space calculation which reveals numerous pole-zero cancellations. We first need the 

following two results.

Proposition 6.1.5. Let Q, P be the observability and the controllability gramians, 

respectively, of a system having state space realisation G =(A, B,C). Then, (i) 

Af(Q) Ç Ar(C) and (ii) Ai(P) Q M (B’).

Proof, (i) Let £o e Ker(Q),£o ^  0. Then, Qfa = 0. Consider the Lyapunov equation: 

A'Q + QA + C'C = 0 => C(A'Q + QA + C'C)t0 = 0 =► C<£0 = 0 

and hence Af(Q) Ç Af(C). A similar argument proves part (ii). □

Proposition 6.1.6. In previously defined notation:

(i) [I -  (Q2 -  Q2)f(Q2 -  Q2)\ C'qlDf2 = 0, and

(ii) [I -  (P2 -  P2)t(P2 -  P2)] BqlDfi = 0.

Proof, (i) First note that from Proposition 6.1.4 (Q2 — Q2) is the observability gramian 

of (Aq + s f 2Bq2Bq2Q2,Cqi + s ( 2D12B'q2Q2). It follows, using Proposition 6.1.5 that 

Af[Q2 -  Q2\ C Af[Cqi + s f 2Dl2B'q2Q2\, or equivalently, 1l[C'ql + s f 2Q2Bq2D'l2\ C 

K[Q2 -  Q2\. Thus,

n[(C'ql + s f Q 2Bq2D[2)D(2] = n[C'qlDfi) Ç n[C'ql + s (2Q2Bq2D\2]

and hence 7Z[C'qlD(-2\ C IZ[Q2 -  Q2]. The result now follows on noting that 

[.I — (Q2 — Q2Y(Q2 ~ Q2)] projects orthogonally onto Af[Q2 — Qfi. Part (ii) follows 

dually on noting that P2 — P2 is the controllability gramian of the realisation of Wfi 

given in Proposition 6.1.4. □

Proposition 6.1.7. The s\-allpass system s\a(s) E defined in the proof of

Theorem 6.1.3 can be written as a parallel system interconnection Sja(s) = cci(s) + 

a2(s),
A 0 Ba i

sidt(s) A 0 - a ; -  s -2c q2c q2p 2 Ba2

_ c ai P to (D ti'D nD h
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in which

Ba\ BD21 + Pa(P2 —  P2 ^BgiD^i

B a2 := (P 2 -  P2)tP 9i JD2J1

Cai := -(P ^ 2)'C?1(Q2 -  Q2)tQ' + (Z ^ 'C

C'a, := - ( A J2)'C,, 1( Q 2 - g 2)t^

/n particular, a E P B f f ixi and deg(a) < 2n — r.

Proof, see Appendix C. □

6.2 E xam p les

Throughout this section some examples of level-two super-optimal approximations 

are considered. Most of the examples considered here are pathological cases with 

interesting properties. The first example is carefully constructed to illustrate the non-

generic case of remark 6.1.2 and example 4.3.1.

Example 6.2.1. Consider the following anti-stable system1 with realisation:

1 1 1 3vTÔ 
1+0.7 5 \/To/5 (2v/ÏÔ)/5

Au Ai2 Bi 3 4 1 6\/Ï01+0.7 5 (2\/IÔ)/5 (4v/ÏÔ)/5

A2i a 22 b 2 := 1 3v7Ô 1+0.7 5 1 6VTÔ 1+0.7 5
10.7 1 1

Ci C2 0 VTÜ/5 (2VIÔ)/5 1 0 0

_ (2\/ÏÔ)/5 (4-/ÎÜ)/5 1 0 0

where B — C '. Then, the realisation is balanced with gramians equal to

E =
1 0 0

0 1 0

0 0 0.7

and so the multiplicity on the largest Hankel singular value is equal to r — 2. On the 

other hand, l = rank(Bi) = rankiCf) = 1 < r. In addition, we construct the generator 

of all si-suboptimal Nehari extensions,

0.045176 s + 0.5112 

s + 0.5112 0.39216

1 Note that R(s) is essentially G(-s) of example 4.3.1, in chapter 4 (i.e. inverse inertia problem). 
Hence, the Schmidt vectors found in example 4-3-1 correspond here to the largest singular value of 
r  R(-s)-

Qa{s) =
1

s + 0.6443
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and find the appropriate functions

R(s) = 0.34698 
s -  0.5112’ Q 0.5888

such that ||J?aufl(s) + Q a (s)||oo <  S i and ||.R(s) + Q||oo = s2. The super-optimal 

approximation is given by

Qsopt
1

s + 0.5112
/ 0.47153(s + 0.5165) 0.26424(s + 0.6258) 

y0.26424(s + 0.6258) 0.86788(s + 0.933)

so that

V~EsoptW  = V~(R + Qsopt)W
(s + 0 .5 112 )(s+ 6 .15 5 )  

_  ! ( s —0.5112) ( s —6.155)

0.33941 (s + 0 .5 112) 
s —0.5112

The resulting super-optimal singular values are plotted in figure 6.1.

Super-optimal approximation: R +

Frequency (rad/sec)

Figure 6.1: Super-optimisation in terms of the first two distinct super-optimal levels - 
Example 6.2.1.

Here,

{s\(R + Qsopt), s2(R + Qsopt)} — {1; 0.3394}

The above example shows that the proposed method works in the pathological case 

of r > l. A misleading argument based on a fallacy would be that since r = 2, we 

minimise the first three (r + 1) super-optimal levels. However, in this example we 

look at the non-generic case where l(= 1) < r, which implies that the l + l (=2) first 

super-optimal levels are effectively minimised. Next, we consider another example, this 

time with a simple largest Hankel singular value of R(s).
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Exam ple 6.2.2 (Pseudo-D iagonal). Suppose, we have the following anti-stable

system in the pseudo-diagonal form:

R(s) :=

with realisation

y/2 V2 
1 __L

_s/2 V2.

A  0 
> A ,

0 1 

1 0

l/y/ 2  4y/2
s—2 s—1
l/y/ 2  4y/ 2
s—2 s—1

i?(s) 4

This realisation is balanced with gramians:

E =

1 0 0 2

A B 0 2 1 0

C D V 2 1 /(\/2)

OO

V 2 ~l/(v/2) 0 0

2 0 

0 0.25

Clearly, = 2 and s2 = 0.25(= 1/4). Further,

1 /o .015873 2(s + 2)
Qa(s) - 5 + 2.063 2(5 + 2) 1.0159

with Q22(s ) = (Z+ogg) • Following the main steps of the procedure presented in this 

chapter, we obtain R(s) = ^  and Q = 0.25. Then, in this case,

#  v/2 \ v/2 n  2
Q sopt - f  A ■3 2

so that

and

dSsopt   ' Qsopt
\/2(s+2) %/2(s+l)\

_  | 8(5- 2) (5- 1) |
2̂(5+2) y (̂8+l) I
8(5- 2) (5- 1) /

> (s+l)
-  p~(i? + QsoPt)w  =

o'(5- 1)
n 1 (s+2)
U 4 (5- 2),

The super-optimal singular values are plotted in figure 6.2.

In this case,

{si(R  + Qsopt), «2(R + Qsopt)} = {2,0.25}

as expected.
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Super-optimal approximation: R + Q

I1CO

Frequency (rad/sec)

Figure 6.2: Super-optimisation in terms of the first two distinct super-optimal levels - 
Example 6.2.2.

Rem ark 6.2.1. Since the left and right matrices multiplying

orthogonal, the super-optimal approximation can be obtained directly by 

independent scalar Nehari extension problems, i.e.

solving

are

two

min
giGWoo +  9i||oo — 2

with q°pt = 2 so that e\ = ^  + 2 = 2 ^ ; and

min
1

s -  2 + Q2W00 —
1
4

with q pt — \ so that e2 = ; î2 + |  = |fr§ . The super-optimal solution must then have

the form

Qsopt

1
n/2

1
y/2

2 0 0 1 ' \/2 
8 y/i

1
L̂ 2

1
n/2 J 0 i. 1 0 V2

8 v"2_

which agrees with the solution obtained by the general algorithm presented above.

The following example is a diagonal system having same super-optimal levels with the 

previous, pseudo-diagonal system. It is interesting though to compare the optimal and 

super-optimal Nehari extensions.
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Exam ple 6.2.3 (D iagonal). Here consider the diagonal system

R(s) :=
0
l

5-2

1 0 2 0

s 0 2 0 1

2 0 0  0

0 1 0 0

The realisation again, as in the above example, is balanced with corresponding gramians:

£ =
2 0 

0 0.25

Clearly, Sj = 2 and s 2 = 0 .25(=  1 /4 ). In this case,

Q a  =
1

s + 2.063

/0 .015873 2(5 +  2) 

l  2(s +  2) 1.0159

and again Q22(s) = 72(s) = ¿2  an^ Q = 0-25. However,

Q sopt

so that

and

Issopi R  Q sopt (2(5+1) 
(5- 1)

0

(5+2) / 
4(5- 2)/

{S\(R +  Q sop t): S2 ( i?  +  Q so p t)}  — {2, 0.25}

which are equal to Hankel norms of the diagonal elements and also coincide with the 

super-optimal singular values of the pseudo-diagonal example.

Next, an anti-stable (strictly proper) system, randomly generated in MATLAB, is 

considered:

Example 6.2.4. Suppose,

9.2328 3.3876 0.1764 -1 .8 3 7 9

7.4865 4.5641 0.0894 -0 .9 1 3 5

0.0102 0.5162 0 0

1.8339 0.7364 0 0

0.2137 -0 .1840 0 0
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with

E -
0.1846 0

0 0.0923

Here si = 0.1846 and s2 — 2.1887 x 10 4. In addition,

Q22(s) = ( Moil^ zzv > \  s4-2.
0011036 

88
-0.0006093

5+2.88

and

so that

R(s)
0.0011036 

•s—2.88

-0.0006093 
s—2.88

Haug 4” Q a

/ 0.0011036 0 0 \ ( 0 0.18461
s —2.88 5+2.88

-0.0006093 0 0 + 0 0
s —2.88

V
0 0 0 ) 0.18461 0.0011036

5+2.88

0 ^ 

0.18461

5+2.88

Then, Q = 0.1032. Further,

Super-optimal approximation: R +

-10 .......v-,-,-.,-vvv,r ....... .............................. .... ..........................r-rr-rrrf---------------------v-r™ ,------------

-2 0  - 

30 •

40 •

-6 0  - 

-7 0  -

-80  ...... ............— —  ------------------------------ --------- -------------*“ ..................... ......1-" J  4
H)"2 10’1 10°  10 ' 10 10 10'

Frequency (rad/sec)

Figure 6.3: Super-optimisation in terms of the first two distinct super-optimal levels - 
Example 6.2.4-

Qsopt
1

s + 2.88

1 0.00029007(s -  25.2) 

0.017534(s + 3.878) 

 ̂ 0.0019413(s + 6.167)

—0.00099203(s -  83.12)  ̂

-0.18252(s + 3.884) 

-0.021276(s + 6.021) j
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So

/  0 .0 0 0 2 9 0 0 7 (s+ lll)(s+ 13 .8 5 )(s+ 1 .3 4 5 ) 
( s — 12 .4 5 )(s+ 2 .8 8 )(s— 1.348) 

0 .0 17 5 3 4 (s + 12 .4 8 )(s+ 1.3 6 )(s—1.552) 
( s — 12.45) (s + 2 .88) ( s —1.348) 

0 .0 019413(s— 10.9 6 )(s + 1 2 .9 3 )(s + 1.349) 
\  ( s — 12.45) (s- f  2.88) ( s —1.348)

-0 .0 0 0 99 2 0 3 (s+ 38 3 .4)(a+ 12.4 4)(a+ 1.34 8 ) \  
( s — 12.45) (s + 2 .88) (a —1.348)

—0 .18 2 52 (a+ 12.45) ( a + 1.348) ( s —1.558)
(a— 12.4 5 )(a+ 2 .8 8 )(a— 1.348)

—0 .0 21276(s— 11 .0 1)(a+ 12 .4 4 )(a+ 1.3 4 8 )
( s — 12.45) (a + 2 .88) (a—1.348) /

and

V~EsoptW
0.000 19161(a+ 2.891)(a+ 2.868) 

(a—2.88)(s+2.88)

—0.00010579(a+2.895)(a+2.864) 
(a—2.88)(a+2.88)

6.3 S u m m ary  - C on n ection  w ith  rob u st control

Super-optimisation is essentially a problem of hierarchical optimisation, which involves 

a nested optimisation problem of the same form, but progressively reduced input- 

output (and state) dimension. Here we consider approximations of proper (real) 

rational matrix functions and thus the generic number of nested minimisation problems 

is equal to min(p, m), after which the available degrees of freedom are exhausted. 

Throughout the chapter we considered approximations of the first two distinct super- 

optimal levels which is a generic step for solving the full super-optimisation problem via 

a recursive procedure ([JL93]). Note that similar to Nehari approximations in chapter 

4, minimisation of each super-optimal level requires the solution of one optimal and one 

suboptimal Nehari approximation problem, progressively of reduced dimensions. The 

method presented here does not make any use of Schmidt vectors and is totally based 

on state-space methods, involving the solution of Riccati inequalities, which make the 

proposed algorithm computationally robust compared to other existing methods. Of 

course, since closed-form state-space realisations have been derived, it is preferable to 

dispense with the intermediate steps completely and assemble directly the updated 

super-optimal solution at each step of the algorithm.

Super-optim al controllers. Super-optimisation has many potential applications in 

robust control, however, in this thesis we focus on robust stabilisation. This problem 

has already been discussed in chapter 5, and its optimal solution was derived in terms 

of the smallest Hankel singular value of the anti-stable part of the nominal plant. In 

particular, in the optimal version of the problem, we seek to minimise the infinity 

norm of an appropriate closed-loop transfer-matrix or equivalently to maximise the 

size of the uncertainty set, i.e. the radius of an open 7-foo-ball in which all permissible
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perturbations lie. However, in the matrix case, the associated Nehari problem can 

have many optimal solutions and, in general, the optimal robust stability radius is 

tight only for the “weakest perturbation direction”, i.e. the direction that stability is 

most easily lost, when an optimal (maximally robust) controller is chosen. As shown in 

the following chapter, in the case of additive perturbations this direction is described by 

the Schmidt vectors of a Hankel operator associated with the problem, corresponding 

to the smallest Hankel singular value of the nominal plant (see chapter 5).

In a connection to super-optimisation, by minimising the two largest closed-loop 

singular values in a lexicographic fashion, it is possible to extend the robust stability 

further in certain directions, and thus guarantee the stabilisation of a wider uncertainty 

set. This topic will be analysed in full in the next chapter.
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Chapter 7

Robust Stabilisation Under 
A dditive Perturbations

The ideas developed throughout this chapter are based on those in [GHJOO] but here, 

they are extended in various directions. The problem of extending the maximal robust 

stability is reduced to a frequency-by-frequency type of argument and thus, it is 

shown that the notions of rank-reducing and destabilising perturbations for constant 

matrices and dynamical systems, respectively, are intimately related. A key result for 

establishing the connection between the two notions is the distance to singularity of 

a complex matrix subject to structured constraints, which is derived in terms of the 

first two (distinct) singular values of the associated matrix. Note that the first two 

(distinct) singular values of a level-two super-optimal matrix function, at any given 

frequency u>0 E TZ are the first two distinct super-optimal levels, (si,s/+i). Further, 

stability of the feedback system is lost, if at a given frequency the Nyquist criterion is 

violated. In the matrix case, by imposing directionality constraints along the direction 

defined by the largest singular value, a finer measure of “distance to singularity” can 

be defined which subsequently can be used in the dynamical system case to extend 

the robust stability radius for additive perturbations (using the available degrees of 

freedom which are present in the multivariable case). The optimum solution is shown 

to be associated with the solution of a super-optimal Nehari extension problem; thus, 

the results of the last two chapters form the basis for the further developments reported 

here.
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7.1 In tro d u ctio n

At this point, for reasons of clarity, we outline the formal notation used; this is based 

on results of the previous two chapters.

Assumption 7.1.1. Consider a nominal plant G G TZ7i^pxrn, with balanced 

realisation G =(A, B, C) of McMillan degree n and with a smallest (nonzero) Hankel 

singular value of multiplicity r. Further, A G TZCoo denote the uncertainty around 

the nominal plant, which is assumed to be unstructured; i.e. there is no a priori 

information for A, except for a frequency bound on its norm, which we denote1 as 

||A||oo < e. Then, suppose that the uncertainty enters into the model of G additively 

and that all permissible perturbations satisfy the technical assumption made in chapter 

5:

v(G) = t j(G + A) (7.1)

where r](-) denotes the number of poles in the right half of the complex plane, counted 

in a McMillan degree sense. Note that in the next chapter, where we consider other 

types of perturbation, assumption 7.1 is removed. □

Under these assumptions recall that the transfer functions of all stable control- 

sensitivity functions described by figure 5.5 (problem 2.4.1, proposition 5.1.1) belong 

to the set

r  = {K (I  — GK)~l : K  G /C}

where JC denotes the set of all internally stabilising controllers of G. Further, as shown 

earlier, there exists a subset of controllers, /Ci(G), which minimises the Tioo-norm of 

T  G T, i.e. for any K  G K\,

T1 = { r G T : | |T | |0O = r r 1} C T  (7.2)

where rq is the maximum robust stability radius. Equation (7.2) describes the 

solution set of the maximally robust stabilisation problem (MRSP), under additive 

perturbations. Note that explicit state-space formulae were derived in chapter 5 for 

all optimal closed-loop approximations (TJ) and the family of all maximally robust 

controllers (JCi). The problem of characterising the set T\ in (7.2) involves the following 

ht is important to notice that the size (i.e. norm) of A is bounded by a strict inequality.

150



Nehari approximation:

r i 1 ; =  in f  ||r ||0 0 =  in f  WR + Q U
1 K z l C /Too

where R G 77.77̂  is defined in (5.10) and (5.13). A key property of 7? is its balanced 

realisation, which can be obtained directly from a balanced realisation of G. In chapter 

5 it was proved that each Hankel singular value of R is equal to the inverse of the 

corresponding Hankel singular value of plant G (multiplicities included). Hence,

r f 1 = inf \\R + Q||oo = 07(1 «) = (a„(rG))_1

Essentially, this is a level-1 super-optimisation problem (in terms of the definition of 

chapter 6) and hence the set of all optimal control-sensitivity functions admits the 

following diagonal decomposition:

Ti = Y {a)
0

(R+  Q)(s) 1
X(s) (7.3)

where R G 7TH ^p~l x̂ r̂n~l\  X  and Y  are appropriate square inner matrices to be 

defined in the sequel, a(s) G 77“,ixi (where l < r is defined in chapter 6) is anti-inner 

and

Q = { Q e n 00:\\R + Q\\00< r ^ y

where Q is the set of all rj^-suboptimal approximations of R. Note that in terms of 

the notation in chapter 6, sx(R) := r f l and <Si := Q.

Along similar lines with the definitions of Chapter 6, we define the set of ¿-th 

super-optimal control-sensitivity transfer functions by % if any T  G % minimises 

lexicographically the sequence {si(T), s2{T) , . . . ,  Sj(T)}. Clearly, % Ç Ç ••• C 

Tj Ç T . In the same way, the corresponding to % set of controllers is denoted by /Q. 

However, if multiplicity l > 1 occurs in, say, the first super-optimal level, then we say 

that K-2 is the corresponding set of controllers corresponding to Ti+X (i.e. we do not 

count multiplicities on the indexing of controller sets).

Lemma 7.1.1 (Level-2 Superoptimisation). The set can be parameterised as

^sxa(s) 0 0 ^

Tl+1 = Y 1(s) 0 si+xb(s) 0 ^ i ( s)

v 0 0 R(s) + <5;+i J
where X Xl Yx are square inner, a(s),b(s) are anti-inner functions and Si+X — 

{S  G Hoc : ||R(s) + 5||oo < st+1}, for some R G 77“ .
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Proof. In the light of (5.9) and (5.10), the set of all optimal control sensitivity matrix 

functions T\ takes the following equivalent forms:

Tj = {[U + M F l{Qa, s ? B H 0O)] M } (= Ti{Tgen,

= {UM  + MFl{Qa, s t 1BHO0)M }

= M {M~U + FtiQa, s^BHoc)} M  

= M {R(s) + Qopt(s)}M

and hence Qopt is chosen to be the set of all optimal Nehari extensions, in the sense 

that for any Qopt G Qopt we have \\R(s) +  Q opi(s)||oo =  Si- Now, using the notation of 

chapter 6 (see Theorem 6.1.1) %_ can be written as

T1 = M{R + Qopt} M

S\Ot{s)
= MV

= MV

0 R(s) + Jri(Qa,s 1 1B7i 00) j

sia(s) 0

0 R(s) + (Si

W~M

W~M =: Y(s)
sia(s) 0 

0 f?(s) T <Si
X(s)

for some R(s) such that ||^(s) + <S1||0o < Si. Now, 7/+1 C T\, and it is formed whenever 

we restrict ourselves to a subset of Si, i.e. whenever the set of all S(+i-optimal Nehari 

extensions {Q : ||/?(s) + Q||oo = s;+1} is considered in the place of <Si (recall si+1 < Si). 

