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MATHEMATICAL NOTATIONS

R, C : fields of real, complex numbers.

R (s) : field of rational functions in the variable s with real coefficients.

R [s] : ring of polynomials in s with real coefficients.

T :denotes a general field, or ring.

pPXlh : set of matrices with p x m dimensions and elements over 7 .
Rpxm(s), Rpxm [s] : denote set of matrices with elements over Rpxrn, Rpxm.

V :denotes a finite dimensional vector space over some field .~ (usual cases the real vector

spaces (72-vector spaces), rational vector spaces R(s)-vector spaces).

P™ : set of all n-dimensional vectors (n-tuples) of elements of P .Usual cases R" (or

72), C7TLRn(s),... : n-dimensional vector spaces over P .

If Vis a subspace of 72 (or Rn), the v G V denotes a vector of 72 that belongs to V. If
dimV = d and {v},v2, 2la} is a basis of V, then V = [vlvi, G Rnxd denotes a

basis matrix of V.

If P GJ*xm,jT a field, then rankP denotes the rank of P over P, Jifir {P} the right null
space and JIfl {P} the left null space of P.

Z denotes the set of integers, Z+ the positive integers, Zg the nonnegative integers

(Z+U {0})and Z"o the set of nonzero integers (Z —{0}).

Ifn EZ+, then n= {1,2,..,n} and if a property holds for i Gn, that implies that it is

true for alii = 1,2,..., n

If4 G
an «12 . «Ip
«21 «22 . «2p
«711 «n2 [] «np



we denote as column vectors of Auj, u2, mmp m

an «12

a2l «22 & 2p
M1 = ,m2 = ) ] p

«nl «n2 0 "np

and as row vectors of Ayj,vj,...,pJ :

" , o T T
an «12 . a.1p -2 — «21 «22 . «2p 5 kA &nl &n2

If A € Jrnxn, |4\ denotes the determinant of 4, cr(4) be the set ofroots of the characteristic

polynomial of 4, i>(A) = det [si —A}

J denotes the similar to 4 Jordan matrix 4 = UJU~I[ = UJV . where U = V~" is the

matrix defined by the chains of eigenvectors of 4 and where :

J = diag{J(A!), J(A2),..., J(A;)}

and J(Aj) is the diagonal matrix block formed by all the Jordan blocks associated with

the distinct eigenvalue |

JiXi) = diag{J j i, Jik wemiv)

and where J\k is the rlk x t*™ Jordan diagonal block corresponding to the generalized

eigenvectors chain of length rik, associated with A* :

A 1 0 0
0 A 0 0

Jik — Jik G£ TR
0 Xi 1
0 0 0 A
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If et(4) = {Ai,A2. A/} are all the distinct eigenvalues of 4, ..., 717 are their
algebraic multiplicities and vj, 2, V f are defined as the corresponding geometric mul-

tiplicity.

Pa, (4) : denotes the Segre Characteristic of 4 at A,

Pa, (-4) = fc= 12, > ..> > . >rtl >0}

or the shorted notation pl. (4) = {r,* > ... > > . >th >0}.

State space description in time domain :

x (1) = Ax(t) + Bu(t)
x(t) = Cjz(i) + Du(t)

S(4,B,C,D)

Where A G Axr\ H G Rnxl, C GI?7mxi\ D GZxm and u(t) is the Zx 1 input vector, y(?) is

the m x 1 output vector and x(f) is the n x 1 state variable vector.

The Jordan canonical description of the system S(4, B,C, Z))is:

J) = Jz(t) + Z2()
y(i) = Tz(@) + Au(f)

L,A) :

where: z(i) = J=1/'M1/ = HAH, H= U~IB, F= CU, 4 = D.
ZOH denotes a Digital to Analogue Converter with zero order hold.
FOH denotes a Digital to Analogue Converter with first order hold.

The discretized model of S(4, B, C. D) in a configuration involving ZOH is:

x[(k+ DT] = Ax(kT) + Eu(kT)
y(kT) = Cx(kT)+ Du{kT)

S(4,0,C,D)

where 4 = eAT, E — B, C=C D=D.
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The Jordan canonical description of the system S(4, B,C, D):

z[(k + DT] = Ji(fcT) + Bu(*T)

Si(j.B,r, A)
y(fcT) = fz(fcT) + Au(fcT)
where :
1
z2(kT) = Ux(kT), J = U~IAU = VAU, B=1J-'B =V (J eJada)B = VEB
E = /elader, f=Cl7=CU=FU 4=D=D

The pencil P(s) GMn+m)x("+0[s] is defined as the Rosenbrock’s system matrix pencil :

-4 -B
Pis)a !

-C -D

The transfer function matrix G(s) € RmxZ(s) is given as G(s) = C{sl —A) IB + D
e.d. denotes the elementary divisor.
i.e.d. denotes infinite elementary divisor.

i.d.z. denotes the input decoupling zeros of the system S (the roots of the e.d. of the

pencil [si —A, B}).

0.d.z. denotes the output decoupling zeros of the system S (the roots of the e.d. of the
si- A
C

pencil

r.c.i. of the system S denotes the elements of the set of the i-¢4 spectrum row controlla-

bility indices (r.c.i.) of 4. B : @(A4,B)\t = {0,i > 612> ... > QW > 0}.

c.o.i. of the system S denotes the elements of the set of the i-¢4 spectrum column observ-

ability indices (c.0.i.) of 4,C : Z(A,C)a. = {Cii > G2 > > (ili > 0}.
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ABSTRACT

The implementation of digital control schemes, involves issues such as fixed-point arithmetic,
computer quantization, round off error effects and the selection of sampling scheme. The
selection of sampling is crucial in the design of digital controllers and may affect drastically the
quality of the discretized model on which design is based. The selection of sampling is so far
dominated by the rules of signal processing theory and practical heuristics. The development of
a theory and methodology for selection of sampling based on the overall quality of the discretized
model, which is complementary to that provided by signal processing theory, is a long term
objective of this research area and this thesis aspires to contribute to its development.

The thesis is mainly concerned with the study of the effect of sampling on the fundamental
structural properties of the resulting discretized model. As such, this study is part of the more
general area of investigating the transformation-preservation of qualitative and quantitative
properties of continuous time models to discrete time models under sampling. Throughout
the thesis we assume linear systems and constant sampling rate. The emphasis is studying the
effect of sampling on fundamental model characteristics such as Jordan forms, eigenspaces, con-
trollability, observability properties and finite-infinite zeros. Central to the approach developed
here is the study of implications of a phenomenon referred to as “eigenvalue collapsing” that
corresponds to the case where distinct eigenvalues of the continuous model become repeated
eigenvalues of the discretized model. This phenomenon provides a classification of sampling
rates into regular and irregular. A thorough investigation of the “eigenvalue collapsing” phe-
nomena is given and their implication on the structural properties of the discretized model is
given. In particular we examine the effect of such phenomena on the Segré characteristics, struc-
ture of eigenspaces, Jordan forms, controllability, observability, dimensions of controllability,
observability properties, degrees of decoupling zeros and finite-infinite zeros of the discretized
model.

The developments in the above directions have required some additional work in the study
of certain structural properties of continuous time models, such as a detailed study of spectral
properties of controllability, observability, which lead to a new characterization of decoupling
zeros and their computation.

The result presented here provide a basis for the development of a model based theory of

13



sampling, which is significant for the development of a general implementation methodology of

digital systems.
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Chapter 1

INTRODUCTION

Digital computers are used increasingly as tools for analysis and design of control systems.
Because of the revolutionary development of microelectronics in the last decade, advanced reg-
ulators can be implemented in many control applications areas. Sampling is a fundamental
element of computer-controlled systems because of the discrete-time nature of the digital com-
puter. So far, discretisation has been considered mainly from the signal viewpoint and rules
for selection of sampling are signal based (Shannon’s theorem etc.). The main objective in
this thesis is the development of an alternative approach to selection of sampling that is based
on preservation of structural properties of the continuous model. We shall refer to this as the
development of the model based theory of sampling selection.

With the advent of microprocessor in 1969, the area of digital control systems applications
has increased rapidly and this has also motivated a corresponding growth of digital control
theory [Rag. & Fra., 1]. [Ast. & Wit., 1], [Lew., 1], Because of these developments the analysis,
design, and implementation of control systems is changing rapidly and a number of issues which
have been previously overlooked, have now started to emerge as important research topics. It
is now realized that there is much to be gained by exploiting the full potential of the new
technology, rather than simply “translating” the earlier analog designs into the new technology.
The area of theory and design of digital control systems has attracted renewed interest recently
and efforts have been made to put it on a more solid foundation. We distinguish three main

areas of activity.
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(i) Study of implementation issues, such as fixed point arithmetic, finite word-length, quan-

tization effects and round-off errors.
(i) Conversion of an already designed continuous-time controller to a discrete controller.

(iii) Direct digital design of control schemes.

The first area is involved in the implementation of schemes designed either by analog,
or directly by digital methods. For continuous, or discrete systems it is assumed that the
process model has real coefficients and thus the system is defined over an infinite field. The
assumption that the computer has infinite precision in representing numbers is not true. In
fact, microprocessors have limited accuracy and they use fixed-point arithmetic, or floating
point arithmetic, and thus quantization is involved and both signals and model coefficients
are represented by finite computer word-length. As a result, the discrete system model is
not any more defined over the real numbers, but over a finite field; the latter implies the
emergence of round-off errors, with significant effects on the overall performance of the digital
implementation. Furthermore, it should be noted that the presence of a quantizer in the loop
makes the overall system nonlinear, even when the plant is represented by a linear model and
thus exhibits the features of nonlinear systems. The study of these issues is the topic of the first
area described above and has been considered for a number of years [Wil., 1]. Issues considered
so far are minimization of round-off errors [Mul. & Rob., 1], Optimal Finite Word Length
Selection and choice of digital realization [And., Li & Gev., 1], etc.

In the design of digital control schemes we distinguish two general approaches; The first
will be referred to as the Continuous Controller Design Approach (CCDA) and deals with the
conversion of an already designed continuous-time controller to a discrete-time controller. The
second is called the Direct Discrete Design Approach (DDDA) and deals with the design of
discrete controllers on a discretised plant. These two areas have attracted interest recently as
areas of potential applications of the Hoc Optimization and related techniques [Che. & Fra.,
1], [Dul. & Fra., 1], [Kel. & And.. 1]. The advantage of the CCD approach is that all tools
from continuous design can be deployed and the sample period 7 does not have to be selected
until after the continuous time controller has been designed. However, all these controller

discretized schemes are approximations and so far the whole area has been based on heuristics
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on how to modify the continuous design so that a more suitable controller is obtained. All
discretisation methods found in texts [Rag. & Fra., 1], [Ast. Wit., 1], [Lew., 1] etc. suffer from
the disadvantage that recovery of analog performance can be guaranteed only in the limit as
the sampling period goes to zero; however, small sampling periods can be problematic. Another
disadvantage of CCDA is that it gives little insight into the properties of the sampling process,
such as the appearance of non minimum-phase zeros, or the properties of the discrete systems.

The general problem of the traditional discretisation of controller methodologies found in the
literature is that these techniques ignore the plant, whereas the closed-loop properties clearly
depend on the plant, as well as the controller. A methodology that leads to discretisation
of the controller which overcomes the traditional deficiencies of CCDA, and which also pre-
serves closed-loop properties, such as stability, has been recently developed in [Kel. & And.,
1] using tools from H(c optimization. This approach represents the modern trend in controller
discretisation and it is still in its early development stages. The deficiencies of the CCDA
have motivated the emergence of a strong trend which deals with direct digital design of the
sample-data controllers. These techniques are exact and usually allow significantly larger sam-
ple periods than those of the CCDA type. An additional advantage of the DDDA methods is
that they provide additional insight and guarantee performance at the sample points. Within
this area of work, two main tendencies have emerged. In the first Hac, or related optimization
techniques are used to accommodate intersample effects and the main feature is analysis and
design of sampled-data compensators using induced norms as the performance measure [Che.
& Fra.. 1], [Dul. & Fra., 1], In the second, attention is focused on the effect of sampling on
the structural properties of the discretised model prior to any design of discrete controllers and
will be referred to here as, Sampling and Plant Model Quality (SPMQ). The present thesis is
within the latter area of work and it is focused on the structural properties of the discretised
model.

The selection of sampling is crucial in the design of computer controlled systems. This
problem has two main aspects; The first is of a signal nature and deals with the question
under which conditions a signal can be recovered from its values in discrete points only; a
solution to this problem was given by the Nyquist-Shannon theory [Ast. & Wit.,, 1], The

second approach is based on the quality of the discretised model as a function of the sampling
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period was initiated by the work of Kalman [Kal. & Ber., 1], [Kal, Ho & Nar., 1], on the
role of sampling on the controllability and observability properties of discretised models. The
latter work was of a preliminary nature and it was restricted only to the derivation of sufficient
conditions for preservation of controllability and observability rather than providing a detailed
study of these properties for all values of the sampling rate. Since the 1960s no developments
have taken place in this area until 1980, when the mapping of zeros of discretised single input
single output systems (SISO) was examined in [Ast. & Wit., 1], where some results on the
asymptotic properties of zeros have been derived. The effect of sampling on the location of
the resulting finite zeros has been an issue that has attracted attention, [Pas. & Ant.], [Fu
& Dm ], [Har.,, Kon. & Kat., 1], [Ish., 1] ; most of the work in this area has been focused
on determining conditions for the stability of the discretised zeros and has been restricted to
SISO systems. The overall area of studying properties of the discretised model as a function
of sampling is in its early stages of development. This thesis aspires to contribute in the
development of an overall integrated approach by examining the effect of sampling on a number
of structural characteristics and associated properties. The overall philosophy that is adopted
is that the selection of sampling must satisfy the signal recovery criteria and also preserve
structural properties, as well as degree of their presence in the discretised model.

The overall aim of the thesis is to provide a unifying approach to the study of mapping prop-
erties of the continuous model to equivalent properties of the discretised model. It is realized
that the overall study involves structural and non structural properties. We focus our attention
here on the structural properties. Issues related to the study of design indicators are considered
as topics of further research. The basic philosophy is that structural properties are central
in shaping the values of design indicators and the study of structural features precedes those
which are more directly linked to design. The main objective here is to study properties such
as stability, controllability, observability and structural characteristics such as Jordan forms,
eigenspaces, controllable unobservable spaces, decoupling zeros, finite and infinite zeros of the
discretised model as a function of the sampling rate 7. The behavior of the eigenvalues of the
discretised model as a function of sampling is central to our approach and provides the means
for investigating further structural properties. An interesting phenomenon, referred to us eigen-

value collapsing is studied and criteria for different types of collapsing to occur are given. This
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leads to a complete characterization of phenomena such as merging of Segré characteristics and
Jordan forms and collapsing of eigenspaces. A by-product of this analysis is the classification
of sampling rates to regular and irregular. The study of the controllability and observability
properties under both regular and irregular sampling then follows. The results here for irregular
sampling, provide a complete treatment of phenomena such as loss of controllability, observabil-
ity, emergence of new decoupling zeros and characterization of their order, as well migration of
zeros at infinity. Furthermore, it also provides tests for controllability, observability which go
beyond the structural collapsing and are model parameter dependent. The development of the
structural properties of the discretised models depend mostly on existing theory for continuous
time linear models. We have developed some additional results on the spectral characterization
of controllability, observability, as well as characterization of degrees of decoupling zeros for
continuous time models. The latter results are then integrated with the discrete system studies
and provide criteria for dimension of resulting controllable, unobservable subspaces and orders
of resulting decoupling zeros. The work on zeros of discretised models is mostly concerned with
the study of phenomena where zeros migrate to infinity as a result of the selected sampling
rate.

The thesis is structured as follow:

In Chapter 2 examine the general problem of discretisation and we introduce some general
issues related to the discretisation process. This includes quantization, time delay, mathematical
idealization and the main issues derived from the process of discretisation of continuous signals,
as well of the process of reconstruction of a continuous signal from a discrete one.

In Chapter 3 a comprehensive introduction to the fundamental mathematical tools and
systems theory is given: these are relevant in the study of the structural properties of the
system under discretisation. The specific objective of this Chapter is to provide a short review
of descriptions, basic concepts and tools from mathematics and control theory, which will be
used as background material for the following investigations.

Chapter 4 deals with the state space description of a discretised model and the basic struc-
tural properties of such a model for the different types of the control signal reconstruction. In
this Chapter we investigate the eigenstructure of the discretised state matrix 4 and the Jordan

equivalent description of the discretized model. The study of properties of the eigenvalues of the
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discretised model as a function of sampling is considered here and this leads to a development
of the theory for eigenvalue collapsing. The importance of the relationships between 4 and 4 is
that although we have preservation of the cyclic and invariant subspaces, distinct eigenvalues of
A may transformed to coinciding eigenvalues of 4. This is called collapsing of eigenvalues and
as a result we have phenomena associated with the merging of the corresponding generalized
null-spaces and Segre characteristics. The collapsing of eigenvalues, the conditions of collaps-
ing and the merging of generalized null-spaces and Segr6 characteristics are subjects examined
in this Chapter. The results here classify the sampling process into two cases : the regular
sampling where no collapsing phenomena occur and the irregular sampling where collapsing
occurs between the eigenvalues of the discretised system. The significance of irregular sampling
is investigated in the following Chapters.

Controllability and observability matrices provide one type of criteria for testing the corre-
sponding properties. Controllability and observability matrices of a model in Jordan canonical
form lead to the use of the spectral controllability and observability matrices. In the case of a
discretised model the use of such tests enables the investigation of the effect of collapsing on
the above structural properties. A detailed account of the effect of collapsing on the changes in
the controllability and observability properties is given in Chapter 5. The work here generalizes
the results derived by Kalman [Kal. & Ber., 1] by providing a complete study of the effects of
irregular sampling.

An extension of the classical results on the spectral characterization of the structural prop-
erties of controllability and observability, is developed in Chapter 6. New sets of invariant
indices, that is the set of i-th spectrum row controllability indices (r.c.i.) ®Xi(4,B) and the
dual set of i-th spectrum column observability indices (c.0.i.) Zx"A.C)are introduced. The
role of the system parameters of the Jordan canonical description in the determination of the
dimension of the controllable (unobservable) subspace 7Z (V) of linear systems is also examined
here. These new derivations enables the investigation of the relation between the dimension
of the controllable (unobservable) subspace of the discretised system and the corresponding of
continuous system under the different types of sampling (regular or irregular).

Chapter 7 examines the role of the system parameters of the Jordan canonical description

in the determination of the structure of i.d.z. (o0.d.z.). A new left (right) sequence of A
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Characteristic Toeplitz matrices is used to determine the set £(A B)\i ('I'(A, B)\i) of degrees of
elementary divisors of the input (output) pencil of the system at s = A*f or what is equivalent the
degrees of input (output) decoupling zeros. These results extend the modal characterization of
controllability, observability (classical results of Gilbert [Gil., 1] by providing a characterization
of the degrees of elementary divisors associated with the input and output decoupling zeros.
The results for continuous system provide new relationships between the Segre Characteristic
of A at Aj, pxi(A) the set of r.c.i.(c.0.i.) @(A4,B)xi (Z(A.B)xi) and the set of degrees of
i.d.z.(o.d.z.) E(A.B)\i ('j/(4, B)Xi). This relation enables the investigation of the changes in
the set of i.d.z.(0.d.z.) under irregular sampling and thus completes the study of collapsing of
controllability, observability properties under irregular sampling.

In Chapter 8 the expressions derived in Chapter 3 for the zero polynomial of the continuous
system are applied to the case of discretised model for the calculation of the discretised zero
polynomial coefficients. The existence of a set of eigenvalues located on the imaginary axis and
the collapsing of such eigenvalues to 0 is a precondition for a further migration of finite zeros
to infinity under irregular sampling.

Finally, Chapter 9 provides a summary of the overall contribution of the thesis and specifies

a list of open issues, which form the subject for future research.

21



Chapter 2

SAMPLING THEORY AND
SYSTEM PROPERTIES :
BACKGROUND RESULTS

2.1 Introduction

The purpose of this Chapter is to introduce some of the fundamental notions associated with
the theory of computer control systems and provide the motivation for the work that follows
in the thesis. This is intended as a brief introduction rather than a proper treatment of the
general issues, which are properly treated in textbooks such as [Ast. & Wit.. 1], [Lew., 1], [Feu.

& Goo., 1], [Wil.. 1] etc.

2.2 The Computer Control Configuration

In a modern feedback control system the information processing device used in generating the
required controller action is almost invariably a digital computer. This is connected to the
physical system being controlled through an interface as shown in the Figure 2-1.

The configuration contains essentially six parts :

l. The dynamic system (or the process) to be controlled. The vector of system's outputs
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Figure 2-1: Typical Scheme of a Computer Controlled System

y(t) consists of such physical time continuous signals as position, velocity, pressure etc.

2. The sensors that produce voltage (or current) proportional to the system outputs y(?)

signals.

3. The Analog to Digital Converter (ADC) that transforms the sensors continuous time

signals into digital number sequences (digital signals) ip(kT) to be fed to the computer.

4. The digital computer providing the desired control action by the resident in his memory
control algorithm. The control algorithm acts on the digital signals ip(k7) to provides

further a vector of digital signals v(kT).

5. The Digital to Analog Converter (DAC) converts the sequences v(k7) back into a vector
of continuous time signals u(¢). This is known as reconstruction process. The continuous

time control signals u{¢) are then fed to the dynamic system as inputs.

6. The Clock Time determines the sampling period T.

More complicated sampling schemes can also be used. For instance, different sampling
periods can be used for different control loops. This is called multirate sampling and can be

considered to be the superposition of several periodic sampling schemes.
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Figure 2-2: Output versus input characteristic of the ADC

A digital controller is implemented as a computer program using the above configuration.
The basic functions of a digital controller are thus the following: The controller samples and
quantizes a continuous time signal to produce a digital signal; it processes this digital signal
using a digital computer and then it converts the resulting signal back into a continuous-time
signal. Such a control system thus involves both continuous time and discrete time signals, in
a continuous-time framework.

A digital signal is a discrete-time signal with a quantized amplitude.

2.3 Quantized Signals

The output of the ADC must be stored in digital logic composed of a finite number of digits.
Most commonly, the logic is based on binary digits (bits) composed of 0's and I\s. but the
essential feature is that the representation has a finite number of digits [Fra.. Pow. k& Wor..
1], A common situation is that the conversion of the analogue to digital signal is done so that
the digital can be thought of as a number with fixed number of places of accuracy. If we plot
the values of the analogue signal y(?) versus the quantized #p{t) we can obtain a plot like that
shown in the Figure 2-2.We would say that ip(?) has been truncated to one decimal place, or
that y(¢) is quantized with a ¢ of 0.1. since *(t) changes only in fixed quanta of (in this case)

0.1 units. Note that quantization is a nonlinear function.
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Figure 2-3: Time delay due to the DAC operation

24 Time Delay

The function of DAC is associated with time delay. Each value of u(kT) is typically held
constant until the next value is available from the computer [Fra., Pow. & Wor.. 1). Thus the
continuous values of u(?) consists of steps that on the average lag u(k7) by T/2. as shown by

the dashed line in the Figure 2-3.

2.5 Mathematical idealization

For purposes of analysis and design, the standard digital control system is idealized [Che. <C
Fra., 1], [Wil,, lj. In this idealization the three components implemented as shown in Figure

2-4. the ADC, the Digital Computer and the DAC are considered as follows :

1. The ADC became a ideal sampler S. It periodically samples the continuous signal y(?)

(Figure 2-5) to yield the discrete-time (and not quantized in amplitude) signal y(kT) —
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Figure 2-4: Mathematical Idealization

Figure 2-5: Continuous Signal

y(kT) (Figure 2-6). In the general multi-output case y(¢) and y{kT) are both vectors of

the same dimension.

The digital computer is described as a finite dimensional, linear time-invariant, causal,
discrete-time system K. Its input and output at time k7 are y(kT) and u(kT) = v(kT)
(Figure 2-7).

. The DAC is a hold operator H. It converts the discrete-time signals u{k7) into the con-
tinuous time signals u(?). A common and typically valid assumption is that of a H with
zero-order hold ZOH. Each value of u(kT) is held constant until the next value is available

from the computer (Figure 2-8). If H is implemented as a first order hold (FOH) oper-
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Figure 2-6: Discretized Signal

ator, then u(?) is held as a straight line determined by the two last numbers u(k7) and
u(kT —T) until a new number u (kT + T) is available from the computer. It is possible to
consider a H with a hold of upper than one order, say m. That means, in the time interval
from kT to kT + T, the signal u(7) is held as the extrapolation of a curve determined by

the last m numbers of the sequence.

Note that S and H are synchronized, physically by a clock. Using the idealizations of S and
H. we obtain the idealized model of the standard control system. This is called the standard
sampled-data (SD) system. The sampled data system has both continuous-time and discrete

time signals, whereas ‘digital” refers to a system having digital signals

2.6 Shannon Reconstruction

It is of course, essential to know when a continuous-time signal is uniquely given by its sampled
version [Feu., 1], The following theorem [Ast & Wit., 1] gives the conditions for the case of

periodic sampling.

Theorem 1 A continuous-time signal with a Fourier transform that is zero outside the interval

(—uaJo.”0) is given uniquely by its values in equidistant points if the sampling angular frequency
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Figure 2-8: Signal Reconstruction from DAC with ZOH
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Figure 2-9: Signal Reconstruction from DAC with FOH

s = 2uT is higher than 2wy. The continuous-time signal can he computed from the sampled

signal by the interpolation formula:

y) =" ykT) ~ {i_kT)/2 (2.F

Remark 1 The frequency = q)s/2 is called the Nyquist frequency.

Remark 2 Equation (2.1) defines the reconstruction of signals whose Fourier transforms van-

ish for frequencies larger than the Nyquist frequency

The inversion of the sampling operation, i.e., the conversion of a sequence of numbers
to a continuous-time function is called reconstruction. In computer-controlled systems, it is
necessary to convert the control actions produced by the computer as a sequence of numbers

into a form of a continuous-time function using a hold operator.
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2.7 Aliasing [Ast. & Wit., 1]

Stable linear time-invariant systems have the property that the steady-state response to sinu-
soidal excitations is sinusoidal with the frequency of the excitation signal. Computer control
systems behave however, in a much move complicated way because sampling will create signals
with new frequencies and this can drastically affect performance unless precautions are taken.
The phenomenon that sampling process creates new frequency components is called aliasing.
Whenever the signal contains frequencies that are larger than half the sampling frequencies,
there will be new low frequency components which are created.

In fact, if a continuous-time signal f(¢) that has the Fourier transform,

F(u) = l: e~iytf (t)dt
e))

is sampled periodically, it has been proved that the sampled signal f(kT) can be interpreted as

the coefficients of the Fourier series of a periodic function Fs(uj) defined as [Ast. & Wit., 1],
Fs(v) = —  Fuw>+ k>3) (2.2)

The period of Fs(@> is equal to >3 and it is

Us
f(kT) = — / eikTulF's (1>)d>j
ws 4

then the function Fs(ui) can be interpreted as the Fourier transform of the sampled signal
f(kT). 1If the continuous time signal has no frequency components higher than the Nyquist
frequency, the Fourier transform Fs(1>) is simply a periodic repetition of the Fourier transform
of the continuous-time signal. It follows from (2.2) that the value of the Fourier transform of
the sampled signal at u>is the sum of the values of the Fourier transform of the continuous-time
signal at the frequencies w + nujs.

An illustration of the aliasing effect in computer systems is illustrated by the following
diagram [Ast. & Wit., 1] in Figure 2-11 representing the response of a computer system under

certain conditions on the value of sampling.
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Figure 2-10: Simulation of a sampled data system exhibiting aliasing phenomena
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To avoid the difficulties associated with aliasing, it is essential that all signal components
with frequencies higher than the Nyquist frequencies are removed before the signal is sampled.
This involves the use of an antialiasing filter in the overall configuration. The proper selection
of sampling periods and antialiasing filters are important aspects of the design of computer-

controlled systems.

2.8 The 2-Transform

The 2-transform maps a semi-infinite time sequence into a function of a complex variable. A

summary of the basics of the transform theory is given below.

Definition 1 The z-transform of the discrete-time signal {fifkT) : k = 0,1,...}, is defined as.

®
F(z) =YJf{kT)z~k
k=0

where z is a complex variable. The inverse of the z-transform. of f(kT) is given by.

f(kT) =" - f F(z)zk-ldz

where the contour of integration encloses all singularities of F(z). The z-transform of f(kT)

is denoted by Z [ or F.
The basic properties of the 2-transform are,

L. Linearity:
Z(af +8g) =aZlf +[f3Zg

2. Time shift:

Zq-nf = z~nF

Z{q"f} =zn{F-F,)

n—I

where, F"{z) /(jT)2 ]
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where by ¢ is denoted the forward-shift operator and by ¢ 1the backward-shift operator
[Ast. & Wit., 1],

3. Initial value theorem:

/(0) = lim F(z)

4. Final value theorem: If (1 —z~1)F(z) does not have any poles on or outside the unit

circle, then,
Icl%(kT) :éﬂ (1 —=~1DF(z)

5. Convolution: i

Z{f*g) =z Y Jfin)glk - n) = (Zf) (Zg)

n=0
2.9 Conclusions, Emerging Issues

The selection of sampling is an important issue in the design of computer control schemes. So
far, the methodology for selection of the appropriate sampling has been based on signal type
criteria. The need to develop a model based theory, that exploits also the quality of the result-
ing discretised model has been recognized, but the area is in its early stages of development. In
practice, it is essential that sampling is selected using both signal recovery criteria and preser-
vation of continuous model features criteria. The model based criteria express the general aim
that the open loop discretised model has characteristics and properties, as close as possible to
those of the open loop continuous time model. To achieve the above general objectives research
is needed in many areas related to the mapping of continuous model properties characteristics,
to the corresponding ones of the discretised model as a function of the sampling rate. Amongst
the issues worth examining are those related to the mapping of structural invariants and asso-
ciated properties, as well as the transformation of features of design indicators. This thesis is
concerned with the study of properties of a number of system invariants and their associated

properties as a function of the sampling rate.
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Chapter 3

SYSTEMS AND MATHEMATICS
BACKGROUND

3.1 Introduction

Modern control theory and design uses concepts and tools from almost every single branch of
mathematics. The aim of this chapter is to introduce some terminology and define the basic
mathematical concepts and tools, which are essential for the presentation of the system concepts

in the following sections. The following topics are considered as essential:

1. Basic concepts and tools from Polynomial arid Rational Matrix theory.

2. Basic concepts and definitions from the structure of a linear operator in an n-dimensional

space.
3. Basic concepts and tools from matrix pencil theory.

4. Review of relevant topics from systems theory.

It should be stressed that this section serves as basic terminology and does not aspire to
be an introduction to mathematics for control theory. Details may be found in the references.
Certain nonstandard topics, which have an impact on the subsequent chapters are treated in

some more detail.
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3.2 Polynomial and Rational Matrices

Let R. C denote the fields of real and complex numbers respectively, Z+ is the set of positive
integers and Zg = Z+U {0}, R[s] be the ring of polynomials with coefficients in R and R(s) be

the field of rational functions :

R(s) = {t(s) : t(s) = ,n(s),d(s) GR[s],d(s) £0} (3.1

Let R(s)p,p G Z+ be the set of ordered p-tuples of rational functions considered as column

vectors:

RGP a {t(s) :t(s) = [tl(s),t2(s),....tp(s)] . tl(s) GR(s),i Gp} (3.2)

then R(s)p has the structure of a linear vector space which we call a rational vector space.
Let R(s)pxm,p. m G Z+ denote the set of p x m matrices with elements in R(s). A matrix
T(s) GR(s)pxm is called a rational matrix.

The ring of polynomials R[s] is a Euclidean ring i.e. there is a map d : R[s] — PZg such
that for every a(s) GR[s], a(s) £ 0 we denote da(s) = dega(s) G Zq . The units u(s) of R[s] are
the non-zero elements of R.

A rational matrix 7(s) whose elements are polynomials is called a polynomial matrix. The
set of polynomial matrices is denoted by R[s]pxm. A polynomial matrix 7(s) G R[s]pxp is
called unimodular if there exist a 7(s) G R[S]pxp such that T(s)T(s) = Ip, equivalently if
det T(s) = ¢ GR. ¢"O.

Definition 2 The degree of a polynomial matrixT(s) GR[slpxm, denoted bydegT(s). is defined

as the maximum degree among the degrees of all its maximum order (non-zero) minors. o

3.2.1 Smith-McMillan Form [Var., Lim. & Kar., 1]

"Elementary row and column operations” on a T(s) G Rpxm(s) are defined in the following

usual way :
. interchange any two rows (columns) of 7(s)
2. multiply row (column) i of T(s) by a unit u(s) GR[s] and
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3. add to row (column) i a multiple by a non zero element #(s) £ R[s] of row (column) j

These elementary operations can be accomplished by multiplying the given 7(s) on the
left (right) by “elementary” unimodular matrices, namely matrices obtained by performing the

above elementary operations on the identity matrix Ip(m).

Definition 3 7'i(s) £ Rpxm(s), T*s) £ Rpxm(s) are called equivalent in C if there exist uni-
modular matrices Ti (s) £ Rpxp(s), Tr (s) £ Mmxm(s) such that

Ti (s)Ti(s)Tr (s) = T2(s) (3.3)

The above equation defines an equivalence relation of Ti(s),T”s) on Mpxm(s) which we
denote by Ec. The set of all the equivalent matrices of a fixed T(s) £ Rpxrn(s) defines in -

equivalence class or the orbit of the 7(s). i

Theorem 2 Let T(s) € Rpxm(s) with rankK(s)T(s) = r . Then T(s) is equivalent in C to a

diagonal matrix Shaving the following form:

e S 2 sty
o1(s) lag{ {s)72(s) A(s) e 34

where £z(s). L'i(s) £ R[s] are monic and coprime such that £i(s) divides ei+1(s), while
Vj+1(s) divides =12,..r —1 o

Definition 4 The rational functions
fi —£i(s)/ipi(s) £ R(s),f £,

constitute a complete set of invariants of Ec and are called the invariant rational functions of

T(s). O

Definition 5 The zeros of T(s) £ Rpxm(s) in C are defined as the zeros of the polynomials
fi(s),i £ r. The poles ofT(s) in C are defined as the zeros of the polynomials ipi(s),i £ r. O
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Remark 3 (Smith form) If T(s) G Rpxml[s] then ipi(s) = [,i G r, that is, S"s) "~ a%o
a polynomial matrix and it is called the Smith form of T(s) in C. Otherwise if T(s) is non-

polynomial, for some i = 1,2, Gr, the 'ipi(s) are non constant, that is called the McMillan

form ofT(s) in C. o

Let T(s) GRpxm]s] and
ST(s) = diag{ei(s), £2(5) , er(s), Op >m r}

Then we have.

Definition 6 The polynomials £,(5) GR][s],i € r, constitute a complete set of invariants of E

and are called the invariant polynomials ofT(s). O

The invariant polynomials £t(s) can also be obtained by.

Di(s)

9 pis) T

where Dq(s) = 1 and Di(s) is the greatest common divisor of minors of order i in 7(s).
Let the invariant polynomials £;(5) be factorized into their monic irreducible factors pj(s)
over the field of R and let the power of <g(9) occurring in £i(S) be kij. Then those of pK(S)

with ~ 0 are called the elementary divisors of 7¢(s).

3.2.2 Smith-McMillan form at S - oc [Var., Lim. & Kar., 1]

Define the map 6X :R(s) —»Z U (+00) via

x /i/\\J degd(s) -degra(s), t(s) £0

coc(*(«)) = < (3.5)

( +00. t(s) = 0

The map <®c(.) is a discrete valuation on R(s) and every ¢(s) GR(s) can be factored as,

B a 00 m{s)
tfs) = 2105 (3.6)

where gx = 6x (#(s)) and degnj(s) = degcfi(s).
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Definition 7 If goc > 0 we say that t(s) has a zero at s = 00 of order g an d if goc < 0.then

we say that t(s) has a pole of order 1g™l at s = oo. ]

If f(s) ¢ R(s) and <Sco(f(s)) > 0, then ¢(s) is called a proper rational function. Thus, proper
rational functions have no poles at s = oo. It is easily verified that the set of all proper rational
functions, which we denote by Rpr(s), is an integral domain. The units u(s) G Rpr(s) are
those proper rational functions for which there exist a u(s) ¢ Rpr(s) such that u(s)u(s) = 1L
Such functions have no zeros at s = oo and thus, if u(s) = n(s)/d(s) G Rpr(s) is a unit,
"oo(u(s)) = 0, i.e. degn(s) = degd(s).

