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MATHEMATICAL NOTATIONS

R, C : fields of real, complex numbers.

R (s) : field of rational functions in the variable s with real coefficients.

R [s] : ring of polynomials in s with real coefficients.

T  : denotes a general field, or ring.

pPXTn : set of matrices with p x m  dimensions and elements over T .

Rpxm(s), Rpxm [s] : denote set of matrices with elements over Rpxrn, Rpxm.

V : denotes a finite dimensional vector space over some field J~ (usual cases the real vector 

spaces (72.-vector spaces), rational vector spaces R(s)-vector spaces).

P™ : set of all n-dimensional vectors (n-tuples) of elements of P .Usual cases R" (or 

72), C71, Rn(s ) ,... : n-dimensional vector spaces over P .

If V is a subspace of 72 (or Rn), the v G V denotes a vector of 72 that belongs to V. If 

dimV =  d and {v}, v2, 21a} is a basis of V, then V = [v1,v i , G Rnxd denotes a

basis matrix of V.

If P  G J ^ xm, jT a field, then rankP denotes the rank of P  over P, J\fr {P} the right null 

space and J\f\ {P} the left null space of P.

Z  denotes the set of integers, Z+ the positive integers, Zq the nonnegative integers 

(Z + U {0})and Z^o the set of nonzero integers (Z — {0}).

If n E Z +, then n =  {1, 2, ..., n} and if a property holds for i G n, that implies that it is 

true for a lii =  1, 2,..., n.

If A G :
a n « 1 2  • « I p

«21 « 2 2  • « 2 p

«711 « n 2  ■ « n p
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we denote as column vectors of A u j, u2, ■ ■■,up ■

a n « 1 2

M l =
a 21

, m 2 =
« 2 2

) * * * J — p

& 2 p

« n l « n 2 Q " n p

and as row vectors of A y j , v j , ...,yJ :

■ „ .T T
■

a n  « 1 2  • a . i p tV-2  — « 2 1  « 2 2  • « 2  p 5 * * * i & n l  & n2

If A € Jrnxn, | A\ denotes the determinant of A, cr(A) be the set of roots of the characteristic 

polynomial of A, i>(A) =  det [si — A}.

J  denotes the similar to A Jordan matrix A =  UJU~l =  U JV . where U = V~^ is the 

matrix defined by the chains of eigenvectors of A and where :

J =  diag{J(A!), J(A2),..., J(A; ) }

and J(Aj) is the diagonal matrix block formed by all the Jordan blocks associated with 

the distinct eigenvalue \  :

J{Xi) =  diag{ J j i , Jik, ■■■Jivi)

and where J\k is the r\k x t ** Jordan diagonal block corresponding to the generalized 

eigenvectors chain of length rik, associated with A* :

Aj 1 .. 0 0

0 Aj .. . 0 0

Jik —

0

0

Xi 1

0 A,;

Jik G £ Tik

0
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If ct(A) =  {Ai, A2. A / }  are all the distinct eigenvalues of A, ..., 717 are their

algebraic multiplicities and vj, ẑ , V f  are defined as the corresponding geometric mul-

tiplicity.

Pa, (A) : denotes the Segre Characteristic of A  at A,,

Pa, (-4) =  fc =  1,2, > ... > > ... > r tl > 0}

or the shorted notation p\.  (A ) =  {r,^ > ... > > ... > t h  >0}.

State space description in time domain :

S(A ,B ,C ,D )
x (t) =  Ax(t) + Bu(t) 

x( t ) =  C'jz(i) +  Du(t)

Where A G Ænxr\  H G Rnxl,C  G I?mxr\  D GZxm and u(t) is the Z x 1 input vector, y(t) is 

the m  x 1 output vector and x(f) is the n x 1 state variable vector.

The Jordan canonical description of the system S(A, B , C, ZJ)is:

r,A) : ¿(t) = J z ( t ) + Z?u(i) 

y(i) =  Tz(i) +  Au(f)

where: z(i) =  J  =  I / 'M l /  =  HAH, H =  U~lB, F =  CU, A  = D.

ZOH denotes a Digital to Analogue Converter with zero order hold.

FOH denotes a Digital to Analogue Converter with first order hold.

The discretized model of S(A, B, C. D ) in a configuration involving ZOH is:

S(Â ,Ô ,C ,D )
x[(k +  1)T] =  Âx(kT)  +  Èu(kT)  

y(kT) = Cx(kT ) +  Du{kT)

where Â = eAT, È  — B, C = C, D = D.
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The Jordan canonical description of the system S(A, B , C, D ):

S j ( j , B , r ,  A)
z[(k +  1)T] =  Ji(fcT) +  Bu(^T)

y(fcT) = fz(fcT) + Au(fcT)

where :

1
z(kT) = Üx(kT), J  = Ü~lÁÜ = VÁÜ, B = IJ - 'B  = V ( J  eJada)B  =  VEB

E =  / eJadcr, f  =  CÍ7 =  CÜ = FÜ, A  = D =  D

The pencil P(s) G M(n+m)x("+0[s] is defined as the Rosenbrock’s system matrix pencil :

P ( s ) A
s i - A  - B

- C  - D

The transfer function matrix G(s) € RmxZ(s) is given as G(s) = C{sl — A) 1B  +  D 

e.d. denotes the elementary divisor.

i.e.d. denotes infinite elementary divisor.

i.d.z. denotes the input decoupling zeros of the system S  (the roots of the e.d. of the 

pencil [si — A, B}).

o.d.z. denotes the output decoupling zeros of the system S  (the roots of the e.d. of the 
s i  -  A

pencil
C

r.c.i. of the system S  denotes the elements of the set of the i-th spectrum row controlla-

bility indices (r.c.i.) of A. B  : @(A,B)\t = {0,i > 6t2 > ... > QtVi > 0}.

c.o.i. of the system S  denotes the elements of the set of the i-th spectrum column observ-

ability indices (c.o.i.) of A ,C  : Z (A ,C )a. = {Cii > Ci2 > ••• > C,iVi > 0}.
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ABSTRACT

The implementation of digital control schemes, involves issues such as fixed-point arithmetic, 

computer quantization, round off error effects and the selection of sampling scheme. The 

selection of sampling is crucial in the design of digital controllers and may affect drastically the 

quality of the discretized model on which design is based. The selection of sampling is so far 

dominated by the rules of signal processing theory and practical heuristics. The development of 

a theory and methodology for selection of sampling based on the overall quality of the discretized 

model, which is complementary to that provided by signal processing theory, is a long term 

objective of this research area and this thesis aspires to contribute to its development.

The thesis is mainly concerned with the study of the effect of sampling on the fundamental 

structural properties of the resulting discretized model. As such, this study is part of the more 

general area of investigating the transformation-preservation of qualitative and quantitative 

properties of continuous time models to discrete time models under sampling. Throughout 

the thesis we assume linear systems and constant sampling rate. The emphasis is studying the 

effect of sampling on fundamental model characteristics such as Jordan forms, eigenspaces, con-

trollability, observability properties and finite-infinite zeros. Central to the approach developed 

here is the study of implications of a phenomenon referred to as “eigenvalue collapsing” that 

corresponds to the case where distinct eigenvalues of the continuous model become repeated 

eigenvalues of the discretized model. This phenomenon provides a classification of sampling 

rates into regular and irregular. A thorough investigation of the “eigenvalue collapsing” phe-

nomena is given and their implication on the structural properties of the discretized model is 

given. In particular we examine the effect of such phenomena on the Segré characteristics, struc-

ture of eigenspaces, Jordan forms, controllability, observability, dimensions of controllability, 

observability properties, degrees of decoupling zeros and finite-infinite zeros of the discretized 

model.

The developments in the above directions have required some additional work in the study 

of certain structural properties of continuous time models, such as a detailed study of spectral 

properties of controllability, observability, which lead to a new characterization of decoupling 

zeros and their computation.

The result presented here provide a basis for the development of a model based theory of
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sampling, which is significant for the development of a general implementation methodology of 

digital systems.
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C hapter 1

IN TR O D U C T IO N

Digital computers are used increasingly as tools for analysis and design of control systems. 

Because of the revolutionary development of microelectronics in the last decade, advanced reg-

ulators can be implemented in many control applications areas. Sampling is a fundamental 

element of computer-controlled systems because of the discrete-time nature of the digital com-

puter. So far, discretisation has been considered mainly from the signal viewpoint and rules 

for selection of sampling are signal based (Shannon’s theorem etc.). The main objective in 

this thesis is the development of an alternative approach to selection of sampling that is based 

on preservation of structural properties of the continuous model. We shall refer to this as the 

development of the model based theory of sampling selection.

With the advent of microprocessor in 1969, the area of digital control systems applications 

has increased rapidly and this has also motivated a corresponding growth of digital control 

theory [Rag. & Fra., l]. [Ast. & Wit., 1], [Lew., 1], Because of these developments the analysis, 

design, and implementation of control systems is changing rapidly and a number of issues which 

have been previously overlooked, have now started to emerge as important research topics. It 

is now realized that there is much to be gained by exploiting the full potential of the new 

technology, rather than simply “translating" the earlier analog designs into the new technology. 

The area of theory and design of digital control systems has attracted renewed interest recently 

and efforts have been made to put it on a more solid foundation. We distinguish three main 

areas of activity.
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(i) Study of implementation issues, such as fixed point arithmetic, finite word-length, quan-

tization effects and round-off errors.

(ii) Conversion of an already designed continuous-time controller to a discrete controller.

(iii) Direct digital design of control schemes.

The first area is involved in the implementation of schemes designed either by analog, 

or directly by digital methods. For continuous, or discrete systems it is assumed that the 

process model has real coefficients and thus the system is defined over an infinite field. The 

assumption that the computer has infinite precision in representing numbers is not true. In 

fact, microprocessors have limited accuracy and they use fixed-point arithmetic, or floating 

point arithmetic, and thus quantization is involved and both signals and model coefficients 

are represented by finite computer word-length. As a result, the discrete system model is 

not any more defined over the real numbers, but over a finite field; the latter implies the 

emergence of round-off errors, with significant effects on the overall performance of the digital 

implementation. Furthermore, it should be noted that the presence of a quantizer in the loop 

makes the overall system nonlinear, even when the plant is represented by a linear model and 

thus exhibits the features of nonlinear systems. The study of these issues is the topic of the first 

area described above and has been considered for a number of years [Wil., 1]. Issues considered 

so far are minimization of round-off errors [Mul. & Rob., 1], Optimal Finite Word Length 

Selection and choice of digital realization [And., Li & Gev., 1], etc.

In the design of digital control schemes we distinguish two general approaches; The first 

will be referred to as the Continuous Controller Design Approach (CCDA) and deals with the 

conversion of an already designed continuous-time controller to a discrete-time controller. The 

second is called the Direct Discrete Design Approach (DDDA) and deals with the design of 

discrete controllers on a discretised plant. These two areas have attracted interest recently as 

areas of potential applications of the Hoc Optimization and related techniques [Che. & Fra., 

1], [Dul. & Fra., 1], [Kel. & And.. 1]. The advantage of the CCD approach is that all tools 

from continuous design can be deployed and the sample period T  does not have to be selected 

until after the continuous time controller has been designed. However, all these controller 

discretized schemes are approximations and so far the whole area has been based on heuristics
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on how to modify the continuous design so that a more suitable controller is obtained. All 

discretisation methods found in texts [Rag. & Fra., 1], [Ast. Wit., 1], [Lew., 1] etc. suffer from 

the disadvantage that recovery of analog performance can be guaranteed only in the limit as 

the sampling period goes to zero; however, small sampling periods can be problematic. Another 

disadvantage of CCDA is that it gives little insight into the properties of the sampling process, 

such as the appearance of non minimum-phase zeros, or the properties of the discrete systems.

The general problem of the traditional discretisation of controller methodologies found in the 

literature is that these techniques ignore the plant, whereas the closed-loop properties clearly 

depend on the plant, as well as the controller. A methodology that leads to discretisation 

of the controller which overcomes the traditional deficiencies of CCDA, and which also pre-

serves closed-loop properties, such as stability, has been recently developed in [Kel. & And., 

1] using tools from H0c optimization. This approach represents the modern trend in controller 

discretisation and it is still in its early development stages. The deficiencies of the CCDA 

have motivated the emergence of a strong trend which deals with direct digital design of the 

sample-data controllers. These techniques are exact and usually allow significantly larger sam-

ple periods than those of the CCDA type. An additional advantage of the DDDA methods is 

that they provide additional insight and guarantee performance at the sample points. Within 

this area of work, two main tendencies have emerged. In the first Hac, or related optimization 

techniques are used to accommodate intersample effects and the main feature is analysis and 

design of sampled-data compensators using induced norms as the performance measure [Che. 

& Fra.. 1], [Dul. & Fra., 1], In the second, attention is focused on the effect of sampling on 

the structural properties of the discretised model prior to any design of discrete controllers and 

will be referred to here as, Sampling and Plant Model Quality (SPMQ). The present thesis is 

within the latter area of work and it is focused on the structural properties of the discretised 

model.

The selection of sampling is crucial in the design of computer controlled systems. This 

problem has two main aspects; The first is of a signal nature and deals with the question 

under which conditions a signal can be recovered from its values in discrete points only; a 

solution to this problem was given by the Nyquist-Shannon theory [Ast. & Wit., 1], The 

second approach is based on the quality of the discretised model as a function of the sampling
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period was initiated by the work of Kalman [Kal. & Ber., 1], [Kal., Ho Sz Nar., 1], on the 

role of sampling on the controllability and observability properties of discretised models. The 

latter work was of a preliminary nature and it was restricted only to the derivation of sufficient 

conditions for preservation of controllability and observability rather than providing a detailed 

study of these properties for all values of the sampling rate. Since the 1960s no developments 

have taken place in this area until 1980, when the mapping of zeros of discretised single input 

single output systems (SISO) was examined in [Ast. & Wit., 1], where some results on the 

asymptotic properties of zeros have been derived. The effect of sampling on the location of 

the resulting finite zeros has been an issue that has attracted attention, [Pas. & Ant.], [Fu 

& D m ] , [Har., Kon. & Kat., 1], [Ish., 1] ; most of the work in this area has been focused 

on determining conditions for the stability of the discretised zeros and has been restricted to 

SISO systems. The overall area of studying properties of the discretised model as a function 

of sampling is in its early stages of development. This thesis aspires to contribute in the 

development of an overall integrated approach by examining the effect of sampling on a number 

of structural characteristics and associated properties. The overall philosophy that is adopted 

is that the selection of sampling must satisfy the signal recovery criteria and also preserve 

structural properties, as well as degree of their presence in the discretised model.

The overall aim of the thesis is to provide a unifying approach to the study of mapping prop-

erties of the continuous model to equivalent properties of the discretised model. It is realized 

that the overall study involves structural and non structural properties. We focus our attention 

here on the structural properties. Issues related to the study of design indicators are considered 

as topics of further research. The basic philosophy is that structural properties are central 

in shaping the values of design indicators and the study of structural features precedes those 

which are more directly linked to design. The main objective here is to study properties such 

as stability, controllability, observability and structural characteristics such as Jordan forms, 

eigenspaces, controllable unobservable spaces, decoupling zeros, finite and infinite zeros of the 

discretised model as a function of the sampling rate T. The behavior of the eigenvalues of the 

discretised model as a function of sampling is central to our approach and provides the means 

for investigating further structural properties. An interesting phenomenon, referred to us eigen-

value collapsing is studied and criteria for different types of collapsing to occur are given. This
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leads to a complete characterization of phenomena such as merging of Segré characteristics and 

Jordan forms and collapsing of eigenspaces. A by-product of this analysis is the classification 

of sampling rates to regular and irregular. The study of the controllability and observability 

properties under both regular and irregular sampling then follows. The results here for irregular 

sampling, provide a complete treatment of phenomena such as loss of controllability, observabil-

ity, emergence of new decoupling zeros and characterization of their order, as well migration of 

zeros at infinity. Furthermore, it also provides tests for controllability, observability which go 

beyond the structural collapsing and are model parameter dependent. The development of the 

structural properties of the discretised models depend mostly on existing theory for continuous 

time linear models. We have developed some additional results on the spectral characterization 

of controllability, observability, as well as characterization of degrees of decoupling zeros for 

continuous time models. The latter results are then integrated with the discrete system studies 

and provide criteria for dimension of resulting controllable, unobservable subspaces and orders 

of resulting decoupling zeros. The work on zeros of discretised models is mostly concerned with 

the study of phenomena where zeros migrate to infinity as a result of the selected sampling 

rate.

The thesis is structured as follow:

In Chapter 2 examine the general problem of discretisation and we introduce some general 

issues related to the discretisation process. This includes quantization, time delay, mathematical 

idealization and the main issues derived from the process of discretisation of continuous signals, 

as well of the process of reconstruction of a continuous signal from a discrete one.

In Chapter 3 a comprehensive introduction to the fundamental mathematical tools and 

systems theory is given: these are relevant in the study of the structural properties of the 

system under discretisation. The specific objective of this Chapter is to provide a short review 

of descriptions, basic concepts and tools from mathematics and control theory, which will be 

used as background material for the following investigations.

Chapter 4 deals with the state space description of a discretised model and the basic struc-

tural properties of such a model for the different types of the control signal reconstruction. In 

this Chapter we investigate the eigenstructure of the discretised state matrix A and the Jordan 

equivalent description of the discretized model. The study of properties of the eigenvalues of the
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discretised model as a function of sampling is considered here and this leads to a development 

of the theory for eigenvalue collapsing. The importance of the relationships between A and A is 

that although we have preservation of the cyclic and invariant subspaces, distinct eigenvalues of 

A may transformed to coinciding eigenvalues of A. This is called collapsing of eigenvalues and 

as a result we have phenomena associated with the merging of the corresponding generalized 

null-spaces and Segre characteristics. The collapsing of eigenvalues, the conditions of collaps-

ing and the merging of generalized null-spaces and Segr6 characteristics are subjects examined 

in this Chapter. The results here classify the sampling process into two cases : the regular 

sampling where no collapsing phenomena occur and the irregular sampling where collapsing 

occurs between the eigenvalues of the discretised system. The significance of irregular sampling 

is investigated in the following Chapters.

Controllability and observability matrices provide one type of criteria for testing the corre-

sponding properties. Controllability and observability matrices of a model in Jordan canonical 

form lead to the use of the spectral controllability and observability matrices. In the case of a 

discretised model the use of such tests enables the investigation of the effect of collapsing on 

the above structural properties. A detailed account of the effect of collapsing on the changes in 

the controllability and observability properties is given in Chapter 5. The work here generalizes 

the results derived by Kalman [Kal. & Ber., 1] by providing a complete study of the effects of 

irregular sampling.

An extension of the classical results on the spectral characterization of the structural prop-

erties of controllability and observability, is developed in Chapter 6. New sets of invariant 

indices, that is the set of i-th spectrum row controllability indices (r.c.i.) ®Xi(A,B) and the 

dual set of i-th spectrum column observability indices (c.o.i.) Z x ^ A .C )are introduced. The 

role of the system parameters of the Jordan canonical description in the determination of the 

dimension of the controllable (unobservable) subspace 7Z (V) of linear systems is also examined 

here. These new derivations enables the investigation of the relation between the dimension 

of the controllable (unobservable) subspace of the discretised system and the corresponding of 

continuous system under the different types of sampling (regular or irregular).

Chapter 7 examines the role of the system parameters of the Jordan canonical description 

in the determination of the structure of i.d.z. (o.d.z.). A new left (right) sequence of A
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Characteristic Toeplitz matrices is used to determine the set £ (A  B ) \ i ('I'(A, B ) \ i) of degrees of 

elementary divisors of the input (output) pencil of the system at s = A* or what is equivalent the 

degrees of input (output) decoupling zeros. These results extend the modal characterization of 

controllability, observability (classical results of Gilbert [Gil., l] by providing a characterization 

of the degrees of elementary divisors associated with the input and output decoupling zeros. 

The results for continuous system provide new relationships between the Segre Characteristic 

of A at Ai, pxi(A)  the set of r.c.i.(c.o.i.) @(A,B)xi (Z(A.B)xi)  and the set of degrees of

i.d.z.(o.d.z.) E (A .B ) \ i ('¡/(A, B )Xi). This relation enables the investigation of the changes in 

the set of i.d.z.(o.d.z.) under irregular sampling and thus completes the study of collapsing of 

controllability, observability properties under irregular sampling.

In Chapter 8 the expressions derived in Chapter 3 for the zero polynomial of the continuous 

system are applied to the case of discretised model for the calculation of the discretised zero 

polynomial coefficients. The existence of a set of eigenvalues located on the imaginary axis and 

the collapsing of such eigenvalues to 0 is a precondition for a further migration of finite zeros 

to infinity under irregular sampling.

Finally, Chapter 9 provides a summary of the overall contribution of the thesis and specifies 

a list of open issues, which form the subject for future research.
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C hapter 2

SA M PLIN G  TH EORY AND 

SYSTEM  PR O PER TIES : 

BA CK G RO U N D  RESULTS

2.1 In trod u ction

The purpose of this Chapter is to introduce some of the fundamental notions associated with 

the theory of computer control systems and provide the motivation for the work that follows 

in the thesis. This is intended as a brief introduction rather than a proper treatment of the 

general issues, which are properly treated in textbooks such as [Ast. & Wit.. 1], [Lew., l], [Feu. 

& Goo., l], [Wil.. 1] etc.

2.2 T h e C om p u ter C ontrol C onfiguration

In a modern feedback control system the information processing device used in generating the 

required controller action is almost invariably a digital computer. This is connected to the 

physical system being controlled through an interface as shown in the Figure 2-1.

The configuration contains essentially six parts :

1. The dynamic system (or the process) to be controlled. The vector of system's outputs
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Figure 2-1: Typical Scheme of a Computer Controlled System

y(t) consists of such physical time continuous signals as position, velocity, pressure etc.

2. The sensors that produce voltage (or current) proportional to the system outputs y(t) 

signals.

3. The Analog to Digital Converter (ADC) that transforms the sensors continuous time 

signals into digital number sequences (digital signals) ip(kT) to be fed to the computer.

4. The digital computer providing the desired control action by the resident in his memory 

control algorithm. The control algorithm acts on the digital signals ip(kT) to provides 

further a vector of digital signals v(kT).

5. The Digital to Analog Converter (DAC) converts the sequences v(kT)  back into a vector 

of continuous time signals u(t). This is known as reconstruction process. The continuous 

time control signals u{t) are then fed to the dynamic system as inputs.

6. The Clock Time determines the sampling period T.

More complicated sampling schemes can also be used. For instance, different sampling 

periods can be used for different control loops. This is called multirate sampling and can be 

considered to be the superposition of several periodic sampling schemes.
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Figure 2-2: Output versus input characteristic of the ADC

A digital controller is implemented as a computer program using the above configuration. 

The basic functions of a digital controller are thus the following: The controller samples and 

quantizes a continuous time signal to produce a digital signal; it processes this digital signal 

using a digital computer and then it converts the resulting signal back into a continuous-time 

signal. Such a control system thus involves both continuous time and discrete time signals, in 

a continuous-time framework.

A digital signal is a discrete-time signal with a quantized amplitude.

2.3 Q uantized  S ignals

The output of the ADC must be stored in digital logic composed of a finite number of digits. 

Most commonly, the logic is based on binary digits (bits) composed of 0's and l\s. but the 

essential feature is that the representation has a finite number of digits [Fra.. Pow. kr Wor.. 

1], A common situation is that the conversion of the analogue to digital signal is done so that 

the digital can be thought of as a number with fixed number of places of accuracy. If we plot 

the values of the analogue signal y(t) versus the quantized tp{t) we can obtain a plot like that 

shown in the Figure 2-2.We would say that ip(t) has been truncated to one decimal place, or 

that y(t) is quantized with a q of 0.1. since ^(t) changes only in fixed quanta of (in this case) 

0.1 units. Note that quantization is a nonlinear function.
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1 -

Figure 2-3: Time delay due to the DAC operation

2.4  T im e D elay

The function of DAC is associated with time delay. Each value of u(kT) is typically held 

constant until the next value is available from the computer [Fra., Pow. & Wor.. 1). Thus the 

continuous values of u(t) consists of steps that on the average lag u(kT) by T/2. as shown by 

the dashed line in the Figure 2-3.

2.5 M a th em a tica l id ea lization

For purposes of analysis and design, the standard digital control system is idealized [Che. <C 

Fra., 1], [Wil., lj. In this idealization the three components implemented as shown in Figure 

2-4. the ADC, the Digital Computer and the DAC are considered as follows :

1. The ADC became a ideal sampler S. It periodically samples the continuous signal y(t) 

(Figure 2-5) to yield the discrete-time (and not quantized in amplitude) signal y(kT) —
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Figure 2-4: Mathematical Idealization

1 , 2 -

Figure 2-5: Continuous Signal

y(kT) (Figure 2-6). In the general multi-output case y(t) and y{kT) are both vectors of 

the same dimension.

2. The digital computer is described as a finite dimensional, linear time-invariant, causal, 

discrete-time system K . Its input and output at time kT  are y(kT ) and u(kT ) =  v(kT) 

(Figure 2-7).

3. The DAC is a hold operator H. It converts the discrete-time signals u{kT) into the con-

tinuous time signals u(t). A common and typically valid assumption is that of a H with 

zero-order hold ZOH. Each value of u(kT) is held constant until the next value is available 

from the computer (Figure 2-8). If H is implemented as a first order hold (FOH) oper-
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Figure 2-6: Discretized Signal

ator, then u(t) is held as a straight line determined by the two last numbers u(kT) and 

u(kT — T) until a new number u(kT + T) is available from the computer. It is possible to 

consider a H with a hold of upper than one order, say m. That means, in the time interval 

from kT  to kT + T, the signal u(T) is held as the extrapolation of a curve determined by 

the last m  numbers of the sequence.

Note that S and H are synchronized, physically by a clock. Using the idealizations of S and 

H. we obtain the idealized model of the standard control system. This is called the standard 

sampled-data (SD) system. The sampled data system has both continuous-time and discrete 

time signals, whereas “digital’' refers to a system having digital signals

2.6 Shannon  R econ stru ction

It is of course, essential to know when a continuous-time signal is uniquely given by its sampled 

version [Feu., 1], The following theorem [Ast & Wit., l] gives the conditions for the case of 

periodic sampling.

T heorem  1 A continuous-time signal with a Fourier transform that is zero outside the interval 

(— uJo.^o) is given uniquely by its values in equidistant points if the sampling angular frequency
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Figure 2-7: Digital Signal from Computer
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Figure 2-8: Signal Reconstruction from DAC with ZOH
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Figure 2-9: Signal Reconstruction from DAC with FOH

u>s = 2t tT  is higher than 2w>q . The continuous-time signal can he computed from the sampled 

signal by the interpolation formula:

y(t) =  ^  y(kT) ^ { i _ kT)/2 (2.F

R em ark  1 The frequency =  a)s/2 is called the Nyquist frequency.

R em ark  2 Equation (2.1) defines the reconstruction of signals whose Fourier transforms van-

ish for frequencies larger than the Nyquist frequency

The inversion of the sampling operation, i.e., the conversion of a sequence of numbers 

to a continuous-time function is called reconstruction. In computer-controlled systems, it is 

necessary to convert the control actions produced by the computer as a sequence of numbers 

into a form of a continuous-time function using a hold operator.
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2.7  A lia sin g  [Ast. &; W it., 1]

Stable linear time-invariant systems have the property that the steady-state response to sinu-

soidal excitations is sinusoidal with the frequency of the excitation signal. Computer control 

systems behave however, in a much move complicated way because sampling will create signals 

with new frequencies and this can drastically affect performance unless precautions are taken. 

The phenomenon that sampling process creates new frequency components is called aliasing. 

Whenever the signal contains frequencies that are larger than half the sampling frequencies, 

there will be new low frequency components which are created.

In fact, if a continuous-time signal f (t )  that has the Fourier transform,

OC
F(u) = J e~iujtf  (t)dt

— OO

is sampled periodically, it has been proved that the sampled signal f ( k T ) can be interpreted as 

the coefficients of the Fourier series of a periodic function Fs (uj) defined as [Ast. & Wit., l],

Fs(v) =  — F(u> +  ku>3) (2.2)

The period of Fs(u>) is equal to u>3 and it is

U/’s

f ( kT)  = —  [  eikTulFs(u>)di>j 
ws J 

0

then the function Fs(ui) can be interpreted as the Fourier transform of the sampled signal 

f (kT) .  If the continuous time signal has no frequency components higher than the Nyquist 

frequency, the Fourier transform Fs(u>) is simply a periodic repetition of the Fourier transform 

of the continuous-time signal. It follows from (2.2) that the value of the Fourier transform of 

the sampled signal at u> is the sum of the values of the Fourier transform of the continuous-time 

signal at the frequencies uo +  nujs.

An illustration of the aliasing effect in computer systems is illustrated by the following 

diagram [Ast. & Wit., l] in Figure 2-11 representing the response of a computer system under 

certain conditions on the value of sampling.
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Figure 2-10: Simulation of a sampled data system exhibiting aliasing phenomena
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To avoid the difficulties associated with aliasing, it is essential that all signal components 

with frequencies higher than the Nyquist frequencies are removed before the signal is sampled. 

This involves the use of an antialiasing filter in the overall configuration. The proper selection 

of sampling periods and antialiasing filters are important aspects of the design of computer- 

controlled systems.

2.8 T h e 2- Transform

The 2-transform maps a semi-infinite time sequence into a function of a complex variable. A 

summary of the basics of the transform theory is given below.

D efinition 1 The z-transform of the discrete-time signal {fifkT ) : k = 0,1,...}, is defined as.

OO
F(z) = Y J f{kT)z~k

k=0

where z is a complex variable. The inverse of the z-transform. of f (kT)  is given by.

f ( k T ) = ^ - f F (z)zk- ldz

where the contour of integration encloses all singularities of F(z). The z-transform of f (kT)  

is denoted by Z f  or F.

The basic properties of the 2-transform are,

1. Linearity:

Z ( a f  + 8g) = a Z f  + f3Zg

2. Time shift:

Z q - nf  =  z~nF  

Z{ q ^ f }  = zn{ F - F , )
n — 1

where, F^{z) / ( jT ) 2_J
3 = 0
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where by q is denoted the forward-shift operator and by q 1 the backward-shift operator 

[Ast. & Wit., 1],

3. Initial value theorem:

/(0) =  lim F(z)
z —>oc

4. Final value theorem: If (1 — z~1)F(z) does not have any poles on or outside the unit 

circle, then,

lim f (kT)  =lim (1 — z~1)F(z)k—* OO 2—>1

5. Convolution: k
Z { f * g )  = z Y J f in)g{k  -  n) =  ( Z f )  (Zg)

n=0

2.9 C onclu sion s, E m erging  Issues

The selection of sampling is an important issue in the design of computer control schemes. So 

far, the methodology for selection of the appropriate sampling has been based on signal type 

criteria. The need to develop a model based theory, that exploits also the quality of the result-

ing discretised model has been recognized, but the area is in its early stages of development. In 

practice, it is essential that sampling is selected using both signal recovery criteria and preser-

vation of continuous model features criteria. The model based criteria express the general aim 

that the open loop discretised model has characteristics and properties, as close as possible to 

those of the open loop continuous time model. To achieve the above general objectives research 

is needed in many areas related to the mapping of continuous model properties characteristics, 

to the corresponding ones of the discretised model as a function of the sampling rate. Amongst 

the issues worth examining are those related to the mapping of structural invariants and asso-

ciated properties, as well as the transformation of features of design indicators. This thesis is 

concerned with the study of properties of a number of system invariants and their associated 

properties as a function of the sampling rate.
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C hapter 3

SYSTEM S AND M ATHEM ATICS 

BA CKGROUND

3.1 In trod u ction

Modern control theory and design uses concepts and tools from almost every single branch of 

mathematics. The aim of this chapter is to introduce some terminology and define the basic 

mathematical concepts and tools, which are essential for the presentation of the system concepts 

in the following sections. The following topics are considered as essential:

1. Basic concepts and tools from Polynomial arid Rational Matrix theory.

2. Basic concepts and definitions from the structure of a linear operator in an n-dimensional

space.

3. Basic concepts and tools from matrix pencil theory.

4. Review of relevant topics from systems theory.

It should be stressed that this section serves as basic terminology and does not aspire to 

be an introduction to mathematics for control theory. Details may be found in the references. 

Certain nonstandard topics, which have an impact on the subsequent chapters are treated in 

some more detail.
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3.2 P o ly n o m ia l and R ation a l M atrices

Let R. C denote the fields of real and complex numbers respectively, Z + is the set of positive 

integers and Zg = Z + U {0}, R[s] be the ring of polynomials with coefficients in R and R(s) be 

the field of rational functions :

R(s) =  {t(s) : t(s) = ,n(s),d(s) G R[s],d(s) £ 0 }  (3.1)

Let R(s)p,p G Z + be the set of ordered p-tuples of rational functions considered as column

vectors:

R(s)P à  {t(s) : t(s) = [tl (s), t2(s),.. . ,tp(s)]' . t l(s) G R (s),i G p} (3.2)

then R(s)p has the structure of a linear vector space which we call a rational vector space. 

Let R(s)pxrn, p. m G Z + denote the set of p x m  matrices with elements in R(s). A matrix 

T(s) G R(s)pxm is called a rational matrix.

The ring of polynomials R[s] is a Euclidean ring i.e. there is a map d : R[s] — ► Zq such 

that for every a(s) G R[s], a(s) £ 0 we denote da(s) = dega(s) G Zq . The units u(s) of R[s] are 

the non-zero elements of R.

A rational matrix T(s) whose elements are polynomials is called a polynomial matrix. The 

set of polynomial matrices is denoted by R[s]pxm. A polynomial matrix T(s) G R[s]pxp is 

called unimodular if there exist a T(s) G R[5]pxp such that T(s)T(s ) =  Ip, equivalently if 

det T(s) =  c G R. c^O .

Definition 2 The degree of a polynomial matrixT(s) G R[s]pxm, denoted bydegT(s). is defined 

as the maximum degree among the degrees of all its maximum order (non-zero) minors. □

3.2.1 Smith-McMillan Form [Var., Lim. &  Kar., 1]

"Elementary row and column operations” on a T(s) G Rpxm(s) are defined in the following 

usual way :

1. interchange any two rows (columns) of T(s)

2. multiply row (column) i of T(s) by a unit u(s) G R[s] and
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3. add to row (column) i a multiple by a non zero element t(s) £ R[s] of row (column) j

These elementary operations can be accomplished by multiplying the given T(s) on the 

left (right) by “elementary” unimodular matrices, namely matrices obtained by performing the 

above elementary operations on the identity matrix Ip(m).

Definition 3 T'i(s) £ Rpxm(s), T^s) £ Rpxm(s) are called equivalent in C if there exist uni-

modular matrices T l ( s ) £ Rpxp(s), Tr (s ) £ Mmxm(s) such that

T l ( s ) T i ( s ) T r ( s ) =  T2(s ) (3.3)

The above equation defines an equivalence relation of T i(s),T^s) on Mpxm(s) which we 

denote by E c . The set of all the equivalent matrices of a fixed T(s) £ Rpxrn(s) defines i n -

equivalence class or the orbit of the T(s). □

Theorem 2 Let T(s ) € Rpxm(s) with rankK(s)T(s) =  r . Then T(s) is equivalent in C to a 

diagonal matrix S h a v i n g  the following form:

c C
öT(s) = diag{ gj(g) £2^) Sr('S)

{ s ) ‘ ^ 2(s) ’ A ( s )
Jm —r , p —r  j (3.4)

where £z(s). L'i(s) £ R[s] are monic and coprime such that £i(s) divides ei+1(s), 

!/’j+l(s) divides =  1,2, ...r — 1.

while

□

Definition 4 The rational functions

fi — £i(s)/ipi(s) £ R(s),f £ r,

constitute a complete set of invariants of E c and are called the invariant rational functions of 

T(s). □

Definition 5 The zeros of T(s) £ Rpxm(s) in C are defined as the zeros of the polynomials 

£i(s),i £ r. The poles ofT(s) in C are defined as the zeros of the polynomials ipi(s),i £ r. □
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R em ark  3 (Sm ith  form ) If T(s) G Rpxm[s] then ipi(s) =  l , i  G r, that is, S^s) ^  a ŝo 

a polynomial matrix and it is called the Smith form of T(s) in C. Otherwise if T (s) is non-

polynomial, for some i = 1,2, G r, the 'ipi(s) are non constant, that is called the McMillan

form ofT(s)  in C. □

Let T(s) G Rpxm[s] and

ST(s) = diag{ei(s), £2(5) , er (s), 0p_r>m_r }

Then we have.

D efinition 6 The polynomials £¿(5) G R[s],i € r, constitute a complete set of invariants of E  

and are called the invariant polynomials ofT(s).  □

The invariant polynomials £t(s) can also be obtained by.

£*(«)
D i(s)

Di - 1(5)
i £ r

where Dq (s ) = 1 and Di(s) is the greatest common divisor of minors of order i in T(s).

Let the invariant polynomials £¿(5) be factorized into their monic irreducible factors pj(s) 

over the field of R  and let the powrer of <pj(s) occurring in £i(s) be kij. Then those of pkT(s) 
with ^  0 are called the elementary divisors of T(s).

3.2.2 Smith-McMillan form at s =  oc [Var., Lim. &c Kar., 1]

Define the map 6X : R(s) — » Z  U (+ 00) via

x /j / \\ J degd(s) -degra(s), t(s) £ 0
° o c ( * ( « ) )  =  < ( 3 . 5 )

( + 00. t(s) = 0

The map <5oc(.) is a discrete valuation on R(s) and every t(s) G R(s) can be factored as,

t{s) =
Q  00 m{s)

d1(s) (3.6)

where qx  =  6x (t(s)) and degnj(s) =  degcfi(s).
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D efinition 7 If  qoc > 0 we say that t(s) has a zero at s =  oo of order q a n d  if qoc < 0.then 

we say that t(s) has a pole of order Ig^l at s = oo. □

If f(s) G R(s) and <5co(f(s)) > 0, then t(s) is called a proper rational function. Thus, proper 

rational functions have no poles at s =  oo. It is easily verified that the set of all proper rational 

functions, which we denote by Rpr(s), is an integral domain. The units u(s) G Rpr(s) are 

those proper rational functions for which there exist a u(s) G Rpr(s) such that u(s)u(s) = 1. 

Such functions have no zeros at s =  oo and thus, if u(s) =  n(s)/d(s)  G Rpr(s) is a unit, 

^oo(u(s)) =  0, i.e. degn(s) =  degd(s).

Denote by Rpx m(s) the set of p X m  matrices with elements in Rpr(s). Such matrices are 

called proper rational matrices. Let T(s) € R p:p(s), then T(s) is called Rpr(s)-unimodular or 

biproper if there exists a T(s) £ RPr p(s) such that T(s)T(s)  =  7p.

“Elementary row and column operations" on a T(s) € Rpxp(s) are defined in the following 

usual way :

1. interchange any two rows (columns) of T(s)

2. multiply row (column) of T(s) by a unit u(s) € Rpr(«) and

3 . add to row (column) i a multiple by a t(s) G Rpr(s) of row (column) j

These elementary operations can be accomplished by multiplying the given T(s) on the 

left (right) by ” elementary” biproper matrices obtained by performing the above elementary 

operations on the identity matrix /p(m).

D efinition 8 T\(s) G R ^ m(s),T%(s) G RPr m(s) are called equivalent at s =  oo if there exist 

biproper rational matrices Tl (s ) G RprP(s),T^(s) G R^;xm(.s) such that

Tl (s )T,(s )Tr (s ) = T2(s ) ( 3 . 7 )

□

We have the following .

Theorem  3 (Smith-McMillan form of a rational matrix at s = oo) Let T(s) G Rpxm(s) with 

rankfc(3)T(s) = r . Then T(s) is equivalent at s =  oo to a diagonal matrix having the
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fo l lo w in g  fo r m :

^T(s) = diag{s<lx‘,s1 qIc s ôc
S&+1 ’ c 9äc+2’ " '’ ««o’ P r’m r |

(3.8)

where

qlc > vL > > <L > 0 ( 3 .9 )

-r
<7oo > c 1 > ...  > e 1 > o (3.10)

□

R em ark  4 I fT(s)  € Mp*p(s )then q1̂  =  0, z =  1,2,..., j, i.e. is a proper rational matrix

(^T(s) e Rpr P(s)anc  ̂ d is called the Smith form ofT(s)  at s = oo. Otherwise, i.e., i fT(s)  is 

nonproper, then Sifr^is also nonproper and it is called the McMillan form ofT{s) at s =  oo. If 

Poc is ¿/ie number of q1̂  ’s in (3.8) with q1̂  > 0, i £ j, then we say that T (s ) /ias poe poles at 

infinity, each one of order q^  > 0. Also if z ^  is the number of qf^ ’s in (5) with q^  > 0. i — 

j  +  1, ...,r, i/ien we sap that T(s) has zQ0 zeros at infinity, each one of order q^  > 0 . □

An alternative, equivalent characterization of the poles, zeros at infinity is given below.

Definition 9 (Ver., 1) ,[Pug. & Rat., ljThe rational matrix G (s) is said to have a pole (zero) 

at infinity, if the matrix &'(^) has a pole (zero) at w =  0. □

3.3 T h e S tru ctu re  o f a Linear O perator in an n -D im en sion al 

Space

The existence of a matrix of normal form in a class of similar matrices is closely connected with 

important and deep properties of a Unear operator in a n-dimensional space.