Then for all super-optimal extensions Qsopt (with respect to the first two levels),

%+i — M {R + Qsopt} M 

(  sia(s)

0 Vi
\

= MV

= MV

Yx{8)

II 0

0

^sia(s)

0

V 0

(

0

( s'+li,(s) 0 
y o R(s) + <5/+i J

Sid(s) 0 0

0 si+ib(s) 0

0 o R(s) +  $i+i

W~M

\
h 0

0
W~M

0

0 Xi(*)

0 R{s) + 'S|+l j

for some R(s) such that \\R(s) + <S!+i||oo < sj+1. This result is based on a recursive 

application of the methodology described in chapter 6 for the first two (distinct) super-
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optimal levels. □

Rem ark 7.1.1. An important observation that can be made between the form (7.3) and 

that of lemma 7.1.1 is that the transfer matrices X(s) and Xi(s) (and respectively Y(s) 

and Y^s)) share the same first l columns (respectively, rows). This follows immediately 

from the proof of Lemma 7.1.1 above (%+\ C T\). In addition these columns are 

essentially the maximising vectors ofTn (see corollary 6.1 .1), scaled by the inner matrix 

functions M and M , respectively.

Problem  Definition. The set of all permissible perturbations corresponding to 

optimal controllers is given by

V ri(G) = {A e 77£oc : ||A||«, < n , V(G) = rj{G + A)} . (7.4)

Further, we define the boundary of this set,

dVri(G) = { A e  n c ^  : IIAll«, = n , v(G) =  V(G + A)} . (7.5)

Here r\ is the robust stability radius, i.e. rx := d(TM~t/) =  £^<3) (recall R(s) := 

M~U(s) - see chapter 5). This corresponds to the maximisation of the size of the 

non-destabilising uncertainty set (measured as a norm), i.e. the radius of an open 

Hoo-ball in which all permissible non-destabilising perturbations lie. However, in 

the multivariable case, this maximisation of robustness is tight only for the “weakest 

perturbation direction”, i.e. the direction that stability is most easily lost.

In a connection to super-optimisation, it is possible to impose a tighter optimisation 

criterion with the objective of minimising the singular values of the control-sensitivity 

function in a lexicographic fashion. Hence, we pose the following problem:

Problem  7.1.1. Given a nominal plant and an uncertainty set as defined in 

assumption 7.1.1, how much (if possible) can the maximal robust stability be extended 

along different directions by making a selection among the continuum of all optimal 

(maximally robust) controllers? In what sense, if any, can the super-optimal controller 

considered to be the “best”? What is the description of the extended uncertainty set, 

guaranteed to be stabilised by this controller? □

A motivating example showing that there exist permissible non-destabilising perturba-

153



tions, lying outside the 7’1-ball, for certain choices of optimal controllers follows. The 

example is special a case of that in [Nym95], for the case where uncertainty enters to 

the model in terms of an additive perturbation.

Example 7.1.1 (Extended set of permissible perturbations). Assume G G 

with super-optimal decomposition of the corresponding closed-loop transfer 

function, T  G Tk:

( c

UTV =

\sidi(s) 0 0 0

0 si+1a2(s) 0 0

0 0 0

y 0 0 0 SfcOfc(s)

where k = min (p,m,n) and aj(s) are all-pass functions. Set e 

plant is e-robustly stabilisable by K  G Kk, due to Theorem 5.1.1.

= sx 1 such that the 

Then let

h 0 0 0

0 Si
Si+1

0 0

0 0 0

0 0 0

Further, define the following class of perturbations:

F>et = T>s, U T>vsf_ U T>VUf

with

VSc = {A  : A G n n oo; H A ^ < e}

V VSc = {A  : A G V U n oo; | | A H ^  < e}

V VUl = (A : A G UCoo; rj(G) = V(G + A), flA" 1 V" 1 AIU < e}

where r/(.) denotes the number of closed RHP poles of a transfer function, counted in 

the McMillan degree sense. Note that the setT>st remains as in definition 5.1.1, chapter 

5. On the other hand, observe that A-1 is contractive so that

I IA -^ - ’ A lU  < ||A||„ < e

Then, we say that the set V VUt is weaker than T>Uc (see definition 5.1.1), which implies 

that
v ( C VI

and the super-optimal controller guarantees stabilisation of all A G V et . □
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In general, Nyman gives a rather implicit description of the extended set of permissible 

perturbations. In contrast, this work aims to characterise the maximum possible 

extended set, in terms of directionality properties and define the maximum robust 

stability radius along different directions in a form which is more useful for controller 

design. At first, in the following paragraph, it is shown that there exist perturbations 

which are destabilising for every optimal closed-loop transfer function, T, and have 

norm equal to e := (si(T))-1, i.e. destabilising perturbations which lie on the boundary 

of the optimal (maximum-radius) open ball of perturbations which are guaranteed to 

be stabilised by every optimal-controller. Such (uniformly) destabilising perturbations 

can be chosen to be real-rational. Thereafter, we prove that perturbations of this type 

share a common characteristic - they all have the same worst case “projection” in 

a specific direction, specified by the maximising vectors (scaled Schmidt pair) of the 

Hankel operator related to the problem.

7.2 U n iform ly  D esta b ilis in g  P ertu rb a tio n s

In the introductory part of this chapter the existence of permissible perturbations 

outside ball of radius rq was established (example 7.1.1). On the other hand, we have 

not yet identified minimum norm perturbations which destabilise an optimal closed- 

loop transfer function. Given any specific optimal controller K  G fC\, it is clear from 

the optimal solution of the MRSP that at least one Aj G dVri(G) can be chosen such 

that (G + A i,K i) £ S  (see algorithm 5.1.1). The next lemma establishes a stronger 

result, i.e. the existence of Ai G dVri(G) for which (G+Aj, Kfi) 0 S  for every K e 1Ci. 

This generalises a corresponding lemma of [GHJOO]:

Lemma 7.2.1 (Existence). [GHJOO] There exist A G dVri(G) such that (G+A, K) ^

S for every K  G JC\. Furthermore, A can be chosen to be stable real-rational matrix 

functions.

Proof. The proof is adapted from [GHJOO]. It is constructive and it is based on the fact 

that every optimal closed-loop system (optimal control sensitivity transfer function) 

can be written in the form (7.3). Hence define, at any frequency uj0 G 7Z, the complex 

matrix:

A0 = X~(juj0)
na(juj0) 1 0

0 0
Y~ (ju0) G Cmxp

155



Now, following the technique of Algorithm 5.1.1 we can use an “interpolation” argument 

to construct A(s) G IZTtoo of norm ||A(s)|| = r f 1 such that A (ju>0) = A0 (details are 

omitted). Further, for every I< G 7Ci(<=> T  G T\) we can write

det(I -  A(jw0)T(ju0)) = det(I -  A 0T(ju>0)) = 0

and hence

det{I -  (G + A0)K)(ju}0) = 0 =» H(G + A0, K) £ S

□

All perturbations (not necessarily real-rational) as constructed in lemma 7.2.1 will be 

called uniformly destabilising. Formally, we give the following definition:

Definition 7.2.1 (Uniformly destabilizing perturbations). Any A G dVri(G) 

which destabilizes (G, K) for every K  G K\ is called a uniformly destabilizing 

perturbation. □

Remark 7.2.1. It is crucial to note that any perturbation within this class is 

destabilising for every optimal control-sensitivity transfer function T  G T\. Moreover, 

all frequencies are “equally critical”, in the sense that the generalised Nyquist theorem 

can be made to fail at an arbitrary frequency u0, i.e. det(I — AT(ju>0)) = 0 for every 

T  G Ti. □

Now define xT(s) and y(s), to be the first l-rows and /-columns of X(s) and U(s), 

respectively, as defined in equation (7.3). Then, in the following lemma we prove 

that every (boundary) uniformly destabilising perturbation must have a projection of 

magnitude rq along a certain “worst” direction, defined by y(ja>) and xT(juj), u  G 77-

Lemma 7.2.2 (Directionality). [GHJOO] Let A G &Dri(G) be a (uniformly) 

destabilising perturbation of G for every K  G /Ci. Then, there exists an uj0 G 77, 

such that

\\xT (juj0)A (ju 0)y(ju}0)\\ = n  (7.6)

Proof. Suppose A G dVri(G) is a uniformly destabilising perturbation, i.e. that 

(G0 + A, K) S  for every K  G /Cx. Let (3 G [0,1] and consider the family of Nyquist 

plots obtained by mapping the standard contour D r  via d e t [ I  — (G + (3A)K] for 

a fixed K  G K,\. Since (G0 + /?A, K) G S  for every f3 G [0,1) the contours do not
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cross the origin and encircle it rj(G) + rj(K) times in the counter-clockwise direction. 

Since (Go + A, K ) ^ S , by continuity of deformation Tp we must have that 0 6 G, i.e. 

that there exists uia G TZ such that

d e t[I-  (G + A)K](ju0) = 0

or equivalently,

det[I - G K -  AK](ju0) = 0 4» det[I -  AK (I -  G K y l]{juj0) = 0 

since det[I — GK](ji0o) 7̂  0. Thus,

det[I — AT] (joo0) — 0

where T = K (I — GK)~l .

Furthermore, all T g T\ admit parametrisation as in equation (7.3) where H-R + Qlloo < 

r f 1, and Q € <Si. Define <E>(s) := (R + Q)(s). Then it is always possible to choose a 

T 6 T\ which admits the parametrisation of equation (7.3) and satisfies2 ||$||oo < r f 1. 

This is fixed by the choice of Q 6 Recall now (see chapter 5) that this Q 

parameterise the controller (Youla parametrisation)

K  = (U + MQ)(V + NQ ) - 1

For the choice of Q G <Si we made above, it is clear that K  € K,\. So if A destabilises 

G for every K  G 1C 1, it is also destabilising for the controller above which depends 

on the value of Q, determined by the approximation Û Hoo < r\ 1- Since the Nyquist 

deformation argument presented earlier applies to every K  € /Ci, it also applies to the 

specific controller in K, 1 chosen above, i.e. the one corresponding to ||<f>|| < s j 1. Thus, 

there exists a frequency u>0 GlZ such that

det < X{juJ0)A{juj0)Y{juj0)
r j 1a(ju0) 0

0 $C7'w0)
-  0 (7.7)

due to equation (7.3). Next, define

A =
An Á12

1
H

' 
^

 
e 0 

^
__

__
1

A (ju0); =
Á 21 Á22 _XLU»o)\

y1(ju0)a(juj0) Y^jujo)

2In general for such <f>, ||$||oo < r1 h
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So,

p(xJ(ju0)A(jw0)yi{ju)0)a(juj0)) = rq

Further,

x^(juj0)A(joj0)yi(juj0)a(juj0)\\ = rq

or, equivalently

xT(ju0)A(juJo)y(jUo)\\ = ri

since a(juj0) is unitary.

(7.8)

(7.9)

□

Rem ark 7.2.2. In [GHJOO] condition (7.6) is interpreted as a “directionality” 

property. Consider the vector space of complex valued matrices A E Cmxn over C. 

It is easy to show that in this space we can define an inner product (see chapter 1):

(A , B) = trace(B* A)

which induces the Frobenious norm:
n  m

(A, A) = ||A||^ = trace (A* A) = E E M 2
3 =  1 ¿= 1

The Cauchy-Schwartz inequality then gives:

\{A,B)\<\\A\\f \\B\\f

and we can think of \(A, B)\ as the magnitude of the projection of A along the 

“direction” B. In particular, when B has rank one, B — uv* for two vectors u and 

v, we can write |(A,uv*)\ = \trace(vu*A)\ = \u*Av\. Thus, imposing the constraint 

|u*Au| < 4> can be interpreted as limiting the magnitude of the projection of A along 

the direction defined by B = uv*. D

In Lemma 7.2.2 it is shown that the condition

\\xT(ju)A(jw)y(ju)\\ = r1

for some u E 77, is necessary for a A G dVri(G) to be destabilising for every K  E KL\. 

As a consequence of this result, a sufficient condition that a boundary permissible 

perturbation is not uniformly destabilising is that

\\xT(juj)A(juj)y(ju)\\ < ri (7.10)
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for some u E  1Z, or equivalently

||zTAy||oo < ri

Moreover a tighter condition that a boundary perturbation should satisfy in order not 

to be uniformly destabilising, is together with the restriction (7.10) to impose a further 

restriction on the spectral radius of xTAy, i.e.

Note that here the all-pass matrix function a(s) is included. Constraints (7.10) and 

(7.11)) effectively impose structure on the set of additive perturbations and may be 

used to investigate the possible increase of the robust stability radius along different 

directions. Clearly, note that if we restrict p(xTAya)(= ||a;'rAya||00) = H^Aj/Hoo < (f>, 

for any < r i, then the second condition (7.11) becomes redundant, in the sense that 

||v4|| = (j) =4> p(A) < 4>. The choice of constraint gives rise to two different problems 

with the later (i.e. considering both restrictions (7.10) and (7.11) simultaneously) 

having a more technically complicated solution. Initially, we ignore condition (7.11) 

and develop tractable stability conditions for the first case, i.e. characterise the largest 

possible permissible uncertainty set that satisfies (7.10) and the corresponding robust 

stability radius.

Example 7.2.1. Take a perturbation A := X  (s)~ A i(s)Y  (s)~, where

r)(G). We observe that HAj Hqo =  T. =: ri and hence, A lies on the boundary of the 

n-ball. Further, A is destabilising (det(I -  AT) = 0). The “directionality” property of 

this perturbation is obtained as:

p{xTAya) < ri (7.11)

and with X (s),Y (s) and a(s) as defined in equation (7.3) and assume that rj(G + A)

xTA y \\00 = ||xTX~A1y~y ||00

Now define the perturbation A := where
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Take 4> < f\- Again, we note that ||A||oo = rq and so A is on the boundary of r\-ball. 

However, it can be shown that A now is not a destabilising perturbation. Check that

xTA y \\00 = \xTX A 2Y - y \\00

/ (f) a(s)~7/ 0 \ h
= h 0 Tr-HO

0

which shows that the necessary (directionality) condition fails. □

Up to this point, it has been shown that there exist both permissible perturbations 

outside the 7’1-ball and uniformly destabilising perturbations on the boundary of the 

ball, the later possessing an identical projection along a particular worst direction, 

defined at an arbitrary frequency. Hence, it may be deduced that ri-ball is not 

necessarily the largest possible set of permissible perturbations, if the degrees of 

freedom of the optimal controller set are taken into account. In order to characterise 

the “extended” set, it is natural to impose a restriction to its structure by considering 

perturbations which have a projection of magnitude less than rq along the worst 

direction, defined by {xT, y} uniformly in frequencies co £1Z. A natural way to describe 

this condition is in terms of an arbitrary but fixed parameter 8 £ (0,1], such that

H^AyHoo < rq(l -  5) (7.12)

is always satisfied for the new perturbation set. Thus, the extended set of permissible 

perturbations is defined as:

£(S,M) = { A 6 Vm(G) : H^AylU < n ( l  -  6)} (7.13)

where

V,(G) = {A € n c oo: ||Alloc < P, v(G) = n(G + A)}

according to equation (7.4). Note that the “direction” constraint is essentially a form of 

structure that the extended set is equipped with. Then the following stronger version 

of the MRSP is posed:

Problem 7.2.1 (structured robust stability radius). Given 5 £ [0,1], find 

p*(8) = sup p so that every

A 6 £(8,p)UT>ri(G)

is guaranteed to be stabilised for some K  £ K\ and characterise the set of optimal 

controllers K .
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Intuitively, we expect p*(<5) > ri, for every 5 e (0,1] and further that p*(5i) > ¿i*(52) 

for ¿1 > ¿2, i.e. if we impose a tighter (structured) constraint ||xTAy|| < 7-1 (1 — ¿) the 

constrained robust stability radius should increase. In the sequel, we consider

two problems which arise from the above definitions: The first is intended to determine 

and characterise //*(5). This problem involves matrix distance to singularity, a notion 

which will be discussed in the following section. Secondly, it will be shown that fX*(5) 

is an increasing function of the gap between the two largest singular values of an 

associated Hankel operator. Since the first super-optimal level is fixed for all K e f Ci, 

the problem reduces to the minimisation of the second largest singular value (uniformly 

in frequency), i.e. super-optimisation. For both problems a closed-form solution will 

be provided, as shown in the following sections.

Figure 7.1: Extended robust stability radius - The largest shaded area is the set £(S, ¿¿*).

Parametric constraint. It can be argued that depending on the value of 5, the 

strength of the imposed structural constraint varies. Of course we have defined 

implicitly that p* > ri, since all A e T>ri need to be stabilised and hence for any 

5 e [0, 1], the set of controllers that maximise p*(<5) is a subset of the set of all optimal
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controllers, K>\. Formally, we shall denote this subset by /Cf, and so

K,\ C ICi

Note that if 5 = 0 the constraint ||xTA?/|| < ri defining the set £(5,p) is redundant 

since HAIloo < r x and ||x||oo = IMIoo = 1 and therefore 5(0,//) = V^. Thus, in this 

case, the maximisation problem takes the form: sup//, such that all A E P n (G) are 

stabilised by some K  E /Cx, so that the optimal solution is /¿*(0) = rx and ¡C° = ¡C\. 

Further, since

{A : H^Aylloo < rx(l -  <SX)} D {A : H^AyH«, < rx(l -  i 2)}

whenever 0 < 5X < S2 < 1, we have that /Cf1 C /Cx2. In the sequel it is shown that the 

sets /Cx, S E (0,1] are identical and coincide with the set /C2, the set of all super-optimal 

controllers with respect to the first two levels.

As the constraint in (7.10) suggests, the robust stability of perturbed plants inside 

the extended permissible uncertainty set (“structured robust stability radius” ball of 

problem 7.2.1) can be examined on a frequency by frequency basis to ensure that the 

generalised Nyquist criterion (Theorem 2.3.2) is not violated. When looking at the 

closed-loop transfer function at each frequency independently, the robust stabilisation 

problem becomes a constant distance to singularity problem. In the sequel we pose 

problem 7.2.1 in frequency-by-frequency framework.

Problem 7.2.2 (Constrained Maximum Robust Stability). Find the set of

controllers which supremise p(S) under the constraint that G +A  is robustly stabilisable 

for all A E V ri(G) U £(S,p). Equivalently, determine

d(4>) = sup {d : det(Im -  A(ju>)T(ju)) ±  0,

for all A £ {||A(ju/)|| < d) D {\\xT(juj)A(ju)y(juj)\\ <(/)}} 

over all frequencies u  ElZ.  Here we take cj) := r x(l — 5), 6 E (0,1]. □

Remark 7.2.3. The second part of the problem is essential to the solution of the first 

part. In particular, we search for the maximum norm that permissible perturbations are 

allowed to have, such that the generalised Nyquist criterion is not violated. In addition, 

all such perturbations should satisfy the constraint (7.10), for all frequencies u> E IZ.□ 

The approach we follow to solve problem 7.2.2 is to consider first an equivalent problem 

at a given frequency u> ElZ, i.e. a simplified problem involving distance to singularity
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of complex matrices. In particular, the simplified problem is now in “relative” form. 

The problem can be easily recast into an “absolute” form whose theory is studied 

intensively in the next section.

Lemma 7.2.3 (Relative to absolute distance to singularity). Suppose that 

T  G Cpxm has singular value decomposition,

Vi V2]'

with E = diag(ai,... ,&i, cp+i,. . . ,  at), o\ = ... = 07 > 07+1 > ... > at > 0. Let Vi and 

Ui be the first l-columns o fV  and U, respectively, and let 0 < erf1 be given. Define

5 f x'  = {E eC “ ' :  ||£|| < d}, 4)
W )  = ( £ £  C“ '»  : \\VIEU,\\ < <#>},

and

d(0) =  sup {d : det(/m -  ET) ^  0 for all E  G B™xp n V(<f>)} (7.15)

Then the later maximisation problem can be recast as

d{(j)) = sup {d : det(E-1 -  E) + 0 for all E G {E  G Btx\  : \\En \\ < 0}} (7.16)

where En denotes the (1,1) leading l x l sub-block of E  := V{EU\. Equivalently,

d(<f>) = sup [d  : det(E_1 -  E) = 0 for all E e {E E  Btx\ : H^nlU < 0}} (7.17)

and the minimum is attained.

Proof. This is a straightforward generalisation of a parallel result in [GHJ00]. □

Remark 7.2.4. Condition ||a;r Ay|| < 0, essentially enforces a structure on the 

perturbation set. The objective is to maximise the size of the set E(6,p), and hence 

the magnitude of the non-destabilising permissible perturbation set, on the basis of this 

structure. Later we shall see that only a partial characterisation of this structure is 

needed. □

At this point, it is interesting to visualise the effect of this restriction to the perturbation 

set. We consider the following example:

T  = U
s  0

0 0
V' = u, u2 E 0

0 0
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Example 7.2.2. Consider the unstable block-diagonal system:

( a l  0 0 ^
5  — 1

n  —1/\/2 2\/2 
U s —2 s - 1

n  l/v/2  2 / V 2  
\  U a—2 s - 1  /

s

1 0 0 

0 2 0 

0 0 1

V Ô Â  0 0 

0 1 0 

0 0 2

OO|
o 0 0 0

0 - I / V 2  V 2 0 0 0

0 l /\/2 y / 2 0 0 0

The realisation of G is balanced since the corresponding gramians are equal to:

1
20 0 0

0 1
4 0

0 0 2

So, the smallest Hankel singular value of G is equal to Further, the scaled Schmidt 

pair of the corresponding system R (see definition) is

1

0

k. 1 0 1___
__

__
_

1 0 0

and hence, using appropriate parts of the doubly coprirne factorisation of G we deduce

/
( s - l \

>

s + l

{y,xT} : =  {Mv,w~M} —  < 0 • ( e l  « 0 )  >

\ 1 °  ) >

which are all-pass functions. Then, at an arbitrary frequency

||æTAy|| < f  => ---
---

---
---

1

> > to
__

__
__

_
1

1

1
(N

<

CN

<
1

-----------1
O

______
1

< 0 => ||An || < <t>

where A is any permissible perturbation. So, in this case the restriction involves directly 

the norm of the (1,1) element of A. □

Rem ark 7.2.5. If in the above example we assume that ||A|| = ri and that f  := 

(1 — 5)r1; 5 £ [0,1), then (1 — 5) is essentially the percentage reduction of ||A|| relative 

to the maximal unstructured robust stability radius ri . □
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The analysis in the example above assumes constant matrices, i.e. perturbations that 

are evaluated at each frequency uj0 6 7Z. This is the framework followed in the 

next paragraph as well, and it is based purely on linear algebraic arguments. This 

is motivated by the fact that all frequencies are considered “equally critical”, whenever 

optimal controllers are employed. In order to solve problem 7.2.2, it is crucial to 

understand first the simplified version of the problem (involving complex matrices) 

and hence the next paragraph outlines some important results for “structured distance 

to singularity” problems.

