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Abstract

The purpose of this thesis is to develop a framework for measuring and modelling the market and credit 
risks of Greek companies. The thesis is motivated by the tremendous transformation of both the 
regulatory requirements as well as the techniques for measuring risks and by the fact that stakeholders in 
companies have become aware in the last few years of the need for understanding the risks to which 
companies are exposed.
This thesis is divided into two parts. In the first part of the thesis we deal with the first major category of 
risks related to a company, that is credit risks. The credit risks are estimated using a sample of companies 
that were unable to service their bank loans to a specific bank. The issue we deal with in the first part is to 
identity a set of risk factors that will help us identify companies which may exhibit a high degree of credit 
risk as it is measured by their inability to fulfil their obligation to a bank.
The empirical results of the thesis shed some light on the behaviour of companies in Greece and highlight 
the factors that may help us to quantify and predict the credit risk of a company.
In the second part we deal with issues relating to the measurement of market risk of Greek quoted 
companies. The approach we take in this part is to look at the issues involved both at the level of 
measuring the risk of individual equities as well as measuring the risk in a portfolio context and to apply 
the various techniques that have been proposed to the study of the market risks of Greek companies. Such 
an analysis will be helpful to investors, portfolio managers and regulators since, we hope, it will produce 
a clearer picture of market risks.
The two parts are complementary, for whereas in the second part we deal large companies, since only the 
larger companies are quoted on the Athens Stock Exchange, in the first part we deal primarily with small 
and medium-sized enterprises which represent the majority of corporate entities in Greece.
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Introduction

Overview of the Thesis
The thesis is organized into five chapters, of which the first three deal with aspects of credit risk and the 

last two with issues of market risk.

Chapter 1: Review of the literature on measuring credit risk

This chapter, which is the first of Part One deals with two issues. First it sets out the objectives of this part 

of the thesis and the research design. This is placed in the appropriate context by reviewing the literature 

on credit risk measurement which is growing exponentially. Starting with the review of the literature on 

credit risk measurement, we identify various strands under which the various approaches could be 

classified. We have grouped the various approaches into the portfolio approach and the statistical 

approach which deals with the risks of an individual company. These two broad approaches are of course 

linked and the development of the more recent portfolio approach compliments earlier efforts but it has 

also been influenced by them. In a portfolio context, we have examined the four main approaches, 

CrediMetrics, CreditPortfolio View, Credit Risk + and the KMV model. All these models require 

estimates of the probability of default and of the probability of migration. The probability of default can 

be estimated directly using one of the statistical approaches such as the logistic approach, discriminant 

analysis or classification trees. The probability of migration is also derived from historical migration 

matrices of the credit rating companies. We critically assess the assumptions of these models and their 

performance. Looking more closely at the statistical approach, which is more akin to the objective of this 

thesis, we review a number of approaches such as the linear probability model, linear and quadratic 

discriminant analysis, logistic regression, the Tobit model, survival analysis and classification trees. We 

pay particular evidence to the empirical studies of discriminant analysis and logistic regression since 

these are the techniques we shall employ in this thesis.

In the second part of Chapter 1 we explain the research strategy and the design of our test. We explain 

how using a unique set of data on companies that experienced financial distress manifested by their 

inability to service their debt to a bank, the identification of risk factors will be conducted and the 

estimation of credit risk will be realized. These are not bankrupt firms in a legal sense since the 

declaration of bankruptcy is a judicial decision that may take many years. Our definition is more akin to 

the economic definition of bankruptcy rather than the legal one. The fundamental hypothesis is whether, 

two years prior to being made bankrupt a company can be identified on the basis of a set of company 

characteristics, primarily financial ratios.

Chapter 2 Descriptive Analysis of Credit Risk Factors

In Chapter 2 we define the characteristics of a company that may give rise to credit risk and examine the 

statistical properties of these characteristics. In the first part of Chapter 2, we define the set of risk factors 

that may potentially predict which companies are likely to be experiencing financial problems in the
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following two years. The set of risk factors was selected on the basis of theoretical model such as 

Merton’s model of risky debt, from variables that have been used by credit rating agencies or variable 

which have been found significant in other studies. We concentrate exclusively on financial 

characteristics and leave out qualitative factors such as the quality management, factors on which we have 

no data. In the second part of Chapter 2 we examine the statistical properties of a number of financial 

ratios of both financially distressed and healthy companies. We find that the average values of the 

financial ratios are significantly different in the two groups. This is supported both from the univariate as 

well as from the multivariate test. The median values are also significantly different but the variances of 

financial ratios in the two groups are not significantly different, showing that the distribution of ratios in 

the two groups differ in terms of the location parameters only. We have also tested for two assumptions 

which are crucial for the statistical analysis of Chapter 3, namely the assumption of normally distributed 

ratios and the assumption of equal covariance matrices. We reject both assumptions. We found that most 

of the ratios exhibit significant skewness and kurtosis coefficients. We also reject the hypothesis of equal 

covariance matrices, which in conjunction with the univariate acceptance of equal variances means that 

the differences in the covariance matrices must be due to differences in the correlation structure of the 

financial ratios. An important issue in the use of financial ratios is the stability of the ratios. We have 

found that the majority of the means of the ratios in our sample have remained relatively stable.

Chanter 3: Empirical Results on credit risk factors

Chapter 3 deals with the empirical identification and quantification of the impact of risk factors as well as 

with the predictive ability of these factors. We use three classification methods, linear discriminant 

analysis, quadratic discriminant analysis and logistic regression. In this chapter we start with a 

comprehensive review of the classification methods and the assumptions on which they are based. Linear 

classification rules are derived under the assumption of normality and equal covariance matrices in the 

two samples. Quadratic classification rules are derived when the assumption of equal covariance matrices 

is relaxed.

The empirical analysis based on the discriminant method is starts with the application of the linear 

discriminant analysis. There are two general approaches to identifying discriminating variables in the 

linear discriminant analysis based on whether the objective of the research is to classify or to predict 

group membership. Unfortunately the two methods tend to generate different sets of risk factors and thus 

make the selection of the factors difficult. We have therefore used a criterion that incorporates both 

requirements as our modelling strategy. The results from the linear discriminant analysis support the view 

that there is a set of risk factors in the form of financial characteristics of the company which predict 

which companies will experience financial distress within two years. These risk factors include 

profitability, leverage, solvency and liquidity ratios.

Next we relax the assumption of equal covariance matrices, which is rejected by the data as the statistical 

analysis of Chapter 2 shows, and classify companies in the two groups on the basis of quadratic 

classification functions. The empirical results do not show an improvement, over the simpler linear 

discriminant analysis.
The third approach we have employed to estimate the credit risk factors of a company is the logistic 

regression approach. This approach models the posterior probability directly and does not rely on either
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the assumption of normality or the assumption of equal covariance matrices in the two groups. The 

empirical data suggest that there is a set of risk factors that can be used to identify companies at least two 

tears before they were downgraded. These factors tend to be stable across all the years of the samples 

producing stable probabilities of being downgraded. Four variables in particular, the return on assets, 

working capital over assets, interest payments over sales and debt over total assets are capable of 

predicting correctly on average 70 percent of the companies that were eventually downgraded.

Chapter 4: Measuring the Market Risk for Equities: A Review of Alternative Approaches 

and Some Empirical Tests of their Assumptions.

Chapter 4 is a comprehensive attempt to deal with the issues surrounding the measurement of the market 

risk of individual equities. In this chapter we present in a unified statistical framework the various 

approaches to measuring the market risk of equities such as moment -  based and quantile -based 

measures. We analyse the advantages and disadvantages of risk measures such as standard deviation, 

lower partial moment, Value-at-Risk and expected shortfall from a number of perspectives such as 

portfolio and time aggregation, consistency with the implicit distributional assumptions on equity returns 

and consistency with the theoretical properties of risk measures such as coherence.

We pay particular attention to the assumptions on which these approaches are based, their properties and 

their performance by reviewing the large body of empirical literature that has been using these 

approaches.

Particular emphasis is based on the parametric approach because Value at Risk (VaR) is based on both 

distributional assumptions and estimates of volatility and its empirical performance depends therefore on 

the validity of the assumption of the probability distribution (e.g. normally distributed returns) as well as 

on the estimate of the volatility.

The original approach to Value-at-Risk as introduced in RiskMetrics was based on normally distributed 

returns and a particular model of volatility, the exponentially weighted model. Given the inconsistency of 

the assumption of normally distributed returns with the actual data due primarily to the existence of fatter 

tails in the empirical density functions than the normal one, a number of alternative distributions have 

been suggested. These alternative distributions include the class of stable distributions which exhibit 

heavy tails, as well as the Student-T distribution and its generalisations, the generalised beta distribution, 

the inverse Gaussian and other which are reviewed in the chapter. An alternative way of introducing 

kurtosis is through the class of ARCH and GARCH volatility models which are tremendously useful since 

not only introduce fat tails, but they also allow a far more flexible way of modelling and forecasting 

volatility. The empirical performance of the class of GARCH models is also reviewed.

The assumptions on which risk models are based are tested using a sample of 132 stock returns from 

companies quoted on the Athens Stock Exchange. We test for normality which is rejected for all the 

companies. We also test for serial correlation in returns and heteroskedasticity which all the returns 

exhibit. These findings cast doubt on the simple rules of risk aggregation over time.

We have also fitted to the data two alternative probability distributions to normal namely the generalised 

skewed and the family of stable distributions. The generalised skewed distribution was the dominant 

distribution. Finally we have estimated the lower tails of the distribution using extreme value theory. We 

have found that all the companies possess either semi-or heavy tails.
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Chapter 5: Evaluation of the Forecasting Performance of Alternative Value-at-Risk 

Models.

The purpose of this chapter is to evaluate the forecasting performance of the various approaches to 

estimating VaR. The approach we adopt is to evaluate the out-of-sample performance of the various 

models as the primary purpose of a VaR model is to forecast future losses.

The chapter starts with the development of a framework for the evaluation of forecast performance. 

Kupiec (1995) suggested a statistic for evaluating the performance of a model based on the proportion of 

prediction failure. Evaluation based on the proportion of correct forecasts ignores conditioning or time 

variation in the data which may introduce serial correlation in the prediction failure. Christoffersen (1998) 

developed a test that takes this aspect into account when a model is evaluated and this is the test we have 

used in this chapter.

Next we review the data we have used to compare the performance of the alternative models. More 

specifically we explore the statistical properties of returns of the Athens Stock Exchange General Price 

Index. We test for normality and compare three distributions in terms of quantile prediction, namely the 

normal, the Laplace and the Student-Distribution. Estimation of the density function is useful on its own 

right but it also gives us insights as to the right density for the error term when we model the dynamics of 

the returns.

In Section 3 we estimate the tails of the distribution using the Pareto model paying particular emphasis to 

the specification of the correct threshold for the characterisation of the extreme observations.

In Section 4 we tackle the issue of heteroskedasticity in returns by modelling the volatility dynamics 

through a GARCH model. The implications of applying extreme value theory to the heteroskedasticity - 

corrected series are further explored by calculating the Value-at-Risk for the standardised residuals.

In Section 5 we present the specification of the alternative models that we compare. The approach we 

have adopted is to estimate each model over a certain sample and then to forecast the next day VaR 

producing a total of 2000 forecasts. In total we compare eight different models which are differentiated 

in terms of their distributional assumptions and in terms of their conditioning methods. The first group of 

models assumes that the parameters remain fixed within the sample on which estimation is conditioned.

In the second group of models we assume that volatility varies over time and is not fixed within the 

sample.
Finally in Section 6 we present the results of the comparison using the metrics we have developed. The 

results show an overwhelming support for the extreme value approach and the models which show allow 

for time-varying volatility. The standard normal RiskMetrics models, as well as models with Cornish 

Fisher corrections, are not found to be adequate equity risk measurement models.

Contribution of the Thesis

This thesis makes a contribution to the literature on the measurement of credit and market risk 

in a number of different areas. These contributions are both practical and methodological.
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1. This study is one of only a handful of studies that examine the issue of credit risk 

assessment and identification of risk factors in Greece and this thesis makes a practical 

contribution to our understanding of what determines the credit risk of Greek companies. To 

the best of our knowledge there have been only a small number of studies using Greek data. 

These studies include the study by Gloubos and Grammatikos we have already reviewed, 

the study by Michalopoulos which is based on expert systems and the study by Dimitras and 

Zoumbounides that is based on neural networks. Our study, thanks to the availability of a 

better data set allows to pursue a more systematic study of the characteristic of companies 

and to examine a wider set of issues such as the stability of the risk factors and the 

discriminant and logistic equations across number of years.

2. The second contribution is methodological and relates to both the way we have defined and 

measured credit risk as well as the way we have estimated the discriminant and logistic 

equations. Rather than measuring the probability of default we have found a stable set of 

financial ratios that predict which companies will be downgraded not just those companies 

that will go bankrupt. This is a more meaningful measure of credit risk, since consistent 

with the international experience the number of companies that actually go bankrupt is very 

small. For example, Altman (1968), Deakin (1972), Altman, Haldeman and Narayan 

(1977), Dambolena and Khoury (1980), Flamer (1983) and Flillegeist, Keating, Cram and 

Lundstedt, (2002) rely on samples of bankrupt firms numbering only 33, 32, 53, 23, 44 and 

30 companies respectively.

This thesis also makes a contribution in terms of the statistical methodology we have 

employed. In most previous studies on bankruptcy prediction the sample of bankrupt firms 

is drawn from a number of years not just from one year. Then this sample is matched by a 

sample of surviving firms matched by year and normally size. However such a procedure is 

not optimal from a statistical point of view.

Our approach of estimating discriminant functions and logistic equations for every year 

instead of pulling all the data as in previous studies, allows us to test the stability of the 

estimated coefficient over time and to test whether we can get stable relationships which 

can be used in the future. Our methodology is better in the sense that whereas all the other 

studies have used bankruptcy data over a different period ignoring therefore cyclical effects, 

we have used data on downgraded firms from a single year. Our approach is therefore more 

informative in the sense of testing the model to different macro conditions at different 

phases of the business cycle. We do not have to resort to more complicated econometric 

procedures such as hazard models to avoid econometric issues that the traditional 

approaches entail. .

3. The third contribution is the empirical results themselves which show that both models 

whether they are based on discriminant analysis or logistic regression predict reasonably 

well which of the companies may be downgraded. In our research we have adopted a
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stricter criterion, because we are predicting the downgrading of a company over a two -year 

horizon rather than over a one year horizon. The available empirical evidence shows that the 

predictive power deteriorates as the credit horizon becomes longer. Also estimating the 

probability of company being downgraded is more difficult than estimating the probability 

of a company going bankrupt because in the latter case the companies tend to more 

homogenous.

4. The fourth contribution of this research is to show that the ratios identified by Altman and 

other researchers which were reviewed in early parts of this chapter are indeed important in 

the Greek context as well. That means that international comparisons and comparable credit 

rating is possible.

5. The fifth contribution of this thesis is that the financial ratios we have used remain 

reasonably stable in their values over the sample period making the model much more 

reliable and easy to use. The cut-off points for instance are stable.

6. Credit risk is the probability that a company may not be able to repay its debt. This can 

happen without the company going bankrupt. Our model is therefore closer to the spirit of 

measuring credit risk rather than the bankruptcy studies.

There are a number of implications from our study both for financial institutions as well as for 

policy makers. For financial institution we have provided a reliable tool to assess the probability 

of a company becoming financially distressed and consequently to calculate the potential risk of 

a borrower and adjust its loan pricing policy. Our results are particular useful for financial 

institutions in view of the Basle II provisions that allow banks to use their own internal rating 

systems. For policy makers, our results give early warning signs of the performance of he 

corporate sector and the thus afford the opportunity for policy measures to be taken.

With regard to our understanding of the market risk of Greek equities we believe that this thesis 

also makes a number of contributions.

1. The study analyses in a systematic way the issues surrounding the implementation of risk 

measurement methodologies in a specific market environment. The thesis provides a 

systematic attempt to understand the statistical properties of individual company returns. 

First it estimates alternative probability distribution of returns for individual stock returns. 

The question of whether normality is an appropriate assumption is central to financial 

theory and practice and we have shown that the overwhelming majority of stock returns are 

not normally distributed. Secondly it estimates the tail characteristics for stock returns. This 

latter effort represents the first systematic attempt to model the tail-characteristics of Greek 

companies. Earlier studies, [see e.g. Dinenis and Priniotakis (2002), (2003)] have examined 

risk modelling issues for indices only. The estimation of the risk characteristics for 

individual stocks may lead to different portfolio construction than the one predicted from 

standard mean variance analysis. Thirdly we have estimated volatility models for individual
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companies. These results help us decide not only which the appropriate volatility model is 

but also whether risk aggregation techniques are legitimate.

2. The second major contribution, beyond increasing our understanding of an under-researched 

market, is the evaluation of the performance of alternative models for the forecast of value- 

at-risk. The empirical evidence available to the Greek risk manager and investor comes 

from European and American stock markets, which may not be appropriate when risk 

assessment in the Greek market is the objective. By analysing the performance of these 

models in the specific market environment of the Greek stock market we believe that we 

have provided results that should be of help to risk managers and investors in deciding 

which method to employ.
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Chapter 1 - Review of the literature on credit risk factors 

identification and measurement

1.1 Introduction
The financial stability of a company is of great concern to its stakeholders (employees, investors, lenders, 

government) and this importance is reflected both in the vast literature on measuring credit risk as well as 

in the recent proposals on assessment of credit risk (BIS 2003) for financial institutions. The credit risk of 

a borrower is defined as the potential that a borrower will fail to meet its obligations in accordance with 

agreed terms. Most of the literature on credit risk measurement has traditionally concentrated on the 

credit risk of corporate bonds, analyzing risk factors which are important for investors. However for 

banks, and other financial intermediaries, whose financial stability affect the entire system, loans are the 

largest and most obvious source of credit risk. In this chapter we concentrate on a review of the literature 

on the measurement of credit risk for loans and try to identify consistent risk factors that may explain the 

inability of companies to service their debts. The purpose of Chapters 2 and 3 is to describe and analyse 

the statistical properties of company characteristics which may help us identify which companies are 

more likely to become financially distressed.

This chapter is organised as follows: First we review the various approaches to credit risk measurement in 

the framework we have developed above. For each approach we examine the assumptions on which it is 

based and how credit risk is assessed, that is whether it is the probability of migration or the probability of 

default. The advantages and disadvantages of each method are critically examined and their empirical 

relevance assessed. We start first with the empirical approach to determining the probability of migration 

and default and then review three of the latest approaches to modelling credit risk, CreditMetrics 

developed by JP Morgan, CreditPortfolio View developed by KPMG and CreditPortfolio+ developed by 

McKinsey. We then present the theoretical model of estimating default probabilities developed by Merton 

(1974) and its most famous variant the KMV model. Then we examine a number of statistical approaches 

to modelling credit risk. These statistical approaches are based either on techniques of predicting whether 

companies will go bankrupt or not, or on estimating the probability of default. Models in the first category 

include the univariate approach, multivariate discriminant analysis, classification trees and neural 

networks. These models deal with classification of companies into two groups and do not provide an 

estimate of credit risk in any of the forms we discussed above, or the probabilities of migration and 

default. However credit risk indices can be calculated which can map the risk index to the probability of 

default. In the second category we have the Logit and Probit models, the linear probability model, the 

survival and hazard models. These models provide a direct estimate of the probability of default. The 

second part of this chapter explains the research design and our approach to identifying credit risk factors.

1.2 Fundamental Concepts
Quantification of credit risk is not unique. Some models concentrate on estimating the probability of 

default. Other models try to estimate the probability of upgrading or downgrading of the credit quality of 

a borrower and the impact on the value of the loan or the portfolio of loans. A third category of models
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estimates the probability distribution of losses. All these approaches are of course compatible as the credit 

risk of an individual loan or bond (see e.g. Ong 2000 or Dinenis 2002b for a fuller review of these points) 

has three components:

□ The probability of default. The probability that the obligor or counterparty will default on its 

contractual obligations to repay its debt.

□ The recovery rate. The extent to which the face value of an obligation can be recovered once the 
obligor has defaulted.

□ Credit migration. Short of a default, the extent to which the credit quality of the obligor has 

defaulted.

In addition in a portfolio context, there are two other elements, namely default and credit quality 

correlation and risk contribution and credit concentration.

□ Default and credit quality correlation. The degree to which the default or credit quality of one obligor 

is related to the default or credit quality of another.

□ Risk contribution and credit concentration. The extent to which an individual instrument or the 

presence of an obligor in the portfolio contributes to the totality of risk in the overall portfolio.

All the risk elements can be expressed by the expected loss, the unexpected loss, the maximum potential 

loss and economic capital on a loan, which are defined as follows:

□ Expected loss. The expected loss E(L) shows the amount of money the lender should expect to lose 

on average each year,

E(L) = (1-5 )pFT

where

p  is the probability of default

Ft  is the face value of the loan at maturity.

5 is the recovery rate.

□ Unexpected loss. The unexpected loss on the other hand is given by

UL = FT x (1 -  5)^/px (1 -  p)

which is the standard deviation of the loss distribution.

□ Maximum possible loss. The Maximum Possible Loss (MPL) is a confidence level such that there is 

only a small probability (p) that losses could be worse than MPL. The required value would depend 

on the probability of default. For example for a single A - rated bank the probability of default p is 

around 0.1% and the MPL is the level of the loss that is so bad that there is a one-in -one thousand 

chance of the loss being greater than the MPL.

□ Economic Capital. The economic capital (EC) the amount of capital that the lender has to hold so as 

to meet the Maximum Possible Loss. It is defined as

EC = MPL -  E (L)

□ The Value at Risk (VaR). The VaR of an individual bond, loan or of a portfolio of bonds and loans is 

closely related to the concept of economic capital. VaR is another way of expressing the unexpected 

loss of a portfolio and can be expressed as a multiple of standard deviations from the expected value. 

Unlike the previous definition of unexpected loss, VaR takes into account both the upside and 

downside move in the credit quality of an obligor. Thus VaR departs from the previous approaches 

by looking at the distribution of values rather than at the distribution of losses.
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The value at risk of a position is the difference between the expected value of the position and the value 

corresponding to some confidence interval say 99% or 95% (minimum possible value).
VaR = E (V) - MPV

All the above concepts are explained in the Figures 1.1 and 1.2.

Figure 1.1: Credit Risk Concepts

Figure 1.2: Value at Risk Definition

A third approach to measuring credit risk is by constructing a credit scoring index. This has been the main 

approach adopted by banks over a number of years. The index is constructed either on the basis of 

quantitative and qualitative information on companies or on the basis of subjective judgments by credit 

officers. The index takes the form of a numerical scale, with companies which have a high score deemed 

as good in terms of credit quality and companies with a low score deemed as of low credit quality [see 

Tamari ( 1984 ), Altman and Saunders (1998) or Dinenis (2003b)] for examples of such indices.

The measurement of credit risk is equated with the migration of a certain debt or loan to another credit 

category. In markets where loans or corporate bonds are traded this migration is reflected in increased 

spreads. However most of the empirical studies in the accounting and finance literature are invariably
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concentrate on modeling the probability of default rather than the probability of migration from one 

category to another. In this case credit risk is determined by the probability of default. Thus a company 

that has a very low or even zero probability of default but a high probability of being downgraded will 

have its credit risk significantly underestimated. Yet with the recent changes in the regulatory capital 

(BIS 2000) it is important for a bank to make the distinction between the probability of default and the 

probability of being downgraded.

The various approaches or models that have been employed have been classified in a rather confusing 

manner as modern, traditional, expert systems, statistical and structural, reduced form, marked to market 

or default mode. In this review we examine the various approaches and classify them in terms of the 

technique they have employed. The two general groups are those, which deal with credit risk at the level 

of the portfolio, and those that deal with credit risk at the level of the firm. Although some of the portfolio 

approaches have developed their own method of dealing with individual risk measurement, the two 

groups are compatible. Since the purpose of this part of the thesis is the identification of individual risk 

factors, we pay particular attention to the measurement of risk at firm level. There are two general 

approaches to measuring the credit risk of an individual company, the statistical approach and the 

structural model (see e.g. Moody’s 2000). The statistical approach is the oldest one of the two approaches 

and is reviewed extensively in Jones (1987) and more recently in Dimitras, Zanakis and Zopunidis 

(1996), Saunders (1999) and Caoutte, Altman and Narayanan (1998). The structural approach is based on 

Merton’s model of default debt (1974) and has been the basis for the portfolio approaches to credit risk, 

measurement such as KMV, and CreditMetrics. The latter approach is not as popular because it requires 

data that are not readily available.

1.3 Empirical Method
The most widely used way of estimating default probabilities is from historical data on defaults of 

companies that have issued corporate bonds. Credit rating companies such Standard & Poor, Moody’s 

Investor Services of Fitch collect data on defaults and publish regular migration tables presenting the 

average probability of a company in a given credit category being upgraded, downgraded of defaulting. 

Table 1 shows an example of a one-year migration table prepared by Standard and Poor and which is 

based on the migration behaviour of bonds for a period of 60 years. It is common to use migration data 

from bonds to estimate the migration behaviour of loans but the two asset classes may not behave in 

exactly the same way.

Table 1.1: Example of a one-year transition matrix.

Initial
Rating

--------------------------- -— -- -------------------------------------------------------------------- ---- — — ---------
Rating at year-end

AAA AA A BBB BB B CCC Default
AAA 90.81% 8.33% 0.68% 0.06% 0.12% 0.00% 0.00% 0.00%
AA 0.70% 90.65% 7.79% 0.64% 0.06% 0.14% 0.02% 0.00%
A 0.09% 2.27% 91.05% 5.52% 0.74% 0.26% 0.01% 0.06%
BBB 0.02% 0.33% 5.95% 86.93% 5.30% 1.17% 0.12% 0.18%
BB 0.03% 0.14% 0.67% 7.73% 80.53% 8.84% 1.00% 1.06%
B 0.00% 0.11% 0.24% 0.43% 6.48% 83.46% 4.07% 5.20%
ccc 0.22% 0.00% 0.22% 1.30% 2.38% 11.24% 64.86% 19.79%
Source:[Standard & Poor (1997)]
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Each row corresponds to an initial rating and each column corresponds to a year-end rating. To find the 

probability that a bond rated A today will be rated BBB one year from today, we read across the A row 

until we get to the BBB column and find the probability is 5.52%. Each row sums to 100% because a 

bond has to end the year in one of the eight column categories.5 Notice that the largest probabilities are 

on the diagonal, indicating that most ratings do not change in the course of a year. Notice also that some 

transitions probabilities are 0 (at least to several decimal places). This indicates, for example, that the 

chance of a AAA-rated bond defaulting within one year is negligible.

Table 1.2: Standard and Poor cumulative default probabilities

Initial
Rating
Term

Years

1 2 3 4 5 7 10 15
AAA 0.00% 0.00 0.07 0.15 0.24 0.66 1.40 1.40
'a a 0.00% 0.02 0.12 0.25 0.43 0.89 1.29 1.48
A 0.06% 0.16 0.27 0.44 0.67 1.12 2.17 3.00
BBB 0.18% 0.44 0.72 1.27 1.78 2.99 4.34 4.70
BB 1.06% 3.48 6.12 8.68 10.97 14.46 17.73 19.91
B 5.20% 11.00 15.95 19.40 21.88 25.14 29.02 30.65
CCC 19.79% 26.92 31.63 35.97 40.15 42.64 45.10 45.10

In Table 2 the one year -horizon is extended to show the probability of default over a longer horizon. 

Although the probability of default for a AAA company is practically zero over one period, it becomes 

1.40% over a ten year period. Similar increases are apparent for the other categories. Similarly for a B 

rated company, the default probability increases from 5.20% over one year to 19.40 over a period of 4 

years and to 30.65% over a period of fifteen years.

A similar empirical method was employed by Moody’s Investor Services (1997) covering the period 1920 

to 1996 and using the credit histories of more than 14,000 US and non-US corporate debt issuers. The 77- 

year time frame decidedly allows comparison of rating change patterns over a variety of business, interest 

rate and economic cycles.

Table 1.3: Moody’s one year migration matrix average values 1970-2001

Initial
Rating

Rating at year-end

Aaa Aa A Baa Ba B Caa-C Default
Aaa 89.09 7.15 0.79 0.00 0.02 0.00 0.00 0.00
Aa 1.17 88.00 7.44 0.27 0.08 0.01 0.00 0.02
A 0.05 2.41 89.01 4.68 0.49 0.12 0.01 0.01
Baa 0.05 0.25 5.20 84.55 4.51 0.69 0.09 0.15
Ba 0.02 0.04 0.47 5.17 79.35 6.23 0.42 1.19
B 0.01 0.02 0.13 0.38 6.24 77.82 2.40 6.34
Caa-C 0.00 0.00 0.00 0.57 1.47 3.81 62.90 23.69
Source: Moody’s Investors Service (2002): Default & Recovery Rates of Corporate Bond Issuers, 

February.

One of the more important criticisms of the empirical approach employed by the rating agencies to 

determine default and transition probabilities is the apparently static nature of the resulting average 

historical probabilities.

In reality, actual transition and default probabilities are very dynamic and can vary quite substantially 

over the years, depending on general economic conditions and business cycles. As an example of how 

default rates fluctuate over time, we have plotted the annual default rates for Moody’s B -rated
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companies in Figure 3. The figure of the mean default value of 6.3 percent can be quite misleading when 

the standard deviation of 4.65 is taken into account.

Figure 1.3: Annual Default Rates for a Moody’s B rated company.

This issue is particularly critical if the analysis horizon is rather long. The empirical relevance of this 

criticism can be seen from the following table which shows the average default probabilities and its 

standard deviation by rating category for a portfolio of obligors rated by Moodys during the period 1970

to 1995.

Table 1.4: Statistics of default rates

Credit Rating

One-Year Default Rate

Average (%) Standard Deviation (%)

Aaa 0.00 0.0

Aa 0.03 0.1

A 0.01 0.0

Baa 0.13 0.3

Ba 1.42 1.3

B 7.62 5.1

Source: Carty and Lieberman (1996)

Comparing the above results to those of Table 1.3 and Graph 1 .£ we see that not only the default 

probabilities are not fixed over time but that the standard deviation also changes. We see that the standard 

deviation of default rates was 4.65 foraB company for the period 1970-2001 but 5.1 for the period 1970- 

1995.
A survey of the internal rating systems of 18 major bank holding companies suggested that as much as 60 

percent of their collective loan portfolios may be below the equivalent investment grade [Treacy and 

Carey (1998)] and the default rates on low -quality credits (including junk bonds) are highly sensitive to 

the state of the business cycle. Moreover there is empirical evidence that rating transitions in general may 

depend on the state of the economy [see Nickell, Perraudin and Varotto (1998) and Wilson (1997a,
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1997b)]. This evidence suggests that the probability of downgrades and defaults may be significantly 

greater in a cyclical downturn than in an upturn and thus the historical average probabilities should be 

adjusted. A number of models have been developed that link the probability of default to macroeconomic 

factors.

A related problem is the differences between the transition and default probabilities produced by the main 

risk rating companies. Looking across the diagonals of Tables 1 and Table 3 and comparing the 

probability of a company remaining in the same credit category we see that this probability is always 

lower for the bonds in the Moody’s sample than for the firms in the Standard & Poor’s sample.

1.4 CreditMetrics

CreditMetrics is the first of the portfolio approaches to credit risk measurement. It is reviewed first 

because it is a complete approach to the measurement of all the elements of credit risk. CreditMetrics 

rather than concentrating on estimating default probabilities, attempts to measure the risk resulting from 

ratings transition. The key characteristics of the approach are (a) it takes into account both upside and 

downside moves in credit quality; (b) it requires the distribution of estimates of future loan values in 

calculating a capital requirement on a loan.

Credit Metrics analysis is based on a ratings transition matrix giving the probabilities of rating changes 

over a period of for example., one year. Table 1 is an example of such a matrix. The credit matrix 

approach calculates the values of a loan or bond at the end of a specified period and then calculates the 

risk associated with the bond as the standard deviation of the future bond values.

Let Itj, .....,Um represent the values of a bond at the end of a year and let p,,.....,pm be the associated

probabilities. Table 5 shows the values and the associated probabilities for a BBB bond.

Table 1.5: Values of bonds for different credit ratings

Year-end Probability New
Rating Of Bond

State Value

AAA 0.02% $ 109.37
AA 0.33% $ 109.19
A 5.95% $ 108.66
BBB 86.93% $ 107.55
BB 5.30% $ 102.02
B 1.17% $ 98.10
CCC 0.12% $ 83.64
Default 0.18% $ 51.13

The value of the bond at each state is calculated from

= y _____ £ ____ i =

where

C  = the coupon of the bond
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rk = the k-maturity spot rate

S: = the credit spread associated with a bond in credit rating state i.

The following example again taken from the CreditMetrics document shows how this valuation is done. 

For the BBB bond of our example we use the values from the Creditmetrics document. Suppose the bond 

has a face value of $100 and pays an annual coupon of 6%. Using the discount factors from the Table 6 

for the BBB bond, we calculate the value of the bond at the end of a year if it remained rated BBB using

VBBB -  6 +
106

1.041 (1 .0467 / (1.0525)3 (1.0563/
= 107.55

If it is upgraded to A, it will be worth $108.66.

,  6 6 6 
V a — 6 H------------- 1-------------- — H-------------- — +

1.0372 (1.0432)2 (1.0493)3

If it is downgraded to CCC, it will be worth .$83.64

vccc  -  6 +
1.1505 (1 .1502/ (1.1403/

106
(1.0532)4 " 

106
(1.1352)4

108.66

= 83.64

Table 1.6 : Forward rates by credit category

Category Year 1 Year 2 Year 3 Year 4

AAA 3.60 4.17 4.73 5.12

AA 3.65 4.22 4.78 5.17

A 3.72 4.32 4.93 5.32

BBB 4.10 4.67 5.25 5.63

BB 5.55 6.02 6.78 7.27

B 6.05 7.02 8.03 8.52

CCC 15.05 15.02 14.03 13.52

The results from the valuation are shown in Table 7. According to the table, in case of default the value 

will be $51.13; This latter is the amount bondholders can expect to recover in case of bankruptcy — 

roughly fifty cents on the dollar. In practice, not all bonds with the same credit rating will have the same 

value (even if they have the same coupon and maturity). The values in the Table 7 may be thought of as 

average values within each category. The CreditMetrics document explains how to include information 

about the standard deviation of bond values within each category; however, for simplicity, we will ignore 

this issue and pretend that the possible bond values are exactly as given in the table.

We can now use the table of possible bond values to measure risk. Two measures of risk are discussed in 

the CreditMetrics document: standard deviation and a percentile or value-at-risk measure. Although 

CreditMetrics considers risk at a portfolio level, the framework can be sued to calculate the risk of a 

single asset. We consider the same BBB bond whose possible values one year from today are given in 

Table 7. The expected value and the standard deviation are given by 

m

i =

i=l
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and

m

Var(v) = <j u  = ^  ' j v l - v )2 p j  i =
i=l

Table 1.7 shows the calculations for the expected value and the standard deviation of the bond which are 

107.09 and 2.99 respectively. From this table, we can also immediately determine the second measure of 

risk proposed by CreditMetrics a percentile or value-at-risk measure. Suppose we want to find a dollar 

amount such that the probability that the bond will be worth that amount or less is at most 5%. From the 

table we find that there is a 0.18% chance that the bond will be worth 51.13; there is a 0.30% 

(=0.18+0.12) chance that the bond will be worth 83.64 or less; there is a 1.47% (=0.18+0.12+1.17) 

chance that the bond will be worth 98.10 or less; and there is a 6.77% that the bond will be worth 102.02 

or less. So, we can say that the probability the bond will be worth 98.10 or less is below the 5% limit, but 

we cannot say that about 102.02. To hit 5% exactly, we may interpolate to find a value that correspond s 

to 5% equal to 100.71'.

Table 1.7: Calculation of values and standard deviation.

Standard deviation calculation for bond initially rated BBB

Probability New Probability Difference Probability
Year-end Of Bond Weighted of value Weighted difference
Rating State Value Value From mean Squared
AAA 0.02% 109.37 0.02 2.28 0.0010
AA 0.33% 109.19 0.36 2.10 0.0146
A 5.95% 108.66 6.47 1.57 0.1471
BBB 86.93% 107.55 93.49 0.46 0.1856
BB 5.30% 102.02 5.41 (5.07) 1.3612

hB 1.17% 98.10 1.15 (8.99) 0.9452
CCC 0.12% 83.64 0.10 (23.45) 0.6598
Default 0.18% 51.13 0.09 (55.96) 5.6363

Mean= 107.09 107.09 Variance= 8.9508
S tandard  devia tion  = 2.99

To summarize, the expected value of the bond is $107.09 and its standard deviation is $2.99. We 

estimated that there is a 5% chance that the bond will be worth $100.71 or less. Notice that the difference 

107.09-100.71 is 6.38 and 6 .38/2.99 = 2.1 .This indicates that 100.71 is about 2.1 standard deviations 

below the mean. The fact that there is approximately a 5% probability that the value will be more than 2.1 

standard deviations below the mean reflects the skew in the distribution of value;

We can compare the risk measures provided by risk metrics with the default mode model as a further 

check of its robustness. The expected loss in the default mode is given by E(L) = (1 -  8)pFT 

Using the following values derived from our example.

p = 0.0018

Ft  = 100,000,000 

5 = 0.5113
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the expected loss is

E(L) = (1 -8)pFT = 0.0018x 0.4887x 100,000,000 = 87,966

The unexpected loss on the other hand is given by

UL = FT x (1 - S)^/px(l-p) = 100,000,000x 0.4887x V0.0018x0.9982 
= 2,071,511

The unexpected loss in CreditMetric is

ULcredltmetncs =aFT =0.0299 xxlOO,000,000 = 2,990,000

The difference in the two values of the unexpected loss is due to the fact that CreditMetrics is a mark-to- 

market approach and allows an upside as well a downside to a loan’s value. The default mode approach 

on the other hand fixes the maximum upside to the face value of the bond which in the example we have 

used is $100 million.

The economic capital under the Default Mode approach is more closely related to book value accounting 

concepts than to the market value accounting concepts used in the MTM approach.

Although Creditmetrics represented a significant breakthrough in term of managing credit risks it suffers 

from a number of problems.

1. The calculation of transition matrices based on averaging one-year transitions over a past data period 

assumes that transition probabilities follows a stable Markov process, which means that the 

probability of a loan moving to any particular state during this period is independent of any outcome 

in the past period. There is evidence however that rating transition are autocorrelated over time. For 

example a loan that was downgraded in the previous period has a higher probability (compared to 

another loan that was not downgraded) of being downgraded in the current period. [Nickell, 

Perraudin and Varotto (2001)]. This suggests that a second or higher order Markov process may 

better describe rating transition over time.

2. A second serious weaknesses of the Credit Metrics approach is that it ignores the fact that migration 

and default probabilities vary with the cycle. We have already presented evidence in Section 1, that 

the probability of default varies considerably. One way to deal with cyclical factors in the 

CreditMetrics framework is to dived the sample period into recession years and non recession years 

and calculate two separate historic transition matrices ( a recession matrix and non-recession matrix) 

to yield two separate VAR calculations. [See Saunders (2000)].

3. A third problem is the portfolio of bonds used in calculating the transition matrix. Altman and 

Kishore (1997) found a noticeable impact of bond “aging” on the probabilities calculated in the 

transition matrix. Indeed a material difference is noted depending on whether the bond sample used 

to calculate transitions is based on new bonds or on all bonds outstanding in a rating class at a 

particular moment in time.

4. A final problem with Creditmetrics is using bond transition matrices to value loans. There are many 

differences between the two instruments such as collateral covenants that make the two instruments 

quite different. Using bond transition matrices may therefore result in biased valuations. The internal 

models developed by banks based on loan transition matrices may offer more reliable inputs for the 

calculation of the VaR measures of loan risk.

1 The value is calculated as follows 100.71 — (5 — 1.47) x
102.02-98.10

6.77-1 .47
+ 98.10
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1.5 CreditPortfolioView
McKinsey proposed this model and it is a disrcetised multi-period econometric model that measures only 

default risk. Default probabilities depend on macroeconomic variables and it therefore allows default 

probabilities to vary over the cycle contrary to the CreditMetrics approach. Directly modelling the 

relationship between transition probabilities and macro factors is a second way of dealing with cyclical 

factors and effects. [See Saunders (2000)].

The starting point in this approach is also the transition matrix which is reproduced here again for

convenience.

Initial
Rating

Rating at year-end

AAA AA A BBB BB B CCC Default
AAA 90.81% 8.33% 0.68% 0.06% 0.12% 0.00% 0.00% 0.00%
AA 0.70% 90.65% 7.79% 0.64% 0.06% 0.14% 0.02% 0.00%
A 0.09% 2.27% 91.05% 5.52% 0.74% 0.26% 0.01% 0.06%

BBB 0.02% 0.33% 5.95% 86.93% 5.30% 1.17% 0.12% 0.18%
BB 0.03% 0.14% 0.67% 7.73% 80.53% 8.84% 1.00% 1.06%
B 0.00% 0.11% 0.24% 0.43% 6.48% 83.46% 4.07% 5.20%

CCC 0.22% 0.00% 0.22% 1.30% 2.38% 11.24% 64.86% 19.79%

If we look this time to a CCC-rated borrower, the estimated probability that it will default over the next 

year is 19.79%. It is reasonable to assume that this probability will change over the economic cycle and to 

be higher in recessions than in expansions. Because the probabilities in each row of the transition matrix 

must sum to 1, an increase in the probability of default must be compensated for by a decrease in other 

probabilities-for example those involving upgrades of initially CCC-rated debt. Let PJt denote the default

probability of bond in credit category j, at time t. The CreditPortfolioView approach assumes that this 

probability will vary at time t along with a set of macro factors indexed by variable Q.

The default probabilities are assumed to be generated by a logit function that relates them to a “country 

speculative-grade specific index” which is itself related to country

Pjl l + exp [-g ,]
(1.4.1)

where

QJt = a.j + P'X, +uJt (1.4.2)

uJt ~ N (0, a ̂

The macro-variables are specified for each country and, when enough data are available, the vector p can

be consistently calibrated. Moreover in the implementation proposed by McKinsey, each of the 

independent variables is assumed to follow an autoregressive model of order 2 (AR(2)), such that the 

process X, has some memory. It can be written as

X, = a + BX(_! + rX,_2 + £,
Substituting the above equation into equation (1.4.1) yields 2

Q„ = a , +p'[a + BX,_1+ r X ,_2+£,] + «,, (1-4.3)

2 In empirical applications the coefficient matrices B and T are normally assumed to be diagonal.
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Then substituting (1.4.3) into equation (1.4.1) the probability of a grade j bond/loan moving to default 

category during the next year will be determined by:

’ l + e x p { -a ,-p '[a  + BX,_1+ rX,_2+£t] + M„}

Equation (1.4.5) means that the determinants of the transition probability is a function of lagged macro 

variables, a general economic shock factor ujt and shock factors or innovations for each of the macro

variables et . Because { X(_,, X,_2} are predetermined, the key variables driving P will be the 

innovations or shocks ujt and et . Using structured Monte Carlo simulation approach, values for w;Vand 

£t can be generated for periods in the future that occur with the same probability as that observed from 

history. We can use the simulated ujt and £, along with the fitted macro model to simulate scenario 

values for Pjt in periods t, t+1, t+2, ....t+n and on into the future.

Suppose that based on current macro conditions, the simulated value of Pjt, labeled P] is 25% as

opposed to the value of 19.7% in the historical unconditional transition matrix. Because the unconditional 

transition value of 19.7% is less than the value estimated conditional on the macro economic state we are 

likely to underestimate the VAR of loans and a loan portfolio -  especially in a low quality end.

The ratio of the two probabilities is given by

Ps 75
m, = --- = —  = 1.2

P„ 19

Based on the simulated macro model, the probability of a CCC -  rated borrower’s defaulting over the 

next year is 20 percent higher than the average (unconditional) historical transition relationship implies. 

Similar adjustments to the historical default probabilities can be calculated for longer periods. For 

example, suppose , based on simulated innovations and macro-factor relationships, the simulation predicts 

PjM to be 30%. The relevant ratio for next year mM will be

30 i s  "V, = —  = m =L5
jt

In this example using the unconditional transition matrix will underestimate the risk of default on a CCC- 

grade borrower in this period.

Following the above procedure, different transition matrices are generated for each year into the future (t, 

t+1, t+2, ....t+n) reflecting the simulated effect of the macro economic shocks on transition probabilities. 

This approach could be used along with CreditMetrics to calculate a cyclically sensitive VAR for one 

year, two years, ... n years.
VAR estimates over longer horizons can also be produced. The transition matrix over the next two years 

for example can be calculated the two migration matrices 

M , ,+i = M ,x  M l+l

The final column of this new matrix will give the simulated (cumulative) probabilities of default on 

differently rated loans over the next two years.

Wilson (1997a, b) notes that if long run average levels of the macro-variables are used as initial 

conditions for simulating the AR(2) processes, then the cumulative default probability of the revised 

conditional transition matrix would be equal to the original unconditional transition matrix as given by
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Standard & Poors or Moody’s. This remark shows that the impact of the credit effects is well 

encompassed by the technology.

One of the limitations of the model is the need of reliable (and frequent) data on the countries and for the 

industrial sectors within this country. Also, what is criticized is the ad-hoc rule to adjust the transition 

matrix even though it is a powerful suggestion to be able to relate the classical ratings’ approach to the 

ongoing economic reality. Crouhy et al. (2000) state that there is no proof that this method performs 

better than the Bayesian alternative that would be based on the internal expertise and appreciation of the 

credit department of the institution. One of the answers to this criticism is that for regularity purposes, we 

require a standardized approach. Even though this calibration and simulation techniques can be in part 

subjective, they rely at least on a formal methodology with defined adjustment procedures.

Another limitation of the model is the ad hoc procedure to adjust the migration matrix.

1.6 CreditRisk+
The CreditRisk+ model is founded on the actuarial principles of mortality tables rather than transition 

matrices and seeks to estimate the probability of default as a process that is independent of any macro-

factors or specific characteristics of the borrower. While CreditMetrics seeks to estimate the full VAR of 

a loan or loan portfolio by viewing rating upgrades and downgrades and the associated effects of spreads 

in the discount rate as part of the VAR exposure of a loan, CreditRisk+ views spread risk as part of the 

market risk rather than credit risk. As a result in any period only two states of the world are considered -  

default and non-default- and the focus is on measuring expected and unexpected losses rather than 

expected and unexpected changes in value (or VAR) as under CreditMetrics. Thus CreditMetrics is a 

mark-to-market (MTM) model; CreditRisk+ is a default model (DM) model.

The second major difference is that in CreditMetrics, the default probability in any year is discrete (as are 

the upgrade/downgrade probabilities). In CreditRisk+, default is modeled as a continuous variable with a 

probability distribution. The probability distribution of defaults is assumed to follow a Poisson 

distribution with parameter A. The probability function is given by

Pr(n defau lts ) =
's n -XA, e

The expected mean default rate is A and standard deviation Va  . Now suppose that based on historical 

data we are able to derive an estimate of A from n = average number of defaults per year n = ^  ' p

The empirical distribution of defaults is then given by

Yl n Q n
Pr(n d e fa u lts ) = --------

n\

In order to calculate the expected and unexpected loss of a loan or a portfolio of loans, we also need to 

have estimates of the severity of the losses themselves. In CreditRisk+, the fact that severity rates are 

uncertain is tackled not by specifying a probability distribution for the severity rates but by creating bands 

for loan exposures, e.g. bands of $20,000. Thus we can produce a distribution of losses for each exposure 

band. Summing these losses across exposure bands produces a distribution of losses for the portfolio of 

loans.
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An example of how to create bands is given in Cruhy et al ( 2000) which is reproduced here. The bands 

are based on the size of the Loss Given Default which in this approach is called exposure. In terms of our 

notation bands are created according to the size of L G D t = (1 — S )F T . Table 8 shows the data for 

this example

Table 1.8: Methodology explanation

LG D , Exposure in $ Number of units in category

150 1.5 2

460 4.6 5

435 4.35 5

370 3.7 4

190 1.9 2

480 4.8 2

For each bands we have

L = V.Xj or A- = —
V{

Table 9 below provides an illustration of the results of those calculations. To derive the distribution of 

losses, for the entire portfolio, we proceed in two steps

First the probability generating function for each band is derived. Each band is viewed as a portfolio of 

exposures itself. The probability generating function for any band, say band j, is by definition

00

G, ( z )  = y P ( lo s s

n=0

Table 1.9: Calculations

OO

= n L G D ) z n

n=0

P (n  defau lts)z^ ,ri

Band j Number of obligors h A'

1 30 1.5 1.5

2 40 8 4

3 . 50 6 2

4 70 25.2 6.3

5 100 35 7

6 60 14.4 2.4

7 50 38.5 5.5

8 40 19.2 2.4

9 40 25.2 2.8

10 20 4 0.4

where the losses are expressed in the unit LGD of exposure. Since we have assumed that the number of 

defaults follows a Poisson distribution the probability generating function for band j is given by

Gj (z )  = exp(-A , + /llz u<n)
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To derive the distribution of losses for the entire portfolio we derive the probability generating function 

for the entire portfolio. Since we have assumed that each band is a portfolio of exposures independent 

from the other bands, the probability generatinf function for the entire portfolio is simply the product of 

the probability generating functions for each band

m m m

G (z ) = Jexp(-/t; +A iz v‘ ) = exp< -  ^  ^  ' X{z Vi

i=l „ i=l i=l

The loss distribution for the entire portfolio is derived from the probability generating function as follows

P(loss of nLGD) 1 d nG ( z ) 

nl d z n
for n  = 1,2,.

z=0

These probabilities can be expressed in closed form and depend only on 2 sets of parameters: and v, .

CreditRisk+ has the advantage that is relatively easy to implement. First, it allows for closed-form 

expressions to be derived for the probability of portfolio loan losses and this makes it very attractive from 

the computational point of view. Second, marginal risk contribution by obligor can be easily computed. 

Third, CreditRisk+ focuses only on default, requiring relatively few inputs to estimates. For each 

instrument only the probability of default and the exposure are required.

Its principal limitation is that credit risk has no relationship with market risk. This is a property shared by 

both CreditMetrics and KMV (which will be reviewd later). In addition CreditRisk+ ignores completely 

migration risk. The exposure of each obligor is fixed and is not sensitive to future changes in the credit 

quality of the issuer, or to the variability of future interest rates. Even in its more general form, where the 

probability of default depends upon several stochastic background factors, the credit exposures are taken 

to be constant and not related to changes in these factors.

Finally, like CreditMetrics and KMV , CreditRisk+ does not deal with nonlinear products such as, e.g., 

options and foreign currency swaps.
Crouhy et al. (2000) compare the CreditMetrics and CreditRsk+ model with the BIS (1988) standardised 

approach on a benchmark portfolio of 1800 bonds across 13 currencies, various maturities, and the entire 

range of credit standings. The main result is that the models produce Credit VaR values within a relative 

range of 1.5. This is not entirely surprising since all the models are driven by the default risk.

Gordy (2000) compares CreditMetrics and CreditRsk+ . He shows that under restrictive assumptions each 

model can mathematically be mapped into the other, despite what seemed ex ante fundamental 

differences

1.7 Structural Approach - Merton’s Model of Default debt
The prevalent theoretical model on which the structural approach is based and which at the same time 

provides a theoretical explanation of how firm characteristics affect the probability of default is Merton’s 

(1974) model of risky-debt valuation. This is actually a two-state distinguishing firms between bankrupt 

and non-bankrupt and therefore its use may be limited as companies do not move directly from a state of 

financial health to a state of bankruptcy. However the model can be extended to cover those intermediate 

steps and it is indeed extended in CreditMetrics to include migration possibilities.
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Let V( t ) denote the date t value of a firm’s assets. The firm is assumed to have a very simple capital 

structure. In addition to shareholders’ equity, it has issued a single zero-coupon bond that promises to pay 

an amount F at date T >t. Also let T-t be the time until this debt matures. The balance sheet of this 

prototype firm is given by

Assets Liabilities
V(t) Equity E(t)

Debt D(t)

Where D(t) is the value of the risky corporate bond, i.e. the discounted value of F using a discount factor 

that includes the default premium. From the balance sheet, the value of equity in period T, the maturity 

period will be 

ET = VT -  F

The company will default on its debt if VT < F in which case the equity value of the company will be 

zero. From the viewpoint of the shareholder, and the company’s lender the probability of default can be 

calculated as Prob(Fr < F ) . Credit risk exists as long as the probability of the value of the assets falling 

below the face value of the debt at debt maturity is positive, i.e.

P(VT < F) > 0

In order to calculate the probability of default we need a model that describes the evolution of the value of 

the firm’s assets over time. We make the standard assumption that the value of the firm V(t) follows a 

Geometric Brownian motion which expressed in terms of the instantaneous rate of return on the assets of 

the firm dV, / V, given by

^—L = iidt + adfV.
V,

dV
where u. and a  are the mean and the standard deviation of the instantaneous return----and W. is a

V

standard Brownian motion.

Using standard stochastic calculus results, the value of the assets of the firm in period T will be given by 

VT = V, exp((p -  j ct2)(T - 1) + aVT -  tZ T)

where ZT ~ N(0,1) and the term ~Jt - tZ T = Wr -  W, is normally distributed with a zero mean and a 

variance equal to (T-t). Note that the value of the firm at maturity time T is log-normally distributed with 

expected value at time T given by

E(VT) = V, exp(n(T-0)

Figure 1.4 shows the distribution of the value of the assets at time T, the maturity of the zero-coupon 

corporate debt, and the probability of default, the latter being representd by the shaded area on the left- 

hand side of the default point, F.

The default condition VT < F implies V, exp((p - \ a 2){T -t)  + a - t Z T)<F which after dividing 

both sides of the equation by the term V, can be written as

exp((/i -  j a 2)(T - 1) + a )< y
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Figure 1.4: Default Probability in the Merton Model

Finally taking logs the default condition can be written as 

( p - j a 2)(T -f)  + aV T ^fZ r < l n ^

This last inequality can be expressed in terms of the standardised normal random variable 2

V,In - ( p - i c r ) ( T - i )
V. r

ZT <----- -------- ,■■■■■ ■■---------  or ZT < ----- —
ln -f  + ( p - ^ a 2)(T -i)

y j T - t j j f ^ t
or ZT < - d 2

Where d2 =■

K
F

In — + ( t i - i a 2) r

a V7
So that

Prob(Default) = Prob(VT < F) = Prob(Zr < -d 2) = N (-d 2)

Default is therefore triggered when ZT < - d 2 
The quantity

d2 =-
ln Ì i  + ( p - ± a 2) ( r - 0  

F
a ^ T - t

is also known as distance to default.

The probability of default depends therefore on

□ the debt/asset ratio, F/V

□ the expected rate of return on the assets of the company ( p ).

□ the volatility of the company assets ( o ).

□ The maturity of debt (T-t).

7 as follows
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The effect of three of the factors is unambiguous. A higher F/V ratio increases the probability of default 

and so does an increase in volatility. A higher expected return on the assets of the company will also 

increase the probability of default as a higher expected return in equilibrium will lead to higher risk. The 

effect of maturity depends on whether F/V>1 or whether F/V<1. If F>V, the firm is technically insolvent. 

To avoid bankruptcy, it will need to have increasing earnings. As maturity increases, there is more time 

for the increase in earnings to occur and for the risk to be reduced If F<V and the loan has only a short 

time to go before maturity, it is unlikely that the loan will default. .

1.8 The KMV Model
The most widely used variant of the Merton model is the KMV model (Kealhofer 1997). The model 

utilises the Merton framework and treats equity as a European call option on the assets of the company 

with an exercise price equal to debt F. The maturity of the call option is the same as the maturity of the 

corporate bond issued. From standard Black-Scholes option pricing theory, the value of the equity is 

given by

E  -  E(Vt ,F ,(T  -  t ) ,a ,r ) 3

The volatility of equity is linked to the volatility of the assets (Hull (2000)) 

a K = h(cs)

Once we have values for the current value of equity and estimates for the volatility of equity from 

historical data, the two equations can be solved for the two unobservable variables Vt , c  using an

iterative non-linear algorithm. Once we have estimates for the unobservable variables, then the 

probability of default can be calculated using the Merton formula. KMV use these estimates to calculate 

the expected default frequency (EDF) for any given borrower. The idea is shown in Figure 1.5. The EDF 

is the shaded area below F.

If it is assumed that future asset values are normally distributed around the firm’s current asset value, we 

can measure today’s distance from default at a one-year horizon as

DFD =
V , - F

a

Despite the adoption of normality assumption by CrediMetrics this is a questionable assumption and 

KMV rather than using theoretical EDFs generates empirical EDFs as follows.

Empirical EDF =

Num ber o f  firm s that defaulted  within a year  
w ith a sse t values o f  2o from  F at 
the beginning o f  the year

Total population o f  firm s w ith a sse t values o f  2o from  
F at the beginning o f  the year

Figure 1.5. Calculation of the Theoretical EDF in the KMV model.

3 The variable r is the risk -free  rate. When the equity of the firm is valued using the 
Black-Scholes model, the expected re tu rn  on assets is replaced by the risk-free rate. In the

In — + (r -  ^ o 2)7’ 
F 2

ov/r
risk-neutral world we define d2 = 

probability of default
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Time
The structural approach as it is applied by KMV has a number of advantages, notably the fact that it 

utilizes stock market data rather than historic accounting data and it reflects market changes immediately. 

It is also consistent with the modern theory of finance and the variables used are theoretically justified. 

The statistical approach lacks such an underpinning.

Against that one of course should count the fact that it is primarily a model for public quoted companies. 

It is also very difficult to be implemented without the assumption of normality. It is also considered static 

in the sense that over the time horizon the company is not expected to change its capital structure. Finally 

it assumes a very simple type of debt when in practice companies use a variety of debt instruments. For 

all these reasons the objective of this study is to develop a credit measuring system based on the statistical 

approach.

Loffler (1999) proposes a comparative study of the sensitivity to input errors of the KMV model and 

CreditMetrics™. Two inputs that are shared by both seem particularly problematic: correlations and 

recovery rates. CreditMetrics™ appears to be more sensitive to recovery rates errors but possibly less to 

correlation errors.

KMV like the other models suffers from defects. Recovery rates are determined in an ad hoc way (beta 

distributions for most, with levels determined from US-based studies even for implementation of the 

models in Europe or in Asia, where bankruptcy laws differ substantially form US laws).

None of the models currently integrates some minimal form of market risks, at least via stochastic interest 

rates. None of the models can handle nonlinear instruments (from guarantees to swaps to credit 

derivatives and letters of credit or call features and OTC options). Some technical issues, such as discrete 

approximation of the continuous distribution, may lead to difficulties (and not only on small samples) for 

all of them.
However some of the models by looking at skewed and fat-tailed distributions present a significant 

improvement on risk management techniques based on the standard deviation.

1.9 Univariate Statistical Approach
In the statistical approach, the financial characteristics of a company are normally summarised through a 

set of financial ratios constructed from the company’s balance sheet and profit and loss account. The use 

of ratios instead of actual values means that all pertinent financial variables are normalised for size, which 

eliminates potential distortions induced by the fact that company size varies by several orders of
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magnitude across firms in our sample4. The use of ratios also provides a deflator and avoids differences in 

the value of money across years and thus facilitates intertemporal comparisons.

Table 1.10: Fraction of Sample that is misclassified

Ratio

Years before Cash flow/Total Cash flow/Total Net Income /Total Sample size

failure assets debt debt

1 0.10* 0.13 0.15 158

(0.10) (0.10) (0.08)

2 0.20 0.21 0.20 153

(0.17) (0.18) (0.16)

3 0.24 0.23 0.22 150

(0.20) (0.21) (0.20)

4 0.28 0.24 0.26 128

(0.26) (0.24) (0.26)

5 0.28 0.22 0.32 117

(0.25) (0.22) (0.26)
*

Source: Beaver (1966, table A-4)

The statistical approach to credit risk measurement started with Patrick (1932) who employed ratio 

analysis to predict corporate failure and was extended by Beaver (1966) who developed a framework for 

the univariate analysis of bankruptcy.

Beaver used more than 30 financial ratios which he divided into six groups and tested their predictive 

power individually. In most cases the individual ratios were able to differentiate between bankrupt and 

non- bankrupt firms providing the first empirical evidence that financial ratios can predict the financial 

health or credit risk of a company. Beaver’s study was criticized for its dependence on single ratios rather 

than looking at combinations of factors that may affect the financial state of a company and its probability 

of default.
Table 10 contains some of Beaver’s results and suggests that single ratios can predict failure reasonably 

well. Despite the statistical shortcomings, as Beaver’s results indicate, a univariate analysis allows the 

researcher to understand the nature of the data and provides valuable insights for the multivariate 

analysis.
Casey and Bartczack also applied univariate analysis of the predictive cash flow from operations (CFO) 

and related cash flow ratios. They found that although the ratios were good at identifying bankrupt 

companies (e.g., using CFO, one could correctly classify 92 percent of the bankrupt firms), they did 

poorly in classifying nonbankrupt firms, compared to a discriminant model composed of six popular 

accrual-based ratios. Furthermore when looking at overall accuracy (on the total of bankrupt and 

nonbankrupt firms), Casey and Bartczack found that the multivariate accrual model was superior.

1.10 Linear Multivariate Discriminant Analysis

4 Size is measured by total assets

39



The next generation of models were based on multivariate discriminant analysis (MDA) with Altman 

(1968) and Altman (1983) employing MDA to discriminate between bankrupt and nonbankrupt 

companies. Most of the studies that employ MDA restrict themselves to two-group classification and this 

is the version we shall concentrate on in this review. In MDA the random vector r of dimension p is 

measured in two populations, bankrupt and non-bankrupt companies with mean vector £ ,(r) = p , , and

covariance matrix f l  in population 1 and mean vector E2(r) = p 2, and covariance matrix i l  in

population 2. Let p = ((3,, p /;)'denote the vector of coefficients of a linear combination, and set

Z = P'r. The mean and the variance of the random variable Z are E(Z) = p z = p'p and 

V ar(Z ) = cr2z = p'ftp respectively. Applying the same linear combination to the points r, and 

r2 representing the values of the vector r in the two populations we have Z, = p'r, and Z2 = p'r2 with 

E(Z,) = P'p, and E(Z2) = p'p2.

