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Abstract

The paper analyses properties of a large class of “path-based” Data Envelopment Analysis

models through a unifying general scheme. The scheme includes the well-known oriented radial

models, the hyperbolic distance function model, the directional distance function models, and even

permits their generalisations. The modelling is not constrained to non-negative data and is flexible

enough to accommodate variants of standard models over arbitrary data.

Mathematical tools developed in the paper allow systematic analysis of the models from the

point of view of ten desirable properties. It is shown that some of the properties are satisfied (resp.,

fail) for all models in the general scheme, while others have a more nuanced behaviour and must

be assessed individually in each model. Our results can help researchers and practitioners navigate

among the different models and apply the models to mixed data.

Keywords: Data envelopment analysis, Radial efficiency measures, Hyperbolic distance function,

Directional distance function, Negative data

1. Introduction

Data Envelopment Analysis (DEA) is a non-parametric analytical method used to assess the

performance of Decision Making Units (DMU). The DEA approach defines technology sets via

observed input-output data in combination with certain axioms. Each traditional model links an

efficiency measure and a given technology set using a mathematical optimisation programme. By

solving the programme for an assessed DMU, one finds both the efficiency score and a projection1

on the frontier of the technology set that dominates the assessed DMU.2 Russell and Schworm

(2018) distinguish between two main methods of arriving at the efficiency score, giving rise to two

classes of DEA models appositely named slacks-based and path-based models.

∗Corresponding author
Email addresses: halicka@fmph.uniba.sk (Margaréta Halická), trnovska@fmph.uniba.sk (Mária Trnovská),

ales.cerny.1@city.ac.uk (Aleš Černý)
1Synonymously with “projection,” the literature also uses the terminology “reference unit,” “projection bench-

mark,” “projection point,” or “target” in this context.
2The resulting projection need not be Pareto–Coopmans efficient.
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This paper establishes a general path-based scheme built on variable returns to scale (VRS)

technology that provides a unifying mathematical framework for the well-known oriented radial

models, the hyperbolic distance function model, and the directional distance function models. The

scheme offers a rich menu of projection paths for efficiency analysis and the special capability of

handling negative data, which is important in a variety of applications, especially in the areas of

accounting and finance. In the confines of the general scheme, we provide a systematic and compre-

hensive analysis of the models vis-à-vis ten desirable properties. Overall, our paper amplifies the

message of Russell and Schworm (2018) that recognising the class to which a model belongs allows

one to deduce some of the model characteristics, which is important for the correct interpretation

of models and their practical use.

The slacks-based and the path-based models are easily distinguishable from each other on the

basis of the objective function in the corresponding programmes, or, in other words, based on

the way they look for a projection. According to Russell and Schworm (2018), the models in

the slacks-based class search for the projection by “specifying the form of aggregation over the

coordinate-wise slacks.” The slacks indicate the input surplus and output shortage between the

projection and the assessed DMU. The main representatives of this class are the Slacks-Based

Measure (SBM) model of Tone (2001), the Russell Graph Measure model of Färe, Grosskopf and

Lovell (1985), the Additive Model (AM) of Charnes et al. (1985), and the Weighted Additive Models

(WAM) including the Range Adjusted Measure (RAM) model (Cooper, Park and Pastor, 1999)

and the Bounded Adjusted Measure (BAM) model (Cooper et al., 2011).

The path-based models — the main focus of this paper — search for the projection by specifying

various parametric paths which run from the assessed DMU to the boundary of the technology

set. In the special case of the radial BCC input or output-oriented models (Banker, Charnes and

Cooper, 1984), the path is defined by a ray connecting the DMU to the origin in the space of

inputs or outputs and thus represents a proportional, radial contraction of inputs or expansion of

outputs. In the Directional Distance Function (DDF) model (Chambers, Chung and Färe, 1996a,

1998), the path is determined by a ray in a pre-assigned direction pointing from the assessed DMU

towards the dominating part of the frontier.3 On this path, one then seeks the point of minimal

distance to the frontier of the technology set. The Hyperbolic Distance Function (HDF) model

(Färe, Grosskopf and Lovell, 1985) combines together the input and output oriented BCC models

by using a hyperbolic path that allows for a simultaneous equiproportionate contraction of inputs

and expansion of outputs.

Despite the many papers on DEA, there are only a few studies analysing the properties of

either class of models in a unified framework. In the context of general economic productivity

theory, a series of articles Russell and Schworm (2008), Russell and Schworm (2011), Levkoff,

Russell and Schworm (2011), Roshdi, Hasannasab, Margaritis and Rouse (2018), and Hasannasab,

3There are also approaches, where the directional vector may not point to the dominating part of the frontier, or

may even be determined endogenously. For a discussion on these non-standard approaches we refer to Pastor et al.

(2022).
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Margaritis, Roshdi and Rouse (2019) provided a comprehensive analysis of efficiency measures over

different types of productivity sets. The main message from these papers is that the slacks-based

measures, when operating in the full input-output space, identify the Pareto–Koopmans efficiency

unambiguously while the path-based measures do not.

In the DEA setting, Cooper, Park and Pastor (1999) and Sueyoshi and Sekitani (2009) analyse

efficiency measures and introduce a set of desirable properties that an ideal DEA model should sat-

isfy. These properties include the indication of strong efficiency; boundedness; strict monotonicity;

unit invariance; and translation invariance. The selected DEA models are then classified on the

basis of these criteria.

In other work, Halická and Trnovská (2021) analyse the properties of slacks-based models in

a general scheme that encompasses all commonly used models in this class, but also allows for

the construction of new models.4 All models in the general slacks-based scheme project onto the

strongly efficient frontier and therefore account for all sources of inefficiencies. Among them, the

RAM model performs best when measured against eight desirable properties, satisfying seven, and

failing only the unique projection property due to its linearity. Recently, Aparicio and Monge

(2022) have proposed a convex generalisation of the RAM model that falls into the general scheme

of Halická and Trnovská (2021) and provides a unique projection point. Thus, the new model

currently claims the top spot in terms of the number of desirable properties.

Our paper aims to redress the lack of comprehensive analysis of path-based models in the

literature. The knowledge about the path-based models is currently fragmented across many articles

with varying focus. This situation is exacerbated by the fact that the properties of, for example,

DDF models depend significantly on the choice of direction vectors and these have not been treated

systematically to date. There appears to be a general consensus that the path-based models do

not guarantee strongly efficient projection points and, therefore, their efficiency score is overstated;

and that they are monotone but not strictly monotone. Many authors noticed difficulties with

super-efficiency measurement under variable returns to scale and the associated measurement of

productivity change over time (e.g., Briec and Kerstens, 2009). Aparicio et al. (2016) investigated

the translation invariance of DDF models. A certain type of homogeneity was observed in the

oriented radial models and the HDF model (Cuesta and Zof́ıo, 2005). On the other hand, DDF

models have the property of homogeneity only in the case of constant returns to scale. Another

type of homogeneity (so-called g-homogeneity) was introduced to describe some properties of DDF

(Hudgins and Primont, 2007).

In this paper, we analyse path-based models in a general framework. The main building block

of our approach is a parametric path that starts at the assessed DMU and for decreasing values

of the parameter passes through dominating units in the technology set towards its frontier. The

path has two main ingredients: (i) a direction vector; (ii) a real-valued smooth function, whose

4The terminology “non-radial” and “radial pattern models” was used for slacks-based and path-based models,

respectively.
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specifications determine the path shape and, ultimately, the model properties. The assumptions

imposed on directions and path functions are flexible enough to accommodate all standard models,

such as the BCC input and output-oriented models, the HDF and DDF models, the generalised

distance function model by Chavas and Cox (1999), and even offer the possibility of going beyond.

A further advantage of the proposed general framework is that it permits extension of existing

models designed for non-negative data to arbitrary data (i.e., it accommodates the input and output

data, for which some or all components are negative). As a rule, DEA models are designed for

non-negative data. In practice, however, negative data are encountered in many applications in

areas such as insurance, accounting, finance, or banking. A common approach to overcoming this

difficulty is to use translation-invariant models, which can be applied to arbitrary data without

modifications. The drawback is that only a few standard models have the property of translation

invariance. These include some of the DDF models (see Aparicio et al., 2016) but not BCC or HDF.

Therefore, many DEA studies propose procedures of varying complexity to deal with negative data

(e.g., Cheng et al., 2013; Tone et al., 2020).

The general framework for path-based models allows us to survey in one place the properties of

all standard path-based models and also offer certain guidance on how to construct new models with

given properties. The desirable properties analysed in this paper include (a) unique projection point;

(b) indication; (c) strong efficiency of projection points; (d) boundedness; (e) unit and translation

invariance; (f) (strict) monotonicity; (g) super-efficiency; and (h) homogeneity. Our results divide

the properties into two groups: the properties that hold universally (resp., universally fail) for every

model in the general framework; and the properties that must be assessed individually for each

model. With the help of the general framework, we show that only the unique projection point

property is satisfied in all models. Three other properties (indication, strong efficiency of projection,

and strict monotonicity) usually fail simultaneously, although surprisingly there are very special

cases where they simultaneously hold. For properties in the second group, the article provides tools

to determine whether a property holds or fails in a specific model. In particular, the monotonicity

property is satisfied by all standard path-based models, but the homogeneity property is limited to

only a specific type of directions and path functions. We find that there are no trade-offs between

the properties of indication, strong efficiency, and strict monotonicity on the one hand and the

property of homogeneity on the other.

The paper is organised as follows. Section 2 introduces basic terminology and notation con-

cerning, among others, the technological set and its efficient frontier over general data; desirable

properties of DEA models; and standard path-based models. Section 3 proposes a general scheme

for path-based models, analyses its basic properties, and discusses its geometry. Section 4 conducts

a deeper analysis of the general scheme in light of ten desirable properties. This section develops

practical criteria for each property and illustrates them on individual standard path-based models.

Section 5 extends the above analysis in two directions: (a) properties of standard models over

arbitrary data; (b) construction of new models with good properties. Section 6 concludes.
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2. Preliminaries

Let us establish some notation. Rd denotes the d dimensional Euclidean space, and Rd+ its

non-negative orthant. The lowercase bold letters denote column vectors and the uppercase bold

letters matrices. The superscript T denotes the transpose of a column vector or a matrix. The

symbol e denotes a vector of ones.

Consider a set of n observed decision-making units DMUj (j = 1, . . . , n), each consuming m

inputs xij (i = 1, . . . ,m) to produce s outputs yrj (r = 1, . . . , s). For each j = 1, . . . , n, the data of

the inputs and outputs of DMUj can be arranged into the column vectors xj = (x1j , . . . , xmj)
T ∈

Rm of the inputs and yj = (y1j , . . . , ysj)
T ∈ Rs of the outputs. Finally, the input and output vectors

of all DMUs form the m×n input and s×n output matrices X and Y , i.e., X = [x1, . . . ,xn] and

Y = [y1, . . . ,yn], respectively.

In the article, we reserve the notations i, j, and r for the indices that go through whole index

sets {1, . . . ,m}, {1, . . . , n}, and {1, . . . , s}, respectively. We make no assumptions about the non-

negativity of the data at this point. The non-negativity requirement may follow later from other

assumptions, and we shall alert the reader whenever that is the case.

2.1. Technology set

On the basis of the given data, we consider the following technology set:

T =
{
(x,y) ∈ Rm × Rs | Xλ ≤ x, Y λ ≥ y, λ ≥ 0, eTλ = 1

}
, (1)

corresponding to variable returns to scale (VRS). Note that the common non-negativity of (x,y)

is not imposed here. Elements of T will be called units. It follows from (1) that the closed set T
has a non-empty interior; we shall denote its boundary by ∂T := T \ intT .