3.3.1 Geometric Theory of Element ary Divisors [Gan., 1]

Consider an n-dimensional vector space 7Z over the field T  and a linear operator A in this space 

and a vector u £ l Z .  The following definitions and propositions are valid :
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D efinition 10 The monic annihilating polynomial <fi(s) of least degree for which <f>(A)x = 0 

will be called the minimal polynomial of x. □

P roposition  1 Every vector x has only one minimal polynomial (p(s) which divides every an-

nihilating polynomial of x. □

If the vectors x 1;x 2, ...,xn G TZ, define a basis in 7Z and the corresponding minimal polyno-

mials 4>i(s),<p2 (s), ...,0n(s) then if 'tp(s) is the least common multiple of 4>i(s),<j>2 (s), ...,<f>n(s) 

it is an annihilating polynomial for every vector x G TZ . It can be proved that x/>(s) has the 

least degree and divides all the annihilating polynomials for the whole space TZ and it is called 

the minimal polynomial of the space TZ. Then the minimal polynomial of the space 1Z does not 

depend of the choice of the basis. This polynomial is divisible by the minimal polynomial of 

every x G TZ and annihilates every x G TZ .

The space 1Z is decomposed into two subspaces TZ\ and 1Z-2 : TZ = 1Z\ © IZ2 if,

1. 7Z\ n n 2 = {0}

2. \/x € TZ =5- x = x } +  x 2. i j  € TZj, x 2 G 7Z2

A subspace TZ1 C TZ. is called invariant with respect to the operator A if A7Z' C TZ1 or 

Vx G TZ! =► Ax G TZ’.

T heorem  4 (F irst D ecom position T heorem  ) I f  for a given operator A the minimal poly-

nomial xifs) of the space is represented over T  in the form of a product of two co-prime poly-

nomials and xl>2(s) (with highest coefficients 1).

4fs) = 4’\{s )4’2{s )

then the whole space TZ splits into two invariant subspaces /j and I2,

TZ —1\ © I2

whose minimal polynomials are xfi(s) and xp2(s) respectively. □
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T h e o r e m  5 I n  a  v e c to r  sp a c e  th e r e  a lw a y s  e x i s t s  a  v e c to r  w h o s e  m i n i m a l  p o ly n o m ia l  c o in c id e s

with the minimal polynomial of the whole space. □

Lemma 1 If the minimal polynomials of the vectors Xj and x 2 are co-prime, then the minimal 

polynomial of the sum vector Xj + x2 is equal to the product of the minimal polynomials of the

then the vectors e, A e ,.... Ap~1e are linearly independent, form a basis for a p-dimensional 

.4-invariant and cyclic subspace V.

Every vector x  G V is representable in the form of a linear combination of the basis vectors, 

i.e. in the form x = \'(^4)e where x ( s ) £ R[s] of degree < p — 1 with coefficients in IF.

Remark 5 1. Vector e is defined as the generating vector of the subspace V and

2. the minimal polynomial of e is also the minimal polynomial of the whole subspace V. □

Theorem 6 (Second Decom position Theorem) Relative to a given linear operator A the

space can always be split into cyclic subspaces V), V2, •••, V) with minimal polynomials

V’2(s). ll>t{s),

constituent vectors. □

Let the minimal polynomial of the vector e be

< t > { s )  — s - P  +  a \ S p  1 +  . . .  +  a p - j s  +  a p

R = Vi © V2 © ... © Vt

such that xl’i(s) coincides with the minimal polynomial ip(s) of the whole space and that each

H’i(s) is divisible by •0i+i(s)(f =  1 , 2 , i — 1). □

Theorem 7 A space is cyclic if and only if its dimension is equal to the degree of its minimal

polynomial. □

Theorem 8 A space does not split into invariant subspaces if and only if

1. it is cyclic and

2. its minimal polynomial is a power of an irreducible polynomial over F . □
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Theorem 9 (Third Decom position Theorem) A space can always split into cyclic invari-

ant subspaces

R — V j © V2 f f i . ..  © Vj

such that the minimal polynomial of each of these cyclic subspaces is a power of an irreducible 

polynomial. □

3.3.2 Jordan Form of a Matrix [Gan., l],[K ar., 2]

Let the characteristic polynomial of a matrix A € Rnxn be:

<f>(s) =  det(A -  si) = (s -  A1)7L (s -  A2)7r2. . .(s -  Xf)7Tf

Where Aj, A2. ..., A/ £ C are all the distinct eigenvalues of A and 7r1; 7r2, ..., 717 are their cor-

responding algebraic multiplicities, with 7T] + 7r2 + ... + 717 =  n. Also let that the invariant 

polynomials of A — si  are decomposed into elementary divisors.

M s )  =  ( s - A 1)Tu'i (s - A 2)T2"2 . . . ( s -A i) T̂  . . . ( s - X f )Tlvf

M s )  =  (s-A1)T̂ - 1(s -A2)T̂ - 1...(s -Atp ^ 1...(S-A/)T̂ /-1

M s )  =  (S - A 1p ( S - A 2p . . . ( 5 - A ip . . . ( 5 - A / )T̂

/ , , («)  =  (s — Ai)Tn (s — A2)T21 ... (s — Aj)7*1 ... (a — Ay)T/1

where, v\ > v2 > ... > Vi > ... > V/ > 0 and for ¿ =  1,2,..., /  it is, riVi > > ... > m  > 0

if k < => rik =  and if k > ^  => rik = 0. Also it is:

Til +  ri2 +  + Tm/* =  7Tj

and where i/j is the rank deficiency of matrix A — s /  at s — A* i.e..

Ui = n -  rank (A -  \ I )  (3.11)
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To each one of the above elementary divisors, say (s — Ai)Tik there corresponds a definite 

cyclic subspace Vik generated by a vector e. For this vector the elementary divisor (s — At)Tlfc 

is the minimal polynomial:

(A -  AiI)T*e = 0

and the vectors,

uikl = ( A -  Ai i y ^ - ' e ,  uik2 = ( A -  A¿/)T<fc“2e, . . . , A  e

are linearly independent and consist a basis for the cyclic subspace Vik . Vector uik is defined 

as an eigenvector of A associated with the eigenvalue A,. It is,

(A -  Ai l )uikl = 0

The maximum number of linearly independent eigenvectors associated with each one of the 

distinct eigenvalues A i s  given by the rank deficiency vt. Number is defined also as the 

geometric multiplicity of A

To each one of the ut real eigenvectors associated with the eigenvalue At, corresponds one 

chain of generalized eigenvectors. Let to the eigenvector uik (k = 1.2,..., vz) associated with A, 

corresponds a chain of rik generalized eigenvectors uik ,u ik„ ,..., uik , given by the equations :1  ̂ Tik

( A - \ I ) u ikl = 0 and —ik\ —ik

ik2 —ik\ ( A -  Xil)2 ulk2

^ —ihr-i -ikT.,-1tk tk 1 (A -  \ i I ) Tik uik

where Tik is now defined as the eigenvectors chain length. The maximum possible value for an 

eigenvector chain length is equal to the minimum power t IVi of matrix A — A¿7, for which :

rank(^l -  A¿7)Tî  =  rank(A -  A¿/)T*".+] (3.13)

and we have :
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Definition 1 1  We define as the index of annihilation of matrix A at A the minimum power 

Tw% °.f matrix A — At I for which the relation (3.13) is valid. The annihilation index is equal to 

the length of the longest chain of generalized eigenvectors, associated with the eigenvalue Xt . □

From (3.12) it follows that every generalized eigenvector of a chain ulk , belongs to the null 

space A(j of the matrix {A — Xfi)0, as well as to the null space My-t-i) of the matrix {A — Aj/)J+ , 

but it does not belong to the null space M (j-l) of the matrix (A — A¿7)-7“ 1. So we have :

•Mo c  M i c  ... c  Hiriv. = Mi

The dimension of Mio is defined as 0. The dimension of M l is equal to z/t , the geometric 

multiplicity of Ai given by (3.11) and the dimension of M  is equal to 7q i.e. the algebraic 

multiplicity of A

Definition 12 We define as the generalized null-space Mi corresponding to the distinct eigen-

value A i, the null space of the matrix (A — XiI)Tiui , where t iu. is the index of annihilation of A 

at A*. □

From the above we conclude that the set of the 7q generalized eigenvectors of all the vl chains 

associated with A¿, belongs to the generalized null space M- From the linear independence of 

the set of the 7q generalized eigenvectors, it can been shown, that it defines a basis for the 

generalized null-space Mi, and 7r* (the algebraic multiplicity of Xfi, denotes the dimension of 

the generalized null-space M- So it is :

rank(ri — A ¿/)Tll/* =  n  — i\i

Also from equations (3.12) it can been shown that the generalized null space M  is A- 

invariant. So we have :

Proposition 2 To each one of the ul real eigenvectors u ^ , ^ ,  ...,u^  associated with the dis-

tinct eigenvalue Xz (of algebraic multiplicity TXi), corresponds one chain of generalized eigenvec-

tors. The set of the ■nl generalized eigenvectors of all the Ui chains associated with A, forms a 

basis for the A-invari.ant generalized null space Mi. □
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As each chain of generalized eigenvectors forms a basis for the corresponding A-invariant 

and cyclic subspace Vik it is,

Proposition 3 The generalized A-invariant null-space Mi corresponding to the distinct eigen-

value Ai m.ay be written as a direct sum of A-invariant and cyclic subspaces, each one of 

which is defined by a generalized eigenvectors chain .

Mi = Vn © Vi2 ® ... © Vlk © ... © ViVi

Proposition 4 A generalized null-space Mi is cyclic relative to A, if and only i f  is composed 

by only one subspace Vik, or (what is the same) to the distinct eigenvalue \  corresponds only 

one real eigenvector and consequently only one chain of generalized eigenvectors. □

Proposition 5 The whole space is cyclic relative to A, if and only if, all the generalized 

null spaces Mi corresponding to the distinct eigenvalues are cyclic. □

Also the dual eigenvectors and dual generalized eigenvectors are defined as following.

To each real eigenvector uik (k =  1,2,.... vf) associated with At (i = 1 ,2 ,.../) corresponds a 

dual eigenvector vik such that, vik(A — A¿7) =  0, and v[kuik =  1. The chain of rlk generalized 

dual eigenvectors vik%fv ik2, ...,uiiv , is given by the equations :

Hi! (A -  Xl I ) Tik =  0 Oil (A -  = W2

-  X>I)2 =  0 O h-ikTik- 1 (a! — A¿7) — Hikr

—ikTi k —ik and vlknk (A  — X il) =  0

Let the n x n transforming matrix U of A defined by the chains of generalized eigenvectors 

associated with the distinct eigenvalues Ai ,A2,..., Ay (eigenbasis) as following :

U = [U(X1),... ,U(Xi),...,U(Xf)} (3.14)

Where the columns of U(Xi) £ CnX7ri define a basis for the A-invariant generalized null space
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TV) . Matrix U(Xi) is formed by the Vi matrix blocks corresponding to the chains of the distinct 

eigenvalue A * :

U(Xi) =  [ U i \ , U i k i U i Ui\ (3.15)

The columns of £ CnXTifc are formed by the corresponding chain of the r** generalized 

eigenvectors which define a basis for the M-invariant and cyclic subspace Vik ■

Ui k = [uiTl, - , u iTik] (3.16)

Matrix V  =  f /“ 1 is defined in the same as above line from the dual eigenvectors chains of A. 

Then matrix A is similar to the Jordan matrix J  :

A = U JU - 1 =  U JV (3.17)

where,

J  =  diag{J(Ai), J(A2),..., J(Xf )}  (3.18)

and J(Aj) is the diagonal matrix block formed by all the vt Jordan blocks associated with the 

distinct eigenvalue A* :

J(Xi) = diag{Jn, . . . ,Jik, (3.19)

and where is the Tik Jordan diagonal block corresponding to the generalized eigenvectors 

chain of length rik, associated with Aj :

Xi 1 ... 0 0

0 At ... 0 0

0 0 ... Ai 1

0 0 ... 0

Jik e c T'k

From the above is concluded the following

(3.20)

Proposition 6 Under the partition (3.14) of the transforming matrix U, the whole space K71
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is decomposed into f , A-invariant generalized null-spaces,

R" =Afi ®M2 © ■■■ © M  © ... ©A/} (3.21)

The subspaces M i ,M2, ...,A/"/ are uniquely defined as they coincide with the null-spaces of the 

corresponding matrices (A — A] I )TlVi , (/l — A2/) T2"2 , (A — \ f I ) Tfuf . □

Proposition 7 Under the partition (3.15) of the matrix block £/(Aj), the A-invariant subspace 

Mi is decomposed into Ui, A-invariant and cyclic subspaces, where Ui is the geometric multiplicity 

of At ;

Mi =  Vn © Vi2 © © Vik ffi ••• © Vivi

and the whole space is decomposed into a total number rj of cyclic and A-invariant subspaces,

77 =  V] +  i/2 +  ... + Ui + ... + Vf

□

The subspaces Vn, Vj2, are not uniquely defined, as we can have different ordering

of the corresponding basis column vectors of U\ , ..., U f , U f . .  On the contrary, the number 

vt of the subspaces, as well the dimensions of each one, are uniquely defined , as so are the 

number of the v̂  real eigenvectors associated with the distinct eigenvalue A, and the lengths 

of the corresponding generalized eigenvector chains. Otherwise, to each one of the elementary 

divisors (s — Aj)Tifc of the continuous system matrix A,  corresponds the Jordan block Jj^, as in

(3.20). Also, each one of the elementary divisors, is the minimal polynomial of the corresponding 

Jordan block as well the minimal annihilating polynomial of the corresponding A-invariant and 

cyclic subspace Vik■ So the elementary divisors of A can be arranged as following:

( * - A , ) ™ . (S — Al)T' fc, ....,(s - A ^ i

(s - A 2)Ts\ ( * - a 2)T22,. •■! (S — A2)T2fc, .- ,(* -  A2)T2̂2

(s -  A j)T i l , (s -  A¿)T‘2, . . . ,  (s -  At) Tifc, .. . ,  (s -  A

47



(s _  Xf y n , (5 _  A (s -  \ f )Tfk, ( s  -  A f )T' vt

where for i — 1 . 2 , /  :

T iV i  >  ••• >  T i k  ^  ••• i f  T i1  >  0, T i V i +  +  Tjfc +  ... +  T jj =  7Ti

D efinition 13 We define as the Segre Characteristic of A at A the set of the degrees of the 

elementary divisors of A at A

pAt (A) =  {riUi > ... > Tjfc > ... > t u  > 0} (3.22)

□

R em ark  6 From the above we conclude that :

1. The number Vi of the elements of pA. (A) is equal to the number of Jordan blocks associated 

with, the distinct eigenvalue

2. The sum tt1 of the elements of pA. (A) is equal to the dimension of the generalized null 

space Mi.

3. Each one of the elements of pAi {A), let the t & is equal to the dimension of the corre-

sponding Jordan block Jik(Aj), as well to the dimension of the corresponding cyclic and 

A-invari.ant subspace V^.

f. The first element t ^ . of p\. (A) is equal to the annihilation index of A at At . □

The minimal polynomial of A is determined as :

^ (4 )  -  h  0 )  = (s -  A])Tll'i(s -  A2)T2u2...(s  -  A ¿)T̂ . . . , ( s  -  A

Also we conclude that Proposition 5 can be stated as following:
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Proposition 8 The whole space Rn is cyclic relative to A, if and only if the ■p\i (A ) includes 

only one element:

pXi (-*4) =  {riv.} and riVi =  n f o r i  =  1 , 2 , /  

or what is the same, to each one distinct eigenvalue \  of A corresponds only one Jordan block.D

Definition 14 We define as index of cyclicity v of a matrix A, the maximum of for i =

1,2.....f .  where Vi is the geometric multiplicity of A at Aj or (what is the same) the dimension

of the null-space of (A — Xil) i.e.

v =  max {i/j} for i = 1 ,2 ,...,/

□

From the above we conclude that :

Proposition 9 The whole space M" is cyclic relative to A, if and only if v =  1. □

3.4  D efin itio n  o f F in ite  and In fin ite  e.d . S tru ctu re  o f R ight 

(Left) R egu lar P en cils  [Kar. & K al., 1]

3.4.1 Definitions

If T  is a field or a ring J~Pxm denotes the set of p x m  matrices with elements from T . The 

right (left) null space of a map (matrix) W  is denoted respectively by A/i(W),(7Vi(W)).

Let the set of matrix pencils be defined as :

Fv.m =  {W  = (F,G) : F,G & W xm}

£ p,m(s,w) A  {LF(s, w) = sF -  wG, W  =  (F, G) G £ p,m}

where (s. w) is an ordered pair of indeterminate. The pair W  — (F, G) is called right regular, if 

A1).®(s.w)(sF — wG) =  {0}. The subset of Cv_m which is made up from all right regular pairs will 

be denoted by m and the corresponding set of pencils will be denoted by £ / rn (s. w). The 

set m of all left regular pairs is defined in a similar manner. It is clear that a necessary and
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sufficient condition for W  G £"'m is that WPiTn{s, w) has full rank over R(s, w) and p > rn. A 

special case of right (left) regular pairs are those which p — m. This set is denoted by £ pp 

and will be referred to as the set of entirely regular or simply regular pairs. Clearly if W  =  

(F, G) G £ pp then |sF  — wG | G R[s, w\ — {0}. The set of matrix pencils that correspond to £}pp 

is denoted by £'pp(s, w).

Consider the following set of ordered pairs,

H = {h : h = (R, T), R  G Rpxp, T  = diag{Q, Q}, Q G Rmxm, \R\ , \Q\ ^  {0}}

and a composition rule (*) defined on 7{ as follows

H x H  — ♦ H : Vhi =  (/?], T]), hi =  (/?2, T2 ) G H. then 

h , * h 2 4  (R , ,T i ) * ( R 2,T2) = (R1R 2,T2T1)

It may be readily verified that (H, *) is a group with identity element (7p, I2m) and it is known 

as the strict-equivalence group (SEG). The action of (H.*) on W  =  (F, G) G £ p.m is defined 

by:

R. x £ v.m — > £ P,m ■ Vh =  (R , diag{Q, Q)) G H.  then

h * W  4  (/?, T) o (F, G) = L' = (F \ G') =  (RFQ, RGQ)

The above action defines an equivalence relation £n on £ v.m which is known as strict-equivalence 

(SE). Two pencils M 1(5, w) = sFj —wGi, W2(s, w) =  sF2 — wG2 are said to be strict equivalent.

w )£h W2(s , w ). if there exists h G H  : W2 — h o W\.  By £n (F,G) it is denoted the SE 

class, or orbit, of W  = (F, G) or equivalently of W(s,  w) = sF — wG.

The above definitions, clearly apply to the £ " m, £ p m, Lxv rn cases. In the following, we 

concentrate on while the treatment for is dual. For all L — (F,G ) G £ p.m., the SE 

class, £ft(F,G),  is characterized by a complete set of invariants, known as strict equivalence 

invariants (SEI).

Let W  =  (F,G) .G,F  G Rpxm, p =  rankR p^^sF  — wG) < min(p, m)  and let V(G,F)  be 

the set of homogeneous elementary divisors (e.d.) of sF  — wG. These are of the following three
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types :

( s  — a w ) T i , u f ' i

Where a £ C — {0}. The subsets of V( G, F ) which corresponds to the same point of C U  { 00} 

will be denoted by

V ha â

2>i,o =  

A),! =

{
( s  — a w ) r i ,  o r  (âs — w ) r l , a  £ C U  { 00} .  à  

i € l'a, 0 < n  < ... < r„0 

{s'7*, i £ iso, 0 < crj < ... < cr„0}

{w ^ , i £ I'oo, 0 < m  < ... < /xVoo}

(3.23)

For the single variable pencils sF  — G, F -  wG derived from sF  -  wG, the above sets of 

e.d. may be interpreted as [Kar. &r Kal., 1]: for sF  — G, X>1-0, X)10, A),i, represent the 

sets of a-e.d., a /  0, 0-e.d., oo-e.d. respectively and thus they will be denoted in short by 

V a. Vo, Vac. For the “dual pencil", F  -  wG, the sets V\,a- A.o- Don, represent the sets 

of a—e.d.. a — a -1 , 00—e.d., 0—e.d., respectively and thus will be denoted by V a. Vo, V ^  

correspondingly. In the following, the case sF  — G will be considered and thus the notation V a. 

Vo. Poc will be adopted, the results concerning F — wG are dual.

R em ark  7 The set V(F,G) is self conjugate and thus if V a £ V{F,G),  a £ C — M. then 

V at £ V(F.G) (where, a* is the complex conjugate of a). □

D efinition 15 The set

<F(F. G) = {al : ai £ C U {00}, a; 7̂  ay, i £ v  : rank(otF  — G) < p)

will be called the root range of(F,G).  □

Also following the definitions given in the previous section for the s i  — A case (3.22), the 

sets of integers,

-  {wa > ••• > n  > 0} , po(F, G) = {oy0 > ... > CT] > 0}

-  { /T o o  >  >  A l  >  0 }

P a ( F ,  G ) 

Poo ( F ,  G )
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characterizing the degrees of the e.d. in the sets V a, V o, Poo, will be defined as the a—, 0—, oo—Segre 

characteristic of the pair (F,G) respectively [Kar. & Kal., 1].

A pair W  = (F , G) G £ p,m such that W  ^ FTp m will be called singular and the set of all 

singular pairs will be denoted by Lprn ; clearly £ " m,£ p m G £ spin.

3.4.2 The a-Toeplitz Matrices

The following results indicate the procedure for the computation of the Segré characteristics 

Pa, Po, poo without resorting to their algebraic definitions.

Theorem 10 Let IV — (G,F)  € Lrprn(jp > m). The pencil Wp,rn{s) = sF  — G has an e.d. 

(s — a)ri, a £ C, if and only if there exists a maximal chain of linearly independent vectors 

{x^.x2, ...,xr } G Cp such that

G - a F 0 . . 0 0 £i
- F G - a F  . . 0 0 x2

0 0 . . . - F G - a F . % .

=  0, for j 1,2, ■■■,rl (3.25)

□

Theorem 11 Let W  — {G,F}  G (p > m). The pencil Wp m̂[s) =  sF  — G has an i.e.d. 

u'^1, if and only if there exist a maximal chain of linearly independent vectors {x1;x2, G

Rp such that

F  0 . . .  0 0

-G  F . . .  0 0

=  0, for j  =  1,2,.... pi (3.26)

0 0 . . .  -G  F
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□

For Va G C is defined the sequence of matrices :

Tq] 4  G - a F

G - a F 0rp2 _A_ 
1 a

F G -  aF

a1e>
i ____ 0 . . . 0 0

F G -  a F . . . 0 0

rjii _A_ 
1 a

(3.27)

. F G - a F

e C ,px,m, for all ¿ =  1,2,...

For a = oo, we may also define the sequence of matrices

T 1oo 4  F

T 2oc
F 0_A

-G F

F 0

-G F

T K F - G )  4 e R lPxim, for a J l i =  1)2)...

0 0 . . .  - G  F

Matrices of the type T„, will be referred to as the i-th order a-,oo-Toeplitz matrices of 

the pair (G, F . ). Let us denote by :

N% 4  M r { t *} , N 0* 4  A/j{Tq }, Va € C, fc =  1,2,... (3.28)

K .  4  Mr{TL}. N L = M { T L } ,  k =  1.2,... (3.29)
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For all the pairs W  = (G , F ) and b e  C U {00} we define the sequences,

Jl(G,F)  â  =  ^  =  d im < ;  k > \ }  (3.30)

4 ( G , F )  â  { ^ : t? S  =  0, < = d i mJ V* ;  f c > l }  (3.31)

J b(G .F), J \ (G.F) will be referred to as the right b-(G,F),  left 6-(G, F)-sequence of the pair 

(G, F). A sequence Jf(G, F ), J\(G, F) will be called neutral, if its elements are zero for all k : 

k = 1 , 2 ,...

Theorem 12 The differences 77̂ +1 —r/k provide the following information about the e.d. struc-

ture of sF  — G at s = b :

1. r]\ is the number of e.d. at s = b.

2. The smallest index k for which rjk+i — r/k — 0 gives the maximal of the degrees of e.d. at 

s =  b.

3. The difference r/k+-i — r/k defines the number of e.d. with degrees higher than k. □

Definition 16 The set of the first non-zero successive differences in J f  (G , F) is defined as the

Weyr characteristic of (G, F) at b and it is denoted by HV Clearly is given by :

Wt, =  { r 1 =  77! — T]0, r 2 =  772 -  T?!, ..., r k = r/k -  r]k_^}

□

Proposition 10 Let W  =  {G, F} G TFf m. Then,

1. Fj > r i+1 for all j  =  1,..., k and r j+ i = 0 for all j  = k, k + 1,...

2. The strict inequality Tj > Fj+] holds true if and only if j  — qt, where qi is the degree of

a e.d. The multiplicity of the e.d. is then defined by — r ?i+i. □
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3.5 S tru ctu re  at In fin ity  o f M atrix  P en cils  [Var. & K ar., 1 ],[Eli. 

& K ar., 1]

3.5.1 Regular Pencils

Let W(s) = s F - G  G ¿ ^ ( s ) ,  G € Rpxp, F  6 Rpxp, and let deg|VL(s)l = n >  0. It is known 

that VL(s) is strictly equivalent to its Weierstrass normal form uniquely characterized

by the set of homogeneous elementary divisors 3.23 and consequently by the a — , 0—, oo—Segre 

characteristic of the pair (F, G) ?? :

where :

Ww (s) 4  sFw
Io 0 0 H 0 0 0

0 la 0 - 0 J a 0

0 0 H oo  _ 0 0 /oo _

1. Hoc £ R^p n)xiP n), defined by and nilpotent :

Hoc =  block diag { H ^  ,..., }

0 1 0 . . 0

0 0 1 . . 0

0 0 0 . . 1

0 0 0 . . 0

e  r wxw, i € Uoo

Uoc =  rank defect of F  =  p — rank/7 > 0

(3.32)

(3.33)

(3.34)

(3.35)

2. Hq defined by V o and nilpotent :

Ho =  block diag {Ha i,..., HavQ } (3.36)
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Hai =

0 1 0 . . 0

0 0 1 . . 0

0 0 0 . . 1

0 0 0 . . 0

e r <Xff(, ¿Gi /  o

3. Ja defined by V a, in Jordan form :

Ja =  block diag {J(aa) , J ( a m)} 

where a* € <h(.F, G) — {0}, z = l , . . . , r a

and if the ai—Segre characteristic of the pair (F, G) is :

PajF, G) =  {rWa > ... > rn  > 0} , z € m

then also it is :

J i j  —

j  (o-i) = block diag {Jn

1 0 . . . 0

0 ZZ i 1 . . . 0

€ M.Tij

0 0 0 . . . 1

0 0 0 . • • O'i

y

The infinite elementary divisors (i.e.d.) of W(s) are given by,

Ŵ 1  ̂ ) . ..j U^oo

where ¡ii, i € z^o are the sizes of the blocks z G ẑ oc- 

Let now that,

1 2  j  1 1 1coc — rlinnU^° s9°° s9“3 —-   -  —_
; c?io s9So 59« }

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)
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is the McMillan form of VT(s) at s =  oo where > ... > qL > 0 are the orders of its

infinite poles and qrx  > g ^ 1 > ... > g ^ 1 > 0 are the orders of its infinite zeros. Then we have 

the following.

P roposition  11 The McMillan form at s = oo, of a regular pencil W(s) =  sF  — G € £ pp(s), 

is given by 3.42 where,

1. The number j  of its poles at s = oo is given by j  = rankF, and their orders satisfy

<4, =  1. * € j-

2. The degrees pi of its i.e.d.’s w ( p i  > 0), i € i'oo — P — rankF , satisfy pi = 

g^ +  1, i € I'oo. where q1̂  are the orders of the zeros at s =  oo ofW(s) .  □

3.5.2 Singular Pencils

Let M7(s) =  sF  — G £ £ f m(s) and let VLfc(s) =  sF^ — G*, be its Kronecker form. Then:

Wfc(s) =  block diag{0/i.9, Le{s), L t ) ( s ) ,  sF — G} (3.43)

where s F — G is a regular pencil in its Weierstrass form,

Le(s) =  block diag{L£s+1(s), . . . , I £i(s)}

s 1 . . 0 0

0 s . . 0 0

0 0 . . 1 0

0 0 . . s 1

Lr)(s) = block diag{LVh+1( s ) , L ^ s ) }

(3.44)

(3.45)

(3.46)
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s 0 . 0 0

1 s . 0 0

(3.47)

0 0 . 1 s

0 0 . 0 1

and =  ... =  eg =  0 < eg+j < ... < ei are the column minimal indexes (c.m.i.) and

771 =  ... =  r/h =  0 < 77̂ +1 < ... < rjt are the row minimal indices (r.m.i.). Then we have:

P roposition  12 For a singular pencil IT(s) =  sF — G G Csp m(s):

1. the number j  of its poles at s = 00 is given by j  = ne + nrj + rjw — rankF. where

ne = Y l£i- nr) — r/w =  rankT and their orders satisfy = 1 ,i G j,

• the number k of its i.e.d.’s {pi > 0),z G k, is given by k = rank^^(sF  — 

G) — rank^F and

• we have /h =  <7̂  + 1, i G k,where q^  are the orders of its zeros at s — 00. and

2. The McMillan form at s =  00. of l'T(s) is :

^w(s) ~  block diag{sln£+nil, S ^ +sp. 0t ; } =

3.6 E xter ior A lgeb ra -T h e G rassm an P ro d u c ts  [Mar. &: M in .,

In this section we first introduce some useful notations and definitions on the sequences of 

integer numbers and on the submatrices of a given matrix.

If T  is a field or a ring. _FPxm denotes the set of p x m  matrices with elements from T.  

For 1 < k < n, let Qk.n denote the totality of strictly increasing sequences of k integers chosen

= block diag{slj,------ -——, 0t ;} (3.48)

□

1]
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from 1. In general Q k .n  has Q) sequences in it. If a, b G Qk,n, then a precedes b (written 

a < b), if there exists an integer t, (1 < t < k) for which a] = b \ , at-\ =  6t_i, at < 6t.

Suppose d. =  (ajj) G j r m x n . ^  and r  are positive integers satisfying 1 < fc < m ,  1 < r  < n 

and a =  (¿1, ¿2, G Q k ,m , b — •••,>) G Qr,n- Then the matrix B  € Jr *:xr ¿s capej

the submatrix of yl lying in rows a and columns b and may be designated by

b  =

We use the notation A^j to designate the submatrix of A whose rows are precisely those com-

plementary to a and whose columns are designated by b. Similarly J includes rows a and 

excludes columns b, whereas A excludes rows a and columns b.

T heorem  13 (B inet-C auchy) Suppose A G J r n x p j B  G J r p x m  and C =  AB  G JTnxm. I f  

1 < r <  min(n, m,p), a G Q r.n, b G Q r .m , then

detiC “1} = C ; = Y .  d e t ^ }  d e t ^ “1} (3.49)

3.6.1 Compound Matrices

If A G Jrrnxn and 1 <  r  <  min(m, n), then the r-th compound matrix of A  is the x  ( " )  

matrix whose entries are det A ° ^ , a  G Q r,m , ¡3 G Q r.n  arranged lexicographically in a  and (3 

and this matrix will be designated by <Lr{A).

If A  G jFriXi', B  G JTPxm̂  i < r < min(n,m,p),  another way of writing down the Binet- 

Cauchy theorem is:

<Lr(AB) =  <Lr{A)<Lr(B)

If A G 'Frxn and the r  rows of A are denoted by in succession, (1 < r < n) then

£r(A) is an (”)-tuple and is sometimes called the Grassman product or skew symmetric product 

of the vectors v[. The Grassman product of the columns of an A G Jrnxr matrix may

be defined in a similar manner; the product in this case however will be a column vector in 

contrast to the row vector product obtained from the previous case. The usual notation for
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this (™)-tuple of subdeterminants of A is ...,yf• or Vj A ... A;

Exam ple 1 Let A and B  be two matrices given by,

A =
0-1,1 »1,2 »1,3 »1,4 »1,5 ’ «I ’

»2,1 »2,2 »2,3 »2,4 »2,5 1 IP to
 “H

 
1__

__

B -

6 i ,i ¿>1,2

1>2A ¿>2,2

b  3 ,1 ¿>3,2

¿>4,1 ¿>4,2

¿>5,1 ¿>5,2

h  —2

Then the previously defined Grossman vectors can be denoted by the bold letters, 

a = aj A af

b = A b2

,1,2 ,1,2 ,1,2 ,1,2 ,1,2 ,1,2
^ 1 ,2  ^ 1 ,3  " 1 ,4  " 2 ,3  ^ 2 ,4  " 3 ,4

p i . 2 p i , 3 p l ;4 p2.3 p  2.4 p3,4
- ° 1 ,2  n i , 2  n 1 , 2  n \ , 2  n l , 2  n l , 2

□

3.6.2 Multi-orthogonality [Kar., 3]

Lem m a 2 (K ar., 3) Given the matrices C € jrmxn an(} ^  e jrnxm we yorm matrices 

r  =  CU, B =  VB, where UV — Im, as well the matrices Cp(T<p), Bp(Bp),  obtained by 

interchanging the p set of columns of C(T) and the p set of rows of B{B) in the same way. 

Then the rank tests on CB, FB, CpBp,  FtpBp are equivalent; this may be also expressed by 

the following conditions :

<Lr ( C B )  =  € r ( r  B )  =  C r ( C p B p )  =  £ r ( r  p B p )  ( 3 . 5 0 )

where 1 < r < m. D
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Let the non singular square matrices Q and R  such that,

C* = QC. B * =  B R

We consider the submatrices Ca)(CL), B a\B * a)) and their corresponding Grassman prod-

ucts, where a is the set of omitted columns and rows of C, B  respectively. Then it is readily 

seen that C*̂  =  QCay B*a) =  B°^R and the determinant of the product of these two matrices 

is now expressed as,

C*a)B *°) =  IQI Ca)B a> 1*1

Let the bold letters c, b denote the Grassman product of rows of C, columns of B  and using 

the notation previously introduced, the above expression may be written as,

(ca),b*a)) =  \Q \ (c a),b a)  ̂ \R\

where by (.) is designated the inner product operator. The above condition implies that the 

orthogonality properties of any pair of Grassman vectors (cay b a)) is invariant under any set of 

non singular coordinate transformations or equivalently, the rank of CB  does not change under 

the Q. R transformations .

T heorem  14 Let the matrices C G jrmxn q  g Jrnxrnand let their product CB be rank 

deficient of deficiency d. Let a be a set of indices such that a € Q^.n where p < d. Then, in con-

nection with the Grassman products of different order cQ),b Q) of the C ,B  matrices respectively, 

we have the following conditions:

(c.b) =  0

(cai); b “1̂ ) — 0, Oi G <3l,n

(cafcp bafc)) =  0, 1 < k < d, ak G Qk)n >

( c ad_ 1) ; b ° d' l ) ) =  0,  a d - l  €  Q d - l ,n

(cadj .b a^ )  0, for at least some ad G Q d.n

(3.51)
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□

From the above theorem is clear that if the rank defect of CB  is d =  1, then the vectors 

c and b  become orthogonal, but such an orthogonality does not hold for every other pair of 

Grassman subvectors ca) ,b a) a G Qk,n- As the rank defect of CB  increases from d = 1 to 

d = 2, then not only are c , b  orthogonal, but any pair cai) , bai  ̂ , a\ G Qi>n is orthogonal too. 

The orthogonality property then extends to the class of caip b ai) subvectors, but not for to any 

higher class cQfc). b “fc) with a* G Qk.n and k > 2. Generally speaking for every additional degree 

of rank defect of CB. the orthogonality property of the Grassman vectors c , b  extends to a 

new class of Grassman subvectors of c and b. The number of classes of Grassman subvectors to 

which the orthogonality property extends is called the multi-orthogonality degree of the vectors 

c . b  and it is equal to the rank deficiency of the product CB.

3 .7  C ontin uou s T im e L inear S ystem s and S tru ctu ra l P rop erties  

[Che., l] ,[R u g ., 1]

We assume that a plant is described by a continuous time linear state space model S(A, B.C,  D):

X (t ) = A x(t) +  B u(t) (3.52

x(t) = Cy(t) + Du(t) (3.53

. Where A G Rnxri. B  G Rnxl. C G R mxn. D G t e m  and u(t) is the l X 1 input vector, y(t) is the 

m  x 1 output vector and x(t) is the n x 1 state variable vector.

The solution of the equation 3.52 takes the following form in the time interval from t\ to ¿2

h
e (̂t2 Bu{r)dr (3.54)

t\

3.7.1 Controllability

D e f i n i t i o n  1 7  A system. S(A. B,C,  D) is said to be controllable at time to if for any initial 

state x0 in the space Mn and any state x j there exists a finite time t\ > to and an input 

u[to-t-[] that will transfer the state x0 to x 2 in time t\ — to- Otherwise the system is said to be

x( t2) = eA^ ~ ^ x ( t 1) +
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uncontrollable. O

It can be shown that the system S(A,B,  C, D ) described by the equations (3.52) and (3.53) 

is controllable if one of the following equivalent condition are valid [Che., 1]:

• The rows of the matrix eAtB  are linearly independent over the field of complex numbers.

• The rows of (s i  — A)~}B  are linearly independent over the field of complex numbers.

• The pencil [si — A. B ] has no e.d.

• The rows of controllability matrix Q £ Rnxni,

Q = [B, AB,  A 2B , A n~lB ] (3.55)

are linearly independent.

If 6j,i>2.....bt are the columns of B,

Q = \b 1,...,bl ,Ab1.....,Abl ,...,A n- \ : ...,An~1bl]

The linear ri-invariant vector subspace of Rn consisting of all the states x{t) that can be reached 

from any initial state x0 within a finite time.

77 =  span[B, AB, A 2B , ri71“ 1 B]

is defined as the controllable space of the system. The dimension r of the controllable space is

r =  dim7£ =  rankQ

3.7.2 Observability

For the property of observability of a linear system £(.A, B, C, D) we have the following dual to 

controllability definition :

D e f i n i t i o n  1 8  A system S(A,B,  C, D ) is said to be observable at time to if for any initial state 

x 0 in the space Rn there exists a finite time t\ > to such that knowledge of the output y(t) over
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the interval [0, ¿1 ] suffices to determine (to observe) the initial state x0. Otherwise the system 

is said to be unobservable. ^

It can be shown [3],[l] that the system S {A ,B ,C 1D ) described by the equations (3.52) and

(3.53) is observable if one of the following equivalent condition is valid:

• the columns of the matrix CeA(t~t°') are linearly independent over the field of complex 

numbers.

the columns of C (sl — A) 1 are linearly independent over the field of complex numbers. 

s i  — A
The pencil has no e.d.

C

the columns of observability matrix M  £ MmnX71, are linearly independent.

M  =

C

CA

C An -  1

(3.56)

If ci, C2-.... cm are the rows of C,

M  =

ci

On

c\A

Cm A 

Cl r i" -1
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The linear ^-invariant vector subspace of Rn consisting of all the states x(t) that cannot be 

observed,

V -- Aright

is defined as the unobservable space of the system. The dimension p of the unobservable space 

is,

p =  dimT* — n — rankM

3.8 P o les  and Zeros o f C ontinuous T im e L inear S y stem s [Kar., 

2][Kar. & M ac., 1]

3.8.1 Definitions

Consider the system S (A ,B ,C , D ), described in the time domain by:

¿(f) — A x(t)+ B u (t) , x(0) =  x 0

y(t) = C x (t)  + D u(t) (3.57)

Where A £ Rnxn,B  £ Rnxl,C  £ Rmxn,D  £ Rmxl and u(t) is the l x 1 input vector, y(t) is 

the m  x 1 output vector, x(t) is the n x 1 state variable vector and x 0 is the vector of initial 

conditions and let the same system S(A, B, C, D), described in the s domain by the equation:

s i  — A 

- C

- B

- D

x(s)

_ -y{s)  _

or by the transfer function matrix G(s) G Rm><i(s) :

(3.58)

G(s) = C {sl -  A )~ 'B  + D (3.59)

In the case of a proper system it is D =  0.
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T h e  p en c il P ( s )  is d efined  as th e  R o sen b ro c k ’s sy s tem  m a tr ix  p en c il :

s i  -  A - B - A - B
+  5

I 0

- C  - D - C - D 0 0
e R(n+m)x(n+')[s] (3.60)

According to the definitions of section 3.4 the system the system described by (3.60) is right 

(left) regular if Mr (P (s)) =  0 (TV) (P (s)) =  0). A system is said to be regular if and m  = l and 

detP(s) £ 0 .

Let Q be n  x n nonsingular constant matrix. If :

P(s)
s i  - A  - B  

- C  - D
and .Pi(s) =

s i  — A\ —B\

- C \  - A

are related by the transformation

Q -1 0 s i — A —jB Q 0 s i  - A , - B i

0 Im - C  - D 0 h _ - c , - A  _

then we shall say that P(s) and P 1 (s) are system similar.

T heorem  15 Two similar system pencils have the same order and give rise to the same transfer 

function matrix.

I f  Q  =  U =  V 1 is the matrix defined by the chains of eigenvectors of A of a system 

S(A. B . C. D). then the Jordan canonical description S j(J , B, V. A)is determined as follows:

Tn
J  = U -'A U  =  V AU. B = U - 'B  = V( 1 eJada)B = VE B (3.61)

r =
0

CU, A =  D (3.62)

Let <t (A) be the set of roots of the characteristic polynomial of A , <E>(A) =  det [si — A] and uz 

a eigenvector corresponding to the eigenvalue A □
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Figure 3-1: Zero Input Problem

3.8.2 System Poles

D efinition 19 An s € C is a pole of S(A, B, C, D) if and only if there exists an initial state x0 

such that the zero-input (u(t) =  0) response at the output of the system is equal to y(t) =  y_0est 

for some nonzero vector yQ.