The vector of coefficients p = (p t,....p )' is selected so as to maximize the quantity

E ( Z , ) - E ( Z 2) p > , - p > 2

<t z  ( p o p ) 12

The vector that maximises the distance is given by5

p = O -1 (jx, - n 2)

The classification rule based on discriminant analysis is defined as follows: Classify a company in 

population 1 if

Z > — [E(Z,) + E(Z2)\ or equivalently p'r > ^-(P 'p ,+ P 'p2)

In empirical studies the population means are replaced by the sample means r, and F2so that the 

classification rule becomes p 'r > (P r, + p 'r2)

The linear classification rule that maximizes the distance between the population means of the linear 

combination of random variables is optimal in the sense of minimizing the misclassification error only if 

the random vectors r, and r2 follow multivariate normal distributions with the same variance covariance

matrix6 r, ~  N O ip f i)  r2 ~  N (n 2, i l )

5 This vector is not unique. Any vector P* = c i l “'(p , -  p 2) will also maximise the distance. In that 
sense the discriminant function Z = p'r is uniquely defined.
6 This can be seen very easily in the case of a single discrim inating variable r ~ A(p, ,c r)  

and r ~ /V(p2,cr2) . In this case

Pr(r < y / r  e 1) = Pr ■̂ -ZÜL < IZÜL ! r e \ I = Pr

(  1  ̂
- ( P i  + P 2) - P i

c< - - I r e  1 Pr| Ç < -ü i—!iT /r€ l  
2a j

= a>

Using similar arguments we can show that Pr(r > y/r e 2) = ®| - -y  | • This shows that the higher the

distance the lower the probability of misclassification.
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From the discriminant function we can calculate a credit index which allows the derivation of the 

probability of default and the calculation of expected and unexpected losses from the values of the Z 

score. For example using the Z -score risk rating system developed by Altman et al. (1993), Altman and 

Saunders (1998) have assigned a bond equivalent rating to each of the loans/bonds evaluated using the 

following discriminant function 

Z  = 6.56Xj +3.26X2 +6.72X3 + 1.05X4 +3.25 

where

A, = working capital /  total a sse ts  
X 2 = retained earnings /  total a sse ts  
X 3 = EBIT/ total a sse ts  
X 4 = equity (book value) /  total liabilities

A constant term has been added to the equation to standardise the bond rating equivalent analysis, so that 

scores of zero indicate a D (default) rating and positive scores indicate ratings above D.

The rating equivalents of each score can be used to estimate the default probability using the migration 

tables and thus the expected loss over time. Using the actual loss experience for every year over a number 

of years the standard deviation can be calculated, which is a measure of the unexpected loss.

Table 1.11 : Z scores and Credit rating

US equivalent rating Average Z -score Sample Size

AAA 8.15 8

AA+ 7.60 -

AA 7.30 18

AA- 7.00 15

A+ 6.85 24

A 6.65 42

A- 6.40 38

BBB+ 6.25 38

BBB 5.85 59

BBB- 5.65 52

BB+ 5.25 34

BB 4.95 25

BB- 4.75 65

B+ 4.50 78

B 4.15 115

B- 3.75 95

CCC+ 3.20 23

ccc 2.50 10

ccc- 1.75 6

D 0.00 14

Source: Altman and Saunders (1998)
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Buy, Kaminski, Pinnamaneni and Shanbhogue (1998) used a similar technique to match financial ratios to 

the rating scales of the credit rating agencies. They produced a numerical scale corresponding to the 

alphabetic system and they then “explained” the numeric scale by a set of financial ratios.

They used data on 90 public electric utilities for the years 1994-96 which were rated by Standard and 

Poor. They regressed the ratings on each company for the years 95-97 on a set of financial ratios for the 

years 94-96. They estimated the following equation with an adjusted R2 of 65.7%

. Rating = 8.65 + 0.1 I X ,  -1.08X2 -0 .0 6 X 3 

where

X x = total d e b t/  total a sse ts  
X 2 = return on a sse ts  
X 3 = book value p er  share

Table 1.12: Credit Rating Correspondence

Standard and Poor’s Moodys Numerical Scale

AAA Aaa 2

AA+ Aal 4

AA Aa2 5

AA- Aa3 6

A+ A1 7

A A2 8

A- A3 9

BBB+ Baal 10

BBB Baa2 11

BBB- Baa3 12

BB+ Bal 13

BB Ba2 14

BB- Ba3 15

B+ B1 16

B B2 17

B- B3 18

CCC+ Caa 19

ccc Ca 20

ccc- C 21

Having explained the fundamental aspects of this approach we turn now to the empirical performance of 

this approach. Our interest is on three aspects. First we are interested to see what risk factors each study 

has identified. Second we would like to review the performance of the method. The proportion of 

correctly classified cases is invariably used to measure the performance of discriminant analysis. The 

third aspect we are interested in is, where possible, to present results testing the assumptions of the 

approach.
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Altman (1968)

The first empirical study employing this technique was Altman (1968). Altman considered 22 ratios and 

found five of them to be significant in discriminating between bankrupt and non-bankrupt companies. 

Altman found the following rates as the most significant variables (Table 12).

• Working Capital / Total Assets

• Retained Earnings / Total Assets

• EBIT / Total Assets

• Market Value of Equity / Total Assets

• Sales / Total Assets

Altman. Haldeman and Narayanan (1977)

Altman developed three variants of the bankruptcy prediction models, the initial Z-score, the Zeta model 

and finally the quadratic ZETA model whose performance was tested and found it predicted bankrupt 

companies up to four years before bankruptcy occurred. In this paper they presented the Zeta model using 

discriminant analysis to a sample of 53 bankrupt firms and 58 non-bankrupt firms matched on the basis of 

industry and year data. The 1968 model was refined by incorporating prior probabilities and cost of 

misclassification and using quadratic as well as linear discriminant analysis. The discriminating variables 

included common financial ratios 

Table 1.13 Altman’s results

Variables Parameter values7

Working Capital / Total Assets -0.120

Retained Earnings / Total Assets -0.014

EBIT / Total Assets -0.033

Market Value of Equity / Total Assets -0.006

Sales / Total Assets -0.999

as well as trend, stability and stock market measures. When applied to holdout samples, a linear 

discriminant model correctly classified 93 percent of bankrupt firms and 90 percent of non-bankrupt firms 

one year before bankruptcy and 70 percent and 82 percent, respectively five years before bankruptcy. 

Even though the covariance matrices were unequal, a quadratic discriminant model did not improve 

classification results.

Lis (19721
Altman’s approach has been used by many researches in many countries. Lis(1972) was the first UK 

study and showed that the framework developed by Altman was applicable in other countries. The study 

develops a 4-variable discriminant function with ratios based on Altman (1968) using as is bankrupt 

sample 30 major quoted manufacturing construction and retailing failures between 1964 and 1972 and 

with his equal size continuing sample matched by industry, asset size and year. The model is given by

Z  = 0 .O 6 3 X , + 0 .0 9 2 X 2 +  0 .0 5 7 X 3 + 0 .0 0 1 4 X 4

7 Altman does report the significance levels of individual variables
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Xj  =  w o rk in g  cap ita l / to ta l assets 

X 2 = E B IT /to ta l assets

X 3 = re ta in ed  ea rn in g s (ad ju sted  for scrip  issu es)/ to ta l assets  

X 4 = ne t w o rth  /  to ta l deb t

A selected cut-off of 0.037 misclassified one -failed company and 5 non-failures. The mean of the failed 

group was -0.003 and that of the matched sample was 0.063.

Taffler 1974

This study was the second study in the UK to use Altman’s approach and the one that had the most 

significant impact in the area. The following ratios were found significant in separating bankrupt from 

non-bankrupt companies. 23 failing and 45 non-failing firms over the period 1968 to 1973 were employed 

to test the significance of the model.

X, = EBIT/ total a sse ts
X2 = Total liabilities / n e t  capital em ployed
X3 = quick a sse ts  /  total a sse ts
X4 = working capital /  net worth
X 5 = stock tum

The cut-off point was set taking into account prior probability odds of 1:10 (failed:solvent) for the 

population . the performane of the model was good with only 12 percent of the bankrupt firms being 

missclasified.

Taffler (19771

In a subsequent study Taffler experimented with other ratios and found that the following ratios were 

significant discriminating factors.

X x = P ro fit b efo re  tax  /  average cu ren t liabilities 

X 2 = C u rren t asse ts  /to ta l liabilities 

X 3 = C u rren t liab ilities  /  to ta l assets 

X 4 = the no - cred it in te rval

The sample of this study consisted of 46 manufacturing firms quoted on the London Stock Exchange and 

which had failed over the period 1968-1976. The solvent companies were matched on a 1:1 basis by 

industry and size but not by year, with the latest year available being used. The Z sore was used to 

classify 825 listed companies, of which 115 (14%) had a Z value of less than zero at the end of 1976. 

Nearly 43 percent of those companies had failed within six years, whereas another 29 percent were still at 

risk. These results, show that the predictive ability of the financial ratios employed is high.

Mason and Harris (1978)

This is one of the earliest studies developed for a particular sector, in this case the construction industry.

Z = 25.4-51.2Xj +87.8X 2 - 4 . 8X3 - \ 4 . 5X4 -9 .1XS -4 .5X 6
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X, = Profit before interest and tax /  opening net a sse ts
X2 = Profit before interest and tax/open ing  net capital em ployed
X3 = deb tors/ creditors
X4 = Current liabilities /c u rre n t a sse ts
X5 = log,0(day debtors)
X6 = creditors trend m easurem ent

The performance of the model, judged on the basis of misclassification errors, was adequate with 63.7 of 

the failing companies being correctly classified.

El Hennawav and Morris (1983)

The authors used a longer period (1955-1974) to test the predictive power of the model and also 

introduced dummy variables for the various sectors from which the companies in the sample come from 

recognising the fact that different companies have different probabilities of default. The authors 

estimated discriminant function for the prediction of failure one year ahead, which is given below 

Z = -6.17 + 11.43X, + 14.07X2 + 0.55X3 -1.57X« +0.98XS 

where

X, = Operating profit before depreciation /  total a sse ts  
X2 = Long - term d e b t/  net capital em ployed  
X3 = Current a sse ts  /  total a sse ts  
X4 = Quarrying and  construction industry dum m y  
X5 = logw (day debtors)
X6 = distribution industry dum m y

and discriminant function for the prediction of failure 5 years before failure. They also found that industry 

membership was important.

K o(1982)

Ko estimated a discriminant analysis model to,the Japanese problem firms. His sample included 41 pairs 

of bankrupt and non-bankrupt entities for the period 1960-1980. The proportion of correct classifications 

was about 82.9 percent. Ko found that five variables were significant and with the correct sign. Three of 

these ratios were the same as in the original study of Altman (1968).

The estimated discriminant function is given below.

Z = 0.868X, +0.198X2 -0.048X, +0.436X3 +0.436X, +0.115X, 

where

X, = EBIT /SALES
X 2 = Inventory turnover 2  years prior /  inventory turnover 3 years prior 
X 3 = standard  error o f  net income (4 years)
X 4 = working capital /  total debt 
X s = m arket value equity /  total debt

The standardised form results in a zero cut-off score, i.e. any score greater than zero indicates a healthy 

situation, with probability of classification of bankruptcy less than 0.5 and probabilities greater than 0.5 

for negative scores. A significant innovation in the set of discriminating variables was the inclusion of the 

standard deviation of net income based on the previous four years as a proxy for the impact of earnings 

volatility. The negative sign indicates that income volatility increases the probability of bankruptcy.
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Altman and Lavalee (1981)

This is one of the first studies using Canadian data by Altman and his associates. They data cover the 

period 1968-1980 and bankrupt companies are matched by surviving companies from the same year and 

the same industry. The study was based on a sample of 54 publicly traded firms, half-failed and half- 

continuing entities. The companies had failed over the period 1970-1979. The companies were selected to 

have the same size as well. The estimated discriminant function is given below.

Z = -1.626 + 0.234*, -0 .531*2 + 1.002*3 + 0.972*4 + 0.612*s 

where

* , = Sales /  A sse ts
X 2 = Total deb t /  total a sse ts
* 3 = current a sse ts  /  total liabilities
* 4 = net profits a fter tax /  total debt
* 5 = rate o f  growth o f  equity  - rate o f  a sse t growth

The classification criterion was based on a zero cut-off score with positive scores indicating a non-failed 

classification and negative scores a failed assignment. The overall classification accuracy of the model on 

the original 54 firms was 83.3 % which is quite high.

Bilderbeek (1977s)

Bilderbeek analysed a sample of 38 Dutch firms which went bankrupt from 1950-1974 and 59 ongoing 

Dutch companies. Bilderbeek analysed 20 ratios within a step-wise discriminant framework and arrived at 

a 5 variable model of the form

Z = 0.45-5.03*, -1 .5 7 * 2 +4.55*3 + 0.17*4+0.15*s 

where

* , = Retained earnings /  total a sse ts  
* 2 = A dded  value /  total a sse ts  
* 3 = Account p ayab le  /  Sales 
* 4 = Sales /  Total a sse ts  
* 5 = net profits a fter tax /  equity

Two of the five signs are positive and contrary to the expectations since for this model negative scores 

indicate a healthy situation and positive scores indicate a failure classification. His model was base don 

observations over 5 periods prior to failure and is not based on 1-year intervals. His results were only 

mildly impressive with accuracies ranging from 70-80% for 1 year prior and remaining stable over a 5 

year period prior to failure.

Micha (1984)
Micha used data on French companies that went bankrupt and he found the following significant 

discriminant function. Again matched data (for size, industry and year) were used and the following 

discriminant analysis was estimated

100Z = -1.255*, + 2 .003*2 -0 .824*3 +5.221*4 -0 .689*5 -1 .164*6 +0.706*, +1.408*g -85.544*, 
where
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X t = Interest Charge/ Gross Operating Profit 
X 2 = Long term resources /  capital em ployed  
X 3 = net cash  flo w  /  total financial debt 
X 4 = Gross Operating Profit /  net sa les  
X 5 = trade Debt /  purchases, inch VAT 
X 6 = A nnual variation in value added

_ Work in progress - custom er's prepaym ent + trade accounts receivableA y  —
output, incl. VAT

Fixed a sse ts  investm entA g
value added

Izan (1984)

Izan’s study covers the period 1960-1980 using Australian data. The standardised coefficients of the 

discriminant function are shown below 

Z = 0.23Af, +0.53A2 +0.24A3 -0.25A 4 + 0.44AS 

where

X x = EBIT /  Tangible total a sse ts
X 2 = EBIT /  Interest p a ym en ts
X 3 = current a sse ts  /  current liabilities
X 4 = fu n d e d  debt (borrowings) /  shareholder fu n d s
X 5 = rmarket value o f  equity /to ta l liabilities

Izan found that the interest coverage and the ratio of the market value of equity to total liabilities had the 

most important relative contribution whereas the liquidity variable X3 contributed the least. This is 

consistent with many past studies.

Frvdman Altman and Ko

The primary purpose of this study was to compare classification trees and discriminant analysis. The 

discriminant analysis models were constructed using a forward stepwise procedure. The first model 

included 10 variables while the second model included only the four most significant variables as 

provided by the stepwise method. The two discriminant functions were

Z, = -1.25526, +2.003A, -0.824A3 +5.221A4 -0.689X5 -1.164A, +0.706A7 +1.408Ag -85.544A9 
Z2 = -1.255A, +2.003A2 -0.824A3 +5.221A4 -0.689X s -1.164A, +0.706A, +1.408Ag -85.544A,

where

X , = Net income /  Total a sse ts
X 2 = Current A sse ts  /  Current Liabilities
X 3 = log(Total A sse ts)
X 4 = Gross Operating Profit /  net sa les  
X 5 = trade Debt /  purchases, inch VAT 
X 6 = A nnual variation in value added

Work in progress - custom er's prepaym ent + trade accounts receivable 
7 output, incl. VAT

„ Fixed a sse ts  investm ent
A o

value added
In this study a number of new variables were introduced that did not appear in previous studies.
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Gloubos and Grammatikos (1988)

Gloubos and Grammatikos, in the earliest study, which used Greek data, found significant risk factors that 

were able to differentiate between bankrupt and non-bankrupt companies one year prior to going 

bankrupt. The predictive ability of the model was good with the proportion of correct predictions around 

70 percent. The following risk factors were found significant.

• Current Assets / Current Liabilities

• Net Working Capital / Total assets

• Total Debt / Total Assets

• Gross Income / Total Assets

• Gross Income / Current Liabilities.

The data used in the study covered the period 1970-1988 and the failing companies were companies that 

had applied for bankruptcy proceedings to start.

Ooghe and Verbaere (1992)

Ooghe and Verbaere using Belgian data for the period 1972-1990 ended up with the following significant 

factors as discriminating variables in a linear regression model.

• Overdue short-term priority debts / Short-term liabilities

• Accumulated profits / Total liabilities

• Gross earnings before interests and taxes / Total Assets

• Equity Capital / Total Liabilities

• Cash / Current Assets

The data used in the Belgian study consisted of a matching sample of 45 failing and 45 non-failing 

industrial firms.

Shirata (2001)
In a recent study Shirata, using more recent Japanese data, found the following ratios significant in a 

linear discriminant analysis model.

• Retained Earnings / Total Assets

• Accounts payable / sales

• Current Gross Capital / Gross Capital a year ago

• Interest and discount expenses / total borrowing and bond issues

Shirata used a matched sample of 62 failing and non-failing firms and reports small classification errors. 

The proportion of correct forecasts is around 78 percent a year prior to bankruptcy. The set of factors that 

were identified as significant is rather small, but Shirata reports exhaustive tests that indicate that other 

variables do not play a role is discriminating between the two groups.

Conclusion on empirical discriminant studies

In this section we have reviewed most of the international studies that have been published over the last 

30 years. The emphasis was on presenting the empirical evidence in order to establish two things. First, 

the range of financial ratios that have been identified as significant by the empirical studies. The several
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international studies reviewed so far have found, with minor exceptions, the same list of factors as 

significant discriminating variables between bankrupt and non-bankrupt firms. In selecting the initial set 

of factors for the statistical analysis of Chapter 3 we can therefore rely on the available empirical 

evidence. The second issue that is clear from this review is that discriminant analysis seems to be able to 

differentiate between companies that went bankrupt and companies that survived. Whether this ex post 

performance analysis can guarantee ex ante predictive success is open to debate, because all the studies 

have based their methodology on matched pairs of companies spanning a very large period of time. This 

approach may be ignoring macroeconomic and other influences that may affect the probability of default 

over the business cycle and consequently may not capture the changing environment in which companies 

may be operating.

Problems with discriminant analysis

Despite their popularity, bankruptcy prediction models based on the Discriminant Analysis method, suffer 

from a number of problems as they are based on assumptions that are difficult to be satisfied by the data. 

(Zavgren, 1985). One of the most important problems relates to the assumption of normality for the 

financial ratios employed in the construction of the linear Discriminant function. This assumption is 

invalidated as soon as we use categorical variables as risk factors. Other problems related specific to the 

linear discriminant function, such as the assumption that the variance covariance matrices in the bankrupt 

and non-bankrupt groups are equal.

As a result of these problems alternative models that require less demanding models have been proposed. 

One line of extension is to relax the assumption of equal covariance matrices in the two populations. This 

is done in the following section. Another line of extension is to relax the assumption of normality. The 

logistic regression model (Logit Model) is the most popular of models, which do not make the assumption 

that the risk factors are normally distributed. In fact it can be shown that the DA method is a special case 

of the logistic regression model (Kennedy, 1991). Which of the two models performs better is still 

debatable. Ohlson (1980) claims that if deviations from normality are small, then the DA method 

produces Maximum Likelihood estimators that are asymptotically more efficient than the Logit Model.

1.11 Quadratic Discriminant Analysis
One of the major criticisms of the linear discriminant analysis is the assumption of equal covariance 

matrices in the two populations (Eisembeis 1977). There is little evidence that the dispersal matrices in 

the two populations are the same and if the assumption is rejected, but multivariate normality is retained, 

then the classification rule becomes (Huberty (1994), Flury (1997))

^r' ^ 1 - n ’V-Kii'Vz - a rVi)r
which reduces to the linear discriminant function when

a ,  = i i 2 = q

The quadratic version of MDA (QMDA) which is not based on the assumption of equal covariance 

matrices, is in principle more robust way of classifying firms, but implementation of the QMDA is not 

supported by most statistical packages that make its implementation difficult.
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1.12 Linear Probability Model

The next three methods attempt to estimate the probability of default directly rather than classifying 

observations into groups of bankrupt and non-bankrupt companies. The linear probability model is a 

special case of ordinary least squares regression with a dichotomous (0-1) dependent variable. It 

represents the simplest attempt to calculate the probability of default by directly linking it to 

characteristics of a company. The model assumes that the random variable x describes the state of a 

company. If a company is downgraded then, x = 1 and if the company s not downgraded then X = 0  . 

We believe that there is a vector r explaining the state of the company, so that 

Pr(x = 2) = F(r,P)
P r (x  = 0) = 1 -  F(r, P)

The linear probability model results if we make the assumption that

F(r,P) = P'r

Since F (x /r ) — F(r, P) the following regression model can be constructed 

x = F (x /r) + [ x - F ( x /  r)] = p'r + £
Serious statistical problems however exist with the linear probability model. First of all the error term is 

heteroscedastisc with variance 

Var (e / r )  = p 'r  (I -  p 'r )

The second problem is that there is no way to guarantee the predicted values of model will not lie outside 

the (0-1) interval. For this reason this approach has not been used very frequently in empirical studies [see 

e.g. Meyer and Pifer (1970) and Theodossiou (1991), Altman et. al. (1981) ] both because of the 

statistical problems already mentioned but also because it was found to produce results not significantly 

different from Discriminant Analysis.

1.13 Logistic Regression

Consider a random variable* , which indicates membership in the population 1 or 2. The random variable

takes the values 0 and 1 with probabilities p, and p 2 . Since both * and r are random one could study

their joint density function f ( x , r )  defined as

f p  ,f, (r) f o r j  = l ,2  
f  f i r ) =  ) J  
x’' |  0 o therw ise

Discriminant analysis looks at the conditional distribution of r , given * . In discriminate analysis we 

assume that conditionally on * = 1, r follows a p-variate distribution with probability density function

f,(r) . Similarly, assume that conditionally on X = 0 , r follows a p-variate distribution with 

probability density function f2(r) . We also make the further assumption that the conditional distribution

of r is multivariate normal. With all these assumptions we get the classification rules studied in an earlier 

section. If we assume equal covariances we get linear classification rules, if we assume unequal 

covariances we get quadratic classification rules.
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However it is possible instead of studying the conditional distribution of r given x = 1,2 to study the 

conditional distribution of * given r = r*. Denoting the marginal probability density function of r as

f r ( r )  =  f1( r ) p 1 + f 2( r ) p 2

The conditional probability of membership in group 1, given r = r * can be calculated by

nu = P r(x  =  1 / r  = r* )  = ■ f ,( r *)P,
f)(r* )p , + f 2( r* )p 2

The 7tlr is usually called the posterior probability and by construction 7tlr + 7i2r = 1.

In some cases it may be more reasonable to model the conditional distribution of x given r = r * directly, 

without making any distributional assumptions on r . In this setup one can treat x as the dependent 

variable and r as a vector of p “independent” or regressor variables. The most popular statistical 

technique based on this approach is logistic regression. Logistic regression assumes that

exp[a + B'r]
7i, = Pr(x = 1 / r = r*) = -----—----

l + exp[a + p'r]

In the logistic regression framework therefore, the probability of bankruptcy can be estimated directly on 

the basis of a vector of financial ratios.

Ohlson 11980)

Ohlson’s was the first study that used logistic regression instead of linear discriminant analysis for the 

estimation of credit risk. Ohlson found the following variables significant in the logistic regression 

equation

• Size

• Total Liabilities / Total Assets (TL/TA)

• Working Capital / Total Assets (WC/TA)

• Current Liabilities / Total Assets (CL/TA)

• Net Income / Total Assets (NI/TA)

• Pre-tax income plus depreciation and amortisation / Total Liabilities (FFO/TL)

• INTWO is one if Net Income was negative for the last two years, zero otherwise

• OENEG is one if owners’ equity is negative, zero otherwise

• CHIN is the scaled change in net income 8

The coefficients of the estimated model are shown in table 1.14 below.

Zaveren (1985)
This is another well cited study that used US data in the spirit of Ohlson. Zavgren found the following 

risk factors as significant in the logistic regression.

• Inventory /Sales

• Receivables / Inventory

• Cash / Total Assets

• Quick Assets / Current Assets (Acid test)

• Total Income / Total Capital
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• Debt / Total Capital

• Sales / Net Plant

Zavgren;s study was influential because it demonstrated that logistic regression performs better than 

discriminant analysis. Compared to the studies based on discriminant analysis this study shows that the 

discriminating factors is a larger set compared to factors identified earlier using z-score type functions.

Table 1.14: Ohlson's results

Variables Parameter Estmates

Constant -1.320
Size -0.407*
TL/TA 6.030*
WC/TA -1.430**
CL/TA 0.076
NI/TA -2.370**
FFO/TL -1.830*
INTWO 0.285
OENEG -1.720*
CHIN -0.521*

* significant at 1% or lower (two-sided test) 

** significant at 5% or lower (two-sided test)

Westeaard and van der Wiist (2001):

Westgaard and van der Wijst (2001) estimated a logistic model using data on bankruptcies of Norwegian 

companies for the period 1995-1999. The authors use the 1996 accounting data to predict bankruptcies in 

1998. The results are shown in the following table

Table 1.15: Logistic regression results

Variables Parameter Estmates

Cash/debt -1.7698

Size -0.1204

Liquidity -0.2775

Finance cover -0.00891

Solidity -0.5807

Age -0.3232

Realserv -0.9530

Hotresta 0.2455

Mnorway 0.3631

Nnorway

Where

0.2470

s CHIN = (AT, -  AT,_,) /( AT, + AT,_, )
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Cash/debt

Size

Liquidity 

Finance cover

Solidity

Age

Realserv

Hotresta

Mnorway

Nnorway

Operating income plus depreciation (cash flow) over total debt 

The base 10 logarithm of the firm’s total assets.

Liquidity measured as current assets divided by current debt

Financial coverage measured as net results before financial costs divided by financial 

costs

Solidity is measured as equity divided by total capital 

Age o company in years

Dummy variable for the real estate and services industry 

Dummy variable for the hotel and restaurant industry 

Dummy variable for geography: Mid Norway 

Dummy variable for geography: Northern Norway

The authors have used dummy variables to account for the differences in the bankruptcy rates in the 

different industries and regions. The performance of the model was evaluated by using only half the 1996 

sample and using the other half as a “hold out” sample. The number of companies in their sample was 

35, 287 of which 954 went bankrupt.

Lin and Pierce (2001)

More recently Lin and Pierce (2001) found the following ratios as significant in a conditional probability 

analysis approach to modelling default probabilities in the UK.

• After-tax Profit / Total Assets

• Retained Earnings / Total Assets

• Change in Cash / Total liabilities

• Working Capital / Total Assets

• Working Capital / Operating Expenditure

Foreman (2003)
Foreman’ study applied logistic regression to a particular industry. More specifically, Foreman estimated 

logistic regression based on 1999 balance sheet to predict the bankruptcy of telecommunication 

companies two years later. He used two specifications (Specification 1 and Specification 2). The 

following variables were found significant in the two specifications. The main difference is whether the 

market value is significant in predicting the state of a company as it would be predicted by the Merton 

model.
Specification 2 

Earnings per share 

Employees 

FCC pages to sales 

Market-to-book

Retained earnings to assets Retained earnings to assets

Total debt proportion 

Working capital to sales

Constant Constant

Specification 1 

Earnings per share 

Employees
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Lo (1985)

In this study Lo although the primary objective was the development of a test framework for the 

comparison of the performance of the Logit and Discriminât Analysis models, proposing a Hausman - 

type specification test to chose the appropriate model, .he also presented interesting results. Lo estimated 

the following model using a matched sample of 77 failing and non-failing firms between the years 1975 

and 1983 inclusively.

The following variable were used

Variable Definition
SIZE Log(total assets/GNP price deflator)
CLTA Current debt liabilities, divided by total assets
OLTA Other debt liabilities divided by total assets
CATA Current assets, divided by total assets
NITA Net income divided by total assets
BANK Bankruptcy index suggested by Lo (1984)

The estimated coefficients of the two alternative models are given in table 1.16.

Table 1.16: Lo’s results

Logit estimate 
(Std. Error)

DA estimate 
(Std. Error)

Constant 1.2140
(2.51)

SIZE -0.0441 -0.0418
(0.29) (0.28)

CLTA 0.1074 -2.3803
(2.42) (2.02)

OLTA -3.3258 -2.6131
(1.81) (1.51)

CATA -1.2321 -0.6597
(1.98) (1.71)

NITA 10.7971 5.1616
(4.82) (2.25)

BANK 4.1642 1.0686
(2.27) (0.62)

Lo computed a Hausman test statistic to choose between the two models and found that the assumption 

of normality could not be rejected. On the basis of this test he chose the Discriminant Analysis model, 

since as Efron (1975) demonstrated, under the assumption of normality, the Discriminant Analysis 

estimates are more efficient than the Logit Model.

1.14 Probit Model

In the probit model the probability of a firm being in the downgraded group is given by

n Xr = p r(x  = l / r  = r * ) =  f  (t)d t = O (P 'r)

where <D(p'r) is the cumulative function of the standard normal distribution. Although there practical 

reasons for choosing the logistic model over the probit, there are no theoretical reasons that can be 

invoked for justification. The logistic distribution is similar to the normal except in the tails, which are
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considerable heavier (in fact it resembles the t distribution with seven degrees of freedom). For 

intermediate values of P 'r  (say between -1.2 and +1.2),the two distributions tend to give similar 

probabilities9. The logistic distribution tends to give larger probabilities to P r(x  = 0 )  when P’r is 

extremely small than the normal distribution. The two models will produce different predictions of course 

when the sample contains very few observations of one of the two possible values of the random variable 

X  or if one of the independent variables exhibited very wide variation in the values it attained.

Recent empirical applications of the probit model include Espahbodi and Espahdodi (2003) where the 

model is compared to a logit and a model based on discriminant analysis.

1.15 Survival Analysis

Survival Analysis assumes that both failed and non-failed firms in a sample are from the same population, 

with non-failed firms considered as some kind of censored observations. The risk of failure is measured 

by the survival time that is calculated for each firm. Assuming that T is the time on which a firm will fail, 

the survivor function S(t) is the probability that the time T is greater than t. The probability F(t) for a firm 

to fail before t is

T(r) = 1-5(0
the hazard function h(t) is given by 

/ ( 0  5 '(0Kt) :
5(0 5(0

and
h(t I x) = h0 exp(x'a)

where x is the variable vector (vector of characteristics) and a the coefficient vector. Vector a which is 

the parametric part of the function is estimated by a technique similar to that of maximum likelihood; 

h0(t) the non parametric part is calculated by setting x = 0.

The survivor function S(t / x) is then

S(t / x) = S0 exp(x'a)

where S0 (0 is given by
i \

\h0 (u)du

0 y

As h0(t) is distribution free survivor analysis, is a semi-parametric methodology and it partially skips 

the criticisms against parametric techniques. Furthermore the method appears to be more natural in 

dealing with the failure problem.

Survivor analysis was employed by Lane et al. (1986), in the explanation of bank failure in the US and 

by Luoma and Latinen (1991) for the prediction of business failures in Finland. Their sample consisted of 

36 industrial and retailing failed Finish companies, matched by size and industry type to 36 non-failed 

firms. The goal of the method was to calculate the survival time starting from the end of accounting 

period, assuming that at this time the failure process starts. This time is not necessarily a natural start of

50(O = exp

9 see Green (2000) p 815

55



the failure process. This model consisted of financial ratios as well as a measure of the size and it 

performed satisfactorily compared to discriminant analysis and logit regression.

The interpretation of the results according to the expected failure time, provides decision makers with 

important information about a firm. The survival analysis method, although a viable alternative to 

statistical approaches has not been often applied for the prediction of business failure.

1.16 Recursive Partitioning

The recursive-partitioning algorithm is a non-parametric classification technique. The method starts with 

the sample of firms their financial characteristics, the actual group classification, the prior probabilities 

and the misclassification costs. A binary classification tree is built where a rule is associated to any mode. 

These are usually univariate rules; that is a certain financial characteristic and a cut-off point that 

minimise the cost of the misclassification for the rest of the firms. The risk of misclassification in any 

node t, q(t) is given by

< ? ( 0  -  ( C 21 ^ 1 2  ^  2

1 mt (t)m2 (t) 
n(t) ntn2

where

mt (?), m2 (t): The number of firms in each group on node t
«,, n2 : The total number of firms in each group (failed and non-failed firms)

c|2 : Cost of misclassifying a firm in group 1 while in group 2

c2] : Cost of misclassifying a firm in group 2 while in group 1

7i(/): Probability of classifying a firm on node t

P j, p , : Prior probability of a firm to be a member of group 1 or group 2.

After the classification tree is constructed, the risk of the final nodes and the risk for the entire tree is 

calculated. For the classification of any new firm, the firm descends the tree and falls into a final node 

that identifies the group membership for the specific firm and the associated probability. Breiman et al 

(1984) provide an extensive description of the method, including theory of binary trees, splitting rules, 

etc.

Frydman et al. (1985) first employed RPA as an alternative method to study the failure problem. The 

purpose of this study was to introduce RPA for the prediction of business failure and to compare resulting 

classification trees to models derived by discriminant analysis.
A sample of 58 bankrupt industrial companies and of 142 non-bankrupt manufacturing and retail 

companies was selected at random from the period 1971-1981. The RPA classification trees and two 

discriminant analysis models were constructed and compared in the study. The classification trees from 

RPA(l) and RPA(2) are shown in Figures 6 and 7 respectively.

The RPA trees, RPA(l) and RPA(2) were constructed for different costs of misclassification.
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Figure 1.6: The RPA(l) Classification Tree

Cast) »towI tosi te*

Figure 1.7 : The RPA(2) tree in Fydman. Altman and Kao (1985).

Cash flow / Total Debt

For RPA(l) it was assumed and for RPA(2) it was assumed . For both trees, the prior probabilities for 

bankrupt and non-bankrupt groups were set at p, = 0.02, p 2 = 0.98 . From the various trees 

constructed according to the above parameters, the trees with the smallest cross validation costs were 

selected.

RPA has the characteristics of both the univariate and multivariate statistical methods. Classification on a 

node is made upon the rule of a single variable (although rules in the form of linear combination of 

financial characteristics can also be assigned to a node). On the other hand the method uses a sequence of 

nodes, i.e. a sequence of characteristics to classify a firm.

RPA is a forward selection method. It does not review previous classifications while it introduces new 

classification rules and this can result in a reappearing of the same variable to a later stage, with a 

different cut-off score. There is also a problem of overfitting, as continuation of partitioning process can
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result in a tree were each firm is classified by one terminal mode. To avoid such problems different trees 

of various degrees of complexity are derived and tested.

One of the main advantages of RPA is that the binary tree easily explains failure for a specific firm. This 

simplicity is eliminated if, instead of single variable rules, rules of linear combination of characteristics 

are used. In such cases, the resulting model can not easily explain failure. The estimation of the tree is 

also difficult. From a decision maker point of view, RPA just classifies firms into categories of risk. It 

does not permit comparisons between firms in the same category, making it very difficult to assess the 

relative performance of firms. Another weakness in RPA is that the technique does not provide an 

estimate of the probability of classification, although this problem can be overcome employing the 

technique suggested by Frydman et al.

The number of studies that have used RPA is rather small compared to the other methods. Michalopoulos 

et al. (1993) applied the method with good results to Greek data to predict bankrupt firms. Marais et al. 

(1984) applied RPA to commercial bank loan classification as did Srinivasan and Kim (1988). Another 

example of this approach is Laitinen and Kankaanpaa (1999) who estimated the following classification 

trees using Finish data.

Figure 1.8: Laitinen and Kankaanpaa (1999) Classification Tree

TDTA 
76 firms

OITA 
11 firms

<0.06
>0.06

1,17 Other approaches to modelling credit risk

Recent developments in the credit risk area include the use of nonlinear statistical models such as neural 

networks. Instead of assuming a linear relationship between the risk factors and Z, neural networks allow
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more complex relationships to be present. The success of these models is however debatable and there is 

no consensus that they perform better than the traditional model based on either logistic regression or 

discriminant analysis.

1.18 Conclusions

In this chapter we have sought to accomplish two objectives. The first objective was to review the 

development of credit measurement techniques over the last 30 years. There has been a tremendous 

growth in the literature in the techniques that have been employed for the calculation of the fundamental 

elements of credit risk, such as the probability of default and expected loss at portfolio level. We have 

seen that the approaches to modelling credit risk have evolved since Beaver’s original study and Altman’s 

popularisation of quantitative techniques in many directions. Different and more complicated statistical 

models have been proposed to model the probability of default to microeconomic or macroeconomic 

factors, either for a single obligor or for a portfolio of obligors. The range of financial ratios used in the 

various studies has also grown although the review has revealed that there is a set of financial ratios that 

works well in all countries.

Most of the studies have employed one method for the assessment of credit risk and comparison of the 

various approaches over time and in different countries is not therefore easy. The Laitinen and 

Kankaanpaa (1999) comparison study provides some results on the performance of the various 

approaches for Finland. The results are interesting not least because they highlight that the best method 

differs according to the prediction horizon. The logit, for instance is the best method for the one year 

horizon, but it is relegated to fourth place for the 3 year horizon, with the survival method being a surprise 

top method for the two and three-year horizon. There is no question that much more research is needed in 

order to be able to draw definite conclusion on the performance of the various methods.

We have shown how to construct risk indices and to calculate the fundamental building blocks or credit 

risk management such as expected loss, unexpected loss and value at risk. However these portfolio 

approaches although important in terms of developing methodologies for aggregating credit risks, offer 

very little insight into the determination of the probability of default for a single loan. These approaches 

will not be employed in the rest of this thesis.

Table 1.17 : Methods ranked according to prediction accuracy

1 year 2 years 3 years

I Logit I Survival I Survival

11 NN II DA II NN

III DA III Logit III RPA

IV HIP IV NN IV Logit

V RPA V RPA V DA

VI Survival

Source: Laitinen and Kankaanpaa (1999)

The second objective of this chapter is to position our thesis in this developing area both in terms of its 

research design as well as in terms of the contribution to the literature. This is achieved in the next two
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sections where the research design followed in this thesis is explained in view of the problems that most 

other studies have encountered and the nature of our data. The contribution of this thesis to the empirical 

literature on credit and market risk measurement is presented in the final section.

1.19 Research Design

One of the major problems in measuring credit risk and validating credit risk models is the lack of 

sufficiently large numbers of bankruptcies. In most cases a very small sample of companies that have 

gone bankrupt is employed. The declaration of a company as bankrupt may come a long time after the 

company is financially insolvent and that generates a problem in terms of relating financial characteristics 

to bankruptcy as what we want the data to predict is when a company becomes insolvent rather than when 

the company becomes legally bankrupt. The data, which we employ for this study, come from a sample 

of companies which have experienced problems in servicing their debt to a particular commercial bank in 

Greece for the period 1994-2001. We have followed the bank’s own classification and methodology in 

classifying companies according to their ability to meet interest payments to the bank..

The bank classifies the companies in its loan portfolio in two broad categories depending on their interest 

payment experience. The two categories are described below.

• Category 0 Companies: These are companies that fulfil all of the bank’s credit criteria, have not 

delayed payments during the preceding year and have not had any major managerial or other 

non-financial problems. These companies are not expected to default over the duration of the 

loan.

• Category 1 Companies: These are borrowers which exhibit inability to service its debt to the 

bank. The degree of difficulties in servicing their debt in the preceding year will vary. The 

severity of the situation is measured by the delay in payments. A company is classified in 

category 1 once there is a delay of three months. The classification takes place after the credit 

event has happened and is not therefore based on any judgmental criteria. Some of the 

companies will resume normal payment at some time in the future whereas other companies will 

be led to bankruptcy. The key criterion for classification of a company as financially distressed 

is the delay in payment.

As we have already discussed the approach of this dissertation is to identify financial characteristics of a 

company that may predict the financial health of the company at some future date. There are three issues 

that arise from such a task. First we have to define the time horizon. There is no preferred time period 

over which such predictions are evaluated and the time horizon can be one year or four years. In our study 

we have opted for a time horizon of two years. The choice of the two-year credit event horizon was 

dictated by the size of the sample, since the number of companies that migrated from one category to 

another over a single year is rather small. The second reason we adopted the two-year credit event 

horizon was for the test to have some meaningful statistical predictive power. Given that we use financial 

ratios from published accounts of companies and given the delays in the publication of financial 

statements of between 6 and 9 months after the end of the financial year to which they refer, a one-year 

analysis would have amounted to forecasting where a company would have been in the past 6-9 months.
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The second issue is to identify the set of financial characteristics that we want to use as explanatory 

variables. This is done in Chapter 2. The third issue is to find the combination of these factors so as to 

maximise predictive performance. This is done in Chapter 3 where we employ Multivariate Discriminant 

Analysis and Logistic Regression.

The testable hypothesis is then to identify factors which predict which of the companies will be 

downgraded in two years time. A graphic representation of the test design is given in the figure below.

Figure 1.9: Test Design

> = >

The sample of companies we are using in this study to test the predictive power of financial ratios 

comprises 492 companies in 1994, 546 companies in 1995, 474 companies in 1996, 403 companies in 

1997, 375 companies in 1998 and 303 companies in 1999. The sample came from a population of about 

14,000 companies and was selected on basis of available balance sheet and profit and loss data for the 

years under consideration. The table below shows the number of 0-category companies in the six base 

years (1994, 1995, 1996, 1997, 1998 and 1999) and their classification 2 years later in 1996, 1997, 1998, 

1999, 2000 and 2001 respectively.

P erio d  t

0 -C o m p an ies

P erio d  t+2

0 -  C o m pan ies

1 -  C o m pan ies

Table 1.18: The Sample of companies

0-Category 
Companies in 

1994 and 
their

classification 
in 1996

0-Category 
Companies in 
1995 and their 

classification in 
1997

0-Category 
Companies in 
1996 and their 
classification 

in 1997

0-Category 
Companies in 
1997 and their 

classification in 
1999

0-Category 
Companies in 
1998 and their 

classification in 
2000

0-Category 
Companies in 
1999 and their 

classification in 
2001

0 426 479 418 355 337 252
1 66 67 56 48 38 51

Total 492 546 474 403 375 303

For every year in our sample, say in 1994, we split the sample of 492 companies into two groups of 426 

companies that remained in the 0 -  category in 1996 and 66 companies that were downgraded in 1996. 

As we have already explained the idea behind this test is to see whether those 66 companies that were 

downgraded in 1996, exhibited different characteristics from those companies that were not eventually 

downgraded. The actual characteristics that will be employed to do this as well as the statistical 

techniques used will be investigated in chapters 2 and 3 of the thesis..

As the table makes clear most of the companies (about 88%) in the sample remain in the normal 0- 

category after two years. Given therefore the small number of companies that were actually downgraded
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we decided not to use a matched group of non- downgraded companies but instead to use the entire 

sample.

Unlike the previous studies on bankruptcy prediction our model is one that identifies companies whose 

credit quality is expected to deteriorate rather than companies that are expected to default. When 

comparing the results of this study with other studies on bankruptcy prediction, this should be taken into 

account since the characteristics of a company that is about to go bankrupt are different from those of a 

company that is merely downgraded. We would therefore expect a lower predictive power when 

compared with bankruptcy prediction studies.
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1.20 Appendix
Table A1: Number of Firms failed (Hillegeist, Keating, Cram and Lundstedt, 2002)

Year Number of Firms Number of Bankruptcies % Firms 
Failed

1979 2812 19 0.68%
1980 2816 21 0.75%
1981 2895 25 0.86%
1982 3015 17 0.56%
1983 3266 37 1.13%
1984 3333 49 1.47%
1985 3308 35 1.06%
1986 3473 32 0.92%
1987 3524 34 0.96%
1988 3374 34 1.01%
1989 3255 38 1.17%
1990 3211 27 0.84%
1991 3299 16 0.48%
1992 3423 23 0.67%
1993 3786 17 0.45%
1994 3987 19 0.48%
1995 4157 18 0.43%
1996 4554 24 0.53%
1997 4472 31 0.69%

Table A2: Most Common Financial Ratios

WC/TA TD/TA CA/CL EBIT/TA NI/TA CF/TD OA/CL CF/S RE/TA S/TA
Australia 2 1 1 1
Canada 1 1 1
Finland 1 1 3 1 2 1 6 2
France
Greece

1
5 5 2 1 2

1 1
1

1

Israel
Italy
Japan
Sweden
Netherlands

1

1

1
1

UK 5 1 5 1
USA 4 8 5 5 7 6 3 1 3 2

Total 16 15 12 12 11 9 9 8 6 7

S/TA GP/TA NI/SE CASH/TA PBT/S STP/TC INV/S QA/TA TA/GNP
Australia
Canada 1
Finland 2
France 1
Greece 6 1
Israel
Italy 1
Japan 1
Sweden 1
Netherlands 1 1
UK 3 2 5 5 2 1 2
USA 2 2 1 3 2

Total 7 6 6 5 5 5 4 4 4
Source: Dimitras, Zanakis and Zopounidis (1996)
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Chapter 2 -  Descriptive Statistics and Data Analysis

2.1 Introduction

The objective of this chapter is to define and describe the statistical properties of company characteristics, 

that is risk factors, that may help us predict whether a company will become financially distressed or not. 

The survey of empirical studies of the previous chapter has shown that most of the risk factors that have 

been used in discriminating bankrupt from non-bankrupt firms are financial ratios derived from the 

financial statements of a company. The number of financial ratios that have been used in the literature to 

describe the financial condition of a company is very large. In a review of existing practices, Chen and 

Shimeda (1981) identified more than a hundred ratios that had been employed in financial distress and 

bankruptcy studies. Such a vast array of possibilities is of course of little use in empirical analysis. We 

have therefore decided in this study, to narrow down the choice by looking at theoretical models to come 

up with a basic set of risk factors. Adding factors that have been found significant in other empirical 

studies then augments the theoretical set of risk factors.

The Merton (1974) model has identified some factors, such the leverage ratio, asset volatility and debt 

maturity that would explain the behaviour of companies but it is too simple to accommodate other factors 

that may impact on the behaviour of companies, such as liquidity and quality of management. Another 

source of information as to the performance of financial ratios is the published credit scoring models of 

rating companies.

We restrict the examination to two of the most important credit rating companies, namely Moody’s and 

Standard and Poor’s. There are other rating companies that used slightly different approaches but as these 

two companies are the dominant ones in the field, we felt that they provide a good indication of risk 

factors which are widely accepted at least implicitly as valid.

Moody’s Risk Factors (2000)*

Moody’s use the following set of seven factors in a model that combines discriminant analysis and 

logistic regression.

• Assets/Consumer Price Index

• Inventories/Cost of goods sold

• Liabilities/Assets

• Net Income Growth

• Net Income/Assets

• Quick Ratio

• Retained Earnings/Assets

• Sales Growth

• Cash/Assets

• Debt Service Coverage Ratio
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Standard and Poor (2000) **

Standard and Poor report the following eight factors as important in terms of classifying issuers of 

corporate bonds.

• EBIT interest coverage

• EBITDA interest coverage

• Funds flow/total debt

• Free open cash flow/total debt

• Return on capital

• Operating income/sales

• Long-term debt/capital

• Total debt/capltal

Both agencies employ ratios that are consistent with the basic Merton model but include ratios that 

capture aspects outside the model’s framework such as short-term solvency, growth and efficiency ratios. 

The Chapter deals with two issues. First, we define characteristics of companies that should explain why 

companies migrate from one credit category to another and predict which of the companies may exhibit a 

high probability of migration. We deal with this issue in the first part of this chapter, Sections 2.2 and 2.3. 

The second issue we deal with in this chapter is to test statistically whether companies that were 

downgraded exhibited financial characteristics, two years before the migration, which were different to 

those companies that did not migrate. The question we examine is as follows: Does the distribution of 

financial ratios discriminate between companies that may be downgraded and companies that may remain 

in the same criteria category?

Our general approach in dealing with this second issue is by testing whether those of the 0-classified 

companies in a particular year (year t) that were downgraded within the following two years exhibited 

different characteristics from those companies that were not downgraded. The design of the test is stated 

in Chapter 1. We perform six statistical tests:

• Univariate Tests of equality of the means of the ratios in the two groups

• Multivariate tests of the equality of the vector of means in the two groups of companies

• Tests of equality of the medians in the two groups

• Univariate Tests of equality of variances of the financial ratios in the two groups of companies

• Multivariate Tests of equality of the covariance matrices in the two groups.

• Tests of normality of the distribution of financial ratios.

2.2 Company Characteristics and Financial Distress
In describing the state of company researchers normally rely on financial characteristics, as well as on 

characteristics such as size, quality of management and industry structure. It is possible of course that 

good management and monopolistic power in an industry would ultimately be reflected in financial 

performance, however, the timing issues may be important and therefore the effect of management

* Moody’s Investor Service, Rating Methodology for Private Companies May 2000 
** “Adjusted Key U.S. Industrial Financial Ratios” Standard and Poor’s Credit Week, 20th September 
2000 .
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change which is measured today may not be fully reflected within the time frame of our analysis. Thus 

one may want to investigate differences in companies in terms of non-financial characteristics.

The fundamental factors that may cause corporate failure have been studied widely and are classified by 

Argenti (1976) and Dambolena and Khouri (1980) as internal factors and external factors. The main 

internal factor is bad management manifested through , lack of responsiveness to change in technology, 

bad communication, misfeasance and fraud, insufficient consideration for cost factors, poor knowledge of 

financial matters and high leverage position. The main external factors are effect of labour unions where 

too high a wage settlement causing the firm to pay its employees in excess of their marginal product, 

government regulations which impede, in some instances, the functioning of the market system distorting 

in the process its signals to the corporate decision makers, and natural causes such as natural disasters, 

demographic changes, etc. All the above causes may or may not be reflected on the balance sheet in 

timely or accurate fashion for use by the research.

So in addition to the analysis of the information contained in the financial statements, non-financial 

factors exist that may modify the evaluation of the company. Some of these non-financial factors are:

■ Foreign exposure

■ Quality of management

■ Ownership structure

Foreign exposure is important for exporting or importing companies, as part of the revenue or expenses 

may be influenced by events outside Greece. Foreign currency exposure is another possible source of 

risk, especially if the publication of information on hedging currency risk is not obligatory.

The quality of management and the depth of administrative structure are more difficult to evaluate. 

Positive aspects of management will be reflected in a steady growth pattern. Negative aspects would 

include a firm founded and headed by one person who is approaching retirement and has made no plan 

for succession. Equally negative is the firm that has had numerous changes of management and 

philosophy. On the other hand excessive stability is not always desirable. Characteristics of a good 

management team include depth, a clear line of succession if the chief officers are nearing retirement, and 

a diversity of age within the management team.

Ownership of the firm should also be considered as a factor, if one family or group of investors owns a 

controlling interest in a firm, they may be too conservative in reacting to changes in the market. Owners 

should also be judged in terms of whether they are strategic or financial. Often financial buyers invest for 

the short to intermediate term, hoping to sell their positions (or the entire company) at a profit. In such a 

case a company may not plan for longer-term growth and it may be in its interest to boost short-term 

growth at the expense of long term prospects.

A second issue that faces the investigator is to determine when a financial characteristic of a company 

deviates from the norm. In other words we need a norm in order to compare these characteristics to other 

companies or to the industry. For example, a financial characteristic of a company such as sales growth 

may appear attractive on its own for a company, but for an industry it may not be. There are many 

industry considerations that should be taken account of such as:

■ Economic cyclicality

■ Growth prospects
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■ Research and Development expenses

* Competitors

■ Sources of supply

■ Degree of regulation

* Labour relationships

■ Accounting policies

An additional degree of complexity is added because these factors should be considered in global context. 

Companies in the tourist industry are a good example, although the elimination of trade barriers seems to 

have increased the competitive pressures on all sectors of an economy. The economic crisis in the Far 

East, the Russian bond crisis, Oil price volatility, all constitute factors that make the economic analysis of 

a company from the view point of domestic market seriously deficient.

2.3 Financial Ratios
The financial ratios employed in this study are grouped into 6 broad categories, which reflect aspects of 

the financial conditions of a company. The groups of ratios are:

1. Profitability ratios

2. Liquidity ratios

3. Leverage ratios

4. Solvency ratios

5. Activity ratios

6. Growth ratios and size

Some important variables such as free cash flows could not be used because of lack of data on capital 

expenditure. Any ratios that would be important require cash flow data and market value, which were not 

available in our data set, are therefore not employed in this study.

Profitability Ratios

Higher profitability will normally raise a firm’s equity value. It also implies a longer way for revenues to 

fall or costs to rise before losses occur. There is a number of profitability ratios that can be defined 

depending on the profitability measure employed. We have employed two ratios to measure the impact of 

profitability, the Return on Equity (ROE)

O p era tin g  P ro fit AV
ROhj —------------------------ —------

Share Capital AD

and return on total assets.

ROA -  EBIT _  a r  + a s - a u  + ba

T ota l A sse ts  AB

Return on equity is crucial to the shareholder. Anticipated year over year return on equity is a key driver 

of the share price, and one of management’s major goals is maximizing the shareholders’ value over the 

long term. Return on assets is independent of financing, but return on equity is strongly influenced by 

financing. Highly leveraged companies (those with a high debt ratio) can expect to have wider swings 

(more volatility) in their return on equity. Table 2.1 shows the average values of this ratio in each year for
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Category 0 companies that were still in that category two years later (Group 0) and companies that had 

been downgraded in the following two years (Group 1). The average of the whole sample is also given. 

Table 2.1: Return on Equity

Group 94 95 96 97 98 99
zero 0.471 0.520 0.436 0.431 0.442 0.344
One 0.198 0.194 0.056 0.130 0.245 0.243
Total 0.598 0.444 -0.071 0.494 0.402 0.218

As with other ratios, some variation is possible. The formula above gives return on all equity (for 

example, common and preferred shares). Some analysts extract the cost of servicing the preferred shares 

from the numerator (i.e. they subtract the preferred share dividends from net income), and make the 

denominator the common share equity. This gives a return on common shares only.

Another issue is whether profitability is best measured relative to equity, assets or some other variable 

such as sales. Each measure is more appropriate for different types of companies. We have tried therefore 

to capture the effect of profitability by using a variety of ratios

The ROA is a measure of what a company earns on all of its assets, whether they are financed by debt or 

shareholder equity. This ratio, again always expressed as a percent, is a powerful tool for comparing 

between similar companies. Table 2.2 and the Figure that follows show the average values of this ratio for 

the two groups for every year of our sample. As it was expected, the ROA of companies in Group 0 are 

consistently higher than those in Group 1, most of the time twice as high.

Table 2.2: ROA

Group 94 95 96 97 98 99
zero 0.192 0.192 0.171 0.193 0.211 0.124
One 0.120 0.075 0.071 0.077 0.103 0.090
Total 0.182 0.177 0.159 0.179 0.200 0.118

The following graph shows the Return on Assets for the two group of companies for each year. 

Figure 2.1 ROA
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An important feature of the table and the graph is the relative stability of the ROA especially for the 

group zero companies, that is the companies that were not downgraded.
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Leverage Ratios

The second group of risk factors are leverage ratios. The higher the leverage the larger the cost of capital 

for the company and the smaller the ability of the company to accommodate adverse profitability shocks. 

We have used two leverage ratios. Total Debt to Total Assets (DR) defined as

_ Total Debt _ AG + AH  
Total Assets AC + AG + AH

and Total Debt over Paid Up Capital

^  _ Total Debt _ AG + AH  
Paid up capital AD

Debt ratio is a critical number for both lenders and investors. Lenders have a strong focus on the security 

of a debt, i.e. its likelihood of repayment. To a lender, a high debt ratio increases the risk that the ongoing 

company will not service the debt, or that the debt cannot be recovered if the company fails. An investor 

would have the same concern if the debt ratio was very high: if the company can not meet its debt 

payment schedule, the lenders will push the firm into bankruptcy and there will be nothing left for the 

equity holders. However, investors often don’t like a very low debt ratio, because their return is not 

“leveraged”. Debt also increases the volatility of the return on equity generated by a company. This 

effect is called leverage, and is an important concept in understanding a company’s financial 

performance. The average values of the DR ratio for each of the groups are shown in Table 2.3 and the 

accompanying graph. Again as it was expected, the Group 1 companies have higher leverage ratios that 

the companies that did not migrate (Group zero).

Table 2.3: DR

zero One Total
94 0.574 0.635 0.582
95 0.582 0.669 0.592
96 0.559 0.633 0.568

97 0.570 0.672 0.582
98 0.583 0.648 0.589
99 0.553 0.643 0.568

Figure 2.2 DR

DR
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From the table and the graph we see that the ratios remain relatively stable throughout the period. Ratio 

stability is an important issue in the use of financial ratios for the prediction of financially distressed 

companies.

Solvency Ratios

Some kind of solvency ratio has been used in all the empirical studies we have reviewed in the previous 

studies as it is accepted that the larger the burden on a company from servicing its loan the larger its 

probability of default. There is not a single accepted way of measuring this risk, so we have calculated 

three ratios to be used in the analysis. The first one is Interest Payments over Cash Flow (IPF) defined as

_  In te rest P aym en ts _  AT 
G ross P ro fit + D ep rec ia tio n  AR + BA

This ratio is the inverse of times interest earned which is one of the most important criteria for setting the 

interest rate on debt. Times interest earned looks at earnings with interest and income taxes added back in. 

Interest payments are added back in because they are earnings that are available to pay interest. The 

theory for adding taxes is that if a company becomes unprofitable its tax bill goes to zero (since taxes are 

calculated as a percentage of net earnings or profits), and the earnings that had been going to pay taxes 

can now be used to service debt. The average values of this ratio are shown in Table 2.4 and the graph 

that follows.

Table 2,4: IPF

Group 94 95 96 97 98 99
zero 0.264 0.264 0.198 0.199 0.200 0.169
One 0.346 0.796 0.434 0.488 0.450 0.271
Total 0.275 0.329 0.226 0.234 0.226 0.186

Figure 2,3 IPCF
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The proportion of cash flow devoted to interest payments has decreased steadily reflecting the significant 

reduction in interest rates during the period. This is particularly true for companies that were not 

downgraded eventually. There is no theoretical guidance as to what is an appropriate benchmark value. 

As a rule of thump companies for which EBIT is more than five times its interest are considered to be 

very good credit risk, and bonds of such companies have a high grade (rating). Applying this rule of 

thump in our definition, high grade companies should have IPCF values of less than 0.2, which is actually 

the case in our sample apart from 1994 and 1995.
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The second ratio employed is Interest Payments over Sales (IPS) defined as 

Tnc _ Interest P aym ents AT11 O — —
Sales AP

Sales are less amenable to manipulation than either cash flow or EBITDA and therefore a more objective 

measure. However a high sales volume may not necessarily be translated into a better position to meet the 

debt servicing obligations of a company. The average values are shown in Table 2.5 and in the 

accompanying graph.

Table 2.5: IPS

zero One Total
94 0.070 0.103 0.074
95 0.063 0.090 0.066
96 0.058 0.125 0.066
97 0.049 0.087 0.053
98 0.057 0.085 0.060
99 0.049 0.080 0.054

Figure 2.4 IPS
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This ratio follows the same downward trend as IPCF reflecting the reduction in interest rates during the 

period.

The third ratio employed is Interest Payments over EBITDA^, that is this time we calculate the interest 

coverage on EBITAD. This last variable is closely related to the interest coverage on Cash Flow, but it 

includes other items on top of AR and BA.

IPE =
Interest Payments 

EBITDA
_______________AT_______________

AR + BA + AS -  AU  +  AW -  AX

Liquidity Ratios

1 A s lease financing  has become more popular, it m ay be p ruden t to move from  “tim es 

interest earned” to factoring in all f ix e d  (non-avoidable) charges. Som etim es the before 

tax income required to fu n d  a “sinking fu n d ” is also included in the denominator. 

Financial s ta tem en ts  such  as the ones in the ICAP da tabase  from  w hich the financial 

data  are draw n d o n ’t have enough detail to complete the fix e d  charge coverage, because  

details on leasing p a y m e n ts  are not included.
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Liquidity is considered an important variable for credit rating decisions. Sufficient current assets allow a 

company to meet its current liabilities and to reduce its requirements for working capital. We have used 

two ratios in this category. The Current Ratio defined as

Current A sse ts  R + V + AALK  = ------------- ;-----------  = ---------------
Current Liabilities AH

and Working Capital over Total Assets (WA)

V + R + A A - A HWA = ---------------------------
AB

The current ratio for the two groups is shown in the graph that follows and in Table 2.6

Table 2.6: CR

1994 1995 1996 1997 1998 1999
zero 2.275 2.003 1.931 1.576 1.614 1.753
One 1.176 1.278 1.049 1.099 1.179 1.142
Total 2.127 1.914 1.827 1.519 1.570 1.650

Figure 2.5: CR
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The current ratio is of critical importance to a short-term lender because the lender normally is secured by 

current assets only, i.e. the fixed assets are pledged against long-term debt and the short-term lender can’t 

seize them if the firm goes bankrupt. A current ratio of less than one says that for every dollar of readily 

accessible (“liquid”) assets, such as inventory and receivables, there is more than a dollar of debt owing to 

a creditor. This is viewed as a risk by a lender except in unusual circumstances. Short-term lenders will 

frequently have a covenant that requires the business owners to maintain or exceed a set current ratio or to 

have an absolute amount of working capital (current assets minus current liabilities). For large companies 

with many channels for raising funds a high current ratio is more a sign of incompetent cash management 

than prudence. That relationship does not exist however for smaller companies that cannot tap the direct 

lending market.

Table 2.6 and the accompanying graph show the working capital over assets ratio (WA) for the two 

groups and for each year. This ratio is remarkably stable for the companies that did not experience 

financial distress. For the companies that were eventually downgraded this ratio is much smaller and 

more volatile.
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Table 2.7: WA

zero One Total
94 0.151 0.067 0.139
95 0.142 0.033 0.128
96 0.141 0.016 0.127
97 0.145 0.050 0.133
98 0.153 0.045 0.142
99 0.157 0.057 0.140

Figure 2.6 WA
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Activity and Efficiency Ratios

Activity and Efficiency ratios measure how intensively a company uses its assets. The more efficiently a 

company uses its assets the higher the return on the assets for given utilization costs and ceteris paribus 

the larger the ability of a company to withstand shocks. The use of these ratios in predicting default 

probabilities is problematic because they are not suitable for comparison across industries and it is not 

surprising that activity and efficiency ratios tend to be only weakly associated with the probability of 

default. The following ratios have been suggested in the literature as relevant proxies of efficiency and are 

used in this study.