By (xo,yo) we denote a unit from T to be currently evaluated. For input vectors, we also use

the notation xmin,xmax,xev,xsd, where for i = 1, . . .m we set xmin
i = minj xij , x

max
i = maxj xij ,

xevi = 1
n

∑
j xij , and x

sd
i =

√
1
n

∑
j(xij − xevi )2. Here xsdi is the standard deviation of the i-th input

over all DMUj , j = 1, . . . , n. The notation ymin, ymax, yev, and ysd is introduced analogously for

the output vectors. Without loss of generality, we assume that xmin < xmax and ymin < ymax.

Otherwise, there would be components of inputs / outputs, where all DMUs take the same value,

and such components can be excluded from the analysis.

We write (x,y) ≿ (xo,yo) if the unit (x,y) dominates the unit (xo,yo), that is, if x ≤ xo

and y ≥ yo. A unit (x,y) strictly dominates the unit (xo,yo) if x < xo and y > yo. A unit

(xo,yo) ∈ T is called strongly efficient if there is no other unit in T that dominates (xo,yo), that

is, if (x,y) ∈ T dominates (xo,yo), then (x,y) = (xo,yo).
5 A unit (xo,yo) ∈ T is called weakly

efficient if there is no unit in T that strictly dominates (xo,yo). Evidently, any strongly efficient

unit is weakly efficient, and weakly efficient units lie on the boundary ∂T .

5This is the well known Pareto–Koopmans efficiency. Some authors call such units Pareto efficient, or fully efficient;

see the discussion in Cooper et al. (2007, p. 45).
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The converse is also true: every unit on the boundary ∂T is weakly efficient because the

definition of T in (1) does not impose the non-negativity assumption on the units therein. Therefore,

the boundary ∂T is partitioned into the strongly efficient frontier ∂ST containing all strongly

efficient units and the remaining part ∂WT := ∂T \∂ST , which consists of weakly but not strongly

efficient units. In this paper, we refer to the remaining part of the boundary as weakly efficient

frontier. One thus has ∂T = ∂ST ∪ ∂WT and ∂ST ∩ ∂WT = ∅. The simple proof of the next

lemma is omitted.

Lemma 1. For (xo,yo) ∈ T , the following statements hold.

(a) (xmin,ymax) ≿ (xo,yo);

(b) (xo,yo) ∈ ∂T if and only if for all (dx,dy) ≥ 0 such that (xo − dx,yo + dy) ∈ T , one has

(dx,dy) ≯ 0;

(c) (xo,yo) ∈ ∂ST if and only if for all (dx,dy) ≥ 0 such that (xo − dx,yo + dy) ∈ T , one has

(dx,dy) = 0;

(d) (xo,yo) ∈ ∂WT if and only if there exists (dx,dy) ≩ 0 such that (xo − dx,yo + dy) ∈ T and

if for all (dx,dy) ≥ 0 such that (xo − dx,yo + dy) ∈ T , one has (dx,dy) ≯ 0.

2.2. Efficiency measures and their desirable properties

On the technology set T , one can define various measures, which then give rise to a specific

DEA models. This is achieved by formulating certain mathematical programming problems that

are applied separately to each evaluated unit (xo,yo) ∈ T .

A mathematical programme consists of an objective function and a set of conditions for decision

variables. The values of the decision variables that satisfy these conditions are called feasible

solutions of the programme. Solving the programme yields the optimal value of the objective

function and a subset of feasible solutions called optimal solutions. The optimal value of a DEA

model determines the efficiency score / value of the measure of the evaluated unit. Optimal

solutions also yield virtual units called projections of the evaluated unit — the elements of ∂T that

dominate (xo,yo) and are associated with the efficiency score.

Depending on the chosen measure, models and their efficiency scores have varying properties.

Following the work of Färe and Lovell (1978), Pastor et al. (1999), Sueyoshi and Sekitani (2009),

Russell and Schworm (2018), Aparicio and Monge (2022), and Halická and Trnovská (2021), we

highlight ten desirable properties for efficiency measurement in DEA.

(P1) Unique projection for efficiency comparison. While the model may admit multiple

optimal solutions, the projection point is unique.

(P2) Indication. The value of the measure equals one if and only if the evaluated unit is strongly

efficient.
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(P3) Strong efficiency of projections. Projections generated by the measure are strongly

efficient.

(P4) Boundedness. The measure takes values between zero and one.

(P5) Units invariance. The value of the measure does not depend on the units of measurement

in the input and output variables.

(P6) Translation invariance. The value of the measure is not affected by translation of inputs

or outputs.

(P7) Monotonicity. An increase in any input or a decrease in any output relative to the evalu-

ated unit, keeping other inputs and outputs constant, reduces or maintains the value of the

measure.

(P8) Strict monotonicity. An increase in any input or a decrease in any output relative to the

evaluated unit, keeping other inputs and outputs constant, reduces the value of the measure.

(P9) Super-efficiency. The value of the measure of a unit outside the technology set is well

defined and finite.

(P10) Homogeneity. Feasible scaling of the input vector and the output vector of the evaluated

unit by a power of µ > 0 (the power may be different for inputs and outputs) results in the

efficiency score being scaled by a power of µ.

The importance of individual properties varies with the goals of the analysis. In the first

instance, one needs to know whether the efficiency score equal to one indicates the strong efficiency

of the evaluated unit. Therefore, (P2) is perhaps the most important property. It is closely related

to (P3), although the two properties are not equivalent. Failure of (P3) indicates that the score

may be overestimated. Some models are ambiguous in terms of satisfying the properties (P2) and

(P3) and require further analysis to reach a conclusion.

Invariance properties (P5) and (P6) are important when the input and output data are expressed

in different measurement units or when the data also contain negative values, respectively. No

universal conclusions can be drawn regarding these properties, hence each DEA model must be

assessed individually. The property (P6) is tied to variable returns-to-scale technology set.

The monotonicity properties (P7) and (P8) ensure that competing units are evaluated with

a certain degree of fairness, in that a dominating unit receives a score not below the score of a

dominated unit. The weak monotonicity (P7) is usually satisfied in standard DEA models and the

strong monotonicity (P8) is satisfied in most slacks-based models.

The property (P9) is important for (i) measuring super-efficiency, which allows one to discrim-

inate among efficient units; and (ii) measuring the frontier shift between different time periods;

see Sueyoshi and Sekitani (2009). Considerable difficulties with this property relate particularly to

VRS, where some super-efficiency models are generally not feasible.
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The homogeneity property (P10), together with (P2), (P3), and (P8), was formulated for the

first time as a desirable property of efficiency measures in Färe and Lovell (1978) in connection

with input-oriented measures. Since then, it has been subject to several generalisations suitable for

output-oriented models and graph models, which is also reflected in the terminology (e.g., “almost

homogeneity”). For slacks-based models, the concept was relaxed to sub-homogeneity (Pastor et al.,

1999), and for the directional distance function, it was modified to g-homogeneity (Hudgins and

Primont, 2007).

The property of boundedness (P4) was included in the list of desirable properties in Färe et al.

(1983). The property (P4) guarantees that the efficiency measure is bounded by 0 and 1, where

the value 1 identifies the strong efficiency in (P2).

In contrast to all the remaining properties that are expressed in terms of the efficiency measure,

the properties (P1) and (P3) are expressed using the projections provided by the models. The

importance of (P1) was highlighted in Sueyoshi and Sekitani (2009), especially in connection with

the slacks-based models, where the concept of projection is not uniquely defined.

It is well known that no model meets all properties (P1)–(P10). However, some of the properties

occur in groups and hold simultaneously for a class of models. Halická and Trnovská (2021) show

that slacks-based models satisfy (P2), (P3), (P7), (P8), and violate (P1). The present paper shows

that path-based models satisfy (P1) and (P7), and fail (P2), (P3), and (P8).

We shall now introduce some standard models that enter our analysis as special cases. We

formulate these models in a way that allows for certain generalisations.

2.3. Standard path-based models

First, we present input/output-oriented radial models, which are known in DEA under the

BBC acronym in honour of their authors Banker et al. (1984), who introduced them to DEA in

the VRS version. Note that the standard input/output-oriented DEA radial models are inspired

by the Shephard’s (Shephard, 1953) input/output distance functions, and the technical efficiency

measurement is based on the seminal work of Farrell (1957). The standard DEA formulation of

these models is over non-negative data with the assumption

xj ≩ 0 and yj ≩ 0 for each j ∈ {1, . . . , n}. (2)

The input oriented BCC model can be formulated as

BCC-I: min θ

Xλ ≤ θxo

Y λ ≥ yo

eTλ = 1, λ ≥ 0,

(3)

and the output oriented BCC model as

BCC-O: min θ

Xλ ≤ xo

Y λ ≥ 1
θyo

eTλ = 1, λ ≥ 0.

(4)
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If we denote ψ := 1
θ and replace min θ by maxψ, then we obtain the output BCC model in standard

form, where the optimal ψ∗ ≥ 1 and the efficiency score is 1
ψ∗ . Among the properties (P1)–(P9),

the BCC models satisfy only (P1), (P4), (P5), and (P7).

The hyperbolic distance function model introduced by Färe et al. (1985) combines the input

and output oriented radial measures into one measure. Commonly, it is defined over positive data

only, i.e.

xj > 0 and yj > 0 for each j ∈ {1, . . . , n}. (5)

In our formulation, it reads:

HDF: min θ

Xλ ≤ θxo

Y λ ≥ 1
θyo

eTλ = 1, λ ≥ 0.

(6)

Halická and Trnovská (2019) investigated the properties of this model, proposed computational

methods for its solution, and derived its dual form through SDP, while Hasannasab et al. (2019)

established duality through the second-order cone. HDF satisfies the properties (P1), (P4), (P5),

(P7), and (P9).

The use of linearisation 1
θ − 1 ∼ 1 − θ around θ = 1 in the HDF model (see Färe et al., 2016)

leads to the following:

DDF: min θ

Xλ ≤ xo − (1− θ)xo

Y λ ≥ yo + (1− θ)yo

eTλ = 1, λ ≥ 0.

(7)

If we denote δ = 1 − θ and replace min θ by max δ, we obtain a special version of the directional

distance function model with the directional vector (gxo , g
y
o) = (xo, yo). This model, introduced by

Briec (1997), is known as the proportional directional distance function. It satisfies the properties

(P1), (P4), (P5), (P7), and (P9).

Now, we present the general directional distance function model (DDF-g). Let gxo ∈ Rm+ ,

gyo ∈ Rs+ be given directional vectors that may depend on (xo,yo) and such that at least one

component of gxo or gyo is positive, that is,

(gxo , g
y
o ) ≩ 0. (8)

The model admits negative data, provided that the assumption of non-negativity (8) on the direc-

tional vectors is satisfied. The model reads as follows:

DDF-g: min θ

Xλ ≤ xo − (1− θ)gxo
Y λ ≥ yo + (1− θ)gyo

eTλ = 1, λ ≥ 0.

(9)

Once again, if we denote δ = 1 − θ and replace min θ by max δ, we obtain the standard form of

DDF-g introduced in Chambers et al. (1996a, 1998).
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Notation gxo gyo Reference

(G1) xo yo Chambers et al. (1996b)

(G2) xo − xmin ymax − yo Portela et al. (2004)

(G3) xmax − xmin ymax − ymin Portela et al. (2004)

(G4) xev yev Aparicio et al. (2013)

(G5) xsd ysd

(G6) e = (1, . . . , 1)T e = (1, . . . , 1)T Chambers et al. (1996b)

Table 1: Commonly encountered choices of directions go. For the notation xmin, xmax, etc., see Subsection 2.1.

