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Abstract

We propose an asymptotic N(0, 1) inferential strategy to test for volatility spillover between markets
consisting of multiple sectors. First, we use nonparametric kernel method to derive test statistics
that assign flexible weight to each lag order and are able to check a growing number of lags as
the sample size increases. Second, we propose a practical multivariate volatility modeling approach
— which enjoys estimation consistency and simplicity — to facilitate higher dimensional spillover
testing. Simulations show the reasonable finite sample performance of the proposed econometric
strategy in a relatively large system. An empirical application highlights the merits of the proposed
approach.

Keywords: Granger causality in variance; Infinite autoregression; Multivariate analysis; Risk man-
agement; Volatility spillover.
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1. Introduction

Volatility is undoubtedly one of the most informative risk indicators in financial economics as

it is fundamentally related to, among others, market liquidity risk (Garbade and Silber, 1979),

the interaction between informed and strategic traders (Admati and Pfleiderer, 1988), the rate of

information flow to the market (Ross, 1989), revealed private information (Stoll and Whaley, 1990),

and the degree of connection between markets as market participants infer information from each

other (King and Wadhwani, 1990; Ellington, 2022). Consequently, a statistical tool that detects
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volatility spillover between markets provides important decision making information about hedging

and managing volatility risk in the commodity market (Sévi, 2014), the energy market (Fianu et al.,

2022), as well as the foreign exchange market (Barunik et al., 2016).

Very often, academics and practitioners concern with testing volatility spillover between markets

consisting of multiple major sectors. For instance, Bekiros et al. (2017) consider testing volatil-

ity spillover between US commodity market (characterized by the energy, metal and agricultural

sectors) and US equity market (characterized by 10 major sectors such as financial, health, and

technology). In this aspect, analyzing the overall spillover effect between the commodity and stock

markets based on a weighted commodity index and a weighted equity index is inadequate because

the univariate analysis does not take into account covariances between the individual sectors within

each market. As highlighted in our simulation study, covariances between individual sectors can

play a nontrivial role in driving overall spillover. In this paper, we propose a new econometric

strategy for testing volatility spillover between markets that are characterized by multiple sectors.

We begin by generalizing the univariate hypothesis of Hong (2001) to the multivariate setup. We

follow the author to define volatility spillover using the notion of Granger (1969, 1980) causality

in variance, in that there is volatility spillover from Y2 to Y1 if any of the past variances of Y2 has

explanatory power over the current variance of Y1.
1 Therefore, the terms variance causality and

volatility spillover may be used interchangeably. We derive testable statistics for our hypotheses

using normalized cross-spectra and we develop the asymptotic theory. Our test statistics possess

several appealing features. First, the computation of our test statistics is relatively straightforward

because it requires only the estimation of standardized residuals which are the main event variables.

Unlike most existing parameter restriction tests which estimate all series in a global model, our pro-

cedures allow the event variables of Y1 and Y2 to be estimated separately. Second, our tests check a

large number of lag orders M as the sample size T increases. In fact, we allow M to grow with T at

a proper rate to ensure power against a broad class of alternatives such as delayed spillover effect.

Third, our frequency domain kernel-based procedure allows flexible weighting of the cross-spectrum

at each lag order. We show that the conventional Granger-type regression procedure can be viewed

as a special case of our approach when the Truncated kernel is used. Both tests assign equal weight

to each lag. Instead, we propose to use downward weighting kernels to enhance the power of our

tests because empirical stylized facts suggest that market participants discount past information

and thus spillover effect is expected to decay over time. Indeed, simulation evidence shows that our

downward weighting tests can check a large number of lags without losing significant power when

compared with an equally weighted test.

Due to the practical limitations in estimating volatility as its dimension increases, the paper

proposes a modeling approach that works coherently with the spillover test. The proposed model

takes the form of a modified Bollerslev (1990) variance-covariance structure, where we specify the

elements in the diagonal matrix as ARCH(∞) processes to minimize the risk of autocorrelated

1For other methodological contributions in Granger causality, see, for instance, Hong (1996); Bouhaddioui and Roy
(2006); Hong et al. (2009); Candelon and Tokpavi (2016).

2



residuals resulting from model inadequacy (see, e.g., Li and Mak, 1994). This will in turn contami-

nate the resulting test statistics by invalidating its asymptotic property. Indeed, our supplementary

empirical study confirms that serial correlation induced by an inadequate GARCH gives mislead-

ing inferential result. In this aspect, the proposed long ARCH(∞) process — which is sometimes

referred to as a “nonparametric” approach — is more appealing than conditional variance models

with a prespecified order. Regarding model estimation, we show that least-squares is feasible and

consistent. The proposed nonparametric covariance modeling and least-squares estimation (NC-

LS) approach is simple and complements existing literature. For instance, the proposed estimation

method enjoys numerical efficiency as we find that it requires only about 5% of the computing time

of QMLE in a computational study provided in the supplementary document. The speed advan-

tage effectively makes bootstrap feasible to give a more accurate finite sample performance for the

volatility spillover test. Besides, the proposed method allows consistent element-wise estimation of

the volatility model that is not limited by certain distributional assumptions (see, e.g., Boudt et al.,

2019, p. 217).

Our econometric strategy proceeds in two stages. First, we estimate the event variables by fitting

the observed data using our proposed NC-LS approach. Second, we compute our test statistics to

draw inference about volatility spillover. Throughout our econometric strategy, we need not perform

numerical integration nor optimization. An extensive Monte Carlo study shows that our inferential

strategy provides reliable finite sample inference even in the higher dimension up to the case of 10

series while the simulation evidence in most other papers is limited to 2–3 series. We further provide

a consistent bootstrap test whose finite sample size is found to converge at a faster rate. We apply

our inferential strategy in a multivariate study in which we investigate the distortion in volatility

spillover relations between the North America (NA) market and the UK market before and after

the Brexit referendum. For a broader study, we also examine the spillover effect on the European

Union (EU) market which is represented by eight major economies. First, based on a series of

diagnostic examinations we find that the proposed NC-LS approach shows adequacy in modeling

and fitting the collected empirical data. Next, using the properly fitted data we apply the proposed

multivariate test to examine volatility spillover. Our main findings show that compared with the

pre-Brexit sample, the average spillover from UK to NA diminishes in the post-Brexit period. By

contrast, we find that the spillover effect from EU to NA is relatively delayed before Brexit but the

nexus becomes more immediate after Brexit. Because market indices are driven by the collective

actions of the respective market participants, we could infer that on average — in contrast to the

pre-Brexit sample — the NA participants appear not to react to the UK market but are following

more closely the EU market in the post-Brexit period.

The remainder of this paper is organized as follows. In Section 2, we derive test statistics

for the hypotheses of interest and we provide their asymptotic properties. Section 3 presents the

nonparametric volatility model and its asymptotic validity. The finite sample performance of our

econometric strategy is reported in Section 4 using a Monte Carlo study. In Section 5, we apply the

proposed inferential strategy to empirically examine volatility spillover between the North Ameri-
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can and European equity markets. Section 6 concludes. Mathematical derivations and proofs are

relegated to the Appendices. Additional simulation and empirical results are collected in a supple-

mentary document. Throughout the paper,
d−−→ and

p−−→ denote convergences in distribution and

probability, respectively. The Euclidean norm is denoted by || · ||. Unless otherwise indicated, all

limits are taken as the sample size T → ∞.

2. Multivariate Granger causality in variance

In this section, we introduce the formal hypotheses for volatility spillover using Granger causal-

ity in variance. We then construct kernel-based test statistics for the hypotheses using the quadratic

distance between two spectral densities. Finally, we provide the asymptotic properties of the pro-

posed tests.

2.1. From univariate to multivariate Granger causality in variance

For two stationary time series Y1t and Y2t, let I1t and I2t denote the respective information set

available at time t. Further let It ≡ (I1t, I2t) denote the combined information set. Following the

definition of Granger (1980), Y2t Granger causes Y1t with respect to It−1 if

E(Y1t|I1t−1) ̸= E(Y1t|It−1). (1)

Granger (1969) introduces a regression-based test for (1), which can be viewed as the causality in

mean hypothesis. We note that there are other definitions of Granger causality such as those based

on projections on Hilbert spaces (see, e.g., Boudjellaba et al., 1992; Comte and Lieberman, 2000).

This is not pursued.

Next, Granger et al. (1986) propose the notion of causality in variance, which is sometimes

referred to as second order causality (see, e.g., Comte and Lieberman, 2000). Let µit ≡ E(Yit|It−1),

i = 1, 2, the causality in variance hypotheses are given by

H0 : E
[
(Y1t − µ1t)

2|I1t−1

]
= E

[
(Y1t − µ1t)

2|It−1

]
, (2)

HA : E
[
(Y1t − µ1t)

2|I1t−1

]
̸= E

[
(Y1t − µ1t)

2|It−1

]
. (3)

Under the null hypothesis, the variance of Y1t is not affected by I2t−1, we say that Y2t does not

Granger cause Y1t in variance. By construction, causality in mean has been filtered out because

the hypotheses are not affected by causal relation in the mean equation. Therefore, any remaining

causal effect is driven purely by volatility that is unaffected by mean and we follow Hong (2001) to

use this information to test for volatility spillover from Y2t to Y1t in the higher dimension.

Let us now consider two stationary vectors of time series (Y1t,Y2t), where for i = 1, 2, Yit =

[Yit(1), ..., Yit(di)]
′, di ∈ Z+ < ∞. Let I1t and I2t denote the information set of Y1t and Y2t available

at time t, respectively. The combined information set is denoted by It ≡ (I1t, I2t). Further let

ϵit ≡ Yit−E(Yit|It−1). We suppose that the demeaned series exhibit conditional heteroskedasticity

4



ϵit = (H0
it)

1/2Ξit, (4)

where H0
it is a (di × di) positive definite conditional variance-covariance matrix of ϵit, measurable

with respect to Iit−1. The innovation process Ξit is such that

E(Ξit|Iit−1) = 0 a.s., E(ΞitΞ
′
it|Iit−1) = Idi a.s. (5)

By generalization of (2)–(3), the multivariate causality in variance hypotheses are given by

H1
0 : E

[
Ξ1tΞ

′
1t|I1t−1

]
= E

[
Ξ1tΞ

′
1t|It−1

]
, (6)

H1
A : E

[
Ξ1tΞ

′
1t|I1t−1

]
̸= E

[
Ξ1tΞ

′
1t|It−1

]
. (7)

Thus, we can test H1
0 by checking if Ξ2tΞ

′
2t Granger causes Ξ1tΞ

′
1t with respect to It−1. In prac-

tice, the squared innovations ΞitΞ
′
it can be consistently estimated using the squared standardized

residuals based on daily data. This also sets our framework apart from methods requiring intraday

data, which may not be readily available to most institutions. Let θ0
i denote the true unknown

parameters of H0
it. Given {ϵt}Tt=1, where ϵt = (ϵ1t, ϵ2t)

′, let θ̂i denote any
√
T -consistent estimator

of θ0
i , such that Ĥit = Hit(θ̂i), where Hit is the pseudo version of H0

it with initial value that is

chosen arbitrarily. For notational simplicity, we further let Ẑit ≡ vech
[
(Ĥit)

−1/2ϵitϵ
′
it(Ĥit)

−1/2
]
,

a column vector with d∗i components, where d∗i = di(di + 1)/2. The vector Ẑit collects the squared

standardized residuals and cross products of standardized residuals at time t. The event variables

of interest are the centered version of Ẑit. We denote by

ût ≡ ut(θ̂1) = Ẑ1t − vech(Id1), v̂t ≡ vt(θ̂2) = Ẑ2t − vech(Id2), (8)

where Idi is an identity matrix of dimension di. Similarly, we denote by u0
t and v0

t the pseudo

version of the event variables based on the true volatility processes H0
1t and H0

2t, respectively.

Note that we do not require the two event variables to have the same dimension. Essentially, our

spillover test allows the number of sectors to vary for the two markets of interest.

2.2. Test statistic

Using cross-spectrum analysis we now derive a test statistic for H1
0 that reduces to Hong’s (2001)

statistic when d1 = d2 = 1. The notion of cross-spectrum is closely related to the concept of Granger

(1969) causality. To see the implication of H1
0 on the cross-spectrum between the event variables

u0
t and v0

t , we first note that the multivariate normalized cross-spectral density of (u0
t ,v

0
t ) is given

by

f(λ) =
1

2π

∞∑
j=−∞

ρ(j)e−ijλ, λ ∈ [−π, π], i =
√
−1, (9)

where ρ(j) ≡ corr(u0
t ,v

0
t−j). Note that ρ(j) and f(λ) contain the same information about the cross-

correlation between u0
t and v0

t−j since they are Fourier transforms of each other. We choose to use

5



the frequency domain f(λ) for some desirable properties below. UnderH1
0, we have ρ(j) = 0, ∀j > 0.

As a result, f(λ) reduces to

f0(λ) =
1

2π

0∑
j=−∞

ρ(j)e−ijλ. (10)

Therefore, we can test H1
0 by quantifying the difference between the observed density f(λ) and the

null density f0(λ) using a proper divergence measure such as the quadratic norm. Any nontrivial

deviation between f(λ) and f0(λ) is evidence against the null hypothesis.

The true cross-spectra f(λ) and f0(λ) are not known but they can be estimated consistently

using nonparametric methods. Empirically, return series exhibit the volatility clustering character-

istic as a volatile period tends to be followed by another volatile period. This is because markets

are generally more influenced by recent information than remote information. Consequently, the

magnitude of any economic movement, including volatility spillover, is expected to decay over time.

We thus consider the kernel estimator which allows for flexible weighting at each lag order

f̂(λ) =
1

2π

T−1∑
j=−T+1

k(j/M)ρ̂(j)e−ijλ, (11)

f̂0(λ) =
1

2π

0∑
j=−T+1

k(j/M)ρ̂(j)e−ijλ, (12)

where k(·) is a kernel function and M is a truncation point when the kernel is bounded, or a

smoothing parameter when the kernel has unbounded supports. The sample cross-correlation matrix

ρ̂(j) is given by

ρ̂(j) = Diag
(
Ĉuu

)−1/2
Ĉuv(j)Diag

(
Ĉvv

)−1/2
, (13)

where Ĉuv(j) is the sample cross-covariance matrix that is given by

Ĉuv(j) =


1

T

T∑
t=j+1

ûtv̂
′
t−j , j ≥ 0,

1

T

T∑
t=−j+1

ût+j v̂
′
t, j < 0,

(14)

and Ĉuu and Ĉvv are the sample covariance matrices of ût and v̂t, respectively. The function

Diag(·) returns a diagonal matrix consisting of the diagonal elements of the original matrix. Note

that ρ̂(j) is a matrix of dimension (d∗1 × d∗2).

Recently, Robbins and Fisher (2015) propose a distance measure based on the Toeplitz matrix,

though, positive definiteness of the measure cannot be guaranteed and some forms of correction are

needed. Instead, we construct our test statistic using the quadratic distance between f̂(λ) and f̂0(λ)

as with Duchesne and Roy (2004) for improved tractability. The distance measure L̂2
[
f̂(λ), f̂0(λ)

]
is such that L̂2

[
f̂(λ), f̂0(λ)

]
≥ 0, and L̂2

[
f̂(λ), f̂0(λ)

]
= 0 if and only if f̂(λ) = f̂0(λ). We use the

6



quadratic form

L̂2
[
f̂(λ), f̂0(λ)

]
≡ 2π

∫
2π

vec
[
f̂(λ)− f̂0(λ)

]′(
Γ̂−1
v ⊗ Γ̂−1

u

)
vec
[
f̂(λ)− f̂0(λ)

]
dλ

=
T−1∑
j=1

k2(j/M)vec
[
ρ̂(j)

]′(
Γ̂−1
v ⊗ Γ̂−1

u

)
vec
[
ρ̂(j)

]
, (15)

where f(·) denotes the complex conjugate of f(·), Γ̂u is the sample correlation matrix of ût to

the unobserved correlation Γu, and Γ̂v is the sample correlation matrix of v̂t to the unobserved

correlation Γv. The equality follows from Paserval’s theorem. As a result, numerical integration

over λ is not required in terms of the computation of L̂2
[
f̂(λ), f̂0(λ)

]
. The derivation of (15)

is provided in Appendix A. Compared with Duchesne and Roy (2004), we do not integrate over

the angular frequency. We allow for the case where d1 ̸= d2. Besides, the authors work with the

unstandardized version of spectral density. As a result, their test is based on covariances rather

than correlations. We show in the analysis of Proposition B.2 in Appendix B that there is a cross-

covariance representation of (15)

L̂2
[
f̂(λ), f̂0(λ)

]
=

T−1∑
j=1

k2(j/M)vec
[
Ĉuv(j)

]′(
Ĉ−1

vv ⊗ Ĉ−1
uu

)
vec
[
Ĉuv(j)

]
. (16)

Despite the equivalence, we choose to construct our test statistics using the standardized spectral

density so that our measure naturally reduces to that of Hong’s (2001) when d1 = d2 = 1. The

proposed test statistic, Q1, is essentially the centered and scaled version of (15)

Q1 =
T
∑T−1

j=1 k2(j/M)vec
[
ρ̂(j)

]′(
Γ̂−1
v ⊗ Γ̂−1

u

)
vec
[
ρ̂(j)

]
− d∗1d

∗
2C1T (k)[

d∗1d
∗
2D1T (k)

]1/2 , (17)

where C1T (k) and D1T (k) are approximately the centering and scaling factors

C1T (k) =

T−1∑
j=1

(1− j/T )k2(j/M), (18)

D1T (k) = 2
T−1∑
j=1

(1− j/T )[1− (j + 1)/T ]k4(j/M). (19)

The constants C1T (k) and D1T (k) are readily computable given k(·) and M . Under some conditions

on k(·) and by letting M goes to infinity properly with T , we have M−1C1T (k) →
∫∞
0 k2(z)dz and

M−1D1T (k) → 2
∫∞
0 k4(z)dz. As a result, C1T (k) and D1T (k) can be replaced, respectively, by

M
∫∞
0 k2(z)dz and 2M

∫∞
0 k4(z)dz without affecting the asymptotic properties of Q1.

7



2.3. Asymptotic theory

We now establish the asymptotic properties of Q1. Let H̃it denote the pseudo version of Hit

with the true unobserved initial value. Note that H̃it(θ
0
i ) = H0

it, but Hit(θ
0
i ) ̸= H0

it due to the

initial value. As a result, ũt(θ
0
1) = u0

t and ṽt(θ
0
2) = v0

t , but ut(θ
0
1) ̸= u0

t and vt(θ
0
2) ̸= v0

t . This

discrepancy is induced by likelihood-based estimation and is properly addressed in the following.

To begin with, we present some regularity conditions under the model described by (4)–(5).

Assumption 2.1. For i = 1, 2, {Ξit} is multivariate independent and identically distributed se-

quence with E(Ξit) = 0, E(ΞitΞ
′
it) = Idi and finite eighth order moment. Besides, {Ξ1t} and

{Ξ2t} are mutually independent under the null hypothesis.

Assumption 2.2. For i = 1, 2,
√
T (θ̂i − θ0

i ) = Op(1), θ
0
i ∈ Θi.

