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Towards AI-enabled person centred care in breast imaging - A Scoping Review 

 

Abstract 

Aim: To overview Artificial Intelligence (AI) developments and applications in breast imaging (BI) 

focused on providing person-centred diagnosis and treatment for breast pathologies. 

Methods: The scoping review was conducted in accordance with the Joanna Briggs Institute 

methodology. The search was conducted on MEDLINE, Embase, CINAHL, Web of science, IEEE explore 

and arxiv during June 2021 and included only studies published after 2016, in French and English. 

Combination of keywords and Medical Subject Headings terms (MeSH) related to breast imaging and 

AI were used. No keywords or MeSH terms related to patients, or the person centred care (PCC) 

concept were included. Three independent review authors screened all abstracts and titles, and all 

eligible full-text publications during a second stage. 

Results: 2324 results were identified by the search strategy but only 79 studies met all criteria and 

were included. Seven themes relating to the AI-enabled PCC in BI were identified: treatment 

assessment (16%), individualised risk prediction/growth, prediction/false negative reduction (58%), 

unnecessary biopsies reduction (8%), specific populations (1%), patients' preferences (4%), tumour 

type prediction (5%) and other issues (9%). The main BI modalities explored in the included studies 

were mammography (34.2%), magnetic resonance imaging (MRI) (34.2%) and ultrasound (19%). The 

studies were predominantly retrospective, and some variations were present in the datasets used. 

Conclusions: The AI tools for person-centered care are mainly designed for risk and cancer prediction 

and disease management to identify the most suitable treatment. However, further studies are 

needed for optimisation of image acquisition for different patient groups, improvement and 

customisation of patient experience and for communicating to patients options and pathways of 

disease management. 

 

Introduction  

 

Artificial intelligence (AI) is evolving lately at a fast pace, and it is being used in different domains to 

simplify processes and to improve quality of life using data produced by digital technologies. The 

medical field is no exception, especially in medical imaging, where several processes are being 

improved with AI, namely in scheduling patients, improving protocols for dose reduction and image 

optimisation and postprocessing, image interpretation, patient follow up, workflow efficiency 

optimisation, reduction of unnecessary biopsies and treatments (1–3). There are several AI tools 

available to improve cancer detection and diagnosis. The tendency is to integrate AI solutions to better 
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adapt diagnosis and treatment to each patient and to achieve better outcomes and consequently 

quality of life (2,4,5). Until now the available tools, such as computer aided detection (CAD) systems, 

used for image interpretation support, have resulted in increasing frequently recall rates due to the 

use of rules-based approach and domain knowledge incorporation (6–9). 

Breast imaging is one of the most challenging domains in medical imaging with high false negative and 

false positive rates for breast cancer detection with an impact on patients’ management and 

experience (10,11). Currently, available technologies for breast imaging are used to map structural or 

morphological differences in tumours, such as microcalcifications, tissue masses, angiogenesis, 

asymmetry, and architectural distortion. Some of the more recently developed techniques can provide 

information about the biological or functional differences between tumours and normal tissues. 

However, until now there is not one single modality that can simultaneously achieve all these 

anatomy-physiology and pathology-related goals (12,13) and, in addition, achieve risk prevention as 

well as personalised follow up. Considering the current limitations of breast imaging, AI can contribute 

to overcome interval cancers and minimise recall rates. AI tools can also provide customised 

recommendations for screening and follow up of breast diseases and treatment monitoring by 

combining different types of data (imaging features, radiomics and genomics) and patient 

preferences. 

This study aimed to offer an overview of recent AI developments and applications in breast imaging 

focused on providing person centred diagnosis and treatment for breast pathologies.  

 

Methodology  

 
This scoping review was conducted in accordance with the Joanna Briggs Institute methodology for 

scoping reviews (14). Scoping reviews synthetise findings from various studies in a structured way to 

answer research questions and identify gaps in actual literature (15). 

 

Inclusion criteria 

This scoping review was performed to summarise the evidence in the use of AI in breast imaging to 

provide person centred care. A range of study types was included, considering different 

methodological designs, involving all breast imaging modalities and all relevant patient genders. 

Studies with patients were prioritised, instead of phantoms. 

To be consistent with the concept of person-centered care (PCC), this review included studies 

considering patients preferences, and characteristics (age, gender, family history, breast density, risk 

factors, socioeconomic factors, human race, lifestyle) used to develop an AI toolfor improving 

individualized care.  
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This scoping review included quantitative, qualitative, and mixed methods studies. Systematic 

reviews, books articles or sections were excluded. Phantom studies were also excluded. 

 

Search strategy 

The search strategy (Appendix 1) included both published and unpublished primary studies using six 

databases: MEDLINE, Embase, CINAHL, Web of science, IEEE explore and arxiv searched during June 

2021. Combination of keywords and Medical Subject Headings terms (MeSH) related to breast imaging 

and AI were used.  

No keywords or MeSH terms related to patients, or the PCC concept were included in the search 

strategy as they introduced noise to the results after a first attempt. The selection on these criteria 

was carried out manually. Studies published from 2016 onwards in English or in French focused on 

technological advances in AI were included. 

 

Study selection 

All identified studies were uploaded into EndNote 20 and duplicates were removed by using the 

Bramer’s method (16). Posteriorly, the references were imported into Rayyan, a free web-tool, to 

facilitate the selection of the studies. Titles and abstracts were screened in a first round by three 

independent reviewers for evaluation of their pertinence according to the criteria previously 

described. Eligible full-text articles were then retrieved and reviewed by the same three reviewers in 

a second round. Full-text studies not meeting the inclusion criteria and reasons for their exclusion are 

provided in Figure 1. Any disagreement between the reviewers was resolved by discussion and 

consensus. 

 

Data extraction and analysis 

Data were extracted using a pre-defined and tested extraction table by the three reviewers based on 

the following characteristics: country of study, aims, methodology, patients' gender, patients’ 

specificities, patients’ age, sample size, imaging modality, equipment type/model, acquisition 

parameters/image acquisition protocol, AI model, key findings. Seven themes relating to the PCC 

concept were identified: treatment assessment, risk prediction/growth prediction/false negative 

reduction, unnecessary biopsies reduction, specific population, patients' preferences, tumor type 

prediction and others. Each article was assigned in one of these categories.  

Once the data was extracted, a discussion was conducted for the remaining studies not attributed to 

one category, achieving a consensus. A descriptive analysis with a narrative summary was performed 

to present the results. 
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Results 
 

Search and study selection 

After removing duplicates, 2324 results were identified by the search strategy. Of those 79 studies 

met all criteria and were included. The main reasons for exclusion were performance-related articles, 

no full text available, outcome not related to patient centred care and no breast imaging included 

(Figure 1). 

 
Figure 1: Search results and study selection and inclusion(17) 

 

Included studies 

Studies were published across 18 countries, with the majority in United States of America (30 out of 

79) and China (21 out of 79). The main imaging modalities used in the studies were mammography 

(34.2%), magnetic resonance imaging (MRI) (34.2%) and ultrasound (US) (19%) but Breast CT, PET/CT, 

Thermography, Gama Camera, Contrast-Enhanced mammography and Tomosynthesis were also 

explored. The studies were predominantly retrospective (n= 65), using different datasets, some 

provided by the hospitals or open-source databases. Mainly studies focusing on women were 

included, with ages varying between 15-92 years. One study included male patients and another used 

patient and one included phantom. Sample sizes ranged from 28 to 164 444 patients. Six categories 

related to the PCC concept were identified: risk prediction/growth, prediction/false negative 
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reduction (52%), treatment assessment (18%), unnecessary biopsies reduction (7%), patients' 

preferences (4%), tumour type prediction (14%) and other issues (5%). 

 

Risk prediction/growth, prediction/false negative reduction 

From the 41 studies investigating risk prediction, 20 were conducted in the USA, 10 in China and 3 in 

Sweden, 8 in other countries (Table 1). Studies were predominantly retrospective using institutional 

image datasets or screening country’s datasets. Only one study (18) was prospective using a small 

institutional sample of 37 women with advanced cancer. However, some retrospective studies 

included larger samples namely Schmidt et al. (19) using 46158 images, Eriksson et al. (20) with 45417 

images, Yala et al.(21) with 39558 images and Akselrod-Ballin et al.(22) with 52936 images acquired in 

13234 women. Only women taking part in a screening program (9 studies) or as diagnostic 

examination were included.  

Most studies included women of an age range that made them eligible to participate in screening 

programs. However, younger women were also included in some studies aging between 18 and 30 

years old (23–29). 

Most of the time, the images used were acquired in a single institution. Nine studies (28,30,31) used 

images from 2 clinical settings; 2 included images from 4 settings (20,32); one (22) from 5; one from 9 

(33) and one from 10 settings (34). 

In the included studies, none was conducted combining populations from different countries, but they 

included women from different ethnicities, namely Caucasian (Australia) & Japanese American 

(Hawaii) women (19); other heterogenous samples involved non-Hispanic White (36.7%), non-

Hispanic Black (11.6%), Hispanic or Latina (36.4%), Asian (5.7%), and others (9.4%) (26). None of the 

studies explored if these differences had an impact in the outcomes.  

Some papers described the sample as heterogeneous due to the use of imaging devices from different 

manufacturers. Eriksson et al. (20) used images acquired with 6 different mammography 

manufacturers, Guo et al.(30) and Moon et al.(35) explored 2 different types of US, Braman et al.(27) 

included 2 different MRI devices; Zhou et al.(28) included 3 different US manufacturers, Zhu et al.(36) 

explored 4 different types of MRI from the same vendor, and Lång et al. (32) included 2 mammography 

vendors. 