■ Sales over Total Assets

SOA =------------------= —
Total A sse ts  AB

■ Operating Profit over Sales

^  Operating Profit _ AR + A S -A U  + BA 
Sales AP

■ Net Income over Sales

nrTO Net Income B B  -  BN  
Sales AP

■ EBITDA over Sales
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r o  EBITDA AR + A S - A U  + BA + A W - A X
-L/iS - -

Sales AP

The first ratio total asset turnover measures, in theory, the extent to which management is using the assets 

of a company efficiently and can be used to compare two companies within an industry. This ratio could 

however be meaningless for comparing companies from different industries, since for example, a retail 

chain will have a huge turnover (low assets and high sales), whereas a highly capital intensive project will 

be the opposite. This ratio can also have problems within an industry that makes its use highly 

problematic. The accounting framework reflects the principle of prudence and assets have rarely their 

value increased to reflect inflation; in essence, an asset is depreciated from its original cost, with no 

reflection of inflation2. Hence, if one were to compare two companies, one with old assets and one with 

newer assets, there would be a depreciation and inflation impact that would distort this ratio. Total asset 

turnover ratios are therefore of limited value in inter-company company comparisons.

Table 2,8: SOA

94 95 96 97 98 99
zero 1.318 1.273 1.106 1.124 1.124 1.004
One 1.276 0.997 1.059 1.108 0.792 0.884
Total 1.312 1.239 1.101 1.122 1.090 0.983

Figure 2.7 SOA

SOA

The other three ratios measure short term profitability on turnover and measure the efficiency with regard 

to turnover as opposed to assets. This would be a more appropriate ratio for comparing companies from 

industries with different capital requirements. The three ratios vary in the way the numerator is defined. 

OS uses as the numerator net operating income before income tax and interest (to show the yield of the 

business before financing and tax related charges that distort inter-company comparisons). NIS looks at 

an after-tax and interest number, and defines the numerator as “net income available to common 

shareholders”. Finally, ES uses EBITDA as the numerator, which includes depreciation in the 

calculation, and is as close as we can get to a proxy for the cash flow of a company.

Growth Ratios and Size

2 Revaluation o f  f ix e d  a sse ts  does take place periodically
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The final set of ratios measure the financial health of a company and its potential for growth as well its 

potential to withstand adverse conditions. We use two related ratios here. The first one is undistributive 

profits & accumulated losses over paid up capital (UPL) defined as

AD
The larger the proportion of undistributive profits & accumulated losses to paid up capital the larger the 

ability of the company to withstand adverse developments. Also, this can be interpreted as a growth rate 

since the larger the profitability of the company, the larger this ratio is.

Figure 2.8 UPL
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As the plot of the values of UPL shows for the two groups of companies, companies that experience 

financial distress two years later had a negative UPL today.

The second ratio is retained profits over total assets defined as

RTA =
BB -  BN - BF 

AB

this is one of the most popular ratios in discriminant analysis as the survey of literature in Chapter 1 

indicated.

Figure 2,9: ROTA
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Size

The last ratio we employed was a proxy for the size of the company. There is no single, universally 

accepted proxy and we have therefore used the natural logarithm of total assets as a proxy.

SZ = log (AB)
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Are small companies more likely to be downgraded than larger companies? In a number of empirical 

studies, this hypothesis has been tested and found that size does matter.

Figure 2,10: SIZE
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However, our sample estimates do not support the view that smaller companies are more likely to be 

downgraded than larger ones as the analysis of the following chapter shows. From the graph we see that 

the downgraded companies on average had more assets than those that were not migrated.

This completes the description of the financial ratios employed in this study and their broad movement 

over time. A summary of the ratios together with and explanation of the terms in terms of the format of 

the Balance Sheet and Profit and Loss Account are given in Tables 2.9, 2.10 and 2.11. The notation 

adopted is follows the one used by Dinenis (2003a).

Table 2.9: profit and loss account

PROFIT AND LOSS ACCOUNT ITEM SYMBOL
Turnover AP
Cost of Goods sold AQ
Gross profit AR
Commissions and other operating expenses AS
Financial expenses AT
Other Operating Expenses AU
Operating Profit AV
Non operating income AW
Non operating expenses AX
Total Depreciation AZ
Depreciation included in the cost of goods sold. BA
Depreciation not included in the cost of goods sold. AY
Profit before tax BB
Tax BN
After -tax profit
Dividends BF
Retained profits RT
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Table 2.10: Balance sheet

BALANCE SHEET ITEM SYMBOL
Net fixed assets I
Land J
Buildings K
Other fixed assets BH
Good will L
Long -term Credit P
Investment in Subsidiaries Q
Stocks R
Finished goods S
Semi-processed T
Raw materials U
Non fixed assets V
Receivables w
Financial investments Y
Other claims Z
Cash and bank balances AA
Accumulated depreciation O
Depreciation of Machinery and equipment BI
Depreciation of buildings BO
Other depreciation BP

Total assets AB

Share capital AC
Paid-up capital AD
Reserves AE
Undistributed Profits -  accumulated losses. AF

Medium and long-term liabilities -  provisions AG

Medium and long-term liabilities BK
Provisions BL

Short-term liabilities AH
Bank Loans- Interest on Long term loans AI
Suppliers -  Creditors -  Accounts payables AJ
Payable dividends AK
Share accounts AL
Other liabilities AM

Total liabilities AN
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Table 2.11: Summary Definitions of Financial Ratios employed in the study by category

Profitability Ratios
ROE Return on equity AV/AD
ROA EBIT / total assets (AR+AS-AU+BA)/AB

Solvency Ratios
1PCF interest payments /cash flow AT/(AR+BA)
IPS Interest payments/ sales AT/AP
IPE Interest payments / EBITDA AT / (AR+BA+AS-AU+AW-AX)

Leverage Ratios
DC total debt / paid up capital (AH+AG)/AD
DR Total debt/ (total debt & total equity) (AG+AH)/(AC+AG+AH)

Liquidity Ratios
CR current ratio (R+V+AA)/AH
WA Working capital/total assets (V+R+AA-AH)/AB

Activity Ratios
SOA Sales/ total assets AP/AB
OS Operating profit / sales (AR+AS-AU+BA)/AP
NIS Net income / sales (BB-BN)/AP
ES EBITDA/ Sales (AR+AS-AU+BA+AW-AX)/AP

Growth Ratios
UPL (undistributive profits & accumulated losses)/ paid AF/AD 

up capital
RTA Retained profits/ total assets (BB-BN-BF)/AB
SZ Size Log(AD)
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2.4 Testing the Equality of Means -  Univariate Tests

The first test we perform is to test whether the mean values of the financial ratios of the companies that 

migrated were different (statistically) from the mean values of the financial ratios of the companies that 

did not migrate. Let F., be the mean of ratio j at time t for a company that remained k in t+2 and rj2 be 

the mean of ratio j at time t for a company that migrated in period t+2. The univariate test is

H, rfl * rn

and where the means have been calculated as follows

iZ°"and T s *

the hypothesis of equal means was tested using the t-test given by

t . = -^ — 
J s .

where sp is the pooled standard deviation of the two samples.

The arithmetic means for each financial variable for the years 94, 95, 96, 97, 98 and 99 and for each of 

the two categories is shown in the Data Appendix to this chapter. Table 2.12 shows the values of the T- 

test for testing the hypothesis that the mean values of the ratios between the two groups of companies are 

the same.

Table 2.12: Value of the t-statistics for testing the equality of the means in the two groups of companies

Ratio 94-96 95-97 96-98 97-99 98-00 99-01
(Undistributive profits & 
accumulated losses)/ paid up capital

1.663 2.056 2.369 2.699 0.574 1.430

Total debt / paid up capital 0.174 -0.609 -0.851 -1.391 -1.581 -1.081
Current ratio 2.270 2.233 -0.319 4.830 1.859 1.539
Return on equity 2.520 3.027 2.954 4.013 1.117 1.564
Interest payments /cash flow -0.715 -1.395 -3.507 -2.999 -5.083 0.245
Operating profit / sales 1.192 1.052 0.733 1.012 -0.350 -0.232
EBIT / total assets 1.982 6.712 6.527 4.709 2.218 2.155
Net income / sales 1.836 1.320 1.243 2.320 -0.008 2.757
EBITDA/ Sales 1.196 1.183 0.670 1.506 -0.427 -0.234
Retained profits/ total assets 3.480 5.103 4.457 4.071 2.094 2.519
Sales/ total assets 0.187 3.335 0.366 0.090 2.982 2.268
Working capital/ total assets 3.700 4.548 4.721 3.736 3.348 2.918
Interest payments/ sales -1.940 -2.727 -3.153 -3.547 -1.929 -3.439
Interest payments/ EBITAD -1.835 -3.295 -1.967 -1.673 1.350 1.661
Total debt/ (total debt & total equity) -2.211 -3.612 -2.683 -3.556 -1.853 -1.963
Size -1.863 -0.353 -0.920 -0.814 -1.407 -1.346
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1 + H n, - n 0 - 2  + T 2 *

The null hypothesis can be tested using any of the above criteria. The statistical significance of any of the 

tests can be evaluated using two simple transformations based either on a chi-square distribution or an F- 

distribution. For Wilk’s lambda we define the test statistic based on the chi-square distribution for g 

groups as4

A c = - ! n  A[n, + n 0 - 2 - | ]  ~  x j

Flence, the selected 16 financial ratios is an appropriate set of discriminator variables, since the null 

hypothesis is rejected for each year respectively apart from 99/01 when the hypothesis could not be 

rejected.

Table 2.13 -  Values of Test Statistic

ni n0 Wilk’s
lambda

Chi-square Degrees of 
freedom

Critical
value

94-96 426 66 0.895 52.889 16 41.34
95-97 479 67 0.829 99.648 16 41.34
96-98 418 56 0.853 73.801 16 41.34
97-99 355 48 0.847 65.337 16 41.34
98-00 337 38 0.855 57.108 16 41.34
99-01 252 51 0.859 45.553 16 41.34

2.6 Testing the Equality of Medians

Although the use of means provides us with information about the average value of financial ratios for the 

two groups of companies it is more informative to use the median as a measure of location for the 

distribution of financial ratios. The use of median underpins most of the work of credit rating companies 

and as the following table shows there is a high correlation between the median value of a financial ratio 

and the credit rating of a company.

comparison involves more than two groups their performance differ. Olson (1976) found the Pillai-Bartlett trace V to
be the most robust of the four tests and is sometimes preferred for this reason.
4 Wilk’s lambda test based on the F-distribution again for g groups is defined as:

A,- = ---------- !-------— —------- FE i Alternatively we can use a test statistic based on Hotelling’s T 2 thatF ^  n,+n0- p - l  J

follows the F- distribution is defined as H p n i + n 0 — P — 1 T 2 
2 ( n ,+ n 0 - p )

F„p
ni+no -p - i

Both AF and HF follow the F-distribution with p and II] + n 0 -  p -  1 degrees of freedom. Using Hotellings 

test statistic, we reject the null hypothesis Ho : — JU0 = 0 at level of confidence a if: H p > FnP+n(_p_| (cc)

where Fp , (a) is the value of the f-distribution, above, which only 5% of the cases lie.H| +F1q p 1 ' '

81



Table 2.14 Three-year (1997-1999) medians for various credit categories

AAA AA A BBB BB B CCC
EBIT interest coverage. 17.5 10.8 6.8 3.9 2.3 1.0 0.2
EBITDA interest coverage 21.8 14.6 9.6 6.1 3.8 2.0 1.4
Funds flow/total debt 105.8 55.8 46.1 30.5 19.2 9.4 5.8
Free operating Cash flow/total 
debt (%)

55.4 24.6 15.6 6.6 1.9 (4.5) (14.0)

Return on capital (%) 28.2 22.9 19.9 14.0 11.7 7.2 0.5
Operating Income/sales (%) 29.2 21.3 18.3 15.3 15.4 11.2 13.6
Long-term debt/capital (%) 15.2 26.4 32.5 41.0 55.8 70.7 80.3
Total debt/capital (%) 26.9 35.6 40.1 47.7 61.3 74.6 89.4
Number of Companies 10 34 150 234 276 240 23

Source: “Adjusted Key US Industrial Financial Ratios “ Standard & Poor’s Credit Week, September 20, 
2000, pp. 39-44.

For instance, 50 percent of the companies that are classified as CCC had a debt-capital ratio of more than 

89.4 whereas 50 % of those companies rated as AAA had a debt-capital ratio of less than 26.9 percent. In 

a univariate framework it will be unlikely for a company with a debt-capital ratio of less than 26.9 percent 

to be a CCC. The predictive power of the median can therefore be stronger as it does not depend on 

outliers, which may affect the mean value.

The test for the equality of medians is the Wilkoxon test also known as the rank sum test and one variant 

as the Mann-Whitney test. This is a non-parametric test and compares two unpaired groups.

Let x ,, x 2,..., x m and y t , y 2,..., y n be two independent random samples of sizes m and n with m<n for 

the continuous populations X and Y. We wish to test the hypothesis

H 0 : median(x) = median(y)
H a : median(x) ^  median(y)

The test procedure is as follows. Arrange all m + n observations in ascending order of magnitude and 

assign ranks to them. If two or more observations are tied (identical) then we use the mean of the ranks 

that would have been assigned if the observations were differed. Let W(m) be the sum of the ranks in the 

smaller sample, and define W(n) as the sum of ranks in the other sample. Then

. . . .  . (m + n)(m + n +1) .W(n)  = ------- ------------ - -  W(m)

If the sample medians do not differ, we will expect the sum of the ranks to be nearly equal for both 

samples after adjusting for the difference in sample size. Consequently, if the sums of the ranks differ 

greatly, we will conclude that the medians are not equal. The distribution of W(m) and W(n) can be 

derived but are complicated. However when both m and n are moderately large, normally greater than 8, 

the distribution of W(m) can be approximated by the normal distribution with mean

= ---------------  and variance Var(m) =-------—-------

and therefore the quantity

__ W(m)-E(W(m))
■yjVar(m)
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Ho • CTj — CJ2 — • • • — CTX

H a : ct, * ct ( for at least one pair (ij).

The most common test for equality of variances across g samples is Bartlett's test which is very sensitive 

to departures from normality. If the samples come from non-normal distributions, then Bartlett's test may 

simply be testing for non-normality. However, If there is strong evidence that data employed do in fact 

come from a normal, or nearly normal, distribution, then Bartlett's test has better performance.

The Levene Test is an alternative to the Bartlett test that is less sensitive to departures from normality.

The test can be defined as follows: Given a variable Y with sample of size n divided into g subgroups, 

where n; is the sample size of the ith subgroup, the Levene test statistic is defined as:

where Yj is the median of the ith subgroup.

where Yl is the 10% trimmed mean5of the ith subgroup, 

z,. are the group means of the Zy and z is the overall mean of the Zly

The three choices for defining Zy determine the robustness and power of Levene's test. By robustness, we 

mean the ability of the test to not falsely detect unequal variances when the underlying data are not 

normally distributed and the variables are in fact equal. By power, we mean the ability of the test to detect 

unequal variances when the variances are in fact unequal. Levene's original paper only proposed using 

the mean. Brown and Forsythe (1974) performed Monte Carlo studies that indicated that using the 

trimmed mean performed best when the underlying data followed a Cauchy distribution (i.e., heavy-

tailed) and the median performed best when the underlying data followed a xl  (ie., skewed) distribution. 

Using the mean provided the best power for symmetric, moderate-tailed, distributions.

Although the optimal choice depends on the underlying distribution, the definition based on the median is 

recommended as the choice that provides good robustness against many types of non-normal data while

5 Trimmed Mean - similar to the mid-mean except different percentile values are used. A common choice 

is to trim 5% of the points in both the lower and upper tails, i.e., calculate the mean for data between the 

5th and 95th percentiles.

where z(. can have one of the following three definitions:

1.

where Y; is the mean of the ith subgroup.
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retaining good power. If you have knowledge of the underlying distribution of the data, this may indicate 

using one of the other choices.

The Levene test rejects the hypothesis that the variances are equal if 

W  > F ( a , g - l , n - g )

where F(a , g - 1, n -  g) is the upper critical value of the F-distribution with g - 1 and n- g degrees of 

freedom at a significance level of a . The empirical results from the test are shown in the following 

table.

Table 2.16- Values of the test Statistic -  Levene Test

Ratio 94 95 96 97 98 99
(undistributive profits & accumulated 
losses)/ paid up capital

0.60 2.47 1.03 1.14 0.180 0.536

Total debt / paid up capital 1.19 0.01 0.52 2.97 1.846 2.178
Current ratio 1.46 1.44 1.92 4.74 3.216 1.924
Return on equity 1.01 2.0! 3.56 2.62 0.234 3.503
Interest payments /cash flow 20.94 20.70 11.95 17.92 21.403 0.364
Return on fixed assets 0.40 1.04 2.88 1.04 0.702 1.788
Operating profit / sales 0.21 25.13 3.08 0.23 0.057 0.074
EBIT / total assets 0.61 3.83 5.08 2.32 3.415 4.799
Net income / sales 0.06 40.58 15.81 0.04 0.180 9.139
EBITDA/ Sales 0.21 31.71 1.20 0.65 0.156 0.223
Retained profits/ total assets 0.00 0.52 0.16 0.54 0.763 0.002
Sales/ total assets 0.33 3.99 4.41 3.80 4.619 1.516
Working capital/ total assets 0.93 0.02 0.02 2.26 0.137 0.059
Interest payments/ sales 1.58 3.00 3.39 2.60 0.237 6.826
Interest payments/ EBITAD 3.23 0.04 0.30 4.11 16.771 19.909
Total debt/ (total debt & total equity) 0.05 0.49 0.92 1.51 0.605 0.012
Size 7.24 0.63 1.61 2.45 1.902 0.120

n 492 546 479 403 374 327
g - i 1 1 1 1 1 1
n -  2 492 546 474 402 374 327
Critical Value @ 5% 3.860 3.859 3.861 3.865 3.866 3.875
Critical Value @ 1% 6.687 6.681 6.688 6.698 6.704 6.726

Starting with the 1994 sample, for most of the ratios the value of the test is below the critical value and 

we cannot reject the hypothesis that the variances in the two groups are the same. In fact only 4 ratios 

appear to have a different sample variance. However for subsequent years, the number of ratios for which 

the assumption of equality cannot be accepted rises to 12 out of 28 in 1995 and then remains the same at 

7 for the two remaining years of 1996 and 1997. When we use the 1% significance level, the number of 

ratios for which we can reject the assumption of equal variances is very small. The conclusion from this 

test is that the results of the test statistics on the means and in particular the t-test should be accepted as 

valid.

2.8 Testing the Homogeneity of Covariance Matrices

The final statistical attribute that we are testing is the equality of the variance-covariance matrices in the 

two groups. Suppose we have n observations on p variables which come from g groups with ni
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Table 2.17: Empirical results

Period M g 2 df, df2 Critical Value significance
94-96 1083.1 7.253 136 41661 1.12 0.000
95-97 5995.9 40.224 136 42494 1.12 0.000
96-98 2312.5 15.205 136 29384 1.12 0.000
97-99 1050.2 6.579 136 21470 1.12 0.000
98-00 957.9 5.916 136 13112 1.12 0.000
99-01 1240.3 8.038 136 25577 1.12 0.000

The probability value of this F should be greater than .05 to demonstrate that the assumption of 

homoscedasticity is upheld (lower than the critical value). However the results indicate that the 

assumption of equal Variance-covariance matrices is not supported for any of the years. We reject 

therefore the hypothesis that the two variance-covariance matrices may be assumed drawn from a 

common population. The two groups may be thought of as coming from populations with varying in 

location and shape distribution parameters.

Heteroscedasticity in a multivariate may arise from group differences in covariance as well as the 

variance of individual variables. We have already seen, using the Levene test, that individual variances 

are on the whole not overwhelmingly different in the two groups. In fact in any one period the number of 

unequal variances never exceeds more than a quarter of the total number of the variances. Differences in 

covariances can arise because two variables correlate differently in different populations. For example the 

ROE may correlate differently with the solvency ratio in the group of downgraded companies than in the 

group of non-downgraded companies.

Table 2.18: Value of determinants (Natural log of determinant-)

Group 1 Group 0 Pooled

94-96 -47.862 -38.163 -37.239

95-97 -32.427 -31.820 -27.163

96-98 -46.729 -31.924 -28.750

97-99 -58.452 -40.883 -40.323

98-00 -52.994 -40.857 -39.488

99-01 -49.722 -48.951 -44.958

The value of the determinant can be used to asses the approximate correlation structure of the group 

variance-covariance structure. The larger a group’s determinant is, the more nearly uncorrelated the set of 

predictors are within the group. If two or more variables correlate perfectly, the resulting correlation 

matrix is singular and will have a determinant of 0. The more the group determinants vary among 

themselves, the more the group correlation structure will differ.

Although no formal test is available to test the equality of determinants, it is obvious from the table above 

that the determinants in the two groups differ substantially. We may therefore conclude that the 

differences in the covariance matrices are primarily due to the different correlation structure in the two 

groups.
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2.9 Testing for Normality

The assumption of a normal distribution for the various financial ratios employed in empirical studies of 

discriminant analysis is the justification for that particular approach. Testing for normality is therefore 

imperative in order to see if the assumption is supported by the data. Deviations from normality are 

manifested in the non-symmetry of the empirical distribution function and the presence of kurtosis. In the 

next two tables we show the values of the coefficient of skewness and kurtosis in order to see if they 

different from the coefficients of the normal distribution. .

Skewness is the lack of symmetry in a distribution. It is calculated as the third central moment divided by 

the standard deviation raised to the power of three.

sk = C\  where C 3 = E (X  — |J.)3 
a

If — 2 < -----------------------------------------< +2 then the data are normally distributed otherwise we
stan d ard  e rro r o f  skew ness

reject the hypothesis of symmetry.

Most of the ratios show significant deviations from symmetry with the coefficients of skewness for the 

overwhelming majority of ratios being statistically different from zero. For only three ratios we can 

accept the hypothesis of symmetry in every single year (WA, DR and SIZE) whereas ROTA has a 

symmetric distribution in four years.

Next we consider the second sample statistic that shows departures from normality and this is the 

coefficient of kurtosis or peakedness of a distribution which is defined as

ku = %  -  3 where C 4 = E(X  -  
a

Table 2.19: Skewness Coefficients

94 95 96 97 98 99
UPL 3.17 6.44 5.84 8.39 6.92 10.12
DC 6.00 10.67 4.91 2.24 4.01 2.72
CR 15.07 15.17 19.73 6.95 4.50 9.34

ROE 5.92 5.03 4.36 4.54 4.62 5.92
IPF 3.06 16.16 -2.36 8.28 6.12 -9.03
OS 0.96 -23.20 -0.72 -1.78 -14.95 0.51*

ROA 7.22 5.07 8.99 13.88 3.89 0.66*
NIS -2.21 -21.45 -17.43 -13.99 -8.83 -4.15
ES 0.90 -22.56 -3.07 1.41 -14.64 1.08

ROTA -0.65 0.68 0.09* 0.37* -0.60* 0.18*
SOA 3.85 3.62 2.48 1.80 1.40 2.38
WA 0.16* -0.41* -0.29* -0.12* 0.20* -0.21*
IPS 3.04 5.94 4.13 2.38 11.69 3.11
I PE 7.02 -17.38 -21.21 4.32 -10.97 -14.56
DR -0.32* -0.50* -0.35* -0.37* -0.47* -0.32*

SIZE -0.09* -0.13* -0.23* 0.00* -0.07* 0.08*
N 492 546 474 403 375 303

A common rule-of-thumb test for normality is to estimate the coefficient of kurtosis, then divide it by its 

standard error. Kurtosis should be within the +2 to -2 range when the data are normally distributed (a few

88



authors use +3 to -3). Negative kurtosis indicates too many cases in the tails of the distribution. Positive 

kurtosis indicates too few cases in the tails. Note that in SPSS the kurtosis is centred on 0 rather than the 

value of 3 which is the value of the coefficient for the normal distribution and this is reflected in our 

definition above.

Looking at the coefficient of kurtosis, we get a similar picture with most of the ratios exhibiting 

significant kurtosis. Only three ratios have kurtosis which is not statistically different from zero, WA, DR 

and SIZE.

Table 2.20 : Kurtosis -Whole sample

94 95 96 97 98 99
UPL 32.30 84.20 57.54 104.18 74.84 134.51
DC 54.07 160.98 39.72 5.87 29.64 8.62
CR 231.12 266.84 411.73 59.21 24.29 108.87

ROE 50.23 40.18 29.78 27.47 26.93 47.33
IPF 63.21 287.74 36.77 92.83 52.09 130.77
OS 7.78 540.68 27.24 23.55 267.42 3.15

ROA 87.21 33.90 120.98 234.83 19.73 2.68
NIS 11.79 478.30 342.71 253.12 140.90 32.60
ES 6.29 519.23 44.73 10.04 260.52 2.47

ROTA 10.36 4.15 7.79 4.71 11.72 5.71
SOA 25.49 25.89 14.39 6.55 3.23 10.35
WA 0.40* 2.20 1.29 0.96* 1.24 0.88*
IPS 13.38 54.73 23.66 9.65 186.55 14.95
IPE 69.95 377.83 457.26 34.60 215.83 234.56
DR -0.55* -0.39* -0.54* -0.43* -0.41* -0.33*

SIZE 0.30* 0.34* 0.45* 0.59* 0.44* 0.61*
N 492 546 474 403 375 303

A formal test of normality was also conducted using the Kolmogorov-Smirnov (KS) test. The KS test 

compares the empirical cumulative distribution function (cdf) to the cdf of the normal distribution. The 

empirical cdf is computed as an estimate of the theoretical distribution and is simply defined as

Fn (r) =  N o  o f  o b serv a tio n s < r

The test statistic is calculated as

D„ = M t t |F n ( r ) -F ( r ) |
r

where the maximum is taken over r. If the D statistic is significant, then the hypothesis that the respective 

distribution is normal should be rejected. The probability values that are reported can be based on those 

tabulated by Massey (1951); those probability values are valid when the mean and standard deviation of 

the normal distribution are known a-priori and not estimated from the data.

When the cumulative distribution function parameters are not known, in this case the mean and the 

variance of the distribution, they have to be estimated from the data. The distribution of D using estimated 

parameters has been derived by Lilliefors (1967) and it is this values that SPSS uses to test normality and 

the ones that we are reporting.

We have tested for univariate normality for the whole sample as well as for the two groups of companies. 

The results for each variable and each year are shown in the Appendix. Again the overwhelming
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evidence from this test is that the assumption of normality is not supported by the data. However the 

results f or the three variables (WA, DR and SIZE) are confirmed using this more robust test.

2.10 Conclusions

The results of this chapter can be summarised in terms of the six tests we performed as follows. The 

location parameters of the distribution, i.e. the means and the medians of the two groups of ratios are 

significantly different in the two groups. This is confirmed by both the univariate and multivariate tests. 

Companies, which are downgraded, are characterised by higher leverage and solvency ratios and lower 

profitability and growth ratios. Size is not an important variable in predicting whether a company will be 

downgraded. The variances are not on the whole different, indicating distributions with the same shape 

parameters but different location parameters. The correlation structure of the ratios however, is different 

in the two groups. Finally, the tests of normality have shown that the distribution of most financial ratios 

significantly different from the Gaussian normal distribution. This finding should be taken into account in 

the application of techniques that are based on the assumption of normality and equal covariance matrices 

in the two groups. The impact of the assumptions is of course an empirical question which will be 

assessed in the next chapter.

Turning now to the stability of the financial ratios over time, we see that some important ratios such the 

leverage ratios and liquidity ratios such as working capital over total assets have remained stable. This is 

important if the purpose of the analysis is to predict financial distress. It is also noticeable that the 

financially healthy companies had more stable ratios than companies that became financially distressed. 

The results would therefore indicate that the statistical characteristics of the financial ratios of the two 

groups of companies were different two years before they were downgraded. As we have already 

discussed, statistical inference based on univariate tests may be contradictory and misleading. What we 

are testing in the next chapter is the significance of linear combinations of those characteristics.
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Table Al: Values Of the Means 94-96

2.11 Data Appendix

0 1
(undistributive profits & accumulated losses)/ paid up capital 0.091 -0.062
Total debt / paid up capital 4.200 4.104
Current ratio 2.310 1.176
Return on equity 0.470 0.198
Interest payments /cash flow 0.269 0.346
Operating profit / sales 0.192 0.134
EBIT / total assets 0.257 0.120
Net income / sales 0.054 -0.021
EBITDA/ Sales 0.191 0.133
Retained profits/ total assets 0.024 -0.007
Sales/ total assets 1.312 1.276
working capital/ total assets 0.151 0.067
Interest payments/ sales 0.076 0.103
Interest payments/ EBIT AD 0.570 0.837
Total debt/ (total debt & total equity) 0.573 0.635
Size 4.988 5.147

Table A2: Mean Values 95-97

0 1
(undistributive profits & accumulated losses)/ paid up capital 0.154 -0.036
Total debt / paid up capital 4.616 5.699
Current ratio 1.923 2.360
Return on equity 0.450 0.153
Interest payments /cash flow 0.207 0.422
Operating profit / sales 0.137 0.112
EBIT / total assets 0.177 0.073
Net income / sales -0.001 -0.155
EBITDA/ Sales 0.135 0.113
Retained profits/ total assets 0.014 -0.013
Sales/ total assets 1.102 1.043
working capital/ total assets 0.139 0.020
Interest payments/ sales 0.064 0.122
Interest payments/ EBITAD -0.210 0.818
Total debt/ (total debt & total equity) 0.563 0.639
Size 5.053 5.116
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Table A3: Mean Values 96-98

0 1
(undistributive profits & accumulated losses)/ paid up 
capital

0.154 -0.036

Total debt / paid up capital 4.616 5.699
Current ratio 1.923 2.360
Return on equity 0.450 0.153
Interest payments /cash flow 0.207 0.422
Operating profit / sales 0.137 0.112
EBIT / total assets 0.177 0.073
Net income / sales -0.001 -0.155
EBITDA/ Sales 0.135 0.113
Retained profits/ total assets 0.014 -0.013
Sales/ total assets 1.102 1.043
working capital/ total assets 0.139 0.020
Interest payments/ sales 0.064 0.122
Interest payments/ EBITAD -0.210 0.818
Total debt/ (total debt & total equity) 0.563 0.639
Size 5.053 5.116

Table A4: Mean Values 97-99

0 1
(undistributive profits & accumulated losses)/ paid 
up capital

0.146 -0.046

Total debt / paid up capital 3.990 5.222
Current ratio 1.571 1.099
Return on equity 0.427 0.130
Interest payments /cash flow 0.203 0.488
Operating profit / sales 0.138 0.124
EBIT / total assets 0.192 0.077
Net income / sales 0.011 -0.028
EBITDA/ Sales 0.144 0.122
Retained profits/ total assets 0.015 -0.012
Sales/ total assets 1.121 1.108
working capital/ total assets 0.143 0.050
Interest payments/ sales 0.052 0.087
Interest payments/ EBITAD 0.461 0.759
Total debt/ (total debt & total equity) 0.571 0.672
Size 5.189 5.248
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Table A5 Mean Values 98-00

0 1
(undistributive profits & accumulated losses)/ paid 
up capital

0.081877 0.027401

Total debt / paid up capital 4.23012 5.677777
Current ratio 1.608952 1.181371
Return on equity 0.449329 0.270893
Interest payments /cash flow 0.199207 0.441866
Operating profit / sales 0.131971 0.148785
EBIT / total assets 0.219047 0.104959
Net income / sales -0.00015 0.000351
EBITDA/ Sales 0.132548 0.153245
Retained profits/ total assets 0.014944 -0.00309
Sales/ total assets 1.120559 0.803113
working capital/ total assets 0.151156 0.04876
Interest payments/ sales 0.0565 0.083469
Interest payments/ EBITAD 0.435287 0.091693
Total debt/ (total debt & total equity) 0.584133 0.650915
Size 5.170886 5.31415

Table A6 Mean Values 99-01

0 1
(undistributive profits & accumulated losses)/ paid up capital 0.101949 -0.119
Total debt / paid up capital 3.322427 4.084223
Current ratio 1.746211 1.150794
Return on equity 0.333314 0.104319
Interest payments /cash flow 0.518238 0.291693
Operating profit / sales 0.147327 0.151571
EBIT / total assets 0.12296 0.092675
Net income / sales 0.029536 -0.01506
EBITDA/ Sales 0.149912 0.154346
Retained profits/ total assets 0.019222 -0.0043
Sales/ total assets 1.000982 0.771127
working capital/ total assets 0.150766 0.052965
Interest payments/ sales 0.04905 0.078182
Interest payments/ EBITAD 0.309811 -0.44326
Total debt/ (total debt & total equity) 0.557004 0.627514
Size 5.311664 5.452448
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Table B1 Median Values 94-96

0 1
(undistributive profits & accumulated losses)/ paid up capital 0.000 -0.008
Total debt / paid up capital 2.248 3.419
Current ratio 1.250 1.103
Return on equity 0.176 0.046
Interest payments /cash flow 0.229 0.284
Operating profit / sales 0.130 0.109
EBIT / total assets 0.147 0.112
Net income / sales 0.021 0.005
EBITDA/ Sales 0.128 0.106
Retained profits/ total assets 0.013 0.001
Sales/ total assets 1.109 1.007
Working capital/ total assets 0.137 0.068
Interest payments/ sales 0.057 0.076
Interest payments/ EBITAD 0.481 0.764
Total debt/ (total debt & total equity) 0.587 0.649
Size 5.025 5.033

Table B2 Median Values 95-97

0 1
(undistributive profits & accumulated losses)/ paid up capital 0.000 -0.040
total debt / paid up capital 2.228 3.490
current ratio 1.263 1.057
Return on equity 0.187 0.046
interest payments /cash flow 0.199 0.303
Operating profit / sales 0.121 0.095
EBIT / total assets 0.131 0.089
Net income / sales 0.022 0.004
EBITDA/ Sales 0.120 0.090
Retained profits/ total assets 0.012 0.004
Sales/ total assets 1.090 0.934
working capital/ total assets 0.136 0.044
Interest payments/ sales 0.048 0.085
Interest payments/ EBITAD 0.422 0.753
Total debt/ (total debt & total equity) 0.588 0.672
Size 5.076 5.049
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Table B3 Median Values 96-98

0 1
(undistributive profits & accumulated losses)/ paid up capital 0.000 -0.024
Total debt / paid up capital 2.366 3.275
Current ratio 1.250 1.083
Return on equity 0.163 0.025
Interest payments /cash flow 0.181 0.350
Operating profit / sales 0.117 0.115
EBIT / total assets 0.128 0.083
Net income / sales 0.019 0.001
EBITDA/ Sales 0.118 0.115
Retained profits/ total assets 0.009 0.001
Sales/ total assets 0.991 0.675
Working capital/ total assets 0.139 0.048
Interest payments/ sales 0.044 0.083
Interest payments/ EBITAD 0.344 0.749
Total debt/ (total debt & total equity) 0.583 0.673
Size 5.079 5.149

Table B4 Median Values 97-99

0 1
(undistributive profits & accumulated losses)/ paid up capital 0.000 0.000
total debt / paid up capital 2.659 3.583
current ratio 1.245 1.079
Return on equity 0.182 0.031
interest payments /cash flow 0.157 0.334
Operating profit / sales 0.121 0.094
EBIT / total assets 0.125 0.072
Net income / sales 0.020 0.004
EBITDA/ Sales 0.118 0.090
Retained profits/ total assets 0.008 0.001
Sales/ total assets 1.034 0.885
working capital/ total assets 0.138 0.051
Interest payments/ sales 0.039 0.069
Interest payments/ EBITAD 0.330 0.622
Total debt/ (total debt & total equity) 0.587 0.708
Size 5.179 5.241

95



TABLE B5 Median Values 98-00

(undistributive profits & accumulated losses)/ paid up capital
0

0.000
1

0.000
total debt / paid up capital 2.565 4.052
current ratio 1.239 1.053
Return on equity 0.191 0.061
interest payments /cash flow 0.157 0.312
Operating profit / sales 0.128 0.141
EBIT / total assets 0.138 0.071
Net income / sales 0.019 0.007
EBITDA/ Sales 0.122 0.122
Retained profits/ total assets 0.010 0.003
Sales/ total assets 1.015 0.781
working capital/ total assets 0.137 0.043
Interest payments/ sales 0.046 0.086
Interest payments/ EBITAD 0.356 0.553
Total debt/ (total debt & total equity) 0.603 0.672
Size 5.213 5.301

TABLE B6 Median Values 99-01

0 1
(undistributive profits & accumulated losses)/ paid up 
capital

0.001 0

total debt / paid up capital 2.118 2.011
current ratio 1.307 1.064
Return on equity 0.123 0.051
interest payments /cash flow 0.155 0.221
EBIT / total assets 0.117 0.091
Net income / sales 0.021 0.007
EBITDA/ Sales 0.132 0.138
Retained profits/ total assets 0.010 0.001
Sales/ total assets 0.893 0.704
working capital/ total assets 0.145 0.054
Interest payments/ sales 0.042 0.060
Interest payments/ EBITAD 0.326 0.403
Total debt/ (total debt & total equity) 0.559 0.667
Size 5.303 5.361
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Table C l: Kolmogorov-Smirnov Test of Normality 19946

6 S ignif icance  has b e e n  ca lcu la ted  using  Lilliefors  S ignificance  C orrec tion
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Table C2: Kolmogorov-Smirnov Test of Normality 1995

Ratios Group KS
Statistic

Degrees o f  
freedom

Significance

UPL 0 0.299 479.000 0.000
1 0.313 67.000 0.000

DC 0 0.312 479.000 0.000
I 0.225 67.000 0.000

CR 0 0.380 479.000 0.000
1 0.327 67.000 0.000

ROE 0 0.252 479.000 0.000
1 0.260 67.000 0.000

1PF 0 0.353 479.000 0.000
1 0.427 67.000 0.000

OS 0 0.112 479.000 0.000
1 0.491 67.000 0.000

ROA o 0.241 479.000 0.000
1 0.088 67.000 0.200

NIS 0 0.273 479.000 0.000
1 0.492 67.000 0.000

ES 0 0.144 479.000 0.000
1 0.484 67.000 0.000

ROTA 0 0.164 479.000 0.000
1 0.205 67.000 0.000

SOA 0 0.137 479.000 0.000
1 0.115 67.000 0.029

WA 0 0.050 479.000 0.006
1 0.108 67.000 0.051

IPS 0 0.230 479.000 0.000
1 0.202 67.000 0.000

IPE 0 0.389 479.000 0.000
I 0.330 67.000 0.000

DR 0 0.061 479.000 0.000
1 0.114 67.000 0.030

SIZE 0 0.051 479.000 0.005
1 0.091 67.000 0.200
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Table C3 Kolmogorov-Smirnov Tests ofNormalitv 1996

Ratios Group KS
Statistic

Degrees o f 
freedom

Significance

UPL 0 0.293 . 418.000 0.000
1 0.170 56.000 0.000

DC 0 0.220 418.000 0.000
1 0.266 56.000 0.000

CR 0 0.392 418.000 0.000
1 0.099 56.000 0.200

ROE 0 0.227 418.000 0.000
1 0.168 56.000 0.000

1PF 0 0.214 418.000 0.000
1 0.163 56.000 0.001

OS 0 0.149 418.000 0.000
1 0.245 56.000 0.000

ROA 0 0.233 418.000 0.000
1 0.077 56.000 0.200

N1S 0 0.299 418.000 0.000
1 0.397 56.000 0.000

ES 0 0.180 418.000 0.000
1 0.252 56.000 0.000

ROTA 0 0.175 418.000 0.000
1 0.227 56.000 0.000

SOA 0 0.086 418.000 0.000
1 0.207 56.000 0.000

WA 0 0.060 418.000 0.001
1 0.085 56.000 0.200

IPS 0 0.203 418.000 0.000
1 0.185 56.000 0.000

I PE 0 0.473 418.000 0.000
1 0.273 56.000 0.000

DR 0 0.046 418.000 0.035
1 0.103 56.000 0.200

SIZE 0 0.057 418.000 0.003
1 0.075 56.000 0.200
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Table C4: Kolmogorov-Smirnov Tests of Normality 1997

Ratiosl ;
Group KS

Statistic
Degrees o f 

freedom
Significance

UPL 0 0.308 355.000 0.000
1 0.310 48.000 0.000

DC 0 0.189 355.000 0.000
1 0.238 48.000 0.000

CR 0 0.264 355.000 0.000
1 0.197 48.000 0.000

ROE 0 0.248 355.000 0.000
1 0.186 48.000 0.000

IPF 0 0.205 355.000 0.000
1 0.277 48.000 0.000

OS 0 0.154 355.000 0.000
1 0.155 48.000 0.005

ROA 0 0.309 355.000 0.000
1 0.080 48.000 0.200

N1S 0 0.342 355.000 0.000
1 0.292 48.000 0.000

ES 0 0.169 355.000 0.000
1 0.143 48.000 0.016

ROTA 0 0.189 355.000 0.000
1 0.228 48.000 0.000

SOA 0 0.088 355.000 0.000
1 0.193 48.000 0.000

WA 0 0.043 355.000 0.179
1 0.158 48.000 0.004

IPS 0 0.127 355.000 0.000
1 0.138 48.000 0.023

1PE 0 0.263 355.000 0.000
1 0.294 48.000 0.000

DR 0 0.048 355.000 0.044
1 0.106 48.000 0.200

SIZE 0 0.042 355.000 0.200
1 0.092 48.000 0.200
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Table C5 Kolmogorov-Smirnov Test of Normality 1998

Ratios Group KS
Statistic

Degrees o f  
freedom

Significance

UPL 0 0.275 337.000 0.000
1 0.217 38.000 0.000

1 DC 0 0.216 337.000 0.000
1 0.241 38.000 0.000

! CR 0 0.285 337.000 0.000
1 0.290 38.000 0.000

ROE 0 0.262 337.000 0.000
1 0.255 38.000 0.000

IPF 0 0.190 337.000 0.000
1 0.264 38.000 0.000

OS 0 0.321 337.000 0.000
1 0.162 38.000 0.013

ROA 0 0.234 337.000 0.000
1 0.231 38.000 0.000

N1S 0 0.299 337.000 0.000
1 0.188 38.000 0.002

ES 0 0.320 337.000 0.000
1 0.177 38.000 0.004

ROTA 0 0.213 337.000 0.000
1 0.208 38.000 0.000

SOA 0 0.095 337.000 0.000
1 0.129 38.000 0.114

WA 0 0.066 337.000 0.001
1 0.145 38.000 0.043

IPS 0 0.253 337.000 0.000
1 0.096 38.000 0.200

I PE 0 0.259 337.000 0.000
1 0.466 38.000 0.000

DR 0 0.063 337.000 0.003
1 0.139 38.000 0.063

SIZE 0 0.052 337.000 0.026
1 0.097 38.000 0.200
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Table C6 Kolmogorov-Smirnov IKS) Test of Normality 1999

Ratios Group : KS 
Statistic

Degrees o f 
freedom

Significance

UPL 0 : 0.336 r 252.000 0.000
1 0.240 51.000 0.000

DC 0 0.214 252.000 0.000
1 0.229 51.000 0.000

CR 0 0.323 252.000 0.000
1 0.113 51.000 0.115

ROE 0 0.261 252.000 0.000
1 0.285 51.000 0.000

1PF 0 0.282 252.000 0.000
1 0.098 51.000 0.200

OS 0 0.096 252.000 0.000
1 0.141 51.000 0.013

ROA 0 0.090 252.000 0.000
1 0.112 51.000 0.156

NIS 0 0.196 252.000 0.000
1 0.291 51.000 0.000

I ES 0 0.104 252.000 0.000
1 0.160 51.000 0.002

ROTA 0 0.166 252.000 0.000
1 0.200 51.000 0.000

SOA 0 0.124 252.000 0.000
1 0.241 51.000 0.000

WA 0 0.057 252.000 0.049
1 0.053 51.000 0.200

IPS 0 0.128 252.000 0.000
1 0.212 51.000 0.000

1PE 0 0.337 252.000 0.000
1 0.458 51.000 0.000

DR 0 0.044 252.000 0.200
1 0.113 51.000 0.099

| SIZE 0 0.058 252.000 0.037

L 1 0.088 51.000 0.200
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Chapter 3 -  Empirical Results on Credit Risk Factors

3.1 Introduction

In the previous chapter we have found that the financial ratios of downgraded companies have different 

statistical properties from the financial ratios of the companies that were not downgraded. One could 

argue that on the basis of their values one could use financial ratios to differentiate between companies 

that were likely to be downgraded and companies, which were not likely to be downgraded. However, 

comparing and classifying companies on the basis of univariate analysis may lead to contradicting 

classifications. An alternative way is needed that will take into account all the characteristics of a 

company not just one at a time, and form an index which will assign weights to its components. The 

objective of this chapter is to identify the factors that may explain the migration behaviour of the 

companies in our sample.

To make our objectives clear we use some notation. Consider a company whose state is characterized by 

its set of financial attributes in the form of p financial ratios {ij, X2, . . . ,  rp} . The company can be in one of 

two groups. In the univariate analysis of the last chapter, we found that the values of the elements of the 

set {ij, r2, . . . ,  rp} were drawn from different populations for companies in the two different groups. In 

this chapter we address two questions:

(a) Which of the elements in the set {r,, r2, . . . ,  r } are better at differentiating companies between the

two groups and how do we choose the weights of the set of the “best” differentiating characteristics?

(b) Which is the best method to predict membership of the two groups on the basis of an observed set of 

financial characteristics? This latter question can be reformulated in terms of providing a probability 

of membership of a company in a particular group on the basis of an observed set of characteristics.

The statistical technique that we shall employ in this chapter to answer the first question is linear 

discriminant analysis. The derivation of probabilities of group membership will be tackled using logistic 

regression.

This chapter is divided in two main parts. In the first part (Sections 3.1 to 3.4) we introduce some basic 

probability concepts underpinning the theory of classification and define a general classification criterion.

We then derive classification criteria for the case when the vector {lj,r2, . . . , r p} is multivariate normal

and the covariance matrices in the two groups are equal. The classification rule is the well-known linear 

discriminant analysis. A quadratic rule is next derived relaxing the assumption of equal covariance 

matrices. We consider next the case of classification rules not based on the normality assumption or equal 

covariance assumption in the form of the logistic regression approach.

In the second part (Sections 3.5 and 3.9) we present methods of estimation and inference in the case of 

discriminant analysis and logistic regression as well as the empirical result of this chapter. We have 

devoted separate sections to estimation and statistical inference for discriminant analysis and logistic 

regression in order to make clear the statistical and methodological underpinnings of our empirical 

results.

We conclude the chapter with an evaluation of our results in Section 3.10.

103



3.2 Review of Two-Group Classification Theory

Suppose that the financial characteristics of a company are summarized by the p-vector of financial ratios 

r = [r,, r2, . . ., rp ] and assume that sample space of r is partitioned into two subspaces R0 and R,. Now

define a binary function of r % -  £*(r) such that

Ç = Ç (0  =
if r e R0 
if r e R,

with prior probabilities p 0 = P r(^  = 0) and Pj =  P r(^  = l)with p, + p0 =1. The joint probability

distribution of (^ ,r )  is a mixture with marginal conditional density functions of r defined as

f0(r) is the density of r if r belongs to group 0

f,(r) is the density of r if r belongs to group 1

The unconditional marginal distribution of r is given by

f »  = Pofo(r ) + P,fi(r)

The conditional probability of an observation being from group j given that r = r* is given by

u jr = P r ( £  = j/r  = r*): P jfj(Q  . P £ ( Q
Pof o ( r *) +  P l f , ( r ’ ) f r ( r > )

fo r  j  =  0,1

The probabilities nJr are called the posterior probabilities of membership in the jth group. The posterior

probabilities use the information obtained by measuring rand are therefore “informed guesses” as 

opposed to the “uninformed guesses” expressed by the prior probabilities.

Probabilities of Misclassification,

Given the definitions of probability, it follows that the (conditional) probability of classifying an object to 

group 1 when it in fact is from group 0 equals

q10= P r(r = l / $  = 0)
= Pr(re R, / ̂  = 0)

= | f 0(r)dr

where a single integral is used to represent multiple integration over p dimensions, 

and the (conditional) probability of classifying an object to group 0 when it in fact is from group 1 equals

q 01= P r ( £ * = 0 / £  = l)

=  P r(r  e  R 0 /  £  =  1)

= l  W d rJK.0

S im ila r ly , w e  d e f in e  th e  c o n d it io n a l  p ro b a b il i tie s  o f  c o rre c t  c la s s if ic a t io n  q 00 a n d  q u as
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q00= P r (£ ’ = 0 / £  = 0)

= P r ( r  e  R0/£ = 0)

-

and

q „ = P r ( ^ =  1/4 =  1)

= P r ( r e R , / ^  =  l)

=  J f , ( r ) d r

It follows that the overall probabilities of correctly and incorrectly classifying companies are given by:

Probability of company 1 correctly classified as 1 Pjq,,

Probability of company 0 misclassified as 1 p0q10

Probability of company 0 correctly classified as 0 poqoo

Probability of company 1 misclassified as 0 p 1q 01

Classification Errors

The error rate of a classification rule is defined as0(^’) = Pr(£, ^  £,). For a given classification 

rule with classification regions R, and R 0 the overall probability of misclassification or error rate of the 

classification rule can be calculated as

) = Pr(£ = 1 / ?  *  1) + Pr(^ -  0 / 0) = q10p0 + q0lp,

= l - P r ( £  = l/£*  = l)  + Pr(£ = 0 / < f  = 0 )

= 1 —PiQn — Po«loo
Given the classification regions R, and R 0the error rate 0(^ ) can be computed from the above 

equation provided prior probabilities are known and provided that the probability density function is also 
specified.
A graphical exposition of the classification errors is shown in Figure 3.2.1.

Figure 3.2.1: Classification regions

The classification error is the area under the two curves which is common to the two distributions. In 

some cases it may be possible to assign a cost to the classification of an observation. To consider the cost

of misclassification denote by g 10 the cost of classifying a company from group 0 as group I and by g0l 

the cost of classifying a company from group 1 as group 0.
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The expected cost conditional on the observation coming from population group j is denoted by i f  (<; ) . 

Specifically # ,(£ ’) = g01q 01 and <90(£*) = gio9io- The unconditional expected cost is

» ( 0  =  P i» , G ‘ ) + p A G ‘ )

and the total expected cost of misclassification in the presence of costs is therefore given by 

) ~ go,p,q0i gioPoq,o

Optimal Classification Rules

There are many optimal classification rules [see for example Seber ( 1986)] depending on the criterion 

function that is optimized. Classification rules can be obtained by

(a) Minimizing the total probability of misclassification

(b) Minimizing the expected cost of misclassification &(£, ) .

(c) Maximizing the likelihood function

(d) Maximizing the posterior probability

In what follows we shall derive the optimal rules by minimizing the expected cost of misclassification as 

cases (a) and (c) will be shown to be just special cases of this criterion.

The regions R, and R0 that minimize £)((; ) are given by

R o =
f](r ) g.oPoj

R, - r e R ; W < I !1LPL
f,(r) g10Po,

The proof is straightforward because by using the fact that q u + q 01 — 1 (since R, u  R0 -  R ) we obtain

) — goiPl9oi gloPo9lO goiPl gioPoQio goiPl9.ll

= g0lPl + ([g10f0(r)p0 - p 01p,f,(r)]dr

Since gy p,,qtJ >0 the quantity &(£*) will be minimal if g10f0(r)p0 -  g0lp,f,(r) < 0 for r e  R , . This of 

course implies g,0f0(r)p0 < g^p^^rjor g.o Po ^ f,(r )
go, P, f o (r )

Note that the regions only depend on the three ratios

□ Density ratios f0(r)
f,(r)

□ Cost ratios —
§01
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p.
□ Prior probability ratios —

Po

Depending on the values of these ratios we have a number of special cases (Dinenis (2002b)):

1. Equal prior probabilities —  = 1. In this case the classification rule becomes
Po

R „ .- lo W ^ Io L  R  . fp(r) c go, 

f i(r ) g ,o ’ , - f ,(r ) g.0

2. Equal classification costs —— = 1. In this case the classification rule becomes

R, : £ « > £ ,
fo(r ) P,

In this case the classification rule can be expressed in terms of the posterior probabilities since 

R, ; 7 7 “  ^  —  is equivalent to R, : f ,(r)p , > f„ (r)p 0 or R, : > M f i E l  „
f«(r ) P, f ( r )  f ( r )

equivalently n u > n Qt that is we compare the value of the posterior probabilities for the two

categories and the category with the highest posterior probability can be identified to classify an 
observation.

3. The third special case is when we have both equal classification costs and equal prior 

probabilities

§01 _  Pi _  J

§10 Po

in which case the classification rules are the simple maximum likelihood rule 

R 1 : f 1( r ) > f 0( r)

4. The likelihood rule is also appropriate in the case where classification costs and prior 

probabilities are not necessarily the same but the condition

§io _  Pi

§ oi Po

holds. That is the ratio of classification costs is the same as the ratio of the prior probabilities. In 

this case we have

R , : f , ( r ) p ,  > f 0( r ) p 0

According to the maximization of the posterior probability criterion, we would assign an observation to 

the group with the larger posterior probability, that is assign r  to group 1 if 7tlr > 7t0r which is the same 

as

P.f .O *) ^ P o f o ( 0  or f , ( Q  ;  Po

f ( r ' )  f , ( 0  f „ ( r )  P,
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the rule becomes

a+p'r > 0

or since a = ----  P 'O o + h )

P ' r > i ( P > 0+p>,)

That is if the linear combination is above or equal to the midpoint we classify in group 1 and if it is below 

the mid point we classify in group 0.

Fisher Discriminant Analysis

Fisher actually arrived at the linear classification rule using an entirely different argument. Fisher’s idea 

was to transform the multivariate observations r  into univariate observations z so that the z’s derived 

from populations 1 and 0 were separated as much as possible. Fisher suggested taking linear 

combinations of r  to create the univariate variables Z — P 'r  . Fisher’s approach does not assume that 

the populations are normal, but it does implicitly assume that the population covariances are equal 

because a common covariance matrix is used.

d ^ ( z i - z 0) )2 ^ ( P '( l i i - l io ) ) 2

pop pop

The p  x 1 nonzero vector, that maximises the distance is given by 

P =  / 0  '( H j- f io )

and is not unique since it depends on the value of the constant y * 0 . The maximum value attained is 

d max =0*1 - l O ' i l - 'G l i - l l o )  = A” . That is for two populations, the maximum relative separation 

that can be obtained by considering linear combinations of the multivariate observations is equal to the 

distance A2p. The vector of weights P that maximises the distance is the same vector that minimises the 

classification error rate defined earlier.

Using Fisher’s discriminant function z and its mean values for the two groups as z, = P 'p ,, and 

z0 = w 'fl0 we can write the ratio of the density functions equivalently as

f  (r) 1 _ .
=  z — ( z  + z 0 )

f„0r) 2 V

and the classification rule becomes: 

Classify observation r into group 1 if
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I n
f,(r)
f 0(r )

1 _. ,
z - - ( z ,  + Z 0) > l n

Po
+  I n §10

2 Lp . j .§01 _

or equivalently

z > ^ ( z ,  + z 0 )  +  l n Po +  I n §10

2 L p , J _ §01 _

That is, the classification of a vector of observations is based on the value of a linear combination of the 

elements of vector r with weights given by p* = (jl, — .

The function L (r)  = a  + P 'r  is sometimes called Fisher’s linear discriminant function because it is a 

linear function of the vector of discriminating variables r. The special cases examined above can be 

restated in terms of the values of the function z = P 'r  . When the classification costs are the same

= 1 the classification rule becomes z > — (z, + Z0) + In

When both the classification costs and the prior probabilities are the same, the classification rule becomes

z > ^ z ,  + z0;

This is the z -  score function rule introduced by Altman (1968). Following from the theoretical exposition 

we have presented so far it is clear that this simple rule is valid only under restrictive assumptions, 

violation of which will also invalidate any inference based on it.

3.3.2 Quadratic Classification Rule

We now examine classification schemes under normality but without the assumption of equal covariance 

matrices. The classification criterion for classifying a company on the basis of the set of values r for any 

arbitrary density function was defined before as.

I n
f,(Q
f0(r)

>  I n
Po +  I n §10

p , §01

However even under multivariate normality when Qj A Q 0the ratio of densities cannot be simplified as 

before. In this case we have

I n  =  i n .

/o ( r )

V 2 ^ |i2 ,

1 ~ r ( r - l*i ) 'n i '  (r-fi[)
-------- e 2

1 ——(r-|A0 ) 'i l0‘ (r-Ho)
------- r e  2

V 27r|ii0|2

or
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l n i ^  =  - - l n l O I| +  - l n | Q ,  
f0( r )  2 1 "  2 1

i ( r - j i 1) 'Q i1( r - n 1) + ^ ( r - ^ ) Q - 1( r - n 0)

After collecting terms the above expression simplifies to

f  ( r )
l n ^ - ^  = r 'A r  +  b ' r - k

f0(r)
where

A = - i ( o r - £ f )

b  = Q > ,  - Q > 0

k = ^ lnlQ . h ^ lnlQ o| + | K ^ > , - ^ o Q oVo

In this case the ratio of the density functions is a quadratic function of the observation vector. The 

classification rule for classifying in population 1 now becomes

In ft(r)
foO )

r'Ar + b 'r -k  > In Po + In §io.
Lpi _ _ §01 _

or

Q(r) = r'Ar+ b 'r - c  > 0 

where

c = k  + In P l + In §10

L p .J _ §01 _

Q(r) is usually referred as the quadratic discriminant function. The boundary of the classification regions 

consists of all r  e  R  such thatQ(r) = 0 .

The Linear discriminant function is a special case when Q, = Q 0 in which case A = 0 

b = p and a  = -c

The posterior probability in the case of a quadratic classification rule is given by

7tlr = Pr(£ = l /r  = r*) = 

with

eq‘(r‘)
eqi(r") + eq°(r')

q ,( r ) = ln [p , f ( r ) ]  + ^ ln (2 7 t)

The quadratic classifier's performance can be degraded when the number of discriminating variables is 

large compared to the sample size due to the instability of sample estimates. In particular, the sample 

covariance estimate becomes highly variable and may even be singular. One way to deal with the 

instability of covariance estimate is to employ the linear classifier. By replacing each class covariance
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estimate with their average, leading to the linear classifier, the number of parameters is reduced and thus 

the variances of their estimates become smaller. Even though each class covariance matrix may differ 

substantially, studies have shown that the decrease in variances of the parameter estimates accomplished 

by using the linear classifier often leads to better classification performance than the quadratic classifier 
for small training sample size.

Although a linear classifier often performs better than a quadratic classifier for small training set size, the 

choice between linear and quadratic classifiers is rather restrictive.

Several methods have been proposed where the sample covariance estimate is replaced by partially 

pooled covariance matrices of various forms. In this formulation, some degree of regularization is applied 

to reduce the number of parameters to be estimated, thus improving classification performance with small 

training set size.

Therefore, regularization techniques can also be viewed as choosing an intermediate classifier between 

the linear and quadratic classifiers.

3.4 Logistic Discrimination

The second method of identifying credit risk factors is logistic regression. The logistic regression model 

has a close relationship with Discriminant Analysis and is derived from it in a straightforward way. 

Remember that for general conditional functions the probability of a vector r belonging to group 1 is also 

defined by the posterior probability

f » P i

n f| ( r )P, _  f„(r)Po

f ,( r )P, + f 0( r ) p 0 i | W P i
f0(r )Po

with

7 tn, =  I

which implies that In ----11—
1 -  ^i.

= In f| ( r )P, 

f0(r )Po

When the conditional distribution of r given is multivariate normal with the same covariance matrix in 

both groups then we can write

ln 5'!t ~  = \ [(r -  ft, )'«'-1 (r -  p0) -  (r -  n, )'ir‘(r -  p, )]+ In
f0(r)Po 2 Po

= ^(ft, +fto), i r '(fto - f t ,)  + ln —  + (ft, - f t0) 'i i“'r
2 Po

= In — -^-p'(ft! +ft0) + P'r
Po 2

= a L + P'r

where a L = In —  -  —p'(fti + p0) .
Po 2

From the last expression we have
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fl(r)pl
foWPo

= exp(cxL + ß'r)

and the posterior probability takes the form

f|(r)Pi
n f.POPi f0(r)Po exp(gL+p'r)

f,(r)P ,+ f0(r)P0 i | f-(r)Pi l + exp(aL+p'r) 
f0(r )Po

Setting z = a L + p'r we obtain the posterior probability in terms of the linear function z

the posterior probability has the functional form of the logistic function.

The above way of estimating Bayes rule is known as the density estimation approach and requires 

knowledge of the conditional density functions in the two groups as well as knowledge of the prior 

probabilities. In order to use this criterion for classification, the conditional probabilities have to be 

estimated first, together with the prior probabilities and then use the posterior probability formula to 

classify observations. This approach is also known as the Gaussian maximum likelihood discriminant 

rules or discriminant analysis, which was derived in the previous section starting from a slightly different 

standpoint;

An alternative approach to estimating the Bayes rules is through what is called the direct function 

estimation approach. In this case the posterior probabilities are estimated directly based on function 

estimation methodology such as regression. The main techniques that follow this approach are

■ Logistic regression;

■ Neural networks;

■ Classification trees;

■ Projection pursuit;

■ Nearest neighbor classifiers

Under this approach we have to model directly the posterior probability as a function of a set of risk 

factors, using an appropriate function say F(p,r) such that

Pr(^ = l) = F(P,r)
P(£ = 0) = 1 -  F(p,r)

For the function F(p,r) to be a proper probability function, it has to be bounded between 1 and 0, and 
this can be achieved by using functional forms that guarantee that

lim Pr(^ = 1) = 1
P'r-»co

The logistic function

F(P,r) = A(P'r)
exp(c + P'r) 1

1 + exp(c + p'r)
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satisfies this requirement1 and consequently the probability of an observation belonging to group 1 is 
given by

7ilr =Pr(£ = l /r  = r) = - exp(c + ß'r)
1 + exp(c + p'r) 

where P is the vector of parameters that determine the 

the financial ratios.

Since

lim  7T, =  1

lim  n, =0
B'r—>-cc

impact of the exogenous variables in this instance

Figure 3.4,1: Logistic Function

Logistic Function
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The functional form of the function ensures that the probability will lie between 0 and 1. The functional 

form of the logistic probability function is shown in Figure 3.4.1

The probability defined above can be equivalently restated as 

g(r) = log—̂  = c + p'r
l ~ " l r

7Z
The function g (r)  = In--- —— is called the logit of n and it maps the unit interval onto the real line

l - n lr
since g(r) = c + p'r .