Assumption 2.3. For each θi ∈ Θi, i = 1, 2, supθ1∈Θ1
T
∑T

t=1 E||ut(θ1) − ũt(θ1)||2 = O(1),

supθ2∈Θ2
T
∑T

t=1 E||vt(θ2)− ṽt(θ2)||2 = O(1).

Assumption 2.4. Let ∇θi and ∇2
θi

denote, respectively, the gradient and Hessian operators w.r.t.

θi. Then, supθ1∈Θ1
T−1

∑T
t=1 E

∣∣∣∣∇θ1ũt(θ1)
∣∣∣∣2 = O(1), supθ2∈Θ2

T−1
∑T

t=1 E
∣∣∣∣∇θ2 ṽt(θ2)

∣∣∣∣2 =

O(1), supθ1∈Θ1
T−1

∑T
t=1 E

∣∣∣∣∇2
θ1
ũt(θ1)

∣∣∣∣2 = O(1), supθ2∈Θ2
T−1

∑T
t=1 E

∣∣∣∣∇2
θ2
ṽt(θ2)

∣∣∣∣2 = O(1).

Assumption 2.5. The kernel k : R → [−1, 1] is symmetric about 0, and is continuous at 0 and at

all points except for a finite number of points, with k(0) = 1 and
∫∞
0 k2(z)dz < ∞.

Assumption 2.6. M ≡ M(T ), and M/T → 0 as M → ∞ and T → ∞.

Assumption 2.1 is the multivariate generalization of the conditions required in Hong (2001).

The required moment condition is in line with literature concerning the analysis of variance. For

instance, McCloud and Hong (2011) work with the same moment condition in the context of testing

structural changes in multivariate GARCH models. The i.i.d. condition on Ξit corresponds to

the “strong GARCH” process defined in Hafner (2008) which is frequently used for estimation and

inference in practice. Under this condition, Chan et al. (2007) derive the limiting distribution of the

value-at-risk estimate in a GARCH process while Gao and Song (2008) extend the relevant works

to cover the expected shortfall estimate. In this paper, the i.i.d. assumption ensures condition

(5) that E(Ξit|Iit−1) = 0 a.s. and E(ΞitΞ
′
it|Iit−1) = Idi a.s., and it also reduces the complexity

of the asymptotic analysis.2 In Assumption 2.2, we do not impose any estimation restriction.

Specifically, we allow for any
√
T -consistent estimator θ̂i. Assumption 2.3 requires that the initial

condition of the variance-covariance process is asymptotically negligible. In particular, we require

that the difference between ut(θ1) and ũt(θ1) goes to zero in probability at proper speed. Note

that Assumption 2.3 becomes redundant under our nonparametric volatility specification discussed

in Section 3. Assumption 2.4 requires that the event variables are twice continuously differentiable,

2We have explored the martingale condition under H1
0, but we find that it is not feasible without imposing more

restrictive moment conditions.
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with bounded derivatives. Assumption 2.5 is a standard regularity condition on the kernel function

k(·). Most kernels used in spectral analysis satisfy this condition (see, e.g., Priestley, 1981; Andrews,

1991). Assumption 2.6 requires that M goes to infinity as T increases, at a speed slower than T .

Finally, we have thus far assume that the demeaned series ϵit is observable for ease of exposition,

but it can be replaced by any
√
T -consistent estimate without affecting the asymptotic properties

of Q1 given Assumptions 2.1–2.6.

We now state the asymptotic normality of Q1 under H1
0.

Theorem 2.1. Suppose Assumptions 2.1–2.6 hold under the model described by (4)–(5). Then,

Q1
d−−→ N(0, 1) under H1

0.

The proof of Theorem 2.1 is reported in Appendix B. When the Truncated kernel is used to

compute Q1, our test can be viewed as the Granger (1969)-type procedure. To see the intuition,

we first note that the Truncated kernel is given by k(z) = 1(|z| ≤ 1), where 1(·) is the indicator

function. For the purpose of illustration, suppose d1 = 1 and d2 = 2, we have the following test

statistic3

Q1TR =

{
T

M∑
j=1

vec
[
ρ̂(j)

]′(
Γ̂−1
u

)
vec
[
ρ̂(j)

]
− 3M

}/
(6M)1/2, (20)

where ρ̂(j) is a (1 × 3) vector and Γ̂−1
u is a (3 × 3) matrix. On the other hand, the Granger-type

procedure is based on the following regression

ût = ϕ0 +

M∑
j=1

ϕj v̂t−j + wt, (21)

which checks whether the (1 × 3) parameter vector {ϕj}Mj=1 are jointly zero. We do not have to

include in the auxiliary regression (21) the lagged variables of ût given Assumption 2.1. There is

evidence that v̂t Granger causes ût with respect to It−1 if at least one coefficient in {ϕj}Mj=1 is

significantly different from zero. A typical test statistic GR for this hypothesis obtained from, for

instance, the Wald’s procedure is asymptotically χ2(3M) under H1
0 (see, e.g., Bauer and May-

nard, 2012, Theorem 1). Now, for Q1TR in (20), we know that under H1
0,

√
Tvec

[
ρ̂(j)

]
gen-

erally converges to a three dimensional zero mean normal distribution at each lag j. Then,∑M
j=1 Tvec

[
ρ̂(j)

]′(
Γ̂−1
u

)
vec
[
ρ̂(j)

]
being the M sum of the properly standardized independent χ2(3)

quantity is also asymptotically χ2(3M) under H1
0. To ensure power of the Granger regression-

based test against a large class of alternatives such as delayed spillover, we allow M to grow

with the sample size T properly. Using the well-known approximation of χ2(3M) when M is

large, we obtain the asymptotic normality of GR and
∑M

j=1 Tvec
[
ρ̂(j)

]′(
Γ̂−1
u

)
vec
[
ρ̂(j)

]
. With

proper transformations, we have under H1
0, Q1REG ≡ (GR − 3M)/(6M)1/2

d−−→ N(0, 1) as well as

3Given the Truncated kernel function, we have C1T (k) = M [1− (1+M)/(2T )] and D1T (k) = 2M [1− (2+M)/T +
(M + 1)(M + 2)/(3T 2)]. Using a more stringent condition on M such that M3/2/T = o(1), we can conveniently
approximate C1T (k) and D1T (k) by M and 2M , respectively.
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Q1TR = {T
∑M

j=1 vec[ρ̂(j)
′(Γ̂−1

u )vec[ρ̂(j)]− 3M}/(6M)1/2
d−−→ N(0, 1).

When M is large, both Q1REG and Q1TR may not yield a good power against the alternatives of

practical importance. Given that market participants tend to discount past information, the effect

of volatility spillover will fade as lag order j increases. Therefore, we propose to use downward

weighting kernels such as the Bartlett, Daniell and Quadratic-Spectral kernels to increase the power

performance of our Q1 test. See Section 4 for more discussion and the Monte Carlo study.

To investigate the asymptotic behavior of Q1 under the alternative hypothesis, we impose a

condition on the cross-correlation ρ(j) and a fourth order cumulant condition.

Assumption 2.7. The two event variables u0
t and v0

t are jointly fourth order stationary and their

cross-correlation structure is such that ρ(j) ̸= 0 for at least one j > 0 and

∞∑
j=1

||ρ(j)||2 < ∞,
∞∑
i=1

∞∑
j=1

∞∑
l=1

|κrsrs(i, j, l)| < ∞,

where κrsrs(i, j, l) is the fourth order cumulant of the distribution of u0r,t, v
0
s,t−i, u

0
r,t−j, v

0
s,t−l, with

r ∈ {1, ..., d∗1} and s ∈ {1, ..., d∗2}.

The condition
∑∞

j=1 ||ρ(j)||2 < ∞ implies that the dependence of u0
t on v0

t−j decays to zero at

a proper speed. However, it still permits a pair of highly cross-dependent processes whose cross-

correlation decays to zero at a gradual hyperbolic rate. The cumulant condition is trivially satisfied

if the joint process {u0
t ,v

0
t } is Gaussian which implies zero fourth order cumulants. Fourth order

stationary linear processes with absolutely summable coefficients and with innovations whose fourth

order moment exists, also satisfy the cumulant condition (Hannan, 1970, p. 211).

The following theorem states the consistency of Q1.

Theorem 2.2. Suppose Assumptions 2.1–2.7 hold under the model described by (4)–(5). Then

M1/2

T
Q1

p−−→
[
2

∫ ∞

0
k4(z)dz

]−1/2 ∞∑
j=1

vec
[
ρ(j)

]′(
Γ−1
v ⊗ Γ−1

u

)
vec
[
ρ(j)

]
.

The proof of Theorem 2.2 is reported in Appendix C. Theorem 2.2 implies that Q1 goes to

infinity at rate T/M1/2 provided ||ρ(j)|| ̸= 0 for any j > 0. In the limit, negative values of Q1 can

only occur under H1
0. Therefore, Q1 is a one-sided test; upper-tailed N(0,1) critical values should

be used. Besides, the faster T grows, the quicker Q1 will approach infinity and the test will become

more powerful. In other words, Q1 has asymptotic unit power against any linear pairwise volatility

spillover. However, it should be noted that Q1 has no power against the alternatives with zero

cross-correlation for all values of j > 0, that is, ||ρ(j)|| = 0,∀j > 0, though we expect such highly

nonlinear alternatives to be empirically rare in economics and finance.

2.4. Bidirectional Granger causality in variance

The proposed Q1 test is readily extendable to testing bilateral variance causality. We consider

the multivariate version of Hong’s (2001) bidirectional hypothesis that neither Y2t causes Y1t in

10



variance with respect to (I1t, I2t−1) nor Y1t causes Y2t in variance with respect to (I1t−1, I2t).

This extension is convenient when the existence of spillover relation between Y1t and Y2t is not

known nor supported empirically. Essentially, we examine the following bidirectional hypotheses

H2
0 : E

[
ΞitΞ

′
it|Iit−1

]
= E

[
ΞitΞ

′
it|Iit, Ijt−1

]
, i = j = 1, 2, i ̸= j, (22)

H2
A : E

[
ΞitΞ

′
it|Iit−1

]
̸= E

[
ΞitΞ

′
it|Iit, Ijt−1

]
, for at least one i, i = j = 1, 2, i ̸= j. (23)

This set of hypotheses can be viewed as complete Granger causality because it checks for non

Granger causality between Y1t and Y2t as well as no instantaneous causality between Y1t and

Y2t. Under H2
0, we have ρ(j) = 0, ∀j. As a result, the cross-spectrum f(λ) reduces to zero. The

normalized quadratic distance between the kernel-based spectral density estimator and the null

spectral density is given by

L̂2
2

[
f̂(λ), f̂0(λ)

]
=

T−1∑
j=−T+1

k2(j/M)vec
[
ρ̂(j)

]′(
Γ̂−1
v ⊗ Γ̂−1

u

)
vec
[
ρ̂(j)

]
. (24)

The proposed bidirectional test statistic Q2 is a centered and scaled version of L̂2
2

[
f̂(λ), f̂0(λ)

]
Q2 =

T
∑T−1

j=−T+1 k
2(j/M)vec

[
ρ̂(j)

]′(
Γ̂−1
v ⊗ Γ̂−1

u

)
vec
[
ρ̂(j)

]
− d∗1d

∗
2C2T (k)[

d∗1d
∗
2D2T (k)

]1/2 , (25)

where C2T (k) and D2T (k) are the bidirectional centering and scaling factors with

C2T (k) =
T−1∑

j=−T+1

(1− |j|/T )k2(j/M), (26)

D2T (k) = 2
T−1∑

j=−T+1

(1− |j|/T )[1− (|j|+ 1)/T ]k4(j/M). (27)

Similar to Q1, the bidirectional test statistic Q2 converges in distribution to N(0,1) under the

bilateral null hypothesis and it has asymptotic unit power whenever ||ρ(j)|| ≠ 0 for at least one

j. Likewise, upper-tailed N(0,1) critical values should be used for Q2. The mathematical proof

involved is similar to that of Theorems 2.1 and 2.2 by considering both positive and negative lag

order j’s, and we refrain from repeating the details here. In summary, when prior knowledge about

the spillover relation is not available, one may first test the bidirectional hypothesis that neither

Y2t Granger causes Y1t nor Y1t Granger causes Y2t in variance completely.

3. Estimation

The proposed Q1 and Q2 multivariate tests depend on H0
it which has to be specified. In

practice, modeling multivariate volatility is challenging as we face complications such as convergence,

dimensionality and negative definiteness issues. Besides, to be coherent with the proposed spillover

11



test, the volatility structure should also show adequacy in modeling empirical data. We now put

forward a modeling approach which intersects these features in a practical manner. We suppose

that H0
it can be decomposed as follows

H0
it = (D0

it)
1/2R0

i (D
0
it)

1/2, for i = 1, 2, (28)

whereD0
it = diag(h0i,1t, ..., h

0
i,dit

) is a diagonal matrix with univariate conditional variances andR0
i =

E[(D0
it)

−1/2ϵitϵ
′
it(D

0
it)

−1/2] is the covariance matrix of the vector of element-wise standardized

residuals by construction. Under this structure, H0
it is positive semidefinite provided that the

elements in D0
it are nonnegative and that R0

i is positive semidefinite.

We specify D0
it as an infinite order ARCH process. For n = 1, .., di, we denote the n-th elements

in D0
it and ϵit by h0i,n,t and ϵi,n,t, respectively. The ARCH(∞) representation takes the form

h0i,n,t = ω0
i,n +

∞∑
j=1

a0i,n,jϵ
2
i,n,t−j . (29)

This general process includes Engle’s (1982) ARCH(q), Bollerslev’s (1986) GARCH(p, q), and Engle

and Bollerslev’s (1986) integrated GARCH and fractionally differenced GARCH models. We can

rewrite (29) as an AR(∞) process

ϵ2i,n,t = ω0
i,n +

∞∑
j=1

a0i,n,jϵ
2
i,n,t−j + ei,n,t, (30)

where ei,n,t ≡ ϵ2i,n,t − h0i,n,t is such that E(ei,n,t|Ii,n,t−1) = 0. Because the assumption of an infinite

autoregressive process is rather mild, this is sometimes referred to as a “nonparametric” approach

(see, e.g., Lewis and Reinsel, 1985). More recently, Dufour and Pelletier (2021) develop the asymp-

totic properties for estimating this process under conditions that are weaker than those in Lewis

and Reinsel (1985). Given realization {ϵ2i,n,t}Tt=1, we can approximate (30) by a finite order AR(p)

process, where p is a function of T

ϵ2i,n,t = ω
(p)
i,n +

p∑
j=1

a
(p)
i,n,jϵ

2
i,n,t−j + e

(p)
i,n,t. (31)

We propose to estimate (31) using least-squares following Dufour and Pelletier (2021). Here,

we face the added complexity in the form of nonnegative definiteness condition and we shall show

how this issue is tackled as we proceed. Although least-squares estimation may give larger standard

errors than likelihood-based estimation, it is free from the complications of numerical optimization

and likelihood misspecification (see, e.g., Newey and Steigerwald, 1997). Besides, it makes possible

element-wise estimation ofH0
it without requiring certain distributional assumptions (see, e.g., Boudt

et al., 2019, p. 217). It is also computationally less demanding. As we show in a computational study

provided in the supplementary document, our method requires only about 5% of the computing time
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of the QMLE.

For i = 1, 2, we let θ̂
(p)
i ≡ [(ω̂

(p)
i,1 , ..., ω̂

(p)
i,di

), (â
(p)
i,1,1, ..., â

(p)
i,di,1

), ...(â
(p)
i,1,p, ..., â

(p)
i,di,p

)]′ collects the least-

squares estimator of the vector of parameters θi ≡ [(ωi,1, ..., ωi,di), (ai,1,1, ..., ai,di,1), ...(ai,1,p, ..., ai,di,p)]
′

with true value θ0
i ≡ [(ω0

i,1, ..., ω
0
i,di

), (a0i,1,1, ..., a
0
i,di,1

), ...(a0i,1,p, ..., a
0
i,di,p

)]′. We now provide regular-

ity conditions under which θ̂
(p)
i is a consistent estimator of θ0

i .

Assumption 3.1. For i = 1, 2, n = 1, ...di, (a) {ϵ2i,n,t} and {ei,n,t} are strictly stationary and

ergodic; (b) {ei,n,t} is strong mixing with E(e2i,n,t) = Σe,i,n and has finite fourth order moment.

Assumption 3.2. The lag order p is chosen such that p = o(T 1/2/M1/4) and p/log(T ) → ∞.

Although the strict stationarity condition is maintained throughout the paper as in Assump-

tion 3.1(a), it should be noted that integrated process is allowed in (29)–(30). Such flexibility is

similar to the surplus lag approach in Bauer and Maynard (2012). Assumption 3.1(b) requires the

process {ei,n,t} is strong mixing and has finite fourth order moment. The former requirement is less

restrictive than the martingale difference property of {ei,n,t} whereas the latter is of equal order to

the moment condition in Assumption 2.1. Assumption 3.2 is a standard condition on p in the long

VAR literature. The condition p = o(T 1/2/M1/4) requires that p not to grow too fast, whereas the

condition p/log(T ) → ∞ imposes a lower bound on the growth rate of p. The following proposition

states the consistency of θ̂
(p)
i .

Proposition 3.1. Let the conditional variance process of model (4)–(5) be defined by (28)–(31).

Suppose Assumptions 3.1 and 3.2 hold, then

||θ̂(p)
i − θ0

i || = Op(p
1/2T−1/2), for i = 1, 2.

The proof of Proposition 3.1 is provided in Appendix D. We have shown the consistency of θ̂
(p)
i

but it does not converge at the required rate of
√
T . With the current speed, we can provide further

conditions such that the spillover test is consistent but the asymptotic normality may not hold

under the null hypothesis. We therefore invoke Theorem 5.52 in van der Vaart (1998) to provide

conditions for the least-squares criterion function m(θi, ϵ
2
i,n,t) ≡ (ϵ2i,n,t − ωi,n −

∑∞
j=1 ai,n,jϵ

2
i,n,t−j)

2

such that θ̂
(p)
i achieves the required rate of convergence.

Assumption 3.3. For i = 1, 2, n = 1, ...di, let m(θi, ϵ
2
i,n,t) be any measurable function parameter-

ized by θi such that for fixed constants ∆ and α > β, and for every sufficiently small ζ > 0,

(a) sup||θi−θ0
i ||<ζ E[m(θi, ϵ

2
i,n,t)−m(θ0

i , ϵ
2
i,n,t)] ≤ −∆ζα;

(b) E
{
sup||θi−θ0

i ||<ζ |GT [m(θi, ϵ
2
i,n,t)−m(θ0

i , ϵ
2
i,n,t)]|

}
≤ ∆ζβ;

(c) T−1
∑T

t=1m(θ̂
(p)
i , ϵ2i,n,t) ≥ T−1

∑T
t=1m(θ0

i , ϵ
2
i,n,t)−Op(T

α/(2β−2α)),

where GT [m(θi, ϵ
2
i,n,t)] =

√
T{T−1

∑T
t=1m(θi, ϵ

2
i,n,t)− E[m(θi, ϵ

2
i,n,t)]}.

