

City, University of London Institutional Repository

Citation: Mahbub, K. (2006). Runtime monitoring of service based systems. (Unpublished

Doctoral thesis, City, University of London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/30685/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Runtime Monitoring of Service Based
Systems

KHALED MAHBUB

A thesis submitted in fulfilment of the requirements for the degree of
Doctor of Philosophy

at

City University, London

Department of Computing

November 2006

Table of Contents

Title Page

List of Tables 5

List of Figures 6

Acknowledgements 9

Declaration 10

Abstract / /

Chapter 1: Introduction 12

1.1 Overview 12

1.2 Formal System Verification and Testing 12

1.2.1 Static Formal Verification 13

1.2.2 Testing 15

1.3 Runtime Monitoring 16
1.3.1 Advantages and Disadvantages of Runtime Monitoring 11

1.4 Runtime Monitoring o f Service Based Systems 18

1.5 The Monitoring Approach o f This Thesis 20

1.6 Contributions 21

1.7 Outline of the Thesis 23

Chapter 2: Runtime Verification of Service Based Software Systems -
State of the Art. 24

2.1 Overview 24

2.2 Web Sendee Technologies and Standards 24
2.2.1 Basic Concepts and Definitions 25
2.2.2 Web Service Architecture 26
2.2.3 Basic Web Service Standards 30
2.2.4 Orchestration and Choreography of Web Sendees 36
2.2.5 Specification and Management of Service Level Agreements 45

2.3 Runtime Monitoring of Software 52
2.3.1 A General Framework for Runtime Monitoring 52
2.3.2 Strands of Research in Software Monitoring 55

2.3.3 Types of Requirements Violations Addressed in the Literature 75

2.4 Motivation 76

2

2.5 Our Approach 79

Chapter 3: Specification of Monitoring Policies

3.1 Overview

3.2 Policy Specification

3.3 Property Specification
3.3.1 The Basics of Event Calculus
3.3.2 Why Event Calculus
3.3.3 Fluents and Events
3.3.4 Formulas
3.3.5 Formula Specification in XML

85

85

86

88

88

91
93
99
101

Chapter 4: Property Deviations and the Monitoring Scheme

4.1 Ovennew

4.2 An Example o f a Service Based System

4.3 Property Deviations
4.3.1 Inconsistency of Recorded Behaviour
4.3.2 Inconsistency of Expected Behaviour
4.3.3 Unjustified Behaviour
4.3.4 Possible Inconsistency of Expected Behaviour
4.3.5 Potentially Unjustified Behaviour

4.4 The Monitoring Scheme
4.4.1 The Monitor
4.4.2 The Event Feeder
4.4.3 The Event Generator
4.4.4 The Consistency Checker
4.4.5 Analysis of the Monitoring Algorithm

108

108

108
114
115
117
118
119
124

125
126
133
143
148
152

Chapter 5: Implementation of the Monitoring Framework

5.1 Overview

5.2 Implementation Architecture

5.2.1 Design Choices and Implementation Issues
5.2.2 Behavioural Properties Extractor
5.2.3 Event Receiver
5.2.4 Simulator
5.2.5 Event Database Handler
5.2.6 Formula Database Handler

162

162

162
163
165
189
199
206
206

3

5.2.7 Monitor Manager 209
5.2.8 Monitor 211
5.2.9 Monitoring Console 212

5.3 A Prototype of the Monitoring Framework 212

Chapter 6: Experimental Evaluation 216

6.1 Overview 216
6.2 Performance Measures 216
6.3 First Case Study: Simulated BP EL Process 220

6.3.1 Experimental Setup 220
6.3.2 Results and Analysis 223

6.4 Second Case Study: Real BPEL Process 232
6.4.1 Experimental Setup 233
6.4.2 Results and Analysis 235

6.5 Applicability o f the Framework 238

Chapter 7: Conclusions and Future Works 240

7.1 Overview 240

7.2 Summary of the Work 240

7.3 Contributions 241

7.4 Limitations o f the Approach 244

7.5 Plans for Future Works 245

References 248

Appendix A 263
Appendix B 269
Appendix C 271
Appendix D 277
Appendix E 287
Appendix F 296
Appendix G 301

4

List of Tables

No. Legend Page

2.1 Summary of BPEL4WS activities.. 38

2.2 Summary of OWL-S control constructs.. 40

2.3 Summary of WSCI activities.. 41

2.4 Summary of WS-CDL basic activities and ordering structures........................... 42

2.5 Comparison of web service orchestration and web service choreography

languages.. 44

3.1 Textual description of the elements of the monitoring policy schema............... 87

3.2 Built-in operations for properties specification... 94

3.3 Textual description of key elements of the formula Schema............................... 103

4.1 Possible predicate updating cases considered by the Event Feeder..................... 135

4.2 Possible predicate updating cases considered by the Event Generator................ 145

5.1 Textual description of the elements of the simulator configuration schema....... 210

6.1 Basic time measures... 217

6.2 Experimental setup for the first case study.. 222

6.3a Performance measures in each experiment in the first case study due to large

inter arrival time of events... 224

6.3b Performance measures in each experiment in the first case study due to small

inter arrival time of events... 225

6.4 Number of different types of inconsistencies detected in each experiment in the

first case study... 229

6.5 Experimental setup for the second case study... 235

6.6 Performance measures in each experiment in the second case study................... 237

6.7 Number of different types of inconsistencies detected in each experiment in the

second case study.. 238

5

List of Figures

No. Legend Page

2.1 Basic web-service architecture... 26

2.2 Extended web-service architecture (Simplified view)... 27

2.3 Mapping between basic web service architecture and extended web service

architecture... 27

2.4 SOAP message structure... 30

2.5 A SOAP message skeleton... 31

2.6 WSDL document elements... 31

2.7 Overview of WSDL schema... 32

2.8 Example of a web service written in Java... 33

2.9 Sample web service description in WSDL.. 34

2.10 Web service orchestration.. 36

2.11 Web service choreography... 37

2.12 Overview of WSLA schema.. 47

2.13 Overview of WS-Agreement schema... 50

2.14 A general framework for requirements monitoring... 53

2.15 Architecture of the monitoring framework... 82

3.1 Graphical view of the monitoring policy schema.. 86

3.2 Tree representation of BPEL variable.. 95

3.3 The formal definition of a formula in EBNF... 99

3.4 Graphical view of the formula schema.. 102

3.5 Example formula in logic based syntax... 106

3.6 Example formula in XML.. 107

4.1 Structure of the car rental system (CRS)... 109

4.2 Behavioural properties of the car rental system.. 110

4.3 Assumptions and QoS requirements of the car rental system................................... 112

4.4 Event log of car rental system.. 116

4.5 Runtime components of the monitoring architecture.. 125

4.6 Formula interdependency identification algorithm.. 126

4.7 Formula interdependency graph... 127

4.8 The monitoring algorithm.. 132

4.9 Algorithm for the event feeder... 140

6

4.10 Algorithm for the event generator.. 147

4.11 Algorithm for the consistency checker... 151

5.1 Implementation architecture of the monitoring framework................................... 163

5.2 The basic structure of BPEL business process.. 167

5.3 Rate tracker BPEL process... 186

5.4 Sequences of activities in the Rate Tracker BPEL process................................... 187

5.5 Formulas extracted for the Rate Tracker BPEL process... 188

5.6 Event generation from bpws4j engine.. 190

5.7 Execution paths of a BPEL process expressed as EC formulas............................. 202

5.8 A typical user interaction scenario with the monitoring framework................. 213

5.9 Monitoring console.. 214

5.10 Event viewer... 215

6.1 Event waiting time... 218

6.2 Monitor’s idle time.. 218

6.3a Decision delay.. 219

6.3b Decision delay.. 219

6.4 Formulas used in the first case study... 221

6.5a Average d-delay due to recorded events and large inter arrival time of events.... 226

6.5b Average d-delay due to recorded events and small inter arrival time of events.... 226

6.6a Average d-delay due to mixed events and large inter arrival time of events......... 226

6.6b Average d-delay due to mixed events and small inter arrival time of events......... 226

6.7a Monitor’s idle time due to recorded events and large inter arrival time of events. 226

6.7b Monitor’s idle time due to recorded events and small inter arrival time of events. 226

6.8a Monitor’s idle time due to mixed events and large inter arrival time of events.... 227

6.8b Monitor’s idle time due to mixed events and small inter arrival time of events.... 227

6.9a Average waiting time for events due to recorded events and large inter arrival

time of events... 227

6.9b Average waiting time for events due to recorded events and small inter arrival

time of events... 227

6.10a Average waiting time for events due to mixed events and large inter arrival time

of events... 227

6.10b Average waiting time for events due to mixed events and large inter arrival time

of events... 227

6.11 Formulas used in the second case study... 233

7

6.12a Average d-delay due to small inter arrival time of events...................................... 235

6.12b Average d-delay due to large inter arrival time of events....................................... 235

6.13a Monitor's idle time due to small inter arrival time of events.................................. 236

6.13b Monitor’s idle time due to large inter arrival time of events.................................. 236

6.14a Average waiting time for events due to small inter arrival time of events............. 236

6.14b Average waiting time for events due to large inter arrival time of events............ 236

8

Acknowledgements

First, I extend my deepest gratitude to my supervisor, Professor George Spanoudakis, for his

constant encouragement and assistance. He is a patient and nurturing mentor, who could

always boost my confidence in times of self-doubt or frustration. His insistence on perfection

was relentless and sometimes painful, but undoubtedly this will serve as a guide for the rest of

my life. Without his guidance and continuous cooperation throughout this research it would

not have been possible to finish this thesis. I am honoured to have his name on this work.

I wish to express my sincere thanks to my co-supervisor Dr. Andrea Zisman for her valuable

advices during this research.

I like to thank the School of Informatics for the financial support for this research. I also like

to remember every member of the Technical Support Team (TST), in the School of

Informatics for their tireless services. Without their assistance this journey could have been

dreadful to me. They provided all the necessary software and hardware support for the project

at the high time.

I like to thank my colleagues in the software engineering group and the fellow graduate

students for their spontaneous supports, comments and particularly their joyfulness that made

my hard times smoother.

Finally, I make special mention of my family, specially my parents, who always motivated

me for higher studies. They have supported and understood me every time and everywhere.

Special thanks to them for everything they have done and given to me.

9

Declaration

I grant powers of discretion to the University Librarian to allow this thesis to be copied in

whole or in part without further reference to me. This permission covers only single copies

make for study purposes, subject to normal conditions of acknowledgement

10

Abstract
With the growing popularity of web services the demand of highly reliable service based
systems (SBS) is increasing. Formal verification and testing are performed to ensure the
correctness of a system before it is deployed in a real environment. But the high complexity
of complete fielded systems puts their effectiveness into questions. Runtime monitoring is the
potential technique to cover the area not covered by formal verification and testing. This
technique aims to assure the correctness of the current execution of a system. Substantial
amount of research has been carried out in runtime monitoring to ensure the reliability of
autonomous legacy software. However in service based system some significant
complications arises as they focus on systems with no autonomous components, that make the
approaches applied to monitor legacy software inadequate for service based system. In this
thesis we present a framework for runtime monitoring of service based systems. We establish
the necessity of introducing new types of inconsistencies beyond the classical inconsistencies
that may occur during the execution of service based systems and develop reasoning
mechanism to detect them at run time.

In the proposed framework, the properties to be monitored include: (i) behavioural
properties of the co-ordination process of the service based system, (ii) functional properties
that express functional requirements for the individual services of a service based system or
groups of such services, (ii) assumptions regarding the behaviour of the service based system
and its constituent services and their effects on the state of the system and (iii) Quality-of-
Service (QOS) properties for the service based systems and its constituent services. All types
of properties are expressed in a property specification language which is based on event-
calculus [Sha99]. The behavioural properties to be monitored at run-time are extracted
automatically from the specification of the co-ordination process of a service-based system in
BPEL [Bpe03] while the other types of properties to be monitored must be specified by the
providers of the system. These properties must be specified in terms of: (i) events that can be
observed at run-time and correspond to either operation invocation and response messages or
the assignment of values to global variables used by the co-ordination process of the system,
and (ii) conditions over the state of the co-ordination process of the system and/or the
individual services deployed by it. These restrictions ensure that property monitoring can be
based solely on events which are generated by virtue of the normal opearation of the system
without the need for instrumenting the individual services deployed by it. The property
specification language that is used by this framework is a first-order logic language that
incorporates special predicates to signify assertions about time and, to this end, it provides a
very expressive framework for specifying properties of service based system, which may
include temporal characteristics.

At run-time, the framework deploys an event receiver that catches events which are
exchanged by the different services and the co-ordination process of the system and stores
them in an event database. This database is accessed by a monitor that can detect different
types of violations of properties. These types are: (i) violations of functional properties and
quality-of-service properties by the recorded behaviour of the service based system, (ii)
violations and potential violations of behavioural properties, functional properties and quality-
of-service properties by the expected system behaviour, and (iii) unjustified and potentially
unjustified actions which the system has taken by wrongly assuming that certain pre-
conditions associated with the undertaken actions were satisfied at run-time. The detection of
these types of violations is fully automatic and is based on an algorithm that has been
developed as a variant of algorithms for integrity constraint checking in temporal deductive
databases [Ple93, Cho95]. We have implemented a prototype of the proposed monitoring
framework and showed the effectiveness of the monitoring prototype through several case
studies.

11

Chapter One

Introduction

1.1 Overview

This thesis presents a framework that we have developed to support the runtime monitoring of

service based software systems, i.e., systems which are implemented as compositions of web-

services, against formally specified functional and quality of service requirements. Runtime

monitoring provides a means of verifying dynamically the correctness of the actual behaviour

of a system against a specification of how it should behave. The thesis provides a formal

foundation of the monitoring framework that it proposes, describes the architecture and

implementation of a prototype tool that we have developed to implement the framework, and

investigates the effectiveness of the framework and its implementation by presenting the

results of a set of experiments that we have conducted to evaluate them. The main

contribution of this thesis is the provision of a novel framework for the runtime monitoring of

service based software systems.

In the reminder of this introductory chapter, we give a comparative overview of different

techniques that have been developed to assure the correctness of software systems, contrasts

them with runtime monitoring and argues that runtime monitoring of service based systems is

necessary in order to ascertain their correctness. The chapter concludes with a summary of the

main contributions of the monitoring approach that is presented in this thesis.

1.2 Formal System Verification and Testing

Since the invention of microcomputers, the use of software has grown rapidly and now it has

become a part of our everyday life. In fact now software is used to control much more safety

critical equipment such as airline controllers, radiation controller or nuclear reactor, rather

than simple audio or TV set. In most of these cases software failure can have serious

consequences and even can devastate human lives and properties [Jac06] [Ari96] [Lev93],

Thus, there has been long standing and active research that is aimed at developing theories

12

and techniques that guarantee the correct execution of software systems including formal

verification [Col98] [Tra99] and testing [IPL03] [Pan99j. Formal verification and testing can

be applied to ensure the correctness of software systems during their development and before

they are deployed in a real environment. This very fact, however, puts the effectiveness of

such techniques into question as often it is impossible to anticipate all the possible conditions

which may arise during the actual operation of a software system during its development and

carry out verification and testing activities that can verify the behaviour of a system in all

these conditions [Col98] [WhiOO]. This particularly true for systems with decentralised

architectures that may deploy dynamically evolving components such as the service based

systems which constitute the focus of this thesis. Another factor that makes it unsuitable to

verify a system prior to deployment is high complexity of complete fielded systems puts their

effectiveness into questions.

1.2.1 Static Formal Verification

The objective of static formal verification is to prove formally that the behaviour of a

software system is correct with respect to some correctness criteria, given a formal

specification of the behaviour of this system. Static formal verification comes in two flavours:

static verification by theorem proving [Fit96] and static verification by model checking

[Cla94],

1.2.1.1 Model Checking

In model checking a software system is modelled as a finite state machine and the behavioural

specification of the software is usually expressed in some temporal logic. These specifications

are checked by a model checker. Typically, a model checker explores all possible states of the

model and checks whether the properties in question are satisfied [Cla94] [Cla96]. The main

model checkers that have been developed for static software system verification include: Spin

[Hol97], SMV [Mcm92] and SLAM [Bal02],

The most significant advantage of model checking is that it is completely automatic and fast.

On the other hand the main disadvantage of model checking is that it is not scalable to large

system models and suffers from state space explosion problem [Eli06] [Cla96].

13

1.2.1.2 Theorem Proving

In theorem proving both the software model and the behaviour specification are expressed as

formulas in some formal system, which defines a set of axioms and a set of inference rules.

Theorem proving checks if each of the behavioural properties that have been specified for the

system is a logical consequence of the formulas that represent the software model. To prove

this logical consequence, theorem proving applies the axioms and the rules of inference of the

formal system [Fit96] [Cla96].

The main advantage of theorem proving over model checking, is that it offers better

scalability to deal large systems [Cla96]. The main disadvantage of theorem proving is that

usually theorem prover requires human interaction. Also the computational complexity of

theorem proving is high [Eli06] [Cla96].

1.2.1.3 Advantages and Disadvantages of Static Formal Verification

Static formal verification is used in the early software development process and helps

developers gain a better understanding of a software system by revealing design flaws,

inconsistencies, and ambiguities of a model. This practice can reduce the length of expensive

and time consuming testing and debugging phases in software development. Despite these

promises and the myth that static formal verification can guarantee that software is perfect,

static formal verification still remains one of the most contentious areas in software

engineering. This is because, in reality static formal verification can not guarantee that a

software system is impeccable [Bow95] [Hal90]. Some of the most dominant factors that

limit the applicability of static formal verification are:

■ Static formal verification relies on the existence of a formal specification of the system.

This specification has to be accurate and complete or otherwise static formal verification

cannot be effective. Accuracy and completeness, however, are difficult to achieve in any

form of modelling including formal specification due to the inherent complexity of the

software systems which are being modelled and the environments which they operate in.

In reality, formal specifications of software systems make implicit assumptions about a

software system and its environment that limit significantly the completeness and

accuracy of the results of static formal verification techniques [Hal90][Kim01a],

14

■ Another inherent limitation of static formal verification arises due to the fact that even if a

software specification model can be guaranteed to be accurate and complete there is no

guarantee that the software system which will implement this model will be a correct and

truthful implementation of the specification. Often this is not the case as implementation

typically entails much more detail than a specification [Cop03] [KimOla]. For example,

in a model a data structure can be assumed to have infinite storage, but in implementation

it should be restricted to some fixed size.

■ The lack of scalability of static formal verification techniques is another point of concern.

More specifically these techniques are known to have exponential time or space

complexity and therefore while they can cope with relatively small system specification

models they do not scale well with large models [Geo03][Cla96][KimOla].

■ Static formal verification may increase the cost of software development process and may

delay the development process as its application often requires the use of large amount of

computational resources and software developers with advanced skills and training in the

field of formal methods [Geo03][Cla96][kim01a].

1.2.2 Testing

Testing is the process of analyzing software to identify and remove flaws thereby ensuring its

correctness and quality [HarOO]. This is achieved by executing several test cases to verify that

a given program satisfies certain requirements. Test cases are constructed by experienced and

highly qualified programmers (testers) to provide a good coverage of system operational

scenarios and attempt to catch as many errors as possible. Software Testing requires the tester

to have a close look at the source code and/or requirements specification and try to produce

executions that will manifest the commonly recurring errors [WhiOO].

1.2.2.1 Advantages and Disadvantages of Testing

Testing is performed to ensure the correctness of software, but it is less effective than

specification verification, as it can not prove mathematical validity of the system [Ber03].

Moreover the errors detected by testing for a specific test case can not be generalised [HarOO].

In addition to these limitations testing suffers from some other limitations including:

15

■ Often testing is carried out in a well-known environment and the tester may be biased by

the previous experience which may cause construction of test cases that may not cover all

scenarios of a real environment, thus creating scope for bringing a system to operation

without having tested in a significant spectrum of test cases. There have been long

attempt to address this issue by automating software testing and test case generation. But

the state of the art of automation of software testing still not able to handle this issue

completely [Kan06] [Pra05].

■ In some cases testing is completely unsuitable for checking some required properties

[Hal90]. Consider, for example, liveness property, that is the property requiring that,

"program execution eventually reaches some desirable state" [Owi82]. Such property in

principle can never be verified by testing.

■ Testing is less effective in verifying concurrent multi-threaded software systems [Kla04].

This is because, due to the non-deterministic nature of multi-threaded software, the

occurrence of deadlocks and race conditions which may appear in this type of systems

can not be predicted. Thus traditional testing techniques are inappropriate to capture

errors related to these phenomena.

1.3 Runtime Monitoring

Runtime monitoring is the activity of determining at runtime whether a software system

satisfies the formal requirements specification that is set for it. This process can be used to

convince users that the run time behaviour of a system is compliant with its formal

requirements in real conditions unlike testing and formal static verification.

Runtime monitoring takes a formal requirements specification for a software system as input

and checks whether traces of events which are captured during the operation of this system at

runtime is compliant with the specification [Del04], This process primarily focuses on the

evaluation of certain aspects of formal specification, for example the ordering of and other

temporal relationships between events and can identify violations of the requirements or

instances of unanticipated behaviour of a software system. Following the detection of such

cases, alerts can be generated for fixing the behaviour of the system either manually or

automatically (a system may have been designed with the capability to take recovery actions

when unexpected behaviour occurs [Fea98]).

16

1.3.1 Advantages and Disadvantages of Runtime Monitoring

Runtime requirements monitoring has been proposed as a verification approach that can take

into account the real conditions which arise during the operation of a system and test its

behaviour against them [Del04]. The benefits of runtime monitoring over static formal

verification and testing could be summarised as follows:

■ Runtime monitoring checks the real implementation of a system as opposed to a

specification that might not have been faithfully realised by an implementation.

■ Runtime monitoring checks a system under real conditions that cannot be necessarily

modelled in static models. For example the complete modelling of communication

services (e.g. telecommunication service or Internet service) in static models is not

practically possible [Die99].

■ Static formal verification and testing attempt to ensure that all possible executions of the

software satisfy desired properties. This leads to a state space explosion in the checking

process that limits the scalability of these approaches. On the other hand, runtime

monitoring focuses on a particular execution of the system, thus it may scale well for

large systems.

■ Unlike testing, which considers only a predefined set of inputs, runtime monitoring can

potentially take into account all possible combinations of inputs. Thus it has the ability to

reveal faults for rare and unexpected states which can not be addressed during testing.

■ Runtime monitoring can be used to check certain type of properties that can not be

checked in static verification. For example static verification is not suitable for checking

properties related to real-time constraints, memory usage or concurrency [Cra93].

In spite of the above mentioned strengths of runtime monitoring over formal verification and

testing, runtime monitoring has its own disadvantages:

■ In some cases runtime monitoring may introduce undesirable side effects (e.g. lower

performance) to the software being monitored [Urt02]. This may happen depending on

the mechanism used to generate runtime events from the software and this is avoidable

with careful design.

17

■ Runtime monitoring can not guarantee the correctness of future executions of the

software. More specifically, although runtime monitoring can detect faults in the current

execution of the software, it can not ensure that the same fault would not occur in the next

execution of the system. However it should be appreciated that the purpose of runtime

monitoring is not to make a software faultless, but to detect runtime faults and help the

designer/developer to make the software faultless.

1.4 Runtime Monitoring of Service Based Systems

As with classic software the objective of runtime monitoring of service based software

systems (SBS systems) is to verify whether a web service based system is exhibiting the

expected behaviour.

The key differentiating aspect of service based systems over traditional software is the highly

distributed, decentralised and dynamically evolving nature of these systems which arises due

to the deployment of web services by such systems. A web service is an autonomous, self-

describing modular program which is, through standard XML messaging, accessible over a

network, such as the Internet or an enterprise intranet, based on its standard transport

protocols. The deployment of a web service is facilitated by a specification of the interface of

a service, known as service description that specifies the different operations which are

provided and can be invoked in the service. This description is expressed in XML (typically

using the WSDL standard [Wsd04]) and provides all the necessary details, such as transport

protocols, location of the service and message format, to interact with the service. Since a

web service interface hides the implementation details of the service in a service based system

it can be used independently of the hardware or software platform on which it is implemented

and also independently of the programming language in which it is written. This aspect of

web services enables the web service based systems to be loosely coupled.

Monitoring the behaviour of service based systems at runtime presents some special

challenges in comparison with the runtime monitoring of classical software systems. This is

because

• The most powerful feature of service based systems is that they allow the

composition of heterogeneous web services offered by different vendors to provide

18

value-added services to their customers. In traditional software systems or distributed

systems software components are fixed and hard-wired together or tightly coupled.

This means that a monitor can be developed by considering a specific configuration

of software components that provide a specific service for the system. Service based

systems however may interact with other computational entities (web services) which

may have been developed by different vendors, written in different programming

languages and running on heterogeneous computing platforms. This difference

increases the complexity of the runtime monitoring of service based systems over

their traditional counterparts. For example, in service-based systems, the failure of

specific services to function as expected may lead other system components to make

incorrect assumptions about the state of the system (e.g. the absence of a message

confirming the update of some data in one of the system's services does not

necessarily mean that these data have not been updated. See Section 2.4 in Chapter 2

for a specific example). Consequently, components may take actions, which may be

compliant with the requirements but would not have been taken if the correct state of

the system was known to them.

• Service based systems often have the ability to evolve dynamically and may change

its behaviour at runtime. This may happen at least in two ways. Firstly, the

composition process of a service based system accesses a web service through its

interface and is unaware of the implementation details of the service. Therefore any

change in the implementation of any web services in the composition, such as update

of performance measures or addition of new functionality, is beyond anticipation at

design time and deployment time. Secondly, in a service based system a

malfunctioning web service can be replaced by a new web service at runtime. This

possibility of reconfiguration of service based system and evolving nature of web

services must have significant impact on runtime monitoring (e.g. a monitoring

property may prove invalid with respect to the new configuration of the service based

system).

• In traditional software systems (even distributed ones) which are based on a fixed set

of software components, a monitor may exercise a great deal of control over the

system within the infrastructure on which it is deployed. Service-based systems,

however, receive key services from outside providers (web services) and they are

designed not to be dependent on any collective computing entity. So web services

must be treated as strictly autonomous units and the provider of the service based

system can not be assumed to have ownership of the code of the individual services

19

that it deploys. This impacts upon the ability to generate internal events from the

individual web services which are deployed by service based systems.

• Monitoring of non-functional requirements for service based systems should be of

great importance. For example response time, one can’t expect a customer to wait

indefinitely long time to receive the service. Because of the loosely coupled

distributed nature of web services monitoring of non-functional requirements could

be critical. In service-based systems, the specification and checking of non functional

requirements must take into account the time required for the communication

between the interacting services. This time, however, is not negligible as it is

typically assumed in requirement specifications of service based systems, and may

vary depending on the physical distribution of the services on different processors

and/or network communication delays.

1.5 The Monitoring Approach of this Thesis

This thesis presents a framework that supports the monitoring of requirements for service-

based systems, which are implemented in BPEL [Bpe03], that is an executable language for

specifying service composition workflows, and provides the foundation for addressing the

critical issues in runtime monitoring of service based systems identified in Section 1.4. In this

framework, requirements are specified in terms of behavioural properties of a service-based

system, which are automatically extracted from the specification of the composition and the

interactions of the individual services in it. The developed framework also supports system

providers to specify (i) functional properties that express functional requirements for the

individual services of a service based system or groups of such services, (ii) assumptions

about the environment of the system, the actions of the agents in it, or the individual services

of the system and (iii) quality of service (QoS) properties, which express the quality

requirements of individual services or group of services. These functional properties,

assumptions and QoS properties are specified in terms of event occurrences and/or conditions

about the values of state variables that have been identified from the compositional

specification of the system during the extraction of the behavioural properties. At run-time,

the proposed framework obtains information about the state of these variables and event

occurrences by catching events which are exchanged between the individual services and the

co-ordinating component of the system without requiring the modification of the code that

implements these services. This framework aims to monitor both functional and non-

functional requirements that should be satisfied by service-based software systems and

20

incorporates hybrid reasoning mechanisms, namely deductive and abductive reasoning for

identifying violations of these requirements.

1.6 Contributions

The main contributions of the approach that is presented in this thesis and the framework that

implements it are:

• Implementation of a non intrusive monitoring framework

In this research work we develop a monitoring framework that is suitable for runtime

monitoring of service based system. Unlike the other approaches that we are aware of, our

framework applies non intrusive approach to monitoring. The term “non intrusive

monitoring” here signifies a form of monitoring that is carried out by a computational entity

that is external to the system that is being monitored, is carried out in parallel with the

operation of this system and does not intervene with this operation in any form. The

framework that we present in this thesis is non intrusive as it is based on events which are

captured during the operation of a service based system without the need to instrument its

composition process or the code of the services that it deploys and is performed by a

reasoning engine that is separate from the system that is being monitored and operates in

parallel with it. This approach is motivated from the fact that in case of service based system

the service provider may not have ownership of the code of the individual services that it

deploys, therefore monitor would not have any control over the individual services (see

Section 1.4).

• The detection of types of property deviations which are not detected by other

monitoring approaches and tools

It is discussed in Section 1.4 that because of loose coupling and distributed nature, in service

based system the failure of specific services to function as expected may lead other system

components to make incorrect assumptions about the state of the system. For example the

absence of a message confirming the update of some data in one of the system's services does

not necessarily mean that these data have not been updated, and the evidence of the absent

message can be inferred by logical reasoning. To cover these possibilities our framework

makes a broad distinction to the type of the events which are used in order to detect property

deviations. These events may be of two types: (1) recorded events which have been captured

during the operation of the system at runtime or (2) derived events which are generated from

21

recorded events by logical reasoning (e.g. deduction/abduction). The use of events of these

two types also affects the characterisation of property deviations. More specifically, if

monitoring is based only on recorded events, it can detect only deviations which are

evidenced by violations of specific properties by these recorded events. If, on the other hand,

monitoring is based on both recorded and derived events, then the framework can also detect

(a) inconsistencies which arise from the expected system behaviour, (b) cases of unjustified

system behaviour, (c) possible inconsistencies evidenced from the expected system

behaviour, and (d) possible cases of unjustified system behaviour. We also devise the

appropriate reasoning mechanisms to detect the occurrence of these new types of property

deviations during the operation of service based systems. To the best of our knowledge while

other approaches support the detection of property deviations based on recorded events only,

they do not support the detection of deviations based on derived events.

• Property specification language

We define a language to specify requirements of service based systems. This language has its

formal foundation on Event Calculus [Sha99] and it enables the specification of monitorable

properties using full first-order logic formalism as well as conditions about time. However

our language allows the use of internal and external operations in formulas that can perform

complex computations. This makes our language expressive enough for specifying a wide

spectrum of monitorable properties including behavioural properties, functional properties

and QoS properties. Also, our language defines special types of events that can be

encountered in service based systems (e.g. callbacks). These types of events are defined as

part of standard event calculus. Furthermore, we define a schema to express a formula

specified in our language in XML that makes our language applicable to other standards as a

means of specifying requirements.

• Implementation of a prototype supporting the monitoring of service based systems

implemented in BPEL

We have developed a prototype of the monitoring framework. This prototype provides

supports for automatic monitoring of service based systems implemented in BPEL, i.e. (i) it

automatically extracts the behavioural properties to be monitored from the service

composition specification (ii) it allows users to define additional functional properties, QoS

properties and assumptions about the service based system and (iii) it monitors the target

service based system automatically following the behavioural properties, functional

properties, QoS properties and assumptions. The prototype can be used as a stand alone

22

monitoring tool as well as it can be deployed as a web service. In either case the tool is easy

to set up and provides maximum user flexibility.

1.7 Outline of the Thesis

This thesis is organised into seven chapters including this chapter.

Chapter 2 provides a literature review. In this chapter, we present the main technological

platforms and standards which are used by service based systems. We also investigate

previous work in the area of runtime requirements monitoring and identify open research

issues/limitations of the existing approaches when it comes to the monitoring of service based

systems. These limitations are identified as they constitute the factors that have motivated the

development of the approach that is presented in this thesis and the framework that we have

developed to implement it.

Chapter 3 introduces and explains the policy specification and property specification language

used in the monitoring framework. It also presents the motivation behind the use of event

calculus to represent properties in our framework.

Chapter 4 defines the types of property deviations that may occur during the execution of

service based systems and can be detected by our framework. Subsequently it specifies the

monitoring scheme that is used to detect these types of property deviations. The description of

the monitoring scheme includes the algorithms used for the detection of property deviations,

and a formal analysis of the complexity, soundness and completeness of these algorithms.

Chapter 5 discusses the implementation of a prototype for the proposed monitoring

framework. It also demonstrates the use of the prototype using monitoring scenarios.

Chapter 6 presents the result of an experimental evaluation of the monitoring framework

which has been based on two separate case studies. The first of these case studies is based on

monitoring a simulated BPEL process. The second case study is based on monitoring a real

BPEL process that deploys external web services provided by different providers over the

Internet.

Finally, Chapter 7 concludes with the summary of the monitoring framework that is described

in this thesis, the contributions of the research underpinning it to the state of the art in this

area, and recommendations for further work.

23

Chapter Two

Runtime Verification of Service Based Software

Systems - State of the Art

2.1 Overview

The purpose of this chapter is to give the readers necessary technical background on web

services and to help understand the current trend of research in monitoring requirements of

legacy software and service based systems. Section 2.2 covers the technical background on

web services. First we succinctly describe the web service architecture, and then we briefly

present the standards that enable the web service architecture. We also present comparative

discussion of the standards for composing web service based systems and the standards for

specifying service level agreements of web service based systems.

Section 2.3 presents critical analysis of current research in the requirements monitoring of

legacy software and service based systems. For the ease of discussion we introduce a general

requirements monitoring framework that has been used to compare different approaches

found in the literature. Section 2.4 identifies open research issues/limitations of the existing

approaches to handle the monitoring of service based systems that motivates this research. In

Section 2.5 we introduce our approach to address the issues raised in Section 2.4.

2.2 Web Service Technologies and Standards

In this section we focus on the Web Service architecture and briefly present the Web-Service

enabling technologies and standards including Simple Object Access Protocol (SOAP)

[Soa03], Web Service Description Language (WSDL) [Wsd04] and Universal Description

Discovery and Integration (UDDI) [Udd03]. We also present a comparative summary of Web

service composition languages.

24

2.2.1 Basic Concepts and Definitions

In this section we present the definitions of the main concepts that are used to describe service

centric system through out this thesis. These concepts are taken from W3C Web Services

Glossary [Wsg04].

Service: A service is an abstract resource that represents a capability of performing tasks that

form a coherent functionality from the point of view of service provider and service requester.

To be used, a service must be realized by a concrete provider agent.

Web service: A web service is a software system designed to support interoperable machine-

to-machine interaction over a network. It has an interface described in a machine-processable

format (specifically WSDL). Other systems interact with the Web service in a manner

prescribed by its description using SOAP-messages, typically conveyed using HTTP with an

XML serialization in conjunction with other web-related standards.

Service Provider: The person or organization that is providing a web service.

Service Requestor: The person or organization that wishes to use a service provider's web

service.

Provider Agent: A software agent that is capable of and empowered to perform the actions

associated with a service on behalf of its owner i.e. service provider.

Requester Agent: A software agent that wishes to interact with a provider agent in order to

request that a task be performed on behalf of its owner i.e. service requestor.

Discovery Agency: Discovery agency is a set of service descriptions where service providers

publish their service descriptions. Discovery agency enables service requestors (or service

providers) to search the set of service description to find a specific service.

Choreography: Web Services Choreography concerns the interactions of services with their

users. Any user of a Web service, automated or otherwise, is a client of that service. These

users may, in turn, be other Web Services, applications or human beings. Transactions among

Web Services and their clients must clearly be well defined at the time of their execution, and

may consist of multiple separate interactions whose composition constitutes a complete

25

transaction. This composition, its message protocols, interfaces, sequencing, and associated

logic, is considered to be a choreography.

Orchestration: An orchestration defines the sequence and conditions in which one Web

service invokes other Web services in order to realize some useful function, i.e., an

orchestration is the pattern of interactions that a Web service agent must follow in order to

achieve its goal.

2.2.2 Web-Service Architecture

The W3C consortium defines the basic web service architecture as a "stack" of relationships

among various technologies and components [Wsa02, Wsa04], The web service architecture

defines an interaction between software agents capable of performing three roles: (a) the

service provider, (b) the service requestor, and (c) service discovery agency. The interactions

involve service publishing, finding and binding operations. Figure 2.1 illustrates the roles in

the web service architectures [Wsa02]

Figure 2.1: Basic web-service architecture

In a typical scenario (Figure 2.1) a service provider hosts a network accessible software

module, defines a service description for the software module and publishes it to a requestor

or a service discovery agency. The service requestor uses a ‘find’ operation to retrieve the

service description locally or from the discovery agency and uses it to bind with the service

provider and interact with the web-service implementation. In a web-service architecture, a

software agent can perform one or more of the above roles, such as requestor or provider

only, both requestor and provider, or as requestor, provider and discovery agency.

26

The W3C consortium has also defined an extended web service architecture [Wsa02, Wsa04],

This architecture extends the technologies and components defined in the basic web-service

architecture by incorporating some additional features and functionality. Figure 2.2 shows a

simplified view of the stack of layers contained in the extended web-service architecture

described in [Wsa02, Ws04]. In this simplified view we present only the layers pertinent to

this research. Figure 2.3 shows a mapping between the basic web service architecture and the

extended web service architecture. The layers of the extended web service architecture shown

in Figure 2.2 are described in the following.

Discovery
Agency

Discovery
Publication

Description

Service Level Agreements
Composition
Presentation

Policy
Implementation Description

Interface Description

Wire
Extensions
Packaging
Transport

Figure 2.2: Extended web-service architecture (Simplified view)

Discovery Discovery
Agency Publication

Wire
Extensions
Packaging
Transport

Figure 2.3: Mapping between basic web service architecture and extended web service architecture

27

2.2.2.1 Wire Layer

This is the physical layer of the architecture and deals with the actual physical exchange of

information between any of the roles in the basic architecture. This layer can be divided into

three sub-layers, namely the transport, packaging and extension layers.

The transport layer provides the protocol that will be used for the network communication.

The web-services that are publicly available on the Internet use commonly deployed network

protocols such as HTTP [Htt99|. HTTP is a set of rules that define how messages (e.g. text,

images, sound) are formatted and transmitted over the Internet. Other Internet protocols may

be supported including SMTP [Smt82] and FTP [Ftp80J. SMTP is a set of rules that is used in

sending e-mails between mail servers over the Internet and FTP is a set of rules for

exchanging files over the Internet. Intranet domains may use platform or vendor specific

protocols such as CORBA [Cor04].

The packaging layer represents the technologies that may be used to package the information

being exchanged between services. SOAP is a simple and lightweight XML-based protocol

for creating structured data packages that can be exchanged between network applications and

it has been widely adopted as the basis for a web-service message packaging protocol. A brief

introduction of SOAP is presented in Section 2.2.3.1.

The extensions layer offers a way to attach additional information to web-service messages

such as message routing information, message transaction context.

2.2.2.2 Description Layer

The description layer includes a collection of description documents, which are typically

expressed in XML. The service provider provides all the specifications for invoking the web-

service through the service description document. In the simplified web-service architecture

shown in Figure 2.2, the description layer incorporates only six sub-layers of different types

of web-service description documents, namely: (a) interface descriptions, (b) implementation

descriptions, (c) policy descriptions, (d) presentation descriptions, (e) composition description

and (f) service level agreements description. The interface and implementation descriptions

are the minimum parts of a web-service description which are necessary to enable remote

invocations of a web-service. The service interface description is similar to the definition of

an abstract interface in programming languages e.g. Java [Jav94] and may have multiple

28

concrete implementations. The service implementation description contains information about

the concrete implementation of a particular service interface, including the location of the

implementation. The Web Service Description Language (WSDL) is used for the construction

of a base level description of a web-service interface. WSDL is an XML schema for

specifying such descriptions which is further discussed in Section 2.2.3.2. A policy

description contains a set of assertions or rules that applies constraints on the behaviour of a

service. For example policy description can be used to define security policies, quality of

service attributes and management requirements. A presentation description defines different

ways of rendering a web-service on a variety of computational devices (e.g„ desktops,

phones, PDAs). The composition description defines the programmatic relationships between

web services where more than one web services are involved to complete a multi-step

business interaction. A service level agreement description contains the contractual

agreements regarding the guarantees of a web service between service provider and service

consumer.

2.2.2.3 Discovery Agency

The discovery agency layer in Figure 2.2 denotes a searchable repository of service

descriptions. This repository enables service providers to publish their service descriptions

and service requestors to find services and obtain binding information (i.e., information for

calling the service). The simplest form of discovery is static discovery where the requestor

caches the service description at design time by retrieving the description from a local file or

local service description repository and the cached description is used at runtime. On the other

hand, in dynamic discovery, the requestor discovers the service at design time or runtime

accessing a local WSDL registry or a public/private WSDL registry such as Universal

Description Discovery and Integration (UDDI). In case of dynamic discovery the service

registry should support a query mechanism that enables the requester to find a service by

different parameters including type of interface (based on a WSDL template), properties (such

as QoS parameters), and the taxonomy of the service. UDDI is a standard application

programming interface that is used to provide access to service registries (see Section 2.2.3.3

for more details).

29

2.2.3 Basic Web-service Standards

2.2.3.1 Simple Object Access Protocol (SOAP)

SOAP is an XML-based protocol that governs the encoding, exchanging and processing of

messages in inter application communication. SOAP is intended for exchanging structured

data between network applications in a decentralised, distributed environment, independently

of the underlying platform. SOAP can be used in combination with a variety of other network

protocols such as HTTP, SMTP or FTP.

2.2.3.1.1 SOAP Message Construct

A SOAP message is an XML document that consists of three basic parts: an envelope, a

header and a body, as shown in Figure 2.4. These basic building blocks of a SOAP message

serve the following purposes:

SOAP Message
SOAP Envelope

SOAP Header

SOAP Body

Figure 2.4: SOAP message structure

• The Envelope element identifies the XML document as a SOAP message. It primarily

defines the namespaces which are used to define the elements and attributes in the rest of

the message. This element is necessary in a SOAP message.

• The Header element contains auxiliary application specific information, (e.g. user

authentication information), that needs to be exchanged between the participating

applications. A SOAP message may contain zero or one headers. If present, the header

should be the first element inside the Envelope.

• The Body element contains the XML information that is exchanged by the message. This

part of a SOAP message may have an additional sub element, called Fault, providing

information about errors that may occur while processing the message.

A SOAP message skeleton is shown in Figure 2.5.

30

<?xml version="1.0"?>
<Env:Envelope
xmlns:Env="http://www.w3.org/2002/12/soap-envelope"
Env:encodingStyle="http://www.w3.org/2002/12/soap-encoding">

<soap:Header>

</soap:Header>
<soap:Body>

<soap:Fault>

</soap:Fault>
</soap:Body>

</Env:Enve1ope >_______________________________________

Figure 2.5: A SOAP message skeleton

2.2.3.2 Web Service Description Language (WSDL)

The Web Services Description Language (WSDL) is an XML based language for describing

web services. WSDL specifies the location of the service and the operations (methods) that it

exposes. The operations and messages are described abstractly and then bound to a concrete

network protocol and message format to define a location.

WSDL describes web services starting with the messages that can be exchanged between the

service provider and the requestor of the service. A message consists of a collection of typed

data items. An operation is a combination of messages to define the message exchange pattern

supported by the web service. A collection of operations is known as PortType. A service is

defined as a collection of Ports, each of which is an implementation of a PortType. A Port

includes all the concrete details needed to interact with the service, i.e. binding and location.

Service
Implementation

Definition

Service

Port

Binding
Service PortType

Interface Message
Definition Type

Figure 2.6: WSDL document elements [Wsa02]

In the extended web service architecture shown in Figure 2.2, the service implementation

definition together with service interface definition forms a complete service definition.

Figure 2.6 shows the WSDL elements that become part of the service interface and service

implementation description documents.

31

http://www.w3.org/2002/12/soap-envelope
http://www.w3.org/2002/12/soap-encoding

WSDL definitions are represented in XML by one or more WSDL information sets. An

information set is a definition element. A WSDL information set contains representations for

a collection of WSDL components.

<wsdl: definitions name="nmtoken"? targetNamespace="uri">
<import namespace="uri" location="uri"/> *
<wsdl: documentation /> ?
<wsdl:types> ?

<wsdl: documentation /> ?
<xsd:schema /> *

</wsdl:types>
<wsdl¡message name="ncname"> *

<wsdl: documentation /> ?
<part name="ncname" element="qname"7

</wsdl:message>
<wsdl:portType name="ncname"> *

<wsdl: documentation /> ?
<wsdl: operation name="ncname"> *

<wsdl: documentation /> ?
<wsdl: input message="qname"> ?

<wsdl: documentation />
</wsdl:input>
<wsdl: output message="qname"> ?

type="qname"?/>

/><wsdl: documentation
</wsdl:output>
<wsdl: fault name="ncname" message:

<wsdl: documentation /> ?
</wsdl:fault>

</wsdl:operation>
</wsdl:portType>
<wsdl:serviceType name="ncname"> *

<wsdl:portType name="qname"/> +
</wsdl:serviceType>
<wsdl: binding name="ncname" type="qname">

<wsdl: documentation /> ?
<-- binding details --> *
<wsdl: operation name="ncname"> *

<wsdl: documentation /> ?
<-- binding details --> *
<wsdl:input> ?

<wsdl: documentation /> ?
<-- binding details -->

</wsdl:input>
<wsdl:output> ?

<wsdl: documentation /> ?
<-- binding details --> *

</wsdl:output>
<wsdl: fault name="ncname"> *

<wsdl: documentation /> ?
<-- binding details --> *

</wsdl:fault>
</wsdl:operation>

</wsdl:binding>
<wsdl: service name="ncname"

<wsdl: documentation ...
<wsdl:port name="ncname

<wsdl: documentation
<-- address details

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

: "qname">

serviceType="qname">
/> ?
binding=11 qname "> *
.... /> ?

Figure 2.7: Overview of WSDL schema

32

Figure 2.7 shows an overview of the WSDL schema defined by W3C consortium. Here we

present only the part of WSDL schema that is pertinent to this research and we explain the

selected elements of the WSDL schema with a simple example. In this figure

• ? identifies that the element or attribute appears 0 or 1 time at this position.

• * identifies that the element or attribute appears 0 or more times at this position.

• nmtoken is a placeholder for any name value corresponding to the NMTOKEN data

type from XML schema specification defined by W3C. NMTOKEN stands for name

token, which is any string of text made of legal XML name characters where legal

XML name characters include letters, digits, ideographs and the underscore, hyphen,

colon, and period.

• qname is a placeholder for any name value corresponding to the QName data type

from XML schema specification defined by W3C.

Figure 2.8 shows, a sample web service implemented in Java. This service has only one

method, called add that takes two doubles as input and returns their sum as output.

public class AddTestt
public double addfdouble opl, double op2){

return opl + op2;
}

_}__

Figure 2.8: Example of a web service written in Java

Figure 2.9 shows the interface and implementation description for the service presented in

Figure 2.8 written in WSDL.

The document starts with XML header, followed by a < w sd l: d e f i n i t i o n s > element that

contains common namespace declarations and encloses the remaining WSDL document

elements. The <w sdl :m essage> elements define the data exchanged during

communication with the service. The message addRequest represents an incoming request

and consists of two parts of type x s d :d o u b le defined by the <w sdl :p a r t> element of

the message. These two parts correspond to the input parameters of the addition request (i.e.,

opl and op2). The message addResponse represents the outgoing response and has one part of

type x sd : d o u b le (i.e., addRetum). The <w sdl :p o rtT y p e> element contains all

operations provided by the service AddTest. These operations are defined by the sub-elements

< w sd l: o p e ra t io n > of the < w sd l: p o rtT y p e> element. As shown in Figure 2.8,

AddTest has only one operation-the operation add. Each < w sd l: o p e ra t io n > element is

33

defined using the incoming and outgoing messages defined in the WSDL definition. The

operation add, for example, is defined using the messages addRequest and addResponse.

<?xml versions"1.0 " encoding="UTF-8"?>
<wsdl: definitions targetNamespace="http ://tempuri.org/services/calc"

xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:impl="http ://tempuri.org/services/calc"
xmlns:soapenc="http ://schemas.xmlsoap.org/soap/encoding/
xmlns:wsdl="http ://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<wsdl¡message name="addRequest">
<wsdl:part name="opl" type="xsd: double"/>
<wsdl: part name="op2" type="xsd: double"/>

</wsdl:message>

<wsdl¡message name="addResponse">
<wsdl:part name="addReturn" type="xsd: double"/>

</wsdl:message>

<wsdl:portType name="AddTest">
<wsdl: operation name="add" parameterOrder="opl op2">

<wsdl¡input message="impl:addRequest" name="addRequest"/>
<wsdl : output message= " impl .• addResponse" name= "addResponse" />

</wsdl¡operation>
</wsdl:portType>

<wsdl¡binding name="AddTestServiceSoapBinding" type="impl¡AddTest">
<wsdlsoap: binding style="rpc"

transports"http://schemas.xmlsoap.org/soap/http"/>
<wsdl: operation name="add">

<wsdlsoap: operation soapAction="http://tempuri.org/add"/>
<wsdl: input name=11 addRequest " >

<wsdlsoap¡body
encodingstyle= "http ://schemas.xmlsoap.org/soap/encoding/”
namespace=“http ://tempuri.org/services/calc"
use="encoded"/>

</wsdl:input>
<wsdl : output name=11 addResponse " >

<wsdlsoap¡body
encodingstyle="http¡//schemas.xmlsoap.org/soap/encoding/"
namespaces"http ://tempuri.org/services/calc"
use="encoded"/>

</wsdl:output>
</wsdl:operation>

</wsdl:binding>

<wsdl: service names"AddTestService">
<wsdl: port bindings »impl¡AddTestServiceSoapBinding"

name="AddTestService">
<wsdlsoap: address locations

"http://138.40.91.72:8080/wstk/services/AddTestService"/>
</wsdl:port>

</wsdl:service>

</wsdl:definitions>

Figure 2.9: Sample web service description in WSDL

The attribute type of the element <wsdl :binding> points to the port of the binding, in

this case AddTest. The attribute name of the element <wsdl :binding> indicates the name

34

http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/wsdl/soap/
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/soap/http%22/
http://tempuri.org/add%22/
http://138.40.91.72:8080/wstk/services/AddTestService%22/

of the binding. The element < w sd lsoap :b in d in g > is used to define the style and

transport used. The style attribute specifies the message format to be used, which could be rpc

or document. And the transport attribute specifies the network transport protocol to be used.

In the above example the values of style and transport attributes are rpc and SOAP over

HTTP respectively. For each operation (only one in this case) in the port there is a

< w sd lso a p : o p e ra t io n > element.

The attribute soapAction of a < w sd lso a p : o p e ra t io n > element holds an URI which

uniquely identifies the service among the deployed services on a particular SOAP server. The

element < w sd lso a p : o p e ra t io n > contains the elements < w sd l: in p u t> and

<w sdl :o u tp u t> , which correspond to the same elements of the PortType element. These

elements specify how the input and output are encoded respectively (a SOAP encoding is

used in this case). The element < w sd l: s e r v ic e > represents the web service as collection

of port elements (only one in this case). Each < p o rt> element associates a < b in d in g > to a

location i.e. the address information (a URI) to locate this service. This is a one-to-one

association. In this case, the binding AddTestServiceSoapBinding has been associated to the

location http://13S.40.91.72:8080/wstk/services/AddTestService

2.2.3.3 Universal Description, Discovery and Integration (UDDI)

Universal Description, Discovery and Integration (UDDI) has been defined [UddOO] as a

platform independent framework that enables organisations to describe their business and web

services and discover services from other organisations. The UDDI framework uses two

major information structures:

I. A set of specifications for distributed web-based information registries of web

services. UDDI provides a data structure that can be used to specify a business and

the service provided by it and an API specification to access the stored information.

II. A set of implementations of specifications (known as UDDI registry), accessible

through network, that allows service providers to register information about the Web

Services they offer so that other service providers or service requesters can find them.

UDDI registries can be [Udd02]:

□ Public: Other than the administrative functions, access to the registry data is open

and public. Data may be shared with or transferred to other registries. Currently, there

are two UDDI registries which have been provided for public access; one hosted by

35

http://13S.40.91.72:8080/wstk/services/AddTestService

IBM [Ud_IBM] and another hosted by Microsoft [Ud_MIC]. These repositories

synchronise their contents regularly so that information entered into one registry is

replicated to the other one so as to be available from it.

□ Private: These are internal registries, set up behind firewalls that are isolated from

the public network. Access to both the administrative features and registry data is

secured and data can not be shared with other registries [Udd02],

□ Shared/Semi-Private: These are registries deployed within a controlled

environment. This environment provides controlled access to the outside world and

allows sharing information with trusted outside partners only.

2.2.4 Orchestration and Choreography of Web Services

While in some cases web services may be deployed in an isolated form, in other it is difficult

to find a specific single service that can fulfil a complex business requirement. In the latter

cases, it may still, however, be possible to find combinations of isolated web services that can

satisfy the requirement. In such cases, web service architectures provide a way to fulfil a

complex business requirement by combining existing web services. Recent research in

combining isolated web services has flourished in two closely related paradigms namely, web

service orchestration and web service choreography.

Figure 2.10: Web service orchestration

Orchestration refers to the definition of new service by combining existing web services. In

other word orchestration defines an executable process that may interact with external web

services at the message level including the logic and execution order of the interactions.

Figure 2.10 shows the structure of web service orchestration.

36

Choreography is a description of the sequence of messages that is exchanged between

multiple web services, i.e. it describes the logic under which a particular web service

operation can be invoked where multiple web services are involved. Figure 2.11 shows the

structure of web service choreography.

Figure 2.11: Web service choreography

Choreography differs from orchestration in that orchestration specifies interactions between

services controlled by a single service, whereas choreography describes the observable

interactions between services and their users not truly controlled by any single service.

Recently, several XML-based languages have emerged to express the logic of web service

orchestration, including BPEL4WS [Bpe03], OWL-S [Owl04a] and web service

choreography including WSCI [Wsc02], WS-CDL [Wsc05]. In the rest of this section we

present a comparative summary of these web service orchestration and choreography

languages.

2.2.4.1 Web Service Orchestration Languages

2.2.4.1.1 Business Process Execution Language for Web Services (BPEL4WS)

Two of the earliest languages developed to provide standards for web service composition

were the Web Service Flow Language (WSFL) [WsfOl] that was developed by IBM and

XLANG [XlaOl] that was developed by Microsoft. In 2002, WSFL and XLANG were

merged into a common language, called Business Process Execution Language for Web

Services (BPEL4WS) [Bpe03]. BPEL (in the rest of this thesis BPEL4WS is referred to as

37

BPEL) integrated the concepts of WSFL and XLANG into a unified standard to support the

modelling of executable and abstract processes that compose web services.

An abstract process in BPEL specifies the public message exchanges between web services

but does not convey the internal details of the process flow. An abstract process is not

intended to be executed. An executable process models the behaviour of the participant web

services in a specific business interaction. In a typical scenario a BPEL executable process

receives messages with processing requests from its participant services, invokes operations

to perform specific computations in the same or other services and responds (with messages)

back to the requestors.

BPEL provides a set of activities to model business processes. These activities are divided

into two types, namely basic activities and structured activities.

Table 2.1: Summary of BPEL activities
Basic activity Description

receive This activity enables BPEL process to receive messages from its partner
services.

invoke This activity enables BPEL process to invoke an operation on a partner.
reply This activity enables BPEL process to send a message to its partner.
assign This activity is used to copy data from one variable to another variable in a

BPEL4WS process
throw This activity enables a BPEL process to signal internal faults.
wait This activity allows a BPEL process to wait for a certain period of time

empty This activity is used for no operation purpose in a process, for example to
catch and suppress an internal fault.

Structured activity Description
sequence This activity specifies an ordered list of other activities that must be

performed sequentially in the exact order of their listing
flow This activity specifies two or more groups of other activities that should be

executed concurrently. A flow activity completes when all of the groups of
activities in it have completed. In a concurrent execution, it might be
necessary to specify synchronisation dependencies between activities. Inside
a flow, such dependencies are specified using links. Each link defines a target
activity which cannot start before the completion of a source activity which is
also defined by the link

switch This activity specifies an ordered list of one or more conditional branches of
groups of other activities which may be executed subject to the satisfiability
of conditions associated with each branch

pick This activity makes a composition process to wait for different events and
then perform different activities associated with each of these events as soon
as it occurs. A pick may also have a timer that can make it execute a different
activity if none of the expected events happens within the time period
specified by the timer

while This activity is used to specify iterative occurrence of one or more activities
as long some condition holds true

38

Basic activities support primitive functions such as communicating with web services (e.g.,

activities for invoking an operation in a web service or replying to a web service) and

managing data (e.g. assignment of variable values). Structured activities provide control and

data flow structures that enable the composition of basic activities into a business process.

The latter activities support the specification of sequential and parallel execution of services,

iterative execution of services, and dynamic branching. Table 2.1 presents a summary of the

basic and structured activities offered by BPEL.

2.2.4.1.2 OWL-S

OWL-S [Owl04a] is an ontology for semantic markup of web services. The aim of the

semantic web [BerOl] is to bring structure to the meaningful content of web resources which

is easily processable by computers and this will make the web resources accessible by content

rather than just by keywords. OWL-S is OWL (Ontology Web Language) [Owl04b] based

Web Service ontology, which provides a core set of markup language constructs for

describing the properties and capabilities of web services in an unambiguous computer

interpretable form.

OWL-S intends to facilitate the automation of web service tasks including automated

discovery, execution, interoperation, composition and execution monitoring. OWL-S models

services using the ontology consisting of three parts:

(i) . A service profile that describes the properties of a service, which are necessary for

automatic discovery. These properties include the name, provider and a functional

description of the service. The latter description specifies the input, output,

preconditions and effects of the service. For example, in case of a ticket booking

service input is the travelling destination, date and credit card number, output is the

description of the booked ticket, precondition is 'credit card is valid' and the effect of

the execution of the service is 'credit card has been charged'.

(ii) A service model that describes how to interact with a service considering it as a

process. In OWL-S, a process can be an atomic process or a composite process. An

atomic process is one that is directly invocable with appropriate messages and

executed in a single step and returns a response. An atomic process is expressed by

describing its inputs, outputs, preconditions and effects. Composite processes are

composed of other composite or atomic processes. OWL-S provides a variety of flow

control constructs, including sequential and parallel processing and conditional

39

iterations, to define composite processes. Table 2.2 presents a summary of OWL-S

control constructs.

Table 2.2: Summary of OWL-S control constructs
Control constructs Description

Sequence Sequence specifies a list of processes to be executed in the given order.
Split Split specifies a group of processes to be executed concurrently.

Unordered Unordered defines a group of processes that must be executed, but not in any
specific order

Choice Choice allows a process to be executed from a group of processes.
If-then-else if-then-else allows one of two processes to be executed based on the truth

value of some condition.
Iterate iterate allows a group of processes to be executed repeatedly.

Repeat-while/
Repeat-until

Both of these allow a group of processes to be executed repeatedly based on
the truth value of some condition.

(iii) A service grounding that gives information on how to access a service. OWL-S

extends WSDL to connect the abstract representations of service profile and service

model to the concrete level of specification. For example a OWL-S atomic process

corresponds to a WSDL operation, inputs/outputs of a OWL-S atomic process

correspond to WSDL message and OWL-S relies on WSDL binding constructs to

specify these.

2.2.4.2 Web Service Choreography Languages

2.2.4.2.1 Web Service Choreography Interface (WSCI)

Web Service Choreography Interface (WSCI) [Wsc02] is an interface definition language for

describing the overall collaboration between web services by specifying the flow of messages

exchanged among the involved web services. WSCI specifies the external observable

behaviour between web services within the context of the specific interactions rather than the

internal definition of service behaviour. Thus, WSCI does not support the definition of an

executable service coordination process as BPEL.

WSCI provides a rich collection of activities to model choreography of message exchanges

between web services. Activities can be atomic and complex. Atomic activities are used to

define basic operation execution request or response messages directed to external services.

Complex (or structured) activities are composed of atomic activities and enable the

specification of sequential or parallel processing, and condition iterations. In addition to

atomic and complex activities, WSCI provides a special type of activity, called process that

can be used to define a context of an execution. A context refers to a scope in which a set of

40

activities is executed. Therefore the process activity enables modelling a portion of the whole

interaction that is labelled with a name and it can be reused inside the WSCI document by

referencing its name.

Table 2.3 presents a brief summary of atomic and complex activities of WSCI

Table 2.3: Summary of WSCI activities
Atomic activity Description

Action This activity is used to specify exchange messages with other services, i.e.
receive a message or send a message and wait for a reply.

Call This activity is used to instantiate a process and wait for its completion.
Spawn This activity is used to instantiate a process in a parallel thread of control.
Join This activity waits for a process to complete that has been instantiated using

<spawn>
Fault This activity is used to signal a fault in the context it is in.
Delay This activity is used to express a time interval, i.e. it introduces a pause in the

process.
Empty This activity is used for no operation purpose. This activity is models the

situation where an activity must appear but that activity doesn't show any
externally observable behaviour, e.g. internal operation.

Complex activity Description
Foreach This activity specifies the iterative execution of list of other activities.

until/while This activity specifies one or more activities that must be executed repeatedly
based on the truth value of some condition.

All This activity includes a set of two or more other activities that should be
executed in non-sequential order, i.e. the activities could be executed in any
order one by one or possibly in parallel.

Sequence This activity specifies an ordered list of one or more activities that must be
performed in sequential order.

Choice This activity contains two or more activities and selects one of them based on
some event.

Switch This activity contains a group of activities and selects one of them for
execution based on one or more conditions.

2.2A2.2 Web Services Choreography Description Language (WS-CDL)

Web Services Choreography Definition Language (WS-CDL) [Wsc05] is an XML based

language to describe global or unbiased view of the interactions between two or more services

participating in a collaboration to accomplish a common goal. At the time of writing this

thesis W3C has released candidate recommendation of WS-CDL [Wsc05] and it has not

reached the status of a standard.

In WS-CDL document the choreography of message exchanges between web services is

described using three types of activities. These types are, (i) basic activities (ii) ordering

structures and (Hi) WorkUnits. Basic activities represent the primitive action to be performed

in a choreography, e.g. the exchange of information between participating web services, or

manipulation of variable data. Ordering structures define the ordering rules of actions to be

41

performed in a choreography. These structures enclose basic activities or other ordering

structures that should be performed in specific order determined by the semantic of the

ordering structure. WorkUnits are used to describe conditional and repeated execution of an

activity. A WorkUnit encloses an activity and may be associated with a guard condition

and/or a repetition condition. The enclosed activity is executed one or more times based on

the evaluation of the guard and/or the repetition condition.

Table 2.4 presents a brief summary of basic activities and ordering structures of WS-CDL

Table 2.4: Summary of WS-CDL basic activities and ordering structures
Basic activity Description

Interaction This activity is used to specify exchange of information between participants.
Perform This activity is used to invoke another choreography to be performed within

the context of the executing choreography.
Assign This activity is used to copy data from one variable to another variable.

SilentAction This activity specifies non-observable behaviour of a participant, i.e. internal
operation of a participant.

noAction This activity specifies a point in the choreography where a participant does
not perform any action.

Ordering Structure Description
Sequence This ordering structure contains an ordered list of other activities or ordering

structures that must be performed sequentially in the exact order of their
listing.

Parallel This ordering structure contains one or more activities or ordering structures
that are performed in any order or concurrently.

Choice This ordering structure specifies that only one of two or more activities may
be performed based on a Boolean condition or on the occurrence of one
among a set of competing events.

2.2.4.3 Comparisons between Service Orchestration and Choreography

Standards

In this section we review the characteristics of the web service orchestration and web service

choreography languages presented in the previous section and compare the languages in terms

of these characteristics. Recently several initiatives have been taken to identify the general

characteristics of web service orchestration and web service choreography languages

[Pel03a] [Pel03b] [Tal05] [Men04] [Mil04] [Yus04] [Cla05] [Sol03]. Here we compare BPEL,

OWL-S, WSCI and WS-CDL based on the most essential characteristics found in the

literature. These characteristics are described below

Modelling Constructs: A web service orchestration language or a web service choreography

language should provide rich collection of modelling constructs to support communication

with other web services and handle workflow semantics.

42

Recursive Composition: A web service orchestration language or a web service

choreography language should support recursive composition of work flows. The language

should allow to model complex workflow by combining basic and structured activities. In

addition it should allow further composition of the workflow with external workflow.

Correlation: A web service orchestration language or a web service choreography language

should have mechanism to support stateful workflow. A workflow could have multiple

instances at any time, communicating with the same or different services. The language

should have a mechanism to deliver messages to the correct instance of the workflow.

Exception Handling: A web service orchestration language or a web service choreography

language should have mechanism to generate, catch and handle errors during the execution of

a business process.

Non Functional Property Specification: A web service orchestration language or a web

service choreography language should support the specification of non functional

requirements (e.g. security, dependability or performance requirements) of the composed

system.

Semantic Description: A web service orchestration language or a web service choreography

language should provide semantic description of the composed process, which allows

dynamic service discovery and automated composition of web services.

Formal Semantics: A web service orchestration language or a web service choreography

language should be based on some formalism so that the correctness of a composed process

can be verified.

Tool Support Available: A web service orchestration language or a web service

choreography language should be supported and accepted by wide range of communities

including academia and industry.

Table 2.5 compares BPEL, OWL-S, WSCI and WS-CDL in terms of the characteristics

defined above. A textual description of the comparison follows the table.

43

Table 2.5: C o m p ariso n o f w eb serv ice o rch es tra tio n and w eb se rv ice ch o reo g rap h y lan g u ag es

Characteristics BPEL OWL-S WSCI WS-CDL
Modelling Constructs high support high

support
High

support
High

support
Recursive Composition support high

support
high

support
high support

Correlation high support No
support

high
support

support

Exception Handling high support No
support

High
support

High
support

Non Functional Property Specification No support Low
support

No
support

No support

Semantic Description No support support No
support

No support

Formal Semantic Indirect support support No
support

Indirect
support

Tool Support Availability High support support Low
support

No support

Modelling Constructs: Modelling constructs expose the expressiveness of a language, i.e.

how powerful and flexible is the language to model a workflow. All the four languages

BPEL, OWL-S, WSCI and WS-CDL provide ample modelling constructs to define a

workflow. All these languages provide basic constructs for primitive actions like

communicating external web services and structured constructs for flow control like

sequential or parallel execution of primitive actions. However OWL-S offers to express

preconditions and effects of a web service execution which makes it more expressive than the

other three languages.

Recursive Composition: In terms of recursive composition of workflows, OWL-S, WSCI

and WS-CDL are ahead of BPEL. In BPEL structured activities allow arbitrary nesting of

basic activities or other structured activities, and also BPEL workflow can be exposed as a

web service. But BPEL does not allow to use a part of a workflow from other parts of the

same workflow, which is allowed in OWL-S, WSCI and WS-CDL.

Correlation: BPEL and WSCI provide explicit constructs for message correlation to

synchronise messages received by the workflow from different services. WS-CDL does not

have explicit construct to support message correlation, but message synchronisation is

achieved using the identity element of a channel. Correlation is currently not supported by

OWL-S.

Exception Handling: Exception handling constructs are present in BPEL, WSCI and WS-

CDL to catch run time exception, but no such mechanism is offered by OWL-S.

44

Non Functional Property Specification: None of the languages, other than OWL-S, has any

support to specify non functional requirements of the composed system. Only OWL-S offers

the specification of very limited non functional properties, namely quality of service.

Semantic Description: OWL-S based on description logic provides semantic description of

the composite service which enables automation of service composition. BPEL, WSCI and

WS-CDL do not provide any semantic description of the composite process.

Formal Semantic: OWL-S is based on description logic language. Therefore OWL-S process

model can be expressed in axiomatic rules of first order logic or Petri Nets [Nar02]. Although

BPEL is based on XLANG and WSFL that are rooted in Pi-calculus and Petri Nets

respectively, BPEL itself does not have any formal semantics. Recently several efforts have

been taken to define formal semantics of BPEL process [Ouy05][Sta04][Far05]. Most of these

efforts translated BPEL process into Petri Nets. Similar effort is evident for WS-CDL

[Hon06]. WSCI does not have formal semantic support.

Tool Support Availability: As for tool support, BPEL has achieved the widest acceptance

both from industry and academia. Most major software vendors including IBM, Microsoft,

BEA expressed their support behind BPEL. At the time of writing this thesis OASIS is in the

process of standardizing the BPEL specification and they have released a public review draft

on August 23, 2006 [Wsb06]. Because of wide acceptance, a number of tools are now

available that support design and/or execution of BPEL process, including BPWS4J from

IBM [Bpw03], Oracle BPEL Process Manager from Oracle [Ora04], Biztalk Server from

Microsoft [Mic04], OWL-S mainly gained support from academic world [Yus04] and there

are few prototypes available that support design in OWL-S. But no tool available to execute

OWL-S process. Similarly very little tool support is available for WSCI. SunONE WSCI

Generator releases by Sun Microsystems supports WSCI [Sun03]. Currently no tool support is

available for WS-CDL.

2.2.5 Specification and Management of Service Level Agreements

With the maturing of web-service technologies and standards, the importance of being able to

specify and monitor agreements between providers and consumers of web-services setting the

objectives that the services should satisfy and the penalties that may arise when they fail to do

so is widely recognised in industry and academia

[Jin02][Men02][Dav02][Tia03][Tia04][Aie05]. As a result of this recognition, there have

45

been proposals for standardised ways of specifying such agreements, including WSLA

[Kel02, Lud03], WS-Agreement [And04] and WS-Policy [Sch04], In this section we present

an overview of these standards.

2.2.5.1 Web Service Level Agreement (WSLA)

The Web Service Level Agreement (WSLA) framework is an XML based language for

specifying service level agreements between a service provider and service consumer and the

obligations of the parties involved [Kel02, Lud03]. WSLA supports the specification of

service level agreements using:

(i) Resource Metrics are the basic parameters to be observed and are retrieved directly

from the resources (e.g. routers, servers, instrumented applications), usually

managed by the service provider. For example a resource metric could be a counter

that counts the number of invocations made to an operation in a service. To retrieve a

resource metric a measurement directive should be specified in WSLA document.

Measurement directive contains the command and context information needed to

access the resource metric.

(ii) Composite Metrics are computed by combining resource metrics, where a function

explains how to compute a composite metrics (e.g. average, sum), either from

resource metrics or composite metrics. For example if a resource metric counts the

number of invocations made to an operation in a service, a composite metric to

measure the average number of invocations made to that operation in a given period

can be defined based on this resource metric.

(iii) Sendee Level Agreement (SLA) Parameters enable a specific service consumer to

add information to the specification of a metric in order to enable its evaluation (e.g.

source of the metric, high/low value of the metric). For example, if a composite

metric counts the average number of invocation made to an operation in a service for

a given period, an SLA parameter can specify range (i.e. max value and min value)

of this composite metric for a specific consumer of the service

46

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:wsla="http://vww.ibm.com/wsla"
targetNamespace=“http://www.ibm.com/wsla" elementFormDefault="qualified">

<!-- Global WSLA structure -->
<xsd:complexType name=”WSLAType">

<xsd:sequence>
<xsd:element ref="wsla:Parties"/>
<xsd:element name="ServiceDefinition"

type=''wsla:ServiceDefinitionType" maxOccurs="unbounded"/>
<xsd:element name="Obligations" type="wsla:ObligationsType"/>

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>

</xsd:complexType>

<xsd:element name="SLA" type="wsla:WSLAType"/>

<!— Party Definitions -->

<xsd:complexType name="PartiesType">
<xsd:sequence>

<xsd:element name="ServiceProvider" type="wsla:SignatoryPartyType"/>
<xsd:element name="ServiceConsumer" type="wsla:SignatoryPartyType"/>
<xsd:element name="SupportingParty" type="wsla:SupportingPartyType"

minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>

<xsd:element name="Parties" type="wsla:PartiesType"/>

<!-- Service Definitions -->

<xsd:complexType name="ServiceDefinitionType">
<xsd:complexContent>

<xsd:extension base="wsla:ServiceObjectType">
<xsd:sequence>

<xsd:element ref="wsla:Operation" minOccurs=”0"
maxOccurs="unbounded"/>

<xsd:element ref="wsla:OperationGroup" minOccurs="0"
maxOccurs ="unbounded"/>

<xsd:element ref="wsla:WebHosting" minOccurs="0"
maxOccurs ="unbounded"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

<! — Guarantees -->

<xsd:complexType name="ObligationsType">
<xsd:complexContent>

<xsd: extension base=11 wsla: ObligationObj ectType" >
<xsd:sequence>

<xsd:element ref="wsla:ObligationGroup" minOccurs="0"
maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

</xsd:schema>

Figure 2.12: Overview of WSLA schema

47

http://www.w3.org/2001/XMLSchema
http://vww.ibm.com/wsla
http://www.ibm.com/wsla

(iv) Business Metrics provide the basis of customer's risk management strategy by adding

customer specific financial terms to SLA parameters. For example business metric

can associate penalties or bonuses to SLA parameters.

The general scenario assumed by the WSLA framework is that a service provider exposes a

set of resource metrics and composite metrics, and a service consumer defines SLA

parameters and business metrics. A WSLA is agreed and signed by both parties (known as

signatory parties [Kel02, Lud03]) through negotiation. Signatory parties may monitor the

WSLA or they may wish to employ one or more third parties (known as supporting

parties[Kel02, Lud03]) to monitor the WSLA.

A detail description of the WSLA schema is beyond the scope of this thesis. Figure 2.12

shows an overview of the WSLA schema. According to the WSLA XML schema, a WSLA

document is divided into three sections. The parties (e.g. signatory party, supporting party)

involved in an agreement are introduced in the Parties section. In the Ser\’ice Description

section the characteristic of the service and its observable parameters (e.g. resource metrics,

composite metrics and SLA parameters) are defined. In the Obligations section, various

guarantees and constraints imposed on the SLA parameters are described.

WSLA language and its associated architecture are generic enough to cover a wide range of

service level agreements. Also the extensible mechanism offered by WSLA allows domain

specific language specification. However WSLA does not provide the specification of

functional requirements for web services and WSLA may prove relatively complex to service

consumer as a WSLA document contains a level detail that is irrelevant to service consumer.

For example, what resources are used to make measurement, or what is the mechanism used

for measurement, these are in most cases concerns of the service provider.

A prototype of WSLA framework has been released by IBM that publicly available from IBM

web site [Kel03].

2.2.5.2 Web Services Agreement (WS-Agreement)

WS-Agreement [And04] is a specification that defines a protocol to establish agreements

between service providers and service consumers, an XML based language to specify

48

agreements and a runtime agreement monitoring interface to monitor the compliance of the

offering of a service with the agreement at runtime.

A WS-Agreement is an XML based language for describing functional and non-functional

properties of a service, e.g. guarantees over service level objectives as well as conditions,

which must exist for the service level objective to be fulfilled. It is also possible to express

business values associated with these objectives, rewards for the fulfilment of the objectives,

and penalties for failure to fulfil an objective.

Figure 2.13 shows an overview of the WS-Agreement schema.

According to WS-Agreement a web-service agreement specification has two sections, namely

the context and the terms section. The Context section contains various meta-data about an

agreement, e.g. the duration of the agreement and links to other agreements which are related

to this agreement. The Context section also contains the description of the parties involved in

the agreement. The Terms section contains the elements that describe the agreement itself.

This section is divided into two sub sections, namely the Service Description Terms and

Guarantee Terms. Service description terms constitute the basic building block of an

agreement and define the service functionalities to be delivered under the agreement. An

agreement may contain any number of service description terms. A guarantee term specifies

an assurance on service quality associated with the service described by the service

description terms. Both the service description terms and the guarantee terms can be

composed using the compositors of the WS-Policy specification [Sch04, Lud04] (see Section

2.2.5.3 for an overview).

In the life cycle of creating, agreeing, monitoring and applying an agreement, an agreement

initiator creates and sends an agreement template to the consumer. An agreement template is

defined by adding a new section, namely Creation Constraints, to the agreement structure

described above. This new section contains constraints on possible values of terms for

creating an agreement, i.e. constraints specify the valid ranges or distinct values that the terms

may take in the agreement. The consumer fills in the template and sends it back to the

initiator as an offer. The initiator notifies the consumer of the acceptance or rejection of the

agreement depending on the availability of resources, the service cost etc. The agreement is

monitored when at least one service involved in the agreement is running.

49

<xs:schema targetNamespace="http://www.ggf.org/namespaces/ws-agreement"
xmlns:wsag="http://www.ggf.org/namespaces/ws-agreement11
xmlns:wsbf="http://www.ibm.com/xmlns/stdwip/webservices/WS-BaseFaults
xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="qualified">

<xs:element name="Template" type="wsag:AgreementTemplateType"/>
<xs:element name="AgreementOffer" type="wsag:AgreementType"/>
<xs:element name="Name" type="xs:NCName"/>
<xs:element name="Context" type="wsag:AgreementContextType"/>
<xs:element name="Terms" type="wsag:TermCompositorType"/>

<xs:complexType name="AgreementContextType">
<xs:sequences
<xs:element name="AgreementInitiator" type="xs:anyType"

minOccurs="0"/>
<xs:element name="AgreementProvider" type="xs:anyType" minOccurs="0"/>
<xs:element name="AgreementlnitiatorlsServiceConsumer"

type="xs¡boolean" default="true" minOccurs="0"/>
<xs:element name="TerminationTime" type="xs:dateTime" minOccurs="0"/>
<xs:element name="RelatedAgreements"

type="wsag:RelatedAgreementListType" minOccurs="0"/>
<xs:any namespace="##other" processContents="lax" minOccurs="0"

maxOccurs="unbounded"/>
</xs:sequences
<xs:anyAttribute namespace="##other"/>

</xs:complexType>

<xs:complexType name="TermCompositorType">
<xs:sequences
<xs:choice maxOccurs="unbounded">

<xs:element name="ExactlyOne" type="wsag:TermCompositorType"/>
<xs:element name="OneOrMore" type="wsag:TermCompositorType"/>
<xs:element name="All" type="wsag:TermCompositorType"/>
<xs:element ref="wsag:ServiceDescriptionTerm" minOccurs="0" / >
<xs:element ref="wsag:GuaranteeTerm" minOccurs="0"/>

</xs:choice>
</xs:sequences

</xs:complexType>

<xs:complexType name="AgreementTemplateType">
<xs:sequences
<xs:element ref="wsag:Name" minOccurs="0"/>
<xs:element ref="wsag:Context"/>
<xs:element ref="wsag:Terms"/>
<xs:element name="CreationConstraints"

type="wsag:ConstraintSectionType" minOccurs="0"/>
</xs:sequences

</xs:complexType>

<xs:complexType name="AgreementType">
<xs:sequences
<xs:element ref="wsag:Name" minOccurs="0"/>
<xs:element ref="wsag:Context"/>
<xs:element ref="wsag:Terms"/>
</xs:sequences

</xs:complexType>

</xs: schemas

Figure 2.13: Overview of WS-Agreement schema

50

http://www.ggf.org/namespaces/ws-agreement
http://www.ggf.org/namespaces/ws-agreement11
http://www.ibm.com/xmlns/stdwip/webservices/WS-BaseFaults
http://schemas.xmlsoap.org/ws/2003/03/addressing
http://www.w3.org/2001/XMLSchema

The WS-agreement specification offers a rich language for capturing and presenting real

world assurances and requirements of web services in terms of service level objectives

(SLOs), qualifying conditions and business values. But the specification does not specify any

domain-specific terms describing the service level objectives, rather the framework leaves it

open to its users to decide what assertion language should be used to specify the service

objectives. For example, both the service description properties and the guarantee terms can

be composed using the compositors of the WS-Policy specification. Although this option

allows users to use existing languages to describe particular aspect of a service, it puts the

users in a situation to be able to deal with a variety of specifications. The negotiation protocol

as specified in the WS-Agreement Specification is only a two step conversation, in which the

service consumer receives either an accept or a reject message from the service provider in

response to an agreement request. In real world scenario this is a very limited negotiation

model, where an iterative negotiation would be more feasible.