7.3 C on stra in ed  D ista n ce  to  S in gu larity

Constrained distance to singularity will provide us the optimal structure that a 

perturbation must have (optimal in the sense of the parametric restriction) so that 

it has the minimum possible norm and in the same time it is rank-reducing. First, we 

outline some standard results in matrix theory and distance to singularity problems.

Problem  7.3.1. Consider the square matrix

01 0 0 0

0 02 0 0

0 0 0

0 0 0

such that 0 < ox < a2 < ■ ■ ■ < crn. Then find for A £ C"x"

7 = rmn||A|| (= min ¿7(A)) 

s.t. detiY, — A) = 0

Remark 7.3.1. Any A of the form

A =
0

0

A22

makes

S -  A =
0 0

0 £ — A22
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which is clearly rank deficient. Here E is a conformal partition of E. The norm of A 

is equal to <j\ for all A such that ||A.221| < (J\. □

This is a standard result of (absolute) distance to singularity, known as the Eckard- 

Young theorem. A problem related to that outlined in the previous section is to consider 

the case when we restrict the largest singular value of A to be less or equal than 0 

which is strictly less than the smallest singular value of E, ci. The solution to the 

problem is well-known [LCL+84] and is summarised next:

Lemma 7.3.1 (constrained distance to singularity). Let A be a square non-

singular complex matrix which has a singular value decomposition A = UT,V', where 

E = diag(oi, cr2, - - -, crn) with 0 < a\ < 02 < • • • < on and denote by u\ and V\ the 

columns of U and V , respectively, corresponding to the smallest singular value, a\. 

Then all E which minimise

7 = min{||£?|j : det{A — E) — 0, \(uiVi,E)\ < 0}

are given by

E = U
0 V 0
u' -0 0
0 0 P s

V'

where Ps is arbitrary except for the constraint

|PS|| < \J01O1 + 0(<7i -  <r2) (7.18)

and v is given by

v = y/(<j) + <72)(<7i -  (h)eJ0, 9 G [0,2n).

The minimum value of 7 (0) is given by the righthand side of (7.18).

Proof, see [LCL+84], [JH+06], [GHJ00]. 

Example 7.3.1 ([LCL+84]). Let A be given by

A =

1 0 0 

0 4 0 

0 0 9

then find the minimum norm matrix E so that det(A — E) — 0.

□
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If E is unconstrained,
1 0 0

0

0 Ea

E =

where ||i?s|| < 1 but otherwise Es is arbitrary.

Consider now the case where we impose a constraint on en:

1
|e n | <(/>:= (< a^A ) = 1)

Then, all optimal rank-reducing matrices E have the form

1
2

3 Pje 
2 C 0

E = 3 p-je 
2 e

1
2 0

0 0 e 33

where |e33| < ||i?|| = PP ~  1.58 and 0 is arbitrary.

A full treatment of structured distance to singularity problems under various 

constraints which generalise the above results are found in [JH+06]. In particular, 

we are interested for the case where the largest singular value has multiplicity greater 

than one. The proof of the following theorem is quite technical and involves a sequence 

of lemmas which can be found together with their proofs in the appendix D.

Assumption 7.3.1. Suppose that T  G Cnxn has a singular value decomposition

T = U EV Ui U2
aJi 0 

0 £2

V{

Vi
£2 •— diag(ai+i, • • •, <7n)

with Ui,Vi G Cnxl. Assume that o\ =  ■ • • =  cq > <ri+ 1 > • • • >  on > 0, and define

A := £-1 = diag(Ai,A2)

where A\ = axIi := cq 1 It and A2 := diag(ai+i , . . . ,  an) with 0 < Qi = • ■ • = ai < a;+1 <

• • ■ < a„. Further, define E\ = h Qlx(n—l) ‘

Then the next theorem holds:

Theorem 7.3.1 (Distance to singularity). Let everything be defined as in 

assumption 7.3.1. Then, the minimum distance to singularity

7 = min{||A|| : det(A — A) = 0, ||£'(AEi|| < < 5i(̂ 4)}
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is given by

7 = \A/+i<zi -  (ai+1 -  a i)0 

Further, all perturbations in the set

:= {A  G Cnxn : ||A || = 7 , d e t(A -A )  = 0, \\E[A£i|| < (j> < aj} 

have the following structure:

A n  7  A 31 A 2
A =

7 A 3 A ? 3 7 2^ / 1  A , A 33 j

where A n  G Clxl, || A n  || < (j) but is otherwise arbitrary, and

A] :=
A n  A 7 3

A7 A7¿-*31 ¿-*33

is any n x  n optimal 7 - completion of An. Further,

a A2A =
A3 A4

is an optimally structured perturbation for the distance to singularity problem where A 

is constrained to have its first l x l block equal to zero, as defined in Lemma D.0.1 in 

appendix.

Proof. See appendix D. The proof involves a series of lemmas. □

Example 7.3.2. Take An =  (¡)1, 4> < 7 . Then choosing A73,A 31,A 33 to be real 

symmetric, one possible 7 -completion of An is the following:

A?
4>I ( v V  -  02) 

-  (V 72 -  02) 1

1 *11 ¿-*13

Then it can be verified that ||A7|| = 7 .

Similarly, we could choose

7 _  r  ^
( V 7 2 -  0 2)

Keeping the first choice from above, we now take

A =

) /  4>l

ĉ-co
<1

__
1 A7-̂*33

7-

(V 72 -  02J 1 A„ cor-(
<d

-O-1-̂1

?-co<1 A33

1

O 0 \/® 3 0

O >
>

to 0 0 0 0

A 3  A 4 \/® 3 0 0 0

O

____
1

0 0 0

169



so that

(¡> 0 - \ J t 2 -  d>2 0

An 7a ^ a 2 0 4>h- 1 0  0

bAaA], T2E{ {A, A3 3 } _ v V  -  d>2 0 <f> 0

0 0 0  0

Hence, ||£,|| = 7 and det(A — E) = 0.

The second choice in the above example will be used extensively in the next section. 

In the sequel, we state one of the main results of this chapter:

Corollary 7.3.1 (Relative to absolute distance to singularity). Assume 

everything as defined in Lemma 7.2.3 and Theorem 7.3.1. Then,

d(4>) = cici+i -  0 &i+i
1

Cl

all E e V{4>) such that det{Im -  ET) = 0 and ||£|| = d{4>) are of the form

1

> 7AJ1A2 0

AIIcq 7A3AI3 72̂ 7/ { A, A33 j 0

1 O 0 £44

where 11 ̂ 4411 < d{<f>) and

A11 7 A31A2

7 A 3 A 13 7 2 .F; jA ,  A 33 j
= d{4>)

Hence if the two (distinct) largest singular values of a complex matrix T  are known 

then the minimum norm of the set of all rank-reducing perturbations (i.e. distance to 

singularity) and the optimal structure of this set, are a priori known. The nature of 

this structure depends on the multiplicity of the largest singular value of T  and other 

constraints that are imposed, e.g. on the spectral radius.

7.4 E x ten d ed  robust s ta b ility  radius

In the previous paragraph an “optimal” structure to the set of all permissible 

rank-reducing perturbations was determined such that it minimises the distance to 

singularity of complex matrices which have multiplicity greater than 1 on their largest
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singular value. Further, Problem 7.2.2, Lemma 7.2.3 and Corollary 7.3.1 linked the 

problem of robust stability under the constraint uncertainty set (7.13) with the distance 

to singularity problem, in a frequency-by-frequency Nyquist-type of argument. In a 

connection with those results, in this paragraph we show that the extended robust 

stability radius is a function of the two (distinct) largest super-optimal singular values 

of the closed-loop transfer function and so it is maximised by choosing a super-optimal 

controller K  G /C2. This arises naturally from the fact that the two largest (distinct) 

singular values of any closed-loop T  G 7/+1 evaluated at any frequency lo0 G 1Z (i.e. the 

complex matrix T (ju 0)) are equal to the first two super-optimal levels, si and Si+1.

Proposition 7.4.1. Given a nominal plant G as in 7.1.1 and any A G V ri \j£(0, p(8)) 

where

M  ■=

and

£(5,p(6)) = {AeV„{s)(G) : H^Aylloo < r^ l  -  5)}

in which

TV(<5)(G) — {A G Too : ||A||oo < p,(S), 77(G) = r](G + A)} 

then (G +  A, K) G S, for each K  G /C2.

5 e [0, 1]

Essentially the proposition states that any perturbed plant inside the /^(¿)-ball (for any 

value of ô G [0,1]) is stabilisable by every super-optimal controller K  G JC2.

Proof. Recall that T  — K (I — GK) 1 and choose a K  G /C2 so that T  G Ti+1. It is well 

known (Lemma 7.1.1) that any T  G admits the following decomposition

T  = Y1(s)
^sia(s) 0

0 si+ib(s)

V 0 0

0

0

\
X i ( s )

R(s) + <S/+i j

where X \,Y \ are square inner, a(s),b(s) are all-pass functions and ||R(s) + S(+i||oo < 

s/+i. Obviously, /C2 C K,x and so %+\ C T\ which implies that (G + A, K) G S  for any 

A G V ri ■ Hence, we only examine the case where A G £(8,fj,(S)).

For a fixed value of 5 G (0,1], let

— < IIAHoo < [¿(8), ||xr Aj/||00 < 4> < — s 1 Si
(7.19)
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where <j> := r i( l — 5). Assume now for contradiction that such A is destabilising. Then 

there exists a frequency u>o G 1Z so that

det(I -  tA (ju 0)T(ju0)) = 0, 0 < £ < 1 (7.20)

Of course, T (ju0) is a complex matrix which, in the light of the above decomposition, 

has its two largest (distinct) singular values equal to si and sj+i, respectively. Further, 

considering the constraint (7.19) and equation (7.20), the problem can be viewed 

as in Lemma 7.2.3. Then, corollary 7.3.1 states that the minimum norm of a 

destabilising perturbation is equal to n(6) which implies that (7.20) is true only 

for ||£A(jiu)|| > Therefore, equation (7.20) gives a contradiction and any

perturbation A G V ri U £{8, n(S)) is stabilisable by each K  e  K,2. □

Later on, in Theorem 7.4.1, it will be shown that fi(5) given in proposition 7.4.1 is the 

maximum extended robust stability radius p*(S), and that 1C2 = /Cf, for each S G (0,1]. 

Now, consider the following problem:

Problem  7.4.1. Given that the original plant has multiplicity r (greater than one) on 

its smallest Hankel singular value, construct a A G TZTLoo (77(G) =  r](G + A)), s.t.

(i) ||A||oo = \ j j i (^77 + T r ) ’

(n )  ||zTAy||oo <  r i(l -  5),

(in) (G + A, K) is unstable V K  G /C2.

where l is the multiplicity ofs\ (see chapter 6). □

The solution of the above problem is constructive and it is outlined by the following 

algorithm (whose proof follows in Proposition 7.4.2). First, recall Lemma 7.1.1 in which 

T  G Ti+i V K  G K-2 is written in the form

T  = Y1(s)

sia(s) 0

0 si+ib(s)

0 0

0  ̂

0

(R + Q)(s) j

Xi(s)

in which Vi(s) and Ad(s) are square inner matrices, a(s),b(s) are all-pass functions 

and ||A + QIU < sj+i- In addition, Yi(s) and F(s) {X(s) and Xi(s), respectively) 

share the same first /-columns (rows), which are denoted by y(s)(xT(s)), where X(s)
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and Y  are defined in equation (7.3). To fix notation, let T  G Ti+X C 1ZH 

Y\ G 'RTtp0f p, X i G 'RTCfffi™ with Y-CYy = Ip and X xX f  = Im. Further, a G TTH(Jxl 

and b G 1ZTCf̂ lxl with aa~ — Ii and bb~ = 1 so that R G TZTC^P 1 ^ x(-p 1 ^ with 

min{p — l — 1, m — l — 1} > 0.

Algorithm 7.4.1. The algorithm consists of five steps:

step 1 Define the all-pass function

Y2 := Y\

a(s) 0

0 6(s)

0 0

0 ^

0

Ip-i-i )

step 2 Compute left and right co-prime factorisations of the columns of X f  and the 

ofYf f , respectively; both with inner denominators.

rows

(

*r = (

and

n i n2

/

nr

dx 0 

0 d2 

0 0 

0 0

0

0

0 

0 

0

0 dr

=: N1D1

7

YT =

dx 0 

0 d2 

0 0

0 0

0 0

■■■ 0

n2
D2N2

\hp)0 0 0 dpJ

where Nx,N2, d f 1, d f 1 G TZHoo, NX,N2 are square inner and di,dx are scalar 

all-pass functions.

step 3 Pick any w0 G 7Z. Then write for each i = {1, 2 ,. . . ,  l, l + 1}:

di(jw0) = e3<t>i and di(ju>0) = e3̂  

where — 7r <  f a ,  f a  <  7T.

(recall that \di(juj0)\ = 1, since the dfis) are chosen to be scalar all-pass)

step 4 Define two diagonal inner matrices

a x

A x =

cg+i

, A2 —

Qfl

og+i

such that afifa) are stable, all-pass functions that interpolate dt 1{di 1). Thus,
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case 1: I f  0 < pi < t x (0 < p i  < 7t) then set

OLi
s -  Pi 
s + Pi

s -  Pi\  
s + Pi )

where ar§ (£+S) = h  > °> (arS ( f e f )  = ^ > °)
case 2: If —tv < pi < 0 (—7r < pi < 0) i/ien set

<*i =
5 ~ Pi
S  +  P i

~ ( s - p i ) \
s + Pi )

where arg ( g p f  ) = tt + & > 0, (arg ( g + g )  = tt + & > o)
case 3: If pi = 0 (pi = 0) or pi = - n  (pi = -7r) i/ien set

«i = 1 or a.i — —1, respectively (a, = 1 or &i — —1).

step 5 Denote the matrix consisting of the first l + 1 columns (rows) of N\(N2) by 

JVii (iV2i ) • Then define the destabilising (to all optimal closed-loop transfer

functions) perturbation:

A = Nn Ai
Ph Vo

0

v0 0 - p

A2N21

where p = =  r i( l — <5); = y / j 2 — p2 and

7 (P) =
1

Sl^i+l ■S/+1 Sx p

Then,

□

Remark 7.4.1 (on step 2). The (scaled) Schmidt vectors corresponding to the first 

super-optimal level are matrix functions (because in general their multiplicity l > \). 

However, the columns are linearly independent to each other. Hence, the vector nature 

of each co-prime factorisation, follows. D

Remark 7.4.2 (on step 4). The interpolating functions, as constructed in step 4, are 

needed for the proof of problem 7-4-1, part (in). These are constructed to be stable so 

that A e TZHod so pi > 0, Pi > 0 for all i. □
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The rationale behind this algorithm is to construct a dynamic perturbation which 

interpolates all dynamic parts of every optimal control sensitivity matrix function and 

hence effectively reduces the problem to a constant distance to singularity problem. In 

previous analysis it was shown that all optimal control sensitivity transfer matrices have 

the same /-largest singular values, which remain constant over all frequencies and are 

equal to the first super-optimal level, Si(G). Similarly, all (Z + l)-th level super-optimal 

approximations also have their (Z + 1) singular values constant over all frequencies. 

Knowing the first two distinct singular values of a constant matrix the problem becomes 

equivalent to constructing a minimum norm rank-reducing perturbation.

Proposition 7.4.2. Let A(s) be constructed according to Algorithm 7.4-1. Then A(s) 

has the following properties:

(i) A(s) G TiHoo

(ii) HAD«, = 7 {</>)

(in) H^Aj/lloo = (f>

(iv) det[Im -  A(ju>o)T(jL0o)\ = 0 V T  G T.

Proof. See Appendix E. □

Consequently, the algorithm constructs a destabilising perturbation for all (Z + 1)- 

super-optimal control sensitivity functions (see Appendix E). Further, this particular 

perturbation lies on the boundary of 7 (</>)-ball which reveals the fundamental similarity 

between this construction and the construction of a destabilising perturbation to all 

optimal control sensitivity functions (which lie on the boundary of ri-ball).

Theorem 7.4.1. (CMRS) [GHJOO] Let Ti C be as defined in equation (7.3).

Let xT and y be the first row and column of X  and Y , respectively, and define Vn 

and £(5,p) as in equations (7.4) and (7.13), respectively, for some fixed 5 G [0,1]. Let 

p*(S) be the supremum of p such that there exists a K  for which (G + A, K) G S for 

every A G V ri U £(S,p). Then, for each 5, the supremum of extended robust stability 

is given by

=
Sl+ 1 5 1 /

> T\
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where Si and si+1 are the first two distinct super-optimal levels o fT  with Si = r-i l ■

Proof. The construction of destabilising perturbation in algorithm 7.4.1 together 

with Proposition 7.4.1 show that the constrained maximum robust stability radius 

for any K G 1C2 is given by /P(5). Next, consider K  G ICi\IC2- In this case, 

there exists a frequency cu0 so that T = K (I -  GK)~1 has its first two (largest) 

distinct singular values equal to Si (of multiplicity l) and W(R(ju0) + Q(ju>0)), with 

5! > a(R(juj0) + Q(ju0)) > si+1 (since T  ^ 7/+1). Then, using a procedure similar to 

Proposition 7.4.2, it is always possible to construct a perturbation A 6 RTLfffp in the 

interior of £(5, such that

llAjloo = \fj?  + tq2 < \\xTAyWoo = 4>

where

v1
\  \a(R(juJo)+ Q(juj0)) 

for which (G + A ,K)  ^ S. Thus, fi*(5) is the supremum of the constrained robust 

stability radius among all K G 1C 1 (and also among all K G 1C, since every perturbation 

inside Vri is required to be stabilised). □

The next results are immediate from the theorem:

Proposition 7.4.3. The following three statements hold:

1. For each 0 < 6 < 1,

(G + A , K ) g S  for every A G V ri U S(S, p*(d)), i f  and only if, K  G /C2.

2. (a) For the (extreme) case where 6 = 0,

£(0,y*(0)) = V ri

(b) For each K  G 1C2,

(G + A , K ) g S for every A G [̂ J £(S, fi*(5)).
<5e[o,i]

3. Let an and on- r-\ denote the two smallest (distinct) Hankel singular values of 

G(—s) with an- r-i > oy. Then, an immediate lower bound is given by

p*(5) > yj5anan-r -1 + (1 -  fycr*.
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Proof. Part (1.) follows immediately from Proposition 7.4.1 and Theorem 7.4.1. Part 

(2a.) is immediate consequence of the definitions. Further, part (2b.) is proved by 

using part (2a.) and part (1.). Part (3.) follows from the fact that Si = a f 1 and 

■S/+i < crflr (see chapter 6, Theorem 6.1.4). □

To summarise, the main result is that for any parameter 5 G (0,1], the maximum 

constrained robust stability radius is /x*(8) and is achieved by choosing any K  e 1C2. 

In fact, all perturbed systems inside this ball are stabilisable by any controller K  if 

and only if K  G /C2.

Further, we may think of 5 as the amount of “structure” imposed to the problem. 

Clearly, the “more” structure we impose, the largest is the structured stability radius 

(note that as expected ¿x*(6) is an increasing function of S). However, no matter 

what (5 is (in the interval 0 < 5 < 1), n*{6) is achieved by the set of super-optimal 

controllers K,2, and hence each super-optimal controller K  G /C2 guarantees to stabilise 

all A G U,5e[o 1] /u*(<5)) (note that Dn =  £(0, ¿x*(0))).

Com putation of S. In simulation experiments the need of specifying a 5 G [0,1] 

such that a A is constructed with HAHoo = n*(6) and H^Aj/Hoo = ^  appears to be 

not trivial. Therefore, in the sequel a method for deriving an appropriate pair {¿, A} 

is presented:

Consider first a perturbation A and assume that for an unspecified 5, it satisfies 

||A||oo = n*(S) and Ha^AyH^ = Then:

where 'ip := 51 Sl±1. Thus,r si+i ’
II^Aylloo _  1 -  5 __

|| | |oo a/1 +
Solving in terms of 5,

P — = 72 ^  S2 -  26 + 1 = q2 + 72<$̂
1 + dip 

i.e.

