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Abstract

Atherosclerosis is a problem that affects millions of people worldwide. The causative 

factors that contribute to the formation of atherosclerotic lesions have been studied ex-

tensively. Haemodynamic factors are known to be important determinants. However, the 

precise role played by haemodynamics in the development and progression of vascular 

disease is incompletely understood and findings have sometimes been contradictory. At 

the same time much solid mechanics oriented work has been done with a specific focus 

on stress concentrations in the arterial wall in order to examine other possible factors. 

While great progress has been made in studies of both haemodynamics and vessel wall 

mechanics separately, it is apparent that the problem of blood flow in arteries is one of 

fluid-wall interaction, and this necessitates the incorporation of the wall mechanics into 

fluid dynamics. The combination of fluid/solid mechanics may lead to further insight into 

the mechanisms underlying the formation of atherosclerotic lesions by taking the dynamic 

interaction between the blood and vessel wall into account.

In this study, a novel numerical algorithm for coupled solid/fluid problems was developed 

and applied to arterial flows. The coupled model involves the use of two commercial codes, 

CFX and ABAQUS. The hybrid nature (finite volume method for the fluid and finite el-

ement method for the solid) makes itself a highly efficient tool for modelling fluid/solid 

interactions. The method is able to predict the full, time-dependent wall behaviour, as 

well as the details of the flow field. Computer programs, originally developed to process 

clinically obtained MRI images, have been modified in order to provide geometrical data 

of in vivo human carotid bifurcations and to generate computational grids. New program 

routines were developed for the incorporation of wall movement required by the computer 

simulation, and integration of the fluid and solid mechanics codes for the coupled model. 

A comprehensive range of code validation exercises have been carried out to determine 

the reliability of the computer codes.



Finally, the coupled model has been applied to the modelling of pulsatile flow in anatom-

ically realistic compliant human carotid bifurcations. In vivo pressure and mass flow 

waveforms in the carotid arteries were obtained from the individual subjects using non- 

invasive techniques. The geometry of the computational models was reconstructed from 

magnetic resonance angiograms. Results have been validated against the in vivo MRI 

measurements obtained from the individuals scanned. High wall stress and low shear 

stress was found in those areas most prone to atherosclerosis. It is demonstrated that 

the presented coupled modelling scheme can be used as an efficient and reliable tool for 

detailed analysis of blood flow and vessel mechanics. In future, application of the coupled 

model in a large number of individual cases together with disease patterns may further 

elucidate the roles of haemodynamics and vessel wall mechanics in atherosclerosis.
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Chapter 1

Introduction

Focal atherosclerosis is the major cause of death and morbidity in the world. Atheroscle-

rosis is a complicated process involving intimal thickening, accumulation of lipids and 

calcium in the extracellular matrix, and smooth muscle cell proliferation. These changes 

often lead to intraluminal events causing narrowing and eventually total occlusion of the 

vessel. At an early stage of the disease atherosclerotic plaque formation may also induce 

thrombus formation, i.e. fragments of the thrombus break off and obstruct smaller arteries 

downstream.

Cardiovascular diseases such as atherosclerosis are known to be influenced by blood flow [1, 

2, 3, 4], In order to investigate the complex mechanisms involved in the development of 

atheroma, a thorough understanding of the haemodynamic phenomena is necessary. Mod-

ern techniques such as ultrasound and magnetic resonance imaging (MRI) enable in vivo 

measurements of pulsatile blood velocities to be undertaken. But they are subject to some 

uncertainties. The high level of computer technology and recent developments in compu-

tational fluid dynamics (CFD) now means that 3-dimensional flows in irregular geometries 

can be simulated as a matter of course by standard commercial codes. Also features such 

as flow unsteadiness and time-dependent boundaries can be accommodated. However, 

the real physiological system is far more complicated. The simulation of such an in vivo 

process cannot be completed satisfactorily by CFD alone.

On the other hand, biomechanical structural analysis is another research field which can

18



provide predictions of deformation and stresses in normal and diseased arteries. From en-

gineering principles, it is known that the intensity of these stresses can be relatively large 

in regions where there are sudden changes in geometry, a phenomenon known as “stress 

concentration”. It has been found that this type of stress concentration could occur in 

the arterial branching area and may play a role in atherogenesis [5]. Vascular structural 

analysis is useful to understand the interrelationship between arterial wall mechanics and 

transport properties and how this might relate to the arterial diseases. The structural 

response of a large artery is characteristically complex and includes the highly nonlinear, 

history-dependent response of a nonhomogeneous anisotropic segment undergoing finite 

deformations. Modern finite element techniques make it possible to treat such a complex 

material.

While great progress has been made in studies of both haemodynamics, mostly with rigid 

wall assumption, and arterial wall mechanics ignoring the flowing fluid, it soon became 

apparent that the general problem was one of fluid-wall interaction, and necessitated con-

sideration of fluid dynamics and solid mechanics of the wall [6, 7, 8] together. Interactions 

between the flowing fluid and the surrounding structure are complex. A solution of the 

general coupled problem is difficult to obtain due to the non-linear nature of the whole 

system. Most researchers have used either self-developed packages or improved commercial 

packages. The various assumptions and approximations made in these studies preclude 

them from being extended to complex geometries such as bifurcations [7, 9, 10]. Alterna-

tive approaches which can solve the coupled system of equations governing the flow and 

wall motion in arbitrary geometries are needed.

1.1 Medical Background

1.1.1 Atherosclerosis

Atherosclerosis is not merely a disease in its own right, but a process that is the prin-

cipal contributor to the pathogenesis of myocardial and cerebral infarction, gangrene 

and loss of function in the extremities. The process, in normal circumstances a pro-
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tective response to insults to the endothelium and smooth muscle cells of the wall of the 

artery, consists of the formation of fibrofatty and fibrous lesions, preceded and accom-

panied by inflammation. The advanced lesions of atherosclerosis, which, when excessive, 

become the disease and which may occlude the artery concerned, result from an excessive 

inflammatory-fibroproliferative response to numerous different forms of insult. The ear-

liest recognisable lesion of atherosclerosis is the so-called fatty streak, an aggregation of 

lipid-rich macrophages and T lymphocytes within the innermost layer of the artery wall, 

the intima. Animal observations have shown that fatty streaks precede the development of 

intermediate lesions [11], which are composed of layers of macrophages and smooth mus-

cles and, in turn, develop into the more advanced, complex, occlusive lesions called fibrous 

plaques. The fibrous plaques increase in size and, by projecting into the arterial lumen, 

can impede the flow of blood. They are covered by a dense cap of connective tissue with 

embedded smooth muscle cells that usually overlays a core of lipid and necrotic debris. 

The fibrous plaques contain mononocyte-derived macrophages, smooth muscle cells and 

T lymphocytes. Recent data have shown that most of the sudden deaths from myocardial 

infarcts are due to ruptures or fissures, particularly in the margins of the fibrous cap where 

there are more macrophages, resulting in haemorrhage into the plaque, thrombosis and 

occlusion of the artery [12].

1.1.2 Mechanisms underlying the development of atherosclerosis

A variety of theories have been proposed regarding the cause of atherosclerosis. Among 

these are the role of haemodynamics and wall mechanics in terms of its genesis and pro-

gression [2, 13]. The blood vessels are permanently exposed to two types of mechanical 

stresses: tensile stress originating from the arterial pressure and shear stress resulting from 

the blood flow. These stresses operate not only to control vasomotor activity but also to 

regulate the growth and physiologic development of the blood vessels.

Haemodynamic factors

Previous studies have indicated that several global factors contribute to accelerated large
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vessel atheroma, including: hypertension, aging, smoking, hypercholesterolemia, and dia-

betes mellitus [14]. Correction of some of these risk factors has been shown to reduce the 

rate of progression of plaque [15], and to reduce wall thickening [16]. However despite the 

importance of global risk factors, atheroma is essentially a focal disease. In this context, 

it is noteworthy that atheromatous lesions are seen at characteristic sites in blood vessels; 

occurring in regions of branching and marked curvature [17, 18]. These are regions where 

atypical flow patterns would be expected [1, 19, 20]. Reduced flow velocity and wall shear 

stress, flow separation, and departures from unidirectional laminar flow would all tend to 

increase the residence time of circulating atherogenic particles and increase endothelial 

transjunctional permeability. There are other wall shear stress indices that could be de-

rived from the instantaneous wall shear stress, such as, wall shear stress temporal gradient, 

wall shear stress spatial gradient, oscillatory shear index (OSI) (defined by Ku et al. [18] 

to quantify cyclical variation in wall shear stress). Attempts were made to correlate them 

to the locations of atherosclerotic plaques without conclusive results.

Low shear on the outer walls of bifurcations and on the inner walls of curvatures may 

promote atherosclerosis through influences on leukocytes, platelets, and endothelial cell 

function [21]. Activated leukocytes show pseudopodium extensions and express surface 

adhesion molecules. These features facilitate adherence to, and migration through the 

endothelium. Although evidence shows that development of atherosclerotic lesion is as-

sociated with locations where the mean wall shear is relatively low, the role of oscillating 

wall shear in both direction and magnitude is not quite clear. At sites where shear stress 

is disorganised and fluctuated, it has been shown that endothelial cell mitosis rates are 

elevated, which suggests cell injury [22]. Shear is also known to affect endothelial mor-

phology and function, and to enhance pinocytosis [23].

Mechanical wall factors

Although it is now recognised that specific patterns of local blood flow predispose the 

development of atheroma, the mechanisms underlying the important determinant of car-

diovascular risk are less well understood. Many other possible factors are currently being
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examined. One area that is gaining attention is the role of mechanical stress on the ves-

sel itself in atherogenesis. However, compared to the haemodynamic related factors, the 

theory on mechanical wall factors is far from complete.

By mathematically analyzing the overall geometry of an idealized branch point, Niimi [24] 

calculated the stress concentration in an arterial bifurcation. Also, through the principles 

of engineering mechanics, areas of high wall stress were created due to the geometry of 

bifurcating arteries [25]. Most numerical research on vessel wall has been devoted to stress 

concentration analysis of the arterial wall, when it is loaded with a normal incremental 

pressure of, (usually) 40 mmHg [26, 5]. This corresponds to the pressure difference between 

peak systolic and diastolic pressure phases. These numerical studies also demonstrated 

that distinct areas of stress concentrations existed in artery bifurcations.

The elevated tensile stresses that occur at bifurcations and in regions of curvature may 

also promote atherosclerosis. High tensile stresses are associated with vessel wall thick-

ening and alternations in composition [27]. These features affect transmural permeability 

and sieving [28], and would therefore be expected to play a role in determining particle 

efflux rates. Reduced particle efflux rates would favor intimal accumulation of atherogenic 

cholesterol and leukocytes.

Mechanical forces regulate cell growth and biosynthesis in many tissues. Numerous stud-

ies have demonstrated the existence of a direct relationship between circumferential stress 

to which the vessel wall is exposed and the structure of the wall itself. When the stress 

increases, there is hypertrophy of smooth muscle and an increase in the content of collagen 

and elastin. Conversely, when the stress falls, the wall undergoes atrophy. Several physio-

logic and experimental studies confirmed the relationship between stress and composition 

of the vessel wall. In a study by Bardy [29], it has been demonstrated that protein syn-

thesis by smooth muscle cells was greatly increased when the vessels were subjected to 

elevated intraluminal pressures. Furthermore, pressure and angiotensin II were capable 

of inducing fibronectin expression in the arterial wall in a synergistic manner [30]. The 

effector mechanisms for the increased expression of fibronectin in response to pressure in-
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volved local activation of the vascular renin-angiotensin system. Mechanical and humoral 

factors could therefore interact to promote vascular remodelling.

1.2 Numerical Modelling of Arterial Flows-Current Status

Cardiovascular haemodynamics forms an important current class of medical research. Ac-

curate assessment of temporally and spatially varying wall shear stress and knowledge 

of wall mechanical behaviour, which are of considerable physiological interest, are quite 

difficult to obtain by current non-invasive techniques. An alternative approach to mea-

surement of detailed arterial flow characteristics employs computer simulations, making 

it possible to determine temporally and spatially varying shear stresses. Over the last 

ten years, as the current generation of Computational Fluid Dynamics codes have been 

developed, they have been applied to arterial problems and have been demonstrated to be 

a valuable and reliable tool in this area.

The mathematical description of local blood flow uses the time-dependent, three-dimensional, 

incompressible Navier-Stokes equations for Newtonian or non-Newtonian fluids. Normally, 

these equations cannot be solved analytically because of the complexity of the problem. 

CFD techniques, therefore, were developed to solve complex problems numerically. In 

general, currently available techniques in CFD to solve the above equations fall into four 

categories. They are the finite difference, finite volume, finite element and boundary ele-

ment approaches. The finite difference and the finite volume method were historically the 

first to be developed and have been available for many years. It has been established that 

these methods give stable results with relatively less computation time than is required by 

other methods. Although the finite element method allows greater flexibility to build the 

computational domain, much more time and memory space are necessary for computation. 

The boundary element method is mainly used for a class of flow problems (potential flow) 

which is not relevant to blood flow.

It is well known that CFD is a powerful tool for investigating the complex nature of 

blood flows [31, 32]. Computational modelling of blood flow has the potential of providing
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complete haemodynamic data for flow related phenomena and any derived parameters of 

mechanics. This is particularly important in studies of the role of blood flow in atheroge- 

nesis because a combination of these parameters seems to play an influential role in the 

process. Although there are many difficult problems in applying CFD to blood flows, (for 

example, the nature of its pulsatility, and the non-Newtonian viscosity of blood) it now 

has become a matter of computing power to overcome them [33, 34]. In fact, there are a 

variety of CFD codes available to cover these issues. The combination of computational 

fluid dynamics and magnetic resonance imaging techniques has been increasingly used to 

provide subject-specific haemodynamic data in “real” arterial geometries, which becomes 

a new application field for both CFD and MRI. These include the comprehensive work 

contributed by Long [35, 36] and Milner et al. [37].

In contrast to the extensive haemodynamic studies, very little work has been done to 

address the fluid/wall interactions. The early study of fluid/solid coupling was the the-

oretical work by Womersley [38] based on linearisation of the basic governing equations. 

Although the effects of wall elasticity, fluid viscosity and flow pulsatility were all taken 

into account, these are linearised solutions for flow in elastic tubes. The nonlinear effects 

resulting from the convective acceleration have been considered in the solution developed 

by Wang and Tarbell [39] using a perturbation theory. However, theoretical analysis of 

the coupled fluid-solid interactions is only possible for the simplest cases (axisymmetric 

geometry, linear stress-strain relationship and small deformation). Several numerical stud-

ies have been carried out on the simulation of simplified compliant arterial models with 

purpose-built codes [40, 41, 42] and on the decoupled wall model [5]. It is recognised that 

the fluid-wall interaction type problem can not be properly dealt with by finite difference 

or finite volume method alone. In most efforts so far reported to solve the coupled equa-

tions for the wall motion and the fluid motion, a finite element method has been utilised. 

This is partly because the solid mechanics problems have been mostly solved by finite 

element method.
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1.3 Earlier Work in the Group

In the first numerical simulations at the City University group, the ASTEC code [43] was 

used with its combination of unstructured gridding and finite-volume-type algorithms. 

ASTEC is now an option within CFDS-CFX4. When the multi-block version of the (then) 

FLOW3D code was released, it was found to be particularly effective for bifurcation stud-

ies [44]. However, the finite-element solver FEAT [45] was also used in early studies. 

The flow equation solver employed in the group over the last 10 years has been the well 

validated CFD code- now termed CFDS-CFX-a finite volume based code using a struc-

tured, patched multi-block, non-orthogonal, curvilinear coordinate grid with a collocated 

variable arrangement. The basic solution algorithm is the SIMPLEC pressure correction 

scheme [46], a variation of the original SIMPLE scheme. The SIMPLE algorithm was es-

sentially a guess-and-correct procedure for the calculation of pressure. The difference lies 

that the momentum equations are manipulated so that the SIMPLEC velocity correction 

equations omit terms that are less significant than those omitted in SIMPLE.

Our group has been involved in blood flow simulation for over ten years and we have 

investigated flow in arteries, bifurcations, grafts, skeletal muscle ventricles and stents [47, 

48, 49, 50]. Initially the haemodynamics of arterial bifurcations were studied, and after 

a comprehensive range of code validations involving in vitro (laboratory) data for 2- and 

3-dimensional T-junction, simulations for in vivo clinical cases of femoral bifurcations and 

end-to-side anastomoses [51, 52] were carried out. As the moving boundary capability of 

CFD became available, the work was extended to study the blood flow in skeletal mus-

cle ventricles (SMV) which is a wall-driven unsteady flow with a large volume change and 

time-dependent gridding [53]. In general velocity predictions compared well with measure-

ments. Nevertheless, all these models either assumed a rigid wall or at most prescribed 

wall movement from experimental data. To obtain a much clearer understanding of phys-

iological flows and wall behaviour, it is recognised that the blood-wall interaction cannot 

be neglected in such cases as the cardiovascular system. In the subsequent projects, em-

phases were placed on the fluid-wall coupled situation.

The stress-strain rate equations for fluids and stress-strain equations for solids are similar,
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and considerable effort was spent on incorporating simple wall models into two ( finite 

volume and finite element) CFD codes. This was not without success, both attempts re-

sulting in satisfactory simulations (among others) of the Womersley problem for oscillating 

flow in a linearly elastic tube. Numerically, the initial efforts in the City group were based 

on the similarity of the equations of motion for both a fluid and a deformable wall. The 

Navier-Stokes equations for an incompressible fluid are:

P f { f  Ui-,jk
dp
dxl Pf(ai -  bi) (1.1)

where p f  is the viscosity, gjk a metric coefficient, U{ the velocity vector, p the pressure, pf  

the density of the fluid, a* the acceleration vector, and bi the body force vector per unit 

mass. Similarly the equations of motion for a linearly elastic, homogeneous, incompress-

ible, isotropic material axe:

P9jk ti-,jk -  g ~ i  =  P (a i ~  bi )  ( L 2 )

where, for an incompressible material, p =2E/3, E the Young’s modulus, & the displace-

ment vector, and p is the density of the wall.

Considerable efforts were made by Drs. Frank Henry and Yun Xu to insert simple wall 

models into the finite volume CFDS-CFX and the finite element FEAT codes respectively. 

A number of code validation exercises were undertaken, notably the Womersley solution 

for pulsatile flow in an elastic tube. However, the wall model of Dr. Henry (based on 

finite volume method) was limited to axisymmetric, infinitesimal strain cases, while Dr. 

Xu’s model with FEAT was based on the finite element method. Although the latter was 

not restricted to simple geometry, it was very time consuming and was limited to linear 

elastic, infinitesimal strain on which the coupling calculation was based. To overcome 

those limitations, the development of a generic advanced coupled fluid/solid mechanics 

model for use in realistic arterial flows is undertaken.
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1.4 Objectives and the Strategy Employed

The ultimate goal of this research was to develop a reliable and robust fluid/solid inter-

action model for the simulation of blood flow in realistic arterial structures. This was 

achieved through accomplishment of the following tasks:

(1) to establish an advanced fluid and solid model separately for the simulation of blood 

flow in arterial structures.

(2) to develop an interface program for the coupling of fluid dynamics and solid mechanics 

codes.

(3) to construct the geometrical model required by the computer simulation from in vivo 

data obtained with ultrasound and MRI.

(4) to carry out a wide range of code validation tests for flow in simple structures.

(5) Finally, to perform numerical predictions for physiological flow in human carotid artery 

bifurcations and to validate the predictions against in vivo measurement data.

The strategy of the study followed a logical progression. The first stage involved the 

development of advanced fluid and solid coupled models for blood flow in arterial struc-

tures. After both the fluid and solid models were established, an interface program was 

developed for the coupling between the fluid dynamics and solid mechanics codes. Certain 

difficulties need to be resolved such as the convergence problem. In order to be able to 

rely on the numerically predicted results, validation exercises against experimental data 

were necessary. In addition, analytical solutions of simplified problems could be employed 

to test the numerical solutions. A wide range of benchmark tests were carried out by 

studying flow and structural behaviour of simple configurations.

The human carotid artery bifurcation was employed as the subject of the study. Software 

has been developed to perform 3D geometry reconstruction and grid generation from clin-
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ically obtained data with ultrasound and MRI.

Having done these, detailed numerical analysis of blood flow and vessel mechanics in real-

istic human carotid artery bifurcations was performed and detailed information on both 

flow and arterial wall were obtained. Finally, predicted wall movement and velocity pro-

files were validated against in vivo obtained experimental data.

1.5 Outline of the Thesis

During the last decades numerical methods have been applied to study blood flow phe-

nomena in great detail. Numerical methods are advantageous in two aspects: (1) to 

simulate accurately physiological conditions which are difficult to consider by experimen-

tal techniques, and (2) to isolate different factors in an investigation. The combination 

of CFD and SM is of high promise in seeking to provide information both inside the flow 

domain and on the surrounding structures; the inclusion of wail compliance is a natural 

extension of our previous work, in the direction of greater fidelity. A detailed description 

of the way in which the combination of state-of-the-art CFD and SM can give reliable 

numerical simulations of haemodynamics in compliant human arteries is presented in this 

thesis. The strategy is illustrated with typical results from the attempts to incorporate 

solid mechanics into haemodynamics in the vascular system.

Chapter 1 introduces the basic methodology and aspects of fluid-solid coupled problems 

in vascular system.

In chapter 2, a comprehensive literature survey is given. Firstly, the models for arterial 

wall behaviour axe critically reviewed. Secondly, the overall problem of fluid-solid interac-

tions in arterial flows is discussed.

In chapter 3, a novel numerical method combining two commercial codes for coupled 

solid/fluid problems is presented. A brief description is given of numerical techniques em-

ployed in the finite volume code CFX and finite element code ABAQUS. Automatic grid
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generation from clinical data is described. The chapter finishes with discussion about the 

convergence technique.

In chapter 4, a comprehensive range of code validations are covered. Starting from decou-

pled problems of fluid flow and wall movement, it proceeds to pulsatile flow in an elastic 

tube.

Chapter 5 is concerned with the application of the coupled algorithm to more advanced 

problems such as blood flow in real arterial bifurcation structures. Physiologically realistic 

modelling of blood flow and vessel mechanics in the human carotid artery bifurcations has 

been carried out. Results of two subject-specific individual studies axe presented. Maps of 

wall shear stress, contours of velocity in the flow field and wall movement and tensile stress 

on the arterial wall are all presented. To examine the influence of wall distensibility, com-

parison of the results for the distensible and rigid models are made. The comparisons of 

computed and measured wall movement and velocity field show generally good agreement.

Finally, in chapter 6 conclusions are made and topics for future research are addressed.
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Chapter 2

Literature Survey

2.1 Introduction

Traditional interest in elastic vessels has focused on their effect on pressure wave prop-

agation. The disorders and diseases of the arterial system represent some of the most 

actively investigated current clinical and research problems. Hence more attention has 

been paid to the arterial wall modelling and influence of wall motion on the local flow field 

at a particular position in an artery because of the recent interest in the possible role of 

haemodynamic factors in the localisation of vascular disease.

Cardiovascular diseases such as atherosclerosis are known to be influenced by blood flows 

in terms of their genesis and progression [2, 1], Numerous in vivo and model studies on 

haemodynamics have been carried out over the last years both experimentally and nu-

merically [13]. Special attention has been concentrated on the analysis of flow at arterial 

bifurcations.

In parallel, one area that is gaining attention is the role of wall mechanical stress in 

atherosclerosis. By mathematically analysing the overall geometry of an idealized branch 

point, Niimi [24] calculated the stress concentrations that would be likely to exist in an 

arterial bifurcation. Also, through the principles of engineering mechanics, it has been 

shown that, due to the geometry of bifurcating arteries, area of high pressure-induced wall 

stress are created [25]. Through experimental observations, lesions have been shown to
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lie in locations where there is a variation in physical properties [54, 55]. Using these data 

in relation to arterial branch points, it has been suggested that high stress concentrations 

may be a risk factor in atherosclerosis [56, 57].

Up to the present, fluid dynamics and vessel mechanics have been studied separately, and 

in parallel, both with the aim to obtain knowledge of determinants underlying atheroma 

formation. The rapid advance in computational techniques and the advent of supercom-

puters now permit the treatment of complex wall behaviour and blood flow in realistic 

arterial models. Perhaps the combination of flow dynamics and wall mechanics, together 

with the study of disease patterns, will lead to a further understanding of the arterial 

disease processes.

In this review, both engineering and medical aspects concerning blood/wall modelling axe 

surveyed. First, the structure and general characteristics of the arterial wall are discussed. 

This is followed by a comprehensive review of the constitutive laws. Structural analyses of 

the arterial wall by mathematical and numerical methods are then discussed. The effects 

of elasticity of blood vessels on wave propagation and local flow patterns in large axteries 

are also discussed. Blood flow in large or medium-sized arteries especially bifurcations axe 

reviewed. Then the studies of wall mechanics and fluid dynamics were extended to the 

overall problem of fluid-solid interactions in arterial flows, which has become a specific 

topic in computational methods and applied mechanics. Finally, numerical techniques are 

reviewed together with the alternative coupled methods available in fluid-wall models.

2.2 Basic Characteristics of Arterial Walls

2.2.1 The structure and composition of the arterial wall

Classification of arteries is usually done by their size. Another classification that is very 

frequently used however is by structure which varies with species and location along the 

vascular tree [58]. In general, arteries are categorised according to two broad types: elastic 

and muscular [59]. The larger arteries leading from the heart and the first few branches
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are known as the elastic arteries, because of the large amount of elastin in them. These 

include the aorta, main pulmonary artery, common carotids, and common iliacs. As the 

distance from the heart increases, the amount of muscle cells, that lie in rings around the 

lumen of the artery increases, and the arterial structure transforms to what is known as 

muscular arteries. These include the femorals, renals, coronaries, and cerebrals. Obvi-

ously, there are transitional arteries as, for example, the internal carotids, which exhibit 

some characteristics of both the elastic and muscular type. This classification is very sim-

ple, since the two kinds do not differ only by the relative amount of muscle cells or elastin.

The vessel wall comprises five components: endothelial lining, collagen fibres, elastin fi-

bres, smooth muscle cells and ground substances. The ratio between them varies according 

to the vessel size and the task of each specific segment in the arterial tree, but mainly 

with age. These components are arranged in three layers: the tunica intima, tunica media, 

and tunica adventitia (Figure 2.1). The tunica intima typically consists of a one-cell-thick 

layer of axially oriented endothelial cells with a thin layer of elastin and collagen fibres. An 

exception is, however, the aorta, in which the intima also includes a subendothelial layer 

that contains some smooth muscle cells (often oriented axially) and connective tissue [59]. 

The intima is similar in most elastic and muscular arteries. The internal elastic lamina 

separates the intima and media, but it is often considered to be part of the latter. A little 

thicker in muscular arteries, this elastic lamina is primarily a fenestrated “sheet” which 

allows transport of, for example, H^O and electrolytes across the wall. The tunica media, 

which forms the large part of the wall of the vessel, consists primarily of smooth muscle 

cells that are embedded in a plexus of collagen and elastin and a ground substance gel 

matrix. The orientation and distribution of each of these fibrous constituents vary with 

species and location along the vascular tree. The outermost sheet of elastin is called the 

external elastic lamina; it separates the media and adventitia although it is often consid-

ered to belong to the former.

The adventitia, or outermost layer, consists primarily of collagen fibres with admixed 

elastin, nerves, fibroblasts, and the vasa vasorum. The latter is a vascular network that 

serves the outer portion of the wall in arteries that are too thick for diffusion of O2 from
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Figure 2.1: Schematic cross-section of typical arteries showing three layers.

the intimal surface to suffice. The adventitia comprises ~  10% and 50% of the arterial 

wall in elastic and muscular arteries, respectively.

2.2.2 Mechanical properties of arterial wall components

It is obvious that analytical evaluation of the performance of vessel walls must consider 

the vessel as a composite material. This requires a description of the interaction between 

wall components when load-bearing. However, it is well known that elastin, collagen, and 

smooth muscle play roles in the mechanical performance of the vessel wall only at certain 

stages of load-bearing and only in specific ways. Hence, before discussing the overall prop-

erties of the vessel wall as a lumped material it is necessary to consider the mechanical 

properties of each of the components.

The endothelial layer plays no significant role in determining the mechanical properties of 

the wall, since its task is to provide a relatively smooth surface at the blood wall interface 

and to offer selective and controlled permeability. Hence, the mechanical properties of this
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monocell layer can be omitted from the discussion on overall elastic performance.

The elastin fibres are a rubbery material which is very extensible. In stretching up to 

about 60% their original length the fibres follow Hooke’s law. However, extensions beyond 

this value become highly nonlinear. Because of this they are referred to as a non-Hookean 

material. The range of Young’s modulus of the elastin fibres is 3X105 to 6AT05Pa [58], 

with a maximum extension from 100% to 300% and with very little incremental rise in 

elastic modulus. The elastin fibres form the sole elastic mechanism of the arterial wall 

at low pressures (approximately below 60mmHg), resulting in only a small increase in 

diameter. At higher pressures there is a larger circumferential extension of the material of 

the wall and there is a recruitment of collagen that results in an increase in wall stiffness 

which limits further extension. It can be concluded that elastin plays a major role in the 

small displacement of the arterial wall associated with pulsatile behaviour. When such 

displacement becomes large the collagen fibres dominate the performance of the wall.

Collagen is regarded as a structural component in various kinds of living tissues. Its 

geometry usually defines its mechanical properties. In tendons, for example, collagen is 

found in straight parallel bundles, resulting in very strong and inelastic performance. This 

contrasts to the heart leaflet where the collagen is arranged in very thin sheets that result 

in highly flexible properties. In the arterial wall the role of collagen is to maintain the 

vessel walls in steady tension, which requires a higher resistance to stretch. However, it is 

essential that at small displacements of the vessel wall the collagen fibres will not interfere. 

This is achieved by the serpentine shape of the fibres, which permit a certain amount of 

radial extension and very small longitudinal extension. Although the fibres are built to 

withstand stretching they have a maximum extension of 50%, beyond which irreversible 

damage can be caused. The behaviour of collagen is non-Hookean, and exhibits some plas-

tic deformation. The most commonly used value for its Young’s modulus is 3.10X105Pa 

for 1 0 0 % elongation.

S m o o th  m usc les  have  m o re  effect o n  th e  g eo m e trica l cross se c tio n  o f  th e  a r te r ia l  w alls th a t

on  i ts  m ec h a n ic a l p ro p e r tie s . I n  th e  p assiv e  s ta te  th e y  a c t  m o re  like a  v iscous flu id  a n d
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less like a viscoelastic solid, and thus contribute very little to the total elastic tension in 

the wall. However, under sympathetic stimulation they can change the vessel diameter 

by between 1 0  and 2 0 % in the elastic vessels and can constrict the smaller muscular ves-

sels, even up to a total closure of the lumen. Tension in the smooth muscles causing this 

vasomotor action is stimulated by many mechanisms. The Young’s modulus of smooth 

muscles varies from 6 X  103Pa in the passive state to 5X 107Pa. In both passive and active 

state the maximum extension of smooth muscle is about 300%.