It can be proved that s is a pole of S  if and only if is an eigenvalue of A. □

• Zero Input Problem-Free Response: Find the system output y(t) under zero system input 

(u(t) =  0) and x 0 vector of initial state conditions.

The solutions of state equations for u(t) = 0 are given as,

x(t) = eAtx0 = UeJtVx 0 =

Vx

=E E < eA i t U.ik 1’ "■'-ikTik
1=1 k = l

T i k ~  1

hk + Hikt + ... + (■Hikt)Ti
( T i k  -  1 ) !

T
s >

^ i k i

> > x

v ] k
lK’r  i k  J > >

y(t) = Cx(t), y = Cx0

where u,v .....and vJ- ............... (k = 1,2,..., uf) are the sets of eigenvectors and dual eigen---1 I ] ' 0 I Z1 1 ' t / i/; ' /

vectors chains associated with the distinct eigenvalue
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Figure 3-2: Forced Rectilinear Problem

• Forced rectilinear motion problem : Find x 0 and u(t) such that x(t) =  x 0eSot. Vi > 0, for 

some so G C.

The solution to this problem is described below

R em ark  8 Necessary and sufficient condition for the existence of a rectilinear motion eSotx0. 

along x0. is that u{t) is rectilinear u0esot, Vi > 0 and that { s o , x 0 . u 0 ) ,  satisfy condition (3.63).

(3.63)

(3.64)

(3.65)

□

So

Ho
= 0[s0/  -  A ; -B ]

u {t) = UQes°l , Vi > 0

In the case of a proper system the above conditions implies,

V(t) =  Cx(t) = eSotCx0 â  e ^ X

s o l  — A  — B  

- C  0

So 0

Ho . - y 0 .
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Figure 3-3: Zero Output Problem

3.8.3 Zeros-Output Zeroing

D efinition 20 A zero of the dynamic system is a value of frequency s =  so G C, such that if 

the input is exponential of the type u(t) — then there exist an initial condition x 0 such

that the output is identically zero. □

There will, however, be rectilinear motion in the state-space, of the form xft)  =  eSoix0, so 

we have :
SoP(s)
Ü0

=  0 (3.66)

The vectors x0 and Uq are termed as the zero directions in the state-space and input space

respectively.

A zero of the state-space model is thus a value of frequency s for which the above equation 

has a non-trivia] solution.

D efinition 21 A number so € C is a state-space zero or system invariant zero if

rankP(so) < rankP(s) =  n  +  m in(p,m ), Vs G C

□
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R em ark  9 Another equivalent derivation of the system invariant zeros can be from the Smith 

form of P(s) as the roots of finite e.d. of P(s).

□

D efinition 22 The set of zeros described by the Smith form ^c(s) as ^ e ro°ls of finite e.d. of 

G(s) are defined as the transmission zeros. □

In genera] the set of system invariant zeros is larger and always contains the set of trans-

mission zeros.

T heorem  16 If a proper system S(A. B, C ) is both controllable and observable then the set of 

system invariant zeros and the set of transmission zeros are the same. □

3.8.4 Modal Controllability, Observability

For a proper system

G(s) = C (sl -  A)~l B  =  r(sJ - j y ^ B  

and from the diagonal structure of J :

J =  diag{ J(A] ), J(A2) , .... J  (Ai),..., J(A,)}

and

also it is.

J( A<) == diag{ Jn 5 •••) Jik ) •••) Jit/

' ^(Ai) ' ' B, '

B = V(Xi) B = Bi

V(Xf )

r = c[u(x1),...,u(\t),...,u(xf )\ r i  ... r ,

(3.67)

(3.68)
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where :
V)i Bi i

V» B = Bik

_ v iVi . ^  .

r, = c Un ■■ ■

¿T =

t-T • Tj*; . r1 Ifc'i

and

'

II-Si
2Q £ k 2 B = g *

- ^  - - -

rlk = c —ik\ i —t/c2 ) •••! —ikT l ik i 'l ik i ' •-ijUkT.k

it is :

G ( s )  — ri ... r, ... r, diag {(s/j — Ji)

B,

Bi

(3.69)

(3.70)

(3.71)

(3.72)

lBf J
/  /

=  £  r i ( ^  -  = Y ,  Gi’ {Gi ~  r i(«/i -  J iY 1® )
¿=i ¿=1

where.

Gi =  ŷ 2 ^ ik (sh k  — Jik) 1 Blk = y ^  G
k=1 k=l

— Jjfc) ^13^
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and where

a i k ! i k \ ' — i k Ti k

1
s - \ i  _ ( s _ A i y? 

0 3

0

s - X i

0

(- l r i - l(s- A.r

s-Xi
ikTik  J

D efinition 23 The z-th spectrum controllability matrix B f is the l x i\ matrix formed by the 

Vi rows of J3i corresponding to the last rows of the Jordan blocks associated with the eigenvalue 

A,;:

r

B f = P.—ikTik

P I,

(3.73)

□

D efinition 24 The z-th spectrum, observability matrix T f is the Vi x l matrix formed by the vt 

rows o fT i corresponding to the first columns of the Jordan blocks associated with the eigenvalue 

A
t^F . '■v .....—i\ \ 5 — ik\' “ * — ivit\ (3.74)

□

Theorem  17 The mode (A j, [/ (A j) , F (A j ) )  is controllable if and only if the rows of the z-th 

spectrum controllability matrix B f are linearly independent over the field of complex numbers.^

The above result implies that the subsystem associated with the Aj mode is controllable. 

This also implies that all Aj eigenvalues may be change under feedback.

Theorem 18 If the mode (A j, t/ (A j ) . V (A j) )  fo r i  — 1,2, . . . , /  is controllable, then the rows of 

the pencil [s/ — A, B ] are linearly independent over the field of complex numbers. □
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Remark 10 If the mode (Aj, C/(Aj), V(Aj)) is uncontrollable then it is,

rank [Aj/ — A, B] < rank [s/ — A, B]

and Aj is an input decoupling zero of S. □

Definition 25 The pencil [5 /  — A, jB] is defined as the input state pencil. □

Definition 26 The roots of the e.d. of the pencil [5 /  — A, B] are defined as the input decoupling 

zeros (i.d.z.) of the system S. □

Theorem 19 The mode (Aj, [/(Aj), V'(Aj)) is observable if and only if the columns of the i -th 

spectrum observability matrix T f  are linearly independent over the field of complex numbers. □

The above result implies that all initial conditions associated with the space spanf7(Aj) may 

be reconstructed.

Theorem 20 I f the mode (Aj, [/(Aj), l/(Aj)) fo r i  =  1 ,2 ,...,/  is observable, then the rows of 
s i  -  A

the pencil
C

are linearly independent over the field of complex numbers. □

Remark 11 If the mode (Aj, [/(Aj), V(Aj)) is unobservable then

rank

and Aj is an output decoupling zero of S . □

Definition 27 The pencil

are defined as the output decou-

pling zeros (o.d.z.) of the system S. □

Theorem 21 The mode (Aj, f/(Aj), V'(Aj)) is observable if and only if the columns of the ¿-th 

spectrum observability matrix T f  are linearly independent over the field of complex numbers. □

Definition 28 The roots of the e.d. of the pencil
s i -  A

C

s i -  A

C
is defined as the output state pencil. □

X J - A

C
< rank

s i  - A

C
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3.8.5 Kalman Decomposition

Let the controllable, the uncontrollable and the unobservable respectively subspaces of

Rn.

If Vco, V co , Vco, V co , are the controllable-unobservable, the controllable-observable, the uncontrollable 

unobservable and the uncontrollable-observable respectively subspaces of R ", then it is :

Rn =  n  © n

n  = nnAi® vco = vc5 nvco

P  =  Vco ©  Vco 

J\f =  VCq © Vco 

R" =  Vco n Vco © Vco © Vco

The subspaces 7Z.J\f and Vc5 are A-invariant. Consider a base P  of Rn:

P = [Vco, Vco, Vco, Vco]

where V c o , Vco , V S5, V-co are respectively bases of the subspaces Vca, Vco, V5o, Veo and the coordi-

nate transformation of the model S (A ,B ,C ) rsj S (A ,B ,C ):

A = P ^ A P . B  = P ~lB, C = C P

T h e o r e m  22  T h e  s e t  o f  c o n t r o l la b le  a n d  o b s e r v a b le  e i g e n v a l u e s  o f  s t a t e  s p a c e  m o d e l  d e f i n e  th e

p o le s  o f  S £ ( s ) . □

Then.

1. As [VCo, Vco] £ kerC, it is

C* = C  [Vco, Vco, Vco, Vco] = o c  o c^CO) '-'CO
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2. As ( P i p - 1

P P  =

V J-
K CO

Vrl
y.1
K CO

V-Tr  CO

[^C O ) ^C O ! ^CO , ^ c o ]  ---  A l

y lco
y_T
K CO

[v'cs, v;0] = o

and as [Vc5, yco] defines a basis for the controllable subspace TZ,

it is,

3. As,

it is :

vrj
B  =  0

B  =  P~lB =

Bed

Beo

0

0

A \  CO  —  V co À co

A V co — V c o À co +  V Cq À i 2

AVsd =  VCqÀ \z +  VcòA cò

A V e o  =  V cg À  14 +  V coÀ 2 4  +  V coÀ 'S4  +  V co A co

À c o À \ 2 ^ 1 3 À \ 4

0 À c o 0 À 24

0 0 À c o OO £»•

0 0 0 À c o

From the above coordinate transformation of the Rosenbrock's system matrix pencil we
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have th e  K a lm a n  d e c o m p o s itio n  o f th e  sy s tem  :

P(s) =
P  0

o Im

s i - A  - B  

- C  0

P  0

0 h

■Àgo —Ä 12 - A w —Ä u -B ,

0 s i  Aco 0 — ̂ 24 -B ,

0 0 s i  Âg5 —̂ 34 0

0 0 0 s i  Äg0 0

0 -Cg'o 0 -Ceo 0

R em ark  12 From the above decomposition we conclude : 

s i  — Ago —A 34
1. Matrix defines the uncontrollable modes of the system and so

0 s i  Aco 
defines the set of e.d. of [s/ — A. B ] or the set of i.d.z.

2. Matrix
s i  Ago ^13 

0 s i  Ago

s i  - A
fines the set of e.d. of

C

defines the unobservable modes of the system and so dt- 

or the set of o.d.z.

S. Matrix s i  — Ag5 defines the uncontrollable and unobservable modes of the system and so 

defines the set of i.o.d.z. □

3.8.6 Infinite Zeros

It is important to note that the definitions we have used apply only to poles and zeros at finite 

points in the complex s plane, because the unimodular matrices used to get the Smith-McMillan 

form destroy information about the behavior at s — 00.

D efinition 29 The infinite zeros are defined as the zeros of the Smith form at s = 00 , 52?, , of 

the transfer function G(s). □

T heorem  23 Let r = ra n k^s^P(s), p =  rankR^G (s)./d  =  rankD, then :

1. I f k is the number of i.e.d. of P{s) it is k =  p.
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2. The numbtr of linear i.e.d. of P  (s) is equal to d

3. If uP1, i G k is the set of i.e.d. of P  (s) then the Smith-McMillan form of G(s)at s =  oo 

is:

^G(s) = dia9{-fJI ! ffjf ) •••! > ®m-p,p-p} (3.75)

where / ¡ = f t - l , î € k .  □

R em ark  13 If 6  = ê is the number of linear i.e.d. of P (s) then it is:

S OO
G ( s ) diag{ 1 , 1 , s/i+l

1 1
5/6+2 ’ " ’ 5/6+* Jm - p , p - p l (3.76)

□

The above characterization is that based on properties over the ring of proper rational 

functions. Alternatively the structure at infinity may be defined as the structure at w =  0 of

G(t )> fPuS- & R at-; !]■

3.9 T h e Zero P o ly n o m ia l o f  a L inear Square S y stem  [Kar., 3]

The zeros of a system are characteristic of the coupling between the energetic mechanism of 

the system and its environment, where the coupling is represented by the input and output 

operators B  and C . It is shown that exist an expression for the invariant zero polynomial in 

terms of the A. B. C parameters of the system. The coefficients of the polynomial are functions 

of the eigenvalues of A and the Grassman products of the matrices C  and B. The investigation 

is restricted to proper and square systems. The operator A is assumed to have a simple structure 

although the results may be easily generalized to the case of a non-simple structure A but the 

derived expressions for the zero polynomial are no more in a simple form. However as the zeros 

of the system are invariant under state feedback, a simple method of avoiding a non simple 

structure is to apply an arbitrary state feedback which can change the structure of A from 

non-simple to a simple one.

The Rosenbrock's system matrix pencil (3.60) in the case of a square (m =  l) and proper
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sy s tem  is g iven  by:

s i  -  A - B
ç . ]g> ( n + m )  X ( n + m )

- C  0
(3.77)

In order to have a non-trivial solution in equation (3.66) then :

det P (s) =  0

where det P (s) is termed as the zero polynomial. It has been proved that the degree of the zero 

polynomial.of such a system is n — m  :

2 ( 5 ) — Cfcn _ m S T Un _ m _ i S ,n —m — 1 + ... +  aj s 4- üq (3.78)

The case an- m = 0 means that a finite zero moves to infinity (finite zeros are transformed to 

zeros at infinity [Kar., 3]). A further reduction in the degree of z(s) implies the migration of 

another zero to infinity and so on.

3.9.1 Calculation of Coefficients

T heorem  24 Given the square, proper linear system, S(A, B, C ) strict equivalent to the S j(  J, B, T), 

where J  is in simple structure, Jordan canonical form of A, then the zero polynomial z(s) may 

be expressed as,

where the bold letters, 7 T,/3 denote the Grassman products of the rows o fT , columns of B 

respectively. If.

z(S) = 7 W m + :

(3.79)
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t h e n ,

■y1" =  7 j A 7  ̂ A ... A 7 ^ (3.80)

P = Ê l  A Ë.2A - A Ê n

u k ^  Q k .n -  ^ i  G pA, ("4)- Q

It is clear that the number of finite invariant zeros is given by the degree of the zero 

polynomial. The location of the finite zeros depends on the values which the coefficients of z(s) 

assume. The expressions for the coefficients of z(s) are :

Q-n—m 

&n—m— 1

Qn—m—k

a 0

7 t /3

(3.81)

Thus for systems with CB  full rank, the number of finite finite invariant zeros of the system is 

equal to n — m.

If CB  has rank defect 1. then the coefficient of sn~m becomes zero and the maximum number 

of finite invariant zeros gets less than 1. Generally, wrhen the rank defect of CB  becomes d. the 

inner products of the Grassman vectors , w € Qp.n p = 0,1, d — 1 become identically

zero due to the multi-orthogonality property (Theorem 14) of the vectors 7 , /3; therefore, the 

first d terms in z(s) become zero, irrespective of the eigenvalues of A and hence the maximum 

number of finite invariant zeros is reduced from n — m  to at least n — m  — d. This is summarized 

below :

3.9.2 Migration of Zeros to Infinity [Kar., 1], [Kar. &; Kou., 1]

T heorem  25 Let the square, proper linear system S(A ,B ,C )and  let CB have rank defect d.

79



The maximum number of system invariant zeros is n — m  — d. □

In physical terms as 7 becomes orthogonal to (3 at least one finite zero migrates to infinity. 

If the multi-orthogonality degree as this has been defined before, increases from 1 to 2 , at least 

one zero migrates to infinity and so on. Generally, as the multi-orthogonality of the vectors 7. f3 

gains d degrees, at least d zeros more vanish at infinity, thus reducing the maximum number of 

finite zeros from n — m  to n — m  — d. The set of zeros which are lost at infinity because of the 

multi-orthogonality of the vectors 7, f3 will be called class 1 of zeros at infinity .

A further loss of zeros at infinity may take place, if the coefficient of sn~m ~d term becomes 

zero; however, such a further loss of zeros no longer depends on the properties of 7,/3 alone, 

but involves the eigenvalues of the system, too; in such a case it is believed that some more 

general forms of multi-orthogonality are involved which need further investigation. Finally, we 

note that if the coefficients an_m, ..., a0 are all zero, then the zero polynomial is identically zero 

and the system becomes degenerate.

Example 2 Consider the continuous system S(A, B , C ):

-6.0 0 0 0 0 0 1

0 -2.0 3.0 - 3.0 1.0 2 0
- 7 0  - 2 0  0

0 — 1.5 -2.0 -1.0 1.5 ,B = 0 -1 ,C =
3 -6 - 3  -1 - 2

0 1.5 1.0 -2.0 1.5 1 3 L J

0 -1.0 - 3.0 - 3.0 -2.0 2 0

with the following simple structure, Jordan form of A :

-6.0 0 0 0 0

0 -2.0 -  2.0i 0 0 0

0 0 -2.0 + 2.0î 0 0

0 0 0 —2.0 + 4 .0i 0

0 0 0 0 -2 .0 -

V A U
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also we have

20? -1  -  31 -1 + 3 1 — 1 +  31

24 +  81 —3 + 1 —3 +  1 -1  -  31

ß 1] =
- 8  +  41 

- 8  -  41
, ß 2) =

—3 — 1

- 8  -  41
, ß 3) =

- 3 - 1  

24 + 81
: ß i] =

—3 — 1

20z .

2 4 -8 1 2 4 -8 1 - 8  +  41 —8 + 41

-281 _ -281 -281 1 to 1 00 «S> . 1__
_

- 1  +  3* 

— 1 — 3z 

—3 +  1 

20 1

24 +  81 

- 8  -  4*

7 i )  = 1
2 -  1 - 1 - 1 * - i  +  \ i — 2 + 1  g l

7 2 )  = 59
4 +  61 f - 6 z — 1 +  g l ~~ 2 ^  * 8*

7 3 )  = H
S + <s>
. 59

4 +  61 f - 6 1 — 1 ~ 8  ̂ 8*

7 4 )  = f  +  l
25
4 — 1 f - 6 z - | z  - 1 _ I i  - i + 1  

8 1 2 ' £

7 5 )  = f  +  *
25
4 — 1 f  +  6* - i * — 1 — 1 +  11

and the coefficient a2 of the zero polynomial is defined as,

(-6.0) =  -204.0

(-2 .0  -  2.0*) ( l l }ß 2)) = 202.0 +  149.01

(-2 .0  + 2.0*) ( l T3)ß 3))  = 202.0 -  149.0z 

(-2 .0  +  2.0?:) ( l J3)ß 3))  =  • 5 -  283. 51 

(-2.0 -  4.0*) ^ ¡ ) /3 5)\  =  . 5 + 283. 51
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=^> a2 =  -  (-204.0 + 202.0 +  149.0i + 202.0 -  149.0* +  . 5 -  283. 5* +  . 5 +  283. 5*) =  -201.0 

in order to define the coefficient a4 we have to calculate the column vectors,

/?12) =

- 8 - 4 1

2 4 - 8 1 , P 13) =

24 +  81 

—8 +  41 , P U) =

201

—8 +  41 , /316> =

20*

24 +  81

-2 8 * -2 8 * 1 to 1 00
 

Oi . 1__
__

------1
• <s>1001

____1

d23) =

—3 +1 

—3 — 1 to o*. II
1

1 
1

CO
 

1
1 

1 CO <s>.
j

, /3a6> =

-1  -3 1

—3 +1 , /?34) =

-1  +3* 

- 3 - 1

-28* 24 -  81 - 8 - 4 * - 8  + 4*

-1  +3* — 1+31
^35) = —3 +1 , + »  = -1  -3 1

24 + 81 20*

and correspondingly the row vectors,

7 l2 ) =  

714) =  

723) =  

725) ~  

735) —

 ̂ 8 * 2^”* 8*

_ l* _1 _  8Z “ 2 +  l
f  +  6* f  -  6* |* ]

f - *  ¥  + 6* -1  +  i*

f + z  f  + 6* - \ - i

713) =
1
2

715) = [ - ¥

724) = > -
734) = 25 + *  

- 4 ^

745) = 25 + *  
4 ^  1

1 8* g!

2 -  1 _1 +  8* 
f - 6  1 - i + i
59
4 — 61 - 1  -

25 __ 7
4 i

so we have,

-1 0 8 .0  +  636.0* A iA 3 ^7lT5

744.0 + 1 2 .0 * AI A5 ( 7lT5),

-6 6 4 .0  A2A4 ( 72T4)/?24))

420.0 -  540.0*: A3A4 ^

- 7 0 8 .0 - 4 1 6 .0 *  A4A5 /- 't

I34)

=  —108.0 — 636.0* 

=  7 4 4 .0 -  12.0*

=  —708.0 +  416.0* 

=  420.0 +  540.0*

=  - 220.0

Ql =  -1 0 8 .0  + 636.0* -  108.0 -  636.0* + 744.0 +  12.0* +  744.0 -  12.0* -  664.0 -  708.0+

+416.0* +  420.0 -  540.0* + 420.0 + 540.0* -  708.0 -  416.01 -  220.0 =  -1 8 8 .0
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a n d  finally  fo r th e  ca lc u la tio n  of ao

^ 1 2 3 )  =  _ 2 8 £  £ 1 2 4 )  =  2 4  _  £ 1 2 5 )  =  _ g  _  4 i )  £ 1 3 4 )  =  _ g  +  4i>  £ 1 3 5 )  =  2 4  +

/?145) =  202, /?234) =  - 3  -  1, /3235> =  - 3  +1, /?245) =  -1  -  31, /?345) =  -1  +  31

and

7 123) \  7 124) =  ~  + 1, 7 125) =  -1  +  ¡ i,  V 34) =  -1  -8

7 145) 3.
=  ~ o z’ 7 ' =234)

2 8

^  _  6* 7 235) =  ^  +  6z ŷ245) -  —  4 DZ’ 7 4 +  7 -  4

1 .
7'135) _  _ 1  _

¡, 7M5)= f  + i

we have

Ai A2A3 (P123) 7 123)> =  -840.0 A ]A 2A4 (/?1 2 4 )7 124)^ =  _ 3 8 4 .0 _  2112.02'

Ai A2A5 (/3125)7 125)) =  420.0 -  540.Of A2A3A4 (/?134)7134)) =  420.0 + 540.0*

Ai A3A5 (/5135)^135)) =  -384.0 +  2112.Of A iA 4A5 (/?145)7145)) =  -900.0

A 2A3 A4 </?234)7234)> =  700.0 -  1660.01 A2A3A5 ( p * * ) ^ ) )  =  700.0 + 1660.0*

A2A4A5 ( /?2 4 5 )7 245)^ =  -340.0 +  1080.01 A3A4A6 [ p ^ ) ^ ) )  = -340.0 -  1080.0*

ao -840.0 + 420.0 -  540.01 -  384.0 + 2112.01 + 700.0 -  1660.01 -  340.0 + 1080.0*+

+1080.01 -  384.0 -  2112.01 + 420.0 + 540.01 -  900.0 +  700.0 + 1660.0* -  340.0 -  1080.01) =  948.0 

the zero polynomial is given as :

z(s) =  -85.0s3 -  201.0s2 -  188.0s +  948.0

and the system invariant zeros are defined as,

2! =  1.4451, z2 = -1.9049 + 2.0221!, z3 = -1 .9 0 4 9  -  2.02211

□
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3.10  C onclu sion s

An extensive review of the fundamentals of relevant mathematics and systems theory has been 

given, which provide the basis for the investigations undertaken in the following chapters. In 

the subsequent Chapters we investigate the effect of sampling on the structural characteristics 

of the discretised models.
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C hapter 4

SA M PLIN G  TH EO RY  AND 

BASIC DYNAM ICS OF 

D ISC R ETISED  M ODELS

4.1 In tro d u ctio n

State space description of the linear, time invariant, continuous systems S(A, B .C , D) and of 

the corresponding discretised models S(A, B ,C , D) provide the framework for the study of 

basic structural properties such as controllability, observability, decoupling zeros etc. Moreover 

Jordan canonical description of a linear, time invariant continuous system enables the use of 

spectral criteria for study of the above properties. The Jordan canonical description is used as 

a natural tool that demonstrates the structure of the internal dynamics and it is crucial in the 

investigation of the mapping of structural properties from the continuous to the discrete model. 

In this Chapter we introduce,

• The Jordan canonical description of discretised models equipped with ZOH, or FOH we 

define the eigenbasis matrix U of the linear operator A =  eAT and the relation between 

U and Û.

• The problem of mapping of the set of eigenvalues of the continuous model matrix A to 

the set of the corresponding eigenvalues of the discretised matrix Â.
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• The consequences of sampling on the eigenspaces, the Segre characteristic and the cyclicity 

properties.

• The classification of the sampling period values between regular and irregular.

This chapter introduces the key problem studied here and provides some introductory result 

on the properties of mapping between continuous and discrete model properties.

4.2  S ta te  S pace D escr ip tio n  o f d iscretised  M o d els [Che., 1], 

[Fra., P ow . &; W or., 1], [Kar., 2]

We assume the general configuration of Fig 2-1. We consider the solution of the first state space 

equation over one sample period T, to obtain the difference equation :

k T + T

x{kT + T) = eATx(kT)+  J eA{-kT+T~ ^  B u ( t ) cLt  (4.1)
k T

Here, we have to distinguish the two cases based on the implementation of hold device (H), one 

with ZOH and one with FOH. Each one of these leads to a corresponding discretised model of 

the physical system. Those two cases are considered next.

4.2.1 Case of a system with ZO H

With the assumption of a ZOH with no delay we have :

u (t ) =  u(kT) for kT  < r  < kT  +  T

and if we change variables in the integral from r  to a , i.e. a = kT  + T  — t , the difference 

equation (4.1) becomes:

x(kT  +  T) ?ATx(kT) + l J eAada I Bu(kT) (4.2)
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If we define as.
' T

A = eAT, J5 = I J  eM da ) B

x[(k + l)T }=  Âx{kT) + Bu{kT)

- A c t ,

we have:

Also sampling of equation (3.53) gives :

y(kT) = CxfikT) + Du(kT)

(4.3)

(4.4)

(4.5)

Where:

C = C, D = D (4.6)

The above analysis leads to the following result:

P roposition  13 The discretised model of the system 5(A, B , C, D) in a configuration involving 

a ZOH and for a sampling period T  is defined by S(A, B, C. D), where the state parameters are 

defined as above by equations (f-3) and (4-6). □

4.2.2 Case of a system with FO H

With the assumption of a H which is of the FOH type and assinning no delay we have, 

r  — kT
u(r) =  ———  (u(kT ) — u(kT  — T)) + u(kT), for kT  < r  < kT  + T

and if we change variables in the integral from t  to cr, i.e. 

equation (4.1) becomes:

T

x(kT  + T) = eATx(kT)+  J (2 -  eAadaBufikT) -
0

a = kT + T  —  t . the difference

1

i  J aeAadaBuikT  -  T)
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If we define as

1 l
Â = eAT, Ê = J  ( 2  — ^  eArr der B , Z — — ~  j  aeAc7dcrB (4-7)

we have

x(kT  + T) =  Âx(kT) + Ê u(kT ) +  Z u fkT  — T)

Also sampling of equation (3.53) yields,

(4.8)

y(kT) = Cx{kT) +  Du(kT) (4.9)

Where.

C =  C, D — D

The above analysis leads to the following result:

(4.10)

P roposition  14 The discretised model of the system S(A, B, C, D) in a configuration involving 

a FOB and for a sampling period T  is defined by ¿'(Â, E , Z, C, D), where the state parameters 

are defined as above by equations (4-7) and (f.10). □

From the above we can conclude that for any order of the H hold the state parameters of 

the resulting discretised system remain functions of the sampling period T  we select. In the 

following we concentrate on study of the structural properties for the discretised models where 

discretisation involves ZOH and FOH.

4.3 S tru ctu ra l P ro p ertie s  o f D iscretised  M od els

From the introductory analysis in the previous section it is clear that the parameters of a 

discretised model are functions of the sampling period T  we select. The investigation of the effect 

of sampling on the structural properties of the resulting discretised model, such as controllability 

and observability is the aim of this section. So we recall the definition of these two properties 

from the theory of linear, time invariant, continuous systems.
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4.3.1 Controllability, Observability of Continuous Systems [Che., 1], [Rug., 

1], [Kar., 2]

Definition 30 A system S(A, B ,C , D) is said to be controllable at time to if for any initial 

state Xjo in the space K" and any state Xj there exists a finite time t\ > to and an input 

u[to-,t\] thnt wiH transfer the state x0 to Xj in time t\ — to. Otherwise the system is said to be 

uncontrollable. □

It can be shown [Che., l] that the system S(A, B ,C , D) described by the equations (3.52) 

and (3.53) is controllable if the rows of the matrix eAt B  are linearly independent over the field 

of complex numbers. By using Laplace transforms we have that :

£{eMB } =  (s i -  A)~1B

and this leads to an equivalent test.

Proposition 15 The system S (A ,B .C , D) is controllable , if the rows of (s i -  A)~^B are 

linearly independent over the field of complex numbers. □

For the property of observability of a linear system S(A, B. C. D) we have the following dual 

to controllability definition :

Definition 31 A system 5(A, B. C, D ) is said to be observable at time to if for any initial state 

x0 in the space ]Rn there exists a finite time t\ > to such that knowledge of the output y(t). over 

the interval [¿o, ¿1 ] suffices to determine the initial state Xq . Otherwise the system is said to be 

unobservable. □

It can be shown [3],[l] that the system S (A ,B ,C ,D )  described by the equations (3.52) and

(3.53) is observable if the columns of the matrix CeA(£-i°) are linearly independent over the 

field of complex numbers. This is equivalently expressed using Laplace transforms as

L{CeA^~tol} = C (sl -  A ) ' 1

So we have the following proposition for observability (dual to Proposition 15) :
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Proposition 16 The system S (A ,B ,C ,D ) is observable , if  the columns of C (sl — A) 1 

linearly independent over the field of complex numbers.

are

□

4.3.2 Controllability of Discretised Models

After the definition of these structural properties of the linear continuous system, we can proceed 

defining controllability and observability of the discretised model of the linear system. In order 

to define the controllability and observability matrices of such a model we have to distinguish 

two cases of hold implementation, one with ZOH and one with FOH. For the definition of 

controllability of the discretised model we have :

Definition 32 A discretised model S  is said to be controllable if for any initial state x(0) =  x j 

and any state x 2 there exists a finite time nT  > 0 and a sequence of inputs u(0), u(T ), u(2T), 

u[(n -  l)T] that will transfer the state x(0) =  x : . to x(nT) = x 2. Otherwise the system is 

said to be uncontrollable. □

Case of system  with ZOH [Kar., 2]

For the case of ZOH the controllability test becomes :

Proposition 17 A discretised model S (Â , B, C, D ) of a system with ZOH is controllable if and

only if

rank B. AB. A'ZB , ..., An~1B =  n

Proof. (For convenience we drop T  from the difference equations) :

x(fc-fl) =  Âx{k) +  ëu (k)  

y(k) = C x(k ) +  D u(k)

for k = 0 , 1 , 2 , n we have :

x(l) =  Âx(0) +  Hu(0)

x(2)  =  Â x ( l )  + È u ( l )  = Â 2x(0) + ÂBu(O) + Êu ( l )
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x(n) = Ânx(0 ) + Ân-'lè u ( 0 ) + Â n- 2Ê u(\) + ... + Â ê u ( n - 2 ) + ê u ( n - l ) ^
n - 1

o  x(n) = Ânx(0 ) + ^ Â n- 1~iBu(i)<*
2—0

n - 1

<=> x(n) — Ânx(0) Ân 1 lBu{i) =
i=0

u{n — 1) 

u{n — 2)

«(0)

For any x(0) and any x(n) there exists a solution of the system of equations if and only if 

rank[B , AB, (A)2B , ..., =  n. □

An equivalent criterion is :

P roposition  18 The discretised model S{Â .B ,C , D) with ZOH is controllable if and only if 

the rows of (z l  — A)~lB  are linearly independent over the field of complex numbers.

Proof. Consider the equality,

{zl -  Â)~l ê  =  z~ l [l -  z ~ 'Â Y lB

and the binomial expansion,

= 1  + z~1Â +  z~2Â 2 + z~3Â 3 +  ...

then.

{zi -  Â y lÈ  =  z~xB  + z~2ÂÈ  + z~3Â 2è  + ...

(4.11)

the n  rows of the above matrix are linearly independent over the field of complex numbers, if 

and only if

rank ê ,Â È ,Â 2B, =  n

From the Gayley-Hamilton theorem, we know that Am with m > n  can be written as a linear 

combination of I. A ,A 2,..., An_1. Hence the columns of AmB  with m  > n  are linearly dependent
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on  th e  co lu m n s o f È ,  Â È ,  Â 2ê ,  Â n 1ê .  C onsequen tly .

rank B, AB. A 2B, = rank B. AB, A ZB , ..., An~1B

and the rows of (z l  — A) lB  are linearly independent over the field of complex numbers if and 

only if :

rank B ,A B ,A 2B ,...,A n~l B n

and the discretised system according to Proposition 17 is said to be controllable. □

Definition 33 We define (z l — A) 1B  as the discretised controllability matrix of a system with 

ZOH. □

Case of a system  with FOH

A similar analysis is now given for the case of FOH implementation

Proposition 19 A discretised model S(A, E, Z .C , D) of a system with FOH is said to be 

controllable if and only if,

rank Ê, Â Ê  + Z , Â 2È  + Â Z , Â n~lE  + Â n- 2Z =  n

Proof. The difference equations for a discretised model with FOH, are :

x (fc+ l) =  Âx(k) + Ëu{k) +  Zu(k — 1) 

y(k) =  Cxfk)  +  Dufik)

for At =  0 ,1 ,2 , n correspondingly we have (u{—T ) = 0):

x(l) =  Âx(0 ) +  Êu(0 )

x(2) =  Âx( l )  +  Êu( l )  +  Zu(0) = Â 2x(0) +  ÂÊu(0) + Êu( l )  + Zu(0)

x{n) = Ânx{D) + Ân~lÊu(Q) + Ân~2Èu(l )  + ... T ÂÊyfin — 2) +  Èuf n — 1)4-
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A A n zZu(0) + An 6Zu{\) +  ... +  A Z ufn  — 3) +  Zu{n — 2) «=>

n - 1 n —2

<=> x(n) =  i nx(0)+ Â ^ ^ Ê u ^ A  A n-2~lZu{i)
¿=0 ¿=0

n—2
«• x(n) - Â nx{0) = Y  \Ân-l~lÈ  A Â n~2~lZ| u(i) + Éu{n -  1)

¿=o

<=> x(n) -  Ânx(Q) = Ê, ÂÊ  + Z, Â 2Ê  + ÂZ,  ..., Â n~l Ê  A Ân~2Z

u(n  — 1)

u{n — 2)

u ( 0 )

For any x(0) and any x{n) there exists a solution for the system of equations if and only if.

rank E, A E A Z ,  A 2E A A Z ,  ..., An~lE A A n~2Z = n

and Proposition is proved. □

P roposition  20 The discretised model with FOH is controllable if and only if the n rows of 

(z l  — A)~1(zË A Z) are linearly independent over the field of complex numbers.

Proof. From the binomial expansions in (4.11) we have that

{zl -  Â ) - \ z È )  = Ê A  z~lÂ Ê  A z~2Â 2Ê  + 

(.z l  - À ) ~ i Z = z~1Z A  z~2Â Z  +  z~3Â2Z A

=> {zl - Â)~\zÊ A Z) -  Ê  A z~l (ÂË + z )  + 2“2 +  i f )  + ...

and from the Cayley-Hamilton theorem , as in Proposition 19, the rows of {zl — Â)~x{zÊ A Z) 

are linearly independent over the field of complex numbers if and only if

rank E, A E A Z ,  A 2E A A Z ,  ...,

and the discretised system according to Proposition 19 is said to be controllable. □
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D e f i n i t i o n  3 4  W e  d e f i n e  ( z l  — 4 ) J ( z E  +  Z )  a s  t h e  d i s c r e t i s e d  c o n t r o l l a b i l i t y  m a t r i x  o f  a

s y s te m ,  w i t h  F O H .  □

4.3.3 Observability of Discretised Models

For the observability property of discretised models we have the following dual to controllability 

definitions and propositions :

D efinition 35 A discretised system is said to be observable at time to if for any initial state 

x 0 in the space M71, there exists a finite time nT > to such that knowledge of the sequence of 

outputs y (0). y(T). y('2T), y[{n — l)T], as well as inputs u(0), u(T),...,u[(n  — 1)T] over 

the interval [0. nT] suffices to determine the initial state Xq . Otherwise the system is said to 

be unobservable. □

In the case of a system with ZOH or FOH we have the following tests:

P roposition  21 The discretised model 5 (4 , B , C, D) of a system with ZOH or the discretised 

model 5 (4 , E, Z . C, D)of  a system with FOH. is observable if and only if :

rank

C

CÂ

CÂ2 n

0 4 " “ ]

□

P roposition  22 The discretised model with ZOH or FOH is observable if and only if the n 

columns of C(z l  — 4 ) “ 1 are linearly independent over the field of complex numbers. □

D efinition 36 We define C{zl  — 4 ) _1 as the discretised observability matrix of a system with 

ZOH or FOH. □

R em ark  14 From the above we conclude that for the controllability test of a discretised model 

we have two different types of controllability matrices for ZOH and FOH respectively. This can
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be extended to models with higher than one order H holds i.e. to each order hold corresponds 

a different type of controllability matrix. On the contrary, for the observability test, the same 

type of observability matrix is valid for all the orders of DAC holds as both the state matrix A 

and matrix C of the discretised model remain unaffected by the order of the H hold. □

4.4  Jord an  form  o f th e  d iscretised  m atr ix  A

The matrix A  of the discretised system, after the transformation of the continuous system 

matrix A to Jordan form (3.17) and (3.18) becomes :

A = eAT =  eUJTV = UeJTV  = [/(block diag{eJ (Al>T, ..., eJ(Ai)T, ..., eJ^ T})V

where
,AK)T _ diag{e T  e J i k T

and from (3.20) we have that eJlkT is the upper triangular matrix block of the type :

eJikT =

X T TeXiT .. T Tik ~ 'l e x i T
(n*:-2)! (Tifc-1)!

0 P K T T’Uk ~ 3 e x i T T Tik ~̂
(Tifc-3)! O i k -  2)!

0 0 eA‘T T  eXiT

0 0 0 eXiT

£ (CTifc *Tik (4.12)

The characteristic polynomial of the above upper triangular type matrix is given by

det (zlik -  eJtkT) =  -  eA<r)
Ti k

and so eXiT is the only distinct eigenvalue of matrix eJikT, with algebraic multiplicity r^ . 

Then, if we define,

A i  = e X i T  (4.13)

96



we have :

?J i k T  ~  \ h k  =

0 Tex'T 2 ^ * 1

0 0

0 0 

0 0

Te A i T

0

0

TTik~1exiT 
( T ik ~  1)! 

T Tik  ~2eA»T 
(Ti k ~  2)!

TeX'T

0

(E (CT̂ fc * Tik

Given that TeXiT ^  0 for every value of the time period T >  0, the rank of the above upper 

triangular matrix is :

rank[ i, J i k T ^¿2] -- Tj/; 1

or the rank deficiency (geometric multiplicity of A¿) of the matrix block eJi,£r at A* is 1.