2.2.5.3 Web Services Policy Framework (WS-Policy)

WS-Policy specification defines a syntax and semantic that enables web service providers to

advertise their policies and the web service consumers to specify their policy requirements for

a web service [Sch04], In W3C glossary a policy is defined as a constraint on the behaviour

of a web service [Wsg04], WS-Policy framework provides a means of documenting a broad

range of characteristic aspects, like security, QoS characteristics or transactionality, of a web

service as policies.

WS-Policy is an XML based language that can be used to express these aspects. According to

the schema a policy is known as policy expression, which is a collection of policy assertions.

A policy assertion is the core element that can be used to define individual preferences,

requirements, capability or other characteristics of a web service based system. For example

some assertions may specify requirements that manifest on the wire, e.g. authentication

scheme or transport protocol selection, again some assertions may specify requirements that

are critical to proper service selection and usage, e.g. privacy policy or QoS characteristic.

Extensibility mechanism of WS-Policy allows that policy assertions can be defined by

another specification. For instance, Web Service Policy Assertions Language (WS-

PolicyAssertions [Nad03]) specification defines a set of general message assertions and the

Web Service Security Policy Language (WS-SecurityPolicy [Nad05]) specification defines a

set of common security related assertions. In policy expressions, assertions can be combined

51

by using policy operators, which essentially give the logical AND, OR and XOR of policy

assertions. A policy expression can be bound to an entity (e.g. a web service endpoint, object

or resource), which is known as policy subject.

But WS-Policy framework does not define how policies can be attached to a policy subject

and leave this issue to other specifications. The Web Service Policy Attachment (VLS-

PolicyAttachment [Sha04]) specification is one such specification that defines how to attach

policy expression to XML elements, WSDL definitions and UDDI entities.

2.3 Runtime Monitoring of Software

2.3.1 A General Framework for Runtime Monitoring

Software monitoring is the activity of determining at runtime whether a software system is

operating according to requirements set for it during its development. Figure 2.14 presents a

general framework for the overall process of software requirements monitoring that we use in

this thesis to provide a comparative view of different approaches found in the literature. In

this framework, requirements are expressed in some specification language. Software source

code is developed according to the requirement specification. Monitoring events are identified

from the requirements specification by applying different approaches, e.g. goal driven

requirements acquisition [Dar93]. Monitorable events are expressed in some language. The

monitor is developed to trace monitorable events (typically sequences of such events) at

runtime. Various mechanisms are adopted to generate runtime events, such as (i) built in tools

(e.g. various management facilities offered in a distributed system [Sam92]); (ii) Code

instrumentation i.e. insertion of informative statements into the source code to generate

desired events at runtime. Instrumentation is driven by a specification that is derived from the

monitorable event specification following composition rules of the instrumentation tool. The

instrumentation tool instruments the source code based on this specification, (iii)

Architectural reflection is another option to generate monitoring events. A reflective software

system is a system that performs computation about its own software architecture, such as

memory consumption etc. Hence a reflective system maintains a runtime description of the

overall architecture and all the states of the system conveying information relevant to operate

on the architecture.

52

Figure 2.14: A general framework for requirements monitoring

At runtime the monitor receives monitorable events from the source code or the instrumented

source code, checks the event sequence against the requirements specification and generates a

report if a violation is detected. The violation report may be used, either manually or

automatically, to tune the software to reconcile its runtime behaviour with requirements.

2.3.2 Strands of Research in Software Monitoring

In the following sub sections we portray the current trend of research in the requirements

monitoring of legacy software as well as web service based systems. At the end of each sub

section we present a comparative summary of the relevant technique that conform to the

general framework for requirements monitoring shown in Figure 2.14 and for which

implementation detail is found in the literature. The comparative summaries of the works are

based on different implementation artefacts of the general monitoring framework. These

artefacts are,

Requirement specification language: Requirement specification language is the language used

in the work to express the requirements set for the system to be monitored.

Monitorable event identification process: Event Identification process specifies the

mechanism used in the work to identify the events needed to monitor the system and that can

be captured or generated during the execution of the system.

Event specification language: Event specification language is the language used in the work

to specify the monitorable event patterns.

53

Runtime event generation mechanism: Event generation mechanism is the mechanism used in

the work to generate or capture runtime event to monitor the system.

Adaptability: Adaptability specifies the mechanism used in the work to reconcile the runtime

behaviour of the monitored system with its requirement, in case the requirement is violated.

2.3.2.1 Requirements Monitoring Using FLEA

Fickas and Feather suggest the necessity and objectives of requirements monitoring and the

benefits that different stakeholders can gain thereof [Fea95]. They focus on requirements

monitoring in dynamic environments, i.e. environments in which a system may change over

time. In such an environment assumptions about the environment of a system at design time

may prove invalid when the system is in operation. This makes necessary the development of

mechanisms to support the monitoring and evolution of the system. The most critical

capabilities that system should have in order to be able to respond to changes in their

environments are (i) to detect the exact point when the system needs to be evolved, i.e. the

point in time when the design time assumptions about the environment become invalid, and

(ii) to adjust the system in order to maintain their requirements specification at that point.

Fickas and Feather argue that the identification of evolution points in the lifetime of a system

can be identified only by monitoring the system and its runtime environment and present a

general approach for monitoring requirements in a dynamic environment. A key element of

this approach is to establish relationships amongst:

o The overall requirements of the system

o The assumptions made about the current state of the environment of the system.

These assumptions form the context in which requirements are formulated, and

o The set of remedial evolutions available when mismatches develop between

assumptions and the current environment.

A close analysis of the relationships among the requirements and assumptions can help to find

out what to monitor. This results in the creation of a monitoring specification. From this

monitoring specification actual runtime monitoring code can be created by applying some

existing tools and techniques. A runtime requirements monitoring architecture called AMOS

(Assumptions MOnitoring System) has been proposed in [Coh97] following this approach. A

runtime requirements monitoring environment should allow the analyst to specify a wide

range of user’s requirements and assumptions. Specification of requirements and assumptions

should be compiled automatically into runtime monitoring code and the framework should be

readily applicable to systems that have not been designed with an intention to be monitored.

54

AMOS is proposed to meet these requisites to make it supportive for runtime requirements

monitoring. AMOS uses the language FLEA (Formal Language for Expressing Assumptions)

[Fea97] to specify requirements and assumptions that can be monitored at runtime. FLEA is

an event specification language with a small but powerful set of constructs to capture wide

range of monitoring properties (e.g. performance, safety properties). A compiler converts the

FLEA specification into runtime monitoring code using an active database (i.e. a database

with triggers). The monitor observes the interactions between the monitored system and the

environment using a generic data-gathering mechanism, (e.g. message-bus) and reports all the

violation of requirements and assumptions. In [Fea98] Feather et al move one step forward to

deal the second issue raised in [Fea95], that is the adjustment of a system following the

identification of the need for evolution. In that paper the authors present an architecture for a

self-adaptive system that can reconcile its runtime behaviour with its requirements. To

achieve the self-adaptability, they propose an architecture of cooperating software agents that

has alternative system designs represented as system parameters and/or alternative refinement

trees. A system can adapt itself by either tuning some parameter or switching to an

appropriate design at runtime whenever some violation occurs. This approach assumes two

main stages:

(i) At development time, requirements are initially specified as goals and are

subsequently refined into assertions based on goal-driven requirements elaboration

techniques [Dar96]. All the monitorable and controllable parameters are identified at

this stage. Appropriate reconciliation tactics (i.e. parameter tuning or alternative

system design) are also identified and associated with each breakable assertion.

Breakable assertions are translated into FLEA events.

(ii) At runtime, a monitor captures events from each software agent in the architecture

through an appropriate communication channel and produces a violation file. In case

of passive communication, the monitor polls each software agent at specific time

interval and in active communication every software agent notifies events to the

monitor when their monitored parameters change. A customizer analyses the

violation file and applies the reconciliation tactic specified for the violation at the

development level. Whenever the system shifts to an alternative design, the monitor

needs to be reconfigured to retain the consistency between the monitoring event

sequence and the breakable assertions in the current specification.

55

Summary1

T ech n iq u e R e q u i r e m e n ts M o n i to r in g in D y n a m ic E n v i r o n m e n t [F e a 9 5]

R eq u irem en t

S p ec ifica tio n

L a n g u a g e U sed

N a tu r a l L a n g u a g e

M o n ito ra b le E v en t

Id en tif ica t io n P ro cess

G o a l D ir e c te d R e q u i r e m e n t A c q u is i t io n

M o n ito r a b le E v en t

S p ec ifica t io n

L a n g u a g e U sed

-

R u n tim e E v en t

G en era tio n

M ech a n ism

B u il t in e v e n t m o n i to r in g to o l , e .g . u s e r m a n a g e m e n t f a c i l i ty p r o v id e d in l i c e n c e m a n a g e r s o f tw a re .

A d a p ta b ility Id e n t ify th e r e c o n f ig u r a t io n p o in t o f a s o f tw a re in d y n a m ic e n v i r o n m e n t a n d a d ju s t i t m a n u a lly

C o m m en ts + r e f in e m e n t o f r e q u i r e m e n ts to s u b - r e q u ir e m e n ts a n d id e n t i f i c a t i o n o f p o s s ib le re m e d ia l a c t io n s in

c a s e o f v io la t io n o f th o s e s u b - r e q u ir e m e n ts e n a b le s to d e s ig n a s e l f a d a p t iv e s y s te m

- M a n u a l a d ju s tm e n t o f th e m o n i to r e d s y s t e m i f a v io la t io n is d e te c te d .

T ech n iq u e A M O S [C o h 9 7] !'

R e q u irem en t

S p ec ifica t io n

L a n g u a g e U sed -

M o n ito r a b le E v en t

Id e n tif ica t io n P ro cess

E v e n ts a r e p r o v id e d b y u s e r

M o n ito r a b le E v en t

S p ec ifica t io n

L a n g u a g e U sed

F L E A

R u n tim e E ven t

G en era tio n

M ech a n ism

M o n ito r o b s e r v e s th e m e s s a g e s p a s s e d b e tw e e n th e m o n i to r e d s y s t e m a n d i ts e n v i r o n m e n t

A d a p ta b ility A n a c t io n fo r e a c h m o n i to r in g c o n d i t io n is d e f in e d in a d a ta b a s e . W h e n th e c o n d i t io n is s a t i s f i e d a t i

r u n t im e c o r r e s p o n d in g a c t io n is e x e c u te d

C om m en ts + a l lo w s to e x p r e s s a w id e r a n g e o f u s e r s ’ r e q u i r e m e n ts a n d a s s u m p tio n s , a l s o p e r m its to a d d

m o n i to r in g q u e r ie s d u r in g th e e x e c u t io n t im e o f th e m o n i to r

- R e q u i r e m e n ts /a s s u m p t io n s m u s t b e e x p r e s s e d in te rm s o f m o n i to r in g e v e n ts . T h e r e f o r e u s e r m u s t

k n o w r u n t im e e v e n ts b e fo re h a n d .

T ech n iq u e R e c o n c i l ia t i o n o f r e q u i r e m e n ts a n d s y s t e m b e h a v io u r [F e a 9 8]

R eq u irem en t

S p ec ifica tio n

L a n g u a g e U sed

K A O S a s s e r t io n s

M o n ito ra b le E v en t

Id en tif ica t io n P ro cess

F o r m a l r e f in e m e n t p a t te r n fo r g o a l d i r e c te d r e q u i r e m e n ts e l a b o r a t io n

M o n ito r a b le E ven t

S p ec ifica t io n

L a n g u a g e U sed

F L E A

R u n tim e E v en t M o n ito r c o m m u n ic a te s to e a c h s o f tw a r e a g e n t th r o u g h a n a p p r o p r ia te c h a n n e l , s u c h a s a c t iv e o r

1 In all the summary tables in this chapter, in the comments row a (+) sign stands for positive feature
and (-) stands for negative feature.

56

G en era tio n

M ech a n ism

p a s s iv e c o m m u n ic a t io n

A d a p ta b ility S e l f - a d a p ta b i l i ty o f a s y s t e m in a d y n a m ic e n v i r o n m e n t is a c h ie v e d b y p r o v id in g a l te r n a t iv e s y s te m

d e s ig n s . S y s t e m s w i tc h e s to a p p o s i te d e s ig n a t r u n t im e w h e n s o m e v io la t io n o c c u rs

C om m en ts + A u to m a t ic r e c o v e r y o f th e m o n i to r e d s y s t e m b a s e d o n th e d e te c te d d e v ia t io n s .

2.3.2.2 Requirements Monitoring Using Instrumented Code

Robinson [Rob02] exploits the concept of instrumentation and proposes a framework to

continually analyse requirements during the runtime execution of software. Since

requirements monitoring may prove expensive the author suggests monitoring of ‘suspect

requirements’. Suspect requirements can be identified as weakened conditions of

requirements by applying the rules described in the goal-driven requirements elaboration

method of [Dar96]. The major steps in Robinson’s approach, which is essentially a refinement

of the model described in [Fea98], are:

(i) Initially high level requirements are expressed in some formal specification language

e.g. KAOS [Dar93].

(ii) An analysis and design model is subsequently constructed using some modelling

language e.g. UML [Uml03]. This model facilitates traceability between the

requirements and the software.

(iii) An implementation of the design model developed in (ii) is constructed. This

implementation should maintain static traceability of definitions and dynamic

traceability of class instances at runtime. Some informative statements should be

inserted into the software code to generate a stream of information interpretable by

the monitor, which is known as instrumentation. The framework uses the

instrumentation tool JOIE [Coh98] to instrument Java class files.

(iv) At runtime the monitor continually views the stream of information produced by the

instrumented code. It uses assertion checking to monitor specific suspect condition

and produces warnings if some requirements are about to be violated. Model

checking is used to determine if a requirement could fail in a future state. A tool

(monitorLog2Java) is used to translate the monitored program event log into a Java

programme that contains only the sequence of method calls in the original Java

programme. Another tool (java2spin) generates a state-based model (Promela model)

from this modified java programme, which is checked for failure of suspect

conditions and requirements using the spin model checker [Hol97].

57

Dingwall-Smith and Finkelstein describe an architecture for runtime monitoring of system

goals as part of normal system operation [Din02]. High level goals are decomposed by

applying the KAOS approach to develop the monitor. The architecture uses Hyper/J [Hyp03]

to instrument the class files of the software to be monitored. Hyper/J is a tool that allows the

extraction of concerns from some existing software (written in Java) and the merging of these

concerns with some new concerns to develop a new software. According to the Hyper/J

specification, a concern is a coherent area of interest in the body of a software system,

including class, aspect or feature. Instrumentation class files are inserted into the class files of

the software system to be monitored following Hyper/J composition rules. At regular

intervals, the monitoring system reads the events generated by the instrumented code and

determines whether the monitored goal is satisfied. The approach has been demonstrated

using the Limewire Gnutella [Gnu] peer to peer file sharing system as test bed.

Summary

T ech n iq u e R e q u i r e m e n ts M o n i to r in g u s in g in s t r u m e n ta t io n [R o b 0 2]

R e q u irem en t

S p ec ifica tio n

L a n g u a g e U sed

K A O S a s s e r t io n

M o n ito r a b le E ven t

Id e n tif ica t io n P rocess

U M L is u s e d a s in te r m e d ia te la n g u a g e to m a in ta in t r a c e a b i l i t y b e tw e e n h ig h le v e l r e q u i r e m e n ts a n d ¡i

th e s o f tw a re .

M o n ito r a b le E v en t

S p ec ifica tio n

L a n g u a g e U sed

R u n tim e E v en t

G en era tio n

M ech a n ism

C o d e In s t r u m e n ta t io n .

A d a p ta b ility -

C om m en ts + M o n i to r in g o f s u s p e c t c o n d i t io n s e n a b le s to r a i s e in c r e a s in g ly u r g e n t n o t i f ic a t io n s p r io r to th e

f a i lu r e o f a r e q u i r e m e n t . T h i s c o u ld b e u s e fu l in ta k in g r e m e d ia l a c t io n in r e a l t im e .

- M o n i to r e d s o f tw a r e is in s t r u m e n te d to g e n e ra te r u n t im e e v e n ts th a t c a n d e g r a d e th e p e r f o r m a n c e o f

th e s o f tw a re . 1

T ech n iq u e R e q u i r e m e n ts M o n i to r in g b y w a y o f A s p e c ts [D in 0 2]

R eq u irem en t

S p ec ifica t io n

L a n g u a g e U sed

K A O S a s s e r t io n s

M o n ito ra b le E v en t

Id en tif ica t io n P ro cess

G o a l- d i r e c te d r e q u i r e m e n ts a c q u is i t io n [D a r9 3]

M o n ito r a b le E v en t

S p ec ifica t io n

L a n g u a g e U sed

H ig h le v e l r e q u i r e m e n ts e x p r e s s e d in te m p o ra l l a n g u a g e a r e h a r d c o d e d to th e m o n i to r to m a in ta in

tr a c e a b i l i ty . N o in te r m e d ia te e v e n t d e f in i t i o n la n g u a g e is u s e d

R u n tim e E v en t

G en era tio n

M ech a n ism

C o d e in s t r u m e n ta t io n b y a d d in g a s p e c ts u s in g th r o u g h H y p e r /J c o m p o s i t io n ru le s .

58

A d a p ta b ility -

C om m en ts - M o n i to r e d s o f tw a r e is in s t r u m e n te d to g e n e ra te r u n t im e e v e n ts th a t c a n d e g r a d e th e p e r f o r m a n c e o f

th e s o f tw a re .

2.3.2.3 Runtime Requirements Engineering & Monitoring of Personal and

Ephemeral Requirements

Fickas et al [Fic02c] focus on the cost effectiveness of formal analysis of requirements. In

traditional formal analysis, a software model or a property is changed to eliminate a detected

requirement violation. This approach may prove expensive and the cost involved in this

approach may not worth the benefit it produces. The authors are interested in an untraditional

approach; that is to carry on the requirements analysis at run time, i.e. what refers to “runtime

requirements engineering”, without taking any corrective measure at the static analysis phase.

They establish their argument by providing an example of a fault protection engine (FPE) of a

spacecraft. The FPE can diagnose and treat runtime faults of the spacecraft by running repair

routines on request of the environment e.g. a physical sensor or a ground controller. Fault

repair requests are placed in a queue and then cleared after a repair routine for each request

has been executed. FPE is expected to run a repair routine for every fault detected. This

requirement is translated into a Promela automaton which is then checked using the spin

[Hol97] model checker. The authors come to the decision that erroneous engineering

assumptions about the runtime environment may result a non-trivial number of causes for

system failure during analysis phase and most of these causes can be explained without taking

any remedial action. So they suggest to make assumptions at analysis, but record and carry

them to runtime for monitoring and use the monitoring information in different ways,

including (i) the generation of warning that failures are certain in the next few states of the

system, (ii) controlling the environment of the system in some way (iii) modifying the

component that has created the violation in order to get rid of the violation without relying on

help from the environment.

Fickas and Hall present various issues to deal higher level requirements placed by diverge

users in a multi-stakeholder distributed system (MSDS) like Internet email system, networks

of Web services, modem telephone network and the Internet itself [Fic02d]. Open systems

like these are dynamic and have no regular shape, comprising whatever components are

available at a particular instance of time. Most of the time these components are beyond

user’s control and cause the high level requirements to fail in various ways. Based on the

characteristics of open systems the authors introduce two new types of requirements, (a)

ephemeral requirements - these are requirements that have a fixed life span and may occur

59

one or more times; (b) personal requirements - these are requirements which are very much

specific to single user rather than to all users of the system. An example of a personal

requirement for an email system is the sender of an email should receive a reply from the

receiver of the email. Clearly this requirement is personal to sender only and it is also

ephemeral as the sender needs only a single response from the receiver. In [Fic02a] personal

requirements has been treated by Fickas and others. The project attempts to develop a system

to deliver software tools to those with traumatic brain injury (TBI). One has to consider three

issues in developing such system: (a) the requirements of each individual should be identified

(b) a system should be developed and deployed to meet those requirements and (c) the

deployed system should be monitored at runtime to watch if it is behaving as it was planned.

To handle the first issue a personal requirements engineering process, called CORE

(Comprehensive Overview of Requisite Email skills) has been introduced assuming email

system will be the application to be deployed. CORE process enables evaluation of a TBI

survivor in terms of his goals, corresponding skills and his/her environment. This information

eases the development and delivery of the software tool to meet the requirements. A case

study of runtime requirements monitoring of a deployed email system for TBI survivors in a

composite system is presented in [Fic02bJ. User requirements are refined according to the

KAOS guidelines and then restated using Timeline Editor (a tool for specifying time-based

events). The outputs from the timeline editor are a Buchi-automaton shown graphically and

the same automaton in the Promela [Hol91] never-claim form. An event-monitoring tool,

called Emu, is used to perform the monitoring. The automaton in the Promela form obtained

from timeline editor is translated into an Emu event tree by adding context information (e.g.

timing). Emu accepts the requirements specification in the form of an event-tree as input and

receives events from clients at runtime through a distributed listener architecture. Whenever a

received event from a client matches a trigger event of the input tree, Emu creates an internal

representation of the event tree and starts monitoring the rest of the events in the tree. A

runtime gauge shows the status of the requirements being monitored. This status can be used

in various ways. For example, manual or automatic repair procedures can be invoked when a

violation is detected.

Summary

T cch n iq u c H a n d l in g o f P e r s o n a l a n d E p h e m e ra l r e q u i r e m e n ts [F ic 0 2 a] [F ic 0 2 b] [F ic 0 2 c]

R eq u irem en t

S p ec ifica tio n

L a n g u a g e U sed

N a tu ra l L a n g u a g e

M o n ito ra b le E v en t

Id en tifica tio n P rocess

G o a l- d i r e c te d r e q u i r e m e n ts a c q u is i t io n

60

M o n ito ra b le E v en t

S p ec ifica tion

L a n g u a g e U sed

P r o m e la a u to m a ta [B a r0 4 b]

R u n tim e E ven t

G en era tio n

M ech a n ism

M o n ito r in g to o l (E m u) r e c e iv e s e v e n ts f r o m th e c l ie n t s th r o u g h a d i s t r ib u te d l i s te n e r a r c h i te c tu re .

C l ie n ts g e n e ra te s e v e n ts u s in g b u i l t in e v e n t g e n e ra t io n to o ls .

A d ap tab ility -

C om m en ts - T h e a p p r o a c h c a n n o t m o n i to r l iv e n e s s p ro p e r t ie s . L iv e n e s s p r o p e r t ie s a r e t r a n s l a te d to s a f e ty

p ro p e r ty b y a p p ly in g t im e c o n s t r a in ts w h ic h m a y r e s u l t in d e te c t io n o f in c o r r e c t r e q u i r e m e n ts

v io la t io n .

2.3.2.4 Requirements Monitoring Using Reflection

Finkelstein and Savigni present a framework that facilitates implementation of context-aware

services [Find]. Traditional software lacks ability to adapt itself to a changing context or

changing requirements. The framework that they propose is meant to address this

shortcoming. This framework is based on a reflective approach and uses a meta-level

description of the actual service implementation. The meta-level service description maintains

a runtime representation of system behaviour that reifies the actual system behaviour in the

sense that changes in the actual system behaviour are reflected in the meta-level description.

Requirements are defined as possible ways of achieving high level goals. A real time

description of the environment, known as context, can cause requirements to change due to

environmental changes and thereby accomplish the high level goal. For instance, in an m-

commerce service available low bandwidth would change a requirement of presenting a high

quality image to a requirement of presenting the same image in degraded quality. The

environment can also influence the service to change it in unpredictable way that forces a

change in meta-level description of the service. So a runtime violation can be identified by

comparing the meta-level description against the requirements specification.

Efstratiou et al [Efs02] argue about the need for system wide co-ordinated response of

adaptive applications to avoid conflicts or sub-optimal performance. Adaptive applications

running in the same context may have individual adaptive mechanism that may lead to

unwanted conflicting side effects. For example one application may reduce the use of network

to save power consumption, while another application running in the same host may try to

increase the use of network as it is released by the first application. The authors propose a

platform to handle situations like this. In their platform, adaptive mechanisms of individual

applications are co-ordinated by a single adaptation controller. Applications in a system

expose their adaptive mechanisms and set of state variables to the adaptation controller and

also at runtime the applications send events to the adaptation controller. These events reflect

61

the change in value of the state variables. The adaptation controller analyses the change in

state variables and invokes appropriate adaptation mechanism according to some predefined

policy rule. A policy language has been devised based on event calculus to define the policy

rules. A policy rule consists of two parts. The first part specifies a set of conditions based on

the state variables and second part specifies a set of actions that should be performed if the

condition is satisfied.

Clarke and Osterweil suggest an approach leading to self-evaluating and self-improving

software [ClaOO]. Human centric software improvement techniques can be automated if the

software itself carries out continuous testing, analysis and evaluation. The two

complementary evaluation approaches, dynamic testing and static analysis, should go on

synergetically to enhance the overall process. The authors argue for the need for self-

modifying software systems instead of self-modifying code as the latter is generally difficult

or impossible to analyse. They view a software system as a collection of different software

artefacts such as requirements specification, architecture, low level design specification, code,

test cases, analysis result. In addition to the artefacts software system also includes, a process,

known as the modification process, which is responsible for modifying other components e.g.

the code. A software system should also have a set of constraints specifying the way in which

the different components of the system should be related to each other. The constraints are

responsible for identifying the modification point. For example, when test results are

inconsistent with the requirements a product modification signal should be raised. In classic

software development process product code is isolated from the other components (e.g.

testing tool, constraints etc.) at the deployment time that complicates further modification of

the code substantially. So the authors propose to deploy product code integrated with the

other components to support perpetual testing, evaluation and improvement.

Summary

T ech n iq u e U ti l is in g th e e v e n t c a lc u lu s fo r p o l i c y d r iv e n a d a p ta t io n o n m o b i le s y s te m s [E f s 0 2]

R e q u irem en t

S p ec ifica t io n

L a n g u a g e U sed

A p o l i c y la n g u a g e b a s e d o n E v e n t C a lc u lu s h a s b e e n d e v is e d

M o n ito r a b le E v en t

Id e n tif ica t io n P rocess

S ta te v a r ia b le s in th e a p p l ic a t io n a r e u s e d a s e v e n ts

M o n ito ra b le E ven t

S p ec ifica tio n

L a n g u a g e U sed

S a m e a s th e r e q u i r e m e n t s p e c i f ic a t io n la n g u a g e

R u n tim e E v en t

G en era tio n

A p p lic a t io n s s e n d e v e n ts to th e a d a p ta t io n c o n t r o l le r

62

M ech a n ism

A d ap tab ility S p e c i f ic a d a p t iv e a c t io n s a r e in v o k e d b y th e a d a p ta t io n c o n t r o l le r b a s e d o n p o l ic y ru le s

C om m en ts + u s e o f e v e n t c a lc u lu s a s th e b a s e m a k e s th e p o l i c y d e f in i t io n la n g u a g e m o re f le x ib le o v e r e x i s t in g

la n g u a g e s to d e f in e t im e r e la t io n s a n d c o n d i t io n s

- O n ly n o n fu n c t io n a l r e q u i r e m e n ts a r e m o n i to r e d

- a p p l ic a t io n s a r e f o r c e d to r u n u n d e r a c o n t r o l le r , th e r e b y lo s e th e i r a u to n o m y .

2.3.2.5 Requirements Monitoring for Safety Critical Systems

Peters presents an approach for automating the generation of monitors from requirements

documentation [Pet97]. This approach focuses on requirements specified for safety- or

mission-critical real time systems. The author is interested in generating software monitors

from system requirements specifications, which are expressed in terms of environmental

quantities that can be monitored and controlled by the system. Such monitors can be used to

check whether the software behaviour is consistent with the specification. The proposed

approach expresses system requirements as a finite state automaton that models the

acceptable system behaviour. A state in the automaton represents the system behaviour

expressed in terms of predicates (conditions) that characterise some aspect of the monitorable

and controllable quantities and each transition is labelled by a predicate that represents a set

of events that have similar interpretation with respect to the specification. An implementation

of the proposed framework has been presented in [Pet02], Expected behaviour of the system

is stated in tabular relational notations [Par92] using monitorable and controllable quantities.

At runtime, the monitor receives environmental quantities (both monitorable and controllable)

through some input devices or directly from the system being monitored. Occurrences of

events are assumed if some quantity changes its value from the previous state. In such cases

the monitor verifies if the transition implied by the changes is acceptable at the particular time

according to the requirements specification.

Lutz and Mikulski summarise the evolution of new requirements to the onboard software on

spacecraft after launch [LutOl]. The authors consult an institutional database of anomaly

reports from three spacecrafts that record the aberrant behaviour, probable reason behind the

deviation and possible corrective measure. Most of these anomalies demand modification to

the flight software and a close analysis reveals that post-launch requirements changes do not

result from previous concerned requirements, but due to hardware failures and rare events.

Hardware failures and rare environmental events (e.g. use of obsolete data) prompt the

software changes to bridge the gap between the requirements specification and

implementation. The authors raise an open research issue - “to what extent it might be

63

possible, via monitoring, to anticipate some of the rare events or hardware failures that

triggered the critical requirements changes on the spacecraft”.

Summary

T ech n iq u e R e q u i r e m e n ts M o n i to r in g o f R e a l T im e S y s te m s [P e t9 7] [P e t0 2]

R e q u irem en t

S p ec ifica t io n

L a n g u a g e U sed

T a b u la r R e la t io n a l n o ta t io n [P a r9 2]

M o n ito ra b le E v en t

Id en tif ica t io n P ro cess

R e q u i r e m e n ts e x p r e s s e d in te rm s o f m o n i to r a b le a n d c o n t r o l la b le q u a n t i t i e s . S o e v e n ts a r e k n o w n

b e f o r e h a n d

M o n ito ra b le E v en t

S p ec ifica tio n

L a n g u a g e U sed

-

R u n tim e E ven t

G en era tio n

M ech a n ism

E v e n ts a r e d e t e c te d b y c o m p a r in g v a lu e s o f m o n i to r a b le a n d c o n t r o l la b le q u a n t i t i e s in s u c c e s s iv e

s y s t e m s ta te s

A d a p ta b ility -

C o m m en ts + G iv e n a r e q u i r e m e n ts s p e c i f ic a t io n d o c u m e n t , s o m e m o d u le s o f th e m o n i to r a re g e n e ra te d

a u to m a t ic a l ly .

- o f f l in e m o n i to r in g . M o n i to r a n a ly s e s r e c o r d e d e v e n t t r a c e s o f th e m o n i to r e d s y s te m .

23.2.6 Runtime Verification of Java programs

Brorkens and Moller [Bro02a, Bro02b] have developed a tool called jassda that enables

runtime checking of Java programs against a Communicating Sequential Processes (CSP)

[Hoa85] like specifications. The variant of CSP used in the work, known as CSPjassda, is a

specification language that can be used to specify the trace of all possible events emitted by a

program during its execution. The jassda framework is based on JDI (Java Debugger

Interface), which provides a rich set of functionality to monitor and manipulate an executing

Java program in addition to set breakpoints and watch variables. The core component of the

framework, known as Broker, works as the intermediary between the JDI and the jassda

modules that will process the events of interest. At the initial phase the broker determines the

set of all possible events of the loaded classes and invokes the modules to submit its events of

interest. At runtime the broker receives the targeted events and distributes to the respective

modules for further processing. Current implementation of jassda provides two modules. The

logger module simply writes the received events into a file, which can be used for analysing

the program. The trace-checker module analyses the received events on the fly, e.g. the event

sequence can be verified against CSP specification.

64

Kim et al [KanOO, KimOla, KimOlb] describe a prototype, Java-Mac that monitors and

checks a Java program based on a formal specification of systems requirements. The Java-

Mac architecture provides two languages.

(i) Primitive Event Definition Language (PEDL) that allows the definition of

implementation dependent low-level behaviours, i.e. the events and conditions of the

target program. In the current implementation PEDL can be used to define

events/conditions using only the primitive data types (both local and global variable)

and beginnings/endings of methods in a Java program.

(ii) Meta Event Definition Language (MEDL) which is used to define high level behaviours

of the target program using the primitive events and conditions defined in PEDL

specification. The architecture works in two phases.

In static phase a PEDL compiler compiles the PEDL specification to generate instrumentation

information, which is used by an instrumentor to instrument the target program. The PEDL

compiler also generates an abstract syntax tree, which is evaluated by an event recogniser. An

MEDL compiler compiles the MEDL spec to generate an abstract syntax tree. At runtime

instrumented target program generates events and supplies the events to the event recogniser.

The event recogniser in turn sends the events to a runtime checker. The runtime checker

evaluates the abstract syntax tree generated by the MEDL compiler against the events. If the

runtime checker detects a violation of a property it raises a signal.

Summary

T ech n iq u e J a s s d a [B ro 0 2 a , B ro 0 2 b]

R eq u irem en t

S p ec ifica tion

L a n g u a g e U sed

A v a r i a n t o f C S P , k n o w n a s C S P j,SSd,

M o n ito ra b le E v en t

Id en tifica tio n P ro cess

M o n ito ra b le E v en t

S p ec ifica tio n

L a n g u a g e U sed

S a m e a s th e r e q u i r e m e n ts s p e c i f ic a t io n la n g u a g e

R u n tim e E ven t

G en era tio n

M ech a n ism

J a v a D e b u g g e r In te r fa c e is u s e d to g e n e ra te r u n t im e e v e n ts

A d a p ta b ility -

C om m en ts + th e r e q u i r e m e n t s p e c i f ic a t io n in C S P ^ d . i s in d e p e n d e n t o f s o u r c e c o d e , i .e . th e a p p r o a c h is

a p p l ic a b le e v e n to th i rd p a r ty c o d e .

- u s e o f J D I to g e n e ra te r u n t im e e v e n t im p o s e s s u b s ta n t ia l o v e r h e a d o n p r o g r a m e x e c u t io n

- u s e o f in s t r u m e n ta t io n (e .g . in c a s e o f m e th o d r e tu r n v a lu e) a l s o d e g r a d e s p e r f o r m a n c e

T ech n iq u e J a v a - M a c [K anO O] [K im O l]

R eq u irem en t M E D L

65

S p ec ifica tio n

L a n g u a g e U sed

M o n ito r a b le E ven t

Id e n tif ica t io n P rocess

C h a n g e o f v a lu e s o f p r im i t iv e J a v a v a r ia b le s a n d b e g in n in g s /e n d in g s o f m e th o d e x e c u t io n a r e u s e d

a s e v e n ts .

M o n ito r a b le E ven t

S p ec ifica tio n

L a n g u a g e U sed

P E D L

R u n tim e E v en t

G en era tio n

M ech a n ism

I n s t r u m e n ta t io n

A d a p ta b ility N o t s u p p o r te d

C o m m en ts + s e p a r a t io n o f lo w le v e l b e h a v io u r a n d h ig h le v e l b e h a v io u r l a n g u a g e m a k e s th e a p p r o a c h

a p p l ic a b le to b r o a d r a n g e o f t a r g e t p la t f o r m

- I n s t r u m e n ta t io n o f th e t a r g e t p r o g r a m im p o s e s o v e r h e a d to th e p r o g r a m p e r f o r m a n c e

- O n ly c h e c k s th e p r im i t iv e d a ta ty p e s r a th e r th a n o b je c ts

2.3.2.7 Monitoring Oriented Programming

Chen et al [Che03][Che04] propose Monitoring Oriented Programming (MOP) framework

that supports development and analysis of software through monitoring the formal

specification of the software against its runtime behaviour. MOP framework allows the users

to specify properties to be monitored in their favourite requirements specification formalism

and the recovery actions to be taken if the properties are violated or validated at runtime. This

specification is automatically transformed into the monitoring code in a target language and

integrated at appropriate places (specified by the user along with the properties and the

recovery actions) in the target programme. Any violation and/or validation of a property

being monitored at the runtime of the target programme triggers the appropriate action

defined by the user. An implementation of the MOP paradigm, called Java-MOP, is presented

in [Che05a] [Che05b], which facilitates development and analysis of programmes written in

Java. Java-MOP provides a meta-specification language for the user to define specify the

monitoring specification. The Java-MOP monitoring specification is divided into three

sections, (i) The heading section contains the definition of the monitorable events and several

configuration attributes of the monitor, including the scope of the monitoring, the exact point

of the execution in which properties are checked, (ii) The body section contains the properties

to be monitored specified in a domain specific requirements specification language. The

languages supported by the current implementation of Java-MOP, are JML [LeaOO], Jass

[BarOl], ERE and LTL [Man95]. (iii) The handlers section contains the recovery actions to

be taken in case of violation and/or validation of a property. A component, called logic plug-

ins, transforms the Java-MOP specification into Java monitoring code, which is integrated

into the target Java programme by another component, known as Java annotation processor.

66

In addition the target Java programme is also instrumented by using ApectJ [Asp03] to

generate runtime events.

Summary

T ech n iq u e J a v a - M O P [C h e 0 5 a] [C h e 0 5 b]

R eq u irem en t

S p ec ifica tion

L a n g u a g e U sed

J M L [LeaO O], J a s s [B a rO l] , E R E a n d L T L [M a n 9 5]

M o n ito ra b le E v en t

Id en tif ica t io n P ro cess

m o n i t r a b le e v e n ts a r e d e f in e d b y u s e r .

M o n ito ra b le E v en t

S p ec ifica tio n

L a n g u a g e U sed

J a v a - M O P s p e c i f ic a t io n la n g u a g e .

R u n tim e E ven t

G en era tio n

M ech a n ism

I n s tru m e n ta t io n

A d a p ta b ility S u p p o r te d , r e c o v e r y a c t io n s a r e d e f in e d b y th e u s e r .

C om m en ts + S u p p o r ts n e w lo g ic a d d i t io n th r o u g h lo g ic p lu g - in s

+ A llo w s th e u s e r to d e f in e r e c o v e r y a c t io n s in c a s e o f p ro p e r ty v io la t io n s

- In s t r u m e n ta t io n o f th e t a r g e t p ro g r a m im p o s e s o v e r h e a d to th e p r o g r a m p e r f o r m a n c e

- U s e r h a s to l e a m J a v a - M O P s p e c i f ic a t io n la n g u a g e in a d d i t io n to th e fo rm a l s p e c i f ic a t io n la n g u a g e

u s e d to d e f in e th e p ro p e r t ie s .

2.3.2.8 Requirements Monitoring of Web Service based Systems

Robinson extends the requirements monitoring techniques described in [Fea95, Fea97, Fea98]

to deal distributed concurrent transactions [Rob03a]. Robinson uses Goal-driven requirement

acquisition process [Dar93] to express high level requirements. For each requirement,

potential obstacles are identified by applying KAOS obstacle generation patterns [LamOO].

For each obstacle identified a monitor specification is derived. If the obstacle is directly

observable the specification simply assigns the obstacle to an agent for monitoring. To adapt

thus approach in distributed environment an architecture is described in [Rob03b]. An even t

adap tor translates web service requests and replies into monitored web service events. A

broadcaster forwards the monitored events to listeners. R equ irem en ts m onitor, which is a

specific type of listener, interprets the event stream in terms of requirements satisfaction.

Baresi et al [Bar04a] present a framework for run time monitoring of service compositions

expressed as BPEL process. The proposed framework deals with three types of undesirable

behaviours, namely tim eouts, runtim e externa l errors and vio la tions o f fu n c tio n a l contracts.

A timeout occurs if an activity does not finish in a specific time period. Runtime external

67

error refers to a failure of an external web service to perform its task. Violation of functional

contracts happens if a web service fails to maintain a predefined functional contract, e.g. pre

or post condition. A BPEL process is annotated by inserting instructive assertions as

comments to instrument the BPEL process. A translator transforms this annotated BPEL

process into the monitored BPEL process. To handle timeouts and external error, Baresi et al

use BPEL < eventH andlers> and < faultH andlers> activities respectively. In BPEL

< eventH andlers> is used to take some action on occurrence of some specific event and

< faultH andlers> is used to handle internal or external faults. In the proposed framework, for

example in case of timeouts, the designer has to insert a comment in the original BPEL

process stating the duration of the time-frame and the kind of exception handling that the

system should use if the time-out expires. The translator then converts this comment into a

BPEL < eventH andler> activity with an alarm set to the specific time value in the monitored

BPEL process. The proposed framework is further extended in [Bar05a] and [Bar05b,

Bar05c], where the monitoring rules are expressed separately rather than annotating BPEL

process and the extended framework supports monitoring of QoS properties in addition to the

properties described above. In [Bar05a] the constraints to be monitored are expressed as WS-

Policy and WS-PolicyAttachment is used to attach the policy to a particular context of the

BPEL process. In [Bar05b] the monitoring rules are defined in a m onito ring defin ition fd e that

describes the monitoring rules, as well as other monitoring configuration parameters such as

priority of a monitoring rule, exact location in the BPEL process where the rule should be

associated. Monitoring constraints are expressed in WS-CoL (Web Service Constraint

Language), which is a special purpose assertion specification language based on JML

[LeaOO]. Given the constraints to be monitored in m onitoring defin ition f i l e or Ws-Policy and

WS-PolicyAttachment, a process weaver instruments the BPEL process. This instrumentation

replaces the context of the BPEL process, which a monitoring constraint is applied to, by an

invocation to the monitoring component, called M onito ring M anager. The M onitoring

M an a g er is composed of four components. The C onfigura tion M anager holds all the

monitoring rules and configuration parameters, the E xterna l M o n ito r M a n a g er communicates

with the plugins of actual data analyzer, e.g. CLiX[Cli03] or XLINKIT [Xli02], the Invoker

mainly sends and receives data to and from other components and web services, the R ule

M a n a g er acts as a co-ordinator and organises the components of monitoring manager. At

runtime the instrumented BPEL process invokes the monitoring manager instead of invoking

the real web service by passing the data that to be analyzed and the information required to

invoke the actual web service. The monitoring manager checks the data with the help of

external data analyzers, e.g. CLiX[Cli03] or XLINKIT[Xli02], before invoking the actual web

service and also after receiving the response from the invoked web service. If this checking

results in a rule violation, a standard exception is raised to the instrumented process. The

68

positive side of this approach is that, the mechanisms used to handle timeout and external

errors can be used to introduce self healing aspect to a Web Service composition process. The

mechanism used to monitor the violation of functional contracts would be useful identify

malfunctioning Web Services in a composition. However the annotation of BPEL process has

negative impact on the process execution as some checks are performed by the service based

system itself. Also in case of monitoring functional contracts, single web services are

monitored, the overall requirements of the composition process have not been considered.

Lazovik et al [Laz04, Laz06a, Laz06b] propose a framework to plan, execute and monitor

business processes. In the proposed framework business processes are modelled as

choreography of web services and planning, execution and monitoring of such business

process are governed by assertions, which are business rules (user request) applied to the

business process. These assertions are classified along two dimensions. The first dimension is

known as operation assertions, which is based on the operational context of the assertions.

Operation assertions are used to express conditions that must be true in one state before

moving to the next state, or to express conditions that must be satisfied throughout all the

execution states, or to express properties on the evolution of process variables during process

execution. The second dimension of assertions is known as actor assertions, which is based on

the ownership of the assertion. Actor assertions are used to express user request applied to the

whole business process, or to express assertions applied to all the providers playing a certain

role in the process execution or to express assertions applied to a specific provider. The

assertions are expressed in XML Service Request Language (XSRL), which is a language to

express requests and constraints over requests for web services. Business processes are

specified in a choreography language like WS-CDL. The proposed framework is based on

interleaving planning and execution of the business process according to the assertions. To

realise this, the framework incorporates a monitor, a planner and an executor. The monitor

receives the assertions and the business process and contacts the planner for a plan that

satisfies the assertions. The planner synthesises a plan and returns it to the monitor. The plan

is then executed by the executor step by step. At each execution step the executor also looks

for new information about the service implementations. The executor informs the monitor if

new information is available for a service. The monitor then contacts the planner for a replan.

This iterative process continues until the user request is satisfied according to the given

assertions or the planner fails to find a plan that satisfies the user request.

69

Summary

T ech n iq u e M o n ito r in g W e b S e r v ic e r e q u i r e m e n ts [R o b 0 3 a , R o b 0 3 b]

R eq u irem en t

S p ec ifica t io n

L a n g u a g e U sed

K A O S a s s e r t io n

M o n ito r a b le E v en t

Id e n tif ica t io n P ro cess

F o r m a l r e f in e m e n t p a t te r n f o r g o a l d i r e c te d r e q u i r e m e n ts e l a b o r a t io n

M o n ito r a b le E v en t

S p ec ifica tio n

L a n g u a g e U sed

-

R u n tim e E v en t

G en era tion

M ech a n ism

S O A P m e s s a g e s t r a n s m i t t e d b e tw e e n W e b s e r v ic e s a r e in te r c e p te d a n d e x t r a c te d to d e r iv e e v e n ts .

A d a p ta b ility -

C om m en ts - W e b s e rv ic e r e q u e s t s a n d re p l ie s a r e c o n s id e r e d o n ly a s r u n t im e e v e n ts . I n te rn a l s ta te o f th e

c o m p o s i t io n p ro c e s s o r th e v e n ts in te rn a l to th e c o m p o s i t io n p r o c e s s h a v e n o t b e e n c o n s id e re d .

T ech n iq u e M o n ito r in g W e b S e rv ic e C o m p o s i t io n [B a r0 4 a] [B a r0 5 a] [B a r0 5 b]

R eq u irem en t

S p ec ifica t io n

L a n g u a g e U sed

In [B a r0 4 a] P ro p e r t i e s to b e m o n i to r e d a r e e x p r e s s e d a s c o m m e n ts in B P E L d o c u m e n ts u s in g s o m e

p r e d e f in e d c o n s tru c ts .

In [B a r0 5 a] W S - P o l ic y f r a m e w o rk is u s e d to e x p r e s s m o n i to r in g p o l ic y a n d W S - C o L is u s e d to

e x p re s s m o n i to r in g ru le s in s id e W S -P o lic y .

In [B a r0 5 b] m o n i to r in g ru le s a r e e x p r e s s e d in W S -C o L . j

M o n ito ra b le E v en t

Id en tif ica t io n P ro cess -

M o n ito ra b le E ven t

S p ec ifica tion

L a n g u a g e U sed

In [B a r0 5 a] a n d [B a r0 5 b] W S - C o L is u s e d d e f in e e v e n t (r u n t im e d a ta) fo rm a t.

R u n tim e E v en t

G en era tio n

M ech a n ism

S O A P m e s s a g e s e x c h a n g e d b e tw e e n w e b s e rv ic e s a r e u s e d a s e v e n ts .

A d a p ta b ility In [B a r0 4 a] C o r r e c t iv e a c t io n s a re s p e c i f ie d in B P E L p r o c e s s u s in g s ta n d a rd B P E L a c tiv i t ie s .

C om m en ts + S e l f h e a l in g a s p e c t h a s b e e n in t r o d u c e d to a W e b S e r v ic e c o m p o s i t io n p r o c e s s . [B a r0 4 a]

+ U se o f s ta n d a rd s l ik e W S - P o l ic y to s p e c i fy m o n i to r in g d i r e c t iv e s . [B a r0 5 a]

- I n s t r u m e n ta t io n o f B P E L p r o c e s s im p o s e s o v e r h e a d to th e p r o c e s s p e r f o r m a n c e . [B a r0 4 a]

[B a t0 5 a] [B a r 0 5 b]

2.3.2.9 Monitoring of Service Level Agreements (SLA)

Farrell et al develop an ontology to capture aspects of service level agreements (SLAs) agreed

between service provider and consumer [And04a, And04b, And05], They develop a reasoner

to track the states of these contracts against runtime events. Their work is concerned with

utility computing (UC) i.e. monitoring of computation resources namely compute power,

storage, network bandwidth. The proposed ontology entails three types of contract norms.

These are (i) contract management norms that define the effects of contract events on contract

70

State, (ii) obligation norms that defines the actions a party has to perform in case of

violation/fulfilment of the norm, (iii) privilege norms that define the non-contractual actions

that party is permitted to perform. An XML based contract language called CTXML, has been

devised to formalise the ontology. They used event calculus as computational model and

mapped CTXML constmcts to XML representation of event calculus (ecXML). An

implementation of the computational model is presented, that enables query, written in

CTXML or ecXML, of runtime contract states. The implementation also provides a GUI that

displays the deployment life cycle of UC SLAs.

Ludwig et al propose an architecture to support the implementation of WS-Agreement

[And04] standard, i.e. the architecture aims to establish agreement between a service provider

and service consumer and monitor the establish agreement [Lud04]. WS-Agreement driven

service management requires three types of functionalities (i) a set of core function to deal the

basic WS-Agreement protocol, (ii) a set of domain independent functions that are common to

all environments and (iii) a set of domain specific functions in managing services. The

proposed architecture covers the first two types of functionalities. For example for the

agreement provider it provides components to create agreement template, to decide if an

agreement can be accepted or not, to announce new agreement. For the agreement initiator

side the architecture provides components to get agreement template instances from the

agreement provider and create agreement instances. The work also presents a Java

implementation of the architecture.

Summary

T ech n iq u e P e r f o r m a n c e M o n i to r in g o f S e r v ic e - L e v e l A g r e e m e n ts f o r U t i l i ty C o m p u t in g U s in g th e E v e n t

C a lc u lu s [A n d 0 4 a] [A n d 0 4 b] [A n d 0 5]

R eq u irem en t

S p ec ifica tion

L a n g u a g e U sed

C T X M L o r e c X M L

M o n ito ra b le E ven t

Id en tif ica t io n P rocess

M o n ito ra b le E ven t

S p ec ifica tio n

L a n g u a g e U sed

C T X M L

R u n tim e E v en t

G en era tio n

M ech a n ism

E x te r n a l c o m p o n e n ts p o s t c o n t r a c t e v e n ts v ia q u e r y in te rp re te r .

A d a p ta b ility R e m e d ia l a c t io n s in c a s e o f a c o n t r a c t v io la t io n a r e s p e c i f ie d in c o n t r a c tu a l s ta te m e n ts

C om m en ts + th e im p le m e n ta t io n c a n s u p p o r t a n y c o n t r a c t o n to lo g y a s lo n g a s th e o n to lo g y c a n b e m a p p e d to

e c X M L /C T X M L

- O n ly n o n f u n c t io n a l r e q u i r e m e n ts a r e m o n i to r e d

71

2.3.2.10 Consistency Checking of Web Service Composition Process

Piccinelli et al [Pic02] describe a lightweight approach to check the consistency of web

services composition against some specific business service policies. The interactions

involved in a business service usually require the combined use of a number of different web

services. A coherent view of the various web services in the composition is essential for the

realisation of the overall business service. The suggested framework uses XLINKIT [Nen02]

to check consistency of a dynamic set of web services. XLINKIT is a consistency

management framework that can be used to check consistency of distributed heterogeneous

documents, specially XML-encoded documents. It provides first order logic based language

to express constraints between documents and an engine that checks the documents against

the constraints. So business service policies can be expressed using XLINKIT and then it can

be applied to check consistency among the corresponding WSDL documents describing the

Web-Services related to the business service.

Nakajima focuses on the needs to verify web service flows (compositions) prior to their

execution, since faulty flow descriptions may be costly in terms of network traffic or useless

execution of web services [Nak02a], According to the author this verification problem is very

similar to verification of work flows or business flows. His suggestion is to translate flows

into a set of communicating concurrent process and that can be checked by means of software

model checking techniques. He also argues that web service flow language should have

constructs for exception handling in the presence of accidental failures or malicious attacks.

He applies classical software model checking techniques to check reliability of web services

flow descriptions by identifying faulty descriptions [Nak02b]. The work uses WSFL as the

Web Service flow description language and SPIN [Hol97] as the analyser. WSFL descriptions

are translated into Promela and fed to SPIN for verification.

Summary

T ech n iq u e C o n s is te n c y C h e c k in g o f W e b S e rv ic e C o m p o s i t io n [P ic 0 2]

R eq u irem en t

S p ec ifica t io n

L a n g u a g e U sed

x l in k i t r u le l a n g u a g e is u s e d to d e s c r ib e b u s in e s s s e r v ic e p o lic ie s .

M o n ito r a b le E v en t

Id e n tif ica t io n P ro cess

M o n ito r a b le E ven t

S p ec ifica tio n -

72

L a n g u a g e U sed

R u n tim e E v en t

G en era tio n

M ech a n ism

-

A d a p ta b ility -

C om m en ts + C o n s is te n c y b e tw e e n c o m p o n e n t W e b S e r v ic e s a g a in s t s o m e b u s in e s s s e rv ic e p o lic ie s c a n be

c h e c k e d b e f o r e w e b s e r v ic e c o m p o s i t io n is m a d e .

- R u n tim e c h e c k in g o f th e c o m p o s i t io n p r o c e s s h a s n o t b e e n p e r fo rm e d .

T ech n iq u e C o n s is te n c y C h e c k in g o f W e b S e r v ic e C o m p o s i t io n [N a k O l , N a k 0 2]

R eq u irem en t

S p ec ifica tio n

L a n g u a g e U sed

P ro m e la

M o n ito ra b le E ven t

Id en tif ica t io n P ro cess

M o n ito ra b le E v en t

S p ec ifica tio n

L a n g u a g e U sed

-

R u n tim e E ven t

G en era tio n

M ech a n ism

-

A d a p ta b ility -

C om m en ts + F a u l t s in w e b s e r v ic e c o m p o s i t io n p r o c e s s a r e id e n t i f i e d b e f o r e i t is p u t in o p e ra t io n .

- R u n t im e m o n i to r in g o f th e c o m p o s i t io n p r o c e s s h a s n o t b e e n p e r fo rm e d .

2.3.2.11 Management of Web Service Composition Process

Tosic et al [TosOl] illustrate the need of Web-Services with multiple classes of service and

dynamic adaptation of their compositions. Each class of service of one Web-Service offers

the same functionality but differ in constraints like authorisation, rights, quality of service and

cost. This concept of service offerings (Web-Service with multiple classes of service) is

somewhat similar to the well-known concepts of differentiated services in telecommunication

and is motivated by the limited underlying resources that the Web-Services use. Since

underlying resources are not unlimited, it is suitable to provide different quality of service to

different class of Web service’s consumers. The paper proposes an extension of WSDL,

known as WSOL (Web Service Offering Language), to specify Web-Services with multiple

service offerings. WSOL enables specification of functional constraints, non-functional

constraints, authorisation policies, cost and other relevant information and constraints. The

paper also proposes a management infrastructure, called DAMSC (Dynamically Adaptable

and Manageable Service Components), that supports switching between service offerings,

deactivation/reactivation of existing service offerings and creation of new appropriate service

offerings without breaking the existing relationship between a web service and its consumer.

An extended version of WSOL is discussed in [Tos02]. This extended version introduces

73

some new constructs to define pre-, post- and future- conditions as Boolean expression,

service price and penalty (in case of service failure) information etc.

2.3.2.12 UDDI based Management of Web Services

Ali et al point out some limitation of UDDI implementation and propose an extension to

UDDI, calls UDDIe, to address those limitations [Ali03]. In addition to the three components

in current UDDI, namely white pages, yellow pages and green pages the authors introduce

blue pages to record user defined properties associated with a service. Current UDDI does not

provide automatic update of the registry as services or service providers change. This may

lead to a point where public UDDI registries may contain a lot of listing for services that are

no longer active. To resolve this, UDDIe supports finite and infinite leases. In case of finite

lease, service provider must define the exact point for which the service should be made

available for discovery in the registry. In the current UDDI search for a service can be made

only on limited attributes, such as service name, key reference etc. But the blue pages of

UDDIe stores user defined service properties such as quality of service (QoS) and the list of

methods available within the service that can be called by other services. UDDIe also

supports search for services on various properties associated with services, e.g. user defined

property, leasing period etc.

Zhou et al implemented an extension of UDDI, UX that facilitates QoS aware discovery of

web services [Zho03]. UX works on top of standard UDDI registry and conforms to the

UDDI inquiry interface. In the proposed system a local database is maintained to store quality

information of individual web service. This quality information is used to predict the future

performance of a service. In a typical scenario a service requester defines its preference on

the service's QoS metrics (e.g. response time, reliability) using a web based interface and

sends a UDDI inquiry to the UX server. The UX server finds the desired service and sends the

result back to the requester. The requester uses the service, measures the performance of the

service and shares QoS report it makes by sending the report to the UX server. The UX server

uses the QoS report to update the quality information of the service in the local database. In

the proposed system, the network model is abstracted into domains (e.g. enterprises,

universities) and a local UDDI registry works in each domain for web service's discovery.

The UX server can perform federated discovery between different co-operating domains if the

requested service can't be found in the local domain. The advantage of this approach is that it

enables the requester to find a service with desired performance metric without performing

any test on the service. While the main disadvantage is that requester has to contribute to the

74

approach by measuring the performance of the service being used, that imposes overhead to

the requester.

2.3.3 Types of Requirements Violations Addressed in the Literature

The approaches reviewed in Section 2.3.2 can detect five different types of violations of

requirements at runtime. These types are:

(i) Violation of requirements defined as classical inconsistencies, such violations are

treated in [Fea95, Fea98, Coh97, Din02], Given an assertion (requirement) to be

monitored, the assertion is negated and the negated assertion is monitored at runtime.

For example, in case of a meeting scheduler system, one requirement is that “the

system should know the constraints of all the various participants invited to the

meeting within d days”. This requirement can be formalised in KAOS as follows,

V m: Meeting, participants ConstraintsRequested(p,m) => 0<Xd ConstraintsReceived(p,m)

To monitor violations of this requirement, the negation of the assertion that expresses

the requirement is used at runtime. This negated assertion is as follows,

3 m : Meeting, p: Participant 0 [ConstraintsRequested(p,m) a 0<Xd ->

ConstraintsReceived(p,m)]

At runtime if a sequence of events that entails the negation of the assertion is

detected, the violation is considered to have taken place.

(ii) Model checking techniques have been exploited in [Fic02a, Fic02b, Fic02c, Pet97,

Nak02a, Nak02b]. The requirements specification is transformed into a finite state

automaton. The states in the automaton represent acceptable and unacceptable

behaviour of the system to be monitored. At runtime the states of the automata are

monitored. If the monitor reaches an acceptable state, the requirement is satisfied. If

the monitor reaches an unacceptable state or stays too long in an acceptable state, the

requirement has failed.

(iii) Violations of suspect conditions are treated in [Rob02, Rob03a, Rob03b]. Suspect

conditions are weakened conditions of a requirement and are monitored to reduce the

cost of requirements monitoring. If R is a requirement to be satisfied by the system

75

and -i R => C, then by observing C at runtime a notification that R is going to fail can

be generated. The weakened condition C can be identified by applying refinement

patterns for goal-directed requirements elaboration [Dar96].

(iv) QoS properties, such as timeouts and runtime external errors are monitored in

[Bar04a], A timeout occurs if an activity, within a composite process, does not finish

in a specific time period. A runtime external error is defined with respect to a web

service composition process, which refers to a failure of an external web service to

perform its task.

(v) Satisfiability of non-functional requirements of a system is considered in [FinOl,

Efs02, And04a, And04b]. These approaches focus on the monitoring of computation

resources such as availability of network bandwidth, consumption of computer power

etc.

Although the objective of requirements monitoring is to identify if a requirement fails at the

runtime of the system, this fail/no-fail information can be utilised in various useful ways, such

as to alert designers, maintainers or users about the redesign of the system or to adjust the

system at runtime in order to head off the failure. In the case of (i) and (ii) a deviation is

detected only after a requirement has failed. Thus the detection may not be useful in

undertaking a corrective action that could fulfil the requirement in the same execution of the

system. A corrective action may only be possible to undertake in the same execution of the

system if the system supports transaction roll back. However, this information can be used to

modify the system to make sure the failed requirement will be satisfied in subsequent

executions. On the other hand, in the cases of (iii), (iv) and (v) a warning message signifying

the failure of a requirement is generated and this information can be used to take necessary

recovery action at runtime and make sure that the requirement that was about to fail will be

satisfied.

2.4 Motivation

Web Services technology and research in this field have been developing rapidly since the

emergence of this field back in the late nineties. Most of the research in this area is only

devoted to the monitoring of QoS properties of Web Services [And04a, And04b, Lud04], or

to the composition of Web Services and management of such composition [NakOl, Nak02,

Pic02, Ali03, Zho03, TosOl, Laz04, LazOóa, LazOób]. Functional requirements monitoring of

76

web services, however, has attracted little attention. [Lud04] focuses on functional

requirements of web service composition, but it aims only at the functional requirements of

each single web service rather than the overall requirements of the whole composition.

Robinson [Rob03a, Rob03b] applies existing software requirements monitoring techniques to

monitor web service requirements.

Existing approaches for requirements monitoring have the following limitations:

• Monitorable events are identified by analysing the requirement specification and are

subsequently expressed in some event definition language [Fea95, Fea98, Fic02a, Fic02b,

Fic02c, Din02]. This manual process of identifying and defining monitorable events is

error prone to maintain traceability between the source code and the monitorable event

specification.

• Most requirements in a software system are interdependent. Thus monitoring a single

requirement in isolation may lead to incorrect result. In some cases monitoring

interdependent requirements is necessary. For example, suppose that we have two

requirements,

P A Q => R, S => P

Suppose also that we want to monitor the first formula, and that the event P is internal to

the system and not available to the monitor. Here an occurrence of event P can only be

assumed by detecting the event S and then applying deductive reasoning to establish P.

So the identification of dependencies between requirements is an essential step in

requirements monitoring, as the internal state of systems may not be necessarily known.

In such cases it might be necessary to deduce information about this state and may arise

in web services where direct access to internal service events may not be possible and the

deduced information to detect violations as shown in this example. Cases like these have

not been addressed in the literature.

In addition to the above weaknesses, existing requirements monitoring techniques fail to deal

adequately with some significant complications, which arise in service-based systems, as they

focus on systems with no autonomous components. When, however, such autonomous

components exist, as in service-based systems, they can create substantial complexities. These

complexities can be summarised as follows,

77

• In service-based systems, the failure of specific services to function as expected may lead

other system components (i.e., services and the system co-ordinating component) to make

incorrect assumptions about the state of the system (e.g. the absence of a message

confirming the update of some data in one of the system's services does not necessarily

mean that these data have not been updated). Consequently, components may take

actions, which may be compliant with the requirements but would not have been taken if

the correct state of the system was known to them.

Consider, for instance, a car rental system (CRS) which acts as a broker offering its

customers the ability to rent cars provided by different car rental companies directly from

car parks at different locations. Suppose also that CRS is implemented as a service based

system that consists of a service composition process that interacts with:

■ Car information services (IS) which are provided by different car rental

companies, and maintain registries of cars, check car availability and allocate cars

to customers as requested by CRS.

■ Sensoring services (SS) which are provided by different car parks to sense cars as

they are driven in or out of car parks and inform CRS accordingly.

■ User interaction services (UI) that provide CRS with a front-end that handles

interactions with the end-users.

In a typical operational scenario, CRS receives car rental requests from UI services and

checks for the availability of cars by contacting IS services. If an available car can be

found at the requested location, CRS books the car rental through an IS service, and takes

payment. When cars move in and out of car parks, SS services inform CRS, which

subsequently invokes operations in IS services to update the availability status of the

moved car. In this scenario, CRS may wrongly accept a car rental request and allocate a

specific car to it if, due to malfunctioning of an SS service, the departure of the relevant

car from a car park has not been reported and, as a consequence, the car is considered to

be available by IS.

The five types of inconsistencies addressed in the literature and discussed in Section 2.3.3

are not enough to handle scenarios described above. Covering for possibilities like this

requires the introduction of types of requirements deviation beyond classical

inconsistency and the development of appropriate reasoning mechanisms for detecting

them.

78

• Instrumentation has been used to generate run time events in [Rob02, KanOO, KimOl,

Din02]. In service-based systems the generation of events through code instrumentation

may not be possible as the provider of the system might not have ownership of the

individual services which constitute it and individual services may change dynamically.

In CRS, for example, typically the SS and IS services won't be owned by the owner of

CRS. In addition, new instances of these services may be deployed when new car rental

companies and car parks make their offerings available to the system, and existing

instances may be withdrawn when companies and car parks stop their collaboration with

CRS. Also, although reflection could provide a general-purpose mechanism for obtaining

information about the state of individual services at run-time, it cannot be guaranteed that

all individual services will be implemented in languages with reflective capabilities.

Thus, monitoring may have to be based on events and state information that can be

obtained from the system co-ordinating component which can be reasonably assumed to

be in the ownership of the system provider. This restriction makes most of the existing

requirements monitoring techniques not applicable in the case of service-based systems.

In such systems, requirements for individual services may still be specified and

monitored but only if this is possible through events, which are known to the co-

ordinating component of the system, either because they can be captured directly at

runtime or because they can be deduced from runtime events.

• Requirements often specify temporal constraints over the behaviour of a system (e.g., a

system might be required to produce a response following the occurrence of a specific

event within a given time period). In service-based systems, the specification and

checking of these constraints must take into account the time required for the

communication between the interacting services. This time, however, is not negligible as

it is typically assumed in requirement specifications of centralised systems, and may vary

depending on the physical distribution of the services on different processors and/or

network communication delays.

2.5 Our Approach

In this section we present the basic aspects of our approach to build a monitoring framework

that could address the problems identified in Section 2.4 and that can be applied to monitor

requirements of Web Service based systems. Our approach assumes that a service-based

system is built as a collection of web-services, which are co-ordinated by a composition

process specified in BPEL [Bpe03]. It also assumes that, at run-time, a process execution

79

engine executes the BPEL composition process and delivers the functionality of the system.

Our framework accepts a monitoring policy as the input to the monitoring process. This

monitoring policy is expressed in XML and contains the specification of the formulas to be

monitored. We have defined a language to specify formulas and the language has a formal

grounding on even t ca lcu lu s (EC) [Sha99]. The monitoring policy may include four types of

formulas, namely (i) B ehavioura l P roperties (ii) F unctiona l P roperties (iii) Q uality o f Service

(Q oS) P roperties and (iv) A ssum ptions. These formula types are defined below:

(i) B ehavioura l p ro p erties - These represent alternative paths of the service composition

process of a service based system, and enable the monitoring of their execution at

run-time. These properties are automatically extracted from the specification of the

composition process in BPEL (see Section 2.5.1). Behavioural properties are checked

against the stream of events that indicates the behaviour of a service based system at

runtime in order to establish whether they are violated.

(ii) F unctiona l P roperties - These properties express functional requirements for the

individual services of a service based system or groups of such services such as pre-

conditions and post-conditions that must be satisfied before and after the execution of

operations of individual services. Functional properties are also checked against the

stream of events that indicates the behaviour of a service based system at runtime in

order to establish whether they are violated.

(iii) Q uality-o f-service properties - These properties express quality requirements for

individual services or groups of services such as reliability and performance

requirements for individual services or paths of the service composition workflow,

acceptable rates of denials of service by individual service operations and acceptable

rates of service availability. Like functional and behavioural properties, quality of

service are checked against the stream of events that indicates the behaviour of a

service based system at runtime in order to establish whether they are violated.

(iv) A ssu m p tio n s - These formulas express conditions that are used to generate additional

information about the expected service behaviour and its effect on the state of the

system. Assumptions are not checked at runtime against the stream of events that

indicates the behaviour of a service based system. Instead, they are used only to

deduce information about the state of the individual services which are deployed by

this system. In this capacity, assumptions constitute an effective mechanism for

getting information about the internal state of the services of a service based system

80

in cases where the instrumentation of such services is not allowed (due to service

ownership restrictions) or desired.

At run-time, the proposed framework obtains event occurrences by catching events which are

exchanged between the individual services and the co-ordinating component of the system

without requiring the modification of the code that implements these services or the existence

of reflective capabilities in them. Thus our approach is non in trusive from this aspect, i.e. it

performs the monitoring as a computational entity that is external to the system that is being

monitored. Monitoring is carried out in parallel with the operation of this system and does not

intervene with this operation in any form. The compliancy of the intercepted events is then

verified against the properties. The monitoring process checks whether the runtime behaviour

of the service based system violates its behavioural properties or the functional and QoS

requirements set for it. During this process, assumptions are used to generate additional

information about the expected service behaviour and its effect on the state of the system.

This effect is represented by special state variables that the users introduce. These external

state variables are different from the state variables defined in the composition process of the

system and enable the specification of properties for service based system (see Chapter 3).

The framework supports detection of different types of violations of requirements. These

types include

(i) violations of functional properties and quality-of-service properties by the recorded

behaviour of the service based system.

(ii) violations and potential violations of behavioural properties, functional properties and

quality-of-service properties by the expected system behaviour (i.e. the behaviour that

would have been exhibited by the system if all the functional properties and

assumptions assumed regarding the behaviour of individual services had been

satisfied)

(iii) cases of unjustified and potentially unjustified system behaviour that may arise due to

incorrect information about the state of the system that has led to the execution of

incorrect service orchestration paths.

Figure 2.15 shows the architecture of our monitoring framework [Mah04][Spa06]. As shown

in this figure this architecture incorporates eight main components. These components are: a

behavioura l p ro p erties extractor, an even t receiver, a m o n ito r m anager, a m onitor, a

81

m onitoring co n so le , a sim ulator, an even t da tabase hand ler and a fo rm u la da tabase handler.

The role and functionality of these components are overviewed below.

2.5.1 Behavioural Properties Extractor

The behavioural properties extractor extracts the behavioural properties to be monitored from

the specification of the composition process of service based systems expressed in BPEL.

Behavioural properties are extracted according to extraction patterns designed and are

represented in the XML-based language that we have defined to represent event calculus

formulas. The extraction mechanism is described thoroughly in Chapter 5. As a by-product of

this extraction, the properties extractor identifies events in the BPEL composition process of a

service based system which provide the primitive ingredients for specifying functional

properties, quality of service properties and assumptions. Functional properties, assumptions

and quality of service properties can be specified in terms of these monitorable event types by

the system provider using the p ro p erty ed ito r incorporated by the m onito ring console.

Figure 2.15: Architecture of the monitoring framework

82

2.5.2 Event Receiver

While executing the composition process of a service based system, the process execution

engine generates events, which are sent as string streams to the even t rece iver of our

framework. The event receiver identifies the type of the events that its input stream describes,

filters out events, which are irrelevant to the monitoring process and records all other events

in an even t da tabase. The events of the process execution engine, which are irrelevant, are

determined by the formulas that have been extracted or specified for monitoring by the

system provider. The mechanisms used to generate monitoring events are discussed in

Chapter 5.

2.5.3 Monitor

The m o n ito r processes the events, which are recorded in the even t da tabase by the event

receiver in the order of their occurrence, identifies other expected events that should have

occurred but have not been recorded (these are events that can be derived from the functional

properties and assumptions that the individual services of service based system are required to

satisfy), and checks if the recorded and expected events are compliant with the properties

which must be monitored for a system. In cases where a property is not consistent with the

recorded and the derived events, the monitor generates a devia tion report and records it in a

database. Information about deviations is recorded in XML. The monitoring algorithms

applied by the monitor are described in detail in Chapter 4.

2.5.4 Monitoring Console

The architecture of Figure 2.15 incorporates also a m onitoring conso le that gives access to the

monitoring service to human users. The monitoring console incorporates a p ro p erty ed itor

that presents system providers with predicates that signify the different types of monitorable

events that have been identified in the BPEL process of a service based system. System

providers can specify functional properties, quality of service properties and assumptions as

logical combinations of these event predicates. The property editor provides a graphical user

interface for specifying properties and checks their syntactic correctness. The monitoring

console also contains a devia tion v iew er that displays the deviations from the monitored

requirements. The user can browse the detected violations of the formulas and view the

details of each formula violation using the deviation viewer.

83

2.5.5 Monitor Manager

The m o n ito r m an a g er is the component that has responsibility for the initiation and

coordination of the monitoring process and reporting its results. Once it receives a request for

starting a monitoring activity as specified by a monitoring policy, it checks whether it is

possible to monitor the requirements specified in this policy given the BPEL process of the

service based system that is identified in the policy, and the event reporting capabilities

indicated by the type of the execution environment of the service based system. If the

requested properties can be monitored, it starts an event receiver to capture events from the

service based system execution environment and passes to it the events that should be

collected. It also sends to the monitor the formulas to be checked.

2.5.6 Simulator

The simulator is a component in our framework that can be used to generate monitoring

events by simulating a BPEL process. Elence it allows the system provider to monitor a

simulated BPEL process. Simulation can support the estimation of the time required for

monitoring specific properties before starting monitoring them against the real system

operations and assists system providers in making decisions about the allocation of such

properties to different monitors depending on such time estimates. A detail description of the

simulator is presented in Chapter 5.

2.5.7 Formula Database Handler

The fo rm u la da tabase h a n d ler maintains the communication between the formula database

and the other components of the monitoring framework. It allows the m o n ito r to store formula

instances in the database. It also allows the m o n ito r and the m o n ito r m a n a g er to retrieve

formula instances from the database.

2.5.8 Event Database Handler

The even t da tabase h a n d ler maintains the communication between the event database and the

other components of the monitoring framework. It allows the even t rece iver and the sim u la to r

to store events in the event data base. It also allows the m o n ito r to retrieve events from the

event database.

84

Chapter Three

Specification of Monitoring Policies

3.1 Overview

Our monitoring framework has been designed with the objective to support two different

monitoring scenarios for service based systems using a non intrusive approach. In the first of

the assumed monitoring scenarios (referred to as “Scenario 1” henceforth), a human user

(typically the provider of a service based system) can directly request the framework to

monitor whether the runtime operation of the system satisfies certain properties and view any

deviations from these properties as soon as they are detected. In the second scenario (referred

to as “Scenario 2” henceforth), the monitoring can be requested by the environment that

executes the composition process of a service based system or a computational entity acting

on its behalf for a certain period of time (or until further notice). In this scenario the service

based system execution environment or the computational entity that has requested the

monitoring has to poll the framework to retrieve any deviations of the properties which are

being monitored. In both these scenarios, the input to the monitoring framework is a

monitoring policy that contains the formulas to be monitored and other monitoring

parameters.

In Section 3.2 we introduce the monitoring policies used by our framework and define a

schema to specify such monitoring policies. In Section 3.3 we introduce the formal language

for specifying the monitorable properties and assumptions in our framework. This language is

based on event calculus [Sha99] and is called EC-Assertion. EC-Assertion is an XML based

language that is defined by an XML Schema that is founded upon the formal framework of

Event Calculus. Thus, it allows the specification of monitorable properties in a form that

makes it possible to check the validity of the formulas, process them and exchange the

formulas between different tools.

85

3.2 Policy Specification

As discussed in Section 3.1, the input to our monitoring framework is a monitoring policy.

This policy contains the formulas to be monitored and other monitoring parameters. More

specifically the policy specifies:

(i) The BPEL process of the service based system to be monitored and the WSDL

specifications of the web-services deployed by this process.

(ii) The formulas that should be monitored at runtime. Formulas in the monitoring policy

is optional in case of Scenario 1, since the system provider can use the monitoring

framework to extract the behavioural properties, and also to specify functional

properties, quality of service properties and assumptions.

o h schema [&

------[| po lic y T yp e jE -----------. .) b - -------------- 1 processSpecificatim

policy E

form u las l E l

CL1
monitoririgMode 0

polfinglnterval 10

eventSource IE

------(U processSpecificafionType^) B --------■ ■ *) ë 1-|----------- [bpelFile | B

- | wsdIFiles ~[b -

— (Q wsdlFilesType'jB -------- ---------------------------[wsdIFile 0

0.”
------ f \7 m o n ito iin g M od e T yp e^B ---------([X I restricts: x s rs fr in g ^B

------(' I I eventsourceType'j B -------- (4 » » ------1 bpelEngineName |B

-f ipAddress] b

-) port |,B

(Q wsdlFilesType^B

<m w sd F te ff«»

Figure 3.1: Graphical view of the monitoring policy schema

(iii) The mode of monitoring, i.e. whether the monitoring should be with respect to

recorded events only, or with respect to mixed (both recorded and derived) events.

See Chapter 4 for clarification.

(iv) The source of the events that will provide the information on which monitoring will

be based. The source of the runtime events is specified by an IP address and a port

86

number where the service based system’s execution environment will deliver the

stream of events at runtime to allow their collection by the monitoring framework.

(v) The mode of reporting any deviations of the monitored properties. The reporting

mode of a policy specifies the time between the generations of consecutive reports of

deviations.

To enable the specification of monitoring policies we have defined an XML schema

[Xml04a], a graphical view of which is shown in Figure 3.1. The textual description of the

elements of the policy schema is shown in Table 3.1. The complete schema is shown in

Appendix B.

Table 3.1. Textual description of the elements of the policy schema

Element Description
<xs:element name="policy"

type="policyType’7>
This is the element that is used to define a
monitoring policy in the XML document. It has
type policyType.

<xs:complexType name="policyType”>
<xs:sequence>
<xs:element

name="processSpecification"
type="processSpecificationType"/>

<xs:element name="formulas"
ty pe=" fn s : formulasT y pe "

minOccurs="0"/>
<xs:element name= ’ ’monitoringMode"

type="monitoringModeType"/>
<xs:element name="pollingInterval"

type="xs:long'7>
<xs:element name="eventSource"

type="eventSourceType’7>
</xs:sequence>

</xs:complexType>

This element defines the structure of a policy and
has following child elements: (i) a child element of
type processSpecificationType called
processSpecification which is used to describe the
BPEL process to be monitored, e.g. BPEL file
name, WSDL file names, (ii) an optional child
element of type formulasType called form ulas,
which is used to describe the formulas to be
monitored. This type is not defined within the
policy schema. It is defined as part of the schema
for expressing monitorable properties (see Section
3.3.5 for the definition of this type), (iii) a child
element of type monitoringModeType named as
monitoringMode which is used to describe the
monitoring mode, (iv) a child element of type long
called pollinglnterval, which is used to specify the
interval between the generations of consecutive
reports, (v) a child of type eventSourceType, called
eventSource, which is used to describe the event
source.

<xs:complexType
name="processSpecificationType">

<xs:sequence>
<xs:element name="bpelFile"

type="xs:string'7>
<xs:element name—"wsdlFiles"

type="wsdlFilesType"/>
</xs:sequence>

</xs:complexType>

This element defines the BPEL process to be
monitored. It has the following child elements: (i)
a child element of type string called bpelFile,
which is used to specify the reference to the BPEL
file for the process to be monitored, (ii) a child
element of type wsdlFilesType called wsdlFiles,
which is used to specify a list of WSDL files
involved in the BPEL process to be monitored.