Since DDF is a linearisation of HDF, it is natural to ask whether there exists a generalisation of

HDF whose linearisation corresponds to DDF-g. An affirmative answer is provided by the following

model, which we refer to as the general hyperbolic distance function (HDF-g) model:

HDF-g: min θ

Xλ ≤ xo − (1− θ)gxo
Y λ ≥ yo + (1θ − 1)gyo

eTλ = 1, λ ≥ 0.

(10)

This new model, too, uses pre-specified directions and admits negative data as long as the directions

satisfy the non-negativity condition (8). It is easy to see that the choices gxo = xo and gyo = yo lead

to the HDF model.

Without specific knowledge of the directional vector g beyond (8), only the property (P1) is

ensured in HDF-g and DDF-g. More must be said about the choice of directional vectors to ensure

the validity of the remaining properties (P2)–(P9). For a discussion of the available choices of

directional vectors, see, for example, Färe et al. (2008) and Pastor et al. (2022). Table 1 presents

the directions (gxo , g
y
o ) that will be included in the subsequent analysis of the families of HDF-g

and DDF-g models. These directions exhibit a range of properties, as documented in Table 3.

(G1) is perhaps the most widely chosen direction in the family of DDF-g models, which yields

the Farrell proportional distance function (see Briec and Kerstens, 2009). The directions (G2) and

(G3) appear in the range-directional models developed by Portela et al. (2004). The use of (G4)

directions is discussed in Aparicio et al. (2013). It is also quite common to consider DDF-g with

(G6) directions, which is mathematically equivalent to minimising the l∞ distance to the boundary

of T (see Briec and Lesourd, 1999).

Remark 1. It is interesting to note that the expressions for directions (G1)–(G6) appear in the

denominator of weights in specific WAM models. Indeed, direction (G6) is linked to the weights in

AD model; directions (G2) and (G3) are linked to the weights in BAM and RAM models, respec-

tively; direction (G1) corresponds to the weights in so-called Measure of Ineficiency Proportions

(MIP) model by Cooper et al. (1999); and the weights generated via (G5) appear in the WAM

model of Ševčovič et al. (2001).

10



3. A general scheme for path-based models

On comparing (9) and (10), we observe that the DDF-g and HDF-g models are qualitatively

similar, differing only in the nature of their output bounds, which are linear for DDF-g but nonlinear

for HDF-g. The latter is formalised through the function ψy(θ) = 1
θ .

We shall now generalise this approach in the direction of convex functions ψy on the output side

and concave functions ψx on the input side. Our new model will encompass all the models mentioned

up to this point, allowing for a unified analysis of their properties. At the same time, generalisation

will allow the construction of new models whose properties can be specified in advance.

By the general scheme (GS) model applied to (xo,yo) ∈ T with directions go = (gxo , g
y
o ) ≩ 0

that may depend on (xo,yo), we understand

(GS)o min θ (11a)

Xλ ≤ xo + (ψx(θ)− 1)gxo , (11b)

Y λ ≥ yo + (ψy(θ)− 1)gyo , (11c)

eTλ = 1, λ ≥ 0. (11d)

Here, the real functions ψ, their domains (dom), and their images (im) satisfy the following as-

sumptions.

(A1) dom(ψx) = (ax,∞) with ax ∈ {−∞, 0} and dom(ψy) = (ay,∞) with ay ∈ {−∞, 0};

(A2) ψx is smooth, concave, increasing, and ψy is smooth, convex, decreasing;

(A3) ψx(1) = ψy(1) = 1;

(A4) im(ψx) = (bx,∞) with bx = −∞ if gy = 0 and bx ∈ {−∞, 0} otherwise; im(ψy) = (by,∞)

with by ∈ {−∞, 0}.

Due to the monotonicity of ψx and ψy assumed in (A2), the assumption (A4) means limθ→ax+
ψx(θ) =

bx and limθ→∞ ψx(θ) = ∞ and limθ→ay+
ψy(θ) = ∞ and limθ→∞ ψy(θ) = by.

If the vectors gxo and gyo are positive, then the GS model (11) operates in the full input-output

space, and hence it is a graph model in the terminology of Färe et al. (1985). With gxo = 0 or

gyo = 0,6 one obtains output-oriented or input-oriented models, respectively.7

Denote the right-hand sides of (11b) and (11c) by ϕxo and ϕyo, respectively, that is,

ϕxo(θ) := xo + (ψx(θ)− 1)gxo ; ϕyo(θ) := yo + (ψy(θ)− 1)gyo . (12)

6In the case gx
o = 0 or gy

o = 0 the contribution of ψx in (11b) or ψy in (11c) vanishes; in such cases we take

dom(ψx) = (−∞,∞) or dom(ψy) = (−∞,∞), respectively.
7In the case of input/output-oriented GS models (where gy

o = 0 or gx
o = 0), the GS model can be converted to a

DDF-g input/output-oriented model with the same projection as the GS model. This observation follows from the

fact that the functions ψx(·) and ψy(·) are assumed to be monotonic so that their inverse functions exist and the

transformations ψx(θ) =: a ⇐⇒ (ψx)−1(a) = θ or ψy(θ) =: b ⇐⇒ (ψy)−1(b) = θ can be applied. In the case

of graph models, the inverse transformation allows one to convert the GS model into a form where the input (resp.,

output) side is linear in θ.
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Model gxo ϕxo(θ) gyo ϕyo(θ) ψx ψy

BCC-I xo θxo 0 yo θ ψy 8

BCC-O 0 xo yo
1
θyo ψx 9 1

θ

DDF-g gxo xo + (θ − 1)gxo gyo yo + (1− θ)gyo θ 2− θ

DDF xo θxo yo (2− θ)yo θ 2− θ

HDF xo θxo yo
1
θyo θ 1

θ

HDF-g gxo xo + (θ − 1)gxo gyo yo + (1θ − 1)gyo θ 1
θ

Table 2: Parameterization of the standard path-based models.

It is easy to see that the models presented in the previous section are special cases of the GS model.

These models, taken in conjunction with the directions in Table 1 and the usual assumptions on

the positiveness of the data (that is, condition (2) for the BCC models and (5) for the hyperbolic

model), will be called standard path-based models. The corresponding parameterisations in Table

2 indicate that only two choices of the function ψy are associated with the standard models:

linear, ψy(θ) = 2 − θ, and hyperbolic, ψy(θ) = 1
θ . Only one form of ψx appears: ψx(θ) = θ.

However, other choices of ψ that satisfy the assumptions (A1)–(A4) are possible, for example

ψx(θ) = θ−p, −1 < p < 0, or ψx(θ) = 1 + ln θ, and ψy(θ) = θ−p, p > 0, ψy(θ) = 1 − ln θ with

domains (0,∞), or ψy(θ) = e1−θ with domain (−∞,∞). We will be able to fine-tune the model

properties by making suitable choices of ψx and ψy and directions. Note that the choice of functions

ψx(θ) = θ1−p, ψy(θ) = θ−p, p ∈ [0, 1] and directions (gx, gy) = (xo,yo) > 0 leads to the so-called

generalised distance function introduced by Chavas and Cox (1999).

The next subsection shows that the (GS)o model is well defined as a convex programme, that

is, for any (xo,yo) ∈ T the optimal value θ∗ of (GS)o is finite and the minimum is attained. To

this end, we introduce a geometric interpretation of the model.

3.1. Geometric interpretation

The definition of the technology set T in (1) and the notation in (12) allow us to rewrite (GS)o

(11) in the form

min{θ : (ϕxo(θ),ϕyo(θ)) ∈ T }. (13)

In this context, we can interpret the (GS)o model as a path-based model, where the map

ϕo : θ 7→ (ϕxo(θ),ϕ
y
o(θ)) (14)

defines a continuous path in the input-output space Rm × Rs parameterised by θ ∈ D, where

D = dom(ψx) ∩ dom(ψy). (15)

8Since gy
o = 0, the term gy

oψ
y vanishes.

9Since gx
o = 0, the term gx

oψ
x vanishes.
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Figure 1: Hyperbolic path ϕo(θ) for direction (12, 2) as an illustration of Theorem 1. The path is a smooth curve

that starts for θ = 1 at (xo,yo) ∈ T and for decreasing values of θ it moves in a set of points that gradually dominate

each other, until the curve for some θ̄ < 1 reaches the value ϕy
o(θ̄) > ymax. As a consequence, the path has to leave

T at some (x̂o, ŷo) ∈ ∂T for some θ = θ∗o .

It is seen from the definition of the path in (12) and (14) that each path is determined by a specific

choice of xo,yo, g
x
o , g

y
o , and ψx,ψy (the parameters of the path). Unless otherwise stated, we take

standard parameter choices, that is,

(xo,yo) ∈ T , (gxo , g
y
o) ≩ 0, and ψx, ψy that meet (A1)–(A4). (16)

The next theorem summarises the properties of the path ϕo that are common for all standard

parameter choices. Its proof is placed in Appendix A. The path properties are illustrated in

Figure 1 with an example of a hyperbolic path.

Theorem 1. The path ϕo defined by (12) and (14) with standard parameter choices (16) has the

following properties.

(a) For θ1 ≤ θ2 ∈ D, the point ϕo(θ1) on the path ϕo dominates the point ϕo(θ2), (i.e., ϕo(θ1) ≿

ϕo(θ2)), and ϕo(θ1) ̸= ϕo(θ2), if and only if θ1 < θ2.

(b) ϕo(1) = (xo,yo) ∈ T .

(c) There exists i such that limθ→ax−
ϕxio(θ) = −∞ or r such that limθ→ay+

ϕyro(θ) = +∞ (see

Figure 1 for illustration).

(d) There exists θ∗o ≤ 1 such that ϕo(θ
∗) ∈ T and ϕo(θ) /∈ T for all θ < θ∗. As a consequence,

the point ϕo(θ
∗
o) belongs to the boundary of T and θ∗ is the finite optimal value of the (GS)o

model (11).
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By Theorem 1, the GS model applied to (xo,yo) ∈ T with directions (gxo , g
y
o ) ≩ 0 is well defined.

The optimal value θ∗o is called efficiency score, or alternatively value of the efficiency measure for

(xo,yo). The point (ϕ
x
o(θ

∗
o),ϕ

y
o(θ∗o)) on the path ϕo is called the projection of (xo,yo) in the (GS)o

model. Hereafter, we shall denote the projection point more compactly by

(x̂o, ŷo) := (ϕxo(θ
∗
o),ϕ

y
o(θ

∗
o)). (17)

Note that although the projection point (x̂o, ŷo) ∈ ∂T is defined uniquely, the uniqueness may

not extend to the λ-component of an optimal solution (λ∗, θ∗). Consequently, the program (GS)o

may have multiple optimal slacks given by

(sx∗, sy∗) := (x̂o −Xλ∗,Y λ∗ − ŷo) ≥ 0.

Lemma 2. Let (λ∗
o, θ

∗
o) be an optimal solution of (GS)o. Then at least one of the inequalities in

(11b) or (11c) is tight, i.e, at least one component of the corresponding slacks is zero.

Proof. If all components of the slacks are positive, then due to the assumed continuity of the path

there is ϵ > 0 such that (λ∗
o, θ

∗
o − ϵ) is feasible, which contradicts the optimality of θ∗o .

4. Properties of the general model

We will now analyse the (GS)o model in the light of the ten desirable properties (P1)–(P9). The

only property that the general scheme (GS)o satisfies regardless of the specific choice of directions

is the unique projection property (P1). This is a simple consequence of Theorem 1. The remaining

properties depend on the choice of the direction vector go and the functions ψx and ψy. We examine

them one at a time in the following subsections.

4.1. Indication

(P2) (a) If the evaluated unit is strongly efficient, then the measure equals 1.