2.2.3 The elastic properties of the arterial wall as a composite material

Mechanical characterisation of the blood vessels is an important prerequisite for quanti-

tative descriptions of wave propagation phenomena of the vessels, flow-wall interactions 

and modelling of arterial structures. A variety of efforts has been devoted to the charac-

terisation of the mechanical properties of blood vessels over the last two decades.

Two different types of experiments can be employed to study these properties. One is the 

classical stress-strain test on an isolated segment of vessel wall. The other is the pressure- 

diameter test which treats the vessel as a cylinder with variable internal pressure.

Consistent with histology, the behaviour exhibited by an artery depends on its location 

along the vascular tree. This observation is illustrated well by in vitro pressure-diameter 

data, using an in vivo length, collected by Cox [60] from various canine arteries. The be-

haviour is both nonlinear and viscoelastic. However, Patel et al. [61], Vaishnav et al. [62], 

and Young et al. [63] have shown that elasticity dominates the nonlinear mechanical prop-

erties of arterial tissues, whereas the viscosity can be considered as a second-order effect. 

Detailed stress-strain and pressure-diameter relationships will be discussed in section 2.3.

2.2.4 Incompressibility

M an y  ru b b e r lik e  m a te r ia ls  a re  re la tiv e ly  in co m p ress ib le  in  th e  sense  th a t  th e ir  re s is ta n c e

to  v o lu m e ch an g es  is o rd e rs  o f  m a g n itu d e  g re a te r  th a n  th e ir  re s is ta n c e  to  sh a p e  changes.

T h e  in c o m p re ss ib ility  a s su m p tio n  h as  b e e n  u sed  by  m o s t o f th e  in v e s tig a to rs  for a r te r ia l
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mechanics. Carew et al. [64] confirmed this assumption by measuring the change in the 

total volume of arterial tissue during deformation. Chuong and Fung [65] reported radial 

compression tests on regular slabs of rabbit aorta, the edges of the specimens being open to 

air to allow measurement of load-induced fluid extrusion. They found the fluid extrusion 

to be 0.5-1.26% of the undeformed tissue volume per lOkPa compressive stress. Based on 

these results, they concluded that the arterial tissue is only slightly compressible or nearly 

incompressible. In an incompressible body, the incompressibility condition should be taken 

into account and incorporated in the formation of an arbitrary amount of hydrostatic 

stress that cannot be determined from the knowledge of deformation alone, but should be 

deduced from the knowledge of stress somewhere at the boundary. In an incompressible 

material like the arterial tissue, the same approach must be used.

2.2.5 Anisotropy

Because of the anisotropic architecture of arterial tissue, it is reasonable to regard the 

elastic properties of the arterial wall as anisotropic. Many investigators [6 6 , 67] showed 

that the arterial wall is stiffer in the circumferential direction than axially, but others 

reported opposite results [6 8 , 69]. Tanaka and Fung [70] showed that the canine tho-

racic aorta is stiffer in the longitudinal direction than circumferentially, and vice versa in 

the iliac and femoral arteries. The reported discrepancies are attributable to differences 

in such factors as methodology, elasticity parameter, animal species and arterial sites. 

The high deformability, non-linearity, and anisotropy of arterial walls are closely intercon-

nected. Experimental results [6 6 , 71] showed that arteries are cylindrically orthotropic, 

that is the elastic properties are symmetric with respect to planes perpendicular to the 

axes of a cylindrical system. Arteries are usually subjected to transmural pressures and 

axial tension, which give rise to deformations in the principal directions of the cylindrical 

structure. Weizsacker and Pinto [72] studied the elastic properties of rat carotid arteries, 

simultaneously applying a wide range of internal pressures and axial forces to their tubular 

segments. They showed that the longitudinal force was independent of internal pressure 

within or in the vicinity of the averaged physiological state of deformation and that the 

arterial wall was isotropic for the physiological range of internal pressure and axial force. 

Dobrin [67] obtained a similar conclusion from the experimental results of canine carotid
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arteries.

2.2.6 Heterogeneity

From histology it is clear that arteries are not materially homogeneous. Rather, they 

are layered structures (again see Figure 2.1), which strongly suggests that the mechani-

cal properties vary with radius. Experiments by Burton [73] suggest that the endothelial 

layer does not contribute significantly to the load-carrying capability of the wall. The 

media and adventitia are the most important structurally. It appears that von Maltzahn 

et al. [74] were the first to attempt to quantify the nonlinear mechanics of the layered 

arterial wall. Briefly, they proposed a two-layer model based on separate strain energy 

functions for the media and adventitia. Their paper was based on pressure-diameter data 

for passive bovine carotid arteries. They concluded that “the media and the adventitia 

are anisotropic; that the media is stiffer, more nonlinear, and subjected to higher stresses 

than commonly assumed; and that both layers are stiffer in the axial direction than in 

the tangential”. Demiray and Vito [75] also proposed separate strain energy functions 

for the media and adventitia. Their results were based on uniaxial and biaxial tests on 

isolated media and adventitia layers from a canine aorta. They suggested that the media 

was orthotropic but assumed that the adventitia was isotropic. They also reported values 

of the material parameters for each layer. These findings imply that the properties of the 

media and adventitia are different, but the experiments were not without shortcomings. 

Unknown effects of the requisite mechanical separation of the media and adventitia on 

the observed mechanical behaviour must be addressed further. Consequently, others have 

sought tests wherein the layers do not have to be separated.

Kang and Humphrey [76] proposed that finite inflation and extension experiments on in-

verted arteries may yield additional information on wall heterogeneity without requiring 

mechanical separation of the layers. Briefly, the idea is that by turning a vessel inside-out, 

the spatial locations of the media and adventitia are reversed. Because the inner portion 

of the wall carries much of the load during an inflation test, the inversion will provide 

additional information.
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In order to determine the stress-strain relationship of the inner (intima and media) and 

outer (adventitia) layers of blood vessel in the neighbourhood of the zero-stress state, 

bending experiments were performed by Xie and Fung [77] on aortic strips of rats. In the 

experiments, one end of a strip was clamped, and a force was applied on the other end. 

The deflection curves of the strip were measured by regarding the aortic strip as a curved 

beam, then classical beam theory was employed to analyse the strain distribution from the 

experimental data. Values of the circumferential Young’s modulus were 248kPa and 69kPa 

in the media and adventitia respectively, for rat thoracic aortas. Values were higher in the 

ascending aorta wherein the media was also stiffer, which is consistent with the report by 

von Maltzahn et al. [78] for finite strains. They also suggest that heterogeneity should be 

accounted for even in the elastic aorta.

Most proposed constitution relations for arteries are based on the assumption of homo-

geneity of the entire wall, which is sometimes rationalised because of the thinness of the 

adventitia in elastic arteries. Furthermore, for many practical applications such as the 

study of pressure-radius relationships, or the propagation of pressure waves, only the 

properties of the vessel wall (averaged for the wall) are relevant and the possible radial 

variation of the properties does not significantly affect the problem. It is practical to lump 

the response of the wall layers and consider the wall as statistically homogeneous.

2.2.7 Dynamic behaviour of arterial walls

The arterial wall is subjected to unsteady loads due to the pulsatile nature of the flow in 

the cardiovascular system. Arteries are non-linear [79], as they do not meet the definition 

of an elastic body, which requires that there must be a single-valued relationship between 

stress-strain. Arteries show hysteresis when they are subjected to cyclic loading and un-

loading (that is, they have different stress-strain relationships in loading and unloading). 

When held at a constant strain, they show stress relaxation (that is, decreasing stress). 

When held at a constant stress, they show creep (that is, increasing strain). When sub-

jected to a sinusoidally varying stress, they exhibit a phase lag in the strain response.
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Hysteresis, relaxation, and creep are features of viscoelasticity. There are basically three 

mechanical models frequently used to describe the linear viscoelastic behaviour of mate-

rials [80, 81]. They are the Maxwell, the Voigt, and the Kelvin models, all of which are 

composed of combinations of linear springs with spring constant p and dashpots with co-

efficients of viscosity 77. Most authors discuss their experimental results in the framework 

of the linear theory of viscoelasticity relating stress and strain, generally on the basis of 

the three above models. More general models may be built by adding increasing number 

of elements to the Kelvin model. It may happen that none of the models can fit all the 

experimental data. The conclusion could be reached from such data that the linearised 

viscoelasticity theory does not apply. A nonlinear theory of the Kelvin type was proposed 

by Viidik [81] on the basis of a sequence of springs of different natural length, with the 

number of participating springs increasing with increasing strain.

Numerous studies have been made of the dynamic behaviour of arterial wall by inves-

tigating relaxation function and strain effect [82, 83, 84, 85]. For example, Fung [82] 

investigated the relaxation function of the aorta. As is the case with other tissues, the 

relaxation of the aorta depends on the stress level. The value of relaxation function at a 

given value of time is smaller for smaller arteries. This means that the smaller arteries 

relax faster and more fully.

The strain rate effect also affects the performance of arterial walls. In a study relevant to 

the safety against automobile crash problem, Collins and Hu [83] used explosive methods 

to impose a high strain rate (e) onto human aortic tissue to express the stress a. They 

obtained the result

a =  (0.28 4- 0.18e)(e12c — 1) fo r  e < 3.5s-1 (2.1)

Mohan and Melvin [84] performed uniaxial tension tests of human thoracic aortas at quasi-

static strain rates in the range 0.01 — 0.07s-1 and dynamic rates in the range 80 — 100s-1 

to determine the effects of strain rate and direction of loading on the failure properties 

of the tissue. The results obtained showed that in dynamic tests ultimate circumferential 

stresses were significantly greater than axial stresses by a mean factor of 1.54, although
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there were no significant differences at low strain rates. In addition, they showed ultimate 

stresses at the dynamic strain were about twice as large as those at the quasi-static strain 

rates for uniaxial tests in both directions. Following these experiments, they performed 

biaxial inflation tests on the same tissue at quasi-static and dynamic strain rates [85]. The 

tissue consistently failed in a direction perpendicular to the long axis of the aorta, and 

pressure values at failure were greater by a factor of two in the dynamic tests than those 

in the quasi-static tests.

There are situations in which the departures from elastic behaviour are not of prime 

interest, in which case elastic theory is adequate. On the other hand, in problems like 

those involving study of pulse waves travelling along the arterial tree, viscous aspects of 

the vascular rheology are often quite pertinent. It is therefore important to characterise 

the vascular tissue not only as an elastic but also a viscoelastic material.

2.3 Constitutive Laws

2.3.1 Measurement of arterial elasticity

Although uniaxial and biaxial tests on flat specimens are often performed to determine 

the mechanical properties of arterial walls, pressure-diameter data obtained from tubular 

segments are more informative and realistic. A variety of techniques have been used to 

measure wall diameters during pressure-diameter testing. These include still or movie 

camera [8 6 ], video dimension analyser [87, 8 8 ], photocell combined with light emitting 

diode or scanning laser [69], sono-micrometer [6 8 ], differential transformer [89, 67], wire 

strain gauge-pasted cantilever or caliper [90], electrolytic transducer [91], several of them 

being applied to in vivo animal experiments. The first three methods are advantageous 

because they are noncontacting systems. For clinical cases, as well as for in vivo animal 

experiments, ultrasonic echo tracking system [92], ultrasound imaging technique [93, 94], 

multigate pulsed Doppler system [95], and cineangiography [96] have been used. There 

is an increased possibility of the use of magnetic resonance imaging method for this pur-

pose [97]. These methods, except for cineangiography, are fully noninvasive.
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In the cases of in vitro and in vivo animal experiments, arterial blood pressure is mea-

sured with pressure transducer positioned as close as possible to the locations where the 

wall diameter is measured, while sphygmomanometers for the measurement of brachial 

blood pressure are commonly used in clinical cases. Besides these methods, Liu et al. [98] 

proposed an improved method of estimating aortic compliance from pressure waveform 

based on a two-elements Windkessel model of the arterial system, assuming exponential, 

logarithmic and parabolic pressure-volume relations.

2.3.2 Measures of stress and strain in finite deformation

It is well known that the vascular tissue is capable of undergoing large deformations and 

that its mechanical response in terms of the usual definitions of stresses and strains is 

nonlinear. The classical linear theories of elasticity and viscoelasticity are therefore un-

satisfactory in describing the mechanical properties of the vascular tissue [99]. Inasmuch 

as the tissue can be considered to be a one-phase continuum, its nonlinear mechanics 

can be described by characterisation of the overall force-deformation response using the 

theories of nonlinear continuum mechanics. Considerable work has been done in vascular 

mechanics over the past decade and a half wherein this approach has been successfully 

used to characterise the elastic, viscoelastic and thermoviscoelastic properties of the tissue. 

Another approach to characterise the nonlinear behaviour of the tissue is through charac-

terisation of its mechanical response in the neighbourhood of various states of deformation 

of interest. This is the so-called incremental approach. A variety of possible options of 

stress and strain definitions exist in characterising the properties of soft biological tissue 

including the vascular tissue, and each definition has advantages and disadvantages. In 

this review a detailed presentation of different definitions for stress and strain used in 

overall nonlinear formulations and incremental formulations is given.

With reference to Figure 2.2, consider the unstressed configuration A of a body in the form 

of a cuboid of dimensions 1, b, and h within a rectangular Cartesian coordinate system 

(xi, X2 , X3 ). Let B be another cuboidal configuration of the body with dimensions Ail, À2b, 

and À3I1 where Ai, A2 , A3 are the stretches or extension ratios describing the deformation
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Figure 2 .2 : Three configurations of a rectangular cuboid of tissue.
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of B relative to A. Let us assume that the cuboid is composed of an orthotropic elastic 

material and that the coordinate axes are also the axes of material symmetry (which is 

correct in the case of the arterial wall). Then, to effect the assumed deformation, a force 

system composed solely of three pairs of uniformly distributed equal and opposite forces, 

F\ , F-2 and T3 will be required. In an arbitrary material these forces would be time de-

pendent and there would be additional time-dependent shear forces on the faces of the 

cuboid. Consider, finally, a third cuboidal configuration C of the body, with dimensions 

(Ai +  dAi)l, (A2 +  c?A2 )b, and (A3 +  dA3)h, held in equilibrium by three pairs of uniformly 

distributed, equal and opposite forces F\ +  dF\ , Fi + dF?, and F^ + dF^. If Ai, A2 , A3 differ 

only slightly from unity, the deformation from A to B is said to be infinitesimal. The clas-

sical theory of elasticity considers only such deformations. For soft biological tissues and 

other rubber like materials, this is too restrictive and ’’finite ” deformation of B relative to 

A have to be considered. The relations describing F i,F 2 , and F3 in terms Ai, A2 , A3, when 

l= b = h = l, are in general nonlinear. Often the configuration A is not available for obser-

vation. Configuration B can then be used as an initially stressed reference configuration. 

The deformations in configuration C relative to B are said to be incremental.

Initial Strains (strains in configuration B)

A large number of measures of strain or deformation of configuration B relative to A have 

been used in the past. The stretches Ai ,A2 , and A3 can themselves be used as a measure 

of deformation. Their excess over unity can be used as a definition of strain. Thus we 

have

ei — A i  — 1;  62 =  A2 — 1; e3 =  A3 — 1 (2.2)

which are the conventional or engineering strains and are the quantities used as strains in 

the classical infinitesimal theory of elasticity. When deformations are finite, other measures 

of strains are often used. One such set is given by

7 i  =  i ( A ? - l ) :  T 4 =  1 ( ^ - 1 ) ;  7-3 =  | ( A l  -  1) (2.3)

These are called Green-St Venant strains. Tensors whose eigenvalues involve squared 

stretches arise more naturally in the analysis of finite strain; this is why measures such as
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7 i , 7 2 , and 7 3  are often used in large strain theories.

Another set of strains known as Almansi-Hamel strains are given by

m  = i ( i - A f 2); w  =  j ( i  v 3 =  |{ i  -  A3 2) (2.4)

Finally, the so-called ’’natural” or Hencky strains are defined as

17  =  Z n ( A i ) ;  i/2 =  ln( A 2); V3 =  ln{ A 3) (2.5)

Initial Stresses (stresses in configuration B )

Denote by / i , / 2, and the first Piola-Kirchhoff, conventional or engineering stresses 

obtained by dividing the forces F\, F2, and F% in configuration B by the areas in configu-

ration A of the faces on which they act. Thus,

-  — ■ f — E l- f — E l
~  b h ’ l 2 ~  l h '  /3  “  lb

(2.6)

The second Piola-Kirchhoff stresses, denoted by Si, S2, and S3 , are defined by introducing 

“fictitious” forces (i.e., the actual forces modified by a deformation gradient tensor). They 

are:

=  <2-7»

Thus, they are not measurable in the laboratory and do not have physical interpretation. 

However, the second Piola-Kirchhoff stress tensor is conjugate to the Green’s strain ten-

sor, and therefore very natural in constitutive formulations-by conjugate it means that the 

stress can be determined directly from an energy function by differentiating with respect 

to the conjugate measure of deformation (see section 2.3.4.1).

Similarly denote by ¿ i,t2, and ¿3 , Cauchy or ’’true” stresses, which are the ratios of the 

forces F i ,F 2 , and F3 in configuration B and the areas in that configuration on which they 

act. Thus,
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. F l _  f l  . . _  F 2 _  / 2  , . _  F 3 _  / 3  ^  g )
\ 2 \ 3 bh A2 A3 ? A1A3 lh AiA3 AiA2 lb A1A2

Because the initial areas are easy to measure, the engineering literature generally uses 

Kirchhoff stresses. Occasionally, when large area changes axe involved, Cauchy or “true” 

stresses are often computed. The advantage of the latter definition of stress is that it is 

probably most closely related to what materials actually “feel”. It is convenient for solving 

the spatial momentum (e.g., equilibrium) equation.

Incremental Strains

Differentials of the four types of strains yield the following alternate definitions of incre-

mental strains

d e  1  =  d A i ; d e  2  =  d A 2 ; d e  3  =  ( ¿ A 3 ( 2 . 9 )

d j i  =  A i d A i ; ^ 7 2  =  A 2 d A 2 ; < ¿ 7 3  =  A 3  ( ¿ A 3 ( 2 . 1 0 )

d p i  —  ^ 3  d \  1 , d p 2  =  ^ 3 ^ 2 ; d p 3  —  \ 3  ^ ^ 3  

A 3

( 2 . 1 1 )

,  d A i

d v 1  =  - t —  ;

A i

.  d A 2 .  ¿ a 3
d u 3  =  — ( 2 . 1 2 )

Incremental Stresses

Incremental stresses can be defined as {dj\. dh, dfo), (dt\, ¿¿2 , dt3) or as {dTi,dT2 ,dr3), 

where

dh
A2A3

dri

_ dFi 
bh ’ dh Ih ’ dh = l b (2.13)

dt2 = x 1x3 + h d { x lx3>’ d i 3 = A,A2 +  /3c/(y V )  (2-14)A1A2

dfi
' A2 A3 ’

, dh  . 
2 AiAa’

. df3
3 AiA2

(2.15)
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In the infinitesimal theory of initially unstressed bodies, all three definitions become identi-

cal. The stresses of (d/i, d/2, df3) and (dn , dr2, dr3) are directly related to force increments 

and therefore give a better feel of increase in resistance of the specimen in going from con-

figuration B to configuration C. These would also be easier to use in cases where a strain 

energy density function is assumed to exist. On the other hand, the incremental stresses of 

(dti, dt?, dts) represent actual changes in forces per unit area in going from configuration B 

to configuration C. Thus in tissue failure considerations, for example, these would appear 

to be more pertinent.

Because of different definitions of stress and strain, the same material will exhibit different 

stress-strain curves depending on the choice of definitions [1 0 0 ].

2.3.3 Uniaxial constitutive laws

Prom the point of view of biomechanics, the mechanical behaviour of a tissue can be 

described if its constitutive equation is known. Without constitutive equations boundary- 

value problems cannot be formulated and detailed analysis cannot be made. Careful study 

of the existing literature on continuum mechanics does not yield a good understanding, 

because the best known materials like metals seem to have few counterparts in living tis-

sues as far as the mechanical properties are concerned. The constitutive equation of a 

material can only be determined by experiments.

A uniaxial loading test of a sliced ring of an arterial wall or a strip of tissue is simple 

but, nevertheless, provides basic and useful information on the material properties. Many 

authors proposed a large variety of mathematical expressions to describe the stress-strain 

relationship in uniaxial tests [99, 100, 101].

2.3.4 M ultiaxial constitutive laws

The uniaxial loading experiments cannot provide the full relationship between all stress 

and strain components. To obtain the tensorial relationship, it is necessary to perform 

biaxial and triaxial loading tests.
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Multiaxial constitutive equations that have so far been proposed for the arterial wall are 

divided into three types:

(1) viscoelastic [63],

(2) elastic [78],

and (3) hyperelastic [102, 103].

Although it is well known that the arterial wall is viscoelastic, constitutive equations which 

describe nonlinearity and viscoelasticity might be of very complex form and contain many 

coefficients. For the formulation of elastic properties of arterial walls, several assumptions 

have been incorporated: for example, ideal cylindrical geometry, material homogeneity, 

incompressibility, cylindrical orthotropism and hyperelasticity. Mechanical properties of 

the arterial wall have been often analysed on the basis of strain energy density function, 

that is, on the assumption of hyperelasticity.

2.3.4.1 Strain energy density function

Most experimental data on the elastic properties of highly deformable biological soft tissues 

are generally analysed with the help of strain energy density functions. If there is a one-to- 

one relationship between strain and stress, then the theory of elasticity shows that there 

exists a strain energy density function (SEDF) from which stresses can be computed from 

the strains by differentiation [82], That is

dW
Sij = dW j ^ 3  = W )  (2-16)

where W is the strain energy per unit volume of the tissue in the initial state. Sij and 

Eij are the second Piola-Kirchhoff stresses and Green’s strains respectively. Although ar-

terial tissues exhibit hysteresis in cyclic loading, the stress and strain are uniquely related 

in each branch of a specific process if the artery is well preconditioned by cyclic loading 

and unloading manoeuvres at a constant strain rate. The material can be treated as two 

different elastic materials under loading and unloading [79]. Thus, the concept of SEDF 

can be used on arterial tissues.
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For the description of stress-strain relationships of arterial tissue in biaxial and triaxial 

tests, there are essentially three forms of SEDF :

(1) polynomials [102, 104],

(2) exponential functions [103, 105, 106], 

and (3) logarithmic expressions [107].

For example, Vaishnav et al. [102] proposed three multiaxial polynomial forms of W {E q q . E z z ) 

which contained different numbers (3,7,or 12) of material parameters. Overall a 7-parameter 

relation was deemed best. It may be expressed as

W  =  C \E qq  +  C^Eq q E z z  + C ^Ezz  +  C^Eq q  +  C^Eq q E z z  +  CqE q q E z z  +  C jE zz

(2.17)

where W represents the strain energy density function, E q q  and E z z  are Green’s strains 

in the circumferential and axial directions respectively, and Ci are material parameters. 

Vaishnav et al. determined “best fit ” values of the parameters from mean stress-strain 

data and then determined the values for global equilibrium which accounted for transmural 

variations in stress and strain. Differences in the two sets of parameter values prompted the 

deduction that the “thick-walled” approach was preferable, a conclusion that is held today.

Chuong and Fung [108] proposed an exponential W for rabbit carotid arteries of the form

W  = ^C eQ (2.18)

where C is a material parameter, and Q was given as

Q =  +  h E z z  +  h  E 2r r  +  2b±EQQEzz +  2 6 5 E z z E r r  + 2  b§ERREQQ +  h E ^ z  +

^8E 2z r  +  69 E 2Rq

Actually, Chuong and Fung suggested only the first six (that is, extensional) terms. In 

fact, the E z q  term was later included by Deng et al. [106], although their relation was 2-D.

Takamizawa and Hayashi [107] used a logarithmic form of the function described by

W  =  —C ln (l -  C^e I q / 2  -  C2 E \ z l 2 -  C3E q q E Zz ) (2.19)
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where (7, Ci characterise the mechanical properties of the material. They also evaluated 

the three functions using experimental data obtained from the canine common carotid 

artery. The diversity of numerical values for the coefficients was somewhat less in the 

logarithmic form of function than in the exponential, although the fit to the experimental 

data was similar for both functions. The polynomial form of strain energy function did 

not fit as well as the other two forms which used the results from rabbit arteries. On the 

whole, the exponential form is more suited than the polynomial form if the purpose is to 

determine the material constants of a vessel in order to study any systematic changes in 

the vessel due to some other factors, such as the age, the location in the arterial tree, the 

effects of drugs, and the effect of hypertension. In addition to the above functions, other 

functional forms also exist. Kas’yanov and Rachev [109] proposed a combined polynomial- 

exponential form of W, namely

W  = Cx\eQ -  1| +  16 *7^ 0 0 eC8'E®s +  C9 E ZZ + Cw \E lz  (2.20)

where Q =  C2 E ZZ +  C$Ez z E q q  +  C^Eq q  +  C$Ez z E qq  +  CqE z z E q Q.

The values of material parameters are usually determined from experimental data. Because 

of the inherent “noise” in most data, parameter estimation is usually best accomplished 

via regression methods combined with a finite element method. Hayashi [110] presented 

a review of the constitutive laws proposed for the description of stress-strain relationships 

of arterial walls.

In addition to the above functions, other functional forms also exist. Kas’yanov and 

Rachev [109] proposed a combined polynomial-exponential form of W. Hayashi [110] pre-

sented a review of the constitutive laws proposed for the description of stress-strain rela-

tionships of arterial walls.

Besides these formulations, there are some empirical models, where arbitrary functions 

are assumed and fitted to particular experimental data [111, 112, 113]. For example, 

Elad et al. [112] presented a 2-D orthotropic quasi-linear stress-strain relation through 

the nonlinear definitions of generalised strain and stress which ensures the existence of a
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strain energy density function. In Elad’s paper, the generalised strain measure is given by

£q =  —[(AQ)n — 1] ( « =  1 , 2 ,3) (2 .2 1 )n

where ea are the generalised strain components in the principal directions, Aa are the 

principal stretch ratios, and n is a nonlinearity material parameter. The inverse of the 

stress-strain relations, that is the strain as a function of the stresses, can be obtained 

through an iterative procedure. The motivation for his work was primarily to provide a 

simple relation for wall response for use in studies of haemodynamic inflation waves rather 

than for a detailed description of the wall mechanics.

As mentioned before, the arterial wall is incompressible, which requires that

(1  +  2 E Q 0 ) ( 1  +  2EZZ){1 +  2 E r r ) =  1 (2 .2 2 )

There are two basic ways to account for incompressibility:

First, the components of strain can be treated as if they are independent (as in compressible 

behaviour) but incompressibility is enforced through an independent function H called a 

Lagrangian multiplier. In particular let:

W* = W { C ) - ^ ( d e tC  -  1) (2.23)

For example, in Fung’s exponential function

pW * = p W + j [ (  1 +  2 E q q ) ( 1  +  2E zz){l +  2 E r r ) -  1 )] (2.24)

Second, the constraint could be enforced directly, which requires that

W (E q q ,E r r ,E Zz ) =  W (E q q , (i +  2Ee e )( l  + 2Ez z ) ,E zZ  ̂ W (E&@’E z z  ̂ (2-25)

This effectively says that W depends on two, not three, independent principal compo-

nents of strain. Although the latter expression looks like a 2-D formulation, it yields 3-D 

information. Incompressibility is commonly described as a “mathematically convenient 

assumption”. Indeed, this is true from an analytical or experimental standpoint, but it is 

not true in a numerical (for example, finite element) context.
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2.3.4.2 Param etric expression  o f pressure-diam eter relations

Prom practical aspects of characterisation and measurements of the elastic properties of 

arterial walls, it is more convenient to use a single parameter which expresses the arterial 

elasticity in the living condition rather than to use a thorough, but complicated consti-

tutive expression. In particular, for non-invasive diagnosis in practical medicine, material 

characterisation should be simple, yet quantitative. To this end, several parameters have 

been proposed and frequently utilised including “pressure-strain elastic modulus, Ev” [114] 

and “vascular compliance, Cv” [115]. Pulse wave velocity, c, is also utilised because it is 

a function of the elastic modulus of the vascular wall. These parameters are described by

Ep = D 0 (A P /A D 0) (a)

Cv = A V /(V A  P) (b)

c2 =  (A /p )(A P /A A ) (c) (2.26)

where Dq ,V , and A  are the outer diameter, volume, and luminal area of a blood vessel 

at pressure P, respectively, and AD0, A V , and A A  are their increments as a result of the 

pressure increment, A P, p is the density of the blood. As may be understood from these 

expressions, there is no need to measure the thickness of the wall to calculate the param-

eters; the only necessity is pressure-diameter data at a specific pressure level. However, 

it should be remembered that while these parameters express the structural stiffness or 

distensibility of a blood vessel, they do not rigorously represent the inherent elastic prop-

erties of the wall material; in this sense, they are different from the elastic modulus [116]. 

In addition, the parameters are defined at specific pressures, and give different values at 

different pressure levels because pressure-diameter relations of blood vessels are highly 

non-linear.

Hayashi et al. [116] proposed the following equation to describe pressure-diameter relations 

of arterial walls in the physiological pressure range

H P  IPs) = P(Do/Ds -  1) (2.27)
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where Ps is the standard pressure and D s the wall diameter at pressure Ps. The coefficient, 

P, called the stiffness parameter, represents the structural stiffness of a vascular wall. At 

the standard pressure, Ps. the parameters described by equation( 2.26) can be converted 

into the stiffness parameter P, as follows:

P =  Ep/P s = 2/(CvPs) = 2 pc2 /P s (2.28)

Tozeren [117] proposed an exponential pressure-area relation using a fibre-fluid continuum 

analysis

P  = K 3( 1 +  (.KxlK 2 ){exp{K2{A -  1)) -  1)) (2.29)

where JTi, K 2 and K 3 are constants, and A is a measure of cross-sectional area.

Other forms of the pressure-luminal volume or pressure-luminal area [89] relationships of 

the artery have also been proposed.

Furthermore, in some simple cases, once the strain energy density function of the arterial 

material is obtained, the pressure-diameter relationship of the same material under the 

same loading conditions can be deduced from the strain energy density function [118, 119].