52 — (2 + q2̂ )^ + 1 — 72 =  0
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with solutions

c (2 + 72̂ ) ± v/(2 + 7V)2- 4(1 - 72)
¿1,2 = -------------------2-------------------

= 1 + C f  ±  1 7 ^ 7 2V' +  74̂ 2 + 472

By selecting the solution

5* = 1 + ^ y/472?p + 74/02 + 472

it is guaranteed that 5* e [0,1]. Further, by defining

A y/1 + 6
¿-̂ new || a ||

l|A|| «1

it is guaranteed, by construction, that ||Aneil,||oo = II*TA neit;?/||oo Sl •

7.5 E xam p les

In this section we present examples which verify certain aspects of the derived 

theoretical results. As it was shown before (Lemma 7.2.1 and Lemma 7.2.2) there 

exist boundary perturbations A which are destabilising for every optimal controller. 

The examples given below verify some of the derived results.

Example 7.5.1. Consider a nominal plant with the following balanced realisation:

2.9688 -6.3584 1.5299 0.9490
4.6752 2.9189 -1.7270 -1.8414

-1.7570 -0.3720 0 0
0.3923 2.4970 0 0

and gramians equal to

so that, an = 0.5459 =: s11.

E =
0.5459 0

0 1.0917

One maximally robust controller is computed as:

-16.1058 -1.7104 1.1866
Kopt = 10.9709 1.5194 -0.3393

9.3899 0.9425 -0.2105
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The observer-based generator of all stabilising controllers is:

-8.906
11.22

-5.33
-8.757

-3.219
-0.3407

0.7188
2.287

1.53
-1.727

0.949
-1.841

-2.803 1.582 0 0 1 0
-1.739 1.687 0 0 0 1
1.757 0.372 1 0 0 0

-0.3923 -2.497 0 1 0 0

and further

-2.969 -2.338 1.53 0.949 -2.969 -9.35 -3.219 0.7188
12.72 -2.919 -1.727 -1.841

, M â
3.179 -2.919 -0.3407 2.287

-2.803 1.582 1 0 -1.757 -0.372 1 0

-1.739 1.687 0 1 0.3923 2.497 0 1

are inner factors of the coprime factorisation of Go, which are needed in later analysis. 

The second super-optimal level is s2 = 0.13955. Further the unique level-2 super- 

optimal controller is:

-2.9688 -2.3376 6.4237 0 0 0
3.1792 -12.5940 -8.8623 0 -4.7201 3.1716

-3.4707 -3.5208 -6.1439 0 -1.7176 1.1541

0 0 0 -6.1439 0 0

0 3.1676 2.9015 0 1.5033 -0.4111

0 2.2834 2.0916 0 0.9683 -0.0947

The maximising vectors Mv and w~M are found to be:

-6.1439 3.4707 3.5208 -1.7176 1.1541
0 -2.9688 -9.3504 -3.2188 0.7188
0 3.1792 -2.9189 -0.3407 2.2872

-5.5319 1.800 0.9072 -0.9760 0.2179

-2.9688 -2.3376 6.4237 -1.8003
12.7168 -2.9189 -8.8623 2.4382

0 0 -6.1439 3.4272

-2.8027 1.5819 2.9015 -0.8498
-1.7385 1.6867 2.0916 -0.5271
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Then the following perturbation can be constructed which destabilises the feedback loop 

above when the optimal controller Kopt is employed:

-1.1907 1.2646 0.1982 0.0943

s -0.0437 -0.2103 -1.3281 0.4195
-0.1045 -0.0807 0 0
-0.1284 -0.0959 0 0

Further, the perturbation was constructed such that ||a;TA?/||0O = ~  = 0.19531 < 

0.54585 =: jj- and || A||oo = = 1.6182, where 5 = 0.6422. The first table shows the

poles of the four closed-loop transfer functions (see equation (5.3)), when the maximally 

robust controller Kopt is connected. A necessary and sufficient condition of internal 

stability is that these four transfer-functions have stable poles. However, note that 

there exists one unstable pole corresponding to each transfer function and hence the 

feedback loop is unstable.

P i ( H u ) P i ( H 21) P i ( H 22)

-2.858+5.4717i -2.858+5.4717i -2.858+5.4717i -2.858+5.4717i
-2.858-5.4717i -2.858-5.4717i -2.858-5.4717i -2.858-5.4717i

-6.2408+0i -6.2408+0i -6.2408+0i -6.2408+0i
-1.4833+0i -1.4833+0i -1.4833+0i -1.4833+0i

0 .0 0 2 3 5 6 9 + 0 i 0 .0 0 2 3 5 6 9 + 0 i 0 .0 0 2 3 5 6 9 + 0 i 0 .0 0 2 3 5 6 9 + 0 i

On the other hand the same perturbation is stabilised by the super-optimal controller 

Ksopt■ The second table shows the poles of the four closed-loop transfers when the 

super-optimal controller is connected to the loop; in this case all poles are stable.

P i ( H n ) P i ( H n ) P i ( H 2i ) P i ( H 22)

-2.858+5.4719i -2.858+5.4719i -2.9439+5.4522i -2.9439+5.4522i
-2.858-5.4719i -2.858-5.4719i -2.9439-5.4522i -2.9439-5.4522i
-0.013915+0i -0.013915+0i -2.858+5.4719i -2.858+5.4719i
-1.4785+0i -1.4785+0i -2.858-5.4719i -2.858-5.4719i
-6.1735+0i -6.1735+0i -0.013915+0i -0.013915+0i

-2.9439+5.45221 -2.9439+5.4522i -1.4785+0i -1.4785+0i
-2.9439-5.4522i -2.9439-5.4522i -6.1735+0i -6.1735+0i

-6.1439+0i -6.1439+0i -6.1439+0i -6.1439+0i

Hence, the particular perturbation A constructed above is destabilising to the optimal 

closed-loop, i.e. (G0 + A, Kopt) ^ <S, where on the other hand (G0 + A, Ksopt) G S.
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In the previous example we considered the simple case where the smallest Hankel 

singular value of the nominal plant has multiplicity one. In the following example 

we study the case where the smallest Hankel singular value of the nominal plant has 

multiplicity larger than one (two) and the constraint posed on the perturbation is 

specified in terms of its norm (directionality). Again we follow a state-space analysis.

Example 7.5.2. Consider a nominal plant with the following balanced realisation:

1.1737 -1.3187 1.7698 0.5584 -0.4715 1.3261
2.0211 0.5016 0.6891 0.9819 -0.1061 0.0662

s -1.1173 -1.2526 1.1179 -0.1396 -1.6694 1.2492

0.7688 0.6729 -1.7194 0 0 0
-1.2924 -0.0312 -0.7927 0 0 0
0.1770 0.7253 -0.8845 0 0 0

and gramians equal to

0.9767 0 0
0 0.9767 0
0 0 1.9533

-iand thus, an = 0.9767 =: sj .

One maximally robust controller is computed as:

-3.0487 -0.8789 0.8039 -0.0779

Kopt =
-3.6984
1.7906

-0.6687
0.1414

-0.0607
-0.2886

-0.7684
0.0061

-0.3942 -0.2618 0.9208 0.1890

compute

-1.1737 -2.0211 0.5587 0.5584 -0.4715 1.3261
1.3187 -0.5016 0.6263 0.9819 -0.1061 0.0662

M =
-3.5396 -1.3781 -1.1179 -0.1396 -1.6694 1.2492
-0.5717 -1.0054 0.0715 1 0 0
0.4827 0.1086 0.8547 0 1 0

-1.3578 -0.0678 -0.6395 0 0 1

and
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-1.1737 -2.0211 2.2347 0.7872 -1.3233 0.1813
1.3187 -0.5016 2.5052 0.6889 -0.0319 0.7426

s -0.8849 -0.3445 -1.1179 -0.8803 -0.4058 -0.4528
0.7688 0.6729 -1.7194 1 0 0

-1.2924 -0.0312 -0.7927 0 1 0
0.1770 0.7253 -0.8845 0 0 1

which are inner factors of the doubly coprime factorisation of the nominal plant Gq. 

Moreover, the second super-optimal level is S2 = 0.1216 and the unique super-optimal 

controller is:

-1.1737 -2.0211 0.5587 -0.8580 0 0 0 0
1.3187 -0.5016 0.6263 -0.9619 0 0 0 0

-0.8849 -0.3445 -2.4324 -0.6730 0 -1.2463 1.2835 -0.2137

S 1.7285 0.6730 -0.8559 -1.5560 0 -0.8115 0.8357 -0.1391
0 0 0 0 -1.5560 0 0 0
0 0 -1.8151 -0.9292 0 -0.6757 -0.0640 -0.7620
0 0 0.7703 0.3943 0 0.0606 -0.3266 0.0794
0 0 -0.2258 -0.1156 0 -0.2875 0.9087 0.2124

The corresponding maximising vectors (scaled Schmidt pair) are:

-1.5560 -1.7285 -0.6730 0.8559 -0.8115 0.8357 -0.1391
0 -1.1737 -2.0211 2.2347 0.7872 -1.3233 0.1813

S 0 1.3187 -0.5016 2.5052 0.6889 -0.0319 0.7426
0 -0.8849 -0.3445 -1.1179 -0.8803 -0.4058 -0.4528

2.1154 1.0755 0.9413 -1.5230 0.7148 -0.3219 0.6208
-1.5328 -1.0658 0.3062 -1.1109 - 0 . 0 0 0 0 0.8877 0.4603

-1.1737 -2.0211 0.5587 -0.8580 -0.5603 1.4067
1.3187 -0.5016 0.6263 -0.9619 -0.9852 0.0953

-3.5396 -1.3781 -1.1179 -0.6730 0.0397 1.6976
0 0 0 -1.5560 -2.8761 0.6933

-0.5717 -1.0054 0.0715 -0.9292 -0.9966 0

0.4827 0.1086 0.8547 0.3943 0.0782 -0.3040
-1.3578 -0.0678 -0.6395 -0.1156 0.0250 0.9527

Pick 5 = 0.3609. The following perturbation is constructed such that ||xTAy||0O = 

^  = 0.6242 < 0.9767 =: and HAH«, = n(5) = 1.8729.
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-1.4651 3.6437 0.1326 -0.5491 1.1746 -1.9955
0.6349 -3.1794 -0.5857 0.0431 -0.8775 -0.3038

s 0.5241 -4.3411 -1.3983 -0.4441 0.6327 1.6165
-0.0383 -0.1137 -0.0359 0 0 0
-0.0171 0.0589 0.1457 0 0 0
-0.0329 -0.0127 -0.1445 0 0 0

The table below shows that this perturbation is destabilising for the optimal controller 

Kopt. The table summarises the poles of the four closed-loop transfer functions. Among 

them there is one unstable pole for all transfer functions and hence the closed-loop is 

unstable.

P i ( H n ) P i ( H u ) P i ( H 21) P i { H 22)

-3.9522+0i -3.9522+0i -1.1718+2.3745i -1.1718+2.3745i
-3.0238+0i -3.0238+0i -1.1718-2.3745i -1.1718-2.3745i

-1.1718+2.3745] -1.1718+2.3745i -3.0238+0i -3.0238+0i
-1.1718-2.3745i -1.1718-2.3745i -3.9522+0i -3.9522+0i

0 .0 0 0 4 5 4 9 3 + 0 i 0 .0 0 0 4 5 4 9 3 + 0 i -0.50675+0.20291i -0.50675+0.20291i
-0.50675+0.20291i -0.50675+0.20291i -0.50675-0.20291i -0.50675-0.20291i
-0.50675-0.20291i -0.50675-0.20291i 0 .0 0 0 4 5 4 9 3 + 0 i 0 .0 0 0 4 5 4 9 3 + 0 i

However, when connecting the super-optimal controller Ksopt, as theory suggests, the 

perturbed closed-loop is stabilised because the perturbation lies inside the ball of the 

extended permissible perturbation set. In this case, as shown in the table below, the 

four closed-loop transfer functions have stable poles.

P i ( H u ) P i ( H 12) P i ( H 21) P i { H 22)

-3.9498+0i -3.9498+0i -1.2457+2.3798i -1.2457+2.3798i
-2.9929+0i -2.9929+0i -1.2457-2.3798i -1.2457-2.3798i

-1.1718+2.3741] -1.1718+2.3741i -0.30174+0i -0.30174+0i
-1.1718-2.374H -1.1718-2.3741i -1.1718+2.3741i -1.1718+2.3741i
-0.017093+0i -0.017093+0i -1.1718-2.3741i -1.1718-2.37411

-0.50228+0.19514i -0.50228+0.19514i -3.9498+0i -3.9498+0i
-0.50228-0.19514i -0.50228-0.19514i -2.9929+0i -2.9929+0i
-1.2457+2.3798i -1.2457+2.3798i -0.017093+0i -0.017093+0i

-1.2457-2.3798i -1.2457-2.3798i -0.50228+0.19514i -0.50228+0.19514i

-0.30174+0i -0.30174+0i -0.50228-0.19514i -0.50228-0.19514i

-1.556+0i -1.556+0i -1.556+0i -1.556+0i
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7.6 S p ectra l R adius C onstrain t

Throughout this chapter, mainly for simplicity reasons, we selected to constrain the 

norm of the perturbation set along a specified worst direction (equation 7.10). This 

is essentially a structural constraint, which was proved to be efficient for the purposes 

of extending the robust stability radius in other directions. However, Lemma (7.2.2) 

suggests that there are more degrees of freedom that can be exploited, by means of 

imposing alternative-type constraints. One possibility is to formulate the directionality 

constraint simultaneously in terms of a norm-constraint and a spectral radius constraint 

(7.11). The analysis of this problem is similar to the previous case of CRSP except 

for additional technical complications in the solution of the corresponding distance to 

singularity argument.

In addition, formulating appropriate bounds in terms of the spectral radius constraint 

appears to be difficult problem in comparison to the norm constraint (which in the case 

of block-diagonal uncertainty models is equivalent to the solution of an LM1 [JH+06]). 

For this reason we will not pursue this problem further on the thesis and the efficient 

solution to the problem in terms of simultaneous norm and spectral radius constraints 

will be a topic of future research.

7.7 S tru ctu res and th e  ex ten d ed  rob u st s ta b ility

One of the major results of this chapter (Theorem and Proposition 7.4.1) is the fact 

that any super-optimal controller guarantees stability not only to every perturbed plant 

inside the e*-ball, but further to all (additively) perturbed plants which lie outside the 

e*-ball and inside the ¿t*(5)-ball provided the corresponding perturbations possess a 

given “structure” specified by parameter 5. In other words, the class of the later 

perturbations has norm greater or equal to e* and the perturbations are “structured” 

because they are constrained along a certain direction (see (7.13)). We should note 

here that e*-ball is the optimal ball and hence the uncertainty set cannot be extended 

norm-wise (as e* would not be optimal if this was the case). However, the only way 

to include perturbations of norm greater than e* in the non-destabilising permissible 

uncertainty set (and hence extend the uncertainty set) is by imposing constraints on the 

structure of perturbations (7.12). Hence, S quantifies the imposed structure in relative
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where j ) structure denotes an arbitrary structure (e.g. block diagonal, etc. ).

Suppose that

<\>0 = max ||xTAy||00
/ \  (z _ L . 'Q ' j y s t r u c t u r e  sl

and set 5a := 1 — <f>0. Then p*(50) is a lower bound of the maximum structured robust 

stability radius (relative to the given structure), i.e.

fj*(50) < sup{^ : 3Ks.t.(G0 + A ,K ) £ 5, VA e V structure, ||A|| < p)

Further, any K  £ 1C2 guarantees a structured robust stability radius of at least pf(50), 

and H*(S0) > e* (the maximal unstructured robust stability radius) provided that 50 ^  0.

Proof. Follows immediate from theorem 7.4.1 and proposition 7.4.3 since:

{A £ V̂ ucture . ||A || <  g  £(80,H*(60))

and all A £ £(80, p*(80)) are stabilised by every K  £ JC2. □

Note that for comparison (compatibility) reasons, in the above theorem we scale by — 

the normalised set. In that line, the theorem essentially states that the extended robust 

stability, fj.*(50), serves as a better upper bound the structured robust stabilisation 

problem, than the maximal robust stability e*. In the case where a designer ignores 

the structure of the uncertainty (because the problem is unsolvable, difficult or for 

any other reason) the extended robust stability radius is then closer to the structured 

robust stability radius. In addition, if the structure is somehow “compatible” with the 

artificial structure imposed in problem 7.2.2 then this upper bound can be tight. Now, 

some examples supporting the ideas discussed above are presented.

Compatibility issues

Throughout this chapter, we considered the following three sets:

1
£>° =

V) =

A :=

A :=

T>1 — l A  :=

|A||oo < —Si

II All ||oo <
1 -S_

Si
and IIAIloo < 1 5  1—  + —

S i  \ S ( + 1 Sl

: HAH«, <
1

S l S ( + i
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As it was shown before, T>° C T>f and V) C P j .  The question examined in the following 

examples, is how compatible are the above sets (whose stability radius is well known) 

with a structured set.

Example 7.7.1. Assume that G(s) is a diagonal system with multiplicity 2 on its 

smallest Hankel singular value and that the first two (distinct) super-optimal levels are 

Si = 0.5, si+1 = 0.2. Because of the diagonal form of the system we make the extra 

assumption that the Schmidt pair corresponding to the first super-optimal level (si) are

equal to xT = y' = h  0 , times an all-pass function. Further, suppose the uncertainty

set is described by additive perturbations A with norm bound HAH«*, < Then the

maximal robust stability radius is given by e* = -F. However, suppose the uncertainty 

is actually of the form

( sinö cos 9

Gtrue(s) — G(S) + — cos 9 sinö *

\ * * * /
where denotes terms which remain unstructured. Then

\xT/\y\\œ I. 0

sinö cos 9 *

— cos 9 sin# *

* * *

\
sin 6 cos 9 

— cos 9 sin 9
= 1

Solving in terms of 5 the equation:

|^TAy||c
Sl

we define 5 := 1 — si. Then, the extended robust stability radius is

1
n*W = \ h r

ö l
—  +

S i  \ S / + 1 S i

1 +  S ;+1  — Si  

S l S / + i
3.5 > e*

Remark 7.7.1. From theory, the Schmidt pair is always point-wise orthogonal which 

supports the choice in the above example. Assuming that xT = y' ■ 

we would get 6 = 0.1910 and hence p*(5) = 2.2685, still larger than e*. □

l
V2
1

.75

7* 0 0

" 7 5  0 0

Example 7.7.2 (Complex diagonal structure T>TL'f0). Consider the unit ball of

V7i+^ ' LOC>

B V H t  = <A =
' m  •• 0 ^

: <5ieH+’lxl, Halloo <1

0 .. • Sn(s)y
>
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Assume S\(R) > s2(R) > 0, l = 1 and let x j  (s) and yi(s) denote the i-th element of 

xT and y, respectively. Let also Zj(s) — xj(s)yi(s). Then

max H^AyHoo = max \\'S ^6ix^y,
_L 'RTV J-/ +  A c i R T ) ,W +  (A6-BPH+ S1 Az^BVHZo .=1

\ ii I >max
^  1=i

The maximum is attained on the boundary. Hence, write now each Si in a polar form

8i = _Le  j *Si
n  n  i

max || SiZiWoo = max m axlY ^—e^^zAju)] 
|i i |< -L  11 4 - i  * £ [0 ,2 * )  w eK  S i1 l|— si 2=1 z=l

1 "= — max max | e ^ zA ju )  I
S i 0i6[O,27r) v e i l  z — 1'

2=1

1 71= —max max |
S i [0,27r) —— '

2=1

— max I | S'] Zi(jSj uj&TZ I ^—J K. ¿=1
uj \ > =: 0o

Si

Note that the Cauchy-Schwartz inequality implies that:

\ j r Zi(juj)\2 =  \J2 xJ { ju )y i { ju j ) \2 < ( ^ 2 \ x J ( j u ) \ 2 ) ( 5^||/i(jw)P
¿=1 1=1 \i=l

and hence </>G < 1 . Setting S0 = 1 — <f>0 shows that

= 1
,i=i

/**(«.)
1-^ 0

Si

is a lower bound of the maximal robust stability radius relative to 'DTCf0- Note that 

p*(60) > e* = s f 1 for every 60 ±  0 and that 'ymax := max̂ g-R. {| Yli=i ^iCMI} can be 

easily obtained (e.g. graphically). □

The examples above show that a priori information about the structure of the 

perturbations set implies better robustness. Then, of course, it is only arguable of 

how “robust” results can someone achieve using the artificial structure in (7.12) (i.e. 

how tight as an upper bound), compared to the robust stabilisation problem were the 

true structure is fully exploited. In this line, it should be noted that links between 

the complex structured singular value - a highly structured set - and the discussed 

structure were reported in [GHJOO] and [JH+06], for the constant matrix case.
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7.8 Sum m ary

In this chapter we considered additive perturbation models where the smallest Hankel 

singular value of the nominal plant had multiplicity l > 1. It is known from previous 

chapters that the maximal robust stability is achieved by designing controllers which 

minimise the infinity norm of the control sensitivity transfer function; these functions 

are described by the term “optimal” and the problem of maximising the robust stability 

radius is known as the maximally robust stabilisation problem. The solution to the 

later problem involves a Nehari approximation whose solutions are obtained via an 

all-pass dilation technique.