(b) If the measure equals 1, then the evaluated unit is strongly efficient.

The part (a) of this property holds universally in the (GS) scheme as indicated in the following

theorem.

Theorem 2. If (xo,yo) is strongly efficient in T , then θ∗o = 1.

Proof. If (xo,yo) is strongly efficient, then the set of points from T dominating (xo,yo) contains

only (xo,yo). In view of ϕo(1) = (xo,yo) and Theorem 1(a), one has θ∗o = 1.

Note that θ∗o = 1 in conjunction with Theorem 1(d) only yield (xo,yo) ∈ ∂T , hence one must

admit the possibility that (xo,yo) belongs to ∂
WT in some cases with θ∗o = 1.

Theorem 3. The GS model with positive directions violates the part (b) of (P2) for any T .

14



Proof. Let (xo,yo) ∈ ∂WT and go > 0. We want to show that θ∗o = 1. Assume by contradiction

that θ∗o < 1. Then x̂o = xo + (ψx(θ∗o) − 1)gxo < xo and ŷo = yo + (ψy(θ∗o) − 1)gyo > yo, and

(x̂o, ŷo) ∈ T , which is, by Lemma 1(d), in contradiction with the weak but not strong efficiency of

(xo,yo).

Figure 2: In the two dimensional technology set T , the DDF-(G2) model projects units from T onto ∂ST . The set

T is generated by four units. The units A and B are strongly efficient, while C and D belong to ∂WT . The (G2)

direction for C is (5, 0) and it points from C to B which implies that θ∗C < 1. The (G2) direction for D is (0, 1) and

it points from D to A which implies that θ∗D < 1. Similar observation applies to all units from ∂WT .

Remark 2. By Theorem 3, all standard path-based models with directions (G1) and (G3)–(G6)

violate the part (b) of (P2) for any T . In the case of DDF-(G2), whether (P2) (b) holds depends

on the data configuration (the shape of T ). It holds in Figure 2, where each unit (xo,yo) ∈ ∂WT
is projected onto ∂ST in DDF-(G2) model, and hence θ∗o < 1. A failure of (P2) (b) is seen in

Figure 3, where the unit C belongs to ∂WT and the corresponding paths at C point out of T . This

implies that the efficiency scores of C is equal to one. On the other hand, HDF-(G2) violates part

(b) of (P2) even in the case of technology set depicted in Figure 2. Indeed, since 1
θ − 1 > 1− θ for

θ < 1, the hyperbolic path for C is above the directional path for C for θ < 1, and hence leaves T
at C.

The tools to determine whether a unit with an efficiency score equal to one is strongly efficient

will be presented in the next subsection, where this problem will be solved in a more general setting.

4.2. Strong efficiency of projection

(P3) The projection point generated by the measure is strongly efficient.

The projection in the (GS)o model is located on the boundary of T but not necessarily on its

strongly efficient part. Note that the lack of strong efficiency of a projection is a known possibility
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Figure 3: An example of T , for which the DDF-(G2) model does not project C ∈ ∂WT onto the strongly efficient

frontier ∂ST = |AB|. The two-input and single-output technology set is generated by two strongly efficient units,

A = (1, 0, 1) and B = (0, 1, 1). The unit C = (0.5, 0.5, 0.5) is weakly but not strongly efficient. Here (xmin,ymax) =

(0, 0, 1) and (G2) direction for C is gC = (0.5, 0.5, 0.5). Since gC > 0, Theorem 3 yields that the part (b) of (P2) is

not satisfied. The DDF-(G2) path for C with the gC direction leaves T at C, which means that C is projected onto

itself with θ∗C = 1.

in the BCC and DDF models. In this subsection, we show that this is the case for all standard

path-based models.

The absence of strong efficiency of the projection has knock-on effects, such as the lack of strict

monotonicity of the efficiency score or the failure of one-to-one identification of efficiency. Moreover,

if a unit is not projected onto the strongly efficient frontier, then its efficiency score does not capture

all sources of inefficiencies in some input/output components, and hence it overestimates the unit’s

performance. Therefore, it is important to recognise whether the specific unit was projected onto

a strongly efficient frontier or not. Unfortunately, this recognition cannot be made from the mere

value of the optimal score. However, in connection with BCC and DDF, tools have been developed

to detect this feature. Now we are adopting them into our scheme.

The next theorem states that to identify the strong efficiency of projections, one needs to know

more than just the optimal value. The proof is located in Appendix A.

Theorem 4. The projection of (xo,yo) is strongly efficient if and only if for each optimal solution

(λ∗
o, θ

∗
o) of (11), the inequality constraints (11b) and (11c) are satisfied with equality.
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Theorem 4 identifies whether the projection is from the strongly efficient frontier theoretically

only. A practical method to identify the strong efficiency of a weakly efficient unit (xo,yo) ∈ T
with θ∗o = 1, but also the projection of an inefficient unit (xo,yo) ∈ T with θ∗o < 1, is called second

phase procedure. The procedure solves a modified programme that, at a fixed value of θ∗o , maximises

the sum of slacks. In the context of the GS scheme, it reads as follows:

max eTsx + eTsy

Xλ+ sx = ϕxo(θ
∗
o),

Y λ− sy = ϕyo(θ∗o),

eTλ = 1, λ ≥ 0, sx ≥ 0, sy ≥ 0.

(18)

Theorem 5. The optimal value in (18) vanishes if and only if the projection of (xo,yo) in

(GS)o is strongly efficient. Furthermore, for each optimal solution (λ∗, sx∗, sy∗) in (18), the unit

(Xλ∗,Y λ∗) is a strongly efficient benchmark for (xo,yo).

Proof. The first part follows from Theorem 4. The second part claims that (Xλ∗,Y λ∗) = (x̂o −
sx∗, ŷo + sy∗) ∈ ∂ST . Suppose this is not the case. Then by Lemma 1(c), there exists a unit in

T (corresponding to some λ̂ ≥ 0 with eT λ̂ = 1) that dominates but is not equal to (Xλ∗,Y λ∗).

The slacks of (x̂o, ŷo) relative to the new unit have increased, which contradicts the optimality of

the original slacks in (18).

Remark 3. While in the class of slacks-based models the notions of ‘projection’ and ‘benchmark’

coincide (see Remark 2 in Halická and Trnovská, 2021), in the class of path-based models it is

necessary to single out one projection from among multiple benchmarks. The projection is uniquely

determined by (17) as the point (benchmark) on the path, where the path leaves ∂T , which also

pins down the optimal value of the objective function. However, the model is capable of generating

other benchmarks, i.e., points (Xλ∗,Y λ∗) ∈ ∂T that correspond to the alternate optimal solutions

(λ∗, θ∗o) of (GS)o. Some of them lie in ∂ST and can be generated by optimal solutions of (18).

Remark 4. Property (P3) implies (P2). Indeed, if θ∗o = 1, then (xo,yo) coincides with its projection.

Now, if (P3) holds, this projection is strongly efficient, which yields the (b) part of (P2). The part

(a) of (P2) holds universally by Theorem 2.

As a consequence of the implication (P3) ⇒ (P2), the conclusions of Remark 2 regarding failure

of (P2) for standard path-based models carry over to property (P3).

4.3. Boundedness

(P4) The measure takes values between zero and one.

If (xo,yo) ∈ T , then automatically θ∗o ≤ 1 (since θ = 1 is a feasible solution). On the other

hand, the property θ∗o ≥ 0 is based on the domains of ψx and ψy. With dom(ψx) = (0,∞) or

dom(ψy) = (0,∞), which only occur for non-linear ψx and ψy, one has θ∗o > 0 for any choice of

go. With linear ψ one has dom(ψ) = R, and hence (P4) may fail. In the following theorem, we

formulate sufficient conditions on go for (P4) to hold.
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Theorem 6. Consider a GS model with ψx(θ) = θ, ψy(θ) = 2− θ, and directions go ≩ 0. If

max
i

{
xmin
i + gxio − xio

gxio
: gxio > 0

}
≥ 0 or max

r

{
yro + gyro − ymax

r

gyro
: gyro > 0

}
≥ 0,

then θ∗o ≥ 0.

Proof. We proceed by constructing lower bounds for the optimal score θ∗o . If gxio > 0, then the

i-th component of (11b) yields
xmin
i +gxio−xio

gxio
≤ ψx(θ∗o) = θ∗o . Similarly, if gyro > 0, then the r-th

component of (11c) yields ymax
r +gyro−yro

gyro
≥ ψy(θ∗o) = 2 − θ∗o and hence yro+g

y
ro−ymax

r

gyro
≤ θ∗o . If the

maximal lower bound is non-negative, then θ∗o ≥ 0, which completes the proof.

Sufficient conditions for other linear ψx and ψy follow by an obvious modification of the proof.

Remark 5. Theorem 6 offers an easy route to verify that DDF-g with directions (G1)–(G3) satisfies

boundedness (P4). A counterexample with negative θ∗o for directions (G4)–(G6) is provided by

a single-input, single-output model with two units A = (1, 5) and B = (5, 1). Here, the average

direction (G4) is (3, 3) and the standard deviation direction (G5) equals (2, 2). The scores for the

non-efficient unit B are −1/3, −1, and −3, respectively, for the directions (G4)–(G6). The HDF-g

family (including HDF itself) satisfies (P4) trivially thanks to the non-negative domain of ψ.

The results of Theorem 6 are in line with the partial results of Sahoo et al. (2014) related to

the input-oriented directional distance model.

4.4. Unit invariance

(P5) The value of the measure does not depend on the units of measurement in the input and

output variables.

The next theorem provides a necessary and sufficient condition for unit invariance in terms of

invariance of directions with respect to the data transformation. Its proof is given in Appendix A.

Theorem 7. Let C ∈ Dm++ and B ∈ Ds++ be diagonal matrices with positive elements on the

diagonal. For all j = 1, . . . , n, consider transformed inputs Cxj and transformed outputs Byj,

respectively. Let gxo , gyo , and gCxo , gByo denote the directional vectors before and after the data

transformation, respectively. The (GS)o model is unit invariant if and only if one has gCxo = Cgxo
and gByo = Bgyo .

Remark 6. Theorem 7 yields easily that GS models with (G1)–(G5) directions satisfy unit invariance

(P5) but this property fails with directions (G6).

4.5. Translation invariance

(P6) The value of the measure is not affected by translation in inputs or outputs.

The next theorem provides a necessary and sufficient condition for translation invariance in terms

of translation invariance of directions. Its proof is given in Appendix A.
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Theorem 8. The (GS)o model is translation invariant if and only if the directional vectors gxo and

gyo are invariant to the translation of inputs and outputs, respectively.

The translation invariance of the DDF-g models is analysed in detail by Aparicio et al. (2016).

This subsection is consistent with their results and extends them to the whole class of GS models.

Remark 7. Using Theorem 8, one easily verifies that GS models with directions (G2), (G3), (G5),

and (G6) satisfy translation invariance (P6) but those with directions (G1) and (G4) do not.

4.6. Monotonicity

(P7) An increase in any input or a decrease in any output relative to the evaluated unit, keeping

other inputs and outputs constant, reduces or maintains the value of the measure.

For any fixed θ̄ ∈ D, we consider a function ϕ(θ̄): (xo,yo) 7→ ϕo(θ̄) mapping each point (xo,yo) ∈ T
to the point (ϕxo(θ̄), (ϕ

y
o(θ̄)) on the path ϕo(θ) at θ = θ̄. The monotonicity property of the models

states that for any (xo,yo) and (xq,yq) in T one has

(xo,yo) ≿ (xq,yq) ⇒ θ∗o ≥ θ∗q .

The monotonicity of a model is linked with the monotonicity of ϕ(θ), which we define as follows.