Thus we conclude that for every T  > 0, the matrix block eJikT has only one distinct 

eigenvalue Aj =  eAt:r and only one real eigenvector. If this eigenvector is uik, then a chain of 

generalized eigenvectors is defined by the equations :

eJikT -  A J  

eJikT -  A J

uik = 0 &  um  = uik

— ik 2  ~  I L ik l  ^ iJikT -  A J ŷ ik2 — 2

=JikT — A ,7 — i k r ik  U i k r ik  -1 iJikT -  Ail
Tik

^ i k T i k  2

and the matrix block eJikT can be transformed to a Jordan matrix Jik as shown below,

eJikT = UikJikVik (4.14)

where

Jik -

.A iT 1 .. 0 0

0 eXiT .... 0 0

0 0 .... eA*T 1

0 0 .. 0 eKT

£ (¡2TikXTik (4.15)
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and Uik is a r\k x  rlk matrix defined by the eigenvector üik and the corresponding chain of 

generalized eigenvectors:

Ülk =

so we have :

Proposition 23 For every value of the sampling period T, the matrix block eJikT given by 

(4-lf) has only one distinct eigenvalue Xt =  eXiT, of geometric multiplicity 1. Hence, a matrix 

block eJikT can be transformed to a Jordan matrix Jik formed by only one Jordan block of 

dimensions T̂ k x  r^ . □

We examine next the nature of the eigenchains of eJikT. By inspection of matrix eJikT — \ I  

we conclude that the solution of the matrix equation,

U i k  —  U i k l ;  U i k ‘2  ! i i k T i k (4.16)

J i k T - X i l Ùiki — û

for every value of the sampling period T  > 0 is the r ik x  1 vector:

Ü i k  - Ü i k i  =  [ 1 , 0 , . . . , O f

Then we determine the rlk x  1 vector ù ik2 from the equation:

HikT Xil
=-A i T

U ik l  — U ik i  ^  Uik2  — ', o ,..., 0

and also from the equations:

HikT - X  J U i k 3  —  Ù i k 2  ^  Ù i k 3  —

e~2 \iT e~2 \iT -I T

2 T  ’ T 2 ", o ,..., o

HrkT _  w Uiki — Uiks ^  Uiki —
-3A , T e - 3 A  i T  e - 3 A  i T

3 T J 2̂ ’ o ,..., o

It is thus clear that we can determine any number of generalized eigenvectors following the 

above procedure. In general the generalized eigenvector uikj has its first, (j  -  1 )-th and j-th  to 

Tik-th. entries as follows:
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Mikj = 0, --  nL _ o -------- , ^ • _ 1 , 0 , - ,02 T i~ 2 T i~ 1

where by #  denotes a nonzero entry. The generalized eigenvector uik^ +1  ̂ is defined by the 

equation :
oJikT Xd —ik(j+l) —ikj ^

—(j — l)e~iXiT e~jA
0  1) " 0,

,T
'i o , o2TJ~1 ’ Ti

We have thus proved that the x rik transformation matrix Uik of the matrix block eJikT, has 

the following upper triangular form :

Uik =

0 0 0 .. 0 0

e~\T e- 1\T e~3XiT •• # #T 2 T 3 r
0

e -2Ai T e-3XiT
# #r 2 T2

0 0 e-3XiT
# #T3

0 0 0
e - ( U i - 2  )\T

TTik ~ 2 2 T Tt*: ~2

0 0 0 .. 0
e-fulfc-dvr

TTik~l

The matrix eJikT has only one set of generalized eigenvectors

(4.11

the eigenvalue Á¿ =  eA,r, which form, the columns of the triangular matrix Ü{k given by (4 .1 7 ) .0

From the previous analysis it follows that the diagonal matrix eJ(Xi'>T can be transformed 

to the Jordan form matrix J(A¿) by the transformation :

eAXi)T = t/(A<)J(Ai)V’(Ai)

where the transforming matrix is also an upper diagonal matrix:

Ü(Xi) =  block diag{Ün, ...,Üik, (4.18)
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and where J(A*) is a Jordan matrix formed by the Jordan blocks associated with the distinct 

eigenvalue Aj :

J(Xi) = block diag{ J j i , Jik, J iVi}

Then the diagonal matrix eJT , can also be transformed to the Jordan form matrix J, by the 

transformation :

eJT = U JV

where :

U =  block d i a g ^ A ^ , t 7 ( A i ) , U{A;)}

and where :

J = { J ( A 1) ,. . ,J (A i),...,J(A / )}

From the above we have :

A  = eAT = eUJTV = UeJTV = U U JVV  

and if we define as U =  UU, V  =  V V  then:

A  =  U J V

So. we have proved that there exists a transformation matrix U  which transforms the discretised 

matrix A  to a Jordan form matrix J . The transformation matrix U  is :

u  = U U  = [ U ( Aa) , U { X i ) , . . . .  U ( X f ) ]  block diag { ¿ / ( A j ) , f / ( A , ) , f / ( A / ) |  = 

[ / ( A i M A O , U(Xi)U(Xi) ,U(Xf )U(Xf )} = [ ¿ / ( A j ) , U{A , ) , U ( X f )

where U t { X i )  =  U ( X l ) U ( X l ) ,  is a 7r; x n matrix as the product of multiplication, of the ^  x n 

matrix f7(A,) and the tt1 x  n  block diagonal matrix f / (Aj ) .  Furthermore from (3.15) and (4.18) 

we have :

Ur =  U ( X i ) U ( X i )  = [ U u , U i k , U iVi ] block diag U i k , U i v . |  =
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—  ̂Ui\ Ui\, ■ ■ ■, Uik Uik, ■.., UiVi UiVi J> 

and from (3.16) and (4.16) we have:

U ik  =  ^ ik U ik  =  [iL ik l) ^ ik T ik \ \} ^ ik \^ ik 2 - ,  ■■■^ikTlk\  =

[¿ifcl ! ¿̂fc2l •••)

where uifcl =  uik is an eigenvector of A associated with the eigenvalue Ai and uikl, u lk2  

uikTik is a chain of generalized eigenvectors, satisfying the equations:

(■*4 ~ 0) (̂ 4 — Xil)u ik2 i±iki) •••) (̂ 4 — \ i I )u ikTik = u.ikTik̂ \

From (4.17) and the above definition of matrix Uik we have:

^■ikl — U i k ù ik  j — tk ik l

e ~ x ' T
A ik 2 U i k u ik2  = j -

e - 2 A  i T  g - 2 A t T

A ik 3 —  U i k Uik3  = 2  p  —ik2  1 p  2 —ik3

e - 3 X i T  e - 3 A  i T

A ik 4 =  U ik ÌL ik i — —i k ‘2 rp  2 —ik3
e~3XiT

jvj —iki

and it is possible to determine any number of generalized eigenvectors following this proce-

dure. From the above and from the linear independence of the generalized eigenvectors we can 

conclude that

span [um ,u ik2, ...,u ikTJ  =  span [um ,ù ik2, ...,ù ikTJ

Every chain of the above generalized eigenvectors forms a basis for the invariant and cyclic 

relative to A and A subspaces Vik and VTzk So we conclude that Vik =  Vik■ From the above we 

have the following result :

Theorem 2 6  For every value of the sampling period T, the following properties hold true:

1. To every distinct eigenvalue Aj of A corresponds the eigenvalue At =  eXiT of A.

2. A and A have the same eigenvectors.
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3. To every chain of generalized eigenvectors of A associated with the distinct eigenvalue 

Aj, there corresponds a chain of the same length of generalized eigenvectors of A associated 

with the not necessarily distinct eigenvalue Aj =  eXiT.

f. Each A-invariant and cyclic relative to A subspace Vjfc is also A-invariant and cyclic 

relative to A.

5. To each Jordan block, of the Jordan form J of A, associated with the eigenvalue \ z there 

corresponds a Jordan block of the same dimension of the Jordan form matrix J of A. 

associated with the eigenvalue

6 . To every elementary divisor (s — Ai)Tik of A, there corresponds the elementary divisor

(z -  Âj) 'k of Â. □

Because the eigenvalues A].A2,...A^ of A  may be not distinct, for reasons referred to as 

eigenvalue collapsing and which will be examined in the following Chapter 5, we cannot say 

that for every value of the sampling period T , to the generalized null-space Mij of A  corresponds 

a generalized null-space Mtj of the same dimension of A, since merging for such spaces may 

occur. For the same reason, the Segre characteristic and the index of cyclicity of A  for every 

value of the sampling period T  cannot be defined for any value of sampling, but needs special 

attention.

We return now to the previous relations in order to define the inverse transformation matrix 

V (Aj) .  In fact,

¿¡ki

^ik2

VT . -ikrik

where vfikT.k is a dual eigenvector and vTm , yjk2, ..., iJfcT j are dual generalized eigenvectors, 

defined by the equations:

Ojkl(e '  - W )  — ¿ J k 2 ’ & J k 2 ( e  '  ^ ¿ -0  — Ü j k 3 ’ •"> ^ i k T i S e 'J l T  — Q
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Also we have:

V ik U ik  =

C l

Cc2

VT,L — r t T i k  J

[¿¿/c 1 ) ŷ ik 2 ) ■ • ■ ! î ikTik \ ITik

or :

C /C * u  = Shj where,
=  0 for h ^  j  

8hj =  1 for h = j

From the above we conclude that :

C i  =  [ 1 ,0 ,0 ]  and vJkTzk= [0,...)0 ,TT« - 1e^ - 1̂

and thus in general

C j  =
1 0-DA.r Q - - l ) r i eb - ^

Fi'om the above we conclude that matrix V ik  = ( U i k ) 1 has the following upper triangular form:

1 0 0 0 0 0

0 TeXiT T2exiT
2 # # #

0 0 J ’2g2A ,T ^ 3 e 2A iT
# #

0 0 0 j i 3 g3Afr
# #

0 0 0 0 7"(Tifc-2 )e (rii.-2 )A t T (rifc-2 )T (Tiii - 1)e(nfc-2)Ai'r
2

0 0 0 0 0 T i T i k - l )  e {.Ti k - \ ) \ i T

(4.19)

The matrix eJikT has only one set of generalized dual eigenvectors, associated with the 

eigenvalue =  eA*T, which form the rows of the above triangular matrix Vik.

103



Consider the system S (A ,B ,C ,D ), described in the time domain by the equations (3.52) and

(3.53). If U = V ~ ' is the matrix defined by the chains of eigenvectors of A, the Jordan canonical 

description of the system S j(J, B , T, A) is given by the equations

¿(f) =  Jz(t)+ B u (t)  (4.20)

2/(f) =  Tz(t) + Au(t) (4.21)

4.5  Jord an  equ ivalent eq u ation s o f a d iscretised  sy stem

4.5.1 Case of a system with ZOH

where :

z(t) =  Ux(t), J  = U~XAU  =  VAU, B = U~l B, T = CU, A  — D

We have seen before that the state-space description of a discretised model S(Â, B . C . D) of a 

system S(A, B ,C . D), with ZOH and sampling period T, is given by the equations:

x[(k + l)T]  =  Â x ( k T )  +  ë u { k T )  

y (kT )  = C x {k T )  +  D u (k T )

where: A  =  eAT, C  =  C, D  = D

Defining a new basis for A  as the eigenbasis matrix U, then the state space description becomes:

z [ ( k + l ) T \  = J z ( k T )  +  B u(k T )  (4.22)

y{kT) = tz (k T )  + Au(kT) (4.23)

where :

z (k T )  =

B  =

Ûx{kT) , J  =  Û ~1ÂlJ =  V Â Û
T

(4.24)

û ~ l ë  = V (  J eJada )B  =  V E B (4.25)
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E 4  f e e d e r
o

f  =  CU = CU = YU, A =  D = D

(4.26)

(4.27)

Prom (3.16) we have :

T

E =  block diag i J eJ('Xl')ada ,..., J eJ X̂i)a d a , J eJ(-x^ ada
o o

where.
T  f  t  t  T  \J eJiCJda = block diag j J eJro a d a , ..., J eJr* ° d a , J e Tivi ada  1
o l o o o J

For the above integration we have to distinguish two cases, one for A, =  0 and one for At ^  0. 

The following results are readily established :

Lemma 3 Let t u , ...,rlk, ..., the dimensions of the Jordan blocks of J  associated with the 

eigenvalue X\ = 0, Then we have,

T

where,

T

P rjO .T ) eJ^ ° d a  = 
o

r T

da, . eJri kada, [  e

0
J
0

T T 2 T 3 T^l k
2! 3! t u -j !

0 T T 2 r n * - 1
2! (r i fc - l ) !

0 0 0 ... T 2
2!

0 0 0 ... T

□

Lemma 4 Let t u , rik, ...,TiVi be the dimensions of the Jordan blocks of J  associated with the
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non zero eigenvalue A¿, then

T  /  T  T  T  \J eJ^ cda =  block diag i J eJr*iud a , J e ^ ^ d c r , J eJTiviada 1 
o l o o o J

where :
1

Pra (\„ T )  â  J  eJ^ ’ da =  ( e W  _  , TJ  (JT<J -1

□

Prom the above two Lemmas 3 and 4 the following Proposition is directly concluded 

P roposition  25 With the notation previously introduced we have that

E =  block diag {Pl f Pu Pf }

where :

P, =  block diag {PTn (0, T ) , PTifc(0, T ) , PTli/i (0, T)}

Pt =  block d ia g |p Til(Ai, r ) ) ...,PT.fc(Ai, r ) ) ...,Prii/.(Ai, r ) |  (i = 2 , . . . , f )

□

Prom the above two Lemmas 3 and 4 and Proposition 25 the following Theorem is directly 

concluded :

T heorem  27 For every value of the sampling period T  > 0, the matrix E is a block diagonal 

with the same structure of diagonal blocks as the J  matrix. In particular:

1. For Aj =  0 the elements of the main diagonal are equal to T.

2. For \ i  ^  0 the elements of the main diagonal are equal to feXiT — 1)A71.

3. E is a non singular matrix. □
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4.5.2 Case of a system with FOH

We have seen in the previous section that the state-space description of a discretised model of 

a system S (A ,B , C, D ), with FOH and sampling period T  is given by the equations :

x(kT  + T) =  Âx(kT) +  Êu(kT) + Zu(kT  — T) 

y(kT) = Cx(kT) + Du(kT)

where

T  t

Â = eAT, È  =J (2 -  pj eAada B, Z  =  J aeAadaB , C = C, D = D
0 0

Defining a new basis for Â as the eigenbasis matrix Û, introduced by (3.43), the state space 

description becomes :

z[(k + 1)T] 

y(kT)

Jz(kT ) + £u(kT) +  Z u (kT  -  T) 

Tz(kT) +  Âu(kT)

(4.28)

(4.29)

where : z(kT ) =  Ûx(kT), J  = Û 1ÂÛ = VÂÛ
T

£ = Û~l Ê  = V  J [ 2 -  eA°daB (4.30)
0

T

z  = Û -l Z  = - V ±  [ aeAadaB (4.31)
-L J 0

f  =  c û  = c û  = rü, Â  = D = D (4.32)

T TE=J eJada, E :-  z f  veAada
J

(4.33)
0 0

£ = V (2 E - E ) B , Z  = VEB

107



Analytical expressions for - have been derived in the previous section for the ZOH. So we 

have the corresponding expressions for S :

For the integration of £, as for the integration of r. in the previous paragraph, we have to 

distinguish two cases, one for At =  0 and one for Xt ^  0 .The following results are readily 

established :

Lem m a 5 Let be the dimensions of the Jordan blocks of J  associated with

the eigenvalue A] =  0, then we have :

I  oeJ^ ° d o  = block diag{Qr n (0 ,T ),...,g Tlfe(0 ,r ) , . . .1QTln (0,T)}

r 2 T 3 J '(T U  +  1)
2 1!3 "

0 T 2
2 ( t i * —2 ) ! r lfc

0 0  .. r 2
2

Lem m a 6 Let T u , T ik, r iVi the dimensions of the Jordan blocks of J  associated with the 

eigenvalue Aj 0, then

TJ aeJ^ )oda = block diag {QTii(A*, T ) , QTik( \ u T ) , ..., QTiv. (A;, T ) |  
o

Qrlk{ \ ;  T) ±  {eJ* T (Jlk -  ITJ  + ITik) (.Jik)~2

□
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Prom the above two Lemmas 5 and 6 we have :

P ro position  26 With the notation previously introduced we have :

£ =  ^  block diag {Qi, Qi)

where :

Qi = block {Q t u  (0. T )> - ,  Qrik(0, T ) , QT]j/i (0, T)}

Qz =  block di&g{QTil( K , T ) ,  . . . ,QTik( \ i , T ) ,  . . . ,QTiUi( \ i , T ) }  , (i = 2

□

From the above two Lemmas 5 and 6 and Proposition 26 we have :

T heorem  28 For every value of the sampling period T  > 0, matrix E is block diagonal matrix 

with the same structure as the structure of the diagonal matrix J . In particular :

1. For Xi = 0 the elements of the main diagonal are equal to .

2. For Xi ^  0 the elements of the main diagonal are equal to (eAiT (A* — 1) +  l) A“2.

3. E is a non singular matrix. . □
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4.6  E igenvalue C ollapsing

4.6.1 Introduction

From the derivation of the discretised parameters it is evident that for any A * =  cr + ju  G <F(A), 

then A2 =  eXiT = euT+:iwT js an eigenvalue of A = eAT i.e. Al G 4>(A). However, for two distinct 

eigenvalues Aj ,A2 G 4>(A) there may be values of T  such that eXlT =  eX2T =  Ac G 4>(A). This 

phenomenon, where distinct elements of <F(.A) are mapped to one element of 4>(A) is called 

collapsing of eigenvalues and any value of T  for which such phenomena occur will be referred 

to as irregular sampling. All values of T  for which any A},A2 G 4>(A),Ai ^  A2 is mapped to 

A] 7̂  A2 will be regular sampling. The property of eigenvalue collapsing may occur not only on 

a pair of (Ai, A2), but on a subset of 4>(A) : L{A) =  {Ai G 4>(A), Ai ^  Ay}, such sets for which 

there exists T  such that At =  ex%T = Xc G 4)(4), for all At G £(A), will be called collapsing sets 

and depending on whether Ac G C or G R this collapsing will be called complex or real. Clearly, 

this property depends on how we select T, as well as the nature of the set. The presence of 

collapsing sets in 4»(A), as well as the characterization of values of associated irregular sampling, 

is of great importance in the development of model based theory for sampling, since it affects 

the basic structure of A, as well as related properties and it is subject of this section.

4.6.2 Collapsing Sets

As we have seen, for two complex eigenvalues Ai, A2 of A with different real parts cxi, cr2 : 

A] =  <7] +ju>i, A2 =  <7 2 + jui2 correspond the two eigenvalues of A : A] =  eXlT = ecn7V u;ir, 

A2 =  eAzT =  eCT2Te-7aJ2T. Because A], A2 are distinct, independently of the values of u>i, ll>2 , we 

have:

P roposition  27 For any two distinct eigenvalues Ai, A2 of the continuous system with differ-

ent real parts (o\ ^  cr2), there correspond for VT > 0 two distinct eigenvalues Aj, A2 of the

discretised model. □

R em ark  15 If A has all its eigenvalues real and distinct for VT > 0 , then there is no collapsing 

set. □
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Figure 4-1: Mapping of two eigenvalues with a\ ^  02

R em ark  16 If Aj, A2 G <f>(A), then a necessary condition for the existence of T  such that 

collapsing occurs is that Re(Ai) =  Re(A2). □

D efinition 37 Let <I>(A) =  {A, G C, +  j u u i =  1,2 ...,/} , and let

K(A) =  {eTp,p ~  1, ...,//, crp G 1}

be the set of distinct values of the real parts o f$ (A ), and$ap(A) =  {VAj G $(>1) : Re(Aj) =  crp}. 

Then A (A) will be the real trace of $(A) and $ ap(A) is its crp-root range. □

It is evident that collapsing occurs for subsets of 4>CTp(A).This is defined below:

T heorem  29 Let X\ — r +  , A2 =  r  + ju>2 G <f>r (A) and Aj =  e~rTejuJ'T, A2 =  e~rTeju;2r,

then the following properties hold true :

1. For any Ai ,A2 G 4>r (A), we have:

• Aj =  A2 G C, if and only if,

T = -  2k7T , fc G Z+ (4.34)\IjO\ — U>2 \
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there exists T  such that A] =  A2 G R if and only if u>2 / uj\ is rational i.e.

^2 M _ ry
u>l V

(4.35)

Furthermore, if the latter condition is satisfied, then the corresponding T  is :

^  2 \ v — nl kr  , .
T  = -7----- - 1 , fc € Z+

|uJ] — U>2 \
(4.36)

2. I f  Aj =  r +  ju>, A2 — r — ju> =  AJ, then X\ =  A2 ¿/ and only i f

tt
T  — — , (4.37)

U)

Furthermore, for all such T  we have Aj =  A2 =  erT, if  k =  2, 4. 6,... and Aj — X2 = —erT, 

i f k =  1,3, 5,...

3. If A] =  r  +  ju>\, AJ =  r — j u \ , A2 =  r + ju>2 , X*2 = r — ju>2 G 3>r (A) then for any T  such 

that A] =  A2 then also Aj (= eAjT) =  A2 (= eA2T). Furthermore, if T  is selected as in 

(4-37). then Aj =  A2 =  A2 =  A2 G R.

Proof. :

1. If u>\ > W2 > 0. then we have the following representation of Figure (4.2) below and:

• Also we have,

^ • 2k'KU-\ - i n i  1 2fc7Tu>o \

Aj =  eAlT =  erTe: ^  = erTe ^ 2k7T+̂ J
. 2knujn

r T  0 -------g '  J  g “7 u > j  — u>2
. 2fe7TU>2

A2 = eA2T =  er r eJ" i_"2 =  Aj

• Let wj > tU2 > 0, v > ¡i .then

eAlT =  erV
2k(u — /X)7TU2|

=  erV
2fe(t/ —/x)7rt/u;]

=  er7V 2icI/7r =  Ä2
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I m

OJ] i ...................... Aj:
: \cor œ2\

co2 , . . . i
............. ; A,

0 r  Re

Continuous

Im

Figure 4-2: Collapsing of a pair of eigenvalues

2. For this case

Âi Â2 erTejkir ^ k = 2,4,6, ...,=> ejkn = 1 

k = 2,4,6, ...,=► e*'** =  -1

and proof is completed. □

The above result clearly establishes the existence of irregular sampling for complex and real 

collapsing on simple subsets of a general 4v(yl) set. More specifically:

C orollary 1 Given any set of A>r(A). then the following properties hold true for simple subsets

ofA>r(A) :

1. For the set =  {r, r  ±  ju>), there always exists T  such that there is total real collaps-

ing to erT.

2. For the set <fA(A) =  {r i  ju>\, r i  joJz), there is always a T  such that we have complex 

collapsing to AC,AC £ C. Furthermore, if ^  is rational, there exists T  such that we have 

total real collapsing to erT.

3. For the set =  {r, r ±  jai\ , r ±  ju>2} there exists total real collapsing to erT for some

T  if and only if ^  is rational. □

For sets with more elements the problem of total complex, or real collapsing depends on the 

structure of the set and this is established below:
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R e m a r k  1 7  L e t

$V(j4.) =  {Ai; A* =  r ±ju>i,i =  1,2, ...,p, 0 < u>j < ... < up}

The following properties hold true :

1. If all the p 2 differences \u>i — u>j\ for the total number of the 2p eigenvalues of $ r (yl) 

are distinct then there exist p 2 corresponding sequences of T  for which collapsing occurs 

between two pairs of eigenvalues A A j and A*, A*.

2. There exists a T  such that for all A X i we have Aj =  A2 =  ... =  Xp = Ac, Aj =  X*2 =  ... =
* •*' * A ^ *
Xp* =  Ac, Ac, Ac £ C, if and only if,

top — =  ... — a>2 — ai\ =  6u> (4.38)

If the above holds true, then the appropriate sampling is

T  — ~r~! k £ Z + (4.39)ou

3. If the above condition holds true and for some u>i

u>i p ,
- ^  = ^ , p , v & z + (4.40)

then there exists T  such that A* =  A* =  erT for all i = 1, 2,..., p. □
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CÜ3-CD4

I 0 0 1-CO4 I

! OJ1-OJ2

Figure 4-3: Collapsing Example

Exam ple 3 Consider a continuous system, with the root range at r =  —5 which is defined as

4>_5(A) =  {A j  = - 5  + 12i, A2 =  —5 — 121, A3 =  - 5  + 31, A4 =  - 5  -  3z}

According to Theorem 29 there exist the following differences and the corresponding se-

quences of irregular T,

2 krr , | 2/C7T
|uq — w2| =  24 => 1 1i2 = 24

, CJ1 -  9 => T1A - 15
2 hrx 2 krr

10J\ — w3| =  9 => Ti }3 = 9 ’
|w3 w4| - 6 = >  r 3>4 -  ,,

a) The values of the sequence T3,4 are included in Tp2 (for k =  4,8,12...) and so for the 

values of 7"i.2 the following collapsing occurs

T1 2  = ^  a .l) for k = 1,2,3,... Ai =  A2 G R

a.I?) for k =  4, 8, 12,... Aj =  A2, A3 =  A4 G M

a.3) for k =  8, 16,... A] =  A2 =  A3 =  A4 G M
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th e  ab o v e  a re  verified  by  th e  fo llow ing tab le ,

k Tl.2 Ai =  A2 A3 a 4

1 7T
12 - e - h " e“ A77 +  ^ z e - ^ 77 ^ e ” ^ 77 -  ^ z e - ^ 77

2 7r 
6 ze~l*' - z e - l 77

3 7r
4 - e ~ l n

4 7T
3 e~3n - e " ! * —e-  371"

5 57T
12

25 _
— 6 12 ̂ - ^ e - i 77 +

6 7T 
2 e-§7T ze_ z77

7 77r 
12 —e“ f t7r ^ e _ l t 7r +  A ^ze-ff77

8 27T
3 e - f ^ e - f - e - T 77

9 2?r 
3 - e ' f 77 ^ e _ f 77 +  - ^ z e - f 77 -  & i e- &

10 57r 
6

25 _
e e n i e - ¥ - - z e - f 77

11 1177
12 —e 12^ —-i^ e - 'i27r + — - ^ e - f t77 -  ^ z e ' f i 77

12 7T g-577 _ e-577 _ e-577

13 137T
12

65 _
—e 12 — f t77 +  ^ z e ^ f t 77

14 77T
6

35 _e 6 71 - z e - f 77 z e - f 77

15 157T
12

-2̂ 77- e  4 71

16 477
3

-20,7 e 3 77 e - f - e - f 77

As ^- =  according to Theorem 29 for the values of the sequence Tjj4 the following 

collapsing occurs

Ti ,4 =  ^  b. l )  k — 1,2,3, . . .  A1 =  A4, A2 =  A3 €<C,

b . Z) k  = 5 ,1 0 ,1 5 , . . .  Aj =  A2 =  A3 =  A4 € R
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th e  above a re  verified  by  th e  follow ing tab le ,

k Ti ,4 II
<-< A2  — A3

1
277
15

v/s-l -  |7T VS- 1  -f*- , \ /2(5+%/S) ic-fir
4 c J 4  IC 6 4 c j 1 4 iC 3

2
477
15 4 t i  e - h4 4 +  7 2 (5; >,*)ie - i»4 4

3 677
15 4 t l e- 2̂  +  ^ bz f ) . . ie-*x \/5 + l „—277 \ /2(5^ ) ic_2,

4 4

4 877
15 4 r e- ! '

5 IOtt
15 e - ^ e - T -

6
127r 
15

V5-1C-47T ^2(5+V5) _4?r VS-1c -4T , V2 (5 +^ ) , c-4 .
4 c 4  lc

7 147T
15 4 0 4

^ e_M„ +  V i f c r 3 ic-M„

8
167T
15 4 t i  e- »  +  v'2 (5; ^ > i e - f - _  V ! f c a , e- f -

9 18tt
15

V5-1.-67T , 6 . 1  p 677 \Z2 (5+\/5)^ g7r
4  c ' 4  lc 4 e 4 ie

1 0
2 0 tt
15

- 2 0  e 3 w -2̂ 77e 3 77

c) Finally for the values of the sequence =  |) ,  the following collapsing occurs,

7 i ,3 — c . l ) k — 1 , 2 , 3 , ... Ai — A3 , A2 = A4 € C.

c.i?) k =  3,6,9,... Ai =  A2 — A3 =  A4 € K

the above are verified by the following table,

fc 7 i ,3 Ai =  A3 a 2 =  a 4

1 277
9 - K ^  +  5 i e - ¥ V 5

2 477
9

_ l e- f 7r _ l ie-f7 7 ^3 ) _ i e - f *  +  i * e - f V 3

3 677
9 e - T -

10w e 3 ^

4 877
9

1 40_ -1 40 _ r—

—  \e  9 w 9

5 1077
9 — \e  9 -  \ie  9 V3 - | e  +  9 \/3

6 1277
9

20 _  e 3 n 20e 3 ^

□
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4.6.3 Structural Consequences of Eigenvalue Collapsing

The collapsing of eigenvalues has been examined so far for distinct eigenvalue sets. We examine 

next the consequences of such phenomena on the Segre characteristics and the geometry of 

eigenspaces of 4.

Let the characteristic polynomial of the continuous system matrix A £ Rnxn be :

<t>(s) =  det(4  — s i)  = (s — Ai)77! (s — A2)7f2. . .(s — \ / ) nf

where Aj, A2,..., A/  are all the distinct eigenvalues of A and tx\ , T2, ...,7T/ be their corresponding 

algebraic multiphcities, with ix\ + 7r2 +  ... +  tt/  = n. For regular sampling , to each one of the 

distinct eigenvalues A* of A  there corresponds one distinct eigenvalue \  of A.

From Proposition 26 we know that for every value of T  the eigenvectors of A associated 

with the eigenvalue \  as well as the corresponding eigenvectors chain lengths, are equal to the 

eigenvectors and eigenvectors chain lengths of A associated with A¿. So, under regular sampling 

the algebraic multiplicity of A* is :

=  T i Ui +  ... +  Tjfc +  ... +  T il =

and the characteristic polynomial of 4  is :

<f>(z) =  det(4 — z l)  =  (z — Aj)7ri (z — A2)7r2. . .(z — X/)7Tf

The generalized null-space Hi of A  associated with the eigenvalue \  may be written according 

to Proposition 3 as a direct sum of the cyclic and 4-invariant subspaces VTfl, VTi2,..., VTiu ■ Also 

from Proposition 26 for every value of T, the above subspaces are equal to the corresponding 

cyclic and 4-invariant subspaces of the continuous system VTtl, VTt2, ..., VTl̂  associated with 

Ai, the direct sum of which forms the generalized null-space H  of 4  . So we conclude that 

under regular sampling the generalized null-space H  of 4 , associated with A* is equal to the 

generalized null-space H  of 4 , associated with A¿. From the above we can readily conclude :

T heorem  30 For the values of the sampling period T  for which no collapsing occurs between 

the eigenvalues of A (i.e. under regular sampling), we have the properties:
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1. To each pair of distinct eigenvalue \ i ,Xj  € ^(A)  there corresponds one pair of distinct 

eigenvalues Xi,Xj € 3*(A).

2. The generalized A-invariant null-space Mi of A associated with is also a generalized 

A-invariant null-space of A, associated with A

3. The Segré characteristic of A at At is equal to the Segré characteristic of A at X

P \ i  (A ) =  P \ x ( £ )  =  { r m  > ■■■ > r ik  > ... > T u  > 0}

4- The index of cyclicity of A is equal to the index of cyclicity of A.

5. The minimal polynomial of A is given as:

4f(z) = ( z - X i ) T̂ ( z -  A2)T2"2. . . ( z - X f Y Ivf

where TiUl,T2v2 , ...,TfUf are the annihilation indices of A. □

Consider two complex eigenvalues of A , Xp and Xq with equal real parts, geometric multi-

plicities Up and 7Tq and with Segré characteristic of A at Xp and Xq, (A), (A) respectively,

where:

PXp (A) =  { t Pvp > ... > Tpk > ... > Tpl > 0}

PXq (A) =  { v ,  ^  ^  r9k ^  ••• ^  r9l > °}

Let us now assume that for some value of the sampling period T collapsing occurs between 

Xp and Xq to the value Ac (i.e. irregular sampling).

According to Theorem 26, for every value of the sampling period T, to the pair of eigenvalues 

Xp. Xq, there are associated vp,vq eigenvectors of A (or chains of generalized eigenvectors, or 

A-invariant and cyclic subspaces, or Jordan blocks, or elementary divisors). So, under irregular 

sampling, to the collapsed eigenvalue Ac there correspond uc = up + vq eigenvectors of Á (or 

chains of generalized eigenvectors, or A-invariant and cyclic subspaces, or Jordan blocks, or 

elementary divisors). The generalized null-space Mc of A associated with Ac may be written
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according to Proposition 3 as a direct sum of the vc = vp + vq, A-invariant and cyclic subspaces 

associated with the eigenvalues Ap and Xq (which are equal to the direct sum of the corresponding 

^-invariant and cyclic subspaces associated with Ap and Ag), that is

K  = {Vpi ® VP2 ® ... © VpUp} © {Vgl © Vg2 © -  © v,„,} = Afp®Nq

If we rearrange all the above subspaces according to increasing order, then we have :

K  =  Vci ©  Vc2 ©  ... ©  Vcuc

where:

vc = vP + vq, Vcvc =  max (Vp„p, VqVq) , Vcl = min (Vpi , V,i)

As Afc is formed as the direct sum of the generalized null-spaces J\fp, J\iq associated with the 

eigenvalues Xp and Xq it follows that 7rc =  7rp +  7rg. From the above we conclude the following 

result.

T heorem  31 For the irregular values of the sampling period T  for which a collapsing occurs 

between the pair of eigenvalues (Ap, Xq) of A, then the following properties hold true.

1 . To the pair of distinct eigenvalues Xp, Xq of A there corresponds one eigenvalue Xc of A.

2. To the generalized null-spaces Afp and Afq associated with Xp and Xq there corresponds the 

generalized null-space J\fc associated with Xc, defined as the direct sum, Mc =  J\fp ®Mq.

3. The algebraic multiplicity of Xc is given as irc =  7rp + 7rg.

4- The Segre characteristic of A at Ac is defined as a union of Segre characteristics i.e.

p a  ( ^ )  =  p a  (a ) u  p a  M  =

=  {j~pVp A. ... ^  Tpk A  ••• A  Tpl A 0} U \ r qvq A ... A Tqfc > ... A Tq\ > Oj =

=  { t Cv c >  ... > r ck >  ... > Tel >  0}

Where vc = vp +  uq, tc i/c =  max (rpUp, TqUq), r cl =  min (rp l, r gi).
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5. I f  th e  m i n i m a l  p o ly n o m ia l  o f  A  is  :

\H(s) =  (s -  X ^ y ^ K . f s  -  XpY^p . . .(s -  Xq)Tq'/i ...(s  — Xf)T}vf

then the minimal polynomial of À is :

4>(z) = (z -  Â1)Tl"i ...(z -  Xc)TcVc. . .(z -  Xf )Tfl/f

where the elementary divisor {z — Xc)Tc'/c corresponds to the elementary divisors (s —Ap)Tpi/p 

and (s — Xq)Tqi/i of A. □

The above conclusions can readily be extended to the case of collapsing of a set of eigenvalues.

T heorem  32 For the irregular values of the sampling period T  for which a collapsing occurs 

between the subset of fi eigenvalues X\, X2, ■■■, Xfi of A, the following properties hold:

1 . To the set of distinct eigenvalues Xi,X2, ...A p, of A corresponds one distinct eigenvalue Xc 

of Â.

2 . To the set of generalized null-spaces M \,M2 , ..., 7V/x associated with the eigenvalues Ai, A2,

A/i corresponds one generalized null-space Mc associated with Xc equal to the direct 

sum

Mc =  A/i © A/2 ©... © Mfi

and the algebraic multiplicity of Xc is given as 7rc =  +  ... +  7r/i.

3. If the Segré characteristics of A at Aj, A2, ...A/i, are (A ), p \ 2 ( T) , pA/i (A), then the 

Segré characteristics of A at Ac is:

Pxc ( ^ )  =  PAi (-4) U pA2 (44) U ... U pXfi (A) =  {rCI/c > ... > rck > ... > rcl > 0}

Where :

v c =  V i +  v 2 +  ... +  I'/h TCVc =  max (t ^  , r 2l,2, • ••, V ,p ) , Te l  =  m in (rn ,T2i,
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4- I f  th e  m i n i m a l  p o ly n o m ia l  o f  A  is  :

'I'(s) = ( s -  A])'"11'! ...(s -  Ap)7̂ .  . .(5 -  Af )Tfuf 

then, the minimal polynomial of A is :

'i'(z) =  (z -  Ac)7— . . .(z -  Af )Tfvt

where the elementary divisor ( z  — A c ) 7—  of A, corresponds to the elementary divisors

( s - A 1)Tl- : . . .( s -A p) W  of A. □

Prom the above Theorems we have :

R em ark  18 1. I f the space Rn is cyclic relative to A. for the regular values of the sampling

period T , then the space Rn is also cyclic relative to A.

2. For the irregular values of the sampling period T, the whole space Rn is not cyclic relative 

to A.

3. For the irregular values of the sampling period T  for which a collapsing occurs between 

a pair of eigenvalues, the degree of the minimal polynomial 'I'(z) is decreased by a num-

ber. This number is equal to the minimal of annihilation indices associated with the two 

collapsing eigenvalues.

4- For the irregular values of the sampling period T  for which a collapsing occurs between the 

subset of pL eigenvalues Ai, A2, ...A/i, with corresponding annihilation indices T\Vl, r ^ , .... 

the degree of the minimal polynomial 'P(z) is decreased by a number. This number is equal 

to

+  T 'lv i +  ••• +  T/zi>u Tcvc

where t CVc =  max (r2 Vl, r 2l/2,..., ). □
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Exam ple 4 Let that the Segr6 characteristics of the eigenvalues of the set 4>_5(t4) in the Ex-

ample 3 be

PAj (A) = px2 (A) =  {6, 3,1} and pAa (A) = px4 {A) =  {3, 1} 

and 'I'(s) =  (s — Ai)8(s — A2)8(.s — A3 )5(s — A4 )5. Then for the irregular sampling we have,

a) for T  =

Segre Characteristic and minimal polynomial

a . l ) k  = 1,2, 3, 5,6,7,9,... p ^  ( i )  =  pAl (A) U pAs (A) = {6, 6,3,3,1,1}

=> ^ ( 2 ) =  ( z -  Ai )2)6(2 -  A3)3(z  -  A4)3

a .2 )k  = 4,8,12,.... ( i )  = {6 ,6 , 3,3,1,1}, p ^  ( i )  =  {3,3,1,1}

=> IP(2 ) =  (2  -  Ait2)6{z -  A3 ,4)3

a. 3) k = 8,16,24,... pAl2M ( i )  =  {6,6,3,3,3, 3, 1,1,1,1}

=> ^ 0 ) = ( z ~  Ai i2,3,4)8

b )  f o r T =

Segre Characteristic and minimal polynomial

b. l ) k  = 1 ,2 ,3 ,4 ,6 ,7 ,8 ,9 ,11,... p ^  ( i )  =  ( i )  =  {6, 3,3,1,1}

=> ^ ( 2 ) =  (2  -  Ai ,4 )6(2  -  A2,3 )6

b.2)k = 5,10,15,20,.... P*i,2,3,4 ( ¿ )  = {6 ,6 ,3 ,3 ,3 ,3 ,1 ,1 ,1 ,1}

=> ^ ( 2 ) =  (2  -  Ali2,3 l4)6

c )  . f o r T = ^

Segr6 Characteristic and minimal polynomial

c.l) k = 1,2,4, 5, 7, 8,10,... ph  3 ( i )  =  p -X2 4 ( i )  =  {6,3, 3,1, 1}

=> S'(2 ) =  (2  -  A1 i3 )6(2  -  A2i4)6

c.2) k = 5,10, 15,20,.... p A)i2 3i4 [A) = {6,6,3,3,3,3,1,1,1,1}

=> ^ ( 2 ) =  (2  — A] )2,3j4) 6

□
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4 .7  C onclu sion

In this Chapter we have introduced the basics of the nature of the discretised models as func-

tions of the sampling period T. The effect of sampling on properties such as eigenstructure, 

Segre characteristics and minimal polynomial has been thoroughly investigated. The work here 

provides the background for the work that will follow.

The consequences of collapsing in the structural properties of A has been examined and so 

we have to investigate in the next Chapter the consequences in the basic characteristics of the 

discretised model.
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C hapter 5

CO LLA PSIN G  OF EIGENVALUES 

AND CO N TRO LLA BILITY  

OBSERVABILITY PR O PER TIES

5.1 In tro d u ctio n

The Jordan canonical description of a linear continuous time system, enables the testing of 

controllability and observability of the system by the Spectral controllability and observability 

matrices B f  and F f . Controllability and observability properties of a discretised model have 

been defined in CHAPTER 4. The Jordan canonical description for the discretised models 

which were introduced in CHAPTER 4, as well the investigation of the effect of collapsing of 

eigenvalues and of the merging of Segré Characteristics, leads to the study in this CHAPTER 

5 of the following issues: •

• The discrete Spectral controllability and observability matrices B f  and T f for the discre-

tised model under regular sampling.

• The composite discrete Spectral controllability and observability matrices respectively 

under irregular sampling.
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The results here provide a description of the effects of collapsing on the controllability, 

observability properties of the discretised models and thus enhance oui understanding on the 

selection of sampling based on system properties.

5.2 S tru ctu ra l P ro p er tie s  o f  a L inear C ontin uou s S y stem  in Jor-

dan Form

5.2.1 Controllability

Some preliminary results on the spectral controllability Properties are considered first.

P roposition  28 The n-dimensional, linear ,time invariant system S(A,  B ,C, D) described by 

the Jordan equivalent equations, is controllable if and only if for each i =  1,2, . .f,  the rows of 

the B f matrix (defined in 3.73) are linearly independent over the field of complex numbers.

R em ark  19 The linear independence of the rows of B f are tested individually for each i.

Proof. [Kar., l]If the continuous system is in Jordan form then according to Proposition 18 it 

is controllable, if and only if the rows of matrix (s i — A)~l B, or the equivalent in Jordan form 

(s i — J) 1 B are linearly independent over the field of complex numbers. That is:

(s i -  J) 1 B = block diag {(sPk -  Jik) 1Bik} , i = 1 ,2 ,../, k = 1,2,..., vt

i i 1
'  3 *  ‘S - \ i («-Ai)2 ‘

0 1 1
Plk2(sPk - J lk) - lBlk = S — \ i ( u * - 2 ) ! ( s - A t )Ti_1

0 0 1
3— Ai -  ~*rik .

so there are Vi rows of matrix (s i — J) 1 B of the form

( s - X j - ' F  , ( s -  A J -1^  , ..., ( s - X . y ' p T
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Hence if the rows ¡3T , /?T (i.e. the rows of the Bf )  are linearly independent for
— 1 1 tU ~ lZ r i2

i = 1 .2 .../ then all the rows of (si  — J) 1 R are linearly independent over the field of complex 

numbers and the system S(A,  B ,C , D) is controllable. □

P roposition  29 I f the rows of (sPk — Jik) 1Bik are to be linearly independent, then the row

BT, must be non zero.
- tkHk

Proof. The first row of (s l\ — J^f) 1Blk has a factor of,

t3]k

(Tik ~  1)! (s -  Ai)Ti

, the second row has a factor of

______ —lKrik_______
{Tik ~ 2)! (s — A j)Ti_1

and so on. Hence if fdJ is a non zero tow of B, then all the rows of (s ll — Jlk)~iBik are—lKrik *
linearly independent and the system S(A ,B ,C , D ) can be controllable. □

From the above and from the Definition of the cyclicity index v of A it can be readily 

concluded:

P roposition  30 Necess ary condition for then-dimensional, continuous, linear, time invariant 

system S( A, B, C,  D ), to be controllable is that v < l, where l is the number of system inputs.□

R em ark  20 Necessary condition for a single input system to be controllable is that, all the 

eigenvalues are distinct, each have only one associated Jordan block (i.e. v = 1, the system 

must be cyclic), and the rows of B corresponding to the last row of each Jordan block is non-

zero. □

5.2.2 Observability

For the observability property of a linear continuous time system S(A.  B ,C , D) described by 

Jordan equivalent equations, we have the following dual statements which are to the controlla-

bility definitions and employ similar notation:
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P roposition  31 The n-dimensional, linear, time invariant system S (A ,B ,C ,D ) described by 

the Jordan equivalent equations, is observable if and only if for each i =  1 ,2 ,../, the columns 

of the F f  matrix (defined in 3.1f )  are linearly independent over the field of complex numbers. □

R em ark  21 The linear independence of the columns of T[ is tested individually for each i. □

R em ark  22 If the columns o fT i^sI). — Jik) * 1 ore to be linearly independent, then the column 

j .,  must be non zero. □
— IK  1

P roposition  32 Necessary condition for the n-dimensional, continuous, linear, time invariant 

system S(A. B, C , D ), to be observable is that v < m, where m  is the number of system outputs.□

R em ark  23 Necessary condition for a single output system to be observable is that, all the 

eigenvalues are distinct, i.e. each have only one associated Jordan block (i.e. u = 1, the 

system must be cyclic), and the rows of B corresponding to the first row of each Jordan block is 

non-zero. □
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5.3 C on tro llab ility  o f a D iscretised  M od el

In the Chapter 4 we have proved that the form of the controllability matrix of a discretised 

model depends on the type of H used in the implementation of the control scheme. Thus we 

have to examine the cases of ZOH and FOH separately.

