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Once upon a time there was a magic formula ...

Laura Ballottaa

8th May 2023

Few results have struck me as elegant and meaningful as the Black-Scholes formula for option

contracts (Black & Scholes, 1973). As someone trained in (micro)economics, the pricing formula

spoke to me as a clear example of general equilibrium at work: risk preferences do not matter

when the market prices securities.

The mathematical formalization of this intuitive idea though is an illuminating example of

cross-pollination, which has lead to a new field of study, mathematical finance, and a deeper

understanding of the pricing mechanisms for any security in the market. The mathematical tools

which led to the Black-Scholes formula had been known, but the point was to see how these tools

could be used to create a formal infrastructure for the economic theory.

The driving force of this process was the ‘simple’ concept of no-arbitrage, which in this context

could be expressed as follows: two securities or portfolios offering the same payoff at a specific

date must have the same value at any other point in time. Indeed this led to the breakthrough

of the Black-Scholes model. As a consequence, contracts can be hedged by buying and selling

the underlying asset in just the right amount in order to eliminate risk - a procedure nowadays

referred to as delta hedging. The economic concept of no-arbitrage was later translated into a

mathematical concept, namely that of a martingale and the corresponding martingale measure by

Harrison & Kreps (1979) and Harrison & Pliska (1981, 1983). Mathematical finance had found its

natural setting. In the years following this insight, academic researchers pushed the equivalence

between the two concepts to models of increasing sophistication.

The end result of this research programme is what we call risk neutral valuation, a revised

version of the expected present value technique according to which the price of a derivative

security can be obtained as the expected value of the terminal payoff discounted, crucially, at

the risk free rate. The expectation is taken with respect to the so called risk neutral measure:

the measure under which discounted asset prices are martingales. A significant point to clarify

about this statement is that it is not equivalent to say that investors are risk neutral. They are

not, of course. Rather, it means that in the process of changing the probability measure from

the historical one (i.e. the physical one), investors receive their compensation for risk in the form

of the market price of risk. An application of the Girsanov theorem in the Black-Scholes setting

indeed shows that the ‘shift’ in the probability measure is given by the Sharpe ratio.

50 years later and the panorama in the financial industry has profoundly changed: new mar-

kets, new products, new challenges. All of these arose in part thanks to the availability of this
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general and robust pricing theory. Also our understanding has changed. Risk neutral valuation

is a general pricing principle, which we apply to all derivative securities, regardless of any ex-

otic feature they might possess. Log-returns are clearly non Gaussian, and markets are far from

complete. Nevertheless, risk neutral valuation can still be applied: the risk neutral measure is no

longer unique but we can ‘let the market (the data) choose the pricing measure’ (Eberlein et al.,

1998) through calibration. Given a model described by a parameter set Θ under some risk neutral

measure, we use market quotes Cmkt of prespecified derivatives to determine an appropriate value

ϑ ∈ Θ - and implicitly the pricing measure - by solving

min
ϑ

N∑
i=1

(
Ci(ϑ)− Cmkt

i

)2
, (1)

where N is the size of the dataset and Ci(ϑ) the model price of the derivative securities under

consideration.

Although it is clear that Ci(ϑ) is an expected value of the discounted contract’s payoff, obtain-

ing the corresponding analytical expression which allows us to solve (1) is not straightforward.

Models for the underlying assets which cater for more realistic distributions are in general not as

tractable as the geometric Brownian motion underpinning the Black-Scholes formula.

Tractability is indeed one of the fundamental traits of the Black-Scholes formula together with

interpretability, and both represent reasons why researchers always tend to gravitate around it.

As a natural consequence, researchers have attempted to keep both features when developing more

realistic models for the underlying asset, as they help us to better understand these alternative

models, including what they can do for us towards capturing and reproducing important empirical

stylised facts.