In general, m(θi, ϵ
2
i,n,t) can be the criterion function of any other M-estimators. See, for instance,

Antoine and Renault (2012) for a comprehensive analysis in the context of GMM estimation. Ac-

cording to Assumption 3.3: provided that (a) the deterministic map E[m(θi, ϵ
2
i,n,t)] reacts rapid
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enough as θi moves away from θ0
i ; (b) the random fluctuation between T−1

∑T
t=1m(θi, ϵ

2
i,n,t) and

E[m(θi, ϵ
2
i,n,t)] is sufficiently small, then θ̂

(p)
i has a high rate of convergence if its distance with

θ0
i is properly bounded according to (c). For instance, with α = 1.5 and β = 0.5, condition (c)

is satisfied using the fact that the squared residuals are bounded by Op(p/T ) = Op(T
−3/4), where

the equality follows from Assumption 3.2. The desired convergence rate of θ̂
(p)
i then follows. The

following proposition states the formal result.

Proposition 3.2. Let the conditional variance process of model (4)–(5) be defined by (28)–(31).

Suppose Assumptions 3.1–3.3 hold with α = 1.5 and β = 0.5, then

||θ̂(p)
i − θ0

i || = Op(T
−1/2), for i = 1, 2.

The proof of Proposition 3.2 is provided in Appendix E. With this speed, our test remains valid in

the limit, although negative volatilities are not precluded by θ̂
(p)
i . To adjust for this, in the following

we provide the adjusted least-squares estimator θ̂
(p)a
i that ensures positive semidefiniteness of D0

it.

We show that the adjusted estimator can be computed based on an ex post estimate of θ̂
(p)
i . We

require the following additional conditions to hold.

Assumption 3.4. For i = 1, 2, the true parameter vector θ0
i lies in the parameter space [Rmin

i ,Rmax
i )

such that D0
it is positive semidefinite.

Assumption 3.5. For i = 1, 2, there exists a vector δi with nonnegative entries such that θ̂
(p)
i +δi ∈

[Rmin
i ,Rmax

i ) and (θ̂
(p)
i + δi)1(δi > 0) = Rmin

i 1(δi > 0).

Assumption 3.4 is a standard condition that restricts the true parameter such thatD0
it is positive

semidefinite. The sufficient condition is that each element in θ0
i is nonnegative (i.e. Rmin

i = 0,

Rmax
i = ∞). Assumption 3.5 requires the existence of a lower bound vector δi with nonnegative

entries such that θ̂
(p)
i +δi yields a positive semidefinite D0

it. In practice, we can replace the negative

entries in θ̂
(p)
i by zeros such that they corresponds to Rmin

i , that is, δi = −θ̂
(p)
i 1(θ̂

(p)
i < 0). Note

that δi is simply a vector of zeros if the unadjusted estimator lies in the desired parameter space.

Given δi, the adjusted least-squares estimators can be computed, on an ex post basis, by θ̂
(p)a
i =

θ̂
(p)
i + δi. The following proposition states the consistency of θ̂

(p)a
i .

Proposition 3.3. Let the conditional variance process of model (4)–(5) be defined by (28)–(31).

Suppose Assumptions 3.1–3.5 hold, then

||θ̂(p)a
i − θ0

i || = Op(T
−1/2), for i = 1, 2.

The proof of Proposition 3.3 is provided in Appendix F. The proof uses the fact that the ex

post adjustment does not affect the asymptotic properties of θ̂
(p)
i because it is only applied to the

entries that are outside of the true neighborhood of θ0
i .

To establish the asymptotic validity of (28)–(31) for our Q1 and Q2 tests, a final condition is

required for the proper convergence of R0
i .
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Assumption 3.6. For i = 1, 2, (D0
it)

−1/2ϵit maintains the same stochastic properties as Ξit with

covariance E[(D0
it)

−1/2ϵitϵ
′
it(D

0
it)

−1/2] = R0
i .

It is evident that (D0
it)

−1/2ϵit belongs to a special case of Ξit = (H0
it)

−1/2ϵit with diagonal

H0
it; it is therefore natural for the former to inherit the stochastic properties of the latter but with

covariance R0
i instead of identity covariance. Then, the estimation of (28) proceeds in two steps.

First, we estimate (31) for each of the diagonal elements in D0
it using the adjusted least-squares

estimator θ̂
(p)a
i . The estimated positive semidefinite process is denoted by D̂it. In the second step,

R0
i is estimated using the sample covariance of D̂

−1/2
it ϵit, which we denote by R̂i. Because R̂i

is always positive semidefinite, this ensures that the estimated time-varying covariance matrix is

always positive semidefinite.

The following proposition states the validity of Theorems 2.1 and 2.2 under the proposed volatil-

ity model.

Proposition 3.4. Let the conditional variance process of model (4)–(5) be defined by (28)–(31).

Suppose Assumptions 2.1–2.2, 2.4–2.6, 3.1–3.6 hold, then the results of Theorem 2.1 remain valid.

Additionally, suppose Assumption 2.7 holds, then the results of Theorem 2.2 remain valid.

The proof of Proposition 3.4 is provided in Appendix G. The key is to show that the second

step estimator R̂i is
√
T -consistent for R0

i . Given this result and by collecting R̂i in the estimator

vector, the results of Theorems 2.1 and 2.2 continue to hold under their respective conditions. Note

that Assumption 2.3 is not needed here since we do not have to specify an initial value for our

model. Besides, when the true data generating process has finite autoregressive order, we have√
T -consistent estimators regardless of Assumption 3.3. We provide Assumption 3.3 as a formal

condition to maintain the generality of our approach where we allow p to grow with T .

In summary, a multivariate volatility model is proposed to facilitate the estimation of Q1 and Q2.

The proposed specification enjoys estimation simplicity and computational efficiency. The approach

is somewhat “nonparametric” in that it imposes minimal assumption on the structure of D0
it. We

also do not impose any parametric assumption on R0
i . The structure of (28) is a modified version

of the variance-covariance matrix in Bollerslev (1990), where we specify the elements in D0
it using a

more general volatility process and we propose least-squares estimation. We also demonstrate the

consistency of our two-steps estimators. For notational simplicity, we denote our approach in short

as the NC-LS approach, where the acronym highlights the nonparametric modeling of covariance

and its least-squares estimation. The NC-LS approach is readily extendable to the case where

R0
i has a dynamic structure using (say) the Exponentially Weighted Moving Average (EWMA)

method, while keeping its estimation properties. However, the simulation and empirical results in

the next sections suggest that the proposed NC-LS approach works coherently with the spillover

test to deliver reliable inference and shows adequacy in fitting real world data. Thus, such extension

is best left for future work.
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4. Monte Carlo simulations

In this section, we investigate the finite sample performance of the proposed econometric strategy

using Monte Carlo simulations. We first consider a bivariate setup (i.e., d1 = d2 = 2), where we

conduct experiments to study the effect of covariance intensity on the finite sample size and power

of our testing strategy. Then, we study the behavior of our method with increasing dimension. To

save space, we focus here on the unidirectional test statistic Q1, and we report and discuss in the

supplementary document the full results based on the bidirectional statistic Q2.

4.1. The bivariate case

We work with the following bivariate data generating process with persistent conditional means

and variances to reflect the stylized features of empirical data

Yit =

(
Yi,1t

Yi,2t

)
=

(
1 +mi,1t

1 +mi,2t

)
+

(
ϵi,1t

ϵi,2t

)
, i = 1, 2, t = 1, ..., T,(

ϵi,1t

ϵi,2t

)
iid∼ N

[(
0

0

)
,

(
h0i,1t ri(h

0
i,1t)

1/2(h0i,2t)
1/2

ri(h
0
i,2t)

1/2(h0i,1t)
1/2 h0i,2t

)]
,

mi,1t = 0.8mi,1t−1 + ei,1t, mi,2t = 0.8mi,2t−1 + ei,2t, ei,1t, ei,2t
iid∼ N(0, 4),

h0i,1t = 0.1 + 0.8h0i,1t−1 + 0.05ϵ2i,1t−1, h0i,2t = 0.1 + 0.8h0i,2t−1 + 0.05ϵ2i,2t−1.

(32)

We consider the following correlation structures

NullA: r1 = r2 = 0.2, NullB: r1 = r2 = 0.5,

NullC: r1 = r2 = rt = 0.2 + 0.1× 0.2cos[2πt/(T/4)].

Under NullA, we have a relatively moderate correlation between the conditional variances in both

Y1t and Y2t. Combination NullB increases the correlation magnitude. Under NullC, we have a

stable time-varying correlation structure that is generated by a cosine function with four periods

over sample size T . To study the power of our testing strategy, we simulate the effect of volatility

spillover by generating correlated squared innovation ϵ̃21,jt and ϵ̃22,jt using Cholesky transformation,

where for j = 1, 2, ϵ̃21,jt = s2ϵ
2
2,jt−1 + (1 − s22)

1/2ϵ21,jt−1, ϵ̃
2
2,jt = ϵ22,jt. The parameter s2 ∈ [0, 1]

controls the intensity of volatility spillover from Y2t to Y1t with respect to It−1. We consider the

following parameter combinations

AlterA: r1 = r2 = 0.2, s2 = 0.35, AlterB: r1 = 0.2, r2 = 0.5, s2 = 0.35.

Both AlterA and AlterB generate equal spillover intensity (s2 = 0.35) from Y2t to Y1t with respect

to It−1. This allows examining the power of our test. We increase the covariance of the risk

transmitter Y2t under AlterB to study the role it plays in driving volatility spillover.

For each data generating process, we conduct 10000 Monte Carlo simulations with sample size T

= 1000 and 1500, which correspond to approximately four and six years of daily data, respectively.
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For each T , we generate T + 1000 observations and then we discard the first 1000 observations to

reduce possible effects from the chosen starting values (h0i,10, h
0
i,20,mi,10,mi,20) = [0.1/(1 − 0.05 −

0.8), 0.1/(1−0.05−0.8), 0, 0]. We consider the following three downward weighting kernel functions

k(·).

The Bartlett (BAR) kernel,

k(z) =

1− |z|, if |z| ≤ 1,

0, otherwise.

The Daniell (DAN) kernel,

k(z) =
sin(πz)

πz
, z ∈ R.

The Quadratic-Spectral (QS) kernel,

k(z) =
25

12π2z2

[
sin(6πz/5)

6πz/5
− cos(6πz/5)

]
, z ∈ R.

For comparison with an equally weighted test, we also include the Truncated (TR) kernel. Note that

the selected kernels satisfy the requirements in Assumption 2.5. Among the downward weighting

kernels, the BAR kernel gives the most intuitive empirical interpretation due to its linear weighting

scheme and its compact support. For instance, when the BAR kernel is used, we are checking

for spillover up to M lags with linearly decreasing weight to each lag order. Thus, in practice M

can be selected based on the scope of the empirical examination. For instance, a relative small

(large) M can be set to examine short-run (long-run) volatility spillover. Considering the empirical

implication, we assess the sensitivity of our inferential strategy by considering a wide M = 10, 20

and 30. All spillover tests are carried out at the 5% significance level.

For each simulation, the estimation and testing procedure proceeds in steps. First, we filter the

conditional mean of Yit using least-squares which yields
√
T -consistent residuals (see, e.g., White,

2001, Theorem 5.11). Then, based on the procedures described in Section 3 we fit the NC-LS

model. We select for the order of every diagonal ARCH process in the volatility structure using the

Bayesian information criteria up to the 25th order. Finally, we test for spillover by computing Q1

and Q2.

In addition to asymptotic critical values, we also consider a nonparametric bootstrap in which

we randomly re-sample the estimated residuals with replacement. As is well known, the bootstrap

procedure can often yield a more accurate finite sample size (see, e.g., Chen and Hong, 2012a,b,

2016). We denote the bootstrap statistic using asterisk by Q∗
1. Step (i), retain fitted series and

residuals Ŷ1t, Ŷ2t, ϵ̂1t and ϵ̂2t. Step (ii), compute Q1. Step (iii), obtain bootstrap residuals ϵ̂∗1t and

ϵ̂∗2t and construct bootstrap sample Y ∗
1t = Ŷ1t + ϵ̂∗1t and Y ∗

2t = Ŷ2t + ϵ̂∗2t. Step (iv), compute the
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b-th statistic Q∗
1
b in the same way as we compute Q1 but with {Y ∗

1t,Y
∗
2t}Tt=1 replacing the original

sample (Y1,Y2) ≡ {Y1t,Y2t}Tt=1. Step (v), repeat steps (iii) to (iv) B times to obtain B bootstrap

test statistics {Q∗
1
b}Bb=1. Step (vi), compute bootstrap p-value by B−1

∑B
b=1 1(Q

∗
1
b > Q1). We set

B = 499 and we maintain 10000 simulations.

By design, the bootstrap approach ensures that the null hypothesis always holds in the bootstrap

world since the two series (Y1,Y2) are re-sampled independently. This ensures the asymptotic

normality of Q∗
1. Under the alternatives, our bootstrap approach has asymptotic unit power. This

follows from the fact that while Q∗
1 remains converging in distribution to N(0, 1), Q1 converges to

positive infinity in probability following Theorem 2.2. Therefore, we obtain consistent bootstrap

p-value.

Table 1 reports the empirical sizes of our volatility spillover tests under NullA, NullB and NullC

based on the NC-LS modeling. In general, we find that Q1 tends to over reject the null a little but

not excessively. The size improves gradually as T increases. We find the rejection rates of Q1 to be

stable across the three parameter combinations. This implies that the size of our inferential strategy

is not affected by increasing portfolio correlation and the time-varying cosine case. As expected,

our bootstrap test Q∗
1 yields a more accurate finite sample size than Q1, and it too is robust to

changing correlations. Overall, we find the proposed econometric strategy to be reasonably sized.

This result appears to hold across the kernel functions and the value of their smoothing parameter

M .

We report the empirical powers of our testing approach in Table 2. For Q1, we use empirical

critical values that are computed from the 10000 simulations under NullA. This gives size-adjusted

powers. In general, we find that our inferential strategy becomes more powerful as T increases. We

also find that both Q1 and Q∗
1 give rather similar power. The rejection rates of Q1 and Q∗

1 decrease

in M . This is because under AlterA and AlterB, we have one-period lagged volatility spillover.

Therefore, we expect a test that focuses on recent events to give better power. Besides, we find that

downward weighting kernels often yield better power than the TR kernel, and they are less affected

by a large M . These results confirm our expectation that, compared with an equally weighted

test, downward weighting tests alleviate the impact of choosing a relatively large M because they

discount higher order lags. Interestingly, we find that the rejection rates of Q1 and Q∗
1 are higher

under parameter combination AlterB. This implies that, other things being equal, an increase in the

correlation within the risk transmitter Y2t can drive the overall effect of volatility spillover. This

result highlights the nontrivial role covariance can play in driving spillover.

Finally, we carry out likelihood-based sensitivity analysis, that is, we investigate the finite sam-

ple performance of the volatility spillover tests based on model described in (28)–(29) where the

ARCH(∞) process (29) is estimated using QMLE.4 Simulation results (deferred to the supplemen-

tary document) are very comparable to those reported in Table 1 and Table 2. This is consistent

with Theorem 2.1 and Theorem 2.2 that, given the regularity conditions, the asymptotic properties

4We thank an anonymous referee for this suggestion.
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of the spillover test are robust to estimation procedures.

Table 1: Empirical sizes of Q1 and Q∗
1

NullA NullB NullC

T M 10 20 30 10 20 30 10 20 30

Rejection rates based on asymptotic critical values
1000 Q1BAR 7.1 6.8 6.9 7.0 6.9 6.8 7.2 6.7 6.7

Q1DAN 7.1 6.8 6.9 7.0 6.7 7.1 7.0 6.7 6.8
Q1QS 7.1 6.9 6.8 7.1 6.8 7.1 6.8 6.7 6.9
Q1TR 7.1 6.9 7.0 7.0 7.3 7.1 6.6 6.6 6.7

1500 Q1BAR 6.7 6.5 6.4 6.7 6.4 6.3 6.8 6.7 6.5
Q1DAN 6.8 6.6 6.4 6.7 6.3 6.5 6.7 6.6 6.2
Q1QS 6.8 6.5 6.3 6.6 6.4 6.5 6.8 6.5 6.3
Q1TR 6.5 6.4 6.4 6.1 6.3 6.3 6.3 6.4 6.4

Rejection rates based on bootstrap critical values
1000 Q∗

1BAR 5.3 5.6 5.4 5.3 5.5 5.1 5.3 5.5 5.5
Q∗

1DAN 5.4 5.3 5.2 5.3 5.3 5.1 5.4 5.3 5.2
Q∗

1QS 5.5 5.4 5.0 5.5 5.2 5.2 5.5 5.4 5.1

Q∗
1TR 5.0 5.0 5.2 5.0 4.9 5.1 5.1 5.1 5.1

1500 Q∗
1BAR 5.2 5.3 5.4 5.3 5.3 5.3 5.3 5.2 5.4

Q∗
1DAN 5.3 5.1 5.3 5.2 5.2 5.3 5.3 5.2 5.3

Q∗
1QS 5.2 5.2 5.3 5.3 5.3 5.2 5.3 5.2 5.3

Q∗
1TR 4.9 5.3 5.3 4.9 5.5 5.2 4.8 5.3 5.3

Notes: The table reports empirical sizes (in %) of Q1 under NullA, NullB and NullC at the 5% significance level
based on NC-LS modeling. Number of simulations = 10000. Q1BAR, Q1DAN, Q1QS, Q1TR and Q∗

1BAR, Q
∗
1DAN, Q

∗
1QS,

Q∗
1TR denote the rejection rates of Q1 using asymptotic and bootstrap critical values, respectively; the subscripts

BAR, DAN, QS and TR denote, respectively, the Bartlett kernel, the Daniell kernel, the Quadratic-Spectral kernel
and the Truncated kernel. Number of bootstraps = 499. T and M denote the sample size and kernel smoothing
parameter, respectively.

4.2. Higher dimensions

The finite sample performance of existing multivariate dependence tests is often demonstrated

up to the case of three series. For instance, the bivariate case is examined in Duchesne and Roy

(2004), whereas Robbins and Fisher (2015) study the relations between bivariate and trivariate

processes, that is d1 = 3, d2 = 2. By contrast, we now demonstrate the finite sample performance

of our multivariate approach in higher dimensions, which is made feasible thanks to the proposed

NC-LS modeling. We focus on the case where we analyze spillover effects on a relatively large market

covering multiple countries such as the European Union. In particular, we study d1 = 3, 4, ..., 10

and d2 = 2. We expect our approach to perform similarly given the opposite relation or any

combinations of di so long as they are of equal complexity.