5.3.1 Case of a system with ZO H

The discretised controllability matrix of a discretised model with ZOH (Proposition 18) de-

scribed by the Jordan equivalent equations (4.22 and 4.25) is given as,

(.z l  -  i ) _1H -  (z l  -  J ) ~ l B  = (z l  -  j ) ~ 1V E B

Hence if the rows of (z l — J ) 1VEB  are shown to be independent over the field of complex 

numbers then the discretised model will be controllable.

The matrix VE  is a block diagonal matrix with the same structure as J  of the diagonal 

block type and with each block of VE of an upper triangular form. If the rows of the spectral 

controllability matrix of the continuous model (3.73) corresponding to the eigenvalue A] = 0, 

are given as,

(5.1)B f =

Êkirn

&1Krlk

& ..

and those of the spectral controllability matrix of the continuous model corresponding to the 

eigenvalue Aj ^  0, are given as,

(5.2)
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thus, the last elements of the main diagonal of VE  corresponding to the last rows of the Jordan 

blocks are :

1. for Ai =  0 : the last elements of the main diagonal of V E  corresponding to the last rows 

of the Jordan blocks are T  x T’Tl'c~1 =  T Tlk and the corresponding rows of the discretised 

model are,
T Tu/3T

11t11 J'Ol 0 . 0

T " f r lk—1Kt Vc
=

0 JT12 0
Bf (5.3)

~ lvi<rlv1 .

0 0 . . TT,‘' i

2. for Aj ^  0 : the last elements of the main diagonal of V -  corresponding to the last rows of

the Jordan 

model are.

U1 , (e*iT-l)(blocks are a--------^ T e A,-T\Ttk_1
Ai

=A i T
1)

and the corresponding rows of the discretised

(TeAtT)TU-l

(Te A‘r )Ti2_1 i * Ta

A i T \ T^ i - 1(1TeXiT) PT
— lV r

( T e A iT )T« - l  g

0 (TeAir)Ti2_1
(5.4)

0 0 ... (TeXiT)TiUi 1

D efinition 38 The z-th discrete Spectral controllability matrix B f , is the matrix formed by the 

rows of B corresponding to the last rows of the Jordan blocks associated with the eigenvalue Aj.D

With the above introduced notation, we have the following propositions, similar to the 

corresponding propositions of the continuous model.

P roposition  33 The discretised model S(Â , È. C, D) of a linear, time invariant system with 

ZOH is controllable if and only if for each ¿ =  1 ,2 ,... ,/  the ro ws of the B f matrix are linearly
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independent over the field of complex numbers. □

R em ark  24 The linear independence of the rows of B f are tested individually for each i. □

In order to determine the relation between the i-th discrete Spectral controllability matrix 

B f  and the Spectral controllability matrix B f  we have to distinguish the two cases of sampling.

R egular Sam pling

From the above analysis we conclude the following:

P roposition  34 Under regular sampling the i-th discrete Spectral controllability matrix B f , is 

related to B f as is shown below:

1 . for Aj =  0 :

j m i 0 . 0 J 'T ll 0 0

0 JTT12 0
B f =  D ( 0 ) B f ,  where D ( 0 ) â

0 JT12 0

0 0 . .. T Tlt/1 0 0 . .. T T1U

(5.5)

2. for A, ^  0 :

TX,
T i l -1

TX,
Ti 2 - 1

0

0

TA,
Ti„. ~ 1

B f = ^ D ( X t)B f

where,

D{Xi) â

0

0

0 0

(5.6)

□
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So, under regular sampling we have for the controllability of the discretised model the 

following proposition:

Proposition 3 5  The discretised model S(A, B , C , D) of a linear, time invariant system with 

ZOH, under regular sampling, is controllable, if and only if the corresponding continuous time 

linear system S(A, B, C, D) is controllable. □

Irregular Sampling

The effect of irregular sampling on the controllability properties is examined next.

Proposition 3 6  Under irregular sampling for which collapsing occurs of a subset of p eigen-

values Ai, A2, A/r € $7- (A) to the distinct eigenvalue Ac G <E> the c-th discrete Spectral

controllability matrix Bf, is related to the corresponding matrices Bf, B%, Bps, as follows:

1. If Aj. A2,.... Xp A  0 then:
1_____ 0 0

__
__

_1

---
---

--
1

03 1-1
 C

o 

__
__

_
1

B Sc =  ( Â c -  l )

0
t A X 2 ) •

0

r

O 0

1

Co
1

where D(\\). .... D(\p) are defined as previously for Aj ^  0 (5.6).

2. If A] = 0 , (A2. X p  ^ 0 ) ;

Bs =

D( 0 ) 0

0 S r 61- ^ )  ...

Xr- 1  
A fi

0

0

D(\p)

1
03 1—1 
Co 

__
_

1

Bps

where D(0 ) is defined as previously for Aj = 0 (5.5) and similarly D(X2),D(Xp) are 

defined as previously for Aj A  0 (5.6).

Proof. From the definition 38 relations (5.3), (5.4) the above Proposition is directly concluded.□
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D efinition 39 Under irregular sampling where a collapsing occurs between a subset of g eigen-

values Ai, A2, A / j, € (j4) to the distinct eigenvalue Ac € , the c-th composite spectral

Controllability matrix B f is defined as the matrix consisting of the rows of all the Spectral 

controllability matrices corresponding to the eigenvalues Aj, A2 , Xp:

BS  A
C

Bf

Bps

The relation between the c-th discrete Spectral controllability matrix B f and the c-th composite 

spectral controllability matrix B f is defined as:

1 . If A], A2, XfiyhO:

B f = l A, — 1
h D ( \ 2 )2̂

0

0
B:

2. If Aj =  0,(A2, . . . , A ^ 0 )  ;

m 0 0

B f =
0 ^ r D ( X  2) . 0

BSc

0 0

□

The above leads to:

P roposition  37 The discretised model S(A, B ,C , D) of a linear, time invariant controllable 

system, with ZOH, under irregular sampling, for which collapsing occurs between a subset of 

g eigenvalues Aj, A2, X p  € <hr (A) to the distinct eigenvalue Ac £ Î ’ ÎÂ ], becomes uncon-
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trollable, if and only if the uc rows of the c-th composite spectral controllability matrix B¿ are 

linearly dependent, where, vc =  V\ + +  ••• + np. □

D efinition 40 We define as structural loss of controllability of the discretised model S (A , B.

C , D) the case where vc > l (where l is the number of system inputs). □

D efinition 41 We define as numerical loss of controllability of the discretised model S(A, B, 

C, D ) the case where vc < l and the rows of the c-th composite spectral controllability matrix 

Bsc are linearly dependent. □

It is clear that structural loss of controllability implies loss of controllability independent 

from the numerical values of A, B  matrices. □

R em ark  25 The discretised model S (A , B, C, D ) of a linear, time invariant, single input, con-

trollable system, with ZOH, under any irregular sampling, becomes uncontrollable. □

5.3.2 Case of a system with FO H

The discretised controllability matrix of a discretised model with FOH (Proposition 20) de-

scribed by the Jordan equivalent equations (4.28) is given as,

(.z l  -  Á ) - \ z É  + Z) ~  (.z l  -  J ) - \ z £  + Z ) = (z l  -  J y lV [z (2E -  E )  +  E ] H

Hence if the rows of (z l — J)~ 1V [z (2E — E )  + E] B are shown to be independent over the field 

of complex numbers then the discretised model will be controllable.

Matrix V [z (2E — E )  + £], as in the case of systems with ZOH, is a block diagonal matrix 

with the same structure as J  of the diagonal block type and with each block of an upper 

triangular form. If the rows of the spectral controllability matrix of the continuous model 

corresponding to the eigenvalue Aj =  0, are given as in relation (5.1) and if the rows of the 

spectral controllability matrix of the continuous model corresponding to the eigenvalue A¿ A  0; 

are given as in relation (5.2) the last elements of the main diagonal of V [z (2E — E )  + E] 

corresponding to the last rows of the Jordan blocks are :

P roposition  38 For every value of the sampling period T  > 0, then the matrix V [z (2E — E) + E] 

is block diagonal with the same structure of diagonal blocks as the J  matrix. In particular: The
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last elements of the main diagonal of V  [z (2~ — E) +  E] corresponding to the last rows of the 

Jordan blocks are:

1 . for Ai =  0 :

2 T - T 21
+ T

=  T Tlk z 2

and the corresponding rows of the discretised model are,

z D(Q)Bf

where D (0) is defined as in the case of ZOH. 

2 . for A, #  0 :

Te A i T Tik~  1 eXiT{\  + 1) -  2 \ j  — 1 e ^ T(\i  -  1) +  1 '
A? A?

and the corresponding rows of the discretised model are,

[zXtT(^i + 1) — 2A2 — lj z +  e^ '^A i — 1) + 1
A?

where D(Xi) is also as defined in the case of ZOH.

Proof. From the definition of the diagonal block Vik of matrix V  (in 4.19), Theorem 27 on 

the structure of matrix H, Theorem 28 on the structure of matrix E Proposition is directly 

concluded. □

From the above we conclude that all the Definitions, Propositions and Remarks for the 

controllability property of a discretised model with ZOH under regular or irregular sampling 

previously exposed, can be directly applied to the case of a discretised model with FOH.
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5.4 O b servab ility  o f a D iscretised  M od el

In Chapter 4 we have also proved that the form of the observability matrix of a discretised 

model is independent from the type of H used in the implementation of the control scheme. 

Thus we do not have to examine the cases of ZOH and FOH separately

The form of the discretised observability matrix of a discretised model is independent of the 

H implementing ZOH or FOH (Proposition 22) and it is described by the Jordan equivalent 

equations (4.21) or (4.29) given below

C (zl -  A ) - 1 ~  f  (zJ -  J ) " 1 =  TU{zI -  j ) - 1

Hence if the columns of YU (zI — J ) -1 are shown to be independent over the field of complex 

numbers, then the discretised model is said to be observable.

As U is a block diagonal matrix with the same structure as J  and as each block of U is an 

upper triangular matrix, then the columns of the spectral observability matrix of the continuous 

model corresponding to the eigenvalue A a r e  given as,

rf = —¿H: .7,■ik\ .7,

and the first elements of the main diagonal of U corresponding to the first column of the Jordan 

blocks are 1 the corresponding columns of the discretised model are the same to those of the 

continuous system.

D efinition 42 The i-th discrete Spectral observability matrix r f ,  is the matrix formed by 

the columns of F corresponding to the first columns of the Jordan blocks associated with the 

eigenvalue A □

With the above notation, we have the following propositions, which are similar to these 

corresponding for the continuous model.

P roposition  39 The discretised model S (Â ,B ,C ,D ) of a linear, time invariant system with 

ZOH or FOH is observable if and only if for each i = 1 ,2 ,... ,/  the columns of the Ff  matrix 

are linearly independent over the field of complex numbers. □
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R em ark  26 The linear independence of the columns o f T f  are tested individually for each i. □

In order to determine the relation between the i-th discrete Spectral observability matrix 

T f and the Spectral observability matrix T f  we have to distinguish the two cases of sampling

5.4.1 Regular Sampling

For the case of regular sampling the above analysis leads to:

P roposition  40 Under regular sampling the i-th discrete Spectral observability matrix T f , 

remains the same to T f . □

Thus for the regular sampling case we have the following results:

P roposition  41 The discretised model S(Â, B ,C , D) of a linear, time invariant system with 

ZOH or FOH, under regular sampling, is observable, if and only if the corresponding linear 

system S(A, B ,C , D) is observable. □

5.4.2 Irregular Sampling

We examine now the case of irregular sampling.

P roposition  42 Under irregular sampling when collapsing occurs between a subset of p eigen-

values A], A 2 , Xp € ‘hr (A) to the distinct eigenvalue Xc € 4> ^A^J, the c-th discrete Spectral 

observability matrix T f  is defined as the matrix:

r 7* =L c rf, Tf, T p 1

□

D efinition 43 Under irregular sampling for which collapsing occurs for a subset of p eigen-

values Aj. A2,..., Ap € <!>,. (A) to the distinct eigenvalue Ac G $  [A j , the c-th composite spectral 

observability matrix T f  is defined as the matrix consisting of the columns of all the Spectral 

observability matrices corresponding to the eigenvalues Aj, A2,..., Ap:

TfA c rf, Tf,
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□

From the above we have:

P roposition  43 The discretised model S (A ,B , C, D ) corresponding to a linear, time invariant 

observable system, with ZOH or FOH, under irregular sampling for which collapsing occurs for 

a subset of p eigenvalues Aj, A2, X p  6 <Fr (A) to the distinct eigenvalue Âc € 4> , becomes

unobservable, if and only if the vc columns of the c-th composite spectral observability matrix 

r f  are linearly dependent, where, uc = v\ + u2 +  ... +  up. □

D efinition 44 We define as structural loss of observability of the discretised model S(A, B, C, D ) 

the case where uc > m  (where m  is the number of system outputs). □

D efinition 45 We define as numerical loss of observability of the discretised model S(Â, B, C, D) 

the case where uc < m  and the columns of the c-th composite spectral observability matrix T f 

are linearly dependent. □

R em ark  27 The discretised model S(A, B ,C , D) of a linear, time invariant, single output, 

observable system, with ZOH, under any irregular sampling, becomes unobservable. □
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Exam ple 5 Let the spectrum controllability matrices for the eigenvalues Ai ,A2,A3,A4 of the set 

$-5(^4) in Example 3 are (number of system inputs 1 = 6):

2 -  4 i 0 0 0 1 +  i 3 — 4z

0 1 +  5 i 0 -1  +  3* 0 0

1 -  3* 0 - 2 - 7 * 1 +  5z 0 —4z

2 + 4z 0 0 0 1 — 3 +  4z

0 1 — 5z 0 -1  -  3z 0 0

1 + 3  i 0 —2 +  7z 1 -  5z 0 4z

0 1 +  5z 0 — 1 + 3z 0 0

- 2  + 3z 0 -1 0 3 — i 9 + 4z

0 1 - 5z 0 -1  -  3i 0 0

- 2 - 3 i 0 -1 0 3 +  z 9 — 4z

where rank!3f =  3, rank£f =  3, rankSf =  2, rankfif =  2 and the continuous system is said 

to be modal controllable for Ai, A2, A3, A4. Then for the different cases of collapsing we have

a)

a.l) for k =  1,2,3,5,6,7,9,10,11,...

2 — 4z 0 0 0 1 +  i 3 — 4z

0 1 + 5z 0 -1 + 3 * 0 0

1 -3 * 0 - 2 - 7 * 1 + 5z 0 —4z
, rank^f 2 =  6 =>

2 +  4z 0 0 0 1 — i 3 +  4 z

0 1 -  5z 0 -1  -3 * 0 0

1 +3z 0 —2 + 7z 1 — 5z 0 4z

=> mode A co n tro llab le
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a.2) for k = 4 ,12,20,28,...

rankSf 2 =  6 => modeA

0 1 +  5z 0 -1  + 3f 0 0

- 2  +  3 * 0 -1 0 3 - * 9 +  4z

0 1 -  5* 0 -1  -  3 i 0 0

—2 — 3z 0 -1 0 3 + z 9 — 4 *

it2 controllable

, rankSf4 =  4

=> modeAa^ controllable

a.3) for k = 8,16, 24,...

S s1,2,3,4

2 -4 * 0 0 0 1 +  * 3 - 4  *

0 1 +  5z 0 -1  +3z 0 0

1 — 3z 0 - 2 - 7 * 1 +  5* 0 —4 *

2 + 4z 0 0 0 1 - * 3 + 4z

0 1 -  5 * 0 -1  -3 * 0 0
, rankZ?f 2 3 4 =  6

1 +  3i 0 —2 + 7z 1 -  5 * 0 4z

0 1 +  5z 0 — 1 +  3z 0 0

—2 + 3z 0 -1 0 3 — i 9 +  4z

0 1 -  5 i 0 -1  -3 * 0 0

- 2 - 3 * 0 -1 0 3 +  i 9 -4 *

=» modeAi^.3,4 uncontrollable (structural loss)

b)

b.l) for fc= 1,2,3,4,6,7,8,9,11,...

2 — 4z 0 0 0 1 +* 3 -4 *

0 1 +  5z 0 -1  +  3* 0 0

1 — 3z 0 —2 — 7 i 1 +  5z 0 —4 i , ranki?

0 1 -  5* 0 1 i—1 1 CO 0 0

- 2 - 3 * 0 -1  0 3 +  * 9 — 4z
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Bs —° 2 . 3  —

2 +  4z 0 0 0

0 1 -  5 i 0 -1  -  3*

1 + 37 0 - 2  + 7 i 1 -  5 i

0 1 + 57 0 —1 +  37

-2  + 3 i 0 -1 0

=> modeAit4 controllable 

1 — 7 3 +  4 7

0 

4 7 

0

rankZ?2.3 =  5

3 — 7 9 +  4 7

=> modeA2,3 controllable

b.2) for k — 5, 10, 15,... It is, rankZ3fj2,3,4 =  6 =i>modeAi,2,3,4 uncontrollable (structural

loss)

c) T =  2|zl ,

c.l) for k = 1,2,4, 5, 7, 8,...

2 — 4i 0 0 0 1 +  2 CO 1
0 1 +  57 0 — 1 +  37 0 0

1 -  3 i 0 - 2 — 7 i 1 +  5 i 0 —42 , rankfif 3 =  4

0 1 + 5 i 0 - 1  + 3 2 0 0

—2 +  3i 0 -1 0 3 - 2 9 +  47 j

=4- modeAi^ uncontrollable (numerical loss)

2 + 42 0 0 0 1 -  2 3 +  47

0 1 - 5 i 0 -1  -  32 0 0

1 +  3?: 0 —2 +  7 i 1 — 57 0 47 , rankZ?f 4 =  4

0 1 - 5 i 0 -1  -  32 0 0

- 2  -  3i 0 -1 0 3 +  2 9 — 47

=> modeA2!4 uncontrollable (numerical loss)

c.2) for k — 3, 6, 9, ... It is rankf?^^ 4 =  6 =>modeA]i2,3,4 uncontrollable. □
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5.5 C onclu sion s

In this Chapter we have defined the effect of sampling on the controllability and observability 

properties and we have determined spectral criteria for the above properties of discretised 

models under regular and irregular sampling. In the next Chapter we define the effect of 

sampling on the dimension of the controllable and unobservable space, under the use of irregular 

sampling.
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C hapter 6

SPEC TR A L

CH A RA C TERIZA TIO N  OF TH E 

CONTROLLABLE 

(UNOBSERVABLE) SPACE AND 

CO LLA PSIN G  PH EN O M EN A

6.1 In trod u ction

This chapter examines the role of the system parameters of the Jordan canonical description 

in the determination of the dimension of the controllable (unobservable) subspace TZ [V) of 

linear systems. A new test based on the properties of rows of matrix B and the set of i-th 

spectrum row controllability indices (r.c.i.) ©^(A, B) is derived, using properties of cyclicity 

and associated minimal polynomials. Also a relation is presented between the controllability 

index of the system and the set of ©^(A, B).

The above results provide an extension of the classical results on the spectral characteriza-

tion of controllability (observability) and enables the study of the corresponding characteristics 

of the discretised model, under the different types of irregular sampling.
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6.2  S p ectra l C haracterization  o f  th e  C ontro llab le Space

We explore here the properties of Jordan decomposition in determining the dimension of the 

controllable subspace of a continuous system.

Under the partition (3.67) of the matrix B , the columns Pv §_2, . . . , / ? , are also parti-

tioned as follows,

’ # i  " £ l l — 1 2  • • a ,  ■•• A«
#2

— 2 2  ' - ■• £ 2 ,

A
= Ê.V^-2 ' ‘ =

A i — ¿2  • ■ A  ■• A*

. A  . — / 2  ' • ■• —A .

where

—il ’ —¿2’ Ê.ij' —> Ê.u € —

and

Bi = d (3.t-ii ri.¿2 4 ' A, ,(* =  1 )2 ,...,/)

( 6 . 1)

( 6 . 2)

Also, under the partition (3.69), each one of the vectors /?.. is also partitioned as :
— l J

Where

- \ i j  

^2 ij

Pkij £ V ik(j = 1,2,...,/), (A: = 1 ,2 , ...,!/<)
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First we develop new criteria for determining the dimension of the controllable space based on 

properties of the spectral form and the concept of minimal polynomial associated with invariant 

spaces. We first state :

T heorem  33 1. The minimal polynomial of the vector /? G Vik is of the form  (s — Al)SktJ.

where 6kij < rik.

2. The minimal polynomial of the vector (3.. G Mi is of the form  (s — Ai)6ii, where,

6ij max(<5i -̂, $2i j •> •••» $kiji •••> $viij) &rid Sij ^  t %\

6.2.1 The Minimal Polynomial and Spectral Controllability Properties

Proof.

1. The minimal polynomial of the elementary subspace Vlk , is (s -  Ai)Tik and the minimal 

polynomial of the vector G Vik (j  =  1,2, ...,t) is of the form ( s  -  Ai)Skii , where 

hkij is Tik ■

2. The minimal polynomial of the generalized null-space Mi is ( s  — At)Til. The minimal

polynomial of the vector /? G Mi (i — 1, 2 , / )  is of the form ( s  -  Ai)sn , where 6l0 < t u . 

Also the minimal polynomial of the vector (3.. is equal to the least common multiple of 

the minimal polynomials of the constituent vectors [3 ,f3 .,...,/? ,...,/? .. i.e. to the

least common multiple of ( s  -  \ i ) Slii , (s -  Ai)S2iT  ..., ( s  -  Ai)SkiT  ..., (s -  A a n d  so 

^ij maxf(ijzj . •••) &kij) •••) ^uiijS)' D

Lem m a 7 77ie degree 6kij of the minimal polynomial of the vector (3 G V,* (j =  1 , 2 , I) i s

given by the order of its last non zero element.

Proof. According to the definition of the minimal polynomial of a vector, the vector (3 is
' — k ij

annihilated by the matrix,

(Jik ~ Ai h k f kî  =  (Hlk)ŝ ~ l

but not by the matrix,

(Jik -  Ai l ik)6̂  =  (Hik)6̂
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where Iik, Hik <G CTik*Tik are correspondingly, the unit and nilpotent matrices of order rik. So

then from the above two relations we conclude xgkij+i = ... ~  x Tik =  0 and xgkij ^  0 and the

Lem m a 8 The degree Sxj of the minimal polynomial of the vector ¡3xj € Ni (j =  1,2, ...,l) is 

given by the order, of the last non zero element, of its constituent vector with minimal polynomial

The controllability matrix Q G K"xni of a continuous system S (A ,B ,C , D), is defined 

in (3.55). Under the transformation of the system S (A ,B ,C , D) to the Jordan equivalent 

Sj(J , B, U A) the controllability matrix Q is also equivalent to the matrix Q j i.e.:

Q ~ Q j  =

Let matrix Qj  be also partitioned according to (3.18) :

we have {Hlk)Skt> Pkij ±  0, and {Hik)6kii 1 (3^.. =  0. Thus, if:

lemma is proved. □

of maximum degree. □

Qji

Qj 2

Qj  —

then from (6.1) it follows that,

Q j,=  Bx J(Xi)Bi (J(Xi))2 Bl ... (J(Aj))n_1 Bi (6.3)
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and from (6.2) we have,

All the column vectors of Qji span the A-invariant subspace TZt of the generalized .4-invariant 

null-space J\ft (TZi Ç Let rt be the number of Hnearly independent column vectors of Qji 
defining a basis for the subspace TZi, then

dim TZi = ri = rankQ^ < dimA/) =  m  +  ... +  rik +  ... +  riv. =  7Tj (6.4)

T heorem  34 The dimension r of the controllable space 1Z is given by the sum of the dimensions

ri of the controllable subspaces TZi,

r =  rq + r2 +  ... +  r, +  ... + rf

Proof. Let 8n , 8i j , 5 u  be the degrees of the minimal polynomials corresponding to the 

vectors ¡3^, and let ^  be the vector with the minimal polynomial (s — A¿)A,,i of

maximum degree. Then according to Theorem 1 we have, 8ifl =  max (8^ 1 , 8^ ,  ..., 8^ ) .

Since all the vectors of TZt are generated by chains of the vectors (3^, , and

the minimal polynomial of TZi is equal to the least common multiple of the basis vectors, the 

minimal polynomial of TZi is also equal to (s — A ,)^  and 8^  = 8i (i = 1 ,2 ,...,/). Then, the 

minimal polynomial of 7Z is the product of the co-prime polynomials,

(s ~ Ai )< S l (s -  Xi)Si,..., (s -  Xf )sf

and according to the Theorem 4 we have,

TZ = TZi © ••• © TZi © ... © f t /  Ç TZn

where, r =  r\ +  ... + ry + ... +  r /  < n  and Theorem 34 is proved. □
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6.2.2 The set of i- th  Spectrum Row Controllability Indices

By Theorem 34 it is concluded that the dimension r of the controllable space 1Z is defined from

the dimensions rl of lZt for i = 1 ,2 ....,/. Thus, in the following we concentrate on the definition 

of the dimension r t of the controllable subspace 7Zt corresponding to only one eigenvalue A, or 

equivalently, to the rank of matrix Q jt .

Since J ( A j ) =  A¿7 +  Hi where Hi is a nilpotent block diagonal matrix of the same block 

structure as J ( A j ) ,  i.e.

0 1 0 0

0 0 ... 0 0

Hi = diag {H u,..., Hik, .... HiVi} , where, Hik = € R TikXTik (6.5)

0 0 ... 0 1

0 0 ... 0 0

then from (6.3) we have,

Using only column operations on the above matrix we have,

Qji ~  Qh z =  Bi HiBi ... (//¿)"_1 Bt (6.6)

Let now the rows matrix Br be partitioned according to the Jordan structure, corresponding to 

fpXi (A) as in (3.69) and (3.71). Then the matrix Qnt can be described as follows,

Q h % — Q n lk
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where

Qhu

Qh i k

Qh iUi

f f i , ••• a , , - . a „

-  a „
0

a , ,
0 0

a , ,
0 0 0

- Til columns

.-5
<0.1

i

- ^ r ik

~ i k rik
0

~ ^ r i k ~  1
0 0

~ i k rik
0 0 0

Tik  columns

¡3J— l V i \ C-iVi? ... /?T—lV iT . -  i 
t u i  1

PJ

PT—Mil (3J—m3 ... PT 0

/?T
-" '" in - '

PJ 0 0

PJ- WiTin
0 0 0

T iUi columns

Searching for the linear independent rows on QHi from top to bottom, we have the following 

remarks :

R em ark  28 For the matrix Q//. we have the properties:

1. If the last row of is nonzero: ^  0T then all the t z1 rows of the block , are
~ 11 TU “

linearly independent.
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2. If the £1 last rows of Bn are zero: /3r = 0T, (3T =  0T, /?T =  0T and
—llTil —llTi\ “I

PT 7̂  0T then all the first Tn — rows of the block Qh u  are linearly independent.
“il

3. If the last nonzero row ofB¿2 : /3T,
¿2T>2 -Î2

7̂  0T is linearly independent of the last nonzero row

of Bn : ¡3r , then all the first — £2 t o w s  of the block Qh  0 are linearly independent.
-ii

4- I f  the last nonzero row of $¿2 : /3T,—i2Tt2-<2
7̂  0T is linearly dependent on the last nonzero

row of Bn : /3J , but the row vector consisting of the last two nonzero rows of Bii
-ii

[—t2 T.2 _ i 2 _ 1 ¿2Ti2 — Î2

nonzero rows of Bn

, is linearly independent of the row vector formed by the two last

1 -ii J
then all the first T{2 — £2 — 1 rows of the block

Qh î7 are linearly independent.

PT :/3T
■ *2rt2 “ i2 - 1 ’ 2̂ri2 -Î2

5. I f the above row vector consisting of the last two nonzero rows ofB¿2 ;

¿5 linearly dependent on the above row vector formed by the last nonzero rows of Bn ■ 

, but the row vector consisting of the last three nonzero rows of Bt2
! l r t l  - i l - 1 — î 1 t î 1 - Î 1

/5Jo
— *2 r i2  - Î 2  - 2  ’ — î 2 r t2  —Î2  —1 ’ ~ * 2 t i 2 - Î 2

, is linearly independent of the row vector formed by

the last three nonzero rows of Bn •' P. ,/?Ii l  -2 ’ ~ ^ U l - i l  -1 ’ - { ]
, then all the first

Ti2 — £2 — 2 rows of the block Qh a are linearly independent.

6 . I f  the last nonzero row of Bi3 : /?T 7̂  0T is linearly independent of the above last
~ lA ~i2 - i3

nonzero row of Bn and the possibly linear independent last nonzero row of $¿2 then all 

the first t ¿3 — £3 rows of the block Qh i3 are linearly independent.

7. Following the same procedure we determine the number of linearly independent rows from

top to bottom for each block of Q . □

Let 9n-&i2 , ■ be the number denoting the orders of the above defined rows into each 

one block of Qh x and let the blocks be rearranged from top to bottom in a way such that :

On > Oi2 >  ... > 0 iUi >  0

The above remark summarizes the conditions for characterization of controllability in spectral 

form. This result can also be used to provide a characterization of i.d.z. as it will be shown 

below.
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Definition 46 The set of the above numbers is defined as the set of the z-th spectrum row 

controllability indices (r.c.i.) of A, B :

©(A B )Xi =  {On > Oii > ••• > 0lUi > 0} (6.7)

Prom the above the following propositions are directly concluded. □

Theorem 35 The dimension rj of the controllable subspace IZi is given as,

ri — On +  0i2 +  ... +  0iVi

Proof. From the construction of the set ® (A ,B )\i (Remark 28) it is :

On + 0i 2 + ■■■ +  0iVi = rank QHt

from (6.6) it is : r a n k =  rankQ^ and from (6.4) the Theorem is proved. □

Proposition 44 The mode ( \ i ,U ( \i) ,V ( \i) )  of the system S (A ,B ) is controllable, if and only 

if the set 0 (A ,B ) \ i coincides with the set p\. (¿4):

@{A,B)Xi = pXi (A)

Proof. According to Theorem 17 the mode (Aj, f/ (A j) ,  P (A j ) )  is controllable if and only if the 

rows of the i-th spectrum controllability matrix B f  are linearly independent over the field of 

complex numbers. From the definition of the set @ (A,B)\i we conclude that this is equivalent 

to the statement of the Proposition. □

Corollary 2 The first of the z-th spectrum r.c.i. On is equal to the degree of the minimal 

polynomial of the controllable subspace Tfi. □

Corollary 3 The minimal polynomial of the whole controllable space 1Z is given by

(s -  \ i ) e "  (s -  A2) 02’ ... (s -  A 0 ® «  ... ( s  -  A$ 1 '  ( 6 .8 )
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and the degree d of the minimal polynomial of the whole controllable space 7Z is given as,

d  — 6 \i  +  021 +  ••• +  Qi\ +  ••• 4- 0 / i (6.9)

□

D efinition 47 We define as normal structure of Qh %, the matrix Qnt for which all the nonzero 

r.c.i. are determined by the orders of the two last nonzero rows of the row blocks. □

6.2.3 Spectral Restriction of the Controllability Index

Some further results related to the controllability index are given below,

P roposition  45 The degree d of the minimal polynomial of the whole controllable space 7Z is 

equal to the degree of the minimal polynomial of the subspace determined by the columns of 

matrix B .

Proof. The minimal polynomial of the subspace determined by the columns of matrix B  is the 

least common multiple of the minimal polynomial of the basis vectors. As all the basis vectors 

of TZ are derived from chains of the column vectors of B  , (3̂ , /3 , @l the common multiple of 

their minimal polynomials coincides with the common multiple of the minimal polynomials of

We define the partial controllability matrix [Che., 1],

Qk = B ,A B ,.. . ,A kB k = 0,1,2,

where matrix Q = Qn~i is the controllability matrix. Searching for the linear independent 

columns of Qk from left to right, let rt be the number of linearly dependent columns in AlB  

for i — 1,2, ..k and r0 be the number of linearly dependent columns of B. Then it is,

0 < r 0 < n  < ... < rk

and,

rankQo < rankQi < ... < ran k Q ^ i =  rankQp =  ... — rankQ„_i
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Hence the property of controllability of S(A, B ) can be checked from and fi is defined

as the controllability index of the system S(A ,B ).

It is clear that the following equivalence relations hold true,

Q n-1 ~ [B, J B , ..., J ^ lB] =

PV P2, •••’ J Pr .... J ^ - % ( 6 . 10)

and the linear independent columns of the above matrix define a basis for the controllable space

n .

P roposition  46 For the controllability index fi of the system S’(A  B) we have:

F < +  2̂1 +  ••• +  On +  +  Qfi = d

Proof. As all the column vectors in (6.10) belong to chains generated by the column vectors 

of B  and given that the maximum possible chain length of linearly independent column vectors 

is given by the degree of the minimal polynomial of 'll then the result follows from (6.9). □
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Exam ple 6 The sets of r.c.i. corresponding to the controllable continuous system eigenvalues 

A],A2.A3,A4 of the set 4>_5(A) in the Example 5 are given as follows:

1 . mode A] : =  p \ 1 (A ) =  {6,3, 1} , the dimension of the controllable subspace 1Z1

is r\ =  6 +  3 +  1 =  10

2. mode A2 : Q( A , B ) \ 2 =  p \ 2 (A) = {6,3,1} , r 2 =  6 +  3 +  1 =  10

3. mode A3 : ©(A, B ) \ 3 =  (A) =  {3, 2} , r 2 =  3 +  2 =  5

4- mode a4 : ©(A, B )x4 =  Pa4 (A) =  {3, 2} , r 4 =  3 +  2 =  5

The dimension of the whole controllable space for the set 4>_5(A) is : d = 10+10 +  5 +  5 =  30.

Spectral restriction of the corresponding controllability index : / i < 6  +  6 + 3 +  3 = 1 8 . □

Exam ple 7 Let us now consider an uncontrollable system, of the same eigenstructure as that 

of the above set $_5(A) and of the following row blocks of B and corresponding r.c.i. :

1. For the mode A] we have:

Bi =

- 3  - * 5 +  4z 0 0 7 2 i

-9  -  5i 0 - 6 0 0 2 +  3 i

2 +  6 i 0 0 - 3 +  2 i —9 — 5 i - 7  +  2 i
Bu  =

0 - 2  i 0 0 3 i 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 2 - i 5 +  3z 0 0

Bl2 = 0 —3 +  3 i 0 3 — 2i 7 i -9*

• <s> 
CM11

___
1 0 0 0 1 1 i 0

B\s = 2 + 6 * 0 0 5 - 9 i 0 0 013 =  1

O n  = 4

1̂2 =  3

0(A, B)x 1 — {4, 3,1}, r\ — 4 +  3 + 1  — 8
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2. F o r  th è  m o d e  X 2 w e  h â v e :

B2 1  =

B2 =

—3 + i 5 — 4? 0 0 7 -2?

- 9  + 5 i 0 - 6 0 0 2 - 3  i

2 - 6  i 0 0 - 3 - 2  i - 9  +  5i - 7 - 2 *

0 2 i 0 0 —3 i 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 2  + i - 5 - 3 * 0 0

B22 = 0 - 3 - 3  i 0 3 +  2 i —7 * 9*

- 4  +  2* 0 0 0 —4 +  z 0

B23 = 2 + 6? 0 0 5 — 9? 0 0 6*23 = 1

=> 0(^4,-S)a2 — {4, 3.1} , r2 — 4 +  3 + 1  — 8

3. For the mode A3 we hâve:

(

£3 =  <

CO 1 00 <s>. 3 0 0 - 2  + 3 i 0

£31 = 0 0 -1  +  * 0 8 ? 4

0 0 0 0 0 0

#32 = 0 1 00 <s>. 0 0 12?; 0 <— $32

=> © ( A  b )x3 =  {2 , 1} , r 3 =  2 +  1 =  3

4- For the mode A4 we hâve:

3 + 8 i 3 0 0 - 2 - 3 *  0

Bu = 0 0 - 1 -  i 0 —8? 4

0 0 0 0 0 0

B42 = 0 8* 0 0 -12* 0 <— $42 =  1

=> © (A , B)x4 = {2 ,  1} , r 4 =  2 +  1 =  3

155



The dimension of the whole controllable space for the set <h_5(A) is r = r\ +r2 + r3+r4 =  22. 

The spectral restriction of the corresponding controllability index is ¡ 1  = 4 +  4 +  2 +  2 = 1 2 . □

6.3 S p ectra l C haracterization  o f  th e  U n ob servab le  Space

A similar analysis may now be applied for the study of unobservability. Under the partition 

(3.68) of matrix T, the row vectors 7^,7^, ...,7!, ...,7^  are also partitioned as follows,

r =

where 7j1):yT2l

l l I n 2 a i  •■■ 2I1 •

1--------

h- ^

l l I 1 2 7 t—22 •• 1 I2  •-  1 / 2

1Ï
7T
l i i ^  •-  i J j -  1 / 1

7 tL J-m  J
7 t

L d i m 7 t—2m ■ 7 t—im l / m  .

im £ ° i ( i = h 2 , . . . , / )  and

( 6. 11)

r  = 1 1 —

% 1
7.■i 2

7.■u
(z =  1,2,.... / )

7 tL -Lîm

( 6 . 12)

Also, under (3.19) each one of the A-invariant generahzed row null-spaces Oi is decomposed 

to the A-invariant and cyclic row elementary subspaces corresponding to the Segre Character-

istic Pa ,(A),

Oi = JCi © 0  ... © T lk 0  ... © T iVi

and under this decomposition, each one of the row vectors 7T. is partitioned as in (3.70) i.e.

7 t . =j-ij 7. —lij —2 ij7, l l 7 t  ..
—V i l ]  J
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Where € T ik (j = 1,2, (k -  1 , 2 , . . . ,Ui).

6.3.1 The Minimal Polynomial and Unobservability Properties

The corresponding dual to controllability criteria for determining the dimension of the unob-

servable space based on properties of the spectral form and the concept of minimal polynomial 

associated with invariant spaces, are given below:

T heorem  36 1. The minimal polynomial of the row vector qT £ Tik is of the form  (s —

\ Y kij, where £kij < rik.

2. The minimal polynomial of the row vector j l  £ Oi is of the form  (s — A ; where

eij = m a x (£ iy ,  £2¿j, •••> £kiji •••> Eij ^ T j j .

Proof.

1. The minimal polynomial of the elementary subspace Tik , is (s — Ai)Tik and the minimal 

polynomial of the row vector 7 ^ . £ Tik (j  — 1,2, is of the form (s — AiYkij, where 

Ekij — Tik■

2. The minimal polynomial of the generalized null-space Oi is (s — A j)T i l . The minimal 

polynomial of the row vector 7T. £ Oi (i = 1,2,..., / )  is of the form (s — A w h e r e—I'd
£ij < t h  • Also the minimal polynomial of the row vector 7J is equal to the least common 

multiple of the minimal polynomials of the constituent vectors 7^ ., J ^ i j ' 2 kij' •••> ij 

i.e. to the least common multiple of

(s -  Aj )£i<T ( s  -  XiY2ij,..., (s -  XiYkij, ...(5 -  AiY ^ ij

and so £jj — 111 ax(£ ] q , £ £viij)• ^

Lem m a 9 The degree ekij of the minimal polynomial of the row vector 7 ^ . £ T ik (j  = 

1,2,..., m) is given by the order (measured from right to left) of its last non zero element. □

Lem m a 10 The degree Eij of the minimal polynomial of the row vector 7T £ Oi (j =  1 ,2 , . . . ,  m) 

is given by the order (measured from right to left.) of the last non zero element, of its constituent 

vector with minimal polynomial of maximum degree. □
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The observability matrix M  E 1Rmnxn Qf a continuous system S(A, B,C,  D), is defined 

in (3.56). Under the transformation of the system S ( A , B , C , D ) to the Jordan equivalent 

Sj(J,  B, F, A) the observability matrix M  is also equivalent to the matrix M j  i.e.:

M  ~  M j  =

r
r j

T jn -i

Let the matrix M j  be also partitioned according to (3.18) as:

M j  = M j ,  M j 2 ... M j . ... Mj

Then from (6.11) follows that :

and from (6.12) we have:

Mj. =

r i
rv(A*)

Ti(J(Ai)) n — 1

Mji  =

7t-¡-¿1

7 !—im

n - 1

(6.13)

7 t  ./(A ,)"-1—1771 v '

As in the case of controllability, the linearly independent rows of M j i define a row vector 

space Qt C CT with minimal polynomial (s — Aj)£ie where is the degree of the minimal
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polynomial of the row vector with the minimal polynomial of maximum degree.