<xs:complexType name="wsdlFilesType">
<xs:sequence>

<xs:element name="wsdlFile"
type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

This element specifies a list of references to
WSDL files. It has zero or more child elements of
type string called wsdlFile, each of these refers to
a WSDL file.

<xs:simpleType This element defines the monitoring mode of a

87

name="monitoringModeType">
<xs:restriction base="xs:string">
<xs:pattem value="recorded|mixed"/>

</xs:restriction>
</xs: simpleType>

policy. This mode can be either recorded or mixed
and signifies the type of the events which should
be used for monitoring.

<xs:complexType
name="eventSourceType">

<xs:sequence>
<xs:element name="bpelEngineName"

type="xs:string"/>
<xs:element name="ipAddress"

type="xs:string"/>
<xs:element name="port"

type="xs:int"/>
</xs:sequence>

</xs :complexT ype>

This element is used to describe the event source,
i.e. the component which will provide the
monitoring events and has the following child
elements: (i) a child element of type string called
bpelEngineName which is used to specify the type
of BPEL engine, (ii) a child element of type string
called ipAddress, which is used to specify the IP
address of a host, (iii) a child element of type int
called port which is used to specify a port number
in the host machine where the runtime events are
sent by the BPEL engine.

3.3 Property Specification

As discussed in Chapter 2, in our monitoring framework behavioural properties, functional

properties, QoS properties and assumptions are expressed in a language based on event

calculus [Sha99]. In this section we define this language which is named as EC-Assertion. We

introduce event calculus, explain the motivation behind the use of event calculus to represent

properties in our framework, present the types of events and fluents used in our framework

and describe the formula structure. We also describe a schema that allows the representation

of event calculus formulas in XML.

3.3.1 The Basics of Event Calculus

Event calculus (referred to as “EC” in the rest of this thesis) is a temporal logic language

based on first-order predicate calculus that can be used to represent and reason about the

behaviour of dynamic systems. In EC, this behaviour is specified in terms of events and

fluents.

An event is something that occurs at a specific instance of time and may change the state of a

system. A fluent is any property of the system whose value is subject to change over time and

fluent is a signifier of a system state. EC allows the specification of system events and the

time when they occur. It also allows the specification of initialisations and modifications of

system states in response to these events at specific times. In our framework, the specification

of behavioural properties, functional properties, QoS properties and assumptions uses the

following predicates:

88

■ Happens (e , t , (t l , t2)) - This predicate is a special case of the H appens

predicate of standard EC (see [Sha99]) signifying the occurrence of an event e of

instantaneous duration at some time t that is within the time range 9 l (t l , t2). This time

range must be specified for each time variable appearing in a H appens literal. Thus, the

predicate Happens(e , t , 9 v (t l , t 2)) in our framework is equivalent to the formula:

Happens'(e,t) a (t l < t) a (t < t2)

where Happens' (e , t) is the predicate that signifies an event occurrence in

standard event calculus.

■ Initially (f) - This is a standard predicate of EC signifying that a fluent f holds at

time 0 (i.e. at the beginning of a theory).

■ Initiates (e , f , t) - This is a standard predicate of EC signifying that a fluent f

starts to hold after the event e at time t.

■ Terminates (e , f , t) - This is a standard predicate of EC signifying that a fluent f

ceases to hold after the event e occurs at time t.

■ HoldsAt (f , t) - This predicate signifies that the fluent f holds at time t.

■ Clipped (t l , f , t 2) - This is a predicate signifying that a fluent f ceases to hold at

some time instance between t l and t2 . It differs from the standard EC

Clipped (tl, f, 12) in that in standard definition the boundaries t l and t2 are not

inclusive, but in our framework the boundaries t l and t2 are inclusive. This is because

we are using the special case of the Happens predicate introduced above and the

Clipped predicate is defined using this special Happens predicate (see axiom EC1

and EC9 below).

■ Declipped (t l , f , t 2) — This is a predicate signifying that a fluent f starts to hold at

some time instance between t l and t2 . It differs from the standard EC

Declipped (tl, f, 12) in that in standard definition the boundaries t l and t2 are

not inclusive, but in our framework the boundaries t l and t2 are inclusive. This is

because we are using the special case of the Happens predicate introduced above and

the Declipped predicate is defined using this special Happens predicate (see axiom

EC2 and EC9 below).

89

A specification in our framework must also be compliant with the following domain

independent axioms':

(EC1) C l i pp e d (t l , f , t 2) <= (3e , t) Happens (e , t , SI (t l , t2)) a
Te r m i n a t e s (e , f , t)

The axiom EC1 states that a fluent f is clipped (i.e. ceases to hold) within the time range

from t l to t2 , if an event e occurs at some time point t within this range and e terminates f .

(EC2) Dec l i pped(t l , f , t 2) <= (3e , t) Happens (e , t , SI (t l , t 2)) a
I n i t i a t e s (e , f , t)

The axiom EC2 states that a fluent f is declipped (i.e. it comes into existence) at some time

point within the time range from t l to t2 , if event e occurs at some time point t , between

times t l and t2 and fluent f starts to hold after event e at t .

(EC 3) H o l d s A t (f , t) <= I n i t i a l l y (f) a —iC lip p ed (0 , f , t)

The axiom EC3 states that a fluent f holds at time t , if it held at time 0 (i.e. at the beginning

of a theory) and has not been terminated between times 0 and t.

(EC4) HoldsAt(f , t 2) <= (3e , t l) Happens(e, t l , SI (t l , t 2)) a

I n i t i a t e s (e , f , t l) a —iCl ipped(t l , f , t 2)

The axiom EC4 states that a fluent f holds at time t2 , if an event e has occurred at some time

point t l before t2 which initiated f at t l and f has not been clipped between t l and t2 .

(EC5) - iH oldsA t (f , t2) <= (3 e , t l) Happens (e , t l , Si (t l , t2)) a

Te r m i n a t e s (e , f , t l) a —i D e c l i p p e d (t l , f , t 2)

The axiom EC5 states that a fluent f does not hold at time t2 , if there is an event e that

occurred at some time point t l before t2 which terminated fluent f and this fluent has not

been declipped at any time point from t l to t2 .

(EC6) H o ld sA t (f , t2) <= H o ld sA t (f , t l) a t l < t 2 a —iC lip p ed (t l , f , t 2) 1

1 All variables are assumed to be universally quantified in the axioms, unless specified explicitly.

90

The axiom EC6 fluent f holds at time t2 , if it held at time t l , where time point t l is

before time point t2 and fluent f has not been clipped between times t l and t2 .

(EC7) —iHoldsAt (f , t 2) <= —iH o ld s A t (f , t l) a (t l < t 2) a

—iD e c l ip p e d (t l , f , t 2)

The axiom EC7 states that a fluent f does not hold at time t2 , if it did not hold at some time

point t l before t2 and f has not been declipped since then.

(EC8) Happens(e,t , 9\ (tl, t2)) => (tl < t) a (t < 12)

The axiom EC8 states that the time range in a Happens predicate is inclusive of its

boundaries.

EC1-EC7 are axioms of the standard EC (see [Sha99]). EC8 is an axiom that is introduced in

our framework to restrict the validity of the time ranges specified for Happens literals.

3.3.2 Why Event Calculus

The selection of event calculus as the basis of the property specification language of our

framework has been motivated by the need to express the properties to be monitored in a

formal language with well-defined semantics allowing:

(a) Reasoning based on the inference rules of first-order logic. This is because studies

showed that first order logic has adequate expressive power to specify properties for wide

range of applications without increasing the complexity of the logic [BelOO] [Ijc04],

(b) The specification of temporal constraints, which are essential in specifying and verifying

temporal aspects of the execution of computer programs [Lam80] [Lam83], and therefore

servcie based systems which are the focus of this thesis.

Furthermore, EC offers several advantages over other formal languages from certain points of

view. More specifically, •

• During the execution of a system events occur instantaneously, whereas states represent

information that holds for a duration of time. The distinction between events and states is

91

very important for monitoring a system execution as it provides a natural way for

describing their behaviour. Our claim is based on the observation that typically even non

logic based specifications of software system behaviour are based on automata which

have a very similar notion of states and events that cause transitions (changes) between

states. EC provides a clear distinction between the events and fluents (states) of a system

by introducing a limited set of specific predicates unlike other temporal logic languages,

such as Computation Tree Logic (CTL) [Cla86][Var98] [VarOl], Linear Time Logic

(LTL) [Man95] [Var98] [VarOl], Propositional Temporal Logic (PTL) [Gab80] [BelOO]

or other variants of temporal logic languages [Tho91] [Dar93][Dar96][Pin94], which

allow the introduction of predicates with arbitrary meanings.

• The specification of changes of system states in expressing monitorable properties is also

significant, since our monitor uses state information to reason about the state of the

execution of the system. In addition to the clear distinction between events and fluents,

EC has a set of specific predicates (see Section 3.3.1) that signify the occurrence of

events and their effect on the initiation/termination of fluents (states).

• In most of the alternative temporal logic languages, including CTL [Cla86] [Var98]

[VarOl], LTL [Man95] [Var98] [VarOl], PTL [Gab80] [BelOO] and other variants [Dar93]

[Dar96] [Pin94], temporal constraints are expressed using temporal operators, which are

qualitative in nature and it is not possible to put specific boundaries on time [BelOO].

Unlike these languages, EC has an explicit time structure that allows users to specify

complex quantitative temporal relationships, such as temporal distances between events

and constraints regarding the duration of events in time units.

• EC offers a linear temporal structure that provides a more natural representation for

reasoning [Den95] [Den96], compared to some other temporal logic with branching time

like CTL [Cla86] [Var98] [VarOl]. Moreover the time structure in EC enables the

expression of both future and past properties, which is not permitted in some temporal

languages (e.g. PTL [Gab80] [BelOO]). •

• EC enables a more detailed representation of a process than other event-fluent centric

languages like situation calculus [Lev98] [Sow03]. For example multiple states and

events can be combined into a single situation in situation calculus, but EC always

defines the influences between individual events and fluents.

92

• Unlike pure state-transition representations, EC has an explicit time structure that does

not depend on any sequence of events under consideration. This feature of EC allows to

model a wide range of event driven systems, e.g. systems for which state space is infinite

[Mi 199] [Ale02]

3.3.3 Fluents and Events

Our EC based language uses special types of events and fluents to specify properties of SBS

systems. These types of fluents and events are described below.

3.3.3.1 Fluents

A fluent in our framework takes the form

valueO f(fluen t_var, va lue_exp) (I)

The meaning of this fluent is that the variable signified by f lu e n t_ v a r has the value value_exp .

When the fluent (I) appears in an In itia tes predicate its meaning is that flu e n t_ v a r is assigned

the value of value_exp . When it appears in a H oldsA t predicate it denotes an equality check

over the values of flu e n t_ v a r has the value value_exp , that is whether the value of flu e n t_ v a r

is equal to the value value_exp .

In fluent (I),

■ flu e n t_ v a r denotes a typed variable or a list of typed variables. The variable denoted by

flu e n t_ y a r may be an in terna l or an ex terna l variable. An internal variable is a variable in

the composition process of an SBS system. An ex terna l variab le is a variable introduced

by the user to represent the state of the SBS system at run-time. If flu e n t_ v a r has the same

name as a variable in the SBS composition process then it denotes this variable, and is

treated as an internal variable. In all other cases, flu e n t_ v a r denotes an external variable.

■ va lue_exp is a term that represents either a variable in the logic language of EC or a call to

an operation that returns an object of some type. The operation called by va lue_exp may

be a built-in operation of the monitoring framework or an operation that is provided by an

external web-service. If va lue_exp signifies a call to an operation, it can take one of the

following two forms:

93

- oc:S:0(_Oid,_Pi,...,_Pn) that signifies the invocation of an operation O in an external

service S.

- oc:self:0(_Oid,_Pi,...,_Pn) that signifies the invocation of the built-in operation O of

the monitor.

In these forms,

- __Oid is a variable whose value identifies the exact instance of O's invocation within a

monitoring session, and

- _Pt, ..., _P„ are variables that indicate the values of the input parameters of the

operation O at the time of its invocation.

The internal operations which may be used in the specification of fluents are shown in Table
3.2.

Table 3.2: Built-in operations for properties specification

Operation Description
add(nl:Real, n2:Real): Real This operation returns nl+n2
sub(nl:Real, n2:Real): Real This operation returns nl-n2
mul(nl:Real, n2:Real): Real This operation returns nl* n2
div(nl:Real, n2:Real): Real This operation returns nl/n2
append(a[]: list of <T>, e:T): list of <T>
where T is Real, Int or String.

This operation appends e to a[].

del(a[]: list of <T>, e:T): list of <T>
where T is Real, Int or String.

This operation deletes the first occurrence of e in a[].

delAll(a[]: list of <T>, e:T): list of <T>
where T is Real, Int or String.

This operation deletes all occurrences of e in a[].

size(a[]: list of <T>): Int
where T is Real, Int or String.

This operation returns the number of elements in a[].

max(a[]: list of <T>):<T>
where T is Real, Int or String.

This operation returns the maximum value in a[].

min(a[]: list of <T>):<T>
where T is Real, Int or String.

This operation returns the minimum value in a[].

sum(a[]: list of <T>):<T>
where T is Real or Int.

This operation returns the sum of the values in a[].

avg(a[]: list of <T>): <T>
where T is Real or Int.

This operation returns the average of the values in
all-

median(a[]: list of <T>):<T>
where T is Real, Int or String.

This operation returns the arithmetic median of the
values in a[].

mode(a[]: list of <T>): <T>
where T is Real, Int or String.

This operation returns the most frequent element in
an .

new(type_name: String):
Objectldentifier

This operation creates a new object instance of type
T and returns an atom that is a unique object
identifier for this object.

Calls to external and internal operations in fluents allow us to provide complex computations

which are necessary for checking certain properties within the reasoning process of the

monitoring framework (e.g. to compute the average or standard deviation of a series of

response times).

94

Typing Conditions for Fluents

A fluent expression valueOf(fluent_var, value_exp) is valid if and only if the type of

fluent_var is a subtype of the type of value_exp. The type of fluent_var and value_exp can be

either a primitive type (e.g. integer, string) or WSDL message type. We represent a WSDL

message type as a tree, since WSDL message is a part of XML document (i.e. WSDL

document) and XML can essentially be represented as tree [Xml97] [Abi97] [Min05]. The

tree is constructed by considering the BPEL variable that refers to WSDL message as the

root, primitive parts of the WSDL message as the leaf nodes and complex parts of the WSDL

message as non leaf nodes of the tree. Figure 3.2 shows a tree that represents a BPEL

variable. In the tree structure in Figure 3.2 the root is shown as rounded rectangle, non leaf

nodes are shown as circles and leaf nodes are shown as rectangles. A leaf is accessed by

combining all the part/message names from the root to the leaf, i.e. areaCocle in the tree in

Figure 3.2, is accessed as contact.phone.areaCode.

WSDL message definition
d e f i n i t i o n s xmlns:tsns=hltp://www.coniplex.types/........ >

< ty p e s >
< x s d :s c h e m a

ta r g e tN a m e s p a c e = ”h t tp : / /w w w . c o m p le x , ty p e s /"
x m ln s :x s d = " h t tp : / /w w w .w 3 .o r g /2 0 0 1 /X M L S c h e m a ">

< x s d :c o m p le x T y p e n a m e = ''p h o n e T y p e " >
< x s d :e le m e n t n a m e = ''a r e a C o d e " ty p e = " x s d : in t '7 >
< x s d :e le m e n t n a m e = ''n u m b e r ' ' ty p e = ''x s d : in t" />

< /x s d :c o m p le x T y p e >
< /x s d :s c h e m a >

< /ty p e s >
c m e s s a g e n a m e = " C o n ta c tT y p e ''>

< p a r t n a m e = ”n a m e " ty p e = ''x s d : s t r in g " />

< p a r t n a m e = ''p h o n e '' ty p e = " ts n s :p h o n e T y p e " />

< /m e s s a g e >

BPEL variable declaration
< p r o c e s s name=“X"xmlns:vns=http://www.complex.tvpes/ ..>

< v a r ia b le s >
< v a r ia b le n a m e = " c o n ta c t"

m e s s a g e T y p e = '' v n s : C o n ta c tT y p e " />
< /v a r ia b le s >

< /p r o c e s s >

< /d e f in i t io n s > __

_______________________Tree representation of the BPEL variable

Figure 3.2: Tree representation of BPEL variable

Given the tree representation of BPEL variable, the fluent valueOf(fluent_var, value_exp) is

valid as long as fluent_var is a sub tree isomorphism of the value_exp. Sub tree isomorphism

is defined as follows,

95

http://www.coniplex.types/
http://www
http://www.w3.org/2001/XMLSchema
http://www.complex.tvpes/

"Given two rooted trees G and H, there is a sub graph G' o f G (whose root is the root o f G)

such that there is an isomorphism between H and G' that maps the root o f H to the root o f G'

" [Tsu99] [Gib90].

Given the above definition of sub tree isomorphism, we explain the type validity condition of

valueOf(fluent_var, value_exp) with some examples below,

Case 1:

In the case of the trees for the variables Ml and M2, a fluent of the form valueOf(Ml, M2) is

valid, since Ml.x, Ml.P.y and Ml.P.z can be mapped to M2.x, M2.P.y and M2.P.Z

respectively.

Case 2:

In the case of variables Ml and M2 of case 2, a fluent of the form valueOf(Ml, M2) is

not valid, since there is no leaf in the tree representation of the value_exp (M2) that

Ml.u, Ml.P.w can be mapped to.

Case 3:

In the case of variables Ml and M2 of case 3, a fluent of the form valueOf(Ml, M2) is not

valid, since Ml.x can not be mapped to M2. P 1.x as they are not at the same level of the

respective tree.

96

If fluent_var denotes an external variable (i.e. a variable that is introduced by the user), the

specification of its type is deduced from the type of value_exp in a fluent specification. In this

case, if the variable appears in different fluents that use different value_exp terms, the above

type validity condition should be satisfied by the types of all the relevant value_exp terms. If

fluent_var denotes an internal variable, its type is determined by the specification of the

relevant variable in the composition process of the SBS system. In this case, the type validity

condition must be satisfied by the types of all the expressions value_exp that co-exist with

fluent_var in fluent specifications.

33.3.2 Events

Events in our framework represent exchanges of messages between the composition process

of an SBS system and the services co-ordinated by it and the assignment of values to internal

variables of the composition process of an SBS system. More specifically, events can be of

one of the following five types:

(i) Sendee operation invocation events - These are events that signify the invocation of an

operation in one of the partner services of an SBS system by the composition process

of it. Events of this type are represented by terms of the form

in:S:0 (_Oid, _P], _Pn)

where

■ in signifies this is a service operation invocation event;

■ O is the name of the invoked operation;

■ S is the name of the service that provides O,

■ _Oid is a variable whose value identifies the exact instance of O's invocation within

an operational SBS system session, and

■ -Pi, ■■■, _Pn are variables that indicate the values of the input parameters of O at the

time of its invocation.

97

(ii) Service operation reply events — These are events that signify the return from the

execution of an operation that has been invoked by the composition process of an SBS

system in one of its partner services. These events are represented by terms of the form:

ir: S:0 (__Oid)

■ ir signifies this is a service operation reply event.

■ O, S, _Oid, are as defined in (i).

Note that the values of the output parameters of such operations (if any) are represented

by fluents which are initiated by the above event and it has been explained in Section

5.2.2.2 in Chapter 5.

(iii) SBS operation invocation events - These are events that signify the invocation of an

operation in the composition process of an SBS system by one of its partner services.

These events are represented by terms of the form:

rc:S:0 (_Oid)

■ rc signifies this is a SBS operation invocation event;

* O, S, and 0,_0id are as defined in (i).

Note that, the values of the input parameters of such operations (if any) are represented

by fluents which are initiated by the above event and it has been explained in Section

5.2.2.2 in Chapter 5.

(iv) SBS operation reply events — These are events that signify the reply following the

execution of an operation that was invoked by a partner service in the composition

process of an SBS. These events are represented by terms of the form:

re:S:0 (_Oid, _Pj, ..., _P„)

where

■ re signifies this is a SBS operation reply event;

■ —Pi, -Pn are variables that indicate the values of the output parameters of O at

the time of its return, and

■ O, S, and _Oid are as defined in (i).

98

(v) Assignment events: These are the events that signify the assignment of a value to a

variable used in the composition process of an SBS system. These events are

represented by terms of the form,

as:aname(_aicl)

■ as signifies this is an assignment event;

■ aname is the name of the assignment in the composition process specification;

■ _aid is a variable whose value identifies the exact instance of the assignment within

an operational system session.

An assignment event initiates a fluent that represents the value of the relevant variable

as discussed in Section 5.2.2.2 in Chapter 5.

3.3.4 Formulas

Figure 3.3 presents the logical syntax of formula in our framework in Extended Backus Naur

Form (EBNF) [Sco93] [Iso96]. This definition defines the formal structure of a formula and

does not define the terminal symbols. The precise definition of a formula in our framework is

defined using XML schema [Xml04a]. A description of the schema is given in Section 3.3.5.

formula ::= {quantifiedTimeVariable}{quantifiedVariable}[body]head
body ::= logicalExpression
head ::= logicalExpression
logicalExpression ::= predicate | relationalPredicate

{(logicalOperator (predicate |
relationalPredicate | timePredicate))}

relationalPredicate ::= relationalOperand relationalOperator
relationalOperand

timePredicate ::= timeVariable relationalOperator timeVariable
relationalOperand ::= variable | operationCall | constantValue
relationalOperator "<" | ">" | "<=" | ">=" | "=" | "!="
logicalOperator ::= "A" | "v"

Figure 3.3: The formal definition of a fonnula in EBNF

A formula comprises the following major parts,

Body and Head: A formula must have a head, which signifies the consequence (implication)

of the formula. A formula may have a body, which signifies the antecedent (condition) of the

formula. Both the body and the head must have a predicate or a relational predicate, which

99

may be followed by zero or any number of relational predicate or time predicate or predicate,

each separated by a logical operator.

Logical Operator: A logical operator in a formula enables the logical combination of

predicate, relational predicate and time predicates. A logical operator can be a conjunctive

logical operator (a) or a disjunctive logical operator (v).

Predicate: A predicate in a formula can be any of the predicates introduced in Section 3.3.1.

It is discussed in Section 3.3.1 that predicates comprise events, fluents and time variables. In

our framework, quantification for all the time variables appear in a predicate (or in the

formula) should be explicitly specified. If the predicate represents a Happens predicate as it is

introduced in Section 3.3.1, the boundaries for the time ranges 9!(LB, UB) in the predicate

must be specified. If the variable t in such predicates is existentially quantified, at least one of

LB and UB must be specified by using: (i) constant time indicators, or (ii) arithmetic

expressions of time variables t' which appear in other Happens predicates of the same formula

provided that the latter variables are universally quantified, and that t appears in their scope. If

t is a universally quantified variable both LB and UB must be specified. Happens predicates

with unrestricted universally quantified time variables take the form

Happens (e , t , 91 (t , t)). These predicates express instantaneous events and are denoted

as unconstrained predicate. The Happens predicates for which the time ranges 91(LB, UB)

have been specified (as described above) are denoted as constrained predicates.

All the non time variables appear in a predicate (or in the formula) are typed variable. In case

of internal variable the type is defined in the specification (i.e. WSDL and BPEL file) of the

SBS system. In case of external variable the user defines the type of the variable. More over

non time variables should be quantified explicitly. If the quantifier for a non time variable is

not specified it is assumed to be universally quantified.

Time Predicate: Time predicates are used to express time conditions between time variables

in a formula by using the standard relational operators. A time variable in a formula signifies

a time instance. For example, the literal tl < t2 is true if tl is a time variable that signifies a

time instance that occurred before a time instance signified by the time variable t2, and the

literal tl = t2 is true if tl is a time variable that signifies the same time instance as signified

by the time variable t2.

100

Relational Predicate: Relational predicates are used to enable comparison among values of

non time variables, return values of operation calls and constant values by using standard

relational operators. More specifically,

■ to compare the values of two different non time variables in a formula, e.g. varl

> var2

■ to compare the return values of two different operation calls, e.g. oc:self:avg(list)

< oc:self:sub(vall, val2)

• to compare the value of a non time variable with the return value of an operation

call, e.g. varl < oc:self:add(vall, val2)

■ to compare the value of a non time variable with a constant value, e.g. varl < 100

■ to compare the return value of an operation call with a constant value, e.g.

oc:self:avg(list) < 100

As shown in Figure 3.3, both the relational predicates and the time predicates are expressed

using standard relational operators, these relational expressions in our framework must also

be compliant with the basic axioms of equality and inequality [BobOl],

3.3.5 Formula Specification in XML

In Section 3.3.4 we presented the logic-based syntax of a formula in our monitoring

framework. Our framework also supports specification of a formula in XML and this was

motivated from the consideration that specification of formula in XML would increase the

applicability of the framework. We have defined an XML schema to specify logic based

formulas in XML. A graphical view of the schema is shown in Figure 3.4. Table 3.3 presents

textual description of the key elements of the schema and the complete schema is presented in

Appendix A.

101

Figure 3.4: Graphical view of the formula schema

102

Table 3.3. T ex tu a l d e sc rip tio n o f k ey e lem en ts o f the fo rm u la S ch em a

Element Description
<xs:element name="formulas"

type= "formulasT y pe "/>
This is the element that would be used to define all
the formulas in the XML document. It has type
formulasType.

<xs:complexType name="formulasType">
<xs:sequence>
<xs:element name="formula"

type="formulaType" minOccurs="l"
maxOccurs=”unbounded”/>

</xs:sequence>
</xs:complexType>

This element defines a list of formulas. It has one
or more child element of type formulaType named
as formula.

<xs:complexType name="formulaType">
<xs:sequence>
<xs:element name="quantification"

type="quantificationType"
minOccurs="l"
maxOccurs="unbounded"/>

<xs:element name="body"
type= "body HeadTy pe "

minOccurs="0"/>
<xs:element name="head"

ty pe= " body HeadT ype "/>
</xs:sequence>
<xs:attribute name="formulaId”

type="xs:string" use="required"/>
</xs:complexType>

This element defines the structure of a formula. It
has a required attribute form ulald. It has child
elements in the following order: (i) at least one
child element of type quantificationType named as
quantification which is used to describe
quantification of variables, (ii) zero or one child
element of type bodyHeadType named as body
which is used to describe the body part of the
formula, (iii) one child element of type
bodyHeadType named as head which is used to
describe the head part of a formula.

<x s : comp lexTypename="bodyHeadType">
<xs:sequence>

<xs:element name="predicate"
type="predicateType"/>

<xs:sequence minOccurs="0"
maxOccurs="unbounded">

<xs:element name="operator"
type="operatorType"/>

<xs:choice>
<xs:element name="predicate"

ty pe="predicateTy pe "/>
<xs:element name="timePredicate"

ty pe= " ti mePredicateT y pe"/>
</xs:choice>

</xs:sequence>
</xs:sequence>

</xs:complexType>

This element defines the structure of head or body
of a formula. It has a child element of type
predicateType named as predicate which is used to
define a predicate in the formula, predicate is
followed by zero or more times (i) an element of
type operatorType which is used to describe a
logical operator (ii) an element of type
predicateType named as predicate or an element
of type timePredicateType named as
timePredicate.

<xs:complexType name="predicateType">
<xs:choice>

<xs:element name="happens"
type=" happensT y pe "/>

<xs:element name="initiates''
type="initiatesType"/>

<xs:element name="holdsAt"
type="holdsAtType"/>

<xs:element name="terminates"
type="terminatesType"/>

<xs:element name="clipped"
type="clippedType”/>

<xs:element name="declipped"
type="declippedType"/>

</xs:choice>

This element defines a predicate in a formula.
predicateType has two attributes (i) negated which
holds if the predicate is negated or not with default
value set to false, (ii) unconstrained which holds if
the predicate is unconstrained or not with default
value is set to false. This element has only one
child which could be any of the following types:
(i) happensType named as happens which is used
to represent EC happens predicate (ii)
initiatesType named as initiates which is used to
represent EC initiates predicate (iii) holdsAtType
named as holdsAt which is used to represent EC
holdsAt predicate (iv) terminatesType named as
terminates which is used to represent EC
terminates predicate (v) clippedType named as

103

<xs:attribute name="negated"
type="xs:boolean" default="false"/>

</xs:complexT ype>

clipped which is used to represent EC clipped
predicate (vi) declippedType named as declipped
which is used to represent EC declipped predicate

<xs : complexType name= " happensType ">
<xs:sequence>
<xs:choice>

<xs:element name="ic_term
"type="icTermType"/>

<xs:element name="ir_term"
type="irTermType"/>

<xs:element name="rc_term
" type=" rcTermType "/>

<xs:element name="re_term
"type="reTermType"/>

<xs:element name="as_term"
type= "asTermType"/>

</xs:choice>
<xs:element name="timeVar"

type="timeVariableType"/>
<xs:element name="fromTime"

type="TimeExpression"/>
<xs:element name="toTime"

type="TimeExpression”/>
</xs:sequence>

</xs:complexType>

This element is used to describe happens predicate
of EC formula. It has four child elements in the
following order: (i) a child element of type
IrTermType named as irjterm or of type
rcTermType named as rc_term or of type
asTermType named as as_term or of type
ictermType named as ic_term or of type
reTermType named as re je rm . This child element
is used to represent the event in the happens
predicate, (ii) a child element of type
timeVariableType named as timeVar which is used
to represent time, (iii) a child element of type
TimeExpression named as fromTime which is used
to represent the starting time of a time range, (iv) a
child element of type TimeExpression named as
toTime which is used to represent the finishing
time of a time range.

<xs : complexT ype name="rcT ermT y pe ">
<xs:sequence>
<xs:element name="operationName"

type="xs:string"/>
<xs:element name="partnerName"

type="xs:string"/>
<xs:element name="id" type=" xs:string "/>
</xs:sequence>

</xs:complexType>

This element is used to describe an event that
signifies the receipt of an invocation of an
operation from a partner service. It has three child
elements in the following order: (i) a child element
of type string named as operationName which
represents the name of the operation, (ii) a child
element of type string named as partnerName
which represents the name of the partner service
the operation belongs to. (iii) a child element of
type string named as id which holds the id of the
event.

<xs : complexT ype
name="timePredicateType">

<xs:choice>
<xs:element name=”TimeEqualTo"

type="TimeRelation"/>
<xs:element name="TimeLessThan"

type="TimeRelation"/>
<xs: e lement name= "TimeGreaterThan "

type="TimeRelation"/>
<xs:element

name="TimeLessThanEqualTo"
type="TimeRelation"/>

<xs:element
name="TimeGreaterThanEqualTo"

type="TimeRelation"/>
</xs:choice>

</xs:complexType>

This element is used to express relation between
two time values in the formula. It has one child
element of type TimeRealtion named as any of the
followings: (i) TimeEqualTo (ii) TimeLessThan
(iii) TimeGreaterThan (iv) TimeLessThanEqualTo
(v) TimeGreaterThanEqualTo

<xs : simpleType name= "operatorType">
<xs:restriction base="xs:string">

<xs:pattem value="and|or"/>
</xs:restriction>

</xs:simpleType>

This element is used to define a logical operator. It
is of type string and can have one of two possible
values, and or or.

<xs:complxType name="operationCallType">
<xs:sequence>

This element is used define call to external or
internal operations. . It has child elements in the

104

<xs:element name="name"
type="xs:string"/>

<xs:element name="partner"
type="xs:string" minOccurs="0"/>

<xs:element name="variable"
type="variableType"
minOccurs="0"

maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>

following order: (i) a child element of type string
named as name which represents the name of the
operation, e.g. sub, add etc. (ii) an optional child
element of type string named as partner which
represents the name of the partner service the
operation belongs to. (iii) zero or more child
elements of type variableType named as variable,
where each variable represents a parameter of the
operation.

<xs:complexType name="variableType">
<xs:sequence>
<xs:element name="varName"

type="xs:string"/>
<xs:choice>

<xs:sequence>
<xs:element name="varType"

type="xs:string"/>
<xs:element name="value"

type="xs:string" minOccurs="0"/>
</xs:sequence>
<xs:element name="array"

type="arrayType"/>
</xs:choice>

</xs:sequence>
</xs:complexType>

This element is used to define a non time variable.
It has child elements in the following order: (i) a
child element of type string, named as varName
that specifies the name of the variable, either (ii)
two child elements of type string named as
varitype and value that specifies type and value of
primitive type variable, or (iii) one child element
of type arrayType named as array that signifies
that the variable is an array.

3.3.6 Example Formula

Figure 3.5 demonstrates some valid formula in our framework. These formulas specify

functional property and quality of service property of a BPEL process called

R ateT rackerP rocess. This BPEL process allows a user to convert any amount from one

country currency to another country currency. The process receives two country names

(.cu rren cy1 and currency2) and the amount to be converted from the user and invokes a web

service, called C urrency E xchanger to perform the conversion. The web service

C urrencyE xchanger provides the operation getR a teR equest that receives two currency names

and the amount to be converted and it returns the converted value. The complete specification

of the R ateT rackerP rocess (i.e. the BPEL file and the WSDL files) is provided in Appendix

F.

Formula 1, in Figure 3.5 expresses a functional property of the C urrencyE xchanger web

service that specifies, given two countries and a fixed amount g e tR a teR equest should return

the same converted value. As discussed in Section 3.3.4 this formula is composed of a body

and a head. The body is composed of six pred ica tes and three rela tiona l p red ica tes , where

predicates and relational predicates are combined by conjunctive log ica l o p era to r (a). The

first three predicates (see predicates

105

Happens(in:getRateRequest(id1 ,currency21 ,currency11 ,numbed),t1,ifi(t1,t1)),

Happens(ir:getRateRequest(id1),t2,iffi(t1,t2)) and lnitiates(ir:getRateRequest(id1),

valueOf(value,value1),t2)) in the formula signify an invocation to the getR a teR equest operation

and the corresponding response from the g etR a terequest operation. The next three predicates

(see predicates Happens(in:getRateRequest(id2,currency22,currency12,number2,t3, :7ijt2,t3)),

Happens(ir:getRateRequest(id2),t4,yf(t3,t4)) and lnitiates(ir:getRateRequest(id2),

valueOf(value,value2), t4)) signify another invocation to the getR a teR equest operation and the

corresponding response from the getR a terequest operation.. The three relational predicates

(see relational predicates currecncy21 = currency22, currecncyll = currency12 and numbed =

number2) compare the values of the input variables of these two invocations. The head of the

formula is composed of a single rela tional p red ica te (see valuel = value2) that compares the

values returned by the getR a teR equest operation for the two invocations made in the body of

the formula. The quantifications for all the time variables appear in the formula are specified

explicitly at the beginning of the formula.

Formula 1: (V t1: Time) (3 t2, t3, t4: Time)
Happens(in:getRateRequest(id1 ,currency21 ,currency11,numbed),t1 ,i^t1 ,t1)) a
Happens(ir:getRateRequest(id1),t2, ,t2)) a

lnitiates(ir:getRateRequest(id1), valueOf(value,valuel),t2) a
Happens(in:getRateRequest(id2,currency22,currencyl 2,number2,t3,Vi1(t2,t3)) a
Happens(ir:getRateRequest(id2),t4,?f(t3,t4)) a
lnitiates(ir:getRateRequest(id2), valueOf(value,value2), t4) a

currecncy21 = currency22 a currecncyl 1 = currency12 a numberl = number2 => valuel = value2

Formula 2: (V t1: Time) (3 t2: Time)
Happens(in:getRateRequest(id, currency2,currency1,number),t1,2i(t1,t1)) a

Happens(ir:getRateRequest(id),t2,i?il(t1 ,t2)) => oc:self:sub(t2,t1) < Vo

Figure 3.5: Example formula in logic based syntax

Formula 2, in Figure 3.5 expresses a quality of service property of the C urrencyE xchanger

web service that specifies, the response time of the getR a teR equest operation should be less

than some predefined constant value. This formula is also composed of a body and a head.

The body is composed of two pred ica tes, where predicates are combined by conjunctive

log ica l o pera to r (a). The first predicate (see predicate

Happens(in:getRateRequest(id1,currency21 .currency'll, numberl), t1,50(t1,t1)),) in the formula

signify an invocation to the getR a teR equest operation. The next predicates (see predicate

Happens(ir:getRateRequest(id2),t1,.9p(t1,t2))) signify the corresponding response from the

g etR a terequest operation. The head of the formula is composed of a single rela tional

p red ica te (see ociself:sub(t2,t1) < Vo). This relational predicate involves an internal operation

all, where the operation computes the response time of the gerR ateR esponse operation and the

computed value is compared to a constant value. The quantifications for all the time variables

appear in the formula are specified explicitly at the beginning of the formula.

106

The XML representation of Formula 2, is shown in Figure 3.6.

<formulas xmlns="http://tempuri.org/ec/formula"> <ir_term>
<formula formulald="Formula_2" forChecking=”true"> <operationName>getRateRequest

«quanti fi cation> </operationName>
<quantifier>forAII</quantifier> «partnerName>CurrencyExchanger
<timeVariable> </partnerName>

<varName>t1 </varName> «id>vlD2«/id>
<varType>TimeVariable«/varType> </ir_term>

</timeVariable> <timeVar>
</quantification> <varName>t2«/varName>
<quantification> «varType>TimeVariable«/varType>

<quantifier>existential</quantifier> «/timeVar>
<timeVariable> <fromTime>

<varName>t2</varName> <time>
<varType>TimeVariable</varType> <varName>t1 «/varName>

</timeVariable> <varType>TimeVariable
</quantification> «/varType>
<body> </time>

«predicate negated=“false" </fromTime>
unconstrained="true"> «toTime>

<happens> <time>
<ic term> «varName>t2«/varName>

<operationName>getRateRequest «varT ype>TimeVariable
</operationName> </varType>

<partnerName>Currency Exchanger «/time>
</partnerName> «/toTime>

<id>vlD1 </id> </happens>
«variable persistent="false” «/predicate>

forMatching="true"> </body>
«varName>currency2«/varName> «head>
«varType>string«/varType> <relationalPredicate>

</variable> <lessThan>
«variable persistent^"false" «operandi >

forMatching="true"> <operationCall>
<varName>currency1 </varName> <name>sub«/name>
«varType>string«/varType> <partner>self«/partner>

«/variable> «variable persistent="false"
«variable persistent='lfalse1' forMatching="false“>

forMatching=”true"> <varName>t2«/varName>
<varName>number«/varName> «varType>long«/varType>
«varType>int«/varType> </variable>

</variable> «variable persistent="false"
</ic_term> forMatching="false">

<timeVar> «varName>t1 </varName>
«varName>t1 </varName> «varType>long«/varType>
«varT ype>TimeVariable«/varT ype> «/variable>

«/timeVar> </operationCall>
<fromTime> «/operandi >

<time> «operand2>
«varName>t1 </varName> «constant>
<varType>TimeVariable«/varType> «name>Vo«/name>

</time> <value> 1000</value>
</fromTime> </constant>
<toTime> </operand2>

<time> </lessThan>
<varName>t1 «/varName> <timeVar>
<varType>TimeVariable«/varType> <varName>t2«/varName>

«/time> «varType>TimeVariable«/varType>
</toTime> </timeVar>

</happens> </relationalPredicate>
</predicate> «/head>
<operator>and«/operator> «/formula>

«predicate negated="false" unconstrained='‘false'‘> </formulas>
«happens>

Figure 3.6: Example formula in XML

107

http://tempuri.org/ec/formula

Chapter Four

Property Deviations and the Monitoring Scheme

4.1 Overview

In Chapter 2 of this thesis, we discussed the basic shortcomings of existing software

requirement monitoring techniques in handling the monitoring of properties for service based

systems and argued about the need for introducing types of deviations from monitoring

properties that go beyond classical inconsistency and developing reasoning mechanisms to

detect them.

In this chapter, we introduce the types of property deviations that are important to detect in

service based systems and define the algorithms underpinning the reasoning mechanism that

detect them. We also introduce an example of a service based system that is used to explain

new deviation types.

4.2 An Example of a Service Based System

To demonstrate the need for the types of property deviations which may arise in service based

systems, and clarify their meaning we use an example of a service based system that will be

referred to as C ar R enta l System (or shortly “CRS”) in the rest of this thesis. The stmcture of

the Car Rental System is shown in Figure 4.1.

This system acts as a broker offering its customers the ability to rent cars provided by

different car rental companies directly from car parks at different locations. CRS is

implemented as a service composition process, which interacts with C ar In form ation Services

(IS), C ustom er M an a g em en t Service (CMS), U ser In teraction S en d ees (UI) and Sensoring

Services (SS).

108

Figure 4.1: Structure of the car rental system (CRS)

These services realise the following functionalities within CRS:

■ The C ar in form ation services (IS) are provided by different car rental companies to

maintain registries of cars that can be rented, check car availability upon car rental

requests and allocate cars to customers as requested by CRS.

■ The Sensoring services (SS) are provided by different car parks to detect movements of

cars as they are driven in or out of car parks and inform CRS accordingly.

■ The C ustom er M a nagem en t Service (C M S) maintains the database of the customers of

CRS and authenticates these customers as requested by CRS.

■ The U ser in teraction services (UI) provide CRS with different user interfaces that handle

interactions with the end-users.

Typically, CRS receives car rental requests from UI services, authorises customers contacting

CMS and checks for the availability of cars by contacting IS services, and gets car movement

information from SS services.

Figure 4.2 and Figure 4.3 show a partial specification of CRS service based system expressed

in EC formulas. As we introduced in Chapter 2 the specification of a service based system

includes four different types of formulas, namely behavioura l p roperties, fu n c tio n a l

properties, qua lity o f service p ro p erties and assum ptions.

Figure 4.2 shows specifications of three behavioura l p ro p erties of CRS service based system

expressed in EC. As introduced in Chapter 2, behavioural properties alternative paths of the

109

service composition process and they signify properties with respect to the whole composition

process. In the EC formulas that define these properties (and all the other EC formulas which

are used in this Chapter),

■ Non-time variables are assumed to be universally quantified and their name is preceded

by an underscore (see _pID in the behavioural property BP1 in Figure 4.2 for example)

■ Time variables are of the form tl,t2,...,tn and explicitly quantified

■ tu refers to the minimum time between the occurrences of two events and is specified by

the system provider.

Behavioural properties:

(BP1) (V t1 Time) (3t2:Time) (3t3:Time)
Happens(rc:UI:CarRequest(_olD1),t1,9l(t1 ,t1)) a
lnitiates(rc:UI:CarRequest(_olD1), valueOf(info.p,_plD),t1) a
Happens(in:IS:FindAvailableCar(_olD2, _plD),t2, 9\(t1,t2)) a

Happens(ir:IS:FindAvailableCar(_olD2),t3, 9\(t2,t3)) a lnitiates(ir:IS:FindAvailableCar(_olD2),
valueOf(info.v,_vlD),t3) => (3t4:Time) Happens(re:UI:CarRequest(_olD3,_vlD, _plD) t4,
9?(t3,t3+3*tu))

(BP2) (V t1 :Time) (3t2:Time)
Happens(re:UI:CarRequest(_olD1,_vlD, __plD),t1,9t(t1,t1)) a Happens(rc:SS:Depart(_olD2),t2,
9\(t1 ,t1+6*tu) a lnitiates(rc:SS:Depart(_olD2),valueOf(info.v, _vlD),t2) a

lnitiates(rc:SS:Depart(_olD2),valueOf(info.p, _plD),t2) =>
(3t3:Time) Happens(in:IS:MakeUnAvailable(_olD3,_vlD,_plD)),t3, 9\(t1+7*tu,t1+7*tu))

(BP3) (V t1 :Time) (3t2:Time)
Happens(re:UI:CarRequest(_olD1,_vlD, _plD),t1, 9i(t1,t1)) a

-, Happens(rc:SS:Depart(_olD2),t2, 9 t (t 1 , t 1 + 6 * t u)
(3t3:Time) Happens(in:IS:MakeAvailable(_olD3,_vlD,_plD))t3, 9l(t1 +7*tu,t1 +7*tu))

Figure 4.2: Behavioural properties of the car rental system

The formulas in Figure 4.2 specify behavioural properties of CRS which as we discussed in

Chapter 2 are automatically extracted from the specification of the composition process of it

that is expressed in BPEL:

■ The formula BP1 specifies that when CRS receives a request for renting a car from a UI

service (see the predicate Happens (rc:UI ¡CarRequest (_oIDl) , tl, 91 (tl, tl)) in the

formula), it will invoke the operation FindAvailableCar in the IS service to search for

available cars (as specified by the predicate

Happens (in: IS : FindAvailableCar (_oID2 , _pID) , t2,91 (tl, t2))) and will report any

cars which are identified by this operation back to the UI service within 3 time units (as

specified by the predicate Happens (re :UI: CarRequest (_oID3,_vID) ,t4,

9? (t3 , t3+ tu)) in the formula) it receives a response from the IS service.

110

■ The formula B P 2 specifies that when CRS replies to a car request made by UI service that

signifies the release of a car key to a customer (see the predicate

Happens(r e :UI:CarRequest(_oIDl,_vID, _p ID),tl, 9 l (t l , t l)) in the formula), it

waits for an event signifying the exit of the car from the car park for 6 time units (this

message is to be sent by SS, see the predicate Happens (rc:SS: Depart (_oiD2) ,t2 ,

9 t(ti, ti+6*tu) in the formula). If the latter event occurs, CRS invokes the IS to mark

the relevant car as unavailable as specified by the predicate

Happens (in: IS :MakeUnAvailable (_oID3 ,_vID,_pID)) , t3 , 91 (tl+7*tu, tl+7*tu)) in

the formula.

■ The formula B P 3 specifies that when CRS replies to a car request made by UI service that

signifies the release of a car key to a customer (see the predicate

Happens (re : UI : CarRequest (_oIDl ,_vID, _pID),tl, SH (tl, tl)) in the formula), it

waits for an event signifying the exit of the car from the car park for 6 time units (this

message is to be sent by SS, see the predicate Happens (rc:SS: Depart (_oiD2) ,t2,

9t(ti, ti+6*tu) in the formula). If the latter event does not occur, CRS invokes the IS to

mark the relevant car as available as specified by the predicate

Happens (in: IS : MakeAvailable (_oID3 , _vID, _pID)),t3, 9i(tl+7*tu,tl+7*tu)) in the

formula.

In Figure 4.3, we also show EC formulas that specify some of the fu n c tio n a l p ro p ertie s ,

qua lity o f service p ro p erties and assum ptions of the CRS. As discussed in Chapter 2,

functional properties signify functional requirement of a service of group of services deployed

by the composition process. Also, as it may be recalled from Chapter 2, assumptions are used

to generate additional information about the expected service behaviour and its effect on the

state of the system. More specifically in this example,

■ The formula FP1 specifies a functional property regarding the correctness of the

behaviour of the sensoring services used by CRS. According to it, if a car is sensed to

enter a car park at some time t l as reported by the call of the operation E n ter in C RS by a

sensoring service SS (see the predicate Happens(rc:SS:Enter(_oiDl), tl,9l(tl,tl)))

and later at some time t2 the same car is sensed to enter in the same or a different car park

(see the predicate Happens (rc: ss: Enter (_oiD2), t2,9t (ti+tu, t2))), then the departure

of the relevant car from the first car park must have also been reported to CRS by SS

between the two events that notify the entrance of the car in the car parks (see the

predicate Happens (rc : SS: Depart (_oID3) , t3,9t(tl+tu, t2-tu))).

I l l

Functional properties:

(FP1) (V t1:Time) (3 t2:Time) Happens(rc:SS:Enter(_olD1),t1,9i(t1,t1)) a
lnitiates(rc:SS:Enter(_olD1), valueOf(info.v, _vlD), t1) a
lnitiates(rc:SS:Enter(_olD1), valueOf(info.p, _plD1), t1) a
Happens(rc:SS:Enter(_olD2),t2,9l(t1 +tu,t2)) a
lnitiates(rc:SS:Enter(_olD2), valueOf(info.v, _vlD), t2) a

lnitiates(rc:SS:Enter(_olD2), valueOf(info.p, _plD2), t2) => (3t3:Time)
Happens(rc:SS:Depart(_olD3),t3,9t(t1+tu,t2-tu)) a

lnitiates(rc:SS:Depart(_olD3), valueOf(info.v, _vlD), t3) a
lnitiates(rc:SS:Depart(_olD3), valueOf(info.p, _plD1), t3)

(FP2)(V t1:Time) (3 t2:Time) Happens(in:IS:FindAvailableCar(_olD,_plD), t1, 9t(t1,t1)) a
Happens(ir:IS:FindAvailableCar(_olD), t2, 9t(t1,t2)) a (3 _c:Car)
HoldsAt(valueOf(_c.carlD, _vlD), t2 -tu) a
HoldsAt(valueOf(_c.availability, "not available"), t2—tu) =>
—ilnitiates(ir:IS:FindAvailableCar (_olD), valueOf(info.v, _vlD), t2)

(FP3) (V t1 :Time) (3 t2, t3:Time) (3 _c:Car) Happens(in:UI:RelKey(_olD1 ,_vlD), t1,91(11, t1)) a
Happens(ir:UI:RelKey(_olD1), t2, 9t(t1, t2)) a

Happens(rc:lll:RetKey(_olD2),t3,9t(t2,t3)) a

lnitiates(rc:UI:RetKey(ID), valueOf(info.v, _vlD),t3) a
lnitiates(rc:UI:RetKey(ID), valueOf(into.p, _plD),t3) a (t2 < t4) a (t4 < t3)=>
HoldsAt(valueOf(_c.carlD, _vlD), t4) a
HoldsAt(valueOf(_c.availability, "not available"),t4)

(FP4) (V t1:Time)Happens(rc:SS:Enter(_olD1),t1,9l(t1,t1)) a
lnitiates(rc:SS:Enter(_olD1),valueOf(info.v,_vlD),t1) a

lnitiates(rc:SS:Enter(_olD1),valueOf(info.p,_plD),t1) => (3t2:Time)
Happens(rc:UI:RetKey(_olD2),t2, 9l(t1+tu,t1+10*tu)) a
lnitiates(rc:UI:RetKey(_olD2),valueOf(lnfo.v, _vlD),f2) a
lnitiates(rc:UI:RetKey(olD2),valueOf(lnfo.p, _plD),t2)

Quality of service properties:

(QP1)(V t1:Time) (3t2:Tlme) Happens(in:IS:FlndAvailableCar(_olD1, _plD),t1,9t(t1,t1)) a
Happens(ir:IS:FindAvailableCar(_olD1),t2, 9l(t1,t2)) => oc:self:sub(t2, t1) < 1

(QP2) (V t:Time) (t < 0) a (t > 86400) a (3 _x: list of Real) HoldsAt(valueOf(FindAvailableCarRT, _ x), t)
=> oc:self:avg(_x) < 1

Assumptions:

(A1) (FindAvailableCarRT: list of Real) (V t1:Time) (3t2:Time)
Happens(in:IS:FindAvailableCar(_olD1, _plD),t1,91 (Ts, T e)) a

Happens(ir:IS:FindAvailableCar(_olD1),t2, 9\(t1,t2)) a
HoldsAT(valueOf(FindAvailableCarRT, _ x), t2) =>
lnitiates(ir:IS:FindAvailableCar(_olD1), valueOf(FlndAvailableCarRT, oc:self:append(_x,
oc:self:sub(t2, t1)), t2)

(A2) (V t1:Time) (3 t2:Tlme) Happens(in:UI:RelKey(_olD1 ,_vlD), t1,9\(t1, t1)) a

Happens(lr:UI:RelKey(_olD1), t2, 9?(t1, t2)) a (3 _c:Car) HoldsAt(valueOf(_c.carlD, _vlD), t2)
=> lnitiates(ir:UI:RelKey(_olD1), valueOf(_c.availability, "not available"), t2 + tu)

(A3) (V t1 :Time) (3 t2:Time) Happens(ln:UI:RelKey(_olD1 ,_vlD), t1,9\(t1, t1)) a -.(3 _c:Car)
HoldsAt(valueOf(_c.carlD, _vlD), t1) =>
lnitiates(in:UI:RelKey(_olD1), valueOf(oc:self:new(Car).carlD,_vlD, t1)

(A4) (V t1:Time) (3 _c:Car) Happens(rc:UI:RetKey(_olD1), t1,9t(t1, t1)) a

lnitiates(rc:UI:RetKey(_olD1), valueOf(lnfo.v, _vlD), t1) a HoldsAt(valueOf(_c.carlD, _vlD), t1) =>
lnitiates(lr:UI:RelKey(_olD1), valueOf(_c.availability, "available"), t1 + tu)

(A5) (V t1:Time) Happens(rc:UI:RetKey(_olD1), t1,9t(t1, t1)) a
lnitiates(rc:UI:RetKey(_olD1), valueOf(info.v, _vlD), t1) a
—i(3 _c:Car) HoldsAt(valueOf(_c.carlD, _vlD), t1) =>

_____ lnitiates(rc:UI:RetKey(_olD1), valueOf(oc:self:new(Car).carlD,„vlD, t1)______________________

Figure 4.3: Functional properties, assumptions and QoS properties of the car rental system

112

■ The formula FP2 in Figure 4.3 expresses a functional property for the operation

FindAvailableCar of the IS service. According to this requirement, FindAvailableCar

should not return the identifier of a car that is not considered to be available. In this

formula, car availability is indicated by the user defined state variable (i.e. a variable that

is not declared in the composition process of the system) that has been introduced to

record car availability and represent the effect of different system events on to it. The

value of this variable is determined by events that signify the release of car keys to

customers and the returns of these keys as defined by the assumptions A2-A5. More

specifically, according to A2, the release of the key of a car will make this car unavailable

and according to A4, the return of the key of a car will make this car available again. The

formulas A3 and A5 are used to create a special object to represent the availability status

of a specific car within the monitoring process.

A new object is created to represent this availability only if no such object has been

created before. It should be noted that the availability status of the car as recorded by this

variable may be different from the availability status of the same car as recorded by the IS

service of CRS. This is because the monitor has its own knowledge about the state of the

system that is determined by the assumptions made and which is not necessarily the same

as the real system state.

■ The formula FP3 specifies a functional property regarding the availability status of a car.

According to this, if a car key is released at a time point (see the predicates

Happens(in:U I:RelKey(_oIDl,_vID), t l ,9 t (t l , t l)) and

Happens (i r :u i :RelKey(_oiDl), t2 , 91 (t l , t2))) and the same car key is returned at

some time point later, (see the predicates
Happens(rc:UI:RetKey(_oID2) , t3 , 91 (t2 , t3)),Happens(rc:UI:RetKey(_oID2) , t3 ,

91 (t2 , t3)) and Initiates(rc:U I:RetKey(ID) , valueOf(in fo .p, _pID), t3)) then

the car is not available between these two time points (see the predicates

HoldsAt(valueOf(_c.carlD, _vID), t4) and HoldsAt(valueOf(_c.a v a i la b i l i ty ,

"not av a ilab le") , t4)).

■ The formula FP4 specifies a functional property that signifies if a car enters a car park

(see the predicate Happens (rc :ss¡E n te r(_o i d i) , ti,9 f (t l , t l))) , the key of the car

should be returned within the next 10 time units (see the predicate

Happens (rc : UI: RetKey (_oID2) ,t2 , 9 i(tl+ tu, t l + 10*tu))).

113

Figure 4.3 also shows examples of quality of service properties expressed in EC. As

introduced in Chapter 2, quality of service properties signifies quality requirements of the

composition process or a service/group of services deployed by the composition process.

More specifically,

■ The formula QP1 specifies that the response time of the operation F indA va ilab leC ar of

the IS services should be always less that 1 second (assuming that time is recorded in

seconds). It should be noted that this formula calls the internal operation s u b (t2 ,tl) of the

monitor to compute the response time of F indA va ilab leC ar (see the term

oc:self:sub(t2,tl) in the relational predicate of the formula).

■ The formula Q P2 specifies that the average response time of the operation

F indA va ilab leC ar of the IS services at any point in the first hour of the operation of a

system (i.e., the period from 0 to 86400 assuming that time is recorded in seconds) should

be less that 1 seconds. This formula calls the internal operation avg(a). This operation

calculates the average response time of F indA va ilab leC ar using the recorded response

times of this operation stored in the list F indA va ilab leC arR T (F in d A va ila b leC a rR T is a

user defined variable). The recording of the response times of the operation

FindAvailableCar in the list F indA va ilab leC arR T is performed by the formula A1 that is

an assumption used to initialize F indA va ilab leC arR T to a new list of recorded times that

includes the newly observed response time.

4.3 Property Deviations

Assuming a set of behavioural properties Bs, a set of QoS properties Qs, a set of functional

properties Fs and a set of assumptions A s all expressed in the restricted form of the event

calculus that we introduced in Chapter 3, we define five different types of deviations from a

requirements specification, Bs u Qs u F s, of a service-based system [Mah04][Spa04][Spa06].

These types of deviations are: (i) inconsistency of recorded behaviour; (ii) inconsistency of

expected behaviour; (iii) unjustified behaviour; (iv) possible inconsistency of expected

behaviour; and (v) potentially unjustified behaviour. These types of deviations are defined in

terms of the recorded and expected behaviour of a system, which are defined as follows:

Definition 1: The recorded behaviour of a system S at time T, E r (T), is a set of event, and

fluent initiation or termination literals of the forms: Initally(f), Happens(e,t,91(t,t)) and

Initiates(e,f,t) that have been recorded during the operation of S and for which 0 < t, t < T ,

114

and the set of HoldsAt, Terminates literals that can be derived from them due to the axioms

of EC.

The expected behaviour of a system with respect to a subset Rs of the functional properties

and the assumptions of it includes the literals of its recorded behaviour and any other event or

fluent initiation, termination and holding literals that can be derived from them and the

formulas in Rs, or formally:

Definition 2: The expected behaviour of a system S given a subset Rs of its functional

properties and assumptions (Rs c (Fs u As)) at time T is a set of events Eu(Rs,T) that is

defined as: Eu(Rs,T) = {e |(/g Rs) and {ER(T),/}|=nf e}, where |=nf signifies entailment using

the normal rules of inference of first-order logic and the principle of negation as failure

[Cla78],

According to Definition 2, the unrecorded expected behaviour of a system at time T given a

set of formulas Rs includes events, which can be derived from the formulas in Rs.

4.3.1 Inconsistency of Recorded Behaviour

An inconsistency between the recorded behaviour of a system 5 and a functional property or

QoS property of S at time T is defined as follows:

Definition 3: A functional property or a QoS property f of the form/: C=>A is inconsistent

with the recorded behaviour of a system S until time t if and only if: {ER(t)} |=nf —i/, where

|—nf signifies entailment using the normal rules of inference of first-order logic and the

principle of negation as failure.

Definition 3 establishes a classic notion of inconsistency in system behaviour that can be

detected by checking whether the negation of a formula is entailed by the recorded run-time

behaviour of a system. To this end, it is equivalent to the notion of inconsistency discussed in

[Fea98]. It should be appreciated that inconsistency of recorded behaviour may only be

detected with respect to QoS property or functional property, but not behavioural properties.

This is because the latter are automatically extracted from the source code of the composition

process and thus they represent definite sequences of events in the process execution.

Therefore, they may be violated only if the process ceases to be alive. For example consider

the behavioural property BP2 in Figure 4.2, let CRS replies to a car request made by UI

service and receives an event from SS that signifies the exit of the car from the car park

within 6 time units, but CRS goes down before invoking the IS to mark the relevant car as

115

unavailable. In such a situation BP2 will be detected as inconsistent with the recorded

behaviour of the system.

Example. Suppose that the log of events of a system includes the literals shown in Figure

4.41. Given this event log, the recorded behaviour of CRS is inconsistent with the functional

property FPL which is about the SS service of the system. This is because there are two

events that signify the entrance of vehl first to car park loci at T=1 (see literals L1-L3 in

Figure 4.4) and, subsequently, to car park loc3 at T-21 (see literals L4-L6 in Figure 4.4) but

no depart event in between them to signify the departure of vehl from loci. This

inconsistency demonstrates a functional problem of the sensoring service at the car park loci.

L1 : Happens(rc:SS:Enter(op1), 1,91(1,1))
L2: lnitiates(rc:SS:Enter(op1), valueOf(info.v,veh1),1)
L3: lnitiates(rc:SS:Enter(op1), valueOf(info.p,loc1),1)
L4: Happens(rc:SS:Enter(op2),27,91(27,27))
L5: lnitiates(rc:SS:Enter(op2), valueOf(info.v,veh1),27)
L6: lnitiates(rc:SS:Enter(op2), valueOf(info.p,loc3),27)
L7: Happens(in:UI:RelKey(op3, veh2),28, 91(28,28))
L8: Happens(ir:UI:RelKey(op3), 29, 91(29,29))
L9: Happens(rc:UI:CarRequest(op4),30, 91(30,30))
L10: lnitiates(rc:UI:CarRequest(op4),valueOf(info.p,loc3),30)
L11: Happens(in:IS:FindAvailableCar(op5,loc3),31,91(31,31))
L12: Happens(ir:IS:FindAvailableCar(op5),33, 91(33,33))
L13: lnitiates(ir:IS:FindAvailableCar(op5), valueOf(info.v,veh1),33)
L14: Happens(re:lll:CarRequest(op6,veh1,loc3), 33, R(33,33))
L15: Happens(in:IS:MakeAvailabe(op7,veh1 ,loc3), 40, R(40,40))
L16: Happens(rc:UI:CarRequest(op8),41,91(41,41))
L17: lnitiates(rc:UI:CarRequest(op8),valueOf(info.p,loc2),41)
L18: Happens(in:IS:FindAvailableCar(op9,loc2),42, 91(42,42))
L19: Happens(ir:IS:FindAvailableCar(op10), 43, 91(43,43))
L20: lnitiates(ir:IS:FindAvailableCar(op10), valueOf(info.v,veh2),43)
L21: Happens(re:UI:CarRequest(op11,veh2,loc2), 44, R(44,44))
L22: Happens(rc:UI:RetKey(op12),45,9l(45,45))
L23: lnitiates(rc:UI:RetKey(op12), valueOf(info.v, vehl), 45)
L24: lnitiates(rc:Ul:RetKey(op12), valueOf(info.p, loc3), 45)
L25: Happens(rc:SS:Enter(op13),53,91(53,53))
L26: lnitiates(rc:SS:Enter(op13), valueOf(info.v,veh2),53)
L27: lnitiates(rc:SS:Enter(op13), valueOf(info.p,loc4),53)
L28: Happens(rc:UI:RetKey(op14),54,9l(54,54))
L29: lnitiates(rc:UI:RetKey(op14), valueOf(info.v, veh2), 54)
L30: lnitiates(rc:UI:RetKey(op14), valueOf(info.p, loc4), 54)
L31:Happens(rc:UI:CarRequest(op15),55, 91(55,55))____________

Figure 4.4: Event log of car rental system.

1 It should be noted that the runtime events (or monitoring events) presented in Figure 4.4 is different from the low
level EC events introduced in Chapter 3. A runtime event (monitoring event) is denoted as an EC predicate that
comprises a low level EC event or/and an EC fluent presented in Chapter 3 and a specific time point. For
example the EC predicate IIappens(rc:Pl:receiveR equest(id3), 5, 91(5,5)) represents a runtime event
(m onitoring event) since it signifies an instance of a low level EC event (i.e. rc:P l :receiveRequest(id3)) at time
point 5. In the rest of the thesis the word "event" is used to refer a runtime event (or m onitoring event) with this
semantic. The event receiver in our monitoring framework converts a low level EC event to a runtime event and
this m echanism is described in Chapter 5.

116

QoS properties may also be inconsistent with the recorded behaviour of the system. For

example the QoS property QP1 in Figure 4.3 is violated at T=33 as the response time of the

operation F indA va ilab leC ar is 2 seconds (see literal L ll that signifies a call to the operation

F indA va ilab leC ar and the literal L12 that signifies the response from the operation

F indA vailab leC ar).

4.3.2 Inconsistency of Expected Behaviour

An inconsistency between a behavioural property, a functional property or a QoS property of

a system S and its expected behaviour is defined as follows:

Definition 4: A behavioural property, functional property or a QoS property of the form f:

C=>A is inconsistent with the expected behaviour of a system S at time T if and only if:

{Er (T), Eu (d e p (f) u ECa,T), } | = nf —•/, where:

■ d e p (f) is the set of formulas F: B=>H in (F s u A s) - (f) which f depends on. A formula

F: B=>H belongs to d e p (f) , if its head FI has a literal L that unifies with: (i) some literal K

in the body C or in the head A of/, or (ii) some literal K in the body B " or in the head H "

of another formula F " that belongs to d e p (f) \ and

■ ECa are the axioms of event calculus (see Chapter 3)

According to this definition, the check about the inconsistency of a formula f with the

expected behaviour of a system must, in addition to events which are recorded in ER(T), take

into account events which should have been generated according to other formulas in Fs u As

and can affect the satisfiability of / . The definition of the set d e p (f) in Definition 4 is similar

to the notion of direct and indirect dependency in [Ple93].

Examples. Given the recorded event log of Figure 4.4, the functional property FP2 is violated

by the expected behaviour of CRS. FP2 is a functional property about the behaviour of IS

services. According to this functional property, the operation F indA va ilab leC ar, which is

provided by the IS service of CRS and searches for available cars at specific car parks should

not return the identifier of a car to CRS unless this car is available. The violation of FP2 in

this case occurs since from the functional property F P 3 in Figure 4.3 we can derive that veh2

could not be available from T=30 when its key was released (see literals L7 and L8 in Figure

4.4) until T=53 (that is one time unit before its key was returned back - see literals L28, L29

117

and L30 in Figure 4.4). Nevertheless, the execution of the operation F indA va ilab leC ar of the

IS service at T=43 reported veh2 as an available vehicle (see literal L20 in Figure 4.4).

Inconsistencies with respect to expected behaviour may also indicate violations of QoS

properties in cases where the specification of these properties uses values that should be

derived from the recorded behaviour of the system. For instance, the QoS property Q P2 in

Figure 4.3 is violated at T=33 as the average response time of the operation F indA va ilab leC ar

is 2 seconds (i.e., one recorded call with response time of 2 seconds according to literals L ll

and L12). This violation is caused by the expected behaviour of the system since Q P2 is

evaluated by performing a calculation over the value of the fluent F in d A va ila b leC a rR T which

is derived by assumption Al. The same QoS requirement is also violated at time T=43 when,

following the second call of the operation F indA va ilab leC ar, its average response time is 1.5

seconds.

4.3.3 Unjustified Behaviour

The third type of deviations that can be detected by our framework occurs when the

conditions of a behavioural property / that has generated an event e are satisfied by the

recorded system behaviour but violated by the expected system behaviour. In such cases, the

generation of the event e is the result of wrong assumptions about the satisfiability of the

conditions of / that the system has made at run-time, and constitutes what we refer to as

"unjustified behaviour". This type of deviation is formally defined as follows:

Definition 5: A behavioural property of the form/: C=>A is said to generate un justified

beha v io u r if and only if there is an event e such that

(i) e e ER(t)

(ii) e can be unified with A

(iii) {ER(t) - {e} , / , ECa} \=nfe

(iv) {ER(t) - {£?}, Bs — {/), ECa) KfC and

(v) there is a literal L in C for which, (ER(t), E v(d e p (f) ,t) , ECa) |=nf —iL

The conditions (i)-(iv) in Definition 5 identify an event e which has been generated by the

system due to the realisation of a formula/ (condition (iv) guarantees that e cannot have been

generated by some other formula). The satisfaction of conditions (i)-(iv) implies that the

conditions of / are satisfied by the recorded behaviour of the system. Note, however, that

according to condition (v), there is some condition in C that would not be satisfied if all the

118

events that could be generated by formulas which/depends on are taken into account. In such

cases, e is the result of behaviour that is based on wrong assumptions about the satisfiability

of the conditions of / that the system made at run-time.

Example. Given the event log of Figure 4.4, a case of unjustified behaviour of the CRS

system that has been caused by the behavioural property BP1 can be detected at T=54 {BP 1

states that following the receipt of a request for a car rental, CRS will contact IS services to

find an available vehicle and if such a vehicle can be found it will reply to the request). More

specifically in this case, as the literals L16-L20 in Figure 4.4 indicate, all the conditions of

BP1 were satisfied at T=43 and therefore CRS replied to the car hire request that it had

received at T=44 (see the literal L21 in Figure 4.4) as specified by BP1. Note, however, that if

the IS and SS services of CRS had behaved according to the functional properties FP2 and

FP3 respectively the condition Initiates(ir:IS:FindAvailableCar(_oID2),

valueOf(info.v,_vID),t3) of BP1 would have been violated. The violation of this condition of

BP1 can be deduced from:

■ the literals L18 and L19 the event log of Figure 4.4;

■ the functional property FP2 about the behaviour of SS (FP2 belongs to dep(BPl)), and

■ the literals HoldsAt(valueOf(_c.carID, veh2), 42) and HoldsAt(valueOf(_c.availability,

"not available), 42) that can be derived from the literals L7, L8, L28, L29 and L30 in the

event log of Figure 4.4 and the functional property FP3 (FP3 belongs to dep(FP2)).

In other words, if IS and SS had behaved as expected by the functional properties FP2 and

FP3 in this case, veh2 should not have been reported by the operation FindAvailableCar as

available and, subsequently, veh2 should not have been hired.

4.3.4 Possible Inconsistency of Expected Behaviour

The fourth type of deviation captures potential violations of behavioural properties, functional

properties or QoS properties of a system. The possibility of such violations is established due

to events and fluents (states) which may have occurred during the operation of a service-

based system without however having been recorded in the event log of it. More specifically,

a possible violation of a formula / may arise if, in addition to the events which have been

recorded during the operation of a system, we also take into account events that can be

derived from by: (a) deductive reasoning using the formulas in Fs u As, (b) abductive

119

reasoning using the formulas in Fs u A s, or (c) assuming the occurrence of events in time

ranges that overlap with the time ranges in which these events are known to have occurred.

Definition 6: A behavioural property, a functional property or a QoS property of the form/:

C=>A is possibly violated at time t if and only if:

{ER(t), E v (d e p (f) ,t) , E v (a b d (f) ,t) , ECa, apHnppens} |=-,pForm(/)

where

■ a b d (f) is a set of complement formulas in Fs u A s - { f } that/depends on (see Definition

4). The complement of a formula F : B=>H in Fs u A s — {/}, is included in abd(f) only if

the following criteria is satisfied,

(i) The head H of F includes at least one non-negated H appens predicate, which

appears in at least one formula in Bs.

(ii) The body B of F contains at least one predicate, which does not appear in the

head of any other formula in Fs u A s -{ /} .

The complement of a formula F: B=>H in Fs u A s - {/} is defined as F : H=>B. This

process of complementing a formula reverses the time relations and the quantifiers of

variables. For example, consider the following formula,

(F1) (V t1)Happens(ic:S1 :P(ID, x),t1,9f(t1 ,t1)) => (3 t2)Happens(ic:S1 :Q(ID, y),t2,
9t(t1+tu,t1+10*tu))

From this formula we have tl+tu < t2 and t2 < tl + 10*tu, these relations can be rewritten

as tl < t2 - tu and t2 - 10*tu < tl respectively. In the reverse formula time range for P is

defined in terms of the time variable of Q, so the quantifier of t2 would be changed to the

universal quantifier and the quantifier of tl would be changed to the existential quantifier.

Therefore the reverse formula of formula FI would be:

(V t2) Happens(ic:S1:Q(ID, y),t2, 9t(t2,t2)) => (3 t1)Happens(ic:S1:P(ID, x),t1,9l(t2-10*tu„ t2 -tu))

■ p F o r m (f) is a formula that is produced from f if all the occurrences of the EC predicates

in f are replaced by the corresponding p -E C predicates. The p -E C predicates for

H appens, Initiates, T erm ina tes and H o ld sA t predicates are pH appens, p ln itia tes,

p T erm in a tes and p H o ld sA t respectively. These p -E C predicates are defined as follows,

(i) p H a p p en s(e ,t,9 I(tI,t2)): this predicate signifies the possibility that an event e

occurs at some time t within the time range 91 (t 1 ,t2)

120

(ii) plnitiates(e,ft): this predicate signifies the possibility that an event e initiates

fluent f at some time t within the time range 91 (tl,t2)

(iii) pTerminates(e,ft): this predicate signifies the possibility that an event e

terminates fluent f at some time t within the time range 91 (tl,t2)

(iv) p H o ld sA t(ft) : this predicate signifies the possibility that a fluent f holds at some

time t.

■ OipHappens is an axiom regarding the p-EC predicates that is expressed by the following

formula:

ctpHappens: (Ve:Event, tl,t2,t3,t4,t5,t6:Time)

Happens(e,t 1,9l(t2,t3)) a t2 < tl a tl < t3 a *(91(t2,t3),91(t5,t6)) ± 0 =>

pHappens(e,t4, * (91(t2,t3), 91 (t5,t6)))

■ *(rl,r2) is a function denoting the intersection of two time ranges that is defined as:

(i) *(91(tl,t2), 91(t3,t4)) = 91(max(tl,t3),min(t2,t4)), if max(tl,t3) < min(t2,t4)

(ii) *(91(tl,t2), 91(t3,t4)) = 0 , if max(tl,t3) > min(t2,t4).

To reason with the latter kind of events (i.e. events that may have occurred in a time range),

all the occurrences of the EC predicates in / are replaced with the p-EC predicates. This re-

writing creates the pForm off. The p-EC predicates signify the possibility of the occurrence

of an event e at some time point t within 91(tl,t2) as opposed to the EC predicates that signify

the definitive occurrence of an event e at some time point t within the same range with

certainty. The axiom cCpHappens \i, then deployed to check for potential violations of / as it can

be used to derive events which may have occurred in ranges which are overlapping with

ranges expected by the pForm off.

The use of the set of events Eu(abd(f),t) from which entailments may be drawn in Definition

6, reflects the deployment of events that are generated by abductive reasoning in the search

for potential inconsistencies. In our framework we apply a logic-based approach for abductive

reasoning [Con91, Eit95, Pau93]. In standard formulation [Con91, Eit95, Pau93], abductive

reasoning is described as the framework, where given a set of causes C, a set of effects E and

a logical theory r defined over some language, an explanation of a set of observations (Q c E

) is a finite set of sentences <)> such that:

• ()) is consistent with t ,

• T u <|> |= Q, where Q denotes the conjunction of all to e Q.

Thus, Definition 6 realises an approach where abductive reasoning is achieved through

deduction using the completing formulas of the abducible formulas of a service based system

121

similarly to the approach applied in [Con91]. The conditions in the definition of abd(f) in

Definition 6 ensure that the events generated by abductive reasoning are possible explanations

of events that have occurred in the event log of the system. The first condition (i.e., condition

(i)) is used to ensure that only explanations of events that have been generated during the

operation of the system and recorded in the event log of it (as opposed to events that may be

assumed by virtue of applying the principle of negation as failure or derived by some

functional property or assumption) may be used in the process of detecting possible

violations. The second condition (i.e., condition (ii)) is used to ensure that explanations of

events will always be "minimal" (i.e., as specific as possible and the predicates that satisfy

this condition are called abducible predicates [Con91]).

It should be noted that in our framework abducibles are generated without checking whether

they preserve the consistency of the original theory (i.e., the behavioural properties,

functional properties, QoS properties and assumptions) as in standard formulations of

abductive reasoning [Con91, Eit95, Pau93], This is because our objective is not to generate

consistent explanations of system events as in pure abductive reasoning but to generate all the

possible explanations of these events and then check whether these explanations violate the

behavioural properties, functional properties or QoS properties of an SBS system. Finally, it

should be appreciated that according to definition 6, abductive reasoning is applied only to

functional properties or assumptions but not to behavioural properties. This is because,

behavioural properties are extracted directly from the source code of the composition process

and they represent definite sequences of events in the process execution. In other words given

a behavioural property of the form C=>A, it would not be necessary to generate the event C

from observing event A, since in cases where the system has produced A due C=>A, then C

must also have been recorded in the event log of the system. In cases where A has been

produced due to another formula the use of C=>A in the abductive reasoning would not be

plausible.

Example. Given the event log in Figure 4.4, at t-40, the behavioural property BP2 is detected

to have been possibly violated. This is because the negation of the pForm of this statement is

entailed by:

(i) the literal pHappens(re:UI:CarRequest(op6,vehl,loc3),33,9?(33,33)) that can be deduced

from the literal L14 in Figure 4.4

(ii) the negation of the literal pHappens(in:IS:MakeUnAvailable(ID,vehl,,oc3),40,91(40,40))

that can be deduced by applying negation as failure and from the literal L15 in Figure

4.4, and

122

(iii) the literals pHappens(rc:SS:Depart(lD),t,9i(34,39)), pInitiates(rc:SS:Depart(ID),

valueOf(p,loc3), t) and plnitiates(rc:SS:Depart(lD), valueOf(v, vehl),t). These literals

are derived by the application of abductive and deductive reasoning as follows,

Let,

■ The functional properties presented in F igure 4.3, com prise the logical theory r.

■ C = {Happens(rc:SS:Enter (_oID),t, 9t(t,t)),

Initiates(rc:SS:Enter(_oID), valueOf(info.v, _vID),t),

Initiates(rc:SS:Enter(_oID), valueOf(info.p, _pID),t)}

is a set o f causes (abducibles). Entries in C com e from the body o f the functional

property FP4 in th eo ryt. This is because according to the definition 6, FP4 e

abd(BP2), since FP1 depends on the com plem ent form ula o f FP4 and BP2 depends

on FP1.

■ E = {Happens(rc:UI:RetKey(_oID),t, 91(t,t)),

Initiates(rc:UI:RetKey(_oID), valueOf(info.v, _vID),t),

Initiates(rc:UI:RetKey(_oID), valueOf(info.p, _pID),t)}

is a set o f effects. Entries in E com e from the head o f the functional property FP4 in

theory r.

I f we consider L22 , L23 and L 24 as a set o f observations , i.e. Q =

{ H a p p e n s (r c :U I : R e tK e y (o p l2) ,4 5 , 9 1 (4 5 ,4 5)) , I n i t i a t e s (r c : U I : R e tK e y (o p l2) ,

v a l u e O f (i n f o . v , v e h l) , 4 5) , I n i t i a t e s (r c : U I : R e tK e y (o p l2) , v a l u e O f (i n f o . p ,

l o c 3) , 4 5) } , then

{ H a p p e n s (r c : S S : E n t e r (I D) , t , 9 1 (3 5 ,4 4)) , I n i t i a t e s (r c : SS : E n t e r (I D) ,

v a l u e O f(i n f o .v, v e h l) , t) , I n i t i a t e s (r c :SS:E n t e r (I D), v a l u e O f(i n f o . p ,

l o c 3) , t) } is a set o f explanations o f Q , because

■ {Happens(rc:SS:Enter(ID),t, 91(35,44)), Initiates(rc:SS:Enter(ID),

valueOf(info.v, vehl),t), Initiates(rc:SS:Enter(ID), valueOf(info.p,

loc3) , t) } is consistent with r, and

■ T. VJ {Happens(rc:SS:Enter(ID),t, 91(35,44)), Initiates(rc:SS:Enter(ID),

valueOf(info.v, vehl),t), Initiates(rc:SS:Enter(ID), valueOf(info.p,

loc3),t)} |= {Happens(rc:UI:RetKey(opl2),45, 91(45,45)),

Initiates(rc:UI:RetKey(opl2), valueOf(info,v, vehl),45),

Initiates(rc:UI:RetKey(opl2), valueOf(info.p, loc3),45)}.