We study the size of our inferential strategy under combination NullD, where with increasing

d1, we retain the correlation intensity ri of NullA because our bivariate simulations show stability

across combinations NullA–NullC. In spite of that, we perform a sensitivity check to find that
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Table 2: Empirical powers of Q1 and Q∗
1

AlterA AlterB

T M 10 20 30 10 20 30

Rejection rates based on empirical critical values
1000 Q1BAR 78.2 69.0 61.9 95.0 90.1 85.1

Q1DAN 74.5 62.1 53.4 93.3 85.1 78.2
Q1QS 73.1 59.8 51.7 92.7 83.8 76.6
Q1TR 51.5 38.4 32.0 76.8 61.1 51.7

1500 Q1BAR 92.1 85.4 80.0 99.4 98.0 96.7
Q1DAN 89.8 79.6 72.3 99.0 96.6 93.7
Q1QS 88.9 78.2 70.9 98.8 96.2 92.8
Q1TR 71.1 55.1 46.4 92.9 83.3 73.2

Rejection rates based on bootstrap critical values
1000 Q∗

1BAR 76.1 66.0 59.1 94.2 88.4 83.1
Q∗

1DAN 71.7 58.8 49.7 92.4 82.9 75.1
Q∗

1QS 70.3 57.0 48.2 91.6 81.4 73.7

Q∗
1TR 47.9 34.8 29.0 73.6 58.3 49.3

1500 Q∗
1BAR 91.2 83.9 78.0 99.4 98.0 96.2

Q∗
1DAN 88.4 77.9 69.1 99.0 96.2 92.8

Q∗
1QS 87.2 76.3 67.6 98.7 95.6 91.9

Q∗
1TR 67.6 52.0 42.8 92.0 80.9 72.0

Notes: The table reports empirical powers (in %) of Q1 under AlterA and AlterB at the 5% significance level based
on NC-LS modeling. Number of simulations = 10000. Q1BAR, Q1DAN, Q1QS, Q1TR and Q∗

1BAR, Q∗
1DAN, Q∗

1QS,
Q∗

1TR denote the rejection rates of Q1 using empirical and bootstrap critical values, respectively; the subscripts BAR,
DAN, QS and TR denote, respectively, the Bartlett kernel, the Daniell kernel, the Quadratic-Spectral kernel and the
Truncated kernel. Number of bootstraps = 499. T and M denote the sample size and kernel smoothing parameter,
respectively.

the performance of our approach in the higher dimensions is robust to the time-varying cosine

correlation of NullC. For power study, we maintain the covariance structure in AlterA but we reduce

the spillover intensity s2 to 0.15 to highlight the power effects as d1 increases. Given d1 > d2, we

generate spillover to each series in Y1t by repeating the influence of Y2t. This ensures that every risk

recipients in Y1t is equally affected by the spillover effect. For instance, when d1 = 4, d2 = 2, Y1,3t

and Y1,4t will be affected by Y2,1t and Y2,2t, respectively. We denote this parameter combination by

AlterC. Because the overall performance of our test is stable across M , we only report here the case

where M = 20 to save space. The full set of results are reported in the supplementary document.

Table 3 reports the empirical sizes of our inferential approach. We find that the size of Q1

increases in dimension, but not overly excessive nor rapid. The size of Q1 generally improves and

stabilizes as T increases. The rejection rates of our bootstrap approach Q∗
1 also tend to increase in

dimension when T = 1000, but they become very stable as T approaches 1500. Table 4 reports the

power study. As with the bivariate study, we use empirical critical values for Q1. In general, our

approach has power despite a rather low spillover intensity s2 = 0.15. Both Q1 and Q∗
1 give similar

rejection rates, and they become more powerful as T increases. We find that the power of our tests
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grows with d1. Because the number of risk recipients increases as d1 increases, this yields a stronger

evidence of spillover and thus increase the rejection rates Q1 and Q∗
1.

Table 3: Empirical sizes of Q1 and Q∗
1

NullD

T d1 3 4 5 6 7 8 9 10

Rejection rates based on asymptotic critical values
1000 Q1BAR 7.1 7.1 7.1 7.2 7.4 7.9 7.9 7.6

Q1DAN 7.3 6.9 7.1 7.3 7.3 7.9 8.2 7.9
Q1QS 7.1 7.0 7.3 7.2 7.4 7.8 8.3 7.9
Q1TR 7.2 7.3 7.4 7.4 7.5 8.1 8.8 8.9

1500 Q1BAR 6.7 7.0 6.6 6.8 6.3 7.2 7.1 6.8
Q1DAN 6.6 6.9 6.6 6.7 6.4 7.2 7.2 7.0
Q1QS 6.7 6.9 6.6 6.7 6.4 7.2 7.1 7.1
Q1TR 6.7 6.9 7.1 7.0 7.0 6.8 7.0 7.3

Rejection rates based on bootstrap critical values
1000 Q∗

1BAR 4.8 5.5 5.5 5.2 5.5 5.2 5.3 5.8
Q∗

1DAN 4.9 5.6 5.3 5.5 5.4 5.3 5.4 5.7
Q∗

1QS 5.1 5.5 5.5 5.5 5.5 5.5 5.3 5.8

Q∗
1TR 5.1 5.8 5.7 5.3 5.7 5.7 5.7 5.6

1500 Q∗
1BAR 5.1 5.2 4.8 5.0 5.4 5.5 5.4 5.1

Q∗
1DAN 5.1 5.3 4.8 5.2 5.3 5.5 5.4 5.1

Q∗
1QS 5.2 5.2 4.8 5.2 5.4 5.5 5.4 5.1

Q∗
1TR 5.3 5.4 5.2 5.3 5.5 5.6 5.3 5.5

Notes: The table reports empirical sizes (in %) of Q1 under NullD at the 5% significance level based on NC-LS
modeling. Number of simulations = 10000. Q1BAR, Q1DAN, Q1QS, Q1TR and Q∗

1BAR, Q
∗
1DAN, Q

∗
1QS, Q

∗
1TR denote

the rejection rates of Q1 using asymptotic and bootstrap critical values, respectively; the subscripts BAR, DAN, QS
and TR denote, respectively, the Bartlett kernel, the Daniell kernel, the Quadratic-Spectral kernel and the Truncated
kernel. Number of bootstraps = 499. T and d1 denote the sample size and dimension of portfolio 1, respectively.

5. Empirical application

The North America (NA) has historically maintained a strong economic partnership with the

UK but Cumming and Zahra (2016) suggest that this relation is to be challenged after the UK

voted to leave the European Union on 23rd June 2016. In this section, we use the new inferential

strategy to study, before and after the Brexit referendum, the spillover relations between the North

American and the UK equity markets. We use the American S&P-500 and the Canadian S&P-

TSX stock indices for the NA market, and we use the FTSE-All index for the UK market. To

examine possible Brexit effect on the broader European market, we also study its spillover relations

with the NA market. Regarding the former, we use the European Union (EU) portfolio previously

constructed by Baele (2005): Austria, Belgium, France, Germany, Ireland, Italy, the Netherlands

and Spain, where the market indices are taken as ATX, Bel-20, FrCAC-40, DAX-30, ISEQ-All,

FTSE-MIB, AEX and IBEX-35, respectively. It is worth highlighting that this is the first study
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Table 4: Empirical powers of Q1 and Q∗
1

AlterC

T d1 3 4 5 6 7 8 9 10

Rejection rates based on empirical critical values
1000 Q1BAR 27.6 40.8 55.2 65.5 73.9 77.1 80.9 83.0

Q1DAN 23.0 33.4 44.8 54.9 62.5 65.9 70.3 71.4
Q1QS 22.1 31.6 43.2 52.9 60.1 64.1 67.4 69.0
Q1TR 14.3 18.8 23.7 30.0 34.2 35.5 37.1 37.8

1500 Q1BAR 42.6 63.0 84.2 91.4 96.0 97.7 98.6 99.1
Q1DAN 34.1 51.9 73.2 82.4 90.7 93.6 95.0 96.8
Q1QS 33.1 49.5 70.7 80.3 88.9 92.2 93.8 95.8
Q1TR 18.8 28.1 39.2 47.8 57.2 61.9 66.3 67.8

Rejection rates based on bootstrap critical values
1000 Q∗

1BAR 23.8 36.6 52.0 62.2 70.1 74.9 78.6 80.9
Q∗

1DAN 19.6 29.6 42.1 50.9 58.1 63.3 67.2 69.8
Q∗

1QS 19.0 28.2 40.3 48.4 55.6 60.4 64.6 67.1

Q∗
1TR 12.4 15.6 21.7 26.4 30.4 32.9 35.9 37.0

1500 Q∗
1BAR 38.7 62.3 81.3 89.9 94.8 97.3 98.4 98.9

Q∗
1DAN 31.2 50.9 70.2 80.3 87.9 92.2 94.4 95.9

Q∗
1QS 29.6 48.4 67.4 77.8 86.1 90.5 93.0 94.8

Q∗
1TR 16.9 26.0 36.4 44.5 52.0 58.3 61.8 65.9

Notes: The table reports empirical powers (in %) of Q1 under AlterC at the 5% significance level based on NC-LS
modeling. Number of simulations = 10000. Q1BAR, Q1DAN, Q1QS, Q1TR and Q∗

1BAR, Q
∗
1DAN, Q

∗
1QS, Q

∗
1TR denote

the rejection rates of Q1 using empirical and bootstrap critical values, respectively; the subscripts BAR, DAN, QS
and TR denote, respectively, the Bartlett kernel, the Daniell kernel, the Quadratic-Spectral kernel and the Truncated
kernel. Number of bootstraps = 499. T and d1 denote the sample size and dimension of portfolio 1, respectively.

to provide insights into the distortion of spillover relation between the North American and the

European equity markets in the aftermath of the Brexit referendum. Given the historical economic

relations between the regions, the one-way volatility spillover test is appropriate for this study.

We sample our data centering the referendum event from 2nd January 2012 to 31st December

2019 at the daily frequency from Datastream. This gives 2087 observations. Then, we divide the

sample into two subperiods: the pre–Brexit sample (2nd January 2012 – 23rd June 2016) and the

post–Brexit sample (24th June 2016 – 31st December 2019). Using the referendum date as a reference

point is appropriate because the voting outcome had immediately affected economic outlooks and

expectations (see, e.g., Breinlich et al., 2022, p. 66).5 We collect all data in US dollar to minimize

potential bias due to currency risk. Return series are calculated by taking the first difference of the

price indices in natural logarithm. Although the markets being studied are partially synchronous,

our analyses are not driven by spurious spillover effects (type 1 error) on the same calendar day

5We also perform a sensitivity analysis (results reported in the supplementary document) in which we curtailed 8
observations before and after the Brexit referendum date to find that our main conclusions remain robust. We choose
8 observations as the Vote Leave Campaign presented its major plan 8 days before the referendum date.
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because the Q1 test checks for the lagged spillover effect of at least one day. Besides, both the EU

and UK markets share the similarity that they are mostly synchronous and partially overlaps with

the NA market. Thus, our setup is impartial to UK and EU to study and compare individually

their connections with the NA market.

We begin with the NA–UK study. First, we estimate our nonparametric conditional variance

model for both subsamples. To filter out possible mean causality, each return variable is regressed

on the remaining lagged series. With the residuals that are free from mean causality, we estimate

the volatility model using the proposed NC-LS approach. The best fitting model lag orders are

selected on the basis of Bayesian information criteria and diagnostic examinations. Regarding the

pre–Brexit period, we obtain orders 9, 3 and 11 for the conditional variances of the UK, US and

Canada markets, respectively. As for the post–Brexit sample, we obtain orders 4, 16 and 12 for

the conditional variances of the UK, US and Canada series, respectively. We carry out for the NA

portfolio the Engle and Sheppard’s (2001) diagnosis of stable correlation — which shows better

power to regime switching in economic condition such as Brexit (McCloud and Hong, 2011, Tables

6–7) — to find that we cannot reject the null of stable correlation structure at the usual significance

level, with p-values of 0.8969 and 0.1325 for the pre–Brexit and post–Brexit samples, respectively.

The optimal orders of the correlation stability test are automatically selected based on Bayesian

information criteria. This, together with a series of conventional Ljung-Box examinations reported

in Table 5, suggests the adequacy of our NC-LS modeling.

Next, we compute our bootstrap Q∗
1 tests using the Bartlett kernel since simulations suggest

similar performance across the downward weighting kernels. We report the p-values in Table 6. In

the pre–Brexit sample, we find that the spillover effect from the NA market to the UK market is

statistically significant at the 5% level for all M ’s. This finding implies that the NA market has

a significant influence on the UK market in both the short term and the long run. In the other

direction, we find evidence of spillover effect from the UK market to the NA market at the 10%

level for all M ’s. Our findings imply feedback spillovers in the NA–UK nexus. This interdependent

relation, however, diminishes in the post–Brexit period.

Before Brexit, the feedback spillover in the NA–UK nexus can be explained by the closely

interconnected economic activities in the two regions. Since the two markets rely on each other, the

market participants in the two regions tend to follow each other closely. Therefore, an increase in

uncertainty or volatility of one market would inevitably affect the other. Interestingly, the spillover

effects between NA and UK disappear after Brexit. In other words, the NA (UK) market is no

longer significantly affected by the volatility in the UK (NA) market. After the Brexit referendum,

market participants in the UK may be discouraged to infer information from the NA market because

they are less confident about the UK’s bargaining position in the international market especially

among major players such as NA. Consequently, uncertainly in NA does not spill to UK. In the

other direction, the evidence that market participants in the NA region do not respond to the

UK could be due to them weighing the merits of further expanding into the UK market. This is

consistent with the reported survey in Cumming and Zahra (2016) that 20% of UK entrepreneurs
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are considering a move to other countries probably elsewhere in the EU.

Table 5: Diagnostic tests (UK–NA)

LB(10) LB(20) LB(30) LB2(10) LB2(20) LB2(30)

Pre–Brexit (2nd January 2012 – 23rd June 2016)
UK 7.155 22.093 36.494 6.177 18.319 25.026

[0.711] [0.335] [0.192] [0.800] [0.566] [0.724]
US 13.169 20.312 32.243 12.124 20.539 30.504

[0.214] [0.439] [0.356] [0.277] [0.425] [0.440]
Canada 4.224 20.656 34.183 2.911 23.436 38.206

[0.937] [0.418] [0.274] [0.983] [0.268] [0.145]
Post–Brexit (24th June 2016 – 31st December 2019)
UK 11.071 19.740 27.036 10.468 14.336 16.783

[0.352] [0.474] [0.621] [0.400] [0.813] [0.975]
US 15.436 18.869 23.736 10.546 13.020 17.188

[0.117] [0.530] [0.784] [0.394] [0.877] [0.970]
Canada 6.779 18.437 22.004 4.432 18.823 21.513

[0.746] [0.559] [0.854] [0.926] [0.533] [0.871]

Notes: The table reports diagnostic analyses for all fitted series. LB(M) and LB2(M) are the Ljung-Box tests for the
null of no serial correlation (up to lag order M) on the standardized and squared standardized residuals, respectively.
The values in the squared parentheses are the p-values of the tests.

Table 6: Spillover results (UK–NA)

Pre–Brexit Post–Brexit

M 10 20 30 10 20 30

Q∗
1BAR 0.028 0.036 0.038 0.168 0.154 0.186

Q∗
−1BAR 0.088 0.058 0.054 0.729 0.677 0.774

Notes: The table reports bootstrap p-values of the proposed spillover tests. Number of bootstraps = 499. Q∗
1BAR

denotes the one-way test for the null hypothesis of no volatility spillover from the NA market to the UK market.
Q∗

−1BAR denotes the one-way test for the null hypothesis of no volatility spillover from the UK market to the NA
market. The subscript BAR denotes the Bartlett kernel. M denotes the kernel smoothing parameter.

We now examine the NA–EU spillover relation. In the pre–Brexit sample, we obtain orders 16,

14, 12, 11, 7, 18, 9, 15, 3 and 15 for the conditional variances of the Austria, Belgium, France,

Germany, Ireland, Italy, the Netherlands, Spain, US and Canada markets, respectively. As for

the post–Brexit period, we obtain orders 11, 16, 10, 12, 9, 10, 11, 8, 9 and 10 for the conditional

variances of the Austria, Belgium, France, Germany, Ireland, Italy, the Netherlands, Spain, US

and Canada series, respectively. As with the NA–UK study, we perform the Engle and Sheppard’s

(2001) diagnosis to find that we cannot reject the null of stable correlation structure at the usual

significance level for both subsamples and for both portfolios. Regarding the EU portfolio, we obtain

p-values of 0.4118 and 0.1183 for the pre–Brexit and post–Brexit samples, respectively. As for the

NA portfolio, we obtain p-values of 0.6592 and 0.5472 for the pre–Brexit and post–Brexit samples,
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respectively. These examinations, along with a series of Ljung-Box diagnoses reported in Tables 7

and 8, confirm the adequacy of our NC-LS model parameterizations.

Table 9 reports the volatility spillover test results. In the pre–Brexit period, we find that the

spillover effect from the NA market to the EU market is statistically significant at the 10% level

for M = 10, 30. This finding suggests that the NA market has nontrivial influences on the broader

EU market in the short and long terms. In the opposite direction, the spillover effect from the EU

market is significant at the 10% level for M = 30. In the post–Brexit sample, the spillover effect

between the NA market and the EU market persists, with the impact from the latter occurs at a

lower M .

Before Brexit, the feedback spillover in the NA–EU nexus can be largely attributed to the

interconnected economic activities in the two regions. Therefore, uncertainty in one market would

naturally spill to the other. Interestingly, the spillover effect from the EU is somehow delayed as the

effect is not felt immediately by the NA market. One possible explanation for this finding is that,

before Brexit, market participants in the NA can access the European Single Market seamlessly

through the UK. Thus, they may tend to focus primarily on the UK, which results in their delayed

response to the volatility in the EU market. However, we find that the NA–EU spillover nexus

becomes more immediate after Brexit. This follows as NA participants switch their attention to

EU directly for the Single Market, and naturally they show a more immediate response to EU.

In summary, our findings suggest that, before the Brexit referendum, participants in the NA

market pay a relatively closer attention to the UK than the EU market. Consequently, the NA

is driven more immediately by the volatility in the UK. After Brexit, the NA tends not to focus

on the UK, and it prefers to follow the EU more closely. As a result, uncertainty in the UK does

not significantly affect the NA while that in the EU has a more immediate effect on the NA. Our

findings are consistent with the stylized fact that to a certain degree in the short term, Brexit has

reduced UK’s economic and geographic attracting power while the neighboring EU receives more

attention (see, e.g., Hamre and Wright, 2021). Besides, our findings also agree with the conclusions

in Breinlich et al. (2022) that Brexit has adversely affected the living costs in the UK, which could

well be one of the main reasons that renders the region less attractive to businesses.
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Table 7: Diagnostic tests (EU–NA)

LB(10) LB(20) LB(30) LB2(10) LB2(20) LB2(30)

Pre–Brexit (2nd January 2012 – 23rd June 2016)
Austria 8.839 11.259 29.522 1.821 2.540 15.942

[0.547] [0.939] [0.490] [0.998] [1.000] [0.983]
Belgium 7.327 17.561 39.203 2.063 14.773 31.616

[0.694] [0.616] [0.121] [0.996] [0.789] [0.386]
France 7.405 18.745 38.255 5.597 16.625 27.864

[0.687] [0.538] [0.143] [0.848] [0.677] [0.578]
Germany 4.424 20.098 37.650 1.810 16.234 26.026

[0.926] [0.452] [0.159] [0.998] [0.702] [0.674]
Ireland 7.429 21.941 37.667 4.151 21.944 40.053

[0.684] [0.344] [0.158] [0.940] [0.344] [0.104]
Italy 5.208 24.126 39.677 4.861 18.723 29.314

[0.877] [0.237] [0.111] [0.900] [0.540] [0.501]
Netherlands 7.255 19.837 37.514 2.467 14.265 21.344

[0.701] [0.468] [0.163] [0.991] [0.817] [0.877]
Spain 11.198 22.854 39.655 8.825 18.703 37.979

[0.342] [0.296] [0.112] [0.549] [0.541] [0.150]
US 13.084 21.296 36.398 15.271 22.915 34.113

[0.219] [0.380] [0.195] [0.122] [0.293] [0.276]
Canada 3.926 17.647 30.166 3.113 20.511 33.009

[0.951] [0.611] [0.457] [0.979] [0.426] [0.322]

Notes: The table reports diagnostic analyses for all fitted series. LB(M) and LB2(M) are the Ljung-Box tests for the
null of no serial correlation (up to lag order M) on the standardized and squared standardized residuals, respectively.
The values in the squared parentheses are the p-values of the tests.