The risk prediction was mostly explored using one imaging modality: analogue or digital 

Mammography (n=18 articles), MRI (n=13), US (n=5), Gamma camera (n=1), Tomographic diffuse 

optical spectroscopy imaging (n=1). In three studies multimodalities were used, one (37) with images 

from mammography and MRI; other (38) mammography and US; and finally other (29) with thermal 

images, mammography and US. 
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Nearly half (20 out of 41) of the studies predicting risk used patient features specially the Tyrer-Cuzick 

scores in addition to image features. Manley et al.(26) added patients with alcohol habits and He et 

al. (38) complemented with skin change, palpable lump and nipple discharge. 

The AI techniques applied in the studies were heterogeneous but convolutional neural networks (CNN) 

were the most predominant (Table 1). Some studies added natural language processing (38) or 

transfer learning (33,36,39,40). In the risk prediction category, most of the studies used AI for risk 

model prediction for development  of breast cancer in the short term (n=14). Some explored more 

specifically Ductal Carcinoma in Situ (DCIS) or Invasive ductal carcinoma (IDC) grade (n=5), axillary 

lymph node metastasis prediction (n=5), breast density estimation (n=4), interval cancer risk 

prediction (n=2), screening selection according to age or risks (n=2), other issues (n=3).  

 

 

Treatment assessment  

Under the category of “treatment assessment” 19 articles were included (Table 2).  AI tools were used 

mainly to predict the response of chemotherapy as neoadjuvant treatment (NAC). Two studies (41,42) 

explored respectively breast cancer surgery (BCS) and not any other specific treatment; two (43,44) 

used an evaluation during the treatment to predict the final response using quantitative ultrasound 

(QUS). CNN and SVM classifiers were the major AI tools used for the treatment assessment and more 

specifically for the prediction of final treatment response. Different modalities, like PET/CT, MRI, US 

or mammography shown to be useful for the assessment of treatments although US and MRI images 

seemed to be most appropriate due to not using ionising radiation. The number of subjects ranged 

from 37 to 288 aging from 18 to 85 years old. Most of the studies (13 out of 19) axed their research in 

patients with locally advanced breast cancer (LABC), 4 studies used patients with multiple cancer 

subtypes, one (42) evaluated the response for triple negative breast cancer (TNBC) and the last 

integrated only patients with HER+ subtype. Two studies (43,45) included respectively 2 and 1 male in 

their data.  
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Table 1: Studies focusing on the use of AI for risk prediction/growth, prediction/false negative reduction  

Study first 
author Year 

Country 
(where the 
study was 
conducted) 

Purpose or Aim(s) Study design Imaging 
modality 

Number 
of 

subjects 
or 

images 
(N) 

Subjects’ 
mean, 

median or 
range age 

Subjects’ or 
machine 

specificities 
Clinical (patient) features AI information’s Key findings 

 Keywords/categorization 

Hao [?] 2020 China 

To explore the potential of magnetic 
resonance imaging (MRI)radiomics-based 

machine learning to improve assessment and 
diagnosis of contralateral Breast Imaging 
Reporting and Data System (BI-RADS) 

category 4 lesions in women with primary 
breast cancer. 

Retrospective 
MRI 

(3.0T/breast 
dynamic MRI) 

178 50.7±11.5 
25-78 

Chinese Women 
with BI-RADS 4 

lesion 

Age-Menopause Status-Family 
History-Breast density 

Machine learning: 
SVM 

MRI radiomics-based machine learning model can assess lesion in contralateral BI-RADS 4 women. T2 
and T1 + C features are useful in discriminating benign and malignant contralateral BI-RADS 4 lesions. 

Contralateral assessment-
diagnosis 

Aghaei [?] 2016 USA 

To develop and test a new computerized 
model for predicting near-term breast cancer 

risk based on quantitative assessment of 
bilateral mammographic image feature 

variations in a series of negative full-field 
digital mammography (FFDM) images. 

Retrospective Full-field digital 
mammography 335 51 

42-71 

American women 
taking part in 

screening 
program (using 4 
different views) 

Age-Density/ BIRADs-Family 
History-Age at menarche-Parous 
(age at first birth) -Menopausal 

status 

Machine learning: 
SVM 

This study demonstrated a positive association between the risk scores generated by a bilateral 
mammographic feature difference-based risk model and an increasing trend of the near-term risk for 

having mammography-detected breast cancer. 

Short term BC/risk score 
prediction 

Wang [?] 2017 Japan 
To estimate volumetric breast density from 
Full-field digital mammograms on Japanese 

women with and without breast cancer. 
Retrospective 

Full-field digital 
mammography 
+ MRI only in 
patient with 

invasive 
carcinoma 

99 47-72 
Japanese women 
with and without 

invasive 
carcinoma 

Age- Age at menarche-
Menopausal Status-Parity status-

BMI 
 

ANN 
The proposed ANN calibrated model appears to produce reasonable measures of mammographic density 

that are validated with breast tissue composition phantoms, associated with existing qualitative and 
quantitative measures of breast density, and associated with classical biomarkers of breast cancer as 

previously reported. 

Volumetric breast density 
estimation 

Lång [ ?] 2021 Sweden 
To investigate whether artificial intelligence 

can reduce interval cancer in mammography 
screening. 

Retrospective Digital 
mammography 429 58 

39-76 

Sweden women 
(4 sites) taking 

part in screening 
program 

2 vendors 

BI-RADS 
Screening prevalence 

Time from screening to IC 
Prior breast surgery (breast 

reduction) 
Best implants 

 

Deep-learning CNN 

The use of AI in screen reading has the potential to reduce the rate of interval cancer without 
supplementary screening modalities. an AI system detected 19% of interval cancers at the preceding 
screening mammograms. these cancers were correctly located and classified as high risk by AI, thus 

obviating supplementary screening modalities. 

IC reduction-prediction 

Schmidt [?] 2018 Australia/ 
Hawaï 

To apply machine learning to find a novel 
breast cancer predictor based on information 

in a mammogram 
Retrospective Digitized film 

mammography 
46158 
images 

47.5 & 67.2 
according to 

cohort 

Caucasian 
(Australia) & 

Japanese 
American 

(Hawaii) women 

Age-BMI-Density Machine learning 
A fully automated personal risk measure created from the combination of textural image features is better 
at predicting breast cancer risk than conventional mammographic density risk measures. Cirrus can be 

used as one of the strongest known risk factors for breast cancer 
BC risk Prediction 

Carter [?] 2019 USA 

To develop and validate a deep learning 
model using image convolution to 

automatically categorize background 
parenchyma uptake on molecular breast 

imaging 

Retrospective 
Gamma 

camera (Tc99m 
sestamibi) 

3919 
exams in 

3919 
unique 
patients 

56 ± 10.9 Not specified - CNN Deep learning 

A CNN was successfully developed and validated for the automatic classification of background 
parenchyma uptake in women undergoing supplemental screening using molecular breast imaging. 

Additional research to determine if these automatic classifications add to risk stratification and breast 
cancer risk prediction is warranted. 

Classification of uptake 

Dembrower 
[?] 2020 Sweden 

To develop a risk score that is associated 
with future breast cancer and compare it with 

density-based models 
Retrospective Digital 

mammography 

2283 (4 
images 

per 
patient) 

40-74 
Swedish 

screening-aged 
women 

Age 
 

Deep neural network 
(ResNet-v2) 

the performance of a deep learning–based risk model trained on mammographic images was better than 
that of density-based models. It showed better performance for more aggressive cancers, without 

decreasing. The risk model should be trained on further cancer cases from multiple institutions and 
combined with another model predicting the risk of mammographic masking. 

Risk score prediction 

Zhao [?] 2017 China 

To develop a valid predictive mathematical 
model for selecting high-risk groups eligible 
for mammography examinations and cost-

effective strategies for breast cancer 
screening among Chinese women 

Cross-sectional Mammography 13355 30-65 Chinese women Age-BMI-Reproductive factors 
Personal & family disease history BP-ANN 

A BP-ANN model using age, BMI, reproductive factors, and disease history factors can be a valuable tool 
with the capacity to preselect women for recommended mammography screenings. BP-ANN model 

followed by MAM for Chinese women aged 40–49, and mammography alone for screening women aged 
50–65.Further research is needed to determine the optimal screening strategy for women younger than 

40 in China. 

Screening selection according to 
age 

Eriksson [?] 2018 Sweden 

To present a new algorithm which measures 
density on all type of images, regardless of 

vendor, and controls for non-biological 
differences seen in time series of 

mammograms from the same women 

case-control 
retrospective 

Analog and 
digital 

mammography 
45417 57.4 ± 9.2 

Swedish women 
from 4 units and 
9 different types 
of mammograms 
from 6 vendors 

(3 studies 
samples) 

Age-Density-Ever use of HRT- 
Postmenopausal-Family history of 

cancer 

Machine learning 
(Stratus) 

Measures mammographic density from mammograms obtained from a variety of sources (raw and 
processed digital images, analogue films). The added alignment feature provided by STRATUS improves 

longitudinal measurements of mammographic density. STRATUS-derived mammographic density can 
become a useful tool for risk prediction and treatment response in research and clinical praxis. 