F rom

■ the abduced literals Happens (rc: SS: Enter (ID) , t, 91 (35,44)) ,

Initiates(rc:SS:Enter(ID), valueOf(info.v, vehl),t),

Initiates(rc:SS:Enter(ID), valueOf(info.p, loc3),t)}

123

■ the literals L4, L5, L6, and

■ formula FP1

we can deduce the literals Happens (rc :SS: Depart (ID) ,t, 91(28,43)),

Initiates(rc:SS:Depart(ID), valueOf(info.p,loc3), t),

Initiates(rc:SS:Depart(ID), valueOf(info.v, vehl),t).

Subsequently from axiom c tPHaPPens we can deduce p H a p p e n s (r c : s s r D e p a r t (i d) , t ,

91(34,39)), plnitiates(rc:SS:Depart(ID) , valueOf(info.p,loc3), t) and

plnitiates(rc:SS:Depart(ID), valueOf(info.v, vehl),t).

In this case, a possible inconsistency may have occurred due to a malfunctioning of the SS

service that failed to generate an rc:Depart event within the time range 9i(34,39). The

possibility of the occurrence of this event has been established by applying deductive and

abductive reasoning.

4.3.5 Potentially Unjustified Behaviour

Similarly to the definition of unjustified behaviour, we define cases of potentially unjustified

behaviour, as follows:

Definition 7: A behavioural property of the form/: C=>A is said to generate potentially

unjustified behaviour if and only if there is an event e such that:

(i) e G ER(t)

(ii) e can be unified with A

(iii) { E r (0 - {e}, / , ECa} \=nfe

(iv) {ER(t) - {e}, Bs— {/}, ECa} *nfe and

(v) there is a condition L in the body of the pForm of / for which, {ER(t), Ev(dep(f),t),

E\:(abd(j), t), A X PHapPens} |— ipForm(L)

According to Definition 7, a case of potentially unjustified behaviour arises when the

conditions of a behavioural property which are satisfied by the recorded behaviour of a

system may have been violated by the expected behaviour of it. In such cases the event

generated by the head of the formula constitutes a potentially unjustified behaviour.

Example. Given the event log in Figure 4.4, at time t=40, the behavioural property BP3 is

satisfied by ER(40).

Happens(re:UI:CarRequest(op6,vehl,loc3),33,91(33,33)) a

—.Happens (rc : SS : Depart (ID) , t, 91 (3 4,3 9))=>

124

Happens(i n : I S :M akeA vailable(op7, v e h l , lo c 3) ,40,91(40,40))

This is due to the literal L14, literal L15 and the literal - . H a p p e n s

(r c : SS : D e p a r t (I D) , t , , 9^(34, 39)) which can be established by the principle

negation as failure. But it has to be appreciated that the absence of a D e p a r t event in this

instance may be the result of a malfunctioning SS service. If this is the case and an

unrecorded D e p a r t event has occurred then the behaviour of CRS has violated BP3. To

cover this possibility, we apply abductive and deductive reasoning as in the example of

Section 4.3.4 to derive the literal { H a p p e n s (r c : SS : D e p a r t (I D) , t , 9 1 (2 8 , 43)) } .

This literal entails that the conditions of the behavioural property BP3 are potentially

unjustified at t=40. More specifically, the pForm of the second condition of BP3 is violated

(i.e. —. p H a p p e n s (r c : SS : D e p a r t (I D) , t , 91 (34, 39))) by {ER(55), Eu(dep(/),55),

Eu(abd(/), 55), AXpHappens}- This is because we can derive p H a p p e n s (r c : S S :

D e p a r t (I D) , t , 91 (34, 39)) from H a p p e n s (r c : SS : D e p a r t (ID) ,

t , 91 (28, 43)) and axiom (ctpHappens)-

4.4 The Monitoring Scheme

In this section we explain the monitoring scheme used to detect the property deviations in our

framework. The monitoring scheme is realised by the component monitor of the architecture

presented in Chapter 2. Figure 4.5 shows the modules deployed by the monitor for runtime

monitoring along with the structural organisation of the runtime components of the

Figure 4.5: Runtime components of the monitoring architecture

architecture. The modules deployed by the monitor are shown as dotted rectangles in the

figure and these modules are: (i) Event Feeder that handles recorded events in the monitoring

125

process, (ii) Event Generator that realises the expected behaviour of the system being

monitored and (iii) Consistency Checker that checks the deviation. In the rest of this chapter

we discuss the mechanisms of these modules that exert the functionality of the monitor.

4.4.1 The Monitor

It is discussed in Section 4.3 that the unrecorded expected behaviour of a system comprises a

set of events that can be derived from a given set of formulas and these derived events are

used to detect deviation of the formulas that are depended on these events. Therefore given a

set of formulas2 to be monitored, the monitor first identifies the interdependent formulas. The

formula interdependency is identified according to the definition of dep(f) presented in

Definition 4, in Section 4.3.2. The algorithm shown in Figure 4.6 is used to identify formula

interdependency.

Algorithm: Find_InterDependent_Formulas
Input: Set of Formulas, Fs
Output: FIL is a list of labelled link.
//in this algorithm a labelled link between two formulas is denoted as follows,
// F, ——> F ,, Predicate Pr in formula F2 can be derived from formula Fi
FIL:= {}
for each formula Fx : P => Q in Fs do
for each predicate A in Q do

for each formula Fj : R => S in Fs such that / A/ do
if A can be unified with a predicate B in Fj then

add a link F j — -— >F, in FIL
end if

end for
end for

end for

Figure 4.6: Formula interdependency identification algorithm

For example, if the set of monitorable formulas Fs comprises the behavioural properties in

Figure 4.2 and the functional properties in Figure 4.3, the above algorithm would generate a

list of labelled links which are shown as a labelled directed graph in Figure 4.7.

At runtime, the monitor maintains templates that represent different instantiations of the

formulas that specify the behavioural properties, functional properties, QoS properties and

assumptions for a system. An instantiation of a formula represents a copy of the formula

having the variables (or a subset of the variables) bound to specific values.

2 The m onitoring scheme assumes that the predicates in the body and head of a formula are combined by
conjunctive logical operator (a) only and non time variables are universally quantified.

126

F P 2
H o I d s A t(v a lu e O f (_ c .a v a i la b i l i t y , " n o t a v a i la b le "))
H o ld s A t (v a lu e O f (_ c .c a r I D , _ v I D))

F P 3

I n i t i a t e s (r c :U I :R e tK e y (_ o I D 2) ,v a lu e O f (in f o .v , _ v ID))
I n i t i a t e s (r c :U I :R e tK e y (o I D 2) ,v a lu e O f (in f o .p , _ p I D))
H a p p e n s) r c : U I : R e tK e y (_ o I D 2))

F P 4

I n i t i a t e s (i r : I S :F in d A v a i la b le C a r (_ o ID) ,
v a lu e O f (in f o .v , _ v I D))

H a p p e n s (r e :U I :C a r R e q u e s t (_ o I D 3 ,_ v I D , _ p I D))

H a p p e n s (r e :U I :C a r R e q u e s t (_ o I D 3 ,_ v I D , _ p I D))

B P 3

H a p p e n s (r c :S S :D e p a r t (_ o I D 3))

F P1
H a p p c n s (r c : S S : D e p a r t (_ o I D 3))

B P 2

Figure 4.7: Formula interdependency graph

The templates maintained by the monitor store the state of different instantiations of a

formula f including:

• The identifier (FID) and type of / The type of / is F (future) if all the predicates p in /

whose time variables are constrained by unconstrained time variables of other predicates

must occur after these predicates (e.g., BP2). The type o f /is P (past) if there is at least

one predicate p that must occur before another predicate q that constraints it (e.g.,

formulas FP1).

• A dependants list (DP) of (id, P) which indicate other formulas which depend on f (id is

the identifier of a formula that depends on / and p is the predicate that creates the

dependency (see Definition 4)),

• The bindings (VB) of the non-time variables of all the predicates in / and

• For each predicate p in /:

- The quantifier of the time variable (Q) and signature (SG) of p.

- A time range (LB, UB) that indicates when p should occur. The boundaries of this

range are set according to the time constraint of p in/.

- The truth-value (TV) of p which can be: UK (if the truth-value of p has not been

established), True (if p is true), or False (if p is false).

- A time stamp (TS) that indicates the time at which the truth-value of p is established.

- The source (SC) of the evidence for the truth value of p which can be: UK (if the

truth value of p has not been established), RE (if the truth value of p is established by

a recorded event unified with it), DE (if the truth value of p is established by a

derived event unified with it), or NF (if the truth value of p is established by the

principle of negation as failure)

127

For example an initial template for the formula BP1 would look as follows,

I D B P 1

T F

DP (B P 2 , H a p p e n s (r e :U I :C a r R e q u e s t (_ o I D ,_ v I D , p I D)) , (B P3, H a p p e n s(re :U I:C a rR e q u e st(_ o I D ,_ v I D ,_ p I D))

VB
P Q SG TS LB UB TV SC
1 V H a p p e n s (r c : U l : C a r R e q u e s t (_ o I D l) , t I , 9 ! (t l , t l)) t l t l t l U N U N

2 3 I n i t i a t e s (r c :U I :C a r R e q u e s t (_ o I D l) , v a l u e O f (in f o .p ,_ p I D) , t l) t l t l t l U N U N

3 3 H a p p e n s (in : I S :F in d A v a i la b le (_ o I D 2 ,_ p I D) , t2 , 9 l (t l , t 2)) t2 t l t2 U N U N

4 3 H a p p e n s (i r : I S :F in d A v a i la b l e (_ o I D 2) , t3 , 9 ^ (t2 ,t3)) t3 t2 t3 U N U N

5 3 I n i t ia te s (i r : I S :F in d A v a i la b le (_ o I D 2) ,v a lu e O f (in f o .v ,_ v I D) , t3) t3 t3 t3 U N U N

6 3 H a p p e n s (r e :U I : C a r R e q u e s t (_ o I D 3 ,_ v I D , j> I D) , t 4 , 9 ? (t3 ,t3 + t„)) t4 t3 t3 + tu U N U N

The algorithms used by the monitor, the event feeder, the event generator and the consistency

checker to realise the monitoring process are presented in the rest of this chapter in some

pseudo code language. A textual description of each algorithm is followed by each algorithm.

Before presenting the algorithms in the subsequent sections we define the basic data

structures and constants used in the algorithms.

4.4.1.1 Basic Definitions

Following constants, data structures and definitions are used in all the algorithms presented in

the sequel

Constants:

SAT: Satisfied

I_R_B: Inconsistency with Recorded Behaviour

I_E_B: Inconsistency with Expected Behaviour

U_B: Unjustified Behaviour

P_I_E_B: Possible Inconsistency with Expected Behaviour

P_U_B: Potentially Unjustified Behaviour

RE: Recorded Event

DE: Derived Event

NF: Negation as Failure

UK: Unknown

MON_REC: monitoring with respect to recorded events only

MON_MIX: monitoring with respect to recorded and derived events.

Min,: the minimum time between the occurrences of two events

Data Structures:

Link structure has the following fields:

128

• Id: holds a formula ID

• P: holds a predicate signature

Variable structure has the following fields:

• N: holds name of a variable

• T: holds the type of the variable

Time Variable structure has the following fields:

• N: holds name of a time variable

• V: holds the value of the time variable

Time Expression structure

This structure holds an arithmetic expression, that consists of time variables, e.g. Tl, T2 etc.,

arithmetic operators e.g. +, -, *, / and numbers. It has the following fields,

• 7): a list of Time Variable structure that holds the time variables.

• OP,, a list of operators

• Np a list of numbers.

Template structure has the following fields:

• Fid: Formula ID, holds the ID of the formula

• T: Type, holds the type of the formula, could be ‘F ‘for future and ‘P’ for past

• DP: Dependants, a list of Link structure

• body: Predicates, a collection of Predicate structure

• head: Predicates, a collection of Predicate structure

• P„: a collection of references to Predicate structures, entries in P„ refer to all the

predicates in body and head.

• updated: a Boolean value, set to true if the template has been updated, else set to false

• forChecking: a Boolean value, set to true if the template should be considered for

consistency checking (e.g. in case of behavioural properties, functional properties,

and QoS properties), else set to false (in case of assumptions).

• forDeduction: a Boolean value, set to true if the template should be used as deductive

rule to generate derived events.

• ST: Status, Holds the monitoring status (e.g. I_R_B, I_E_B etc.) of the template,

Initially UK.

• up Variable Bindings. See below for the definition of Uf.

129

Predicate structure has the following fields:

• SG: Signature, holds the predicate signature

• VL: Variable of this predicate. Holds a list of Variable structure.

• Q: Quantifier, holds quantifier (existential/universal) information

• NoQ: Negation on Quantifier, holds true if there is negation on quantifier, else holds

false

• TV: Truth Value, holds truth value of the predicate.

• LB: Lower Bound, a Time Expression structure that indicates the earliest time that

predicate should occur

• UB: Upper Bound, a Time Expression structure that indicates the latest time that the

predicate should occur

• TS: Time Stamp, a Time Variable structure that keeps predicate occurrence time,

initially value is set to LB-min,

• SC: Source, holds source of event

• pForm: initially holds false, set to true if pForm condition occurs

Event structure has the following fields:

• SG: Signature, holds the event signature

• NG: Negated, holds true if the event denotes a negated predicate, else set to false

• VB: Variable Bindings, a collection of (v, c) pair, where v is a variable structure and

c is the value assigned to it.

• TS: Time Stamp, occurrence time of the event

Definitions

Uf: Uf is the current most general unifier of the variables {vi, ...,vn} of an instance

of a formula/ represented by a template t that is defined as {(vi, cO, ..., (vm,

cm)} where Vj is a variable o f /a n d Cj is a constant value assigned to it. In

general, we have that m <n as there may be variables of/which have not been

assigned to any values at a specific instance of time.

Uf|P: Uf|Pis the projection of uf over the variables of a predicate P of/defined as: Uf|P

:= {(vj,Cj) | (Vi e P.VL) and ((Vi,Cj) e uf)}

partial(u^P): a boolean function that returns True if there is variable v in P.VL for which

there is no pair (v,c) in Uf]Pand False otherwise

130

imgu(e,P,Uf|P):a function that re tu rns the m ost general partia l un ifie r (i.e., a set o f the form

{(vx, Ci), (vk, ck)}) of a predicate P with an event e that is compatible with

the current unification of the variables of P, uqp, or an empty set if no such

unifier exists.

eval(TimeExpressiori): a function that evaluate a time expression and returns the value.

4.4.1.2 The Monitoring Algorithm

The monitor creates two templates for each formula to check for different types of deviations

from the formula and to derive events from it. The first of these templates is used to detect

deviations with respect to recorded events only and is filled only with recorded events. The

second template is used to detect deviation with respect to recorded and derived events and is

filled with both recorded and derived events.

The monitor picks an event from the event database and iterates over each template to process

the event3. For each template that it visits, the monitor invokes the event feeder by calling the

procedure feed, to feed the event to the template. The event feeder is responsible for updating

the truth-value of each predicate in the template that can be unified with the event and to

create new instances of the template if required. Section 4.4.2 describes the algorithm for

event feeder. If a template instance is updated during the execution of the feed procedure, the

monitor notifies the event generator and the consistency checker about the update of the

template. Once notified about the update of a template, the Event Generator is responsible for

generating any derived event that can be deduced from the template. Section 4.4.3 describes

the algorithm for event generator. The Consistency Checker is responsible to check if there is

a violation of the formula represented in the template. Section 4.4.4 describes the algorithm

for consistency checker.

The monitoring algorithm is shown in Figure 4.8. In line 1 an empty set R,emps is declared that

holds the templates used only for recorded events. In line 2 an empty set Mtemps is declared

that holds the templates used for both recorded and derived events. In line 3 the monitoring

mode is initialised. The for loop in line 4, creates an empty template for each formula to be

monitored and the template is added to Rtemps and M,emp: respectively in lines 6 and 7. In line 9

and 10 the templates are stored in the database.

3 The monitoring scheme assumes that the events are stored in the database in order of their occurrence.

131

Monitoring()
1. Rtemps • i }

/* Rraros is a template set representing instantiations of formulas using
only recorded events */

2 . Mterr.ns • i }
/* Mtemps is a template set representing instantiations of formulas using
recorded and/or derived events */

3 . initialize mode
/* mode signifies if the monitoring will be wrt recorded event only or

wrt recorded and derived events */
4 . for each formula f to be monitored do
5 . create an empty template t for f
6 . add t to R-temps
7 . add t to Mtemps
8. end for
9 . store templates in Rtempsin database
10. store templates in Mtempsin database
11. e v e n t s := { } /* holds events to be processed next */
12 l a s t E v e n t T i m e:= 0 / * holds the time stamp of the latest event being

processed */

13 while (there are more events to handle) do
14. receive the next event e from E v e n t D a ta b a se
15. if e . T S > l a s t E v e n t T i m e then
16 e v e n t s : = { }
17 end if
18 l a s t E v e n t T i m e : = e .T S
19 add e at the beginning of e v e n t s
20. T e m p la te s := { } /* templates to be considered for the event */
21. Td:={) /* templates to be removed after processing this event */
22 Ta:={) /* new templates created after processing this event */
23 for each event ei in e v e n t s do
24 if mode=MON_REC then
25 T e m p l a t e s : =Rtemps /* retrieve templates from database */
26 else
27 T e m p l a t e s : =Mtemps /* retrieve templates from database */
28 end if
29 for each template fc in T e m p la te s do
30 feed (t, ei, t add, t del)
31 if t.u p d a te d = t r u e then
32 t.u p d a te d := f a l s e
33 check_consistency(t, Templates)
34 if mode = MON_MIX and t . f o r D e d c u t i o n = t r u e then
35 generate_event(t, Templates)
36 end if
37 end if
38 Ta := Ta U t add
39 if mode = MON_REC then Td : = Td U t del end if
40 end for
41 insert all templates of Ta into T e m p la te s
42 delete all templates of Td from T e m p la te s
43 store templates in T e m p la te s in database
44 end for /* end of each event ei */
45 end while
End Monitoring

Figure 4.8: The monitoring algorithm

The while loop starts in line 13 drives the whole monitoring process and it iterates for each

single event to be considered in the database. In line 14, an event e is received from the

database. The codes between lines 15 and 19, accumulates the events that have same time

stamp. This accumulation is necessary from the consideration that our monitoring scheme is

132

incremental and it assumes that the events are serialised in the database according to the time

of occurrence. When an event is processed by the monitor it assumes that the impact of the

occurrence time of all the previous events on the formulas has been considered. But this can

not be guaranteed in case of events with the same time stamp which may require reprocessing

of the events with the same time stamp. Between lines 24 and 28 templates are retrieved from

the database depending on the monitoring mode. For each event e the for loop in line 29

iterates over each template instance t. In line 30, th efeed method in the event feeder is called

to feed the event e to the template t. While an event is being processed by the feed method,

the method may also generate new template instances or identify a list of templates to be

removed. The event feeder marks a template as removable if a monitoring decision from the

template instance can not be made any more. The codes between lines 31 and 36 invoke the

event generator and the consistency checker if the event feeder has updated the template t. In

line 41 all the new template instances created by the event feeder are added to the template

set. In line 42 all the templates marked as removable by the event feeder are removed from

the template set. In line 43 the template set is saved in the database.

4.4.2 The Event Feeder

The event feeder receives an event and a template instance from the monitor and checks if the

template instance should be updated by the event. Updates may be made if the signature, the

event variable bindings and the time of the event comply with the predicate signature, the

predicate variable bindings, and the time range of the predicate in the template instance,

respectively. If a predicate is updated, the bindings of the predicate's variables in the template

instance are also updated. New instances of templates may also be generated if the event

corresponds to an unconstrained predicate of the template instance (i.e., a predicate whose

time variable is not constrained by the time variable of another predicate), or the variable

bindings of the predicate have values that are different from the event variable bindings

values. The truth-value of a predicate in the template instance may also be updated by

applying the principle negation as failure.

4.4.2.1 Overview of the Event Feeding Algorithm

The event feeder receives an event and a template and updates the truth-value of the predicate

in the template if the predicate can be unified with the event and its truth-value has not been

set yet. An event can be unified with a predicate if the signature, the event variable bindings

comply with the predicate signature, the predicate variable bindings. Once the unification is

done the event feeder checks if the event time stamp complies with the predicate time range.

133

This checking considers the quantifier on the predicate’s time variable and the time range of

this variable. Depending on the quantifier of their time variables, predicates are distinguished

into two types: (i) predicates with existentially quantified time variables and (ii) predicates

with universally quantified time variables.

Table 4.1 shows all the possible cases of updating existentially and universally quantified

predicates by events which are considered by the event feeder. In the table, an EC predicate

(e.g. Happens, Initiates etc) is signified by P(x, tp, [LB,UB]), where P stands for the predicate

signature, Jt represents the variable (if any) in the predicate, tp is the time stamp of the

predicate and [LB,UB] is the time range in which P should occur. Predicates are shown under

the predicate column. An event is shown as P(a, te) or Q(a, te), where P or Q stands for the

event signature, a represents the value of the variable in the event and te is the occurrence

time of the event. Events are shown under the event column. The second row under the event

column shows the checking of the event time stamp compliance with the predicate time range

and other conditions that need to be checked to update the truth-value of a predicate. Each

cell numbered between 1 and 24 signifies a possible case to be considered and shows some of

the updates to be made in the predicate.

The update procedure depends on the type of the quantification of a predicate as it is

explained below

Existentially quantified predicates:

(i) A predicate of the form (3 tp).P(x,tp,[LB,UB]) signifies that there is at least one single

time point tp in the range [LB,UB] at which an event that can be unified with P has

occurred. This truth-value is set to true as soon as the first event that can be unified

with P occurs between LB and UB (see cases 1 and 7 in Table 4.1). The occurrence of

an event between LB and UB that can not be unified with P (or can be unified, but the

event is negated) does not have any impact on the truth value of the predicate (see

cases 2 and 8 in Table 4.1). The absence of an event unifiable with P within the time

range from LB to UB is confirmed as soon as the first event that cannot be unified

with P occurs after UB and the truth-value of P is set to false at the time of the

occurrence of this event if the truth-value of P is still undefined (see cases 3 and 9 in

Table 4.1).

(ii) A predicate of the form (3 tp).P(x,tp,[LB,UB]) signifies there does not exist any

single time point tp in the range [LB,UB] such that the evidence of predicate P can be

134

found. The truth-value of a predicate of this form is set to false as soon as the first

event that can be unified with P occurs between LB and UB (cases 4 and 10 in Table

4.1). The occurrence of an event between LB and UB that can not be unified (or can

be unified, but the event is negated) with P, does not have any impact on the truth

value of the predicate (cases 5 and 11 in Table 4.1). If no event unifiable with P

occurs between LB and UB, the absence of an event unifiable with P is confirmed as

soon as the first event that cannot be unified with P occurs after UB and the truth-

value of the predicate is set to true if the truth-value of P is still undefined (cases 6

and 12 in Table 4.1).

Table 4.1: Possible predicate updating cases considered by the Event Feeder
Predicate Event

P (a , t a) - i P (a , t .) / Q (a , t e)
Condition:

LB <= te <= UB &&
P.TV=UK

Condition:
LB <= L <= UB
&& P.TV=UK

Condition:
UB < t,. &&
P.TV=UK

3 tp.P (x ,tp,[LB.UB]), LB=t UB=t
1

P.TV:=true
x:=a
tp'= tg

2
No effect on P.TV

3
P.TV:=false

tP:= te

—i3tp.P(x,tp,[LB,U B]), LB=t UB=t
Vt. P(x, t p, [LB,UB])

4
P.TV:=false

x:=a
tp.= tg

5
No effect on P.TV

6
P.TV:=true

tP:=te

3 tP.P(x, t p,[LB,UB]), LB=ti UB=t2
7

P.TV:=true
x:=a
tD:=te

8
No effect on P.TV

9
P.TV:=false

tp:=tp

—i3tp.P(x,tp,[LB,UB]), LB=ti UB=t2
Vt. P(x, t P, [LB.UB])

10
P.TV:=false

x:=a
tp- =

11
No effect on P.TV

12
P.TV:=true

tp:= te

Vtp.P(x,tp,[LB,UB]), LB=t UB=t
13

P.TV:=tme
x:=a
t„:=te

14
No effect on P.TV

tP:=te

15
P.TV-false

tp’= ^

-,V tp.P(x, tp,[LB.UB]), LB=t UB=t
3 t. i P(x, t p, [LB.UB])

16
No effect on P.TV

tP:=te

17
P.TV:=true

x:=a
tp-= le

18
P.TV:=false

tp’= tg

Vtp.P(x,tp,[LB.UB]), LB=ti UB=t2
19

P.TV:=true
x:=a
tp.= tg

20
No effect on P.TV

tP:=te

21
P.TV:=false

tp'= tg

-.V tp.P(x,tp,[LB.UB]), LB=ti UB=t2
3 t. P(x, t p, [LB,UB])

22
No effect on P.TV

tP:=te

23
P.TV:=true

x:=a

24
P.TV:=false

V=te

135

Universally quantified predicates:

(i) A predicate of the form (Vtp).P(x,tp,[LB, UB]) signifies at every observable time point

tp in the range [LB,UB] predicate P is true. The truth-value of a predicate of this form

is set to true if any event that can be unified with P occurs between LB and UB (cases

13 and 19 in Table 4.1). The occurrence of an event between LB and UB that can not

be unified (or can be unified, but the event is negated) with P, does not have any

impact on the truth value of the predicate (cases 14 and 20 in Table 4.1), but the time

stamp of P should be updated upon the occurrence of such an event in order to

indicate the latest time point in the range [LB,UB] at which the predicate has not been

satisfied yet. If no event unifiable with P occurs between LB and UB, the absence of

an event unifiable with P is confirmed as soon as the first event that cannot be unified

with P occurs after UB and the truth-value of the predicate is set to false if the truth-

value of P is still undefined (cases 15 and 21 in Table 4.1).

(ii) A predicate of the form —(1 / tp).P(x,tp,[LB,UB]) signifies that not for all observable

time points throughout the range [LB,UB] P is true. The truth-value of a predicate of

this form is set to true as soon as the first time point within (LB, UB) at which there

is no event that can be unified with P occurs (see cases 17 and 23 in Table 4.1). The

occurrence of an event between LB and UB that can be unified with P, does not have

any impact on the truth-value of the predicate (cases 16 and 22 in Table 4.1), but the

time stamp of P should be updated to keep track of all time points in the range

[LB,UB]. However, as soon as the first event that cannot be unified with P occurs

after UB the truth-value of the predicate is set to false if the truth-value of P is still

undefined (see cases 18 and 24 in Table 4.1).

When the event feeder updates the truth-value of a predicate it also updates the bindings of

the variables of other predicates in the template. For example, consider the following formula,

(4.1) (V x, tl)Happens(ic:SI:P(ID, x) ,11, SR (tl,tl)) => (3 t2)Happens(ic:SI:Q(ID, x,
y),t2, (tl + tUf tl + 5*t„))

If the event feeder receives the event ic:Sl :P(idl,a) at time t=3, it will set the truth-value of

the predicate Happens(ic:Sl:P(lD, x),tl,9t(tl,tl)) to true at the same time the variables in the

predicate Happens(ic:Sl:Q(ID, x, y),t2, 9i(tl +tu,tl +5*tu)) will be bound to value a.

When the event feeder updates the truth-value of a predicate P it also updates the upper limit

and lower limit of the ranges of any other predicates in the template that depend on the time

variable of the predicate P that has been updated. Consider, for example, the formula 4.1, if

136

the event feeder receives the event ic:Sl:P(idl,a) at time 3, it will set the range of the

predicate Happens(ic:Sl:P(ID, x),tl,9i(tl,tl)) to 91(3,3) and the range of the predicate

Happens(ic:Sl:Q(ID, x, y),t2, 9i(tl+tu,tl+5*tu)j to 9i(4,8) (assuming t,=l). This is because

the time range of the latter predicate depends on the time variable of Happens(ic:Sl:P(lD,

x),tl,9i(tl,tl)).

The event feeder creates new instances of a template if an event that can be unified with an

unconstrained predicate of it occurs (i.e., a predicate whose time variable is not constrained

by the time variable of another predicate), or the variable bindings of the predicate have

values that are different from the event variable bindings values. In the case of formula 4.1,

for example, if the event feeder receives the event ic:Sl:P(idl,a) at time 3, the event feeder

will create a new instance of template (since P is an unconstrained predicate), set the truth-

value of this predicate to true, and update the variable bindings and time ranges of P and other

predicates.

Following the update of formula 4.1 due to the event ic:Sl:P(idl,a) at time 3, the event feeder

would create the following template (instance II) to represent the instance of the formula that

is created due to the event,

ID B P 1

T F
D P
V B (x , a)

P Q SG T S L B U B T V SC
1 V H a p p en s(ic :S 1 :P(ID, x),t 1 ,9t(t 1 ,t 1)) 3 3 3 T r u e R E

2 a In itia tes (ic :S l:Q (ID , x , y), t2, ,9 t(t l+ t„ ,tl+ 5* t„)) t2 4 8 U K U K

Then if at time t=5, the event feeder receives the event Happens(ic:Sl:Q(id2,a,b)) it would

create another template instance 12 from 11 and update the truth value of the predicate

Happens(ic:SI:Q(ID, x, y), t2,9I(tl+tu,tl+5*tu)) in 12. The template instance 12 would look as

follows,

ID B P 1

T F
D P
V B (x, a), (y , b)
P Q SG T S L B U B T V SC
1 V H a p p en s(ic :S l:P (ID , x) , t l ,9 t (t l , t l)) 3 3 3 T r u e R E

2 3 In itia tes (ic :S l:Q (ID , x , y), t2, ,9 t(t l+ t„ ,tl+5* t„)) 5 4 8 T r u e R E

Note that in this, case the event feeder does not update directly the template instance 11.

Instead it creates a new instance 12 as a copy of II and updates 12. This is because 11 should

be used to create another template instance if the feeder receives another event Q and in this

event the variable y had a value other than b. i.e. an event like Happens(ic:Sl:Q(id2,a,c)). In

137

this case, a new template instance could not be created from 12 as all the variables in it are

bound to some value. Thus, any new instance of formula 4.1 should be created from 11 as the

variable y in II is not bound to some value.

4.4.2.2 The Algorithm

Figure 4.9 shows the algorithm for the event feeder,

f e e d (T , E , T a e T dgi)
/ * E: event, T: formula template */
/* Tadd is a list of new templates created from T after processing event E */
/* Tdel is a list of templates to be pruned after processing event E */
1 - Tadd,=(>, Td e l : ~ 0
2. for each predicate P in T such that (P . T V = U K) do
3. ucur := i m g u (E , P , u)
4. if(P.tv is unconstrained) then
5. if (ucur f 0) then
6. if ucur - ut|p ̂ 0 then

/‘create a copy of T if an additional variable of P is unified with
the current event */

7. T' := T
8- Tadd := Tadd U {T ' }
9. end if
10. P . TV : = -iP . N o Q
11. P . S C := RE
1 2 . P . T S . V := E . T S
13 . T . Uf := T . Uf U Ucuz
14. for each predicate P I in T do
15. if P l.U B .T i is a time var in Pl.UB such as PI . UB. T i . N=P. T S . N then
16. P 1 . U B . T L . V : = P . T S . V
17. end if
18. if P l . L B . T i is a time var in P l . U B such as P I . L B . T f . N = P . T S . N then
19. P I . L B . T z . V: = P . T S . V
2 0 . end i f
21. end for
22. T .updated :=true
23. end if
24. else /* constrained predicate */
25. if(P . Q = e x i s t e n t i a l a n d T.U; ^ 0) then

/* 3t.p(x,t) or -i3t.p(x,t) predicate */
26. if e v a l (P . L B) < E . T S < e v a l (P . U B) then /* E inside P's range */
27. if ucur*0 then
28. if ucur — Uf |p ̂ 0 then

/‘create a copy of T if an additional variable of P is unified */
29. T 1 := T;
30. Tadd := Tadd U {T' }
31. end if
32 . P . T V := -i P . N o Q
33. P . S C := RE
34. P . T S . V : = E . T S
35. T . U f : = T . U f U u cur; T . updated: =true
36. for each predicate P I in T do
37. if P l . U B . T f is a time var in P l . U B such as P I . U B . T d . N = P . T S . N then
38. P I . U B . T f . V : = P . T S . V
39. end if
40. if P l . L B . T i is a time var in P l . U B such as P I . L B . T ± , N = P . T S . N then
41. P l . L B . T i . V : = P . T S . V
42 . end if
43. end for
44. end if

138

4 5 .

4 6 .

4 7 .

4 8 .

4 9 .

5 0 .

5 1 .

5 2 .

5 3 .

5 4 .

5 5 .

5 6 .

5 7 .

5 8 .

5 9 .

6 0 .

6 1 .

6 2 .

6 3 .

6 4 .

6 5 .

6 6 .
6 7 .

6 8 .

6 9 .

7 0 .

7 1 .

7 2 .

7 3 .

7 4 .

7 5 .

7 6 .

7 7 .

7 8 .

7 9 .

8 0 .

8 1 .

8 2 .

8 3 .

8 4 .

8 5 .

8 6 .
8 7 .

8 8 .
8 9 .

9 0 .

9 1 .

9 2 .

9 3 .

9 4 .

9 5 .

9 6 .

9 7 .

9 8 .

9 9 .

100
101

102
1 0 3

else if E .T S > e v a l (P .U B)then /* E outside P's range*/
if not p a r t i a l (U f / p) then

P.TV := P.NoQ
P. SC := NF;
P.TS.V := eval(P.UB)
for each predicate PI in T do
if P l.U B .T i is a time var in Pl.UB such as P I . UB. Ti . N=P. T S .N then

P l .U B .T i . V: =P. TS. V
end if
if P I . L B . T i is a time var in P I . LB such as P I . L B . T i . N = P . T S . N then

P I . L B . T i . V : = P . T S . V
end if

end for
T. u p d a te d : = t r u e

else /* predicate is still partial */
T d e i : = T d e l U { T }

end if /*test for not partial(uf|P) */
end if /* test for E's time range */

else /* predicates: Vt.p(x,t) OR -i Vt.p(x,t)(= 3t. -ip(x,t)) */
if e v a l (P .L B) < E .T S < e v a l(P .U B) then

if ucur * 0 then /* E can be unified with the current predicate */
if P.NoQ=false then/* predicates: Vt.p(x,t) */

if E.NG=flase then
if ucui — Uf|P ̂ 0 then
/♦create a copy of T if an additional variable of P is

T ’ := T;

Tadd := Tadd u {T'}
end if
P . T V := —i P . N o Q
P . S C : = RE
P . T S . V : = E . T S

T . U f : = T . U f C7 Ucur
for each predicate P I in T do
if P l . U B . T i is a time var in P l . U B such as

P I . UB. Ti . V : = P . TS. V
end if
if P l . L B . T i is a time var in P I . L B such as

P I . UB . Ti . N = P . T S . N
then

P I . L B . Ti . N = P . T S . N
then

P l . L B . T i ■ V : = P . T S . V
end if

end for
else /* E.NG = true */

P . TS . V : =E . TS
end if /* E.NG check */
T.updated := true

else /* —i Vt.p(x,t) predicates */
if E.NG=false then /* negated event */

P.TS.V := E.TS
else /* E.NG=true */

if ucur - Uf|P 5* 0 then
/♦create a copy of T if an additional variable of P is

T ’ := T;

T a d d : - T add U { T ' }
end if
T . U £ : - T . U f U Ucur
P . TV := P.NoQ
P.SC := NF;
P.TS.V := eval(P.UB)
for each predicate P I in T do

if P l.U B .T i is a time var in Pl.U B such as
P l .U B .T i . N=P. T S .N then

P I . UB. T i . V : = P. T S . V
end if

139

104 . if P l . L B . T i is a time var in P I . L B such as
P I . L B . Ti . N = P . T S . N then

105. P I . L B . Ti . V: =P. T S . V
106. end if
107 . end for
108 . T . u p d a t e d : =tr u e
109 . end if /* E.NG check */
110. end if /* P.NoQ check */
111. else /* q(_,t) events within P's time range */
112 . if P.NoQ=false then /* Vt.p(x,t) predicates */
113 . P . TS . V : =E . TS
114 . else /* P.NoQ=true —> Vt.p{x,t) predicates */
115. if not p a r t i a l (Uf jp) then
116 . P.TV := P . N o Q
117 . P . SC := RE
118 . P. TS . V : = E. TS
119 . for each predicate P I in T do
120 . if P l . U B . T i is a time var in P l . U B such as P I . UB. T i . N = P . T S . N

then
121. P I . UB. Ti . V: =P. T S . V
122 . end if
123 . if P l . L B . T i is a time var in P I . L B such as P l . L B . T i . N = P . T S . N

then
124 . P l . L B . T i . V : = P . T S . V
125 . end if
126 . end for
127 . T.updated := true
128 . else /* predicate still partial */
129 . Tdel := Tdel U {T}
130. end if /* is partial */
131. else if E . T S > e v a l (P . U B)then /* event outside P's time range */
132 if not p a r t i a l (Uf/p) then
133 P.TV:=false
134 if P.TS.V + mint=E.TS then
135. P.SC := RE
136 else
137 P.SC := NF
138 end if
139 P.TS.V:=E.TS
140 for each predicate P I in T do
141. if P l . U B . T i is a time var in P l . U B such as P I . U B . T i . N = P . T S . N

then
142 P I . U B . Ti . V : = P . T S . V
143 end if
144 if P l . U B . T i is a time var in P l . U B such as P I . UB. Ti . N = P . T S . N

then
145 P I . LB. Ti . V : = P . T S . V
146 end if
147 end for
148 T.updated := true
149 else /* predicate still partial */
150 idei := Tdel U {T}
151 end if /* is partial */
152 end if /* eval(P.LB) <= E.TS <= eval(P.UB) */
153 end if /* universal */
154 end if /* constrained predicate */
155 end for
end feed

Figure 4.9: A lg o rith m fo r th e e v en t feed e r

140

4.4.2.3 Explanation of the Algorithm

The event feeder receives a template T, an event E and two lists of templates Tadd and Tdei. Tadd

accumulates the templates created from T as result of processing the event E and Tdel

accumulates the templates that should be removed after processing the event E.

In line 1 Tadd and Tdei are initialised to empty list. The for loop starts in line 2 iterates over

each predicate P in the template T and the body of the for loop updates the tmth-value of P. In

line 3 the current most general unifier ucur for P and the event E is computed. If E can not be

unified with P, then ucur would be empty.

To update the truth-value of the predicates the algorithm first considers the unconstrained

predicates between lines 4 and 23. Constrained predicates are considered between lines 24

and 154. More specifically existentially quantified predicates are considered between lines 25

and 62, universally quantified predicates are considered between lines 63 and 154.

In case of constrained predicates, the if condition in 5 checks if P can be unified with E. The

body of the if condition updates the truth-value of P. In line 6 check is made to see if a new

instance of the template needs to be created. This checking uses uqp, which holds the variable

bindings that P has at the latest. This checking verifies if an additional variable in P can be

bound to some value (this is done by taking the set difference of ucur and Uf]p). If these

condition is true, a new template instance is created in line 7 and added to Tadd in line 8.

Truth-value, source, time stamp and bindings for variables of P are updated in lines 10, 11, 12

and 13 respectively. The for loop between lines 14 and 21 updates the time range of other

predicates in the template that depends on the time variable of P.

The code segment between lines 25 and 62 considers that P has existentially quantified time

variable, i.e. cases from 1 to 12 presented in Table 4.1 are considered in this code segment.

The if block between lines 26 and 44 considers the case where E can be unified with P, and

the time stamp of E complies with the time range of P (cases 1, 4, 7 and 10 in Table 4.1). A

new template instance is created (if it is needed) and added to Tadd between lines 28 and 31.

Truth-value, source, time stamp and bindings for variables of P are updated in lines 32, 33, 34

and 35 respectively. The for loop between lines 36 and 42 updates the time range of other

predicates in the template that depends on the time variable of P. The else block between lines

45 and 62 considers the cases 3, 6, 9 and 12 in Table 4.1 (i.e. time stamp of E is greater than

the upper limit of the range of P). In such cases, if P is not partial (i.e. all variables of P are

bound to some values) then the truth-value, source, time stamp of P should be updated. This

141

is performed between lines 47 and 49. If P is partial then it is not possible to make any

decision from this template (since it is guaranteed that the truth-value of P can not be updated

by recorded events any more) and it should be removed, hence T is added to Tde¡ in line 60. It

should be noted that the cases 2, 5, 8 and 11 do not have any impact on the truth-value and

time stamp of a predicate, therefore these cases have not been considered in the algorithm.

The code segment between lines 63 and 154 considers that P has universally quantified time

variable, i.e. cases from 13 to 24 presented in Table 4.1 are considered in this code segment.

The if block between lines 64 and 130 treats the case where the time stamp of E is within the

time range of P. The ; / block between lines 66 and 88 considers the case where E can be

unified with P, E is not negated and P is not negated (i.e. cases 13 and 19 in Table 4.1). A

new template instance is created (if it is needed) and added to Tadd between lines 68 and 71.

Truth-value, source, time stamp and bindings for variables of P are updated in lines 72, 73, 74

and 75 respectively. The for loop between lines 76 and 83 updates the time range of other

predicates in the template that depends on the time variable of P. The code segment between

lines 89 and 91 considers the case where E can be unified with P, E is not negated and P is

negated (i.e. cases 16 and 22 in Table 4.1). In this block the time stamp of P is incremented to

the next time point. The code segment between liens 91 and 109 considers the case where E

can be unified with P but E is negated and P is negated (i.e. cases 17 and 23 in Table 4.1). A

new template instance is created (if it is needed) and added to Tndd between lines 92 and 95.

Truth-value, source, time stamp and bindings for variables of P are updated in lines 96, 97, 98

and 99 respectively. The for loop between lines 100 and 107 updates the time range of other

predicates in the template that depends on the time variable of P. The else block between lines

111 and 130 considers the cases where E can not be unified with T (cases 14, 17, 20, 23). In

such cases if P is not negated then the time stamp of P should be updated, which is done in

line 113. And if P is negated and not partial (i.e. all variables of P are bound to some values)

then the truth-value, source, time stamp of P should be updated. This is performed between

lines 115 and 126. If P is partial then it is not possible to make any decision from this

template and it should be removed, hence T is added to Tdei in line 129.

The code segment between lines 131 and 151 considers the cases where the time stamp of E is

greater than the upper limit of the range of P (i.e. cases 15, 18, 21 and 24 in Table 4.1) and P

is not partial (i.e. all variables of P are bound to some values). In such cases the truth-value,

source, time stamp of P should be updated. This is performed between lines 133 and 139.

142

4.4.3 The Event Generator

The event generator receives a template T and generates an event for each predicate in the

head of the template T if the conditions for generating such events are satisfied. It also

updates the truth-value of the predicates that correspond to the generated events in the

templates that are dependent on the template T.

4.4.3.1 Overview of the Event Generation Algorithm

For a given template, the event generator generates a monitoring event if the following

conditions hold (see definition 2, (ER(T),/}|=nf e}):

(i) The predicate is in the head of a template.

(ii) The truth value of the predicate is unknown (UK), and all the variables of the

predicate have been bound to concrete values and some other template depends

on this predicate.

(iii) The truth value of each other predicate in the body of the template is True and

only recorded events are used to update the truth values of these predicates.

It should be appreciated that the timestamp of a predicate generated by the event generator

might not be a fixed time point in all cases. In some instances, it may be equal to a time range

of the predicate. For example if the event generator generates an event for the predicate

Happens(ic:Sl :P(idl,a),t, 91(3,10)) the timestamp of the generated event would be 91(3,10).

If a template from which a predicate has been generated, the event generator fetches the

templates that depend on the generated events and feeds the generated event to those

templates. This is because the events generated by the event generator may not have fixed

time point as timestamp so they can not be treated as recorded events that are handled by the

event feeding algorithm of Figure 4.9. Thus, to feed the derived events to the dependant

templates the event generator checks if the derived event can be unified with the predicate

and checks the quantification on the predicate time variable and the limits of the range. The

possible cases considered by the event generator are shown in Table 4.2. The notation used in

Table 4.2 has the same meaning as that of in Table 4.1, except the events. An event in Table

4.2 is shown as P(a, (ti,t2)), where P stands for the event signature, a represents the value of a

variable in the event and (ti,t2) is the possible time range for the event to occur. The second

row under the event column shows the checking of the event time range compliance with the

predicate time range and other conditions that should be checked to update the truth-value of

143

a predicate. If the event time range intersects with the predicate time range, the event

generator updates the truth-value of the predicate depending on the semantic of the quantifier

of the predicate. This reasoning is described below. The event generator also checks the

pForm condition of the predicate whose truth-value has been updated. If the event time range

intersects with the predicate time range but the event time range is not within the predicate

time range, then the predicate is marked as a pForm predicate (see definition 6), by setting

pForm field of the predicate to true.

Existentially quantified predicates:

(i) A predicate of the form (3 tp).P(x,tp,[LB,UB]) signifies there exist at least a single

time point tp in the range [LB,UBJ such that the evidence of predicate P can be found.

The truth-value of a predicate of this form is set to true as soon as the first event that

has intersecting time range with the time range [LB, UB] and that can be unified with

P occurs (cases 1, 2, 9 and 10 in Table 4.2). The occurrence of an event that has

intersecting time range with the range [LB, UB] but the event can not be unified (or

can be unified, but the event is negated) with P, does not have any impact on the

predicate (cases 3, 4, 11 and 12 in Table 4.2).

(ii) A predicate of the form -7 (3 tp).P(x,tp,[LB,UB]) signifies there does not exist any

single time point tp in the range [LB,UB] such that the evidence of predicate P can be

found. The truth-value of a predicate of this form is set to false as soon as the first

event that has intersecting time range with the time range [LB, UB] and that can be

unified with P occurs (cases 5, 6, 13 and 14 in Table 4.2). The occurrence of an

event that has intersecting time range with the range [LB, UB] but the event

can not be unified (or can be unified, but the event is negated) with P, does not

have any impact on the predicate (cases 7, 8, 15 and 16 in Table 4.2).

Universally quantified predicates:

(i) A predicate of the form (\/ tp).P(x,tp,[LB,UB[) signifies at any observable time point

tp in the range [LB,UB] the evidence of the predicate P can be found. The truth-value

of a predicate of the form (1 /tp).P(x,tp,[LB,UB[) is set to true if a derived event that

has an intersecting time range with the time range [LB, UB] and can be unified with P

occurs (see cases 17, 18, 25 and 26 in Table 4.2). A derived event that has

intersecting time range with the range [LB, UB] but can not be unified with P or a

derived event that can be unified, but the predicate is negated, does not have any

impact on the predicate (cases 19, 20, 27 and 28 in Table 4.2).

144

Table 4.2: P o ss ib le p red ica te u p d atin g cases co n sid e red by the E v en t G en era to r

Predicate Deduced Event
P(a, [ts,ts]) P(a, [ts,te]) —,P(a, [ts,ts]) -,P(a, [ts,te])
Condition:
[ts,ts]n[L B ,
UB] + 0
& &
P .T V = U K

Condition:
[ts,y n [L B ,U B] *
0 & & P .T V = U K

Condition:
[ts,ts]n[L B ,U
B] ^ 0 & &
P .T V = U K

Condition:
[ts ,yn [L B ,U B] *
0 & &
P .T V = U K

3tp .P (x ,tp,[LB.UB]), LB=t UB=t 1
P .T V := tru e

X := a
tp-= ts

2
P .T V := tru e

x := a
tp:= te

if [ts,te li [LB.UB]
P.pForm:=true

3
N o E ffec t

4
N o E ffec t

—i3tp.P(x,tp,[LB,U B]), LB=t UB=t
Vt. - , P (x ,tp, [LB.UB])

5
P .T V := fa ls

e
X := a

tp* = ts

6
P .T V := fa lse

x := a
tp.= tg

if [ts,Ue [LB.UB]
P.pForm:=true

7
N o E ffec t

8
N o E ffec t

3 tp.P (x ,tp, [LB.UB]), LB=ti UB=t2 9
P .T V := tru e

X := a

tp::= ts

10
P .T V := tru e

x := a
tp:= te

if [ts .y g [LB.UB]
P.pForm:=true

11
N o E ffec t

12
N o E ffec t

-,3tp.P(x,tp, [LB.UB]), LB=ti UB=t2
Vtp. -, P (x ,tp, [LB,UBI)

13
P .T V := fa ls

e
X := a
tp-= ts

14
P .T V := fa lse

x := a
V=te

if [ts .y g [LB.UB]
P.pForm:=true

15
N o E ffec t

16
N o E ffec t

Vtp.P(x,tp,[LB.UB]), LB=t UB=t 17
P .T V := tru e

X := a
tp ~ ts

18
P .T V := tru e

x := a
tp:= te

if [ts .y e [LB.UB]
P.pForm^U'ue

19
N o E ffec t

20
N o E ffec t

—,Vtp.P(x,tp,[LB.UB]), LB=t UB=t
3 tp. -, P (x ,tp, [LB.UB])

21
N o E ffec t

22
N o E ffec t

23
P .T V := tru e

x := a
tp'= t s

24
P .T V := tru e

x := a
tp:= te

if [ts, y g [LB.UB]
P.pForm:=true

V tp.P(x,tp,[LB,UB]), LB=ti UB=t2 25
P .T V := true

X := a
tp-= t s

26
P .T V := tru e

x := a
tp:= te

if [t j .y g [LB.UB]
P.pForm:=true

27
N o E ffec t

28
N o E ffec t

-,Vtp.P(x,tp,[LB.UB]), LB=ti UB=t2
3 tp. -, P (x ,tp, [LB.UB])

29
N o E ffec t

30
N o E ffec t

31
P .T V := tru e

x := a
tp’= ts

32
P .T V := tru e

x := a
tP:= te

if [ts,te]g [LB.UB]
P.pForm:=true

145

(ii) A predicate of the form —¡{V tp).P(x,tp,[LB,UB]) signifies not for all time point tp in

the range [LB,UB] the evidence of the predicate P can be found. The truth-value of a

predicate of this form is set to true as soon as the first derived event that has

intersecting time range with the time range [LB, UB] and that can not be unified (or

can be unified, but the event is negated) with P occurs (cases 23, 24, 31 and 32 in

Table 4.2). A derived event that has intersecting time range with the range [LB,

UB]and that can be unified with P, does not have any impact on the predicate (cases

21, 22, 29 and 30 in Table 4.2).

4.4.3.2 The Algorithm

Figure 4.10 shows the algorithm for the event generator

Generate,_event(T: template, Mt^pg : list of templates)
1. if (each predicate P I in the body of T has P l . T V = t r u e and P I . SC = RE then
2 . for each dependant DP in T do
3. for each predicate P in head of T do
4 . if(DP.P u n i f i e s P) and(P.TV=UK or P.S C = N F)and(not partial (uf|P then
5 . P.T V : = t r u e
6. P . S C : =DE
7 . generate an event E
8 . E . S G : = P . S G
9 . E . N G : = P . N o Q
10 E . V B : = u f iP
11. if(T' is a Template in Mtemps such that T ' . F i d = D P . i d) then
12 . for each predicate P' in T ' do
13 . ucur := i m g u (E , P ' , U f i p .)
14. iSK (L , U) : = 95 (e v a l (P . L B) , e v a l (P . UB)) D 95 (e v a l (P ' . L B) , e v a l (P ' . UB))
15. if (umlr*0and (P'. TV=UK or P'. SC=NF) and (95(L, U) * 0) then
16. if(P '.Q = e x i s t e n t i a l) then

/* dependent formula predicate: 3t.p(x,t) or
-i3t.p(x,t) and derived predicate: p(a,t) V

17 . if (E . N G = f a l s e) then
18 . T" := T';
19 . ■̂temps • — -̂temps ^ ^
20. P ' . T V := -i P ' N o Q
21. P '. S C := DE
22 . if (95 (e v a l (P . LB) , e v a l (P . UB)) is not within

95 (eval (P ' . L B) , e v a l (P ' . UB) then
23 . P ' . p F o r m := t r u e
24 . end if
25. T ' . u p d a t e d := t r u e
26. T ' . U f := T ' . Uf U Ucur
27 . for each predicate P " in T ' do
28 . if P " . U B . T i is a time var in P " . U B such as

P " . UB. T i . N=P ' . T S . N then
29 . P " . U B . T 1 . V := U . V
30 . end if
31. if P " . L B . T i is a time var in P " . L B such as

P " . L B . T 1 . N = P ‘ . T S . N then
32 . P " . L B . T i . V : = U . V
33 . end if
34 . end for
35. end if /* end of E.NG check */
36 . else /* Universal! predicate */

146

/* dependent formula predicate :Vt.p(x,t) or -iVt.p(x,t)*/
37 . if (E . N G = P'. No Q) then
38. T" := T';
39 . t̂emps • — t̂emps ^ ^
40 . P ’ . T V := true
41. P ' . S C := DE
42 . if ((9? (e v a l (P . L B) , e v a l (P . UB)) is not within

9t (e v a l (P '. L B) , e v a l (P ' . UB)) then
43 . P ' . p F o r m := t r u e
44 . end if
45. T ' . u p d a t e d := t r u e
46. T ' . Uf : = T ' . Uf ucur
47. for each predicate P " in T ' do
48. if P " . U B . T i is a time var in P " . U B such as

P " . U B . T i . N = P ‘ . T S . N then
49. tjne7§
50. end if
51. if P " . L B . T i is a time var in P " . L B such as

P " . L B . T i . N = P ' . T S . N then
52. P " . L B . T i . V := U . V
53 . end if
54 . end for
55. end if /* end of E.NG=P'.NoQ */
56. end if /* end of quantifier check */
57. end if /* end of ucur*0 */
58. end for /* end of each p' */
59. if T ' . u p d a t e d = t r u e then check_consistency(T' , Mtemps)
60. end if /* end of T'.Fid = DP.id */
61. end if /* end of P . T V = UK * /
62 . end for /* end of each p */
63 . end for /* end of each DP */
64. end if

end generate_event

Figure 4.10: A lg o rith m fo r the e v en t g en era to r

4.4.33 Explanation of the Algorithm

In line 1 the event generator checks if the truth-value of each predicate in the body of the

template T is set to true using recorded events. The for loop starts in line 2 iterates for all the

dependants T has. The for loop starts in line 3 iterates over each predicate P in the head of T.

The if statement in line 4 checks the necessary conditions to generate an event. In the code

segment between lines 5 and 10, truth-value of P is updated and a derived event E is

generated. A target template T ’ that depends on T is picked up in line 11. The for loop starts

in line 12 iterates over each predicate P' in T’. In line 13 the current most general unifier ucur

for P ’ and the event E is computed. If E can not be unified with P \ then ucur would be empty.

In line 14 the intersection of the time range of E and the time range of P' is calculated. The if

condition in line 15 checks if E can be unified with P ’ and the truth-value of P' has already

not been set by a recorded event. The if block between lines 16 and 36 considers the

predicates with existentially quantified time variables, i.e. cases 1, 2, 5, 6, 9, 10, 13 and 14 in

Table 4.2. A new instance of T is created and added to the template list in lines 18 and 19

respectively. Truth-value and source of P ’ are set in lines 20 and 21 respectively. The

147

condition for pForm is checked and the predicate is marked as pForm between lines 22 and

24. The for loop between lines 27 and 34 updates the time range of other predicates in the

template that depends on the time variable of P'. The else block between lines 36 and 56

considers the predicates with universally quantified time variables, i.e. cases 17, 18, 23, 24,

25, 26, 31 and 32 in Table 4.2. A new instance of T is created and added to the template list

in lines 38 and 39 respectively. Truth-value and source of P ’ are set in lines 40 and 41

respectively. The condition for pForm is checked and the predicate is marked as pForm

between lines 42 and 44. Thefor loop between lines 47 and 54 updates the time range of other

predicates in the template that depends on the time variable of P'. The if condition in line 59

checks if T has been updated, in such case consistency checker is called to check T’ for

possible violation.

4.4.4 The Consistency Checker

The consistency checker receives a template and makes a decision about the template if none

of the predicates in the template has the status UK and updates the monitoring status of the

template. The algorithm used to implement the Consistency Checker is described below.

4.4.4.1 Overview of the Algorithm for the Consistency Checker

The consistency checker makes monitoring decision according to the rules described below.

These rules are based on the formal definitions of the property deviation types presented in

Section 4.3.

• If the truth value (7V)of all the predicates in the template is set to true, the template

(formula instance) is satisfied.

• A template that signifies a formula instance is inconsistent with the recorded behaviour of

the system if,

(i) the truth value (TV) of all the predicates in the body of the template is set to true

(ii) the truth value (TV) of at least one predicate in the head is set to false

(iii) the source of event (SC) of none of the predicates in the template is set to DE,

According to Definition 3 in Section 4.3, a formula/: C=>A is inconsistent with the

recorded behaviour, if - f {i.e. C /a -A) can be entailed by the recorded behaviour of the

system. The condition (i) establishes C, condition (ii) establishes -A and condition (iii)

guarantees that only recorded events are used to detect the inconsistency.

148

• A template that signifies a formula instance is inconsistent with the expected behaviour of

the system if,

(i) the truth value (TV) of all the predicates in the body of the formula is set to true

(ii) the truth value (TV) of at least one predicate in the head is set to false

(iii) the source of event (SC) of at least one predicate in the template is set to DE,

According to Definition 4 in Section 4.3, a formula/: C=>A is inconsistent with the

expected behaviour, if - / (i.e. C /\ —A) can be entailed by the recorded behaviour and the

expected behaviour of the system. The condition (i) establishes C, condition (ii)

establishes -iA and condition (iii) guarantees that derived event (expected behaviour) is

used to establishe the truth value of at least one predicate in the formual to detect the

inconsistency.

• A template, that signifies an instance of a behavioural property, shows unjustified

behaviour if,

(i) the truth value (TV) of all predicates in the head of the template is set to true

(ii) the source of event (SC) of all the predicates in the head of the template is set to

RE,

(iii) there is another template 7” that signifies a different instance of the same

behavioural property and 7” is satisfied by recorded events only.

(iv) the truth value (TV) of at least one predicate in the body is set to false and the

source o f event (SC) for this predicate is set to DE,

According to Definition 5 in Section 4.3, a behavioural propertyf:C=>A shows unjustified

behaviour, if / is satisfied by the recorded behaviour of the system, but there is at least

one condition in the body of /which would not be satisfied by the expected behaviour of

the system. The conditions (i)-(iii) ensure that the behavioural property is satisfied by the

recorded behaviour of the system and, condition (iv) establishes that there is at least one

condition in the body of the template that is not satisfied by the derived events. •

• A template that signifies a formula instance is possibly inconsistent with the expected

behaviour of the system if,

(i) at least one predicate in the template has pForm set to true,

(ii) the truth value (TV) of all the predicates in the body of the formula is set to true

(iii) the status of at least one predicate in the head is set to false

(iv) the source of event (SC) of at least one predicate in the template is set to DE

149

According to Definition 6 in Section 4.3, a formula/: C=>A is possibly inconsistent with

the expected behaviour, if -ipForm(f) (i.e. pForm(C) a -ipForm(A)) can be entailed by

the recorded behaviour and the expected behaviour of the system. The condition (i)

ensures that the pForm of the template is used, condition (ii) establishes pForm(C),

condition (iii) establishes —ipForm(A) and condition (iv) guarantees that derived event

(expected behaviour) is used to establishe the truth value of at least one predicate in the

formual to detect the inconsistency.

• A template, that signifies an instance of a behavioural property, shows potentially

unjustified behaviour if,

(i) at least one predicate in the template has pForm set to true,

(ii) the truth value (TV) of all predicates in the head of the template is set to true

(iii) the source of event (SC) of all the predicates in the head of the template is set to

RE,

(iv) there is another template T’ that signifies a different instance of the same

behavioural property and T is satisfied by recorded events only.

(v) the truth value (TV) of at least one predicate in the body is set to false and the

source of event (SC) for this predicate is set to DE,

According to Definition 7 in Section 4.3, a behavioural propertyf:C=>A shows potentially

unjustified behaviour, if / is satisfied by the recorded behaviour of the system, but there is

at least one condition in the body of pForm(f) which would not be satisfied by the

expected behaviour of the system. The condition (i) ensures that pForm of / is used,

conditions (ii)-(iv) ensure that the behavioural property is satisfied by the recorded

behaviour of the system and, condition (v) establishes that there is at least one condition

in the body of the template that is not satisfied by the derived events.

4.4.4.2 The Algorithm

Figure 4.11 shows the algorithm for the consistency checker,

check_consistency(T: formula template. Templates: list of all templates)
1. Let T is the received Template and T e m p l a t e s is the list of all templates
2. if T . f o r C h e c k i n g = t r u e and there is no Predicate P in T that has P . TV=UK

then
3. if (each predicate P in T has P . T V = t r u e) then
4. T . S T = S A T
5. else if (at least one Predicate P in head of T has P . T V = f a l s e) and

(each predicate P in body of T has P . T V = t r u e) and (no predicate P
in T has P . SC=DE) then

150

6 . T . S T = I_R_B
7 . else if (at least one Predicate P in head of T has P . T V = f a l s e) and

(each predicate P in body of T has P . T V = t r u e) and (at least
one predicate P in T has P . S C = DE) and (no predicate P has
P . p F o r m = t r u e) then

8 . T . S T = I_E_B
9 . else if (each Predicate P in head of T have P . T V = t r u e and P . S C = R E)

and (at least one Predicate P in body of T has P . T V = f a l s e and
P . S C = D E) and (no predicate P has P , p F o r m = t r u e) and (T' is a
template in T e m p l a t e s such that T ' . F i d = T . F i d and T ' . S T = S A T and
each predicate P ' in T ' has P ' . S C = R E) then

10. T . S T = U_B
11. else if (at least one Predicate P in head of T has P . T V = f a l s e) and

(each predicate P in body of T has P . T V = t r u e) and (at least one
predicate P has P . p F o r m = t r u e) then

12 . T . S T = P_I_E_B
13 . else if (each Predicate P in head of T have P . T V = t r u e and P . SC=RE)

and (at least one Predicate P in body of T has P . T V = f a l s e and
P . SC=DE) and (at least one predicate P has P , p F o r m = t r u e) (T'
is a template in T e m p l a t e s such that T ' . F i d = T . F i d and
T ' . S T = S A T and each predicate P ' in T ' has P ' . S C = R E) then

14. T . S T = P_U_B
15 . end if
16 . end if
end check_consistency

Figure 4.11: A lg o rith m fo r the co n sis ten cy ch eck er

4.4.4.3 Explanation of the Algorithm

In line 1 the consistency checker receives a Template T. In line 2 a check has been made to

make sure that T signifies a formula instantiation that should be checked (i.e. T is not template

of an assumption) and all the predicates in T have truth-value set. In line 3 conditions for

formula satisfiability is checked and if these conditions are true the status T is set to SAT,

which stands for Satisfied, in line 4. In line 5 conditions for inconsistency of recorded

behaviour are checked. If these conditions are true the status of T is set to I_R_B, which

stands for inconsistency of recorded behaviour, in line 6. In line 7 conditions for

inconsistency of expected behaviour are checked and if these conditions are true the status of

T is set to I_E_B, which stands for inconsistency of expected behaviour, in line 8. In line 9

conditions for unjustified behaviour are checked. If these conditions are true the status of T is

set to U_B, which stands for unjustified behaviour, in line 10. In line 11 conditions for

potential inconsistency of expected behaviour are checked and if these conditions are true the

status of T is set to P_I_E_B, which stands for potential inconsistency of expected behaviour,

in line 12. In line 13 conditions for potentially unjustified behaviour are checked. If these

conditions are true the status of T is set to P_U_B. which stands for potentially unjustified

behaviour, in line 14.

151

4.4.5 Analysis of the Monitoring Algorithm

In this section we analyse the monitoring algorithm presented above. First we summarize

some limitations of this algorithm and then present a formal analysis of it.

The limitations of the monitoring scheme are listed below,

• The supports only checking of future formulas. It does not support past formula.

• The event generator applies only deductive reasoning and does not apply abductive

reasoning to derive the possible behaviour of the system.

• The scheme generates monitoring decision only at the formula instance level, not at the

formula level. It should however, be appreciated that the monitoring decision at the

formula level can be established quite easily from the monitoring decisions at the formula

instance level. For example, consider the following formula,

(V t1 :Time) (Vt2:Time)

Happens(in:IS:FindAvailableCar(_olD1, _plD), t1, (0 , 20)) a

Happens(ir:IS:FindAvailableCar(_olD1),t2, 9t(t1,t2)) => oc:self:sub(t2, t1) < 5

It specifies for all observable time points tl in [0,...,20], and other time points t2 after tl

the formula must be satisfied. The formula is satisfied if all the formula instances

(templates) generated by the monitor in the specified time range are satisfied, and the

formula is violated if at least one formula instance (template) generated by the monitor in

the specified time range is violated. The monitoring algorithm as it stands does not report

collective result for the formula.

In the rest of this section we present the formal analysis of the monitoring algorithm.

4.4.5.1 Soundness

The soundness of the monitoring algorithm can also be established by explaining the

soundness of the event feeder algorithm, the event generator algorithm and the consistency

checker algorithm. In the following we establish the soundness of the event feeder algorithm,

the event generator algorithm and the consistency checker algorithm.

Theorem 4.1 (soundness of the event feeder algorithm)

152

Given a template instance T and an event e, the feed method updates the truth value of a

predicate P in T if and only if P and e conforms to one of the predicate updating cases

presented in Table 4.1.

Proof:

The event feeder algorithm updates the truth value of a predicate P in a template instance T by

applying the principle negation as failure or using a recorded event e. In either case it covers

all the predicate truth value updating cases described in Table 4.1. This is because:

(i) The event feeder algorithm updates the truth value of a predicate P in a template

instance T using a recorded event e only if e can be unified with P and P.LB < =

e.TS <= P.UB. This covers the cases 1, 4, 7, 10, 13, 16, 19 and 22 in Table 4.1

(see Section 4.4.2.3 for the explanation of the algorithm). The updates performed

in these cases are sound.

(ii) The event feeder algorithm updates the truth value of a predicate P in a template

instance T by applying the principle negation as failure only if all the variables in

P are bound to some value (that ensures there was a possibility of having a

recorded event to update the truth value of P given the previous recorded events

that are used to update the truth value of other predicates in T) and it is

guaranteed that given e there is no possibility of having a recorded event that can

be used to update the truth value of P in T. More specifically, the principle

negation as failure is applied if (a) P.TS is universally quantified and e can be

unified with P and e is negated or if e can not be unified with P. This covers the

cases 17 and 23 in the Table 4.1, and (b) e.TS > P.UB that is in cases 3, 6, 9, 12,

15, 18, 21 and 24 in Table 4.1 (see Section 4.4.2.3 for the explanation of the

algorithm). The updates performed in these cases are sound.

Since in any case other than the two cases described above the truth value of a

predicate is not updated by the event feeder algorithm and Table 4.1 exhausts all

possibilities of event/predicate combinations, it is ensured that no anomaly can be

introduced in the monitoring process by the event feeder algorithm.

Theorem 4.2 (soundness o f the event generator algorithm)

Given a template instance T the generate_event method (i) generates an event P from T if and

only if T satisfies the conditions to generate an event and (ii) updates the truth value of a

predicate P ’ in a template instance 7” if and only if T’ depends on T, P and P ’ conforms to

one of the predicate updating cases presented in Table 4.2.

153

Proof:

The event generator algorithm derives an event P from a template instance T only if T

satisfied the conditions presented in Section 4.4.3.1 (see Section 4.4.3.3 for the explanation of

the algorithm) which are the sufficient conditions to generate an event and update a template

instance T ’ that depends on T. The event generator algorithm updates the truth value of a

predicate P' in T’ using P only if P can be completely unified with P ’ and [P.LB,

P.UB]n[P'.LB, P’.UB] ^ 0 . This ensures that all the cases presented in Table 4.2 are

considered by the event generator algorithm (see Section 4.4.3.3 for the explanation of the

algorithm).

Theorem 4.3 (soundness of the consistency checker algorithm)

Given a template instance T the check_consistency method updates the status of T if and only

if T complies with the formal definition of one of the inconsistency type presented in Section

4.3.

Proof:

The consistency checker algorithm updates the status of a template instance T only if T

satisfied one of the conditions described in Section 4.4.4.1 which are the conditions based on

the formal definitions of the inconsistencies presented in Section 4.3 (see Section 4.4.4.3 for

the explanation of the algorithm).

4.4.5.2 Completeness

The monitoring algorithm (see Figure 4.8) is complete. This is because it considers each

single event e in the event database and for each single event it considers each single template

instance T in the formula database to feed the event to the template instance using the event

feeder algorithm presented in Figure 4.9.

The event feeder algorithm considers each single predicate P in the template instance to check

if the template instance should be updated by the event. The event feeder algorithm performs

an exhaustive check to ensure the time compliance and covers all the possible cases presented

in Table 4.1 as it is shown in the explanation of the algorithm in Section 4.4.2.3. New

instances of templates are created by the event feeder algorithm, if a new event can be unified

with an unconstrained predicate of a template, or the variable bindings of the predicate have

values that are different from the event variable bindings values. In this case, all partially

instantiated templates of formulas which do not bind the variables of the predicate that can be

154

unified with the event will be updated. This covers the possibility of having different template

instances of the same formula because of different variable bindings.

The truth-value of a predicate is updated by the event feeder algorithm by applying the

principle negation as failure only if all the variables in the predicate are bound to some value

(this ensures that a recorded event to update the predicate should have occurred given other

recorded events that were used to update the truth value of other predicates in the template)

and the current event time exceeds the upper boundary of the predicate (this ensures that it is

not possible to have any more recorded event whose time stamp would be within the time

range of the predicate). The event feeder algorithm marks a template instance to be deleted

only if the time stamp of the current event exceeds the upper boundary of a predicate with an

undefined truth value and at least one variable which is not bound to some value. These two

conditions guarantee that it would not be possible to establish the truth value of the predicate

either by a future recorded event or by the principle negation as failure.

The monitoring algorithm uses the event generator algorithm presented in Figure 4.10 to feed

the derived events to template instances. Like the event feeder algorithm the event generator

algorithm also considers each single predicate P in a template instance T to check if the

template instance should be updated by the derived event. Similarly to the event feeder

algorithm the event generator algorithm performs an exhaustive check to ensure that the time

range of the event is within the time range of the predicate and covers all the possible cases

for derived events presented in Table 4.2 as it is shown in the explanation of the algorithm in

Section 4.4.3.3. If the event generator algorithm updates the truth value of a predicate in a

template using a derived event, it also creates a new instance of the template to cover the

possibility of updating the same template and predicate using recorded events or another

derived event.

The monitoring algorithm uses the consistency checker algorithm presented in Figure 4.11 to

detect violations in template instances. The consistency checker algorithm is also complete as

it checks the template instance for each single type of inconsistency defined in Section 4.3 as

explained in Section 4.4.4.1.

4.4.5.3 Complexity

The complexity of the monitoring algorithm is determined by the complexity of the event

feeder algorithm, the event generation algorithm and the consistency checker algorithm. In

155

the following we analyse the complexity of these algorithms. In the complexity calculation

we assume each template has a maximum n number of predicates and each predicate has a

maximum m number of variables.

Complexity of the Event feeder algorithm:

In the algorithm presented in Figure 4.9, the statements between lines 4 and 152 inside the for

loop in line 2 can be divided into 7 blocks such that one of these blocks will be executed for

each predicate in the template, i.e. for each iteration of the for loop in line 2. These blocks are,

Block 1 (B1) between lines 4 -24, Block 2 (B2) between lines 27 - 44, Block 3 (B3) between

lines 46 - 62, Block 4 (B4) between lines 66 - 88, Block 5 (B5) between lines 88 - 110, Block

6 (B6) between lines 110- 130, Block 7 (B7) between lines 131 - 152.

There are some statements common among the blocks, we define these statements as,

Template Creation Statements (TCS) e.g. between lines 6 and 9 or between lines 28 and 31,

Time Range Update Statements (TRS) e.g. between lines 14 and 21 or between lines 100 and

107. Before computing the complexity of the blocks Bl-B. we compute the complexity of

TCS and TRS that will be used to compute the complexity of B l- B7. The complexity of a

TCS is 0(nm). For clarification consider the TCS between lines 6 and 9. The complexity of

the condition checking in line 6, which requires to check the value of m number of variables,

is Qm), the complexity of creating new template instance is 0(nm), which involves copying

of n number of predicates from the old template instance to the new template instance and

each predicate may have m number of variables to be copied from the old template instance to

the new template instance. The complexity of a TRS is 0(n). For clarification consider the

TRS between lines 14 and 21. The complexity of the condition checking and value updating in

lines 15 and 16 respectively (and lines 18 and 19 respectively) is 0(1) and this is repeated for

n number of predicates in the template.

With the computed complexity of TCS and TRS we compute the complexity of each single

block and then the complexity of the whole event feeder algorithm.

For Bl, the complexity of the checking in line 5 is 0(1). The complexity of the TCS between

lines 6 and 9 is 0(nm). Each of the value updating statement between lines 10 and 13

contributes 0(1) to the overall complexity. The complexity of the TRS between lines 14 and

21 is 0(n)

Hence the complexity of Bl is, 0(1) + Cfnm) + 0(1) + Cfn) ~ Cfnm)

156

For B2, the complexity of the checking in line 27 is 0(1). The complexity of the TCS between

lines 28 and 31 is Ofnm).Each of the value updating statement between lines 32 and 35

contributes 0(1) to the overall complexity. The complexity of the TRS between lines 36 and

43 is Ofn)

Hence the complexity of B2 is, 0(1) + 0(nm) + 0(1) + Ofn) ~ 0(nm)

For B3, the complexity of the checking in line 46 is 0(m) which requires to check the value of

m number of variables. The complexity of each of the condition checking and value updating

statement between lines 47 and 49 is 0(1). The complexity of the TRS between lines 50 and

57 is 0(n)

Hence the complexity of S3 is, Ofm) + 0(1) + 0(n) ~ Ofn)

For B4, the complexity of the checking in line 66 and 67 is 0(1). The complexity of the TCS

between lines 68 and 71 is Ofnm).Each of the value updating statement between lines 72 and

75 contributes 0(1) to the overall complexity. The complexity of the TRS between lines 76

and 83 is Ofn). The complexity of line 85 is 0(1).

Hence the complexity of B4 is, 0(1) + Ofnm) + 0(1) + 0(n) « Ofnm)

For S5, the complexity of the checking in line 89 is 0(1). The complexity of the TCS between

lines 92 and 95 is Ofnm).Each of the value updating statement between lines 96 and 99

contributes 0(1) to the overall complexity. The complexity of the TRS between lines 100 and

107 is Ofn)

Hence the complexity of B5 is, 0(1) + Ofnm) + 0(1) + Ofn) ~ 0(nm)

For B6, the complexity of the checking in lines 112 and 115 are 0(1) and Ofm) respectively.

The complexity of the value updating statements between lines 116 and 118 is 0(1). The

complexity of the TRS between lines 119 and 126 is Ofn)

Hence the complexity of is, 0(1) + Ofm) + Ofn) ~ Ofn)

157

For 59, the complexity of the checking in line 132 is 0(m) which requires to check the value

of m number of variables. The complexity of each of the condition checking and value

updating statement between lines 133 and 139 is 0(1). The complexity of the TRS between

lines 140 and 147 is 0(n)

Hence the complexity of 59 is, 0(m) + 0(1) + 0(n) ~ 0(n)

The/or loop in line 2 of the event feeder algorithm iterates for n number of predicates, and for

each iteration one of the blocks (57 - 59) is executed. Applying the complexity of the blocks

computed above, the worst case complexity of the event feeder algorithm is, 0(nm).

Complexity of the event generator algorithm:

In the algorithm presented in Figure 4.10, the statements between lines 15 and 57 in the event

generator algorithm can be divided into two blocks such that one of these blocks will be

executed if a derived event is generated by the event generator. These blocks are Block 1 (Bl)

between lines 15 and 35, and the Block 2 (52) between lines 37 and 55. It should be noted that

both 5 / and 52 will have similar complexity as they have similar type of statements under

different conditions. To compute the complexity of the whole algorithm we apply a bottom up

approach, i.e. we first compute the complexity of 57 (52 has similar complexity), then we

compute the complexity of the for loop in line 12, then the complexity of the for loop in line 3

and in line 2 respectively.

For 57, the complexity of the condition checking in line 15, 16 and 17 is 0(1). The statement

in line 18, that creates a new template instance has complexity 0(nm), which involves

copying of n number of predicates from the old template instance to the new template

instance and each predicate may have m number of variables to be copied from the old

template instance to the new template instance. Each of the value updating statement between

lines 19 and 26 contributes 0(1) to the overall complexity. The complexity of the TRS

between lines 27 and 35 is 0(n)

Hence the complexity of 57 (also for 52) is, 0(1) + 0(nm) + 0(1) + Ofn) ~ 0(nm)

The for loop in line 12, repeats for n number of predicates in the template and for each

iteration either 57 or 52 is executed. Hence the complexity of the for loop in line 12 (the

statements between lines 12 and 58), is 0(rCm).

158

The for loop in line 3 repeats for n number of predicates in the template head and for each

iteration it executes the statements between lines 4 and 62. Each of the value updating

statement between lines 4 and 11 contributes 0(1) to the overall complexity of this for loop.

The for loop in line 12 has complexity 0(n2m) and the complexity of the consistency checker

invoked in line 59 is 0(n) (see below). Hence the complexity of the for loop in line 3 (the

statements between lines 3 and 62), is Ofnm).

The for loop in line 2, repeats for n number of dependants, and in each iteration the for loop in

line 3 is executed which has complexity Ofnm). Hence the complexity of the for loop in line

2 (the statements between lines 2 and 63), is 0(nm).

The complexity of the condition checking in line 1 is Qn), since it checks the truth-value of n

number of predicates in the template body.

Thus the overall complexity of the event generator algorithm is, Ofn) + 0(nm) ~ Ofnm)

Complexity of the Consistency Checker:

In the algorithm presented in Figure 4.11, each of the condition checking statements in lines

2, 3, 5, 7, 9, 11 and 13 has complexity 0(n) as each condition checks the truth value of n

number of predicates in the template. Each of the value updating statements in lines 4, 6, 8,

10, 12 and 14 has complexity 0(1).

Thus the overall complexity of the consistency checker algorithm is, 0(1) + 0(n) ~ 0(n)

Complexity of the Monitoring algorithm:

In the algorithm presented in Figure 4.8, the complexity of each of the statements in lines 1, 2,

and 3 is 0(1). The complexity of the for loop between lines 4 and 8 is Ofn) as it creates empty

template for n number of formulas. The complexity of each value updating statements in lines

9 -12 or 18-22 is 0(1).