Demiray [118] proposed a strain energy function

W  = J^{exp[a(Ii -  3)] -  1} (2.30)

where a  and P are two material constants to be determined from experiments, and I\ is 

the first invariant of the deformation tensor. It was assumed that a cylindrical artery is 

subjected to an inner pressure P,, an outer pressure zero, and an axial force N, under 

constant stretch ratio in the axial direction. Using equilibrium equations, boundary con-

ditions, and the incompressibility condition, an incremental pressure-radius relationship 

is obtained, which is

A  Pi =  [ jf  (A +  vì)F(Vi)  -  (A +  %2)P(r/0)]—  (2.31)
'i  r0
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where AP¿ is incremental pressure, Aro is the increment in outer radius, ro,r¿ are the 

inner and outer radii in the deformed configuration, F(j]) =  -^exp[a( jz  + +  A2 — 3)],

and 77 =  7 . In the latter R and r are the radii of a material point of the artery before and 

after deformation. Utilising the definition of pressure-strain elastic modulus, one has

«»2 Arn
Ep = [^§(A +  Vf)F (Vi) -  (A +  77̂ ( 770)]; A P  = Ep- ^ -  (2.32)

Demiray [119] also employed a strain energy density function which consisted of both 

polynomial and exponential parts, and obtained an explicit expression of the variation of 

pressure-strain elastic modulus with intramural pressure. Although the present formu-

lation is applied to isotropic elastic materials because of the form of the strain energy 

function, it gives an indication that there exists some interrelationship between a model 

describing the material with a strain energy density function and with one employing a 

pressure-diameter relationship.

2.3.4.3 Incremental stress-strain relationship

It is well known that the vascular tissue is capable of undergoing large deformations and 

that its mechanical response is nonlinear. One way of expressing the nonlinear behaviour 

of the tissue is through characterisation of its mechanical response in the neighbourhood of 

various states of deformation of interest. This is the so-called incremental approach which 

was applied to the arteries in the 1950s. The concept is well founded in that in the living 

animal the vascular bed, particularly the arterial bed, is in a state of mean distension 

corresponding to the mean pressure of blood on which are superimposed relatively small 

pulsatile deformations corresponding to the pulsations of the beating heart. The incre-

mental stress-strain relationships are expressed by the theory of linear elasticity [99, 120]. 

The elastic parameters are functions of the particular state of deformation [6 6 ].

One of the physiologically important states of stress in a vascular segment of an orthotropic 

tissue is that caused by simultaneous action of an intravascular pressure and an extra 

longitudinal force which is called ‘physiological loading’. The incremental constitutive 

behaviour of an orthotropic tissue under such loading can be expressed as

dSn  =  KndXi  +  K\2d\2 +  K\^d\^
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dS‘2‘2 — K 2ldXx +  K22<1\2 +  -^2 3 ^ 3

dS^s = K^idXi + K^2 d\ 2  +  K^^dX^ (2.33)

The coefficients Kij may be called incremental moduli. For incompressible materials there 

exists the relation:

d \i  dX2 dX3

Ai A2 A3
(2.34)

Thus, only two incremental strains are independent. Moreover, only two incremental 

stress differences can be determined from the two independent strains. If the material 

were considered to be viscoelastic, the foregoing treatment could be simply extended by 

considering the incremental coefficients to be complex quantities (For further discussion 

see Patel and Vaishnav [121]). Patel et al. [61] carried out in vivo experiments to evaluate 

dynamic incremental viscoelastic coefficients for the middle descending thoracic aorta of 

dogs which showed that the viscous effect is small compared to the elastic effect.

The incremental approach has been used extensively in vascular mechanics. This contrasts 

with the difficulties associated with the overall nonlinear formulation. These difficulties 

axe generally acknowledged and appropriately respected.

Both the incremental and finite elasticity approaches toward material characterisation 

have considerable merits, but each has its own limitations. The incremental approach is 

linear and invertible, but it requires tabulation of the elastic parameters for each state 

of deformation. Under real multiaxial loading, many deformation states are possible and 

extensive. Experimental data must be obtained and tabulated. The finite elasticity ap-

proach is free from this problem, since the whole range of elastic response is expressed by 

a single set of parameters. Its advantage is that the stress is given as a nonlinear function 

of strains. In practical applications, the inverse strain-stress relationship is often required. 

Fung [122] showed that this inverse relationship can readily be obtained only if the SEDF 

is of quadratic form, but that SEDF’s that are polynomials of strain of degree three and 

higher may not be invertible.
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2.3.5 Changes of mechanical properties w ith age and disease

2.3.5.1 Aging

Numerous studies show age-associated changes in wall structure, including a tendency for 

endothelial cells to become irregular in shape, the intima to thicken and become more 

fibrotic, and the media to thicken from either a hyperplasia or hypertrophy that is accom-

panied by an increased decomposition of collagen but some degradation of elastin. Yet 

changes in mechanical properties have not been rigorously quantified, and the available 

data often appear to conflict. These inconsistencies may be due, in large part, to differ-

ences between species, the artery studied, and methods of data collection and reduction. 

Most of the data obtained from blood vessels in animals indicated that the incremental 

elastic modulus or the slope of stress-strain curve also increased with age [123, 124, 125], 

whereas Fronek and Fung [87] reported different data. There are, however, no detailed 

multiaxial quantifications of age-associated changes in the biomechanical properties of ar-

teries.

2.3.5.2 A therosclerosis

Atherosclerosis is the most commonly acquired disease of the arterial wall. There are nu-

merous reports of uniaxial tension on strips of diseased arteries and nondiseased controls. 

The overall qualitative finding is: atherosclerosis increases overall stiffness [126, 127]. Sim-

ilarly, numerous investigators have compared pressure-diameter data from diseased and 

nondiseased vessels. Interpretation of these data can be reduced in terms of either a 

structural or a material stiffness; the former includes wall thickness, which increases with 

progression of disease. Consistent with uniaxial results, pressure-diameter data suggest 

that the diseased arterial wall is “stiffer” than the normal wall.

In connection with this subject, the mechanical properties of atherosclerotic lesions, plaques, 

and intima have been studied by means of microindentation techniques and micro tensile 

testers. In addition, local mechanical properties and stresses at aortic and arterial branches 

have been experimentally and analytically studied.
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2.3.5.3 H ypertension

Hypertension is a risk factor of many cardiovascular disorders. Elevated blood pressure is 

believed to exert some influence on the synthetic activity in vascular smooth muscle cells, 

causing alternations of artery wall thickness, passive mechanical properties of vessel walls 

and active vascular muscle contractibility. Many studies of large arteries from hyperten-

sive subjects show that these vessels have an increased slope of the stress-strain curve in 

the circumferential direction under passive conditions [128, 129]. However, Vaishnav et 

al. [130] reported that the stress-extension ratio relationship of the canine thoracic aorta is 

similar in the hypertensive and normotensive animals in the circumferential direction; al-

though the hypertensive aorta has a higher slope than its normotensive counterpart in the 

longitudinal direction. Matsumoto and Hayashi [131] reported that the mean circumferen-

tial wall stress in the rat aorta remained nearly constant during developing hypertension 

(owing to competing changes in pressure, wall thickness, and lumen radius). In conjunc-

tion with this phenomenon, Michelini and Krieger [91] studied short term changes of aortic 

wall distensibility and wall dimensions during the development of hypertension in the rat.

2.4 Spatial Distribution of Strain and Stress Components 

in the Straight Artery Segment

Direct measurement of arterial wall stress is difficult, whether invasively or noninvasively; 

therefore, mathematical analysis of stress and strains is useful in predicting stress and 

strain distribution throughout the arterial wall.

2.4.1 Thin-walled uniform distribution

Intravascular pressure and longitudinal tethering force are the primary sources of stress in 

the blood vessel wall. In vascular mechanics, it is often convenient to make an additional 

assumption, namely, that the vascular wall is thin in comparison to its mid-wall radius. 

From the point of view of structural mechanics, assuming a blood vessel to be thin implies 

that the stress distribution is uniform through the thickness of the blood vessel wall and 

that the radial stresses are negligible compared with the circumferential and longitudinal
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stresses. Using these approximations, it is possible to estimate stresses in the blood vessel 

using simple equilibrium considerations.

For a blood vessel, it is not possible to designate a threshold value of this ratio beyond 

which the vessel may be called thin-walled. The threshold value for usual engineering 

materials lies between 20:1 and 10:1. However, because of nonlinearity of tissue response, 

a large error results in the case of vascular tissue than, say, in steel, when the stress 

analysis is based on the assumption of thinness.

2.4.2 Spatial distribution of stress and strain-energy density function

Experimental work by Arndt et al. [132] has shown that during the cardiac cycle the re-

sulting in vivo deformation may be greater than 10% in terms of tangential strain. In 

addition, very large deformations (60 — 1 0 0 % tangential strain) occur for pressures from 

0-200mmHg. A finite deformation analysis of the arterial cross section with a thick-walled 

model allowing possible stress gradients in the arterial wall has shown that significant gra-

dients in tangential stress may be present in arteries which have previously been assumed 

to be “thin-walled” cylinders. Hence, available elastic arterial constitutive relations should 

be reevaluated on the basis of a thick-walled model including finite deformations, since 

the necessary analytical and numerical procedures have now become available.

The distribution of stresses and of strain-energy density through the wall thickness of 

a blood vessel under physiological conditions influences the mechanical behaviour of the 

vascular system. Knowledge of the mechanical state of stress in the arterial wall is essen-

tial for understanding many aspects of vascular physiology, pathophysiology, and clinical 

therapy. For example, an understanding of tissue failure requires information about the 

magnitude of the maximum values of stresses and strain energy. Additionally, the strain- 

energy function could be a useful indicator in atherogenesis. Fry [133] has postulated that 

atherosclerosis may occur at locations in the arterial tree where the strain energy is abnor-

mally increased. For instance, lesions commonly occur near arterial bifurcations and the 

distribution of strain energy density may influence the flux of lipoprotein macromolecules 

into the wall. An understanding of the latter phenomenon appears to be central to the
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unravelling of the pathogenesis of atherosclerosis.

The complexities of stress analysis in the arterial wall are numerous. In spite of these 

difficulties, attempts have been made to examine the three-dimensional distributions of 

the stresses and strains in straight segments of the artery. Simon et al. [134, 135] assumed 

that the blood vessel is transversely isotropic and incompressible. They determined the 

material constants for each fixed longitudinal stretch by using average stress and strain 

to start a trial-and-error scheme until the computed pressure-radius curve agreed with 

experimental measurements. They concluded that thin-walled tube stress approximations 

resulted in inaccurate values for arterial stresses and incremental mechanical properties.

Vaishnav et al. [102] assumed the material to be incompressible, curvilinearly orthotropic, 

and characterised by a strain energy function of the polynomial type. In their paper, a 

method was presented to determine the distribution of circumferential (<tq ), longitudinal 

(<t z), and radial (<rr ) stress and of strain energy density (W ) in canine aortic segments 

under physiological loading. Aortic segments from 13 dogs were studied in vitro. The 

3,7, orl2 constants were then used to calculate the distribution of stresses and of W. The 

results indicated that (1) ct q , <rz, aT and W  were largest in magnitude at the endothelial 

surface and decreased toward the adventitial surface, (2 ) the decrease was most marked 

in the inner third of the vessel wall, and (3) at a given longitudinal stretch an increase in 

intraluminal pressure increased ct q, az, \ar \, and W, with the effect being most marked on

CT0 .

It has been usually assumed in the literature that the arterial wall is stress-free when all 

external loads are removed. This is a good strategy for a linear system, because in such a 

system one can compute the stresses induced by external loads and then superpose them 

on the initial stresses, if any. However, for a nonlinear system the principle of superpo-

sition does not apply, and the effect of such an assumption would be far reaching and 

difficult to evaluate. Evidence of the existence of residual stresses in the arterial wall at 

the unloaded state is given in Fung [136]. With a longitudinal cut along the vessel wall the 

unloaded specimen springs open and its cross section becomes a sector. This phenomenon
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means that there exists compressive circumferential residual stress in the inner wall and 

tensile residual stress in the outer side before the vessels are cut. Presence of the residual 

stress at the unloaded state will certainly affect the evaluation of the stress distribution in 

the arterial wall due to actual loadings in the physiological range [108, 137]. These results 

indicate that the zero initial stress hypothesis is not suitable for the arterial wall.

It is important to identify the stress-free state. When pseudoelasticity [79] is used to 

characterise the arterial wall, a stress-free definition is needed as the reference state for 

strain measurements. Chuong et al. [108] presented a method to describe the geometry 

of the opened-up stress-free state of the artery, which is taken to be the reference state. 

An algorithm similar to Chuong [103] was used for the identification of the stress-strain 

relationship of the arterial wall. Residual stresses and strains in the unloaded state were 

evaluated. With the consideration of residual stresses the stress distribution due to the 

loadings in the physiological range were also evaluated. In their previous work using the 

hypothesis that the unloaded artery was stress-free, the circumferential stress at the inner 

wall was found to be 6.5 times larger than the average value across the vessel wall. The 

removal of the hypothesis has the effect of reducing the stress concentration factor from 

6.5 to 1.42. It was concluded that the residual stress in the unloaded state, although small 

in magnitude, is significant in reducing the high stress concentration. A similar conclusion 

was also obtained in the study of residual stresses in oscillating thoracic arteries made by 

Chaudhry et al. [137].

As an alternative assumption to the zero initial stress hypothesis, Takamizawa et al. [107] 

proposed a uniform strain hypothesis in which the wall circumferential strain was assumed 

to be constant over the wall cross-section under the physiological loading condition. It 

should be noted that the uniform strain is not rigorously equivalent to the uniform stress 

if the wall material is assumed to be incompressible. The uniform strain hypothesis is 

quite similar to the “principle of optimal operation” proposed by Fung [136] for the left 

ventricular wall. The stress distributions through the wall were analysed on this assump-

tion and compared to those calculated on the basis of the zero initial stress hypothesis. 

To describe the mechanical properties of the arterial wall, the authors used a logarithmic
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type of strain energy density function. The material constants were determined by a least 

squares method. Under the uniform strain hypothesis the results showed that the high 

stress concentration observed in the vicinity of the wall lumen in the case of the zero 

initial stress hypothesis did not appear. The circumferential and axial stresses were very 

slightly higher at the outer side of the vessel wall than at the inner wall. In contrast with 

the zero initial stress hypothesis, residual stresses and strains appear in the case of the 

uniform strain hypothesis when the intraluminal pressure and axial force are removed. 

These results imply that the thin walled theory is a good approximation and simplifies 

the analysis of stress in the arterial wall.

All problems involving bending of the wall must consider the shell as a three-dimensional 

body. Problems in which the external load is nonaxisymmetric, localised, or concentrated 

are three-dimensional. Studies concerning curved or branching arteries or vessels with 

stenosis or aneurysm belong to this category.

2.5 Structural Analysis of Arterial Walls

2.5.1 Arterial wall models

Biomechanical structural analysis should be able to provide predictions of deformation 

and stresses in normal, diseased, and prosthetic arteries. In addition, biomechanicians 

are attempting to understand the interrelationship between arterial wall mechanics and 

transport and how this might relate to atherogenesis. Because of the complex geometry 

and properties of the arterial wall, the finite element method (FEM) is likely to be the 

only computational tool suitable for the study of arterial mechanics.

The FEM has proven to be one of the most popular methods for structural analysis of soft 

arterial tissues. Depending on the application, arteries can be treated as either a solid-fluid 

mixture or a homogenised solid (most common); the former is particularly important in 

calculations of mass transport within the wall, as in the studies of atherogenesis, whereas 

the latter is employed in most experimental, theoretical, and numerical studies of the con-

stitutive behaviour of, and stress distribution in, the wall.
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Over the last 20 years, elastic (or viscoelastic) material laws have been primarily struc-

tural models. The artery is modelled as a one-phase solid such as a thin-walled tube and 

shell structure. During the early 1970s, several FEM models were developed, including 

transversely isotropic [138] and isotropic [139] hyperelastic material models. The stresses 

and deformations in diseased and normal arterial cross sections were considered by Vito et 

al. [140] using FEM. Their results included the distribution of strain in the cross section of 

the canine thoracic aorta, which was used in a nonlinear finite element model to determine 

material properties.

Thubrikar et al. [26] calculated stress concentration levels in bovine arterial branches. In 

the study, the arterial branch is modelled as two intersecting thin cylindrical shells incor-

porating local variations in the branch geometry, thickness, and material properties. The 

intramural stress and stress concentration in the arterial branch area were determined by 

finite element analysis. Orthotropic material properties and incremental pressure loads 

were introduced. Maximum stresses were found to be localised at the proximal and distal 

regions of the ostium and were not significantly affected by the elastic properties.

More recently, arterial FEM models have been extended to include mobile tissue fluid 

motion (based on poroelastic constitutive laws) and to simulate wall transport phenom-

ena (based on diffusion and convective laws) for the study of species flux in the wall. An 

artery can be considered to be a “porohyperelastic” material, that is, a fluid-saturated 

porous medium (continuum) composed of an incompressible fluid (fluid phase) that flows 

through the pores in a highly deformable incompressible, hyperelastic porous solid skele-

ton (solid phase). Early efforts to model arterial tissue as poroelastic materials were 

reported by Kenyon [141] and later by Jain and Jayaraman [142] using analytical mod-

els. The first poroelastic FEM for the arterial cross section was described by Simon and 

Gaballa [143]. Yuan et al. [144] presented a general FEM for soft arterial tissues and 

identified constraints on porohyperelastic material properties for porous media composed 

of incompressible solids and fluids. A detailed development of the field equations and 

FEM formulation was given. An artery was simulated as a porohyperelastic neo-Hookean
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Table 2.1: Model matrix.

Order of models 1 2 3

No. of layers“ Homogeneous 2-layer Multi-layer

Anisotropy0 Isotropic Orthotropic Anisotropic

Geometry“ Circular tube Thin shell 3-D

Displacement Small displacement Large displacement

Material \awe One-phase elasticity Viscoelasticity Poroelasticity

Elasticity^ Linear elastic Incremental linear-elastic Hyperelastic

material and deformations, stresses, pore fluid pressure, and relative fluid motion were 

calculated in order to demonstrate both transient and steady-state FEM procedures. Si-

mon [145] reviewed the applications of poroelastic and mixture-based theories and the 

associated FEMs for the study of the biomechanics of soft tissues.

There have been numerous papers which consider transport in the arterial wall with ap-

plication to atherogenesis (for example, see review by Fry and Vaishnav [146]. There is a 

potential future use for FEM that allows detailed simulation of these transport process. 

A review of elastic, poroelastic, and transport FEM models for arteries has been made by 

Simon et al. [147].

Table 2.1 summarizes the model matrix available in structural analysis of arterial walls1.

1ABAQUS can accommodate any models in this matrix
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2.5.2 Stress analysis of a human abdominal bifurcation based on MRI 

data

Atherosclerotic lesions generally develop at arterial branching sites. Repeated occurrences 

of the disease at these sites have stimulated a great deal of research in various aspects 

of haemodynamics. Disturbed flow pattern, however, is not the only factor contributing 

to the formation of lesions. Studies in other areas have shown that intramural stresses 

are also related to the disease [140]. Only very few numerical studies of intramural stress 

calculations are available in the literature. The section presents results of a stress analysis 

study performed by the author.

An anatomically realistic model is necessary for a clinically relevant study of wall stress 

distribution in the vessels. Using MR angiograms of a human abdominal aorta and iliac 

arteries, the three-dimensional structure of the aortic bifurcation was reconstructed, which 

provided a realistic geometric model for the study. A finite element package ABAQUS was 

employed to carry out the stress analysis (Referred to Table 2.1, this analysis is classified 

as a\b} c^fhei fo). The selected element type is S4R5, which in finite element terminology is 

a four node doubly curved, shear flexible element with reduced integration and hourglass 

control using five degrees of freedom. This is especially suitable for large displacements. 

Figure 2.3 shows the basic mesh developed for this model.

The nonlinear behaviour of the artery wall has been approximated, and it was assumed 

that this behaviour was incrementally linearly elastic over the pressure range from the 

diastolic level to systolic phase [148]. Local change in wall properties was not considered. 

The model was loaded with a pressure of 40mmHg which corresponds to the increase in 

pressure from a diastolic of 80mmHg to a systolic of 120mmHg. To prevent rigid body 

motion, the ends of the model were constrained against longitudinal motion. The inclu-

sion of geometric nonlinearity in the calculations is required due to the relatively large 

displacements occurring in the bifurcation considered here.

Figure 2.4 shows the maximum principal stress distribution on the inner surface of the 

bifurcation predicted with ABAQUS. Since in a living system an artery never experiences
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Figure 2.3: Geometrie model of a human abdominal bifurcation.

F ig u re  2.4: M a x im u m  p r in c ip a l s tre ss  d is t r ib u t io n  ( P a )  on  th e  in n e r  su rface  o f  th e

m o d e l(T h e  w all th ick n ess  a n d  Y o u n g ’s m o d u lu s  w ere ta k e n  to  b e  0 .6 m m  a n d  bX  105 P a

resp ec tiv e ly ) .



a state of zero stress, which customarily in engineering is helpful in quantitatively defining 

the level of stress. The results were obtained in terms of incremental stresses and strains 

above the diastolic pressure level because it was suggested that increased stress may play 

a role in atherogenesis. It was found that, in the branch area, the stresses were not 

uniformly distributed, but localised. There was a stress concentration at the arterial 

branch, the intramural stress being increased by a factor of 2.65 in the apex region. The 

patterns of deformation and principal stress were in agreement with published data [26]. 

This study was only an initial but essential step of the project in which a coupled fluid- 

solid suite of computational codes using data from MRI and ultrasound is developed for 

clinical applications.

2.6 Wave Propagation in Arteries

2 .6 .1  T h e  p ro p a g a tio n  o f  p ressu re  w aves

Blood is ejected from the left ventricle into the circulatory system by a periodic action of 

the heart. This added blood creates a change in pressure and results in a flow of blood 

along the aorta and throughout the circulatory system. At any given point the pressure 

and velocity will change periodically, and hence the flow is pulsatile and associated with 

the propagation of a pressure wave. The pressure wave changes both its shape and peak 

value as it travels down the arterial system. By the time the pressure reaches the capillar-

ies, the pulsations are almost completely damped out. This damping is due to the viscosity 

of the blood and the viscous component of the viscoelastic arterial wall. Viscosity has the 

effect both of reducing the speed of propagation of the pressure wave and of attenuating 

it. Waves in any real system are attenuated, because the inevitable presence of friction or 

viscosity causes their mechanical energy to be dissipated into heat. In fact, visco-elastic 

dissipation in the vessel wall proves to be more important than viscous dissipation in the 

blood [149]. Structural changes in the arterial wall greatly influence the speed of prop-

agation. Pathological changes such as hypertension as well as muscle contraction in the 

arterial wall (that result in decreased distensibility of the walls) result in an increase in 

speed of propagation, which is closer to a rigid tube behaviour.
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In vivo the time-course of the pressure pulse is not similar or synchronous everywhere, 

the time-course of the volume flow-rate is not the same in the vena cava as in the aorta, 

and at neither location is it proportional to the applied pressure difference. The reason 

for these lies in the elasticity of blood vessels. The simplest model of the vascular system 

is the Windkessel model [149]. In this model the peripheral blood vessels are replaced by 

a rigid tube of constant resistance so that

P  =  R eQ (2.35)

where P is the aortic pressure, Q is the flow rate into the peripheral vessels from the aorta 

and R e is the constant peripheral resistance. The aorta and large arteries are represented 

as an elastic chamber with a linear pressure-volume relation, which is described as:

Ve = CVP  (2.36)

where Ve denotes the time derivative of aortic volume Ve and Cv is the arterial compli-

ance (ml/mmHg). The differential equation governing the time variation of aortic pressure 

in the Windkessel model can be obtained by considering the conservation of mass of the 

blood flowing through the aorta:

- V  = (P /R e ) +  Cvp  (2.37)

where (—'V) is the flow rate into the aorta from the left ventricle. The three equations 

can be combined to form a single equation giving P, Ve, or Q, and this can be solved 

to relate the pressure in the arteries to the flow-rate into them from the heart at any 

time. Actually, a linear pressure-volume relation is only a simplification. Tozeren [117] 

proposed an exponential pressure-volume relation of aorta and large arteries to modify 

the linear pressure-volume relation of the Windkessel model. The principal shortcoming 

of the model lies in the assumption that all arteries are distended simultaneously. Actually, 

the pressure peak occurs later in peripheral arteries than in the aorta, and the pulse is 

propagated along the blood vessels in the form of a wave.
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2 .6 .2  P u ls e  v e lo c ity  in  a rter ies

Arterial walls are flexible and their effect on pressure wave propagation has been studied 

extensively. Several experimental and theoretical studies have been conducted in the past 

to determine the pulse wave in distensible elastic tubes containing a viscous or inviscid 

fluid. If the method of characteristics is used in the analysis of an inviscid fluid contained 

in a distensible tube, the results reveal that the phase velocity c may be expressed as [150]

1 A P t 
----Pf a a

(2.38)

where A is the cross-sectional area of the vessel lumen, A A, A P  are incremental cross- 

section area and pressure respectively, and p/ is the mass density of the fluid medium. 

This result is the same as the Newton-Young equation for pulse wave velocity.

Bergel [151] proposed the wave speed in an elastic tube under constant axial stretch con-

taining an inviscid fluid to be

E (R l - R 2j ,
Pf 3 R l ’

(2.39)

where E is the incremental Young’s modulus, and i?o, Ri are outer and inner radii respec-

tively. Furthermore, if the arterial wall is very thin, then equation( 2.39) becomes

c2 -  <?MK  -  2 ^  (2.40)

where R is the mean radius, h is the thickness of the arterial wall and c m k  is the wave 

speed proposed by Moens-Korteweg, which is a highly simplified form of Bergel’s result. 

If no additional longitudinal stresses are applied (so that the tube will shorten when it is 

stretched), then

c2 =
Eh  

2 PfR
(2.41)

In the case of pulsatile blood flow, the arteries are subjected to large initial deforma-

tions [152, 79]. These deformations might affect the explicit expression of the wave speed 

namely, the transmission coefficients. Demiray [153] obtained such an expression of the
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wave speed in an elastic tube containing an inviscid fluid as a function of material and 

geometrical characteristics as well as the large initial deformations of the artery utilising 

the strain energy density function that he proposed previously [154]. The effects of lumen 

pressure and the axial stretch on the wave speed are discussed. The artery was treated 

as a thick-walled cylindrical shell element undergoing large deformations. The results of 

numerical evaluation for a particular type of artery revealed that the phase velocity of the 

wave increased with the intramural pressure whereas it decreased with axial stretch ratio. 

However, for engineering materials this is not the case, that is, the speed decreases with 

intramural pressure [155]. This result indicates that large deformation theories give larger 

values of phase velocity than those given by classical linear elasticity theory.

The study of propagation of pressure waves in a viscous fluid contained in an elastic tube 

has a long history going back at least as far as the work of Witzig [156]. He derived an 

approximate solution of the equations of viscous fluid motion, neglecting the non-linear 

terms and deduced a “frequency equation” from which he derived an approximate formula 

for the wave velocity in terms of the thickness and radius of the tube, its elastic constants, 

the viscosity of the liquid, and the frequency. Morgan gave two approximate formulae for 

the wave velocity, characterised by them as solutions for large and small viscosity. These 

are more precisely described as solutions for large and small values of the important non- 

dimensional Womersley parameter a. They also extended their approximate formulae to 

take account of internal damping in the wall of the tube by replacing its elastic constants 

by complex quantities whose imaginary parts were proportional to the frequency.

2.7 Fluid-Wall Coupled Problems

2 .7 .1  In tr o d u c tio n

Traditional interest in elastic vessels has focused on the problem of propagation of pressure 

and flow pulses in the cardiovascular system [157]. Less attention has been paid to the 

influence of wall elasticity on the local flow field at a particular position in an artery. This 

is because radial wall motion of the blood vessels is small compared to the flow of the
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fluid. It is thus often assumed that changes in geometry and wall velocities should not 

significantly affect the major features of the flow field. However, since the interaction of 

the artery wall with the local haemodynamic environment takes place in the immediate 

neighbourhood of the vessel surface, it is appropriate to consider the effects of wall motion 

resulting from compliance upon the velocity field and wall shear stress in this region.

Oscillatory flow of a Newtonian fluid in an elastic tube, which is a model of blood flow in 

arteries, has been widely analysed. Theoretically, the pioneering work was carried out by 

Womersley [38] based on a linearization of the basic equations. In his study, the effects of 

wall elasticity, fluid viscosity and the coupling between fluid and wall motion have been 

taken into account and the oscillatory velocity profile across the vessel due to an imposed 

sinusoidal pressure gradient are predicted as a function of the Womersley number. Wom- 

ersley’s analysis has provided a basis for understanding many aspects of unsteady flow in 

elastic tubes. However, these axe linearised solutions for flow in elastic tubes. To evaluate 

the importance of nonlinear effects resulting from the convective acceleration, a perturba-

tion solution by Wang and Tarbell [158] has also been developed. The nonlinear effects on 

the amplitude of the wall shear rate, on the amplitude of the pressure gradient, and on the 

mean velocity profile have been considered. Nonlinear effects on the oscillatory compo-

nents depend on the Womersley’s parameter, the ratio between the mean and amplitude 

of the flow rate, the diameter variation, and the phase difference between the diameter 

variation and the flow rate. Dutta et al. [159] achieved a numerical analysis of flow in 

an elastic model under Ling and Atabek’s assumption allowing for the axial convective 

acceleration term, which involves the axial velocity gradient, to be expressed in terms of 

the local axial velocity. With this assumption, the problem can be solved locally with-

out axial boundary conditions. So far, the arterial wall has been characterised by linear 

stress-strain or pressure-diameter relationships in both analytical and numerical studies.

Numerous experimental studies have been made to investigate the flow field in compliant 

models of arterial bifurcations, where atherosclerotic lesions have been frequently encoun-

tered [160, 161, 162, 163, 164], On the basis of Caro’s low shear theory [1], shear stress has 

been investigated thoroughly. In addition to experimental studies, several recent numeri-
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Figure 2.5: Classification of general field analysis methods.

cal studies have been modelled in simplified 2-D or 3-D distensible geometries [40, 41, 42], 

This is in contrast to most numerical studies of flow in distensible systems, which are 

concerned with 1-D modelling of waveform behaviour, e.g.,Horsten et al. [165]. The com-

parison of the results for rigid and distensible wall models demonstrated the quantitative 

influence of the vessel wall motion.

2 .7 .2  N u m e r ic a l m e th o d s  in  co u p led  p ro b lem s

Mathematical analysis of arterial flow including wall motion is only possible for the sim-

plest of cases due to the requirement that the equations of motion for the flow and the 

wall have to be solved simultaneously. Alternative approaches which can solve the coupled 

system of equations governing the flow and wall motion in complex geometries are needed. 

Common analysis methods available for the solution of a general problem (such as elastic 

deformation, fluid flow and heat transfer) is shown in Figure 2.5 [166].