Density measurement for risk 
prediction 

Moon [?] 2018 Republic of 
Korea 

To develop a computer-aided prediction 
model as well as the tumor features for ALN 
metastasis in breast cancers using breast 

ultrasound images 
Retrospective US 247 55±11 

20–84 

Korean women 
with breast 

cancer 
2 different 
vendors 

- 

Computer-aided 
prediction (CAP) 

(backward feature 
selection) 

The proposed CAP model based on combining morphological and textural features of primary tumours 
can be useful to determine the ALN status in patients with newly diagnosed breast cancer. In clinical use, 
this CAP model can be helpful to provide consistent and objective recommendations to radiologists on the 

ALNs status in the preoperative staging of breast cancer 
ALN prediction 

Ha [?] 2019 USA 

To propose a novel convolutional neural 
network derived pixel-wise breast cancer risk 

model using mammographic dataset to 
stratify patients into personalized breast 
cancer risk categories beyond just breast 

density. 

case-control 
retrospective 

Mammogram 
 
 
 

Case: 
210 

Control: 
527 

Case: 57.4 ± 
10.4 / Control 
58.2 ± 10.9 

American women Age-Density A fully convolutional 
neural network 

The novel pixel-wise mammographic breast evaluation using a CNN architecture can stratify breast 
cancer risk, independent of the mammographic BD. The CNN risk model [OR = 4.42 (95% CI, 3.4-5.7)] 
showed greater predictive potential compared to mammographic BD [OR = 1.67 (95% CI, 1.41.9)]. The 

CNN risk model achieved an overall accuracy of 72% (95%CI, 69.8-74.4) in predicting patients in the case 
group. Validation by a prospective randomized study is needed to potentially implement our individualized 

risk stratification scheme into screening and chemoprevention guidelines. 

Stratification BC risk prediction 

Zhu [?] 2019 USA 

To determine whether deep learning-based 
algorithms applied to breast MR images can 

aid in the prediction of occult invasive disease 
following the diagnosis of ductal carcinoma in 

situ (DCIS) by core needle biopsy 

Retrospective 
MRI (dynamic 

contrast-
enhanced) 

131 

With 
invasive: 

50.5 (32–73) 
/ without 
invasive: 

53.4 (31–75) 

American women 
with a core 

needle biopsy-
confirmed 

diagnosis of 
ductal carcinoma 
in situ. With and 
without invasive 

carcinoma 
4 different types 

from same 
vendor 

- 

Deep learning-based 
approach: by 
exploring two 

methods: transfer 
learning approach 
and deep features 

approach 
 

A deep learning-based model based on MR imaging showed moderate predictive power for identifying 
occult invasive cancer in patients diagnosed with ductal carcinoma in situ using core needle biopsy but 

needs further investigation to be clinically relevant. Specifically, the deep features approach with Google 
Net (AUC =0.70, 95% CI: 0.58–0.79) demonstrated superior performance compared to the transfer 

learning approach (AUC=0.68, 96% CI: 0.57-0.77). 

Invasive cancer prediction 

Yala [?] 2019 USA 

To develop a mammography-based DL 
breast cancer risk model that is more 

accurate than established clinical breast 
cancer risk models 

Retrospective Digital 
mammograms 39558 

56.20 ± 
10.04 

 

American 
screening 

examinations 
Traditional risk factor information 

Hybrid deep learning 
model that used full-
field mammograms in 
addition to traditional 
risk factor information 

to assess breast 
cancer risk 

A hybrid deep learning model that directly leverages full-field mammograms in addition to traditional risk 
factors AUC (0.70) outperforms the Tyrer-Cuzick model (version 8) by a large margin (0.62; P, .001) and 

RF-LR (0.67; P = .01); this improvement is consistent across demographic subgroups. These models 
have the potential to replace conventional risk prediction models. 

BC prediction 
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Portnoi [?] 2019 USA 

To develop an image-based deep learning 
(DL) model to predict the 5-year risk of breast 
cancer based on a single breast MR image 

from a screening examination 

Retrospective 
Contrast 

enhanced 
screening MRI 

1623 
exams in 

1164 
women 

Not specified 
<40 to >80 

American 
screening 

examinations 

Tyrer-Cuzick score: 
age-height and weight-breast 

density-history and results 
of breast biopsies-personal 
history of breast or ovarian 

cancer-family history of breast or 
ovarian cancer 

history of hormone use 
Ashkenazi Jewish heritage 

Trusted Source-age when the 
person had their first 

menstrual period-age when the 
person first gave birth, 

age at menopause, 
age of cancer diagnosis 

 

Deep learning 

Our DL model can assess the 5-year cancer risk based on a breast MR image alone, and it showed 
improved individual risk discrimination when compared with a state-of-the-art risk assessment model. 
These results offer promising preliminary data regarding the potential of image-based risk assessment 

models to support more personalized care 

5-year cancer risk Prediction 

Arefan [?] 2020 USA 

To investigate two deep learning-based 
modeling schemes for predicting short-term 
risk of developing breast cancer using prior 

normal screening digital mammograms 
Retrospective Mammography 

226 
women 
(50% 
case 
50% 

control) 

50-71.5 

American 
screening women 
with and without 

cancer 
- 

End-to-end deep 
learning model and a 

Google Net-LDA 
model 

CC view was consistently more predictive than MLO view in both deep learning models (Google Net-LDA 
and end-to-end Google Net model), regardless of the input subregions. Both models exhibited superior 

performance than the percent breast density (AUC=0.54; 95% CI: 0.49–0.59). Both deep learning models 
can predict short-term breast cancer risk using normal mammograms. 

Short-term BC prediction 

Hinton  [?] 2019 USA 

To determine if mammographic features from 
deep learning networks can be applied in 
breast cancer to identify groups at interval 

invasive cancer risk. 

Retrospective Mammography 

182 
interval 
and 173 
screen-
detected 
cancers 

45-69 
 

American 
screening women 

Bi-RADS density or deep-learning 
network prediction or both 

Deep learning 
network architecture 

(ResNet50) with 
ImageNet transfer 
learning weights 

Better discrimination than BI-RADS breast density for classifying interval cancer versus screen-detected 
cancer with a 75% classification accuracy; pre-cancerous mammograms contain imaging information 

beyond breast density that can be used to predict the probability of breast cancer detection 
 
 

IC prediction 

Zheng [?] 2020 China 

To evaluate the diagnostic performance of 
clinical parameter combined DLR on 

conventional US images and SWE images of 
breast cancer in predicting the extent of ALN 

involvement in patients with early-stage 
breast cancer 

Retrospective Ultrasound with 
Elastography 584 50 

26-83 
Chines women 
with malignant 
breast lesions 

- 

ResNet50, 
ResNet101, Inception 

V3, and VGG19 
 
 

Development and validation of a clinical parameter combined DLR method based on breast conventional 
US and SWE images for preoperative prediction of ALN status in patients with clinical T1 or T2 breast 

cancer. 
ALN prediction 

Guo [?] 2020 China 

To identify as many high-risk (HR) patients as 
possible to ensure an appropriately reduced 
in over-treatment without adverse impacts on 

survival 

Retrospective Ultrasound 937 41-63 Chinese women 
from 2 sites - Two Deep Learning 

Radiomics models 
DLRU predicts the risk of SLN involvement.  that it may offer a simple preoperative tool to promote 

personalized axillary management of breast cancer. Prediction high risk patients 

Sun [?] 2020 China 

To assess how deep convolutional neural 
network (CNN) performed compared with 

radiomics analysis in predicting ALN 
metastasis using breast ultrasound, and to 
investigate the value of both intratumorally 
and peritumoral regions in ALN metastasis 

prediction 

Retrospective Ultrasound 

79 
patients 
with 479 
breast 
tumors 
(136 

positive 
and 343 
negative 

ALN) 

36-60 Chinese women - 

Three image-only 
CNN models, 

including the intra 
tumoral CNN, the 

peritumoral CNN and 
the combined-region 
CNN, were built with 
the DenseNet based 

on the intratumor 

The major findings of this study were that deep CNN, built by combining intra tumoral and peritumoral 
regions in breast ultrasound images, outperformed radiomics models in predicting ALN metastasis. "Helps 

to avoid axillary overtreatment and reduce associated serious complications." 
ALN prediction 

He [?] 2019 USA 
To apply machine learning to find a novel 

breast cancer predictor based on information 
in a mammogram 

Retrospective FFDM & 
Ultrasound 5147 N/A American women 

with BI-RADS 4 

Patient demographic variables, 
and pathology result: 

Age-dead-race-height-weight-
BMI-Insurance-Menopause- 

Family history- Previous breast 
cancer, other cancer, skin 

change, palpable Lump, nipple 
Discharge, 

 

Natural language 
processing and deep 

learning methods 

We defined five diagnosis types from the biopsy report: benign, atypia, lobular carcinoma in situ, ductal 
carcinoma in situ (DCIS), and carcinoma. Invasive breast cancer or DCIS were considered positive 

results. Any other pathology diagnosis was considered as free of breast cancer and as a negative result. 
BRISK was able to categorize abnormal mammogram findings into subtypes (benign, atypia, lobular 

carcinoma in situ, DCIS, and carcinoma) and improve the biopsy endorsement compared with BI-RADS 4 
recommendations, with high specificity and sensitivity. We have validated the tool with data from 

thousands of BI-RADS 4 patients. 
 
 

BC prediction 

Haji 
Maghsoudi 

[?] 
2018 USA To estimate breast percentage density (PD) 

from digital mammograms Retrospective Mammography 

15661 
images 

from 
4437 

women 

N/A American women 
from 2 sites - Deep-learning (U-Net 

2 CNN) 

Deep-LIBRA can provide breast segmentation by separating the dense from the non-dense tissues within 
the breast region. The method included two major steps: the segmentation of the breast region and the 
estimation of PD. It employed some pre-processing steps, two CNNs (the modified U-Net architecture), 

super pixels, extracting texture features, and SVM to accomplish the PD estimation. 