The monitoring algorithm picks an event in line 14 and processes the event through the for

loop in line 29. We compute the complexity of processing all the events when , (i) monitoring

is performed with respect to recorded events only and (ii) monitoring is performed with

respect to recorded and derived events.

159

Let Fn is the number of initial template instances and En is the number of events to be

processed.

Case 1 (monitoring with respect to recorded events only)

The for loop in line 29 repeats for each template instance and each time it invokes the event

feeder algorithm in line 30 to feed the event to a template instance and it invokes the

consistency checker algorithm in line 33 to check the consistency of a template instance. The

complexity of the event feeder algorithm and the consistency checker algorithm are 0(n2m)

and 0(n) respectively.

The number of template instances to be considered for event Ei is Fn

Complexity to process Ei is Fn * 0(n2m)

In the worst case the event Ei will be unified with each of the Fn template instances and for

each of these instances the event feeder algorithm will create a new template instance without

deleting any instance. Therefore the number of template instances to be considered for event

E2 is, Fn + Fn = 2Fn

Thus the complexity to process Ej and E2 is (F„ + 2Fn) * 0(n2m)

At the next step, event E2 can also be unified with each of the 2Fn template instances and for

each template instance the event feeder algorithm will create a new template instance and no

template instance will be deleted. Therefore, the number of template instances to be

considered for event E3 will be, 2Fn + 2Fn = 4Fn

Thus complexity to process Ei, E2 and E3 is (Fn + 2Fn + 4Fn) * Q n2m)

By applying similar reasoning, the complexity to process all the En events,

(Fn + 2Fn+ 22Fn + 23F„ ++2E"-'Fn) * 0(n2m)

= Fn (1 + 2 + 22 + 23 ++ 2&_1) * a n m)

- Fn * (2£n -1) * a n m)

Case 2 (monitoring with respect to recorded events and derived events)

160

The for loop in line 29 repeats for each template instance and each time it invokes the event

feeder algorithm in line 30 to feed the event to a template instance, it invokes the consistency

checker algorithm in line 33 to check the consistency of a template instance and it invokes the

event generator in line 35 to generate derived events from the template instance. The

complexity of the event feeder algorithm, the consistency checker algorithm and the event

generator algorithms are 0(n2m), Qn) and 0(n4m) respectively.

The number of template instances to be considered for event Ei is Fn

The complexity to process E, is Fn * Q n4m)

In the worst case the event Ei will be unified with each of the Fn template instance and from

each template instance the event feeder algorithm will create a new template instance. Also in

the worst case, derived events can be generated from each template instance and the event

generator creates a new template instance from each template instance. Therefore the number

of template instances to be considered for event E2 is, Fn + Fn + F„= 3Fn

Complexity to process Ei and E2is, (F„ + 3Fn) * Cfnm)

In the worst case the event E2 can be fed to each of the 3F„ template instance and from each

template instance the event feeder algorithm creates a new template instance. Also in the

worst case derived events can be generated from each template instance and the event

generator creates a new template instance from each template instance. Therefore the number

of template instances to be considered for event E3 is, 3F„ + 3Fn + 3Fn= 9Fn

Complexity to process Ei, E2 and E3 is (Fn + 3Fn + 9Fn) * 0(nm)

By applying similar reasoning,

Complexity to process all the En events,

(Fn + 3Fn+ 32Fn + 33Fn++3B",F„)* Qnm)
= F„(1 + 3 + 32 + 3’ ++3&-') * Ofnm)

oEn _1
= Fn * * 0(n4m)

161

Chapter Five

Implementation of the Monitoring Framework

5.1 Overview

In this chapter we discuss the implementation of the monitoring framework presented in

Chapter 2. More specifically in, Section 5.2 we present the implementation architecture of the

framework and discuss the design choices and different components of this architecture along

with their implementation. Subsequently in section 5.3, we describe a prototype of the

monitoring framework and present a scenario of interacting with this prototype in order to

demonstrate how it could be used by a human actor.

5.2 Implementation Architecture

For the convenient of the reader we show the implementation architecture of the monitoring

framework again in Figure 5.1. As shown in this figure this architecture incorporates eight

main components. These components are: a behavioural properties extractor, an event

receiver, a monitor manager, a monitor, a monitoring console, a simulator, an event database

handler and a formula database handler. This figure also shows the names of the interfaces

exposed by the components of the architecture.

In this section we first discuss the major design choices and implementation issues of the

architecture. We then discuss the mechanisms used to realise the functionality of different

components of the architecture. We also describe the interfaces exposed by different

components in the architecture along with necessary data structure. The primitive data types

are presented as xsd:data_type where the prefix xsd signifies the XSD data types specification

[Xml04b] and datajtype signfies the name of the data type. The complex data types are

defined using the primitive data types.

162

A exposes the interface C, and B uses the interface C

A writes to the port C, and B listens to the port C

Figure 5.1: Implementation architecture of the monitoring framework

5.2.1 Design Choices and Implementation Issues

In the following we describe the major design criteria adopted and the implementation issues

considered during the development of the architecture for our monitoring framework.

5.2.1.1 Selection of Web Service Composition Language

As discussed in Chapter 2, most of the web service orchestration and web service

choreography languages, including BPEL, OWL-S, WSCI and WS-CDL, overlap in many

aspects, and it is not easy to pick up a single language. Since this research focuses on the

runtime requirements monitoring of web service based systems orchestrated by some

executable workflow, WSCI and WS-CDL were not considered as these standards can be

used to express non executable choreographies of web services. Thus, the remaining

contesters were BPEL and OWL-S. Our selection was BPEL because of its wider acceptance

by the industry. More importantly BPEL has been voted as a standard service composition

language by OASIS [Fos06]. Another reason for choosing BPEL over OWL-S was the

availability of tool support for it as discussed in Chapter 2.

163

5.2.1.2 Selection of BPEL Execution Engine

Because of its wide acceptance, in industry and academia, a number of tools are now

available to support the design and/or execution of BPEL process, including BPWS4J from

IBM [Bpw03], Oracle BPEL Process Manager from Oracle [Ora04], and ActiveBPEL from

Active BPEL LLC [Act05]. To select an engine that best support our objectives, we

considered how easily we could generate run time events without hampering the normal

execution of the engine. Bpws4j uses log4j [Log03] to generate the execution log of a BPEL

process and the logging information contains all the execution details of the BPEL process.

The Oracle BPEL Process Manager also uses log4j to generate the execution log of a BPEL

process but the logging information does not contain the execution details of the BPEL

process. One possibility with Oracle BPEL Process Manager is to generate BPEL process

related events by capturing all the SOAP messages being exchanged between the BPEL

process and its constituent services. But in this approach it is not possible to capture the

internal states of the BPEL process as for example the values of the internal variables of a

BPEL process. ActiveBPEL is an open source engine that can be instrumented to generate all

the required events for monitoring. This however would require some extra effort.

Considering all these issues we decided that bpws4j was the engine that best fitted with the

purpose of our research.

5.2.1.3 Modularity

The architecture presented in Figure 5.1, is composed of independent components that

exchange data inside the framework. This ensures the applicability of the architecture to

different contexts. To be more specific the monitor is the component in our architecture that,

given a set of properties to be verified and a sequence of events, checks the compliancy of the

recorded and expected events against the properties. The separation of the monitor from the

other components of the architecture enables the monitor to be used as a component or as a

web service. The event receiver is the component that receives run time events from the

BPEL process execution engine. Although in our implementation we have selected bpws4j as

the BPEL process execution engine, the architecture of our framework makes it applicable to

any BPEL process execution engine by developing an event receiver that can capture events

from this engine. Similarly the behavioural property extractor is the component that extracts

behavioural properties and identifies monitorable events from BPEL process specification.

Note, however, that the architecture of Figure 5.1 is applicable to any other web service flow

specification language by developing a behavioural property extractor that could extract

164

behavioural properties and identify monitorable events from a web service composition

process specified in this.

5.2.1.4 Data Storage

Storage for the run time events and the formula instances is an important issue to be

considered. The use of main memory to store events and formula instances would

significantly increase the efficiency of the monitoring process by reducing the data access

time. Nonetheless, the use of main memory for data storage imposes restriction on the

scalability of the framework as the number of events and the number of formula to be

monitored in a complex system could be unlimited. This dictates us to use secondary memory

for the storage of run time events and formula instances. Again in case of secondary storage,

the use of a dedicated database management system (DBMS), like mysql [Mys95] or Oracle

[Ora06] would increase the data access time hence degrade the performance of the monitoring

process. Considering all these, we decided to implement the run time storage of events and

formula instances using the file system of the machine used to mn our framework.

5.2.2 Behavioural Properties Extractor

The behavioural properties extractor extracts the properties to be monitored from the

specification of the composition process of service based systems expressed in BPEL. This

component also allows to save formulas in XML and import formulas from XML file.

In this section we first overview BPEL and then describe the patterns used to transform BPEL

specification into EC. We also discuss the mechanism used to extract the behavioural

properties from BPEL specification with the help of an illustrative example. The behavioural

properties extractor offers its functionality through IbehaviouralPropertiesExtractor

interface. We describe the IbehaviouralPropertiesExtractor interface at the end of this

section.

5.2.2.1 Overview of BPEL

BPEL is an XML based language to specify executable business processes, which deploy

web-services to achieve their goals. The basic structure of a BPEL process specification is

shown in Figure 5.2 [Bpe03]. The major elements of a BPEL process specification are:

165

Process: This is the root element that marks the start of a process definition.

Partners: Partner elements in a BPEL process specification specify the list of partners of a

process, i.e. the web services that interact with the process. This is a mechanism to describe

how the services (i.e. partners), which the process interacts with, are interrelated and the roles

played by the services. This is done through service linking. Service links are used to specify

the relationship of two services, the roles of each service in the relationship and the interface

that each service provides. Usually service link types are defined in service's WSDL

document.

Variables: This element holds a list of internal variables that of the BPEL process. A process

variable is a typed data structure, where the type of a variable may be a WSDL message type

or an XML schema simple type. Variables store the contents of messages that are exchanged

between the process and its constituent web-services for a specific instance of the process, or

store data that related to the state of the process but not exchanged between the partners.

CorrelationSets: This element holds a list of correlation sets that enables the process to keep

track of the state of each process instance. A correlation set contains a number of message

properties which when taken together form a unique key that can be used to distinguish that

message from all other instances of that message from other process instances. This unique

key helps the process executor to identify a particular process instance. Like service link type,

correlation set, i.e. which properties of a message should form a unique key, is declared in

service's WSDL document.

FaultHandlers: This element holds a list of elements that enable a process to handle faults

found within the process. A catch element inside the faultHandlers is used to handle a

specific fault within the process, and a catchAll element inside the, faultHandlers is used to

handle any fault not handled by a more specific catch element. If catch or catchAll element

captures a fault, it performs a predefined action defined by activity (see below).

EventHandlers: This element contains a list of event and action pair. On the occurrence of

any event from the list associated action is performed. The events can be of two types, (i)

message event which signifies the arrival of a message, and (ii) alarm event that sets a timer.

The action is defined by activity (see below).

CompensationHandler: This element allows a process to compensate if it fails to handle an

error. Once a fault is signalled in a process, if the fault handler cannot handle the fault, the

166

compensation handler is invoked. Compensation handler performs a predefined action defined

by activity (see below).

Activity: The BPEL specification provides a set of activities to specify the behaviour of a

process. The activity in Figure 5.2 is a placeholder for any of these activities. In BPEL

specification these activities are classified into two types: basic and structured activities. Here

we briefly introduce all the activities provided by BPEL. A more detail description of each

activity is provided in Sections 5.2.2.2 and 5.2.2.3.

<process name="ncname" targetNamespace="uri"
queryLanguage=11 anyURI " ?
expressionLanguage="anyURI"?
suppressJoinFailure="yes|no"?
enableInstanceCompensation="yes|no"?
abstractProcess=''yes | no " ?
xmlns="http://schemas.xmlsoap.org/ws/2002/07/business-process/">

<partners>?
<partner name="ncname" serviceLinkType="qname"

myRole="ncname"? partnerRole="ncname"?/>+
</partners>

<variables>?
<variable name="ncname" messageType="qname"?

type="qname”? element="qname"?/>+
</variables>

<correlationSets>?
<correlationSet name="ncname" properties="qname-list"/>+

</correlationSets>

<faultHandlers>?
<catch faultName="qname"? faultContainer="ncname"?>*

activity
</catch>
<catchAll>?

activity
</catchAll>

</faultHandlers>

<eventHandlers>?
<onMessage partnerLink="ncname" portType="qname"

operation="ncname' variables"ncname"?>
activity

</onMessage>
<onAlarm for="duration-expr"? until="deadline-expr"?>*

activity
</onAlarm>

</eventHandlers>

<compensationHandler>?
activity

</compensâtionHandler>

activity

</process>

Figure 5.2: The basic structure of BPEL business process [Bp03]

Basic activities in a BPEL process support primitive functions such as the invocation of

operations and assignments of variable values. The basic activities in BPEL are:

167

http://schemas.xmlsoap.org/ws/2002/07/business-process/

(i) invoke activity — This activity invokes an operation in one of the partner services of the

composition process.

(ii) receive activity - This activity makes the composition process to wait for the receipt of

a message from a designated partner service.

(iii) reply activity - This activity makes the composition process to respond to a request

previously accepted through a receive activity.

(iv) assign activity — This activity is used to assign the value of one variable to another

variable and to initialise a variable with new data using value expressions.

(v) throw activity - This activity is used to signal an internal fault.

(vi) wait activity - This activity is used to specify a delay in the process that must last for a

certain period of time.

(vii) empty activity - This activity is used to introduce a void operation that does nothing in

a process.

The structured activities in BPEL provide the control and data flow structures that enable the

composition of basic activities into a business process. These activities are:

(i) A sequence activity - This activity includes an ordered list of other activities that must

be executed sequentially in the exact order of their listing.

(ii) A switch activity - This activity includes an ordered list of one or more conditional

branches that include other activities. The conditional branches are considered in the

order in which they are listed within a switch activity and the activity associated with

the first branch whose condition is satisfied is executed. A switch activity may include a

default branch that will be executed if none of the conditions of the other branches is

satisfied.

(iii) A flow activity - This activity includes a set of two or more other activities that should

be executed concurrently. A flow activity completes when all of the activities in it have

168

been completed. Synchronisation dependencies between activities inside a flow can be

specified using links. Each link has a source and a target activity. The meaning of a link

is that the target activity cannot start before the execution of the source activity of the

link has been completed.

(iv) A pick activity - This activity contains an ordered list of one or more event and activity

pair. This activity makes a composition process to wait for the occurrence of one of

these events and then perform the activity associated with the event as soon as it occurs.

A pick defines two types of events: (i) message events which signify the arrival of a

message, and (ii) alarm events that set timers. Alarm event enable pick to execute a

different activity if none of the expected message events happens within the time period

specified by the timer.

(v) A while activity - This activity is used to specify the iterative execution of one or more

activities as long some condition is valid.

5.2.2.2 Transformation of Basic BPEL Activities to EC

Invoke

The invoke activity allows an instance of a BPEL process to call an operation provided by a

partner. This call can be asynchronous, i.e. an one-way call that does not expect any result

from the called operation and in which the execution of the calling process can proceed, or

synchronous, i.e. a request-response call in which the calling process expects a reply from the

called operation and waits until it receives this reply. In case of an asynchronous one-way

call, the invoke activity uses only a single input variable to send messages to the called

operation. In case of a synchronous call, the invoke activity requires an additional output

variable to deal with the response message produced by the called operation. An example of

the invoke activity is shown below,

<invoke partner="Pname" portType="PTname" operations"Oname"
inputVariable="IVname"? outputVariable="OVname"? />

This invoke activity, calls the operation Oname in the service that is bound to the partner

Pname that deploys the port type PTname and PTname offers the operation, IVname and

OVname are the input and output variables of the operation Oname respectively. This is an

example of synchronous invoke as it involves an input variable and an output variable.

169

An asynchronous invoke activity calling an operation 0 is transformed into an atomic EC

formula consisting of a Happens predicate that signifies the event of calling of O. For

example, consider the following asynchronous invoke activity,

BPEL Activity EC Representation
<invoke partner="P" portType= "a:Pport"
operation= "0" inputVariable = "X"/>

Happens(ln:P:0(JD,_X.a),t1, 9t(t1 ,t1))

In this example, the predicate Happens(in:P:0(_lD,_x.a),ti, 9 t(ti,ti)) signifies the occurrence of the

event (i.e. in:P:0 (_lD,_x.a)) of calling O. It should be noted that in the EC representation of this

asynchronous invoke, the variable _ID takes as value a unique identifier that represents the

exact instance of the BPEL process, and the variable _X.a takes the value of the part a of the

input variable X of O at the time of the invocation1.

A synchronous invoke activity calling an operation O is transformed into a conjunctive EC

formula consisting of a Happens predicate that signifies the occurrence of the event denoting

the call of O, a Happens predicate that signifies the occurrence of the event denoting the

response from O, and a list of Initiates predicates, where each Initiates signifies the initiation

of a fluent representing the value of a part of the output variable of O. For example, consider

the following synchronous invoke activity,

BPEL Activity EC Representation
<invoke partner="P" portType= "a:Pport"
operation= "0" inputVariable = "X"
outputVariable= "Y"/>

Happens(in:P:0(_ID,_X.a),t1, 9t(t1,t1)) a (3t2)
Happens(ir:P:0(_ID),t2, 9t(t1,t2)) a
lnitiates(ir:P:0(ID),valueOf(Y.b, Y.b),t2)

In this example, the predicate Happens(in:P:0(JD,_X.a),tl, 9t(tl,H)) signifies the occurrence of the

event (i.e. in:P:0(JD,_X)) of calling O, the predicate Happens(ir:P:0(_ID),i2, 9t(t1,t2)) signifies the

occurrence of the event (i.e. ir:P:0(_ID)) of the response from O, and the predicate

lnitiates(ir:P:0(_ID),valueOf(Y.b,_Y.b),t2) signifies the initiation of a fluent (i.e. valueOf(Y.b,_Y.b))

representing the value of the part b of the variable Y. It should be noted that in the EC

representation of this synchronous invoke, the variable _ID takes as value a unique identifier

that represents the exact instance of the BPEL process, and the variable _X.a takes the value

of the part a of the input variable X of O at the time of the invocation. Note that in this case, it

is unrealistic to predict the precise time of the completion of the execution and return of O

(due to the physical distribution of component services and/or network communication

delays). Thus, the EC representation of invoke does not specify an upper limit for the time

variable t2 that signifies the time of the return of O and the range of t2 is specified as 9I(tl,

1 For simplicity it is assumed that each BPEL variable used in the examples in Section 5.2.2.2 has single part

170

t2) in the EC representation. System providers may set an upper limit for this range depending

on specific performance requirements that they may have.

Receive

A receive activity in BPEL specifies a message to be received from a designated partner and

the content of the received message to be placed into a variable. A BPEL process exposes its

operations by receive activities. This is done by mapping a WSDL operation onto the receive

activity. The receive activity specifies the partner the process expects that will invoke the

corresponding operation, and portType and operation that it expects the partner to invoke.

The receive activity blocks the execution of all the activities that follow it until an appropriate

message is received. The receive activity also enables to create a new process instance on

receipt of a message. The basic syntax of the receive activity is shown below,

creceive partner="Pname" portType="PTname" operation="Oname"
variable="Vname"? createlnstance="yes|no"? />

In the above receive activity PTname is the port type that offers the operation Oname. The

process expects the partner Pname to invoke the operation Oname. Vname is the variable that

holds the message received from Pname. The attribute createlnstance set with value yes,

allows the creation of a new instance of the process.

The transformation of a receive activity into EC requires a conjunction of a predicate that

signifies the occurrence of the message receipt event and a list of predicates that initiate

fluents representing the values of the received message. The pattern for transforming BPEL

activities into an EC formula is given below.

BPEL Activity EC Representation
creceive partner="P" portType= "arPport"
operations"0" variable="X"/>

Happens(rc:P:0(_ID),t,9t(t,t)) a
Initiates (rc:P:0(_ID),valueOf(X.a,_X.a),t)

In this pattern, the predicate Happens(rc:P:0(JD),t,9?(t,t)) signifies the occurrence of the message

receipt event that invokes the operation O in a BPEL process (i.e. rc:P:0 (_lD)) and the predicate

lnitiates(rc:P:0(JD),valueOf(X.a,_X.a),t) signifies the initiation of a fluent (i.e. valueOf(X.a,_X.a))

representing the value of the part a of the variable X. The variable _1D takes as value a unique

identifier that represents the exact instance of the message receipt event in the BPEL process

instance.

171

Reply

The reply activity enables a BPEL process to send a response to a request received through a

receive activity. The combination of receive and reply activities enables the specification of

synchronous calls of BPEL process operations by web-services. A reply activity specifies the

partner that made the request, the port type and the operation that the request was made for

and the variable that holds the message data to be sent in reply. The basic syntax of the reply

activity is shown below,

creply partner="Pname" portType="PTname" operation="Oname"
variable="Vname"? />

In the above reply activity, PTname is the name of the port that offers the operation Oname,

Pname is the partner that made the request for the operation, and Vname contains the message

to be sent as a reply to the request.

The transformation of a reply activity into EC representation requires a single predicate that

signifies the occurrence of the event denoting the reply to the request and takes place

according to the following pattern.

BPEL Activity EC Representation
creply partner="P" portType = "a:Pport"

operation= "0" variable^ "X"/>
Happens(re:P:0(JD, _X.a), t,35(t,t))

In this pattern, the predicate Happens(re:P:0(_ID, _X.a), t,9t(t,t)) signifies the occurrence of the

event that denotes the reply to the request (i.e. re:P:0 (_iD, _x.a)) and the variable _X.a takes the

value of the part a of the variable X at the time of reply. The variable _1D takes as value a

unique identifier of the reply that allows the correlation (matching) of the particular instance

of the reply activity with the corresponding instance of the receive activity that invoked the

operation O in the specific instance of the BPEL process.

Assign

The assign activity in BPEL copies a value from a data element (source) to another data

element (destination). The basic syntax of the assign activity is shown below

<assign>
<copy>+

from-spec
to-spec

</copy>
</assign>

172

BPEL defines several forms for specifying front-spec and to-spec. In all these forms, the type

of the from-spec and the type of the to-spec must be compatible. The type compatibility of

from-spec and to-spec in assign activity is described in [Bpe03], In our framework we

consider only the most commonly used forms of specifying from-spec and to-spec. These are:

<from variable="Vname" part="Pname"?/>
<from> ... literal value ... </from>
<to variable="Vname" part="Pname"?/>

In the above forms of from-spec and to-spec, Vname denotes a variable and Pname is a part

of the variable Vname. Using the first combination of the from-spec and the to-spec data can

be copied from one variable to another variable. Using the second combination of the from-

spec and to-spec a variable can be initialised to a constant literal value.

Combining the from-specs with the to-spec we can have following two types of assigns in our

framework,

Type-1 Type-2
<assign>
<copy>+
<from variable="Vname" part="Pname"?/>
<to variable="Vname" part="Pname"?/>

</copy>
</assign>

<assign>
<copy>+
<from> ... literal value ... </from>
<to variable="Vname" part="Pname"?/>

</copy>
</assign>

The transformation of a type-1 assign activity into EC requires a conjunction of a predicate

that signifies the occurrence of the assignment event, a predicate that signifies the value of the

part of the source variable and a predicate that initiates a fluent representing the assignment of

this value to the part of the destination variable. The transformation of a type-2 assign activity

into EC representation also requires a conjunction of a predicate that signifies the occurrence

of the assignment event, a relational predicate that signifies the literal value of the source and

a predicate that initiates a fluent representing the assignment of this value to the part of the

destination variable. Consider the following two assign activities,

BPEL Activity EC Representation
<assign name ="A">
<copy>

<from variable ="X" part="a"/>
<to variable="Y" part="b"/>

</copy>
</assign>

Happens(as:A(JD), t1,9t(t1 ,t1)) a
HoldsAt(valueOf(x.a,_X.a),t1) a (3t2) (t1 < t2) a
lnitiates(as:A(_ID), valueOf(Y.b, _X.a),t2)

<assign name ="B">
<copy>

<from>zz</from>
<to variable="Y" part="b"/>

</copy>
</assign>

Happens(as:B(_ID), t1,9t(t1 ,t1)) a
lnitiates(as:B(JD), valueOf(Y.b, _Y),t2) a zz = _Y

173

In the first example (assign A), the predicate Happens(as:A(_lD), t i, 9 t(tl,tl)) signifies the

occurrence of the assignment event (i.e. as:A(_iD)), the predicate HoidsAt(valueOf(x.a,_x.a),ti)

signifies the value of the part a of the source variable X at the time of the execution of the

assignment activity and the predicate lnitiates(as:A(_lD), valueOf(Y.b,_x.a),t2) initiates a fluent (i.e.

vaiueOf(Y.b,_X.a)) representing the assignment of this value to the part b of the destination

variable Y. The variable _ID takes as value a unique identifier that represents the exact

instance of this assignment event in the BPEL process instance.

In the second example (assign B), the predicate Happens(as:B(_ID), ti, 9t(tl,tl)) signifies the

occurrence of the assignment event (i.e. as:B(_lD)), the predicate lnitiates(as:B(_lD),

valueOf(Y.b,_Y),t2) initiates a fluent (i.e. valueOf(Y.b,_Y)) representing the assignment of this value

to the part b of the destination variable Y and the relational predicate zz = _Y signifies the

literal value that has been used to initiate the fluent. The variable J D takes as value a unique

identifier that represents the exact instance of this assignment event in the BPEL process

instance.

Throw

The throw activity in BPEL enables a process to signal an internal fault explicitly. The throw

activity specifies the name of the fault being thrown, and a variable that holds the data related

to the fault which may be used by a fault handler to deal with the fault. The basic syntax of

the throw activity is shown below,

<throw faultName="Fname" faultVariable="FVname"? />

In the above throw activity, Fname is the name of the fault thrown, and FVname is the

variable that holds the fault data.

The transformation of a throw activity into EC representation requires a single predicate that

signifies the occurrence of the fault event. Consider the following throw activity,

BPEL Activity EC Representation
cthrow faultName="fN" faultVariable="X"/> Happens(th:fN(_ID, _X.a), t, ,9t(t,t))

In this example, the predicate Happens(th:fN(jD, _x.a), t, ,9t(t,t)) signifies the occurrence of the

fault event (i.e. th:fN(_lD, _x.a)), and the variable _X.a takes the value of the part a of the fault

variable X at the time when the fault is thrown.

174

Wait

The wait activity allows suspending a process execution unconditionally. This suspension can

be relative (i.e. for a fixed amount of time) or absolute (i.e. until certain date and time). The

basic syntax of the wait activity is shown below,

<wait (fo r= "d u ra tio n -ex p r" | u n ti l= " d e a d lin e -e x p r")/>

In the above wait activity, d u ra tio n -e x p r and d ead lin e -e x p r represents the duration or

the deadline of the suspension respectively. Both the d u ra tio n -e x p r and the d e a d lin e -

expr are expressed using XPath Expr production [Xpa99], In this transformation we consider

only the d u ra tio n -e x p r . This is because d ea d lin e -e x p r can be translated into

d u ra tio n -e x p r by taking difference between the current time and the deadline.

The transformation of a wait activity into EC requires a conjunction of predicates that signify

the EC representation of the activities before and after the wait activity and a time predicate

that compares the times of the activities before and after the wait activity. More specifically, a

wait activity is transformed to EC according to the following pattern:

BPEL Activity EC Representation
<actType name="A">...</actType>
<wait for = "T"/>
<actType name= "B ">...</actType>

EC (A, []) A EC (B, []) A
maxt (A) < mint(B)-T

In the above example2

• actType can be any type of a basic or structured BPEL activity;

• EC(X, ¡ t t „ j) denotes the EC formula (sub-formula) that activity X is transformed to;

• min,(X) represents the time of the earliest predicate in the EC representation of activity X,

and max,(X) represents the time of the latest predicate in the EC representation of activity

X.

The EC representation for the above BPEL example signifies that activity B (or the first

activity in activity B. if activity B is a structured activity) starts T time units after the

completion of activity A (or the last activity in activity A, if activity A is a structured activity).

2 a c T y p e , E C (X ,[]) ,m in ,(X) and m a x ,(X) have the same semantic through out this chapter.

175

Empty

The activity empty in BPEL is used to introduce a void operation that does nothing in a

process. A typical use of the empty activity is in cases where a specific fault is to be

suppressed. The basic syntax of an empty activity is shown below,

<empty/>

empty activities are not represented in EC as the BPEL process itself does not perform any

action in case of empty activities.

5.2.2.3 Transformation of BPEL Structured Activities to EC

Sequence

The sequence activity in BPEL specifies that a set of activities must be executed in a specific

order in a process. The sequence activity encloses one or more activities that are to be

executed in the order in which they appear in sequence. The basic syntax of the sequence

activity is shown below,

<sequence >
activity+

< / sequence>

According to the above syntax, a sequence must contain at least one activity and this activity

Can be a basic activity or a structured activity.

The transformation of a sequence activity into EC requires a conjunction of predicates and

time predicates, where each predicate in the conjunction represent the EC representation of

the activities appear in the sequence and the time predicates represents the time relation

between the predicates. Consider the following case,

BPEL Activity EC Representation
<sequence>

<actType name="A">...<actType>
<actType name=" B" >...<actType>

</sequence>

EC (A, []) A EC (B , []) A
maxt(A) < mint(B)

In the above example, the sequence activity has two activities A and B and the EC

representation of the sequence signifies that activity B (or the first activity in activity B, if B is

176

a structured activity) starts only after the completion of activity A (or the last activity in

activity A, if activity A is a structured activity).

Flow

Concurrent activities in BPEL are modelled using the flow activity. A flow activity specifies

two or more sub-activities which are to be executed concurrently. The flow activity completes

when each activity contained within the flow has completed. In some cases, the activities

inside a flow require some degree of synchronization. BPEL offers the construct of links that

can be used to establish synchronization dependencies between activities contained within a

flow. Each link defines a transition condition, a target activity and a source activity. The

target activity can start only when the source activity is completed and the transition

condition is satisfied. If a transition condition is not defined, a transition condition with the

default value true (i.e. a condition that is always satisfied) is assumed. In cases where

dependencies between activities inside the flow are defined using links, at the beginning of the

execution of the flow, only those activities with no dependencies (i.e., activities that are not

defined as the target of any link) can be executed. The activities in the flow which constitute

targets if links are executed only when their respective source activities are completed and the

transition conditions of the relevant links are satisfied. The basic syntax of the flow activity is

shown below,

<flow >
<links>?

<link name="Lname" transitionCondition="bool-expr"?/>+
</links>
a c t i v i t v +

</flow>

In the above flow activity, Lname is the name of a link, defined in the flow, bool-expr is the

transition condition and activity can be any basic or structured activity. The transition

condition bool-expr is expressed using XPath Expr production [Xpa99].

The transformation of a flow activity into EC representation requires a set of conjunctions of

predicates, where each conjunction represents the EC representation of the synchronously

dependent activities defined inside the flow. Consider the following case. In this example the

flow activity encloses four activities, namely A, B, C and D. Activity A and activity D are

independent of any other activities. Activity B is conditionally dependent on activity A and

activity C is unconditionally dependent on activity A. Therefore this example contains 3

sequences of synchronously dependent (or independent) activities, these are A-B, A-C and D.

177

In the EC representation of the first sequence activity B (or the first activity in activity B, if

activity B is a structured activity) starts only after the completion of activity A (or the last

activity in activity A, if activity A is a structured activity) and the transition condition is

satisfied after the completion of activity A, which is signified by the HoldsAt(valueOf(P,_p),t2) a

Hol6sAt(valueOf(vi,_v,),t2) a _p =_v, predicates in the EC representation. The EC representation of

the second sequence signifies that activity C (or the first activity in activity C, if activity C is a

structured activity) starts only after the completion of activity A (or the last activity in activity

A , if activity A is a structured activity). The EC representation of the third sequence signifies

activity D is independent of any other activity.

<flow>
<links>
clink name="AtoB"/>
clink name="AtoC" /> ...
c/links>
cactType name="A">

csource linkName="AtoB"
transitionCondition="P=Vi" />

csource linkName="AtoC" /> ...
c/actType>
cactType name="B">

ctarget linkName= "AtoB" /> ...
c/actType>
cactType name="C">

ctarget linkName="AtoC" /> ...
c/actType>
cactType name= "D">... c/actType>

c/flow>

EC(A,[]) a HoldsAt(valueOf(P,_p),t2) a
HoldsAtivalueOftv,,^,),^) a _p =_v, a maxt(A) < t2 =>
EC(B,[]) a t2< mm,(B)

EC(A,Q) => EC(C,[]) a max,(A) < min,(C)

EC(D,[])

BPEL Activity EC Representation

Switch

The switch activity is used to specify conditional branching in a process. This activity

includes an ordered list of one or more conditional branches where each branch can be a

structured or a basic activity. The conditional branches are considered in order and the first

branch whose condition is true is executed. In the case where the condition of no branch is

true a default branch can be specified. The basic syntax of the switch activity is shown below,

<switch>
<case condition="bool-expr">+

a c t i v i t v
</case>
<otherwise>?

a c t i v i t v
</otherwise>

</switch>

In the above switch activity, case is the element that is used to define each conditional branch

and bool-expr is the condition associated with each branch, where bool-expr is expressed

using XPath Expr [Xpa99]. Activity can be any basic or structured activity, and otherwise is

178

the element that is used to define the default branch that will be executed if none of the

branches has a satisfied condition.

The transformation of the switch activity into EC representation requires a set of conjunctions

of predicates where each conjunction stands for the EC representation of each branch.

Consider the following switch activity,

In this example, the switch activity contains two conditional branches and the default branch.

In the first conditional branch, the activity A depends on the condition P=v/. In the second

conditional branch the activity B depends on the condition P=v2 and the default branch

contains the activity C. The EC representation for the first branch signifies that activity A (or

the first activity in activity A, if activity A is a structured activity) starts only after the branch

condition is satisfied at some time point (see the predicates HoldsAt(valueOf(P,_p),t,) a

HoldsAttvalueOftvi^vd.t,) a _p =_v,).

BPEL Activity EC Representation
HoldsAt(valueOf(P,_p),ti) a HoldsAtivalueOftv^vp.t!)<switch>

<case condition=" P=vi">
<acType name="A"> ... </acType>

</case>
<case condition=" P=v2">

<acType name="B"> ... </acType>
</case>
<otherwise>

<acType name="C"> ... </acType>
</otherwise>

</switch>

a _p =_Vi => EC (A, []) a 11 < mint (A)

HoldsAt(valueOf(P,_p),ti) a HoldsAtivalueOfiv^Vi),^)
a _p !=_Vi HoldsAt(valueOf(v2,_v2),ti) a _p =_v2 =>
EC (B, []) a 11 < mint(B)

HoldsAtivalueOfiP^p)^) a H o ldsA tiva lueO fiv !,^)^)
a _p !=_Vt HoldsAt(valueOf(v2,_v2),t1) a _p !=_v2 =>
EC (C, []) a 12 < minc(C)

The EC representation for the second branch signifies that activity B (or the first activity in

activity B, if activity B is a structured activity) starts only after the branch condition is

satisfied and the first branch condition is not satisfied at some time point (see the predicates

HoldsAttvalueOftP^p),^) a HoldsAttvalueOfiv^vp.t,) a _p !=_Vi HoldsAt(valueOf(v2,_v2),t,) a _p =_v2). The

EC representation of the default branch signifies that activity C (or the first activity in activity

C, if activity C is a structured activity) starts only if none of the branch condition is satisfied

at some time point (see predicates HoldsAt(valueOf(P,_p),t,) a HoldsAttvalueOftv^vd.t,) a _p !=_v,

HoldsAt(valueOf(v2,_v2),t1) a _p !=_v2).

While

The while activity enables iterative execution of activities as long as a condition is satisfied.

The basic syntax of the while activity is shown below,

179

<while condition="bool-expr">
a c t i v i t y

</while>

In this while activity, activity will be executed as long as the condition bool-expr is satisfied.

activity can be a basic or a structured activity. The condition bool-expr is expressed using

XPath Expr production [Xpa99].

A while activity is transformed into EC using the following pattern,

BPEL Activity EC Representation
<while condition="P=Vi">
<acType name="A"> ... </acType>

</while>

HoldsAt(valueOf(P,_p),ti) a HoldsAtivalueOfiv^Vi),!!)
a _p =_Vi => EC (A, []) a 11 < minc (A)

According to this pattern, the activity A will be executed as long as the condition p=vi is

satisfied.

Pick

The pick activity awaits the occurrence of an event that belongs to a pre-defined set of events

and performs the activity associated with the specific type of event that has occurred. The

pick activity is similar to the switch activity except that the selection of the activity to be

executed in pick depends on the occurrence of an event rather than the evaluation of a

condition. Two types of events can be defined in pick activity, (i) message events which

signify the arrival of a message, and (ii) alarm events based on a timer. An alarm event

enables pick to execute a different activity in cases where none of the expected message

events happens within the time period specified by the timer. The pick activity also allows to

create a new process instance on the arrival of a message i.e. on the occurrence of a message

event. The basic syntax of the pick activity is shown below,

<pick createlnstance="yes|no"?>
<onMessage partner="Pname" portType="PTname"

operations"Oname" variable="Vname"?>+
activi ty

</onMessage>
<onAlarm (for="duration-expr" | until="deadline-expr")>*

a c t i v i t y
</onAlarm>

</pick>

In the above pick activity, the message events are defined by the element onMessage. More

specifically, PTname is the port type that offers the operation Oname, Pname is the partner

that is to invoke the operation Oname and Vname is the variable that holds the message

180

received from Pname. The activity to be performed on occurrence of the message event is

activity. The element onAlarm defines the alarm events, duration-expr and deadline-expr

represent the duration or the deadline of the timer. Both the duration-expr and the deadline-

expr are expressed using XPath Expr production [Xpa99], The transformation of pick into EC

takes into account only the duration-expr, since d ead lin e -e x p r can be translated into

d u ra tio n -e x p r by taking the difference between the current time and the deadline. The

attribute createlnstance of the pick activity determines whether or not a new instance of the

process will be created (a new instance will be created if the value of the attribute is yes) on

the arrival of new message.

The transformation of a pick activity into EC is based on the following pattern:

BPEL Activity EC Representation
<sequence> EC (A, []) a H a p p e n s (rc : 0 (ID), t2;SR(
<acType name="A"> ... </acType> maxt(A), maxc(A) + T)) a
<pick> I n i t i a t e s (rc:0(ID), valueOf(X, X.a),t2)

<onMessage partner="P" portType=
"a:Pport" operation="0"

variable="X">
<acType name="B"> ... </acType>

=> EC (B, []) a t2 < mint (B)

</onMessage> EC (A, []) a —i H a p p e n s (rc : 0 (_ID) , t2/iR(
<onAlarm for="T"> maxt(A), maxt(A) + T)) => EC(C,[]) a

<acType name="C"> ... </acType>
</onAlarm>

</pick>
</sequence>

maxt(A) + T< mint(C)

In the above pattern, the pick activity contains one message event and one alarm event. After

the completion of the activity A the process waits T time units for the message event. If the

message event occurs within T time units, the activity B is executed. If the message event

does not occur within T time units after the completion of A, the activity C is executed. The

EC representation for the message event branch signifies that the message event may occur

within T time units after the occurrence of the activity A (see the predicate

Happens<rc:0(_iD), t 2,9t(maxt<A), maxt(A) + t))) and the activity B (or the first activity in

activity B, if activity B is a structured activity) starts only after the occurrence of the message

event. The EC representation of the event branch signifies that the activity C (or the first

activity in activity C, if activity C is a structured activity) starts only T time units after the

completion of the activity A, provided that the message event does not occur within T time

units after the completion of activity A (see the predicate -, Happens(rc,o(_id), t 2,9?(

maxt(A), maxt(A) + T))).

181

5.2.2.4 Transformation of Miscellaneous BPEL Activities to EC

FaultHandlers

The faultHcuidlers activity in BPEL enables a process to handle errors found within the
process. This activity contains a list of fault and activity pair. If a fault in the list occurs the
associated activity is performed. The basic syntax of the faultHandlers activity is shown
below,

<faultHandlers>?
<catch faultName="Fname"? faultVariable="FVname"?>*

activity
</catch>
<catchAll>?

activi ty
</catchAll>

</faultHandlers>

In a faultHandlers activity, a catch element is used to handle a specific fault within the

process, Fname is the name of the fault, Fvname is the variable that holds fault related

information and activity is the activity to be performed if the fault occurs. The catchAll

element inside the faultHandlers is used to handle any fault not handled by a more specific

catch element by performing the activity inside the catchAll element.

The transformation of the, faultHandlers into EC requires a set of conjunctions of predicates

where each conjunction stands for EC representation of each catch and catchAll element.

Consider the following faultHandlers

BPEL Activity EC Representation
<faultHandlers> Happens(th: F(_ID) , ti,9t(ti, ti)) a
<catch faultName="F" faultVariable="Y"> Initiates(th: F(_ID) ,valueOf(Y.a,_Y.a) ,ti)

<acType name="A">
</catch>
<catchAll>

... </acType> => EC (A, []) a ti< mint(A)

<acType name="B">
</catchAll>

</faultHandlers>

... </acType> Happens (th : XX (_ID) , ti,SH(ti, ti)) a
-iHappens (th : F (_ID) , tx,SR(ti, ti)) =>
EC (B, []) a ti < mint(B)

In the above example, the activity A is performed if the fault F is thrown and the activity B is

performed if a fault other than F is thrown. The EC representation for the catch element

signifies that the activity A (or the first activity in activity A, if activity A is a structured

activity) starts only after the fault F occurs (see the predicate Happens (t h : F (_ i D) , t 1 ; 9?(t lf

t i))). Since the catchAll element is independent of any specific fault other than the fault F its

EC representation signifies that the activity B (or the first activity in activity B. if activity B is

a structured activity) starts only after a fault occurs, other than the fault F (see the predicates

Happens(th :xx(_id) , ti,9?(ti, 11)) a -iHappens(th :f (_id) , ti,9?(ti, t i)) here XX denotes

any fault).

182

EventHandlers

An eventHandlers activity allows a BPEL process to handle events asynchronously. This

activity contains a list of event and activity pairs. If an event in the list occurs, the associated

activity is performed. Two types of events can be defined in eventHandlers,

(i) message event which signifies the arrival of a message, and

(ii) alarm event based on a timer.

The basic syntax of an eventHandlers activity is shown below,

< e v e n t H a n d l e r s > ?
< o n M e s s a g e p a r t n e r L i n k = " n c n a m e " p o r t T y p e = " q n a m e "

o p e r a t i o n = " n c n a m e " v a r i a b l e = " n c n a m e "?>
activi ty

< / o n M e s s a g e >
< o n A l a r m f o r = " d u r a t i o n - e x p r " ? u n t i l = " d e a d l i n e - e x p r " ? > *

activity
< / o n A l a r m >

< / e v e n t H a n d l e r s >

In the above eventHandlers activity, the message event is defined by the element onMessage.

PTname is the port type that holds the operation Oname. The process expects the partner

Pname to invoke the operation Oname. Vname is the variable that holds the message received

from Pname. Activity is the activity to be performed on occurrence of the message event. The

element onAlarm defines the alarm events, d u ra tio n -e x p r and d ea d lin e -e x p r

represents the duration or the deadline of the timer. Both the d u ra tio n -e x p r and the

d e a d lin e -e x p r are expressed using XPath Expr [Xpa99]. In this transformation we

consider only the d u ra tio n -e x p r , since d e a d lin e -e x p r can be translated into

d u ra tio n -e x p r by taking difference between the current time and the deadline. The syntax

of the eventHandlers activity is similar to that of the pick activity and the EC representation

of eventHandlers is same as that of the pick activity as defined in Section 5.2.2.3.

5.2.2.5 Extraction of Formulas from BPEL Specification

In this section, we describe the mechanism used to extract formulas from BPEL process

specification with the help of an illustrative example. The steps followed to extract formulas

from BPEL specification are as follows,

■ Identify all the execution paths (i.e. logical sequences of BPEL activities) in a BPEL

process specification

183

■ For each sequence of BPEL activities (Seq-BPEL,) transform the BPEL activities into EC

representation by applying the transformation patterns discussed in Sections 5.2.2.2,

5.2.2.3 and 5.2.2.4 and produce a sequence of EC predicates Seq-EC ,.

■ Transform each sequence of EC predicates (Seq-ECi) into an EC formula by identifying

the head and the body of the formula. The identification of the head and the body mainly

depends on the position of the implication sign in the sequence of the EC predicates. The

implication sign in Seq-ECi is introduced by the transformation of BPEL structured

activities into EC representation. Because of nested structured activities more than

implication sign can be introduced in an EC predicate sequence. To identify the head and

the body of formula, i.e. the appropriate position of the implication sign, we apply the

patterns shown below. These patterns are expressed in some pseudo language.

Pattern -1 Pattern -2 Pattern -3
{ { {
statement-1 statement-1 statement-1
statement-2 => =>
statement-3 statement-2 statement -2

} statement-3
}

=>
statement-3

}
Statement-1 a statement-2 => Statement-1 a condition => Statement-1 a condition-1 a

statement-3 Statement-2 a statement-3 statement-2 a condition-2 =>
statement-3

Pattern-1 specifies that if there is a sequence of statements that does not contain any

implication sign, then the last statement should form the head of the formula. All the

statements other than the last statement should form the body of the formula and an

implication sign should be introduced in between the head and the body. This is because,

the last statement will be executed only if all the statements precede it, execute

successfully, i.e. execution of statement-1 and statement-2 implies the execution of

statement-3. According to this pattern, if there is no implication sign in Seq-ECi, then all

the predicates in Seq-EC, that correspond to the last BPEL activity in Seq-BPELi form the

head of the formula and all other predicates form the body of the formula.

Pattern-2 says if there is a sequence that has one implication sign and one or more

statements, then all the statements that appear after the implication sign should form the

head of the formula. All the statements that appear before the implication sign should

form the body of the formula. This is because, the execution of the statements that appear

after the implication sign is only possible if all the statements appear before the

implication sign execute successfully. According to this pattern, if there is an implication

184

sign in Seq-ECj, then all the predicates after the implication form the head of the formula

and all the predicates that appear before the implication sign form the body of the

formula.

Pattern-3 says that if there is a sequence that has more than one implication sign and one

or more statements, then all the statements that appear after the last implication sign

should form the head of the formula. All the statements that appear before the last

implication sign should form the body of the formula. Each implication sign except the

last implication sign is replaced by a conjunctive logical operator (a). This is because, the

execution of the statements that appear after the last implication is only possible if all the

statements appear before the last implication execute successfully. According to this

pattern, if there are more than one implication sign (this can result from nested BPEL

structured activities) in Seq-ECt, then

■ each implication sign except the last implication sign is replaced by a conjunctive

logical operator (a),

■ all the predicates that appear after the last implication form the head of the formula

and;

■ all the predicates that appear before the last implication sign form the body of the

formula.

Formula Extraction Example

In the following, we illustrate the formula extraction mechanism described above with an

example. In our example, we use the RateTrackerProcess BPEL process shown in Figure 5.3.

This process allows users to convert any amount from one country currency to another

country currency. Initially, the process receives the amount from customer (see getAmount

receive activity in Figure 5.3). If the received amount is negative the process replies to the

customer with 0. If the received amount is not negative the process waits for 30 seconds to

receive the names of two countries from the customer (see getConversion pick activity in

Figure 5.3). If the process receives two country names from the customer within 30 seconds,

it calls the operation getRateRe quest in the web service currency Exchanger to convert the

received amount from first country currency to the second country currency (see requestRate

invoke activity in Figure 5.3). Eventually, it replies to the customer with the converted

amount (see reply-amount reply activity in Figure 5.3). If the process does not receive the two

country names within 30 seconds, it replies to the customer with the received amount.

185

<process name="rateTrackerProcess"
targetNamespace= "http: //tempuri . org/services/PriceTrackerBpel" >
<partners> </partners>
<variables> .. </variables>
<sequence>
<receive name="getAmount" partner^"customer" portType="wns:RateTrackerPortT"

operation="getAmount" variable^"amountRequest" createlnstance="yes"/>
<switch name="checkAmount">
<case name="amountNegative" condition="bpws:getVariableData('amountRequest1,

'amount') < 0">
<sequence>

<assign name="assignl"> <copy>
<from expression^'0"/>
<to variable^"amountResponse" part="amount"/>

</copy> </assign>
creply name="negative-reply" partner="customer"

portType="wns:RateTrackerPortT" operation="getAmount"
variable="amountResponse"/>

</sequence>
</case>
<case name="amountPositive" condition="bpws:getVariableData('amountRequest',

'amount') > 0">
<pick name="getConversion">
<onMessage name="conversion" partner="customer"

portType="wsdlns:RateTrackerPortType" operation^"getConversion"
variable="conversionRequest">

<sequence>
<assign name="assign2"> <copy>

<from variable="conversionRequest" part="countryl"/>
<to variable="rateRequest" part="currencyl"/>

</copy>
<copy>

<from variable="conversionRequest" part="country2"/>
<to variable="rateRequest" part="currency2"/>

</copy>
<copy>

<from variable="amountRequest" part="amount"/>
<to variable="rateRequest" part= " amount''/>

</copy> </assign>
<invoke name="requestRate" partner="currencyExchanger"

portType="xns:GetCurrencyExchangeSOAP" operation="getRateRequest"
inputVariable="rateRequest" outputVariable="rateResponse"/>

<assign name="assign3"> <copy>
<from variable="rateResponse" part="value"/>
<to variable="conversionResponse" part="amount"/>

</copy> </assign>
<reply name="reply-Conversion" partner="customer"

portType="wns:RateTrackerPortT" operation="getConversion"
variable="conversionResponse"/>

</sequence>
</onMessage>
<onAlarm name="noConversion" for="'PT30S'">

<sequence>
<assign name="assign4"> <copy>

<from variable="amountRequest" part="amount"/>
<to variable^"amountResponse" part="amount"/>

</copy> </assign>
<reply name="reply-amount" partner="customer"

portType="wns:RateTrackerPortT" operation^"getAmount"
variable="amountResponse"/>

</sequence>
</onAlarm>

</pick>
</case>

</switch>
</sequence>

</process>

Figure 5.3: Rate tracker BPEL process

186

The complete specification of the RateTrackerProcess (i.e. the BPEL file and the WSDL

files) is provided in Appendix F.

Figure 5.4: Sequences of activities in the Rate Tracker BPEL process

The execution paths (i.e. sequences of activities) of the RateTrackerProcess are shown in the

Figure 5.4. The RateTrackerProcess has three execution paths:

Part 0 -Part 7: This sequence includes the getAmount receive activity and the first case

(named as amountNegative) of the switch activity. Inside the amountNegative case there is a

sequence activity which contains an assign activity (named as assign 1) and a reply (named as

negative-reply) activity.

187

Part 0 -Part 2: This sequence includes the getAmount receive activity, part of the second case

(named as amountPositive) in the switch activity. The amountPositive case contains a pick

(named as getConversion) activity and this sequence considers the onMessage (named as

conversion) activity of the pick activity. The conversion onMessage activity contains a

seqeucne activity and inside the secquence there is one assign activity (named as assignl),

one invoke activity (namded as requestrate) and one reply activity (named as reply-

conversion).

(B l) f o r a l l t l : t i m e , e x i s t s t 2 , t 3 , t 4 , t 5 : t i m e
H a p p e n s (r c : g e t A m o u n t (I D) , t l , R (t l , t l)) A
I n i t i a t e s (r c : g e t A m o u n t (I D) , v a l u e O f (a m o u n t , v a m o u n t) , t l) A
H o l d s A t (v a l u e O f (a m o u n t , v a m o u n t) , t 2) A v a m o u n t < 0 A t l <= t 2
= = >
H a p p e n s (a s : a s s i g n l (I D) , t 3 , R (t 2 , t 3)) A
I n i t i a t e s (a s : a s s i g n l (I D) , v a l u e O f (a m o u n t , v a m o u n t) , t 4) A t 3 <= t 4 A
H a p p e n s (r e : g e t A m o u n t (I D , a m o u n t) , t 5 , R (t 4 , t 5))

(B2) f o r a l l t l : t i m e ,
e x i s t s t 2 , t 3 , t 4 , t 5 , t 6 , t 7 , t 8 , t 9 , t l O , t i l , t l 2 : t i m e

H a p p e n s (r c : g e t A m o u n t (I D) , t l , R (t l , t l)) A
I n i t i a t e s (r c : g e t A m o u n t (I D) , v a l u e O f (a m o u n t , v a m o u n t) , t l) A
H o l d s A t (v a l u e O f (a m o u n t , v a m o u n t) , t 2) A v a m o u n t > 0 A t l <= t 2 A
H a p p e n s (r c : g e t C o n v e r s i o n (I D) , t 3 , R (t 2 , t 2 + 3 0 0 0 0)) A
I n i t i a t e s (r c : g e t C o n v e r s i o n (I D) , v a l u e O f (c o u n t r y 2 , v c o u n t r y 2) , t 3) A
I n i t i a t e s (r c : g e t C o n v e r s i o n (I D) , v a l u e O f (c o u n t r y l , v c o u n t r y l) , t 3)
= = >
H a p p e n s (a s : a s s i g n 2 (I D) , t 4 , R (t 3 , t 4)) A
I n i t i a t e s (a s : a s s i g n 2 (I D) , v a l u e O f (c u r r e n c y l , v c u r r e n c y l) , t 5) A t 4 < = t 5 A
I n i t i a t e s (a s : a s s i g n 2 (I D) , v a l u e O f (c u r r e n c y 2 , v c u r r e n c y 2) , t 6) A t 5 < = t 6 A
I n i t i a t e s (a s : a s s i g n 2 (I D) , v a l u e O f (a m o u n t , v a m o u n t) , t 7) A t 6 <= t 7 A
H a p p e n s (i n : g e t R a t e R e q u e s t (I D , c u r r e n c y 2 , c u r r e n c y l , n u m b e r) , t 8 , R (t 7 , t 8))

H a p p e n s (i r : g e t R a t e R e q u e s t (I D) , t 9 , R (t 8 , t 9)) A
I n i t i a t e s (i r : g e t R a t e R e q u e s t (I D) , v a l u e O f (v a l u e , w a l u e) , t 9) A
H a p p e n s (a s : a s s i g n 3 (I D) , t l O , R (t 9 , t l O)) A
I n i t i a t e s (a s : a s s i g n 3 (I D) , v a l u e O f (a m o u n t , v a m o u n t) , t i l) A t l O <= t i l A
H a p p e n s (r e : g e t C o n v e r s i o n (I D , r e s u l t) , t l 2 , R (t l l , t l 2))

(B 3) f o r a l l t l : t i m e , e x i s t s t 2 , t 3 , t 4 , t 5 , t 6 : t i m e
H a p p e n s (r c : g e t A m o u n t (I D) , t l , R (t l , t l)) A
I n i t i a t e s (r c : g e t A m o u n t (I D) , v a l u e O f (a m o u n t , v a m o u n t) , t l) A
H o l d s A t (v a l u e O f (a m o u n t , v a m o u n t) , t 2) A v a m o u n t > 0 A t l <= t 2 A
i H a p p e n s (r c : g e t C o n v e r s i o n (I D) , t 3 , R (t 2 , t 2 + 3 0 0 0 0))

H a p p e n s (a s : a s s i g n 4 (I D) , t 4 , R (t 3 , t 4)) A
I n i t i a t e s (a s : a s s i g n 4 (I D) , v a l u e O f (a m o u n t , v a m o u n t) , t 5) A t 4 <= t 5 A
H a p p e n s (r e : g e t A m o u n t (I D , a m o u n t) , t 6 , R (t 5 , t 6))

Figure 5.5: Formulas extracted for the Rate Tracker BPEL process

Part 0 -Part 3: This sequence includes the getAmount receive activity, part of the second case

(named as amountPositive) in the switch activity. The amountPositive case contains a pick

(named as getConversion) activity and this sequence considers the onAlarm (named as

188

noConversion) activity of the pick activity. The noConversion onAlarm activity contains a

seqeucne activity and inside the secquence there is one assign activity (named as assign3),

and one reply activity (named as reply-amount).

By applying the BPEL-EC transformation patterns discussed in Sections 5.2.2.2 - 5.2.2.5 and

we will get the formulas for the RateTrackerProcess BPEL process which are shown in

Figure 5.5.

5.2.2.6 IBehaviouralPropertiesExtractor

The interface IBehaviouralPropertiesExtractor consists of the following methods,

• x s d : s t r i n g e x t r a c t F o r m u l a s (B P E L F i l e x s d : s t r i n g ,

W S D L F i l e s [] x s d : s t r i n g) - This method is used to extract behavioural

properties from a BPEL specification. This method accepts the BPEL file name that

specifies the BPEL process and the name of the WSDL file for each web service

which is used by the process and returns the string representation of an XML

document [Xml04c]. The returned string contains the XML representation of all the

event calculus formulas extracted from the BPEL process. The XML document is

written according to the schema discussed in Section 3.3.5 in Chapter 3.

• v o i d s a v e F o r m u l a s (f o r m u l a s x s d : s t r i n g , f i l e x s d : s t r i n g) -

This method is used to save formulas in an XML file. The parameter formulas is the

string representation of an XML document that contains the formulas to be saved and

the parameter file specifies the XML file.

• x s d : s t r i n g i m p o r t F o r m u l a s (f i l e x s d : s t r i n g) - This method is

used to import formulas from an XML file. The parameter file refers the XML file

which the formulas will be imported from. The method returns the string

representation of an XML document that contains all the formulas imported from the

XML file.

5.2.3 Event Receiver

During the execution of the composition process, the service based system execution

environment writes the log events as strings to the event port specified in the monitoring

189

policy that has been given to the monitoring framework. The event receiver reads the string

streams from the event port and identifies the type of the event that the string stream

describes, filters out events, which are irrelevant to the monitoring process. The events of the

process execution engine, which are irrelevant, are determined by event patterns. These

patterns are identified by the monitor manager from the formulas that have been set for

monitoring. In this section we discuss the mechanism used to realise the functionality of the

event receiver. The event receiver offers its functionality through the interface

lEventReceiver. We also describe the interface IEventReceiver at the end of the section.

The exact mechanism used to generate log events depends on the web service execution

engine that is used. In our framework we have used the engine bpws4j [Bpw03] that uses

log4j [Log03] to generate log events. Figure 5.6 shows the schematic diagram to generate log

events in our framework. The system provider sets some log4j properties of the bpws4j engine

to specify the level of event reporting (INFO, DEBUG etc.), and the destination of the logged

events.

Figure 5.6: Event generation from bpws4j engine

The destination where the log events should be reported to is specified by: (i) the IP address

of the host on which event receiver is running and (ii) the port number to which the event

receiver is listening.

At runtime, the bpws4j engine generates log events according to the properties of log4j that

have been set by the system provider and reports them to the destination. The event receiver

(which is implemented as a remote log4j server) captures the log events which are reported to

the port that it listens to and converts them to monitoring events. The transformation of log

events into monitoring events is performed on parsing the former events by applying regular

expressions in order to identify the required information from log events. In the following

section, we describe this transformation.

190

5.2.3.1 Transformation of log events into Monitoring events

In this transformation we only use a sub set of the regular expression constructs defined in

[Reg02]. The constructs used in the transformation are,

• Range construct ", that signifies a range. For example c-g denotes any letter from c to

g inclusive.

• Character Class that signifies character classes. For example, [a - z O - 9] denotes

any letter a through z or any digit 0 through 9.

• Modifier that signifies zero or more times repetition of the previous expression. For

example [a b] * denotes a , a b , a a b and so on

Any other character is considered as ordinary character. Regular expressions are expressed

inside double quotation.

In addition to the above regular expression constructs the following definitions are used to

express the transformations

• LogString is the string representation of the log event received by the event receiver from

the bpws4j engine.

• SubString($sting, $substring) is a function that extracts a substring at the beginning of

$string that matches $substring where $substring is a regular expression.

• Matches($string, $snbstring) is a function that returns true if $substring appears in

$string and false otherwise. $substring is a regular expression.

• Concat($stringl, $string2) is a function that performs the concatenation of Sstringland

$string2 and returns the concatenated string. $string2 can be a regular expression.

• Subtractf Sstringl, $string2) is a function that removes the first occurrence of $string2

from Sstringl and returns the new Sstringl. $string2 can be a regular expression.

• Sstringl = $string2 the value of $string2 is assigned to Sstringl.

• tp denotes an empty string.

Generic Structure o f Log events

The log events generated by bpws4j engine for different BPEL activities have a common

generic structure. In this section we describe the generic structure of log events and the

191

regular expressions that are used to capture information from run time events that are

applicable to any BPEL activity. The structure of log event (i.e. LogString) is shown below,

Event_Time_Stamp Event_ID Report_Level Event JDescription

As shown above a log event has four columns. These are

Event_Time_Stamp signifies the occurrence time of the event, which appears in ISO 8601

format [Iso04]. This format is YYYY-MM-DD hh :mm: s s , s where,

YYYY = four-digit year

MM = two-digit month (01=January, etc.)

DD = two-digit day of month (01 through 31)

hh = two digits of hour (00 through 23)

mm = two digits of minute (00 through 59)

ss = two digits of second (00 through 59)

s = one or more digits representing a decimal fraction of a second

An example of Event_Time_Stamp is 2 0 0 5 - 0 5 - 2 4 1 7 : 0 2 : 0 3 , 5 1 0 . The event receiver

converts the time stamp into milliseconds, which is the number of milliseconds elapsed from

1/1/1970 until log event was created. This is done by taking the difference between the

Event_Time_Stamp and 1 9 7 0 - 0 1 - 0 1 0 0 : 0 0 : 0 0 , 0 0 0 .

EventJD signifies the unique id assigned to this log event by the bpws4j engine. The format

of the EVENT_ID is h t t p < n u m b e r > - P r o c e s s o r < n u m b e r > or T h r e a d - < n u i n b e r > . An

example of Event_ID is h t t p 8 0 8 0 - P r o c e s s o r 2 1 or T h r e a d - 2 2 . The event receiver

applies the following regular expressions to extract the Event_ID,

S u b s t r i n g ($ L o g S t r i n g , " h t t p [0 - 9] [0 - 9] [0 - 9] [0 - 9] - P r o c e s s o r [0 - 9] * ")

S u b s t r i n g ($ L o g S t r i n g , " T h r e a d - [0 - 9] * ")

Report_Level signifies the level of event reporting (e.g. INFO, DEBUG etc.) This information

is not used by the event receiver.

Event_Description contains BPEL activity specific information as well as some generic

information. Among the generic information it contains,

192

• The ID of the service (partner ED) appears as a sub string in the Event_Description,

which takes the form serviceID=<string> where <string> represents the

service ID. An example of a sub string that contains service ID is
0

serviceID='{http://carservice.org/wsdl/Online}carServiceBP'

The event receiver applies the following regular expression to extract the sub string

that contains the service ID,

Substring($LogString,"serviceID=" + "' [a - z A - Z 0 - 9 _ £ $:}{/-]*'")

• The name of the operation associated with a BPEL activity appears as a sub string

in the Event_Description, which takes the form operationN am e=<string>

where < s trin g > represents the operation name. An example of a sub string that

contains operation name is,

operationName = 'receiveRequest'

The event receiver applies the following regular expression to extract the sub string

that contains the operation name,

Substring($LogString,"operationName="+"'[a - z A - Z 0 - 9 _ £ $:}{/-
] * ' ")

• The names of the variables, their values and types appear as sub strings in the

Event_Description, where each sub string take the form

JROM<type>: < s t r i n g l > : < s t r in g 2 > where <type> represents the

variable type (e.g. string, int etc), < s t r i n g l> represents the variable name, and

< s t r in g 2 > represents the value of the variable. An example of a sub string that

contains the variable description is,

JROMString: custld: kmr

The regular expression applied by the event receiver to extract the sub string that

contains variable name, type and value is shown below. Since multiple variables

can be associated with one operation, the regular expression should be applied

multiple times to extract each variable. We show this with a while loop in a pseudo

language,

193

http://carservice.org/wsdl/Online%7dcarServiceBP'

$varString= cp
while(Matches($LogString, "JROM(a-zA-Z0-9_£$:]*")

begin

$varString=SubString($LogString, "JROM[a-zA-Z0-9_£$:]*")

$LogString=Subtract($LogString, $VarString)

end

Generation o f Monitoring Events for Receive Activities

An example of a log event that represents an instance of the execution of a receive activity is

shown below,

2005-05-24 17:02:03,510 [http8080-Processor21] INFO
bpws.runtime - Incoming request :[WSIFRequest: servicelD =
'{http ://carservice.org/wsdl/OnlineRenter}carServiceBP'
operationName = 'receiveRequest'
incomingMessage = 'org.apache.wsif.base.WSIFDefaultMessage@70ccb name:null
parts[0]:[JROMString: loc: One] parts[1]:[JROMString: custld: kmr]'
contextMessage = 'org.apache.wsif.base.WSIFDefaultMessage@d9230a name:null
parts[0]:http://xml.apache.org/soap/vl
parts[1]:{http://carservice.org/wsdl/OnlineRenter}CarRenter parts[2]:CRS']

As shown in this example, the fact that this log event denotes a receive activity is indicated by

the sub-string “incoming request” in the Event_Description. The event receiver identifies

this log event as a receive activity if the following condition holds,

Matches($LogString, "Incoming request")

The time stamp, event ID, service ID, operation name and variables are extracted by applying

the regular expressions discussed for the generic structure of log events above.

Following the extraction of the above information, the event receiver is ready to generate

monitoring events. As discussed in Section 5.2.2.2 a receive activity is transformed into a

conjunction of EC predicates that signify the occurrence of the message receipt event and

initiation of each variable due to the received message, the event receiver generates the

following three monitoring events from this instance of log event

H a p p e n s (rc: {http: / /carservice.org/wsdl/OnlineRenter}carServiceBP:receiveRequest(http80
80-Processor21), 1116950523 510, SK (1116950523510, 1116950523510))
Initiates(rc:{http://carservice.org/wsdl/OnlineRenter}carServiceBP:receiveRequest([htt
p8080-Processor21], valueOf(loc, _loc), 1116950523510)
I n i t i a t e s (rc:{http://carservice.org/wsdl/OnlineRenter}carServiceBP:receiveRequest([htt
p8080-Processor21], valueOf(custld, _custld), 1116950523510)

Generation o f Monitoring Events fo r Reply Activities

An example of a log event that signifies a reply activity is shown below,

194

http://xml.apache.org/soap/vl
http://carservice.org/wsdl/OnlineRenter%7dCarRenter
http://carservice.org/wsdl/OnlineRenter%7dcarServiceBP:receiveRequest(http80
http://carservice.org/wsdl/OnlineRenter%7dcarServiceBP:receiveRequest(%5bhtt
http://carservice.org/wsdl/OnlineRenter%7dcarServiceBP:receiveRequest(%5bhtt

2005-05-24 17:02:08,797 [http8080-Processor21] INFO
bpws.runtime - Outgoing response: [WSIFResponse: servicelD =
'{http ://carservice.org/wsdl/OnlineRenter}carServiceBP'
operationName = 'receiveRequest'
isFault = 'false' outgoingMessage =
'org.apache.wsif.base.WSIFDefaultMessage@bl0bd5 name:null
parts[0]:[JROMString: carld: k9h]' faultMessage = 'null'
contextMessage = 'null']

The reply activity represented by the above log event corresponds to the log event of the

receive activity presented earlier in this section.

The fact that the above log event denotes a reply activity is indicated by the sub string

‘Outgoing response’ in the EventJDescription. The event receiver identifies this log event

as a reply activity if the following condition holds,

Matches ($LogString, "Outgoing response")

The regular expressions for extracting the time stamp, partner ID, operation name and

variables are the same as the regular expressions presented for the generic structure of log

events above. Following the extraction of the above types of information, the event receiver

generates the following monitoring event from this instance of log event,

Happens(re:{http://carservice.org/wsdl/OnlineRenter}carServiceBP:receiveRequest(http80
80-Processor21, carld), 1116950528797, 91(1116950528797, 1116950528797))

Generation o f Monitoring Events fo r Invoke Activities

An example of a log event that signifies the invocation of an external service is shown below,

2005-05-24 17:02:03,680 [Thread-35] DEBUG
bpws.runtime.bus - Invoking external service with [WSIFRequest: servicelD =
'{http ://tempuri.org/services/CustomerReg}CustomerRegService!5d8362-
1040f701b25--8000' operationName = 'authenticate'
incomingMessage = 'org.apache.wsif.base.WSIFDefaultMessage@1667f3c name:null
parts[0]:[JROMString: custld: kmr]'
contextMessage = 'null']

The fact that the above log event denotes an invoke activity that calls an external service is

indicated by the sub string ‘In v o k in g e x t e r n a l s e r v i c e ’. The event receiver

identifies this log event as an invocation to external service if the following condition holds,

Matches($LogString, "Invoking external service")

The regular expressions for extracting the time stamp, event ID, partner ID, operation name

and variables are the same as the regular expressions presented for the generic structure of

log events above. Following the extraction of the above types of information, the event

receiver generates the following monitoring event from this instance of the log event,

195

http://carservice.org/wsdl/OnlineRenter%7dcarServiceBP:receiveRequest(http80

Happens(in :{http ://tempuri.org/services/CustomerReg}CustomerRegServicel5d8362-104Of70
lb25--8000: authenticate(Thread-35, custld); 1116950523680, 9̂ (1116950523680,
1116950523680))

The log event that signifies the response from the external service which corresponds to the

invocation represented by the above log event is shown below,

2005-05-24 17:02:08,236 [Thread-35] DEBUG bpws.runtime.bus - Response for external
invoke is [WSIFResponse:
servicelD = '{http://tempuri.org/services/CustomerReg}CustomerRegServicel5d8362-

1040f701b25--8000'
operationName = 'authenticate'
isFault = 'false'
outgoingMessage = 'org.apache.wsif.base.WSIFDefaultMessage@lc8ee34 name:null

parts[0]:[JROMBoolean: authRet: true]'
faultMessage = 'null'
contextMessage = 'null']

The fact that this log event denotes a response from an external service is indicated by the sub

string‘R esponse f o r e x t e r n a l in v o k e ’. The event receiver identifies this log event

as a response from an external service if the following condition holds,

Matches($LogString, "Response for external invoke")

The regular expressions for extracting the time stamp, event ID, partner ID, operation name

and variables are the same as the regular expressions presented for the generic structure of

log events above. Following the extraction of the above information, the event receiver is

ready to generate monitoring events. As discussed in Section 5.2.2.2 a response to an invoke

activity is transformed into a conjunction of EC predicates that signify the occurrence of the

response to the invocation and initiation of each variable due to the response, the event

receiver generates the following two events from this instance of log event.

Happens(in :{http ://tempuri.org/services/CustomerReg}CustomerRegServicel5d8362-104Of70
lb25--8000:authenticate(Thread-35), 1116950528236, SK (1116950528236, 1116950528236))
Initiates(in :{http ://tempuri.org/services/CustomerReg}CustomerRegServicel5d8362-
1040f701b25--8000: authenticate(Thread-35), valueOf(authRet, _authRet), 1116950523510)

Generation of Monitoring Events for Assign Activities

The log events shown below signify an example of execution of an assign activity.

2005-05-24 17:02:08,286 [Thread-34] DEBUG bpws.runtime.bus - Processing request:
BPWSBus.BUSRequestAssign assignSrc= com.ibm.cs.bpws.model.FromImpl@1439bd9
assignDest =com.ibm.cs.bpws.model.ToImpl@aa91ef activity = Activity assign2 with
parent named assign2 and enclosing scope named assign2 clientData
com.ibm.cs.bpws.runtime.AssignRT$AssignInfo@fce051 callback = Activity
carServiceProcess with no parent and no enclosing scope

2005-05-24 17:02:08,306 [Thread-39] DEBUG bpws.runtime.flow - Processing event:
[AssignmentValueReadyEvent
clientData=com.ibm.cs.bpws.runtime.AssignRT$AssignInfo@fce051, value
[JROMString: loc: One]

196

http://tempuri.org/services/CustomerReg%7dCustomerRegServicel5d8362-1040f701b25--8000'
http://tempuri.org/services/CustomerReg%7dCustomerRegServicel5d8362-1040f701b25--8000'

The first of these log events denotes an assign activity due to the presence of the sub string

BPWSBus. BUSRequestAssign in the Event_Description. In this log event, the unique ID

AssignRT$AssignInfo@fce051 identifies the specific instance of the assignment. The

name of the assign activity appears after the sub string activity = Activity and the

unique ID appears in the sub string

com .ibm .cs.bpws. runtime.AssignRT$AssignInfo@ fceO51.

The event receiver identifies this log event as an assign activity if the following condition

holds

Matches($LogString, "BPWSBus.BUSRequestAssign")

The sub string that contains the name of the assign activity can be extracted by the following

expression,

Substring($LogString, "activity = Activity [a-zA-Z0-9_£$-]* with")

The sub string that contains the unique ID for this assign activity can be extracted by the

following expression,

Substring($LogString, "AssignRT[a-zA-Z0-9$@-]*")

The second log event denotes the completion of the assign activity. The sub string

AssignmentValueReadyEvent in the Event_Description signifies that this instance of the

log event is a completion of an assign activity. The unique ID of the assign activity is

“AssignRT$AssignInfo@fce051".

The event receiver identifies this log event as the completion of an assign activity if the

following condition holds,

Matches($LogString, "AssignmentValueReadyEvent")

The regular expressions for extracting variables are the same as the regular expressions

presented for the generic structure of log events above. Following the extraction of the

above information, the event receiver is ready to generate monitoring events. As discussed in

Section 5.2.2.2 an assign activity is transformed into a conjunction of EC predicates that

signify the occurrence of the assignment and initiation of each variable due to the assignment,

the event receiver generates the following two events from this instance of log event,

H a p p e n s (a s : a s s i g n 2 (A s s i g n R T $ A s s i g n I n f o @ f c e 0 5 1) , 1 1 1 6 9 5 0 5 2 8 2 8 6 , 9t (1 1 1 6 9 5 0 5 2 8 2 8 6 ,
1 1 1 6 9 5 0 5 2 8 2 8 6))
I n i t i a t e s (as:assign2(AssignRT$AssignInfo@fce051), valueOf(loc, _loc), 1116950528306)

197

Generation of Monitoring Events for Transition Conditions

The log event shown below signify an example of execution of a transition condition,

2005-05-24 17:02:08,256 [Thread-39] DEBUG bpws.runtime.flow - about to eval
condition (bpws:getVariableData(1authRes' , 'authenticateReturn') = true())

This log event denotes a transition condition checking due to the presence of the sub string

"about to eval condition" in the Event_Description. This log event signifies that the

variable authenticateReturn holds some value and it should be checked now. The event

receiver identifies this log event as transition condition if the following condition holds,

Matches($LogString, "about to eval condition")

The regular expressions for extracting the time stamp, event ID are the same as the regular

expressions presented for the generic structure of log events above. The variable name is

extracted by manipulating substring bpws: getVariableData (' authRes'

1 authenticateReturn') . With all this information the event receiver generates the

following monitoring event

H o ld sA T(valueOf(authenticateReturn, _ authenticateReturn), 1116950528256)

5.2.3.2 IEventReceiver

The interface IEventReceiver ex poses the following methods:

• v o id s e tE v e n tP a t t e r n s (e v e n tP a t te r n s [] S ig n a tu r e) - The monitor

manager uses this method to set the event patterns that will determine the runtime events

which are relevant to a monitoring activity in the event receiver. The parameter

eventPatterns specifies a list of event patterns where each event pattern is of type

Signature. The structure of Signature is shown below,

Data Structure: Signature
Purpose: Instance of this type holds the signature of an Event or a Predicate

Field Name Data Type Description
_ecName xsd: string This field contains the event calculus (EC) name of this

event/predicate, e.g. Happens, Initiates etc.
_prefix xsd: string This field contains the prefix which signifies the type of this

event/predicate, e.g. in for invocation, see Section 3.33.2 in
Chapter 3 for full list of prefix values.

_operationName xsd:string This field contains the name of the operation, in this
event/predicate

_partnerName xsd: string This field contains the name of the partner involved in this
event/predicate

_variables[] Variable This field contains 0 or more variables associated with the
operation

_fluent Fluent This field contains the fluent (if any) associated with the predicate

198

Data Structure: Variable
Purpose: Instance of this type holds a variable for an operation

Field Name Data Type Description
_name xsd: string This field contains the name of the variable
—type xsd: string This field contains the type of the variable, e.g. string, int etc.
_value xsd: string This field contains the value of the variable

Data Structure: Fluent
Purpose: Instance of this type holds a fluent of a Predicate

Field Name Data Type Description
_firstVariable Variable This field contains the first variable of the fluent
_value Variable/Funet

ion
This field contains the value of the variable. This value can
be specified by a variable or a function call.

Data Structure: Function
Purpose: Instance of this type describes a an external or internal function call

Field Name Data Type Description
_operationName xsd:string Contains the name of the function
^parameters[] Variable/

Function
Contains 0 or more parameters associated with the operation

_partnerName xsd:string Contains the name of the partner that provides the operation, e.g.
self or some name that signifies external partner

• v o id s e tE v e n tS o u r c e (ip A d d re s s x s d : s t r i n g , p o r t x s d : i n t)

The monitor manager uses this method to specify the event source to the event receiver.

The parameter ipAddress indicates the host and the parameter port indicates the port in

that host where the execution environment of an SBS system will write the runtime events

that the event receiver will listen to.

• v o id s ta r tE v e n tR e c e iv e r () - This method is used to start the event receiver.

• v o id s to p E v e n tR e c e iv e r () - This method is used to stop the event receiver.

5.2.4 The Simulator

The simulator is a component that we have developed in order to generate monitoring events

by simulating the execution of BPEL processes. In this section we discuss the mechanism

used to implement the simulator with the aid of an example. The simulator offers its

functionality through the interface ISimulator. We describe the interface /Simulator at the end

of this section.

The simulator takes as input:

199

(i) the set of all the execution paths of a given BPEL process expressed as event

calculus formulas,

(ii) The size n of the possible value set (domain) for each of the non-time variables in the

formulas in (i) . The simulator generates a domain for each variable, where each

domain contains n number of randomly generated values that are used as possible

values of the variable during the simulation process.

(iii) A distribution function, called distexec, for the time interval between the execution of

two consecutive paths of the BPEL process.

(iv) A distribution function, called distopen, for the occurrence time of all constrained

predicates in a formula (i.e. execution path) for which one of the lower boundary

(LB) or the upper boundary (UB) has not been specified. This distribution function is

used to determine the value of the occurrence time of the corresponding predicate.

Following formulas are used to determine this value,

Let offset is the random number generated by applying distopent then

occurrence time = LB + offset, if LB is specified

occurrence time = UB - offset, if UB is specified

For the constrained time variables for which both the lower boundary (LB) and the

upper boundary (UB) have been specified, the simulator applies uniform distribution

function, distuni, within 9i(LB, UB) to determine the occurrence time of the

corresponding predicate.

Given (i)-(iv), the simulator.