To illustrate this point, let us consider the large class of models generated by pure jump Lévy

processes Lt which can be represented in the form of a subordinated Brownian motion

Lt = µt+ βτ(t) +Wτ(t), (2)

where Wt is a standard Brownian motion, τ(t) is a subordinator with distributions P τ(t)(·) inde-
pendent of Wt, and µ, β are the location and skewness parameters. The risk driver in equation (2)

is a Brownian motion with drift evolving along a time axis which is not controlled by the calendar

clock, but by the stochastic clock τ(t) capturing the level of activity in the market. In other

words, the subordinator τ(t) can be effectively regarded as a clock recording business time. We

note that representation (2) applies in particular to generalized hyperbolic (GH) Lévy motions

for which the subordinator is in the class of generalized inverse Gaussian (GIG) processes, see

Eberlein (2001). Special cases of GH Lévy processes are the hyperbolic Lévy motion (Eberlein

& Keller, 1995), the normal inverse Gaussian (NIG) process (Barndorff-Nielsen, 1997) and the

Variance Gamma process (Madan et al., 1998).

The corresponding model for the stock price under the risk neutral measure is

St = S0 exp
(
(r − φ(−i)) t+ Lt

)
with r representing the risk free rate of interest, and φ(u) denoting the characteristic exponent
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of Lt, i.e. E [exp (iuLt)] = exp (φ(u)t). Let Xt = ln (St/S0), then representation (2) implies

Xt = (r − φ(−i) + µ) t+ βτ(t) +Wτ(t).

By conditioning on τ(t) = θ, this becomes

Xt =

(
r − φ(−i) + µ+ β

θ

t

)
t+Wθ.

In distribution Wθ is equal to
√
θ/t Wt.

In order to determine the price of a European call option with strike K and maturity date T ,

we have to evaluate

C(K,T ) = E
[
e−rT (ST −K)+

]
= E

[
E
[
e−rT (ST −K)+ |τ(T )

]]
.

Let us define

q(θ) = φ(−i)− µ− θ

T

(
β +

1

2

)
,

v(θ) =

√
θ

T
,

then, conditioned on τ(T ) = θ, ST is in distribution equal to

S0 exp

((
r − q(θ)− 1

2
v(θ)2

)
T + v(θ)WT

)
,

which is the form appropriate for the application of the Black-Scholes formula to a price process

with dividend yield q(θ) and volatility v(θ). The price of the call option is then

C(K,T ) =

∫ ∞

0
CBS (S0,K, T, r, q(θ), v(θ)) dP τ(T )(θ).

Thus, in this setting we can interpret the option price as an average of Black-Scholes prices

CBS(·) across all possible values of the business time τ(T ). In particular, we note the two inputs

of the Black-Scholes formula q(θ) and v(θ). The first one, q(θ), which could be seen as an artificial

‘dividend’ yield, corrects for the additional drift induced by the jump process. The second - more

important - input is the volatility v(θ) which is now stochastic as it depends on the distribution

of the subordinator. Therefore, this can be interpreted as a model for stochastic volatility, which

is powerful enough to generate a volatility smirk, as shown in Figure 1.

A similar approach had already been used by Hull & White (1987) to price options in a general

stochastic volatility model. In this case, the price is given once again by the Black-Scholes formula

now averaged across all possible values of the ‘mean variance’

1

T − t

∫ T

t
σ2
sds.

From a practical point of view, though, such representations are not particularly useful in

order to actually obtain numbers out of a model. This was already evident in Hull & White

(1987), as the density of the mean variance is in general not known. The switch to more realistic
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Figure 1: Implied volatility smirk from a GH model with λ = −0.5 (NIG). Parameter set: T = 6 months,
r = 5% p.a.

models does pose the problem of overcoming computational barriers. This in turn has contributed

to the development of what nowadays can be considered a field in its own right: computational

finance.

From Monte Carlo simulation (Boyle, 1977) and its many refinements (for comprehensive

treatments see Glasserman, 2003, Kienitz & Wetterau, 2012), to valuation methods based on

Fourier transforms (see Carr & Madan, 1999, Eberlein et al., 2010, Fang & Oosterlee, 2008 to

mention the key methods - see also Ballotta, 2022 for a short review), to deep learning meth-

ods (Horvath et al., 2020), computational finance has developed and keeps developing to meet

the financial industry’s needs originated by the proliferation of more sophisticated products and

models.

Today we can look back at an impressive development of mathematical finance and finan-

cial engineering, which also gave origin to a whole industry devoted to the implementation of

sophisticated financial models. This quantum leap started with a magic formula published in

1973.
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