Breast density estimation 

Ciritsis [?] 2018 Switzerland 

To develop a deep convolutional   neural   
network (dCNN) for   the   automatic   

classification   of   breast   density   based   
on   the mammographic appearance of the 

tissue according to the ACR -BIRADS 

Retrospective Mammography 

20,578 
single 

view from 
5,221  

patients 

47-69 
 
 

Swiss women - Deep convolutional 
neural network 

The model computations for the MLO and CC projection were completed in 20.3 and 21.6 hours, 
respectively. In the differentiation between fatty (ACR A/B) and dense breasts (ACR C/D), the agreement 

reached 99% for the MLO and 96% for the CC projections, respectively. 
Breast density classification 

Yuan [?] 2020 China 

The objective of this study is to investigate 
the use of texture analysis (TA) of magnetic 
resonance image (MRI) enhanced scan and 
machine learning methods for distinguishing 

different grades in breast invasive ductal 
carcinoma (IDC). Preoperative prediction of 
the grade of IDC can provide reference for 

different clinical treatments, so it has 
important practice values in clinic. 

Retrospective MRI 28 29-63 Chinese women 
from one hospital - Machine learning 

Our model can distinguish these two grades of tumors; he best classification result is obtained by 
selecting 3 or 8 key features; Because of the small amount of data collected, the result of CNN 

classification is very poor.; Experiments show that the classification effect of the Gabor wavelet combined 
with SVM is better than that of CNN and other classification methods; Our model is not combined with 

other common medical image data such as CT and DR. There are some uncertainties in our model; we 
developed a prediction system for the grades of IDC with the highest accuracy of 81.33%. Our model 

inputs the MRI of patients with IDC before operation, and the output of the model is the possible grade of 
IDC predicted. 

Preoperative distinction of breast 
IDC grade 

Manley[?] 2021 USA 

To investigate whether our convolutional 
neural network (CNN)-based breast cancer 

risk model is modifiable by testing it on 
women who underwent risk reducing 

chemoprevention treatment. 

Retrospective 
cohort Mammography 541 27-90 

Sample was 
racially and 

ethnically diverse 
with 36.7% non-
Hispanic white, 

11.6% non-
Hispanic black, 
36.4% Hispanic 
or Latina, 5.7% 
Asian, and 9.4% 

Other. 

Age- race and ethnicity-
menopausal status-BMI-hormone 

therapy use-alcohol use- 
CNN risk model 

The group of patients that underwent chemoprevention treatment had significant decrease in breast 
cancer risk compared to the group of patients that did not undergo treatment.; The modifiability of our risk 

model has a potential to be used as a Journal Pre-proof assessment tool to measure effectiveness of 
known chemoprevention agents as well as for use in testing novel chemoprevention strategies; 

Risk model prediction 

Pérez-Benito 
[?] 2019 Spain To improve the rate of risk breast cancer 

estimation from healthy mammograms. Case control Mammography 

1563 
(808 

cases 
&755 

control) 

45-70 
Spanish women 
from 10 different 

sites 
Percentage of breast density 

DM-Scan: computer-
assisted tool for 

segmentation and 
random forest for risk 

model prediction 

After calculating the PDROC curve for both views in the test set (391patients,202 of which developed 
cancer and 189 were controls), we obtain AUCs of 0.559 and 0.551 for CC view and MLO view 

respectively; possible contribution to a better estimate of cancer risk compared to PD; better performance 
o fG-HOGH in our dataset 

Breast cancer risk estimation 

Fan [?] 2019 China 

To investigate the accuracy of 
multiparametric image fusion with T2W- and 
DCE-MRI-based radiomic features by CCA 

for the prediction of histological grade in IDC 

Retrospective 
cohort MRI 167 51.9 

28-83 
Chinese women 

from 1 site - 

Segmentation: spatial 
fuzzy C-means 
(FCM) algorithm 

 

SVM-based recursive feature elimination (SVM-RFE) was adopted to identify the optimal features for 
prediction. The areas under the ROC curves (AUCs) for the T2W images and the DCE-MRI series of pre-
contrast, intermediate and last postcontrast images were 0.750±0.047, 0.749±0.047, and 0.788±0.045, 
respectively, for the development cohort and 0.715±0.068, 0.704±0.073, and 0.744±0.067, respectively, 

Histopathological grade for IDC 
prediction 
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for the validation cohort. After the CCA-based fusion of features from the DCE-MRI series and T2W 
images, the AUCs increased to 0.751±0.065, 0.803±0.0600 and 794±0.060 in the validation cohort. 

Moreover, the method of fusing features between DCE-MRI and T2W images using CCA achieved better 
performance than the concatenation-based feature fusion or classifier fusion methods. Our results 

demonstrated that anatomical and functional MR images yield complementary information, and feature 
fusion of radiomic features by matrix transformation to optimize their correlations produced a classifier 

with improved performance for predicting the histological grade of IDC. 

Fan [?] 2020 China 

To improve prediction accuracy of these 
clinical indicators (Histologic grade and Ki-67 
proliferation status) based on tumor radiomic 

analysis. 
Retrospective MRI 144 51.9 

28-83 
Chinese women 

from 1 site 
Histologic grade 

Ki-67 status 

Segmentation: spatial 
fuzzy C-means 
(FCM) algorithm 

 

Joint prediction of Ki-67 status and tumor grade on MR images using the MTL achieved performance 
improvements over that of single-task-based predictive models. Similarly, for the prediction tasks of Ki-67 

and tumor grade, the MTL for combined pre contrast and apparent diffusion coefficient (ADC)images 
achieved AUCs of 0.811 and 0.816, which were significantly better than that of the single-task-based 

model with p values of 0.005 and 0.017, respectively 

Clinical indicators prediction 

Zhou [?] 2020 China 

To determine the feasibility of using a DL 
approach to predict clinically negative axillary 

lymph node metastasis from US images in 
patients with primary breast cancer. 

Retrospective US 680 24-82 
Chinese women 

from 2 sites 
3 vendors 

- 

Three different 
convolutional neural 
networks (CNNs) of 

Inception V3, 
Inception-ResNet V2, 

and ResNet-101 
architecture 

The best-performing CNN model, Inception V3, achieved an AUC of 0.89 (95% confidence interval [CI]: 
0.83, 0.95) in the prediction of the final clinical diagnosis of axillary lymph node metastasis in the 

independent test set. The deep learning models achieved good performance in predicting lymph node 
metastasis with the use of the primary breast cancer US images of test set A, with AUCs of 0.90 (95% CI: 
0.84, 0.95) for the Inception V3 model, 0.89 (95% CI: 0.83, 0.94) for the Inception-ResNet V2 model, and 
0.87 (95% CI: 0.82, 0.93) for the ResNet-101 model (P = .44, .33, and .38 for Inception V3 vs Inception-

ResNet V2, Inception V3 vs ResNet-101, and Inception-ResNet V2 vs ResNet-101, respectively. To 
achieve individualized and precise minimally invasive treatment, an increasing number of studies have 

focused on how to select an axillary management strategy to reduce the use of axillary lymph node 
dissection for positive sentinel lymph nodes and how to provide an option to avoid sentinel lymph node 

biopsy for clinically lymph node–negative breast cancer 

ALN prediction 

Bhattarai [?] 2019 USA To identify predictors of BC in vivo growth 
rate Retrospective Mammography 114 50-70 

American women 
from 1 site 

discovery cohort 
(unique and rare 
cohort because 

the second 
mammogram 

illuminated that 
the tumor was 

indeed “missed” 
during the first 
mammogram) 

- Machine learning model (Surr-INVIGOR) that can predict a gross scale (fast versus slow) in vivo growth rate accurately in 
routine practice, and its medicolegal consequences 

Predictors identification for BC in 
vivo rate 

Saha [?] 2019 USA 

To determine if algorithmically extracted 
imaging features of BPE on screening breast 
MRI in high-risk women are associated with 

subsequent development of cancer 

retrospective 
study (Case–
control study) 

MRI 

133 (46 
cancer & 

87 
control 

patients) 

50 
27-76 

High risk women 
taking part in 

screening breast 
MRI 

- 

Machine Learning-
Based Models Using 
Computer-Extracted 

Features (multivariate 
logistic regression 

model) 

The imaging features remained independently predictive of subsequent development of cancer (P< 0.003) 
when compared with the subjective BPE assessment of the readers Imaging features prediction 

Teja Kakileti 
[?] 2019 India 

New personalized risk framework called 
Thermalytix Risk Score (TRS) to identify a 

high-risk target population for regular 
screening and enable early-stage breast 

cancer detection at scale 

Retrospective 
thermal image 
(+ mammo & 

US) 
769 18-82 

four breast 
cancer screening 

facilities. 

Dataset without info as family 
history, race, age at menarche… 

Cascaded CNN 
architecture 

Effectiveness of TRS in stratifying the screening population into four different risk levels. These four risk 
levels might be further used to create a personalized screening regime High-risk women prediction 

Yu [?] 2021 China 

To investigate whether radiomics classifiers 
from mammography can help predict tumor-
infiltrating lymphocyte (TIL) levels in breast 

cancer 

Retrospective Mammography 121 50 Chinese women - Machine learning 
Radiomics from digital mammograms not only predicts the TIL levels in breast cancer patients, but can 
also serve as non-invasive biomarkers in precision medicine, allowing for the development of treatment 

plans 

Tumor-infiltrating lymphocyte 
prediction 

Akselrod-
Ballin [?] 2019 Israel 

To evaluate the accuracy and efficiency of a 
combined machine and deep learning 

approach for early breast cancer detection 
applied to a linked set of digital 

mammography images and electronic health 
records 

Retrospective Mammography 
13234 

patients 
(52936 
images) 

56 
Israeli women 

from 5 sites with 
many clinical 

features included 

Age-BMI-gynecologic history (age 
first menstruation, age last 

menstruation, postmenopausal, 
menstruation years, pregnancies 

count, past pregnancies, 
breastfeeding, number of children 
breastfed, hormone replacement 
therapy status), cancer history 

(family cancer first degree, family 
cancer breast or ovarian, and 

number relatives, family cancer 
minimum age, any personal 

cancer history), symptoms, breast 
radiology history. 