Denote by Rpxm(s) the set of p Xm matrices with elements in Rpr(s). Such matrices are
called proper rational matrices. Let T(s) € Rp:p(s), then T(s) is called Rpr(s)-unimodular or
biproper if there exists a T(s) £ RPrp(s) such that T(s)T(s) = .

“Elementary row and column operations” on a T(s) € Rpxp(s) are defined in the following

usual way :
L. interchange any two rows (columns) of 7(s)
2. multiply row (column) of 7(s) by a unit u(s) € Rpr(«) and
3. add to row (column) i a multiple by a #(s) ¢ Rpr(s) of row (column) j

These elementary operations can be accomplished by multiplying the given T(s) on the
left (right) by ”elementary” biproper matrices obtained by performing the above elementary

operations on the identity matrix /p(m).
Definition 8 Tl(s) GR "“m(s),7%4s) G RPrm(s) are called equivalent at s = o0 if there exist

biproper rational matrices Tl (s) G RprP(s), T"(s) ¢ R";xm(s) such that

T (s)T,(s)Tr (s) = T2(s) (3.7)

We have the following .

Theorem 3 (Smith-McMillan form of a rational matrix at s = oo) Let T(s) ¢ Rpxm(s) with

rankfc(3)T(s) = r . Then T(s) is equivalent at s = 0o to a diagonal matrix having the
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following form:

) = diag{s%c‘,sqlc o S&H > cQet2’ " ««o’ P rim (3-8)
where
gle >vL > > <L >0 (3.9)
Gw>c 1> >¢ 1>o0 (3.10)
m
Remark 4 IfT(s) € Mp*p(s)then gF = 0, z= 1,2,...,], ie is a proper rational matrix

("1(s) e Rpr P(s)anc™d is called the Smith form ofT(s) ats = oo. Otherwise, i.e., ifT(s) is
nonproper, then Sifr"is also nonproper and it is called the McMillan form ofT{s) at s = oo. If
Poc is (fie number of g1 5 in (3.8) with g > 0, i £, then we say that T(s) /ias poe poles at
infinity, each one of order ¢~ > 0. Also if z™ is the number of gf* § in (5) with ¢~ > 0. i —

j + 1,...,r, i/ien we sap that T(s) has z(Q zeros at infinity, each one of order ¢ >0. o
An alternative, equivalent characterization of the poles, zeros at infinity is given below.

Definition 9 (Ver., 1) ,/Pug. & Rat., [jThe rational matrix G(s) is said to have a pole (zero)

at infinity, if the matrix &'(™) has a pole (zero) at w= 0. i

3.3 The Structure of a Linear Operator in an n-Dimensional

Space

The existence of a matrix of normal form in a class of similar matrices is closely connected with
important and deep properties of a Unear operator in a n-dimensional space.
3.3.1 Geometric Theory of Elementary Divisors [Gan., 1]

Consider an n-dimensional vector space 7Zover the field 7 and a linear operator 4 in this space

and a vector u£/Z. The following definitions and propositions are valid :
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Definition 10 The monic annihilating polynomial <fi(s) of least degree for which <f>(Ax = 0

will be called the minimal polynomial of x. o

Proposition 1 Every vector x has only one minimal polynomial (p(s) which divides every an-

nihilating polynomial of x. o

If the vectors x I;x2,...,xn G 17 define a basis in 7Z and the corresponding minimal polyno-
mials 4>i(s),<p2 (s), ...,0n(s) then if tp(s) is the least common multiple of 4>i(5),<>2(s), ... n(s)
it is an annihilating polynomial for every vector x G 7Z. It can be proved that ¥>(s) has the
least degree and divides all the annihilating polynomials for the whole space 77 and it is called
the minimal polynomial of the space 7Z Then the minimal polynomial of the space IZ does not
depend of the choice of the basis. This polynomial is divisible by the minimal polynomial of
every x G 1Zand annihilates every x G1Z.

The space 1Zis decomposed into two subspaces 72 and 142 : TZ = 17\ © IZ> fif,

1. 7Z\nn 2= {0}
2 W€ ZHx=x}+x2. 1) €14, x2G72

A subspace 7ZI C TZ is called invariant with respect to the operator A if 472" C TZI or
VX GTZ ®»Ax GIZ.

Theorem 4 (First Decomposition Theorem ) Iffor a given operator A the minimal poly-
nomial xifs) of the space is represented over T in the form of a product of two co-prime poly-

nomials and X¥2(s) (with highest coefficients 1).

4fs) = 4\{s)42{s)
then the whole space TZ splits into two invariant subspaces /i and 12,

Z\©12

whose minimal polynomials are xfi(s) and xp2(s) respectively. m]
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Theorem 5 In a vector space there always exists a vector whose minimal polynomial coincides

with the minimal polynomial of the whole space. o

Lemma 1 [f the minimal polynomials of the vectors Xj and x2 are co-prime, then the minimal
polynomial of the sum vector Xj + X2 is equal to the product of the minimal polynomials of the

constituent vectors. O

Let the minimal polynomial of the vector e be
<t>f{s) — s-P+ arvsp 1+ ..+ ap-js + ap

then the vectors e, 4e,.... Ap~Ile are linearly independent, form a basis for a p-dimensional
4-invariant and cyclic subspace V.
Every vector x GV is representable in the form of a linear combination of the basis vectors,

i.e. in the form x = \'("4)e where x(s) £ R[s] of degree < p —1 with coefficients in /F.

Remark 5 1. Vector e is defined as the generating vector of the subspace V and

2. the minimal polynomial of'e is also the minimal polynomial of the whole subspace V. O

Theorem 6 (Second Decomposition Theorem) Relative to a given linear operator A the

space can always be split into cyclic subspaces V), V2, e V) with minimal polynomials
V2(s). II>t{s),
R=ViOoV2O.. oW

such that xi(s) coincides with the minimal polynomial ip(s) of the whole space and that each
H(s) is divisible by «0i+i(s)(f= 1,2 ,1i—1). ]

Theorem 7 A space is cyclic if and only if its dimension is equal to the degree of its minimal

polynomial. |
Theorem 8 A space does not split into invariant subspaces if and only if

1 it is cyclic and
2. its minimal polynomial is a power of an irreducible polynomial over F . O
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Theorem 9 (Third Decomposition Theorem) A space can always split into cyclic invari-
ant subspaces

R —vj o vaffi.. ©Vj

such that the minimal polynomial of each of these cyclic subspaces is a power of an irreducible

polynomial. |

3.3.2 Jordan Form of a Matrix [Gan., 1],[Kar., 2]

Let the characteristic polynomial of a matrix 4 € Rnxn be:

IXs) = det(A - si)= (s- ADL(s- AQR2 . (s- X)7

Where Aj, A2...., A/ £ C are all the distinct eigenvalues of 4 and *1; %2, ..., 717 are their cor-
responding algebraic multiplicities, with 7] + 72+ ... + 717 = n. Also let that the invariant

polynomials of 4 —si are decomposed into elementary divisors.

Ms) (s-A DTui (s -A )22 ...(s-A )P ...(s-X[)If
Ms) = (s-ADT - 1(s-A2T - L.(s-Atp * 1..(S-A/T/-1

Ms) = (S-Alp (S-A2p...(5-Aip...(5-A/)T7
/,,(«) = (s —Ai)Tn (s —A2)TI ... (s —A))7 ... (a —Ay)T1
where, v\ > v2> .. > V> .. > V/>0and for = 1,2,...,/ it is, rili > > ..>m >0
ifk< =vrik= and if £k >~ =ik = 0. Also it is:

Tl + ri2+  + Taf*= 7§

and where i/ is the rank deficiency of matrix A —s/ at s —A*i.e..

U=n-rank (A- \I) (3.11)
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To each one of the above eclementary divisors, say (s —AI)Tik there corresponds a definite
cyclic subspace Vik generated by a vector e. For this vector the elementary divisor (s —At)TE
is the minimal polynomial:

(4- AD)Te =0

and the vectors,
uikl = (A - Aiiy™-'e, uik?2 = (A - AR 2e, ..., Ae

are linearly independent and consist a basis for the cyclic subspace Vik. Vector uik is defined

as an eigenvector of 4 associated with the eigenvalue A,. It is,
(A - Ail)uikl =0

The maximum number of linearly independent eigenvectors associated with each one of the
distinct eigenvalues A is given by the rank deficiency v¢. Number is defined also as the
geometric multiplicity of A

To each one of the uf real eigenvectors associated with the eigenvalue At, corresponds one
chain of generalized eigenvectors. Let to the eigenvector uik (k = 1.2,..., vz) associated with A,

corresponds a chain of rik generalized eigenvectors uikl, uik,,..., uikﬁk, given by the equations :

(A-\1)uikl =0 and gk —ik
o —ik (A - Xil)2ulk2
N il ik - (4 - \il) Tk uik

where Tik is now defined as the eigenvectors chain length. The maximum possible value for an

eigenvector chain length is equal to the minimum power ¢ [lf of matrix 4 —A7, for which :

rank(*l - A;7)T" = rank(A - Aj/)T"+] (3.13)

and we have :
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Definition 11 We define as the index of annihilation of matrix A at A the minimum power
Tw%°f matrix A —Atl for which the relation (3.13) is valid. The annihilation index is equal to

the length of the longest chain of generalized eigenvectors, associated with the eigenvalue Xt. O

From (3.12) it follows that every generalized eigenvector of a chain u/k , belongs to the null
space A (j of the matrix {4 —Xfi)0, as well as to the null space My-t-i) of the matrix {4 —Aj/)J+ ,
but it does not belong to the null space M (j-1) of the matrix (4 —A;7-7°1. So we have :

Mo c Mi ¢ .. ¢c Hiriv. = Mi

The dimension of Mio is defined as 0. The dimension of M1 is equal to zt, the geometric
multiplicity of Ai given by (3.11) and the dimension of M is equal to 7q i.e. the algebraic
multiplicity of A

Definition 12 We define as the generalized null-space Mi corresponding to the distinct eigen-
value Ai, the null space of the matrix (A —Xil) Tid, where tiu. is the index of annihilation of A

at A* O

From the above we conclude that the set of the 4 generalized eigenvectors of all the v/ chains
associated with A;, belongs to the generalized null space M- From the linear independence of
the set of the &j generalized eigenvectors, it can been shown, that it defines a basis for the
generalized null-space Mi, and T* (the algebraic multiplicity of Xfi, denotes the dimension of

the generalized null-space M- So it is :

rank(ri —A;/)W* = n —ili

Also from equations (3.12) it can been shown that the generalized null space M is 4-

invariant. So we have :

Proposition 2 To each one of the ul real eigenvectors u ~,”, ...,u”™ associated with the dis-
tinct eigenvalue Xz (of algebraic multiplicity TX), corresponds one chain of generalized eigenvec-
tors. The set of the wl generalized eigenvectors of all the U chains associated with A, forms a

basis for the A-invari.ant generalized null space Mi. i
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As each chain of  generalized eigenvectors forms a basis for the corresponding A-invariant

and cyclic subspace Vik it is,

Proposition 3 The generalized A-invariant null-space Mi corresponding to the distinct eigen-
value Ai m.ay be written as a direct sum of  A-invariant and cyclic subspaces, each one of

which is defined by a generalized eigenvectors chain .

Mi=Vn OV2® .. O VIk©O .. ©Vili

Proposition 4 A generalized null-space Mi is cyclic relative to A, if and only if is composed

by only one subspace Vik, or (what is the same) to the distinct eigenvalue \ corresponds only

one real eigenvector and consequently only one chain of generalized eigenvectors. o
Proposition 5 The whole space is cyclic relative to A, if and only if, all the generalized
null spaces Mi corresponding to the distinct eigenvalues are cyclic. mi

Also the dual eigenvectors and dual generalized eigenvectors are defined as following.
To each real eigenvector uik (k = 1,2,.... vf) associated with At (i = 1,2,.../) corresponds a
dual eigenvector vik such that, vik(A —A;7) = 0, and v/kuik = 1. The chain of rlk generalized

dual eigenvectors vik%¢fvik2, ...,uiiv , is given by the equations :

Hi! (A - XII)Tik= 0 Oil (A - = W2

- x>02=0 O h-ikTik-1(al —A;7) — Hikr

kT —ik and vlknk (A —Xil) = 0

Let the n x n transforming matrix U of 4 defined by the chains of generalized eigenvectors

associated with the distinct eigenvalues Ai,A2,..., Ay (eigenbasis) as following :

U= [UXD,... UXi),..., UXf)} (3.14)

Where the columns of U(Xi) £ CnX7i define a basis for the A-invariant generalized null space
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TV) . Matrix U(Xi) is formed by the Vi matrix blocks corresponding to the chains of the distinct
eigenvalue A*:

UXi) = [Ui\,UikiUil (3.15)

The columns of £ CnXlifc are formed by the corresponding chain of the »** generalized

eigenvectors which define a basis for the M-invariant and cyclic subspace Vik m

Uik= [uiTl, -, u iTik] (3.16)

Matrix V = f/“1 is defined in the same as above line from the dual eigenvectors chains of 4.

Then matrix A4 is similar to the Jordan matrix J :
A=UJU-1= UJV (3.17)
where,
J = diag{J(Ai), J(A2),..., J(Xf)} (3.18)

and J(Aj) is the diagonal matrix block formed by all the v¢ Jordan blocks associated with the
distinct eigenvalue A* :

J(Xi) = diag{Jn, ..., Jik (3.19)

and where is the Tik Jordan diagonal block corresponding to the generalized eigenvectors

chain of length rik, associated with Aj :

Xi 1 0 0
0 At 0 0
Jik e ¢ Tk (3.20)
0 0 A 1
0 0 0

From the above is concluded the following

Proposition 6 Under the partition (3.14) of the transforming matrix U, the whole space K1
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is decomposed into [, A-invariant generalized null-spaces,
R" =Afi ®M2C mOM © .. ©A/} (3.21)

The subspaces Mi, M2, ...,A/l"/ are uniquely defined as they coincide with the null-spaces of the
corresponding matrices (A —AlD) TV , (/1 —A2/)T2'2, (A —\f1I) Try . o

Proposition 7 Under the partition (3.15) of the matrix block £/(Aj), the A-invariant subspace
Mi is decomposed into U, A-invariant and cyclic subspaces, where U is the geometric multiplicity
of At ;

Mi=Vn©Vi2O © Vik fli = © Vivi

and the whole space is decomposed into a total number vj of cyclic and A-invariant subspaces,

T=V+i2+ .+ U+ ..+ Vf

The subspaces Vn, Vj2, are not uniquely defined, as we can have different ordering
of the corresponding basis column vectors of U\,.., Uf, Uf.. On the contrary, the number
vt of the subspaces, as well the dimensions of each one, are uniquely defined , as so are the
number of the V" real eigenvectors associated with the distinct eigenvalue A, and the lengths
of the corresponding generalized eigenvector chains. Otherwise, to each one of the elementary
divisors (S —Aj)Ti of the continuous system matrix 4, corresponds the Jordan block Jj*, as in
(3.20). Also, each one of the elementary divisors, is the minimal polynomial of the corresponding
Jordan block as well the minimal annihilating polynomial of the corresponding A-invariant and

cyclic subspace VikmSo the elementary divisors of 4 can be arranged as following:

(¥-A,)™. (S—ANTf...(s-A i

(s -A B (*-a2)T2. ol (S—A)TR . (* - AD2

(s - AjTil, (s - A)T2, ..., (- AD)Tifg ..., (s - A
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(s_Xfyn,5_A (s- \PDTfk (s - AT

where fori —1 .2,/
Tivi > e > Tik "~ e if Til > 0, Tivi + + Tife + ...+ Tjj = Tk

Definition 13 We define as the Segre Characteristic of A at A the set of the degrees of the

elementary divisors of A at A

pA(A) = {rili > .. > T > .. > tu > 0} (3.22)

Remark 6 From the above we conclude that :

1. The number Vi ofthe elements of pA (4) is equal to the number of Jordan blocks associated

with, the distinct eigenvalue

2. The sum ttl of the elements of pA (A) is equal to the dimension of the generalized null

space Mi.

3. Each one of the elements of pA {A), let the t & is equal to the dimension of the corre-
sponding Jordan block Jik(Aj), as well to the dimension of the corresponding cyclic and

A-invari.ant subspace V™.

f. The first element t". of p\. (A) is equal to the annihilation index of A at At.

The minimal polynomial of 4 is determined as :
AMN4) - h0) =(s- ADMi(s - A2T2...(s - AYT...,(s - A

Also we conclude that Proposition 5 can be stated as following:
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Proposition 8 The whole space Rn is cyclic relative to A, if and only if the wpli (4) includes
only one element:

pX = {riv! andriVi=nfori =1,2,/
or what is the same, to each one distinct eigenvalue \ of A corresponds only one Jordan block.D

Definition 14 We define as index of cyclicity v of a matrix A, the maximum of for i =
1,2.....f. where Vi is the geometric multiplicity of A at A or (what is the same) the dimension
of the null-space of (A —Xil) i.e.

v = max {ij} fori=1,2,...,/

From the above we conclude that :

Proposition 9 The whole space M' is cyclic relative to A, if and only ifv = 1. o

3.4 Definition of Finite and Infinite e.d. Structure of Right

(Left) Regular Pencils [Kar. & Kal., 1]

3.4.1 Definitions

If T is a field or a ring J~Pxm denotes the set of p x m matrices with elements from 7. The
right (left) null space of a map (matrix) W is denoted respectively by A/i(W),(7Vi(W)).

Let the set of matrix pencils be defined as :

Fvm = {W = (F,G) :F,G & Wxm}

£pm(s,w) A {LFGs,w) =sF- wG W = (F, G) G£pm}

where (s. w) is an ordered pair of indeterminate. The pair W — (F, G) is called right regular, if
A)®sw)(sF —wG) = {0}. The subset of Cvm which is made up from all right regular pairs will
be denoted by  m and the corresponding set of pencils will be denoted by £ /m(s. w). The

set  mof all left regular pairs is defined in a similar manner. It is clear that a necessary and
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sufficient condition for W G £"'m is that WHATis, w) has full rank over R(s, w) and p > m. A
special case of right (left) regular pairs are those which p —m. This set is denoted by £pp
and will be referred to as the set of entirely regular or simply regular pairs. Clearly if W =
(F, G) G£pp then |sF —wG| GRJ[s, wl —{0}. The set of matrix pencils that correspond to £ipp
is denoted by £'pp(s, w).

Consider the following set of ordered pairs,
H=1{h:h= (R T), R GRpxp, T = diag{Q, 0}, O GRmxm, \R| ,\0\ * {0}}
and a composition rule (*) defined on 7{ as follows

HxH —& H:Vhi= (?,T)), hi = (/22,T:) GH. then

h,*h2 4 (R, Ti)*(R2,T2 = (RIR2,T2TI)

It may be readily verified that (H, *) is a group with identity element (7p,/2m) and it is known
as the strict-equivalence group (SEG). The action of (H.*) on W = (F, G) G £pm is defined
by:

R x fvm —> £Pm mVh= (R,diag{Q, Q)) GH. then

h*W 4 (/2,T)o(F.G) =L'=(F\G)= (RFQ, RGO)

The above action defines an equivalence relation £z on £v.m which is known as strict-equivalence
(SE). Two pencils M1(5,w) = sFj —wGi, W2(s, w) = sF2—wG?2 are said to be strict equivalent.

w)Eh W2(s,w). if there exists h GH : W2 —h o W\. By £n (F,G) it is denoted the SE
class, or orbit, of W = (F, G) or equivalently of W(s, w) = sF —wG.

The above definitions, clearly apply to the £"m,£pm, L¥m cases. In the following, we
concentrate on while the treatment for is dual. For all L — (F,G) G £pm, the SE
class, £ft(F,G), is characterized by a complete set of invariants, known as strict equivalence
invariants (SEI).

Let W = (F,G).G,F GRpxm, p = rankRp*"sF —wG) < min(p, m) and let V(G,F) be

the set of homogeneous elementary divisors (e.d.) of sF —wG. These are of the following three
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types :

(s —aw)Ti, w fri

Where a £ C —{0}. The subsets of V(G, F') which corresponds to the same point of Cu (oo}
will be denoted by

Vha 4 (s —awyri. or (AS—w, 1. « £CU {00}. a

i€la 0<n < ..<r,0
2i0 = {s"F i £iso, 0<cg < ..<c0} (3.23)
A),) - {w? i£Too, 0<m < .. < /xVoo}

For the single variable pencils sF —G, F - wG derived from sF - wG, the above sets of
e.d. may be interpreted as [Kar. & Kal., 1] for sF —G, %10, X)10, A),i, represent the
sets of a-e.d., a / 0, 0-e.d., oo-e.d. respectively and thus they will be denoted in short by
Va. Vo, Vac. For the “dual pencil", F - wG, the sets V\,a- A.o- Don, represent the sets
of a—e.d.. a —a-1, 00—e.d., 0—e.d., respectively and thus will be denoted by Va. Vo, V"
correspondingly. In the following, the case sF —G will be considered and thus the notation Va.

Vo. Poc will be adopted, the results concerning F —wG are dual.

Remark 7 The set V(F,G) is self conjugate and thus if Va £ V{F,G), a £ C —M then
Vat £ V(F.G) (where, a* is the complex conjugate of a). o

Definition 15 The set
<FF. G ={al:a £Cu {00}, a; 7ay, i £v :rank(otF —G) <p)

will be called the root range of (F,G). |

Also following the definitions given in the previous section for the si —A case (3.22), the

sets of integers,

Pa(F, G) - {wa>e>n >0}, po(F, G) = {oy0> ... > A > 0}

Poo(F, G) -  {/Too > > Al > 0} (3.24)
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characterizing the degrees of the e.d. in the sets Va, Vo, Poo, will be defined as the a— 0— oo—Segre
characteristic of the pair (F,G) respectively [Kar. & Kal., 1].

A pair W = (F,G) G £pm such that W ~ F@pm will be called singular and the set of all
singular pairs will be denoted by Lprn ; clearly £"m,£pm G £pin.

3.4.2 The a-Toeplitz Matrices

The following results indicate the procedure for the computation of the Segré characteristics

Pa, Po, poo without resorting to their algebraic definitions.

Theorem 10 Let IV — (G,F) € Lprn(p > m). The pencil Wp,rn{s) = sFF —G has an ed.
(s —a)ri, a £ C, if and only if there exists a maximal chain of linearly independent vectors

{x".x2,...,xr } GCp such that

G-aF 0 . .0 0 £i
-F G-aF . .0 0 x2
=0, forj 1,2, mmil (3.25)
0 0 .. . -F G-aF 7
m
Theorem 11 Let W —{G,F} G (p > m). The pencil Wpn[s) = sF —G has an i.e.d.
u™l, if and only if there exist a maximal chain of linearly independent vectors {x1;x2, G
Rp such that
F 0 ... 0 0
-G F ... 0 0
=0, forj = 1,2,....pi (3.26)
0 0 -G F
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For Va GC is defined the sequence of matrices :

Tqd 4 G-aF
?Z A G -aF 0
a
F G- aF
(3.27)
o s 0 0 0
F G - aF 0 0
72 A e C ,px,m, for all ;= 1,2,...
F G-aF
For a = 0o, we may also define the sequence of matrices
T 4 F
F
g 2
-G
F 0
-G F
TKF-G) 4 e RIPxim, for aJli= 1)2)..
o o ... -G F
Matrices of the type T,,, will be referred to as the i-th order a-,00-Toeplitz matrices of
the pair (G, F.). Let us denote by :
No 4 mr{t *}, NG44 Alj{Tq}, Va€C, ft= 1,2,... (3.28)
K. 4 Mr{TL}). NL=M{TL}, k= 12,.. (3.29)

53



For all the pairs W = (G, F) and be C U {00} we define the sequences,

JI(G,F)

o

= A~ =dim<; k> (3.30)

4(G,F) a {7:t?S =0, <=dimJV*; fc>1} (3.31)

Jb(G.F), J\(G.F) will be referred to as the right b-(G,F), left 6-(G, F)-sequence of the pair
(G, F). A sequence Jf(G, F), J\(G, F) will be called neutral, if its elements are zero for all £ :

k= 1,24

Theorem 12 The differences 77"+ —v/k provide the following information about the e.d. struc-
ture of sSF —G ats = b :

1 )\ is the number of ed. ats = b.

2. The smallest index k for which yk+i —vk — 0 gives the maximal of the degrees of e.d. at
s=b

3. The difference vk+i —rk defines the number of e.d. with degrees higher than k. i

Definition 16 The set of the firstnon-zero successive differences in Jf (G, F)is defined as the
Weyr characteristic of (G, F) at b and it is denoted by HV Clearly is givenby :

W, = {rl=T"—10, t2=T2- T, .., rk=vk- rk "}

Proposition 10 Let W = {G, F} GTFfm. Then,
L Fj >ritl forallj = l,..,k andrj+i =0for allj =k k + 1,...

2. The strict inequality Tj > Fj+] holds true if and only ifj — qt, where qi is the degree of
a ed. The multiplicity of the e.d. is then defined by —1 ?iH. o
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3.5 Structure at Infinity of M atrix Pencils [Var. & Kar., 1],[Eli.

& Kar., 1]

3.5.1 Regular Pencils

Let W(s) =sF-G G{"(s), G € Rpxp, F 6 Rpxp, and let deg|VL(s)l =n > 0. It is known
that VL(s) is strictly equivalent to its Weierstrass normal form uniquely characterized
by the set of homogeneous elementary divisors 3.23 and consequently by the . . 0—o00—Segre

characteristic of the pair (F, G) ?7 :

Io O 0 HO O 0
Ww(s) 4 sFw 0 14 O - 0 Jg O (3.32)
0 0 Hoo 0 0 /oo

where :

l. Hoc £ R"p n)xiP n), defined by and nilpotent :

Hoc = block diag {H" ,..., } (3.33)

0 10 0

0 0 1 0
€r WXw, i€ Uoo (3.34)

0 0 0 . 1

00 0 . . 0
Uc = rank defect of F = p —rank/7> 0 (3.35)

2. Hgq defined by Vo and nilpotent :

Ho = block diag {Hai,..., HaQ} (3.36)
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0 0 1 0

Hai = e r X, ¢Gi/o (3.37)
0 00 1
0 00 0

3. Ja defined by Vg, in Jordan form :

Ja = block diag {J(aa),J (a m)} (3.38)

where a* € <W(F, G) —{0}, z=1,...,ra (3.39)

and if the ai—Segre characteristic of the pair (F, G) is :

PajF, G)= {rWa > .. >rn >0}, z€ m

then also it is :

Jj (o) = block diag {Jn

1 0 0
0 zZ 1 0

Jij — € MTj y (3.40)
0 0 O 1

The infinite elementary divisors (i.e.d.) of W(s) are given by,

wr~ ). UMoo (3.41)
where i, i € z'0 are the sizes of the blocks z G 2o
Let now that,
oo —rlinnU® do g1 1] (3.42)

; cio s 5% ;
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is the McMillan form of VTI(s) at s = oo where > ... > gL > 0 are the orders of its
infinite poles and gx > g~ 1> .. > g” 1> 0 are the orders of its infinite zeros. Then we have

the following.

Proposition 11 The McMillan form at s = oo, of a regular pencil W(s) = sF —G € £pp(s),

is given by 3.42 where,

1. The number j of'its poles at s = oo is given by j = rankF, and their orders satisfy

<4, = 1 *€j-
2. The degrees pi of its i.e.d. s w(pi > 0), i € oo — P —rankF, satisfy pi =
g™+ 1, i € l'oo. where g are the orders of the zeros at s = 00 of W(s). i

3.5.2 Singular Pencils

Let M/(s) = sF —G £ £fm(s) and let VLfc(s) = sF* —G¥ be its Kronecker form. Then:

Wric(s) = block diag{0/i.9, Le{s), L ¢s), sF —G} (3.43)

where s FF —G is a regular pencil in its Weierstrass form,

Le(s) = block diag{L£st+1(s), ...,1£i(s)} (3.44)
s 1 0 0
0 s 0 0
(3.45)
0 0 1 0
00 s 1
Lr)(s) = block diag{LVatl(s),L"s)} (3.46)
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1 s 00
(3.47)
0 0.1s
0 0.01
and = .. =¢eg= 0 < egtj < .. < e are the column minimal indexes (c.m.i.) and
M= ..=rh=0<T7Ml < .. <yt are the row minimal indices (r.m.i.). Then we have:

Proposition 12 For a singular pencil 1T(s) = sF —G ¢ Cpm(s):

L the number j of its poles at s = 00 is given by j = ne + mj + yw — rankF. where

ne = YI&i- nr) — vw= rankT and their orders satisfy = 1,i Gj,

* the number k of its i.e.d.§ {pi > 0),z ¢ k, is given by k =rank"(sF —
G)—rank™F and

* we have /h = <"+ 1, i 6 k,where ¢~ are the orders ofits zeros at s —00. and

2. The McMillan form at s = 00. of 1'T(s) is :

w(s) ~ block diag{sinf+nil, S™+sp. Ot;} =

= block diag{slj,------ — 0t} (3.48)

3.6 Exterior Algebra-The Grassman Products [Mar. & Min.,
1

In this section we first introduce some useful notations and definitions on the sequences of
integer numbers and on the submatrices of a given matrix.
If T is a field or a ring. FPxm denotes the set of p x m matrices with elements from T.

For 1< k <n, let Qkn denote the totality of strictly increasing sequences of & integers chosen
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from L In general gk.» has Q) sequences in it. If a, b G Qk,n, then a precedes b (written

a < p), if there exists an integer ¢, (1 < ¢ < k) for which a] = b |, at-\ = 6 _i, at < 6t.
Suppose d. = (ajj) G ;-».n.» andr are positive integers satisfying 1 < £<m, 1<r <n

and a = (¢1,/2, Gokm, b— eee>) G Qr,n- Then the matrix B € Jr¥xr ;8 capej

the submatrix of yl lying in rows @ and columns b and may be designated by

We use the notation 4% to designate the submatrix of 4 whose rows are precisely those com-
plementary to a and whose columns are designated by A Similarly J includes rows a and

excludes columns b, whereas 4 excludes rows a and columns A

Theorem 13 (Binet-Cauchy) Suppose A G, ..,; B G srpn and C = AB ¢ JInxm. .,

1 <7< min(n, m,p), ac Qrn, bc Qr.m, then

detiC*l}=C;=Y. det’} det 1} (3.49)

3.6.1 Compound Matrices

If4 6 Jrrmxn and 1 < 1t < min(m, n), then the r-th compound matrix of A is the x (")
matrix whose entries are det4°~, « ¢ Orm, ;3 G Qr.n arranged lexicographically in « and (3
and this matrix will be designated by & {4).

If .+ 6 jFiXd, B ¢ JIPxm* i < r < min(n,m,p), another way of writing down the Binet-
Cauchy theorem is:

& (AB) = 4{A<Lr(B)

If 4 ¢ 'Frxn and the r rows of 4 are denoted by in succession, (I <r» < n) then
£r(A) is an (”)-tuple and is sometimes called the Grassman product or skew symmetric product
of the vectors v/. The Grassman product of the columns of an 4 ¢ Jruxr matrix may
be defined in a similar manner; the product in this case however will be a column vector in

contrast to the row vector product obtained from the previous case. The usual notation for
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this (™)-tuple of subdeterminants of 4 is

Example 1 Let A and B be two matrices given by,

0-1,1 »1,2

»2,1  »2,2

1>24
b3,1
41

51

.oyfeor Vi ALLA;

»1,3

»2,3

>12
22
32
42

52

»1,4

»2,4

»1,5

»2,5

)

«l >
jun)

—

Then the previously defined Grossman vectors can be denoted by the bold letters,

i 02 012 12 12 12 12
a=aj Adf % A3 WG 3 M
_ pi.2 pi,3 pl;4 p2.3 p24 p3,4
b Ab2 1,2 w i2 o 1,2 no\,2 w12 w12
m
3.6.2 Multi-orthogonality [Kar., 3]
Lemma 2 (Kar., 3) Given the matrices C € jrmxn an(} ™ € jruxm we yorm matrices

r = CU B = VB, where UV — Im, as well the matrices Cp(T<p), Bp(Bp), obtained by
interchanging the p set of columns of C(T) and the p set of rows of B{B) in the same way.
Then the rank tests on CB, FB, CpBp, FtpBp are equivalent; this may be also expressed by

the following conditions :

cr(cpBp) = £1r(rpBp)

(3.50)

where 1 <r < m. D
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Let the non singular square matrices Q and R such that,
C*=QC. B*=BR

We consider the submatrices Ca)(CL), B a\B *a)) and their corresponding Grassman prod-
ucts, where a is the set of omitted columns and rows of C, B respectively. Then it is readily
seen that C** = QCay B*a)= B°"R and the determinant of the product of these two matrices
is now expressed as,

Ca)B*) = |Q Ca)Ba> 1%

Let the bold letters c,b denote the Grassman product of rows of C, columns of B and using

the notation previously introduced, the above expression may be written as,
(ca),b*a)) = 10\ (ca),ba)™ R

where by (.) is designated the inner product operator. The above condition implies that the
orthogonality properties of any pair of Grassman vectors (cay ba)) is invariant under any set of
non singular coordinate transformations or equivalently, the rank of CB does not change under

the Q. R transformations .

Theorem 14 Let the matrices C G jrmxn q g Jrnxrnand let their product CB be rank
deficient of deficiency d. Let a be a set of indices such that a € Q"n wherep < d. Then, in con-
nection with the Grassman products of different order cQ,bQ of the C,B matrices respectively,

we have the following conditions:

(c.b) =0
(cai); b“1") —0, O G3ln

(cafp bafc)) = 0, 1<k<d ak GQkn > (3.51)

(cad_1;b°d' 1)) = 0, ad-1 € Qd-In

(cadj.ba™) 0, for at least some ad G Qd.n
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O

From the above theorem is clear that if the rank defect of CB is d = 1, then the vectors
¢ and » become orthogonal, but such an orthogonality does not hold for every other pair of
Grassman subvectors ca),ba) a ¢ QOkn- As the rank defect of CB increases from d = 1 to
d = 2, then not only are c , v orthogonal, but any pair cai),bai”, a| ¢ Qi>nis orthogonal too.
The orthogonality property then extends to the class of caip bai) subvectors, but not for to any
higher class ¢c(X). b “€) with a* ¢ Qkn and k£ > 2. Generally speaking for every additional degree
of rank defect of CB. the orthogonality property of the Grassman vectors ¢ , b extends to a
new class of Grassman subvectors of ¢ and b. The number of classes of Grassman subvectors to
which the orthogonality property extends is called the multi-orthogonality degree of the vectors

¢ .b and it is equal to the rank deficiency of the product CB.

3.7 Continuous Time Linear Systems and Structural Properties

[Che., 1],[Rug., 1]

We assume that a plant is described by a continuous time linear state space model S(4, B.C, D):

X () Ax(t)+ Bu(?) (3.52

x(t) = Cy(t) + Du(t) (3.53

.Where 4 ¢ Rmxri. B ¢ Rnxl. C ¢ Rmxn. D Giem and u(t) is the / X 1 input vector, y(?) is the
m x 1 output vector and x(?) is the n x 1 state variable vector.

The solution of the equation 3.52 takes the following form in the time interval from #\ to 2

h
X(12) = ed ~"x(t1)+ N2  Bufr)dr (3.54)

3.7.1 Controllability

Definition 17 A system. S(A. B,C, D) is said to be controllable at time to if for any initial
state x0 in the space Mn and any state x] there exists a finite time t\ > to and an input

ufto-t-[] that will transfer the state x0 to x2 in time t\ —to- Otherwise the system is said to be
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uncontrollable. O

It can be shown that the system S(4,B, C D) described by the equations (3.52) and (3.53)

is controllable if one of the following equivalent condition are valid [Che., 1]:
* The rows of the matrix eAtB are linearly independent over the field of complex numbers.
* The rows of (si —A4)~}B are linearly independent over the field of complex numbers.
* The pencil [si —A4. B]has no e.d.

* The rows of controllability matrix Q £ Rnxni,

O=[B AB, A2B , A n~IB] (3.55)

are linearly independent.