In this chapter it was proved that on the boundary of the ball there exist perturbations 

which are destabilising for all optimal feedback systems and therefore are called 

uniformly destabilising. Further, all such perturbations have a projection of magnitude 

equal to the maximal robust stability radius (ri) along a worst direction determined 

by the maximal Schmidt vectors of the associated Hankel operator. It is proved 

that all frequencies are equally critical, in the sense that the Nyquist criterion can 

be violated at an arbitrary frequency lu E TZ by constructing appropriate boundary 

perturbations. Hence, the only way to extend the uncertainty set is on the basis of 

its structure. It is shown that by imposing a parametric constraint on this projection, 

H^Aylloo < r i( l  — 6), 5 E [0, 1), i.e. partially characterising an “optimal” structure 

to define permissible perturbations, the uncertainty set can be extended to a ball with 

radius up to

This is the maximum possible extended robust stability region of perturbed plants. 

It was shown that every super-optimal controller K  £ IC2 guarantees stability for 

any perturbation lying inside the y*(5)-ball. Finally, the chapter has presented an 

interpretation of this result in the case of perturbations with arbitrary structure 

and a method which guarantees robust stabilisation in this case using super-optimal 

controllers.
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Chapter 8

Robust Stabilisation Under 
Coprirne Perturbations

Until this point we have considered uncertainty on the nominal plant to arise as an 

additive perturbation. Of course, modelling uncertainty is not a trivial task and thus 

there are several types of unstructured uncertainty used in the modelling process, 

depending on the application. A popular type for modelling uncertainty is to consider 

all admissible perturbed plants, around the nominal plant, expressed in terms of stable 

co-prime factors. Although this may seem to be an “artificial” way for modelling 

uncertainty, it possesses certain advantages over other perturbation types. Its main 

advantage over additive and multiplicative types of uncertainty is the complete removal 

of technical assumption (7.1) which means that the nominal and perturbed plants are 

allowed to have different number of poles in the right half plane. Co-prime factors 

uncertainty in the framework of robust stabilisation problem was first studied in [Vid85] 

and thereafter the theory was successfully applied to various problems by [MG90]. The 

theoretical results developed throughout this chapter aim to derive stronger solutions 

to the maximally robust stabilisation problem in the multivariable case.

8.1 In tro d u ctio n

The control setup we are interested in is shown in figure 8.1. Consider the following 

generalised plant:

(8 .1 )
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where P 22 := G  denotes the plant and admits normalised lcf and ref:

G = N M - 1 = M~lN-1

respectively. Recall that the coprime factors satisfy the following Diophantine 

equations:
(  V - f l \  ( M u \  ( I 0

( 8 . 2 )

where N ,N ,M ,M ,U ,U ,V ,V  6 TZHoo. Further, it is assumed here without loss of 

generality that the coprime factors are normalised and hence,

MM~ + NN~  = /, M~M  + N~N = I (8.3)

are satisfied as well.

Definition 8.1.1. A perturbation on the nominal plant G is said to be permissible for 

the control setup in figure 8.1 , if it can be written as A := (^/\N A 6 T>st where

T>se ■— {A : A G IZHoo, ||AHoo < e} .

□

Figure 8.1: Closed-loop system under stable perturbations

It can be verified that the perturbed plant G& of figure 8.1 is the same with the upper 

LFT of the generalised plant ([MG90], [ZDG96], [GL95]):

PU(P, A) = (M + Am ) - ‘(1V + A n )
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as shown in figure 5.4(a), of chapter 5. Further, the lower LFT is

(I -  GK)~xM~l

Definition 8.1.2. Consider the (nominal) feedback system (G ,K ) in Figure 8.1 with 

A = 0. If (G, K) is internally stable we say that K  stabilises G and write K  & 1C, or 

equivalently (G, K ) G S. Further, (G, K ) is said to be e-robustly stable if and only if 

(Ga , K) G S  for every A G T>Sc. □

In the framework of generalised regulator problem 2.4.1, the next theorem gives 

necessary and sufficient conditions for the coprime perturbations robust stabilisation 

problem:

Theorem 8.1.1 (Robust Stabilisation). [Vid85], [MG90] Let G G IZCoo admit left 

and right coprime factorisations G = NM ~l = M _1N , respectively. Then (G, K) is 

e-robustly stable if and only if (G, K) G S  and HTHoo < e_1 where

T = ( I - G K y 'M - 1

is the corresponding closed-loop system.

Proof. See [MG90], Theorem 3.3. □

It follows immediately that the robust stability radius e is maximised by solving:

If a controller K  stabilises G then it is well-known that it can be written in the bilinear 

form K  = (U + MQ){V + NQ)~l , where Q G Tioo and all other terms are defined as 

in equation (8.2). Then, the closed-loop transfer function is equal to

T  = !(/ -  GK)~1M~l
J )

K\  , , (u + MQ
(V -F NQ) =

I  \ V + NQ

U
+

M

N
Q
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Following the standard procedure developed in chapter 5 ([Fra87], [GI086]) the 

maximum robust stabilisation problem can be reduced to a Nehari approximation, 

by considering, the following sequence of norm preserving transformations:

mu i m + n Q u

r , +
O O

O O

(  M
where we defined T2 :=

V'v
and have used equation (8.2). Thus:

so that

\\M~U + N~V + Q\\00 = v V  —1

(8.4)

and

7„r t := W  P U  = J m ~ U  + N ~V f„  +  1) = {€*)-■ (8.5)
/ Loo *

using the Nehari theorem.

Hence, the computation of the maximal stability radius involved in the co-prime factor 

robust stabilisation problem reduces to a Nehari approximation problem. A state- 

space parametrisation of all optimal solutions to this problem is well known (see 

[Glo84]). This solution proceeds via the derivation of a state-space realisation of 

R := M~U + N~V.

Proposition 8.1.1. [MG90] Assume G 6 AbCoo with a (minimal) state-space 

realisation:

G =
A B

C 0

Then G has an essentially unique normalised right and left co-prime factor represen-
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tation G = N M -1 = M lN (i.e. unique up to multiplication by unitary matrices from 

the right and left, respectively). Further,

and

M u
N V

A -  B B 'X B ZC'
s -B 'X I 0

C 0 /

A -  ZC'C B ZC'
s B'X I 0

- C 0 I
where X  and Z are the unique stabilising solutions of the algebraic Riccati equations:

A'X  + X A -  X B B 'X  + C'C = 0

and

AZ + ZA! -  ZC'CZ + BB' = 0

respectively.

Proof. See chapter 3, Proposition 3.1.2. Also, see [MG90], Propositions 2.21 and

2 . 22.  □

Straight substitution from the Lemma above shows that:

- A 1 + X B B ' - { I  + XZ)C '

B' 0
( 8 .6)

after using an appropriate similarity transformation to remove the unobservable part. 

Thus R e RRifa- The following theorem gives equivalent conditions for robust

stabilisability.

Theorem 8.1.2. A controller K stabilises G = NM ~l — M~1N and satisfies

V
(/ -  G K )-lM~l

I
< 7

if and only if either condition 1 or 2 below holds:

1. \\R\\h <

< y/1 ~ 7~2

Proof. The equivalence with condition 2 is proved in [MG90]. Then using norm 

preserving transformations the first claim can also be proved. □
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8.2 O p tim al and S u p er-op tim al ap p rox im ation s

As shown in the previous section the set of all internally stabilising controllers K, and 

the corresponding set of all stable closed-loop systems T  are parameterised as:

£  = {(£/ + MQ)(V + NQ ) - 1 : Q E  H 00}

and

Q '.Q e H -

respectively. In order to parameterise the set of all optimal (maximally robust) 

controllers C K, and the corresponding set of optimal closed-loop systems C T, 

we need to solve a Nehari approximation problem, defined in equation (8.4). The set 

of all optimal solutions is parameterised in the following theorem.

Assumption 8.2.1. To simplify notation it is assumed throughout this chapter that 

the largest singular value o/ T r  is simple (non-repeated).

Theorem 8.2.1 (Optimal Nehari approximation). Consider R E  TlH(Qpxm with 

realisation ( A r , B r , Cr , 0) defined in equation ( 8 . 6 )  with A ( A r ) C C+. Then there 
exists Qa E  Tifttr+rn-DHP+m-1) s u c h  t h a t  aW q  e , for which ||/? + QIU =

HTflll = Si (Nehari optimal approximations of R), are given by

Q = H Qa,s(1

The corresponding “error” system is given by

H :=

where || ̂ 2 2  ||oo < si- Further, HH~ = H~H = s \ f

R +  Q 1 1 Q1 2

Q 2 1 Q22

q 2  töl1p+m—l

(8.7)

Proof. See (as in chapter 6) [Glo84]; see also [JL93] for a more general setting. □

It then follows from Theorem 8.2.1 that

and

/Ci = {{U + MQ)(V + NQy 1 : Q E  ^ ( Q a, s f 1 BHœ)}

Q - . Q e  T l { Q a , S i  1 ( 8 .8)
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A more revealing parametrisation of T\ for our purposes can be obtained via the method 

used to construct super-optimal approximations (see chapter 6 and 7). Before stating 

this parametrisation we need the following result.

Theorem 8.2.2. Consider everything as defined in Theorem 8.2.1. Then 

(i) There exist square inner matrix functions:

such that

V

V~ 0 

0 I

( v  V l ) and W~ =
w

W7

H n Hn  

H21 H22

IT 0 

0 I

Si<y 0

0 H

where a(s) is scalar anti-inner, 

(ii) H can be decomposed as

H = R + Qa
R 0 

0 0
+

Qu Q i2 

Q 21 Q22

where R € and Qio G R H ^.

M  52(^ = 11̂ 11.

(iv) All si-suboptimal approximations of R are generated as Q = RfiQa, s]"1 

Proof. See chapter 6, Theorem 6.1.3. □

It follows from the definition of R and equation (8.4) that generating the optimal ap-

proximations of T  implicitly requires the parametrisation of all optimal approximation 

of R. The following theorem exploits Theorems 8.2.1 and 8.2.2 and gives a pseudo-

diagonal decomposition of the set Tp.

Theorem 8.2.3 (Optimal and Super-Optimal Decompositions). Consider 

everything as defined in Theorems 8.2.1 and 8.2.2. Then

(i) The set of all optimal closed-loop transfer functions, 7) can be parameterised as:

^sia(s) 0 ^

0 R + r,(Q a, s ^
1\ — Y A

1 0

V 0 7 /
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where

Y  :=

are square all-pass.

and X  = W~

(ii) The set of all level-2 super-optimal closed-loop transfer functions, T2 can be 

parameterised as:

( c  n ( c \  n  q  \

0

t 2 = y 1

sia(s) 0

0 s2b(s)

0 0

1 0

0 1

0 0

R + S fiR ) 

0 

0

dm.

X ,

where Yi (X\) has common first column (row) with Y  (X). Further, both Y\ and 

Xi are square all-pass and S2(R) and R are as defined in Lemma 7.1.1.

(in) The first two super-optimal levels of T  are (y/ s\ + 1, y/s\ + 1) where (si,S2) are 

the first two super-optimal levels of R.

Proof. See appendix F.

Corollary 8.2.1. The maximum robust stability radius is given by

e* = 1
V  si + 1

Proof. Immediate from Theorems 8.1.1 and 8.2.3.

□

□

8.3 U n iform ly  d estab ilisin g  p ertu rb ation s

It is well known that co-primeness (as a property) of a perturbed plant is eventually lost 

outside the ri-ball, where r\ is the maximum robust stability radius ([Vid85],[MG90]); 

i.e. the minimal distance <5 = ||A^ A^H for which (N  + A N,M  + AM) fails to be 

a co-prime pair cannot be smaller than 7V This is natural as such perturbed systems 

cannot be stabilised by any compensator, as they have a pole/zero cancellation in the 

RHP. Moreover, it is well known that in this case 5 > r\ is general. Of course, under 

such perturbations the plant is the nearest unstabilisable plant and in [MG90], p.59,
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a simple example verifies this brief discussion. In particular, Vidyasagar constructs 

such perturbations in [Vid85], pp. 280-281. At the present work we do not intend to 

discuss any further this phenomenon. Nevertheless, we are interested in characterising 

all uniformly destabilising perturbations which, as it will be shown later, exist on the 

boundary of r r ball and which cannot be stabilised by any optimal controller. Formally 

we define,

Definition 8.3.1. A A e dT>sE* is called uniformly destabilising if (G + A, K) ^ S for 

every K  £ 1C\. D

Example 8.3.1 (Destabilising perturbation). Suppose p — m = n — 2, and

assume a T  E T\. Recall from Lemma 8.2.3 that such T admits factorisation T  = Y T X , 

s.t. X X ~  = Y~Y  = I. Take

&  ° )

0 )

Clearly, ||Â||oo = A —, ie. it lies on the boundary of r\-ball. Define A := X~AY~  
V  s i +  1

and pick any frequency uj0 ElZ so that,

det(I -  AT)(ji0o) = det{I -  X ~ A Y ~ Y T X ){ju0)

=det(I -  X X ~ A Y ~ Y T )(ju0) = det(I -  A T){ju0)

A
a(s)' «1+1

but

(Â T){ju0) =

0 1 0
0 -sio(ji'w0) 0

(  s\a{jui0) 
0 

1

V 0

0 \
[r  + SAR)) (jUo)

0

1

So,

det(I — AT)(juj0) = det
0 0 

0 1
= 0

Although this A may not be permissible (as A ^ TLoo in general) it is possible to 

“interpolate” A at lo0, i.e. define A(s) E TCH^, A(jua) = A(ju0) and repeat the 

above argument to show that generalised Nyquist criterion is violated and hence A is a 

destabilising perturbation for T. D
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The point of example 8.3.1 suggests that there exist destabilising perturbations to 

every optimal closed-loop transfer matrix on the boundary of the iq-ball. The next 

Lemma establishes this formally and shows that such perturbations can be chosen 

to be real-rational. The proof of the Lemma (which is omitted) relies on a direct 

construction of such perturbations using the techniques of [Vid85] (chapter 7). The 

construction reveals that all frequencies are “equally critical”, in the sense that such 

perturbations can be constructed so that the generalised Nyquist stability criterion of 

the open-loop perturbed system can be violated at an arbitrary frequency (including 

zero and infinity).

Lemma 8.3.1 (Existence). There exists A =  ̂ / \N  ̂ 6 dT>se* such that

{(M + AAf)-1(lV + An ), K} £ S for every K  € /Ci. Furthermore, A can be chosen to 

be a stable real-rational matrix function.

Proof. See Lemma 7.2.1, chapter 7. □

Lemma 8.3.2. Consider the two vectors:

l  M(s) \  (  -N ~ (s) \  , N
£(s) = 1 v(s) and ip(s) = [ __  I w(s)

\  JVM j  \  M - ( s )  j

where v(s) and w(s) are the first columns ofV(s) and W(s), respectively, defined in 

Theorem 8.2.2. Then

(i) £(s ),?/j(s ) € KCoc, £~(s)f(s) = ip~(s)il>(s) = 1 and (£(s),ip(s)) are point-wise 

orthogonal, i.e. ij;~(s)£(s) = 0.

(ii) Let ysc(s) := —?== (sia(s)f(s) + *l>(s)). Then ysc(s) e TiC^ and y~(s)ysc(s) =
v si+1

1 .

Proof, (i) The result follows immediately from the fact that

(see equations (8.2) and (8.3)).

(ii) The result follows since

y7cVsc = - ¿ 7 (sia~ r  +
T  1

= - 2T T (sii~ i + ^~^) = 1
S j  T  I
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using the fact that a~(s)a(s) = a(—s)a(s) = 1 since a(s) is scalar anti-inner and using 

the point-wise orthogonality of (£(s),^>(s)) established in part (i). □

The next Lemma shows that a necessary condition for a A € dVSet to be uniformly 

destabilising is that it is aligned with a particular direction at an arbitrary frequency. 

For simplicity we continue to assume that si(R) > S2{R) > 0 (according to assumption 

8.2.1).

Lemma 8.3.3. Let A E dV$ti, be a uniformly destabilising perturbation of G. Then, 

there exists an oj0 E R  U {oo} such that

II^Aj/acIloo = xT(jcu0)A(juj0)ysc(juj0) = e*

Proof. Take any $  E with ||<f>|| < Si so that $ £ S j  1)x(m and define the

controller K  = (U + MQ)(V +  NQ)_1 where Q = Ri(Qa,$)- Further consider the

corresponding closed-loop system

T = Y

sia(s) 0

0 'F

1 0

0 I

\

X

as defined in Theorem 8.2.3. Here we define ^  = R + tFi(Qa, $)■ Clearly K E 1Ci and 

T E Tx. Since f3A is an admissible stabilising perturbation for every (3 E [0,1) and 

(Ga , K) £ S, there exists u0 E RU  {oo} such that det(/ — A(ju>0)T(juj0)) = 0. Hence, 

the matrix
s\a(ju)0) 0

I  -  A(ju>0)Y(jio0)
0

1

0

* (M )
0

/

X (ju 0)

is singular. Partition X(ju>0) and Y(ju>0) as follows:

X(jL0o)
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and

y  u  Vo) M -N "  

N M~

' M 

N
(v Kl )

v Kl  0 0

0 0 w W±

-N

( J V o )

W  W j _ )  ( j ^ o )

yi Yi± V2 y~2±

Note that yi = £,(joj0) and y2 = 4>(ju0) where £(s) and ip(s) are defined in Lemma 

8.3.2. Further, define:

5n ¿12 ¿13 ¿14
A (jwo) =

¿21 ¿22 ¿23 ¿24
„TX
1 I A(ju0) ( yia(juj0) Y1± y2 Y2± )

Next, introduce a suitable permutation matrix P which interchanges the second and 

third block columns of A (ju>0), i.e. define

¿11 ¿13 ¿12 ¿14

¿21 ¿23 ¿21 ¿24 ,
Â = À(jL0o)P

Clearly ||Â(ja»0)|| = ||Â|| = e*. Then, singularity of I - A ( j u 0)T(jcu0) is now equivalent 

to:

det <

'
u 0 \ >

r ( s  11 ¿12 ¿13 r—1 0 03

Im -  ~ -
\ Î 21 ¿22 coCN ¿24 J 1 0

k 1 ° I ) >

= 0

det < = 0

or
1  —  ¿ n S l  —  ¿ 1 3  — ( ¿ 1 2  ® ( j v 0)  +  ¿ 1 4 - 0

—  ( ¿ 2 1 s l  +  ¿ 2 3 )  I r m - 1 —  ¿22  —  ¿ 2 4 I  j

Assume now for contradiction that

1 -  ¿nSi -  ¿13 ^  0

Then, expanding the determinant,

(1 -  ¿nSi -  ¿i3)det{/m_i -  ¿22̂ (jA 0) -  ¿24/ -  

(¿21S1 + ¿23 ) ( 1 — ¿nsi — ¿13) 1 (¿12̂ 0 ^ 0) + ¿14-f )} = 0

(8.9)
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or by using the permutation introduced above, we can write in LFT terms:

*(M>)det < Im- 1 -  Tu A,
S i

= 0 ( 8 . 1 0 )

Now, from standard LFT contractive properties:

T u A,
si

< e* =
V si + i

Also, ||T(jc j0)|| < sj by assumption, which implies that

V (juo) 
I

= V \\*U "oW  + 1 < yjsi + l =  (e*) 1

and so,

T , A,
si V(jWo) 

I
< 1

which contradicts the singularity of the matrix in (8.10). Thus contrary to the initial 

assumption,

1 — 5nSi — ¿13 =  0 ^llSj +  ¿13 =  1

or by direct substitution,

x iA ( ju 0) (yia(juj0)si + y2) = 1 

^ x T (ju0)A(juj0)ysc{ju0) = 1 = e
V  si + 1

where xT(s) denotes the first row of X(s) and ysc(s) is defined in Lemma 8.3.2. Thus 

||xr (5)A(s)?/sc(s)||00 > e*. However, since x~x = y~ysc = 1 and ||A||oo = e* we 

conclude that ||x:rAysc||00 = e*. □

Remark 8.3.1. We can interpret the condition xT {ju0)A{juj0)ysc{jbj0) = e* as follows: 

Define an inner product over Cpxm (the space of p x m complex matrices) as:

(.A , B) = trace(B* A)

whenever A, B E Cpxm. Then we can write:

xT(ju0)A(juj0)ysc(juj0) = trace (ysc(jL0o)xT(jL0o)A(jL0o))

= (A(ju0),E 0)= e*

where E0 := x(—juj0)y'sc(—juj0), which means that A has a projection of e* in the 

direction defined by Ea. □
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8.4  E x ten d ed  robust sta b ility  radius

Lemma 8.3.3 shows that all uniformly destabilising perturbations A are constrained 

to have a projection equal to e* along the fixed direction x (—juj0)y'sc(—juj0) at some 

frequency ui0. This means that it is impossible to extend the robust stability radius 

along this direction, using a subset of all maximally robust controller K,i (assume that 

we still want to stabilise all A £ Moreover, all frequencies are equally critical,

in the sense that we can construct uniformly destabilising perturbations such that 

the generalised Nyquist criterion is violated at an arbitrary frequency. Thus, we can 

only hope to extend the robust stability radius (beyond e*) at directions other than 

(•, x(-ju )y 'sc(-juj)), uj e U U {oo}.

To motivate the formulation of an optimisation problem which allows us to extend 

the robust stability radius in all directions (other than the “most critical” direction), 

consider the following “distance to singularity” problem:

Let A be a n x n complex non-singular matrix with singular value decomposition 

A = UEV* = Zi=i °iuiv*i with S = diag(<Ti, u2, . . . ,  an), eri > a2 > ... n„_2 > a„_i > 

crn > 0. What is the minimum norm perturbation ||E|| such that A — E is singular? 