While the finite element method remains the most commonly used discretization approach
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in structural analysis, computational fluid dynamics can be approached using any of the 

three main types of discretization techniques: finite difference, finite volume, and finite 

element. Details of these numerical methods axe outlined below, and their applications in 

practical problems are discussed later.

2.7.2.1 F in ite  difference /F in ite  volum e m ethod

The finite difference method is widely employed in CFD, with most common difference 

representatives of derivatives in equations based on Taylor’s series expansions. Thus the 

unknowns of the resulting algebraic equations contain only the values of the variables 

at discrete points. One of the most attractive features of the finite difference approach 

is that it is easy to understand. However, the significant drawback of finite difference 

methods is that they axe less amenable to irregular-shaped geometries. This problem has 

been partially overcome by the introduction of body-fitted curvilinear coordinates. The 

multi-block grid made it possible to deal with complex geometries.

In the finite volume method, the computational domain is split into a number of non-

overlapping control volumes, and the differential equations axe integrated over each vol-

ume. The resulting discrete equations forms a system of nonlinear algebraic equations 

containing the values of variables at grid points (provided the method is cell-vertex based).

CFX, which is a general purpose code for the numerical solution of laminar and turbulent 

flows with heat transfer, developed at the Harwell Laboratory UK, uses the finite volume 

method to solve the governing equations on general, three-dimensional, non-orthogonal 

grids. It allows both grid and solution domain boundaries to move in some prescribed 

manner. One of the key features of CFX is its poly-algorithmic structure, whereby options 

are available for users to specify different solution algorithms and different linear algebraic 

solvers.

2.7.2.2 F in ite  elem ent m ethod

T h e  f in ite  e lem en t m e th o d  as k n o w n  to d a y  w as p re se n te d  in  1956 by  T u rn e r  e t  a l. [167].

T h is  p a p e r  p re se n te d  th e  a p p lic a t io n  o f  s im p le  f in ite  e le m en ts  for th e  a n a ly s is  o f  a irc ra f t

71



structure and is considered one of the key contributions in the development of the finite 

element method. Although the method has been used extensively in the field of struc-

tural mechanics, the general nature of its theory makes it applicable to a wide variety 

of boundary problems, so it has been successfully applied to solve several other types of 

engineering problems like heat conduction, fluid dynamics, seepage flow and electric and 

magnetic fields.

The finite element method subdivides the computational domain into a set of elements, 

and it has the great advantage in offering geometrical flexibility, so that complex geome-

tries can be modelled with relative ease. The solution of a general continuum problem by 

the finite element method follows an orderly step-by-step process. Among these steps, the 

derivation of the discretized equations usually involves any of the following approaches: 

(i) Direct approach, (ii) Variational approach, or (iii) Weighted residual approach. In the 

weighted residual approach, there are four different methods based on a weighted resid-

ual criterion. They are (1) Collocation method, (2) Subdomain collocation method, (3) 

Galerkin method, and (4) Least squares method. The FEAT code, which was developed 

at Berkeley Nuclear Laboratories, UK, has been designed as a general computational tool 

for simulating incompressible turbulent flow and heat transfer based on Galerkin weighted 

residuals finite element methodology. It therefore offers several key advantages over con-

ventional finite difference based models, such as complex boundary geometries, arbitrary 

local refinement, and non-structured meshes. Many of the early arterial FEMs were not 

developed with commercial codes. Subsequently, commercial codes such as ANSYS and 

ABAQUS become available that allow analysis of arteries as nonlinear hyperelastic mate-

rial. Detailed discussions of commercial packages will be presented in chapter 3.

2 .7 .3  O u tlin e  o f  th e  p ro b lem

The solution of the Navier-Stokes equations is a boundary value problem. That means, 

from the engineering point of view, that the geometric boundaries and Dirichlet and/or 

Neumann conditions have to be specified. In general, strictly speaking, there is always an 

interaction between the fluid motion and the surrounding body which cannot be neglected
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in such mechanisms as blood flow through a vessel. The interactions between the flowing 

blood and arterial wall axe complex. On one hand, there is the direct effect of the flow on 

the wall. The total load imposed on the arterial wall by the flow of blood is manifested 

through both a normal component, essentially equal to the fluid pressure, and a tangential 

component, which is the wall shear stress. The macroscopic effect of these two haemody-

namic forces is to distend and distort the wall to produce stresses and strains within the 

wall itself. In this aspect it is the pressure, which is much the larger of the two forces, 

that plays the principal role. The other side of the blood/arterial wall interactions is that 

changes in shape and size of the arterial wall will change the geometry which bounds the 

flow, resulting in altered velocity and stress distributions in the artery.

2 .7 .4  T h e  g o v ern in g  e q u a tio n s  o f  flu id  an d  w a ll m o tio n

The equations governing the conservation of mass and momentum for an incompressible 

fluid are the 3-D time-dependent Navier-Stokes equations:

duj
dxi

=  0 (¿ =  1,2,3) (2.42)

. d u {  d u i . d t i i j

dxj dxj (* =  1,2,3) (2.43)

where Uj and atJ are the components of the velocity vector and the components of the 

stress tensor, respectively; p/ is the fluid density and fi are the components of body force.

The basic equations for the motion of an elastic solid (wall):

d2di da a
Ps~W  = d £  + ptFi (* =  1’2>3) (2-44)

where di and <r,j are the components of the displacement vector and the components of 

the stress tensor in the solid, ps is the density of the solid and Ft are the components of
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body force acting on the solid. The equations of the equilibrium are derived in the actual 

configuration of the structure at any instant. This frame of reference is known as the Eu- 

lerian frame and refers to quantities which actually exist, e.g. true stress (Cauchy stress). 

For finite strains, equations associated with the other measures of stress are different.

The equations of motion for the flow and the wall have to be solved simultaneously so as 

to predict the full, time-dependent displacement and stress fields within the wall, as well 

as the details of the flow field. The arterial walls are complex both in their structures and 

their stress-strain relationships [82]. The wall consists of different layers being organised 

in such a manner that it becomes stiffer when stretched. The arteries are subjected to a 

large initial deformation. The complexity renders the formulation of a complete model a 

difficult task. For this reason, certain appropriate simplifications are necessary.

Three basic artery models that have been proposed based on the material laws are: elas-

ticity, viscoelasticity, and poroelasticity. Each of these basic models can be further divided 

into linear, incrementally linear and nonlinear models. In Table 2.1, these aspects were 

systematised into a model matrix.

In coupled problems of arterial flows, an alternative simplified formation of wall motion is 

the “tube law” described as

R  = R(P) (2.45)

where R is the radius of the artery and P is the transmural pressure. In this case, the 

mechanical properties of arteries can be defined in terms of a distensibility or compliance. 

Most theoretical and numerical models of the complex interaction between fluid and solid 

mechanics have used this relatively simple “tube law”. For example, in Steinman’s 2-D 

distensible end-to-side anastomosis model [168] the artery was assumed to be a thin-walled, 

linearly elastic channel under axial constraint. Neglecting longitudinal displacements the 

transverse arterial wall displacement f; is related to the transmural pressure, P, via:
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£ =  D (P  — P ) (2.46)

where D is the distensibility of the wall and P  is a reference transmural pressure. Dutta 

et al. [159] used a constant of d R /dP  to characterize the elastic response of the artery for 

the ascending aorta of man in their numerical analysis of flow in an elastic artery model. 

Up to now, only one publication is known in which a viscoelastic wall model has been used 

in the coupled problem treating the simplified formulation of wall motion. In the study 

presented by Lou and Yang [41] the Voigt model (a linear viscoelastic model) was used to 

describe the wall viscoelasticity. In the case of an artery, it took the form of

dA
P  = K ( A -  A0) + C —  (2.47)

where P is the dynamic pressure; A, the cross section area of the artery; Ao, the reference 

area when P=0; K, the wall stiffness; and C, the wall damping constant.

The motion of the wall can take the form of stress equations if the magnitude and variation 

of the stresses at the endothelium/blood interface and the stresses within the wall are of 

interest because of their role in atherogenesis. Alternatively it can be expressed in terms of 

the pres sure-diameter relation if research interest is only in the effect of wall distensibility 

on the flow field. In either case, the equations governing the fluid remain the 3-D time- 

dependent Navier-Stokes equations.

2 .7 .5  C o u p led  m e th o d s

2.7.5.1 Three essentia l coupled m ethods

There are essentially three numerical methods which can couple the motion of the wall 

and the motion of the fluid. They are simultaneous [49, 10, 169],iterative [42, 9, 170, 148] 

and hybrid [168]. Details of these methods axe given below.

Sim ultaneous Approach
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For a comprehensive treatment of flow-wall models the equations of flow and wall must be 

solved together, followed by simultaneous solution of the equations. In Xu and Collins [49], 

the momentum equations for both the fluid and the wall were discretised using the Galerkin 

finite element method with the continuity equations of the fluid being incorporated by a 

penalty augmented Lagrangian-multiplier method. The fluid flow was solved with a trans-

formation of fluid region at any time back to the initial one, and the elastic stress equations 

governing the motion of the solid were discretised in terms of time derivatives (velocities) 

of the displacements rather than the displacements themselves. This is only applicable 

to linear elastic, small deformation problems, because under nonlinearity of material or 

finite deformation, either there is no direct relationship between stress and strain or a 

rather complex strain-displacement relationship. The elastic stress equations and the 

transformed N-S equations were solved always on the initial mesh, the traction between 

the solid and the fluid being cancelled out in the integration stage of the finite element 

method process. As a result, the solid/fluid interaction problem was solved fully coupled. 

An implicit predictor/corrector method was used to solve the fully-coupled time-dependent 

equations. The coupled solution procedure was implemented into a special version of the 

FE-based computational fluid dynamics code FEAT. However, it should be noted that the 

wall model is limited to linear elastic and small strains which is an approximation of the 

arterial wall behaviour.

Rast [169] studied the fluid flow through a significantly compressed elastic tube. This 

paper describes a finite element technique which solved the incompressible Navier-Stokes 

equations simultaneously with the elastic membrane equations on the flexible boundary. 

Both the grid and the spine positions were adjusted in response to membrane deforma-

tion, and the coupled fluid and elastic equations were solved by a Newton-Raphson scheme 

which displays quadratic convergence down to low membrane tensions and extreme states 

of collapse.

Iterative A pproach

An alternative solution technique is to decouple the solid and fluid mechanics, solving
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Figure 2.6: A haemoelastic feedback system.

for each separately and converging iteratively on a solution which satisfies both. More 

specifically, it is to analyse a haemoelastic situation as a feedback system of two func-

tional units: an elastic body and a fluid mechanism (Figure 2.6). First, the vessel is 

regarded as a rigid segment with a specific wall shape. For a given flow the distribution 

of pressure is computed. This pressure is then applied as a loading on the elastic body 

(wall) and the deformation of the elastic body is calculated in the usual manner of the 

theory of elasticity. The result of the calculation is then used to determine the boundary 

shape of the haemodynamic problem. When a consistent solution is obtained the pressure 

distribution corresponding to a given flow is determined. In short, the elastic and fluid 

problems are coupled through a) wall position and b) the traction exerted by the fluid 

on the wall. Perktold et al. [42] employed this iteratively coupled approach in the study 

of local blood flow in a compliant carotid artery bifurcation model. The numerical pro-

cedure for the non-Newtonian inelastic Navier-Stokes equations was based on a pressure 

correction method and used the Galerkin finite element method with streamline upwind- 

ing, implicit time discretization and Picard iteration for the non-linear terms present. The 

wall displacement and stress analysis used non-linear shell theory with incremental linearly 

elastic wall behaviour, an improvement on a simple elastic behaviour model. The wall de-

formation and intramural stresses were obtained using the finite element program package 

ABAQUS. The total inner wall pressure resulting from the Navier-Stokes calculation, to-

gether with outflow pressure boundary condition and the wall inertial force, constituted 

the total load. However, its CFD code was purpose-built which would involve a large
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team work and based on finite element method which was computationally expensive for 

problems of fluid dynamics. In Henry and Collins’s paper [9], the equations governing the 

fluid together with the equations governing the motion of a linearly elastic, incompressible 

tube undergoing infinitesimal strains are discretised using a finite volume method. The 

coupled procedure was similar to the one used by Perktold, but limited to axisymmetric 

flows and infinitesimal solid strains.

H ybrid A pproach

In the study presented by Steinman and Ethier [168], the artery was assumed to be a thin- 

walled, linear elastic channel. The transmural arterial wall displacement was described by 

equation( 2.46). The no-slip boundary condition allows the transverse fluid velocity at the 

wall, vw, to be expressed simply as

Vw dt
(2.48)

Equations( 2.46 and 2.48) represent constraints which must be satisfied in addition to 

the Navier-Stokes and continuity equations. These latter equations, with the constraints, 

were treated using a finite element computer code developed by Steinman. This can be 

achieved in either an explicit manner (that is, by solving for the flow field and then updat-

ing the wall variables £ and vw in an iterative fashion) or in an alternative implicit manner, 

where the fluid and wall variables are solved simultaneously. The first (iterative) solution 

technique is potentially unstable, while the second technique is extremely computationally 

intensive within the context of a finite element approach. Thus, a hybrid approach was 

developed in which the wall velocity was expressed in terms of the transmural pressure 

and the resulting discrete equation forms a Dirichlet boundary condition, which was used 

to constrain the fluid velocities at the channel walls in the finite element solver. The 

wall velocities are solved simultaneously with the fluid and pressure fields, while the wall 

displacements are treated via an iterative update.
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2.7.5.2 U se o f  com m ercial C FD and structural m echanics codes

In simultaneous and hybrid approaches, the equations governing the flow and the wall are 

solved totally or partly simultaneously, which limits the employment of available commer-

cial packages and the extension to more complex wall behaviour. Up to now only specially 

developed codes are available having the capability of addressing fluid-solid interaction. 

Most authors have used either self-developed packages or improved commercial packages. 

So far these two approaches have mostly been applied to simplified models of wall be-

haviour such as linear elasticity and small strains.

However, in the iterative approach, the fluid and solid computational analysis is coupled 

externally in an iterative way. The essential task is to find a way to couple them. A 

wide range of commercial packages are available, forming investigative tools, which can 

treat comprehensively the complex material and deformation behaviour of the wall. For 

example, in Perktold’s paper, both material nonlinearity and geometry nonlinearity are 

incorporated. The main problem lies in the lack of connection between the packages for 

the fluid and those for the wall because there is no universality regarding the data formats 

of interfaces which do not initially exist. Muller and Jacob [171] studied the feasibility 

of overcoming this problem by making the steady state and transient calculations of flow 

in a tube with a stricture. In this paper, they used (i) FIDAP as a fluid code, (ii) finite 

element code PERMAS as well as (iii) a boundary element code BEASY as the structural 

mechanics code. The common interface was performed by (iv) PATRAN, which proved 

to be useful due to its PCL(PATRAN-Command-Language). As a common shell for the 

calculations they used PATRAN with several specific subroutines written in PCL. In PA-

TRAN, they not only generated the meshes and set up the boundary conditions, but also 

the specific routines to write the data from output to input files and vice versa, and even 

the calls for running the different codes were initiated by PATRAN files.

2 .7 .6  U n c o u p le d  m e th o d s

In addition to the three coupled approaches, there are also some other methods to solve 

solid/fluid interaction problems. For example, Reuderink [172] proposed a numerical ap-
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proach for an uncoupled solution of the equations of wall motion and the equations of fluid 

flow. The feature of this approach is the assumption that the wall motion can be calcu-

lated on the basis of the pressures due to wave phenomena. The first step in the approach 

is the calculation of the time-dependent pressure distribution due to wave phenomena. 

Next, the wall motion due to this time-dependent pressure is evaluated. Finally, this wall 

motion is prescribed as a boundary condition for equations for the fluid flow which was 

solved using Galerkin’s finite element method.

2 .7 .7  C o u p led  p ro b lem s in  c o n v en tio n a l en g in ee r in g

The review is concluded by pointing out that development of a reliable fluid-solid algo-

rithm for medical engineering has substantial implications for conventional engineering 

also. Since the arterial wall requires a high-level solid mechanics model to treat it com-

prehensively, once a coupled fluid-solid overall code can be quantitatively validated for 

arterial flows, it should be applicable for what are usually simpler engineering materials.

Now while in engineering, continuum mechanics is customarily subdivided into solid me-

chanics and fluid mechanics, there is a wide range of problems that require a simultaneous 

solution of fluid flow and solid body deformations. For examples, we have

(a) casting of metal components, which involves a continuous transformation from flowing 

liquid to a deforming solid as one of the key features of the process,

(b) welding, where a region of flow liquid “travels through” the deforming solid, and gen-

eralising fluid-structure interaction (FSI) systems.

Of great interest is the general flow-structure interaction system. For example, large engi-

neering structures in nuclear power plants are often separated by narrow fluid-filled cavities 

and represent a typical FSI system. The fluid moving with the structure has an impor-

tant effect on the dynamics of the vibrating structure, particularly its natural frequencies. 

Substantial progress has been achieved since the mid-1970s in developing and validating 

computing methods (including finite element and finite difference methods, the method of 

characteristics and combined procedures) for the treatment of such coupled fluid-structure 

effects. Other applications arise in the analysis of many complex structures, such as off-
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shore platforms, ships, reservoir-dam systems, water towers, aerospace vehicles, turbines, 

piping systems, and widely in other nuclear reactor components [173].

FSI-studies may involve weakly or strongly coupled fluid-structure systems. Weak cou-

pling implies that the structure can be considered stationary while the fluid field is solved. 

The fluid-structure coupling forces for the structural response in such a case can be ex-

pressed to a first order of approximation in terms of added mass and stiffness matrices. 

In a strongly coupled fluid-structure system, however, the fluid and structural equations 

of motion are coupled because the structural motion becomes large enough to change the 

fluid field; some of the fluid forces amplify, rather than inhibit, the structural motion that 

produced them.

Whereas in all recent numerical modelling of arterial flows the full Navier-Stokes equa-

tions have been used, in conventional engineering, the coupled strategy to date has involved 

equations of a different form for the fluid. This is assumed to be inviscid, irrotational, com-

pressible, and adiabatic. The flow is assumed laminar and the fluid undergoes only small 

deformations. The equilibrium and constitutive equations of the fluid are the Helmholtz 

equations as follows:

-pP  = VVP; ^2  ™(x,y,x) = W u(x,y,z) (2.49)

The equations governing the motion of the structure remain the same (equation( 2.44)). 

Most FSI analyses are based on one of the two following approaches. In the Lagrangian- 

displacement approach the displacements are considered unknown in both the fluid and 

the solid. The Eulerian-pressure formulation assumes nodal displacements as the ba-

sic unknowns for the solid, and nodal pressures as the variables in the fluid. General 

purpose FE codes for structural analysis (such as ANSYS and ADINA) have already im-

plemented displacement-based fluid elements because the mass and stiffness matrices of 

the coupled problem are symmetric, banded, and positive definite so that minimum mod-

ifications are necessary and existing equation solution methods perform efficiently. In this 

pseudo-elastic approach the fluid is normally treated as a degenerated solid continuum 

with a proper choice of the element material properties (elastic modulus and Poisson’s 

ratio). The mass matrix is a simple diagonal matrix and the interaction of these fluid

81



elements with structural elements is achieved by selective node coupling. For example, 

Engel et al. [173] analysed a model of core support barrel using the FE package ANSYS. 

For this interaction between a fluid and an elastic shell structure the fluid was modelled 

by the displacement-based fluid element (STIF80) and the cylindrical shell by the 4-noded 

quadrilateral shell element (STIF63).

The great effort and progress made over the past few years in solving FSI problems by the 

FE method give rise to the assumption that such complex problems can be treated in an 

efficient and general manner by commercially-oriented standard FE packages in the years 

ahead.

2.8 Conclusion

The arterial wall behaviour and applications in arterial mechanics research have been re-

viewed. Biomechanical models play an important role in the study of diseased vessels. 

From the perspective of mechanics, the arterial wall exhibits a complex behaviour. The 

exact determination of arterial mechanical properties remains a challenge. The rapid ad-

vance of computational techniques and the advent of supercomputers can treat complex 

wall behaviour as well as 3D pulsatile flow. Nevertheless, there is a need for a coupled 

solid/fluid model to simulate the dynamic interactions between blood and the vessel wall.

Fluid/solid interaction in general is a very challenging area of application for computer 

simulation. The term fluid/solid interaction describes phenomena in which both fluid 

and structural responses are dynamically coupled. Recent progress in the development of 

numerical modelling approaches for the coupled fluid/solid interaction problems in both 

biomedical engineering and conventional engineering has been reviewed with special em-

phasis on the former. A novel coupled algorithm will be presented in chapter 3.
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Chapter 3

Numerical Techniques for 
Fluid/Solid Coupling

In this chapter, a novel numerical method combining two commercial codes for coupled 

solid/fluid problems is presented. Detailed discussions concerning the numerical techniques 

are dedicated to CFX and ABAQUS on which the coupled model is based. Automatic 

grid generation from clinical data for complex geometry models is included. Also cov-

ered are the numerical convergence problem arising from the coupled model. Whenever 

there is iteration, there is always convergence problem. Because in an iterative coupled 

model, in addition to convergence considerations within each code, convergence between 

the two codes must also be dealt with. A relaxation technique is introduced to improve 

the convergence performance. A number of numerical experiments have been performed 

to test the convergence of the iterative procedure implemented and have demonstrated 

the effectiveness of the relaxation scheme.

3.1 Fluid/Solid Coupling Procedure

3 .1 .1  In tr o d u c tio n

Coupled fluid-solid interaction problems arise frequently in engineering applications [173, 

174, 175]. The coupled system and formulations are those applicable to multiple domains 

and dependent variables which describe different physical phenomena and in which (a)
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neither domain can be solved while separated from the other; and (b) neither set of de-

pendent variables can be eliminated at the differential equation level. It is also usual to 

divide coupled systems into two categories:

(1) problems in which coupling occurs on domain interfaces via the boundary conditions 

imposed there.

(2) problems in which the coupling comes from different physical phenomena which occur 

(totally or partially) on overlapping domains.

Fluid-wall interaction problems exist in the cardiovascular system where blood interacts 

dynamically with its surroundings. Doubtless, this represents one of the best-known cou-

pled problems. In this case, the coupling occurs at the interface between two different 

domains, one occupied by the solid and the other by the fluid. Neither the structure 

nor the fluid can be solved independently of the other, since the motion of the structure 

depends on the pressures of the fluid at the interface, and the fluid pressures depend in 

turn on the deformation of the solid wall. An overall coupled solution of the blood-wall 

interaction problem is difficult to obtain due to the very strong non-linear nature of the 

equations arising from the discretization of the governing equations.

As described in chapter 2, there are essentially three types of numerical schemes for the 

coupled solution of flow and wall motion: hybrid, simultaneous and iterative methods. 

In simultaneous and hybrid methods, the equations governing the flow and the wall are 

solved totally or partly simultaneously, limiting the employment of available commercial 

packages and the extension to complex wall behaviour. Up to now only a few special 

purpose codes have been reported to be able to treat the fluid-solid interaction problems 

and the applicability of the codes has been confined to simple wall mechanical models such 

as linear elasticity and infinitesimal strain.

Nevertheless, the iterative approach allows the fluid and solid equations to be solved sepa-

rately and then coupled externally in an iterative manner. It offers a distinctive advantage
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in that the most efficient codes for fluid flow and structural analysis can be used to ensure 

most reliable results. Therefore, in the present study, a numerical approach combining 

two commercial codes for coupled solid/fluid problems of periodic nature is established. 

The finite volume based CFX was used as the fluid dynamics code, and a finite element 

code ABAQUS as the structural mechanics code. The characteristic of this approach is 

to ensure proper interaction between the two codes during each pulse cycle because of 

the periodic nature of the flow. The equations for the fluid motion and solid deforma-

tion are solved separately and then coupled externally in an iterative manner at a cycle 

level. Employing the modified user subroutines in both codes, the updated pressure and 

deformation distribution at each time step during the cycle can be transferred between 

CFX and ABAQUS on an interface mesh. Calculations of specific test problems led to a 

converged solution after only several iterative cycles between the two codes. The validity 

of the presented method will be demonstrated in chapter 4 through the solution of flow 

in a tube with the tube material being (a) elastic and (b) hyperelastic. Furthermore, the 

application of the coupling algorithm will be extended to more complex arterial structures 

like human carotid artery bifurcations in a clinical context (chapter 5).

3 .1 .2  T h e  c o u p lin g  a lg o r ith m

The fluid and solid computational analysis is coupled externally in an iterative way. Since 

most unsteady flows have periodic nature with the interested period of time being the 

cycle period, the coupled system is solved in an iterative procedure at a cycle level.

A discrete iteration cycle consists of the following steps:

Step 1 The 3-D time-dependent Navier-Stokes equations ( 2.42, 2.43) governing the con-

servation of momentum and mass for an incompressible fluid are solved for several complete 

cycles using CFX, and the predicted pressures at the fluid/solid interface at each time step 

of the last cycle are stored for later use.

Here, discrete versions of equations were solved using CFX, which uses the finite volume
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method to solve the governing equations on general, three-dimensional, non-orthogonal 

grids. The moving grid capability in CFX was used to account for the effect of changes 

in the flow domain configuration during arterial wall movement in the present study. The 

code solves the discrete equations using the velocity-pressure coupling schemes known as 

SIMPLEC. The Rhie-Chow algorithm is incorporated into the solution procedure to allow 

the use of non-staggered grids [176], that is, velocity components and scalar variables axe 

defined on the same nodal points.

Multi-block structured grid was used for complex geometry such as bifurcation structures. 

Programs were developed to generate computational grids within the flow domain by the 

use of model surface information. This was done by (1) specifying a grid distribution along 

the vessel axial direction, (2) defining grid planes and calculating boundary points, which 

form grid planes, on the model surface, (3) interpolating grid points within the boundary 

points on each grid plane. Details of grid generation will be discussed in section 3.3.

Step 2 The dynamic nonlinear analysis of the solid is carried out by using the finite el-

ement package ABAQUS, solving the basic equations for the motion of an elastic solid 

( 2.44), under the pressure at each time step predicted from the flow calculation of step

1. From ABAQUS calculation, the displacement and stress of the solid are obtained, with 

the displacement at each time interval being used for the next cycle.

ABAQUS has extensive material, element, and procedure libraries. All elements use nu-

merical integration to allow complete generality in material behaviour including a wide 

range of nonlinear material behaviour. All elements in ABAQUS are formulated to pro-

vide accurate modelling for arbitrary magnitudes of displacements, rotations, and strains. 

ABAQUS uses complete, consistent kinematics for finite-strain calculations. Lagrangian 

and updated Lagrangian formulations are used for finite-strain elastic and elastic-plastic 

problems respectively. In each increment ABAQUS iterates for equilibrium, using the full 

Newton method in most cases. For fully nonlinear, dynamic stress/displacement analy-

sis problems ABAQUS includes direct, implicit time integration, using the Hilber-Hughes 

operator (the Newmark method with controllable numerical damping). For the straight
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tube case in chapter 4, the selected element type will be axisymmetric solid element, while 

shell element will be used for bifurcation structures like the carotid artery bifurcation. 

Non-uniformly distributed pressure loads as predicted using CFX are applied on the inner 

surface of the model.

The displacement was extracted from a comprehensive ABAQUS result file which in-

volves a variety of information ranging from nodes to elements, locations to variables. In 

ABAQUS, the values of output variables can be printed out throughout the analysis. The 

result file is written as a sequential file. Each record has the following format:

Location Length Description

1 1 Record length(NW)

2 1 Record type key

3,4... (NW-2) Attributes

All words on the result file are of the same length, whether they contain integer, floating 

point number, or character string data. The attributes in a given record depend on the 

element type being considered. The result file is written using internal data management 

routines to minimise I/O  cost. Therefore, to access the result file a postprocessing pro-

gram was developed which used the same ABAQUS data management routines to read 

the result file and to extract the displacements required later by CFX to update the 

configuration. The following utility subroutines, which are part of the shared library in 

ABAQUS, are called to obtain data from the ABAQUS result file by the user-written 

postprocessing program: INITPF(initialise a file), DBRNU(set a unit number for a file), 

DBFILE(read from a file), POSFIL(determine position of a file), DBFILW(write to a file).

Step 3 The convergence criterion is checked, which is based on the difference between dis-

placements at two successive iterative cycles at each time step

(I in -fl,ra _  »n,m | \

' * l j < D crt (3.1)

where d,, i=l,2,3 are the components of the displacement vector D  at a displacement
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Figure 3.1: Flow chart for user subroutine USRGRD.

node of the finite element mesh on the inner surface of the solid at time step m during two 

successive cycles n+1 and n. Dcrt is the convergence criterion which is case dependent and 

chosen as a compromise between high computational demands and appropriate numerical 

accuracy.

Step 4 If equation( 3.1) is not satisfied, the geometry bounding the fluid will be updated 

using the displacements predicted from ABAQUS. With the updated surface, the com-

putational grids within the flow domain are regenerated following the same procedure as 

described in step 1, with the same grid densities in order to maintain a uniform grid change 

within the fluid as a result of the movement of the wall. This was achieved through specif-

ically designed grid generation subroutines which were called dynamically during the run 

time when the new inner wall points are established. Flow chart for the user subroutine 

USRGRD is illustrated in Figure 3.1.
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Figure 3.2: Flow chart for CFX-ABAQUS coupling, where * represents purpose-developed 

program and ** modified user subroutines in CFX and ABAQUS.

Step 5 Steps 1, 2, 3 and 4 are repeated until the convergence criterion is satisfied.

A flow chart is shown in Figure 3.2 where reconstructed geometries from either MRI or 

ultrasound are used for computational models.

In the chart, 1-4 are the output from its corresponding upper levels. They are:

1. Pressure output from CFX

2. Pressure data to be accepted by ABAQUS

3. ABAQUS result file
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4. Displacement to be accepted by CFX

The concept of the coupled model is straightforward, however, its implementation is te-

dious and may cause numerical difficulties which will be discussed in section 3.4.

3.2 Numerical Details Related to the Coupled Modelling

3 .2 .1  C o m p u ta tio n a l flu id  m ech a n ics

CFD is playing a strong role as a design and research tool. Historically, the early develop-

ment of CFD was driven by the needs of the aerospace community. However, modern CFD 

cuts across all disciplines where the flow of a fluid is important. Of particular interest, 

CFD is a useful tool for solving haemodynamics problems.

Many powerful CFD packages are available based on FV/FD and FE methods with vary-

ing degrees of modelling capabilities. Among these, commercially available codes based 

on FDM are, for example, CFDS-CFX, FLUENT, PHOENICS, STAR-CD; while codes 

based on FEM axe, for example, FIDAP, FEAT. In addition to these, most general pur-

pose FE packages such as MSC/NASTRAN, ADINA, ANSYS, ABAQUS, include CFD 

modules. They are often powerful for structural analysis, which will be discussed in the 

next section. Pre- and Post-processings are often included. In this section, special atten-

tion is attributed to a CFD code-CFX [44], which will be used throughout the following 

numerical predictions.