If 6,i>2.....bt are the columns of B,

O=\b1,..,bl,AbL...,Abl,..., An- \ :..., An~Ibl]

The linear ri-invariant vector subspace of Rn consisting of all the states x{¢) that can be reached

from any initial state x(0 within a finite time.

77= span/B AB, A2B , riTt“1B]

is defined as the controllable space of the system. The dimension 7 of the controllable space is

r = dim7£ = rankQ

3.7.2 Observability

For the property of observability of a linear system £(.A, B, C, D) we have the following dual to

controllability definition :

Definition 18 A system S(A,B, C, D) is said to be observable at time to iffor any initial state

x 0 in the space Rn there exists afinite time t\ > to such that knowledge of the output y(t) over
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the interval [0, ;1] suffices to determine (to observe) the initial state x(0. Otherwise the system

is said to be unobservable. N

It can be shown [3],[1] that the system S{A4,B,C ID) described by the equations (3.52) and

(3.53) is observable if one of the following equivalent condition is valid:

* the columns of the matrix CeA(t~t°) are linearly independent over the field of complex

numbers.

the columns of C(s/ —A) 1 are linearly independent over the field of complex numbers.

si —A
The pencil has no e.d.
C

the columns of observability matrix M £ MmX7l, are linearly independent.

C

CA
M = (3.56)

cAqAr- !

If ci, C2-.... cm are the rows of C,

cl

dri"-1
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The linear "-invariant vector subspace of Rn consisting of all the states x(?) that cannot be
observed,

V' -- Aright

is defined as the unobservable space of the system. The dimension p of the unobservable space
is,

p = dimT* —n —rankM

3.8 Poles and Zeros of Continuous Time Linear Systems [Kar.,

2]|[Kar. & Mac., 1]

3.8.1 Definitions

Consider the system S(4,B,C, D), described in the time domain by:

() — Ax(t)+Bu(t), x(0) = xo

y(t) = Cx(t) + Du(t) (3.57)

Where 4 £ Rnxn,B £ Rnxl,C £ Rmxn,D £ Rmxl and u(?) is the / x 1 input vector, y(?) is
the m x 1 output vector, x(?) is the n x 1 state variable vector and xo is the vector of initial

conditions and let the same system S(4, B, C, D), described in the s domain by the equation:

si—A -B x(s)
(3.58)
-¢ D _vis) _
or by the transfer function matrix G(s) GRn¥<i(s) :
G(s) = C{sl- A)~'B + D (3.59)

In the case of a proper system it is D = 0.
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The pencil P(s) is defined as the Rosenbrock’s system matrix pencil :

4 4 -B I 0
si- 4 -B +s e R(n+m)x(m+)[s] (3.60)
e -D -C -D 00

According to the definitions of section 3.4 the system the system described by (3.60) is right
(left) regular if Mr (P(s)) = 0 (IV) (P(s)) = 0). A system is said to be regular if and m =/ and
detP(s) £0.

Let Q be n x n nonsingular constant matrix. If :

si-A -B ) si —A\ —B\
P(s) and .Pi(s) =
-C -D - Cl - A

are related by the transformation

Q-1 0 si—4 —B o 0 si-A, -Bi
0 Im -C -D 0 & -c, -A

then we shall say that P(s) and P1(s) are system similar.

Theorem 15 Two similar system pencils have the same order and give rise to the same transfer

function matrix.

it o = U = V 1is the matrix defined by the chains of eigenvectors of A of a system

S(A. B.C. D). then the Jordan canonical description Sj(J, B, V. A)is determined as follows:

T

n

J = U-"AU=VAU. B=U-'B = V(I eJada)B = VEB (3.61)
0

r = CU A=D (3.62)

Let €£(A) be the set of roots of the characteristic polynomial of 4, <EXA) = det [si —A] and uz

a eigenvector corresponding to the eigenvalue A mi
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Figure 3-1: Zero Input Problem
3.8.2 System Poles

Definition 19 4An s € C is apole of S(A, B, C, D) if and only if there exists an initial state xo
such that the zero-input (u(t) = 0) response at the output of the system is equal to y(t) = yoest

for some nonzero vector yQ
It can be proved that s is a pole of S if and only if is an eigenvalue of 4. O

» Zero Input Problem-Free Response: Find the system output y(t) under zero system input

(u(t) = 0) and xo vector of initial state conditions.

The solutions of state equations for u(?) = 0 are given as,

x(t) = edtxo = UeJtVxo =

- : . wikt) 71
% E <eA” Uik "m "-ik Tk hk + Hikt + ... + (i ? !

i !
1=1 k=1 (i D

y(t) = Cx(t), y = Cxo

where wy, ....and v ... ... (7 1.2, uf) are the sets of eigenvectors and dual eigen-

vectors chains associated with the distinct eigenvalue
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Figure 3-2: Forced Rectilinear Problem

» Forced rectilinear motion problem : Find xo and u(t) such that x(t) = xoeSot. Vi > 0, for

some so GC.
The solution to this problem is described below

Remark 8 Necessary and sufficient condition for the existence of a rectilinear motion eSotx 0.
satisfy condition (3.63).

u 0 ),

along x 0. is that u{t) is rectilinear uoesot,Vi > 0 and that ;.. .o

0/ - A:-B]  ° = (3.63)
Ho

uft) = UQes°, Vi > 0 (3.64)

In the case of a proper system the above conditions implies,

Ut) = Cx(t) = eSotCx0a e * X

I — 4 — B SO O
(3.65)

-C 0 Ho 50

O
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Figure 3-3: Zero Output Problem

3.8.3 Zeros-Output Zeroing

Definition 20 A4 zero of the dynamic system is a value of frequency s = so G C, such that if
the input is exponential of the type u(t) — then there exist an initial condition xo such

that the output is identically zero. |

There will, however, be rectilinear motion in the state-space, of the form xfz) = eSoix0, so

we have :
P X = (3.66)
w
The vectors x0 and {4 are termed as the zero directions in the state-space and input space
respectively.

A zero of the state-space model is thus a value of frequency s for which the above equation

has a non-trivia] solution.

Definition 21 A number so € C is a state-space zero or system invariant zero if

rankP(so) < rankP(s) = n + min(p,m), Vs GC
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Remark 9 Another equivalent derivation of the system invariant zeros can be from the Smith

form of P(s) as the roots offinite e.d. of P(s).

Definition 22 The set of zeros described by the Smith form ~c(s) as " e ro°ls offinite ed. of

G(s) are defined as the transmission zeros. i

In genera] the set of system invariant zeros is larger and always contains the set of trans-

mission zeros.

Theorem 16 [f a proper system S(A. B, C) is both controllable and observable then the set of

system invariant zeros and the set of transmission zeros are the same. O

3.8.4 Modal Controllability, Observability

For a proper system

G(s) = C(sl - A)~IB = 1(SJ - jy"B

and from the diagonal structure of J :

J = diag{J(A]), J(A2),.... J (Ai),..., J(A,)}

and
J(A) =diag{Jn 5e) Jik ) «s) Jit/
also it is.
' AA]) "B, '
B= yxiy B= B (67
Vixy)

r=cfu(xi),...u(\t),...,u(xf)\ rio..oT, (3.68)
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where :

Vi Bii
_vil A
I,=C Un um N = 0 o % . imy (3.70)
and
Bo= T p- g* (3.71)
_A - - -
I"Zk =C —lk\[_t/a) ool —[-kT llkl,llkl, ‘-l]Uka (372)
it is :
B’
¢ - T o T, .. T, diag{(sj—Ji) Bi
| £
/ /
= £ ri(” - =Y, Gi’ {Gi~ri(«/i- JiYI®)
I =l
where.

Gi = $2%ik(shk —Jik) 1Blk =y~ G
k=1 k=1
—Jife) ~137
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and where

s-li _(s_Aiy? (-lri-I(s-Ar

Tik 1! 7”‘Tik m
0 0 kT

s-Xi

Definition 23 The z-th spectrum controllability matrix Bf is the [ x i\ matrix formed by the

Vi rows of B3i corresponding to the last rows of the Jordan blocks associated with the eigenvalue

A

Bf = bpg (3.73)

Tik

Pl

Definition 24 The z-th spectrum, observability matrix Tt is the Vi x | matrix formed by the vt
rows ofTi corresponding to the first columns of the Jordan blocks associated with the eigenvalue
A

F

Civs ik\e vt (3.74)

Theorem 17 The mode (Aj, [/(A)), F(A]))) is controllable if and only if the rows of the z-th

spectrum controllability matrix Bf are linearly independent over the field of complex numbers.™

The above result implies that the subsystem associated with the Aj mode is controllable.

This also implies that all Aj eigenvalues may be change under feedback.

Theorem 18 If the mode (Aj, t/ (A)).V (A])) fori —1,2,...,/ is controllable, then the rows of

the pencil [s/ —A, B] are linearly independent over the field of complex numbers. o
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Remark 10 [If the mode (Aj, C/(A)), V(A))) is uncontrollable then it is,
rank [Aj/ —A, B] < rank [s/ —A, BJ]

and Aj is an input decoupling zero of S. o
Definition 25 The pencil (51 —A, jB| is defined as the input state pencil. O

Definition 26 The roots of the e.d. of the pencil 51 —A, B] are defined as the input decoupling

zeros (i.d.z.) of the system S. i

Theorem 19 The mode (Aj, [/(A)), V'(A))) is observable if and only if the columns of the i-th

spectrum observability matrix Tf are linearly independent over the field of complex numbers. O

The above result implies that all initial conditions associated with the space spanf7(Aj) may

be reconstructed.

Theorem 20 If the mode (Aj, [/(A)), V(A))) fori = 1,2,...,/ is observable, then the rows of
si - A
the pencil are linearly independent over the field of complex numbers. O
C

Remark 11 [f the mode (Aj, [/(A)), V(A))) is unobservable then

XJ-A4 si-A
rank < rank
C C
and A is an output decoupling zero of S. O
. o . . Si - A
Definition 27 The pencil is defined as the output state pencil. O
C
si- A
Definition 28 The roots of the e.d. of the pencil are defined as the output decou-
C
pling zeros (o0.d.z.) of the system S. O

Theorem 21 The mode (Aj, f/(Aj), V'(A))) is observable if and only if the columns of the -th

spectrum observability matrix Tf are linearly independent over the field of complex numbers. o
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Theorem 22 The set of controllable and observable eigenvalues of state space model define the

poles of S£(s). [m]

3.8.5 Kalman Decomposition

Let the controllable, the uncontrollable and the unobservable respectively subspaces of
Rn.
If Voo, veo, Veo, veo, are the controllable-unobservable, the controllable-observable, the uncontrollable

unobservable and the uncontrollable-observable respectively subspaces of R", then it is :

Rn = n On
n = nnAdi®vo=venvo
P = Vco © Vco

Jf = V@GO Voo

R" = VooIlVeo © Voo © Voo

The subspaces 7Z.J\f and Vc5 are A-invariant. Consider a base P of Rn:

P = [vco, Vco, Vco, Vco]

where vco, vco, 755, Vco are respectively bases of the subspaces Vca, Vco, Vo, Veo and the coordi-

nate transformation of the model S(4,B,C) 5 S(4,B,C):

A=P"P. B=P~IB, C=CP

Then.

L As [Mo, Vo] £ kerC, it is

C*= C [Vco, Vco, Vco, Veo] = O e (0R.0q¢)
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2. As (Pip-1

Ve
Vil

PP = [ACO) ACO! ACO, Aco] — Al
Yeb
VL

vh

VT Msv,0=o0

and as [M3 ya| defines a basis for the controllable subspace 77

B=0
vy
it is,
Bed
Beo
B = P~IB =
0
0
3. As,
A\ co Vcodco
AVeco — Vcodco + VGAi2
AVsd = VG}A \z + VeoA co
AVeo = Vegd 14 + Vcod24 + Vcod'S4 + Vcodco
it is :

From the above coordinate transformation of the Rosenbrock's system matrix pencil we
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have the Kalman decomposition of the system :

0 si-A -B P 0
P(s) =
o Im -C 0 0 h
-@ ﬁéi.]z -Aw ﬁ‘fu -B,
0 si Aw 0 _ A4 -B,
0 0 si  Ag5 234 0
0 0 0 si Ago 0
0 -Cg'o 0 -Ceo 0

Remark 12 From the above decomposition we conclude :

si —Ago —As3
1. Matrix defines the uncontrollable modes of the system and so

0 si  Aco
defines the set of e.d. of [s/ —A. B] or the set of i.d.z.

A 3
2 Matrix ' &0 defines the unobservable modes of the system and so dt-
0 si  Ago
si-A
fines the set of ed. of or the set of 0.d.z.
C

S. Matrix si —Ags defines the uncontrollable and unobservable modes of the system and so
defines the set of'i.o.d.z. o
3.8.6 Infinite Zeros

It is important to note that the definitions we have used apply only to poles and zeros at finite
points in the complex s plane, because the unimodular matrices used to get the Smith-McMillan

form destroy information about the behavior at s —00.

Definition 29 The infinite zeros are defined as the zeros of the Smith form at s = oo , 522, , of

the transfer function G(s). o
Theorem 23 Letr = rank”s"P(s), p= rankR"G (s)./d = rankD, then :
1L Ifk is the number of i.e.d. of P{s) it is k= p.
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2. The numbtr of linear i.e.d. of P (s) is equal to d

3. IfuPli Gk is the set of i.e.d. of P(s) then the Smith-McMillan form of G(s)at s = 00
is:

NG(s) = dia9¢-fIL\ffjf )  >®m-p,p-p} (3.75)

where / ;= ft-1,1€ k. o

Remark 13 If6 = é is the number of linear i.e.d. of P(s) then it is:

1 1

Sgo(s) dlag{l 9 1 ) S/1+1 5/6+2 2 N 5/6+* Jm -p.p -])/ (376)

O

The above characterization is that based on properties over the ring of proper rational

functions. Alternatively the structure at infinity may be defined as the structure at w = 0 of

G(t pfPuS & Rat-; !m

39 The Zero Polynomial of a Linear Square System [Kar., 3]

The zeros of a system are characteristic of the coupling between the energetic mechanism of
the system and its environment, where the coupling is represented by the input and output
operators B and C. It is shown that exist an expression for the invariant zero polynomial in
terms of the 4. B. C parameters of the system. The coefficients of the polynomial are functions
of the eigenvalues of 4 and the Grassman products of the matrices C and B. The investigation
is restricted to proper and square systems. The operator 4 is assumed to have a simple structure
although the results may be easily generalized to the case of a non-simple structure 4 but the
derived expressions for the zero polynomial are no more in a simple form. However as the zeros
of the system are invariant under state feedback, a simple method of avoiding a non simple
structure is to apply an arbitrary state feedback which can change the structure of 4 from
non-simple to a simple one.

The Rosenbrock's system matrix pencil (3.60) in the case of a square (m = /) and proper
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system is given by:

si- A -B
¢. Jgg(n+m)X(n+m) (377)
-C 0

In order to have a non-trivial solution in equation (3.66) then :
det P(s)= 0

where det P (s) is termed as the zero polynomial. It has been proved that the degree of the zero

polynomial.of such a system is n —m

L v ajs g (3.78)

2(5) — Gn _mS Tun m is™™ ™

The case an-m = 0 means that a finite zero moves to infinity (finite zeros are transformed to
zeros at infinity [Kar., 3]). A further reduction in the degree of z(s) implies the migration of

another zero to infinity and so on.

3.9.1 Calculation of Coefficients

Theorem 24 Given the square, proper linear system, S(4, B, C) strict equivalent to the Sj(J, B, T),
where J is in simple structure, Jordan canonical form of A, then the zero polynomial z(s) may

be expressed as,

z(S)y=7W m+

where the bold letters, 7T,/3 denote the Grassman products of the rows ofT, columns of B

respectively. If.

(3.79)
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then,

ml'=7] A7 AL A7" (3.80)

P=El AE2A- AEn

uk » Qk.an- ~i G pA, ("4)- Q

It is clear that the number of finite invariant zeros is given by the degree of the zero
polynomial. The location of the finite zeros depends on the values which the coefficients of z(s)

assume. The expressions for the coefficients of z(s) are :

Q-n—m 7t/3

(3.81)

a0

Thus for systems with CB full rank, the number of finite finite invariant zeros of the system is
equal to n —m.

If CB has rank defect 1. then the coefficient of sn~m becomes zero and the maximum number
of finite invariant zeros gets less than 1. Generally, when the rank defect of CB becomes d. the
inner products of the Grassman vectors ,W€ Opnp =0,1,d—1 become identically
zero due to the multi-orthogonality property (Theorem I4) of the vectors 7,/3; therefore, the
first d terms in z(s) become zero, irrespective of the eigenvalues of 4 and hence the maximum
number of finite invariant zeros is reduced from » —m to at least n —m —d. This is summarized

below :

3.9.2 Migration of Zeros to Infinity [Kar., 1], [Kar. & Kou., 1]
Theorem 25 Let the square, proper linear system S(A,B,C)and let CB have rank defect d.
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The maximum number of system invariant zeros isn — m —d. mi

In physical terms as 7 becomes orthogonal to (3 at least one finite zero migrates to infinity.
If the multi-orthogonality degree as this has been defined before, increases from 1 to 2, at least
one zero migrates to infinity and so on. Generally, as the multi-orthogonality of the vectors 7. f
gains d degrees, at least d zeros more vanish at infinity, thus reducing the maximum number of
finite zeros from n — m ton —m — d. The set of zeros which are lost at infinity because of the
multi-orthogonality of the vectors 7, f will be called class I of zeros at infinity .

A further loss of zeros at infinity may take place, if the coefficient of sn~m ~d term becomes
zero; however, such a further loss of zeros no longer depends on the properties of 7,/3 alone,
but involves the eigenvalues of the system, too; in such a case it is believed that some more
general forms of multi-orthogonality are involved which need further investigation. Finally, we
note that if the coefficients an _m, ..., a0 are all zero, then the zero polynomial is identically zero

and the system becomes degenerate.

Example 2 Consider the continuous system S(A, B ,C ):

-6.0 0 0 0] 0] 0 1
0O -20 30 -30 10 2 0
-70 -20 0]
0O 4.5 -20 -1.0 1.5 ,B= 0 -1 ,C=
3 -6 -3 -1 -2
0 1.5 1.0 -2.0 1.5 1 3 L J
0O -1.0 -30 -30 -2.0 2 0
with the following simple structure, Jordan form of A :
-6.0 0 0 0 0
0O -2.0-201 0 0 0
0 0 -2.0 + 2.01 0 0 VAU
0 0 0 —2.0 + 4.0i 0
0 0 0 0 -2.0-
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also we have

20?7 -1 - 31 -1+31 —1+ 31

24 + 81 -3+ 1 3+ 1 -1 - 31
s - -8 + 41 e 3 53 3-1 s 31

-8 - 41 -8 - 4 24 + 81 20z

24-81 24-81 -8 + 41 —8+ 41

-281 =281 -281 = '—‘@M

-1+ 3*

——3z

—3+ 1

201

24 + 81

-8 4

70 = o citli e

72) = W6l -6z it Ak g

73) = E)+®. 6l f o6 ]~ g~ gx

74) = o+ 245*l f-6z 1, o _Li -iray

S T A B T —1 —1+ 11

and the coefficient a2 of the zero polynomial is defined as,

(-6.0) = -204.0
(-2.0 - 2.0%) (11)82) = 202.0 + 149.01
(-2.0 + 2.0%) (1B 3) = 202.0 - 149.0z

(-2.0 +2.0%) (14)8 3))
(-2.0 - 4.0% ~()/35\ = .5+ 283. 51

*5- 283.51
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=">a2= - (-204.0 + 202.0 + 149.01 + 202.0 - 149.0* + .5- 283.5*+ .5+ 283. 5%) = -201.0

in order to define the coefficient a4 we have to calculate the column vectors,

-8-41 24 + 81 201 20%
/2) = 24-81 ,P13)= —8+4 [ PU)= —8+4 ,/3l6>= 24+ 81
28 -28% I J ‘ —~8 0
341 " 131 1 +3%
d3) = 31 T = B- me= 3+l = -3-1
28%* 24 - 8l 8.4 -8 + 4
-1 43% —1+31
B 0
24 + 81 20%
and correspondingly the row vectors,
712) = AR DAYE g 713) = 21 1 8* gl
T4 = % 1 8Z “2+ TS = iy 2.4 148
723 = f +6 f - 6% |* ] 724) = > o f-61 -i+ i
725) - f_ % ¥ 4+ 6% -1 + i* 784 = BT %) 61 -1 -
735y — f+z f +6% -1-i 745 = B Y1
so we have,
-108.0 + 636.0* AiA3 A7ITS = —108.0 —636.0*
7440 + 12.0* Al A5 (7IT5), = 744.0- 12.0*
-664.0 A2A4 (7214)/724)) = —708.0 + 416.0*
420.0 - 540.0* A3A4 A 134) = 420.0 + 540.0*
-708.0-416.0* A4A5/-'t . 220.0

Q = -108.0 + 636.0* - 108.0 - 636.0* + 744.0 + 12.0* + 744.0 - 12.0* - 664.0 - 708.0+

+416.0* + 420.0 - 540.0* + 420.0 + 540.0* - 708.0 - 416.01 - 220.0 = -188.0
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and finally for the calculation of ao

A123) = 28% £124) = 24 £125) = _g _ 4i) £134) = _ g + 4i> £135) = 24 +

2145 = 202, /2234)= -3 - 1, /3235>= -3 +1, 245 = -1 - 31, 2¥45) = -1 + 31

and
7' y T =~ LTI = -1+ i, V3= -1 - g1
L Pl Yo 3By 1 @R T IMS)= £ o+
we have
Ai A2A3 (P123)7 123> = -840.0 AlA2A4 (/7124)7 124)* = _ 384.0 _ 2112.02

Ai A2A5 (/31257 125)) = 420.0 - 540.0f  A2A3A4 (/?134)7 134)) = 420.0 + 540.0*
Ai A3AS (/5135)7135) = -384.0 + 2112.0f AiAaAs (/?145)7145)) = -900.0

A2A3A4 </7234)7234)> = 700.0 - 1660.01  A2A3As (p * *)”")) = 700.0 + 1660.0*
A2A4A5 (/2245)7 245~ = -340.0 + 1080.01 A3A4A6 [p ~) ")) = -340.0 - 1080.0*

ao -840.0 + 420.0 - 540.01 - 384.0 + 2112.01 + 700.0 - 1660.01 - 340.0 + 1080.0*+
+1080.01 - 384.0 - 2112.01 + 420.0 + 540.01 - 900.0 + 700.0 + 1660.0* - 340.0 - 1080.01) = 948.0

the zero polynomial is given as :

z(s) = -85.0s3- 201.0s2- 188.0s + 948.0

and the system invariant zeros are defined as,

21 = 1.4451, z2= -1.9049 + 2.0221!, z3=-1.9049 - 2.02211
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3.10 Conclusions

An extensive review of the fundamentals of relevant mathematics and systems theory has been
given, which provide the basis for the investigations undertaken in the following chapters. In
the subsequent Chapters we investigate the effect of sampling on the structural characteristics

of the discretised models.
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Chapter 4

SAMPLING THEORY AND
BASIC DYNAMICS OF
DISCRETISED MODELS

4.1 Introduction

State space description of the linear, time invariant, continuous systems S(4, B.C, D) and of
the corresponding discretised models S(4, B,C, D) provide the framework for the study of
basic structural properties such as controllability, observability, decoupling zeros etc. Moreover
Jordan canonical description of a linear, time invariant continuous system enables the use of
spectral criteria for study of the above properties. The Jordan canonical description is used as
a natural tool that demonstrates the structure of the internal dynamics and it is crucial in the
investigation of the mapping of structural properties from the continuous to the discrete model.

In this Chapter we introduce,

* The Jordan canonical description of discretised models equipped with ZOH, or FOH we
define the eigenbasis matrix U of the linear operator 4 = eAT and the relation between

U and U.

e The problem of mapping of the set of eigenvalues of the continuous model matrix 4 to

the set of the corresponding eigenvalues of the discretised matrix A.
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* The consequences of sampling on the eigenspaces, the Segre characteristic and the cyclicity

properties.

» The classification of the sampling period values between regular and irregular.
This chapter introduces the key problem studied here and provides some introductory result

on the properties of mapping between continuous and discrete model properties.

4.2 State Space Description of discretised Models [Che., 1],

[Fra., Pow. & Wor., 1], [Kar., 2]

We assume the general configuration of Fig 2-1. We consider the solution of the first state space

equation over one sample period 7, to obtain the difference equation :

kTR T
x{kT +T) = eATx(kT)+ l eAkT+T~"5 v (1 )els 4.1

kT

Here, we have to distinguish the two cases based on the implementation of hold device (H), one
with ZOH and one with FOH. Each one of these leads to a corresponding discretised model of

the physical system. Those two cases are considered next.

4.2.1 Case of a system with ZOH

With the assumption of a ZOH with no delay we have :
u(t)=u(kT) for kT < r <kT+ T

and if we change variables in the integral from r to a, i.e. a = kT + T —, , the difference

equation (4.1) becomes:

x(kT +T)  24ATx(kT) + “ edada 1 Bu(kT) 4.2)
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If we define as.
'T

A =eAT, J5=1J éMda )B 4.3)

we have:

x[(k + 1)T}= Ax{kT) + Bu{kT) (4.4)

Also sampling of equation (3.53) gives :
v(kT) = CxfikT) + Du(kT) 4.5)

Where:
C=C D=D (4.6)

The above analysis leads to the following result:

Proposition 13 The discretised model of the system 5(A, B ,C, D) in a configuration involving
a ZOH and for a sampling period T is defined by S(A, B, C. D), where the state parameters are
defined as above by equations (f-3) and (4-6). |

4.2.2 Case of a system with FOH

With the assumption of a H which is of the FOH type and assinning no delay we have,
r —kT
u(r) = ———— W(kT)—u(kT —T)) +u(kT), for kT < v <kT+ T

and if we change variables in the integral from t to @; ie. a = kT + T — . . the difference

equation (4.1) becomes:

x(kT + T) = eATx(kT)+ l (2-  edadaBufikT) - i l aeAadaBuikT - T)
0
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If we define as

1 [
A =eAT, E=J (2 —" edArdeB, Z —— j aeAdcrB 4-7)
we have
x(kT +T) = Ax(kT) + Eu(kT)+ ZufkT —T) 4.8)
Also sampling of equation (3.53) yields,
yv(kT) = Cx{kT) + Du(kT) 4.9
Where.
C=C D—D (4.10)

The above analysis leads to the following result:

Proposition 14 The discretised model of the system S(A, B, C, D) in a configuration involving
a FOB and for a sampling period T is defined by ;'(A, E,Z, C, D), where the state parameters
are defined as above by equations (4-7) and (f-10). i

From the above we can conclude that for any order of the H hold the state parameters of
the resulting discretised system remain functions of the sampling period T we select. In the
following we concentrate on study of the structural properties for the discretised models where

discretisation involves ZOH and FOH.

4.3 Structural Properties of Discretised Models

From the introductory analysis in the previous section it is clear that the parameters of a
discretised model are functions of the sampling period 7" we select. The investigation of the effect
of sampling on the structural properties of the resulting discretised model, such as controllability
and observability is the aim of this section. So we recall the definition of these two properties

from the theory of linear, time invariant, continuous systems.
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4.3.1 Controllability, Observability of Continuous Systems [Che., 1], [Rug.,

1], [Kar., 2]

Definition 30 A system S(A, B,C, D) is said to be controllable at time to if for any initial
state Xo in the space K" and any state Xj there exists a finite time t\ > to and an input
ufto-,t\] thnt wiH transfer the state x0 to Xj in time t\ —to. Otherwise the system is said to be

uncontrollable. O

It can be shown [Che., 1] that the system S(4, B,C, D) described by the equations (3.52)
and (3.53) is controllable if the rows of the matrix edtB are linearly independent over the field

of complex numbers. By using Laplace transforms we have that :

£{eMB} = (si - A)~IB

and this leads to an equivalent test.

Proposition 15 The system S(4,B.C, D) is controllable , if the rows of (si - A)~"B are

linearly independent over the field of complex numbers. o

For the property of observability of a linear system S(4, B. C. D) we have the following dual

to controllability definition :

Definition 31 A4 system 5(A, B. C, D) is said to be observable at time to iffor any initial state
x0 in the space JRa there exists afinite time t\ > to such that knowledge of the output y(t). over
the interval [(o, 1] suffices to determine the initial state Xq. Otherwise the system is said to be

unobservable. O

It can be shown [3],[1] that the system S(4,B,C,D) described by the equations (3.52) and
(3.53) is observable if the columns of the matrix CeA(£-i°) are linearly independent over the

field of complex numbers. This is equivalently expressed using Laplace transforms as

L{CeA™~tol} = C(sl - A) '

So we have the following proposition for observability (dual to Proposition 15) :
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Proposition 16 The system S(A,B,C,D) is observable , if the columns of C(sl —A) 1 are

linearly independent over the field of complex numbers. o

4.3.2 Controllability of Discretised Models

After the definition of these structural properties of the linear continuous system, we can proceed
defining controllability and observability of the discretised model of the linear system. In order
to define the controllability and observability matrices of such a model we have to distinguish
two cases of hold implementation, one with ZOH and one with FOH. For the definition of

controllability of the discretised model we have :

Definition 32 A discretised model S is said to be controllable if for any initial state x(0) = xj
and any state x> there exists afinite time nT > 0 and a sequence of inputs u(0), u(T), u(2T),
uf(m - )T] that will transfer the state x(0) = x:. to x(nT) = x2. Otherwise the system is

said to be uncontrollable. o
Case of system with ZOH [Kar., 2]
For the case of ZOH the controllability test becomes :

Proposition 17 A discretised model S(A,B, C, D) of a system with ZOH is controllable if and

only if
rank B. AB. A7B,.. , An~IB =n

Proof. (For convenience we drop T from the difference equations) :

x(fe-fl) = Ax{k) + éu(k)

yv(k) = Cx(k)+ Du(k)
for k=0,1,2 ,n we have :

x() = Ax(0) + Hu(0)

x(2) = Ax(l) + Eu(l) = A2x(0) + ABu(0O) + Eu(l)
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x(n) = Anx(o)+ An-"leu(o)+ An-2Eu(\) +..+Aéu(n-2)+éu(n-1)"
n-1
o x(n)=Anx(o)+ A n-1~iBu(i)<*

20
uin—1)
,\ n-1 3 . u{n _2)
<>x(n) —Anx(0) An 1 [Buf{i) =
i=0
«(0)

For any x(0) and any x(n) there exists a solution of the system of equations if and only if
rank[/B,AB, (A)2B, ..., = n. m|

An equivalent criterion is :

Proposition 18 The discretised model S{A.B,C, D) with ZOH is controllable if and only if

the rows of (zI —A)~IB are linearly independent over the field of complex numbers.

Proof. Consider the equality,
{zl - A)~16 = z~I[l- z~'AYIB
and the binomial expansion,
=1 +z~ld +z~242+ z~343 + ... (4.11)

then.

{zi - AyIE = z~xB + z~24FE + z~342 + ...

the n rows of the above matrix are linearly independent over the field of complex numbers, if

and only if
rank é,AE 4B, =n

From the Gayley-Hamilton theorem, we know that Am with m > n can be written as a linear

combination of /. 4,4 2,..., An_1. Hence the columns of AmB with m > n are linearly dependent
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on the columns of E, AE, A4 2é, An 1é6. Consequently.

rank B, AB. A:B, =rank B.AB, AZB,...,An~IB

and the rows of (z/ —A) [B are linearly independent over the field of complex numbers if and
only if :
rank B,AB,A:B,...,An~IB n

and the discretised system according to Proposition 17 is said to be controllable. mi

Definition 33 We define (zI —A4) IB as the discretised controllability matrix of a system with

ZOH. =

Case of a system with FOH

A similar analysis is now given for the case of FOH implementation

Proposition 19 A discretised model S(A, E, Z.C, D) of a system with FOH is said to be
controllable if and only if,

rank E, AE +Z, A2E + AZ,  An~IE +An-2Z =n

Proof. The difference equations for a discretised model with FOH, are :

x(fe+1) Ax(k) + Eufk) + Zu(k —1)

y(k)

Cxfk) + Dufik)

for A= 0,1,2, n correspondingly we have (u{—T) = 0):

x(1) = Ax(o)+ Eu(o)
x(2) = Ax(l) + Eu(l) + Zu(0) = A2x(0) + AEu(0) + Eu(l) + Zu(0)
x{n) = Anx{D) + An~1Eu(Q) + An—FEu(l) + .. T AEyfin —2) + Eufn —1)4
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AAn zZu(0) + An 6Zu{\) + ..+ AZufn —3) + Zu{n —2) &

n-1 n—2

<x(n) = i nx(0)+ A "EurA An-2~Zu{i)

&0 &0
n—2
«wo x(n) - Anx{0)=Y \An-I~lE A An~2~1Z |u(i) + Eu{n- 1)

Y

un —1)

. W aa A . P uin —2)

<>x(n) - Anx(Q) = E, AE +Z, A2F + AZ, .., An~lE A An~27Z
u(0)

For any x(0) and any x{n) there exists a solution for the system of equations if and only if.
rank E, AEAZ, A:EAAZ, .. An~IEAAn~2Z =n

and Proposition is proved.

Proposition 20 The discretised model with FOH is controllable if and only if the n rows of
(zl —A)~I1(zE A Z) are linearly independent over the field of complex numbers.

Proof. From the binomial expansions in (4.11) we have that

{zl - A)-\zE) = EA z~IAE A z~242E +
(zl -A)~iZ = z~1ZA z~247 + z~3427 A

= {zL - A)~\zE A Z) - E A z~L (AE + z) + 242 +if) + .

and from the Cayley-Hamilton theorem , as in Proposition 19, the rows of {zI —A)~x{zE A Z)

are linearly independent over the field of complex numbers if and only if
rank E, AEAZ, A>EAAZ, ..,

and the discretised system according to Proposition 19 is said to be controllable. m
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Definition 34 We define (z! 4 J(zE + Z) as the discretised controllability matrix of a

system, with FOH. a

4.3.3 Observability of Discretised Models

For the observability property of discretised models we have the following dual to controllability

definitions and propositions :

Definition 35 A discretised system is said to be observable at time to if for any initial state
Xo in the space M7lthere exists a finite time nT > to such that knowledge of the sequence of
outputs y(0). y(T). y(27), y[{n —1DT], as well as inputs u(0), u(T),...,uf(n —1)T] over
the interval [0. nT] suffices to determine the initial state Xq. Otherwise the system is said to

be unobservable. o
In the case of a system with ZOH or FOH we have the following tests:

Proposition 21 The discretised model 5(4, B ,C, D) of a system with ZOH or the discretised
model 5(4, E, Z.C, D)of a system with FOH. is observable if and only if :

C
CA
rank CA-> n

04"(4]

Proposition 22 The discretised model with ZOH or FOH is observable if and only if the n

columns of C(zl —4)“1 are linearly independent over the field of complex numbers. mi

Definition 36 We define C{zl —4) 1 as the discretised observability matrix of a system with
ZOH or FOH. O

Remark 14 From the above we conclude that for the controllability test of a discretised model

we have two different types of controllability matrices for ZOH and FOH respectively. This can
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be extended to models with higher than one order H holds i.e. to each order hold corresponds

a different type of controllability matrix. On the contrary, for the observability test, the same
type of observability matrix is valid for all the orders of DAC holds as both the state matrix A
and matrix C of the discretised model remain unaffected by the order of the H hold. o

4.4 Jordan form of the discretised matrix A

The matrix A of the discretised system, after the transformation of the continuous system

matrix 4 to Jordan form (3.17) and (3.18) becomes :

A = eAT = eUJTV = UeJTV = [/(block diag{e]J (A, ..., eJ(ADT, ...,eJ~ THV

where
’AK)T— dlag{e T eJikT

and from (3.20) we have that eJIkT is the upper triangular matrix block of the type :

XT T Tik~'lexiT
TE)Q‘T . (n*:_z)! (TIfC—l)'
0 PKT TUk~3exi7 TTK
(Tifc-3)! 0 ik-2)
eJikT = £ (CIc*Tik (4.12)
0 0 eAT TeXiT
0 0 0 eXiT

The characteristic polynomial of the above upper triangular type matrix is given by
det (zlik - eJikT) = - eA<t)

and so eXiT is the only distinct eigenvalue of matrix eJikT, with algebraic multiplicity r”.