Logistic regression does not rely on the distributional assumptions of discriminant analysis namely the 

multivariate normality of the risk factors and the equality of covariance matrices and it is therefore a more 

robust method [Lo (1986)]. Neither of these assumptions is usually supported by the data and this is the 

case in the empirical analysis conducted so far. As discussed in previous sections, violation of the 

multivariate normality assumption affects the significance of tests and the classification rates. Flowever in 

cases where mild violations of multivariate normality are occurred, the much more computationally 

demanding logistic regression may not be warranted. Indeed as Efron ( 1975 ) has shown, when the two

1 Another function that satisfies this requirement is the normal distribution F(P,r) = O(p'r) which gives 
rise to the Probit model
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assumptions are satisfied the discriminant analysis estimates of the coefficient vector (3, are more 

efficient than the estimates of the logistic regression .

Coefficient Interpretation 

Consider the univariate logistic model

g(r) = P0 +Pir

the regression coefficient is given by p, = g(r +1) -g (r) and represents the change in the logit for a 

change of one unit in the independent variable r. However proper interpretation of the coefficients in a 

logistic regression model depends on being able to place meaning on the difference between two logits, 

and that in turn depends on the definition and meaning of a one unit change in the independent variable. 

For a dichotomous independent variable where the independent variable takes the values of r = 0 and r

=1, we have g(0) = In—^ P )— an(j g(l) = In—
l-7 t(0 )  l-7 t( l)

Define

T  7t(l)/[l-7t(l)]
7t(0) /[I -  7t(0)]

then

l n T  =  g ( l ) - g ( 0 )

From the definition of the odds ratio we can show that 

'F = ePl 

and therefore 

In ¥  = In ePl = P,

For example if = 2 then companies with a value of r =1, have twice as large a probability of being 

downgraded.

With continuous independent variables a change of one unit in the independent variable may not make 

sense especially if we are using ratios as in the current study and we may want to calculate the impact of a 

change of m units on the odds ratio. The log odds for a change of m units is obtained from the logit 

difference

g(r + m )-g(r) = mp,

and the associated odds ratio is obtained by exponentiating this logit difference 

lP(m) = ^ ( r  + m, r) = exp(mPl)

3.5 Estimation and inference in LDA

In deriving the classification rules we have ignored so far the fact that the density function

fj(r/ )  depends on the unknown parameters {|X;, }  . For samples {rn,rI2,..... ,rln }and

{r01,r02,..... ,r0no}from group 1 and group 0 respectively, we shall examine in this section ways of
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deriving estimators for the vector of parameters { p ^ Q Ja n d  consequently P a n d a , and how to test 

statistical hypotheses concerning the elements of the vector p .

The joint likelihood function of £,r is given by

f ( i r )  = Jt(Ç/r)f(r) = Pi"'
nl nl+n0

j I f>(r') PS°J 'i f0(r’)
i=n,+l

with the log likelihood function being written as

1 — n°

¡=1

- | 2 ] ( r i - n , y i l - 1( r , - n 1) +  n 0l n p 0 + n 1 lnp ,
i=l

The maximum likelihood estimators are given by

ii o n,

0 mle = - ' V ( ri -A o )( r i - A 0y + - T ' ( r i - A , x r, - A ,y
n n -̂ —i

Po = n 0/ n

Pi = n , / n

and the parameters of the discriminant function are obtained using the invariance property of the 

maximum likelihood estimators as

a D = “ (£, -  A o ) '^ _,(Ao +  A,) +  ln p ,  / p 0 

Pd = -  Ao)

Asymptotic standard errors based on Richard (1975) and Lo (1986) can be calculated from the formula

Vn(PDA -P )~N (0 ,V DA)

where

VDA = 5ÎT1 + 2(jT ® Ik ^iT1 ® S I 1 )x R'Q(ii ® Q ^ ' R ^ 1 ® ÎT1 )(p ® Ik )

where
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R is the — k(k + 1) x k 2 selection matrix such that R'o = vec(il)

a = {af, a, 2, • • ■, cr2} is the vector of the elements of the matrix Q 
Q' and is the Moore-Penrose inverse of R, so that R'Q = I

Alternatively, rather than using MLE the parameters can be estimated from the sample by using sample 

means and the sample variances. The following estimates of the means and variances are efficient

j "o
A o = f 0 = —  X ro,

«o /=i 
1 "■

A, = r ,  = — X rw
*1 M

and

ô  =  (n, ~  l _ A  +  (n„ - 1)Q„

P ni + n0 -  2

with

n

n

no

=  —  /  0 ;  - A o ) ( r , - A o ) '

= - V ( r i - i i 1)(ri -A iy
n, ¿— Ji ¡=i

Note that the pooled estimator f t p is an unbiased estimator whereas i i MLE is not.

If we derive the optimal rule based on Fisher’s approach we need to assume a particular value for the 

constant y  . Choosing the constant y = 1, the vector P is estimated using sample estimates of the mean

A A _ _
and the covariance as follows P = n ;(r 1- r 0).

3.5.1 Tests of overall significance

The estimated discriminant function is given by 

L(r) = â  + P'r

and statistical inference on the coefficients of the discriminant function parameters can be based either on 

a classical framework in direct analogy to the linear regression framework, or in a predictive framework 

[Huberty (1994)] depending on whether the emphasis is on group separation or prediction. Statistical 

inference deals with tests concerning the vector of coefficients p . There are two types of tests we shall 

employ. The first type tests the overall significance of the discriminant function and the second type tests 

hypotheses on individual parameters of the vector p . As in linear regression analysis a test of the overall

significance of the discriminant function i.e. a test of the hypothesis H0 : p = 0 leads to the derivation of 

summary measures of significance analogous to R " . A test of the hypothesis H0 :p = 0 could be 

conducted using the estimated variance -  covariance matrix of the regression coefficient \ DA which is a
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rather difficult task since it is not produced by any of the statistical packages that estimate discriminant 

functions. However since P = f t ”1 (p 0 — jij) and since i l p' is assumed to be nonnegative, it follows that 

H0 : p = 0 is equivalent to H0 : p, = p 0. For this hypothesis we can apply the test statistic of Chapter 2 

such as Hotelling’s T 2 a Likelihood Ratio Test or Wilk’s lambda. Hotelling’s test is defined as

T 2 = J ^ ( r 1 - F0) 'iV ( r ,  -  r0) = A2p 
n , + n 0 n , + n 0

The distribution of this ratio can be derived by simple algebraic transformations. The transformation

n  n i + n 0 - p  + 1 t2  n , + n 0 - p  + 1 n ,n0 ^  
p ( n , + n 0) p ( n , +n0) n , + n 0 p

has an F distribution with degrees of freedom p and n, + n 0 -  p + 1 under the null hypothesis assuming 

independence of observation vectors, normality and equal covariances. If H0 is rejected we can conclude 

that the separation between the two populations is significant.

An alternative test based on a chi-square distribution can be derived using a slightly more interesting 

justification which may utilize the maximum likelihood framework. The Likelihood Ratio test to test the 

hypothesis H0 : p = 0 can be written as [Flury (1995)].

LRS = -2 ln(LR) = (n, + n0) ln[l + -------------T2]
n, + n0 -2

Under the null hypothesis p, = p 0 LRS is distributed as chi-square with p degrees of freedom. Notice

that when n, +n„is large, then ln[l h------- !------T2] » — i— T22and
' n, + n0 - 2  n , +n0

LRS ~ T2 so that we may use the T2 -statistic and compare it directly to the (1 -  a ) - quintile of the chi- 

square distribution with p degrees of freedom.

The third test of the overall significance of the discriminant function is a generalisation of the univariate 

Wilks’ statistic and is given by

A J s s c p w[
|SSCPt|

The term |SSCPW| denotes the determinant of the within-groups SSCP matrix and the term |SSCPtj
denotes the determinant of the total-sample SSCP matrix. This can be approximated as a chi-square 
statistic using the transformation

X2 = (n , + n 0 - 1  -  In A

The x2 statistic is distributed as a chi-square distribution with p degrees of freedom. The statistical 

significance of the discriminant function can also be assessed by transforming Wilks’ A into an exact F 

ratio using

2 This based on the resu lt ln(l + x) * x for small \x\
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F ,__1 - A  n , + n 0 - p - l  

A  p

Which follows the F distribution with p and f  11, + n 0 — p — \ )  degrees of freedom under the null 

hypothesis of P = 0.

As in the linear regression framework where the value of the overall test of significance is also an 

indication of the association between the dependent variable and the regression in an analogous manner,

the values of the overall test statistics, be it T 2 or Wilk’s lambda can be used to produce an overall

significance index. The following statistic has been suggested

2 T 2

^ T 2 + n ,  + n 0 + p - l

p 2 = 1 - A F

Tatsuoka (1998) suggests the following degrees of freedom adjustment in direct analogy to the 

adjustment to the R 2

Hadj = n 2
p2 +q2

3(n, + n 0)
O - P 2)

3.5.2 Statistical inference based on individual coefficients

Now suppose that a T 2 or its variants described above has rejected the hypothesis thatP = 0. However

not all potential variables that measure the characteristics of a company may be included in the 

discriminant function because they may not contribute to the discrimination between the two categories of 

companies. This is equivalent to the variable selection problem in regression analysis. We may then 

proceed to a finer analysis and asses, which of the variables are needed for discriminating and which 

would be omitted without loss of information. Such a specification test is important because although as 

the number of discriminating variables increases, classification prediction may not increase in analogy 

with the r-squared criterion in multiple regression analysis

The question may be asked whether a subset rq of the p variables in r = {rp_q, rq} will discriminate just 

as well.

L(r) = a  + p'p_qrp_k + p > q

There is no theory predicting which of the p variables should discriminate between the two populations. 

The criteria for selecting the subset of the p variables entering the function will be statistical. A test can 

be constructed as follows. Define the distance functions for the p and the q variables

A2p = ( i f  - r 0p) ' i l p’(ijp - r 0p)

The hypothesis H0 : Pq = 0 is equivalent to H0 : Ap = Aq and a test statistic is given by
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r  (Ap -A 2q)(n, + n 0 - p - 1 )
(m + A2q)(p -1)

where

m (n, + n0)(n, + n 0 -2 )
nino

The test statistic follows the F distribution F ~ Fnp~qn _p and the hypothesis Pq =0 is rejected if 

F > Fnp”qno.p_, (a) where Fnpjqno_p_1 (a) is the critical value of the Fp‘qno_p_, at level a  .

The most common test for the significance of the individual variables in the discriminant function is

Wilks’ lambda statistic defined already in Chapter 2 as A = —-— and which can be converted into a an
1+ H

F ratio F = --- :—(n, + n0 -2 )  ~ FjJi+i1o_2 which follows the F distribution with 1 and ( n , +n0-2)

degrees of freedom under the null hypothesis of wi = 0 . Since wt = 0 is equivalent to pn = pi2 the F

test is equivalent to the univariate t-test. In fact F = f2. This is the test used by SPSS for the selection of 

variables in the discriminant function and the one we have employed. A mispecification test to test the 

statistical significance of individual variables that were excluded can be performed by employing a 

Hausman -type test (see e.g. Flury (1997)) which involves the regression of the excluded variable on the 

other variables and the indicator variable which takes the values of 1 and 0. That is we estimate the 

model
p

E[rj / x,r) = ^ a iri +yx
i= l,i*j

and test the hypothesis that H0 : y = 0 using the t-test

t , = - Vse(y)

If the null hypothesis H0 : y = 0 is rejected then the variable needs to be included in the discriminant 

function.

In performing the above tests we should not forget that they are all based on the assumption that the 

covariance matrix is the same in both groups and that violation of the assumption may undermine the 

validity of the tests.

3.5.3 Statistical inference based on classification performance

There are many ways to assess the performance of classification rules estimated from a particular sample. 

The methods can be split into approaches that make explicit assumptions about the distribution of 

financial ratios and those which are distribution free. We present here four methods. The first two 

methods depend explicitly on the normality assumption. The last two are distribution free.

3.5.3.1. Misclassification Error Function Approach

The most obvious way is to use the misclassification error of misclassification cost function we defined 

in section 3.1 and which was used to derive the optimal classification rules. Explicit formulas for the 

misclassification errors can be derived under the assumption of normality using the linear discriminant 

function
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L(r) = a + ß'r

The conditional expectation of the discriminant function when ^  = i is given by 

E [ L ( r ) / r  e  R J  =  L ( ^ )  = p > ,  - ^ P ' Q i ,  + p 2) = ^ ( - l ) i+l A;;

where

a 2p = (n, - p2y n  '(p, - p2) = p'Oi, - p 2) = p op

The variance of the discriminant function is given by 

V[L(r)] = p'Op = A2p

A A  a  A A A „

For sample estimates and we derive estimates of p , and of the

misclassification probabilities from

Qio -  P [L (r)  < l n c / r  e  R 0] = P

f  I - ,  1 - O
L (r)  —  A ' I n c -  —A^

2 p < 2 p
A„

= P

p

f  1 (  1 . >
In c —  A^ In c —  A„

2 pZ < = <D
A.

and

q 01 = P [L ( r )  > l n c / r e R , ]  = P

1 • ^
in c —

2 p 2 p
L ( r ) - i ^  l n c - ^ A 2

>
A„

In c —  A
f  , 1 - ^

Z >
A„

= <P
- I n c - - A ; ;

2 p
Â„

where <f> is the CDF of the standardized normal distribution and Inc = In P 2 + ln §12

Lp . j _ §21 _

The total misclassification error is then given by

0 =p,<D
' l n c - V

2 p + p 20

f  1 A
-  Inc  -  — Â2 

2 p
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The hit rate estimates are determined by

q 00 = i -q io
and

4 n = 1 ~  q 0i

The overall success probability can be estimated from
^  A A A A

s  = p ,q1, + p 0qoo

On the basis of the above criterion we select the classification rule with the minimum misclassification 

error or the maximum hit rate. However it has been shown that the plug-in estimates of the true success 

rate p,qx, + p0q00 are biased and tend to overestimate the true success rate. The following correction has

been proposed to the estimate of A2 (Anderson (1984))

~ 2  n i  +  n o  ~  P  ~  3  ;2 P K + n o > >

n , + n 0 - 2  n,n0

The above hit rate estimates depend on the normality assumption as well as on the assumption of equal 

covariances. Under these assumptions variable selection depends on various functions of A2p . The vector

P that maximizes the likelihood function and r)2, will also maximize the success rate S = p1qI, + p0q00.

However the two criteria in practice will produce different results because of sampling errors and because 

of deviations from the normality and equal covariance matrices assumption.

3.5.3.2 Posterior Probability Approach

A second predictive framework method of selecting and evaluating discriminating variables is via the 

posterior probabilities.

=
P | f l ( r / p , ; Q )

p ,f ,( r /p ,,Q )  +  Pofo(r/jio?i*)

This method is usually termed the Maximum Posterior Probability [Huberty (1994)] and depends again 

on the assumptions of normality and equal covariance matrices. According to this criterion we select the 

risk factors that maximize the posterior probability. This is the function that SPSS uses to estimate 

classification errors.
3.5.3.3 Apparent Error Rate

The third criterion, which is a distribution-free classification performance measure, is the Apparent Error 

Rate (APER) [Johnson and Wichern (2002)] which gives the proportion of observations misclassified 

when the classification rule is applied to the sample data. This is a very popular measure because of its 

simplicity and is defined by introducing the binary random variable

jo if§,=§;
1 j i

The plug-in error (i.e. estimated error) is given by
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n

the above formula does not differentiate between the two misclassification cases but it is possible to 

evaluate the performance with regard to one category.

The APER can be calculated using the 2 x 2 classification table below which tallies correct and incorrect 

estimates.

Predicted Group

Actual Group Group 0 Group 1 Totals

Group 0 n oo nio n o
Group 1

n01 nll n i
Totals

n,„ + n,,
noo+noi n,  + n 0

Let n 0 denote the number of cases that truly belong to Group 0 ( companies that have not migrated) and 

n , denote the number of cases that truly belong to Group 1 (companies that have migrated).

Then,

n 00 = Number of cases that belong to Group 0 and are assigned to Group 0 (i.e. correctly classified)

n10 = Number of cases that belong to Group 0 but are assigned to Group 1 (i.e. incorrectly classified)

n01 = Number of cases that belong to Group 1 but are assigned to Group 0 (i.e. incorrectly classified)

n u = Number of cases that belong to Group 1 and are assigned to Group 1 (i.e. correctly classified)

nM + n01 = Total number of cases assigned to Group 1 

n10 + n00 = Total number of cases assigned to Group 0 

nn + noo = Total number of cases correctly classified

The columns are the two predicted values of the dependent, while the rows are the two observed (actual) 

values of the dependent. In a perfect model, all cases will be on the diagonal and the overall percent 

correct will be 100%. As in the case of MDA we are looking at the three rates that measure overall
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performance 11,1 + n °° the performance in relation to the companies that were not downgraded and 
n, + n 0 n,

the performance in relation to the companies that were downgraded .
no

3.5.3.4 Leave-one-out error rate

The final variable selection and classification performance measure is the leave-one-out error rate which 

is obtained as follows. Omit the ith observation from the sample and calculate the classification rule

x_i using the remaining n, + n 0 -1 observations. Apply the classification rule x_t to omitted observation 

and check if it would be classified correctly. This process is repeated n, + n 0times, once for each

observation. Define e ; = 0 if group membership of the ith observation was predicted correctly by

X_j and e ; =1 otherwise. The leave-one-out error rate (L-O-O) is given by

-'L-0-0

n

n, +n„

The methods of selecting a classification rule are used at the same time to assessing the rule. This is 

similar to the use of forecasting errors to use select the appropriate regression model. This framework is 

not as flexible to work and especially to test the statistical significance of individual variables

3.5.3.5 Evaluation of Classification Performance

Significant separation, as expressed by the statistical significance of the discriminating parameters in the 

discriminant function, does not necessarily imply good classification. The efficacy of the classification 

procedures can be evaluated independently of any test of separation. On the other hand, if the separation 

is not significant, the search for a useful classification rule will be fruitless. [Johnson and Wichern 

(2002)]

The central question in evaluating predictive discriminant analysis is whether the classification rule does 

better than a rule allocating cases randomly to either of the two groups. A simple benchmark that has been 

suggested in the literature is the maximum chance criterion (MCC) which is defined as

M C C  = n o
n , + n 0

This is the proportion of companies that are expected to be classified as non-migrating by chance. For 

samples that differ slightly, the value of benchmark will be about 0.50 and this may be an acceptable 

benchmark. However in cases where the two samples differ substantially, for example when the sample of 

non migrating companies is as large as eighty percent of the total sample, then classifying all companies 

as “non-migrating” will result in the benchmark being satisfied. Have such a classification scheme will 

have disastrous effects for a bank.

A second criterion the proportional Chance Criterion (PCC) on the other hand, assumes that the 

proportion of correct forecasts due entirely to chance is given by

f  \ 2 C  \ 2 n . n
PCC =

f  \ 2 (  \

2 k + 22l

, nj l  n ,
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The above equations are highly nonlinear in the vector of parameters and can be solved using the 

Newton-Raphson algorithm. Once we have obtained the maximum likelihood estimates a L, P , we can 

obtain the estimated probability of migration of company i with vector of and expected frequencies from

- exp(«L + p'r, ) 
l + exp(aL+p'r;)

and <|( = fti

For given maximum likelihood estimates ¿ L.P we can evaluate the log-likelihood function at its 

maximum. Writing the maximum as a function of the estimated probabilities we have.

In L{nx, ) = £  £  In nx + £  (1 -  £.) ln(l -  nx)
i=i /=i

The value of the likelihood function lnL(;Zj,;r0)can be compared to the value of the log-likelihood

function of different models and assess the significance of individual of group of parameters.

The joint distribution of the parameter estimates is approximately normal with mean and variance given 

by

< v ~ N L ,i2
f , U p J )

i - I(OtL.P)]''

where I( a L, P) is the information matrix defined given by

I(aL,p)

~ d 2 InLF d 2 lnLF~
n

¡=1

n

i-15 a 3 5 a L9p
d 2 InLF d 2 InLF n

» ¡ a - * , )
i=l

n

i=l
3 a L5p 5p2

3.6,1 Testing the Significance of the Model.

Once we have fit a particular multivariate logistic regression model, we need to assess the statistical 

significance of the overall model as well as the significance of individual coefficients. The overall 

performance of the model is evaluated by comparing the value of the likelihood function for the 

unconstrained and the constrained model (i.e. the model that contains only the constant term). That is the 

null hypothesis H0 : pj = 0 j = 1,2,...., p can be tested using the likelihood ratio test3

LR = 2[ln Lp — In L0 ]

Where L0 and Lp denote the value of the likelihood function for models containing only the intercept, and

the model containing the intercept plus the p covariates, respectively. The statistic LR is distributed 

approximately as a chi-square distribution with p degrees of freedom for large samples. How close the

3 Both In L 0 and In L p are negative numbers with |lnL0| > lnLp
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should be rejected. In this situation it is safer to use the Likelihood Ration test LR = 2[ln Lp -  InLp_,] to 

test the significance of the pth variable.

3.6.1 Goodness of fit statistics

Goodness of fit statistics describe how effective the model we have estimated is in describing the 

outcome variable. There are three different statistics that used to this purpose in logistic regression.

The first one, is the Hosmer and Lemeshow's Goodness of Fit Test, and tests the null hypothesis that the 

data were generated by the model fitted by the researcher. The test divides subjects into deciles based on 

predicted probabilities, then computes a chi-square from observed and expected frequencies. Then a 

probability (p) value is computed from the chi-square distribution with 8 degrees of freedom to test the fit 

of the logistic model. If the Hosmer and Lemeshow Goodness-of-Fit test statistic is .05 or less, we reject 

the null hypothesis that there is no difference between the observed and model-predicted values of the 

dependent. If the H-L goodness-of-fit test statistic is greater than .05, as we want, we fail to reject the null 

hypothesis that there is no difference, implying that the model's estimates fit the data at an acceptable 

level. This does not mean that the model necessarily explains much of the variance in the dependent, only 

that however much or little it does explain is significant. As with other tests, as the sample size gets 

larger, the H-L test's power to detect differences from the null hypothesis improves 

The second set of goodness -of- fit statistics are based on pseudo R2 measures. There is no widely 

accepted logistic regression analogue to OLS regression's R2. This is because an R~ measure seeks to 

make a statement about the "percent of variance explained," but the variance of a dichotomous or 

categorical dependent variable depends on the frequency distribution of that variable. For a dichotomous 

dependent variable, for instance, variance is at a maximum for a 50-50 split and the more lopsided the 

split, the lower the variance. This means that R-squared measures for logistic regressions with differing 

marginal distributions of their respective dependent variables cannot be compared directly, and 

comparison of logistic R-squared measures with R2 from OLS regression is also problematic. 

Nonetheless, a number of logistic R-squared measures have been proposed the most common of which is 

the Cox and Snell's R-Square which is an attempt to imitate the interpretation of multiple R-Square based 

on the likelihood, but its maximum can be (and usually is) less than 1.0, making it difficult to interpret. 

This statistic which is part of SPSS output is defined as

R2S = 1 -ex p i— (2 lnL0 - 2  In Lp)
vn /

The maximum value of this quantity is 1-expj^— In L0 j  attainable if the model is perfect.

The Nagelkerke's R-Square, [Nagelkerke (1991)] is a modification of the Cox and Snell coefficient to 

assure that it can vary from 0 to 1. This is achieved by dividing the Cox and Snell's R2 by its maximum.

R L  =-
R

1 -  exp — In L
vn )

Therefore Nagelkerke's R-Square will normally be higher than the Cox and Snell measure. It is also part 

of SPSS output.

Another popular measure of fit is McFadden’s R-square defines as
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R, =  1-
lr> Lp 
In L0

This measure varies between 0 and 1 with the value of zero being attained when all the coefficients apart 

from the constant term are zero, in, which case

InLp = In L0 and = 1 -1  = 0

The value of 1 is attained when the model is perfect and the likelihood function is therefore 1. In this case 

InLp = ln(l) = 0 and R*, = 1 -0  = 1.

The third statistic that is used to asses the performance of the model is the proportion of correctly 

predicted classifications as in the case of the discriminant analysis. Where such a criterion is valid in the 

logistic regression context is subject to debate [see Green (2000) p 835 for a discussion]. There are two 

issues here. The first one is that we use a criterion, which does not play any role in variable selection, that 

is, it is not based on the likelihood function. The only case again when the maximum likelihood parameter 

estimates would minimise some classification error function would be if the independent variables were 

jointly multivariate normal. Such a link does not exist of course when ad hoc error functions are used, 

such as the proportion of wrong predictions. In general one would expect a weak link, between a model 

that is chosen on the basis of maximising the likelihood function of the sample and the ad hoc prediction 

error. Hosmer and Lemeshow (1989) highlight the point using the following example in the case of a 

single independent variable with conditional probabilities r / £, = 0 — N(0,1) and r / £, = 1 — N(pt,l) for

the two populations.

In this model the slope coefficient for the logistic regression is the same as in the linear discriminant

function and is given by [3, = p. whereas the intercept is given by a L
1 ,

= ln(7t, h r0) — p . The probability

of misclassification in this case is given by

ln(7T0/7T,)
+ 7t0N

ln(V%)-^Pi
p, P,

V ) V J

which is a special case of the formula we derived in Section 3.5 for a single discriminating variable. “The 

expected error term is a function of the magnitude of the slope, not necessarily of the fit of the model. 

Accurate or inaccurate classification does not address our criteria of goodness of fit; that the distance 

between observed and expected values be unsystematic, and within the variation of the model.” [Hosmer 

and Lemeshow (1989) p 147],

The second issue is the cut-off point used for classification of an observation in one of the two groups. If 

we use one of the ad hoc classification procedures based as before on the hit ratios

n00 ^11 a n ( j  n\ I +  noo

«0 «1 «1 + n o

then we need to specify such a cut-off value. The usual cut-off point is 0.50, i.e. an observation is 

assigned to group 1 if the posterior probability associated with this observation exceeds 0.5. If the sample 

is unbalanced, that is one of the two groups has many more observations than the other, as it is the case 

here with our sample, then a cut-off point of 0.5 may never classify an observation in group 1. To 

consider a specific case, let us look at our 1997 sample. For that year our total sample of 404 companies 

is divided into 356 companies for group 0 (88.1%) and 48 companies for group 1 (11.9%). The average
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predicted probability in the sample will be about 0.12. It will require an extreme configuration of the 

independent variables, requiring them to take values not observed in the data, for the probability to 

exceed 0.5. If this is the criterion, then the model will always fail to classify observations in group 1. The 

obvious solution is to reduce the cut-off point so as to increase the number of correct classifications in 

group 1. However in doing so, we reduce the number of correct classifications in group 0. The problems 

are highlighted using the following example based on the estimation of a univariate logistic regression for 

1997 with UPL as the only independent variable. The estimated logistic regression is given by

„ exp(-l,977-0 .871r)
K'r ~ 1 + exp(-1.977 -  0.871r)

with

w a ld (a L) = 162.562 w ald(P ) = 4.252 

2 In L0 =-294.557 2 In Lp = -289.096 and 2(lnLp -  InLJ = 5.462

RcS =0.013 R*0 =0.026

The estimated parameters are significant and the inclusion of the independent variable contributes to the 

explanation of the behaviour of dependent variable. When we assume a cut-off point of 0.15 the 

classification statistics are given bellow

^  = 93.3% ^  = 20.8% n " + n °° = 84.7%
n o  n i n , + n 0

If we reduce now the cut-off point to the average probability of belonging to group 1, that is to 0.12 we 

get the following classification results

^ -  = 37.1% ^ -  = 85.4% --'-l-+-n-°-0- = 42.8%
n o n i n i + n o

The latter results represent a complete reversal of the classification performance of this rule. The 

following graph shows the predicted probabilities and why it is impossible to get sensible results using 

the 0.5 cut-off point. It is seen from the graph that only one, out of 48 group 1 observations (or one out of 

404 total observations) exceeded the level of 0.5. The level of -2.58 required is an extreme value in 

terms of the sample means and standard deviations as they are reported in Chapter 2.
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In the empirical analysis of the logistic approach we shall therefore adopt as the cut-off point the sample 

average probability of belonging to group 1 rather the 0.5 level.

3. 7 Empirical Results -  Discriminant Analysis

The purpose of this section is to utilise the framework we developed in the previous sections and identify 

the characteristics of a firm that explain or predict group membership. The identification of risk factors 

and the quantification of their impact are done through the estimation of discriminant functions for every 

year of our sample. As we have already discussed in Section 3.5 there are two general approaches to the 

identification of discriminating factors in discriminant analysis depending on whether the main interest is 

to explain or predict group membership.

Explanation of group membership is done by using what Huberty (1994) (see also Dinenis (2002b)) calls 

descriptive discriminant analysis (DDA). In this approach, the specification and estimation of the 

discriminant functions is based on classical statistical criteria such as Wilk’s lambda, or a distance 

measure and selects the risk factors that maximise the separation of the sample means of the two groups.

If prediction of group membership is on the other hand the main objective of risk factor identification, 

then the specification of the discriminant functions and the selection of the risk factors will be based on 

the classification performance of the discriminant function as measured by one of the error functions we 

have examined so far. This approach is known as Predictive Discriminant Analysis (PDA).

Unfortunately for the reasons we have already discussed in Section 3.5 the two approaches may not 

produce the same list of risk factors even if the theoretical conditions such as multivariate normality and 

equal covariance matrices are met because the empirical counterparts of the theoretical error measures are 

biased.

In this section we have pursued the estimation of discriminant functions using both approaches. First we 

estimate discriminant functions within the DDA framework and then we repeat our specification search 

within the PDA framework. The whole empirical analysis of this section has been performed using the 

software package SPSS version 10.

3.7.1 Descriptive Discriminant Analysis

The DDA framework is similar to that of regression analysis, in the sense that we need a well defined 

variable selection and specification search strategy in order to find the best equation that fits the data.

Our variable selection starts with the estimation of a univariate discriminant function for all the risk 

factors for all the years. Univariate discriminant is useful for a number of reasons. First, we can test 

the significance of the factors prior to inclusion into the set of risk factors to be considered by the 

researcher. Variables which are not significant could be excluded from consideration. As such a 

univariate analysis is the same as the univariate test of the sample means that was conducted in 

Chapter 2 which showed that all the variables were significant at least in some years we have 

included all the variables in the set to be considered as candidates for inclusion in the discriminant 

function. Second, univariate analysis may still reduce he number of variables that should be 

considered as candidates for inclusion in the discriminant function by looking at the explanatory 

power of individual factors. Factors with very low discriminating power could be excluded from
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consideration in the specification search. Thirdly, since we have more that one ratio representing a 

particular characteristic such as liquidity, or profitability, univariate analysis may help us choose the 

best one for inclusion in the discriminant equation.

There are well known dangers of course in relying too much on a univariate approach, as it is well 

known that the inclusion or exclusion of other variables in the equation affects the significance of a 

variable. The discriminating performance of each single-variable equation is measured by the square of 

the canonical correlation coefficient q2 which is defined as q 2 = 1 -  A . In order to make the

comparison between variables and across the years easier we have multiplied its value by 100. The 

results from the univariate approach are shown in Table 3.7.1.

The performance of the individual variables varies considerably. The profitability ratios (ROA and 

ROE) show consistently good performance. Of the solvency ratios (IPS, IPF, and IPE) the first two have 

strong discriminating power for most of the years with IPS slightly outperforming IPF. Of the leverage 

ratios DR is consistently high whereas DC has low discriminating power. Of the liquidity variables, WA 

is consistently high whereas CR is not. Of the growth ratios, RTA is high but the other two and 

especially size does not play any role in discriminating between the two groups. Finally, the activity 

ratios are very inconsistent with NIS having high values occasionally.

Table 3.7.1: Univariate Discriminant Criterion 100 x q 2

94-96 95-97 96-98 97-99 98-00 99-01

ROA 1.246 2.464 1.750 0.897 1.526 2.581
ROE 0.826 1.119 2.068 1.402 0.407 0.208

IPS 2.373 1.106 6.921 7.008 1.040 4.785
IPF 0.469 1.710 6.577 7.797 6.650 1.764
IPE 1.086 0.733 0.116 1.383 0.498 0.703
DR 0.936 1.684 1.202 2.647 0.863 2.798
DC 0.003 0.047 0.234 0.802 0.520 1.376
CR 0.154 0.179 0.199 1.092 0.926 1.121
WA 2.303 3.290 4.815 2.885 3.290 4.220
UPL 0.691 0.702 1.740 0.773 0.291 1.134
RTA 2.283 4.401 3.156 3.993 1.212 5.460
SIZE 0.944 0.032 0.167 0.122 0.647 0.006
SOA 0.018 0.854 0.036 0.005 2.474 0.497
NIS 2.322 2.240 2.376 0.538 0.213 5.050
OS 0.110 1.489 0.362 0.131 0.039 0.316
ES 0.112 1.867 0.215 0.317 0.063 0.158

The next step is to devise a method of selecting the best subset of the risk factors. A widely used variable 

selection procedure which is employed by SPSS and other packages to estimate discriminant functions 

based on the separation of groups principle is the stepwise procedure which comes in three versions, 

forward, backward or combined, [see Sharma(1996) for a description].

In forward selection we choose from a univariate discriminant analysis the variable with the lowest 

Wilk’s Lambda value or highest distance value, or highest canonical correlation. The second variable 

that is entered is the one that creates, together with the first variable the lowest Wilk’s ratio. The 

procedure continues until no other variable increases the statistical criterion used. On the basis of the 

univariate analysis we can for example start a forward stepwise selection process by choosing the
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variable with the highest r|2 and then inserting variables that increase the criterion function. In this case 

of course one should use the adjusted statistics;/2.

In the backward selection, we start with all the variables in the discriminant function and remove one 

variable at each step. The variable that is removed is a redundant variable in the sense that the statistical 

criterion used does not change. The procedure continuous until there are no redundant variables left in 

the equation.

The combined method, sometimes called Stepwise Selection, combines both approaches. This time we 

start with no variables in the equation, and a variable is added or deleted at each step depending on its 

impact on the statistical criterion. A variable already in the discriminant function is removed if it does 

not significantly lower the discriminant power as measured by the statistical criterion. If no variable is 

removed at a given step then the variable that significantly adds the most discriminating power, as 

measured by the statistical criterion is added to the discriminating function. The procedure stops when at 

a given step no variable is added or removed from the discriminating function.

Each of the three procedures gives the same discriminant function if the variables are not correlated 

among themselves. However, the results could be very different if there is substantial amount of 

multicollinearity in the data.

SPP version 10 which was used for the empirical estimation of discriminant functions, uses the combined 

method only, and this variant of stepwise discriminant analysis was employed with the following 

criteria:

(a) Wilk’s A was used as the selection criterion. That is, at each step either a variable is added or 

deleted from the discriminant function according to the value of Wilk’s A.

(b) A tolerance level of 0.001 was used

(c) Priors were assumed to be equal

(d) The maximum significance of the F distribution for a variable to enter was 0.05 and the minimum 

significance for a variable to be removed was 0.10.

The results from the stepwise approach are shown in Table 3.7.2. The results of the stepwise approach are 

disappointing. The major problem is that for three years (1995, 1997 and 1999) out of the six years of our 

sample, the coefficients in the discriminant function have the wrong sign. They imply that companies 

with high debt equity ratios should be classified in group 0 (non migrating companies) and companies 

with high profitability should be classified in group 1 (financially distressed companies). Although the 

coefficients in the discriminant function are not uniquely defined, their sign must conform to the 

theoretically expected sign.

Focusing now on the discriminant functions for the three years that have the correct signs we find 

that nearly in every year we have a different set of factors with an overwhelming presence of 

solvency and leverage factors. For two years we have both IPF and IPS as risk factors at the expense 

of liquidity or profitability ratios. The fact that the set of risk factors changes from year to year 

creates problems if the objective of the researcher is to produce relationships that can be used to 

predict future membership.
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Table 3.7.2: Estimates of Discriminant Functions-Stepwise Approach

94-96 95-97 96-98 97-99 98-00 99-01

ROA 1.284 -1.519
ROE -0.206 1.651 1.637 -0.631
IPS 10.208 6.794 11.792 -8.859
IPF 0.346
IPE -1.767 2.118 -0.457
DR -0.097
DC
CR -2.592 1.645 -2.374 0.286 2.041
WA
UPL 11.653
RTA 0.737 5.958
SIZE 0.324 0.582
SOA 0.878
NIS -4.526
OS -0.672

(Constant) -3.440 0.661 -0.634 -2.245 -4.400 0.358

Wilks A 0.942 0.886 0.854 0.880 0.873 0.888

X2(df) 29.10 65.308 73.899 50.919 50.237 35.535

Df 4 7 5 3 5 4
BOX M 52.981 4705.53 225.66 134.421 514.855 69.940

F-Stattistic 5.178 161.590 14.544 21.876 32.624 6.300
DOF1 10 28 15 6 15 10
DOF2 57698 46813 36060 38190 16079 35562

H2 0.240 0.337 0.382 0.346 0.356 0.335

Tladj 0.231 0.317 0.371 0.341 0.341 0.323

P'Po
-0.0972 0.134 -0.151 -0.135 0.128 0.159

P'Ai
0.627 -0.956 1.126 1.000 -1.132 -0.787

(P'A1 + P '£0) /2 0.2649 -0.411 0.4875 0.4325 -0.502 -0.314
n.i/n. 51.5 74.3 60.7 64.6 57.9 27.4

noo/ n o 68.8 64.2 81.6 80.0 76.9 72.6

O n  + n00) / n 66.5 73.1 79.1 78.2 74.9 56.6

Furthermore looking at the predictive power of the model using the leave-one-out (L-O-O) criterion we 

see that the performance is not good. The hit rate for the downgraded companies is low and in one 

particular year, 1999, only 27% of the companies that were eventually downgraded were predicted 

correctly. All in all, the stepwise procedure has failed to produce an economically meaningful and 

statistically credible model.

The results we have obtained are not entirely unexpected as many authors have highlighted the problems 

associated with the stepwise procedure. These problems are summarised aptly by Judd and McClelland 

(1989) who state that the main problems are:
1. Stepwise methods will not necessarily produce the best model if there are redundant variables.
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2. All-possible-subset methods produce the best model for each possible number of terms, but larger 

models need not necessarily be subsets of smaller ones, causing serious conceptual problems about 

the underlying logic of the investigation.

3. Models identified by stepwise methods have an inflated risk of capitalising on chance features of the 

data. They frequently fail when applied to new datasets. They are rarely tested in this way.

4. Since the interpretation of coefficients in a model depends on the other terms included, "it seems 

unwise to let an automatic algorithm determine the questions we do and do not ask about our data".

They conclude their discussion stating: "It is our experience and strong belief that better models and 

a better understanding of one's data result from focused data analysis, guided by substantive theory."

(P 204)

Henderson and Velleman (1981) also criticize the mechanical aspects of stepwise selection 

procedures by stating "The data analyst knows more than the computer and failure to use that 

knowledge produces inadequate data analysis."

In view of the unsatisfactory empirical results we have obtained and the problems associated with the 

stepwise procedure, we have adopted a second modelling approach that utilises the results of the 

univariate performance in a more structured way. This second approach we have adopted within the 

descriptive discriminant framework could be described as the best subset approach. That is, for every 

year we have selected the best variable from each category as it is measured by the univariate 

performance. This would be the best approach if the variables were completely uncorrelated.

More specifically, the strategy adopted is to use one or sometimes two variables from each category 

of risk factors (profitability, solvency, leverage, liquidity, activity, and growth) for inclusion in the 

discriminant function. The inclusion of variables was based exclusively on the statistical significance 

of the risk factor ignoring classification performance.

Under normality the two criteria will produce the same results but given the fact that not all our variables 

are normally distributed this will not be true.

Our approach consisted of the following steps.

(a) Include from each risk category the variable with the highest univariate performance. Given that we 

have six categories of risk factors we start with six factors. Size we treat separately, because although 

we have included it in the growth category is not highly correlated with the other “growth” variables. 

Using the 1994 sample as an example we have selected the following factors initially:

(b) Retain from each category the variable that remained significant after the estimation of the six- 

variable discriminant function.

(c) For each retained variable of a risk category, rotate all the other variables of the other risk categories 

to test the sensitivity of the estimated discriminant functions.

This procedure is not optimal in any sense since sequential testing of this nature is optimal only under 

restrictive assumptions. However when compared to the stepwise it makes sure that the variables in the 

equation are economically meaningful. Given also our requirement that this should be used to forecast 

membership of new companies, significance across the 6 years was also a criterion.
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The model has been subjected to a number of specification tests in order to test its robustness using 

the statistics of Section 3.5. In all cases we use the likelihood ratio statistic to test whether the 

excluded variables should be in the equation. The first test is to see whether any of the activity 

ratios should be in the equation. Only in 1994 we get a significant impact of the activity variables and 

we test whether any of the four variables should have been included in the discriminant equation. The 
results are shown in Table 3.7.4

Table 3.7.4 -  LR tests for the inclusion of activity variables (values of chi square with ldegree of
freedom)

1994 1995 1996 1997 1998 1999

SOA 0.78 1.23 1.45 1.56 2.01 1.78

NIS 3.92 0.99 2.70 2.90 3.3 2.64

OS 1.24 2.29 1.59 1.80 0.97 1.13

ES 1.9 0.78 0.98 1.35 0.45 1.46

The second test was to test whether any of the growth variables should be included in the equation in any 

of the years. The growth variables are included in four of the six samples we have used and the test is 

whether they should be included in he remaining two samples. The results are shown in Table 3.7.5. The 

final test concerns the impact of size on the classification of companies. Previous studies have shown that 

size could be an important factor. In our case though, it is only significant in one year.

Table 3.7.5 -  LR tests for the inclusion of growth variables

1994 1995 1996 1997 1998 1999

UPL 1.89 4.23 2.43 3.98 1.29 2.05

RTA 2.224 2.90 3.10 4.02 1.03 1.95

The lack of significance is not surprising, since in Chapter 2 it was found that the sample means of this 

characteristic were not statistically different in the two groups. The results of the test statistic are shown 

in Table 3.7.6 which formally confirm size is not a discriminating factor.

Table 3.7.6 -  LR tests for the inclusion of size variables

1994 1995 1996 1997 1998 1999

SIZE 3.85 2.74 1.56 • 2.01 1.07 1.91
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3.7.2 Predictive Discriminant Analysis

The descriptive discriminant analysis has produced a set of factors that explain group membership in 

every year. We now turn to the estimation of predictive discriminant functions and to the variable 

selection problem using the classification performance as a criterion. Before we proceed we have to 

resolve a number of issues, the most of important of which is the classification criterion itself (See 

Dinenis (2003a) for a discussion of these issues). The criterion could be either the total proportion of 

correct forecasts or the proportion of correct forecasts in one of the two groups. The choice of the 

classification criterion is important because using the proportion of correct classifications of financially 

distressed companies nn /n, instead of the proportion of total correct predictions (nu +na)) /n  will 

produce different results. We give some examples of these later.

The second issue is that classification requires the use of a cut-off point. Such a cut-off point depends on 

the classification costs and the prior probabilities. In SPSS the allocation of observations to either of the 

two groups is based on the value of the calculated posterior probability which we defined earlier as

ĵr = Pr(<r = j /r  = r*) = Pjf j ( 0 Pif j(*')
Pofo(r ) + Pif .(r ) fr(r )

The use of the posterior probability requires values for the two conditional density functions as well as for 

the two prior probabilities and classification costs. The effect of prior probabilities is to change the 

probability of classifying an observation into a particular group by making it harder to meet the condition 

for inclusion. The same effect has the incorporation of misclassification costs. High misclassification 

costs act as an additional hurdle to the classification of observation to a particular group. The 

specification of prior probabilities and classification costs is not a trivial problem as it requires some 

quantification of the loss that would be incurred if the wrong decision is taken. One way to estimate the 

prior probabilities is to use the relative sample sizes. This would have produced the following priors for 

each year

Table 3.7.7 Prior Probabilities

Year Prior probability Prior Probability

For Group 1 for Group 0

1994-96 0.134 0.866
1995-97 0.123 0.877
1996-98 0.118 0.882
1997-99 0.119 0.881
1998-00 0.101 0.899
1999-01 0.168 0.832

The issue of the classification costs is trickier. How much worse is a bank when it classifies a suspect 

company as healthy relative to classifying a healthy company as suspect? In this study we have used a 

ratio of 5:1 that is about 5 times more costly to misclassify a failing company relative to misclassifying a
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healthy one. The product is then about 0.5 and this is the prior we have used to classify the observations 

into the two groups.

Having discussed the two important issues of the classification criterion and the prior probabilities and 

costs, we can now explore the variable selection strategies available in predictive discriminant.

Our starting point therefore, as in the case of descriptive discriminant analysis is to perform a univariate 

classification analysis of all the variables. The results of the univariate classification are shown in Tables 

3.7.8A and 3.7.8B (the tables have been split to accommodate all the data).

Table 3.7.8 A L-0-0 hit rates

94 95 9 6 97 98 99
R O A n 00/ n o 34 .3 50.5 51.3 44.1 4 2 .8 55.3

n n / n i 84 .8 76.1 81 81.3 76 .9 67 .6

( « i i + « o o ) / m 4 1 .0 53 .6 54 .9 4 8 .5 46 .3 56 .9

R O E n oo/ n o 3 1 .8 35.3 3 5 .7 3 7 .4 3 2 .4 3 6 .5

n n / n , 83 .2 82.1 81 7 2 .9 7 4 .4 7 5 .7

(«,,  +«<>„)/« 3 8 .7 4 1 .0 4 1 .2 4 1 .6 3 6 .7 4 1 .5

D R n oo/ n o 5 4 .2 53 .9 53 .2 57.3 52 .8 54 .9

n 11 / n 1 53 62 .7 62.1 6 6 .7 6 6 .7 59.5

(« 1 1 + «  oo)/n 5 4 .0 55 .0 54.3 5 8 .4 54 .2 55.5

D C ^  00 / n o 2 9 .8 71 .8 72 .2 73 .5 74 .8 7 6 .6

n n / n . 6 0 .6 34.3 32.1 3 5 .4 36 .8 3 5 .3

(«i, + « o o ) / « 3 3 .9 67 .2 67 .5 6 9 .0 7 0 .9 6 9 .6

IPS n oo/ n o 73.1 72 .9 84 .9 78.1 7 3 .7 72 .9

n i i / n , 4 2 .4 5 3 .7 4 4 .8 50 53 .8 4 5 .9

(« n  + « o o ) / « 6 9 .0 70.5 80.1 74 .8 71 .6 69 .5

IPF n oo/ n o 6 6 .4 91 .4 7 8 .7 86 .5 82 .6 68 .6

n n / n i 4 3 .9 19.4 53 .4 4 7 .9 4 6 .2 4 5 .9

(« U + W o o V « 6 3 .4 82 .6 75 .6 81 .9 78 .8 65 .7

IPE n 00 ( n 0 7 5 .4 71 .0 47.1 7 6 .6 6 2 .0 91.3

n ll / n . 5 7 .6 59 .9 83 .9 52.1 15.8 11.8

( « 1, + « o o ) / « 7 3 .0 69 .6 51.5 7 3 .7 57 .3 77 .9

W A n oo ( n o 5 5 .6 60 .8 66 59 .6 60 .5 61 .6

n , , / n , 6 0 .6 62 .7 58 .6 6 2 .5 64.1 64 .9

(«11 +  "(,<))/« 56.3 61 .0 65.1 5 9 .9 6 0 .9 62 .0

C R n oo/ n o 2 2 .4 42.1 3 0 .7 42.1 35.1 36 .9

n 11 /  n | 9 3 .9 83.3 86 .2 83 .3 84 .6 75 .7

( « , ,+ « » „ ) / « 3 2 .0 4 7 .2 3 7 .4 4 7 .0 4 0 .2 4 1 .8

»
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Table 3.7.8 B L -0-0  hit rates

94 95 96 97 98 99
SIZ E n 0o ! «0 53 .5 49.1 51.3 53.1 54 56 .5

n , , / n . 4 5 .4 53 .7 58 .6 52.1 53 4 8 .6

(«11 +«oo )/n 52 .4 4 9 .7 52 .2 5 3 .0 53 .9 55.5

U P L n oo/ n o 33 .2 34 28.1 32 .3 27.1 72 .2

n . i / n , 7 2 .7 7 1 .6 79.3 8 9 .6 7 4 .4 4 3 .2

( « n + « o o V « 38.5 38 .6 34 .3 39.1 3 2 .0 68 .5

R T A n oo/ n o 57 .7 6 1 .6 73 .8 7 2 .2 5 7 .2 56 .9

n ll / n . 6 6 .7 64 .2 4 6 .6 50 64.1 75 .7

(nu + n m) / n 58 .9 61 .9 70 .5 6 9 .6 57 .9 59.3

N IS n 00 /  n o 54 .7 98 .7 90 .5 8 7 .6 6 6 .4 71

n „ / n , 7 2 .7 4.5 2 0 .7 33 .3 5 6 .4 51 .4

(« n  + « 00) / « 57.1 87.1 82.1 81.1 6 5 .4 68.5

S O A oCooC 38 .6 4 8 .9 4 4 4 4 .7 54 .6 51 .4

n . i / n . 6 5 .2 68 .7 69 4 3 .8 7 4 .4 73

( « n + « o o V « 4 2 .2 51.3 4 7 .0 4 4 .6 5 6 .6 54.1

O S n  00 /  n  0 45 .5 99 .6 4 7 .4 4 5 .4 55 .8 4 8 .0

n „ / n , 59.1 6.0 57.1 6 0 .4 5 2 .6 58 .8

(«11+ « 0 0  )/ n 4 7 .7 88.1 48 .5 47.1 55 .5 49 .8

ES oCooc 4 3 .2 99 .8 47.1 4 1 .7 5 9 .9 4 4 .0

n ll / n , 59.1 6.0 53 .6 6 4 .6 4 7 .4 6 2 .7

(«,1 + « o o ) / « 45 .3 88.3 4 7 .9 4 4 .4 5 8 .7 47 .2

The most striking feature of the results which are also shown graphically in Figures 3.7.1 and 3.7.2 is that 

some of the ratios have a very high hit rate for group 1 companies nu /n, and some ratios have a very

high hit rate for group 0 companies n00/ n 0 but not for both. The most successful variable predicting 

group 1 membership is the current Ratio (CR) with an average hit rate of 84.5 percent, followed by both 

profitability ratios ROA and ROE with an average hit rate of 78 percent.

The next three variables (UPL, SOA, and WA) represent growth activity and liquidity ratios. Leverage 

(DR and DC) and in particular solvency ratios (IPS and IPF) on the other hand are not very good at 

predicting financially distressed companies.

However, leverage (DR and DC) and particularly solvency ratios (IPS and IPF) are the best ratios to 

predict which of the companies will not become financially distressed. With the exception of NIS, it 

seems that profitability, liquidity and growth ratios are good predictors of the companies that will become 

financially distressed and leverage and solvency ratios of those that will not become financially 

distressed.
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Figure 3.7.1: Ranking of Factors in terms of Group 0 average L -0 -0  hit rate ( n00 / n 0).

Figure 3.7.2: Ranking of factors in terms of group 1 average L-0-0 hit rate nu t  n x

There is no stepwise methodology based in classification criteria available in any of the major statistical 

packages. A popular forward stepwise procedure suggested by Smith (1984) involves the following 

steps:

1. Record p univariate PDAs and record the L-0-0 hit rate of interest (total group or for a 

particular group) for each predictor; a best subset of size 1 consists of one variable that yields the 

highest of the hit rates.

2. Consider p-1 bivariate PDAs using VI and V2, VI and V3,..., VI and Vp and record the L-0-0 

hit rate of interest for each pair; a best subset of size 2 (given that VI is included) consists of the 

pair (containing VI) say VI and V2 that yields the highest of the p-1 hit rates.
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3. Conductp-2 trivariate PDAs using VI and V2 and V3, VI and V2 and V4,... VI and V2 and Vp 

and record the L-0-0 hit rate for each triple; a best subset of six (given that VI and V2 are 

included) consists of a triple (containing (F7and V2), say VI and V2 and V3 that yields the 
highest of the p-2 hit rates.

4. Continue this through the subset of size p-1.

A total ofp(p+l)/2 analyses would need to be conducted, which in our case with p = 16 means 136 

analyses. It is possible of course that the there may be more than one subsets at each stage which have 

the same hit rate. In that case one has to consider all the cases stemming from both sets.

The two main problems associated with a programme stepwise analysis also afflict the forward selection 

analysis we have adopted here, namely: (1) the best subset of a given size may not emerge, and (2) only 

one “good” subset of each size is suggested.

We have an additional problem in our case because of the nature of the univariate classification results. 

Suppose that we want to implement the forward selection procedure in a particular year and choose the 

variable with the highest group 1 hit rate. This will be R13 with a hit rate in excess of 80%. The inclusion 

of additional variables will never increase this hit rate and we are forced to conclude that the discriminant 

function will only contain one term. However such a discriminant function will only predict 35 percent of 

the of the healthy companies. The forward stepwise method cannot therefore be applied in the form it was 

suggested above.

A backward approach could also be implemented by starting with all the variables and eliminating those 

whose omission does not affect the classification performance. In this context the question still arises as 

to whether we should consider all 16 variables for inclusion in the discriminant function or a subset of 

those variables and how to arrive at such a subset. Such a process of factor reduction is useful because of 

the presence of multicollinearity in the data that makes the parameter estimates unreliable. One way to 

reduce the potential number of variables is to consider only those variables that are statistically significant 

on the basis of Wilk’s lambda statistic. Since the testing of the equality of group means in Chapter 2 has 

shown that most of the financial ratios means are statistically different in the two groups for most of the 

years we have decided to consider all the variables as potential candidates in the discriminant function. A 

second way to reduce the number of factors for consideration is to look at the univariate performance and 

include the variables with the best classification performance from each category. However as in the case 

of the forward stepwise we have the problem of how to choose the “best” factors.

Our modelling approach within the predictive discriminant analysis framework is a pragmatic one.

Rather than relying exclusively on classification performance, we have employed a combination of 

statistical and classification criteria. As Huberty (1994) suggests that the selection of variables should be 

based on both separation and classification performance if the objective of the study is to get a set of 

coefficients that could be used in subsequent samples.

In view of the problems with forward procedure we have instead adopted a backward procedure. Our 

starting point in this backward approach is then to start in every year with all the statistically significant 

variables and then rotate the various ratios and use classification criteria to select the best one. That 

means that we start more or less with the same set of variables as in the best subset DDA but the selection 

of variables and the finer specification analysis is now based on classification criteria. We are particularly 

interested in the correct prediction of companies that will be financially distressed, but since the factors 

that correctly predict those companies are not very good predictors of the healthy companies we have
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used a modified overall performance measure that gives a higher weight to the group 1 hit rate. The 

measure we have used is given by

U 1

instead of the usual overall L-0-0 hit rate given by

+ 0.12 x
n n0 n nx n

The advantages of this more flexible approach rests on the following. First, it is possible that there is a 

subset of variables that predict better than the whole. This is true if the additional variables do not 

contribute to the inter-group differences. This is an important difference between separation and 

classification. Secondly the positive bias in classification errors such as APER increases as p increases. 

Thirdly, where a set of variables could be deleted in order to enhance the predictive accuracy, this should 

be done so as to have a more robust classification tool. Fourthly a small number of variables would 

reduce the problem regarding the stability of the coefficients in the discriminant function. Finally a great 

source of instability will be the correlation between the independent variables. It may sensible then to 

exclude variables that have been highly correlated with other variables.

In summary we have established the following criteria for selection of variables in the discriminant 

function.

(a) The variables in the equation should meet both the separation and prediction criteria

(b) The variables should exhibit a low degree of collinearity

(c) The variables should be stable across all the years, that is the variables should have a permanent 

discriminating influence

The results of our modified backward selection procedure are shown in Table 3.7.9. The first major 

observation is that the set of factors that were selected on the basis of classification performance is very 

close to the best subset approach in DDA. Indeed in 1996, we arrived at the same model. In general the 

PDA approach produced for nearly all the years a more parsimonious model, which makes of course the 

model more robust. Now looking at the individual years we see that the 1994 model is the same as the 

DDA model but without the UPL variable. This is one of the cases were a variable should be in the 

equation according to a statistical criterion but its inclusion deteriorates the predictive performance of the 

model.
Having compared the two approaches and analyzed the forecasting performance of the model, we now 

turn to the analysis of the estimated equations. The signs of the coefficients are consistent with prior 

expectations. As it would be expected, increased profitability (ROA ) and increased liquidity (WA ) 

diminish the probability of financial distress. In contrast, the positive sign indicates that increased interest 

payments will increase the probability of financial distress. The table above (3.7.9) shows that the 

discriminant function coefficients are individually significant as indicated by the Wilks test in every 

single year and that the discriminant function was significant overall.
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Table 3.7.9 Estimates of Predictive Discriminant Functions

94-96 95-97 96-98 97-99 98-00 99-01 |

ROA -2.018 -2.845 -1.602 -0.593 -1.301 -6.989
WA -1.894 -1.945 -1.219 -2.469
IPS 8.342 5.034 8.092 16.923 12.572
IPF 2.589
DR 1.615 2.801 1.542 2.205 0.742 2.795
RTA -3.808
UPL -0.074
(Constant) -0.930 -1.488 -0.863 -1.909 -0.410 -1.448

Wilks A 0.946 0.948 0.874 0.893 0.900 0.904

X2(df) 25.522 29.086 63.007 44.927 39.111 30.350

Df 4 3 5 5 4 3

BOX M 70.106 70.540 202.054 177.355 99.645 46.008
F-Stattistic 6.859 11.560 13.023 11.363 9.569 7.495
DOF1 10 6 15 15 10 6
DOF2 57697 75649 36060 26349 18107 46057

!j2 0.226 0.228 0.354 0.327 0.316 0.310

nLj 0.217 0.204 0.342 0.321 0.300 0.297

P Ao
-0.097 -0.087 -0.138 -0.127 -0.112 -0.146

PA ,
0.587 0.626 1.033 0.937 0.990 0.724

( P ' A i + P A 0) / 2
0.245 0.269 0.447 0.405 0.439 0.289

n „ / n , 60.6 74.6 67.9 68.8 65.8 62.7

n 00/ n o 68.3 62.2 78.9 75.5 76.9 68.7

(«11 +«oo ) / « 67.3 63.7 77.6 74.7 75.7 67.7

Table 3.7.10 Wilk’s test for individual significance

94 95 96 97 98 99
ROA 6.185 13.743 8.409 3.630 5.781 7.976

IPS 11.912 6.084 35.095 30.221 3.921 15.128

IPF 2.307 9.462 33.228 33.910 26.571 5.405

DR 4.630 9.316 5.741 10.901 3.249 8.664

WA 11.549 18.509 23.876 11.913 12.691 13.262

UPL 3.409 3.846 8.356 3.125 1.090 3.452

RTA 11.446 25.047 15.380 16.680 4.576 17.385

The validity of the linear discriminant analysis is based on the equality of the covariance matrices in the 

two groups. We have already seen in Chapter 2 that we could not reject the hypothesis that the covariance 

matrices are different in the two groups. We repeat the same tests here. From the vales of the F -statistic
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in Table 3.7.9 we cannot again reject the hypothesis that the covariance matrices are different. The 

rejection of this hypothesis casts some doubts on the validity of our procedure, but in view of the stable 

results we have obtained we should not be unduly concerned about the failure of this property.

The amount of variation between the two groups explained by the discriminating variables is given by the
2

adjusted for degrees of freedom canonical correlation coefficient T|adj . This is satisfactory in terms of

the size that one expects on the strength of association from studies of this nature and it is consistent with 

the values obtained in other empirical studies.

The relative importance of a discriminator variable is assessed using the standardised coefficients which

g . P,
are defined as p, = —— where a  „ is the (1,1) element of the pooled covariance matrix .

°«

The higher the standardized coefficient of a variable relative to the other variables, the more important its 

contribution is to the discrimination of the two groups. The standardized coefficients for the discriminant 

functions for each of the years in our sample are given in the table below.

Table 3.7.11: Standardized Canonical Function Coefficients

9 4 -9 6 9 5 -9 7 9 6 -9 8 9 7 -9 9 9 8 -0 0 99-01

ROA -0.438 -0.685 -0.386 -0.235 -0.342 -0.536
WA -0.352 -0.351 -0.217 -0.438
IPS 0.606 0.430 0.640 0.757 0.648
IPCF 0.732
DR 0.350 0.613 0.335 0.443 0.158 0.554
U PL -0.054
RTA -0.205

From the table it appears that the most important discriminating variable in all six samples is IPS and 

ROA, followed by DR and WA whereas the two variables RTA and UPL seem relatively less important.

p
The loading of a variable is calculated as /( = ^  p y p / where p- is the pooled correlation between

7=1

variable i and variable j , measures the contribution of each variable to the formation of the discriminant 

function.

Table 3.7.12: Structure Matrix

9 4 -9 6 9 5 -9 7 9 6 -9 8 9 7 -9 9 9 8 -0 0 99-01

IPS 0.673 0.451 720 0.795 0.686
WA -0.663 -0.593 -0.499 -0.553

R O A -0.485 -0.677 -0.352 -0.275 -0.373 -0.498
R T A -0.476
IPF 0.800
D R 0.420 0.558 0.291 0.477 0.280 0.520

U P L -0.256
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The loadings of all seven variables used are high which means that the discriminant score can be 

interpreted as a measure of the financial health of a company and that all variables contribute highly 

towards the formation of the discriminant function.

The actual coefficients of the discriminant function used to calculate the cut-off points for classification 

are given in the appendix whereas the average values together with the cut-off point for each year are also 
reported in the table.

Apart from the sample for 1994 the cut-off points tend to be stable which is an important feature of our 

findings. The cut-off value indicates that companies with a value above that will be classified as 

migrating companies and those with a value less than that as non - migrating.

Figure 3.7.3 : Cut-off points

Turning now to the predictive power of the model we reproduce for ease of comparison the classification 

performance of the PDA and DDA in terms of all the four measures we have used.

Table 3.7.13 -  Classification Performance

9 4 -9 6 9 5 -9 7 9 6 -9 8 9 7 -9 9 9 8 -0 0 99-01

D D A

n i , / n , 5 6 . 1 6 5 . 7 6 7 . 9 6 6 . 7 6 3 . 2 6 0 . 8

n o o  /  n o
6 7 . 6 6 6 . 6 7 8 . 9 7 7 . 5 7 6 . 6 6 8 .