■ Generates randomly a start time point ST

■ Selects randomly a formula, F,, representing an execution path and generates all the

events in it in the order they are expected given the time constraints of the formula. More

specifically,

200

■ The time stamp of the event that corresponds to the unconstrained predicate in

F, is ST,. The simulator uses the distribution function distexec to determine the

value of STi. The following formula is used to generate STh

Let offsef is the random number generated by applying distexec for F„ then

STi = STj.i + offset^ where ST0 is the current system time.

■ The time stamp of each of the successive events of F, is computed based on the

lower boundary and upper boundary (i.e. 9l(LB,UB)) and the distribution

function of the time variable of the relevant predicate as described in (iv)

above.

■ When the simulator generates an event for a predicate with a time stamp, it also

updates the upper boundary (UB) and lower boundary (LB) of ranges of all the

other predicates in the formula that depend on the time variable of this

predicate. Also, for the non time variables of the predicate used to generate the

event that have not been already assigned some value, the simulator selects

randomly a value from the domain of the respective variable. The selection of

a random value from the domain assumes that different values in the domain

have equal probability (i.e. each value has a probability 1/n, where n is the size

of the domain) of being selected.

The simulator also assigns a unique id to each generated event. All the events which are

generated in a simulation must have unique ids with the exception of the following cases,

(i) Events that instantiate pairs of predicates in a formula that signify a receive activity and

the corresponding reply activity. Such events must have same id.

(ii) Events that instantiate pairs of predicates in a formula that signify an invocation of an

operation of an external web service and the corresponding response from that web

service. These events are assigned the same id in order to be able to correlate the

invocation with the response.

(iii) Events generated as instances of a predicate that signifies a receive activity in a formula

and the predicates in the same formula that signify the initiation of fluents to represent

the value of the input variable of the operation called by the receive activity. These

events must have same id in order to be possible to correlate them.

201

(iv) Events generated as instances of a predicate that signifies response from the execution of

an operation in an external web service and all the predicates in the same formula that

signify the initiation of fluents to represent the value of the output variable of the

relevant operation. These events must have same id in order to be possible to correlate

them.

After generating all the events in F, the simulator calculates a random interval offs by

applying the distribution function distexec. It then randomly selects another formula Fi+1 and

generates all the events in Fi+I as described above where the starting time for Fi+] is ST+offs.

The simulator repeats these steps as long as the BPEL process is simulated.

(Fl) V tl:time, _z:string
Happens(rc:s:O (_ID),tl,R (tl,tl)) A
Initiates(rc:s:O (_ID),valueOf(z,_z),tl) A (3 t2)
Happens(re:s:O (_ID,_z),t2,R (tl,tl + tu * 100))

(F2) V tl:time, _x:string, v:int
Happens (in : p : A (_ID1, _x) , tl, R (tl, tl)) A
Happens(ir:p :A (_ID1),t2,R (tl,t2)) A

3 t2)

Initiates(ir:p :A (_ID1) ,valueOf(y,_y) ,t2 j A (3 t3)
Happens(in:q :B(_ID2,_x,_y),t3,R (t2,t2 + tu * 50))

** t, = 1 ms .

Figure 5.7: Execution paths of a BPEL process expressed as EC formulas

As an example of the event generation mechanism described above consider a BPEL process

whose execution paths are the formulas FI and F2 in Figure 5.7. Assuming that, the size of

the domain of the variable _x is 4, the size of the domain of the variable _y is 5, and the size

of the domain of the variable _ z is 5. The simulator has generates the following domains:

■ domain for _x : {aqa, yab, vsbac, zpad}

■ domain for : {348, 9856, 3401, 23, 65923}

■ domain for _z : {btma, nfbrc, hbwqd, mbsqe, djbfk}

Then, assuming that

(i) The mean and variance of the distribution function distexec are 0.8 seconds and 0.2

seconds respectively.

(ii) The mean and variance of the distribution function distopen are 0.2 seconds and 0.5

seconds respectively.

202

the simulator generates ST= 1135694663208 as described above. Subsequently assuming that

it randomly selects F2, the following events will be generated from F2

• Event 1

The first event to be generated from F2 corresponds to the unconstrained predicate,

Happens (in :p :a (_i d i ,_x) ,tl,R(tl,tl)) which signifies an invocation of an operation

called A in the external web service p. The simulator randomly picks a value for the

variable _x from its domain, say yab, and assigns a unique id to the first event. The time

stamp for this event is ST. Thus, the first event generated from F2 is

Happens(in :p :A (idl,yab), 1135694663208)

• Event 2

The second event to be generated from F2 corresponds to the second predicate in F2,

Happens (i r : p : a (_i d i), t2 , r (t i , t2)) which signifies the response from the execution

of the operation A in the external web service that was invoked by

Happens (in:p : a (idl,yab), 1135694663208) . The value of the lower boundary tl of

the second event is set to 1135694663208 (i.e., the same as the time stamp of event 1) and

the value of the upper boundary t2 is undefined. The simulator uses the distribution

function distopen to compute a random number which it subsequently adds to tl to

determine the value of t2. Thus, if the computed random number is 0.004 the simulator

converts this number into milliseconds (distope„ is specified in seconds but the simulator's

clock operates in milliseconds as tu=l ms) and adds it to tl to obtain the value of t2, i.e. t2

= 1135694663212. Furthermore, the ID of the event generated for this predicate must be

the same as the ID of the event / .Thus, the second event generated from F2 is

Happens(i r :p :A(idl), 1135694663212)

• Event 3

The third event to be generated from F2 corresponds to the third predicate in the formula,

i.e. in i t ia te s {i r : p : a (_i d i), valueof (y ,_y), t 2). This predicate signifies the

initiation of fluent due to the response from an external web service. The second predicate

in F2 signifies the response from the external web service that initiates this fluent.

Therefore the ID of the event generated for the third predicate must be the same as the ID

203

of the event 2. The value of t2 is 1135694663212 (due to the event 2 time stamp). The

simulator randomly picks a value for the variable _ j from its domain, let it picks 3401.

The third event generated from F2 is,

I n i t i a t e s (ir:p:A(idl),valueOf(y,3401), 1 1 3 5 6 9 4 6 6 3 2 1 2)

• Event 4

The fourth event to be generated from the F2 corresponds to the fourth predicate in the

formula, i.e. Happens(in:q:B(_iD2,_x,_y) ,t3,R(t2,t2 + tu * 5 0)) . This predicate

signifies the invocation of an operation in an external web service. By virtue of the

generation of event 3, the variable _x has been assigned to the value yab (due to event 1)

and the variable _y has been assigned to the value 3401 (to event 3). The value of the

lower boundary of the time variable of the predicate is 1135694663212 as it must be the

same as the time stamp of event 2 and the value of the upper boundary of the time

variable of the predicate is 1135694663262 as it must be equal to the timestamp of event

2 plus 50 time units tu. After establishing the range of t3 as 91(1135694663212,

1135694663262), the simulator creates a random number in this range according to distuni

and assigns it to t3. Assuming that the computed random number is 1135694663236, the

fourth event generated from F2 is,

Happens(in:q:B(id2,y a b , 34 01) , 1 1 3 5 6 9 4 6 6 3 2 3 6)

When the simulator generates the events for all the predicates in F2, it randomly selects

another formula, say FI. To determine the time stamp of the first event generated from

FI the simulator uses the distribution function distexec to compute a random number and

update the value of ST by adding the random number to the previous value of ST.

Assuming that the computed random number is 1.35, the simulator converts this number

into milliseconds (distexec is specified in seconds but the simulator’s clock operates in

millisecond as tu=l ms) and adds it to the previous value of ST to obtain the new value of

ST, i.e. ST = 1135694664558. Hence the time stamp of the first event generated from FI

(due to the unconstrained predicate) is 1135694664558. The subsequent events from FI

are generated from FI following the same mechanisms as in case of F2 described above.

The simulator repeats this event generation steps for as long as the simulation of a BPEL

process takes place.

204

5.2.4.1 ISimulator

This interface consists of the following methods:

• v o id s e tE x e c u t io n P a th s (e x e c P a th s x s d : s t r i n g) - The monitor

manager uses this method to set the execution paths in the simulator. The parameter

execPaths is the string representation of an XML document that contains all the execution

paths in a given BPEL process expressed in event calculus. The XML document is

written according to the schema presented in Section 3.3.5 in Chapter 3.

• v o id se tD o m ain s (dom ains [] Domain) - The monitor manager uses this

method to define the variable domains in the simulator. The parameter domains signifies

a list of domain definition, where each domain definition is of type Domain. The structure

of Domain is shown below,

Data Structure: Domain
Purpose: Instance of this type holds a domain for a non time variable

Field Name Data Type Description
_varName xsd: string This field contains the name of the variable for which the domain is

defined.
-type xsd: string This field contains the type of the variable.
_size xsd:int This field defines the number of distinct values of the variable in the

domain.

• v o id s e tE x e c P a th D is t r ib u t io n (m e a n x s d :d o u b le , v a r ia n c e

x s d :d o u b le) - The monitor manager uses this method to set the distribution

function for the execution path interval in the simulator. The parameters mean and

variance hold the mean and variance of the distribution, respectively. •

• v o id s e tU n C o n s tra in e d T im e D is tr ib u t io n (m e a n x s d :d o u b le ,

v a r ia n c e x s d :d o u b le) - The monitor manager uses this method to set the

distribution function for the unconstrained time variables. The parameters mean and

variance hold the mean and variance of the distribution, respectively.

• v o id s t a r t S i m u l a t o r () - This method is used to start the simulator.

• v o id s to p S im u la to r () - This method is used to stop the simulator.

205

5.2.5 Event Database Handler

The event database handler maintains the communication between the event database and the

other components of the monitoring framework. This component receives events from the

event receiver and stores the events in the event database in the order that they arrive. It also

provides access to the events in the event database of the framework. The event database

handler is accessible through the lEventDBHandler interface.

5.2.5.1 IEventDBHandler

This interface consists of the following methods:

• void notify (event Event) - The event receiver or the simulator uses this

method to push an event into the event database. The parameter event specifies the event

to be stored, which is of type Event. The structure of Event is shown below,

D a t a S t r u c tu r e : E v e n t

Purpose: In stan ce o f th is ty p e h o ld s a ru n tim e ev en t
Field Name Data Type Description

_signature Signature T h is f ie ld co n ta in s th e e v en t sig n a tu re
_ time Stamp xsd: long T h is f ie ld ho lds the e v en t o c cu rrin g tim e
_NG Xsd:boolean T h is fie ld tak es th e v a lu e t r u e i f th e e v en t is n e g a ted and f a l s e

o th erw ise .

• Event getNextEvent () - The monitor uses this method to retrieve the next event

from the event database (events are retrieved in the exact order in which they have been

recorded).

5.2.6 Formula Database Handler

The formula database handler maintains the communication between the formula database

and the other components of the monitoring framework. This component receives template

instances for a given formula and stores the template instances in the formula database. It also

allows to retrieve the template instances for a given formula from the formula database, or

update the template instances for a given formula in the formula database. The formula

database handler renders its functionality through the IFormulaDBHandler interface.

206

5.2.6.1 IForm uIaDBHandler

The interface IFormuIaDBHandler consists of the following methods:

• void storeTemplates(templates[] Template, mode xsd:string) -

The monitor uses this method to store all the template instances of all the formulas to be

monitored in the formula database initially. The parameter mode specifies whether these

template instances are used for monitoring with respect to recorded events only, or with

respect to mixed (both recorded and derived events) events. The parameter templates

specifies a list of template instances, where each template instance is of type Template.

The structure of Template is shown below,

D a ta S t r u c tu r e : T e m p la t e

Purpose: Instance of this type holds a Template instance
Field Name Data Type Description

_id xsd: string This field holds the ID of the formula
_status xsd: string This field contains the monitoring decision about this template,

e.g. s a t i s f i e d , o r v io l a t e d
_body[] Predicate/Relat

ionalPredicate
This field contains the predicates, the time predicates or the
relational predicates in the body of the formula

_head[] Predicate/Relat
ionalPredicate

This field contains the predicates, the time predicates or the
relational predicates in the body of the formula

„bindings[] Variable This field contains the bindings of all the variables in the
template

_dependants[
]

Dependant This field contains a list of dependants, where each dependant
holds the ID of a template that depends on this template. See
Section 4.3 in Chapter 4 for the definition of formula
dependency.

D a ta S t r u c tu r e : P r e d i c a t e

Purpose: Instance of this type holds a Predicate
Field Name Data Type Description

_signature Signature This field contains the predicate signature
_truthValue xsd:string This field contains the truth value of the predicate, i.e., tr u e ,

f a l s e or U N
„quantifier xsd:string This field specifies the quantifier of the predicate, i.e.,

e x i s t e n t ia l or u n i v e r s a l
_NoQ xsd:Boolean This field indicates whether or not the predicate is negated: it

takes the vale t r u e if the predicate is negated, and the value f a l s e

otherwise.
_timeStamp TimeVariable This field contains a timestamp that indicates when the truth

value of the predicate was set.
_LB TimeExpression This field contains the value of the time expression that

indicates the earliest time when the predicate may occur. This
value is computed from the expression that defines the lower
bound of the predicate and the bindings of the variables of this
expression.

_UB TimeExpression This field contains the value of the time expression that indicates
the latest time when the predicate may occur. This value is
computed from the expression that defines the upper bound of
the predicate and the bindings of the variables of this expression.

„source xsd:string This field specifies the type of the event that is used to update
the truth value of the predicate, i.e., r e c o r d e d , d e r i v e d o r

n e g a t i o n a s fa i l u r e .

207

This field specifies if the predicate is a probabilistic predicate
(e.g p H a p p e n s , p l n i t i a t e s etc). If the predicate is probabilistic it
takes the value t r u e and if it is not it takes the value f a l s e ._______

D a t a S t r u c tu r e : D e p e n d a n t

Purpose: Instance of this type describes a dependant formula
Field Name Data Type Description

_id xsd: string This field contains a formula ID
„signature Signature This field contains a signature

D a t a S t r u c tu r e : R e l a t i o n a l P r e d ic a t e

Purpose: Instance of this type holds a relational predicate like s u b (t l , t 2) > v„
Field Name Data Type Description
„operandi Variable/Function This field contains the first operand in the relation. The

operand can be a function call, or a variable.
„operator xsd: string This field contains the relational operator involved in the

relation, e.g. >, < etc.
_operand2 Variable/Function this field contains the second operand in the relation. The

operand can be a function call, or a variable

D a ta S t r u c tu r e : T i m e V a r ia b le

Purpose: Instance of this type holds a time variable
Field Name Data Type Description

„name xsd: string This field contains the name of the time variable, e.g. t l , t2 etc.
„value xsd: long This field holds the value of this time variable

D a t a S t r u c tu r e : T i m e E x p r e s s i o n

Purpose: Instance of this type holds a time relation
Field Name Data Type Description

„timePoints[] xsd:string This field contains the name of the time variables involved in the
time expression, e.g. t l , t2 etc.

„operators[] xsd: string This field contains the arithmetic operators involved in the time
expression, e.g. +, - etc.

„numbers[] xsd: decimal This field contains a list of numbers involved in the time expression

• Templates[] loadTemplates(formulald xsd:string, mode

xsd: string) - The monitor and the monitor manager use this method to retrieve all

the template instances of a formula from the formula database. The parameter formulald

denotes the formula. The parameter mode specifies whether these template instances are

used for monitoring with respect to recorded events only, or with respect to mixed (both

recorded and derived events) events. This method returns a list of template instances. •

• void updateTemplates(templates [] Template, formulald

xsd: string, mode xsd: string) - The monitor uses this method to update all

the template instances of a given formula in the formula database. The parameter

templates specifies a list of template instances, the parameter formulald denotes the

formula and the parameter mode specifies whether these template instances are used for

monitoring with respect to recorded events only, or with respect to mixed (both recorded

and derived events) events.

208

5.2.7 Monitor Manager

The monitor manager is the component that has responsibility for the initiation and co-

ordination of the monitoring process and the reporting of its results. Once it receives a request

for starting a monitoring activity as specified by a monitoring policy, it checks whether it is

possible to monitor the requirements specified in this policy given the BPEL process of the

service based system that is identified in the policy. If the requested requirements can be

monitored, it starts the event receiver to capture events from this environment. It creates

template instances for the formulas to be monitored and passes the template instances to the

monitor, which has responsibility for detecting whether the formulas are violated. The

monitor manager is accessible through the interface IMonitorManager.

5.2.7.1 IMonitorManager

This interface consists of the following methods:

• v o id s e t P o l i c y (p o l i c y x s d : s t r i n g) - This methods is used by the service

based system execution environment or the Monitoring Console Interface (on behalf of

human user) to set the monitoring policy. The parameter policy is the string representation

of an XML document that contains the monitoring policy. The XML document is written

according to the schema presented in Section 3.2 in Chapter 3.

• v o id s e tF o rm u la s (fo rm u la s x s d : s t r i n g) - This method is used to set all

the formulas to be monitored to the monitor manager. The parameter formulas is the

string representation of an XML document that contains all the formulas to be monitored.

The XML document is written according to the schema presented in Section 3.3.5 in

Chapter 3.

• void setMode (mode xsd: string) - This method is used to set the monitoring

mode. The parameter mode specifies the monitoring mode i.e. whether the monitoring

will be with respect to the recorded events only, or with respect to the mixed (both

recorded and derived) events. •

• void setEventSource(ipAddress xsd:string, port xsd:int)

This method is used to set the event source. The parameter ipAddress signifies a host and

209

the parameter port denotes a port in that host where the SBS execution environment

writes the runtime event and the event receiver listens to.

• Templates!] getTemplates(formulald xsd:string, mode

xsd: string) - The monitoring console use this method to retrieve all the template

instances of a formula for which monitoring decision has been made. The parameter

formulald denotes the formula. The parameter mode specifies whether these template

instances are used for monitoring with respect to recorded events only, or with respect to

mixed (both recorded and derived events) events. This method returns a list of template

instances.

• void setPollinglnterval (time xsd:long) - This method is used to set

time interval between the generation of consecutive reports. The parameter time specifies

the interval in milliseconds.

• void startMonitoring () - This method is used to start the monitoring process.

• void stopMonitoring () - This method is used to stop the monitoring process.

• void setSimulatorConfiguration(simConfig xsd:string) - This

method is used to set the simulator configuration parameters in the monitor manager. The

parameter simConfig is the string representation of an XML document that contains the

configuration parameters for the simulator. We have defined an XML schema to specify

the simulator configuration. Table 5.1 describes the key elements of the schema. The

complete schema is shown in Appendix B.

Table 5.1. T ex tu a l d e sc rip tio n o f the e lem en ts o f th e s im u la to r co n fig u ra tio n sch em a

Element Description
< x s:e lem e n t n am e= "sim C o n fig "

ty p e= "sim C o n fig T y p e " />
T h is is the e lem en t th a t w o u ld b e u se d to d e fin e
the co n fig u ra tio n p a ram ete rs . I t has type
simConfigType.

< x s:co m p lex T y p e n a m e = "sim C o n fig T y p e">
< x s:seq u en ce>

< x s:e lem en t
n am e= "p ro cessS p ec ifica tio n "
ty p e= "fn s:p ro c essS p e c ifica tio n T y p e " />

< x s:e lem e n t n am e= "d o m a in s"
ty p e= "d o m ain sT y p e " />

< x s:e lem e n t
n am e= "ex ecP a th D is tr ib u tio n "
ty p e= "d is tr ib u tio n T yp e"/>

< x s:e lem en t

T h is e le m en t d e fin e s the s tru c tu re o f th e s im u la to r
c o n fig u ra tio n an d has th e fo llo w in g ch ild
e lem en ts: (i) an e le m en t ca lled
processSpecification (see S ec tio n 3 .2 in C h a p te r 3)
o f ty p e processSpecificationType, w h ich is u sed to
d e sc rib e the B P E L p ro cess to be sim u la ted , e.g .
B P E L file n am e, W S D L file n am es, (ii) an
e le m en t o f type domainsType n am ed as domains
w h ich is u sed to d e f in e th e d o m ain s o f th e non
tim e v a ria b le s , (iii) an e lem en t ca lled
execPathDistribution o f ty p e distributionType

210

name="unconstrainedDistribution"
type="distributionT ype"/>

</xs:sequence>
</xs:complexType>

which is used to define the distribution function
for the execution interval, (iv) an element called
u n C o n s t r a i n e d D i s t r i b u t i o n of type
d i s t r i b u t io n T y p e which is used to specify the
distribution function for the unconstrained time
variables.

<xs:complexType name="domainsType">
<xs:sequence>

<xs:element name="domain"
type=”domainType" minOccurs=" 1"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

This element specifies a list of domains for the non
time variables. It has at least one child of type
d o m a i n T y p e named as d o m a i n where each child
specify a domain for a non time variable.

<xs:complexType name="domainType">
<xs:sequence>

<xs:element name="varName"
type="xs:string"/>

<xs:element name="varType"
type="xs:string"/>

<xs:element name="size"
type="xs:int"/>

</xs:sequence>
</xs:complexType>

This element defines the domain of a non time
variable. It the following child elements: (i) an
element called v a r N a m e of type s t r i n g which
specifies the name of the variable, (ii) an element
called v a r T y p e of type s t r i n g which is used to
specify the type of the variable, (iii) an element
called s i z e of type i n t which is used to specify the
size of the domain.

<xs:complexType
name="distributionType">

<xs:sequence>
<xs:element name="mean"

type="xs:float"/>
<xs:element name="variance"

type="xs:float"/>
</xs:sequence>

</xs:complexType>

This element defines a normal distribution
function through its standard parameters, i.e. its
mean and standard deviation.. It has two child
elements: (i) an element called m e a n of type f l o a t

which is used to define the mean of the
distribution, (ii) an element called v a r i a n c e of type

f l o a t which is used to define the variance of the
distribution function.

5.2.8 Monitor

The monitor processes the events, which are recorded in the event database by the event

receiver in the order of their occurrence, identifies other expected events that should have

occurred but are not recorded, and checks if the recorded and expected events are compliant

with the properties which must be monitored for a system. The monitor offers its functionality

through the /Monitor interface.

5.2.8.1 IMonitor

This interface consists of the following methods,

• v o id setM ode (mode x sd : s t r i n g) - The monitor manager uses this method to

specify the monitoring mode in the monitor. The parameter mode specifies the monitoring

mode i.e. whether the monitoring will be with respect to the recorded events only, or with

211

respect to the mixed (both recorded and derived) events. These two different modes of

monitoring are signified by the values “???” and “???”, respectively.

• void setTemplates (templates [] Template) - The monitor manager uses

this method to set the empty template instances of the formulas to be monitored. The

monitor manager receives the formulas to be monitored through the method setFormulas

and creates empty templates for each formula and set the templates to the monitor using

this method. The parameter templates specifies a list of template instances, where each

template instance is of type Template.

• void startMonitor () - This method is used to start the monitor.

• void stopMonitor () - This method is used to stop the monitor.

5.2.9 Monitoring Console

The graphical user interface is the component of the monitoring framework that enables the

user to interact with the framework. More specifically, this component allows the end users of

the framework to (i) start the monitoring process, (ii) stop the monitoring process and (iii)

configure the simulator.

In addition to these functionalities, the monitoring console incorporates (i) an editor that

allows the user to define additional functional properties, QoS properties and assumptions

about the behaviour of the system to be monitored, (ii) an event viewer that allows the user to

view the events that have been stored in the event database, (iii) a monitoring decision viewer

that enables the user to browse the monitoring decisions of the formulas and to save

monitoring decisions in XML (we have defined an XML schema to represent deviation

templates in XML which is given in Appendix C).

5.3 The Prototype of the Monitoring Framework

The components of the monitoring framework that were described in Section 5.2 have been

implemented in a prototype. This prototype has been implemented in Java. As stated in

Chapter 2, the prototype assumes that the composition process of the service based system to

be monitored is specified in BPEL. In our implementation we have used the bpws4j process

212

execution engine to execute the BPEL process. A user manual of this prototype is presented

in Appendix G.

In the rest of this section, we describe how the prototype might be used directly by an end

user.

The sequence diagram in Figure 5.8 shows a typical user interaction scenario. For simplicity

the message parameters are not shown in the sequence diagram.

/ X
: M onitorina : Monitor : Monitor : Event : Fo rm ula

: user Conso le M ana aer Receiver Database H andler
: E ve n t Database

H andler

Figure 5.8. A typical user interaction scenario with the monitoring framework

In step 1, the user selects the policy file that contains the formulas and other policy

parameters. Figure 5.9 shows a snapshot of the monitoring console. The upper left panel of

the console list the ID of the imported formulas and the lower left panel shows the detail of a

formula. The monitoring console allows the user to select formulas to be monitored from the

213

imported formulas. In step 2, the user confirms the selection of formulas. In step 3 monitoring

console sets the policy to the monitor manager.

In step 4, the monitor manager sets the empty template instances of the formulas to be

monitored to the monitor. In step 5, the monitor manager sets the monitoring mode to the

monitor. The monitor manager sets the acceptable event patterns and the event source to the

event receiver in the steps 6 and 7 respectively. The user starts the monitoring process in steps

8 and 9 using the monitoring console. The monitor manager starts the event receiver in step

10 and starts the monitor in step 11. The monitor stores the empty template instances in the

formula database in step 12. After starting the monitoring process in step 8, the user should

start the BPEL process to be monitored, which is not shown in the sequence diagram.

The steps from 13 to 17, shown in dotted rectangle in the sequence diagram are iterative steps

and are repeated as long as the monitoring process continues. In step 13 the event receiver

writes an event to the event database through the event database handler. The event receiver

reads the runtime events from the event port and transforms the runtime event into event

calculus form which is not shown in the sequence diagram. The user can view some of the

latest events stored in the event database by using the event viewer. Figure 5.10 shows a

snapshot of the event viewer. This step of event viewing is not shown in the sequence diagram

for brevity.

Figure 5.9: M o n ito rin g co n so le

214

In step 14 the monitor picks the next event from the event database through the event

database handler. Steps 15 and 16 are iterative steps that the monitor performs for each event.

In step 15 the monitor picks all the template instances of a formula from the formula database

through the formula database handler. The monitor process the picked event for each

template instance. In step 16 the monitor updates the template instances of a formula in the

formula database through the formula database handler.

In step 17, the monitor manager loads the template instances of a formula, creates monitoring

decision report for the template instances and sends the monitoring decision report to the

monitoring console. The monitoring console receives the monitoring decision report and

updates the display. The upper right panel of the monitoring console (see Figure 5.9) list the

monitoring decisions. From the monitoring decision list the user can select a particular

instance of monitoring decision and the details of the selected monitoring decision is shown

in lower right panel of the monitoring console.

Figure 5.10: E v en t v iew er

215

Chapter Six

Experimental Evaluation

6.1 Overview

In this chapter, we present a set of experiments that we performed to evaluate the monitoring

prototype and demonstrate its applicability to the monitoring of real systems. These

experiments were based on two case studies.

In the first case study, we simulated a BPEL process using the simulator that was described in

Chapter 5. The objective of this case study was to measure the performance of the monitoring

prototype [Mah05]. This performance was measured in terms of: (i) the average delay in

processing runtime events, (ii) the time during which the monitor remains inactive whilst

engaged in a monitoring session (i.e., the idle time of the monitor), (iii) the average delay that

it takes to detect a formula violation following the real occurrence of the violation, and (iv)

the number of different types of requirement violations that can be detected at run-time.

The objective of the second case study was dual. Firstly, we wanted to demonstrate the

applicability of the monitoring prototype to a simple but real service based system [Spa06].

Secondly, we wanted to evaluate its performance in a real operational context. In this case

study, we used a real BPEL process that we developed for the purposes of our experiment and

which deployed web-services available on the Internet.

In the following, we discuss the set up of our experiments and the results that we obtained

from them.

6.2 Performance Measures

In this section, we define the basic time measures that we used in order to evaluate the

performance of the monitoring system.

216

It should be noted that in general the monitoring system and the system that is being

monitored by it (regardless of whether it is based on a really executed or a simulated BPEL

process) are two different processes and therefore they have different clocks. Consequently, it

is necessary to translate the timelines of these two processes into a common timeline in order

to obtain meaningful performance measurements. To achieve this, in our experiments we

translated the event times of the system that was being monitored into to monitor’s time line.

Given this time translation principle, Table 6.1 shows the definitions of the basic time

measures that we used in our experiments.

Table 6.1. Basic time measures

Time Meaning/Calculation

tie This is the time of occurrence of event i as generated by the system being monitored (or the
simulator).

tsm This is the starting time of the monitor.

tcm This is the current time of the monitor.
f e(d)
M Time of the recording of an event i in the monitor's event database. t,e(dl is computed by the

formula

tie(d) = (tie - t o e) + t sm

where toe is the time of the occurrence of the first event that was generated by the system
that is being monitored (or the simulator).
This is the time when the monitor retrieves an event i from its event database to process it.

t / j Starting time of the decision procedure that the monitor executes to check for violations
given the truth values of the predicates in the template j of a formula F

teFj This is the completion time of the decision procedure that the monitor executes to check for
violations given the truth values of the predicates in the template j of a formula F

On the basis of the basic time measures shown in Table 6.1, we define the following

performance measures:

(i) Average waiting time of an event:

The waiting time of an event is the difference between the time point when the event is stored

in the event database and the time point when that event is selected by the monitor from the

event database for processing. Figure 6.1 illustrates the waiting time of an event.

The average waiting time of events, called e-delay, is measured using the following formula,

m e(d)
— S i= l,. .. ,K where tjm - > 0 (t i tj) / K

where K is the total number of events.

217

t ie - to e
A

Event time Line r)
(Original) 1 • tj

t - y
Event time Line f
(Translated to

monitor time line) i
f e (d)
Li
e v e n ^ w a i t i n g t im e

_________ 1_____
l v i u m i u i l im e | |

. m .m
line L

Figure 6.1: Event waiting time

(ii) Monitor’s idle time:

The monitor is idle when it has processed all the events that have been stored in the database

and gets to a state of waiting for more events to come from the monitored system. Figure 6.2

illustrates the monitor’s idle time.

tie- toe A
Event time Line r)

(Original) ^ 11*

tje_ toe
Event time Line (
(Translated to

monitor time line) m o n i to r id le t im e
A

t e (d) li

t >
. ____ 1_______ 1________m u lin i l i l im e | [—. in f.mline L 1

Figure 6.2: Monitor’s idle time

The total idle time of the monitor during monitoring session is measured according to the

following formula:

e(d) m
idle-time — X/event i where - tjm > 0 (tj tj)

(iii) Average decision delay:

The delay in making a decision about a possible violation (or satisfaction) of a formula

template is measured as the difference between the time when the monitor makes a decision

for the template and the time when the last event ej that makes it possible to make this

decision was recorded in the event database (or the time when the monitor picks up the event

ej from the event database, in case the monitor has idle time). The event that makes it possible

218

to decide about the satisfaction/violation of a template is the event that is used to update the

truth-value of the last predicate in the template. Figures 6.3a and 6.3b illustrate the decision
delay.

tie_ toe
Event time Line f ''

(Original) ^

tiC-Atoe
Event time Line (>
(Translated to

monitor time line)
t e(d)
li

d ec ision delay

_ _ | |
1 V 1 U 1 1 1 1 U I II111C 5 ; —f Fj t m t Fjline b s b L

Figure 6.3a: Decision delay

tie _ toe
Event time Line t----------*------■NI |(Original) to

be- toe
Event time Line

f ^ Ì(Translated to 1 1 t .e (d)

monitor time line) decision delay | 1
. I I I Ì iMonitor time
line V V j V 'teFj

Figure 6.3b: Decision delay

The average delay in making a decision for a template is measured according to the following

formula,

d-delay = Zi=i,...,N dj / N
where

■ N is the number of the formula templates for which a decision has been made

■ dj is the delay in making the decision for template j of the formula F that is computed

as
Fj e(d) Fj e(d)

di=te - maxieFj(ti) ifte — maxieFj(ti)> 0
Fj m

dj=te - maXieFj(ti) otherwise

where i ranges over the events used to establish the truth values of the formulas in Fj.

219

6.3 First Case Study: Simulated BPEL Process

In the first case study, we used an implementation of the Car Rental system (CRS) that we

introduced in Chapter 4. The BPEL specification of the CRS composition process and the

WSDL files of the web services deployed by this system are presented in Appendix D. In this

case study, we used the simulator of the monitoring prototype to generate sequences of events

from the BPEL process of CRS. The objectives of this case study were:

(i) To measure the performance of the monitoring prototype in terms of the measures defined

in Section 6.2, i.e.

• Average waiting time for an event

• Monitor’s idle time and

• Average decision delay.

(ii) To investigate whether performance is affected by the frequency and type of the events

which are taken into account, and the size of the domains of the variables used in them.

6.3.1 Experimental Setup

The experiments in this case study were formulated in order to investigate the effect on the

performance of the monitoring system of two different factors. These factors were:

• Average inter arrival time of events

This factor expresses the average time between the arrival of two events and determines the

frequency of event occurrences in a specific time period. In the experiments, we used two

categories of the inter event arrival times: (i) a large event inter arrival time (denoted as EL in

the following), which was defined to be 1.0 second and (ii) a small event inter arrival time

(denoted as ES) which was defined to be 0.15 seconds.

• The Size of the Domain of Non-time Variables in Formulas

This factor expresses the number of the distinct elements in the domains of different non time

variables in the formulas that were used in the experiments. In the case of CRS , the basic non

time variables that were used in the monitored formulas were the variables taking as values

customers, cars and car parks. In the experiments we distinguished two different categories of

domains: large domains (denoted as DL in the following) and small domains (denoted as DS

220

in the following). Large domains were defined as domain having at least 4 times more

elements than small domains. In our experiments, the DL category was defined to include a

set of 200 customers, 80 cars and 12 car parks, and the DS category was defined to include 50

customers, 20 cars and 3 car parks.

In the first case study, we used two different sets of formulas: (i) sets of formulas including

behavioural properties and functional properties (referred to as BF in the following) and (ii)

sets of formulas including quality of service properties, functional proerties and assumptions

(referred to as QF in the following). The formulas in the set QF includes quality o f sen’ice

properties and assumptions that invoke internal operations for statistical computation (see

QF1, QF2 and QF3 in Figure 6.4).

Figure 6.4 shows the exact sets of BF and QF formulas that were used in the first case study.

Behavioural properties and Assumptions
(BA)

Quality of service properties, and Assumptions
(QA)

(BF1) (Vt1:Time)(3t2:Time)
Happens(rc:enter(ID),t1 ,R(t1 ,t1)) A
lnitiates(rc:enter(ID),valueOf(loc,vloc),t1) A
lnitiates(rc:enter(ID),valueOf(carld,vcarld),t1) =>
Happens(rc:returnKey(ID),t2,R(t1+1 ,t1+70000))A
lnitiates(rc:returnKey(ID),valueOf(carld,vcarld),t2) A
lnitiates(rc:returnKey(ID),valueOf(loc,vloc),t2)

(BF2) (V t1:Time) (3 t2, t3,t4,t5,t6,t7,t8:Time)
Happens(re:receiveRequest(ID,carld),t1,R(t1,t1)) A
-> Happens(rc:depart(ID),t2,R(t1,t1+30000)) =>
Happens(as:assign11 (ID),t3,R(t2,t3)) A
lnitiates(as:assign11(ID),valueOf(carld,vcarld),t4) A
t3 <= t4 A

Happens(as:assign12(ID),t5,R(t4,t5)) A
lnitiates(as:assign12(ID),valueOf(loc,vloc),t6) A

t5 <= t6 A
Happens(ic:makeAvailable(ID,loc,carld),t7,R(t6,t7))

A

Happens(ir:makeAvailable(ID),t8,R(t7,t8))

(BF3) (V t1:Time) (3 t2, t3:Time)
Happens(rc:receiveRequest(ID),t1,R(t1,t1)) A
lnitiates(rc:receiveRequest(ID),valueOf(loc,vloc),t1)

A

lnitiates(rc:receiveRequest(ID),valueOf(custld,
vcustld),t1) A

Happens(re:receiveRequest(ID,carld),t2,R(t1 ,t2)) =>
Happens(rc:depart(ID),t3,R(t2+1 ,t2+30000)) A
lnitiates(rc:depart(ID),valueOf(carld,vcarld),t3)

(QF1) (V t1 :Time) (3 t2:Time)
Happens(rc:receiveRequest(ID),t1,R(T1 ,T2)) A
Happens(re:receiveRequest(ID,carld),t2,R(T1 ,T2)) A
HoldsAt(valueOf(responseTimes,vresponseTimes),t2) A
HoldsAt(valueOf(responseCount,vresponseCount),t2) =>
lnitiates(rc:receiveRequest(ID),valueOf(responseCount,

oc:self:inc(vresponseCount)),t2) A
lnitiates(rc:receiveRequest(ID),valueOf(responseTimes

[vresponseCount], oc:self:sub(t2,t1)),t2) A
HoldsAt(valueOf(responseTimes,vresponseTimes),t2)

(QF2) (V t1 :Time)
HoldsAt(valueOf(responseTimes,vresponseTimes),t1) =>
oc:self:avg(vresponseTimes[]) < 500

(QF3) (V t1:Time) (3 t2:Time)
Happens(ic:isAvailable(ID,loc),t1,R(t1 ,t1)) A
Happens(ir:isAvailable(ID),t2,R(t1 ,t2)) =>
oc:self:sub(t2,t1) < 500

(QF4) (V t1:Time) (3 12, t3:Time)
Happens(rc:enter(ID),t1 ,R(t1 ,t1)) A
lnitiates(rc:enter(ID),valueOf(loc,loc1),t1) A
lnitiates(rc:enter(ID),valueOf(carld,vcarld),t1) A
Happens(rc:enter(ID),t2,R(t1 +1 ,t2))A
lnitiates(rc:enter(ID),valueOf(loc,loc2),t2) A
lnitiates(rc:enter(ID),valueOf(carld,vcarld),t2)=>
Happens(rc:depart(ID),t3,R(t1+1 ,t2))A
lnitiates(rc:depart(ID),valueOf(loc,loc1),t3) A
lnitiates(rc:depart(ID),valueOf(carld,vcarld),t3)

Figure 6.4: Formulas used in the first case study

In the formula set BF, the formula BF1 is a behavioural property of CRS, which signifies if

CRS is notified of the entrance of a car to a car park, it will wait for 70,000 ms to receive the

electronic key of the car. The formula BF2 is a behavioural property of CRS which signifies

that if CRS replies to a car request with the dispatch of an electronic key of a car, CRS will

waits for next 30,000 ms for that car to depart the car park. If the car does not depart in the

221

next 30,000 ms CRS marks the car as available in the car registry. The formula BF3 is a

functional property about the expected behaviour of a CRS customer. As specified by this

formula if CRS replies to a car request with the electronic key of a car, the car is expected to

leave the car park within 30,000 ms from the release of the car key.

In the formula set QF, the formulas QF1-QF3 specify some quality of service properties of

CRS and the car information service (IS). More specifically, the formulas QF1 and QF2 are

used to monitor the average response time of CRS. The formula QF1 updates a fluent that is

used to keep a record of the response time of CRS for each car request made to it within a

given time period and the formula QF2 specifies that the average of the recorded response

times should be less than 500ms. The formula QF3 is used to monitor the response time of the

car information service (IS). According to this formula, the response time of IS should be less

than 500ms. The formula QF4 is a functional property regarding the correctness of the

behaviour of the sensoring services used by CRS. According to QF4, if a car is sensed to enter

a car park at some time tl and later at some time t2 the same car is sensed to enter in the same

or a different car park then the departure of the relevant car from the first car park must have

also been sensed between the two events that notify the entrance of the car in the car parks.

Table 6.2: Experimental setup for first case study
EL ES

BF OF BF OF
DL Exp 1 Exp 2 Exp 5 Exp 6
DS Exp 3 Exp 4 Exp 7 Exp 8

Table 6.2 summarizes the setup of all the experiments that we performed in the first case

study. As shown in the table, we performed 8 different experiments in this case study. In the

first experiment (Exp 1) we used large non time variable domains (DL), large inter arrival

time of events (EL), and a set of formulas that contained behavioural properties and functional

properties (BF). The setup of other experiments can be explained similarly according to the

table.

To perform the 8 experiments, we generated four sets of events (one set for each of the four

different combinations of the event inter-arrival categories and domain size categories: EL-

DL, EL-DS, ES-DL and ES-DS). Each event set was generated by the simulator using the

respective parameter values for the particular combination of categories and contained 30,000

events. Furthermore, in each of the eight experiments we got two sets of results. The first

result set was produced by checking for inconsistencies caused by recorded events only. The

second result set was produced by checking for inconsistencies caused by both recorded and

222

derived events. Finally, in each experiment we recorded values of the observed aspects of

performance for every 2500 events processed by the monitor.

6.3.2 Results and Analysis

The graphs in Figures 6.5-6.10 and the Tables 6.3a-6.3b summarize the performance

measures for each experiment in first case study. Table 6.4 shows the number of the different

types of inconsistencies recorded in the experiments of the first case study.

On the basis of the experimental findings shown in these figures and tables, we can

summarise the effect of the different factors that we outlined earlier on the performance of the

monitoring system as follows:

(i) Effect of Event Inter Arrival Time and the Number of Events:

As we can see from Figures 6.5-6.10 and Tables 6.3a-6.3b, the inter arrival time of events has

a significant impact on the performance of the monitor. The average decision delay increases

linearly up to a certain number of events and then it starts rising sharply (this is explainable

since the worst case complexity of the monitoring algorithm is exponential as explained in

Section 4.4.5.3 in Chapter 4). In the experiments with a small inter arrival event time (i.e. a

high event occurrence frequency) this point was reached earlier than in the experiments with

the larger event inter arrival time. For example in the experiments Exp 1, Exp 2, Exp 3 and

Exp 4 the sharp rise in the average decision delay occurred in the range 12,500 - 20,000

events, whereas in experiments Exp 5, Exp 6, Exp 7 and Exp 8 the rise occurred in the range

5,000 - 7,500 events (see Figures 6.5- 6.6 and Tables 6.3a-6.3b).

This observation can also be explained from another viewpoint. Initially, the monitor has

some idle time as the number of events which it receives and must process is not relatively

large. Thus, the waiting time for each event is minimal. As, however, the number of generated

templates increases the processing time of each event increases too since each event needs to

be checked for unification with more template instances. Thus, gradually the event processing

rate goes down and finally at some point the monitor gets saturated with events. After this

saturation point, the monitor does not have any more idle time and the waiting time of events

starts rising. The effects of the event inter-arrival time onto the monitor idle time and waiting

time of events are shown in Figures 6.7-6.10.

223

of events
Table 6.3a: P e rfo rm a n c e m easu res in each ex p e rim en t in f irs t case study due to la rg e in te r a rriv a l tim e

Events
Exi 1

Recorded Mixed
Avg-D (s) Idle-T(s) W ait-T(s) Avg-D (s) Idle-T(s) W ait-T(s)

2500 0.061 2882115.773 0 49.465 2814960.45 0
5000 0.14 10327444.71 0 190.648 9780328.022 0
7500 0.211 20311903.66 0 380.227 18569662.99 0
10000 0.286 30965751.73 0 628.586 26904078.38 0
12500 0.361 40493248.9 0 1059.318 32320706.59 0
15000 0.438 46464113.86 0 1845.821 33121362.05 62.147
17500 105.566 47071501.82 99.773 3205.741 33121362.05 529.567
20000 620.064 47071501.82 647.663 5130.91 33121362.05 1445.76
22500 1598.234 47071501.82 1608.76 7624.294 33121362.05 2775.144
25000 2993.661 47071501.82 2934.739 10607.41 33121362.05 4478.603
27500 4643.431 47071501.82 4585.871 13976.859 33121362.05 6528.235
30000 6493.961 47071501.82 6530.651 17923.682 33121362.05 8959.992

Events
ExiJ 2 __

Recorded Mixed
Avg-D (s) Idle-T(s) W ait-T(s) Avg-D (s) Idle-T(s) W ait-T(s)

2500 0.091 2903108.925 0 0.052 2967482.305 0
5000 0.203 10607815.82 0 0.129 11045382.17 0
7500 0.31 21368746.06 0 0.226 22502870.91 0
10000 0.421 33578733.95 0 0.333 35551656 0
12500 0.535 45481441.2 0 0.462 48017156.42 0
15000 0.68 55077857.71 ol 0.628 57133564.49 0
17500 0.817 59807673.73 0 18.854 59574927.7 15.968
20000 108.557 60025946.19 104.199 400.071 59574927.7 408.983
22500 539.554 60025946.19 525.782 1319.926 59574927.7 1324.945
25000 1204.988 60025946.19 1212.635 2736.749 59574927.7 2772.581
27500 2122.789 60025946.19 2142.972 4701.391 59574927.7 4768.888
30000 3426.149 60025946.19 3306.839 7260.928 59574927.7 7289.779

Events
Ex|

P ^
Recorded Mixed

Avg-D (s) Idle-T(s) W ait-T(s) Avg-D (s) Idle-T(s) Wait-T(s)

2500 0.62 2970034.239 0 44.702 2900627.736 0
5000 0.137 10639609.58 0 166.843 10045527.63 0
7500 0.205 20823196.4 0 342.41 18856921.09 0
10000 0.28 31591038.51 0 569.358 26837159.9 0
12500 0.36 41423108.29 0 989.133 31802723.23 0
15000 0.434 47836003.95 0 1744.563 32321143.74 84.393
17500 66.291 48776808.37 63.694 3059.824 32321143.74 583.324
20000 531.397 48776808.37 515.636 4926.657 32321143.74 1502.015
22500 1397.854 48776808.37 1362.438 7266.17 32321143.74 2804.571
25000 2666.998 48776808.37 2588.407 10134.352 32321143.74 4485.137
27500 4343.571 48776808.37 4149.021 13524.908 32321143.74 6526.179
30000 6150.478 48776808.37 6001.84 17452.273 32321143.74 8961.901

Events
Ex P i __

Recorded Mixed
Avg-D (s) Idle-T(s) W ait-T(s) Avg-D (s) Idle-T(s) W ait-T(s)

2500 0.099 2991158.822 0 0.054 3052624.242 0
5000 0.205 10897512.52 0 0.129 11342948.77 0
7500 0.316 21994543.95 0 0.223 23129116.62 0
10000 0.416 34522692.7 0 0.323 36523840.57 0
12500 0.523 47042735.83 0 0.441 49652203.89 0
15000 0.659 57518657.53 0 0.596 59670215.16 0
17500 0.804 63039965.1 0 9.573 62796987.5 7.829
20000 73.465 63507456.15 66.538 379.108 62796987.5 37.0811
22500 437.443 63507456.15 427.65 1279.196 62796987.5 1272.571
25000 1060.275 63507456.15 1070.094 2763.361 62796987.5 2714.539
27500 1930.594 63507456.15 1965.226 4781.028 62796987.5 4684.202
30000 3063.661 63507456.15 3088.665 7263.333 62796987.5 7173.245

224

Table 6.3b: P erfo rm an ce m easu res in each ex p erim en t in f irs t case s tu d y d u e to sm all in te r arriva l tim e

of events

Events
Ex 5

Recorded Mixed
Avg-D (s) Idle-T(s) W ait-T(s) Avg-D (s) Idle-T(s) Wait-T(s)

2500 0.037 307923.089 0 61.044 275903.9 0
5000 15.344 465306.81 14.724 451.172 339821.981 46.259
7500 185.958 465306.81 189.954 1310.369 339821.981 313.111
10000 535.566 465306.81 549.909 2650.789 339821.981 800.484
12500 1184.384 465306.81 1093.423 4420.991 339821.981 1505.768
15000 1896.706 465306.81 1833.395 6592.423 339821.981 2432.167
17500 2781.948 465306.81 2808.069 9435.234 339821.981 3621.689
20000 4121.511 465306.81 4019.521 12992.601 339821.981 5080.348
22500 5476.306 465306.81 5438.54 17063.413 339821.981 6840.573
25000 7003.272 465306.81 7037.616 21539.766 339821.981 8876.867
27500 9055.786 465306.81 8803.648 26647.466 339821.981 11161.308
30000 10671.595 465306.81 10733.564 31843.385 339821.981 13703.162

Events
Ex P_6__

Recorded Mixed
Avg-D (s) Idle-T(s) Wait-T(s) Avg-D (s) Idle-T(s) Wait-T(s)

2500 0.091 254651.462 0 0.054 317950.388 0
5000 69.903 292872.091 68.791 21.781 480198.124 21.238
7500 391.143 292872.091 375.264 258.173 480198.124 256.045
10000 932.147 292872.091 921.24 750.001 480198.124 751.783
12500 1725.364 292872.091 1700.375 1560.068 480198.124 1528.874
15000 2744.56 292872.091 2724.408 2669.75 480198.124 2623.602
17500 4014.723 292872.091 4045.351 4161.121 480198.124 4112.585
20000 5714.931 292872.091 5628.046 6075.385 480198.124 6017.351
22500 7589.652 292872.091 7452.746 8460.236 480198.124 8378.831
25000 9646.611 292872.091 9496.353 11247.675 480198.124 11192.828
27500 11977.893 292872.091 11745.189 14556.032 480198.124 14463.238
30000 14228.259 292872.091 14196.938 18122.003 480198.124 18214.029

Events
Ex p 7

Recorded Mixed
Avg-D (s) Idle-T(s) W ait-T(s) Avg-D (s) Idle-T(s) W ait-T(s)

2500 0.047 326160.937 0 68.895 295677.663 0
5000 15.215 507422.878 13.174 442.465 382368.841 50.981
7500 210.225 507422.878 203.747 1380.839 382368.841 364.169
10000 585.428 507422.878 604.249 2789.446 382368.841 943.071
12500 1195.021 507422.878 1201.218 4675.733 382368.841 1747.257
15000 2010.527 507422.878 1986.644 6971.834 382368.841 2760.324
17500 3034.482 507422.878 3000.168 9970.169 382368.841 4022.457
20000 4086.692 507422.878 4253.283 13365.995 382368.841 5558.078
22500 5590.255 507422.878 5705.089 17619.066 382368.841 7343.352
25000 7137.676 507422.878 7333.787 22325.482 382368.841 9400.816
27500 8838.639 507422.878 9130.805 27339.526 382368.841 11707.465
30000 11148.466 507422.878 11085.052 33171.973 382368.841 14234.971

Events
Ex j 8

Recorded Mixed
Avg-D (s) Idle-T(s) Wait-T(s) Avg-D (s) Idle-T(s) Wait-T(s)

2500 0.1 268165.522 0 0.054 331075.055 0
5000 57.944 318418.155 62.594 17.389 515709.125 16.904
7500 377.311 318418.155 369.754 262.518 515709.125 253.572
10000 920.477 318418.155 928.822 768.075 515709.125 767.476
12500 1823.895 318418.155 1729.778 1597.268 515709.125 1573.281
15000 2894.617 318418.155 2784.594 2695.178 515709.125 2694.62
17500 4191.911 318418.155 4128.912 4217.42 515709.125 4179.042
20000 5891.241 318418.155 5735.87 6153.664 515709.125 6067.629
22500 7787.654 318418.155 7570.593 8581.609 515709.125 8397.319
25000 9852.252 318418.155 9616.205 11336.809 515709.125 11188.247
27500 12086.883 318418.155 11870.93 14571.92 515709.125 14473.237
30000 14489.932 318418.155 14329.772 18446.884 515709.125 18280.026

225

Figure 6.5a: A v erag e d -d e la y d u e to reco rd ed
e v en ts and la rg e in te r a rriv a l tim e o f e v en ts (E L)

16000

_ 14000
O

8 , 12000

g 10000

8000

£ 6000
o'</>
o0)G
?<

4000

2000

0

Events
■ Exp 5 Exp 6 Exp 7 Exp 8

Figure 6.5b: A v erag e d -d e lay due to re co rd e d
ev en ts and sm all in te r a rriv a l tim e o f e v en ts (E S)

- Exp 5 Exp 6 Exp 7 Exp 8

Figure 6.6a: A v erag e d -d e lay due to m ix ed ev en ts Figure 6.6b: A v erag e d -d e la y d u e to m ix ed ev en ts
an d larg e in te r a rriv a l tim e o f ev en ts (E L) and sm all in te r a rriv a l tim e o f e v en ts (E S)

Events
—♦— Exp 1 —a — Exp 2 Exp 3 Exp 4

Figure 6.7a: M o n ito r’s id le tim e due to reco rd ed
ev en ts and large in te r a rriv a l tim e o f e v en ts (E L)

Events
—♦— Exp 5 —• — Exp 6 Exp 7 Exp 8

Figure 6.7b: M o n ito r’s id le tim e due to reco rd ed
ev en ts an d sm all in te r a rriv a l tim e o f ev en ts (E S)

226

Figure 6.8a: M o n ito r’s id le tim e due to m ix ed Figure 6.8b: M o n ito r’s id le tim e d u e to m ixed
ev en ts and large in te r a rriv a l tim e o f ev en ts (E L) ev en ts and sm all in te r a rriv a l tim e o f e v en ts (E S)

Figure 6.9a: A v erag e w a itin g tim e fo r ev en ts due
to reco rd ed ev en ts and larg e in te r a rriv a l tim e o f

ev en ts (E L)

Figure 6.9b: A v erag e w a itin g tim e fo r ev en ts due
to reco rd ed ev en ts an d sm all in te r a rriv a l tim e o f

ev en ts (E S)

20000
18000

16000

14000

12000

10000

8000

6000

4000

2000
0
rS>

/

■ Exp 5 Exp 6

nv
V <]/

Events
Exp 7

V

Exp 8

Figure 6.10a: A v erag e w a itin g tim e fo r ev en ts due
to m ixed ev en ts and larg e in te r arriva l tim e o f

ev en ts (E L)

Figure 6.10b: A v erag e w a itin g tim e fo r ev en ts due
to m ix ed even ts and sm all in te r a rriv a l tim e o f

ev en ts (E S)

227

In case of small inter arrival time of events the monitor reaches this saturation point earlier

than the same in case of large inter arrival time of events. For example, in the experiments

with the larger event inter arrival time (i.e. Exp 1, Exp 2, Exp 3 and Exp 4) the monitor

reaches the saturation point in the range 15,000 - 17,500 events, whereas in experiments with

smaller event inter arrival time (i.e. Exp 5, Exp 6, Exp 7 and Exp 8) the monitor reaches the

saturation point in the range 2500 - 5000 events (see Figures 6.7- 6.8 and Tables 6.3a-6.3b).

On the other hand, in the experiments with the larger event inter arrival time (i.e. Exp 1, Exp

2, Exp 3 and Exp 4) the waiting time of events start rising in the range 15,000 - 17,500 events,

whereas in experiments with smaller event inter arrival time (i.e. Exp 5, Exp 6, Exp 7 and Exp

8) the waiting time of events start rising in the range 2500 - 5000 events (see Figures 6.9-

6.10 and Tables 6.3a-6.3b).

Also the inter arrival time of events has major affect on the number of inconsistencies

detected. In case of experiments with larger inter arrival time of events (i.e. i.e. Exp 1, Exp 2,

Exp 3 and Exp 4) the number of inconsistencies detected is relatively higher than the same in

case of experiments with smaller inter arrival time of events (i.e. Exp 5, Exp 6, Exp 7 and Exp

8) (see Table 6.4). This is because, in case of larger inter arrival time of events, the time

difference between successive events is large. This fact (the absence of proper event at proper

time) causes the occurrence of large number of inconsistencies.

(ii) Effect of Domain Size

As indicated in our experiments the size of the domains of the variables did not have any

significant impact on the performance of the monitor. For example, if someone considers the

experiment pairs (Exp 1, Exp 3), (Exp 2, Exp 4), (Exp 5, Exp 7) and (Exp 6, Exp 8) whose

only difference is the domain size of the non time variables used in the relevant formulas,

he/she will realise that the two experiments in each of these pairs had almost the same

average decision delay (see Figures 6.5-6.6 and Tables 6.3a-6.3b) and average event waiting

time (see Figures 6.9-6.10 and Tables 6.3a-6.3b).

The absence of an effect in this case may not be readily understandable if someone assumes

that larger domains of non time variables in formulas would lead to the creation of a larger

number of different templates and therefore delays in the monitoring process (i.e., increases in

d-delay). It becomes clearer however why this is the case if we consider the following aspects

of the monitoring process.

228

Table 6.4: N u m b er o f d iffe ren t ty p es o f in co n s is ten c ies d e tec ted in each ex p e rim en t in f irs t c ase study

Events
E xp 1 Exp 2

Recorded Mixed Recorded Mixed
IRB IRB IEB UB PIEB PUB IRB IRB IEB UB PIEB PUB

2500 65 2 0 23 0 33 34 34 98 0 0 0
5000 127 5 0 42 0 66 43 43 201 0 0 0
7500 194 8 0 69 0 112 86 86 302 0 0 0
10000 261 11 0 98 0 146 150 150 404 0 0 0
12500 339 15 0 125 0 178 209 209 509 0 0 0
15000 421 17 0 140 0 203 267 267 619 0 0 0
17500 493 21 0 162 0 234 326 326 725 0 0 0
20000 551 22 0 179 0 262 366 366 823 0 0 0
22500 624 26 0 203 0 308 432 432 924 0 0 0
25000 698 30 0 233 0 344 454 454 1026 0 0 0
27500 767 35 0 259 0 382 486 486 1127 0 0 0
30000 829 39 0 296 0 418 528 528 1221 0 0 0

Events
E xp 3 Exp 4

Recorded Mixed Recorded Mixed
IRB IRB IEB UB PIEB PUB IRB IRB IEB UB PIEB PUB

2500 70 6 0 22 0 26 63 63 100 0 0 0
5000 145 10 0 45 0 57 112 112 202 0 0 0
7500 208 14 0 68 0 86 157 157 301 0 0 0
10000 280 19 0 88 0 105 230 230 397 0 0 0
12500 354 24 0 107 0 132 295 295 498 0 0 0
15000 423 27 0 124 0 153 320 320 600 0 0 0
17500 486 28 0 143 0 182 375 375 701 0 0 0
20000 560 31 0 166 0 210 436 436 802 0 0 0
22500 630 34 0 187 0 226 479 479 899 0 0 0
25000 707 38 0 207 0 255 537 537 1007 0 0 0
27500 788 43 0 231 0 298 595 595 1116 0 0 0
30000 860 47 0 259 0 332 654 654 1217 0 0 0

Events
Exp 5 Exp 6

Recorded Mixed Recorded Mixed
IRB IRB IEB UB PIEB PUB IRB IRB IEB UB PIEB PUB

2500 11 0 0 0 0 0 16 16 98 0 0 0
5000 20 0 0 2 0 11 23 23 202 0 0 0
7500 29 0 0 3 0 20 40 40 300 0 0 0
10000 42 0 0 3 0 42 52 52 397 0 0 0
12500 74 1 0 5 0 54 62 62 505 0 0 0
15000 90 1 0 5 0 66 75 75 608 0 0 0
17500 102 3 0 6 0 75 108 108 713 0 0 0
20000 123 3 0 9 0 97 144 144 811 0 0 0
22500 136 5 0 10 0 101 173 173 912 0 0 0
25000 147 5 0 13 0 118 215 215 1011 0 0 0
27500 173 5 0 14 0 122 245 245 1111 0 0 0

30000 175 5 0 17 0 149 300 300 1209 0 0 0

Events
E xp 7 Exp 8

Recorded Mixed Recorded Mixed
IRB IRB IEB UB PIEB PUB IRB IRB IEB UB PIEB PUB

2500 12 0 0 1 0 4 62 62 99 0 0 0
5000 32 0 0 3 0 19 125 125 206 0 0 0
7500 47 1 0 5 0 32 183 183 312 0 0 0
10000 59 1 0 6 0 36 237 237 417 0 0 0
12500 81 1 0 7 0 41 293 293 516 0 0 0
15000 96 1 0 10 0 59 351 351 611 0 0 0
17500 115 2 0 11 0 63 401 401 722 0 0 0
20000 115 2 0 13 0 89 442 442 826 0 0 0
22500 128 2 0 14 0 96 457 457 934 0 0 0
25000 140 2 0 16 0 104 465 465 1034 0 0 0
27500 142 3 0 19 0 126 476 476 1135 0 0 0
30000 172 3 0 20 0 135 485 485 1244 0 0 0

229

According to the monitoring algorithm, a new instance of a template is created whenever a

new variable in the template is unified with a new value. On the basis of this process,

someone may conclude that in a smaller domain we may have small number of templates

(because of the repetition of values) and in a larger domain we may have large number of

templates (because of more new values of variables), that may affect the performance of the

monitor. But this is not always the case, in fact the number of templates does not depend on

the size of the domain, it only depends on the number of events being handled by the monitor.

Consider the following formula,

Potential
Instance
Creation

point

Formula

(1) Happens(rc:enter(ID),tl,R(tl,tl)) A
(2) Initiates(rc:enter(ID),valueOf(loc,vloc),tl) A
(3) Initiates(rc:enter(ID),valueOf(carId,vcarId),tl) =>
(4) Happens(rc:returnKey(ID),t2,R(tl+l,tl+70000)) A
(X) Initiates(rc:returnKey(ID),valueOf(loc,vloc),t2) A
(X) Initiates(rc:returnKey(ID),valueOf(carId,vcarId),t2)

This formula has four potential points where a new instance of a template for this formula can

be created. More specifically,

1. A new instance of the template is created if a new Happens (r c : e n t e r (id) , t)

event occurs. At this point instance creation does not depend on the variable value i.e.

domain size. Let we have Happens (r c : e n t e r (idl) , 510) . Now we have two

instances of the template, (i) empty template II and (ii) an instance of the template, 12,

where the truth value of the first predicate is set to true.

2. A new instance of the template is created from 12, if an

Initiate (rc : e n t e r (i d) , t) event occurs that corresponds to the previous

Happens (r c : e n t e r (i d , t)) . Thus assuming that, we have,

Initiates (rc : e n t e r (i d l) , v a lu e O f (l o c , 11) ,510) , monitor will create a

new instance of the template, 13, from the instance 12. At this point more new instances of

the template, created from 12, are possible if we have events like,

Initiates(rc:enter(idl),valueOf(loc,12),510)
Initiates(r c :e n t e r (i d l), v a l u e O f (l o c , 1 3) , 5 1 0)
Initiates(r c :e n t e r (i d l), v a l u e O f (l o c , 1 4) , 5 1 0)

In reality, however, it is impossible to have two events having same signature and ID, but

different variable values.

230

Again if we have events like

Initiates(rc:enter(id2),valueOf(loc,12),510)
Initiates(rc:enter(id3),valueOf(loc, 13) , 510)
Initiates(rc:enter(id4),valueOf(loc, 14) , 510)

There will be no impact on the template instance 12, since the events do not correspond to

the previous Happens event due to different IDs. So at this point, the value of the variable

(therefore the domain size) doesn’t have major impact on the creation of a new template

instance.

3. Same as 2.

4. Same as 1.

Therefore the value of the non-time variables (i.e. the domain of the non-time variable values)

do not alone drive the creation of new template instances rather it’s the ID of the event (i.e.

total number of different events) together with the value of non-time variables control the

creation of new template instances.

In the experiments of first case study, we used two sets of formulas, namely BF and QF. The

formulas in the set QF use internal operations for statistical computations. The experimental

results does not show any affect of this difference between formulas on the performance (e.g.

average decision delay, monitor’s idle time and average waiting time for events) of the

monitor. But obviously the detection of different types of inconsistencies is dependent on the

types of formulas to a great extent. For example, the occurrence of unjustified behaviour is

only possible to detect if a behavioural property is monitored and that behavioural property is

dependent on some other functional property or assumption. Similarly the occurrence of

potentially unjustified behaviour is only possible to detect if a behavioural property is

monitored which is dependent on some other functional property or assumption and the

predicate in the behavioural property and the predicate in the functional property or

assumption that causes the dependency should have the possibility of having overlapping time

ranges at runtime. In the formula set BF used in the experiments BF2 is a behavioural

property and it is dependent on BF3 for the

Happens (r c : d e p a r t (ID) , t 2 , R (t l , t l + 300 00)) predicate. Therefore in the

experiments based on the formula set BF the monitor detected cases of unjustified behaviour

and potentially unjustified behaviour along with inconsistency o f recorded behaviour . See the

inconsistencies for the experiements Exp 1, Exp 3, Exp 5 and Exp 7 in Table 6.4. Again the

occurrence of inconsistency of expected behaviour is possible to detect if a formula is

monitored which is dependent on some other formula. Similarly the occurrence of possible

inconsistency of expected behaviour is possible to detect if a formula is monitored which is

231

dependent on some other formula and the predicates that cause the dependency should have

the possibility of having overlapping time ranges at runtime. In the formula set QF used in the

experiments, the QoS property QF2 is dependent on the assumption QF] for the predicate

H oldsA t (v a lu e O f (re sp o n se T im e s , v re s p o n s e T im e s) , t l) and this predicate

does not have any time range. Also the formula set QF does not contain any behavioural

property. Therefore in the experiments based on the formula set QF it is not possible to have

occurrences of unjustified behaviour, potentially unjustified behaviour or potential

inconsistency of expected behaviour. See the inconsistencies detected in the experiments Exp

2, Exp 4, Exp 6 and Exp 8 in Table 6.4.

6.4 Second Case Study: Real BPEL Process

In the second case study, we developed a BPEL process, called Quote Tracker Process

(QTP). This process allows a user to get a stock quote in US dollars by providing the symbol

of a stock traded in the New York Stock Exchange (NYSE) and convert the obtained quote to

some other currency. In a typical scenario, QTP receives a stock symbol of NYSE from the

user, invokes a web service called Stock Quote Service (SQS) to get the quote for that symbol

and returns the received quote to the user. QTP then waits for 30 seconds for the receipt of a

country name from the user. If the QTP receives a country name within this period, it invokes

a second web service, called Currency Exchange Service (CES), to get the currency exchange

rate between the US and that country. If QTP does not receive a country name from the client

within the next 30 seconds, it invokes CES to get the currency exchange rate between the US

and the UK. Once QTP gets the currency exchange rate, it invokes a third web service, called

Simple Calculator Service (SCS), to convert the quote into the target currency. In our

implementation of the QTP, we used the services SQS and CES provided by XMethods

[Xme05] and we implemented SCS locally. The BPEL and WSDL files of QTP, CES, SQS

and SCS are presented in Appendix E. The WSDL files of SQS and CES are also available at

h t t p : / / s e r v i c e s . x m e t h o d s . n e t / s o a p / u m : x m e t h o d s - d e l a v e d - q u o t e s . w s d l and

h t t p : / / w w w . x m e t h o d s . n e t / s d / 2 0 0 1 / C u r r e n c v E x c h a n g e S e r v i c e .w s d l respectively.

The objectives of this case study were to:

(i) Demonstrate the applicability of our monitoring prototype to an operational service based

system that deploys third party web services.

232

http://services.xmethods.net/soap/um:xmethods-delaved-quotes.wsdl
http://www.xmethods.net/sd/2001/CurrencvExchangeService.wsdl

(ii) Measure the efficiency of our monitoring prototype in terms of the performance measures

defined in Section 6.2, i.e.

• Average waiting time for an event

• Monitor’s idle time and

• Average decision delay.

6.4.1 Experimental Setup

It is established from first case study that the domain size do not affect the performance of the

monitor. So, in this case study, our objective was to investigate the performance of the

monitoring system in scenarios with different event inter arrival times. Figure 6.11 shows the

formulas used in the experiments of this case study.

(F1) (V t1: Time)
Happens(ic:CES:getRate(ID,country2,country1),t1 ,R(T 1 ,T2)) A (3t2:Time) A
Happens(ir:CES:getRate(ID),t2,R(t1 ,t2))A
lnitiates(ir:CES:getRate(ID),valueOf(Result,resulti),t2)A (3t3:Time) A
Happens(ic:CES:getRate(ID,country2,country1),t3,R(t2,t3)) A (3t4:Time) A
Happens(ir:CES:getRate(ID),t4,R(t3,t4))A (t4 < T2)
lnitiates(ir:CES:getRate(ID), valueOf (Result,result2),t4) => resulti = result2

(Q1) (V t1 : Time)
Happens(lc:CES:getRate(ID,country2,country1),t1 ,R(t1 ,t1)) A (3t2:Tlme) A
Happens(ir:CES:getRate(ID),t2,R(t1,t2)) => oc:self:sub(t2,t1) < 1000

(Q2)(V t1 : Time)
Happens(lc:SQS:getQuote(ID,symbol),t1 ,R(T1 ,T2)) A (3t2:Time) A
Happens(lr:SQS:getQuote(ID),t2,R(T1 ,T2)) A
HoldsAt(equalTo(responseTimes,vresponseTlmes),t2)A
HoldsAt(equalTo(responseCount,vresponseCount),t2) =>
lnltiates(lr:SQS:getQuote(ID), valueOf (responseCount,oc:self:inc(vresponseCount)),t2) A
lnitiates(ir:SQS:getQuote(ID), valueOf (responseTlmes[vresponseCount],oc:self:sub(t2,t1)),t2) A
HoldsAt(equalTo(responseTlmes,vresponseTlmes),t2)

(Q3)(V t1: Time)
HoldsAt(equalTo(responseTimes,vresponseTimes),t1) => oc:self:avg(vresponseTimesn) < 1000

Figure 6.11: Formulas used in the second case study

The formula FI in Figure 6.11 was used to monitor the functional consistency of CES. More

specifically, FI specifies, that within a specific time period [T1,T2] CES should return the

same exchange rate for requests related to the same pair of input countries. The formula Q1 in

the same figure was used to monitor the response time of CES, i.e., Q1 specifies that the

response time of any invocation of CES should be less than 1000ms. The formulas Q2 and Q3

are used to monitor the average response time of the web-service SQS. More specifically, Q2

stores the response time of each invocation of SQS within a given time period in the fluent

variable responseTimes, and Q3 states that the average of the stored response times should be

less than 1000ms.

233

To deploy QTP over a non trivial period of time and with a non trivial level of load, we

developed a client program of it which repeatedly calls QTP at random intervals. The client

program randomly picks up a stock symbol from a set of 15 symbols and calls QTP for the

quote of this symbol. When it receives a quote from QTP, the client program randomly picks

up a country name from a set of 15 country names and calls QTP with this country name, to

convert the quote in the latter country's currency. Subsequently, the client program sleeps for

a random time interval and then repeats the above sequence of actions with different sets of

data. The random sleeping interval of the client program was used in the experiments to

regulate the inter-arrival time of the events exchanged between the deployed web-services

and QTP.

Based on the sleeping interval of the QTP client program and the type of events used for

monitoring we performed the following four experiments.

1. Experiment 1 {Exp-1) - In this experiment we: (i) set the sleeping interval of the QTP

client to a random number that is uniformly distributed between 0 and 5, i.e. the QTP

client program sleeps a random interval of up to 5 seconds between the successive calls

that it makes to QTP, and (ii) used only the recorded events to monitor the formulas

shown in Figure 6.11.

2. Experiment 2 {Exp-2) - In this experiment, we: (i) set the sleeping interval of the QTP

client programme to a random number that is uniformly distributed between 0 and 5, and

(ii) used both the recorded and the derived events to monitor the formulas shown in

Figure 6.11.

3. Experiment 3 {Exp-3) — In this experiment, we: (i) set the sleeping interval of the QTP

client programme to a random number that is uniformly distributed between 0 and 10,and

(ii) used only the recorded events to monitor the formulas shown in Figure 6.11.

4. Experiment 4 {Exp-4) - In this experiment, we: (i) set the sleeping interval of the QTP

client programme to a random number that is uniformly distributed between 0 and 10, and

(ii) used both the recorded and the derived events to monitor the formulas shown in

Figure 6.11.

Table 6.5 summarises the experimental setup of the experiments in this case study.

234

Table 6.5: E x p erim en ta l se tu p fo r the second case study

Exp 1 Exp 2 Exp 3 Exp 4
Sleeping interval
of QTP client

Uniformly
distributed in the
range [0,5] secs

Uniformly
distributed in the
range [0,51 secs

Uniformly
distributed in the
range [0,10] secs

Uniformly
distributed in the
range [0,10] secs

Event type Recorded Recorded+Derived Recorded Recorded+Derived
Average inter-
arrival event
time (s)

0.215 0.211 0.39 0.383

Total event time
span in
secs/hours

4301.131M.194h 4230.421M.175h 7816.67/—2.171h 7666.825/~2.129h

6.4.2 Results and Analysis

The graphs in Figures 6.12-6.14 and the Table 6.6 summarise the performance measures for

each experiment in second case study. Table 6.7 shows the number of different types of

inconsistencies recorded in the experiments of the second case study.

Although we tried to vary the inter arrival time of the events using the sleeping interval of the

QTP client programme, the inter arrival times of the events in experiments Exp 1, Exp 2, Exp

3 and Exp 4 did not differ that much due to the randomness of the sleeping interval. The inter

arrival times of the events in Exp 3 and Exp 4 are slightly higher than those of in Exp 1 and

Exp 2, but much lower than the large inter arrival time used in first case study.

Figure 6.12a: Average d-delay due to small inter Figure 6.12b: Average d-delay due to large inter
arrival time of events arrival time of events

235

F ig u r e 6.13a: M o n ito r’s id le tim e due to sm all in te r F ig u r e 6.13b: M o n ito r’s id le tim e due to larg e in te r
a rriv a l tim e o f e v en ts a rriv a l tim e o f e v en ts

Exp 1 Exp 2

Figure 6.14a: A v erag e w a itin g tim e fo r ev en ts due
to sm all in te r a rriv a l tim e o f ev en ts

—♦— Exp 3 —• — Exp 4

Figure 6.14b: A v erag e w a itin g tim e fo r ev en ts due
to larg e in te r a rriv a l tim e o f even ts

From the experimental setup shown in Table 6.5, the inter arrival times in all the four

experiments of the second case study (i.e. Exp 1, Exp 2, Exp 3 and Exp 4) were very close to

the small inter arrival time used in first case study (i.e. Exp 5, Exp 6, Exp 7 and Exp 8).

Comparing the performance measures of the second case study with those of the first case

study, it is evident that in the experiments (i.e. Exp 1, Exp 2, Exp 3 and Exp 4) in second case

study, the average decision delay and average waiting time of events were longer than the

average decision delay and event waiting time in the corresponding experiments (i.e. Exp 5,

Exp 6, Exp 7 and Exp 8) in the first case study, respectively. Also the monitor reached the

saturation point lot earlier in the experiments of the second case study than it did in the

corresponding experiments in the first case study. This is because in the second case study we

monitored a real BPEL system where the monitoring event extraction by the event receiver

and the monitoring were carried out in parallel on the same machine unlike the first case

236

study in which we monitored a simulated process where the events had been generated by the

simulator before the monitoring process started.

Table 6.6: Performance measures in each experiment in second case study

Events
E xp 1 Exp 2

Avg-D (s) Idle-T(s) Wait-T(s) Avg-D (s) Idle-T(s) Wait-T(s)
2500 33.786 3.226 31.453 18.296 2.515 17.34
5000 358.86 3.226 348.036 154.553 2.515 151.346
7500 1171.223 3.226 1147.333 486.903 2.515 480.631
10000 2457.539 3.226 2419.389 1062.297 2.515 1052.559
12500 4189.215 3.226 4137.165 2007.408 2.515 1987.485
15000 6351.502 3.226 6285.829 3484.586 2.515 3465.397
17500 8894.096 3.226 8813.91 5626.282 2.515 5598.503
20000 11781.145 3.226 11686.918 8510.141 2.515 8461.414
22500 15004.451 3.226 14897.188 12202.262 2.515 12133.4
25000 18568.231 3.226 18448.063 16742.784 2.515 16675.461
27500 33.786 3.226 31.453 18.296 2.515 17.34
30000 358.86 3.226 348.036 154.553 2.515 151.346

Events
Exp 3 Exp 4

Avg-D (s) Idle-T(s) Wait-T(s) Avg-D (s) Idle-T(s) Wait-T(s)
2500 7.763 3.27 5.858 2.805 2.008 2.157
5000 217.991 3.27 210.827 52.852 2.06 50.456
7500 921.919 3.27 903.032 277.041 2.06 271.23
10000 2118.978 3.27 2080.109 752.986 2.06 742.372
12500 3721.454 3.27 3672.74 1599.769 2.06 1582.662
15000 5671.009 3.27 5611.495 2971.856 2.06 2939.581
17500 7977.397 3.27 7907.862 4985.46 2.06 4945.301
20000 10634.126 3.27 10554.574 7737.525 2.06 7687.654
22500 13620.368 3.27 13531.493 11305.892 2.06 11244.707
25000 16944.98 3.27 16845.583 15752.381 2.06 15678.492
27500 7.763 3.27 5.858 2.805 2.008 2.157
30000 217.991 3.27 210.827 52.852 2.06 50.456

Table 6.7 shows the number of different types of inconsistencies detected in the second case

study. The number of the detected inconsistencies in the second case study is in line with the

observation of the first case study, that is larger inter arrival time of events causes larger

number of inconsistencies than small inter arrival time of events. For example, in Exp 3 and

Exp 4 slightly more number of inconsistencies are detected than in Exp 1 and Exp2 as the

inter arrival times of the events in Exp 3 and Exp 4 are slightly larger than the inter arrival

time of the events in Exp 1 and Exp 2.

It should be noted that in the second case study , we did not monitor any behavioural property

of QTP. Therefore it was not possible to have cases of unjustified behaviour and potentially

unjustified behaviour. Given the formulas in Figure 6.11, only the formulas Q2 and Q3 were

dependent on each other (Q3 is dependent on Q2 due to the predicate

HoldsAt (v a lu e O f (re s p o n s e T im e s , v re sp o n se T im e s) , t l) and as this

predicate did not have any time range, it was not possible to have potential inconsistencies of

expected behaviour. Therefore in the experiments of the second case study, we only had the

237

occurrence of inconsistency of recorded behaviour and inconsistency of expected behaviour

as it is shown in Table 6.7.

Table 6.7: Number of different types of inconsistencies detected in each experiment in second case
study

Events
Recorded Mixed

Exp 1 Exp 3 Exp 2 Exp 4
1RB IRB IRB IEB UB P1EB PUB IRB IEB UB PIEB PUB

2000 14 31 26 7 0 0 0 39 35 0 0 0
4000 48 59 58 7 0 0 0 67 35 0 0 0
6000 83 99 87 7 0 0 0 106 143 0 0 0
8000 115 142 124 7 0 0 0 147 143 0 0 0
10000 154 184 152 7 0 0 0 184 143 0 0 0
12000 196 247 187 7 0 0 0 226 143 0 0 0
14000 229 301 219 7 0 0 0 267 143 0 0 0
16000 279 342 256 7 0 0 0 298 143 0 0 0
18000 321 392 298 7 0 0 0 323 143 0 0 0
20000 350 447 338 7 0 0 0 361 143 0 0 0

6.5 Applicability of the Framework

Our framework supports monitoring of wide range of software properties. Although in

Chapter 2, we classified monitorable properties as behavioural properties, functional

properties and QoS properties, these types of properties fall under the category System

Capabilities discussed in [Whi95], or functional and non-functional requirements discussed in

[Abr04], In [Abr04] non-functional requirements are further classified as performance

requirements, maintainability requirements, safety requirements and reliability requirements.

We believe EC (hence EC-Assertion) is expressive enough to express these types of

properties that enables the monitoring of these types of properties in our framework.