Combination of 
machine-learning and 

deep-learning 
approaches 

The algorithm has the potential to substantially reduce missed diagnoses of breast cancer: it predicted 
breast malignancy detected within 12 months from the index examination and identified in 34 of 71 

women with negative cancer but diagnosed within a year 
BC prediction 

Hou [?] 2019 USA 

To improve the prediction of pure DCIS 
(negative) versus upstaged DCIS (positive) 

cases 
 

Retrospective 
 

Mammography 
 335 40-86 

American women 
from 1 site with 

microcalcification
s only 

 

Shape. Topology, texture Transfer learning 
The prediction performance of DCIS upstaging by embedding two related 

pathology classes in different training phases was improved and outperformed the baseline model 
 

Ductal carcinoma in situ or IDC 
prediction 

Liu [?] 2020 USA 

To explore whether the multiparametrci-MRI 
based model, which employs deep CNNs and 

transfer learning methods, can serve as a 
noninvasive preoperative prediction method 
of Ki-67 status in patients with breast cancer 

Retrospective 
 MRI 328 51.1 

American women 
from 1 site with 
multiple lesions 

- Deep CNN + Transfer 
learning 

Noninvasive approach improves the performance of radiomics in preoperative prediction of Ki-67 status 
extracting breast cancer specific structural and functional features from mp-MRI images obtained from 

conventional scanning sequences using the advanced deep learning methods. This could further 
personalize medicine and computer aided diagnosis 

 

Preoperative prediction 
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Table 2: Studies focusing the use of AI for treatment assessment  

 Study first author Year 
publication Purpose or aim(s) Study design Imaging modality Number of 

subjects or 
images (N) 

Subjects’ 
mean, 

median or 
range age 

Subjects’ 
specificities/ cancer 

type Treatment type AI information’s Key findings Keywords/categorization 

 Li 2020 To determine if we could identify radiomic 
predictors from PET/CT in breast cancer Patient 

therapeutic efficacy prior to NAC retrospective PET/CT 
100 (50 

Pathologic 
complete 

response & 50 
without) 

26-76 Chinese/ all subtype Neoadjuvant chemotherapy (NAC) Unsupervised and supervised 
machine learning Predicting model development  for pathologic complete response prior to neoadjuvant chemotherapy using 

radiomic PET/CT features from a single pre-treatment and patient age treatment assessment  

 Aghael 2020 
To develop a new quantitative global kinetic 

breast MRI features analysis scheme and assess 
its feasibility to assess tumor response to 

neoadjuvant chemotherapy. 
retrospective DCE-MRI 

151 (63: 
complete 

response & 88: 
partial 

response) 
25-76 American/ all subtype NAC artificial neural network and a 

Wrapper Subset Evaluator 
quantitative analysis of global kinetic features computed from breast MR images acquired pre-chemotherapy 

has potential to generate a useful clinical marker that is associated with tumor response to neoadjuvant 
chemotherapy treatment assessment 

 Gangeh 2016  
To develop a noninvasive computer-aided-

theragnosis (CAT)system for the early 
therapeutic cancer response assessment in 

patients with locally advanced breast cancer 
treated with neoadjuvant chemotherapy. 

prospective 

US (baseline, week 1,4 
and 8 after beginning 

pre-ttt NAC, last 
scan  pre-

operatively   4 to 6 
weeks after the 

completion of 2–4 
months of 

chemotherapy 
administration). 

56 26-67 (mean:49 
+/-9) Canadian / LABC NAC 

Advanced machine learning 
techniques. kernel-based metric 

named maximum mean 
discrepancy and supervised 

learning 

The proposed CAT system thus establishes a noninvasive framework for monitoring cancer treatment response 
in tumors using clinical ultrasound imaging in conjunction with machine learning techniques. Such a framework 
can potentially facilitate the detection of refractory responses in patients to treatment early on during a course 

of therapy to enable possibly switching to more efficacious treatments 
treatment assessment 

 Choi 2020 
to investigate the predictive efficacy of positron 
emission tomography/computed tomography 

(PET/CT) and magnetic resonance imaging 
(MRI) for the pathological response of 

advanced breast cancer to neoadjuvant 
chemotherapy (NAC). 

retrospective PET/CT and MRI 56 patients 
were selected 26-66 Korean/ LABC NAC 

Cubic-shaped ROIs were used for 
image cropping for deep learning. 
The CNN structure arranges the 

input layers in a geometric pattern 
consisting of rows and columns of 
the image matrix12. It was based 

on Alexnet (version 2012, 
ImageNET large scale visual 

recognition challenge), using 
Python language (version 3.6.0), 

and the machine learning 
framework known as Tensorflow, 

to classify the patients into 
responders and non-responders. 

The sensitivity increased significantly after augmentation; application of the CNN method improved the 
accuracy of prediction. Among the conventional imaging parameters, ΔSUV exhibited the best results with a 
sensitivity of 83% and specificity of 68% among the PET and MRI data.  the performance of ADC in evaluating 
pathological responses had a sensitivity of 83% and a specificity of 72%. Subgroup analysis according to the 

molecular subtype revealed that all the changes in PET and ADC data were statistically significant in predicting 
the pathologic response in the HER2-negative group but not in the triple-negative group. 

treatment assessment 

 Dashevsky 2018 to predict resectability of HER2+ breast cancer 
at breast conservation surgery (BCS) utilizing 

features identified on preoperative breast MRI retrospective study MRI 109 30-79 American / HER2+ Breast cancer surgery (BCS) SVM classifier We found 55% of patients that required one re-excision had multifocal or multicentric disease, compared to 
only 24% of patients who had successful initial BCS treatment assessment 

 Ha 2018 to   better   predict   post-NACaxillary response 
using a breast MRI dataset retrospective study (feasibility 

study) MRI 127 23-82 American / LABC NAC CNN with 4 block and 10 CL accuracy  of  83%  in  predicting NAC response in patients with node-positive breast cancer treatment assessment 
 Ha 2018 

to develop a novel CNN to predict NAC 
response using a baseline breast MRI tumor 

dataset and pathological confirmation of 
treatment response 

retrospective study using 
retrospective review of our 

database MRI 141 not specified American / LABC NAC CNN It is feasible for current deep CNN architectures to be trained to predict NAC treatment response using a breast 
MRI dataset obtained prior to initiation of chemotherapy.Larger dataset will likely improve our prediction 

model treatment assessment 

 Czarnota 2018 
to demonstrate the clinical utility of pre-ttt and 
early stage treatment QUS texture features in 

predicting the response of breast cancer 
patients to NAC 

prospective study US 100 29-82 Canadian / LABC NAC SVM classifier highly accurate algorithms able to detect tumour response prior to treatment and early after starting NAC treatment assessment 

 Gangeh 2016 to propose a new and improved approach for 
the QUS prediction of breast tumor response to 

neoadjuvant chemotherapy. Prospective study US 58 29-67 Canadian / LABC NAC KNN classifier ? And SVM ? 
multi-parametric QUS applied at a clinically relevant frequency range (<10 MHz) can be used to non-invasively 
predict breast tumor response to NAC as early as after 1-2 cycles (1-4 weeks) with reasonable accuracy (80%), 

whereas RECIST-based tumor  size  change  is  only  52%  accurate  in  predicting response at week 4 with a 30% 
threshold. 

treatment assessment 

 DiCenzo 2020 
to develop a model for predicting response to 
neoadjuvant chemotherapy (NAC) in patients 

with locally advanced breast cancer (LABC) 
using pre-treatment quantitative ultrasound 

(QUS) radiomics 
prospective observational study US 82 (80W & 2M) 27-74 Canadian / LABC NAC SVM classifier QUS-based radiomics can predict response to NAC based on pretreat-ment features with acceptable accuracy treatment assessment 

 Jiang 2020 
To develop and validate a radiomics-based 

nomogram with texture features from 
mammography for the prognostic prediction in 
patients with early-stage triple-negative breast 

cancer (TNBC) 
retrospective study mammography 200 mean = 49 Chinese / (triple 

negative) TNBC Not specific deep-learning strategies (not really 
specified) the radiomics nomogram adds more net benefit than the “treat all” or “treat none” strategies without 

limitation on the threshold probability treatment assessment 

 Quiaoit [?]  2020  
To investigate the utility of 

quantitative ultrasound(QUS) carried out during 
NAC to predict the final tumour response in 

a multi-institutional setting 
Prospective observational study  US  59  

(58 W & 1 M) 27-73  Canadian / LABC NAC SVM  
QUS data obtained during NAC reflect the ongoing treatment-related changes during chemotherapy and 

can lead to better classifier performance   in predicting the ultimate pathologic   
response to treatment compared to  

baseline features alone.  
Treatment assessment 

Tahmassebi [?] 2019 
To assess the potential of machine learning 
with multiparametric magnetic resonance 

imaging (mpMRI) for the early prediction of 
pathological complete response (pCR) to 
neoadjuvant chemotherapy (NAC) and of 

survival outcomes in breast cancer patients 
Retrospective MRI 38 25-70 American NAC ML – 8 classifiers 

For prediction of RCB class, RFS, and DSS, qualitative and quantitative features from all mpMRI sequences, that 
is, T2-weighted, DCE, and DWI, were necessary. The most relevant features for prediction of RCB class were 

qualitative features including changes in lesion size (RL, craniocaudal, and AP) and complete pattern of 
shrinkage on DCE-MRI, quantitative pharmacokinetic features including mean transit time with DCE-MRI, 

peritumoral oedema onT2-weighted imaging, and minimum ADC with DWI. Machine learning with mpMRI 
allowed prediction of pCR (best/mean AUC, 0.94/0.86) and survival outcomes (RFSbest/mean AUC, 0.83/0.77; 

DSS best/mean AUC, 0.92/0.91) with high accuracy. Qualitative and quantitative features from all MRI 
sequences were necessary for prediction of RCB class, RFS, and DSS, thus supporting the use of an mpMRI 

Treatment assessment   
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approach. Of all machine learning classifier models, the XGBoost classifier model outperformed all other 
models in the prediction of pCR and DSS. Only for RFS, the LR classifier model showed a slightly better accuracy 

(~3%) yet the XGBoost model is more stable.  