O n  + n 00)/n 6 6 . 1 6 6 . 5 7 7 . 6 7 6 . 2 7 5 . 2 6 7 . 0

0 . 5 x ^ -  +  0 . 5 x ^  

n0
6 1 . 8 5 6 6 . 1 5 7 3 . 4 7 2 . 1 6 9 . 9 6 4 . 4

P D A

n i , / n , 6 0 . 6 7 4 . 6 6 7 . 9 6 8 . 8 6 5 . 8 6 2 . 7

^  0 0  /  n  0
6 8 . 3 6 2 . 2 7 8 . 9 7 5 . 5 7 6 . 9 6 8 . 7

( « 1 1  + n m)/n 6 7 . 3 6 3 . 7 7 7 . 6 7 4 . 7 7 5 . 7 6 7 . 7

0 . 5 x ^  +  0 . 5 x ^  

« 0  « 1
6 4 . 4 5 6 8 . 4 7 3 . 4 7 2 . 1 5 7 1 . 3 5 6 5 . 7
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The predictive power of the model is satisfactory. The model consistently classifies more than the random 

50 percent benchmark based on the proportional chance criterion for total and group hit rate where the 

proportion chance criterion for the total hit rate was defined as

PCC{T ) = 0.5 x - ^  + 0.5 x ^  = 0.5 
n n

The predictive performance of the model as shown in table 3.7.14 depends on the criterion we have used. 

In the DDA approach the implicit emphasis was on the overall performance, whereas in the PDA 

approach we gave a higher weight to the correct classification to group 1, the downgraded companies. 

The performance according to the two criteria is given in Figures 3.7.4 and 3.7.5. Although the 

differences are not great for the total they are significant in terms of the hit rate for group 1. Under the 

DDA approach, the hit rate for group 1 is only 56 percent. In conclusion, the PDA is our preferred 

approach because it maximises the hit rate for group 1 without sacrificing too much the overall success 

rate.

We can test whether the classification performance of our model is significantly different from that of the 

proportional chance criterion. The difference in the two quantities can be tested using the standard normal 

z score whose values are shown in table 3.7.14. The performance is statistically different for every single 

year.

Table 3.7.14 : Values of z statistic

94 95 96 97 98 99
DDA

O n  + n00) / n 7.14 7.71 12.02 10.52 9.76 5.92

0.5 x ^ L  +  0 .5x ^  
«o «1

5.26 7.55 10.19 8.87 7.71 5.01
PDA

(« ii + « 0 0 ) / « 7.67 6.40 12.02 9.92 9.95 6.16

0.5 x ^  +  0.5x - ^  
« 0  «1

6.41 8.60 10.19 8.89 8.27 5.47
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Figure 3.7.4 Hit rates for group 1 by the two approaches

>

Figure 3.7.5: Overall Hit rates by both approaches

3.7.3 Conclusion from the empirical discriminant analysis

In this section we have pursued a systematic specification search for the set of risk factors that would 

explain and predict group membership. We have found that the classification criterion produced 

discriminant functions which were invariably nested within the DDA equation. The following set of risk 

factors were found to have a systematic effect on all years of our sample and constitute the set of risk 

factors we have derived of the basis of linear discriminant analysis.

1. Profitability ratios (ROA)

2. Leverage (DR)

3. Solvency ratios (IPF and IPS)
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4. Liquidity ratios (WA)

5. Growth ratios (RTA and UPL)

6. Size (SIZE)

7. Activity ratios (NIS)

We have found that activity and growth ratios do not exert a systematic effect on the separation of 

companies. This does not exclude the possibility that these variables may be significant in particular years 

when some exogenous factors, e.g. the stage of the business cycle may exert some influence.

Compared to other studies which use discriminant analysis, our results are comparable in terms of the 

type of ratios we have found as significant (see Chapter 1 for a review of the relevant studies). An 

important feature of the discriminant functions we have estimated is the relative stability of the cut-off 

t points that allow us to use the functions for classification of observations from new samples.

3.8 Results from Quadratic Discriminant Analysis

The results from the tests of hypothesis of equal covariance matrices both for the various ratios included 

in linear discriminant function indicated that the hypothesis of unequal variances cannot be rejected. In 

this situation the optimal classification rule should be based on a quadratic classification function rather 

than the linear one.

The classification according to this criterion was done using the estimated posterior probabilities from the 

equation

K  =Pr(£ = l / r  = r*) = e^(r>)
e <7,(r ‘ ) + e Î 2 ( r ' )

with

q , (r) = ln[jr</ <(r/Ai,fl,)] + - |  ln(2zr)

The same prior probability estimates were used, TCt = 0.5 and the same estimates of the mean vectors 

¿ij and sample covariances as in the linear discriminant analysis.

We have not pursued a separate specification search for the quadratic discriminant function, as this is 

computationally very demanding and no search properties have been established in the literature. Instead 

we have used the same variables that we employed in the linear discriminant function i.e. the variables 

(ROA, DR, IPF, IPS, WA, RTA, UPL, SIZE, and NIS). This allows direct comparison of the linear and 

the quadratic function approaches. The results are shown in the following table.

Table 3.8.1 : Classificaion results from Quadratic Discriminant Function

9 4 -9 6 9 5 -9 7  9 6 -9 8 9 7 -9 9 9 8 -0 0 99-01

nu /n, 57.6 62.7 63.8 60.4 66.7 62.2

n oo /  n o 6 3 3 73.1 77.5 78.9 74.3 67.1

( n n  +  n ooV (n i +  n o) 6 2 6 71.8 75.9 76.7 73.5 66.4
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The classification performance is not markedly different from that of the linear discriminant analysis. 

Although the quadratic discriminant approach does not rely on the assumption of equal covariance 

matrices it still suffers from a number of problems discussed in Section 3.3. It still relies on the 

assumption of normally distributed ratios in the two samples if this is not a valid assumption, the results 

will of course affected. We have already discussed the performance of quadratic discriminant function in 

previous sections. Given the computational burden that the quadratic approach involves, the gains are not 
considerably higher.

3.9 Empirical Results from Logistic Regression

In this section we present the results from the estimation of the logistic regression model for the six time 

periods. We start the section with an explanation of the modelling strategies we have employed and in 

particular the variable selection strategy.

3.9.1 Modelling Strategies in Logistic Regression

As in the case of linear regression and discriminant analysis there is no standard approach to the variable 

selection problem in logistic regression. Hosmer and Lemeshow (1989) (see also Dinenis (2003b) for 

application of the procedure) suggest the following four steps in estimating a logistic model.

1. First, a univariate analysis of all the variables is undertaken. The univariate analysis is useful in 

determining if a variable should be included in the model . The significance of the variable can 

be based on the Wald statistic or on the likelihood ratio test defined in section 3.6. Another way 

to decide on the significance on the variable is to use the t statistic for the equality of means in 

the two samples. The discriminant function coefficient in the case of single normally distributed 

discriminating function is given by

The use of univariate analysis has been criticised as ignoring the co-influence of other variables 

and the case where several variables may have individually a weak effect but taken together they 

may exercise a significant influence. Despite this criticism, univariate analysis does produce a lot 

of information on which a more complex analysis can be subsequently based. For instance it 

reduces the dimensionality of the problem considerably, because it reduces the number of 

variables for consideration in the multivariate analysis.

2. Secondly, a multivariate model should be estimated either by including all the variables an 

investigator considers as relevant, or using the smaller set of variables based on the results of the 

univariate analysis. If the latter approach is adopted, we consider for inclusion the variables from 

the univariate analysis that have met some criterion. The criterion is normally the statistical 

significance of the regression coefficient at some confidence level, normally at 95 percent. Once 

the set of variables on which the multivariate analysis will be based has been decided, a stepwise 

approach is normally employed. In SPPS the logistic regression programme there contains two 

variants the forward stepwise the backward stepwise approach.

3. Thirdly, following the fit of the multivariate model, the importance of each variable in the model 

should be verified using the statistical tests explained in section 3.6.

4. Fourthly, once a model has been estimated that contains the relevant variables, a closer 

inspection of the variables should take place and consider whether the model is correctly
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specified, whether is a need to include interaction among the variables, whether there are 

influential data points that exert an undue influence on the model parameters.

3.9.2 Univariate Approach

The full results from the univariate analysis are presented in Tables B1-B6 in Appendix B. For each 

variable we present the estimated regression coefficients as well as various goodness-of-fit statistics such 

as the LR test, the R-squared, the Hosmer and Lemeshow test and classification performance tests.

The overwhelming majority of the coefficients are significant in all years. The most significant variables 

are the profitability leverage and solvency ratios with liquidity and growth ratios being inconsistent in 

their significance across the sample periods.

3.9.3 Stepwise Approaches

In the forward stepwise method we start with a model that initially contains only the constant term. At 

each step the variable with the smallest significance level for the score statistic, provided it is less than the 

chosen cut-off value (by default 0.05), is entered into the model. All variables in the forward stepwise that 

have been entered are then examined to see if they meet removal criteria. Variables are added according 

to some criterion. One such criterion is the value of the likelihood function and the likelihood ratio test.

An alternative test is to use the value of the Wald Statistic.

In the backward stepwise approach one starts with all the variables in the model and drops the variables 

whose elimination does not reduce the value of the likelihood function.

The stepwise analysis is widely used but as it has been pointed out in the relevant discussion in 

discriminant analysis, is full of problems as this a mechanical procedure that may produce a model that 

may not make sense. It is possible for instance to include significant variables that have the wrong sign. 

Having completed the univariate analysis we now move to the multivariate modelling stage. For the 

selection of the best set of variables for each period we use the two approaches described above, that is 

the forward and the backward stepwise methods. One of the uses of the univariate approach is the 

reduction in the number of variables, the investigator has to consider for consideration. Given the results 

of the univariate analysis one could justifiably exclude variables like OS which are not significant. 

However given the small number of variables under consideration we have decided to use all the 

variables in the forward and backward stepwise variable selection strategy. The results from the forward 

selection are shown in the Table 3.9.2. whereas the results from the backward selection procedure are 

shown in Table 3.9.3.

Starting with the Forward Method, we look first at the economic interpretation of the estimated equations 

and then we make an appraisal of their statistical performance. All the coefficients have the right sign 

except the coefficients for the variable SOA in 1996 and 1997. All the variables are individually 

significant (even SOA in the two years in which it had the wrong sign), with the values of the Wald 

statistics significant at 95 percent confidence level.
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Table 3.9.2: Empirical Result of Logistic Regression- Forward Stepwise Method

94 95 96 97 98 99

CONSTANT -1.878 -2.725 -3.550 -5.055 -2.130 -1.535
(78.023) (28.65) (31.88) (35.12) (19.754) (44.80)

IPS 2.863 7.549 18.978
(3.53) (13.18) (22.56)

WA -1.715 -2.353 -2.140 -2.211
(4.805) (5.20) (3.405) (6.00)

RTA -4.027 -14.719
(4.14) (12.70)

ROA -8.919 -12.385 -14.937 -3.459
(20.67) (21.76) (23.15) (3.51)

DR 2.795 2.335 4.305 3.920
(15.14) (6.31) (13.23) (11.563)

SOA 0.463 0.610 -1.892
(5.34) (4.65) (12.278)

NIS -1.225
(1.093)

DC 0.068
(4.556)

IPF 1.563
(7.44)

2 In L0 -387.89 -406.54 -344.323 -294.30 -246.00 -274.644
2 In Lp -367.07 -342.18 -254.621 -220.82 -203.97 -245.078

LR = 2[ln Lp -  In L0] 20.82 64.36 89.702 73.48 42.03 29.565

Res 0.041 0.11 0.172 0.167 0.106 0.093

Res 0.076 0.21 0.334 0.322 0.220 0.156

m i l ) 11.060 11.88 3.415 3.910 10.388 7.467

Significance level 0.198 0.16 0.906 0.865 0.239 0.487

«00/«o 52.3 66.4 76.3 73.0 75.1 46.4

«11/«I 63.6 80.6 76.8 81.3 71.1 76.5

(n00+ n u ) / n 53.9 68.1 76.4 73.9 74.7 51.5
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Table 3.9.3: Empirical Result of Logistic Regression- Backward Stepwise Method

94 95 96 97 98 99
Constant -5.911 -1.681 -3.104 -4.271 -5.236 -2.417

(13.973) (5.58) (12.39) (22.02) (5.33) (5.634)
SIZE 0.569 0.589

(4.81) (2.73)
ROA -4.255 -7.647 -13.535 -15.937 -3.423 -6.237

(8.23) (15.61) (23.37) (20.41) (2.92) (4.32)
IPS 3.952 9.532 28.700

(6.86) (15.22) (19.34)
DR 2.392 2.549 2.661 3.393 3.523 2.681

(10.12) (9.35) (6.85) (7.28) (6.64) (6.15)
IPE 0.332 0.254

(3.54) (4.86)
CR -0.526 -0.846 -0.492

(2.637) (3.95) (2.00)
SOA -0.391 0.492 0.593 -2.019

(2.71) (5.91) (4.07) (13.82)
ES -1.002 -5.700 4.169

(2.83) (3.88) (5.09)
NIS 4.367

(1.93)
DC 0.072

(3.89)
RTA -12.249

(7.30)
WA -2.241

(3.92)
IPF 1.405

(6.20)
2 In L0 -387.89 -406.54 -344.323 -294.30 -246.00 -274.644

2 In Lp -355.12 -329.24 -245.270 -215.77 -199.17 -238.381

LR = 2[ln Lp -  In L0] 32.77 77.296 99.052 78.532 46.833 36.263

Res 0.064 0.132 0.189 0.177 0.117 0.113

Res 0.118 0.251 0.365 0.342 0.244 0.189

m i l ) 20.32 15.827 8.697 4.192 12.14 8.937

Significance level 0.009 0.045 0.368 0.839 0.145 0.348

«00 ! «0 53.5 68.5 75.8 72.1 74.8 46.8

«11/«I 72.7 77.6 82.1 79.2 71.1 80.4

(nm + n u ) / n 56.1 69.6 76.6 73.0 74.4 52.5

The statistical performance of the model as a whole can be evaluated by testing the hypothesis 

H0 : Pj = 0 j = 1,2,.... ,p using the likelihood ratio test. The likelihood ratio test indicates that

collectively the parameter estimates are different from zero and accept the existence of a model. The 

Hosmer and Lemeshow Test is significant for every single year. The pseudo R-squared coefficients are 

small, but we have explained they cannot be interpreted in the same spirit as the corresponding quantities 

in the linear regression framework.

Looking now at the results of the backward stepwise method, we see that all the parameter estimates are 

significant and have the right sign except three variables. The first one is SOA which has the wrong sign 

for two years as in the case of the forward selection. The other two variables are NIS and ES both activity
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ratios, with the first one having the wrong sign in 1997 and the second one having the wrong sign in 

1999. Note that ES has the correct sign in the other years in which it enters equations.

The likelihood ratio test rejects the hypothesis H0 : (3 j = 0 j = 1,2,..........., p and we accept the existence of a

model, that is a valid relationship between the dependent variable and the set of independent variables. 

The Hosmer and Lemeshow Test is significant for every single year whereas the pseudo R-squared 

coefficients are higher in every year than the corresponding values for the forward method.

Since parsimony is a desirable property of an econometric model, we see that the main difference in the 

estimated models using the two approaches is that the model produced using the backward stepwise 

method always contains more variables in each equation. A formal comparison of the two approaches 

could be performed using the pseudo R-squared adjusted for degrees of freedom or using some 

information criteria like the

Akaike information criteria and its variants. The Akaike Information Criterion, (AIC) defined as

AIC = 2 \nLp - 2 p .

Where Lp is the value of the likelihood function and p is the number of variables in the model. 

Alternatively, we can use the Schwartz criterion, which is a modified version of AIC and is defined as 

BIC = 2 In Lp — p  ln(tt) . Both criteria adjust their values to penalize for the extra variables required to

produce a given level of performance with the Schwartz criterion being much stricter. Table 3.9.4 shows 

the results of the comparison of the two models.

Table 3.9.4 ; Information Criteria for Forward and Backward Methods.

1994 1995 1996 1997 1998 1999

Forward

Akaike -370.07 -345.18 -260.621 -224.82 -207.97 -248.078
Schwartz -385.665 -361.088 -291.588 -244.816 -227.678 -262.219
Backward

Akaike -359.12 -335.24 -252.27 -221.77 -205.17 -243.381
Schwartz -379.914 -367.056 -288.398 -251.764 -234.732 -266.95

The two criteria produce conflicting results. In 1997 for example the Akaike criterion would claim that 

the backward method is best whereas the Schwartz criterion would say that the forward method is best. 

This is to be expected because the penalty of additional variables is larger in the latter model.

The comparison of the models should of course be based not just on statistical criteria but on 

classification performance as well. Although both the discriminant analysis and logistic regression 
procedures in SPSS estimate the posterior probability, they use a different procedure. In discriminant 

analysis we estimate the conditional probabilities first and then modify them with the introduction of 

classification costs and prior probabilities. In logistic regression, though, the posterior probability is 

estimated directly, and classification takes place on the basis of a predetermined cut-off point.

We can either adjust the constant term in the equation to incorporate costs forcing the constant term to 

behave as if the product of prior probabilities and classification costs are the same in both groups and then 

assume a cut-off point of 50 percent or we can leave use the estimated equation and assume a cut-off 

point equal to the sample size. We have adopted the latter since it is computationally more efficient.
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Looking at the statistical results, we see that the probability of migration depends on profitability, interest 

payments and leverage. Size is occasionally important and as in the case of discriminant analysis, larger 

companies in the sample have a larger probability of default. The two variables that have been present in 

the estimated equation for all periods are the profitability and leverage ratios. Looking at the final 

criterion, the percentage of correct forecasts, the overall percentage of correct forecasts is satisfactory.

3.9.4 Stable Subset Approach

The automated approaches of the two stepwise variants have produced models that although statistically 

adequate for most of the years are different in term of the variables they use in the equations. In this 

section we shall try to synthesise the two approaches and come up with a model that is economically 

rational and meets the statistical and classification performance criteria. One way to do that is to follow 

one of the non-nested models hypothesis testing procedure. In this section however we have opted for a 

more pragmatic approach by using a multivariate modelling procedure which can be described as the 

“stable subset” variable selection procedure. With this procedure a number of models containing one, 

two, three, and so on, variables are examined which are considered the “best” according to some specified 

criteria. One criterion to determine the “best subset” model that would be appropriate in our case would 

be the statistical significance of the variables in every sub-period we have examined.

Table 3.9.5: Summary results from stepwise regression

Forward Backward Number of 
Wrong signs

ROA 3 6
ROE 0 0
IPS 3 3
IPE 0 2
IPF 1 1
DR 3 6
DC 1 1
WA 4 1
CR 0 3
RTA 2 1
SIZE 0 2
UPL 0 0
SOA 3 4 4
ES 0 3 1
N1S 1 1 1
OS 0 0

However, given the multicollinearity between the financial ratios, we have followed the same strategy as 
in the case of the MDA. That is we selected one or more financial ratios from each category and 

estimated the resulting logistic equation. We selected the model that produced the highest value for the 

likelihood function. The selection of the initial variables was best on both the univariate logistic 

regression analysis results as well as on the results of the backward and the forward selection. We would 

expect variables like DR and ROA which were present in most of the equations to also be significant in 

the “best subset” approach. Table 3.9.5 summarizes the results from the two approaches which helps us 

identify the most significant variables.
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On the basis of the results from the forward and backward stepwise procedure were summarized in the 

above table we have selected the following ratios for inclusion in our “best subset” logistic regression 

equations.

Profitability Ratios 
Solvency Ratios 
Leverage 
Liquidity 
Growth

ROA
IPS
DR
CR and WA 
RTA and SIZE

The results from the estimation of the logistic regression equations are shown in Table 3.9.6 . Starting 

again with the economic interpretation of the estimated coefficient parameters we see that this time all the 

parameters have the expected sign, with profitability (ROA) and liquidity (WA) reducing the probability 

of being downgraded and interest payments (IPS) and debt (DR) increasing the probability of being 

downgraded.

Table 3.9.6: Empirical Result of Logistic Regression- Stable Subset Method

94 95 96 97 98 99

ROA -3.671 -9.069 -11.527 -13.644 -5.277 -6.749
(5.89) (24.18) (22.99) (20.90) (6.87) (7.25)

DR 2.090 2.282 3.146 5.006 1.570 2.106
(7.15) (9.91) (13.53) (19.98) (2.705) (5.21)

IPS 3.472 1.811 7.714 15.198 2.610 7.561
(4.95) (2.25) (16.94) (20.38) (3.44) (7.45)

WA

SIZE

-1.010
(1.30)
0.565
(4.77)

-1.073
(1.945)

-2.188
(4.76)

-2.845
(6.37)

-1.918
(3.82)

Constant -5.640 -4.153 -3.170 -4.696 -2.335 -2.667
(12.62) (19.07) (29.72) (33.71) (12.50) (7.29)

2 In L0 -387.9 -406.3 -344.3 -294.3 -246.0 -274.6

2 In Lp -353.8 -346.9 -267.4 -225.2 -218.2 -241.4

LR = 2[lnLp — In L0 ] 34.1 59.7 76.9 69.1 27.8 33.3

Res 0.07 0.11 0.15 0.16 0.07 0.11

Rn
0.12 0.20 0.29 0.30 0.15 0.17

HLixl) 12.9 3.7 5.1 10.2 21.0 7.7

Significance level 0.11 0.88 0.75 0.25 0.01 0.46

n00 /  «0
54.9 67.0 72.7 71.0 69.4 49.2

nn / /?, 69.7 76.0 78.6 75.0 68.4 74.5

Ooo+ « , , ) / « 56.9 68.1 73.4 71.5 69.3 53.5

Three of the variables (ROA, DR and IPS) are significant in every year, whereas WA is not significant in 

1997. Size again is significant in just one year as before. No profitability variables were found significant
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and no growth variables could be included in the equation despite exhaustive testing. In the case of the 

interest payments variables we tested the performance of the model using 1PF instead of IPS but in all 

case the model performed better using the latter variable.

The statistical performance of the model as measured by the likelihood ratio test is good and we are able 

to reject the hypothesis H0 : (3. = 0 j = 1,2,...., p and accept the existence of a model. The Hosmer and

Lemeshow Test is significant for every single year. The pseudo R-squared coefficients are small, but we 

have explained they cannot be interpreted in the same spirit as the corresponding quantities in the linear 

regression framework.

Looking at the final criterion, the cut off point on which classification took place was 0.12 which 

corresponds to the relative sample sizes. The classification results as we have already discussed are very 

sensitive to the cut off point and this is something that we should have in mind when we assesses the 

results. Now looking at the classification performance, the overall percentage of correct forecasts is very 

high for the group 1 companies, that is companies that were going to be downgraded. The lowest hit rate 

was 68.4 percent in 1998 and the highest at 78.6 percent in 1996. However the high hit rate for group one 

companies is reflected in the low hit rate for group zero companies, that is companies that were not 

downgraded. In two particular years, in 1994 and in 1999 the hit rate is as low as 54.9 percent and 49.2 

percent respectively.

The results are comparable to other studies using the same prediction period. Latinen and Kankaapaa 

(1999), for instance, using Finnish data, obtained a classification accuracy of 71.1 % two years prior to 

failure which is lower than the ones we achieved here. If the logistic model has homoscedasticity (not a 

logistic regression assumption), the percent correct will be approximately the same for both groups of 

companies. Here it is not, with the model having much more difficulty predicting companies that were not 

downgraded. While the overall percent correctly predicted seems good, consider that blindly estimating 

the most frequent category (non-downgraded companies) for all cases would yield a percent correct of 

88% so the model may appear that it does not contribute to the overall performance. However as we have 

explained in the case of the MDA this is not a valid benchmark against which to compare the 

performance of the model since the benchmark would assume that no companies would be downgraded . 

This is of course a costly assumption to make. The difficulty in predicting the first and the last year of the 

sample mirrors the results of the discriminant analysis. The last year of the sample was contaminated by 

the phenomenal rise in the stick market valuation of many companies, which changed the behaviour of 

companies completely. The model does not contain any market values and is therefore unable to capture 

this effect.

3.9.5 Diagnostics

In the last section we concentrated on the log likelihood chi-square and pseudo R-square measures for the 

model. The log likelihood chi-square is an omnibus test if our model as a whole is significant. The pseudo 

R-square measures the portion of variation explained by the model. These are the measures a researcher 

normally looks at first a model has been estimated. We have also looked at another popular measure of 

goodness of fit the Hosmer and Lemeshow's goodness of fit test. The idea behind the Hosmer and 

Lemeshow's goodness of fit test is that the predicted frequency and observed frequency should match 

closely, the more they match, the better the fit. The Hosmer-Lemeshow goodness of fit statistic is
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computed as the Pearson chi-square from the contingency table of observed frequencies and expected 

frequencies.

However, when we build a logistic regression model, we assume that the logit of the outcome variable is 

a linear combination of the independent variables. This involves two aspects as we are dealing with the 

two sides of our logistic regression equation. First, the link function of the outcome variable on the left 

hand side of the equation, that is the logit function (in logistic regression) is the right function to use. 

Secondly, on the right hand side of the equation, we have included all the relevant variables and have not 

included any variables that should not be in the model and the logit function is a linear combination of 

them.

It is possible that the logit function as the link function is not the right choice or the relationship between 

the logit of outcome variable and the independent variables is not linear. In either case, we have a 

specification error. The misspecification of the link function is usually not too severe compared with 

using other alternative link function choices such as probit (based on the normal distribution). In practice, 

the researcher is more concerned with whether the model has all the relevant predictors and if the linear 

combination of them is sufficient.

So, in addition to the statistical performance of the model using the conventional tests, in order to have 

confidence in the estimated model we have performed a number of diagnostic tests to determine how 

robust our estimates are to data. The theoretical foundation for the use of diagnostics in logistic regression 

is due to Pregibon (1981) who adapted the diagnostic test for linear models to the case where the 

independent variable is a binary one. In ordinary least regression, we have several types of residuals and 

influence measures that help us understand how each observation behaves in the model, such as if the 

observation is too far away from the rest of the observations, or if the observation has too much leverage 

on the regression line. Similar techniques have been developed in logistic regression.

The diagnostic tests are designed to test whether the regression assumptions are valid, to check for 

adequate fit, to check for outliers, and to identify influential points. All of the diagnostic tests are based 

on the estimated probabilities, ni , the residuals e, and the leverage of observations.

Logistic regression residuals are defined as the difference between the classification variable and the 

estimated probability

Ei = ^ i  - * i

and the Pearson residual (standardised residual in SPSS) which are defined as

C  -  5 i - " i

For large samples, the distribution of the Pearson residual is approximately normal with a mean of zero 

and variance of 1. Both Pearson and Deviance residuals are useful in identifying observations that are not 

explained well by the model. A large number of such cases is strong evidence of misspecification of the 

model. A summary statistic, the Pearson Chi-square statistic defined as

x2= l >
i=l
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can be used to provide an overall statistic for all the cases. This statistic follows the chi-square 

distribution with n-p-1 degrees of freedom and the assumption that the fitted model is correct in all 

aspects. Small values of the statistic indicate a good fit, whereas large values indicate a poor fit. Plotting 

the standardised residuals against the fitted probabilities allows us to test whether the variance of the 

residuals is constant.

Pearson residual and its standardized version is one type of residuals. Pearson residual is defined to be the 

standardized difference between the observed frequency and the predicted frequency. It measures the 

relative deviations between the observed and fitted values. Deviance residual is another type of residual.

It measures the disagreement between the maxima of the observed and the fitted log likelihood functions. 

Since the logistic regression uses the maximal likelihood principle, the goal in logistic regression is to 

minimize the sum of deviance residuals. Therefore, this residual is parallel to the raw residual in ordinary 

least square regression, where the goal is to minimize the sum of squared residuals.

Another statistic, sometimes called hat diagonal since technically it is the diagonal of the hat matrix, 

measures the leverage of an observation. It is sometimes called Pregibon leverage. The leverage of an 

observation can be used to check for outliers, that is unusual observations. The leverage of an observation 

is the diagonal element of the “hat” matrix in direct analogy with linear regression. The “hat” matrix in 

logistic regression is given by [Pregibon (1981)]

L = V%(R'VR) R'V^

where R denotes the n x (p +1) matrix containing the values of all observations for the m independent 

factors and the constant term and V is a n x n diagonal matrix with general element v; = 7̂ (1 -  fc;) .

The leverage for the ith observation is defined as

li = * iO -* i)(l.ri')(R'VR)-1(l,riT
The leverage is used to detect observations that have a large impact on the predicted values. Unlike linear 

regression, the leverage values in logistic regression depend on both the dependent variable scores and the 

design matrix. Leverage values are bounded by 0 and 1. Their average value is p/n where p is the number 

of estimated parameters in the model including the constant and n is the sample size. For cases with 

predicted probabilities less than 0.1 or greater than 0.9, the leverage values may be small even when the 

cases are influential. Large values of the leverage are considered to be values that are more than 2 or 3 

times its average value.

These three statistics, Pearson residual, deviance residual and Pregibon leverage are considered to be the 

three basic building blocks for regression diagnostics and it useful to inspect them first. A good way of 

looking at them is to graph them against either the predicted probabilities or simply case numbers. Figure 

3.9.1 shows the Pearson residuals plotted against predicted probabilities for all the years. The range of the 

band remains relatively constant indicating that the variance is not unstable. However for most years the 

residual bands have a negative slope which means that the variables and the logit may be related in a 

nonlinear fashion. Also there a number of observation which at low probability levels are misclassified. 

Figure 3.9.2 shows the leverage of the equation for every single year. The leverage varies between 0 anl 

with the larger values indicating the presence of outliers. In each year there are a handful of outliers 

which are manifested in values of the leverage in excess of 0.15. The largest outlier with a value of 0.9 is 

found in 1998.
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We have seen so far how to detect potential problems with model building. We will focus now on 

detecting potential observations that have significant impact on our model. There are several reasons why 

we need to detect influential observations. First, there are possibly data entry errors. Secondly influential 

observations may be of interest by themselves for us to study. After all, influential data points may badly 

skew our regression estimation. The last diagnostic test is therefore designed to identify influential 

observations. Influential observations are those which have a large impact on the value of the regression 

coefficients and the statistics use to test the overall significance of the model. An influential point is one 

whose removal will have a substantial change on coefficient estimates. Influential points pull the 

regression line in their direction and distort the fit. Influential points do not necessarily produce large 

residuals, i.e. they do not necessarily produce large outliers. Because they change the slope of the 

regression they may avoid being outliers. The effect deleting a particular observation has on the value of 

the estimated coefficients and the overall summary measures of fit such as Pearson’s chi-square statistic 

and deviance is also very important.

For example, the change in the second coefficient in a logistic regression equation when case j is deleted 

is given by

Af(p2(_j)) = p2- p 2(_j)

where P2 is the value of the coefficient when all cases are included and 02(_J) is the value of the 

coefficient when the jth case is excluded. Large values for statistic identify observations that should be 

examined. The A f(P 2(_j)) values calculated by the logistic regression program are an approximation to

the true value but they provide a good indication of the sensitivity of the estimated coefficients to 

particular observations.

An overall measure of the impact of influential observations on the equation has been provided by 

Pregibon (1981) and is analogous to the measure proposed by Cook (1977, 1979) for linear regression. 

Cook’s distance for the logistic equation is given by

c = ifK _
' 1 -  hj

Using similar approximations it can be shown that the decrease in the value of the Pearson chi-square 

statistic due to deletion of observation) is given by

c 2A X 2 =  X  -  X , ,  =
(‘J) 1 -  h i

A similar quantity may be obtained for the change in the deviance

ADV =  D V  -  DV, „ =
(' J) 1 — hj

The squared root of this quantity is called studentized residuals in SPSS. The change in the deviance and 

the Pearson chi-square statistic -  A D V and A X 2 are diagnostics for detecting ill-fitted observations; in 

other words, observations that contribute heavily to the disagreement between the data and the predicted 

values of the fitted model.
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These diagnostic statistics are very useful as they allow us to identify those covariate patterns that are 

poorly fit (large values of the statistic) and those that have a great deal of influence on the values of the 

estimated parameters (large values of the statistic).

Looking at the value of the Cook statistic for instance, we see again that we have a small number of 

influential variables that correspond to the outliers in the data. These outliers were in the group of 

downgraded companies and their removal would have eliminated valuable information about their 

behaviour.

The studentized residuals on the other hand show that despite the existence of some influential 

observations, the measures of overall performance are not affected.

Figure 3.9.1 Pearson Residuals

Pearson Residuals-1994 Pearson Residuals 1995

Pearson Residuals 1996
Pearson residulas 1997

Pearson Residual 1998
Pearson Residulas 1999
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Figure 3.9.2 -  Leverage Values
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Cook 1994

Figure 3.9.3 Cook’s statistic
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Figure 3.9.4 Studentized Residuals

Student 1994
Student 1995

Student 1996
Student 1997
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3.10 Conclusions from the Empirical Study

The purpose of the study undertaken in this chapter was the identification of factors affecting the credit 

risk of a company. We have carried out this task using three alternative methods: Linear discriminant 

analysis, quadratic discriminant analysis and logistic regression.

First we estimated linear discriminant functions for six years, 94, 95, 96, 97, 98 and 99 and we found that 

there is a group of variables that can differentiate between downgraded and non downgraded companies 

in a statistically significant way throughout the period. The classification results based on in-sample 

estimates show that in all cases at least 60 percent of the companies that were downgraded could be 

predicted to do so.

The second technique we used was quadratic discriminant function, which relaxes the assumption of 

equal covariance matrices in the two groups of companies, although it still relies on the assumption of 

normally distributed returns. The results from the quadratic discriminant analysis do not improve the 

results of the linear case. In most years the results were in fact inferior.

The third approach to classification of observation into one of the two groups of companies in our sample, 

i.e. migrating and non migrating companies, the logistic regression approach, provides an alternative to 

Discriminant Analysis when the distributional assumption underpinning DA are not met.

In the case of logistic regression, we have found variables that were significant throughout the whole 

period. The most important variables were those measuring profitability, leverage, solvency liquidity. 

Growth variables were occasionally significant whereas activity ratios were insignificant in the final 

equation. Size is not an important differentiating factor between the two group of companies, and in the 

only case when it came in as significant, it implied that size contributes to the probability of being 

downgraded.

The classification of results on the basis of logistic regression is comparable to that of Discriminant 

analysis in terms of the overall performance but it is significantly better when the hit rate for group 1 

companies is the criterion. All in all, in terms of classification performance by both methods, the hit rates 

are satisfactory when one considers the non-homogeneity of the sample.

Although the two techniques have produced slightly different results so far, it would be correct to say that 

there has been a set of factors that appear to be significant in both approaches. Although a specification 

test has been proposed by Lo (1986) to choose between the two techniques we have not conducted a 

formal test due to the computational requirements.

The entire statistical analysis was based on the use of financial ratios only, disregarding other qualitative 

factors that may exert an influence on the performance of a company. The results indicate that there is 

enough information in the financial statements of a company to help the identification of companies that 

may face problems. On the other hand it is also clear that the inclusion of qualitative variables would 

possibly produce stronger results.
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3.11 Appendix -  Univariate logistic regressions

Table A1 - Profitability Ratios
94 95 96 97 98 99

R16
2 In L0 -387.9 -406.3 -344.3 -294.3 -246.0 -274.6
2 In Lp -375.364 -366.886 -314.969 -268.57 -233.986 -257.28

12.536 39.414 29.331 25.73 12.014 17.32

R(N) 0.046 0.133 0.115 0.125 0.066 0.0955
HL 8.456 9.422 10.826 11.263 17.561 14.441
% J n 0 65.7 60.5 59.1 63.2 67.4 65.9
«ii/«i 50.0 70.1 71.9 74.6 68.4 71.3
(«00 + « l l ) / («0 + « l ) 63.6 61.7 60.6 66.8 67.5 67.85
“ i -1.277* -0.960* -1.067* -1.832 -1.489 -1.669
p -4.033* -8.776* -8.769* -6.732 -5.050 -5.981
R12 
2 In L0 -387.9 -406.3 -344.3 -294.3 -246.0 -274.6

2 In I , -380.723 -395.239 -327.342 -286.38 -233.278 -266.45

¿*(x,2) 7.177 11.061 16.958 7.92 12.722 8.15

R(N) 0.027 0.038 0.067 0.072 0.07 0.06
HL 18.587 23.010 10.108 11.213 4.652 6.78
«00/«o 25.6 36.3 43.8 56.7 76.0 55.63

«11 /«I 86.4 82.1 75.4 74.6 55.3 69.8

(«00+«ll)/(«0+«l) 33.7 41.9 47.6 60.1 73.9 60.1

“ i -1.682* -1.718* -1.714* -1.912 -1.830 -1.711

J _________________ -0.614* -0.809* -1.331* -2.34 -3.542 -3.023
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TableA2- Solvency Ratios

94 95 96 97 98 99
R24
2 In L0 -387.9 -406.3 -344.3 -294.3 -246.0 -274.6

2 In Lp -385.254 -401.823 -322.70 -276.96 -227.84 -260.45

LR(X ?) 2.646 4.477 21.592 17.34 18.16 14.15

Rn
0.010 0.016 0.085 0.073 0.013 0.043

m i l ) 9.182 21.536 6.558 17.34 19.831 18.86
«00/«o 94.4 63.3 78.0 85.6 96.7 91.31
«11/«I 12.1 55.2 54.4 49.12 13.2 31.26
(«00 +«,,)/« 83.4 62.3 75.2 76.21 88.3 82.25
« z -2.005* -2.153* -2.497* -3.011 -2.328 -2.669
p 1.563** 2.538* 6.312* 4.213 2.222 3.417
R13
2 In L0 -387.9 -406.3 -344.3 -294.3 -246.0 -274.6

2 In Lp -383.44 -400.794 -337.58 -285.97 -241.98 -269.49

LRill) 4.46 5.506 6.72 8.33 4.02 5.11

R n
0.028 0.019 0.017 0.017 0.012 0.018

HL{xl) 8.77 10.29 11.35 16.28 7.43 6.84

«00 ! «0 74.9 64.9 68.7 69.6 68.5 64.8

«11 /«I 59.4 58.2 61.3 63.2 60.4 53.4

(«00 + « n ) / ( « o  + « i ) 69.7 64.1 67.2 65.3 66.4 62.0

“ i -3.249* -2.038* -1.997* -3.045* -2.991* -2.401*

p 0.203** 0.106** 0.192** 0.145** 0.160** 0.183**
R25
2 In ¿o -387.9 -406.3 -344.3 -294.3 -246.0 -274.6

2 In Lp -383.991 -394.036 -338.87 -286.2135 -242.76 -271.493

m x l )
3.909 12.264 5.43 8.0865 3.24 3.107

Rn
0.015 0.042 0.034 0.0285 0.041 0.024

m x l ) 12.106 18.760 8.44 9.38 6.27 4.38

«00 / 10.6 64.7 54.1 37.65 42.6 37.9

«11/«I 90.9 62.7 80.1 76.8 70.5 60.3

K o + « l l ) /( « 0 + « l ) 21.3 64.5 59.2

42.9

45.7 40.2

“ z. -2.016* -2.292* -2.345 -2.154 -3.34 -4.02

p 0.227* 0.554* 0.667 0.3905 0.478 0.613
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Table A3: Leverage Ratios

94 95 96 97 98 99
R26
2 In L0 -387.9 -406.3 -344.3 -294.3 -246.0 -274.6

2 In Lp -383.035 -399.47 -338.065 -288.53 -242.604 -270.34

LR(%f) 4.865 6.83 6.235 5.77 3.396 4.26

Rn
0.018 0.024 0.025 0.022 0.019 0.023

m i l ) 4.672 6.701 5.601 6.712 9.978 8.719

«00 1 «0 67.3 73.2 53.1 64.1 72.7 54.6

«11 /«I 43.9 64.1 63.2 66.8 36.8 56.

(«00 +«,,)/« 64.2 69.2 54.3 64.9 69.1 55.1

“ z. -2.708* -2.917* -3.006* -3.615* -3.142* -4.327

P
1.387* 1.426* 1.695* 1.562* 1.556* 1.830

R4
2 In L0 -387.9 -406.3 -344.3 -294.3 -246.0 -274.6

2\nLp -386.7 -404.9 -343.54 -292.06 -244.02 -272.25

m i l ) 1.2 1.4 0.76 2.24 1.98 2.35

K 0.018 0.024 0.025 0.022 0.019 0.023

m i l ) 4.672 6.701 5.601 6.712 9.978 8.719

«00 («0 67.3 73.2 53.1 64.1 72.7 54.6

«11 /«I 43.9 64.1 63.2 66.8 36.8 56.

( « 0 0  +  « l l ) / ( « 0
64.2 69.2 54.3 64.9 69.1 55.1

«L -2.708* -2.917* -3.006* -3.615* -3.142* -4.327

P
1.387* 1.426* 1.695* 1.562* 1.556* 1.830
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Table A4: Liquidity Ratios

94 95 96 97 98 99
R7
2 In L0 -387.9 -406.3 -344.3 -294.3 -246.0 -274.6
2 In Lp -375.678 -389.46 -323.501 -276.37 -233.57 -264.74

LR(Xi) 12.222 16.84 20.799 17.93 12.43 9.86

R n
0.045 0.080 0.082 0.091 0.038 0.084

HL(x\) 7.924 4.661 4.011 4.495 19.794 3.68
«00 / «o 62.9 61.600 52.4 61.200 76.9 51.60
«11/«I 51.5 65.575 71.9 63.925 52.6 68.6
(«00 + «ll)/ « 61.3 63.500 57.4 67.050 74.4 64.5
“ i -0.891* -0.639 -0.512** -0.744 -1.209* -0.723
p -0.743* -1.864 -1.207* -2.252 -0.741* -1.984
R22
21nL0 -387.9 -406.3 -344.3 -294.3 -246.0 -274.6

2 In I , -376.13 -393.97 -323.002 -278.74 -238.37 -264.49

m i l ) 11.77 12.33 21.298 15.56 7.63 10.11

R n
0.043 0.0565 0.085 0.07 0.0775 0.060

m i l ) 4.866 4.759 5.968 4.652 5.31 5.08
”00 ! no 71.5 73.75 65.6 76.0 70.8 71.15
«,,/«! 48.5 51.9 63.2 55.3 59.25 53.87
(«00 + « l l ) / « 68.4 71.15 65.3 73.9 69.6 69

-1.598* -1.714 -1.700* -1.830 -1.765 -1.70
p -2.496* -3.019 -3.498* -3.542 -3.52 -3.01
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Table A5: Growth Ratios

94 95 96 97 98 99
R1
2 In L0 -387.9 -406.3 -344.3 -294.3 -246.0 -274.6
2 In Lp -380.3 -397.6 -332.76 -288 -240.1 -380.3

7.6 8.7 11.54 6.3 5.9 7.6

K 0.014 0.033 0.046 0.03 0.09 0.03
m i l ) 11.524 9.74 12.974 9.73 0.395 12.249
«oo/«o 90.7 80.34 40.0 30 91.1 65.35
«ii /« i 19.7 45.94 73.7 56.2 13.2 46.7
(«00 + «,,)/« 81.2 76.55 44.1 33.07 83.2 62.65
«L -1.84 -1.94 -1.930* -2.33 -2.166 -3.34

P -0.463 -0.891 -1.427* -0.823 -0.664 -1.723
R20
21nL0 -387.9 -406.3 -344.3 -294.3 -246.0 -274.6
2 In Lp -377.316 -401.4 -339.6 -288.2 -240.6 -268.7

LR(X2, ) 10.584 4.9 4.7 6.1 5.4 5.9

Rn
0.039 0.06 0.059 0.0415 0.023 0.0595

m i l ) 10.497 8.584 9.673 6.957 5.330 9.1285
«00 /« o 86.4 67.9 68.4 67.65 67.4 68.15
«11/« I 31.8 56.1 57.7 62.25 68.4 56.9
(«00 + «!,)/« 79.1 66.5 67.1 67 67.5 66.8
“ l -1.811* -1.975 -1.871* -2.0585 -2.142 -1.923
p -6.001* -10.011 -8.217* -8.177 -6.343 -9.114
R28
2 In L0 -387.9 -406.3 -344.3 -294.3 -246.0 -274.6
2 In Lp -383.194 -404.2 -342.5 -293.24 -242.97 -271.81

LR(Xi )
4.692 2.1 1.8 1.06 3.03 2.79

Rn
0.017 0.010 0.012 0.009 0.014 0.011

20.508 20.508 20.508 20.508 20.508 20.508

«00/« o 33.6 33.6 33.6 33.6 33.6 33.6

«11 /« I 71.2 71.2 71.2 71.2 71.2 71.2

(«00 -+ «11) / « 38.6 38.6 38.6 38.6 38.6 38.6
a L -4.521* -4.521* -4.521* -4.521* -4.521* -4.521*

p 0.524* 0.524* 0.524* 0.524* 0.524* 0.524*
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Table A6: Activity Ratios

94 95 96 97 98 99
R21
2 In L0 -387.9 -406.3 -344.3 -294.3 -246.0 -274.6
2 In Lp -386.7 -405.2 -343.52 -292.96 -244.56 -273.49

LR(Xi) 1.2 1.1 0.78 1.34 1.44 1.11

K 0.035 0.035 0.035 0.035 0.035 0.035

m i l ) 14.343 14.343 14.343 14.343 14.343 14.343

« 0 0  / « o
34.3 34.3 34.3 34.3 34.3 34.3

« 1 1  / « I
78.8 78.8 78.8 78.8 78.8 78.8

( « 0 0  + nu ) /n 40.2 40.2 40.2 40.2 40.2 40.2

u-l -1.856 -1.856 -1.856 -1.856 -1.856 -1.856

P -3.982 -3.982 -3.982 -3.982 -3.982 -3.982
R18
2 In L0 -387.9 -406.3 -344.3 -294.3 -246.0 -274.6
2 In Lp -378.31 -402.6 -341.5 -292.4 -242.9 -271.63

LR(il) 9.59 3.7 2.8 1.9 3.1 2.97

K 0.035 0.035 0.035 0.035 0.035 0.035

m i l ) 14.343 14.343 14.343 14.343 14.343 14.343

« 0 0 / « o
34.3 34.3 34.3 34.3 34.3 34.3

« 1 1 / » l
78.8 78.8 78.8 78.8 78.8 78.8

( « 0 0  + « l l ) / ( « 0  + « l )
40.2 40.2 40.2 40.2 40.2 40.2

a , -1.856 -1.856 -1.856 -1.856 -1.856 -1.856

(3
R19

-3.982 -3.982 -3.982 -3.982 -3.982 -3.982

2 In L0 -387.9 -406.3 -344.3 -294.3 -246.0 -274.6

2 In ^ -386.67 -405.16 -342.52 -292.95 -243.98 -272.93

¿*(x,2) 1.23 1.14 1.78 1.35 2.02 1.67

R n
0.035 0.035 0.035 0.035 0.035 0.035

m il) 14.343 14.343 14.343 14.343 14.343 14.343

« 0 0  / « 0
34.3 34.3 34.3 34.3 34.3 34.3

«11 / «I 78.8 78.8 78.8 78.8 78.8 78.8

( « 0 0  + « n ) / ( « o  + « l ) 40.2 40.2 40.2 40.2 40.2 40.2

« i -1.856 -1.856 -1.856 -1.856 -1.856 -1.856

P -3.982 -3.982 -3.982 -3.982 -3.982 -3.982
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Chapter 4 -  Measuring the Market Risk of Equities: A 
Review of Alternative Approaches and Some Empirical 
Tests on the Their Assumptions.

4.1 Introduction
The role of market risk in financial decision making is the central issue in financial economics. Financial 

theory defines the relationship between reward and risk but, there is little agreement as to how risk should 

be measured. The seminal work of Markowitz, [see Markowitz (1991)] established the variance as the 

appropriate measure of risk and made explicit the trade-off between risk and reward in the context of a 

portfolio of financial assets. Extensions by Sharpe (1964), Lintner (1965), and Ross (1976), have used 

equilibrium arguments to develop asset pricing models such as the capital asset pricing model (CAPM) 

and the arbitrage pricing theory (APT), relating the expected return of an asset to a set of risk factors. A 

common theme of these models is the assumption of normally distributed returns.

However, financial asset returns often possess distributions with tails heavier than those of the normal 

distribution and therefore models based on the assumption of normally distributed returns should be seen 

as approximations, whose success is a matter of empirical testing. Many alternative probability 

distributions have been proposed as more suitable representations of the underlying asset returns but few 

asset pricing theories are based on those alternative distributional assumptions.

The measurement of risk is important of course on its own merit not only as part of a theory for the pricing 

of assets. Following the established financial theory paradigm, and accepting the variance as the 

appropriate measure of risk presented two difficulties to risk managers. The first one arose from the need 

to have a measure that would express the potential losses in monetary terms rather than as deviations for 

the mean return. Using concepts from the insurance industry where losses were expressed in monetary 

terms, a number of financial institutions such as J.P. Morgan, and Bankers Trust, in the early 1990s, 

proposed a new risk measure to quantify by a single number an institution’s aggregate exposure to market 

risk. This measure, commonly known today as Value- at- Risk (VaR), is now used to measure not only 

market risk but also other forms of risk such as liquidity and credit risk. The second reason that the 

variance became a problematic measure of risk was the fact that it could only be justified theoretically by 

making the assumption that returns are normally distributed, an assumption that was not supported by the 

evidence.

In its original application Value-at-Risk was also based on normally distributed returns, making it a simple 

multiple of the standard deviation, with the multiple being the value of a chosen quantile from the 

standardised normal distribution. An important improvement in the measure of risk using the normally 

distributed returns assumption was the introduction of time-varying volatility by RiskMetrics (1996).

Since the original application the research has expanded exponentially in two areas. One is the modelling 

of volatility; the second is the specification of the appropriate model either for the entire probability 

distribution or for the tails of the distribution.

This chapter serves as a critical review of the literature on the measurement of the market risk for equities, 

concentrating in particular on the issues of implementation of one particular measure the Value-at-Risk. 

There have been recently a large number of books and articles that provide useful overviews of the
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various approaches to Value at Risk methods and calculation issues and reviews of these developments 

can be found in Duffie and Pan (1997), Dinenis (2002a) and Dowd (2002).

The chapter is organised in eight sections as follows. In Section 1, we introduce, in a common statistical 

framework, the most popular risk measures such as the variance, semi variance, value at risk and expected 

shortfall. Since the objective is the measurement of risk we only consider quantitative measures of risk.

In the second section we look at some of the issues that need to be tackled in order to apply any of the 

measures and in particular value-at-risk. The issues we examine relate to the appropriate distribution of 

returns, to the existence of the moments of the distribution, to the dynamic specification of the return 

process and issues of portfolio risk, and time aggregation. Finally following the discussion in Artzner, 

Delbean, Eber and Heath (1999) we examine whether the various risk measures are coherent.

In Section 3 we test the hypothesis of normality for a set of 132 stocks quoted on the Athens Stock 

Exchange. We examine the properties of daily, weekly and monthly returns and test the hypothesis of 

normality using a variety of tests. The assumption of normally distributed returns was introduced by 

Bachelier but early on Mandelbrot (1963) recognized the heavy-tailed, highly peaked nature of certain 

financial time series. Since then many models have been proposed to model heavy-tailed and semi-heavy 

distributions of returns of financial assets. These techniques are increasingly drawn not only from finance 

and economics but also from other areas. So in Section 4 we test the empirical performance of two general 

classes of non-Gaussian distributions. We fit to the set of our 132 companies a generalised skewed -t 

distribution, and a stable distribution. The performance of each distribution is tested using both likelihood 

function and non-parametric criteria.

In Section 5, we model the dynamics of equity returns using a low order autoregressive model for the 

mean and a t- GARCH (1,1) model to model volatility. Volatility clustering has been proposed as one 

explanation for the existence of fat tails in asset returns, so testing for the existing of serially correlated 

volatility is an important issue. Also given the critical role that volatility forecasting plays in the 

calculation of VaR, it is important to test in order to know what the appropriate volatility model is. Using 

the standardised residuals we can test whether the fat tails of the return distributions are due to volatility 

clustering.

In Section 6, we review the methods of estimating tail probabilities directly rather than through the 

estimation of the entire distribution. The various approaches to estimating tails such as the block method 

or the method of generalised Pareto Distribution is critically reviewed and the problems of implementation 

that arise. In the same section we estimate the lower tail of the 132 stocks of our sample. The implication 

that returns of financial assets have a heavy-tailed distribution may be profound to a risk manager in a 

financial institution or indeed to an investor. For example, three standard deviation events may occur with 

a much larger probability when the return distribution is heavy-tailed than when it is normal. Quantile 

based measures of risk, such as value at risk, may also be drastically different if calculated for a heavy-

tailed distribution. This is especially true for the highest quantiles of the distribution associated with very 

rare but very damaging adverse market movements.

In Section 7, we review the Cornish-Fisher approximation to the quantiles of an arbitrary distribution. The 

approximation adjusts the quantile of the normal distribution by adding the effect of nonzero skewness 

and kurtosis. The empirical performance is evaluated by comparing it to empirical quantiles.

Finally in Section 8 we present the conclusions of this chapter with some suggestions for further research.
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4.2 Measures of Market Risk for Equities
The measurement of risk in equity markets, indeed in all financial markets, has been the subject of 

countless efforts long before financial theory acquired its rigorous foundation. A rigorous approach to 

modelling risk starts with the description of the equity return series {R} as a random variable with 

density and distribution functions f ( r )  and F ( r )  respectively. Knowledge of the distribution 

function allows a complete characterisation of the risk profile of an investment or financial position. The 

most common distribution in finance is the normal distribution, but as we have mentioned above other 

distributions have been use to model equity returns.

The number of distributions that have been proposed to model the density of returns is huge (see e.g. 

Andreou, Pittis and Spanos (2001) for a recent review of the various distributions employed in finance) 

and still increasing. The statistical measures of risk are classified into two broad categories. Moment- 

based and quantile based. For some distributions e.g. the normal distribution, this classification is 

irrelevant as one approach is equivalent to the other. However there are cases of distributions where the 

two approaches produce different results.

4.2.1 Moment-Based Risk Measures

Moment-based measure of risk use the moments of a distribution to express information about the 

probability distribution. The qth moment of a distribution is defined as
00

E { r ‘, ) =  mq =  J r qf ( r ) d r  (4.2.1)
-co

The first order moment or the mean is defined for q = 1 and is given by

00

E ( r ) = m, = n  -  ^ r f  (r )d r
-oo

Moment -based measures of risk consider risk as the dispersion of return values around the mean. The 

statistical measures of this category are based on the central moments of the distribution defined as
00

cq(r)  =  E ( r - / i ) q =  \  ( r  - /u)q </>(r)dr
—co

00

Markowitz (1952) established the second central moment, <7~ = E ( r  -  ju) 2 =  J V -  M)2 f ( r ) d r
-oo

known as the variance of a random variable as the main measure of risk in finance. The variance measures 

both positive and negative deviations from the mean as risk. This measure has dominated developments in 

financial theory and is the “risk” component in the “risk return trade-off’ that financial models such as the 

CAPM and the APT are trying to explain. Markowitz defined the reward of a portfolio of assets as the 

weighted average of the rewards on the individual assets. The expected return is therefore a linear function 

of the returns on the individual assets. The variance of a portfolio of assets is not however a weighted 

average of the variances of the assets in the portfolio. It is instead a nonlinear function and it is this 

nonlinearity that allows for reduction in portfolio risk due to diversification. The portfolio risk is given by
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CTp = w 'X w

where W is the vector of weights in the portfolio and Z is the variance-covariance matrix of returns. 

The property of variance of linear combination of random variables to become small is the fundamental 

building block of financial theory and risk management.

Despite its dominance as a measure of risk in finance, the use of variance as a measure of total risk of an 

asset has been seriously questioned since it is based on some assumptions which are not supported by the 

empirical evidence. There are two assumptions that justify the variance as a measure of risk. The first 

assumption is the assumption that returns follow a normal distribution. This is clearly at odds with a large 

body of empirical research that shows that returns are not normally distributed.

The mean variance theory of Markowitz as well as the CAPM and the APT rely either explicitly or 

implicitly on the assumption of normally distributed returns.

The second assumption that can justify the use of variance is when we assume that investors have a 

quadratic utility function. Such a utility is not however consistent with observed investor behaviour since 

it implies negative marginal utility above a certain level of wealth.

The third moment also plays an important role. The third central moment
oo

c3 = E { r - n ) i =  j V -  //)3 f ( r ) d r
-0 0

of a distribution measures the asymmetry of a distribution and it can be seen also as a measure of risk. Its 

standardised version known as the coefficient of skewness is given by

E l r -MT

A non zero value for the coefficient of skewness means that there are more observation on one side of the 

mean than on the other side. Thus deviations from the mean do not convey the same information. There 

may be cases of two distributions with equal variance but one having positive skewness and the other 

having negative skewness. The probability of a large negative return is higher in the case of the 

distribution with negative skewness and therefore from a risk management point of view, this asset is 

riskier. Ignoring skewness will produce the wrong result.

In a similar fashion the fourth central moment of a distribution
co

c4 = £ ( r - / / ) 4 = J ( r  -  m Y  <t>(r )dr
-00

which measures kurtosis (i.e. the peakedness and the fatness of a distribution) can make the classification 

of assets on the basis of the variance completely useless. The concept of kurtosis is best understood in 

relation to the normal density function whose coefficient of kurtosis is 3. The coefficient of excess 

kurtosis is given by

n = ^ ~ 3
CJ

Distributions with tails fatter than the normal imply a larger concentration of observations in the tails of 

the distribution. Thus distributions which exhibit excess kurtosis exhibit a higher probability of extreme 

observations. This can be seen by comparing in Figure 4.1 two symmetric distributions, the standardised
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normal distribution with a mean of zero and a variance of one, and the Laplace distribution with a mean of 

zero and a variance of one. The only difference between the two is that the Laplace distribution has a 

coefficient of kurtosis which is equal to 3 whereas the normal distribution has a kurtosis coefficient of 0. 

Figure 4.1 : Kurtosis and Tails

Tail Comparison

The measures we have considered so far are all based on deviations from the mean, which takes into 

account both positive and negative dispersion around the mean. Fishburn (1977 ) introduced a different 

class of risk measures , the lower partial moments (LPM) based again on the notion of dispersal of values 

but this time it only measures the dispersion of values below a target value d.

d

f k(r)  = E ( d - r ) k =  J ( d  -  r ) k f ( r ) d r
-co

Of particular interest is the semi-variance which is a special case when d = |a and k = 2 . The semi-

variance is given by
d

L P M  K{r  ) = j ( j u - r ) 2f ( r ) d r
—co

The LPM measure was first suggested (as the semi-variance measure) by Markowitz (1959). An optimal 

algorithm for the semi-variance was first developed by Hogan and Warren(1973). Despite the early 

predominance of the semi variance version of LPM, Porter(1974) shows empirically that semi variance 

calculated from the mean return is inferior to a semi variance calculated from a target rate of return. 

Roy(1952) developed the target rate of return approach earlier. Fishburn(1977) and Ang and Chua(1979) 

provide proofs using utility theory showing that the target return should be the standard for calculating the 

semi variance rather than the mean return.

4.2.2 Quantile-Based Measures

Quantile-based measures are based on another characterisation of the probability distribution through its 

quantiles. For a random variable R with distribution function F ( r ) = Pr(i? < r ) the pth quantile is

defined as that value of r , denoted as rp for which F( r p) = Pr (R < r p) = p .  If the distribution
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function can be inverted, then the pth quantile can be calculated as rp = F  \ p )  where F  \ p ) is the 

inverse function of F ( r )  .

The Value-at-Risk (VaR) at confidence level C = 1 — p  is defined as the pth quantile of R. That is 

VaR(p) = rp = F  1 (p ) . The confidence level c = 1 -  p  is typically a large number between 0.95 and 

1.

From the definition of VaR as the pth quantile of a distribution it is clear that the calculation of VaR 

requires the specification of a probability distribution for the returns. Thus VaR can be calculated for 

specific density functions like the Gaussian density function, but in general we are not able to get a closed 

form solution.

The calculation of the VaR is greatly simplified if we make the assumption that the distribution is 

symmetric and its first and second moment exists. In that case the VaR of a random variable with mean

p  and variance a  can be written as VaR = p  + <jFf\ (p )  where F ^  (p ) is the distribution function

of a random variable with a mean of zero and a standard deviation of 1. Because of its intuitive appeal and 

simplicity, VaR has become the standard risk measure used around the world today. For example, today 

VaR is frequently used by regulators to determine minimum capital adequacy requirements. In 1995, the 

Basle Committee on Banking Supervision suggested that banks be allowed to use their own internal VaR 

models for the purpose of determining minimum capital reserves. The internal models approach of the 

Basle Committee is a ten day VaR at the 99% confidence level multiplied by a safety factor of at least 3. 

Thus if VaR = £1 , the institution is required to have at least £3 in reserve in a safe account.

The safety factor of three is an effort by regulators to ensure the solvency of their institutions. It has also 

been argued, see Stahl [1997] or Danielsson, Hartmann and De Vries [1998], that the safety factor of 

three comes from the heavy-tailed nature of the return distribution.

Expected Shortfall

The VaR measure gives the frequency with which the quantile will be exceed but it does not tell us by 

how much. The last measure of risk is the Expected Shortfall defined as 

E (rt / r, < - V a R ,)

The expected shortfall is a special case of the measure proposed by Fishburn. The expected shortfall can 

be calculated for particular distributions. For example if asset returns follow a normal distribution, then it 

can be shown that the expected shortfall can be written as

E (r i r  < -V a R (p )) = c r^ ®
P

where

VaR(p) is the VaR based on the pth quantile

(p ) is the pth quantile of the standard normal distribution 

a  is the standard deviation of return

tf)() is the density function of the standard normal distribution

This concludes the risk measures that are commonly used to quantify the risk exposure of a single 

financial position, portfolio of assets or an entire financial institution to market risk.
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4.3 Issues Arising in the Estimation of Risk Measures
In this section we present some of the practical and theoretical problems associated with the application of 

the risk measures we have discussed.

4.3.1 Distributional Assumption and Model Risk

The first issue that arises in implementing any of the measures of risk we have reviewd is the decision 

regarding the type of probability distribution that needs to be employed for the calculation of its moments, 

quantiles or expected shortfall. Heidelberger and Shahabudding (2000) for example state “ the central 

problem in risk management is estimation of the profit-and-loss distribution of a portfolio over a specific 

horizon. Given this distribution, the calculation of specific risk measures is relatively straightforward.

Value-at-Risk, for example, is a quantile of this distribution......The difficulty in estimating these types of

risk measures lies primarily in estimating the profit and loss distribution itself, especially the tail of this 

distribution associated with large losses”.