However, the experimental results demonstrate that the average delay in the detection of a

property deviation might not be negligible. Decision delays may limit the applicability of our

framework to monitoring only certain types of properties where the timeliness in the detection

of a deviation is not critical for a system (e.g., monitoring of long term performance

properties of a system) and exclude time critical properties (e.g. safety). Also, as discussed in

Chapter 4, it should be noted, that the current implementation of the framework has some

limitations and it can not monitor the properties expressed as past formulas. Regardless,

however, of the properties being monitored it should be appreciated that since monitoring

takes place in parallel with the operation of a service based system without affecting its

performance, it can detect useful deviations from requirements at no significant cost for the

system.

238

Regarding the usability of the framework one may raise the concern that it may not be very

easy for a business analyst or a developer to express monitorable properties in EC-Assertion

due to the formality of the event calculus first order temporal logic language that underpins it.

This concern can be addressed by (i) defining a language that hides the formalism as much as

possible and is easy to understand, or (ii) developing patterns for specifying generic

monitorable properties in this language and offering them to developers who wish to specify

their monitorable properties along with an editor to support the automatic generation of

instances of these patterns [Dwy98, Spa07]. Although, EC-Assertion does not raise the level

of abstraction at which such properties can be specified and remains close to event calculus

adding only special types of events and fluents, it should be noted that it enables the

expression of a wide range of monitorable properties as mentioned above. Given our

experience in the specification of monitorable properies in EC-Assertion, we believe that

following some basic training in basic event calculus, it is possible to write monitorbale

properties in EC-Assertion for a given BPEL process specification in relatively short time.

As discussed in Chapter 5, because of modular design of the architecture of the monitoring

framework, the monitor can be deployed as a web service (see Appendix G for details). In

such scenario, the monitor accepts as inputs, (i) the properties to be monitored expressed in

EC-Assertion and (ii) monitoring events expressed in XML according to the schema

presented in Appendix G. These two inputs are completely independent of the language used

to express the service based system specification and the engine used to execute the service

based system. Although in this thesis we adopted BPEL as the service based system

specification language and bpws4j as the service based system execution engine, this

discussion reveals that our monitor can be used for any other service based system

specification language, more specifically any other web service flow specification language

(e.g. OWL-S, WSCI, WS-CDL) and any other service based system execution engine e.g.

ActiveBPEL, Oracle BPEL Process Manager. To use our monitor with a service based system

specification language other than BPEL, a mapping between the language and EC-Assertion

should be defined to express the monitorable properties for the specification in EC-Assertion.

Similarly to use our monitor with a service based system execution engine other than bpws4j,

an event receiver should be developed to capture monitoring events from the service based

system execution engine and send the monitoring events to the monitor.

239

Chapter Seven

Conclusions and Future Works

7.1 Overview

In this final chapter of the thesis, we provide an overview of the research work that resulted in

the monitoring framework which was presented in the earlier chapters. We also point out the

main novelties of this framework and the contributions that our research has made to the state

of the art. Our claims are founded on a comparison with other approaches to service based

systems monitoring. We also point out the limitations of our research and discuss directions

for future work upon our framework and the more general area of monitoring service based

systems.

7.2 Summary of the Work

In this thesis, we have presented a framework that we have developed to monitor the runtime

behaviour of service-based systems against a set of requirements specified for these systems.

This work has followed a survey of the state to the art in software monitoring which identified

limitations of existing monitoring techniques in monitoring requirements for service based

systems. The developed framework support requirements specify:

(i) behavioural properties of service based systems,

(ii) functional properties for the individual services of service based systems or groups

of such services (e.g. pre-conditions and post-conditions that must be satisfied before

and after the execution of operations of individual services), or

(iii) quality of service (QoS) properties, which express the quality requirements of

service based system, individual services or group of services.

In addition to behavioural properties, functional properties and quality of service properties,

the framework supports the specification of assumptions which are used to generate

additional information about the expected service behaviour and its effect on the state of the

system.

240

As part of the development of this framework, we have defined a language for specifying the

behavioural, functional and QoS properties of the systems to be monitored as well as and

assumptions regarding these systems, called EC-Assertion. This language has its formal

foundation in event calculus [Sha99],

The behavioural properties are initially extracted from the specification of the composition

process of a service-based system that is expressed in BPEL. This ensures that these

properties are expressed in terms of events occurring during the interaction between the

composition process and the constituent services of the system to be monitored that can be

detected from the log of the execution. The functional, and QoS properties to be monitored

and the assumptions which can be used during monitoring are subsequently defined in terms

of the identified detectable events by system providers.

Through monitoring scenarios that we have presented in this thesis, we have argued about the

necessity of introducing types of runtime deviations from requirements which go beyond

classical inconsistencies. And to support these types, we have developed appropriate

reasoning mechanisms. These mechanisms have been built upon techniques developed for

integrity checking in temporal deductive databases [Ple93, Cho95], The main difference from

these techniques is the formula checking scheme that we deploy and the absence of

distinction between integrity constraints and deductive rules in our framework. To be precise

in our framework assumptions are used as deductive rules only, but functional properties are

treated in both capacities.

This thesis has also proposed an architecture for the implementation of the monitoring

framework and discussed mechanisms/algorithms for implementing different components of

the architecture. Finally an implementation of the monitoring framework has been presented

and its effectiveness has been evaluated through case studies.

7.3 Contributions

The main contributions of this research are summarised in the following:

• Development of a non intrusive monitoring framework for service based systems

implemented in BPEL

We designed a monitoring framework that can be used to monitor the requirements of

service-based systems which are implemented by composition processes expressed in BPEL.

241

The runtime monitoring of service based system has drawn attention of the research

community recently, but only few of the existing strands of work in this area that we have

found in the literature focus on monitoring of BPEL processes (e.g. [Bar04a, Bar05a,

Bar05b]). Furthermore, most of the approaches in this area focus mainly on monitoring one

type of properties, e.g. QoS properties of web services [And04a, And04b, Lud04], functional

properties [Rob03a, Rob03b], or the composition of web services and the management of

such compositions [NakOl, Nak02, Pic02, Ali03, Zho03, TosOl, Laz04, Laz06a, Laz06b],

The monitoring framework that is described in this thesis is generic enough to support

monitoring of a wide spectrum of monitorable properties (see Chapter 6) including functional

properties and non functional properties (e.g. safety properties, performance properties,

security properties, reliability properties). Furthermore, most of the complexities which arise

in case of service based system (see Chapter 2) are not addressed by the different approaches

that we identified in the literature. Our monitoring framework has been designed with the

objective to support non intrusive monitoring, which excludes approaches which perform

monitoring by weaving code that implements the required checks inside the code of the

system that is being monitored (e.g. monitoring oriented programming [Che03, Che04,

Che05b] or approaches that perform service based systems monitoring by weaving code into

BPEL processes [Bar04a]). Non intrusive monitoring also excludes approaches which, despite

deploying external entities in order to perform the required checks, require the

instrumentation of the source code of the monitored system in order to generate the runtime

information that is necessary for the checks (e.g. [Fea98, Rob02, KanOO, KimOl, Din02]).

Although in this thesis we chose BPEL as the service based system specification language, it

is discussed in Chapter 6 that our approach can be applied to other service based system

specification languages like OWL-S, with minimal effort.

• Detection of new types of property deviations

The monitoring framework that we have developed supports the detection of five different

types of property deviations that may occur during the operation of service-based systems.

These deviations are:

(i) Inconsistencies with respect to recorded behaviour

(ii) Inconsistencies with respect to expected behaviour

(iii) Unjustified system behaviour

(iv) Possible violations of behavioural properties and functional properties

(v) Potentially unjustified system behaviour

242

The above types of deviations are based on the distinction that is made by our monitoring

framework regarding the type of events which can be used in order to detect deviations. These

events may be of two types: (1) recorded events which have been captured during the

operation of the system at runtime or (2) derived events which are generated from recorded

events by deduction. If monitoring is based only on recorded events, it can detect only

deviation type (i). On the other hand, if monitoring is based on both recorded and derived

events, our framework can detect deviation types (ii)-(v) in addition to deviation type (i).

To the best of our knowledge while other approaches support the detection of property

deviation of the types (i) above [Fea95, Fea98, Coh97, Din02, Rob02, Rob03a, Rob03b], they

do not support the detection of inconsistencies of types (ii)-(v). The detection of the latter

types of deviations is however important during the operation of service based systems, as we

have argued in Chapter 4, of this thesis, and to this end the framework that is presented in this

thesis fills an important gap in this area.

• Property specification language

We have defined a language, which has its formal foundation on event calculus, to specify

requirements of service based systems expressed as BPEL process. The selection of event

calculus as the formal base of our language over other temporal logic languages (e.g. LTL,

CTL, and PTL) has been discussed in Chapter 3. The choice of event calculus as the language

for specifying the requirements to be monitored against the behaviour of service based

systems has been motivated by the need for: (a) expressing the properties to be monitored in

a formal language allowing the specification of temporal constraints and (b) being able to

monitor an agreement using a well defined reasoning process based on the inference rules of

first-order logic (this criterion has also led to the choice of event calculus instead of another

temporal logic language). Our language extends standard event calculus by defining special

events and fluents which enable the specification of monitorable properties using full first-

order logic formalism as well as conditions about time. Another extension with respect to

standard event calculus is the use of internal and external operations in formulas which enable

the delegation of complex computations of complex data functions to computational entities

which are external to the main reasoning engine. The use of such computations (e.g.

computation of the standard deviation of a series of values) is often required for the

specification of QoS properties. And the delegation of such computations to entities outside

the main reasoning engine which checks whether the property is satisfied is important for

reducing the cost of the actual computation and making easier the specification of the relevant

243

properties. Finally, it should be noted that we have defined the property specification

language as an XML schema that makes our language applicable to other standards such as

WS-Agreement as means of specifying requirements.

• Implementation of a prototype supporting the monitoring of service based systems

implemented in BPEL

To realise our framework, we have developed a prototype implemented in Java. This

prototype provides supports for automatic monitoring of service based systems. More

specifically, (i) it automatically extracts the behavioural properties to be monitored from the

service composition specification, (ii) it allows users to define additional functional

properties, assumptions and QoS properties about the service based system and the services

that it deploys, and (iii) it monitors the target service based system automatically driven by

the behavioural properties, functional properties, assumptions and QoS properties. The

prototype can be used as a stand alone monitoring tool. However, it can also be deployed as a

web service. In either case the tool is easy to set up and provides maximum user flexibility.

7.4 Limitations of the Proposed Approach

The framework that we have developed for runtime monitoring of service based systems, has

also a number of limitations. These limitations are overviewed below:

• In Chapter 4 we presented the formal analysis of the monitoring scheme. This analysis

revealed that the worst case complexity of our monitoring scheme is exponential with

factor, Fn * (2& -1) * 0(n2m), where Fn is the number of formulas, En is the number of

events and n is the number of predicates in a formula and m is the number of variables in

a predicate. Although our monitoring framework is able to monitor a wide range of

properties as listed in Section 7.3, this detection delay may limit the applicability of our

framework as discussed in Chapter 6. More specifically our approach would be feasible to

monitor only certain types of properties where the timeliness in the detection of a

deviation is not critical for a system (e.g., monitoring of long term performance properties

of a system) and exclude time critical properties (e.g. safety, reliability).

• The monitoring scheme that was presented in Chapter 4 does not completely realise the

conceptual design of our monitoring framework. For example, the monitoring scheme

244

does not apply abductive reasoning to generate derived events and cannot monitor past

formulas.

• It should be noted that, although the property specification language in our framework is

expressive enough to support a wide spectrum of monitorable properties, we appreciate

that the use of the language for the specification of such properties may be difficult for

users who are not familiar with formal languages.

7.5 Plans for Future Work

Future work on the framework that has been introduced in this thesis will focus on the

following aspects of the framework:

• Enhancement of the Monitoring Performance of the Framework.

• Support for Property Specification.

• Integration of the Proposed Monitoring Framework to Existing Standards.

7.5.1 Enhancement of Monitoring Performance of the Framework

From the complexity analysis in Chapter 4 and the evaluation results that we presented in

Chapter 6, it emerged that the average delay in the detection of a requirement deviation grows

exponentially along with the number of events which occur within a system. Although this

complexity allows the application of our monitoring framework to cases where the timeliness

in the detection of a deviation is not critical (e.g. reliability), it restricts its applicability in

cases where this is not the case (e.g. safety). This observed complexity makes it difficult for

someone to use our framework in order to monitor time-critical properties like safety and

raises the issue of enhancing the performance of our monitoring framework. Given the

evaluation results and the current state of the monitoring framework, the enhancement of the

monitoring performance of our framework is possible through the following two ways.

(i) One factor that affects the monitoring performance is the number of formulas to be

monitored. The monitor manager may deploy more than one monitor where each

monitor monitors a very small number of formulas. Whilst the distribution of formulas

to different monitors is easy in cases where monitoring is concerned with the detection

of formula violations by recorded events only, the distribution of formulas to different

245

monitors needs some static reasoning before the monitoring process starts This is

important in order to identify groups of formulas with no dependencies between them

and distribute them to different monitors. For example in our framework we apply

deductive and abductive reasoning to generate derived events, and these derived events

are used to update the templates that are dependent on these derived events. So

interdependent formulas should be deployed on the same monitor

(ii) Comparing the results of the second case study with those of the first case study, it is

evident that in the second case study the average decision delay is longer than the

average decision delay in the first case study. This is because in the second case study,

we monitored a real BPEL system where the extraction of monitoring events and the

monitoring itself were carried out in parallel on the same machine. But in the first case

study, we monitored a simulated BPEL process where the events were generated by the

simulator before the monitoring process started. This finding suggests that the

monitoring performance can be improved if the monitoring event extraction and the

monitoring are organised as separate processes and are possibly deployed on separate

computers.

7.5.2 Support for Property Specification

As we discussed earlier, due to the physical distribution of the individual services of a service

based system and/or network communication delays, it is impossible to predict the precise

time of the response of the component services in service based systems. Even the prediction

about the response time of component services is not straightforward. This raises an issue that

should be the subject of future investigation. This issue is the development of support for

specifying realistic time constraints of the time variables in the formulas based on analysis of

time delays in execution histories. This analysis would help the system provider to specify (i)

a suitable value for the minimum time tu between the occurrence of two events, and (ii) more

realistic QoS properties which express the quality requirements of individual services or

group of services.

Moreover, as we have pointed out in Section 7.4 above, as a formal language, the event

calculus based language of our framework is inherently difficult to use by users who do not

have training in temporal logic languages. A possibility to address this limitation, would be to

develop patterns for specifying generic monitorable properties in this language and offer them

to system providers who wish to specify their monitorable properties and an editor to support

246

the automatic generation of instances of these patterns for specific service based systems.

Several efforts have been found in the literature that attempt to develop patterns to specify

generic properties for temporal logic languages (see [Dwy98, Spa07] for example). The

existence of such patterns and the similarity of the temporal languages which are the focus of

the patterns developed so far with event calculus makes it reasonable to believe that such

patterns will be possible to develop for our language and motivates this direction of possible

future work. A critical aspect for the effectiveness of the pattern-based approach to property

specification will be the composability of any developed patterns as this could enable the

easier specification of complex properties by composing atomic properties.

7.5.3 Integration of the Monitoring Framework with Existing

Standards

As our monitoring framework stands now it can be easily incorporated into standard

monitoring frameworks like WS-Agreement. As we discussed in Chapter 2, WS-Agreement

does not support the specification of policies determining the deployment context in which

the provision of services of a service based system will be monitored, who will have

responsibility for providing the information that is necessary for assessing whether the

guarantee terms of the agreement are satisfied and where the results of monitoring will be

reported in cases where agreement monitors should actively report deviations from the terms

of an agreement rather than waiting to be asked if a deviation has occurred. Furthermore, WS-

Agreement does not specify a language for defining the service description and guarantee

terms of an agreement and an operation protocol that would enable the monitoring of an

agreement.

Our framework provides an exact way to address these limitations of WS-Agreement

[Mah07]. More specifically, as we discussed in Chapter 3, our framework supports the

specification of a monitoring policy specifying the composition process of the service based

system that is to be monitored, the services deployed by this system, the source of the runtime

information which will enable the monitoring of the agreement, the way in which this

monitoring is to be performed including the mode, regularity and timing of monitoring. The

specification of these aspects of a monitoring agreement is quite important and can be

integrated with the context specification of WS-Agreement. Also our EC based property

specification language can be used to specify the service guarantee terms of a WS-Agreement

(currently, WS-Agreement does not offer a language for the specification of these terms).

247

References

[Abi97] Abiteboul, S., Quass, D., McHugh, J., Widom, J., Wiener, J. "The Lorel Query

Language for Semistructured Data". International Journal on Digital Libraries. 1

(1997) 68-88

[Abr04] Alain Abran (ed.), "Guide to the Software Engineering Body of Knowledge", IEEE

Computer Society, 2004.

[Act05] ActiveBPEL, The Open Source BPEL Engine, July 2005,

http://www.activebpel.org/info/news.php

[Aie05] Marco Aiello, Ganna Frankova and Daniela Malfatti, “What’s in an Agreement? A

Formal Analysis and an Extension of WS-Agreement", Technical Report # DIT-05-

039, April 05.

[Ale02] Alessandra Russo, Rob Miller, Bashar Nuseibeh, and Jeff Kramer, “An Abductive

Approach for Analysing Event-Based Requirements Specifications”. Proceedings of

18th International Conference on Logic Programming, Copenhagen, Denmark, 29

July-1 August 2002, Springer

[Ali03] Ali ShaikhAli, Omer Rana, Rashid Al-Ali and David W. Walker. "UDDIe: An

Extended Registry for Web Services". In Proceedings of the Service Oriented

Computing: Models, Architectures and Applications, SAINT-2003 IEEE Computer

Society Press. Oralndo Florida, USA, January 2003.

[Amo05] Marcelo d'Amorim and Klaus Havelund, "Event-Based Runtime Verification of

Java Programs", In 3rd International Workshop on Dynamic Analysis (WODA'05).

St. Louis, USA, May 2005.f

[And04] A. Andrieux, C. Czajkowski, A. Dan, K. Keahey, H. Ludwig, J. Pruyne, J. Rofrano,

S. Tuecke, M. Xu. WebServices Agreement Specification (WS-Agreement). Version

1.1, Draft 20, June 6th 2004.

[And04a] Andrew D. H. Farrell, Marek Sergot, Mathias Salle and Claudio Bartolini., David

Trastour, Athena Christodoulou, "Performance Monitoring of Service-Level

Agreements for Utility Computing Using the Event Calculus", HPL-2004-20R1

[And04b] Andrew D. H. Farrell, Marek Sergot, Mathias Salle and Claudio Bartolini. "Using

the event calculus for performance monitoring of Service Level Agreements in Utility

Computing". In Proc. Workshop on Contract Languages and Architectures

(CoALa2004), 8th International IEEE Enterprise Distributed Object Computing

Conference, Monterey, September 2004.

[And05] Andrew D. H. Farrell, Marek Sergot, Mathias Salle and Claudio Bartolini.

248

http://www.activebpel.org/info/news.php

"Using the event calculus for tracking the normative state of contracts. " International

Journal of Cooperative Information System 4(2—3). June-September 2005.

[Ari96] ARIANE 5, Flight 501 Failure, Report by the Inquiry Board, Paris, 19 July 1996

[Asp03] Aspectj project, http://eclipse.org/aspectj/. 2003.

[Axi03] Axis, http://ws.apache.org/axis/index.html. June 16, 2003

[Bal02] Thomas Ball, Sriram K. Rajamani. “The SLAM Project: Debugging System Software

via Static Analysis”, POPL 2002, January 2002.

[Ban03] A. K. Bandara, E. C. Lupu, and A. Russo. "Using Event Calculus to Formalise

Policy Specification and Analysis". In Proceedings of 4th IEEE Workshop on

Policies for Distributed Systems and Networks Policy 2003.

[BarOl] M. M. Detlef Bartetzko, Clemens Fischer and H. Wehrheim. "Jass - java with

assertions". In Electronic Notes in Theoretical Computer Science, volume 55.

Elsevier Science Publishers, 2001.

[Bar04a] Luciano Baresi, Carlo Ghezzi and Sam Guinea. “Smart Monitoring for Composed

Services”. International Conference on Service Oriented Computing, November 15-

19, 2004, New York, USA.

[Bar04b] Ian Barland, "Promela and SPIN Reference", version 1.3, August 12, 2004

[Bar05a] Luciano Baresi, Sam Guinea and Pierluigi Plebani, "WS-Policy for Service

Monitoring", 6th VLDB Workshop on Technologies for E-Services (TES-05),

September 2-3, 2005, Trondheim, Norway

[Bar05b] Luciano Baresi, and Sam Guine, "Towards Dynamic Monitoring of WS-BPEL

Processes". Proceedings of the 3rd International Conference of Service-oriented

Computing (ICSOC’05). Amsterdam, The Nederlands, 2005. Lecture Notes in

Computer Science, volume 3826, pages 269 - 282.

[Bar05c] L. Baresi and S. Guinea."Dynamo: Dynamic Monitoring of WS-BPEL Processes".

Proceedings of the 3rd International Conference of Service-oriented Computing

(ICSOC'05). Amsterdam, The Nederlands, 2005. Lecture Notes in Computer Science,

volume 3826, pages 478 - 483.

[BelOO] P. Bellini, R. Mattolini, and P. Nesi, "Temporal Logics for Real-Time System

Specification", ACM Computing Surveys, Vol. 32, No. 1, March 2000

[BerOl] T. Berners-Lee, J. Hendler, and O. Lassila. "The Semantic Web". Scientic Ameri-can,

284(5):34{43, 2001.

[Ber03] A. Bertolino, "Software Testing Research and Practice", Invited presentation at 10th

International Workshop on Abstract State Machines ASM 2003, Taormina, Italy,

March 3-7, 2003, LNCS 2589, p. 1-21

[BobOl] Jerry Bobrow, "Cliffs Quick Review Algebra I", ISBN: 0-7645-6370-X, May 2001

[Bpe03] Business Process Execution Language for Web Services, version 1.1, May 05, 2003.

249

http://eclipse.org/aspectj/
http://ws.apache.org/axis/

http: / / w w w - 106. i bm. c o m / d e v e I o n e r w o r k s / w e b s e r v i c e s / l i b r a r y / w s - b p e 1/

[Bpw03] Business Process Execution Language for Web Services Java Runtime, BPWS4J,

April 30, 2003, http://alphaworks.ibm.com/tech/bpvvs4i

[Bro02a] Mark Brorkens and Michael Moller. “Jassda Trace Assertions, Runtime Checking

the Dynamic of Java Programs”. In: Ina Schieferdecker, Hartmut Konig and Adam

Wolisz (Eds.), Trends in Testing Communicating Systems, International Conference

on Testing of Communicating Systems, Berlin, March 2002, pp. 39-48.

|Bro02b] Mark Brorkens and Michael Moller. “Dynamic Event Generation for Runtime

Checking using the JDI”. In Klaus Havelund and Grigore Rosu (Eds.), Proceedings of

the Federated Logic Conference Satellite Workshops, Runtime Verification.

Electronic Notes in Theoretical Computer Science 70.4, Copenhagen, July 2002.

[Bow95] Jonathan Bowen, Michael j Hinchey, "Seven More Myths of Formal Methods",

IEEE Software, July 1995.

[CapOl] L. Capra, W. Emmerich, and C. Mascolo. “Reflective middleware solutions for

context-aware applications” - Lecture Notes in Computer Science, 2192, 2001

[Caz98] W. Cazzola, A. Savigni, A. Sosio, and F. Tisato. “Architectural reflection: Bridging

the gap between a running system and its architectural specification”. In Proceedings

of 6th Reengineering Forum (REF’98), pages 12-16, Firenze, Italia, March 1998.

IEEEF.

[Che03] F. Chen and G. Rosu. "Towards monitoring-oriented programming: A paradigm

combining specification and implementation." In Runtime Verification, 2003.

[Che04] F. Chen, M. Amorim, , and G. Ro^su. A Formal Monitoring-based Framework for

Software Development and Analysis. In Proceedings of the Sixth International

Conference on Formal Engineering Methods (ICFEM'04), 2004.

[Che05a] Feng Chen and Grigore Rosu, "Java-MOP: A Monitoring Oriented Programming

Environment for Java", TACAS'05, LNCS 3440, pp 546-550. 2005.

[Che05b] Feng Chen, Marcelo d'Amorim and Grigore Rosu, "Checking and Correcting

Behaviors of Java Programs at Runtime with Java-MOP", RV'05, ENTCS 144, issue

4, pp 3-20. 2005.

[Cho95] Chominski J. "Efficient Checking of Temporal Integrity Constraints Using Bounded

History Encoding", ACM Transactions on Database Systems, 1995

[Cla78] K. L. Clark. “Negation as failure”. In H. Gallaire and J. Minker, editors, Logic and

Databases, pages 293—322. Plenum Press, New York, 1978

[Cla86] Clarke, E. M., Emerson, E. A., and Sistla A. P."Automatic verification of finite-state

concurrent systems using temporal logic specifications". ACM Trans. Program. Lang.

Syst. 8, 2 (Apr. 1986), 244-263. 1986.

[Cla96] Edmund M. Clarke and Jeannette M. Wing. " Formal Methods: State of the Art and

250

http://alphaworks.ibm.com/tech/bpvvs4i

Future Directions". ACM Computing Surveys, 1996

[Cla94] Edmund M. Clarke, Orna Grumberg and Long D, "Model Checking",

Proceedings: International Summer School on Deductive Program Design, 1994.

Springer-Verlag Nato Asi, Series F, Vol. 152, 1996.

[ClaOO] Lori A. Clarke, Leon J. Osterweil. “Continuous Self-Evaluation for the Self-

Improvement of Software”. Springer Verlag Lecture Notes in Computer Science

#1936, Proceedings of the 1st International Workshop on Self-Adaptive Software

(IWSAS 2000), pp 27-29, April 2000, Oxford, England.

[Cla05] Daniela Barreiro Claro, Patrick Albers and Jin-Kao Hao, “ Approaches of Web

Services Composition, Comparison between BPEL4WS and OWL-S”, In

Proceedings of International Conference on Enterprise Information Systems, May 23

- 27, Miami-USA 2005

[CH03] CLiX, Constraint Language in XML. http://www.clixml.org/spec.html. 2003

[Coh97] Don Cohen, Martin S Feather, K. Narayanswamy & Stephen S. Fickas. “Automatic

Monitoring of Software Requirements”. Proceedings of the 19th International

Conference on Software Engineering, Pages 602 - 603, IEEE Press, 1997

[Coh98] Geoff Cohen, Jeff Chase and David Kaminsky. “Automatic Program Transformation

with JOIE”. In proceedings of the 1998 USENIX Annual Technical Symposium.

[Col98] Michael Collins, "Formal Methods", Departmental Report, Electrical and Computer

Engineering Department, Carnegie Mellon University, Spring 1998

[Con91] Console, L., Dupre, D. T., and Torasso, P., "On the Relationship between Abduction

and Deduction". Journal of Logic and Computation 1(5):661—690, 1991

[Cop03] David Coppit. "Engineering Modeling and Analysis: Sound Methods and Effective

Tools". PhD thesis, The University of Virginia, Charlottesville, Virginia, January

2003.

[Cor04] Common Object Request Broker Architecture (CORBA),

http://www.omg.org/technology/documents/corba spec catalog.htm

[Cra93] D. Craigen, S. Gerhart, T. Ralston. An International Survey of Industrial Applications

of Formal Methods:Volume 1 - Purpose, Approach, Analysis and Conclusions.

Technical Report NISTGCR 93/626, National

Institute of Standards and Technology, Gaithersburg, USA, March 1993.

[Dam02] The DAML Service Coalition. “DAML-S Semantic Markup for Web Services”.

International Semantic Web Conference (ISWC), 2002.

[Dar93] A. Dardenne, A. van Lamsweerde and S. Fickas, "Goal Directed Requirements

Acquisition", Science of Computer Programming, Vol. 20, 1993, 3-50.

[Dar96] Robert Darimont and Axel van Lamsweerde. “Formal Refinement Patterns for Goal-

251

http://www.clixml.org/spec.html
http://www.omg.org/technology/documents/corba_spec_catalog.htm

Driven Requirements Elaboration”. Proceedings of 4th ACM Symposium on the

Foundations of Software Engineering (FSE4), San Francisco, Oct 1996, 179-190.

[Dav02] David Daly, Gautam Kar and William H, Senders. "Modeling of Service-Level

Agreements for Composed Services". Proceedings of the 13th IFIP/IEEE

International Workshop on Distributed Systems: Operations and Management:

Management Technologies for E-Commerce and E-Business Applications, October

21-23, 2002.

[Del04] Nelly Delgado, Ann Quiroz Gates and Steve Roach. “A Taxonomy and Catalog of

Runtime Software-Fault Monitoring Tools”, IEEE Transactions On Software

Engineering, VOL. 30, No 12, December 2004.

[Den95] Marc Denecke, "A terminological interpretation of (Abductive) Logic

Programming”, Lecture Notes In Computer Science; Vol.928, Pages: 15-28, 1995

[Den96] Marc Denecker, Kristof Van Belleghem, Guy Duchatelet, Frank Piessens, Danny De

Schreye, "Realistic Experiment in Knowledge Representation in Open Event

Calculus: Protocol Specification", In Proceedings of the Joint International

Conference and Symposium on Logic Programming, pages 170-184, 1996.

[Die99] F. Dietrich, J.-P. Hubaux, "Formal Methods for Communication Services", Institute

for Computer Communications and Applications, Swiss Federal Institute of

Technology, CH-1025 Lausanne, August 1999

[Din02] Andrew Dingwall-Smith, Anthony Finkelstein. “From Requirements to Monitor by

Way of Aspects”. 1st International Conference on Aspect-Oriented Software

Development, April 22-26, 2002.

[Dwy98] Dwyer, M.B., Avrunin, G.S. and Corbett, J.C.: Property Specification Patterns for

Finite state Verification. Proc. Of 2nd Work, on Formal Methods in Software

Practice, (1998)

[Efs02] Christos Efstratiou, Adrian Friday, Nigel Davies, and Keith Cheverst. "Utilising the

event calculus for policy driven adaptation on mobile systems". In Jorge Lobo Bret J.

Michael and Naranker Duray, editors, 3rd International Workshop on Policies for

Distributed Systems and Networks, pages 13-24, Monterey, Ca., U.S., 2002. IEEE

Computer Society.

[Eit95] T. Eiter and G. Gottlob. “The complexity of logic-based abduction”, Journal o f the

ACM, 42(1), 3-42. 1995.

[Eli06] Elisabeth A. Strunk, M. Anthony Aiello, John C. Knight, Eds. "A Survey of Tools for

Model Checking and Model-Based Development", Technical Report CS-2006-17

Department of Computer Science University of Virginia June 2006

[Far05] Roozbeh Farahbod, Uwe Glasser, Mona Vajihollahi, "A Formal Semantics for the

Business Process Execution Language for Web Services", WSMDEIS 2005: 122-133

252

[Fea95] Martin S Feather, Steven S Fickas. “Requirements Monitoring in Dynamic

Environments”. Proceedings of IEEE International Conference on Requirements

Engineering, 1995

[Fea97] Feather, M.S. “FLEA: Formal Language for Expressing Assumptions - Language

Description”, June 25, 1997

[Fea98] M.S. Feather, S. Fickas, A. Van Lamsweerde and C. Ponsard. “Reconciling System

Requirements and Runtime Behaviour”. Proceeding ISSWD’98 - 9th International

Workshop on Software Specifiacation and Design, Isobe, IEEE CS Press, April 1998.

[Fic02a] Stephen Fickas, Lauire Ehlhardt, McKay Sohlberg, Bonnie Todis. “Personal

Requirements Engineering”. Technical Report 45-02, Computer Science Department,

University of Oregon, USA, 2002

[Fic02b] Stephen Fickas, Tiller Beauchamp, Ny Aina Razermera Mamy. “Monitoring

Requirements: A Case Study”. Proceedings of the 17th IEEE International Conference

on Automated Software Engineering (ASE'02), 2002.

[Fic02c] Stephen Fickas, Max Skorodinsky, Martin Feather. “Sleeping at Night: Building and

Monitoring Better Models of the Environment”. Proceedings of the First Workshop

on State of the Art on Automated Software Engineering, June 2002.

[Fic02d] Stephen Fickas and Robert J. Hall. “Self-Healing Open Systems”. Proceedings of the

First Workshop on Self-Healing Systems, 2002, Charleston, South Carolina.

[FinOl] A. Finkelstein and A. Savigni. “A Framework for Requirements Engineering for

Context-Aware Services”. In Proc. of 1st International Workshop From Software

Requirements to Architectures (STRAW 01), Toronto, Canada, May 2001.

[Fit96] Melvin Fitting , "First-order logic and automated theorem proving (2nd ed.)", Springer

Graduate Texts In Computer Science, ISBN:0-387-94593-8, 1996

[Fos06] Howard Foster. "A Rigorous Approach to Engineering Web Service Compositions",

PhD Thesis, Department of Computing, Imperial College London, January 2006.

[Ftp80] File Transfer Protocol (FTP), h t t p : / / w w w . f a q s . o r g / r f c s / r f c 7 6 5 . h t m l

[Gab80] D.M. Gabbay, A. Pnueli, S. Shelah, J. Stavi. On the Temporal Analysis of Fairness.

7th ACM Symposium on Principles of Programming Languages. Las Vegas (1980)

163-173.

[Geo03] George, V. and Vaughn, R., “Application of Lightweight Formal Methods in

Requirement Engineering”, CROSSTALK, The Journal of Defense Software

Engineering, vol 16, no 1, January 2003, p. 30.

[Gib90] P.B. Gibbons, R.M. Karp, G.L. Miller, D. Soroker, "Subtree isomorphism is in

random NC", Discrete Applied Mathematics, Discrete Appl. Math. (Netherlands),

vol.29, (no.l), p.35-62, November 1990

[Gnu] “The Gnutella Protocol Specification v0.4”,

253

http://www.faqs.org/rfcs/rfc765.html

h t t p : / / w w w 9 . l i m e v v i r e . e o m / d e v e l o p e r / t : i i u t e l l a p r o t o c o l O A p d f

[Gun02] Eisa Gunter and Doron Peled. “Tracing the Executions of Concurrent Programs”, In

Proceedings of Second International Workshop on Runtime Verification, Copenhagen

Denmark, 26 July, 2002

[Hal90] A. Hall. "Seven Myths of Formal Methods". IEEE Software September, 1990

[HarOO] Mary Jean Harrold, "Testing: A Roadmap", In Future of Software Engineering, 22nd

International Conference on Software Engineering, June 2000.

[Hoa85] C.A.R. Hoare. "Communicating Sequential Processes". Prentice Hall, 1985

[Hol91] G.J. Holzmann, “Design and Validation of Computer Protocols”. Englewood Cliffs,

N.J.: Prentice Hall, 1991

[Hol97] Gerard J. Holzmann. “The Model Checker Spin”, - IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING, VOL. 23, NO. 5, MAY 1997

[Hol99] G. Holzmann and M.H. Smith. “Software model checking”. In Proceeding Formal

Techniques for Networked and Distributed Systems, Beijing, China, 1999

[Hon06] Yang Hongli, Zhao Xiangpeng, and Qiu Zongyan, "A Formal Model for Web

Service Choreography Description Language (WS-CDL)", Tech. Report, 2006.

[How04]Howard Barringer, Allen Goldberg, Klaus Havelund, Koushik Sen, "Rule-Based

Runtime Verification", In Proceedings of 5th International Conference on

Verification, Model Checking and Abstract Interpretation , volume 2937 of LNCS,

pages 44-57, Venice, Italy, January 2004, Springer-Verlag.

[Htt99] Hypertext Transfer Protocol (HTTP),

http://www.w3.org/Protocols/rfc2616/rfc2616.html

[Hyp03] “Hyper/J”,July 8, 2003, h t t p : / / w w w . a l p h a w o r k s . i b m . c o m / t e c h / h y p e r i

[Ijc04] The IJCAR 2004 Workshop on Empirically Succesful First Order Reasonning.

[Iso96] ISO/IEC 14977:1996, "Information technology — Syntactic metalanguage — Extended

BNF"

[IPL03] "An Introduction to Software Testing", IPL Information Processing Ltd, white paper,

September 2003

[IwsOO] IBM Web Service Architecture Team. “Web Services Architecture Overview”, IBM

Developer Works, September 2000.

[Jac06] Daniel Jackson, " Dependable Software by Design", Scientific American, June 2006

[Jav94] Sun Microsystems, Inc. © 1994 - 2006, “The Source For Java Technology”.

http://java.sun.com/

[Jin02] Li-jie Jin, Vijay Machiraju, Akhil Sahai. "Analysis on Service Level Agreement of

Web Services". Software Technology Laboratory, HP Laboratories Palo Alto, HPL-

2002-180, June 21, 2002.

[KanOO] Sampath Kannan, Moonjoo Kim, Insup Lee, Oleg Sokolsky, Mahesh Viswanathan, "

254

http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.alphaworks.ibm.com/tech/hyperi
http://java.sun.com/

Run-time Monitoring and Steering based on Formal Specifications", Workshop on

Modeling Software System Structures in a fastly moving scenario, June 2000.

[Kan06] Cem Kaner, "Inefficiency and ineffectiveness of software testing: A key problem in

software engineering." White paper prepared for the National Defense Industrial

Association's Systems Engineering Workshop on the Top 5 Software Issues,

Washington, D.C., August 2006.

[Kel02] A. Keller and H. Ludwig. "TheWSLA Framework: Specifying and Monitoring

Service Level Agreements for Web Services". Technical Report RC22456(W0205-

171), IBM Research Division, T.J. Watson Research Center, May 2002.

[Kel03] Keller A. and Ludwig H., “The WSLA Framework: Specifying and Monitoring

Service Level Agreements for Web Services”, Journal of Network and Systems

Management, vol. 11, num. 1, 2003, p. 57-81, Plenum Publishing.

[KimOla] Moonjoo Kim, "Information Extraction for Run-time Formal Analysis". PhD thesis,

CIS Department, University of Pennsylvania 2001.

[KimOlb] Moonjoo Kim, Sampath Kannan, Insup Lee, O. Sokolsky, and Mahesh

Viswanathan, "Java-MaC: a Runtime Assurance Tool for Java Programs", In Klaus

Havelund and Grigore Rosu, editors, Electronic Notes in Theoretical Computer

Science, volume 55. Elsevier Science Publishers, 2001.

[Kla04] Klaus Havelund , Grigore Roçu, "An Overview of the Runtime Verification Tool

Java PathExplorer", Formal Methods in System Design, v.24 n.2, p.189-215, March

2004

[KreOl] Kreger Heather. “Web Services Conceptual Architecture (WSCA 1.0)”, IBM

Software Group, IBM Web Services, May 2001.

[Lam80] Lamport, L., "Sometime is Sometimes 'Not Never1, On the Temporal Logic of

Programs", Proceedings of the Seventh ACM Symposium on Principles of

Programming Languages, ACM SIGACT-SIGPLAN (January 1980).

[Lam83] Lamport, L., What Good is Temporal Logic". Information Processing 83:657-668,

1983.

[LamOO] A van Lamsweerde and E. Leder, “Handling Obstacles in Goal-Oriented

Requirements Engineering”, IEEE Transactions on Software Engineering, voi. 26,

2000, pp. 978-1005

[Lam03] David Lamanna, James Skene and Wolfgang Emmerich. "SLAng: A Language for

Defining Service Level Agreements". In Proc. of the 9th IEEE Workshop on Future

Trends in Computing Systems, San Juan, Puerto Rico. pp. 100-106. IEEE Computer

Society Press. June 2003

[Laz04] A. Lazovik, M. Aiello and M. Papazoglou. Associating Assertions with Business

255

Processes and Monitoring their Execution. In Proceedings of the 2nd International

Conference on Service Oriented Computing, 2004.

[Laz06a] A. Lazovik, M. Aiello, and M. Papazoglou. Planning and monitoring the execution

of web service requests. Journal on Digital Libraries, Springer, 2006.

[Laz06b] A. Lazovik and M. Aiello. Associating Assertions with Business Processes and

Monitoring their Execution. International Journal of Cooperative Information

Systems, June 2006

[LeaOO] G. T. Leavens, K. R. M. Leino, E. Poll, C. Ruby, and B. Jacobs. "JML: notations and

tools supporting detailed design in Java". In OOPSLA 2000 Companion, pages 105-

106, 2000.

[Lev93] Nancy Leveson, Clark S. Turner," An Investigation of the Therac-25 Accidents",

IEEE Computer, Vol. 26, No. 7, July 1993, pp. 18-41

[Lev98] H. Levesque, F. Pirri, and R. Reiter, "Foundations for the situation calculus".

Electronic Transactions on Artificial Intelligence, 2(3-4): 159-178. 1998

[Log03] http://logging.apache.org/log4i/docs/. September 2003.

[Lud03] H. Ludwig, A. Keller, A. Dan, R.P. King, and R. Franck, “Web Service Level

Agreement (WSLA) Language Specification”, Version 1.0, IBM Corporation

(January 2003), h t t p : / / w w w . r e s e a r c h . i b m . c o m / w s l a .

[Lud04] H. Ludwig, A. Dan, and R. Kearney," Cremona: An Architecture and Library for

Creation and Monitoring of WS-Agreements" Proceedings of the 2nd International

Conference on Service Oriented Computing, November 2004, New York

[LutOl] Robyn R. Lutz and Ines Carmen Mikulski. “Evolution of Safety-Critical

Requirements Post-Launch”. Proceedings of the 5th International Symposium of on

Requirements Engineering, IEEE, Toronto, Canada, August 27-31, 2001.

[Mah04] Mahbub K., Spanoudakis G. "A framework for Requirements Monitoring of Service

Based Systems", 2nd International Conference on Service Oriented Computing

(ICSOC 2004), pp 84 - 93, November 2004.

[Mah05] Mahbub K, Spanoudakis G. "Run-time Monitoring of Requirements for Systems

Composed of Web-Services: Initial Implementation and Evaluation Experience",

IEEE International Conference on Web Services (ICWS'05), pp. 257-265, 2005.

[Mah07] Khaled Mahbub, George Spanoudakis, "Monitoring WS-Agreements: An Event

Calculus Based Approach", Springer monograph on Test and Analysis of Web

Services (to appear in 2007).

[Man95] Z. Manna and A. Pnueli. "Temporal Verification of Reactive Systems: Safety".

Springer, New York, 1995.

[Mcm92] K. L. McMillan. The SMV system, November 2000. http://www-

2xs.cmu.edu/modelcheck/smv.html

256

http://logging.apache.org/log4i/docs/
http://www.research.ibm.com/wsla
http://www-

[Men02] Daniel A. Menasce, “QoS Issues in Web Services”, IEEE Internet Computing,

November-December 2002.

[Men04] Jan Mendling, Gustaf Neumann and Markus Niittgens, "A Comparison of XML

Interchange Formats for Business Process Modelling", In Proceedings of the

Workshop organized by the special interest group ’’EMISA - GI - Development

Methods for Information Systems and their Application”, Centre de Recherche Public

- Gabriel Lippmann, Luxembourg, October 6-8, 2004.

[Mic04] Microsoft Biztalk Server, April 2004,

http://www.microsoft.com/biztalk/downloads/default.mspx

[Mil99] Miller, R, and Shanahan, M. "The Event Calculus in Classical Logic". Linköping

Electronic Articles in Computer and Information Science, 4(16). 1999

[MH04] Nikola Milanovic and Miroslaw Malek, “Current Solutions for Web Service

Composition”, IEEE Internet Computing, November-December 2004

[Min05] Miniaoui, S., Wentland Forte, M. "XML Mining: From Trees to Strings?". Second

International Conference on Intelligent Computing and Information Systems (ICICIS

2005), Cairo, Egypt, March 5-7. 2005.

[Mys95] MySQL Community Edition, 1995-2006,

http://dev.mysql.eom/downloads/mysql/5.0.html

[Nad03] A. Nadalin (ed.). "Web Services Policy Assertions Language

(WS-PolicyAssertions)".www.ibm.com/developerworks/library/ws-polas/,May 2003.

[Nad05] A. Nadalin (ed.): "Web Services Security Policy Language",

http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-securitypolicy.pdf, July

2005

[Nak02a] S. Nakajima. “On Verifying Web Service Flows”. In Proceedings of the 2002

Symposium on Applications and the Internet (SAINT’02w), pages 223 - 224, Jan

2002.

[Nak02b] Shin Nakajima. “Model-Checking Verification for Reliable Web Services”. 17th

ACM Annual Conference on Object-Oriented Programming, Systems, Languages and

Applications. November 4-8, 2002 Washington State Convention & Trade Center,

Seattle, Washington, USA

[Nar02] S. Narayanan and S. A. Mcllraith, "Simulation, Verification and Automated

Composition of Web Services," presented at Eleventh International World Wide Web

Conference (WWW-11), Honolulu, Hawaii, 2002.

[Nen02] Nentwich C., Capra L., Emmerich W. and Finkelstein A. “xlinkit: a Consistency

Checking and Smart Link Generation Service”. ACM Transactions on Internet

Technology, 2(2), May 2002, pp. 151-185

[Ora04] Oracle BPEL Process Manager, v2.1.1, December 2004,

257

http://www.microsoft.com/biztalk/downloads/default.mspx
http://dev.mysql.eom/downloads/mysql/5.0.html
http://www.ibm.com/developerworks/library/ws-polas/,May
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-securitypolicy.pdf

http://www.oracle.com/technology/products/ias/bpel/index.html

[Ora06] Oracle Database 10G Enterprise Edition, April 2006,

http://www.oracle.com/database/index.html

[Ouy05] Ouyang, C., Aalst, W.M.P. van der, Breutel, S., Dumas, M., Elofstede, A.E1.M. ter, &

Verbeek, H.M.W. (2005). "Formal semantics and analysis of control flow in WS-

BPEL", BPM Center Report (Ext. rep. 05-13). Eindhoven: BPM Center.

[Owi82] Susan Owicki and Leslie Lamport, "Proving Liveness Properties of Concurrent

Programs"ACM Transactions on Programming Languages and Systems, Volume 4 ,

Issue 3 (July 1982).

[Owl04a] OWL-S: Semantic Markup for Web Services, W3C Member Submission 22

November 2004, h t t p : / / w w w . w 3 . o r g / S u b m i s s i o n / O W L - S /

[Owl04b] OWL Web Ontology Language Overview, W3C Recommendation 10 February

2004, http://www.w3.org/TR/owl-features/

[Pan99] Jiantao Pan, "Software Testing", Departmental Report, Electrical and Computer

Engineering Department, Carnegie Mellon University, Spring 1999

[Par92] David Lorge Pama, "Tabular Representation of Relations", Technical Report, CRL

Report No. 260, October, 1992

[Pas05] Paschke A., Bichler, M., "SLA Representation, Management and Enforcement -

Combining Event Calculus, Deontic Logic, Horn Logic and Event Condition Action

Rules", E-Technology, E-Commerce, E-Service EEE05 Conference, Elong Kong,

March 2005.

[Pau93] G. Paul. “Approaches to Abductive Reasoning: an overview”, Artificial Intelligence,

Kluwer Academic Publishers, 7, 109-152, 1993.

[Pel03a] Chris Paletz “Web Services Orchestration. A review of emerging technologies, tools

and standards”, Hewllett Packard White Paper, January 2003

[Pel03b] C. Peltz. Web Service Orchestration and Choreography. A look at WSCI and

BPEL4WS. WebServices Journal, 03(7), July 2003.

[Pet97] D. K. Peters. “Deriving Real-Time Monitors from System Requirements

Documentation” Proceedings of the Third IEEE International symposium on

Requirements Engineering (RE’97) Doctoral Consortium, January 1997

[Pet02] Dennis K. Peters and David Lorge Pamas. “Requirements-based Monitors for Real-

Time systems”, IEEE Transactions on Software Engineering, vol. 28, February 2002,

[Pic02] Giacomo Piccinelli, Anthony Finkelstein and Christian Nentwich. “Web Services

Need Consistency”. 17th ACM Annual Conference on Object-Oriented Programming,

Systems, Languages and Applications. November 4-8, 2002 Washington State

Convention & Trade Center, Seattle, Washington, USA

[Pin94] Pinto, J. A., Temporal Reasoning in the Situation Calculus, Ph.D. Thesis, Department

258

http://www.oracle.com/technology/products/ias/bpel/index.html
http://www.oracle.com/database/index.html
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/TR/owl-features/

of Computer Science, University of Toronto, 1994

[Ple93] Plexousakis D. "Integrity Constraint and Rule Maintenance in Temporal Deductive

Knowledge Bases", In Proc. of the 19th Int. Conference on Very Large Data Bases,

1993

[Pra05] M.Prasanna, S.N. Sivanandam, R. Venkatesan and R.Sundarrajan, "A SURVEY ON

AUTOMATIC TEST CASE GENERATION", Academic Open Internet Journal,

Volume 15, 2005

[Rdf04] RDF/XML Syntax Specification. February 10, 2004.

http://www.w3.org/TR/rdf-svntax-grammar/

[Reg02] Regular Expressions and the Java Programming Language

http://iava.sun.com/developer/technicalArticies/releases/L4regex/, April 2002.

[Rob02] William N. Robinson. “Monitoring Software Requirements using Instrumented

Code”. - In the Proceedings of the Hawaii International Conference on Systems

Sciences, January 7 -10, 2002, Big Island, Hawaii.

[Rob03a] William N. Robinson. “Monitoring Web Service Requirements”, In the proceedings

of 12th International Conference on Requirements Engineering, 2003

[Rob03b] William N. Robinson. “Monitoring Web Service Interactions”, In the proceedings

of Workshop On Requirements Engineering and Open Systems (REOS), September

08, 2003, Monterey CA.

[Sam92] M. Mansouri-Samani and M. Sloaman, “Monitoring Distributed Systems (A

Survey)”, Imperial College Research Report No. DOC92/23

[Sch04] J. Schlimmer (ed.). "Web Services Policy Framework (WS-Policy Framework)".

www.ibm.com/developerworks/library/specification/ws-polfram/, September 2004.

[Sco93] Roger S. Scowen, "Extended BNF — A generic base standard". Software

Engineering Standards Symposium 1993

[Sha90] Shanahan, M. P. "Representing continuous change in the event calculus".

Proceedings of the European Conference on Artificial Intelligence (ECAI-90), 1990.

[Sha99] M. Shanahan. “The event calculus explained”, In M. J. Wooldridge and M. Veloso,

editors, Articial Intelligence Today, Vol. 1600 of LNCS, pages 409-430. Springer,

1999

[Sha04] C. Sharp (ed.). "Web Services Policy Attachment (WS-PolicyAttachment)".

www-128.ibm.com/developerworks/library/specification/ws-polatt/, September 2004.

[Smt82] Simple Mail Transfer Protocol (SMTP),

http://www.freesoft.org/CIE/RFC/821/index.htm

[Soa03] Simple Object Access Protocol (SOAP) 1.2. June 24, 2003.

http://www.w3.org/TR/soap/

[Sol03] Monika Solanki and Charlie Abela, "The Landscape of Markup Languages for Web

259

http://www.w3.org/TR/rdf-svntax-grammar/
http://iava.sun.com/developer/technicalArticies/releases/L4regex/
http://www.ibm.com/developerworks/library/specification/ws-polfram/
http://www.freesoft.org/CIE/RFC/821/index.htm
http://www.w3.org/TR/soap/

Service Composition", May 2003

[Sow03] John F. Sowa, "Processes and Causality",

h t t p : / / w w v v . i f s o w a . c o m / o n t o l o g y / c a u s a l . h t m , 2003.

[Spa04] Spanoudakis G., Mahbub K.: Requirements Monitoring for Service-Based Systems:

Towards a framework based on Event Calculus , 19th IEEE International Conference

on Automated Software Engineering.

[Spa06] Spanoudakis G. and Mahbub K. "Non Intrusive Monitoring of Service Based

Systems", International Journal of Cooperative Information Systems, 15(3): 325-358,

2006.

[Spa07] Spanoudakis G, Kloukinas C, Androutsopoulos K: "Towards Security Monitoring

Patterns", 22nd Annual ACM Symposium on Applied Computing, Technical Track on

Software Verification, March 2007 (to appear).

[Sta04] Ch. Stahl, and K. Schmidt. "A Petri net semantic for BPEL", In Ekkart Kindler,

editor, Proc. of 11th Workshop AWPN. Paderbom University, October 2004.

[Sun03] Sun One Studio 8, May 2003,

http://developers.sun.com/prodtech/cc/reference/index.jsp

[Tal05] Steve Ross-Talbot, "Orchestration and Choreography: Standards, Tools and

Technologies for Distributed Workflows”, Invited lecture, NETTAB, 5-7 October,

2005, Second University of Naples, Naples, Italy.

[Tho91] Thomas A. Henzinger, Zohar Manna, Amir Pnueli," Temporal Proof Methodologies

for Real-time Systems", Conference Record of the Eighteenth Annual ACM

Symposium on Principles of Programming Languages, 1991

[Tia03) M. Tian, A. Gramm, T. Naumowicz, H. Ritter, and J. Schiller. "A Concept for QoS

Integration in Web Services". 1st Web Services Quality Workshop (WQW 2003), in

conjunction with 4th International Conference on Web Information Systems

Engineering (WISE 2003), Rome, Italy, December 2003.

[Tia04] M. Tian, A. Gramm, H. Ritter, and J. Schiller, “A Survey of current Approaches

towards Specification and Management of Quality of Service for Web Services”, PIK

3/04.

[TisOO] Francesco Tisato, Andrea Savigni, Walter Cazzola, and Andrea Sosio. “Architectural

reflection realising software architectures via reflective activities”. In Volker Gruhn,

Wolfgang Emmerich, and Stefan Tai, editors, Engineering Distributed Objects (EDO

2000), LNCS, Berlin, 2000. Springer.

[TosOl] Vladamir Tosic, Bernard Pagurek, Babak Esfandiari, Kruti Patel. “On the

Management of Compositions of Web Services”. Workshop on Object-Oriented Web

Services - OOWS (at OOPSLA 2001).

[Tos02] Vladamir Tosic, Bernard Pagurek, Babak Esfandiari, Kruti Patel, Wei Ma. “Web

260

http://wwvv.ifsowa.com/ontology/causal.htm
http://developers.sun.com/prodtech/cc/reference/index.jsp

Service Offerings Language (WSOL) and Web Service Composition Management

(WSCM). 17lh ACM Annual Conference on Object-Oriented Programming, Systems,

Languages and Applications. November 4-8, 2002 Washington State Convention &

Trade Center, Seattle, Washington, USA

[Tra99] Eushiuan Tran, "Verification, Validation, Certification", Departmental Report,

Electrical and Computer Engineering Department, Carnegie Mellon University,

Spring 1999

[Tsu99] Tsur, D. and Shamir, R. "Faster Subtree Isomorphism", Journal of Algorithms, 33,

1999, 267-280

[Ud_IBM] https://uddi.ibm.com/ubr/registry.html

[Ud_MIC] http://uddi.microsoft.com/default.aspx

[UddOO] “UDDI Technical White Paper” - UDDI.org White Paper, 6 Sept 2000.

[Udd02] “The Evolution of UDDI” - UDDI.org White Paper, 19th Jul 2002.

[Udd03] UDDI Spec Technical Committee Specification. October 14, 2003.

http://uddi.org/pubs/uddi v3.htm

[Uml03] Unified Modelling Language (UML), version 1.5, March 01, 2003,

http://www.omg.Org/technologv/documents/formal/um.l.htm

[Urt02] David Urting, and Yolande Berbers, "Runtime Veri" cation of Timing Constraints",

Department of Computer Science, Katholieke Universiteit Leuven, Belgium, Report

CW345, July 2002.

[Var98] M. Vardi. "Linear vs branching time: A complexity-theoretic perspective". In

Proceedings, 13th Annual IEEE Symposium on Logic in Computer Science. IEEE

Computer Society Press, 1998.

[VarOl] Vardi, M. Y., "Branching vs. linear time: Final showdown", in T. Margaria and W.

Yi, (eds.), Proceedings of the 2001.

[Whi95] Stephanie White and Michael Edwards, "A requirements taxonomy for specifying

complex systems", First IEEE International Conference on Engineering of Complex

Computer Systems (ICECCS'95) p. 373

[WhiOO] James A. Whittaker, "What Is Software Testing? And Why Is It So Hard?", IEEE

SOFTWARE January/February 2000.

[Wsa02] “Web Services Architecture” - W3C Working Draft, 14th Nov 2002,

h t t p : / / w w w . w 3 . o r g / T R / 2 0 0 2 / W D - w s - a r c h - 2 0 0 2 1 1 1 4

[Wsa04] “Web Services Architecture” - W3C Working Group Note, 11th February 2004,

h t t p : / / w w w . w 3 . o r g / T R / w s - a r c h /

[Wsb06] " Web Services Business Process Execution Language" Version 2.0, Public Review

Draft, 23th August, 2006, h t t p : / / d o c s . o a s i s - o p e n . o r g / w s b p e 1 / 2 .0 / w s b p e l - s p e c i f i c a t i o n -

draft.html

261

https://uddi.ibm.com/ubr/registry.html
http://uddi.microsoft.com/default.aspx
http://uddi.org/pubs/uddi_v3.htm
http://www.omg.Org/technologv/documents/formal/um.l.htm
http://www.w3.org/TR/2002/WD-ws-arch-20021114
http://www.w3.org/TR/ws-arch/

[Wsc02] Web Service Choreography Interface (WSCI) 1.0, August 08, 2002.

h t t p : / / w w w . w 3 . o r g / T R / w s c i /

[Wsc05] Web Srevices Choreography Description Language, Version 1.0, W3C Candidate

Recommendation, November 9, 2005, http://www.w3.org/TR/ws-cdl-10/

[Wsd04] Web Service Description Language (WSDL) Version 2.0 Part 1: Core Language,

August 2004. h t t p : / / w w w . v v 3 . o r g / T R / 2 0 0 4 / W D - w s d l 2 0 - 2 0 0 4 0 8 0 3 /

[WsfOl] Frank Leymann. Web Services Flow Language (WSFL) version 1.0, IBM Software

Group, May 2001.

[Wsg04] "Web Services Glossary" - W3C Working Group Note, 11 February, 2004.

http://www.w3.org/TR/ws-gloss/

[XlaOl] Satish Thatte. “XLANG: Web Services for Business Process Design”. Microsoft

Corporation, 2001.

[Xli02] Xlinkit: A Consistency Checking and Smart Link Generation Service. ACM

Transactions on Software Engineering and Methodology, pages 151-185, May 2002

[Xme05] XMethods, h t t p : / / w w w . x m e t h o d s . n e t /

[Xml97] The XML Data Model, April 27, 1997, http://www.w3.org/XML/Datamodel.html

[Xml04a] XML Schema Part 0: Primer Second Edition. 28 October 2004,

h t t p : / / w w w . w 3 . o r g / r R / 2 0 0 4 / R E C - x m l s c h e m a - 0 - 2 0 0 4 1 Q 2 8 /

[Xml04b] XML Schema Part 2: Datatypes Second Edition, W3C Recommendation 28

October 2004, h t t p : / / w w w . w 3 . O r g / T R / x m l s c h e m a - 2 / # d a t a t v p e

[Xml04c] Extensible Markup Language (XML) 1.0 (Third Edition), 04 February 2004,

http://www.w3.Org/TR/REC-xml/#sec-documents

[Xpa99] XML Path Language (XPath), Version 1.0, November 1999

[Yus04] Yushi, C., Wah, L.E. and Limbu, D.K., "Web Services Composition - An Overview

of Standards". Synthesis Journal, Fifth issue, ITSC publication, (pp 137-150), 2004.

[Zho03] Zhou Chen, Chia Liang-Tien, Bilhanan Silverajan, and Lee Bu-Sung. "UX - An

Architecture Providing QoS-Aware and Federated Support for UDDI". In proceeding

of the first International Conference on Web Services(ICWS03), June 23 - 26, 2003,

Monte Carlo Resort, Las Vegas, Nevada, USA.

262

http://www.w3.org/TR/wsci/
http://www.w3.org/TR/ws-cdl-10/
http://www.vv3.org/TR/2004/WD-wsdl20-20040803/
http://www.w3.org/TR/ws-gloss/
http://www.xmethods.net/
http://www.w3.org/XML/Datamodel.html
http://www.w3.org/rR/2004/REC-xmlschema-0-20041Q28/
http://www.w3.Org/TR/xmlschema-2/%23datatvpe
http://www.w3.Org/TR/REC-xml/%23sec-documents

Appendix A

A.l XML Schema to Express EC formula in XML
<?xml versions"1.0" encoding="UTF-8" ?>
<xs: schema targetNamespace="http://tempuri.org/ec/formula"

xmlns="http ://tempuri.org/ec/formula"
xmlns:xs="http :// w w w . w 3 .org/2001/XMLSchema"
elementFormDefault="qualified">

<!-- define formulas -->

<xs: element name="formulas" type="formulasType"/>

<! — definition of complex types -->

<xs:complexType name="formulasType">
<xs:sequence>

<xs: element name="formula" type="formulaType” minOccurs="l
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="formulaType">
<xs:sequence>
<xs:element name="quantification" type="quantificationType"

minOccurs="1" maxOccurs="unbounded"/>
<xs:element name="body" type="bodyHeadType" minOccurs="0"/>
<xs:element name="head" type="bodyHeadType"/>

</xs:sequence>
<xs:attribute name="formulald" type="xs:string"

use="required"/>
<xs: attribute name="forChecking" type="xs: boolean"

default="true"/>
<xs: attribute name="forDeduction" type="xs: boolean

default="true"/>
</xs:complexType>

<xs:complexType name="bodyHeadType">
<xs:sequence>

<xs:choice>
<xs:element name="predicate" type="predicateType"/>
<xs:element name="relationalPredicate"

type="relationalPredicateType"/>
<xs:choice>
<xs:sequence minOccurs="0" maxOccurs="unbounded">

<xs:element name="operator" type="logicalOperatorType"/>
<xs:choice>

<xs:element name="predicate" type="predicateType"/>
<xs:element name="timePredicate"

type="timePredicateType"/>
<xs:element name="relationalPredicate"

type="relationalPredicateType"/>
</xs:choice>

</xs:sequence>
</xs:sequence>

</xs:complexType>

<xs:complexType name="predicateType">

263

http://tempuri.org/ec/formula
http://www.w3.org/2001/XMLSchema

<xs:choice>
<xs:element name="happens" type="happensType"/>
<xs:element name="initiates" type="initiatesType"/>
<xs:element name="holdsAt" type="holdsAtType"/>
<xs:element name="initially" type="holdsAtType"/>
<xs:element name="terminates" type="terminatesType"/>
<xs:element name="clipped" type="clippedType"/>

<xs:element name="declipped" type="declippedType"/>
</xs:choice>
<xs:attribute name="negated" type="xs:boolean"

default="false"/>
<xs:attribute name="unconstrained" type="xs:boolean"

default="false"/>
</xs:complexType>

<xs:complexType name="timePredicateType">
<xs:choice>

<xs:element name="timeEqualTo" type="TimeRelation"/>
<xs:element name="timeNotEqualTo" type="TimeRelation"/>
<xs:element name="timeLessThan" type="TimeRelation"/>
<xs:element name="timeGreaterThan" type="TimeRelation"/>
<xs:element name="timeLessThanEqualTo" type="TimeRelation"/>
<xs:element name="timeGreaterThanEqualTo"

type="TimeRelation"/>
</xs:choice>

</xs:complexType>

<xs:complexType name="holdsAtType">
<xs:sequence»

<xs:element name="valueOf" type="fluentType"/>
<xs:element name="timeVar" type="timeVariableType"/>

</xs:sequence»
</xs:complexType»

<xs:complexType name="initiatesType">
<xs:sequence»

<xs:choice»
<xs:element name="ir_term" type="irTermType"/>
<xs:element name="rc_term" type="rcTermType"/>
<xs:element name="as_term" type="asTermType"/>

</xs:choice»
<xs:element name="valueOf" type="fluentType"/>
<xs:element name="timeVar" type="timeVariableType"/>

</xs:sequence»
</xs:complexType»

<xs:complexType name="happensType">
<xs:sequence»

<xs:choice»
<xs:element name="ic_term" type="icTermType"/>
<xs:element name="ir_term" type="irTermType"/>
<xs:element name="rc_term" type="rcTermType"/>
<xs:element name="re_term" type="reTermType"/>
<xs:element name="as_term" type="asTermType"/>

</xs:choice»
<xs:element name="timeVar" type="timeVariableType"/>
<xs:element name="fromTime" type="TimeExpression"/>
<xs:element name="toTime" type="TimeExpression"/>

</xs:sequence»
</xs:complexType»

264

< x s :complexType name="clippedType">
< x s : sequence»

< x s : element name="timeVarl" type="timeVariableType"/>
< x s : element name="valueOf" type="fluentType"/>
< x s : element name="timeVar2" type="timeVariableType"/>

</ x s : sequence»
</xs:complexType>

< x s :complexType name="declippedType">
< x s : sequence»
< x s : element name="timeVarl" type="timeVariableType"/>
< x s : element name="valueOf" type="fluentType"/>
< x s : element name="timeVar2" type="timeVariableType"/>

< / x s : sequence»
</xs:complexType>

< x s :complexType name="terminatesType">
< x s : sequence»

< x s :choice>
< x s : element name="ir_term" type="irTermType"/>
< x s : element name="rc_term" type="rcTermType"/>
< x s : element name="as_term" type="asTermType"/>

</ x s :choice>
<xs:element name="valueOf" type="fluentType"/>
<xs:element name="timeVar" type="timeVariableType"/>

< / x s : sequence»
</ x s :complexType>

< x s :complexType name="fluentType">
< x s : sequence»

< x s : element name="target">
< x s :complexType>

< x s : sequence»
< x s : element name="variable" type="variableType"/>

</ x s : sequence»
</ x s :complexType>

</ x s :element>
< x s : element name="source">

< x s :complexType>
< x s :choice>

< x s : element name="variable" type="variableType"/>
< x s : element name="operationCall"

type="operationCallType"/>
</xs:choice>

< / x s :complexType>
</ x s : element»

< / x s : sequence»
</xs:complexType>

< x s :complexType name="quantificationType">
< x s : sequence»

<xs:element name="quantifier">
< x s :simpleType>

< x s : restriction base="xs: string">
<xs: pattern value="forall|existential"/>

< / x s : restriction»
</xs:simpleType>

</ x s : element»
< x s : choice >
< x s : element name="regularVariable" type="variableType"/»

< x s : element name="timeVariable" type="timeVariableType"/>

265

</xs:choice>
</xs:sequence>

</xs:complexType>

<xs:complexType name="icTermType">
<xs:sequence>

<xs:element name="operationName" type="xs:string"/>
<xs:element name="partnerName" type="xs:string"/>
<xs:element name="id" type="xs:string"/>
<xs:element name="variable" type="variableType" minOccurs="0

maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>

<xs:complexType name="irTermType">
<xs:sequence>
<xs:element name="operationName" type="xs:string"/>
<xs:element name="partnerName" type="xs:string"/>
<xs:element name="id" type="xs:string"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="rcTermType">
<xs:sequence»

<xs:element name="operationName" type="xs:string"/>
<xs:element name="partnerName" type="xs:string"/>
<xs:element name="id" type="xs:string"/>

</xs:sequence»
</xs:complexType>

<xs:complexType name="reTermType">
<xs:sequence»

<xs:element name="operationName" type="xs:string"/>
<xs:element name="partnerName" type="xs:string"/>
<xs:element name="id" type="xs:string"/>
<xs:element name="variable" type="variableType" minOccurs="0

maxOccurs="unbounded"/>
</xs:sequence»

</xs:complexType>

<xs:complexType name="asTermType">
<xs:sequence»

<xs:element name="operationName" type="xs:string"/>
<xs:element name="id" type="xs:string"/>

</xs:sequence»
</xs:complexType>

<xs:complexType name="variableType">
<xs:sequence»

<xs:element name="varName" type="xs:string"/>
<xs:choice>

<xs:sequence»
<xs:element name="varType" type="xs:string"/>
<xs:element name="value" type="xs:string"

minOccurs="0"/>
</xs:sequence»
<xs:element name="array" type="arrayType"/>

</xs:choice>
</xs:sequence»
<xs:attribute name="persistent" type="xs:boolean"

default="false"/>

266

<xs: attribute name="forMatching" type="xs¡boolean"
default="true"/>

</xs:complexType>

<xs:complexType name="timeVariableType">
<xs:sequence>

<xs:element name="varName" type="xs: string"/>
<xs: element name="varType" type="xs: string"

fixed="TimeVariable"/>
<xs: element name="value" type="xs: string" minOccurs="0"/>

</xs: sequence»
</xs:complexType>

<xs:simpleType name="logicalOperatorType">
<xs: restriction base="xs: string">

<xs: pattern value="and|or"/>
</xs:restriction>

</xs:simpleType>

<xs:complexType name="TimeExpression">
<xs: sequence»

<xs: element name="time" type="timeVariableType"/>
<xs: sequence minOccurs="0" maxOccurs="unbounded">

<xs:choice>
<xs: element name="plusTime" type="timeVariableType"/>
<xs: element name="minusTime" type="timeVariableType"/>
<xs: element name="plus" type="xs: decimal"/>
<xs: element name="minus" type="xs: decimal"/>

</xs:choice>
</xs: sequence»

</xs: sequence»
</xs:complexType>

<xs:complexType name="TimeRelation">
<xs: sequence»

<xs: element name="timeVarl" type="TimeExpression"/>
<xs: element name="timeVar2" type="TimeExpression"/>

</xs: sequence»
</xs:complexType>

<xs:complexType name="varRelationType">
<xs: sequence»

<xs: element name="operandl" type="operandType"/>
<xs:element name= "operand2" type="operandType"/>

</xs: sequence»
</xs:complexType>

<xs:complexType name="relationalPredicateType">
<xs: sequence»

<xs:choice>
<xs: element name="equalTo" type="varRelationType"/>
<xs: element name="notEqualTo" type="varRelationType"/>
<xs:element name="lessThan" type="varRelationType"/>
<xs: element name="greaterThan" type="varRelationType"/>
<xs:element name="lessThanEqualTo" type="varRelationType"/>
<xs: element name="greaterThanEqualTo"

type="varRelationType"/>
</xs:choice>
<xs:element name="timeVar" type="timeVariableType"/>

</xs: sequence»

267

< x s : c o m p le x T y p e n a m e = " o p e r a n d T y p e ">
< x s : c h o i c e >

< x s : e l e m e n t n a m e = " o p e r a t i o n C a l l " t y p e = " o p e r a t i o n C a l l T y p e " /
< x s : e l e m e n t n a m e = " v a r i a b l e " t y p e = " v a r i a b l e T y p e " / >
< x s : e l e m e n t n a m e = " c o n s t a n t " t y p e = " c o n s t a n t T y p e " / >

< / x s : c h o i c e >
< / x s : c o m p le x T y p e >

< x s : c o m p le x T y p e n a m e = " o p e r a t i o n C a l l T y p e " >
< x s : s e q u e n c e >

< x s : e l e m e n t n a m e = " n a m e " t y p e = " x s : s t r i n g " / >
< x s : e l e m e n t n a m e = " p a r t n e r " t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 " / >
< x s : e l e m e n t n a m e = " v a r i a b l e " t y p e = " v a r i a b l e T y p e "

m i n O c c u r s = "0" m a x O c c u r s = " u n b o u n d e d " / >
< / x s : s e q u e n c e >

< / x s : c o m p le x T y p e >

< x s : c o m p le x T y p e n a m e = " c o n s t a n t T y p e ">
< x s : s e q u e n c e >

< x s : e l e m e n t n a m e = " n a m e " t y p e = " x s : s t r i n g " / >
< x s : e l e m e n t n a m e = " v a l u e " t y p e = " x s : s t r i n g " / >

< / x s : s e q u e n c e >
< / x s : c o m p le x T y p e >

< x s : c o m p le x T y p e n a m e = " a r r a y T y p e ">
< x s : s e q u e n c e >

< x s : e l e m e n t n a m e = " t y p e " t y p e = " x s : s t r i n g " / >
< x s : e l e m e n t n a m e = " i n d e x " t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 " / >
< x s : e l e m e n t n a m e = " v a l u e " t y p e = " a r r a y V a l u e T y p e " m i n O c c u r s = " 0

m a x O c c u r s = " u n b o u n d e d " />
< / x s : s e q u e n c e »

</xs:complexType>

< x s : c o m p le x T y p e n a m e = " a r r a y V a l u e T y p e ">
< x s : s e q u e n c e »

< x s : e l e m e n t n a m e = " i n d e x V a l u e " t y p e = " x s : s t r i n g " / >
< x s : e l e m e n t n a m e = " c e l l V a l u e " t y p e = " x s : s t r i n g " />

< / x s : s e q u e n c e »
< / x s : c o m p le x T y p e »

< / x s : s c h e m a >

< / x s : co m plexT ype>

268

Appendix B

<?xml version="1.0" encoding="UTF-8" ?>
<xs: schema targetNamespace="http ://tempuri.org/ec/policy"

xmlns="http ://tempuri.org/ec/policy"
xmlns:fns="http ://tempuri.org/ec/formula"
xmlns:xs="http ://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">

<!-- define policy -->

<xs:element name="policy" type="policyType"/>

<!-- definition of complex and simple types -->

B.l XML Schema to Express Monitoring Policy in XML

<xs:complexType name="policyType">
<xs:sequence>

<xs: element name="processSpecification"
type="processSpecificationType"/>

<xs:element name="formulas" type="fns:formulasType"
minOccurs="0"/>

<xs: element name="monitoringMode"
type="monitoringModeType"/>

<xs: element name="pollinglnterval" type="xs: long"/>
<xs: element name="eventSource" type="eventSourceType"/>

</xs: sequence»
</xs:complexType>

<xs:complexType name="processSpecificationType">
<xs: sequence»

<xs: element name="bpelFile" type="xs: string"/>
<xs:element name="wsdlFiles" type="wsdlFilesType"/>

</xs: sequence»
</xs:complexType>

<xs:complexType name="wsdlFilesType">
<xs: sequence»

<xs:element name="wsdlFile" type="xs: string" minOccurs
maxOccurs="unbounded"/>

</xs: sequence»
</xs:complexType>

< x s :simpleType name="monitoringModeType">
<xs¡restriction base="xs: string">

< x s : pattern value="recorded|mixed"/>
</ x s :restriction>

< / x s :simpleType>

<xs:complexType name="eventSourceType">
<xs: sequence»

<xs:element name="bpelEngineName" type="xs: string"/>
<xs:element name="ipAddress" type="xs: string"/>
<xs:element name="port" type="xs:int"/>

</xs: sequence»
</xs:complexType>

</xs: schema»

269

http://www.w3.org/2001/XMLSchema

B.2 XML Schema to Express Simulator Configuration in
XML

<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema targetNamespace="http://tempuri.org/ec/simConfig"

xmlns="http://tempuri.org/ec/simConfig"
xmlns:fns="http://tempuri.org/ec/formula"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">

<!-- define simulation configuration -->

<xs:element name="simConfig" type="simConfigType"/>

<!-- definition of complex and simple types -->

<xs:complexType name="simConfigType">
<xs:sequence>

<xs:element name="processSpecification"
type="fns:processSpecificationType"/>

<xs:element name="domains" type="domainsType"/>
<xs:element name="execPathDistribution"

type="distributionType"/>
<xs:element name="unconstrainedDistribution"

type="distributionType"/>
</xs:sequence>

</xs:complexType>

<xs:complexType name="domainsType">
<xs:sequence»

<xs:element name="domain" type="domainType" minOccurs="1"
maxOccurs="unbounded"/>

</xs:sequence»
</xs:complexType>

<xs:complexType name="domainType">
<xs:sequence»

<xs:element name="varName" type="xs:string"/>
<xs:element name="varType" type="xs:string"/>
<xs:element name="size" type="xs:int"/>

</xs:sequence»
</xs:complexType>

<xs:complexType name="distributionType">
<xs:sequence»

<xs:element name="mean" type="xs:float"/>
<xs:element name="variance" type="xs:float"/>

</xs:sequence»
</xs:complexType>

</xs:schema»

2 7 0

http://tempuri.org/ec/simConfig
http://tempuri.org/ec/simConfig
http://tempuri.org/ec/formula
http://www.w3.org/2001/XMLSchema

Appendix C

<?xml versions"1.0" encoding="UTF-8" ?>
<xs: schema targetNamespace="http://tempuri.org/ec/template"

xmlns="http ://tempuri.org/ec/template"
xmlns : xs= "http : / /www. w3 . org/2001/XMLSchema11
elementFormDefault="qualified">

C.l XML Schema to Express Templates in XML

<!-- define templates -->

<xs:element name="templates" type="templatesType"/>

<!-- definition of complex types -->

<xs:complexType name="templatesType">
<xs:sequence?

<xs:element name="template" type="templateType"
minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence?
</xs:complexType>

<xs:complexType name="templateType">
<xs: sequence?

<xs: element name="dependants" type="dependantsType"/>
<xs: element name="varBindings" type="varBindingsType"/>
<xs: element name="status">

<xs:simpleType>
<xs: restriction base="xs: string">

<xs: pattern
value="UD|I_R_BII_E_BIU_B|P_I_E_B|P_U_B"/>

</xs : restriction
</xs:simpleType>

</xs:element>
<xs: element name="body" type="predicatesType"/>
<xs: element name="head" type="predicatesType"/>

</xs: sequence?
<xs:element name="decisionTime" type="xs: string"/>
<xs:element name="copyCounter" type="xs: string"/>
<xs: attribute name="formulald" type="xs: string"

use="required"/>
<xs: attribute name="type" type="xs: string" use="required"/>
<xs: attribute name="active" type="xs¡boolean"

default="false"/>
</xs:complexType>

<xs:complexType name="dependantsType">
<xs: sequence?

<xs: element name="dependant" type="dependantType"
minOccurs="0" maxOccurs="unbounded"/>

</xs: sequence?
</xs:complexType>

<xs:complexType name="dependantType">
<xs: sequence?