26



Table 8: Diagnostic tests (EU–NA)

LB(10) LB(20) LB(30) LB2(10) LB2(20) LB2(30)

Post–Brexit (24th June 2016 – 31st December 2019)
Austria 3.371 15.052 19.516 2.601 13.909 17.353

[0.971] [0.773] [0.929] [0.989] [0.835] [0.968]
Belgium 7.672 18.799 24.333 1.892 5.901 7.232

[0.661] [0.535] [0.757] [0.997] [0.999] [1.000]
France 10.970 16.590 27.751 5.436 9.278 14.264

[0.360] [0.679] [0.584] [0.860] [0.979] [0.993]
Germany 2.087 15.826 24.130 1.233 10.628 14.429

[0.996] [0.727] [0.766] [1.000] [0.955] [0.993]
Ireland 4.952 15.662 29.053 0.465 15.670 22.324

[0.894] [0.737] [0.515] [1.000] [0.737] [0.842]
Italy 5.015 21.839 26.462 2.595 11.920 18.647

[0.890] [0.349] [0.651] [0.989] [0.919] [0.947]
Netherlands 4.078 7.539 17.054 1.409 8.056 12.786

[0.944] [0.995] [0.972] [0.999] [0.991] [0.997]
Spain 6.255 21.479 23.440 2.728 15.164 25.255

[0.793] [0.369] [0.797] [0.987] [0.767] [0.713]
US 7.289 21.190 30.560 15.012 23.508 25.919

[0.698] [0.386] [0.437] [0.132] [0.265] [0.679]
Canada 5.511 27.150 33.990 3.446 26.552 30.657

[0.855] [0.131] [0.281] [0.969] [0.148] [0.432]

Notes: The table reports diagnostic analyses for all fitted series. LB(M) and LB2(M) are the Ljung-Box tests for the
null of no serial correlation (up to lag order M) on the standardized and squared standardized residuals, respectively.
The values in the squared parentheses are the p-values of the tests.

Table 9: Spillover results (EU–NA)

Pre–Brexit Post–Brexit

M 10 20 30 10 20 30

Q∗
1BAR 0.046 0.124 0.070 0.078 0.128 0.182

Q∗
−1BAR 0.210 0.144 0.072 0.132 0.080 0.078

Notes: The table reports bootstrap p-values of the proposed spillover tests. Number of bootstraps = 499. Q∗
1BAR

denotes the one-way test for the null hypothesis of no volatility spillover from the NA market to the EU market.
Q∗

−1BAR denotes the one-way test for the null hypothesis of no volatility spillover from the EU market to the NA
market. The subscript BAR denotes the Bartlett kernel. M denotes the kernel smoothing parameter.
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6. Conclusions

We proposed a class of asymptotic N(0, 1) multivariate econometric strategy for testing volatility

spillover. The test statistics were constructed based on the quadratic distance between a kernel-

based spectral density estimator and the null spectral density. The proposed test statistics are

straightforward to compute and they check a growing number of lags as the sample size increases.

The Granger regression-type method can be viewed as a special case of the proposed procedure under

the uniformly weighted Truncated kernel, but downward weighting kernels were proposed to be in

line with stylized facts and thus to improve the power performance of the tests. Considering practical

limitations in estimating multivariate volatility such as numerical convergence and dimensionality,

we proposed a modeling approach that worked coherently with the spillover test. Consistent least-

squares estimators that are computationally efficient were provided. Throughout the proposed

econometric strategy, numerical optimization and integration are not required. The capacity of the

multivariate testing strategy was highlighted using Monte Carlo experiments. First, it can check

a large number of lags without losing significant power thanks to the use of downward weighting

kernel functions. Second, it was found that the testing strategy performed reasonably well up to

the tenth dimension. Furthermore, the paper provided a bootstrap version of the spillover tests

whose size was found to converge at a faster speed. Finally, the paper included a empirical study

in which the volatility spillover relations between the North America (NA) market and the greater

European market (both UK and EU) before and after the Brexit referendum were examined. First,

the proposed volatility modeling strategy adequately fitted the collected empirical data. Next, we

found that the NA was driven more immediately by UK volatility than EU volatility in the pre-

Brexit sample. After Brexit, it was found that volatility in the UK did not spill to NA while that

in the EU had a more immediate spillover effect on NA. As market indices reflect the collective

actions of the market participants, we could infer that on average — in contrast to the pre-Brexit

sample — the NA participants appeared not to respond to the UK market but were following more

closely the EU market in the post-Brexit period.
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Appendix A Derivation of the normalized quadratic distance

Derivation of (15). Recall that the normalized quadratic distance is given as

L̂2
[
f̂(λ), f̂0(λ)

]
= 2π

∫
2π

vec
[
f̂(λ)− f̂0(λ)

]′(
Γ̂−1
v ⊗ Γ̂−1

u

)
vec
[
f̂(λ)− f̂0(λ)

]
dλ

= 2π

∫
2π

vec
[
f̂(λ)− f̂0(λ)

]′(
Γ̂−1
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u

)
vec
[
f̂(λ)− f̂0(λ)

]
dλ

= 2π

∫
2π

tr

{[
f̂(λ)− f̂0(λ)

]′
Γ̂−1
u

[
f̂(λ)− f̂0(λ)

]
Γ̂−1
v

}
dλ

= 2π

∫
2π

tr

{[
f̂(λ)− f̂0(λ)

]′
Γ̂−1
u

[
f̂(λ)− f̂0(λ)

]
Γ̂−1
v

}
dλ

= 2π

∫
2π

tr

{[
f̂(λ)− f̂0(λ)

]′
Γ̂−1
u

[
f̂(λ)− f̂0(λ)

]
Γ̂−1
v

}
dλ, (A.1)

where f denotes the complex conjugate of f . The second equality follows from the fact that com-

plex conjugate of a sum of individuals is the sum of the complex conjugate of the individuals.

The third equality follows from the matrix relation tr(A′BCD′) =
[
vec(A)

]′
(D ⊗ B)

[
vec(C)

]
,

(see, e.g., Harville, 1997, Theorem 16.2.2). The fourth equality follows from the interchange-

ability of complex conjugation and transposition. The fifth equality follows from the fact that

the complex conjugate of real matrix is the real matrix itself. Let C(λ) ≡
[
f̂(λ)− f̂0(λ)

]′
Γ̂−1
u ,

D(λ) ≡
[
f̂(λ)− f̂0(λ)

]
Γ̂−1
v , and put Aj ≡ (2π)−1k(j/M)ρ̂(j)′Γ̂−1

u , Bj ≡ (2π)−1k(j/M)ρ̂(j)Γ̂−1
v .

We have C(λ) =
∑T−1

j=1 Aje
−ijλ and D(λ) =

∑T−1
j=1 Bje

−ijλ, for λ ∈ [−π, π] and i =
√
−1. We can

rewrite (A.1) as

L̂2
[
f̂(λ), f̂0(λ)

]
= 2π

∫
2π

tr
[
C(λ)D(λ)

]
dλ

= 2πtr

[ ∫
2π

C(λ)D(λ)dλ

]
= 2πtr

(
2π

T−1∑
j=1

AjBj

)

= (2π)2tr

(
T−1∑
j=1

AjBj

)
,

where the second equality follows from the interchangeability of trace and integral and the third

equality follows from Parseval’s identity (see, e.g., Wiener and Masani, 1957, Theorem 3.9). Sub-
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stituting the relevant terms back into the normalized quadratic equation, we have

L̂2
[
f̂(λ), f̂0(λ)

]
= (2π)2tr

[
T−1∑
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1

2π
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u

)
vec
[
ρ̂(j)

]
,

where the fourth equality follows from the interchangeability of trace and summation. This com-

pletes the derivation. ■

Appendix B Proof of Theorem 2.1

Throughout Appendices B–G, the following notations are adopted. The inner product between

vector x1 and vector x2 is denoted by ⟨x1,x2⟩. The Euclidean norm is denoted using || · ||. The

notations Op and op are the usual order in probability notations. The scalar ∆ represents a positive

finite generic constant that may differ at every occurrence.

Proof of Theorem 2.1. We let Ŝ ≡ T L̂2
[
f̂(λ), f̂0(λ)

]
, C0

uu ≡ E[u0
t (u

0
t )

′] and C0
vv ≡ E[v0

t (v
0
t )

′],

the proof begins by defining the following pseudo statistic

S∗ = T
T−1∑
j=1

k2(j/M)vec
[
ρ̂∗(j)

]′(
Γ−1
v ⊗ Γ−1

u

)
vec
[
ρ̂∗(j)

]
, (B.1)

where ρ̂∗(j) = Diag
(
C0

uu

)−1/2
Ĉuv(j)Diag

(
C0

vv

)−1/2
; and Γu = Diag
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C0
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)−1/2
C0

uuDiag
(
C0

uu

)−1/2

and Γv = Diag
(
C0

vv

)−1/2
C0

vvDiag
(
C0

vv

)−1/2
are the true correlation matrices of true u0

t and v0
t ,

respectively. We can decompose Q1 as

Q1 =
S∗ − d∗1d

∗
2C1T (k)[

d∗1d
∗
2D1T (k)

]1/2 +
Ŝ − S∗[

d∗1d
∗
2D1T (k)

]1/2 . (B.2)

Then, the result of Theorem 2.1 follows from Propositions B.1–B.2. ■

Proposition B.1. Suppose the conditions of Theorem 2.1 hold, we have that

S∗ − d∗1d
∗
2C1T (k)[

d∗1d
∗
2D1T (k)

]1/2 d−−→ N(0, 1).
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Proposition B.2. Suppose the conditions of Theorem 2.1 hold, we have that

Ŝ − S∗[
d∗1d

∗
2D1T (k)

]1/2 p−−→ 0.

Proof of Proposition B.1. Let Ĉ0
uv denotes the sample cross-covariance matrix in (14) with true u0

t

and v0
t−j . The proof of Proposition B.1 begins by defining the another pseudo statistic

S = T
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, (B.3)

where ρ̂0(j) = Diag
(
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uu

)−1/2
Ĉ0

uv(j)Diag
(
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)−1/2
. We consider a similar decomposition
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The result of Proposition B.1 is given by Lemmas B.1 and B.2. ■

Lemma B.1. Suppose the conditions of Theorem 2.1 hold, we have that

S − d∗1d
∗
2C1T (k)[

d∗1d
∗
2D1T (k)

]1/2 d−−→ N(0, 1).

Lemma B.2. Suppose the conditions of Theorem 2.1 hold, we have that

S∗ − S = op(M
1/2).

Proof of Lemma B.1. We begin by showing the covariance representation of S. Using the properties
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(AC)⊗ (BD); (ABC)−1 = C−1B−1A−1; (A⊗B)−1 = A−1 ⊗B−1, we write for the correlation

components of S
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]
= vec

[
Ĉ0

uv(j)
]′[

(C0
vv)

−1 ⊗ (C0
uu)

−1
]{[

Diag(C0
vv)

−1/2
]
⊗
[
Diag(C0

uu)
−1/2

]}−1

×
[
Diag(C0

vv)
−1/2 ⊗Diag(C0

uu)
−1/2

]
vec
[
Ĉ0

uv(j)
]

= vec
[
Ĉ0

uv(j)
]′[

(C0
vv)

−1 ⊗ (C0
uu)

−1
]
vec
[
Ĉ0

uv(j)
]
. (B.5)
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We have

S = T
T−1∑
j=1

k2(j/M)vec
[
ρ̂0(j)

]′(
Γ−1
v ⊗ Γ−1

u

)
vec
[
ρ̂0(j)

]
= T

T−1∑
j=1

k2(j/M)vec
[
Ĉ0

uv(j)
]′[

(C0
vv)

−1 ⊗ (C0
uu)

−1
]
vec
[
Ĉ0

uv(j)
]
. (B.6)

With this representation, the result of Lemma B.1 follows from Lemma 2.2 in Candelon and Tokpavi

(2016), which is based on Lemma 1 in Bouhaddioui and Roy (2006). In both papers, the asymptotic

normality result is obtained under the following conditions: (i) The event variables u0
t and v0

t are

multivariate i.i.d. sequences with finite fourth order moment. (ii) Mutual independence between u0
t

and v0
t−j for j > 0. In our framework, condition (i) is satisfied given Assumption 2.1, and condition

(ii) is satisfied under the null hypothesis, this completes the proof. ■

Proof of Lemma B.2. We begin by defining the following notations. Let b1t ≡ (C0
uu)

−1/2u0
t and

b2t ≡ (C0
vv)

−1/2v0
t . Similarly, we let b̂1t ≡ (C0

uu)
−1/2ût and b̂2t ≡ (C0

vv)
−1/2v̂t, denote the

analogues of b1t and b2t based on estimated event variables ût and v̂t. Then, we obtain Cb̂(j) ≡
(C0

uu)
−1/2Ĉuv(j)(C

0
vv)

−1/2, the sample cross-covariance matrix between b̂1t and b̂2t at lag order

j. Similarly, we have Cb(j) ≡ (C0
uu)

−1/2Ĉ0
uv(j)(C

0
vv)

−1/2, the sample cross-covariance matrix

between b1t and b2t at lag order j. By reasonings similar to the derivation of (B.5) in Lemma B.1,

we write S∗ in terms of covariances

S∗ = T
T−1∑
j=1

k2(j/M)vec
[
ρ̂∗(j)

]′(
Γ−1
v ⊗ Γ−1

u

)
vec
[
ρ̂∗(j)

]
= T

T−1∑
j=1

k2(j/M)vec
[
Ĉuv(j)

]′[
(C0

vv)
−1 ⊗ (C0

uu)
−1
]
vec
[
Ĉuv(j)

]
. (B.7)

We can express S∗ − S as

S∗ − S = T
T−1∑
j=1

k2(j/M)
∣∣∣∣vec[Cb̂(j)]− vec[Cb(j)]

∣∣∣∣2
+ 2T

T−1∑
j=1

k2(j/M)
〈
vec[Cb(j)], vec[Cb̂(j)]− vec[Cb(j)]

〉
= A1T + 2A2T , say. (B.8)

We shall show that both A1T and A2T are op(M
1/2). The first term A1T can be written as

A1T = T
T−1∑
j=1

k2(j/M)

4



×
∣∣∣∣∣∣(C0

vv)
−1/2 ⊗ (C0

uu)
−1/2 vec[Ĉuv(j)]− (C0

vv)
−1/2 ⊗ (C0

uu)
−1/2 vec[Ĉ0

uv(j)]
∣∣∣∣∣∣2

= T

T−1∑
j=1

k2(j/M)
∣∣∣∣∣∣[(C0

vv)
−1/2 ⊗ (C0

uu)
−1/2

]{
vec[Ĉuv(j)]− vec[Ĉ0

uv(j)]
}∣∣∣∣∣∣2

≤ T
T−1∑
j=1

k2(j/M)
∣∣∣∣∣∣(C0

vv)
−1/2 ⊗ (C0

uu)
−1/2

∣∣∣∣∣∣2 ∣∣∣∣∣∣vec[Ĉuv(j)]− vec[Ĉ0
uv(j)]

∣∣∣∣∣∣2, (B.9)

which we make use the property vec(AXB) = (B′ ⊗ A)vec(X) and Cauchy-Schwarz inequality.

Because
∣∣∣∣(C0

vv)
−1/2 ⊗ (C0

uu)
−1/2

∣∣∣∣2 = Op(1) by Assumption 2.1, it suffices to show that A11T =

op(M
1/2), with

A11T = T
T−1∑
j=1

k2(j/M)
∣∣∣∣∣∣vec[Ĉuv(j)]− vec[Ĉ0

uv(j)]
∣∣∣∣∣∣2

= T

d∗1∑
m=1

d∗2∑
n=1

T−1∑
j=1

k2(j/M)
[
Ĉm,n
uv (j)− Ĉ0,m,n

uv (j)
]2
, (B.10)

where Ĉm,n
uv (j) and Ĉ0,m,n

uv (j) are the (m,n)-th elements of matrices Ĉuv(j) and Ĉ0
uv(j), respectively.

It suffices to show that
∑T−1

j=1 k2(j/M)
[
Ĉm,n
uv (j) − Ĉ0,m,n

uv (j)
]2

= op(M
1/2/T ). Let u0m,t and ûm,t

denote the m-th element of u0
t and ût, respectively. Similarly, let v0n,t and v̂n,t denote the n-th

element of v0
t and v̂t, respectively. We have

Ĉm,n
uv (j)− Ĉ0,m,n

uv (j) =
1

T

T∑
t=j+1

ûm,tv̂n,t−j − u0m,tv
0
n,t−j

=
1

T

T∑
t=j+1

(
ûm,t − u0m,t

)
v0n,t−j +

1

T

T∑
t=j+1

u0m,t

(
v̂n,t−j − v0n,t−j

)
+

1

T

T∑
t=j+1

(
ûm,t − u0m,t

)(
v̂n,t−j − v0n,t−j

)
= B1T (j) + B2T (j) + B3T (j), say. (B.11)

It follows that

T−1∑
j=1

k2(j/M)
[
Ĉm,n
uv (j)− Ĉ0,m,n

uv (j)
]2 ≤ ∆

T−1∑
j=1

k2(j/M)
[
B2
1T (j) + B2

2T (j) + B2
3T (j)

]
. (B.12)

Applying Cauchy-Schwarz inequality to the last term B2
3T (j), we have

sup
1≤j≤T−1

B2
3T (j) ≤

[
1

T

T∑
t=1

(
ûm,t − u0m,t

)2][ 1
T

T∑
t=1

(
v̂n,t − v0n,t

)2]
.
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We shall show that T−1
∑T

t=1

(
ûm,t − u0m,t

)2
= Op(T

−1). The proof for T−1
∑T

t=1

(
v̂n,t − v0n,t

)2
is the same. Using Cauchy-Schwarz inequality and noting that ûm,t − u0m,t = um,t(θ̂1) − u0m,t =[
um,t(θ̂1)− ũm,t(θ̂1)

]
+
[
ũm,t(θ̂1)− u0m,t

]
, we have

1

T

T∑
t=1

[
um,t(θ̂1)− u0m,t

]2 ≤ 2
1

T

T∑
t=1

[
um,t(θ̂1)− ũm,t(θ̂1)

]2
+ 2

1

T

T∑
t=1

[
ũm,t(θ̂1)− u0m,t

]2
= 2B31T (j) + 2B32T (j), say. (B.13)

We have B31T (j) = Op(T
−2) by Assumption 2.3, it remains to show that B32T (j) = Op(T

−1). By

the mean value theorem and Cauchy-Schwarz inequality, we have

B32T (j) ≤
∣∣∣∣θ̂1 − θ0

1

∣∣∣∣2( 1

T

T∑
t=1

∣∣∣∣∇θ1 ũm,t(θ̄1)
∣∣∣∣2), (B.14)

where ∇θ1 is the gradient operator with respect to θ1 and θ̄1 lies in the segment between θ̂1

and θ0
1. Given Assumption 2.2, we have

∣∣∣∣θ̂1 − θ0
1

∣∣∣∣2 = Op(T
−1). Given Assumption 2.4, we have

T−1
∑T

t=1

∣∣∣∣∇θ1 ũm,t(θ̄1)
∣∣∣∣2 = Op(1) by Markov’s inequality. Therefore, we have B32T (j) = Op(T

−1).