It is well known that the unique solution is given by the rank 1 matrix E0 = anunv* 

so that H-Eoll = crn. Thus in this case u*nE0vn — on or (unv*, Ea) — an. Thus Ea has a 

projection an in the most critical direction (umv*, •). Suppose now that we constrain 

the magnitude of the projection of allowable perturbations in this direction, i.e. impose 

the restriction that

\(unv*,E0)\ < 0

for some non-negative constant < an. Since now the new minimum-norm 

singularising perturbation cannot have a projection of magnitude on in the most-critical 

direction, we expect the constrained optimal distance to singularity 7 (0) to be larger 

than an; further, the tighter the constraint (0 decreases), the more 7 (0) should deviate 

from <t „. The full solution to the problem is provided by Lemma 7.3.1, in chapter 7.

Remark 8.4.1. In Lemma 7.3.1, crn and crn_ 1 are fixed and so the constrained distance 

to singularity 7 (</>) is a function only of cj). Suppose that somehow we could influence 

the level of assuming that an and cj) are fixed. Then, in order to maximise 

we would have to maximise on-\, i.e. make the gap cr„_ 1 — an as large as possible, an 

observation which motivates super-optimisation used later in the section. □

203



Motivated by the above result we proceed as follows: Suppose we impose a structure 

on the permissible uncertainty set, by defining the set:

-  {A € VSii : Hx^Ay l̂loo < (1 — <5)e*}

where

= {a  G Hoc : IIAHoo < p)

Then we formulate the following optimisation problem:

Problem  8.4.1 (Constrained maximum robust stabilisation). For a fixed 6, 

0 < <5 < 1, find all K  that solve:

max{^ : (CA, K) G <S for all A G S(ó, p) U T>set}

and the corresponding maximum value p — p* (6). □

Rem ark 8.4.2. (i) Note that since we still require that all A G T>sct are stabilised, the 

set of optimal controllers which solve CMRS must be a subset of K.i. (ii) When 5 = 0 

the constraint ||xr Ay^Hoo < (1 — 5)e* is redundant (i.e. no structure is imposed) and 

thus £(0, p) =  T>ŝ ; hence in this case the solution to the CMRS problem is trivial and 

is given by JCopt = /Ci and p*(0) = e*. □

The solution of the CMRS problem is summarised in the last theorem of this chapter. 

Note that (si,S2) denote the first two super-optimal levels of R and we assume that 

si > s2. Further, /Ci denotes the set of all optimal (maximally robust) controllers and 

/C2 the set of all super-optimal controllers with respect to the first two levels, so that 

K,2 Q K,\. First consider a parametrisation of the families of optimal and super-optimal 

(level-2) feedback loops, in terms of the first super-optimal singular values.

Theorem 8.4.1 (Closed Loop Decompositions - A lternative Form). Consider 

the decompositions in Theorem 8.2.3. Then,

(i) The set of all optimal closed-loop systems may be parameterised as:

T\ = 6 (Q; s) \Zsi + 1  o
0 M(Q;s)

X(s)

i.e. in terms of its first super-optimal singular value. Here 0(Q;s) G 

satisfies 0~© = Im and X(s) is square allpass, as previously defined in Theorem 8.2.3.
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Further, as Q varies in the set

Si — {Q € 'Hoo : \\R 4- <5||oo <  S i}

M(Q-,s) is well-defined, and satisfies 1 < g_(M(Q;ju)) < ||M(Q;s)||00 < yjs\ + 1 for 

all U E 1Z.

(ii) The set of all level-2 super-optimal closed-loop systems may be parameterised as:

(

Ti — Qi(Q] s)
V  sï + 1  

0 

0

0 0 ^

\ / s f T T  o
0 M(Q]s) J

Xi(s)

i.e. in terms of its first two distinct super-optimal singular values. Here Q(Q;s) E 

£(p+m)x(m) safasj^es 0 ~@ = jm anc[ Xi(s) is square allpass, as previously defined in 

Theorem 8.2.3. Further, as Q varies in the set

$2 — {Q €  Tt0o  : l l - R  +  Q l l o o  <  S 2 }

M(Q;s) is well-defined and satisfies 1 < jui)) < \\M(Q] s)||oo < \ /  s\ + 1 for

all u E 71.

Rem ark 8.4.3. The above decompositions are reminiscent of partial singular value 

decompositions for constant matrices. The term M{Q\s) (and similarly M(Q\s)) 

appearing in the diagonal in the above form is essentially a spectral factor of I  + 

(R + Q)~(R -F Q), following the notation of Theorem 8.2.3. Hence it can always be 

assumed a minimum-phase stable system (i.e. M(Q] s), M(Q; s)-1 E TZTtoo) without 

loss of generality.

Proof, (i) For any Q E Si perform the spectral factorisation:

$ := /  + (R + Q)~(R + Q) = M~(Q; s)M{Q ; s) (8.11)

which is well-defined since > 0, for every oj E 71 (e.g. see [ZDG96], Corollary

205



13.20). Routine algebra verifies that

Ti = Y(s)

/  sia(s) 0 ^
\Ai + 1

0 (R + Q)M -\Q-,s)
1 0

\Ai+1

V  0 M~ \Q ;s) )

^sia(s) 0 ^

0 R + Q
X(s)

1 0

V  0 7 )

y/W+i o
0 M(Q]s)

X(s)

= Y(s)

where Q G Si. Further, in terms of the above form writing Q(Q, s) = Y(s)P(Q , s) we 

get that P~(Q,s)P(Q,s) = Im and hence 0~(Q, s)Q(Q, s) = Im. Setting s = ju  in 

(8.11) gives:

$(ju ) := I+  (R + Q)*(R + Q)(juj) = M*{Q-ju)M{Q-ju)

and so

a? = \t  M \Q-ju)M {Q -juj) = l + o? (R + Q){ju) > 1

and the claim is proved.

(ii) This is essentially identical to the proof of part (i) but using the form of T2 given 

in Theorem 8.2.3. Here

0  : = (i?i(s) i?2(s) ©±(0 ,s))

0 

0

Yi(s)

V

s\a{s) 
\/si + 1

0

0
sib(s)
y/ s2 + 1

0 0

1 0Vsi+1
0 1y/ •s2 + 1

0 0

\

0

0

M ~\Q -s)

□

As shown in the proof of Theorem 8.4.1, both 0(Q;s) and 0i(Q ;s) have their first 

column common:

01
1

V  si + 1
(yiSia(s) + y2)
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This vector coincides with ysc (as defined in Lemma 8.3.2) which essentially shows how 

this construction is connected with the imposed directionality constraint. Moreover, 

i?2 is formed in a similar line and hence, the first two columns of Oi(Q;s) are clearly 

independent of the choice of Q G S2- Exploiting this and the fact that the spectral 

factor (in the super-optimal decomposition) has norm less than s2, it is possible to apply 

the already known theory of chapter 7, based on distance to singularity arguments 

(recall Theorem 7.4.1 and set 1=1) and thus derive refined robust stability properties.

Theorem 8.4.2. In previously defined notation the following statements hold:

1. For each ô G [0,1],

= +
1 -Ô

\ V  S1 + 1 \ V^ITT y /  s j  + 1
> e*

with equality only in the case 5 = 0. Here yj s\ + 1 and y s f + 1  are the first two 

(distinct) super-optimal levels of T  with yj s\ + 1 = (e*)-1.

2. For each 0 < 5 < 1 the following two statements are equivalent:

(a) [{M  + Am ) ' 1̂  + Ajv), K ĵ G S  for every A G U £(S, /i*(S)),

(b) K  G JC2.

3. (a) S(0,p*(0)) = VSet,

(b) for each K  G /C2,

((M + A M) - \ N  + A N),K^j GS

for every A G LUio.i]

Proof. By exploiting the structure of the set of super-optimal closed-loop approxima-
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tions in Theorem 8.4.1, the proof becomes identical to those of Theorem 7.4.1 and 

Proposition 7.4.3. □

As expected the constrained robust stability radius is a strictly increasing function 

of 8 with //*(0) = e*. Moreover, for a fixed <5^0 and Sj, increases as S2 is reduced. 

Thus, we may expect a significant increase in when the gap between the largest

two singular values is significantly large. Further, for each <5^0 the set of optimal 

controllers is the same, namely IC?. Thus each super-optimal controller guarantees the 

stability of all perturbations in the union of the sets U<5e[o l] /•**(£)) which contains 

the the ball of radius e* as a subset.

8.5 Sum m ary

Throughout the chapter the robust stabilisation problem was posed in terms of 

perturbed plants which admit coprime factorisation. This is called the coprime robust 

stabilisation problem and its solution involves a series of similar arguments to those 

presented in chapter 7, i.e. robust stabilisation under additive perturbations. The main 

difficulty here was to define an appropriate scaling of the maximal Schmidt pair of a 

sequence of Hankel operators so that the set of all optimal (and super-optimal) closed 

loop systems admit a “pseudo-diagonal” decomposition where in the diagonal entries 

the super-optimal singular values of T  appear. For this an extra step involving spectral 

factorisations (depending on the set of all suboptimal approximations) required. In 

particular, all super-optimal singular values of T  are expressed in terms of the super- 

optimal singular values of the associated system R. Hence, it is shown that the maximal 

robust stability radius is

e* = 1 = ——
\ /sj(R) + 1 si (T)

Further, using the appropriately scaled Schmidt vectors, it is shown that all 

destabilising perturbations of norm e* have a projection of the same magnitude along 

a particular worst-direction. Hence it is possible to extend the uncertainty set which is 

non-destabilising for a subset of optimal controllers, in the same way as in chapter 7, 

i.e. by imposing a parametric constraint on the allowable projection of perturbations 

along this direction. The problem is then reduced to a constrained maximal robust 

stabilisation problem whose solution has been derived in chapter 7, and hence the proof
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is based on the same arguments. The extended robust stability radius is given in terms 

of the first two closed-loop super-optimal singular values

H*(5) =
N ^ si + 1 y /4

+
1 - 6

+ 1 \A? + 1
> e*

Moreover, as in chapter 7, it is proved that any perturbed plant lying inside the ¡x*{6)- 

ball is stabilisable by each level-2 super-optimal controller /C2. Note that in contrast 

to chapter 7, throughout this chapter the assumption of non-repeated singular values 

was made mainly to avoid messy indexing. In view of the theory developed in chapter 

7, this assumption can be removed without any serious technical difficulties.

As a final comment, the similarity of results in chapters 7 and 8 motivates future 

research on a unified approach to the robust stabilisation problem under various 

unstructured perturbation models (including weighting functions), which can be 

described by a general LFT framework.
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Conclusion

In control theory, many design problems may be recast as problems, one of which 

is central to the present work, namely the maximally robust stabilisation problem 

for classes of unstructured perturbations. Initially, when no uncertainty enters into 

the model, it is desired to design a controller that stabilises the nominal plant. In 

Hoo terms, we seek to find a stabilising controller that minimises the Hoo-norm of 

the closed-loop transfer-function. This can be achieved using the model-matching 

theory and Youla parametrisation, a methodology which characterises the family of all 

stabilising controllers and it is studied in chapter 3. Nevertheless, uncertainty always 

appears in real processes. By choosing the additive uncertainty scheme, in chapter 5 

the robust stabilisation problem is posed. Using elements from approximation theory 

(Nehari approximation) which are developed in chapter 4, an explicit solution to the 

problem is given, with emphasis to the extreme case of destabilising perturbations 

lying on the boundary of the uncertainty ball (figure 5.3). It is further proved in 

chapters 7 and 8 that all such perturbations have a worst “projection” along the same 

direction. In chapter 5 an explicit expression for the maximum robust stability radius 

is derived by solving the maximally robust stabilisation problem and characterising the 

optimal solution set by means of a linear fractional map. All optimal closed-loops and 

maximally robust controllers are further obtained in a closed (state-space) form. 

Independently, the problem of super-optimisation was considered, motivated by the 

fact that it is a form of hierarchical optimisation which restores uniqueness of solutions 

of the Nehari approximation problem in the matrix case (chapter 6). Exploiting the 

first two (distinct) super-optimal levels it is proved in chapter 7 that the maximally 

robust stabilisation problem admits a larger class of permissible perturbations, when 

a certain structure is imposed (7.12), (7.13). As a result this “superset” of non-

destabilising perturbations is characterised explicitly and conditions for robust stability 

are derived (theorem 7.4.1). Then, the class of super-optimal controllers is identified
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as the subset of all maximally robust controllers which guarantees robust stability for 

this extended set of non-destabilising perturbations. All results of chapter 7 involve 

the additive unstructured perturbation model (assumption 7.1.1) whereas equivalent 

results in chapter 8 are derived in the set up of the coprime unstructured perturbations 

model (assumption 8.2.1).

Another point of view of the extended robust stability was presented in chapter 7. An 

abstract notion of structured set approximation was defined, in terms of the artificially 

structured set in (7.13) and supported via numerical examples. The idea is to extend 

the results to robust stabilisation problems involving arbitrary uncertainty structures 

and obtain tight bounds of the structured robust stabilisation using the developed 

technique.

F uture D irectio n s

• It is intended to generalise the work of the last two chapters in a general LFT 

framework which considers all kinds of unstructured perturbations. Weighting 

(performance) matrices will be also considered, which may lead to formulation of 

two-block or four-block problems. Then a direct comparison of the different 

unstructured uncertainty models in a (real) control design will show the 

quantitative difference of the robust stability radius which may occur between 

the models.

• In chapter 7 we defined an “artificial” structure to the extended permissible 

uncertainty set (equation (7.13)) and showed by examples that if other structures 

are compatible with this set, then the extended robust stability radius (theorem 

7.4.1) can be a tight upper bound to the structured robust stabilisation problem. 

More effort is needed in this direction, by extending the idea of structured 

set approximation (problem 7.7.1) for other structures and quantifying the gap 

between these sets using this upper bound.

• As a special case of the above point, in [GHJOO] and [JH+06] it was argued that 

this method can be used to compute a tractable upper bound of the structured 

singular value, by avoiding the D-iteration. However, this idea has only been 

explored for constant matrices and we intend to extend it to the dynamic case.
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• The extended robust stability properties offered by super-optimal controllers 

can be used for closed-loop system identification. This involves the redefinition 

of the nominal plant such that it is in the “centre” of the extended set with 

radius /r*(<5). Connections between closed-loop identification and Tf^-control are 

already established (see [GBC+99],[Hja05],[DdH05]) which motivates the present 

objective.

• Links with 7-foo-based loop-shaping methods ([MG90]) related to directionality

can be explored. Note that this method relies on the re-definition of the open- 

loop system using weighting functions and defines the controller via the solution 

of a maximally robust coprime-factor controller (for the weighted system).

The objective used here may be applied to define a more refined measure of robust 

stability on the case of structured uncertainty.

• The problem of simultaneous Hoo stabilisation has been treated by many authors, 

among them those in [SGKP02], where the problem is tackled by defining an 

appropriate nominal plant via the solution of a two-block Nehari extension 

problem, for which a maximally robust controller is subsequently design in the 

hope that all plants which need to be stabilised are enclosed inside the guaranteed 

robust stability region. Again the extended robust stability radius provided 

by the method proposed in this work is potentially useful for deriving stronger 

simultaneous stabilisation conditions.
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A ppendix A

Linear Fractional Transformations

Linear fractional transformation are also known as Möbius transformations. Let 
P G 7̂ ,(mi+m2)x(pi+P2) bg partitioned as

p  = Pl1 Pl2
P21 P22

Then we define two classes of linear fractional transformations (LFTs) as the maps

H P ,  •): n P2Xm2 n miXp\  p u{p , •): n piXmi -* n m2Xp2

defined by

H P , K ) ■= p n  + P n K ( I  -  P22K)~l P2l 

H P , K) : =  P22 + p 21 A ( /  -  P n A ) - 1^

for some matrices K ,A of appropriate dimensions. Here, the existence of the inverses 

is assumed to be well-defined.

Figure A.l: A lower LFT interconnection representing a transfer function from w to z.

Example A.0.1. Consider the transfer matrix

G(s) = D + C(sl -  A)~lB = D + C -(I  -  A - I ) - lB = PU(P, - I )S S  s
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where P\\ := A, P j 2 := B, P 2 i  := C and P22 ■= D.

Another important class of LFTs is the Redheffer or star product. For appropriately 

partitioned matrices P, K  such that (/ -  P22Au i) is invertible, we define

P * K  :=
P i ( P , K n )  PU (I  -  K n P22)-l K u

K 12(I  -  P 2 2 P 1 1 ) - 1 P 2 i  P2 2 )
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A ppendix B

Algebraic R iccati Equations

Let A, Q and R be real n-by-n matrices with Q and R symmetric. The Algebraic 

Riccati equation (ARE) is then defined by the matrix equation:

A'X  + X A  + X R X  + Q = 0

Associated with the above equation, the Hamiltonian matrix is defined by

H

Further, define

where J' = J -1 and so J 2 = —I. It follows easily that

J - lH J = - J H J  = —H'

A R ^ 'j ẑnxZn
-Q —A'

0 --1
J :=

I 0

and hence H is similar to —H'. Therefore, the spectrum of H is symmetric with respect 

to the imaginary axis. Now, observe that ARE  is a quadratic equation and thus it 

may have many solutions in Cnxn. One of the solutions is when X  is real and A + RX  

is stable (stabilising solution) - if such a solution exists then it is unique. To see this 
assume for contradiction that there exist X\ and X 2 such that A + R X  1 and A + RX 2 

are both stable. Then
A'X\ + XiA + X\RXi + Q = 0

and
A' X2 +  X2 A +  X2RX2 +  Q =  0 

Subtracting the two equations gives:

A'X 1 +  X]_A + XlRXl -  A'X2 -  X2A -  X2RX2 = 0
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or

(.X ! -  X 2)(A + RXr) + (A + R X 2) \X 1 -  X 2) = 0

since R, X t are symmetric (with i — 1,2). Now both A + R X i and A + RX 2 are stable 

by assumption, so the only solution of the above equation is when X\ — X 2 = 0. Hence 
X\ — X 2 and the claim of uniqueness is proved.

Summarising, the spectrum of a Hamiltonian matrix, H , is symmetric with respect to 

the imaginary axis. Further, under mild assumptions, among all solutions of the ARE 

there exists a unique solution such that A + RX  is stable, which from now on will be 

denoted by X  = Ric(H). It is crucial to realise that if X  is the stabilising solution 
then H has no eigenvalues on the imaginary axis. This can be shown by observing that 

under a similarity transformation

I  0
H

I  0 A + RX R

- a : i a : / 0 - ( A + R x y

Then, it is clear that

\(H ) = A (A + RX) U A ( - (A  + RX))

For necessary and sufficient conditions for the existence of a stabilising solution and 

its proof refer to [ZDG96], [Kim97] and [Fra87].

Lemma B.0.1 (Bounded Real Lemma). Let G G RTtoo with G(s) = C(sI — A)~lB 
and assume (A,B), (C,A) are stabilisable and detectable, respectively. Then, the 

following conditions are equivalent

i ■ ||G||o o < 7

2. The Hamiltonian H —
A

-C 'C

7 ~2BB' 

A'
has no pure imaginary eigenvalues

3. H G dom(Ric)

Proof. 1 2. See [ZDG96], lemma 4.7.

2 3. See [ZDG96], Theorem 13.6. □

Remark B.0.1. Condition 3 suggests that if (A, B) is stabilisable and {C, A) is 

detectable then the unique stabilising solution of ARE

A'X  + AZ4 + X B B 'X  + C'C = 0

(i.e. there exists X  which stabilises A := A + 'y ^B B 'X ) is positive semi-definite 

[Kim97], corollary 3.11.
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A ppendix C

Super-optim isation

C .l  P r o o f  o f  p rop osition  6 .1 .4

Proposition. Define

Vi := II12H n  and W± := H^H~~ 

Then, Vi and have, the following realisations:

s Aq — Sx lBq2Cqi Sx 1B q 2

Cq\ — S ]  1D12Cql s f l D i 2

and

w z  =
Aq — Sj lB q\Cq2 Bq 1 — lB q\D 2x

s~l lCq2 s f 1D21

with corresponding controllability and observability gramians:

Vi = -( i? ') -1P 2, Xy Q2 Q2

Yw — P2 — P2, X w — —P\.

In particular, the following matrix inequalities hold: P2 > P2 and Q2 > Q2-

Proof. The proof is broken into separate sections. The first part is verified by simple 
state-space calculations. This is followed by deriving the gramians for the derived re-

alisations of Vi and W±.

1 .State-space realisations:
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—  Q12Q12 —
s

1

B q2

Cq 1 B \ 2

Aq — Sj 1 Bq2C ql Si 1Bq 2

S f 'C q , s f 1!

A ~S1 1Bq2Cqi sl 1Bq2

= 0 Aq — Sj 1 Bq2Cqi Sf1Bq2

_cql ~ Si 1 Di2Cqi Si 1 D12

' Aq 0 0
T

0 Aq — Sj  1 Bq2Cqi s r 1̂

Cql Cqi — sx 1 Di2Cqi Si ^ 1 2

where T  :=
I - I  

0 /
By removing the uncontrollable terms,

s Aq — Sj 1 Bq2 Cqi S i  1B q 2

Cql ~ S 1 lDi2Cqi S i  1Di2

Similarly,

W± = q '21q 2]~ =S '  ~ A 'q ^ 2

1

1

D '21

~A'q + S f'C 'q X , S~llC'q2

s-1 % 1 s f 1!