CFX is a package for the prediction of laminar and turbulent flow, and heat transfer, 

together with additional models such as multi-phase flows, combustion and particle trans-

port. The suite of CFX consists of a number of modules: (1) Geometry and Grid Genera-

tors, (2) Frontend Module, (3) Solution Module, and (4) Graphics Module. Among those, 

a detail discussion about Solution Module will be given including discretisation method, 

the treatment of convective and diffusive transport, and of moving wall.
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3.2.1.1 D iscretisation  m ethods

Numerical methods used to discrétisé the Navier-Stokes equations are referred to as dis-

cretisation methods and fall into three main categories: Spectral method, Finite-element 

method, and Finite volume/fmite difference method. The difference between the three 

methods results from the ways of choosing the profiles and deriving the discretisation 

equations. The discretisation of the space and of the dependent variables allows the gov-

erning equations to be replaced with simple non-linear algebraic equations, consisting of 

four equations, threes for the velocities and one for the pressure for each control unit.

In CFX the variables calculated are the velocity components in fixed coordinates directions 

and pressure, together with any scalar quantities such as enthalpy, density, turbulent ki-

netic energy and turbulent energy dissipation. With the choice of variables, it is relatively 

straightforward to express the equations as conservation equations for mass, momentum 

and energy etc. These equations are expressed in the form

Convection — D iffu s io n  =  Sources — S in ks , (3.2)

and integrated over each control volume to give discrete equations which themselves also 

conserve mass, momentum and energy within the control volume. The numerical treat-

ment therefore has to represent the convective and diffusive fluxes across the surfaces of 

each control volume, and to calculate the effect of the sources and sinks. Full details of 

this treatment are as follows.

3.2.1.2 D iscretisation  o f equations

In this section, some details are given of the discretisation of equations, both temporal 

and spatial, used in CFX. The basis of the code is a conservative finite-difference, or finite- 

volume method with all variables defined at the centre of control volumes which fill the 

physical domain being considered. Each equation is integrated over each control volume to 

obtain a discrete equation which connects the variable at the centre of the control volu m e
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with its neighbours.

All of the equations to be solved, apart from the continuity equation, have the same gen-

eral form:

^  +  v - W ) - v - ( r v «  =  s  (3-3)

where T is the relevant effective diffusivity for the variable (f>. Integrating over the control 

volume gives:

All terms in all the equations are discretised in space using second-order centred differ-

encing apart from the advection terms, described below, and the convection coefficients 

obtained using the Rhie-Chow interpolation formula. In order to give a simple explanation 

of the discretisation methods, that which follows uses the framework of a rectangular grid. 

The extension to a body-fitted grid is straightforward.

Diffusion terms

To illustrate the diffusion and advection terms, consider the control volume shown in Fig-

ure 3.3.

The diffusion term at the west face of the control volume is discretised as:

/ r  y  (f> • ndA = (<j)P -  <j)W) = Dw(<t>p -  (f>w) (3.5)

H ere  A w is th e  a re a  o f th e  w est face, hw is th e  d is ta n c e  b e tw e en  th e  w est a n d  th e  c e n tra l

n o d e s  a n d  D \y  is th e  w est d iffu sion  coefficient.
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Figure 3.3: Control volume notation.

Advection terms

A significant amount of research effort has been directed toward discretisation of the com-

bined convection and diffusion fluxes. Inaccurate modelling of these terms can seriously 

degrade overall accuracy and stability of the solution, In many cases, it is almost impos-

sible to refine the grid sufficiently so that the numerical errors will reduce to acceptable 

levels. Thus, it is essential to have a convection-diffusion formulation that leads to a sta-

ble and accurate solution with grids of modest fineness. Whereas many methods have 

been formulated, there exists no clear consensus about a preferred method. The more 

accurate schemes tend to be less robust and slower. The treatment of the advection terms 

determines the accuracy of the solutions of the model equations. Because of these, there 

is a choice of discretisation methods available in the CFX code. These range from diffu-

sive, simple upwind scheme (UDS), hybrid differencing (HDS), central differencing (CDS), 

higher order upwind differencing (HUW) through to quadratic upwind scheme (QUICK).

For example, in the upwind scheme, the advected value of the variable </> at the west face 

of the control volume {(¡>w) is taken to be cpw, so that, at the west face,

J pcpJJ • ndA — pXJwA w(fi\y — Cw<t>w (3-6)

Here Cw  is the convection coefficient at the west face. This gives a matrix coefficient for
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the west point of:

A w  =  M A X ( C W, 0) +  Dw  (3.7)

This scheme is first order accurate.

Time stepping procedures

By default, a fully implicit backward difference time stepping procedure has been imple-

mented. That is, if the equations are written in the form :

^  =  F(4) (3.8)

the discretised form is:

d>n -  (An _ 1■ £  = n r )  (3.9)
The terms on the left hand sides can be absorbed into the sources and sinks for each 

equation and the resulting equations at the nth time step look like the discrete steady 

state equations. These can then be solved using the standard steady state techniques.

An alternative to the above is to use a second order accurate backward difference treat-

ment. In this case the discretised equation becomes:

2Ai +  Aio ,n 
A t(A t + A t0y

Ai_+Aio i
AtAt0 * +

At
Ato(At + Aio) r ~ 2 = F ( r ) (3.10)

where Aio is the time difference on the previous time step. Again the terms on the left 

hand side can be incorporated into the source terms. However, more memory is needed

94



as variables at two previous times are required.

Another alternative is to use a time centred treatment. Note that this is, in effect, a 

two-step procedure, the first being to use a backward difference procedure over the first 

half step, and then an extrapolation to give the solution at the end of the time step.

Source terms

For each equation, the source term is written in the following way:

j  SdV = SU  +  SP<t>P (3.11)

where SP is non-positive. The SP term then enhances the diagonal of the matrix giving 

more diagonal dominance and thus better solution behaviours. In particular, for physical 

variables such as the turbulent kinetic energy k and the energy dissipation e, putting the 

source terms into SU and the sink terms into SP ensures that the variable remains positive 

throughout the iteration procedure when using line relaxation.

3.2.1.3 T reatm ent o f th e  m oving wall in C FX

Moving boundary procedures have been developed by a number of research groups and are 

included in most advanced commercially available CFD codes. Moving boundaries exist 

throughout cardiovascular system where the ventricles and arteries expand and contract 

cyclically due to the pumping action of the heart.

The governing equations for the fluid are the equations for the conservation of mass and 

momentum. In order to allow the boundaries and the grid to move in the prescribed man-

ner, the momentum and mass equations have to be transformed to equivalent equations 

on rectangular computational grid with uniform spacing. If the physical grid is moving 

the time derivatives have to be modified so that in computational space the grid is fixed.

95



Following the work in Thompson et al. [177],

/ dcf)\ _  ( dcf>\ dxj d(p
\ d t ) x ~  \ d t ) ^  dt dxj

where the time derivative on the left of equation( 3.12) is at a fixed point in physical space, 

and the time derivative on the right is at a fixed point in computational space.

This has the effect that the convective term

becomes

dt dxj
(3.13)

1 , d
+ 'ör~<ß uj —

dx±
dt

(3.14)
\ J d t  dxj

where g is the determinant of the metric tensor which represents the square of the volume 

in physical space and corresponding to unit volume in computational space.

Full Navier-Stokes equations can be transformed using equations( 3.13) and ( 3.14) to give:

1 d{y/gp)
V9 dt

d
Uj  — =  0 (3.15)

1 d(y/gpuj)
y/g dt + W j ™  l Uj -

d&ij
dxj

+  pFi i =  1,2,3

In addition, an equation for the conservation of space

(3.16)

( d x j \
sfg dt dxj \  dt J (3.17)
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which expresses the relationship between the rate of change of volume and the velocity 

of the volume boundary, and has to be solved simultaneously with mass, momentum and 

energy equations, as it was pointed out by Demirdzic and Peric [178]. Pull details have 

been given in Hawkins and Wilkes [179].

The time derivative of a typical variable <f> is discretised as:

(3 . i 8 )

where the superscript n denotes the time step.

The change in volume term is calculated from grid velocities and the cell face areas. This 

makes it consistent with the modification to the convection coefficients and ensures that 

no spurious source terms are introduced. This is carried out for all variables. For compu-

tational convenience the grid velocities are stored at cell faces and are multiplied by the 

time averaged cell area.

In the pressure correction algorithm the current solution Uj, P, p is updated using cor-

rections Uj,Pc, pc to give a solution field u* = Uj +  Uj,P* = P  + P c,p* = p + pc which 

satisfies the continuity equation exactly and the momentum equation approximately.

For an incompressible flow and a fixed grid, continuity equation yields:

d(pu*j)
dxj =  0 (3.19)

Substituting the exact solution into the linearized momentum, gives the following approx-

imate relationship between the pressure correction and the velocity correction. 1

pu) =  -
1 dPc

dp dxj (3.20)
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The definition of Ap is the key part of the approximation, in SIMPLEC it is taken to 

be the diagonal coefficient of the locally discretised momentum equation. This gives the

The solution algorithm for the calculation of unsteady flows with moving boundaries has 

been provided by Demirdzic and Peric [180] and is summarised as follows:

1. Provide the initial grid and the solution for the initial time to.

new grid to fit the new boundaries at the new prescribed position.

3. Calculate iteratively the new solution employing the currently available pressure and 

mass fluxes until the sum of the absolute residuals in the momentum and continuity equa-

tions are satisfactorily reduced.

4. Advance the time by another increment 6t and return to step 2 .

Details of the application of the moving boundary procedures to the Navier-Stokes equa-

tions axe given by Demirdzic and Peric [181], and Hawkins and Wilkes [179]. The routine 

USRGRD in CFX can be used to define a grid that varies with time. The validation of 

the moving boundary capabilities in CFX will be presented in chapter 4.

3.2.2 Structural mechanics

The most popular FE systems for structural analysis are: MSC/NASTRAN, ABAQUS, 

ANSYS, ADINA. ABAQUS is a general purpose finite element analysis program with spe-

cial emphasis on advanced linear and nonlinear structural engineering and heat transfer 

applications [182]. In this section detailed discussion about ABAQUS is given. Basic

following equation which in its discretised form can be solved for P c

(3.21)

2. Determine the location of the boundary grid points for the time io +  St and move the
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equations for virtual work statement, nonlinear numerical solution methods and element 

library are described.

3.2.2.1 Basic finite element equations

The virtual work equation in the classical form is:

t c : 5edV° ■ SvdS + • SvdV (3.22)

where rc and £ are any conjugate pairing of material stress and strain measures, 6v  an 

arbitrary virtual velocity field, t the surface traction, and f the body force. The particular 

choice of £ depends on the individual element.

The finite element interpolator can be written in general as

u =  (3.23)

where N ^  are the interpolation functions that depend on some material coordinate sys-

tem, uN are nodal variables, and the summation convention is adopted for the uppercase 

subscripts and superscripts that indicate nodal variables.

Introducing the above interpolation to displacements, the virtual fields <5v and ôe take the 

form:

¿v =  N  n 5v n (3.24)

ÔE — P n Sv N (3.25)
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where @n  is a matrix that depends, in general, on the current position, x, of the material 

point being considered. The matrix f lu  that defines the strain variation from the varia-

tions of the kinematic variables is derivable immediately from the interpolation functions 

once the particular strain measure to be used is defined. Since the 5vN are independent 

variables, system of nonlinear equilibrium equations can be obtained:

[  PN : TcdV° =  f  n £  • tdS  +  f  ■ f dV 
Jv° Js Jv

(3.26)

This system of equations forms the basis for the standard displacement finite element 

analysis procedure, and is of the form:

F n {u m) =  0 (3.27)

The above equations are valid for static and dynamic analysis. In dynamic analysis, 

however, the inertia contribution is more commonly considered separately, leading to the 

equations:

M n m u m  + F n (u m ) = 0 (3.28)

3.2.2.2 Nonlinear numerical solution methods

The finite element models generated are usually nonlinear and can involve from a few to 

many thousand variables. In terms of these variables, the equilibrium equations obtained 

by discretizing the virtual work equation can be written symbolically as:

F n (u m) = 0 (3.29)

where F N is the force component conjugate to the N th variable in the problem and uM 

is the value of the M th variable. The basic problem is to solve equation( 3.29) for the uM
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throughout the history of interest.

Many of the problems are history-dependent, so the solution must be developed by a se-

ries of small increments. Generally Newton’s method is used for numerical solution of 

the nonlinear equilibrium equations. The basic formalism of Newton’s method is as fol-

lows. Assume that, after an iteration i, an approximation u f1, to the solution has been 

obtained. Let cf _̂l be the difference between this solution and the exact solution to the 

discrete equilibrium equation( 3.29). This means that

F N(ufi + cf*+1) = 0 (3.30)

Expanding the left hand side of this equation in a Taylor series about the approximate 

solution u f1 then gives

+ J ^ ( n f )  c”i+lci+l +  ... =  0 (3.31)dup ' K'l+i ' dup duQ'

If u f1 is a close approximation to the solution, the magnitude of each c( ^ 1 will be small, 

and so all but the first two terms above can be neglected giving a linear system of equations:

where

KNPrP — r?N K i ci+ 1  ~  ~ p i (3.32)

is the Jacobian matrix and

K N P d F N
dup {uf1) (3.33)

101



f n  =  f n {u m ) (3.34)

The next approximation to the solution is then

ui i i  = ui* +  ci+ 1 (3-35)

and the iteration continues.

The principal advantage of Newton’s method is its quadratic convergence rate when the 

approximation at iteration i is within the radius of convergence-that is, when the gradients 

defined by K ^ M provide an improvement to the solution. However, Newton’s method is 

usually avoided in large finite element codes, apparently for two reasons. First, the com-

plete Jacobian matrix is sometimes difficult to formulate; and for some problems it can be 

impossible to obtain this matrix in closed form, so it must be calculated numerically-an 

expensive process. Secondly, the method is expensive per iteration, because the Jacobian 

must be formed and solved at each iteration. The most commonly used alternative to 

Newton is the modified Newton method, in which the Jacobian in equation( 3.32) is only 

recalculated occasionally. This method is attractive for mildly nonlinear problems, but is 

not suitable for more severely nonlinear cases.

Another alternate is the BFGS (Broyden, Fletcher, Goldfarb, Shanno) quasi-Newton 

method, in which equation( 3.32) is symbolically rewritten

cf+i =  (3.36)

and the inverse Jacobian is obtained by an iteration process. Matthies and Strang [183] 

have shown that, for systems of equations with a symmetric Jacobian matrix, the BFGS 

method can be written in a simple form that is especially effective on the computer and is 

successful in such applications. The basis of quasi-Newton methods is to obtain a series of
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improved approximations to the Jacobian matrix, K F M, that satisfy the secant condition:

F N{ufI ) -  F N(ufi_1) = K ? M{u™ -  U & ) (3.37)

so that approaches K F M as the iterations proceed. Equation( 3.37) is the basic

quasi-Newton equation.

For convenience the change in the residual from one iteration to the next is defined as:

„N F N _  p N
h i i—1

so that equation( 3.37) can be written:

(3.38)

7 iV =  k N M c M (3.39)

where cf1 is the correction to the solution from the previous iteration.

Matthies and Strang’s implementation of the BFGS method is a computationally inexpen-

K N M that satisfy equation( 3.37)sive method of creating a series of approximation to 

and retain the symmetry and positive definiteness of K F m . They accomplish this by 

updating to using a product plus increment form:

1 _  \ t NL  L~\ f i s  PL
K i \ - l 1 ~  Pici 7i J [K i - 1

- l
[iPM PO?<?]

N „ M
+  PiCi  C .

where

(3.40)

(3.41)
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In the actual implementation of the BFGS method, each

a kernel matrix,
i - i

K MN1
- 1

J is not stored: rather,

, is used, and the update is accomplished by premultication of

the kernel matrix by the terms:

[IN L - Pjc? 7jl ] (3.42)

and postmultication of the kernel matrix by the terms:

[IPM -  p r f c f  ] (3.43)

for j= I+ l ,  1+2, ...i. Because of the form of these terms, the premultication and post-

multication operations result in inner products of vectors and the scaling of vectors by 

constants: it is this organization that makes the method computationally attractive. How-

ever, too many such products are not attractive, so that usually a new kernel matrix is 

formed and stored after some iterations.

In general, the rate of convergence of the quasi-Newton method is slower than the quadratic 

rate of convergence of Newton’s method, though faster than the linear rate of convergence 

of the modified Newton method.

When any iterative algorithm is applied to a history-dependent problem, the intermedi-

ate, nonconverged solutions obtained during the iteration process are usually not on the 

actual solution path; thus, the integration of history-dependent variables must be per-

formed completely over the increment at each iteration and not obtained as the sum of 

intergations associated with each iteration, Cj. In ABAQUS this is done by assuming that 

the basic nodal variables, u, vary linearly over the increment, so that

u(T) = (1  -  ~ ) u { t )  + ¿ u ( *  +  At) (3.44)
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where 0 < r  < Ai represents time during the increment. Then, for any history-dependent 

variable, g(t),

is calculated at each iteration.

The issue of choosing suitable time steps is a difficult problem to resolve. First of all, 

the considerations are quite different in static, dynamic or diffusion cases. It is always 

necessary to model the response as a function of time to some acceptable level of accu-

racy. In the case of dynamics or diffusion problems, time is a physical dimension for the 

problem, and the time stepping scheme must provide suitable steps to allow accurate mod-

elling in this dimension. In contrast, most static problems have no imposed time scales, 

and the only criterion involved in time step choice is accuracy in modeling nonlinear effects.

3.2.2.3 Element library in ABAQUS

The ABAQUS element library provides a complete geometric modeling capability. For this 

reason any combination of elements can be used to make up the model. Shell and beam 

element properties can be defined as general section behaviours, or each cross-section of 

the element can be integrated numerically, so that nonlinear response can be tracked accu-

rately when needed. A composite layered section can be specified, with different materials 

at different heights through the section. Some special elements (such as line springs) use 

an approximate analytical solution to model nonlinear behaviour.

All of the elements are formulated in global Cartesian coordinate system except the ax- 

isymmetric elements which are formulated in terms of r-z coordinates. In almost all 

elements, primary vector quantities (such as displacements u and rotations <f>) are defined 

in terms of nodal values with scalar interpolation functions. For example, in elements with 

a two-dimensional topology the interpolation can be written as:

(3.45)
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(3.46)u (g,h) =  N N (g,h) u N

where the interpolation fimctions N N(g, h) are written in terms of parametric coordinated 

g and h. In most element types the same parametric interpolation is also used for coordi-

nate vector x:

x(g,h) = N N(g, h)xAr (3.47)

Such isoparametric elements are guaranteeded to be able to represent all rigid body modes 

and homogeneous deformation modes exactly, a necessary condition for convergence to the 

exact solution as the mesh is refined.

All elements are integratedly numerically. Hence, the virtual work integral as described 

in equation( 3.22) will be replaced by a summation:

with integration point i. ABAQUS uses either full or reduced integration. For full integra-

tion the number of integration points is sufficient to integrate the virtual work expression 

exactly, at least for linear material behaviour. All triangular and tetrahedral elements use 

full integration. Reduced integration can be used for quadrilateral and hexahedral ele-

ments; in this procedure the number of integration points is sufficient to integrate exactly 

the contributions of the strain field that are one order less than the order of interpolation. 

The higher-order contributions to the strain field present in these elements will not be 

integrated.

The advantage of the reduced integration elements is that the strains and stresses are cal-

culated at the locations that provide optimal accuracy, the so-called Barlow points [184],

71
(3.48)

where n is the number of integration points in the element and V* is the volume associated
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A second advantage is that the reduced number of integration points decreases CPU time 

and storage requirements. The disadvantage is that the reduced integration procedure can 

admit deformation modes that cause no straining at the integration points. These zero- 

energy modes make the element rank-deficient and cause a phenomenon called hourglass, 

where the zero energy modes starts propagating through the mesh, leading to inaccurate 

solutions. This problem is particularly severe in first-order quadrilaterals and hexahedra. 

To prevent these excessive deformations, an additional artificial stiffness is added to the 

element. In this hourglass control procedure, a small artificial stiffness is associated with 

the zero-energy deformation modes. This procedure is used in many of the solid and shell 

elements in ABAQUS.

Most fully integrated solid elements are unsuitable for the analysis of (approximately) in-

compressible material behaviour. The reason for this is that the material behaviour forces 

the material to deform (approximately) without volume change. Fully integrated solid 

element meshes, and in particular lower-order element meshes, do not allow such defor-

mations. For that reason ABAQUS uses selectively reduced integration in these elements: 

reduced integration is used for the volume strain and full integration for the deviatoric 

strains. As a consequence, the lower-order elements give an acceptable performance for 

approximately incompressible behaviour. For fully incompressible material behaviour, an-

other complication occurs: the bulk modulus and, hence, the stiffness matrix becomes 

infinitely large. For this case a mixed (hybrid) formulation is required, where the displace-

ment field is augmented with a hydrostatic pressure field. In this formulation only the 

inverse of the bulk modulus appears, and consequently the contribution to the operator 

matrix vanishes. The hydrostatic pressure field plays the role of a Lagrange multiplier 

field enforcing the incompressibility constraints.

ABAQUS also provides elements for multifield problems. Examples are the pore pres-

sure elements used for the analysis of porous solids with fluid diffusion, thermally coupled 

elements that couple heat transfer with stress analysis, and piezoelectric elements that 

couple electrical conduction with stress analysis. In these multifield elements the scalar 

variable (such as temperature) is usually interpolated with different scalar functions as
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the displacement field, that is:

T ( g , h ) = M N(g,h)TN (3.49)

where M N(g, h) may differ from N N(g, h). The coupling of the field will generally occur 

at the integration points; for instance, in thermally coupled elements the coupling is due 

to temperature-dependent mechanical properties and heat generation is due to inelastic 

work. Finally, ABAQUS offers a complete set of diffusion elements to analyse conduc-

tive and convective heat transfer. In these elements only temperatures appear as nodal 

degrees of freedom. The temperatures are interpolated with essentially the same interpo-

lation function, M N(g, h). as used in the thermally coupled elements.

Due to space limitation, only a couple of related element types, which were chosen for use 

in the study, are discussed here.

Axisymmetric elements

ABAQUS includes two libraries of solid elements, CAX and CGAX, whose geometry is 

axisymmetric and can be subjected to axially symmetric loading conditions. In addition, 

CGAX elements support torsion loading. As a result, CGAX elements are referred as gen-

eralised axisymmetric elements, and CAX elements as torsionless axisymmetric elements. 

If the loading consists of radial and axial components that are independent of 9 and the 

material is either isotropic or orthotropic, with 9 being a principal material direction, the 

displacement at any point will only have radial (ur ) and axial (uz) components. Con-

sequently, the geometric model is described by discretising the reference cross-section at 

9  =  0 .

Shear flexible small-strain shell elements

ABAQUS provides small-strain shear flexible thin shell elements such as quadrilateral 

S4R5, S8R5. The essential idea of these elements is that the position of a point in the
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shell reference surface and the components of a vector -which is approximately normal 

to the reference surface -  are interpolated independently. The thin shell elements may 

provide enhanced performance for large problems where reducing the number of degrees 

of freedom through the use of five degree of freedom shells is desirable. The Discrete 

Kirchhoff constraint is imposed in all thin shell elements.

Finite-strain shell elements

General purpose shell elements such as S3, S4, S4R provide robust and accurate solutions 

in all loading conditions for thin and thick shell problems. All of these elements consider 

finite membrane strains and are true doubly curved shells. The kinematic formulation of 

these shell elements is an approximate theory intended for application to problems involv-

ing finite membrane strains and large rotations. It is derived from the approximations 

discussed by Rodal and Witmer [185].

3.3 Automatic Mesh Generation from Clinically Obtained 

Data

Computational gridding is an essential part in performing the coupled simulation. Model 

reconstruction and grid generation for simple problem such as a straight tube is very 

straightforward. However, perfectly circular straight tubes do not exist in the human 

arterial system. Real arteries are much more complicated and model reconstruction and 

grid generation will be very complex because there is not only the difficulty of building 

a physical model but also the difficulty of the geometrical description of this model for a 

numerical simulation. So far two techniques have been widely employed to acquire ves-

sel geometry. They are: ultrasound angiography (USA) and magnetic resonance imaging 

(MRI). Each has advantages and disadvantages when used to define vascular geometry 

(Table 3.1). The resultant 3D geometry data are organized in a format that allows for 

grid generation to be performed, which is essential for subsequent coupled modelling. This 

section describes details of grid generation.
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Table 3.1: Comparison of MRI and USA for application to numerical modelling.

MRI USA
Non invasive angiogram Yes Yes
3D Velocity measurement Easy Difficult
Spatial resolution Low(axial) ,high(plane) High(axial), low(plane)
Temporal resolution Low High
On line imaging No Yes
Wall movement tracking Difficult Easy
Signal/noise High Low
Signal loss Complex flow regions Each cross-section image
Imaging region No limit Limited by scan window
3D reconstruction Good Errors in 3D registration, 

additional devices needed
Cost High Low
Patient acceptability Difficult Easy

3.3.1 Structures of computational grid for complex geometry domains

There are three basic types of computational grid in use:

(1) Single-block, fully structured grids,

(2) Multi-block structured grids,

(3) Unstructured grids.

Single-block, fully structured grids are traditionally used in FD/FV. They transform the 

physical space into a rectangular (or hexahedronal in 3-D) computational space. In com-

plex geometry domains, to have accurate solutions, special techniques are required for 

gridding, such as multi-block structured grid and unstructured grids.

The multi-block approach is a very popular method of applying structured grids to complex 

geometrical regions. The physical domain is segmented into sub-regions, which constitute 

contiguous blocks. Each block has to be transformed into a hexahedron, so that several
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local curvilinear systems are constructed and connected together. However, the global 

distortion of the grid is relatively less accentuated. Grid points at block interfaces have 

to be treated so that points at the common edge of any two adjacent blocks are contin-

uous and so that slope continuity may be enforced. Multi-block grids are very powerful 

in that they allow the use of a wide range of mesh topology for a given configuration and 

different coordinate systems axe allowed in each block. Although the concept of multi-

block mesh is very attractive from a mesh generation point of view, additional complexities 

are introduced in the solution procedures, that involve a slow-down of the calculation time.

Unstructured meshes, traditionally used in FEM, are generally composed of triangles 

and/or arbitrary quadrilaterals in 2-D, and tetrahedra and/or hexahedra in 3-D. There-

fore, the number of cells surrounding a typical node of the mesh is not the same. Tech-

niques for the generation of unstructured meshes have been discussed by Peraire et al. [186].

The unstructured nature of the mesh requires a local coordinate system for each element. 

The resultant mesh, therefore, is poorly ordered and less amenable to the use of vector- 

ization algorithms. Also larger computer time and storage are required in comparison 

with structured grids. However, unstructured meshes are more efficient in complex geom-

etry domains, and offer the possibility of incorporating adaptivity. In order to m inim ise 

computer time requirements, renumbering strategies for unstructured grids have been pro-

posed.

3.3.2 Geometry reconstruction and computational grid generation

Using MRI data

In our group, a set of purpose-built software has been developed to process MRI images, 

generate anatomically realistic 3D arterial models and computational grids [187, 35]. The 

existing program has been modified to allow the incorporation of the movement of the 

model surface and regeneration of the grid to ensure a uniform grid change within the 

whole fluid domain for use in the coupled model.
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The key issue here is to define locations of points on the vessel surface. This is done via 

a sequence of 2-D cross-sectional images. Details are as follows:

• Images are processed to give smooth 2D cross-sectional contours, using the active 

contour or snake model. The MR imaging system guarantees these images are par-

allel, and related to one coordinate system.

• The 3-D vessel geometry is found by:

— assembling all the 2-D images, in a 3D space using known distances between 

them.

— smoothing the 3D surface of the resultant 3D image.

— final surface rendering by using least-square cubic splines.

• Computational grids are generated based on the smooth 3-D surface obtained. 

Using ultrasound data

Because only 2-D longitudinal images were available for the present study, assumption 

has to be made on circular symmetry for three vessels (common, internal and external 

carotid), with elliptic merging at bifurcation. The 2D US images are processed manually. 

Essentially, the software described above for processing MR images has been modified to 

deal with ultrasound images as well. Computer programs were developed for automatic 

generation of 3-D surfaces once the basic geometric parameters were entered. A schematic 

diagram for the input parameters is shown in Figure 3.4. Once the 3-D surface is defined, 

further specifications of axial direction and cross-plane grid densities are needed to estab-

lish interface with the program already developed for MR images. The procedure requires 

only basic geometrical data, such as vessel diameters at a number of locations in the axial 

direction, lengths and bifurcation angles. The generated grids are suitable for use with 

the computer simulation.
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Figure 3.4: A schematic diagram for the input parameters obtained by USA.

Figure 3.5: Typical original image from MR acquired in the carotid bifurcation of a human 

subject, where the dark circles are vessel cross-sections.
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Figure 3.6: Typical original image from USA, where CCA, bulb, and ECA emphasize the 

region of interest and correspond to longitudinal locations in the vessel.

(a) (b)

Figure 3.7: Two human carotid bifurcations reconstructed from MRI.
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(a) (b)

Figure 3.8: Two human carotid bifurcations reconstructed from USA.

All the software referred to above was purpose-written, permitting mesh generation di-

rectly from clinical data. It thus forms a ‘seamless’ interface between in vivo measurements 

and the computer model (also velocity boundary condition data are needed).

Figures 3.5 and 3.6 show typical original images from MRI and USA respectively. The 

geometric models reconstructed from MR and USA for two subjects are shown in Figures 

3.7 and 3.8.

So far, due to limitations of the current US technique and facility, only 2-D USA has 

been used. It is apparent that model geometries (from USA) tend to be simpler than 

their real arterial counter-parts (MRI). To reflect the real situation in the human body, 

3-D ultrasound is being developed with a position sensor mounted on the scan header. 

For this purpose an extra stage of ‘image registration’ is required in three dimensions, to 

substitute for MRI digital control.

Computational grids for the wall mechanics calculations are simply the outer surface map-

ping of the flow domain. Logical locations at each node on the surface have to be stored to 

establish the link among surface nodes. The existing program has been modified in such a
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way as to generate computational grids for both fluid and wall calculations simultaneously.

3.4 Convergence Technique

Having presented a computational, comprehensive coupled fluid-wall interaction dynamics 

model for the simulation of blood flow in arterial structures, this section discusses numer-

ical convergence related to the coupled model.