The right null-space of M j i determines the A-invariant subspace Vi of the generalized A- 

invariant null-space J\fi (Vi C A/)). Then it is,

dim Vi — Vi — 'Ki ~ <ii — 'Ki~ rankM j i < dim A/) =  7Tj (6-14)

T heorem  37 The dimension p of the unobservable space V is given by the sum of the dimen-

sions pi of the unobservable subspaces Vi, that is:

P = Pl +P2 +  ••• +Pi + ••• +Pf

Proof. Let Q be the row vector space spanned by the row's of M j. It can be proved, as for 

the case controllability that

Q =  Qi © Q 2 © - © Q /

and

q =  <?l +  qi +  ••• +  <7/

and from (6.14) the Proposition is proved. □

6.3.2 The set of i - t h  Spectrum Column Observability Indices

Following along similar lives as for the case of controllability it follows that the dimension p of 

the unobservable space V  is defined if the dimensions pi of Vi for i =  1,2,..., /  are also defined. 

After that, the object of the following work is to define the dimension pi of the unobservable 

subspace Vz corresponding to only one eigenvalue Ai or equivalently, to the rank qi of matrix

Mji . Note that,

M j .  =
Vi (A J  + Hi)

rt(At7 + Hi)n~1
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by the first two nonzero columns of Tti lii< 1+ 1
7.-i I f , then all the last r,2 — £2 — 1

columns of the block M n i2 are linearly independent.

5. If the above column vector consisting of the first two nonzero columns o/Tj2 •' 

is linearly dependent to the above column vector formed by the columns of Yu :
¿2,<2+1 M2<2 -

In <1+1
7,il <1J

but the column vector consisting of the three nonzero columns o/T^ •' 2i2<2+2
. .  T i¿2,<2 +  1 M 2 , <2 -

is linearly independent from the column vector formed by the first three nonzero columns

of Tn

are linearly independent.
-il<l+2’ -»!«] + ! ’ , then all the last — £2 ~ 2 columns of the block M h %2

6 . If the first nonzero column of Tj3 : 7 ^  0 ¿5 linearly independent of the above first
- i3<3

nonzero column of Yu and the possibly linear independent first nonzero column 0 /^ 2  then 

all the last Ti3 — £3 columns of the block M n i3 are linearly independent.

7. Following the same procedure we determine the number of linearly independent columns 

from left to right into each one block of MHi- ^

Let Cii)Ci2; ivi be the number of linearly independent columns into each one block of 

MHi and let the blocks be rearranged from left to right such that :

Cil > Ci2 > -  > C«* > 0

The above remark summarizes the conditions for characterization of observabihty in spectral 

form. This result can also be used to provide a characterization of o.d.z. as it will be shown 

below. Then, we may define:

Definition 48 The set of the above numbers is defined as the set of the ¿-th spectrum column 

observability indices (c.o.i.) of A ,C  :

Z(A, C )Xi =  {Cil > Ci2 > -  > Ci* > 0} (6.16)

From the above the following propositions are directly concluded. □
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Pi — n i ~  9i — 71» ~  (Cil +  Ci2 +  ••• +  QiVi)

Proof. From the construction of the set Z (A ,C )Xi (Remark 29) it is :

Cti + C«2 + ■•• + Civi —  rankM/yt

from (6.15) it is : rankM#f — rankM ji and from (6.14) the Theorem is proved. □

Proposition 47 The mode (\,U (A i),V (A i)) of the system S (A ,B ) is observable, if and only 

if the set Z (A ,C )Xi coincide with the set pXi (A) i.e.

Z{A ,C )Xt = pXt (.4)

Proof. According to Theorem 19 the mode (Aj, f/(Aj), l/(Aj)) is observable if and only if the 

rows of the i-th spectrum observability matrix r f  are linearly independent over the field of 

complex numbers. From the definition of the set Z(A, C)Xi we conclude that this is equivalent

T h e o r e m  3 8  T h e  d i m e n s i o n  p i  o f  th e  u n o b s e r v a b le  s u b s p a c e  V i  is  g iv e n  as,

to the statement of the Proposition. □

Corollary 4 The first of the z'-th spectrum c.o.i. Cil is equal to the degree of the minimal 

polynomial of the row subspace Q i- □

Corollary 5 The minimal polynomial of the whole row space Q is given as,

(s -  A i)Cl1 (s -  A2) ^  ... (s -  A ,)Cil ... (s -  At)C/1 (6.17)

and the degree g of the minimal polynomial of the whole row space Q is given as,

9 = Ci i + C21 + + Cil + + C/i (6.18)

□

Definition 49 We define as normal structure of , the matrix M ^i for which all the nonzero 

c.o.i. are determined by the orders of the two first nonzero columns of the row blocks. □
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Some further properties related to the observability index are given below:

P roposition  48 The degree g of the minimal polynomial of the whole row space Q is equal to 

the degree of the minimal polynomial of the subspace determined by the rows of matrix C .

6.3.3 Spectral Restriction of the Observability Index

Proof. The minimal polynomial of the subspace spanned by the rows of matrix C is the least 

common multiple of the minimal polynomial of the basis row vectors c{, c^,..., cJn. As all the 

basis vectors of Q are derived from chains of the row vectors of C, the common multiple of 

their minimal polynomials coincides with the common multiple of the minimal polynomials of 

Cj. c2. the result follows. □

We define the following matrix [Che., 1]:

Mk ±

C

CA

C A 2

C Ak

k = 0,1,2,...

as the fc-th partial observability matrix and the matrix M  = Mn- \  is the observability matrix. 

Searching for the linear independent rows of Mk from the top to the bottom, let rt be the 

number of linearly dependent rows in CA 1 for i = 1,2, ..k and ro be the number of linearly 

dependent rows in C. Then, we have:

0 < r 0 < n  < ... < rk

and

rankMo < rankAfi < ... < rankA/f_] =  rankM£ = ... =  rankM^-j

Hence the property of observability of ¿"(A, C) can be checked from and f  is defined

as the Observability index of the system S'(A, C).
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In fact

I I

7' n

Qfi- 1

r
r j

r j i -

7^(A i)

^ ( A i ) * " 1

(6.19)

and the linear independent rows of the above matrix define a basis for the row space Q . 

P r o p o s i t i o n  4 9  For the observability index £ of the system C ) we have the property:

s  <  C n  + C21 +  ••• + Cti + + C /i = 9

□

6.4  S p ectra l P ro p ertie s  o f  a d iscretised  M o d el w ith  ZOH

The state space description of a discretised model 5(À, B, C, D) of a continuous system 5(^4. B. C, D) 

with ZOH and sampling period T  is given by the equations (4.4) and (4.5) and the Jordan de-

scription of the same model is presented in section 4.5.1. Here we examine the effect of sampling 

on the controllable subspace using the spectral properties defined earlier

6.4.1 Spectral Characterization of the discretised Controllable Space

Following the same procedure as for the continuous system, the controllable subspace 7Z of the 

discretised model is defined as,

1Z — span B ,A B ,A 2B, ...,An~1B
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Following exactly the same steps as m the case of the continuous system, it can been shown 

directly that the same conclusions, theorems, propositions, lemmas, remarks etc., proved in the 

previous sections for the Spectral Characterization of the Controllable Space of the continuous 

system are also valid for the Spectral Characterization of the Controllable Space of the discre- 

tised system. So, it can be also proved for the discretized model, that 1Z can be expressed as 

the direct sum :

n  = n } 0 . . .  © "R-i ©... © Tzf  ç r

where the controllable subspaces are defined as in the continuous system case (IZi C

A f i ) .  Following the continuous system analysis it can be proved that :

T heorem  39 For every value of the sampling period T, the dimension r of the controllable 

subspace 1Z, is given by the sum of the dimensions fi  of the controllable subspaces 7Zi,

f  = fi + r2 + ... + fi + ... + ff

□

As it has already been proved in the previous sections for a system with ZOH and for every 

value of the sampling period T, Propositions 26 and 27 are valid. Under the same conditions 

the following Theorem also holds true :

T heorem  40 For every value of the sampling period T, the minimal polynomial of the vector 

¡3 €  V ik  is ( z  — \ i ) Skii , where 6 k i j  is the degree of the minimal polynomial of the corresponding

vector (3 of the continuous system.

Proof. Let B =  \fl , ¡3 , . . . , / ? . ] .  From (4.25) we have, ¡3. — V~.(3. (j — 1, 2,..., 1). The 

matrices V  and E (and consequently their product) are non singular, in block diagonal form 

and of the same structure as J . Also each diagonal block is an upper triangular matrix. So, if
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¡3 is partitioned according to the eigenstructure of A and if,

h j i

x \

X2

•̂ 6,k i j , xSki. 0

is its constituent vector in Vik, with minimal polynomial (s — Ai)Sk'i then,

h a  =  v* * * h a

where Vik and ~ik are the diagonal blocks of dimensions x t **, corresponding to Jlk 

(4.19) and Theorem 27 the main diagonal of matrix is of the type:

if A, =  0

1, T, T 2, T T

(b) if A, ±  0 :

eAIr _ 1 TeXiT (eXiT -  !) T 2e2A‘T (eA*T -  l) T T̂ - 1 e ^ ~ 1̂ T (eA*r  -  l)

and so it is

h j i

x\

¿2

x&,k i j i 7” 0

From

( 6 . 20)

(6.21)
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where :

(a) for Aî =  0 => x Skij

(b) for \ i  ^  0 =>• xSkij

T &kii 1%6kij ~h 0 and 

-------------- Â7-----*--------Lx^ i  Ï  0

Prom the above and from Lemma 7 it follows that the minimal polynomial of the vector 

P G Vik is (z — Ai)Skii and the Theorem is proved. □

C orollary  6 The last non zero rows of the vectors /? , have the same order. □

For reasons of eigenvalue collapsing , we cannot claim that for every value of the sampling 

period T, the degree of the minimal polynomial of the vector ¡3.. G Mi as well the dimensions rt 

of the controllable subspace TZi are automatically defined from the continuous system. Therefore 

we have to distinguish the two cases of sampling.

R egular Sam pling

It is already known from Theorem 30 that under regular sampling,

1. The generalized ^-invariant subspace Mi , is also an ^-invariant and generalized null-space 

of A

2. The Segre Characteristic of A at Ai is equal to the Segre characteristic of A  at Xt :

Pa, {A) =  p-Xi ( i )

T heorem  41 Under regular sampling the minimal polynomial of the vector $  G M i is (z — 

Ai)Sij, where 6tJ is the degree of the minimal polynomial of the corresponding vector (3^ of the 

continuous system.

Proof. From Proposition 1 the degree of the minimal polynomial of the vector /?.. G Mi is

6ij  — m a x (< 5 iij, &2ij•> • ••? ^ k i j ? • ••> &viij)

From Proposition 40 and from the above remark for the Segré Characteristic under regular sam-

pling, it is concluded that is also the degree of the minimal polynomial of the corresponding

vector/?... □—u

167



T heorem  42 Under regular sampling, the discretised model S (A ,B ) of a continuous system 

having Qh { as normal structure (according to Definition J+l) it has the properties :

(a) The set of r.c.i. of the discretised model is equal to the set of r.c.i. of the continuous 

system, i.e.

e(A,B)-Xi = @ (A,B)Xi

(b) The dimension rt of the controllable subspace IZi is equal to the corresponding dimension 

ri of the controllable subspace IZi of the continuous system.

(c) The dimension r of the controllable subspace TZ of the discretised model S (A ,B ) is the 

same with the corresponding dimension r of the continuous system, i.e. f  = r.

(d) The degree d of the minimal polynomial of the controllable space TZ (as well the controlla-

bility index restriction) is the same with the corresponding degree d (and the controllability 

index restriction) of the continuous system, i.e. d = d.

Proof.

(a) As in the continuous system case, it can be proved that,

Qj. ~  Q h ,  = Bi HiBi HfBi B,

From Lemma 8 it is directly concluded that the first element of the set @ (A,B)\i : On is 

equal to the first element of the set ® (A ,B )X : On — 6 Prom (4.25) and also from the 

structure of the matrices V, E (of the same structure as J ) it follows that,

Bi =  V(X i)EiBi

The matrices T(Aj),Ej (and thus their product) are non singular and they are in block 

upper diagonal form and of the same block structure as J(Xi). Consequently for each 

block we have,

B ik  — V ik^- ikB ik  =  $ i k B i k ,  & ik  =  ^ i k —'ik
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and as is in upper diagonal form, the last non zero row of Bik is the scalar multiple 

of the last non zero row of Bik and the corresponding diagonal element of $ ik. Thus in 

the case where the r.c.i. are defined by the last non zero rows of Bik (k = 1 ,2 ,..,^ ) 

the set Q (A ,B )\i remains the same under regular sampling. Let now the last non zero 

row of Bi2 : /?T is linearly dependent on the last non zero row f3J of the

, /i 6 {1 -  0} but the row vector consisting of theabove block i.e. /?T =  /l(3\,
—u m-<i ~

last two nonzero rows of B{2 :
—t2Ti2 _i2

vector & r,. •ii-i —a ui-<i

~Ì2tì2 -Ì2 "1 ’ ~ i2U2 ~<2
, is hnearly independent of the row

. In order to simplify the notation we consider the rows of B

corresponding to the Jordan blocks of dimension 4 and 5 in a system with 3 inputs:

1<obj 
1_____ 0 n 012 013 014 015 £ l

& 0 022 023 024 025 —12
Bi 1 = & — Jh i B%\ — 0 0 ■033 034 035 —13

& 0 0 0 044 045 —14

j l . 0 0 0 0 055 - —15 -

---
--

1
l^

>
to 

-H 
__

_
1

011 012 013 014 &

£ 2 =  ^i2^i2 =
0 022 023 024 £ 2

£ 3 0 0 033 034 £ 3

. £ 4 .

----1

OOO__
1 . £ 4 .

and let

( 6.22)

(6.23)

a.l for the continuous system assume that:

+ 0 T => fyi =  5

and

linearly dependent => 3^ £ ( 1  -  0} : /3J) =  /fyT



a.2 assume also for the continuous system that:

_—14’ —15 

"—23 ’ —24

<=> ^¡3 ^  ^ 1 4  °  ^2 =  3

the corresponding vectors of the discretised system are related to the continuous as it is 

shown below,

?̂14 ’ —15 J

—23 ’ ^ —15
linearly independent 4=>

from (6.22) =>

and from (6.23)

ä ] 4 = ^ 1 4  +
g 5 =  =» g 5 ^  OT =» 0tl =  Ö« =  5

i S 3 =  ^33^3 + ^3 4 ^ 4

I £ 4  = ̂ 4

and we have to prove that the following two vectors of the discretised system are linearly

independent,

—23 ’ —24

•044 ß]A +  V'öößjg

« ¡ 3 + ^ 3 4 ^ 4 ^ 4 4 ^ 4

Prom (6.20) and (6.21) it is :

^44^14 +  VW^g

^ 3 3 ^ 3  +  V>34yU/3|5 , 1p44ßßJl5

-055 V’44 r r  A¿T A----  =  ----  — i e  1 =  v9
^ 4 4  V>33

V>45 _  3T AtTe+T -  e+r  + 1 £  T Atr e+ r  -  e+r  +  1
rpu 2 Al(eAiT -  1) ’ 2 Ai(e+r - l )

V(34 =  AlT e ^ T -  eXiT +  1 =
•033 Ai(e+r  -  1)

and so the above two vectors of the discretised model are linearly independent if and only 

if the following two vectors are linearly independent :

_—14 3^ —15’ +—15_

^¡3 + 2^ I 5’ ^ 5
hnearly independent 4=>
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^ 3 + 2^ 5  ^ ÊJU + 3 u ë [ 6

The above relation between the row vectors impossible for every value of

the sampling period T. Thus the vectors 

and it is 6¿2 =  #¿2 =  3.

-15

are linearly independent

The above can be applied directly to the general case and so we have under regular 

sampling for a system with Qh % of normal structure :

(b) Then for regular sampling it is established that: r* =  On +  ... +  Q{Vi =  fy

(c) From the above and from Theorem 34 the result follows.

(d) From the above and from Propositions 45 and 46 the result follows. □

P roposition  50 In the case of a continuous system with Q #. having abnormal structure, then 

the process of a regular sampling, acts for the “normalization” of Qui and then we have a 

“restoration” of the controllable space.

Proof. Let for the continuous system in the proof of the above Theorem 42 be valid the 

following :

—14’ —15 

—23’—24

linearly dependent <=> =  p,(3Ju , <=>#¿2 =  2

Then for the discretised system we have

êiVâV "044^4 +  ^ 4 5 ^ ,  ^ 5 5 ^  

"033̂ 23 +  ^44^4

^ 44^{4 + ^55^5

h ^ 3 3 ^ 4  +  ̂ 34^i5, V ’44^{5

ÊJu + 3^ L > ’ ^—15

^ 4  +  2^ L > ’ ^ 5

and thus #¿2 =  3 > $¿2 =  2 which proves the result.

linearly independent

□
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I r r e g u la r  s a m p lin g

For notational simplicity the case of two eigenvalues Au and Xy collapsing is examined here. The 

obtained results can be extended directly to any other case of a partial or a total collapsing, 

for each r-root range of A, <Fr (A). We assume that under an irregular sampling, for which the 

distinct eigenvalues \ u and Xy of the continuous system correspond to the eigenvalue Ac of the 

discrete model. It is already known (Theorem 31) that,

• The generalized ^-invariant null-space J\fc , is the direct sum of J\fu and My : N c — J\fu ®Ny

• The Segre Characteristic p^ (̂ Â j is formed by the merging of p \u (A) and p \y (.4).

Then, for the discretised model S(A ,B )  it follows:

P roposition  51 Under the irregular sampling, for which a collapsing occurs between the eigen-

values Xu and Xy to the eigenvalue Xc, for the discretised model S'(A, B ), the minimal polynomial 

of the vector 0^ E J\fc is (z — Xc)Sci (j =  1, 2,..., 1), where, 6cj  =  max(iUJ-, 8yj )

Proof. For the above irregular sampling each one of the vectors 0  . E Mc (j = 1 , 2 is 

created from the component vectors of the corresponding ft E Mu and ¡3 E N y (j  =  1,2,...,/). 

Then 6CJ = m a x ( 8 uj ,  8yj ) .  □

T heorem  43 Under the irregular sampling, for which a collapsing occurs between the eigenval-

ues Xu and Xy to the eigenvalue Ac, for the discretised model S(A, B) with Qhu  , Qh v as normal 

structure, the following holds true:

(a) If ru = dim7£u, TZu C J\fu and ry = dim7?.y, lZy C J\fy, and rc the dimension of the 

controllable subspace 7Zc C J\fc, then rc < ru + ry .

(b) I f f  is the dimension of the whole controllable space TZ of the discretised model S (A .B )  

and r is the corresponding dimension of the continuous system, then, f  < r.

(c) If d is the degree of the minimal polynomial of the controllable space TZ (as well the 

controllability index restriction) and d is the corresponding degree (and the controllability 

index restriction) of the continuous system, then, d = d — min(0ui, 9yi).
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P r o o f .

(a) The matrix Bc is composed by the matrix blocks of Bu and By: Bc =

© (A  B )Xu =  { 9 U\ > 6 U2 > ... > 6ul/u >  0} ru =  9 U\ +  6 U2 +  ... +  9 UVu

and

©(A =  \Py~i @y2 ri ••• ^  ^  0} => ry — 9y\ +  9y2 +  ... +  9yVy

From the construction procedure of ©(A, B)^ it follows that, 9 C\ = max(9ui , 9 y \ ) and 

each one of the following indices 9 C2 ,..., 9 CWc is equal or smaller to the corresponding index 

of the same matrix block of Bu and By of the continuous system. Thus,

f c — e cl +  9 C2 + .. .  t  9 CUc <  (Oul +  @u2 +  ••• +  0 UVU) +  {Qy\ +  9y2  +  ... +  9 y v y)

(b) From the above and from Theorem 34 the result follows.

(c) Also from the above and from Propositions 45 and 46 the result follows. □

Bu

Bv
Let
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Exam ple 8 Consider the uncontrollable continuous system the Example 7 under the following 

irregular values of the sampling period.

a) T = 2fc ,

a.l) For k = 1,2, 3, 5,6, 7, 9,10,11,... we have for the mode Aj 2

# 1 2 ,1  =

# 1 2 .2  =

#12.3 =

- 3 - * 5 +  4 i 0 0 7 2 *

- 9  -  5i 0 -6 0 0 2 +  3 *

2 +  6 i 0 0 ' - 3  +  2 i -9  -  5* - 7  +  2Î

0 - 2  i 0 0 3* 0

0 0 0 0 0 0

0 0 0 0 0 0

- 3  +  i 5 -4 * 0 0 7 -2*

- 9  + 5 i 0 -6 0 0 2 — 31

2 - 6  i 0 0 - 3 - 2 * —9 + 5z - 7 - 2  *

0 2* 0 0 -37 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 2-7 - 5  + 37 0 0

0 - 3  + 3z 0 3 -  27 7i 5 - 9 1

- 4 - 2* 0 0 0 - 4 --t 0

#12,5 = 2 + 6* 0 0 5 - 9* 0 0 #12,5 =

#12,6 = 2-6z 0 0 5 + 97 0 0 IIC
O

C
N

I

' e ( Â , ê ) Xu ~ { 4 , 3 ,3 ,3 , 1.1}. H2 = 15 (< r\ + r2

6*12 ,1  =  4

# 12 .2  — 3

# 1 2 ,3  =  3

©(A, B )h  = 0(71, B ) x 3 =  {2,1} , f3 =  3 (=  r 3)

, ©(Â B ) \ 4 = Q(A, B ) \ 4 =  {2,1} , f4 =  3 (= r 4)

The dimension of the controllable space of the discretised system corresponding to 

the set 4>_5(j4), is f  = f \2 +  3̂ +  = 21 (< r =  22). The spectral restriction of the
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corresponding controllability index is p = 4 +  2 +  2 =  8 (<  12). 

a.2) For k = 4,8,12, .... we have for the mode A42 as above and for the mode A34

00 1 00 <s>
.

3 0 0 - 2  +  31 0

»3 4 ,1 = 0 0  - 1 + 1 0 81 4 *—  £34,1 =  2

0 0 0 0 0 0

3  +  81 3 0 0
I

0• <s> 
CO1CN1

» 3 4 ,2 = 0 0  - 1 — 1 0 - 8 1 4 * —  $34,2 =  2

0 0 0 0 0 0

53 00 CO II 0 —8z 0 0 121 0 *-9 34,3 =  1

» 3 4 ,4  = 0 8  i 0  0 — 121 0 +-0 34,4 =  0

I ©(A B)~Xn =  {4, 3, 3, 3,1,1} , f 12 =  15 (< n  +  r 2 =  16) 

\  =  (2, 2, 1,0} , f 34 =  5(<  r3 +  r4 =  6)

It is f  = f \ 2  + f  34 =  20 (< r =  22), /x =  4 + 2 =  6 (<  12).

a.3) For k =  8, 16,24,... we have for the mode Ai 234:

»1234,1

» 1  234,2

- 3 - 1 5 + 41 0 0 7 21

- 9  -  5i 0 -6 0 0 2 + 31

2 +  61 0 0 - 3  +  21 - 9  -  51 - 7  + 21

0 —21 0 0 31 0 6*1234,1

0 0 0 0 0 0

0 0 0 0 0 0

—3 +1 5 -4 1 0 0 7 —21

- 9  +  51 0 -6 0 0 2 -3 1

2 -6 1 0 0 - 3 - 2 1 - 9  +  51 - 7 - 2 1 $1234,2

0 2 i 0 0 -31 0

0 0 0 0 0 0

0 0 0 0 0 0
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o o 2 — i —5 + 3 * O O

#1234,3 

#1234,4

It is f  = 

b) T  = ^  

b.l) For k =

0 —3 + 3 i 0 3 — 2* 7* 5 — 9*

- 4 - 2  i 0 0 0 —4 — * 0 •*— 6 )234,3 =  3

0 0 2 + * - 5 - 3 * 0 0

0 - 3 - 3 * 0 3 +  2* -7* 5 + 9*

—4 + 2* 0 0 0 —4 + * 0 <— 6 )234,4 =  3

3 + 8* 3 0 0 - 2 - 3* 0

B\ 234,5 = 0 0 — 1 — * 0 -8* 4

0 0 0 0 0 0

3 - 8* 3 0 0 - 2  + 3* 0

^1234,6 = 0 0 -1  +  * 0 8* 4

0 0 0 0 0 0

6 )234,5 =  2

<— 6*1234,6 =  2

^ 1234,7 = 2 + 6* 0 0 5 - 9* 0 0

^ 1234,8 = 2 1 O eo. O 0 5 + 9* 0 0

234,9 0 —8 * 0 0 12* 0

^ 1234,10 O 00 <s>. 0 0 -12* 0

6*1234,7 =  0 

•*— 6 )234,8 =  0 

^1234,9 =  0 

6 )234,10 =  0

= > e{À ,è )Xi2M = {4,3,3, 3 ,2,2,0,0,0,0}

17 (< r  =  22), /* < 4 (<  12).

1 ,2 ,3 ,4 ,6 ,7 ,8 , 9,11, . . .  we have
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b. 1 .1 ) for the mode Ä14;

- 3 - 2 5 + 4 i 0 0 7 2 i

- 9 - 5 * 0 -6 0 0 2 +  3 i

2 +  6 * 0 0 - 3  +  2i - 9  -  5* - 7  +  2 *

0 - 2  i 0 0 3 i 0

0 0 0 0 0 0

0 0 0 0 0 0

^14,2 =

0 0 2  — i — 5 +  3z 0 0

0 - 3  +  3* 0 3 — 2z l i 5 -9 z

1--
--- 1 4̂ 1 to 'S» . O 0 0 - 4  -- i 0 #14,2 =  3

3 +  82' 3 0 0 - 2 -3 * 0

#14,3 = 0 0 -1  - 0 -8* 4 ^  #14,3 =  2

0 0 0 0 0 0

B \ a , 4 — 2 - 6  i 0 0 5 +  9i 0 0

^14,5 — -8i 0 0 12i 0

#14,4 =  1 

#14,5 =  0

=4> @(j4, B ) \ 14 =  {4,3,2,1.0}

b.1 .2 ) and for the mode A23.'

- 3  +  2 5 - 4 2 0 0 7 -2*

—9 + 5i 0 -6 0 0 2 -  3z

2 -6 z 0 0 - 3 - 2 * —9 + 5 2 - 7 - 2 *

0 2* 0 0 -3* 0

0 0 0 0 0 0

0 0 0 0 0 0
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0 0 2 +  i - 5 - 3 * 0 0

#23,2 = 0 —3 — 3» 0 3 + 2* - 7  i 5 +  9*

-4  +  2 i 0 0 0 —4 +  i 0 #23.2 =  3

#23,3 =

3 — 8* 3 O O —2 +  3* O

O O -1  +  * O 8 i 4

0 0 0 0 0 0

#23,3 =  2

#23,4 =  2 — 6* 0 0 5 + 9* 0 0

#23,5 =  0 -8* 0 0 12» 0

<— #23,4 =  1 

#23,5 — 0

=> ©(Â # ) á23 =  {4, 3,2,1,0} It is $ -5 (A), is f  = f u  +  r 23 =  20 (< r = 22) 

/j, = 4 + 4 — 8 (< 12).

b. 2 ) For k = 5,10,15,20,.... =̂> ©(A, B ) ^  = {4,3,3,3,2,2,0, 0, 0, 0} +> f  =  17, fi = 4

as above.

c ) T = 2-f-

c. l)  For k = 1,2,4, 5, 7, 8,... we have 

c.1 .1 ) for the mode A13:

#13.1 =

#13,2 =

- 3 - * 5 +  4* 0 0 7 2 i

- 9 - 5 * 0 -6 0 0 2 + 3*

2 + 6 * 0 0 —3 + 2* - 9 -  5i - 7  +  2*

0 -2* 0 0 3 i 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 2 - i —5 +  3 i 0 0

0 —3 + 3 i 0 3 - 2  i 7 * 5 -9 *

- 4 - 2 * 0 0 0 - 4  - i 0

#13,1 =  4

öl 3.2 = 3

17 8



3 — 8z 3 0 0 —2 +  3z 0

#13,3 = 0 0 -1  +* 0 8 i 4

0 0 0 0 0 0

*13,3 =  2

#13,4 = 

#13,5

2 +  6 i 0 0 .5  — 9* 0 0

0 -8z O O 12¿ 0

<— #13,4 =  1 

013,5 =  0

=>©(A;% 13 =  { 4,3,2,1,0}

c.1 .2 ) for the mode A 24.'

#24,1

#24.2

—3 + i 5 -4* 0 0 7 -2*

- 9  + 5 i 0 - 6 0 0 2 — 3¿

2 — 6z 0 0 - -3 — 2z - -9 +  5z - -7 -2*

0 2 i 0 0 -3* 0 IICO

1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 2 +  z - 5 - 3 * 0 0

0 -3  -  3z 0 3 + 2z —7 * 5 + 9z

- 4  + 2 i 0 0 0 —4 +  z 0 6*13,2 =  3

3 + 8z 3 0 0 -2 — 3z 0

24,3 = 0 0 -1  - z 0 - 8 * 4 #13,3 =  2

0 0 0 0 0 0

#24,4 = 2 — 6z 0 0 5 +  9z 0 0 #13,4 = 1

#24,5 il
---

--
1

O 0
0 <s>. O 0 -12* 0 -  6 13,5 =  0

=> @(Â,ê)-x24 = {4,3,2,1,0}. It is r = fis  +  f 24 =  20 (< r = 22), /x =  4 +  4 =

8 (< 12).

C.2) For k = 5,10,15,20,.... => @ (i, B ) ^  =  {4,3,3,3,2,2,0, 0, 0, 0} =► f  =  17, /x =  4, 

as above. □
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6.4.2 Spectral Characterization of the discretised Unobservable Space

Following the same procedure as for the continuous system, the unobservable subspace V  of the 

discretised model is defined as the right null-space,

'P =  Mribt

C

CÂ

C Â 2

Ci"“1

It can be proved, as for the case of continuous system, that P  can be expressed as the direct 

sum,

V  — V] C R "

where the unobservable subspaces V i,...,V f  are defined as for continuous system (Vl C Aif). 

Similarly to the continuous system case it can be proved that :

T heorem  44 For every value of the sampling period T, the dimension p of the controllable 

subspace V, is given by the sum of the dimensions pi of the controllable subspaces Pi,

P  =  P i  + P 2  +  ■■■ + P i  +  ••• + P f

□

Similarly as for the case of the controllable space we have:

T heorem  45 For every value of the sampling period T, the minimal polynomial of the row 

vector

l l i j  £ Fik, (* =  1,2 ,..,/), (k = 1,2 , . M i ) , (j = 1 ,2 ,

is (z — Xi)£kiF where is the degree of the minimal polynomial of the corresponding row vector

~ikij ° f ^ e  continuous system.
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P r o o f .  L e t .

r = 7 t  —,j

7'  <n

From (4.27) we have, 7J =  7TC/ (j =  1,2, ...,m). The matrix U is non singular, it is in block 

diagonal form and of the same structure as J; also each diagonal block is an upper triangular 

matrix. So, if 7T is partitioned according to the eigenstructure of A then.

7 tAkji Eki j X 2 X \ £ k i j / 0

is its constituent vector in with minimal polynomial (s — \ Y kii and 7^ =  Fur-

thermore is the diagonal block of dimensions x corresponding to J\k- From the 

computation of in (4.17) the main diagonal of matrix Üik is,

e- xiT e-(rik-l)\iT
lj 2T  ’ 2TT̂ “ 1

and so it is

where

—kji 0 ... 0 x£ki. ... ¿2 ¿1

Ç>~ ( f k i  j  ~  t  ) ^ i ^

) X^kij 7̂  0

x-kij Xekij 2 T Skii ~1

From the above it is concluded that the minimal polynomial of the row vector 77.. 6 Tik is—kji
( z  -  A i ) e* « .  □

C orollary 7 77ie /osi non zero rows of the vectors 7!.., 7J.. /iane the same order.-f-KJ1 —kji □

Due to eigenvalue collapsing phenomena, we cannot say that for every value of the sampling 

period T, the degree of the minimal polynomials of the row vectors 7T. £ Ot (j  =  1.2.....rn). 

and the dimensions pi of the unobservable subspace Vl are automatically defined from the 

continuous system. Therefore we have to distinguish the two cases of sampling.
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(b) As for the continuous system case, it can be proved that,

f i

Pi Hi

P iH f

_ _

From Lemma 10 it is directly concluded that the first element of the set Z (A ,C )\t : (¿j 

is equal to the first element of the set Z(A ,C )^ : =  Cii- From (4.27) and also from

the structure of the matrix U (of the same structure as J) it follows that, =  Pji7(Ai).

The matrix U(Xi) is non singular, it is in block diagonal form and of the same structure 

as J(Xi). Consequently the remaining c.o.i. (¿2; •••! of the discretised system are equal 

to the corresponding c.o.i. of the continuous system; otherwise the set Z(A, C )\t remains 

the same under regular sampling.

(c) Then for regular sampling it follows that: p i  = tt1 — (C»i +  ---+Civf) =  P i  and the Proposition 

for the regular sampling is proved.

(d) From the above and from Theorem 37 the result follows.

(e) Also from the above and from Propositions 48 and 49 the result follows. □

Irregular sampling

As for the case of the controllable space the collapsing of two eigenvalues Xu and Xy to Ac is 

examined now for the discretised model S(A, C).

T heorem  47 Under the irregular sampling for which a collapsing occurs between the eigenval-

ues Xu and Xy to the eigenvalue Ac, with M h u , M h v as normal structure, the following properties 

hold true:

(a) The minimal polynomial of the row vector 7L £ J\fc is (z — Ac)£v [j = 1,2,..., m), where, 

eCj = m&x(euj,£ yj).

M  7 1^1 M u .  — 
1
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(b) If pu = dimPu, Vu Q Mu and py =  dimVy, Vy C Afy, the dimension pc of the observable 

subspace Vc G J\fc is , pc > pu + P y  ■

(c) If p is the dimension of the observable subspace V  of the discretised model ¿"(A, C) and p 

is the corresponding dimension of the continuous system, then p > p.

(d) Ifp  is the degree of the minimal polynomial of the observable space V  (or the observability 

index restriction) andp is the corresponding degree (or the observability index restriction) 

of the continuous system, then we have, p = p + min(#uj, 6y\).

Proof.

(a) For the above irregular sampling, each one of the row vectors 7T. G J\fc (j =  1,2,

is created from the component row vectors of the corresponding 7T  G N u and 7T G N y 

(j  =  1,2, ...,m). Then ecj =  max{euj,eyj).

(b) The matrix Tc is composed by the matrix blocks of Tu and T  ̂ i.e.: Tc =  

us assume,

r„ Let

Z(A,  C )\u — {Cul ••• Cuvu ^  0}  ^  P u  — 7TU (Cul +  "P Cui/U)

and

Z ( A ,  C ) x y — {Cj/l ^  ••• ^  Cyvv 0} ^  P y  — 7ry — (C y l +  ••• T  Cy v v )

Then from the construction procedure of Z ( A ,  C ) x we have, Ccl =  max(Cui , Cyl) and each 

one of the next indices Ccl, ...,CCI/ is equal or smaller to the corresponding index of the 

same matrix block of Tu and T^ of the continuous system. Thus since 7 7  =  717  +  Txy  it 

follows that,

(Ccl +  •■■ +  Cci/J ^  (Cul + ••• +  CuO +  (Cyl +  +  Cyuy ) =>

^  ~~ (Cel T +  Ccuc ) — I tc — ((Cul T ••• T Cuvu ) "P (Cyl T +  C y v y ) )  ^  Pc -L P u  +  P y

(c) From the above and from Theorem 37 the results follows.

(d) Also from the above and from Propositions 48 and 49 the result follows. □
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6.5  C onclu sion s

A new approach for the characterization of spectral properties of the controllable and observable 

space has been established based on the properties of minimal polynomials of vectors. New sets 

of invariants indices are introduced which enables:

a) The determination of the dimension of the controllable (unobservable) space from the 

Jordan canonical description.

b) The investigation of the relation between the dimension of the controllable (unobservable) 

space of the discretised model and the corresponding of continuous system under the 

different types of sampling.

Such effects are also examined in the next chapter, where the study of the degrees of decou-

pling zeros, formed under irregular sampling is considered.
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C hapter 7

SPEC TR A L D ETER M IN A TIO N  

OF T H E  STR U C TU R E OF 

D EC O U PLIN G  ZEROS

7.1 In tro d u ctio n

This chapter examines the role of the system parameters of the Jordan canonical description 

in the determination of the structure of i.d.z. (o.d.z.). A new left (right) sequence of A 

Characteristic Toeplitz matrices is used to determine the set E ( A , B ) x l (T(A, B ) \ t ) of degrees 

of elementary divisors of the input (output) pencil of the system at s  = A* or what is equivalent 

the degrees of input (output) decoupling zeros. The result has been proved for continuous 

system and provide new relationships between the Segre Characteristic of A  at Al; pAi (.4) 

the set of r.c.i.(c.o.L) ® ( A , B ) x i  (Z ( A , B ) \ i ) and the set of degrees of i.d.z.(o.d.z.) Y1( A . B ) \ x 

('¡'(A, B ) \ { ). This relation enables the investigation of the changes in the set of i.d.z.(c.o.i.) 

under regular and irregular sampling for the discrete models. The work here generalizes some 

classical results on the spectral characterization of controllability to the spectral characterization 

of degrees of decoupling zeros.
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7.2 S p ectra l D eterm in a tio n  o f th e  S tru ctu re  o f i.d .z . o f a C on-

tin u ou s S y stem  S ( A , B ) .

The set of i.d.z. of a system S(A,  B ) is defined in Chapter 3 (Definition 26) as the set of roots 

of e.d. of the input state pencil. Let the input state pencil of the equivalent system in Jordan 

form S( J , B) be, [si — J,B\ =  s[/,0] — [J, — B] G Bfri+r Consequently the structure of i.d.z. 

of the system S(A, B)  is determined equivalently by the root range of the input state pencil 

(Definition 15). As a first step in this direction the following sequence of left a-characteristic 

Toeplitz matrices is defined as in (3.27) :

T 1 = J  - a l  B g  ^ n x ( n + l )  j i 2  _ J -  al  B I 0 

0 0 J - a l  B
£ j£<2nx2(n+/)

TUa

J - a l  B I  0 0 0 ... 0 0

0 0 J - a l  B I  0 ... 0 0

0 0 0 0 0 0 ... J -  al  B

( £ j n x j ( n + Z )

The properties of the above sequence will be considered next.

7.2.1 Basic Properties of the Rank of the a-Characteristic T O E P L IT Z  M a-

trices

A e start the investigation of the properties of the above Toeplitz sequence by considering their 

rank properties.

P roposition  52 For Ma G C : a £ 4>(A) the matrix T i has full rank.

Proof.

Let, y] i l yT-] n  =  o

y I [ J - a I , B \  = 0 

y] [7,0] =  -s/T [ J - a I , B ]

k y } ^ [ i A }  = - y ] [ J - a i . B ]

If a ^ i>(A) => rank [J — a l , B\ =  n  <=> yJ = 0  and recursively yT = 0, . . . , yJ = 0i z —7 □
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deficient. □

R e m a r k  31  W e  c a n  s t u d y  th e  s e q u e n c e  o f  le f t  n u l l i t i e s  a n d  th e  c o r r e s p o n d in g  t e s t s ,  f o r  d e t e r -

m i n i n g  th e  d eg ree  o f  i .d .z .  b y  c o n s id e r in g  th e  c a s e  o f  e a c h  e ig e n v a lu e  \  f o r  w h ic h  T {  is  r a n kAi

7.2.2 Left Nullity of the j - t h  Single Block Matrix TjJ.

From the above we conclude that any Ai G <£(>!) is a candidate decoupling zero. If the ,4-Segre 

Characteristic at \  is px. (A ) (given by 3.22), then the matrix Bi can be partitioned according 

to p \i (.4) as in 3.69 and the nilpotent matrix H% can also be represented according to the 

eigenstructure of A  at A, as in 6.5.

D efinition 50 The f-th reduced matrix of B ^  is defined as the matrix derived from Bik (where 

B^ is defined in 3.71) as indicated below :

*& = e CT<fcXi, t =  1,2.....7-,»

and where B^k = B ^ for Vi =  0 ,-1 , —2,... □

The same notation can be applied to any other matrix. Thus if 7^ is the T j* x  identity 

matrix, then 7^ is also a r x  matrix,

0 ... 0 0 0 ... o ’

0

0

0

0 0 0 . . 0

0 1 0 . . 0 *—  t-th row

0 0 1 . . 0

0 ... 0 0 0 ... 1
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F or an y  p  >  1, p  €  Z  we define  th e  * o p e ra tio n  on  B lk  €  C TikXl b y  :

P * B a ± B Z ± B r» + 1 - p ) P=  1,2,... (7.2)

Let be partitioned into blocks as in 3.69, then we define the * operation on Bx by some 

p 6 Z as :
P * B n '  '

Rni+i-p)

p * B i  =  B*p 4 P * B lk = = „Tii+l-p)
u i k

_ P * B lV i  _ B*pIVi
„ T iUi+ l - p )  
D iVi

7.2.3 Norm al Description of the j - t h  Left Toeplitz M atrix

Using the above notation we may simplify the computation of nullities of T). using simpler 

matrices.