Figure 4.2: Example of Model Risk

Alternative Density Functions

Use of the wrong distribution will produce completely different results. This is known as model risk. By 

way of example we have plotted in Figure 4.2, the densities of four probability distributions all of which 

are symmetric with mean zero and standard deviation of one.

These distributions are different but this may not be detected easily since the bulk of the data lies between 

the same set of values (between -2 and +2) making it difficult to differentiate between the alternative 

distributions. Looking however at the tails of the distribution in Figure 4.3 reveals greater potential errors. 

The Cauchy distribution for example (thick line in the graph) postulates that the probability of extreme 

movements is significantly higher than the other three distributions. The real issue is whether there is a 

particular probability distribution that describes the behaviour of equity price changes and which could be 

adopted for the calculation of Value-at-Risk, so that the model risk is minimised. There are three distinct 

approaches that have been employed to estimate the quantiles of the distribution. One is to fit a probability 

distribution to the data. If data availability prevent the fitting of a distribution, then Monte Carlo 

techniques can be employed to derive the risk profile and its consistency with reality. The second
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approach is to fit a model to the tails of the distribution. Since we are interested in the tails of the 

distribution this approach may be better, because irrelevant information about the centre of the 

distribution does not contaminate the evidence. The last approach is a distribution-free approach. It has 

two main variants. The first variant is based on a historical simulation of the data. No distributional 

assumptions are made. The second variant is to approximate the quantiles of the distribution via the 

Cornish-Fisher approximation. The empirical performance of these techniques will be evaluated in 

subsequent sections.

Figure 4.3: Model Risk and Tails

Tails of alternative densities

4.3.2 Unconditional versus Conditional measure

In the previous section we discussed the effects of distributional assumptions. An important distinction for 

the purposes of risk measurement is between conditional and unconditional distribution. The conditional 

distribution is defined as the probability distribution conditional on a particular set of information 

available at the beginning of the horizon. For example different normal distributions may be estimated at 

different times, so the unconditional distribution need not be normal.

An early attempt to use conditional distributions was made by RiskMetrics by assuming that the variance 

of asset returns follows an exponentially declining scheme

o?+1=kj,2+(l-*.)r,2

where X is the decay factor.

More sophisticated volatility models were pioneered by Engel (1982 ) and subsequently by Bollerslev ( 

1986) who assumed that asset returns could be modelled as

r, = H ,+ e , (4.3.1)

where

£, — Z.CT, (4.3.2)
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The fundamental assumption of a conditional volatility model is that the volatility and the mean depend 

on information set VF (_, which contains all the information available at the beginning of period t, i.e.

<r,2 = a n d  //, = g O F M )

An example is the ARCH(l) model introduced by Engel (1982) where

a f = a 0 + a xef_, (4.3.3)
Another example is the GARCH (q,p) model introduced by Bollerslev (1986) which is

^  = «<,+Z a .£ <~. + Z P t f - i  (4'3 -4)
i= i  /= i

The conditional mean is usually expressed as a (low) order autoregressive model.
m

M, =̂ o+Ẑ -< (43-5)
i=i

The variable z t is an independently and identically distributed (i.i.d.) process, independent of T ;_,, with 

E ( z  ) = 0 and Var(z t ) = 1; A common assumption is that it is normally distributed, i.e. z t ~  N (0,1) . 

Another popular assumption is that it follows the student - t distribution, i.e. z t ~  / (0 ,1, v) .

An attractive feature of the GARCH model is that even though the conditional distribution is assumed to 

be normal, the unconditional distribution is non-normal with tails fatter than the normal distribution. Eagle 

and Gonzalez-Rivera (1991) have shown that the unconditional kurtosis for the conditional distribution in 

(4.3.4) is given by

£ (* ,)  3 _ £ [ £ ( * > , - , ) ]  3 _ g (3 < ? ,i ) _ 3 _ 3 A ( A L _ 3 > 0 (43 6)
‘ [ E t f ) ] 1 [ E [ E t f  !<?,_,)]? [ £ ( ct ,)]! [E{<J,)f

For the ARCH(l) model with a ]  = a 0 + Cixs]_x and normal density, Engle (1982) showed that whereas

the kurtosis of z t ~  )V(0,1) is 3, the kurtosis of the rate of return is

1 — oP i
y  a (r.) = 3 ------- -  3 > 0 for a x > 0 ,3a x < 1

1-3(2,

Similar expressions can be derived when Z, ~  f (0 ,l,v )  . In this case we have 

l - a 2
(ri) — 3 ------- ! y - 3 > 0  with 6  = 3 ( v - 2 ) / ( v - 4 )

1 — (9(2,

For the GARCH (1,1) model

cr( = (20 + d x£t_x +

we have from Bollerslev (1986) that

2 ( \ - t f _ x - 2 a x]3x- a ? )  3 

( l - / ? ,2 - 2 « , A - 3 « , 2)

which exceeds 0 even further for a, > 0,j3, > 0 and ¡3,2 + 2a xfix + 3a,2 < 1. From (4.3.6) it seen that 

the extend to which the kurtosis will exceed 0 is related to 

E { c j 2) - [ E ( . o I ) \ 2 =  V a r { a 2)
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The variance of cr, in turn depends on the unconditional fourth moment of £t . From this it can be seen 

that the heavier the tail of the conditional density of£t , the higher the degree of excess kurtosis that can 

be incorporated into the model.

A GARCH type model has a number of advantages. First the VaR can be calculated using the simple 

expression

V a R t n - \  ^ / m + ^ / m ^ oJCp )

and the quantiles of the standardised normal distribution. The forecast of the future standard deviation is 

simply the estimate of volatility based on the GARCF1 model.

The empirical issue that arises in respect of the conditional distribution of asset returns is the appropriate 

model for the mean and the variance. A plethora of models has been proposed to model volatility 

dynamics and the risk manager has to choose the correct model in order to get the right conditional 

distribution and appropriate quantiles. A related issue is whether the conditioning process should be 

applied to the mean and the variance only or whether the dynamics of other moments should also be taken 

into account. For example if £t / VF (_, follows a t-distribution, the question is whether we should specify

dynamic models for the skewness and kurtosis not just for variance as in Hansen (1994).

The choice between conditional and unconditional models for forecasting VaR is not clear-cut. For, 

whereas it is accepted that conditional models are superior for short-term forecasts, their value vanishes as 

the time horizon increases. Christoffersen and Diebold (2000) argue that the recent history of data series 

has little to tell about the probability of events occurring in the future. This applies especially to the 

prediction of rare events which are assumed to be stochastically independent. Therefore Danielsson and 

de Vries (2000) recommend to derive predictions about extreme events from unconditional distributions.

2

4.3.2 Moment Existence

In the previous sections we have defined and described various statistical measures of risk based on the 

moments of a distribution. We have discussed the conditions under which the variance can be interpreted 

as a legitimate measure of risk consistent with utility maximising risk-averse individuals. During our 

discussion we made the implicit assumption that these moments exist. This is certainly true for some of 

the distributions we have already discussed such as the normal distribution, but it is not true that they exist 

for all distributions.

A necessary condition for the qth moment of a distribution to exist is that the density function of the 

distribution f  (r)  should decay faster than l / | r |  /+' for |rj going towards infinity, otherwise the integral 

in equation (4.2.1) would diverge for large |r j . In the case of distributions with densities of the type

/  0 ) ~
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VaRp = y](VaRt )2 +(VaR2)2 +2puVaR{ xVaR2 < VaRt + VaR2

As in the case of the portfolio variance the reduction in portfolio VaR depends on the correlation 

coefficient between the returns of the two assets in the portfolio. For example, when p12 = 1

then VaRp = VaR̂  + VaR2. That is the portfolio VaR is the sum of the VaRs of the individual securities.

If, on the other hand, p12 = -1 then there is a portfolio which will produce VaRp = 0 . Finally if pi2 = 0

then VaRp < VaR{ + VaR2

The example above highlights that the key issue in the measurement of portfolio risk is the correlation 

between equity returns and it is our ability to model these correlations correctly that determines how 

effective our modelling of the portfolio risk is.

Leaving the aspects of parameter estimation aside, the normal distribution has the attractive properties that 

not only the marginal distributions of the multivariate normal are normal, but also a linear combination of 

normally distributed returns is also normal. Thus evidence from univariate distributions can be used to 

characterise the behaviour of multivariate distributions and thus the behaviour of portfolio of assets. 

Similarly, a linear combination of random variable that follow a stable distribution also follows a stable 

distribution (see e.g. Khindanova, Rachev and Schwartz (1999) for a discussion or Mandelbrot (1997)). 

However other distributions which describe the behaviour of returns better do not have these attractive 

properties. The student-t distribution for example, which captures the fat tails of asset returns, can be the 

marginal of a variety of other distributions (Tong (1990)). However a linear combination does not 

produce a t-distributed random variable. To overcome this problem many variants of multivariate t- 

distributions have been proposed which retain the attractive properties of the univariate distributon. The 

multivariate t-distribution for example which has been used by Glasserman, Heidelberger and 

Shahabuddin (2000) as a way of modelling portfolio risk is given by

' v + d '

t ( r ,v )  = v/2 I

r
7C-d/2(v  + ( r - r t ' Z - \ r - n ) )

- ( v + d ) / 2

Where d  is the number of assets and v is the degrees of freedom parameter. This distribution has marginal 

distributions which are also t-distributions but it imposes the restriction that the degrees of freedom 

parameter v (see e.g. Anderson (1984), or Tong (1990)) is the same in all stocks an assumption that is not 

necessarily supported by the data. If the assumption of common degrees of freedom is violated then there 

are problems in using these model in the measurement of portfolio risk.

The discussion above has shown that apart from the normal distribution, univariate tests of the 

distributional assumptions do not provide information about the multivariate distribution and consequently 

the multivariate distributions themselves have to be the subject of empirical testing in order to assess the 

right distribution for the calculation of portfolio Value at Risk. These difficulties are partly the 

explanation for the use of the normal distribution in portfolio analysis.
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4.3.4 Multi-period Risk Measures

We have shown so far how to calculate the value at risk for a single investment horizon which we have 

taken to be a single trading day. There are two approaches to extending the Value-at-Risk concept to more 

than one trading period. The first approach is to calculate asset returns for the desired investment horizon, 

e.g. weekly, 10-day or monthly asset returns and calculate the Value-at-Risk on the basis of those returns. 

The second approach is to find a way of extrapolating the daily VaR to longer time horizons.

The first approach has the serious drawback that the number of observations at the disposal of the 

researcher fall dramatically. For example with 10 years of data, a 10-day VaR will only leave 250 

observations on which to calculate the empirical VaR at 99 percent confidence level. This may not be 

enough to allow estimation of the salient characteristics of the underlying distribution.

The second method avoids this problem. However, under this method, the calculation of Value -at-Risk 

for longer investment horizons requires assumptions about the independence or lack of it, of returns across 

time.

In the second approach we assume that returns are identically and independently distributed. The h-day 

return is given by

R(h) = f j Ri
(= i

The Variance of the h-day return is, assuming independence, given by

a 2 (h) = ^ c r ,2 = h a 2
i =1

and so the standard deviation of the h-day return is given by

h i—
cr(h) = o f  = crv h .

i= i

Now if we define the 1-day VaR as VaR(Y) = o(t> 1 (/?) and the h-day VaR as

VaR{h) = 0 "(/t)0 _1(/?) then it is obvious that the h-day VaR is given by, the famous square root rule: 

VaR(h) = VaR(\)\[h

Diebold et all (1997) point out that the correctness of the square root rule relies on three conditions. First, 

the structure of the considered portfolio may not change over time. When we talk about a single asset this 

is not a serious problem. Secondly, the returns must be identically and independently distributed and 

thirdly they must be normally distributed. To see what happens when the iid assumption is not fulfilled 

consider the case where we want to calculate the VaR over a period of two days. If we make the 

assumption that the returns are identically distributed but not independent then the variance of the two-day 

return is given by 

° ( ,+2, = 2 t f 20 (l + p) 

where

cT2, = daily variance of returns

p  = the correlation coefficient between the returns

Only when the returns are uncorrelated, that is when p  — 0 in which case
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o (1+2l = V 2 a c we have the square root rule. In general the volatility of the h-day return will be given 

by

<7, = J h o D

and the Value at Risk will be derived by simply multiplying the daily VaR by the square root of time 

elapsed.

VaRh =crD4 h ® ~ \a )

The reliability of VaR estimates over longer investment horizons and how the distributional assumptions 

may impact on the measurement of risk has been discussed extensively. Christoffersen, Diebold, and 

Schuermann (1998) discuss the issues involved in calculating VaRs at different horizons and Diebold, 

Hickman, Inoue, and Schuermann (1998) study the problems arising from simple scaling rules of volatility 

across horizons. Christoffersen and Diebold (2000) investigate the usefulness of dynamic volatility models 

for risk management at various forecast horizons.

As we have said the assumption of normality may not be an appropriate way of describing the return 

distribution as all the available evidence supports the view that the tails of the empirical distribution are 

fatter than the tails of the Gaussian normal. We look at the implication for time aggregation of the two 

main ways through which kurtosis is introduced, that is the cases where the return follows a GARCH 

model and the case when the distribution of returns is described by a fat tail distribution.

In the case of a GARCH(1,1) model

a 2+1 = co + ar,2 + P a2

Drost and Nijman (1993) have shown that the h-period volatilities can be calculated as follows:

ct2+1 (h) = u (h )2 + a  {h )r; + p(/z)a2 (h)

with

co(/?) = h(S)
l-(< x  + p)A

1 -  ( a  + P)

a(h) = ( a  + py’ - P W

and P(/j) < 1 as solution of the quadratic equation

P (h) _  a - ( a  + fi)h - b

1 + p2 (h) ~ a\\  + ( a  +  P)2/! ] -  2b

The coefficients a  and b are defined as:

a = h ( l -  p )2 + 2h(h  -1 )
( l - q - p ) 2( l - 2 a p - p 2) 

( * - l ) [ l - ( a  + P)2]

[ ( / t - l - / t ( a  + P) + ( a  + py, ] [ a - a P ( a  + P)] 

+ l - ( a  + P)2

b [ a - a P ( a  + P)]
l - ( a  + p )2* 

l - ( a  + P)2

where k is the coefficient of kurtosis of the return distribution.
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The authors show that neither the standard deviation nor the semi variance is coherent measures. VaR is 

not coherent either unless we assume that the returns are normally ( or more generally elliptically) 

distributed. Only expected shortfall satisfies the criteria of coherence. The primary reason for the failure 

of VaR to be a coherent measure in general is because sub-additivity is not satisfied by VaR.

The lack of the coherence property is disturbing, but it is not fatal to the use of VaR. Jorion (2000) 

counters the critique of Artzner, Delbean, Eber and Heath by stating that the conditions under which lack 

of coherence may affect the validity of VaR are very rarely met in practice and despite its shortcomings 

VaR is now the main risk management framework.

4.4 Are Returns Normally Distributed?

The assumption of normally distributed returns allows the derivation of neat equilibrium pricing models 

and allows the portfolio decision problem to be described by only two parameters, the expected return and 

the standard deviation of the portfolio return. Similarly in the area of derivatives valuation, both the 

classic Black and Scholes (1973) option pricing theory and the Merton (1973) model assume that the 

return distribution of the underlying asset is normal. The problem with these valuation models both for 

cash as well as for derivative instruments, is that they do not always conform with the empirical evidence 

which shows conclusively that returns do not follow a normal distribution.

In risk management the assumption of normality also allows the derivation of easy rules for portfolio risk 

as well as for multi-period risk. The assumption of normality also ensures that popular risk measures such 

as the standard deviation and VaR are coherent.

However the use of a Gaussian distribution to describe the probability distribution of the equity return 

series is problematic. First of all, as it can be seen from the density function of the normal distribution,

.2 X
f i r )  = exp this distribution is suitable only for variables that do not take extreme

values. The quantity e x p r 2/cr2j that determines the shape of the distribution, decays so quickly

for large values of r that makes the realisation of values a few standard deviations from the mean 

virtually impossible. A Gaussian variable departs from its more probable value by more than 2<j only 

5% of the time, of more than 3cr in 0.2% of the times, whereas a fluctuation of 1 Ocr has a probability of

less than 2x1  CT23. Yet there is ample empirical evidence that suggests that we observe returns of 3 or 4 

standard deviation much more often than it is suggested by the normal distribution. One such example is 

the 1987 stock market crash when the market moved 20 standard deviations in one day. Using data on the 

aggregate stock market as it is measured by the Athens Stock Exchange General Index we estimated the 

daily standard deviation o logarithmic returns to be 0.0184. In a sample size was of 3559 daily 

observations we had 67 observations that were more than 3 standard deviations and 6 observations that 

were more than 5 standard deviations. The observations exceed 3cr 1.8% of the time instead of the 0.2% 

of the normal model, that is nine times more than the prediction of the normal model. In addition we had 

an observation in excess of 5a  once every 2.5 years whereas the normal model predicts one observation 

every 7250 years.
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The empirical evidence against the normal distribution is overwhelming (see e.g. Andreou, Pittis and 

Spanos (2001)). The Normal -  VaR, together with estimates of the parameters of the distribution was the 

original metric suggested by J.P. Morgan RiskMetrics, and has since been since the most widely used risk 

metric.

As in the case of valuation theories that are based on the assumption of normality, the performance of 

Normal -VaR will depend on the how close the normality assumption is to the data. If the returns 

distribution deviates too much from the normal distribution, then the Normal- VaR will produce 

misleading forecasts of the potential losses from price movements.

The importance or not of the assumption on normality depends on how crucial is the existence of fat tails. 

For high confidence level say at 99 percent, the importance of fat tails may be greater than say at 95 

percent level. Normal-Value-at Risk may therefore be less of a problem in the latter case. Pafka and 

Kondor (2001) make precisely this point.

The literature on testing the normality assumption is vast. In this section we test to see whether there is 

evidence of normality for daily weekly and monthly returns of 132 shares traded on the Athens Stock 

Exchange. This is a sample of companies of those traded and the selection criterion was data availability 

over the period 2/1/1996-31/3/2003. The Athens Stock exchange experienced a period of rapid growth up 

until September 1999, which was followed by a collapse in share prices. To allow for the possible 

different behaviour, the data were split into two periods: 1/1/1996-19/9/1999 and 20/9/1999-31/3/2003. 

Figure 4.4: Average Daily Returns

Average Daily returns

All the empirical results for the individual companies are shown to the Appendix to this chapter. In this 

section we present summaries of the results. The average daily return of all companies for the two periods 

is depicted in Figure 4.4. For all the companies the average daily return was positive in the first period and 

negative in the second.

Looking at the daily standard deviation in the two periods, it is obvious that the volatility of all companies 

increased in the second period. It is unusual for volatility to increase in falling prices, and an explanation 

might be in the trading mechanism that was in operation in the two periods.

For the duration of the first period and a few months of the second period, there was a limit up and limit 

down restriction in daily trading. The increased volatility may be due to the relaxation of this restriction.
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Figure 4.6 shows the maximum and minimum return for each period for all the companies which possibly 

reflects this fact.

Figure 4.5: Daily Volatility

Daily volatility per period

Figure 4,6: Maximum and Minimum Values of Daily Returns

MAXIMUM AND MINIMUM DAILY RETURNS

The skewness and kurtosis coefficients are depicted in Figures 4.7 and 4.8. From a first glance of the 

data it may appear that the degree of skewness has decreased in the second period, whereas the coefficient 

of kurtosis, has increased. It would appear that the tails of the stocks have become fatter.

It is a common assumption in the literature on risk management that the daily return has a mean value of 

zero and the drift can therefore be ignored in calculating Value-at-Risk. We have tested this hypothesis for 

the whole sample and for the two sub periods. In all cases the return are not statistically significant from 

zero.

Next we test for the existence of skewness. Under the null hypothesis of normality, the skewness statistic 

is normally distributed with standard errors s e ( / 3) = \ J 6 /T  where T is the sample size. The results for
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skewness show that 60 percent of the stocks are positively skewed, 20 percent are negatively skewed and 

the rest do not show any skewness.

Figure 4.7:Skewness Coefficient

Daily Skewness

Figure 4.8: Excess Kurtosis Coefficient

Daily Kurtosis

It has been suggested that the investment horizon is an important determinant of the statistical properties 

of equity returns. We have tested therefore the hypothesis that different investment horizons produce 

different skewness characteristics.

Table 4.1 Summary of Results: Skewness- Whole sample

Daily Weekly Monthly

Positive 63 103 76

Negative 11 1 2

Zero 58 28 54

Total Number of Companies 132 132 132
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The results are shown in Table 4.1. The complete results for every company are shown in the Appendix 

to this chapter. In the table we show the proportion of companies with positive, negative or zero skewness 

(i.e. statistically insignificant coefficient of skewness) in the sample.

The results show that for daily returns, the companies with positive skewness are very close to the number 

of companies with negative skewness. Next we have tested for the two sub-periods.

Table 4,2 Summary of Results: Skewness- First Period

Daily Weekly Monthly

Positive 74 114 94

Negative 2 0 1

Zero 56 18 37

Total Number of Companies 132 132 132

Most of the stocks are either positively skewed or there is no skewness at all.

Contrary to the results in the first period, now the majority of stocks do not exhibit any significant degree 

of skewness at all, whereas the number of stocks with negative skewness, although still a minority, has 

increased seven fold.

Table 4.3 Summary of Results: Skewness- Second period

Daily Weekly Monthly

Positive 43 47 21

Negative 14 8 6

Zero 75 77 105

Total Number of Companies 132 132 132

Next we look for the whole sample results on kurtosis. The standard error of the coefficient of kurtosis is

given by se(/4) = \ j 2 4 / T  where T is the sample size. The result for kurtosis implies that nearly all the

rt series exhibit kurtosis larger than that of the normal distribution. For the daily return series only 10

companies did not show any degree of kurtosis, with the overwhelming majority showing positive excess 

kurtosis. Only in the case of monthly returns the coefficient of excess kurtosis is zero for a large enough 

number (40 out of 132).

Table 4.4 Summary of Results: Kurtosis-Whole sample

Daily Weekly Monthly

Positive 119 132 92

Negative 3 0 0

Zero 10 0 40

Total Number of Companies 132 132 132

Comparing the results for the sub-sample we see that whereas the daily and weekly kurtosis does not 

prevent a great variation between the two sub-periods, in the case of monthly data we have a significant 

change, with the majority of the stocks exhibiting no kurtosis in the second part of the sample.
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Table 4.5 Summary of Results: Kurtosis- First Period

Daily Weekly Monthly

Positive 119 131 77

Negative 3 0 0
Zero 10 1 55

Total Number of Companies 132 132 132

Table 4.6 Summary of Results: Kurtosis- Second Period

Daily Weekly Monthly

Positive 119 124 35

Negative 3 0 0

Zero 10 8 97

Total Number of Companies 132 132 132

The presence of strong kurtosis and extensive skewness in the data means that the normality assumption is 

not a suitable assumption to describe the equity returns of the companies quoted on the Athens Stock 

Exchange.

Having tested the significance of Skewness and Kurtosis in the individual stocks we now move to test 

whether the distribution is normal. We use the Bera-Jarque (BJ) statistic for detecting departures from 

normality which is calculated using the formula

BJ = T(y] 16 +y] 12 4 ).

Under the null hypothesis of normality, the BJ statistic is distributed as JJ  (2 ) with 2 degrees of freedom. 

All BJ values are greater than their critical value even at at the one-percent level of 9.21, indicating that 

the rt series are non-normal. The results are not affected by splitting the sample into two sub-samples.

Normality is still rejected for the two sub-samples. The only exception is in the case of monthly returns 

were we can reject the assumption of normality for only 36 of the 132 stock returns.

Table 4.7 : Bera -Jaque Normality Test- Number of companies rejecting the hypothesis of normality

Daily Weekly Monthly

Period 1 132 132 93

Period 2 132 132 36

Whole Period 132 132 99

This result, although consistent with other studies that show that normality cannot be rejected for monthly 

returns, may be affected by the small size of the sample, as we have only 41 monthly observations in the 

second period.

Given the central role of the assumption of normality in the pricing and measurement of risk, it was 

important that we tested this hypothesis for the Greek stock market. The tests we have performed have 

shown conclusively that the distribution is not normal except perhaps in the case of monthly data in the 

second sub-period of our sample.
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4.5 Alternative Probability Models for Return

The parametric approach to VaR assumes that the return process has a specific distribution, usually 

normal, with the parameters of the distribution, primarily the variance, being estimated either from 

historical data or from implied option prices.

Although the normal distribution of equity returns is the underlying assumption for valuation models of 

cash and derivative instruments, there have been many studies that have modelled equity returns on the 

basis of other probability distributions. These alternative probability distributions include the stable 

Paretian [Mandelbrot (1963), Fama (1965), Officer (1972), Clark (1973)], the student-t [Praetz (1972), 

Blattberg and Gonedes (1974), Kon (1984), Gray and French (1990), Peiro (1994), Apparicio and Estrada 

(2001), Kim and Kon (1994)], the Box-Tiao or power exponential [Hsu(1982), Gray and French (1990), 

Peiro (1994), Aparicio and Estrada (2001)], the logistic [Smith (1981), Peiro (1994), Aparicio and 

Estrada (2001)] a discrete mixture of normal distributions [Ball and Torous (1983), Kon (1984), 

Peiro(1994), Kim and Kon (1994)] and a Poisson mixture of moments [ Press (1967), Kim and Kon 

(1994)]. Several other studies have estimated general models that encompass the specific distribution that 

we have mentioned so far. These models include Harris and Kucukozmen (2001) who estimated 

Exponential Generalised Beta distributions and Skewed Generalised - t  distributions.

Given the overwhelming rejection of normality as a distribution for daily equity returns, we turn our 

attention now to two alternative classes of models. The first class of models is the skewed generalised 

Student-t distribution which is an extension of the symmetric case. The second class of model is the class 

of stable models. The first of the two classes represent probability distributions with tails heavier than the 

normal, but not as heavy as the stable distributions.

4.5.1 Student T and Skewed Generalised T-Student

The problem with the normal distribution as we have already explained is that the coefficients of skewness 

and kurtosis are zero a property that is clearly at odds with the empirical evidence. Kurtosis can be 

introduced in a simple way if we assume that the equity returns follow the Student-t distribution. The 

probability density function of the Student-t distribution with degree of freedom V is given by

so the tails are qualitatively different, especially for small values of V as the tails of the distribution 

decay much more slowly.

l + v

this is symmetric about |a . It has polynomial tails and the weight of the tails is controlled by the 

parameter v . If R has the Student - 1 distribution then 

P(R >r) = co n stan t x r~v as r ->  co 

In contrast if Z has a standard normal distribution then

P(Z > r )  = co n stan t x -------- as r - »  co
r
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Empirical support for modelling univariate returns with a Student -  t distribution or Student t-like tails 

can be found in Blattberg and Gonedes [8], Danielsson and de Vries [12], Hosking et al. [26], Huisman et 

al. [27], Hurst and Platen [28], Koedijk et al. [33], and Praetz [44]. Application of the t-distribution in the 

calculation of VaR is found in Goolbergh and Vlaar (1999) who found that whereas the t-distribution 

performed better than the normal, it nevertheless failed to capture the lower confidence levels. The 

Value-at-Risk for this distribution can be expressed as

VaR = ju + ex Fv~ \ p )

where ex is the standard deviation of the t-distribution defined as ex = V /(v — 2 ) . The variance of the

distribution is therefore defined only if v > 2 . In the special case of v = 1 we have the Cauchy 

distribution. Application to the measurement of portfolio risk can be found in Glasserman et all (2000). 

The square root rule is difficult to apply since the sum of t-distributed random variables is not t-distributed 

The t-distribution as a candidate for representing the distribution of returns accounts for kurtosis, but it 

imposes symmetry. In this way it cannot be used as a distribution to explain returns when there is evidence 

of skewness in the data. Theodosiou (1998) introduced the concept of a skewed t-distribution (SGT) 

which solves this problem. The probability density function of the SGT distribution is given by

f ( r l / u , k , v , À , c r 2) = <

l f i

fo r x < n

fo r r  > /u

where

f\ = r i + - * — r * ( i  - A y k
v - 2

f 2=r \ + - ^ - 0 - k(\ + A y k
v - 2

r~M
k >

a y

r -  fj. k\

a )

~(l+v)lk

-(1+n)/k

y = -^—kB 
2(7
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\ k  k j
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U  k
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B {a ,b ) is the beta function with parameters a,b and with the following restrictions on the value of the 

parameters.

& > 2 ,v > 0 ,-1 < /1 < 1 ,< t > 0

The parameter fj. determines the location of the ransom variable r, whereas cr is a scale parameter. The 

parameters K and V control the height and tails of the density and thus its degree of kurtosis. The
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parameter X determines the skewness of the density. A symmetric distribution will have X = 0 . The 

parameter V can be interpreted as the degrees of freedom parameter when X — 0 and k  = 2 .

Many distributions are nested as special cases within the SGT. For example when 

k  > 2, n > 0 ,-1  < X < \,<j > 0 we have the generalized - t  distribution of McDonald and Newey 

(1988), when k  = 2 , the skewed t-diststribution of Hansen (1994), when k  = 2, X = 0 the standard t- 

distribution with V degrees of freedom, when k  = 2, A = 0, v —> co , the normal distribution, when 

A: = 2, A = 0, v = 1 the Cauchy, when X = 0, v —> co the power exponential, when 

k  = 1, X = 0, v —» oo , the Laplace and finally when k —> co,X -  0, V -»  oo the uniform distribution. 

Empirical application of the above distribution include Theodosiou (1998 ) for US data and Kuzumeglou 

and Harris (2001), Adcock and Mead (2003) for UK data.

The parameters of the SGT distribution were estimated by maximum likelihood (ML) using the BFGS 

algorithm with a convergence criterion of 0.0001 applied to the log likelihood function value. The sample 

mean and standard deviation were used as starting values, whereas starting values for the shape 

parameters were chosen on the basis of empirical results of other studies (Bookstaber and McDonald 

(1987), McDonald and Hu (1995), McDonald (1996), Theodosiou (1998), Kuzumeglou and Harris 

(2001), and Adcock and Mead (2003)).

One of the problems faced with the estimation of the GST distribution is the fact that the parameters take

values over a specific range. To ensure that the parameter values are restricted in that range we have
*

followed Kuzumeglou and Harris (2001) and have used the transformed parameter w  instead of the 

original parameter w = k,v,X,C7  where the transformed parameter is defined as

w = l  +
u - l

1 , -H-l + e

where u and / are the upper and the lower bounds of the acceptable values for the parameter w .  Once 

the maximisation of the likelihood function has been done with respect to the transformed parameters 

w* = k* ,V* ,X*, O'" and parameter estimates have been obtained the original estimates are obtained form

w  = -  In '  u - l

Kw - l

\
- 1

)

The empirical results are summarised in Section 4.5.3 with the detailed results for each company in the 

Appendix.

4,5.2 Stable Distributions

The class of stable distributions were developed by Cauchy (1853) and Levy (1925) and were used by 

Mandelbrot (1963) to model the distribution of equity returns. Applications of stable models for the 

modelling of asset returns include the seminal studies of Mandelbrot (1963), Fama (1965), Fama and Roll 

(1972), Blattberg and Gonedes (1974), and the more recent studies of Embrechts (1977) and Rachev and 

Mittnik (2000), Kindarhova, Rachev and Scwartz (2001).

Two reasons have been proposed for the use of stable distributions to describe the distribution of asset 

returns. The first is that the overwhelming empirical evidence shows that the distribution of asset returns
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has tails which are fatter that those of the normal distribution and are asymmetric. Stable distributions 

allow for asymmetry and kurtosis. Thus stable distributions are potentially consistent with the empirical 

description of asset returns.

The second reason is the Generalised Central Limit Theorem which states that the only possible non-

trivial limit of normalised sums of independent identically distributed terms is stable. Since it can be 

argued that the price of a stock is the sum of independent innovations, a stable model should be used to 

describe such a model.

A problem with stable distributions is that the density function cannot be written down explicitly, except 

for three special cases. Thus, instead of using a density function, stable distributions are described through 

their characteristic function.

Stable distributions can be defined in a number of alternative ways (see e.g. Nolan (1997) Kindarova, 

Rachev and Schwartz (2001) and Johnson, Kotz and Balakrishnan (1998) for the alternative definitions).
d

A random variable r is stable only if r=aZ  + b where o < C L < 2  , — 1 < (3 < 1, a > 0 , 6 e  91 and

Z is a random variable with characteristic function

E exp  (iuZ) =

exp

exp

na
|w| [1 -  iß tan  —  (signu)] a * 1

- i ß —(signu)ln|w|] \ a = \

The sign function is defined as

sign«  = •

- 1  u < 0

0 u =  0

1 u > 0

The above definition shows that a stable distribution is identified by four parameters ( a ,P ,a ,6 )  where

a  is an index of stability or characteristic exponent, P is a skewness parameter (a) , is a scale parameter

and (b ) is a location parameter.

When P =  0 and b = 0 the stable distribution is symmetric around zero and the characteristic function of 

a Z  has the simpler form 

<j)(w) = e x p ( - a a |w|“ )

The three special cases when the density function can be written explicitly is when a  = 2 , P = 0 

a = a 2 / 2 and b = p. in which case the stable distribution reduces to the Gaussian density.

1
G(rl jU,cr) =

V2
-exp

na
(  (r - n )2A

2<r2

The second special case is when a  = 1, P = 0 in which case the stable reduces to the Cauchy 

distribution with density
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C ( x / a,b) =
1 a
n  a 2 + ( x - 6 ) 2

The third special case is when a  = l /  2 ,  P = 1 in which case we have the Levy distribution

(  T
, 3 /2 -exP 'L{r / a , 6 ) =

a

2 t t  ( r - 6 ) V 2 ( r - 6 )

Stable distributions with a  < 2 are leptokurtic and have heavy tails. One consequence of heavy tails is 

that not all moments exist. In finance, the first moment and variance are normally used to describe the 

distribution of returns. These are not generally useful for heavy tailed distributions, because the integral 

expressions for these expectations may diverge. In their place it is sometimes useful to use fractional 

absolute moments defined as

E\X\P =  j| x\P f(x)dx

where p is any real number. It can be shown (see e.g. Nolan (1997)) that for a  < 2 is finite for

0 < p  < a and that = +°o for p > a . Thus when 0 < a  < 2 , =  E X 2 =  +coand the

stable distributions do not have finite second moments or variances. This of course causes tremendous 

problems to the measurement of risk as it invalidates the variance of asset returns as a measure.

When a <2,  Levy (1925) has shown that the tails of a non-Gaussian stable distribution is asymptotically 

equivalent to a Pareto law. Specifically, if X is a standardised stable random variable with characteristic 

exponent a  < 2 and skewness parameter ¡3, then as X —» co 2

P[X  > x )  ~  (1 + P )C ax -a

where

Ca = — r(a)sin  
n

 ̂an']

Note that the lower the value of a  < 2 , the slower the decay of the tails. Thus the class of stable 

distributions present a flexible class which is also theoretically plausible.

4.5.3 Empirical Results

The two classes of probability distributions were fitted to the 132 share prices of the companies quoted on 

the Athens Stock Exchange. The estimation period was for the period 2/1/1996-31/3/2003 and we used a 

total of 1790 daily observations. A maximum likelihood approach was used in both cases.3 

We employed three statistical criteria to choose the appropriate distribution for each stock return. The first 

one is the Schwartz Bayesian Criterion which has been explained in Chapter 3. The criterion penalises for 

the different number of parameters that a model has and it is given by

2 Property 1.2.15 Samorodnitsky and Taqqu (1994)
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SB C  = In L -  0.5 x m x In T

where m is the number of parameters to be estimated, In L is the logarithm of the likelihood function 

and T  is the number of observations. The assumption is that the more parameters a model have the better 

the fit, but this could be spurious.

The second criterion is the Kolmogorov distance

K D  =  lOOxsup Fs( r ) - F ( r )
re ft

where F ( r )  denoted the cumulative distribution function of the estimated parametric density and

F v(r)  is the empirical sample distribution., i.e. Fs(r)  =  — ^  /, (—00, r)rt , where I t (—co,r) is the
T  1=1

indicator function. The properties of this statistic is discussed in DeGroot(1986) and D’Agostino and 

Stephens (1986). It is a robust measure in the sense that it focuses only on the maximum deviation 

between the sample and fitted distributions.

The third measure is the Anderson -Darling statistic (Anderson and Darling (1952)), which weights the

absolute deviations F , ( r ) - F ( r ) by the reciprocal of the standard deviation of Fs(r)  ,

^ F (r ) ( l -F (r ) ) , i . e .

A D  = sup
re ft

Fs( r ) - F ( r )

^ ¡ F ( r ) ( l - F ( r ) )

The use of this statistic allows discrepancies in the tails of the distribution to be appropriately weighted.

On the other hand, KD emphasizes deviations around the median of the fitted distribution.

The results for each individually company are shown in the Appendix to this Chapter. In Table 4.8 we 

summarize the results of our distribution fitting. In the second column we show the companies that had the 

highest SBC for each distribution. Thus the skewed distribution produced a higher SBC in 112 of the 132 

companies. According to this criterion, 85 percent of the companies support the skewed - t  distribution. In 

column 3 and 4 we present the results from the other two criteria. According to the KD criterion 105 

stocks had a smaller distance for the skewed - t distribution so that 80 percent of the stocks seem to have a 

distribution closer to the skewed-t distribution. Similar results are obtained for the Anderson Darling test. 

Table 4.8: Statistics for alternative distributions

Distribution SBC KD AD

Skewed T 112 105 107

Stable 20 27 25

The empirical results of this section show that the GST seems to be a better description of the distribution 

of returns although the stable family of distributions fits well at least some of the share prices (up to 20 % 3

3 In the case of the stable distribution we used the programme Stable kindly supplied by Professor John 
Nolan of the American University, Washington. The algorithm for the case of the GST distribution was 
provided by Professor Elias Dinenis of Cass Business School, City University, London.

199



of the stock returns). In implementing a risk management system one is therefore left with an inconclusive 

advise as to what is the correct model to use.

The empirical unconditional distribution reflects the statistical properties of the returns and can be used to 

specify the risk associated with the underlying asset. In practice, one is typically more interested in a 

conditional risk assessment. However the unconditional sample distribution is of interest because any 

dynamic model used for that purpose has to be compatible with the unconditional distributions of the data 

at hand.

4.6 Modelling Mean and Volatility Dynamics of Equity Returns
The parametric approach to estimating Value-at-Risk requires the estimation of the moments of the 

distribution in order to have a full characterization of the probability density function and therefore of the 

quantiles of the distribution. Even in the simplest of the probability distributions we have examined, the 

normal distribution we need to estimate the mean and the volatility of returns. There is general agreement 

that the mean of the daily returns is not statistically different from zero, and so the only parameter that 

needs to be estimated in the Normal -  VaR model is the volatility.

There are two general approaches to estimating the volatility. The first approach is to assume that the 

volatility is constant. This is the standard assumption for the Brownian model of asset prices and has been 

used extensively not only for risk measurement but in valuation as well (Black and Scholes (1973)). The 

second approach is to assume that the volatility is not constant but it evolves according to a particular 

process. There are two classes of non-constant volatility models; (a) the stochastic volatility model and (b) 

the class of general autoregressive conditionally heteroskedastic (GARCH) models which we shall review 

in this section.

As we have seen in the discussion of the stable processes that fat tails entail the non-existence of moments. 

Because of the undesirable assumption of the infinite variance in non-Gaussian stable models, several 

authors have proposed alternative models for observed heavy tailed and skewed data sets. These models 

include ARCH and GARCH models with normal innovations, mixture models etc. Thus the family of 

ARCH-GARCH model introduced by Engel (1982) and Bollerslev (1986) apart from providing estimates 

of the volatility parameter, represent another attempt to introduce kurtosis and fat tails into the distribution 

of asset returns. In doing so they exploit a stylized fact, namely the fact that there are volatility clusters 

which are not captured by the static models we examined far. The variance is of course one measure of 

spread of a distribution and it is not appropriate for all problems. From a risk measurement point of view 

what is more important is a model that captures the shape of the distribution of asset returns.

In the GARCH (1,1) class of models we assume that the return is given by

r, = H t + £,

where £t = <Ttz t with

M i  = < / > o + M - i

a; = a 0+ a x£ l x+
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The empirical results for the fitting of the T-GARCH(1,1)4 model are presented in the form of a series of 

graphs which summarise the parameter values for each share.

Figure 4.9 Autocorrelation Coefficient

First-Order Correlation Coefficient

Starting with the estimation of the conditional mean model we have found the about 40 stocks exhibit 

significant positive correlation whereas the rest showed no significant first order correlation. Figure 4.9 

shows the values of the individual first order coefficients. We estimated higher order autoregressive 

models but in no case we found significant autoregressive coefficients.

Figure 4.10 B Coefficient

GARCH(1,1) -ß

Company

Looking now at the parameters of the volatility process we report the values of the /? coefficient that 

shows the speed of adjustment in the volatility

A test of how well the dynamic model has fitted the data is to look at the standardised residuals defined as

If the model fits the data well then the residual should exhibit no serial correlation either in the level or 

their square values. It should also eliminate kurtosis if the reason for the kurtosis was volatility clustering.

4 The estimation of the T-GARCFI(1,1) model was done using the software package PC GIVE.
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Looking at the standardised residuals we see that the application of a T-GARCH(1,1) model has not 

eliminated the kurtosis in the data. The data still exhibit smaller than the unconditional but nevertheless 

statistically significant excess kurtosis in the majority of the companies.

The results on skewness are not surprising given the fact that the innovation distribution we have used in 

the GARCH model is not an asymmetric one. Thus the coefficient of skewness for about 20 percent of the 

companies remains.

Figure 4.11 Residual Excess Kurtosis

RESIDUAL EXCESS KURTOSIS

Company

The empirical results from the modelling of the return dynamics can be summarised as follows. A 

significant number of stocks exhibit first order serial correlation. No stock had conditional mean dynamics 

of higher order. The existence of serial correlation creates problems for time aggregation and invalidates 

the square root rule. With respect to the modelling of volatility, we have used a GARCH(1,1) model with 

innovation generated from a symmetric t-distribution. The resulting residuals however exhibit skewness 

and kurtosis for about 20 percent of the companies. For those companies, fat tails are not the result of 

volatility clustering.

Figure 4.12 Residual Skewness

RESIDUAL SKEVNMESS
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In terms of modelling the volatility dynamics it also means that more sophisticated models that 

incorporate asymmetries and fat tails should be considered for the modelling of innovations.

4.7 Direct Estimation of Tail Probabilities
The approaches we have reviewed so far were based on some explicit assumptions about the probability 

distribution of the returns. In this section and the next, we are assessing two approaches that can be 

considered as distribution-free approaches.

The statistical distributions reviewed in the previous sections attempt to introduce fat tails and skewness in 

the distribution of returns to provide a more realistic representation of the equity return probability 

distribution. The potential problem with this approach is that by specifying an alternative characterisation 

for the entire probability distribution we may be fitting well to the data parts of the distribution we are not 

interested in. More specifically the goodness of fit criterion may be influenced by a good fit of the middle 

part of the distribution and by a poor fit of the tails. Since we are interested in the estimation of tail 

quantiles, we need to pay more attention to the tails of the distribution.

The extreme value theory concentrates exclusively on the tails of a probability distribution and ignores the 

central part of the distribution. This method will be reviewed in the following chapter.

Let {Rx,... Rn} be the logarithmic daily returns observed on days {1,2 , . . .n}  with density function

f R and cumulative distribution function FR. As we have explained, the basic idea is to study the tail of a

distribution, that is to study the statistical properties of observations that come from the tail of 

distribution. These observations are called extreme observations and the purpose of this section is to 

describe the behaviour of these extreme observations. Extreme observations are defined in two ways, 

both of which are related. In the classical extreme value theory, extremes are defined as the maxima and 

minima of non overlapping samples of n random variables. For example we may split the sample of daily 

observations into blocks of five observations and define the maximum or minimum weekly return. Then 

the set of extreme observations is made up of the weekly maximum or minimum values. Alternatively one 

may define as extreme values the maximum or minimum values of monthly observations. In other areas, 

such in meteorology where data are available for many years, the set of extreme observations is made up 

of annual maximum or minimum values. In the second approach extreme observations are classified as 

those observations which are above or below a certain value, which is called the threshold value.

4.7.1 Block Method

Let i?max n denote the highest daily return (the maximum) observed over n trading days that is

Rmm n = Max(Rx , . . .Rn) . Similarly let Rmm n denote the lowest daily return (the minimum) observed

over n trading days defined as Rmm n = Min(Rx, . . .  Rn ) . Note that

Rmm„ - M i n ( R l , . . .Rm) = - M a x ( - R x, . . . , - R m) so that one only needs analysing the behaviour of 

the one of the extreme statistics.
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parameter equal to the degrees of freedom (Mood et all, (1974)). An ARCH process where the 

conditional variance changes over time also satisfies equation (4.7.8) as does a heavy -  tailed stable

distribution introduced by Mandelbrot (1963), with the shape parameter B, in this cases equal to the 

characteristic exponent.

Jansen and de Vries (1991) argue that the Type I limiting distributions do not adequately describe the tails 

of the returns because the tails are too thin compared with the tails of the empirical distributions . The 

Type II distribution on the other hand has fat tails and is more consistent with the underlying distribution 

functions.

When we are unsure about the true probability distribution of returns, then we can use the generalised 

extreme value (GEV) derived by von Mises (1936) and Jenkinson (1955) which encompasses the three 

limiting distributions as special cases.

The cumulative distribution function of the generalized extreme value distribution is given by

G (r ) = exp
( r - b \

--1 !%
— l + s

l  a J
(4.7.10)

The three extreme value distributions are derived as special cases for different values of the shape 

parameter B, . The Gumbel distribution corresponds to the case E, —> 0 , with the distribution function

being derived using the fact that (1 + £,r)_l/  ̂ —> exp(r) as E, —> 0 . The Frechet distribution 

corresponds to the case when E, > 0 whereas the Weibull distribution corresponds to the case E, < 0 . 

The extreme value distributions derived so far are very useful for the estimation of tail probabilities and

quantiles. Since we have an explicit distribution function for the extreme observations in the form of GEV 

in equation ( 4.7.10 ) we can calculate any quantile of the distribution of extreme values. Suppose, for

instance, we want to find the value r  , such that this value is exceed by Rmax n with a given probability 

p, i.e.

p <Xax,„ > rp) = P

The above probability can be expressed in term of the generalised extreme value distribution as

1 - G { r p) = p

Using equation (4.6.10 ) we have

( r -  b 'i

1 J-«
__

_j

1 -  p  =  exp - 1 +  S
>

l  J.
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Solving the above equation yields the pth quantile

^  = *  + -{ [ -1 1 1 (1 - /3 ) ]^ -1 } for

rp = b - a  ln[ln(l -  p )] for E, -  0

So if we have estimates of the parameters b, a and E, we can estimate the quantiles of the generalised 

extreme value distribution and thus the Value - at -  Risk corresponding to probability level p.

4.7.2 Peaks over Threshold Method

In practice modelling all block maxima is wasteful if other data on extreme values are available. Therefore 

a more efficient approach is to model the behaviour of extreme values above a high threshold. This 

method known as the peaks over threshold (POT) is easier to estimate and easier to calculate VaR 

estimates.

Consider again a sample of n iid random {R^,... Rn } with a common distribution function F whose

functional form is unknown. In this approach we define extreme observations as those observations which 

are larger than a value u. That defines a subset of n, say k observations which are characterised as 

extremes and whose distribution we aim to establish.

The conditional distribution function of those observations R which lie above u is give by

F(r)  = P ( R < r l R > u ) = P(R:ir-R>U)  = Flr ) - F(U\  r> 0 
" P ( R > u ) 1 - F ( u )

If we formulate the problem in terms of the excesses Rl — U then the pertaining excess distribution
function at u s given by

F  (r) = P(R - u  < r  / R > u )  = F —  +U^~ , r >  0
“V '  1 - F ( u )

Pickands ( 1975) has shown that if F is in the maximum domain of attraction of G then as u approaches 

the end value of the distribution (normally infinitive) then the conditional probability function converges 

asymptotically to a function H 

lim [Fu{r ) ]  = H { r )
CO

Where the function p[( r )  is given by

H ( r )  =

1 - 1 +  -
g  + <;(« -  (t)

1-exp (  1 ^ 
---- r

V o  )

^ 0

^ = 0

where cr + E,(u -  p )  > 0, r  > 0 when E, > 0 and 0 < r  < - { a  + E>{u -  juJ) / E> when E, < 0 .
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The function H ( r ) is known as the Generalised Pareto Distribution (GPD). A simple proof of the 

relationship between the GEV and the Generalised Pareto Distribution is given below ( Coles (2001)).

r / M ,.Yt-i/O
[FR{ f)X  «exp  - 1 + 4 r - \ i

l l «r J .
or

#iln[F*(r)]«- 1 + 4
v ü  y

■1-1/4

For large values of r , a Taylor expansion implies that

1 - F »  =  -

\

+ <r
rt u - f j ,  |

n l  cr JJ

for large u. Similarly for r > 0.

1 - F R(u + r )  = -

Hence

P(R > r  + u / R > u)

1
— 1 + 4n l a )\

n 1 [l + £,(w + r - ja ,) /a ]  s \

-i [ l + ^ (w - |a ) /a ]  ' /s 2

L,(u + r -  \ i ) I <3 

^ ( w - |u ) / a

- 1 / 4

1 +  -

The above relationship shows that whether we estimate tail probabilities based on the GEV or the GPD 

should produce the same results. Indeed for a given value of u the parameters <%,ju,(T of the GEV

distribution determine the parameters of the GPD. In particular the shape parameter £ is independent of

u and it is the same for both GEV and GPD distributions. Choosing a different, but still large, block size 

n, would affect the values of the GEV parameters but not those of the corresponding Generalised Pareto 

Distribution of threshold excesses.

The Generalised Pareto distribution contains a number of special cases. If £  > 0 , F is the Frechet family

and H is a Pareto distribution

H P(r)  = \ - c r ~ Uk

If Ç -  0 , F is in the Gumbel family and H is an exponential distribution
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H { r )  = 1 -exp
f _ r \

J

If£ < 0 , F is in the Weibull family and FI is a Pareto type II distribution.

In most applications of risk management in finance, the data comes from a heavy-tailed distribution, so 

that E, > 0 .

In order to estimate the tails of the loss distribution, we use the conditional distribution function which we 

can write now as

F (r  + u) = Fu( r ) [ \ - F ( u ) \  + F (u )

or after using the fact that Fu (r) ~ H ( r ) from above theorem

F ( r  + u) = H {r)[  1 -  F (u )\  + F (u )

The function F (u )  can be estimated non-parametrically using the empirical distribution function

n - k

where k represents the number of exceedances over the threshold u. After some manipulation we have

F(u + r )  =
r  & 'i

1 + —r
- i / r

1 -
l  P 2n

k k 
n n

+ -
n - k

n

f  £ Y 
1 + —r

V

=  x - k-
n

(  e T 1̂
1 + —rl P J

+  1- *  
n

where J3 = a  + E,{u -  ju) 

Denoting x - u  + r  we have

F(x) = l —  
n

1 + - ( x - u )
. P

y l/4

)

and

1 - F ( x )  = - 1 + - ( x - u )
. p .

The Value-at-Risk is computed by first setting 1 -  F( x )  = p  and then solving for the unknown value of

i—i 1X, = F~ (p ) that corresponds to probability level p

Px = u - 1—
'  i

j L . v f
k i n

- 1
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The Value-at-Risk V aR (p) = x p calculated in this way uses only extreme values and given that it is

derived from a description of the tails only it should provide a more accurate estimate of the true Value-at- 

Risk. Most importantly the functional form of the distribution function is not ad hoc but it is based on the 

asymptotic theory of extreme values. As in all cases where asymptotic theory is invoked, the results hold 

when only when the assumptions on which the asymptotic results are obtained also hold. The crucial 

assumption on which the asymptotic results are based is that the random variables {Rx, . .. Rn} are iid.

4.7.3 Estimation of the Generalised Extreme Value Function

Maximum likelihood estimators of the parameters of Equation () have been discussed by a number of 

authors including Jenkinson (1969), Prescott and Walden (1980,1983), Hosking (1985) and Macleod 

(1989). Hosking, Wallis and Wood (1985) have discussed the method of probability-weighted moments 

for the estimation of parameters. The estimation of the Gumbel distribution is covered extensively in 

Gumbel (1958) and Galambos (1978). A review of these methods is presented in Johnson, Kotz and 

Balakhrisnan (1995). Goodness of fit tests for the generalised extreme value distribution have been 

examined by Chowdhury, Stedinger and Lu (1991).

4.7.4 Estimation of the Generalised Pareto Distribution

There are a number of ways for the estimation of the parameters of the generalised Pareto distribution. 

The estimation of the tail parameter in the threshold model is relatively straightforward, but it depends on 

the specification of the threshold above or bellow which we classify observations as extreme.

The first one is based on maximum likelihood principles. The density function of the generalised Pareto 

distribution can be derived by differentiation of the distribution function with respect to r. This produces 

the following density function.

h(r)  =
d l i ( r )

dr

1

a + £,(w -  pi)
1 +  -

v r ' '  E Y T 1
1 + —r

P ,ct  + £ 0 - | j )

where P = a  + t,(u — |J.). Once the density function has been derived, we can write down the likelihood 

function for the sample which has the form

1
K M )  = - k  M - 1+ -

4 J  M

. 3
p .

The MLE of the parameters are obtained from the first order conditions

» < M )  = 0 a „ d M  = 0
dfi

The parameters of the likelihood function can be derived using numerical optimisation. The asymptotic 

properties of the MLE of the GPD parameters have been derived by Smith (1987) and Joe (1987) who 

showed that the asymptotic distribution of parameter estimates is bivariate normal, i.e.

4 k
p / p -

i - t
with Q 0 + £ ) 2

- a + £ )

- ( !  + £ ) 

2(1+ £)
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The asymptotic distribution can be used to construct confidence intervals which can in turn be used to 

evaluate hypotheses. For example the 95% confidence intervals for the parameters /? and £  are

obtained as /?±1.961 2(1+ ^ 2
and

|  ±1.96. (1 + | ) 2
k

respectively.

In the case £, = 0 the log-likelihood is

m  = ~k  In
P  7=1

1 &A 1 ^
in the latter case the estimate of (3 is given by ¡3 = — /  rj

k  /.i

A second approach is the non-parametric estimator of the tail suggested by Pickands (1975, p. 121) and 

which is given by

rk/2:k

V r iki4:k ~ rkl2:k )

where rk/lk and r3k/4.k are order statistics in sample of size k. The normalized Picands’s statistic 

defined as

( | - S ) V * - > W (  o ,c 2)

where

[ i  =  ^ ( 2 ^ +1 + 1 ) / [ 2 ( 2 _l - 1 ) I n 2 f

A third method is the method of moments (Castillo and Hadi (1997) which produces parameter estimates 

given by

U = ( ^ 2 / ^ - l ) / 2

L o M= n r 2/ s2+l)/2

where r and s are the sample mean and the sample variance.

Finally Hoskins and Wallis (1987) have suggested the method of probability -weighted moments (PWM) 

The PWM estimates of the parameters are

I pwm = r /Q r -2 t ) -2  

and

P p w m  =  2 r t / ( r - 2 t )  

where 

1 k
t = - Y ^ {y - P i k ) ri.k 

k  ,=i

where

% = - In 2
In
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p i k = (/ -  0.35) / k  and rvk is the ith order statistic in a sample of size k.

4.7.5 Estimation in the special case of the Pareto Distribution

A simplified method can be employed to estimate the tail index of a distribution that is simpler than is a 

special case of the GPD framework described so far. This approach is based on the fact that the tail of the 

distribution is described by a Pareto distribution

P ( R - u  < r  / R > u )  = 1 - c r _1/i

It is well known that if a fat-tailed distribution function F is in the maximum domain of attraction of a 

Frechet distribution, then the tail of the F satisfies

1 - F ( r )  = L ( L ) F v *

where 1 -  F ( r ) = L ( L ) r ~l/v is a slowly regularly varying at infinity function such that

L (tr )
lim ------- = 1 for t > 0
,-ko l ( j )

That the tail distribution can be approximated as

1 - F ( r ) * c r " 1/<f

Given this approximation and using the conditional density function

f i r, )  ... 1 c r ; ^
1 - F ( u )  £ cu~Vf

we can write the likelihood function for all observations rt larger than the threshold u, as

f in)
1 - F ( u ) n 1 c r " 1/i_1 

£ cu

so that the log likelihood function is

k
I n / ( c ,  £ )  =  - £ - l n ( £ ) -

y~ i

Taking derivatives with respect to % and setting it to zero yields the simple Hill (1972) estimator.

i  = \ Y j Xni n / u ) = \ . T j ' [nr i - XnuK / - i  /C /= i

The c parameter can be estimated by ensuring that the fraction of observations beyond the threshold is 

accurately captured by the density as in 

F{u)  = \ - k /  n

From the definition of F(u) we can write 

1 =1 - k i n

Solving this equation for c yields the estimate of c
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n

where k is an integer which determines the number of extreme observations considered in estimating the 

tail index. Goldie and Smith (1987) show that

The last result allows again the statistical significance of the estimated coefficient. The value at risk is 

easily calculated in this case and it is given by

r E p  =  ( p  I  c ) _s =  u ( p n l  A:)-1’ .

The Choice between the Generalised Pareto Distribution and the Pareto distribution is a matter of choice 

for the researcher. As McNeil and Frey (2000) state, the Pareto distribution describes only heavy-tailed 

data whereas the Generalised Pareto Distribution is able to represent data that are light-tailed or even 

short-tailed. If there are periods when the distribution of financial returns appears to be light-tailed then 

the GPD will be a more appropriate model. Against that, one of course has to set the increased 

computational burden that this more general procedure requires.

4.7.6 Empirical Results

We have used the Pareto distribution version of the tails to estimate the lower tail of the returns of the 132 

Greek stocks of our sample. In fact we have estimated the lower tail for both the raw data as well as for 

the standardised residuals.

Before we report the results it is necessary to discuss one important issue that is considered a major 

weakness of this approach, namely the choice of the sample size. All the estimators derived in the 

previous section require the choice of value for k  that essentially determines which observations lie in the 

tail of the empirical distribution. The size of the sample from which the estimates of the tail parameter are 

drawn plays an important role. The main problem is that estimates of £, seem to be affected by the choice 

of k as they become larger for larger values of k. The dilemma the researcher faces is whether to use a 

large or a small value for k. A small value of k produces large standard errors for £, and makes the 

statistical inference unreliable. A large value for k on the other hand, improves the asymptotic properties 

of £, (Pagan 1996) but it also increases the probability that the sample contains observations that are not

extreme, increasing the bias in £,.

There very little guidance as to what is the appropriate value for k ,  although DuMouchel (1983) 

recommends that k  should not exceed 10% of the sample. Similarly Brock and de Lima (1996) report 

that “for reasonably sized samples, Loretan’s (1991) simulations indicate that ^ is a robust estimator of 

if k does not exceed 10% of the sample size”. Also Loretan and Phillips (1994) advised that £, should 

be estimated for a variety of values of k.

We have selected as our extreme sample the top 10% of our negative returns. We have also experiments 

with sample sizes of 5% to 9%. The results are relatively robust. The results for the raw negative returns 

are shown in Figure 4.13. The tail index takes values between 0.19 and 0.5, a set of values consistent with 

other empirical studies. As we have discussed the lower the value of the £ , the close the tails are to the

tails of the normal distribution, with the case ^  -  0 corresponding to normal tails.
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Figure 4.13 £ Coefficient Estimates Raw Series

Tail Index

Since the value of £ < 0.5 , it means that the corresponding tail index of a stable distribution a  must be 

larger than or equal to 2. This is an important finding because the empirical results support the view that 

the second moment (i.e. the variance) exists. The overwhelming majority of the values of also indicate that 

the third as well as the forth moment of the distribution may also be defined.

The application of extreme value theory presupposes that the returns are ¡id an assumption that is not 

supported by the data since serial correlation and volatility clustering are present. Whereas it is claimed by 

some researchers that only in the case of strong correlation is the use of extreme value theory 

inappropriate, we have nevertheless have estimated the lower tails of the standardised residuals, which 

meet this assumption. The results are shown in Figure 4.14.

Figure 4,14 E Coefficient Estimates Residuals

Tail Index Standardised Residuals
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Summarising the results from this section we can say that the results provide further evidence about the fat 

tails of the distribution. The individual company results show a wide range of fatness but all have fatter 

tails than the normal. The results also provide evidence that the variance of the returns does exist.

4.8 Cornish -  Fisher Approximations

The alternatives to the normal distribution considered so far consisted of (a) distributions that exhibit 

kurtosis or both skewness and kurtosis (b) models with time varying second moment and (c) models that 

approximate the tail of a distribution. In the spirit of the last approach, a different approach is instead of 

using a specific distribution to “correct” the normal distribution quantile estimates using the so-called 

Fischer Cornish approximation given by

z = z + — (z2 - l W  —  (z3 - 3 z  — (2z3 - 5 z  )
z c f  ^  g  \ ^ n  24 '  N J ^ N '  3 6 '  N N )

where:

z v = the critical value for the standard normal distribution at a given percentile 

y3 = Skewness coefficient, y4 = Excess kurtosis coefficient

In order to asses the usefulness of the approximation we have calculated the Cornish- Fisher based 

quantile for all the companies a compared it to the corresponding quantile of the empirical and the normal 

distribution. All the moments are estimated for whole sample. The results are shown in graphs 4.15 and 

4.16.

Figure 4.15 1% Quantile Estimation via Cornish -Fisher Approximation

Cornish Fisher Approximation 1%

Not surprisingly the normal distribution seem to underestimate the empirical l% quantile for nearly all the 

companies. The Cornish-Fisher approximation quantile, on the other hand, tends to fall on either side of 

the empirical one and thus with the exception a few outliers does not represent any systematic departure.
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The results for the 5% quantile are similar. The normal quantile tracks down the empirical quantile very 

closely whereas the Cornish -Fisher approximation quantile is again much too volatile.

The above results are not conclusive evidence that the Cornish-Fisher approximation is not a useful way to 

modify some of the problems of the normal distribution. It merely highlights here that in this particular 

sample it makes the quantiles too volatile and is therefore of limited use.

Figure 4.16 5% Quantile Estimation via Cornish -Fisher Approximation

4.9 Conclusions
The purpose of this chapter has been to review the various measures that have been proposed for the 

measurement of the market risk of equities and to address some of the practical issues that are involved in 

the implementation of those measures.