3.4.1 Introduction

According to the interactive coupled approach presented in section 3.1, the time-dependent 

Navier-Stokes equations of the fluid are not explicitly assembled with the dynamics equi-

librium equations of the wall, but instead an iterative procedure is used to obtain the 

solution. Combining two established commercial codes, CFX for fluid flow and ABAQUS 

for wall motion, this iterative algorithm preserves the nature of software modularity and 

offers a distinct advantage in that the most efficient codes for fluid flow and structural 

analysis can be used to deal with complex problems.

A convergence criterion has to be introduced to control the iterative procedure. This is 

based on the difference between displacements at two successive iterative cycles at each 

time step (DD), as defined in equation(3.1). Under this criterion, the convergence is 

achieved when there is little or no change in the position of interface surface at each time 

step. A similar convergence criterion has been adopted by Muller and Jacob [171], while 

Hofer et al. [148] employed a different criterion based on the difference in successive ve-

locities.

3.4.2 Numerical simulations

Numerical predictions were carried out for pulsatile flows in three compliant models of 

human carotid artery bifurcations (Figure 3.9) to demonstrate the validity and the conver-

gence characteristics of the proposed coupled scheme. The first two bifurcation geometries
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(a) Model 1 (b) Model 2 (c) Model 3

Figure 3.9: Geometries of the three carotid bifurcation models.

were based on ultrasound images. The software described in the preceding section was 

used to generate 3-D surfaces automatically using the key geometric parameters. Based 

on the 3-D surface data together with further specification of grid densities in the axial 

direction, and cross-planes, the program automatically generated the computational mesh. 

The third numerical model was generated from MRA images, again with the use of the 

grid generation software.

The configurations were defined as the diastolic reference geometry. The essential geomet-

ric parameters are as follows: Model 1: common carotid diameter is 6.25mm, maximum 

sinus diameter is 6.0mm, internal carotid diameter is 6.0mm, external diameter is 4.3mm, 

angle between internal and external axes is 5°; Model 2: common carotid diameter is 

6.0mm, maximum sinus diameter is 6.2mm, internal carotid diameter is 4.3mm, external 

diameter is 3.3mm, angle between the common and internal axes is 30° and angle be-

tween the common and external axes is 25°; Model 3: common carotid diameter is 5.9mm, 

internal carotid diameter is 4.6mm, external diameter is 3.2mm. As the last model is recon-

structed from in vivo MR angiogram, there is no symmetric plane as in the first two cases.
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The nonlinear behaviour of the artery wall has been approximated, by assuming it to be 

incrementally linearly elastic over the pressure range from the diastolic level to systolic 

phase [42]. The incremental elastic modulus of the arterial wall is 5xl05 Pa, which was 

chosen according to the range suggested by Fung [82] for the human carotid artery. The 

thickness (h) of the carotid artery walls is 8-1 0 % of the vessel diameters [188] which are 

0.5mm, 0.5mm, and 0.45mm respectively for the three models. To prevent rigid body 

motion, the ends of the model were constrained against motion. The flow domain dis-

cretizations result in 12,960, 12,960, and 20,480 eight-noded brick elements and the wall 

discretizations yield 1,798, 1,798, and 2,560 four-noded shell elements respectively for the 

three models. Flow waveforms obtained from Perktold and Rappitsch [42] were applied as 

the time-dependent boundary conditions. The flow pulse waveform at the common carotid 

inlet and the external carotid outlet as well as the pressure pulse waveform at the internal 

carotid outflow boundary axe shown in Figure 3.10. As the boundary conditions used do 

not correspond to the individual models studied here, these calculations were meant to 

demonstrate the coupled method and convergence technique rather than to simulate the 

real cases.

3.4.3 Convergence technique

The coupling for a fluid/solid problem is not a trivial task and several difficult issues re-

lated to both theory and implementation aspects may arise. The problem of convergence 

within the calculations of each single code lies in the scope of the code itself. However, the 

convergence behaviour between the codes has to be monitored and controlled for a cou-

pled solution. Preliminary calculations for the first two models reached converged states 

after six to seven iterations between the codes without the aid of any special techniques. 

However, convergence difficulty has been encountered for the third model. A summary of 

the convergence behaviour for the three coupled models is given in Table 3.2.

The calculations show that it is necessary to introduce a relaxation factor because during
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Figure 3.10: Boundary conditions for the calculations, (a) Flow pulse waveforms in the 

common and external carotid artery (b) Pressure pulse waveform in the internal carotid 

artery, tp being the cycle period.

Table 3.2: Summary of the convergence behaviour for the three coupled models.

Iteration 1 -2 2-3 3-4 4-5 5-6 6-7

MODEL 1 DD(%) 91.0 13.7 3.5 1 .8 1 .1

MODEL 2 DD(%) 187.89 172.79 46.96 1 2 .8 8 4.64 2.33

MODEL 3 DD(%) 317.22 221.38 174.57 152.44 124.31 103.04
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T ab le  3.3: C o n v erg en ce  b e h a v io u r  o f  th e  co u p led  m o d el 3 u n d e r  a  r e la x a tio n  fa c to r  of 0.5.

Iteration 1 -2 2-3 3-4 4-5 5-6 6-7 7-8

DD(%) 159.63 48.14 27.19 12.38 6.63 4.44 2.61

Table 3.4: Convergence behaviour of the coupled model 1 after mesh refinement.

Iteration 1 -2 2-3 3-4 4-5 5-6

DD(%) 68.32 14.99 4.21 1.92 1.03

the calculations the fluid domain geometry tends to converge very slowly if the total ge-

ometric deformation as a result of the structural analysis is fed in as the new geometry. 

Under-relaxation has several interlinked purposes in the solution process. The relaxation 

factor is introduced to reduce the calculated deformations to a certain amount. In this 

way, difficulties caused by instability are overcome. Thus the stable state is reached under 

a relaxation factor (Table 3.3) which is set to 0.5. It can be seen that with a relaxation 

factor, convergence is obtained after 6 iterations between the two codes.

Furthermore, to test both temporal and spatial resolutions, mesh and time-step refinement 

experiments are carried out on the first model. Firstly, the mesh number was nearly dou-

bled (total computational cells in the fluid domain was 12,960 and 25,200 before and after 

the refinement, total node number in the arterial wall was 1,798 and 3,430 respectively.) 

Before the mesh refinement, the calculated maximum displacement is 0.547mm. After the 

refinement, the maximum displacement is predicted to be 0.562mm, a difference of 2.7%. 

The convergence process is given in Table 3.4.

Secondly, regarding to the temporal resolution, the number of time steps was increased 

from 40 to 80 per cardiac cycle. However, for the time step refinement, convergence dif-

ficulty was again encountered. Tables 3.5 &; 3.6 give the convergence process before and 

after relaxation. For a total of 40 time steps, the calculated maximum displacement is 

0.547mm. For 80 time steps, the maximum displacement is 0.5427mm, showing a differ-
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T a b le  3.5: C o n v erg en ce  b e h a v io u r  o f th e  co u p led  m o d e l 1 a f te r  t im e  s te p  re fin em en t

w ith o u t re la x a tio n .

Iteration 1 -2 2-3 3-4 4-5 5-6 6-7

DD(%) 102.07 128.00 189.70 399.38 894.47 1415.67

Table 3.6: Convergence behaviour of the coupled model 1 after time step refinement with 

a relaxation factor of 0.5.

Iteration 1 -2 2-3 3-4 4-5 5-6 6-7 7-8

DD(%) 79.36 32.53 20.49 12.07 6.83 4.22 1.94

ence of 0.73% only.

The convergence history of the maximum displacement point without and with relaxation 

are plotted in Figures 3.11 & 3.12 respectively. To verify the relaxation scheme, time- 

dependent displacement at the maximum displacement point is compared before and after 

the time step refinement with a relaxation factor as shown in Figure 3.13. Comparison

Figure 3.11: Oscillating geometry at the maximum displacement point of model 1 without 

relaxation.
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Figure 3.12: Converging geometry at the maximum displacement point of model 1 with a 

relaxation of factor 0.5.

Table 3.7: Wall shear stress comparison between coupled model and its corresponding 

rigid model (N m~2)-Model 1.

Rigid model Coupled model

Max W.S.S. 18.52 16.06

Max time-averaged W.S.S. 6.78 6.47

Min time-averaged W.S.S. 0.18 0.17

is also given of a time-dependent displacement component at node 174, which is near the 

apex of the bifurcation and was chosen randomly to check the accuracy of the results, 

for a total number of time steps of 40 and 80 ( Figure 3.14). During the second half of 

the cycle minor oscillation can be noticed. This is due to the computational accuracy as 

the displacement is very small at this site. In fact, the total displacement of this point 

does not show any oscillation at all (Figure 3.15). Very good agreement has been achieved 

between predictions obtained with and without under-relaxation for both the maximum 

displacement point (Figure 3.13) and the small displacement point (Figure 3.15).

Comparisons of time-dependent wall shear stress were also made at four selected points
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Figure 3.13: Comparison of displacement at the maximum displacement point of model 

1 before time step refinement without relaxation factor (solid line) and after time step 

refinement with a relaxation factor of 0.5 (dashed line).

*10*

Figure 3.14: Comparison of one of the displacement components at a point near the apex 

of bifurcation model 1 before time step refinement without relaxation factor (solid line) 

and after time step refinement with a relaxation factor of 0.5 (dashed line).
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Figure 3.15: The total displacement of the same point as in Figure 3.14.

Table 3.8: Wall shear stress comparison between coupled model and its corresponding 

rigid model (N m _2)-Model 2.

Rigid model Coupled model

Max W.S.S. 22.35 16.86

Max time-averaged W.S.S. 8.00 7.09

Min time-averaged W.S.S. 0.18 0.15
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Figure 3.16: Wall shear stress comparisons at four selected points of model 1 before time 

step refinement without relaxation factor (solid line), after time step refinement with a 

relaxation factor of 0.5 (dotted line) and in the rigid model (dashed line).
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Figure 3.17: Displacement distribution (mm) at the pulse phase of maximum pressure 

load-Model 1.

Ul VALUE
19E-01 

22E-01 

24E-01 

26E-01 

28E-01 

30E-01 

29E-02 

48E-02

60E-01

58E-01

56E-01

53E-01

S1E-01

Figure 3.18: Displacement distribution (mm)at the pulse phase of maximum pressure 

load-Model 2.
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Figure 3.19: Maximum principal stress distribution (Pa) at the inner surface at the pulse 

phase of maximum pressure load-Model 1.

Figure 3.20: Maximum principal stress distribution (Pa) at the inner surface at the pulse 

phase of maximum pressure load-Model 2.
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(A, B,C, and D) (Figure 3.16). Generally the results indicate very low wall shear stresses 

which changed direction and magnitude during the cycle at the outer wall of the sinus, 

and relatively large and unidirectional wall shear stresses at the apex and the inner wall of 

the sinus. As can be seen, the results before and after the time step refinement are quite 

close, while significant differences exist between the coupled model and its corresponding 

rigid model. The quantitative influences of the wall distensibility on wall shear stress for 

the first two models are given in Tables 3.7 & 3.8. The effect of wall compliance on flow 

patterns and wall shear stress in realistic carotid bifurcation models will be discussed in 

detail in chapter 5.

Since this section focuses on problems associated with convergence of coupled compu-

tations, neither detailed flow data nor arterial transmural stresses are given. However, 

the predictions provide all these information. Because the predicted flow patterns ex-

hibit features which are consistent with previous simplified symmetric carotid model stud-

ies [164, 42], it is not intended to show them here. Figures 3.17 and 3.18 show the 

displacement distributions at the pulse phase of maximum pressure. In both models the 

maximum displacements are observed at the intersections between the two branches. The 

maximum principal stress distributions at the inner wall at maximum pressure load are 

presented in Figures 3.19 and 3.20. At the side wall of the bifurcation region a zone of low 

stresses is found in both cases. It is interesting to note that in this zone the maximum de-

formation occurs. The patterns of deformation and principal stress are in agreement with 

published data on simplified models [42, 148] in some essential features such as “stretchless 

membrane deformation”.

3.4.4 Summary

The convergence problem, an important issue arising from coupled fluid/solid computa-

tions, has been discussed in detail. A number of numerical experiments have been per-

formed to test the convergence of the iterative procedure implemented. In some cases it is 

necessary to introduce a relaxation factor in order to avoid oscillatory or even divergent 

solutions. It is found that by updating the deformations incrementally, the dynamic loads
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resulting from the flowing fluid would not change drastically. This relaxation method 

assimilates a fraction of the geometric deformation that are relaxed from their full values 

at each update interval, so that a stable state could be reached. The proposed iterative 

coupling scheme can also be used for solving a wide range of engineering problems involv-

ing fluid/solid interactions. Numerical examples have been presented to demonstrate the 

validity of the coupled scheme and relaxation technique. Unfortunately, a general theory 

does not exist to establish the overall convergence of a coupled model. The convergence 

behaviour is very much case-dependent.
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Chapter 4

Benchmark Tests

In order to be able to rely on the numerically predicted results, computer codes have to 

be validated carefully. Analytical solutions of simple problems may be used to test the 

numerical predictions. As mentioned in chapter 3, the coupled model involves the use 

of a computational fluid dynamics code CFX and structural analysis code ABAQUS. A 

comprehensive set of code validation exercises to related problems will be discussed in 

detail in this chapter.

For code validation purpose, a simple structure-circular tube is adopted in most of the ex-

ercises, because analytical solution is usually available for such a simple geometry. Firstly 

a decoupled treatment (a)unsteady flows in a semi-infinite contracting or expanding tube, 

and (b) an incompressible elastic tube under uniform internal pressure, was considered. 

Then the Womersley problem of oscillating flow in an elastic tube was studied to test the 

fluid/solid coupling algorithm.

4.1 Decoupled Moving Wall Test (CFX)—unsteady flows in 

a semi-infinite contracting/expanding tube

It is necessary to test the capability of moving boundary algorithm in CFX because this 

feature will be used throughout the coupled model. For this purpose unsteady flows of 

an incompressible viscous fluid through a semi-infinite contracting/expanding pipe were
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considered as an analytical solution to this problem has been developed by Uchida and 

Aoki [189]. Their solution was based on the full Navier-Stokes equations for unsteady flow 

in a semi-infinite tube with a contracting or expanding wall at low Reynolds numbers. Al-

though the model is restricted to a type of wall motion that does not represent well in the 

vascular system, it offers some definitely useful features. For example, it is not restricted 

to small wall displacements. Within CFX the three-dimensional momentum and mass 

conservation equations have been modified to allow both the grid and solution domain 

boundaries to move in some prescribed manner by a user-defined subroutine, which allows 

the user to define a grid or to specify movement of the grid with time.

4.1.1 Analytical solution

In this problem, the flow is driven by a single expansion or contraction of the wall with 

initial radius of ao, moving at the temporal function of the radius a(t) :

a/a0 =  y  1 4- 2a(vt/al)  (4.1)

A full solution of the Navier-Stokes equations similar both in space and time has been 

derived. By introducing a non-dimensional diameter a(t) = aa/u , a is the velocity of the 

wall (a =  da/dt), v is the kinematic viscosity and further assuming that a  is constant 

representing the dynamic scale of the wall motion, a similar solution for axial and radial 

velocity distributions can be expressed as follows:

Axial velocity

~  = - ( 2 c ) - l (F 'lv) (4.2)
u m

Radial velocity

v
vw

v
a

- a  l {F/rj) (4.3)
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Wall shearing stress along the wall is given by:

Tw t t?"\ x ( a 
— o"T2 =  W ) r } =  1—  I —  pvz/%  a0 \ a 0

(4.4)

Where the non-dimensional radius r] = r /a  with r denoting the radial distance, mean flow 

velocity um and the expansion rate of the wall radius a are given by

um —2 a x
v/ao 1 + 2a(i4/ao) cio

(4.5)

a =  —  [1 +  2a(vt/ao2)] 2 (4.6)
do

with x being the axial distance from the closed end. F(rj) is calculated by numerical inte-

gration of the following equation:

/  1 '  /  #t? I 17» W r W
( - )  +  ( -  +  -  +  a r j ) ( - )  -  ( _  -  2a )— = K  (4.7)rj 77 77 77 77 77

Since equation( 4.7) is singular at the origin, for the region 0 < 77 < 0.01, F(r/) can be 

calculated from the power series:

F(rj) =  Ò2772 +  64 7?4 +  b^rf + b8 rjS + ... (4.8)

where

h  = Yq [K + 4(62 -  01)62] 6 6 =  - ^ ( 6 2  -  2a ) 64 b8 =  - -^ (9 a ò 6 -  262) (4.9)

and for n> 2
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&2n+ 4  — —{[(2n — 4)62 + (2n + 2)a](2n + 2)62n+2
n—1

+  -  2 -  4m)(2n +  2 -  2m)&2m+2&2n+2- 2m}/(2n +  2)2(2n +  4)(4.10)
1

Values of 62 and K are determined to satisfy the boundary conditions at 77 =  1, i.e., the 

radial velocity of fluid at the wall is equal to the wall velocity expressed in the transformed 

form:

F/r] = 0,(FTI/ri)TI = 0 at 77 =  0 (4.11)

F/rj = — a, F^/rj =  0, at r) =  1 (4-12)

Assuming values of 62 and K, the function F is calculated from this power series from 77= 0  

to 77= 0 .0 1 , where the calculation is continued by numerical intergration by the Runge- 

Kutta-Gill method up to 77= 1 .

4.1.2 Numerical predictions

In the analytical solution, the semi-infinite tube is closed at one end by an idealized elas-

tic membrane which prevents only axial motion of the fluid, while leaving radial motion 

completely free. In the numerical modelling, this membrane was prescribed as a plane of 

symmetry. The initial tube diameter was set to be 10mm, and its length 15 times the 

initial diameter. The wall moved in a manner defined in equation( 4.1). The kinematic 

viscosity v  of 4X 103 m 2/.s was used. The tube outlet was set to be a surface of constant 

pressure. While this was an obvious approximation, it was found not to affect the final ve-

locity profiles away from the tube. The predicted results have been plotted at mid-length 

of the tube. In the study both contraction and expansion have been modelled at different 

Reynolds numbers. The parameter a, defined as aa/v, is the Reynolds number which 

represents the dynamical scale of the wall motion and is different from the conventional
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(a) (b)

Figure 4.1: Comparisons of the distributions of (a) axial, and (b) radial velocity in an 

contracting tube with Re=-10.0, and simulation time of 0.1s.

definition in tube flow. Thus, contracting and expanding pipes have a  < 0 and a  > 0 

respectively.

Contraction with Re=-10.0

The selected time increment is 3.125ms. For this case, the agreement is very satisfactory 

as shown in Figure 4.1 with a simulation time of 0.1s. An extreme case has also been 

considered with a simulation time of 0.3s which represents a state where the contraction 

is down to nearly complete collapse of the tube to zero diameter. As shown in Figure 4.2, 

the distribution of the axial velocity is monotonic and the effect of viscosity is limited to 

a thin layer attached to the wall, implying that CFX performs very well even in extreme 

cases. Comparison for wall shear stress between the predicted and analytical results along 

the wall is shown in Figure 4.3. Again good agreement has been achieved.

Expansion with Re=1.0

The selected time step is 20ms. A simulation time of 1.0s has been chosen mainly to see 

whether a similar solution could be achieved over the time scale of the cardiac cycle period.
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Figure 4.2: Comparisons of the distributions of (a) axial, and (b) radial velocity in an 

contracting tube with Re=-10.0, between simulation time of 0.1s and simulation time of 

0.3s.

Figure 4.3: Comparisons of wall stress stress along the wall in an contracting tube with

Re=-10.0.
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Figure 4.4: Comparisons of the distributions of (a) axial, and (b) radial velocity in an 

expanding tube with Re=1.0, and time step of 20ms.
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Figure 4.5: Comparisons of the distributions of (a) axial, and (b) radial velocity in an 

expanding tube with Re=1.0, between time step of 10ms and time step of 20ms.
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4.2 Decoupled Solid Wall Movement Test (ABAQUS) 

deformation of an incompressible elastic tube

Another indispensable part of the couple model involves the prediction of wall movement 

under internal pressure. In this section, the case where the middle surface is a surface of 

revolution, including technically important problems relating to cylindrical shells will be 

dealt with. To test ABAQUS’s capability of predicting the wall motion, the problems of an 

incompressible elastic tube under uniform internal pressure of (a) infinite length with free 

ends and (b) finite length with fixed ends are considered. Again this is because analytical 

solutions of displacement and stress field for both problems are available and can be used 

for the validation purpose.

4.2.1 Long elastic tube with free ends

First, consider the case of a tube with infinite length and free ends. In general, structural 

analysis consists of finding the stresses, and the displacements in an elastic body subjected 

to surface forces, surface displacements and body forces. There are six components of the 

state of stress at each point, and the three equations of equilibrium are not sufficient to 

obtain the solution of the problem. Additional equations are therefore introduced, these 

include six stress-strain relations together with six strain-displacement relations, making 

a total of 15 equations with 15 unknowns (cqj, e;j, dj). To ensure a unique value of the dis-

placement components at each point, the strains must satisfy the compatibility relations. 

The original 15 equations can be reduced to three equations in terms of the components of 

the displacement. By introducing Lame strain potential (j>, a variety of solutions satisfying 

practical boundary conditions can be generated from this parameter, such as the case of 

infinite length tube considered here. As a plane stress state, no axial boundary conditions 

are needed. Consider the strain function :

4> = C l n - (4.13)

where r is the radial distance, C and K are constants to be determined by boundary con-
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ditions.

The boundary conditions for the problem are :

oTT = —P  at internal radius; arr =  0 at external radius azz — 0

(4.14)

Together with the axial strain ezz= constant which is required by symmetry yields the 

following displacement and stress fields [190]:

Radial displacement:

dr a?P ( l+ / i)6 2 
E(lP — a2) r + (1 -  n)r]

Circumferential displacement:

(4.15)

dg = 0 (4.16)

Axial displacement:

, 2/i Pa2
dz =  — 77}zE  a2 - b 2

Radial stress:

(4.17)

ö" ff (4.18)
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Circumferential stress

Axial stress:

&ee
a2P (  b2 

b2 — a2 \  ^  r2
(4.19)

azz =  0 (4.20)

with a, b being internal and external radii, and E, fi the Young’s modulus and Poisson’s 

ratio of the tube material. P is the applied internal pressure, r and z are radial and axial 

positions on the tube.

The problem considered is that of a tube with internal diameter of 10mm, and a wall 

thickness of 1.0mm. Young’s modulus and density of the wall are taken to be 5A105 Pa 

and 1.0A 103  kg /m 3 respectively. A Poisson’s ratio of 0.49 is used to model the incom-

pressibility of the wall material. The internal pressure is set to 2668Pa, which is within 

the range of physiological pressure variations.

Because of simplicity of the geometry, an axisymmetric solid element CAX4H is used. 

In the numerical calculation, the tube is divided into 20 elements in the axial direction 

and 9 elements in the radial direction. One end of the tube is constrained in the axial 

direction to prevent any rigid body movement, while the other end remains absolutely free.

Figure 4.7 and 4.8 show the comparisons of radial and axial displacement calculated using 

the analytical solution of equations( 4.15) and ( 4.17) and predictions using ABAQUS. 

Predicted and analytical distributions of radial and circumferential stresses are given in 

Figure 4.9. In each case the agreement between the prediction and analytical solution is 

very good.
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Figure 4.7: Comparisons of the analytical and predicted radial displacement in a tube 

under uniform pressure with free ends.

Figure 4.8: Comparisons of the analytical and predicted axial displacement in a tube 

under uniform pressure with free ends.
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Figure 4.9: Comparisons of the analytical and predicted stresses in a tube under uniform 

pressure with free ends.

4.2.2 Finite-length elastic tube with fixed ends

Then, the tube is assumed to be of finite length with fixed ends. The internal actions 

between the parts of a shell are best expressed in terms of stress-resultants and stress- 

couples reckoned across the whole thickness. The equations of equilibrium, subjected to 

external forces, are a set of six equations connecting the six stress-resultants and the four 

stress-couples with the displacements. It is clear that, when the boundary conditions are 

suitable, solutions can be obtained which are sufficiently accurate for practical purposes, 

by omitting those values of small orders. When all the conditions are symmetrical about 

the axis, and torsion is not dealt with, a specific extensional solution can be expressed as:

where ai and a2 are arbitrary constants. Z’ and R’ are the components parallel to the 

axes of axial z and radial r of the force of the externally applied forces estimated per unit

(4.21)

(4.22)
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of area of the middle surface, u is Poisson’s ratio, and W, U are radial and axial displace-

ments. It appears that by means of the extensional solution the external forces can be 

eliminated, but in general the boundary conditions at the edges can not be satisfied. For 

example, the problem of a tube strained by external pressure and plugged at ends cannot 

be solved. In such problems the stress-resultants do not vanish.

Consider another specific solution expressed as:

W  = eqz/a(Ai cosqz/a + B \ s'mqz/a) +  e qz^a(A2 cosqz/a + B 2 smqz/a)  (4.23)

U =  —  {eqz/a{(Ai — Bi) cosqz/a + (Ai + Bi) sinqz/a}¿q
— e~qz!a{(A2 +  B 2 ) cosqz/a -  (A2 — B 2) s'mqz/a}} (4.24)

where Ai, B i, A 2 , B 2 are arbitrary constants, and

q = ( a /h ) 2 { 3 (1 - 1/2)} 4 (4.25)

The results here obtained indicate a state of stress existing in the parts of the shell that 

are near the edges and such that the stress-resultants and stress-couples diminish to very 

small values at a distance from the edges, which is comparable to a mean proportional 

between the thickness and the diameter which is called “edge-effect” state.

The “edge-effect” is of quite different character from those which have been encountered in 

the extensional state, where the extensional strains are in general small compared with the 

flexural strains, but rise in importance near to free edges so as to secure the satisfaction 

of the boundary conditions. Here the flexural strains are in general small compared with 

the extensional strains but rise in importance in the neighbourhood of fixed edges so as 

to secure the satisfaction of conditions of fixity.
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It was found that combining the above two specific solutions together with proper bound-

ary conditions would yield solution for the particular problem of a finite-length tube with 

fixed ends [191].

Considering a tube of length l and measuring z from one end, the boundary conditions are:

U — 0, W  = 0, —— =  0 at z = 0 and at z =  Z (4-26)
dz

In this problem Z  =  0 and R' =p which is the internal pressure. The complete expressions 

for U and W are:

Axial displacement:

Z IS CLZ IS
U = 0 2  +  a i------^ — ^ r P  + — {eqz^a{(Ai -  Bi) cos qz/a + (Ai + Bi)s'mqz/a}l — u hiti ¿q

— e_9z/,a{(A2 +  B 2) cosqz/a — (A2 — B^) sva.qz/a}} (4.27)

Radial displacement

W  = ai ua u2 a2
-P +

l - u ‘
l - u 2 E h "  ' Eh

e- q z / a cos qz/ a + B 2 sinqz/a)

a2p + eqz!a (Ai cos qz/a  +  B\  sin qz/a)

(4.28)

The boundary conditions at the end z = 0 give:

a2 +  2^(A i — B\)  — (A2 +  B 2 ) =  0 (4.29)

ua 1 — 2 u2 9
a ir ^ R  +  ~ ^ h ~ a p + A i + A 2  = 0

(4.30)
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Ay +  By — A2 +  B2 =  0 (4.31)

The boundary conditions at the end 2  =  l give, on writing zq for ql/a:

(By — R2)(sinhz0coszo +  cosh z0 sin 2 0) +  (Ai +  A.2 )(sinhzo coszo — coshz0 smzo)

+2(B\ +  B 2 ) sinhzo sinzo =  0 (4.32)

— (Ai +  A 2 ) +  (Ay +  A 2 ) coshzo coszo +  {B\ +  .6 2 ) (coshzo sin zo — sinhzocoszo)

+  (By — B 2 ) sinhiro sinzo =  0 (4.33)

V- ( B y + B 2 ) + a2 + ay— l— - ^ j - p  = 0  (4.34)
q 1 — v* Eh

The displacement field is known once the constants are determined.

In the numerical calculations, the tube length is taken to be 20 mm, while all other re-

maining geometry dimensions and material property parameters remain the same as those 

described in the free-end case. It is well known that shell treatment is an approximation 

of the real three-dimensional solid problems. To test whether the shell approximation is 

appropriate, two totally different types of element were selected: (a) the axisymmetric 

solid element (CAX4H), and (b) three-dimensional shell elements (see Figure 4.10(a) and 

(b) ). Furthermore, in shell elements, four-node thin shell element (S4R5), four-node gen-

eral purpose shell element (S4), and 3-node general purpose shell element (S3) were all 

tested to see if there might be any differences among different shell element selections. 

The Discrete Kirchhoff (DK) constraint, which refers to the satisfaction of the Kirchhoff 

constraint at discrete points on the shell surface, is imposed in all thin shell elements. 

In thin shell element type S4R5 the discrete Kirchhoff constraint is imposed numerically 

where the transverse shear stiffness acts as a penalty that enforces the constraint. The
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(a) (b)

Figure 4.10: Two different types of element configuration (a) axisymmetric solid element

(b) three-dimensional shell element.

general purpose elements allow transverse shear deformation, and change in thickness as a 

function of in-plane deformation. These elements use thick shell theory as the shell thick-

ness increases and become discrete Kirchhoff thin shell elements as the thickness decreases; 

the transverse shear deformation becomes very small as the shell thickness decreases.

Figure 4.11 (a) and (b) shows the comparisons of the predicted radial and axial displace-

ments using axisymmetric solid element and the four-node thin shell element with the 

analytical solutions. It is obvious that the agreement is quite good. And therefore it can 

be deduced that the shell treatment is a fair approximation to three-dimensional problems 

where one dimension (thickness) is small (10%) compared with the overall dimensions of 

the bounding surfaces. Figure 4.12 (a) and (b) is the comparisons of predicted displace-

ments using four-node thin and four-node general purpose shell elements. Figure 4.13 

is the predicted displacements using general purpose three-node and four-node shell ele-

ments. In general, there is very good agreement between predicted results using a selection 

of shell elements and analytical solution, justifying our choice of shell element used in this 

study.

In this section, numerical calculations of an incompressible tube, subjected to uniform 

internal pressure, were presented. Results predicted using a finite element code ABAQUS 

have been compared with well-established theoretical solutions and good agreement is
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Figure 4.11: Comparisons of the predicted (a) radial, and (b) axial displacements us-

ing axisymmetric solid element and the four-node thin shell element with the analytical 

solutions.
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Figure 4.12: Comparisons of the predicted (a) radial, and (b) axial displacements using 

four-node thin shell element with four-node general purpose shell element.
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Figure 4.13: Comparisons of the predicted (a) radial, and (b) axial displacements using 

general purpose three-node and four-node shell elements.

achieved. The capability and reliability of predicting wall movement using ABAQUS is 

well demonstrated.