P roposition  54 The above defined j-th  left Toeplitz matrix Ty is equivalent over C by ele-

mentary column operations to the following form :

f t j  A  
1 \ l ~

Hi B*1l A*1 0 0 o ... 0 0
0 0 B f A*2 o ... 0 0

> j  — blocks

0 0 0 0 0 0 ..

01

0 0 0 0 0 0 .. Hi B ?

Proof. Assume for the sake of simplicity, pxftA) =  {5,4, 2}. We shall establish the Proposition 

for this case, whereas the general case follows along similar fines.

h 2 0 0 b 2

0 H\ 0 b 4

0 0 h 5 Bs
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for a typical block, we have by column transformations and using the notation introduced 

above, we have :

Hzk &ik ---
--

1
o V

i
o o

1

1--
--- o 0 1 o

0 - K k -
Hrk B,Trk)

ik

and thus by column transformations we have,

H% 0 0

0 Ha 0 = Hi B f

0 0 Hb

2. for j  — 2 : by elementary column operations we have that

rpl
1\ %

th 0 0 b 2 h 0 0 0

0 Ha 0 Ba 0 h 0 0

0 0 Hb Bb 0 0 h 0

0 0 0 0 Hi 0 0 B2

0 0 0 0 0 Ha 0 Ba

0 0 0 0 0 0 Hb Bb

Hi 0 0 B? I 2) 0 0 0

0 Ha 0 B? 0 / 4)1A 0 0

0 0 Hb 0 0 0

0 0 0 0 Hi 0 0 Bi

0 0 0 0 0 Ha 0 Ba

0 0 0 0 0 0 Hb Bb

we use column transformation from each of the

and thus we have :

P) 03
to the corresponding

Hj Bj

P 1 . 0 i f  . 03
r s j

3

^  • • Bj Hj • . Bjr 1] J
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which also leads to :

h 2 0 0 B? / 2)h 0 0 0

0 Ha 0 0 / 4) 7 4 0 0

0 0 Hb 0 0 J? 0 Hr B? 1? 0

0 0 0 0 h 2 0 0 e f 0  0 Hr Bf

0 0 0 0 0 Ha 0 8 ?
0 0 0 0 0 0 Hb e f

h 2 0 0 B2 h 0 0 0 0 0 0 0

0 H\ 0 Ba 0 h 0 0 0 0 0 0

0 0 Hb Bs 0 0 h 0 0 0 0 0

0 0 0 0 h 2 0 0 b 2 h 0 0 0

0 0 0 0 0 Ha 0 Ba 0 h 0 0

0 0 0 0 0 0 Hb b 5 0 0 h 0

0 0 0 0 0 0 0 0 H2 0 0 B2

0 0 0 0 0 0 0 0 0 Ha 0 Ba

0 0 0 0 0 0 0 0 0 0 Hb Bb

Using the transformations of step j  = 2 we have that

h 2 0 0 B? 12) 12 0 0 0 0 0 0 0

0 Ha 0 Bt] 0 / 4)1A 0 0 0 0 0 0

0 0 Hb Bb 0 0 0 0 0 0 0

0 0 0 0 H2 0 0 I 1]h 0 0 0

0 0 0 0 0 H a 0 b \ ] 0 f )
1 A 0 0

0 0 0 0 0 0 Hb B? 0 0 I f 0

0 0 0 0 0 0 0 0 h 2 0 0 B?
0 0 0 0 0 0 0 0 0 Ha 0 B f

0 0 0 0 0 0 0 0 0 0 Hb B f
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0 0 0Hi B f  I f

0 0 Hi B f  I fl l 0 II

0 0 0 0 Hi B f

The above analysis readily implies the general step and this completes the proof. □

R em ark  32 The form Ty is column equivalent to T f  and T f  will be called the normal de-

scription of the j- th  left normal Toeplitz matrix. Clearly,

rank T f  =  rankT^

The left null-space o fT y  may be studied by using T f  since the two are column space equivalent.□ 

P roposition  55 Let y G C-7" and be partitioned as,

y J = —1 ’ —2 ’ ' " ’ —t —1 ’ —j

then yf G Af \{ ty }  where Ty G <Cjnxj(n+l) ¡j anc[ on[y ¡j e following conditions are satisfied,

y\H i = o 

y lH l = - y T l f  

£ *  = - & 2

y]H. = - y W \

y ] B f  =  0

yf2 B ?  =  o

and yT B *3 =  0¿3 1

■0 - 1) y ] B f  = o

(7.3)

Proof. Since = N\{Txf ,  by writing the condition y f f y  =  0 and considering the

description of T f  and the natural partitioning the result follows. □

The set of equations 7.3 comprises from two subsets i.e. the equations of the first column 

are referred to as the left recurrent equations of the set, and the equations of the second column, 

called the left Kernel equations. We consider first the recurrent equations.

R em ark  33 Let yi be partitioned according to Segré characteristic defined in (3.22) as,

Ui = y r ■-T,l ' >yT.t—1 ik —Ttv
, ¿ =  1, 2, . . , /
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a n d  f r o m  th e  b lo ck  d ia g o n a l  s t r u c tu r e  o f  H i  a n d  I* J w e  h a v e  th a t  th e  s e t  o f  th e  r e c u r r e n t

e q u a t io n s  is  e q u iv a le n t  to ,

V l lH* =  V (i)

£ l H*  = (2)

£ k H-  = - y Z J * (3) (7.4

y - i L ^ ^ - y - V 1̂ (j)

where Tik takes values from the set of p \i (A ). Equations l . f  will be called the basic recurrent 

equations. □

Lemma 11 For any > 1 the solution of the basic recurrent equation (7-4) is given by :

1. for j  < rik :

yr3 =  
- T i k

0  0  ( — l V  1 C1 ( — l V  2 c2 —cP 1 cPy >  ’ v Lr ik  1 V 1 J Lr ik
j -  2 9

3

7.5)

where c\ k, c?T.k , . . . ,4 ik arbitrary, 

2. for j  > rik :
yH =  v t 2 =  _ =  yTj-rik _  0- 
- T i k  - T i k  - T i k  -

n i l - '  =  [o,(-i

where cfxkTtk +1,..., cfik arbitrary.

(7.6)

Proof. The result is established by induction. Thus,

1. j  =  1 : Let

^  =  R - , 4 J
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th e n , from  th e  j  f irs t o f th e  re c u rre n t eq u a tio n s  (7.4) it  follow s :

y l 1 H lk =  o
— ' ik

}(b)

v l‘ Hit =  -
-T ik -Tik

where :

and

r*0'-i) _  rrik+2-j)
Tik

Then it follows that :

-c?~l c7-1! Ttk > ^Tik J
T i k - 3 + 1

0 ... 0 0 0 ... 0

0 ... 0 0 0 ... 0

0 ... 0 1 0 ... 0

0 ... 0 0 1 ... 0

0 ... 0 0 0 ... 1

Tik T 2 j

(6) <

¡ 4  =  [ ° .  ■- . 0 , c 1

4  =  [ 0 .  •

cT - c ]C7

¡ 4  =  [ o .  ■ -,  o , c 1LUi;
„3 1 
'Tiki

0  T j  r jU, Xj , •••) xrifc- l -1
4 ik> - ^ ik

T i k - 3 +1

and relation (7.5) is proved.
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4. for j  > Tik , let again,

y-Z -  > Mil = y l i  = rri
X l> — ' X Tik

It is

and

T*r ik  _  jXTik — ik

V TJ =  ¡ ( _ l ) T i k - l  ¿ i - T i k  +  l  _ J - 1 J  1

S - T i k  L I  / T i k  ’  " • >  C T t *  ’ C T i f c J

from the j- th  of the recurrent equations (7.4) it follows that :

(7.7)

\ ( - \  ) Ti k - l  (J -Tik +  l J -  1 J  }H  _ _
LV L r i k  ) • • • )  i L T i k \ n i k  —

- f - 1 xi - iX1 '■■■'■Lrik r j ?' t«

1 =  0 . 4  1 =  ( - i ) r<fc 2 4 j ifc+1) - , < fc1 =  4« *1

C 1 =  t°. ( - i r - 2 4 r * +1> - < 2, 4 ; 1]

and from the (j — l)-f/i of the recurrent equations we have :

(7.8)

[0. (-1  )™ -2 < 7 “ +1, -< £ * ,< £ » ]« «  = Tf - 2 r J-2X j  , . . . , X T .fc T̂ik <=>

<=> 2T4  ̂ — n r--l 2o>xi 2 = 0,4 3 = ( - i p  34 ifcT<fc+1. - ^ i J  = 4J*>

y_H 2 - [o, o, ( -1 ) ’» -*  4r;**+'. - ,  - < * , < * )  (7.9)

So the solution of the basic recurrent equations is as described by relations (7.5) and (7.6). □
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Exam ple 9 Consider the system characterized by px^A) = {5,4,2} where,

h 2 0 0 b 2 h 0 0

H i = 0 H * 0 , B i  = b 4 , h  = 0 h 0

0 0 H s  _ B b _ 0 0 h  _

we will first examine the solution of equations (7.3) :

1. for j  — 1

v]Hi =  0,

and if

,T —
2 -1 y ÿ  vŸ  v i1

then

y£H 2 = 0, ^ h 4 = 0, y l 'H ^ O , y ÿ  y}1 v i1

B.

b :

B

= 0

By Lemma 11 we have :

y ÿ  = n l1 = 0 0 0 0 c\

and from the Kernel condition :

yC B t] + y l iB44) + ¿ 5 ^  = 0

the latter is reduced to

0 c\ +
— 2,2

0 0 0 cj

0

0

0

£ . 4

+ 0 0 0 0 c\

0

0

0

0

L & 5

=  0
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—2,2
r1 r 1 c4 c5 £1,4

. £ ,5  .

=  0

If we define
T A

4  = 4  4  4

then

fil

a *

£ .4

L £ ,5  J

=  0

2. for j  =  2 :

and if

i£ tfi =  o ^ ^  =  0

=  - y ^ * 1 yJB<2 =  Q

£i = y j1 y^1 y j1 2a = ^22 ^ ¡2 ^¡2

then by Lemma 11 we have :

—2
1 _

-2 _

o 4 ) i f = 0 r 1c2 1

l-----1
II

4*1

- 4  4 , j/j2 = 0 0 - c 1l4 C2c4

to II
I--

---
1

0 0 0 0 cl

0 0 0 - 4  ' C5

If we now define
oT A

- 4  4 -r1 r2 c4 l4 „1 „2

then we have :

— 1,2 — 2,2

— 2 ,2
0

& 4 £ , 4

^ , 4
0

£ , 5 £ , 5

£ , 5
0

=  0
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3. for j  = 3 and by following the same as above procedure we have:

VT l =  
22

y1"2 =  22
, (l 3  __

If we set

then we have

0 0

-r2ft

y l2 = 

y}2 = 

v l3 =

T Af t  = -r2ft

4. Similarly for j  = 4 we have

—2̂  =
7/T3 —

4  =

0 0 

0 0

0 c3

-eg r 4c 2

f t

=
4 _

0 0 0 4 >

0 0 - 4
2
4

0 4 - 4 4c4

4  4f t  l 4 4C4

CN

1____ —2,2 0

—2,2 0 0

—2,4 £¡,4 £¡,4

£¡,4 0

£1,4 0 0

—3,5 £1,5 £¡,5

£1,5 £ ¡ ,5 0

. £ , 5 0 0

0 0 4c4 J >

0 - c 1 44 c4 )

4  -C4 4  4C4 c4 )

4  4c4 c4 _4c4 c4

y T 225

^¡3

= 0

^¡4 = 

^ ¡4 =

y j  =

0 0 0 0 c\ 

0 0 0 - c l

0 0 cl -ci

c3l 4

0 0 0 0 4

o o o - 4

0 0 4  “ c 5

0 - 4 c: -c r

and if we set

4 ^ -4c 2 4  - 4f t  l 4
„2 „3 „4
c 4 c 4 c 4 c5 - 4  4
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then we have:

—1,2 —2,2 0 0

—2,2 0 0 0

—1,4 —2,4 £¡,4 £ .4

—2,4 £¡,4 £1,4 0

a 4 £1,4 0 0

£ ,4 0 0 0

£ ,5 £¡,5 £ 4,5 £¡,5

£5,5 £ ,5 £ ,5 0

£ ,5 0 0

. £ , 5 0 0 0

5. Similarly for j  — 5 and j  = 6 we have

—1,2 —2,2 0 0 0

—2,2 0 0 0 0

—1,4 —2,4 £¡,4 £1,4 0

—2,4 £¡,4 £1,4 0 0

£¡.4 £1,4 0 0 0

£ ,4 0 0 0 0

—1,5 £ L £¡,5 £ 4% £ , 5

—2,5 £ L £ 5 £ L 0

£¡,5 £¡,5 0 0

£1,5 £1,5 0 0 0

.£ ¡,5 0 0 0 0
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and

—1,2 £ 1 ,2 0 0 0

—2,2 0 0 0 0

—1,4 £ 1 ,4 £ 1 ,4 £ 1 ,4
0

—2,4 £ 1 ,4 £ 1 ,4
0 0

£1,4 £ 1 ,4
0 0 0

£1,4 0 0 o’ 0

£ 1 ,5 £ 1 ,5 £ 1 ,5 £ 1 ,5 £ 1 ,5

£ 1 ,5 £ 1 ,5 £ 1 ,5 £ 1 ,5
0

£1,5 £ 1 ,5 £ 1 ,5
0 0

£1,5 £ ¡ . 5 0 0 0

- £ ¡ , 5
0 0 0 0

So for the general example we have that the dimension of the left Kernel of T{. is defined 

by the dimensions of the left Kernel of the following Toeplitz type matrices :

Q\i =

£ 1,2

£ 1 ,4

£ 1 , 5 .

£ 1 ,2 £ 1 ,2

£ 1 ,2 0

£ 1 ,4 £ 1 ,4

£ 1 ,4
0

£ 1 ,5 £ 1 ,5

£ 1 ,5
0

£ 1 ,2 £ 1 ,2
0

£ 1 ,2
0 0

£ 1 ,4 £ 1 ,4 £ 1 ,4

£ 1 ,4 £ 1 ,4
0

£ 1 ,4
0 0

£ 1 ,5 £ 1 ,5 £ 1 ,5

£ 1 ,5 £ 1 .5 0

. £ 1 , 5
0 0
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£1,2 —2,2
0 0

—2,2
0 0 0

—1,4 —2,4 £¡,4 £1,4

—2,4 £i ,4 £ ,4 0

£ . 4 £1,4
0 0

£ .4 0 0 0

—2,5 £1,5 £ , 5 £ ¡ ,5

1̂,5 £ , 5
0

£ . 5 £1,5 0 0

£ , 5 0 0 0

whereas for j  > 5 we have that Q y — Q\.

£ 1 ,2 £ 1 ,2
0 0 0

£ ¡ ,2
0 0 0 0

£ 1 ,4 £ 1 ,4 £ 1 ,4 £ 1 ,4
0

£ 2,4 £ 1 ,4 £ 1 ,4
0 0

£ ¡ ,4 £ 1 ,4
0 0 0

£ 1 ,4
0 0 0 0

£ 1 ,5 £ 1 ,5 £ 1 ,5 £ 1 ,5 £ 1 ,5

£ 1 ,5 £ 1 ,5 £ 1 ,5 £ 1 ,5
0

£ ¡ , 5 £ 1 ,5 £ 1 ,5
0 0

£ 1 ,5 £ 1 ,5
0 0 0

£ ¡ , 5
0 0 0 0

(7.10)

□

The above sequence of matrices are defined from the spectral decomposition of the system 

description and are of simpler nature than the original Toeplitz matrices. Their significance is 

described below.
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7.2.4 Input Spectral T O E P L IT Z  Matrices

Assume for the system 5(A, B) the corresponding partition of the Jordan description B of B  is 

given as in (3.67). If the Segré Characteristic of A at s =  A Xt e 4>(A) is given by (3.22) and 

the corresponding partition of Bi by (3.69) and if assume that the typical spectral block Bik is 

described by (3.71). We may define:

D efinition 51 The j - th input spectral Toeplitz matrix is defined in a row block partition form 

as shown below,

" Q 3n

where.

1. For Vj < n v. : 

(a) if j  < Tik,

TikQfi

QÌ

7.11

j)Tik /?T .—Tik OfTik /?T ! k iTik

Qrik A
S ,- j . Tik PT ■ ,—Tik-3-ì,Tik PT—Tik,Tik 0

S t - . Tik F—Tik,Tik 0 0

P—TikiTik 0 0 0 ~

if j  > Tik,

'  s , . ... f3J ,k —Tifc 1 PJ—Tik,Tik 0 .. 0

=
s , . Æ  ... /?T—Tik,Tik 0 0 .. 0

S , - hr, s . ... 0Tik 0 0 .. 0

F ̂ —Tik,Tik 0 ... 0 0 0 .. 0

e C jxli (7.12)

e C T'kXlj (7,13)
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□2. For V/c > riVi : QJTik =

Prom the above definition, Lemma 11 and using induction following the steps of the rather 

general Example 9, the following Proposition is readily established.

Proposition 56 For any set of indices {rlVi > ... > rik > ... > Tn > 0} the solution of the set 

of equations (7.3) (recurrent and Kernel equations) is determined by the vectors c j , where,

c}Q i =  0

□

Remark 34 The degrees of freedom of the set of equations (7.3 recurrent and Kernel equations) 

are determined by dimA/i j  . Furthermore, for all j  > t IVi : QJTik = Qrfj there are no more 

degrees of freedom to the solution of equations (7.3). □

Proposition 57 Consider the system S (A ,B ) with p \i (A) =  {r > ... > > ... > t h  > 0}

and let S(J, B) be the corresponding Jordan normal description. I fT y  is the j-th , Aj-characteristic 

Toeplitz matrix of S(J,B ) and Q y is the j -th input spectral matrix of the system, then,

A ' . [ T l ) = n ] { Q { )

Proof. By Proposition 53 it follows that T) determines the left null-space properties of 

(A) | t ^ I  =  A) j ) ,  whereas by Proposition 54 the study of the A i ( t )  |  is further re-

duced to the study of A] | .  Finally by Proposition 56 follows that the solution of equations 

(7.3) is given by the A/i{Q^.} and this completes the proof. □

Definition 52 Using the , j  — 1,2,... input spectral matrices we define the Xi-input spectral 

sequence as in (3.31) i.e.

J A “  {nj '  : no =  °. nj* =  dim A > l}

□
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T heorem  48 The sequence J\. is piecewise arithmetic progression satisfying, the condition

n A, > ,j ,,i ^ J + \  j  =  1,2,..
3  —

In particular we have that strict inequality holds if j  = [i is the degree of an input decoupling 

zero of the S(A, B) pair. In this case the multiplicity of the degree j  =  / j . is,

a — 2n)1 — n ) ' , — n)1-,
3 3 - i  3 + i

Proof. The set of i.d.z. of the system ¿’(A, B ) is defined as the set of roots of e.d. of the input 

state pencil : s[7, 0] — [J, —B] € From Theorem 12, Definition 16 and Proposition 10 we

conclude that the Weyr characteristic of ([J, —B}. [7,0]) determines the structure of e.d. of the 

input state pencil. Then from the above Proposition 57 the Theorem is proved. □

7.2.5 Calculation of the i.d.z. at A* from the Set of r.c.i.

Some further results on the characterization of i.d.z. are given below.

R em ark  35 From the Definition 51 it is directly concluded that :

1. The matrix Q \ coincides with the i-th spectrum controllability matrix B f defined by 

(3.73).

Q i = £?

2. The matrix Q])1'1 coincides with the matrix Qfji defined by (6.6)

= QHi

□

Consider the set of r.c.i. ©(.4,7?);^ given by (6.7). Let the set of be rearranged

such that the index 6^, k =  1 ,2 ,...,^  be the r.c.i. which corresponds to the block Blk of B. 

Then this is denoted as,

@ \A ,B )Xi = {eil ,e i2,...,e ik,...,d iVi), elk > o, k =  1,2,...,̂  (7.14)
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C o n sid e r now  th e  se t of d ifferences

E \A ,B ) Xi =  { g 'j, , - - -, , - - -, }

between the corresponding elements of the two sets, @ '(A,B)\i and the set of the Segre char-

acteristic of A at Ai, pA, (̂ 4):

Til #il 9il, Ti2 @i2 Qi2' •••> Tifc Aik — Vifc) A A /
^  =  Qiv (7.15)

and let Yj(A ,B )\. be the set of the non zero values of the above differences, described by the 

ordered set of integers,

£ ( A 5 ) a, =  [ ( h j ,  <ri); / i f  >  ... >  h i  >  h i  > o j ; f  =  1 , 2 , . . . , /  ( 7 . 16 )

Where cP is the multiplicity of hi (j =  l,2...,Si). Then we have the following result :

T h e o r e m  4 9  The degrees of the input decoupling zeros of a system S (A ,B ) at s =  A i  are 

defined by the above defined set of indices £ (A f? )A. (or the Y!(A, B ) \ i).

P r o o f .  Let rankQA. (= rankilf) — p .Then, the number of linearly dependent rows of Q\, is 

Vi — p and from the definition (3.31) of J\, we have npi 2 — Uq1 =  i/j — p.

1. For j  = 1,2,... < h l : The total number of linearly dependent rows of the matrices 

Q \%, Ql., ..., Q \̂i i is correspondingly Vi p, 2 (vt -  p) , ..., p\ (^  -  p). Then for the 

successive differences of we have:

-  n j i j  =  V i - p ,  j  =  1,2,  ...,hi

2. For hi < i  < hi : the matrix QA)+1 there are cr) new hnearly independent rows of Bl.

Then,

ra n k Q j+1 =  (hi +  l) P +  o\
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11 I -j. 2 '
and the total number of linearly dependent rows of Qx, , is

(m! +  1) {yi - p ) ~  tr}

Thus, the corresponding total number of linearly dependent rows of Qxi+2, Qx] is

{p\ + 2) 0 i -  p) -  2a], (/x- + 3) -  p) -  3(r}, p] (vx -  p) -  p.2 _1i

and the successive differences of are

«■' -  t i*i j  = u i -  p - a ]

Rum the above we conclude that for j  =  p*, it is

n
n A,j > -A  Ml

I A ,, + n-1 uiM +1 <=i>

, ,.i .w  (Mi -  1) -  P) +  (Pi +  1) ("* -  P) -  ,^  Pi \y% -  p) > ------------------------- ^ ^

<=> 0 > —a ] /2

and p] is a degree of i.d.z. at s =  A* with multiplicity,

2nAt] — (n x\ +  n x\ = a ]
Mt V Mi — t  M i + 1 /  1

The above result can be extended by induction for j  = p] ,.... p |. □

P roposition  58 The sum of the degrees of i.d.z. at s = Xi is given as,

d'p +  Qi 2 +  ■■■ +  4ik +  ••• +  4 iv .

where iTj is the algebraic multiplicity of Ai and ry is the dimension of the controllable subspace 

Tlr.

Proof. From the above relation (7.15) and Theorem 35 the relation is directly deduced. □
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Exam ple 10 Let now the uncontrollable continuous system given in Example 7. We proceed to 

the calculation of the elements of the set £'(A, B) Xi by subtraction of the elements of @( A  B )Xi 

from the corresponding of pXl (A). Then the i.d.z. are determined directly:

(a) mode Aj:

(b) mode A2:

(c) mode A3:

(d) mode A4:

or we have: E(A  B )Xl =  {2} , Z(A, B )x, = {2} , £(A, B )x, = {1} , £(A, B )x, =  {1} . □
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7.3 S p ectra l D eterm in a tio n  o f th e  S tru ctu re  o f o .d .z . o f  a C on-

tin u o u s S y stem  S ( A , C ) .

The set of o.d.z. of a system S(A, C) is defined in Chapter 3 (Definition 28) as the set of roots 

of e.d. of the output state pencil. Let the output state pencil of the equivalent system in Jordan

form S(J, F), be as
s i  - J I J

=  s —
r 0 -r

G C.'71+771,71 *

Consequently the structure of o.d.z. of the system S(A ,C ) is determined equivalently by 

the root range of the output state pencil (Definition 15). As a first step in this direction the 

following sequence of right a-characteristic Toeplitz matrices as in (3.27) may be constructed :

j  - bl 0

j - b l ç. (£(n+m) r 0
T 1 —1 b — xn T* =

r i J  - b l

0 r

j - b l 0 0 0

r 0 0 0

i J  — bl ... 0 0
h 0 r 0 0 G f^j(n+m)xjn

0 0 I J - b l

0 0 0 r

g (£<2(n-fm)x2n

The analysis that follows is similar to that of the previous case and the results mainly follow 

by duality.

7.3.1 Basic Properties of the Rank of the b-Characteristic T O E P L IT Z  M a-

trices

The characterization of candidate values for o.d.z. is defined by the following result: 

P roposition  59 ForWb G C : b £ 3>(A) the matrix Tj) has full rank.
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P r o o f .  Let.

Tl

y i

—2

V ■- J  J

= 0

J - 6 7

r
1

y y = 0

o h  = ~

i

0 V l  =  -

J - b l

r

J  — bl

r
y ■-0

If b £ ^ ( j4) => rank
J — bl

r
= n <=> y = 0  and recursively y =  0, . . . , y . — 0.

—  i  — Z  — J
□

P roposition  60 Let b =  Aj G $(A) and as in the case of i.d.z. express, TjJ.

where Ht =  J(Aj) — Aj/ £ R71̂ 77* is nilpotent, T' £ ([Fn_7ri)x(n_7ri) is full rank, F* € C7rtXi is (as 

defined in 3.68) the matrix block of F corresponding to J ( A j ) .  TTien f/ie nullity of the matrix 

T l  is defined by the nullity of the matrix TjJ., where,

Hi 0

0 V

n <>>. r
çyr, xi is ((

Hr o ... 0 0

r 2 o ... 0 0

I Ht ... 0 0

0 0 ... Ti 0

0 0 ... I Hi

0 0 ... 0 r ,

j-blocks

R em ark  36 IFe conclude that only the A j £ <£>(.*4) are candidate values for o.d.z.

□

□

R em ark  37 IFe can study the sequence of nullity and the corresponding tests, for determining 

the degree of o.d.z. by considering the case that corresponds to each one of the eigenvalues. □
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7 . 3 . 2  Right Nullity of the j - t h  Single Block M atrix T 3X.

From the above we conclude that any Aj G <J>(Al) is also a candidate o.d.z. The matrix can 

also be partitioned according to (̂ 4) as in (3.70) .

D efinition 53 The t-th reduced matrix of T^ is defined as the matrix derived from F^ (where 

r ik is defined in (3.72)) as it is indicated below:

p d _
1 ik  — l i k T 6 C mXT« , t =  1,2,..., Ttt and r fk =  T^ for Vi =  0 ,-1 , —2, ...□

Tik XlFor any p > 1, pG Z we define the *  operation on G CTifcX by :

r îfc* P  =  r * p â r ^ +1- p, p =  i,2 ,

Let T, be partitioned as in (3.70). then we define the *  operation on T; by some pG Z as:

P *  Tj =  F*p =  [ p * r i l , . . . , p * r ifc, . . . , p * T i " p ( n i + i - p  p ( T i j t + i  - p  p t n ^ + i - p '
1 ¿1 > •••>1 ¿p > •••> ¿¡/j

7.3.3 Norm al Description of the j - t h  Right Toeplitz M atrix

The properties of the corresponding Toeplitz matrices are defined below.

P roposition  61 The above defined j-th  right Toeplitz matrix T j is equivalent over C by ele-

mentary column operations to the following form :

Hi 0 . 0 0
1

1 i 0 . 0 0

I f Ht . 0 0

0 0 . p*0'-i) 
1 i 0

0 0 . 7*0-1) H t

0 0 . 0 p*d 
x i

j — blocks

□
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R em ark  38 The form T), is row equivalent to T) and Tfi will be called the normal description 

of the j - th right normal Toeplitz matrix. Clearly, rankT^ =  rankT^ . The right null-space of 

Tl may be studied by using T{. since the two are row space equivalent. □

P roposition  62 Let y G Cjn and be partitioned as, y = Vl —2 y- i - l  h
Then

y G MT{Ty}, where T) G CJ(n+m)xjn , if and only if the following conditions are satisfied,

Hiyy = 0 

Hry2 = - 1 ? %

H>y 3 =

IT (.3
=  - h  Vj-1

and <

= 0

B f \  =  0 

B f y 3 = o

B f 3y . =  01 -3

(7.17)

□

The set of equations (7.17) comprises from two subsets i.e. the equations of the first column 

are referred as the right recurrent equations of the set and the equations of the second column 

as the right Kernel equations. We consider first the recurrent equations.

R em ark  39 Let yi be partitioned according to Segre characteristic defined in (3.22) as,

Hi = y-rn -  yrik -  y-r u * =  1 ,2 ,,..,/

and from. the block diagonal structure of Ht and I f 3 we have that the set of the recurrent 

equations is equivalent to,

Hik.y = o—1 xk

TikHiky-rik -  / ^ 1y

H* y-r lk = (7.18)

l H* y- n k = ~ JT ly rik

where takes values from the set of p \.(A ). Equations (7.18) will be called the basic right 

recurrent equations. □
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Lem m a 12 For any > 1 the solution of the basic right recurrent equations (7.18) is given 

by :

1. for j  < rik :

V.3 =
T~ik 4 ». - 4 »,

Tik~j

where d\.k, dfik, dfik arbitrary, 

2. for j  > rik :
y1 =  y2 =  =  yJ Tik =  0Tik —Tik —T±k
yJ ~ T i k  + 1 

rik di:kTik+\ o,...o
i - i  =
rik
j
Tik

......( - i r - * < C “ +’.«

where d:TiJ lk +1, arbitrary.

(7.19)

(7.20)

□

7.3.4 Output Spectral T O E P L IT Z  Matrices

The above results lead to the definition of the output spectral matrix the properties of which 

define a characterization of the o.d.z. Assume for the system S(A, C) the corresponding parti-

tion of the Jordan description T of C is given by (3.68). Let the Segre Characteristic of A at 

s =  Xt, Ai € 4>(A) be given by (3.22) and the corresponding partition of T* as in (3.70) and 

that the typical spectral block is described as in (3.72).

D efinition 54 The y’-th output spectral Toeplitz matrix is defined in a row block partitioned 

form as shown below.

M L

M L

(7.21)

where.
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1. F o r  V j <  r iVi :

(a) if j  <  Tik, then

M L  =

(b) if j  > Tik, then

ML -

—1 ,Tik 'h- ,Tik • 'y —3,Tik
0 —l.Tifc —j~2,Tik

0 0 —1 ,Tik —2,rik
0 0 0 —1 ,Tik

— l.Tffc —2 ,Tik
'Y 7— Ti k , Tik

0
—1 ,Tik

'y— r i k - 2 , T ik 7—n k - i .T if c

0 0
—1 ,Tik —2 ,Tifc

0 0 0
—l.Tifc

0 0 0 0

0 0 0 0

£ Cjx j

£ CjXTik

2. For Vfc > : M L  = M-̂ ik □

P roposition  63 For any set of indices {rlUi > ... > r \k > ... > > 0} the solution of the set

of equations (7.3) (right recurrent and Kernel equations) is determined by the vectors dj. where,

M fdj = 0

□

R em ark  40 The degrees of freedom of the set of equations (7.17 right recurrent and Kernel 

equations) are determined by d\mj\i\ j Q . Furthermore, as for all j  > TiVi : Qfik = QLi  there 

are no more degrees of freedom to the solution of equations (7.17). □
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C orollary 8 Consider the system S(A ,C ) with A ) =  > ... > > ... > > 0} and

let S(J, T) be the corresponding Jordan normal description. If T y  is the y'-th, A*-characteristic 

Toeplitz matrix of S(J,T) and M y is the j- th  output spectral matrix of the system, then,

^  { t l } = ^  { m Q

□

D efinition 55 Using the M y , j  — 1,2,... output spectral matrices we define the Xl -input 

spectral sequence as in (3.30), i.e.

J TXi(G ,F )±  =  r)^ =  dim Nx.; k >  l}  (7.22)

□

T heorem  50 The sequence J y  is piecewise arithmetic progression satisfying, the condition

nfi > -------------- , J = 1,2,... (7.23)

In particular we have that strict inequality holds if j  =  £ is the degree of an o.d.z. of the 5(v4, C) 

pair. In this case the multiplicity of the degree j  = £ is,

T ~  2nji -n* '+1 (7.24)

□

The above result provides the means for computing the degrees of o.d.z. with matrix based 

tests.

7.3.5 Calculation of the o.d.z. from the Set of c.o.i.

The computation of o.d.z. using alternative means provided by the c.o.i. is considered below 

and the analysis is similar to that given for i.d.z.

R em ark  41 From, the Definition 5f it is directly concluded that:
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1. The matrix M x. coincides with the i-th spectral observability matrix Y f  defined by (3.74)> 

i.e.

K  = rf

2. The matrix M Y1'1 coincides with matrix MHi defined by (6.15), i.e.

□

Consider the set of c.o.i. Z(A, C)Xi given by (6.16). Let the set of Z'(A, C)Xi be rearranged 

such that the index Çik, k =  1,2,..., be the c.o.i. which corresponds to the block Tj* of T . 

Then we have

Z \A , C)x. =  {Q ,, ci2, ..., Ctfc, - ,  C uj, L  > 0, k =  1, 2,..., Vi (7.25)

Consider now the differences

'(A ,c )Xi = {pi,

between the corresponding elements of the two sets, the pXi (A ) and the Z'(A, C)Xi, that is

Ti 1 — Cil — P il l  Ti2 — Ct2 — P i2 , •••> Tik — Qik — Viki TiVi ~ Qu, — PA ivi (7.26)

and let T (A  C )A. be the set of the non zero of the above differences, described by the ordered 

set of integers,

T ( A C ) At >  ... > £  >  0 } ;z =  1,2,...,/ (7.27)

Where ^  denotes the multiplicity of (j = 1,2, ...fj). Then we have the following result :

T heorem  51 77ie degrees of the o.d.z. of a system S (A ,C ) at s = Xi are given by the set of

indices T (A  C)Xi. □
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P roposition  64 The sum of the degrees of o.d.z. at s = \ i  is given as,

P'n +Pi2 + -+P'ik + -+P'iVi =Pi ( 7-28)

where pi is the dimension of the unobservable subspace V i.

Proof. From the above relation (7.26) and theorem (38) the relation is directly concluded. □
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7.4  S p ectra l D eterm in a tio n  o f  th e  S tru ctu re  o f  In pu t (O u tp u t)  

D eco u p lin g  Zeros o f  a d iscretised  S y stem

The set of i.d.z. of a discretised system S (A ,B ) is defined as the set of roots of e.d. of the

input state pencil z l  - Â , ë . Let the input state pencil of the equivalent discretised system

z l  - J .  B =  * [ J ,0 ] - [ J ,- B ] G Z * n+i.

The set of o.d.z. of the S(À, C) is also defined as the set of roots of e.d. of the output state 

z l  -  Â

in Jordan form be S(J, B): 

z. of the

pencil  ̂ or of the equivalent discretised system in Jordan form S(J, f ) :
C

si - J I J
=  s —

f 0 - f
I T

n-fra,n

Consequently the structure of i.d.z. (o.d.z.) of the discretised system S (A ,B ,r )  is determined 

equivalently by the root range of the discretised input (output) state pencil. Following exactly 

the same steps as in the case of the continuous system, it can been shown directly that the same 

conclusions, theorems, propositions, lemmas, remarks etc., proved in the previous sections for 

the determination of the i.d.z.(o.d.z.) structure of the continuous system are also valid for the 

structure of i.d.z. (o.d.z.) of the discretised system.

In this section, we have to investigate the mapping of the structure of i.d.z.(o.d.z.) of a 

continuous system S(A, B, C ) to the corresponding structure of i.d.z. (o.d.z.) of the discretised 

model S(A, B, C) under the two types of sampling.

7.4.1 Regular Sampling

For the case of regular sampling we have the following result:

T heorem  52 Under regular sampling, the structure of the i.d.z.(o.d.z.) of the discretised 

model S(A, B, C) remains the same as the corresponding structure of the continuous system 

S (A ,B ,C ). Then it is,

(a) To each one of the i.d.z. (s — A¿)^ (j =  1,2, . . . , S i )  of the continuous system corresponds 

the i.d.z. (z  — Xi) ' of the discretised model.
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(b) To each one of the o.d.z. {z — A¿)^ (j  = 1,2, ...,ti)of the continuous system corresponds 

the o.d.z. (̂ z — A^ 1 of the discretised model.

Proof. : It is already known from Theorem 30 that under regular sampling, the Segre Char-

acteristic of A  at Ai is equal to the Segre characteristic of A at \ t : p \i (A) = px

(a) It have been shown (Proposition 53, Remark 30) that candidate i.d.z. of S(A,B) are 

exist at  ̂ =  Aj <E 4>(A) and from Theorem 41 it follows that the set of i-th spectrum 

r.c.i. of the discretised model is equal to the set of i-th spectrum r.c.i. of the continuous 

system: @(A,B)\i = @(A,B)X_. Then the set of differences between the corresponding 

elements of the sets p^ (A), 0(A, B ) \i and px (̂ Aj , ©(A B)x , is determined as in (7.15) 

and remain also the same. Prom (7.16) we conclude that for regular sampling it is,

E (A ,B )Xi = E (A ,B )Xi.

(b) Also candidate o.d.z. of S(A ,C ) exist at z =  Aj £ 4>(-4) and from Proposition 46 it is 

known that the set of i-th spectrum c.o.i. of the discretised model is equal to the set 

of the i-th spectrum c.o.i. of the continuous system, Z(A,C)-X. = Z (A ,C )\i . Then the 

set of differences between the corresponding elements of the sets p \t (A) , Z(A ,C )xi and 

p~x ^ A ^  , Z(A, C)~x., is determined as in (7.26) and remain also the same. Prom (7.27) we 

conclude that for regular sampling,

V (A ,B )Xi = V(A,B)-Xi

and the theorem is proved. □

7.4.2 Irregular* Sampling

For notational simplicity again the case of two eigenvalues Au and Xy collapsing is examined. 

The obtained results can directly be extended to any case of a partial or a total collapsing, 

to each cr-root range of A, 4>cr(A). We assume that under an irregular sampling, the distinct 

eigenvalues Au and Xy of the continuous system correspond to the eigenvalue Ac of the discretised

system.
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T heorem  53 Under irregular sampling, the structure of the i.d.z. (o.d.z.) of the discretised 

model S (A ,B ,C ) is transformed from the corresponding structure of the continuous system 

S (A ,B ,C ).

(a) The two sets,

H'(A, B ) \u — {q'uj, q'u2, q'UUu',q'uk ^  0) k — 1,2,..., vu}

Z’(A ,B )Xy =  ^  °» k =  1 ,2 ,... ,^ }

determining according to (7.15) the structure of i.d.z. of the continuous system at s =  A.u 

and s = Xy, corresponds the set,

> 0, k — 1,2,..., vc)

determining the structure of i.d.z. at s =  Ac of the discretised model; each one of the 

q'ck(k = 1,2, ...,vc) is greater or equal to the corresponding number (one of the f uk (k = 

1, 2 , vu)or q'yk (k =  1 , 2 , vy)) derived from the same matrix block of Bu or By of the 

continuous system

(b) The two sets,

Z ' ( A ,C ) x u =  {Pui,Pu2i - iPuvAPuk >  0, k =  1,2, . . . ,vu )

Z ' ( A , C ) x y =  | p y l , P y 2 l  - , p ' y u y \p 'yk  >  0 ,  fc =  1 , 2 ,  î / y |

determining according to (7.26) the structure of o.d.z. of the continuous system at s = A.u 

and s = Xy, corresponds the set,

Z '(Â,C)-Xr: =  {p'cl,p'c2, ...,p'CUc-,p'ck > 0, k =  l ,2 ,... ,v c]

determining the structure of o.d.z. at s = Ac of the discretised model; each one of the 

p'ck(k =  1,2, ...,vc) is greater or equal to the corresponding number (one of the p'uk (k — 

1, 2,..., vu)or p'yk (,k — 1, 2,..., Vy)) derived from the same matrix block of Bu or By of the 

continuous system.
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Proof. It is already known (Theorem 31) that, the Segre Characteristic px is formed by

the merging of p \u (A ) and pXy (A).

P\c — P \ u (A ) U P \ y (A )  ■<=>• { r c l , T c 2 , T CUc }  =  { r ul , T u  2, T UVu }  U { T y i , T y 2 . .... Tyuv }

(a) The set of c-th spectrum r.c.i. rearranged as in (7.14) is,

=  {0cl,0c2, —,0ck, —,0cve},dck > 0 ,k  = 1,2, ..., uc (7.29)

and each one of the above indices of 0'(A , B )x is, according to the proof of Theorem 43, 

equal or smaller to the corresponding index of the same matrix block of Bu and By of the 

continuous system. Then from (7.15) the result is proved.

(b) The set of c-th spectrum c.o.i. rearranged as in (7.25) is,

Z \ A ,  C )-Xc =  {Cci,Cc2, ~M Ccfc,.... L c ) ,  U  >  0, k  =  1,2,..., (7.30)

and each one of the above indices of Z'(A, C-)x is, according to the proof of Theorem 47, 

equal or smaller to the corresponding index of the same matrix block of Tu and Fy of the 

continuous system. Then from (7.26) the result is proved. □

The above Proposition suggests that under irregular sampling it is possible to have i.d.z. 

(o.d.z.) of the discretized model with greater degrees than the corresponding i.d.z. (o.d.z.) 

of the continuous system. Also under the conditions described in the following Remark, it is 

possible to have the generation of new i.d.z. (o.d.z.).