Subsequently,

T−1∑
j=1

k2(j/M)B2
3T (j) ≤ M sup

1≤j≤T−1
B2
3T (j)

[
1

M

T−1∑
j=1

k2(j/M)

]
= Op(M/T 2), (B.15)

where M−1
∑T−1

j=1 k2(j/M) →
∫∞
0 k2(z)dz < ∞ follows by Assumptions 2.5-2.6.

Next, we rewrite B1T (j) as

B1T (j) =
1

T

T∑
t=j+1

[
um,t(θ̂1)− ũm,t(θ̂1)

]
v0n,t−j +

1

T

T∑
t=j+1

[
ũm,t(θ̂1)− u0m,t

]
v0n,t−j

= B11T (j) + B12T (j), say. (B.16)
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Applying Cauchy-Schwarz inequality to the first term B11T (j), we have

T−1∑
j=1

k2(j/M)B2
11T (j)

≤ 1

T 2

T−1∑
j=1

k2(j/M)

{
T∑

t=j+1

[
um,t(θ̂1)− ũm,t(θ̂1)

]2}[ T∑
t=j+1

(
v0n,t−j

)2]

≤ 1

T

T−1∑
j=1

k2(j/M)

{
T∑
t=1

[
um,t(θ̂1)− ũm,t(θ̂1)

]2}[ 1
T

T∑
t=1

(
v0n,t
)2]

= Op(M/T 2), (B.17)

given Assumption 2.3, and T−1
∑T

t=1

(
v0n,t
)2

= Op(1) by Markov’s inequality. Applying two-term

Taylor expansion to the second term B12T (j), we have

B12T (j) =
(
θ̂1 − θ0

1

)′ 1
T

T∑
t=j+1

∇θ1 ũm,t(θ
0
1)v

0
n,t−j

+
1

2

(
θ̂1 − θ0

1

)′[ 1
T

T∑
t=j+1

∇2
θ1 ũm,t(θ̄1)v

0
n,t−j

](
θ̂1 − θ0

1

)
= B121T (j) + B122T (j), say, (B.18)

where ∇2
θ1

is the Hessian operator with respect to θ1 and θ̄1 lies in the segment between θ̂1 and

θ0
1. By Cauchy-Schwarz inequality, we obtain for the first term

T−1∑
j=1

k2(j/M)B2
121T (j)

≤
∣∣∣∣θ̂1 − θ0

1

∣∣∣∣2{ T−1∑
j=1

k2(j/M)
1

T 2

[
T∑

t=j+1

∣∣∣∣∇θ1 ũm,t(θ
0
1)
∣∣∣∣v0n,t−j

]2}
= Op(M/T 2),

given Assumption 2.2 and
∑T−1

j=1 k2(j/M)T−2
[∑T

t=j+1

∣∣∣∣∇θ1 ũm,t(θ
0
1)
∣∣∣∣v0n,t−j

]2
= Op(M/T ), which

follows from Markov’s inequality, Assumption 2.4 and

E

{
1

T 2

[
T∑

t=j+1

∣∣∣∣∇θ1 ũm,t(θ
0
1)
∣∣∣∣v0n,t−j

]2}
=

1

T 2

T∑
t=j+1

E
{[∣∣∣∣∇θ1 ũm,t(θ

0
1)
∣∣∣∣v0n,t−j

]2}

=
1

T 2

T∑
t=j+1

E
[∣∣∣∣∇θ1 ũm,t(θ

0
1)
∣∣∣∣2]E[(v0n,t−j

)2]
= O(T−1),

7



where the first equality follows from Assumption 2.1 and the second equality follows from the

independence between Ξ1tΞ
′
1t and Ξ2t−jΞ

′
2t−j under the null hypothesis. By Cauchy-Schwarz

inequality, we can write the second term B122T (j) as

T−1∑
j=1

k2(j/M)B2
122T (j)

≤ 1

T 2

∣∣∣∣θ̂1 − θ0
1

∣∣∣∣4 T−1∑
j=1

k2(j/M)

[
T∑

t=j+1

∣∣∣∣∇2
θ1 ũm,t(θ̄1)

∣∣∣∣v0n,t−j

]2

≤ 1

T 2

∣∣∣∣θ̂1 − θ0
1

∣∣∣∣4 T−1∑
j=1

k2(j/M)

[
T∑

t=j+1

∣∣∣∣∇2
θ1 ũm,t(θ̄1)

∣∣∣∣2][ T∑
t=j+1

(v0n,t−j)
2

]

=
∣∣∣∣θ̂1 − θ0

1

∣∣∣∣4 T−1∑
j=1

k2(j/M)

[
1

T

T∑
t=j+1

∣∣∣∣∇2
θ1 ũm,t(θ̄1)

∣∣∣∣2][ 1
T

T∑
t=j+1

(v0n,t−j)
2

]
= Op(M/T 2),

having used Assumptions 2.2 and 2.4 with Markov’s inequality. Therefore,

T−1∑
j=1

k2(j/M)B2
1T (j) = Op(M/T 2) = op(M

1/2/T ). (B.19)

By the same reasonings, we also have

T−1∑
j=1

k2(j/M)B2
2T (j) = Op(M/T 2) = op(M

1/2/T ). (B.20)

Collecting (B.10), (B.11), (B.15), (B.19) and (B.20), we have A1T = op(M
1/2).

For the second term A2T in (B.8), we have

A2T = T
T−1∑
j=1

k2(j/M)vec[Cb(j)]
′(vec[Cb̂(j)]− vec[Cb(j)]

)
= T

T−1∑
j=1

k2(j/M)
{
(C0

vv)
−1/2 ⊗ (C0

uu)
−1/2vec[Ĉ0

uv(j)]
}′[

(C0
vv)

−1/2 ⊗ (C0
uu)

−1/2
]

×
{
vec[Ĉuv(j)]− vec[Ĉ0

uv(j)]
}

= T

T−1∑
j=1

k2(j/M)vec[Ĉ0
uv(j)]

′
[
(C0

vv)
−1 ⊗ (C0

uu)
−1
]{

vec[Ĉuv(j)]− vec[Ĉ0
uv(j)]

}
,

having used again the properties vec(ABC) = (C ′ ⊗A)vec(B) and (A ⊗B)(C ⊗D) = (AC) ⊗
(BD). For p = 1, ..., d∗1d

∗
2, let Ĉp

uv(j) and Ĉ0,p
uv (j) denote the p-th element of vec[Ĉuv(j)] and

vec[Ĉ0
uv(j)], respectively. Similarly, we denote by Ĉq

uv(j) and Ĉ0,q
uv (j) the q-th element of vec[Ĉuv(j)]
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and vec[Ĉ0
uv(j)], respectively. Further let Gp,q denotes the (p, q)-th element of G, where G ≡

(C0
vv)

−1 ⊗ (C0
uu)

−1. Then,

A2T = T
T−1∑
j=1

k2(j/M)

{ d∗1d
∗
2∑

p=1

d∗1d
∗
2∑

q=1

Ĉ0,p
uv (j)

[
Ĉq
uv(j)− Ĉ0,q

uv (j)
]
Gp,q

}

= T

d∗1d
∗
2∑

p=1

d∗1d
∗
2∑

q=1

Gp,q
T−1∑
j=1

k2(j/M)Ĉ0,p
uv (j)

[
Ĉq
uv(j)− Ĉ0,q

uv (j)
]
. (B.21)

Because Gp,q = Op(1) by Assumption 2.1, it suffices to show that
∑T−1

j=1 k2(j/M)Ĉ0,p
uv (j)[Ĉ

q
uv(j) −

Ĉ0,q
uv (j)] = Op(M/T 3/2). By Cauchy-Schwarz inequality, we can write∣∣∣∣∣

T−1∑
j=1

k2(j/M)Ĉ0,p
uv (j)

[
Ĉq
uv(j)− Ĉ0,q

uv (j)
]∣∣∣∣∣

≤

[
T−1∑
j=1

k2(j/M)Ĉ0,p
uv (j)

2

]1/2{ T−1∑
j=1

k2(j/M)
[
Ĉq
uv(j)− Ĉ0,q

uv (j)
]2}1/2

.

We have
∑T−1

j=1 k2(j/M)[Ĉq
uv(j) − Ĉ0,q

uv (j)]2 = Op(M/T 2) from the proof of (B.12) and we have∑T−1
j=1 k2(j/M)Ĉ0,p

uv (j)2 = Op(M/T ) by Markov’s inequality and

T−1∑
j=1

k2(j/M)E
[
Ĉ0,p
uv (j)

2
]
=

M

T
C0,p
uuC

0,p
vv

(
1

M

T−1∑
j=1

(1− j/T )k2(j/M)

)
= O(M/T ), (B.22)

where C0,p
uu and C0,p

vv denote the p-th entries of vec(C0
uu) and vec(C0

vv), respectively. This gives

A2T = Op(M/T 1/2) = op(M
1/2) and completes the proof. ■

Proof of Proposition B.2. Recall Proposition B.2 is stated as

Proposition B.2. Suppose the conditions of Theorem 2.1 hold, we have that

Ŝ − S∗[
d∗1d

∗
2D1T (k)

]1/2 p−−→ 0.

Given Assumption 2.5 and since M → ∞ as T → ∞, it follows that

D1T (k) = M

∫ ∞

0
k4(z)dz[1 + o(1)].

Therefore, the result of Proposition B.2 can be obtained by showing that Ŝ − S∗ = Op(M/T 1/2).
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By reasonings similar to the derivations of (B.5) and (B.7), we write for Ŝ

Ŝ = T
T−1∑
j=1

k2(j/M)vec
[
ρ̂(j)

]′(
Γ̂−1
v ⊗ Γ̂−1

u

)
vec
[
ρ̂(j)

]
= T

T−1∑
j=1

k2(j/M)vec
[
Ĉuv(j)

]′(
Ĉ−1

vv ⊗ Ĉ−1
uu

)
vec
[
Ĉuv(j)

]
. (B.23)

Then, Ŝ − S∗ is equal to

Ŝ − S∗ = T
T−1∑
j=1

k2(j/M)vec
[
Ĉuv(j)

]′[
Ĉ−1

vv ⊗ Ĉ−1
uu − (C0

vv)
−1 ⊗ (C0

uu)
−1
]
vec
[
Ĉuv(j)

]
= T

T−1∑
j=1

k2(j/M)vec
[
Ĉuv(j)

]′[
(Ĉvv ⊗ Ĉuu)

−1 − (C0
vv ⊗C0

uu)
−1
]
vec
[
Ĉuv(j)

]
.

We proceed by showing that Ĉvv ⊗ Ĉuu − C0
vv ⊗ C0

uu = Op(T
−1/2). Its inverse counterpart

has the same stochastic order due to a continuous transformation. For m,n = 1, ..., d∗1, we let

Ĉm,n
vv and C0,m,n

vv denote the (m,n)-th elements of matrices Ĉvv and C0
vv, respectively. Similarly,

for r, s = 1, ..., d∗2, we let Ĉr,s
uu and C0,r,s

uu denote the (r, s)-th entries of matrices Ĉuu and C0
uu,

respectively. Then, we have the [d∗1(m−1)+r, d∗1(n−1)+s]-th entry in Ĉvv⊗Ĉuu and C0
vv⊗C0

uu be

given, respectively, by Ĉm,n
vv Ĉr,s

uu and C0,m,n
vv C0,r,s

uu . It suffices to show that Ĉm,n
vv Ĉr,s

uu −C0,m,n
vv C0,r,s

uu =

Op(T
−1/2). Since Ĉm,n

vv Ĉr,s
uu −C0,m,n

vv C0,r,s
uu = (Ĉm,n

vv −C0,m,n
vv )C0,r,s

uu +(Ĉr,s
uu −C0,r,s

uu )C0,m,n
vv +(Ĉm,n

vv −
C0,m,n
vv )(Ĉr,s

uu − C0,r,s
uu ) and given C0,r,s

uu = Op(1) and C0,m,n
vv = Op(1) by Assumption 2.1, we know

that the controlling terms in Ĉm,n
vv Ĉr,s

uu−C0,m,n
vv C0,r,s

uu are Ĉm,n
vv −C0,m,n

vv and Ĉr,s
uu−C0,r,s

uu . It therefore

suffices to show that Ĉr,s
uu − C0,r,s

uu = Op(T
−1/2), the proof for Ĉm,n

vv − C0,m,n
vv is similar. It follows

from the triangle inequality that

|Ĉr,s
uu − C0,r,s

uu | ≤ |Ĉr,s
uu − Ĉ0,r,s

uu |+ |Ĉ0,r,s
uu − C0,r,s

uu |,

where we have Ĉ0,r,s
uu −C0,r,s

uu = Op(T
−1/2) by Chebyshev’s inequality and Assumption 2.1. Following

the same reasonings to the proof of (B.11), we have for the first term

Ĉr,s
uu − Ĉ0,r,s

uu =
1

T

T∑
t=1

ûm,tûm,t − u0m,tu
0
m,t

=
1

T

T∑
t=1

(ûm,t − u0m,t)u
0
m,t +

1

T

T∑
t=1

(ûm,t − u0m,t)u
0
m,t

+
1

T

T∑
t=1

(ûm,t − u0m,t)(ûm,t − u0m,t)

= Op(T
−1/2).

10



Therefore we have

Ŝ − S∗ = T
T−1∑
j=1

k2(j/M)vec
[
Ĉuv(j)

]′[
Op(T

−1/2)
]
vec
[
Ĉuv(j)

]
= Op(T

1/2)
T−1∑
j=1

k2(j/M)vec
[
Ĉuv(j)

]′
vec
[
Ĉuv(j)

]
. (B.24)

For the rest of the proof, it suffices to show that FT = Op(M/T ), where

FT =
T−1∑
j=1

k2(j/M)vec
[
Ĉuv(j)

]′
vec
[
Ĉuv(j)

]
=

T−1∑
j=1

k2(j/M)vec
[
Ĉuv(j)

]′
vec
[
Ĉuv(j)

]
− vec

[
Ĉ0

uv(j)
]′
vec
[
Ĉ0

uv(j)
]

+
T−1∑
j=1

k2(j/M)vec
[
Ĉ0

uv(j)
]′
vec
[
Ĉ0

uv(j)
]

= F1T + F2T , say. (B.25)

We write for the first term F1T

F1T =
T−1∑
j=1

k2(j/M)

d∗1∑
m=1

d∗2∑
n=1

[
Ĉm,n
uv (j)2 − Ĉ0,m,n

uv (j)2
]

=

d∗1∑
m=1

d∗2∑
n=1

T−1∑
j=1

k2(j/M)
[
Ĉm,n
uv (j)2 − Ĉ0,m,n

uv (j)2
]
, (B.26)

where Ĉm,n
uv (j) and Ĉ0,m,n

uv (j) are the (m,n)-th elements of matrices Ĉuv(j) and Ĉ0
uv(j), respectively.

It suffices to show that
∑T−1

j=1 k2(j/M)
[
Ĉm,n
uv (j)2 − Ĉ0,m,n

uv (j)2
]
= Op(M/T ). We write

T−1∑
j=1

k2(j/M)
[
Ĉm,n
uv (j)2 − Ĉ0,m,n

uv (j)2
]
=

T−1∑
j=1

k2(j/M)
[
Ĉm,n
uv (j)− Ĉ0,m,n

uv (j)
]2

+ 2
T−1∑
j=1

k2(j/M)Ĉ0,m,n
uv (j)

[
Ĉm,n
uv (j)− Ĉ0,m,n

uv (j)
]

= F11T + 2F12T , say.

We have F11T = Op(M/T 2) from the proof of (B.12) and we have F12T = Op(M/T 3/2) from the

proof of (B.21). Thus, F1T = Op(M/T ).

11



Next, we rewrite the second term F2T as

F2T =
T−1∑
j=1

k2(j/M)

[ d∗1d
∗
2∑

p=1

Ĉ0,p
uv (j)

2

]
=

d∗1d
∗
2∑

p=1

T−1∑
j=1

k2(j/M)Ĉ0,p
uv (j)

2, (B.27)

where Ĉ0,p
uv (j) is the p-th element in vec[Ĉ0

uv(j)], p = 1, ..., d∗1d
∗
2. By Markov’s inequality and (B.22),

we have F2T = Op(M/T ). This completes the proof. ■

Appendix C Proof of Theorem 2.2

Proof of Theorem 2.2. Recall that C1T (k) = O(M) and D1T (k) = 2M
∫∞
0 k4(z)dz[1 + o(1)] as

M → ∞ and M/T → 0, we have

M1/2

T
Q1 =

∑T−1
j=1 k2(j/M)vec

[
ρ̂(j)

]′(
Γ̂−1
v ⊗ Γ̂−1

u

)
vec
[
ρ̂(j)

][
2
∫∞
0 k4(z)dz

]1/2 [
1 + o(1)

]
+ o(1)

= T−1Ŝ

[
2

∫ ∞

0
k4(z)dz

]−1/2[
1 + o(1)

]
+ o(1).

Therefore, the proof of Theorem 2.2 is given by Lemmas C.1–C.3. ■

Lemma C.1. Suppose the conditions of Theorem 2.2 hold, then T−1(S∗ − S) = op(1).

Lemma C.2. Suppose the conditions of Theorem 2.2 hold, then T−1(Ŝ − S∗) = op(1).

Lemma C.3. Suppose the conditions of Theorem 2.2 hold, then

1

T
S =

T−1∑
j=1

k2(j/M)vec
[
ρ̂0(j)

]′(
Γ−1
v ⊗ Γ−1

u

)
vec
[
ρ̂0(j)

]
p−−→

∞∑
j=1

vec
[
ρ(j)

]′(
Γ−1
v ⊗ Γ−1

u

)
vec
[
ρ(j)

]
.