4.3 Coupled Fluid/Solid Motion Test-Womersley solution

4.3.1 Analytical solution

Consider a case of pulsatile flow with negligible inertia in an elastic tube. The fluid must 

follow the motion of the wall, which is a pulsatile expansion. This necessitates the exis-

tence of radial flow component that is much smaller than longitudinal one, so that the 

main flow is in the longitudinal direction. This assumption is linked to another assumption 

that the tube radius is much smaller than the wave-length. The governing equations for 

the system are:

Fluid dynamics equations:
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duT ur duzA— - -\---- -
dr r dz

(4.35)

dur dur dur 1 dP ,d 2ur 1 dur d2 ur
dt Ur dr Uz dz p dr ^  dr2 ^  r dr ^  dz2

(4.36)

duz duz duz 1 dP d2 uz 1 duz d2 uz _ + Ur _ + % _  =  _ - _ + K _ + - _ + _ )

elasticity equations:

(4.37)

d2Z = E  ( ! ^ Z ,  +  J L  ( ^ 1  + dUr\
dt2 pw(l -  a2) \ d z 2 R d z )  pwh \  dz dr ) r=R (4.38)

d^( _ _ P _______ E  i a d j  _£_\
dt2 hpw pw(l — cr2) \ R d z  R 2)

and boundary conditions:

(4.39)

Ur=Z ~dt Uz = ~dt at T =  R  (4-40)

where uT, uz are the radial and axial components of velocity in fluid, f , £ are the axial and 

radial displacements of the wall’s midline, and p, pw are densities for the fluid and wall 

respectively.

The haemodynamic equations for the fluid must match the elasticity equations for the 

motion of the wall by matching velocity at the interface. As the phenomenon is that of 

a wave propagation, it is appropriate to assume that the variables have the same nature, 

namely:
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P = Plein{t~c'> (4.41)

Uf -- ¿n(t-f) (4.42)

Uz — UZ\E (4.43)

Looking at the fluid dynamics equations, it is obvious that the homogeneous solution is 

Bessel function. Then approximate solutions can be obtained :

uz M
pc

J0 (ayi3/2) \  
J0 (ai3/2) J

eint (4.44)

ur
inRAi  

2 pc2

(  2 M a i ^ y )  \
y a W M a i V 2) J

eint (4.45)

where Jo, J\ are Bessel functions of order 0 and 1, a  is the Womersley number, and r/ is 

given by:

-  2 _  (1 -  2 a)
 ̂ x(FiQ—2a) Fio — 2cr

(4.46)

h 1 E  ^ __ 2 _
R  pc2 (1 — a2) l — a2)

(4.47)

2J1(m 3/2)
10 m 3/2J o ( a i 3/2)

Where c is the Mones-Korteweg wave speed.

(4.48)
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As the solution is a Bessel function, it is therefore simpler to assume that the pressure is 

also given by a Bessel function:

P  = A 1 J0 ( k y ) ^ * - ^

where y = r/R  is the normalized radius.

Then,

aJ L  =
oz c

The value of k in the physiological system is very small (smaller than 0.1). 

appropriate to assume that the Bessel function :

Mk y )  =  1

If the oscillating pressure gradient is expressed as:

~  =  Aeint 
oz

Then, comparing with equation( 4.50), we have:

inA\
A — ---------

c

Substituting equation( 4.53) into equations( 4.44) and ( 4.45):

uz _ A _

inp
J0(ctyi3/2) \
J0(ai3/2) J e int

(4.49)

(4.50) 

It is therefore

(4.51)

(4.52)

(4.53)

(4.54)
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Figure 4.14: A schematic diagram for the computational grid.

uT = RA
2 pc y  m 3/ 2J o ( m 3/ 2) J

eint

The wall shear stress is given by:

(4.55)

Tw
Ar/a2 p 
2 npR

Fw {a)eint

A table for 1 — Aio (a) is given is Womersley’s report [38].

(4.56)

4 .3 .2  N u m e r ic a l ca lcu la tio n s

The coupled algorithm described in chapter 3 was first applied to unsteady flow in a circu-

lar tube, with the tube material being (a) elastic and, (b) hyper-elastic. The hyper-elastic 

case was chosen just to test the application of the coupled algorithm to arterial-related 

flow. In this case, it was assumed that the nonlinear material behaviour of the tube was 

known and the tube was loaded from zero-state. Geometrically non-linear theory was 

used in the displacement and stress analysis for the hyper-elastic case. The Navier-Stokes 

equations in their axis-symmetric form were solved.

In the calculation the tube is 50 mm long, 1 mm thick and has a 10 mm internal diameter. 

Figure 4.14 shows the computational grid for both the fluid and solid regions (because of 

symmetry, only axisymmetric plane is given).
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It was assumed that the flow was axisymmetric and the solid material to be incompress-

ible. The adopted element type CAX4H is defined as a 4-node bilinear, hybrid, constant 

pressure axisymmetric solid element. This hybrid element is primarily intended for use 

with incompressible and nearly incompressible material behaviour. When the material 

response is incompressible, the solution to a problem cannot be obtained in terms of the 

displacement history alone, since a purely hydrostatic pressure may be added without 

changing the displacements. This problem is resolved by treating the pressure stress as an 

independently interpolated basic solution variable, coupled with the displacement solution 

through the constitutive theory and the compatibility condition, with this coupling being 

implemented by a Lagrange multiplier. To prevent the movement of rigid body, both ends 

of the tube were constrained against axial motion in the finite element model.

(a) Linear elastic material

The tube was assumed to be linear elastic and the flow was driven by an oscillatory pres-

sure gradient. This problem was considered first because, away from the fixed ends, the 

solution could be compared with the analytical solution for oscillatory flow in a freely- 

moving elastic tube. If the flow is driven by an oscillatory pressure gradient expressed 

as —dP /dx  = A  * exp(int), assuming the fluid velocity is small compared to the wave 

speed, the approximate solution for axial and radial velocities can be obtained from equa- 

tions( 4.54, 4.55).

At the tube inlet, a sinusoidally varying pressure was applied. The pressure variation was 

given as

P  _  \ Pmax COS (ut) inlet 
\ 0 outlet

where Pmax — lOOPa, u  = 2n /tp , tp is the cycle period which was set to 0.75s. Each 

cycle consists of 40 equally spaced time steps. The tube is incompressible, linearly elastic 

with a Young’s modulus of 5.OX 105 Pa and Poisson’s ratio of 0.48. Velocity profiles at 

the mid-section along the length of the tube at four different times in the cycle are given 

in Figure 4.15. Comparison of time-dependent wall shear stress along the wall is shown in
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Figure 4.15: Predicted (symbols) and analytical (lines) axial velocity profiles for oscillatory 

flow in an elastic tube.

Figure 4.16. The analytical curves were generated from Womersley’s solution [38]. Pre-

dicted distributions of radial displacement and stress at four times in the cycle are given 

in Figure 4.17 and Figure 4.18 respectively for which no analytical solutions are available. 

Good agreement with the analytical solution can be found from the velocity profiles. Only 

three iterations were required to meet the convergence criterion. Results of a similar cal-

culations using the FV method can be found in Henry & Collins [9]. However, the fully 

coupled FV code is currently restricted to axisymmetric flows and infinitesimal strains.

(b) Hyperelastic material

The coupled method is also capable of dealing with large deformation and nonlinear ma-

terial behaviour. In order to demonstrate its applicability to complex material problems, 

unsteady flow in a hyperelastic tube was considered. The inflow boundary was defined by 

a sinusoidally varying mass flow condition with its minimum and maximum values being
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Figure 4.16: Predicted (symbols) and analytical (lines) wall shear stress for oscillatory 

flow in an elastic tube.
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Figure 4.17: Predicted distribution of radial displacements across the wall (elastic model).
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Figure 4.18: Predicted distribution of radial stresses across the wall (elastic model).

20ml/s and 31ml/s respectively and the outflow was controlled by a sinusoidally varying 

pressure with the minimum and maximum values being 80mmHg and 120mmHg. The 

cycle period was 1.0s. This set of boundary conditions was chosen to represent the physi-

ological conditions in large arteries with a mean Re=300.

The hyperelastic material is described in terms of a strain energy potential, which defines 

the strain energy stored in the material per unit volume in the initial configuration as a 

function of strain. Using the energy function proposed by Demiray [153]

W  = exp{a[h  -  3]} -  1} (4.57)

where I\ is the first invariant of the Finger deformation tensor, a  and ¡3 are two material 

constants and are found to be a=1.948 and (3=9900 Pa for the abdominal aorta of dogs. 

The incompressibility is included in the model, which is a reasonable description of most 

biological tissues.
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Figure 4.19: Predicted distribution of radial displacements across the wall (hyperelastic 

model).

As shown in Figure 4.19, the internal radius of the tube increased sharply from its original 

value of 5 mm (unloaded state) to 8.51 mm, exhibiting large deformation (60%) due to the 

hyperelastic behaviour. Diming the cycle the displacement oscillated at an average value 

of 4.5% (Radius increased from 8.51mm to 8.89mm.). Velocity profiles at the mid-section 

along the length of the tube at four different times in the cycle and their corresponding 

predicted values for a rigid tube are given in Figure 4.20. Velocities are always lower 

compared with the rigid model because of the large deformation. Predicted distributions 

of radial stress at four times in the cycle axe given in Figure 4.21.

It is of interest to compare the predicted results for the elastic and hyperelastic cases. 

There are differences in the deformation and stress distribution between the two cases. 

The gradient of the displacement across the tube wall is much steeper in the hyperelastic 

tube and the gradient of stress distribution across the wall is not uniform but becomes 

slightly smaller towards the outer surface of the wall. Unfortunately, no analytical solu-

tions are known in order to verify these predictions. Similar to the linearly elastic case, 

three iterations were required to satisfy the prescribed convergence criterion due to the 

simple geometry.
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Figure 4.20: Predicted axial velocity profiles for pulsatile flow in the hyperelastic model 

(with symbols) and its corresponding rigid model (without symbols).
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Figure 4.21: Predicted distribution of radial stresses across the wall (hyperelastic model).

The validity of the numerical results for the hyperelastic case can be assessed from the 

view point of structural analysis. The distribution of displacement is linear across the 

wall, suggesting that the radial strain difference is constant and the magnitude of the 

radial strain decreases towards the outer surface. However, from the results shown in 

Figure 4.21, it can be observed that the radial stress difference through the wall thickness 

is not uniform but varies with larger value at the inner surface of the wall. All these 

phenomena are consistent with the characteristics of this specific hyperelastic material, 

which exhibits smaller strain difference with increased stress level, the typical effect of the 

collagen.

An numerical method for coupled fluid/solid interaction problems has been presented in 

chapter 3, which was designed to be able to treat a wide range of material behaviour, such 

as, elastic and hyperelastic, small and large deformations. Results of the benchmark tests 

in this section have demonstrated good agreement with available analytical solutions for 

oscillatory flow in a linearly elastic tube. Its applicability to large deformation problem 

is also tested, although there is no established analytical solution to compare with. The 

coupled method is not confined to simple geometries and can be performed in complex 

geometries as to be shown in chapter 5.
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Chapter 5

Modelling of Blood Flow and 
Vessel Mechanics in the Human 
Carotid Arterial Bifurcations

This chapter describes the advanced application of the coupled model. The pulsatile flows 

in anatomically realistic compliant human carotid bifurcations were simulated numeri-

cally. In vivo pressure and mass flow waveforms in the carotid arteries were obtained from 

individual subjects using non-invasive techniques. The geometry of the computational 

models was reconstructed from magnetic resonance angiograms. The results of the study 

revealed complex natures of both flow field and wall mechanical behaviour in the carotid 

bifurcations. Maps of wall shear stress, contours of velocity in the flow field as well as 

wall movement and tensile stress on the arterial wall are presented for two healthy human 

subjects. This non-invasive approach enables the evaluation of local geometries, haemo-

dynamic and vessel mechanical parameters in individual subjects.

Comparison of the results with those under the rigid wall assumption demonstrated the 

quantitative influence of the vessel wall motion. Generally there was a reduction in the 

magnitude of wall shear stress, and an enlargement of flow separation zone in the compliant 

model, but the global characteristics of the flow and stress patterns remained unchanged.
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Comparisons of predicted and measured wall movement and blood velocity at selected 

locations demonstrated good agreement.

5.1 Introduction

The precise role played by haemodynamics in the development and progression of vascular 

disease is incompletely understood. The inability to conclusively identify the haemody-

namic factors that influence atherosclerosis may relate to the indirect nature of the cor-

relations made between haemodynamics and vascular disease. Conventional averaged or 

simplified bifurcation models mask interesting features observed in real arteries [194, 37]. 

More direct studies, in which the presence or absence of disease can be compared with 

haemodynamic parameters acquired from individual subjects, are required, since subtle 

changes in geometry can affect the flow field significantly [192]). More conclusive evidence 

regarding the decisive factors in vascular diseases may be derived from such individual 

studies.

Experimental studies in vascular replicas, in which true vessel geometry was retained, 

yielded new insights into arterial fluid mechanics that had not been revealed by experi-

ments in idealised models. It is reasonable to expect a similar benefit from Computational 

Fluid Dynamics in more realistic conditions, however, at present only limited numeri-

cal work has been performed where the computational region was based on real vascular 

anatomy [193, 194, 195], but all these studies involved the rigid wall assumption.

This chapter therefore deals with the simulation of flow and stress in the real human carotid 

bifurcations using the coupling algorithm presented in chapter 3. The coupled model is 

able to simulate physiologically and clinically relevant blood flow in compliant bifurcations. 

Magnetic resonance imaging can produce high resolution images of the carotid arteries rel-

atively noninvasively and in scan times suitable for patient studies. In this study, modern 

MR imaging techniques were used to obtain the carotid bifurcation anatomy. Pressure in 

the common carotid artery and mass flow rates in the internal and external carotid were 

obtained with applanation tonometry and pulsed Doppler ultrasound respectively from the
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same subject, while wall thickness was measured by B-mode ultrasound. This combined 

MRI/Ultrasound/CFD/Solid Mechanics approach provides a useful tool for non-invasive, 

in vivo human studies of haemodynamics and vascular mechanics.

5.2 Assumptions and Models

5.2.1 M odels for blood flow and arterial structure

In this study, blood is assumed to be incompressible, homogeneous, and Newtonian. The 

Newtonian approximation is acceptable in large arteries where relatively high shear rates 

occur. A previous study of the influence of the shear thinning behaviour of blood on flow 

in a model carotid artery bifurcation by Perktold et al. [34] showed an average difference 

between Newtonian and non-Newtonian wall shear stress of under 10%. The mathemat-

ical analysis of flow phenomena in segments of large arteries requires the solution of the 

full time-dependent Navier-Stokes equations with appropriate prescription of boundary 

conditions.

The thicknesses of the carotid artery walls are about 8 to 10% of the vessel diameters ac-

cording to Pedley [188]. Thus, for the description of the mechanics of an artery segment, 

a shell model was applied. The behaviour of a shell structure is governed by the behaviour 

of the middle surface as reference surface. In shell theories the membrane and the bend-

ing strains axe coupled in the energy expression. The coupled deformations consisting 

of stretching and change of curvature of the middle surface are required in predicting 

the strains and subsequently the stresses in the shell. Relatively large deformations were 

expected in the calculation, therefore geometric non-linear analysis was performed. The 

material of the vessel wall was assumed to be incrementally linear elastic. A similar treat-

ment has been used in most previous numerical studies of idealised models [42, 5, 26, 148].
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Figure 5.1: The structures crossing the internal jugular vein and carotid arteries and those 

intervening between the external and internal arteries from Ref. [196].

5.2.2 The influence of the superior thyroid artery

The common carotid artery is a large bilateral vessel supplying the head and neck; it 

ascends to just above the level of the thyroid cartilage’s upper border, where it divides 

into an external carotid and an internal carotid. Figure 5.1 shows the carotid arteries 

and related structures. The external carotid artery is one of the terminal branches of the 

common carotid artery. The superior thyroid artery arises from the front of the external 

carotid artery near its origin. It runs superficial and parallel to the external laryngeal 

nerve to reach the upper pole of the thyroid gland. It gives off (1) a branch to the stern-

ocleidomastoid muscle, and (2 ) the superior laryngeal artery.

In addition to the assumptions for models of blood flow and arterial structure, the superior 

thyroid artery was always ignored in previous fluid dynamics studies of carotid bifurcations, 

mainly to avoid the complexity caused by introducing this small artery [197, 198, 199]. 

From anatomical point of view, the presence of this small artery is a very common phe-

nomenon (73% of males, 55% of females) [200]. However, it is not clear to what extent the 

flow patterns within the carotid might be influenced by the presence of this outflow tract 

in reality. Therefore, a CFD study was performed to quantify the effects of the superior 

thyroid artery upon the flow patterns and wall shear stress in the carotid bifurcation. 

The study, taking into account the fact that 3D reconstruction and mesh generation for
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a carotid bifurcation with the superior thyroid artery would be much more complicated 

than for a bifurcation without this artery, was intended to answer the following questions:

(i) Is it necessary to include this small artery in the simulation, and (ii) Is there an alter-

native way to account for the presence of this artery without having to model it explicitly?

Due to the wide variability in the location of this small artery, three different models 

based on the geometry of a typical adult human carotid bifurcation including the sinus 

and superior thyroid artery obtained by Bharadvaj et al. [201] were constructed to repre-

sent carotid bifurcations expected in normal human subjects with the distance from the 

bifurcation apex to the superior thyroid artery being 5mm, 10mm, and 20mm respectively. 

A model without the small superior thyroid artery was used for comparison. Figure 5.2 

illustrates the geometry of the bifurcation models. Since the primary concern was the 

effect of the superior thyroid artery on haemodynamics in general, an average bifurcation 

geometry was employed.

Numerical calculations have been performed for three cases:

(1) a simplified case-Flow division ratio between internal and external arteries was set to 

be 70:30 for the model without the small superior thyroid artery ( model 1). This is the 

common procedure followed by previous carotid model studies.

(2) a realistic case-Flow division ratio among the internal, external and superior thyroid 

arteries was set to be 65:28:7 for models with the small artery (models 2, 3, and 4). This 

division ratio was chosen under the assumption that the ratio between flows exiting the 

internal and external carotid remains 70:30, while flow through the superior thyroid artery 

is 2 0 % of the total flow into the external artery, a maximum value from our clinical expe-

rience. To understand how this ratio may influence the flow patterns, values of 10% and 

5% were also tested.

(3) a compensation case-Flow division ratio between the internal and external arteries 

was set to be 65:35 for the model without the small artery (model 1). This is for the
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(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

Figure 5.2: Carotid bifurcation models without and with the superior thyroid artery at 

different locations.
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simplification of the calculations, yet to compensate the neglecting of the small artery by 

adding the flow through it to the external artery so as to keep the total flow through the 

external artery plus the small artery unchanged.

Comparisons of the maximum reversed flow velocities, flow patterns and wall shear stress 

were made between models with and without the superior thyroid artery. The major find-

ings of this study can be summarised as follows:

(1) The presence of the small artery is found to have marginal effect on both the flow and 

wall shear stress in the common-external side branch, and very little effect on the flow 

field and wall shear stress distribution in the common-internal side branch. This finding 

suggests that in practice the existence of the superior thyroid artery in geometry recon-

struction can be ignored if the common and internal carotid is only of interest.

(2) The smaller the flow division ratio between the superior thyroid artery and the exter-

nal plus superior thyroid arteries, the less effect on the maximum reversed flow velocity 

and the wall shear stress within the carotid.

(3) If the same amount of flow as it goes through the superior thyroid artery is compen-

sated to the external carotid, results within the carotid sinus would be more or less the 

same regardless of the presence or absence of this small artery.

(4) The above conclusions hold no matter where the superior thyroid artery is located.

Details of this investigation were reported in a paper, which has just been published in 

Medical Engineering & Physics [202], Based on the above findings, any small arterial 

branches in the ECA were ignored during image segmentation and geometry reconstruc-

tion process in the present study, as primary focus was the flow behaviour in the CCA 

and ICA, especially in the sinus region of the latter.
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5.3 Model Geometry

The human carotid bifurcation is unusual among the systemic arteries because of the pres-

ence of the carotid sinus in most subjects and because of the low distal resistance of the 

vascular bed supplied by the internal carotid branch, resulting in a continuously forward 

flow even during diastole and a time-varying flow division during the cardiac cycle. The 

carotid bifurcation is important clinically because of its predilection to the development 

of atherosclerotic plaques which can lead to transient ischemic attacks and strokes due to 

plaque ulceration and embolic events.

It is known that individual variations in the anatomy of arterial bifurcations both in human 

and in other mammalian species are rather astonishing which can be clearly demonstrated 

by the reconstructed models in chapter 3.

In this study, two healthy male volunteers aged 40 and 30 respectively with no previous 

history of vascular disease underwent MR imaging of the right carotid artery bifurcation 

with 45 degree turning angle. The scan protocol was approved by the local institutional re-

view board and the regional research ethnics committee, and both subjects gave informed 

consent. The imaging was performed with a 1.5T scanner (Signa, GE medical system), 

using 2-D TOF gradient echo sequence (TR 45ms, TE 8.7ms, Flip Angle 60, NEX=1) and 

a continuous 1.5mm slices with an in-plane resolution of 0.47mm (FOV=12cm). A 5-inch 

coil was used to obtain high ratio of signal to noise. To minimize the influence of signal 

loss especially in the bulb region, the contrast-agent Gd-DTPA was used in the scan. The 

scan covered 50mm proximal and 46mm distal to the carotid bifurcations. An original 

MR cross-sectional image has already been shown in chapter 3 (Figure 3.5).

The geometry and computational grid of the carotid models were then generated from the 

MRI angiograms for the two subjects (Figure 5.3 and 5.4). The orientation in the figures 

posterior to anterior (P/A) and left to right (L/R) will be used in the following result 

discussions. Viewing from different angles, it can be seen that there is no symmetric plane 

at all for the realistic bifurcations. A mild curvature of common carotid artery (CCA) 

is evident for subject No.l. In the subjects examined, the internal carotid arteries are
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Figure 5.3: Computer reconstructed model of the right human carotid bifurcation-subject 

No.l.
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Figure 5.4: Computer reconstructed model of the right human carotid bifurcation-subject 

No.2.
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(a) (b)

Figure 5.5: (a)Flow waveforms of the internal and external carotid arteries, and (b) pres-

sure waveform of the common carotid used as boundary conditions-subject No.l.

tortuously curved with both in- and out-of-plane curvatures. The CCA of subject No.2 is 

relatively straight compared to that for subject No.l. The cross-sectional area expands at 

the end of CCA which eventually forms the internal carotid bulb. Furthermore, subject 

No.2 has a smaller bifurcation angle (the angle between ICA and ECA) than subject No.l. 

All those complex bendings and curvatures may have a non-planar effect on the flow. The 

numerical study was aimed to provide the detailed fluid flow and wall behaviour within 

these geometrically complex models.

5.4 Boundary Conditions

In order to incorporate subject specific flow conditions into the simulation, flow waveforms 

obtained by pulsed Doppler ultrasound and pressure waveforms by applanation tonometry 

were applied as the time-dependent boundary conditions. Flow was measured using an 

HDI 3000 ultrasound system (Advanced Technology Laboratories, Bothel, Washington) 

with a 5-10 Mhz broadband linear array scanhead. Blood flow velocity waveforms of cen-

tral vessel of exits at internal and external carotid (which were selected as far as possible
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Figure 5.6: (a)Flow waveforms of the internal and external carotid arteries, and (b) pres-

sure waveform of the common carotid used as boundary conditions-subject No.2.

from the bifurcation region ) were measured using pulsed Doppler. Flow rates were then 

derived by the assumption of fully developed flow.

Continuous carotid pulse pressure was measured non-invasively using a high-fidelity exter-

nal pressure transducer (model SPT-301; Millar Instruments, Inc., Texas, USA) applied 

to the skin overlying the pulse of the common carotid artery. This non-invasive method 

of pressure wave measurement is based on the principle of applanation tonometry. Actual 

carotid blood pressure values were achieved from the recorded changes in applied pres-

sure, by external calibration using brachial artery pressure measured with an automated 

sphygmomanometer (Sentron, Bard Biomedical, Illinois, USA).

The flow pulse waveforms used at the internal and external carotid (IC, EC) outlets as 

well as the pressure pulse waveform at the common carotid inlet are shown in Figure 5.5 

and 5.6 for the two subjects respectively. Averaged over the cardiac cycle, the IC:EC flow 

splits in the models were approximately 75:25 and 60:40 respectively. Pressure and flow 

exhibited characteristic patterns. Both showed an initial sharp rise to the peak value, after 

which pressure dropped off more gradually than flow. The choice of this set of boundary 

conditions was made on the basis of making the most of available data. The reason for
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Figure 5.7: A typical original image from M-mode ultrasound.

choosing this boundary setting is twofold. Firstly, due to technical limitations, it is much 

more difficult to measure pressure in the IC and EC than in the CCA. Secondly it is more 

appropriate to derive flow rates in the ICA and ECA using the fully developed assumption, 

because of their smaller vessel diameters compared to the CCA.

The wall thickness of the common carotid, proximal to the bifurcation, internal carotid, 

and external carotid were estimated to be 0.60mm, 0.66mm, 0.55mm, and 0.40mm respec-

tively, using B-mode ultrasound for subject No.l, and being 0.60mm, 0.69mm, 0.53mm, 

and 0.46mm for subject No.2. For modelling purpose a smooth transition in between was 

assumed.

The incremental elasticity parameter describing the wall loaded with the incremental pres-

sure from the diastolic pressure to the peak systolic pressure level was determined with a 

finite element method using the data from M-mode ultrasound measurements (as shown 

in Figure 5.7). Knowing the internal diameter, thickness of the arterial wall, diameter 

increment, and pressure increment, it is not difficult to obtain the material property by 

FEA. This can be done by adjusting the modulus on the criterion that the right pres-
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sure increment results in the right amount of diameter change. In this study the derived 

material properties by the finite element method were E=2.6X105 Pa and 2.7X10° Pa for 

subjects No.l and No.2 respectively, which were within the range suggested by Fung [82],

5.5 Results

The grid contained 24 blocks and the flow domain was divided into 25,600 computational 

elements and the wall discretisation yielded 5120 shell elements. Considering the arbitrary 

in vivo geometry, a 3-noded shell element was used. A fine mesh was used at the near 

wall region in the flow domain with the distance of the nearest grid point from the wall 

being less than 2.6% of the lumen diameter. The coupled calculations provided a complete 

set of haemodynamic data including velocity, wall shear stress distributions in the flow 

domain and mechanical data including displacement and intramural stress distributions 

on the arterial wall during the whole cardiac cycle. Due to the time-dependent nature of 

the results, they can only be presented at a number of selected time points.

5.5.1 Flow field

Figures 5.8 and 5.9 show the velocity magnitude contours and slow moving zones (as 

shown in dark color) at the flow acceleration and deceleration phases for subjects 1 and 2 

respectively. For subject No.l flow in the CCA follows the curvature of the vessel and is 

slightly skewed towards the outer bend of the curvature, while a concentric velocity dis-

tribution is observed for subject No.2. Downstream of the bifurcation, a strong skewing 

towards the flow divider walls occurs in both IC and EC as a result of branching for both 

subjects. One noticeable feature is that the skewing in ICA rotates from the R aspect 

to the R-P aspect due to the nonplanarity of IC in subject No.l. This feature does not 

exist in subject No.2. There are two slow moving zones in subject No.l, one is located 

in the internal carotid bulb and another is at the entrance to ECA. The first one exists 

for the whole cycle and the second for flow deceleration only. In subject No.2, only one 

slow moving zone is found which is located in the carotid bulb and appears only at flow 

deceleration. Here the slow moving zone was the region with stagnant and reverse flow
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(b)

F ig u re  5.8: V elocity  m a g n itu d e  co n to u rs  m id w ay  th ro u g h  (a)flow  a c c e le ra tio n  p h ase , a n d

(b) flow d e c e le ra tio n  p h a s e - s u b je c t  N o .l .
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F ig u re  5.9: V elocity  m a g n itu d e  co n to u rs  m id w ay  th ro u g h  (a)flow  a c c e le ra tio n  p h ase , a n d

(b) flow d e c e le ra tio n  p h a s e - s u b je c t  N o .2.
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F ig u re  5.10: S eco n d a ry  flow p a t te rn s  m id w ay  th ro u g h  flow a c c e le ra tio n  p h a se  in  se lec ted

p la n e s - s u b je c t  N o .l .
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Figure 5.11: Secondary flow patterns midway through flow deceleration phase in selected 

planes, as shown in Figure 5. lOb-subject No.l.

Figure 5.12: Secondary flow patterns at second peak flow phase in selected planes, as 

shown in Figure 5.lOb-subject No.l.
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Figure 5.13: Secondary flow patterns at minimum flow phase in selected planes, as shown 

in Figure 5.lOb-subject No.l.

(defined as axial velocity component less than O.OOlm/s).

Figures 5.10 to 5.13 and Figures 5.14 to 5.17 display the secondary flow patterns espe-

cially in the bulb region at selected time points for subjects No.l and No.2 respectively. 

In the common carotid near the bifurcation (plane 2), double vortices are evident during 

most part of the cycle in subject No.l. Treble vortices can be seen during flow decelera-

tion in subject No.2. Consistent with previous findings, very strong secondary flow can be 

found in the bulb area in both subjects. However, in contrast to previous studies of planar 

bifurcations, secondary flow in the ICA is asymmetric with a singe dominant vortex. This 

is presumably a combined result of bifurcating and non-planarity. The flow during the 

deceleration phase was more disturbed and the region of reversed or slow flow zone was 

larger than during the acceleration phase, even though the instantaneous flow rates at 

these two time points were equivalent. Very intensive secondary flows were observed in 

flow deceleration phase (Figures 5.11 and 5.15), while less intensity at flow acceleration 

and the diastolic phase. It can also be seen that both the strength and centre of the vortex
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F ig u re  5.14: S eco n d a ry  flow p a t te rn s  m id w ay  th ro u g h  flow a c c e le ra tio n  p h a se  in  se lec ted

p la n e s - s u b je c t  N o.2.
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Figure 5.15: Secondary flow patterns midway through flow deceleration phase in selected 

planes, as shown in Figure 5.14b-subject No.2.

Figure 5.16: Secondary flow patterns at mid-diastole phase in selected planes, as shown 

in Figure 5.14b-subject No.2.
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Figure 5.17: Secondary flow patterns at the end of diastole phase in selected planes, as 

shown in Figure 5.14b-subject No.2.

change with time, as the flow moves downstream.

In summary, inconsistent with previous findings from planar geometry models, flow in 

the carotid sinus is dominated by strong helical flows accompanied by a single secondary 

vortex motion. This type of flow is induced primarily by the asymmetry and curvature of 

the in vivo geometry.