Then, if we define,
A = oxir (413)
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we have :

0 Tex'T 2/°%1 TTk~exiT
(Tik~ 1)!
0 0 TeA,' T T Tik ~2e AT
(Tik~ 2)!
2JikT ~ \h k = (E (CTC* Tik
0 0 0 TeXT
0 0 0 0

Given that TeXiT ~ 0 for every value of the time period 7> 0, the rank of the above upper

triangular matrix is :

rank[t"*T N2 - T4 1

or the rank deficiency (geometric multiplicity of A;) of the matrix block eli,fr at A*is 1.
Thus we conclude that for every 77 > 0, the matrix block eJikT has only one distinct
eigenvalue Aj = eAtr and only one real eigenvector. If this eigenvector is uik, then a chain of

generalized eigenvectors is defined by the equations :
eJikT - AJ wik =0 & um = uik

eJikT - AJ s i+ WikT - A g —2

ik

:JikT_A7 —ikrik Uikrik -1 iJikT - Ail ! NikTik 2

and the matrix block eJikT can be transformed to a Jordan matrix Jik as shown below,

eJikT = UikJikVik (4.14)
where
AT 0 0
0 eXiT 0 0
Jik - £ (o WXTik (4.15)
0 0 eAT 1
0 0 0o kT
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and Uik is a r\k x rlk matrix defined by the eigenvector #ik and the corresponding chain of
generalized eigenvectors:

Ulk = _ (4.16)

Uik — Uikl Uik2! PPk Tik

so we have :

Proposition 23 For every value of the sampling period T, the matrix block eJikT given by
(4-1f) has only one distinct eigenvalue Xt = eXiT, of geometric multiplicity 1. Hence, a matrix
block eJikT can be transformed to a Jordan matrix Jik formed by only one Jordan block of

dimensions Tk x 1. O

We examine next the nature of the eigenchains of eJikT. By inspection of matrix eJikT —\ [

we conclude that the solution of the matrix equation,

JikT

-Xil Uiki —a

for every value of the sampling period T > 0 is the rik x 1 vector:

Then we determine the r/k x 1 vector u#ik2 from the equation:

. =-AiT
HIkT i Uikl — Uiki ~ Uik2 - ', 0,..,0
and also from the equations:
HikT e~\iT eNz\lT" AT
-XJ Uik — Uik2 & Uik3 — 0,...,0
i i i 2T b T2 b b b
-3A, T e-3AiT e-3AiT
HRT W Uiki —Uiks » Ui — 57 T 0,0y 0

It is thus clear that we can determine any number of generalized eigenvectors following the
above procedure. In general the generalized eigenvector uikj has its first, ( - 1)-th and j-th to

Tik-th. entries as follows:
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where by # denotes a nonzero entry. The generalized eigenvector uik™ +I" is defined by the

equation :
T Xd gy i o
—(j —De~iXiT e~jAT
1

2TI~1 > 18 '°°°

0 1) n 0’

We have thus proved that the x rik transformation matrix Uik of the matrix block eJikT, has

the following upper triangular form :

0 0 0 .0 0

e~\T e-1\T o XT

T o F e #
e-2AiT e-3XiT

R '

Uik = 0 0 T3 " " @11
e-(Ui-2 )\T
0 0 0 TTik~ 2TTH: ~2
e-fulfc-dvr
0 0 0 -0 Tk~

The matrix eJikT has only one set of generalized eigenvectors

the eigenvalue &, = eA.r, which form, the columns of the triangular matrix Ufk given by (4.17).0

From the previous analysis it follows that the diagonal matrix eJ(Xi*{ can be transformed

to the Jordan form matrix J(A¢) by the transformation :

eAXi)T = t/(A<)I(AD)V(AD)

where the transforming matrix is also an upper diagonal matrix:

U(Xi) = block diag{Un, ..., Uik, (4.18)
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and where J(A*) is a Jordan matrix formed by the Jordan blocks associated with the distinct
eigenvalue Aj :

J(Xi) = block diag{J j i, Jik J iVi

Then the diagonal matrix eJT, can also be transformed to the Jordan form matrix J, by the

transformation :
eJT = UJV
where :
U= blockdiag”™A ",t7 (A 1),U{A;)}
and where :

T={J(A 1),...J(A1),...J(A/)}

From the above we have :

A = edAT = eUJIV = UeJTV = UUJVV

and if we define as U= UU, v = V'V then:

A = UJV

So. we have proved that there exists a transformation matrix v which transforms the discretised

matrix 4 to a Jordan form matrix J. The transformation matrix v is :

u = UU = [UcAa) , U(xi),...ucxs)j block diag { /(A j).f/(A,),f/(A/)| =
[/(AiM A O, UX)UX), UXF)UXF)} =1:7a5), UA )y, ucxr)

where viyxi) = v(xi)u(xi), is a F; X n matrix as the product of multiplication, of the * x n
matrix f7(A,) and the 1 x n block diagonal matrix f/(Aj). Furthermore from (3.15) and (4.18)

we have :

U = wuxi)ucxi) =[Uu, Uik U ivijblock diag Uik, U iv.| =

100



— AUL\UL\,mm UiRUiR, m., UMU M F
and from (3.16) and (4.16) we have:

Uik = *ikUik = [iLikl) NkTik\ \}rik\"ik2-, mam™ikTIk\ =

[¢fc] 17 £C21 oee)

where uifd = wik is an eigenvector of 4 associated with the eigenvalue Ai and wikl, uik2

uikTik is a chain of generalized eigenvectors, satisfying the equations:
(wid ~ 0 M—XiDuikz iHki) ) M—\il)uiklik = wikTik"

From (4.17) and the above definition of matrix Uik we have:

rmikl — Uiku ikj — tkikl
e~x'T
Aik?2 Uiku ik2 = j-
e-2AiT g-2AtT
Aik3  — UikUik3 = 5, g2 1 p2 —ik3
e-3XiT e-3AiT e~3X'i_T
Aik4 = UikILiki — —ik2 rp2  —ik3 _]V_] —iki

and it is possible to determine any number of generalized eigenvectors following this proce-
dure. From the above and from the linear independence of the generalized eigenvectors we can

conclude that

span [fum ,uik2,...,uikKl) = span [fum ,uik2,...,uiKIJ

Every chain of the above generalized eigenvectors forms a basis for the invariant and cyclic
relative to 4 and 4 subspaces Vik and VIK So we conclude that Vik = VikmFrom the above we

have the following result :

Theorem 26 For every value of the sampling period T, the following properties hold true:
1. To every distinct eigenvalue Aj of A corresponds the eigenvalue At = eXiT of A.
2. A and A have the same eigenvectors.
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3. To every chain of generalized eigenvectors of A associated with the distinct eigenvalue
Aj, there corresponds a chain of the same length of generalized eigenvectors of A associated

with the not necessarily distinct eigenvalue Aj = eXiT.

f. Each A-invariant and cyclic relative to A subspace Nfc is also A-invariant and cyclic

relative to A.

5. To each Jordan block, of the Jordan form J of A, associated with the eigenvalue | z there
corresponds a Jordan block of the same dimension of the Jordan form matrix J of A.

associated with the eigenvalue

6. To every elementary divisor (s —Ai)Tik of A, there corresponds the elementary divisor

(z - Aj) 'k of A. O

Because the eigenvalues A].A2,...A” of 4 may be not distinct, for reasons referred to as
eigenvalue collapsing and which will be examined in the following Chapter 5, we cannot say
that for every value of the sampling period 7, to the generalized null-space Mij of A corresponds
a generalized null-space M# of the same dimension of 4, since merging for such spaces may
occur. For the same reason, the Segre characteristic and the index of cyclicity of 4 for every
value of the sampling period 7 cannot be defined for any value of sampling, but needs special
attention.

We return now to the previous relations in order to define the inverse transformation matrix
V(Aj). In fact,

ik
Nik2

- Frik
where VikTk is a dual eigenvector and vili , yjk2, ..., iJ&T j are dual generalized eigenvectors,

defined by the equations:

Ojkl(e W) —  Jk2’ &Jk2(e ' Np-0 — Ujk3® "> AikTiS eJIT —Q
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Also we have:

VikUik = [ee/c 1) yrik2) wdl 17ikTiR\  ITik

or :
=0forh"j

C/C*u = Shj where,
ghj = lfor h =j

From the above we conclude that :
Ci=1_[1,0,0] and wkTzk= [0,...)0, T T - le® - 1"
and thus in general

] 1 0-DAr Q--1)rieb - *
Cj =

Fi'om the above we conclude that matrix vik = (vik) 1has the following upper triangular form:

1 0 0 0 0 0
0o TeXiT TzezxiT # 4 4

0 0 J2g2AT 73 e2AiT . .

0 0 0 ji3 g3Afr . )

0 0 0 0 7"(Tifc-2)e (rii.-2)AtT (rifc-Z)T(ﬁii-zl)e(nfc-Z)Ai'r
0 0 0 0 0 TiTik-1)e{Tik-1)\iT

(4.19)

The matrix eJikT has only one set of generalized dual eigenvectors, associated with the

eigenvalue = eAT, which form the rows of the above triangular matrix Vik.
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4.5 Jordan equivalent equations of a discretised system
4.5.1 Case of a system with ZOH

Consider the system S(4,B,C,D), described in the time domain by the equations (3.52) and
(3.53). If U = V'~ is the matrix defined by the chains of eigenvectors of 4, the Jordan canonical
description of the system Sj(J, B, T, A) is given by the equations

o = Jz()+Bu(t) (4.20)
AN = Tz(t) + Au(t) 4.21)

where :

z(t) = Ux), J = U~XU = VAU, B=U~IB, T=CU, A —D

We have seen before that the state-space description of a discretised model S(4, B.C.D) ofa

system S(4, B,C. D), with ZOH and sampling period T, is given by the equations:

x[(k+ 1)T] = Ax(kT) + éu{kT)
yv(kT) = Cx{kT) + Du(kT)
where: = eAT, C=C D=0D

Defining a new basis for 4 as the eigenbasis matrix U, then the state space description becomes:

z[(k+1)T\ = Jz(kT) + Bu(kT) (4.22)
y{kT) = tz(kT) + Au(kT) (4.23)

where :
z(kT) = Ux{kT), J = U~141J = VAU (4.24)
B = i~lé = V(l eJada)B = VEB (4.25)
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E 4 feeder (4.26)
(o)

f = CU=CU=YU A=D=D 4.27)

Prom (3.16) we have :

E = block diag i l eJ(Xlada,..., l eJX)ad a , l eJ(x" ada

(o} (0)

where.

f t |
l eJiClHa = block diagj l eJroada, ..., l eJr¥ °d a ,] e Thiada 1
0 | 0 0 J

For the above integration we have to distinguish two cases, one for A, = 0 and one for At * 0.

The following results are readily established :

Lemma 3 Let «u . ... rlk, .., the dimensions of the Jordan blocks of J associated with the

eigenvalue X\ = 0, Then we have,

T T T
da, . elrikada, [ e
J
0 0
where,
T2 T3 TA 1k
r 2! 3! tu-!
T2 rn *-1
o T
T 2! (rifc-1)!

PrjO.T) e*°da =

T2
2!

Lemma 4 Lettu, rik, ..., TiVi be the dimensions of the Jordan blocks of J associated with the

105



non zero eigenvalue A}, then

/ \
l eJ™ cda = block diag i] elr*iud a , ] e""drc r,] eJlviada 1
0 lo 0 0 J

where :
1

Pra(\,T)aJ eJ> 'da= (eW _,0 (JB !

m
Prom the above two Lemmas 3 and 4 the following Proposition is directly concluded
Proposition 25 With the notation previously introduced we have that
E = block diag {P! f Pu Pf}

where :

P, = block diag {PTn(0,7 ), PTf(0, 7 ) , PTi (0, T)}

Pt - block diag|pTil(Ai,r))...,PTRKAi,r))...,Prii/.(Ai,r) | (= 2,...,f)

m

Prom the above two Lemmas 3 and 4 and Proposition 25 the following Theorem is directly

concluded :

Theorem 27 For every value of the sampling period T > 0, the matrix E is a block diagonal

with the same structure of diagonal blocks as the J matrix. In particular:

1. For Aj = 0 the elements of the main diagonal are equal to T.
2. For\i ™ 0 the elements of the main diagonal are equal to feXiT —1)AT1.

3. E is a non singular matrix. O
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4.5.2 Case of a system with FOH

We have seen in the previous section that the state-space description of a discretised model of

a system S(4,B,C D), with FOH and sampling period T is given by the equations :

x(kT +T) Ax(kT) + Eu(kT) + Zu(kT —T)

yv(kT) = Cx(kT) + Du(kT)

where

A = eAT, E # Q2 - “eAadaB, Z= l aedadaB, C=C, D =D
0 0

Defining a new basis for 4 as the eigenbasis matrix U, introduced by (3.43), the state space

description becomes :

z[(k + DT] Jz(kT) + £u(kT) + Zu (kT - T) (4.28)
y(kT) Tz(kT) + Au(kT) (4.29)
where z(kT)= Ux(kT), J = U IAU = VAU
£ = U-~IE = Vl [2 - ed°daB (4.30)
0
T
z = U-1Z=-V+ [ aedadaB (4.31)
L o
f = cﬁ=c12=li A=D=D (4.32)
H T
eJada, EL z f vedada (4.33)
0 %o
£=V(:E-E)B, Z = VEB
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Analytical expressions for - have been derived in the previous section for the ZOH. So we

have the corresponding expressions for S :

For the integration of £, as for the integration of r. in the previous paragraph, we have to

distinguish two cases, one for At = 0 and one for Xt ~ 0 .The following results are readily

established :

Lemma 5 Let be the dimensions of the Jordan blocks of J associated with

the eigenvalue A] = 0, then we have :
I oeJ"°do = block diag{Qrn(0,T),...,gTf(0,r),...1QTIn (0,T)}

r2 T3 J(TU + 1)
2 113

T2
2 (ti*—2)!rlfc

Lemma 6 Let Tu, T ik, r iV the dimensions of the Jordan blocks of J associated with the

eigenvalue Aj 0, then
l aeJ” )oda = block diag {QTi(A*, T ), QTik(\uT),..., OTiv.(A;, T)|
0

Orlk{\; T) + {eJ*T (Jlk - IT + ITik) (Jik)~2
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Prom the above two Lemmas 5 and 6 we have :

Proposition 26 With the notation previously introduced we have :

£= ~ block diag {Qi, Qj)

where :
Qi = block {Otu (0. Ty-, Orik(0, T ) , QT}i(0,7)}

Oz= block di&g{OTil(K,T), ...,0Tik(\i,T), ...,QGU(\i,T)} , (i =2

From the above two Lemmas 5 and 6 and Proposition 26 we have :

Theorem 28 For every value of the sampling period T > 0, matrix E is block diagonal matrix

with the same structure as the structure of the diagonal matrix J. In particular :

1. For Xi = 0 the elements of the main diagonal are equal to

2. For Xi ™ 0 the elements of the main diagonal are equal to (eAT (A* —1)+ 1) A“2.

3. E is a non singular matrix. . O
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4.6 Eigenvalue Collapsing

4.6.1 Introduction

From the derivation of the discretised parameters it is evident that for any A*= o +ju G<FA),
then A2= eXiT = euT+wT js an eigenvalue of A = eAT i.e. Al G4>(A). However, for two distinct
eigenvalues Aj ,A2 G4>(A) there may be values of 7T such that eXIT = eX2T = Ac G 4>(A). This
phenomenon, where distinct elements of <H.A) are mapped to one element of 4>A) is called
collapsing of eigenvalues and any value of T for which such phenomena occur will be referred
to as irregular sampling. All values of T for which any A},A2 G 4>(A),Ai ~ A2 is mapped to
Al 7 A2 will be regular sampling. The property of eigenvalue collapsing may occur not only on
a pair of (Ai, A2), but on a subset of 4>(A) : L{4) = {Ai G4>(A), Al * Ay}, such sets for which
there exists T such that At = ex?d’'= Xc G4)(4), for all At GE£(A), will be called collapsing sets
and depending on whether Ac GC or GR this collapsing will be called complex or real. Clearly,
this property depends on how we select 7, as well as the nature of the set. The presence of
collapsing sets in 4»(A), as well as the characterization of values of associated irregular sampling,
is of great importance in the development of model based theory for sampling, since it affects

the basic structure of 4, as well as related properties and it is subject of this section.

4.6.2 Collapsing Sets

As we have seen, for two complex eigenvalues Ai, A2 of 4 with different real parts cxi, a2 :
Al = <] Hju>i, A2 = 2+ jui2 correspond the two eigenvalues of 4 : A] = eXIT = ecn7V u;ir,
A2 = eAZT = eCIZI67a2T. Because A], A2 are distinct, independently of the values of v iI>, we

have:

Proposition 27 For any two distinct eigenvalues Ai, A2 of the continuous system with differ-
ent real parts (o\ ~ a2), there correspond for VI > 0 two distinct eigenvalues Aj, A2 of the

discretised model. O

Remark 15 IfA has all its eigenvalues real and distinct for VT > 0, then there is no collapsing

set. O
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Figure 4-1: Mapping of two eigenvalues with a\ ~ 02

Remark 16 If Aj, A2 G <€X(A), then a necessary condition for the existence of T such that
collapsing occurs is that Re(Ai) = Re(A2). O

Definition 37 Let I(A) = {A, GC, +juu i= 1,2...,/}, and let
K@) = {elpp~ 1,....//,ap G1}

be the set of distinct values of the real parts of$(4), andS8ap(4) = {VAj G$(>1) : Re(Aj) = ap}.
Then A(A) will be the real trace of $(A) and $ap(A) is its ap-root range. mi

It is evident that collapsing occurs for subsets of 4({A).This is defined below:

Theorem 29 Let X\ —r + , =1 +u>2 Gt (A) and Aj = e~rTeuJ' T, A2 = e~rTeju,2r,

then the following properties hold true :

1. For any Ai , A2 G4r(A), we have:

« Aj= X GC, ifand only if,
Ty RO2 -
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there exists T such that Al = A2 GR if and only if v2/uj\ is rational i.e.

2M - (4.35)
u>l Vv
Furthermore, if the latter condition is satisfied, then the corresponding T is :
A 2w —nlkr .
T =-T]--—-- , ke z+ 4.36
Y (339
2. IfA = r+jus, R—r—u>= Al, then X\ = A ;/and only if
1
T —— (4.37)

Furthermore, for all such T we have Aj = A2 = erT, ifk = 2,4.0,... and Aj —X> = —erT,
ifk= 13,5,..

3 IfA =1 +jux\ Al=r1r—u\, =r+jju», Xs =r—ju G3r(A) then for any T such
that A] = A then also Aj (= eAT) = A2 (= eAT). Furthermore, if T is selected as in
(4-37). then Aj = 2= A2= A2 GR.

Proof. :

L Ifwx > W2 > 0. then we have the following representation of Figure (4.2) below and:

» Also we have,

© 2k'KU-\ -ini 1 26c7Tu>o |\ . 2knujn

Aj = eAlT = erTe:” = erTe "2%7T+ J o7 T o Tazy=i2

. X2
A= eAT= errel"i "2 = A

e Letwj >Hd2> 0, v > /i .then

Zefu—N/2 v A—Aghts]

eAlT = erV = er = er7V 2dk = A2
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Figure 4-2: Collapsing of a pair of eigenvalues

2. For this case

A A erTejlir »

k=246, ..= ¢kn =1

k=246, . .~Pc"**=_-1]

and proof is completed.

The above result clearly establishes the existence of irregular sampling for complex and real

collapsing on simple subsets of a general 4v(yl) set. More specifically:

Corollary 1 Given any set of Ar(A). then the following properties hold true for simple subsets

ofA>r(A4) :

1. For the set = {r,r + ju>), there always exists T such that there is total real collaps-

ing to erT.

2. For the set <tA(A) = {ri ju>\,ri joJz), there is always a T such that we have complex

collapsing to ACACE C. Furthermore, if ™ is rational, there exists T such that we have

total real collapsing to erT.

3. For the set = {r,r £ jai\,r £ ju>2} there exists total real collapsing to erT for some

T if and only if ™ is rational.

For sets with more elements the problem of total complex, or real collapsing depends on the

structure of the set and this is established below:
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Remark 17 Let
$V(G4) = (AL A*=r Hju>ii= 1,2,...p, 0< ¥ < .. <up}
The following properties hold true :

1 If all the p> differences Wi —u>\ for the total number of the 2p eigenvalues of $r(yl)
are distinct then there exist p> corresponding sequences of T for which collapsing occurs

between two pairs of eigenvalues A Aj and A¥, A*,

2. There exists a T such that for all AXiwe have Aj = A= .. =Xp=Ac, Aj=Xz= .. =
* oF k A Ak
Xp* = Ac, Ac,Ac £ C, if and only if,

top — = .. —a2 —ai = 6> (4.38)
If the above holds true, then the appropriate sampling is
T —~Oru~! k£Z+ (4.39)
3. If the above condition holds true and for some 15

R, vzt (4.40)

then there exists T such that A= A* = erT for alli = 1,2,..., p. O
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Figure 4-3: Collapsing Example
Example 3 Consider a continuous system, with the root range at r = —5 which is defined as
4> 5(A) = {Aj = -5+ 12, A2= —5—121, A3 = -5 + 31, M= -5 - 3z}

According to Theorem 29 there exist the following differences and the corresponding se-

quences of irregular 7,

kr
lug —w2| = 24=>11i2=224, a1 |— 9=TIA - 15
hrx krr
B3| = 9=Tip =g, W wh-6=> r34- .

a) The values of the sequence T34 are included in Tp2 (for £ = 4,8,12...) and so for the

values of 7"i.2 the following collapsing occurs

Ti2 =7 a.l) fork=1,2,3,... Ai = A2 GR
al?) for k=4,812,... A =A2, 3= MGM
a.3) for k=8, 16,... Al=A2= A3=M4GM

115



the above are verified by the following table,

kK T2 A=A A3 ad
1 g -e-h" e“AT+ "ze-"T NePANT- Nze-"NT
2 g ze~1*' -ze-17
3 } -e~In
4 ’%F e~3n -e" ¥ —e- 37
s T 6 D S e - QT+
6 '51" e-§7T ze_zT
7 T —efr Ae Ith+ Arze-ffT
g T et e-f- e-T7
9O F o7 Ao fT+ -Aze-fT - &ie-&
10 567r e %ﬁ ie-¥- -ze-f7
W e nr —ire-ik+ —Ne-ftT- Aze'fiT
12 T 577 _e-577 _e-577
ERR — [T+ AzenftT
4 e oa -ze-f7 ze-fT
15 ]%721" —e'227;
6 4 2% e-f- e-f7
As M- = according to Theorem 29 for the values of the sequence Tjj4 the following
collapsing occurs
Tid= " b.l) k—1,2,3,... Al= A4, A2= A3 €<C,
b.Z)k = 5,10,15,... Aj = A2= A3 = A4 €R
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the above are verified by the following table,
k Tia N =

7 v/s-1 -
! 15 4 c ‘.;T ¥

s ‘{757 s gie-h

3 61757 4 tle-20+ A

IC s

4
bf)..ie-*x

4 %

5 I%t e-"
DF  VS-1G4TT  "2(5+V5) 4
6 15 4 C 4 Ic
ur
T 05 4 o 4
8 1?? 4 tie-» + vh(5M>1ie-f-
18 -1.-
g & VSI6TT, e *
10 201t (S 203 W
c) Finally for the values of the sequence =
7i3 — c.l)k—1,2,3,..

ci?) k= 3.6,9,...

the above are verified by the following table,

o 7; Ai= A3

W

- K + Sie-¥V 5

Cle-f7_ lie-f7773)

c§egegeyeyey
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A —As
V§ c'fj*' : \/2(54*"/(/8)16—fsir
4 + 72(54 >*)ie-i»
V5+1 .27 \/2(5" ) ic_2
4 4
4 1T e-!"'
e-T-

VS-1¢-4T . \]2(5+A ),C-4.

" e M,, + Vifcr3ic-M,,
_V !fca,e-f-
1p e \L(5HVS) gk
e 4 ie

4
e '227;

|), the following collapsing occurs,

Ai —A3, A2= A4 € C.

Al= A —A3=M€EK

a2= a4

10w
c 3~
40 i 4
\le 9 W 9
“le . 9 \/3
.0
c 3~



4.6.3 Structural Consequences of Eigenvalue Collapsing

The collapsing of eigenvalues has been examined so far for distinct eigenvalue sets. We examine
next the consequences of such phenomena on the Segre characteristics and the geometry of
eigenspaces of 4.

Let the characteristic polynomial of the continuous system matrix 4 £ Rnxn be :

<(s) = det(4 —si) = (s —A)TN (s —A)H2 . .(s —\/) nf

where Aj,A2,..., A/ are all the distinct eigenvalues of 4 and x|, T2, ...,7T/ be their corresponding
algebraic multiphcities, with ix\ + 72+ .. + «/ = n. For regular sampling , to each one of the
distinct eigenvalues A* of A there corresponds one distinct eigenvalue | of 4.

From Proposition 26 we know that for every value of T the eigenvectors of 4 associated
with the eigenvalue | as well as the corresponding eigenvectors chain lengths, are equal to the
eigenvectors and eigenvectors chain lengths of 4 associated with A;, So, under regular sampling

the algebraic multiplicity of A* is :

= rivi + ...+ Tfe+ ... + Til =

and the characteristic polynomial of 4 is :

@) = det(d —2z1) = (z —Aj)Hi(z —ADR2 . (z —X)TF

The generalized null-space Hi of 4 associated with the eigenvalue | may be written according
to Proposition 3 as a direct sum of the cyclic and 4-invariant subspaces VIfl, VIi2,..., V'7iu m Also
from Proposition 26 for every value of 7, the above subspaces are equal to the corresponding
cyclic and 4-invariant subspaces of the continuous system VTtl, VI2 ..., VII* associated with
Ai, the direct sum of which forms the generalized null-space H of 4 . So we conclude that
under regular sampling the generalized null-space H of 4, associated with A* is equal to the

generalized null-space H of 4, associated with A;, From the above we can readily conclude :

Theorem 30 For the values of the sampling period T for which no collapsing occurs between

the eigenvalues of A (i.e. under regular sampling), we have the properties:
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1. To each pair of distinct eigenvalue \i,Xj € "~(A) there corresponds one pair of distinct

eigenvalues Xi,Xj € 3*(A).

2. The generalized A-invariant null-space Mi of A associated with is also a generalized

A-invariant null-space of A, associated with A

3. The Segré characteristic of A at At is equal to the Segré characteristic of A at X

Pli()=Pix(£) = ({rm > wm>rik > .. >71u >0}

4 The index of cyclicity of A is equal to the index of cyclicity of A.

5. The minimal polynomial of A is given as:

#f(z) = (z-Xi) T (z- ADT22. . . (z-XfYDSf

where TiULT>v2, ..., TfY are the annihilation indices of A. i

Consider two complex eigenvalues of 4 , Xp and Xq with equal real parts, geometric multi-
plicities {p and 7lg and with Segré characteristic of 4 at Xp and Xg, (A), (4) respectively,

where:

PXp (4) {tBp > .. > Tpk > ... > Tpl > 0}

PXq(A)

(v, A A%k w9l > 0}

Let us now assume that for some value of the sampling period T collapsing occurs between
Xp and Xg to the value Ac (i.e. irregular sampling).

According to Theorem 26, for every value of the sampling period 7, to the pair of eigenvalues
Xp. Xg, there are associated p,vq eigenvectors of 4 (or chains of generalized eigenvectors, or
A-invariant and cyclic subspaces, or Jordan blocks, or elementary divisors). So, under irregular
sampling, to the collapsed eigenvalue Ac there correspond uc = yp + vq eigenvectors of 4 (or
chains of generalized eigenvectors, or A-invariant and cyclic subspaces, or Jordan blocks, or

elementary divisors). The generalized null-space Mc of A associated with Ac may be written
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according to Proposition 3 as a direct sum of the vc = vp + vg, A-invariant and cyclic subspaces
associated with the eigenvalues Ap and Xg (which are equal to the direct sum of the corresponding

~-invariant and cyclic subspaces associated with Ap and Ag), that is
K = {Vii ®\ER... Orjtjy O{VE OV O- ©v,,,} = A ®Ng
If we rearrange all the above subspaces according to increasing order, then we have :

K = Vci © V2 © ... © Veuc

where:

ve = vP+ vg, Veve= max (Vp,p, Vglg) , Vd = min (Vpi, V,1)

As Afcis formed as the direct sum of the generalized null-spaces Jifp, Jlig associated with the
eigenvalues Xp and Xg it follows that 7c = 7p + 7g. From the above we conclude the following

result.

Theorem 31 For the irregular values of the sampling period T for which a collapsing occurs

between the pair of eigenvalues (Ap, Xq) of A, then the following properties hold true.

1. To the pair of distinct eigenvalues Xp, Xq of A there corresponds one eigenvalue Xc of A.

2. To the generalized null-spaces Afp and Afq associated with Xp and Xq there corresponds the
generalized null-space J\fc associated with Xc, defined as the direct sum, Mc= J\jp ®Mgq.

3. The algebraic multiplicity of Xc is given as irc= Tp + Tg.
4- The Segre characteristic of A at Ac is defined as a union of Segre characteristics i.e.

pa () =pa (@)upa M =

= (pVp A . ™ Tk 4 * 4 Tpl AO} Ulrgvg A ... ATge > ... ATgl > O

= {1Gec > .. > rck > .. > Tel > 0}

Where ve = vp + uq, tcile = max (rplp, Tglg), rcl = min (rpl,rgi).
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5. If the minimal polynomial of A is :
\H(s) = (s - X"y~K.fs - XpY'p. . .S - XQIJi...s —Xf)Thf
then the minimal polynomial of A is :
@) =(z- AV ...(z - X)TVe . (z - XF)Tf

where the elementary divisor {z—Xc) Ttic corresponds to the elementary divisors (s—Ap)To/p
and (s —Xq)Tgi of A. mi

The above conclusions can readily be extended to the case of collapsing of a set of eigenvalues.

Theorem 32 For the irregular values of the sampling period T for which a collapsing occurs

between the subset of fi eigenvalues X\, X2, mXfi of A, the following properties hold:

1. To the set of distinct eigenvalues Xi,X2, ..Ap, of A corresponds one distinct eigenvalue Xc

of A.

2. To the set of generalized null-spaces M\, M-, ..., INIx associated with the eigenvalues Ai, A2,
A/i corresponds one generalized null-space Mc associated with Xc equal to the direct

sum

Mc=Ai©OA20©... OMfi
and the algebraic multiplicity of Xc is given as Trc= + ...+ T

3. If'the Segré characteristics of A at Aj, A2, ...A/i, are  (A), p\2(T), pAi(4), then the

Segré characteristics of A at Ac is:
Pxc (™) = PAL (4 UpA2#) U...UpNi(4) = {tdc> ... > rck > ... > rcl > 0}
Where :

ve=vi+v2+ ..+ I'/h tave = max (t” ,r2,2,% V p), Tel = min(rn ,T2i,
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4- If the minimal polynomial of A is :

T(s) = (s- AD"N...(s - A7 . . .(5- AO)Tif

then, the minimal polynomial of A is :

(2) = (z- A)T—. . .(z - A)Tut

where the elementary divisor (z —Ac)7— of A, corresponds to the elementary divisors

(s-A DT-:...(s-Ap)W of A. o

Prom the above Theorems we have :

Remark 18 1. If the space Rn is cyclic relative to A. for the regular values of the sampling

period T, then the space Rn is also cyclic relative to A.

2. For the irregular values of the sampling period T, the whole space Rn is not cyclic relative

to A.

3. For the irregular values of the sampling period T for which a collapsing occurs between
a pair of eigenvalues, the degree of the minimal polynomial '1'(z) is decreased by a num-
ber. This number is equal to the minimal of annihilation indices associated with the two

collapsing eigenvalues.

4- For the irregular values of the sampling period T for which a collapsing occurs between the
subset offl eigenvalues Ai, A2, ...A/i, with corresponding annihilation indices T\VI,t ~ , ...
the degree of the minimal polynomial 'P(z) is decreased by a number. This number is equal

to

+ T'lvi + eee+ T/zi>y Tcve

where t ¢ = max (r2VL,r2/2,..., ). ]
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Example 4 Let that the Segre characteristics of the eigenvalues of the set 4> 5(t4) in the Ex-

ample 3 be

PAj (4) = px2(4) = {6,3,1} and pha(d) = px4{4) = {3, 1}
and 'T'(s) = (s —Ai1)8(s —A2)8(s —M3)5(s —A4)5. Then for the irregular sampling we have,

a) forT =

Segre Characteristic and minimal polynomial
al)k =12,3,5,6,79,... p” (i) = pAA)Uph(4) = {6,6,3,3,1,1}
= A (2)= (z- AIR6Q2 - A3)3(z - Ad)3
a.2)k =4,8,12,.... (1) ={6,6,3,3,1,1}, p~ (i) = {3,3,1,1}
= PG) = (> - AitD)6{z - Asa)s
a. 3) k=28,16,24,... pAI2M (i) = {6,6,3,3,3,3, 1,1,1,1}

= Ao )= (z~ Aiz34)8

b) forT=

Segre Characteristic and minimal polynomial

b. Dk =1,2,3,4,6,7,8,9,11,... p~ (i) = (i) = {6,3,3,1,1}

="M(2)= (2 - Aig)6(z - A3)6
b.2)k =5,10,15,20,.... P¥i234 (¢) ={6,6,3,3,3,3,1,1,1,1}
="(2)= (2 - Aliagh)se

c) . forT="

Segre Characteristic and minimal polynomial
cl) k=1.2,4,5728,10,... ph3(i) =px2s(i) = {6,3,3,1, 1}
= S'(2) = (2 - Aii3)6(2 - Azig)6
¢.2) k= 5,10, 15,20,.... pAR¥M [4) = {6,6,3,3,3,3,1,1,1,1}

=" (2) = (2 —Al)23j4)6
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4.7 Conclusion

In this Chapter we have introduced the basics of the nature of the discretised models as func-
tions of the sampling period 7. The effect of sampling on properties such as eigenstructure,
Segre characteristics and minimal polynomial has been thoroughly investigated. The work here
provides the background for the work that will follow.

The consequences of collapsing in the structural properties of 4 has been examined and so
we have to investigate in the next Chapter the consequences in the basic characteristics of the

discretised model.
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Chapter 5

COLLAPSING OF EIGENVALUES
AND CONTROLLABILITY
OBSERVABILITY PROPERTIES

5.1 Introduction

The Jordan canonical description of a linear continuous time system, enables the testing of
controllability and observability of the system by the Spectral controllability and observability
matrices Bf and F f. Controllability and observability properties of a discretised model have
been defined in CHAPTER 4. The Jordan canonical description for the discretised models
which were introduced in CHAPTER 4, as well the investigation of the effect of collapsing of
eigenvalues and of the merging of Segré Characteristics, leads to the study in this CHAPTER

5 of the following issues:®

» The discrete Spectral controllability and observability matrices Bf and Tf for the discre-

tised model under regular sampling.

» The composite discrete Spectral controllability and observability matrices respectively

under irregular sampling.
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The results here provide a description of the effects of collapsing on the controllability,
observability properties of the discretised models and thus enhance oui understanding on the

selection of sampling based on system properties.

5.2 Structural Properties of a Linear Continuous System in Jor-

dan Form

5.2.1 Controllability

Some preliminary results on the spectral controllability Properties are considered first.

Proposition 28 The n-dimensional, linear ,time invariant system S(A, B,C, D) described by
the Jordan equivalent equations, is controllable if and only if for each i = 1,2, ..f, the rows of

the Bf matrix (defined in 3.73) are linearly independent over the field of complex numbers.
Remark 19 The linear independence of the rows of Bf are tested individually for each i.