Definition 1. We say that ϕ(θ̄) is monotone on T in θ̄ ∈ D if for any two units (xo,yo) and

(xq,yq) in T , one has

(xo,yo) ≿ (xq,yq) ⇒ ϕo(θ̄) ≿ ϕq(θ̄). (19)

For a function ϕ(θ̄) such that [ϕx(θ̄)]i depends only on xio and [ϕy(θ̄)]r depends only on yro, the

monotonicity property in Definition 19 simply means that [ϕx(θ̄)]i and [ϕy(θ̄)]r are nondecreasing

in xio and yro, respectively.

Lemma 3. Let (xo,yo) and (xq,yq) be two units in T with the corresponding optimal values θ∗o , θ
∗
q .

If ϕo(θ
∗
o) ≿ ϕq(θ

∗
o), then each optimal solution (θ∗o ,λ

∗
o) of (GS)o is a feasible solution of (GS)q.

Furthermore, θ∗q ≤ θ∗o.

Proof. The assumptions of the lemma and feasibility of (θ∗o ,λ
∗
o) for (GS)o yield

Xλ∗
o ≤ ϕxo(θ

∗
o) ≤ ϕxq (θ

∗
o), Y λ∗

o ≥ ϕyo(θ
∗
o) ≥ ϕyq(θ

∗
o).

Therefore (θ∗o ,λ
∗
o) is also feasible for (GS)q. Since θ∗q is the optimal value for the minimisation

problem (GS)q, we get θ∗q ≤ θ∗o .

The next theorem is a consequence of Lemma 3. Here, we assume that the assumption of

monotonicity is satisfied only at θ̄ ∈ D̃, where D̃ is a set of those θ̄ for which there exists (xo,yo) ∈ T
such that θ∗o = θ̄.

Theorem 9. Suppose that ϕ(θ̄) is monotone at any θ̄ ∈ D̃. Then the GS model satisfies the

property of monotonicity (P7).
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Remark 8. Note that if go does not depend on (xo,yo), then ϕ(θ) is monotone for any choice of

ψx and ψy in any θ ∈ D. Therefore, by Theorem 9, (GS) models with directions (G3)–(G6) satisfy

the property (P7). For the (G1) direction with arbitrary (standard) ψx and ψy, the monotonicity

assumption of Theorem 9 is satisfied in θ̄ ∈ D, provided that ψx(θ̄) > 0 and ψy(θ̄) > 0 hold. These

conditions are satisfied by the DDF-(G1) and HDF-(G1) models, since, by Remark 5, in these

models θ∗ reaches only positive values on T . Therefore, both models meet the property (P7). For

the (G2) direction with arbitrary (standard) ψx and ψy, the monotonicity holds at θ̄ ∈ D provided

that ψx(θ̄) > 0 and ψy(θ̄) < 2 hold. These conditions are again satisfied by both DDF-(G2) and

HDF-(G2). In fact, according to Remark 5, DDF-(G2) meets (P4), and thus θ∗o > 0. Furthermore,

θ∗o ≥ 1
2 on T in HDF-(G2) with easy computation.

In conclusion, all standard path-based models have the property of monotonicity (P7).

4.7. Strict monotonicity

(P8) An increase in any input or a decrease in any output relative to the evaluated unit, keeping

other inputs as well as outputs constant, reduces the value of the measure.

We begin with a necessary condition for strict monotonicity (P8).

Theorem 10. If there exists (xo,yo) ∈ ∂WT such that θ∗o = 1, then the GS model does not meet

the property of strict monotonicity.

Proof. Since (xo,yo) is not a strongly efficient unit, by Theorem 5 there exists an optimal solu-

tion (λ∗, sx∗, sy∗), of (18) such that (sx∗, sy∗) ̸= 0 and (Xλ∗,Y λ∗) ∈ ∂ST . Since (xp,yp) =

(Xλ∗,Y λ∗) is strongly efficient, Theorem 2 yields θ∗p = 1. Strict monotonicity is violated because

(xp,yp) dominates and is different from (xo,yo) but θ
∗
p = θ∗o = 1.

We have shown in Theorem 3 that positive directions rule out the validity of (P2). As a

consequence of Theorem 10, an analogous statement applies to (P8).

Theorem 11. The GS model with positive directions fails in (P8) for any T defined by (1).

Remark 9. According to Remark 2, all standard path-based models admit (xo,yo) ∈ ∂WT such

that θ∗o = 1 for some data configurations and hence by Theorem 10 do not satisfy (P8).

4.8. Super-efficiency

(P9) The value of the measure of a unit outside the technology set is well defined and finite.

It is well understood that for oriented models super-efficiency may fail for some (xo,yo). Specifi-

cally, if (xo,yo) /∈ T , some of the inequalities in (11b) or (11c) are not satisfied for θ = 1. To remedy

the situation, one must increase the value of θ = 1 and thus increase ϕxo(θ) on the input side and

decrease ϕyo(θ) on the output side. This increase/decrease is impossible if any of the components

of ϕxo(θ) or ϕ
y
o(θ) are not dependent on θ. It follows that if one wishes to ensure (P9) for arbitrary

(xo,yo) /∈ T , one must consider only the graph models where gxo > 0 and gyo > 0. The following
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theorem establishes some necessary and some sufficient conditions for (P9). Its proof is located in

Appendix A.

Theorem 12. For (xo,yo) /∈ T and (gxo , g
y
o ) ≩ 0, the following statements hold.

(a) If (GS)o is feasible, that is, if there exists θ̄ ∈ dom(ψ) such that (ϕxo(θ̄),ϕ
y
o(θ̄)) ∈ T , then

(GS)o admits an optimal solution and the optimal value satisfies θ∗o > 1.

(b) Let go > 0. If ymin − yo + gyo > 0 or im(ψy) = (−∞,∞), then (GS)o admits an optimal

solution and the optimal value satisfies θ∗o > 1.

(c) Assume im(ψy) = (0,∞) and let go > 0. If (i) there is no λ ≥ 0 with eTλ = 1 such that

inequality Y λ ≥ yo − gyo is satisfied or (ii) ymax
r − yro + gyro < 0 for some r, then (GS)o is

infeasible.

Remark 10. With go > 0, DDF-g models are feasible for all units outside of the technology set by

Theorem 12(b) (dom(ψ) = (−∞,∞)). As a result, the entire family of DDF-g models satisfies the

property (P9) provided that the directional vectors are positive. Note that the positivity of the

directions (G2) for (xo,yo) /∈ T is satisfied only if xo > xmin and yo < ymax.

In the class of HDF-g models over positive data, only the HDF model with positive (G1)

directions is super-efficient since it satisfies the assumptions of Theorem 12(b).

The HDF-g models over positive data with (G3)–(G6) directions do not guarantee (P9). In

fact, one can always choose (xo,yo) /∈ T with yro > ymax
r + gro for some r. The infeasibility of the

corresponding (GS)o then follows from (ii) of Theorem 12(c).

Condition (ii) is too coarse for HDF-(G2) because inequality yro > ymax
r + gro is incompatible

with positive (G2) directions. Instead, we shall provide an example that meets condition (i) of

Theorem 12(c). Consider a one-input, two-output production technology with the technology set

generated by two units A = (1, 1, 10) and B = (1, 10, 1). It can be easily shown that the unit

(xo,yo) = (2, 8, 8) is outside T . The corresponding (G2) direction is equal to go = (1, 2, 2). An

easy calculation now shows that condition (i) of Theorem 12(c) is satisfied, and hence HDF-g with

(G2) directions does not guarantee super-efficiency (P9).

Remark 11. The definition of the technology set T in (1), even when applied to non-negative

data, does not presuppose non-negative values of outputs. Consequently, for the purposes of super-

efficiency measurement, we allow projections of units 0 ≤ (xo,yo) /∈ T onto elements of the frontier

with negative outputs. Therefore, our results differ from those of studies by other authors, where

projections onto the negative part of the frontier are treated by definition as infeasible.

For example, in Briec and Kerstens (2009) (in the context of general economic productivity

theories), DDF-g is classified as not having property (P9) only because some units project onto

the negative part of the frontier. To rule out such a source of infeasibility, the authors separately

consider models, where the technological set is extended by the so-called free disposal cone, which

then matches our approach. Johnson and McGinnis (2009) praise the HDF model, which in contrast

to the DDF-g models is always feasible for positive data. This can also be seen in our GS scheme,
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since the HDF projection with (G1) directions reads (θxo,
1
θyo) and thus is positive for positive data.

Mehdiloozad and Roshdi (2014) provide a comprehensive review of super-efficient DEA models and

analyse the pivotal role of the directional vector for super-efficiency.

4.9. Homogeneity

(P10) Homogeneity. Feasible scaling of the input vector and the output vector of the evaluated

unit by a power of µ > 0 (the power may be different for inputs and outputs) results in the

efficiency score being scaled by a power of µ.

In this section, the efficiency score provided by the GS model for a point (x, y) ∈ T will be

denoted by θ∗(x,y). Here, the argument in θ∗ indicates that the efficiency score depends on (x,y)

not only directly, but also indirectly through unit-dependent directional vectors g.

The next definition is consistent with the definition of the so-called almost homogeneity used

in connection with the measure of hyperbolic efficiency in Cuesta and Zof́ıo (2005).

Definition 2. We say that the measure θ∗ generated by a GS model over a technology set T is

homogeneous of degree (α, β, γ) if the relation

θ∗(µαx, µβy) = µγθ∗(x,y) (20)

holds for each (x,y) ∈ T and for each µ > 0 such that the value θ∗(µαx, µβy) is well defined.

Note that a measure is homogeneous of degree (α, β, γ), if and only if it is also homogeneous of

degree (kα, kβ, kγ) for any k ̸= 0. To see this, it suffices to set µ̄ = µk in (20) (the map µ→ µk is

one-to-one for µ > 0). Therefore, without loss of generality, we consider only the homogeneity of

degree (α, β, 1).

Remark 12. By Definition 2, (x,y) ∈ T , and therefore θ∗(x,y) is well defined (Theorem 1(d)), that

is, the minimum in (11) is attained as a finite value. However, the scaled point (µαx, µβy) is not

necessarily in T . If the programme (11) for (µαx, µβy) is not feasible, then θ∗(µαx, µβy) = +∞,

and (20) is not satisfied. On the other hand, if the programme (11) for (µαx, µβy) is feasible, then

θ∗(µαx, µβy) is well defined (Theorem 12(a)).

For the purposes of analysing the homogeneity property, we will restrict ourselves to the tech-

nology set T+ = T ∩ (Rm+ × Rs+), generated with positive data. We will say that the GS model

is homogeneous of degree (α, β, 1) if the corresponding measures θ∗ are homogeneous of degree

(α, β, 1) for any T+.
Next, we show that in the class of the GS models, the homogeneity property is satisfied exclu-

sively for models, where the functions ψx and ψy are of specific forms, and the directions are (G1)

directions, in the graph models, or (xo,0) in the input-oriented and (0,yo) in the output-oriented

models.

We start with the following theorem that provides a necessary and sufficient condition for

homogeneity of the GS model with (G1) directions. The proof can be found in Appendix A.
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Theorem 13. The GS model with (G1) directions is homogeneous of degree (α, β, 1) if and only if

ψx(θ) = θ−α, α ∈ [−1, 0), ψy(θ) = θ−β, β > 0, with dom(ψx) = dom(ψy) = (0,∞). (21)

The next theorem provides a necessary and sufficient condition for the homogeneity of input-

and output-oriented models. The proof is analogous to the proof of Theorem 13 and hence is

omitted.

Theorem 14. (a) The input-oriented GS model with (gx, gy) = (x,0) is homogeneous of degree

(α, 0, 1) if and only if ψx(θ) = θ−α, θ > 0, α ∈ [−1, 0).