<xs: element name="targetld" type="xs: string"/>
<xs: element name="type">

271

http://tempuri.org/ec/template

<xs:simpleType>
<xs: restriction base="xs: string">

<xs:pattern value="abductive|deductive"/>
</xs:restriction>

</xs:simpleType>
</xs:element>
<xs: element name="signature" type="signatureType"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="varBindingsType">
<xs: sequence»
<xs:element name="variable" type="variableType"/>

</xs: sequence»
</xs:complexType»

<xs:complexType name="predicatesType">
<xs: sequence»

<xs: element name="predicate" type="predicateType"
minOccurs="1" maxOccurs="unbounded"/>

</xs: sequence»
</xs:complexType»

<xs:complexType name="predicateType"»
<xs:sequence»

<xs:choice»
<xs:element name=”signature" type="signatureType"/»
<xs¡element name="relationalPredicate"

type="relationalPredicateType"/>
</xs:choice»
<xs:element name="timeVarQuantifier"

type="quantifierType"/>
<xs:element name="timeVar" type="timeVariableType"/>
<xs:element name="fromTime" type="TimeExpression"/>
<xs:element name="toTime" type="TimeExpression"/>
<xs:element name="truthValue" type="truthValueType"/>
<xs:element name="source" type="sourceType"/>
<xs:element name="ID" type="xs:string"/>

</xs:sequence»
<xs:attribute name="pHappens" type="xs:boolean"

default="false"/>
<xs:attribute name="negated" type="xs:boolean"

default= "false11 />
</xs:complexType»

< x s :simpleType name="truthValueType">
<xs¡restriction base="xs¡string"»

< x s ¡pattern value="True|False|Un"/>
</xs¡restriction»

</xs:simpleType»

< x s ¡simpleType name="sourceType">
< x s : restriction base="xs: string"»

< x s ¡pattern value="UN|RE|D E |NF"/»
</xs: restriction»

</xs¡simpleType»

< x s ¡simpleType name="quantifierType">
< x s ¡restriction base="xs¡string">

< x s : pattern value="forall|existential"/>

272

</xs:restriction>
</xs:simpleType>

<xs:complexType name="signatureType">
<xs:choice>

<xs:element name="happens" type="happensType"/>
<xs:element name="initiates" type="initiatesType"/>
<xs:element name="holdsAt" type="holdsAtType"/>

</xs:choice>
</xs:complexType>

<xs:complexType name="holdsAtType">
<xs:sequence>

<xs:element name="valueOf" type="fluentType"/>
</xs:sequence>

</xs:complexType>

<xs:complexType name="initiatesType">
<xs:sequence>

<xs:choice>
<xs:element name="ir_term" type="irTermType"/>
<xs:element name="rc_term" type="rcTermType"/>
<xs:element name="as_term" type="asTermType"/>

</xs:choice>
<xs:element name="valueOf" type="fluentType"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="happensType">
<xs:sequence>

<xs:choice>
<xs:element name="ic_term"
<xs:element name="ir_term"
<xs:element name="rc_term"
<xs:element name="re_term"
<xs:element name="as_term"

</xs:choice>
</xs:sequence»

</xs:complexType>

type="icTermType"/>
type="irTermType"/>
type="rcTermType"/>
type="reTermType"/>
type="asTermType"/>

<xs:complexType name="relationalPredicateType">
<xs:sequence»

<xs:choice>
<xs:element name="equalTo" type="varRelationType"/>
<xs:element name="notEqualTo" type="varRelationType"/>
<xs:element name="lessThan" type="varRelationType"/>
<xs:element name="greaterThan" type="varRelationType"/>
<xs:element name="lessThanEqualTo" type="varRelationType"/>
<xs : element name= "greaterThanEqualTo11

type="varRelationType"/>
</xs:choice>
<xs:element name="timeVar" type="timeVariableType"/>

</xs:sequence»
</xs:complexType>

<xs:complexType name="fluentType">
<xs:sequence»

<xs:element name="target">
<xs:complexType>

<xs:sequence»
<xs:element name="variable" type="variableType"/>

273

</xs:sequence>
</xs :complexType>

</xs:element>
<xs:element name="source">

<xs:complexType>
<xs:choice>

<xs:element name="variable" type="variableType"/>
<xs:element name="operationCall"

type="operationCallType"/>
</xs:choice>

</xs:complexType>
</xs:element>

</xs:sequence»
</xs:complexType>

< x s :complexType name="TimeExpression">
< x s :sequence»

< x s :element name="time" type="timeVariableType"/>
< x s :sequence minOccurs="0" maxOccurs="unbounded">

< x s :choice>
<xs:element name="plusTime" type="timeVariableType"/>
<xs:element name="minusTime" type="timeVariableType"/>
<xs:element name="plus" type="xs:decimal"/>
< x s :element name="minus" type="xs:decimal"/>

</ x s :choice>
</xs:sequence»

</ x s :sequence»
</xs:complexType>

< x s :complexType name="icTermType">
< x s :sequence»

< x s :element name="operationName" type="xs:string"/>
< x s :element name="partnerName" type="xs:string"/>
<xs:element name="variable" type="variableType" minOccurs="0

maxOccurs="unbounded"/>
</xs:sequence»

</xs :complexType>

<xs:complexType name="irTermType">
<xs:sequence»
<xs:element name="operationName" type="xs:string"/>
<xs:element name="partnerName" type="xs:string"/>

</xs:sequence»
</xs:complexType>

< x s :complexType name="rcTermType">
< x s :sequence»

<xs:element name="operationName" type="xs:string"/>
<xs:element name="partnerName" type="xs:string"/>

</xs:sequence»
</ x s :complexType>

< x s :complexType name="reTermType">
< x s :sequence»

< x s :element name="operationName" type="xs:string"/>
< x s :element name="partnerName" type="xs:string"/>
<xs:element name="variable" type="variableType" minOccurs="0

maxOccurs="unbounded"/>
</xs:sequence»

</xs:complexType>

274

<xs:complexType name="asTermType">
<xs:sequence>

<xs:element name="operationName" type="xs:string"/>
</xs:sequence>

</xs:complexType>

<xs:complexType name="variableType">
<xs:sequence>

<xs:element name="varName" type="xs:string"/>
<xs:choice>

<xs:sequence>
<xs:element name="varType" type="xs:string"/>
<xs:element name="value" type="xs:string"

minOccurs="0"/>
</xs:sequence>
<xs:element name="array" type="arrayType"/>

</xs:choice>
</xs:sequence>
<xs:attribute name="persistent" type="xs:boolean"

default="false"/>
<xs:attribute name="forMatching" type="xs:boolean"

default="true"/>
</xs:complexType>

<xs:complexType name="timeVariableType">
<xs:sequence»

<xs:element name="varName" type="xs:string"/>
<xs:element name="varType" type="xs:string"

fixed="TimeVariable"/>
<xs:element name="value" type="xs:string" minOccurs="0"/>

</xs:sequence»
</xs:complexType>

<xs:complexType name="varRelationType">
<xs:sequence»

<xs:element name="operandl" type="operandType"/>
<xs:element name="operand2" type="operandType"/>

</xs:sequence»
</xs:complexType>

<xs:complexType name="relationalPredicateType">
<xs:sequence»

<xs:choice>
<xs:element name="equalTo" type="varRelationType"/>
<xs:element name="notEqualTo" type="varRelationType"/>
<xs:element name="lessThan" type="varRelationType"/>
<xs:element name="greaterThan" type="varRelationType"/>
<xs:element name="lessThanEqualTo" type="varRelationType"/>
<xs:element name="greaterThanEqualTo"

type="varRelationType"/>
</xs:choice>

</xs:sequence»
</xs:complexType>

<xs:complexType name="operandType">
<xs:choice>

<xs:element name="operationCall" type="operationCallType"/>
<xs:element name="variable" type="variableType"/>
<xs:element name="constant" type="constantType"/>

</xs:choice>
</xs:complexType>

275

< x s :complexType name="operationCallType">
< x s :sequence»

<xs:element name="name" type="xs:string"/>
< x s :element name="partner" type="xs:string" minOccurs="0"/>
< x s :element name="variable" type="variableType"

</ x s :sequence»
</xs:complexType>

minOccurs="0" maxOccurs="unbounded"/>

< x s :complexType name="constantType">
< x s :sequence»

< x s :element name=
< x s :element name=

</ x s :sequence»
</xs:complexType>

-"name" type="xs:string"/>
="value" type="xs:string"/>

< x s :complexType name="arrayType">
< x s :sequence»

<xs:element name=
<xs:element name=
<xs:element name=

</xs:sequence»
</xs:complexType>

="type" type="xs:string"/>
="index" type="xs:string" minOccurs="0"/>
="value" type="arrayValueType" minOccurs="0”

maxOccurs="unbounded"/>

< x s :complexType name="arrayValueType">
< x s :sequence»

<xs:element name=
<xs:element name=

</xs:sequence»
</xs:complexType>

="indexValue" type="xs:string"/>
="cellValue" type="xs:string"/>

</xs:schema»

276

Appendix D

Specification of the First Case Study

D.l BPEL Specification of the CRS

<process name="carServiceProcess"
targetNamespace="ht t p ://carservice.org/carserviceprocessing"
suppressJoinFailure="yes"
xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
xmlns:sns="http://carservice.org/wsdl/OnlineRenter"
xmlns:crns="http://tempuri.org/services/CarReg"
xmlns:csns="http://tempuri.org/services/CustomerReg">

<variables>
<variable name=

<variable name=

<variable name=

<variable name=

<variable name=
<variable name=
<variable name=
<variable name=
<variable name=
<variable name=
<variable name=

<variable name=

<variable name=

<variable name=

<variable name=
<variable name=

</variables>

<partners>
<partner name=

<partner name=

<partner name=

</partners>

"authRes"
messageType="csns:authenticateResponse" / >

"authReq"
messageType="csns:authenticateRequest"/>

"isAvailReq"
messageType="crns:isAvailableRequest"/>

"isAvailRes"
messageType="crns:isAvailableResponse"/>

"depReq" messageType="sns:departRequest"/>
"depRes" messageType="sns:departResponse"/>
"entReq" messageType="sns:enterRequest"/>
"entRes" messageType="sns:enterResponse"/>
"retKeyReq" messageType="sns:retKeyRequest"/>
"retKeyRes" messageType="sns:retKeyResponse"/>
"mkUnAva i1Re q"

messageType="crns:makeUnAvailableRequest"/>
"mkUnAvailRes"

messageType="crns:makeUnAvailableResponse"/>
"mkAvailReq"

messageType="crns:makeAvailableRequest"/>
"mkAvailRes"

messageType="crns:makeAvailableResponse"/>
"bpelReq" messageType="sns:request"/>
"bpelRes" messageType="sns:response"/>

"CRS" serviceLinkType="sns:CarRenterLT"
myRole="RentManager"/>

"CMS" serviceLinkType="s n s :CustomerManagerLT"
partnerRole="CustomerManager"/>

"CRMS" serviceLinkType="sn s :CarManagerLT"
partnerRole="CarManager"/>

<correlationSets>
<correlationSet
<correlationSet
<correlationSet
<correlationSet

</correlationSets>

name="loclnfo" properties="sns:Iocs"/>
name="carlnfo" properties="sns:car_id"/>
name="custlnfo" properties="sns:cust_id"/>
name="locAndCarlnfo" properties="sns:Iocs

sns:car_id"/>

277

http://carservice.org/carserviceprocessing
http://schemas.xmlsoap.org/ws/2003/03/business-process/
http://carservice.org/wsdl/OnlineRenter
http://tempuri.org/services/CarReg
http://tempuri.org/services/CustomerReg

<flow>
<links>

<link name="receive-to-auth"/>
<link name="auth-to-check"/>
<link name="check-to-car"/>
<link name="car-to-reply"/>
<link name="check-to-noCar"/>
<link name="noCar-to-reply"/>
<link name="auth-to-no"/>
<link name="no-to-reply"/>
<link name="enter-to-retKey"/>
<link name="release-to-depNotDep"/>

</links>

«receive name="receivel" partner^"CRS" portType="sns:CarRenter"
operation="receiveRequest" variable="bpelReq"

createlnstance="yes">
«source name="rToa" linkName="receive-to-auth"/>
<correlations>

<correlation set="locInfo" initiate="yes"/>
<correlation set="custInfo" initiate="yes"/>
<correlation set="locAndCarlnfo" initiate="yes"/>

</correlations>
</receive>
«assign name="assignl">

«target linkName="auth-to-no"/>
«source linkName="no-to-reply"/>
<copy>

«from expressionCustomer Not Authenticated'"/>
«to variable="bpelRes" part="carld"/>

</copy>
</assign>

«sequence»
«target linkName="auth-to-check"/>
«assign name="assign2">

<copy>
«from variable="bpelReq" part="loc"/>
«to variable="isAvailReq" part="loc"/>

</copy>
«/assign»
«invoke name="invokelsAvail" partner="CRMS"

portType="crns:CarReg" operation="isAvailable"
inputVariable="isAvailReq"
outputVariable="isAvailRes"»

«source 1inkName="check-to-noCar"
transitionCondition="bpws:getVariableData

(1isAvailRes', 'carld') = 1 null1"/»
«source linkName="check-to-car"

transitionCondition="bpws:getVariableData
('isAvailRes' , 'carld') != 'null'"/»

«correlations»
«correlation set="carInfo" initiate="yes"

pattern " in" />
«correlation set="locAndCarlnfo"

initiate= "yes 11 pattern" in" />
«/correlations»

«/invoke»
«/sequence»

278

<assign name="assign3">
<target linkName="check-to-car"/>
<source linkName="car-to-reply"/>
<copy>

<from variable="isAvailRes" part="carld"/>
<to variable="bpelRes" part="carld"/>

</copy>
</assign>
<assign name="assign4">

<target linkName="check-to-noCar"/>
<source linkName="noCar-to-reply"/>
<copy>

<from expression="'Car Not Available 1"/>
<to variable="bpelRes" part="carld"/>

</copy>
</assign>

<sequence>
<target linkName="receive-to-auth" />
<assign name="assign5">

<copy>
<from variable="bpelReq" part="custld"/>
<to variable="authReq" part="custld"/>

</copy>
</assign>
<invoke name="invokeAuth" partner="CMS"

portType="csns:CustomerReg" operation="authenticate"
inputVariable="authReq" outputVariable="authRes">

<source name="aToc" linkName="auth-to-check"
transitionCondition="(bpws:getVariableData
('authRes' , 'authenticateReturn') = true())"/>

<source name="aTon" linkName="auth-to-no"
transitionCondition="bpws:getVariableData
('authRes' , 'authenticateReturn') = false()"/>

</invoke>
</sequence>

<reply name="reply" partner="CRS" portType="sns:CarRenter"
operation="receiveRequest" variable="bpelRes">

ctarget linkName="car-to-reply"/>
<source linkName="release-to-depNotDep"/>
<correlations>

<correlation set="carlnfo"/>
</correlations>

</reply>

<reply name="reply" partner="CRS" portType="sn s :CarRenter"
operation="receiveRequest" variable="bpelRes">

ctarget linkName="noCar-to-reply"/>
ctarget linkName="no-to-reply"/>
ccorrelations>

ccorrelation set="carlnfo"/>
c/correlations>

c/reply>

csequence>
creceive name="receive2 " partner="CRS"

portType="sns:CarRenter" operation="enter"
variable="entReq">

279

<correlations>
<correlation set="locInfo" initiate="yes"/>
<correlation set="carInfo" initiate="no"/>

</corrélations>
</receive>
<reply partner="CRS" portType="sns:CarRenter"

opérâtion="enter" variable="entRes"/>
<source linkName="enter-to-retKey"/>

</seguence>
<pick>
<target linkName="enter-to-retKey"/>
<onMessage partner="CRS" portType="sns:CarRenter"

opérâtion="returnKey" variable="retKeyReq">
<correlations>

<correlation set="locInfo"/>
<correlation set="carInfo"/>

</corrélations>
<sequence>

<assign name="assignô">
<copy>

<from variable="retKeyReq" part="carld"/>
<to variable="mkAvailReq" part="carld"/>

</copy>
</assign>
<assign name="assign7">

<copy>
<from variable="retKeyReq" part="loc"/>
<to variable="mkAvailReq" part="loc"/>

</copy>
</assign>
<invoke name="mkAvaill" partner="CRMS"

portType="crns:CarReg" opérâtion="makeAvailabié"
inputVariable="mkAvailReq"

outputVariable="mkAvailRes">

<correlations>
<correlation set="loclnfo" pattern="out"/>
<correlation set="carInfo" pattern="out"/>

</corrélations>
</invoke>
<reply partner="CRS" portType="sns:CarRenter"

opérâtion="returnKey" variable="retKeyRes"/>
</sequence>

</onMessage>
conAlarm for="'PT90S'">

<empty/>
</onAlarm>

</pick>
<pick>

<target linkName="release-to-depNotDep"/>
<onMessage partner="CRS" portType="sns:CarRenter"

operation="départ" variable="depReq">
<correlations>

<correlation set="locAndCarlnfo" initiate="no"/>
</correlations>
<sequence>

<assign name="assign8">
<copy>

<from variable="depReq" part="carld"/>
<to variable="mkUnAvailReq" part="carld"/>

</copy>

280

</assign>
<assign name="assign9">

<copy>
<from variable="depReq" part="loc"/>
<to variable="mkUnAvailReq" part="loc"

</copy>
</assign>
<assign name="assignlO">

<copy>
<from variable="bpelReq" part="custld1
<to variable="mkUnAvailReq" part="custld"/>

</copy>
</assign>
<invoke name="mkUnAvail" partner="CRMS"

portType="crns:CarReg" operation="makeUnAvailable
inputVariable="mkUnAvailReq"

outputVariable="mkUnAvailRes">

/>

'/>

<correlations>
<correlation set="loclnfo" pattern="out"/>
ccorrelation set="carInfo" pattern="out"/>
"¡correlation set="custInfo" pattern= "out"/>

</correlations>
</invoke>
<reply partner^"CRS" portType="sns:CarRenter"

operation="depart" variable="depRes"/>
</sequence>

</onMessage>
<onAlarm for="’PT30S'">

<sequence>
<assign name="assignll">

<copy>
<from variable="isAvailRes" part="carld"/>
<to variable="mkAvailReq" part="carld"/>

</copy>
</assign>
<assign name="assignl2">

<copy>
<from variable="bpelReq" part="loc"/>
<to variable="mkAvailReq" part="loc"/>

</copy>
</assign>
<invoke name="mkAvail2" partner="CRMS"

portType="crns:CarReg" operation="makeAvailable
inputVariable="mkAvailReq"

outputVariable="mkAvailRes">

<correlations>
<correlation set="loclnfo" pattern="out"/>
"¡correlation set="carInfo" pattern= "out"/>

</correlations>
</invoke>

</sequence>
</onAlarm>

</pick>
</flow>

</process>

281

D.2 WSDL Specification of the CRS

<definitions
targetNamespace="http ://carservice.org/wsdl/OnlineRenter"
xmlns:tns="http://carservice.org/wsdl/OnlineRenter"
xmlns= "http : / / schemas . xml soap . org/wsdl/ 11
xmlns:slnk="http ://schemas.xmlsoap.org/ws/2 003/03/service-link/"
xmlns:xsd="http ://www.w3.org/2001/XMLSchema"
xmlns:crns="http ://tempuri.org/services/CarReg"
xmlns:csns="http ://tempuri.org/services/CustomerReg">

cimport namespace="http://tempuri.org/services/CustomerReg"
location=
"http://138.40.91.72:8080/wstk/CustomerReg/CustomerReg.wsdl"/>

<import namespace="http://tempuri.org/services/CarReg"
location="http://138.40.91.72:8080/wstk/CarReg/CarReg.wsdl"/>

<message name="request">
<part name="custld" type="xsd:string"/>
<part name="loc" type="xsd:string"/>

</message>

<message name="response">
<part name="carld" type="xsd:string"/>

</message>

<message name="departRequest">
<part name="carld" type="xsd:string"/»
<part name="loc" type="xsd:string"/>

</message»

<message name="departResponse">

</message>

<message name="enterRequest">
<part name="carld" type="xsd: string"/>
<part name="loc" type="xsd:string"/>

</message>

<message name="enterResponse">

</message>

<message name="retKeyRequest">
<part name="carld" type="xsd:string"/>
<part name="loc" type="xsd:string"/>

</message>

<message name="retKeyResponse">

</message>

<portType name="CarRenter">
<operation name="receiveRequest">

<input message="tns: request"/>
<output message^"tns: response"/>

282

http://carservice.org/wsdl/OnlineRenter
http://www.w3.org/2001/XMLSchema
http://tempuri.org/services/CustomerReg
http://138.40.91.72:8080/wstk/CustomerReg/CustomerReg.wsdl%22/
http://tempuri.org/services/CarReg
http://138.40.91.72:8080/wstk/CarReg/CarReg.wsdl%22/

</operation>
<operation name="depart">

<input message="tns:departRequest"/>
<output message^"tns:departResponse"/>

</operation>
<operation name="enter">

cinput message="tns:enterRequest"/>
<output message="tns:enterResponse"/>

</operation>
<operation name="returnKey">

<input message="tns:retKeyRequest"/>
coutput message^"tns:retKeyResponse"/>

</operation>
</portType>

<slnk:serviceLinkType name="CarRenterLT">
<slnk:role name="RentManager">

<portType name="tns:CarRenter"/>
</slnk:role>

</slnk:serviceLinkType>

<slnk:serviceLinkType name="CustomerManagerLT">
<slnk:role name="CustomerManager">

<portType name="csns:CustomerReg"/>
</slnk:role>

</slnk:serviceLinkType>

<slnk:serviceLinkType name="CarManagerLT">
<slnk:role name="CarManager">

<portType name="crns:CarReg"/>
</slnk:role>

</slnk:serviceLinkType>

<property name="car_id" type="xsd:string"/>
<property name="locs" type="xsd:string"/>
<property name="cust_id" type="xsd:string"/>

<propertyAlias propertyName="tns:cust_id"
messageType="tns:request"
part="custld"
query="/custld"/>

<propertyAlias propertyName="tns:cust_id"
messageType="csns:authenticateRequest"
part="custld"
query="/custld"/>

<propertyAlias propertyName="tns:Iocs"
messageType="tns:departRequest"
part="loc"
query="/loc"/>

<propertyAlias propertyName="tns:Iocs"
messageType="tns:request"
part= 11 loc"
query="/loc" />

<propertyAlias propertyName="tns:Iocs"
messageType="crns:isAvailableRequest"
part="loc"
query="/loc"/>

283

<propertyAlias propertyName="tns:car_id"
messageType="crns:isAvailableResponse"
part="isAvailableReturn"
query="/isAvailableReturn"/>

<propertyAlias propertyName="tns:car_id"
messageType="tns:departRequest"
part="carld"
query="/carld"/>

<!-- The service name and the TNS represent my service ID QName -->
<service name="carServiceBP"/>

</definitions>

D.3 WSDL Specification of the Car Information System (IS)

<?xml version="1.0" encoding="UTF-8"?>
<wsdl: definitions

targetNamespace="http ://tempuri.org/services/CarReg"
xmlns="http: I I schemas.xmlsoap.org/wsdl/"
xmlns:apachesoap="http ://xml.apache.org/xml-soap"
x m ln s : im p l= http://tempuri.org/services/CarReg
xmlns:intf="http ://tempuri.org/services/CarReg"
xmlns:soapenc="http ://schemas.xmlsoap.org/soap/encoding/"
xmlns:wsdl="http ://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http ://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http ://www.w3.org/2001/XMLSchema">

<wsdl:message name="makeAvailableResponse">

</wsdl:message>

<wsdl¡message name="makeUnAvailableRequest">
<wsdl:part name="carld" type="xsd:string"/>
<wsdl:part name="custld" type="xsd:string"/>
<wsdl:part name="loc" type="xsd:string"/>

</wsdl:message>

<wsdl¡message name="isAvailableResponse">
<wsdl:part name="carld" type="xsd:string"/>

</wsdl:message>

<wsdl¡message name="makeAvailableRequest">
<wsdl:part name="carld" type="xsd:string"/>
<wsdl:part name="loc" type="xsd:string"/>

</wsdl:message>

<wsdl¡message name="isAvailableRequest">
<wsdl:part name="loc" type="xsd:string"/>

</wsdl:message>

<wsdl¡message name="makeUnAvailableResponse">

</wsdl¡message»

<wsdl:portType name="CarReg">
<wsdl: operation name="isAvailable" parameterOrder="loc">

<wsdl: input message="impl:isAvailableRequest"

284

http://tempuri.org/services/CarReg
http://www.w3.org/2001/XMLSchema

name="isAvailableRequest"/>
<wsdl : output message^ " impl : isAvailableRespon.se "

name="isAvailableResponse"/>

</wsdl:operation>

<wsdl: operation name="makeUnAvailable" parameterOrder="carld
custld loc">

<wsdl: input message="impl¡makeUnAvailableRequest"
name="makeUnAvailableRequest"/>

<wsdl: output message="impl¡makeUnAvailableResponse"
name="makeUnAvailableResponse"/>

</wsdl:operation>

<wsdl: operation name="makeAvailable" parameterOrder="carld
loc " >

<wsdl: input message="impl:makeAvailableRequest"
name:"makeAvailableRequest"/>

<wsdl: output message:"impl:makeAvailableResponse"
name="makeAvailableResponse"/>

</wsdl:operation>

</wsdl:portType>

<wsdl¡binding name="CarRegServiceSoapBinding" type="impl:CarReg">
<wsdlsoap: binding style="rpc"

transport="http ://schemas.xmlsoap.org/soap/http"/>
<wsdl: operation name="isAvailable">

<wsdlsoap: operation soapAction=" " />
<wsdl : input name: 11 isAvailableRequest ">

<wsdlsoap: body
encodingstyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http ://tempuri.org/services/CarReg"

use="encoded"/>
</wsdl:input>
<wsdl : output name= 11 isAvailableResponse " >

<wsdlsoap: body
encodingStyle="http ://schemas.xmlsoap.org/soap/encoding/"
namespace="http://tempuri.org/services/CarReg"

use="encoded"/>
</wsdl:output>

</wsdl: operation»

<wsdl: operation name="makeUnAvailable">
<wsdlsoap: operation soapAction=""/>
<wsdl: input name="makeUnAvailableRequest">

<wsdlsoap: body
encodingstyle="http ://schemas.xmlsoap.org/soap/encoding/"
namespace="http ://tempuri.org/services/CarReg"

use= 11 encoded" />
</wsdl: input»
<wsdl¡output name="makeUnAvailableResponse">

<wsdlsoap: body
encodingstyle="http ://schemas.xmlsoap.org/soap/encoding/"
namespace="http ://tempuri.org/services/CarReg"

use= 11 encoded" />
</wsdl: output»

</wsdl: operation»

<wsdl: operation name="makeAvailable">

285

http://schemas.xmlsoap.org/soap/encoding/
http://tempuri.org/services/CarReg

<wsdlsoap: operation soapAction=""/>
<wsdl: input name="makeAvailableRequest">

<wsdlsoap: body
encodingstyle="http ://schemas.xmlsoap.org/soap/encoding/"
namespace="http ://tempuri.org/services/CarReg"

use="encoded"/>
</wsdl:input>

<wsdl: output name="makeAvailableResponse">
<wsdlsoap: body
encodingStyle="http ://schemas.xmlsoap.org/soap/encoding/"
namespace="http ://tempuri.org/services/CarReg"

use="encoded"/>
</wsdl:output>

</wsdl:operation>
</wsdl:binding>

<wsdl: service name="CarRegService">
<wsdl: port binding="impl:CarRegServiceSoapBinding"

name="CarRegService">
<wsdlsoap: address location=

"http://138.40.91.72:8080/wstk/services/CarRegService"/>
</wsdl:port>

</wsdl:service>
</wsdl:definitions>

286

http://138.40.91.72:8080/wstk/services/CarRegService%22/

Appendix E

Specification of the Second Case Study

E.l BPEL Specification of the QTP

<process name="QuoteTrackerProcess"
targetNamespace="http://tempuri.org/services/PriceTrackerBpel"
suppressJoinFailure="yes"
xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
xmlns:wsdlns="http://tempuri.org/services/PriceTrackerWsdl"
xmlns:qns="http://www.themindelectric.com/wsdl/net.xmethods.

services.Stockquote.StockQuote/"
xmlns:cexns="http://www.xmethods.net/sd/

CurrencyExchangeService.wsdl"
xmlns:calns="http://tempuri.org/services/calc">

<variables>
<variable

<variable

<variable

<variable

<variable
<variable

<variable

<variable

name="quoteRequest"
messageType="qns:getQuoteRequestl"/>

name="quoteResponse"
messageType="qns:getQuoteResponsel"/>

name="countryRequest"
messageType="wsdlns:getCountryNameRequest"/>

name="countryResponse"
messageType="wsdlns:getCountryNameResponse"/>

name="rateRequest" messageType="cexns:getRateRequest"/>
name="rateResponse"

messageType="cexns:getRateResponse"/>
name="multiplyRequest"

messageType= "calns .-multRequest" / >
name="multiplyResponse"

messageType="calns:multResponse"/>
</variables>

<partners>
<partner name="customer"

serviceLinkType="wsdlns:QuoteTrackerLinkType"
myRole="QuoteTracker"/>

<partner name="QuoteFinder"
serviceLinkType="wsdlns:QuoteFinderLinkType"
myRole="QuoteFinder" partnerRole="QuoteFinder"/>

<partner name="currencyExchanger"
serviceLinkType="wsdlns:currencyExchangerLinkType"
partnerRole="currencyExchanger"/>

<partner name="calculator"
serviceLinkType="wsdlns:calculatorLinkType"
partnerRole="calculator"/>

</partners>

<correlationSets>
<correlationSet name="qid" properties="wsdlns:q_id"/>

</correlationSets>

<sequence>
<receive name="receivel" partner="customer"

portType="qns:net.xmethods.services.
stockquote.StockQuotePortType" operation="getQuote"

287

http://tempuri.org/services/PriceTrackerBpel
http://schemas.xmlsoap.org/ws/2003/03/business-process/
http://tempuri.org/services/PriceTrackerWsdl
http://www.themindelectric.com/wsdl/net.xmethods
http://www.xmethods.net/sd/
http://tempuri.org/services/calc

<correlations>
<correlation set="qid" initiate="yes"/>

</correlations>
</receive>
<invoke name="invoke1" partner="QuoteFinder"

portType="qns:net.xmethods.services.
stockquote.StockQuotePortType" operation="getQuote"
inputVariable= "quoteRequest" outputVariable=11 quoteResponse ” >

</invoke>
<reply name="replyl" partner="customer"

portType=" qns:net.xmethods.services.
stockquote.StockQuotePortType" operation="getQuote"
variable^"quoteResponse">
<correlations>

correlation set="qid"/>
</correlations>

</reply>

<pick>
<onMessage partner="customer"

portType="wsdlns:QuoteTrackerPortType"
operation="getCountryName" variable="countryRequest">
correlations»

correlation set="qid"/>
</correlations»

<sequence>
<assign name="assignl">

<copy>
<from variable="countryRequest" part="country"/>
<to variable="rateRequest" part="country2"/>

</copy>
</assign>
<reply partner="customer"
portType="wsdlns:QuoteTrackerPortType"
operation="getCountryName"
variable="countryResponse"/>

«/sequence»
</onMessage>
«onAlarm for="1PT30S'"»

«sequence»
«assign name="assign3">

«copy»
«from expression="1uk'"/>
«to variable="rateRequest" part="country2"/>

«/copy»
«/assign»

«/sequence»
«/onAlarm»

«/pick»

«assign name="assign5">
«copy»

«from expression="1usa1"/>
«to variable="rateRequest" part="countryl"/>

«/copy»
«/assign»
«invoke name="invoke2" partner="currencyExchanger"

portType="cexns:CurrencyExchangePortType"

v a r i a b l e = "q u o t e R e g u e s t " c r e a t e l n s t a n c e = " y e s ">

288

operations"getRate" inputVariable="rateRequest"
outputVariable="rateResponse">

</invoke>
<assign name="assign6">

<copy>
<from variable="rateResponse" part="Result"/>
<to variable="multiplyRequest" part="inO"/>

</copy>
</assign>
<assign name="assign7">

<copy>
<from variable="quoteResponse" part="Result"/>
<to variable="multiplyRequest" part="inl"/>

</copy>
</assign>
<invoke name="invoke3" partner="calculator"

portType="calns:Calculator" operation="mult"
inputVariable="multiplyRequest"
outputVariable="multiplyResponse”>

</invoke>
</sequence>

</process>

E.2 WSDL Specification of the QTP

<definitions
targetNamespace="http://tempuri.org/services/PriceTrackerWsdl"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:slnk="http://schemas.xmlsoap.org/ws/2003/03/service-link/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://tempuri.org/services/PriceTrackerWsdl"
xmlns : qns= "http: / / www. themindelectric . com/wsdl / net. xmethods .

services.stockquote.StockQuote/"
xmlns:cexns="http://www.xmethods.net/sd/

CurrencyExchangeService.wsdl"
xmlns:calns="http://tempuri.org/services/calc">

<import namespace="http://www.themindelectric.com/wsdl/
net.xmethods.services.stockquote.StockQuote/" location=
"http://services.xmethods.net/soap/urn:xmethods-delayed-

quotes.wsdl"/>

<import namespace="http://www.xmethods.net/sd/
CurrencyExchangeService.wsdl" location="http://
www.xmethods.net/sd/2001/CurrencyExchangeService.wsdl"/>

<import namespace="http://tempuri.org/services/calc"
location="http://138.40.91.72:8080/wstk/

Calculator/Calculator.wsdl"/>

<message name="getCountryNameRequest">
<part name="country" type="xsd:string"/>

</message>

<message name="getCountryNameResponse">
</message>

<portType name="QuoteTrackerPortType">
<operation name="getCountryName">

<input message="tns:getCountryNameRequest"/>

289

http://tempuri.org/services/PriceTrackerWsdl
http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/ws/2003/03/service-link/
http://www.w3.org/2001/XMLSchema
http://tempuri.org/services/PriceTrackerWsdl
http://www.xmethods.net/sd/
http://tempuri.org/services/calc
http://www.themindelectric.com/wsdl/
http://services.xmethods.net/soap/urn:xmethods-delayed-
http://www.xmethods.net/sd/
http://www.xmethods.net/sd/2001/CurrencyExchangeService.wsdl%22/
http://tempuri.org/services/calc
http://138.40.91.72:8080/wstk/

<output message="tns:getCountryNameResponse"/>
</operation>

</portType>

<slnk:serviceLinkType name="QuoteFinderLinkType">
<slnk:role name="QuoteFinder">

<portType name="qns: net.xmethods.services.
stockquote.StockQuotePortType"/>

</slnk:role>
</slnk:serviceLinkType>

<slnk:serviceLinkType name="currencyExchangerLinkType">
<slnk: role name=11 currencyExchanger ">

<portType name=“cexns:CurrencyExchangePortType" / >
</slnk:role>

</slnk:serviceLinkType>

<slnk:serviceLinkType name="calculatorLinkType">
<slnk:role name="calculator">

<portType name="calns:Calculator"/>
</slnk:role>

</sink:serviceLinkType>

<property name="q_id" type="xsd:string"/>

<propertyAlias propertyName="tns:q_id"
messageType="qns:getQuoteRequestl" part="symbol" query="/symbol"/>

<!-- The service name and the TNS represent my service ID QName -->
<service name="QuoteTrackerServiceBP"/>

</definitions>

E.3 WSDL Specification of the Simple Calculator Service (SCS)

<?xml version="1.0" encoding="UTF-8"?>
< w s d l : d e f i n i t i o n s ta r q e tN a m e s p a c e = http://tenipuri.org/serviees/calc

xm lns=http://schemas. xmlsoap.org/vvsdl/
xmlns:apachesoap="http://xml.apache.org/xml-soap"
xmlns:impl="http://tempuri.org/services/calc"
xmlns:intf="http://tempuri.org/services/calc"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<wsdl:message name="addRequest">
<wsdl:part name="inO" type="xsd:float"/>
<wsdl:part name="inl" type="xsd:float"/>

</wsdl:message>

<wsdl:message name="divResponse">
<wsdl:part name="divReturn" type="xsd:float"/>

</wsdl:message>

<wsdl:message name="multResponse">
<wsdl:part name="multReturn" type="xsd:float"/>

</wsdl:message>

2 9 0

http://tenipuri.org/serviees/calc
http://xml.apache.org/xml-soap
http://tempuri.org/services/calc
http://tempuri.org/services/calc
http://schemas.xmlsoap.org/soap/encoding/
http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/wsdl/soap/
http://www.w3.org/2001/XMLSchema

<wsdl¡message name="multReguest">
<wsdl:part name="inO" type="xsd:float"/>
<wsdl:part name="ini" type="xsd:float"/>

</wsdl:message>

<wsdl¡message name="subResponse">
<wsdl:part name="subReturn" type="xsd:float"/>

</wsdl:message>

<wsdl: message name="subRequest">
<wsdl:part name="inO" type="xsd:float"/>
<wsdl:part name="inl" type="xsd:float"/>

</wsdl:message>

<wsdl¡message name="addResponse">
<wsdl:part name="addReturn" type="xsd:float”/>

</wsdl¡message»

<wsdl¡message name="divRequest">
<wsdl:part name="inO" type="xsd:float"/>
<wsdl:part name="inl" type="xsd: float"/>

</wsdl¡message»

<wsdl¡portType name="Calculator">
<wsdl: operation name="add" parameterOrder="inO inl">

<wsdl: input message="impl:addRequest" name="addRequest"/>
<wsdl: output message=»impl:addResponse" name="addResponse"/>

</wsdl:operation>

<wsdl: operation name="sub" parameterOrder="inO inl">
<wsdl: input message:"impl:subRequest" name="subRequest"/>
<wsdl : output message: 11 impl : subResponse " name= " subResponse" />

</wsdl: operation»

<wsdl: operation name="mult" parameterOrder="inO inl">
<wsdl: input message="impl:multRequest" name="multRequest"/>
<wsdl: output message:"impl¡multResponse"

name="multResponse"/>
</wsdl: operation»

<wsdl: operation name="div" parameterOrder="inO inl">
<wsdl: input message="impl:divRequest" name="divRequest"/>
<wsdl: output message:"impl:divResponse" name="divResponse"/>

</wsdl: operation»

</wsdl¡portType»

<wsdl¡binding name="CalculatorServiceSoapBinding"
type="impl: Calculator">

<wsdlsoap: binding style="rpc"
transport="http ://schemas.xmlsoap.org/soap/http"/>

<wsdl: operation name="add">
<wsdlsoap: operation soapAction=""/>
<wsdl: input name="addRequest"»

<wsdlsoap: body
encodingstyle="http ://schemas.xmlsoap.org/soap/encoding/"
namespace:"http ://tempuri.org/services/calc"

use="encoded"/>
</wsdl: input»

291

<wsdl:output name="addResponse">
<wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/
namespace="http://tempuri.org/services/calc"

use="encoded"/>
</wsdl:output>

</wsdl:operation>

<wsdl:operation name="sub">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="subRequest">

<wsdlsoap:body
encodingstyle="http://schemas.xmlsoap.org/soap/encoding/
namespace="http://tempuri.org/services/calc"

use="encoded"/>
</wsdl:input>

<wsdl:output name="subResponse">
<wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/
namespace="http://tempuri.org/services/calc"

use="encoded"/>
</wsdl:output>

</wsdl:operation>

<wsdl:operation name="mult">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="multRequest">

<wsdlsoap:body
encodingstyle="http://schemas.xmlsoap.org/soap/encoding/
namespace="http://tempuri.org/services/calc"
us e="encoded"/>

</wsdl:input>

<wsdl:output name="multResponse">
<wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/
namespace= "http: / / tempuri . org/services/calc11
use="encoded"/>

</wsdl:output>
</wsdl:operation>

<wsdl:operation name="div">
<wsdlsoap:operation soapAction="" />
<wsdl:input name="divRequest">

<wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/
namespace="http://tempuri.org/services/calc"

use="encoded"/>
</wsdl:input>

<wsdl:output name="divResponse">
<wsdlsoap:body
encodingstyle="http://schemas.xmlsoap.org/soap/encoding/
namespace="http://tempuri.org/services/calc"
us e="encoded"/>

</wsdl:output>
</wsdl:operation>

</wsdl:binding>

292

http://schemas.xmlsoap.org/soap/encoding/
http://tempuri.org/services/calc
http://schemas.xmlsoap.org/soap/encoding/
http://tempuri.org/services/calc
http://schemas.xmlsoap.org/soap/encoding/
http://tempuri.org/services/calc
http://schemas.xmlsoap.org/soap/encoding/
http://tempuri.org/services/calc
http://schemas.xmlsoap.org/soap/encoding/
http://schemas.xmlsoap.org/soap/encoding/
http://tempuri.org/services/calc
http://schemas.xmlsoap.org/soap/encoding/
http://tempuri.org/services/calc

<wsdl:service name="CalculatorService">
<wsdl:port binding="impl:CalculatorServiceSoapBinding"

name="CalculatorService">
<wsdlsoap:address location="http://138.40.91.72:8080/wstk/

services/CalculatorService"/>
</wsdl:port>

</wsdl:service>
</wsdl:definitions>

E.4 WSDL Specification of the Currency Exchanger Service (CES)

<?xml version="1.0"?>
<definitions name="CurrencyExchangeService"

targetNamespace="http ://www.xmethods.net/
sd/CurrencyExchangeService.wsdl"

xmlns:tns="http ://www.xmethods.net/
sd/CurrencyExchangeService.wsdl"

xmlns:xsd="http ://www.w3.org/2 001/XMLSchema"
xmlns:soap="http ://schemas.xmlsoap.org/wsdl/soap/"
xmlns="http ://schemas.xmlsoap.org/wsdl/">

<message name="getRateRequest">
<part name="countryl" type="xsd:string"/>
<part name="country2" type="xsd:string"/>

</message>

<message name="getRateResponse">
<part name="Result" type="xsd:float"/>

</message>

<portType name="CurrencyExchangePortType">
<operation name="getRate">

<input message="tns:getRateRequest" />
<output message="tns:getRateResponse" />

</operation>
</portType>

<binding name="CurrencyExchangeBinding"
type="tns:CurrencyExchangePortType">

<soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="getRate">
<soap:operation soapAction=""/>
<input >

<soap:body use="encoded"
namespace^"urn:xmethods-CurrencyExchange"
encodingStyle="http://schemas.xmlsoap.org/

soap/encoding/"/>
</input>

<output >
<soap:body use="encoded"

namespace="urn :xmethods-CurrencyExchange"
encodingStyle="http ://schemas.xmlsoap.org/

soap/encoding/ 11 />
</output>

</operation>
</binding>

<service name="CurrencyExchangeService">

293

http://138.40.91.72:8080/wstk/
http://www.xmethods.net/
http://www.xmethods.net/
http://www.w3.org/2
http://schemas.xmlsoap.org/soap/http%22/
http://schemas.xmlsoap.org/

<port name="CurrencyExchangePort"
binding="tns:CurrencyExchangeBinding">

<soap:address
location="http://services.xmethods.net:80/soap"/>

</port>
</service>

</definitions>

E.5 WSDL Specification of the Stock Quote Service (SQS)

<?xml version=11.01 encoding='UTF-81?>
<definitions name=1 net.xmethods.services.Stockquote.StockQuote'

targetNamespace=1 http ://www.themindelectric.com/wsdl/
net.xmethods.services.Stockquote.StockQuote/'

xmlns:tns='http://www.themindelectric.com/wsdl/
net.xmethods.services.Stockquote.StockQuote/'

xmlns:electric='http ://www.themindelectric.com/'
xmlns:soap='http ://schemas.xmlsoap.org/wsdl/soap/'
xmlns:xsd='http ://www.w3.org/2 001/XMLSchema'
xmlns:soapenc='http ://schemas.xmlsoap.org/soap/encoding/'
xmlns:wsdl='http ://schemas.xmlsoap.org/wsdl/'
xmlns='http ://schemas.xmlsoap.org/wsdl/'>

<message name='getQuoteResponsel'>
<part name='Result' type='xsd:float'/>

</message>

<message name='getQuoteRequestl'>
<part name='symbol' type='xsd:string'/>

</message>

<portType name='net.xmethods.services.
stockquote.StockQuotePortType'>

<operation name='getQuote' parameterOrder='symbol'>
<input message^'tns:getQuoteRequestl'/>
<output message='tns:getQuoteResponsel'/>

</operation>
</portType>

<binding name='net.xmethods.services.stockquote.
StockQuoteBinding' type='tns:net.xmethods.services.

stockquote.StockQuotePortType'>
<soap:binding style='rpc'

transport='http://schemas.xmlsoap.org/soap/http'/>
<operation name='getQuote'>

<soap:operation soapAction='urn:xmethods-delayed-
quotes#getQuote'/>

<input>
<soap:body use='encoded' namespace='urn:xmethods-

delayed-quotes' encodingStyle=
'http://schemas.xmlsoap.org/soap/encoding/'/>

</input>

<output>
<soap:body use='encoded' namespace='urn:xmethods-

delayed-quotes' encodingStyle=
'http://schemas.xmlsoap.org/soap/encoding/'/>

</output>
</operation>

</binding>

294

http://services.xmethods.net:80/soap%22/
http://www.themindelectric.com/wsdl/
http://www.themindelectric.com/wsdl/
http://www.themindelectric.com/'
http://www.w3.org/2
http://schemas.xmlsoap.org/soap/http'/
http://schemas.xmlsoap.org/soap/encoding/'/
http://schemas.xmlsoap.org/soap/encoding/'/

<service name=1 net.xmethods.services.Stockquote.
StockQuoteService'>

<port name='net.xmethods.services.Stockquote.StockQuotePort'
binding=1tns: net.xmethods.services.

Stockquote.StockQuoteBinding1>
<soap: address location='http: / / 6 4 . 1 2 4 . 1 4 0 . 3 0 : 9 0 9 0 /soap'/>

</port>
</service>

</definitions»

295

http://64.124.140.30:9090/soap'/

Appendix F

Specification of the RateTrackerProcess

F.l BPEL Specification of the RateTrackerProcess

<process name="rateTrackerProcess"
targetNamespace="http://tempuri.org/services/PriceTrackerBpel"
suppressJoinFailure="yes"
xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
xmlns:wsdlns="http://tempuri.org/services/PriceTrackerWsdl"
xmlns:cexns="http://www.atlaz.net/webservices">

<partners>
<partner name="customer"

serviceLinkType="wsdlns:rateTrackerLinkType"
myRole="rateTracker"/>

<partner name="currencyExchanger"
serviceLinkType="wsdlns:currencyExchangerLinkType"
partnerRole="currencyExchanger" />

</partners>

<variables>
<variable

<variable

cvariable

<variable

<variable

<variable

name="conversionRequest"
messageType="wsdlns:getConversionRequest"/>
name="conversionResponse"
messageType="wsdlns:getConversionResponse" />
name="amountRequest"
messageType="wsdlns:getAmountRequest"/>
name="amountResponse"
messageType="wsdlns:getAmountResponse" />
name="rateRequest"
messageType="cexns:getRateRequestSoapIn"/>
name="rateResponse"
messageType="cexns:getRateRequestSoapOut" / >

</variables>

<sequence>
<receive name="getAmount" partner="customer"

portType="wsdlns:RateTrackerPortType"
operation="getAmount" variable="amountRequest"

createlnstance="yes" />
<switch name="checkAmount">

<case name="amountNegative"
condition="bpws:getVariableData('amountRequest',

'amount') < 0">
<sequence>

<assign name="assignl">
<copy>

<from expression="0"/>
<to variable= "amountResponse" part=11 amount"/>

</copy>
</assign>
<reply name="negative-reply" partner="customer"

portType="wsdlns:RateTrackerPortType"
operation="getAmount"
variable="amountResponse"/>

</sequence>

2 9 6

http://tempuri.org/services/PriceTrackerBpel
http://schemas.xmlsoap.org/ws/2003/03/business-process/
http://tempuri.org/services/PriceTrackerWsdl
http://www.atlaz.net/webservices

</case>
<case name="amountPositive"

condition="bpws:getVariableData('amountRequest'
'amount1) > 0">

<pick name="getConversion">
<onMessage name="conversion" partner="customer"

portType="wsdlns:RateTrackerPortType"
operation="getConversion"
variable="conversionRequest">
<sequence>

<assign name="assign2">
<copy>

<from variable="conversionRequest"
part="country1"/>

<to variable="rateRequest"
part="currencyl"/>

</copy>
<copy>

<from variable="conversionRequest"
part="country2" / >

<to variable="rateRequest"
part="currency2"/>

</copy>
<copy>

<from variable="amountRequest"
part="amount"/>

<to variable="rateRequest"
part="amount"/>

</copy>
</assign>
<invoke name="requestRate"
partner="currencyExchanger"
portType="cexns:GetCurrencyExchangeSOAP
operation="getRateRequest"
inputVariable="rateRequest"
outputVariable="rateResponse"/>

<assign name="assign3">
<copy>

<from variable="rateResponse"
part="value"/>

<to variable="conversionResponse
part="amount"/>

</copy>
</assign>

<reply name="reply-Conversion"
partner="customer"
portType="wsdlns:RateTrackerPortType"
operation="getConversion"
variable="conversionResponse"/>

</sequence>
</onMessage>
<onAlarm name="noConversion" for="'PT30S'">

<sequence>
<assign name="assign4">

<copy>
<from variable="amountRequest"

part="amount"/>
<to variable="amountResponse"

part="amount"/>

297

</copy>
</assign>
<reply name="reply-amount"

partner="customer"
portType="wsdlns:RateTrackerPortType
operation="getAmount"
variable="amountResponse"/>

</sequence>
</onAlarm>

</pick>
</case>

</switch>
</sequence>

</process>

F.2 WSDL Specification of the RateTrackerProcess

<?xml version="1.0"?>
<definitions

targetNamespace="http ://tempuri.org/services/rateTrackerWsdl"
xmlns="http ://schemas.xmlsoap.org/wsdl/"
xmlns:slnk="http ://schemas.xmlsoap.org/ws/2003/03/service-link/
xmlns:xsd="http ://www.w3.org/2001/XMLSchema"
xmlns:tns="http ://tempuri.org/services/PriceTrackerWsdl"
xmlns:cexns="http ://www.atlaz.net/webservices">

<import namespace="http://www.atlaz.net/webservices"
location=
"http ://www.atlaz.net/webservices/GetCurrencyExchange.wsdl"/>

<message name="getConversionRequest">
<part name="countryl" type="xsd:string"/>
<part name="country2" type="xsd:string"/>

</message>

<message name="getConversionResponse">
<part name="result" type="xsd:float"/>

</message>

<message name="getAmountRequest">
<part name="amount" type="xsd:float"/>

</message>

<message name="getAmountResponse">
<part name="amount" type="xsd:float"/>

</message>

<portType name="RateTrackerPortType">
<operation name="getConversion">

<input message^"tns:getConversionRequest"/>
<output message="tns:getConversionResponse"/>

</operation>

<operation name="getAmount">
<input message="tns:getAmountRequest"/>
<output message="tns:getAmountResponse"/>

</operation>
</portType>

298

http://www.w3.org/2001/XMLSchema
http://www.atlaz.net/webservices
http://www.atlaz.net/webservices
http://www.atlaz.net/webservices/GetCurrencyExchange.wsdl%22/

<slnk:serviceLinkType name="rateTrackerLinkType">
<slnk:role name="rateTracker">

<portType name="tns:RateTrackerPortType"/>
</slnk:role>

</slnk:serviceLinkType>

<slnk:serviceLinkType name="currencyExchangerLinkType">
<slnk:role name="currencyExchanger">

<portType name="cexns:GetCurrencyExchangeSOAP"/>
</slnk:role>

</slnk:serviceLinkType>

<slnk:serviceLinkType name="calculatorLinkType">
<slnk:role name="calculator">

<portType name="calns:Calculator"/>
</sink:role>

</sink:serviceLinkType>

<!-- The service name and the TNS represent my service ID QName -->
<service name="rateTrackerServiceBP"/>

</definitions>

F.3 WSDL Specification of GetCurrencyExchange

<?xml version="1.0"?>
<definitions

xmlns:SOAP-ENV="http ://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http ://www.w3.org/2001/XMLSchema"
xmlns : xsi= "http : / / www. w3 . org/2001/XMLSchema-instance "
xmlns:SOAP-ENC="http ://schemas.xmlsoap.org/soap/encoding/"
xmlns:si="http ://soapinterop.org/xsd"
xmlns:tns="http ://mywebservices.fr.st/"
xmlns:soap="http ://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsdl="http ://schemas.xmlsoap.org/wsdl/"
xmlns="http ://schemas.xmlsoap.org/wsdl/"
targetNamespace= "http : / /www. atlaz . net/webservices11 >

<message name="getRateRequestSoapOut">
<part name="value" type="xsd:float" />

</message>

<message name="getRateReguestSoapIn">
<part name="number" type="xsd:float" />
<part name="currency1" type="xsd:string" />
<part name="currency2" type="xsd:string" />

</message>

<portType name="GetCurrencyExchangeSOAP">
<operation name="getRateRequest">

<input message="getRateRequestSoapIn" />
<output message^"getRateRequestSoapOut" />

</operation>
</portType>

<binding name="GetCurrencyExchange" type="GetCurrencyExchange">
<soap: binding style="document"

transport="http ://schemas.xmlsoap.org/soap/http"/>

299

http://www.w3.org/2001/XMLSchema

<operation name="getRateRequest">
<soap: operation

soapAction="http ://www.atlaz.net/webservices/webservices.php"
style="document"/>

<input name="getRateRequestInput">
<soap:body use="literal"/>

</input>
<output name="getRateRequestOutput">

<soap:body use="literal"/>
</output>

</operation>
</binding>
<service name="GetCurrencyExchangeSOAP">

<port binding="GetCurrencyExchangeSOAPSOAP"
name="GetCurrencyExchangeSOAPSOAPPort">

<soap: address
location="http ://www.atlaz.net/webservices/

GetCurrencyExchange.php"/>
</port>

</service>
</definitions>

300

http://www.atlaz.net/webservices/webservices.php
http://www.atlaz.net/webservices/

Appendix G

Guidelines for Using the Prototype of the Monitoring
Framework

G.l The Monitoring Tool

The Monitoring tool allows a service provider to monitor the behavioural properties,

functional properties and quality constraints of a service based system. The monitoring tool is

based on the architecture discussed in Chapter 5. Binary distribution of The monitoring tool

can be downloaded from

http://www.soi.citv.ac.uk/~am697/monitoring tool/Citv Monitor.html

This binary distribution composed of two main components,

• The Analyzer

• The Manager

These two components wrap up all the components of the architecture discussed in Chapter 5.

The analyzer wraps up the monitor along with the event database handler and the formula

database handler. The manager wraps up the monitoring console, the event receiver and the

monitor manager. In this distribution the analyzer provides the basic monitoring functionality

and it is deployed as web service. The manager is a client of the analyzer and it provides GUI

based front end to the end user.

In this appendix we discuss the installation of the The monitoring tool and provide

instructions to use the tool. This user manual assumes that Windows is the operating system

of the target machine.

G.2 Required Software

Following tools are needed to use the monitoring tool

■ Tomcat server - which can be downloaded from http://tomcat.aDache.org/. Installation

guide for tomcat server is also available there. We tested our latest implementation with

tomcat version 5.0.14

301

http://www.soi.citv.ac.uk/~am697/monitoring_tool/Citv_Monitor.html
http://tomcat.aDache.org/

■ Axis server - This server can be downloaded from http://ws.apache.org/axis/. An

installation guide for the server is also available at the same site. We tested our

implementation with Axis version 1.4.

■ Bpws4j process execution engine - which can be downloaded from

http://alphaworks.ibm.com/tech/bows4i. Installation guide for this tool is also available

there. We tested our implementation with bpws4j version 2.

G.3 Installation of Required Software

In this section we briefly describe how to install the required software and how to use them.

Detail user manual of the software can be found in the developer sites of the respective

software.

Tomcat Server

1 Download a Java Development Kit (JDK) from: http://iava.sun.com/i2se/. Install the

JDK according to the instructions included with the release. Set an environment variable

JAVA_HOME to the pathname of the directory into which JDK release has been

installed.

2 Download the tomcat binary distribution from http://tomcat.apache.org/. Unpack the

binary distribution into a convenient location so that the distribution resides in its own

directory. In the rest of the manual we assume that tomcat has been installed at

C:\tomcat. Please consult the release note of tomcat for the selection of right XML. You

may need to copy xalan.jar file in the C:\tomcat\common\endorsed folder and

activation .jar file in the C:\tomcat\common\lib folder. These files are included in the

“jars” folder of the binary distribution of the the monitoring tool (see below). These

archives can also be downloaded from www.appache.org.

3 Tomcat can be started by executing the following command, c:\tomcat\bin\startup.bat.

After start up, the default web applications included with Tomcat will be available by

visiting: http://localhost:8080/

4 Tomcat can be shut down by executing the following command: c:\tomcat\bin\shutdown

Axis Server

1. Download the axis binary distribution from http://ws.apache.org/axis/ and extract it at

location of your choice. In the rest of the manual we assume that axis has been extracted

at C:\axis_extracted. Copy the folder named C:\axis_extracted\webapps\axis into

C:\tomcat\webapps. Start tomcat by executing C:\tomcat\bin\startup.bat and using a web

302

http://ws.apache.org/axis/
http://alphaworks.ibm.com/tech/bows4i
http://iava.sun.com/i2se/
http://tomcat.apache.org/
http://www.appache.org
http://localhost:8080/
http://ws.apache.org/axis/

browser visit h t t p : / / l o c a l h o s t ; 8 0 8 0 / a x i s / h a p p y a x i s . i s p . If happyaxis.jsp shows message

that it cannot find some packages, then copy the relevant packages from

C:\axis_extracted\webapps\axis\WEB-INF\lib to C:\tomcat\common\lib and restart

tomcat.

Bpws4j Process Execution Engine

1. Download the binary distribution of the bpws4j engine from

h t t p : / / a l p h a w o r k s . i b m . c o m / t e c h / b p w s 4 i and extract it at location of your choice. In this

manual we assume that bpws4j has been extracted at C:\bpws4j_extracted. You have to

copy mail.jar file in C:\tomcat\common\lib. This file is included in the “jars” folder of

the binary distribution of the the monitoring tool (see below).

2. Copy the file bpws.war from C:\bpws4j_extracted\webapps to C:\tomcat\webapps. Start

tomcat by executing C:\tomcat\bin\startup.bat and using a web browser visit

h t t p : / / l o c a l h o s t : p o r t / b p w s 4 i / s o a p r p c r o u t e r . The browser should display "Sorry, I don't

speak via HTTP GET- you have to use HTTP POST to talk to me". If you don't see this

message, your server is not configured correctly and consult the user manual comes

with bpws4j distribution.

3. To manage BPEL processes, using a web browser visit the page

h t t p : / / l o c a l h o s t : 8 0 8 0 / b p w s 4 i / a d m i n / i n d e x .h t m l . The page looks like as shown below,

303

http://localhost;8080/axis/happyaxis.isp
http://alphaworks.ibm.com/tech/bpws4i
http://localhost:port/bpws4i/soaprpcrouter
http://localhost:8080/bpws4i/admin/index.html

If you click on the "List" button, you will be presented with a list of all of the

processes which are currently deployed to the engine. To deploy a new process, click

on the “Deploy” button. A new page will appear, which looks as shown below,

<3 IBM Business Process Execution Language for Web Services Java Runtime Admin Tool - Micros -!□! X|
File Edit View Favorites Tools Help mm

:*r

Back ” Q ’ ¿] ¡ ¿] 1 1 1 | y - Search U . V Favorites &

j Address | ittp:;j localhost : 8080/bpws4i/admin/index.html Go j Links ”

IBM Business Process Execution
Language for Web Services Java Runtime ,j
Configure
Processes

Deploy

Un-deploy

Deploy a Process: Process
Selection
Process'W SDL file:____________________________
| C:\Th e s i s_Pro j e ct_D i st\exam p I e\Cal I Fri e n d s. ws d 1 Browse..

BPEL file:_____________________________________
| C:\Thesis_Project_Dist\example\CallFriends.bpel Browse...

<1
Continue Deployment

3 ?) Done ' M Local intranet A

Select the WSDL and BPEL file of the process to be deployed, then click on the

“Continue Deployment” button. A new page will appear as shown below. In the new

page select WSDL files (only one in this example) for all the services deployed by the

BPEL process. Click on the “Start Serving the Process” button. A new page will

appear to confirm the successful deployment of the process.

To un-deploy a deployed process, click on the “Un-deploy” button. A list of deployed

processes will appear. Click on the process name that should be un-deployed.

304

4 To configure the bpws4j engine to send log events to a specific port (i.e. the port number

that the event listener is listening to), open the C:\tomcat\webapps\bpws4j\WEB-

INF\classes\ log4j.properties file in a text editor (e.g. norepad.exe). Make sure the

following lines are added in the log4j.properties file,

log4j.rootLogger=DEBUG, Al
log4j.appender.Al=org.apache.log4j.net.SocketAppender
log4 j . appender . Al. Port= DESTINATION_PORT_NUMBER
log4j . appender . Al. RemoteHost= DESTINATION_IP_ADDRESS

Where d e s t i n a t i o n _ i p _ a d d r e s s is the IP address of the host on which event

receiver is running and d e s t i n a t i o n _ p o r t _ n u m b e r is the port number to which the

event receiver is listening. Now restart tomcat.

G.4 Installation of the Monitoring Tool

Download the binary distribution of the monitoring tool from

h t t p : / / w w w . s o i . c i t v . a c . u k / ~ a m 6 9 7 / m o n i t o r i n g t o o l / C i t v M o n i t o r . h t m l and unzip the

City_Monitor.zip at location of your choice. In this manual we assume that bpws4j has been

extracted at C:\City_Monitor. There are five folders inside the C:\City_Monitor folder. These

are,

305

http://www.soi.citv.ac.uk/~am697/monitoring_tool/Citv_Monitor.html

• Manager - This folder contains the manager.

• Jars - This folder contains all the jar files needed to run the monitoring tool.

• Example - This folder contains an example BPEL process and example policy file for

the BPEL process.

• BPEL_Client - This folder contains a client for the example BPEL process.

• Analyzer - This folder contains the analyzer that provides the monitoring service. To

install the analyzer, copy the folder C:\City_Monitor\analyzer\code in the

C:\tomcat\webapps\axis\WEB-INF\classes folder. Start tomcat by executing the

command C:\tomcat\bin. In a command prompt window execute the command

C:\City_Monitor\analyzer\deploy.bat. The analyzer service is up and the wsdl

specification of the analyzer service can be seen at:

http://localhost:8080/axis/services/analvzerService?wsdl, and the analyzer service

endpoint is http://localhost:8080/axis/services/analvzerService

G.5 Accessing the Analyzer Service Using the Manager

The monitoring manager is used to import monitoring policy and select the formulas to be

monitored, send the selected formulas to the analyzer, start the event receiver for a monitoring

session, initiate a polling process that retrieves possible violations of the properties and view

the result of monitoring. To retrieve violations of properties, the monitoring manager polls the

analyzer at regular time intervals that has been specified by the user in the policy and shows

the results that it retrieves in a formula viewer.

To use the monitor manager, follow the following steps

(i) To start the monitor manager, in a command prompt window execute the command

C:\City_Monitor\manager\RunManager. Following this, the monitor manager

window will pop up.

(ii) Then, to import the monitoring policy, select the option "Import Policy" from the

"File" menu of the manager. In the file opening dialog box that appears, choose an

XML file that contains the monitoring policy. The monitor manager will then read the

monitoring policy from the file and display the formulas to be monitored as shown in

the figure below.

306

http://localhost:8080/axis/services/analvzerService?wsdl
http://localhost:8080/axis/services/analvzerService

The monitoring manager lists the identifiers of the imported formulas in the

"Imported Formulas" panel. To view a formula in the event calculus format, the user

may select its ID. Following this selection, the formula with the selected ID will be

shown in the "Formula Viewer" panel of the manager. If the user wants to select the

formula to be monitored, he/she may select its ID in the imported formulas panel and

click on the "Select” button. Following this, the selected formula will appear in the

"Selected Formulas" panel. The user may repeat the same process to select more

formulas. When the selection is complete, the user can click on the "Confirmed"

button, to send the formulas to the data analyser. If the submission of formulas to the

analyser is successful, the monitor manager will show the following message. The

user should press the "Ok" button to continue.

(iii) The next step is to provide the analyzer with runtime events. The user should select

the option "Start Event Receiver" from "Control" menu. At this point the user has to

307

start the BPEL process to be monitored. The user may stop the event receiver by

selecting the option "Stop Event Receiver" in the "Control" menu1.

(iv) To start polling the analyzer in order to view the violations of the formulas being

monitored, the user should select the option "start polling" from the control menu.

Following this, the manager will start polling the data analyzer at regular time

intervals specified in the monitoring policy. The manager shows the list of instances

of the violated and satisfied formulas in the "Monitoring Decision List" panel as

shown in the figure below. This panel will be updated at the regular intervals. The

Monitoring Decision List will show the monitoring summary of each instance of each

formula. The left most column in this list shows the unique formula instance ID, the

middle column shows the decision for the formula instance, and the right most

column shows the time when the decision was made by the analyzer.

To view the details of a formula instance, the user should select the relevant formula

instance in the Monitoring Decision List. Following this, the manager shows the

details of the formula instance in the "Formula Instantiation Details" panel. This

panel displays the formula status, other formulas that the specific formula may

depend on, and the values bound to the variables of the formula. "Formula

Instantiation Details" panel also shows the truth values of the individual predicates of

1 Once the event receiver is stopped the socket established with the tomcat server is lost. User needs to
restart the whole process (restart tomcat, and monitor manager) if s/he wants to restart the event
receiver.

308

the formula, the timestamps of the establishment of these truth values, and the source

of the information that underpins them.

G.5.1 Example

This distribution includes a simple BPEL process that can be used to check the functionality

of the analyzer and the manager. To make use of this example follow the following steps,

• Install bpws4j engine and configure it to send log events to port 12345 as described in

Section G.3.

• Start tomcat server.

• Deploy the example BPEL process in the bpws4j engine as described in Section G.3,

using the files c:\City_Monitor\example\CallFriends.bpel,

c:\City_Monitor\example\CallFriends.wsdl,

c:\City_Monitor\example\CercaPersone.wsdl

• Open the policy file policy.xml in the c:\City_Monitor\example folder using the

manager. Select the formulas to be monitored and send the formulas to the data

analyzer by clicking the confirmed button as described in G.5.

• Start the event receiver from the manager.

• In a command prompt window give the command

C:\City_Monitor\BPEL_Client_IBM\RunIBMBPELClientt. This starts a client of the

BPEL process that contacts the BPEL process for 10 minutes, with a random interval

of up to 10 seconds between each interaction.

• Start polling from the manager, it opens the decision viewer window and updates it

regularly.

G.6 Accessing the Analyzer Service as a Web Service

As described in Section G.l and G.4 the analyzer is deployed as a web service, this

service can be accessed without using the manager comes with this distribution. In this

section we discuss the interface of the analyzer web service. The WSDL file of the

analyzer service is available at h t t p : / / l o c a l h o s t : 8 0 8 0 / a x i s / s e r v i c e s / a n a l v z e r S e r v i c e ? w s d l ,

and the analyzer service endpoint is h t t p : / / l o c a l h o s t : 8 0 8 0 / a x i s / s e r v i c e s / a n a l v z e r S e r v i c e .

Following figure shows the WSDL file of the analyzer service,

309

http://localhost:8080/axis/services/analvzerService?wsdl
http://localhost:8080/axis/services/analvzerService

< ? x m l v e r s i o n s ' 1 .0" e n c o d in g = ”U T F - 8 ” ? >

< w s d l :d e f in i t io n s t a r g e tN a m e s p a c e = " h t tp : / / lo c a lh o s t :8 0 8 0 /a x is /s e r v i c e s /a n a ly z e r S e r v i c e "
x m ln s :a p a c h e s o a p = " h t tp : / / x m l .a p a c h e .o r g /x m l- s o a p " x m ln s : im p l= ''h t t p : / / lo c a lh o s t :8 0 8 0 /a x is /s e r v i c e s /a n a ly z e r S e r v i c e ”
x m ln s : in t f = ' 'h t t p : / / lo c a lh o s t :8 0 8 0 /a x is /s e r v i c e s /a n a ly z e r S e r v i c e " x m ln s : s o a p e n c = " h t tp : / / s c h e m a s .x m l s o a p .o r g /s o a p /e n c o d in g /"
x m ln s :w s d l= " h t tp : / / s c h e m a s .x m ls o a p .o r g /w s d l / " x m ln s :w s d ls o a p = ”h t tp : / / s c h e m a s .x m ls o a p .o r g /w s d l / s o a p /"
x m ln s :x s d = " h t tp : / /w w w .w 3 .o r g /2 0 0 1 /X M L S c h e m a ">
< ! ~ W S D L c r e a te d b y A p a c h e A x is v e r s io n : 1 .4
B u il t o n A p r 2 2 , 2 0 0 6 (0 6 :5 5 :4 8 P D T) ~ >

< w s d l :m e s s a g e n a m e = " c h e c k R u le R e q u e s t”> < w s d l :p a r t n a m e = ''m o n i to r in g R u le I d " ty p e = " s o a p e n c :s t r in g ' '/> < /w s d l :m e s s a g e >
< w s d l :m e s s a g e n a m e = " m o n i to r R u le R e q u e s t " > < w s d l :p a r t n a m e = " in p u t” ty p e = " s o a p e n c :s t r in g " /> < /w s d l :m e s s a g e >
< w s d l :m e s s a g e n a m e = " n o t i f y R e s p o n s e ”> < w s d l :p a r t n a m e = " n o t i f y R e tu m " ty p e = " s o a p e n c :s t r in g " /> < /w s d l :m e s s a g e >
< w s d l :m e s s a g e n a m e = " c h e c k R u le R e s p o n s e " > < w s d l :p a r t n a m e = " c h e c k R u le R e tu m " ty p e = " s o a p e n c :s t r in g " /> < /w s d l :m e s s a g e >
< w s d l :m e s s a g e n a m e = " n o t i f y R e q u e s t " > < w s d l :p a r t n a m e = ''m o n i to r in g D a tu m '' ty p e = " s o a p e n c :s t r in g '7 > < /w s d l :m e s s a g e >
< w s d l :m e s s a g e n a m e = ”m o n i to r R u le R e s p o n s e " > < w s d l :p a r t n a m e = " m o n i to r R u le R e tu m " ty p e = " x s d :b o o le a n '7 >
< /w s d l :m e s s a g e >

< w s d l : p o r tT y p e n a m e = " D a ta A n a ly z e r " >

< w s d l :o p e r a t io n n a m e = " n o t i f y " p a r a m e te r O r d e r= " m o n i to r in g D a tu m " >
< w s d l : in p u t m e s s a g e = ''im p l :n o t i f y R e q u e s t” n a m e = " n o t i f y R e q u e s t '7 >

< w s d l :o u tp u t m e s s a g e = ''im p l :n o t i f y R e s p o n s e " n a m e = " n o t i f y R e s p o n s e " />
< /w s d l :o p e r a t io n >
< w s d lo p e r a t i o n n a m e = " m o n i to r R u le " p a r a m e te r O r d e r= " in p u t" >

< w s d l : in p u t m e s s a g e = ”im p l :m o n i to r R u le R e q u e s t" n a m e = ”m o n i to r R u le R e q u e s t '7 >
< w s d l :o u tp u t m e s s a g e = " im p l :m o n i to r R u le R e s p o n s e ” n a m e = ''m o n i to r R u le R e s p o n s e '7 >

< /w s d l :o p e r a t io n >

< w s d l :o p e r a t io n n a m e = " c h e c k R u le " p a r a m e te r O r d e i^ " m o n i to r in g R u le I d " >
< w s d l : in p u t m e s s a g e = " im p l :c h e c k R u le R e q u e s t" n a m e = " c h e c k R u le R e q u e s t '7 >
< w s d l :o u tp u t m e s s a g e = " im p l :c h e c k R u le R e s p o n s e " n a m e = ''c h e c k R u le R e s p o n s e " />

< /w s d l : o p e ra t io n :»
< /w s d l :p o r tT y p e >

< w s d l :b in d in g n a m e = " a n a ly z e r S e r v ic e S o a p B in d in g " ty p e = " im p l :D a ta A n a ly z e r " >
< w s d ls o a p :b in d in g s ty le = " rp c " t r a n s p o r t= " h ttp : / / s c h e m a s .x m ls o a p .o r g /s o a p /h t tp " />
< w s d l :o p e r a t io n n a m e = ''n o t i f y " >

< w s d ls o a p :o p e r a t io n s o a p A c t io n = '" 7 >

< w s d l : in p u t n a m e = " n o t i f y R e q u e s t" >
< w s d ls o a p :b o d y e n c o d in g S ty le = " h t tp : / / s c h e m a s .x m l s o a p .o r g /s o a p /e n c o d in g /" n a m e s p a c e = " h t tp : / / c o d e " u s e = ''e n c o d e d '7 >

< /w s d l : in p u t>
< w s d l :o u tp u t n a m e = " n o t i f y R e s p o n s e " >

< w s d ls o a p :b o d y e n c o d in g S ty le = " h t tp : / / s c h e m a s .x m l s o a p .o r g /s o a p /e n c o d in g /"
n a m e s p a c e = " h t tp : / / lo c a lh o s t :8 0 8 0 /a x is /s e r v i c e s /a n a ly z e r S e r v i c e " u s e = ''e n c o d e d ”/>

< /w s d l :o u tp u t>
< /w s d l : o p e r a t io n »
< w s d l o p e r a t i o n n a m e = " m o n i to r R u le " >

< w s d ls o a p :o p e r a t io n s o a p A c t io n = " '7 >
< w s d l : in p u t n a m e = " m o n i to r R u le R e q u e s t" >

< w s d ls o a p :b o d y e n c o d in g S ty le = ”h t tp : / / s c h e m a s .x m l s o a p .o r g /s o a p /e n c o d in g /" n a m e s p a c e = " h t tp : / / c o d e " u s e = " e n c o d e d '7 >
< /w s d l : in p u t>
< w s d l :o u tp u t n a m e = " m o n i to r R u le R e s p o n s e " >

< w s d ls o a p :b o d y e n c o d in g S ty le = ”h t t p : / / s c h e m a s .x m ls o a p .o r g /s o a p /e n c o d in g /"
n a m e s p a c e = ”h t t p : / / lo c a lh o s t :8 0 8 0 /a x is /s e r v i c e s /a n a ly z e r S e r v i c e " u s e = ''e n c o d e d " />

< /w s d l :o u tp u t>
< /w s d l : o p e r a t io n »
< w s d l :o p e r a t io n n a m e = " c h e c k R u le " >

< w s d ls o a p :o p e r a t io n s o a p A c t io n = " " />

< w s d l : in p u t n a m e = " c h e c k R u le R e q u e s t" >
< w s d ls o a p :b o d y e n c o d in g S ty le = ''h t t p : / / s c h e m a s .x m ls o a p .o r g /s o a p /e n c o d in g /" n a m e s p a c e = " h t tp : / / c o d e " u s e = " e n c o d e d " />

< /w s d l : in p u t»

< w s d l :o u tp u t n a m e = ”c h e c k R u le R e s p o n s e " »
< w s d ls o a p :b o d y e n c o d in g S ty le = ''h t t p : / / s c h e m a s .x m ls o a p .o r g /s o a p /e n c o d in g /”

n a m e s p a c e = " h t tp : / / lo c a lh o s t :8 0 8 0 /a x is /s e r v i c e s /a n a ly z e r S e r v i c e " u s e = ”e n c o d e d ”/»
< /w s d l :o u tp u t>

< /w s d l : o p e r a t io n »
< /w s d l :b in d in g »
< w s d l : s e r v ic e n a m e = ”D a ta A n a ly z e r S e r v i c e ' '»

< w s d l :p o r t b in d in g = " im p l :a n a ly z e r S e r v ic e S o a p B in d in g " n a m e = " a n a ly z e r S e r v ic e ”»
< w s d ls o a p :a d d r e s s lo c a t io n = " h ttp : / / lo c a lh o s t :8 0 8 0 /a x is /s e r v i c e s /a n a ly z e r S e r v i c e '7 >

< /w s d l :p o r t>
< /w s d l :s e r v ic e >

< /w s d l :d e f in i t io n s >

310

http://localhost:8080/axis/services/analyzerService
http://xml.apache.org/xml-soap
http://localhost:8080/axis/services/analyzerService%e2%80%9d
http://localhost:8080/axis/services/analyzerService
http://schemas.xmlsoap.org/soap/encoding/
http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/wsdl/soap/
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/soap/http%22/
http://schemas.xmlsoap.org/soap/encoding/
http://code
http://schemas.xmlsoap.org/soap/encoding/
http://localhost:8080/axis/services/analyzerService
http://schemas.xmlsoap.org/soap/encoding/
http://code
http://schemas.xmlsoap.org/soap/encoding/
http://localhost:8080/axis/services/analyzerService
http://schemas.xmlsoap.org/soap/encoding/
http://code
http://schemas.xmlsoap.org/soap/encoding/%e2%80%9d
http://localhost:8080/axis/services/analyzerService
http://localhost:8080/axis/services/analyzerService'7

According to the WSDL file the interface of the analyzer service exposes three methods. In

the following we discuss these methods with the data types,

• monitorRule - This method is used to send the formulas to be monitored to the analyzer.

The input parameter to this method is of type string, more specifically the string

representation of the XML formulas to be monitored. The formulas to be monitored are

expressed in XML according to the schema presented in appendix A. The return type of

this method is Boolean.

• notify - This method is used to send a monitoring event to the analyzer. This method has

one input parameter of type string, which is the string representation of an event

expressed in XML. The event is expressed in XML according to the following schema,

< ? x m l v e r s io n = " 1 .0 " e n c o d in g = " U T F - 8 " ? >
< x s : s c h e m a ta r g e tN a m e s p a c e = " h t t p : / / te m p u r i .o r g /s e c s e / e v e n t"

x m ln s = " h t tp : / / te m p u r i .o r g / s e c s e / e v e n t”
x m ln s :x s = " h t tp : / /w w w . w 3 .o r g /2 0 0 1 /X M L S c h e m a " e l e m e n tF o r m D e f a u l t= " q u a l i f i e d " >

< ! — d e f in e e v e n t —>

< x s :e le m e n t n a m e = " e v e n t" ty p e = " e v e n tT y p e 'V >

< ! — d e f in i t i o n o f c o m p le x a n d s im p le ty p e s —>
< x s :c o m p le x T y p e n a m e = " e v e n tT y p e " >

< x s :s e q u e n c e >
< x s : e le m e n t n a m e = " t im e S ta m p " ty p e = " x s :s t r in g " />
< x s : e le m e n t n a m e = " id " ty p e = " x s :s t r in g " />
< x s : e le m e n t n a m e = " p re f ix " ty p e = " x s :s t r in g " />
< x s : e le m e n t n a m e = " p a r tn e r I D " ty p e = " x s :s t r in g '7 >
< x s : e le m e n t n a m e = " o p e r a t io n N a m e " ty p e = " x s :s t r in g " />
< x s : e le m e n t n a m e = " v a r ia b l e ” t y p e = " v a r i a b le T y p e ” m in O c c u r s = " 0 '' m a x O c c u r s = " u n b o u n d e d ''/>

< /x s :s e q u e n c e >
< /x s :c o m p le x T y p e >

< x s : c o m p le x T y p e n a m e = ''v a r ia b le T y p e " >
< x s :s e q u e n c e >

< x s :e le m e n t n a m e = " n a m e " ty p e = ”x s :s t r in g " />
< x s :e le m e n t n a m e = ”ty p e " ty p e = ”x s :s t r in g '7 >
< x s : e le m e n t n a m e = " v a lu e " ty p e = ”x s :s t r in g '7 >

< /x s :s e q u e n c e >
< /x s :c o m p le x T y p e >

< /x s :s c h e m a >

• checkRule - This method is used to poll the analyzer for monitoring result of a specific

formula. This method has one input parameter of type string which signifies the ID of a

formula. The return type of this method is string, which is the string representation of all

the instances of a formula. Formula instances are expressed in XML according to the

schema described in Appendix C.

311

http://tempuri.org/secse/event
http://tempuri.org/secse/event%e2%80%9d
http://www