Braman [?] 2017 
To predict pathological complete response 
(pCR) to neoadjuvant chemotherapy (NAC) 
using dynamic contrast-enhanced magnetic 

resonance imaging (DCE-MRI) 
Retrospective MRI 117 23-79 American / multiple 

subtypes NAC SVM 

Among all patients, a combined intratumoral and peritumoral radiomic feature set yielded a maximum AUC of 
0.78 ± 0.030 within the training set and 0.74 within the independent testing set using a diagonal linear 

discriminant analysis (DLDA) classifier. Receptor status-specific feature discovery and classification enabled 
improved prediction of pCR, yielding maximum AUCs of 0.83 ± 0.025 within the HR+, HER2−group using DLDA 
and 0.93 ± 0.018within the TN/HER2+group using a naive Bayes classifier. In HR+, HER2−breast cancers, non-
pCR was characterized by elevated peritumoral heterogeneity during initial contrast enhancement. However, 

TN/HER2+tumors were best characterized by a speckled enhancement pattern within the peritumoral region of 
non-responders. Radiomic features were found to strongly predict pCR independent of choice of classifier, 
suggesting their robustness as response predictors. our findings suggest that the radiomic features most 

predictive of response vary across different receptor subtypes  

treatment assessment  

Sutton [?] 2020 
To develop and validate a radiomics classifier 
that classifies breast cancer pCR post-NAC on 

MRI priorto surgery 
USA 

Retrospective MRI  273 Mean=51.8 American/ all subtypes NAC ML classifier 
The model 1 RFE-RF classifier identified 19 different features including pre-contrast and first post-contrast MRI 

intensity features from post-NAC and difference from the post-NAC to pre-NAC mean intensities. 
Model 2 identified 12 radiomics features  and  molecular  subtype  as  relevant  for  pCR classification. 

Model 3 identified 11 radiomics features, of which delta pre-contrast MRI homogeneity, delta pre-contrast MRI 
contrast, and delta first post-contrast MRI Gabor (90, 14.14) energy were significantly different between pCR 

and no CR.  
treatment assessment  

El Adoui [?]  2020  To present a new deep learning (DL) model 
predicting the breast cancer response to NAC 

based on multiple MRI inputs  Retrospective  MRI  42  Mean=55 Belgian / LABC NAC CNN  Using gradient class activation maps to localize tumor regions of interest relevant to the CNN predictions is a 
unique strength of this work and imparts greater interpret-ability than DL approaches with no visualized 

decision-making component.  treatment assessment  

Tran [?]  2017  To evaluate texture features of pretreatment 
DOS functional maps for predicting LABC 

response to NAC  Prospective  Tomographic diffuse 
optical spectroscopy 

imaging  37  18-85 American / LABC NAC Machine learning  The novel machine learning algorithms, especially XGBoost, can be used to develop breast cancer prediction 
models to help identify women at high risk for breast cancer in developing countries  treatment assessment  

Liu [?]  2020  
To apply our convolutional neural network 

(CNN) algorithm to predict neoadjuvant 
chemotherapy (NAC) response using the 

ISPYTRIAL breast MRI dataset  
Retrospective  MRI  131  Mean=48.3 American / LABC NAC CNN  Utilizing a publicly available breast MRI dataset from the ISPY-Trial, our CNN algorithm was able to achieve an 

overall accuracy of72.5% in predicting patients with pCR following NAC  treatment assessment  

Hope Cain [?]  2018  
To determine whether a multivariate machine 

learning-based model using computer-
extracted features of pre-treatment dynamic 

contrast-enhanced magnetic resonance 
imaging (DCE-MRI) can predict pathologic 
complete response (pCR) to neoadjuvant 
therapy (NAT) in breast cancer patients  

Retrospective  
  MRI  288  24-76  American / invasive NAC multivariate models (both SVM 

and logistic regression)  
validate tool for specific subpopulation. We found a significant association between our multivariate models 
and pCR in TN/HER2+ patients. These findings are important because TN/HER2+ patients achieve higher rates 

of pCR compared to HR+/HER2- cancers and have improved disease free and overall survival after a pCR  treatment assessment  
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Unnecessary biopsies reduction  

Six studies explored the possibility of reducing unnecessary biopsies, one (46) from Canada was 

prospective, and the other 5 were retrospective (2 Americans (47,48) and 3 Chinese (49–51). The 

sample size was small varying from 100 to 167 patients, except for Zhang et al (50) study which 

included 2822 images from 1820 patients. The women age ranged between 15 and 92 years old. The 

images used were acquired in a single institution except for of study Zhang (50) that included women’s 

data from 2 different sites. Destrempes et al (46) used images acquired with equipment from two US 

vendors. No other specific characteristics of the women were described except that for BI-RADS 4 and 

5 category patients were the most explored (46).  

Most of the studies (n=4) used US images while one used mammography and another MRI. Two used 

contrast-enhanced images, one was contrast-enhanced digital mammography, and the other was CE-

US. The AI techniques were heterogeneous, but the results showed AI tool as having potential to 

reduce unnecessary biopsies in a short period, improving the times allocated to manage the disease. 

The invasive biopsies require more time to have the results (46–49), more costs and pain for the 

patient and the healthcare system. 

 

Patients' preferences 

The 3 studies showed that women in a screening age had high levels of trust in AI tools and were ready 

to accept the use of them in clinical practice. However, the results showed a preference in use of AI 

tool as co-actor in the decision, with the clinician have the ultimate decision making role. 

Understanding the technology seems to be a key point for the confidence, being linked to the 

responsibility when diagnostic errors happen. Another aspect to consider for patients’ comfort and 

control of their anxiety was the reduction of waiting time between the examination acquisition and 

the receipt of the final diagnostic report. 

 

Tumour type prediction  

Eleven retrospective studies were categorised under “tumour type prediction” (Table 3). Most imaging 

modalities were used to acquire the images used in the studies included in this category (MRI=5, US=3, 

Mammography=1, PET/CT=1 and multimodality MRI & mammography=1).  

Most studies were conducted in China (n=6) and the age range of women included in these studies 

varied between 18 and 89 years old). Five out of 11 studies included young women not participating 

in a screening programme. In this category, several studies (5 out of 11) used patients’ samples with 

different characteristics, namely different race, age, equipment utilised and sites. Castaldo et al (52) 

had used an available American database combining data from 5 sites. 
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Table 3: Studies focusing the use of AI for tumour type prediction  
Study first   

author  
Year  Country  Purpose or Aim(s)  Study design  Imaging  

modality  
Nbr subjects 
or images  

Subjects’ mean, 
median or range 

age  
Subjects’ or 
machine 
specificities  

Clinical (patient) 
features  

AI information’s  
  

Key findings  
  

Sutton [?]  2016  USA  To use features extracted from 
magnetic resonance (MR) images 
and a machine-learning method to 

assist in differentiating breast cancer 
molecular subtypes.  

Retrospective  MRI (1.5 or 
3.0T)  

  
178  28-76  American 

women with 
invasive ductal 
carcinoma and 
preoperative 
breast MRI  

Age-Menopausal 
Status-Pathologic 

tumor size-
Histologic grade-
nuclear grade-
Axillary lymph-
node status  

  

Multiclass SVM  
  

This machine-learning-based predictive model using 
features extracted from MRI can distinguish IDC subtypes 
with an overall accuracy on LOOCV of 83.4%. The model’s 

accuracy was increased when pathologic data were 
incorporated. Computer-derived imaging features of the 

different subtypes were also significantly different, 
suggesting that image-based biomarkers may define 

behavior and determine treatment.  
  

Krajnc [?]  
  

2021  Austria  To establish prediction models for 
breast cancer detection and the 
identification of breast cancer 

receptor status, proliferation rate, and 
molecular subtypes from [18F] FDG-

PET/CT images with ML, (b) To 
investigate the effect of data pre-

processing on breast tumor 
characterization ML models, and (c), 

To compare ML-based prediction 
models with conventional SUV-based 

approaches.  
  

Retrospective  
  

PET/CT [18F] 
FDG  

  
170  57.6 (18-86)  Austrian 

women  
Age- 

Weight/Height- 
BMI  

  

Machine learning  
  

Predictive models based on [18F] FDG-PET/CT images in 
combination with advanced data pre-processing steps aid in 
breast cancer diagnosis and in ML-based prediction of the 
aggressive triple negative breast cancer subtype. However, 
radiomics analysis of [18F] FDG-PET/CT is limited in value 

for the prediction of individual receptor status and 
proliferation rate.  

  

Ha[?]  2019  USA  To develop a novel CNN algorithm to 
predict Oncotype DX recurrence 
score using a breast MRI tumor 

dataset.  
  