Proof of Lemma C.1. The proof of Lemma C.1 follows largely from the proof of Lemma B.2 with

some modifications as we are now under the alternative hypothesis. We have T−1(S∗ − S) =

T−1(A1T +2A2T ) as in (B.8). We shall show that T−1A1T = op(1) and T−1A2T = op(1). We begin

with A1T , we have from (B.9) that

T−1A1T ≤
T−1∑
j=1

k2(j/M)
∣∣∣∣∣∣(C0

vv)
−1/2 ⊗ (C0

uu)
−1/2

∣∣∣∣∣∣2 ∣∣∣∣∣∣vec[Ĉuv(j)]− vec[Ĉ0
uv(j)]

∣∣∣∣∣∣2. (C.1)
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It suffices to show that T−1A11T = op(1), where

T−1A11T =
T−1∑
j=1

k2(j/M)
∣∣∣∣∣∣vec[Ĉuv(j)]− vec[Ĉ0

uv(j)]
∣∣∣∣∣∣2

=

d∗1∑
m=1

d∗2∑
n=1

T−1∑
j=1

k2(j/M)
[
Ĉm,n
uv (j)− Ĉ0,m,n

uv (j)
]2
. (C.2)

As in (B.12), we have

T−1∑
j=1

k2(j/M)
[
Ĉm,n
uv (j)− Ĉ0,m,n

uv (j)
]2 ≤ ∆

T−1∑
j=1

k2(j/M)
[
B2
1T (j) + B2

2T (j) + B2
3T (j)

]
. (C.3)

It suffices to show that
∑T−1

j=1 k2(j/M)
[
B2
iT (j)

]
= op(1), for i = 1, 2, 3. As shown in (B.15), we have∑T−1

j=1 k2(j/M)B2
3T (j) = Op(M/T 2) = op(1) under Assumptions 2.1-2.6. Next, from (B.16), we have

B1T (j) = B11T (j)+B12T (j). We know from (B.17) that
∑T−1

j=1 k2(j/M)B2
11T (j) = Op(M/T 2) = op(1)

under Assumptions 2.1-2.6. Applying Cauchy-Schwarz inequality to the second term B12T (j), we

have

T−1∑
j=1

k2(j/M)B2
12T (j)

≤ 1

T 2

T−1∑
j=1

k2(j/M)

{
T∑

t=j+1

[
ũm,t(θ̂1)− u0m,t

]2}[ T∑
t=j+1

(
v0n,t−j

)2]

≤
T−1∑
j=1

k2(j/M)

{
1

T

T∑
t=j+1

[
ũm,t(θ̂1)− u0m,t

]2}[ 1
T

T∑
t=1

(
v0n,t
)2]

= Op(M/T ), (C.4)

given
∑T−1

j=1 k2(j/M) = O(M), T−1
∑T

t=j+1

[
ũm,t(θ̂1)−u0m,t

]2
= Op(T

−1) from (B.14) and T−1
∑T

t=1

(
v0n,t
)2

=

Op(1) by Markov’s inequality. It follows that
∑T−1

j=1 k2(j/M)B2
1T (j) = Op(M/T ) = op(1). By the

same reasonings, we also have
∑T−1

j=1 k2(j/M)B2
2T (j) = op(1). Therefore, T

−1A1T = op(1).

Next, we shall show that T−1A2T = op(1). From (B.21), we have

T−1A2T =

d∗1d
∗
2∑

p=1

d∗1d
∗
2∑

q=1

Gp,q
T−1∑
j=1

k2(j/M)Ĉ0,p
uv (j)

[
Ĉq
uv(j)− Ĉ0,q

uv (j)
]
. (C.5)

It suffices to show that
∑T−1

j=1 k2(j/M)Ĉ0,p
uv (j)

[
Ĉq
uv(j) − Ĉ0,q

uv (j)
]
= op(1). By Cauchy-Schwarz

13



inequality, we have∣∣∣∣∣
T−1∑
j=1

k2(j/M)Ĉ0,p
uv (j)

[
Ĉq
uv(j)− Ĉ0,q

uv (j)
]∣∣∣∣∣

≤

[
T−1∑
j=1

k2(j/M)Ĉ0,p
uv (j)

2

]1/2{ T−1∑
j=1

k2(j/M)
[
Ĉq
uv(j)− Ĉ0,q

uv (j)
]2}1/2

.

We have
∑T−1

j=1 k2(j/M)
[
Ĉq
uv(j)−Ĉ0,q

uv (j)
]2

= op(1) from (C.2) and
∑T−1

j=1 k2(j/M)Ĉ0,p
uv (j)2 = Op(1)

by Lemma C.3 and
∑∞

j=1 ||ρ(j)||2 < ∞. This completes the proof. ■

Proof of Lemma C.2. The proof of Lemma C.2 can be readily deduced from the proofs of Propo-

sition B.2 and Lemma C.1. Based on Assumptions 2.1-2.6, we have shown that T−1(Ŝ − S∗) =

T−1Op(T
1/2)FT = Op(T

−1/2)FT in (B.24) and (B.25). It suffices to show that FT = F1T + F2T =

Op(1). Using the results in (C.2) and (C.5), we have F1T = Op(1) under the alternative hypothesis.

Finally, F2T = Op(1) by Lemma C.3 and
∑∞

j=1 ||ρ(j)||2 < ∞. This completes the proof. ■

Proof of Lemma C.3. First, we write

1

T
S =

T−1∑
j=1

k2(j/M)vec
[
ρ(j)

]′(
Γ−1
v ⊗ Γ−1

u

)
vec
[
ρ(j)

]
+

{
T−1∑
j=1

k2(j/M)vec
[
ρ̂0(j)

]′(
Γ−1
v ⊗ Γ−1

u

)
vec
[
ρ̂0(j)

]
−

T−1∑
j=1

k2(j/M)vec
[
ρ(j)

]′(
Γ−1
v ⊗ Γ−1

u

)
vec
[
ρ(j)

]}
= G1T + G2T , say. (C.6)

For the first term G1T in (C.6), we have

G1T =
∞∑
j=1

vec
[
ρ(j)

]′(
Γ−1
v ⊗ Γ−1

u

)
vec
[
ρ(j)

]
+

T−1∑
j=1

(
k2(j/M)− 1

)
vec
[
ρ(j)

]′(
Γ−1
v ⊗ Γ−1

u

)
vec
[
ρ(j)

]
−

∞∑
j=T

vec
[
ρ(j)

]′(
Γ−1
v ⊗ Γ−1

u

)
vec
[
ρ(j)

]
p−−→

∞∑
j=1

vec
[
ρ(j)

]′(
Γ−1
v ⊗ Γ−1

u

)
vec
[
ρ(j)

]
. (C.7)

The convergence follows because the third term
∑∞

j=T vec
[
ρ(j)

]′(
Γ−1
v ⊗ Γ−1

u

)
vec
[
ρ(j)

]
goes to

zero as a consequence of the absolute summable condition
∑∞

j=1 ||ρ(j)||2 < ∞; and the second

14



term
∑T−1

j=1

[
k2(j/M)− 1

]
vec
[
ρ(j)

]′(
Γ−1
v ⊗ Γ−1

u

)
vec
[
ρ(j)

]
→ 0, which follows from the dominated

convergence theorem, limM→∞
[
k2(j/M)− 1

]
→ 0 and

∑∞
j=1 ||ρ(j)||2 < ∞.

We now consider the second term G2T in (C.6). Let C0
uv(j) ≡ E[u0

t (v
0
t−j)

′], we have C0
b (j) ≡

(C0
uu)

−1/2C0
uv(j)(C

0
vv)

−1/2 the true cross-covariance between b1t and b2t at lag order j. As in

(B.8), we write G2T as

G2T =

T−1∑
j=1

k2(j/M)
∣∣∣∣vec[Cb(j)]− vec[C0

b (j)]
∣∣∣∣2

+ 2
T−1∑
j=1

k2(j/M)
〈
vec[C0

b (j)], vec[Cb(j)]− vec[C0
b (j)]

〉
= G21T + 2G22T , say. (C.8)

For the rest of the proof, it suffices to show that the first term G21T goes to zero in probability

because G22T can be bounded by the product of the first term and a finite constant using Cauchy-

Schwarz inequality. Following a similar decomposition as in (B.9), we have

G21T ≤
T−1∑
j=1

k2(j/M)
∣∣∣∣∣∣(C0

vv)
−1/2 ⊗ (C0

uu)
−1/2

∣∣∣∣∣∣2 ∣∣∣∣∣∣vec[Ĉ0
uv(j)]− vec[C0

uv(j)]
∣∣∣∣∣∣2. (C.9)

It suffices to show that G211T = op(1), with

G211T =
T−1∑
j=1

k2(j/M)
∣∣∣∣∣∣vec[Ĉ0

uv(j)]− vec[C0
uv(j)]

∣∣∣∣∣∣2

=

d∗1∑
m=1

d∗2∑
n=1

T−1∑
j=1

k2(j/M)
[
Ĉ0,m,n
uv (j)− C0,m,n

uv (j)
]2
, (C.10)

where Ĉ0,m,n
uv (j) and C0,m,n

uv (j) are the (m,n)-th elements of matrices Ĉ0
uv(j) and C0

uv(j), respec-

tively. We have sup1≤j≤T−1Var[Ĉ
0,m,n
uv (j)] ≤ ∆T−1 given Assumption 2.7 (see, e.g., Hannan, 1970,

p. 209). Therefore, G21T = Op(M/T ) = op(1), where we make use of Markov’s inequality and∑T−1
j=1 k2(j/M) = O(M). This completes the proof. ■

Appendix D Proof of Proposition 3.1

Proof of Proposition 3.1. The desired result follows from a simple modification of the proof of The-

orem 4.1 in Dufour and Pelletier (2021). The consistency result in Dufour and Pelletier (2021) is

obtained under the following conditions: (i) The sequence {ϵ2i,n,t} and {ei,n,t} are strictly station-

ary and ergodic. (ii) The error term {ei,n,t} is strong mixing with finite fourth order moment and

regular variance. (iii) The lag order p is such that p/log(T ) → ∞ and p2/T → 0. (iv) The process

of interest has an infinite vector autoregressive representation with zero mean. Given conditions

(i)–(iv), it follows from Dufour and Pelletier (2021) that ||θ̂(p)
i − θ0

i || = Op(p
1/2T−1/2). In our
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framework, conditions (i) and (ii) are satisfied under Assumption 3.1, whereas condition (iii) is

implied by Assumption 3.2. For condition (iv), we show in (30) that the process of interest has an

AR(∞) representation. Besides, it is straightforward to show that the proof in Dufour and Pelletier

(2021) holds with the addition of an intercept term by putting Y
(p)
t−1 ≡ [1, ϵ2i,n,t−1, ..., ϵ

2
i,n,t−p] and

Π̂(p) ≡ [ω̂
(p)
i,n , â

(p)
i,n,1, ..., â

(p)
i,n,p]

′. This completes the proof. ■

Appendix E Proof of Proposition 3.2

Proof of Proposition 3.2. Given Assumption 3.3 with α = 1.5 and β = 0.5, we have for i = 1, 2,

||θ̂(p)
i − θ0

i || = Op(T
−1/(2α−2β)) = Op(T

−1/2), which follows from Theorem 5.52 in van der Vaart

(1998). This completes the proof. ■

Appendix F Proof of Proposition 3.3

Proof of Proposition 3.3. Given θ̂
(p)a
i = θ̂

(p)
i + δi, we have ||θ̂(p)a

i − θ0
i || = ||θ̂(p)

i + δi − θ0
i || ≤

||θ̂(p)
i − θ0

i || = Op(T
−1/2). The inequality follows from Assumptions 3.4 and 3.5 that the positive

elements of δi, when added by θ̂
(p)
i , is always less than or equal to the corresponding entries of the

true θ0
i . This completes the proof. ■

Appendix G Proof of Proposition 3.4

Proof of Proposition 3.4. For i = 1, 2, recallR0
i = E[(D0

it)
−1/2ϵitϵ

′
it(D

0
it)

−1/2] and R̂i = T−1
∑T

t=1 D̂
−1/2
it ϵitϵ

′
itD̂

−1/2
it .

We shall show that R̂i −R0
i = Op(T

−1/2), i = 1, 2. Let R̂0
i ≡ T−1

∑T
t=1(D

0
it)

−1/2ϵitϵ
′
it(D

0
it)

−1/2

denote the analogue of R̂i based on true variance. We consider the following decomposition

R̂i −R0
i = (R̂i − R̂0

i ) + (R̂0
i −R0

i ).

By Chebyshev’s inequality and Assumption 3.6, we have for the second term R̂0
i −R0

i = Op(T
−1/2).

It remains to show that the first term R̂i − R̂0
i = Op(T

−1/2). We write

R̂i − R̂0
i =

1

T

T∑
t=1

D̂
−1/2
it ϵitϵ

′
itD̂

−1/2
it − (D0

it)
−1/2ϵitϵ

′
it(D

0
it)

−1/2

=
1

T

T∑
t=1

Ψit(θ̂
(p)a
i )−Ψit(θ

0
i ), say.

Let Ψm,n
it (θ̂

(p)a
i ) and Ψm,n

it (θ̂0
i ) denote the (m,n)-th entries of Ψit(θ̂

(p)a
i ) and Ψit(θ

0
i ), respectively.

It suffices to show that T−1
∑T

t=1Ψ
m,n
it (θ̂

(p)a
i )−Ψm,n

it (θ̂0
i ) = Op(T

−1/2). By the mean value theorem
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and Cauchy-Schwarz inequality, we have

1

T

T∑
t=1

Ψm,n
it (θ̂

(p)a
i )−Ψm,n

it (θ̂0
i ) =

1

T

T∑
t=1

[
∇θiΨ

m,n
it (θ̄i)

]′[
θ̂
(p)a
i − θ̂0

i

]
≤
∣∣∣∣θ̂(p)a

i − θ̂0
i

∣∣∣∣ 1
T

T∑
t=1

∣∣∣∣∇θiΨ
m,n
it (θ̄i)

∣∣∣∣,
where θ̄i lies between θ̂

(p)a
i and θ̂0

i . Given Assumption 2.4, we have T−1
∑T

t=1

∣∣∣∣∇θiΨ
m,n
it (θ̄i)

∣∣∣∣ =
Op(1) by Markov’s inequality. Next, we have

∣∣∣∣θ̂(p)a
i − θ̂0

i

∣∣∣∣ = Op(T
−1/2) from Proposition 3.3. This

gives R̂i − R̂0
i = Op(T

−1/2) and completes the proof. ■
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Supplement to
“A practical multivariate approach to testing

volatility spillover”

1. QMLE-based simulations

We report in this section the bivariate simulation results based on model described in (28)–(29)

where the ARCH(∞) process (29) is estimated using QMLE. That is, we reproduce Table 1 (size

study) and Table 2 (power study) of the main paper but with spillover testing based on estimating

(29) using QMLE. We denote such modeling procedure by NC-QMLE. Due to the computational

cost associated with QMLE, we focus on the asymptotic tests with 1000 number of simulations.

Table S1 reports the size results and Table S2 reports the power results.

Table S1: Empirical sizes of Q1

NullA NullB NullC

T M 10 20 30 10 20 30 10 20 30

Rejection rates based on asymptotic critical values
1000 Q1BAR 7.1 6.9 6.7 7.7 7.4 7.6 6.9 6.9 7.1

Q1DAN 7.0 6.8 7.4 7.5 7.4 7.0 7.7 6.5 6.4
Q1QS 7.3 7.0 7.6 7.7 7.6 7.0 7.5 6.8 6.8
Q1TR 6.8 7.1 6.6 7.5 6.1 7.2 7.1 7.0 6.8

1500 Q1BAR 6.7 5.9 5.3 7.2 6.5 6.0 6.3 6.9 6.8
Q1DAN 6.6 5.6 5.4 7.1 6.2 5.6 6.9 7.1 6.5
Q1QS 6.1 5.7 6.2 7.0 6.0 6.1 7.2 6.8 6.2
Q1TR 6.3 6.4 6.9 6.4 6.6 7.1 6.6 5.7 6.4

Notes: The table reports empirical sizes (in %) of Q1 under NullA, NullB and NullC at the 5% significance level
based on NC-QMLE modeling. Number of simulations = 1000. Q1BAR, Q1DAN, Q1QS, Q1TR denote the rejection
rates of Q1 using asymptotic critical values; the subscripts BAR, DAN, QS and TR denote, respectively, the Bartlett
kernel, the Daniell kernel, the Quadratic-Spectral kernel and the Truncated kernel. T and M denote the sample size
and kernel smoothing parameter, respectively.

From Table S1, we observe that Q1 over rejects the null a little but not excessively. The size

of the test generally improves in T , across different data generating processes. This is consistent

with Table 1 of the paper. Similarly, we observe that the power patterns reported in Table S2 is

very similar to those reported in Table 2 of the paper. Overall, this study highlights that, under

regularity conditions the asymptotic theory of the proposed test statistic is robust to different

estimation procedures. Besides, the study also highlights the appealing feature of the proposed

NC-LS modeling, because its computational efficiency makes bootstrap approach feasible to yield a

more accurate finite sample performance for the test statistic.



Table S2: Empirical powers of Q1

AlterA AlterB

T M 10 20 30 10 20 30

Rejection rates based on empirical critical values
1000 Q1BAR 78.7 67.1 59.9 96.0 88.8 83.5

Q1DAN 73.8 61.1 52.4 93.8 84.2 77.5
Q1QS 72.3 60.7 50.6 92.8 83.0 75.3
Q1TR 52.0 36.1 31.3 77.2 59.2 53.7

1500 Q1BAR 92.4 85.5 79.3 99.7 98.6 96.5
Q1DAN 89.4 79.9 71.5 99.5 96.7 94.5
Q1QS 89.0 77.9 69.3 99.5 96.0 93.9
Q1TR 70.3 51.0 43.1 92.6 80.3 71.3

Notes: The table reports empirical powers (in %) of Q1 under AlterA and AlterB at the 5% significance level based
on NC-QMLE modeling. Number of simulations = 1000. Q1BAR, Q1DAN, Q1QS, Q1TR denote the rejection rates of
Q1 using empirical critical values; the subscripts BAR, DAN, QS and TR denote, respectively, the Bartlett kernel,
the Daniell kernel, the Quadratic-Spectral kernel and the Truncated kernel. T and M denote the sample size and
kernel smoothing parameter, respectively.

2. Simulation results of Tables 3 and 4 for all M

We collect in this section the full set of simulation results for the dimensional study in Section

4.2 of the main paper where only the results for M = 20 are reported to save space. It is useful to

recall that the size study under NullD and the power study under AlterC are reported, respectively,

in Tables 3 and 4 of the paper.

Now, we report for M = 10, 20, 30, the size study under NullD in Table S3, and the power study

under AlterC in Table S4. Consistent with the paper, we report here both the results based on

asymptotic test (Q1) and bootstrap test (Q∗
1). In general, we find that the size of both Q1 and Q∗

1

to be reasonably stable across M for each of the dimension considered. This result is consistent

with the bivariate case reported in Table 1 of the paper. As for the power study, we find that the

rejection rates of Q1 and Q∗
1 decrease in M . This is because we have one-period lag in volatility

spillover under AlterC. Thus, a test that focuses on recent events is expected give better power. This

finding is consistent with the bivariate case reported in Table 2 of the paper. We also observe that

the rejection rates of both Q1 and Q∗
1 increase in T and d1, consistent with the higher dimensional

results reported in Table 4 of the paper. This finding appears to hold regardless of the choice M .
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3. Monte Carlo study of the bidirectional test

We report and discuss in this section the full set of simulation results for our bidirectional

spillover test based on the proposed NC-LS modeling. To ensure consistency and comparability, we

maintain the same experimental design and parameter combinations as those described in Section 4

of the paper. As per the unidirectional study, we conduct simulations for both the asymptotic test

(Q2) and bootstrap test (Q∗
2). Overall, the finite sample performance of Q2 and Q∗

2 is very similar

to that of Q1 and Q∗
1, as will be discussed in the following.

To keep the presentation consistent, we tabulate and present the simulation results of the bidirec-

tional tests in the same ordering as their unidirectional counterparts. First, we report the bivariate

simulation results in Tables S5 and S6, which represents the bidirectional counterparts of Tables 1

and 2 in the paper. Next, we report the dimensional study (for the case of M = 20) in Tables S7

and S8, which correspond to Tables 3 and 4 in the paper. Finally, we also report the full set of

dimensional study (i.e., for M = 10, 20, 30) in Tables S9 and S10, which represent the bidirectional

counterparts of Tables S3 and S4 in this supplementary document.