(b) The output-oriented GS model with (gx, gy) = (0,y) is homogeneous of degree (0, β, 1) if and

only if ψy(θ) = θ−β, θ > 0, β > 0.

Finally, the following theorem states that models with the (G2)-(G6) directions discussed in

this article are not homogeneous. Its proof is in Appendix A.

Theorem 15. The GS model with directions (gxo , g
y
o ) ≩ 0 of the form (gx, gy) = (hx,hy) or

(gx, gy) = (γxo − hx,hy − δyo), where (hx,hy) is a constant vector, is not homogeneous.

Remark 13. Theorems 13 and 14 cover the known results for the HDF, BCC-I, and BCC-O models.

Necessarily, in these cases one has ψx(θ) = θ and ψy(θ) = θ−1. Thus, α = −1 and β = 1. This

implies that HDF, BCC-I and BCC-O are homogeneous of degrees (−1, 1, 1), (−1, 0, 1), and (0, 1, 1),

respectively. These results were originally shown in Färe et al. (1985) and later in Cuesta and Zof́ıo

(2005).

The measure defined by ψx(θ) = θ, ψy(θ) = θ−p, where p > 0, is homogeneous of degree (−1, p, 1).

Furthermore, the measure of the generalised distance function, defined by ψx(θ) = θ1−p, ψy(θ) =

θ−p, p ∈ [0, 1] and introduced in Chavas and Cox (1999) is homogeneous of degree (p− 1, p, 1), see

also Proposition 2 in Chavas and Cox (1999).

Remark 14 (g-homogeneity). The standard formulation of DDF-g models is in terms of an inef-

ficiency measure δ. This measure can be obtained from our GS models by the transformation

δ = 1 − θ. It is well known that δ satisfies the so-called g-homogeneity (Hudgins and Primont

(2007)) of degree (1,−1) with the following meaning: scaling each direction g by µ > 0 results in

scaling the measure δ by µ−1.

Let us note that the concept of g-homogeneity of degree (1,−1) could be generalised to more

general powers of µ, i.e. to g-homogeneity of degree (p, q). However, a similar procedure as used

in the proof of Theorem 13 shows that the GS model is g-homogeneous of degree (p, q) if and only

if p = 1, q = −1 and ψx = θ, ψy = 2− θ, which corresponds to linear DDF-g models.

5. Extensions

Section 4 has introduced some theoretical tools useful in analysing the ten desirable properties

(P1)–(P10). With the exception of (P10), the properties were analysed over arbitrary data. In the
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Direction notation |G1| |G2| (G3) |G4| (G5) (G6)

gxo |xo| |xo − xmin| xmax − xmin |xev| xsd e

gyo |yo| |ymax − yo| ymax − ymin |yev| ysd e

(P2) indentification ✕(✕) ✕∗(✕) ✕(✕) ✕(✕) ✕(✕) ✕(✕)

(P3) strong efficiency ✕(✕) ✕∗(✕) ✕(✕) ✕(✕) ✕(✕) ✕(✕)

(P4) θ∗o ∈ [0, 1] ✓∗∗(✓) ✓(✓) ✓(✓) ✕(✓) ✕(✓) ✕(✓)

(P5) unit invariance ✓(✓) ✓(✓) ✓(✓) ✓(✓) ✓(✓) ✕(✕)

(P6) translation invariance ✕(✕) ✓(✓) ✓(✓) ✕(✕) ✓(✓) ✓(✓)

(P7) monotonicity ✓∗∗(✓) ✓(✓) ✓(✓) ✓(✓) ✓(✓) ✓(✓)

(P8) strict monotonicity ✕(✕) ✕∗(✕) ✕(✕) ✕(✕) ✕(✕) ✕(✕)

(P9) super-efficiency ✓∗(✓∗∗) ✓∗(✕) ✓∗(✕) ✓∗(✕) ✓∗(✕) ✓(✕)

(P10) homogeneity ✕(✓∗∗) ✕(✕) ✕(✕) ✕(✕) ✕(✕) ✕(✕)

Table 3: Properties of the DDF-g model for ψx(θ) = θ, ψy(θ) = 2−θ and the HDF-g model for ψx(θ) = θ, ψy(θ) = 1
θ

(in brackets) with respect to different choices of vector pairs gx
o , g

y
o . ✓∗ – the property is satisfied for positive

directions; ✓∗∗ – the property is satisfied for positive data but not for general data; ✕∗ – the property holds only for

some very specific T .

remarks of Section 4, these tools were applied to standard path-based models over non-negative

data. Next, we expand the analysis to examine the first nine properties of standard models on

arbitrary data (Section 5.1). Furthermore, we will demonstrate how the theoretical tools of Sec-

tion 4 facilitate the design of new models, where all or almost all desirable properties are satisfied

(Subsection 5.2).

5.1. Properties of standard path-based models over arbitrary data

The particular choices of the vectors go in Table 3 are based on the list found in Table 1. Since

we now allow for negative data, the non-negativity of directions is ensured by taking absolute values

where necessary. This is the case of expressions for (G1) a (G4), but also for (G2), where the values

of units outside T could harm the assumption go ≩ 0. Modified directions with absolute values are

indicated by |G1|, |G2|, and |G4|.
The list of desirable properties in Table 3 omits the property (P1), which in the (GS) scheme

is satisfied regardless of the choice of ψx, ψy or go. Observe that all the models in Table 3 together

fail on the same properties (P2), (P3), and (P8).10 Since (P2) is not satisfied in any of the models

considered, failure of (P3) is inevitable in view of the implication (P3) ⇒ (P2) shown in Remark 4.

� Strong efficiency of projections (P3). According to Remark 4, all models fail (P3) with

non-negative data and therefore also for arbitrary data.

10It may happen that DDF-(G2) meets (P2), (P3), and (P8) over some very specific T — see Figure 2.
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� Boundedness (P4): For ψx(θ) = θ, ψy(θ) = 1
θ , allowing arbitrary data does not produce a

change; for all directions go ≩ 0 one again obtains θ∗o > 0. Similarly, for ψx(θ) = θ, ψy(θ) = 2−θ,
and directions |G2|=(G2) and (G3) we have θ∗o ≥ 0 by Theorem 6. However, for directions |G1|,
the status changes; negative data may lead to a negative score, as shown in the example of one

input, one output with two units A = (−1, 3), B = (3, 1), where the directional vector for B is

(3, 1) and its score equals −1/3. However, if at least one of the inputs takes only positive values,

then Theorem 6 implies that θ∗o > 0 for all (xo,yo) ∈ T . This is in agreement with the results of

Kerstens and Van de Woestyne (2011).

By Remark 5, DDF-g models with directions (P4)–(P6) do not guarantee non-negative efficiency

scores for positive data and, therefore, the same is true for general data.

� Unit and translation invariance (P5) and (P6). There is no change compared to the positive

data case and the conclusions of Remarks 6, 7 remain valid.

� Monotonicity (P7). Allowing negative data does not affect the status of (P7) for directions

that do not explicitly depend on (xo,yo). Therefore, the models with directions (G3), |G4|, (G5),

and (G6) satisfy (P7). Likewise, the directions |G2|=(G2) meet the assumptions of Theorem 9,

and therefore here there is also no change.

The situation is different for DDF with the directions |G1|, which do not satisfy the assumptions

of Theorem 9. To see that (P7) may fail, consider a one-input, one-output counterexample with

three units: efficient unit A = (−1, 4) and two inefficient units B = (0.1, 0), C = (1, 0).

Although B dominates C, one has θ∗B = −10 < θ∗C = −1. We remark that directions |xo|, resp.
|yo| appear in Cheng et al. (2013) in connection with radial oriented models. There, it is observed

that monotonicity may fail if zero is an internal point of the data.

� Strict monotonicity (P8). According to Remark 9, all models fail (P8) with non-negative data

and therefore also for arbitrary data.

� Super-efficiency (P9). DDF-g models with directions |G1|, |G2|, (G3), |G4|, (G5), and (G6)

retain the property (P9) for arbitrary data (as long as the directions are positive). Similarly, the

negative results for HDF-g models with the directions |G2|, (G3), |G4|, (G5), and (G6) carry over

to arbitrary data. Theorem 12 does not resolve the status of HDF-g models with |G1| directions.
However, one can find an example where the model is infeasible. Consider a single-input, single-

output case, where technology T is generated by a single unit A = (2, 0). For B = (1, 10) /∈ T ,

whose |G1| direction reads gB = (1, 10), the output inequality 0 ≥ 10 θ−1 is not satisfied for any

θ > 0.

� Homogeneity (P10). Theoretical tools are derived only for positive data in Section 4.9. Nev-

ertheless, it can be shown that the statement of Theorem 15 can be extended to all GS models

over negative data.
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Figure 4: All paths with directions (G2.0) intersect at the point (xmin,ymax) (Lemma 4). Furthermore, (G2.0)

projects all units in two-dimensional technology T onto the strongly efficient frontier.

5.2. Non-standard directions with good properties

We will focus our attention on the (G2) directions, which we have already shown produce the

invariance properties (P5) and (P6) for arbitrary ψx and ψy satisfying (A1)–(A4) (see Remarks 6

and 7). These directions allow for a small modification that will also ensure the validity of (P5) and

(P7). The idea is to choose go so that the corresponding path ϕo crossing (xo,yo) at θ = 1 passes

through the point (xmin,ymax) at θ = θmin (see Figure 3). Then θmin serves as the lower bound

for the efficiency score, as indicated in the next lemma. Its proof follows from a simple calculation

and is therefore omitted.

Lemma 4. Let θmin ∈ [0, 1) ∩ D and (xo,yo) ∈ T \ {(xmin,ymax)}. The path ϕo(θ) runs through

(xmin,ymax) at θ = θmin, i.e., ϕo(θmin) = (xmin,ymax) if and only if the directions gxo , g
y
o satisfy

gxo =
xo − xmin

1− ψx(θmin)
, gyo =

ymax − yo
ψy(θmin)− 1

. (G2.0)

Remark 15. The GS models with directions (G2.0) satisfy (P5) and (P6) for arbitrary ψx and ψy

with properties (A1)–(A4) by Theorems 7 and 8. By Lemma 4, the same holds for the boundedness

property (P4). Finally, after substituting directions (G2.0) into the right-hand sides in (12) and

performing simple calculations, the monotonicity of ϕ(θ) obtains for each θ ≥ θmin. Hence, the

monotonicity property (P7), too, holds universally with directions (G2.0).

Regarding property (P9), the situation is more nuanced for two reasons. First, the super-

efficiency considers all points (xo,yo) /∈ T , of which only a small subset with xo ≥ xmin and

yo ≤ ymax yields non-negative directions (G2.0). This leads us to consider the absolute values of

the expressions in (G2.0) as explained in Subsection 5.1. Second, if the range of ψy is bounded from

below, then the feasibility is compromised on the output side for units (outside T ) with very high
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ψy 2− θ θ−p, p > 0 1− ln θ e1−θ

domain (−∞,∞) (0,∞) (0,∞) (−∞,∞)

image (−∞,∞) (0,∞) (−∞,∞) (0,∞)

θmin 0 1/2 e−1 0

gxo |xo − xmin| 2|xo − xmin| e
e−1 |xo − xmin| |xo − xmin|

gyo |ymax − yo| 1
2p−1 |y

max − yo| |ymax − yo| 1
e−1 |y

max − yo|
(P1), (P4)–(P7) ✓ ✓ ✓ ✓

(P2), (P3), (P8) ✕∗ ✕∗ ✕∗ ✕∗

(P9) ✓∗ ✕ ✓∗ ✕

Table 4: Values and properties of directions (G2.0) taken in absolute value for ψx(θ) = θ and three choices of of ψy

and θmin, ✓∗ - the property is satisfied for positive directions; ✕∗ – the property holds only for some very specific T .

outputs. Thus, for ψy with a bounded range, the super-efficiency fails. In contrast, if the range

of ψy is unbounded, by Theorem 12(b), a GS model satisfies super-efficiency for those directions

(G2.0) that are positive, i.e., super-efficiency holds for all units outside T except for a negligible

set where some direction components are zero.