Retrospective  
  

MRI (1.5 or 
3.0T)  

  
134  55.9 ± 11  American 

women  
Age  CNN  In a relatively small sample size, we were able to predict 

Oncotype Dx RS based on an MRI tumor dataset with an 
accuracy of up to 84%. Future research with a prospective 

randomized study is needed to validate the potential of 
predicting Oncotype Dx RS, as well as directly correlating 

MRI with clinical outcome.  
  

Jiang[?]  2021  China  To evaluate the prediction 
performance of deep convolutional 
neural network (DCNN) based on 

ultrasound (US)images for the 
assessment of breast cancer 

molecular subtypes.  
  

Retrospective  
  

US  4828 images 
from 1275 
patients  

  

26-74  Chinese 
women  

4 vendors  
Pathology subtype 

annotation  
  

ResNet50 as the 
basal DCNN 

classification model 
to train the deep 

learning algorithm, 
in which image 

input features are 
mapped to the 
corresponding 
output label  

  

Automatic breast cancer phenotyping allows for a more 
detailed analysis of pretreatment US images, which would 

provide complementary information for individualized 
treatment plan options without increasing the time burden. 

Although analyzing breast cancer molecular subtypes 
based on US images is a relatively new area of exploration, 

there is some evidence to support an ultrasonic and 
biological basis for our findings. For example, significant 

differences in shear wave velocity values among different 
molecular subtypes were detected. Our results 

demonstrated that DCNN derived from US data enables the 
identification of molecular subtypes with accuracy. The 

computer algorithm may therefore provide helpful 
prognostic information based on the pretreatment tumor 

image.  
  

Saha [?]  2018  USA  To present a comprehensive analysis 
of associations of MRI-based imaging 

phenotypes of breast tumors with 
breast cancer molecular, genomic, 

and related characteristics  
  

Retrospective   
heterogenous   

cohort  
  

MRI  922  52.25  
21.75-89.49  

  
American   

heterogeneous 
women from 1 

site (race white, 
black and 
others)  

  

-  Fuzzy C-means  
  

Our additional analysis on subgroups formed using different 
scanner manufacturers, races, and menopausal status of 
the patients did not demonstrate major differences in the 

performance of the trained models most of the tasks.  
Regarding molecular subtypes, the highest performance 

was obtained for the models distinguishing Luminal A from 
other subtypes with AUC=0.697 (95% CI: 0.647–0.746, p< 
1.24e−11) and TNBC from the other subtypes AUC=0.654 
(95% CI:0.589–0.720, p< 1.42e−05). The performances for 
distinguishingHER2 from other subtypes and for Luminal B 

from other subtypes were somewhat lower and did not 
reach statistical significance (p=0.03 and p=0.13, 

respectively). Regarding individual molecular markers, the 
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models showed significant prognostic value for 
distinguishing ER+from ER−patients (p< 4.2e−06), 
PR+fromPR−patients (p< 1.93e−04). The model for 
predicting high vs low proliferation (Ki-67) showed 

AUC=0.624 with ap-value on the margin of significance 
(p=0.01)  

Wu [?]  2018  China  To evaluate the potential of machine 
learning with quantitative ultrasound 
image features for the diagnosis of 

TN breast cancer  

Retrospective  
  

US  140  50.3 ± 9.6  Surgically 
confirmed 

breast cancer in 
Chinese 
women  

-  
  

Machine learning  
  

The analysis of breast ultrasound images by machine 
learning achieves high level of differentiation between the 

TN and NTN subtypes, exceeding the diagnostic 
performance by standard visual assessments of the 

images  
  

Guo [?]  2017  China  To assess the associations between 
quantitative ultrasound feature and 

biological characteristics  
  

Retrospective  
  

US  215  52.53 & 50.94  
  

Chinese women 
(HER-2 neg and 
triple negative)  

2 vendors  

-  
  

SVM  Strong correlation between receptor status and subtypes 
(p<0.05, AUC=0.760).  Hormone receptor-positive, HER2-
negative cancers have different ultrasound appearances 

from Triple-negative cancers.  
  

Zhou [?]  2019  China  To evaluate the HER-2 status in 
breast cancer patients using 

mammography(MG) radiomics 
features  

Retrospective  
  

Mammography  306  49.5  Chinese women 
with onvasive 

ductal 
carcinoma of no 

special type  

-  
  

SVM  Radiomics features could be an efficient tool for the 
preoperative evaluation of HER-2 status inpatients with 

breast cancer. ng the SVM andlogistic regression models 
built from radiomics features from CC viewsalone, MLO 

views alone and CC and MLO views in combination, 
thelogistic regression model built from a combination of 

features from CCviews and MLO views showed the optimal 
performance for distin-guishing HER-2 status.  

Zhang [?]  2020  China  
  

To apply deep learning algorithms 
using a conventional convolutional 

neural network (CNN) and a recurrent 
CNN to differentiate three breast 

cancer molecular subtypes on MRI  

Retrospective  
  

MRI  244  33-72  Chinese women 
from 2 sites  

-  
  

CNN and transfer 
learning  

How the AI methods developed using one training dataset 
can be implemented in a different clinical setting, e.g., 

images acquired using different protocols, different 
scanners, or in different hospitals  

Wu [?]  2019  China  To develop and validate an 
interpretable and repeatable machine 

learning model approach to 
predictmolecular subtypes of breast 
cancer from clinical metainformation 

together with mammography and MRI 
images  

Retrospective  
  

Mammography  
 &  

MRI  
363  21-77  Chinese women 

from 1 site  
  

Breast cancer 
family-oral 

contraceptive 
history-

reproductve & 
breastfeeding 

history-multiple 
aborption history-
breast prosthesis 

implantation-
nipple discharge-
skin abnormalita-

Age  

Decision tree 
(machine learning)  

A complete“white box”machine learning method to predict 
the molecular subtype ofbreast cancer based on the BI-

RADS feature description in a multi-modal setting.  

Castaldo  2020  Italy  To evaluate the effect of several 
normalization techniques to predict 

four clinical phenotypes such as 
ER,PR,HER2 and TN status by 

quantitative features  

Retrospective  
  

MRI  91  29-82  The cancer 
Genome Atlas 

database  
American 

women from 5 
sites  

-  Three advanced 
ML techniques 
(Support Vector 

Machine,Random 
Forest and Naïve 

Bayesian)  

Radiomic features enable to discriminate major breast 
cancer molecular subtypes and may yield a potential 
imaging biomarker for advancing precision medicine  

   



 16 

Other issues 

Four 4 articles were identified as not being directly related to one of the 6 categories identified above. 

Two of these were about image quality assessment, as they addressed breast positioning in 

mammography (53,54). The other two studies were performed on a dedicated breast-CT and focused 

specifically image reconstruction and glandular dose estimation for optimisation. While Teuwen et al. 

(55) performed their study using a dataset of 3D breast phantoms images to estimate the actual breast 

density or patient specific dose, Cong et al. (56) used an available dataset from the company that 

manufactured the dedicated breast CT system to achieve a radiation dose reduction of 6mGy per 

cone-beam CT scan.  

 

Discussion 
The aim of this study was to identify AI tools facilitating person centred care for diagnostic and 

treatment of breast diseases, and according to the findings, there are six different categories of AI 

tools. Most of these categories are dedicated to cancer prediction and disease management. For all 

these categories, the AI algorithms were in stage of internal validity, using mainly retrospective study 

designs and small samples. Furthermore, the samples were relatively heterogenous (females of 

different ages, races, and ethnicities and some have even included images acquired with different 

equipment). But to the best of our knowledge, none of them have studied the  influence of these 

variables on the results.  

In addition, only two studies included 1 or 2 males in their samples. Although breast cancer affects 

mostly women, it can happen also in males (57,58), as well as in people transitioning genders, due to 

the use of hormones, which can promote an increase on breast dense tissues and consequently an 

increase of BC risk (59–61). 

A valid, clinically applicable external model should be applied to prospective data using direct raw data 

and applicable to all patients’ specificities without variability by acquisition or treatment protocol. This 

is to study whether these algorithms can be generalised across other clinical situations and contexts. 

This step is essential if the algorithm is to be adopted and implemented clinically (62). 

 

The advantage of AI tools is their ability to integrate data from various sources, both in terms of 

imaging modality and patient information for direct precision medicine (63). However, only few 

studies (6 out of 79) have combined data from different imaging modalities, which could be improved 

especially since a multitude of imaging modalities are available and integrated in the diagnosis and 

follow-up of breast diseases. Regarding the inclusion of patient features, heterogeneity was observed 

probably due to the need to include different factors for a better risk prediction. While some studies 

used known models such as the Tyrer-Cuzick score, others included just some of the patient features 
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or no features at all. Due to the preliminary phase of AI tool development (mostly retrospective 

studies, homogenous population and single field strength), an approach fully oriented to radiomics 

seem to be still far away because those limits restrict their wider applicability and generalizability at 

present (64). Radiomics have the potential to facilitate the integration of quantitative information 

with clinical, histological, and genomic data and to give robustness to the decision and promote 

precision medicine and personalised care (65). The radiogenomics (combination of radiomic and 

genomic) could help in the prediction of breast cancers molecular profile and contribute to the 

establishment of the best patient management (66).  

 

Moreover, the use of actual statistical and evidence data in combination of specific patient data could 

help on reducing recall rate, misdiagnosis, overdiagnosis as well on offering a personalised prognosis 

and consequently more adapted treatment as shown on the studies about NAC (44,67,68).  