R em ark  42 If into some block ofBu or By (Tu orTy) of the continuous system (with Q h u, Q h v 

(M ■ Mffy) as normal structure according to Definition f l  (49)), let into the block Buk (Tur ) 

we have 9uk — t u*, (Quk =  t u^), while the corresponding index of the discretised system is 

@uk < Tuk (Cuk < Tuk) then we have the generation of a new i.d.z. under irregular sampling. □

As an illustration of the above consider a continuous system S j(J .B . r), the Jordan block 

Juk £ CTlk*Tik of J  and the corresponding blocks Buk of B and Tuk of Tand 9uk = ruk — 1.
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C u k  — T u k '

Au 1 0 0 Suk. 1

0 Au 0 0 Suk2 2

0 0 1 0 (3 \-ukruk-2 ruk — 2

0 0 1 ~UkTufc -1 + @uk =  'T'uk 1

0 0 0 Au P-ukT k
'Y—uk\ 'y—«/C2 ~ukruk~-i

T

H Tuk ~~ 1 2 1

So for the continuous system we have the i.d.z. (s —Au) and no one o.d.z. Let under

sampling for the corresponding discretized model S (J ,B ,T )  be :

Ac 1 0 0 I k . 1

0 Ac 0 0 l k 2 2

0 0 1 0 K k  2 < @ ck — Tck 2

0 0 Ac 1
—Cfcrck - 1

0 0 0 Ac & Tfc
%k\ —ck2 • %k~°Ktck , 7 cfc-1 —CKrrk

T

C ck — Tck — 1 . 2 1

where rck = Tuk, 0ck - Tck 2 < 6uk. Qck -~ 7~ck, 1 < Quk• Then we have the i.d.z.

and the generation of the o.d.z. (z -  Ac).
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Exam ple 11 Consider the uncontrollable continuous system given in Examples 7 and 10 be 

under the irregular values of the sampling period as already have been examined in Example 8.

a)

a .l) For k — 1,2,3, 5, 6, 7,9,10,11,... 

a. 1.1) mode A12 •'

Pâ12 ( à ) S ' ( ^ ) â 12 i.d.z.

6 4 2 (z — Â12)2

6 3 3 (2 -  Â12)3

3 3 0 1

3 3 0 1

1 1 0 1

1 1 0 1

to the above i.d.z. correspond the i.d.z. (s — A i ) 2 and (s — A2 ) 2 of the system, 

a. 1.2) mode A3 :

K s (À ) 0 ( Â â ) Xl z ' ( Â , ê ) - X3 i.d.z.

3 2 1 (2 -  Â3)

1 1 0 1

to the above i.d.z. correspond the i.d.z. (s — A3 ) of the system, 

a .l.3) mode A4 :

^Â4 (À ) £ ' ( À % i.d.z.

3 2 1 (z -  Â4)

1 1 0 1

to the above i.d.z. correspond the i.d.z. (s — A4 ) of the system. 

a.2) Fork — 4,8,12,.... 

a. 2.1) mode A12 ■' as above.
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a. 2 . 2 )  m o d e  A34  :

PÂ34 (À ) S(A -B )il4 i.d.z.

3 2 1 (z — Â34)

3 2 1 1

1 1 0 1

1 0 1 (2 — ^34)

to the above i.d.z. correspond the i.d.z. (s — A3) and (s — A4) of the system.

a.3) For k =  8,16, 24,... 

a.3.1) mode X\2M:

pi (À ) 0 ( ^ ) â1234 i.d.z.

6 4 2 (z — Â1234)2

6 3 3 (2 — Â1234)3

3 3 0 1

3 3 0 1

3 2 1 (z — Â1234)

3 2 1 (2 — Â1234)

1 0 1 (z — Â1234)

1 0 1 (2 — Â1234)

1 0 1 (2 — Â1234)

1 0 1 (2 — A1234)

to the above i.d.z. correspond the i.d.z. (s — Aj)2, (s — A2)2, (s — A3) and ( s — A4) 

of the system.

b) T =

b.l) For k = 1 ,2,3,4 ,6 ,7 ,8 ,9 ,11,...
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b . 1 . 1 )  m o d e  A14;

PÂ14 iÀ ) © (Â % 14 i.d.z.

6 4 2 (z — Â14)2

3 3 0 1

3 2 1 (2 — Â14)

1 1 0 1

1 0 1 (2 -  Âu )

to the above i.d.z. correspond the i.d.z. (s — A1)2 and (s — A4) of the system

b.1.2) mode Â23;

^Â23 (^ ) @( Â % 3 i.d.z.

6 4 2 {z — Â23)2

3 3 0 1

3 2 1 (z — Â23)

2 1 0 1

1 0 1 (z — Â23)

to the above i.d.z. correspond the i.d.z. (s — A2)2 and (s — A3) of the system..

b. 2) For k  =  5,10,15,20,. . . .

b.2.1. mode A1234 as above. □

c) T = ^

c. l)  Fork — 1,2,, 4, 5, 7, 8,10,...
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c . 1 . 1 )  m o d e  A13:

PÂ,3 i À ) 0 ( Â % 13 E 'a .-B ),,» idz

6 4 2 (z — Â13)2

3 3 0 1

3 2 1 (2 — Â13)

1 1 0 1

1 0 1 (2 -  Â13)

to the above i.d.z. correspond the i.d.z. (s — Aj)2 and (s — A3) o f the system 

c .1 .2)  mode X24:

Â̂24 ( À ) 0 ( Â ^ ) â24 £'(â % 4 i.d.z.

6 4 2 (2 — Â24)2

3 3 0 1

3 2 1 (2 — Â24)

1 1 0 1

1 0 1 (2 — Â24)

to the above i.d.z. correspond the i.d.z. ( s — A2)2 and (s — A4) o f the system. 

c.2 ) F o r k =  5. 10,15, 20,....

c.2.1) mode A1234 as above. □
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7.5 C onclu sion s

The results of this section provide an extension of the classical spectral analysis for the char-

acterization of controllability and observability results (Gilbert results [Gil., 1]) to the char-

acterization of degrees of divisors associated with the input and output decoupling zeros of a 

continuous system. The new framework provided here is a natural one for characterizing the 

corresponding degrees of input and output decoupling zeros to the case of irregular sampling. 

In fact, the merging of spectral matrices and the spectral analysis provide a simple method for 

characterizing i.d.z., o.d.z. without resorting to algebraic tests.
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C hapter 8

SA M PLIN G  PR O PE R T IE S AND 

F IN IT E  AND IN F IN IT E  ZEROS

8.1 In tro d u ctio n

A number of general results on the asymptotic properties of zeros of discretised SISO systems 

under special forms of sampling have been defined in [Ast.. Hag. & Ste.]. The overall problem 

of the mapping of zeros under sampling is an open issue however. Here we examine for the 

case of multivariable systems with the same number of inputs and outputs a particular aspect 

of the zero mapping problem which has to do with the migration of finite zeros under special 

conditions affecting geometric aspects of the system to migrate at infinity. An integral part of 

the work here is the computation of the discretised zero polynomial and some of its properties 

under special types of sampling.

The described expressions in Chapter 3 for the zero polynomial of the continuous system 

[Kar., 3] may also be applied in the case of discretised model for the calculation of the discretised 

zero polynomial coefficients. The existence of a set of eigenvalues located on the imaginary axis 

and the collapsing of such eigenvalues to 0 is a precondition for a further migration of finite 

zeros to infinity under irregular sampling. This case is investigated here and this highlights 

another aspect of the effects of irregular sampling on discretised systems.
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8.2 T h e Zero P o ly n o m ia l o f  th e  D iscretised  M o d el

The Rosenbrock’s matrix pencil of a square and strictly proper system S (A ,B ,C )  has been 

given in Chapter 3 by relation (3.77). The corresponding Rosenbrock’s matrix pencil of the 

discretised model S {A ,B ,C )  of a square and strictly proper system S (A ,B ,C )  is also defined 

by :

P(*)±
z i  -  Â - è

- C  0
ç . -t-m) x  (n-t-m) j-̂ .j (8 . 1)

Where according to the previous analysis for a system with ZOH we have,

a t B =  {
A ct do)B, C = C ( 8 . 2)

or in a Jordan description,

J  =  ej r , 1? =  E£, f  =  T (8.3)

Let T) denote the Jordan description of the discretised system S(A ,B ,C ). Prom

Theorem 26 it is directly concluded that if the continuous system matrix J  is in simple form, 

then for every value of the sampling period T  the corresponding matrix J  of the discretised 

system is also simple. Prom Chapter 4 the relations between the discretised and continuous 

system parameters are also known. Prom this description we have:

P roposition  65 For every value of the sampling period T , the matrix E of the discretised 

model S{A. B, C) of a square, strictly proper system S{A, B , C) with simple matrix A and with 

none of its eigenvalues on the imaginary axis, except possibly 0 (Aj ^ (I — 0), i = 1,2,..., n) is 

a diagonal and non singular matrix.

Proof. From the simple structure of J , the relations 4.19, 4.17 and Theorem 27, we have,

V  =  Ü = In (8.4)

and

— = I eJa do = diag
A +i -  1

Vi+i
An~ 1 =  diag{&} (8.5)
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where v\ is the number of eigenvalues of A equal to 0 (Ai =  ... =  A„j =  0). Then as none of 

the eigenvalues is located on the imaginary axis it is A„1+i, A„1+2, • ••, An /  1 and proposition is 

proved. □

R em ark  43 The parameters & in E — diag {£j, i € n} have the values £* = T, if Xt = 0 and

8.2.1 Calculation of Coefficients of discretised zero polynomial

As for the case of continuous systems (relation 3.78), it can be proved that the zero polynomial 

of such a model is also of n — m  degree and it is of the form:

z(s) = ân- mzn rn+¿71-771-1 zn m 1 + ... +  à\z + ¿o (8.6)

where the coefficients of the discrete zero polynomial are also given, as in the continuous case 

(relations 3.81), by the relations,

Ôin—m — (ft '

where as for the continuous system the bold letters y 1, ¡3 denote the Grassman products of the 

rows of T, columns of B respectively.

P r o p o s i t i o n  6 6  Let the proper linear system S (A ,B ,C ) strict equivalent to the S j(J ,B . P ) ,  

where J  is in simple structure, if for the discretized model S(A, B ,C ) it is Aj A  1, i = iq +  1, ...,n  

then for every value of the sampling period T, the coefficients of the discretized zero polynomial
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art defined as functions of the corresponding continuous system parameters, that is :

Q-n-m- ]

O - n - m  =  =  ( 7 T £ m ( - ) / 3 )

do =

P r o o f .  From the simple structure of J  it is :

so,

2]

f  =
7 t±2 = 35 =  r

7 tL —m  _

------1
h

- 6

B = 2EB = T—1
^1[I]

“ —2’ " ’ m

7 T =  7 } A 7  ̂ A ... A 7 ^  =  7 t , /3 =  r./^  A E§_2 A ... A = .P m

and from the definition of the Grassman product it is:

( 8 .8)

P = £m(E B) =Cm(E )£m(B) = £m(E)/3

~P“j) =  £m(EWj)̂ ) )  =  ^ ( E , . ) ) ^ )

and the proposition is proved. □

R em ark  44 77ie multiorthogonality property of the vectors 7 T,/3, introduced in Chapter 3. 

generally is the same as the corresponding notion for vectors of the continuous system 7 T./3.n
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Prom the conditions 8.8 and Proposition 65 we conclude that E is a diagonal and non 

singular matrix. Then Cm(E) is also a x diagonal and non singular matrix and a 

such matrix generally does not affects the multiorthogonality property. The computation of the 

discretised zero polynomial is shown by the following example.

Exam ple 12 Consider the continuous system with simple structure given in Example 2 which 

is discretised with ZOH. Then, as matrix A has a simple structure Jordan form, we have

- 6  T 0 0 0 0

0 e ( - 2 . 0 - 2 . 0 t ) T 0 0 0

0 0 g ( —2 . 0 + 2 . O i )T 0 0

0 0 0 g ( - 2 . 0 + 4 . 0 i ) X 0

0 0 0 0 g ( - 2 . 0 - 4 . 0 t ) r

e - 6T- l
- 6 0 0 0 0

0
g ( - 2 . 0 —2.0 i)7’_ 1

0 0 0-2 .0 -2 .0 i

0 0
e ( - 2 . 0 + 2 . 0 t ) T _ j

0 0-2.0+2.01

0 0 0
e ( - 2 . 0 + 4 . 0 » ) T _ j

0-2 .0 + 4 .0i

0 0 0 0 e1

e - 6 T  _  I  e ( - 2 . 0 - 2 . 0 i ) T  _  i  e ( - 2 . 0 + 2 . 0 i ) T  _  ±

—6 ’ = —2.0 — 2.Or ’ =  -2 .0  +  2.0i ’
e ( - 2 . 0 + 4 . 0 i ) T  _  i  e ( - 2 . 0 - 4 . 0 i ) T  _  j

^  “  -2 .0 +  4.0* ’ =  —2.0 — 4.0*

and consequently the parameters B and P of the Jordan equivalent discretised system are,

B = EB

0 1 

1 -3 *  - 2 - 4 *  

1 + 3 * —2 + 4z 

3 — * 2 +  4i

3 + i
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_7 1 +  1* I _ I *  _ I _ I *  _ I  +  I*p _ p _  ' 4 ' 4 ̂  4 4i 4 4i 4 ^  4*
3 - 1 - i *  - 1  + \i  —2 — f* - 2  +  f t

it is

“  ~  ^ a ë  {  6  £2  £3  C l £5  }  ^

C2( - ) — d ia g | £j £ 2 ^ £ 3  £ l £ 4 £l£s £ 2 6  £2 £ 4  £2 £ô £3 £ 4  £3£ô £4£ô }

£ 2 ( - ^ )  =  d i a g  I  £2£3 £2£4 £ 2 £ ô  £3£4 £3£5 £ 4 £ ô  }

C 2 ( - 2^) =  d i a g  I  £1 £3 £ i £4 £ i£ ô  £361 £ 3 £ s  £ 4£5 }

€ 2 ( - 3 ) ) =  d i a g  I  £ j £2 £ j £4 ^ £ 5  £2£4 £ 2 £ s £ 4£ s  }

^ 2 ( - 4 ) ) =  d i a g  I  £ j £2 £ 4£3 £-[£5 £2£3 £2 £5 £3 £5 }

£ 2 ( - 5 ) ) =  d i a g  I  £ i £ 2 £ ¡£ 3  £ i £4 £2£3 £2£4  £ 3£4 }

£ 2 (^= =  d i a g  <j[ £3  £4 £3 £5 £ 4  £ 5  ]\ £ 2 ( -
;1,3)) =  d i a g  <j[ £2£4 £ 2  £ 5 £4  £ 5  Jf

^ 2 (=-; b 4 ) ) =  d i a g  <j{ £2  £3 £2  £5 £ 3  £ 5  ]\
; i . 5 ) ) =  d i a g  <j[ £2£3 £ 2  £4 £3  £4  j\

£ 2 ( - ;2 ,3 ) ) =  d i a g  <j[ £ i £4 £ i £ 5 £ 4  £ 5  ]\ [2 ,4 ) ) =  d i a g  <j[ £ i £3 £ i £5 £3  £ 5  j\

£ 2 (H
■2 .5 )) =  d i a g  <j[ £ i £3 £ i £4 £ 3  £ 4  ]\ ¡3,4) ) =  d i a g  <j[ £ i £2 £ i £5 £ 2  £ 5  j\

2-2 ( —
;3,5)) =  d i a g  <J[ £ i £2 £ i £4 £ 2  £ 4  ]\

:4,5)) =  d i a g  <j[ £ i £ 2 £ i £3 £2£3 ji

’3 ) ) =  £4£5, ^2 (-r l , 2 . 4 ))
=  £3  £ 5  ; ^ 2 ( -

1 ,2 ,5 ) )  _
£3£4. C 2 ( ^ ’3 ’4 ) ) =  Î 2 & . £ 2( H 1A 5>)  =  Î2 Î4

£ 2 ( H M ’5 ))  =  £ 2£ 3 , i 2 ( E 2,3’4 ) ) =  £ i £5 ,  £ 2 ( H 2’3’5 ) ) =  £ i £ 4 , £ 2 ( H 2’4 ’5 ) ) =  £ i £ 3 , £ 2 ( ^ 3 ’4’5 ) ) =  6 £ 2

from the above and the corresponding calculations of the continuous time Example 2 we have 

the following expression for the coefficients of the zero polynomial :

¿3 =  7 £2(-)/3 (8.9)
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where

/3 = -1 + 3 *  - 1 - 3 *  —3 +  * - 3  - *  20* 24 +  8* - 8  +  4* - 8 - 4 *  24 -  8* -28*

7  = f + *  T " *  f  + 6* T “ 6* " I*  - 5 ~ * -1 — s* —1 +  5* — 5 + i

then

37 37 201 201 1 5 , ,  , ,  ,  1 7 , ,  1 7 , ,
+S = ---~ £ l£ 2 --- 4~£1£3 ---- )[~£l£4---- 4_^1<’5 +  — 4^2^4 +  — C2C5 +  — -  4 .̂3& +

+* ( - ^ 6 ^ 2 --- ^-£l£3 -  -^6^4  +  -  28^2^4 — 3^2^5 +  3^3£4 +  28£3£5'j (8.10)

Let a regular value of the sampling period b e T  =  |  . We may proceed to the numerical 

calculation of the coefficients for the above system. Prom the expression (8.10) we have :

Ô3 =  — 1.6498

For the calculation of ¿2 we have:

20*

24 +  8*

(e-60T) — 4 — * -1  -  5* —1 + 5* 2 +  * £ 2 ^ ) )
- 8  +  41

- 8 - 4 *
=  0. 29819

2 4 -8 *

-28*

g(—2.0—2.0t)T 4
f  - i  f + 6 *  f - 6 *  - 1  +  1* - 1 + *  f i £2(H2))

-1  -  3* 

—3 + * 

- 3 - *  

- 8 - 4 *  

2 4 -8 *  

-28*

=  -0.25265 +  0. 96608*
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,( -2 .0 + 2 .0 i ) T■0t)Tj ' 25 + i ^  +  6i — 6i — 1 — §2 £2(H3))

-0. 25265 -  0. 966082

s(-2 .0 + 4 .0 i ) T
f + i  f - i  f - 6 z  - |*  -1  - ¡ i  - l + i £2(=4))

-1 + 3 *  

—3 + * 

- 3 - i  

24 +  8 i 

- 8  +  4 * 

—28f

— 1 +  3i 

-1  -  3 i 

- 3 - i  

20 *

- 8  + 4*

24 -  8i

=  -1.0875 -  7.0641 x 10“22

, ( - 2.0 -4 .0 i ) T f + !  f - i  f + 6 i  - f i  + - «  - 1  +  Ji C2(H5>)

-1  + 3  *

— 1 — 3i

— 3 + 2 

20z

24 +  82 

- 8 - 4 *

=  -1.0875 +  7.0641 x I0~2i

a2 =  2.3821

For the calculation of aj we have:

(e_6'or) e(_20_20i)7’ — 1 +  oi 2 + i

- 8 - 4 *  

24 — 82

-2 8 *

=  . 16559+6.2242 x 10“ 2z
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( e

('

('

e ( - 2 . °

e (-2 .0 -2 .0  i ) T e

g (-2 .0 + 2 .0  i ) T e

= . 16559 +  6.2242 x 10“21

-6 .0T '| ( e (-2 .0 + 2 .0 i)T '
2 i 1 8̂  8* CaiH1'3))

,-6 .0 7 +  e (-2 .0+4.0¿)T

-6.07+ ( - 2 .0 -4 .0 í )T

=  .16559 -6 .2242  x 10"2z

- |*  +  V  £2(S1’4))

5.6946 x 10“2 +  8.3379 x 10“21

.3 i _1 8¿ 2— #Z — t; — 1 —1 + ¿1

24 +  81 

—8 +  41 

—281

201

- 8  +  41 

2 4 -8 1

201

24 +  81 

- 8 - 4 1

= -5 . 6946 x 10-2 -  8. 3379 x 10~2i

-2 .oi)re( - 2 .o+2 .oi)r f  +  61 f - 6 z  § 1 £2(E2,3))

—3 + 1 

- 3 - 1

-281

=  -.47977

- 2 .0 -2 .0¿)T g (- 2.0+4.0i)T f - z  f —6z - Ì  +  1

=  -.55585 + . 18697z

e 2(E2’4>)

— 1 — 31 

—3 —  1 

2 4 -8 1

( —2.0-4 .0 i ) T f - z  f  + 61 -1  +  Ì* €2(H»»)

(-2 .0 + 4 .Oî )T
¥ + *  459 - 6 1 - 1  18* £2(E3’4))

-1  -  31 

—3 +1 

- 8 - 4 1

-1  +  31 

- 3 - 1  

—8 + 41

=  - .  1986+. 428911

=  - ,  1986-, 42891z
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g(- 2.0+2.0t)Xg( — 2.0—4.0i)T
f  + i  f + 6 * " 5 “ *

e2(E3’5))

e ( - 2 . 0 + 4 . 0 i ) r e ( - 2 . 0 - 4 . 0 i ) T 25 . i  25 — • _ 3 f4 ^  4 1 8 ‘ £2(E4’5))

- 1  + 3  i 

—3 +  i 

24 +  8i

— 1 +  Si 

- 1  -  Si 

201

= -.5 5 5 8 5 -. 18697i

3.9314 x 10-2

oi =  -1 .7 3 2 1

and for the calculation of ¿o we have correspondingly :

g(_6.0)Xg(-2.0-2.0i)Tg(—2.0+2.oi)x (_ 28i) ^  ^  =  3.6107 x 10~2
y 8 J

;(-6.0)xe(-2.0-2.0i)re(-2.0+4.0i)x^2 4 _ 8 - ^ 3^5 +  ^  =  -2.8862 x 10“2 + 5.4076 x 10“2?

=( - 6 . 0 ) T  ( - 2 . 0 - 2 . 0 i ) T  ( - 2 . 0 - 4 . 0 i ) T  /  _ 1 +  - i j  6 s 4 (—8 — 4i) = 1.4901 x 10“2 -  1.2632 x 10~zi 

e(-6.o)re(-2.o+2.ol)xe(-2.o+4.ol)r £26 > (-8 + 4*) =  L 4901 x 10“2 +  1.2632 x 10~2?

e ( - 6 . 0 ) T e ( - 2 . 0 + 2 .O i)Te ( - 2 . 0 - 4 . 0 i - x  - i  1 =  -2.8862 x 10"2 -  5.4076 x 10~2i

1 -2

19071 —.13929?

e ( - 6 .0 ) r e (—2.0+4.0*)Te (-2 .0 —4.0i)X ^  (2 0 z ) =  p  7 0 7 3  x  p p

g(-2.0-2.Oi)Xg(—2.0+2.Oi)Tg(-2.0+4.Oi)X (_g  _  ^  _  g ^  =  __

g(-2.0-2.0i)Xg(-2.0+2.0i)Xg(-2.0-4.0i)X (_g  +  •) ^  ^  +  g ^  =  _  19071 +  . 13929i 

e(-2.o-2.oi)Te(-2.o+4.0r)re(-2.o-4.ol)x^ _1 _  ¡ \  _  -7 .2591 x 10“2-6 .6 7 2 7  x 10 2f

g(—2.o+2.0i)Tg(-2.o+4.0t)Xg(—2.0—4.oi)r ^  ( - 1  +  Si) =  -7 .2591 x 10”2+  6.6727 x 10~2z

a0 =  0.50134
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Thus the zero polynomial of the discretised system is :

z(s) =  —1.6498s3 +  2. 3821s2 -  1. 7321s +  0. 50134 

and the system invariant zeros are defined as,

z\ = 0. 5414, ¿ 2  = 0.45124 +  0. 598061, z3 = 0.45124 -  0. 598061

□

8.2.2 Migration of the Discretised Zeros to Infinity

If the continuous square system has a CB  full rank, then according to Theorem 24 the system 

invariant zeros are n — m  in number. The corresponding discretised model has also n — m 

invariant zeros if CB  is also full rank or equivalently if,

dn- t o  =  = (7T£m(H)/3) ^  0

Exam ple 13 For the continuous time system of Example 2 we have that the first coefficient 

of the zero polynomial is a3 =  (7T/3) =  —85 and the first coefficient of the zero polynomial of 

the corresponding discretised system, of Example 12 is given by Equation 8.10. The process of 

sampling may send a zero to infinity if ¿3 =  7612(H)/3 =  0. This is equivalent to :

_ t 66 -  lf66 -  ^p66 -  7^66 + ^66 -  466 + y66 + 66 ~ 466
+1 ( - j 6 6  -  - j 6 6  — ^ 6 6  + 7^ 66 -  2 8 6 6  -  3 6 6  + 3 6 6  + 2 8 6 6 ) = 0

The above holds if and only if the following conditions hold true,

-3766 -  3766 -  20166 -  20166 + 3066 -  1666 + 3466 + 3466 -1 6 6 6  =  o (8.11) 

7166 -  7166 -  1366 + 1366 -  11266 -  1266 +1266 + H 266 =  0 (8.12)

The above conditions describe an algebraic variety (set of points defined as solutions of 

polynomial equations) with the further condition that the 6  must express their origin from 

the discretisation process that is: As it follows from (8.5) we have that 6  =  T, if A* =  0, or
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£¿ =  eX'^ - 1 if A¿ 7̂  0. Investigating the existing of solutions of (8.9) is a difficult thing to test 

and thus we examine the special cases where collapsing occurs. Note that for =  0, we must 

have A¿ 0 and eXiT — 1, which according to Proposition 29 and Definition 37 means that A¿ 

is located on the imaginary axis (A¿ =  0 ±  ju )  and a real collapsing occurs for the sampling 

period T  or A¿ € 4>o(2l), where:

*o(A) =  {VA j € 4>(T), R e (A j) =  0, At + 0 } (8.13)

For this specific example, since there aré no eigenvalues on the imaginary axis for the 

continuous model, none of the £¿’s is zero and thus conditions (8.11) and (8.12) are those 

needed to specify the values the values of T  for which collapsing may occur. The analysis so 

far, as it is demonstrated by the Example 13 reveals the following properties regarding the 

migration of zeros at infinity as a function of sampling.

T heorem  54 For a continuous square system that has n —m  finite invariant zeros the following 

properties hold true:

(a) The discretised system has k — 1 zeros migrating to infinity for some value of the sampling 

period T  if and only if

(f fJp )  = o

[ E ^ . ( T , , T ' )) | = 0  (8.14)

(b) For the generic value of the sampling period T  the discretised model has also n — m  finite 

zeros. □
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The result readily follows from the expression of the discretised zero polynomial. In fact, 

conditions (8.14) are equivalent to a set of homogeneous polynomial equations in which 

define a variety (proper variety of the corresponding projective space) and this leads to that 

for a generic T  equation (8.14) cannot be satisfied.

For the case of continuous systems with eigenvalues on the imaginary axis, simple, or mul-

tiple collapsing of pure imaginary eigenvalues may occur to 1 (as this has been established in 

Chapter 3). This leads to that subset of the £j’s in the variety described by (8.14) becoming zero 

and as a result we may get migration of finite zeros to infinity, or even total system degeneracy. 

This is demonstrated by the following example.

Exam ple 14 Consider the continuous system S(A, B ,C ):

1

0

-1  

3 

0

0

-2

with the following simple structure, Jordan for m of A (all the four complex eigenvalues

located in the imaginary axis) :

-6 0 0 0 0

0 - 2  i 0 0 0

J = 0 0 2 i 0 0 = VAU

0 0 0 4z 0

0 0 0 0 —4 i

A =

-6 .0 0 0 0 0

0 0 3.0 -3.0 1.0

0 -1 .5 0 -1.0 1.5 , B =

0 1. 5 1.0 0 1.5

0 -1 .0 -3.0 -3.0 0

C =

0

2

0

1

2

- 7 0  - 2 0

3 - 6  - 3  -
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or ^(A) == {--6,--2i, 2i, 47, —47} , 4>o(A) = { - 27, 27, 47, -47} and where,

1 0 0 0 0 1 0 0 0 0

0 1 -1  +  * -1  -  i —2 0 1
4

1
4

1
4

1
4

V = 0 1 — 1 — i -1  +* 2 , u = 0 - 1
8 - 1  +  ¿7 8 ^  8 4

1
8 + 1

8 -  i*
0 1 1 - i 1 + * —2 0 - I + I * ’

1
8 -

1
8 +1*

0 1 1 +* 1 —2 2 0 4* “ 3* \ l -

Consequently the parameters B and F of the Jordan equivalent system are,

B = V B

0 1 

1 - 3  i - 2 - 4  7 

1 +  3i - 2  + 4 7 

3 — 7 2 +  47

3 + 7 2 — 47

, r  = c u l  +  b

- i - i * -1 +  2*

— \  + \ i4 4 4

|* — 2 + |z

The zero polynomial of the above system, is of the form,

z(s) = a3z3 + a2z2 +  a\z  +  ao

As B and T are identical to the corresponding parameters B and T of the continuous time 

system of Example 2 it is also a3 =  (7T/3) =  —85.

From the calculation of the remaining coefficients, as in the case of Example 2 we have 

a2 = 377.0, a\ = -252.0, a0 -  1180.0.

Let us now assume that the above continuous time system is discretised with ZOH. Then, 

the corresponding matrix A  has a simple structure Jordan form, that is,

e - 6 T  _  } g (-2 .0 i ) T  _  2 g(2.0 i ) T  _  j  e (4.0i ) T  _  j  g(-4 .0 t)r  _  2

—6 ’ -2 .0 1 ’ 2J)i ’ +0 i ’ -4.0*

and

e - 6 T  _  2 e ( - 2 .0 i ) T  _  2 g(2.0 i ) T  _  X e (4.0i ) T  _  2 e ( - 4 .0 i ) T  _  2

—6 = -2.0* =  2̂ 0z ’^4 =  4Jh =  -4.0*
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As in the previous Example 12 we have the following expressions for the coefficients of the

zero polynomial

Ô3 =  7<6(-)/3 (8.15)

where

/3= ’ — 1+31 — 1 — 3z —3 + i —3 — i 201

7 = f  +* 15 _i4 1 f  + 6* f - 6î “ I*

then

37 37 201 201 15, , ,  17, 1 7 , ,
a3 — ~ j 6 6  -  j 6 6  ^ ~ 6 6  ^“ 6 6  +  7 ^ 6 6  ~  46 6  +  - y 6 6  +  ~  46 6  +

i - ^ - ò f 2 ~  ~ T ^ 4 +  T ^ 1̂ 5 _  28‘' 2̂ 4 ~ 3^2̂ 5 +  3&£4 +  2 8 6 6

The conditions for migration of a zero to infinity is ¿3 =  0 or equivalently,

-3 7 6  6  -  3 7 6 6  -  2 0166  -  2 0 166  +  3 0 6 6  -  1 6 6 6  +  3 4 6 6  +  3 4 6 6  -  1 6 6 6  =  0 

7 1 6 6  -  7 1 6 6 - 1 3 6 6  +  1 3 6 6 - H 2 6 6 - 1 2 6 6  +  1 2 6 6  +  H 2 6 6  =  0

We note the following:

1. If collapsing of A2, A3 occurs, then 6  =  0 ,6  =  0 and the above conditions become

-2 0 1 6 6  -  2 1 066  =  0 => 6(6  -  6 ) -  o, - 1 3 6 6  + 1 3 6 6  =  o =► 6(6  -  6 ) =  o

Given that 6  7̂  0, + follows that 6  =  6  which means that A4, A5 must collapse to a 

real value (since they are complex conjugate) and this implies that 6  =  6  =  O' With 

these values we can compute the zero polynomial of the discretised system. In fact let the 

irregular values of the sampling period T = | , 7r. Then the corresponding values of
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the coefficient and the zeros are summarized by the following Table:

T 7T
4

7T
3

7T
2 7r

8.9833 x lO“3 1.8674 x 10~3 8.07 x lO-5 6.5124 x 10-tJ

^2 — 1.01 —. 5 — . 86603z -1 .0 1.0

^3 4-1.01 - .5  4-. 86603z -1 .0 1.0

Â4 -1 .0 —. 5 — . 86603z 1.0 1.0

Â5 -1 .0 - .5  4- .86603z 1.0 1.0

Ci .16517 .16636 .16665 .16667

£2 . 5 — . 5 1 . 43301 -  . 75z -1.01 0

£3 . 5 4-. 5 1 .43301 + ,75z 1.01 0

£4 . 5 i -.21651+.3751 0 0

£5 — . 5 i -.21651 -  .375i 0 0

¿3 6.316 26.339 13.416 0

¿2 2.6751 6.1647 -20.917 0

Ô1 .27984 -7.4792 1.5851 0

ho 5.0918 2. 5797 5.9155 0

¿1 -.72848 -.76896 1.0046 -

¿ 2 . 28226 -  .590531 .26746 -  .23631 -.44092 -

z3 . 28226 +  .590531 . 26746 4- • 23631 .99547 -

In the above table of arithmetic results, it must be noted that :

(a) For the irregular values of T  =  f , and |  for which, no real collapsing occurs, all the 

coefficients of the zero polynomial are non zero and there exist no one migration of 

zeros to infinity.

(b) For the irregular value of T  = f , we have a real collapsing between the eigenvalues 

A2 and A3 to —1 and a real collapsing between the eigenvalues A4 and A5 to 1. We 

have £4 =  £5 =  0 but as £1, £2 and £3 are different from zero, the matrix C2(Ti) 

remains different from zero and so is ¿3 and so there is no one migration of zeros to 

infinity.
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(c) For the irregular value of T  =  7r, we have a real collapsing between the eigenvalues 

Â2, Â3, Â4 and Â5 to 1. As £2, £3, £4, £5 becomes zero, the matrix £2(E) becomes also 

zero. If the matrix £2(E) becomes zero, then all the submatrices of C2(E) becomes 

also zero and consequently all the coefficients of the zero polynomial becomes also 

zero and this leads to complete degeneration of the zero polynomial, i.e. it becomes 

identically zero.

2. Consider the following regular values of the sampling period : T  =  f , f , f  • We proceed 

to the numerical calculation of the coefficients for the above system and the results are 

summarized below:

T 7r 
9

7T
7

7T
5

.12314 6. 7692 x 10"2 2.3054 x 10"2

^2 . 76604 -  . 64279? .62349 -  .78183?; .30902- .95106?

Â3 . 76604 + . 64279? .62349 +.78183? .30902 +  .95106?

Â4 .17365 + .98481? -.2 2 2 5 2 +  .97493? -.80902 + .58779?

Â5 .17365 — .984817 -.22252 -.97493? -.80902 -  . 58779?

£1 .14614 .15538 .16282

£2 .32139 -  .11698z .39092 -  .18826? .47553 -  .34549?

£3 .32139 +.11698? .39092+ .18826? .47553 +.34549?

£4 .2462 + . 20659f . 24373 + . 30563? .14695 +.45225?

£5 .2462 -  . 20659z . 24373 -  . 30563? .14695 -  .45225?

03 .6455 3.0518 9.515

¿2 4.3788 2.8526 .84229

Ûi -8.0737 -6.8808 -1.7602

¿0 5.1331 6.2513 6.4125

¿1 -8.3878 -2.3013 -.97962

z2 .8021 -  . 55199z . 68327 -  .65058? .44555 -  .6996?

¿3 .8021+ .55199? . 68327 +  .65058? . 44555 + . 6996?
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C orollary 9 For continuous time systems with eigenvalues on the imaginary axis, there exist 

values of sampling that lead to discretised models for which zeros may migrate to infinity, or 

becoming degenerate. □

The emergence of such phenomena is due to the event that a number of becoming zero; in 

this case migration of zeros to infinity, or degeneracy is independent from the numerical values 

of the B, C matrices and they depend on the original eigenvalue pattern. We shall refer to such 

zero transformations as structural transformations due to collapsing.

8.3 C onclu sion s

The zero polynomial of the discretised square system has been defined; this expression allows 

the further study of discretised zeros under sampling and leads to conditions characterizing the 

migration of zeros at infinity as a function of the sampling. For the case of irregular sampling, 

it has been shown through examples that drastic changes to the overall system may occur for 

certain types of systems, which may even lead to total system degeneracy. The study here is of 

preliminary nature and the direction of more explicit results has to use the explicit structure 

of the Segre characteristic of the open loop system.

T h e  above ex a m p le  d e m o n s tra te s  t h a t  th e re  ex is t cases of co llap s in g  w h ich  lead  n o t on ly  to

zeros m ig ra tin g  to  in fin ity  b u t  even  m a k in g  th e  re su ltin g  d isc re tise d  sy s tem  d eg e n era te . T h is

is su m m arize d  as follows:
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C hapter 9

CONCLUSIONS, FU R T H E R  

W O R K

The problem of investigating the effect of sampling rate in the discretisation of continuous time 

linear systems under Zero Order Hold devices has been the main subject of this thesis. The 

main objective was to initiate research in the area of Model Based Theory of Sampling, which 

may act as a complement to the classical Signal based theory of Shannon [Sha., 1] and thus it 

has a significant role to play in the development of modern Computer Control methodologies. 

As such, the work here belongs, to the general area of “Implementation of Digital Schemes".

The motivation for the study undertaken here has been the original work by Kalman [Kal. 

Ho &: Nar.] on the loss of controllability under certain values of sampling. This initial observa-

tion has been fully developed here and has led to the classification of sampling rates to regular 

and irregular. The main part of the work here has been the study of the effects of irregular 

sampling on a number of structural properties, such as Segre characteristics, controllability, 

observability, Zero polynomial. As such , the results in this thesis form part of the study of the 

mapping of model based properties from the continuous time (A,B,C)  model to the discrete 

time (A . B , C ) model as function of the sampling rate. More specifically, the following type of 

results have been derived..

The basis of the approach established here has been the classification of the set of distinct 

eigenvalues into groups having the same real part. For such sets it is shown that collapsing of
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eigenvalues under sampling may occur, if certain relationships hold between the imaginary parts 

of the eigenvalues and the sampling rate is appropriately chosen. Collapsing characterizes the 

case, where two distinct eigenvalues of the continuous model become equal for the discretised 

model; the special value of such sampling has been defined as irregular, whereas all other values 

are called regular. Under irregular types of sampling, phenomena such us merging of Segré 

Characteristics, generalized eigenspaces and corresponding Jordan forms merge and a detailed 

study of such phenomena has been given. The results in this area completely characterize the 

mapping of the structural properties from A  to A.

The study of structural properties of the mapping from (A, B ) to (A, B ) and (A,C)  to 

(A, C) has been considered next using the fundamental properties of the irregular sampling. It 

has been shown that regular sampling preserves the controllability and observability, but this 

is not necessarily the case for irregular sampling. The results in this area also indicate that 

the classical duality between controllability and observability do not completely carry over, as 

duality between properties of the discretised model.

The effect of collapsing under irregular sampling on controllability, has been examined in 

detail. This has led to the emergence of two distinct forms of loss of controllability; the first is 

of structural nature and depends on the merging of Segré characteristics, whereas the second 

depends on the numerical parameters of the corresponding model. Similar results are also 

established for observability, but their derivation is of simpler nature.

The effects of irregular sampling on controllability, observability of the discretised model 

has been further expanded by developing additional results for the problems of determining the 

dimension of controllable subspace (unobservable subspace), as well as determining the degrees 

of the newly formed input (output) decoupling zeros under irregular sampling. The first problem 

is based on the use of the cyclic invariant subspaces of A  and leads to tests defining the dimension 

of the corresponding spaces. Determining the degrees of the newly formed o.d.z., i.d.z. of the 

discretised model under irregular sampling is based on some new characterization of such zeros 

for linear systems. The spectral characterization of controllability (observability) together with 

results for the determination of degrees of divisors using properties of Piecewise Arithmetic 

Progression Sequences lead to a simple new test for determining the Segré characteristic of the 

newly formed decoupling zeros. These two types of results complement each other and complete
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the study of loss of controllability, observability under irregular sampling.

The last area examined in the thesis is that related to zeros of the discretised model. The 

derivation of an explicit form of the zero polynomial in terms of the state space parameters allows 

us to relate the effects of structural transformation of A, B  on the zero polynomial and thus 

provides a useful framework for studying the mapping of zeros problem from the continuous to 

the discrete domain. The effect of irregular sampling on the migration of finite zeros to infinity 

has been examined and it was demonstrated that for certain types of systems and sampling 

rate, finite zeros of the continuous model move to infinity. In certain cases, irregular sampling 

may even lead to total system degeneracy. A variety that characterizes the loss of zeros to 

infinity has been defined. The results here are of preliminary nature and by no means complete 

the study of the zero mapping problem, which from many aspects is still open.

The model based theory of sampling is an open area and there is a number of open issues 

which are subjects for future research. Amongst the topics of interest are:

(a) Investigate the effects of irregular sampling on the values of dynamic indices, such as 

controllability, observability, output nulling indices.

(b) Provide a detailed investigation of the zero mapping problem using the already derived 

expression for the zero polynomial.

(c) Examine the effects of irregular sampling on transfer function invariants such us Plucker 

matrices.

The above family of problems, as well as those considered in this thesis, deal with the 

mapping of invariants and the associated properties. Another family of problems is finked to 

the transformation of design indicators, that is:

(d) Study the effect of regular and irregular sampling on property, design indicators such as 

Nyquist, Bode diagrams, singular values, condition numbers etc.

Although the values of irregular sampling is a set with specific values and such nongeneric 

cases can be avoided, what happens to the system properties when the sampling is regular, but 

is value is “close” in some sense, to irregular sampling values is an important issue. This leads 

to the following interesting family of problems:
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(e) Investigate the system property indicators, such as degree of controllability, observability, 

Sensitivity properties of the discretised model etc., when the sampling rate is regular, but 

its value is close to some irregular sampling value.

The above are some of the topics for further research which form a natural extension of the 

structural methodology and approach developed here.
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