1
1 -Q 
" ^ C 'q2B'ql Sf'C'q, '

= 0 -A'q + S ^C 'q ^qX S~llC'q2

_ - ^ i ^ ^ 21^1 si b 21

0 0
T

0 -A'q + S ^ C 'q ^ S-llC 'q2

. - ^ 1 s-xlD'21B'ql -  B'ql s~ilD'2l _

-A' +  s r 1C'2B ql Ĉq2
si 1D21Bql -  Bql ^ 2 1

2a. Controllability and Observability gramian of V±: Take the controllability gramian 

of V±. That is

(Aq -  s f 1Bq2Cql)Yv + Yv(A'q -  s f lC'qlB'q2) + s f 2Bq2B 'q2 = 0

or

(Aq + Sj Bq2B'q2Q2)Yv + Yv(Aq + s1 QBq2Bq2) + s1 ~Bq2B 'q2 — 0
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Multiply from the left by R' and multiply from the right by R.

R \A q + s ? B q2B'q2Q2)YvR  + R'Yv(A'q + s fQ B q2B'q2)R + s f R '  Bq2B'q2R = 0 

From proposition 6.1.3, we have

(Aq + s ^ B q2B'q2Q2) = (.R ') - \A q +  s f P 2C'q2Cq2)R!

Thus,

{Aq + s f P 2C'q2Cg2)R'YvR + R'YvR(A'q + s fC 'q2Cq2P2) + s ^ T tB q2B'q2R = 0 (C.l) 

Compare this with the all-pass equation:

A,qQ1 + Q1A + C'C = 0

written out in full as:

(~Aq -  s ? P 2C'q2Cq2)Qx + Q1(-A'q -  s fC 'q2Cq2P2) + s fR 'B q2B'q2R = 0 (C.2)

Subtracting (C.l) from (C.2) shows that

Yv = - ( R 'y 1̂

since the matrix Aq + Sy2P2Cq2Cq2 is asymptotically stable (i.e. its spectrum lies in 

the open left half plane).

Recall first the following Lyapunov equation, derived from all-pass equations (6.8(m))2,2,

A'qQ2 + Q2Aq + CqlCqi + Cq2 Cq2 = 0

Further, from all-pass equation (6.18(z))2,2 we get the Riccati equation

A'qQ2 + Q2Aq + si 2QiBq2B'q2Q2 + C'q2Cq2 = 0

Now, let the observability gramian of the derived realisation of V± be X v. Then:

X v(Aq — Sj1 Bq2 C q\) + (Aq — Sj 1CqlBq2)Xv

+ (C'ql -  s^C 'qlD'12)(Cql -  s ? D 12Cql) = 0

Substituting
Cqi = —sx 1Bq2Q2
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gives:

X v{Aq + s1 2 Bq2Bq2Q2) + (A'q + s1 2Q2Bq2B'q2)Xv

+ (C'ql + s f Q 2Bq2D[2)(Cql + sx2DX2B'q2Q2) = 0

which can be expanded as:

X vAq + Sj 2 X vBq2B'q2Q2 + A'qX v + sx 2Q2Bq2B'q2X v + C'qlCqi

+ si 2Q2^q2D'l2Cqi + s1 2C'qlDx2Bq2Q2 + sx AQ2Bq2D'l2Di2B'q2Q2 = 0 

But from (6.8(u))22 we get that D[2DX2 = s\I. Hence,

X vAq + s i 2X vBq2B'q2Q2 + A'qX v + sx 2Q2Bq2B'q2X v + CqlCqi

+  s i 2Q2̂ q2D\2Cqi +  Sj  2C'qXD\2B'q2Q2 +  Sj  2Q2Bq2B'q2Q2 =  0

In the sequel we show that X v = Q2 — Q2 is the unique solution of the above equation. 

The term on the left hand side of the equation can be written as:

(Q2 — Q 2 ) +  Sj. 2(Q2 — Q2)Bq2B'q2Q2 + A'q(Q2 — Q2)

+ Si 2Q2Bq2Bq2(Q2 — Q2) + C'qlCql + Si 2Q2Bq2D'12Cqi 

+ Si 2C'qlDi2B'q2Q2 + Sj 2Q2Bq2B'q2Q2

or, equivalently as:

Q2Aq — Q2Aq +  Sj 2Q2Bq2B'q2Q2 — Sj 1Q2Bq2Bq2Q2 + AqQ2 — AqQ2 

+ Sj 2Q2Bq2Bq2Q2 — Sj 2Q2Bq2Bq2Q2 + CqXCqX + Sj Q2Bq2DX2Cq\

+ si 2C'qXDi2B'q2Q2 + sx 2Q2Bq2B'q2Q2 

By subtracting the Riccati from the Lyapunov equation we get

s i 2Q2Bq2B'q2Q2 + Sj 2Q2Bq2B'q2Q2 + sx 2Q2Bq2D'l2CqX + sx 2CqlDi2B'q2Q2 

= Sj 2Q2Bq2(Bq2Q2 + D'n Cq 1) + s1 2(Q2Bq2 + C'qlD\2)B'q2Q2 

= 0 =: RHS

using all-pass equation (6.8(u))22-

2b. Controllability and Observability gramians ofW ±: First note that

s ' -A 'q + s i lC'q2B'ql s l 'C ' 2

s i lD'2lB'ql -  Bql s i lD'21
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implies that
Aq — Sj  1 BqXCq2 Bql ~ Si  1 BqXD2X

Si'Cql S\lD2i

Hence, the controllability gramian Yw of this realisation satisfies:

(Aq -  s ^ B qlCq,)Yw + Yw(A'q -  sxlC'q2B'q2) +  (Bql -  s ? B qlD21){B'ql -  s~xl D'21B'qX) = 0 

Substituting

B qi := s ^ P tC '#

this can be written as:

(Aq + sx2P2C'q2Cq2)Yw + Yw(A'q + s fC 'q2Cq2P2) + BqlB'ql

+ sx2BqlD'2xCq2P2 + sx2P2C'q2D21B'ql + sxAP2C'q2D21D'2XCq2P2 = 0

From all-pass equation (6.8(n))2,2 we get that D21D21 = D2\D'2X — s \ l .  When this is 

substituted in the above equation we get:

AqYw + sx2P2C'q2Cq2Yw + YwA'q + sx2YwC'q2Cq2P2 + BqlB'ql

+ Sj 2BqiD'21Cq2P2 + s1 2P2C'q2D2iB'ql + Sj 2P2Cq2Cq2P2 = 0

Assume Yw = P2 — P 2. Next we show that with this assumption Yw satisfies the above 

equation.

LHS : = AqP2 -  AqP2 + sx2P2C'q2Cq2P2 -  s f P 2C'q2Cq2P2 + P2A'q -  P2A'q 

+ sx2P2C'q2Cq2P2 -  s f P 2C'q2Cq2P2 + BqlB'ql + s~l 2BqlD'2xCq2P2 

+ sx2P2C'q2D21B'ql + sx2P2C'q2Cq2P2 

= AqP2 +  P2A'q -  AqP2 -  P2A'q -  sx2P2C’q2Cq2P2 + BqlBql 

+ s f P 2C'q2(Cq2P2 + D2\BqX) + sx2{P2C 'q2 + BqiD'2X)Cq2P 2 

Now, (6.8(nz))2,2 shows that BqiD'2X + P2Cq2 = 0. Thus,

AqP2 + P2A'q -  AqP2 -  P2A'q -  sx2P2C'q2Cq2P2 + BqlB'ql = 0 =: RHS

The last equation is derived by subtracting the all-pass equation (6.18(ri))2,2 from 

(6.8(fn))2,2- This gives:

AqP2 + P2A'q + BqlB'qX -  AqP2 -  P2A'q -  B qXB'qX = 0 

Using Bqi := —sxlP 2C 'q2 this can be written as:

AqP2 + P2A'q -  AqP2 -  P2A'q -  sxlP2C'q2Cq2P2 + BqlB'qX = 0
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Next we find the observability gramian of the realisation of W±. This is the unique 

solution of the Lyapunov equation:

K  -  S i'C 'vK  1)XW + X w(Aq -  s ^ B qlCq2) + s^C 'q2Cq2 = 0 

or, equivalently

(A'q + s fC 'q2Cq2P2)Xw + X w(Aq + s i 2P2C'q2Cq2) + s^C 'q2Cq2 = 0 

Now by definition,

Qi := P 2 R  and Px := Q2(R ')~1 

Further, the all-pass equation (6.18(n))n,

A P i + Pi A ' + BB' = 0

implies that

A  -  a? C'q2Cq2P2)Pi + Pi{- -Aq -  s P2C'q2Cq2) + s^C 'q2Cq2 = 0

Therefore, X w = —P\. □

C.2 P r o o f  o f  p rop osition  6 .1 .7

Proposition. The si-allpass system sicr(s) G 7ZC^ 1 defined in the proof of Theorem 

6.1.3 can be written as a parallel system interconnection sio:(s) = ai(s) + «2(5),

A 0 Bai
S \ a ( s )  = 0 -  S\ 2C'q2Cq2P2 Boî2

cai Ca2 (cfe)'Dn r>i

in which

Bai := BD2l + P,(P2 -  P2)^BqiD i  

Ba2 := (P2 -  P ^B g iD ^

Cai := -(D i2)'Cql(Q2 -  Q2)]Q'3 + (Dt2)'C 

Ca2 := -(D i2)'Cql(Q2 - Q 2)m  

In particular, a  G 1x1 and deg(a) < 2 n  — r.
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P roof. The proof follows a sequence of detailed state-space calculations. First,

~  r r  Sv Hu  =s
A'q S 1 2Q2Bq2Bq2 C'ql + s f 2Q2B q2D[2

(Df2y c ql(Q2 — q 2Y Wa)'

A 0 B

0 Bql

C c qX ° n

Aq Si 2Q2Bq2B'q2 Bq\ C T  Z\ C C'q\Cql +  Z\Cq\

1-------

0 A 0 B

0 0 A Bq\

_ (Df2y c ql(Q2- Q 2)t (Dt2y c { D i 2y c q 1 ( D t i ' D n  _

~ A q — Sj 2Q2Bq2B'q2 C'1c + z1c C'qlCql +  Z\ Cq\ C'qiDn
0 A 0 B

0 0 Aq Bql

( D i 2y c q l ( Q 2 - Q 2y (DtiYC ( D t i ' D u

in which Z\ = s1 2Q2Bq2D[2, using D'12Dn = 0. Further, using a similarity 

transformation T :
I  0 Q2 — Q2

T  := 0 I  0

0 0 I

we can write:

-A 'q - s y 2Q2Bq2B 'q2 C'qlC + ZiC (Q2 — Q2)Bqi + C'qlDu
~  T T  Tv Hu  = 0 A B

(Df2)'Cqi(Q2 - Q 2) t (D ti'C (Dti)'Dn

3>1 $2 $5
0 A B

$3 $4 $6

We next form:

1

«=H to $5

v~H uw  = 0 A B

$3 $4 $6

-A!q - s - 2C'q2Cq2P2 (P2 -  P2)f Bqi D2y

-B'qi -  sy2D'21Cq2P2 Di,

$2 * 5( - s ; ,  -  s fD '21C,2P2) ^ D f i

0 A -  s f BDi,

0 0 -A 'q - S f 2C'q2Cq2P2 (P2 -  P2yBqlDf1

$3 $4 M -B 'q i -  sy2D'21c q2p 2) (h B f
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Now

-4(1,1) — Aq s1 2Q2Bq2Bq2 

¿(1,2) = C'qlC + s ^ Q 2Bq2D'12C

— — A'qQ'3 — Q'3A — sx 2Q2Bq2B'q2Q3

by using the all-pass equations (6.8(u ))2,i and (6.8(m))2,i- In addition,

-4(1, 3) = — (Q2 — Q2)Bq\B'ql — Sj 2(Q2 — Q2)Bq\D'2lCq2P 2 — C'qlD n B ql 

-  s fC 'qlDu D'2lCq2P2

=  - ( Q a  -  Q2)BqlB'ql -  s ~12 {Q2 -  Q2)BqlD'21Cq2P2 -  C'qlDu B'ql 

on noticing that Dn D21 = 0 (from all-pass (6.8(m))(i ,2)). Moreover,

A(2, 3) = -B B 'ql -  s fB D ’21Cq2P2 

A(3,3) = -A 'q -  s32C'q2Cq2P2 

B( 1) =  (Q2 -  Q2)BqiD i  + CqlDn D21 

B( 2) = BD21 

B(3) = (P2 -  P2)]BqlD i  

C{l) = {Di2)'Cql{Q2 - Q 2)'

C{ 2) = (Di2)'C

C{3) = -{D i2)'Du B'ql -  s?(Dt-2yD n D'21Cq2P2 

= - (D i2)'Dn B'ql

The expression for C(3) is due to the fact that Dn D21 = 0 (from all-pass (6.8(m))(i ,2)). 

Apply now, the similarity transformation

/ Qa 0 / -Q'z 0

T = 0 I 0 =* T_1 = 0 i 0

0 0 / 0 0 I

Then, we have that A{ 1, 2) = —.4(1,1)Q3 + .4(1, 2) + Q'3A{2, 2) = 0. Further, 

-4(1,3) =.4(1,3) + Q3A(2,3)

=  -  (Q2 -  Q2)BqiB'ql -  s f ( Q 2 -  Q2)BqlD'21Cq2P2

-  C'qlDn B'ql + Q'3(-BB 'ql -  s fB D '21Cq2P2)

= -  (Q2 -  Q2)BqiB'ql -  s f ( Q 2 -  Q2)BqlD'21Cq2P2

-  C'qlDn B'ql -  -  s32Q'3BD'2lCq2P2)
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Next note that the all-pass equation (D'h Ch  + B'HQH = 0)(ii2) implies that:

B'Qs + BqiQ2 — —D'u Cq i — D'21Cq2 

=> Q3B = -Q 2Bql -  C'qlDn  -  C'q2D21 

=► Q'*BB'ql = -Q '2BqlB'ql -  C'qlDn B'ql -  C'q2D2lB'ql 

=> Q'3BD21 = —Q'2BqlD21 -  C'qlDn D '21 -  C'q2D21D '21 = Q'2P'2C'q2 -  s\Cq2

Note from all-pass (6.8(m)) that Dn D21 = 0 and that D2i D21 = s\I. Further, taking 

(Dh B'h  + CHPH — 0)(22) we deduce that BD '21 — P2C'q2. Thus,

"4(1; 3) =  — (Q2 — Q2)BqiB ql — s x 2(Q2 — Q2)BqiD 21Cq2P 2 — C'qlD n B'ql 

+  Q'2BqlB'ql +  +  C'q2D2iB'ql -  s fQ '2P̂ C'q2Cq2P2

+  C'q2Cq2P2

=  Q2BqlB'ql -  s^ (Q 2 -  Q2)Bq\D 21Cq2P2 +  C'q2D2iB'ql

-  s \ 2Q'2P2C'q2Cq2P 2  +  C'q2Cq2P 2

=  Q2BqlBql — Sj  2Q2Bq\D'21Cq2P2 +  Si  2 Q2Bq\D'2lCq2P2 

+  C'q2D2lB'ql -  sfQ'2P!2C"q2Cq2P2 +  C'q2Cq2P2 

— Q2BqlBql — s1 2Q2Bq\ D2̂ Cq2P 2 +  Sj  2Q2Bq\D21 Cq2P2

-  Cq2Cq2 P2 -  s-l 2Q,2P'2C'q2Cq2P 2  +  Cq2Cq2P 2

by observing that D2iB ql = - C q2P2 (from all-pass (6.8(m))(22))- Now, take the last 

two terms of the above equation:

- s f Q ' 2P̂ C'q2Cq2P2 +  Cq2Cq2P 2 =  s ^ ( s l l  -  Q'2P2)C'q2Cq2P 2

=  s^(Q'3P3)C'q2Cq2P 2

= —sl 2Q'2iBDl2lCq2P2

where all-pass (6 .8(vi))2i gives D2\B' = —Cq2P3 => PsCq2 = —BD2l. Thus, we have

A(l, 3) = Q2BqiB'ql — s1 2Q2BqiD21Cq2P2 + Sj 2Q2BqiD21Cq2P2

-  Cq2Cq2P 2 -  s?Q'zBD'2lCq2P2

— Q2Bq\B'ql + (—Sj 2Q2Bq\ + Sj 2Q2Bqi — sx 2Q'3B)D21Cq2P 2

-  C'q2Cq2P2

by taking the term D21Cq2P2 as common factor. Now, recall from all-pass (6.8(u ))(i2) 
B’Q3 + B'qlQ2 + D,n Cql + C'q2D21 = 0 or equivalently Q3B+Q 2Bql = -C qlDn -C'q2D21.
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In addition, from all-pass equations we get that Dn D2j = 0 and that D2\D '21 =  siI. 

Hence, we have

■4(1) 3) —Q2BqiB'ql — Cq2Cq2P2 + {—Q2Bq\ + Q2Bq\ — Q'3B)s1 2D'2lCq2P2

=Q2BqlB'ql -  C'q2Cq2P2 + s ^ Q 2BqlD'21Cq2P2 + C'q2Cq2P2 

but BqiD21 = ~P2C 'q2 and BqlBql = - A qP2 -  P2A'q -  Bq2Bq2. Substituting,

A(l, 3) = Q2BqlB'ql -  C'q2Cq2P2 + s f Q 2BqlD'21Cq2P2 + C'q2Cq2P2

= Q Á~AqP2 -  P2A'q -  B'q2Bq2) -  C'q2Cq2P2 -  s f Q 2P2C'q2Cq2P2

+ C'q2c q2p 2

= Q2( -A qP2 -  P2A'q -  B'q2Bq2 -  s f P 2C'q2Cq2P2) -  C'q2Cq2P2

+ C'q2c q2 p 2

= Q2((^2 -  + 4 g(P2 -  P2) + -  P2)C'q2Cq2P2])

— Cq2Cq2P2 + Cq2Cq2P2 =: 4>

since - B q2Bq2 = A ,P2 + P 24 '9 + sj~2P2Cq2Cq2P2. Further,

I  -Q '3

C T “ 1 = Z2 (D ¿ )'C  - 0 /

1 O O

= Z2 - Z 2Q'3 + (Di2)'C -{D i2)'Dn B'ql

where Z2 := (D^2)'Cql(Q2 -  Q2Y and

0

0

/

I  Q' 0 (Q2 — Q-i)Bq\D21 + C''1//n /? 2i
TB = 0 / 0

0 0 / (P2 -  P2)tPgi^ 1

(Q 2 — Q2)-B9i -D̂ 1 + C''1Dn-C)2i + Q3BD21 

BD  ¿

(P2 -  P2)tP 9iP 2Ji

{Q2Bqi — Q2Bqi + C^Dn + Qá-S)^!

(P2 -  P2y B qlD^

{-C'q2D2 1- Q 2Bql)D^ Q2BqiD21

BDx = BD¿

(P2 -  P2)tP9lP 2J-1 (P2 -  P2)tP 9iP 2x1
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So, v^HuW  has a realisation:

—A'q — Sj 2Q2Bq2B 'q2 0 $ Q2Bq\D2i
0 A -BB'ql -  s^2 B D'21Cq2P2 BDii
0 0 -A'q -  s-l 2C'q2Cq2P2 (P2 -  P2)tf?9lD2i-1

Z2 -Z 2Q'3 + (D&yc -{D i2)'Dn B'ql (DkYDnDk

-A'q — s1 ~Q2Bq2B 'q2 0 0 0

0 A -BB'ql -  s fB D ’21Cq2P2 BDi-1
0 0 -A'q -  S\2C'q2Cq2P2 (P2 -  P2)tpglP 2J1

Z2Q2 - z 2Q'3 + (D&yc C(3) (D ti'D nD k

where we have used the transformation

I  0 Q2{P2 — P2) I  0 -Q 2(P2 - P 2)
T = OO => T“ 1 = 00

0 0 I 0 0 /

Also,

C(3) = - (D i2yCql(Q2 - Q 2)'Q2(P2 -  P2) -  (Di2)'Dn B'ql

B{  1 ) =  —Q2BqiD2i +  Q2(P 2 — P2) \ P  2 — P^BqiD^i

= - Q 2 { I  -  0P 2 -  P 2) t ( ? 2  -  P2)} BqiD21 = 0  

due to corollary 6.1.6. Further,

A(l, 3) = Q2(P2 -  P2) [~A'q -  sx2C'q2Cq2P2] -  [ - a ; -  s? Q 2Bq2B'q2] Q2(P2 -  P2) 

+ Q2(P2 -  P2)A'q + Q2Aq(P2 -  p2) + s f Q 2(P2 -  P2)C'q2Cq2P2 

+ C'q2Cq2(P2 — P2)

= 0

Hence, v~Hn w has a realisation:

A

0

-B B 'ql -  s-x2BD'2lCq2P2 

-A'q -  s \ 2C'q2Cq2P2

BD ^

(P, -  IV yB ^D i,

- z 2<% + ( z ^ y c —Z2Q2(P2 -  P2) -  (Di2)'Du B'ql (Di2)' Dn D21

Finally, applying the similarity transformation T :=

h—1 p3

0 /
shows that:

A 0 Bai
sia(s) = 0 -A 'q -  S-x2C'q2Cq2P2 Ba2

c Q1 C(X2 (D ti'D nD i,
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where

Bai := BD^i + I \(P 2 -  P2y B qlD^

Ba2 := (P2 -  P2y B qlD i

Cai : =  -(DnYCAQ* ~ Q2YQ3 + (Du)'C

Ca2 :=-(Dj;2yCql(Q2 - Q 2)'R

This completes the proof. □

C .3 P r o o f o f  p rop osition  C .3.1

Proposition C. 3.1. K  = Ti(Qa,Q al ), where

K ( K11 ^ 1 2 ^  _  / Qn — Q12Q12 Q11Q21 Q21 

\ K 21 0 )  \  Q ^Q 21

Q\2Q\2

0

Figure C.l: Sketch of proof of proposition 6.1.5.