Proof. [Kar., 1]If the continuous system is in Jordan form then according to Proposition 18 it
is controllable, if and only if the rows of matrix (si —A )~/ B, or the equivalent in Jordan form

(si —J) 1B are linearly independent over the field of complex numbers. That is:

(si - J) 1B = block diag {(sPk- Jik) 1Bik} ,i=1,2,../, k= 1,2,.. vt

i i 1
SV (A2 ¢ P33k
0 1 1
(sPk - J lk)-1Blk = s (u*-2)1(s-AO)Ti_I Pliz
1
0 0 3—Ai . ~*rik .
so there are Vi rows of matrix (si —J) 1B ofthe form
(s-Xj-'F ,(s- AJ-1» y e ($-X.y'pT
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Hence if the rows ;3T , /7T (i.e. the rows of the Bf) are linearly independent for
—11tU  ~ IZri2
i = 1.2.../ then all the rows of (si —J) IR are linearly independent over the field of complex

numbers and the system S(4, B,C, D) is controllable. mi

Proposition 29 If the rows of (sPk —Jik) 1Bik are to be linearly independent, then the row

B€ must be non zero.
- thHe
Proof. The first row of (s/\ —J*f) 1Blk has a factor of,

3k
(Tik~ 1) (s - A)E

, the second row has a factor of
—Krik
{Ttk ~2)1 (s —Aj)Ti_1

and so on. Hence ifﬁl;@ik is a non zero tow of B, then all the rows of (s/k —Jlk)~iBik are
linearly independent and the system S(4,B,C, D) can be controllable. |
From the above and from the Definition of the cyclicity index v of 4 it can be readily

concluded:

Proposition 30 Necessary condition for then-dimensional, continuous, linear, time invariant

system S(A,B,C, D), to be controllable is that v < [, where [ is the number of system inputs.0

Remark 20 Necessary condition for a single input system to be controllable is that, all the
eigenvalues are distinct, each have only one associated Jordan block (i.e. v = 1, the system
must be cyclic), and the rows of B corresponding to the last row of each Jordan block is non-

zero. O

5.2.2 Observability

For the observability property of a linear continuous time system S(4. B,C, D) described by
Jordan equivalent equations, we have the following dual statements which are to the controlla-

bility definitions and employ similar notation:
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Proposition 31 The n-dimensional, linear, time invariant system S(A,B,C,D) described by
the Jordan equivalent equations, is observable if and only if for each i = 1,2,../, the columns

of the ¥ matrix (defined in 3.1f) are linearly independent over the field of complex numbers. O
Remark 21 The linear independence of the columns of T[ is tested individually for each i. o

Remark 22 Ifthe columns ofTi*sl). —Jik)*1 ore to be linearly independent, then the column

J-y must be non zero. o
— 1

Proposition 32 Necessary condition for the n-dimensional, continuous, linear, time invariant

system S(A. B, C,D), to be observable is that v < m, where m is the number of system outputs.o

Remark 23 Necessary condition for a single output system to be observable is that, all the
eigenvalues are distinct, i.e. each have only one associated Jordan block (i.e. u = 1, the

system must be cyclic), and the rows of B corresponding to the first row of each Jordan block is

non-zero. O
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5.3 Controllability of a Discretised Model

In the Chapter 4 we have proved that the form of the controllability matrix of a discretised
model depends on the type of H used in the implementation of the control scheme. Thus we

have to examine the cases of ZOH and FOH separately.

5.3.1 Case of a system with ZOH

The discretised controllability matrix of a discretised model with ZOH (Proposition 18) de-

scribed by the Jordan equivalent equations (4.22 and 4.25) is given as,
(zl-1i) 1H- (zl - J)~IB = (zI - j)~IVEB

Hence if the rows of (z[ —J) IVEB are shown to be independent over the field of complex
numbers then the discretised model will be controllable.

The matrix VE is a block diagonal matrix with the same structure as J of the diagonal
block type and with each block of VE of an upper triangular form. If the rows of the spectral
controllability matrix of the continuous model (3.73) corresponding to the eigenvalue A] = 0,
are given as,

Ekiyy,
BI = &y G-

&
and those of the spectral controllability matrix of the continuous model corresponding to the

eigenvalue Aj * 0, are given as,

(5.2)
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thus, the last elements of the main diagonal of V'E corresponding to the last rows of the Jordan

blocks are :

l. for Ai = 0 : the last elements of the main diagonal of VE corresponding to the last rows

of the Jordan blocks are 7 x TTl'e~1= T Tlk and the corresponding rows of the discretised

model are,
T Tu/3T
11t11 701 0 0
o T2 0
rfrik., = Bf (5.3)
0 0 TT,1
~lvi€n .

2. for Aj » 0 : the last elements of the main diagonal of V- corresponding to the last rows of

#5T_]) 7o ATk 1
the Jordan HOCkS are eI ;1 and the corresponding rows of the discretised
model are.
(TeAT)TU-1
“AiT TeAr)Ti2 1 .
1) ( e I') g * T
(TeXiT)™ i - 17PIZ~r
(TeAiT)T -1 g
0 (TeAir)Ti2 1
(5.4)
0 0 v (TeXiT)TU 1

Definition 38 The z-th discrete Spectral controllability matrix B f, is the matrix formed by the

rows of B corresponding to the last rows of the Jordan blocks associated with the eigenvalue Aj.D

With the above introduced notation, we have the following propositions, similar to the

corresponding propositions of the continuous model.

Proposition 33 The discretised model S(A, E. C, D) of a linear, time invariant system with

ZOH is controllable if and only if for each ;= 1,2,...,/ the rows of the Bf matrix are linearly
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independent over the field of complex numbers. m]
Remark 24 The linear independence of the rows of Bf are tested individually for eachi. 0O

In order to determine the relation between the i-th discrete Spectral controllability matrix

Bf and the Spectral controllability matrix Bf we have to distinguish the two cases of sampling.
Regular Sampling
From the above analysis we conclude the following:

Proposition 34 Under regular sampling the i-th discrete Spectral controllability matrix B f, is

related to Bf as is shown below:

1. for Aj = 0 :
jm i o . o J'Tll o o
o  JITI2 0 o JTiZ 0
Bf - pcoysys, wheren (0) a
0 0 e TTI/1 0 0 .. TTIU
(5.5)
2. for A 0:
Til-1
X, 0
Ti2-1
X 0
Bf=~D (X t)Bf
T, ~1
where,
0
o 0
D{Xi) a (5.6)
0 0
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So, under regular sampling we have for the controllability of the discretised model the

following proposition:

Proposition 35 The discretised model S(A4, B ,C ,D) of a Linea, time invariant system with
ZOH, under regular sampling, 1is comtrollable, if and only ifthe corresponding continuous time
Linear system S(A, B, C, D) 1is controllable. O

Irregular Sampling

The effect of irregular sampling on the controllability properties is examined next.

Proposition 36 Under irregular sampling for which collapsing occurs of a subset of p eigen-
values Ai,A2, A/r € $7-(A) to the distinct eigenvalue Ac G & the c-th discrete Spectral
cotrollability matrix Bf , is related to the corresponding matrices Bf, B% Bps, as follons:

1. IfAj.A2,...Xp A 0 then:

N —_

Toge
0 o ‘ o= ‘
0 0
BS= (Ac- 1) 14 X2
o 0 S
where D(\\). «..D(\p) are defined as previously for Aj » 0 (5.6).
2. IfA] = 0,(A2. Xp " o0);
D(o0) 0 0 ﬁ |
0 Sre6l-~) .. 0

Aibp(\p)  Bps

where D (0) 1is defined as previously for Aj = 0 (5.5) and similarly D(X2),D(Xp) are
defined as previously for Aj A 0 (5.6).

Proof. From the definition 38 relations (5.3), (5.4) the above Proposition is directly concluded.o
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Definition 39 Under irregular sampling where a collapsing occurs between a subset of g eigen-
values Ai, A2, A /j, € (34) to the distinct eigenvalue Ac € , the c-th composite spectral
Controllability matrix Bf is defined as the matrix consisting of the rows of all the Spectral

controllability matrices corresponding to the eigenvalues Aj, A., Xp:

Bf
BS A

C

Bps

The relation between the c-th discrete Spectral controllability matrix Bf and the c-th composite

spectral controllability matrix Bf is defined as:

i IFAL A, XfivhO:

0
0
Bf = 1A, —1 2D (12) B:
2 IfA = 0,(A2,...,LA"0) ;
m 0 0
0 ~rD(X2) . 0
Bf = BS
0 0

The above leads to:

Proposition 37 The discretised model S(A, B,C, D) of a linear, time invariant controllable
system, with ZOH, under irregular sampling, for which collapsing occurs between a subset of

g eigenvalues Aj, A2 X p € <r (A) to the distinct eigenvalue Ac £ 1°1A], becomes uncon-

133



trollable, if and only if the uc rows of the c-th composite spectral controllability matrix B; are

linearly dependent, where, ve= M+ + e+ pp. o

Definition 40 We define as structural loss of controllability of the discretised model S(A4, B.

C, D) the case where vc > | (where | is the number of system inputs). o

Definition 41 We define as numerical loss of controllability of the discretised model S(A, B,
C, D) the case where vc < | and the rows of the c-th composite spectral controllability matrix

Bs are linearly dependent. o

It is clear that structural loss of controllability implies loss of controllability independent

from the numerical values of 4, B matrices. O

Remark 25 The discretised model S(A, B, C, D) of a linear, time invariant, single input, con-

trollable system, with ZOH, under any irregular sampling, becomes uncontrollable. |

5.3.2 Case of a system with FOH

The discretised controllability matrix of a discretised model with FOH (Proposition 20) de-

scribed by the Jordan equivalent equations (4.28) is given as,

(zl - A)-\zE +2Z) ~ (zl - J)-\z£ +Z) = (zl - Jy IV [zQ2E - E) + E] H

Hence if the rows of (z/ —J)~1V [z(2E —E) + E] B are shown to be independent over the field
of complex numbers then the discretised model will be controllable.

Matrix V [z (2E —E) + £], as in the case of systems with ZOH, is a block diagonal matrix
with the same structure as J of the diagonal block type and with each block of an upper
triangular form. If the rows of the spectral controllability matrix of the continuous model
corresponding to the eigenvalue Aj = 0, are given as in relation (5.1) and if the rows of the
spectral controllability matrix of the continuous model corresponding to the eigenvalue A, 4 0;
are given as in relation (5.2) the last elements of the main diagonal of V /z(2E —E) + E]

corresponding to the last rows of the Jordan blocks are :

Proposition 38 For every value of the sampling period T > 0, then the matrix V [z (2E —E) + E]

is block diagonal with the same structure of diagonal blocks as the J matrix. In particular: The
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last elements of the main diagonal of V [z (2~ —E) + E] corresponding to the last rows of the

Jordan blocks are:

1. for Al =0 :

2T - T21=Tﬂkz 2
+T

and the corresponding rows of the discretised model are,
z D(Q)Bf

where D (0) is defined as in the case of ZOH.

2. for A# 0 :

k-1 eXiT{l + 1)- 21j —1 e T(\i- )+ '
A? A?

TeAiT

and the corresponding rows of the discretised model are,

[EXT(N + 1) —2A2—1j z + eM AT —1) + 1
A?

where D(Xi) is also as defined in the case of ZOH.

Proof. From the definition of the diagonal block Vik of matrix V' (in 4.19), Theorem 27 on
the structure of matrix H, Theorem 28 on the structure of matrix E Proposition is directly
concluded. m
From the above we conclude that all the Definitions, Propositions and Remarks for the

controllability property of a discretised model with ZOH under regular or irregular sampling

previously exposed, can be directly applied to the case of a discretised model with FOH.
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5.4 Observability of a Discretised Model

In Chapter 4 we have also proved that the form of the observability matrix of a discretised
model is independent from the type of H used in the implementation of the control scheme.
Thus we do not have to examine the cases of ZOH and FOH separately

The form of the discretised observability matrix of a discretised model is independent of the
H implementing ZOH or FOH (Proposition 22) and it is described by the Jordan equivalent
equations (4.21) or (4.29) given below

C(zl - Ay -1~ f(zI - I)"1=TU{zI - j)-1

Hence if the columns of YU (zI —J)-1 are shown to be independent over the field of complex
numbers, then the discretised model is said to be observable.

As U is a block diagonal matrix with the same structure as J and as each block of U is an
upper triangular matrix, then the columns of the spectral observability matrix of the continuous
model corresponding to the eigenvalue Aare given as,

rf = g T T

and the first elements of the main diagonal of U corresponding to the first column of the Jordan
blocks are 1 the corresponding columns of the discretised model are the same to those of the

continuous system.

Definition 42 The i-th discrete Spectral observability matrix rf, is the matrix formed by
the columns of F corresponding to the first columns of the Jordan blocks associated with the

eigenvalue A o

With the above notation, we have the following propositions, which are similar to these

corresponding for the continuous model.

Proposition 39 The discretised model S(Af,B,C,D) of a linear, time invariant system with
ZOH or FOH is observable if and only if for eachi = 1,2,...,/ the columns of the Ff matrix

are linearly independent over the field of complex numbers. o
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Remark 26 The linear independence of the columns ofTf are tested individually for each i.0

In order to determine the relation between the i-¢4 discrete Spectral observability matrix

Tf and the Spectral observability matrix 7f we have to distinguish the two cases of sampling

5.4.1 Regular Sampling

For the case of regular sampling the above analysis leads to:

Proposition 40 Under regular sampling the i-th discrete Spectral observability matrix T f,

remains the same to T f. o
Thus for the regular sampling case we have the following results:

Proposition 41 The discretised model S(A, B,C, D) of a linear, time invariant system with
ZOH or FOH, under regular sampling, is observable, if and only if the corresponding linear
system S(A, B,C, D) is observable. o

5.4.2 Irregular Sampling

We examine now the case of irregular sampling.

Proposition 42 Under irregular sampling when collapsing occurs between a subset ofp eigen-
values A, A 2 ,Xp € hr (A) to the distinct eigenvalue Xc € 4>"A"J, the c-th discrete Spectral

observability matrix Tf is defined as the matrix:

p 7= rf, ]f Tpl

Definition 43 Under irregular sampling for which collapsing occurs for a subset of p eigen-
values Aj. A2,..., Ap € <5 (A) to the distinct eigenvalue Ac GS$ [Aj , the c-th composite spectral
observability matrix Tf is defined as the matrix consisting of the columns of all the Spectral

observability matrices corresponding to the eigenvalues Aj,A2,..., Ap:

K¢ rf, Tf,
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From the above we have:

Proposition 43 The discretised model S(A,B, C, D) corresponding to a linear, time invariant
observable system, with ZOH or FOH, under irregular sampling for which collapsing occurs for
a subset of p eigenvalues Aj, A2, X p 6 <k (A) to the distinct eigenvalue Ac € 4> , becomes
unobservable, if and only if the vc columns of the c-th composite spectral observability matrix

rf are linearly dependent, where, uc = v\ + u2+ .. + up. mi

Definition 44 We define as structural loss of observability ofthe discretised model S(A, B, C, D)

the case where uc > m (where m is the number of system outputs). ]

Definition 45 We define as numerical loss of observability of the discretised model S(4, B, C, D)
the case where uc < m and the columns of the c-th composite spectral observability matrix Tf

are linearly dependent. o

Remark 27 The discretised model S(A, B,C,D) of a linear, time invariant, single output,

observable system, with ZOH, under any irregular sampling, becomes unobservable. o
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Example 5 Let the spectrum controllability matrices for the eigenvalues Ai ,A2,A3,A4 of the set

$-5(*4) in Example 3 are (number of system inputs 1= 6):

2-4 0 0 0 1+i 3—4z
0 1+5 0 -1 +3 0 0
1- 3 0 -2-7*% 1+ 5z 0 —4z
2+4z 0 0 0 1— 3+ 4
0 1—5z 0 -1 -3 0 0
1+3i 0 —2+7z2 1-% 0 4z

0 1+5% 0 A+ 3 0 0

-2 + 3z 0 -1 0 3— 9+ 4z

0 1-5% 0 -1-3 0 0
2-3 0 -1 o 3+z 94

where rank!3f = 3, rank£f = 3, rankSf = 2, rankfif = 2 and the continuous system is said

to be modal controllable for Ai, A2, A3, A4. Then for the different cases of collapsing we have
a)

a.l) for k= 1,2,3,5,6,7,9,10,11,...

2—4z 0 0 0 1+i 34z
0 1+5 0 -1+3* 0 0
1-3* 0 227 14+ 52 0 —4z
, rank" 2= 6=
24+4z 0 0 0 1— 3+ 4z
0 1- 52 0 -1 -3* 0 0
143z 0 2+ 7z 1—52 0 4z

=>modeA controllable



b)

a.2) for k = 4,12,20,28,...

rankSf2= 6 = modeAit2 controllable

0 1+ 5z -1 +3f 0 0
R 0 ! 0 30 9w , rankSf4= 4
0 1- 5% -1 -3 0 0
—2 —3z 0 -1 0 3+z 9—4*
=> modeAa” controllable
a.3) for £ = 8,16, 24,...
2-4% 0 0 0 1+* 3-4%*
0 1+5 0 -1 43z 0 0
1—3z 0 -2-7* 1+5 0 —4%*
2+4 0 0 0 1-* 3+ 4
Si234 ’ o R , rankZ2234= 6
1+3 0 —2+7 1-5 0 4z
0 I1+5 0 ~1+32 0 0
—2+3 0 -1 0 3—i 9+ 4
0 1- 5 0 -1 -3*% 0 0
-2-3* 0 -1 0 3+i 9-4%*
=» modeAi”.3,4 uncontrollable (structural loss)
b.l) for fc= 1,2,3,4,6,7,8,9,11,...
2—4 0 0 0 1+*% 3-4%
0 1+5 0 -1 +3% 0 0
1—-3z 0 —2—7i 1+5% 0 —4i , ranki?
0 - 5 o 18 0 o0
-2-3*% 0 -1 0 3+ % 94z
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=> modeAit4 controllable

2+4 0 0 0 1—7 3+ 47
0 1- 5 0 -1 - 3 0
Bsy — 1+37 0 247 1- 50 47 rankZ?23 = 5
0 1+57 0 —1+ 37 0
-2+3i 0 -1 0 3—7 9+ 47

=>modeA2,3 controllable

b.2) for £ —5, 10, 15,... It is, rankZ3fj234 = 6 =i>modeAi,234 uncontrollable (structural

loss)
C) T= 2|zl,

cl) for k =1,2,4,57,8,...

24 0 0 0 1+ 2 8-

0 1+57 0 —+ 37 o 0

1- 3i 0 -2 —Ti 1+ 5i 0 ) , rankfif3= 4
0 1+5i 0 -1 +32 0 0

—2+ 31 o -1 0 3-2 9+47j

= modeAi” uncontrollable (numerical loss)

2+ 482 o 0 0 1- 2 3+47

0 1- 5 0 -1 -3 o 0

1+ 3 0 —2+ Ti 1—-57 o 47 , rankZ?f4 = 4
0 1-5 o -1 -3 o 0

-2 -3i o -1 0 3+2 947

=>modeA24 uncontrollable (numerical loss)

c.2) for k —3,6,9, .. It is rankf?"" 4= 6 =>modeA]i23,4 uncontrollable. O
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5.5 Conclusions

In this Chapter we have defined the effect of sampling on the controllability and observability
properties and we have determined spectral criteria for the above properties of discretised
models under regular and irregular sampling. In the next Chapter we define the effect of
sampling on the dimension of the controllable and unobservable space, under the use of irregular

sampling.
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Chapter 6

SPECTRAL
CHARACTERIZATION OF THE
CONTROLLABLE
(UNOBSERVABLE) SPACE AND
COLLAPSING PHENOMENA

6.1 Introduction

This chapter examines the role of the system parameters of the Jordan canonical description
in the determination of the dimension of the controllable (unobservable) subspace 77 [V) of
linear systems. A new test based on the properties of rows of matrix B and the set of i-th
spectrum row controllability indices (r.c.i.) ©”(A, B) is derived, using properties of cyclicity
and associated minimal polynomials. Also a relation is presented between the controllability
index of the system and the set of ©O*(A, B).

The above results provide an extension of the classical results on the spectral characteriza-
tion of controllability (observability) and enables the study of the corresponding characteristics

of the discretised model, under the different types of irregular sampling.
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6.2 Spectral Characterization of the Controllable Space

We explore here the properties of Jordan decomposition in determining the dimension of the
controllable subspace of a continuous system.
Under the partition (3.67) of the matrix B, the columns Pv§2,. ..,/ ? , are also parti-

tioned as follows,

T £l — e a, m A
#2 —22 "o e £2,
= Evrare - 6.1
A Ai —2 *m A me A*
. A —/2 ! L] He ﬁA .
where
—il—2  Ej'—Fu€ —
and

Bi= di ﬁi‘Z 40 A S(*=1)2,...) 6.2

Also, under the partition (3.69), each one of the vectors /‘7/ is also partitioned as :
—1J

Where
Plij £ Vik(j = 1,2,....,/), &=1,2, ..,
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6.2.1 The Minimal Polynomial and Spectral Controllability Properties

First we develop new criteria for determining the dimension of the controllable space based on
properties of the spectral form and the concept of minimal polynomial associated with invariant

spaces. We first state :

Theorem 33 1. The minimal polynomial of the vector [? G Vik is of the form (s —Al)SkJ.

where ekij < rik.

2. The minimal polynomial of the vector (3.. GMi is of the form (s —Ai)6ii, where,
67  max(<Sit-, $2ij S Skiji w>3viij) &aid Sij ~ ¢ %
Proof.

1. The minimal polynomial of the elementary subspace Vik ,is (s - Ai)Tik and the minimal
polynomial of the vector G Vik G = 1,2,...,t) is of the form (s - Aj)Ski, where
hiij is Tikm

2. The minimal polynomial of the generalized null-space Mi is (s —At)Til. The minimal
polynomial of the vector /2 GMi (i — 1,2 , /) is of the form (s - Ai)sn, where 6lo < tu.
Also the minimal polynomial of the vector (3.. is equal to the least common multiple of
the minimal polynomials of the constituent vectors 3 /3 .,....,/? ,.../? . ie. to the
least common multiple of (s - i) Sli, (s - A)S2AT ..., (s - A)ST ..., (s- A and so
My maxfijz. o) &kj) ) “uiijF D

Lemma 7 77ie degree 6kij of the minimal polynomial of the vector 3 GV,* =1 ,2 ,1) is

given by the order of its last non zero element.

Proof. According to the definition of the minimal polynomial of a vector, the Vectorfk._ is
ij

annihilated by the matrix,

ik ~ Ahkflid = (Hl)s ~ |

but not by the matrix,
(Jik - Ailik)6"

(Hik)6"
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where [lik, Hik <GCTik*Tik are correspondingly, the unit and nilpotent matrices of order rik. So
we have {HIk)S&>Pkij £ 0, and {Hik)6ki 1(3". = 0. Thus, if.

then from the above two relations we conclude xgkij+i = ... ~ x Ttk = 0 and xgkij ~ 0 and the

lemma is proved. m

Lemma 8 The degree Sy of the minimal polynomial of the vector (3§ € Ni (j = 1,2,...,1) is
given by the order, ofthe last non zero element, ofits constituent vector with minimal polynomial

of maximum degree. o

The controllability matrix Q G K"xni of a continuous system S(4,B,C, D), is defined
in (3.55). Under the transformation of the system S(4,B,C, D) to the Jordan equivalent

Sj(J, B, U A) the controllability matrix Q is also equivalent to the matrix Qj i.e.

0~0j =

Let matrix Qj be also partitioned according to (3.18) :

Qji
Qi >
0 —
then from (6.1) it follows that,
Qj,= Bx JXi)Bi (J(Xi))2Bl .. (J(Aj))n_1Bi (6.3)
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and from (6.2) we have,

All the column vectors of Qi span the A-invariant subspace IZ of the generalized .4-invariant
null-space Jift (I4 ¢ Let rt be the number of Hnearly independent column vectors of jS

defining a basis for the subspace 14 then
dim 77 = ri = rankQ” < dimA/)=m + ..+ rik+ ..+t riv.=Tj (6.4)

Theorem 34 The dimension r ofthe controllable space IZ is given by the sum of the dimensions

ri of the controllable subspaces 17,
r=1q+r2+ . +r,+ .. +trf

Proof. Let sn , 8ij, 5u be the degrees of the minimal polynomials corresponding to the

vectors ;3% and let ~ be the vector with the minimal polynomial (s —A;)Aj of
maximum degree. Then according to Theorem 1 we have, 8iff = max (81, 8", .., 8").
Since all the vectors of 74 are generated by chains of the vectors (3%, , and

the minimal polynomial of 77 is equal to the least common multiple of the basis vectors, the
minimal polynomial of 74 is also equal to (s —A,)" and 8" = s8i (i = 1,2,...,/). Then, the

minimal polynomial of 7Z is the product of the co-prime polynomials,

(s~ A)< S (s- X)Si..., (s - Xf)sf

and according to the Theorem 4 we have,

Z-=TZo~-0oHo. oft/ CIZ

where, r = r\ + ..+ 1ty+ ..+ 1/ <n and Theorem 34 is proved. o
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6.2.2 The set of i-t/ Spectrum Row Controllability Indices

By Theorem 34 it is concluded that the dimension » of the controllable space IZis defined from
the dimensions »/ of [Zt fori = 1,2....,/. Thus, in the following we concentrate on the definition
of the dimension rt of the controllable subspace 7% corresponding to only one eigenvalue A, or
equivalently, to the rank of matrix Qjt.

Since J(Aj) = A;7+ Hi where Hi is a nilpotent block diagonal matrix of the same block

structure as J(Aj), ie.

0 1 0 0
00 .. 00
Hi = diag {Hu,..., Hik, .... HiVi} , where, Hik = €R TikXTik (6.5)
0 0 0 1
0 0 0 0

then from (6.3) we have,

Using only column operations on the above matrix we have,

Qji ~ Qhz= Bi HiBi .. (//})" 1Bt (6.6)

Let now the rows matrix Brbe partitioned according to the Jordan structure, corresponding to

JpXi (4) as in (3.69) and (3.71). Then the matrix QOnt can be described as follows,

Oh%— Onlk
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where

ffi, we g - a
0
- a
Qhu
0 0
a
0 0 0
a
_ Til columns
_é'.
it A r ik
0
~ ikrik
thk
~Nrik~1 0 0
0 0 0
~ ikrik
Tik columns
3 coe o 28, o PJ
tuil
Pgﬁl (S; 3 .. PT 0
Ohiu
2/ e ! PJ 0 0
- ln_

TiUi columns

Searching for the linear independent rows on QHi from top to bottom, we have the following

remarks :
Remark 28 For the matrix Q//. we have the properties:

1 If the last row of is nonzero: ]UA OT then all the tz1 rows of the block ., are
~ 1

linearly independent.
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. If the £1 last rows of Bn are zero: /—S{ZTil = 0T, glETi\ “ = 0T, T = 0T and

PT “l 7" OT then all the first Tn —  rows of the block Qhu are linearly independent.

. [f'the last nonzero row ofB 2 : /3;£T>2 i 70T is linearly independent of the last nonzero row
ofBn : ¥ Qi then all the first —4£2 ..., of the block Qh o are linearly independent.

If the last nonzero row of $;2 : %”EQQ 7" 0T is linearly dependent on the last nonzero

row of Bn : /3] .., but the row vector consisting of the last two nonzero rows of Bii
T2 2 Py is linearly independent of the row vector formed by the two last
nonzero rows of Bn . . then all the first TR—2 —1 rows of the block

1-iiJ
Ohi; are linearly independent.

. If'the above row vector consisting of the last two nonzero rows ofB2; pT 3T
. 22492 - 17 2ri2 -12

5 linearly dependent on the above row vector formed by the last nonzero rows of Bn m
~, but the row vector consisting of the last three nonzero rows of Bt2
Mrtl -il1-1 —ileil-I1

A A -, is linearly independent of the row vector formed by
—*2ri2 -12 -2 *—i2rt2 2 —1’ ~*2¢i2-12

the last three nonzero rows of Bn ¢ p , then all the first

i 2ot -
Ti- —£2 —2 rows of the block Qha are linearly independent.

. If the last nonzero row of Bi3 : 1T 7" OT is linearly independent of the above last
~ 14~i2 -13
nonzero row of Bn and the possibly linear independent last nonzero row of $;2 then all

the first t (3—£3 rows of the block Qhis are linearly independent.

. Following the same procedure we determine the number of linearly independent rows from

top to bottom for each block of Q . m

Let gn-&iz>, m be the number denoting the orders of the above defined rows into each

one block of Qnx and let the blocks be rearranged from top to bottom in a way such that :

on > 0i2> ...> oiUi > 0

The above remark summarizes the conditions for characterization of controllability in spectral

form. This result can also be used to provide a characterization of i.d.z. as it will be shown

below.



Definition 46 The set of the above numbers is defined as the set of the z-th spectrum row

controllability indices (r.c.i.) of A, B :

O(A B)X = {On > Qii > = > (0l > 0} (6.7)

Prom the above the following propositions are directly concluded. i

Theorem 35 The dimension rj of the controllable subspace 1Zi is given as,

rn—m+ Q2+ .. + OV

Proof. From the construction of the set ® (4,B)\i (Remark 28) it is :

On + 0i2 + mmt oili = rank QHf

from (6.6) it is : r a n k = rankQ” and from (6.4) the Theorem is proved. ]

Proposition 44 The mode (\i,U (\i),V (\i)) of'the system S(A,B) is controllable, if and only
if the set 0(A,B)\i coincides with the set p\. ({4):

@{4,B)Xi = pXi (4)

Proof. According to Theorem 17 the mode (Aj, f/(Aj), P(Aj)) is controllable if and only if the
rows of the i-th spectrum controllability matrix Bf are linearly independent over the field of
complex numbers. From the definition of the set @ (4,B)\i we conclude that this is equivalent

to the statement of the Proposition. i

Corollary 2 The first of the z-th spectrum r.c.i. On is equal to the degree of the minimal

polynomial of the controllable subspace Tfi. |

Corollary 3 The minimal polynomial of the whole controllable space 1Z is given by

(S- 1iyer (§- A2)02 ... (S - AO®« s - As i (6.8)



and the degree d of the minimal polynomial of the whole controllable space 17 is given as,

d—6\i + 021 + e+ Qi\ + e 4-0/i (6.9)

Definition 47 We define as normal structure of Qh % the matrix Qnt for which all the nonzero
r.c.i. are determined by the orders of the two last nonzero rows of the row blocks. m
6.2.3 Spectral Restriction of the Controllability Index

Some further results related to the controllability index are given below,

Proposition 45 The degree d of the minimal polynomial of the whole controllable space 77 is
equal to the degree of the minimal polynomial of the subspace determined by the columns of

matrix B .

Proof. The minimal polynomial of the subspace determined by the columns of matrix B is the
least common multiple of the minimal polynomial of the basis vectors. As all the basis vectors
of 77 are derived from chains of the column vectors of B , (35 /3, (@ the common multiple of

their minimal polynomials coincides with the common multiple of the minimal polynomials of

We define the partial controllability matrix [Che., 1],
Qk= B,AB,...AkB k=0,12,

where matrix Q = Qn~i is the controllability matrix. Searching for the linear independent
columns of Qk from left to right, let »¢ be the number of linearly dependent columns in A4/B

for i — 1,2, ..k and ro be the number of linearly dependent columns of B. Then it is,
0<r0<n < ..<rk

and,

rankQo < rankQi < ... < rankQ"i = rankQp = ... —rankQ,, i
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Hence the property of controllability of S(4, B) can be checked from and fi is defined
as the controllability index of the system S(4,B).

It is clear that the following equivalence relations hold true,

on-1 ~ [BJB,..,J"IB] =

PV P2, e’ J Py I 74 (6.10)

and the linear independent columns of the above matrix define a basis for the controllable space

n.

Proposition 46 For the controllability index fi of the system S(A B) we have:
F< + 2l + >+ n+ +0ffi=d

Proof. As all the column vectors in (6.10) belong to chains generated by the column vectors
of B and given that the maximum possible chain length of linearly independent column vectors

is given by the degree of the minimal polynomial of "// then the result follows from (6.9). o
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Example 6 The sets of r.c.i. corresponding to the controllable continuous system eigenvalues

ALLA2.A3,A4 of the set 4> 5(A) in the Example 5 are given as follows:

1. mode Al : = pl1(4)= {6,3, 1}, the dimension of the controllable subspace 171
isrl=6+3+ 1= 10

2 mode A2:Q(A,B)\2 =p\2(4) =1{63,1},r2=6+3+ 1=10

3. mode A3:O(A, B) 13 (A) =1{3,2},r12=3+2=5
4- modead:O(A, B)xs = Pad(A) = {3,2} ,14=3+2=75

The dimension of the whole controllable space for the set 4> 5(A)is : d = 10+10+ 5+ 5= 30.

Spectral restriction of the corresponding controllability index :/1<6 + 6+ 3+ 3=18. O

Example 7 Let us now consider an uncontrollable system, of the same eigenstructure as that

of the above set $ 5(A) and of the following row blocks of B and corresponding r.c.i. :

1. For the mode Al we have:

-3 -k 5+4z 0 0 7 2i
-9 - 5§ 0 -6 0 0 2+ 3§
2+ 6i 0 0 -3+2i 95 -7+2
Bu =
0 -2 0 0 3i 0 On =4
0 0 0 0 0 0
Bi =
0 0 0 0 0 0
0 0 2-1 5+ 3z 0 0
B2 = 0 —3+ 3i 0 3 —2i 7i -Q*
Bls= 246 0 0 5-9i 0 0 013=1

0(A, B)x1—{4,3,1}, rl —4+3+1 —8
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2. For thée mode X2 we hdve:

340 54 0 0 7 29
945 0 -6 0 0 2-3i
2.6i 0 0 -3-2i -9+5 .7.2%
b= 0 2% 0 0 _3; 0
0 o 0 0 0 0
B, —
0 o 0 0 0 0
0 0 2+i -5-3* 0 0
2 = 0  -3-3i 0 3+2 —7% o
4420 0 0 —4+z 0
Bis= 246 00 5—9 0 0  ¢3=1

= (0("4,-S)a2 —{4,3.1} , 12 —4+ 3+1 —8
3. For the mode A3 we have:

( S—$ 3 0 0 -2+3i 0
£31 = 0 0 -1+*0 8 4
0 0 0 0 0 0

£3

Il
A

#2= o B 00 12 0 <0

=>©Ab)x3=(2,1,r3=2+1=3

4 For the mode A4 we hadve:

3+8 3 0 0 -2-3% 0
Bu = 0 0 -1-i0 -8 4
o 0 0 0 0 0
Biz= 0 8 0 0 -12¢ 0 < $0=1

=0, B)x4=(2, 1}, ra=2+1=3
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The dimension of the whole controllable space for the set <h 5(A) is r = r\ +1r2 +r3+r4 = 22,

The spectral restriction of the corresponding controllability index is 1 = 4+ 4+ 2+ 2=12. O

6.3 Spectral Characterization of the Unobservable Space

A similar analysis may now be applied for the study of unobservability. Under the partition

(3.68) of matrix T, the row vectors 7",7*, ...,7!, ...,7" are also partitioned as follows,
= T
11 In 2a2i  -m 2011 - >
. 1z % o« in 1/2
r= 6.11)
7T
1i i A - iJj - 11
L]—}n J Lgitm 7—2m » Iy 1/m
where 7j1):yl2 im£°i(i=h2,...,/) and
%1
T
t,= (z= 1,2,....7) (6.12)
Ta
L 46m

Also, under (3.19) each one of the A-invariant generahzed row null-spaces Oi is decomposed
to the A-invariant and cyclic row elementary subspaces corresponding to the Segre Character-
istic Pa,(A),

Oi = JCi © 0.©TkO .. ©TiVi

and under this decomposition, each one of the row vectors 7T. is partitioned as in (3.70) i.e.

F = Ly Ty 11 T
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Where €Tik (j = 1,2, (k- 1,2,..., U

6.3.1 The Minimal Polynomial and Unobservability Properties

The corresponding dual to controllability criteria for determining the dimension of the unob-
servable space based on properties of the spectral form and the concept of minimal polynomial

associated with invariant spaces, are given below:

Theorem 36 1. The minimal polynomial of the row vector qT £ Tik is of the form (s —
\ Y kij, where £kij < rik.

2. The minimal polynomial of the row vector jl £ Oi is of the form (s —A ; where
el =max(£iy, £24), s> FKifi w> Ej ~ Tjj.
Proof.