With respect to properties (P2), (P3), and (P8), the situation is similar to the case of the DDF-

(G2) model. The existence of a point (xo,yo) ∈ ∂WT with θ∗o = 1 will cause all three properties to

fail simultaneously (for (P2) and (P3) this is immediate; for (P8) see Theorem 10). Figure 3 shows

that such points can also be found for directions (G2.0) in technological sets of dimension greater

than 2. In the case of two-dimensional T , the properties can be satisfied as illustrated in Figure 2

for DDF-(G2) and in Figure 4 for linear ψx = θ and hyperbolic ψy = 1
θ .

We now examine the (GS) scheme for linear ψx(θ) = θ and four choices of ψy that satisfy the

assumptions (A1)–(A4): ψy1(θ) = 2 − θ; ψy2(θ) = θ−p, p > 0; ψy3(θ) = 1 − ln θ; and ψy4(θ) = e1−θ.

These functions offer a variety of combinations of domains and ranges, as shown in Table 4. Observe

that ψy1 and ψy2 with p = 1, have already appeared in the context of the DDF-g and HDF-g models,

respectively. To evaluate directions (G2.0), one has to specify the value of θmin ∈ [0, 1). Only for

ψy1 and ψy4 can one choose the ideal value θmin = 0. The remaining two cases do not have zero in

their domain, and for those, we select ad hoc positive values of θmin that yield simple expressions

for directions. Intuitively, the choice of θmin affects the “scaling” of optimal scores for non-efficient

units. The resulting values are summarised in Table 4. Observe that the directions (G2.0) for ψy1
with the choice of θmin = 0 lead to (G2). On the contrary, ψy2 with p = 1 and θmin = 1

2 generate

directions whose x component is multiplied by a factor of 2 compared to (G2).

The statuses with respect to (P1)–(P9) follow from Remark 15, where they were analysed for

general ψx and ψy. Note that the models with ψy2 and ψy4 fail (P9) due to the boundedness of

their ranges. The property (P10) is not included in Table 4, since the results summarised there

correspond to (G2.0) directions for which the models are not homogeneous; see Theorem 15.
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5.3. Numerical illustration with mixed data

We present a numerical example that examines the directions (G1) and (G2.0) for the models

with ψx(θ) = θ and the functions ψy(θ) appearing in Table 4. We demonstrate the applicability

of our approach to a data-set containing negative data. To evaluate the efficiency score, as well

as to obtain the second phase result, we use the CVX modelling system (see Grant and Boyd

(2014), Grant and Boyd (2008)) to solve convex programmes, implemented in Matlab. Data for 30

Taiwanese electrical machinery producers are taken from Table 5 of Tone et al. (2020) and consist

of two inputs and two outputs. The minimal and maximal values of the data sample can be seen

in Table 5. The results are presented in Tables B.6 and B.7 in Appendix B.

Inputs Outputs

Cost of sales R&D expenses Net income Return

Variable x1 x2 y1 y2

min 418,242 1,319 -561,965 -0.2583

max 16,655,569 634,436 3,092,358 3.53714

Table 5: Minimal and maximal values of the data sample used in the numerical example.

As stated in Section 5.1, the DDF-g model with direction |G1| may lead to negative efficiency

score, in general. However, this happens only if a negative value occurs in each of the inputs in the

data-sample. It can be seen from Table 5 that the inputs are positive and therefore the efficiency

score is bounded bellow by zero.

The choice of a particular function ψy has only minimal influence on the ranking of the best-

placed units, but the effect is more pronounced for very inefficient units, where the change in ranking

can reach 10 places out of 30 companies. On the other hand, the choice of ψy has little impact on

the number of units projected onto the strongly efficient frontier, where the main determinant is

the choice of directions. The number of strongly efficient projections fluctuates between 12 and 13

for the (G1) directions, while it is between 20 and 23 units for the (G2.0) directions. The choice of

the scaled (G2) direction (G2.0) not only leads to a larger number of correct efficiency evaluations,

but in the case of the hyperbolic and logarithmic model, it also improves the discriminatory power

of the model.

6. Conclusions

The paper formulates a general scheme for path-based models that includes BCC, DDF, and

HDF as special cases. The models belonging to the scheme are analysed in light of ten desirable

properties. Only the unique projection property (P1) is universal; the remaining properties must be

examined individually and generally depend on the choice of directions, functions ψ, and possibly

also on the configuration of data that defines the technological set T .

The article provides mathematical tools (sufficient and/or necessary conditions to verify spe-

cific properties) that allow a detailed analysis of individual models within the GS framework. The
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usefulness of these tools has been demonstrated on the standard path-based models, on their modi-

fications to general (negative) data, and on models with non-linear and non-hyperbolic functions ψ.

The general scheme is flexible enough to allow modification of existing models designed for

positive data to arbitrary (negative) data. For this modification, it is important to rewrite models

such as BCC-I (3), BCC-O (4), or HDF (6), in the form of the GS scheme (Table 2), where the

expressions for the directions are specified. In the presence of negative data, these expressions are

taken as absolute values. This approach is illustrated with a mixed-data numerical example in

Section 5.2.

The article provides a complete analysis of the standard path-based models and their modifi-

cations to negative data with respect to the ten properties (Table 3). In addition to the unique

projection property (P1), all standard models satisfy monotonicity (P7). On the other hand, all

models fail (P2), (P3), and (P8) simultaneously for some T . Overall, models with (G2) direc-

tions satisfy or partially satisfy the highest number of properties, followed by models with (G3)

directions.

We have obtained interesting results regarding homogeneity in the general path-based scheme. It

is known that in the case of CRS all models in the general scheme meet the property of homogeneity,

and thus it could appear that homogeneity and lack of identification are somehow linked. However,

the results of this article indicate that this is not the case when the type of technology changes. For

VRS, the homogeneity property is satisfied only in a narrow subclass of GS models: In the case of

oriented models, homogeneous models are equivalent to BCC-I and BCC-O (Theorem 14), and in

the case of graph models, only models with directions (G1) and certain special nonlinearities are

homogeneous (Theorems 13 and 15).

Directions have a strong influence on model properties. Models with positive directions fail (P2),

(P3), and (P8) for every technology set (Theorems 3 and 11 and Remark 4). This is especially true

for positive data and for all considered directions, except (G2). For models with (G2) directions,

the status of properties (P2), (P3), and (P8) is ambiguous insofar as it depends on the data

configuration. There are examples where all three properties fail, but also data configurations (in

particular, single-input, single-output technological sets) where all three are satisfied.

The lack of universal validity of (P2), (P3), and (P8) can be considered a characteristic feature

of path-based models. In contrast, Halická and Trnovská (2021) show that the slacks-based models

do satisfy these properties. This observation provides a further rationale for distinguishing the two

categories of models set out in Russell and Schworm (2018) – the path-based versus slacks-based

models. We remark that the classification is able to resolve name paradoxes in the literature,

where some models are currently presented with the adjective ‘directional’ (e.g., Sahoo et al., 2014)

suggesting a path-based approach, despite being in reality slacks-based.

The paper opens up several new research directions.

– The simultaneous failure of (P2), (P3), and (P8) raises the question of whether these prop-

erties are linked. It is fairly immediate that (P3) implies (P2); such implication is valid also

outside our scheme. However, the connection between (P3) and (P8) is not known or obvious.
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We aim to address this problem in future work.

– The general scheme (introduced here in an envelopment form) allows the derivation of a dual

multiplicative model, which can then be related to the shadow profit inefficiency. This opens

the way for obtaining relationships between technical and overall profit inefficiencies similar

to those known for DDF (Chambers et al., 1998).

– To simplify the exposition, we have only considered technologies with variable returns to

scale. The VRS assumption is essential to allow for negative data (see, e.g., Portela et al.,

2004). On the other hand, many results in the paper can be adapted to technology sets with

other types of returns to scale, at the cost of considering only non-negative data.

– The numerical results in Section 5.3 indicate that directions (G2.0) may be helpful in practical

applications in the sense that a higher number of DMUs are projected onto the strongly

efficient frontier compared to other directions. It is natural to ask whether this finding holds

up for other data sets.
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Appendix A. Proofs of selected theorems

Proof of Theorem 1. (a) This follows from the assumptions placed on go in (16), the monotonicity

properties of ψx,ψy and the definition of ϕo in (12).

(b) This follows from (12) and (A3).

(c) This part follows from (12), (A1), and (A4).

(d) The assumptions on go and part (c) of this theorem yield limθ→ax+
ϕxio(θ) = −∞ for some i

or limθ→ay+
ϕyro(θ) = +∞ for some r . From this, part (b) of this theorem, and the continuity of

ϕo, it follows that there exists a finite θ̄ such that ϕyro(θ̄) > ymax
r or ϕxio(θ̄) < xmin

i (see Figure 1).

Therefore, by Lemma 1(a) one obtains ϕo(θ̄) /∈ T . The property (a) of this theorem then shows

that for each θ̄ such that ϕo(θ̄) /∈ T one has ϕo(θ) /∈ T for all θ ≤ θ̄.

On the other hand, ϕo(1) = (xo, yo) ∈ T and the property (a) of this theorem implies that if

ϕo(θ̂) ∈ T for some θ̂, then ϕo(θ) ∈ T for all θ ≥ θ̂. Now, by the continuity of ϕo, there exists a

finite θ∗o such that θ∗o = sup{θ : ϕo(θ) /∈ T } = inf{θ : ϕo(θ) ∈ T }. We show that ϕo(θ
∗
o) belongs

to the boundary ∂T of the closed set T . Assume, in contradiction, that ϕo(θ
∗
o) ∈ intT . From the
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continuity of ϕo it follows that ϕo(θ) ∈ intT for all θ close enough to θ∗o , and hence also for some

θ < θ∗o that contradicts θ∗o = inf{θ : ϕo(θ) ∈ T }.

Proof of Theorem 4. Assume by contradiction that (xo,yo) is strongly efficient and that there exists

an optimal solution (λ∗
o, θ

∗
o) of (GS)o such that at least one component of the corresponding optimal

slacks is positive. Then the unit (Xλ∗
o,Y λ∗

o) differs from (x̂o, ŷo), belongs to T and dominates

(x̂o, ŷo), and therefore (x̂o, ŷo) is not strongly efficient.

To prove the reverse implication, we assume that (x̂o, ŷo) ∈ ∂WT . According to Lemma 1(d)

there exists (dx,dy) ≩ 0, (dx,dy) ≯ 0 such that (x̂o − dx, ŷo + dy) ∈ T . By the definition of T ,

there then exists λ̂ ≥ 0 such that eT λ̂ = 1, Xλ̂ ≤ x̂o − dx, Y λ̂ ≥ ŷo + dy. This implies that

(λ̂, θ∗o) is an optimal solution to (GS)o for (xo,yo) and at least one component of inequality (11b)

or (11c) is strict.

Proof of Theorem 7. The input inequality (11b) for transformed inputs reads

C

n∑
j=1

xjλj =

n∑
j=1

(Cxj)λj ≤ Cxo + (ψx(θ)− 1)gCxo ⇔ C

n∑
j=1

xjλj ≤ C(xo + (ψy(θ)− 1)gxo ).