The screening of breast cancer can be also personalised to respond to the individual needs. Currently, 

in most of the countries having a breast cancer screening program, there is harmonisation of the 

program regarding the age of the participants, the examinations performed and the screening interval 

(69,70). One of the exceptions to the standard screening is for women at elevated risk based 

on BRCA1/2 mutation carriers, a strong family history of BC, or several genetic syndromes, such as Li-

Fraumeni syndrome or Cowden disease (71). In these situation a MRI is being recommended as the 

screening test (72–74). However, with a combination of the AI tools for risk prediction as well as the 

tools for breast density assessment, a personalized screening, instead of program where “one size fits 

all”, can be achieved (20,38,75,76). A recommendation for a pathway can be presented to each person 

considering their age, the family history, and their individual risk factors , since these parameters can 

vary from an individual to another (77). Some current guidelines (78,79) present already pathways for 

different groups of patients but still not individualised enough by combining all required data. 

As artificial intelligence applications aim mainly to imitate and learn complex, time-consuming 

cognitive human tasks, the emotions, pain and stress management is limited by these applications.  

The healthcare professionals are critical to overcome these limitations and since AI is focussing on 

technical aspects, the professionals have more time to focus their attention on patients’ needs and 

become the advocates and facilitators of person centred care. 

AI, despite limitations, can still help on on emotions’ and pain management, indirectly, namely if for 

example a biopsy can be avoided. Avoiding unnecessary biopsies reduces the pain and stress 

experienced by patients, typically associated with invasive procedures (47–51). 
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The unnecessary biopsy reduction can also have positive impact on workload and workflow of medical 

imaging departments, since fewer examinations are required, and the patients’ pathway can be 

improved and adapted to their needs. 

 

None of the included studies have addressed the topic of “conversational agents (chatbot)” that could 

be used to speak to the patients to try to reduce anxiety, to improve technology confidence or 

treatment adherence. As example, a tool named Vik developed in France (80) has demonstrated that 

chatbot could improve support and medication adherence rate for patients with breast cancer.  

 

The patient preferences were explored in 3 studies, but none mentioned if the patient choices are 

included as criteria in the decision-making process. Currently, the treatment options are presented by 

the relevanthealthcare professionals to the patients, and decisions are made jointly. However, with AI 

contribution more variables can be integrated to achieve the personalisation of disease management, 

including the patients’ preferences and demographics (81)(82). This should be included at the 

beginning of the tool’s development, during  in the training and validation phase, and be constantly 

updated for different patient cohorts.  

 

 Confidence in and acceptability of technology, the use and the sharing of patient clinical data are all 

key aspects to consider in the AI tools development. Indeed, as large prospective datasets are proving 

challengingto collect and as individual data belong to the patient, it seems essential to develop trust 

with the patients in order for them to allow access to personal information. Explanations of how the 

AI algorithm, known as black box, makes its predictions can influence the confidence of patients and 

thus the clinical deployment of these algorithms. Explainable AI (XAI) provides an understanding and 

explanation of the decision, prediction and execution process (83). This ensures that the patients are 

involved, that AI transforms into collective intelligence and can help in the acceptability of this new 

technology (84). Appropriately trained healthcare professionals, who can help explain the basics, risks 

and benefits of AI applications to patients in relation to their specific imaging pathway, can be 

instrumental in AI integration in clinical practice.  

 

Only 4 studies focused a better patient management at the time of the imaging examination by 

exploring the optimisation of the examination, by studying patient positioning or delivered dose. 

However, several elements can affect the outcomes of breast imaging namely organisational issues 

such as the time allocated to the examination which can promote high levels of stress as well as work-

related musculoskeletal disorders, promoting a risk of impacting the examination outcome (85,86). 
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Aspects related to the patient (age, the volume of the breast, breast density, previous interventions, 

capability of collaboration) (87–89), the equipment, the acquisition techniques (exposure parameters, 

breast compression and breast positioning) (89–94) and the quality assurance/control practices have 

a role to play as well (95,96). AI tools integrated in practice to help on patients’ management with 

solutions to adapt technique to each individual, for compression, positioning and preferences, 

presenting possible approaches to overcome even the individual limitations that may exists to acquire 

the imaging. The image quality evaluation can also be improved with the support of AI tools since the 

algorithms can detect artifacts that sometimes are not visible to the human eyes, mainly when blur 

exists due to inadequate breast compression in mammography and the monitors are not suitable for 

image assessment (97,98). 

Breast Tomosynthesis is also an imaging modality available for BC screening in some European 

countries such as Norway and United Kingdom (36,99). However, it remains an optional extra tool in 

the assessment of breast abnormalities and not as a routine screening in UK) even with evidence about 

the benefits for women with denser breasts, recall rates reduction and increase on cancer 

detection (36,99–101). Currently, AI is being applied to tomosynthesis, mainly to reduce the reading 

time and lesion detection (102–104) but other roles can be played namely on adapting the patients’ 

pathway, breast compression and positioning, exposure parameters optimisation with a special 

attention to dose reduction while keeping image quality. 

 

There are some limitations to our scoping review; the quality of included studies was not evaluated in 

accordance to the scoping review methodology. To consider only recent AI developments, the studies 

included were only published after 2016 and not before. The PCC concept is really vast developing so 

it was hard to attempt a shared vision and mental model, which could impact the first stage screening 

of studies’ selection. The exclusion of studies using phantoms could also impact the lack of data in 

terms of dose and image quality.  

From this research, it seems important to further explore the role of AI for different patient population 

profiles/characteristics, so it is in the future better integrated into effective personalised care, by 

considering the idiosyncracies of each race and gender. There is a lack of studies that provide better 

management of patients at the time of imaging acquisition to improve their experience including 

positioning, compression, optimization quality/dose received, faster acquisitions or personalised 

techniques. Male and transgender women studies are still scarce and those are populations that may 

also experience from breast pathologies. The explainability of AI tools and the inclusion of patient’s 

preferences in the management of breast disease are needed to be further developed, studied and 

explored in the future to ensure a balanced integration of AI in breast imaging.  
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Conclusions 

The use of AI for person-centered care is mainly focused on risk and cancer prediction and disease 

management. It seems that AI brings the possibility of personalised screening taking into 

consideration the specific risks, as well as the identification of the most suitable treatment by 

analysing multi data and multi-imaging modalities. However, AI tools are mainly designed for imaging 

assessment and less for the optimisation of image acquisition, improvement of patient experience and 

to explain to patients the possible impacts and pathways of disease management. 
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Appendix 1 Search strategy: 23.06.2021 
 
PubMed 
("Mammography"[MeSH Terms] OR "breast neoplasms/diagnostic imaging"[MeSH Terms] 

OR "Breast/diagnostic imaging"[Mesh] OR "mammograph*"[Title/Abstract] OR 
"breast cancer screening"[Title/Abstract] OR "breast screening"[Title/Abstract] OR 
"breast imaging"[Title/Abstract]) AND ("Artificial Intelligence"[MeSH Terms] OR 
"Artificial Intelligence"[Title/Abstract] OR "machine learning"[Title/Abstract] OR 
"deep learning"[Title/Abstract]) AND (2016:2021[pdat]) 

Nombre de références: 808 
 
Embase.com 
('mammography'/exp OR mammograph*:ti,ab,kw OR 'breast cancer screening':ti,ab,kw OR 

'breast screening':ti,ab,kw OR 'breast imaging':ti,ab,kw) AND ('artificial 
intelligence'/exp OR 'machine learning'/exp OR 'artificial intelligence':ti,ab,kw OR 
'machine learning':ti,ab,kw OR 'deep learning':ti,ab,kw) AND [2016-2021]/py 

Nombre de références : 1235 
 
CINAHL (ebsco) 
(MH "Mammography" OR MH "Breast Neoplasms+/DI/US/RA" OR MH "Breast+/US/RA" OR 

TI mammograph* OR AB mammograph* TI "breast cancer screening" OR AB "breast 
cancer screening" OR TI "breast screening" OR AB "breast screening" OR TI "breast 
imaging" OR AB "breast imaging") AND (MH "Artificial Intelligence+" OR TI "Artificial 
Intelligence" OR AB "Artificial Intelligence" OR TI "machine learning" OR AB "machine 
learning" OR TI "deep learning" OR AB "deep learning") AND PY 2016-3000 

Nombre de références : 226 
 
Web of Science 
Web of Science Core collection (indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, 

ESCI) 
TS=(mammograph* OR "breast cancer screening" OR "breast screening" OR "breast 

imaging") AND TS=("artificial intelligence" OR "machine learning" OR "deep learning") 
AND PY=2016-2100 

Nombre de références : 828 
 
IEEE Xplore https://ieeexplore.ieee.org/Xplore/home.jsp 
("All Metadata":mammograph* OR "All Metadata":"breast cancer screening" OR "All 

Metadata":"breast screening" OR "All Metadata":"breast imaging") AND ("All 
Metadata":"artificial intelligence" OR "All Metadata":"machine learning" OR "All 
Metadata":"deep learning") 

Filters Applied: 2016 - 2021 
Nombre de références : 375 
 
arXiv.org https://arxiv.org/ 
Advanced search : 
All fields : mammograph* OR "breast cancer screening" OR "breast screening" OR "breast 

imaging" 
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AND 
All fields :"artificial intelligence" OR "machine learning" OR "deep learning" 
Query: order: -announced_date_first; size: 50; date_range: from 2016-01-01 to 2021-12-31; 

include_cross_list: True; terms: AND all=mammograph* OR "breast cancer screening" 
OR "breast screening" OR "breast imaging"; AND all="artificial intelligence" OR 
"machine learning" OR "deep learning" 

Nombre de références : 81 
 