1. The minimal polynomial of the elementary subspace TIK , is (s —AL[) Tik and the minimal
polynomial of the row vector 7*. £ Tik j — 1,2, is of the form (s —A[kaj, where
Ekij —Tikm

2. The minimal polynomial of the generalized null-space Ol is (s —Aj)Til. The minimal
polynomial of the row vector % £ 00 (i = 1,2,..,/) isof the form (s —Awhere
£ij < th « Also the minimal polynomial of the row vector 7] is equal to the least common

multiple of the minimal polynomials of the constituent vectors 7*.,J ~ij '2kij’ == ij

i.e. to the least common multiple of
(s - AEST o - XiY23,..., (s - XiYkij, ...(5 - AY"j

and so £jj —1llax(£]q, £ £viij)e "

Lemma 9 The degree ekij of the minimal polynomial of the row vector 7~. £ Tik (j

1,2,...,m) is given by the order (measured from right to left) of its last non zero element. O

Lemma 10 The degree Elj ofthe minimal polynomial of the row vector 7T £ Oi (j = 1,2,..., m)
is given by the order (measured from right to left.) of the last non zero element, of'its constituent

vector with minimal polynomial of maximum degree. mi
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The observability matrix M E Rmnxn (¥ a continuous system S(4, B,C, D), is defined
in (3.56). Under the transformation of the system S(4,B,C,D) to the Jordan equivalent

Sj(J, B, F, A) the observability matrix M is also equivalent to the matrix Mj i.e.:

Tjn-i

Let the matrix Mj be also partitioned according to (3.18) as:

Mj= wmj, wmij2 .. Mj. .. Mj

Then from (6.11) follows that :

rv(A¥*)
Mj. = (6.13)

Ti(J(AD)™

and from (6.12) we have:

71
Tl

Ty /(A )"-1

As in the case of controllability, the linearly independent rows of Mji define a row vector

space Ot C CT with minimal polynomial (s —Aj)fie where is the degree of the minimal
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polynomial of the row vector with the minimal polynomial of maximum degree.
The right null-space of Mji determines the A-invariant subspace Vi of the generalized A-

invariant null-space Jifi (Vi C A/)). Then it is,
dim Vi —Vi —Ki ~ # — 'Ki~ rankMji < dim A/) = T]j (6-14)

Theorem 37 The dimension p of the unobservable space V is given by the sum of the dimen-

sions pi of the unobservable subspaces Vi, that is:
P=Pl +P>+ w +Pj + w +Pf

Proof. Let Q be the row vector space spanned by the row's of Mj. It can be proved, as for

the case controllability that
Q= Qi ©Q20-0Q/

and

g=<A+ qi+ =+ <

and from (6.14) the Proposition is proved. m

6.3.2 The set of i-th Spectrum Column Observability Indices

Following along similar lives as for the case of controllability it follows that the dimension p of
the unobservable space V is defined if the dimensions pi of Vi fori = 1,2,...,/ are also defined.
After that, the object of the following work is to define the dimension pi of the unobservable
subspace Vz corresponding to only one eigenvalue Ai or equivalently, to the rank ¢i of matrix

Mji. Note that,

ViaJ + Hi)

rt(A7+ Hijn~1
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eing only row operations on the sbove matrix, we have thel

I
I, i
My e My, & v GRS
T

and if the columos matnx T, s pactitioned as o (370 and (3.72) chen the matrin My, can

he deacribed as follows:

o oy 2 - . TR
2l il Lilr, Tewy,  ing Like,, ary —Elyg i,
0 =~ T 0 . Y 1 =, o B
414 =il 1 l‘k‘.‘-[ T —ELy) Lz, —1
a o .. 5 ] L
i1y ik 0 2 . Yeos
- = el o = -
-r':r-'ln el ¥ L '“HEJ. TR T TR [ oo R T

L

Searching for tae lincerly independent columns on Afy , from lefl lo night. we have the

[ollowing remarks

Hemark 20 For the My we Rove the Properties:

i 07 the first colamm of T w nonaers; Ta, # 0 then ofl the my coduwmms of fhe block My

ars fmcarly independent.

¥ £ - . — — = -
B If the &1 firsi colureny of Ty are zero. T, = K Tip, = Q. <., 1-&1._-, =0 mj’“-ﬁ.“

then all the remaining v,y — £ cofumng of the block My, are fnearly independsnt

2.0 the first nonzero column of Tz 0 ., # 0 18 bnearly independent of the nboie firaf
—Eﬂ(
3

norzern coherer af o e
Firg, 11

are irearly independend,

4. Jf the first nonzero column of Din '.-_.EE
L

ther off the remaining o — Ly coluroe of e Mook A5

% 0 45 Hnearly dependent on the atove firef

LT ErT Soliinn ::-}'J_'ﬂ : .r“d ] Eut the column pecfor consisking nf the ﬁf‘ﬂ?ﬁ Fote PLOTLEE
g

codumns of L'g - | . v 1, J . i Tinearly indeperdent of the mlumn vecfor, formed

=gz Ie;
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by the first two nonzero columns of Ttj lii 7 , then all the last r,2 —£2 —1

<1+1

columns of the block Mnix> are linearly independent.

HIf

5. If'the above column vector consisting of the first two nonzero columns o/Tj2 $

2 Mz,
is linearly dependent to the above column vector formed by the columns of Yu : il <1J
<1+1
but the column vector consisting of the three nonzero columns o/T" $ 22 L Tiy ,
242 teorr M-

is linearly independent from the column vector formed by the first three nonzero columns

of Tn , then all the last ~ —£2 ~ 2 columns of the block M h 2

-1<I4+2” »h]+!”
are linearly independent.

6. If the first nonzero column of Tj3 : 7_3<3 N0 (S linearly independent of the above first

- 1
nonzero column of Yu and the possibly linear independent first nonzero column 0/"2 then

all the last Ti3 —£3 columns of the block Mniz are linearly independent.

7. Following the same procedure we determine the number of linearly independent columns

from left to right into each one block of MHi- A

Let Cii)Ci2; ivi be the number of linearly independent columns into each one block of

MHi and let the blocks be rearranged from left to right such that :

Gl >@>- >CG&>0

The above remark summarizes the conditions for characterization of observabihty in spectral
form. This result can also be used to provide a characterization of o.d.z. as it will be shown

below. Then, we may define:

Definition 48 The set of the above numbers is defined as the set of the i-th spectrum column

observability indices (c.0.i.) ofA,C :
Z(A4, C)X = {Cil >G2> - > Ci* > 0} (6.16)

From the above the following propositions are directly concluded. |
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Theorem 38 The dimension pi of the unobservable subspace Vi is given as,

Pi—ni~ 9 —7»~ (Cil + Ci2 + e+ QiVi)

Proof. From the construction of the set Z(4,C)X (Remark 29) it is :

CGi + G2+ we+ CM— rankM/yt

from (6.15) it is : rankM#f —rankM ji and from (6.14) the Theorem is proved. o

Proposition 47 The mode (\,U(Ai),V(Ai)) of the system S(A,B) is observable, if and only
if the set Z(A,C)X coincide with the set pX (A) i.e.

7{4,C)x% = pXx (4

Proof. According to Theorem 19 the mode (Aj, f/(Aj), /(Aj)) is observable if and only if the
rows of the i-th spectrum observability matrix rf are linearly independent over the field of
complex numbers. From the definition of the set Z(4, C)X we conclude that this is equivalent

to the statement of the Proposition. o

Corollary 4 The first of the 7-th spectrum c.o.i. Cl is equal to the degree of the minimal

polynomial of the row subspace Qi- o

Corollary 5 The minimal polynomial of the whole row space Q is given as,
(s - AAT (s - A2)™ (s~ A)CI ... (s - AT @19

and the degree g of the minimal polynomial of the whole row space Q is given as,

9=Q+G + +A@+ +Qi (618

O

Definition 49 We define as normal structure of , the matrix M i for which all the nonzero
c.o.i. are determined by the orders of the two first nonzero columns of the row blocks. o
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6.3.3 Spectral Restriction of the Observability Index

Some further properties related to the observability index are given below:

Proposition 48 The degree g of the minimal polynomial of the whole row space Q is equal to

the degree of the minimal polynomial of the subspace determined by the rows of matrix C .

Proof. The minimal polynomial of the subspace spanned by the rows of matrix C is the least
common multiple of the minimal polynomial of the basis row vectors c{, c”,...,cJn  As all the
basis vectors of Q are derived from chains of the row vectors of C, the common multiple of
their minimal polynomials coincides with the common multiple of the minimal polynomials of
Gj. c2. the result follows. o

We define the following matrix [Che., 1]:

C
C4
Mk+  CA4. k=0,1,2,..

CAk

as the fc-th partial observability matrix and the matrix M = Mn-| is the observability matrix.
Searching for the linear independent rows of Mk from the top to the bottom, let r¢ be the
number of linearly dependent rows in CA+ for i = 1,2, ..k and ro be the number of linearly

dependent rows in C. Then, we have:

0<r0<n < ..<rk

and

rankMo < rankAfi < ... < rankA/f | = rankM£ = ... = rankM"-j

Hence the property of observability of ;"(A, C) can be checked from and f is defined
as the Observability index of the system S'(A, C).
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In fact

IT
Tn
r T(A1)
rj
Ofi- 1 (6.19)
rji-
ANA)E"

and the linear independent rows of the above matrix define a basis for the row space Q .

Proposition 49 For the observability index £ of the system C) we have the property:

s < CnTCi1+ ew+cCtit +cC/i=9

6.4 Spectral Properties of a discretised Model with ZOH

The state space description ofa discretised model 5(A, B, C, D) of a continuous system 5("4. B. C, D)
with ZOH and sampling period T is given by the equations (4.4) and (4.5) and the Jordan de-
scription of the same model is presented in section 4.5.1. Here we examine the effect of sampling

on the controllable subspace using the spectral properties defined earlier

6.4.1 Spectral Characterization of the discretised Controllable Space

Following the same procedure as for the continuous system, the controllable subspace 7Z of the

discretised model is defined as,

1Z—span B,AB,A:B, ..., An~IB
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Following exactly the same steps as m the case of the continuous system, it can been shown
directly that the same conclusions, theorems, propositions, lemmas, remarks etc., proved in the
previous sections for the Spectral Characterization of the Controllable Space of the continuous
system are also valid for the Spectral Characterization of the Controllable Space of the discre-
tised system. So, it can be also proved for the discretized model, that IZ can be expressed as

the direct sum :

n =n}0...O0RO.OTf¢r

where the controllable subspaces are defined as in the continuous system case (IZi C

4fi). Following the continuous system analysis it can be proved that :

Theorem 39 For every value of the sampling period T, the dimension r of the controllable

subspace 17, is given by the sum of the dimensions fi of the controllable subspaces 77,

f=fi +12+ L+ fi+ . tff

As it has already been proved in the previous sections for a system with ZOH and for every
value of the sampling period 7, Propositions 26 and 27 are valid. Under the same conditions

the following Theorem also holds true :

Theorem 40 For every value of the sampling period T, the minimal polynomial of the vector
;3 € Vik IS (z —\i) Skii , Where 6kij is the degree of the minimal polynomial of the corresponding

vector (3 of the continuous system.

Proof. Let B =\ ,;3,...,/?.]. From (4.25) we have, ;3 — V~(3. (j — 1,2,..., ). The
matrices ¥ and E (and consequently their product) are non singular, in block diagonal form

and of the same structure as J. Also each diagonal block is an upper triangular matrix. So, if
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/3 is partitioned according to the eigenstructure of 4 and if]

is its constituent vector in Vik, with minimal polynomial (s —A)Sk then,

ha = v*¥**hq

where Vik and ~ik are the diagonal blocks of dimensions X t* corresponding to Jlk From

(4.19) and Theorem 27 the main diagonal of matrix is of the type:
ifA =0
L, 7, T2 T (6.20)
(b) if A £0:
eAr 1 TeXiT (eXiT- ') T2e2AT (eAT- 1) T -1e~1 T(ehAr - 1) e
(6.21)
and so it is
x|
(2
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where :
(a) for At= 0=x84 T&i 1%kij ~0 and

(b) for \i » 0==xSkij __________ Rt [xhi T 0

Prom the above and from Lemma 7 it follows that the minimal polynomial of the vector

P GVik is (z—Ai)Sdi and the Theorem is proved. o
Corollary 6 The last non zero rows of the vectors /7, have the same order. o

For reasons of eigenvalue collapsing , we cannot claim that for every value of the sampling
period 7, the degree of the minimal polynomial of the vector ;3. GMi as well the dimensions r¢
of'the controllable subspace 774 are automatically defined from the continuous system. Therefore

we have to distinguish the two cases of sampling.
Regular Sampling

It is already known from Theorem 30 that under regular sampling,

1. The generalized "~-invariant subspace Mi , is also an "~-invariant and generalized null-space

of A

2. The Segre Characteristic of 4 at Ai is equal to the Segre characteristic of 4 at Xz :
Pa, {4) = pX (1)

Theorem 41 Under regular sampling the minimal polynomial of the vector § Gumi is (z —
Ai)Sij, where 6t] is the degree of the minimal polynomial of the corresponding vector (3" of the

continuous system.

Proof. From Proposition 1 the degree of the minimal polynomial of the vector /?.. GMi is
6ij — max(<5iij, &2ij>ee? "kij?ee>&viij)

From Proposition 40 and from the above remark for the Segré Characteristic under regular sam-
pling, it is concluded that is also the degree of the minimal polynomial of the corresponding

Vector/zﬁ. O
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Theorem 42 Under regular sampling, the discretised model S(A,B) of a continuous system

having Qn{ as normal structure (according to Definition JH) it has the properties :

(a) The set of r.c.i. of the discretised model is equal to the set of r.c.i. of the continuous

system, i.e.

e(A,B)-X = @(4,B)X

(b) The dimension rt of the controllable subspace 1Zi is equal to the corresponding dimension

ri of the controllable subspace 1Zi of the continuous system.

(c) The dimension r of the controllable subspace TZ of the discretised model S(A,B) is the

same with the corresponding dimension r of the continuous system, i.e. f =r.

(d) The degree d of the minimal polynomial of the controllable space TZ (as well the controlla-
bility index restriction) is the same with the corresponding degree d (and the controllability

index restriction) of the continuous system, ie. d = d
Proof.

(a) As in the continuous system case, it can be proved that,

Q.- o+ - Bi HiBi HfBi B,

From Lemma 8 it is directly concluded that the first element of the set @ (4,B)\i - On is
equal to the first element of the set ® (4,B)X . On —s  Prom (4.25) and also from the

structure of the matrices V, E (of the same structure as J) it follows that,
Bi = V(Xi)EiBi

The matrices T(Aj),Ej (and thus their product) are non singular and they are in block
upper diagonal form and of the same block structure as J(Xi). Consequently for each

block we have,

Bik — Vik"-ikBik = $ikBik, &ik = "ik—ik
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and as is in upper diagonal form, the last non zero row of Bik is the scalar multiple
of the last non zero row of Bik and the corresponding diagonal element of $ik. Thus in
the case where the r.c.i. are defined by the last non zero rows of Bik (k = 1,2,..,")

the set O (4,B)\i remains the same under regular sampling. Let now the last non zero

row of Bi> : /7T is linearly dependent on the last non zero row f3/ of the
above block ie. /7T = /I3 ~,/1 6 {1- 0} but the row vector consisting of the
Y Mimei ™ "o 10 11 0 :

last two nonzero rows of B{ : NN . , is hnearly independent of the row
~1202-12" 1P~ 12122
vector . In order to simplify the notation we consider the rows of B

& 7, eji-i —aui-<i
corresponding to the Jordan blocks of dimension 4 and 5 in a system with 3 inputs:

£ On 012 013 014 015
& 0 02 023 024 025
Bil- & —miB%— 0o o uB 034 035 B (6.22)
& 0 0 0 044 045 14
- o 0 0 0 05 __45._
Q:"; | 011 012 013 014 4
0 022 023 024
£2 _aprip = £2 (6.23)
3 0 0 033 034 .,
£4 o o ¢ Lea.

and let

a.l for the continuous system assume that:

+0T=fyi = 5

and

linearly dependent =>3" £ (1 - 0} : ) = /T



a.2 assume also for the continuous system that:

__14’_15 “M4°—5J linearly indepel’ldent 4>

"3 24 —23A5
SN3A A4 =3

the corresponding vectors of the discretised system are related to the continuous as it is

shown below,

from (6.22) = ajq="14 + "
g>= =g 5N O=>»0tl = O«= 5
i e e
and from (623) L S 3= 73373413474
I.,= .

and we have to prove that the following two vectors of the discretised system are linearly

independent,

«044B] A+ V'66Bjg NAN 4 + VWhg

«i3+7r347r474414 N3zrs + VEWUBs , 1p44ppJis

—23°—24
Prom (6.20) and (6.21) it is :

055 _ Va4 AT A
= Te™ =9

r4 VR

£ T Atr etr - et+r + 1

V5 3T ATe+T - e+r + 1
’ 2 Ai(etr -1)

rpu 2 Al(eAT- 1)
MH#A = ATe T- eXiT+ 1=
(033 Ai(etr - 1)

and so the above two vectors of the discretised model are linearly independent if and only

if the following two vectors are linearly independent :

=4 3N HASHS hnearly independent 4=
N3N TSNS
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N3 +2N 5 " EU +3ué[6

The above relation between the row vectors s impossible for every value of
the sampling period T. Thus the vectors are linearly independent
and it is 62 = #2 = 3.

The above can be applied directly to the general case and so we have under regular

sampling for a system with Q# %of normal structure :
(b) Then for regular sampling it is established that: *= On+ .. + QWi = {y
(¢) From the above and from Theorem 34 the result follows.

(d) From the above and from Propositions 45 and 46 the result follows. ]

Proposition 50 In the case of a continuous system with Q#. having abnormal structure, then
the process of a regular sampling, acts for the ‘normalization” of Qui and then we have a

‘restoration” of the controllable space.

Proof. Let for the continuous system in the proof of the above Theorem 42 be valid the

following :

IS linearly dependent < = pGid, <H2 =12

—23°—24

Then for the discretised system we have

8iVav "044°4 + N4 5N A550
"033"23 + N4
AN AN + AN AN n k)
H 297 EJut 37L >0 linearly independent
h ~337%4 + ~347i5,V84M5 A4 + IAL>A S

and thus #2 = 3 > $2 = 2 which proves the result. O
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Irregular sampling

For notational simplicity the case of two eigenvalues Au and Xy collapsing is examined here. The
obtained results can be extended directly to any other case of a partial or a total collapsing,
for each r-root range of 4, < (A). We assume that under an irregular sampling, for which the
distinct eigenvalues | # and Xy of the continuous system correspond to the eigenvalue Ac of the

discrete model. It is already known (Theorem 31) that,

» The generalized "-invariant null-space Jifc , is the direct sum of J\fit and My : Nc —Jfu® Ny
* The Segre Characteristic p* ("4 is formed by the merging of p \u (A) and p\y (.4).
Then, for the discretised model S(4,B) it follows:

Proposition 51 Under the irregular sampling, for which a collapsing occurs between the eigen-
values Xu and Xy to the eigenvalue Xc, for the discretised model S'(A, B), the minimal polynomial
of the vector 0 EJ\fc is (z —Xc)%i (j = 1,2,..., 1), where, 6¢; = max(ilF, &;))

Proof. For the above irregular sampling each one of the vectors 0 . EMc (G =1 , 2 is
created from the component vectors of the corresponding ft E Muand ;3 ENy (G = 1,2,..../).

Then 600 = max(8uj, 8yj). O

Theorem 43 Under the irregular sampling, for which a collapsing occurs between the eigenval-
ues Xu and Xy to the eigenvalue Ac, for the discretised model S(A, B) with Qhu ,Qhv as normal

structure, the following holds true:

(a) If ru = dim7£u, T2 C Ju and ry = dim7y, I[Zy C J\fy, and rc the dimension of the

controllable subspace TZc C J\fc, then rc < ru + ry.

(b) Iff is the dimension of the whole controllable space TZ of the discretised model S(A.B)

and r is the corresponding dimension of the continuous system, then, f <r.

(¢c) If d is the degree of the minimal polynomial of the controllable space TZ (as well the
controllability index restriction) and d is the corresponding degree (and the controllability

index restriction) of the continuous system, then, d = d —min(Oui, 9i).
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Proof.

Bu
(a) The matrix Bcis composed by the matrix blocks of Bu and By: Bc = Let
Bv
©OAB)Xi = om0 > 6U2> ... > 6uiu > 0} ru= 9ul + 6U2+ ... + 9Uvu
and
©(A = P~ @i ANOY =y —Pl ooyt L+ D

From the construction procedure of ©(A, B)”~ it follows that, 9a = max(9ui,9y1) and

each one of the following indices 9¢2,..., 9ox is equal or smaller to the corresponding index

of the same matrix block of Bu and By of the continuous system. Thus,

fe—ecl + 92+...t 9 < (Oul + @u2 + ** + oUW) + {Qyl + 92 + ... + 9yvy)

(b) From the above and from Theorem 34 the result follows.

(c) Also from the above and from Propositions 45 and 46 the result follows.
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Example 8 Consider the uncontrollable continuous system the Example 7 under the following

irregular values of the sampling period.

a) T = fc,

a.l) Fork=12,3,5,6,7,9,10,11,... we have for the mode Aj2

-3-%  5+4 0 0 7 2%
-9 - 5i 0 -6 0 0 2+ 3*
2+ 6i 0 0'-3+2 -9-5 -7+2
e 0 2i 0 0 3 0 e — 4
0 0 0 0 0 0
0 0 0 0 0 0
-3+i 5-4% 0 0 7 -2%
-9 + 5§ 0 -6 0 0 231
2-6i 0 0 -3-2*% —9+5% -7-2%* #1220 — 3
et 0 ¥ 00 37 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 2-7 -5 +37 0 0
#12.3 = 0] 343z O 3-27 7i 5-91
4 - % 0 0 0 -4 -t (%] #12,3 = 3
#2,5= 2+6° 0 0 5-9* 0 O Hizs =

#126= 2-6z 0 0 5+97 0 0 H 352

"e(A,é)Xu~ {4,3,3,3,1.1). H2 = 15 (<rl +12
O©OA,B)h =0(71,8).3= {2,1} ,f3=3(=13)
, O(AB)igs = Q(4, B)ra= {21}, f4= 3 (=r4)
The dimension of the controllable space of the discretised system corresponding to

the set 4> 5(j4), is f = f\2+ "3+ =21 (< r = 22). The spectral restriction of the
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corresponding controllability index isp =4+ 2+ 2= §(< 12).

a.2) Fork =4,8,12, ... we have for the mode AL as above and for the mode A3

S - 3 0 0 -2 + 31 0
»34,1 = 0 0 -1+1 0 81 4 . s34 =2
0 0 0 0 0 0
[u—
3+ 81 3 0 0 -8
»34,2 = 0 0 -1—1 0 -81 4 . 8342 = 2
0 0 0 0 0 0

B = o —8 0 0 121 0 *.9343 = 1

»344 = 0 80 0 0 —121 0  +=0344- o

I ©O(ABXn= {4333,1,1} ,f2=15(<n +r2= 16)
\ = (2,2,1,0} ,f4= 5(< 13+ rd= 6)

Itisf=fla +f34=20(<r=22), x=4+2=6(< 12).

a.3) Fork=8,16,24,... we have for the mode Ai2¥4:

-3-1 5+4 0 0 7 21
-9 - 5 0 -6 0 0 2+ 31
2+ 6l 0 0O -3+21 -9-51 -7+2
»1234,1
0 —21 0 0 31 0 612341
0 0 0 0 0 0
0 0 0 0 0 0
—3+1 5-41 0 0 7 —21
-9 + 51 0 -6 0 0 2-31
2-61 0 0 -3-21 -9+51 -7-21 $1234,2
»1 234,2
0 2i 0 0 -31 0
0 0 0 0 0 0
0 0 0 0 0 0



#1234,3 0 -3+ 3§ 0 3 T* 5 —9*
-4 -2 0 0 0 —4—* 0 &6)2343 = 3
0 0 2+ % _5.3% 0 0
#12344 0 -3-3% 0 3+ 2* -7 5+ 9*
—4 + 2* 0 0 0 —4 4 * 0 <—6)2344 = 3

3+8 3 0 0 -2-3*0
B\2345 = 0 0O 14— 0 -8* 4 6)234,5

I
)

3-8% 3 0 0 -2 +3* 0

A12346 = 0 0O -1+* O 8 4 < 64234,6 = 2

N2347= 2+6° 0 0 5-9* 0 O 612347 = 0
A23g8 = 2—B O 0 5+9* 0 0 &-¢)2348=0
234.9 0 =8 0 0 122 0 N2349 = 0
A 1234,10 O 0 0 -12¢ 0 6)234,10 = 0

=>efd, ¢)XM= {43,3,3,2,2,0,0,0,0}
Itisf=17(<t=22), #<4(< 12).
B T= "

b.l) Fork=1,2,3,4,6,7,8,9,11,.. we have
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b 1.1) for the mode Al4

3.2 S5+4 00 7 2i
9-5% 0 -6 0 0 2+3i
2465 0 0 -3+2 -9- 5 -7+2%
0 2i 0 0 3 0
0 0 0 0 0 0
0 0o 0 0 0 0
0 0 2—i —5+3% 0 0
A4 = 0 3+3 0 3-2 li 59z
is-s o 0 0 -4-i 0

0 0 0 0 0 0
Blaga— 2-61 0 0 5+9 0 0 #144 = 1
4,5 — 8i 0 0 12 0 #145= 0

= @4, B ) 114 = {4,3,2,1.0}

b.1.2) and for the mode A23!

-3 +2 5-42 0 0 7 ok

—9+ 5i 0 -6 0 0 2- 3%

2-6z 0 0 -3-2* —9+52 -7-2%
0 2% 0 0 3% 0
0 0 0 0 0 0
0 0 0 0 0 0
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0 0 2+i -5-3% 0 0

#232 = 0 —3—3 0 3+ 2% -7i 5+ 9
-4 + 2 0 0 0 —4+ i 0 #232=73
3-89 O 0O=2+3 O
#233 = o Oo-1+* O 8i 4 #233 =2
00 0 0 0 0

#234= 2—6* 0 0 5+9 0 0 < #34=1
#35= 0 -8% 0 0 1» O #23,5 —0

= O(A #)aB = {4,3,2,1,0} It is $-5(A), isf = fu + 18 = 20(< r = 22)
fi=4+4—8(< 12).

b. 2) Fork =5,10,15,20,.... >©(A,B )~ = {4,3,3,3,2,2,0,0,0,0} > f = 17, fi = 4

as above.

c)T = -

c. 1) Fork=124,51728,... we have

c.1.1) for the mode Al3:

-3-% 544 0 0 7 2i
-9.5% 0 -6 0 0 2+ 3%
2+ 6% 0 0 —3+2% -9- 5 -7+ 2*
#13.1 =
0 W2 0 0 3i 0 #13,1 = 4
0 0 0 0 0 0
0 0 0 0 0 0
0 0 2-i —5+3i 0 0
#13,2 = 0 —3+ 3 0 3-21i 7* 5-9%

-4 -2 % 0 0 0 -4 - g 0 0132 =3
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3-8 3 0 0 2+3% 0
#133 = 0 0 -1+% 0 8 4 *33 =2

#134= 2+6i 0 0.5 -9 0 0 <#34=1
#13,5 0 -8z O O 12 O 0135=10

=>0O(A;% 1= {4,3,2,1,0}
c.1.2) for the mode A2A!

3+ 5-4% 0 0 7 2%
9+5 0 0 0 2—3;
2—6z 0 0 -3-—22 -9+ 5 --7-2%
#4,1
20 0 3% 0 - e =
0 0 0 0 0 0
0 0 0 0 0 0
0 0 2+z -5-3* 0 0
#4.2 0 B3-3 0 3+2% 7% 5+9
4+2 0 0 0 —4+z 0 632 = 3

3+8& 3 0 0 -2 -3 0
U3 = 0 0 -1-20 .. 4 #33=2
0o 0 0 0 0 0

#44= 2—6z 0 0 5+92 0 O #134 =1

245=10 $ 0 0 -12¢ 0 - s135=0

= @(A,6)-x4 = {4,3,2,1,0}. It isr = fis + f28=20(<r =22), k=4+ 4=
8 (< 12).
C2) Fork = 5,10,15,20,.... = @(i,B )~ = {4,3,3,3,2,2,0,0,0,0} &+ f = 17, x= 4,

as above. o
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6.4.2 Spectral Characterization of the discretised Unobservable Space

Following the same procedure as for the continuous system, the unobservable subspace V' of the

discretised model is defined as the right null-space,

C
CA
'P = Mribt CA>

ci"“1

It can be proved, as for the case of continuous system, that P can be expressed as the direct
sum,

vV —V] CR"

where the unobservable subspaces Vi,...,Vf are defined as for continuous system (VI C Aif).

Similarly to the continuous system case it can be proved that :

Theorem 44 For every value of the sampling period T, the dimension p of the controllable

subspace V, is given by the sum of the dimensions pi of the controllable subspaces Pi,

P = Pi + P2 + wm+ Pi T % 4 py

Similarly as for the case of the controllable space we have:

Theorem 45 For every value of the sampling period T, the minimal polynomial of the row
vector

llij £ Fik, (*= 1,2,..,/), (k= 1,2,.mi), (j = 1,2,

is (z —Xi)tdF where is the degree of the minimal polynomial of the corresponding row vector

~ikij °f “e continuous system.
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Proof. Let.

From (4.27) we have, 7] = 7TC/ (j = 1,2, ...,m). The matrix U is non singular, it is in block
diagonal form and of the same structure as J; also each diagonal block is an upper triangular

matrix. So, if 7T is partitioned according to the eigenstructure of 4 then.

Zﬁcji Ekij X2 xi £kij /0
is its constituent vector in with minimal polynomial (s —\Y ki and 7% = Fur-
thermore is the diagonal block of dimensions X corresponding to JW%- From the

computation of in (4.17) the main diagonal of matrix Uik is,
e-xiT e-(rik-D)\iT
j 27 2T 1
and so it is

i 0 . 0 xfkii .. 2 (1 )XV% 70

where
C~(fkij ~t)"Nin

x-kij  Xekij 2T Ski~1
From the above it is concluded that the minimal polynomial of the row vector 7 i 6 Tik is
(z - Ai)e*«. o

Corollary 7 77ie /osi non zero rows of the vectors T\, 7].. /iane the same order. o
7 i

Due to eigenvalue collapsing phenomena, we cannot say that for every value of the sampling
period 7, the degree of the minimal polynomials of the row vectors 7T. £ Ot (j = 1.2.....rn).
and the dimensions pi of the unobservable subspace V/ are automatically defined from the

continuous system. Therefore we have to distinguish the two cases of sampling.
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Regular Sampling

As in the case of controdlable space, for the discretised model §{A, ©7 we have,

Theorem 46 ['mder regular sempling of a continunes spatem having My, as normol streciure

faccording Lo Definition {9) the folloudng propertics haold e

(o The minimal polyremial of the mow vector lej £, ix {2 —\)%, where cap w e degree

of the minimal patimominl af the eorrespordimg vector EL' £ O of the conlinucus systom.

fhy Theset of coo.i of the discrefieed mndsl iz egued to the corvesporading sel for (ke conlinuoue

syatem ie,

Z{A.C);, = Z(A ),

fe) The dimenaion g; af the wnobserable subsooee P, is cguat bo the correspondmg dimenaion

p; of the wnobservable subspace Ty of the continuous syaten.

{d) The dimension p of the wiohsereable sulspace T of the discretised model BUA O is the

some with the cormespondimg dimensian poaf the continoous systerm, thol
r=p

jep The degree g of the minimal pofynomial of the row space @ (or bhe observability inder
mestraclaon ) 1x he same with the corresponding degree o (or fhe obgervability fnder vesloc-

fion) af the continuois system 1.,

Fraof.
ial Fram Theorsm 1 the degres of 1he minimal polynomial of the vector v E ;i
S5 = MAXLERG, S260 ey By oo Sagig )

Prown Propositicn 1 oas for the case of contrellable space, it is concluded that = s alsu

thie degree of the minmmal polynomial of the commeapomding vector 57,
—17
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(b) As for the continuous system case, it can be proved that,

fi
PiHi
M 71/\1Mu.17 Ple

From Lemma 10 it is directly concluded that the first element of the set Z(4,C)\t : (]
is equal to the first element of the set Z(4,C)" : = Cii- From (4.27) and also from

the structure of the matrix U (of the same structure as J) it follows that, = Pji7(Ai).

The matrix U(Xi) is non singular, it is in block diagonal form and of the same structure
as J(Xi). Consequently the remaining c.0.i. (;2; **! of the discretised system are equal
to the corresponding c.o.i. of the continuous system; otherwise the set Z(4, C)\t remains

the same under regular sampling.

(c) Then for regular sampling it follows that: ,; = 11—+ —-+Civf) = », and the Proposition

for the regular sampling is proved.
(d) From the above and from Theorem 37 the result follows.

(e) Also from the above and from Propositions 48 and 49 the result follows. O

Irregular sampling

As for the case of the controllable space the collapsing of two eigenvalues Xu and Xy to Ac is

examined now for the discretised model S(4, C).

Theorem 47 Under the irregular sampling for which a collapsing occurs between the eigenval-
ues Xu and Xy to the eigenvalue Ac, with Mhu,Mhv as normal structure, the following properties

hold true:

(a) The minimal polynomial of the row vector TL £ J\fc is (z —Ac)tv [j = 1,2,..., m), where,
eG = m&x(eyj, £yj).
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(b) Ifpu = dimPu, Vu Q Mu and py = dimVy, Vy C Afy, the dimension pc of the observable

subspace Ve GJ\fc is , pc> pu + Py =

(c) Ifp is the dimension of the observable subspace V of the discretised model "(A, C) and p

is the corresponding dimension of the continuous system, then p > p.

(d) Ifp is the degree of the minimal polynomial of the observable space V (or the observability
index restriction) andp is the corresponding degree (or the observability index restriction)

of the continuous system, then we have, p = p + min(#uj, 6y).
Proof.

(a) For the above irregular sampling, each one of the row vectors 7T. GJifc (j = 1,2,
is created from the component row vectors of the corresponding 7T GNu and 7T GNy

(j = 1,2,...,m). Then e = max{ey,ey).
(b) The matrix Tc is composed by the matrix blocks of Tu and T" ie.: Tc= r,, Let
us assume,
Z(A, C)\u—{cul e  CGou” 0} » pu —TU (Cul + "PGN)
and
Z(A, C)xy — {Cji1 "~ w N cyyw 0} N Py — Ty —(Cyl + T CGyvv)

Then from the construction procedure of z¢4, c¢)x we have, Ccl = max(Cui, Cyl) and each
one of the next indices Ccl,...,Cd/ is equal or smaller to the corresponding index of the
same matrix block of Tu and T~ of the continuous system. Thus since 77 = 717 + my it

follows that,

(Ccl + mmt+ Cci/J A (Cul + oo+ CuO + (Cyl + + Cyuy) =>

n ~ (Cel T + Gue) — Ite — ((Cul T o T cuvu) '"P (Cyl T + Cyvy)) ~ Pc LPu + Py

(¢) From the above and from Theorem 37 the results follows.

(d) Also from the above and from Propositions 48 and 49 the result follows. O
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6.5 Conclusions

A new approach for the characterization of spectral properties of the controllable and observable
space has been established based on the properties of minimal polynomials of vectors. New sets

of invariants indices are introduced which enables:

a) The determination of the dimension of the controllable (unobservable) space from the

Jordan canonical description.

b) The investigation of the relation between the dimension of the controllable (unobservable)
space of the discretised model and the corresponding of continuous system under the

different types of sampling.

Such effects are also examined in the next chapter, where the study of the degrees of decou-

pling zeros, formed under irregular sampling is considered.
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Chapter 7

SPECTRAL DETERMINATION
OF THE STRUCTURE OF
DECOUPLING ZEROS

7.1 Introduction

This chapter examines the role of the system parameters of the Jordan canonical description
in the determination of the structure of i.d.z. (o.d.z.). A new left (right) sequence of A

Characteristic Toeplitz matrices is used to determine the set £(4,B)x1 (T(A, B)\r) of degrees
of elementary divisors of the input (output) pencil of the system at s = A* or what is equivalent
the degrees of input (output) decoupling zeros. The result has been proved for continuous
system and provide new relationships between the Segre Characteristic of 4 at Al; pA (4)
the set of r.c.i.(c.o.L) ®(4,B)xi (z(4,B)1i) and the set of degrees of i.d.z.(0.d.z.) yra4.B)\x
('i'(A, B)1¢. This relation enables the investigation of the changes in the set of i.d.z.(c.0.1.)
under regular and irregular sampling for the discrete models. The work here generalizes some
classical results on the spectral characterization of controllability to the spectral characterization

of degrees of decoupling zeros.
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7.2 Spectral Determination of the Structure of i.d.z. of a Con-

tinuous System S(4,B).