Proof. The argument is summarised in figure 6.1. The proof is carried out at a transfer 

function level. Take

K  := ( K \  1 - ^ 1 2 ^  _  ( Qn — Q12Q12 Q11Q21 Q21 

\ / v 21 0 )  \  Q21Q21

Q12Q12

0
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Then

^ i(K , X) = K n  + K 12X K 21

= Qn ~ QuQu Q11Q21 Q21 + Q12Q12 XQ21 Q21 

= Q11 + Q12Q12 (X — Qn)Q21 Q21

Let Y := Fu(Qa\ x ) .  Then

H Q a ,F u { Q ~ \X ) )  = H Q a , Y )  =  Qll +  Q l 2 Y ( J  -  Q 2 2 Y ) - 1 Q 2 i

Hence, we want to prove that

Qvl(X -  Q n )Q~l = Y ( /  -  Q ^ Y ) - 1

First we obtain an expression for Qa . Partitioning Qa 1 conformally Qa\

Qa Qa
Q n Q12

Q 21 Q22,

Expanding the above equation gives:

(55) : T Qn + $Q21 = I

(56)  : TQ12 + <FQ22 =  0 =* T = -<FQ22Q~2

(57) : + v q 21 = o=>n = -^ Q n Q n

(58)  : ^Q 12 + F!Q22 = /

Substituting (S6) into (S5)

—&Q22Q12 Q11 T ^>Q2j = I  =$■ i >(Q21 ~ Q22Q12 Q11) = I  

=?■ $ =(Q21 — Q22Q12 Qn)

=$’ '¥ = — (Q21 — Q22Q12 Qii) Q22Q12

Further, substituting (S7) into (S8)

^Q i2 = —̂ Q llQ 21 Q22 = I =$• = (Ql2 — QllQ2l Q22)

=> Q — —(Q12 ~ Q11Q2I Q22) Q11Q2I

So, the inverse of Qa is

— (Q2I — Q22Q12 Qn) 1Q22Ql2 (Q21 Q22Q12 Qn)

(Q12 — Q11Q2I Q22) (Q12 — Q11Q21Q22) ^Q11Q21
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Now let

Y :=.Fu ( Q : \ x ) = - (Q 12 -  QnQ2iQ 22) - 1QnQ~2i+

+ (Q12 ~ Q11Q21 Q22) XX [ /  + (Q21 ~  Q22Q12 Q11) ^Q22Q\2 X ] l (Q2\ ~ Q22Q12 Q11) 

which is equivalent to

(Q12 ~~ Q11Q2I Q22)Y(Q2i — Q22Q12 Qll) =

— — Q11Q2I (Q2I ~ Q22Q12 Qll)  +  X [ /  +  (Q21 — Q22Q12 Qll) lQ22Ql2^\ 1

and thus

(Q 12 — Q 11Q 21 Q 2 2 ) Y (Q21 ~ Q22Q12 Q n )[-^  +  (Q 21 — Q22Q12 Q11) Q22Q12 X ] =
= -  QnQ2i(Q 2i ~ Q22Q12 Qn)V  + (Q21 -  Q22Q12 Qn)~^Q22Q12 X] + X 

=  — Q11Q21 [Q21 ~ Q22Q12 Qn + Q22Q12 X] + X 

= — Q11Q21 [Q21 d" Q22Q12 (X — Qll)] + x  

=X — Qn — Q11Q21 Q22Q12 (X -  Qn)

Summarising,

(Q12 — Q11Q21 Q22)Y(Q2i — Q22Q12 Q11)[Y + (Q21 Q22Q12 Q11) Q22Q12X]

— [I — Q11Q21 Q22Q12 ](X — Q11)

Noticing that

(Q 21 — Q 22Q 12 Q 11)[Y  +  (Q 21 ~  Q 22Q 12 Q 11) lQ22Q\2 X] = Q21 +  Q 22Q 12 (X — Q 11)
(shown above) we get,

(Q12 — Q11Q21 Q22)Y[Q2i + Q22Q12 (X — Qn)] = [I — Q11Q21 Q22Q12 ](X — Qn)

multiplying form the right both sides by (X — Qn ) XQ12 gives

(Ql2 — Q11Q2I Q22)Y[Q2i (X — Qn ) 1Q\2 + Q22] = (Q12 ~ Q11Q21 Q22) 

= ^ Y [ Q 2 1( X - Q 11) - 1Q i 2  +  Q 22 ]  =  /

=^[Q2l(X -  Qll)_1Ql2 + Q22] = Y_1 

=HQ2i (x  -  Q ii)_1Qi2 + Q22]Y = I  

=HQ2i(x  -  Qii)—̂Q12]Y = I -  Q22Y 

=^Y(/ -  Q22Y) - 1 = (Q2i (X -  Qi i )_1Qi2)_1 

which proves the initial claim. □
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A ppendix D

D istance to  singularity

Throughout this section we summarise important results in distance to singularity 

matrix problems (for a complete treatment see [JH+06]). A distance to singularity 

type of problem involves in finding matrix A such that

det{A — A) = 0

under certain constraints that A may have. Here we are interested in deriving the 
minimum distance to singularity which is usually referred to as the minimum (induced) 

norm of a matrix A that is also rank reducing to A. This is an “absolute” distance to 

singularity problem and without loss of generality, A may be considered diagonal:

det{A -  A) =  0 det(UZV -  A) = 0 ^  del ([/(£ -  U'AV')V) = 0

det(U)det(E -  U'AV')det(V) =  0 ^  det(Y, -  U'AV') = 0

by considering the singular value decomposition A = UHV. Observe that ||C/'AV/|| = 

|| A||. Throughout the chapter we examine distance to singularity problems where the 

rank-reducing perturbation has structural constraints in terms of its norm and spectral 
radius. Further, we assume multiplicity on the smallest singular value of A , greater 

than one, motivated by the theory developed in chapter 7.

The first result outlined here concerns the case when the rank reducing perturbation 
is constrained to have a zero first block.

Problem  D.0.1. Let

0 0 0
m

A\

n-m

0
0 A-22 0 0

m
A = 0 0 3̂̂7723 0

0 Ain-m
0 0 0 A44
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and assume that ai < a (A 22 ), 0 < a3 < g_(A/u) and ax < a3. Further, define

Ex = m  0  m x ( n —m) . Find the minimum norm of all rank-reducing perturbations 
A, which are constrained to have their first m x m block equal to zero. Equivalently, 

solve the following problem:

□

7omXm := min{||A|| : det(A -  A), E(AEx = 0mxm}

Then determine the optimal structure of such perturbations.

The solution of the problem is given via the following lemma.

Lemma D.0.1. Consider everything as defined in problem D.0.1. Then the structured 

distance to singularity is

lOmxm = V w *  (=: V d A M A ^ ))

All optimal rank-reducing to matrix A perturbations have the following form:

A = W
ß01___

1----CN
<<]

co 
<< 

___
1

----
1

<< w  = w

0 0 0 \ / a l a 3 0 0

0 0 0 0 A 13 A 14

0 0 0 0 A 2 3 A 24

0 0 0 0 0

0 A 31 A 3 2 0 A 33 A 34

0 A 41 A 42 0 A 4 3 A 4 4

w

where W — diag(Wx, /m2, IT3, Imi) E Cnxn is unitary and

0 0 A 13 A 14

0 0 A 23 A 24

A 31 A 32 A 33

co
<

1

A 41 A 42 A 43 A 44

< y/aiÜ3

Proof. The proof is identical with that in [JH+06], where a scaled version of the problem 

is considered. □

The following lemma is an auxiliary result needed in later analysis.

Hn HnLemma D.0.2. Let H  = and U be complex matrices and assume that for
H 21 H22

any ax > 0, (axI -  F[n U)~l , Flfff and H ff exist. If H is 7 -unitary for some 7 > 0, 

Hn square, a\I — Hu is nonsingular and ||Lfn|| < a\ then

11̂ ( ^ , 017)11 = \\(aflI -  Hu)-\i2I -  aflHxx)
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Proof. The proof is identical with that in [JH+06], where a scaled version of the problem 

is considered. □

Lemma D.0.3. Let

^ 1  Im 0 0 0

^ 1  Im 0 0 r̂a+ 1 0 0
0 A2 0 0 0

0 0 0 0*71

0 < a\ < am+1 < • •• < an. Further define E\ as define in problem D.0.1 and let 

An € Cmxm be given. Assuming that ||An|| < (j) < and that (a i/ — An ) is 

nonsingular, then

min || An || =  min 7
det(A  -  A) = 0 | | (7 2/  -  aiAn)(ai/ -  A n ) _ 1 || = am+1
E[ AEi = A n  7  > a i

Sketch of proof. Here we adopt standard all-pass dilation theory in order to construct 
7-unitary completions for the given block An. Note the importance of conditions 

||An|| < «1 and det(ail — An) 0, so that the (off diagonal term of the) dilated 
matrices have full rank. Hence, we construct matrices A]', A„ of dimensions 2m x  2m 

and 2n x  2n, respectively, such that ||A]'|| = || AJ|| = 7  (and which also share the same 

first block, An).

Further, we construct the upper LFT’s of the inverse of dilation Aq and A, A, 

respectively:
X I  := [(A J)- 'n ]

and

and observe that

II^a II = 7_1

from Lemma D.0.2. Further, after some algebra, it can be shown that the first m x  m 

block of is equal to zero.

Then the idea is to show that the original problem

min 7
det(A — A) =  0

7  =  llA i i | l

E[AEX = An
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is equivalent to solving a distance of singularity of the form given in problem D.0.1, i.e.

min 7
d e t { X \  -  $ £ )  =  0

1 1 * 1 1 1 =  7 “ 1

E \ Q \ E \  =  0 m x m

where the optimal rank-reducing perturbation is constrained to have zeros in its first 
m x m  block. The solution of this problem is already known and hence using Lemma 

D.0.2 it is shown that the problem is equivalent to

min 7
\\{l2I — o i A u ) ( a i 7  — A n ) - 1 || =  a m + i 

7 > ax

and thus the claim is proved. For a complete proof see [JH+06], Lemma 3.7. □

Rem ark D.0.1. Lemma D.0.3 gives the minimum norm of a rank-reducing perturba-

tion to a diagonal matrix A which has multiplicity greater than one, on its smallest 

singular value. Here, as before, the perturbation is constrained to have norm largest 

than the smallest singular value of A. Further, from Lemma D.0.3 it is possible to 

obtain implicitly the structure of the optimally rank-reducing perturbation. Note that if 

70 denotes the optimal distance to singularity, then

$1° = Tu [(A2°)-\ A] T* A = T u [A?, <&£] (D.l)

directly from Lemma D.0.2.

Rem ark D.0.2. Lemma D.0.3 requires (assumes) the a priori knowledge of a An. In 

[JH+06], Lemma 3.11 generalises the result for any An & Cmxm : ||An|| < Gq and 

such that ( a j  — A n )-1 exists and is bounded. However, here we shall not need this 

generalisation.

Lemma D.0.4. Assume everything defined as in problem D.0.1 and consider all 

perturbations A G Cnxn, such that E[AE\ G

A J U  = {EiAE, G Cmxm, p(E[AE1) < <t>u H ^A ^H  < fa}

where 0 < fa < fa < Oi. Then every optimally rank-reducing perturbation A which is 

constrained such that E[AEi G A ^ ^  is similar to the following structure:

E[AE1 := A
0 , j  < *;
01 ) j= i;
( i i x j - i - l& z i i
\ (f>2 ' 4*2 5 j  > i.
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i.e., for every optimal A, its m x m block E[AEi is always similar to the particular 

upper triangular Toeplitz matrix. Further the structured distance to singularity

7a S ,,3 = min{||A|| : det(A - A) = 0, EJAB, e  A ^ }

remain invariant under the transformation and it is given by

701,4-2 =  \ ] a\ +  Ca -  02

where

( a i
( “ I ' - A * , . * , ) - 1  1 \

C a ™  —  ^

\

“ m  +  l - a l  

\ / a m  +  l — ° 1

\ / a m + l - a l

0

/

Proof. Too technical and not of present interest, therefore omitted. For complete proof 

see [JH+06], □
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A ppendix E

Robust stabilisation under additive 
perturbations

E .l  P r o o f  o f  P ro p o sitio n  7 .4 .2

Proposition. Let A(s) be constructed according to Algorithm 7.4.1. Then A(s) has 

the following properties:

(i) A(s) € 7171.00

(ii) ||A||oo = ^(0)

(in) H^Aj/lloo = (¡)

(iv) det[Im -  A(jujo)T(jL0o)\ = 0 V T e T.

Proof, (i) Follows immediately since Nu, N2i , A\ and A2 are all TZH^ functions.

(ii) Write
V0

<t>h
A = 0

O

___
l - 0

where ua = \J 72 — (j)2. Then,

A2 = diag^ 2 + u l  02 + ^2, . . . ,  d>2 + v20, 02, 02 + v2a} 

— diag{'f2, 72, . . . ,  72, </>2, y2}

Also noting that Nf[Nn  = /; Af2i = /, we have

AA~ = TVi i A i AA 2N2i A f  A AfN({

= N n A ^ A f N -
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Thus

\\A \\lo = niax\ max Nn (juj)A1(juj)A2A*1(ju)N(l (juj)ue/Z

= max A„
uj€K

= max A„weft

A2A*1(juj)NZ1(juj)Nn(juj)A1(jcj)

= Xr 7

and hence HAHoo =  7 .
(in) Note that X \X ~ = Im. Hence, writing X ^ = N\Di, implies that:

x ' { n 1 n2 ■ ■ ■ nn

di \

= L

or, equivalently,

n 1 • • • ni Tll + l ' ‘ ' 7̂1

ch

di

H+l

\
Then considering the upper blocks of the above equation:

II 0

0 Im—l

/

xT ( m ni Tll+l ' ' ' Hr

d\ \

d.1+1

V
Take JVn to be the first l + 1-columns of N\. Then,

(  dx

~  ( h  0m_; )

xT ( ni ni ni+1
d,

\

d,

= ( / , j o )

l+l /
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i.e.

xTNn (s) =

\
0

V dt \ s ) 7
or

x t N u A 1 (s ) =

/

V

di (s)

dt (s) 7

ai(s)

aj(s)

V
by picking appropriate interpolating .Ai(s) as defined in algorithm 7.4.1. Then, note 

that
l 1

l h  0

Dually,

A2N21y(s) —

xTNu Ai(ju>0) = 

(  à i ( s )

ài(s)

(E.l)

V

^  (  n i ( s )  ^

and

Yi = {y(s)<i(s) * ) = ( n?{s) ••• n~(s) )

M s )

y ( s )

n ;+ i ( s )  !

( di \

V
dp J

where denotes irrelevant terms to the present analysis. Then

(  d;

y(s)a(s) = ( hi(s) ra^(s) )

V

and so,

(

A2N21ya(s) =

&i(s)

à i ( s )

\

Oi.i

\

d r  )

*  ¿ r \

V d -i J

or
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A2N21ya(s)

a icij- l

a 2d2 1

aid, 1

V Oi,
and hence

A2(jLo0)N21(ju>0)y(jLo0)a(juj0) := 

so that after some computations

xT Aya(s) = xT NnA\

h
0

/

n A i
iMi

V0

0

1

O 1

i__
__

_

a xd x 1a xd1 1

a 2d2 1a 2d

A2N2lya(s)

aidt 1a tdl 1

and hence
|x r Ay||oo =  ||xTA y a (s ) ||00 =  0

(E.2)

/  -  AT = /  -  iVnAj
<!>Ii

vQ 0

Vo f  Sill \

0 A2N2XY2 «2 X x

-(f)
V

■R + Q j

So,

det[Im -  A (ju 0)T(juj0)\ = det[Im -  Nn A iA A 2N21Y2UXi]

= det[Im — X \N \\A \A A 2N2{Y2T\\

Now by construction,

X \N n Ai(juj0) = i+1

m-l-l

l+l

h+1 

0
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and

so that,

A2N21Y2(jou0) —
l+l

l+l p-l-l

h+1 0

x 1n 11a 1a a 2n 21y 2u
I  l+l 

0
h+\

<p S i l l
Vo$l-(-1 

0 0

V oSi 0 ~ 4 >si+1

0 0

S lh 0 0

0 s l+ l 0

0 0 *

(E.3)

The instability of the closed-loop under such perturbation is verified by (E.3) and the 

following argument which involves determinants:

det(Im — AT)  = det <

and this is equal to zero if and only if

det <

/• 1

1 C
o

$1+1̂ 0
0

-SiV0 0 i + si+i4>

(E.4)

In order to prove (E.4) we use the following Schur argument, which is true for matrices 

A,B,C ,D  (see [AntOl]):

A B I BD~l

C D 0 I

A — BD~1C 

0

Hence, in order to show that the determinant of
A

C

0

D

B

D

I  0 

D~1C I

is equal to zero, it suffices
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to show that A  — B D ~ 1C  looses rank, or in this problem framework,

(1  -  S!( f))Il  -

=(i _  s\4>)li -

0
(1  +  Si+I<t>) 1 — S \ V 0 0

s i s i+1^ ( l  +  s i+ 1<j>) 1 0

0 0

(1 -  Si0) -  S i S i + i U ^ l  +  S/+10)-1 o

o (i -  si4>)ii-1

looses rank. Indeed, substituting ^  = 72 -  02:

1 -  S i 0  -  S i S l + i l % ( l  +  s t + 1 0 ) _1

=  ( 1  +  S i+ 1 0 ) _1  { 1  +  — S i 0  — S i S ; + i ^ 2 -  S ^ i + 1 7 2 +  S i S i + i(f)2 }

=  (1 +  S i+ 1^)-1 (  1 +  S/+10 -  S\(j) -  S i 5 i + i ( — --------------- —  4> +  7- ^ )  1 = 0
t  S 1 S / + 1  S j + 1  S i  J

using the fact that 7 = yj Therefore,

det(Im -  A(juj0)T(juJo)) = 0 => det(Im -  ((G + A)(jw0)K(juj0))) = 0

□
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A ppendix F

R obust stabilisation under coprirne 
perturbations

F . l  P r o o f  o f  T h eorem  8 .2 .3

Theorem. Consider everything as defined in Theorems 8.2.1 and 8.2.2. Then

(i) The set of all optimal closed-loop transfer functions, T\ can be parameterised as:

where

% = Y

Y  :=

sia(s) 0

0 R + FtiQa, sÿ1

1 0

0 I

\

X

M -N~

N M~

V 0

0 w ,
and X  = W~

are square all-pass.

(Hi) The first two super-optimal levels of T  are ( i/s f+ T , yjs\ + 1) where (si, «2) are 
the first two super-optimal levels of R. Hence e* =  À—.

V si+1
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Proof of (i). Consider everything as defined in Theorems 8.2.1 and 8.2.2. Then write,

t = ( m  ( r  + H Q ^ s ^ b h -c) \

\ N M ~ ) {  I )

(Hn + H12U ( I - H 72U)-1H2i) +

where U € sx 1BH00. Further, we isolate the all-pass part so that

and

H\2 =  V j _ H — H22 — H22

Substituting,

U{I -  h 22u ) - 1h 21 >
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T\ =
M -N~  

N M~

where

U{I -  H22U)-1H2lWZ

from right, we get

Ti =

+

or

T\ =

Proof of (ii). Immediate from a recursive argument of part (i) proof. 

Proof of (in). Recall that

( h u  _ t v  ot U ) S1 o \ ( w ~  o\ w

\ H n  V °  V  V 0 H )  V °  V

where we partition

K  =  ( v  K l )  > w ~  =
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Then
H\iv (s) = ■Sia(s)~ii;(s) 
Hu w(s) = sia(s)v(s)

l l ^ ( s ) l |2 =  s i IM s )||2

||T/1 i 'w ( s )||2 =  5 i ||u ( s )||2

and so ||n]|2 = IMI2 (recall \\a(s)\\ = 1). Further,

H-Hnw(s)  = s1a(s)H^1v(s) = sla(s)a~ (s)w(s) = s\w(s) 

and hence w is a singular vector of Hn - Respectively,

H n H ^v(s)  = s\v(s)

Straight from definition, take a Topt E T\. Then,

' M - N

(F.l)

(F.2)

ToptToPt — ((R + QoptY I
N  AT

/ \ / R t  Qopt \
= { ( R +  Qopt)~ i )  I I

M — N ~ \  f  R + Qopt | 

N  M~ )  \  I  )

=  (R +  Q0ptY(R  + Qopt) + 1

and so

T~tT0ptw(s) = (R + QoptY{R  + QoPt)w{s) + w(s) 

T;ptTopMs) = (si + l)w(s)

Hence

WTopth -  \]s\ + 1

On the other hand,

T~ptToptw(s) = (si + 1 )w(s) =$■ ToptTgptT0ptw(s) = (si + l)Toptw(s)

/ M  -AT 

N  M~

M  —N~ (R +  Qopt)w(s)

w(s) = (s? + 1) 

(R + Qopt)w(s)

w(s)

= (A + 1) N M

j  — (S1 + 1)
/ M

\ N
„ ( M —N"

si + 1)
u

w(s)

□
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