5.5.2 Wall shear stress

Wall shear stress (WSS) is another very important feature of haemodynamics and still 

cannot be measured in vivo directly by current techniques. Numerical modelling is able 

to provide 4D quantitative distributions of WSS. Wall shear stress is a measure of the 

tangential shear forces acting on the wall by the fluid. It is determined by the wall shear 

rate (gradient of velocity at the wall) multiplied by the molecular viscosity of the fluid. 

In the present study, quadratic near wall velocity profiles were assumed so that wall shear
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Figure 5.18: Wall shear stress magnitude distributions at flow acceleration phase seen 

from (a) posterior and (b) anterior aspects-subject No.l.
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F ig u re  5.19: W all s h e a r  s tre s s  m a g n itu d e  d is t r ib u t io n s  a t  flow d e c e le ra tio n  p h a se  seen

from  (a) p o s te r io r  a n d  (b) a n te r io r  a s p e c ts -s u b je c t  N o .l .
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Figure 5.20: Wall shear stress magnitude distributions at end of first deceleration seen 

from (a) posterior and (b) anterior aspects-subject No.l.
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Figure 5.22: Wall shear stress magnitude distributions at flow acceleration phase seen 

from (a) posterior and (b) anterior aspects-subject No.2.
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F ig u re  5.23: W all s h e a r  s tre ss  m a g n itu d e  d is t r ib u t io n s  a t  flow d e c e le ra tio n  p h a se  seen

from  (a) p o s te r io r  a n d  (b) a n te r io r  a s p e c ts -s u b je c t  N o.2.
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Figure 5.24: Wall shear stress magnitude distributions at mid-diastole phase seen from 

(a) posterior and (b) anterior aspects-subject No.2.
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F ig u re  5.25: W all sh e a r  s tre s s  m a g n itu d e  d is t r ib u t io n s  a t  th e  en d  o f  d ia s to le  p h a se  seen

from  (a) p o s te r io r  a n d  (b) a n te r io r  a s p e c ts -s u b je c t  N o.2.
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Figure 5.26: Time-averaged wall shear stress magnitude distribution seen from (a) poste-

rior and (b) anterior aspects-subject No.l.
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F ig u re  5.27: T im e -av e ra g ed  w all sh e a r  s tre s s  m a g n itu d e  d is t r ib u t io n  seen  fro m  (a) p o s te -

r io r  a n d  (b ) a n te r io r  a s p e c ts - s u b je c t  N o.2.
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(a) (b)

Figure 5.28: Zoom-in view of wall shear stress vector distributions at flow deceleration 

seen from (a) posterior and (b) anterior aspects-subject No.l.

rates were calculated by using velocities at three near wall points.

Maps of instantaneous wall shear stress magnitude at selected time points are presented 

in Figures 5.18 -  5.21 and Figures 5.22 -  5.25 for subjects No.l and No.2 respectively. 

During flow acceleration, low wall shear is found in both proximal IC and EC in subject 

No.l. However, during flow deceleration, low shear still occurs in proximal IC but only at 

anterior aspect, while at posterior aspect low shear zone moves to most part of the CC, 

due to the skewing towards the anterior aspect of CC. At the end of the first deceleration 

phase, the region of low shear in CC becomes smaller. As flow reaches its minimum phase, 

low shear occurs nearly everywhere, because at this time flow velocity is overally low. In 

subject No.2, low shear occurs at the outer wall of proximal IC at flow acceleration with 

the lowest at the posterior aspect. The region becomes larger at flow deceleration and 

diastolic phase, but only confined to the internal-common side.

The time-averaged wall shear stress magnitude revealed high values at the bifurcation 

apex and moderately elevated values spiralling around the IC from the inner wall along

187



the superior direction for both subjects (Figure 5.26 and 5.27). In subject No.l, it can 

be seen that WSS is higher on the posterior wall (outer bend of the curvature) than on 

the anterior wall in both IC and EC. The lowest average shear was seen primarily at the 

proximal IC and EC. Average wall shear in the CC is higher on the anterior than on 

the posterior aspect due to the mild curvature of CC. In subject No.2, low wall shear 

mainly happens on the outer wall of ICA at both anterior and posterior aspects. Aver-

aged wall shear in CC is slightly higher on the posterior aspect than on the anterior aspect.

Directional change of wall shear stress is very complicated in such in vivo carotid mod-

els. A vector-representation of wall shear stress distribution is presented in Figure 5.28 

at the time of flow deceleration for subject No.l. It can be seen that the WSS vectors 

are unidirectional and is along the vessel axis in most part of the bifurcation. But at the 

carotid sinus, they are directed from the outer wall towards the inner wall, perpendicular 

to the vessel axis as a result of very strong helical flow in the region. Furthermore, the 

magnitudes of these cross WSS are almost comparable to those along the axial direction.

5.5.3 Wall movement and mechanical stress

The vessel wall mechanical behaviour was analysed in terms of of displacements and prin-

cipal stresses. In a general shell structure, stresses in global system do not give a clear 

picture of shell surface stresses. It is convenient to compute the principal stresses which 

are defined as the stress state associated with the principal planes that are subjected to 

only normal stresses. Figures 5.29 to 5.32 and 5.33 to 5.36 show the displacement 

magnitude distribution at selected time points for both subjects. In subject No.l, the 

maximum wall movement occurs at the proximal end of EC. Further examination of the 

displacement variations at different cross-sectional levels (Figures 5.37 to 5.40) show that 

wall movement in the CCA and ICA is mainly due to cross sectional dilation, while in 

the ECA it involves dilation as well as lateral movement. In these figures, horizontal lines 

represent the original locations of corresponding diameters at the end of diastolic phase, 

so together with the deformed lumen outlines they demonstrate how much and in which 

direction the vessels have moved. In subject No.2, the maximum displacement occurs at
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Figure 5.29: Wall movement distribution (mm) at flow acceleration seen from (a) posterior 

and (b) anterior aspects-subject No.l.

F ig u re  5.30: W all m o v em en t d is t r ib u t io n  (m m ) a t  p e a k  sy s to le  seen  fro m  (a) p o s te r io r

a n d  (b ) a n te r io r  a s p e c ts - s u b je c t  N o .l .
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(a) (b)

Figure 5.31: Wall movement distribution (mm) at flow deceleration seen from (a) posterior 

and (b) anterior aspects-subject No.l.

F ig u re  5.32: W all m o v em en t d is t r ib u t io n  (m m ) a t  seco n d  p e a k  flow  p h a se  seen  from  (a)

p o s te r io r  a n d  (b) a n te r io r  a s p e c ts -s u b je c t  N o .l .
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Figure 5.33: Wall movement distribution (mm) at flow acceleration seen from (a) posterior 

and (b) anterior aspects-subject No.2.

F ig u re  5.34: W all m o v em en t d is t r ib u t io n  (m m ) a t  p e a k  sy s to le  seen  fro m  (a) p o s te r io r

a n d  (b ) a n te r io r  a s p e c ts -s u b je c t  N o.2.
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Figure 5.35: Wall movement distribution (mm) at flow deceleration seen from (a) posterior 

and (b) anterior aspects-subject No.2.

F ig u re  5.36: W all m o v em en t d is t r ib u t io n  (m m ) a t  m id -d ia s to le  p h a se  seen  fro m  (a) p o s-

te r io r  a n d  (b ) a n te r io r  a s p e c ts -s u b je c t  N o.2.

192



Figure 5.37: Cross sectional variations at peak systole in different locations. The horizontal 

lines represent the original positions of corresponding diameters in diastole-subject No.l.

F ig u re  5.38: C ro ss  se c tio n a l v a ria tio n s  a t  flow d e c e le ra tio n  in  d iffe ren t lo ca tio n s . T h e

h o r iz o n ta l lines re p re se n t th e  o rig in a l p o s itio n s  o f  c o rre sp o n d in g  d ia m e te rs  in  d ia s to le -

s u b je c t  N o .l .
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Figure 5.39: Cross sectional variations at mid-diastole in different locations. The hori-

zontal lines represent the original positions of corresponding diameters in diastole-subject 

No.l.

F ig u re  5.40: C ro ss  se c tio n a l v a ria tio n s  a t  th e  e n d  o f  d ia s to le  in  d iffe ren t lo ca tio n s . T h e

h o r iz o n ta l lines re p re se n t th e  o rig in a l p o s itio n s  o f  c o rre sp o n d in g  d ia m e te rs  in  d ia s to le -

s u b je c t  N o .l .
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Figure 5.41: Cross sectional variations at peak systole in different locations. The horizontal 

lines represent the original positions of corresponding diameters in diastole-subject No.2.

F ig u re  5.42: C ro ss  s e c tio n a l v a ria tio n s  a t  flow d e c e le ra tio n  in  d iffe ren t lo ca tio n s . T h e

h o riz o n ta l lines re p re se n t th e  o rig in a l p o s itio n s  o f  c o rre sp o n d in g  d ia m e te rs  in  d ia s to le -

s u b je c t N o.2 .
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Time

Figure 5.43: Cross sectional variations at mid-diastole in different locations. The hori-

zontal lines represent the original positions of corresponding diameters in diastole-subject 

No.2.

Tim e

F ig u re  5.44: C ross s e c tio n a l v a ria tio n s  a t  th e  e n d  o f  d ia s to le  in  d iffe ren t lo ca tio n s . T h e

h o riz o n ta l lines re p re se n t th e  o rig in a l p o s itio n s  o f  c o rre sp o n d in g  d ia m e te rs  in  d ia s to le -

s u b je c t  N o.2.
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Figure 5.45: Maximum principal stress distribution (Pa) on the inner surface at flow 

acceleration seen from (a) posterior and (b) anterior aspects-subject No.l.

proximal ends of ICA and ECA. By further analysing cross-sectional variations (Figures 

5.41 to 5.44), it can be found that the movement of IC and EC involves dilation and 

lateral movement which is in the direction away from the flow divider.

Figures 5.45 to 5.48 and Figures 5.49 to 5.52 are plots of the maximum principal stress 

distribution at the inner surface of the wall at selected time points. Generally the bifurca-

tions exhibit similar patterns during the cardiac cycle, but differ in magnitude at different 

time during the cycle. For subject No.l, the stress concentration factor, defined as the 

ratio of the local stress to the nominal circumferential stress (which is P r/t, where P is 

the pressure, r the radius, and t the thickness of the common carotid), is 3.10 and is in 

the bulb region. The analysis showed a small high stress region at the anterior aspect of 

the proximal EC. It can be noticed that the maximum principal stress is stretched along 

the anterior aspect of the bulb, which covers much greater area than those in the EC. In 

subject No.2, it is observed that high stress happens only at the proximal IC, with a stress 

concentration factor of 2.8. By comparing with Figures 5.26 and 5.27, it can be noticed 

that these high stress regions overlap to a great degree with the areas of low wall shear 

stress in both subjects. It may be this fact that allows the lesions in the sinus bulb to
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Figure 5.46: Maximum principal stress distribution (Pa) on the inner surface at peak 

systole seen from (a) posterior and (b) anterior aspects-subject No.l.

(b)

F ig u re  5.47: M ax im u m  p r in c ip a l  s tre s s  d is t r ib u t io n  (P a )  o n  th e  in n e r  su rface  a t  flow

d e c e le ra tio n  seen  fro m  (a) p o s te r io r  a n d  (b) a n te r io r  a s p e c ts - s u b je c t  N o .l .
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Figure 5.48: Maximum principal stress distribution (Pa) on the inner surface at mid-

diastole seen from (a) posterior and (b) anterior aspects-subject No.l.

F ig u re  5.49: M ax im u m  p r in c ip a l s tre s s  d is t r ib u t io n  (P a )  on  th e  in n e r  su rface  a t  flow

a c c e le ra tio n  seen  from  (a) p o s te r io r  a n d  (b) a n te r io r  a s p e c ts - s u b je c t  N o .2.
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Figure 5.50: Maximum principal stress distribution (Pa) on the inner surface at peak 

systole seen from (a) posterior and (b) anterior aspects-subject No.2.
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F ig u re  5.51: M a x im u m  p r in c ip a l s tre s s  d is t r ib u t io n  (P a )  on  th e  in n e r  su rface  a t  flow

d e c e le ra tio n  seen  fro m  (a) p o s te r io r  a n d  (b) a n te r io r  a s p e c ts - s u b je c t  N o.2.
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Figure 5.52: Maximum principal stress distribution (Pa) on the inner surface at mid-

diastole seen from (a) posterior and (b) anterior aspects-subject No.2.

develop.

Generally, the analysis of mechanical stresses on the vessel surface shows a complicated 

stress field. High stress distribution occurs at both the anterior and posterior aspects of 

the proximal internal bulb. These axe also regions of low wall shear stress.

5.5.4 Effect of wall distensibility

To examine the influence of wall compliance, numerical predictions for subject No.l under 

the rigid wall assumption have been performed for the purpose of comparison. The influ-

ence of wall distensibility on slow moving zone is shown in Figure 5.53 and 5.54 at peak 

systole and the end of diastole respectively. By examining similar figures to the above two 

at different time points during the cardiac cycle (not shown here due to space limit), it 

can be found that the influence of wall movement on the slow moving zone varies during 

the cardiac cycle with maximum at peak systole and minimum at the end of diastole. 

In the compliant model the slow moving zones extend further upstream at peak systole
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and are much greater than those in the rigid model during most of the cycle, while the 

slowing moving zone is slightly smaller at the end of diastole. Secondary flow is not found 

to differ significantly between the rigid and compliant models. The quantitative influence 

of wall distensibility on wall shear stress is demonstrated in Figure 5.55, by comparing 

the magnitude of wall shear stress with the results under the rigid wall assumption. Two 

cross sections in the carotid sinus were selected for the comparison, with one at the im-

mediate entrance and another at one diameter downstream. The wall shear stress (WSS) 

magnitude variations are plotted versus time. Information regarding direction was not 

included in this plot because directional changes are very complicated in such an in vivo 

bifurcation model (again see Figure 5.28). The largest difference occurs at peak systole 

with less influence of wall distensibility at diastole. This may be attributed partly to the 

wall motion which transiently enlarged the cross-sectional area, causing the instantaneous 

velocities everywhere in the cross section to decrease by comparison with rigid model, in 

accordance with the conservation of mass. The peak systolic phase exhibits significant 

wall motion and can be considered as an extreme case of shear stress deviation between 

the compliant and rigid models.

Comparisons of the results for both compliant and rigid cases have demonstrated the 

quantitative influence of the vessel wall motion. Generally in a compliant model there is a 

reduction in the magnitude of wall shear stress, with its degree depending on location and 

phase of the cardiac cycle. It can be reduced as much as 60% at some locations in the case 

examined. The region of slow or reversed flow is greater, in both spatial and temporal 

terms during most part of the cycle in the compliant model, but the global characteristics 

of the flow and stress patterns remain unchanged.

It is widely accepted that the magnitude and distribution of wall shear stress exerted by 

the flowing blood on an artery wall have an important influence on biological changes in 

the wall [203, 204], This study indicates that assumption of a rigid wall model underes-

timates the temporal and spatial magnitude of the slow moving zone and overestimates 

wall shear stress magnitude. It is widely believed that this haemodynamic condition (like 

wall shear stress, slow moving zone) is an important determinant of atherogenesis, conse-
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Figure 5.53: Comparison of slow moving zone of (a) rigid model, and (b) compliant model 

at peak systolic phase.

(a) (b)

Figure 5.54: Comparison of slow moving zone of (a) rigid model, and (b) compliant model 

at the end of diastole.
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(c)

Figure 5.55: Comparisons of wall shear stress magnitude at two selected locations in the 

internal carotid artery (Posterior, Right, Anterior, and Left points) of the coupled model 

and its corresponding rigid model ((a) carotid sinus, and (b) one-diameter downstream of 

(a), as shown in (c)).

quently inclusion of compliant wall would appear to be important for the understanding 

of the pathogenesis of this condition.

The influence of wall distensibility has also been reported by others. Duncan et al. [163] 

have studied experimentally a compliant model of an aortic bifurcation and found that 

compliance reduced the shear rate at the outer walls and increased the shear rate at the 

inner walls. Liepsch et al. [160] investigated the flow fields in rigid and silicon rubber 

models of renal leg and coronary arteries. They reported that shear stresses were reduced 

in compliant models. Anayiotos et al. [164] compared wall shear stress distribution in 

rigid and compliant models of a carotid bifurcation using laser Doppler velocimetry. Their 

compliant model displayed a diameter variation of 4 to 7 percent. Their results indicated 

that vessel compliance reduced the mean wall shear rate level by about 30% at most loca-

tions. The effect of compliance was more significant for both positive and negative shear 

stresses, which were reduced by as much as 100% in the compliant model in some locations. 

Similarly in computer simulations, Perktold and Rappitsch [42] reported a 25% decrease 

of WSS in a compliant rather a rigid, model of the carotid bifurcation; and Hofer et al.
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[148] reported that the WSS was in general lower for a distensible end-to-side anastomosis 

model when compared to a rigid one.

5.6 Validations

The sources of errors which may arise in the numerical predictions may be attributed 

to : (l)the mathematical model, (2) the discretisation method, and (3) the numerical 

algorithm. The validity of the mathematical model for arterial flows has been discussed 

extensively [170, 42, 98]. Since the flow is laminar for which the mathematical equations 

involve no empiricism, the accuracy of the predictions is expected to be in a good or-

der. The magnitude of the discretisation error is dependent upon both the discretisation 

method and the mesh density. This error can be reduced by either using a higher-order 

discretisation formula designed to reduce the truncation error, or refining the grid. The 

latter is problem dependent. The errors associated with the numerical algorithm are dom-

inated by the convergence criteria.

No numerical codes could give guaranteed reasonable and accurate results to all types of 

problems, even within the code’s capability. Their successful use often requires experi-

enced staff, and even then, the degree to which codes can be routinely used as black boxes 

may be quite limited. In general, validation exercises involve one or all of the following 

comparisons:

Internal validations

• refining the density of the mesh,

• refining the time step, if the problem is time-dependent.

External validations

• comparison with analytical solutions if one exists,

• comparison with in vivo or in vitro measurements,
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code to code comparisons.

Although accurate results (grid-independent and/or time step-independent) are the first 

requirement for reliable numerical predictions, the use of cells and time steps infinitely 

small is prohibitive and impracticable due to the large amount of CPU time, memory, and 

storage space required. Moreover, a huge dump file will cause difficulties or even crash 

down the computer during post-processing.

Due to the large amount of data involved, validations were only made for subject No.l. In 

this study, validations were carried out in two aspects. Firstly, computational uncertain-

ties were assessed by the internal validation. The internal validation has been achieved 

by testing the predicted results of the numerical model at different grid density and time 

steps to guarantee results are grid and time-step independent. Secondly, comparison was 

made between the predicted results and in vivo measured data.

5.6.1 Internal temporal and spatial resolution tests

The idea was to use smaller time steps and refined grid density to examine whether the 

same results could be obtained. It is known that the flow and the resulting wall shear 

stress in the bulb region are very sensitive to any change and are also our particular area 

of interest. Because of this, selected points at two cross-sectional areas in this region were 

chosen for the comparison. First, the number of time steps used in one cardiac cycle was 

increased from 50 to 100. The wall shear stress variations at the two cross-sections (as 

indicated in Figure 5.55c) in the IC are shown in Figure 5.56. It can be seen that the curves 

are almost identical. Further tests were made on grid density. The computational grid was 

refined from 25,600 to 30,400 cells, with proportional changes in the radial, circumferential 

and longitudinal directions respectively. The comparisons of wall shear stress variations 

at the same selected two planes as in the temporal test are shown in Figure 5.57. As can 

be seen, no significant change in the resulting wall shear stress can be found between the 

two cases. Results of these calculations indicated that the first set of parameters were 

sufficient for the present purpose and could give reasonably accurate predictions.
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Figure 5.56: Comparisons of wall shear stress magnitude at two selected locations in the 

internal carotid artery (Posterior, Right, Anterior, and Left points) of the coupled model 

before and after time step refinement ((a) carotid sinus, and (b) one-diameter downstream 

of (a), as shown in Figure 5.55(c)).
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Figure 5.57: Comparisons of wall shear stress magnitude at two selected locations in the 

internal carotid artery (Posterior, Right, Anterior, and Left points) of the coupled model 

before and after grid refinement ((a) carotid sinus, and (b) one-diameter downstream of 

(a), as shown in Figure 5.55(c)).
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Figure 5.58: Validated wall movement variation in the common carotid at two diameters 

upstream from the bifurcation against measured data.

5.6.2 Overall validation against experimental measurements

To verify the computational results, quantitative comparisons between calculations and 

the in vivo measurements were made. Figure 5.58 shows the computed and experimentally 

measured wall movement at a cross-section two diameters inferior to the bifurcation apex 

during a cardiac cycle. The experimental data was obtained by analysing the ultrasound 

M-mode image acquired at this site, and showed that the wall motion could be divided 

into three phases: rapid dilation, rapid partial contraction, and slow contraction. The nu-

merical predictions also demonstrate these phases. The quality of the agreement between 

the physical and numerical experiments is more likely to be limited by the accuracy of 

the former (see Figure 5.7), where the spatial resolution requirements are rigorous. From 

Figure 5.58 it can also be seen that the wall movement curve follows that of the pressure 

waveform (Figure 5.5(b)). This demonstrates that the pressure waveform plays the main 

part in driving the wall movement while the pressure gradient resulting from the flow only 

has a secondary influence.

For the flow field, the predicted velocities were compared with those obtained by exper-

iment. In this study, MR measured velocities at a plane in the common carotid were 

used for comparison. The scan parameters were: TR: 36ms, TE: auto, Flip angle: 25°, 

FOV: 12x12cm, Slice thickness: 5mm, Matrix 256x256, NEX: 2. Comparisons were pre-

sented by plotting velocity profiles along the L-R and A-P axes. Figure 5.59 shows the
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Figure 5.59: Comparisons of predicted and measured velocity profiles at a cross-sectional 

plane in the common carotid.
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predicted velocity profiles and those of the in vivo measurements at the selected plane 

during the cardiac cycle. The plot is organised according to the progression of time. 

Comparisons demonstrate good agreement between the calculations and measurements in 

both directions except at peak systole, where predicted results are somewhat higher than 

measurements. But the curve tendency follows those of the measurements very well. In 

both measured and predicted results, profiles are generally skewed towards the anterior 

and right walls.

Although, generally a good agreement has been obtained, local discrepancies at some part 

during the cardiac cycle exist. These discrepancies may be attributed to several factors. 

Firstly, the velocity was measured by a typical MR Cine 2D PC scan which involved 

uncertainties about the velocity close to the wall and the position of the moving wall 

itself due to the partial volume effects which account for the sharp jump in Figure 5.59 

at near wall points A, P, L, and R. In this case, most of the spins have near zero ve-

locities so that an accurate velocity image segmentation becomes very difficult. Errors 

can also come from velocity image processing and registration. Secondly, the accuracy 

of the simulation is sensitive to boundary conditions. Therefore, some uncertainties may 

be introduced by boundary condition settings in the numerical model, such as the fully 

developed flow assumption. Thirdly, factors such as complex flow, subject movement dur-

ing scanning may introduce additional errors in MR velocity imaging, which is likely to 

give misleading results. Therefore, comparison at this stage can only be done with caution.

5.7 Summary

Numerical simulations of blood flow and vessel mechanics in real human carotid arte-

rial bifurcations have been carried out under physiological pulsatile flow conditions. The 

current work employs realistic geometry models derived from in vivo MRI scans of the 

human carotid bifurcations and a comprehensive, coupled fluid-wall approach to deal with 

the blood/wall interactions. This minimises the assumptions adopted in previous numer-

ical models in two ways: (1) it adopts in vivo bifurcation geometry rather than averaged 

or idealised models; (2) use of a coupled blood/wall simulation rather than rigid wall as-
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sumption. To prove the stability and reliability of the approach, the validation has been 

designed to include both numerical accuracy and overall validations. In the latter, the 

calculated wall movement and velocities were validated against experimental data.

The numerical simulation displays a pattern of high tensile stress and low wall shear stress 

distribution in those areas most prone to atherosclerosis. Perhaps the combination of low 

wall shear stress and high stress concentration might be correlated to the vascular disease. 

High tensile stresses are associated with vessel wall thickening and alternations in compo-

sition [27]. Currently, the detailed mechanisms for stress or strain-induced wall thickening 

are not completely understood and may involve effects on endothelial and smooth mus-

cle function [205]. Recent studies have demonstrated that endothelial cells respond to 

flow by producing a range of transcription factors [206, 207]. This induces a complex 

pattern of change in the endothelial cells in addition to stimulating the release of a va-

riety of chemotactic factors and mitogens which cause smooth muscle cells to migrate 

and proliferate [208, 11]. Shear stress has also been shown to upregulate the expression 

of endothelial nitric oxide synthase which controls the production of the potent vascular 

smooth muscle relaxing factor nitric oxide [209, 210]. Davies [204, 211] and Du et al. [212] 

suggested that mechanical forces may induce the transcription factors responsible for the 

above events via intracelluar signal transduction pathways. In this way, the large and 

concentrated mechanical forces which exist at bifurcations and curvatures may lead to the 

cellular proliferation and chemotactic factor production associated with intimal thickening 

and atherosclerosis.
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Chapter 6

Conclusions

In this thesis a comprehensive numerical method combining two established commercial 

codes for solving coupled solid/fluid problems has been developed and applied to the sim-

ulation of blood flow in arterial structures. The finite volume method based CFX was 

used as the fluid dynamics code, and a finite element package ABAQUS as the structural 

mechanics code. The equations for the fluid motion and solid deformation were solved 

separately and then coupled externally in an iterative manner. The hybrid nature (finite 

volume method for the fluid and finite element for the solid) makes the present scheme 

a highly efficient tool for modelling fluid/solid interactions. Such a model is of consider-

able novelty, as it solves the time-dependent, three-dimensional flow as well as the wall 

motion, allowing the dynamic interactions between the fluid and wall to be investigated. 

Employing modified user subroutines in both codes, an interface program was completed 

for the data transfer between the fluid dynamics code and the solid mechanics code. Thus 

updated pressure and deformation distribution at each time step during the cycle could 

be transferred between CFX and ABAQUS on an interface mesh. One numerical diffi-

culty encountered from the coupled model is the convergence problem. In addition to 

convergence considerations within each code, convergence between the two codes must 

also be dealt with. A relaxation technique has been introduced. In some cases the fluid 

domain boundary was likely to oscillate if the total geometric deformation as a result of 

the structural analysis was fed in as the new boundary. It was found that by updating 

the deformations incrementally, the dynamic loads resulting from the flowing fluid would 

not change drastically. A number of numerical experiments have been performed to test
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the convergence of the iterative procedure implemented.

To test the reliability of both the codes and the coupled algorithm, a wide range of code 

validation exercises have been carried out. First, a decoupled treatment (a)unsteady flows 

in a semi-infinite contracting or expanding tube, and (b) an incompressible elastic tube 

under uniform internal pressure was considered. Then, the coupled algorithm has been 

applied to predictions of unsteady flow in a compliant circular tube, with the tube material 

being (a) elastic and, (b) hyper-elastic. Geometrically non-linear theory has been used in 

the displacement and stress analysis for the hyper-elastic case. Quantitative comparisons 

with analytical solutions (obtained by Uchida and Aoki [189] for expanding/contracting 

pipe, Love [191] for tube under internal pressure, and Womersley [38] for unsteady flow in 

a compliant tube) have demonstrated very good agreement between the numerical results 

and analytical solutions.

The coupled method was applied to the investigation of human carotid bifurcations. In 

the study, MRI and 2-D USA (System is being set up for the measurement of 4-D time- 

dependent carotid geometry by USA. ) have been used to obtain in vivo 3-D carotid 

bifurcation anatomy. A purpose-built program based on the existing one for MRI has 

been developed to process images obtained by USA or MRA, to reconstruct the bifurca-

tion models and generate automatically the computational grids which can then be used in 

the coupled simulation. This enables computer simulations of the complex flow and vessel 

wall behaviour to be carried out on an individual basis. The program has the ability of 

incorporating the movement of the surface of the model and regenerating the grid within 

the whole fluid domain.

Numerical analysis of blood flow and vessel mechanics in realistic human carotid artery 

bifurcations was performed and detailed information on both flow and arterial wall were ob-

tained. Geometry plays the key role in determining the nature of haemodynamic patterns. 

The results confirmed the complex nature of both flow field and mechanical wall behaviour 

in the carotid bifurcations concerned. For example, in the in vivo models secondary flows 

were markedly different from that observed in planar geometry models. Comparison of
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the results for both compliant and rigid cases demonstrated quantitative influence of the 

vessel compliance on local flow field such as wall shear stress and slow moving zone. The 

validation has been designed to include both numerical accuracy and overall validations. 

In the latter, the calculated wall movement and velocities were validated against in vivo 

experimental data, demonstrating satisfactory agreement. These results have indicated 

that the combination of modern codes like CFX and ABAQUS, together with iv vivo mea-

sured vessel anatomy and boundary conditions, is capable of simulating physiologically 

realistic flow in individual arterial structures.

The coupled method is capable of treating a wide range of material behaviour, such as, 

elastic and hyperelastic, linear and nonlinear, small and large deformations. Its appli-

cability to large deformation problems has been demonstrated by a number of numeri-

cal predictions of human carotid artery bifurcations. From the results discussed in the 

preceding chapters, it can be concluded that both qualitative and quantitative aspects of 

reliability of the numerical predictions have been established by critical validations against 

analytical and experimental data. In order to investigate particle trackings and residence 

times, which are clinically relevant, a visualisation of the predicted results is intended to 

be performed using the most advanced computer visualisation techniques.

As a consequence of the present study, wall effects can now be included in the predictions 

of haemodynamics in a clinical context. The combination of SM and CFD with in vivo 

vascular geometry may further elucidate the roles of haemodynamics and vessel wall me-

chanics in atherosclerosis. Together with the study of disease patterns, the application 

of the coupled model to a large number of clinical cases may establish the link among 

low wall shear stress, high wall tensile stress to atherosclerosis. In future this is likely to 

lead to better use of currently available anti-atherosclerosis strategies. It may also facil-

itate discovery, evaluation and development of novel treatments. The resultant generic 

code, combining two major disciplines of fluid dynamics and structural mechanics, will 

have wide applicability within conventional engineering. It has the potential for in depth 

insight into the behaviour of various fluid-structure interactions.
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Compared to MRI, ultrasound is well tolerated, widely available and relatively cheap. 

Therefore, in future studies, 4D ultrasound will be used to obtain time-dependent ge-

ometry and integrated with the coupled model for the purpose of both calculations and 

validations. In the present study, local change of wall properties was not considered due 

to lack of clinical data. Advanced techniques need to be developed to be able to obtain 

in vivo local changes in wall properties, then to be incorporated in the numerical modelling.
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