The set of i.d.z. of a system S(4, B) is defined in Chapter 3 (Definition 26) as the set of roots
of e.d. of the input state pencil. Let the input state pencil of the equivalent system in Jordan
form S(J,B) be, [si —J,B\ = s[/,0] —[J, —B] G Bfri+r Consequently the structure of i.d.z.
of the system S(A4,B) is determined equivalently by the root range of the input state pencil
(Definition 15). As a first step in this direction the following sequence of left a-characteristic

Toeplitz matrices is defined as in (3.27) :

T, = J-al B & nxtDh jiz J-al B 1 0 £ jE£ELn(nt)
0 0 J-al B

[w)
S
S

J-al B I 00
0 0J-al B I

(e}
[}

(£jnxj(n+2)

o2

0 0 O 0 00 ..J-al B

The properties of the above sequence will be considered next.

7.2.1 Basic Properties of the Rank of the a-Characteristic TOEPLITZ Ma-

trices

Ae start the investigation of the properties of the above Toeplitz sequence by considering their

rank properties.

Proposition 52 For Mi GC :a £ 4>(A) the matrix Ti has full rank.

Proof.
yl[J-al,B\ =0
y] [7,01 = -s/T [J-al, B]
Kby yr-n =0
kyir[id} = -y][J-ai.B]
Ifa * i>(A) = rank [J —al, B\ = n <>yJ =0 and recursively yI'=0, ... ,y4=0 O
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. o, 0 B
Propuosition 53 Lef o = A € $[A] and express, T = T whers I, = () —
: (LR <
A0 2 BT s pilpotent, 1 € T mad# mmd yg il ronk, B, £ €757 is ey defined in 767 the
matriv block of B corresponding fo J{A:). Then the left nallity of the mairiz T is defived by

the feft nadlity of e malns ']'"il: whare,

qHe B T 0 o0 ..onon
oo HoHE 70 .. 0 D
TEA ] e s o e e h we [ J-biacks (7.1
L LI N+ R N VN 1 A |
P00 H OB ||
T'roof. far 7 =1
: yI ;=0
Ho 0 B, J il up = 0
e o =0ey BT =0 ok i _ |
A | 7 B vy [He Bl =0 = T3, =i, &
) 3Bty B =0
for j=2-
H.o0 B T 1o 0
. s o o™ E 0 5o i
I i 1.' ¥ l =0 =
e A D A T A (-
U VI VR VI H‘J
4 E; P I:_I
T =)
& Y472 . ) i
o H B I |1 . g B T
| #; Y =0=15 =
' S L L - O : oo H B
The peneral atep followa alomg similar lines, (]

Remark 30 From the chove we eonchide that only the nombere A, £ DAY are condsdaie Jor
i.d.z. O
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Remark 31 We can study the sequence of left nullities and the corresponding tests, for deter-

mining the degree of i.d.z. by considering the case of each eigenvalue \ for which TA- is rank

deficient. m]

7.2.2 Left Nullity of the j-th Single Block Matrix T

From the above we conclude that any Ai G <€(>!) is a candidate decoupling zero. If the ,4-Segre
Characteristic at | is px. (4) (given by 3.22), then the matrix Bi can be partitioned according
to pli(4) as in 3.69 and the nilpotent matrix H%can also be represented according to the

eigenstructure of 4 at A, as in 6.5.

Definition 50 The f-th reduced matrix of B" is defined as the matrix derived from Bik (where
B”* is defined in 3.71) as indicated below :

e CT&X, t= 1,2....7»

*& =
and where Bk = B” for Vi= 0,-1, —2,... O
The same notation can be applied to any other matrix. Thus if 7 is the Tj* x identity
matrix, then 7" is also a r «x matrix,

0 010 .. 0 * tthrow
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For any p > 1, p € Z we define the * operation on Blk € CTikXl by :

P*Ba +BZ+Bm +1 " P=12,.. (7.2)

Let  be partitioned into blocks as in 3.69, then we define the * operation on Bxby some

p6Zas:

P*Bn ’ ' Rni+i-p)

e n . _ R JTii+1-p)
p*Bi = B'p4 P *B Ik o

L TiUi+ 1-p)

P*pwi Bip Divi ’

7.2.3 Normal Description of the j-r# Left Toeplitz Matrix

Using the above notation we may simplify the computation of nullities of T). using simpler

matrices.

Proposition 54 The above defined j-th left Toeplitz matrix Ty is equivalent over C by ele-

mentary column operations to the following form :

H By oA 0 0 o .. 0 0
0 0 Bf A 0 .. 0 0
A >j —blocks
0 0 0 0 0 0 - o
0O 0 0 0 0 0 Hi  B?

Proof. Assume for the sake of simplicity, pxft4) = {5,4,2}. We shall establish the Proposition

for this case, whereas the general case follows along similar fines.

h 2 0 0 b2

0 0 hs Bs
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for a typical block, we have by column transformations and using the notation introduced

above, we have :

i o V =) (=)
Hik &k Hik  BjY
to 0 °
s — 0 -K k-
and thus by column transformations we have,
H% 0 0
0 Ha O = Hi Bf
0 0 Hb
2. forj —2 : by elementary column operations we have that
th 0 0 5, B 0 0 O Hi 0 0 B2 12 0 0 O
0O H 0 Bs O H 0 O 0O Hs O B> 0 /449 0 0
791 0O O Hb Bb 0 0 p O 0 0 Hb 0 0 0
\0
0 0 0 0 H 0 0 g 0 0 0 0 Hi 0 0 B
0 0 0 0 0 Has 0 By 0 0 0 0 O Ha 0 Ba
0 0 O 0O 0O 0 Hb Bb 0 0 O 0 0 O Hb Bb
Py 0
we use column transformation from each of the to the corresponding
Hj Bj
and thus we have :
P31 0 l'f 0

A es Bj Hji - Bﬂ'f]]
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which also leads to :

1?

Hr B?

J?

Hb

Hr Bf

0

87

Ha

ef

Hb

0 B2 pn O

0

h2

0 Hb Bs ©

0

Ba
Hb »5 0
0

Ha

0

0 H2 0

0

0

B2

0

Ba
0 Hb Bb

Ha

0

Using the transformations of step j = 2 we have that

0 B? 13
0 By O

0

h 2
0
0

0

0

U

Ha

Hb Bp 0 O
0

0

W00
p\] 0 J)

0
0

H2 0

0

Hb g2 0 0 Jf

0

0

Bf

Ha

B f

Hb

192



Hi Bf If 0 0 0
0 0 Hi Bf Ijf 0 =
0O 0 0 0 H Bf

The above analysis readily implies the general step and this completes the proof. o

Remark 32 The form Ty is column equivalent to Tf and Tf will be called the normal de-

scription of the j-th left normal Toeplitz matrix. Clearly,

rank 7 f = rankT"

The left null-space ofTy may be studied by using T [ since the two are column space equivalent.o

Proposition 55 Let y GGT' and be partitioned as,

yJ: B L, LU ]’_‘]_

then yf GAf\{ty} where Ty G<Gnxj(ntl) ;j anc[on[y |j efollowing conditions are satisfied,

yv\Hi =0 y]Bf =0
viHI=-yTIf W2B? =0
£% =_ & 2 and ygs’B’I’i%=0 (7.3)
yH. = -y w 19D yIBf =0
Proof. Since = N\V{Txf, by writing the condition yffy = 0 and considering the
description of 7 f and the natural partitioning the result follows. O

The set of equations 7.3 comprises from two subsets i.e. the equations of the first column
are referred to as the left recurrent equations of the set, and the equations of the second column,

called the left Kernel equations. We consider first the recurrent equations.

Remark 33 Let yi be partitioned according to Segré characteristic defined in (3.22) as,

U= yrim > g, 06— L2/
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and from

equations is equivalent to,

VIIH*= V (1)
(2)

®)

£ I1H* =
tkH- =-yZJ*

y-iL " -y-V I* 0

the block diagonal structure of Hi and I*¥J we have that the set of the recurrent

(7.4

where Tik takes values from the set of p\i(4). Equations l.f will be called the basic recurrent

equations.
Lemma 11 For any

L forj <rik :

=0 0 v g, Y32 e

“Tik

where A\ k,dTk,...,4 ik arbitrary,

2. forj > rik :
yH =vt2 = = yTj-rik _ 0-
-Tik -Tik -Tik -
nil-' = [O,(-i

where cfxdik+1,..., cfik arbitrary.

Proof. The result is established by induction. Thus,

. j=1:Let
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> 1 the solution of the basic recurrent equation (7-4) is given by :

7.5)

(7.6)



frome the first of the recurrent equations [(7.4) it follows :

1 1 - 1= =g = 1 ] Sppsa
(1] = [l:l-.'.:l,_.,,zm_]] =0e&r ==z ;=W 2. =c; arhitrary
L E - 1
=W = [“""'D’L":A-]
1T =2. Let
TL & [.1 1 12 2 .2 2
— [.E]‘...:.J:,.“J . E'l'.elr = 1,1‘.1,..“.:':1“.]

=Tim
[rom the {1} and {2} of the recurrent equations (7.4 we have :
y ' Hy =0

Il Hip =0 1
) (a)

T2 P, o il § 3
'!_"r_.—',‘. }I”" - Hr,k ITak J

where,
o .00l
‘r_;l = ;r_,.'_"'-:' -
H] 2k 0 ot I:_] |:|
0 i1
1hns.
1 11
I:ﬂ.::l - 1'1'1* ":I 1 I:II Erm
[0.2F . 2f, ] =[0.0a 1=
sxi=..=x, g=0 2% ;=c 2l =c abitrary

- 1 2
=y, T [I:I""-'“'Iﬂ'-"m":"..u.

& ot clie geperal § < Fp step, lob us assume

T1 2 gl 7 '“‘i[-! 21 oo o
Erl.k - [:I-"l' |II!'|:1'\'r1k_ ! lll — -I:]' -.-|-»‘-I—I:HJ 1= W, T;: “IlJ'F.-

_T'I*
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then, from the j first of the recurrent equations (7.4) it follows :

v HIk =0
4(D)
vhHIE= e -
where :
{1
Tik-3+1
and

r* lg’—i) _ rrikt2+)

T 0 .. 010 ..0 kT2 |

0 0 0O 1
Then it follows that :
ia = r°.a-0, ¢l
4 -0 =
1
i4 = lo.u" 0 fj}i; ?;}kl
6) <
) . -1
U Xj, o) xrifc- 1 4ik> -"ik
Tik-3+1

and relation (7.5) is proved.
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4. forj > Tik , let again,

V-7 - >Mil = yii = xio T

It is
Xl = i

and

VIJ = j(_1)Tik-1 si-Tik+1 _J -1 J 1
S-Tik LI / Tik P te s CTt* ’ CTifcJ (77)

from the j-th of the recurrent equations (7.4) it follows that :
\(-\ JEk-1 (J-Tik+1 J-1J }H _ _ Xﬁ_li 1§i7i %)
w Lrik Jeus) iLTik\n ik rik "

1= 0.4 1= (-i)r<fc 24 ifc+l)-, < fdd = 4«*1

C 1=t.(-ir-24r*+1> -< 2,4;1] (7.8)

and from the (j —I)-f/i of the recurrent equations we have :

[0.(-1)™-2< 7 “+],  -<£* <£n]a« = -2 12 ajp =

<2 "B 3= 0,4 3= (-ip 34ERRA-AiJ =4T*>

YH2- [0.0,(-1) =% 4rFas o, o< % < %) (79)

So the solution of the basic recurrent equations is as described by relations (7.5) and (7.6). O
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Example 9 Consider the system characterized by px™4) = {5,4,2} where,

n2 0 0 b2 » 0 0
Hi = 0 w+ 0 ,Bi= 44 4= 0 , O
0 0 gy Bb 0 0 4

we will first examine the solution of equations (7.3) :

L forj —1
v/Hi = o,
and if
ST vy vl vil
then
B.
ytEH2 =0, » n4=0 yl'H"O, yi oy}l vil b =0
B
By Lemma 11 we have :
and from the Kernel condition :
yCBt]+yliB4)+ ;5" =0
the latter is reduced to
0
0
0
0
0 cl + 00 0 ¢ + 0 0 0 0 ¢ 0
_ 22 0
' 0
£.4
L&5S
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0

BB 4
. £.5 .
If we define
T A
4 = 4 4 4
then
a*
il ¢4 0
L£,5 ]
. forj = 2:
i£tfi = o NN
=-y*"*1 yJB<2=Q
and if

£i= yjl y*"l yjl  2a=

then by Lemma 11 we have :

—21— o4 ) jf= 0 1
P-4 4 L ii2= 00 -q4 @

If we now define

OA -, 4 o 12

then we have :
S 12 - 22

- 2,2
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3. forj = 3 and by following the same as above procedure we have:

yji= 0 0 yi2= 0.0 o 4 > y&2 000 0 c
yJ2= yi2= 00 .4 2 000 -c/
,a13 _f{z Vl3: o 4 _4 64 /\‘3 0 0 Cl 'Ci
If we set
ffE 2 4 f ty £3
then we have
g2 ¢
") 0 0
24 £.4 £.4
. 0
g A =0
g1a 00
—35 £1,5 £.5
€15 5 O
g5 O 0
4. Similarly for j = 4 we have
0 0 0 0 475> Ai4:00004
= 00 0 -cd & ) 4= o0o0o0 -4
T3 —
0 ¢3 = th -t & ) 00 4 =5
4 = -eg &4 ‘- b b - yj = o -4 ¢ -cr
and if we set
47N 4 4 -4 g oa 5 -4 4
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then we have:

2y 00
Ly 00 0
14 24 £14 £.4
24 £4 £14 0
Ads s14 00
c4 00 0
£,5 £,5 £45 £i,5
£55 £5 £5 0
g5 00
g5 0 0 0
5. Similarly forj —5 and j = 6 we have
22 00
0 0 0 o

—22

—4 24 £.4 £14 °

24 £.4 £14 ° ©

£i.4 £14

£.4

—15 £L £,5 £% ¢,

25 £L 5 £L °

£1.5 £5 ° ©
€15 g5 9 o o
£ 00 o o
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and

—12 €12 0 0 0
—22 0 0 0 0
—4 £14 £14 £1,4 0
—24 £14 £14 0
£14 £14 0 0 0
£14 0 0 o’ 0
£1,5 £1.5 £1,5 £1,5 £1,5
0

£1,5 £15 £1,5 £15
£15 £1,5 £15 0
£15 5 0 0 0
0 0 0 0

-£i,5

So for the general example we have that the dimension of the left Kernel of 7¢. is defined

by the dimensions of the left Kernel of the following Toeplitz type matrices :

£12 £1.2 0
£12 £1.2 £1,2 0 0
0
£1,2 £1,4 £1.4 £14
£1,2 0
) £1.4 £1.4 £1,4 £1.4
Qi = 14
0 0 0
£1.4 £1.,4
£1,5
£1,5 £1,5 £1,5 £1,5 £1,5
0 0
£1,5 £1,5 £1.5
£1,5 0 0
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€12 £1.2
£ [1} 0 ’
12 —22
0 0 0 0
0 0 0 £i2
—22 o
£1,4 £1,4 £1,4 £1,4
—14 24 £.4 f14 o o
. £24 £14 £14
24 fia4 £.4
£ 14 0 0 0
fi4a 0 0 i ,
£.4 ; 0 0 0 0 (7.10)
£1,4

£1,5 £1,5 £15 £15 £1.,5
—5 f15 £,5 £;,5

0
o £1,5 £1,5 £1,5 £1,5
N5 .5 o o
c 0 o £i,5 £1,5 £1,5
£.5 1,5 0 0 0
£1,5 £1,5
s 0 0 0 ’ :
’ 0 0 0 0
£1,5
whereas forj > 5 we have that Oy —Q\ o

The above sequence of matrices are defined from the spectral decomposition of the system
description and are of simpler nature than the original Toeplitz matrices. Their significance is

described below.
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7.2.4 Input Spectral TOEPLITZ Matrices

Assume for the system 5(A, B) the corresponding partition of the Jordan description B of B is
given as in (3.67). If the Segré Characteristic of 4 at s = A Xt e 4>(A) is given by (3.22) and
the corresponding partition of Bi by (3.69) and if assume that the typical spectral block Bik is
described by (3.71). We may define:

Definition 51 The j-th input spectral Toeplitz matrix is defined in a row block partition form

as shown below,

03
Qi 7.11

o

where.

1L ForVj<nv. :

(@) ifj < Tik,

Ik 2 G T kil
S,-j. &% EPlicmnk  Phm  °
orik eCixli  (7.12)
S o m Imm 0 0
Pgime  ° ’ .
ifj > Tk,
s, k- Bhy Plm © 0
s, = Ly /S 0 0
_ eC TkXlj (7,13)
S,-hr, s. Ik 0 0 0 0
AEH;H{ 0 0 0 0 0
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2. For N> riVi : QTik = o

Prom the above definition, Lemma 11 and using induction following the steps of the rather

general Example 9, the following Proposition is readily established.

Proposition 56 For any set of indices {rlVi > .. > rik > ... > Tn > 0} the solution of the set

of equations (7.3) (recurrent and Kernel equations) is determined by the vectors cj, where,

c}Oi =0

Remark 34 The degrees offreedom of the set of equations (7.3 recurrent and Kernel equations)
are determined by dimA/i j . Furthermore, for allj > i : QTik = Qrfj there are no more

degrees of freedom to the solution of equations (7.3). i

Proposition 57 Consider the system S(A,B) with pli(4) = {r > ..> > ...>th > 0}
and let S(J, B) be the corresponding Jordan normal description. IfTy is thej-th, Aj-characteristic
Toeplitz matrix of S(J,B) and Qy is the j -th input spectral matrix of the system, then,

A [TD=n]{Q{)

Proof. By Proposition 53 it follows that 7) determines the left null-space properties of
At~ T =A) j), whereas by Proposition 54 the study of the Ai () | is further re-
duced to the study of A] |. Finally by Proposition 56 follows that the solution of equations

(7.3) is given by the A/i{Q".} and this completes the proof. i

Definition 52 Using the ,J — 1,2,... input spectral matrices we define the Xi-input spectral

sequence as in (3.31) ie.

JA“ {nj' :no = °. nj*=dimA > 1}



Theorem 48 The sequence J\. is piecewise arithmetic progression satisfying, the condition

nA > j,it JH j=1.2,.
5>

In particular we have that strict inequality holds ifj = [i is the degree of an input decoupling

zero of the S(A, B) pair. In this case the multiplicity of the degreej = , is,
@ —2m)1—n)'; —n)l;

Proof. The set of i.d.z. ofthe system ;’(A, B) is defined as the set of roots of e.d. of the input
state pencil : s[7, 0] —/J —B] € From Theorem 12, Definition 16 and Proposition 10 we
conclude that the Weyr characteristic of ([J, —8B}. [7,0]) determines the structure of e.d. of the
input state pencil. Then from the above Proposition 57 the Theorem is proved. m
7.2.5 Calculation of the i.d.z. at A* from the Set of r.c.i.
Some further results on the characterization of i.d.z. are given below.

Remark 35 From the Definition 51 it is directly concluded that :

1. The matrix Q\ coincides with the i-th spectrum controllability matrix Bf defined by
(3.73).

Qi =%£?

2. The matrix Q])I1 coincides with the matrix Qfji defined by (6.6)
= OHi

O
Consider the set of r.c.i. ©(.4,77);" given by (6.7). Let the set of be rearranged
such that the index 6”, k= 1,2,...., be the r.c.i. which corresponds to the block Blk of B.

Then this is denoted as,

@\A,B)X = {eil,eil,....eik,...diVi), elk> O k= 1,2q000s” (714
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Consider now the set of differences
E\A;B))d: {g'jv s T s "y }

between the corresponding elements of the two sets, @ '(4,B)\i and the set of the Segre char-

acteristic of 4 at Ai, pA (™).
Tl #l 9, T2 @ O ik A A (7.15)

and let Yj(4A,B)\. be the set of the non zero values of the above differences, described by the

ordered set of integers,
£(AS5)a, = [(hj, 9Os/if > .. > hi > hi >0j;f = 1,2,...,/ (7.16)

Where cP is the multiplicity of hi (j = 1,2...,Si). Then we have the following result :

Theorem 49 The degrees of the input decoupling zeros of a system S(A,B) at s - ai are
defined by the above defined set of indices £(Af?)A (or the Y!(A, B)\i).

proof. Let rankQA (= rankilf) —p .Then, the number of linearly dependent rows of Q|, is
Vi —p and from the definition (3.31) of J|, we have npi2—Uql = ij —p.

1. For j = 1,2,... < hl: The total number of linearly dependent rows of the matrices

0\% QlI., ..., OQNiiis correspondingly Vi p, 2(vt- p), .., p\ (* - p). Then for the

successive differences of we have:
- njij = Vi-p, j = 1,2, ..,hi

2. For hi <i < hi : the matrix QA+l there are cr) new hnearly independent rows of Bl.
Then,
rankQj+l = (hi + 1) P+ ol
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M2

and the total number of linearly dependent rows of Ox,” , is

(m!'+ 1) yi-p)~ t}

Ox] is

Thus, the corresponding total number of linearly dependent rows of Qxi+2,

P\ +2)0i-p - 2al, (x+3) - p)- 30} p] (- p - pi-

and the successive differences of are

«m' - tif] =ui-p-a]

Rum the above we conclude that for j = p*, it is

n _1"1‘1'1/\"
n@i>—A M+1<f>

M-1) -P+@E+Dh™-PH-

AP p) >

=0> —a]/2
and p/ is a degree of i.d.z. at s = A* with multiplicity,

2nfl —(ngy  + g\, = 4]

The above result can be extended by induction for j

Proposition 58 The sum of the degrees of i.d.z. ats = Xi is given as,

dp + 02+ wm+ 4ik + *+ 4iy,

where [lj is the algebraic multiplicity of Ai and ty is the dimension of the controllable subspace

Tlr.

Proof. From the above relation (7.15) and Theorem 35 the relation is directly deduced. o

208



Example 10 Let now the uncontrollable continuous system given in Example 7. We proceed to
the calculation of the elements of the set £'(A, B) X by subtraction of the elements of @A B)X

from the corresponding of pXl (A). Then the i.d.z. are determined directly:

(a) mode Aj:

(b) mode A2

(¢) mode A3:

(d) mode Ad:

or we have: E(A B)X = {2}, Z(4, B)x, = {2}, £(A,B)x, = {1}, £(A,B)x, = {1} . O



7.3 Spectral Determination of the Structure of o.d.z. of a Con-

tinuous System S(A4,C).

The set of 0.d.z. ofa system S(4, C) is defined in Chapter 3 (Definition 28) as the set of roots

of e.d. ofthe output state pencil. Let the output state pencil of the equivalent system in Jordan
si-J 1 J
form S(J, F), be as = — G G
r 0 -r
Consequently the structure of 0.d.z. of the system S(4,C) is determined equivalently by
the root range of the output state pencil (Definition 15). As a first step in this direction the

following sequence of right a-characteristic Toeplitz matrices as in (3.27) may be constructed :

i-bl 0
o= 7P cemm = T 0 g @efion
r I J-bl

0 r
j-bl 0 0 0
r 0 0 0
i J—bl .. 0 0
e 0 r o o  gfimrtmxn
0 0 [ J-bl
0 0 0 T

The analysis that follows is similar to that of the previous case and the results mainly follow

by duality.

7.3.1 Basic Properties of the Rank of the h-Characteristic TOEPLITZ Ma-

trices

The characterization of candidate values for o.d.z. is defined by the following result:

Proposition 59 ForWb GC : b £ 3>(A) the matrix Tj) has full rank.
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Proof. Let.

J-67
yy=20
y1 1 J-bl
Tl 2 =0 0 ho=~ r
Nt j J —bl
_ ||
J —bl )
If b £ ~(j4) =>rank =n <y =0 and recursively y =0, ...,y.—0. m]
I_ i =z J
H 0
Proposition 60 Let b= Aj G $(A) and as in the case of i.d.z. express, Tjl. 0o v
¥ r

where Ht = J(Aj) —Aj/ £ RT TFis nilpotent, T' £ ([Fn Tri)x(n 7ri) is full rank, F* € Ok is (as
defined in 3.68) the matrix block of ¥ corresponding to J(Aj). TTien flie nullity of the matrix
T is defined by the nullity of the matrix Tj)., where,

H o .. 0 O
r2 o 0 0
I Ht 0 0
0 0 i 0
0 0 1 Hi
0 0 0 r,
Jj-blocks
m
Remark 36 IFe conclude that only the Aj £ <X are candidate values for o.d.z. O

Remark 37 IFe can study the sequence of nullity and the corresponding tests, for determining

the degree of o.d.z. by considering the case that corresponds to each one of the eigenvalues. O
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7.3.2 Right Nullity of the j-r» Single Block Matrix 7X

From the above we conclude that any Aj G <XA) is also a candidate o.d.z. The matrix can

also be partitioned according to (™) as in (3.70) .

Definition 53 The t-th reduced matrix of T" is defined as the matrix derived from F" (where

rik is defined in (3.72)) as it is indicated below:

pd_ 6CnXT«, t= 1,2,..., Tt and rfk = T for Vi= 0,-1, —2, .0
For any p > 1, pG Z we define the * operation on G i by :

rifc*P =r*pa r ~ +l-p, p = 1,2,

Let T, be partitioned as in (3.70). then we define the * operation on T; by some pG Z as:

P* Tj=F*p= [p*ril,...,p*rifc...,p*Ti nlpé(lniﬂ'p>..->pl(gjt+i_p >->pt2;@ui-p'

7.3.3 Normal Description of the j-r# Right Toeplitz Matrix

The properties of the corresponding Toeplitz matrices are defined below.

Proposition 61 The above defined j-th right Toeplitz matrix Tj is equivalent over C by ele-

mentary column operations to the following form :

Hi o . 0 0
1

1; o . (0] (0]

If Ht . (0] (0]

o . R/ o

7%0-1)

*d
o P

j —blocks
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Remark 38 The form T), is row equivalent to T) and Tfi will be called the normal description
of the j-th right normal Toeplitz matrix. Clearly, rankT” = rankT” . The right null-space of

Tl may be studied by using T{. since the two are row space equivalent. o

Proposition 62 Let y G Cjn and be partitioned as, y = M 2 1 h Then
yi-

vy GMT{Ty}, where T) GCl@+tm)xjn, if and only if the following conditions are satisfied,

Hiyy =10 =0
Hry2=-12% B fl =0
H>3 = and < p fy3=0 (7.17)
T 3 _
= _h ¢ Vj-1 3{32/3.— 0

The set of equations (7.17) comprises from two subsets i.e. the equations of the first column
are referred as the right recurrent equations of the set and the equations of the second column

as the right Kernel equations. We consider first the recurrent equations.

Remark 39 Let yi be partitioned according to Segre characteristic defined in (3.22) as,

H* y]/’n - ynk - yﬂu 94990

and from. the block diagonal structure of Ht and 1f3 we have that the set of the recurrent
equations is equivalent fo,

Hiky,;, =o

Hiky-rik - /" Tk

H*yrlk = (7.18)

1 H*ynk = ~JT lyrk

where takes values from the set of p\.(4). Equations (7.18) will be called the basic right

recurrent equations. i
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Lemma 12 For any > 1 the solution of the basic right recurrent equations (7.18) is given

by :
L forj <rik :
I/.g]:,k: 4 v -4 », (7.19)
Tik~j
where d\.k,dfik, dfik arbitrary,
2. forj > rik :
Vh = Y = g = 0
J~Tik+ 1
}/'l.k ...o
(7.20)
i-i =
nk (-ir-*<C “+’.«
Tk
where diiJ lk+1, arbitrary. mi

7.3.4 Output Spectral TOEPLITZ Matrices

The above results lead to the definition of the output spectral matrix the properties of which
define a characterization of the 0.d.z. Assume for the system S(A, C) the corresponding parti-
tion of the Jordan description T of C is given by (3.68). Let the Segre Characteristic of 4 at
s = Xt, Ai € 4(A) be given by (3.22) and the corresponding partition of T* as in (3.70) and
that the typical spectral block is described as in (3.72).

Definition 54 The y-th output spectral Toeplitz matrix is defined in a row block partitioned

form as shown below.

ML (7.21)

where.
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1.

For Vj < riVi :

(a) ifj < Tk, then

1%k Wk e 7V —3Tik
O _18c 2Tk
ML = £ Cjxj
0 0 0 1m
(b) ifj > Tik then
—1Tffe —2Tik Y 7 fik, Tik
0 —1.Tik Yyik-2,Tik T nk-iTife
0 0 .
L - —1,7ik —2Tife £ CjXTik
0 0 0
—1Tife
0 0 0 0
0 0 0 0
2. For Vic > ML = My o

Proposition 63 For any set of indices {rli > ... >tk > .. > > 0} the solution of the set

of equations (7.3) (right recurrent and Kernel equations) is determined by the vectors dj. where,

Mfdj = 0

Remark 40 The degrees of freedom of the set of equations (7.17 right recurrent and Kernel
equations) are determined by d\mj\i\ jQ . Furthermore, as for allj > TiVi : Qfik = QLi there

are no more degrees of freedom to the solution of equations (7.17). i
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Corollary 8 Consider the system S(A,C) with A) = > > > > > 0} and
let S(J, T) be the corresponding Jordan normal description. If Ty is the y'-th, A*-characteristic

Toeplitz matrix of S(J,T) and My is the j-th output spectral matrix of the system, then,

fer } =" {mQ

Definition 55 Using the My, j — 1,2,... output spectral matrices we define the Xl-input

spectral sequence as in (3.30), i.e.

JXi(G ,F )+ =  pr=dimNx.; k> 1} (7.22)

Theorem 50 The sequence Jy is piecewise arithmetic progression satisfying, the condition

Y —— ,J=1.2,.. (7.23)

In particular we have that strict inequality holds ifj = £ is the degree of an o.d.z. ofthe 5(v4, C)
pair. In this case the multiplicity of the degreej = £ is,

T ~ 2nji -n ¥+ (7.24)

The above result provides the means for computing the degrees of 0.d.z. with matrix based

tests.

7.3.5 Calculation of the o.d.z. from the Set of c.o.i.

The computation of 0.d.z. using alternative means provided by the c.o.i. is considered below

and the analysis is similar to that given for i.d.z.
Remark 41 From, the Definition 5f it is directly concluded that:
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1. The matrix Mx. coincides with the i-th spectral observability matrix Y defined by (3.74)>
ie.

k =rf

2. The matrix MY 1l coincides with matrix MHi defined by (6.15), i.e.

Consider the set of c.0.i. Z(4, C)X given by (6.16). Let the set of Z'(4, C)X be rearranged
such that the index Cik, k = 1,2,..., Dbe the c.0.i. which corresponds to the block Tj* of T .

Then we have

Z\4, C)x.= {Q,,ci2,.., Gk, -, Cuj, L >0,k= 1,2,..., Vi (7.25)
Consider now the differences
'(A,c )X = {pi,

between the corresponding elements of the two sets, the pX (4) and the Z'(4, C)Xi, that is

Th —Cil —pill TR2—c2 —Piz, = Tk —Qk—Viki TM ~ Qu 2 Py (7.26)

and let T(A C)A be the set of the non zero of the above differences, described by the ordered

set of integers,

T(AC)A >.>£ >0)z= 1,2,...,/ (7.27)
Where ~ denotes the multiplicity of  (j = 1,2, ...fj). Then we have the following result :

Theorem 51 77ie degrees of the o.d.z. of a system S(A,C) ats = Xi are given by the set of
indices T(A C)Xi. o
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Proposition 64 The sum of the degrees of o.d.z. ats = \i is given as,

Pn +Pi2+ -+P'ik + -+P"{\ =Pi (7-28)

where pi is the dimension of the unobservable subspace Vi.

Proof. From the above relation (7.26) and theorem (38) the relation is directly concluded. o

218



7.4 Spectral Determination of the Structure of Input (Output)

Decoupling Zeros of a discretised System

The set of i.d.z. of a discretised system S(A4,B) is defined as the set of roots of e.d. of the
input state pencil z/ -4 ,é . Let the input state pencil of the equivalent discretised system
in Jordan form be S(J, B): zI/ -J. B = *[J,0]-[J,-B]G Z *n+i.

The set of 0.d.z. of the S(4, C) is also defined as the set of roots of e.d. of the output state

P

zl - A
pencil A or of the equivalent discretised system in Jordan form S(J, f) :
C
si-J 1 J o
=S - n-fra,n
f 0 -f

Consequently the structure of i.d.z. (0.d.z.) of the discretised system S(A4,B,r) is determined
equivalently by the root range of the discretised input (output) state pencil. Following exactly
the same steps as in the case of the continuous system, it can been shown directly that the same
conclusions, theorems, propositions, lemmas, remarks etc., proved in the previous sections for
the determination of the i.d.z.(0.d.z.) structure of the continuous system are also valid for the
structure of i.d.z. (0.d.z.) of the discretised system.

In this section, we have to investigate the mapping of the structure of i.d.z.(0.d.z.) of a
continuous system S(4, B, C) to the corresponding structure of i.d.z. (0.d.z.) of the discretised

model S(4, B, C) under the two types of sampling.

7.4.1 Regular Sampling

For the case of regular sampling we have the following result:

Theorem 52 Under regular sampling, the structure of the i.d.z.(o.d.z.) of the discretised
model S(A, B, C) remains the same as the corresponding structure of the continuous system

S(A,B,C). Then it is,

(a) To each one of the i.d.z. (s —Ay)" (j = 1,2,....si) of the continuous system corresponds

the i.d.z. (z —Xi) ' of the discretised model.
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(b) To each one of the o.d.z. {z—A))" (G = 1,2,...,ti)of the continuous system corresponds

the o.d.z. (z—A"™ 1 of the discretised model.

Proof. : It is already known from Theorem 30 that under regular sampling, the Segre Char-

acteristic of 4 at Ai is equal to the Segre characteristic of 4 at \¢t: pli (4) = px

(a)

(b)

7.4.2

It have been shown (Proposition 53, Remark 30) that candidate i.d.z. of S(A,B) are
exist at * = A] €4>(A) and from Theorem 41 it follows that the set of i-t4 spectrum
r.c.i. of the discretised model is equal to the set of i-¢4 spectrum r.c.i. of the continuous
system: @(A,B)\1= @(A,B)X. Then the set of differences between the corresponding
elements of the sets p* (A),0(A, B)li and px ("4) ,©(A B)x ,is determined as in (7.15)
and remain also the same. Prom (7.16) we conclude that for regular sampling it is,

E(A,B)X = E(A,B)X.

Also candidate o.d.z. of S(4,C) exist at z = Aj £ 4%X-4) and from Proposition 46 it is
known that the set of i-th spectrum c.o.i. of the discretised model is equal to the set
of the i-th spectrum c.0.i. of the continuous system, Z(4,C)-X. = Z(A,C)\i. Then the
set of differences between the corresponding elements of the sets p\t (4) ,Z(A,C)xi and
px ~A~ ,Z(A, OQ=., is determined as in (7.26) and remain also the same. Prom (7.27) we

conclude that for regular sampling,

V(A,B)X = V(4,B)-X

and the theorem is proved. ]

Irregular* Sampling

For notational simplicity again the case of two eigenvalues Au and Xy collapsing is examined.

The obtained results can directly be extended to any case of a partial or a total collapsing,

to each cr-root range of 4, 4>cr(A). We assume that under an irregular sampling, the distinct

eigenvalues Aun and Xy of the continuous system correspond to the eigenvalue Ac of the discretised

system.
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Theorem 53 Under irregular sampling, the structure of the id.z. (0.d.z.) of the discretised

model S(A,B,C) is transformed from the corresponding structure of the continuous system

S(4,B,C).