The “Amendment to the Capital Accord to Incorporate Market Risk” recommends the calculation of the 

value at risk of a portfolio by assessing the loss that occurs in the 1 percent worst cases within a specified 

period of time. It does not specify how this 1 percent of worst cases will be estimated. The most obvious 

way is to estimate the 1 percent quantile is to derive it from the empirical frequency distribution. Another 

way would be to assume that returns follow a particular probability distribution which can be used to 

estimate the required quantile. To implement the Value-at-Risk measure under this approach we need to 

know with some degree of certainty the probability distribution of returns. A variation of this parametric 

approach is to fit a model to the tails of the distribution rather than to the entire distribution. A third 

general approach is to simulate the portfolio returns in order to gain a better understanding of the process 

that generated equity returns and to estimate the quantiles of the distribution from the simulated issues. 

The latter again requires some distributional assumptions to be made.

There is no general agreement as to which of the general approaches mentioned above is the most 

effective and acceptable. In a survey by the Financial Services Authority revealed that in estimating their 

market risk models 42 percent of UK banks used a variance-covariance (i.e. parametric approach), 31
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percent used historical simulation and 23 percent used Monte Carlo methods, [see Berkowitz and O’Brien

(2001)].

The difficulties of implementing the Value-at-Risk approach for the measurement of market risk has been 

the subject of this chapter. Starting with the issue of distributional assumptions, using a sample of 132 

companies quoted on the Athens Stock Exchange, we have found that the normality assumption is not 

supported by the data. Using a variety of test we have found that all companies have unconditional 

distributions that cannot be described as normal. However trying to identify alternative distributions is not 

an easy task. We have examined the performance of two classes of probability distributions, namely the 

generalised t-distribution and the class of stable distributions. Although the skewed t-distribution 

performed better for the majority of the stocks it was not a suitable model for all the companies. The fact 

that different distributions describe the individual stocks has severe implications for the measurement of 

portfolio risk. For the portfolio return distribution may not be adequately be captured by one of the 

multivariate versions of the single probability distributions.

The next aspect that we have examined was the dynamic specification of asset returns. Finding the right 

model for the conditional mean and volatility is important for two reasons. First, by modelling the 

conditional mean we can decide whether the conventional square root method for time aggregation of risk 

is correct. We have found that for a large number of returns there is significant first order correlation.

Thus for those companies the square root of time rule is wrong. Modelling the volatility using a 

GARCH(1,1) model with a t-distribution for the innovations seems to be the most common way of 

modelling volatility (McNeil and Frey (2000)). We have used this technique to model volatility for each 

of the 132 share returns. We have found that the model fits the data well in terms of the conventional 

statistical criteria. However, the standardised residuals still exhibit kurtosis, which is an indication that a 

either a distribution with heavier tails should be used or that extreme value theory should be applied to the 

data. As a corollary, we have found that the degrees of freedom parameter differs from share to share so 

that the return of a portfolio made up of these shares will not follow a multivariate t-distribution.

In concluding this chapter we will agree with the statement of Khindarova Rachev and Schwartz (2001) 

who summarize the state of the main approaches as follows: “The existing methods do not provide 

satisfactory evaluation of VaR The main drawback is the lack of convincing unified model for VaR 

capturing the following phenomena generally observed in financial data such as asset returns, interest 

rates, exchange rates and equities:

• Heavy tails of the marginal distribution of the process of financial returns

• Time-varying volatility

• Short and long-term dependence”

We have tried to highlight some of the implications and the problems of the above observations and 

critically evaluate their usefulness in terms of the assumptions they make and in terms of whether they 

incorporate the salient empirical characteristics..

Risk managers, regulators and investors have developed a variety of methods to model equity returns and 

measuring their equity price risks. Understanding and properly measuring risk is necessary for a 

successful investment management strategy or a risk management system.

Our review has shown that although the range of statistical techniques employed in the estimation of 

financial risk has increased exponentially with techniques such as extreme value theory brought in from
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other fields such as hydrology and meteorology, the nature of economic time series make statistical 

prediction unreliable. Some of the problems relate to small sample that are available to financial series 

research, whereas other problems relate to the estimation error problems. We have not addressed in this 

review these types of problems which are examined by Figlewski (2002).
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APPENDIX TO CHAPTER 4: STATISTICAL RESULTS FOR
INDIVIDUAL COMPANIES

Table Al: Average Returns and Volatility

Average Returns Volatility
Whole Period 1 Period 2 Whole Period 1 Period 2

ABK 0.0004 0.0020 -0.0013 0.0285 0.0277 0.0293
AVAX 0.0012 0.0023 0.0000 0.0285 0.0336 0.0280
AAAK 0.0007 0.0034 -0.0023 0.0285 0.0350 0.0471
ALTEC 0.0004 0.0048 -0.0043 0.0285 0.0338 0.0369
ALFA 0.0002 0.0022 -0.0019 0.0285 0.0256 0.0213
ATTIK -0.0005 0.0027 -0.0040 0.0285 0.0384 0.0443
AKTOR 0.0005 0.0023 -0.0015 0.0285 0.0317 0.0320
ALATK -0.0004 0.0027 -0.0038 0.0285 0.0376 0.0418
AEGEP -0.0003 0.0025 -0.0032 0.0285 0.0349 0.0352
AXON 0.0000 0.0031 -0.0033 0.0285 0.0335 0.0425
BIOSK -0.0002 0.0035 -0.0041 0.0285 0.0471 0.0501
BIOSP 0.0000 0.0029 -0.0030 0.0285 0.0433 0.0541
BIOT 0.0002 0.0028 -0.0026 0.0285 0.0348 0.0416
BIOXK 0.0005 0.0032 -0.0025 0.0285 0.0295 0.0274
BISK -0.0001 0.0027 -0.0031 0.0285 0.0356 0.0442
BISP -0.0001 0.0025 -0.0028 0.0285 0.0338 0.0449
GEBKA 0.0002 0.0032 -0.0030 0.0285 0.0356 0.0424
GEK 0.0001 0.0026 -0.0027 0.0285 0.0330 0.0334
GENAK 0.0010 0.0042 -0.0024 0.0285 0.0370 0.0376
GOOD 0.0007 0.0024 -0.0010 0.0285 0.0238 0.0223
DIAS 0.0004 0.0043 -0.0039 0.0285 0.0331 0.0421
DIEKA -0.0001 0.0029 -0.0034 0.0285 0.0347 0.0376
DK -0.0002 0.0014 -0.0019 0.0285 0.0298 0.0226
EBZ -0.0004 0.0012 -0.0022 0.0285 0.0350 0.0305
EGNAK -0.0002 0.0022 -0.0028 0.0285 0.0376 0.0257
EDRA -0.0004 0.0018 -0.0027 0.0285 0.0288 0.0321
EEEK 0.0001 0.0009 -0.0008 0.0285 0.0255 0.0219
EKTER -0.0002 0.0026 -0.0031 0.0285 0.0399 0.0442
ELAIS 0.0001 0.0019 -0.0019 0.0285 0.0258 0.0214
ELBE 0.0001 0.0034 -0.0036 0.0285 0.0345 0.0397
ELKA -0.0002 0.0022 -0.0028 0.0285 0.0303 0.0294
ELL 0.0012 0.0032 -0.0009 0.0285 0.0271 0.0255
ELMEK 0.0005 0.0030 -0.0021 0.0285 0.0306 0.0391
ELMPI 0.0007 0.0029 -0.0015 0.0285 0.0267 0.0336
ELTEX 0.0005 0.0022 -0.0013 0.0285 0.0324 0.0300
ELTK 0.0002 0.0032 -0.0030 0.0285 0.0339 0.0398
ELYF -0.0002 0.0016 -0.0021 0.0285 0.0372 0.0368
ELFK 0.0003 0.0035 -0.0031 0.0285 0.0358 0.0475
EMDKO -0.0003 0.0037 -0.0047 0.0285 0.0439 0.0521
EMP 0.0003 0.0028 -0.0023 0.0285 0.0294 0.0232
EXEL 0.0008 0.0037 -0.0023 0.0285 0.0372 0.0374
EPERA 0.0003 0.0028 -0.0025 0.0285 0.0281 0.0300
EPILK -0.0004 0.0026 -0.0035 0.0285 0.0320 0.0411
ERGAS -0.0013 0.0020 -0.0049 0.0285 0.0400 0.0473
ERMES 0.0015 0.0050 -0.0023 0.0285 0.0300 0.0400
ESK 0.0005 0.0032 -0.0023 0.0285 0.0422 0.0502
ESHA 0.0000 0.0024 -0.0025 0.0285 0.0360 0.0470
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ETE 0.0005 0.0028 -0.0019 0.0285 0.0261 0.0211
ETLES -0.0005 0.0022 -0.0034 0.0285 0.0345 0.0367
ETMAK -0.0006 0.0025 -0.0038 0.0285 0.0399 0.0485
ZAMPA 0.0000 0.0026 -0.0028 0.0285 0.0322 0.0402
HERACL 0.0000 0.0020 -0.0021 0.0285 0.0278 0.0239
THEMEL 0.000! 0.0028 -0.0029 0.0285 0.0269 0.0318
IATR 0.0001 0.0034 -0.0034 0.0285 0.0276 0.0282
INTER -0.0005 0.0040 -0.0054 0.0285 0.0365 0.0416
INTEP 0.0004 0.0042 -0.0037 0.0285 0.0371 0.0376
INTER 0.0000 0.0033 -0.0036 0.0285 0.0320 0.0380
INTET 0.0007 0.0041 -0.0030 0.0285 0.0301 0.0383
INTRA 0.0003 0.0031 -0.0026 0.0285 0.0324 0.0284
IONA 0.0005 0.0027 -0.0019 0.0285 0.0349 0.0339
IONE 0.0000 0.0027 -0.0030 0.0285 0.0361 0.0357
RALSR -0.0002 0.0021 -0.0026 0.0285 0.0351 0.0374
KARELIA 0.0005 0.0017 -0.0009 0.0285 0.0327 0.0347
RATSR 0.0002 0.0026 -0.0024 0.0285 0.0301 0.0308
RERROPS 0.0012 0.0042 -0.0020 0.0285 0.0374 0.0465
RERAL 0.0008 0.0032 -0.0018 0.0285 0.0315 0.0432
RERR -0.0003 0.0024 -0.0032 0.0285 0.0383 0.0452
RORFR -0.0002 0.0029 -0.0035 0.0285 0.0324 0.0567
RRERA -0.0005 0.0018 -0.0029 0.0285 0.0305 0.0495
LABI -0.0002 0.0026 -0.0032 0.0285 0.0323 0.0368
LAMDA 0.0007 0.0027 -0.0014 0.0285 0.0361 0.0345
LAMPSA 0.0010 0.0042 -0.0025 0.0285 0.0365 0.0373
LOYLI 0.0003 0.0029 -0.0025 0.0285 0.0317 0.0301
LYROS 0.0001 0.0026 -0.0026 0.0285 0.0281 0.0280
MAIR 0.0007 0.0033 -0.0021 0.0285 0.0268 0.0251
MAXIM -0.0002 0.0023 -0.0030 0.0285 0.0336 0.0471
MARFIN 0.0000 0.0029 -0.0031 0.0285 0.0315 0.0322
MEAGA -0.0005 0.0030 -0.0044 0.0285 0.0400 0.0508
MESOX -0.0004 0.0029 -0.0040 0.0285 0.0410 0.0442
METR 0.0008 0.0037 -0.0022 0.0285 0.0332 0.0313
MHXR -0.0005 0.0022 -0.0034 0.0285 0.0317 0.0332
MINE 0.0002 0.0028 -0.0026 0.0285 0.0375 0.0387
MOUZR -0.0002 0.0018 -0.0024 0.0285 0.0350 0.0351
MOYLT -0.0003 0.0034 -0.0043 0.0285 0.0431 0.0473
MOYR -0.0005 0.0040 -0.0052 0.0285 0.0411 0.0533
MOXLOS 0.0000 0.0036 -0.0039 0.0285 0.0356 0.0435
MPENR 0.0002 0.0025 -0.0023 0.0285 0.0352 0.0387
MPORA 0.0001 0.0029 -0.0030 0.0285 0.0472 0.0418
MPSTR 0.0002 0.0021 -0.0018 0.0285 0.0296 0.0291
MPTR -0.0001 0.0027 -0.0030 0.0285 0.0349 0.0344
MRFRO -0.0002 0.0025 -0.0030 0.0285 0.0280 0.0380
MYTIL 0.0003 0.0042 -0.0038 0.0285 0.0313 0.0319
NAOYR -0.0005 0.0037 -0.0051 0.0285 0.0323 0.0491
NEL -0.0003 0.0029 -0.0038 0.0285 0.0326 0.0361
NHR -0.0008 0.0017 -0.0034 0.0285 0.0280 0.0363
NIRAS 0.0003 0.0031 -0.0027 0.0285 0.0296 0.0320
XYLR 0.0005 0.0035 -0.0027 0.0285 0.0348 0.0427
PAPAR 0.0003 0.0016 -0.0011 0.0285 0.0271 0.0238
PARN -0.0013 0.0011 -0.0039 0.0285 0.0421 0.0518
PEILH 0.0008 0.0026 -0.0011 0.0285 0.0287 0.0262
PEIR 0.0008 0.0034 -0.0020 0.0285 0.0307 0.0199
PEPA 0.0002 0.0028 -0.0027 0.0285 0.0306 0.0318
PETZR -0.0002 0.0028 -0.0035 0.0285 0.0310 0.0359
PLATH 0.0002 0.0033 -0.0031 0.0285 0.0325 0.0361
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PLAS -0.0009 0.0026 -0.0046 0.0285 0.0392 0.0398
PRD -0.0007 0.0020 -0.0036 0.0285 0.0374 0.0451
PROOD 0.0002 0.0021 -0.0019 0.0285 0.0247 0.0278
RILKE -0.0001 0.0021 -0.0025 0.0285 0.0334 0.0409
RINTE 0.0003 0.0034 -0.0030 0.0285 0.0381 0.0397
ROKKA 0.0002 0.0027 -0.0026 0.0285 0.0329 0.0328
SAIKL -0.0006 0.0025 -0.0038 0.0285 0.0377 0.0459
SANYO 0.0000 0.0038 -0.0041 0.0285 0.0358 0.0390
SAR -0.0002 0.0024 -0.0029 0.0285 0.0280 0.0300
SATOK -0.0003 0.0032 -0.0040 0.0285 0.0377 0.0413
SELMK -0.0004 0.0025 -0.0035 0.0285 0.0320 0.0314
SELO -0.0009 0.0015 -0.0035 0.0285 0.0328 0.0394
SIDE 0.0002 0.0026 -0.0024 0.0285 0.0294 0.0271
STALK -0.0014 0.0023 -0.0054 0.0285 0.0450 0.0533
STRIK -0.0004 0.0016 -0.0026 0.0285 0.0299 0.0320
TERNA 0.0002 0.0028 -0.0027 0.0285 0.0334 0.0378
TEXN -0.0017 0.0013 -0.0049 0.0285 0.0420 0.0521
TZKA -0.0002 0.0028 -0.0033 0.0285 0.0299 0.0428
THLET 0.0007 0.0027 -0.0015 0.0285 0.0340 0.0310
TITK 0.0009 0.0023 -0.0006 0.0285 0.0263 0.0183
TSIP 0.0006 0.0028 -0.0017 0.0285 0.0220 0.0254
YALKO -0.0001 0.0026 -0.0031 0.0285 0.0338 0.0413
FAN KO -0.0006 0.0025 -0.0039 0.0285 0.0318 0.0517
FINTO 0.0005 0.0030 -0.0022 0.0285 0.0318 0.0422
FOIN 0.0000 0.0030 -0.0033 0.0285 0.0246 0.0336
FRLK -0.0002 0.0023 -0.0028 0.0285 0.0323 0.0322
HALYB -0.0002 0.0033 -0.0040 0.0285 0.0381 0.0435
XATZK -0.0001 0.0024 -0.0028 0.0285 0.0367 0.0343

222



Table A2: Maximum and Minimum Values of Returns

ABK
AVAX
AAAK
ALTEC
ALFA
ATTIK
AKTOR
ALATK
AEGEP
AXON
BIOSK
BIOSP
BIOT
BIOXK
BISK
BISP
GEBKA
GEK
GENAK
GOOD
DIAS
DIEKA
DK
EBZ
EGNAK
EDRA
EEEK
EKTER
ELAIS
ELBE
ELKA
ELL
ELMEK
ELMPI
ELTEX
ELTK
ELYF
ELFK
EMDKO
EMP
EXEL
EPERA
EPILK
ERGAS
ERMES
ESK
ESHA
ETE
ETLES
ETMAK
ZAMPA
HERACL

MAX 
Period 1 

0.0778 
0.0855 
0.0787 
0.0846 
0.0773 
0.0886 
0.0800 
0.0870 
0.0808 
0.0800 
0.1335 
0.1178 
0.0931 
0.0805 
0.0795 
0.0794 
0.0953 
0.0785 
0.0953 
0.0774 
0.1018 
0.0837 
0.0786 
0.0782 
0.0789 
0.0797 
0.0772 
0.0849 
0.0773 
0.0800 
0.0786 
0.0775 
0.0902 
0.0831 
0.0805 
0.0822 
0.0800 
0.0829 
0.0976 
0.0774 
0.1018 
0.0792 
0.0846 
0.0838 
0.1018 
0.1018 
0.0794 
0.0774 
0.0795 
0.0817 
0.0776 
0.0777

MAX 
Period 2 

0.1118 
0.1121 
0.1606 
0.1272 
0.1115 
0.1499 
0.1127 
0.1542 
0.1102 
0.1630 
0.1178 
0.1158 
0.1643 
0.1100 
0.1316 
0.1133 
0.1234 
0.1118 
0.1625 
0.1623 
0.1132 
0.1267 
0.0902 
0.1632 
0.1480 
0.1118 
0.0845 
0.1126 
0.1123 
0.1654 
0.1190 
0.1126 
0.1155 
0.1438 
0.1137 
0.1415 
0.1623 
0.1130 
0.1160 
0.1095 
0.1171 
0.1241 
0.1664 
0.1499 
0.1306 
0.1641 
0.1562 
0.1105 
0.1463 
0.1685 
0.1653 
0.0819

MIN 
Period 1 

-0.0844 
-0.0918 
-0.0948 
-0.0853 
-0.0837 
-0.0938 
-0.0867 
-0.0892 
-0.0960 
-0.0864 
-0.1335 
-0.1178 
-0.0924 
-0.0843 
-0.0861 
-0.0874 
- 0.1112 
-0.0849 
-0.0953 
-0.0838 
-0.0870 
-0.0910 
-0.0839 
-0.0839 
-0.0980 
-0.0860 
-0.0836 
-0.1439 
-0.0829 
-0.0883 
-0.0859 
- 0.1220 
-0.1252 
-0.0863 
-0.0878 
-0.1216 
-0.0913 
-0.0892 
-0.1027 
-0.0938 
-0.3697 
-0.1475 
-0.0899 
- 0.1022 
-0.1054 
-0.1018 
-0.0845 
-0.0836 
-0.1290 
-0.0910 
-0.0835 
-0.1004

MIN 
Period 2 

-0.1265 
-0.1199 
-0.1278 
-0.1917 
-0.0855 
-0.1350 
-0.1147 
-0.1957 
-0.1618 
-0.1977 
-0.1288 
-0.1278 
-0.1421 
-0.1234 
-0.1342 
-0.1282 
-0.1252 
-0.1148 
- 0.1200 
-0.1032 
-0.1252 
-0.1259 
-0.1026 
-0.1054 
-0.0852 
-0.1280 
-0.0950 
-0.1306 
-0.0924 
-0.1239 
-0.1115 
-0.1040 
-0.1274 
-0.1283 
-0.1049 
-0.1321 
-0.1108 
-0.1271 
-0.1289 
-0.1084 
-0.1247 
-0.1932 
-0.1285 
-0.1542 
-0.1235 
-0.1939 
-0.1911 
-0.0981 
-0.1164 
-0.1435 
-0.1311 
-0.1058
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THEMEL 0.0787 0.1112 -0.0841 -0.1915
IATR 0.0785 0.1007 -0.0852 -0.1043
INTEK 0.0834 0.1374 -0.0877 -0.1967
INTEP 0.0839 0.1133 -0.0849 -0.1965
INTER 0.0800 0.1526 -0.0935 -0.1249
INTET 0.0870 0.1547 -0.0852 -0.1269
INTKA 0.0796 0.1040 -0.0852 -0.1763
IONA 0.0791 0.1193 -0.0841 -0.1137
IONE 0.0796 0.1123 -0.1435 -0.2285
KALSK 0.0812 0.1620 -0.0945 -0.1115
KARELIA 0.0775 0.1049 -0.0838 -0.1272
KATSK 0.0786 0.1107 -0.0849 -0.1949
KEKROPS 0.0798 0.1649 -0.0853 -0.1768
KERAL 0.0855 0.1135 -0.0968 -0.1957
KERK 0.0870 0.1134 -0.0893 -0.1278
KORFK 0.0953 0.1635 -0.0953 -0.1542
KREKA 0.0810 0.1652 -0.0854 -0.1808
LABI 0.0816 0.1110 -0.0862 -0.1244
LAMDA 0.0953 0.1135 -0.0972 -0.1268
LAMPSA 0.0820 0.1226 -0.0878 -0.1257
LOYLI 0.0800 0.1054 -0.0858 -0.1268
LYKOS 0.0796 0.1048 -0.0976 -0.1230
MAIK 0.0796 0.0948 -0.0865 -0.1234
MAXIM 0.0849 0.1372 -0.0903 -0.1272
MARFIN 0.0892 0.1100 -0.1319 -0.2557
MEAGA 0.0870 0.1652 -0.1027 -0.1744
MESOX 0.0924 0.1154 -0.1082 -0.1585
METK 0.0811 0.1116 -0.0838 -0.1082
MHXK 0.0791 0.1128 -0.1454 -0.1262
MINE 0.0830 0.1133 -0.0846 -0.1521
MOUZK 0.0819 0.1413 -0.0893 -0.1163
MOYLT 0.0804 0.1602 -0.0853 -0.1666
MOYR 0.1018 0.1152 -0.1018 -0.1278
MOXLOS 0.0972 0.1405 -0.0942 -0.1470
MPENK 0.0809 0.1108 -0.0839 -0.1270
MPOKA 0.1092 0.1276 -0.1092 -0.1257
MPSTK 0.0786 0.1115 -0.0839 -0.1173
MPTK 0.0849 0.1641 -0.1190 -0.1242
MRFKO 0.0805 0.1642 -0.0847 -0.1058
MYTIL 0.0792 0.1129 -0.0838 -0.1212
NAOYK 0.0793 0.1594 -0.0838 -0.1823
NEL 0.0861 0.1094 -0.1078 -0.1199
NHR 0.0798 0.1606 -0.1054 -0.1404
NIKAS 0.0792 0.1071 -0.0864 -0.1278
XYLK 0.0800 0.1477 -0.0864 -0.1273
PAPAK 0.0780 0.0950 -0.0832 -0.1011
RjOKKA 0.082$ 0.1128 -0.0983 -0.1238
BSJKHL 0.0889 0.®99$ -0.0830 -0.1032
BAIRYO OJO07 0.®988 -O.®807 -0.123$
BARA 0.0880 0.1108 -0J842 -0.2240
BATZEK 0.0806 0.1293 -0.0893 -0.1202
BEAMM. 0.083$ 0.1220 -0.0888 -0.1200
BEA® 0.0830 0.1052 -0.0900 -0.1989
8 SEE 0.0890 0.16®3 -0.0856 -0.1030
BK@DK) 0.0800 0J8J2 -O.®970 -0.2636
RTMtE 0.0825 0.16J3 -0.0838 -0.1230
lE ts m 0.0800 0.1649 -0.®$53 -0.1346
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TEXN 0.0810 0.1128 -0.0880 -0.1280
TZKA 0.0841 0.1651 -0.0887 -0.1274
THLET 0.0855 0.1106 -0.0931 -0.1278
TITK 0.0772 0.0972 -0.0834 -0.0725
TSIP 0.0780 0.1123 -0.0842 -0.1228
YALKO 0.0854 0.1506 -0.0899 -0.1289
FANKO 0.0792 0.1647 -0.0866 -0.1418
FINTO 0.0849 0.1596 -0.0931 -0.1233
FOIN 0.1153 0.1447 -0.0870 -0.1980
FRLK 0.0827 0.1342 -0.0865 -0.1265
HALYB 0.1018 0.1132 -0.0953 -0.1262
XATZK 0.0806 0.1106 -0.0887 -0.1278
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Table A3: Coefficients of Skewness and Kurtosis

SKEWNESS 
Whole Period 1

ABK 0.1376 0.2335
AVAX 0.2345 0.1870
AAAK -0.1064 -0.0317
ALTEC 0.0447 0.1393
ALFA 0.3250 0.0761
ATTIK 0.0874 0.1148
AKTOR 0.2451 0.2372
ALATK 0.0387 0.0836
AEGEP -0.0393 0.2036
AXON 0.2313 0.2832
BIOSK 0.0030 -0.0599
BIOSP -0.2102 -0.1169
BIOT 0.2367 0.3080
BIOXK 0.2005 0.2126
BISK 0.0070 0.1124
BISP -0.2373 0.0779
GEBKA 0.0646 0.0115
GEK 0.2259 0.2292
GENAK 0.1745 0.0872
GOOD 0.3579 0.2614
DIAS 0.1883 0.3520
DIEKA 0.1932 0.2597
DK 0.2129 0.1952
EBZ 0.3127 0.2964
EGNAK 0.2807 0.0690
EDRA 0.0257 0.2593
EEEK 0.0821 0.0733
EKTER 0.0726 0.0959
ELAIS 0.3229 0.4377
ELBE 0.1533 0.3180
ELKA 0.0478 0.2089
ELL 0.3722 0.3684
ELMEK 0.0595 0.2336
ELMPI 0.0506 0.3193
ELTEX 0.2136 0.2136
ELTK 0.0995 0.1386
ELYF 0.1873 0.1531
ELFK -0.1348 0.0535
EMDKO -0.0015 0.0454
EMP 0.0984 0.0374
EXEL -0.3585 -0.9567
EPERA 0.0716 0.1438
EPILK 0.1550 0.3254
ERGAS 0.0359 0.1506
ERMES 0.1839 0.3735
ESK 0.0189 0.1211
ESHA 0.1927 0.3517
ETE 0.3345 0.2824
ETLES 0.2108 0.2654
ETMAK 0.1209 0.0541

KURTOSIS
Period 2 Whole Period 1

0.0692 1.6465 0.9057
0.2607 1.0169 0.2503

-0.0499 0.8908 1.5118
0.0309 1.0369 0.2669
0.6546 2.2293 1.6791
0.1259 0.1406 -0.1964
0.2597 1.1057 0.6277
0.0500 0.5408 -0.1616

-0.2906 0.8025 0.1152
0.2909 1.5832 0.5238
0.0870 -0.3592 -0.4944

-0.1971 0.2927 0.2599
0.2513 0.6765 0.4586
0.1411 1.1688 0.6170
0.0183 0.3901 0.1785

-0.2938 1.3232 0.8805
0.1654 0.6710 0.9109
0.2342 0.9469 0.6389
0.2772 0.9438 0.7252
0.4567 3.2014 1.6671
0.2198 0.5656 0.4813
0.1792 0.3908 0.0390
0.0733 1.8069 1.1056
0.2817 1.0489 0.2939
0.6032 1.0598 0.1314

-0.1117 1.8739 1.3969
0.0526 2.2278 2.0109
0.0917 0.0795 -0.1829

-0.0182 2.6086 1.5462
0.1067 0.7121 0.2545

-0.1545 1.1281 0.9155
0.3521 2.7982 2.4631
0.0485 1.0831 1.4409

-0.0209 2.5042 1.5857
0.1864 1.1444 0.5785
0.1405 0.7049 0.5725
0.2239 0.7038 0.2102

-0.1244 0.5179 0.8917
0.0414 -0.2568 -0.6076
0.0257 2.0936 1.2956
0.2693 6.3006 11.8372
0.0448 2.9206 2.1280
0.1565 0.7554 0.9726
0.0264 0.1979 -0.1811
0.2193 1.7245 3.4767
0.0039 0.3521 -0.5578
0.1771 0.5365 -0.0055
0.2570 2.2593 1.7878
0.1944 0.8339 0.5431
0.2250 0.3963 0.0669

Period 2

2.2698
2.3443
0.2891
1.5987
3.2825
0.2729
1.6370
0.9838
1.3848
1.7673

-0.2254
0.0652
0.6562
1.9294
0.2725
0.9959
0.4448
1.2999
1.2762
5.4484
0.3716
0.6389
2.7018
2.2447
3.1564
2.0682
2.3455
0.2254
4.2758
0.8663
1.2925
3.2835
0.6269
2.5137
1.9245
0.6730
1.2888
0.0173

-0.1841
3.4897
1.0945
3.6022
0.3877
0.2604
0.7378
0.6871
0.4408
2.7479
1.0687
0.4385

226



ZAMPA 0.1429 0.2532 0.1559 1.4097 1.3000 1.2020
HERACL 0.0068 0.0761 -0.2035 1.5614 1.0363 2.2648
THEMEL 0.0521 0.4230 -0.1125 2.6016 1.6610 2.8473
IATR 0.1227 0.1450 0.1216 1.3616 0.8157 1.9830
INTEK -0.1584 0.1899 -0.3354 1.3343 -0.0560 1.9595
1NTEP -0.5917 0.0008 -1.2136 3.0461 0.2452 5.5188
INTER 0.0655 0.1439 0.0983 0.9090 1.1619 0.6406
INTET 0.0559 0.1619 0.1106 1.0766 0.9546 0.8704
INTRA 0.1125 0.1663 -0.0666 1.3501 0.5002 2.6527
IONA 0.1533 0.1372 0.1613 0.7802 0.3051 1.3817
IONE -0.1443 -0.0451 -0.2633 1.4991 0.3855 2.7348
KALSK 0.2354 0.2525 0.2469 0.7374 0.2073 1.1818
KARELIA -0.0794 0.0742 -0.2035 1.2768 0.9845 1.4718
KATSK -0.0809 0.2126 -0.3642 2.1796 0.8536 3.3562
KEKROPS 0.1761 0.0728 0.3046 0.6256 0.2914 0.6346
KERAL -0.0426 0.2047 -0.0603 1.6005 0.8338 1.3000
KERK 0.0564 0.1434 0.0533 0.2229 0.0036 0.2132
KORFK 0.0161 0.1711 0.1021 0.7116 2.2556 -0.3129
KREKA 0.1620 0.2848 0.2108 1.8332 0.7886 1.0770
LABI 0.1502 0.1939 0.1771 0.6568 0.4975 0.6930
LAMDA 0.0625 0.0994 -0.0005 0.9057 0.5399 1.3601
LAMPSA 0.0542 0.0860 0.0357 0.6412 0.3082 0.9805
LOYL1 0.1314 0.2250 -0.0155 0.9788 0.5180 1.5125
LYKOS 0.1398 0.4273 -0.1721 1.6915 1.0940 2.1895
MAIK 0.1673 0.3156 -0.0697 2.0251 1.4369 2.7227
MAXIM 0.0753 0.1833 0.1159 0.5757 0.5741 0.1462
MARFIN -0.1885 0.1645 -0.5340 4.1689 1.5004 6.6848
MEAGA 0.0652 0.1472 0.1078 0.2693 -0.2482 0.2586
MESOX 0.0474 0.1346 0.0067 0.1196 -0.3723 0.4589
METK 0.1910 0.2653 0.0639 0.8052 0.3807 1.2993
MHXK 0.1695 0.2509 0.1202 1.5129 1.1209 1.8670
MINE 0.0547 0.1509 -0.0250 0.3970 -0.0447 0.7785
MOUZK 0.1507 0.1279 0.1781 0.8224 0.3500 1.3617
MOYLT -0.0153 -0.0598 0.0637 0.1605 -0.3755 0.5570
MOYR 0.0077 0.0568 0.0914 0.0536 0.0193 -0.1656
MOXLOS 0.1058 0.1047 0.1951 0.5460 0.6053 0.3875
MPENK 0.0741 0.1514 0.0446 0.9716 0.5436 1.2349
MPOKA 0.0757 -0.0273 0.1756 -0.2722 -0.6857 0.4075
MPSTK 0.1032 0.2213 -0.0376 1.4450 0.9500 1.9835
MPTK 0.2015 0.1374 0.2704 0.7572 0.2546 1.4084
MRFKO 0.2777 0.4646 0.2904 2.0558 2.8274 1.3383
MYTIL 0.2857 0.3333 0.2684 0.9273 0.7155 1.1818
NAOYK 0.0511 0.3852 0.1049 0.8825 0.4041 0.3503
NEL 0.1343 0.2961 0.0612 0.8890 0.8265 0.8451
NHR 0.1414 0.2290 0.1840 1.7042 1.0410 1.6229
NIKAS 0.0751 0.3304 -0.0981 1.4001 0.7440 1.7867
XYLK -0.0010 0.0810 0.0271 0.5064 0.2841 0.4168
PAPAK 0.2220 0.3735 -0.0728 2.1103 1.4106 3.0524
PARN 0.0462 0.1279 0.0499 -0.0270 -0.3323 -0.0612
PEILH 0.3292 0.3775 0.2206 1.9498 1.8480 1.9919
PEIR 0.4124 0.2974 0.1944 2.1753 1.0417 3.8263
PEPA -0.1780 -0.1788 -0.1601 3.1744 2.9465 3.4786
PETZK -0.0428 0.3800 -0.2672 1.3616 0.4004 1.6535
PLATH 0.1745 0.2704 0.1568 0.6018 0.4881 0.6227
PLAS -0.0681 -0.0592 -0.0718 1.0159 -0.1759 2.2728
PRD 0.2200 0.2624 0.2532 0.4532 0.0346 0.5343
PROOD -0.2795 -0.0170 -0.4335 4.6664 3.0223 5.5929
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RILKE
RINTE
ROKKA
SAIKL
SANYO
SAR
SATOK
SELMK
SELO
SIDE
STALK
STRIK
TERNA
TEXN
TZKA
THLET
TITK
TSIP
YALKO
FANKO
FINTO
FOIN
FRLK
HALYB
XATZK

0.3844
0.1973
0.1803
0.0147
0.1675
0.1682
0.0811
0.1968
0.0341
0.2525
0.0300
0.1823
0.1574
-0.0468
0.2075
0.1695
0.2194
0.1600
0.0546
0.0353
-0.0483
-0.1370
0.0835
0.1172
0.0735

0.3482
0.2103
0.2432
0.0311
0.1959
0.2989
0.1685
0.1256
0.1866
0.2758
0.0399
0.3356
0.2216
0.0909
0.1606
0.2078
0.0810
0.5122
0.2250
0.3984
0.0378
0.3257
0.0737
0.2222
0.0057

0.4578
0.2094
0.1139
0.0740
0.1980
0.0931
0.0553
0.2724

-0.0008
0.1763
0.0888
0.0747
0.1615

-0.0582
0.3289
0.0737
0.3637

-0.0164
0.0236
0.0621

-0.0029
-0.1955
0.0951
0.1033
0.1304

0.7716 
0.6495 
0.8440 
0.4736 
0.4089 
1.0385 
0.2395 
0.8576 
0.6570 
1.1243 

-0.1986 
1.2862 
0.5420 

- 0.2020 
1.8059 
0.8279 
2.5685 
2.6278 
0.6972 
0.7471 
1.0698 
4.0349 
1.0461 
0.2471 
0.4584

0.2152
0.1314
0.3855

-0.0159
0.1086
0.8674

-0.0576
0.3757
0.4175
0.7518

-0.7307
1.3585
0.4224

-0.4593
2.2824
0.1914
1.5952
2.0210
0.5868
0.7398
1.7668
4.4932
0.7765
0.0093
0.0701

0.8929
1.1440
1.3359
0.5521
0.6396
1.1310
0.4044
1.5160
0.5923
1.6051

-0.0091
1.1715
0.5532

-0.2905
1.1442
1.7134
3.9640
2.7836
0.5319
0.0023
0.4505
3.1181
1.3856
0.3022
1.0292
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Table A4: 
Kurtosis

ABK
AVAX
AAAK
ALTEC
ALFA
ATTIK
AKTOR
ALATK
AEGEP
AXON
BIOSK
BIOSP
BIOT
BIOXK
BISK
BISP
GEBKA
GEK
GENAK
GOOD
DIAS
DIEKA
DK
EBZ
EGNAK
EDRA
EEEK
EKTER
ELAIS
ELBE
ELKA
ELL
ELMEK
ELMPI
ELTEX
ELTK
ELYF
ELFK
EMDKO
EMP
EXEL
EPERA
EPILK
ERGAS
ERMES
ESK
ESHA
ETE
ETLES
ETMAK
ZAMPA

Test Statistics for the Significance of the Coefficients of Skewness and

SKEWNESS
whole Period 1 Period 2

2.373 2.900 0.828
4.044 2.322 3.121

-1.834 -0.393 -0.598
0.771 1.730 0.370
5.605 0.945 7.837
1.508 1.426 1.508
4.227 2.945 3.109
0.668 1.038 0.599

-0.679 2.527 -3.479
3.990 3.517 3.483
0.051 -0.744 1.042

-3.626 -1.452 -2.359
4.083 3.824 3.009
3.459 2.640 1.689
0.120 1.396 0.219

-4.092 0.967 -3.518
1.115 0.143 1.981
3.897 2.846 2.804
3.010 1.083 3.318
6.172 3.246 5.468
3.248 4.370 2.632
3.333 3.225 2.145
3.672 2.423 0.878
5.394 3.681 3.373
4.841 0.857 7.222
0.444 3.219 -1.338
1.417 0.910 0.630
1.252 1.190 1.098
5.570 5.435 -0.218
2.644 3.949 1.278
0.824 2.594 -1.849
6.420 4.574 4.216
1.026 2.901 0.580
0.873 3.964 -0.251
3.685 2.652 2.232
1.717 1.721 1.682
3.231 1.900 2.681

-2.325 0.664 -1.489
-0.026 0.564 0.496
1.697 0.464 0.307

-6.183 -11.878 3.224
1.235 1.786 0.536
2.673 4.040 1.874
0.620 1.869 0.316
3.172 4.638 2.625
0.327 1.503 0.047
3.323 4.367 2.121
5.769 3.506 3.077
3.635 3.295 2.328
2.085 0.671 2.693
2.465 3.144 1.866

KURTOSIS
Whole Period 1 Period 2

14.199 2.270 13.587
8.770 2.344 14.033
7.682 0.289 1.731
8.942 1.599 9.570

19.225 3.283 19.650
1.212 0.273 1.633
9.536 1.637 9.799
4.664 0.984 5.889
6.921 1.385 8.289

13.654 1.767 10.580
-3.097 -0.225 -1.349
2.524 0.065 0.390
5.834 0.656 3.928

10.080 1.929 11.550
3.365 0.272 1.631

11.411 0.996 5.962
5.787 0.445 2.663
8.166 1.300 7.781
8.139 1.276 7.640

27.609 5.448 32.615
4.878 0.372 2.224
3.370 0.639 3.825

15.583 2.702 16.173
9.046 2.245 13.437
9.140 3.156 18.894

16.161 2.068 12.381
19.212 2.345 14.040
0.686 0.225 1.349

22.496 4.276 25.595
6.142 0.866 5.186
9.728 1.293 7.737

24.132 3.284 19.656
9.341 0.627 3.753

21.596 2.514 15.047
9.870 1.924 11.520
6.079 0.673 4.029
6.070 1.289 7.715
4.467 0.017 0.103

-2.215 -0.184 -1.102
18.055 3.490 20.890
54.337 1.094 6.552
25.187 3.602 21.563

6.515 0.388 2.321
1.707 0.260 1.559

14.872 0.738 4.416
3.037 0.687 4.113
4.627 0.441 2.639

19.484 2.748 16.449
7.192 1.069 6.397
3.417 0.439 2.625

12.157 1.202 7.195
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HERACL 0.117 0.945 -2.437 13.465 2.265 13.557
THEMEL 0.898 5.253 -1.347 22.437 2.847 17.044
IATR 2.116 1.801 1.455 11.742 1.983 11.870
INTER -2.733 2.357 -4.016 11.507 1.960 11.730
INTEP -10.207 0.010 -14.529 26.270 5.519 33.036
INTER 1.130 1.786 1.177 7.839 0.641 3.835
INTET 0.964 2.011 1.325 9.285 0.870 5.210
INTKA 1.940 2.065 -0.798 11.643 2.653 15.879
ION A 2.645 1.704 1.931 6.729 1.382 8.271
IONE -2.489 -0.560 -3.153 12.928 2.735 16.371
KALSK 4.060 3.135 2.956 6.360 1.182 7.074
KARELIA -1.369 0.921 -2.437 11.011 1.472 8.811
KATSK -1.395 2.639 -4.361 18.797 3.356 20.091
KEKROPS 3.037 0.904 3.647 5.395 0.635 3.799
KERAL -0.735 2.541 -0.722 13.803 1.300 7.782
KERK 0.973 1.780 0.639 1.922 0.213 1.276
KORFK 0.278 2.125 1.223 6.137 -0.313 -1.873
KREKA 2.794 3.537 2.524 15.810 1.077 6.447
LAB1 2.591 2.407 2.120 5.664 0.693 4.148
LAMDA 1.078 1.235 -0.006 7.811 1.360 8.142
LAMPSA 0.934 1.067 0.427 5.529 0.980 5.869
LOYLI 2.267 2.794 -0.186 8.442 1.513 9.054
LYKOS 2.411 5.305 -2.061 14.588 2.190 13.107
MAIK 2.886 3.918 -0.835 17.465 2.723 16.298
MAXIM 1.298 2.276 1.387 4.965 0.146 0.875
MARFIN -3.251 2.043 -6.393 35.953 6.685 40.016
MEAGA 1.125 1.828 1.290 2.323 0.259 1.548
MESOX 0.818 1.672 0.080 1.032 0.459 2.747
METK 3.295 3.294 0.765 6.945 1.299 7.778
MHXK 2.923 3.115 1.438 13.047 1.867 11.176
MINE 0.944 1.873 -0.300 3.424 0.779 4.660
MOUZK 2.599 1.587 2.132 7.093 1.362 8.151
MOYLT -0.264 -0.743 0.762 1.384 0.557 3.334
MOYR 0.132 0.706 1.094 0.462 -0.166 -0.991
MOXLOS 1.825 1.300 2.336 4.709 0.388 2.320
MPENK 1.278 1.879 0.534 8.379 1.235 7.392
MPOKA 1.306 -0.340 2.103 -2.347 0.407 2.439
MPSTK 1.780 2.747 -0.450 12.462 1.983 11.873
MPTK 3.475 1.705 3.238 6.530 1.408 8.431
MRFKO 4.790 5.769 3.477 17.729 1.338 8.011
MYTIL 4.927 4.138 3.213 7.997 1.182 7.074
NAOYK 0.881 4.783 1.256 7.611 0.350 2.097
NEL 2.317 3.676 0.733 7.667 0.845 5.059
NHR 2.438 2.844 2.202 14.697 1.623 9.715
NIKAS 1.295 4.102 -1.174 12.075 1.787 10.695
XYLK -0.017 1.006 0.324 4.367 0.417 2.495
PAPAR 3.830 4.637 -0.871 18.199 3.052 18.272
PARN 0.797 1.588 0.597 -0.233 -0.061 -0.366
PEILH 5.677 4.687 2.641 16.815 1.992 11.924
PEIR 7.113 3.692 2.328 18.760 3.826 22.905
PEPA -3.070 -2.220 -1.916 27.376 3.479 20.823
PETZK -0.738 4.719 -3.199 11.743 1.654 9.898
PLATH 3.009 3.357 1.877 5.190 0.623 3.728
PLAS -1.175 -0.735 -0.860 8.761 2.273 13.605
PRD 3.794 3.258 3.031 3.909 0.534 3.199
PROOD -4.821 -0.212 -5.190 40.244 5.593 33.479
RILKE 6.630 4.324 5.481 6.654 0.893 5.345
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RINTE 3.404 2.611 2.507 5.601 1.144 6.848
ROKK.A 3.110 3.020 1.363 7.279 1.336 7.997
SAIKL 0.253 0.387 0.885 4.084 0.552 3.305
SANYO 2.890 2.432 2.371 3.526 0.640 3.829
SAR 2.900 3.712 1.114 8.956 1.131 6.770
SATOK 1.398 2.093 0.662 2.066 0.404 2.421
SELMK 3.395 1.559 3.262 7.396 1.516 9.075
SELO 0.589 2.316 -0.010 5.666 0.592 3.545
SIDE 4.356 3.425 2.110 9.696 1.605 9.608
STALK 0.518 0.496 1.063 -1.713 -0.009 -0.055
STRIK 3.144 4.167 0.894 11.093 1.171 7.013
TERNA 2.715 2.751 1.934 4.674 0.553 3.312
TEXN -0.807 1.128 -0.697 -1.742 -0.290 -1.739
TZKA 3.580 1.994 3.938 15.574 1.144 6.849
THLET 2.924 2.580 0.882 7.140 1.713 10.257
TITK. 3.784 1.006 4.354 22.151 3.964 23.729
TSIP 2.759 6.360 -0.197 22.662 2.784 16.663
YALKO 0.941 2.793 0.282 6.013 0.532 3.184
FAN KO 0.609 4.947 0.744 6.443 0.002 0.014
FINTO -0.833 0.469 -0.035 9.226 0.450 2.696
FOIN -2.363 4.044 -2.341 34.797 3.118 18.665
FRLK 1.440 0.915 1.138 9.022 1.386 8.294
HALYB 2.022 2.759 1.236 2.131 0.302 1.809
XATZK 1.268 0.071 1.561 3.953 1.029 6.161
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Table A5: Bera-Jarque Normality test

ABK 207.25 ETLES
AVAX 93.27 ETMAK
AAAK 62.38 ZAMPA
ALTEC 80.55 HERACL
ALFA 401.04 THEMEL
ATTIK 3.74 1ATR
AKTOR 108.80 1NTEK
ALATK 22.20 INTEP
AEGEP 48.36 INTER
AXON 202.35 1NTET
BIOSK 9.60 INTKA
BIOSP 19.52 IONA
BIOT 50.70 IONE
BIOXK 113.57 KALSK
BISK 11.33 KARELIA
BISP 146.96 KATSK
GEBKA 34.73 KEKROPS
GEK 81.87 KERAL
GENAK 75.30 KERK
GOOD 800.35 KORFK
DIAS 34.34 KREKA
DIEKA 22.46 LABI
DK 256.31 LAMDA
EBZ 110.93 LAMPSA
EGNAK 106.98 LOYLI
EDRA 261.37 LYKOS
EEEK 371.12 MAIK
EKTER 2.04 MAXIM
ELAIS 537.11 MARFIN
ELBE 44.71 MEAGA
ELKA 95.32 MESOX
ELL 623.55 METK
ELMEK 88.30 MHXK
ELMPI 467.16 MINE
ELTEX 110.99 MOUZK
ELTK 39.90 MOYLT
ELYF 47.28 MOYR
ELFK 25.35 MOXLOS
EMDKO 4.91 MPENK
EMP 328.87 MPOKA
EXEL 2990.72 MPSTK
EPERA 635.92 MPTK
EPILK 49.59 MRFKO
ERGAS 3.30 MYTIL
ERMES 231.25 NAOYK
ESK 9.33 NEL
ESHA 32.45 NHR
ETE 412.93 NIKAS

64.94 XYLK 19.07
16.03 PAPAK 345.88

153.87 PARN 0.69
181.33 PEILH 314.98
504.21 PEIR 402.53
142.36 PEPA 758.87
139.88 PETZK 138.43
794.29 PLATH 35.99
62.73 PLAS 78.14
87.14 PRD 29.67
139.33 PROOD 1642.79
52.27 RILKE 88.24
173.33 RINTE 42.96
56.93 ROKKA 62.65
123.12 SAIKL 16.74
355.27 SANYO 20.78
38.33 SAR 88.62
191.06 SATOK 6.22
4.64 SELMK 66.22
37.74 SELO 32.45

257.77 SIDE 112.99
38.80 STALK 3.20
62.18 STRIK 132.93
31.45 TERNA 29.21
76.40 TEXN 3.69

218.61 TZKA 255.36
313.35 THLET 59.53
26.34 TITK 504.97

1303.19 TSIP 521.20
6.66 YALKO 37.04
1.73 FANKO 41.88

59.08 FINTO 85.82
178.78 FOIN 1216.44
12.61 FRLK 83.47
57.06 HALYB 8.63
1.99 XATZK 17.24
0.23

25.50
71.84
7.22

158.47 
54.71 

337.28
88.22 
58.70 
64.14 

221.95
147.48
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Table A6: Parameter Estimates of the Skewed Generalised -T  Distribution

k n ct
ABK 2.8255 7.9129 0.0081
AVAX 2.2544 3.6869 0.0210
AAAK 3.2609 4.7864 0.0305
ALTEC 3.8752 3.0649 0.0320
ALFA 3.8458 4.1843 0.0344
ATTIK 3.9957 6.6149 0.0344
AKTOR 2.0794 5.2892 0.0139
ALATK 2.8771 2.9736 0.0166
AEGEP 3.8024 6.8658 0.0258
AXON 2.3313 5.7255 0.0372
BIOSK 2.5474 3.4874 0.0311
BIOSP 2.1423 5.1621 0.0154
BIOT 2.1157 8.2896 0.0303
BIOXK 2.3832 8.2385 0.0318
BISK 2.4958 3.5978 0.0233
BISP 2.0847 9.5500 0.0093
GEBKA 2.6286 9.6415 0.0401
GEK 2.7465 3.4699 0.0199
GENAK 3.1739 3.2143 0.0332
GOOD 2.7755 10.7604 0.0114
DIAS 2.8048 9.0034 0.0097
DIEKA 2.7719 4.0739 0.0372
DK 3.8979 8.1016 0.0381
EBZ 2.9960 10.6456 0.0198
EGNAK 2.9151 7.8012 0.0374
EDRA 2.6669 6.2970 0.0316
EEEK 4.0307 6.4729 0.0190
EKTER 3.6875 6.3344 0.0327
ELAIS 4.0622 4.7872 0.0211
ELBE 2.5702 4.8095 0.0122
ELKA 3.9819 11.4672 0.0186
ELL 2.1585 5.6106 0.0283
ELMEK 3.4812 11.1114 0.0242
ELMPI 3.7075 4.4029 0.0112
ELTEX 4.0242 9.9571 0.0272
ELTK 2.9966 5.4615 0.0276
ELYF 2.6594 4.0702 0.0258
ELFK 3.5729 9.4863 0.0168
EMDKO 2.7635 3.7192 0.0192
EMP 3.6246 11.3843 0.0389
EXEL 2.2009 7.7128 0.0228
EPERA 2.4528 10.9840 0.0224
EPILK 2.1800 6.8629 0.0113
ERGAS 2.7774 7.5123 0.0374
ERMES 3.0387 3.1351 0.0294
ESK 3.0878 3.1157 0.0161
ESHA 2.8081 5.1592 0.0317
ETE 4.0514 6.6910 0.0130
ETLES 2.1326 11.2666 0.0372
ETMAK 2.5184 6.7004 0.0206
ZAMPA 2.0601 7.4599 0.0367
HERACL 3.9301 4.6658 0.0388

X InL SBC
0.0003 1.4137 6041.0 1553.5
0.0012 2.0451 7133.9 2646.4
0.0007 0.5769 5869.2 1381.7
0.0004 0.2748 6786.9 2299.4
0.0002 1.9263 6862.6 2375.1

-0.0004 0.2802 6926.2 2438.7
0.0005 2.3235 7868.5 3381.0

-0.0003 0.1700 6713.9 2226.4
-0.0003 -0.2743 5963.3 1475.8
0.0000 1.2387 7362.3 2874.8

-0.0001 1.3396 8017.8 3530.3
0.0000 2.5147 8018.8 3531.3
0.0003 1.1453 7978.9 3491.4
0.0005 2.6804 6630.1 2142.6

-0.0001 -0.4289 6268.5 1781.0
0.0000 3.0588 6358.9 1871.4
0.0003 1.4334 6139.4 1651.9
0.0001 0.3841 6815.3 2327.8
0.0011 1.4067 7915.3 3427.8
0.0006 0.7170 6636.8 2149.3
0.0004 2.1846 5922.3 1434.8
0.0000 0.0118 6083.2 1595.7

-0.0002 0.3857 7932.9 3445.4
-0.0003 -0.3199 7465.6 2978.1
-0.0003 1.8191 7899.5 3412.0
-0.0004 0.6240 7325.3 2837.8
0.0001 -0.0189 7234.5 2747.0

-0.0003 0.3017 8142.6 3655.1
0.0000 1.5387 6836.0 2348.5
0.0001 0.9274 7617.9 3130.4

-0.0002 2.5964 7644.1 3156.6
0.0011 1.6223 8024.0 3536.5
0.0004 1.8495 6195.0 1707.5
0.0007 1.0624 7993.2 3505.7
0.0005 1.0153 7528.3 3040.8
0.0003 0.1751 6385.7 1898.2

-0.0002 2.9580 6542.5 2055.0
0.0002 0.0483 7875.1 3387.6

-0.0003 1.0827 6480.0 1992.5
0.0003 0.6584 7159.0 2671.5
0.0007 2.3321 6433.0 1945.5
0.0003 1.7374 6428.8 1941.3

-0.0004 0.6560 6504.5 2017.0
-0.0014 1.2755 7058.5 2571.0
0.0014 2.7322 6300.7 1813.2
0.0005 0.2734 7207.8 2720.3

-0.0001 0.9259 8242.5 3755.0
0.0005 2.0894 5987.0 1499.5

-0.0005 2.1656 7121.9 2634.4
-0.0005 1.5871 6461.9 1974.4
0.0001 0.6242 6929.4 2441.9
0.0000 2.8334 5914.5 1427.0
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THEMEL 2.2536 8.0303 0.0166 0.0001 0.9084 6693.3 2205.8
IATR 2.5711 11.2081 0.0092 0.0001 0.9630 5840.5 1353.0
INTEK 3.6246 5.8652 0.0341 -0.0004 1.8979 6338.8 1851.3
INTEP 3.4297 10.4602 0.0243 0.0003 2.1221 7548.5 3061.0
INTER 3.6925 6.0901 0.0235 0.0000 0.6867 7466.1 2978.6
INTET 3.5204 9.7750 0.0083 0.0008 2.3316 7678.9 3191.4
INTKA 2.2227 9.1911 0.0137 0.0002 0.2100 6126.5 1639.0
IONA 2.3185 11.4706 0.0099 0.0005 0.9074 7951.3 3463.8
IONE 3.5850 6.0146 0.0234 0.0000 2.0453 6751.5 2264.0
KALSK 3.3218 5.0446 0.0111 -0.0002 2.9589 6496.9 2009.4
KARELIA 2.4025 9.3455 0.0105 0.0004 1.6021 7930.5 3443.0
KATSK 2.8717 10.9903 0.0326 0.0001 0.2817 5960.4 1472.9
KEKROPS 3.1712 5.0415 0.0316 0.0013 0.4709 7875.6 3388.1
KERAL 3.4944 5.4256 0.0121 0.0008 0.0698 6356.4 1868.9
KERK 3.1770 10.8015 0.0371 -0.0003 -0.3579 7960.0 3472.5
KORFK 2.4178 5.2843 0.0151 -0.0002 0.1142 6244.8 1757.3
KREKA 4.0197 6.7961 0.0143 -0.0005 1.8615 5850.9 1363.4
LABI 3.4445 9.8942 0.0231 -0.0002 1.3174 6247.4 1759.9
LAMDA 3.1235 8.5491 0.0077 0.0008 2.7114 6646.9 2159.4
LAMPSA 3.6673 3.5640 0.0143 0.0011 -0.4592 6677.5 2190.0
LOYLI 3.6855 5.3925 0.0169 0.0002 -0.3319 5856.4 1368.9
LYKOS 2.5823 9.5199 0.0117 0.0001 0.9911 7791.5 3304.0
MAIK 2.4112 10.3569 0.0270 0.0008 0.2733 8021.3 3533.8
MAXIM 3.8095 9.5246 0.0114 -0.0002 2.1549 6676.2 2188.7
MARFIN 2.2831 7.5341 0.0296 0.0000 -0.1811 5915.7 1428.2
MEAGA 2.1708 3.8435 0.0230 -0.0004 2.1599 7144.9 2657.4
MESOX 3.5960 5.8966 0.0293 -0.0004 2.4606 7349.8 2862.3
METK 3.5489 7.6636 0.0123 0.0007 1.4409 6404.3 1916.8
MHXK 4.0522 5.9100 0.0237 -0.0006 2.9946 6992.8 2505.3
MINE 3.9290 8.7455 0.0256 0.0002 2.9618 8139.1 3651.6
MOUZK 3.8848 4.3394 0.0097 -0.0002 1.5799 6228.9 1741.4
MOYLT 3.1563 10.4859 0.0094 -0.0004 0.2542 7382.6 2895.1
MOYR 3.0666 10.4563 0.0369 -0.0004 1.2421 6538.3 2050.8
MOXLOS 3.4202 10.9806 0.0105 0.0000 1.7557 6224.3 1736.8
MPENK 3.0443 8.6162 0.0346 0.0001 0.7935 6854.9 2367.4
MPOKA 2.3459 3.6502 0.0397 0.0001 -0.1484 6579.8 2092.3
MPSTK 2.1271 7.8274 0.0383 0.0002 0.4185 6669.0 2181.5
MPTK 3.6664 9.2331 0.0159 -0.0001 1.2271 7357.1 2869.6
MRFKO 3.4133 4.9946 0.0349 -0.0001 2.2563 7415.1 2927.6
MYTIL 3.5353 8.3756 0.0209 0.0003 1.3569 6851.2 2363.7
NAOYK 3.2366 7.1875 0.0203 -0.0005 1.6906 7800.5 3313.0
NEL 2.3590 10.9633 0.0397 -0.0004 0.6428 6754.5 2267.0
NHR 3.8611 7.9737 0.0079 -0.0008 1.6855 6992.8 2505.3
NIKAS 2.8170 3.6678 0.0386 0.0003 2.4832 6226.3 1738.8
XYLK 2.4570 8.3032 0.0140 0.0005 0.9011 6595.8 2108.3
PAPAK 2.4677 4.6433 0.0144 0.0002 0.0280 6444.7 1957.2
PARN 2.7279 7.2127 0.0295 -0.0013 1.7654 7436.9 2949.4
PEILH 2.7100 5.0011 0.0281 0.0007 -0.3619 6162.5 1675.0
PEIR 2.6594 7.1044 0.0078 0.0008 0.9089 6008.4 1520.9
PEPA 3.6784 8.5790 0.0383 0.0003 1.8205 6389.4 1901.9
PETZK 3.4631 11.1159 0.0325 -0.0003 0.3607 5802.1 1314.6
PLATH 2.6011 7.6512 0.0264 0.0002 0.0741 6194.0 1706.5
PLAS 3.8852 3.5396 0.0338 -0.0009 1.0731 7004.1 2516.6
PRD 2.1294 9.7576 0.0366 -0.0007 1.0127 6219.7 1732.2
PROOD 3.4893 8.0235 0.0247 0.0002 2.3432 6699.9 2212.4
RILKE 2.9710 5.4127 0.0396 -0.0001 -0.3917 7844.7 3357.2
RINTE 3.0988 6.6325 0.0347 0.0004 2.6691 6985.7 2498.2
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ROKKA
SAIKL
SANYO
SAR
SATOK
SE LM K .