We begin with the bivariate study. Table S5 reports the size performance of our bidirectional

testing strategy. We find that the size pattern of Q2 and Q∗
2 is very similar to that of Q1 and Q∗

1

reported in Table 1 of the paper. In general, the size of our bidirectional approach is reasonable

and it improves as T increases. The size is also stable across the different parameter combinations

considered; the four kernel functions studied and their smoothing parameters M . Table S6 reports

the power performance of our bidirectional testing approach. We can see that the power of Q2 and

Q∗
2 is slightly lower than that of Q1 and Q∗

1 reported in Table 2 of the paper. This minor loss in

power is expected because the bidirectional tests check both positive and negative lag order j’s for

evidence of spillover, whereas the unidirectional tests check only the positive ones. Other than this,

the overall power pattern of Q2 and Q∗
2 is very similar to that of Q1 and Q∗

1.

We now turn to the simulation results of the higher dimensional study of Q2 and Q∗
2 reported in

Tables S7, S8, S9 and S10. Because the results in Tables S7 and S8 are embedded, respectively, in

Tables S9 and S10, we shall focus on discussing the latter. Table S9 reports the size study of Q2 and

Q∗
2 as the portfolio dimension increases. First, we find that the size of Q2 and Q∗

2 increases in d1,

but not overly excessive nor rapid. The size generally improves and stabilizes as T increases. The

observed trend is similar to that of the unidirectional tests reported in Table 3 of the paper. We

also find the size of Q2 and Q∗
2 to be stable across M for each of the dimension studied, consistent

with their unidirectional counterparts reported in Table S3.

Table S10 reports the power study of our bidirectional inferential approach as d1 increases. We

find that Q2 and Q∗
2 have power despite a rather low spillover intensity. We also find that the

power increases in d1 as the spillover evidence becomes stronger due to the increased number of risk

recipients. This power trend is consistent with that of the unidirectional tests reported in Table 4 of

the paper. We also find that the rejection rates of Q2 and Q∗
2 decrease in M due to the one-period

lag spillover, in line with the pattern given by Q1 and Q∗
1 in Table S4. Similar to the bivariate study

reported in Table S6, we observe here some minor loss in power of Q2 and Q∗
2 compared with Q1 and
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Table S5: Empirical sizes

NullA NullB NullC

T M 10 20 30 10 20 30 10 20 30

Rejection rates based on asymptotic critical values
1000 Q2BAR 7.0 6.9 6.8 7.0 6.9 6.7 7.0 7.0 6.8

Q2DAN 6.9 6.9 6.8 6.8 6.9 6.8 6.8 6.9 6.9
Q2QS 7.0 6.9 6.9 6.9 6.9 6.8 7.0 6.9 6.9
Q2TR 7.0 6.8 6.4 7.1 6.8 6.6 6.9 6.8 6.4

1500 Q2BAR 6.7 6.7 6.5 6.7 6.7 6.6 6.7 6.7 6.4
Q2DAN 6.7 6.6 6.3 6.7 6.8 6.5 6.8 6.5 6.3
Q2QS 6.7 6.5 6.3 6.8 6.8 6.3 6.8 6.6 6.4
Q2TR 6.7 6.1 6.4 6.8 6.2 6.5 6.7 6.1 6.4

Rejection rates based on bootstrap critical values
1000 Q∗

2BAR 5.4 5.4 5.4 5.3 5.4 5.4 5.3 5.3 5.4
Q∗

2DAN 5.5 5.4 5.2 5.4 5.5 5.4 5.5 5.5 5.2
Q∗

2QS 5.3 5.3 5.3 5.3 5.5 5.2 5.4 5.5 5.3

Q∗
2TR 5.5 5.1 5.3 5.5 5.3 5.4 5.5 5.3 5.3

1500 Q∗
2BAR 4.5 4.7 5.0 4.5 4.6 5.1 4.6 4.7 5.1

Q∗
2DAN 4.6 4.8 5.2 4.5 4.8 5.2 4.7 4.9 5.3

Q∗
2QS 4.6 4.8 5.2 4.6 5.0 5.1 4.6 4.8 5.2

Q∗
2TR 4.9 5.2 5.3 4.8 5.1 5.1 4.9 5.2 5.3

Notes: The table reports empirical sizes (in %) of Q2 under NullA, NullB and NullC at the 5% significance level
based on NC-LS modeling. Number of simulations = 10000. Q2BAR, Q2DAN, Q2QS, Q2TR and Q∗

2BAR, Q
∗
2DAN, Q

∗
2QS,

Q∗
2TR denote the rejection rates of Q2 using asymptotic and bootstrap critical values, respectively; the subscripts

BAR, DAN, QS and TR denote, respectively, the Bartlett kernel, the Daniell kernel, the Quadratic-Spectral kernel
and the Truncated kernel. Number of bootstraps = 499. T and M denote the sample size and kernel smoothing
parameter, respectively.

Q∗
1. This is again due to the fact that Q2 and Q∗

2 examine both positive and negative directions for

spillover evidence while Q1 and Q∗
1 check only the positive direction. Apart from this, the overall

power pattern of Q2 and Q∗
2 is very similar to that of Q1 and Q∗

1, and the power generally improves

as T increases.
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Table S6: Empirical powers

AlterA AlterB

T M 10 20 30 10 20 30

Rejection rates based on empirical critical values
1000 Q2BAR 61.2 52.4 45.7 84.5 76.7 69.9

Q2DAN 58.7 46.0 38.5 82.5 70.4 61.5
Q2QS 57.6 44.4 37.3 81.5 68.4 59.9
Q2TR 37.3 27.5 23.0 60.2 45.7 37.3

1500 Q2BAR 79.3 70.5 63.9 96.7 93.4 89.9
Q2DAN 76.6 64.0 55.1 95.8 89.9 82.8
Q2QS 75.4 61.9 53.2 95.3 88.6 81.3
Q2TR 53.2 40.8 33.6 81.9 67.5 57.1

Rejection rates based on bootstrap critical values
1000 Q∗

2BAR 59.4 49.9 43.8 83.7 75.9 68.3
Q∗

2DAN 56.4 43.4 36.6 81.6 68.5 59.2
Q∗

2QS 54.9 42.2 35.0 80.4 66.6 57.4

Q∗
2TR 35.1 25.0 20.8 57.5 42.4 35.1

1500 Q∗
2BAR 77.7 69.4 62.0 95.9 92.2 87.9

Q∗
2DAN 75.5 62.1 52.9 95.0 88.3 81.5

Q∗
2QS 74.1 60.3 51.2 94.6 86.9 80.0

Q∗
2TR 51.7 36.9 30.2 80.3 64.6 53.8

Notes: The table reports empirical powers (in %) of Q2 under AlterA and AlterB at the 5% significance level based
on NC-LS modeling. Number of simulations = 10000. Q2BAR, Q2DAN, Q2QS, Q2TR and Q∗

2BAR, Q∗
2DAN, Q∗

2QS,
Q∗

2TR denote the rejection rates of Q2 using empirical and bootstrap critical values, respectively; the subscripts BAR,
DAN, QS and TR denote, respectively, the Bartlett kernel, the Daniell kernel, the Quadratic-Spectral kernel and the
Truncated kernel. Number of bootstraps = 499. T and M denote the sample size and kernel smoothing parameter,
respectively.
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Table S7: Empirical sizes

NullD

T d1 3 4 5 6 7 8 9 10

Rejection rates based on asymptotic critical values
1000 Q2BAR 7.1 7.0 7.6 7.9 7.3 7.6 7.9 8.3

Q2DAN 7.0 7.1 7.8 8.0 7.4 8.0 8.3 8.5
Q2QS 6.9 7.1 7.8 7.9 7.3 7.9 8.3 8.5
Q2TR 6.9 7.1 7.5 8.6 8.1 8.6 8.7 9.3

1500 Q2BAR 6.3 6.4 6.6 6.8 6.9 7.5 7.4 7.3
Q2DAN 6.3 6.6 6.8 6.9 6.9 7.4 7.5 7.5
Q2QS 6.3 6.5 6.6 7.0 6.9 7.6 7.3 7.5
Q2TR 6.3 6.2 7.0 7.4 7.5 7.4 7.9 7.7

Rejection rates based on bootstrap critical values
1000 Q∗

2BAR 5.3 5.7 5.2 5.4 6.1 6.2 6.0 6.2
Q∗

2DAN 5.6 5.7 5.1 5.3 6.3 6.1 6.0 6.2
Q∗

2QS 5.5 5.6 5.3 5.3 6.2 6.1 6.0 6.2

Q∗
2TR 5.7 5.8 5.5 5.5 6.2 6.3 6.3 6.1

1500 Q∗
2BAR 4.6 5.2 4.8 4.6 5.6 5.0 5.7 5.4

Q∗
2DAN 4.9 5.3 4.8 5.1 5.5 5.1 5.8 5.2

Q∗
2QS 5.0 5.3 4.8 5.1 5.3 5.0 5.9 5.3

Q∗
2TR 4.8 5.0 5.1 5.4 5.8 5.5 5.6 5.6

Notes: The table reports empirical sizes (in %) of Q2 under NullD at the 5% significance level based on NC-LS
modeling. Number of simulations = 10000. Q2BAR, Q2DAN, Q2QS, Q2TR and Q∗

2BAR, Q
∗
2DAN, Q

∗
2QS, Q

∗
2TR denote

the rejection rates of Q2 using asymptotic and bootstrap critical values, respectively; the subscripts BAR, DAN, QS
and TR denote, respectively, the Bartlett kernel, the Daniell kernel, the Quadratic-Spectral kernel and the Truncated
kernel. Number of bootstraps = 499. T and d1 denote the sample size and dimension of portfolio 1, respectively.
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Table S8: Empirical powers

AlterC

T d1 3 4 5 6 7 8 9 10

Rejection rates based on empirical critical values
1000 Q2BAR 18.6 25.5 34.6 39.7 48.9 55.1 55.9 58.0

Q2DAN 16.8 21.9 28.4 32.6 41.2 45.8 46.7 48.2
Q2QS 16.5 21.2 27.3 31.3 39.6 43.9 44.3 45.3
Q2TR 11.6 14.0 17.2 18.9 22.4 24.5 24.7 25.1

1500 Q2BAR 28.5 42.9 58.0 69.0 78.5 82.7 86.1 89.4
Q2DAN 23.7 36.0 48.2 59.0 68.0 73.0 77.4 80.5
Q2QS 23.4 34.8 45.8 56.8 65.4 70.9 75.1 78.3
Q2TR 14.3 20.3 25.0 31.4 35.9 40.1 42.9 45.4

Rejection rates based on bootstrap critical values
1000 Q∗

2BAR 16.0 23.4 32.1 38.9 46.1 50.7 53.4 57.5
Q∗

2DAN 14.0 20.1 26.3 32.7 37.9 41.6 44.6 47.6
Q∗

2QS 13.8 19.0 25.1 31.2 36.1 39.7 42.5 45.3

Q∗
2TR 10.1 12.0 16.0 18.0 20.8 22.0 23.8 25.1

1500 Q∗
2BAR 23.2 38.3 56.0 66.8 75.7 80.7 85.6 87.6

Q∗
2DAN 19.7 31.7 46.7 56.4 65.6 70.7 76.7 79.1

Q∗
2QS 19.3 30.5 44.8 54.0 62.7 68.0 74.0 76.6

Q∗
2TR 13.3 17.2 24.2 29.5 34.0 38.2 41.3 43.9

Notes: The table reports empirical powers (in %) of Q2 under AlterC at the 5% significance level based on NC-LS
modeling. Number of simulations = 10000. Q2BAR, Q2DAN, Q2QS, Q2TR and Q∗

2BAR, Q
∗
2DAN, Q

∗
2QS, Q

∗
2TR denote

the rejection rates of Q2 using empirical and bootstrap critical values, respectively; the subscripts BAR, DAN, QS
and TR denote, respectively, the Bartlett kernel, the Daniell kernel, the Quadratic-Spectral kernel and the Truncated
kernel. Number of bootstraps = 499. T and d1 denote the sample size and dimension of portfolio 1, respectively.
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4. GARCH misspecification

Based on a correctly specified model, in the paper we find no evidence of volatility spillover

between the UK market and the NA market after Brexit. In this section, we investigate the con-

sequence of model misspecification on testing for volatility spillover. To this purpose, we repeat

the examination of spillover between UK and NA in the post–Brexit sample with a deliberately

misspecified model.

Recall that a well specified model requires order 4 for the conditional variance of the UK series.

We first include a control study that is correctly specified. We specify a model with random order

6 for the conditional variance of the UK series. Diagnostic tests reported in Table S11 suggest that

the model is well specified. Table S12 reports the volatility spillover test results. Consistent with

the findings in the paper, we find no evidence of volatility spillover between the UK market and the

NA market. Moreover, the p-values reported in Table S12 are very similar to those reported in the

paper. This control study serves two purposes. First, it ensures that our conclusion is not affected

by the sensitivity of a correctly specified model lag order. Second, it ensures that any changes in

conclusion in the next study is likely to be driven by model misspecification.

To impose model misspecification, we now use order 1 for the variance of the UK market.

Diagnostic results reported in Table S13 suggests model misspecification. Table S14 reports the

volatility spillover test results. In contrast to the findings based on a correctly specified model,

we find that the NA market has a significant spillover effect to the UK market at all M ’s. Given

the control study, this false-positive result is likely to be induced by serial correlations in the event

variables as a result of model misspecification. In summary, the exercises in this section highlight

the importance of a correctly specified model in testing volatility spillover.

Table S11: Diagnostic tests (UK–NA, Control)

LB(10) LB(20) LB(30) LB2(10) LB2(20) LB2(30)

Post–Brexit (24th June 2016 – 31st December 2019)
UK 8.342 17.378 24.770 7.035 12.227 15.502

[0.595] [0.628] [0.736] [0.722] [0.908] [0.987]
US 15.436 18.869 23.736 10.546 13.020 17.188

[0.117] [0.530] [0.784] [0.394] [0.877] [0.970]
Canada 6.779 18.437 22.004 4.432 18.823 21.513

[0.746] [0.559] [0.854] [0.926] [0.533] [0.871]

Notes: The table reports diagnostic analyses for all fitted series. LB(M) and LB2(M) are the Ljung-Box tests for the
null of no serial correlation (up to lag order M) on the standardized and squared standardized residuals, respectively.
The values in the squared parentheses are the p-values of the tests.
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Table S12: Spillover results (UK–NA, Control)

Post–Brexit

M 10 20 30

Q∗
1BAR 0.172 0.166 0.236

Q∗
−1BAR 0.643 0.599 0.673

Notes: The table reports bootstrap p-values of the proposed spillover tests. Num-
ber of bootstraps = 499. Q∗

BAR denotes the one-way test for the null hypothesis of
no volatility spillover from the NA market to the UK market. Q∗

−1BAR denotes the
one-way test for the null hypothesis of no volatility spillover from the UK market
to the NA market. The subscript BAR denotes the Bartlett kernel. M denotes
the kernel smoothing parameter.

Table S13: Diagnostic tests (UK–NA, Misspecified)

LB(10) LB(20) LB(30) LB2(10) LB2(20) LB2(30)

Post–Brexit (24th June 2016 – 31st December 2019)
UK 33.666 49.171 55.323 22.971 38.451 41.231

[0.000] [0.000] [0.003] [0.011] [0.008] [0.083]
US 15.436 18.869 23.736 10.546 13.020 17.188

[0.117] [0.530] [0.784] [0.394] [0.877] [0.970]
Canada 6.779 18.437 22.004 4.432 18.823 21.513

[0.746] [0.559] [0.854] [0.926] [0.533] [0.871]

Notes: The table reports diagnostic analyses for all fitted series. LB(M) and LB2(M) are the Ljung-Box tests for the
null of no serial correlation (up to lag order M) on the standardized and squared standardized residuals, respectively.
The values in the squared parentheses are the p-values of the tests.

Table S14: Spillover results (UK–NA, Misspecified)

Post–Brexit

M 10 20 30

Q∗
1BAR 0.078 0.048 0.060

Q∗
−1BAR 0.721 0.607 0.687

Notes: The table reports bootstrap p-values of the proposed spillover tests. Num-
ber of bootstraps = 499. Q∗

BAR denotes the one-way test for the null hypothesis of
no volatility spillover from the NA market to the UK market. Q∗

−1BAR denotes the
one-way test for the null hypothesis of no volatility spillover from the UK market
to the NA market. The subscript BAR denotes the Bartlett kernel. M denotes
the kernel smoothing parameter.
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5. Computational efficiency study

In this section, we conduct a computational efficiency experiment to highlight the speed ad-

vantage of our adjusted least-squares estimation over the QMLE. We simulate the following simple

ARCH(1) process with standard Gaussian error

ϵt =
√

htξt, ξt
iid∼ N(0, 1),

ht = 0.1 + 0.2ϵ2t−1.

Next, we fit the simulated ARCH process ht using our adjusted least-squares estimation as well as

QMLE. During estimation, we measure the machine elapsed time using the Matlab tic and toc

functions. For improved accuracy, we repeat the procedure 10000 times and we compute the mean

elapsed time. We find that the average machine time required by our estimation method is about

0.0012 (machine unit) per simulation, while that required by QMLE is about 0.0266 per simulation.

In other words, our method requires only about 4.3% of the the computational time of QMLE.

6. Robustness analysis

In this section, we conduct a robustness analysis for the empirical results reported in the paper.

In particular, we repeat all of the volatility spillover examinations reported in the paper, with

8 observations of the estimated event variables curtailed before and after the Brexit referendum.

Results for the UK–NA (EU–NA) nexus is reported in Table S15 (S16). We can see that the p-values

reported in Table S15 (S16) are very similar to those reported in Table 6 (9) of the paper. This

highlights the robustness of the paper’s empirical findings.

Table S15: Spillover results (UK–NA, Robustness)

Pre–Brexit Post–Brexit

M 10 20 30 10 20 30

Q∗
1BAR 0.026 0.044 0.040 0.152 0.124 0.170

Q∗
−1BAR 0.086 0.054 0.062 0.727 0.691 0.790

Notes: The table reports bootstrap p-values of the proposed spillover tests, with 8 observations curtailed before
and after the Brexit referendum date. Number of bootstraps = 499. Q∗

1BAR denotes the one-way test for the null
hypothesis of no volatility spillover from the NA market to the UK market. Q∗

−1BAR denotes the one-way test for
the null hypothesis of no volatility spillover from the UK market to the NA market. The subscript BAR denotes the
Bartlett kernel. M denotes the kernel smoothing parameter.
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Table S16: Spillover results (EU–NA, Robustness)

Pre–Brexit Post–Brexit

M 10 20 30 10 20 30

Q∗
1BAR 0.066 0.154 0.098 0.082 0.142 0.160

Q∗
−1BAR 0.210 0.150 0.086 0.144 0.078 0.072

Notes: The table reports bootstrap p-values of the proposed spillover tests, with 8 observations curtailed before
and after the Brexit referendum date. Number of bootstraps = 499. Q∗

1BAR denotes the one-way test for the null
hypothesis of no volatility spillover from the NA market to the EU market. Q∗

−1BAR denotes the one-way test for
the null hypothesis of no volatility spillover from the EU market to the NA market. The subscript BAR denotes the
Bartlett kernel. M denotes the kernel smoothing parameter.
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