Since C is diagonal with positive entries, this is equivalent to the input inequality (11b) for the

original inputs. This and a similar equivalence for outputs imply that conditions (11b)–(11d) before

the data transformation are equivalent to those after transformation, and hence the optimal score

provided by the model is unchanged.

Proof of Theorem 8. Let c ∈ Rm and b ∈ Rs are the translation vectors for inputs and outputs,

and hence the translated inputs and outputs are xj + c and yj +b, for all j = 1, . . . , n respectively.

The condition
∑n

j=1 λj = 1 and the invariance of gxo on the translation of inputs imply that the

input inequality (11b) of (GS)o for translated inputs is equivalent to the input inequality (11b) of

(GS)o for original inputs:
n∑
j=1

(xj + c)λj =
n∑
j=1

xjλj + c ≤ xo + c+ (ψx(θ)− 1)gxo ⇔
n∑
j=1

xjλj ≤ xo + (ψx(θ)− 1)gxo .

Similar equivalence in outputs proves the theorem.

Proof of Theorem 12. (a) The proof runs along the lines of the proof of Theorem 1(d). The fact

that θ∗o > 1 is a simple consequence of the strict monotonicity of ϕxo(θ), ϕ
y
o(θ), (xo,yo) /∈ T , and

T being closed.

(b) Since Xλ ≤ xmax and Y λ ≥ ymin, a sufficient condition for the feasibility of (GS)o is the

existence of θ̄ ∈ D, such that

xmax − xo + gxo ≤ ψx(θ̄)gxo , (A.1)

ymin − yo + gyo ≥ ψy(θ̄)gyo . (A.2)

Since gxo > 0, ψx is increasing and limθ→+∞ ψx(θ) = +∞, the constraint (A.1) is satisfied for θ̄

sufficiently large. Since ψy is decreasing, the case limθ→+∞ ψx(θ) = +∞ implies that the constraint
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(A.2) is satisfied for θ̄ sufficiently large. On the other hand, if limθ→∞ ψx(θ) = 0, then the assump-

tions ymin − yo + gyo > 0 and gyo > 0 guarantee that (A.2) is satisfied for θ̄ sufficiently large.

(c) Let us first consider the case (i). By assumption, for each feasible λ (λ ≥ 0, eTλ = 1),

there exists r such that (Y λ)r < yro − gyro. The assumption on ψy implies (Y λ)r < yro − gyro <

yro − gyro + ψy(θ)gyo for all θ ∈ dom(ψy). Hence we have shown that Y λ ≥ yo − gyo + ψy(θ)gyo is

violated for all feasible λ and θ ∈ (1,∞) and therefore (GS)o is infeasible. Consider now the case

(ii). Since (Y λ)r ≤ ymax
r for all feasible λ, we have (Y λ)r < yro − gyro and the claim follows by

part (i).

Proof of Theorem 13. First assume that GS model with (G1) directions is homogeneous of degree

(α, β, 1), i.e. for any technology set T+ the corresponding efficiency measure satisfies θ∗(µαx, µβy) =

µθ∗(x,y) for each (x, y) ∈ T+ and each µ > 0. Let (xo,yo) ∈ Rm+ ×Rs+ and let T+ be arbitrary, such

that (xo,yo) ∈ ∂ST+. Then any efficiency measure defined over T+ satisfies θ∗(µαxo, µ
βyo) = µ for

all µ > 0 and the projection point for (µαxo, µ
βyo) is given by

ϕx(θ∗(µαxo, µ
βyo)) = ϕx(µ) = ψx(µ)µαxo, ϕy(θ∗(µαxo, µ

βyo)) = ϕy(µ) = ψy(µ)µβyo.

The set P := {(ϕx(µ),ϕy(µ)), µ > 0} is a smooth path satisfying (xo,yo) ∈ P ⊂ ∂T+. Re-

call that T+ was an arbitrary technology set satisfying (xo,yo) ∈ ∂ST+. Therefore it must hold

(ϕx(µ),ϕy(µ)) = (xo,yo),∀µ > 0, which is equivalent to

ψx(µ)µα = 1, ψy(µ)µβ = 1, ∀µ > 0.

Therefore ψx(θ) = θ−α, ψy(θ) = θ−β; the ranges for α, β follow from (A2).

Now assume that the functions ψx and ψy are of the form (21). It is easy to see that these

functions satisfy both the assumptions (A1)–(A4) and the homogeneity properties:

ψx(θ/µ) = µαψx(θ), ψy(θ/µ) = µβψy(θ). (A.3)

From (A.3) it follows that ψx(µ)µα = 1, ψy(µ)µβ = 1 and therefore the efficiency measure

θ∗(µαx, µβy) = min{θ | (ψx(θ)µαx, ψy(θ)µβy) ∈ T }

is well-defined provided (x,y) ∈ T+, since the corresponding minimisation problem is feasible and

the optimal value is attained (Theorem 1). Using (A.3) and substitution θ̃ := θ/µ we get

min{θ | (ψx(θ)µαx, ψy(θ)µβy) ∈ T } = µmin{θ/µ | (ψx(θ/µ)x, ψy(θ/µ)y) ∈ T }
= µmin{θ̃ | (ψx(θ̃)x, ψy(θ̃)y) ∈ T } = µθ∗(x,y)

which proves the homogeneity of θ∗.

Proof of Theorem 15. Consider a GS model with directions (gx, gy) = (hx,hy), where (hx,hy) is

a constant vector. Assume by contradiction, that the model is homogeneous of degree (α, β, 1).

Similarly, as in the proof of Theorem 13 it can be shown that the path P = {(ϕx(µ),ϕy(µ)), µ > 0}
defined by

ϕx(µ) = µαxo + (ψx(µ)− 1)hx, ϕy(µ) = µβyo + (ψy(µ)− 1)hy,

satisfies (xo,yo) ∈ P ⊂ ∂T+ for any T+, such that (xo,yo) ∈ ∂ST+ and hence (ϕx(µ),ϕy(µ)) =
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(xo,yo), ∀µ > 0. Let µ̄ > 0 be arbitrary and fixed. Then

(µ̄α − 1)xo = (1− ψx(µ̄))hx, (µ̄β − 1)yo = (1− ψy(µ̄))hy.

While on the right-hand side the vectors are constant, the left-hand side may vary for different

(xo,yo), which is a contradiction.

The proof for (gx, gy) = (γxo − hx,hy − δyo) is analogous.
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Appendix B. Tables for the numerical illustrations in Section 5.3

Function ψy(θ) = 2− θ ψy(θ) = 1/θ

Directions (G1) (G2.0) θmin = 0 (G1) (G2.0) θmin = 0.01

DMU Score Rank Score Rank Score Rank Score Rank

1 0.66* 15 0.759 28 0.713* 14 0.401 14

2 1* 1-9 1* 1-9 1* 1-9 1* 1-9

3 0.683 14 0.888 12 0.691 15 0.578* 11

4 1* 1-9 1* 1-9 1* 1-9 1* 1-9

5 1* 1-9 1* 1-9 1* 1-9 1* 1-9

6 0.175 29 0.784* 26 0.256 29 0.145* 28

7 0.69 13 0.86* 17 0.763 13 0.254* 19

8 0.283 26 0.801 24 0.3 28 0.167* 24

9 0.126* 30 0.744* 29 0.194* 30 0.112* 30

10 0.372 22 0.777 27 0.526 19 0.156* 27

11 0.37 23 0.707* 30 0.512 20 0.169* 23

12 1* 1-9 1* 1-9 1* 1-9 1* 1-9

13 0.927 10 0.968* 10 0.929 10 0.876 10

14 1* 1-9 1* 1-9 1* 1-9 1* 1-9

15 0.217 28 0.793* 25 0.339 25 0.114 29

16 0.658 16 0.881 15 0.68 16 0.309 16

17 0.22 27 0.807* 22 0.319 27 0.165* 25

18 0.438 19 0.861 16 0.494 21 0.233* 21

19 1* 1-9 1* 1-9 1* 1-9 1* 1-9

20 0.415 21 0.841 18 0.448 22 0.165 26

21 0.335 24 0.804 23 0.408 24 0.27 17

22 1* 1-9 1* 1-9 1* 1-9 1* 1-9

23 1* 1-9 1* 1-9 1* 1-9 1* 1-9

24 0.765 12 0.882 14 0.765 12 0.547 13

25 0.431 20 0.814* 20 0.442 23 0.372 15

26 1* 1-9 1* 1-9 1* 1-9 1* 1-9

27 0.305 25 0.815* 19 0.33 26 0.255 18

28 0.447 18 0.812* 21 0.581 18 0.176* 22

29 0.835* 11 0.933* 11 0.85* 11 0.576* 12

30 0.452 17 0.883* 13 0.598* 17 0.239* 20

Average 0.627 0.880 0.671 0.509

Minimum 0.126 0.707 0.194 0.112

Correct 12 21 13 21

Table B.6: Efficiency scores for models with ψx = θ, two choices of ψy, directions (G1) and (G2.0). An asterisk next

to the efficiency value indicates projection onto the strongly efficient frontier. The last row indicates number of units

projected onto the strongly efficient frontier.
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Function ψy(θ) = exp(1− θ) ψy(θ) = 1− ln θ

Directions (G1) (G2.0) θmin = 0 (G1) (G2.0) θmin = 0.01

DMU Score Rank Score Rank Score Rank Score Rank

1 0,686* 14 0,697 28 0,69* 14 0,565* 18

2 1* 1-9 1* 1 1* 1 1* 1

3 0,686 15 0,833 12 0,687 15 0,686* 12

4 1* 1-9 1* 2 1* 2 1* 2

5 1* 1-9 1* 3 1* 3 1* 3

6 0,19 29 0,698* 26 0,203 29 0,454* 27

7 0,73 13 0,799* 16 0,733 13 0,627* 15

8 0,283 26 0,711 23 0,283 26 0,437 28

9 0,131* 30 0,652* 29 0,137* 30 0,407* 30

10 0,439 20 0,698 27 0,457 20 0,5* 23

11 0,429 22 0,626* 30 0,446 21 0,422 29

12 1* 1-9 1* 4 1* 4 1* 4

13 0,928 10 0,953 10 0,928 10 0,922 10

14 1* 1-9 1* 5 1* 5 1* 5

15 0,232 28 0,708* 25 0,246 28 0,464* 26

16 0,668 16 0,827 13 0,669 16 0,678 13

17 0,238 27 0,726* 22 0,251 27 0,488* 24

18 0,457 19 0,79 17 0,463 19 0,566 17

19 1* 1-9 1* 6 1* 6 1* 6

20 0,425 23 0,763 18 0,428 23 0,512 22

21 0,357 24 0,711 24 0,366 24 0,527* 21

22 1* 1-9 1* 7 1* 7 1* 7

23 1* 1-9 1* 8 1* 8 1* 8

24 0,765 12 0,82 15 0,765 12 0,618 16

25 0,432 21 0,729* 21 0,434 22 0,543* 20

26 1* 1-9 1* 9 1* 9 1* 9

27 0,308 25 0,733* 20 0,31 25 0,484* 25

28 0,51 18 0,741* 19 0,523 18 0,551* 19

29 0,842* 11 0,899* 11 0,843* 11 0,808* 11

30 0,524 17 0,823* 14 0,537 17 0,64* 14

Average 0.642 0.831 0.647 0.697

Minimum 0.131 0.626 0.137 0.407

Correct 12 20 12 23

Table B.7: Efficiency scores for models with ψx = θ, two choices of ψy, directions (G1) and (G2.0). An asterisk next

to the efficiency value indicates projection onto the strongly efficient frontier. The last row indicates number of units

projected onto the strongly efficient frontier.
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