(@)

®)

The two sets,

H'(4, B)\u — {quj, g2,  qUULquk ~ 0) k —1,2,..., vu}

Z(A,B)X = Aoy k= 1,2,...,M)

determining according to (7.15) the structure of’i.d.z. of the continuous system at s = Au

and s = Xy, corresponds the set,

>0, k—1,2,..., v¢)

determining the structure of i.d.z. at s = Ac of the discretised model; each one of the
gck(k = 1,2, ...,vc) is greater or equal to the corresponding number (one of the fuk (k =
L2 , vuor gk (k= 1,2 ,vy)) derived from the same matrix block of Bu or By of the

continuous system

The two sets,

Z'(A,C)xu = {Pui,Pu2i -iPuvAPuk > 0, k= 1,2,...,vu)
Z'(A,C)xy = |pyl,Py2l -,p'yuy\p'yvk > o, fc= 1,2, iy

determining according to (7.26) the structure of o.d.z. of the continuous system at s = Au

and s = Xy, corresponds the set,

Z'(A,C)-X¥ = {pelpc2 .. p'Akpck >0, k= 1,2,...,vc]

determining the structure of o.d.z. at s = Ac of the discretised model; each one of the
pek(k = 1,2, ...,vc) is greater or equal to the corresponding number (one of the puk (k —
L 2,..., vuor pvk (k—1,2,..., Vy)) derived from the same matrix block of Bu or By of the

continuous system.
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Proof. It is already known (Theorem 31) that, the Segre Characteristic px is formed by

the merging of plu(4) and p X (A).

P\c —Piu (A) UPiy(A) B{rcl,re2, rcue} = {rul,mu2, 7ura} U {Tyi,7ys. ... AV}

(a) The set of c-th spectrum r.c.i. rearranged as in (7.14) is,

(b)

= {0cl,0c2, —Ock, — Ocve},dck > 0,k = 1,2, ..., uc (7.29)

and each one of the above indices of 0'(A, B)x is, according to the proof of Theorem 43,
equal or smaller to the corresponding index of the same matrix block of Bu and By of the

continuous system. Then from (7.15) the result is proved.

The set of c-th spectrum c.o.i. rearranged as in (7.25) is,

zZ14, c)-xe = {Cci,Cc2, MCcte,....L ¢), v > 0,k = 1,2,..., (7.30)

and each one of the above indices of Z'(4, C-)x is, according to the proof of Theorem 47,
equal or smaller to the corresponding index of the same matrix block of Tu and Fy of the

continuous system. Then from (7.26) the result is proved. |

The above Proposition suggests that under irregular sampling it is possible to have i.d.z.

(o.d.z.) of the discretized model with greater degrees than the corresponding i.d.z. (o.d.z.)

of the continuous system. Also under the conditions described in the following Remark, it is

possible to have the generation of new i.d.z. (o.d.z.).

Remark 42 Ifinto some block ofBu or By (Tu orTy) of the continuous system (with Qhu, Qhv

M

wMffy) as normal structure according to Definition f1 (49)), let into the block Buk (Tur)

we have Yuk — tu% (Quk = tu"), while the corresponding index of the discretised system is

@k < Tuk (Guk < Tuk) then we have the generation of a new i.d.z. under irregular sampling. o

As an illustration of the above consider a continuous system Sj(J.B. r), the Jordan block

Juk £ CTIlk*Tik of J and the corresponding blocks Buk of B and Tuk of Tand Yuk = ruk — 1.
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Cuk — Tuk’

Au 1 0 0 Suk. 1
0 Au 0 0 2
0 0 ! 0 (ARruk-2 ruk —2
0 0 U _ugey t @k= Tk 1
0 0 0 A PuTk
Yk '1«(’2 ~ukruk<l
T
am Tk ~ 1 2 1

So for the continuous system we have the i.d.z. (s —Au) and no one o.d.z. Let under

sampling for the corresponding discretized model S(J,B,T) be :

Ac 1 0 0 " 1
0 Ac 0 0 Ik 2 2
0 0 1 0 xp o < @—Tk 2
0 0
A —Cxck- 1
0 0 0 A &T
%k — 2 o Yhag-t Tk
T
Ch—Tk—1 . 2 1

where rck = Tuk, Ock - Tck 2 < 6uk. @k —~ 7% 1 < Quk* Then we have the i.d.z

and the generation of the o.d.z. (z - Ac).
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Example 11 Consider the uncontrollable continuous system given in Examples 7 and 10 be

under the irregular values of the sampling period as already have been examined in Example 8.
a)

a.l) Fork—1,23,5,6,7,9,10,11,...

a l1.1) mode Al2 $

Pal (d) S'(~)an  Ldz
6 4 2 (z —AI12)2
6 3 3 (2 - A12)3
3 3 0 1
3 3 0 1
1 1 0 1
1 1 0 1

to the above i.d.z. correspond the i.d.z. (s —Aiy2 and (s —A2)2 of the system,
a 1.2) mode As:
Ks (4) 0(Aa)x z'(4,6)-X3 id.z.
3 2 1 2- M)
1 1 o 1
to the above i.d.z. correspond the i.d.z. (s —A3) of the system,

a.l.3) mode As:

~Ad (4) £'(A % id.z.
3 2 1 (z - Ad)
1 1 0 1

to the above i.d.z. correspond the i.d.z. (s —Aa) of the system.
a.2) Fork —4,8,12,....

a.2.1) mode A2 mas above.
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a.2.2) mode Aszs :

PAY (4) S(A-B)il4 idz.
3 2 1 (z —A34)
3 2 1 1
1 1 0 1
1 0 1 (2 —34)

to the above i.d.z. correspond the i.d.z. (s —A3) and (s —A4) of the system.
a.3) For k= 8,16,24,...

a.3.1) mode X\2M:

pi (A) 0(")akx idz.

6 4 2 (z —A1234)2
6 3 3 (2 —A1234)3
3 3 0 1

3 3 0 1

3 2 1 (z —Al1234)

3 2 1 (2 —A1234)

1 0 1 (z —A12349)

1 0 1 (2 —A1234)

1 0 1 (2 —A1234)

1 0 1 (2 —AI234)

to the above i.d.z. correspond the i.d.z. (s —Aj)2, (s —A2)2,(s —A3) and (s—A4)

of the system.

b T=

b.l) Fork=1,2,3,4,6,7,8,9,11,...
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b.1.1) mode Al4;

PAl4i4) ©(A% 1

6
3
3
1

1

4
3
2
1

0

id.z
(z—- A14)2
1
(2 —A14)
1

2 - Au)

to the above 1.d.z. correspond the i.d.z. (s —Al)2 and (s — A4) of the system

b.1.2) mode A23;

NAB (M)
6
3
3
2

1

@A % 3
4
3
2
1
0

id.z.
{z- A23)2
1
(z- A3)
1

(z—A23)

to the above i.d.z. correspond the id.z. (s —A2)2 and (s—A3) of the system..

b. 2) Fork = 5,10,15,20,....

b.2.1. mode A1234 as above.

o T ="

C.

l) Fork —1,2,,4,5738,10,...
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c.1.1) mode A13:

PA3id) O0(A % B E'a-B),» idz
6 4 2 (z —A132
3 3 0 1
3 2 1 (2 —A13)
1 1 0 1
1 0 1 - A13)

to the above i.d.z. correspond the i.d.z. (s —AJ)2 and (s —A3) of the system

c.1.2) mode X24:

Moy (A) o(Ar)ay £'G % 4 2 Ldz

6 4 2 (2 —Aog)2
3 3 0 1
3 2 1 (2 —A24)
1 1 0 1
1 0 1 (2 —Azy)

to the above i.d.z. correspond the i.d.z. (s —A2)2 and (S —A4) of the system.
c.2) For k= 5.10,15, 20.....

c.2.1) mode A1234 as above.
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7.5 Conclusions

The results of this section provide an extension of the classical spectral analysis for the char-
acterization of controllability and observability results (Gilbert results [Gil., 1]) to the char-
acterization of degrees of divisors associated with the input and output decoupling zeros of a
continuous system. The new framework provided here is a natural one for characterizing the
corresponding degrees of input and output decoupling zeros to the case of irregular sampling.
In fact, the merging of spectral matrices and the spectral analysis provide a simple method for

characterizing i.d.z., o0.d.z. without resorting to algebraic tests.
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Chapter 8

SAMPLING PROPERTIES AND
FINITE AND INFINITE ZEROS

8.1 Introduction

A number of general results on the asymptotic properties of zeros of discretised SISO systems
under special forms of sampling have been defined in [Ast.. Hag. & Ste.]. The overall problem
of the mapping of zeros under sampling is an open issue however. Here we examine for the
case of multivariable systems with the same number of inputs and outputs a particular aspect
of the zero mapping problem which has to do with the migration of finite zeros under special
conditions affecting geometric aspects of the system to migrate at infinity. An integral part of
the work here is the computation of the discretised zero polynomial and some of its properties
under special types of sampling.

The described expressions in Chapter 3 for the zero polynomial of the continuous system
[Kar., 3] may also be applied in the case of discretised model for the calculation of the discretised
zero polynomial coefficients. The existence of a set of eigenvalues located on the imaginary axis
and the collapsing of such eigenvalues to 0 is a precondition for a further migration of finite
zeros to infinity under irregular sampling. This case is investigated here and this highlights

another aspect of the effects of irregular sampling on discretised systems.



8.2 The Zero Polynomial of the Discretised Model

The Rosenbrock’s matrix pencil of a square and strictly proper system S(4,B,C) has been
given in Chapter 3 by relation (3.77). The corresponding Rosenbrock’s matrix pencil of the
discretised model S{4,B,C) of a square and strictly proper system S(4,B,C) is also defined
by :

zi - A -eé

-C 0

P( *)i- ¢. -t-m) x (n-t-m) jNj (8 1)

Where according to the previous analysis for a system with ZOH we have,

at p o { "“"do)B, C=C (8.2
or in a Jordan description,

J=¢r,17=E£, £=T (8.3)
Let T) denote the Jordan description of the discretised system S(4,B,C). Prom

Theorem 26 it is directly concluded that if the continuous system matrix J is in simple form,
then for every value of the sampling period 7 the corresponding matrix J of the discretised
system is also simple. Prom Chapter 4 the relations between the discretised and continuous

system parameters are also known. Prom this description we have:

Proposition 65 For every value of the sampling period T, the matrix E of the discretised
model S{A. B, C) of a square, strictly proper system S{A, B,C) with simple matrix A and with
none of its eigenvalues on the imaginary axis, except possibly 0 (Aj ~ (I —0), i = 1,2,...,n) is

a diagonal and non singular matrix.

Proof. From the simple structure of J, the relations 4.19, 4.17 and Theorem 27, we have,

V=U=1In (8.4)

and
A 4- 1 An~ 1

—=1 eJado = diag Vit = diag{&} (8.5)
i+i
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where v\ is the number of eigenvalues of 4 equal to 0 (Ai = ... = Aj = 0). Then as none of
the eigenvalues is located on the imaginary axis it is A,,1+, A,,1+2, = An/ 1 and proposition is

proved. o

Remark 43 The parameters & in E — diag {£j,i € n} have the values £ = T, if Xt = 0 and

8.2.1 Calculation of Coefficients of discretised zero polynomial

As for the case of continuous systems (relation 3.78), it can be proved that the zero polynomial

of such a model is also of n —m degree and it is of the form:

z(s) = dn-mzn tn+;71-771-1zn m 1+ ..+ alz + {0 (8.6)

where the coefficients of the discrete zero polynomial are also given, as in the continuous case

(relations 3.81), by the relations,

Onm — (ft'

where as for the continuous system the bold letters y 1, ;3 denote the Grassman products of the

rows of T, columns of B respectively.

Proposition 66 Let the proper linear system S(A,B,C) strict equivalent to the Sj(J,B. p),
where J is in simple structure, iffor the discretized model S(A, B,C) itis A4 1,i =iq+ 1,...,n

then for every value of the sampling period T, the coefficients of the discretized zero polynomial
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art defined as functions of the corresponding continuous system parameters, that is :

O-n-m = = (7T£m (-)/3)
-1n-m- |
(8.8
do =
Proof. From the simple structure of J it is :
2]
P B 33
L7 o
B = 2B= Ej:lju_ze "o m
SO,
7T=7} A7 "A ... A7 =7t,/3=1./" AE§ 2 A .. A=Pnm
and from the definition of the Grassman product it is:
P = £m(EB) =Cm(E)£fm(B) = £m(E)/3
~+j) = £m(EW)* )) = *(E,.))")
and the proposition is proved. m

Remark 44 77ie multiorthogonality property of the vectors 7T1,/3, introduced in Chapter 3.

generally is the same as the corresponding notion for vectors of the continuous system 77T./3.n
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Prom the conditions 8.8 and Proposition 65 we conclude that E is a diagonal and non
singular matrix. Then Cm(E) is also a X diagonal and non singular matrix and a
such matrix generally does not affects the multiorthogonality property. The computation of the

discretised zero polynomial is shown by the following example.

Example 12 Consider the continuous system with simple structure given in Example 2 which

is discretised with ZOH. Then, as matrix A has a simple structure Jordan form, we have

6T 0 0 0 0
0 e (-2.0-2.0)T 0 0 0
0 0 g(—2.0+2.00)T 0 0
0 0 0 g(-2.0+4.00)X 0
0 0 0 0 g(-2.0-4.0t)r
e-6T-1 0 0 0
g(-2.0-2.01)7"_1
0 22.0-2.0i 0 0 0
e(-2.042.00)T _j
0 0 2.0+2.01 0
e(-2.0+4.0»)T _j
0 0 0 22.0+4.0i
0 0 0 0 el
e-6T _ 1 e(-2.0-2.0)T _ i e(-2.0+2.0{)T _ =
—6 = 2020 ° = -2.0+2.0i °
e (-2.0+4.0i)T _ i e(-2.0-4.00)T _ j
N -2.0+ 40* ° = —2.0 —4.0*

and consequently the parameters B and P of the Jordan equivalent discretised system are,

0 1

1-3% -2-4%

B =EB 1+ 3% —2+ 42
—* 2+ 4

3+i1 2—4r
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p p_ -4 AR ALy pG AR E
3 -1 -1* -1+ \i 2 —f* -2 + ft

it is
~ N aé { 6 £2 £3 Cl g5 } ~

C2(—)—d|ag| £j£2 ~NE3 £1£ 4 £|£S £26 £2£4 £.f6 £3£4 £3f6  f4fs }

£2(-~) = diagl £2£3 £2£4 £2%£0 £3£4 £3£5 £4f£6}

C2(-27 = diag 1 £1£3 £i£4 £i£6 £361 £3£s £4£5)
€2(-3)) = diag 1 £j£2 £j£4 ~E£5 E£2£4 £2£s £4£s}
~"2(-4)) = diag 1 £j£2 E£4£3 £-[£5 £2£3 £2£5 £3£5}
£2(-5)) = diag I  £i£2 £i£3 £if4 £2£3 £2£4 £3£4)
£2(= - ding § ey oeges eees ) £2(0) 7 dine § pes eaes ege J
A=) = diag Y f£2£3 £2£5 e3f£5 1l A diag § €263 go£q  £3£4 j)
£2(-7) = diag § giga £ies eqes ) (24) - diag § ¢ig3 £i£5 £3e5 ||
e2u®s)) - diag § gig3 £ie4 £3e4 ] 34) - diag § gig2 £i£5 £285 |
2-2(—;3’5)) = diag § gipp £igd  eoeq 43 diag § ¢ig2 £i£3  £2£3
3)) = £4£5, Az(-rl’2'4)) = £3£5; 2(- P2 e c2(n 34)) = 12& £2(H1AS> = (214
£2(HM ’5)) = £2£3,i 2(E2,34)) = £i£5, £2(H2%3°5)) = £i£4,£2(H245)) = £i£3,£2(~34’5)) = 6£2

from the above and the corresponding calculations of the continuous time Example 2 we have

the following expression for the coefficients of the zero polynomial :

B3="7£2(-)/3 (8.9)
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where

= -143% -1-3% —3+% 3% 20F 24+ 8 -8 + 4% -8-4% 24. g 28*

T= f4% Tn"x £ 46% T “6x "[* _5~% Al —s* d+ 5% 5+

then
37 37 201 201 15,, - 17,, 17,,
S = ——~£1£2—4~£1£3 —-)[~£1£4—4 K5+ — M4+ —O5+ — - AN3&+
¥ (-N6N2 —N-£1£3 - -6+ - 28M2M —3MNS + 3M3£4 + 28£3£5' (8.10)
Let a regular value of the sampling period beT = | . We may proceed to the numerical

calculation of the coefficients for the above system. Prom the expression (8.10) we have :
B = —1.6498

For the calculation of ;2 we have:

20+
24 + &*
-8 + 41
(e-60T) 4% _] - 5% _1+ 5% 94 £27) = (.29819
-8-4%
24-8%

-28%*

S3 ok
g(—20—20t)T4 P f+ 6 * £.6 * 1 o+ 1% -1+ % fi £2(H2))

= -0.25265 + 0. 96608*

235



L(-2.0+2 WOLTj

s(-2.0+4.0i)T

,(-2.0-4.0i)T

' 25

+i AN+ 6i 6 11—
-0. 25265 - 0. 966082
fri f i f-6z -|* -1 -;i -1+
= -1.0875 - 7.0641 x 1022
£ 41 f-i f+6i -fi +-« -1+1Ji

= -1.0875 + 7.0641 x 10~2i

a2 = 2.3821

For the calculation of aj we have:

(e _6'or)e( 20 201)7

-84

—1+ oi 24—

2+

-28%*
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£2(H3))

1+ 3
1= 30
-3 -
£2(=4)
-8 + 4
24 - 8

-1 +3 %

— —3i

-3+ 2
C2(H5>)

20z

24 + &

-84

= .16559+6.2242 x 102z



= .16559 + 6.2242 x 10*21

24 + 81
. -6.0T"| (e(-2.0+2.0i)T" P | g g CaiHI3) —8+4l
—281
= .16559 -6.2242 x 10"2z
201
,-6.07+ €(-2.0+4.0,)T |* +V £2(S14) -8 +4l
24-81
5.6946 x 10“2+ 8.3379 x 10“21
201
c -6.07+ (-2.0-4.01)T % __b_l 1+l 24 + 81
-8-41
= -5.6946 x 10-2 - 8.3379 x 10~2i
—3+1
e(-2.° -2.01)re(-2.0t.0l)r f +6 f-62z §1 £2(E23) -3-1 = -.47977
-281
— —31

-ZO-ZOG)Tg(- 20+401)T f -z f —6Z _ I + 1 62(E2’4% _3 1

24-81
= -.55585 + . 18697z
-1 - 31
f-z f +61 -1+1x €2H»») —3+1
-8-41

e(-2.0-2.0i)Te(—2.0-4.0i)T

-. 1986+. 428911

-1 +31
yox P-61-1 & £2E34) -3-1 = -, 1986-, 42891z
—8+ 41

g(-2.042.0i)Te (-2.0+4.Q)T

237



g(- 2.0+2.0)Xg(—2.0-4.00)T C o 4i t s es ws.. C2AB3)  3+i =-.55585-. 18697
24+ 8i
—1+ Si
¢(-2.0+4.0i)re(-2.0-4.0i)T % i 245 — _%t £2(E4%) -1 - Si 3.9314 x 1072
201
oi = -1.7321

and for the calculation of ;o we have correspondingly :

g(_6.0)Xg(-2.0-2.0i)Tg(-2.0+2.01)x (_ 28i)" A =3.6107 x 10~2
y8 J

;(-6.0)xe(-2.0-2.01)re(-2.0+4.01)x"24 _ 8- 375 + 7 = -2.8862 x 102+ 5.4076 x 10“2?

60T (-2.0-2.00T (-2.0-4.00T /1, _jj 6 s4(—8 —4i) = 1.4901 x 10“2- 1.2632 x 10~z

e(-6.0)re(-2.012.0l)xe(-2.0+4.0l)r £26> (-8 + 4% = L4901 x 10“2+ 1.2632 x 10~2?
e(r0-0)Te(2.0m2.00Te (-2.0-4.01 -x -i 1= -2.8862 x 10"2- 5.4076 x 10~2i
¢(-6.0)re(—2.0+4.0%)Te (-2.0—4.0i)X A (20z) = p 7073 x ppl-2

g(-2.0-2.0)Xg(—2.0+2.0i) Tg(-2.0-4.0)X (_g _ A eghN = 19071 —. 139297
8(-2.0-2.0)Xg(-2.0+2.0)Xg(-2.0-4.0)X (g + 9~ A +gr = _ 19071 + .13929i

e(-2.0-2.0i)Te(-2.0+4.0r)re(-2.0-4.0)x* 1 il -7.2591 x 1042-6.6727 x 10 2f

g(—2.0+2.0i)Tg(-2.0+t4.0t)Xg(—2.04.0))r * (-1 + Si) = -7.2591 x 10”2+ 6.6727 x 10~2z

a0= 0.50134
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Thus the zero polynomial of the discretised system is :
z(s) = —1.6498s3 + 2.3821s2- 1.7321s + 0. 50134
and the system invariant zeros are defined as,

zl = 0.5414, ;2 = 0.45124 + 0. 598061, z3 = 0.45124 - 0. 598061

8.2.2 Migration of the Discretised Zeros to Infinity

If the continuous square system has a CB full rank, then according to Theorem 24 the system
invariant zeros are n —m in number. The corresponding discretised model has also n —m

invariant zeros if CB is also full rank or equivalently if]
dn. o = = (7TEm(H)/3) ~ 0

Example 13 For the continuous time system of Example 2 we have that the first coefficient
of the zero polynomial is a3 = (7713) = —85 and the first coefficient of the zero polynomial of
the corresponding discretised system, of Example 12 is given by Equation 8.10. The process of

sampling may send a zero to infinity if ;3 = 7612(H)/3 = 0. This is equivalent to :

_t 66 - 1f66 - "p66 - 766 + 66 - 466 +y66 + 66 ~466
+1(-j66 - -j66 —"A 66 + 7766 - 2866 - 366 +366 +2866) =0
The above holds if and only if the following conditions hold true,

-3766 - 3766 - 20166 - 20166 + 3066 - 1666 + 3466 + 3466 -1666 = o (8.11)

7166 - 7166 - 1366 + 1366 - 11266 - 1266 +1266 + H266 = 0 (8.12)

The above conditions describe an algebraic variety (set of points defined as solutions of
polynomial equations) with the further condition that the 6 must express their origin from

the discretisation process that is: As it follows from (8.5) we have that 6 = T, if A*= 0, or
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£ = X*-1if A, 70 0. Investigating the existing of solutions of (8.9) is a difficult thing to test
and thus we examine the special cases where collapsing occurs. Note that for = 0, we must
have A, 0 and eXiT — 1, which according to Proposition 29 and Definition 37 means that A;
is located on the imaginary axis (A, = 0=+ ju) and a real collapsing occurs for the sampling

period T or A, € 4>0(2l), where:

*0(A) = {VAj € 4>(T), Re(Aj) = 0, At + 0} (8.13)

For this specific example, since there aré no eigenvalues on the imaginary axis for the
continuous model, none of the £;’s is zero and thus conditions (8.11) and (8.12) are those
needed to specify the values the values of T for which collapsing may occur. The analysis so
far, as it is demonstrated by the Example 13 reveals the following properties regarding the

migration of zeros at infinity as a function of sampling.

Theorem 54 For a continuous square system that has n —m finite invariant zeros the following

properties hold true:

(a) The discretised system has k—1 zeros migrating to infinity for some value of the sampling
period T if and only if
(ffJp) =o

[E~.(T,,T')|=0 (8.14)

(b) For the generic value of the sampling period T the discretised model has also n —m finite

zeros. O
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The result readily follows from the expression of the discretised zero polynomial. In fact,
conditions (8.14) are equivalent to a set of homogeneous polynomial equations in which
define a variety (proper variety of the corresponding projective space) and this leads to that
for a generic T equation (8.14) cannot be satisfied.

For the case of continuous systems with eigenvalues on the imaginary axis, simple, or mul-
tiple collapsing of pure imaginary eigenvalues may occur to 1 (as this has been established in
Chapter 3). This leads to that subset of the £j’s in the variety described by (8.14) becoming zero
and as a result we may get migration of finite zeros to infinity, or even total system degeneracy.

This is demonstrated by the following example.

Example 14 Consider the continuous system S(A, B,C):

6.0 0 0O 0 0 0 1

0 0 30 -3.0 L0 2 0

A= 0 -15 0 -10 15 ,B= 0 -1
0 L5 10 0 L5 1 3

0 -1.0 -3.0 -3.0 0 2 0

70 -20 0

C:
3 -6 -3 - -2

with the following simple structure, Jordan form of A (all the four complex eigenvalues

located in the imaginary axis) :

-6 0 0 0 O
0 -2i 0 0 O
J = 0 0 2 0 O = VAU
0 0 0 4 O
0 0 0 0 —4
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or MA) = (.-6,--2i, 2i, 47,47}, 40(A) = s.27, 27, 47, -47} and where,
{--6, >o(A) = ¢

10 0 0 0 10 0 0 0
0 1 -1 +% -1-i -2 o 4 ] ] ]

V=01 —d—i -1+4+* 2 ,u= 0 -4 gk gl gt 4. i
0 1 I-i 1+% -2 0 -4 % g e
0 1 1+* 1— 2 0 4 « \ 7

Consequently the parameters B and F of the Jordan equivalent system are,

0 1
1-3i -2-47
+ 4i
B=VB 1+3i -2+47 ,r =cu I+ 4 AT
37 2+47 Si-ix I * 2l
3+7 2—47

The zero polynomial of the above system, is of the form,

z(s) = a3z3+ a2z2+ alz + ao

As B and T are identical to the corresponding parameters B and T of the continuous time

system of Example 2 it is also a3 = (7T3) = —85.

From the calculation of the remaining coefficients, as in the case of Example 2 we have
a2=377.0, al = -252.0, a0- 1180.0.

Let us now assume that the above continuous time system is discretised with ZOH. Then,

the corresponding matrix 4 has a simple structure Jordan form, that is,

e-67 _ } g(-2.09)7 _ 2 g(2.0)7 _ j e(d.09)T _ j g(-4.0t)r _ 2

-6 > 201 ° 2D)i +0i ’ -4.0%*
and
e-6T _ 2 e(-2.0)T _ 2 g(2.00)T _ x c(4.0i)T _ 2 e(-4.00)T _ =2
—6 = -2.0%* = 20z N = 4Jh = -4.0*
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As in the previous Example 12 we have the following expressions for the coefficients of the

zero polynomial

A

B = 7<6(-)/3

where
/3=’ —1+31 —1—3% -3+i —3— 201

7= f 4+ Y f i o q <I*

then
37 37 201 201 15, v, 17, 17,
a3 — ~j6 6 -j6 6 Ne 66 N66 + 7766 ~466 + -y66 +
1-"-0f2~ ~T N4+ THNIMS _ 282 ~ 325+ 3&£4+ 2866

The conditions for migration of a zero to infinity is é3 = 0 or equivalently,

-3766 - 3766 - 20166 - 20166 + 3066 - 1666 + 3466 + 3466 - 1666

7166 - 7166-1366 +1366-H266-1266 + 1266+ H266

We note the following:

(8.15)

T~ 466 +

Il
=]

I
=]

. If collapsing of A2 A3 occurs, then 6 = 0,6 = 0 and the above conditions become

-20166 - 21066 = 0=>6(6 - 6)- 0, -1366 + 1366 =0P6(6 - 6)=0

Given that 6 7 0, + follows that 6 = 6 which means that A4, A5 must collapse to a

real value (since they are complex conjugate) and this implies that 6 = 6 = O With

these values we can compute the zero polynomial of the discretised system. In fact let the

irregular values of the sampling period 7T = |, %. Then the corresponding values of
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the coefficient and the zeros are summarized by the following Table:

ro T 1 ? g
8.9833 x 103 1.8674 x 10~3  8.07 x 10-5 6.5124 x 10-t

) —1.01 — 5 —.86603z -1.0 1.0

A3 4-1.01 -.5 4-. 86603z -1.0 1.0

M -1.0 — 5 —.86603z 1.0 1.0

As -1.0 -.5 4 86603z 1.0 1.0

G 16517 16636 16665 16667

0 .5—.51 43301 - .75z -1.01 0

£3 .54-.51 43301 + ,75z 1.01 0

£4 .5i -.21651+.3751 0 0

£5 — 5 -.21651 - .375i 0 0

3 6.316 26.339 13.416 0

2 2.6751 6.1647 -20.917 0

a 27984 -7.4792 1.5851 0

ho 5.0918 2. 5797 5.9155 0

i -.72848 -.76896 1.0046 -

;2 .28226- 590531 26746 - 23631  -.44092 -

z3  .28226+ 590531  .26746 4 23631 99547 -

In the above table of arithmetic results, it must be noted that :

(a)

(b)

For the irregular values of 7 = f, and | for which, no real collapsing occurs, all the
coefficients of the zero polynomial are non zero and there exist no one migration of
zeros to infinity.

For the irregular value of T = f, we have a real collapsing between the eigenvalues
A2 and Az to — and a real collapsing between the eigenvalues A4 and A5to 1. We
have £4 = £5 = 0 but as £1, £ and £3 are different from zero, the matrix C2(Ti)
remains different from zero and so is (3 and so there is no one migration of zeros to

infinity.
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(c) For the irregular value of 7 = 7, we have a real collapsing between the eigenvalues
A2, A3, Adand A5to 1. As £2 £3, £4, £ becomes zero, the matrix £2(E) becomes also
zero. If the matrix £2(E) becomes zero, then all the submatrices of C2(E) becomes
also zero and consequently all the coefficients of the zero polynomial becomes also
zero and this leads to complete degeneration of the zero polynomial, i.e. it becomes

identically zero.

2. Consider the following regular values of the sampling period : 7 = f,f,f* We proceed
to the numerical calculation of the coefficients for the above system and the results are

summarized below:

T T
r § 7 :
12314 6. 7692 x 10"2 2.3054 x 10"2

~ o .T76604 - 642797 62349 - 781837 .30902- .95106?
A3 .76604 + 642797 62349 +.78183? .30902 + .95106?
M 17365 + 984817 -.22252+ .97493? -.80902 + .58779?
As 17365 —984817 -.22252 -.97493? -.80902 - .58779?
£1 .14614 15538 .16282

£ 32139 - 11698z 39092 - 188267 47553 - .34549?
£ 32139 +.11698?  .39092+ .18826? 47553 +.345497
27 2462+ .20659f  .24373 + .30563? 14695 +.452257?
g5 .2462 - .20659z .24373 - .30563? .14695 - 452257

03 6455 3.0518 9.515
2 4.3788 2.8526 84229
G -8.0737 -6.8808 -1.7602
0 5.1331 6.2513 6.4125
i -8.3878 -2.3013 -.97962

z2  .8021 - .55199z .68327 - .65058? 44555 - 69967
;3 8021+ .55199? .68327 + .65058? .44555 + .6996?
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The above example demonstrates that there exist cases of collapsing which lead not only to
zeros migrating to infinity but even making the resulting discretised system degenerate. This

is summarized as follows:

Corollary 9 For continuous time systems with eigenvalues on the imaginary axis, there exist
values of sampling that lead to discretised models for which zeros may migrate to infinity, or

becoming degenerate. o

The emergence of such phenomena is due to the event that a number of becoming zero; in
this case migration of zeros to infinity, or degeneracy is independent from the numerical values
of the B, C matrices and they depend on the original eigenvalue pattern. We shall refer to such

zero transformations as structural transformations due to collapsing.

8.3 Conclusions

The zero polynomial of the discretised square system has been defined; this expression allows
the further study of discretised zeros under sampling and leads to conditions characterizing the
migration of zeros at infinity as a function of the sampling. For the case of irregular sampling,
it has been shown through examples that drastic changes to the overall system may occur for
certain types of systems, which may even lead to total system degeneracy. The study here is of
preliminary nature and the direction of more explicit results has to use the explicit structure

of the Segre characteristic of the open loop system.
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Chapter 9

CONCLUSIONS, FURTHER
WORK

The problem of investigating the effect of sampling rate in the discretisation of continuous time
linear systems under Zero Order Hold devices has been the main subject of this thesis. The
main objective was to initiate research in the area of Model Based Theory of Sampling, which
may act as a complement to the classical Signal based theory of Shannon [Sha., 1] and thus it
has a significant role to play in the development of modern Computer Control methodologies.
As such, the work here belongs, to the general area of ‘Tmplementation of Digital Schemes".

The motivation for the study undertaken here has been the original work by Kalman [Kal.
Ho & Nar.] on the loss of controllability under certain values of sampling. This initial observa-
tion has been fully developed here and has led to the classification of sampling rates to regular
and irregular. The main part of the work here has been the study of the effects of irregular
sampling on a number of structural properties, such as Segre characteristics, controllability,
observability, Zero polynomial. As such , the results in this thesis form part of the study of the
mapping of model based properties from the continuous time (4,B,C) model to the discrete
time (4.B, C) model as function of the sampling rate. More specifically, the following type of
results have been derived..

The basis of the approach established here has been the classification of the set of distinct

eigenvalues into groups having the same real part. For such sets it is shown that collapsing of
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eigenvalues under sampling may occur, if certain relationships hold between the imaginary parts
of the eigenvalues and the sampling rate is appropriately chosen. Collapsing characterizes the
case, where two distinct eigenvalues of the continuous model become equal for the discretised
model; the special value of such sampling has been defined as irregular, whereas all other values
are called regular. Under irregular types of sampling, phenomena such us merging of Segré
Characteristics, generalized eigenspaces and corresponding Jordan forms merge and a detailed
study of such phenomena has been given. The results in this area completely characterize the
mapping of the structural properties from 4 to A.

The study of structural properties of the mapping from (4, B) to (4, B) and (4,C) to
(4, C) has been considered next using the fundamental properties of the irregular sampling. It
has been shown that regular sampling preserves the controllability and observability, but this
is not necessarily the case for irregular sampling. The results in this area also indicate that
the classical duality between controllability and observability do not completely carry over, as
duality between properties of the discretised model.

The effect of collapsing under irregular sampling on controllability, has been examined in
detail. This has led to the emergence of two distinct forms of loss of controllability; the first is
of structural nature and depends on the merging of Segré characteristics, whereas the second
depends on the numerical parameters of the corresponding model. Similar results are also
established for observability, but their derivation is of simpler nature.

The effects of irregular sampling on controllability, observability of the discretised model
has been further expanded by developing additional results for the problems of determining the
dimension of controllable subspace (unobservable subspace), as well as determining the degrees
of the newly formed input (output) decoupling zeros under irregular sampling. The first problem
is based on the use ofthe cyclic invariant subspaces of 4 and leads to tests defining the dimension
of the corresponding spaces. Determining the degrees of the newly formed o.d.z., i.d.z. of the
discretised model under irregular sampling is based on some new characterization of such zeros
for linear systems. The spectral characterization of controllability (observability) together with
results for the determination of degrees of divisors using properties of Piecewise Arithmetic
Progression Sequences lead to a simple new test for determining the Segré characteristic of the

newly formed decoupling zeros. These two types of results complement each other and complete
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the study of loss of controllability, observability under irregular sampling.

The last area examined in the thesis is that related to zeros of the discretised model. The
derivation of an explicit form of the zero polynomial in terms of the state space parameters allows
us to relate the effects of structural transformation of 4, B on the zero polynomial and thus
provides a useful framework for studying the mapping of zeros problem from the continuous to
the discrete domain. The effect of irregular sampling on the migration of finite zeros to infinity
has been examined and it was demonstrated that for certain types of systems and sampling
rate, finite zeros of the continuous model move to infinity. In certain cases, irregular sampling
may even lead to total system degeneracy. A variety that characterizes the loss of zeros to
infinity has been defined. The results here are of preliminary nature and by no means complete
the study of the zero mapping problem, which from many aspects is still open.

The model based theory of sampling is an open area and there is a number of open issues

which are subjects for future research. Amongst the topics of interest are:

(a) Investigate the effects of irregular sampling on the values of dynamic indices, such as

controllability, observability, output nulling indices.

(b) Provide a detailed investigation of the zero mapping problem using the already derived

expression for the zero polynomial.

(c) Examine the effects of irregular sampling on transfer function invariants such us Plucker

matrices.

The above family of problems, as well as those considered in this thesis, deal with the
mapping of invariants and the associated properties. Another family of problems is finked to

the transformation of design indicators, that is:

(d) Study the effect of regular and irregular sampling on property, design indicators such as

Nyquist, Bode diagrams, singular values, condition numbers etc.

Although the values of irregular sampling is a set with specific values and such nongeneric
cases can be avoided, what happens to the system properties when the sampling is regular, but
is value is “close” in some sense, to irregular sampling values is an important issue. This leads

to the following interesting family of problems:
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(e) Investigate the system property indicators, such as degree of controllability, observability,
Sensitivity properties of the discretised model etc., when the sampling rate is regular, but

its value is close to some irregular sampling value.

The above are some of the topics for further research which form a natural extension of the

structural methodology and approach developed here.
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