SELO
SIDE
STALK
STRIK
TERNA
TEXN
TZKA
THLET
TITK
TSIP
YALKO
FANKO
FINTO
FOIN
FRLK
HALYB
XATZK

2.5708
2.6413
3.6784
3.6517
3.4222
3.5833
3.9755
3.3074
3.5158
4.0151
2.7983
3.7764
3.1808
3.8223
2.9453
2.4920
3.7938
2.6191
3.4777
3.4860
2.8129
2.7193
2.2245

5.5918
5.2664
7.6546

10.1587
4.9432
9.9868
7.7367

11.1578
3.7294
8.8996
6.1399

10.3394
6.2498
8.4736
6.9675
6.4705
4.4480
3.7216
5.2725
9.6997
3.4337
5.7947
4.1279

0.0157
0.0341
0.0290
0.0086
0.0158
0.0182
0.0348
0.0119
0.0246
0.0303
0.0350
0.0159
0.0257
0.0085
0.0281
0.0327
0.0096
0.0163
0.0374
0.0397
0.0224
0.0332
0.0217

0.0001
-0.0007
-0.0001
- 0.0002
-0.0004
-0.0004
-0.0009
0.0001

-0.0015
-0.0005
0.0003

-0.0017
- 0.0002
0.0008
0.0010
0.0006
0.0000

-0.0006
0.0006
0.0001

- 0.0002
-0.0003
- 0.0002

0.2997
0.0844

-0.2652
1.6853
1.2033
0.5386
1.4547
0.5097
0.4070
0.2903
2.3253
2.6750
0.5177
1.0483

-0.4247
0.3297
2.6036

-0.2769
0.3074
2.3271
0.6463
1.8868
1.5912

6571.9
6278.8
7553.6
6539.7
7636.2
6740.7
6411.9
7640.7
6229.3
8184.9
6600.8
7393.1
6249.9
7118.1
7547.6
7411.1
6865.7
7558.0
6185.1
5953.4
7936.3 
7540.6
6938.5

2084.4
1791.3
3066.1
2052.2
3148.7
2253.2
1924.4
3153.2
1741.8
3697.4
2113.3
2905.6
1762.4
2630.6
3060.1
2923.6
2378.2
3070.5
1697.6
1465.9
3448.8 
3053.1 
2451.0
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Table A7: Parameter Estimates of the Stable Distribution

a InL SBC a InL SBC
ABK 1.42 5881.53 1453.02 KERK 1.57 7589.34 3238.99
AVAX 1.18 7049.74 2593.37 KORFK 1.25 6559.14 1955.32
AAAK 1.60 5610.00 1218.41 KREKA 1.92 5744.90 1296.63
ALTEC 1.86 6491.63 2113.36 LABI 1.68 6076.46 1652.21
ALFA 1.84 6764.25 2313.13 LAMDA 1.54 6642.20 2156.44
ATTIK 1.91 6631.60 2253.10 LAMPSA 1.77 6294.77 1948.88
AKTOR 1.11 7817.53 3348.89 LOYLI 1.78 6224.01 1600.51
ALATK 1.44 6406.18 2032.54 LYKOS 1.32 7581.67 3171.81
AEGEP 1.83 5602.59 1248.55 MAIK 1.25 7725.88 3347.69
AXON 1.22 7182.04 2761.25 MAXIM 1.83 6747.31 2233.52
BIOSK 1.31 7849.56 3424.33 MARFIN 1.20 5566.10 1207.95
BIOSP 1.14 7990.65 3513.57 MEAGA 1.15 7074.40 2612.97
BIOT 1.13 7787.45 3370.78 MESOX 1.74 7315.16 2840.47
BIOXK 1.24 6621.74 2137.35 METK 1.72 6248.05 1818.35
BISK 1.28 5889.38 1542.16 MHXK 1.93 7021.87 2523.62
BISP 1.11 6395.61 1894.53 MINE 1.88 8164.20 3667.40
GEBKA 1.34 5982.31 1552.93 MOUZK 1.86 6089.26 1653.43
GEK 1.39 6533.08 2150.00 MOYLT 1.56 7084.88 2707.53
GENAK 1.57 7755.07 3326.87 MOYR 1.52 6718.24 2164.17
GOOD 1.40 6394.32 1996.55 MOXLOS 1.67 6105.64 1662.05
DIAS 1.41 5854.79 1392.27 MPENK 1.51 6621.52 2220.38
DIEKA 1.40 5756.56 1389.90 MPOKA 1.22 6234.07 1874.48
DK 1.86 7650.93 3267.78 MPSTK 1.13 6390.92 2006.32
EBZ 1.49 7099.45 2747.42 MPTK 1.77 7175.39 2755.11
EGNAK 1.46 8010.59 3481.98 MRFKO 1.66 7356.08 2890.40
EDRA 1.36 7071.75 2678.08 MYTIL 1.71 6685.01 2259.01
EEEK 1.92 6904.26 2538.95 NAOYK 1.59 7674.10 3233.37
EKTER 1.78 7850.57 3471.12 NEL 1.23 6503.16 2108.66
ELAIS 1.93 6691.49 2257.47 NHR 1.85 6865.79 2425.29
ELBE 1.32 7400.44 2993.39 NIKAS 1.42 6194.34 1718.65
ELKA 1.90 7625.69 3145.00 XYLK 1.27 6816.34 2247.23
ELL 1.14 7889.44 3451.73 PAPAK 1.27 6120.05 1752.67
ELMEK 1.69 6087.49 1639.76 PARN 1.38 7319.43 2875.41
ELMPI 1.79 7791.85 3378.84 PE1LH 1.37 5791.34 1441.17
ELTEX 1.92 7321.37 2910.43 PEIR 1.35 5788.78 1382.55
ELTK 1.49 6078.55 1704.69 PEPA 1.77 6278.42 1831.97
ELYF 1.35 6567.23 2070.59 PETZK 1.68 6087.14 1494.19
ELFK 1.73 7552.88 3184.61 PLATH 1.33 5874.83 1505.43
EMDKO 1.40 6678.33 2117.44 PLAS 1.86 6804.05 2390.57
EMP 1.75 6909.51 2514.33 PRD 1.13 6012.46 1601.64
EXEL 1.16 6383.03 1914.01 PROOD 1.70 6651.31 2181.80
EPERA 1.27 6307.99 1865.21 RILKE 1.48 8219.36 3593.22
EPILK 1.15 6254.70 1859.62 RINTE 1.53 6975.92 2492.03
ERGAS 1.40 6882.63 2460.22 ROKKA 1.32 6279.60 1900.24
ERMES 1.51 6298.47 1811.79 SAIKL 1.34 5960.89 1591.02
ESK 1.53 7503.22 2906.42 SANYO 1.77 7913.26 3292.71
ESHA 1.41 8024.93 3617.94 SAR 1.76 6412.62 1972.14
ETE 1.93 5908.11 1449.79 SATOK 1.67 7451.68 3032.46
ETLES 1.13 7052.15 2590.47 SELMK 1.73 6476.90 2087.00
ETMAK 1.29 6323.16 1887.00 SELO 1.90 6257.37 1827.05
ZAMPA 1.10 6675.86 2282.18 SIDE 1.62 7373.42 2984.80
HERACL 1.88 5924.32 1433.18 STALK 1.71 5949.87 1565.78
THEMEL 1.18 6473.62 2067.40 STRIK 1.91 7891.54 3512.60
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IATR 1.32 5627.32 1218.69
INTEK 1.75 6237.05 1787.18
INTEP 1.67 7473.48 3013.72
INTER 1.78 7220.00 2823.56
INTET 1.71 7728.85 3222.85
INTKA 1.17 5823.58 1448.18
IONA 1.21 7731.48 3325.31
IONE 1.74 6667.38 2211.01
K.ALSK. 1.63 6521.69 2025.02
KARELIA 1.25 7793.56 3356.74
KATSK 1.44 5665.95 1287.38
KEKROPS 1.56 7603.79 3216.88
KERAL 1.70 6036.67 1667.45

TERNA 1.41 6550.06 2081.34
TEXN 1.81 7384.04 2899.89
TZKA 1.57 6516.15 1930.13
THLET 1.83 6915.10 2502.71
TITK 1.47 7168.92 2821.52
TSIP 1.28 7699.84 3105.52
YALKO 1.82 6848.16 2367.17
FANKO 1.34 7196.99 2843.07
FINTO 1.69 5893.70 1514.00
FOIN 1.69 5902.90 1434.10
FRLK 1.42 7685.39 3290.74
HALYB 1.38 7437.61 2988.23
XATZK 1.17 6800.18 2363.84
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Table A8: Estimates of the Tail Parameter

Company _______ ÜL Company Company
ABK 0.3647 ESK 0.2913 MRFRO 0.4192
AVAX 0.3981 ESHA 0.3264 MYTIL 0.3437
AAAK 0.2590 ETE 0.4041 NAOYK 0.3487
ALTEC 0.4003 ETLES 0.3654 NEL 0.3717
ALFA 0.3724 ETMAK 0.2248 NHR 0.3512
ATTIK 0.3266 ZAMPA 0.3448 NIKAS 0.3910
AKTOR 0.3758 HERACL 0.3889 XYLK 0.3531
ALATK 0.3377 THEMEL 0.4477 PAPAK 0.4208
AEGEP 0.3885 IATR 0.3695 PARN 0.2533
AXON 0.3840 INTER 0.3415 PEILH 0.4281
BIOSK 0.2119 INTEP 0.4420 PEIR 0.4443
BIOSP 0.2107 INTER 0.3577 PEPA 0.3982
BIOT 0.3542 INTET 0.3711 PETZK 0.3573
BIOXK 0.3833 INTRA 0.3462 PLATH 0.3552
BISK 0.3107 IONA 0.3709 PLAS 0.3291
BISP 0.3397 IONE 0.3363 PRD 0.3105
GEBKA 0.3359 KALSK 0.3725 PROOD 0.4814
GEK 0.3781 KARELIA 0.3450 RILKE 0.3330
GENAK 0.3846 KATSK 0.4117 RINTE 0.3184
GOOD 0.4177 KEKROPS 0.2958 ROKKA 0.3668
DIAS 0.3356 KERAL 0.4182 SAIKL 0.2965
DIEKA 0.3380 KERR 0.2735 SANYO 0.3235
DK 0.4234 KORFK 0.2264 SAR 0.3281
EBZ 0.3572 KREKA 0.3644 SATOK 0.3026
EGNAK 0.3595 LABI 0.3195 SELMK 0.3313
EDRA 0.4920 LAMDA 0.3845 SELO 0.3649
EEEK 0.4136 LAMPSA 0.3950 SIDE 0.3361
EKTER 0.3055 LOYLI 0.3808 STALK 0.2176
ELAIS 0.4371 LYKOS 0.3914 STRIK 0.3778
ELBE 0.3336 MAIK 0.3977 TERNA 0.3302
ELKA 0.3845 MAXIM 0.3621 TEXN 0.1917
ELL 0.4813 MARFIN 0.4758 TZKA 0.3936
ELMEK 0.3960 MEAGA 0.2717 THLET 0.4012
ELMPI 0.4882 MESOX 0.2983 TITK 0.4362
ELTEX 0.4006 METK 0.3709 TSIP 0.3858
ELTK 0.3227 MHXK 0.4536 YALKO 0.3475
ELYF 0.3582 MINE 0.3113 FANKO 0.3177
ELFK 0.2565 MOUZK 0.3747 FINTO 0.3556
EMDKO 0.2324 MOYLT 0.1994 FOIN 0.5035
EMP 0.4909 MOYR 0.2681 FRLK 0.3660
EXEL 0.3513 MOXLOS 0.3233 HALYB 0.3303
EPERA 0.4201 MPENK 0.3848 XATZK 0.3885
EPILK 0.3044 MPOKA 0.2126
ERGAS 0.2890 MPSTK 0.4375
ERMES 0.4506 MPTK 0.3366
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Chapter 5 - Evaluation of the Forecasting Performance of 
Alternative Value- at-Risk Models.

5.1 Introduction

Risk measurement using Value at Risk entails the estimation of quantiles or tail probabilities of a 

distribution. There are many approaches to the estimation of tail probabilities. The most common 

approach is to assume that the loss distribution function has a particular form, e.g. normal, student, 

hyperbolic, stable etc whose parameters can be estimated from a particular sample. Since this approach 

allows a complete characterisation of the distribution, then tail probability estimation is quite simple. A 

more parsimonious approach compared to the first approach is to modify the quantiles of the normal 

distribution assuming either time varying volatility or using Fisher Cornish type modifications. A host of 

models are derived as a result of the different volatility models.

Extreme value theory is also a parametric method but it differs from the above approaches in the sense 

that it deals with the statistical properties of sample observations that are in the tails of a distribution. 

Extreme value theory uses asymptotic results, much in the same way as the central limit theory to derive 

the distribution function of extreme observations. These results are derived without any reference to the 

distribution function that may characterise the entire sample of random variables.

The purpose of this chapter is to evaluate the forecasting performance of the various approaches to 

estimating VaR. The approach we adopt is to evaluate the out-of -sample performance of the various 

models as the primary purpose of a VaR model is to forecast future losses.

The chapter is organised as follows. In Section 1 we present a framework for the evaluation of forecast 

performance. Kupiec ( 1995) suggested a statistic for evaluating the performance of a model based on the 

proportion of prediction failure. Evaluation based on the proportion of correct forecasts ignores 

conditioning or time variation in the data which may introduce serial correlation in the prediction failure. 

Christoffersen (1998 ) developed a test that takes this aspect into account when a model is evaluated and 

this is the test we have used in this chapter.

In Section 2 we review the data we have used to compare the performance of the alternative models.

More specifically we explore the statistical properties of returns of the Athens Stock Exchange General 

Price Index. We test for normality and compare three distributions in terms of quantile prediction, namely 

the normal, the Laplace and the Student-Distribution. Estimation of the density function is useful on its 

own right but it also gives us insights as to the right density for the error term when we model the 

dynamics of the returns.

In Section 3 we estimate the tails of the distribution using the Pareto model paying particular emphasis to 

the specification of the correct threshold for the characterisation of the extreme observations.

In Section 4 we tackle the issue of heteroskedasticity in returns by modelling the volatility dynamics 

through a GARCH model. The implications of applying extreme value theory to the heteroskedasticity - 

corrected series are further explored by calculating the Value-at-Risk for the standardised residuals.
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In Section 5 we present the specification of the alternative models that we compare. The approach we 

have adopted is to estimate each model over a certain sample and then to forecast the next day VaR 

producing a total of 2000 forecasts. In total we compare eight different models which are differentiated 

in terms of their distributional assumptions and in terms of their conditioning methods. The first group of 

models assumes that the parameters remain fixed within the sample on which estimation is conditioned.

In the second group of models we assume that volatility varies over time and is not fixed within the 

sample.

In Section 6 we present the results of the comparison using the metrics we have described in Section 2, 

and finally in Section 7 we present the conclusions to this chapter.

5.2 A Framework for Assessing the Forecasting Performance of Alternative VaR 

Models

The basic problem in market risk measurement is how on the basis of information up to time t we can 

form a prediction of the Value-at-Risk for the following day, i.e.

VaRt+u ,(p ) = F'+Ut(p )  (5.1.1)

Where Fl+Ul (p ) is the predicted pth quantile and is the inverse of the distribution function. In the

special case where the first two moments of the distribution are finite the predicted VaR may be 

expressed in terms of the predicted moments as follows

VaR,+u, (p ) = jut+l/t + F ; x (p )  x â t+Vt (5.1.2)

where JUt+i/t, (7, 1/( are the predicted values of the mean and standard deviation based on the

information up to time t and F\ 1 (p ) is the pth quantile of the random variable z = (R — p ) /  & .

The models we shall employ will differ in terms of whether we estimate directly the quantile function as 

in (5.1.1) or whether we are assuming a particular standardised distribution function and we estimate the 

moments (i.e. the standard deviation since the mean is close to zero and of little consequence). A large 

number of models can be examined in this way depending on the assumed distribution function or on the 

way that volatility is modelled.

The evaluation of the predictive performance of any forecasting system requires the adoption of a metric. 

In order to introduce the appropriate framework, consider the hit variable I t+l which takes the value of 1

when the predicted VaR is below the actual loss, i.e. when the loss exceeds the predicted VaR and zero if 

it does not.

j  f 1 i f  r,+i < VaR,+\I,
,+1 [0 otherwise

If the perfect forecast VaR forecast model was used, then the forecasting error

77 j = ri+] -  VaRt+Ut would be unpredictable in the sense that we would not be able at time t to make a 

prediction as to whether the predicted VaR level would be violated. Our forecast of a VaR violation
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should be 100p% every day. If we could predict violations, then that information could be used to 

formulate a better VaR prediction level. The assumption of unpredictable forecasting errors implies that 

the sequence {I l+]} should be independently and identically distributed as a Bernoulli random variable 

which takes values.

1 1 with probability  p

i+1 [0 with probability  1 -  p

An example of a particular realisation of the hit variable when /? = 0.10 is given in Figure5.1

Figure 5.1: Hit Variable values

Days

If the probability of a violation is p, the Bernoulli density function is given by

= P 1'*

Christoffersen (1998 ) presents a number of tests for the evaluation of the forecasting performance of 

VaR model. The first test which he calls the unconditional coverage test, tests if the fraction of violations 

obtained for a particular VaR forecasting model, denoted by K is significantly different from the 

predicted fraction of violations p. The likelihood function of an iid Bernoulli random variable with 

probability of violation equal to n  is given by 

T

L(n) =  n  (! -  ^ ) W,+' = (! -  ^ ) r° n '

where

Tx =Number of 1 ’s in the indicator series 

T0 = Number of 0’s in the indicators series
T

The Maximum Likelihood Estimator of n  is n = ----5—  which is just the observed proportion of
T + T1o

violations in the sample sequence.

The value of the likelihood function given the estimates TC is therefore

L(n) = (1 -7t)°KTo ¿n - 1 —
Z

To f

T +T1\ J k,T0 + T \ j

Under the null hypothesis that n  = p  the likelihood function is given by

l {P ) = n  a  -  p t 1-' p ‘i+i= (i -  p y ° p t'
(=1

The null hypothesis can therefore be tested using the likelihood ratio test
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LR-ind  ~  2 In
n 7| (1 -  n ) la

4 )( l - X o i ) 00̂  ( l - x j ' 0^ '  

where fc are the estimates obtained for the unconditional coverage test. High values of LR( C means 

that the forecasting errors are not independent.

Christoffersen (1998 ) has also developed a test for the joint hypothesis of unconditional coverage and 

independence. The Likelihood Ratio statistic for the test of “correct conditional coverage” is given by

p T,a - p ) ToLRCC = -2  In 4 )

The test of correct conditional coverage uses the null hypothesis from the unconditional test and the 

alternative hypothesis from the independence test. If we condition on the first observation, then these 

Likelihood ratio statistics are related by the identity

LRCC = LRUC + LR jno

Christoffersen’s basic framework is limited in that it only deals with first order dependence in the {/,} 

series. It would fail to reject an {It } series which does not have first order Markov dependence but does

exhibit some other kind of dependence structure (e.g. higher order Markov dependence or periodic 

dependence). Recently Christoffersen and Diebold (2000) have generalised this approach and suggested 

that a regression of the {/(} series on its own lagged values and some other variables of interest, such as 

day-dummies or the lagged observed returns, can be used to test for the existence of various form of 

dependence structures that may be present in the {/,} series. Under this framework, conditional

efficiency of the {I t } process can be tested by testing the joint hypothesis :

H  :9 = 0 ,a 0 = p

where 0 = [ a 1, . . . ,a s,|41,....,|4J '

in the regression
s-i s-i

= ao+Z a A +Z ̂  +E<
S=\ S= 1

for t = S + l,S  + 2,...T and where D sl are the explanatory variables.

5.3 Data Description and Estimates of the Unconditional Density Function

The data employed in this chapter to asses the performance of the various VaR models is the Athens 

Stock Exchange All Share Price Index. We have used daily data over the period 2/1/1989-24/4/2003.

Throughout the study we use logarithmic daily returns defined as rt = In S, — In 5’(_, where and

denote closing prices for day t and t — 1 respectively.

The purpose of this section is to investigate the statistical properties of the return series for the index. The 

results of the statistical analysis are summarised in Table 5.1 whereas the actual distribution of returns 

compared to the normal distribution is shown in Figure 5.2.
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The average daily return is not statistically different from zero as it was expected. The usual assumption 

of zero daily return for the calculation of VaR is therefore justified. The daily volatility is on average 

around 1.8% which completely dominates the daily return.

Table 5.1: Descriptive Statistics for the General Index Return Series

Statistic Sample Estimate Standard Error

Daily mean
0.0005 0.0003

Volatility 0.0184
Skewness

0.0144 0.041
Kurtosis

4.862 0.082
Max Value 0.14
Min Value -0.11
Number of observations 3559

Bera-Jarque test 3505

The coefficient of skewness of the series is slightly positive. Under the null hypothesis of normality, the 

skewness coefficient is normally distributed with standard error se(y2 ) = v  6 / T .A test of the 

hypothesis H 0 \ y^ = 0 against H ] :y 3 &0  can be performed using the statistic

y  3

se(r3)
A W )

The value of the test statistic was 0.35 indicating that the coefficient of skewness is not significantly 

different from zero. However the coefficient of excess kurtosis, using the test statistic

— ~ N (0,1)
se(y4)

where se(y4 ) =  \J24/ T was found statistically different from zero since the test statistic was 59.3 . So

the result for kurtosis implies that the rt series exhibit excess kurtosis beyond that of the normal 

distribution.

Figure 5.2: Frequency Distribution of Daily Returns of the General Index
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B-r
♦ r < 0

F ( r )  =

2(j)

1
r-e

1------e
2(f)

r >0

The mean of the distribution is given by

n  = e

and the standard deviation by

a  = <(>\/2

For this probability distribution the coefficient of skewness is given by 

Yj = °

whereas the coefficient of excess kurtosis is given by

Ï 4  = 3

Thus the double exponential is symmetric and has fatter tails than the normal distribution as it is indicated 

by the value of the kurtosis coefficient.

In order to compare the double exponential with the normal distribution we can express the density 

function in terms of the mean and the variance as follows:

/ ? ( r / p , a )  =  ( a V 2 )  exp

From the distribution function we have

Lower quartile 0 — (()log 2 = 0 — 0.693(f) or p —- ^ = l o g 2  — p  —0 .4 9 0 a

Upper Quartile 0 + (j) log  2 = 0 + 0.693(f) or p  + log 2 = p  + 0 .4 9 0 a

The corresponding values for the normal distribution are 

Lower quartile p  —0 .6 7 4 a  

Upper Quartile or p  +  0 .6 7 4 a

This difference reflects the sharp peak in the Laplace distribution. For quantiles however further in the 

tails the comparison is reversed because the Laplace density function decreases as

exp

whereas the normal density decreases as

exp< 1 r - P n

2 a i
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For example the upper and lower 1% points of the Laplace distribution are |_l ±  2.722a compared with 

(J, ± 2.326a for the normal distribution.

The estimation of the parameters is straightforward by the method of maximum likelihood. Given 

observed values of n independent random variables Rl ,....,Rn each with a Laplace density function, we 

can write the likelihood function as

Z (r/0 ,(j)) = - « l n ( 2 ( ) ) ) - [ X |i ? , - 0 |
<P ,-=i

The maximum likelihood estimators of 0 and (j) are

0 = 7?

ß
f n - 1 )  

.  J
!2M»+1>/2ÎI(w + 1)+ .1

\ 2 J U  J _

i  —  Z K - e !
n i=i

where R is the median value for R . The statistical significance of 0 and (j) can be tested by using the 

fact that 0 is (approximately) normally distributed with mean 0 and variance

K ( 6 = - ^ Z ! ( - . y  
[ 0 - 1 ) 7  2]! y=0

The statistical significance of (j) can be tested by using the fact that (j) is distributed (when 0 is known) 

as ( 2 n y ] (j)X)„ where is the chi-square distribution with (2n)  degrees of freedom. The limits of a 

100(1 — a )%  confidence interval for (j) are then

" |7?,-0| " |7?,-0 |
and 2X t 1

/=1 A/2«,l-a/2 .,=1 A'2«,a/2

The parameter estimates and the corresponding Value at Risk (quantiles) are given below in the Table 

5.2.

Table 5.2: Parameter Estimates for the Laplace Distribution

Estimates Standard errors

0 -0.00013

0.012712
0.00008

0.0035

The second symmetric distribution we have used is the Student-t distribution with density function

\ { r  ! v)
H (v  + l ) /2 ]  

> /v r ( v /2 ) r ( i / 2 )

l+ v

V

where V is the degrees of freedom parameter. The parameter V can be estimated by differentiating the 

log-likelihood function
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where B (a ,b ) is the Beta function with parameters a  and b . The pth quantile can be calculated from 

the distribution function and is given by

I" r ( i / 2 ) r ( v / 2 ) p  T v 
Vp~  r ( ( v + i ) / 2 )v(v_2)/2_

Alternatively one can estimate the quantiles of the t-distribution using the EXCEL function TINV1 

Although the assumption of normally distributed returns is rejected by the data, we have nevertheless for 

comparison purposes estimated the quantiles under the assumption of normality using the formula for the 

pth quantile

rNP = |i  + aO  ~ \ p )

where the parameters )i and d  are the MLE estimators of the population parameters and take the values 

p, = 0.0002 and d  = 0.017 . The estimated quantiles are shown in the first column of Table 5.3 which 

brings together the estimates of the quantiles from the distributions we have used and a comparison is 

made with the empirical quantiles given in the fourth column of the table.

Table 5.3 shows that the normal distribution constantly underestimates the quantiles of the empirical 

distribution whereas the Laplace overestimates the quantiles. The Student - t  is closer to the empirical 

quantiles and is therefore the better model of the three in terms of matching the tails of the empirical 

distribution.

Table 5.3 : Alternative quantile estimates predictions

Quantile normal Student Laplace
Empirical

Distribution
0.01 -0.037 -0.050 -0.060 -0.052
0.02 -0.032 -0.041 -0.049 -0.040
0.03 -0.028 -0.036 -0.044 -0.034
0.04 -0.025 -0.032 -0.039 -0.030
0.05 -0.023 -0.029 -0.036 -0.026
0.06 -0.021 -0.027 -0.034 -0.025
0.07 -0.019 -0.025 -0.031 -0.023
0.08 -0.018 -0.023 -0.030 -0.021
0.09 -0.016 -0.022 -0.028 -0.020
0.1 -0.015 -0.021 -0.026 -0.018

5.4 Modelling the Tails of Index Returns
An alternative to estimating the entire distribution as a method of obtaining VaR estimates we have 

estimated the lower tail of the distribution directly by assuming that the tail, that is, observations above a 

level U  of the return distribution, is described by a Pareto distribution. The Pareto distribution specifies 

that the tails are slowly decaying under the so-called power law which is represented for a random 

variable X  as

1 The EXCEL function rp -  T IN V (p ,v) calculates the pth quantile for a two tail distribution. To

calculate the pth quantile for a one-tailed distribution we use the following formula rp = TIN V (2p,v)
The function also gives the probabilities for a standardized variable. We have therefore subtracted from 
each observation the mean and divided the difference by the standard deviation before we calculated the 
probability. The derived quantile was then multiplied by the standard deviation and added to the mean to 
produce the Value at Risk estimate.

249



P (X  > x) = CX~V  ̂ for x >  u

In the estimation procedure we have used losses, that is negative returns defined as X  = -R  . There is no 

information lost in doing this since the highest loss is the lowest return. In the previous chapter we 

derived the Hill (1972) estimator and the estimate of the constant parameter c given by

£  = \  Z  ln(x <7 w) = T  Z ln X i ~ ln u
k  /=1 k  i=\

« k  i/i
n

The value xEP for which P (X  > XEP) = p  is xEP = ( p / c)~' = u ( p n / k)~  ̂.

The main problem in estimating the above model as we have already discussed in chapter 4, is the 

determination of the threshold, or in other words the determination of the observations that can be 

described as extreme. The estimated shape parameter for different values of k is shown in Figure 5.4.

In order to find the optimal value of k we have followed the methodology suggested by Huisman,

Koedjik, Kool and Palm (2001). Their suggestion is to regress the different values of the estimated 

parameter on the variable representing the size of the extreme sample.

| ( £ )  =  P0 + P ,A : +  e(A:) for k  =  \ , . . . ,k0 (5.3.1)

Figure 5.4 Estimated £ for different k

Tail Index

 ̂ * * * *
Once the above equation has been estimated the optimal ^ (k  ) is given by £,(& ) = P0 , that is the 

optimal ^ (k )  is equal to the constant term of the equation.

There are some econometric considerations that need to be taken into account when the parameters of 

equation (5.3.1) are estimated. There are two main problems which make the use of Ordinary Least 

Squares an inappropriate method. First, the error term is heteroskedastic (see Huisman, Koedjik, Kool 

and Palm (2001)) Therefore a weighted least squares methodology was used to correct for this problem. 

To explain the methodology we write the equation in matrix form
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(5.3.2)Ç = Z p + £

where

w Ì---T 'r 'e(l)'
5=

m

, z =
1 ■■■k

,P = Po

_p,_
and £ =

_e (k)_

The weighting matrix to be used in view of (5.3.2) is the following

V I 0 • 0

0 V 2  ..

0 0 •• • 4 k

Transformation of (5.3.2) through pre-multiplication with matrix W yields the following weighted least 

squares estimate for the vector of the regression coefficients

$WLS = (Z W'WZ) Z'W

The estimated tail index is the first element of the vector §WLS ■

The second problem with the estimation of the regression equation (5.3.2) is that the estimates of t,(k) 

are auto-correlated for different k due to the use of common observations. The WLS method proposed 

above to deal with Heteroskedasticity does not take this problem into account and as a result the standard 

errors produced are not correct. To calculate the correct standard errors we have used the formulae 

derived by Huisman, Koedjik, Kool and Palm (2001).

The estimated weighted least squares regression equation is given below, with the correct t-statistics in 

brackets.

%{k)= 0.3996+ 0.0004 4k 
(47.13) (17.20)

Table 5.4 : Alternative VaR predictions

Quantile normal
Student

Laplace
Extreme

Value
Empirical

Distribution
0.01 -0.037 -0.050 -0.060 -0.052 -0.052
0.02 -0.032 -0.041 -0.049 -0.039 -0.040
0.03 -0.028 -0.036 -0.044 -0.033 -0.034
0.04 -0.025 -0.032 -0.039 -0.029 -0.030
0.05 -0.023 -0.029 -0.036 -0.027 -0.026
0.06 -0.021 -0.027 -0.034 -0.025 -0.025
0.07 -0.019 -0.025 -0.031 -0.023 -0.023
0.08 -0.018 -0.023 -0.030 -0.022 -0.021
0.09 -0.016 -0.022 -0.028 -0.021 -0.020
0.1 -0.015 -0.021 -0.026 -0.020 -0.018

The optimal value of k is therefore the value that correspond to a value of £, = 0.3996 . The 

corresponding value of k is 150. Note that the optimal value of is not very sensitive for values of k
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between 150 and around 240. The estimated quantiles based on the above value of £, are given below in 

Table 5.4 where we have presented for comparison reasons the estimates of the other distributions. The 

performance of the extreme value model seems superior to all other models.

More specifically as it can be seen from the table the extreme value approach produces the closest fit to 

the empirical quantiles. Second best is the student distribution whereas the Laplace and Normal 

distributions always overestimate and underestimate the empirical tail distribution.

5.5 Heteroskedatisticity -Corrected Extreme Value VaR
The existence of serial correlation in both the returns and the squared returns is one of the most 

commonly observed empirical phenomena. The existence of serial correlation and volatility clustering, 

makes, at least in theory, the application of extreme value theory problematic as the asymptotic results 

that underpin this theory are based on the independence of returns. Indeed Resnick (1997) suggests two 

steps in fitting a heavy tailed model to a data set. In the first step the investigator decides if the data could 

possibly be explained by a heavy tailed model. The rejection of normality and the existence of kurtosis 

obviously support the view that a heavy tailed model is appropriate. The tests that we have employed to 

test the existence of heavy tails such as the presence of kurtosis and the Q-Q plots have established 

without doubt that the tails of the distribution of the stock market returns have thick tails. In the second 

stage the investigator should try to assess if there is dependency in the data. In this section we shall 

concentrate on tests of independence in the returns and how to deal with the possible problem of 

temporal dependence.

The motivation for this section is the investigation of the properties of the Hill estimator and the 

performance of alternative VaR measures when applied to non-independent data. Jansen and de Vries 

(1991) note that £, is still a consistent estimator of £, in the case of non independent variables as long as 

the dependence is not too strong. More recently, Resnick and Starica (1996) show the consistency of the 

Hill estimator when applied to data following an ARCH process. Also Pagan (1996) notes that large data 

sets are required to compute £, accurately due to the departure of the data from the i.i.d. case.

In order to test the existence of serial correlation in the return series we have calculated the partial 

autocorrelation functions for up to 10 lags and tested for the statistical significance of the autocorrelation 

functions by sing Box-Lujng portmanteau statistic defined as

k p 1
Q = T(T+ 2 j £ i? - .

jS T - j

2where T is the number of observations and p  is the estimated autocorrelation of order j for rt ,

defined as
T

2 > ,V - i

2>;
j =2

Q  is asymptotically distributed as x l  ■ The results are given in Table 5.5, whereas a plot of the 

autocorrelation function is given in Figure 5.6.
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Table 5.5: Autocorrelation Functions and Q statistic.

. Autocorrelation coefficient 
Lag____________

1 0.1667
2 -0.0088
3 -0.0092
4 -0.0004
5 -0.0116
6 0.0130
7 0.0162
8 0.0244
9 -0.0022

10 0.0043
0(10) 81.77

From the value of the Q statistic we cannot reject the hypothesis that the returns are serially correlated. 

The critical value of the chi-square distribution with 10 degrees of freedom being 18.3.

F ig u re  5.5: A u to co rre la tio n  F unctions o f  R etu rns

F ig u re  5.6: A u to co rre la tio n  F unctions o f  S qu ared  R e tu rn s
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The plot of the autocorrelation functions in Figure 5.5 also indicates the existence of at least first order 

correlation given the size of the first order partial correlation coefficient. A formal modelling procedure 

will be undertaken to derive an appropriate process capturing the dynamics of asset returns.

The next test is to test whether the square of returns is a serially correlated process. The existence of 

volatility clustering is a universal empirical phenomenon in almost every stock market. Tests for 

autocorrelation in the squared returns can be performed using again the Ljung-Box Q-statistics.

The partial autocorrelation functions, as it can be seen from Figure 5.6 are quite high and a formal 

statistical test using the Q-statistic produced a value Q(l) = 11.7 and Q(10) = 47.3. So we can reject the 

hypothesis that the squared series are not correlated.

Having established, on the basis of the statistical sets that both the level and the square of returns exhibit 

serial correlation the next step is to identify the correct model to capture the dynamics of return and

volatility. We postulate a model for the dynamics of the {Rt } series in the form 

Rt = /lt + £t with £t = a tz t

where the innovations z t follow an iid strict white noise process with zero mean, unit variance and 

marginal distribution function F, (z) . We assume that the conditional mean is given by a low order 

autoregressive model.

F t  = $ )  +  </> 2 R t - 2  + -  +  ^ q R t - q

Further we assume that the conditional variance of the mean-adjusted series £t = Rt — fJ.t is given by a 

GARCH( 1,1) model2

a ]  = (0 + asf_x + where <x>> 0, a >  0, ¡3 > 0.

The mean-adjusted series £t is strictly stationary if E \\o g (fi + a z (2_,)] < 0 which is equivalent to 

P  + a  < 1. [McNeil and Frey (2000)]. This condition also ensures that the marginal distribution 

FR{ r ) or the random variable {R}  has a finite second moment.

To arrive at an appropriate model for the conditional mean we examined the correllogram of return 

series in order to see what is the appropriate lag length. We have found that a second order autoregressive 

model

R , =</o +  +  0 i R t - 2  +  £ t

captures adequately the dynamics of the return series. The estimates of the GARCH(1,1) conditional 

variance model was estimated under two assumption for the marginal distribution of F ,(z ) . First we 

assume that z follows a normal distribution

2 Although we have started with a GARCH(1,1) model this is not unduly restrictive. There is ample 
evidence that the model outperforms other volatility models. In the specific case of the Greek stock 
market the empirical evidence provided by Dinenis and Priniotakis ( )  supports the choice of a GARCH 
model.
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1 (  k - i i , ) 2 }

1------- 7  e x P
\ ] 2 n G l { 2 a ?  Jlx zt) = -

which with the volatility model

a] =  (O +  as] | +  fto] j

produces a joint likelihood or the entire sample given by

i -exp
r ,

0 , - k O

t = 1 2at=\ ^ 2 n a ]  v 

whereas the log-likelihood function is given by

1

t=l
ln(^) = X ln(//) = Z ln

t = \

T

-z
^ 2 n o ]

exp

i=i 2y
ln(27t) + ln a f+  (r' ^

V 2a? ,

2 ~

2a

The Maximum likelihood estimator of the model parameters (0 ) ,a , j3 , <fi0, (f)x, ) can be obtained by

taking the first derivative of the above likelihood function and setting them equal to zero3.

In the second case we assume that the innovations z follow a student - t  distribution with density function

x(rt / a , , v )  =
r [ ( v + i ) / 2 ] \  , f o - n , ) 2 "

a ,  yj(v -  2)nT{n  /  2 ) r ( 1  /  2 ) a > - 2 ) _

l+v 
" 2

where V is the degrees of freedom parameter. The parameters (co,a, (5, (j)Q, (f>x, (f)2, v) can be estimated

by differentiating the log-likelihood function of the entire sample, given below,

ln (£ ) = X ln(J , )  = X ln
<=i i=i

r [ ( v + i ) / 2 ]

1+v "

2

a / > / ( v - 2 ) 7 t r ( « / 2 ) r ( l / 2 ) a , 2 ( v - 2 ) _

with respect to the vector of parameters and then using some numerical methods to solve the first order 

conditions.

The Maximum likelihood estimates of the parameters of the two models are shown for each index return 

in Tables 5.6
Both models have statistically significant parameters and in order to select the correct model we have 

resorted to information criteria based on the value of the likelihood function. More specifically we have 

used both the Akaike information criterion as well as the Schwartz criterion. Both criteria favour the 

model with the Student - t  marginal density function.

3 The parameter estimates were estimated using the software package PC GIVE
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Table 5.6 : Parameter Estimates of GARCH(1,1) models

Marginal T Marginal Normal
Parameter
Estimates T-Statistics

Parameter
Estimates T-Statistics

<I>1 0.197706 9.95 0.1959 8.79

<t>2 -0.07598 3.59 -0.05614 2.35

<t»0 -0.00028 1.31 -0.00013 0.563
CO 0.00001 3.73 0.00001 5.36
a 0.2459 6.96 0.19773 8.01

ß 0.7373 20.1 0.7814 33.7
V 5.8409 9.01

a+ß
LLF

0.9832
7890.7

0.97913
7804.3

Once we have estimated the parameters (j)Q,(j)x,(l)2,..,(j)q,CO,a,¡3 we have estimates ofthe conditional 

mean //, and standard deviation CJ, and we calculate the standardised residuals

= Rt - h

These residuals should be an iid white noise process, if the fitted model is correct. We can then estimate 

the tails of the innovations using extreme value theory that shall be applied on the residual series z t . So

in order to see that we have produced a statistically adequate model for the conditional mean and 

variance, we now examine whether the standardized residuals based on the estimated model are 

independent and identically distributed processes. The statistical properties are shown in the Table 5.7. 

The standardised residuals follow a distribution with zero mean and standard deviation of 1. Moreover the 

Q statistic for 1 and 10 lags show that there is very little evidence of serial correlation left in the residuals 

and therefore they could be described as iid.

Table 5.7: Descriptive Statistics for standardised T- residuals

Average 0.01478
Volatility 1.0329
Skewness 0.22785
Kurtosis 2.9823*
Max Value 7.8279
Min Value -4.9189
Q(l) 2.698

Q(10) 14.899

Figure 5.7 shows the autocorrelation functions of the standardised residuals which confirm the iid 

property. Similarly there is very little correlation left in the squared residuals as it can be seen from Figure 

5.8.

256



F igure  5.7: A u to co rre la tio n  F un c tio n s

However the excess kurtosis of the standardised residuals although lower than that of the unconditional 

returns is still significantly different from zero. The lowering of kurtosis through the standardisation 

process is a well known empirical fact as it is reported from instance in Anderson, Diebold and (1999). 

Lower kurtosis in the standardised returns is also evidence that the conditional model is not miss- 

specified.

The existence of kurtosis in the residuals means that fat-tailed distributions such as the student - t cannot 

capture the tail behaviour and justifies the use of extreme value theory for the estimation of tail 

quantiles. The results also show that the thickness of the tail is not due to volatility clustering but is an 

intrinsic property of the return series.

F igure  5.8 A u to co rre la tio n  F unctions o f  S quared  Series

A GARCH (1,1) model seems to capture the dynamics of the general index asset returns and it will be 

used in the next section in order to forecast VaR.

As we said at the beginning of the section one of the objectives was to see the impact of serial correlation 

on the performance of the tail index. The raw series whose tails we modelled earlier are clearly serially 

correlated. The standardised residuals we have produced are not. To assess the impact of serial correlation 

we have applied the extreme value theory to the estimation of the standardised residuals.

The results of our exercise are shown in Table 5.8 and Figure 5.9 below.
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Again the extreme value quantiles are much closer to the quantiles of the empirical distribution. However 

there is no improvement in the fit compared to that of the unconditional distribution. . The percentage 

error in each case is given by

and eD
x D

E

where

x']; = empirical quantiles of return series

x\. = unconditional extreme value estimated quantiles of return series

Xy = empirical quantiles of residual series

Xy — extreme value estimated quantiles of residuals

Table 5.8: Quantile Estimation Based on Standardised Residuals

Normal Student Extreme Empirical
0.01 -2.3902 -3.9510 -3.0281 -2.9186
0.02 -2.0356 -3.2390 -2.1876 -2.4113
0.03 -1.8063 -2.8471 -1.8086 -2.1509
0.04 -1.6311 -2.5772 -1.5803 -1.9029
0.05 -1.4866 -2.3713 -1.4233 -1.7630
0.06 -1.3618 -2.2047 -1.3066 -1.6725
0.07 -1.2511 -2.0645 -1.2154 -1.5697
0.08 -1.1506 -1.9433 -1.1416 -1.4592
0.09 -1.0580 -1.8363 -1.0803 -1.3939

0.1 -0.9717 -1.7404 -1.0282 -1.3191

Figure 5.9: Comparison of the Conditional and Unconditional Extreme Value 

Quantiles

Conditional and Unconditional Extreme Value

Quantile

The graph shows that the performance of both models deteriorates as they move towards higher 

percentiles but the deviation for the conditional model is much faster and underestimates the empirical 

distribution by up to 20 percent for the 0.07 percentile. This may be due to the fact that we have
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eliminated most of the kurtosis from the distribution of the residuals and thus the residuals have thinner 

tails the original raw series.

5.6 VaR Forecasting Models

In this section we use the metrics derived in the previous section to evaluate the predicted performance of 

the various forecasting models.

We have divided the models we use for evaluation into groups. In the first group we have models that 

ignore the heteroskedastic nature of the underlying series. We assume that the variance, or indeed the 

mean of the series, remains fixed within the sample that is used to estimate those parameters. This is 

tantamount to assuming that in calculating next day’s volatility forecast, all the observations in the 

specific sample used have the same weight. In the second group of models we take into account the 

heteroskedastic nature of returns and the predicted volatility is still a function of return observations but 

this time their importance in forming a prediction is not uniform. We have used three ways of modelling 

volatility. First we have used the exponentially weighted moving average (EWMA) model used by 

RiskMetrics. The predicted volatilities are used with the assumption of normally distributed returns to 

produce estimates of VaR according to 5.12. The second model we have used is a GARCH(1,1) model 

with a normally distributed innovation term and the third model in this group is a GARCH(1,1) with an 

innovation term that follows the Student-t distribution. We have also used two models based on the 

extreme values of the distribution. The first model is the model applied to the return series which ignores 

the heteroskedastic nature of the series. In the second model we use the residuals form the Student- 

GARCH model and estimate the tails of the normalised residuals.

The methodology we have followed is to estimate each model over a certain period and then to produce a 

VaR forecast for the following day. In this way we have produced 2000 daily prediction of value-at-risk 

for each model. Thus we create a time series of predicted VaRs and on the basis of the time series 

properties of these forecasts we evaluate the performance of each model. For each model we have 

calculated VaR forecasts at both the 99 percent and 95 percent level.

Model l - The Naive Normal Model

The first model to be evaluated is the normal model in which we assumed that the returns are ¡id and 

follow a normal distribution with mean p  and standard deviation a  . That is we assume

Rt ~  N(jUt , <Jt ) . The predicted one period ahead Value -at-Risk is given by

Risk for p  = 0.01 and p  = 0.05 . For these two values the quantiles of the standard normal distribution 

are 0 “'(0.01) = -2 .3 3  and (0.05) = -1.64 . The parameters ju and <T were estimated from a 

sample of size k.
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as in the previous section but this time for each of the 2000 samples. Computationally this is quite time 

consuming and for this reason the degrees of freedom parameter was estimated from the sample 

moments.

The one -day ahead value of VaR is given by

j r  n S T U D E N T  a  a  1VaR,+1 (p ) = \ i l+ l+G i+]F (p )

where the pth quantile is calculated from

l+ v ,

n o , + i ) / 2 ] 72] 1 + '
x / v ^ r o , / 2) r ( i / 2 ) v r.

and the degrees of freedom parameter is estimated from

The kurtosis parameter has been estimated using

y 3.i+iit
1

K y=0 ______

't+\U

As in the case of the normal model where we have forecasted volatility based on different sample sizes 

we have also experimented with different sample sizes for the estimates of skewness and kurtosis. Figure 

5.11 Sample Size and Kurtosis Estimates

ROLLING KURTOSIS AT DIFFERENT WNDCWS

1 » 0 1 /9 5  1 » 0 3 /9 6  1 » 0 5 /9 7  1 9 /0 7 /9 8  1 » 0 » 9 9  1 » 1 1 /0 0  1 » 0 1 /0 2  1 » 0 3 /0 3

--------20
--------- 2 4 0

---------- 1500
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where the innovations z t follow an iid strict white noise process with zero mean, unit variance and 

marginal distribution function F,{z.) . We assume that the conditional mean is given by

F t =  </>o +</>ir, - i  +<f>2r, - 2

Ft+M , = k + ^ r, + k rt-1

In this model we have assumed that the conditional variance of the mean-adjusted series St = F( — JJ, is

the normal GARCH(1,1) model which has been estimated in the earlier sections of this chapter. The 

model consists of

rl = <t>o+<t>\rt-\+<t>2rt-2+£t

£, = ° t z t z , ~ N ( 0 , l )

g 2+] =  co +  a r ,2 +  p a ,2 with a  +  P < 1

Notice that the RiskMetrics model can be viewed as a special case of the GARCH(1,1) model if we 

assume that a  +  P =  1 and further CO = 0 . However, although the two models appear to be similar, there 

is an important difference which comes out from the definition of the unconditional or long-run average 

variance which is defined as

a 2 =  £ ( a 2+1) = co +  a £ ( r ,2) +  P £ ( G 2) =  co +  a .a 2 + P a 2

so that

2 CO
O’ —------------

1 - a - p

The special case of GARCH(1,1) which results into the RiskMetrics model, i.e. a  + P = 1, implies that 

the long-run variance is infinite. The RiskMetrics model therefore ignores the empirical fact that the 

long-run variance tends to be relatively stable over time. The GARCH (1,1) model on the other hand

2 2 coimplicitly relies on a  . This can be seen by using a"  = ------------to replace CO in the GARCH
1 - a - p

equation producing the alternative formulation

a 2+1 = (1 -  a  -  P ) a 2 +  a r 2 +  P a 2 =  a 2 +  a (rt2 -  a 2 ) +  P ( a 2 -  a 2 )

Under this reformulation, tomorrow’s variance is a weighted average of the long-run variance, today’s 

squared return and today’s variance. Or alternatively, tomorrow’s variance is the long-run average 

variance with something added (subtracted) if today’s squared return is above (below) its long-run 

average, and something added (subtracted) if today’s variance is above (below) its long-run average.

A key advantage of GARCH(1,1) model for risk management is that the one-day forecast of volatility,

G,+1/, is given directly by the model as a “+1/<.

The sum ( a  + P) is usually called the persistence of the model. A high persistence, that is a value of

( a  + P) close to 1, implies that shocks which push volatility away from its long-run average will persist

2for a long time, but eventually the long horizon forecast will be the long-run average variance a  .
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The model was implemented as follows. The maximum likelihood function

l n ( i )  =  £ > ( / , )  =  $ >
t = \

T

t = 1 ^ 2 n a ]
■exp (

V 2a,2 J

t=i
ln(27t) + In a 2 +2 4 - - ^ L _

2a2

was maximised based on a fixed data window of 1500 days. The Maximum likelihood estimator of the 

model parameters were obtained by taking the first derivative of the above likelihood function and setting 

them equal to zero.

d ln ( / , ) ‘  1 r 2 d a ] 1 f  1 ] da]
\ r<

dy { 2  J K 2) 2 . dy 2 v CT/2 , dy u

where y = ((f>0,<f\,<p2,6),a, ¡3) . Based on the parameter estimates we forecast the volatility for the 

following day and then derive the VaR forecast. This is repeated for a total of 1500 new observations.

Model 7 - The T- GARCHtt, 1) model

The third conditional forecasting model is the T- GARCH(1,1) model which has been estimated in the 

earlier sections of this chapter. The model consists of 

rt =<j>0 + ^ rM +<l>2rt_2 + s t 

e,=<ytzt zt ~ t (  0,1, v)

a 2+l = to +  a r 2 + P a 2 with a  + P < 1

This time however we assume that the innovation variable has a t distribution with a unit standard 

deviation given by v /(v  — 2) .

The second assumption we make about the distribution of returns is that they follow the student -t 

distribution with degrees of freedom v. We simply replace the normal distribution by the T-distribution.

t ( r  /  p , a ,  v )

l+ v

r [ ( v + i ) / 2 ]

1

h

1
1=

, to
__

__
1

a , V ( v - 2 ) 7 t r ( « / 2 ) r ( l / 2 ) g 2 ( v - 2 ) _

The above model, allows the variance to depend on time, but it makes the assumption that the degrees of 

freedom parameter and therefore the kurtosis parameter are fixed over time. We have not pursued the 

issue of time varying kurtosis in an explicit manner, although the degrees of freedom parameter is 

estimated every time for forecasting purposes. Thus, in terms of the kurtosis parameter the model is an 

unconditional one. There is very little empirical evidence to guide us in terms of the dynamics of kurtosis, 

i.e. whether a constant weight model is better in terms of forecasting rather than a model with a 

exponentially weighted observations or even a GARCH type model.

Model 8 - The GARCH Extreme Value Model

In the extreme value model we use the standardised residuals form the T-GARCH model and derive the 

Hill estimator of the tail index for a given sample. Once the tail estimator has been estimated, then we can 

calculate the Value-at Risk from the formula we derived earlier

265



VaRl+l= [ i l+l+<Jl+lZ x ( p )

The procedure was followed for the same number of periods as in the other cases. That is the tail index 

estimator, the conditional mean and the conditional volatility model were estimated over a sample of 

1500 observations for a total of 1200 days. A VaR forecast was derived in this way for every single day.

5.7 Empirical Results

Having presented the forecasting models we report now the performance of these various models. The 

detailed results are shown in the Appendix to this chapter. Here we shall provide a summary of the 

findings. We start with the unconditional forecast test first. This test show how close the forecasts have 

been to the empirical quantile. Acceptance of the model is indicated with the letter Y whereas rejection of 

the model is indicated with the letter X. Tables 5.9 and 5.10 show the results for the two confidence 

levels.

Table 5.9- Test of unconditional performance 1%

k

20 60 120 240 600 1200 1500

Model 1 X X X X Y Y X

Model 2 X Y Y Y Y Y Y

Model 3 X X X X Y Y Y

Model 4 Y

Model 5 X

Model 6 X

Model 7 Y

Model 8 Y

Model 1 is accepted at 1% percent level for sample periods of 600 and 1200 days only and is rejected for 

any other sample period on which the estimates are based. Model 2 on the other hand is accepted for all 

samples apart for the 20-day one. Model 3 is accepted only when the estimates are based on long samples. 

The unconditional extreme value model is also accepted. Of the dynamic models the RiskMetrics model 

(model 5) and the normal GARCH are not accepted but the t-GARCH and the conditional extreme value 

model are accepted.

The results for 5% VaR tests of unconditional coverage are given in Table 5.10 Models 1 and 3 are 

accepted for large samples. Of the conditional models though only the two GARCH models produce 

acceptable results.
Although the normal model was expected to perform poorly, Cornish -Fisher adjustment which takes 

into account the skewness and the kurtosis of the distribution also is disappointing. Theoretically such an 

adjustment should result in a more successful model. However the improvement depends very much on 

the quality of the sample estimates of the kurtosis and the skewness parameters.

The results for independence of VaR violations are though disappointing. This is true for models 1,2 and 

3 at both 1% and 5% probability level. The unconditional extreme value is accepted at 1% but not at 5%.
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Table 5.10 -  Test of unconditional performance 5%

k

20 60 120 240 600 1200 1500

Model 1 X X X Y Y Y X

Model 2 Y Y X X X X X

Model 3 X X Y Y Y Y Y

Model 4 X

Model 5 X

Model 6 Y

Model 7 Y

Model 8 X

Table 5.11 -  Test of independence 1%

K

20 60 120 240 600 1200 1500

Model 1 X X X X X X X

Model 2 X Y X X X X X

Model 3 X X X X X X X

Model 4 Y

Model 5 Y

Model 6 X

Model 7 Y

Model 8 Y

Table 5.12 -  Test of independence 5%

k

20 60 120 240 600 1200 1500

Model 1 X X X X X X X

Model 2 X X X X X X X

Model 3 X X X X X X X

Model 4 X

Model 5 X

Model 6 X

Model 7 X

Model 8 X

As a result of the failure of the independence test, the test of conditional coverage reject all the models 

except the extreme value model and the t-GARCH.
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Table 5.13- Test of conditional coverage 1%

K

20 60 120 240 600 1200 1500
Model 1 X X X X X X X

Model 2 X Y X X X X X

Model 3 X X X X X X X

Model 4 Y

Model 5 X
Model 6 X

Model 7 Y

Model 8 Y

Rejection of the models other than those that allow for fat tails or semi-fat tails and volatility clustering, 

means that risk measurement models that are based on the assumption of normality fail to capture the 

characteristics of the equity returns and result in poor assessments of the risks to which an equity position 

is exposed.

Table 5.14- Test of conditional coverage 5%

K

20 60 120 240 600 1200 1500

Model 1 X X X X X X X

Model 2 X X X X X X X

Model 3 X X X X X X X

Model 4 X

Model 5 X

Model 6 X

Model 7 X

Model 8 X

5.8 Conclusions

In this chapter we have dealt with an important issue in the measurement of market risk for equities, that 

is the evaluation of the performance of alternative VaR models.

First we have explored the statistical properties of the Athens General Price Index. We have estimated 

alternative densities and modelled the dynamics of the returns via a GARCH model. Then we estimated 

the tail characteristics and finally we used the series to assess the performance of various models.

We have tested a number of models in terms of three criteria. First we have tested their unconditional 

coverage, that this, their ability to predict correctly the number of VaR violations. We have found that 

models based on the normal distribution do not perform well, even when we allow for volatility clusters 

like the RiskMetrics model or the normal GARCF1. In general the T-distribution and the extreme value 

approach perform better. Secondly we have tested them in terms of the serial correlation of forecasting
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errors. A good VaR model should not exhibit serially correlated forecasting errors, as the existence of a 

cluster of VaR violations may lead to the bankruptcy of a financial institution. We have found that 

extreme value theory and conditional models that take into account the existence of volatility clusters 

perform much better than unconditional models which assume that the distribution parameters remain 
fixed.
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Table Al-Model 1: Normal Distribution for daily returns

20 Day 60 DAY 120
5% 1% 5% 1% 5% 1%

To 1904 1968 1917 2010 831 82
T, 157 93 144 51 1230 1979
Too 1771 1889 1800 1966 819 49
To, 133 79 117 44 12 33
T10 133 79 117 44 12 33
T„ 24 14 27 7 1218 1946
n 0.0761 0.0451 0.0698 0.0247 0.596798 0.9602

Ttoi 0.069 0.0401 0.0610 0.0218 0.01444 0.4024
7T|i 0.152 0.1505 0.1875 0.1372 0.990244 0.983

LRUC 25.80 138.088 15.327 32.091 4675.333 17539.4
LRind 11.49 16.427 24.066 13.903 2518.888 243.292
LRCC 37.29 154.515 39.393 45.995 7194.22 17782.7

Significance
LRUC Reject Reject Reject Reject Reject Reject
LRind Reject Reject Reject Reject Reject Reject
LRCC Reject Reject Reject Reject Reject Reject

Table Al-Model 1: Normal Distribution for daily returns (continued)

240 600 1200 1500
5% 1% 5% 1% 5% 1% 5% 1%

To 1949 2029 1960 2042 1966 2043 978 978
T, 112 32 101 19 95 18 1083 1083

H O O 1856 2002 1879 2026 1895 2028 561 561
To, 93 27 81 16 71 15 417 417
T,o 93 27 81 16 71 15 417 417
T„ 19 5 20 3 24 3 666 666
71 0.0543 0.0155 0.049 0.00921 0.04609 0.0087 0.525 0.525

ftoi 0.0477 0.0133 0.041 0.00783 0.0361 1 0.0073 0.426 0.426
71], 0.1696 0.1562 0.198 0.15789 0.25263 0.1666 0.614 0.614

LRUC 0.7967 5.4411 0.043 0.13044 0.67894 0.3487 7142.6 7142.6
LRind 20.807 15.446 30.862 12.2920 51.8086 12.969 73.69 73.69
LRCC 21.603 20.887 30.905 12.4224 52.4875 13.3182 7216.3 7216.3

Significance

LRuc
Don't
Reject Reject Don't

Reject
Don't
Reject

Don't
Reject

Don't
Reject Reject Reject

LRind Reject Reject Reject Reject Reject Reject Reject Reject
LRCC Reject Reject Reject Reject Reject Reject Reject Reject

270



Table A2-Model 2: t-distribution for daily returns

20-Day 60-DAY 120-DAY
5% 1% 5% 1% 5% 1%

T0 1942 2028 1969 2035 1981 2043
T, 119 33 92 26 80 18

H O O 1841 2000 1889 2010 1912 2029
T0I 101 28 80 25 69 14
T,0 101 28 80 25 69 14
T„ 18 5 12 1 11 4
n 0.058 0.016 0.045 0.013 0.039 0.009

0.052 0.014 0.041 0.012 0.035 0.007
K\\ 0.151 0.152 0.130 0.038 0.138 0.222

LRUc 2.481 6.364 1.292 1.315 5.860 0.349
LRind 14.766 14.833 11.443 0.921 13.748 20.002

J

17.247 21.196 12.735 2.236 19.608 20.351
Significance

LRUC
Don't
Reject Reject

Don't
Reject

Don't
Reject Reject

Don't
Reject

LRind Reject Reject Reject
Don't
Reject Reject Reject

LRCC
Don’t

Reject Reject Reject Reject Reject Reject

Table A2-Model 2: t-distribution for daily returns (continued)

240-DAY 600-DAY 1200-DAY 1500-DAY
5% 1% 5% 1% 5% 1% 5% 1%

T0 1999 2048 2001 2045 1994 2042 1992 2043
T, 62 13 60 16 67 19 69 18
Too 1944 2037 1951 2032 1940 2026 1937 2028
To, 55 11 50 13 54 16 55 15
T,o 55 11 50 13 54 16 55 15
Tn 7 2 10 3 13 3 14 3
n 0.030 0.006 0.029 0.008 0.033 0.009 0.033 0.009

TCo, 0.028 0.005 0.025 0.006 0.027 0.008 0.028 0.007
7t,, 0.113 0.154 0.167 0.188 0.194 0.158 0.203 0.167

LRUC 19.953 3.267 22.135 1.128 15.070 0.130 13.336 0.349
LRind 9.163 9.543 20.883 14.470 28.699 12.292 31.502 12.969
LRCC 29.116 12.809 43.018 15.598 43.769 12.422 44.838 13.318

Significance

LRUC Reject
Don't
Reject Reject

Don't
Reject Reject

Don't
Reject Reject

Don't
Reject

LRjnd Reject Reject Reject Reject Reject Reject Reject Reject
LRCC Reject Reject Reject Reject Reject Reject Reject Reject
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Table A3-Model 3: Cornish-Fischer approximation

20 60 120

5% 1% 5% 1% 5% 1%

T 0 1904 1968 1917 2010 1940 2024
T , 157 93 144 51 121 37
Too 1771 1889 1800 1966 1840 1990
T 01 133 79 117 44 100 34
T ,0 133 79 117 44 100 34
T ,i 24 14 27 7 21 3
7t 0.076 0.045 0.070 0.025 0.059 0.018

TCoi 0.069 0.040 0.061 0.022 0.052 0.017
7Tn 0.152866 0.151 0.188 0.137 0.174 0.081

L R UC 25.804 138.08 15.327 32.092 3.125 10.652
LRind 11.490 16.427 24.067 13.904 21.374 4.685
L R CC 37.295 154.51 39.394 45.996 24.499 15.337

Significance

L R UC
Reject Reject Reject Reject Don't

Reject Reject
LR.nd Reject Reject Reject Reject Reject Reject
L R CC Reject Reject Reject Reject Reject Reject

Table A3-Model 3: Cornish-Fischer approximation (continued)

2 4 0 6 0 0 120 0 15 0 0

5% 1% 5% 1% 5% 1% 5% 1%

T 0 1949 2029 1960 2042 1966 2043 1962 2041
T , 112 32 101 19 95 18 99 20
Too 1856 2002 1879 2026 1895 2028 1887 2024
T 01 93 27 81 16 71 15 75 17
T ,0 93 27 81 16 71 15 75 17
T „ 19 5 20 3 24 3 24 3
TC 0.054 0.016 0.049 0.009 0.046 0.009 0.048 0.010

TCoi 0.048 0.013 0.041 0.008 0.036 0.007 0.038 0.008
7tn 0.170 0.156 0.198 0.158 0.253 0.167 0.242 0.150

L R UC 0.797 5.441 0.043 0.130 0.679 0.349 0.170 0.018
LRind 20.807 15.446 30.862 12.292 51.809 12.969 47.866 11.656
L R CC 21.604 20.888 30.905 12.422 52.488 13.318 48.035 11.675

Significance

L R UC
Don’t
Reject Reject

Don’t
Reject

Don’t
Reject

Don’t
Reject

Don’t
Reject

Don’t
Reject

Don’t
Reject

LRind Reject Reject Reject Reject Reject Reject Reject Reject
L R CC Reject Reject Reject Reject Reject Reject Reject Reject
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Table A4-Model 4 -  Extreme value applied to return series

5% 1%
To 1451 1556
T, 124 19
Too 1353 1538
To, 98 18
T10 98 18
T„ 26 1
7t 0.0787 0.0121

TCoi 0.0675 0.0115

71,, 0.2096 0.0526
LRUC 23.475 0.6355
LRind 23.5094 1.4692
LRCC 46.9847 2.1047

Significance

LRUC Reject Don't Reject

^Rind Reject Don't Reject

LRCC Reject Don't Reject
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Table A5-Models 5-6

Model 6 Model 5
Normal GARCH EWMA

5% 1% 5% 1%
To 1964 2031 1931 2022
T, 97 30 130 39
Too 1877 2003 1820 1985
To, 87 28 111 37
T,o 87 28 111 37
T„ 10 2 19 2
n 0.0470 0.0145 0.0631 0.0189

ïïoi 0.0442 0.0137 0.0575 0.0183

71], 0.1030 0.0666 0.1462 0.0513
LRUC 0.3810 3.7885 6.8759 13.1335
LRind 5.4804 3.1297 12.3707 1.5488
LRCC 5.8614 6.9182 19.2467 14.6823

Significance

LRUC Don't Reject Reject Reject Reject

LRjnd Reject Reject Reject Don't Reject

LRCC Reject Reject Reject Reject
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Table A6-Models 7-8

M o d e l  7 M o d e l  8

T-GARCH T-GARCH &  E x t r e m e  V a l u e

5% 1 % 5% 1 %

To 1 9 6 1 2 0 4 3 1 4 5 1 1 5 5 0

T, 1 0 0 1 8 1 2 0 2 0

OOH

1 8 7 2 2 0 2 6 1 3 5 3 1 5 3 8

Toi 8 9 1 7 6 0 1 5

T,o 8 9 1 7 2 0 1 3

T„ 1 1 1 3 0 1 5

n 0 . 0 4 8 5 0 . 0 0 8 7 0 . 0 7 6 0 . 0 1 2

Ko] 0 . 0 4 5 3 0 . 0 0 8 3 0 . 0 4 1 0 . 0 0 9

7 t n 0 . 1 1 0 . 0 5 5 5 0 . 2 5 0 . 7 5

LRUC 0 . 0 9 5 9 0 . 3 4 8 7 1 9 . 9 6 1 . 0 9 4

LRjnd 6 . 5 4 3 4 2 . 0 9 6 0 2 5 6 . 6 2 0 . 5 4 2

LRcc 6 . 6 3 9 4 2 . 4 4 4 8 2 7 6 . 5 8 1 . 6 3

S i g n i f i c a n c e

LRUC Don't Reject Don't Reject Reject Don’t Reject

LRind Reject Don't Reject Reject Don't Reject

LRCC Reject Don't Reject Reject Don't Reject

»
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